metadata
dict
text
stringlengths
60
3.49M
{ "source": "jolares/ripe-banana-collector", "score": 2 }
#### File: ripe-banana-collector/p1_navigation/project_main.py ```python from time import time import numpy as np import torch from torch import save as torch_save import torch.nn.functional as torch_func import torch.optim as torch_optim from pickle import dump as pkl_dump, load as pkl_load from dotmap import DotMap from python.unityagents import UnityEnvironment from p1_navigation.DQN import DQN from p1_navigation.EpsilonGreedyExploration import EpsilonGreedyExplorationStrategy from p1_navigation.plots import plot_rewards from p1_navigation.QNetwork import QNetwork ### Experiment Setup TRAIN_AGENT = False TEST_AGENT = True TEST_MODE = False RESULTS_CONFIG = DotMap({ 'SAVE_REWARDS_DATA': True, 'SAVE_REWARDS_PLOT': True, 'SAVE_MODEL': True, }) ## Environment Config RENDER_ENV = False SEED = 51 ENV_PLATFORM = 'unity' ENV_NAME = 'Banana' ## Training/Testing Config NUM_TRAIN_EPISODES = 1000 NUM_TEST_EPISODES = 1000 MAX_NUM_STEPS = 10000 TRAIN_MODEL = True PROGRESS_LOG_STEP_FREQUENCY = 1 MIN_PASSING_ACC_REWARD = 13.0 MIN_PASSING_NUM_EPISODES = 100 ### Learning Algorithm's Hyper-params Config ALPHA = 0.0001 # learning rate (used by optimizer) GAMMA = 0.99 # discount rate EPSILON_START = 0.5 EPSILON_MIN = 0.01 EPSILON_DECAY = 0.98 EXPLORATION_STRATEGY_FN = EpsilonGreedyExplorationStrategy ## Experience Replay BUFFER_SIZE = int(1e5) # replay buffer size BATCH_SIZE = 128 # minibatch size MIN_NUM_BATCHES = 5 DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ## Neural Network HIDDEN_LAYERS_UNITS = (64, 64) ACTIVATION_FNS = (torch_func.relu, torch_func.relu) NETWORK_UPDATE_INTERVAL = 2 # time-step frequency for conducting Q-Network updates TAU = 1e-3 # time for soft update of target parameters LOSS_FN = torch_func.mse_loss OPTIMIZER_FN = torch_optim.Adam ## Agents if ENV_PLATFORM == 'unity': env = UnityEnvironment(file_name=ENV_NAME + '.app', no_graphics=not RENDER_ENV) brain_name = env.brain_names[0] brain = env.brains[brain_name] env_info = env.reset(train_mode=True)[brain_name] # reset the environment state ## MDP state_space = env_info.vector_observations[0] state_size = len(state_space) action_size = brain.vector_action_space_size ### Run Experiments agent = DQN(state_size=state_size, action_size=action_size, q_network_hidden_layers_dims=HIDDEN_LAYERS_UNITS, q_network_activation_fns=ACTIVATION_FNS, alpha=ALPHA, gamma=GAMMA, epsilon_start = EPSILON_START, epsilon_min = EPSILON_MIN, epsilon_decay=EPSILON_DECAY, tau=TAU, buffer_size=BUFFER_SIZE, batch_size=BATCH_SIZE, min_num_batches=MIN_NUM_BATCHES, optimizer_fn=OPTIMIZER_FN, loss_fn=LOSS_FN, q_model_update_step_interval=NETWORK_UPDATE_INTERVAL, exploration_strategy_fn=EXPLORATION_STRATEGY_FN, device=DEVICE, seed=SEED) def train_agent(env_name: str, env_platform: str, num_episodes: int, max_num_steps: int, min_passing_acc_reward=MIN_PASSING_ACC_REWARD, min_passing_num_episodes=MIN_PASSING_NUM_EPISODES, progress_log_step_frequency=PROGRESS_LOG_STEP_FREQUENCY, render=False): epoch_rewards = [] # list containing scores from each episode_idx first_time_solved = False start_time = time() for episode_idx in range(num_episodes): episode_acc_reward = 0 state = env.reset(train_mode=True)[brain_name].vector_observations[0] # reset the environment for step in range(max_num_steps): action = agent.choose_action(state=state) step_feedback_info = env.step(vector_action=action)[brain_name] next_state = step_feedback_info.vector_observations[0] reward = step_feedback_info.rewards[0] done = step_feedback_info.local_done[0] agent.step(state, action, reward, next_state, done) state = next_state episode_acc_reward += reward if done: break epoch_rewards.append(episode_acc_reward) # save most recent score test_window_mean_acc_reward = np.mean(epoch_rewards[-min_passing_num_episodes:]) if progress_log_step_frequency and episode_idx % progress_log_step_frequency == 0: print('\rEpisode {}\tMean Acc. Reward: {:.2f}\tEps: {:.3f}'.format(episode_idx, test_window_mean_acc_reward, agent.epsilon)) if not first_time_solved and test_window_mean_acc_reward >= min_passing_acc_reward: first_time_solved = True time_to_solve = '{:.3f}'.format(time() - start_time) env_solved_log_msg = '\nEnvironment solved in {} episodes!\tAverage Score: {:.2f}' print(env_solved_log_msg.format(episode_idx - test_window_mean_acc_reward, test_window_mean_acc_reward)) stats = DotMap({ 'time_to_solve': time_to_solve, 'epoch_train_time': '{:.3f}'.format(time() - start_time) }) return epoch_rewards, stats if TRAIN_AGENT: acc_rewards, stats = train_agent(env_name='Banana', num_episodes=NUM_TRAIN_EPISODES, env_platform='unity', max_num_steps=MAX_NUM_STEPS) experiment_filename = '{epoch_train_time}-a_{alpha}-g_{gamma}-e_{epsilon}-edecay_{epsilon_decay}-emin_{epsilon_min}'\ .format(epoch_train_time=stats.epoch_train_time, alpha=ALPHA, gamma=GAMMA, epsilon=EPSILON_START, epsilon_min=EPSILON_MIN, epsilon_decay=EPSILON_DECAY) print("\n\nScore: {}".format(acc_rewards)) if RESULTS_CONFIG.SAVE_MODEL: torch_save(agent.online_q_network.state_dict(), experiment_filename + 'pth') if RESULTS_CONFIG.SAVE_REWARDS_DATA: pkl_dump(acc_rewards, open('./results/' + experiment_filename + ".p", 'wb')) if TEST_AGENT: model = torch.load('./models/checkpoint' + '.pth') model = agent.target_q_network model.eval() test_epoch_rewards = [] # list containing scores from each episode_idx first_time_solved = False test_start_time = time() for episode_idx in range(NUM_TEST_EPISODES): episode_acc_reward = 0 state = env.reset(train_mode=True)[brain_name].vector_observations[0] # reset the environment for step in range(MAX_NUM_STEPS): state = torch.from_numpy(state).float().unsqueeze(0).to(DEVICE) with torch.no_grad(): action_values = model(state) q_values = action_values.cpu().data.numpy().squeeze() action = np.argmax(q_values) step_feedback_info = env.step(vector_action=action)[brain_name] next_state = step_feedback_info.vector_observations[0] reward = step_feedback_info.rewards[0] done = step_feedback_info.local_done[0] agent.step(state, action, reward, next_state, done) state = next_state episode_acc_reward += reward if done: break test_epoch_rewards.append(episode_acc_reward) # save most recent score if PROGRESS_LOG_STEP_FREQUENCY and episode_idx % PROGRESS_LOG_STEP_FREQUENCY == 0: print('\rEpisode {}\tAcc. Reward: {:.2f}\tEps: {:.3f}'.format(episode_idx, reward, agent.epsilon)) test_stats = DotMap({ 'test_epoch_time': '{:.3f}'.format(time() - test_start_time) }) results_savetofilename = 'results/test' plot_rewards(saveto_filename=results_savetofilename, data=test_epoch_rewards, ylim=(-5, 25), dpi=320) if RESULTS_CONFIG.SAVE_REWARDS_PLOT: results_savetofilename = 'acc_rewards_01' acc_rewards = pkl_load(open('./results/' + results_savetofilename + '.p', 'rb')) plot_rewards(saveto_filename=results_savetofilename, data=acc_rewards, ylim=(-5, 25), dpi=320) env.close() ```
{ "source": "jolark/MaxPaint", "score": 3 }
#### File: src/gameObjects/enemy.py ```python import random import pygame from pygame.locals import Rect from pygame.color import THECOLORS from bullet import Bullet from utils import vect_sub,vect_mul,vect_norm, distance, interpolate from fragment import Fragment from gameObject_ import GameObject_ class Enemy(GameObject_): def __init__(self, path, speed): super(Enemy, self).__init__() self.speed = speed self.path = path self.path_index = 0 self.rect = Rect(self.path[0],(64,32)) self.imgNormal = pygame.image.load("../img/enemies/enemy.png").convert_alpha() self.imgRed = pygame.image.load("../img/enemies/enemyRed.png").convert_alpha() self.img = self.imgNormal # self.hitSound = pygame.mixer.Sound("../sounds/playerHit.wav") self.bullets = [] self.bulletSpeed = 10 self.shootingDelay = 0 self.shootingDelayMax = 50 self.radius = 300 self.waitDelay = 0 self.lives = 1 self.hit = False self.bulletFragments = [] self.shootSound = pygame.mixer.Sound('../sounds/enemyShoot.wav') def shootAtTarget(self,targetPosition): # path = [(self.rect.x+20,self.rect.y+20), vect_add(targetPosition,vect_mul(vect_sub(targetPosition, self.rect.topleft),10))] direction_raw = vect_sub(targetPosition,self.rect.topleft) direction = vect_mul(direction_raw,1.0/(vect_norm(direction_raw))) b = Bullet((self.rect.x+20,self.rect.y+20),direction, 'grey')# random.choice(["blue","red","yellow"])) self.bullets.append(b) self.shootingDelay = self.shootingDelayMax self.shootSound.play() def updateBullets(self, player, blocks): for b in self.bullets: b.update(self.bulletSpeed) if b.outOfScreen: self.bullets.remove(b) else: if b.rect.colliderect(player.rect): if player.shieldDelay == 0: # player.killed = True player.hit = True for _ in range(random.randint(3,15)): self.bulletFragments.append(Fragment(b.rect.center,THECOLORS[b.color])) self.bullets.remove(b) else: for block in blocks: if b.rect.colliderect(block.rect): # if b.nbCollide == 3: for _ in range(random.randint(3,15)): self.bulletFragments.append(Fragment(b.rect.center,THECOLORS[b.color])) self.bullets.remove(b) if block.selected: self.hit = True blocks.remove(block) # b.nbCollide += 1 # b.direction = (b.direction[0],-b.direction[1]) break def bulletFragmentsUpdate(self): for bf in self.bulletFragments: bf.update() if bf.kill: self.bulletFragments.remove(bf) def update(self, player, blocks): if player.slomoDelay > 0: self.bulletSpeed = 3 self.shootingDelayMax = 150 else: self.bulletSpeed = 10 self.shootingDelayMax = 50 # shooting if not player.killed: if distance(player.rect.center,self.rect.center ) < self.radius: if self.rect.y < player.rect.y: self.img = self.imgRed if self.shootingDelay == 0 \ and len(self.bullets) < 3: self.shootAtTarget(player.rect.center) else: self.img = self.imgNormal if self.shootingDelay > 0: self.shootingDelay -= 1 self.updateBullets( player,blocks) self.bulletFragmentsUpdate() def renderBullets(self, displaySurface, camera): for b in self.bullets: b.render(displaySurface, camera) def renderBulletFragments(self, displaySurface, camera): for bf in self.bulletFragments: bf.render(displaySurface,camera) def render(self, displaySurface,camera): displaySurface.blit(self.img, camera.apply(Rect(self.rect.x, self.rect.y, 0, 0)), (0, 64*0*(3-self.lives), 64, 64)) # displaySurface.fill(THECOLORS['grey'],self.rect) self.renderBullets(displaySurface,camera) self.renderBulletFragments(displaySurface, camera) ``` #### File: src/gameObjects/gameObject_.py ```python class GameObject_(object): def __init__(self): pass def render(self, screen, camera=None): raise NotImplementedError def update(self): raise NotImplementedError ``` #### File: src/gameObjects/player.py ```python import sys import random import pygame from pygame.locals import Rect from pygame.color import THECOLORS sys.path.append('../../lib/pyganim/') import pyganim from bullet import Bullet from gameObject_ import GameObject_ from fragment import Fragment import utils class Player(GameObject_): def __init__(self): super(Player, self).__init__() # physics properties self.x_vel = self.y_vel = self.y_vel_i = 0 self.grav = 20 self.fall = False self.time = 0 # None self.speed = 10 self.jump_power = 10 self.rect = Rect(0, 0, 60, 60) self.rect.topleft = (150,3000) self.collide_ls = [] #what obstacles does the player collide with self.direction = 1 self.direction_offset = 0 self.animation_offset = 0 self.animationTicks = 0 self.spidering = False self.onBlock = None self.finished = False self.kup_pressed = False # game properties self.bullets = [] self.mines = 0 self.minesCount = 0 self.mining = False self.slomoDelay = 0 self.shields = 0 self.shieldsCount = 0 self.shieldDelay = 0 self.killed = False self.hit = False self.hitDelay = 0 self.timePower = 0 self.timePowerCount = 0 # pics, anims and sound self.shieldAnim = pyganim.loadAnim('../img/anims/shield',0.1,True) self.timeAnim = pyganim.loadAnim('../img/anims/time',0.1,True) self.shootSound = pygame.mixer.Sound("../sounds/playerShoot.wav") self.shieldSound = pygame.mixer.Sound("../sounds/playerShield.wav") self.hitSound = pygame.mixer.Sound("../sounds/playerHit.wav") self.noteRed = pygame.mixer.Sound('../sounds/notes/plouit_red.wav') self.noteBlue = pygame.mixer.Sound('../sounds/notes/plouit_blue.wav') self.noteYellow = pygame.mixer.Sound('../sounds/notes/plouit_yellow.wav') self.img = pygame.image.load("../img/player/kube_new_pix.png").convert_alpha() def physicsUpdate(self): if self.fall: self.time += 2 # frame_number # pygame.time.get_ticks() self.y_vel = self.grav*((self.time)/100.0) + self.y_vel_i else: self.time = 0 self.y_vel = 0 def positionUpdate(self,blocks): """Calculate where our player will end up this frame including collissions.""" #Has the player walked off an edge? if not self.fall and not self.collide_with(blocks,[0,1]): self.fall = True #Has the player landed from a fall or jumped into an object above them? elif self.fall and self.collide_with(blocks,[0,int(self.y_vel)]): self.y_vel = self.adjust_pos(self.collide_ls,[0,int(self.y_vel)],1) self.y_vel_i = 0 self.fall = False self.rect.y += int(self.y_vel) #Update y position before testing x. #Is the player running into a wall?. if self.collide_with(blocks,(int(self.x_vel),0)): self.x_vel = self.adjust_pos(self.collide_ls,[int(self.x_vel),0],0) self.rect.x += int(self.x_vel) if self.rect.x < 0: self.rect.x = 0 elif self.rect.x > 740: self.rect.x = 740 if self.rect.y < 40: self.rect.y = 40 elif self.rect.y > 3160: self.rect.y = 3200 # if not self.collide_ls: # self.onBlock = None def hitUpdate(self): if self.hit: if not self.fall: self.fall = True self.y_vel_i = 2 self.hit = False def adjust_pos(self,blocks,offset,off_ind): offset[off_ind] += (1 if offset[off_ind]<0 else -1) while 1: if any(self.collide_with(self.collide_ls,offset)): offset[off_ind] += (1 if offset[off_ind]<0 else -1) else: return offset[off_ind] def collide_with(self,blocks,offset): test = ((self.rect.x+offset[0],self.rect.y+offset[1]),self.rect.size) self.collide_ls = [] for block in blocks: if pygame.Rect(test).colliderect(block.rect): if self.rect.y > block.rect.y and block.rect.x-60 < self.rect.x < block.rect.x+100: self.spidering = True elif self.rect.y < block.rect.y: self.spidering = False self.collide_ls.append(block) self.onBlock = block if not block.active: block.active = True self.addPowerUp(block) return self.collide_ls def addPowerUp(self,block): if block.color == "red": self.minesCount += 1 if self.minesCount == 5: self.minesCount = 0 self.mines += 1 self.noteRed.play() block.addingPower = True if block.color == "blue": self.shieldsCount += 1 if self.shieldsCount == 5: self.shieldsCount = 0 self.shields += 1 self.noteBlue.play() block.addingPower = True if block.color == "yellow": self.timePowerCount += 1 if self.timePowerCount == 5: self.timePowerCount = 0 self.timePower += 1 self.noteYellow.play() block.addingPower = True def shieldUpdate(self): if self.shieldDelay > 0: self.shieldDelay -= 1 def slomoUpdate(self): if self.slomoDelay > 0: self.slomoDelay -= 1 def animationUpdate(self,frame_number): self.direction_offset = self.spidering*128 + (self.direction==-1) * 64 if abs(self.x_vel) > 1: self.animation_offset = 64 *int(self.animationTicks / 8 % 4) elif self.fall and not self.spidering: self.animation_offset = 128 else: self.animation_offset = 0 if self.animationTicks == 32: self.animationTicks = 0 else: self.animationTicks += 1 def controlsUpdate(self): keys = pygame.key.get_pressed() self.x_vel = 0 if not self.finished: if keys[pygame.K_LEFT]: self.x_vel -= self.speed self.direction = -1 if keys[pygame.K_RIGHT]: self.x_vel += self.speed self.direction = 1 if keys[pygame.K_UP] and not self.kup_pressed: self.kup_pressed = True self.y_vel_i = -self.jump_power self.fall = True if not keys[pygame.K_UP]: self.kup_pressed = False if keys[pygame.K_x]: if self.onBlock and self.onBlock.active and not self.onBlock.selected \ and not self.mining and self.mines > 0: self.onBlock.selected = True self.mines -= 1 self.mining = True elif not keys[pygame.K_x]: self.mining = False if keys[pygame.K_w]: if self.slomoDelay == 0 and self.timePower > 0 and self.shieldDelay == 0: self.timePower -= 1 self.timeAnim.play() self.slomoDelay = 100 if keys[pygame.K_c]: if self.shieldDelay == 0 and self.shields > 0 and self.slomoDelay == 0: self.shields -= 1 self.shieldAnim.play() self.shieldDelay = 100 if self.rect.y < 100 and keys[pygame.K_UP]: self.finished = True def update(self, blocks, frame_number): self.controlsUpdate() self.positionUpdate(blocks) self.physicsUpdate() self.hitUpdate() self.shieldUpdate() self.slomoUpdate() self.animationUpdate(frame_number) def render(self, displaySurface,camera): displaySurface.blit(self.img, camera.apply(self.rect) , (self.animation_offset, self.direction_offset, 64, 64)) if self.shieldDelay > 0: self.shieldAnim.blit(displaySurface, camera.apply(Rect(self.rect.x -20, self.rect.y-15, 0, 0))) if self.slomoDelay > 0: self.timeAnim.blit(displaySurface, camera.apply(Rect(self.rect.x +16+16*(self.direction == 1), self.rect.y+16+16*self.spidering, 0, 0))) ``` #### File: src/screens/mainMenuScreen.py ```python import sys import pygame from pygame.locals import * from pygame.color import THECOLORS from screen_ import Screen_ from utils import save #import pgext sys.path.append('../') import utils class MainMenuScreen(Screen_): def __init__(self): super(MainMenuScreen, self).__init__() self.font = utils.getFont('VolterGoldfish', 44) self.infofont = utils.getFont('VolterGoldfish', 18) self.background = pygame.image.load("../img/backgrounds/mainMenu.png").convert() self.menuEntries = ["Start Game","Options","Quit"] ## add continue -> levelMenuScreen self.menuPositions = [(200,100),(200,300),(200,500)] self.menuInfo = ["Start or continue your adventure","Change game and user settings","Exit the game. Goodbye!"] self.menuChoice = 0 self.activeColor = THECOLORS["black"] self.inactiveColor = THECOLORS["grey64"] def render(self,backgroundScreen): backgroundScreen.blit(self.background, (0,0)) backgroundScreen.blit(self.infofont.render(self.menuInfo[self.menuChoice], 1, THECOLORS["white"]),(200,605)) for i in range(len(self.menuEntries)): if i == self.menuChoice: backgroundScreen.blit(self.font.render(self.menuEntries[i], 1, self.activeColor), self.menuPositions[i]) else: backgroundScreen.blit(self.font.render(self.menuEntries[i], 1, self.inactiveColor), self.menuPositions[i]) def handle_events(self, events): for event in events: if event.type == KEYDOWN: if event.key == K_ESCAPE: self.manager.go_to('startScreen') elif event.key == K_RETURN: if self.menuChoice == 0: # self.manager.go_to('levelSelectScreen') save([('powers',[0,0,0])]) self.manager.go_to_game(0) elif self.menuChoice == 1: self.manager.go_to('optionsScreen') elif self.menuChoice == 2: exit() elif event.key == K_UP: self.menuChoice = (self.menuChoice - 1) % len(self.menuEntries) elif event.key == K_DOWN: self.menuChoice = (self.menuChoice + 1) % len(self.menuEntries) ``` #### File: src/screens/optionsScreen.py ```python import sys import pygame from pygame.locals import * from pygame.color import * from screen_ import Screen_ sys.path.append('../') import utils from utils import save,load,exist class OptionsScreen(Screen_): def __init__(self): super(OptionsScreen, self).__init__() self.font = utils.getFont('VolterGoldfish', 44) self.infofont = utils.getFont('VolterGoldfish', 18) self.keyfont = utils.getFont('VolterGoldfish', 24) self.background = pygame.image.load("../img/backgrounds/options.png").convert() self.soundBar = pygame.image.load("../img/backgrounds/soundBar.png").convert_alpha() self.musicBar = pygame.image.load("../img/backgrounds/soundBar.png").convert_alpha() self.keyImg = pygame.image.load("../img/backgrounds/key.png").convert_alpha() self.volumeTest = pygame.mixer.Sound("../sounds/volumeTest.wav") self.menuEntries = ["Music","Sound","Controls","Back"] self.menuPositions = [(200,100),(200,200),(200,300),(200,500)] self.menuChoice = 0 self.activeColor = THECOLORS["black"] self.inactiveColor = THECOLORS["grey64"] self.soundLevel = 0 if exist('soundLevel'): self.soundLevel = load('soundLevel') self.musicLevel = 0 if exist('musicLevel'): self.musicLevel = load('musicLevel') self.actionKeys = ['slow time','shield','trap','left','jump','right'] self.keys = ['w','x','c','<','^','>'] self.actionKeysPos = [(200,450),(330,450),(430,450),(530,450),(630,450),(730,450)] def render(self, backgroundScreen): backgroundScreen.blit(self.background, (0,0)) for i in range(len(self.menuEntries)): if i == self.menuChoice: backgroundScreen.blit(self.font.render(self.menuEntries[i], 1, self.activeColor), self.menuPositions[i]) else: backgroundScreen.blit(self.font.render(self.menuEntries[i], 1, self.inactiveColor), self.menuPositions[i]) for i in range(len(self.actionKeys)): backgroundScreen.blit(self.infofont.render(self.actionKeys[i],1,self.inactiveColor),(200+(i>0)*(i*100+30),450)) backgroundScreen.blit(self.keyImg,(200+(i>0)*(i*100+30),380)) backgroundScreen.blit(self.keyfont.render(self.keys[i],1,self.inactiveColor),(200+(i>0)*(i*100+30)+20,390)) for i in range(5): backgroundScreen.blit(self.soundBar, (400+i*40,120), (0, (self.soundLevel > i)*30, 30, 30)) backgroundScreen.blit(self.musicBar, (400+i*40,220), (0, (self.musicLevel > i)*30, 30, 30)) def handle_events(self, events): for event in events: if event.type == KEYDOWN: if event.key == K_ESCAPE: save([('soundLevel',self.soundLevel),('musicLevel',self.musicLevel)]) self.manager.go_to('mainMenuScreen') if event.key == K_RETURN: if self.menuChoice == 3: save([('soundLevel',self.soundLevel),('musicLevel',self.musicLevel)]) self.manager.go_to('mainMenuScreen') if event.key == K_UP: self.menuChoice = (self.menuChoice - 1) % len(self.menuEntries) if event.key == K_DOWN: self.menuChoice = (self.menuChoice + 1) % len(self.menuEntries) if event.key == K_LEFT: if self.menuChoice == 0: self.soundLevel = max(0,self.soundLevel-1) self.volumeTest.set_volume(self.soundLevel*0.2) self.volumeTest.play() if self.menuChoice == 1: self.musicLevel = max(0,self.musicLevel-1) pygame.mixer.music.set_volume(self.musicLevel*0.2) self.volumeTest.set_volume(self.musicLevel*0.2) self.volumeTest.play() if event.key == K_RIGHT: if self.menuChoice == 0: self.soundLevel = min(5,self.soundLevel+1) self.volumeTest.set_volume(self.soundLevel*0.2) self.volumeTest.play() if self.menuChoice == 1: self.musicLevel = min(5,self.musicLevel+1) pygame.mixer.music.set_volume(self.musicLevel*0.2) self.volumeTest.set_volume(self.musicLevel*0.2) self.volumeTest.play() if event.type == QUIT: save([('soundLevel',self.soundLevel),('musicLevel',self.musicLevel)]) ``` #### File: src/screens/screenManager.py ```python from startScreen import StartScreen from optionsScreen import OptionsScreen from mainMenuScreen import MainMenuScreen from levelSelectScreen import LevelSelectScreen from gameScreen import GameScreen class ScreenManager(object): def __init__(self): self.screen = StartScreen() self.screen.manager = self def go_to(self, screen): if screen == 'levelSelectScreen': self.screen = LevelSelectScreen() elif screen == 'mainMenuScreen': self.screen = MainMenuScreen() elif screen == 'optionsScreen': self.screen = OptionsScreen() elif screen == 'startScreen': self.screen = StartScreen() self.screen.manager = self def go_to_game(self,index): self.screen = GameScreen(index) self.screen.manager = self ``` #### File: src/screens/screen_.py ```python class Screen_(object): def __init__(self): pass def render(self, screen): raise NotImplementedError def update(self): pass def handle_events(self, events): raise NotImplementedError ```
{ "source": "jolars/BlitzL1", "score": 2 }
#### File: python/blitzl1/_blitzl1.py ```python import os import numpy as np import ctypes from scipy import sparse import pickle _dir = os.path.abspath(os.path.dirname(__file__)) _lib = np.ctypeslib.load_library("libblitzl1", _dir) _index_t = ctypes.c_int32 _value_t = ctypes.c_double _size_t = ctypes.c_int32 _pointer = ctypes.POINTER(ctypes.c_void_p) _value_t_p = ctypes.POINTER(_value_t) _index_t_p = ctypes.POINTER(_index_t) _size_t_p = ctypes.POINTER(_size_t) _char_p = ctypes.c_char_p _bool = ctypes.c_bool _int = ctypes.c_int _lib.BlitzL1_new_sparse_dataset.restype = _pointer _lib.BlitzL1_new_sparse_dataset.argtypes = [ _index_t_p, _index_t_p, _value_t_p, _value_t_p, _size_t, _size_t, _size_t] _lib.BlitzL1_new_dense_dataset.restype = _pointer _lib.BlitzL1_new_dense_dataset.argtypes = [ _value_t_p, _value_t_p, _size_t, _size_t] _lib.BlitzL1_get_column_norm.restype = _value_t _lib.BlitzL1_get_column_norm.argtype = [_pointer, _index_t] _lib.BlitzL1_get_label_i.restype = _value_t _lib.BlitzL1_get_label_i.argtype = [_pointer, _index_t] _lib.BlitzL1_new_solver.restype = _pointer _lib.BlitzL1_new_solver.argtype = None _lib.BlitzL1_solve_problem.restype = None _lib.BlitzL1_solve_problem.argtype = [_pointer, _pointer, _value_t, _char_p, _value_t_p, _value_t, _char_p, _value_t, _value_t, _int, _int, _char_p] _lib.BlitzL1_set_tolerance.restype = None _lib.BlitzL1_set_tolerance.argtype = [_pointer, _value_t] _lib.BlitzL1_get_tolerance.restype = _value_t _lib.BlitzL1_get_tolerance.argtype = None _lib.BlitzL1_set_max_time.restype = None _lib.BlitzL1_set_max_time.argtype = [_pointer, _value_t] _lib.BlitzL1_get_max_time.restype = _value_t _lib.BlitzL1_get_max_time.argtype = None _lib.BlitzL1_set_use_intercept.restype = None _lib.BlitzL1_set_use_intercept.argtype = [_pointer, _bool] _lib.BlitzL1_get_use_intercept.restype = _bool _lib.BlitzL1_get_use_intercept.argtype = None _lib.BlitzL1_set_verbose.restype = None _lib.BlitzL1_set_verbose.argtype = [_pointer, _bool] _lib.BlitzL1_get_verbose.restype = _bool _lib.BlitzL1_get_verbose.argtype = None _lib.BlitzL1_compute_lambda_max.restype = _value_t _lib.BlitzL1_compute_lambda_max.argtype = [_pointer, _pointer, _char_p] _solver = _lib.BlitzL1_new_solver() def set_tolerance(value): _lib.BlitzL1_set_tolerance(_solver, _value_t(value)) def get_tolerance(): return _lib.BlitzL1_get_tolerance(_solver) def set_max_time(value): _lib.BlitzL1_set_max_time(_solver, _value_t(value)) def get_max_time(): return _lib.BlitzL1_get_max_time(_solver) def set_use_intercept(value): _lib.BlitzL1_set_use_intercept(_solver, _bool(value)) def get_use_intercept(): return _lib.BlitzL1_get_use_intercept(_solver) def set_verbose(value): _lib.BlitzL1_set_verbose(_solver, _bool(value)) def get_verbose(): return _lib.BlitzL1_get_verbose(_solver) def data_as(obj, ctypes_type): if obj.dtype != ctypes_type._type_: obj = obj.astype(ctypes_type._type_) return (obj, obj.ctypes.data_as(ctypes_type)) class _L1Problem(object): def __init__(self, A, b): self._loss_arg = _char_p(self._LOSS_TYPE.encode('utf-8')) self._load_dataset(A, b) def _load_dataset(self, A, b): self._shape = A.shape n = _size_t(A.shape[0]) d = _size_t(A.shape[1]) (self._b, labels_arg) = data_as(b, _value_t_p) if sparse.issparse(A): if not sparse.isspmatrix_csc(A): A = A.tocsc() (self._indices, indices_arg) = data_as(A.indices, _index_t_p) (self._indptr, indptr_arg) = data_as(A.indptr, _index_t_p) (self._data, data_arg) = data_as(A.data, _value_t_p) nnz = _size_t(A.nnz) self._dataset = _lib.BlitzL1_new_sparse_dataset( indices_arg, indptr_arg, data_arg, labels_arg, n, d, nnz) else: if not A.flags.f_contiguous: A = np.asfortranarray(A) (self._data, data_arg) = data_as(A, _value_t_p) self._dataset = _lib.BlitzL1_new_dense_dataset( data_arg, labels_arg, n, d) def _get_A_column_norm(self, j): return _lib.BlitzL1_get_column_norm(self._dataset, _index_t(j)) def _get_label_i(self, i): return _lib.BlitzL1_get_label_i(self._dataset, _index_t(i)) def compute_lambda_max(self): return _lib.BlitzL1_compute_lambda_max(_solver, self._dataset, self._loss_arg) def solve(self, l1_penalty, initial_x=None, initial_intercept=None, log_directory="", max_iter=20): (n, d) = self._shape # Initial conditions: if initial_x is not None: x = initial_x else: x = np.zeros(d) (x, x_arg) = data_as(x, _value_t_p) if initial_intercept is not None: intercept_arg = _value_t(initial_intercept) else: intercept_arg = _value_t(0.0) # Regularization strength: lambda_arg = _value_t(l1_penalty) # Maximum number of iterations max_iter_arg = _int(max_iter) # Log directory: if log_directory: try: os.mkdir(log_directory) except: pass log_dir_arg = _char_p(log_directory.encode('utf-8')) # Misc solution variables: obj_arg = _value_t() duality_gap_arg = _value_t() num_itr_arg = _int() solution_status = " " * 64 solution_status_arg = _char_p(solution_status.encode('utf-8')) # Solve problem: _lib.BlitzL1_solve_problem(_solver, self._dataset, lambda_arg, self._loss_arg, x_arg, ctypes.byref(intercept_arg), solution_status_arg, ctypes.byref(obj_arg), ctypes.byref(duality_gap_arg), ctypes.byref(num_itr_arg), max_iter_arg, log_dir_arg) solution_status = solution_status.strip().strip('\x00') # Return solution object: return self._SOLUTION_TYPE(x, intercept_arg.value, obj_arg.value, duality_gap_arg.value, num_itr_arg.value, solution_status) def load_solution(filepath): in_file = open(filepath, 'rb') sol = pickle.load(in_file) in_file.close() return sol class _Solution(object): def __init__(self, x, intercept, obj, duality_gap, num_itr, status): self.x = x self.intercept = intercept self.objective_value = obj self.duality_gap = duality_gap self.status = status self._num_iterations = num_itr def _compute_Ax(self, A): if sparse.issparse(A): result = A * np.mat(self.x).T + self.intercept return np.array(result).flatten() else: return np.dot(A, self.x) + self.intercept def save(self, filepath): out_file = open(filepath, "wb") pickle.dump(self, out_file) out_file.close() class LassoSolution(_Solution): def predict(self, A): return self._compute_Ax(A) def evaluate_loss(self, A, b): predictions = self.predict(A) return 0.5 * np.linalg.norm(b - predictions) ** 2 class LogRegSolution(_Solution): def predict(self, A): Ax = self._compute_Ax(A) return 1 / (1 + np.exp(-Ax)) def evaluate_loss(self, A, b): exp_mbAx = np.exp(-b * self._compute_Ax(A)) return sum(np.log1p(exp_mbAx)) class LassoProblem(_L1Problem): _LOSS_TYPE = "squared" _SOLUTION_TYPE = LassoSolution class LogRegProblem(_L1Problem): _LOSS_TYPE = "logistic" _SOLUTION_TYPE = LogRegSolution ```
{ "source": "jolarter/algoritmos", "score": 4 }
#### File: jolarter/algoritmos/com.py ```python def comb(n,k): if k==0: r=1 elif n<k: r=0 else: r = comb(n-1,k-1)+comb(n-1,k) return r print comb(10,5) print comb(4,2) print "Recursivo" #print comb(45,6) def combma(n,k,mem): if mem[n][k] == None: if k==0: mem[n][k]=1 elif n<k: mem[n][k]=0 else: mem[n][k] = combma(n-1,k-1,mem)+combma(n-1,k,mem) return mem[n][k] def combm(n,k): mem = [[None for j in range(0,k+1)] for i in range(0,n+1)] r = combma(n,k,mem) print(mem) return r print "Con memoria" print combm(8,4) def dynamiccom(n,k): mem = [[None for j in range(0,k+1)] for i in range(0,n+1)]; for i in range(0,n+1): for j in range(0,k+1): if j == 0: mem[i][j] = 1 elif i < j: mem[i][j] = 0 else: mem[i][j] = mem[i-1][j-1]+mem[i-1][j] print(mem) return mem[n][k] print "Dinamico" #print dynamiccom(45,6) print dynamiccom(8,4) def dynamiccomb2(n,k): mem = [1] + [0 for j in range(1,k+1)] for i in range(1, n+1): for j in range(min(n,k),max(i-k-1,0),-1): mem[j] = mem[j]+mem[j-1] print(mem) return mem[k] print dynamiccomb2(8,4) ``` #### File: jolarter/algoritmos/fib.py ```python def fib(n): if n==0 or n==1: r=1 s=1 else: r1,s1=fib(n-1) r2,s2=fib(n-2) r=r1+r2 s=s1+s2+1 return r,s def fibma(n,mem): if mem[n]==None: if n==0 or n==1: mem[n]=1 s=1 else: r1,s1=fibma(n-1,mem) r2,s2=fibma(n-2,mem) mem[n]=r1+r2 s=s1+s2+1 return mem[n],s else: return mem[n],1 def fibm(n): mem = [None for i in range(0,n+1)] return fibma(n,mem) def dynamicfib(n): mem = [None for i in range(0,n+1)] mem[0] = 1 mem[1] = 1 for i in range(2,n+1): mem[i] = mem[i-1]+mem[i-2] return mem[n] def dynamicfib2(n): mem = [1,1] for i in range(2,n+1): mem[i & 1] = mem[(i-1) & 1] + mem[(i-2) & 1] return mem[n & 1] print fib(30) print fibm(30) print dynamicfib(30) print dynamicfib2(30) ``` #### File: jolarter/algoritmos/morral.py ```python def u(j,w,weights,utilities): if j == 0: result = 0 elif w < weights[j]: result = u(j - 1, w, weights,utilities) else: result = max(u(j-1, w, weights, utilities), utilities[j] + u(j-1, w - weights[j], weights, utilities)) return result def um(j,w,weights,utilities,m): if m [j][w] == None: if j == 0: result = 0 elif w < weights[j]: result = u(j - 1, w, weights,utilities,m) else: result = max(u(j-1, w, weights, utilities,m), utilities[j] + u(j-1, w - weights[j], weights, utilities,m)) m[j][w] = result else: result = m[j][w] return result def umm(w,weights,utilities): n = len(weights)-1 m = [[None for w in range(0,w+1)] for j in range(0,n+1)] print(m) '''return um(n,weight,weights,utilities,m)''' def udyn0(w,weights,utilities): n = len(weights)-1 m = [[0 for w in range(0,w+1)]]+[[None for w in range(0,w+1)] for j in range(1,n+1)] print (m) w0=[1,2,3,4] u0=[240,200,140,150] umm(4,w0,u0) udyn0(4,w0,u0) ``` #### File: jolarter/algoritmos/tablashash.py ```python class HashTable: def __init__(self,n): self.n = n self.arr = [-1 for i in range(0,n)] def insertar(self, key, value): self.arr[self.hash(key)]=value def buscar(self, key): return self.arr[self.hash(key)] def hash(self, cadena): sum = 0 for i in range(len(cadena)): sum += ord(cadena[i]) return sum % self.n def hash2(self, cadena): sum = 0 for i in range(len(cadena)): sum += ord(cadena[i])*(self.n**i) return (sum/self.n) % self.n def __str__(self): return str(self.arr) ht = HashTable(17) ht.insertar("key1","Julian") ht.insertar("key2","tttt") ht.insertar("key3","Laura") print(ht) print(ht.buscar("key1")) print(ht.buscar("key2")) print(ht.buscar("key3")) ```
{ "source": "joldie/bioinformatics-tools", "score": 3 }
#### File: joldie/bioinformatics-tools/find_conserved_blocks_v2.2.py ```python from Bio.Alphabet import IUPAC from Bio import AlignIO from Bio.Align import MultipleSeqAlignment import time import os # Measure execution time of script start_time = time.time() # Program settings ########################### matchingFraction = 0.85 # 1 = identical (no mismatches) minLength = 200 # minimum number of base pairs matching in sequence minSequences = 7 # minimum number of sequences in a block with matching sequence # Input file data ########################### inputFileName = "file.fasta" inputFileType = "fasta" alphabetFormat = IUPAC.unambiguous_dna gapCharacter = "-" inputFilePath = os.path.dirname( os.path.realpath(__file__)) + "/" + inputFileName outputFilePath = inputFilePath + "_(" + str(matchingFraction) + "-" + \ str(minLength) + "-" + str(minSequences) + ").txt" ########################### alignment = AlignIO.read(inputFilePath, inputFileType, alphabet=alphabetFormat) sequenceLength = alignment.get_alignment_length() numSequences = alignment.__len__() # Error checking for user input if matchingFraction < 0 or matchingFraction > 1: print('Error: \'matchingFraction\' must be between 0 and 1') exit() if minLength >= sequenceLength or minLength <= 0: print('Error: \'minLength\' must be a positive number less than the sequence length in input file') exit() if minSequences >= numSequences or minSequences <= 0: print('Error: \'minSequences\' must be a positive number less than the number of sequences in input file') exit() def isBlockConserved(blockSequence): maxAllowedMismatchedColumns = blockSequence.get_alignment_length( ) - int(blockSequence.get_alignment_length() * matchingFraction) mismatchedColumns = 0 for column in range(blockSequence.get_alignment_length()): # First, check if entire first column is filled with gap characters # If so, return False if column == 0: gapCharacterCount = 0 for row in range(blockSequence.__len__()): if blockSequence[row][column] == gapCharacter: gapCharacterCount += 1 if gapCharacterCount == blockSequence.__len__(): return False # Find the first non-gap character in column firstNonGapCharacter = "" for row in range(blockSequence.__len__()): if blockSequence[row][column] != gapCharacter and firstNonGapCharacter == "": firstNonGapCharacter = blockSequence[row][column] break # Next, count number of columns with non-identical values or gap characters # If count increases above threshold, return False for row in range(blockSequence.__len__()): if blockSequence[row][column] == gapCharacter or blockSequence[row][column] != firstNonGapCharacter: mismatchedColumns += 1 if mismatchedColumns > maxAllowedMismatchedColumns: return False break # If loop executes completely to end, return True return True def isBlockAlreadyCounted(startRow, startColumn, endRow, endColumn): for block in conservedBlocksInfo: if startRow >= block[0] and startColumn >= block[1] and endRow <= block[2] and endColumn <= block[3]: return True return False def removeTrailingBlankColumns(blockSequence): removedColumns = 0 blankColumn = True while blankColumn: gapCharacterCount = 0 for row in range(blockSequence.__len__()): if blockSequence[row][-1] == gapCharacter: gapCharacterCount += 1 if gapCharacterCount == blockSequence.__len__(): # Remove last column, as it contains only gap characters blockSequence = blockSequence[:, :-1] removedColumns += 1 else: blankColumn = False return blockSequence, removedColumns def getNumberBlankColumns(blockSequence): numberColumns = 0 for column in range(blockSequence.get_alignment_length()): gapCharacterCount = 0 for row in range(blockSequence.__len__()): if blockSequence[row][column] == gapCharacter: gapCharacterCount += 1 if gapCharacterCount == blockSequence.__len__(): numberColumns += 1 return numberColumns def getMismatchString(blockSequence): mismatchString = "" for column in range(blockSequence.get_alignment_length()): mismatch = False firstNonGapCharacter = "" for row in range(blockSequence.__len__()): if blockSequence[row][column] != gapCharacter and firstNonGapCharacter == "": firstNonGapCharacter = blockSequence[row][column] break for row in range(blockSequence.__len__()): if blockSequence[row][column] != firstNonGapCharacter: mismatchString += "X" mismatch = True break if not mismatch: mismatchString += "-" return mismatchString def getNumberPositionString(length, start, multiple): returnString = "" i = start while i < length + start: if i % multiple == 0: returnString += str(i) # Move counter forward by number of extra characters used to print string i += (len(str(i)) - 1) else: returnString += " " i += 1 return returnString print("Input file = " + inputFilePath) print("\'matchingFraction\' = " + str(matchingFraction)) print("\'minLength\' = " + str(minLength)) print("\'minSequences\' = " + str(minSequences)) print("") conservedBlocks = [] conservedBlocksInfo = [] for startSequence in range(numSequences - minSequences + 1): current_time = time.time() - start_time print("Start of sequence #" + str(startSequence + 1) + " (current time = " + str(int(current_time)) + "s)") for index in range(sequenceLength - minLength + 1): length = minLength sequences = minSequences # Only test block if it (or larger version of it) not already added if not isBlockAlreadyCounted(startSequence, index, startSequence + sequences, index + length): largestConservedBlock = MultipleSeqAlignment([]) # Empty object consensusRight = True consensusDown = True while consensusRight: block = alignment[startSequence:( startSequence + sequences), index:(index + length)] if (index + length) > sequenceLength: # Reached end of sequence consensusRight = False elif not isBlockConserved(block): consensusRight = False if length == minLength: consensusDown = False # Don't bother searching down, as start block is not conserved else: length -= 1 else: length += 1 largestConservedBlock = block while consensusDown: block = alignment[startSequence:( startSequence + sequences), index:(index + length)] if (startSequence + sequences) > numSequences: # Reached end of sequence list consensusDown = False elif not isBlockConserved(block): consensusDown = False sequences -= 1 else: sequences += 1 largestConservedBlock = block if index != sequenceLength and length > minLength: # Before saving data, remove any columns of gap characters at end of block largestConservedBlock, removedColumns = removeTrailingBlankColumns( largestConservedBlock) # Save block data in list conservedBlocks.append(largestConservedBlock) conservedBlocksInfo.append( [startSequence, index, startSequence + sequences, index + length]) # Print information about saved data print("Block found: " + str(conservedBlocks[-1].__len__()) + " sequences, " + str( conservedBlocks[-1].get_alignment_length()) + " long (from position " + str(index + 1) + " to " + str(index + length + 1) + ")") # Print output to text file textFile = open(outputFilePath, "w") textFile.write("Python script = " + os.path.basename(__file__) + "\n") textFile.write("Input file = " + inputFilePath + "\n") textFile.write("\'matchingFraction\' = " + str(matchingFraction) + "\n") textFile.write("\'minLength\' = " + str(minLength) + "\n") textFile.write("\'minSequences\' = " + str(minSequences) + "\n\n") i = 0 for block in conservedBlocks: textFile.write("Number blank columns = " + str(getNumberBlankColumns(block)) + "\n") textFile.write("Length = " + str(block.get_alignment_length() - getNumberBlankColumns(block)) + " / Length with gaps = " + str(block.get_alignment_length() ) + " (position " + str(conservedBlocksInfo[i][1] + 1) + " to " + str(conservedBlocksInfo[i][1] + block.get_alignment_length() + 1) + ")\n") textFile.write("Number of sequences = " + str(block.__len__()) + "\n") for row in range(block.__len__()): textFile.write("[" + str(conservedBlocksInfo[i][0] + row + 1) + "] " + block[row].name + "\n") textFile.write(getNumberPositionString( block.get_alignment_length(), 1, 50) + "\n") textFile.write(getMismatchString(block) + "\n") for row in range(block.__len__()): textFile.write(str(block[row, :].seq) + "\n") textFile.write("\n") i += 1 textFile.close() # Print execution time of script end_time = time.time() total_time = end_time - start_time print("Program execution time: " + str(int(total_time)) + "s") ```
{ "source": "jole6826/pyswarms", "score": 4 }
#### File: pyswarms/single/general_optimizer.py ```python r""" A general Particle Swarm Optimization (general PSO) algorithm. It takes a set of candidate solutions, and tries to find the best solution using a position-velocity update method. Uses a user specified topology. The position update can be defined as: .. math:: x_{i}(t+1) = x_{i}(t) + v_{i}(t+1) Where the position at the current timestep :math:`t` is updated using the computed velocity at :math:`t+1`. Furthermore, the velocity update is defined as: .. math:: v_{ij}(t + 1) = m * v_{ij}(t) + c_{1}r_{1j}(t)[y_{ij}(t) − x_{ij}(t)] + c_{2}r_{2j}(t)[\hat{y}_{j}(t) − x_{ij}(t)] Here, :math:`c1` and :math:`c2` are the cognitive and social parameters respectively. They control the particle's behavior given two choices: (1) to follow its *personal best* or (2) follow the swarm's *global best* position. Overall, this dictates if the swarm is explorative or exploitative in nature. In addition, a parameter :math:`w` controls the inertia of the swarm's movement. An example usage is as follows: .. code-block:: python import pyswarms as ps from pyswarms.backend.topology import Pyramid from pyswarms.utils.functions import single_obj as fx # Set-up hyperparameters and topology options = {'c1': 0.5, 'c2': 0.3, 'w':0.9} my_topology = Pyramid(static=False) # Call instance of GlobalBestPSO optimizer = ps.single.GeneralOptimizerPSO(n_particles=10, dimensions=2, options=options, topology=my_topology) # Perform optimization stats = optimizer.optimize(fx.sphere_func, iters=100) This algorithm was adapted from the earlier works of <NAME> and <NAME> in Particle Swarm Optimization [IJCNN1995]_. .. [IJCNN1995] <NAME> and <NAME>, "Particle Swarm Optimization," Proceedings of the IEEE International Joint Conference on Neural Networks, 1995, pp. 1942-1948. """ # Import from stdlib import logging # Import modules import numpy as np # Import from package from ..base import SwarmOptimizer from ..backend.operators import compute_pbest from ..backend.topology import Topology, Ring, Random, VonNeumann from ..utils.console_utils import cli_print, end_report class GeneralOptimizerPSO(SwarmOptimizer): def __init__( self, n_particles, dimensions, options, topology, bounds=None, velocity_clamp=None, center=1.00, ftol=-np.inf, init_pos=None, ): """Initialize the swarm Attributes ---------- n_particles : int number of particles in the swarm. dimensions : int number of dimensions in the space. options : dict with keys :code:`{'c1', 'c2', 'w'}` or :code:`{'c1', 'c2', 'w', 'k', 'p'}` a dictionary containing the parameters for the specific optimization technique. * c1 : float cognitive parameter * c2 : float social parameter * w : float inertia parameter if used with the :code:`Ring`, :code:`VonNeumann` or :code:`Random` topology the additional parameter k must be included * k : int number of neighbors to be considered. Must be a positive integer less than :code:`n_particles` if used with the :code:`Ring` topology the additional parameters k and p must be included * p: int {1,2} the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance) while 2 is the Euclidean (or L2) distance. if used with the :code:`VonNeumann` topology the additional parameters p and r must be included * r: int the range of the VonNeumann topology. This is used to determine the number of neighbours in the topology. topology : pyswarms.backend.topology.Topology a :code:`Topology` object that defines the topology to use in the optimization process. The currently available topologies are: * Star All particles are connected * Ring (static and dynamic) Particles are connected to the k nearest neighbours * VonNeumann Particles are connected in a VonNeumann topology * Pyramid (static and dynamic) Particles are connected in N-dimensional simplices * Random (static and dynamic) Particles are connected to k random particles Static variants of the topologies remain with the same neighbours over the course of the optimization. Dynamic variants calculate new neighbours every time step. bounds : tuple of :code:`np.ndarray` (default is :code:`None`) a tuple of size 2 where the first entry is the minimum bound while the second entry is the maximum bound. Each array must be of shape :code:`(dimensions,)`. velocity_clamp : tuple (default is :code:`None`) a tuple of size 2 where the first entry is the minimum velocity and the second entry is the maximum velocity. It sets the limits for velocity clamping. center : list (default is :code:`None`) an array of size :code:`dimensions` ftol : float relative error in objective_func(best_pos) acceptable for convergence """ super(GeneralOptimizerPSO, self).__init__( n_particles, dimensions=dimensions, options=options, bounds=bounds, velocity_clamp=velocity_clamp, center=center, ftol=ftol, init_pos=init_pos, ) # Initialize logger self.logger = logging.getLogger(__name__) # Invoke assertions self.assertions() # Initialize the resettable attributes self.reset() # Initialize the topology and check for type if not isinstance(topology, Topology): raise TypeError("Parameter `topology` must be a Topology object") else: self.top = topology # Case for the Ring topology if isinstance(topology, (Ring, VonNeumann)): # Assign p-value as attributes self.p = options["p"] # Exceptions for the p value if "p" not in self.options: raise KeyError("Missing p in options") if self.p not in [1, 2]: raise ValueError( "p-value should either be 1 (for L1/Minkowski) " "or 2 (for L2/Euclidean)." ) # Case for Random, VonNeumann and Ring topologies if isinstance(topology, (Random, Ring, VonNeumann)): if not isinstance(topology, VonNeumann): self.k = options["k"] if not isinstance(self.k, int): raise ValueError( "No. of neighbors must be an integer between" "0 and no. of particles." ) if not 0 <= self.k <= self.n_particles - 1: raise ValueError( "No. of neighbors must be between 0 and no. " "of particles." ) if "k" not in self.options: raise KeyError("Missing k in options") else: # Assign range r as attribute self.r = options["r"] if not isinstance(self.r, int): raise ValueError("The range must be a positive integer") if ( self.r <= 0 or not 0 <= VonNeumann.delannoy(self.swarm.dimensions, self.r) <= self.n_particles - 1 ): raise ValueError( "The range must be set such that the computed" "Delannoy number (number of neighbours) is" "between 0 and the no. of particles." ) def optimize(self, objective_func, iters, print_step=1, verbose=1, **kwargs): """Optimize the swarm for a number of iterations Performs the optimization to evaluate the objective function :code:`f` for a number of iterations :code:`iter.` Parameters ---------- objective_func : function objective function to be evaluated iters : int number of iterations print_step : int (default is 1) amount of steps for printing into console. verbose : int (default is 1) verbosity setting. kwargs : dict arguments for the objective function Returns ------- tuple the global best cost and the global best position. """ cli_print("Arguments Passed to Objective Function: {}".format(kwargs), verbose, 2, logger=self.logger) for i in range(iters): # Compute cost for current position and personal best self.swarm.current_cost = objective_func(self.swarm.position, **kwargs) self.swarm.pbest_cost = objective_func(self.swarm.pbest_pos, **kwargs) self.swarm.pbest_pos, self.swarm.pbest_cost = compute_pbest( self.swarm ) best_cost_yet_found = self.swarm.best_cost # If the topology is a ring topology just use the local minimum if isinstance(self.top, Ring) and not isinstance(self.top, VonNeumann): # Update gbest from neighborhood self.swarm.best_pos, self.swarm.best_cost = self.top.compute_gbest( self.swarm, self.p, self.k ) # If the topology is a VonNeumann topology pass the neighbour and range attribute to compute_gbest() if isinstance(self.top, VonNeumann): # Update gbest from neighborhood self.swarm.best_pos, self.swarm.best_cost = self.top.compute_gbest( self.swarm, self.p, self.r ) # If the topology is a random topology pass the neighbor attribute to compute_gbest() elif isinstance(self.top, Random): # Get minima of pbest and check if it's less than gbest if np.min(self.swarm.pbest_cost) < self.swarm.best_cost: self.swarm.best_pos, self.swarm.best_cost = self.top.compute_gbest( self.swarm, self.k ) else: # Get minima of pbest and check if it's less than gbest if np.min(self.swarm.pbest_cost) < self.swarm.best_cost: self.swarm.best_pos, self.swarm.best_cost = self.top.compute_gbest( self.swarm ) # Print to console if i % print_step == 0: cli_print( "Iteration {}/{}, cost: {}".format(i + 1, iters, self.swarm.best_cost), verbose, 2, logger=self.logger ) # Save to history hist = self.ToHistory( best_cost=self.swarm.best_cost, mean_pbest_cost=np.mean(self.swarm.pbest_cost), mean_neighbor_cost=self.swarm.best_cost, position=self.swarm.position, velocity=self.swarm.velocity ) self._populate_history(hist) # Verify stop criteria based on the relative acceptable cost ftol relative_measure = self.ftol * (1 + np.abs(best_cost_yet_found)) if ( np.abs(self.swarm.best_cost - best_cost_yet_found) < relative_measure ): break # Perform velocity and position updates self.swarm.velocity = self.top.compute_velocity( self.swarm, self.velocity_clamp ) self.swarm.position = self.top.compute_position( self.swarm, self.bounds ) # Obtain the final best_cost and the final best_position final_best_cost = self.swarm.best_cost.copy() final_best_pos = self.swarm.best_pos.copy() # Write report in log and return final cost and position end_report( final_best_cost, final_best_pos, verbose, logger=self.logger ) return(final_best_cost, final_best_pos) ``` #### File: pyswarms/utils/console_utils.py ```python from __future__ import with_statement from __future__ import absolute_import from __future__ import print_function # Import modules def cli_print(message, verbosity, threshold, logger): """Helper function to print console output Parameters ---------- message : str the message to be printed into the console verbosity : int verbosity setting of the user threshold : int threshold for printing logger : logging.getLogger logger instance """ if verbosity >= threshold: logger.info(message) else: pass def end_report(cost, pos, verbosity, logger): """Helper function to print a simple report at the end of the run. This always has a threshold of 1. Parameters ---------- cost : float final cost from the optimization procedure. pos : numpy.ndarray or list best position found verbosity : int verbosity setting of the user. logger : logging.getLogger logger instance """ # Cuts the length of the best position if it's too long if len(list(pos)) > 3: out = ("[ " + 3 * "{:3f} " + "...]").format(*list(pos)) else: out = list(pos) template = ( "================================\n" "Optimization finished!\n" "Final cost: {:06.4f}\n" "Best value: {}\n" ).format(cost, out) if verbosity >= 1: logger.info(template) ``` #### File: utils/plotters/formatters.py ```python import numpy as np from attr import attrs, attrib from attr.validators import instance_of from matplotlib import cm, colors @attrs class Designer(object): """Designer class for specifying a plot's formatting and design You can use this class for specifying design-related customizations to your plot. This can be passed in various functions found in the :mod:`pyswarms.utils.plotters` module. .. code-block :: python from pyswarms.utils.plotters import plot_cost_history from pyswarms.utils.plotters.formatters import Designer # Set title_fontsize into 20 my_designer = Designer(title_fontsize=20) # Assuming we already had an optimizer ready plot_cost_history(cost_history, designer=my_designer) Attributes ---------- figsize : tuple (default is :code:`(10,8)`) Overall figure size. title_fontsize : str, int, or float (default is :code:`large`) Size of the plot's title. text_fontsize : str, int, or float (default is :code:`medium`) Size of the plot's labels and legend. legend : str (default is :code:`Cost`) Label to show in the legend. For cost histories, it states the label of the line plot. label : str, list, or tuple (default is :code:`['x-axis', 'y-axis']`) Label to show in the x, y, or z-axis. For a 3D plot, please pass an iterable with three elements. """ # Overall plot design figsize = attrib(type=tuple, validator=instance_of(tuple), default=(10, 8)) title_fontsize = attrib( validator=instance_of((str, int, float)), default="large" ) text_fontsize = attrib( validator=instance_of((str, int, float)), default="medium" ) legend = attrib(validator=instance_of(str), default="Cost") label = attrib( validator=instance_of((str, list, tuple)), default=["x-axis", "y-axis", "z-axis"], ) limits = attrib( validator=instance_of((list, tuple)), default=[(-1, 1), (-1, 1), (-1, 1)] ) colormap = attrib( validator=instance_of(colors.Colormap), default=cm.viridis, ) @attrs class Animator(object): """Animator class for specifying animation behavior You can use this class to modify options on how the animation will be run in the :func:`pyswarms.utils.plotters.plot_contour` and :func:`pyswarms.utils.plotters.plot_surface` methods. .. code-block :: python from pyswarms.utils.plotters import plot_contour from pyswarms.utils.plotters.formatters import Animator # Do not repeat animation my_animator = Animator(repeat=False) # Assuming we already had an optimizer ready plot_contour(pos_history, animator=my_animator) Attributes ---------- interval : int (default is :code:`80`) Sets the interval or speed into which the animation is played. repeat_delay : int, float (default is :code:`None`) Sets the delay before repeating the animation again. repeat : bool (default is :code:`True`) Pass :code:`False` if you don't want to repeat the animation. """ interval = attrib(type=int, validator=instance_of(int), default=80) repeat_delay = attrib(default=None) repeat = attrib(type=bool, validator=instance_of(bool), default=True) @attrs class Mesher(object): """Mesher class for plotting contours of objective functions This class enables drawing a surface plot of a given objective function. You can customize how this plot is drawn with this class. Pass an instance of this class to enable meshing. .. code-block :: python from pyswarms.utils.plotters import plot_surface from pyswarms.utils.plotters.formatters import Mesher from pyswarms.utils.functions import single_obj as fx # Use sphere function my_mesher = Mesher(func=fx.sphere_func) # Assuming we already had an optimizer ready plot_surface(pos_history, mesher=my_mesher) Attributes ---------- func : callable Objective function to plot a surface of. delta : float (default is :code:`0.001`) Number of steps when generating the surface plot limits : list, tuple (default is :code:`[(-1,1), (-1,1)]`) The range, in each axis, where the mesh will be drawn. levels : list (default is :code:`np.arange(-2.0, 2.0, 0.070)`) Levels on which the contours are shown. alpha : float (default is :code:`0.3`) Transparency of the surface plot """ func = attrib() # For mesh creation delta = attrib(type=float, default=0.001) limits = attrib( validator=instance_of((list, tuple)), default=[(-1, 1), (-1, 1)] ) levels = attrib(type=list, default=np.arange(-2.0, 2.0, 0.070)) # Surface transparency alpha = attrib(type=float, validator=instance_of(float), default=0.3) def compute_history_3d(self, pos_history): """Compute a 3D position matrix The first two columns are the 2D position in the x and y axes respectively, while the third column is the fitness on that given position. Parameters ---------- pos_history : numpy.ndarray Two-dimensional position matrix history of shape :code:`(iterations, n_particles, 2)` Returns ------- numpy.ndarray 3D position matrix of shape :code:`(iterations, n_particles, 3)` """ fitness = np.array(list(map(self.func, pos_history))) return np.dstack((pos_history, fitness)) ``` #### File: tests/optimizers/conftest.py ```python import pytest import numpy as np # Import from package from pyswarms.single import GlobalBestPSO, LocalBestPSO, GeneralOptimizerPSO from pyswarms.discrete import BinaryPSO from pyswarms.utils.functions.single_obj import sphere_func from pyswarms.backend.topology import Star, Ring, Pyramid, Random, VonNeumann @pytest.fixture(scope="module") def general_opt_history(topology): """Returns a GeneralOptimizerPSO instance run for 1000 iterations for checking history""" pso = GeneralOptimizerPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5}, topology=topology) pso.optimize(sphere_func, 1000, verbose=0) return pso @pytest.fixture(scope="module") def general_opt_reset(topology): """Returns a GeneralOptimizerPSO instance that has been run and reset to check default value""" pso = GeneralOptimizerPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5}, topology=topology) pso.optimize(sphere_func, 10, verbose=0) pso.reset() return pso @pytest.fixture(scope="module") def gbest_history(): """Returns a GlobalBestPSO instance run for 1000 iterations for checking history""" pso = GlobalBestPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5}) pso.optimize(sphere_func, 1000, verbose=0) return pso @pytest.fixture(scope="module") def gbest_reset(): """Returns a GlobalBestPSO instance that has been run and reset to check default value""" pso = GlobalBestPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5}) pso.optimize(sphere_func, 10, verbose=0) pso.reset() return pso @pytest.fixture(scope="module") def lbest_history(): """Returns a LocalBestPSO instance run for 1000 iterations for checking history""" pso = LocalBestPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2, "p": 2}) pso.optimize(sphere_func, 1000, verbose=0) return pso @pytest.fixture(scope="module") def lbest_reset(): """Returns a LocalBestPSO instance that has been run and reset to check default value""" pso = LocalBestPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2, "p": 2}) pso.optimize(sphere_func, 10, verbose=0) pso.reset() return pso @pytest.fixture(scope="module") def binary_history(): """Returns a BinaryPSO instance run for 1000 iterations for checking history""" pso = BinaryPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2, "p": 2}) pso.optimize(sphere_func, 1000, verbose=0) return pso @pytest.fixture(scope="module") def binary_reset(): """Returns a BinaryPSO instance that has been run and reset to check default value""" pso = BinaryPSO(10, 2, {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2, "p": 2}) pso.optimize(sphere_func, 10, verbose=0) pso.reset() return pso @pytest.fixture def options(): """Default options dictionary for most PSO use-cases""" options_ = {"c1": 0.5, "c2": 0.7, "w": 0.5, "k": 2, "p": 2, "r": 1} return options_ @pytest.fixture(params=[ Star(), Ring(static=False), Ring(static=True), Pyramid(static=False), Pyramid(static=True), Random(static=False), Random(static=True), VonNeumann() ]) def topology(request): """Parametrized topology parameter""" topology_ = request.param return topology_ ``` #### File: utils/plotters/conftest.py ```python import os import pytest import numpy as np from mock import Mock import matplotlib as mpl if os.environ.get("DISPLAY", "") == "": mpl.use("Agg") # Import from package from pyswarms.single import GlobalBestPSO from pyswarms.utils.functions.single_obj import sphere_func from pyswarms.utils.plotters.formatters import Mesher @pytest.fixture def trained_optimizer(): """Returns a trained optimizer instance with 100 iterations""" options = {"c1": 0.5, "c2": 0.3, "w": 0.9} optimizer = GlobalBestPSO(n_particles=10, dimensions=2, options=options) optimizer.optimize(sphere_func, iters=100) return optimizer @pytest.fixture def pos_history(): """Returns a list containing a swarms' position history""" return np.random.uniform(size=(10, 5, 2)) @pytest.fixture def mesher(): """A Mesher instance with sphere function and delta=0.1""" return Mesher(func=sphere_func, delta=0.1) ```
{ "source": "jolemon/defects4j-dataset", "score": 2 }
#### File: jolemon/defects4j-dataset/clear_d4j.py ```python import os import shutil import re projs = ['Time', 'Mockito', 'Lang', 'Math', 'Closure'] linked_dir = 'linked-bugMethods-iBug/' linked_postfix = '_bugId_buggyMethodsName' bugcode_dir = 'allMethods-iBug' br_dir = 'bugReport4Vector' def load_link_dic(path): dic = {} f = open(path, 'r') lines = f.readlines() for line in lines: line = line.strip() if len(line) > 0: parts = line.split('\t') br_id = parts[0] dic[br_id] = 1 return dic def clear_allMethods(): for proj in projs: link_dic = load_link_dic(linked_dir + proj + linked_postfix) for file in os.listdir(os.path.join(bugcode_dir, proj)): if file not in link_dic: print(os.path.join(bugcode_dir, proj, file)) file_path = os.path.join(bugcode_dir, proj, file) if file == '.DS_Store': os.remove(file_path) else: shutil.rmtree(file_path) def clear_br(): for proj in projs: link_dic = load_link_dic(linked_dir + proj + linked_postfix) proj_dir = os.path.join(br_dir, proj) for br in os.listdir(proj_dir): if br not in link_dic: print(os.path.join(proj_dir, br)) file_path = os.path.join(br_dir, proj, br) os.remove(file_path) if __name__ == '__main__': clear_allMethods() clear_br() ```
{ "source": "jolenechong/simplePythonProjects", "score": 3 }
#### File: jolenechong/simplePythonProjects/hangman.py ```python from PIL import Image ''' hangman time taken: 30mins on base form (no hangman image, no game won no games left) 1h45min for whole project todos: - guess letter OR whole word ''' hangman = { 1:[ "-------", " ▓", " ▓", " ▓", " ▓", " ▓", "-------", ], 2:[ "-------", " | ▓", " ▓", " ▓", " ▓", " ▓", "-------", ], 3:[ "-------", " | ▓", " ☺ ▓", " ▓", " ▓", " ▓", "-------", ], 4:[ "-------", " | ▓", " \☺ ▓", " ▓", " ▓", " ▓", "-------", ], 5:[ "-------", " | ▓", " \☺/ ▓", " ▓", " ▓", " ▓", "-------", ], 6:[ "-------", " | ▓", " \☺/ ▓", " | ▓", " ▓", " ▓", "-------", ], 7:[ "-------", " | ▓", " \☺/ ▓", " | ▓", " / ▓", " ▓", "-------", ], 8:[ "-------", " | ▓", " \☺/ ▓", " | ▓", " / \ ▓", " ▓", "-------", ], } def main(): word = str(input('Enter the word to guess: ')) word = word.lower() start = input('Enter (E) to start: ') if start == 'e' or start == 'E': guess_the_word(word) def guess_the_word(word): letterList = [] currentWord = [] gameWon = False hangmanCount = 1 # store word in a list by each letter # append _ to current word depending on how many letters are in the word for letter in word: letterList.append(letter) currentWord.append("_") while True: roundWon = False if gameWon == True: print('\nYAY! You won!') im = Image.open("YAY.jpg") im.show() break else: letterGuessed = str(input('Guess a letter:')) letterGuessed = letterGuessed.lower() # if guessed correctly append currentWord count = 0 for letter in letterList: if letterGuessed == letter: currentWord[count]=letterGuessed roundWon = True count +=1 if "_" not in currentWord: gameWon = True if roundWon == False: hangmanCount += 1 print(hangman.get(hangmanCount, 'error')[0]) print(hangman.get(hangmanCount, 'error')[1]) print(hangman.get(hangmanCount, 'error')[2]) print(hangman.get(hangmanCount, 'error')[3]) print(hangman.get(hangmanCount, 'error')[4]) print(hangman.get(hangmanCount, 'error')[5]) print(hangman.get(hangmanCount, 'error')[6]) print("CURRENT WORD:\n", "".join(map(str, currentWord))) turnsleft = 10 - hangmanCount print(f"You have {turnsleft} turns left\n") main() ```
{ "source": "JoleProject/Jole", "score": 2 }
#### File: examples/tf/ppo_memorize_digits.py ```python import gym from garage.envs import normalize from garage.experiment import run_experiment from garage.tf.algos import PPO from garage.tf.baselines import GaussianCNNBaseline from garage.tf.envs import TfEnv from garage.tf.experiment import LocalTFRunner from garage.tf.policies import CategoricalCNNPolicy def run_task(snapshot_config, *_): """Run task.""" with LocalTFRunner(snapshot_config=snapshot_config) as runner: env = TfEnv(normalize(gym.make('MemorizeDigits-v0'))) policy = CategoricalCNNPolicy(env_spec=env.spec, conv_filters=(32, 64, 64), conv_filter_sizes=(5, 3, 2), conv_strides=(4, 2, 1), conv_pad='VALID', hidden_sizes=(256, )) baseline = GaussianCNNBaseline(env_spec=env.spec, regressor_args=dict( conv_filters=(32, 64, 64), conv_filter_sizes=(5, 3, 2), conv_strides=(4, 2, 1), conv_pads=('VALID', 'VALID'), hidden_sizes=(256, ), use_trust_region=True)) algo = PPO(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=100, discount=0.99, max_kl_step=0.01) runner.setup(algo, env) runner.train(n_epochs=1000, batch_size=2048) run_experiment( run_task, snapshot_mode='last', seed=1, ) ``` #### File: envs/wrappers/double_action.py ```python import gym import numpy as np import random class DoubleAction(gym.Wrapper): """Clip the reward by its sign.""" def step(self, ac): """gym.Env step function.""" r = random.uniform(0, 1) if r>0.8: ac = ac * 2 obs, reward, done, info = self.env.step(ac) return obs, np.sign(reward), done, info def reset(self): """gym.Env reset.""" return self.env.reset() ``` #### File: tf/env_functions/base2.py ```python import abc class EnvFunction2(abc.ABC): """ Q-function base class without Parameterzied. Args: name (str): Name of the Q-fucntion, also the variable scope. """ def __init__(self, name): self.name = name or type(self).__name__ self._variable_scope = None def get_fval_sym(self, *input_phs): """ Symbolic graph for q-network. All derived classes should implement this function. Args: input_phs (list[tf.Tensor]): Recommended to be positional arguments, e.g. def get_qval_sym(self, state_input, action_input). """ pass def clone(self, name): """ Return a clone of the Q-function. It should only copy the configuration of the Q-function, not the parameters. Args: name (str): Name of the newly created q-function. """ pass def get_trainable_vars(self): """Get all trainable variables under the QFunction scope.""" return self._variable_scope.trainable_variables() def get_global_vars(self): """Get all global variables under the QFunction scope.""" return self._variable_scope.global_variables() def get_regularizable_vars(self): """Get all network weight variables under the QFunction scope.""" trainable = self._variable_scope.global_variables() return [ var for var in trainable if 'hidden' in var.name and 'kernel' in var.name ] def log_diagnostics(self, paths): """Log extra information per iteration based on the collected paths.""" pass ``` #### File: tf/env_functions/mlp_terminal_function.py ```python import tensorflow as tf from garage.misc.overrides import overrides from garage.tf.models import MLPModel from garage.tf.env_functions.base2 import EnvFunction2 class MLPTerminalFunction(EnvFunction2): """ Continuous MLP QFunction. This class implements a q value network to predict q based on the input state and action. It uses an MLP to fit the function of Q(s, a). Args: env_spec (garage.envs.env_spec.EnvSpec): Environment specification. name (str): Name of the q-function, also serves as the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s). For example, (32, 32) means the MLP of this q-function consists of two hidden layers, each with 32 hidden units. action_merge_layer (int): The index of layers at which to concatenate action inputs with the network. The indexing works like standard python list indexing. Index of 0 refers to the input layer (observation input) while an index of -1 points to the last hidden layer. Default parameter points to second layer from the end. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. output_nonlinearity (callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a linear activation. output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. input_include_goal (bool): Whether input includes goal. layer_normalization (bool): Bool for using layer normalization. """ def __init__(self, env_spec, name='MLPTerminalFunction', hidden_sizes=(20, 20), hidden_nonlinearity=tf.nn.relu, hidden_w_init=tf.glorot_uniform_initializer(), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=None, output_w_init=tf.glorot_uniform_initializer(), output_b_init=tf.zeros_initializer(), input_include_goal=False, layer_normalization=False): super().__init__(name) self._env_spec = env_spec self._hidden_sizes = hidden_sizes self._hidden_nonlinearity = hidden_nonlinearity self._hidden_w_init = hidden_w_init self._hidden_b_init = hidden_b_init self._output_nonlinearity = output_nonlinearity self._output_w_init = output_w_init self._output_b_init = output_b_init self._input_include_goal = input_include_goal self._layer_normalization = layer_normalization if self._input_include_goal: self._obs_dim = env_spec.observation_space.flat_dim_with_keys( ['observation', 'desired_goal']) else: self._obs_dim = env_spec.observation_space.flat_dim self._action_dim = env_spec.action_space.flat_dim self.model = MLPModel(output_dim=2, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, output_nonlinearity=output_nonlinearity, output_w_init=output_w_init, output_b_init=output_b_init, layer_normalization=layer_normalization) self._initialize() def _initialize(self): obs_ph = tf.compat.v1.placeholder(tf.float32, (None, self._obs_dim), name='obs') with tf.compat.v1.variable_scope(self.name) as vs: self._variable_scope = vs self.model.build(obs_ph) self._f_qval = tf.compat.v1.get_default_session().make_callable( self.model.networks['default'].outputs, feed_list=[obs_ph]) def get_obs_val(self, observation): """Q Value of the network.""" return self._f_qval(observation) @property def inputs(self): """Return the input tensor.""" return self.model.networks['default'].inputs @overrides def get_fval_sym(self, state_input, name): """ Symbolic graph for q-network. Args: state_input (tf.Tensor): The state input tf.Tensor to the network. name (str): Network variable scope. Return: The tf.Tensor output of Discrete MLP QFunction. """ with tf.compat.v1.variable_scope(self._variable_scope): return self.model.build(state_input, name=name) def clone(self, name): """ Return a clone of the Q-function. It only copies the configuration of the Q-function, not the parameters. Args: name (str): Name of the newly created q-function. """ return self.__class__(name=name, env_spec=self._env_spec, hidden_sizes=self._hidden_sizes, hidden_nonlinearity=self._hidden_nonlinearity, hidden_w_init=self._hidden_w_init, hidden_b_init=self._hidden_b_init, output_nonlinearity=self._output_nonlinearity, output_w_init=self._output_w_init, output_b_init=self._output_b_init, layer_normalization=self._layer_normalization) def __getstate__(self): """Object.__getstate__.""" new_dict = self.__dict__.copy() del new_dict['_f_qval'] return new_dict def __setstate__(self, state): """Object.__setstate__.""" self.__dict__.update(state) self._initialize() ```
{ "source": "joleroi/gammapy", "score": 3 }
#### File: gammapy/examples/horizon_coord_transformations.py ```python import numpy as np import ephem from kapteyn.wcs import Projection def approximate_nominal_to_altaz(nominal, horizon_center=(0, 0)): """Transform nominal coordinates to horizon coordinates. nominal = (x, y) in meter horizon_center = (az_center, alt_center) in deg Returns: horizon = (az, alt) in deg TODO: The following method of computing Alt / Az is only an approximation. Implement and use a utility function using the TAN FITS projection. """ x, y = np.asarray(nominal, dtype='float64') az_center, alt_center = np.asarray(horizon_center, dtype='float64') # @note: alt increases where x increases, az increases where y increases az = az_center + np.degrees(np.tan(y)) / np.cos(np.radians(alt_center)) alt = alt_center + np.degrees(np.tan(x)) return az, alt def nominal_to_altaz(nominal, horizon_center=(0, 0)): """Transform nominal coordinates to horizon coordinates. nominal = (x, y) in meter horizon_center = (az_center, alt_center) in deg Returns: horizon = (az, alt) in deg """ x, y = np.asarray(nominal, dtype='float64') az_center, alt_center = np.asarray(horizon_center, dtype='float64') header = {'NAXIS': 2, 'NAXIS1': 100, 'NAXIS2': 100, 'CTYPE1': 'RA---TAN', 'CRVAL1': az_center, 'CRPIX1': 0, 'CUNIT1': 'deg', 'CDELT1': np.degrees(1), 'CTYPE2': 'DEC--TAN', 'CRVAL2': alt_center, 'CRPIX2': 0, 'CUNIT2': 'deg', 'CDELT2': np.degrees(1), } projection = Projection(header) altaz = projection.toworld((y, x)) return altaz[0], altaz[1] ``` #### File: gammapy/examples/plot_rings.py ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import ImageGrid from gammapy.background import ring def add_inner_title(ax, title, loc, size=None, **kwargs): from matplotlib.offsetbox import AnchoredText from matplotlib.patheffects import withStroke if size is None: size = dict(size=plt.rcParams['legend.fontsize']) at = AnchoredText(title, loc=loc, prop=size, pad=0., borderpad=0.5, frameon=False, **kwargs) ax.add_artist(at) at.txt._text.set_path_effects([withStroke(foreground="w", linewidth=3)]) return at fov = 2.0 pixscale = 0.02 areafactor = 20 thetas = [0.1, 0.2, 0.4] r_is = [0.5, 0.8, 1.1] x = y = np.arange(-fov, fov + pixscale, pixscale) X, Y = np.meshgrid(x, y) d = np.sqrt(X ** 2 + Y ** 2) fig = plt.figure(1, (10, 10)) title = ('Areafactor = {0} and Pixel Size {1}' ''.format(areafactor, pixscale)) grid = ImageGrid(fig, 111, nrows_ncols=(len(thetas), len(r_is)), axes_pad=0.1, ) for i_theta, theta in enumerate(thetas): for i_r_i, r_i in enumerate(r_is): r_o = ring.r_o(theta, r_i, areafactor) circle = d < theta ring = (r_i < d) & (d < r_o) true_areafactor = ring.sum() / circle.sum() mask = circle + ring index = i_theta * len(r_is) + i_r_i ax = grid[index] print(index, theta, r_i, r_o, true_areafactor) ax.imshow(-mask, interpolation='nearest', cmap='gray', extent=[-fov, fov, -fov, fov], ) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xlabel('r_inner = {0}'.format(r_i)) ax.set_ylabel('theta = {0}'.format(theta)) add_inner_title(ax, 'r_thick = {0:1.2f}'.format(r_o - r_i), 2) # ax.text(0.05, 0.95, 'r_thick = {0:1.2f}'.format(r_o - r_i), # ha='left', va='top', transform = ax.transAxes) for extension in ['png', 'pdf']: plt.savefig('ringbg_rings_areafactor_{0}_pixscale_{1}.{2}' ''.format(areafactor, pixscale, extension), dpi=300) ``` #### File: gammapy/background/fov.py ```python from __future__ import print_function, division import numpy as np from astropy.wcs import WCS from astropy.wcs.utils import pixel_to_skycoord from ..image.utils import coordinates __all__ = ['fill_acceptance_image', ] def fill_acceptance_image(image, center, offset, acceptance): """Generate a 2D image of a radial acceptance curve. The radial acceptance curve is given as an array of values defined at the specified offsets. Parameters ---------- image : `~astropy.io.fits.ImageHDU` Empty image to fill. center : `~astropy.coordinates.SkyCoord` Coordinate of the center of the image. offset : `~astropy.coordinates.Angle` 1D array of offset values where acceptance is defined. acceptance : `~numpy.ndarray` Array of acceptance values. Returns ------- image : `~astropy.io.fits.ImageHDU` Image filled with radial acceptance. """ from scipy.interpolate import interp1d # initialize WCS to the header of the image w = WCS(image.header) # define grids of pixel coorinates xpix_coord_grid, ypix_coord_grid = coordinates(image, world=False) # calculate pixel offset from center (in world coordinates) coord = pixel_to_skycoord(xpix_coord_grid, ypix_coord_grid, w, origin=0) pix_off = coord.separation(center) # interpolate f = interp1d(offset, acceptance, kind='cubic') pix_acc = f(pix_off) # fill value in image image.data = pix_acc return image ``` #### File: background/tests/test_kernel.py ```python from __future__ import print_function, division import numpy as np from numpy.testing import assert_allclose, assert_equal import os import tempfile from astropy.io import fits from astropy.tests.helper import pytest from astropy.units import Quantity from astropy.coordinates.angles import Angle from ...background import GammaImages, IterativeKernelBackgroundEstimator from ...image import make_empty_image from ...stats import significance from ...datasets import FermiGalacticCenter from ...irf import EnergyDependentTablePSF try: import scipy HAS_SCIPY = True except ImportError: HAS_SCIPY = False @pytest.mark.skipif('not HAS_SCIPY') def test_GammaImages(): """Tests compute correlated maps in GammaImages. This is the only method in GammaImages that actually calculates anything. """ # Set up test counts and background counts_hdu = make_empty_image(nxpix=10, nypix=10, binsz=1, fill=42) counts_hdu.data[4][4] = 1000 counts = counts_hdu.data background_data = 42 * np.ones_like(counts, dtype=float) # Single unit pixel kernel so should actually be no change. background_kernel = np.ones((1, 1)) images = GammaImages(counts, background_data) images.compute_correlated_maps(background_kernel) # Test significance image against Li & Ma significance value expected = significance(counts, background_data) actual = images.significance assert_allclose(actual, expected) @pytest.mark.skipif('not HAS_SCIPY') class TestIterativeKernelBackgroundEstimator(object): """Tests methods in the IterativeKernelBackgroundEstimator. """ def setup_class(self): """Prepares appropriate input and defines inputs for test cases. """ from scipy.ndimage import convolve # Load/create example model images counts_hdu = make_empty_image(nxpix=10, nypix=10, binsz=1, fill=42) counts_hdu.data[4][4] = 1000 counts = counts_hdu.data # Initial counts required by one of the tests. self.counts = counts psf = FermiGalacticCenter.psf() psf = psf.table_psf_in_energy_band(Quantity([10, 500], 'GeV')) kernel_array = psf.kernel(pixel_size=Angle(1, 'deg'), offset_max=Angle(3, 'deg'), normalize=True) counts_blob = convolve(counts, kernel_array, mode='constant') self.counts_blob = counts_blob # Start with flat background estimate # Background must be provided as an ImageHDU images = GammaImages(counts=counts, header=counts_hdu.header) images_blob = GammaImages(counts=counts_blob, header=counts_hdu.header) source_kernel = np.ones((1, 3)) background_kernel = np.ones((5, 3)) significance_threshold = 4 mask_dilation_radius = 1 # Loads prepared inputs into estimator self.ibe = IterativeKernelBackgroundEstimator( images, source_kernel, background_kernel, significance_threshold, mask_dilation_radius ) self.ibe2 = IterativeKernelBackgroundEstimator( images, source_kernel, background_kernel, significance_threshold, mask_dilation_radius ) self.ibe_blob = IterativeKernelBackgroundEstimator( images_blob, source_kernel, background_kernel, significance_threshold, mask_dilation_radius ) def test_run_iteration_point(self): """Asserts that mask and background are as expected according to input.""" # Call the run_iteration code as this is what is explicitly being tested self.ibe.run_iteration() # Should be run twice to update the mask self.ibe.run_iteration() mask = self.ibe.mask_image_hdu.data background = self.ibe.background_image_hdu.data # Check mask matches expectations expected_mask = np.ones_like(self.counts) expected_mask[4][3] = 0 expected_mask[4][4] = 0 expected_mask[4][5] = 0 assert_allclose(mask.astype(int), expected_mask) # Check background, should be 42 uniformly assert_allclose(background.astype(float), 42 * np.ones((10, 10))) def test_run_iteration_blob(self): """Asserts that mask and background are as expected according to input.""" # Call the run_iteration code as this is what is explicitly being tested self.ibe_blob.run_iteration() # Should be run twice to update the mask self.ibe_blob.run_iteration() mask = self.ibe_blob.mask_image_hdu.data background = self.ibe_blob.background_image_hdu.data # Check background, should be 42 uniformly within 10% assert_allclose(background, 42 * np.ones((10, 10)), rtol=0.15) def test_run(self): """Tests run script.""" mask, background = self.ibe2.run() assert_allclose(mask.sum(), 97) assert_allclose(background, 42 * np.ones((10, 10))) def test_save_files(self): """Tests that files are saves, and checks values within them.""" # Create temporary file to write output into dir = tempfile.mkdtemp() self.ibe.run_iteration(1) self.ibe.save_files(filebase=dir, index=0) mask_filename = dir + '00_mask.fits' significance_filename = dir + '00_significance.fits' background_filename = dir + '00_background.fits' mask_data = fits.open(mask_filename)[1].data significance_data = fits.open(significance_filename)[1].data background_data = fits.open(background_filename)[1].data # Checks values in files against known results for one iteration. assert_allclose(mask_data.sum(), 97) assert_allclose(significance_data.sum(), 157.316195729298) assert_allclose(background_data.sum(), 4200) os.removedirs(dir) ``` #### File: background/tests/test_reflected.py ```python from __future__ import print_function, division import unittest from astropy.tests.helper import pytest from ...background import Maps, ReflectedRegionMaker @pytest.mark.xfail class TestReflectedBgMaker(unittest.TestCase): def test_analysis(self): runs = 'TODO' maps = Maps('maps.fits') reflected_bg_maker = ReflectedRegionMaker(runs, maps, psi=2, theta=0.1) total_maps = Maps('total_maps.fits') for run in runs: run_map = total_maps.cutout(run) reflected_bg_maker.make_n_reflected_map(run, run_map) total_maps.add(run_map) total_maps.save('n_reflected.fits') ``` #### File: gammapy/extern/bunch.py ```python __all__ = ['Bunch'] class Bunch(dict): """ Dictionary with attribute access for result objects. Example is `~gammapy.detect.TSMapResult` """ def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if self.keys(): m = max(map(len, list(self.keys()))) + 1 return '\n'.join([k.rjust(m) + ': ' + repr(v) for k, v in self.items()]) else: return self.__class__.__name__ + "()" ``` #### File: gammapy/extern/validator.py ```python import numpy as np from astropy import units as u from astropy.extern import six def validate_physical_type(name, value, physical_type): if physical_type is not None: if not isinstance(value, u.Quantity): raise TypeError("{0} should be given as a Quantity object".format(name)) if isinstance(physical_type, six.string_types): if value.unit.physical_type != physical_type: raise TypeError("{0} should be given in units of {1}".format(name, physical_type)) else: if not value.unit.physical_type in physical_type: raise TypeError("{0} should be given in units of {1}".format(name, ', '.join(physical_type))) def validate_scalar(name, value, domain=None, physical_type=None): validate_physical_type(name, value, physical_type) if not physical_type: if not np.isscalar(value) or not np.isreal(value): raise TypeError("{0} should be a scalar floating point value".format(name)) if domain == 'positive': if value < 0.: raise ValueError("{0} should be positive".format(name)) elif domain == 'strictly-positive': if value <= 0.: raise ValueError("{0} should be strictly positive".format(name)) elif domain == 'negative': if value > 0.: raise ValueError("{0} should be negative".format(name)) elif domain == 'strictly-negative': if value >= 0.: raise ValueError("{0} should be strictly negative".format(name)) elif type(domain) in [tuple, list] and len(domain) == 2: if value < domain[0] or value > domain[-1]: raise ValueError("{0} should be in the range [{1}:{2}]".format(name, domain[0], domain[-1])) return value def validate_array(name, value, domain=None, ndim=1, shape=None, physical_type=None): validate_physical_type(name, value, physical_type) # First convert to a Numpy array: if type(value) in [list, tuple]: value = np.array(value) # Check the value is an array with the right number of dimensions if not isinstance(value, np.ndarray) or value.ndim != ndim: if ndim == 1: raise TypeError("{0} should be a 1-d sequence".format(name)) else: raise TypeError("{0} should be a {1:d}-d array".format(name, ndim)) # Check that the shape matches that expected if shape is not None and value.shape != shape: if ndim == 1: raise ValueError("{0} has incorrect length (expected {1} but found {2})".format(name, shape[0], value.shape[0])) else: raise ValueError("{0} has incorrect shape (expected {1} but found {2})".format(name, shape, value.shape)) return value ``` #### File: gammapy/image/catalog.py ```python import numpy as np from astropy.coordinates import Angle from astropy.wcs import WCS from astropy.units import Quantity from astropy.table import Table from . import coordinates __all__ = ['catalog_image', 'catalog_table'] def _extended_image(catalog, reference_cube): """Reprojects and adds extended source images to a larger survey image. """ # This import is here instead of at the top to avoid an ImportError # due to circular dependencies from ..datasets import fetch_fermi_extended_sources from ..data import SpectralCube # Note that the first extended source fits file is unreadable... hdu_list = fetch_fermi_extended_sources(catalog)[1:] for source in hdu_list: source_wcs = WCS(source.header) source_spec_cube = SpectralCube(data=Quantity(np.array([source.data]), ''), wcs=source_wcs, energy=energy) new_source_cube = source_spec_cube.reproject_to(reference_cube) # TODO: Fix this hack reference_cube.data = reference_cube.data + np.nan_to_num(new_source_cube.data * 1e-30) return reference_cube.data[0] def _source_image(catalog, reference_cube, sim_table=None, total_flux=True): """Adds point sources to a larger survey image. """ new_image = np.zeros_like(reference_cube.data, dtype=np.float64) if sim_table is None: source_table = catalog_table(catalog, energy_bands=False) else: source_table = sim_table energies = source_table.meta['Energy Bins'] wcs_reference = reference_cube.wcs footprint = wcs_reference.calc_footprint() glon_max, glon_min = footprint[0][0], footprint[2][0] - 360 glat_min, glat_max = footprint[0][1], footprint[1][1] for source in np.arange(len(source_table['flux'])): lon = source_table['GLON'][source] if lon >= 180: lon = lon - 360 if (glon_min < lon) & (lon < glon_max): lat = source_table['GLAT'][source] if (glat_min < lat) & (lat < glat_max): flux = source_table['flux'][source] wcs = reference_cube.wcs origin = 0 # convention for gammapy x, y = wcs.wcs_world2pix(lon, lat, origin) xi, yi = x.astype(int), y.astype(int) new_image[yi, xi] = new_image[yi, xi] + flux if total_flux: factor = source_table['flux'].sum() / new_image.sum() else: factor = 1 return new_image * factor, energies def catalog_image(reference, psf, catalog='1FHL', source_type='point', total_flux=False, sim_table=None): """Creates an image from a simulated catalog, or from 1FHL or 2FGL sources. Parameters ---------- reference : `~fits.ImageHDU` Reference Image HDU. The output takes the shape and resolution of this. psf : `~gammapy.irf.EnergyDependentTablePSF` Energy dependent Table PSF object for image convolution. catalog : {'1FHL', '2FGL', 'simulation'} Flag which source catalog is to be used to create the image. If 'simulation' is used, sim_table must also be provided. source_type : {'point', 'extended', 'all'} Specify whether point or extended sources should be included, or both. TODO: Currently only 'point' is implemented. total_flux : bool Specify whether to conserve total flux. sim_table : `~astropy.table.Table` Table of simulated point sources. Only required if catalog = 'simulation' Returns ------- out_cube : `~gammapy.data.SpectralCube` 2D Spectral cube containing the image. Notes ----- This is currently only implemented for a single energy band. """ from scipy.ndimage import convolve # This import is here instead of at the top to avoid an ImportError # due to circular dependencies from ..data import SpectralCube lons, lats = coordinates(reference) wcs = WCS(reference.header) # Uses dummy energy for now to construct spectral cube # TODO : Fix this hack reference_cube = SpectralCube(data=Quantity(np.array(reference.data), ''), wcs=wcs, energy=Quantity([0, 1], 'GeV')) if source_type == 'extended': raise NotImplementedError # TODO: Currently fluxes are not correct for extended sources. new_image = _extended_image(catalog, reference_cube) elif source_type == 'point': new_image, energy = _source_image(catalog, reference_cube, sim_table, total_flux) elif source_type == 'all': raise NotImplementedError # TODO: Currently Extended Sources do not work extended = _extended_image(catalog, reference_cube) point_source = _source_image(catalog, reference_cube, total_flux=True)[0] new_image = extended + point_source else: raise ValueError total_point_image = SpectralCube(data=new_image, wcs=wcs, energy=energy) convolved_cube = new_image.copy() psf = psf.table_psf_in_energy_band(Quantity([np.min(energy).value, np.max(energy).value], energy.unit)) resolution = abs(reference.header['CDELT1']) kernel_array = psf.kernel(pixel_size=Angle(resolution, 'deg'), offset_max=Angle(5, 'deg'), normalize=True) convolved_cube = convolve(new_image, kernel_array, mode='constant') out_cube = SpectralCube(data=convolved_cube, wcs=total_point_image.wcs, energy=energy) return out_cube def catalog_table(catalog, energy_bands=False): """Creates catalog table from published source catalog. This creates a table of catalog sources, positions and fluxes for an indicated published source catalog - either 1FHL or 2FGL. This should be used to in instances where a table is required, for instance as an input for the `~gammapy.image.catalog_image` function. Parameters ---------- catalog : {'1FHL', '2FGL'} Catalog to load. energy_bands : bool Whether to return catalog in energy bands. Returns ------- table : `~astropy.table.Table` Point source catalog table. """ # This import is here instead of at the top to avoid an ImportError # due to circular dependencies from ..datasets import fetch_fermi_catalog data = [] cat_table = fetch_fermi_catalog(catalog, 'LAT_Point_Source_Catalog') for source in np.arange(len(cat_table)): glon = cat_table['GLON'][source] glat = cat_table['GLAT'][source] # Different from here between each catalog because of different catalog header names if catalog in ['1FHL', 'simulation']: energy = Quantity([10, 30, 100, 500], 'GeV') if energy_bands: Flux_10_30 = cat_table['Flux10_30GeV'][source] Flux_30_100 = cat_table['Flux30_100GeV'][source] Flux_100_500 = cat_table['Flux100_500GeV'][source] row = dict(Source_Type='PointSource', GLON=glon, GLAT=glat, Flux10_30=Flux10_30, Flux30_100=Flux30_100, Flux100_500=Flux100_500) else: flux_bol = cat_table['Flux'][source] row = dict(Source_Type='PointSource', GLON=glon, GLAT=glat, flux=flux_bol) elif catalog == '2FGL': energy = Quantity([30, 100, 300, 1000, 3000, 10000, 100000], 'GeV') if not energy_bands: flux_bol = cat_table['Flux_Density'][source] row = dict(Source_Type='PointSource', GLON=glon, GLAT=glat, flux=flux_bol) else: Flux_30_100 = cat_table['Flux30_100'][source] Flux_100_300 = cat_table['Flux100_300'][source] Flux_300_1000 = cat_table['Flux300_1000'][source] Flux_1000_3000 = cat_table['Flux1000_3000'][source] Flux_3000_10000 = cat_table['Flux3000_10000'][source] Flux_10000_100000 = cat_table['Flux10000_100000'][source] row = dict(Source_Type='PointSource', Source_Name=source_name, GLON=glon, GLAT=glat, Flux_30_100=Flux_30_100, Flux_100_300=Flux_100_300, Flux_300_1000=Flux_300_1000, Flux_1000_3000=Flux_1000_3000, Flux_3000_10000=Flux_3000_10000, Flux_10000_100000=Flux_10000_100000) data.append(row) table = Table(data) table.meta['Energy Bins'] = energy return table ``` #### File: gammapy/morphology/model.py ```python from __future__ import print_function, division import logging import numpy as np from astropy.io import fits from ..utils.const import fwhm_to_sigma __all__ = ['GaussCatalog', 'make_test_model', 'read_json', 'MorphModelImageCreator', ] __doctest_skip__ = ['MorphModelImageCreator'] class MorphModelImageCreator(object): """Create model images from a HGPS pipeline source config file. Uses astropy to evaluate the source model, with oversampling or integrating over pixels. Parameters ---------- cfg_file : str Config file with all the sources listed. exposure : str Fits image file with the exposure. psf_file : str (optional) Json file with PSF information. background : str (optional) Fits image file with the background. apply_psf : bool (default True) Whether the psf should be applied. compute_excess : bool (default True) Whether to compute an excess image. flux_factor : float (default 1E-12) Flux conversion factor. Examples -------- Here is an example how to use `MorphModelImageCreator`: >>> from gammapy.morphology import MorphModelImageCreator >>> model_image_creator = MorphModelImageCreator(cfg_file='input_sherpa.cfg', ... exposure='exposure.fits', ... psf_file='psf.json') >>> model_image_creator.evaluate_model(mode='center') >>> model_image_creator.save('model_image.fits') """ def __init__(self, cfg_file, exposure, psf_file=None, apply_psf=True, background=None, flux_factor=1E-12, compute_excess=True): self.cfg_file = cfg_file self.exposure = fits.getdata(exposure) self.header = fits.getheader(exposure) self._apply_psf = apply_psf self._flux_factor = flux_factor self._compute_excess = compute_excess if psf_file is not None: self.psf_file = psf_file if background is not None: if isinstance(background, str): self.background = fits.getdata(background) elif isinstance(background, (int, float)): self.background = np.ones_like(self.exposure) def _setup_model(self): """Setup a list of source models from an ``input_sherpa.cfg`` config file. """ self.source_models = [] # Read config file from configobj import ConfigObj cfg = ConfigObj(self.cfg_file, file_error=True) # Set up model from astropy.modeling.models import Gaussian2D for source in cfg.keys(): # TODO: Add other source models if cfg[source]['Type'] != 'NormGaussian': logging.ERROR('So far only normgauss2d models can be handled.') sigma = fwhm_to_sigma * float(cfg[source]['fwhm']) ampl = float(cfg[source]['ampl']) * 1 / (2 * np.pi * sigma ** 2) xpos = float(cfg[source]['xpos']) - 1 ypos = float(cfg[source]['ypos']) - 1 source_model = Gaussian2D(ampl, xpos, ypos, x_stddev=sigma, y_stddev=sigma) self.source_models.append(source_model) def evaluate_model(self, **kwargs): """Evaluate model by oversampling or taking the value at the center of the pixel. """ self._setup_model() self.model_image = np.zeros_like(self.exposure, dtype=np.float64) from astropy.convolution import utils height, width = self.exposure.shape for source_model in self.source_models: source_model_image = utils.discretize_model(source_model, (0, width), (0, height), **kwargs) self.model_image += source_model_image if self._compute_excess: self.model_image = self.model_image * self.exposure if self._apply_psf: psf = self._create_psf(**kwargs) from astropy.convolution import convolve self.model_image = convolve(self.model_image, psf) self.model_image *= self._flux_factor def _create_psf(self, **kwargs): """Set up psf model using `astropy.convolution`. """ # Read psf info import json psf_data = json.load(open(self.psf_file)) # Convert sigma and amplitude sigma_1 = fwhm_to_sigma * psf_data['psf1']['fwhm'] sigma_2 = fwhm_to_sigma * psf_data['psf2']['fwhm'] sigma_3 = fwhm_to_sigma * psf_data['psf3']['fwhm'] ampl_1 = psf_data['psf1']['ampl'] * 2 * np.pi * sigma_1 ** 2 ampl_2 = psf_data['psf2']['ampl'] * 2 * np.pi * sigma_2 ** 2 ampl_3 = psf_data['psf3']['ampl'] * 2 * np.pi * sigma_3 ** 2 # Setup kernels from astropy.convolution import Gaussian2DKernel gauss_1 = Gaussian2DKernel(sigma_1, **kwargs) gauss_2 = Gaussian2DKernel(sigma_2, **kwargs) gauss_3 = Gaussian2DKernel(sigma_3, **kwargs) psf = gauss_1 * ampl_1 + gauss_2 * ampl_2 + gauss_3 * ampl_3 psf.normalize() return psf def save(self, filename, **kwargs): """Save model image to file.""" hdu_list = [] prim_hdu = fits.PrimaryHDU(self.model_image, header=self.header) hdu_list.append(prim_hdu) fits_hdu_list = fits.HDUList(hdu_list) fits_hdu_list.writeto(filename, **kwargs) if hasattr(self, 'measurements'): hdu_list = [] prim_hdu = fits.PrimaryHDU(self.measurements[0], header=self.header) hdu_list.append(prim_hdu) for image in self.measurements[1:]: hdu = fits.ImageHDU(image) hdu_list.append(hdu) fits_hdu_list = fits.HDUList(hdu_list) fits_hdu_list.writeto('counts_' + filename, **kwargs) def fake_counts(self, N, **kwargs): """Fake measurement data by adding Poisson noise to the model image. Parameters ---------- N : int Number of measurements to fake. """ if not self._compute_excess: self.model_image = self.model_image * self.exposure if not self._apply_psf: psf = self._create_psf(**kwargs) from astropy.convolution import convolve self.model_image = convolve(self.model_image, psf) # Set random seed to get reproducible results np.random.seed(0) # Fake measurements for _ in range(N): self.measurements.append(np.random.poisson(self.model_image)) class GaussCatalog(dict): """Multi-Gauss catalog utils.""" def __init__(self, source): import json if isinstance(source, dict): # Assume source is a dict with correct format self.pars = source elif isinstance(source, str): # Assume it is a JSON filename fh = open(source) self.pars = json.load(fh) fh.close() else: logging.error('Unknown source: {0}'.format(source)) def set(self): ' + '.join(['gauss2d.' + name for name in source_names]) pass def make_test_model(nsources=100, npix=500, ampl=100, fwhm=30): """Create a model of several Gaussian sources. """ from numpy.random import random from sherpa.astro.ui import set_source from morphology.utils import _set, _name model = ' + '.join([_name(ii) for ii in range(nsources)]) set_source(model) for ii in range(nsources): _set(_name(ii), 'xpos', npix * random()) _set(_name(ii), 'ypos', npix * random()) _set(_name(ii), 'ampl', ampl * random()) _set(_name(ii), 'fwhm', fwhm * random()) def read_json(filename): from sherpa.astro.ui import set_source morphology.utils.read_json(filename, set_source) ``` #### File: morphology/tests/test_theta.py ```python from __future__ import print_function, division import unittest from astropy.tests.helper import pytest import numpy as np from numpy.testing import assert_almost_equal from ...morphology import (Gauss2DPDF, MultiGauss2D, ThetaCalculator, ThetaCalculatorScipy, ) try: import scipy HAS_SCIPY = True except ImportError: HAS_SCIPY = False @pytest.mark.skipif('not HAS_SCIPY') class TestThetaCalculator(unittest.TestCase): """We use a Gaussian, because it has known analytical solutions for theta and containment.""" def setUp(self): # Single Gauss self.g = Gauss2DPDF(sigma=1) self.g_tc = ThetaCalculator(self.g.dpdtheta2, theta_max=5, n_bins=1e6) self.g_tcs = ThetaCalculatorScipy(self.g.dpdtheta2, theta_max=5) # Multi Gauss self.m = MultiGauss2D(sigmas=[1, 2]) self.m_tc = ThetaCalculator(self.m.dpdtheta2, theta_max=5, n_bins=1e6) self.m_tcs = ThetaCalculatorScipy(self.m.dpdtheta2, theta_max=5) # self.tc2 = mt.ThetaCalculator2D.from_source(self.g, theta_max=5, d) def test_containment_Gauss2D(self): for tc in [self.g_tc, self.g_tcs]: for theta in np.linspace(0, 3, 4): actual = tc.containment_fraction(theta) desired = self.g.containment_fraction(theta) assert_almost_equal(actual, desired, decimal=4) def test_containment_MultiGauss2D(self): for tc in [self.m_tc, self.m_tcs]: for theta in np.linspace(0, 3, 4): actual = tc.containment_fraction(theta) desired = self.m.containment_fraction(theta) assert_almost_equal(actual, desired, decimal=4) def test_theta_Gauss2D(self): for tc in [self.g_tc, self.g_tcs]: for containment in np.arange(0, 1, 0.1): actual = tc.containment_radius(containment) desired = self.g.containment_radius(containment) assert_almost_equal(actual, desired, decimal=4) def test_theta_MultiGauss2D(self): for tc in [self.m_tc, self.m_tcs]: for containment in np.arange(0, 1, 0.1): actual = tc.containment_radius(containment) desired = self.m.containment_radius(containment) assert_almost_equal(actual, desired, decimal=4) # FIXME: This test is slow and fails with an IndexError. def _test_ModelThetaCalculator(): """Check that Gaussian widths add in quadrature i.e. sigma_psf = 3, sigma_source = 4 ===> sigma_model = 5""" source, psf = Gauss2DPDF(3), Gauss2DPDF(4) # Correct analytical reference ana = Gauss2DPDF(5) ana_angle = ana.containment_radius(0.5) ana_containment = ana.containment(ana_angle) # Numerical method fov, binsz = 20, 0.2 num = ModelThetaCalculator(source, psf, fov, binsz) num_angle = num.containment_radius(0.5) num_containment = num.containment(num_angle) # Compare results par_names = ['angle', 'containment'] par_refs = [ana_angle, ana_containment] par_checks = [num_angle, num_containment] # TODO: add asserts ``` #### File: gammapy/morphology/utils.py ```python from __future__ import print_function, division import json __all__ = ['read_ascii', 'read_json', 'write_all', 'write_ascii', 'write_json'] def _name(ii): """Use this to make the model name for source number `ii`.""" return 'gauss2d.source_{0:02d}'.format(ii) def _set(name, par, val): """Set a source parameter.""" import sherpa.astro.ui as sau sau.set_par('{name}.{par}'.format(**locals()), val) # try: # exec(name + '.' + par + '=' + str(val)) # except Exception as e: # print e def _model(source_names): """Build additive model string for Gaussian sources.""" return ' + '.join(['gauss2d.' + name for name in source_names]) def read_json(source, setter): """Read from JSON file.""" if isinstance(source, dict): # Assume source is a dict with correct format d = source else: # Assume source is a filename with correct format d = json.load(open(source)) source_names = d.keys() model = _model(source_names) setter(model) for name, pars in d.items(): for par, val in pars.items(): _set(name, par, val) def read_ascii(filename, setter): """Read from ASCII file.""" lines = open(filename).readlines() tokens = [line.split() for line in lines] names = set([token[0] for token in tokens]) pars = set([token[1] for token in tokens]) vals = set([token[2] for token in tokens]) model = _model(names) setter(model) for name, par, val in zip(names, pars, vals): _set(name, par, val) def write_json(pars, filename): """Write to JSON file.""" d = {} for par in pars: if not par.modelname in d.keys(): d[par.modelname] = {} d[par.modelname][par.name] = par.val json.dump(d, open(filename, 'w'), sort_keys=True, indent=4) def write_ascii(pars, filename): """Write to ASCII""" fh = open(filename, 'w') for par in pars: fh.write('{0} {1} {2}\n'.format(par.modelname, par.name, par.val)) def write_all(filename='results.json'): """Dump source, fit results and conf results to a JSON file. http://www.astropython.org/snippet/2010/7/Save-sherpa-fit-and-conf-results-to-a-JSON-file """ import sherpa.astro.ui as sau out = dict() if 0: src = sau.get_source() src_par_attrs = ('name', 'frozen', 'modelname', 'units', 'val', 'fullname') out['src'] = dict(name=src.name, pars=[dict((attr, getattr(par, attr)) for attr in src_par_attrs) for par in src.pars]) try: fit_attrs = ('methodname', 'statname', 'succeeded', 'statval', 'numpoints', 'dof', 'rstat', 'qval', 'nfev', 'message', 'parnames', 'parvals') fit = sau.get_fit_results() out['fit'] = dict((attr, getattr(fit, attr)) for attr in fit_attrs) except Exception as err: print(err) try: conf_attrs = ('datasets', 'methodname', 'fitname', 'statname', 'sigma', 'percent', 'parnames', 'parvals', 'parmins', 'parmaxes', 'nfits') conf = sau.get_conf_results() out['conf'] = dict((attr, getattr(conf, attr)) for attr in conf_attrs) except Exception as err: print(err) try: covar_attrs = ('datasets', 'methodname', 'fitname', 'statname', 'sigma', 'percent', 'parnames', 'parvals', 'parmins', 'parmaxes', 'nfits') covar = sau.get_covar_results() out['covar'] = dict((attr, getattr(covar, attr)) for attr in covar_attrs) except Exception as err: print(err) if 0: out['pars'] = [] for par in src.pars: fullname = par.fullname if any(fullname == x['name'] for x in out['pars']): continue # Parameter was already processed outpar = dict(name=fullname, kind=par.name) # None implies no calculated confidence interval for Measurement parmin = None parmax = None try: if fullname in conf.parnames: # Confidence limits available from conf i = conf.parnames.index(fullname) parval = conf.parvals[i] parmin = conf.parmins[i] parmax = conf.parmaxes[i] if parmin is None: parmin = -float('inf') # None from conf means infinity, so set accordingly if parmax is None: parmax = float('inf') elif fullname in fit.parnames: # Conf failed or par is uninteresting and wasn't sent to conf i = fit.parnames.index(fullname) parval = fit.parvals[i] else: # No fit or conf value (maybe frozen) parval = par.val except Exception as err: print(err) out['pars'].append(outpar) if filename is None: return out else: json.dump(out, open(filename, 'w'), sort_keys=True, indent=4) ``` #### File: gammapy/scripts/background_cube.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from ..utils.scripts import get_parser __all__ = ['background_cube'] def main(args=None): parser = get_parser(background_cube) parser.add_argument('run_list', type=str, help='Input run list file name') parser.add_argument('exclusion_list', type=str, help='Input exclusion list file name') parser.add_argument('reference_file', type=str, help='Input FITS reference cube file name') parser.add_argument('out_file', type=str, help='Output FITS counts cube file name') parser.add_argument('--overwrite', action='store_true', help='Overwrite existing output file?') args = parser.parse_args(args) background_cube(**vars(args)) def background_cube(run_list, exclusion_list, reference_file, out_file, overwrite): """Create background model cube from off runs. TODO: explain a bit. """ import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)s - %(message)s') # TODO: implement raise NotImplementedError ``` #### File: gammapy/scripts/check.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from ..utils.scripts import get_parser __all__ = ['check'] def main(args=None): parser = get_parser(check) parser.add_argument('--package', type=str, default=None, help='Package to test') args = parser.parse_args(args) check(**vars(args)) def check(package): """Run gammapy unit tests.""" import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)s - %(message)s') import gammapy gammapy.test(package, verbose=True) ``` #### File: gammapy/scripts/cwt.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from ..utils.scripts import get_parser __all__ = ['run_cwt'] def main(args=None): parser = get_parser(run_cwt) parser.add_argument('infile', action="store", help='Input FITS file name') parser.add_argument('outfile', action="store", help='Output FITS file name') parser.add_argument('--overwrite', action='store_true', help='Overwrite existing output file?') # Wavelet scales to be used parser.add_argument('--min_scale', default=6.0, type=float, help='Minimum wavelet scale') parser.add_argument('--nscales', default=6, type=int, help='Number of wavelet scales') parser.add_argument('--scale_step', default=1.3, type=float, help='Geometric step between wavelet scales') # Detection thresholds parser.add_argument('--thresh', default=3.0, type=float, help='Significance threshold for pixel detection') parser.add_argument('--detect', default=5.0, type=float, help='Significance threshold for source detection') parser.add_argument('--niter', default=5, type=int, help='Maximum number of iterations') parser.add_argument('--convergence', default=1e-5, type=float, help='Convergence parameter') args = parser.parse_args(args) run_cwt(**vars(args)) def run_cwt(infile, outfile, overwrite, min_scale, nscales, scale_step, thresh, detect, niter, convergence): """Compute filtered image using Continuous Wavelet Transform (CWT). TODO: add example and explain output. """ import os.path import sys import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)s - %(message)s') if os.path.isfile(outfile) and not overwrite: logging.error("Output file exists and overwrite is False") sys.exit() from ..detect.cwt import CWT cwt = CWT(min_scale, nscales, scale_step) cwt.set_file(infile) cwt.iterative_filter_peak(thresh, detect, niter, convergence) cwt.save_filter(outfile, overwrite=overwrite) ``` #### File: gammapy/scripts/residual_images.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from ..utils.scripts import get_parser __all__ = ['residual_images'] def main(args=None): parser = get_parser(residual_images) parser.add_argument('model_file', type=str, help='Input excess model FITS file name') parser.add_argument('data_file', type=str, help='Input data FITS file name') parser.add_argument('out_file', type=str, help='Output FITS file name') parser.add_argument('--thetas', type=str, default='0.1', help='On-region correlation radii (deg, comma-separated)') parser.add_argument('--overwrite', action='store_true', help='Overwrite existing output file?') args = parser.parse_args(args) args.thetas = [float(theta) for theta in args.thetas.split(',')] residual_images(**vars(args)) def residual_images(model_file, data_file, out_file, thetas, overwrite): """Compute source model residual images. The input `data_file` must contain the following HDU extensions: * 'On' -- Counts image * 'Background' -- Background image """ import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)s - %(message)s') import numpy as np from astropy.io import fits from gammapy.image import disk_correlate from gammapy.stats import significance logging.info('Reading {0}'.format(data_file)) hdu_list = fits.open(data_file) header = hdu_list[0].header counts = hdu_list['On'].data.astype(np.float64) background = hdu_list['Background'].data.astype(np.float64) diffuse = hdu_list['Diffuse'].data.astype(np.float64) logging.info('Reading {0}'.format(model_file)) model = fits.getdata(model_file) background_plus_model_diffuse = background + model + diffuse out_hdu_list = fits.HDUList() for theta in thetas: logging.info('Processing theta = {0} deg'.format(theta)) theta_pix = theta / header['CDELT2'] counts_corr = disk_correlate(counts, theta_pix) background_plus_model_corr = disk_correlate(background_plus_model_diffuse, theta_pix) # excess_corr = counts_corr - background_plus_model_corr significance_corr = significance(counts_corr, background_plus_model_corr) name = 'RESIDUAL_SIGNIFICANCE_{0}'.format(theta) logging.info('Appending HDU extension: {0}'.format(name)) hdu = fits.ImageHDU(significance_corr, header, name) out_hdu_list.append(hdu) logging.info('Writing {0}'.format(out_file)) out_hdu_list.writeto(out_file, clobber=overwrite) ``` #### File: gammapy/scripts/root_to_fits.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from ..utils.scripts import get_parser # TODO: implement object listing and selecting by key names in ROOT file # TODO: implement histogram conversion # TODO: implement ntuple conversion __all__ = ['root_to_fits'] def main(args=None): parser = get_parser(root_to_fits) args = parser.parse_args(args) root_to_fits(**vars(args)) def root_to_fits(): """Convert ROOT files to FITS files (histograms and ntuples). TODO: explain a bit. """ # TODO: implement raise NotImplementedError ``` #### File: gammapy/spectrum/cosmic_ray.py ```python from __future__ import print_function, division import numpy as np from astropy.units import Quantity __all__ = ['cosmic_ray_flux'] def _power_law(E, N, k): E = Quantity(E, 'TeV') E0 = Quantity(1, 'TeV') N = Quantity(N, 'm^-2 s^-1 TeV^-1 sr^-1') flux = N * (E / E0) ** (-k) return flux def _log_normal(E, L, E_p, w): E = Quantity(E, 'TeV') E_p = Quantity(E_p, 'TeV') L = Quantity(L, 'm^-2 s^-1 sr^-1') term1 = L / (E * w * np.sqrt(2 * np.pi)) term2 = np.exp(-np.log(E / E_p) ** 2 / (2 * w ** 2)) return term1 * term2 def _electron_spectrum(E, N, k, L, E_p, w): flux = _power_law(E, N, k) flux += _log_normal(E, L, E_p, w) return flux def cosmic_ray_flux(energy, particle='proton'): """Cosmic ray flux at Earth. These are the spectra assumed in this CTA study: Table 3 in http://adsabs.harvard.edu/abs/2013APh....43..171B The hadronic spectra are simple power-laws, the electron spectrum is the sum of a power law and a log-normal component to model the "Fermi shoulder". Parameters ---------- energy : `~astropy.units.Quantity` Particle energy particle : {'electron', 'proton', 'He', 'N', 'Si', 'Fe'} Particle type Returns ------- flux : `~astropy.units.Quantity` Cosmic ray flux in unit ``m^-2 s^-1 TeV^-1 sr^-1`` """ pars = dict() pars['electron'] = dict(N=6.85e-5, k=3.21, L=3.19e-3, E_p=0.107, w=0.776) pars['proton'] = dict(N=0.096, k=2.70) pars['N'] = dict(N=0.0719, k=2.64) pars['Si'] = dict(N=0.0284, k=2.66) pars['Fe'] = dict(N=0.0134, k=2.63) if particle == 'electron': return _electron_spectrum(energy, **pars['electron']) elif particle in ['proton', 'He', 'N', 'Si', 'Fe']: return _power_law(energy, **pars[particle]) else: raise ValueError('Invalid argument for particle: {0}'.format(particle)) ``` #### File: gammapy/spectrum/flux_point.py ```python from __future__ import print_function, division import numpy as np from astropy.table import Table from ..spectrum.powerlaw import power_law_flux __all__ = ['compute_differential_flux_points'] def compute_differential_flux_points(x_method='lafferty', y_method='power_law', table=None, model=None, spectral_index=None, energy_min=None, energy_max=None, int_flux=None, int_flux_err=None): """Creates differential flux points table from integral flux points table. Parameters ---------- table : `~astropy.table.Table` Integral flux data table in energy bins, including columns 'ENERGY_MIN', 'ENERGY_MAX', 'INT_FLUX', 'INT_FLUX_ERR' energy_min : float, array_like If table not defined, minimum energy of bin(s) may be input directly as either a float or array. energy_max : float, array_like If table not defined, maximum energy of bin(s) input directly. int_flux : float, array_like If table not defined, integral flux in bin(s) input directly. If array, energy_min, energy_max must be either arrays of the same shape (for differing energy bins) or floats (for the same energy bin). int_flux_err : float, array_like Type must be the same as for int_flux x_method : {'lafferty', 'log_center', 'table'} Flux point energy computation method; either Lafferty & Wyatt model-based positioning, log bin center positioning or user-defined `~astropy.table.Table` positioning using column heading ['ENERGY'] y_method : {'power_law', 'model'} Flux computation method assuming PowerLaw or user defined model function model : callable User-defined model function spectral_index : float, array_like Spectral index if default power law model is used. Either a float or array_like (in which case, energy_min, energy_max and int_flux must be floats to avoid ambiguity) Returns ------- differential_flux_table : `~astropy.table.Table` Input table with appended columns 'ENERGY', 'DIFF_FLUX', 'DIFF_FLUX_ERR' Notes ----- For usage, see this tutorial: :ref:`tutorials-flux_point`. """ # Use input values if not initially provided with a table # and broadcast quantities to arrays if required if table is None: spectral_index = np.array(spectral_index).reshape(np.array(spectral_index).size,) energy_min = np.array(energy_min).reshape(np.array(energy_min).size,) energy_max = np.array(energy_max).reshape(np.array(energy_max).size,) int_flux = np.array(int_flux).reshape(np.array(int_flux).size,) try: int_flux_err = np.array(int_flux_err).reshape(np.array(int_flux_err).size,) except: pass # TODO: Can a better implementation be found here? lengths = dict(SPECTRAL_INDEX=len(spectral_index), ENERGY_MIN=len(energy_min), ENERGY_MAX=len(energy_max), FLUX=len(int_flux)) max_length = np.array(list(lengths.values())).max() int_flux = np.array(int_flux) * np.ones(max_length) spectral_index = np.array(spectral_index) * np.ones(max_length) energy_min = np.array(energy_min) * np.ones(max_length) energy_max = np.array(energy_max) * np.ones(max_length) try: int_flux_err = np.array(int_flux_err) * np.ones(max_length) except: pass # Otherwise use the table provided else: energy_min = np.asanyarray(table['ENERGY_MIN']) energy_max = np.asanyarray(table['ENERGY_MAX']) int_flux = np.asanyarray(table['INT_FLUX']) try: int_flux_err = np.asanyarray(table['INT_FLUX_ERR']) except: pass # Compute x point if x_method == 'table': # This is only called if the provided table includes energies energy = np.array(table['ENERGY']) elif x_method == 'log_center': from scipy.stats import gmean energy = np.array(gmean((energy_min, energy_max))) elif x_method == 'lafferty': if y_method == 'power_law': # Uses analytical implementation available for the power law case energy = _energy_lafferty_power_law(energy_min, energy_max, spectral_index) else: energy = np.array(_x_lafferty(energy_min, energy_max, model)) else: raise ValueError('Invalid x_method: {0}'.format(x_method)) # Compute y point if y_method == 'power_law': g = -1 * np.abs(spectral_index) diff_flux = power_law_flux(int_flux, g, energy, energy_min, energy_max) elif y_method == 'model': diff_flux = _ydiff_excess_equals_expected(int_flux, energy_min, energy_max, energy, model) else: raise ValueError('Invalid y_method: {0}'.format(y_method)) # Add to table table = Table() table['ENERGY'] = energy table['DIFF_FLUX'] = diff_flux # Error processing if required try: # TODO: more rigorous implementation of error propagation should be implemented # I.e. based on MC simulation rather than gaussian error assumption err = int_flux_err / int_flux diff_flux_err = err * diff_flux table['DIFF_FLUX_ERR'] = diff_flux_err except: pass table.meta['spectral_index'] = spectral_index table.meta['spectral_index_description'] = "Spectral index assumed in the DIFF_FLUX computation" return table def _x_lafferty(xmin, xmax, function): """The Lafferty & Wyatt method to compute X. Pass in a function and bin bounds x_min and x_max i.e. for energy See: Lafferty & Wyatt, Nucl. Instr. and Meth. in Phys. Res. A 355(1995) 541-547 See: http://nbviewer.ipython.org/gist/cdeil/bdab5f236640ef52f736 """ from scipy.optimize import brentq from scipy import integrate indices = np.arange(len(xmin)) x_points = [] for index in indices: deltax = xmax[index] - xmin[index] I = integrate.quad(function, xmin[index], xmax[index], args=()) F = (I[0] / deltax) def g(x): return function(x) - F x_point = brentq(g, xmin[index], xmax[index]) x_points.append(x_point) return x_points def _ydiff_excess_equals_expected(yint, xmin, xmax, x, model): """The ExcessEqualsExpected method to compute Y (differential). y / yint = y_model / yint_model""" yint_model = _integrate(xmin, xmax, model) y_model = model(x) return y_model * (yint / yint_model) def _integrate(xmin, xmax, function, segments=1e3): """Integrates method function using the trapezium rule between xmin and xmax. """ indices = np.arange(len(xmin)) y_values = [] for index in indices: x_vals = np.arange(xmin[index], xmax[index], 1.0 / segments) y_vals = function(x_vals) # Division by number of segments required for correct normalization y_values.append(np.trapz(y_vals) / segments) return y_values def _energy_lafferty_power_law(energy_min, energy_max, spectral_index): """Analytical case for determining lafferty x-position for power law case. """ # Cannot call into gammapy.powerlaw as implementation is different # due to different reference energies term0 = 1. - spectral_index term1 = energy_max - energy_min term2 = 1. / term0 flux_lw = term2 / term1 * (energy_max ** term0 - energy_min ** term0) return np.exp(-np.log(flux_lw) / np.abs(spectral_index)) ``` #### File: spectrum/tests/test_cosmic_ray.py ```python from __future__ import print_function, division from astropy.units import Quantity from ...spectrum import cosmic_ray_flux from ...utils.testing import assert_quantity def test_cosmic_ray_flux(): energy = Quantity(1, 'TeV') actual = cosmic_ray_flux(energy, 'proton') desired = Quantity(0.096, '1 / (m2 s sr TeV)') assert_quantity(actual, desired) # TODO: test array quantities and other particles ``` #### File: spectrum/tests/test_flux_point.py ```python from __future__ import print_function, division import itertools import numpy as np from numpy.testing import assert_allclose from astropy.tests.helper import pytest from astropy.table import Table from ..flux_point import (_x_lafferty, _integrate, _ydiff_excess_equals_expected, compute_differential_flux_points, _energy_lafferty_power_law) from ...spectrum.powerlaw import power_law_evaluate, power_law_integral_flux try: import scipy HAS_SCIPY = True except ImportError: HAS_SCIPY = False x_methods = ['table', 'lafferty', 'log_center'] y_methods = ['power_law', 'model'] indices = [0, 1, 2, 3] @pytest.mark.skipif('not HAS_SCIPY') def test_x_lafferty(): """Tests Lafferty & Wyatt x-point method. Using input function g(x) = 10^4 exp(-6x) against check values from paper Lafferty & Wyatt. Nucl. Instr. and Meth. in Phys. Res. A 355 (1995) 541-547, p. 542 Table 1 """ # These are the results from the paper desired = np.array([0.048, 0.190, 0.428, 0.762]) def f(x): return (10 ** 4) * np.exp(-6 * x) emins = np.array([0.0, 0.1, 0.3, 0.6]) emaxs = np.array([0.1, 0.3, 0.6, 1.0]) actual = _x_lafferty(xmin=emins, xmax=emaxs, function=f) assert_allclose(actual, desired, atol=1e-3) def test_integration(): def function(x): return x ** 2 xmin = np.array([-2]) xmax = np.array([2]) def indef_int(x): return (x ** 3) / 3 # Calculate analytical result desired = indef_int(xmax) - indef_int(xmin) # Get numerical result actual = _integrate(xmin, xmax, function, segments=1e3) # Compare, bounds suitable for number of segments assert_allclose(actual, desired, rtol=1e-2) @pytest.mark.skipif('not HAS_SCIPY') def test_ydiff_excess_equals_expected(): """Tests y-value normalization adjustment method. """ def model(x): return x ** 2 xmin = np.array([10, 20, 30, 40]) xmax = np.array([20, 30, 40, 50]) yint = np.array([42, 52, 62, 72]) # 'True' integral flux in this test bin # Get values x_values = np.array(_x_lafferty(xmin, xmax, model)) y_values = _ydiff_excess_equals_expected(yint, xmin, xmax, x_values, model) # Set up test case comparison y_model = model(np.array(x_values)) # Test comparison result desired = _integrate(xmin, xmax, model) # Test output result actual = y_model * (yint / y_values) # Compare assert_allclose(actual, desired, rtol=1e-6) @pytest.mark.skipif('not HAS_SCIPY') @pytest.mark.parametrize('index, x_method, y_method', itertools.product(indices, ['lafferty', 'log_center'], y_methods)) def test_array_broadcasting(index, x_method, y_method): """Tests for array broadcasting in for likely input scenarios. """ # API for power_law case can differ from model case if table not used # so both tested here in_array = 0.9 * np.arange(6).reshape(3, 2) values = dict(SPECTRAL_INDEX=[3 * in_array, 3., 3., 3.], ENERGY_MIN=[1., 0.1 * in_array, 1., 1.], ENERGY_MAX=[10., 10., 4 * in_array, 10.], INT_FLUX=[30., 30., 30., 10. * in_array]) # Define parameters spectral_index = values['SPECTRAL_INDEX'][index] energy_min = values['ENERGY_MIN'][index] energy_max = values['ENERGY_MAX'][index] int_flux = values['INT_FLUX'][index] int_flux_err = 0.1 * int_flux if y_method == 'power_law': model = None else: def model(x): return x ** 2 table = compute_differential_flux_points(x_method, y_method, model=model, spectral_index=spectral_index, energy_min=energy_min, energy_max=energy_max, int_flux=int_flux, int_flux_err=int_flux_err) # Check output sized energy = table['ENERGY'] actual = len(energy) desired = 6 assert_allclose(actual, desired) @pytest.mark.skipif('not HAS_SCIPY') @pytest.mark.parametrize('x_method,y_method', itertools.product(x_methods, y_methods)) def test_compute_differential_flux_points(x_method, y_method): """Iterates through the 6 different combinations of input options. Tests against analytical result or result from gammapy.spectrum.powerlaw. """ # Define the test cases for all possible options energy_min = np.array([1.0, 10.0]) energy_max = np.array([10.0, 100.0]) spectral_index = 2.0 table = Table() table['ENERGY_MIN'] = energy_min table['ENERGY_MAX'] = energy_max table['ENERGY'] = np.array([2.0, 20.0]) if x_method == 'log_center': energy = np.sqrt(energy_min * energy_max) elif x_method == 'table': energy = table['ENERGY'].data # Arbitrary model (simple exponential case) def diff_flux_model(x): return np.exp(x) # Integral of model def int_flux_model(E_min, E_max): return np.exp(E_max) - np.exp(E_min) if y_method == 'power_law': if x_method == 'lafferty': energy = _energy_lafferty_power_law(energy_min, energy_max, spectral_index) # Test that this is equal to analytically expected # log center result desired_energy = np.sqrt(energy_min * energy_max) assert_allclose(energy, desired_energy, rtol=1e-6) desired = power_law_evaluate(energy, 1, spectral_index, energy) int_flux = power_law_integral_flux(desired, spectral_index, energy, energy_min, energy_max) elif y_method == 'model': if x_method == 'lafferty': energy = _x_lafferty(energy_min, energy_max, diff_flux_model) desired = diff_flux_model(energy) int_flux = int_flux_model(energy_min, energy_max) int_flux_err = 0.1 * int_flux table['INT_FLUX'] = int_flux table['INT_FLUX_ERR'] = int_flux_err result_table = compute_differential_flux_points(x_method, y_method, table, diff_flux_model, spectral_index) # Test energy actual_energy = result_table['ENERGY'].data desired_energy = energy assert_allclose(actual_energy, desired_energy, rtol=1e-3) # Test flux actual = result_table['DIFF_FLUX'].data assert_allclose(actual, desired, rtol=1e-2) # Test error actual = result_table['DIFF_FLUX_ERR'].data desired = 0.1 * result_table['DIFF_FLUX'].data assert_allclose(actual, desired, rtol=1e-3) ``` #### File: spectrum/tests/test_isrf.py ```python from __future__ import print_function, division from numpy.testing import assert_allclose from astropy.tests.helper import pytest from ...spectrum import Schlickeiser, Galprop @pytest.mark.xfail def test_Schlickeiser_omega_g_over_b(): """ Check that CMB has the energy density it is supposed to have according to its temperature """ actual = Schlickeiser()._omega_g_over_b('CMB') assert_allclose(actual, 1, places=2) @pytest.mark.xfail def test_Schlickeiser_call(): """ Check that we roughly get the same value as in Fig. 3.9 of Hillert's diploma thesis. TODO: The check should be made against a published value instead """ actual = Schlickeiser()(1e-3) assert_allclose(actual / 189946, 1, places=5) def test_Galprop_call(): Galprop() # TODO ``` #### File: stats/tests/test_data.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from numpy.testing import assert_allclose from ...stats import Stats def test_Stats(): n_on, n_off, a_on, a_off = 1, 2, 3, 4 stats = Stats(n_on=n_on, n_off=n_off, a_on=a_on, a_off=a_off) assert_allclose(stats.alpha, a_on / a_off) assert_allclose(stats.background, a_on / a_off * n_off) assert_allclose(stats.excess, n_on - a_on / a_off * n_off) def test_make_stats(): pass def test_combine_stats(): pass ``` #### File: utils/tests/test_array.py ```python from __future__ import print_function, division import numpy as np from ..array import array_stats_str def test_array_stats_str(): actual = array_stats_str(np.pi, 'pi') assert actual == 'pi : size = 1, min = 3.142, max = 3.142\n' actual = array_stats_str([np.pi, 42]) assert actual == 'size = 2, min = 3.142, max = 42.000\n' ``` #### File: utils/tests/test_random.py ```python from __future__ import print_function, division import numpy as np from numpy.testing import assert_allclose from ..random import sample_sphere, sample_powerlaw, sample_sphere_distance def test_sample_sphere(): np.random.seed(0) lon, lat = sample_sphere(size=2) assert_allclose(lon, [3.44829694, 4.49366732]) assert_allclose(lat, [0.20700192, 0.08988736]) def test_sample_powerlaw(): np.random.seed(0) x = sample_powerlaw(x_min=0.1, x_max=10, gamma=2, size=2) assert_allclose(x, [0.21897428, 0.34250971]) def test_sample_sphere_distance(): np.random.seed(0) x = sample_sphere_distance(distance_min=0.1, distance_max=42, size=2) assert_allclose(x, [34.386731, 37.559774]) x = sample_sphere_distance(distance_min=0.1, distance_max=42, size=1e3) assert x.min() >= 0.1 assert x.max() <= 42 ```
{ "source": "jolespin/compositional", "score": 2 }
#### File: lib/compositional/compositional.py ```python from __future__ import print_function, division # Built-ins import sys,warnings,functools from collections import Mapping from importlib import import_module # Version specific if sys.version_info.major == 2: from StringIO import StringIO if sys.version_info.major == 3: from io import StringIO # External import numpy as np import pandas as pd from pandas._libs.algos import nancorr # ========= # Utilities # ========= # Check packages def check_packages(packages, namespace=None, import_into_backend=True, verbose=False): """ Check if packages are available (and import into global namespace) If package is a tuple then imports as follows: ("numpy", "np") where "numpy" is full package name and "np" is abbreviation To import packages into current namespace: namespace = globals() To import packages in backend, e.g. if this is used in a module/script, use `import_into_backend` packages: str, non-tuple iterable usage: @check_packages(["sklearn", "scipy", ("numpy", "np")]) def f(): pass Adapted from the following source: soothsayer_utils (https://github.com/jolespin/soothsayer_utils) """ # Force packages into sorted non-redundant list if isinstance(packages,(str, tuple)): packages = [packages] packages = set(packages) # Set up decorator for package imports # Wrapper def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): missing_packages = [] for pkg in packages: if isinstance(pkg, tuple): assert len(pkg) == 2, "If a package is tuple type then it must have 2 elements e.g. ('numpy', 'np')" pkg_name, pkg_variable = pkg else: pkg_name = pkg_variable = pkg try: package = import_module(pkg_name) if import_into_backend: globals()[pkg_variable] = package if namespace is not None: namespace[pkg_variable] = package if verbose: print("Importing {} as {}".format(pkg_name, pkg_variable), True, file=sys.stderr) except ImportError: missing_packages.append(pkg_name) if verbose: print("Cannot import {}:".format(pkg_name), False, file=sys.stderr) assert not missing_packages, "Please install the following packages to use this function:\n{}".format( ", ".join(missing_packages)) return func(*args, **kwargs) return wrapper return decorator # =========================== # Compositional data analysis # =========================== # Extension of CLR to use custom centroids, references, and zeros without pseudocounts def transform_xlr(X, reference_components=None, centroid="mean", return_zeros_as_neginfinity=False, zeros_ok=True): """ # Description Extension of CLR to incorporate custom centroids, reference components (iqlr), and handle missing values. This implementation is more versatile than skbio's implementation but that makes it slower if it done iteratively. # Documentation on CLR: http://scikit-bio.org/docs/latest/generated/skbio.stats.composition.clr.html#skbio.stats.composition.clr # Parameters * X: - Compositional data (1D): pd.Series or 1D np.array (2D): pd.DataFrame or 2D np.array * centroid: - Can be precomputed or a function applied to the log-transformed composition(s) (1/2)D: 'mean', 'median', callable function (1D): numeric (2D): pd.Series, dict * reference_components: - Custom group of components used during the centroid calculation * return_zeros_as_neginfinity: True: Returns zeros as -np.inf False: Returns zeros as np.nan * zeros_ok: True: Mask zeros with np.nan with warning False: Error """ n_dimensions = len(X.shape) assert n_dimensions in {1,2}, "`X` must be 1D or 2D" assert np.all(X >= 0), "`X` cannot contain negative values because of log-transformation step." assert not isinstance(reference_components, tuple), "`reference_components` cannot be type tuple" # 1-Dimensional if n_dimensions == 1: # Check for labels components = None if isinstance(X, pd.Series): components = X.index X = X.values if reference_components is None: reference_components = components reference_components = list(map(lambda component: components.get_loc(component), reference_components)) X = X.astype(float) # Check for zeros X_contains_zeros = False n_zeros = np.any(X == 0).flatten().sum() if n_zeros: if zeros_ok: mask_zeros = X == 0 X[mask_zeros] = np.nan X_contains_zeros = True warnings.warn("N={} zeros detected in `X`. Masking zeros as NaN and will default to nan-robust functions if 'mean' or 'median' were provided for centroid".format(n_zeros)) else: raise Exception("N={} zeros detected in `X`. Either preprocess, add pseudocounts, or `zeros_ok=True".format(n_zeros)) # Log transformation X_log = np.log(X) # Centroid centroid_is_string = isinstance(centroid, str) centroid_is_function = hasattr(centroid, "__call__") centroid_is_precomputed = np.issubdtype(type(centroid), np.number) if not centroid_is_precomputed: # Get function associated with string for centroid if centroid_is_string: centroid = centroid.lower() assert centroid in {"mean", "median"}, "Please use 'mean','median', or a precomputed centroid" if X_contains_zeros: centroid = {"mean":np.nanmean, "median":np.nanmedian}[centroid] else: centroid = {"mean":np.mean, "median":np.median}[centroid] centroid_is_function = True # Compute centroid using function if centroid_is_function: func = centroid centroid = func(X_log[reference_components]) # Transform X_transformed = X_log - centroid # Output if all([return_zeros_as_neginfinity, X_contains_zeros]): X_transformed[mask_zeros] = -np.inf if components is not None: X_transformed = pd.Series(X_transformed, index=components) return X_transformed # 2-Dimensional if n_dimensions == 2: # Check for labels index = None components = None if isinstance(X, pd.DataFrame): index = X.index components = X.columns X = X.values if reference_components is None: reference_components = components reference_components = list(map(lambda component: components.get_loc(component), reference_components)) X = X.astype(float) # Check for zeros X_contains_zeros = False n_zeros = np.any(X == 0).flatten().sum() if n_zeros: if zeros_ok: mask_zeros = X == 0 X[mask_zeros] = np.nan X_contains_zeros = True warnings.warn("N={} zeros detected in `X`. Masking zeros as NaN and will default to nan-robust functions if 'mean' or 'median' were provided for centroid".format(n_zeros)) else: raise Exception("N={} zeros detected in `X`. Either preprocess, add pseudocounts, or `zeros_ok=True".format(n_zeros)) # Log transformation X_log = np.log(X) # Centroid centroid_is_string = isinstance(centroid, str) centroid_is_function = hasattr(centroid, "__call__") centroid_is_precomputed = False # Preprocess precomputed centroid if np.all(np.logical_not([centroid_is_string, centroid_is_function])): if index is not None: if isinstance(centroid, Mapping): centroid = pd.Series(centroid) assert isinstance(centroid, pd.Series), "If `centroid` is dict-like/pd.Series then `X` must be a `pd.DataFrame`." assert set(centroid.index) >= set(index), "Not all indicies from `centroid` are available in `X.index`." centroid = centroid[index].values assert len(centroid) == X_log.shape[0], "Dimensionality is not compatible: centroid.size != X.shape[0]." centroid_is_precomputed = True if not centroid_is_precomputed: # Get function associated with string for centroid if centroid_is_string: centroid = centroid.lower() assert centroid in {"mean", "median"}, "Please use 'mean','median', or a precomputed centroid" if X_contains_zeros: centroid = {"mean":np.nanmean, "median":np.nanmedian}[centroid] else: centroid = {"mean":np.mean, "median":np.median}[centroid] centroid_is_function = True # Compute centroid using function if centroid_is_function: func = centroid # If function has "axis" argument try: centroid = func(X_log[:,reference_components], axis=-1) # If function does not have "axis" argument except TypeError: centroid = list(map(func, X_log[:,reference_components])) # Broadcast centroid centroid = np.asarray(centroid) if len(centroid.shape) == 1: centroid = centroid[:,np.newaxis] # Transform X_transformed = X_log - centroid # Output if all([return_zeros_as_neginfinity, X_contains_zeros]): X_transformed[mask_zeros] = -np.inf if components is not None: X_transformed = pd.DataFrame(X_transformed, index=index, columns=components) return X_transformed # CLR Normalization def transform_clr(X, return_zeros_as_neginfinity=False, zeros_ok=True): """ Wrapper around `transform_xlr` # Description Extension of CLR to handle missing values. This implementation is more versatile than skbio's implementation but that makes it slower if it done iteratively. # Documentation on CLR: http://scikit-bio.org/docs/latest/generated/skbio.stats.composition.clr.html#skbio.stats.composition.clr # Parameters * X: - Compositional data (1D): pd.Series or 1D np.array (2D): pd.DataFrame or 2D np.array * return_zeros_as_neginfinity: True: Returns zeros as -np.inf False: Returns zeros as np.nan * zeros_ok: True: Mask zeros with np.nan with warning False: Error """ return transform_xlr(X, reference_components=None, centroid="mean", return_zeros_as_neginfinity=return_zeros_as_neginfinity, zeros_ok=zeros_ok) # Interquartile range log-ratio transform def transform_iqlr(X, percentile_range=(25,75), centroid="mean", interval_type="open", return_zeros_as_neginfinity=False, zeros_ok=True, ddof=0): """ Wrapper around `transform_xlr` # Description Interquartile range log-ratio transform # Parameters * X: pd.DataFrame or 2D np.array * percentile_range: A 2-element tuple of percentiles * interval: 'open' = (a,b) and 'closed' = [a,b]. 'open' is used by `propr` R package: * centroid, return_zeros_as_neginfinity, and zeros_ok: See `transform_xlr` Adapted from the following source: * https://github.com/tpq/propr/blob/2bd7c44bf59eaac6b4d329d38afd40ac83e2089a/R/2-proprCall.R#L31 """ # Checks n_dimensions = len(X.shape) assert n_dimensions in {2}, "`X` must be 2D" assert np.all(X >= 0), "`X` cannot contain negative values because of log-transformation step." assert interval_type in {"closed", "open"}, "`interval_type` must be in the following: {closed, open}" percentile_range = tuple(sorted(percentile_range)) assert len(percentile_range) == 2, "percentile_range must have 2 elements" index=None components=None if isinstance(X, pd.DataFrame): index = X.index components = X.columns X = X.values # Compute the variance of the XLR transform X_xlr = transform_xlr(X, centroid=centroid, return_zeros_as_neginfinity=False, zeros_ok=zeros_ok) xlr_var = np.nanvar(X_xlr, axis=0, ddof=ddof) # Calculate upper and lower bounds from percentiles lower_bound, upper_bound = np.percentile(xlr_var, percentile_range) # Get the reference components if interval_type == "open": reference_components = np.where((lower_bound < xlr_var) & (xlr_var < upper_bound))[0] if interval_type == "closed": reference_components = np.where((lower_bound <= xlr_var) & (xlr_var <= upper_bound))[0] X_iqlr = transform_xlr(X, reference_components=reference_components, centroid=centroid, return_zeros_as_neginfinity=return_zeros_as_neginfinity, zeros_ok=zeros_ok) if components is not None: X_iqlr = pd.DataFrame(X_iqlr, index=index, columns=components) return X_iqlr # Pairwise variance log-ratio def pairwise_vlr(X): """ # Description Pairwise variance log-ratio # Parameters * X: pd.DataFrame or 2D np.array Adapted from the following source: * https://github.com/tpq/propr ddof=1 for compatibility with propr package in R To properly handle missing values and optimize speed, nancorr from pandas must be used which does not take ddof """ # Checks n_dimensions = len(X.shape) assert n_dimensions in {2}, "`X` must be 2D" assert np.all(X >= 0), "`X` cannot contain negative values because of log-transformation step." components = None if isinstance(X, pd.DataFrame): components = X.columns X = X.values X = X.astype("float64") n,m = X.shape # Check for zeros n_zeros = np.any(X == 0).flatten().sum() if n_zeros: raise Exception("N={} zeros detected in `X`. Either preprocess or add pseudocounts.".format(n_zeros)) X_log = np.log(X) covariance = nancorr(X_log, cov=True) # covariance = np.cov(X_log.T, ddof=ddof) diagonal = np.diagonal(covariance) vlr = -2*covariance + diagonal[:,np.newaxis] + diagonal if components is not None: vlr = pd.DataFrame(vlr, index=components, columns=components) return vlr # Pairwise rho proportionality def pairwise_rho(X=None, reference_components=None, centroid="mean", interval_type="open", xlr=None, vlr=None): """ # Description Pairwise proportionality `rho` (Erb et al. 2016) # Parameters * X: pd.DataFrame or 2D np.array of compositional data (rows=samples, columns=components) * reference_components: See `transform_xlr`. Can also be `percentiles` for `transform_iqlr` or 'iqlr' string. * interval: 'open' = (a,b) and 'closed' = [a,b]. 'open' is used by `propr` R package: * centroid: See `transform_xlr` * xlr: pd.DataFrame or 2D np.array of transformed compositional data (e.g. clr, iqlr) (must be used with `vlr` and not `X`) * vlr: pd.DataFrame or 2D np.array of variance log-ratios (must be used with `xlr` and not `X`) Adapted from the following source: * https://github.com/tpq/propr Citation: * https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004075 * https://link.springer.com/article/10.1007/s12064-015-0220-8 ddof=1 for compatibility with propr package in R """ components = None # Compute xlr and vlr from X if X is not None: assert all(map(lambda x: x is None, [xlr, vlr])), "If `X` is not None then `xlr` and `vlr` cannot be provided." if isinstance(X, pd.DataFrame): components = X.columns X = X.values vlr = pairwise_vlr(X) if isinstance(reference_components, str): if reference_components.lower() == "iqlr": reference_components = (25,75) # Use percentiles if isinstance(reference_components, tuple): xlr = transform_iqlr(X,percentile_range=reference_components, centroid=centroid, interval_type=interval_type, zeros_ok=False) # Use CLR else: xlr = transform_xlr(X, reference_components=reference_components, centroid=centroid, zeros_ok=False) # Provide xlr and vlr else: assert all(map(lambda x: x is not None, [xlr,vlr])), "If `X` is None then `xlr` and `vlr` must be provided." assert type(xlr) is type(vlr), "`xlr` and `vlr` should be same type (i.e. pd.DataFrame, np.ndarray)" if isinstance(xlr, pd.DataFrame): assert np.all(xlr.columns == vlr.columns) & np.all(xlr.columns == vlr.index), "`xlr.columns` need to be the same as `vlr.index` and `vlr.columns`" components = xlr.columns xlr = xlr.values vlr = vlr.values # rho (Erb et al. 2016) n, m = xlr.shape variances = np.var(xlr, axis=0) # variances = np.var(X_xlr, axis=0, ddof=ddof) rhos = 1 - (vlr/np.add.outer(variances,variances)) if components is not None: rhos = pd.DataFrame(rhos, index=components, columns=components) return rhos # Pairwise phi proportionality def pairwise_phi(X=None, symmetrize=True, triangle="lower", reference_components=None, centroid="mean", interval_type="open", xlr=None, vlr=None): """ # Description Pairwise proportionality `phi` (Lovell et al. 2015) # Parameters * X: pd.DataFrame or 2D np.array of compositional data (rows=samples, columns=components) * symmetrize: Force symmetric matrix * triangle: Use lower or upper triangle for reference during symmetrization * reference_components: See `transform_xlr`. Can also be `percentiles` for `transform_iqlr` or 'iqlr' string. * interval: 'open' = (a,b) and 'closed' = [a,b]. 'open' is used by `propr` R package: * centroid: See `transform_xlr` * xlr: pd.DataFrame or 2D np.array of transformed compositional data (e.g. clr, iqlr) (must be used with `vlr` and not `X`) * vlr: pd.DataFrame or 2D np.array of variance log-ratios (must be used with `xlr` and not `X`) Adapted from the following source: * https://github.com/tpq/propr Citation: * https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004075 ddof=1 for compatibility with propr package in R """ components = None # Compute xlr and vlr from X if X is not None: assert all(map(lambda x: x is None, [xlr, vlr])), "If `X` is not None then `xlr` and `vlr` cannot be provided." if isinstance(X, pd.DataFrame): components = X.columns X = X.values vlr = pairwise_vlr(X) if isinstance(reference_components, str): if reference_components.lower() == "iqlr": reference_components = (25,75) # Use percentiles if isinstance(reference_components, tuple): xlr = transform_iqlr(X,percentile_range=reference_components, centroid=centroid, interval_type=interval_type, zeros_ok=False) # Use CLR else: xlr = transform_xlr(X, reference_components=reference_components, centroid=centroid, zeros_ok=False) # Provide xlr and vlr else: assert all(map(lambda x: x is not None, [xlr,vlr])), "If `X` is None then `xlr` and `vlr` must be provided." assert type(xlr) is type(vlr), "`xlr` and `vlr` should be same type (i.e. pd.DataFrame, np.ndarray)" if isinstance(xlr, pd.DataFrame): assert np.all(xlr.columns == vlr.columns) & np.all(xlr.columns == vlr.index), "`xlr.columns` need to be the same as `vlr.index` and `vlr.columns`" components = xlr.columns xlr = xlr.values vlr = vlr.values # phi (Lovell et al. 2015) n, m = xlr.shape variances = np.var(xlr, axis=0)#[:,np.newaxis] phis = vlr/variances if symmetrize: assert triangle in {"lower","upper"}, "`triangle` must be one of the following: {'lower','upper'}" if triangle == "upper": idx_triangle = np.tril_indices(m, -1) if triangle == "lower": idx_triangle = np.triu_indices(m, 1) phis[idx_triangle] = phis.T[idx_triangle] if components is not None: phis = pd.DataFrame(phis, index=components, columns=components) return phis # ILR Transformation @check_packages(["skbio"]) def transform_ilr(X:pd.DataFrame, tree=None, check_polytomy=True, verbose=True): """ if `tree` is None then orthonormal basis for Aitchison simplex defaults to J.J.Egozcue orthonormal basis. """ # Imports from skbio import TreeNode from skbio.stats.composition import ilr assert isinstance(X, pd.DataFrame), "`X` must be a pd.DataFrame" assert not np.any(X == 0), "`X` cannot contain zeros because of log-transforms. Preprocess or use a pseudocount e.g. (X+1) or (X/(1/X.shape[1]**2))" # Determine tree module def _infer_tree_type(tree): tree_type = None query_type = str(tree.__class__).split("'")[1].split(".")[0] if query_type in {"skbio"}: tree_type = "skbio" if query_type in {"ete2","ete3"}: tree_type = "ete" assert tree_type is not None, "Please use either skbio or ete[2/3] tree. Tree type deterined as {}".format(query_type) return tree_type # Get leaves from tree def _get_leaves(tree, tree_type): if tree_type == "skbio": leaves_in_tree = set(map(lambda leaf:leaf.name, tree.tips())) if tree_type == "ete": leaves_in_tree = set(tree.get_leaf_names()) return leaves_in_tree def _check_polytomy(tree, tree_type): if tree_type == "ete": # Check bifurcation n_internal_nodes = len(list(filter(lambda node:node.is_leaf() == False, tree.traverse()))) n_leaves = len(list(filter(lambda node:node.is_leaf(), tree.traverse()))) if n_internal_nodes < (n_leaves - 1): raise Exception("Please resolve tree polytomy and force bifurcation: Use `tree.resolve_polytomy()` before naming nodes for `ete`") if tree_type == "skbio": # Check bifurcation n_internal_nodes = len(list(filter(lambda node:node.is_tip() == False, tree.traverse()))) n_leaves = len(list(filter(lambda node:node.is_tip(), tree.traverse()))) if n_internal_nodes < (n_leaves - 1): raise Exception("Please resolve tree polytomy and force bifurcation: Use `tree.bifurcate()` before naming nodes for `skbio`") # ETE Tree if sys.version_info.major == 2: ete_info = ("ete2","ete") if sys.version_info.major == 3: ete_info = ("ete3","ete") @check_packages([ete_info]) def _ete_to_skbio( tree): # Convert ete to skbio tree = TreeNode.read(StringIO(tree.write(format=1, format_root_node=True)), convert_underscores=False) return tree def _prune_tree(tree, tree_type, leaves): if tree_type == "ete": tree.prune(leaves) if tree_type == "skbio": tree = tree.shear(leaves) tree.prune() return tree # ILR with tree @check_packages(["gneiss"], import_into_backend=False) def _ilr_with_tree(X, tree): # Import ilr_transform from gneiss from gneiss.composition import ilr_transform # Check tree type tree_type = _infer_tree_type(tree) # Check leaves components = set(X.columns) leaves_in_tree = _get_leaves(tree=tree, tree_type=tree_type) assert components <= leaves_in_tree, "Not all components (X.columns) are represented in tree" # Prune tree if components < leaves_in_tree: tree = tree.copy() n_leaves_before_pruning = len(leaves_in_tree) tree = _prune_tree(tree=tree, tree_type=tree_type, leaves=components) n_leaves_after_pruning = len(_get_leaves(tree=tree, tree_type=tree_type)) n_pruned = n_leaves_before_pruning - n_leaves_after_pruning if verbose: print("Pruned {} attributes to match components (X.columns)".format(n_pruned), file=sys.stderr) # Polytomy if check_polytomy: _check_polytomy(tree=tree, tree_type=tree_type) # ETE if tree_type == "ete": tree = _ete_to_skbio(tree=tree) return ilr_transform(table=X, tree=tree) # ILR without tree def _ilr_without_tree(X): return pd.DataFrame(ilr(X), index=X.index) # Without tree if tree is None: return _ilr_without_tree(X=X) # With tree else: return _ilr_with_tree(X=X, tree=tree) ```
{ "source": "jolespin/genopype", "score": 2 }
#### File: genopype/genopype/genopype.py ```python from __future__ import print_function, division import os, sys, glob, time,subprocess, random from collections import OrderedDict, Counter # Pathlib try: import pathlib except ImportError: import pathlib2 as pathlib # Scandir try: from os import scandir except ImportError: from scandir import scandir # Soothsayer utils from soothsayer_utils import * # Know Bugs: # * Currently (2019.07.26), the "completed_message" parameter does not work. # Check filename def check_filename(filename, acceptable_characters={".","-","_"}): status_ok = True for character in str(filename).lower(): conditions = [ character.isalnum(), character in acceptable_characters, # character != " ", ] if not any(conditions): status_ok = False break return status_ok # Format filename def format_filename(name, replacement_character="_", acceptable_characters={".","-","_"}): listed_string = list(name) idx_nonalnum = list() for i, character in enumerate(listed_string): if not check_filename(character): idx_nonalnum.append(i) for i in idx_nonalnum: listed_string[i] = replacement_character return "".join(listed_string) # Create directory def create_directory(directory, sleep=(0.016180339887, 1.6180339887)): # Sleep was added so files aren't created at the same time if bool(sleep): sleep_duration = random.uniform(sleep[0], sleep[1]) time.sleep(sleep_duration) assert is_path_like(directory, path_must_exist=False) # directory = os.path.realpath(directory) if not os.path.exists(directory): os.makedirs(directory) return directory # Validating file existence def validate_file_existence(paths, prologue="Validating the following files:", minimum_filesize=2, f_verbose=None): if is_file_like(f_verbose) or (f_verbose is None): print(prologue, file=f_verbose) paths_expanded = list() for path in paths: if "*" in path: paths_expanded += glob.glob(path) else: # path = os.path.realpath(path) paths_expanded.append(path) for path in paths_expanded: # Get the absolute path # path = os.path.realpath(path) # Get the path to the symlink target if os.path.islink(path): path = os.readlink(path) assert os.path.exists(path), "The following path does not exist: {}".format(path) # original_path = None # symlink = None if os.path.islink(path): path = os.readlink(path) if not os.path.isdir(path): size_bytes = os.path.getsize(path) assert size_bytes >= minimum_filesize, "The following file appears to be empty ({} bytes): {}".format(size_bytes, path) if is_file_like(f_verbose) or (f_verbose is None): size_mb = size_bytes >> 20 if size_mb < 1: print("[=] File exists ({} bytes):".format(size_bytes), path, file=f_verbose) else: print("[=] File exists ({} MB):".format(size_mb), path, file=f_verbose) else: size_bytes = get_directory_size(path) assert size_bytes >= minimum_filesize, "The following directory appears to be empty ({} bytes): {}".format(size_bytes, path) if is_file_like(f_verbose) or (f_verbose is None): size_mb = size_bytes >> 20 if size_mb < 1: print("[=] Directory exists ({} bytes):".format(size_bytes), path, file=f_verbose) else: print("[=] Directory exists ({} MB):".format(size_mb), path, file=f_verbose) # Get directory tree structure def get_directory_tree(root, ascii=False): if not ascii: return DisplayablePath.view(root) else: return DisplayablePath.get_ascii(root) # Directory size def get_directory_size(path_directory='.'): """ Adapted from @Chris: https://stackoverflow.com/questions/1392413/calculating-a-directorys-size-using-python """ path_directory = format_path(path_directory) total_size = 0 seen = {} for dirpath, dirnames, filenames in os.walk(path_directory): for f in filenames: fp = os.path.join(dirpath, f) try: stat = os.stat(fp) except OSError: continue try: seen[stat.st_ino] except KeyError: seen[stat.st_ino] = True else: continue total_size += stat.st_size return total_size # =============== # Shell utilities # =============== # # View directory structures class DisplayablePath(object): """ Display the tree structure of a directory. Implementation adapted from the following sources: * Credits to @abstrus https://stackoverflow.com/questions/9727673/list-directory-tree-structure-in-python """ display_filename_prefix_middle = '|__' display_filename_prefix_last = '|__' display_parent_prefix_middle = ' ' display_parent_prefix_last = '| ' def __init__(self, path, parent_path, is_last): self.path = pathlib.Path(str(path)) self.parent = parent_path self.is_last = is_last if self.parent: self.depth = self.parent.depth + 1 else: self.depth = 0 @property def displayname(self): if self.path.is_dir(): return self.path.name + '/' return self.path.name @classmethod def make_tree(cls, root, parent=None, is_last=False, criteria=None): root = pathlib.Path(str(root)) criteria = criteria or cls._default_criteria displayable_root = cls(root, parent, is_last) yield displayable_root children = sorted(list(path for path in root.iterdir() if criteria(path)), key=lambda s: str(s).lower()) count = 1 for path in children: is_last = count == len(children) if path.is_dir(): for item in cls.make_tree(path, parent=displayable_root, is_last=is_last, criteria=criteria): yield item else: yield cls(path, displayable_root, is_last) count += 1 @classmethod def _default_criteria(cls, path): return True @property def displayname(self): if self.path.is_dir(): return self.path.name + '/' return self.path.name def displayable(self): if self.parent is None: return self.displayname _filename_prefix = (self.display_filename_prefix_last if self.is_last else self.display_filename_prefix_middle) parts = ['{!s} {!s}'.format(_filename_prefix, self.displayname)] parent = self.parent while parent and parent.parent is not None: parts.append(self.display_parent_prefix_middle if parent.is_last else self.display_parent_prefix_last) parent = parent.parent return ''.join(reversed(parts)) # Additions by <NAME> for Soothsayer @classmethod def get_ascii(cls, root): ascii_output = list() paths = cls.make_tree(root) for path in paths: ascii_output.append(path.displayable()) return "\n".join(ascii_output) @classmethod def view(cls, root, file=sys.stdout): print(cls.get_ascii(root), file=file) # Bash commands class Command(object): """ Run bash commands and stuff. Recommended usage: ------------------ with open("test_commands.sh", "w") as f_cmds: cmd = Command("echo ':)' > testing_output.txt", name="TEST", f_cmds=f_cmds) cmd.run(epilogue="footer", prologue="header", checkpoint="testing_output.txt.checkpoint") or f_cmds = open("test_commands.sh", "w") cmd = Command("echo ':)'' > testing_output.txt", name="TEST", f_cmds=f_cmds) cmd.run(epilogue="footer", prologue="header", checkpoint="testing_output.txt.checkpoint") f_cmds.close() Just in case you need a quick one-liner [not recommended but works]: ------------------------------------------------------------------- cmd = Command("echo ':)'' > testing_output.txt", name="TEST", f_cmds="test_commands.sh") cmd.run(epilogue="footer", prologue="header", checkpoint="testing_output.txt.checkpoint").close() or cmd = Command("echo ':)'' > testing_output.txt", name="TEST", f_cmds="test_commands.sh") cmd.run(epilogue="footer", prologue="header", checkpoint="testing_output.txt.checkpoint") cmd.close() Future: ------- * Create an object called ExecutablePipeline that wraps Command objects together * Something like this: ep = ExecutablePipeline(name="RNA-seq mapping", description="Quality trim, remove contaminants, and map reads to reference") # This method ep.create_step(name="kneaddata", pos=1, checkpoint="path/to/checkpoint", write_stdout="path/to/stdout", write_stderr="path/to/stderr", write_returncode="path/to/returncode") ep["kneaddata"].set_inputs(*?) ep["kneaddata"].set_outputs(*?) # or this method ep.create_step(name="kneaddata", pos=1, checkpoint="path/to/checkpoint", write_stdout="path/to/stdout", write_stderr="path/to/stderr", write_returncode="path/to/returncode", inputs=*?, outputs=*?) ep.execute(?*) Here is an example for constructing pipelines: ------------------------------------------------------------------- # ========= # Utility # ========= def process_command(cmd, f_cmds, logfile_name, description, directories, io_filepaths): start_time = time.time() # Info program = logfile_name.split("_")[-1] print(description, file=sys.stdout) print("Input: ", io_filepaths[0], "\n", "Output: ", io_filepaths[1], sep="", file=sys.stdout) print("Command: ", " ".join(cmd), file=sys.stdout) executable = Command(cmd, name=logfile_name, description=description, f_cmds=f_cmds) executable.run( prologue=format_header(program, "_"), dry="infer", errors_ok=False, error_message="Check the following files: {}".format(os.path.join(directories["log"], "{}.*".format(logfile_name))), checkpoint=os.path.join(directories["checkpoints"], "{}".format(logfile_name)), write_stdout=os.path.join(directories["log"], "{}.o".format(logfile_name)), write_stderr=os.path.join(directories["log"], "{}.e".format(logfile_name)), write_returncode=os.path.join(directories["log"], "{}.returncode".format(logfile_name)), f_verbose=sys.stdout, ) print("Duration: {}".format(executable.duration_), file=sys.stdout) return executable # ========= # Kneaddata # ========= program = "kneaddata" # Add to directories output_directory = directories[("intermediate", program)] = create_directory(os.path.join(directories["intermediate"], "{}_output".format(program))) # Info step = "1" logfile_name = "{}_{}".format(step, program) description = "{}. {} | Removing human associated reads and quality trimming".format(step, program) # i/o input_filepath = [opts.r1, opts.r2] output_filename = ["kneaddata_repaired_1.fastq.gz", "kneaddata_repaired_2.fastq.gz"] output_filepath = list(map(lambda filename: os.path.join(output_directory, filename), output_filename)) io_filepaths = [input_filepath, output_filepath] # Parameters params = { "reads_r1":input_filepath[0], "reads_r2":input_filepath[1], "output_directory":output_directory, "opts":opts, "directories":directories, } cmd = get_kneaddata_cmd(**params) process = process_command(cmd, f_cmds=f_cmds, logfile_name=logfile_name, description=description, directories=directories, io_filepaths=io_filepaths) sys.stdout.flush() """ def __init__(self, cmd, name=None, description=None, f_cmds=sys.stdout ): if isinstance(cmd, str): cmd = [cmd] cmd = " ".join(cmd) self.cmd = cmd if not is_file_like(f_cmds): if is_path_like(f_cmds, path_must_exist=False): f_cmds = open(f_cmds, "w") self.f_cmds = f_cmds self.name = name self.description = description def __repr__(self): class_name = str(self.__class__)[17:-2] return '{}(name={}, description={}, cmd="{}")'.format(class_name, self.name, self.description, self.cmd) def close(self): self.f_cmds.close() return self def _write_output(self, data, filepath): if filepath is not None: if not is_file_like(filepath): filepath = format_path(filepath) f_out = open(filepath, "w") else: f_out = filepath print(data, file=f_out) f_out.flush() if self.f_cmds not in {sys.stdout, sys.stderr}: os.fsync(self.f_cmds.fileno()) if f_out not in {sys.stdout, sys.stderr}: f_out.close() # Run command def run( self, prologue=None, epilogue=None, errors_ok=False, dry="infer", checkpoint=None, write_stdout=None, write_stderr=None, write_returncode=None, close_file=False, checkpoint_message_notexists="Running. .. ... .....", checkpoint_message_exists="Loading. .. ... .....", error_message=None, completed_message=None, f_verbose=None, n_linebreaks=1, acceptable_returncodes=[0], popen_kws=dict(), ): """ Should future versions should have separate prologue and epilogue for f_cmds and f_verbose? """ # Verbose if f_verbose is None: f_verbose = sys.stdout # Return codes if isinstance(acceptable_returncodes, int): acceptable_returncodes = [acceptable_returncodes] assert all(map(lambda returncode:isinstance(returncode, int), acceptable_returncodes)), "Please use integer return codes" # ---------- # Checkpoint # ---------- if checkpoint is not None: checkpoint = format_path(checkpoint) if dry == "infer": dry = False if checkpoint is not None: if os.path.exists(checkpoint): dry = True if checkpoint_message_exists is not None: print(checkpoint_message_exists, file=f_verbose) f_verbose.flush() else: if checkpoint_message_notexists is not None: print(checkpoint_message_notexists, file=f_verbose) f_verbose.flush() # ---- # Info # ---- if self.f_cmds is not None: # Prologue if prologue is not None: self.prologue_ = prologue print("#", prologue, file=self.f_cmds) # Command print(self.cmd, file=self.f_cmds) # Epilogue if epilogue is not None: self.epilogue_ = epilogue print("#", epilogue, file=self.f_cmds) # Padding assert n_linebreaks >= 0, "`n_linebreaks` must be an integer >= 0" print("\n"*(n_linebreaks-1), file=self.f_cmds) self.f_cmds.flush() if self.f_cmds not in {sys.stdout, sys.stderr}: os.fsync(self.f_cmds.fileno()) # Run if not dry: start_time = time.time() f_stdout = subprocess.PIPE if write_stdout is not None: write_stdout = format_path(write_stdout) f_stdout = open(write_stdout, "wb") f_stderr = subprocess.PIPE if write_stderr is not None: write_stderr = format_path(write_stderr) f_stderr = open(write_stderr, "wb") # Execute the process self.process_ = subprocess.Popen(self.cmd, shell=True, stdout=f_stdout, stderr=f_stderr, **popen_kws) #! Future: Use file objects instead here so it can be written in real time # Wait until process is complete and return stdout/stderr self.stdout_, self.stderr_ = self.process_.communicate() # Use this .communicate instead of .wait to avoid zombie process that hangs due to defunct. Removed timeout b/c it's not available in Python 2 # Set stdout and stderr to the contents of the file object created...or just the path then do a get_stdout() function if hasattr(f_stdout, "close"): f_stdout.close() if hasattr(f_stderr, "close"): f_stderr.close() # Return code self.returncode_ = self.process_.returncode self.duration_ = format_duration(start_time) # # stdout # if isinstance(self.stdout_, bytes): # self.stdout_ = self.stdout_.decode("utf-8") # self._write_output(data=self.stdout_, filepath=write_stdout) # # stderr # if isinstance(self.stderr_, bytes): # self.stderr_ = self.stderr_.decode("utf-8") # self._write_output(data=self.stderr_, filepath=write_stderr) # Return code self._write_output(data=self.returncode_, filepath=write_returncode) # Check if not errors_ok: if self.returncode_ not in acceptable_returncodes: if error_message is not None: print(error_message, file=f_verbose) sys.exit(self.returncode_) if self.returncode_ in acceptable_returncodes: if completed_message is not None: print(completed_message, file=f_verbose) # Create checkpoint if checkpoint is not None: if self.returncode_ in acceptable_returncodes: duration = format_duration(start_time) with open(checkpoint, "w") as f_checkpoint: print(get_timestamp(), duration, file=f_checkpoint) # Close file object if self.f_cmds not in {None, sys.stdout, sys.stderr}: if close_file: self.close() return self # Executable class ExecutablePipeline(object): def __init__(self, name=None, description=None, checkpoint_directory=None, log_directory=None, checkpoint_message_notexists="Running. .. ... .....", checkpoint_message_exists="Loading. .. ... .....", f_cmds=None, f_verbose=None, bypass_io_validation_if_checkpoints_exist=False, **metadata ): self.name = name self.description = description self.metadata = metadata self.executables = dict() self.f_cmds = f_cmds self.f_verbose = f_verbose self.checkpoint_message_notexists = checkpoint_message_notexists self.checkpoint_message_exists = checkpoint_message_exists # Log directory self.log_directory = log_directory if log_directory is not None: assert is_path_like(log_directory, path_must_exist=False), "`{}` is not path-like".format(log_directory) log_directory = format_path(log_directory) self.log_directory = create_directory(log_directory) # Checkpoint directory self.checkpoint_directory = checkpoint_directory if checkpoint_directory is not None: assert is_path_like(checkpoint_directory, path_must_exist=False), "`{}` is not path-like".format(checkpoint_directory) checkpoint_directory = format_path(checkpoint_directory) self.checkpoint_directory = create_directory(checkpoint_directory) self.bypass_io_validation_if_checkpoints_exist = bypass_io_validation_if_checkpoints_exist # Compiled self.compiled = False # Add step in pipeline def add_step(self, # Required id, cmd, step="infer", log_prefix="infer", # Descriptions description=None, # I/O input_filepaths=None, output_filepaths=None, # Utility dry="infer", errors_ok=False, validate_inputs=True, validate_outputs=True, acceptable_returncodes=[0], ): # Step if step == "infer": step = len(self.executables) + 1 assert isinstance(step, int), "Please specify an integer step." # if bypass_io_validation_if_checkpoint_exists: # HOW TO DETEREMINE WHAT THE CHECKPOINT FILE IS AT THIS STAGE # if os.path.exists(checkpoint): # attrs = dict() attrs["step"] = step # Command attrs["executable"] = Command(cmd, name=id, description=description, f_cmds=self.f_cmds, ) attrs["description"] = description attrs["log_prefix"] = log_prefix #I/O if isinstance(input_filepaths, str): input_filepaths = [input_filepaths] if input_filepaths is None: input_filepaths = list() attrs["input_filepaths"] = input_filepaths if isinstance(output_filepaths, str): output_filepaths = [output_filepaths] if output_filepaths is None: output_filepaths = list() attrs["output_filepaths"] = output_filepaths # Checkpoints attrs["checkpoint"] = None attrs["write_stdout"] = None attrs["write_stderr"] = None attrs["write_returncode"] = None attrs["error_message"] = None attrs["completed_message"] = None attrs["acceptable_returncodes"] = acceptable_returncodes # Checkpoint attrs["dry"] = dry # Validation attrs["errors_ok"] = errors_ok attrs["validate_inputs"] = validate_inputs attrs["validate_outputs"] = validate_outputs self.executables[id] = attrs return self # Set attribute def set_attribute(self, id, attribute, value): assert id in self.executables, "`{}` not in `executables`".format(id) self.executables[id][attribute] = value return self # Set the order of operations def set_order_of_executables(self, ordering): for id, step in ordering.items(): self.executables[id] return self # Compile everything and get ready for execution def compile(self): # if func_steps is None: # func_steps = lambda step:step # Check duplicate steps steps = list() for id, attrs in self.executables.items(): steps.append(attrs["step"]) assert all(map(lambda x: x == 1, Counter(steps).values())) # Check missing steps assert set(steps) == set(range(min(steps), max(steps)+1)), "Please check for missing steps." # Check boolean attrs for id, attrs in self.executables.items(): for attribute in ["errors_ok", "validate_inputs", "validate_outputs"]: assert isinstance(attrs[attribute], bool), "`{}` must be a boolean type".format(attribute) # Compiled steps self.compiled_steps_ = OrderedDict() print(format_header(". .. ... Compiling ... .. .", "="), file=self.f_verbose) for id, attrs in sorted(self.executables.items(), key=lambda x:x[1]["step"]): # Logfile name if attrs["log_prefix"] in {"infer", None}: attrs["log_prefix"] = "__".join([str(attrs["step"]).strip(), format_filename(id, replacement_character="-").strip()]) assert check_filename(attrs["log_prefix"]), "Please format the filename `{}` so it only inlcudes alphanumeric characters, '.', '_', and '-'.".format(attrs["log_prefix"]) # assert all(x) # Checkpoint if self.checkpoint_directory is not None: attrs["checkpoint"] = os.path.join(self.checkpoint_directory, attrs["log_prefix"] ) # Log files if self.log_directory is not None: attrs["write_stdout"] = os.path.join(self.log_directory, "{}.o".format(attrs["log_prefix"] )) attrs["write_stderr"] = os.path.join(self.log_directory, "{}.e".format(attrs["log_prefix"] )) attrs["write_returncode"] = os.path.join(self.log_directory, "{}.returncode".format(attrs["log_prefix"] )) attrs["error_message"] = "Check log files to diagnose error:\ncat {}.*".format(os.path.join(self.log_directory, attrs["log_prefix"] )) attrs["completed_message"] = "\nLog files:\n{}.*".format(os.path.join(self.log_directory, attrs["log_prefix"] )) # Use glob here # Add step order self.compiled_steps_[attrs["step"]] = id # Update attributes self.executables[id].update(attrs) print("Step: {}, {} | log_prefix = {} | {}".format(attrs["step"], id, attrs["log_prefix"], attrs["description"]), file=self.f_verbose) # Compiled self.compiled = True return self # Execute pipeline def execute(self, steps=None, description="Executing pipeline", restart_from_checkpoint=None): start_time = time.time() assert self.compiled, "Please compile before continuing." if steps is None: steps = list(self.compiled_steps_.keys()) if self.name is not None: if self.description is None: print(format_header(". .. ... {} ... .. .".format(self.name), "_"), file=self.f_verbose) else: print(format_header(". .. ... {} || {} ... .. .".format(self.name, self.description), "_"), file=self.f_verbose) print("", file=self.f_verbose) if restart_from_checkpoint is not None: restart_from_checkpoint = int(restart_from_checkpoint) assert restart_from_checkpoint in steps, "Cannot restart from checkpoint `{}` because it does not exist".format(restart_from_checkpoint) if self.checkpoint_directory is not None: if restart_from_checkpoint == "preprocessing": restart_from_checkpoint = 1 target_checkpoint = restart_from_checkpoint print("Restarting pipeline from checkpoint:", target_checkpoint, file=self.f_verbose) for file in scandir(self.checkpoint_directory): if "_" in file.name: query_checkpoint = int(file.name.split("_")[0].split(".")[0]) if query_checkpoint >= target_checkpoint: print("...[-] {}".format(file.path), file=self.f_verbose) os.remove(file.path) # Intermediate files for intermediate_filepath in self.executables[self.compiled_steps_[query_checkpoint]]["output_filepaths"]: if os.path.exists(os.path.realpath(intermediate_filepath)): try: os.remove(intermediate_filepath) print("...[-] {}".format(intermediate_filepath), file=self.f_verbose) except OSError: # Changed from PermissionError 2020.01.15 pass else: print("...[=] {}".format(file.path), file=self.f_verbose) print("", file=self.f_verbose) for step, id in pv(self.compiled_steps_.items(), description=description): if step in steps: attrs = self.executables[id] executable = attrs["executable"] # Headers print(format_header(". {} .".format(id), "="), sep="", file=self.f_verbose) print("Input: ", attrs["input_filepaths"], "\n", "Output: ", attrs["output_filepaths"], "\n", sep="", file=self.f_verbose) print("Command:", file=self.f_verbose) print(attrs["executable"].cmd, "\n", file=self.f_verbose) # =============== # Execute command # =============== # Bypass io validation if self.bypass_io_validation_if_checkpoints_exist: if os.path.exists(attrs["checkpoint"]): # if_file_isnt_empty? attrs["validate_inputs"] = False attrs["validate_outputs"] = False print("! Bypassing I/O validation: {}\n".format(attrs["checkpoint"]), file=self.f_verbose) # Check inputs if attrs["validate_inputs"]: input_filepaths = attrs["input_filepaths"] if bool(input_filepaths): assert is_nonstring_iterable(input_filepaths), "`input_filepaths` must be a non-string iterable" # paths_expanded = list() # for path in input_filepaths: # if "*" in path: # paths_expanded += glob.glob(path) # else: # # path = os.path.realpath(path) # paths_expanded.append(path) # self.executables[id]["input_filepaths"] = paths_expanded validate_file_existence(input_filepaths, prologue="Validating the following input files:", f_verbose=self.f_verbose) print("", file=self.f_verbose) # Execute executable.run( prologue=id, dry=attrs["dry"], errors_ok=attrs["errors_ok"], error_message=attrs["error_message"], completed_message=attrs["completed_message"], checkpoint=attrs["checkpoint"], checkpoint_message_notexists=self.checkpoint_message_notexists, checkpoint_message_exists=self.checkpoint_message_exists, write_stdout=attrs["write_stdout"], write_stderr=attrs["write_stderr"], write_returncode=attrs["write_returncode"], acceptable_returncodes=attrs["acceptable_returncodes"], f_verbose=self.f_verbose, ) # Check outputs if attrs["validate_outputs"]: output_filepaths = attrs["output_filepaths"] if bool(output_filepaths): assert is_nonstring_iterable(output_filepaths), "`output_filepaths` must be a non-string iterable" validate_file_existence(output_filepaths, prologue="\nValidating the following output files:", f_verbose=self.f_verbose) # print("", file=self.f_verbose) print("\nDuration: {}\n".format(format_duration(start_time)), file=self.f_verbose) self.duration_ = format_duration(start_time) print("\n", format_header("Total duration: {}".format(self.duration_), "."), sep="", file=self.f_verbose) return self # # Save object # def to_file(self, path, compression="infer", protocol=pickle.HIGHEST_PROTOCOL, *args): # # Cannot serialize file objects while open so we need make placeholders # f_cmds = self.f_cmds # f_verbose = self.f_verbose # self.f_verbose = None # self.f_cmds = None # # for id in self.executables.keys(): # # self.executables[id]["executable"].f_verbose = None # # self.executables[id]["executable"].f_cmds = None # # Write object # write_object(self, path=path, compression=compression, protocol=protocol, *args) # # Set file objects # self.f_verbose = f_verbose # self.f_cmds = f_cmds # return self # Load object @classmethod def from_file(cls, path, compression="infer", f_verbose=None, f_cmds=None): cls = read_object(path=path, compression=compression) cls.f_verbose = f_verbose cls.f_cmds = f_cmds return cls def __getitem__(self, id): assert id in self.executables, "`{}` not in `executables`".format(id) return self.executables[id] def main(): directories = dict() directories["output"] = create_directory("pipeline_testing") directories["checkpoints"] = create_directory(os.path.join(directories["output"], "checkpoints")) directories["logs"] = create_directory(os.path.join(directories["output"], "logs")) with open(os.path.join(directories["output"], "commands.sh"), "w") as f_cmds: ep = ExecutablePipeline(name="Sith", description="The rule of two", f_cmds=f_cmds, checkpoint_directory=directories["checkpoints"], log_directory=directories["logs"], bypass_io_validation_if_checkpoints_exist=True) # Step 1 output_filepaths = [os.path.join(directories["output"], "holocron.txt")] message = "Two there should be; no more, no less. One to embody the power, the other to crave it.\n" ep.add_step(id="<NAME>", cmd="echo '{}' > {}".format(message, output_filepaths[0]), output_filepaths=output_filepaths, description = "Begin the rule of two", errors_ok=False, validate_outputs=True, ) # Step 2 input_filepaths = [os.path.join(directories["output"], "holocron.txt")] output_filepaths = [os.path.join(directories["output"], "*.txt")] ep.add_step(id="<NAME>", cmd="(cat {} && echo 'jedi') > {} ".format(input_filepaths[0], os.path.join(directories["output"], "wisdom.txt")), input_filepaths=input_filepaths, output_filepaths=output_filepaths, description = "Read the holocron", errors_ok=False, validate_inputs=True, validate_outputs=True, ) # Step 3 input_filepaths = [os.path.join(directories["output"], "holocron.txt"), os.path.join(directories["output"], "wisdom.txt")] output_directory = create_directory(os.path.join(directories["output"], "temple")) output_filepaths = [os.path.join(output_directory, "data-crystal.txt"), output_directory] cmds = [ "(", "mkdir -p {}".format(output_directory), "&&", "cat {} {} > {}".format(input_filepaths[0], input_filepaths[1], output_filepaths[0]), ")", ] ep.add_step(id="<NAME>", cmd=cmds, input_filepaths=input_filepaths, output_filepaths=output_filepaths, description = "Move the data", ) ep.compile() ep.execute(restart_from_checkpoint=3) # Directory structure print("\n", format_header("Directory structure:","_"), "\n", get_directory_tree(directories["output"], ascii=True), sep="", file=sys.stdout) if __name__ == "__main__": main() ```
{ "source": "jolespin/hive_networkx", "score": 2 }
#### File: hive_networkx/hive_networkx/hive_networkx.py ```python from __future__ import print_function, division # Built-ins from collections import OrderedDict, defaultdict import sys, datetime, copy, warnings # External import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.stats import entropy, mannwhitneyu from scipy.spatial.distance import squareform, pdist from itertools import combinations # soothsayer_utils from soothsayer_utils import assert_acceptable_arguments, is_symmetrical, is_graph, is_nonstring_iterable, dict_build, dict_filter, is_dict, is_dict_like, is_color, is_number, write_object, format_memory, format_header, check_packages try: from . import __version__ except ImportError: __version__ = "ImportError: attempted relative import with no known parent package" # ensemble_networkx from ensemble_networkx import Symmetric, condensed_to_dense # ========== # Conversion # ========== # Polar to cartesian coordinates def polar_to_cartesian(r, theta): x = r * np.cos(theta) y = r * np.sin(theta) return(x, y) # Cartesian to polar coordinates def cartesian_to_polar(x, y): r = np.sqrt(x**2 + y**2) theta = np.arctan2(y, x) return(r, theta) # ============= # Normalization # ============= # Normalize MinMax def normalize_minmax(x, feature_range=(0,1)): """ Adapted from the following source: * https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html """ x_std = (x - x.min())/(x.max() - x.min()) return x_std * (feature_range[1] - feature_range[0]) + feature_range[0] # ======================================================= # Hive # ======================================================= class Hive(object): def __init__(self, data, name=None, node_type=None, edge_type=None, axis_type=None, description=None, tol=1e-10): """ Hive plots for undirected networks Hive plots: Should only be used with 2-3 axis unless intelligently ordered b/c the arcs will overlap. Notes: * Does not store networkx graph to overuse memory just use .to_networkx as generate them in real time. Usage: import soothsayer_utils as syu import ensemble_networkx ax enx import hive_networkx as hx # Load data X, y, colors = syu.get_iris_data(["X", "y", "colors"]) n, m = X.shape # Get association matrix (n,n) method = "pearson" df_sim = X.T.corr(method=method) ratio = 0.382 number_of_edges = int((n**2 - n)/2) number_of_edges_negative = int(ratio*number_of_edges) # Make half of the edges negative to showcase edge coloring (not statistically meaningful at all) for a, b in zip(np.random.RandomState(0).randint(low=0, high=149, size=number_of_edges_negative), np.random.RandomState(1).randint(low=0, high=149, size=number_of_edges_negative)): if a != b: df_sim.values[a,b] = df_sim.values[b,a] = df_sim.values[a,b]*-1 # Create a Symmetric object from the association matrix sym_iris = enx.Symmetric(data=df_sim, node_type="<NAME>", edge_type=method, name="iris", association="network") # ==================================== # Symmetric(Name:iris, dtype: float64) # ==================================== # * Number of nodes (iris sample): 150 # * Number of edges (correlation): 11175 # * Association: network # * Memory: 174.609 KB # -------------------------------- # | Weights # -------------------------------- # (iris_1, iris_0) 0.995999 # (iris_0, iris_2) 0.999974 # (iris_3, iris_0) 0.998168 # (iris_0, iris_4) 0.999347 # (iris_0, iris_5) 0.999586 # ... # (iris_148, iris_146) 0.988469 # (iris_149, iris_146) 0.986481 # (iris_147, iris_148) 0.995708 # (iris_149, iris_147) 0.994460 # (iris_149, iris_148) 0.999916 # Create NetworkX graph from the Symmetric object graph_iris = sym_iris.to_networkx() # # Create Hive hive = hx.Hive(graph_iris, axis_type="species") # Organize nodes by species for each axis number_of_query_nodes = 3 axis_nodes = OrderedDict() for species, _y in y.groupby(y): axis_nodes[species] = _y.index[:number_of_query_nodes] # Make sure there each node is specific to an axis (not fastest way, easiest to understand) nodelist = list() for name_axis, nodes in axis_nodes.items(): nodelist += nodes.tolist() assert pd.Index(nodelist).value_counts().max() == 1, "Each node must be on only one axis" # Add axis for each species node_styles = dict(zip(['setosa', 'versicolor', 'virginica'], ["o", "p", "D"])) for name_axis, nodes in axis_nodes.items(): hive.add_axis(name_axis, nodes, sizes=150, colors=colors[nodes], split_axis=True, node_style=node_styles[name_axis]) hive.compile() # =============================== # Hive(Name:iris, dtype: float64) # =============================== # * Number of nodes (iris sample): 150 # * Number of edges (pearson): 11175 # * Axes (species): ['setosa', 'versicolor', 'virginica'] # * Memory: 174.609 KB # * Compiled: True # --------------------------- # | Axes # --------------------------- # 0. setosa (3) [iris_0, iris_1, iris_2] # 1. versicolor (3) [iris_50, iris_51, iris_52] # 2. virginica (3) [iris_100, iris_101, iris_102] # Plot Hive color_negative, color_positive = ('#278198', '#dc3a23') edge_colors = hive.weights.map(lambda w: {True:color_negative, False:color_positive}[w < 0]) legend = dict(zip(["Positive", "Negative"], [color_positive, color_negative])) fig, axes = hive.plot(func_edgeweight=lambda w: (w**10), edge_colors=edge_colors, style="light", show_node_labels=True, title="Iris", legend=legend) """ # Placeholders self.nodes_in_hive = None self.edges_in_hive = None self.weights = None # self.graph = None self.name = name self.node_type = node_type self.edge_type = edge_type # Propogate if isinstance(data, pd.DataFrame): data = self._from_pandas_adjacency(data, name, node_type, edge_type, tol) # -> Symmetric if isinstance(data, Symmetric): self._from_symmetric(data, name, node_type, edge_type) if all([ (self.nodes_in_hive is None), (self.edges_in_hive is None), (self.weights is None), ]): assert is_graph(data), "`data` must be either a pd.DataFrame adjacency, a Symmetric, or a networkx graph object" # Last resort, use this if Symmetric isn't provided self._from_networkx(data) # Initialize self.axes = OrderedDict() self.node_mapping_ = OrderedDict() self.compiled = False self.axis_type = axis_type self.description = description self.version = __version__ self.number_of_nodes_ = None self.memory = self.weights.memory_usage() self.__synthesized__ = datetime.datetime.utcnow() def _from_pandas_adjacency(self, data, name, node_type, edge_type, tol): # Convert pd.DataFrame into a Symmetric object assert isinstance(data, pd.DataFrame), "Must be a 2-dimensional pandas DataFrame object" assert is_symmetrical(data, tol=tol), "DataFrame must be symmetrical. Please force symmetry with (X + X.T)/2" return Symmetric(data=data, name=name, node_type=node_type, edge_type=edge_type, association="network", nans_ok=False, tol=tol) def _from_symmetric(self, data, name, node_type, edge_type): # Propogate information from Symmetric if name is None: self.name = data.name if node_type is None: self.node_type = data.node_type if edge_type is None: self.edge_type = data.edge_type self.nodes_in_hive = data.nodes self.edges_in_hive = data.edges self.weights = data.weights # return data.to_networkx() def _from_networkx(self, graph): # Propogate information from graph for attr in ["name", "node_type", "edge_type"]: if getattr(self, attr) is None: if attr in graph.graph: value =graph.graph[attr] if bool(value): setattr(self, attr, value) # if self.graph is None: # self.graph = graph if self.nodes_in_hive is None: self.nodes_in_hive = pd.Index(sorted(graph.nodes())) if (self.edges_in_hive is None) or (self.weights is None): self.weights = dict() for edge_data in graph.edges(data=True): edge = frozenset(edge_data[:-1]) weight = edge_data[-1]["weight"] self.weights[edge] = weight self.weights = pd.Series(self.weights, name="Weights")#.sort_index() self.edges_in_hive = pd.Index(self.weights.index, name="Edges") # Built-ins def __repr__(self): pad = 4 header = format_header("Hive(Name:{}, dtype: {})".format(self.name, self.weights.dtype),line_character="=") n = len(header.split("\n")[0]) fields = [ header, pad*" " + "* Number of nodes ({}): {}".format(self.node_type, len(self.nodes_in_hive)), pad*" " + "* Number of edges ({}): {}".format(self.edge_type, len(self.edges_in_hive)), pad*" " + "* Axes ({}): {}".format(self.axis_type, list(self.axes.keys())), pad*" " + "* Memory: {}".format(format_memory(self.memory)), pad*" " + "* Compiled: {}".format(self.compiled), ] if self.compiled: for field in map(lambda line:pad*" " + line, format_header("| Axes", "-", n=n-pad).split("\n")): fields.append(field) for field in map(lambda line: pad*" " + str(line), repr(self.axes_preview_).split("\n")[:-1]): fields.append(field) return "\n".join(fields) def __call__(self, name_axis=None): return self.get_axis_data(name_axis=name_axis) # def __getitem__(self, key): # return self.weights[key] # Add axis to HivePlot def add_axis(self, name_axis, nodes, sizes=None, colors=None, split_axis:bool=False, node_style="o", scatter_kws=dict()): """ Add or update axis nodes: Can be either an iterable of nodes or a dict-like with node positions {node:position} """ # Initialize axis container self.axes[name_axis] = defaultdict(dict) self.axes[name_axis]["colors"] = None self.axes[name_axis]["sizes"] = None self.axes[name_axis]["split_axis"] = split_axis self.axes[name_axis]["node_style"] = node_style self.axes[name_axis]["scatter_kws"] = scatter_kws # Assign (preliminary) node positions if is_nonstring_iterable(nodes) and not isinstance(nodes, pd.Series): nodes = pd.Series(np.arange(len(nodes)), index=nodes) if is_dict(nodes): nodes = pd.Series(nodes) nodes = nodes.sort_values() assert set(nodes.index) <= set(self.nodes_in_hive), "All nodes in axis should be in the Hive and they aren't..." # Set values self.axes[name_axis]["node_positions"] = pd.Series(nodes, name=(name_axis, "node_positions")) self.axes[name_axis]["nodes"] = pd.Index(nodes.index, name=(name_axis, "nodes")) self.axes[name_axis]["number_of_nodes"] = nodes.size # Group node with axis self.node_mapping_.update(dict_build([(name_axis, self.axes[name_axis]["nodes"])])) # Assign component colors if colors is None: colors = "white" if is_color(colors): colors = dict_build([(colors, self.axes[name_axis]["nodes"])]) if is_dict(colors): colors = pd.Series(colors) if not is_color(colors): if is_nonstring_iterable(colors) and not isinstance(colors, pd.Series): colors = pd.Series(colors, index=self.axes[name_axis]["nodes"]) self.axes[name_axis]["colors"] = pd.Series(colors[self.axes[name_axis]["nodes"]], name=(name_axis, "node_colors")) # Assign component sizes if sizes is None: sizes = 100 if is_number(sizes): sizes = dict_build([(sizes, self.axes[name_axis]["nodes"])]) if is_dict(sizes): sizes = pd.Series(sizes) self.axes[name_axis]["sizes"] = pd.Series(sizes[nodes.index], name=(name_axis, "node_sizes")) # Compile the data for plotting def compile(self, axes_theta_degrees=None, split_theta_degree=None, inner_radius=None, theta_center=90, axis_normalize=True, axis_maximum=1000): """ inner_radius should be similar units to axis_maximum """ number_of_axes = len(self.axes) if split_theta_degree is None: split_theta_degree = (360/number_of_axes)*0.16180339887 self.split_theta_degree = split_theta_degree self.axis_maximum = axis_maximum if inner_radius is None: if axis_normalize: inner_radius = (1/5)*self.axis_maximum else: inner_radius = 3 self.inner_radius = inner_radius self.outer_radius = self.axis_maximum - self.inner_radius self.theta_center = theta_center # Adjust all of the node_positions for i, query_axis in enumerate(self.axes): # If the axis is normalized, force everything between the minimum position and the `outer_radius` (that is, the axis_maximum - inner_radius. This ensures the axis_maximum is actually what is defined) if axis_normalize: node_positions = self.axes[query_axis]["node_positions"] self.axes[query_axis]["node_positions_normalized"] = normalize_minmax(node_positions, feature_range=(min(node_positions), self.outer_radius) ) else: self.axes[query_axis]["node_positions_normalized"] = self.axes[query_axis]["node_positions"].copy() # Offset the node positions by the inner radius self.axes[query_axis]["node_positions_normalized"] = self.axes[query_axis]["node_positions_normalized"] + self.inner_radius # Axis thetas if axes_theta_degrees is not None: assert hasattr(axes_theta_degrees, "__iter__"), "`axes_theta_degrees` must be either None or an iterable of {} angles in degrees".format(number_of_axes) assert len(axes_theta_degrees) == number_of_axes, "`axes_theta_degrees` must be either None or an iterable of {} angles in degrees".format(number_of_axes) if axes_theta_degrees is None: axes_theta_degrees = list() for i in range(number_of_axes): theta_add = (360/number_of_axes)*i axes_theta_degrees.append(theta_add) # Adjust all of the axes angles for i, query_axis in enumerate(self.axes): # If the axis is in single mode theta_add = axes_theta_degrees[i] #(360/number_of_axes)*i if not self.axes[query_axis]["split_axis"]: # If the query axis is the first then the `theta_add` will be 0 self.axes[query_axis]["theta"] = np.array([self.theta_center + theta_add]) else: self.axes[query_axis]["theta"] = np.array([self.theta_center + theta_add - split_theta_degree, self.theta_center + theta_add + split_theta_degree]) self.axes[query_axis]["theta"] = np.deg2rad(self.axes[query_axis]["theta"]) self.axes_theta_degrees_ = dict(zip(self.axes.keys(), axes_theta_degrees)) # Nodes self.nodes_ = list() for axes_data in self.axes.values(): self.nodes_ += list(axes_data["nodes"]) assert len(self.nodes_) == len(set(self.nodes_)), "Axes cannot contain duplicate nodes" self.number_of_nodes_ = len(self.nodes_) # Edges self.edges_ = list(map(frozenset, combinations(self.nodes_, r=2))) self.number_of_edges_ = len(self.edges_) # Axes self.number_of_axes_ = number_of_axes self.axes_preview_ = pd.Series(dict(zip(self.axes.keys(), map(lambda data:list(data["nodes"]), self.axes.values()))), name="Axes preview") self.axes_preview_.index = self.axes_preview_.index.map(lambda name_axis: "{}. {} ({})".format(self.axes_preview_.index.get_loc(name_axis), name_axis, len(self.axes_preview_[name_axis]))) # Compile self.compiled = True def _get_quadrant_info(self, theta_representative): # 0/360 if theta_representative in np.deg2rad([0,360]): horizontalalignment = "left" verticalalignment = "center" quadrant = 0 # 90 if theta_representative == np.deg2rad(90): horizontalalignment = "center" verticalalignment = "bottom" quadrant = 90 # 180 if theta_representative == np.deg2rad(180): horizontalalignment = "right" verticalalignment = "center" quadrant = 180 # 270 if theta_representative == np.deg2rad(270): horizontalalignment = "center" verticalalignment = "top" quadrant = 270 # Quadrant 1 if np.deg2rad(0) < theta_representative < np.deg2rad(90): horizontalalignment = "left" verticalalignment = "bottom" quadrant = 1 # Quadrant 2 if np.deg2rad(90) < theta_representative < np.deg2rad(180): horizontalalignment = "right" verticalalignment = "bottom" quadrant = 2 # Quadrant 3 if np.deg2rad(180) < theta_representative < np.deg2rad(270): horizontalalignment = "right" verticalalignment = "top" quadrant = 3 # Quadrant 4 if np.deg2rad(270) < theta_representative < np.deg2rad(360): horizontalalignment = "left" verticalalignment = "top" quadrant = 4 return quadrant, horizontalalignment, verticalalignment def plot(self, title=None, # Arc style arc_style="curved", # Show components show_axis=True, show_nodes=True, show_edges=True, show_border = False, show_axis_labels=True, show_node_labels=False, show_polar_grid=False, show_cartesian_grid=False, node_label_mapping=None, # Colors axis_color=None, edge_colors=None, background_color=None, # Alphas edge_alpha=0.5, node_alpha=0.8, axis_alpha=0.618, # Keywords title_kws=dict(), axis_kws=dict(), axis_label_kws=dict(), node_label_kws=dict(), node_label_line_kws=dict(), node_kws=dict(), edge_kws=dict(), legend_kws=dict(), legend_label_kws=dict(), # Figure style="dark", edge_linestyle="-", axis_linestyle="-", node_label_linestyle=":", legend_markerstyle="s", legend=None, # polar=True, ax_polar=None, ax_cartesian=None, clip_edgeweight=5, granularity=100, func_edgeweight=None, figsize=(10,10), # Padding pad_axis_label = "infer", pad_node_label = 5, # pad_node_label_line = 0, # node_label_position_vertical_axis="right", ): if node_label_mapping is None: node_label_mapping = dict() polar = True #! Address this in future versions assert self.compiled == True, "Please `compile` before plotting" accepted_arc_styles = {"curved", "linear"} assert_acceptable_arguments(arc_style, accepted_arc_styles) if arc_style == "linear": granularity = 2 if style in ["dark", "black", "night", "sith"]: style = "dark_background" if style in ["light", "white", "day", "jedi"] : style = "seaborn-white" with plt.style.context(style): # Create figure if ax_polar is not None: fig = plt.gcf() figsize = fig.get_size_inches() # Polar canvas if ax_polar is None: fig = plt.figure(figsize=figsize) ax_polar = plt.subplot(111, polar=polar) # Cartesian canvas if ax_cartesian is None: ax_cartesian = fig.add_axes(ax_polar.get_position(), frameon=False, polar=False) if polar == True: y = 0.95 if polar == False: y = 1.1 # Remove clutter from plot ax_polar.grid(show_polar_grid) ax_polar.set_xticklabels([]) ax_polar.set_yticklabels([]) ax_cartesian.grid(show_cartesian_grid) ax_cartesian.set_xticklabels([]) ax_cartesian.set_yticklabels([]) if not show_border: # Not using ax.axis('off') becuase it removes facecolor for spine in ax_polar.spines.values(): spine.set_visible(False) for spine in ax_cartesian.spines.values(): spine.set_visible(False) node_padding = " "*pad_node_label # Default colors if axis_color is None: if style == "dark_background": axis_color = "white" axis_label_color = "white" else: axis_color = "darkslategray" axis_label_color = "black" if background_color is not None: ax_polar.set_facecolor(background_color) ax_cartesian.set_facecolor(background_color) # Title _title_kws = {"fontweight":"bold", "y":y} _title_kws.update(title_kws) if "fontsize" not in _title_kws: _title_kws["fontsize"] = figsize[0] * np.sqrt(figsize[0])/2 + 2 # Axis labels _axis_label_kws = {"fontweight":None, "color":axis_label_color} _axis_label_kws.update(axis_label_kws) if "fontsize" not in _axis_label_kws: _axis_label_kws["fontsize"] = figsize[0] * np.sqrt(figsize[0])/2 # Node labels _node_label_kws = {"fontsize":12} _node_label_kws.update(node_label_kws) _node_label_line_kws = {"linestyle":node_label_linestyle, "color":axis_color} _node_label_line_kws.update(node_label_line_kws) # Axis plotting _axis_kws = {"linewidth":3.382, "alpha":axis_alpha, "color":axis_color, "linestyle":axis_linestyle, "zorder":0} _axis_kws.update(axis_kws) # Edge plotting _edge_kws = {"alpha":edge_alpha, "linestyle":edge_linestyle} # "zorder", _node_kws["zorder"]+1} _edge_kws.update(edge_kws) # Node plotting _node_kws = {"linewidth":1.618, "edgecolor":axis_color, "alpha":node_alpha,"zorder":2} _node_kws.update(node_kws) # Legend plotting _legend_label_kws = {"marker":legend_markerstyle, "markeredgecolor":axis_color, "markeredgewidth":1, "linewidth":0} _legend_label_kws.update(legend_label_kws) _legend_kws = {'fontsize': 15, 'frameon': True, 'facecolor': background_color, 'edgecolor': axis_color, 'loc': 'center left', 'bbox_to_anchor': (1.1, 0.5), "markerscale":1.6180339887} _legend_kws.update(legend_kws) # Edge info edges = self.weights[self.edges_].abs() if func_edgeweight is not None: edges = func_edgeweight(edges) if clip_edgeweight is not None: edges = np.clip(edges, a_min=None, a_max=clip_edgeweight) if edge_colors is None: edge_colors = axis_color if is_color(edge_colors): edge_colors = dict_build([(edge_colors, edges.index)]) if is_dict(edge_colors): edge_colors = pd.Series(edge_colors) if not is_color(edge_colors): if is_nonstring_iterable(edge_colors) and not isinstance(edge_colors, pd.Series): edge_colors = pd.Series(edge_colors, index=edges.index) edge_colors = pd.Series(edge_colors[edges.index], name="edge_colors").to_dict() # Axes label pads if pad_axis_label is None: pad_axis_label = 0 if pad_axis_label == "infer": pad_axis_label = list() for i, (name_axis, axes_data) in enumerate(self.axes.items()): node_positions = axes_data["node_positions_normalized"] pad_axis_label.append(0.06180339887*(node_positions.max() - node_positions.min())) if isinstance(pad_axis_label, (int,float)): pad_axis_label = [pad_axis_label]*self.number_of_axes_ assert hasattr(pad_axis_label, "__iter__"), "`pad_axis_label` must be either None, 'infer', a scalar, or an iterable of {} pads".format(self.number_of_axes_) assert len(pad_axis_label) == self.number_of_axes_, "`pad_axis_label` must be either None, 'infer', a scalar, or an iterable of {} pads".format(self.number_of_axes_) # ================ # Plot edges # ================ # Draw edges if show_edges: for (edge, weight) in edges.iteritems(): if abs(weight) > 0: node_A, node_B = edge name_axis_A = self.node_mapping_[node_A] name_axis_B = self.node_mapping_[node_B] # Check axis intraaxis_edge = (name_axis_A == name_axis_B) # Within axis edges if intraaxis_edge: name_consensus_axis = name_axis_A # Plot edges on split axis if self.axes[name_consensus_axis]["split_axis"]: # print(type(edge), edge, edge in edge_colors) color = edge_colors[edge] # Draw edges between same axis # Node A -> B ax_polar.plot([*self.axes[name_consensus_axis]["theta"]], # Unpack [self.axes[name_consensus_axis]["node_positions_normalized"][node_A], self.axes[name_consensus_axis]["node_positions_normalized"][node_B]], c=color, linewidth=weight, **_edge_kws, ) # Node B -> A ax_polar.plot([*self.axes[name_consensus_axis]["theta"]], # Unpack [self.axes[name_consensus_axis]["node_positions_normalized"][node_B], self.axes[name_consensus_axis]["node_positions_normalized"][node_A]], c=color, linewidth=weight, **_edge_kws, ) # Between axis if not intraaxis_edge: axes_ordered = list(self.axes.keys()) terminal_axis_edge = False # Last connected to the first if (name_axis_A == axes_ordered[-1]): if (name_axis_B == axes_ordered[0]): thetas = [self.axes[name_axis_A]["theta"].max(), self.axes[name_axis_B]["theta"].min()] radii = [self.axes[name_axis_A]["node_positions_normalized"][node_A], self.axes[name_axis_B]["node_positions_normalized"][node_B]] terminal_axis_edge = True # First connected to the last if (name_axis_A == axes_ordered[0]): if (name_axis_B == axes_ordered[-1]): thetas = [self.axes[name_axis_B]["theta"].max(), self.axes[name_axis_A]["theta"].min()] radii = [self.axes[name_axis_B]["node_positions_normalized"][node_B], self.axes[name_axis_A]["node_positions_normalized"][node_A]] terminal_axis_edge = True if not terminal_axis_edge: if axes_ordered.index(name_axis_A) < axes_ordered.index(name_axis_B): thetas = [self.axes[name_axis_A]["theta"].max(), self.axes[name_axis_B]["theta"].min()] if axes_ordered.index(name_axis_A) > axes_ordered.index(name_axis_B): thetas = [self.axes[name_axis_A]["theta"].min(), self.axes[name_axis_B]["theta"].max()] radii = [self.axes[name_axis_A]["node_positions_normalized"][node_A], self.axes[name_axis_B]["node_positions_normalized"][node_B]] # Radii node positions # # Necessary to account for directionality of edge. # If this doesn't happen then there is a long arc # going counter clock wise instead of clockwise # If straight lines were plotted then it would be thetas and radii before adjusting for the curve below if terminal_axis_edge: theta_end_rotation = thetas[0] theta_next_rotation = thetas[1] + np.deg2rad(360) thetas = [theta_end_rotation, theta_next_rotation] # Create grid for thetas t = np.linspace(start=thetas[0], stop=thetas[1], num=granularity) # Get radii for thetas radii = interp1d(thetas, radii)(t) thetas = t ax_polar.plot(thetas, radii, c=edge_colors[edge], linewidth=weight, **_edge_kws, ) # =================== # Plot axis and nodes # =================== for i, (name_axis, axes_data) in enumerate(self.axes.items()): # Retrieve node_positions = axes_data["node_positions_normalized"] colors = axes_data["colors"].tolist() # Needs `.tolist()` for Matplotlib version < 2.0.0 sizes = axes_data["sizes"].tolist() # Positions # ========= # Get a theta value for each node on the axis if not axes_data["split_axis"]: theta_single = np.repeat(axes_data["theta"][0], repeats=node_positions.size) theta_vectors = [theta_single] # Split the axis so within axis interactions can be visualized if axes_data["split_axis"]: theta_split_A = np.repeat(axes_data["theta"][0], repeats=node_positions.size) theta_split_B = np.repeat(axes_data["theta"][1], repeats=node_positions.size) theta_vectors = [theta_split_A, theta_split_B] theta_representative = np.mean(axes_data["theta"]) # Quadrant # ======= quadrant, horizontalalignment, verticalalignment = self._get_quadrant_info(theta_representative) # Plot axis # ========= if show_axis: for theta in axes_data["theta"]: ax_polar.plot( 2*[theta], [min(node_positions), max(node_positions)], **_axis_kws, ) # Plot axis labels # ================ if show_axis_labels: ax_polar.text( s = name_axis, x = theta_representative, y = node_positions.size + node_positions.max() + pad_axis_label[i], horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, **_axis_label_kws, ) # Plot nodes # ======== if show_nodes: for theta in theta_vectors: # Filled ax_polar.scatter( theta, node_positions, c=axes_data["colors"], s=axes_data["sizes"], marker=axes_data["node_style"], **_node_kws, ) # Empty ax_polar.scatter( theta, node_positions, facecolors='none', s=axes_data["sizes"], marker=axes_data["node_style"], alpha=1, zorder=_node_kws["zorder"]+1, # zorder=-1, edgecolor=_node_kws["edgecolor"], linewidth=_node_kws["linewidth"], ) # Plot node labels # ================ index_labels = node_positions.index if is_nonstring_iterable(show_node_labels): index_labels = pd.Index(show_node_labels) & index_labels show_node_labels = True if show_node_labels: if not polar: warnings.warn("`show_node_labels` is not available in version: {}".format(__version__)) else: horizontalalignment_nodelabels = None for name_node, r in node_positions[index_labels].iteritems(): #! Address this in future version # # Vertical axis case # vertical_axis_left = (quadrant in {90,270}) and (node_label_position_vertical_axis == "left") # vertical_axis_right = (quadrant in {90,270}) and (node_label_position_vertical_axis == "right") # if vertical_axis_left: # horizontalalignment_nodelabels = "right" # These are opposite b/c nodes should be on the left which means padding on the right # if vertical_axis_right: # horizontalalignment_nodelabels = "left" # Vice versa # Pad on the right and push label to left # if (quadrant == 3) or vertical_axis_left: # node_label = "{}{}".format(name_node,node_padding) # theta_anchor_padding = max(axes_data["theta"]) # # Pad on left and push label to the right # if (quadrant == 4) or vertical_axis_right: # node_label = "{}{}".format(node_padding,name_node) # theta_anchor_padding = min(axes_data["theta"]) # theta_anchor is where the padding ends up # Relabel node name_node = node_label_mapping.get(name_node, name_node) # Pad on the right and push label to left if quadrant in {2,3, 180} : node_label = "{}{}".format(name_node,node_padding) theta_anchor_padding = max(axes_data["theta"]) x, y = polar_to_cartesian(r, theta_anchor_padding) xs_line = [-self.axis_maximum, x] x_text = -self.axis_maximum horizontalalignment_nodelabels = "right" # Pad on the right and push label to left if quadrant in {0, 1,4, 90, 270} : node_label = "{}{}".format(node_padding,name_node) theta_anchor_padding = min(axes_data["theta"]) x, y = polar_to_cartesian(r, theta_anchor_padding) xs_line = [x, self.axis_maximum] x_text = self.axis_maximum horizontalalignment_nodelabels = "left" # Node label line ax_cartesian.plot( xs_line, [y, y], **_node_label_line_kws, ) if all([ not axes_data["split_axis"], quadrant in {0,180}, ]): warnings.warn("Cannot plot node labels when axis is not split for angles 0 or 180 in version: {}".format(__version__)) else: # Node label text ax_cartesian.text( x=x_text, y=y, s=node_label, horizontalalignment=horizontalalignment_nodelabels, verticalalignment="center", **_node_label_kws, ) # Adjust limits # =========== r_max = max(ax_polar.get_ylim()) if title is not None: fig.suptitle(title, **_title_kws) ax_cartesian.set_xlim(-r_max, r_max) ax_cartesian.set_ylim(-r_max, r_max) # Plot Legend # =========== if legend is not None: assert is_dict_like(legend), "`legend` must be dict-like" handles = list() for label, color in legend.items(): handle = plt.Line2D([0,0],[0,0], color=color, **_legend_label_kws) handles.append(handle) ax_cartesian.legend(handles, legend.keys(), **_legend_kws) return fig, [ax_polar, ax_cartesian] # Axis data def get_axis_data(self, name_axis=None, field=None): if name_axis is None: print("Available axes:", set(self.axes.keys()), file=sys.stderr) else: assert name_axis in self.axes, "{} is not in the axes".format(name_axis) df = pd.DataFrame(dict_filter(self.axes[name_axis], ["colors", "sizes", "node_positions", "node_positions_normalized"])) if self.compiled: df["theta"] = [self.axes[name_axis]["theta"]]*df.shape[0] df.index.name = name_axis if field is not None: return df[field] else: return df # Connections def get_axis_connections(self, name_axis=None, sort_by=None, ascending=False, return_multiindex=False): assert self.compiled == True, "Please `compile` before getting connections" if name_axis is not None: assert name_axis in self.axes, "{} is not in the available axes for `name_axis`. Please add and recompile or choose one of the available axes:\n{}".format(name_axis, list(self.axes.keys())) df_dense = condensed_to_dense(self.weights, index=self.nodes_) df_connections = df_dense.groupby(self.node_mapping_, axis=1).sum() if name_axis is not None: idx_axis_nodes = self.axes[name_axis]["nodes"] df_connections = df_connections.loc[idx_axis_nodes,:] df_connections.index.name = name_axis if sort_by is not None: assert sort_by in self.axes, f"{sort_by} is not in the available axes for `sort_by`. Please add and recompile or choose one of the available axes:\n{self.axes.keys()}" df_connections = df_connections.sort_values(by=sort_by, axis=0, ascending=ascending) if return_multiindex: df_connections.index = pd.MultiIndex.from_tuples(df_connections.index.map(lambda id_node: (self.node_mapping_[id_node], id_node))) return df_connections # Stats # ===== def compare(self, data, func_stats=mannwhitneyu, name_stat=None, tol=1e-10): """ Compare the connections between 2 Hives or adjacencies using the specified axes assignments. """ assert self.compiled == True, "Please `compile` before comparing adjacencies" assert_acceptable_arguments(type(data), {pd.DataFrame, Symmetric, Hive}) if isinstance(data, (Hive, Symmetric)): df_dense__query = condensed_to_dense(data.weights) if isinstance(data, pd.DataFrame): assert is_symmetric(data, tol=tol) df_dense__query = data assert set(self.nodes_) <= set(df_dense__query.index), "`data` must contain all nodes from reference Hive" df_dense__reference = self.to_dense() d_statsdata = OrderedDict() # Get nodes d_statsdata = OrderedDict() for id_node in df_dense__reference.index: # Get axis groups stats_axes_data = list() for name_axis in self.axes: idx_axis_nodes = self.axes[name_axis]["nodes"] n = self.axes[name_axis]["number_of_nodes"] # Get comparison data u = df_dense__reference.loc[id_node,idx_axis_nodes] v = df_dense__query.loc[id_node,idx_axis_nodes] # Get stats stat, p = func_stats(u,v) if name_stat is None: if hasattr(func_stats, "__name__"): name_stat = func_stats.__name__ else: name_stat = str(func_stats) # Store data row = pd.Series(OrderedDict([ ((name_axis, "number_of_nodes"), n), ((name_axis, "∑(reference)"), u.sum()), ((name_axis, "∑(query)"), v.sum()), ((name_axis, name_stat), stat), ((name_axis, "p_value"), p) ])) stats_axes_data.append(row) # Build pd.DataFrame d_statsdata[id_node] = pd.concat(stats_axes_data) return pd.DataFrame(d_statsdata).T # Exports # ======= def to_networkx(self, into=None, **attrs): if into is None: into = nx.Graph metadata = { "node_type":self.node_type, "edge_type":self.edge_type} metadata.update(attrs) graph = into(name=self.name, **metadata) for (node_A, node_B), weight in self.weights.iteritems(): graph.add_edge(node_A, node_B, weight=weight) return graph def to_symmetric(self, nodes=None, **symmetric_kws): _symmetric_kws = dict(node_type=self.node_type, edge_type=self.edge_type, association="network", name=self.name) _symmetric_kws.update(symmetric_kws) if nodes is not None: assert set(nodes) <= set(self.nodes_in_hive), "Not all `nodes` available in Hive" edges = list(combinations(nodes, r=2)) weights = self.weights[edges] else: weights = self.weights return Symmetric(weights, **_symmetric_kws) def to_file(self, path:str, compression="infer"): write_object(self, path=path, compression=compression) return self def to_dense(self, nodes=None, fill_diagonal=np.nan): if nodes is not None: assert set(nodes) <= set(self.nodes_in_hive), "Not all `nodes` available in Hive" else: nodes = self.nodes_in_hive return condensed_to_dense(self.weights, index=nodes, fill_diagonal=fill_diagonal) def copy(self): return copy.deepcopy(self) ```
{ "source": "jolespin/scikit-bio", "score": 3 }
#### File: stats/distance/_permanova.py ```python from functools import partial import numpy as np from ._base import (_preprocess_input_sng, _run_monte_carlo_stats, _build_results, DistanceMatrix) from skbio.util._decorator import experimental from ._cutils import permanova_f_stat_sW_cy @experimental(as_of="0.4.0") def permanova(distance_matrix, grouping, column=None, permutations=999): """Test for significant differences between groups using PERMANOVA. Permutational Multivariate Analysis of Variance (PERMANOVA) is a non-parametric method that tests whether two or more groups of objects (e.g., samples) are significantly different based on a categorical factor. It is conceptually similar to ANOVA except that it operates on a distance matrix, which allows for multivariate analysis. PERMANOVA computes a pseudo-F statistic. Statistical significance is assessed via a permutation test. The assignment of objects to groups (`grouping`) is randomly permuted a number of times (controlled via `permutations`). A pseudo-F statistic is computed for each permutation and the p-value is the proportion of permuted pseudo-F statisics that are equal to or greater than the original (unpermuted) pseudo-F statistic. Parameters ---------- distance_matrix : DistanceMatrix Distance matrix containing distances between objects (e.g., distances between samples of microbial communities). grouping : 1-D array_like or pandas.DataFrame Vector indicating the assignment of objects to groups. For example, these could be strings or integers denoting which group an object belongs to. If `grouping` is 1-D ``array_like``, it must be the same length and in the same order as the objects in `distance_matrix`. If `grouping` is a ``DataFrame``, the column specified by `column` will be used as the grouping vector. The ``DataFrame`` must be indexed by the IDs in `distance_matrix` (i.e., the row labels must be distance matrix IDs), but the order of IDs between `distance_matrix` and the ``DataFrame`` need not be the same. All IDs in the distance matrix must be present in the ``DataFrame``. Extra IDs in the ``DataFrame`` are allowed (they are ignored in the calculations). column : str, optional Column name to use as the grouping vector if `grouping` is a ``DataFrame``. Must be provided if `grouping` is a ``DataFrame``. Cannot be provided if `grouping` is 1-D ``array_like``. permutations : int, optional Number of permutations to use when assessing statistical significance. Must be greater than or equal to zero. If zero, statistical significance calculations will be skipped and the p-value will be ``np.nan``. Returns ------- pandas.Series Results of the statistical test, including ``test statistic`` and ``p-value``. See Also -------- anosim Notes ----- See [1]_ for the original method reference, as well as ``vegan::adonis``, available in R's vegan package [2]_. The p-value will be ``np.nan`` if `permutations` is zero. References ---------- .. [1] Anderson, <NAME>. "A new method for non-parametric multivariate analysis of variance." Austral Ecology 26.1 (2001): 32-46. .. [2] http://cran.r-project.org/web/packages/vegan/index.html Examples -------- See :mod:`skbio.stats.distance.anosim` for usage examples (both functions provide similar interfaces). """ if not isinstance(distance_matrix, DistanceMatrix): raise TypeError("Input must be a DistanceMatrix.") sample_size = distance_matrix.shape[0] num_groups, grouping = _preprocess_input_sng( distance_matrix.ids, sample_size, grouping, column) # Calculate number of objects in each group. group_sizes = np.bincount(grouping) s_T = (distance_matrix[:] ** 2).sum() / sample_size # we are going over the whole matrix, instead of just upper triangle # so cut in half s_T /= 2.0 test_stat_function = partial(_compute_f_stat, sample_size, num_groups, distance_matrix, group_sizes, s_T) stat, p_value = _run_monte_carlo_stats(test_stat_function, grouping, permutations) return _build_results('PERMANOVA', 'pseudo-F', sample_size, num_groups, stat, p_value, permutations) def _compute_f_stat(sample_size, num_groups, distance_matrix, group_sizes, s_T, grouping): """Compute PERMANOVA pseudo-F statistic.""" # Calculate s_W for each group, accounting for different group sizes. s_W = permanova_f_stat_sW_cy(distance_matrix.data, group_sizes, grouping) s_A = s_T - s_W return (s_A / (num_groups - 1)) / (s_W / (sample_size - num_groups)) ```
{ "source": "joleuger/audioserver", "score": 3 }
#### File: install-files/install/control_mopidy_mpc.py ```python mpcPrefix= "mpc -h [email protected] " # mpc -h mopidy@localhost repeat on # mpc -h mopidy@localhost stop # mpc -h mopidy@localhost add "file:///path/to/music.mp3" # mpc -h mopidy@localhost clear # mpc -h mopidy@localhost play import pathlib import os import glob import subprocess def readm3u(m3ufilepath): basedir=os.path.dirname(m3ufilepath) m3ufile = open(m3ufilepath,'r') firstLine=m3ufile.readline() playlist = [] for entry in m3ufile: entry=entry.strip() if entry.startswith('#EXTM3U'): pass elif entry.startswith('#EXTINF:'): pass elif (len(entry) != 0): if os.path.isabs(entry): playlist.append(entry) else: newpath=os.path.join(basedir,entry) playlist.append(newpath) m3ufile.close() return playlist #files = glob.glob("/path/to/music/*mp3") files = readm3u("/path/to/music/playlist..m3u") subprocess.call(mpcPrefix+"repeat on", shell=True) subprocess.call(mpcPrefix+"stop", shell=True) subprocess.call(mpcPrefix+"clear", shell=True) for file in files: absFile=os.path.abspath(file) uri=pathlib.Path(absFile).as_uri() subprocess.call(mpcPrefix+"add "+uri, shell=True) subprocess.call(mpcPrefix+"play", shell=True) ```
{ "source": "joleuger/bluetooth-monitor", "score": 2 }
#### File: joleuger/bluetooth-monitor/core.py ```python from pydbus import SessionBus from pydbus import SystemBus import asyncio, gbulb from gi.repository.GLib import GError #from hbmqtt.client import MQTTClient, ClientException import paho.mqtt.client as mqtt import subprocess import os import signal import re class BluetoothAudioBridge: def __init__(self, loop): self.loop = loop self.DbusPulseAudioPath="" self.DbusBluezOnSystemBus=True self.DbusBluezBusName="org.bluez" self.DbusBluezObjectPath="/org/bluez/hci0" self.DbusBluezObject=None self.DbusBluezReceivingFuture=None self.DbusBluezDiscoveredDevices={} self.DbusBluezUUIDsOfDevices={} self.DbusBluezConnectedDevices={} self.MqttPath="/BluetoothAudioBridge" self.MqttServer="localhost" self.MqttUsername="vhost:username" self.MqttPassword="password" self.MqttClient=None self.MqttMessageQueue=asyncio.Queue() self.MqttReceivingFuture=None self.Continue=True self.CancellationToken=self.loop.create_future() self.TraceLevel=0 self.PollingCycle=3 self.mqttReceivedConnect=self.makeConnect self.mqttReceivedPairAndTrust=self.makePairAndTrust self.mqttReceivedScan=self.makeScan self.dbusBtDeviceDetected=self.btDeviceDetected self.dbusBtDeviceRemoved=self.btDeviceRemoved self.dbusBtDeviceConnected=self.btDeviceConnected self.dbusBtDeviceDisconnected=self.btDeviceDisconnected self.dbusScanProcesses=0 self.btDeviceConfig = {} self.btRunningProcesses = {} def loadConfig(self,appConfig): self.TraceLevel=appConfig["traceLevel"] self.PollingCycle=appConfig["pollingCycle"] self.btDeviceConfig = appConfig["bluetoothDevices"] def trace(self,level,msg): if self.TraceLevel >= level: print(msg) async def awaitOrStop(self,future): # currently unused done,pending = await asyncio.wait([self.CancellationToken, future],return_when=asyncio.FIRST_COMPLETED) firstFinished=next(iter(done)) if firstFinished==self.CancellationToken: #Note: pending tasks are still running return (False,None) #print(firstFinished) #print(firstFinished.result()) return (True,firstFinished.result()) def makeConnect(self,message): self.trace(0,"MQTT: received connect") def makePairAndTrust(self,message): self.trace(0,"MQTT: received pair and trust") def makeScan(self,message): self.scanProcesses=self.scanProcesses+1 self.trace(0,"MQTT: received scan") asyncio.ensure_future(self.stopScanningIn30Seconds) async def stopScanningIn30Seconds(self): await asyncio.sleep(30) self.scanProcesses=self.scanProcesses-1 if (self.scanProcesses==0): self.trace(2,"stop scanning for devices") async def mqttProcessMessages(self): while self.Continue: message=await self.MqttMessageQueue.get() if message==None: self.trace(0,"stopping message proccessing") return self.trace(1,"MQTT: received message") if message.startswith("Connect"): self.mqttReceivedConnect(message) if message.startswith("Pair and trust"): self.mqttReceivedConnect(message) if message.startswith("Scan"): self.mqttReceivedScan(message) async def registerMqtt(self): def on_connect(client, userdata, flags, rc): self.trace(0,"Connected with result code "+str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("/BluetoothAudioBridge/commands") def on_message(client, userdata, msg): self.trace(1,msg.topic+" "+str(msg.payload)) msgDecoded=msg.payload.decode("utf-8") asyncio.ensure_future(self.MqttMessageQueue.put(msgDecoded)) async def mqttReceiving(): while self.Continue: self.trace(3,"MQTT: wait for message") client.loop_read() client.loop_write() client.loop_misc() await asyncio.sleep(0.1) client.disconnect() client.loop_read() client.loop_write() client.loop_misc() self.MqttReceivingFuture.set_result(True) asyncio.ensure_future(self.MqttMessageQueue.put(None)) # add final (empty) message into queue for a clean shutdown def on_disconnect(client, userdata, rc): if rc != 0: self.trace(0,"Unexpected disconnection.") client = mqtt.Client(client_id="thing-bluetoothbridge",) client.on_connect = on_connect client.on_message = on_message client.on_disconnect = on_disconnect client.username_pw_set(self.MqttUsername, password=self.MqttPassword) client.connect(self.MqttServer, 1883, 60) #register receiver self.MqttReceivingFuture=self.loop.create_future() asyncio.ensure_future(self.mqttProcessMessages()) asyncio.ensure_future(mqttReceiving()) self.trace(0,"registered on MQTT") async def btDeviceDetected(self,address): self.trace(0,"device detected "+address) async def btDeviceRemoved(self,address): self.trace(0,"device removed "+address) def btClassIsAudio(self,btClass): # https://www.bluetooth.com/specifications/assigned-numbers/baseband major_service_audio_bit = 1<<21 major_device_audio_bit = 1<<10 is_audio_service = (major_service_audio_bit & btClass)==major_service_audio_bit is_audio_device = (major_device_audio_bit & btClass)==major_device_audio_bit return is_audio_service and is_audio_device def btDeviceHasA2DPSink(self,uuids): # https://github.com/pauloborges/bluez/blob/master/lib/uuid.h if "0000110b-0000-1000-8000-00805f9b34fb" in uuids: return True return False def stdoutOfPopen(self): if self.TraceLevel < 3: return subprocess.DEVNULL return None async def btDeviceConnected(self,address): self.trace(0,"device connected "+address) if address in self.btRunningProcesses: processGroupToKill=self.btRunningProcesses[address].pid os.killpg(os.getpgid(processGroupToKill), signal.SIGTERM) await asyncio.sleep(1) os.killpg(os.getpgid(processGroupToKill), signal.SIGKILL) self.btRunningProcesses.pop(address,None) deviceConfig=None if address in self.btDeviceConfig: deviceConfig = self.btDeviceConfig[address] else: uuids=self.DbusBluezUUIDsOfDevices[address] if self.btDeviceHasA2DPSink(uuids) and "other_a2dp_sinks" in self.btDeviceConfig: deviceConfig=self.btDeviceConfig["other_a2dp_sinks"] if deviceConfig!=None: if "onConnectCommand" in deviceConfig: command=deviceConfig["onConnectCommand"] if command: commandToExecute=command.replace("$DEVICE",address) self.btRunningProcesses[address]=subprocess.Popen(commandToExecute,shell=True, start_new_session=True,stdout=self.stdoutOfPopen(),stderr=self.stdoutOfPopen()) async def btDeviceDisconnected(self,address): self.trace(0,"device disconnected "+address) if address in self.btRunningProcesses: processGroupToKill=self.btRunningProcesses[address].pid os.killpg(os.getpgid(processGroupToKill), signal.SIGTERM) await asyncio.sleep(1) os.killpg(os.getpgid(processGroupToKill), signal.SIGKILL) self.btRunningProcesses.pop(address,None) deviceConfig=None if address in self.btDeviceConfig: deviceConfig = self.btDeviceConfig[address] else: uuids=self.DbusBluezUUIDsOfDevices[address] if self.btDeviceHasA2DPSink(uuids) and "other_a2dp_sinks" in self.btDeviceConfig: deviceConfig=self.btDeviceConfig["other_a2dp_sinks"] if deviceConfig!=None: if "onDisconnectCommand" in deviceConfig: command=deviceConfig["onDisconnectCommand"] if command: commandToExecute=command.replace("$DEVICE",address) self.btRunningProcesses[address]=subprocess.Popen(commandToExecute,shell=True, start_new_session=True,stdout=self.stdoutOfPopen(),stderr=self.stdoutOfPopen()) async def lookForDbusChanges(self): deviceFilter = re.compile("^[/]\w+[/]\w+[/]\w+[/]dev_(?P<btmac>\w+)$") while self.Continue: self.trace(3,"DBUS: wait for device") try: self.trace(1,"DBUS: GetManagedObjects()") managedObjects = await self.loop.run_in_executor(None, lambda: self.DbusBluezRootNode.GetManagedObjects()) await asyncio.sleep(0.5) # give PulseAudio a chance of connecting (not sure if necessary) foundDevices={} for objPath,obj in managedObjects.items(): match = deviceFilter.match(objPath) if match: btmac=match.group("btmac") dev=obj[self.DbusBluezBusName+".Device1"] foundDevices[btmac]=dev self.trace(3,"Found "+str(len(foundDevices))+" devices") removeDevices=[] for oldDevice in self.DbusBluezDiscoveredDevices: if oldDevice not in foundDevices: removeDevices.append(oldDevice) await self.dbusBtDeviceRemoved(oldDevice) for removeDevice in removeDevices: self.DbusBluezDiscoveredDevices.pop(removeDevice,None) for foundDevice in foundDevices: if foundDevice not in self.DbusBluezDiscoveredDevices: self.DbusBluezDiscoveredDevices[foundDevice]=True await self.dbusBtDeviceDetected(foundDevice) # now check disconnect <-> connect connectedDevices = {} for foundDevice,dev in foundDevices.items(): if foundDevice not in self.DbusBluezUUIDsOfDevices: self.DbusBluezUUIDsOfDevices[foundDevice] = dev["UUIDs"] isConnected = dev["Connected"] if isConnected : connectedDevices[foundDevice]=True disconnectedDevices=[] for alreadyConnectedDevice in self.DbusBluezConnectedDevices: if alreadyConnectedDevice not in connectedDevices: disconnectedDevices.append(alreadyConnectedDevice) await self.dbusBtDeviceDisconnected(alreadyConnectedDevice) for disconnectedDevice in disconnectedDevices: self.DbusBluezConnectedDevices.pop(disconnectedDevice,None) for connectedDevice in connectedDevices: if connectedDevice not in self.DbusBluezConnectedDevices: self.DbusBluezConnectedDevices[connectedDevice]=True await self.dbusBtDeviceConnected(connectedDevice) except KeyError as err: self.trace(0,"dbus error (KeyError)") print(err) self.trace(0,err) except GError as err: self.trace(0,"dbus error (GError)") self.trace (0,err) await asyncio.sleep(self.PollingCycle) print("finished looking for dbus changes") self.DbusBluezReceivingFuture.set_result(True) async def registerDbus(self): try: if self.DbusBluezOnSystemBus: self.DbusBluezObject = SystemBus() else: self.DbusBluezObject = SessionBus() self.trace(0,"listening on D-BUS") self.DbusBluezRootNode = self.DbusBluezObject.get(self.DbusBluezBusName,"/") self.trace(0,"connected to org.bluez") except GError as err: self.trace(0,"dbus error (register)") self.trace (0,err) self.DbusBluezRootNode=None if self.DbusBluezRootNode: self.DbusBluezReceivingFuture=self.loop.create_future() asyncio.ensure_future(self.lookForDbusChanges()) async def register(self): await self.registerMqtt() await self.registerDbus() async def unregister(self): self.Continue=False if (self.DbusBluezReceivingFuture): await self.DbusBluezReceivingFuture self.DbusBluezReceivingFuture = None if (self.MqttReceivingFuture): await self.MqttReceivingFuture self.MqttReceivingFuture=None ```
{ "source": "jolevesq/msd-map", "score": 2 }
#### File: msd-map/src/convertMXD.py ```python import os, locale import sys import arcpy import string import zipfile import xml.etree.ElementTree as ET import lookupEPSG as EPSG import commonSections as sections import symbols print 'Argument List:', str(sys.argv) def log(txt, offset=0, upper=True): if upper: txt = txt.upper() file.write(' ' * offset + txt + '\n') # the MapServer folder mapServerFolder = sys.argv[3] # set variables to select an MXD file mxdFileFolder = sys.argv[1] mxdFilePath = sys.argv[1] + sys.argv[2] mxdFileName = sys.argv[2] # get local format for thousand separator loc = locale.getlocale() # get a reference to the Map Document mxd = arcpy.mapping.MapDocument(mxdFilePath) # create a map file with the same name of the MXD file, in the same folder file = open(mxdFileFolder + os.path.splitext(mxdFileName)[0] + '.map', 'w') # convert to MSD (Map Service Definition) # TODO: !!!!!!!!!! we need to have the right data source path. if not, we need to repair the link !!!!!!!!!! arcpy.mapping.ConvertToMSD(mxd, mxdFileFolder + os.path.splitext(mxdFileName)[0] + '.msd') zz = zipfile.ZipFile(mxdFileFolder + os.path.splitext(mxdFileName)[0] + '.msd') # get documentInfo rootDocInfo = ET.parse(zz.open('DocumentInfo.xml')).getroot() title = rootDocInfo.find('./DocumentTitle').text abstract = rootDocInfo.find('./Subject').text keywords = rootDocInfo.find('./Keywords').text.replace(' ', '') dataFrame = os.path.basename(rootDocInfo.find('./ActiveMapRepositoryPath').text) # get dataFrameInfo # if data have the same name as the dataFrame, dataFrame will have a number suffix. # We need to remove it from the path. rootDataFrame = ET.parse(zz.open((dataFrame.split('.')[0].rstrip(string.digits)) + '/' + dataFrame)).getroot() name = rootDataFrame.find('./Name').text.replace(' ', '_') ext = [rootDataFrame.find('./DefaultExtent/XMin').text, rootDataFrame.find('./DefaultExtent/YMin').text, rootDataFrame.find('./DefaultExtent/XMax').text, rootDataFrame.find('./DefaultExtent/YMax').text] layersNode = rootDataFrame.find('./Layers') layers = [] for elem in layersNode.iter(): if elem.text != None: layers.append(elem.text.split('=')[1]) log('MAP') log('NAME "{name}"'.format(name=name), 2) log(sections.getMapCommon(), 2, False) log(sections.getExtent(ext), 2, False) log(sections.getSize(), 2, False) log(sections.getUnits() + '\n', 2, False) log(sections.getPng(), 2, False) log(sections.getGif(), 2, False) log(sections.getJpeg(), 2, False) log(sections.getScale(), 2, False) log(sections.getLegend(), 2, False) epsg = EPSG.getCodeFromWKID(rootDataFrame.find('./DefaultExtent/SpatialReference/WKID').text) log(sections.getProjection(epsg), 2, False) log(sections.getWeb(title, abstract, keywords), 2, False) log(sections.getSeparator(), 2, False) for fileName in layers: tree = ET.parse(zz.open(fileName)) root = tree.getroot() name = root.find('./Name').text.replace(' ', '_') data = root.find('./FeatureTable/DataConnection/Dataset').text minScale = root.find('./MinScale').text maxScale = root.find('./MaxScale').text connection = root.find('./FeatureTable/DataConnection/WorkspaceConnectionString').text.replace('DATABASE=', '') geomType = sections.getLayerGeometry(root.find('./FeatureTable/FieldDescriptions')) log('LAYER', 2) log('NAME "' + name + '"', 4, False) log('DATA "' + data + '"', 4, False) # log('MINSCALEDENOM ' + minScale, 4) # log('MAXSCALEDENOM ' + maxScale, 4) log('STATUS ON', 4) log('CONNECTIONTYPE OGR', 4) log('CONNECTION "./data/' + mapServerFolder + '/' + os.path.basename(connection) + '"', 4, False) log('TYPE ' + geomType, 4) log(sections.getLayerMetadata(name, epsg), 4, False) # symbology if geomType == 'Line': log(symbols.getSymbologyLine(root), 4, False) elif geomType == 'Polygon': log(symbols.getSymbologyPolygon(root), 4, False) else: log(symbols.getSymbologyPoint(root), 4, False) # if geomType == 'Point': # # outline # colorR = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/OutlineColor/R').text # colorG = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/OutlineColor/G').text # colorB = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/OutlineColor/B').text # width = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/OutlineWidth').text # # fill # fillR = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/FillColor/R').text # fillG = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/FillColor/G').text # fillB = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/FillColor/B').text # # size # size = root.find('./Symbolizer/Symbol/Symbol/SymbolLayers/CIMSymbolLayer/Size').text # log(sections.getPointStyle(fillR + ' ' +fillG + ' ' + fillB, size), 4, False) log('END # layer', 2, False) log(sections.getSeparator(), 2, False) log('END # map') file.close() del zz del mxd openNotepad = 'true' if openNotepad == 'true': # open TXT file with Notepad or other program with which txt extension is associated with os.startfile(file.name) ```
{ "source": "jolexa/aws-codebuild-dockerhub", "score": 2 }
#### File: aws-codebuild-dockerhub/lambda/clean-old-codebuilds.py ```python import logging import os import json import datetime from dateutil import parser import boto3 from botocore.exceptions import ClientError logging.basicConfig() logging.getLogger('boto3').setLevel(logging.CRITICAL) logging.getLogger('botocore').setLevel(logging.CRITICAL) logger = logging.getLogger("mylogger") logger.setLevel("INFO") try: region = os.environ['AWS_DEFAULT_REGION'] except: region = 'us-east-2' def check_delete_candidate(codebuild): name = codebuild['name'] logger.info("Checking: {}".format(name)) tags = codebuild['tags'] sevendaysago = datetime.datetime.now() - datetime.timedelta(days=7) for i in tags: key, value = i['key'], i['value'] if key == "X-Delete-Via-Lambda-Eligible": if value == "True": logger.info("Delete via Lambda is True") for t in tags: key, value = t['key'], t['value'] if key == 'X-Created-Date': cdate = parser.parse(value) if cdate < sevendaysago: logger.info("Candidate for removal due to age") return True else: logger.info("Created Date is not older than 7 days") logger.info("Not a candidate for removal") return False def delete_s3_if_exists(codebuild): s3client = boto3.client('s3') for i in codebuild['tags']: key, bucketname = i['key'], i['value'] if key == "X-Created-S3-Bucket": try: objs = s3client.list_objects_v2( Bucket=bucketname ) except ClientError as e: if e.response['Error']['Code'] == 'NoSuchBucket': logger.info("Bucket Already Deleted, not trying further") return True else: raise for i in objs['Contents']: logger.info("Deleting Object: {}".format(i)) delete = s3client.delete_object( Bucket=bucketname, Key=i['Key'] ) s3client.delete_bucket(Bucket=bucketname) logger.info("Deleted Bucket: {}".format(bucketname)) return True def lambda_handler(event, context): client = boto3.client('codebuild', region_name=region) logger.info(json.dumps(event, indent=4)) # All this pagination code becuase boto3 doesn't support pagination on # coebuild at time of wrting projects_list = client.list_projects() projects = projects_list['projects'] next_token = projects_list.get('nextToken') while next_token is not None: projects_list = client.list_projects( nextToken=next_token ) projects.append(projects_list['projects']) next_token = projects_list.get('nextToken') # end pagination code, 'projects' is now ready to use for i in projects: response = client.batch_get_projects(names=[i]) p = response['projects'][0] # there will only be one item in this list name = p['name'] if check_delete_candidate(p): delete_s3_if_exists(p) # delete the orphaned s3 bucket client.delete_project(name=name) logger.info("Deleted project: {}".format(name)) boto3.client('logs').delete_log_group( logGroupName='/aws/codebuild/' + name ) if __name__ == '__main__': # Running this from localhost with proper permissions will work as intended event = {} context = {} lambda_handler(event, context) ``` #### File: aws-codebuild-dockerhub/lambda/listener.py ```python import logging import os import hmac from hashlib import sha1 import json import re logger = logging.getLogger() logger.setLevel(logging.DEBUG) logging.getLogger('boto3').setLevel(logging.CRITICAL) logging.getLogger('botocore').setLevel(logging.CRITICAL) def lambda_handler(event, context): logger.info(json.dumps(event, indent=4)) try: # Get the sha_name and sig from the headers sha_name, sig = event['headers']['X-Hub-Signature'].split('=') # Get the body of the message body = event['body'] # Only support sha1 if sha_name != 'sha1': return { "statusCode": 501, "body": "Something is wrong, unsupported sha type?\n" } except Exception as e: logger.exception(e) return { "statusCode": 501, "body": "Something is wrong, not from GitHub?\n" } secret = os.environ['GHSECRET'] # HMAC requires the key to be bytes, but data is string mac = hmac.new(secret, body, sha1) if not hmac.compare_digest(unicode(mac.hexdigest()), unicode(sig)): logger.critical("Signature doesn't match") return { 'body': "Signature doesn't match", 'statusCode': 403 } githookbody = json.loads(body) logger.debug(json.dumps(githookbody, indent=4)) # some sanity checking, only support ping and push if event['headers']['X-GitHub-Event'] == "ping": logger.info("ping event, returning") return { 'body': "pong", 'statusCode': 200 } elif event['headers']['X-GitHub-Event'] != "push": logger.critical("hook event is not supported") return { 'body': "hook event is not supported", 'statusCode': 501 } if githookbody['repository']['private']: # bool logger.info("Event Accepted but Private Repos are not supported") return { 'body': "Event Accepted but Private Repos are not supported", 'statusCode': 200 } repo_url = githookbody['repository']['url'] + ".git" username = githookbody['repository']['owner']['name'] builds_list = [] # https://developer.github.com/v3/activity/events/types/#pushevent # Check the commits array for added or modified files, if the path contains # a "/" it probably fits the opionated repo structure for i in githookbody['commits']: for a in i['added']: if re.search("/", a): builds_list.append(a.split("/")[0]) for m in i['modified']: if re.search("/", m): builds_list.append(m.split("/")[0]) # Removes dupes to prevent spawning duplicate jobs builds = list(set(builds_list)) # Spawn the CodeBuild Job if builds: # False if empty import boto3 client = boto3.client('lambda') message_input = { 'repo_url': repo_url, 'builds': builds, 'username': username, } logger.debug(message_input) response = client.invoke( FunctionName=os.environ['SpawnCodeBuildFunctionArn'], InvocationType='Event', # async LogType='None', Payload=json.dumps(message_input) ) else: logger.info("Not spawning a codebuild job due to input/commit") # Everything is good return { "statusCode": 200, "body": "accepted" } ``` #### File: aws-codebuild-dockerhub/lambda/spawn-codebuild.py ```python import logging import os import json import uuid import shutil import datetime from posixpath import basename import boto3 logger = logging.getLogger() logger.setLevel(logging.DEBUG) logging.getLogger('boto3').setLevel(logging.CRITICAL) logging.getLogger('botocore').setLevel(logging.CRITICAL) try: region = os.environ['AWS_DEFAULT_REGION'] except: region = 'us-east-2' def create_dummy_s3_input(): client = boto3.client('s3') bucketname = "aws-codebuild-dockerhub-{}-{}".format( boto3.client('sts').get_caller_identity().get('Account'), str(uuid.uuid4().get_hex().lower()[0:10]) ) # create bucket client.create_bucket( Bucket=bucketname, CreateBucketConfiguration={ 'LocationConstraint': region } ) # create zip shutil.make_archive("/tmp/dummyzipfile", 'zip') # Upload zip client.put_object( Body=open("/tmp/dummyzipfile.zip", 'r'), Bucket=bucketname, Key="dummyzipfile.zip" ) os.remove("/tmp/dummyzipfile.zip") return bucketname, "dummyzipfile.zip" def lambda_handler(event, context): logger.info(json.dumps(event, indent=4)) repo_url = event.get('repo_url') repo_path = basename(repo_url).split('.git')[0] username = event.get('username') client = boto3.client('codebuild') for build_target in event.get('builds'): # Every CodeBuild job needs some repo to "build" - this is a fake build # project that automatically gets removed bucketname, obj = create_dummy_s3_input() buildjob = client.create_project( name='-'.join([ 'aws-codebuild-dockerhub', build_target.replace(".", "-"), str(uuid.uuid4().get_hex().lower()[0:10]) ]), source={ 'type': 'S3', 'location': "{}/{}".format(bucketname, obj), 'buildspec': ''' version: 0.1 phases: build: commands: - git clone {0} - cd {1}/{2} && [ -e Dockerfile ] && docker build -t {3}/{2} . && docker login -u {3} -p $(aws ssm get-parameters --names {5} --with-decryption --query Parameters[0].Value --output text) && docker push {3}/{2} && docker logout post_build: commands: - aws s3 rb s3://{6} --force - curl -s https://raw.githubusercontent.com/jolexa/aws-codebuild-dockerhub/master/invoke-sns-notify-lambda.sh > invoke-sns-notify-lambda.sh && bash ./invoke-sns-notify-lambda.sh {7} $CODEBUILD_BUILD_ID '''.format( repo_url, # 0 https://github.com/username/repo.git repo_path, # 1 repo build_target, # 2 directory in repo username, # 3 username region, # 4 os.getenv('SSMLeadingKey'), bucketname, # 6 os.getenv('NotifyFunctionName') # 7 ), }, artifacts={ 'type': 'NO_ARTIFACTS', }, environment={ 'type': 'LINUX_CONTAINER', 'image': 'aws/codebuild/docker:1.12.1', 'computeType': 'BUILD_GENERAL1_SMALL', }, serviceRole=os.getenv('CodeBuildRoleArn'), timeoutInMinutes=20, # these tags are used by the cleanup lambda so it doesn't stomp on # other CodeBuild jobs that may be present tags=[ { "key": "X-Created-S3-Bucket", "value": bucketname }, { "key": "X-Created-Date", "value": str(datetime.date.today()) }, { "key": "X-Delete-Via-Lambda-Eligible", "value": "True" } ] ) # Start the build client.start_build( projectName=buildjob['project']['name'] ) ```
{ "source": "jolexa/gimmeatroll.com", "score": 2 }
#### File: gimmeatroll.com/lambda/main.py ```python import os import random import logging import boto3 logging.getLogger('boto3').setLevel(logging.CRITICAL) logging.getLogger('botocore').setLevel(logging.CRITICAL) logger = logging.getLogger() logger.setLevel(logging.DEBUG) def find_random_s3_image(): client = boto3.client('s3') # Return one random key in the bucket key = random.choice(client.list_objects_v2( Bucket='gimmeatroll.com', MaxKeys=1000 )['Contents'])['Key'] return "https://s3.{}.amazonaws.com/gimmeatroll.com/{}".format( os.environ['AWS_DEFAULT_REGION'], key) def handler(event, context): logger.debug(event) logo = find_random_s3_image() html = "<html><meta property='og:image' content='{}'/><img src='{}'></html>".format(logo, logo) return html if __name__== "__main__": event = {} context = {} os.environ['AWS_DEFAULT_REGION'] = 'us-east-2' print(handler(event, context)) ```
{ "source": "jolexa/s3-staticsite-multiregion", "score": 2 }
#### File: s3-staticsite-multiregion/scripts/invalidate-all.py ```python from time import time import sys import boto3 client = boto3.client('cloudfront') def get_id(url): print("get_id args: {0}".format(url)) # url: asdf.cloudfront.net # return: E2134123ASDF # where E2134123ASDF is the id of asdf.cloudfront.net paginator = client.get_paginator('list_distributions') response_iterator = paginator.paginate() for i in response_iterator: for j in i['DistributionList']['Items']: if j['Aliases']['Items'][0] == url: return j['Id'] response = client.create_invalidation( DistributionId=get_id(sys.argv[1]), InvalidationBatch={ 'Paths': { 'Quantity': 1, 'Items': [ '/*' ], }, 'CallerReference': str(time()).replace(".", "") } ) ```
{ "source": "joleys/niko-home-control-II", "score": 2 }
#### File: custom_components/nhc2/camera.py ```python import logging import httpx import voluptuous as vol from homeassistant.components.camera import DEFAULT_CONTENT_TYPE, PLATFORM_SCHEMA, SUPPORT_STREAM, Camera from homeassistant.exceptions import TemplateError from . import DOMAIN, PLATFORMS _LOGGER = logging.getLogger(__name__) from .nhccoco.coco import CoCo from .nhccoco.coco_device_class import CoCoDeviceClass from .nhccoco.coco_accesscontrol import CoCoAccessControl from .const import DOMAIN, KEY_GATEWAY, BRAND from .helpers import nhc2_entity_processor KEY_GATEWAY = KEY_GATEWAY KEY_ENTITY = 'nhc2_accesscontrol' _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_entities): """Load NHC2 access control based on a config entry.""" hass.data.setdefault(KEY_ENTITY, {})[config_entry.entry_id] = [] gateway: CoCo = hass.data[KEY_GATEWAY][config_entry.entry_id] _LOGGER.debug('Platform is starting') gateway.get_devices(CoCoDeviceClass.ACCESSCONTROL, nhc2_entity_processor(hass, config_entry, async_add_entities, KEY_ENTITY, lambda x: NHC2HassAccessControl(x)) ) class NHC2HassAccessControl(Camera): """Implementation of NHC2 Camera.""" def __init__(self, nhc2accesscontrol: CoCoAccessControl): """Initialize a camera.""" nhc2accesscontrol.on_change = self._on_change self._nhc2accesscontrol = nhc2accesscontrol self._auth = httpx.BasicAuth(username='user', password='') self._stream_source = self._nhc2accesscontrol.stream_source @property def supported_features(self): """Return supported features for this camera.""" return SUPPORT_STREAM @property def name(self): """Return the name of this device.""" return self._nhc2accesscontrol.name async def stream_source(self): """Return the source of the stream.""" if self._stream_source is None: return None try: return self._stream_source.async_render(parse_result=False) except TemplateError as err: _LOGGER.error("Error parsing template %s: %s", self._stream_source, err) return None ```
{ "source": "jolfr/capstone-02", "score": 3 }
#### File: src/data/dataverse.py ```python import os import requests def download(ref, filename): print('Beginning ' + filename + ' download with requests') os.chdir(os.path.dirname(os.path.abspath(__file__))) url = 'https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=' + ref file_path = '../../data/external/' + filename r = requests.get(url) r.raise_for_status() with open(file_path, 'wb') as f: f.write(r.content) return r.status_code, r.headers['content-type'], r.encoding ``` #### File: src/data/shape_data.py ```python import pandas as pd import numpy as nd def generate_filled(df): years = pd.DataFrame(range(1988, 2017)) years.columns = ['year'] unique = df.zipcode.unique() result = pd.DataFrame() for zipcode in unique: append = years.copy() append['zipcode'] = zipcode result = pd.concat([result, append], ignore_index=True) return result ``` #### File: src/data/zip_to_msa_data.py ```python import os import requests def download(): print('Beginning ZCTA to MSA download with requests') os.chdir(os.path.dirname(os.path.abspath(__file__))) url = 'https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_cbsa_rel_10.txt' filename = '../../data/external/zip_to_msa.csv' r = requests.get(url) r.raise_for_status() with open(filename, 'wb') as f: f.write(r.content) return r.status_code, r.headers['content-type'], r.encoding ```
{ "source": "jolguk/cognitive-services-speech-sdk", "score": 3 }
#### File: python/from-microphone/quickstart.py ```python import azure.cognitiveservices.speech as speechsdk import time # Creates an instance of a speech config with specified subscription key and service region. # Replace with your own subscription key and service region (e.g., "westus"). # speech_key, service_region = "36a492adffde420390f891fa14a8633f", "northeurope" # speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region) speech_config = speechsdk.SpeechConfig( endpoint="ws://localhost:5000/speech/recognition/conversation/cognitiveservices/v1") # Creates a recognizer with the given settings speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config) print("Say something...") # Starts speech recognition, and returns after a single utterance is recognized. The end of a # single utterance is determined by listening for silence at the end or until a maximum of 15 # seconds of audio is processed. The task returns the recognition text as result. # Note: Since recognize_once() returns only a single utterance, it is suitable only for single # shot recognition like command or query. # For long-running multi-utterance recognition, use start_continuous_recognition() instead. # result = speech_recognizer.recognize_once() # Checks result. # if result.reason == speechsdk.ResultReason.RecognizedSpeech: # print("Recognized: {}".format(result.text)) # elif result.reason == speechsdk.ResultReason.NoMatch: # print("No speech could be recognized: {}".format(result.no_match_details)) # elif result.reason == speechsdk.ResultReason.Canceled: # cancellation_details = result.cancellation_details # print("Speech Recognition canceled: {}".format(cancellation_details.reason)) # if cancellation_details.reason == speechsdk.CancellationReason.Error: # print("Error details: {}".format(cancellation_details.error_details)) done = False def stop_cb(evt): """callback that stops continuous recognition upon receiving an event `evt`""" print('CLOSING on {}'.format(evt)) speech_recognizer.stop_continuous_recognition() global done done = True # Connect callbacks to the events fired by the speech recognizer speech_recognizer.recognizing.connect(lambda evt: print('RECOGNIZING: {}'.format(evt))) speech_recognizer.recognized.connect(lambda evt: print('RECOGNIZED: {}'.format(evt))) speech_recognizer.session_started.connect(lambda evt: print('SESSION STARTED: {}'.format(evt))) speech_recognizer.session_stopped.connect(lambda evt: print('SESSION STOPPED {}'.format(evt))) speech_recognizer.canceled.connect(lambda evt: print('CANCELED {}'.format(evt))) # stop continuous recognition on either session stopped or canceled events speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition() while not done: time.sleep(.5) # </code> ```
{ "source": "jolibrain/gpustat_server", "score": 3 }
#### File: gpustat_server/gpustat_server/__main__.py ```python import json from flask import Flask, Response from gpustat import GPUStatCollection app = Flask('gpustat_server') def date_handler(obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: raise TypeError(type(obj)) @app.route("/") def gpustat_server(): stats = GPUStatCollection.new_query() rep = Response(json.dumps(stats.jsonify(), default=date_handler), mimetype='application/json') rep.headers = {**rep.headers, **{'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'GET'}} return rep if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="Serve gpustat on given host:port") parser.add_argument("--host", default="localhost") parser.add_argument("--port", type=int, default=12345) app.run(**vars(parser.parse_args())) ```
{ "source": "jolibrain/manette", "score": 3 }
#### File: jolibrain/manette/exploration_policy.py ```python import numpy as np import tensorflow as tf import logging class Action : def __init__(self, tab_rep, i, a, r): self.tab_rep = tab_rep self.id = i self.repeated = False self.current_action = 0 self.nb_repetitions_left = 0 self.init_from_list(a, r) def __str__(self): return "id : "+str(self.id)+", action "+str(self.current_action)+" repeated "+str(self.nb_repetitions_left)+" times." def init_from_list(self, a, r): self.current_action = np.argmax(a) self.nb_repetitions_left = self.tab_rep[np.argmax(r)] if self.nb_repetitions_left > 0 : self.repeated = True def repeat(self): self.nb_repetitions_left -= 1 if self.nb_repetitions_left == 0 : self.repeated = False return self.current_action def reset(self): self.repeated = False self.current_action = 0 self.nb_repetitions_left = 0 def is_repeated(self): return self.repeated class ExplorationPolicy: def __init__(self, args, test = False): self.test = test self.global_step = 0 self.egreedy_policy = args.egreedy self.initial_epsilon = args.epsilon self.epsilon = args.epsilon self.softmax_temp = args.softmax_temp self.keep_percentage = args.keep_percentage self.annealed = args.annealed self.annealing_steps = 80000000 self.max_repetition = args.max_repetition self.nb_choices = args.nb_choices self.tab_rep = self.get_tab_repetitions() def get_tab_repetitions(self): res = [0]*self.nb_choices res[-1] = self.max_repetition if self.nb_choices > 2 : for i in range(1, self.nb_choices-1): res[i] = int(self.max_repetition/(self.nb_choices-1)) * i return res def get_epsilon(self): if self.global_step <= self.annealing_steps: return self.initial_epsilon - (self.global_step * self.initial_epsilon / self.annealing_steps) else: return 0.0 def choose_next_actions(self, network_output_pi, network_output_rep, num_actions): if self.test : action_indices = self.argmax_choose(network_output_pi) repetition_indices = self.argmax_choose(network_output_rep) elif self.egreedy_policy : action_indices = self.e_greedy_choose(network_output_pi) repetition_indices = self.e_greedy_choose(network_output_rep) else : action_indices = self.multinomial_choose(network_output_pi) repetition_indices = self.multinomial_choose(network_output_rep) new_actions = np.eye(num_actions)[action_indices] new_repetitions = np.eye(self.nb_choices)[repetition_indices] self.global_step += len(network_output_pi) if self.annealed : self.epsilon = get_epsilon() return new_actions, new_repetitions def argmax_choose(self, probs): """Choose the best actions""" action_indexes = [] for p in probs : action_indexes.append(np.argmax(p)) return action_indexes def e_greedy_choose(self, probs): """Sample an action from an action probability distribution output by the policy network using a greedy policy""" action_indexes = [] for p in probs : if np.random.rand(1)[0] < self.epsilon : i = np.random.randint(0,len(p)) action_indexes.append(i) else : action_indexes.append(np.argmax(p)) return action_indexes def multinomial_choose(self, probs): """Sample an action from an action probability distribution output by the policy network using a multinomial law.""" # Subtract a tiny value from probabilities in order to avoid # "ValueError: sum(pvals[:-1]) > 1.0" in numpy.multinomial probs = probs - np.finfo(np.float32).epsneg action_indexes = [int(np.nonzero(np.random.multinomial(1, p))[0]) for p in probs] return action_indexes ``` #### File: jolibrain/manette/logger_utils.py ```python import os import numpy as np import time import json import tensorflow as tf import math import matplotlib.pyplot as plt def load_args(path): if path is None: return {} with open(path, 'r') as f: return json.load(f) def save_args(args, folder, file_name='args.json'): args = vars(args) if not os.path.exists(folder): os.makedirs(folder) with open(os.path.join(folder, file_name), 'w') as f: return json.dump(args, f) def variable_summaries(var, name): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope(name): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) def get_grid_dim(x): """ Transforms x into product of two integers :param x: int :return: two ints """ factors = prime_powers(x) if len(factors) % 2 == 0: i = int(len(factors) / 2) return factors[i], factors[i - 1] i = len(factors) // 2 return factors[i], factors[i] def prime_powers(n): """ Compute the factors of a positive integer Algorithm from https://rosettacode.org/wiki/Factors_of_an_integer#Python :param n: int :return: set """ factors = set() for x in range(1, int(math.sqrt(n)) + 1): if n % x == 0: factors.add(int(x)) factors.add(int(n // x)) return sorted(factors) def fig2data ( fig ): """ @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig a matplotlib figure @return a numpy 2D array of RGB values """ # draw the renderer fig.canvas.draw ( ) # Get the RGB buffer from the figure w,h = fig.canvas.get_width_height() rgb = np.fromstring ( fig.canvas.tostring_rgb(), dtype=np.uint8 ) return rgb.reshape(h, w, 3) def plot_conv_output(conv_img): """ Makes plots of results of performing convolution :param conv_img: numpy array of rank 4 :param name: string, name of convolutional layer :return: nothing, plots are saved on the disk """ w_min = np.min(conv_img) w_max = np.max(conv_img) # get number of convolutional filters num_filters = conv_img.shape[3] # get number of grid rows and columns grid_r, grid_c = get_grid_dim(num_filters) # create figure and axes fig, axes = plt.subplots(min([grid_r, grid_c]), max([grid_r, grid_c])) # iterate filters for l, ax in enumerate(axes.flat): # get a single image img = conv_img[0, :, :, l] # put it on the grid ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='bicubic', cmap='Greys') # remove any labels from the axes ax.set_xticks([]) ax.set_yticks([]) # save figure fig1 = plt.gcf() data = fig2data(fig1) plt.close() return data ``` #### File: jolibrain/manette/networks.py ```python import tensorflow as tf from tensorflow.contrib import rnn import logging import numpy as np class Operations(): def __init__(self, conf): self.rgb = conf['rgb'] self.depth = 1 if self.rgb : self.depth = 3 self.alpha_leaky_relu = conf['alpha_leaky_relu'] def flatten(self, _input): shape = _input.get_shape().as_list() dim = shape[1]*shape[2]*shape[3] return tf.reshape(_input, [-1,dim], name='_flattened') def conv2d(self, name, _input, filters, size, channels, stride, padding = 'VALID', init = "torch", activation = "relu"): with tf.name_scope(name): w = self.conv_weight_variable([size,size, channels,filters], name + '_weights', init = init) b = self.conv_bias_variable([filters], size, size, channels, name + '_biases', init = init) conv = tf.nn.conv2d(_input, w, strides=[1, stride, stride, 1], padding=padding, name=name + '_convs') if activation == "relu" : out = tf.nn.relu(tf.add(conv, b), name='' + name + '_activations') elif activation == "leaky_relu" : x = tf.add(conv, b) out = tf.maximum(x, self.alpha_leaky_relu * x, name='' + name + '_activations') return w, b, out def conv_weight_variable(self, shape, name, init = "torch"): if init == "glorot_uniform": receptive_field_size = np.prod(shape[:2]) fan_in = shape[-2] * receptive_field_size fan_out = shape[-1] * receptive_field_size d = np.sqrt(6. / (fan_in + fan_out)) else: w = shape[0] h = shape[1] input_channels = shape[3] d = 1.0 / np.sqrt(input_channels * w * h) initial = tf.random_uniform(shape, minval=-d, maxval=d) return tf.Variable(initial, name=name, dtype='float32') def conv_bias_variable(self, shape, w, h, input_channels, name, init= "torch"): if init == "glorot_uniform": initial = tf.zeros(shape) else: d = 1.0 / np.sqrt(input_channels * w * h) initial = tf.random_uniform(shape, minval=-d, maxval=d) return tf.Variable(initial, name=name, dtype='float32') def fc(self, name, _input, output_dim, activation = "relu", init = "torch"): with tf.name_scope(name): input_dim = _input.get_shape().as_list()[1] w = self.fc_weight_variable([input_dim, output_dim], name + '_weights', init = init) b = self.fc_bias_variable([output_dim], input_dim, '' + name + '_biases', init = init) out = tf.add(tf.matmul(_input, w), b, name= name + '_out') if activation == "relu": out = tf.nn.relu(out, name='' + name + '_relu') elif activation == "leaky_relu" : out = tf.maximum(out, self.alpha_leaky_relu * out, name='' + name + '_leakyrelu') return w, b, out def fc_weight_variable(self, shape, name, init="torch"): if init == "glorot_uniform": fan_in = shape[0] fan_out = shape[1] d = np.sqrt(6. / (fan_in + fan_out)) else: input_channels = shape[0] d = 1.0 / np.sqrt(input_channels) initial = tf.random_uniform(shape, minval=-d, maxval=d) return tf.Variable(initial, name=name, dtype='float32') def fc_bias_variable(self, shape, input_channels, name, init= "torch"): if init=="glorot_uniform": initial = tf.zeros(shape, dtype='float32') else: d = 1.0 / np.sqrt(input_channels) initial = tf.random_uniform(shape, minval=-d, maxval=d) return tf.Variable(initial, name=name, dtype='float32') def softmax(self, name, _input, output_dim, temp): with tf.name_scope(name): softmax_temp = tf.constant(temp, dtype=tf.float32) input_dim = _input.get_shape().as_list()[1] w = self.fc_weight_variable([input_dim, output_dim], name + '_weights') b = self.fc_bias_variable([output_dim], input_dim, name + '_biases') out = tf.nn.softmax(tf.div(tf.add(tf.matmul(_input, w), b), softmax_temp), name= name + '_policy') return w, b, out def log_softmax(self, name, _input, output_dim): with tf.name_scope(name): input_dim = _input.get_shape().as_list()[1] w = self.fc_weight_variable([input_dim, output_dim], name + '_weights') b = self.fc_bias_variable([output_dim], input_dim, name + '_biases') out = tf.nn.log_softmax(tf.add(tf.matmul(_input, w), b), name= name + '_policy') return w, b, out def max_pooling(self, name, _input, stride=None, padding='VALID'): shape = [1,2,2,1] return tf.nn.max_pool(_input, shape, strides=shape, padding = padding, name=name) def rnn(self, name, _input, n_input, n_steps, n_hidden): with tf.name_scope(name): # input shape: (batch_size, n_steps, n_input) # Required shape: 'n_steps' tensors list of shape (batch_size, n_input) _input = tf.transpose(_input, [1, 0, 2]) _input = tf.reshape(_input, [-1, n_input]) _input = tf.split(_input, n_steps, axis=0) lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) outputs, states = rnn.static_rnn(lstm_cell, _input, dtype=tf.float32) w = tf.Variable(tf.random_normal([n_hidden, n_hidden])) b = tf.Variable(tf.random_normal([n_hidden])) # Linear activation, using rnn inner loop last output return w, b, tf.nn.bias_add(tf.matmul(outputs[-1], w), b) class Network(object): def __init__(self, conf): self.name = conf['name'] self.num_actions = conf['num_actions'] self.clip_norm = conf['clip_norm'] self.clip_norm_type = conf['clip_norm_type'] self.device = conf['device'] self.rgb = conf['rgb'] self.activation = conf['activation'] self.alpha_leaky_relu = conf['alpha_leaky_relu'] self.depth = 1 if self.rgb : self.depth = 3 self.op = Operations(conf) self.total_repetitions = conf['nb_choices'] self.NB_IMAGES = 4 with tf.device(self.device): with tf.name_scope('Input'): self.loss_scaling = 5.0 self.input_ph = tf.placeholder(tf.uint8, [None, 84, 84, self.depth* self.NB_IMAGES], name='input') self.selected_action_ph = tf.placeholder("float32", [None, self.num_actions], name="selected_action") self.selected_repetition_ph = tf.placeholder("float32", [None, self.total_repetitions], name="selected_repetition") self.input = tf.scalar_mul(1.0/255.0, tf.cast(self.input_ph, tf.float32)) # This class should never be used, must be subclassed # The output layer self.output = None def init(self, checkpoint_folder, saver, session): last_saving_step = 0 with tf.device('/cpu:0'): # Initialize network parameters path = tf.train.latest_checkpoint(checkpoint_folder) if path is None: logging.info('Initializing all variables') session.run(tf.global_variables_initializer()) else: logging.info('Restoring network variables from previous run') saver.restore(session, path) last_saving_step = int(path[path.rindex('-')+1:]) return last_saving_step class NIPSNetwork(Network): def __init__(self, conf): super(NIPSNetwork, self).__init__(conf) with tf.device(self.device): with tf.name_scope('Network'): w_conv1, b_conv1, conv1 = self.op.conv2d('conv1', self.input, 16, 8, self.depth*self.NB_IMAGES, 4, activation = self.activation) w_conv2, b_conv2, conv2 = self.op.conv2d('conv2', conv1, 32, 4, 16, 2, activation = self.activation) w_fc3, b_fc3, fc3 = self.op.fc('fc3', self.op.flatten(conv2), 256, activation=self.activation) self.convs = [conv1, conv2] self.output = fc3 class BayesianNetwork(NIPSNetwork): def __init__(self, conf): super(BayesianNetwork, self).__init__(conf) with tf.device(self.device): with tf.name_scope('Network'): dropout = tf.nn.dropout(self.output, conf["keep_percentage"]) w_fc4, b_fc4, fc4 = self.op.fc('fc4', dropout, 256, activation=self.activation) self.output = fc4 class PpwwyyxxNetwork(Network): def __init__(self, conf): super(PpwwyyxxNetwork, self).__init__(conf) with tf.device(self.device): with tf.name_scope('Network'): _, _, conv1 = self.op.conv2d('conv1', self.input, 32, 5, self.depth * self.NB_IMAGES, 1, padding = 'SAME', activation = self.activation) mp_conv1 = self.op.max_pooling('mp_conv1', conv1) _, _, conv2 = self.op.conv2d('conv2', mp_conv1, 32, 5, 32, 1, padding = 'SAME', activation = self.activation) mp_conv2 = self.op.max_pooling('mp_conv2', conv2) _, _, conv3 = self.op.conv2d('conv3', mp_conv2, 64, 4, 32, 1, padding = 'SAME', activation = self.activation) mp_conv3 = self.op.max_pooling('mp_conv3', conv3) _, _, conv4 = self.op.conv2d('conv4', mp_conv3, 64, 3, 64, 1, padding = 'SAME', activation = self.activation) self.convs = [conv1, conv2, conv3, conv4] _, _, fc5 = self.op.fc('fc5', self.op.flatten(conv4), 512, activation=self.activation) self.output = fc5 class LSTMNetwork(Network): def __init__(self, conf): super(LSTMNetwork, self).__init__(conf) with tf.device(self.device): with tf.name_scope('Network'): n_input = 6400 n_steps = 5 n_hidden = 32 n_outputs = 128 self.memory_ph = tf.placeholder(tf.uint8, [None, n_steps, 84, 84, self.depth* 4], name='input_memory') _input = tf.scalar_mul(1.0/255.0, tf.cast(self.memory_ph, tf.float32)) _input = tf.reshape(_input, (-1, 84, 84, self.depth*4)) _, _, conv1 = self.op.conv2d('conv1', _input, 32, 5, self.depth * 4, 1, padding = 'SAME', activation = self.activation) mp_conv1 = self.op.max_pooling('mp_conv1', conv1) _, _, conv2 = self.op.conv2d('conv2', mp_conv1, 32, 5, 32, 1, padding = 'SAME', activation = self.activation) mp_conv2 = self.op.max_pooling('mp_conv2', conv2) _, _, conv3 = self.op.conv2d('conv3', mp_conv2, 64, 4, 32, 1, padding = 'SAME', activation = self.activation) mp_conv3 = self.op.max_pooling('mp_conv3', conv3) _, _, conv4 = self.op.conv2d('conv4', mp_conv3, 64, 3, 64, 1, padding = 'SAME', activation = self.activation) self.first_conv, self.last_conv = conv1, conv4 self.out_conv = self.op.flatten(conv4) input_lstm = tf.reshape(self.out_conv, (-1, n_steps, n_input)) _, _, out_lstm = self.op.rnn('lstm', input_lstm, n_input, n_steps, n_hidden) _, _, fc6 = self.op.fc('fc6', out_lstm, n_outputs, activation=self.activation) self.output = fc6 class NatureNetwork(Network): def __init__(self, conf): super(NatureNetwork, self).__init__(conf) with tf.device(self.device): with tf.name_scope('Network'): _, _, conv1 = self.op.conv2d('conv1', self.input, 32, 8, self.depth*self.NB_IMAGES, 4, activation = self.activation) _, _, conv2 = self.op.conv2d('conv2', conv1, 64, 4, 32, 2, activation = self.activation) _, _, conv3 = self.op.conv2d('conv3', conv2, 64, 3, 64, 1, activation = self.activation) self.convs = [conv1, conv2, conv3] _, _, fc4 = self.op.fc('fc4', self.op.flatten(conv3), 512, activation=self.activation) self.output = fc4 ``` #### File: jolibrain/manette/paac.py ```python import time import logging import numpy as np from multiprocessing import Queue from multiprocessing.sharedctypes import RawArray from ctypes import c_uint, c_float from actor_learner import * from logger_utils import variable_summaries, plot_conv_output from emulator_runner import EmulatorRunner from exploration_policy import Action from runners import Runners class PAACLearner(ActorLearner): def __init__(self, network_creator, environment_creator, explo_policy, args): super(PAACLearner, self).__init__(network_creator, environment_creator, explo_policy, args) self.workers = args.emulator_workers self.total_repetitions = args.nb_choices self.lstm_bool = (args.arch == 'LSTM') self.tab_rep = explo_policy.tab_rep #add the parameters to tensorboard sess = tf.InteractiveSession() file_args = open(args.debugging_folder+"args.json", 'r') text = str(file_args.read()) summary_op = tf.summary.text('text', tf.convert_to_tensor(text)) text = sess.run(summary_op) self.summary_writer.add_summary(text,0) self.summary_writer.flush() sess.close() def _get_shared(self, array, dtype=c_float): """ Returns a RawArray backed numpy array that can be shared between processes. :param array: the array to be shared :param dtype: the RawArray dtype to use :return: the RawArray backed numpy array """ shape = array.shape shared = RawArray(dtype, array.reshape(-1)) return np.frombuffer(shared, dtype).reshape(shape) def log_histogram(self, tag, values, step, bins=1000): """Logs the histogram of a list/vector of values""" counts, bin_edges = np.histogram(values, bins=bins) hist = tf.HistogramProto() hist.min = float(np.min(values)) hist.max = float(np.max(values)) hist.num = int(np.prod(values.shape)) hist.sum = float(np.sum(values)) hist.sum_squares = float(np.sum(values**2)) bin_edges = bin_edges[1:] for edge in bin_edges : hist.bucket_limit.append(edge) for c in counts : hist.bucket.append(c) summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) self.summary_writer.add_summary(summary, step) self.summary_writer.flush() def log_values(self, values, tag, length = 50, timestep = 500): if len(values) > length and self.global_step % timestep == 0 : mean = np.mean(values[-50:]) std = np.std(values[-50:]) summary = tf.Summary(value=[ tf.Summary.Value(tag=tag+'/mean', simple_value=mean), tf.Summary.Value(tag=tag+'/min', simple_value=min(values[-50:])), tf.Summary.Value(tag=tag+'/max', simple_value=max(values[-50:])), tf.Summary.Value(tag=tag+'/std', simple_value=std), tf.Summary.Value(tag=tag+'/std_over_mean', simple_value=min(2, np.absolute(std/mean))) ]) self.summary_writer.add_summary(summary, self.global_step) self.summary_writer.flush() def update_memory(self, memory, shared_states, whole_memory, t): whole_memory[t] = memory memory[:, :-1, :, :, :] = memory[:, 1:, :, :, :] memory[:, -1, :, :, :] = shared_states return memory, whole_memory def train(self): """ Main actor learner loop for parallel advantage actor critic learning.""" self.global_step = self.init_network() global_step_start = self.global_step counter = 0 total_rewards = [] total_steps = [] logging.debug("Starting training at Step {}".format(self.global_step)) # state, reward, episode_over, action, repetition variables = [(np.asarray([emulator.get_initial_state() for emulator in self.emulators], dtype=np.uint8)), (np.zeros(self.emulator_counts, dtype=np.float32)), (np.asarray([False] * self.emulator_counts, dtype=np.float32)), (np.zeros((self.emulator_counts, self.num_actions), dtype=np.float32)), (np.zeros((self.emulator_counts, self.total_repetitions), dtype=np.float32))] self.runners = Runners(self.tab_rep, EmulatorRunner, self.emulators, self.workers, variables) self.runners.start() shared_states, shared_rewards, shared_episode_over, shared_actions, shared_rep = self.runners.get_shared_variables() if self.lstm_bool : self.n_steps = 5 memory = np.zeros(([self.emulator_counts, self.n_steps]+list(shared_states.shape)[1:]), dtype=np.uint8) whole_memory = np.zeros(([self.max_local_steps, self.emulator_counts, self.n_steps]+list(shared_states.shape)[1:]), dtype=np.uint8) for e in range(self.emulator_counts) : memory[e, -1, :, :, :] = shared_states[e] summaries_op = tf.summary.merge_all() emulator_steps = [0] * self.emulator_counts total_episode_rewards = self.emulator_counts * [0] actions_sum = np.zeros((self.emulator_counts, self.num_actions)) y_batch = np.zeros((self.max_local_steps, self.emulator_counts)) adv_batch = np.zeros((self.max_local_steps, self.emulator_counts)) rewards = np.zeros((self.max_local_steps, self.emulator_counts)) states = np.zeros([self.max_local_steps] + list(shared_states.shape), dtype=np.uint8) actions = np.zeros((self.max_local_steps, self.emulator_counts, self.num_actions)) repetitions = np.zeros((self.max_local_steps, self.emulator_counts, self.total_repetitions)) values = np.zeros((self.max_local_steps, self.emulator_counts)) episodes_over_masks = np.zeros((self.max_local_steps, self.emulator_counts)) start_time = time.time() while self.global_step < self.max_global_steps: print('step : '+str(self.global_step)) loop_start_time = time.time() total_action_rep = np.zeros((self.num_actions, self.total_repetitions)) nb_actions = 0 max_local_steps = self.max_local_steps for t in range(max_local_steps): #Choose actions and repetitions for each emulator if not self.lstm_bool : readouts_v_t, readouts_pi_t, readouts_rep_t = self.session.run( [self.network.output_layer_v, self.network.output_layer_pi, self.network.output_layer_rep], feed_dict={self.network.input_ph: shared_states}) new_actions, new_repetitions = self.explo_policy.choose_next_actions(readouts_pi_t, readouts_rep_t, self.num_actions) else : readouts_v_t, readouts_pi_t, readouts_rep_t = self.session.run( [self.network.output_layer_v, self.network.output_layer_pi, self.network.output_layer_rep], feed_dict={self.network.memory_ph: memory}) new_actions, new_repetitions = self.explo_policy.choose_next_actions(readouts_pi_t, readouts_rep_t, self.num_actions) actions_sum += new_actions for e in range(self.emulator_counts) : nb_actions += np.argmax(new_repetitions[e]) + 1 # sharing the actions and repetitions to the different threads for z in range(new_actions.shape[0]): shared_actions[z] = new_actions[z] for z in range(new_repetitions.shape[0]): shared_rep[z] = new_repetitions[z] actions[t] = new_actions values[t] = readouts_v_t states[t] = shared_states repetitions[t] = new_repetitions # Start updating all environments with next_actions self.runners.update_environments() self.runners.wait_updated() # Done updating all environments, have new states, rewards and is_over if self.lstm_bool : memory, whole_memory = self.update_memory(memory, shared_states, whole_memory, t) episodes_over_masks[t] = 1.0 - shared_episode_over.astype(np.float32) for e, (actual_reward, episode_over) in enumerate(zip(shared_rewards, shared_episode_over)): total_episode_rewards[e] += actual_reward actual_reward = self.rescale_reward(actual_reward) rewards[t, e] = actual_reward emulator_steps[e] += self.tab_rep[np.argmax(new_repetitions[e])] + 1 self.global_step += 1 #rempli le tableau pour l'histogramme des actions - repetitions a = np.argmax(new_actions[e]) r = np.argmax(new_repetitions[e]) total_action_rep[a][r] += 1 if episode_over: total_rewards.append(total_episode_rewards[e]) total_steps.append(emulator_steps[e]) episode_summary = tf.Summary(value=[ tf.Summary.Value(tag='rl/reward', simple_value=total_episode_rewards[e]), tf.Summary.Value(tag='rl/episode_length', simple_value=emulator_steps[e]) ]) self.summary_writer.add_summary(episode_summary, self.global_step) self.summary_writer.flush() total_episode_rewards[e] = 0 emulator_steps[e] = 0 if self.lstm_bool : memory[e] = np.zeros(([self.n_steps]+list(shared_states.shape)[1:]), dtype=np.uint8) actions_sum[e] = np.zeros(self.num_actions) ##plot output of conv layers # with tf.name_scope('Summary_ConvNet'): # if self.global_step % (10000*self.emulator_counts*self.max_local_steps) == 0: # convs = self.session.run(self.network.convs, # feed_dict= {self.network.input_ph: [shared_states[0]]}) # imgs = [np.array([utils.plot_conv_output(conv)]) for conv in convs] # sums = [tf.summary.image('conv'+str(i), imgs[i], 1) for i in range(len(imgs))] # real_sums = self.session.run(sums) # for s in real_sums : self.summary_writer.add_summary(s, self.global_step) # self.summary_writer.flush() if self.lstm_bool : nest_state_value = self.session.run( self.network.output_layer_v, feed_dict={self.network.memory_ph: memory }) else : nest_state_value = self.session.run( self.network.output_layer_v, feed_dict={self.network.input_ph: shared_states}) estimated_return = np.copy(nest_state_value) for t in reversed(range(max_local_steps)): estimated_return = rewards[t] + self.gamma * estimated_return * episodes_over_masks[t] y_batch[t] = np.copy(estimated_return) adv_batch[t] = estimated_return - values[t] if self.lstm_bool : flat_states = whole_memory.reshape([self.max_local_steps * self.emulator_counts, self.n_steps] + list(shared_states.shape)[1:]) else : flat_states = states.reshape([self.max_local_steps * self.emulator_counts] + list(shared_states.shape)[1:]) flat_y_batch = y_batch.reshape(-1) flat_adv_batch = adv_batch.reshape(-1) flat_actions = actions.reshape(max_local_steps * self.emulator_counts, self.num_actions) flat_rep = repetitions.reshape(max_local_steps * self.emulator_counts, self.total_repetitions) lr = self.get_lr() feed_dict = {self.network.critic_target_ph: flat_y_batch, self.network.selected_action_ph: flat_actions, self.network.selected_repetition_ph: flat_rep, self.network.adv_actor_ph: flat_adv_batch, self.learning_rate: lr} if self.lstm_bool : feed_dict[self.network.memory_ph] = flat_states else : feed_dict[self.network.input_ph] = flat_states _, summaries = self.session.run( [self.train_step, summaries_op], feed_dict=feed_dict) self.summary_writer.add_summary(summaries, self.global_step) param_summary = tf.Summary(value=[ tf.Summary.Value(tag='parameters/lr', simple_value=lr) ]) self.summary_writer.add_summary(param_summary, self.global_step) self.summary_writer.flush() self.log_values(total_rewards, 'rewards_per_episode') self.log_values(total_steps, 'steps_per_episode') #ajout de l'histogramme des actions /repetitions nb_a = [ sum(a) for a in total_action_rep] nb_r = [ sum(r) for r in np.transpose(total_action_rep) ] histo_a, histo_r = [], [] for i in range(self.num_actions) : histo_a += [i]*int(nb_a[i]) for i in range(self.total_repetitions) : histo_r += [self.tab_rep[i]+1]*int(nb_r[i]) self.log_histogram('actions', np.array(histo_a), self.global_step) self.log_histogram('repetitions', np.array(histo_r), self.global_step) counter += 1 if counter % (2048 / self.emulator_counts) == 0: curr_time = time.time() last_ten = 0.0 if len(total_rewards) < 1 else np.mean(total_rewards[-10:]) steps_per_sec = self.max_local_steps * self.emulator_counts / (curr_time - loop_start_time) actions_per_s = nb_actions / (curr_time - loop_start_time) average_steps_per_sec = (self.global_step - global_step_start) / (curr_time - start_time) logging.info("Ran {} steps, at {} steps/s ({} steps/s avg), last 10 rewards avg {}" .format(self.global_step, steps_per_sec, average_steps_per_sec, last_ten)) stats_summary = tf.Summary(value=[ tf.Summary.Value(tag='stats/steps_per_s', simple_value=steps_per_sec), tf.Summary.Value(tag='stats/average_steps_per_s', simple_value=average_steps_per_sec), tf.Summary.Value(tag='stats/actions_per_s', simple_value=actions_per_s) ]) self.summary_writer.add_summary(stats_summary, self.global_step) self.summary_writer.flush() self.save_vars() self.cleanup() def cleanup(self): super(PAACLearner, self).cleanup() self.runners.stop() ``` #### File: manette/scripts/genGifs.py ```python import argparse import subprocess import os def create_cmd(args, f, path): cmd = ("python3 test.py -f "+path+ " -tc "+str(args.test_count)+ " -np "+str(args.noops)+ " -gn "+f+str(args.checkpoint)+ " -gf "+args.folder+"gifs/") return cmd def main(args): path = args.folder+"gifs" if not os.path.exists(path): os.makedirs(path) if args.game_folder == '' : print(os.listdir(args.folder)) for f in os.listdir(args.folder): if f != "gifs": if args.checkpoint == 0 : pathSrc = args.folder+f else : pathSrc = args.folder+f+"/checkpoints_saved/"+str(args.checkpoint)+"/" subprocess.call(create_cmd(args, f, pathSrc), shell = True) else : f = args.game_folder if args.checkpoint == 0 : pathSrc = args.folder+f else : pathSrc = args.folder+f+"/checkpoints_saved/"+str(args.checkpoint)+"/" subprocess.call(create_cmd(args, f, pathSrc), shell = True) def get_arg_parser(): parser = argparse.ArgumentParser() parser.add_argument('-gf', default= '', type=str, help='Name of the game folder to generate. Default : all folder are generated.', dest='game_folder') parser.add_argument('-f', '--folder', type=str, help="Folder where is saved the logs of all games.", dest="folder", required=True) parser.add_argument('-tc', '--test_count', default='1', type=int, help="The amount of tests to run on the given network", dest="test_count") parser.add_argument('-cp', '--checkpoint', default='0', type=int, help="The checkpoint from which to run the test", dest="checkpoint") parser.add_argument('-np', '--noops', default=30, type=int, help="Maximum amount of no-ops to use", dest="noops") return parser if __name__ == '__main__': args = get_arg_parser().parse_args() main(args) ``` #### File: jolibrain/manette/test.py ```python import os from train import get_network_and_environment_creator import logger_utils import argparse import numpy as np import time import tensorflow as tf import random from paac import PAACLearner from exploration_policy import ExplorationPolicy, Action def get_save_frame(name): import imageio writer = imageio.get_writer(name + '.gif', fps=30) def get_frame(frame): writer.append_data(frame) return get_frame def update_memory(memory, states): memory[:, :-1, :, :, :] = memory[:, 1:, :, :, :] memory[:, -1, :, :, :] = states return memory if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--folder', type=str, help="Folder where to save the debugging information.", dest="folder", required=True) parser.add_argument('-tc', '--test_count', default='1', type=int, help="The amount of tests to run on the given network", dest="test_count") parser.add_argument('-np', '--noops', default=30, type=int, help="Maximum amount of no-ops to use", dest="noops") parser.add_argument('-gn', '--gif_name', default=None, type=str, help="If provided, a gif will be produced and stored with this name", dest="gif_name") parser.add_argument('-gf', '--gif_folder', default='', type=str, help="The folder where to save gifs.", dest="gif_folder") parser.add_argument('-d', '--device', default='/gpu:0', type=str, help="Device to be used ('/cpu:0', '/gpu:0', '/gpu:1',...)", dest="device") args = parser.parse_args() arg_file = os.path.join(args.folder, 'args.json') device = args.device for k, v in logger_utils.load_args(arg_file).items(): setattr(args, k, v) args.max_global_steps = 0 df = args.folder args.debugging_folder = '/tmp/logs' args.device = device args.random_start = False args.single_life_episodes = False if args.gif_name: args.visualize = 1 args.actor_id = 0 rng = np.random.RandomState(int(time.time())) args.random_seed = rng.randint(1000) explo_policy = ExplorationPolicy(args, test = False) network_creator, env_creator = get_network_and_environment_creator(args, explo_policy) network = network_creator() saver = tf.train.Saver() rewards = [] environments = [env_creator.create_environment(i) for i in range(args.test_count)] if args.gif_name: for i, environment in enumerate(environments): environment.on_new_frame = get_save_frame(os.path.join(args.gif_folder, args.gif_name + str(i))) config = tf.ConfigProto(allow_soft_placement = True) if 'gpu' in args.device: config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: checkpoints_ = os.path.join(df, 'checkpoints') network.init(checkpoints_, saver, sess) states = np.asarray([environment.get_initial_state() for environment in environments]) if args.noops != 0: for i, environment in enumerate(environments): for _ in range(random.randint(0, args.noops)): state, _, _ = environment.next(0) states[i] = state if args.arch == 'LSTM': n_steps = 5 memory = np.zeros(([args.test_count, n_steps]+list(states.shape)[1:]), dtype=np.uint8) for e in range(args.test_count): memory[e, -1, :, :, :] = states[e] episodes_over = np.zeros(args.test_count, dtype=np.bool) rewards = np.zeros(args.test_count, dtype=np.float32) while not all(episodes_over): if args.arch == 'LSTM' : readouts_pi_t, readouts_rep_t = sess.run( [network.output_layer_pi, network.output_layer_rep], feed_dict={network.memory_ph: memory}) else : readouts_pi_t, readouts_rep_t = sess.run( [network.output_layer_pi, network.output_layer_rep], feed_dict={network.input_ph: states}) actions, repetitions = explo_policy.choose_next_actions(readouts_pi_t, readouts_rep_t, env_creator.num_actions) for j, environment in enumerate(environments): macro_action = Action(explo_policy.tab_rep, j, actions[j], repetitions[j]) state, r, episode_over = environment.next(macro_action.current_action) states[j] = state rewards[j] += r episodes_over[j] = episode_over while macro_action.is_repeated() and not episode_over : state, r, episode_over = environment.next(macro_action.repeat()) states[j] = state rewards[j] += r episodes_over[j] = episode_over macro_action.reset() memory = update_memory(memory, states) print('Performed {} tests for {}.'.format(args.test_count, args.game)) print('Mean: {0:.2f}'.format(np.mean(rewards))) print('Min: {0:.2f}'.format(np.min(rewards))) print('Max: {0:.2f}'.format(np.max(rewards))) print('Std: {0:.2f}'.format(np.std(rewards))) ```
{ "source": "jolibrain/pytorch-CycleGAN-and-pix2pix", "score": 2 }
#### File: modules/resnet_architecture/mobile_resnet_generator.py ```python import functools import torch from torch import nn from models.modules.mobile_modules import SeparableConv2d #from models.networks import WBlock, NBlock from ...networks import init_net import math import sys class MobileResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, dropout_rate, use_bias): super(MobileResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, dropout_rate, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, dropout_rate, use_bias): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [ SeparableConv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=p, stride=1), norm_layer(dim), nn.ReLU(True) ] conv_block += [nn.Dropout(dropout_rate)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [ SeparableConv2d(in_channels=dim, out_channels=dim, kernel_size=3, padding=p, stride=1), norm_layer(dim) ] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class MobileResnetGenerator(nn.Module): def __init__(self, input_nc, output_nc, ngf, norm_layer=nn.InstanceNorm2d, dropout_rate=0, n_blocks=9, padding_type='reflect', decoder=True, wplus=True, init_type='normal', init_gain=0.02, gpu_ids=[], img_size=128, img_size_dec=128): assert (n_blocks >= 0) self.decoder = decoder self.wplus = wplus super(MobileResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling n_blocks1 = n_blocks // 3 n_blocks2 = n_blocks1 n_blocks3 = n_blocks - n_blocks1 - n_blocks2 for i in range(n_blocks1): model += [MobileResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)] for i in range(n_blocks2): model += [MobileResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)] for i in range(n_blocks3): model += [MobileResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)] if self.decoder: for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) else: if wplus == False: n_feat = 4096 #1024 # 256 to_w = [nn.Linear(n_feat,img_size_dec)] # sty2 image output size self.to_w = nn.Sequential(*to_w) self.conv = nn.Conv2d(ngf*mult,1, kernel_size=1) else: n_feat = 2**(2*int(math.log(img_size,2)-2)) self.n_wplus = (2*int(math.log(img_size_dec,2)-1)) self.wblocks = nn.ModuleList() for n in range(0,self.n_wplus): self.wblocks += [WBlock(ngf*mult,n_feat,init_type,init_gain,gpu_ids)] self.nblocks = nn.ModuleList() noise_map = [4,8,8,16,16,32,32,64,64,128,128,256,256,512,512,1024,1024] for n in range(0,self.n_wplus-1): self.nblocks += [NBlock(ngf*mult,n_feat,noise_map[n],init_type,init_gain,gpu_ids)] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" # input = input.clamp(-1, 1) # for i, module in enumerate(self.model): # print(i, input.size()) # print(module) # if isinstance(module, nn.Conv2d): # print(module.stride) # input = module(input) # return input if self.decoder: return self.model(input) else: output = self.model(input) if not self.wplus: output = self.conv(output).squeeze(dim=1) output = torch.flatten(output,1) output = self.to_w(output).unsqueeze(dim=0) return output else: outputs = [] noutputs = [] for wc in self.wblocks: outputs.append(wc(output)) outputs=torch.stack(outputs).unsqueeze(0) for nc in self.nblocks: noutputs.append(nc(output)) return outputs, noutputs class WBlock(nn.Module): """Define a linear block for W""" def __init__(self, dim, n_feat, init_type='normal', init_gain=0.02, gpu_ids=[]): super(WBlock, self).__init__() self.conv2d = nn.Conv2d(in_channels=dim,out_channels=1,kernel_size=1) self.lin1 = nn.Linear(n_feat,32,bias=True) self.lin2 = nn.Linear(32,512,bias=True) w_block = [] w_block += [self.conv2d,nn.InstanceNorm2d(1),nn.Flatten(),self.lin1,nn.ReLU(True),self.lin2] self.w_block = init_net(nn.Sequential(*w_block), init_type, init_gain, gpu_ids) def forward(self, x): out = self.w_block(x) return out.squeeze(0) class NBlock(nn.Module): """Define a linear block for N""" def __init__(self, dim, n_feat, out_feat, init_type='normal', init_gain=0.02, gpu_ids=[]): super(NBlock, self).__init__() self.out_feat = out_feat if out_feat < 32: # size of input self.conv2d = nn.Conv2d(dim,1,kernel_size=1) self.lin = nn.Linear(n_feat,out_feat**2) n_block = [] n_block += [self.conv2d,nn.InstanceNorm2d(1),nn.Flatten(),self.lin] self.n_block = init_net(nn.Sequential(*n_block), init_type, init_gain, gpu_ids) else: self.n_block = [] self.n_block = [SeparableConv2d(in_channels=256,out_channels=32,kernel_size=3,stride=1,padding=1), nn.InstanceNorm2d(1), nn.ReLU(True)] self.n_block += [nn.Upsample((out_feat,out_feat))] self.n_block += [nn.Conv2d(in_channels=32,out_channels=1,kernel_size=1)] self.n_block += [nn.Flatten()] self.n_block = init_net(nn.Sequential(*self.n_block), init_type, init_gain, gpu_ids) def forward(self, x): out = self.n_block(x) return torch.reshape(out.unsqueeze(1),(1,1,self.out_feat,self.out_feat)) ```
{ "source": "jolibrain/recognition", "score": 3 }
#### File: ai/src/dnn_feature_extractor.py ```python import os, sys from feature_generator import FeatureGenerator from index_search import Indexer, Searcher from dd_client import DD import shelve import logging logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ##TODO: may move to a tools.py def batch(iterable, n=1): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] # class to define a dd DNN model class DNNModel: def __init__(self,name,model_repo,nclasses,extract_layer='',best=5, img_width=224,img_height=224,description=''): self.name = name self.description = description self.extract_layer = extract_layer self.best = best self.nclasses = nclasses self.img_width = img_width self.img_height = img_height self.model_repo = model_repo # a feature extractor for images, from a configurable layer of a pre-trained deep neural (convolutional) net class DNNFeatureExtractor(FeatureGenerator): def __init__(self,dnnmodel,image_files,index_repo, batch_size=32,dd_host='localhost',dd_port=8080,dd_description='image classification',meta_in='',meta_out='',captions_in='',captions_out='',mapi_in='',mapi_out=''): self.dd_host = dd_host self.dd_port = dd_port self.dd_description = dd_description self.dd_mllib = 'caffe' self.meta_in = meta_in self.meta_out = meta_out self.captions_in = captions_in self.captions_out = captions_out self.mapi_in = mapi_in self.mapi_out = mapi_out self.gpuid = 0 self.dnnmodel = dnnmodel if self.dnnmodel.extract_layer: self.dd_mltype = 'unsupervised' else: self.dd_mltype = 'supervised' self.image_files = image_files self.batch_size = batch_size self.binarized = False self.dd = DD(self.dd_host,self.dd_port) self.dd.set_return_format(self.dd.RETURN_PYTHON) self.index_repo = index_repo + '/' + self.dnnmodel.name try: os.mkdir(self.index_repo) except: #logger.warning('directory ' + self.index_repo + ' may alreay exist') pass self.st = {} # shelve used for full tags storage self.stm = {} # in memory tmp storage if self.dd_mltype == 'supervised': self.st = shelve.open(self.index_repo + '/tags.bin') self.delete_dd_service() def __del__(self): if self.dd_mltype == 'supervised': for i,t in self.stm.iteritems(): self.st[i] = t self.st.close() def create_dd_service(self): model = {'repository':self.dnnmodel.model_repo} parameters_input = {'connector':'image','width':self.dnnmodel.img_width,'height':self.dnnmodel.img_height} parameters_mllib = {'nclasses':self.dnnmodel.nclasses,'gpu':True,'gpuid':self.gpuid} parameters_output = {} screate = self.dd.put_service(self.dnnmodel.name,model,self.dd_description,self.dd_mllib, parameters_input,parameters_mllib,parameters_output,self.dd_mltype) outcode = screate['status']['code'] if outcode != 201 and outcode != 403: logger.error('failed creation of DNN service ' + self.dnnmodel.name) #return raise Exception('failed creating DNN service ' + self.dnnmodel.name) return def delete_dd_service(self): self.dd.delete_service(self.dnnmodel.name,clear='') def preproc(self): # none needed with dd at the moment return def index(self): ## feature generation, to be indexed or searched for self.create_dd_service() feature_vectors = [] uris = [] parameters_input = {} parameters_mllib = {'gpu':True,'gpuid':self.gpuid,'extract_layer':self.dnnmodel.extract_layer} if self.dd_mltype == 'unsupervised': parameters_output = {'binarized':self.binarized} # pass one image to get the size of the output layer classif = self.dd.post_predict(self.dnnmodel.name,[self.image_files[0]], parameters_input,parameters_mllib,parameters_output) response_code = classif['status']['code'] if response_code != 200: print 'response=',classif logger.error('failed (index) initial prediction call to model ' + self.dnnmodel.name + ' via dd') self.delete_dd_service() return dim = len(classif['body']['predictions']['vals']) else: parameters_output = {'best':self.dnnmodel.best} dim = self.dnnmodel.nclasses c = 0 logger.info('dnn feature prediction and indexing for service ' + self.dnnmodel.name + ' with layer of size ' + str(dim)) with Indexer(dim,self.index_repo) as indexer: for x in batch(self.image_files,self.batch_size): classif = self.dd.post_predict(self.dnnmodel.name,x, parameters_input,parameters_mllib,parameters_output) #print classif response_code = classif['status']['code'] if response_code != 200: print 'response=',classif logger.error('failed (index) batch prediction call to model ' + self.dnnmodel.name + ' via dd') continue predictions = classif['body']['predictions'] if self.batch_size == 1 or len(self.image_files) == 1: predictions = [predictions] for p in predictions: if self.dd_mltype == 'unsupervised': indexer.index_single(c,p['vals'],p['uri']) if c > 0 and c % self.batch_size == 0: logger.info('indexed ' + str(c) + ' images') else: puri = str(p['uri']) indexer.index_tags_single(p['classes'],p['uri']) self.stm[puri] = [] for pc in p['classes']: self.stm[puri].append(pc['cat']) c = c + 1 indexer.build_index() indexer.save_index() logger.info('indexed a total of ' + str(c) + ' images') self.delete_dd_service() def search(self,jdataout={}): self.create_dd_service() parameters_input = {} parameters_mllib = {'gpu':True,'gpuid':self.gpuid,'extract_layer':self.dnnmodel.extract_layer} if self.dd_mltype == 'unsupervised': parameters_output = {'binarized':self.binarized} else: parameters_output = {'best':self.dnnmodel.best} logger.info('dnn feature prediction and searching for service ' + self.dnnmodel.name) results = {} with Searcher(self.index_repo,search_size=500) as searcher: searcher.load_index() for x in batch(self.image_files,self.batch_size): classif = self.dd.post_predict(self.dnnmodel.name,x, parameters_input,parameters_mllib,parameters_output) response_code = classif['status']['code'] if response_code != 200: print 'response=',classif logger.error('failed batch (search) prediction call to model ' + self.dnnmodel.name + ' via dd') self.delete_dd_service() print classif raise Exception('failed batch (search) prediction call to model ' + self.dnnmodel.name) predictions = classif['body']['predictions'] if self.batch_size == 1 or len(self.image_files) == 1: predictions = [predictions] #print 'predictions=',predictions for p in predictions: if self.dd_mltype == 'unsupervised': nns = searcher.search_single(p['vals'],p['uri']) else: puri = str(p['uri']) nns = searcher.search_tags_single(p['classes'],puri) nns['tags_out_all'] = [] for nn in nns['nns_uris']: nns['tags_out_all'].append(self.st[str(nn)]) results[p['uri']] = nns self.delete_dd_service() return self.to_json(results,'/img/reuters/','/img/tate/',self.dnnmodel.name,self.dnnmodel.description,jdataout,self.meta_in,self.meta_out,self.captions_in,self.captions_out,self.mapi_in,self.mapi_out) ``` #### File: ai/src/ensembling.py ```python class EnsemblingScores: def __init__(self): self.factors = {'composition_high_1':0.3,'composition':0.3,'places_composition':0.3,'places':0.2,'categories':0.1,'densecap':0.25,'mapi_tags':0.1,'mapi_cats':0.1,'mapi_people':0.2,'mapi':0.05,'txtembed':0.1} self.summary_map = {'composition':'composition','places_composition':'composition','places':'context','categories':'context','densecap':'objects','mapi_cats':'context','mapi_tags':'context','mapi_people':'faces','mapi':'faces','txtembed':'context'} return # json_out in UI format, simple additive ensembling def ensembling(self,json_out): for k,m in json_out.iteritems(): # iterate matches for o in m['output']: # iterate candidates for a given match summary = {'scores':{'objects':0.0,'faces':0.0,'composition':0.0,'context':0.0}, 'processing_time':0.0} summary_sum = 0.0 final_score = 0.0 comp_score = 0.0 # compositional score comp_num = 0.0 for g,v in o['features']['out'].iteritems(): # iterate generators of a match factor = 1.0 for fa,fv in self.factors.iteritems(): if fa in g: factor = fv break if g == 'composition_high_1': #comp_num += 1.0 #comp_score += 3.0*v['score']#(1.0/comp_num) * factor*v['score'] final_score += self.factors[g]*v['score'] summary['scores'][self.summary_map['composition']] += 1.0 elif 'composition' in g: comp_num += 1.0 comp_score += factor*v['score']#(1.0/comp_num) * factor*v['score'] summary['scores'][self.summary_map['composition']] += 1.0 elif 'categories' in g: summary['scores'][self.summary_map['categories']] += 1.0 else: if 'score' in v: # typically, captions have no score at the moment final_score += factor*v['score'] summary['scores'][self.summary_map[g]] += 1.0 else: summary_sum -= 1.0 summary_sum += 1.0 if comp_num > 0.0: final_score += comp_score / comp_num o['features']['score'] = final_score for s,sv in summary['scores'].iteritems(): sv /= summary_sum summary['scores'][s] = sv o['features']['summary'] = summary return json_out ```
{ "source": "joliejuly/blog", "score": 2 }
#### File: static/script versions/date.py ```python import datetime import functools import time import sqlite3 import re from flask import (Flask, request, render_template, session, url_for, redirect, flash) app = Flask(__name__) app.secret_key = '<KEY>' app.password = '<PASSWORD>!' #app.database = 'myblog.db' #app.config['DEBUG'] = True #login required wrapper def login_required(fn): @functools.wraps(fn) def inner(*args, **kwargs): if session.get("logged_in"): return fn(*args, **kwargs) return redirect(url_for('login', next=request.path)) return inner def publish_later(desired_time, rowid): """ Checks if it is time to publish an entry """ while(1): time_now = datetime.datetime.now() time_now = time_now.timestamp() post_time = datetime.datetime.strptime(desired_time, "%Y-%m-%d-%H-%M") post_time = post_time.timestamp() if time_now >= post_time: break conn = sqlite3.connect("myblog.db") db = conn.cursor() mytuple = (1, rowid) db.execute("update entries set published=? where rowid=?", mytuple) @app.route('/') def index(): conn = sqlite3.connect("myblog.db") conn.row_factory = sqlite3.Row db = conn.cursor() mytuple = (1,) db.execute("select * from entries where published=? order by rowid desc", mytuple) entries = db.fetchall() # return render_template('index.html', entries=entries) @app.route('/create', methods = ["GET", "POST"]) @login_required def create(): if request.method == "POST": if request.form["title"] and request.form["content"]: conn = sqlite3.connect("myblog.db") db = conn.cursor() title = request.form.get("title") content = request.form.get("content") localtime = time.asctime( time.localtime(time.time()) ) if request.form.get("published"): mytuple = (title, content, 1, localtime) db.execute("""insert into entries(title, content, published, date) values(?, ?, ?, ?)""", mytuple) conn.commit() conn.close() else: mytuple = (title, content, 0, localtime) db.execute("""insert into entries(title, content, published, date) values(?, ?, ?, ?)""", mytuple) conn.commit() if request.form.get("to_be_published"): #datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") #outputs 2017-10-11-15-26 (2017, 11 oct, 15:26) # this will be string "2017-10-11T09:00" to_be_published = request.form.get("to_be_published") #makes from 2017-10-11T09:00 this: 2017-10-11-09-00 to_be_published = re.sub(r'[T:]', r'-', to_be_published) title = request.form.get("title") mytuple = (title, ) db.execute("""select rowid from entries where title=? """, mytuple) rowid = db.fetchone() #returns a tuple (1, ); to access 1 as int do this: rowid[0] conn.close() flash("Your post has been created successfully") publish_later(to_be_published, rowid[0]) conn.close() flash("Your post has been created successfully") else: flash("You haven't entered text or title") return render_template('create.html') return render_template('create.html') @app.route('/login', methods=["GET", "POST"]) def login(): if request.method == "POST": if request.form.get("password") == app.password: session['logged_in'] = True flash("You are logged in") return redirect(url_for("index")) else: flash("Sorry, wrong password") return render_template('login.html') return render_template("login.html") @app.route('/edit', methods=["POST", "GET"]) @login_required def edit(): conn = sqlite3.connect("myblog.db") conn.row_factory = sqlite3.Row db = conn.cursor() if request.method == "POST": if request.form.get("edit_btn") == "edit": entry_id = int(request.form.get("edit")) mytuple = (entry_id, ) db.execute("select rowid, * from entries where rowid=?", mytuple) entry = db.fetchone() return render_template("edit1.html", entry=entry) if request.form.get("delete") == "delete": entry_id = int(request.form.get("edit")) mytuple = (entry_id, ) db.execute("delete from entries where rowid=?", mytuple) conn.commit() flash("Entry has been deleted successfully") return redirect(url_for("edit")) else: mytuple = (1,) db.execute("select rowid, * from entries where published=? order by rowid desc", mytuple) entries = db.fetchall() conn.close() return render_template('edit.html', entries=entries) @app.route("/update", methods=["POST", "GET"]) @login_required def update(): if request.method == "POST": conn = sqlite3.connect("myblog.db") conn.row_factory = sqlite3.Row db = conn.cursor() rowid = int(request.form.get("rowid")) title = request.form.get("title") content = request.form.get("content") mydic = {"title": title, "content": content, "rowid": rowid} db.execute("""update entries set title=:title, content=:content where rowid=:rowid""", mydic) conn.commit() conn.close() flash("Changes saved successfully") return redirect(url_for("edit")) return redirect(url_for("edit")) @app.route('/logout', methods=["POST", "GET"]) @login_required def logout(): if request.method == "POST": session.clear() flash('You are logged out') return redirect(url_for('index')) return redirect(url_for('login')) if __name__ == '__main__': app.run(debug=True) ``` #### File: static/script versions/login.py ```python import functools import time import sqlite3 from flask import (Flask, request, render_template, session, url_for, redirect, flash) app = Flask(__name__) app.secret_key = '<KEY>' app.password = '<PASSWORD>!' #app.database = 'myblog.db' #app.config['DEBUG'] = True #login required wrapper def login_required(fn): @functools.wraps(fn) def inner(*args, **kwargs): if session.get("logged_in"): return fn(*args, **kwargs) return redirect(url_for('login', next=request.path)) return inner @app.route('/') def index(): conn = sqlite3.connect("myblog.db") conn.row_factory = sqlite3.Row db = conn.cursor() mytuple = (1,) db.execute("select * from entries where published=? order by rowid desc", mytuple) entries = db.fetchall() # return render_template('index.html', entries=entries) @app.route('/create', methods = ["GET", "POST"]) @login_required def create(): if request.method == "POST": if request.form["title"] and request.form["content"]: conn = sqlite3.connect("myblog.db") db = conn.cursor() title = request.form.get("title") content = request.form.get("content") localtime = time.asctime( time.localtime(time.time()) ) if request.form.get("published"): mytuple = (title, content, 1, localtime) db.execute("""insert into entries(title, content, published, date) values(?, ?, ?, ?)""", mytuple) else: mytuple = (title, content, 0, localtime) db.execute("""insert into entries(title, content, published, date) values(?, ?, ?, ?)""", mytuple) flash("Your post has been created successfully") conn.commit() conn.close() else: flash("You haven't entered text or title") return render_template('create.html') return render_template('create.html') @app.route('/login', methods=["GET", "POST"]) def login(): if request.method == "POST": if request.form.get("password") == app.password: session['logged_in'] = True flash("You are logged in") return redirect(url_for("index")) else: flash("Sorry, wrong password") return render_template('login.html') return render_template("login.html") @app.route('/edit', methods=["POST", "GET"]) @login_required def edit(): conn = sqlite3.connect("myblog.db") conn.row_factory = sqlite3.Row db = conn.cursor() if request.method == "POST": if request.form.get("edit_btn") == "edit": entry_id = int(request.form.get("edit")) mytuple = (entry_id, ) db.execute("select rowid, * from entries where rowid=?", mytuple) entry = db.fetchone() return render_template("edit1.html", entry=entry) if request.form.get("delete") == "delete": entry_id = int(request.form.get("edit")) mytuple = (entry_id, ) db.execute("delete from entries where rowid=?", mytuple) conn.commit() flash("Entry has been deleted successfully") return redirect(url_for("edit")) else: mytuple = (1,) db.execute("select rowid, * from entries where published=? order by rowid desc", mytuple) entries = db.fetchall() conn.close() return render_template('edit.html', entries=entries) @app.route("/update", methods=["POST", "GET"]) @login_required def update(): if request.method == "POST": conn = sqlite3.connect("myblog.db") conn.row_factory = sqlite3.Row db = conn.cursor() rowid = int(request.form.get("rowid")) title = request.form.get("title") content = request.form.get("content") mydic = {"title": title, "content": content, "rowid": rowid} db.execute("""update entries set title=:title, content=:content where rowid=:rowid""", mydic) conn.commit() conn.close() flash("Changes saved successfully") return redirect(url_for("edit")) return redirect(url_for("edit")) @app.route('/logout', methods=["POST", "GET"]) @login_required def logout(): if request.method == "POST": session.clear() flash('You are logged out') return redirect(url_for('index')) return redirect(url_for('login')) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "JolietCyborgs4241/cyborg_sensing", "score": 3 }
#### File: cyborg_sensing/r+d/FindDistance.py ```python import libjevois as jevois import cv2 import numpy as np ## Simple example of image processing using OpenCV in Python on JeVois # # This module is a basic FRC vision process. # # By default, it first gets an image, blurs it, extracts the green channel, thresholds that, and uses the threshold to place # a mask over the initial image. It then runs an HSV filter on the masked image, erodes and dilates the result, and finally # finds and filters the contours. # You can find the constants for all of these using GRIP. Tune the program constants and generate Python code from GRIP. Then, # paste those constants into the Constructor below. Custom code can also be inserted after all the GRIP process code. # # See http://jevois.org/tutorials for tutorials on getting started with programming JeVois in Python without having # to install any development software on your host computer. # # @author <NAME> # # @videomapping YUYV 320 240 59.9 YUYV 320 240 59.9 JeVois PythonSandbox # @email <EMAIL> # @mainurl http://jevois.org # @supporturl http://jevois.org/doc # @otherurl http://iLab.usc.edu # @license GPL v3 # @distribution Unrestricted # @restrictions None # @ingroup modules class FindDistance: # ################################################################################################### ## Constructor def __init__(self): # Instantiate a JeVois Timer to measure our processing framerate: self.timer = jevois.Timer("sandbox", 100, jevois.LOG_INFO) # SPECIAL REPLACED BLUR CONSTANT self.__blur_type = 0 # ################################################################################################### # ALL CONSTANTS GO UNDER HERE (make sure to remove the self.__blur_type line) self.__blur_radius = 6.909739928607854 self.blur_output = None self.__cv_extractchannel_src = self.blur_output self.__cv_extractchannel_channel = 1.0 self.cv_extractchannel_output = None self.__cv_threshold_src = self.cv_extractchannel_output self.__cv_threshold_thresh = 30.0 self.__cv_threshold_maxval = 255.0 self.__cv_threshold_type = cv2.THRESH_BINARY self.cv_threshold_output = None self.__mask_input = self.blur_output self.__mask_mask = self.cv_threshold_output self.mask_output = None self.__normalize_input = self.mask_output self.__normalize_type = cv2.NORM_MINMAX self.__normalize_alpha = 0.0 self.__normalize_beta = 255.0 self.normalize_output = None self.__hsv_threshold_input = self.normalize_output self.__hsv_threshold_hue = [46.02792342397267, 120.58148236024165] self.__hsv_threshold_saturation = [157.86767273600026, 255.0] self.__hsv_threshold_value = [43.786072836645936, 255.0] self.hsv_threshold_output = None self.__cv_erode_src = self.hsv_threshold_output self.__cv_erode_kernel = None self.__cv_erode_anchor = (-1, -1) self.__cv_erode_iterations = 3.0 self.__cv_erode_bordertype = cv2.BORDER_CONSTANT self.__cv_erode_bordervalue = (-1) self.cv_erode_output = None self.__cv_dilate_src = self.cv_erode_output self.__cv_dilate_kernel = None self.__cv_dilate_anchor = (-1, -1) self.__cv_dilate_iterations = 1.0 self.__cv_dilate_bordertype = cv2.BORDER_CONSTANT self.__cv_dilate_bordervalue = (-1) self.cv_dilate_output = None self.__find_contours_input = self.cv_dilate_output self.__find_contours_external_only = True self.find_contours_output = None self.__filter_contours_contours = self.find_contours_output self.__filter_contours_min_area = 400.0 self.__filter_contours_min_perimeter = 100.0 self.__filter_contours_min_width = 0.0 self.__filter_contours_max_width = 1000.0 self.__filter_contours_min_height = 0.0 self.__filter_contours_max_height = 1000.0 self.__filter_contours_solidity = [75.32956685499059, 100] self.__filter_contours_max_vertices = 1000.0 self.__filter_contours_min_vertices = 0.0 self.__filter_contours_min_ratio = 0.2 self.__filter_contours_max_ratio = 1.0 self.filter_contours_output = None # END CONSTANTS # ################################################################################################### ## Process function with USB output def process(self, inframe, outframe): # Get the next camera image (may block until it is captured) and here convert it to OpenCV BGR by default. If # you need a grayscale image instead, just use getCvGRAY() instead of getCvBGR(). Also supported are getCvRGB() # and getCvRGBA(): source0 = inimg = inframe.getCvBGR() outimg = inimg = inframe.getCvBGR() # Start measuring image processing time (NOTE: does not account for input conversion time): self.timer.start() ################################################################################################# # BEGIN GRIP CODE ################################################################################################# """ Runs the pipeline and sets all outputs to new values. """ # Step Blur0: self.__blur_input = source0 (self.blur_output) = self.__blur(self.__blur_input, self.__blur_type, self.__blur_radius) # Step CV_extractChannel0: self.__cv_extractchannel_src = self.blur_output (self.cv_extractchannel_output) = self.__cv_extractchannel(self.__cv_extractchannel_src, self.__cv_extractchannel_channel) # Step CV_Threshold0: self.__cv_threshold_src = self.cv_extractchannel_output (self.cv_threshold_output) = self.__cv_threshold(self.__cv_threshold_src, self.__cv_threshold_thresh, self.__cv_threshold_maxval, self.__cv_threshold_type) # Step Mask0: self.__mask_input = self.blur_output self.__mask_mask = self.cv_threshold_output (self.mask_output) = self.__mask(self.__mask_input, self.__mask_mask) # Step Normalize0: self.__normalize_input = self.mask_output (self.normalize_output) = self.__normalize(self.__normalize_input, self.__normalize_type, self.__normalize_alpha, self.__normalize_beta) # Step HSV_Threshold0: self.__hsv_threshold_input = self.normalize_output (self.hsv_threshold_output) = self.__hsv_threshold(self.__hsv_threshold_input, self.__hsv_threshold_hue, self.__hsv_threshold_saturation, self.__hsv_threshold_value) # Step CV_erode0: self.__cv_erode_src = self.hsv_threshold_output (self.cv_erode_output) = self.__cv_erode(self.__cv_erode_src, self.__cv_erode_kernel, self.__cv_erode_anchor, self.__cv_erode_iterations, self.__cv_erode_bordertype, self.__cv_erode_bordervalue) # Step CV_dilate0: self.__cv_dilate_src = self.cv_erode_output (self.cv_dilate_output) = self.__cv_dilate(self.__cv_dilate_src, self.__cv_dilate_kernel, self.__cv_dilate_anchor, self.__cv_dilate_iterations, self.__cv_dilate_bordertype, self.__cv_dilate_bordervalue) # Step Find_Contours0: self.__find_contours_input = self.cv_dilate_output (self.find_contours_output) = self.__find_contours(self.__find_contours_input, self.__find_contours_external_only) # Step Filter_Contours0: self.__filter_contours_contours = self.find_contours_output (self.filter_contours_output) = self.__filter_contours(self.__filter_contours_contours, self.__filter_contours_min_area, self.__filter_contours_min_perimeter, self.__filter_contours_min_width, self.__filter_contours_max_width, self.__filter_contours_min_height, self.__filter_contours_max_height, self.__filter_contours_solidity, self.__filter_contours_max_vertices, self.__filter_contours_min_vertices, self.__filter_contours_min_ratio, self.__filter_contours_max_ratio) ################################################################################################# # END GRIP CODE ################################################################################################## # DEFAULT CUSTOM CODE def getArea(con): # Gets the area of the contour return cv2.contourArea(con) def getYcoord(con): # Gets the Y coordinate of the contour M = cv2.moments(con) cy = int(M['m01']/M['m00']) return cy def getXcoord(con): # Gets the X coordinate of the contour M = cv2.moments(con) cy = int(M['m10']/M['m00']) return cy def sortByArea(conts) : # Returns an array sorted by area from smallest to largest contourNum = len(conts) # Gets number of contours sortedBy = sorted(conts, key=getArea) # sortedBy now has all the contours sorted by area return sortedBy ################################################################################################## # PUT YOUR CUSTOM CODE HERE ################################################################################################## # Draws all contours on original image in red cv2.drawContours(outimg, self.filter_contours_output, -1, (0, 0, 255), 1) # Gets number of contours contourNum = len(self.filter_contours_output) # Sorts contours by the smallest area first newContours = sortByArea(self.filter_contours_output) # Send the contour data over Serial for i in range (contourNum): cnt = newContours[i] x,y,w,h = cv2.boundingRect(cnt) # Get the stats of the contour including width and height # which contour, 0 is first if (i > 0): cnt2 = newContours[i-1] toSend = ("CON" + str(i) + " area" + str(getArea(cnt)) + # Area of contour " x" + str(round((getXcoord(cnt)*1000/320)-500, 2)) + # x-coordinate of contour, -500 to 500 rounded to 2 decimal " y" + str(round(375-getYcoord(cnt)*750/240, 2)) + # y-coordinate of contour, -375 to 375 rounded to 2 decimal " h" + str(round(h*750/240, 2)) + # Height of contour, 0-750 rounded to 2 decimal " w" + str(round(w*1000/320, 2)) + # Width of contour, 0-1000 rounded to 2 decimal " Distance:" + str( round(( (11.5*596.32)/abs((getXcoord(cnt) - getXcoord(cnt2))) ), 2))) else: toSend = ("CON" + str(i) + " area" + str(getArea(cnt)) + # Area of contour " x" + str(round((getXcoord(cnt)*1000/320)-500, 2)) + # x-coordinate of contour, -500 to 500 rounded to 2 decimal " y" + str(round(375-getYcoord(cnt)*750/240, 2)) + # y-coordinate of contour, -375 to 375 rounded to 2 decimal " h" + str(round(h*750/240, 2)) + # Height of contour, 0-750 rounded to 2 decimal " w" + str(round(w*1000/320, 2))) # Width of contour, 0-1000 rounded to 2 decimal jevois.sendSerial(toSend) # Write a title: cv2.putText(outimg, "JeVois Code", (3, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA) # Write frames/s info from our timer into the edge map (NOTE: does not account for output conversion time): fps = self.timer.stop() #height, width, channels = outimg.shape # if outimg is grayscale, change to: height, width = outimg.shape height, width, channels = outimg.shape cv2.putText(outimg, fps, (3, height - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA) # Convert our BGR output image to video output format and send to host over USB. If your output image is not # BGR, you can use sendCvGRAY(), sendCvRGB(), or sendCvRGBA() as appropriate: outframe.sendCvBGR(outimg) # outframe.sendCvGRAY(outimg) ################################################################################################## # END CUSTOM CODE ################################################################################################### # FUNCTIONS GO HERE (Anything that starts with "@staticmethod") @staticmethod def __blur(src, type, radius): """Softens an image using one of several filters. Args: src: The source mat (numpy.ndarray). type: The blurType to perform represented as an int. radius: The radius for the blur as a float. Returns: A numpy.ndarray that has been blurred. """ ksize = int(2 * round(radius) + 1) return cv2.blur(src, (ksize, ksize)) #return cv2.medianBlur(src, (ksize, ksize)) # Perform a Median Blur #return cv2.GaussianBlur(src,(ksize, ksize),0) # Perform a Gaussian Blur @staticmethod def __cv_extractchannel(src, channel): """Extracts given channel from an image. Args: src: A numpy.ndarray. channel: Zero indexed channel number to extract. Returns: The result as a numpy.ndarray. """ return cv2.extractChannel(src, (int) (channel + 0.5)) @staticmethod def __cv_threshold(src, thresh, max_val, type): """Apply a fixed-level threshold to each array element in an image Args: src: A numpy.ndarray. thresh: Threshold value. max_val: Maximum value for THRES_BINARY and THRES_BINARY_INV. type: Opencv enum. Returns: A black and white numpy.ndarray. """ return cv2.threshold(src, thresh, max_val, type)[1] @staticmethod def __mask(input, mask): """Filter out an area of an image using a binary mask. Args: input: A three channel numpy.ndarray. mask: A black and white numpy.ndarray. Returns: A three channel numpy.ndarray. """ return cv2.bitwise_and(input, input, mask=mask) @staticmethod def __normalize(input, type, a, b): """Normalizes or remaps the values of pixels in an image. Args: input: A numpy.ndarray. type: Opencv enum. a: The minimum value. b: The maximum value. Returns: A numpy.ndarray of the same type as the input. """ return cv2.normalize(input, None, a, b, type) @staticmethod def __hsv_threshold(input, hue, sat, val): """Segment an image based on hue, saturation, and value ranges. Args: input: A BGR numpy.ndarray. hue: A list of two numbers the are the min and max hue. sat: A list of two numbers the are the min and max saturation. lum: A list of two numbers the are the min and max value. Returns: A black and white numpy.ndarray. """ out = cv2.cvtColor(input, cv2.COLOR_BGR2HSV) return cv2.inRange(out, (hue[0], sat[0], val[0]), (hue[1], sat[1], val[1])) @staticmethod def __cv_erode(src, kernel, anchor, iterations, border_type, border_value): """Expands area of lower value in an image. Args: src: A numpy.ndarray. kernel: The kernel for erosion. A numpy.ndarray. iterations: the number of times to erode. border_type: Opencv enum that represents a border type. border_value: value to be used for a constant border. Returns: A numpy.ndarray after erosion. """ return cv2.erode(src, kernel, anchor, iterations = (int) (iterations +0.5), borderType = border_type, borderValue = border_value) @staticmethod def __cv_dilate(src, kernel, anchor, iterations, border_type, border_value): """Expands area of higher value in an image. Args: src: A numpy.ndarray. kernel: The kernel for dilation. A numpy.ndarray. iterations: the number of times to dilate. border_type: Opencv enum that represents a border type. border_value: value to be used for a constant border. Returns: A numpy.ndarray after dilation. """ return cv2.dilate(src, kernel, anchor, iterations = (int) (iterations +0.5), borderType = border_type, borderValue = border_value) @staticmethod def __find_contours(input, external_only): """Sets the values of pixels in a binary image to their distance to the nearest black pixel. Args: input: A numpy.ndarray. external_only: A boolean. If true only external contours are found. Return: A list of numpy.ndarray where each one represents a contour. """ if(external_only): mode = cv2.RETR_EXTERNAL else: mode = cv2.RETR_LIST method = cv2.CHAIN_APPROX_SIMPLE im2, contours, hierarchy =cv2.findContours(input, mode=mode, method=method) return contours @staticmethod def __filter_contours(input_contours, min_area, min_perimeter, min_width, max_width, min_height, max_height, solidity, max_vertex_count, min_vertex_count, min_ratio, max_ratio): """Filters out contours that do not meet certain criteria. Args: input_contours: Contours as a list of numpy.ndarray. min_area: The minimum area of a contour that will be kept. min_perimeter: The minimum perimeter of a contour that will be kept. min_width: Minimum width of a contour. max_width: MaxWidth maximum width. min_height: Minimum height. max_height: Maximimum height. solidity: The minimum and maximum solidity of a contour. min_vertex_count: Minimum vertex Count of the contours. max_vertex_count: Maximum vertex Count. min_ratio: Minimum ratio of width to height. max_ratio: Maximum ratio of width to height. Returns: Contours as a list of numpy.ndarray. """ output = [] for contour in input_contours: x,y,w,h = cv2.boundingRect(contour) if (w < min_width or w > max_width): continue if (h < min_height or h > max_height): continue area = cv2.contourArea(contour) if (area < min_area): continue if (cv2.arcLength(contour, True) < min_perimeter): continue hull = cv2.convexHull(contour) solid = 100 * area / cv2.contourArea(hull) if (solid < solidity[0] or solid > solidity[1]): continue if (len(contour) < min_vertex_count or len(contour) > max_vertex_count): continue ratio = (float)(w) / h if (ratio < min_ratio or ratio > max_ratio): continue output.append(contour) return output #BlurType = Enum('BlurType', 'Box_Blur Gaussian_Blur Median_Filter Bilateral_Filter') ```
{ "source": "jolitp/automation_scripts", "score": 2 }
#### File: file-manipulation/clean-up-undesirable-files/clean-up-undesirable-files.py ```python import os from os import path import shutil from colorama import Fore from colorama import Style DEBUG = False DEBUG = True RELEASE = False RELEASE = True undesirable_files = [ "video-renamer-and-mover.py", "remove-videos", "show-width-and-height-of-videos.py", "mass-convert-and-resize-and-concatenate.py", "mark-video-length.py", "make-org.py", "check-if-ffmpeg-is-finished.py" "mark-if-ffmpeg-is-finished.py", "add-padding-zeros.py", "clean-up-undesirable-files.py", "rename-folders.py", "rename-files.py", "mark-if-ffmpeg-is-finished", "check-if-ffmpeg-is-finished", "remove-empty-folders.py", "copy-py-files-to-subdirs.py", "call-command-in-subfolders.py", "[CourseClub.NET].url", "[FreeCourseSite.com].url", "[FCS Forum].url", "concatenated_video_found.txt", "vidlist.txt", "total_length.data", "accumulated_time_of_videos.txt", "different_dimentions.txt", "dimension.csv", "mass-convert-only.py", "clean-up-py-files.py", ".srt", ".vtt", "remove-videos.py" ] def is_undesirable_file(name:str): is_undesirable_file = False for file_name in undesirable_files: if file_name in name: is_undesirable_file = True return is_undesirable_file video_extensions = ['.mp4', '.m4v', '.mkv', '.ts', '.avi', '.webm', '.flv', '.mov', '.wmv', '.vob'] def is_video(name): is_video = False for ext in video_extensions: if name.lower().endswith(ext): is_video = True return is_video # pretty print an array def pretty_print_array(array,message,color=Fore.GREEN): if DEBUG : print(f'{color}========== ' + message + f' ========== {Style.RESET_ALL}') for index, name in enumerate(array): start = f'{color}' reset = f' : {Style.RESET_ALL}' if DEBUG : print(start + str(index) + reset + str(name)) print() def pretty_print_value(value,message,color=Fore.BLUE): if DEBUG : print(f'{color}' + message + f' : {Style.RESET_ALL}' + str(value)) current_dir_path = os.getcwd() current_dir = os.path.basename(current_dir_path) # print(current_dir) all_files_full_path = [] for root, directories, filenames in os.walk(current_dir_path): for filename in filenames: all_files_full_path.append(os.path.join(root,filename)) all_undesirable_files = [] for file_path in all_files_full_path: if is_undesirable_file(file_path): all_undesirable_files.append(file_path) this_file_path = os.path.realpath(__file__) # pretty_print_array(all_files_full_path, "all files") for file in all_undesirable_files: path_separated = file.split('/') current_path = '' for index, subdir in enumerate(path_separated): current_path += subdir + '/' # print(current_path) if index == len(path_separated) -1: break if subdir == 'undesirable_files': pretty_print_value(subdir, "subdir:") if 'undesirable_files' in current_path: # BUG if you have undesirable files inside the undesirable_files folder and inside a nested folder # the file will be included in the all_undesirable_files array and trigger a exception on the remove method all_files_full_path.remove(file) pretty_print_value(file, "file: ") # pretty_print_array(all_files_full_path, "all files") for file in all_undesirable_files: # ignore files in the root directory file_in_root = False for elem in undesirable_files: root_file = current_dir_path + '/' + elem if file == root_file: file_in_root = True if file_in_root: continue # print(file) source = file # pretty_print_value(source,"source: ") destination = str(file).replace(current_dir_path , '') undesirable_files_path = current_dir_path + '/undesirable_files' if not os.path.exists(undesirable_files_path): os.mkdir(undesirable_files_path) destination = undesirable_files_path + destination # pretty_print_value(destination,"destination: ") path_separated = destination.split('/') current_path = '' for index, subdir in enumerate(path_separated): current_path += subdir + '/' # print(current_path) if index == len(path_separated) -1: break # print(os.path.exists(current_path)) if not os.path.exists(current_path): os.mkdir(current_path) os.rename(source,destination) # os.remove(file) ... ``` #### File: helpers/copy-py-files-to-subdirs/copy-py-files-to-subdirs.py ```python import shutil import os from glob import glob import pathlib from os import listdir from os.path import isfile, join """ copy all .py files to all subfolders """ def is_python_file(name): is_py = False if name.lower().endswith('.py'): is_py = True return is_py current_path = pathlib.Path(__file__).parent.absolute() dirs = os.listdir('.') dirs = glob(str(current_path) + '/*/') # print(dirs) onlyfiles = [f for f in listdir(current_path) if isfile(join(current_path, f))] # print(onlyfiles) files_to_copy = [] for file in onlyfiles: if is_python_file(file): files_to_copy.append(file) # print(file) print(files_to_copy) for file_to_copy in files_to_copy: src = str(current_path) + "/" + file_to_copy print("source: " + src + "\n") for dir in dirs: dst = dir shutil.copy(src, dst) print("destination: " + dst) ``` #### File: helpers/filter_videos/unit_tests_filter_videos.py ```python import unittest # from helpers import filter_videos # import helpers.filter_videos import filter_videos as script class UnitTestFilterVideos(unittest.TestCase): """ test filter_video function """ # region class TestFilterVideos(unittest.TestCase): # region def test_1_video_from_1_file(self): def test_1_video_from_1_file(self): """ test: given one file return one video """ files : set(str) = { "single video.mp4" } expected_result : set(str) = { "single video.mp4" } videos : set(str) = script.filter_videos(files, debug_function=True) self.assertSequenceEqual(videos, expected_result) ... # endregion def test_1_video_from_1_file(self): # region def test_1_video_from_11_files(self): def test_1_video_from_11_files(self): """ test: given one file return one video """ files : set(str) = { "single video.mp4", "1st non video file.txt", "2nd non video file.txt", "3rd non video file.txt", "4th non video file.txt", "5th non video file.txt", "6th non video file.txt", "7th non video file.txt", "8th non video file.txt", "9th non video file.txt", "10th non video file.txt", } expected_result : set(str) = { "single video.mp4" } videos : set(str) = script.filter_videos(files, debug_function=True) self.assertSequenceEqual(videos, expected_result) ... ... # endregion def test_1_video_from_11_files(self): # region def test_2_videos_from_11_files(self): def test_2_videos_from_11_files(self): """ test: given one file return one video """ files : set(str) = [ "1st video.mp4", "2nd video.mp4", "1st non video file.txt", "2nd non video file.txt", "3rd non video file.txt", "4th non video file.txt", "5th non video file.txt", "6th non video file.txt", "7th non video file.txt", "8th non video file.txt", "9th non video file.txt", ] expected_result : set(str) = { "1st video.mp4", "2nd video.mp4", } videos : set(str) = script.filter_videos(files, debug_function=True) self.assertSequenceEqual(videos, expected_result) ... ... # endregion def test_2_videos_from_11_files(self): # region def test_0_videos_from_1_file(self): def test_0_videos_from_1_file(self): """ test: given one file return one video """ files : list(str) = [ "1st not video.csv", "2nd not video.txt", ] expected_result : set(str) = set() videos : set(str) = script.filter_videos(files, debug_function=True) self.assertSequenceEqual(videos, expected_result) ... ... # endregion def test_0_videos_from_1_file(self): # region def test_lists_should_equal_even_if_order_does_not_match(self): def test_lists_should_equal_even_if_order_does_not_match(self): """ test: given one file return one video """ files : set(str) = { "1st video.mp4", "2nd video.mp4", } expected_result : set(str) = { "2nd video.mp4", "1st video.mp4", } videos : set(str) = script.filter_videos(files, debug_function=True) self.assertSequenceEqual(videos, expected_result) ... ... # endregion def test_lists_should_equal_even_if_order_does_not_match(self): # endregion TestFilterVideos(unittest.TestCase): if __name__ == "__main__": unittest.main() ``` #### File: helpers/get_absolute_path_before_moving_to_directory/unit_tests_get_absolute_path_before_moving_to_directory.py ```python import unittest import get_absolute_path_before_moving_to_directory as script class UnitTestGetAbsolutePathAfterMovingToDirectory(unittest.TestCase): """ tests get_absolute_path_before_moving_to_directory() function """ # region class TestGetAbsolutePathAfterMovingToDirectory(unittest.TestCase): # region def test_(self): def test_right_parameters_results_right_return(self): """ test: given a root directory that is absolute path, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory" destination_directory : str = "destination" file_or_folder_to_move : str = "video_file.mkv" expected_result : str = "/home/user/videos/root_directory/destination/video_file.mkv" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_(self): def test_root_directory_has_trailing_slash(self): """ test: given a root directory that is absolute path with a trailing slash, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory/" destination_directory : str = "destination" file_or_folder_to_move : str = "video_file.mkv" expected_result : str = "/home/user/videos/root_directory/destination/video_file.mkv" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_(self): def test_destination_directory_has_trailing_slash(self): """ test: given a root directory that is absolute path with a trailing slash, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory" destination_directory : str = "destination/" file_or_folder_to_move : str = "video_file.mkv" expected_result : str = "/home/user/videos/root_directory/destination/video_file.mkv" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_(self): def test_folder_to_move_has_trailing_slash(self): """ test: given a root directory that is absolute path with a trailing slash, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory" destination_directory : str = "destination" file_or_folder_to_move : str = "inside_folder/" expected_result : str = "/home/user/videos/root_directory/destination/inside_folder" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_(self): def test_both_destination_directory_and_file_or_folder_to_move_have_trailing_slashes(self): """ test: given a root directory that is absolute path with a trailing slash, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory" destination_directory : str = "destination/" file_or_folder_to_move : str = "inside_folder/" expected_result : str = "/home/user/videos/root_directory/destination/inside_folder" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_(self): def test_both_root_directory_and_file_or_folder_to_move_have_trailing_slashes(self): """ test: given a root directory that is absolute path with a trailing slash, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory/" destination_directory : str = "destination" file_or_folder_to_move : str = "inside_folder/" expected_result : str = "/home/user/videos/root_directory/destination/inside_folder" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_(self): def test_both_root_directory_and_destination_directory_have_trailing_slashes(self): """ test: given a root directory that is absolute path with a trailing slash, and both other parameters relative paths to directories in the root directory, result should be root directory + / + destination_directory + / + file_or_folder_to_move """ root_directory : str = "/home/user/videos/root_directory/" destination_directory : str = "destination/" file_or_folder_to_move : str = "inside_folder" expected_result : str = "/home/user/videos/root_directory/destination/inside_folder" actual_result : str = script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) self.assertEqual(expected_result, actual_result) ... # endregion def test_(self): # region def test_root_directory_relative_path_raises_ValueError(self): def test_root_directory_relative_path_raises_value_error(self): """ test: if root_directory is not absolute path raise exception ValueError """ root_directory : str = "root_directory" destination_directory : str = "destination" file_or_folder_to_move : str = "inside_folder" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'root_directory is not absolute path') # endregion def test_root_directory_relative_path_raises_ValueError(self): # region def test_destination_directory_relative_path_raises_value_error(self): def test_destination_directory_relative_path_raises_value_error(self): """ test: if destination_directory is absolute path raise exception ValueError """ root_directory : str = "/home/user/videos/root_directory" file_or_folder_to_move : str = "inside_folder" destination_directory : str = "/destination" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'destination_directory is absolute path') # endregion def test_destination_directory_relative_path_raises_value_error(self): # region def test_file_or_folder_to_move_relative_path_raises_value_error(self): def test_file_or_folder_to_move_relative_path_raises_value_error(self): """ test: if file_or_folder_to_move is absolute path raise exception ValueError """ root_directory : str = "/home/user/videos/root_directory" file_or_folder_to_move : str = "/inside_folder" destination_directory : str = "destination" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'file_or_folder_to_move is absolute path') # endregion def test_file_or_folder_to_move_relative_path_raises_value_error(self): # region def test_file_or_folder_to_move_relative_path_raises_value_error(self): def test_root_directory_relative_path_with_double_dots_raises_value_error(self): """ test: if root_directory is absolute with ../ at the start path raise exception ValueError """ root_directory : str = "../home/user/videos/root_directory" file_or_folder_to_move : str = "inside_folder" destination_directory : str = "destination" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'root_directory is not absolute path') # endregion def test_file_or_folder_to_move_relative_path_raises_value_error(self): # region def test_file_or_folder_to_move_relative_path_raises_value_error(self): def test_file_or_folder_to_move_relative_path_with_double_dots_raises_value_error(self): """ test: if file_or_folder_to_move is absolute path raise exception ValueError """ root_directory : str = "/home/user/videos/root_directory" file_or_folder_to_move : str = "../inside_folder" destination_directory : str = "destination" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'found ../ in result path, that is not supported') # endregion def test_file_or_folder_to_move_relative_path_raises_value_error(self): # region def test_destination_directory_relative_path_with_double_dots_raises_value_error(self): def test_destination_directory_relative_path_with_double_dots_raises_value_error(self): """ test: if destination_directory is absolute path raise exception ValueError """ root_directory : str = "/home/user/videos/root_directory" file_or_folder_to_move : str = "inside_folder" destination_directory : str = "../destination" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'found ../ in result path, that is not supported') # endregion def test_destination_directory_relative_path_with_double_dots_raises_value_error(self): # region def test_destination_directory_relative_path_with_double_dots_raises_value_error(self): def test_2_parameters_are_relative_path_with_double_dots_raises_value_error(self): """ test: if destination_directory is absolute path raise exception ValueError """ root_directory : str = "/home/user/videos/root_directory" file_or_folder_to_move : str = "../inside_folder" destination_directory : str = "../destination" with self.assertRaises(ValueError) as error: script.get_absolute_path_before_moving_to_directory(root_directory, destination_directory, file_or_folder_to_move, debug_function=True) ... ... self.assertEqual(str(error.exception), 'found ../ in result path, that is not supported') # endregion def test_destination_directory_relative_path_with_double_dots_raises_value_error(self): # DONE test when root_directory is in the format ../something # DONE test when file_or_folder_to_move is in the format ../something # DONE test when destination_directory is in the format ../something # TODO handle the case where 2 of the parameters have ../something # TODO test when file_or_folder_to_move have more than one element like folder/inside_folder # should raise exception # TODO test when destination_directory have more than one element like folder/inside_folder # should raise exception ... # endregion class TestGetAbsolutePathAfterMovingToDirectory(unittest.TestCase): if __name__ == "__main__": unittest.main() ``` #### File: helpers/org_log/org_log.py ```python import os import inspect import tokenize import contextlib from varname import nameof from colorama import Fore from colorama import Style from datetime import datetime DEBUG = False DEBUG = True # comment to turn off LOGIC_PRINTS = Fore.LIGHTBLACK_EX STRING_TO_PRINT = "" DEBUG_LOGIC = False DEBUG_LOGIC = True # comment to turn off # DONE get the name of a variable in a string # see if the name changes whether its inside a function or not # # importing: from varname import nameof # # use: nameof(variable) # # if used inside a function on a parameter variable it gets the name of the parameter variable """ https://stackoverflow.com/questions/18425225/getting-the-name-of-a-variable-as-a-string """ # DONE get nesting level or indentation level """ https://stackoverflow.com/questions/39172306/can-a-line-of-python-code-know-its-indentation-nesting-level """ def get_indentation_level(): """ get indentation level of the place where it is called in the script Parameters: None Returns: indentation_level (int): the indentation level """ caller_frame = inspect.currentframe().f_back filename, caller_lineno, _, _, _ = inspect.getframeinfo(caller_frame) with open(filename) as f_n: indentation_level = 0 for token_record in tokenize.generate_tokens(f_n.readline): token_type, _, (token_lineno, _), _, _ = token_record if token_lineno > caller_lineno: break elif token_type == tokenize.INDENT: indentation_level += 1 elif token_type == tokenize.DEDENT: indentation_level -= 1 return indentation_level # TODO refactor the class to only print to the file once and keep a sting in memory # printing is taking too long, because of all opening and closing of files # TODO add line numbers to the functions, and print after the * class OrgLogger: """ Create an Org file with the statements of the script """ # def __init__(self) -> None: # dt_string = datetime.now().strftime("%Y %m %d - %H:%M:%S.%f") # script_name : str = os.path.basename(__file__) # cwd = os.getcwd() # exec_for_folder = '/executions : ' + script_name + '/' # path : str = cwd + exec_for_folder # if not os.path.isdir(path): # os.mkdir(path) # ... # self.org_file_path : str = path + dt_string + '.org' # self.org_file = open(self.org_file_path, 'w+') # self.add_line("#+TODO: IF_BEGIN IF_END | ") # self.add_line("#+TODO: ELSE_BEGIN ELSE_END | ") # self.add_line("#+TODO: FOR_BEGIN FOR_END | ") # self.add_line("#+TODO: WHILE_BEGIN WHILE_END | ") # self.add_line("#+TODO: FUNC_BEGIN FUNC_END | ") # self.add_line("#+TODO: SWITCH_BEGIN SWITCH_END | ") # #+TODO: TODO | DONE # #+TODO: REPORT BUG KNOWNCAUSE | FIXED # #+TODO: | CANCELED # self.org_file.close() def __init__(self, cwd = os.getcwd(), script_name : str = os.path.basename(__file__)) -> None: dt_string = datetime.now().strftime("%Y %m %d - %H:%M:%S.%f") self.start_time = dt_string self.script_name : str = script_name self.cwd = cwd exec_for_folder = '/executions : ' + script_name + '/' path : str = cwd + exec_for_folder if not os.path.isdir(path): os.mkdir(path) ... self.lines : str = "" self.org_file_path : str = path + dt_string + '.org' self.add_line("#+TODO: IF_BEGIN IF_END | ") self.add_line("#+TODO: ELSE_BEGIN ELSE_END | ") self.add_line("#+TODO: FOR_BEGIN FOR_END | ") self.add_line("#+TODO: WHILE_BEGIN WHILE_END | ") self.add_line("#+TODO: FUNC_BEGIN FUNC_END | ") self.add_line("#+TODO: SWITCH_BEGIN SWITCH_END | ") #+TODO: TODO | DONE #+TODO: REPORT BUG KNOWNCAUSE | FIXED #+TODO: | CANCELED def add_line(self, line_to_add : str ) -> None: """ add line to the org file with a new line character at the end """ self.lines += line_to_add # self.org_file = open(self.org_file_path, 'a+') # self.org_file.write(line_to_add + '\n') # self.org_file.close() def print_to_file(self): """ print all lines to """ dt_string = datetime.now().strftime("%Y %m %d - %H:%M:%S.%f") end_time = dt_string # d1 = datetime.datetime.strptime('2011:10:01:10:30:00', '%Y:%m:%d:%H:%M:%S') # d2 = datetime.datetime.strptime('2011:10:01:11:15:00', '%Y:%m:%d:%H:%M:%S') # diff = (d2 - d1).total_seconds() / 60 d1 = datetime.strptime(self.start_time, "%Y %m %d - %H:%M:%S.%f") d2 = datetime.strptime(end_time, "%Y %m %d - %H:%M:%S.%f") diff = (d2 - d1) self.lines += "\n* time to run script: " + str(diff) + "\n" org_file = open(self.org_file_path, 'w') org_file.write(self.lines) org_file.close() ... def add_blank_line(self) -> None: """ add line to the org file with a new line character at the end """ self.lines += "\n" def add_variable(self, variable_value, variable_name : str, indentation : int, comment : str = '' ) -> None: """ add a variable to the org file """ # string of format: * variable_name = variable_value # * is indentation level header : str = '*'*int(indentation + 1) + " " name : str = str(variable_name) value_local : str = str(variable_value) value_type : str = str(type(variable_value)) line : str = header + name + ' <- ' + value_local + '\n ( of type ' + value_type + " )" self.add_line(line) if comment: self.add_line(comment) # TODO print a table of members of an array if it is an array if type(variable_value) == list: table = self.table_of_a_list(variable_value, variable_name) self.add_line(table) ... ... def add_if_statement(self, predicate_value, predicate_name : str, indentation : int, comment : str = '', begin_or_end : str = 'begin', inside_or_outside : str = 'outside' ) -> None: """add if statement to the org file put inside the else clause Args: predicate_value ([type]): the value of the predicate of the IF statement predicate_name (str): the name of the variable that is the predicate indentation (int): the indentation level of the calling code comment (str, optional): a comment to insert after the header. Defaults to ''. begin_or_end (str, optional): wether it begins or ends the statement. Defaults to 'begin'. inside_or_outside (str, optional): wether it is inserted (in the calling code) inside or outside the actual statement """ # string of format: * predicate_name = predicate_value # * is indentation level marker : str = "IF_" + begin_or_end.upper() + " " tabs_to_add = 1 if inside_or_outside == 'outside': tabs_to_add = 2 header : str = '*'*int(indentation + tabs_to_add) + " " line : str = header + marker + str(predicate_name) + ' == ' + str(predicate_value) if marker == "IF_BEGIN ": self.add_blank_line() self.add_line(line) elif marker == "IF_END ": self.add_line(line) self.add_blank_line() if comment: self.add_line(comment) ... def add_else_statement(self, predicate_value, predicate_name : str, indentation : int, comment : str = '', begin_or_end : str = 'begin', inside_or_outside : str = 'outside' ) -> None: """add else statement to the org file put inside the else clause Args: predicate_value ([type]): the value of the predicate of the IF statement predicate_name (str): the name of the variable that is the predicate indentation (int): the indentation level of the calling code comment (str, optional): a comment to insert after the header. Defaults to ''. begin_or_end (str, optional): wether it begins or ends the statement. Defaults to 'begin'. inside_or_outside (str, optional): wether it is inserted (in the calling code) inside or outside the actual statement """ marker : str = "ELSE_" + begin_or_end.upper() + " " tabs_to_add = 1 if inside_or_outside == 'outside': tabs_to_add = 2 header : str = '*'*int(indentation + tabs_to_add) + " " line : str = header + marker + str(predicate_name) + ' == ' + str(predicate_value) if marker == "ELSE_BEGIN ": self.add_blank_line() self.add_line(line) elif marker == "ELSE_END ": self.add_line(line) self.add_blank_line() if comment: self.add_line(comment) ... ... # TODO add different functions to be put inside and outside of the loop # the outside one should print the collection # the inside one should print that the loop is beginning # and the iteration counter # and the variables used inside the loop (passed as an array) def add_for_statement(self, collection_value, collection_name : str, indentation : int, comment : str = '', begin_or_end : str ='begin', inside_or_outside : str = 'outside' ) -> None: """ add an if statement to the org file """ # string of format: * predicate_name = predicate_value # * is indentation level marker : str = "FOR_" + begin_or_end.upper() + " " tabs_to_add = 1 if inside_or_outside == 'outside': tabs_to_add = 2 header : str = '*'*int(indentation + tabs_to_add) + " " line : str = header + marker + str(collection_name) + ' <- ' + str(collection_value) collection_formatted = "" is_list = isinstance(collection_value, list) is_dict = isinstance(collection_value, dict) if is_list: collection_formatted : str = self.table_of_a_list(collection_value, collection_name) ... elif is_dict: collection_formatted : str = self.table_of_a_dictionary(collection_value, collection_name) ... if marker == "FOR_BEGIN ": self.add_blank_line() self.add_line(line) self.add_line(collection_formatted) elif marker == "FOR_END ": self.add_line(line) self.add_line(collection_formatted) self.add_blank_line() if comment: self.add_line(comment) ... def add_while_statement(self, predicate_value, predicate_name, indentation, comment : str = "", begin_or_end : str = "begin", inside_or_outside : str = 'outside' ) -> None : """adds a while statement to the org file Args: predicate_value (variable): the predicate used in the while loop predicate_name (str): the name of the variable used in the while loop indentation (int): the indentation level of the calling code comment (str, optional): a comment to be put inside the header in the org file. Defaults to "". begin_or_end (str, optional): wether or not it is the begin or end of the loop. Defaults to "begin". """ marker : str = "WHILE_" + begin_or_end.upper() + " " tabs_to_add = 1 if inside_or_outside == 'outside': tabs_to_add = 2 header : str = '*'*int(indentation + tabs_to_add) + " " line : str = header + marker + str(predicate_name) + ' <- ' + str(predicate) if marker == "FOR_BEGIN ": self.add_blank_line() self.add_line(line) elif marker == "FOR_END ": self.add_line(line) self.add_blank_line() if comment: self.add_line(comment) ... def add_function_delimeter(self, function_value, function_name, list_of_params : list, list_of_param_names : list, indentation : int, comment : str = "", begin_or_end : str = "begin", inside_or_outside : str = 'inside' ) -> None: """ add a function to the org file """ line : str = "" for index, _ in enumerate(list_of_params): param_value : str = str(list_of_params[index]) param_name : str = str(list_of_param_names[index]) line += "| " + param_name + " | " + param_value + " |\n" ... tabs_to_add : int = 1 if inside_or_outside == 'inside': tabs_to_add = 2 header : str = '*'*int(indentation + tabs_to_add) + " " marker : str = "FUNC_" + begin_or_end.upper() + " " header_line : str = header + marker + str(function_name) + ' <- ' + str(function_value) self.add_blank_line() self.add_line(header_line) self.add_line(line) self.add_blank_line() if comment: self.add_line(comment) ... def table_of_a_list(self, list_value, list_name : str ) -> None: """ returns a list(one item per line) of a list, with the list name at the top """ restult : str = "" name : str = self.add_characters_to_both_sides_of_word(list_name, "=") restult = name + "\n" # TODO put the type of each item # TODO pad zeroes for index_a, item_a in enumerate(list_value): restult += "| " + list_name + "[" + str(index_a) + "] | " + str(item_a) + " |\n" ... # TODO format the table so each collung align return restult ... def add_characters_to_both_sides_of_word(self, word : str, character : str, max_characters : int = 80, space_before_and_after : bool = True ) -> str: """ add characters to both sides of word, until max characters were reached """ result : str = "" word_length = len(word) n_of_chars_side = int((max_characters - word_length) / 2) left, right = n_of_chars_side, n_of_chars_side if space_before_and_after: result = " " + (left * character) + " " + word + " " + (right * character) + " " else: result = (left * character) + " " + word + " " + (right * character) return result ... def table_of_a_dictionary(self, dict_value, dict_name : str ) -> None: """ returns a list(one item per line) of a list, with the list name at the top """ restult : str = "" name : str = self.add_characters_to_both_sides_of_word(dict_name, "=") restult = name + "\n" # TODO pad zeroes for index_a, item_a in enumerate(dict_value): restult += "| " + dict_name + "[" + str(index_a) + "] | " + str(item_a) + " |\n" ... # TODO format the table so each collung align return restult ... # TODO add logging of exceptions # TODO add logging of classes org_logger = OrgLogger() # variables variable_in___main__ = "value of variable_in___main__" org_logger.add_variable(variable_in___main__, nameof(variable_in___main__), get_indentation_level()) # if statements predicate : bool = True org_logger.add_if_statement(predicate, nameof(predicate), get_indentation_level()) if predicate: variable_inside_1_indent_if : int = 1 org_logger.add_variable(variable_inside_1_indent_if, nameof(variable_inside_1_indent_if), get_indentation_level()) ... org_logger.add_if_statement(predicate, nameof(predicate), get_indentation_level(), begin_or_end='end') # this is the actual comment in the script variable_with_comment = "value variable_with_comment" org_logger.add_variable(variable_in___main__, nameof(variable_in___main__), get_indentation_level(), comment="this is the comment passed to the function to be printed") # for statements list_of_items = [1,2,3] org_logger.add_for_statement(list_of_items, nameof(list_of_items), get_indentation_level()) for item in list_of_items: org_logger.add_variable(item, nameof(item), get_indentation_level()) ... org_logger.add_for_statement(list_of_items, nameof(list_of_items), get_indentation_level(), begin_or_end='end') # dictionary dictionary_var = { "key1": "value1", "key2": "value2", "k:str,v:list": [1,2,3] } org_logger.add_for_statement(dictionary_var, nameof(dictionary_var), get_indentation_level()) for key, value in dictionary_var.items(): org_logger.add_variable(key, nameof(key), get_indentation_level()) org_logger.add_variable(value, nameof(value), get_indentation_level()) ... org_logger.add_for_statement(dictionary_var, nameof(dictionary_var), get_indentation_level(), begin_or_end='end') # functions def global_function(parameter_a): org_logger.add_function_delimeter(global_function, nameof(global_function), [parameter_a], [nameof(parameter_a)], get_indentation_level() ) local_variable_inside_global_function = [] org_logger.add_variable(local_variable_inside_global_function, nameof(local_variable_inside_global_function), get_indentation_level()) org_logger.add_function_delimeter(global_function, nameof(global_function), [parameter_a], [nameof(parameter_a)], get_indentation_level(), begin_or_end="end" ) ... a = 1 global_function(a) def delimeters_put_outside_of_function(): ... org_logger.add_function_delimeter(delimeters_put_outside_of_function, nameof(delimeters_put_outside_of_function), [], [], get_indentation_level() ) delimeters_put_outside_of_function() org_logger.add_function_delimeter(delimeters_put_outside_of_function, nameof(delimeters_put_outside_of_function), [], [], get_indentation_level(), begin_or_end="end" ) def main(): """ the main function """ ... if __name__ == "__main__": main() ... ``` #### File: video-manipulation/delete-concatenated-videos/delete-concatenated-videos.py ```python import pathlib import os path_to_current_directory = pathlib.Path(__file__).parent.absolute() current_directory_name = os.path.basename(path_to_current_directory ) video_extensions = ['.mp4', '.m4v', '.mkv', '.ts', '.avi', '.webm', '.flv', '.mov', '.wmv', '.vob'] def is_video(name): is_video = False for ext in video_extensions: if name.lower().endswith(ext): is_video = True return is_video # check for video file with the same name as the directory in the emmediate directory video_path = str(path_to_current_directory) + '/' + current_directory_name + '.mp4' if os.path.isfile(video_path): print(video_path) os.remove(video_path) # check for video file with the same name as the directory in every sub directory for root, dirs, files in os.walk(".", topdown=True): for name in files: if is_video(name): if name == str(current_directory_name + ".mp4"): path = str(path_to_current_directory) + '/' + root[2:] + '/' + name os.remove(path) ``` #### File: get_all_videos_in_a_directory/tests/unit_tests_get_all_videos_in_a_directory.py ```python import unittest import importlib.util # needed for importing scripts using the scripts path # cSpell:disable python_scripts_folder_path : str = "/home/jolitp/Projects/automation_scripts/" # cSpell:enable subfolder : str = "src/multiple_files_operations/get_all_videos_in_a_directory/" spec = importlib.util.spec_from_file_location("get_all_videos_in_a_directory", python_scripts_folder_path + subfolder + "get_all_videos_in_a_directory.py") get_all_videos_in_a_directory_script = importlib.util.module_from_spec(spec) spec.loader.exec_module(get_all_videos_in_a_directory_script) class UnitTest_get_all_videos_in_a_directory(unittest.TestCase): """ unit tests for .py """ # region tests (...): # region def (...): def test_given_a_relative_path_should_raise_ValueError(self): """ when the function get_all_videos_in_a_directory(...) is given a relative path it should raise a ValueError exception. """ # setup relative_path : str = "path" # act with self.assertRaises(ValueError) as error: get_all_videos_in_a_directory_script \ .get_all_videos(relative_path) # assert self.assertTrue("directory_path must be an absolute path" in str(error.exception)) # endregion def (...): # endregion tests (...): if __name__ == "__main__": print("get_all_videos_in_a_directory.__main__") unittest.main() ``` #### File: src/convert_videos/convert_videos.py ```python import os import sys from pathlib import Path import csv from collections import Counter from typing import Tuple import subprocess from subprocess import * import datetime from natsort import natsorted, ns from rich.console import Console from rich.traceback import install as install_rich_traceback from rich.panel import Panel import snoop install_rich_traceback() MAX_NUMBER_OF_FOLDERS = None CURRENT_FOLDER = None NUMBER_OF_VIDEOS_IN_EACH_FOLDER = {} CONSOLE = Console(record=True) # TODO put function in a library # region _remove_dot_from_extension def _remove_dot_from_extension( extensions ): """remove the dot from an extension Args: extensions (str or list): the extension Returns: the extension without the dot """ if isinstance(extensions, str): ext : str = extensions extensions = ext.replace(".","") return extensions # endregion _remove_dot_from_extension # TODO put function in a library # region filter_files_by_extension def filter_files_by_extension( files: list , extensions: list ): """ filter the files in a list to have only files of the given extensions Args: files (list): the list of files extensions (list): the list of extensions Returns: filtered_files (list): the list of files with only files of the given extensions """ filtered_files = [] for file in files: file_ext = os.path.splitext(file)[-1].lower() file_ext = _remove_dot_from_extension(file_ext) for extension in extensions: ext = _remove_dot_from_extension(extension).lower() # print("ext \n", ext) # print("file_ext \n", file_ext) if file_ext == ext: filtered_files.append(file) return filtered_files ... # endregion filter_files_by_extension # TODO put function in a library # region filter_subtitles def filter_subtitles( files: list ): """filter a list of files to contain only subtitle type files the filtering happens based on the extension of the files Args: files (list): the list of files Returns: videos (list): the list of subtitles """ #cSpell:words ttml dfxp subtitles_extensions = [ "srt", "vtt", "ssa", "ttml", "sbv", "dfxp", ] return filter_files_by_extension(files, subtitles_extensions) ... # endregion filter_videos # TODO put function in a library # region filter_videos def filter_videos( files: list ): """filter a list of files to contain only video type files the filtering happens based on the extension of the files Args: files (list): the list of files Returns: videos (list): the list of videos """ #cSpell:words webm vchd rmvb gifv xvid vidx video_extensions = [ "WEBM", "MPG","MP2", "MPEG", "MPE", "MPV", "OGV","OGG", "MP4", "M4P", "M4V", "AVI", "WMV", "MOV","QT", "FLV","SWF", "F4V","F4P","F4A","F4B", "VCHD", "RMVB","RM", "VOB", "MKV", "MTS", "M2TS", "TS", "MNG", "GIFV", "GIF", "DRC", "XVID", "VIDX", "ASF", "AMV", "M2V", "SVI", "3GP", "MXF", "ROQ", "NSV", "3G2", ] return filter_files_by_extension(files, video_extensions) ... # endregion filter_videos # region load_video_infos_csv ========================== load_video_infos_csv def load_video_infos_csv( file_path: str, debug_function: bool = None ): """load the values of a .csv file containing the info of all videos in the directory Args: file_path (str): the file path to the file debug_function (bool, optional): Defaults to None. Returns: (list(dict)): the values from .csv file parsed into a dictionary """ # debug_function = True # comment to toggle if debug_function: print() print("START load_video_infos_csv") print("---------=---------=---------=---------=---------=---------=---------=---------=") print("| def load_video_infos_csv( |") print(f"| file_path = {file_path}") print("| |") video_info_list = [] with open(file_path, "r") as input_file: csv_reader = csv.DictReader(input_file) for ordered_dict in csv_reader: video_info_list.append(ordered_dict) if debug_function: print() print("return video_infos = [ |") for element in video_info_list: print("| { |") for key in element: print(f"| '{key}': {element[key]}") print("| } |") print("| ]") print("| } |") print("---------=---------=---------=---------=---------=---------=---------=---------=") print("END load_video_infos_csv") return video_info_list ... # endregion load_video_infos_csv ------------------- load_video_infos_csv # region assemble_command ============================= assemble_command def assemble_command( src_path:Path, dst_path:Path, subtitle_path:Path, output_dimensions:Tuple[int,int] ): """ assemble the ffmpeg command to convert videos Args: video_info_list (dict): the data for the videos """ # ffmpeg -i input.mkv -c:v libx264 -c:a aac -s 1080:720 -aspect 16:9 output.mkv # ❯ ffmpeg -y -i input.mkv -c:v libx264 -c:a aac -s 1080:720 -aspect 16:9 -vf subtitles=input.vtt output.mkv ffmpeg_command = ["ffmpeg"] ffmpeg_flags = ["-n"] video_codec_flags = ["-c:v", "libx264"] audio_codec_flags = ["-c:a", "aac"] width, height = output_dimensions dimension_flags = ["-s", f"{width}:{height}"] subs_flags = [] if subtitle_path: subs_flags = ["-vf", f"subtitles={subtitle_path}"] src_flags = ["-i", str(src_path)] dst_flags = [ str(dst_path)] pv_command = ["pv", str(src_path), "|"] ffmpeg_command_pv_additions = ["-i","pipe:0", "-v", "warning"] final_command = [] final_command.extend(pv_command) final_command.extend(ffmpeg_command) final_command.extend(ffmpeg_command_pv_additions) final_command.extend(ffmpeg_flags) final_command.extend(src_flags) final_command.extend(video_codec_flags) final_command.extend(audio_codec_flags) final_command.extend(dimension_flags) final_command.extend(subs_flags) final_command.extend(dst_flags) return final_command # endregion assemble_command -------------------------- assemble_command # region get_src_paths ================================== get_src_paths def get_src_paths(src_data): src_paths = [] for video_info in src_data: src_path = video_info["path"] src_basename = Path(src_path) cwd = Path(os.getcwd()) src_path = cwd / src_basename src_paths.append(src_path) ... return src_paths ... # endregion get_src_paths ------------------------------- get_src_paths # region are_aspect_ratios_the_same ================== same_aspect_ratio def are_aspect_ratios_the_same(src_data): same_ar = True if src_data: first_ar = src_data[0]["aspect_ratio"] # CONSOLE.print(first_ar) for data in src_data: if data["aspect_ratio"] != first_ar: same_ar = False else: same_ar = None return same_ar # endregion are_aspect_ratios_the_same --------------- same_aspect_ratio # region get_dst_paths ================================== get_dst_paths # @snoop def get_dst_paths(video_info_list): dst_paths = [] for video_info in video_info_list: src_path = video_info["path"] src_path = str(src_path).replace("videos", "converted") src_basename = Path(src_path) cwd = Path(os.getcwd()) dst_path = cwd / src_basename dst_paths.append(dst_path) ... return dst_paths ... # endregion get_dst_paths ------------------------------- get_dst_paths # region most_common_dimension ======================= most_common_dimension def most_common_dimension(src_data:list): src_dimmensions_list = [] for data in src_data: dimmension = data["dimensions"] src_dimmensions_list.append(dimmension) c = Counter(src_dimmensions_list) most_common = c.most_common(1) most_common_dimension = most_common[0][0] return most_common_dimension # endregion most_common_dimension -------------------- most_common_dimension # region simplify_data ================================== simplify_data def simplify_data(video_info_list:dict): src_videos_data = [] for video_info in video_info_list: src_video_path = Path(video_info["full_path"]) src_video_width = int(video_info["width"]) src_video_height = int(video_info["height"]) src_video_dimensions = (src_video_width, src_video_height) src_video_ar = float(video_info["aspect_ratio"]) src_video_arf:str = video_info["aspect_ratio_fraction"] src_video_arf = src_video_arf.split(":") src_video_arf = (int(src_video_arf[0]), int(src_video_arf[1])) src_data = { "path" : src_video_path, "dimensions" : src_video_dimensions, "aspect_ratio" : src_video_ar, "aspect_ratio_fraction" : src_video_arf, } src_videos_data.append(src_data) return src_videos_data # endregion simplify_data ----------------------------- simplify_data # region get_subs_path_from_video_path == get_subs_path_from_video_path def get_subs_path_from_video_path(src_video_path:Path): cwd = os.getcwd() videos_folder_path = src_video_path.parent videos_folder_basename = os.path.basename(videos_folder_path) subs_folder_basename = Path(videos_folder_basename.replace("videos", "subs")) subs_folder_path = cwd / subs_folder_basename subsubtitle_file = None subs_folder_exists = os.path.exists(subs_folder_path) if subs_folder_exists: src_video_basename = os.path.basename(src_video_path) basename_no_ext = os.path.splitext(src_video_basename)[0] # search for filename in subs directory files_in_subfolder = os.listdir(subs_folder_path) for file in files_in_subfolder: if basename_no_ext in file: subsubtitle_file = subs_folder_path / Path(file) return subsubtitle_file else: return None # endregion get_subs_path_from_video_path -- get_subs_path_from_video_path # region create_converted_folder ======================= create_converted_folder def create_converted_folder(videos_folder_path:Path): videos_folder_basename = os.path.basename(videos_folder_path) videos_folder_parent = videos_folder_path.parent converted_basename = videos_folder_basename.replace("videos", "converted") converted_path = videos_folder_parent / Path(converted_basename) if not os.path.exists(converted_path): os.mkdir(converted_path) # endregion create_converted_folder -------------------- create_converted_folder # region print_entire_line ================================== print_entire_line def print_entire_line( text:str, foreground:str="white", background:str="black", ): console_width = CONSOLE.width remaining_width = console_width - len(text) output_style = "[" + foreground + " on " + background + "]" CONSOLE.print(output_style + \ " "*int(remaining_width/2) + \ text + \ " "*int(remaining_width/2) + \ "[/]") # endregion print_entire_line ----------------------------------- print_entire_line # region print_info_panel ============================= print_info_panel def print_info_panel( video_data, basename, src_path, dst_path, subs_path, output_dimension ): # print info panel conversion_info = "" conversion_info += "Paths:\n" conversion_info += \ f"[yellow]video name[/]: [cyan]{basename}[/]\n" conversion_info += \ f"[yellow]source path[/]: [cyan]{src_path}[/]\n" conversion_info += \ f"[yellow]destination path[/]: [cyan]{dst_path}[/]\n" conversion_info += \ f"[yellow]subs path[/]: [cyan]{subs_path}[/]\n" conversion_info += "\nData:\n" for data in video_data: conversion_info += \ f"[yellow]{data}[/]: [cyan]{video_data[data]}[/]\n" conversion_info += \ f"[yellow]output dimension[/]: [cyan]{output_dimension}[/]" CONSOLE.print(Panel(conversion_info, title="video info")) ... # endregion print_info_panel --------------------------- print_info_panel # region print_conversion_summary ================== print_conversion_summary def print_conversion_summary(folder_path,index): # print panel with conversion summary current_video_number = index + 1 videos_converted_string = "" number_of_videos_in_this_folder = \ NUMBER_OF_VIDEOS_IN_EACH_FOLDER[folder_path]["number_of_videos"] remaining_number_of_videos = \ number_of_videos_in_this_folder - current_video_number converted_videos_metter = "●" * (index) current_video_metter = "◐" remaining_video_metter = "○" * remaining_number_of_videos videos_converted_string += converted_videos_metter + \ current_video_metter + remaining_video_metter CONSOLE.print(Panel(videos_converted_string, title="videos converted")) # endregion print_conversion_summary --------------- print_conversion_summary # region convert_video ==================================== convert_video def convert_video( index, videos_data, folder_path, src_paths, dst_paths, output_dimension ): max_videos = len(videos_data) current_video_number = index + 1 src_path = src_paths[index] subs_path = get_subs_path_from_video_path(src_path) dst_path = dst_paths[index] create_converted_folder(folder_path) command = assemble_command(src_path, dst_path, subs_path, output_dimension) cmd_string = subprocess.list2cmdline(command) src_basename = os.path.basename(src_path) msg = f"converting: {src_basename}" print_entire_line(msg, "#03014f", "#cccccc") print_info_panel(videos_data[index], src_basename, src_path, dst_path, subs_path, output_dimension) new_cmd_string = "" for part in command: part = add_random_color(part,min=120) new_cmd_string += " " + part + "\n" CONSOLE.print(Panel(new_cmd_string, title="command parts")) CONSOLE.print(Panel(cmd_string, title="command called")) print_conversion_summary(folder_path,index) print_progress_bar( "folder", CURRENT_FOLDER, MAX_NUMBER_OF_FOLDERS, foreground="bold #000000", background="#aaaaaa") print_progress_bar( "video", current_video_number, max_videos, foreground="bold #000000", background="#aaaaaa") os.system(cmd_string) ... # endregion convert_video ------------------------------- convert_video # region process_folder ================================== process_folder def process_folder( folder_path:Path, debug_function = None ): """do the actual logic of the script on a specified folder Args: folder_path (Path): the path to the folder debug_function (bool, optional): Defaults to None. """ # debug_function = True # comment to toggle if debug_function: print() print("START === process_folder() === START ") print() print("def process_folder(") print(f"| folder_path:Path = {folder_path}") print() csv_file_path = folder_path / ".generated/video_infos.csv" csv_file_exists = os.path.isfile(csv_file_path) videos_data = None if csv_file_exists: videos_data = load_video_infos_csv(csv_file_path) if videos_data: src_data = simplify_data(videos_data) src_paths = get_src_paths(src_data) dst_paths = get_dst_paths(src_data) are_same_ar = are_aspect_ratios_the_same(src_data) if are_same_ar: output_dimension = most_common_dimension(src_data) for index, _ in enumerate(videos_data): convert_video( index, videos_data, folder_path, src_paths, dst_paths, output_dimension) else: CONSOLE.print("[bold red]the aspect ratio of videos are not the same![/]") with open(folder_path / "_000_different_aspect_ratio", "w") as file: file.write("different_aspect_ratio") output_dimension = most_common_dimension(src_data) for index, _ in enumerate(videos_data): convert_video( index, videos_data, folder_path, src_paths, dst_paths, output_dimension) else: CONSOLE.print(f"[bold red]there are no videos in {folder_path}[/]") else: CONSOLE.print("[bold red]no csv file found at[/]: \n{}"\ .format(csv_file_path)) if debug_function: print() print("END === process_folder() === END") print() # endregion ============= ----------------------------- process_folder # TODO add to function library # region add_color =========================================== add_color def add_color(color, msg): return "[" + color + "]" + msg + "[/]" # endregion add_color ---------------------------------------- add_color # TODO add to function library # region add_random_color =========================================== add_random_color def add_random_color(msg, min=0,max=255): import random color = "" r = lambda: random.randint(min,max) color = '#%02X%02X%02X' % (r(),r(),r()) return "[" + color + "]" + msg + "[/]" # endregion add_random_color ---------------------------------------- add_random_color # region print_progress_bar ============================== print_progress_bar def print_progress_bar(msg, current_value, total_value, background, foreground): text = f"{msg} : {current_value}/{total_value}" console_width = CONSOLE.width remaining_width = console_width - len(text) output_style = "[" + foreground + " on " + background + "]" filled = "▰" empty = "▱" section_length = console_width / total_value filled_length = section_length * current_value empty_length = console_width - filled_length CONSOLE.print(output_style + \ " "*int(remaining_width/2) + \ text + \ " "*int(remaining_width/2) + \ "[/]") CONSOLE.print(output_style + \ filled*int(filled_length)+ \ empty*int(empty_length) + \ "[/]") # endregion print_progress_bar ----------------------------- print_progress_bar # region get_number_of_videos_in_folders ============= get_number_of_videos_in_folders def videos_converted_in_each_folder(): global NUMBER_OF_VIDEOS_IN_EACH_FOLDER for key,value in NUMBER_OF_VIDEOS_IN_EACH_FOLDER.items(): CONSOLE.print("key:{}\nvalue:{}".format(key,value)) ... ... # endregion get_number_of_videos_in_folders --------- get_number_of_videos_in_folders # region get_number_of_videos_in_folders ============= get_number_of_videos_in_folders def get_number_of_videos_in_folders(videos_folders:list): global NUMBER_OF_VIDEOS_IN_EACH_FOLDER for video_folder in videos_folders: this_folder_items = os.listdir(video_folder) this_folder_videos = filter_videos(this_folder_items) number_of_videos_in_this_folder = len(this_folder_videos) data = { "number_of_videos": number_of_videos_in_this_folder, } NUMBER_OF_VIDEOS_IN_EACH_FOLDER[video_folder] = data ... # endregion get_number_of_videos_in_folders --------- get_number_of_videos_in_folders # region main ========================================================= main def main( ): """main function from script """ cwd = Path(os.getcwd()) all_items = os.listdir(cwd) all_videos_folders = [] for item in all_items: if os.path.isdir(item): if "videos" in item: folder_path = cwd / Path(item) all_videos_folders.append(folder_path) global MAX_NUMBER_OF_FOLDERS MAX_NUMBER_OF_FOLDERS = len(all_videos_folders) # for index, folder in enumerate(all_videos_folders): from rich.progress import Progress length = len(all_videos_folders) # TODO put the amount of videos in each folder into a global variable # to use in the summary before converting get_number_of_videos_in_folders(all_videos_folders) for index, folder in enumerate(all_videos_folders): global CURRENT_FOLDER CURRENT_FOLDER = index + 1 print_progress_bar( "folder", CURRENT_FOLDER, MAX_NUMBER_OF_FOLDERS, foreground="bold #000000", background="#cccccc") process_folder(folder) # progress.update(process_folder_task, advance=1) # endregion main ------------------------------------------------------ main # region current_test ================================================= current_test def current_test(): input = [ (1920, 1080), (1920, 1080), (1080, 720), ] CONSOLE.print("input {}".format(input)) expected_output = (1920, 1080) CONSOLE.print("expected_output {}".format(expected_output)) actual_output = most_common_dimension(input) CONSOLE.print("actual_output {}".format(actual_output)) assertion = expected_output == actual_output CONSOLE.print("assertion {}".format(assertion)) # endregion current_test ---------------------------------------------- current_test # TODO put on library # region change_background_of_html ============================ change_background_of_html def change_background_of_html(html_file): lines = None with open(html_file, "r") as file: lines = file.readlines() for index, current_line in enumerate(lines): if " background-color: #ffffff;\n" in current_line: lines[index] = current_line.replace("#ffffff","#000000") ... ... with open(html_file, "w") as file: for line in lines: file.write(line) ... # endregion change_background_of_html ------------------------- change_background_of_html # region if __name__ == "__main__": =============== if __name__ == "__main__": if __name__ == "__main__": print() msg = "START call_command_in_all_folders.py START" print(msg) print() main() cwd = Path(os.getcwd()) now = datetime.datetime.now() now = str(now).split(".")[0] save_path = cwd / ".generated" / f"{now}.html" CONSOLE.print("saving output to:",save_path) from rich.terminal_theme import TerminalTheme CONSOLE.save_html(save_path) change_background_of_html(save_path) # current_test() msg = "END call_command_in_all_folders.py END" print() print(msg) print() # endregion if __name__ == "__main__": ------------ if __name__ == "__main__": ``` #### File: src/separate_torrent_types/separate_torrent_types.py ```python import os def main(): cwd = os.getcwd() print(cwd) ... if __name__ == "__main__": print() msg = "START separate_torrent_types START" print(msg) main() msg = "END separate_torrent_types END" print(msg) print() ... ``` #### File: src/separate_torrent_types/tests_separate_torrent_types.py ```python import separate_torrent_types # from separate_torrent_types.separate_torrent_types import main def main(): # separate_torrent_types.main() ... if __name__ == "__main__": print() msg = "START tests_separate_torrent_types START" print(msg) main() msg = "END tests_separate_torrent_types END" print(msg) print() ... ``` #### File: src/separate_videos_12_hours/separate_videos_12_hours.py ```python import os import csv from pathlib import Path import time import datetime from natsort import natsorted, ns from rich.console import Console from rich.table import Table from rich.traceback import install import snoop install() CONSOLE = Console(record=True) # region load_video_infos_csv # region load_video_infos_csv header def load_video_infos_csv( file_path: str, debug_function: bool = None ): # endregion load_video_infos_csv header # region load_video_infos_csv docstring """load the values of a .csv file containing the info of all videos in the directory Args: file_path (str): the file path to the file debug_function (bool, optional): Defaults to None. Returns: (list(dict)): the values from .csv file parsed into a dictionary """ # endregion load_video_infos_csv docstring # region load_video_infos_csv implementation # debug_function = True # comment to toggle video_info_list = [] with open(file_path, "r") as input_file: csv_reader = csv.DictReader(input_file) for ordered_dict in csv_reader: video_info_list.append(ordered_dict) return video_info_list # endregion load_video_infos_csv implementation # endregion load_video_infos_csv # region separate_videos_in_sections # region separate_videos_in_sections header # @snoop(watch_explode=['video_data']) def separate_videos_in_sections( video_data_list: list ): # endregion separate_videos_in_sections header # region separate_videos_in_sections docstring """separate the videos in sections of 12 hours or less duration 43200 seconds == 12 hours Args: video_data_list (list): the list of video data Returns: (list) : a list of sections """ # endregion separate_videos_in_sections docstring # region separate_videos_in_sections implementation sections = [] # 12 hours in sections is actually 43200 # use less to be sure _12_hours_in_seconds = 43000 _12_hours_in_string = "12:00:00" acc_duration = 0.0 section = [] for index, video_data in enumerate(video_data_list): # order = video_data["alphabetical_order"] duration = float(video_data["duration_seconds"]) # dur_h = video_data["duration_hours"] # dur_h_obj = time.strptime(dur_h, '%H:%M:%S') acc_duration += duration acc_dur_h = datetime.timedelta(seconds=acc_duration) if acc_duration < _12_hours_in_seconds: section.append(index) last_index = len(video_data_list) -1 if index == last_index: sections.append(section) ... else: sections.append(section) acc_duration = duration section = [index] last_index = len(video_data_list) -1 if index == last_index: sections.append(section) ... ... return sections ... # endregion separate_videos_in_sections implementation # endregion separate_videos_in_sections # region main # @snoop def main(): cwd = Path(os.getcwd()) print(cwd) all_nested_videos = [] videos_folder_path = cwd / "videos" csv_file_path = None move_locations = [] diretories_to_create = [] videos_folder_exists = os.path.isdir(videos_folder_path) if videos_folder_exists: all_nested_videos = os.listdir(videos_folder_path) csv_file_path = \ videos_folder_path / ".generated/video_infos.csv" csv_file_exists = os.path.isfile(csv_file_path) if csv_file_exists: video_data_list = load_video_infos_csv(csv_file_path) sections = separate_videos_in_sections(video_data_list) for index, section in enumerate(sections): videos_folder_numbered_path = \ Path(str(videos_folder_path) + str(index + 1)) diretories_to_create.append(videos_folder_numbered_path) for index in section: element_data = video_data_list[index] full_path = Path(element_data["full_path"]) parent_path = full_path.parent basename = Path(os.path.basename(full_path)) src = full_path dst = videos_folder_numbered_path / basename move_locations.append((src, dst)) ... ... else: CONSOLE.print() CONSOLE.print("[red]There is no videos/ folder[/red]") CONSOLE.print() for dir in diretories_to_create: if not os.path.isdir(dir): CONSOLE.print("creating directory:\n{}"\ .format(dir)) os.mkdir(dir) ... else: CONSOLE.print("trying to create directory:\n{}"\ .format(dir)) CONSOLE.print("directory already exists.", style="bold red") ... ... for loc in move_locations: src, dst = loc basename = os.path.basename(src) print() CONSOLE.print("moving \"{}\"\nfrom: \"{}\"\nto: \"{}\""\ .format(basename, src, dst)) os.rename(src, dst) ... # endregion main # region if __name__ == "__main__": if __name__ == "__main__": print() msg = "START concatenate_videos.py START" print(msg) print() try: main() except: CONSOLE.print_exception() msg = "END concatenate_videos.py END" print() print(msg) print() ... # endregion if __name__ == "__main__": ```
{ "source": "jolitti/rizoma-utils", "score": 3 }
#### File: src/rizomath/interval.py ```python from dataclasses import dataclass @dataclass(frozen=True) class Interval: start:int end:int def __post_init__(self): """Assures correct ordering of start and end""" a,b = self.start,self.end object.__setattr__(self,"start",min(a,b)) object.__setattr__(self,"end",max(a,b)) def clone(self) -> "Interval": return Interval(self.start,self.end) def get_length(self) -> int: """ [DEPRECATED] Length of the interval, ends included """ return len(self) def __len__(self) -> int: return self.end - self.start + 1 def __lt__(self,other:"Interval") -> bool: """ Is this interval completely contained within other? (no ovelapping border) """ if not isinstance(other,Interval): return False a,b,c,d = self.tup() + other.tup() return a>c and b<d def __le__(self,other:"Interval") -> bool: """ Is this interval completely contained within other? (allows ovelapping border) """ if not isinstance(other,Interval): return False a,b,c,d = self.tup() + other.tup() return a>=c and b<=d def tup(self) -> tuple[int,int]: """Get tuple of extremes""" return (self.start,self.end) def __and__(self,other:"Interval") -> "Interval": """ Get the intersection of the two intervals, as an Interval Returns None if the two intervals don't intersect """ if not isinstance(other,Interval): return None a,b,c,d = self.tup() + other.tup() if b<c or d<a: return None new_min, new_max = max(a,c),min(b,d) return Interval(new_min,new_max) def __sub__(self,other:"Interval") -> list["Interval"]: """ List of 0-2 intervals that belong to this Interval, but not to the other """ if not isinstance(other,Interval): return [] # Exclude non-intervals if self <= other: return [] # Exclude cases when self is completely in other a,b,c,d = self.tup() + other.tup() # Get quick refs for interval limits if b<c or d<a: return [self.clone()] # Cover cases where intvs don't overlap if other < self: # Cover cases where there's exactly two sub-intervals return [Interval(a,c-1),Interval(d+1,b)] else: if d < b: return [Interval(d+1,b)] else: return [Interval(a,c-1)] def segment(self,other:"Interval") -> tuple["Interval","Interval","Interval"]: """ Get 3-tuple of (Interval|None) representing (leftmost,a&b,rightmost) """ if not isinstance(other,Interval): return (None, self.clone(), None) a,b,c,d = self.tup() + other.tup() # TODO def __str__(self) -> str: """Common interval representation (e.g. '1..5')""" return f"{self.start}..{self.end}" def str_to_iv(s:str) -> Interval: """Turn strings of the type "1..5" into an interval""" _s = s.strip() a,b,*l = _s.split("..") a,b = map(int,[a,b]) return Interval(a,b) ```
{ "source": "joliva/nlp-nltk-demo", "score": 2 }
#### File: nlp-nltk-demo/code/parse.py ```python import re from nlputils import * from udb import * ############################################################################### ### TDT4 internal format: ### ### format = 'TDT4' ### bmeta = { sfile, ... } ### chunks = [] ### chunk = [ text, cmeta={ stype,slang,sorg,date,btopic,ntopic, ... } ] ### ### Notes: ### 1. text: text contained in the <TEXT>..</TEXT> element ### 2. cmeta{}: dictionary for storing chunk meta-data ### 3. bmeta{}: dictionary for storing bundle meta-data ### ############################################################################### ### regex templates to extract fields from TDT4 source data RX_DOC = "<DOC>(.*?)</DOC>" RX_STYPE = "<SOURCE_TYPE>(.*?)</SOURCE_TYPE>" RX_SLANG = "<SOURCE_LANG>(.*?)</SOURCE_LANG>" RX_SORG = "<SOURCE_ORG>(.*?)</SOURCE_ORG>" RX_DDATE = "<DOC_DATE>(.*?)</DOC_DATE>" RX_BTOPIC = "<BROAD_TOPIC>(.*?)</BROAD_TOPIC>" RX_NTOPIC = "<NARROW_TOPIC>(.*?)</NARROW_TOPIC>" RX_TEXT = "<TEXT>(.*?)</TEXT>" ############################################################################### ### Parse TDT4 source content and return as a UDB encapsulated TDT4 object ############################################################################### def parse_to_udb (src_data, src_mdata, options): # options are unused at this time bundle = udb() bundle.format = 'TDT4' # TDT4 internal format bundle.bmeta = src_mdata ### extract chunks and meta data and insert into UDB bundle ### interate to extract DOC elements rx_doc = re.compile(RX_DOC,re.DOTALL) iter = rx_doc.finditer(src_data) for match in iter: doc = match.group(1) chunk=[] cmeta = {} # cmeta dictionary ### find SOURCE_TYPE element rx_stype = re.compile(RX_STYPE, re.DOTALL) stype = rx_stype.search(doc) if stype != None: cmeta['stype'] = stype.group(1) else: cmeta['stype'] = None print "Warning: SOURCE_TYPE missing in DOC" ### find SOURCE_LANG element rx_slang = re.compile(RX_SLANG, re.DOTALL) slang = rx_slang.search(doc) if slang != None: cmeta['slang'] = slang.group(1) else: cmeta['slang'] = None print "Warning: SOURCE_LANG missing in DOC" ### find SOURCE_ORG element rx_sorg = re.compile(RX_SORG, re.DOTALL) sorg = rx_sorg.search(doc) if sorg != None: cmeta['sorg'] = sorg.group(1) else: cmeta['sorg'] = None print "Warning: SOURCE_ORG missing in DOC" ### find DOC_DATE element rx_ddate = re.compile(RX_DDATE, re.DOTALL) ddate = rx_ddate.search(doc) if ddate != None: cmeta['ddate'] = ddate.group(1) else: cmeta['ddate'] = None print "Warning: DOC_DATE missing in DOC" ### find BROAD_TOPIC element rx_btopic = re.compile(RX_BTOPIC, re.DOTALL) btopic = rx_btopic.search(doc) if btopic != None: cmeta['btopic'] = btopic.group(1) else: cmeta['btopic'] = None print "Warning: BROAD_TOPIC missing in DOC" ### find NARROW_TOPIC element rx_ntopic = re.compile(RX_NTOPIC, re.DOTALL) ntopic = rx_ntopic.search(doc) if ntopic != None: cmeta['ntopic'] = ntopic.group(1) else: cmeta['ntopic'] = None print "Warning: NARROW_TOPIC missing in DOC" ### find TEXT element rx_text = re.compile(RX_TEXT, re.DOTALL) text = rx_text.search(doc) if text != None: chunk_text = text.group(1) else: chunk_text = None print "Warning: TEXT missing in DOC" chunk.append(chunk_text) chunk.append(cmeta) bundle.chunks.append(chunk) return bundle ```
{ "source": "jolivaresc/corpus", "score": 2 }
#### File: Corpus/controllers/default.py ```python import os,sys def index(): #response.flash = os.getcwd() return locals() def other(): ''' esto iría en index <form action="{{=URL('other')}}"> Your name? <input name="y_name"/> <br> <input type="submit"/> </form> x = request.args y = request.vars return "totototoo r=%s %s" % (x,SPAN(y)) path = os.getcwd() response.flash = path model_tf = tfIdf() l = model_tf.search(request.vars.word) probs={} for i,j in l: probs[i]=j #ver como recibir argumentos response.flash = 'Frase: '+request.vars.word message = 'WORD %s!' % (request.vars.word) return dict(form=sorted(probs.items(),reverse=True)) ''' response.flash = os.getcwd()+'/applications/Corpus' path=os.getcwd() sys.path.append(os.getcwd()+'/applications/Corpus/controllers') sys.path.append(os.getcwd()+'/applications/Corpus/controllers/') os.chdir(os.getcwd()+'/applications/Corpus/controllers/') from tfIdf import tfIdf model = tfIdf() os.chdir(path) l = model.search(request.vars.Palabra) probs={} for i,j in l: if i != 0: probs[i]=j os.chdir(path)# message = 'WORD %s!' % (request.vars.Palabra) return dict(form=sorted(probs.items(),reverse=True)) def infmutua(): response.flash = os.getcwd() path=os.getcwd() sys.path.append(os.getcwd()+'/applications/Corpus/controllers') os.chdir(os.getcwd()+'/applications/Corpus/controllers') from MI import MI model = MI() mi = model.eval(request.vars.Palabra1,request.vars.Palabra2) message = 'WORD %s %s' % (request.vars.Palabra1,request.vars.Palabra2) os.chdir(path) return dict(mi=mi) def colocaciones():#concordancias response.flash = os.getcwd() message=request.vars.Query path=os.getcwd() sys.path.append(os.getcwd()+'/applications/Corpus/controllers') sys.path.append(os.getcwd()+'/applications/Corpus/controllers/') os.chdir(os.getcwd()+'/applications/Corpus/controllers') from concordance import get res = get(request.vars.Query).split('\n') os.chdir(path) return dict(res=res) def feelings(): response.flash = os.getcwd() message=request.vars.Palabra path=os.getcwd() sys.path.append(os.getcwd()+'/applications/Corpus/controllers') sys.path.append(os.getcwd()+'/applications/Corpus/controllers/') os.chdir(os.getcwd()+'/applications/Corpus/controllers') from Bayes import Bayes model = Bayes() tmp = model.evalStr(request.vars.Palabra) os.chdir(path) return dict(tmp=tmp) def btn1(): #response.flash= os.getcwd()+'/Backend' form = SQLFORM.factory(Field('Palabra',requires=IS_NOT_EMPTY())).process() if form.accepted: redirect(URL('other',vars={'Palabra':form.vars.Palabra})) return locals() def btn2(): form = SQLFORM.factory(Field('Palabra1',requires=IS_NOT_EMPTY()), Field('Palabra2',requires=IS_NOT_EMPTY())).process() if form.accepted: redirect(URL('infmutua',vars={'Palabra1':form.vars.Palabra1,'Palabra2':form.vars.Palabra2})) return dict(form=form) def btn3(): form = SQLFORM.factory(Field('Query',requires=IS_NOT_EMPTY())).process() if form.accepted: redirect(URL('colocaciones',vars={'Query':form.vars.Query})) return dict(form=form) def btn4(): response.flash= os.getcwd()+'/Backend' form = SQLFORM.factory(Field('Palabra',requires=IS_NOT_EMPTY())).process() if form.accepted: redirect(URL('feelings',vars={'Palabra':form.vars.Palabra})) return locals() def btn5(): return locals() def user(): """ exposes: http://..../[app]/default/user/login http://..../[app]/default/user/logout http://..../[app]/default/user/register http://..../[app]/default/user/profile http://..../[app]/default/user/retrieve_password http://..../[app]/default/user/change_password http://..../[app]/default/user/bulk_register use @auth.requires_login() @auth.requires_membership('group name') @auth.requires_permission('read','table name',record_id) to decorate functions that need access control also notice there is http://..../[app]/appadmin/manage/auth to allow administrator to manage users """ return dict(form=auth()) @cache.action() def download(): """ allows downloading of uploaded files http://..../[app]/default/download/[filename] """ return response.download(request, db) def call(): """ exposes services. for example: http://..../[app]/default/call/jsonrpc decorate with @services.jsonrpc the functions to expose supports xml, json, xmlrpc, jsonrpc, amfrpc, rss, csv """ return service() ``` #### File: Corpus/controllers/MI.py ```python from numpy import log2 from pickle import load """ * Clase que se encarga de ver la información mutua que hay entre dos tokens * sirve para determinar si es colocación o no """ class MI: def __init__(self): self.words = load(open("./models/words.d",'r')) self.ngrams = load(open("./models/ngrams.d","r")) self.count = self.count() def count(self): cnt = 0 for i in self.words: cnt += self.words[i] return cnt def eval(self,str1,str2): try: sup = float(self.ngrams[str1+"_"+str2])/float(self.count) inf = float(self.words[str1]) * float(self.words[str2]) if inf <= 0 or sup <= 0: return 0 else: inf = inf/(float(self.count)*float(self.count)) return log2(sup/inf) except: return 0 ``` #### File: Corpus/controllers/trainer.py ```python from collections import defaultdict from collections import Counter from numpy import log10 from pickle import dump def toFile(name,obj): file = open(name,'w') dump(obj,file) file.close() def p(di,lenWords,classFrec=50,l=0.01): for i in di: di[i] = (float(di[i])+l)/(float(classFrec)+(float(lenWords)*l)) return di corpus = open("./corpus/fullcorpus.vrt",'r').read() corpus = corpus.split("\n") N = 100.0 dtf = defaultdict(set) sarcFrec = set() positivo = {} negativo = {} sarcasmo = {} words = [] doc = 0 tf = {} idf = {} docs = {} for i in corpus: if i.startswith('<doc'): doc +=1 tmp = i.split("\"") docs[doc] = tmp[1] tf[str(doc)] = 0 elif i.startswith('</doc'): nothing = "" else: tmp = i.split("\t") tf[str(doc)] += 1 words.append(tmp[0]) if doc < 51: if tmp[0] in negativo: negativo[tmp[0]] += 1 else: negativo[tmp[0]] = 1 else: if tmp[0] in positivo: positivo[tmp[0]] += 1 else: positivo[tmp[0]] = 1 if tmp[3].__eq__("Sarcasmo"): sarcFrec.add(doc) if tmp[0] in sarcasmo: sarcasmo[tmp[0]] += 1 else: sarcasmo[tmp[0]] = 1 dtf[tmp[0]].add(doc) if tmp[0]+'_'+str(doc) in tf: tf[tmp[0]+'_'+str(doc)] += 1 else: tf[tmp[0]+'_'+str(doc)] = 1 ngrams = [] for i in range(0,len(words)-1): ngrams.append(words[i]+"_"+words[i+1]) for i in dtf: tmp = len(list(dtf[i])) idf[i] = log10(N/float(tmp)) l = len(list(set(words))) ngrams = Counter(ngrams) words = Counter(words) positivo = p(positivo,l) negativo = p(negativo,l) sarcasmo = p(sarcasmo,l,classFrec=len(list(sarcFrec))) toFile("./models/ngrams.d",ngrams) toFile("./models/words.d",words) toFile("./models/tf.d",tf) toFile("./models/idf.d",idf) toFile("./models/index.d",docs) toFile("./models/pos.d",positivo) toFile("./models/neg.d",negativo) toFile("./models/sar.d",sarcasmo) ```
{ "source": "jolivaresc/Flask_newbie", "score": 2 }
#### File: jolivaresc/Flask_newbie/data.py ```python def Articles(): articles = [ { 'id':1, 'title':'Article one', 'body':'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.', 'author':'jloc', 'create':'15-06-2017' }, { 'id':2, 'title':'Article two', 'body':'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.', 'author':'colj', 'create':'15-02-2017' }, { 'id':3, 'title':'Article Three', 'body':'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.', 'author':'jloc', 'create':'10-06-2017' } ] return articles ``` #### File: jolivaresc/Flask_newbie/Logger.py ```python from time import strftime def Logger(msg,app): logger = open('logger.dat','a+') logger.write('['+strftime("%c")+'] '+ msg +'\n') app.logger.info(msg) logger.close() ```
{ "source": "jolivaresc/simple_perceptron", "score": 3 }
#### File: jolivaresc/simple_perceptron/perceptron.py ```python from random import choice,random import numpy as np import matplotlib.pyplot as plt def set_data(target): x = [np.array([0,0]), np.array([0,1]), np.array([1,0]), np.array([1,1])] bias = np.array([1 for _ in range(4)]) # inputs: [x1 | x0 | bias] inputs = np.column_stack((x,bias)) # return data: [x1 | x0 | bias | target] return [(np.array(i),j) for i,j in zip(inputs,target)] heaviside = lambda x: 1 if x >= 0 else -1 def train(target,w,eta=0.1,epochs=40): # Activation function errors = [] #w_tmp = [] # Updating weights for _ in range(epochs): x,expected = choice(target) result = np.dot(w,x) error = expected - heaviside(result) errors.append(error) w += eta*error*x return [w,error] def predict(inputs,w): # inputs: X + bias return 1 if np.dot(inputs,w) >= 0 else -1 def run(): # output for a nand gate target = np.array([1,1,1,-1]) # Random weights w = np.array([random() for _ in range(3)]) print("random weights: {0}".format(w)) nand = set_data(target) w,error = train(nand,w,eta=0.1,epochs=65) print("weights updated: {0}".format(w)) print("Predicting\tAproximation\tResult") print("{0}\t\t{1:.5f}\t\t{2}".format([0,0],np.dot([0,0,1],w),predict([0,0,1],w))) print("{0}\t\t{1:.5f}\t\t{2}".format([0,1],np.dot([0,1,1],w),predict([0,1,1],w))) print("{0}\t\t{1:.5f}\t\t{2}".format([1,0],np.dot([1,0,1],w),predict([1,0,1],w))) print("{0}\t\t{1:.5f}\t{2}".format([1,1],np.dot([1,1,1],w),predict([1,1,1],w))) if __name__ == '__main__': run() ```
{ "source": "joliveros/gdax-websocket", "score": 2 }
#### File: gdax-websocket/gdax_websocket/instrument.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from gdax_websocket import constants from gdax_websocket.websocket import GdaxWebsocket from pyee import EventEmitter import json import alog __all__ = ['Instrument'] class Instrument(EventEmitter): def __init__(self, symbol='BTC-USD', channels=[], shouldAuth=False, max_table_length=constants.MAX_TABLE_LEN, websocket=None): EventEmitter.__init__(self) self.channels = channels if max_table_length > 0: self.max_table_length = max_table_length else: self.max_table_length = constants.MAX_TABLE_LEN self.shouldAuth = shouldAuth self.symbol = symbol self.websocket = websocket self.data = { 'orderBookL2': [], 'instrument': [] } channels = self.channels symbol = self.symbol shouldAuth = self.shouldAuth websocket = self.websocket self.websocket = GdaxWebsocket() self.websocket.connect( shouldAuth=shouldAuth, websocket=websocket ) self.websocket.on('subscribe', self.on_subscribe) self.websocket.on('latency', self.on_latency) self.channels = [] self.subscribe_to_channels(channels) self.subscribe_to_instrument_channels(symbol, channels) self.secureChannels = [] if shouldAuth: self.subscribe_to_secure_instrument_channels(symbol, channels) def on_latency(self, message): alog.debug("# on_latency") alog.debug(message) latency = [] if 'latency' not in self.data: self.data['latency'] = [] if len(self.data['latency']) > self.max_table_length - 1: self.data['latency'].pop() latency.append(message) self.data['latency'] = latency # calculate average latency avg_latency = sum(latency)/len(latency) self.emit('latency', avg_latency) alog.debug("## avg latency: %s" % (avg_latency)) def get_latency(self): return self.data['latency'] def subscribe_to_channels(self, channels): # Subscribe to all channels by default for channel in constants.CHANNELS: if len(channels) > 0 and channel not in channels: channel = None if channel: handler_name = "on_%s" % (channel) handler = {} if hasattr(self, handler_name): handler = getattr(self, handler_name) else: handler = self.on_channel self.websocket.subscribe(channel, handler) def subscribe_to_secure_channels(self, channels): # Subscribe to all channels by default for channel in constants.SECURE_CHANNELS: if len(channels) > 0 and channel not in channels: channel = None if channel: handler_name = "on_%s" % (channel) handler = {} if hasattr(self, handler_name): handler = getattr(self, handler_name) else: handler = self.on_channel self.websocket.subscribe(channel, handler) def subscribe_to_instrument_channels(self, symbol, channels): # Subscribe to all channels by default for channel in constants.INSTRUMENT_CHANNELS: if len(channels) > 0 and channel not in channels: channel = None if channel: self.subscribe_actions_for_channel(channel, symbol) def subscribe_to_secure_instrument_channels(self, symbol, channels): # Subscribe to all channels by default for channel in constants.SECURE_INSTRUMENT_CHANNELS: if len(channels) > 0 and channel not in channels: channel = None if channel: self.subscribe_actions_for_channel(channel, symbol) def subscribe_actions_for_channel(self, channel, symbol): for action in constants.ACTIONS: handler_name = "on_%s" % (channel) handler = {} if hasattr(self, handler_name): handler = getattr(self, handler_name) else: handler = self.on_action self.websocket.subscribe_action(action, channel, symbol, handler) def on_subscribe(self, channel): self.channels.append(channel) def all_channels(self): allChannels = [] for channel in self.channels: allChannels.append(channel) for channel in self.secureChannels: allChannels.append(channel) return allChannels def on_channel(self, message): alog.debug("#on_channel") alog.debug(message) for item in message['data']: self.prepend_to_table(message['table'], item) def on_action(self, message): self.emit('action', message) return table = message['table'] data = message['data'] alog.debug("on_action") action = message['action'] if action == 'delete': for item in data: self.delete_from_table(table, item) elif action == 'update' and 'id' in data[0]: for item in data: self.update_item_in_table(table, item) elif action == 'partial' and 'id' not in data[0]: self.data[table] = data[0] elif action == 'insert' and 'id' not in data[0]: self.update_keys_in_table(table, data[0]) elif action == 'partial' or action == 'insert': for item in data: self.prepend_to_table(table, item) else: self.update_keys_in_table(table, data[0]) self.emit(table, table, self.get_table(table)) def update_keys_in_table(self, table, update): self.data[table].update(update) def delete_from_table(self, table, item): alog.debug('#delete_from_table:%s' % (table)) alog.debug(item) if table not in self.data: self.data[table] = [] delete_item = next(_item for _item in self.data['orderBookL2'] if _item['id'] == item['id']) if delete_item: self.data[table].remove(delete_item) def prepend_to_table(self, table, item): if table not in self.data: self.data[table] = [] isMaxLength = len(self.data[table]) == self.max_table_length if isMaxLength and 'orderBook' not in table: self.data[table].pop() self.data[table].insert(0, item) alog.debug('#prepend_to_table') alog.debug(self.data[table]) def update_item_in_table(self, table, update): alog.debug("# update_item_in_table") alog.debug(json.dumps(update)) item_to_update = next(item for item in self.data[table] if item['id'] == update['id']) item_to_update.update(update) def get_table(self, table): return self.data[table] def update_instrument(self, action, data): alog.debug(data) self.data['instrument'] = data[0] ```
{ "source": "joliveros/keras-rl2", "score": 3 }
#### File: examples/dqn_orderbook/processor.py ```python import numpy as np from rl.core import Processor class OrderBookFrameProcessor(Processor): # def process_observation(self, observation): # assert observation.ndim == 3 # (height, width, channel) # img = Image.fromarray(observation) # img = img.resize(INPUT_SHAPE).convert('L') # resize and convert to grayscale # processed_observation = np.array(img) # assert processed_observation.shape == INPUT_SHAPE # return processed_observation.astype('uint8') # saves storage in experience memory # # def process_state_batch(self, batch): # # We could perform this processing step in `process_observation`. In this case, however, # # we would need to store a `float32` array instead, which is 4x more memory intensive than # # an `uint8` array. This matters if we store 1M observations. # processed_batch = batch.astype('float32') / 255. # return processed_batch def process_reward(self, reward): return np.clip(reward, -1., 1.) ```
{ "source": "jolks/tfx", "score": 2 }
#### File: components/bulk_inferrer/executor_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from google.protobuf import json_format from tensorflow_serving.apis import prediction_log_pb2 from tfx.components.bulk_inferrer import executor from tfx.proto import bulk_inferrer_pb2 from tfx.types import standard_artifacts class ExecutorTest(tf.test.TestCase): def setUp(self): super(ExecutorTest, self).setUp() self._source_data_dir = os.path.join( os.path.dirname(os.path.dirname(__file__)), 'testdata') self._output_data_dir = os.path.join( os.environ.get('TEST_UNDECLARED_OUTPUTS_DIR', self.get_temp_dir()), self._testMethodName) self.component_id = 'test_component' # Create input dict. self._examples = standard_artifacts.Examples(split='unlabelled') self._examples.uri = os.path.join(self._source_data_dir, 'csv_example_gen/unlabelled/') self._model = standard_artifacts.Model() self._model.uri = os.path.join(self._source_data_dir, 'trainer/current/') self._model_blessing = standard_artifacts.ModelBlessing() self._model_blessing.uri = os.path.join(self._source_data_dir, 'model_validator/blessed') self._model_blessing.set_int_custom_property('blessed', 1) self._inference_result = standard_artifacts.InferenceResult() self._prediction_log_dir = os.path.join(self._output_data_dir, 'prediction_logs') self._inference_result.uri = self._prediction_log_dir # Create context self._tmp_dir = os.path.join(self._output_data_dir, '.temp') self._context = executor.Executor.Context( tmp_dir=self._tmp_dir, unique_id='2') def _get_results(self, prediction_log_path): results = [] filepattern = os.path.join( prediction_log_path, executor._PREDICTION_LOGS_DIR_NAME) + '-?????-of-?????.gz' for f in tf.io.gfile.glob(filepattern): record_iterator = tf.compat.v1.python_io.tf_record_iterator( path=f, options=tf.compat.v1.python_io.TFRecordOptions( tf.compat.v1.python_io.TFRecordCompressionType.GZIP)) for record_string in record_iterator: prediction_log = prediction_log_pb2.PredictionLog() prediction_log.MergeFromString(record_string) results.append(prediction_log) return results def testDoWithBlessedModel(self): input_dict = { 'examples': [self._examples], 'model': [self._model], 'model_blessing': [self._model_blessing], } output_dict = { 'inference_result': [self._inference_result], } # Create exe properties. exec_properties = { 'data_spec': json_format.MessageToJson(bulk_inferrer_pb2.DataSpec()), 'model_spec': json_format.MessageToJson(bulk_inferrer_pb2.ModelSpec()), 'component_id': self.component_id, } # Run executor. bulk_inferrer = executor.Executor(self._context) bulk_inferrer.Do(input_dict, output_dict, exec_properties) # Check outputs. self.assertTrue(tf.io.gfile.exists(self._prediction_log_dir)) results = self._get_results(self._prediction_log_dir) self.assertTrue(results) self.assertEqual( len(results[0].classify_log.response.result.classifications), 1) self.assertEqual( len(results[0].classify_log.response.result.classifications[0].classes), 2) if __name__ == '__main__': tf.test.main() ```
{ "source": "joll05/AdventOfCode2019", "score": 3 }
#### File: AdventOfCode2019/Day 11/solution1.py ```python import computer import numpy as np import time Position = (0, 0) Canvas = np.full([200, 200], -1, dtype=int) Canvas[0, 0] = 1 Corners = [(0, 0), (0, 0)] TileCount = 0 Direction = 0 def AddVectors(vec1, vec2): if(len(vec1) != len(vec2)): return None out = [] for v in range(len(vec1)): out += [vec1[v] + vec2[v]] return tuple(out) def SendInput(): global Canvas global Position if(Canvas[Position] == 1): return 1 else: return 0 def MoveRobot(): global Direction global Position global Corners if(Direction == 0): Position = AddVectors(Position, (0, 1)) elif(Direction == 1): Position = AddVectors(Position, (1, 0)) elif(Direction == 2): Position = AddVectors(Position, (0, -1)) elif(Direction == 3): Position = AddVectors(Position, (-1, 0)) print(Position) if(Position[0] < Corners[0][0] or Position[1] < Corners[0][1]): Corners[0] = Position elif(Position[0] > Corners[1][0] or Position[1] > Corners[1][1]): Corners[1] = Position Turning = False def RecieveOutput(out): global Turning global Direction global Canvas global Position global TileCount if(not Turning): if(Canvas[Position] == -1): TileCount += 1 Canvas[Position] = out else: if(out == 0): Direction -= 1 else: Direction += 1 if(Direction < 0): Direction += 4 elif(Direction > 3): Direction -= 4 MoveRobot() Turning = not Turning computer.Run(RecieveOutput, SendInput) blackChar = u"\u25A0" whiteChar = u"\u25A1" for x in range(Corners[0][0] - 1, Corners[1][0] + 2): out = "" for y in range(Corners[0][1] - 1, Corners[1][1] + 2): if(Canvas[x, y] == 1): out += whiteChar else: out += blackChar print(out) time.sleep(0.2) ``` #### File: AdventOfCode2019/Day 12/soultion1.py ```python class Moon: position = [None, None, None] velocity = [None, None, None] def __init__(self, position): self.position = list(position) self.velocity = [0] * len(position) def ApplyGravity(self, moons): for moon in moons: for coord in range(len(moon.position)): if(self.position[coord] < moon.position[coord]): self.velocity[coord] += 1 elif(self.position[coord] > moon.position[coord]): self.velocity[coord] -= 1 def ApplyVelocity(self): for coord in range(len(self.velocity)): self.position[coord] += self.velocity[coord] def GetEnergy(self): pot = 0 for pos in self.position: pot += abs(pos) kin = 0 for vel in self.velocity: kin += abs(vel) return pot * kin f = open("input.txt") data = f.readlines() Moons = [] for i in data: coords = i[1:-2] coords = coords.split(", ") for coord in range(len(coords)): coords[coord] = int(coords[coord][2:]) Moons += [Moon(coords)] def TimeStep(): global Moons for moon in Moons: moon.ApplyGravity(Moons) for moon in Moons: moon.ApplyVelocity() for i in range(1000): TimeStep() totalEnergy = 0 for moon in Moons: totalEnergy += moon.GetEnergy() print(totalEnergy) ``` #### File: AdventOfCode2019/Day 19/solution1.py ```python import computer output = "" total = 0 x = 0 y = 0 def RecieveOutput(out): global output global total if(out == 0): output += "." return if(out == 1): output += "#" total += 1 return inputIndex = 0 def SendInput(): global inputIndex inputIndex += 1 if(inputIndex % 2 == 1): return x else: return y for X in range(200): for Y in range(200): x = X y = Y computer.Run(RecieveOutput, SendInput) output += "\n" print(output) print(total) ``` #### File: AdventOfCode2019/Day 25/solution1.py ```python import computer def GetCommand(): userInput = input() return userInput + "\n" def RecieveOutput(out): print(chr(out), end="") command = "" def SendInput(): global command if(command == ""): command = GetCommand() currentChar = command[0] command = command[1:] return ord(currentChar) computer.Run(RecieveOutput, SendInput) ``` #### File: AdventOfCode2019/Day 5/solution2.py ```python import inspect f = open("input.txt", "r") values = f.read().split(",") pointer = 0 def opcode1(p1, p2, out): values[out] = str(p1 + p2) return pointer + 4 def opcode2(p1, p2, out): values[out] = str(p1 * p2) return pointer + 4 def opcode3(out): values[out] = input("Input required: ") return pointer + 2 def opcode4(p1): print(p1) return pointer + 2 def opcode5(p1, p2): if(p1 != 0): return p2 return pointer + 3 def opcode6(p1, p2): if(p1 == 0): return p2 return pointer + 3 def opcode7(p1, p2, out): if(p1 < p2): values[out] = "1" else: values[out] = "0" return pointer + 4 def opcode8(p1, p2, out): if(p1 == p2): values[out] = "1" else: values[out] = "0" return pointer + 4 def opcode99(): exit() while True: opcode = int(values[pointer][-2:]) func = "opcode%d" % opcode modes = list(reversed(values[pointer][:-2])) params = inspect.getfullargspec(eval(func))[0] args = "" for i in range(len(params)): currentValue = values[pointer + 1 + i] mode = 0 if(params[i] != "out"): try: mode = int(modes[i]) except IndexError: pass else: mode = 1 if(i != 0): args += "," if(mode == 0): args += values[int(currentValue)] elif(mode == 1): args += currentValue pointer = eval(func + "(%s)" % args) ``` #### File: AdventOfCode2019/Day 6/solution1.py ```python f = open("input.txt", "r") puzzleInput = f.read() totalOrbitCount = 0 def FindOrbiters(name, orbitCount): global totalOrbitCount totalOrbitCount += orbitCount checkPos = 0 while True: out = puzzleInput.find(name + ")", checkPos) if(out == -1): break FindOrbiters(puzzleInput[out + 4:out + 7], orbitCount + 1) checkPos = out + 4 FindOrbiters("COM", 0) print(totalOrbitCount) ``` #### File: AdventOfCode2019/Day 7/solution2.py ```python import computer import itertools possibleOrders = list(itertools.permutations(range(5))) inputs = [0, 0] bestResult = 0 def RecieveOutput(output): global inputs inputs[1] = output index = 0 def SendInput(): global index index += 1 return(inputs[(index - 1) % len(inputs)]) for i in possibleOrders: inputs = [0, 0] index = 0 for j in i: inputs[0] = j computer.Run(RecieveOutput, SendInput) result = inputs[1] if(result > bestResult): bestResult = result print(bestResult) ```
{ "source": "Jolle08/Number-Dash", "score": 2 }
#### File: Jolle08/Number-Dash/main.py ```python import sys, os, subprocess, time from random import randint def clear(): if os.name == "nt": os.system('cls') else: subprocess.call(['clear']) pass def startscreen(): clear() print " . . " print "b. 8 8 8888 88 ,8. ,8. 8 888888888o 8 8888888888 8 888888888o. " print "888o. 8 8 8888 88 ,888. ,888. 8 8888 `88. 8 8888 8 8888 `88. " print "Y88888o. 8 8 8888 88 .`8888. .`8888. 8 8888 `88 8 8888 8 8888 `88 " print ".`Y888888o. 8 8 8888 88 ,8.`8888. ,8.`8888. 8 8888 ,88 8 8888 8 8888 ,88 " print "8o. `Y888888o. 8 8 8888 88 ,8'8.`8888,8^8.`8888. 8 8888. ,88' 8 888888888888 8 8888. ,88' " print "8`Y8o. `Y88888o8 8 8888 88 ,8' `8.`8888' `8.`8888. 8 8888888888 8 8888 8 888888888P' " print "8 `Y8o. `Y8888 8 8888 88 ,8' `8.`88' `8.`8888. 8 8888 `88. 8 8888 8 8888`8b " print "8 `Y8o. `Y8 ` 8888 ,8P ,8' `8.`' `8.`8888. 8 8888 88 8 8888 8 8888 `8b. " print "8 `Y8o.` 8888 ,d8P ,8' `8 `8.`8888. 8 8888 ,88' 8 8888 8 8888 `8b. " print "8 `Yo `Y88888P' ,8' ` `8.`8888. 8 888888888P 8 888888888888 8 8888 `88. " print "" print "8 888888888o. .8. d888888o. 8 8888 8 " print "8 8888 `^888. .888. .`8888:' `88. 8 8888 8 " print "8 8888 `88. :88888. 8.`8888. Y8 8 8888 8 " print "8 8888 `88 . `88888. `8.`8888. 8 8888 8 " print "8 8888 88 .8. `88888. `8.`8888. 8 8888 8 " print "8 8888 88 .8`8. `88888. `8.`8888. 8 8888 8 " print "8 8888 ,88 .8' `8. `88888. `8.`8888. 8 8888888888888 " print "8 8888 ,88'.8' `8. `88888. 8b `8.`8888. 8 8888 8 " print "8 8888 ,o88P' .888888888. `88888. `8b. ;8.`8888 8 8888 8 " print "8 888888888P' .8' `8. `88888. `Y8888P ,88P' 8 8888 8 " print "" print "" print "" print " _ _ ____ " print " / \ __ _ __ _ _ __ ___ ___ | |__ _ _ | _ \ __ _ _ __ ___ ___ _ __ __ _ _ __ __ _ " print " / _ \ / _` |/ _` | '_ ` _ \ / _ \ | '_ \| | | | | |_) / _` | '_ ` _ \ / _ \| '__/ _` | '_ \ / _` |" print " / ___ \ | (_| | (_| | | | | | | __/ | |_) | |_| | | __/ (_| | | | | | | (_) | | | (_| | | | | (_| |" print "/_/ \_\ \__, |\__,_|_| |_| |_|\___| |_.__/ \__, | |_| \__,_|_| |_| |_|\___/|_| \__,_|_| |_|\__,_|" print " |___/ |___/ " print "" print "Coded by <NAME> at Pamorana (<EMAIL>)." print "Copyright (C) 2015 <NAME>. Licensed under The MIT License (MIT)" print "" time.sleep(3) clear() start(0,0) def start(rand,maxguess): maxrand = 1000 if rand == 0: rand = randint(1, maxrand) maxguess = 12 print "Guess a number between 1 and %s.\nYou have %s guesses to get it right." % (maxrand,maxguess) print "=====================================================================" guess = raw_input("Your guess:> ") while not guess.isdigit(): print "=====================================================================" print "\"%s\" is not an integer." % (guess) print "=====================================================================" guess = raw_input("Try again:> ") guess = int(guess) testinput(rand,guess,maxrand,maxguess) def testinput(rand,guess,maxrand,maxguess): if guess > 0 and guess < maxrand + 1: gameif(rand,guess,maxrand,maxguess) else: clear() error = "Please guess a number which is between 1 and %s!" % (maxrand) print error.upper() time.sleep(3) clear() start(rand,maxguess) def gameif(rand,guess,maxrand,maxguess): if guess == rand: maxguess = maxguess - 1 clear() print "You won!" print "Guesses left: " + str(maxguess) print "=====================================================================" time.sleep(3) clear() start(0,0) elif guess > rand: maxguess = maxguess - 1 clear() print "Smaller than %s!" % (guess) print "Guesses left: " + str(maxguess) print "=====================================================================" gamelose(rand,guess,maxrand,maxguess) elif guess < rand: maxguess = maxguess - 1 clear() print "Bigger than %s!" % (guess) print "Guesses left: " + str(maxguess) print "=====================================================================" gamelose(rand,guess,maxrand,maxguess) def gamelose(rand,guess,maxrand,maxguess): if maxguess == 0: clear() print "Game over!" print "The random number was %s." % (rand) print "=====================================================================" time.sleep(3) clear() start(0) else: guess = raw_input("Your guess:> ") while not guess.isdigit(): print "=====================================================================" print "\"%s\" is not an integer." % (guess) print "=====================================================================" guess = raw_input("Try again:> ") guess = int(guess) testinput(rand,guess,maxrand,maxguess) startscreen() ```
{ "source": "JolleJolles/pyutilspack", "score": 3 }
#### File: pyutilspack/pythutils/mathutils.py ```python from __future__ import division import math import numpy as np def uneven(value): """Returns the closest uneven value equal to or lower than provided""" if value == 0: newvalue = 1 else: newvalue = value -1 if value % 2 == 0 else value return newvalue def closenr(n, m) : """Find the number closest to n and divisible by m""" q = int(n / m) n1 = m * q if((n * m) > 0) : n2 = (m * (q + 1)) else : n2 = (m * (q - 1)) if (abs(n - n1) < abs(n - n2)) : return n1 return n2 def seqcount(start, stop, steplength): """ Returns a sequence of numbers between a start and stop value with a certain steplength """ step = (stop - start) / steplength step = int(np.ceil(step)) sequence = range(start, stop, step) return sequence def maxsteps(value, maxval = 500): """ Returns the maximum number of steps and stepsize for a value that may be divided up to a maximum value, all being rounded value. For example, if one wants to get the maximum number of steps to get to a value of 100 where it can be maximally divided 7 times, it will return nsteps=5, stepsize=20. """ valrange = [value-3,value-2,value-1,value] nsteps = 1 for val in valrange: for _,n in enumerate(reversed(list(range(1, maxval)))): if val % n == 0: if n > nsteps: nsteps = int(n) stepsize = int(val/nsteps) break return(nsteps, stepsize) def get_weights(w = 1.7, length = 20): """Returns a list of weights, based on quadratic function""" return [w**i for i in range(length, 0, -1)] def sort_twoPoint(coords): """Fixes the coordinates of a two-point to be LT to BR""" x1 = min(coords[0][0], coords[1][0]) y1 = min(coords[0][1], coords[1][1]) x2 = max(coords[0][0], coords[1][0]) y2 = max(coords[0][1], coords[1][1]) return ((x1,y1),(x2,y2)) def sort_points(pts): """ Initializes a list of coordinates that will be ordered from top-left to bottom-left in clockwise order """ rect = np.zeros((4, 2), dtype = "float32") s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def points_to_vec(pt1, pt2, flip = False): """ Converts the coordinate of two points (pt1 > pt2) to a vector flip: bool, default = False If the coordinate system should be flipped such that higher y-coords are lower (e.g. needed when working with images in opencv). """ vx = pt2[0] - pt1[0] vy = pt1[1] - pt2[1] if flip else pt2[1] - pt1[1] return vx, vy def angle_to_vec(angle): """ Converts an angle in degrees to a vector. Uses a coordinate system that points north and ranges from -180 to 180 degrees. """ vx = np.round(np.sin(np.radians(angle)), 3) vy = np.round(np.cos(np.radians(angle)), 3) return vx, vy def points_to_angle(pt1, pt2 = None, flip = False): """ Returns the angle of a vector from the origin to a single point or the angle between two points. Uses a coordinate system that points north and ranges from -180 to 180 degrees. flip: bool, default = False If the coordinate system should be flipped such that higher y-coords are lower (e.g. needed when working with images in opencv). """ vx, vy = pt1 if pt2 is None else points_to_vec(pt1, pt2, flip) angle = np.round(np.arctan2(vx, vy) * 180 / np.pi,2) return angle def midpoint(pt1, pt2): """Computes the midpoint between two points""" x = pt2[0]+int((pt1[0]-pt2[0])/2) y = pt2[1]+int((pt1[1]-pt2[1])/2) return (x,y) def ptsToDist(pt1, pt2): """Computes the distance between two points""" if None in pt1 or None in pt2: dist = None else: vx, vy = points_to_vec(pt1, pt2) dist = np.linalg.norm([(vx, vy)]) return dist def diff_series(series, period = 1): """Shifts a pandas series upwards with a given period""" series2 = series.shift(periods = -period) return series2 - series def dist_to_segment(pt, segment): """ Calculates the distance between a point and a non-infinite line segment Explanation ---------- To calculate the closest distance to a line segment, we first need to check if the point projects onto the line segment. If it does, then we calculate the orthogonal distance from the point to the line. If the point does not project to the line segment, we calculate the distance to both endpoints and take the shortest distance. Input ---------- point : tuple of the point's coordinates line : tuple of segment endpoints' coordinates Returns ------- dist : minimum distance to the end point on the line coords : the relative x and y coordinates to the line """ # unit vector segment = np.array(segment) uline = segment[1] - segment[0] norm_uline = uline / np.linalg.norm(uline) # compute the perpendicular distance to the theoretical infinite line dott_product = np.cross(segment[1] - segment[0], segment[0] - pt) dist_infline = (np.linalg.norm(dott_product / np.linalg.norm(uline))) diff = (norm_uline[0] * (pt[0] - segment[0][0])) + \ (norm_uline[1] * (pt[1] - segment[0][1])) x_seg = np.round((norm_uline[0] * diff) + segment[0][0]) y_seg = np.round((norm_uline[1] * diff) + segment[0][1]) linept1dis = np.linalg.norm(segment[0] - pt) linept2dis = np.linalg.norm(segment[1] - pt) endpoint_dist = min(linept1dis, linept2dis) # decide if the intersection point falls on the line segment lp1_x = line[0][0] lp1_y = line[0][1] lp2_x = line[1][0] lp2_y = line[1][1] is_betw_x = lp1_x <= x_seg <= lp2_x or lp2_x <= x_seg <= lp1_x is_betw_y = lp1_y <= y_seg <= lp2_y or lp2_y <= y_seg <= lp1_y if is_betw_x and is_betw_y: dist = dist_infline coords = (x_seg, y_seg) else: # if not, then return the minimum distance to the segment endpoints dist = endpoint_dist coords = (line[0][0],line[0][1]) if linept1dis<=linept2dis else (line[1][0],line[1][1]) return dist, coords def maxrect(dims, maxdims = (1640,1232), decimals = 2): """ Computes the maximal-sized rectangle with the same radio of dimensions as the rectangle provided, within the maximum dimensions """ ratio = float(dims[1])/dims[0] maxpix = maxdims[0]*maxdims[1] w = round(math.sqrt(maxpix/ratio),decimals) h = round(w*ratiod,decimals) return (w,h) ``` #### File: pyutilspack/pythutils/mediautils.py ```python from __future__ import division from __future__ import print_function import os import cv2 import numpy as np from pythutils.fileutils import get_ext from pythutils.mathutils import closenr, sort_points def check_media(source, internal=False): """Runs some basic checks on a mediafile or stream""" ext = get_ext(str(source)) ftype = None if ext in [".mov",".mp4",".avi"]: ftype = "vid" if ext in [".jpg", ".png", ".jpeg", ".bmp"]: ftype = "img" if type(source) == int: ftype = "stream" if ftype == None: print("File neither video or image file..") return False if ftype == "img" or ftype == "vid": filedir = os.path.dirname(source) if filedir != "": if not os.path.isdir(filedir): print("File directory does not exist..") return False if not os.path.isfile(source): print("File does not exist..") return False if ftype == "vid" or ftype == "stream": cap = cv2.VideoCapture(source) flag, frame = cap.read() if not flag: print("Video source opened but failed to read images..") return False if not internal: print("Mediafile okay.. ", end = "") return True def getimg(mediafile): """Acquires a numpy array from a video or image""" try: cap = cv2.VideoCapture(mediafile) _, img = cap.read() except: img = cv2.imread(mediafile) return img def get_vid_params(mediafile): """Gets video parameters from file or video instance""" if type(mediafile) is str: if get_ext(mediafile) not in [".mov",".mp4",".avi"]: raise TypeError("File not a video..") mediafile = cv2.VideoCapture(mediafile) if not mediafile.read()[0]: raise RuntimeError("Video could not be read..") fps = int(mediafile.get(cv2.CAP_PROP_FPS)) width = int(mediafile.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(mediafile.get(cv2.CAP_PROP_FRAME_HEIGHT)) fcount = int(mediafile.get(cv2.CAP_PROP_FRAME_COUNT)) return fps, width, height, fcount def videowriter(filein, w, h, fps, resizeval = 1): """Creates a vidout instance using the opencv VideoWriter class""" ext = get_ext(filein) fileout = filein[:-len(ext)]+".mp4" if ext!="" else filein+".mp4" viddims = (w, h) if resizeval == 1 else (int(w*resizeval), int(h*resizeval)) fourcc = cv2.VideoWriter_fourcc(*"mp4v") vidout = cv2.VideoWriter(fileout, fourcc, fps, viddims) return vidout def safe_framecount(vidfile): """Saves video frame counter that counts frame-by-frame""" cap = cv2.VideoCapture(vidfile) vidlength = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) count = 0 while True: ret, frame = cap.read() if not ret: break count += 1 print("video had", vidlength-count, "non-existing frames.. ", end = "") return count def crop(image, pt1, pt2=None): """Crops image based on based on top left and bottom right corner""" if pt2 == None: pt2 = pt1[1] pt1 = pt1[0] cropped = image[pt1[1]:pt2[1], pt1[0]:pt2[0]] return cropped def fourpt_transform(image, pts): """ Perspective transform a section of an image based on four coordinates to obtain a top-down view """ rect = sort_points(pts) (tl, tr, br, bl) = rect widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) dst = np.array([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) return warped def checkroi(roi, resolution): """Make sure roi coordinates are within resolution""" x1 = max(roi[0][0],1) y1 = max(roi[0][1],1) x2 = min(roi[1][0],resolution[0]) y2 = min(roi[1][1],resolution[1]) return ((x1,y1),(x2,y2)) def zoom_to_roi(zoom, resolution): """Gets region of interest coordinates from x,y,w,h zoom parameters""" x1 = int(zoom[0] * resolution[0]) x2 = int((zoom[0]+zoom[2]) * resolution[0]) y1 = int(zoom[1] * resolution[1]) y2 = int((zoom[1]+zoom[3]) * resolution[1]) return ((x1,y1),(x2,y2)) def roi_to_zoom(roi, resolution): """Gets x,y,w,h zoom parameters from region of interest coordinates""" ((x1,y1),(x2,y2)) = roi z0 = round(x1 / resolution[0],2) z1 = round(y1 / resolution[1],2) z2 = round((x2-x1) / resolution[0],2) z3 = round((y2-y1) / resolution[1],2) return (z0, z1, z2, z3) def picamconv(resolution, maxres = (1632, 1232)): """Adapts video resolution to work with raspberry pi camera""" width = min(closenr(resolution[0],32), maxres[0]) height = min(closenr(resolution[1],16), maxres[1]) return (width, height) def fix_vidshape(res1,res2): """Compares two resolutions and get missing x and y coords""" xmin,ymin = 0,0 xmult = (res2[0]/res1[0]) ymult = (res2[1]/res1[1]) if xmult > ymult: xmin = int((res2[0]-(res1[0]*ymult))/2) if ymult > xmult: ymin = int((res2[0]-(res1[0]*xmult))/2) return xmin, ymin def newdims(img = None, resize = 1, dims = None): """Returns new dimensions of an image array based on resize value""" if dims is None: if img is None: print("No img or dims provided..") return else: dims = (img.shape[1],img.shape[0]) width = int(dims[0] * resize) height = int(dims[1] * resize) return (width, height) def imgresize(img, resize = 1, dims = None, back = False): """ Returns resized image based on resizevalue or provided dimensions Parameters ---------- img : numpy array resize : float, default = 1 Multiplier for image size dims : tuple, default = None Dimensions of the to-be returned image back : bool, default = False If the inverse of the resize value should be used """ if dims is None: resize = 1/resize if back else resize dims = newdims(img, resize) interpol = cv2.INTER_CUBIC if resize > 1 else cv2.INTER_AREA img = cv2.resize(img, dims, interpolation = interpol) return img def add_transimg(bgimg, transimg, offsets): """ Adds a semi-transparent (4-channel) image to a 3-channel background image. Images need to be arrays. """ h, w, c = transimg.shape fix = np.zeros((h, w, 3), np.uint8) a = transimg[:, :, 3] / 255 #alpha o = offsets fix[:,:,0] = (1.-a)*bgimg[o[1]:o[1]+h, o[0]:o[0]+w, 0]+a*transimg[:,:,0] fix[:,:,1] = (1.-a)*bgimg[o[1]:o[1]+h, o[0]:o[0]+w, 1]+a*transimg[:,:,1] fix[:,:,2] = (1.-a)*bgimg[o[1]:o[1]+h, o[0]:o[0]+w, 2]+a*transimg[:,:,2] bgimg[o[1]:o[1]+h, o[0]:o[0]+w] = fix return bgimg ```
{ "source": "Jollerprutt/sam_common", "score": 2 }
#### File: sam_actions/scripts/gps_fix_server.py ```python import rospy from rospy import ROSException from std_msgs.msg import Header, Bool from std_srvs.srv import SetBool from geometry_msgs.msg import PoseWithCovarianceStamped, Point, Quaternion from sensor_msgs.msg import NavSatFix, NavSatStatus from sam_msgs.msg import GetGPSFixAction, GetGPSFixFeedback, GetGPSFixResult from sam_msgs.msg import PercentStamped import actionlib import tf_conversions import tf from tf.transformations import quaternion_from_euler, quaternion_multiply from geodesy import utm import math import numpy as np class GPSFixServer(object): _feedback = GetGPSFixFeedback() _result = GetGPSFixResult() def __init__(self, name): self.last_gps_pos = None self.last_dr_pos = None self._action_name = name self._as = actionlib.SimpleActionServer(self._action_name, GetGPSFixAction, execute_cb=self.execute_cb, auto_start=False) self.pose_pub = rospy.Publisher('/initialpose', PoseWithCovarianceStamped, queue_size=10) self.lcg_disable_pub = rospy.Publisher('/sam/ctrl/lcg/pid_enable', Bool, queue_size=10) self.vbs_disable_pub = rospy.Publisher('/sam/ctrl/vbs/pid_enable', Bool, queue_size=10) self.lcg_pub = rospy.Publisher('/sam/core/lcg_cmd', PercentStamped, queue_size=10) self.vbs_pub = rospy.Publisher('/sam/core/vbs_cmd', PercentStamped, queue_size=10) self.listener = tf.TransformListener() self._as.start() def start_stop_dvl(self, value, value_string): try: rospy.wait_for_service('/sam/core/start_stop_dvl', timeout=3.) start_stop_dvl = rospy.ServiceProxy('/sam/core/start_stop_dvl', SetBool) resp = start_stop_dvl(value) if not resp.success: self._feedback.status = "Service call returned false, failed to %s dvl" % value_string rospy.loginfo("Service call returned false, failed to %s dvl", value_string) except (rospy.ServiceException, ROSException), e: self._feedback.status = "Service call failed, failed to %s dvl" % value_string rospy.loginfo("Service call failed: %s, failed to %s dvl", e, value_string) #finally: # self._feedback.status = "Did %s dvl" % (value_string) self._as.publish_feedback(self._feedback) def estimate_position(self, fixes, covars): try: now = rospy.Time(0) (world_trans, world_rot) = self.listener.lookupTransform("world_utm", "world_local", now) except (tf.LookupException, tf.ConnectivityException): self._feedback.status = "Could not get transform between %s and %s" % ("world_utm", "world_local") rospy.loginfo("Could not get transform between %s and %s" % ("world_utm", "world_local")) self._as.publish_feedback(self._feedback) # easting, northing is in world_utm coordinate system, # we need to transform it to world or world_local pos = np.zeros((len(fixes), 3)) for i, fix in enumerate(fixes): utm_point = utm.fromLatLong(fix[0], fix[1]) easting = utm_point.easting northing = utm_point.northing utm_zone = utm_point.zone pos[i, :] = np.array([easting-world_trans[0], northing-world_trans[1], 0.]) # use the cov to weight the means in the future estimate = np.mean(pos, axis=0) return estimate def execute_cb(self, goal): rospy.loginfo("Got action callback...") self._feedback.status = "Shutting down controllers and DVL" self._as.publish_feedback(self._feedback) header = Header() timeout = goal.timeout required_gps_msgs = goal.required_gps_msgs self.start_stop_dvl(False, "stop") # Disable controllers self.vbs_disable_pub.publish(False) self.lcg_disable_pub.publish(False) # Sleep to make sure controllers are down rospy.sleep(0.1) # Set VBS to 0 self.vbs_pub.publish(0., header) # Set LCG to 0 self.lcg_pub.publish(0., header) good_fixes = [] good_vars = [] # NOTE: covariances are in m^2 # Get GPS fixes until we are in a good place gps_topic = "/sam/core/gps" start_time = rospy.get_time() while rospy.get_time() - start_time < timeout and len(good_fixes) < required_gps_msgs: try: gps_msg = rospy.wait_for_message(gps_topic, NavSatFix, 3.) except rospy.ROSException: rospy.loginfo("Could not get gps message on %s, aborting...", gps_topic) self._feedback.status = "Could not get gps message on %s..." % gps_topic self._as.publish_feedback(self._feedback) continue if gps_msg.status.status != NavSatStatus.STATUS_NO_FIX: self._feedback.status = "Good fix, now has %d msgs" % len(good_fixes) good_fixes.append(np.array([gps_msg.latitude, gps_msg.longitude])) good_vars.append(np.array([gps_msg.position_covariance[:2], gps_msg.position_covariance[3:5]])) else: self._feedback.status = "No fix, now has %d msgs" % len(good_fixes) self._as.publish_feedback(self._feedback) if len(good_fixes) < required_gps_msgs: self._result.status = "Timeout, not enough msgs" self._as.set_aborted(self._result) return else: self._feedback.status = "Done listening, got %d msgs" % len(good_fixes) self._as.publish_feedback(self._feedback) self.start_stop_dvl(True, "start") gps_pos = self.estimate_position(good_fixes, good_vars) corrected_rot = [0., 0., 0., 1.] # Start with 0 yaw if self.last_dr_pos is not None and self.last_gps_pos is not None: self._feedback.status = "Found previous positions, doing heading estimation" self._as.publish_feedback(self._feedback) try: now = rospy.Time(0) (dr_trans, dr_rot) = self.listener.lookupTransform("world_local", "sam/base_link", now) except (tf.LookupException, tf.ConnectivityException): self._feedback.status = "Could not get transform between %s and %s" % ("world_local", "sam/base_link") rospy.loginfo("Could not get transform between %s and %s" % ("world_local", "sam/base_link")) self._as.publish_feedback(self._feedback) rospy.sleep(0.3) gps_diff = gps_pos - self.last_gps_pos #gps_diff = 1./np.linalg.norm(gps_diff)*gps_diff gps_trajectory_yaw = math.atan2(gps_diff[1], gps_diff[0]) dr_diff = np.array((dr_trans[0] - self.last_dr_pos[0], dr_trans[1] - self.last_dr_pos[1])) #dr_diff = 1./np.linalg.norm(dr_diff)*dr_diff dr_trajectory_yaw = math.atan2(dr_diff[1], dr_diff[0]) yaw_correction = gps_trajectory_yaw - dr_trajectory_yaw # to get the actual yaw, we need to look at the # the difference in odom between last time and this time # note that we need to get the new estimated yaw # after publishing this to get the corrected one self._feedback.status = "Estimated GPS yaw: %f, DR yaw: %f, Yaw corr: %f" % (gps_trajectory_yaw, dr_trajectory_yaw, yaw_correction) self._as.publish_feedback(self._feedback) rospy.sleep(0.3) corrected_rot = quaternion_multiply(quaternion_from_euler(0., 0., yaw_correction), dr_rot) self._feedback.status = "Waiting for filter to update" self._as.publish_feedback(self._feedback) pose_msg = PoseWithCovarianceStamped() pose_msg.header = header pose_msg.header.frame_id = "world_local" pose_msg.pose.pose.position = Point(*gps_pos.tolist()) pose_msg.pose.pose.orientation = Quaternion(*corrected_rot) self.pose_pub.publish(pose_msg) rospy.sleep(.5) self._feedback.status = "Getting updated pose" self._as.publish_feedback(self._feedback) try: now = rospy.Time(0) (trans, rot) = self.listener.lookupTransform("world_local", "sam/base_link", now) self.last_dr_pos = trans except (tf.LookupException, tf.ConnectivityException): self._feedback.status = "Could not get transform between %s and %s" % ("world_local", "sam/base_link") rospy.loginfo("Could not get transform between %s and %s" % ("world_local", "sam/base_link")) self._as.publish_feedback(self._feedback) rospy.sleep(0.3) self.last_gps_pos = gps_pos self._result.status = "Finished setting position" self._as.set_succeeded(self._result) if __name__ == "__main__": rospy.init_node('gps_fix_server', anonymous=False) #True) check_server = GPSFixServer(rospy.get_name()) rospy.spin() ```
{ "source": "jollescott/hawking-radiation", "score": 3 }
#### File: src/manim/scenes.py ```python from manimlib.imports import * class VirtualParticles(Scene): def get_sine_wave(self, dx=0): return FunctionGraph( lambda x: np.sin((x+dx)-(PI/2)), x_min=-4, x_max=4, color=RED ) def get_cosine_wave(self, dx=0): return FunctionGraph( lambda x: np.cos(x+dx), x_min=-4, x_max=4, color=BLUE ) def construct(self): # Waves sine_function = self.get_sine_wave() cosine_function = self.get_cosine_wave() d_theta = ValueTracker(0) def update_sine_wave(func): func.become( self.get_sine_wave(dx=d_theta.get_value()) ) return func def update_cosine_wave(func): func.become( self.get_cosine_wave(dx=d_theta.get_value()) ) return func sine_function.add_updater(update_sine_wave) cosine_function.add_updater(update_cosine_wave) # Particles anti_particle = Circle(color=RED, fill_color=RED, fill_opacity=1) anti_particle.scale(0.2) anti_particle.move_to(DOWN) particle = Circle(color=BLUE, fill_color=BLUE, fill_opacity=1) particle.scale(0.2) particle.move_to(UP) self.add(sine_function) self.add(anti_particle) self.add(cosine_function) self.add(particle) self.play(d_theta.increment_value, PI, ApplyMethod(anti_particle.shift, [0, 2, 0]), ApplyMethod( particle.shift, [0, -2, 0]), rate_func=linear) self.play(d_theta.increment_value, PI, ApplyMethod(anti_particle.shift, [0, -2, 0]), ApplyMethod( particle.shift, [0, 2, 0]), rate_func=linear) ``` #### File: pygame-simulation/animation/trail.py ```python from pygame import draw from animation import vector import numpy as np class trail: color = (255, 255, 255) fade_color = (0, 0, 0) thickness = 1 max_length = 40 min_point_dist = 1 def __init__(self): self.points = [] self.__current_length = 0 def __insert_point(self, point, add_length): self.points.insert(0, point) self.__current_length += add_length def add_point(self, point): # add point if (len(self.points) == 0): self.__insert_point(point, 0) else: add_dist = vector.get_distance(point, self.points[0]) if add_dist >= self.min_point_dist: self.__insert_point(point, add_dist) # remove points if trail is too long while self.__current_length > self.max_length and len(self.points) > 1: self.__current_length -= vector.get_distance( self.points[-1], self.points[-2] ) self.points.pop(-1) def get_length(self): return self.__current_length def draw(self, surface): n = len(self.points) for i in range(n - 1): point = self.points[i] next_point = self.points[i + 1] p = i / n draw.line( surface, ( (1 - p) * self.color[0] + p * self.fade_color[0], (1 - p) * self.color[1] + p * self.fade_color[1], (1 - p) * self.color[2] + p * self.fade_color[2], ), np.array(point, dtype=int), next_point, self.thickness ) ``` #### File: animation/world/universe.py ```python import time from animation import vector import random import math from animation.world.particle import particle from animation.world.black_hole import black_hole import numpy as np class universe: min_spawn_time = 0.10 max_spawn_time = 0.5 spawn_on_horizon_chance = 0.15 particle_spawn_velocity = 100 def __init__(self, size, scale): self._size = size self.black_hole = black_hole(np.array(size) * 0.5, 0, scale) print(self.black_hole.get_radius()) self._particles = [] self.__particle_spawn_timer = time.perf_counter() def update(self, elapsed_time): # loop thorugh all particles index = 0 while index < len(self._particles): p = self._particles[index] cp = p.connected_particle # remove if collided if cp and particle.collide(p, cp): self._particles.pop(index) self._particles.remove(cp) # update particle p.update( elapsed_time, (0, 0) # self.black_hole.calculate_particle_force(p) ) index += 1 self.__particle_spawn_timer -= elapsed_time # check if it is time to spawn a particle pair if self.__particle_spawn_timer <= 0 and self.black_hole.mass > 0: self._spawn_particle_pair() self.__particle_spawn_timer = random.uniform(self.min_spawn_time, self.max_spawn_time) if self.black_hole.mass > 0: self.black_hole.update(elapsed_time, self._particles) def _spawn_particle_pair(self): """ Spawns a pair of particles with opposite charge. """ on_horizon = random.uniform(0, 1) < self.spawn_on_horizon_chance particles = ( self._create_on_event_horizon() if on_horizon else self._create_outside_event_horizon() ) self._particles.extend(particles) def _create_on_event_horizon(self): """ Returns a pair of particles with opposite charge positioned on the event horizon. """ # spawn center relative to the center of the black hole spawn_offset = vector.rand_vector_rot(self.black_hole.get_radius()) spawn_center = vector.add(self.black_hole.position, spawn_offset) rand_rot = random.choice((-1, 1)) * random.uniform(math.pi / 4, math.pi / 2) reg_par = particle( # charge True, # position vector.add( spawn_center, vector.change_length(spawn_offset, particle.radius) ), # velocity vector.new_vector( self.particle_spawn_velocity, vector.get_rotation(spawn_offset) + rand_rot ) ) neg_par = particle( # charge False, # position vector.subtract( spawn_center, vector.change_length(spawn_offset, particle.radius) ), # velocity vector.new_vector( self.particle_spawn_velocity, vector.get_rotation(spawn_offset) + math.pi - rand_rot ) ) reg_par.connected_particle = neg_par neg_par.connected_particle = reg_par return (reg_par, neg_par) def _create_outside_event_horizon(self): """ Returns a pair of particles with opposite charge positioned outside the event horizon. """ min_horizon_dist = 40 spawn_center = vector.add( self.black_hole.position, vector.rand_vector_rot( random.uniform( self.black_hole.get_radius() + min_horizon_dist, max(self._size) / 2 ) ) ) direction_rot = random.uniform(0, 2 * math.pi) max_side_velocity = self.particle_spawn_velocity / 2 side_velocity = vector.new_vector( random.uniform(-max_side_velocity, max_side_velocity), direction_rot + math.pi / 2 ) reg_par = particle( # charge True, # position vector.add( spawn_center, vector.new_vector(particle.radius + 1, direction_rot) ), # velocity vector.add( vector.new_vector(self.particle_spawn_velocity, direction_rot), side_velocity ) ) neg_par = particle( # charge False, # position vector.add( spawn_center, vector.new_vector(particle.radius, direction_rot + math.pi) ), # velocity vector.add( vector.new_vector( self.particle_spawn_velocity, direction_rot + math.pi ), side_velocity ) ) reg_par.connected_particle = neg_par neg_par.connected_particle = reg_par return (reg_par, neg_par) def draw(self, surface): self.black_hole.draw(surface) # draw all particles for p in self._particles: p.draw(surface) ```
{ "source": "jollescott/mimer", "score": 2 }
#### File: management/commands/remind.py ```python from django.core.management.base import BaseCommand, CommandError from quiz.models import QuizUser from webpush import send_user_notification class Command(BaseCommand): help = 'Syncs Database with Sana Assets.' def add_arguments(self, parser): parser.add_argument('-d', '--debug', action='store_true') def handle(self, *args, **options): users = QuizUser.objects.all() payload = {'head': 'Ditt dagliga test på Grönländska glosor!', 'body': 'Klicka för att påbörja ett nytt test. Tack igen för att du deltar i vårt gymnasiearbete :)'} for user in users: try: send_user_notification(user, payload, 1000) except BaseException as ex: print(ex) ```
{ "source": "jollierfinbean/bleak_ruuvitag", "score": 3 }
#### File: examples/influxdb_collector/main.py ```python import asyncio import datetime from typing import NamedTuple from bleak_ruuvitag.core import scan from aioinflux import ( InfluxDBClient, TAGENUM, TAG, FLOAT, INT, STR, lineprotocol ) influxdb_client_configuration = { 'host': 'influxdb.lan', 'port': 80, 'db': 'mydb', 'username': 'myuser', 'password': '<PASSWORD>' } @lineprotocol class RuuviTagMeasurementTest1(NamedTuple): name: TAG temperature: FLOAT humidity: FLOAT pressure: INT voltage: INT async def main(): client = InfluxDBClient(**influxdb_client_configuration) async for result in scan(5): measurement = RuuviTagMeasurementTest1( name=result.name, temperature=result.temperature, humidity=result.humidity, pressure=result.pressure, voltage=result.voltage, ) asyncio.create_task(client.write(measurement)) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main()) ```
{ "source": "jollitu/pythonkeeper", "score": 3 }
#### File: pythonkeeper/app/app.py ```python from flask import Flask pythonkeeper = Flask(__name__) @pythonkeeper.route("/register") def register(username, password, email): return "ABC" @pythonkeeper.route("/login") def login(usernameOrEmail, password): return "<PASSWORD>" ```
{ "source": "j-ollivier/showcase_site", "score": 3 }
#### File: showcase_site/main/models.py ```python from django.db import models from django.utils import timezone # Create your models here. ############################################################################### class ContactMessage(models.Model): ''' If a customer wants to message the shop. ''' class Meta: verbose_name = 'Message privé' verbose_name_plural = 'Message privés' # Attributes uid = models.AutoField( primary_key= True, db_index= True) nom = models.CharField( max_length = 100) contenu = models.TextField( ) remote_addr = models.CharField( max_length = 400) timestamp = models.DateTimeField( default = timezone.now) # Methods def __str__(self): return str(self.uid) ```
{ "source": "j-ollivier/sonov-main", "score": 2 }
#### File: sonov-main/scripts/test.py ```python # check the GET method. If GET # give context # generate template # return # check the GET method. If POST # check the source site through regular expression matching. # if youtube is found, source_site is 'youtube' # if soundcloud is found, source_site is 'soundcloud' # if vimeo is found, source_site is 'soundcloud' # if nothing is found # add a message instance # return redirect to frontpage # initiate the form object with POST data # if the form is not valid # add a message instance # return redirect to frontpage # if the form is valid # continue # initiate a new Son # populate with manually added title, thumbnail, # populate with automatic source_site, source_id_string ``` #### File: j-ollivier/sonov-main/views.py ```python import time from django.http import HttpResponse, HttpResponseRedirect from django.template import loader from .models import * from forum.models import ForumMember import operator #for sorting objects from different tables in one aggregated list from .forms import UploadSonForm, SubscribeForm from django.shortcuts import render_to_response from django.template import RequestContext from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from subprocess import call from django.shortcuts import redirect import youtube_dl from os import chdir import re from .scripts import GetNextPostTime, GetYoutubeID ##################################################################### list_of_contributors = [ i.username for i in User.objects.filter( is_staff = True ) ] ##################################################################### def FrontPage(request): ''' Landing page for the whole blog. It has a search form which looks up titles, tags, article texts. ''' all_tags = Tag.objects.all().order_by('title') # registered users get to see all sons before they're posted if request.user.is_authenticated: last_sons = [i for i in Son.objects.select_related( ).all().order_by( 'created_date').reverse()] else: last_sons = [i for i in Son.objects.select_related( ).filter(is_visible=True).order_by( 'created_date').reverse()] paginator = Paginator(last_sons, 12) page = request.GET.get('page') sons_to_display = paginator.get_page(page) # 1er avril if time.strftime("%m") == "04" and time.strftime("%d") == "01" : for son in sons_to_display: if random.randint( 1,10 ) >= 7: son.source_id_string = 'eJuhX8LoH1s' son.short_desc = '1er Avril :^) Recharge la page pour retenter le son' context={ 'all_tags': all_tags, 'sons_to_display': sons_to_display, 'player_enabled' : False, 'colorbox_enabled' : True, } template = loader.get_template('main/frontpage.html') return HttpResponse(template.render(context, request)) ##################################################################### def TagList(request): ''' List of all tags and categories ''' all_tags = Tag.objects.all().order_by('category' , 'title') contributor_category = ForumMember.objects.filter( rank = 9999 ) context={ 'contributor_category' : contributor_category, 'categories' : Tag.category_choices, 'tags_to_display': all_tags, 'player_enabled' : False, 'colorbox_enabled' : True, } template = loader.get_template('main/taglist.html') return HttpResponse(template.render(context, request)) ##################################################################### def Playlist(request, tag_title): ''' Displays all sons from a tag list and allows playing. If the special tag 'shuffle' is passed, we pick 20 random sons in the list and play them all. ''' if tag_title == 'shuffle': playlist_content = Son.objects.filter( is_visible = True).order_by( '?')[:20] page_title = 'Shuffle 20 !' elif tag_title == 'timeline': playlist_content = Son.objects.filter( is_visible = True).order_by( '-created_date') page_title = 'La totale !' elif tag_title in list_of_contributors: page_title = 'Sons postés par {}'.format( tag_title ) playlist_content = Son.objects.filter( posted_by__username = tag_title ) else: tag = Tag.objects.get(title = tag_title) playlist_content = Son.objects.filter( tags = tag, is_visible = True) page_title = tag.title context={ 'playlist_content': playlist_content, 'page_title': page_title, 'player_enabled' : True, 'colorbox_enabled' : False, } template = loader.get_template('main/playlist.html') return HttpResponse(template.render(context, request)) ##################################################################### def ClipList(request): ''' Landing page for the whole blog. It has a search form which looks up titles, tags, article texts. ''' all_clips = Son.objects.filter( tags__title = 'Super-Clip', is_visible = True).order_by( 'created_date').reverse() paginator = Paginator(all_clips, 12) page = request.GET.get('page') clips_to_display = paginator.get_page(page) context={ 'clips_to_display': clips_to_display, 'player_enabled' : False, 'colorbox_enabled' : True, } template = loader.get_template('main/clip_list.html') return HttpResponse(template.render(context, request)) ##################################################################### def UploadSon(request): ''' Tool to upload a son and get the corresponding mp3 ''' if request.user.is_staff: if request.method == 'GET' and not request.user.username.startswith('BE_'): context = { 'upload_son_form': UploadSonForm(), } template = loader.get_template('main/upload_son.html') return HttpResponse(template.render(context, request)) elif request.method == "POST": form = UploadSonForm(request.POST, request.FILES) if form.is_valid(): new_son = Son() new_son.title = form.cleaned_data['title'] new_son.source_site = form.cleaned_data['source_site'] new_son.thumbnail = form.cleaned_data['thumbnail'] new_son.source_url = form.cleaned_data['source_url'] new_son.source_id_string = GetYoutubeID(form.cleaned_data['source_url']) # after the audio is DLd from the source site # we rename the file as its source_id_string new_son.audio_file = 'static/main/audio/{}.mp3'.format( new_son.source_id_string) new_son.is_visible = False new_son.created_date = GetNextPostTime() new_son.short_desc = form.cleaned_data['short_desc'] new_son.posted_by = form.cleaned_data['posted_by'] new_son.save() if form.cleaned_data['tags']: for tag in form.cleaned_data['tags']: new_son.tags.add(tag) else: return HttpResponseRedirect('/') # we put the mp3 in the DL list with open( '/home/common/sonov_django/dl_list.txt' , 'a' ) as ofi: ofi.write( new_son.source_url ) return HttpResponseRedirect('/') else: context = { 'upload_son_form': UploadSonForm(), 'errors' : [i for i in form.errors], 'player_enabled' : False, 'colorbox_enabled' : False, } template = loader.get_template('main/upload_son.html') return HttpResponse(template.render(context, request)) else: return HttpResponseRedirect('/') else: return HttpResponseRedirect('/') ##################################################################### def Subscribe( request ): ''' Page to subscribe to the newsletter. ''' if request.method == 'GET': # protoype to limite spam if Subscriber.objects.all().count() < 50: subscribe_form = SubscribeForm() sub_message = "Nous envoyons un petit mail toutes les \ semaines pour vous tenir au courant des sons qui ont été \ postés, ainsi que les nouvelles du site. " else: subscribe_form = None sub_message = "Notre boîte d'envoi de newsletter est \ arrivé à capacité maximale ! Revenez bientôt pour \ vous inscrire :) désolé pour le contretemps." context = { 'subscribe_form': subscribe_form, 'sub_message' : sub_message, } template = loader.get_template('main/subscribe.html') return HttpResponse(template.render(context, request)) elif request.method == "POST": form = SubscribeForm( request.POST ) if form.is_valid(): new_subscriber = Subscriber() new_subscriber.email = form.cleaned_data[ 'email' ] new_subscriber.save() template = loader.get_template('main/subscribe_ok.html') context={} return HttpResponse(template.render(context, request)) else: return HttpResponseRedirect('/') ##################################################################### def SoundcloudIframe(request, soundcloud_id): ''' Test for embedding soundcloud within colorbox ''' context={ 'soundcloud_id': soundcloud_id, } template = loader.get_template('main/soundcloud_iframe.html') return HttpResponse(template.render(context, request)) ##################################################################### def YoutubeIframe(request, youtube_id): ''' Test for embedding soundcloud within colorbox ''' context={ 'youtube_id': youtube_id, } template = loader.get_template('main/youtube_iframe.html') return HttpResponse(template.render(context, request)) ##################################################################### def VimeoIframe(request, vimeo_id): ''' Test for embedding soundcloud within colorbox ''' context={ 'vimeo_id': vimeo_id, } template = loader.get_template('main/vimeo_iframe.html') return HttpResponse(template.render(context, request)) ```
{ "source": "j-ollivier/vaste-roadmap", "score": 2 }
#### File: j-ollivier/vaste-roadmap/models.py ```python from django.db import models from django.contrib.auth.models import User from django.utils import timezone from precise_bbcode.fields import BBCodeTextField ##################################################################### class Theme(models.Model): ''' Todo items are listed under a theme. Aka category, directory, etc. ''' # Attributes uid = models.AutoField( primary_key = True, db_index = True) name = models.CharField( max_length = 100) authorized_user = models.ManyToManyField( User, related_name= 'theme_authorized_user') author = models.ForeignKey( User, models.SET_NULL, null = True, related_name = 'theme_author') created_date = models.DateTimeField( default = timezone.now) # Methods def __str__(self): return str(self.name) def SubThemeActivity(self): # fetching all subthemes subthemes = SubTheme.objects.filter(theme = self) subtheme_activity = list(EventLog.objects.filter( entity_type = 'sous-thème', entity_uid__in = [i.uid for i in subthemes])) return subtheme_activity ##################################################################### class SubTheme(models.Model): ''' Todo subthemes are listed under a theme. Aka category, directory, etc. ''' # Attributes uid = models.AutoField( primary_key = True, db_index = True) name = models.CharField( max_length = 100) author = models.ForeignKey( User, models.SET_NULL, null = True, related_name = 'subtheme_author') theme = models.ForeignKey( Theme, on_delete = models.CASCADE, related_name= 'subtheme_theme') order = models.PositiveIntegerField( ) created_date = models.DateTimeField( default = timezone.now) # Methods def __str__(self): return str(self.name) def ItemCount(self): item_count = Item.objects.filter( subtheme = self).count() return item_count def ItemCountActive(self): item_count_active = Item.objects.filter( subtheme = self, is_active = True).count() return item_count_active def ItemActivity(self): # fetching all subthemes items = Item.objects.filter(subtheme = self) item_activity = EventLog.objects.filter( entity_type = 'item', entity_uid__in = [i.uid for i in items]) return item_activity ##################################################################### class Item(models.Model): ''' A todo item, possibily having a related Item to nest in. ''' class Meta: ordering = ['-created_date'] # Attributes uid = models.AutoField( primary_key = True, db_index = True) name = BBCodeTextField( ) subtheme = models.ForeignKey( SubTheme, on_delete = models.CASCADE, related_name= 'item_subtheme') is_active = models.BooleanField( default = True) is_important = models.BooleanField( default = False) created_date = models.DateTimeField( default = timezone.now) completed_date = models.DateTimeField( null = True) attributed_to = models.ForeignKey( User, null = True, blank = True, on_delete = models.SET_NULL, related_name = 'item_user') # Methods def __str__(self): return str(self.name) def ItemCommentActivity(self): # fetching all subthemes comments = ItemComment.objects.filter(item = self) item_comment_activity = EventLog.objects.filter( entity_type = 'item', entity_uid__in = [i.uid for i in comments]) return item_comment_activity ##################################################################### class ItemComment(models.Model): ''' Comments and logging utilities for each item ''' class Meta: ordering = ['created_date'] # Attributes uid = models.AutoField( primary_key = True, db_index = True) name = models.CharField( max_length = 200 ) item = models.ForeignKey( Item, on_delete = models.CASCADE, related_name= 'item_comment_item') author = models.ForeignKey( User, on_delete = models.CASCADE, related_name = 'item_comment_author') created_date = models.DateTimeField( default = timezone.now) # Methods def __str__(self): return str(self.name) ##################################################################### class EventLog(models.Model): ''' To keep track of every event, a log entry is available each time an event happens in ''' class Meta: ordering = ['-created_date'] # Attributes uid = models.AutoField( primary_key = True, db_index = True) author = models.ForeignKey( User, on_delete = models.CASCADE, related_name = 'log_author') theme = models.ForeignKey( Theme, on_delete = models.CASCADE, related_name = 'log_theme') entity_uid = models.PositiveIntegerField( ) entity_type = models.CharField( max_length = 100) value = models.TextField( null = True) action = models.CharField( max_length = 200) created_date = models.DateTimeField( default = timezone.now) # Methods def __str__(self): return str(self.uid) ``` #### File: j-ollivier/vaste-roadmap/views.py ```python from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render from django.template import loader from .models import * from .forms import * from django.contrib.auth.decorators import login_required from django.utils import timezone from django.contrib import messages from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned @login_required ##################################################################### def Home(request): ''' If user is authenticated, he can access the page. If he has accessible themes, he can see the one where his access is granted. ''' themes = Theme.objects.filter( authorized_user = request.user).order_by( 'name') context = { 'page_title': 'Themes', 'themes': themes, 'page_title' : 'Feuilles de route', } template = loader.get_template('roadmap/home.html') return HttpResponse(template.render(context, request)) @login_required ##################################################################### def ThemeView(request, theme_uid): ''' Display the content of the folder linked to the Galery object ''' theme = Theme.objects.get(pk = theme_uid) if request.user in theme.authorized_user.all(): context = { 'theme': theme, 'new_sub_theme_form' : NewSubThemeForm(), 'subthemes': SubTheme.objects.filter( theme = theme).order_by('order').select_related(), 'page_title' : theme.name, } template = loader.get_template('roadmap/theme_view.html') return HttpResponse(template.render(context, request)) else: return HttpResponseRedirect( '/nope') @login_required ##################################################################### def AddItem(request, subtheme_uid): ''' Display the content of the folder linked to the Galery object ''' subtheme = SubTheme.objects.get(pk = subtheme_uid) if request.method == "POST" and request.user in subtheme.theme.authorized_user.all(): form = NewItemForm(request.POST) if form.is_valid(): new_item = Item() new_item.name = form.cleaned_data['name'] new_item.subtheme = subtheme new_item.is_active = True new_item.created_date = timezone.now() theme = subtheme.theme new_item.save() # log it log = EventLog() log.author = request.user log.entity_type = 'item' log.value = str(new_item.name)[0:40] log.entity_uid = Item.objects.all().order_by('created_date').last().uid log.action = 'Création' log.theme = theme log.save() return HttpResponseRedirect( '/roadmap/view/{}'.format(subtheme.theme.uid)) else: return HttpResponseRedirect( '/nope') else: context = { 'subtheme' : subtheme, 'new_item_form' : NewItemForm(), 'page_title' : 'Nouvel item', } template = loader.get_template('roadmap/add_item.html') return HttpResponse(template.render(context, request)) @login_required ##################################################################### def AddItemComment(request, item_uid): ''' Display the content of the folder linked to the Galery object ''' item = Item.objects.get(pk = item_uid) subtheme = item.subtheme if request.method == "POST" and request.user in subtheme.theme.authorized_user.all(): form = NewItemCommentForm(request.POST) if form.is_valid(): new_item = ItemComment() new_item.name = form.cleaned_data['name'] new_item.item = item new_item.author = User.objects.get(pk = request.user.id) new_item.timestamp = timezone.now() new_item.save() # log it log = EventLog() log.author = request.user log.entity_type = 'commentaire' log.entity_uid = ItemComment.objects.all().order_by('created_date').last().uid log.value = str(new_item.name)[0:40] log.action = 'Création' log.theme = subtheme.theme log.save() return HttpResponseRedirect( '/roadmap/view/{}'.format(item.subtheme.theme.uid)) else: return HttpResponseRedirect( '/nope') else: context = { 'item': item, 'new_item_comment_form' : NewItemCommentForm(), 'page_title' : 'Nouveau commentaire', } template = loader.get_template('roadmap/add_item_comment.html') return HttpResponse(template.render(context, request)) @login_required ##################################################################### def AddSubTheme(request, theme_uid): ''' Display the content of the folder linked to the Galery object ''' theme = Theme.objects.get(pk = theme_uid) if request.method == "POST" and request.user in theme.authorized_user.all(): form = NewSubThemeForm(request.POST) if form.is_valid(): new_subtheme = SubTheme() new_subtheme.name = form.cleaned_data['name'] new_subtheme.order = 0 new_subtheme.author = User.objects.get(pk = request.user.id) new_subtheme.theme = theme new_subtheme.timestamp = timezone.now() new_subtheme.theme = theme new_subtheme.save() # Give it the right order for subtheme in SubTheme.objects.filter(theme = theme): subtheme.order += 1 subtheme.save() # log it log = EventLog() log.author = request.user log.entity_type = 'sous-thème' log.entity_uid = SubTheme.objects.all().order_by('created_date').last().uid log.action = 'Création' log.theme = theme log.value = str(new_subtheme.name)[0:40] log.save() return HttpResponseRedirect( '/roadmap/view/{}'.format(theme.uid)) else: return HttpResponseRedirect( '/nope') else: return HttpResponseRedirect('/roadmap/view/{}'.format(theme.uid)) @login_required ##################################################################### def ItemStatusSwitch(request, item_uid, item_action): ''' An todo item is_active status can be switched with this view. ''' item = Item.objects.get(pk=item_uid) subtheme = item.subtheme theme = subtheme.theme if item_action == 'active_switch' and request.user in theme.authorized_user.all(): if item.is_active == True: item.is_active = False item.is_important = False item.completed_date = timezone.now() item.save() # log it log = EventLog() log.author = request.user log.entity_type = 'item' log.entity_uid = Item.objects.all().order_by('created_date').last().uid log.action = 'Complétion' log.theme = theme log.save() else: item.is_active = True item.completed_date = None item.save() # log it log = EventLog() log.author = request.user log.entity_type = 'item' log.entity_uid = Item.objects.all().order_by('created_date').last().uid log.action = 'Réactivation' log.theme = theme log.save() elif item_action == 'importance_switch' and request.user in theme.authorized_user.all(): if item.is_important == True: item.is_important = False item.save() # log it log = EventLog() log.author = request.user log.entity_type = 'item' log.entity_uid = Item.objects.all().order_by('created_date').last().uid log.action = 'Priorité abaissée' log.theme = theme log.save() else: item.is_important = True item.save() # log it log = EventLog() log.author = request.user log.entity_type = 'item' log.entity_uid = Item.objects.all().order_by('created_date').last().uid log.action = 'Priorité élevée' log.theme = theme log.save() else: return HttpResponseRedirect( '/nope') return HttpResponseRedirect('/roadmap/view/{}'.format(theme.uid)) @login_required ##################################################################### def SubThemeOrderChange(request, subtheme_uid, subtheme_action): ''' Users are allowed to change the order of subthemes. This view handles the ordrer change and the order change of the other subthemes to adapt to the new order value of the changed subtheme. ''' subtheme = SubTheme.objects.get(pk = subtheme_uid) if subtheme_action == 'to_up': order_modificator = -1 elif subtheme_action == 'to_down': order_modificator = 1 else: return HttpResponseRedirect('/nope') if request.user in subtheme.theme.authorized_user.all(): # check if order is already at minimum value if subtheme.order <= 1: return HttpResponseRedirect( '/roadmap/view/{}'.format(subtheme.theme.uid)) else: pass # Do the modification try: subtheme.order += order_modificator subtheme_to_swap = SubTheme.objects.get( theme = subtheme.theme, order = subtheme.order) subtheme.save() except ObjectDoesNotExist: return HttpResponseRedirect( '/roadmap/view/{}'.format(subtheme.theme.uid)) # rearrange the item subtheme_to_swap.order += -order_modificator subtheme_to_swap.save() return HttpResponseRedirect( '/roadmap/view/{}'.format(subtheme.theme.uid)) else: return HttpResponseRedirect('/nope') ```
{ "source": "Jollokim/Snake", "score": 3 }
#### File: Jollokim/Snake/main.py ```python import pygame import snake import apple pygame.init() pygame.font.init() canvasLength = 480 canvasHeight = 480 win = pygame.display.set_mode((canvasLength, canvasHeight)) pygame.display.set_caption("Slange") x = 50 y = 50 width = 20 height = 20 snake = snake.Snake(win) apple1 = apple.Apple(win, snake) apple2 = apple.Apple(win, snake) def drawGrid(): for k in range(2): for i in range(0, canvasLength, 20): if k == 0: pygame.draw.line(win, (50, 50, 50), (i, 0), (i, canvasLength), 1) else: pygame.draw.line(win, (50, 50, 50), (0, i), (canvasHeight, i), 1) def drawGameOver(): myfont = pygame.font.SysFont('Sans', 75) myfont2 = pygame.font.SysFont('Sans', 30) win.blit(myfont.render('Game Over!', False, (255, 255, 255)), (100, 100)) win.blit(myfont2.render('Press \'SPACE\' to try again', False, (255, 255, 255)), (120, 170)) win.blit(myfont2.render('Apples eaten: ' + str(snake.appleEaten), False, (255, 255, 255)), (150, 200)) def drawGameWin(): myfont = pygame.font.SysFont('Sans', 50) win.blit(myfont.render('You have a big snake!', False, (255, 255, 255)), (65, 100)) win.blit(myfont.render('Thanks for playing!', False, (255, 255, 255)), (65, 150)) myfont2 = pygame.font.SysFont('Sans', 30) win.blit(myfont2.render('Apples eaten: ' + str(snake.appleEaten), False, (255, 255, 255)), (150, 200)) run = True while run: pygame.time.delay(50) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False snake.setDirection(pygame.key.get_pressed()) win.fill((0, 0, 0)) drawGrid() apple1.render() apple2.render() snake.render() if not snake.snakeAlive: drawGameOver() if snake.victory: drawGameWin() pygame.display.update() ``` #### File: Jollokim/Snake/snake.py ```python import pygame class Snake: dim = 20 vel = 5 UP = 0 DOWN = 1 LEFT = 2 RIGHT = 3 STARTX = 240 STARTY = 240 def __init__(self, win): self.snakeX = [] self.snakeY = [] self.snakeDirection = [] for i in range(5): self.snakeX.append(Snake.STARTX) self.snakeY.append(Snake.STARTY + (25 * i)) self.snakeDirection.append(Snake.UP) self.currentLength = len(self.snakeX) self.snakeCorner = [] self.snakeMove = True self.snakeAlive = True self.re_to_cha_Dir = True self.win = win self.lastWait = 6 self.lastDirection = None self.waitTails = 0 self.growthRate = 2 self.victory = False self.appleEaten = 0 self.cheatCode = [0, 0, 0] def _forward(self): for i in range(len(self.snakeX)): for ci in range(len(self.snakeCorner)): # when snake part passes corner if self.snakeY[i] == self.snakeCorner[ci][1] and self.snakeX[i] == self.snakeCorner[ci][0]: self.snakeDirection[i] = self.snakeCorner[ci][2] if i == 0: self.re_to_cha_Dir = True if i == len(self.snakeX) - 1: del self.snakeCorner[0] break if self.snakeDirection[i] == Snake.UP: self.snakeY[i] -= Snake.vel elif self.snakeDirection[i] == Snake.DOWN: self.snakeY[i] += Snake.vel elif self.snakeDirection[i] == Snake.LEFT: self.snakeX[i] -= Snake.vel elif self.snakeDirection[i] == Snake.RIGHT: self.snakeX[i] += Snake.vel # runs twice when multiple extra snake blocks are added elif self.lastWait < 4: self.lastWait += 1 break elif self.lastWait == 4: self.snakeDirection[self.currentLength] = self.lastDirection self.currentLength += 1 self.lastWait += 1 self.waitTails -= 1 if self.waitTails > 0: self.lastWait = 0 break def _calcNextCorner(self, pos, rounding): if rounding % 2 == 0: diff = pos % 20 nextCornerPos = pos - diff return nextCornerPos else: modulodiff = pos % 20 diff = 20 - modulodiff nextCornerPos = pos + diff return nextCornerPos def setDirection(self, keys): if keys[pygame.K_UP] & self.re_to_cha_Dir: if self.snakeDirection[0] != Snake.UP and self.snakeDirection[0] != Snake.DOWN: self.re_to_cha_Dir = False self.snakeCorner.append( [self._calcNextCorner(self.snakeX[0], self.snakeDirection[0]), self.snakeY[0], Snake.UP]) elif keys[pygame.K_DOWN] & self.re_to_cha_Dir: if self.snakeDirection[0] != Snake.UP and self.snakeDirection[0] != Snake.DOWN: self.re_to_cha_Dir = False self.snakeCorner.append( [self._calcNextCorner(self.snakeX[0], self.snakeDirection[0]), self.snakeY[0], Snake.DOWN]) elif keys[pygame.K_RIGHT] & self.re_to_cha_Dir: if self.snakeDirection[0] != Snake.RIGHT and self.snakeDirection[0] != Snake.LEFT: self.re_to_cha_Dir = False self.snakeCorner.append( [self.snakeX[0], self._calcNextCorner(self.snakeY[0], self.snakeDirection[0]), Snake.RIGHT]) elif keys[pygame.K_LEFT] & self.re_to_cha_Dir: if self.snakeDirection[0] != Snake.RIGHT and self.snakeDirection[0] != Snake.LEFT: self.re_to_cha_Dir = False self.snakeCorner.append( [self.snakeX[0], self._calcNextCorner(self.snakeY[0], self.snakeDirection[0]), Snake.LEFT]) elif keys[pygame.K_SPACE] and (not self.snakeAlive or self.victory): self.__init__(self.win) elif keys[pygame.K_w]: self.cheatCode[0] = "W" elif keys[pygame.K_i]: self.cheatCode[1] = "I" elif keys[pygame.K_n]: self.cheatCode[2] = "N" cheat = "" for ch in self.cheatCode: cheat += str(ch) if cheat == "WIN": self.victory = True self.appleEaten = 99999999 def _checkDead(self): if self.snakeX[0] < 0 or self.snakeX[0] > 480 - Snake.dim or self.snakeY[0] < 0 or self.snakeY[ 0] > 480 - Snake.dim: self.snakeAlive = False return headx = self.snakeX[0] heady = self.snakeY[0] headDir = self.snakeDirection[0] for i in range(1, len(self.snakeX)): if (headx + Snake.dim > self.snakeX[i] and headx + Snake.dim < self.snakeX[ i] + Snake.dim) and headDir == Snake.RIGHT and ( heady > self.snakeY[i] - Snake.dim and heady < self.snakeY[i] + Snake.dim): self.snakeAlive = False return elif (headx < self.snakeX[i] + Snake.dim and headx > self.snakeX[i]) and headDir == Snake.LEFT and ( heady > self.snakeY[i] - Snake.dim and heady < self.snakeY[i] + Snake.dim): self.snakeAlive = False return elif (heady + Snake.dim > self.snakeY[i] and heady + Snake.dim < self.snakeY[ i] + Snake.dim) and headDir == Snake.DOWN and ( headx > self.snakeX[i] - Snake.dim and headx < self.snakeX[i] + Snake.dim): self.snakeAlive = False return elif (heady < self.snakeY[i] + Snake.dim and heady > self.snakeY[i]) and headDir == Snake.UP and ( headx > self.snakeX[i] - Snake.dim and headx < self.snakeX[i] + Snake.dim): self.snakeAlive = False return def snakeGrow(self): print("snake grows!") lastSnakeX = self.snakeX[-1] lastSnakeY = self.snakeY[-1] if self.waitTails == 0: self.lastWait = 0 self.lastDirection = self.snakeDirection[-1] for i in range(self.growthRate): self.snakeX.append(lastSnakeX) self.snakeY.append(lastSnakeY) self.snakeDirection.append(None) self.waitTails += self.growthRate def render(self): if self.snakeMove & self.snakeAlive & (not self.victory): self._forward() self._checkDead() for i in range(len(self.snakeX)): if i == 0: pygame.draw.rect(self.win, (0, 100, 0), (self.snakeX[i], self.snakeY[i], Snake.dim, Snake.dim)) else: pygame.draw.rect(self.win, (0, 255, 0), (self.snakeX[i], self.snakeY[i], Snake.dim, Snake.dim)) cheat = "" for ch in self.cheatCode: cheat += str(ch) if cheat == "WIN": self.victory = True def __str__(self): return "ssssssssss" ```
{ "source": "Jollokim/SudokuSolver", "score": 2 }
#### File: Jollokim/SudokuSolver/main.py ```python from kivy.app import App from kivy.config import Config from controller.controller import Controller from view.gui import Gui class MyApp(App): title = "Sudoku Solver" icon = "sudoku.png" def build(self): Config.set('graphics', 'width', '700') Config.set('graphics', 'height', '700') gui = Gui() global controller controller = Controller(gui) return gui if __name__ == '__main__': MyApp().run() ``` #### File: SudokuSolver/model/spot.py ```python class Spot: def __init__(self): self.num = "" self.possible_nums = [] for num in range(1,10): self.possible_nums.append(num) self.possible_counter = 0 self.unchangeable = False self.legal_number = True def pluss_one(self): try: number = int(self.num) except: self.num = 1 self.unchangeable = True return self.unchangeable = True number += 1 if number > 9: number = "" self.num = number if self.num == "": self.unchangeable = False def __str__(self): if self.num == "": return "empty" return str(self.num) ```
{ "source": "Jolly23/wx_pay_python", "score": 2 }
#### File: Jolly23/wx_pay_python/example.py ```python from hashlib import sha1 from time import time from flask import jsonify from wx_pay import WxPay, WxPayError def wx_js_config(): """ 生成前端 调用微信js的配置参数 """ config_args = { 'noncestr': WxPay.nonce_str(), 'jsapi_ticket': 'xxxxxx', # jsapi_ticket 一个类似ACCESS_TOKEN的参数, # 详见 https://mp.weixin.qq.com/wiki?action=doc&id=mp1421141115&t=0.6103989146089088#jssdkshiyongbuzhou 'timestamp': int(time()), 'url': 'http://www.example.com/pay/goods=3' # 使用js_api的网页网址 } raw = [(k, str(config_args[k]) if isinstance(config_args[k], (int, float)) else config_args[k]) for k in sorted(config_args.keys())] s = "&".join("=".join(kv) for kv in raw if kv[1]) return { 'signature': sha1(s).hexdigest(), 'timestamp': config_args['timestamp'], 'nonce_str': config_args['noncestr'] } def create_pay_example(): """ 生成微信JS接口下单所需要的参数 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', # 微信平台appid wx_mch_id='WX_MCH_ID', # 微信支付商户号 wx_mch_key='WX_MCH_KEY', # wx_mch_key 微信支付重要密钥,请登录微信支付商户平台,在 账户中心-API安全-设置API密钥设置 wx_notify_url='http://www.example.com/pay/weixin/notify' # wx_notify_url 接受微信付款消息通知地址(通常比自己把支付成功信号写在js里要安全得多,推荐使用这个来接收微信支付成功通知) # wx_notify_url 开发详见https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=9_7 ) try: pay_data = wx_pay.js_pay_api( openid=u'***user_openid***', # 付款用户openid body=u'***商品名称/付款显示名称***', # 例如:饭卡充值100元 total_fee=100 # total_fee 单位是 分, 100 = 1元 # spbill_create_ip='172.16.31.10' # 若不使用flask框架,则需要传入调用微信支付的用户ip地址 ) print pay_data # 订单生成后将请将返回的json数据 传入前端页面微信支付js的参数部分 return jsonify(pay_data) except WxPayError, e: return e.message, 400 def order_query_example(): """ 查询订单 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='http://www.example.com/pay/weixin/notify' ) data = wx_pay.order_query( # 下面两个参数二选一 out_trade_no=u'***商户订单号***', # transaction_id=u'***微信订单号***' ) def close_order_example(): """ 关闭订单 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='http://www.example.com/pay/weixin/notify' ) data = wx_pay.close_order( out_trade_no=u'***商户订单号***' ) def refund_example(): """ 申请退款 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='WX_NOTIFY_URL' ) data = wx_pay.refund( # 证书获取方法请阅读:https://pay.weixin.qq.com/wiki/doc/api/tools/cash_coupon.php?chapter=4_3 # api_client_cert_path: 微信支付商户证书(apiclient_cert.pem)的本地保存路径 api_cert_path='/home/xxx/SERVER/ext_file/apiclient_cert.pem', # api_client_cert_path: 微信支付商户证书(apiclient_key.pem)的本地保存路径 api_key_path='/home/xxx/SERVER/ext_file/apiclient_key.pem', out_trade_no=u'***商户订单号***', # out_refund_no=u'***商户退款单号***', 商户退款单号可自动生成,按需使用 total_fee=500, # 支付时下单总金额 单位分 refund_fee=500, # 要退款的金额 单位分 ) def refund_query_example(): """ 退款查询 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='http://www.example.com/pay/weixin/notify' ) data = wx_pay.refund_query( # 以下传入参数四选一即可 out_refund_no=u'***商户退款单号***', # out_trade_no=u'***商户订单号***', # transaction_id=u'***微信订单号***', # refund_id=u'***微信退款单号***', ) def download_bill_example(): """ 下载对账单 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='http://www.example.com/pay/weixin/notify' ) print wx_pay.download_bill( bill_date='20161228', # 对账单日期 bill_type='ALL' # 账单类型(ALL-当日所有订单信息,[默认]SUCCESS-当日成功支付的订单, REFUND-当日退款订单) ) def send_red_pack_to_user_example(): """ 向个人用户发红包example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='WX_NOTIFY_URL' ) wx_pay.send_red_pack( # 证书获取方法请阅读:https://pay.weixin.qq.com/wiki/doc/api/tools/cash_coupon.php?chapter=4_3 # api_cert_path: 微信支付商户证书(apiclient_cert.pem)的本地保存路径 api_cert_path='/home/xxx/SERVER/ext_file/apiclient_cert.pem', # api_cert_path: 微信支付商户证书(apiclient_key.pem)的本地保存路径 api_key_path='/home/xxx/SERVER/ext_file/apiclient_key.pem', send_name=u'微信支付测试', # 红包名称 re_openid=u'***to_user_openid***', # 要接收红包的用户openid total_amount=100, # total_fee 单位是 分, 100 = 1元, 最大499元 wishing=u'感谢参与测试', # 祝福语 client_ip=u'172.16.17.32', # 调用微信发红包接口服务器公网IP地址 act_name=u'微信支付测试系统', # 活动名称 remark=u'感谢参与' # 备注 ) def enterprise_payment_to_wallet(): """ 直接转账到客户微信钱包 """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='WX_NOTIFY_URL' ) wx_pay.enterprise_payment( # 证书获取方法请阅读:https://pay.weixin.qq.com/wiki/doc/api/tools/cash_coupon.php?chapter=4_3 # api_cert_path: 微信支付商户证书(apiclient_cert.pem)的本地保存路径 api_cert_path='/home/xxx/SERVER/ext_file/apiclient_cert.pem', # api_cert_path: 微信支付商户证书(apiclient_key.pem)的本地保存路径 api_key_path='/home/xxx/SERVER/ext_file/apiclient_key.pem', openid=u'***to_user_openid***', # 要接收转账的用户openid check_name=True, # 是否强制校验收款用户姓名 # 如果check_name为True,下面re_user_name必须传入 # 如果check_name为False,请删除下一行参数re_user_name re_user_name=u'***客户的真实姓名***', # 校验不成功付款会是失败 amount=100, # total_fee 单位是 分, 100 = 1元, 单用户 单笔上限/当日上限:2W/2W desc=u'充值失败退款', # 付款原因 spbill_create_ip='172.16.17.32', # 调用微信企业付款接口服务器公网IP地址 ) def swiping_card_example(): """ 刷卡支付 example """ wx_pay = WxPay( wx_app_id='WX_APP_ID', wx_mch_id='WX_MCH_ID', wx_mch_key='WX_MCH_KEY', wx_notify_url='http://www.example.com/pay/weixin/notify' ) wx_pay.swiping_card_payment( body=u'***商品名称/付款显示名称***', # 例如:综合超市 total_fee=100, # total_fee 消费金额 单位是 分 auth_code='131336161431593669', # 获取到的客户微信付款码 spbill_create_ip='172.16.17.32', # 调用微信企业付款接口服务器公网IP地址 ) if __name__ == "__main__": pass ```
{ "source": "JollyBanny/sample-django", "score": 3 }
#### File: twitter/api/permissions.py ```python from rest_framework.permissions import BasePermission, SAFE_METHODS class IsTweetAuthReadOnly(BasePermission): def has_object_permission(self, request, view, tweet): if request.method in SAFE_METHODS: return True if request.user and \ request.user.is_authenticated and \ tweet.author == request.user: return True return False ```
{ "source": "jollychang/atlassian-python-api", "score": 3 }
#### File: atlassian-python-api/examples/bitbucket-project.py ```python from atlassian import Bitbucket def html(project): html = """<tr> <td>{project_key}</td> <td>{project_name}</td> <td><ul>""".format(**project) for user in project['project_administrators']: html += '\n\t<li><a href="mailto:{email}">{name}</a></li>'.format(**user) return html + '</ul></td></tr>\n' bitbucket = Bitbucket( url='http://localhost:7990', username='admin', password='<PASSWORD>') data = bitbucket.project('DEMO') print(html(data)) ```
{ "source": "jollycoin/jollycoin", "score": 3 }
#### File: jollycoin/jollycoin/merkle.py ```python import hashlib import binascii class Merkle(object): def __init__(self, hash_type="sha256"): hash_type = hash_type.lower() self.hash_function = getattr(hashlib, hash_type) self.reset_tree() def reset_tree(self): self.leaves = list() self.levels = None self.is_ready = False def add_leaf(self, values, do_hash=False): # check if single leaf if not isinstance(values, tuple) and not isinstance(values, list): values = [values] for v in values: if do_hash: v = v.encode('utf-8') v = self.hash_function(v).hexdigest() v = bytearray.fromhex(v) self.leaves.append(v) def _calculate_next_level(self): solo_leave = None # number of leaves on the level N = len(self.levels[0]) # if odd number of leaves on the level if N % 2 == 1: solo_leave = self.levels[0][-1] N -= 1 new_level = [] for l, r in zip(self.levels[0][0:N:2], self.levels[0][1:N:2]): new_level.append(self.hash_function(l+r).digest()) if solo_leave is not None: new_level.append(solo_leave) # prepend new level self.levels = [new_level, ] + self.levels def make_tree(self): if self.leaves: self.levels = [self.leaves] while len(self.levels[0]) > 1: self._calculate_next_level() def get_merkle_root(self): if self.levels is not None: return self.levels[0][0].hex() return None if __name__ == '__main__': m = Merkle() m.add_leaf('123', True) m.add_leaf('234', True) m.add_leaf('345') m.make_tree() r = m.get_merkle_root() print(f'r: {r!r}') ```
{ "source": "Jollyfant/EPOS-TURTLE", "score": 2 }
#### File: EPOS-TURTLE/classes/Annotation.py ```python from EPOS import Node class Annotation(Node): def __init__(self, *args): self.type = self.oa.Annotation Node.__init__(self, args) ``` #### File: EPOS-TURTLE/classes/Catalog.py ```python from EPOS import Node class Catalog(Node): def __init__(self, *args): self.type = self.dcat.Catalog Node.__init__(self, args) ``` #### File: EPOS-TURTLE/classes/Frequency.py ```python from EPOS import Node class Frequency(Node): def __init__(self, *args): self.type = self.dct.Frequency Node.__init__(self, args) ``` #### File: EPOS-TURTLE/classes/HydraIriTemplateMapping.py ```python from EPOS import Node class HydraIriTemplateMapping(Node): def __init__(self, *args): self.type = self.hydra.IriTemplateMapping Node.__init__(self, args) ``` #### File: EPOS-TURTLE/classes/LinguisticSystem.py ```python from EPOS import Node class LinguisticSystem(Node): def __init__(self, *args): self.type = self.dct.LinguisticSystem Node.__init__(self, args) ``` #### File: EPOS-TURTLE/classes/MediaTypeOrExtent.py ```python from EPOS import Node class MediaTypeOrExtent(Node): def __init__(self, *args): self.type = self.dct.MediaTypeOrExtent Node.__init__(self, args) ``` #### File: EPOS-TURTLE/classes/ProvenanceStatement.py ```python from EPOS import Node class ProvenanceStatement(Node): def __init__(self, *args): self.type = self.dct.ProvenanceStatement Node.__init__(self, args) ```
{ "source": "Jollyfant/psd-module", "score": 2 }
#### File: Jollyfant/psd-module/psd.py ```python import numpy as np from obspy import read, UTCDateTime, Stream from zlib import adler32 import ctypes from calc import compressSpectrum, smoothSpectrum, getInstrumentResponse, psdWelch from constants import (DB_REFERENCE, MINIMUM_PERIOD, NUMBER_OF_FREQUENCIES, OCTAVE_PERIOD_STEP, SEGMENT_LENGTH) from sdsfile import SDSFile class PSDCollector(): """ Calculates spectra for an ObsPy trace Settings are internal in calculateSpectrum """ def __init__(self, connect_sql=True): """Initialize a PSDCollector. Parameters ---------- connect_sql : `bool` Whether or not to connect to an SQL database (default `True`). """ self.frequencies = self.setupFrequencies() if connect_sql: import pymysql.cursors self.connection = pymysql.connect( user="root", password="password", host="localhost", db="test" ) def setupFrequencies(self): """ def setupFrequencies Sets up the frequencies to calculate the PSDs for """ # This is going to give us nice frequencies at 1, 2, 4Hz steps = np.arange(NUMBER_OF_FREQUENCIES) * OCTAVE_PERIOD_STEP numbers = MINIMUM_PERIOD * 2 ** steps return np.reciprocal(numbers) def calculateSpectrum(self, trace, frequencies, frequency_responses=None, corresponding_frequencies=None): """ def calculateSpectrum Calculates power spectrum of a trace using Welch's method Can be either psdWelch, psdWelchScipy, psdWelchMlab """ fs = trace.stats.sampling_rate # Number of points in the Welch FFT (13 segments per hour with 75% overlap) # ObsPy goes to previous power of 2 (small difference) nfft = int(SEGMENT_LENGTH * fs / 4.0) # Load the instrument response from cacher if necessary resp = frequency_responses freqs = corresponding_frequencies if resp is None or freqs is None: resp, freqs = getInstrumentResponse(trace.stats) # Calculate the spectra: import right function from calc.py Pxx = psdWelch( trace.data, fs, resp, nfft=nfft, overlap=0.75, reference=DB_REFERENCE ) # Smooth the spectrum over a full octave return smoothSpectrum(freqs, Pxx, frequencies) def readData(self, SDSFile): """ def readData Reads mSEED data from disk from multiple files and creates a single stream """ # Create an empty stream to fill ObspyStream = Stream() # Read neighbouring files for neighbour in SDSFile.neighbours: # Read from 0h of this day, most likely in the previous day file, # until half an hour in the next day [psd segment end] st = read( neighbour.filepath, starttime=UTCDateTime(SDSFile.start), endtime=UTCDateTime(SDSFile.end) + 0.5 * SEGMENT_LENGTH, nearest_sample=False ) # Concatenate all the traces for tr in st: if tr.stats.npts != 0: ObspyStream.extend([tr]) # No data found if not ObspyStream: raise ValueError("No data for processing.") # Simple clean up to remove overlaps and merge traces # This does not fill any gaps ObspyStream.merge(-1) return ObspyStream def storeObjects(self, psdObjects): """ def storeObject Stores the prepared object to the database # Make table CREATE TABLE PSD ( network CHAR(2) NOT NULL, station CHAR(5) NOT NULL, location CHAR(2) NOT NULL, channel CHAR(3) NOT NULL, quality CHAR(1) NOT NULL, start DATETIME NOT NULL, shift SMALLINT(2) SIGNED NOT NULL, offset TINYINT(1) SIGNED NOT NULL, spectrum VARBINARY(255) NOT NULL ) ENGINE = InnoDB; # Add index CREATE INDEX idx_network ON PSD (network, station, location, channel, start); """ try: with self.connection.cursor() as cursor: # Currently store Infrasound / Seismic in same table called PSD # TODO Need to store something else? E.g. data hash? Can be in another table pointing to daily 48 segments variables = "network, station, location, channel, quality, start, shift, offset, spectrum" values = "%s, %s, %s, %s, %s, %s, %s, %s, %s" sql = "INSERT INTO PSD (%s) VALUES (%s)" % (variables, values) cursor.executemany(sql, psdObjects) # TODO check if object already exists self.connection.commit() finally: self.connection.close() def getTrace(self, data, segmentStart): """ def getTrace Extracts a trace from the data that fits the PSD segment """ # TODO TEST TEST TEST # Cut trace to an hour long segment stream = data.slice( segmentStart, segmentStart + SEGMENT_LENGTH - 1E-6, nearest_sample=False ) # Only a single trace may remain if len(stream) != 1: stream._cleanup(misalignment_threshold=0.5) # If _cleanup() doesn't fix it, throw an error if len(stream) != 1: raise ValueError("Number of traces is not one.") # Get the first trace trace = stream[0] # Confirm the number of points is as expected # Otherwise there must be a gap and thus we decide to skip the segment if trace.stats.npts != int(trace.stats.sampling_rate * SEGMENT_LENGTH): raise ValueError( "Number of samples in segment length is not expected.") return trace def getResponseFromFDSN(self, sds_file): """Get the instrumental response from FDSN. Taken from responseCacher/cache.py. Parameters ---------- sds_file : `SDSFile` Returns ------- responses : `list` of `dict` Each element of the list is a dictionary with the following fields: * "start_time" : `obspy.UTCDateTime` * "end_time" : `obspy.UTCDateTime` * "response" : `numpy.ndarray` * "frequencies" : `numpy.ndarray` """ inventory = sds_file.inventory if inventory is None: raise Exception("Could not find inventory for this file") # Verify that only one station is returned # (different responses are modeled as separate channels with same code) contents = inventory.get_contents() if (len(contents["networks"]) != 1 or len(contents["stations"]) != 1): raise Exception("Inventory not valid for this file") # Get all responses response_list = [] for channel in inventory[0][0]: response_dict = {} # Store time frame for this response response_dict["start_time"] = channel.start_date response_dict["end_time"] = channel.end_date # TODO is end_date None or inexistent? # Evaluate the response to VEL for infrasound channels # Seismic stations should go to ACC to be consistent with the NLNM, NHNM output = "ACC" if channel.code.endswith("DF"): output = "VEL" # Call evalresp to evaluate the response # NFFT must be same as in Welch's method! # We use 13 segments with 75% overlap fs = channel.sample_rate resp, freqs = channel.response.get_evalresp_response( t_samp=np.reciprocal(fs), nfft=int(fs * SEGMENT_LENGTH / 4.0), output=output ) response_dict["response"] = resp response_dict["frequencies"] = freqs # Drop phase imaginary information resp = np.abs(resp) response_list.append(response_dict) return response_list def process(self, SDSFile, cache_response=True): """Process a given SDSFile to extract PSDs. Parameters ---------- SDSFile : `SDSFile` SDS file data/metadata cache_response : `bool` Whether to use the `responseCacher` (default `True`). Returns ------- `list` of `tuple` Each element of the list corresponds to a segment of the PPSD computation, and it contains (network, station, location, channel, quality, start of segment, shift, offset, and the binary data). """ # Load data to an ObsPy trace data = self.readData(SDSFile) # Start and end times segmentStart = UTCDateTime(SDSFile.start) segmentEnd = UTCDateTime(SDSFile.end) + 0.5 * SEGMENT_LENGTH psdObjects = list() # Get instrument response if needed all_responses = [] if not cache_response: all_responses = self.getResponseFromFDSN(SDSFile) # Loop over all the hour long segments until the end is reached while segmentStart + SEGMENT_LENGTH <= segmentEnd: # Find the appropriate response for the segment time resp = None freqs = None for response in all_responses: if (response["start_time"] < segmentStart and (response["end_time"] is None or segmentStart + SEGMENT_LENGTH < response["end_time"])): resp = response["response"] freqs = response["frequencies"] # If no response contains segment and is not cached, skip this segment if not cache_response and (resp is None or freqs is None): segmentStart = segmentStart + 0.5 * SEGMENT_LENGTH continue # Get the trace in this time range # TODO a lot of testing! try: trace = self.getTrace(data, segmentStart) except ValueError: segmentStart = segmentStart + 0.5 * SEGMENT_LENGTH continue # Internal spectrum calculation: the returned spectrum is smoothed spectrum = self.calculateSpectrum(trace, self.frequencies, resp, freqs) # Compress data to a BLOB for MySQL offset, shift, binary = compressSpectrum(spectrum) # Compute a short and fast but not very safe checksum from response resp_checksum = adler32(resp) & 0xffffffff resp_checksum = ctypes.c_int32(resp_checksum).value # Save all metadata in a record psd_record = { "fileId": SDSFile.filename, "checksum": SDSFile.checksum, "checksumInventory": resp_checksum, "net": SDSFile.net, "sta": SDSFile.sta, "loc": SDSFile.loc, "cha": SDSFile.cha, "quality": SDSFile.quality, "ts": segmentStart.datetime, "te": (segmentStart + SEGMENT_LENGTH).datetime, "shift": shift, "offset": offset, "bin": binary } psdObjects.append(psd_record) # Modify the start time of the trace with 50% overlap segmentStart = segmentStart + 0.5 * SEGMENT_LENGTH # Check if at least one document has been processed if not psdObjects: raise Exception("Unable to process PSD for any segment") # Add checksum_prev to first segment and checksum_next to the last one, # no matter if they are at the beggining of the day or not. This way, # we can check if the file needs to be processed when previous/next # files are added/modified, in all possible cases. psdObjects[0]["checksum_prev"] = SDSFile.previous.checksum psdObjects[-1]["checksum_next"] = SDSFile.next.checksum return psdObjects def processAndStore(self, SDSFile): """Process a given SDSFile to extract PSDs and saves the data in the configured SQL database. Parameters ---------- SDSFile : `SDSFile` SDS file data/metadata """ psd_objects = self.process(SDSFile) psd_objects = [(rec["net"], rec["sta"], rec["loc"], rec["cha"], rec["quality"], rec["ts"].isoformat(), rec["shift"], rec["offset"], rec["bin"]) for rec in psd_objects] self.storeObjects(psd_objects) ```
{ "source": "jolly-good-toolbelt/jiratools", "score": 3 }
#### File: jiratools/jiratools/error_logger.py ```python from typing import List, Iterable from jiratools import format_as_code_block from jiratools.helpers import add_comment from jiratools.formatting import ( DataArray, format_autoupdate_jira_msg, format_as_jira_table, ) DataHeaders = List[str] class JiraEntry: """Typing mock for Jira Entry data.""" jira_id: str error_message: str def add_jira_error_comment(jira_id: str, error_msg: str, **format_kwargs) -> str: """ Add a comment to a JIRA with a formatted error message. Args: jira_id: the Issue ID of the JIRA to be updated error_msg: the raw error message to include in the comment **format_kwargs: formatting keyword args to be passed to jiratools.formatting.format_jira_msg Returns: the Issue ID of the JIRA which received the comment """ add_comment( jira_id, format_autoupdate_jira_msg(format_as_code_block(error_msg), **format_kwargs), ) return jira_id def add_jira_comment_with_table( jira_id: str, data_headers: DataHeaders, data_array: DataArray, msg_prefix: str = "", **format_kwargs ) -> str: """ Add a comment to a JIRA with a formatted data table. Args: jira_id: the Issue ID of the JIRA to be updated data_headers: a list of header column names data_array: An array of lists of strings, representing table rows. e.g.:: [["a", "b", "c"], ["d", "e", "f"]] **format_kwargs: formatting keyword args to be passed to jiratools.formatting.format_jira_msg Returns: str: the Issue ID of the JIRA which received the comment """ message_with_table = "{}{}".format( msg_prefix, format_as_jira_table(data_headers, data_array) ) add_comment( jira_id, format_autoupdate_jira_msg(message_with_table, **format_kwargs) ) return jira_id def update_jira_for_errors( jiras: Iterable[JiraEntry], *errors: str, **format_kwargs ) -> List[str]: """ Auto-Update JIRAs if errors are found that match the jira list. Args: jiras: an iterable of objects that each contain two required attributes - jira_id: the Issue Id of the JIRA to be updated - error_message: an error message substring which, if found, will trigger and update of the JIRA with the actual error message. *errors: an error message to be checked against the ``jiras`` for a match **format_kwargs: formatting keyword args to be passed to jiratools.formatting.format_jira_msg Returns: A list of JIRA Issue IDs that were updated. """ jiras_commented = [] for jira in jiras: for error in errors: if jira.error_message and jira.error_message in error: jiras_commented.append( add_jira_error_comment(jira.jira_id, error, **format_kwargs) ) return jiras_commented ``` #### File: jiratools/jiratools/example_config.py ```python import os import shutil import sys from jgt_common import error_if from .utils import CONFIG_FILENAME, SAMPLE_CONFIG_FILENAME def cli_example_config(install: bool, install_if_missing: bool) -> None: """Build example config.""" error_if( not os.path.exists(SAMPLE_CONFIG_FILENAME), message="Missing example config file: {}".format(SAMPLE_CONFIG_FILENAME), ) prefix = "Copying" if install else "Would copy" print("{} {} to {}".format(prefix, SAMPLE_CONFIG_FILENAME, CONFIG_FILENAME)) if install or install_if_missing: config_exists = os.path.exists(CONFIG_FILENAME) message = "Not installing, config file already in place: {}".format( CONFIG_FILENAME ) if install: error_if(config_exists, message=message) elif install_if_missing: print(message) exit() shutil.copy(SAMPLE_CONFIG_FILENAME, CONFIG_FILENAME) else: with open(SAMPLE_CONFIG_FILENAME) as in_file: shutil.copyfileobj(in_file, sys.stdout) ```
{ "source": "JollyJavelin/DoryenRogueTest", "score": 3 }
#### File: JollyJavelin/DoryenRogueTest/DoryenRogueTest.py ```python import libtcodpy as libtcod SCREEN_WIDTH = 80 SCREEN_HEIGHT = 50 MAP_WIDTH = 80 MAP_HEIGHT = 45 LIMIT_FPS = 20 color_dark_wall = libtcod.Color(0, 0, 100) color_dark_ground = libtcod.Color(50, 50, 150) class Tile: def __init__(self, blocked, block_sight = None): self.blocked = blocked if block_sight is None: block_sight = blocked self.block_sight = block_sight class Rect: def __init__(self, x, y, w, h): self.x1 = x self.y1 = y self.x2 = x + w self.y2 = y + h class Object: def __init__(self, x, y, char, color): self.x = x self.y = y self.char = char self.color = color def move(self, dx, dy): if not map[self.x + dx][self.y + dy].blocked: self.x += dx self.y += dy def draw(self): libtcod.console_set_default_foreground(con, self.color) libtcod.console_put_char(con, self.x, self.y, self.char, libtcod.BKGND_NONE) def clear(self): libtcod.console_put_char(con, self.x, self.y, ' ', libtcod.BKGND_NONE) def make_map(): global map map = [[Tile(False) for y in range(MAP_HEIGHT)] for x in range(MAP_WIDTH)] map[30][22].blocked = True map[30][22].block_sight = True map[50][22].blocked = True map[50][22].block_sight = True def render_all(): for y in range(MAP_HEIGHT): for x in range(MAP_WIDTH): wall = map[x][y].block_sight if wall: libtcod.console_set_char_background(con, x, y, color_dark_wall, libtcod.BKGND_SET) else: libtcod.console_set_char_background(con, x, y, color_dark_ground, libtcod.BKGND_SET) for object in objects: object.draw() libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0) def handle_keys(): key = libtcod.console_wait_for_keypress(True) if key.vk == libtcod.KEY_ENTER and key.lalt: libtcod.console_set_fullscreen(not libtcod.console_is_fullscreen()) elif key.vk == libtcod.KEY_ESCAPE: return True if libtcod.console_is_key_pressed(libtcod.KEY_UP): player.move(0, -1) elif libtcod.console_is_key_pressed(libtcod.KEY_DOWN): player.move(0, 1) elif libtcod.console_is_key_pressed(libtcod.KEY_LEFT): player.move(-1, 0) elif libtcod.console_is_key_pressed(libtcod.KEY_RIGHT): player.move(1, 0) libtcod.console_set_custom_font('arial10x10.png', libtcod.FONT_TYPE_GREYSCALE | libtcod.FONT_LAYOUT_TCOD) libtcod.console_init_root(SCREEN_WIDTH, SCREEN_HEIGHT, '<NAME>', False) libtcod.sys_set_fps(LIMIT_FPS) con = libtcod.console_new(SCREEN_WIDTH, SCREEN_HEIGHT) player = Object(SCREEN_WIDTH/2, SCREEN_HEIGHT/2, '@', libtcod.white) npc = Object(SCREEN_WIDTH/2 - 5, SCREEN_HEIGHT/2, '@', libtcod.yellow) objects = [npc, player] make_map() while not libtcod.console_is_window_closed(): render_all() libtcod.console_flush() for object in objects: object.clear() exit = handle_keys() if exit: break ```
{ "source": "jollyjiyoun/DescEmb", "score": 2 }
#### File: DescEmb/datasets/dataset.py ```python import os import logging import random import collections import torch import torch.utils.data import numpy as np import pandas as pd from transformers import AutoTokenizer logger = logging.getLogger(__name__) class BaseDataset(torch.utils.data.Dataset): def __init__( self, input_path, data, eval_data, fold, split, value_embed_type, task, seed, ratio, ): assert ( task not in ["mlm", "w2v"] or not (data == 'pooled' and eval_data) ), "--eval_data should be set if pooled-learning on prediction tasks" self.data = data if task in ["mlm", "w2v"]: eval_data = data self.input_path = input_path self.split = split self.prefix = ( eval_data if ( data == 'pooled' and split != 'train' ) else data ) self.data_path = os.path.join(self.input_path, self.prefix) self.label_path = os.path.join(self.input_path, "label") self.ext = "_" + str(value_embed_type) + ".npy" self.task = task self.seed = seed self.labels = None self.tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") self.ratio = '' if ratio == '100' else '_' + ratio if fold: self.fold = fold else: self.fold = os.path.join( self.input_path, "fold", "{}_{}_fold_split{}.csv".format( self.prefix, self.seed, self.ratio ) ) def __len__(self): raise NotImplementedError() def __getitem__(self, index): raise NotImplementedError() def get_fold_indices(self): if self.split == 'train': hit = 1 elif self.split == 'valid': hit = 2 elif self.split == 'test': hit = 0 df = pd.read_csv(self.fold) splits = df[self.task].values idcs = np.where(splits == hit)[0] return idcs def mask_tokens(self, inputs: torch.Tensor, special_tokens_mask: torch.Tensor): """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ labels = inputs.clone() # We sample a few tokens in each sequence for MLM training (with probability `self.textencoder_mlm_probability`) probability_matrix = torch.full(labels.shape, self.mlm_prob) if special_tokens_mask is None: special_tokens_mask = torch.tensor( self.tokenizer.get_special_tokens_mask( labels, already_has_special_tokens=True ), dtype=torch.bool ) else: special_tokens_mask = special_tokens_mask.bool() probability_matrix.masked_fill_(special_tokens_mask, value=0.0) masked_indices = torch.bernoulli(probability_matrix).bool() while torch.equal(masked_indices, torch.zeros(len(masked_indices)).bool()): masked_indices = torch.bernoulli(probability_matrix).bool() labels[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels class Dataset(BaseDataset): def __init__( self, input_path, data, eval_data, fold, split, value_embed_type, task, seed, ratio, ): super().__init__( input_path=input_path, data=data, eval_data=eval_data, fold=fold, split=split, value_embed_type=value_embed_type, task=task, seed=seed, ratio=ratio, ) hit_idcs = self.get_fold_indices() self.sequential_lengths = None self.value = np.load( file=os.path.join(self.data_path, "value.npy") ) self.value = self.value[hit_idcs] if self.data == 'pooled': self.input_idcs = np.load( file=os.path.join(self.data_path, "pooled_input_index{}".format(self.ext)), ) else: self.input_idcs = np.load( file=os.path.join(self.data_path, "{}_input_index{}".format(self.prefix, self.ext)) ) self.input_idcs = self.input_idcs[hit_idcs] self.sequential_lengths = np.load( file=os.path.join(self.data_path, f"seq_len.npy"), ) self.sequential_lengths = self.sequential_lengths[hit_idcs] self.label = np.load( file=os.path.join( self.label_path, "{}_{}_label.npy".format(self.prefix, self.task) ).format(self.prefix, self.task), ) self.label = torch.tensor(self.label[hit_idcs], dtype=torch.long) logger.info(f"loaded {len(self.input_idcs)} {self.split} samples") def __len__(self): return len(self.input_idcs) def __getitem__(self, index): input_idcs = torch.LongTensor(self.input_idcs[index]) seq_len = torch.LongTensor(self.sequential_lengths).unsqueeze(-1)[index] label = torch.LongTensor(self.label).unsqueeze(-1)[index] value = torch.Tensor(self.value[index]) return { 'input_ids': input_idcs, 'seq_len': seq_len, 'value': value, 'label': label } def collator(self, samples): samples = [s for s in samples if s["input_ids"] is not None] if len(samples) == 0: return {} input = {"input_ids": torch.stack([s["input_ids"] for s in samples])} input["seq_len"] = torch.stack([s["seq_len"] for s in samples]) input["value"] = torch.stack([s["label"] for s in samples]) out = {"label": torch.stack([s["label"] for s in samples])} out["net_input"] = input return out class TokenizedDataset(BaseDataset): def __init__( self, input_path, data, eval_data, fold, split, value_embed_type, task, seed, ratio, ): super().__init__( input_path=input_path, data=data, eval_data=eval_data, fold=fold, split=split, value_embed_type=value_embed_type, task=task, seed=seed, ratio=ratio, ) hit_idcs = self.get_fold_indices() col_names = ['input_ids', 'token_type_ids', 'attention_mask'] self.offset_orders = None self.sequential_lengths = None self.value = np.load( file=os.path.join(self.data_path, "value.npy") ) self.value = self.value[hit_idcs] self.input_ids, self.token_type_ids, self.attention_mask = ( np.load( file=os.path.join(self.data_path, f"{col}{self.ext}"), ) for col in col_names ) self.input_ids = self.input_ids[hit_idcs] self.token_type_ids = self.token_type_ids[hit_idcs] self.attention_mask = self.attention_mask[hit_idcs] self.sequential_lengths = np.load( file=os.path.join(self.data_path, "seq_len.npy"), ) self.sequential_lengths = self.sequential_lengths[hit_idcs] self.label = np.load( file=os.path.join( self.label_path, "{}_{}_label.npy".format(self.prefix, self.task) ).format(self.prefix, self.task), ) self.label = torch.tensor(self.label[hit_idcs], dtype=torch.long) logger.info(f"loaded {len(self.input_ids)} {self.split} samples") def __len__(self): return len(self.input_ids) def __getitem__(self, index): input_ids = torch.LongTensor(self.input_ids[index]) token_type_id = torch.LongTensor(self.token_type_ids[index]) attn_mask = torch.LongTensor(self.attention_mask[index]) seq_len = (torch.LongTensor(self.sequential_lengths).unsqueeze(-1)[index]) label = torch.LongTensor(self.label).unsqueeze(-1)[index] value = torch.Tensor(self.value[index]) return { 'input_ids': input_ids, 'token_type_ids': token_type_id, 'attention_mask': attn_mask, 'seq_len': seq_len, 'value': value, 'label': label } def collator(self, samples): samples = [s for s in samples if s["input_ids"] is not None] if len(samples) == 0: return {} input = {"input_ids": torch.stack([s["input_ids"] for s in samples])} input["token_type_ids"] = torch.stack([s["token_type_ids"] for s in samples]) input["attention_mask"] = torch.stack([s["attention_mask"] for s in samples]) input["seq_len"] = torch.stack([s["seq_len"] for s in samples]) input["value"] = torch.stack([s["value"] for s in samples]) out = {"label": torch.stack([s["label"] for s in samples])} out["net_input"] = input return out class MLMTokenizedDataset(BaseDataset): def __init__( self, input_path, data, eval_data, fold, split, value_embed_type, task, seed, ratio, mlm_prob ): super().__init__( input_path=input_path, data=data, eval_data=eval_data, fold=fold, split=split, value_embed_type=value_embed_type, task=task, seed=seed, ratio=ratio, ) self.mlm_prob = mlm_prob col_names = ['input_ids', 'token_type_ids', 'attention_mask'] self.input_ids, self.token_type_ids, self.attention_mask = ( np.load( file=os.path.join(self.data_path, f"{col}_unique_code.npy") ) for col in col_names ) logger.info(f"loaded {len(self.input_ids)} {self.split} samples") def __len__(self): return len(self.input_ids) def __getitem__(self, index): input_ids = torch.LongTensor(self.input_ids[index]) token_type_id = torch.LongTensor(self.token_type_ids[index]) attn_mask = torch.LongTensor(self.attention_mask[index]) input_ids, mlm_labels = self.mask_tokens(input_ids, special_tokens_mask=None) return { 'input_ids': input_ids, 'token_type_ids': token_type_id, 'attention_mask': attn_mask, 'mlm_labels': mlm_labels, } def collator(self, samples): samples = [s for s in samples if s["input_ids"] is not None] if len(samples) == 0: return {} input = {"input_ids": torch.stack([s["input_ids"] for s in samples])} input["token_type_ids"] = torch.stack([s["token_type_ids"] for s in samples]) input["attention_mask"] = torch.stack([s["attention_mask"] for s in samples]) out = {"label": torch.stack([s["mlm_labels"] for s in samples])} out["net_input"] = input return out class Word2VecDataset(BaseDataset): def __init__( self, input_path, data, eval_data, fold, split, value_embed_type, task, seed, ratio, ): super().__init__( self, input_path, data, eval_data, fold, split, value_embed_type, task, seed, ratio, ) input_idcs = np.load( file=os.path.join(self.data_path, "{}_input_index{}".format(self.prefix, self.ext)) ) input_idcs = self.indexing(input_idcs, self.data, self.seed) self.pos_pair, self.neg_pair = self.preprocess(input_idcs) self.pos_pair.pop(0) self.index_dict = {i: k for i, k in enumerate(self.pos_pair.keys())} def __len__(self): return len(self.pos_pair) def __getitem__(self, item): item = self.index_dict[item] try: pos = random.sample(self.pos_pair[item], 5) except ValueError: pos = random.choices(self.pos_pair[item], k=5) try: neg = random.sample(self.neg_pair[item], 30) except ValueError: neg = random.choices(self.neg_pair[item], k=30) return torch.LongTensor([item]), torch.LongTensor(pos), torch.LongTensor(neg) def indexing(self, data, dataname, seed): hit = 1 df = pd.read_csv(os.path.join(self.path, 'fold', f'{dataname}_{seed}_fold_split.csv')) splits = df[self.task].values idcs = np.where(splits == hit)[0] data = data[idcs] return data def preprocess(self, mimic): pos_pair = {} skip_window=15 for index in range(mimic.shape[0]): data = mimic[index] data_index = 0 span = 2 * skip_window + 1 # [ skip_window, target, skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for m in range(skip_window): try: pos_pair[buffer[m]].extend(list(set(list(buffer)))) except KeyError: pos_pair[buffer[m]] = list(set(list(buffer))) for i in range(np.nonzero(data)[0].max() - skip_window): key = buffer[skip_window] if buffer[skip_window] == 0: continue try: pos_pair[key].extend(list(set(list(buffer)))) except KeyError: pos_pair[key] = list(set(list(buffer))) buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) data_index = (data_index + len(data) - span) % len(data) pos_pair = {k: list(set(v)) for k, v in pos_pair.items()} # negative_pair max_num = mimic.max() neg_pair = {k:list(set(v) ^ set(list(np.arange(3, max_num)))) for k, v in pos_pair.items()} return pos_pair, neg_pair ``` #### File: DescEmb/models/__init__.py ```python import importlib import os import pdb MODEL_REGISTRY = {} # should be: MODEL_REGISTRY = {} # pdb.set_trace() # build model instance # only execute build_model() if model argument passed by user is defined # for main model (not embed model, predict model) def build_model(args): model = None model_type = getattr(args, "model", None) if model_type in MODEL_REGISTRY: model = MODEL_REGISTRY[model_type] assert model is not None, ( f"Could not infer model type from {model_type}. " f"Available models: " + str(MODEL_REGISTRY.keys()) + " Requested model type: " + model_type ) return model.build_model(args) # a function decorator that adds model name, class to MODEL_REGISTRY def register_model(name): """ New model types can be added with the :func:`register_model` function decorator. For example: @register_model('descemb_bert') class BertTextEncoder(nn.Module): (...) Args: name (str): the name of the model """ def register_model_cls(cls): if name in MODEL_REGISTRY: raise ValueError(f"Cannot register duplicate model ({name})") MODEL_REGISTRY[name] = cls return cls return register_model_cls def import_models(models_dir, namespace): # for each file in models/ directory # : __pycache__, __init__.py, codeemb.py, descemb.py, ehr_model.py, rnn.py, word2vec.py for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): # model_name: codeemb, descemb, ehr_model, rnn, word2vec model_name = file[: file.find(".py")] if file.endswith(".py") else file # models.codeemb, models.descemb, models.ehr_model, models.rnn, models.word2vec importlib.import_module(namespace + "." + model_name) # automatically import any Python files in the models/ directory # models_dir: models/ directory models_dir = os.path.dirname(__file__) # 1. import and define all model classes # 2. run register_model() for each class, and add model instance to MODEL_REGISTRY # 3. when model.build_model is executed, check if model name exists in MODEL_REGISTRY import_models(models_dir, "models") # MODEL_REGISTRY dictionary should be filled with models # each model class instance will be created # pdb.set_trace() ``` #### File: DescEmb/modules/identity_layer.py ```python import torch.nn as nn class IdentityLayer(nn.Module): def __init__(self): super().__init__() def forward(self, source): return source ```
{ "source": "jollyjonson/multitask-f0", "score": 3 }
#### File: multitask-f0/deepsalience/compute_hcqts.py ```python from __future__ import print_function import argparse import csv from joblib import Parallel, delayed import librosa import numpy as np import sys def get_hcqt_params(): """Static function to store HCQT parameters. Returns ------- bins_per_octave : int Number of bins per octave in HCQT n_octaves : int Number of octaves in HCQT harmonics : list List of harmonics to compute in HCQT sr : float Sample rate to load input audio signal. fmin : float Minimum frequency in HCQT (in Hz) hop_length : int Hop length (in samples) at sample rate `sr` of the HCQT """ bins_per_octave = 60 n_octaves = 6 harmonics = [1, 2, 3, 4, 5] sr = 22050 fmin = 32.7 hop_length = 256 return bins_per_octave, n_octaves, harmonics, sr, fmin, hop_length def compute_hcqt(audio_fpath): """Compute the harmonic CQT from a given audio file Parameters ---------- audio_fpath : str Path to input audio file Returns ------- hcqt : np.ndarray HCQT as a numpy array """ # get parameters and load audio (bins_per_octave, n_octaves, harmonics, sr, f_min, hop_length) = get_hcqt_params() y, fs = librosa.load(audio_fpath, sr=sr) # compute cqt for each minimum frequency h*f_min cqt_list = [] shapes = [] for h in harmonics: cqt = librosa.cqt( y, sr=fs, hop_length=hop_length, fmin=f_min*float(h), n_bins=bins_per_octave*n_octaves, bins_per_octave=bins_per_octave ) cqt_list.append(cqt) shapes.append(cqt.shape) # adjust number of time frames across harmonics to the minimum length shapes_equal = [s == shapes[0] for s in shapes] if not all(shapes_equal): min_time = np.min([s[1] for s in shapes]) new_cqt_list = [] for i in range(len(cqt_list)): new_cqt_list.append(cqt_list[i][:, :min_time]) cqt_list = new_cqt_list # compute log amplitude and normalize between 0 and 1 log_hcqt = ((1.0/80.0) * librosa.core.amplitude_to_db( np.abs(np.array(cqt_list)), ref=np.max)) + 1.0 return log_hcqt def get_hcqt(input_audio, output_npy): """Compute and save an HCQT Parameters ---------- input_audio : str Path to input audio file output_npy : str Path to save HCQT npy file """ print("Computing HCQT for {}".format(input_audio)) try: hcqt = compute_hcqt(input_audio) np.save(output_npy, hcqt.astype(np.float32)) except: print("Something went wrong for input_audio = {}".format(input_audio)) print("Unexpected error:", sys.exc_info()[0]) def main(args): """Main method to compute HCQTs in parallel """ # expects `args.file_paths` to be a path to a tab delimited file # with each line containing an `input_audio` `output_npy` pair. file_pairs = [] with open(args.file_paths, 'r') as fhandle: reader = csv.reader(fhandle, delimiter='\t') for line in reader: file_pairs.append(line) # compute HCQTs in parallel Parallel(n_jobs=args.n_jobs, verbose=5)( delayed(get_hcqt)(input_audio, output_npy) \ for input_audio, output_npy in file_pairs ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Compute and save HCQTs for a set of files.") parser.add_argument("file_paths", type=str, help="Tab delimited file containing " "input_audio/output_npy filepaths.") parser.add_argument("n_jobs", type=int, help="Number of jobs to run in parallel.") main(parser.parse_args()) ``` #### File: multitask-f0/deepsalience/compute_multitask_data.py ```python from __future__ import print_function import argparse import csv import glob import json import medleydb as mdb from medleydb import mix import mir_eval import numpy as np import os import compute_training_data as C EXCEPTIONS = { 'AnEndlessSporadic_Anything_STEM_04': 'synthesizer', 'Anberlin_TheFeelGoodDrag_STEM_04': 'synthesizer', 'ArcadeFire_BlackMirror_STEM_02': 'acoustic guitar', 'ArcadeFire_BlackMirror_STEM_07': 'acoustic guitar', 'BillyIdol_WhiteWedding_STEM_05': 'distorted electric guitar', 'Blink182_AllTheSmallThings_STEM_05': 'clean electric guitar', 'Blondie_OneWayOrAnother_STEM_06': 'distorted electric guitar', 'BlueOysterCult_DontFearTheReaper_STEM_05': 'clean electric guitar', 'LilyAllen_NotFair_STEM_04': 'clean electric guitar', 'TheAllAmericanRejects_DirtyLittleSecret_STEM_04': 'distorted electric guitar', 'TheAllmanBrothersBand_RamblinMan_STEM_06': 'clean electric guitar', 'TheLastGoodnight_PicturesOfYou_STEM_02': 'distorted_electric guitar' } def save_singlef0_output(times, freqs, output_path): """save singlef0 output to a csv file.""" with open(output_path, 'w') as fhandle: csv_writer = csv.writer(fhandle, delimiter='\t') for t, f in zip(times, freqs): csv_writer.writerow([t, f]) def multif0_to_timefreq(times, freqs): """Unroll a multif0 annotation of the form (t, [f1, f2, f3]) to a list of (t, f) where t may be repeated. Parameters ---------- times : list Time stamps freqs : list of lists all frequencies for a given time stamp Returns ------- t_unrolled : list Unrolled time stamps f_unrolled : list Unrolled frequency values """ t_unrolled = [] f_unrolled = [] for t, f_list in zip(times, freqs): for f in f_list: if f == 0: continue t_unrolled.append(t) f_unrolled.append(f) return t_unrolled, f_unrolled def get_replace_info(mtrack, replace_path): """Go through repalced stems and get annotation and mixing info. Parameters ---------- mtrack : MultiTrack Medleydb multitrack object replace_path : str Path to where the resynthesized audio and annotations live Returns ------- replace_stem_annotations : dictionary Dictionary keyed by stem id mapping to 'times', 'freqs', and 'tags' for any relevant annotations. replace_altindices : dictionary Dictionary keyed by stem id mapping to the replaced path. Used by mix.mix_multitrack for replacing stems. stem_indices : list List of stem indices for replaced stems """ # glob for all replaced stems for this multitrack replace_stems = glob.glob(os.path.join( replace_path, '{}*_replace.wav'.format(mtrack.track_id) )) # initialize stem_indices = [] replace_stem_annotations = {} replace_altindices = {} # loop over resynthesized stems for stem_path in replace_stems: # path where annotation should live annot_path = os.path.join( replace_path, "{}_vamp_pyin_pyin_smoothedpitchtrack.csv".format( os.path.basename(stem_path).split('.')[0]) ) # if annotation doesn't exist, cry! if not os.path.exists(annot_path): print("[Warning] Couldn't find annotation for {}".format(stem_path)) continue # parse stem index from file name stem_id = int(os.path.basename(stem_path).split('_')[3].split('.')[0]) # load resynth annotation times, freqs = mir_eval.io.load_ragged_time_series( annot_path, delimiter=',' ) annot_t, annot_f = multif0_to_timefreq(times, freqs) tags = ['multif0', 'vocal', 'melody'] stem_indices.append(stem_id) # add annotation to dictionary replace_stem_annotations[stem_id] = { 'times': annot_t, 'freqs': annot_f, 'tags': tags } # add resynth file to replacement dictionary replace_altindices[stem_id] = stem_path return replace_stem_annotations, replace_altindices, stem_indices def get_resynth_info(mtrack, resynth_path, stem_indices): """Go through resynthesized stems and get annotation and mixing info. Parameters ---------- mtrack : MultiTrack Medleydb multitrack object resynth_path : str Path to where the resynthesized audio and annotations live stem_indices : list List of indices already used Returns ------- resynth_stem_annotations : dictionary Dictionary keyed by stem id mapping to 'times', 'freqs', and 'tags' for any relevant annotations. resynth_altindices : dictionary Dictionary keyed by stem id mapping to the resynthesized path. Used by mix.mix_multitrack for replacing stems. stem_indices_guitar : list List of stem indices containing any kind of resynthesized guitar stem_indices_piano : list List of stem indices containing any kind of resynthesized piano """ # glob for all resynth stems for this multitrack resynth_stems = glob.glob(os.path.join( resynth_path, '{}*_resynth.wav'.format(mtrack.track_id) )) # initialize stem_indices_piano = [] stem_indices_guitar = [] resynth_stem_annotations = {} resynth_altindices = {} # loop over resynthesized stems for stem_path in resynth_stems: # path where annotation should live annot_path = os.path.join( resynth_path, "{}.txt".format(os.path.basename(stem_path).split('.')[0]) ) # parse stem index from file name stem_id = int(os.path.basename(stem_path).split('_')[3].split('.')[0]) stem = mtrack.stems[stem_id] if stem_id in stem_indices: continue # if annotation doesn't exist, cry! if not os.path.exists(annot_path): print("[Warning] Couldn't find annotation for {}".format(stem_path)) continue # load resynth annotation times, freqs = mir_eval.io.load_ragged_time_series(annot_path) annot_t, annot_f = multif0_to_timefreq(times, freqs) tags = ['multif0'] # apply tags based on whether instrument is piano or guitar basename = os.path.basename(stem.audio_path.split('.')[0]) if basename in EXCEPTIONS.keys(): instrument = EXCEPTIONS[basename] else: instrument = stem.instrument if 'piano' in instrument: tags.append('piano') stem_indices_piano.append(stem_id) elif ('electric piano' in instrument or 'synthesizer' in instrument): tags.append('keys') stem_indices_piano.append(stem_id) elif ('acoustic guitar' in instrument or 'clean electric guitar' in instrument or 'distorted electric guitar' in instrument): tags.append('guitar') stem_indices_guitar.append(stem_id) else: print("[Warning] resynth stem is instrument {}! skipping".format( instrument)) continue # add annotation to dictionary resynth_stem_annotations[stem_id] = { 'times': annot_t, 'freqs': annot_f, 'tags': tags } # add resynth file to replacement dictionary resynth_altindices[stem_id] = stem_path return (resynth_stem_annotations, resynth_altindices, stem_indices_guitar, stem_indices_piano) def get_orig_stem_info(mtrack, stem_indices): """Go through original stems and get annotation and mixing info. Parameters ---------- mtrack : MultiTrack Medleydb multitrack object stem_indices : list List of stem indices already included Returns ------- orig_stem_annotations : dictionary Dictionary keyed by stem id mapping to 'times', 'freqs', and 'tags' for any relevant annotations. stem_annot_activity : dictionary Dictionary keyed by stem id mapping to annotation activation information orig_stem_indices : list List of stem indices to include in mix. """ orig_stem_indices = [] stem_annot_activity = {} orig_stem_annotations = {} # go through the rest of the stems for stem in mtrack.stems.values(): # skip this stem if it was resynthesized if stem.stem_idx in stem_indices: continue # skip this stem if it has more than one instrument if len(stem.instrument) > 1 or len(stem.f0_type) > 1: continue # skip this stem if it is a polyphonic instrument if stem.f0_type[0] == 'p': continue # if stem is unpitched, just add it to the mix if stem.f0_type[0] == 'u': orig_stem_indices.append(stem.stem_idx) # if stem is mono, add it to the mix and get its annotation if len(stem.instrument) == 1 and stem.f0_type[0] == 'm': orig_stem_indices.append(stem.stem_idx) annot_t, annot_f, annot_activation = C.get_stem_annotation( stem, mtrack ) stem_annot_activity[stem.stem_idx] = annot_activation tags = ['multif0'] if stem.instrument[0] in mix.VOCALS: tags.append('vocal') if stem.component == 'melody': tags.append('melody') if stem.component == 'bass': tags.append('bass') orig_stem_annotations[stem.stem_idx] = { 'times': annot_t, 'freqs': annot_f, 'tags': tags } return orig_stem_annotations, stem_annot_activity, orig_stem_indices def save_annotation(times, freqs, save_path): """ Save an annotation to a filepath or return None if annotation is empty. Parameters ---------- times : list List of times freqs : list List of freqs save_path : str Path to save file Returns ------- output : str or None If times/freqs are not empty, returns save_path. Otherwise returns None. """ if len(times) > 0: # using singlef0 save here because we have unwrapped multif0s save_singlef0_output(times, freqs, save_path) return save_path else: return None def create_annotations(save_dir, track_id, stem_annotations): """Create a dictionary of annotations by type, given a list of annotations by stem. Parameters ---------- save_dir : str Path to eventually save each annotation. track_id : str Medleydb trackid stem_annotations : dictionary Dictionary keyed by stem id with values 'times', 'freqs' and 'tags' Returns ------- annotations : dictionary Dictionary keyed by annotation type (e.g. 'vocal') with values 'times' 'freqs' and 'path'. """ # create initial annotations dictionary annotations = { 'multif0': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_multif0_annotation.txt".format(track_id)) }, 'multif0_noguitar': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_multif0_noguitar_annotation.txt".format(track_id)) }, 'multif0_nosynth': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_multif0_nosynth_annotation.txt".format(track_id)) }, 'melody': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_melody_annotation.txt".format(track_id)) }, 'vocal': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_vocal_annotation.txt".format(track_id)) }, 'bass': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_bass_annotation.txt".format(track_id)) }, 'piano': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_piano_annotation.txt".format(track_id)) }, 'guitar': { 'times': [], 'freqs': [], 'path': os.path.join( save_dir, "{}_guitar_annotation.txt".format(track_id)) } } # loop over each stem annotation and add it to corresponding annotation # types (e.g. stems with melody tag are added to the melody annotation) for key in sorted(stem_annotations.keys()): annot_dict = stem_annotations[key] tags = annot_dict['tags'] # all stems should have the 'multif0' tag if 'multif0' in tags and annot_dict['times'] is not None: annotations['multif0']['times'].extend(annot_dict['times']) annotations['multif0']['freqs'].extend(annot_dict['freqs']) # if stem is guitar, add it to guitar if 'guitar' in tags and annot_dict['times'] is not None: annotations['guitar']['times'].extend(annot_dict['times']) annotations['guitar']['freqs'].extend(annot_dict['freqs']) # if stem is not guitar add it to the multif0 no guitar annotation elif annot_dict['times'] is not None: annotations['multif0_noguitar']['times'].extend(annot_dict['times']) annotations['multif0_noguitar']['freqs'].extend(annot_dict['freqs']) # if stem is piano add to piano annotation if 'piano' in tags and annot_dict['times'] is not None: annotations['piano']['times'].extend(annot_dict['times']) annotations['piano']['freqs'].extend(annot_dict['freqs']) # if stem is not synthesized (i.e. not piano or guitar) add it to # the nosynth annotation if ('piano' not in tags and 'guitar' not in tags and 'keys' not in tags and annot_dict['times'] is not None): annotations['multif0_nosynth']['times'].extend(annot_dict['times']) annotations['multif0_nosynth']['freqs'].extend(annot_dict['freqs']) # add melody stems to melody annotation if 'melody' in tags and annot_dict['times'] is not None: annotations['melody']['times'].extend(annot_dict['times']) annotations['melody']['freqs'].extend(annot_dict['freqs']) # add vocal stems to vocal annotation if 'vocal' in tags and annot_dict['times'] is not None: annotations['vocal']['times'].extend(annot_dict['times']) annotations['vocal']['freqs'].extend(annot_dict['freqs']) # add bass stems to bass annotation if 'bass' in tags and annot_dict['times'] is not None: annotations['bass']['times'].extend(annot_dict['times']) annotations['bass']['freqs'].extend(annot_dict['freqs']) return annotations def create_annotation_save_pairs(annotations, mix_path, mix_path_noguitar, mix_path_nosynth): """Create a dictionary that maps an audio file to its corresponding multitask annotations. Parameters ---------- annotations : dictionary Dictionary mapping annotation type to 'times', 'freqs', and 'path' to save. mix_path : str Path to full multif0 mix mix_path_noguitar : str Path to no guitar multif0 mix mix_path_nosynth : str Path to no synthesized stems multif0 mix Returns ------- audio_annot_pairs : dictionary Dictionary mapping audio path to annotation paths by type. """ audio_annot_pairs = { mix_path: {}, mix_path_noguitar: {}, mix_path_nosynth: {} } for annot_type in annotations.keys(): output = save_annotation( annotations[annot_type]['times'], annotations[annot_type]['freqs'], annotations[annot_type]['path'] ) if annot_type == 'multif0': audio_annot_pairs[mix_path]['multif0'] = output elif annot_type == 'multif0_noguitar': audio_annot_pairs[mix_path_noguitar]['multif0'] = output elif annot_type == 'multif0_nosynth': audio_annot_pairs[mix_path_nosynth]['multif0'] = output elif annot_type == 'guitar': audio_annot_pairs[mix_path]['guitar'] = output audio_annot_pairs[mix_path_noguitar]['guitar'] = None audio_annot_pairs[mix_path_nosynth]['guitar'] = None elif annot_type == 'piano': audio_annot_pairs[mix_path]['piano'] = output audio_annot_pairs[mix_path_noguitar]['piano'] = output audio_annot_pairs[mix_path_nosynth]['piano'] = None else: audio_annot_pairs[mix_path][annot_type] = output audio_annot_pairs[mix_path_noguitar][annot_type] = output audio_annot_pairs[mix_path_nosynth][annot_type] = output return audio_annot_pairs def generate_filtered_stems(stem_annot_activity, mtrack, save_dir): """Create filtered stems for stems with annotation activity info. Parameters ---------- stem_annot_activity : dictionary Dictionary mapping stem_id to annotation activity information mtrack : MultiTrack medleydb MultiTrack object save_dir : str Path to save new stems. Returns ------- filtered_altfiles : dictionary Dictionary mapping stem_id to a path where the new stem is saved. """ filtered_altfiles = {} # for each stem with an annotation filter, create filtered stem for key in stem_annot_activity.keys(): if stem_annot_activity[key] is None: continue new_stem_path = os.path.join( save_dir, "{}_STEM_{}_alt.wav".format(mtrack.track_id, key) ) if not os.path.exists(new_stem_path): C.create_filtered_stem( mtrack.stems[key].audio_path, new_stem_path, stem_annot_activity[key] ) filtered_altfiles[key] = new_stem_path return filtered_altfiles def create_mixes(mtrack, mix_path, mix_path_noguitar, mix_path_nosynth, stem_indices, stem_indices_guitar, stem_indices_piano, altfiles): """Render artificial mixes to `mix_path', `mix_path_noguitar', and `mix_path_nosynth'. Parameters ---------- mtrack : MultiTrack medleydb MultiTrack object mix_path : str Path to save full multif0 mix mix_path_noguitar : str Path to save no guitar multif0 mix mix_path_nosynth : str Path to save no synthesized stems multif0 mix stem_indices : list List of stems to include in the full mix stem_indices_guitar : list List of guitar stems stem_indices_piano : list List of piano stems altfiles : dict Dictionary of replacement files mapping stem id to new path. Returns ------- mix_filepaths : list List of filepaths included in the full mix mix_noguitar_filepaths : list List of filepaths included in the no guitar mix mix_nosynth_filepaths : list List of filepaths included in the no resynth mix """ # create resynth mix if len(stem_indices) > 0: mix_filepaths, _ = mix.mix_multitrack( mtrack, mix_path, stem_indices=stem_indices, alternate_files=altfiles ) else: mix_filepaths = None # create no guitar and no synth mixes stem_indices_noguitar = [ s for s in stem_indices if s not in stem_indices_guitar ] stem_indices_nosynth = [ s for s in stem_indices_noguitar if s not in stem_indices_piano ] altfiles_noguitar = { k: v for k, v in altfiles.items() if k in stem_indices_noguitar } altfiles_nosynth = { k: v for k, v in altfiles.items() if k in stem_indices_nosynth } if len(stem_indices_noguitar) > 0: mix_noguitar_filepaths, _ = mix.mix_multitrack( mtrack, mix_path_noguitar, stem_indices=stem_indices_noguitar, alternate_files=altfiles_noguitar ) else: mix_noguitar_filepaths = None if len(stem_indices_nosynth) > 0: mix_nosynth_filepaths, _ = mix.mix_multitrack( mtrack, mix_path_nosynth, stem_indices=stem_indices_nosynth, alternate_files=altfiles_nosynth ) else: mix_nosynth_filepaths = None return mix_filepaths, mix_noguitar_filepaths, mix_nosynth_filepaths def create_complete_resynth_mix(mtrack, resynth_path, replace_path, save_dir): """Create resynthesized mixes and all corresponding annotations Audio files: - (A) Multif0 remix with synth guitar + synth piano - (B) Multif0 remix with synth piano - (C) Multif0 remix - (D) Original track Annotations: filename : description (corresponding audio file) - Artist_Track_multif0_annotation.txt : multif0 + synth piano/guitar (A) - Artist_Track_multif0_noguiar_annotation.txt : multif0 + synth piano (B) - Artist_Track_multif0_nosynth_annotation.txt : multif0 (C) - Artist_Track_melody_annotation.txt : all melody f0s (A,B,C,[D]) - Artist_Track_vocal_annotation.txt : all vocal f0s (A,B,C,[D]) - Artist_Track_bass_annotation.txt : all bass f0s (A,B,C,[D]) - Artist_Track_piano_annotation.txt : all piano f0s (A,B) - Artist_Track_guitar_annotation.txt : all guitar f0s (A) Parameters ---------- mtrack : MultiTrack medleydb MultiTrack object resynth_path : str Path where resynthesized files live replace_path : str Path where replacement files live save_dir : str Path to save output. Returns ------- audio_annot_pairs : dictionary Dictionary mapping audio files to annotation files by type. """ # do nothing if track has bleed if mtrack.has_bleed: return None # mix audio save paths mix_path = os.path.join( save_dir, "{}_MIX_complete_resynth.wav".format(mtrack.track_id) ) mix_path_noguitar = os.path.join( save_dir, "{}_MIX_complete_noguitar.wav".format(mtrack.track_id) ) mix_path_nosynth = os.path.join( save_dir, "{}_MIX_complete_nosynth.wav".format(mtrack.track_id) ) # define common structures stem_indices = [] altfiles = {} stem_annotations = {} # get all annotation and index info from resynthesized stems (replace_stem_annotations, replace_altindices, stem_indices_replace) = get_replace_info( mtrack, replace_path ) stem_indices.extend(stem_indices_replace) for key, value in replace_stem_annotations.items(): stem_annotations[key] = value for key, value in replace_altindices.items(): altfiles[key] = value # get all annotation and index info from resynthesized stems (resynth_stem_annotations, resynth_altindices, stem_indices_guitar, stem_indices_piano) = get_resynth_info( mtrack, resynth_path, stem_indices ) stem_indices.extend(stem_indices_piano) stem_indices.extend(stem_indices_guitar) for key, value in resynth_stem_annotations.items(): stem_annotations[key] = value for key, value in resynth_altindices.items(): altfiles[key] = value # get all annotation and index info from remaining original stems (orig_stem_annotations, stem_annot_activity, orig_stem_indices) = get_orig_stem_info(mtrack, stem_indices) # fill info to common structures stem_indices.extend(orig_stem_indices) for key, value in orig_stem_annotations.items(): stem_annotations[key] = value # create annotation dictionary annotations = create_annotations( save_dir, mtrack.track_id, stem_annotations ) # save annotation and create pairs audio_annot_pairs = create_annotation_save_pairs( annotations, mix_path, mix_path_noguitar, mix_path_nosynth ) # create new versions of stems with annotation filters filtered_altfiles = generate_filtered_stems( stem_annot_activity, mtrack, save_dir ) for key, value in filtered_altfiles.items(): altfiles[key] = value # make sure there is a least one stem left in the mix if len(stem_indices) == 0: print("{} had no stems after filtering :( ".format(mtrack.track_id)) return None # generate mixes mix_filepaths, mix_noguitar_filepaths, mix_nosynth_filepaths = create_mixes( mtrack, mix_path, mix_path_noguitar, mix_path_nosynth, stem_indices, stem_indices_guitar, stem_indices_piano, altfiles ) if mix_filepaths is None: audio_annot_pairs.pop(mix_path) if mix_noguitar_filepaths is None: audio_annot_pairs.pop(mix_path_noguitar) if mix_nosynth_filepaths is None: audio_annot_pairs.pop(mix_path_nosynth) return audio_annot_pairs def get_annotation_mono(mtrack, stem_list, use_estimate=True): """Get annotation for a subset of stems if all stems are mono Parameters ---------- mtrack : MultiTrack medleydb MultiTrack object stem_list : list list of Track objects Returns ------- times : list or None list of times or None freqs : list or None list of freqs or None """ # if no stems, the annotation is empty if len(stem_list) == 0: times = [] freqs = [] # otherwise, check if all stems are mono else: all_mono = True if mtrack.has_bleed: all_mono = False for stem in stem_list: if len(stem.instrument) > 1: all_mono = False elif stem.f0_type[0] != 'm': all_mono = False # if all stems are mono add the annotation to the mix if all_mono: times = [] freqs = [] for stem in stem_list: annot_t, annot_f, _ = C.get_stem_annotation( stem, mtrack, use_estimate=use_estimate ) # if there is no annotation return None if annot_t is None or annot_f is None: return None, None times.extend(annot_t) freqs.extend(annot_f) else: times = None freqs = None return times, freqs def get_fullmix_annotations(mtrack, save_dir): """Get annotations corresponding to original medleydb mixes. Parameters ---------- mtrack : MultiTrack A medleydb MultiTrack object. save_dir : str Path to save annotation files. Returns ------- audio_annot_pairs : dictionary Dictionary mapping audio files to annotation files by type. """ audio_annot_pairs = {mtrack.mix_path: {}} melody_stems = [] vocal_stems = [] bass_stems = [] guitar_stems = [] piano_stems = [] guitars = [ 'acoustic guitar', 'clean electric guitar', 'distorted electric guitar' ] for stem in mtrack.stems.values(): if any(inst in mix.VOCALS for inst in stem.instrument): vocal_stems.append(stem) if 'Unlabeled' in stem.instrument and stem.component == 'melody': vocal_stems.append(stem) if stem.component == 'bass': bass_stems.append(stem) if stem.component == 'melody': melody_stems.append(stem) if any(inst in guitars for inst in stem.instrument): guitar_stems.append(stem) if any(inst == 'piano' for inst in stem.instrument): piano_stems.append(stem) # use melody if there is melody or none if mtrack.dataset_version == 'V1': if mtrack.melody3_annotation is not None: annot = np.array(mtrack.melody3_annotation).T melody_times, melody_freqs = multif0_to_timefreq( annot[0], annot[1:].T) else: melody_times = [] melody_freqs = [] else: melody_times, melody_freqs = get_annotation_mono(mtrack, melody_stems) if melody_times is not None: output = save_annotation( melody_times, melody_freqs, os.path.join(save_dir, '{}_MIX_melody.txt'.format(mtrack.track_id)) ) audio_annot_pairs[mtrack.mix_path]['melody'] = output # use vocals if all vocals are mono or there are none vocal_times, vocal_freqs = get_annotation_mono(mtrack, vocal_stems, use_estimate=False) if vocal_times is not None: output = save_annotation( vocal_times, vocal_freqs, os.path.join(save_dir, '{}_MIX_vocal.txt'.format(mtrack.track_id)) ) audio_annot_pairs[mtrack.mix_path]['vocal'] = output # use bass if all bass is mono or there are none bass_times, bass_freqs = get_annotation_mono(mtrack, bass_stems, use_estimate=False) if bass_times is not None: output = save_annotation( bass_times, bass_freqs, os.path.join(save_dir, '{}_MIX_bass.txt'.format(mtrack.track_id)) ) audio_annot_pairs[mtrack.mix_path]['bass'] = output # mark that there's no piano/guitar if there are no stems with # those instruments if len(piano_stems) == 0: audio_annot_pairs[mtrack.mix_path]['piano'] = None if len(guitar_stems) == 0: audio_annot_pairs[mtrack.mix_path]['guitar'] = None return audio_annot_pairs def get_all_audio_annot_pairs(mtrack, save_dir, resynth_path, replace_path): """For a given multitrack get all types of mixes and corresponding annotations, and save a json file with all info. Parameters ---------- mtrack : MultiTrack medleydb MultiTrack object. save_dir : str Path to save json output file. resynth_path : str Path to where resynthesized stems live. replace_path : str Path to where replaced stems live Returns ------- json_path : str Path to saved json file """ print(" Resynth annotations and mixing...") resynth_pairs = create_complete_resynth_mix( mtrack, resynth_path, replace_path, save_dir) print(" Fullmix annotations") fullmix_pairs = get_fullmix_annotations(mtrack, save_dir) all_pairs = {} if resynth_pairs is not None: for key, value in resynth_pairs.items(): all_pairs[key] = value for key, value in fullmix_pairs.items(): all_pairs[key] = value json_path = os.path.join( save_dir, "{}_training_pairs.json".format(mtrack.track_id) ) with open(json_path, 'w') as fhandle: json.dump(all_pairs, fhandle, indent=2) return json_path def main(args): mtracks = mdb.load_all_multitracks( dataset_version=['V1', 'V2', 'EXTRA']) for mtrack in mtracks: print("Processing {}...".format(mtrack.track_id)) if os.path.exists(os.path.join(args.save_dir, "{}_training_pairs.json".format(mtrack.track_id))): print(" already done!") continue json_path = get_all_audio_annot_pairs( mtrack, args.save_dir, args.resynth_path, args.replace_path ) print("...saved to {}".format(json_path)) print("") print("done!") if __name__ == '__main__': parser = argparse.ArgumentParser( description="Generate feature files for multif0 learning.") parser.add_argument("save_dir", type=str, help="Path to save npy files.") parser.add_argument("resynth_path", type=str, help="resynth path") parser.add_argument("replace_path", type=str, help="replace path") main(parser.parse_args()) ```
{ "source": "jollysg/xsens_ros_mti_driver", "score": 2 }
#### File: xsens_ros_mti_driver/launch/display.launch.py ```python import os from launch import LaunchDescription from launch.actions import SetEnvironmentVariable, IncludeLaunchDescription from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory from pathlib import Path from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import PathJoinSubstitution, LaunchConfiguration from launch_ros.substitutions import FindPackageShare def generate_launch_description(): ld = LaunchDescription() # Set env var to print messages to stdout immediately arg = SetEnvironmentVariable('RCUTILS_CONSOLE_STDOUT_LINE_BUFFERED', '1') ld.add_action(arg) driver_launch = IncludeLaunchDescription( PythonLaunchDescriptionSource( launch_file_path=PathJoinSubstitution([ FindPackageShare('xsens_mti_driver'), 'launch', 'xsens_mti_node.launch.py' ]), ) ) ld.add_action(driver_launch) # Rviz2 node rviz_config_path = os.path.join(get_package_share_directory('xsens_mti_driver'), 'rviz', 'display.rviz') rviz2_node = Node( package='rviz2', node_executable='rviz2', node_name='xsens_rviz2', output='screen', arguments=[["-d"],[rviz_config_path]], ) ld.add_action(rviz2_node) # Robot State Publisher node urdf_file_path = os.path.join(get_package_share_directory('xsens_mti_driver'), 'urdf', 'MTi_6xx.urdf') state_publisher_node = Node( package='robot_state_publisher', node_executable='robot_state_publisher', node_name='xsens_state_publisher', output='screen', arguments=[urdf_file_path], ) ld.add_action(state_publisher_node) return ld ```
{ "source": "jollyshuai/cube-studio", "score": 2 }
#### File: pkgs/k8s/k8s_crd.py ```python import datetime import time import traceback import re import os import json import subprocess from kubernetes import client as k8s_client from ..exceptions.k8s_expections import K8SFailedException, K8SJOBTimeoutException from ..constants import NodeAffnity, PodAffnity class K8sCRD(object): """ k8s custom resource抽象类 """ def __init__(self, group, plural, version, client): """ Args: group: custom resource的group,对kubeflow来说,一般是kubeflow.org plural: custom resource类型的复数形式,例如tfjobs version: custom resource版本 client: k8s客户端实例 """ self.group = group self.plural = plural self.version = version self.client = k8s_client.CustomObjectsApi(client) def _start_trace_worker_logs(self, namespace, name): try: subprocess.check_call("which stern", shell=True) except Exception as e: print("WARNING: found no stern installed, can not trace worker log: {}".format(e), flush=True) return None cmd = "stern {} --namespace {} --kubeconfig /root/.kube/{}-kubeconfig"\ .format(name, namespace, os.getenv("KFJ_ENVIRONMENT", 'tke')) subproc = subprocess.Popen(cmd, universal_newlines=False, shell=True, bufsize=0) print("worker log tracer started: {}".format(subproc.pid), flush=True) return subproc def _keep_worker_log_tracer(self, namespace, name, trace_proc=None): if trace_proc is None: return None proc_ret = trace_proc.poll() if proc_ret is not None: print("worker log tracer {} is terminated with code {}, will restart it" .format(trace_proc.pid, proc_ret), flush=True) print("*"*50, flush=True) return self._start_trace_worker_logs(namespace, name) return trace_proc def _stop_trace_worker_logs(self, trace_proc): if trace_proc is None: return proc_ret = trace_proc.poll() if proc_ret is not None: return trace_proc.kill() print("killed worker log tracer: {}".format(trace_proc.pid), flush=True) def wait_for_condition(self, namespace, name, expected_conditions=[], timeout=datetime.timedelta(days=365), polling_interval=datetime.timedelta(seconds=30), status_callback=None, trace_worker_log=False): """Waits until any of the specified conditions occur. Args: namespace: namespace for the CR. name: Name of the CR. expected_conditions: A list of conditions. Function waits until any of the supplied conditions is reached. timeout: How long to wait for the CR. polling_interval: How often to poll for the status of the CR. status_callback: (Optional): Callable. If supplied this callable is invoked after we poll the CR. Callable takes a single argument which is the CR. trace_worker_log: """ end_time = datetime.datetime.now() + timeout max_retries = 15 retries = 0 trace_proc = self._start_trace_worker_logs(namespace, name) if trace_worker_log else None trace_st = time.time() try: while True: try: results = self.client.get_namespaced_custom_object(self.group, self.version, namespace, self.plural, name) except Exception as e: if retries >= max_retries: raise K8SFailedException("get k8s resource '{}/{}/{}' '{}' in namespace '{}' error: {}" .format(self.group, self.version, self.plural, name, namespace, e)) print("get k8s resource '{}/{}/{}' '{}' in namespace '{}' error, will retry after 10s({}/{}):" " {}\n{}".format(self.group, self.version, self.plural, name, namespace, retries, max_retries, e, traceback.format_exc()), flush=True) retries += 1 time.sleep(10) continue if results: if status_callback: status_callback(results) expected, condition = self.is_expected_conditions(results, expected_conditions) if expected: print("k8s resource '{}/{}/{}' '{}' in namespace '{}' has reached the expected condition: '{}'" .format(self.group, self.version, self.plural, name, namespace, condition), flush=True) return condition else: if trace_proc is None: print("waiting k8s resource '{}/{}/{}' '{}' in namespace '{}' to reach conditions '{}'," " current is '{}'".format(self.group, self.version, self.plural, name, namespace, expected_conditions, condition if condition else None), flush=True) retries = 0 elif retries < max_retries: print("get k8s resource '{}/{}/{}' '{}' in namespace '{}' return empty, will retry after 10s({}/{})" .format(self.group, self.version, self.plural, name, namespace, retries, max_retries), flush=True) retries += 1 continue else: raise K8SFailedException("get k8s resource '{}/{}/{}' '{}' in namespace '{}' return empty" .format(self.group, self.version, self.plural, name, namespace)) if datetime.datetime.now() + polling_interval > end_time: raise K8SJOBTimeoutException("wating k8s resource '{}/{}/{}' '{}' in namespace '{}' to reach" " conditions '{}' timeout, timeout={}, polling_interval={}" .format(self.group, self.version, self.plural, name, namespace, expected_conditions, timeout, polling_interval)) time.sleep(polling_interval.total_seconds()) trace_proc = self._keep_worker_log_tracer(namespace, name, trace_proc) if trace_proc is not None and time.time() - trace_st >= 3600*2: print("will restart worker logger tracer", flush=True) trace_proc.kill() trace_proc = self._start_trace_worker_logs(namespace, name) trace_st = time.time() finally: self._stop_trace_worker_logs(trace_proc) def is_expected_conditions(self, cr_object, expected_conditions): """ 判断cr是否达到指定状态,子类必须实现此类 Args: cr_object: cr的json描述,通过api获得 expected_conditions: 期望的状态列表 Returns: tuple: is_expected, condition """ conditions = cr_object.get('status', {}).get("conditions") if not conditions: return False, "" if conditions[-1]["type"] in expected_conditions and conditions[-1]["status"] == "True": return True, conditions[-1]["type"] else: return False, conditions[-1]["type"] def create(self, spec): """Create a CR. Args: spec: The spec for the CR. """ try: # Create a Resource namespace = spec["metadata"].get("namespace", "default") name = spec["metadata"]["name"] print("creating k8s resource '{}/{}/{}' '{}' in namespace '{}'" .format(self.group, self.version, self.plural, name, namespace)) api_response = self.client.create_namespaced_custom_object(self.group, self.version, namespace, self.plural, spec) print("created k8s resource '{}/{}/{}' '{}' in namespace '{}'\nspec='{}'\nresponse={}" .format(self.group, self.version, self.plural, name, namespace, spec, api_response)) return api_response except Exception as e: print("create k8s resource '{}/{}/{}' error, spec={}: {}\n{}".format(self.group, self.version, self.plural, spec, e, traceback.format_exc())) raise K8SFailedException("create k8s resource '{}/{}/{}' error, spec={}: {}" .format(self.group, self.version, self.plural, spec, e)) def get_crd_status(self, crd_object, plural): status = '' # workflows 使用最后一个node的状态为真是状态 if plural == 'workflows': if 'status' in crd_object and 'nodes' in crd_object['status']: keys = list(crd_object['status']['nodes'].keys()) status = crd_object['status']['nodes'][keys[-1]]['phase'] if status != 'Pending': status = crd_object['status']['phase'] elif plural == 'notebooks': if 'status' in crd_object and 'conditions' in crd_object['status'] and len( crd_object['status']['conditions']) > 0: status = crd_object['status']['conditions'][0]['type'] elif plural == 'inferenceservices': status = 'unready' if 'status' in crd_object and 'conditions' in crd_object['status'] and len( crd_object['status']['conditions']) > 0: for condition in crd_object['status']['conditions']: if condition['type'] == 'Ready' and condition['status'] == 'True': status = 'ready' else: if 'status' in crd_object and 'phase' in crd_object['status']: status = crd_object['status']['phase'] elif 'status' in crd_object and 'conditions' in crd_object['status'] and len( crd_object['status']['conditions']) > 0: status = crd_object['status']['conditions'][-1]['type'] # tfjob和experiment是这种结构 return status # @pysnooper.snoop(watch_explode=('crd_object')) def get_one_crd(self, namespace, name): self.crd = k8s_client.CustomObjectsApi() crd_object = self.crd.get_namespaced_custom_object(group=self.group, version=self.version, namespace=namespace, plural=self.plural, name=name) # print(crd_object['status']['conditions'][-1]['type']) status = self.get_crd_status(crd_object, self.plural) creat_time = crd_object['metadata']['creationTimestamp'].replace('T', ' ').replace('Z', '') creat_time = ( datetime.datetime.strptime(creat_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(hours=8)).strftime( '%Y-%m-%d %H:%M:%S') back_object = { "name": crd_object['metadata']['name'], "namespace": crd_object['metadata']['namespace'] if 'namespace' in crd_object['metadata'] else '', "annotations": json.dumps(crd_object['metadata']['annotations'], indent=4, ensure_ascii=False) if 'annotations' in crd_object['metadata'] else '', "labels": json.dumps(crd_object['metadata']['labels'], indent=4, ensure_ascii=False) if 'labels' in crd_object[ 'metadata'] else '', "spec": json.dumps(crd_object['spec'], indent=4, ensure_ascii=False), "create_time": creat_time, "status": status, "status_more": json.dumps(crd_object['status'], indent=4, ensure_ascii=False) if 'status' in crd_object else '' } # return return back_object def get_crd(self, namespace): self.crd = k8s_client.CustomObjectsApi() crd_objects = \ self.crd.list_namespaced_custom_object(group=self.group, version=self.version, namespace=namespace, plural=self.plural)['items'] back_objects = [] for crd_object in crd_objects: # print(crd_object['status']['conditions'][-1]['type']) status = self.get_crd_status(crd_object, self.plural) creat_time = crd_object['metadata']['creationTimestamp'].replace('T', ' ').replace('Z', '') creat_time = (datetime.datetime.strptime(creat_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta( hours=8)).strftime('%Y-%m-%d %H:%M:%S') back_object = { "name": crd_object['metadata']['name'], "namespace": crd_object['metadata']['namespace'] if 'namespace' in crd_object['metadata'] else '', "annotations": json.dumps(crd_object['metadata']['annotations'], indent=4, ensure_ascii=False) if 'annotations' in crd_object['metadata'] else '', "labels": json.dumps(crd_object['metadata']['labels'], indent=4, ensure_ascii=False) if 'labels' in crd_object[ 'metadata'] else '{}', "spec": json.dumps(crd_object['spec'], indent=4, ensure_ascii=False), "create_time": creat_time, "status": status, "status_more": json.dumps(crd_object['status'], indent=4, ensure_ascii=False) if 'status' in crd_object else '' } back_objects.append(back_object) return back_objects def delete(self, name=None, namespace='pipeline', labels=None): """ delete a k8s cr Args: name: name of cr to be deleted namespace: namespace in which cr to be delete Returns: """ if name: try: from kubernetes.client import V1DeleteOptions body = V1DeleteOptions(api_version=self.version, propagation_policy="Foreground") print("deleteing k8s resource '{}/{}/{}' '{}' in namespace '{}'" .format(self.group, self.version, self.plural, name, namespace)) api_response = self.client.delete_namespaced_custom_object( self.group, self.version, namespace, self.plural, name, body) print("deleted k8s resource '{}/{}/{}' '{}' in namespace '{}', response={}" .format(self.group, self.version, self.plural, name, namespace, api_response)) return api_response except Exception as e: print("delete k8s resource '{}/{}/{}' '{}' in namespace '{}' error: {}\n{}" .format(self.group, self.version, self.plural, name, namespace, e, traceback.format_exc())) raise K8SFailedException("delete k8s resource '{}/{}/{}' '{}' in namespace '{}' error: {}" .format(self.group, self.version, self.plural, name, namespace, e)) elif labels and type(labels) == dict: crds = self.get_crd(namespace=namespace) for crd in crds: if crd['labels']: crd_labels = json.loads(crd['labels']) for key in labels: if key in crd_labels and labels[key] == crd_labels[key]: try: self.crd = k8s_client.CustomObjectsApi() delete_body = k8s_client.V1DeleteOptions() self.crd.delete_namespaced_custom_object(group=self.group, version=self.version, namespace=namespace, plural=self.plural, name=crd['name'], body=delete_body) except Exception as e: print(e) @staticmethod def make_affinity_spec(job_name, node_affin=None, pod_affin=None): affinity = {} if node_affin and node_affin.strip(): node_affin = node_affin.strip().lower() if node_affin in [NodeAffnity.PREF_CPU, NodeAffnity.PREF_GPU]: affinity["nodeAffinity"] = { "preferredDuringSchedulingIgnoredDuringExecution": [ { "weight": 100, "preference": { "matchExpressions": [ { "key": "cpu" if node_affin == NodeAffnity.PREF_CPU else "gpu", "operator": "In", "values": ["true"] } ] } } ] } elif node_affin in [NodeAffnity.ONLY_CPU, NodeAffnity.ONLY_GPU]: affinity["nodeAffinity"] = { "requiredDuringSchedulingIgnoredDuringExecution": { "nodeSelectorTerms": [ { "matchExpressions": [ { "key": "cpu" if node_affin == NodeAffnity.ONLY_CPU else "gpu", "operator": "In", "values": ["true"] } ] } ] } } if pod_affin and pod_affin.strip(): pod_affin = pod_affin.strip().lower() if pod_affin == PodAffnity.SPREAD: affinity["podAntiAffinity"] = { "preferredDuringSchedulingIgnoredDuringExecution": [ { "weight": 100, "podAffinityTerm": { "labelSelector": { "matchExpressions": [ { "key": "app", "operator": "In", "values": [job_name] } ] }, "topologyKey": "kubernetes.io/hostname" } } ] } elif pod_affin == PodAffnity.CONCENT: affinity["podAffinity"] = { "preferredDuringSchedulingIgnoredDuringExecution": [ { "weight": 100, "podAffinityTerm": { "labelSelector": { "matchExpressions": [ { "key": "app", "operator": "In", "values": [job_name] } ] }, "topologyKey": "kubernetes.io/hostname" } } ] } return affinity @staticmethod def make_volume_mount_spec(mount_name, mount_type, mount_point, username): mount_type = mount_type.lower() if mount_type == 'pvc': vol_name = mount_name.replace('_', '-').lower() volume_spec = { "name": vol_name, "persistentVolumeClaim": { "claimName": mount_name } } mount_spec = { "name": vol_name, "mountPath": os.path.join(mount_point, username), "subPath": username } elif mount_type == 'hostpath': temps = re.split(r'_|\.|/', mount_name) temps = [temp for temp in temps if temp] vol_name = '-'.join(temps).lower() volume_spec = { "name": vol_name, "hostPath": { "path": mount_name } } mount_spec = { "name": vol_name, "mountPath": mount_point } elif mount_type == 'configmap': vol_name = mount_name.replace('_', '-').replace('/', '-').replace('.', '-').lower() volume_spec = { "name": vol_name, "configMap": { "name": mount_name } } mount_spec = { "name": vol_name, "mountPath": mount_point } elif mount_type == 'memory': memory_size = mount_name.replace('_', '-').replace('/', '-').replace('.', '-').lower().replace('g', '') volumn_name = 'memory-%s' % memory_size volume_spec = { "name": volumn_name, "emptyDir": { "medium": "Memory", "sizeLimit": "%sGi" % memory_size } } mount_spec = { "name": volumn_name, "mountPath": mount_point } else: raise RuntimeError("unknown mount type '{}', only pvc/hostpath/configmap are allowed".format(mount_type)) return volume_spec, mount_spec ``` #### File: pkgs/k8s/tfjob.py ```python import copy from .k8s_crd import K8sCRD from ..constants import NodeAffnity, ComputeResource from job.pkgs.context import KFJobContext from job.pkgs.utils import parse_size class TFJob(K8sCRD): def __init__(self, version, k8s_api_client): super(TFJob, self).__init__("kubeflow.org", "tfjobs", version, k8s_api_client) def create(self, name, namespace, num_workers, num_pss, driver_image, driver_command, driver_args, driver_envs, driver_mounts, resources, restart_policy, image_pull_secrets=None, node_affin=None, pod_affin=None, labels={}, backoff_limits=3, node_selector={}, privileged=False, creator='', ps_resources=None, chief_resources=None): if node_affin in [NodeAffnity.ONLY_GPU, NodeAffnity.PREF_GPU]: ctx = KFJobContext.get_context() gup_type = (ctx.gpu_type or '').strip().upper() resources = resources or {} limits = resources.get('limits', {}) if gup_type == ComputeResource.ClusterEnv.TKE: print("under tke environment") if ComputeResource.P_GPU in limits: limits.pop(ComputeResource.V_GPU_CORE, None) limits.pop(ComputeResource.V_GPU_MEM, None) print("specified physical gpu, ignore v-gpu settings") else: if ComputeResource.V_GPU_CORE not in limits: limits[ComputeResource.V_GPU_CORE] = 100 print("{} not set, default to 100".format(ComputeResource.V_GPU_CORE)) else: limits[ComputeResource.V_GPU_CORE] = int(limits[ComputeResource.V_GPU_CORE]) gpu_mem = parse_size(limits.get(ComputeResource.V_GPU_MEM, 0)) if not gpu_mem: min_gpu_mem = parse_size(ctx.gpu_mem_min) if not min_gpu_mem: print("WARNING: {} not set and KFJ_GPU_MEM_MAX env are not set" .format(ComputeResource.V_GPU_MEM)) limits.pop(ComputeResource.V_GPU_MEM, None) else: gpu_mem = int((limits[ComputeResource.V_GPU_CORE] / 100 * min_gpu_mem) // ComputeResource.V_GPU_MEM_UNIT) limits[ComputeResource.V_GPU_MEM] = gpu_mem print("{} not set, set to {}".format(ComputeResource.V_GPU_MEM, gpu_mem)) else: gpu_mem = int(gpu_mem // ComputeResource.V_GPU_MEM_UNIT) limits[ComputeResource.V_GPU_MEM] = gpu_mem else: print("under idc environment") v_cores = limits.pop(ComputeResource.V_GPU_CORE, 100) limits.pop(ComputeResource.V_GPU_MEM, None) if ComputeResource.P_GPU not in limits: limits[ComputeResource.P_GPU] = v_cores // 100 print("{} not set, default to 1".format(ComputeResource.P_GPU)) resources['limits'] = limits else: resources = resources or {} limits = resources.get('limits', {}) if limits: limits.pop(ComputeResource.P_GPU, None) limits.pop(ComputeResource.V_GPU_CORE, None) limits.pop(ComputeResource.V_GPU_MEM, None) print("cpu job, ignored gpu settings") print("resource spec: {}".format(resources)) cr_spec = { "apiVersion": "{}/{}".format(self.group, self.version), "kind": "TFJob", "metadata": { "name": name, "namespace": namespace, "labels": labels or {} }, "spec": { "cleanPodPolicy": "None", "backoffLimit": backoff_limits, "tfReplicaSpecs": {} } } worker_labels = labels or {} worker_labels['app'] = name if num_workers > 0: print("specified {} worker nodes".format(num_workers)) cr_spec["spec"]["tfReplicaSpecs"]["Worker"] = self.make_worker_spec( name, num_workers, restart_policy, node_affin, pod_affin, driver_image, driver_command, driver_args, driver_envs, driver_mounts, resources, image_pull_secrets, node_selector, worker_labels, privileged, creator) else: raise RuntimeError("'num_workers' must be > 0, got {}".format(num_workers)) if num_pss > 0: print("specified {} PS nodes".format(num_pss)) if not ps_resources: ps_resources = copy.deepcopy(resources) print("ps node resources not specified, use worker resources as reference") limits = ps_resources.get('limits') if limits: limits.pop(ComputeResource.P_GPU, None) limits.pop(ComputeResource.V_GPU_CORE, None) limits.pop(ComputeResource.V_GPU_MEM, None) print("ps node resources: {}".format(ps_resources)) cr_spec["spec"]["tfReplicaSpecs"]["PS"] = self.make_worker_spec( name, num_pss, restart_policy, node_affin, pod_affin, driver_image, driver_command, driver_args, driver_envs, driver_mounts, ps_resources, image_pull_secrets, node_selector, worker_labels, privileged, creator) print("auto add chief node under ps training mode") if not chief_resources: chief_resources = copy.deepcopy(resources) print("chief node resources not specified, use worker resources as reference") limits = chief_resources.get('limits') if limits: limits.pop(ComputeResource.P_GPU, None) limits.pop(ComputeResource.V_GPU_CORE, None) limits.pop(ComputeResource.V_GPU_MEM, None) print("chief node resources: {}".format(chief_resources)) cr_spec["spec"]["tfReplicaSpecs"]["Chief"] = self.make_worker_spec( name, 1, restart_policy, node_affin, pod_affin, driver_image, driver_command, driver_args, driver_envs, driver_mounts, chief_resources, image_pull_secrets, node_selector, worker_labels, privileged, creator) return super(TFJob, self).create(cr_spec) def make_worker_spec(self, job_name, replicas, restart_policy, node_affin, pod_affin, driver_image, driver_command, driver_args, driver_envs, driver_mounts, resources=None, image_pull_secrets=None, node_selector={}, labels={}, privileged=False, creator=''): worker_spec = { "replicas": replicas, "restartPolicy": restart_policy or 'Never', "template": { "metadata": { "annotations": { "sidecar.istio.io/inject": "false" }, "labels": labels or {} }, "spec": { "affinity": self.make_affinity_spec(job_name, node_affin, pod_affin), "containers": [ { "name": "tensorflow", "image": driver_image, "imagePullPolicy": "Always", "command": driver_command, "args": driver_args, "env": driver_envs or [], "volumeMounts": [ self.make_volume_mount_spec(mn, mt, mp, creator)[1] for mn, mt, mp in driver_mounts ], "resources": resources if resources else {}, "securityContext": {"privileged": privileged} } ], "volumes": [ self.make_volume_mount_spec(mn, mt, mp, creator)[0] for mn, mt, mp in driver_mounts ], "nodeSelector": node_selector or {} } } } if image_pull_secrets: worker_spec['template']['spec']['imagePullSecrets'] = [{'name': sec} for sec in image_pull_secrets] return worker_spec ``` #### File: pkgs/tf/extend_activations.py ```python import tensorflow as tf class Dice(tf.keras.layers.Layer): """ 用于DIN模型的Dice激活函数 """ def __init__(self, name='dice'): super(Dice, self).__init__(name=name) self.bn = tf.keras.layers.BatchNormalization(center=False, scale=False) self.alpha = self.add_weight(shape=(), dtype=tf.float32, name='alpha') def call(self, x): x_normed = self.bn(x) x_p = tf.sigmoid(x_normed) return self.alpha * (1.0 - x_p) * x + x_p * x ``` #### File: pkgs/tf/extend_losses.py ```python import tensorflow as tf class BPRLoss(tf.keras.losses.Loss): def __init__(self, name="BPR_loss"): super(BPRLoss, self).__init__(name=name) @tf.function def call(self, y_true, y_pred): # [batch, 1] loss = tf.math.log1p(tf.math.exp(-y_pred)) return loss class PairHingeLoss(tf.keras.losses.Loss): def __init__(self, margin, name="pair_hinge_loss"): super(PairHingeLoss, self).__init__(name=name) assert margin >= 0, "'margin' must be >= 0, got {}".format(margin) self.margin = float(margin) @tf.function def call(self, y_true, y_pred): # [batch, 1] gap = self.margin - y_pred # [batch, 1] loss = tf.math.maximum(0., gap) return loss ``` #### File: job/pkgs/utils.py ```python import inspect import os import queue import re import threading import time import sys from datetime import datetime, timedelta from dateutil import relativedelta from .constants import PipelineParam def parse_best_parameter(best_param_path: str, job: dict): import json best_params = json.load(open(best_param_path, 'r+')) TRAIN_ARGS_PARAMETERS = { 'batch_size': None, 'epochs': None, 'train_type': None, 'num_samples': None, 'num_val_samples': None, 'optimizer': None, 'losses': None, 'metrics': None, 'early_stopping': None, } job_detail = job['job_detail'] job_custom = True if ('params' in job_detail or 'model_args' not in job_detail) else False if job_custom: params = job['job_detail']['params'] params_record = dict() if params is not None: for i,arg in enumerate(params): if i%2==0: params_record[arg] = i val = best_params.get(arg[2:]) if val is not None: job['job_detail']['params'][i+1] = val for param in best_params: param_t = '--'+param if param[:2]!='--' else param if param_t not in params_record: if param_t in job['job_detail'].keys(): job['job_detail'][param_t] = best_params.get(param) else: job['job_detail']['params'] += [param_t, best_params.get(param)] else: for train_arg in job['job_detail']['train_args'].keys(): val = best_params.get(train_arg) if val is not None: job['job_detail']['train_args'][train_arg] = val for arg, val in best_params.items(): if arg not in TRAIN_ARGS_PARAMETERS.keys(): job['job_detail']['model_args'][arg] = val return job def dynamic_load_class(pkg_path, class_name): add_path = os.path.dirname(os.path.realpath(pkg_path)) sys.path.append(add_path) module_name = os.path.basename(pkg_path).split('.')[0] module = __import__(module_name) clazz = getattr(module, class_name) return clazz def parse_size(size, int_result=True): if isinstance(size, (int, float)): return int(size) if int_result else float(size) if size is None: return 0 if int_result else 0. assert isinstance(size, str) size = size.strip() if not size: return 0 if int_result else 0. size = size.lower() m = re.match(r'^(\d+[.]?\d*)(k|m|g)?$', size) if not m: return None number = m.group(1) unit = m.group(2) number = float(number) if unit == 'k': number *= 2**10 elif unit == 'm': number *= 2**20 elif unit == 'g': number *= 2**30 return int(number) if int_result else number def parse_timedelta(delta_str): assert not delta_str or isinstance(delta_str, str) import datetime if not delta_str or not delta_str.strip(): return None m = re.match(r'^(\d+)(ms|s|m|h|d|w)$', delta_str) if not m: return None number = int(m.group(1)) unit = m.group(2) if unit == 'ms': return datetime.timedelta(milliseconds=number) elif unit == 's': return datetime.timedelta(seconds=number) elif unit == 'm': return datetime.timedelta(minutes=number) elif unit == 'h': return datetime.timedelta(hours=number) elif unit == 'd': return datetime.timedelta(days=number) elif unit == 'w': return datetime.timedelta(weeks=number) return None def expand_path(path, run_path=None, pack_path=None, ignore_abs_path=True): if not path or not path.strip(): return path path = path.strip() if ignore_abs_path and os.path.isabs(path): return path if run_path: run_path = run_path.strip() if pack_path: pack_path = pack_path.strip() if not run_path and not pack_path: return path if run_path: path = re.sub(PipelineParam.RUN_PATH_PAT, run_path, path) if pack_path: path = re.sub(PipelineParam.PACK_PATH_PAT, pack_path, path) return path def make_abs_or_data_path(path, data_path, pack_path): if not path or not path.strip(): return data_path path = expand_path(path, run_path=data_path, pack_path=pack_path) if os.path.isabs(path): return path return os.path.join(data_path, path) def make_abs_or_pack_path(path, data_path, pack_path): if not path or not path.strip(): return pack_path path = expand_path(path, run_path=data_path, pack_path=pack_path) if os.path.isabs(path): return path return os.path.join(pack_path, path) def expand_param(param_val, data_path, pack_path): if not isinstance(param_val, str): return param_val if data_path: param_val = re.sub(PipelineParam.RUN_PATH_PAT, data_path, param_val) if pack_path: param_val = re.sub(PipelineParam.PACK_PATH_PAT, pack_path, param_val) expanded = param_val for m in re.finditer(PipelineParam.DATE_PAT, param_val): date = datetime.now() f, n, unit, fmt = m.group(2, 3, 4, 6) if all([f, n, unit]): delta_num = int(f+n) if unit == 'd': date = date + timedelta(days=delta_num) elif unit == 'w': date = date + timedelta(weeks=delta_num) elif unit == 'h': date = date + timedelta(hours=delta_num) elif unit == 'm': date = date + timedelta(minutes=delta_num) elif unit == 's': date = date + timedelta(seconds=delta_num) elif unit == 'M': date = date + relativedelta.relativedelta(months=delta_num) elif unit == 'y': date = date + relativedelta.relativedelta(years=delta_num) if not fmt: fmt = "%Y%m%d" expanded = expanded.replace(m.group(0), date.strftime(fmt)) return expanded def recur_expand_param(param, data_path, pack_path): if not param: return param if isinstance(param, (list, tuple)): expaned = [] for i in param: expaned.append(recur_expand_param(i, data_path, pack_path)) if isinstance(param, tuple): return tuple(expaned) return expaned elif isinstance(param, dict): expanded = {} for k, v in param.items(): expanded[k] = recur_expand_param(v, data_path, pack_path) return expanded else: return expand_param(param, data_path, pack_path) def split_file_name(file_name): if not file_name: return '', '', '' dir_name = os.path.dirname(file_name) name = os.path.basename(file_name) base, ext = os.path.splitext(name) return dir_name, base, ext def try_archive_by_config(config_json, data_path, pack_path): if not config_json: return None if not isinstance(config_json, list): config_json = [config_json] from .archiver import Archiver archiver = Archiver() archived = [] for i, cj in enumerate(config_json): src = cj.get('src', '').strip() if not src: print("'src' of {}th archive not set, ignore it".format(i)) continue src = make_abs_or_data_path(src, data_path, pack_path) path_name = cj.get('path_name', '').strip() compress = cj.get('compress', False) cj_archived = archiver.archive(src, path_name, compress) if cj_archived: archived.extend(cj_archived) return archived def call_user_module(module, func_name, func_must_exists, nullable, check_return_type, inject_args: dict = None, **kwargs): injected_args = {} if not hasattr(module, func_name): if func_must_exists: raise ModuleNotFoundError("user function '{}' not found in module {}".format(func_name, module)) else: return None, None func = getattr(module, func_name) args_spec = inspect.getfullargspec(func) varkw_args = {} if inject_args: for a, v in inject_args.items(): if a in args_spec.args: kwargs[a] = v injected_args[a] = v print("user function '{}' of module {} declared arg '{}', inject value '{}'" .format(func_name, module, a, v)) elif args_spec.varkw: varkw_args[a] = v injected_args[a] = v print("user function '{}' of module {} declared kw arg '{}', inject '{}'={} into it" .format(func_name, module, args_spec.varkw, a, v)) not_support_args = kwargs.keys() - args_spec.args if not_support_args: for nsa in not_support_args: v = kwargs.pop(nsa) if args_spec.varkw: if nsa not in varkw_args: varkw_args[nsa] = v print("'{}'={} in kwargs not decleared in use function '{}' of module {}," " moved it into kw arg '{}'".format(nsa, v, func_name, module, args_spec.varkw)) else: print("'{}'={} in kwargs not decleared in use function '{}' of module {}, will be excluded" .format(nsa, v, func_name, module)) ret_obj = func(**kwargs, **varkw_args) if ret_obj is None and not nullable: raise RuntimeError("user function '{}' of module {} return None, args={}" .format(func_name, module, kwargs)) if ret_obj is not None and check_return_type is not None and not isinstance(ret_obj, check_return_type): raise RuntimeError("object '{}' returned by user function '{}' of module {} is of not type '{}'" .format(ret_obj, func_name, module, check_return_type)) return ret_obj, injected_args def find_duplicated_entries(seq): if not seq: return None from collections import Counter cnt = Counter(seq) duplicated_entries = list(map(lambda i: i[0], filter(lambda x: x[1] > 1, cnt.items()))) return duplicated_entries class _WriterThread(threading.Thread): def __init__(self, q: queue.Queue, f, max_batch_len, name='bufferd_text_file_writer_thread'): super(_WriterThread, self).__init__() self.q = q self.f = f self.setName(name) self.wrote_lines = 0 self.wrote_times = 0 self.wrote_cost_time = 0 self.max_batch_len = max_batch_len self.batch = [] self.first_write_time = None def _flush(self): if not self.batch: return num_lines = len(self.batch) st = time.perf_counter() if self.first_write_time is None: self.first_write_time = st data = ''.join(self.batch) self.f.write(data) self.wrote_lines += num_lines self.wrote_times += 1 cost = time.perf_counter() - st self.wrote_cost_time += cost self.batch.clear() print("{}: wrote {} lines, cost {}s, totally write {} times with {} lines, cost {}s, elapsed {}s" .format(self.getName(), num_lines, cost, self.wrote_times, self.wrote_lines, self.wrote_cost_time, time.perf_counter()-self.first_write_time)) def run(self) -> None: if not self.q: raise RuntimeError("{}: no queue specified".format(self.getName())) print("{}: started".format(self.getName())) while True: try: if len(self.batch) >= self.max_batch_len/2: line = self.q.get_nowait() else: line = self.q.get() if line == BufferedTextFileWriter.END_MARK: self._flush() print("{}: received end mark, exit, totally write {} times with {} lines, cost {}s, elapsed {}s" .format(self.getName(), self.wrote_times, self.wrote_lines, self.wrote_cost_time, time.perf_counter()-self.first_write_time)) return self.batch.append(line) if len(self.batch) >= self.max_batch_len: self._flush() except queue.Empty: self._flush() class BufferedTextFileWriter(object): END_MARK = '__END_MARK__' def __init__(self, filename, line_buffer_len, sys_buffer_size=2**25): self.filename = filename self.line_buffer_len = line_buffer_len self.sys_buffer_size = sys_buffer_size self.opened_fn = None self.q = None self._write_thread = None def __enter__(self): if self.opened_fn is None: self.opened_fn = open(self.filename, 'w', buffering=self.sys_buffer_size) self.q = queue.Queue(self.line_buffer_len) self._write_thread = _WriterThread(self.q, self.opened_fn, self.line_buffer_len, "writerthread: {}".format(self.filename)) self._write_thread.start() return self def __exit__(self, exc_type, exc_val, exc_tb): if self.opened_fn is not None: self.q.put(self.END_MARK) print("begin waiting writer thread to terminate") self._write_thread.join() print("writer thread terminated") self.opened_fn.close() self.opened_fn = None self.q = None self._write_thread = None def write(self, line): if self.opened_fn is None: raise RuntimeError("please use with syntax to use BufferedTextFileWriter") if not line: return 0 self.q.put(line) return 1 @property def wrote_lines(self): if self._write_thread is None: return 0 return self._write_thread.wrote_lines def even_spread_num(n, num_buckets): d, r = divmod(n, num_buckets) buckets = [d]*num_buckets for i in range(r): buckets[i] += 1 return buckets def find_files(file_patterns): if not isinstance(file_patterns, (list, tuple, str)): print("WARNING: file_patterns should be list/tuple/str, got '{}': {}" .format(type(file_patterns), file_patterns)) return [] files = [] if not isinstance(file_patterns, (list, tuple)): file_patterns = [file_patterns] import glob for fp in file_patterns: files.extend(glob.glob(fp)) return files def get_file_md5(file_path): import hashlib if not os.path.isfile(file_path): return None md5 = hashlib.md5() with open(file_path, 'rb') as f: while True: d = f.read(4 << 20) if not d: break md5.update(d) return str(md5.hexdigest()) ``` #### File: job/tf_distributed_train/tfjob_launcher.py ```python import datetime import json import subprocess import time import uuid from kubernetes import client as k8s_client from kubernetes import config as k8s_config from job.pkgs.constants import NodeAffnity, JOB_DEF_NAMESPACE, WORKER_DEF_RESOURCE_LIMITS, DEF_IMAGE_PULL_SECRETS, \ ComputeResource, PodAffnity from job.pkgs.context import JobComponentRunner, KFJobContext from job.pkgs.k8s.tfjob import TFJob from job.pkgs.utils import parse_timedelta TRAINER_TYPE_PLAIN = "plain" TRAINER_TYPE_RUNNER = "runner" TRAINER_SPECS = { TRAINER_TYPE_PLAIN: { "image": "ai.tencentmusic.com/tme-public/tf2.3_plain_train:latest", "cmd": ["python3", "-m", "job.tf_plain_train.plain_train"] }, TRAINER_TYPE_RUNNER: { "image": "ai.tencentmusic.com/tme-public/tf2.3_keras_train:latest", "cmd": ["python3", "-m", "job.tf_keras_train.runner_train"] } } class TFJobLauncher(JobComponentRunner): def job_func(self, jc_entry): job = jc_entry.job job_name = job.get('name') job_namespace = job.get('namespace') or jc_entry.context.namespace or JOB_DEF_NAMESPACE num_workers = int(job.get('num_workers', 1)) num_pss = int(job.get('num_pss', 0)) node_affin = job.get("node_affin") pod_affin = job.get("pod_affin") node_selector = job.get("node_selector", {}) or jc_entry.context.parsed_node_selector() resources = job.get("resources") if not isinstance(resources, dict) or 'limits' not in resources: print("user specified resource {} not valid".format(resources)) resources = jc_entry.context.parsed_resource_spec() if resources: print("will use resource spec from tfjob for workers: {}".format(resources)) else: resources = WORKER_DEF_RESOURCE_LIMITS ps_resources = job.get("ps_resources") chief_resources = job.get("chief_resources") if (ComputeResource.P_GPU in resources['limits'] or ComputeResource.V_GPU_CORE in resources['limits']) \ and not node_affin: node_affin = NodeAffnity.ONLY_GPU print("auto set node_affin={}".format(node_affin)) if node_affin in [NodeAffnity.ONLY_GPU, NodeAffnity.PREF_GPU] and 'cpu' in node_selector: node_selector.pop('cpu', None) print("auto poped up 'cpu' in node selector: {}".format(node_selector)) if node_affin in [NodeAffnity.ONLY_CPU, NodeAffnity.PREF_CPU] and 'gpu' in node_selector: node_selector.pop('gpu', None) print("auto poped up 'gpu' in node selector: {}".format(node_selector)) restart_policy = job.get("restart_policy", '').strip() if restart_policy and restart_policy not in ['OnFailure', 'Always', 'ExitCode', 'Never']: print("WARNING: unrecognized 'restart_policy' '{}', reset to 'Never'".format(restart_policy)) restart_policy = 'Never' backoff_limits = job.get("backoff_limits", num_workers) if backoff_limits < 0: print("WARNING: 'backoff_limits' should be >=0, got {}, defaults to 1".format(backoff_limits)) backoff_limits = 1 job_timeout = parse_timedelta(job.get('timeout', '365d')) job_polling_interval = parse_timedelta(job.get('polling_interval', '30s')) trainer_type = job.get("trainer", TRAINER_TYPE_RUNNER).strip().lower() trainer_spec = TRAINER_SPECS.get(trainer_type) if not trainer_spec: raise NotImplementedError("unsupported trainer type '{}', supported are {}" .format(trainer_type, TRAINER_SPECS.keys())) print("use trainer '{}', spec={}, num_workers={}, num_pss={}" .format(trainer_type, trainer_spec, num_workers, num_pss)) driver_job_detail = job.get('job_detail') driver_args = [ "--job", json.dumps(driver_job_detail), "--pack-path", jc_entry.pack_path, "--upstream-output-file", jc_entry.upstream_output_file, "--export-path", jc_entry.export_path, "--pipeline-id", jc_entry.pipeline_id, "--run-id", jc_entry.run_id, "--creator", jc_entry.creator, "--output-file", jc_entry.output_file or self.output_file ] driver_mounts = jc_entry.context.parsed_volumn_mounts() or [] job_labels = { "run-rtx": jc_entry.runner, "upload-rtx": jc_entry.creator, "pipeline-id": jc_entry.pipeline_id, "run-id": jc_entry.run_id, "workflow-name": jc_entry.pipeline_name, 'task-id': jc_entry.task_id, 'task-name': jc_entry.task_name } user_envs = job.get("envs") driver_envs = jc_entry.context.to_k8s_env_list() if isinstance(user_envs, dict): for k, v in user_envs.items(): driver_envs.append({"name": str(k), "value": str(v)}) if 'profile_batch' in driver_job_detail.get('train_args', {}).get('tensorboard', {}) and \ node_affin in [NodeAffnity.ONLY_GPU, NodeAffnity.PREF_GPU]: privileged = True print("job use gpu and tf profiler, set privileged=True") else: privileged = False self.launch_tfjob(job_name, job_namespace, num_workers, num_pss, trainer_spec.get("image"), trainer_spec.get("cmd"), driver_args, driver_envs, driver_mounts, resources, restart_policy, node_affin, pod_affin, job_labels, backoff_limits, job_timeout, job_polling_interval, False, node_selector, privileged, jc_entry.creator, ps_resources, chief_resources) @classmethod def default_job_name(cls): import re ctx = KFJobContext.get_context() p_name = str(ctx.pipeline_name) or '' p_name = re.sub(r'[^-a-z0-9]', '-', p_name) jid = str(uuid.uuid4()).replace('-', '') return "-".join(["tfjob", p_name, jid])[:54] # return "tfjob-" + str(uuid.uuid1()) @classmethod def launch_tfjob(cls, name, namespace, num_workers, num_pss, driver_image, driver_cmd, driver_args, driver_envs, driver_mounts, resources=None, restart_policy=None, node_affin=None, pod_affin=None, job_labels={}, backoff_limits=3, job_timeout=None, job_polling_interval=None, delete_after_finish=False, node_selector={}, privileged=False, creator='', ps_resources=None, chief_resources=None): subprocess.check_call("echo '10.101.140.98 cls-g9v4gmm0.ccs.tencent-cloud.com' >> /etc/hosts", shell=True) k8s_config.load_incluster_config() k8s_api_client = k8s_client.ApiClient() tfjob = TFJob("v1", k8s_api_client) job_name = name.strip() if name and name.strip() else cls.default_job_name() if node_affin == NodeAffnity.PREF_GPU: node_affin = NodeAffnity.ONLY_GPU print("WARING: 'node_affin' set to 'pref_gpu', changed it to 'only_gpu' to avoid heterogeneity") if node_affin == NodeAffnity.PREF_CPU: node_affin = NodeAffnity.ONLY_CPU print("WARING: 'node_affin' set to 'pref_cpu', changed it to 'only_cpu' to avoid heterogeneity") if not pod_affin and node_affin in [NodeAffnity.ONLY_GPU, NodeAffnity.PREF_GPU]: pod_affin = PodAffnity.CONCENT print("auto set pod_affin to {}".format(pod_affin)) st = time.perf_counter() print('begin create new tfjob %s' % job_name) tfjob.create(job_name, namespace, num_workers, num_pss, driver_image, driver_cmd, driver_args, driver_envs, driver_mounts, resources, restart_policy, DEF_IMAGE_PULL_SECRETS, node_affin, pod_affin, job_labels, backoff_limits, node_selector, privileged, creator, ps_resources, chief_resources) job_timeout = job_timeout if job_timeout else datetime.timedelta(days=365) job_polling_inteval = job_polling_interval if job_polling_interval else datetime.timedelta(seconds=30) condition = tfjob.wait_for_condition(namespace, job_name, ["Succeeded", "Failed"], job_timeout, job_polling_inteval, trace_worker_log=True) print("TFJob '{}' finished in condition '{}', cost {}s".format(job_name, condition, time.perf_counter() - st)) if condition != 'Succeeded': raise RuntimeError("TFJob '{}' in namespace '{}' failed, num_workers={}, driver_args={}" .format(job_name, namespace, num_workers, driver_args)) if delete_after_finish: print("will delete tfjob '{}' in '{}'".format(job_name, namespace)) tfjob.delete(name=job_name, namespace=namespace) print("deleted tfjob '{}' in '{}'".format(job_name, namespace)) if __name__ == "__main__": runner = TFJobLauncher("TFJob launcher for train component") runner.run() ``` #### File: job/tf_keras_train/runner_train.py ```python import json import os import datetime from job.pkgs.constants import ComponentOutput from job.pkgs.context import JobComponentRunner from job.pkgs.httpclients.model_repo_client import ModelRepoClient from job.pkgs.tf.model_runner import TFModelRunner from job.pkgs.utils import make_abs_or_pack_path, split_file_name, try_archive_by_config class TFRunnerTrainer(JobComponentRunner): def job_func(self, jc_entry): tf_config = json.loads(os.environ.get('TF_CONFIG') or '{}') print("tf_config={}".format(tf_config)) job = jc_entry.job user_py_file = job.get('script_name') model_args = job.get('model_args', {}) train_args = job.get('train_args', {}) train_data_args = job.get('train_data_args', {}) val_data_args = job.get('val_data_args', {}) save_model_args = job.get('save_model_args', {}) if not user_py_file or not user_py_file.strip(): raise RuntimeError("'script_name' not set") user_py_file = make_abs_or_pack_path(user_py_file, jc_entry.export_path, jc_entry.pack_path) if not os.path.isfile(user_py_file): raise RuntimeError("user script '{}' not exist".format(user_py_file)) workdir = os.getcwd() os.chdir(os.path.dirname(user_py_file)) print("change work dir from '{}' to '{}'".format(workdir, os.getcwd())) runner = TFModelRunner(user_py_file, jc_entry.export_path, jc_entry.pack_path, tf_config, model_args=model_args, train_args=train_args, train_data_args=train_data_args, val_data_args=val_data_args, save_model_args=save_model_args) saved_models = runner.run_train() if runner.is_chief() and saved_models: version = train_args.get('version', '').strip() if not version: version = datetime.datetime.now().strftime("%Y%m%d.%H%M%S") save_info_strings = [] for model_save_path, model_name in saved_models: # if not model_name: # model_name = split_file_name(user_py_file)[1] # print("model name not set, will use script file base name '{}' as model name".format(model_name)) archive_config = { "src": model_save_path, "path_name": model_name } archived = try_archive_by_config(archive_config, jc_entry.export_path, jc_entry.pack_path) if archived: model_save_path = archived[0][1] mrc = ModelRepoClient(jc_entry.creator) mrc.add_model(jc_entry.pipeline_id, jc_entry.run_id, 'tf', model_name, model_save_path, version, None, thr_exp=False) print("added model training record, pipeline_id='{}', run_id='{}', model_name='{}', mode_save_path='{}'" .format(jc_entry.pipeline_id, jc_entry.run_id, model_name, model_save_path)) save_info_strings.append('|'.join([model_save_path, model_name])) return '\n'.join(save_info_strings) else: print("not chief") if __name__ == '__main__': trainer = TFRunnerTrainer("TF runner trainer component", ComponentOutput.MODEL_TRAIN_OUTPUT) trainer.run() ``` #### File: myapp/models/model_job.py ```python from flask_appbuilder import Model from sqlalchemy import Column, Integer, String, ForeignKey,Float from sqlalchemy.orm import relationship import datetime,time,json from sqlalchemy import ( Boolean, Column, create_engine, DateTime, ForeignKey, Integer, MetaData, String, Table, Text, Enum, ) import numpy import random import copy import logging from myapp.models.helpers import AuditMixinNullable, ImportMixin from flask import escape, g, Markup, request from .model_team import Project from myapp import app,db from myapp.models.helpers import ImportMixin # from myapp.models.base import MyappModel # 添加自定义model from sqlalchemy import Column, Integer, String, ForeignKey ,Date,DateTime from flask_appbuilder.models.decorators import renders from flask import Markup from myapp.models.base import MyappModelBase import datetime metadata = Model.metadata conf = app.config from myapp.utils import core import re from myapp.utils.py import py_k8s import pysnooper # 定义model class Repository(Model,AuditMixinNullable,MyappModelBase): __tablename__ = 'repository' id = Column(Integer, primary_key=True) name = Column(String(50), unique = True, nullable=False) server = Column(String(100), nullable=False) user = Column(String(100), nullable=False) password = Column(String(100), nullable=False) hubsecret = Column(String(100)) def __repr__(self): return self.name label_columns_spec={ "server":'域名', "user":"用户名", "hubsecret": 'k8s hubsecret', } label_columns=MyappModelBase.label_columns.copy() label_columns.update(label_columns_spec) # 定义model class Images(Model,AuditMixinNullable,MyappModelBase): __tablename__='images' id = Column(Integer, primary_key=True) project_id = Column(Integer, ForeignKey('project.id')) # 定义外键 project = relationship( "Project", foreign_keys=[project_id] ) name = Column(String(200), nullable=False) describe = Column(Text) repository_id = Column(Integer, ForeignKey('repository.id')) # 定义外键 repository = relationship( "Repository", foreign_keys=[repository_id] ) entrypoint=Column(String(200)) dockerfile=Column(Text) gitpath=Column(String(200)) label_columns_spec={ "project":'功能分类', } label_columns = MyappModelBase.label_columns.copy() label_columns.update(label_columns_spec) @property def images_url(self): if self.gitpath: return Markup(f'<a href="{self.gitpath}">{self.name}</a>') return self.name def __repr__(self): return self.name # 定义model class Job_Template(Model,AuditMixinNullable,MyappModelBase): __tablename__='job_template' id = Column(Integer, primary_key=True) project_id = Column(Integer, ForeignKey('project.id')) # 定义外键 project = relationship( "Project", foreign_keys=[project_id] ) name = Column(String(100), nullable=False,unique=True) version = Column(Enum('Release','Alpha'),nullable=False,default='Release') images_id = Column(Integer, ForeignKey('images.id')) # 定义外键 images = relationship( Images, foreign_keys=[images_id] ) hostAliases = Column(Text) # host文件 describe = Column(Text) workdir=Column(String(400)) entrypoint=Column(String(200)) args=Column(Text) env = Column(Text) # 默认自带的环境变量 volume_mount = Column(String(400),default='') # 强制必须挂载 privileged = Column(Boolean, default=False) # 是否启用特权模式 accounts = Column(String(100)) # 使用账户 demo=Column(Text) expand = Column(Text(65536), default='{}') label_columns_spec={ "project": "功能分类", } label_columns = MyappModelBase.label_columns.copy() label_columns.update(label_columns_spec) def __repr__(self): return self.name # +"(%s)"%self.version @renders('args') def args_html(self): return Markup('<pre><code>' + self.args + '</code></pre>') @renders('demo') def demo_html(self): return Markup('<pre><code>' + self.demo + '</code></pre>') @renders('expand') def expand_html(self): return Markup('<pre><code>' + self.expand + '</code></pre>') @renders('name') def name_title(self): return Markup(f'<a data-toggle="tooltip" rel="tooltip" title data-original-title="{self.describe}">{self.name}</a>') @property def images_url(self): return Markup(f'<a target=_blank href="/images_modelview/show/{self.images.id}">{self.images.name}</a>') # import pysnooper # @pysnooper.snoop() def get_env(self,name): if self.env and name in self.env: envs = self.env.split('\n') for env in envs: if name in env: return env[env.index('=')+1:].strip() else: return None def clone(self): return Job_Template( name=self.name, version=self.version, project_id=self.project_id, images_id=self.images_id, describe=self.describe, args=self.args, demo=self.demo, expand=self.expand ) # 定义model class Pipeline(Model,ImportMixin,AuditMixinNullable,MyappModelBase): __tablename__ = 'pipeline' id = Column(Integer, primary_key=True) name = Column(String(100),nullable=False,unique=True) describe = Column(String(200),nullable=False) project_id = Column(Integer, ForeignKey('project.id'),nullable=False) # 定义外键 project = relationship( "Project", foreign_keys=[project_id] ) dag_json = Column(Text,nullable=False,default='{}') namespace=Column(String(100),default='pipeline') global_env = Column(String(500),default='') schedule_type = Column(Enum('once', 'crontab'),nullable=False,default='once') cron_time = Column(String(100)) # 调度周期 pipeline_file=Column(Text(65536),default='') pipeline_argo_id = Column(String(100)) version_id = Column(String(100)) run_id = Column(String(100)) node_selector = Column(String(100), default='cpu=true,train=true') # 挂载 image_pull_policy = Column(Enum('Always','IfNotPresent'),nullable=False,default='Always') parallelism = Column(Integer, nullable=False,default=1) # 同一个pipeline,最大并行的task数目 alert_status = Column(String(100), default='Pending,Running,Succeeded,Failed,Terminated') # 哪些状态会报警Pending,Running,Succeeded,Failed,Unknown,Waiting,Terminated alert_user = Column(String(300), default='') expand = Column(Text(65536),default='[]') depends_on_past = Column(Boolean, default=False) max_active_runs = Column(Integer, nullable=False,default=3) # 最大同时运行的pipeline实例 expired_limit = Column(Integer, nullable=False, default=1) # 过期保留个数,此数值有效时,会优先使用,覆盖max_active_runs的功能 parameter = Column(Text(65536), default='{}') def __repr__(self): return self.name @property def pipeline_url(self): pipeline_url="/pipeline_modelview/web/" +str(self.id) return Markup(f'<a href="{pipeline_url}">{self.describe}</a>') @property def run_pipeline(self): pipeline_run_url = "/pipeline_modelview/run_pipeline/" +str(self.id) return Markup(f'<a target=_blank href="{pipeline_run_url}">run</a>') @property def cronjob_start_time(self): cronjob_start_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if self.parameter: return json.loads(self.parameter).get('cronjob_start_time',cronjob_start_time) return cronjob_start_time @property def log(self): if self.run_id: pipeline_url = "/pipeline_modelview/web/log/%s"%self.id return Markup(f'<a target=_blank href="{pipeline_url}">日志</a>') else: return Markup(f'日志') @property def pod(self): url = "/pipeline_modelview/web/pod/%s" % self.id return Markup(f'<a target=_blank href="{url}">pod</a>') @renders('dag_json') def dag_json_html(self): dag_json = self.dag_json or '{}' return Markup('<pre><code>' + dag_json + '</code></pre>') @renders('expand') def expand_html(self): return Markup('<pre><code>' + self.expand + '</code></pre>') @renders('parameter') def parameter_html(self): return Markup('<pre><code>' + self.parameter + '</code></pre>') @renders('pipeline_file') def pipeline_file_html(self): pipeline_file = self.pipeline_file or '' return Markup('<pre><code>' + pipeline_file + '</code></pre>') # @renders('describe') # def describe_html(self): # return Markup('<pre><code>' + self.pipeline_file + '</code></pre>') # 获取pipeline中的所有task def get_tasks(self,dbsession=db.session): return dbsession.query(Task).filter_by(pipeline_id=self.id).all() # @pysnooper.snoop() def delete_old_task(self, dbsession=db.session): try: expand_tasks = json.loads(self.expand) if self.expand else [] tasks = dbsession.query(Task).filter_by(pipeline_id=self.id).all() tasks_id = [int(expand_task['id']) for expand_task in expand_tasks if expand_task.get('id', '').isdecimal()] for task in tasks: if task.id not in tasks_id: db.session.delete(task) db.session.commit() except Exception as e: print(e) # 获取当期运行时workflow的数量 def get_workflow(self): back_crds = [] try: k8s_client = py_k8s.K8s(self.project.cluster['KUBECONFIG']) crd_info = conf.get("CRD_INFO", {}).get('workflow', {}) if crd_info: crds = k8s_client.get_crd(group=crd_info['group'], version=crd_info['version'], plural=crd_info['plural'], namespace=self.namespace, label_selector="pipeline-id=%s"%str(self.id)) for crd in crds: if crd.get('labels', '{}'): labels = json.loads(crd['labels']) if labels.get('pipeline-id', '') == str(self.id): back_crds.append(crd) return back_crds except Exception as e: print(e) return back_crds @property def run_instance(self): # workflow = db.session.query(Workflow).filter_by(foreign_key= str(self.id)).filter_by(status= 'Running').filter_by(create_time > datetime.datetime.now().strftime("%Y-%m-%d")).all() # workflow_num = len(workflow) if workflow else 0 # url = '/workflow_modelview/list/?_flt_2_name=%s'%self.name.replace("_","-")[:54] url = r'/workflow_modelview/list/?_flt_2_labels="pipeline-id"%3A+"'+'%s"' % self.id # print(url) return Markup(f"<a href='{url}'>{self.schedule_type}</a>") # k8s有长度限制 # 这个dag可能不对,所以要根据真实task纠正一下 def fix_dag_json(self,dbsession=db.session): if not self.dag_json: return "{}" dag = json.loads(self.dag_json) # 如果添加了task,但是没有保存pipeline,就自动创建dag if not dag: tasks = self.get_tasks(dbsession) if tasks: dag = {} for task in tasks: dag[task.name] = {} dag_json = json.dumps(dag, indent=4, ensure_ascii=False) return dag_json else: return "{}" # 清理dag中不存在的task if dag: tasks = self.get_tasks(dbsession) all_task_names = [task.name for task in tasks] # 先把没有加入的task加入到dag for task in tasks: if task.name not in dag: dag[task.name] = {} # 把已经删除了的task移除dag dag_back = copy.deepcopy(dag) for dag_task_name in dag_back: if dag_task_name not in all_task_names: del dag[dag_task_name] # 将已经删除的task从其他task的上游依赖中删除 for dag_task_name in dag: upstream_tasks = dag[dag_task_name]['upstream'] if 'upstream' in dag[dag_task_name] else [] new_upstream_tasks = [] for upstream_task in upstream_tasks: if upstream_task in all_task_names: new_upstream_tasks.append(upstream_task) dag[dag_task_name]['upstream'] = new_upstream_tasks # def get_downstream(dag): # # 生成下行链路图 # for task_name in dag: # dag[task_name]['downstream'] = [] # for task_name1 in dag: # if task_name in dag[task_name1].get("upstream", []): # dag[task_name]['downstream'].append(task_name1) # return dag # # dag = get_downstream(dag) dag_json = json.dumps(dag, indent=4, ensure_ascii=False) return dag_json # 自动聚焦到视图中央 # @pysnooper.snoop() def fix_position(self): expand_tasks = json.loads(self.expand) if self.expand else [] if not expand_tasks: expand_tasks = [] x=[] y=[] for item in expand_tasks: if "position" in item: if item['position'].get('x',0): x.append(int(item['position'].get('x',0))) y.append(int(item['position'].get('y', 0))) x_dist=400- numpy.mean(x) if x else 0 y_dist = 300 -numpy.mean(y) if y else 0 for item in expand_tasks: if "position" in item: if item['position'].get('x', 0): item['position']['x'] = int(item['position']['x'])+x_dist item['position']['y'] = int(item['position']['y']) + y_dist return expand_tasks # 生成前端锁需要的扩展字段 def fix_expand(self,dbsession=db.session): tasks_src = self.get_tasks(dbsession) tasks = {} for task in tasks_src: tasks[str(task.id)] = task expand_tasks = json.loads(self.expand) if self.expand else [] if not expand_tasks: expand_tasks=[] expand_copy = copy.deepcopy(expand_tasks) # 已经不存在的task要删掉 for item in expand_copy: if "data" in item: if item['id'] not in tasks: expand_tasks.remove(item) else: # if item['source'] not in tasks or item['target'] not in tasks: expand_tasks.remove(item) # 删除所有的上下游关系,后面全部重新 # 增加新的task的位置 for task_id in tasks: exist=False for item in expand_tasks: if "data" in item and item['id']==str(task_id): exist=True break if not exist: # if task_id not in expand_tasks: expand_tasks.append({ "id": str(task_id), "type": "dataSet", "position": { "x": random.randint(100,1000), "y": random.randint(100,1000) }, "data": { "taskId": task_id, "taskName": tasks[task_id].name, "name": tasks[task_id].name, "describe": tasks[task_id].label } }) # 重写所有task的上下游关系 dag_json = json.loads(self.dag_json) for task_name in dag_json: upstreams = dag_json[task_name].get("upstream", []) if upstreams: for upstream_name in upstreams: upstream_task_id = [task_id for task_id in tasks if tasks[task_id].name==upstream_name][0] task_id = [task_id for task_id in tasks if tasks[task_id].name==task_name][0] if upstream_task_id and task_id: expand_tasks.append( { "source": str(upstream_task_id), # "sourceHandle": None, "target": str(task_id), # "targetHandle": None, "id": self.name + "__edge-%snull-%snull" % (upstream_task_id, task_id) } ) return expand_tasks # @pysnooper.snoop() def clone(self): return Pipeline( name=self.name.replace('_','-'), project_id=self.project_id, dag_json=self.dag_json, describe=self.describe, namespace=self.namespace, global_env=self.global_env, schedule_type='once', cron_time=self.cron_time, pipeline_file='', pipeline_argo_id=self.pipeline_argo_id, node_selector=self.node_selector, image_pull_policy=self.image_pull_policy, parallelism=self.parallelism, alert_status='', expand=self.expand, parameter=self.parameter ) # 定义model class Task(Model,ImportMixin,AuditMixinNullable,MyappModelBase): __tablename__ = 'task' id = Column(Integer, primary_key=True) name = Column(String(100), nullable=False) label = Column(String(100), nullable=False) # 别名 job_template_id = Column(Integer, ForeignKey('job_template.id')) # 定义外键 job_template = relationship( "Job_Template", foreign_keys=[job_template_id] ) pipeline_id = Column(Integer, ForeignKey('pipeline.id')) # 定义外键 pipeline = relationship( "Pipeline", foreign_keys=[pipeline_id] ) working_dir = Column(String(1000),default='') command = Column(String(1000),default='') overwrite_entrypoint = Column(Boolean,default=False) # 是否覆盖入口 args = Column(Text) volume_mount = Column(String(200),default='kubeflow-user-workspace(pvc):/mnt,kubeflow-archives(pvc):/archives') # 挂载 node_selector = Column(String(100),default='cpu=true,train=true') # 挂载 resource_memory = Column(String(100),default='2G') resource_cpu = Column(String(100), default='2') resource_gpu= Column(String(100), default='0') timeout = Column(Integer, nullable=False,default=0) retry = Column(Integer, nullable=False,default=0) outputs = Column(Text,default='{}') # task的输出,会将输出复制到minio上 {'prediction': '/output.txt'} monitoring = Column(Text,default='{}') # 该任务的监控信息 expand = Column(Text(65536), default='') # active = Column(Boolean,default=True) # 是否激活,可以先配置再运行跑 export_parent = "pipeline" def __repr__(self): return self.name @property def debug(self): return Markup(f'<a target=_blank href="/task_modelview/debug/{self.id}">debug</a>') @property def run(self): return Markup(f'<a target=_blank href="/task_modelview/run/{self.id}">run</a>') @property def clear(self): return Markup(f'<a href="/task_modelview/clear/{self.id}">clear</a>') @property def log(self): return Markup(f'<a target=_blank href="/task_modelview/log/{self.id}">log</a>') def get_node_selector(self): project_node_selector = self.get_default_node_selector(self.pipeline.project.node_selector,self.resource_gpu,'train') gpu_type = core.get_gpu(self.resource_gpu)[1] if gpu_type: project_node_selector+=',gpu-type='+gpu_type return project_node_selector @renders('args') def args_html(self): return Markup('<pre><code>' + self.args + '</code></pre>') @renders('expand') def expand_html(self): return Markup('<pre><code>' + self.expand + '</code></pre>') @renders('monitoring') def monitoring_html(self): try: monitoring = json.loads(self.monitoring) monitoring['link']=self.pipeline.project.cluster.get('GRAFANA_HOST','').strip('/')+conf.get('GRAFANA_TASK_PATH')+monitoring.get('pod_name','') return Markup('<pre><code>' + json.dumps(monitoring,ensure_ascii=False,indent=4) + '</code></pre>') except Exception as e: return Markup('<pre><code> 暂无 </code></pre>') @property def job_args_demo(self): return Markup('<pre><code>' + self.job_template.demo + '</code></pre>') @property def job_template_url(self): return Markup(f'<a target=_blank href="/job_template_modelview/show/{self.job_template.id}">{self.job_template.name}</a>') def clone(self): return Task( name=self.name.replace('_','-'), label=self.label, job_template_id=self.job_template_id, pipeline_id=self.pipeline_id, working_dir=self.working_dir, command=self.command, args=self.args, volume_mount=self.volume_mount, node_selector=self.node_selector, resource_memory=self.resource_memory, resource_cpu=self.resource_cpu, timeout=self.timeout, retry=self.retry, expand=self.expand ) # 每次上传运行 class RunHistory(Model,MyappModelBase): __tablename__ = "run" id = Column(Integer, primary_key=True) pipeline_id = Column(Integer, ForeignKey('pipeline.id')) # 定义外键 pipeline = relationship( "Pipeline", foreign_keys=[pipeline_id] ) pipeline_file = Column(Text(65536), default='') pipeline_argo_id = Column(String(100)) # 上传的pipeline id version_id = Column(String(100)) # 上传的版本号 experiment_id = Column(String(100)) run_id = Column(String(100)) message = Column(Text, default='') created_on = Column(DateTime, default=datetime.datetime.now, nullable=False) execution_date=Column(String(100), nullable=False) status = Column(String(100),default='comed') # commed表示已经到了该调度的时间,created表示已经发起了调度。注意操作前校验去重 @property def status_url(self): if self.status=='comed': return self.status return Markup(f'<a target=_blank href="/workflow_modelview/list/?_flt_2_labels={self.run_id}">{self.status}</a>') @property def creator(self): return self.pipeline.creator @property def pipeline_url(self): return Markup(f'<a target=_blank href="/pipeline_modelview/web/{self.pipeline.id}">{self.pipeline.describe}</a>') @property def history(self): url = r'/workflow_modelview/list/?_flt_2_labels="pipeline-id"%3A+"' + '%s"' % self.pipeline_id return Markup(f"<a href='{url}'>运行记录</a>") @property def log(self): if self.run_id: pipeline_url = self.pipeline.project.cluster.get('PIPELINE_URL')+ "runs/details/" +str(self.run_id) return Markup(f'<a target=_blank href="{pipeline_url}">日志</a>') else: return Markup(f'日志') import sqlalchemy as sa class Crd: # __tablename__ = "crd" id = Column(Integer, primary_key=True) name = Column(String(100),default='') namespace = Column(String(100), default='') create_time=Column(String(100), default='') change_time = Column(String(100), default='') status = Column(String(100), default='') annotations = Column(Text, default='') labels = Column(Text, default='') spec = Column(Text(65536), default='') status_more = Column(Text(65536), default='') username = Column(String(100), default='') info_json = Column(Text, default='{}') add_row_time = Column(DateTime, default=datetime.datetime.now) # delete = Column(Boolean,default=False) foreign_key = Column(String(100), default='') @renders('annotations') def annotations_html(self): return Markup('<pre><code>' + self.annotations + '</code></pre>') @renders('labels') def labels_html(self): return Markup('<pre><code>' + self.labels + '</code></pre>') @property def final_status(self): status='未知' try: if self.status_more: status = json.loads(self.status_more).get('phase','未知') except Exception as e: print(e) return status @renders('spec') def spec_html(self): return Markup('<pre><code>' + self.spec + '</code></pre>') @renders('status_more') def status_more_html(self): return Markup('<pre><code>' + self.status_more + '</code></pre>') @renders('info_json') def info_json_html(self): return Markup('<pre><code>' + self.info_json + '</code></pre>') @renders('namespace') def namespace_url(self): # user_roles = [role.name.lower() for role in list(g.user.roles)] # if "admin" in user_roles: url = conf.get('K8S_DASHBOARD_CLUSTER', '') + '#/search?namespace=%s&q=%s' % (self.namespace, self.name.replace('_', '-')) # else: # url = conf.get('K8S_DASHBOARD_PIPELINE','')+'#/search?namespace=%s&q=%s'%(self.namespace,self.name.replace('_','-')) return Markup(f'<a target=_blank href="{url}">{self.namespace}</a>') @property def stop(self): return Markup(f'<a href="../stop/{self.id}">停止</a>') # 定义model class Workflow(Model,Crd,MyappModelBase): __tablename__ = 'workflow' @renders('namespace') def namespace_url(self): if self.pipeline: url = conf.get('K8S_DASHBOARD_CLUSTER', '') + '#/search?namespace=%s&q=%s' % (self.namespace, self.pipeline.name.replace('_', '-')) return Markup(f'<a target=_blank href="{url}">{self.namespace}</a>') else: url = conf.get('K8S_DASHBOARD_CLUSTER', '') + '#/search?namespace=%s&q=%s' % (self.namespace, self.name.replace('_', '-')) return Markup(f'<a target=_blank href="{url}">{self.namespace}</a>') @property def run_history(self): label = json.loads(self.labels) if self.labels else {} runid = label.get('run-id','') if runid: return db.session.query(RunHistory).filter(RunHistory.pipeline_file.contains(runid)).first() # return db.session.query(RunHistory).filter_by(run_id=runid).first() else: return None @property def schedule_type(self): run_history = self.run_history if run_history: return 'crontab' else: return 'once' @property def execution_date(self): run_history = self.run_history if run_history: return run_history.execution_date else: return 'once' @property def task_status(self): status_mode = json.loads(self.status_more) task_status={} nodes=status_mode.get('nodes',{}) tasks = self.pipeline.get_tasks() for pod_name in nodes: pod = nodes[pod_name] if pod['type']=='Pod': if pod['phase']=='Succeeded': # 那些重试和失败的都忽略掉 templateName=pod['templateName'] for task in tasks: if task.name==templateName: finish_time = datetime.datetime.strptime(pod['finishedAt'], '%Y-%m-%d %H:%M:%S') start_time = datetime.datetime.strptime(pod['startedAt'], '%Y-%m-%d %H:%M:%S') elapsed = (finish_time - start_time).days * 24 + (finish_time - start_time).seconds / 60 / 60 task_status[task.label]= str(round(elapsed,2))+"h" message="" for key in task_status: message += key+": "+task_status[key]+"\n" return Markup('<pre><code>' + message + '</code></pre>') @property def elapsed_time(self): status_mode = json.loads(self.status_more) finish_time=status_mode.get('finishedAt',self.change_time) if not finish_time: finish_time=self.change_time start_time = status_mode.get('startedAt', '') try: if finish_time and start_time: if 'T' in finish_time: finish_time = datetime.datetime.strptime(finish_time,'%Y-%m-%dT%H:%M:%S') else: finish_time = datetime.datetime.strptime(finish_time, '%Y-%m-%d %H:%M:%S') if 'T' in start_time: start_time = datetime.datetime.strptime(start_time, '%Y-%m-%dT%H:%M:%S') else: start_time = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') elapsed = (finish_time-start_time).days*24+(finish_time-start_time).seconds/60/60 return str(round(elapsed,2))+"h" except Exception as e: print(e) return '未知' @property def pipeline_url(self): if self.labels: try: labels = json.loads(self.labels) pipeline_id = labels.get("pipeline-id",'') if pipeline_id: pipeline = db.session.query(Pipeline).filter_by(id=int(pipeline_id)).first() if pipeline: # return Markup(f'{pipeline.describe}') return Markup(f'<a href="/pipeline_modelview/web/{pipeline.id}">{pipeline.describe}</a>') pipeline_name = self.name[:-6] pipeline = db.session.query(Pipeline).filter_by(name=pipeline_name).first() if pipeline: return Markup(f'{pipeline.describe}') except Exception as e: print(e) return Markup(f'未知') @property def pipeline(self): if self.labels: try: labels = json.loads(self.labels) pipeline_id = labels.get("pipeline-id",'') if pipeline_id: pipeline = db.session.query(Pipeline).filter_by(id=int(pipeline_id)).first() if pipeline: return pipeline # pipeline_name = self.name[:-6] # pipeline = db.session.query(Pipeline).filter_by(name=pipeline_name).first() # return pipeline except Exception as e: print(e) return None @property def project(self): pipeline = self.pipeline if pipeline: return pipeline.project.name else: return "未知" @property def log(self): if self.labels: try: labels = json.loads(self.labels) run_id = labels.get("pipeline/runid",'') if run_id: pipeline_url = conf.get('PIPELINE_URL')+ "runs/details/" +str(run_id) return Markup(f'<a target=_blank href="{pipeline_url}">日志</a>') except Exception as e: print(e) return Markup(f'日志') # 定义model class Tfjob(Model,Crd,MyappModelBase): __tablename__ = 'tfjob' @property def pipeline(self): if self.labels: try: labels = json.loads(self.labels) pipeline_id = labels.get("pipeline-id",'') if pipeline_id: pipeline = db.session.query(Pipeline).filter_by(id=int(pipeline_id)).first() return Markup(f'<a href="/pipeline_modelview/list/?_flt_2_name={pipeline.name}">{pipeline.describe}</a>') except Exception as e: print(e) return Markup(f'未知') @property def run_instance(self): if self.labels: try: labels = json.loads(self.labels) run_id = labels.get("run-id",'') if run_id: return Markup(f'<a href="/workflow_modelview/list/?_flt_2_labels={run_id}">运行实例</a>') except Exception as e: print(e) return Markup(f'未知') # 定义model class Xgbjob(Model,Crd,MyappModelBase): __tablename__ = 'xgbjob' # 定义model class Pytorchjob(Model,Crd,MyappModelBase): __tablename__ = 'pytorchjob' ``` #### File: cube-studio/myapp/security.py ```python from flask_login import current_user, LoginManager import logging import json import jwt from sqlalchemy.ext.declarative import declared_attr from flask_babel import lazy_gettext import time import hashlib from typing import List import requests from flask import current_app,redirect, g, flash, request, session, abort, make_response from flask_appbuilder.security.sqla import models as ab_models from flask_appbuilder.security.sqla.manager import SecurityManager from werkzeug.security import generate_password_hash from flask_babel import lazy_gettext as _ from flask_appbuilder.security.views import ( PermissionModelView, PermissionViewModelView, RoleModelView, UserModelView, RoleListWidget, RoleShowWidget, ) from werkzeug.security import check_password_hash from flask_appbuilder.security.sqla.models import ( assoc_permissionview_role, assoc_user_role, ) from flask import g from sqlalchemy import ( Boolean, Column, DateTime, ForeignKey, Integer, Sequence, String, Table, UniqueConstraint, ) from sqlalchemy.orm import backref, relationship from flask_appbuilder.security.decorators import has_access, has_access_api, permission_name from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_appbuilder.widgets import ListWidget from flask_appbuilder.const import LOGMSG_WAR_SEC_LOGIN_FAILED from sqlalchemy import or_ import xml.etree.ElementTree as ET from myapp.exceptions import MyappSecurityException from flask_appbuilder.security.views import AuthDBView, AuthRemoteUserView from flask_appbuilder.security.views import expose from flask_appbuilder import base from flask_login import login_user, logout_user,login_manager from flask_appbuilder.security.views import AuthDBView, AuthRemoteUserView from flask_appbuilder.security.registerviews import RegisterUserDBView from flask_appbuilder.security.forms import RegisterUserDBForm from flask_appbuilder.security.views import expose import xml.etree.ElementTree as ET from functools import update_wrapper from flask import redirect, g, flash, request, session, abort from celery.schedules import crontab from flask_appbuilder.security.sqla.models import assoc_permissionview_role from sqlalchemy import select, Table from flask_appbuilder.const import ( AUTH_DB, AUTH_LDAP, AUTH_OAUTH, AUTH_OID, AUTH_REMOTE_USER, LOGMSG_ERR_SEC_AUTH_LDAP, LOGMSG_ERR_SEC_AUTH_LDAP_TLS, LOGMSG_WAR_SEC_LOGIN_FAILED, LOGMSG_WAR_SEC_NO_USER, LOGMSG_WAR_SEC_NOLDAP_OBJ, PERMISSION_PREFIX ) from flask_appbuilder.models.sqla import Model from flask_appbuilder.actions import action import pysnooper import json # 用户列表页面模板 class MyappSecurityListWidget(ListWidget): """ Redeclaring to avoid circular imports """ template = "myapp/fab_overrides/list.html" # 角色列表页模板 class MyappRoleListWidget(ListWidget): """ Role model view from FAB already uses a custom list widget override So we override the override """ template = "myapp/fab_overrides/list_role.html" def __init__(self, **kwargs): kwargs["appbuilder"] = current_app.appbuilder super().__init__(**kwargs) # 自定义list,add,edit页面内容 UserModelView.list_columns= ["username", "active", "roles"] UserModelView.edit_columns= ["first_name", "last_name", "username", "active", "email"] UserModelView.add_columns= ["first_name", "last_name", "username", "email", "active", "roles"] UserModelView.list_widget = MyappSecurityListWidget RoleModelView.list_widget = MyappRoleListWidget PermissionViewModelView.list_widget = MyappSecurityListWidget PermissionModelView.list_widget = MyappSecurityListWidget # 自定义扩展系统自带的user from flask_appbuilder.security.sqla.models import User,Role from sqlalchemy import Column, Integer, ForeignKey, String, Sequence, Table # 修改绑定 class MyUser(User): __tablename__ = 'ab_user' org = Column(String(200)) # 新增的属性,组织架构 def get_full_name(self): return self.username # 使用用户名为名称 def __repr__(self): return self.username def is_admin(self): user_roles = [role.name.lower() for role in list(self.roles)] if "admin" in user_roles: return True return False @property def secret(self): if self.changed_on: pass # help(self.changed_on) # timestamp = int(func.date_format(self.changed_on)) timestamp = int(self.changed_on.timestamp()) payload = { "iss": self.username # 用户名作为身份 # "iat": timestamp, # 签发期 # "nbf": timestamp, # 生效期 # "exp": timestamp + 60 * 60 * 24 * 30 * 12, # 有效期12个月 } global_password = '<PASSWORD>' encoded_jwt = jwt.encode(payload, global_password, algorithm='HS256') encoded_jwt = encoded_jwt.decode('utf-8') return encoded_jwt return '' # 自定义role view 视图 class MyRoleModelView(RoleModelView): datamodel = SQLAInterface(Role) order_columns = ["id"] route_base = "/roles" list_columns = ["name", "permissions"] # 自定义用户展示 class MyUserRemoteUserModelView(UserModelView): list_columns = ["username", "active", "roles", ] edit_columns = ["first_name", "last_name", "username", "active", "email", "roles",'org' ] add_columns = ["first_name", "last_name", "username", "email", "active", "roles",'org' ] show_columns = ["username", "active", "roles", "login_count"] list_widget = MyappSecurityListWidget label_columns = { "get_full_name": lazy_gettext("Full Name"), "first_name": lazy_gettext("First Name"), "last_name": lazy_gettext("Last Name"), "username": lazy_gettext("User Name"), "password": lazy_gettext("Password"), "active": lazy_gettext("Is Active?"), "email": lazy_gettext("Email"), "roles": lazy_gettext("Role"), "last_login": lazy_gettext("Last login"), "login_count": lazy_gettext("Login count"), "fail_login_count": lazy_gettext("Failed login count"), "created_on": lazy_gettext("Created on"), "created_by": lazy_gettext("Created by"), "changed_on": lazy_gettext("Changed on"), "changed_by": lazy_gettext("Changed by"), "secret": lazy_gettext("Authorization"), } show_fieldsets = [ ( lazy_gettext("User info"), {"fields": ["username", "active", "roles", "login_count",'secret']}, ), ( lazy_gettext("Personal Info"), {"fields": ["first_name", "last_name", "email",'org'], "expanded": True}, ), ( lazy_gettext("Audit Info"), { "fields": [ "last_login", "fail_login_count", "created_on", "created_by", "changed_on", "changed_by", ], "expanded": False, }, ), ] user_show_fieldsets = [ ( lazy_gettext("User info"), {"fields": ["username", "active", "roles", "login_count",'secret']}, ), ( lazy_gettext("Personal Info"), {"fields": ["first_name", "last_name", "email"], "expanded": True}, ), ] @expose("/userinfo/") @has_access def userinfo(self): item = self.datamodel.get(g.user.id, self._base_filters) widgets = self._get_show_widget( g.user.id, item, show_fieldsets=self.user_show_fieldsets ) self.update_redirect() return self.render_template( self.show_template, title=self.user_info_title, widgets=widgets, appbuilder=self.appbuilder, ) from myapp.project import MyCustomRemoteUserView from myapp.project import Myauthdbview # myapp自带的角色和角色权限,自定义了各种权限 # 基础类fab-Security-Manager中 def load_user(self, pk): 是用来认证用户的 # before_request是user赋值给g.user # @pysnooper.snoop() class MyappSecurityManager(SecurityManager): user_model = MyUser # 用户使用自定义的用户 rolemodelview = MyRoleModelView # # 远程认证 userremoteusermodelview = MyUserRemoteUserModelView authremoteuserview = MyCustomRemoteUserView # 账号密码认证 userdbmodelview = MyUserRemoteUserModelView authdbview = Myauthdbview # 构建启动前工作,认证 @staticmethod def before_request(): g.user = current_user # if len(request.path)>7 and request.path[:7]!='/static' and g.user and hasattr(g.user, 'username'): # logging.info('------------%s(%s):%s'%(request.method,g.user.username,request.path)) def __init__(self, appbuilder): super(MyappSecurityManager, self).__init__(appbuilder) # 添加从header中进行认证的方式 self.lm.header_loader(self.load_user_from_header) # 使用header 认证,通过rtx名获取用户 # @pysnooper.snoop(depth=1) def load_user_from_header(self, authorization_value): # token=None # if 'token' in request.headers: # token = request.headers['token'] if authorization_value: # rtx 免认证 if len(authorization_value) < 20: username = authorization_value if username: user = self.find_user(username) g.user = user return user else: # token 认证 encoded_jwt = authorization_value.encode('utf-8') payload = jwt.decode(encoded_jwt, 'myapp', algorithms=['HS256']) # if payload['iat'] > time.time(): # return # elif payload['exp'] < time.time(): # return # else: user = self.find_user(payload['iss']) g.user = user return user # 自定义登录用户 def load_user(self, pk): user = self.get_user_by_id(int(pk)) # set cookie return user # 注册security菜单栏下的子菜单和链接 # @pysnooper.snoop() def register_views(self): if not self.appbuilder.app.config.get('FAB_ADD_SECURITY_VIEWS', True): return # Security APIs self.appbuilder.add_api(self.security_api) if self.auth_user_registration: if self.auth_type == AUTH_DB: self.registeruser_view = self.registeruserdbview() elif self.auth_type == AUTH_OID: self.registeruser_view = self.registeruseroidview() elif self.auth_type == AUTH_OAUTH: self.registeruser_view = self.registeruseroauthview() if self.registeruser_view: self.appbuilder.add_view_no_menu(self.registeruser_view) self.appbuilder.add_view_no_menu(self.resetpasswordview()) self.appbuilder.add_view_no_menu(self.resetmypasswordview()) self.appbuilder.add_view_no_menu(self.userinfoeditview()) if self.auth_type == AUTH_DB: self.user_view = self.userdbmodelview self.auth_view = self.authdbview() elif self.auth_type == AUTH_LDAP: self.user_view = self.userldapmodelview self.auth_view = self.authldapview() elif self.auth_type == AUTH_OAUTH: self.user_view = self.useroauthmodelview self.auth_view = self.authoauthview() elif self.auth_type == AUTH_REMOTE_USER: self.user_view = self.userremoteusermodelview self.auth_view = self.authremoteuserview() else: self.user_view = self.useroidmodelview self.auth_view = self.authoidview() if self.auth_user_registration: pass self.registeruser_view = self.registeruseroidview() self.appbuilder.add_view_no_menu(self.registeruser_view) self.appbuilder.add_view_no_menu(self.auth_view) self.user_view = self.appbuilder.add_view( self.user_view, "List Users", icon="fa-user", href="/users/list/?_flt_2_username=", label=_("List Users"), category="Security", category_icon="fa-cogs", category_label=_("Security"), ) role_view = self.appbuilder.add_view( self.rolemodelview, "List Roles", icon="fa-group", href="/roles/list/?_flt_2_name=", label=_("List Roles"), category="Security", category_icon="fa-cogs", ) role_view.related_views = [self.user_view.__class__] if self.userstatschartview: self.appbuilder.add_view( self.userstatschartview, "User's Statistics", icon="fa-bar-chart-o", label=_("User's Statistics"), category="Security", ) if self.auth_user_registration: self.appbuilder.add_view( self.registerusermodelview, "User's Statistics", icon="fa-user-plus", label=_("User Registrations"), category="Security", ) self.appbuilder.menu.add_separator("Security") self.appbuilder.add_view( self.permissionmodelview, "Base Permissions", icon="fa-lock", label=_("Base Permissions"), category="Security", ) self.appbuilder.add_view( self.viewmenumodelview, "Views/Menus", icon="fa-list-alt", label=_("Views/Menus"), category="Security", ) self.appbuilder.add_view( self.permissionviewmodelview, "Permission on Views/Menus", icon="fa-link", label=_("Permission on Views/Menus"), category="Security", ) # @pysnooper.snoop() def add_org_user(self,username,first_name,last_name,org,email,roles,password="",hashed_password=""): """ Generic function to create user """ try: user = self.user_model() user.first_name = first_name user.org = org user.last_name = last_name user.username = username user.email = email user.active = True user.roles+=roles # 添加默认注册角色 user.password=password # if hashed_password: # user.password = <PASSWORD> # else: # user.password = <PASSWORD>password_<PASSWORD>(password) self.get_session.add(user) self.get_session.commit() try: from myapp.models.model_team import Project_User, Project public_project = self.get_session.query(Project).filter(Project.name == "public").filter(Project.type == "org").first() if public_project: project_user = Project_User() project_user.project = public_project project_user.role = 'dev' project_user.user_id = user.id self.get_session.add(project_user) self.get_session.commit() except Exception as e1: self.get_session.rollback() return user except Exception as e: self.get_session.rollback() return False # 添加public项目组 # 添加注册远程用户 # @pysnooper.snoop() def auth_user_remote_org_user(self, username,org_name='',password=''): if not username: return None # 查找用户 user = self.find_user(username=username) # 添加以组织同名的角色,同时添加上级角色 # 注册rtx同名角色 rtx_role = self.add_role(username) # 如果用户不存在就注册用户 if user is None: user = self.add_org_user( username=username, first_name=username, last_name=username, password=password, org=org_name, # 添加组织架构 email=username + "@<EMAIL>", roles=[self.find_role(self.auth_user_registration_role),rtx_role] if self.find_role(self.auth_user_registration_role) else [rtx_role,] # org_role 添加gamma默认角色, 组织架构角色先不自动添加 ) elif not user.is_active: # 如果用户未激活不允许接入 print(LOGMSG_WAR_SEC_LOGIN_FAILED.format(username)) return None if user: gamma_role = self.find_role(self.auth_user_registration_role) if gamma_role and gamma_role not in user.roles: user.roles.append(gamma_role) if rtx_role and rtx_role not in user.roles: user.roles.append(rtx_role) # 更新用户信息 if org_name: user.org = org_name # 更新组织架构字段 org_role = self.add_role(org_name) if org_role not in user.roles: user.roles.append(org_role) self.update_user_auth_stat(user) return user READ_ONLY_MODEL_VIEWS = { 'link','Minio','Kubernetes Dashboard','Granfana','Wiki' } USER_MODEL_VIEWS = { "UserDBModelView", "UserLDAPModelView", "UserOAuthModelView", "UserOIDModelView", "UserRemoteUserModelView", } # 只有admin才能看到的menu ADMIN_ONLY_VIEW_MENUS = { "ResetPasswordView", "RoleModelView", "List Users", "List Roles", "UserStatsChartView", "Base Permissions", "Permission on Views/Menus", "Action Log", "Views/Menus", "ViewMenuModelView", "User's Statistics", "Security", } | USER_MODEL_VIEWS ALPHA_ONLY_VIEW_MENUS = {} # 只有admin才有的权限 ADMIN_ONLY_PERMISSIONS = { "can_override_role_permissions", "can_override_role_permissions", # "can_approve", # db owner需要授权approve 权限后才能授权 "can_update_role", } READ_ONLY_PERMISSION = {"can_show", "can_list",'can_add'} ALPHA_ONLY_PERMISSIONS = { "muldelete" } # 用户创建menu才有的权限 OBJECT_SPEC_PERMISSIONS = { "can_only_access_owned_queries", } # 所有人都可以有的基本权限 ACCESSIBLE_PERMS = {"can_userinfo","can_request_access","can_approve"} # 获取用户是否有在指定视图上的指定权限名 # @pysnooper.snoop() def can_access(self, permission_name, view_name): """Protecting from has_access failing from missing perms/view""" user = g.user if user.is_anonymous: return self.is_item_public(permission_name, view_name) return self._has_view_access(user, permission_name, view_name) # 获取用户具有指定权限的视图 def user_view_menu_names(self, permission_name: str): from myapp import db base_query = ( db.session.query(self.viewmenu_model.name) .join(self.permissionview_model) .join(self.permission_model) .join(assoc_permissionview_role) .join(self.role_model) ) # 非匿名用户 if not g.user.is_anonymous: # filter by user id view_menu_names = ( base_query.join(assoc_user_role) .join(self.user_model) .filter(self.user_model.id == g.user.id) .filter(self.permission_model.name == permission_name) ).all() return set([s.name for s in view_menu_names]) # Properly treat anonymous user 匿名用户 public_role = self.get_public_role() if public_role: # filter by public role view_menu_names = ( base_query.filter(self.role_model.id == public_role.id).filter( self.permission_model.name == permission_name ) ).all() return set([s.name for s in view_menu_names]) return set() # 在视图上添加权限 def merge_perm(self, permission_name, view_menu_name): logging.warning( "This method 'merge_perm' is deprecated use add_permission_view_menu" ) self.add_permission_view_menu(permission_name, view_menu_name) # 判断权限是否是user自定义权限 def is_user_defined_permission(self, perm): return perm.permission.name in self.OBJECT_SPEC_PERMISSIONS # 初始化自定义角色,将对应的权限加到对应的角色上 # @pysnooper.snoop() def sync_role_definitions(self): """Inits the Myapp application with security roles and such""" from myapp import conf logging.info("Syncing role definition") # Creating default roles self.set_role("Admin", self.is_admin_pvm) self.set_role("Gamma", self.is_gamma_pvm) self.set_role("granter", self.is_granter_pvm) # commit role and view menu updates self.get_session.commit() self.clean_perms() # 清理权限 def clean_perms(self): """FAB leaves faulty permissions that need to be cleaned up""" logging.info("Cleaning faulty perms") sesh = self.get_session pvms = sesh.query(ab_models.PermissionView).filter( or_( ab_models.PermissionView.permission == None, # NOQA ab_models.PermissionView.view_menu == None, # NOQA ) ) deleted_count = pvms.delete() sesh.commit() if deleted_count: logging.info("Deleted {} faulty permissions".format(deleted_count)) # 为角色添加权限,pvm_check为自定义权限校验函数。这样变量权限,就能通过pvm_check函数知道时候应该把权限加到角色上 def set_role(self, role_name, pvm_check): logging.info("Syncing {} perms".format(role_name)) sesh = self.get_session # 获取所有的pv记录 pvms = sesh.query(ab_models.PermissionView).all() # 获取权限和视图都有值的pv pvms = [p for p in pvms if p.permission and p.view_menu] # 添加或者获取role role = self.add_role(role_name) # 检查pv是否归属于该role role_pvms = [p for p in pvms if pvm_check(p)] role.permissions = role_pvms # 添加pv-role记录 sesh.merge(role) sesh.commit() # 看一个权限是否是只有admin角色该有的权限 def is_admin_only(self, pvm): # not readonly operations on read only model views allowed only for admins if ( pvm.view_menu.name in self.READ_ONLY_MODEL_VIEWS and pvm.permission.name not in self.READ_ONLY_PERMISSION ): return True return ( pvm.view_menu.name in self.ADMIN_ONLY_VIEW_MENUS or pvm.permission.name in self.ADMIN_ONLY_PERMISSIONS ) # 校验权限是否是默认所有人可接受的 def is_accessible_to_all(self, pvm): return pvm.permission.name in self.ACCESSIBLE_PERMS # 看一个权限是否是admin角色该有的权限 def is_admin_pvm(self, pvm): return not self.is_user_defined_permission(pvm) # 看一个权限是否是gamma角色该有的权限 def is_gamma_pvm(self, pvm): return not ( self.is_user_defined_permission(pvm) or self.is_admin_only(pvm) ) or self.is_accessible_to_all(pvm) def is_granter_pvm(self, pvm): return pvm.permission.name in {"can_override_role_permissions", "can_approve"} # 创建视图,创建权限,创建视图-权限绑定记录。 def set_perm(self, mapper, connection, target,permission_name): # noqa # # connection is sql # target is tables/db model if target.perm != target.get_perm(): link_table = target.__table__ connection.execute( link_table.update() .where(link_table.c.id == target.id) .values(perm=target.get_perm()) ) # add to view menu if not already exists permission_name = permission_name view_menu_name = target.get_perm() permission = self.find_permission(permission_name) view_menu = self.find_view_menu(view_menu_name) pv = None # 如果权限不存存在就创建 if not permission: permission_table = ( self.permission_model.__table__ # pylint: disable=no-member ) connection.execute(permission_table.insert().values(name=permission_name)) permission = self.find_permission(permission_name) # 如果视图不存在就创建 if not view_menu: view_menu_table = self.viewmenu_model.__table__ # pylint: disable=no-member connection.execute(view_menu_table.insert().values(name=view_menu_name)) view_menu = self.find_view_menu(view_menu_name) # 获取是否存在 视图-权限绑定 记录 if permission and view_menu: pv = ( self.get_session.query(self.permissionview_model) .filter_by(permission=permission, view_menu=view_menu) .first() ) # 如果没有视图-权限绑定 记录,就创建 if not pv and permission and view_menu: permission_view_table = ( self.permissionview_model.__table__ # pylint: disable=no-member ) connection.execute( permission_view_table.insert().values( permission_id=permission.id, view_menu_id=view_menu.id ) ) # 重新获取权限视图绑定记录 pv = ( self.get_session.query(self.permissionview_model) .filter_by(permission=permission, view_menu=view_menu) .first() ) return pv # 根据权限,视图,添加到相关pv-role @classmethod def add_pv_role(self,permission_name,view_menu_name,session): permission = session.query(self.permission_model).filter_by(name=permission_name).first() view_menu = session.query(self.viewmenu_model).filter_by(name=view_menu_name).first() # 获取是否存在 视图-权限绑定 记录 if permission and view_menu: pv = ( session.query(self.permissionview_model) .filter_by(permission=permission, view_menu=view_menu) .first() ) try: # 为用户所属组织架构都添加该pv if pv and g.user and g.user.org: roles = session.query(self.role_model).all() # 获取所有角色,自动在相应角色下面添加pv if roles: for role in roles: if role.name in g.user.org: # 为pvm-role表中添加记录 pv_role = session.execute(select([assoc_permissionview_role.c.id]).where(assoc_permissionview_role.c.permission_view_id==pv.id) .where(assoc_permissionview_role.c.role_id==role.id) .limit(1) ).fetchall() if not pv_role: session.execute(assoc_permissionview_role.insert().values( permission_view_id=pv.id, role_id=role.id ) ) except Exception as e: logging.error(e) @classmethod def get_join_projects_id(self,session): from myapp.models.model_team import Project_User if g.user: projects_id = session.query(Project_User.project_id).filter(Project_User.user_id == User.get_user_id()).all() projects_id = [project_id[0] for project_id in projects_id] return projects_id else: return [] @classmethod def get_create_pipeline_ids(self,session): from myapp.models.model_job import Pipeline if g.user: pipeline_ids = session.query(Pipeline.id).filter(Pipeline.created_by_fk == User.get_user_id()).all() pipeline_ids = [pipeline_id[0] for pipeline_id in pipeline_ids] return pipeline_ids else: return [] ``` #### File: myapp/tasks/async_task.py ```python import sys,os import numpy as np from bs4 import BeautifulSoup import requests,base64,hashlib from collections import namedtuple import datetime from email.utils import make_msgid, parseaddr import logging import time,json from urllib.error import URLError import urllib.request import pysnooper import re import croniter from dateutil.tz import tzlocal import shutil import os,sys,io,json,datetime,time import subprocess from datetime import datetime, timedelta import os import sys import time import datetime from myapp.utils.py.py_k8s import K8s from myapp.utils.celery import session_scope from myapp.project import push_message,push_admin from myapp.tasks.celery_app import celery_app # Myapp framework imports from myapp import app, db, security_manager from myapp.models.model_job import ( Pipeline, RunHistory, Workflow, Tfjob, Pytorchjob, Xgbjob, Task ) from myapp.models.model_notebook import Notebook from myapp.security import ( MyUser ) from myapp.views.view_pipeline import run_pipeline,dag_to_pipeline from sqlalchemy.exc import InvalidRequestError,OperationalError from sqlalchemy import or_ from myapp.models.model_docker import Docker conf = app.config @celery_app.task(name="task.check_docker_commit", bind=True) # , soft_time_limit=15 def check_docker_commit(task,docker_id): # 在页面中测试时会自定接收者和id with session_scope(nullpool=True) as dbsession: try: docker = dbsession.query(Docker).filter_by(id=int(docker_id)).first() pod_name = "docker-commit-%s-%s" % (docker.created_by.username, str(docker.id)) namespace = conf.get('NOTEBOOK_NAMESPACE') k8s_client = K8s(conf.get('CLUSTERS').get(conf.get('ENVIRONMENT')).get('KUBECONFIG')) begin_time=datetime.datetime.now() now_time=datetime.datetime.now() while((now_time-begin_time).seconds<1800): # 也就是最多commit push 30分钟 time.sleep(12000) commit_pods = k8s_client.get_pods(namespace=namespace,pod_name=pod_name) if commit_pods: commit_pod=commit_pods[0] if commit_pod['status']=='Succeeded': docker.last_image=docker.target_image dbsession.commit() break # 其他异常状态直接报警 if commit_pod['status']!='Running': push_message(conf.get('ADMIN_USER').split(','),'commit pod %s not running'%commit_pod['name']) break else: break except Exception as e: print(e) ``` #### File: myapp/tools/watch_tfjob.py ```python import time,datetime,logging,os,sys import asyncio from kubernetes import client as k8s_client from kubernetes import config as k8s_config from kubernetes import watch from os import path import json import requests from myapp.utils.py.py_k8s import check_status_time from sqlalchemy.exc import InvalidRequestError,OperationalError import pysnooper import myapp import math from myapp import app, db, security_manager from myapp.models.model_job import ( Tfjob, Task ) from myapp.utils.celery import session_scope from myapp.project import push_admin,push_message from myapp.models.model_job import Pipeline,Workflow from myapp.models.model_katib import Hyperparameter_Tuning,Experiments import pymysql conf=app.config from myapp.utils.py.py_prometheus import Prometheus prometheus = Prometheus(conf.get('PROMETHEUS','')) cluster=os.getenv('ENVIRONMENT','').lower() if not cluster: print('no cluster %s'%cluster) exit(1) else: clusters = conf.get('CLUSTERS',{}) if clusters and cluster in clusters: kubeconfig = clusters[cluster]['KUBECONFIG'] k8s_config.kube_config.load_kube_config(config_file=kubeconfig) else: print('no kubeconfig in cluster %s' % cluster) exit(1) # 推送微信消息 # @pysnooper.snoop() def deliver_message(tfjob): if not tfjob: return receivers = tfjob.username.split(',') receivers = [receiver.strip() for receiver in receivers] if not receivers: print('no receivers') return info_json = json.loads(tfjob.info_json) # print(info_json,experiments.status) if tfjob.status in info_json['alert_status'] and tfjob.status not in info_json['has_push']: receivers=list(set(receivers)) # data = { # "Sender": sender, # "Rcptto":receivers, # } workflow_name = info_json.get('workflow_name','') hp_name = info_json.get('hp_name', '') if workflow_name: message = "tfjob: %s \nworkflow: %s \nnamespace: %s\nstatus: %s \ntime: %s" % (tfjob.name,workflow_name,tfjob.namespace,tfjob.status,datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) elif hp_name: message = "tfjob: %s \nhp: %s(%s) \nnamespace: %s\nstatus: %s \ntime: %s" % (tfjob.name,info_json.get('hp_name',''),info_json.get('describe',''),tfjob.namespace,tfjob.status,datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) else: message = "tfjob: %s \nnamespace: %s\nstatus: %s \ntime: %s" % (tfjob.name,tfjob.namespace,tfjob.status,datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) if message: push_message(receivers,message) # @pysnooper.snoop() def check_has_push(crd,dbsession): # 可能是workflow启动的或者是hp启动的 workflow_name = crd['labels'].get('workflow-name','') hp_name = crd['labels'].get('hp-name', '') username = crd['username'] alert_status = '' # 如果是从workflow中创建的 if workflow_name: pipeline = dbsession.query(Pipeline).filter_by(name=workflow_name).first() if pipeline and pipeline.alert_status: alert_status = pipeline.alert_status print("tf %s from workflow_name %s,user %s,status %s" % (crd['name'],workflow_name,crd['username'],crd['status'])) if hp_name: hp = dbsession.query(Hyperparameter_Tuning).filter_by(name=hp_name).first() if hp and hp.alert_status: alert_status = hp.alert_status print("tf %s from hp %s,user %s,status %s" % (crd['name'], workflow_name, crd['username'], crd['status'])) # print("%s status %s"%(crd['name'], crd['status'])) alert_status='Pending' # 这里写死,就是相当于必须且仅Pending告警 info_json={ "workflow_name":workflow_name, "hp_name":hp_name, "alert_status": alert_status, "has_push":'' } # print(crd['name'],crd['namespace']) tfjob = dbsession.query(Tfjob).filter(Tfjob.name==crd['name']).filter(Tfjob.namespace==crd['namespace']).first() if tfjob: print('exist tfjob') if tfjob.info_json: exist_info_json = json.loads(tfjob.info_json) info_json['has_push']=exist_info_json.get('has_push','') tfjob.create_time = crd['create_time'] tfjob.status = crd['status'] tfjob.annotations = json.dumps(crd['annotations'],indent=4,ensure_ascii=False) tfjob.labels = json.dumps(crd['labels'],indent=4,ensure_ascii=False) tfjob.spec = json.dumps(crd['spec'],indent=4,ensure_ascii=False), tfjob.status_more = json.dumps(crd['status_more'],indent=4,ensure_ascii=False) tfjob.username = crd['username'] tfjob.info_json = json.dumps(info_json,indent=4,ensure_ascii=False) dbsession.commit() if crd['status'] in info_json['alert_status'] and crd['status'] not in info_json['has_push']: return False,tfjob else: return True,tfjob else: print('new tfjob') # crd['status_more']={} # crd['spec']={} tfjob = Tfjob(name=crd['name'],namespace=crd['namespace'],create_time=crd['create_time'], status=crd['status'], annotations=json.dumps(crd['annotations'],indent=4,ensure_ascii=False), labels=json.dumps(crd['labels'],indent=4,ensure_ascii=False), spec=json.dumps(crd['spec'],indent=4,ensure_ascii=False), status_more=json.dumps(crd['status_more'],indent=4,ensure_ascii=False), username=username, info_json=json.dumps(info_json,indent=4,ensure_ascii=False)) dbsession.add(tfjob) dbsession.commit() return False,tfjob # # # 推送修改通知 # @pysnooper.snoop() # def push_resource_rec(task,dbsession): # task_monitorings = json.loads(task.monitoring).get('tfjob',[]) # if len(task_monitorings)>9: # max_cpu = 0 # max_memory=0 # init_message = 'pipeline(%s)中分布式训练%s,推荐资源如下,自行修改:\n' % (task.pipeline.describe,task.label) # message = init_message # # tfjob_src_mem=re.match(task.args.match("memory": "32G",)) # for task_monitoring in task_monitorings: # if float(task_monitoring.get('cpu',0))>max_cpu: # max_cpu = float(task_monitoring.get('cpu',0)) # if float(task_monitoring.get('memory', 0)) > max_memory: # max_memory = float(task_monitoring.get('memory', 0)) # if max_cpu: # rec_cpu = math.ceil(max_cpu*1.4) # if rec_cpu>150: # rec_cpu=150 # if rec_cpu!=int(task.resource_cpu): # message += "task(%s),原申请cpu:%s,近10次最大使用cpu:%s,建议申请值:%s\n" % (task.label,task.resource_cpu, max_cpu, rec_cpu) # task.resource_cpu = str(rec_cpu) # if max_memory: # rec_memory = math.ceil(max_memory*1.4) # if rec_memory>350: # rec_memory=350 # if rec_memory!=int(task.resource_memory.replace('G','').replace('M','')): # message += "task(%s),原申请mem:%s,近10次最大使用mem:%s(G),建议申请值:%s\n" % (task.label,task.resource_memory, max_memory, str(rec_memory)+"G") # task.resource_memory = str(rec_memory)+"G" # # dbsession.commit() # if message!=init_message: # push_message([task.pipeline.created_by.username],message) # @pysnooper.snoop() def save_monitoring(tfjob,dbsession): try: if tfjob.status=='Succeeded': task_id = json.loads(tfjob.labels).get('task-id','') if task_id: task = dbsession.query(Task).filter_by(id=int(task_id)).first() metrics = prometheus.get_resource_metric(tfjob.name, namespace='pipeline') monitoring = json.loads(task.monitoring) if task and task.monitoring else {} tfjob_monitoring = monitoring.get('tfjob', []) if metrics: tfjob_monitoring.append({ "cpu": metrics.get('cpu', ''), "memory": metrics.get('memory', ''), "name": tfjob.name, "update_time": datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') }) # 清理监控记录 tfjob_monitoring_new = [] for metric in tfjob_monitoring: # 采集结果不对的,和采集结果太久远的都清理掉 if float(metric.get('cpu', 0)) > 0.1 and float(metric.get('memory', 0)) > 0.1 and metric['update_time'] > (datetime.datetime.now() - datetime.timedelta(days=30)).strftime('%Y-%m-%d %H:%M:%S'): tfjob_monitoring_new.append(metric) if len(tfjob_monitoring_new) > 10: del tfjob_monitoring_new[0] monitoring_new = {} monitoring_new['task'] = monitoring.get('task', []) monitoring_new['tfjob'] = tfjob_monitoring_new print(monitoring_new) if task: task.monitoring = json.dumps(monitoring_new,ensure_ascii=False,indent=4) dbsession.commit() # print(pods) # push_resource_rec(task, dbsession) except Exception as e: print(e) # @pysnooper.snoop() def save_history(tfjob,dbsession): info_json = json.loads(tfjob.info_json) if info_json['has_push']: if not tfjob.status in info_json['has_push']: info_json['has_push'] += ',' + tfjob.status else: info_json['has_push'] = tfjob.status tfjob.info_json = json.dumps(info_json, indent=4, ensure_ascii=False) dbsession.commit() # @pysnooper.snoop() def check_crd_exist(group,version,namespace,plural,name): client = k8s_client.CustomObjectsApi() exist_crd = client.get_namespaced_custom_object(group,version,namespace,plural,name) return exist_crd @pysnooper.snoop() def deal_event(event,crd_info,namespace): with session_scope(nullpool=True) as dbsession: try: crd_object = event['object'] exist_crd = check_crd_exist(group=crd_info['group'], version=crd_info["version"], namespace=namespace, plural=crd_info["plural"], name=crd_object['metadata']['name']) if not exist_crd: print('not exist') return status = '' if 'status' in crd_object: if 'conditions' in crd_object['status']: if len(crd_object['status']['conditions']) > 0: if 'type' in crd_object['status']['conditions'][-1]: status = crd_object['status']['conditions'][-1]['type'] creat_time = crd_object['metadata']['creationTimestamp'].replace('T', ' ').replace('Z', '') creat_time = (datetime.datetime.strptime(creat_time, '%Y-%m-%d %H:%M:%S') + datetime.timedelta(hours=8)).strftime('%Y-%m-%d %H:%M:%S') back_object = { 'username': '', "name": crd_object['metadata']['name'], "namespace": crd_object['metadata']['namespace'] if 'namespace' in crd_object['metadata'] else '', "annotations": crd_object['metadata'].get('annotations', {}), "labels": crd_object['metadata'].get('labels', {}), "spec": crd_object['spec'], "create_time": creat_time, "status": status, "status_more": check_status_time(crd_object['status']) if 'status' in crd_object else {} } if 'run-rtx' in back_object['labels']: back_object['username'] = back_object['labels']['run-rtx'] elif 'upload-rtx' in back_object: back_object['username'] = back_object['labels']['upload-rtx'] has_push, crd_model = check_has_push(back_object,dbsession) if not has_push: try: deliver_message(crd_model) except Exception as e1: print('push fail:', e1) push_admin(str(e1)) save_history(crd_model,dbsession) save_monitoring(crd_model,dbsession) except Exception as e: print(e) @pysnooper.snoop() def listen_crd(): crd_info = conf.get('CRD_INFO')['tfjob'] namespace = conf.get('PIPELINE_NAMESPACE') w = watch.Watch() print('begin listen') while(True): try: for event in w.stream(k8s_client.CustomObjectsApi().list_namespaced_custom_object, group=crd_info['group'], version=crd_info['version'], namespace=namespace, plural=crd_info['plural'], pretty='true'): if event['type']=='ADDED' or event['type']=='MODIFIED': # ADDED MODIFIED DELETED deal_event(event,crd_info,namespace) elif event['type']=='ERROR': w = watch.Watch() time.sleep(60) except Exception as ee: print(ee) # 不能使用异步io,因为stream会阻塞 if __name__=='__main__': listen_crd() ``` #### File: myapp/views/route.py ```python from myapp import ( app, appbuilder, conf, db, event_logger, get_feature_flags, is_feature_enabled, results_backend, security_manager, ) config = app.config @app.route("/health") def health(): return "OK" @app.route("/healthcheck") def healthcheck(): return "OK" @app.route("/ping") def ping(): return "OK" ``` #### File: myapp/views/view_katib.py ```python from flask import render_template,redirect from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_appbuilder import ModelView, ModelRestApi from flask_appbuilder import ModelView,AppBuilder,expose,BaseView,has_access from importlib import reload from flask_babel import gettext as __ from flask_babel import lazy_gettext as _ # 将model添加成视图,并控制在前端的显示 import uuid from myapp.models.model_katib import Hyperparameter_Tuning from myapp.models.model_job import Repository from flask_appbuilder.actions import action from flask_appbuilder.models.sqla.filters import FilterEqualFunction, FilterStartsWith,FilterEqual,FilterNotEqual from wtforms.validators import EqualTo,Length from flask_babel import lazy_gettext,gettext from flask_appbuilder.security.decorators import has_access from flask_appbuilder.forms import GeneralModelConverter from myapp.utils import core from myapp import app, appbuilder,db,event_logger from wtforms.ext.sqlalchemy.fields import QuerySelectField import os,sys from wtforms.validators import DataRequired, Length, NumberRange, Optional,Regexp from sqlalchemy import and_, or_, select from myapp.exceptions import MyappException from wtforms import BooleanField, IntegerField, SelectField, StringField,FloatField,DateField,DateTimeField,SelectMultipleField,FormField,FieldList from flask_appbuilder.fieldwidgets import BS3TextFieldWidget,BS3PasswordFieldWidget,DatePickerWidget,DateTimePickerWidget,Select2ManyWidget,Select2Widget from myapp.forms import MyBS3TextAreaFieldWidget,MySelect2Widget,MyCodeArea,MyLineSeparatedListField,MyJSONField,MyBS3TextFieldWidget,MyCommaSeparatedListField,MySelectMultipleField from myapp.views.view_team import Project_Filter from myapp.utils.py import py_k8s from flask_wtf.file import FileField import shlex import re,copy from flask import ( current_app, abort, flash, g, Markup, make_response, redirect, render_template, request, send_from_directory, Response, url_for, ) from .baseApi import ( MyappModelRestApi ) from myapp import security_manager from werkzeug.datastructures import FileStorage from .base import ( api, BaseMyappView, check_ownership, data_payload_response, DeleteMixin, generate_download_headers, get_error_msg, get_user_roles, handle_api_exception, json_error_response, json_success, MyappFilter, MyappModelView, ) from flask_appbuilder import CompactCRUDMixin, expose import pysnooper,datetime,time,json from kubernetes.client import V1ObjectMeta import kubeflow.katib as kc from kubeflow.katib import constants from kubeflow.katib import utils from kubeflow.katib import V1alpha3AlgorithmSetting from kubeflow.katib import V1alpha3AlgorithmSetting from kubeflow.katib import V1alpha3AlgorithmSpec from kubeflow.katib import V1alpha3CollectorSpec from kubeflow.katib import V1alpha3EarlyStoppingSetting from kubeflow.katib import V1alpha3EarlyStoppingSpec from kubeflow.katib import V1alpha3Experiment from kubeflow.katib import V1alpha3ExperimentCondition from kubeflow.katib import V1alpha3ExperimentList from kubeflow.katib import V1alpha3ExperimentSpec from kubeflow.katib import V1alpha3ExperimentStatus from kubeflow.katib import V1alpha3FeasibleSpace from kubeflow.katib import V1alpha3FileSystemPath from kubeflow.katib import V1alpha3FilterSpec from kubeflow.katib import V1alpha3GoTemplate from kubeflow.katib import V1alpha3GraphConfig from kubeflow.katib import V1alpha3Metric from kubeflow.katib import V1alpha3MetricsCollectorSpec from kubeflow.katib import V1alpha3NasConfig from kubeflow.katib import V1alpha3ObjectiveSpec from kubeflow.katib import V1alpha3Observation from kubeflow.katib import V1alpha3Operation from kubeflow.katib import V1alpha3OptimalTrial from kubeflow.katib import V1alpha3ParameterAssignment from kubeflow.katib import V1alpha3ParameterSpec from kubeflow.katib import V1alpha3SourceSpec from kubeflow.katib import V1alpha3Suggestion from kubeflow.katib import V1alpha3SuggestionCondition from kubeflow.katib import V1alpha3SuggestionList from kubeflow.katib import V1alpha3SuggestionSpec from kubeflow.katib import V1alpha3SuggestionStatus from kubeflow.katib import V1alpha3TemplateSpec from kubeflow.katib import V1alpha3Trial from kubeflow.katib import V1alpha3TrialAssignment from kubeflow.katib import V1alpha3TrialCondition from kubeflow.katib import V1alpha3TrialList from kubeflow.katib import V1alpha3TrialSpec from kubeflow.katib import V1alpha3TrialStatus from kubeflow.katib import V1alpha3TrialTemplate conf = app.config class HP_Filter(MyappFilter): # @pysnooper.snoop() def apply(self, query, func): user_roles = [role.name.lower() for role in list(self.get_user_roles())] if "admin" in user_roles: return query.order_by(self.model.id.desc()) join_projects_id = security_manager.get_join_projects_id(db.session) # public_project_id = # logging.info(join_projects_id) return query.filter( or_( self.model.project_id.in_(join_projects_id), # self.model.project.name.in_(['public']) ) ).order_by(self.model.id.desc()) # 定义数据库视图 class Hyperparameter_Tuning_ModelView_Base(): datamodel = SQLAInterface(Hyperparameter_Tuning) conv = GeneralModelConverter(datamodel) label_title='超参搜索' check_redirect_list_url = '/hyperparameter_tuning_modelview/list/' help_url = conf.get('HELP_URL', {}).get(datamodel.obj.__tablename__, '') if datamodel else '' base_permissions = ['can_add', 'can_edit', 'can_delete', 'can_list', 'can_show'] # 默认为这些 base_order = ('id', 'desc') base_filters = [["id", HP_Filter, lambda: []]] # 设置权限过滤器 order_columns = ['id'] list_columns = ['project','name_url','describe','job_type','creator','run_url','modified'] show_columns = ['created_by','changed_by','created_on','changed_on','job_type','name','namespace','describe', 'parallel_trial_count','max_trial_count','max_failed_trial_count','objective_type', 'objective_goal','objective_metric_name','objective_additional_metric_names','algorithm_name', 'algorithm_setting','parameters_html','trial_spec_html','experiment_html'] add_form_query_rel_fields = { "project": [["name", Project_Filter, 'org']] } edit_form_query_rel_fields = add_form_query_rel_fields edit_form_extra_fields={} edit_form_extra_fields["alert_status"] = MySelectMultipleField( label=_(datamodel.obj.lab('alert_status')), widget=Select2ManyWidget(), choices=[[x, x] for x in ['Pending', 'Running', 'Succeeded', 'Failed', 'Unknown', 'Waiting', 'Terminated']], description="选择通知状态", ) edit_form_extra_fields['name'] = StringField( _(datamodel.obj.lab('name')), description='英文名(字母、数字、- 组成),最长50个字符', widget=BS3TextFieldWidget(), validators=[DataRequired(), Regexp("^[a-z][a-z0-9\-]*[a-z0-9]$"), Length(1, 54)] ) edit_form_extra_fields['describe'] = StringField( _(datamodel.obj.lab('describe')), description='中文描述', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['namespace'] = StringField( _(datamodel.obj.lab('namespace')), description='运行命名空间', widget=BS3TextFieldWidget(), default=datamodel.obj.namespace.default.arg, validators=[DataRequired()] ) edit_form_extra_fields['parallel_trial_count'] = IntegerField( _(datamodel.obj.lab('parallel_trial_count')), default=datamodel.obj.parallel_trial_count.default.arg, description='可并行的计算实例数目', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['max_trial_count'] = IntegerField( _(datamodel.obj.lab('max_trial_count')), default=datamodel.obj.max_trial_count.default.arg, description='最大并行的计算实例数目', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['max_failed_trial_count'] = IntegerField( _(datamodel.obj.lab('max_failed_trial_count')), default=datamodel.obj.max_failed_trial_count.default.arg, description='最大失败的计算实例数目', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['objective_type'] = SelectField( _(datamodel.obj.lab('objective_type')), default=datamodel.obj.objective_type.default.arg, description='目标函数类型(和自己代码中对应)', widget=Select2Widget(), choices=[['maximize', 'maximize'], ['minimize', 'minimize']], validators=[DataRequired()] ) edit_form_extra_fields['objective_goal'] = FloatField( _(datamodel.obj.lab('objective_goal')), default=datamodel.obj.objective_goal.default.arg, description='目标门限', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['objective_metric_name'] = StringField( _(datamodel.obj.lab('objective_metric_name')), default=datamodel.obj.objective_metric_name.default.arg, description='目标函数(和自己代码中对应)', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['objective_additional_metric_names'] = StringField( _(datamodel.obj.lab('objective_additional_metric_names')), default=datamodel.obj.objective_additional_metric_names.default.arg, description='其他目标函数(和自己代码中对应)', widget=BS3TextFieldWidget() ) algorithm_name_choices = ['grid', 'random', 'hyperband', 'bayesianoptimization'] algorithm_name_choices = [[algorithm_name_choice, algorithm_name_choice] for algorithm_name_choice in algorithm_name_choices] edit_form_extra_fields['algorithm_name'] = SelectField( _(datamodel.obj.lab('algorithm_name')), default=datamodel.obj.algorithm_name.default.arg, description='搜索算法', widget=Select2Widget(), choices=algorithm_name_choices, validators=[DataRequired()] ) edit_form_extra_fields['algorithm_setting'] = StringField( _(datamodel.obj.lab('algorithm_setting')), default=datamodel.obj.algorithm_setting.default.arg, widget=BS3TextFieldWidget(), description='搜索算法配置' ) edit_form_extra_fields['parameters_demo'] = StringField( _(datamodel.obj.lab('parameters_demo')), description='搜索参数示例,标准json格式,注意:所有整型、浮点型都写成字符串型', widget=MyCodeArea(code=core.hp_parameters_demo()), ) edit_form_extra_fields['parameters'] = StringField( _(datamodel.obj.lab('parameters')), default=datamodel.obj.parameters.default.arg, description='搜索参数,注意:所有整型、浮点型都写成字符串型', widget=MyBS3TextAreaFieldWidget(rows=10), validators=[DataRequired()] ) edit_form_extra_fields['node_selector'] = StringField( _(datamodel.obj.lab('node_selector')), description="部署task所在的机器(目前无需填写)", widget=BS3TextFieldWidget() ) edit_form_extra_fields['working_dir'] = StringField( _(datamodel.obj.lab('working_dir')), description="工作目录,如果为空,则使用Dockerfile中定义的workingdir", widget=BS3TextFieldWidget() ) edit_form_extra_fields['image_pull_policy'] = SelectField( _(datamodel.obj.lab('image_pull_policy')), description="镜像拉取策略(always为总是拉取远程镜像,IfNotPresent为若本地存在则使用本地镜像)", widget=Select2Widget(), choices=[['Always', 'Always'], ['IfNotPresent', 'IfNotPresent']] ) edit_form_extra_fields['volume_mount'] = StringField( _(datamodel.obj.lab('volume_mount')), description='外部挂载,格式:$pvc_name1(pvc):/$container_path1,$pvc_name2(pvc):/$container_path2', widget=BS3TextFieldWidget() ) edit_form_extra_fields['resource_memory'] = StringField( _(datamodel.obj.lab('resource_memory')), default=datamodel.obj.resource_memory.default.arg, description='内存的资源使用限制(每个测试实例),示例:1G,20G', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) edit_form_extra_fields['resource_cpu'] = StringField( _(datamodel.obj.lab('resource_cpu')), default=datamodel.obj.resource_cpu.default.arg, description='cpu的资源使用限制(每个测试实例)(单位:核),示例:2', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) # @pysnooper.snoop() def set_column(self, hp=None): # 对编辑进行处理 request_data = request.args.to_dict() job_type = request_data.get('job_type', '') if hp: job_type = hp.job_type job_type_choices = ['','TFJob','XGBoostJob','PyTorchJob','Job'] job_type_choices = [[job_type_choice,job_type_choice] for job_type_choice in job_type_choices] if hp: self.edit_form_extra_fields['job_type'] = SelectField( _(self.datamodel.obj.lab('job_type')), description="超参搜索的任务类型", choices=job_type_choices, widget=MySelect2Widget(extra_classes="readonly",value=job_type), validators=[DataRequired()] ) else: self.edit_form_extra_fields['job_type'] = SelectField( _(self.datamodel.obj.lab('job_type')), description="超参搜索的任务类型", widget=MySelect2Widget(new_web=True,value=job_type), choices=job_type_choices, validators=[DataRequired()] ) self.edit_form_extra_fields['tf_worker_num'] = IntegerField( _(self.datamodel.obj.lab('tf_worker_num')), default=json.loads(hp.job_json).get('tf_worker_num',3) if hp and hp.job_json else 3, description='工作节点数目', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['tf_worker_image'] = StringField( _(self.datamodel.obj.lab('tf_worker_image')), default=json.loads(hp.job_json).get('tf_worker_image',conf.get('KATIB_TFJOB_DEFAULT_IMAGE','')) if hp and hp.job_json else conf.get('KATIB_TFJOB_DEFAULT_IMAGE',''), description='工作节点镜像', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['tf_worker_command'] = StringField( _(self.datamodel.obj.lab('tf_worker_command')), default=json.loads(hp.job_json).get('tf_worker_command','python xx.py') if hp and hp.job_json else 'python xx.py', description='工作节点启动命令', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['job_worker_image'] = StringField( _(self.datamodel.obj.lab('job_worker_image')), default=json.loads(hp.job_json).get('job_worker_image',conf.get('KATIB_JOB_DEFAULT_IMAGE','')) if hp and hp.job_json else conf.get('KATIB_JOB_DEFAULT_IMAGE',''), description='工作节点镜像', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['job_worker_command'] = StringField( _(self.datamodel.obj.lab('job_worker_command')), default=json.loads(hp.job_json).get('job_worker_command','python xx.py') if hp and hp.job_json else 'python xx.py', description='工作节点启动命令', widget=MyBS3TextAreaFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['pytorch_worker_num'] = IntegerField( _(self.datamodel.obj.lab('pytorch_worker_num')), default=json.loads(hp.job_json).get('pytorch_worker_num', 3) if hp and hp.job_json else 3, description='工作节点数目', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['pytorch_worker_image'] = StringField( _(self.datamodel.obj.lab('pytorch_worker_image')), default=json.loads(hp.job_json).get('pytorch_worker_image',conf.get('KATIB_PYTORCHJOB_DEFAULT_IMAGE','')) if hp and hp.job_json else conf.get('KATIB_PYTORCHJOB_DEFAULT_IMAGE',''), description='工作节点镜像', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['pytorch_master_command'] = StringField( _(self.datamodel.obj.lab('pytorch_master_command')), default=json.loads(hp.job_json).get('pytorch_master_command', 'python xx.py') if hp and hp.job_json else 'python xx.py', description='master节点启动命令', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_form_extra_fields['pytorch_worker_command'] = StringField( _(self.datamodel.obj.lab('pytorch_worker_command')), default=json.loads(hp.job_json).get('pytorch_worker_command', 'python xx.py') if hp and hp.job_json else 'python xx.py', description='工作节点启动命令', widget=BS3TextFieldWidget(), validators=[DataRequired()] ) self.edit_columns = ['job_type','project','name','namespace','describe','parallel_trial_count','max_trial_count','max_failed_trial_count', 'objective_type','objective_goal','objective_metric_name','objective_additional_metric_names', 'algorithm_name','algorithm_setting','parameters_demo', 'parameters'] self.edit_fieldsets=[( lazy_gettext('common'), {"fields": copy.deepcopy(self.edit_columns), "expanded": True}, )] if job_type=='TFJob': group_columns = ['tf_worker_num','tf_worker_image','tf_worker_command'] self.edit_fieldsets.append(( lazy_gettext(job_type), {"fields":group_columns, "expanded": True}, ) ) for column in group_columns: self.edit_columns.append(column) if job_type=='Job': group_columns = ['job_worker_image','job_worker_command'] self.edit_fieldsets.append(( lazy_gettext(job_type), {"fields":group_columns, "expanded": True}, ) ) for column in group_columns: self.edit_columns.append(column) if job_type=='PyTorchJob': group_columns = ['pytorch_worker_num','pytorch_worker_image','pytorch_master_command','pytorch_worker_command'] self.edit_fieldsets.append(( lazy_gettext(job_type), {"fields":group_columns, "expanded": True}, ) ) for column in group_columns: self.edit_columns.append(column) if job_type=='XGBoostJob': group_columns = ['pytorchjob_worker_image','pytorchjob_worker_command'] self.edit_fieldsets.append(( lazy_gettext(job_type), {"fields":group_columns, "expanded": True}, ) ) for column in group_columns: self.edit_columns.append(column) task_column=['working_dir','volume_mount','node_selector','image_pull_policy','resource_memory','resource_cpu'] self.edit_fieldsets.append(( lazy_gettext('task args'), {"fields": task_column, "expanded": True}, )) for column in task_column: self.edit_columns.append(column) self.edit_fieldsets.append(( lazy_gettext('run experiment'), {"fields": ['alert_status'], "expanded": True}, )) self.edit_columns.append('alert_status') self.add_form_extra_fields = self.edit_form_extra_fields self.add_fieldsets = self.edit_fieldsets self.add_columns=self.edit_columns # 处理form请求 def process_form(self, form, is_created): # from flask_appbuilder.forms import DynamicForm if 'parameters_demo' in form._fields: del form._fields['parameters_demo'] # 不处理这个字段 # 生成实验 # @pysnooper.snoop() def make_experiment(self,item): # 搜索算法相关 algorithmsettings = [] for setting in item.algorithm_setting.strip().split(','): setting = setting.strip() if setting: key,value = setting.split('=')[0].strip(),setting.split('=')[1].strip() algorithmsettings.append(V1alpha3AlgorithmSetting(name=key,value=value)) algorithm = V1alpha3AlgorithmSpec( algorithm_name=item.algorithm_name, algorithm_settings=algorithmsettings if algorithmsettings else None ) # 实验结果度量,很多中搜集方式,这里不应该写死这个。 metrics_collector_spec=None if item.job_type=='TFJob': collector = V1alpha3CollectorSpec(kind="TensorFlowEvent") source = V1alpha3SourceSpec(V1alpha3FileSystemPath(kind="Directory", path="/train")) metrics_collector_spec = V1alpha3MetricsCollectorSpec( collector=collector, source=source) elif item.job_type=='Job': pass # 目标函数 objective = V1alpha3ObjectiveSpec( goal=item.objective_goal, objective_metric_name=item.objective_metric_name, type=item.objective_type) # 搜索参数 parameters=[] hp_parameters = json.loads(item.parameters) for parameter in hp_parameters: if hp_parameters[parameter]['type']=='int' or hp_parameters[parameter]['type']=='double': feasible_space = V1alpha3FeasibleSpace( min=str(hp_parameters[parameter]['min']), max=str(hp_parameters[parameter]['max']), step = str(hp_parameters[parameter].get('step','')) if hp_parameters[parameter].get('step','') else None) parameters.append(V1alpha3ParameterSpec( feasible_space=feasible_space, name=parameter, parameter_type=hp_parameters[parameter]['type'] )) elif hp_parameters[parameter]['type']=='categorical': feasible_space = V1alpha3FeasibleSpace(list=hp_parameters[parameter]['list']) parameters.append(V1alpha3ParameterSpec( feasible_space=feasible_space, name=parameter, parameter_type=hp_parameters[parameter]['type'] )) # 实验模板 go_template = V1alpha3GoTemplate( raw_template=item.trial_spec ) trial_template = V1alpha3TrialTemplate(go_template=go_template) labels = { "run-rtx":g.user.username, "hp-name":item.name, # "hp-describe": item.describe } # Experiment 跑实例测试 experiment = V1alpha3Experiment( api_version= conf.get('CRD_INFO')['experiment']['group']+"/"+ conf.get('CRD_INFO')['experiment']['version'] ,#"kubeflow.org/v1alpha3", kind="Experiment", metadata=V1ObjectMeta(name=item.name+"-"+uuid.uuid4().hex[:4], namespace=conf.get('KATIB_NAMESPACE'),labels=labels), spec=V1alpha3ExperimentSpec( algorithm=algorithm, max_failed_trial_count=item.max_failed_trial_count, max_trial_count=item.max_trial_count, metrics_collector_spec=metrics_collector_spec, objective=objective, parallel_trial_count=item.parallel_trial_count, parameters=parameters, trial_template=trial_template ) ) item.experiment = json.dumps(experiment.to_dict(),indent=4,ensure_ascii=False) @expose('/create_experiment/<id>',methods=['GET']) # @pysnooper.snoop(watch_explode=('hp',)) def create_experiment(self,id): hp = db.session.query(Hyperparameter_Tuning).filter(Hyperparameter_Tuning.id == int(id)).first() if hp: from myapp.utils.py.py_k8s import K8s k8s_client = K8s(hp.project.cluster['KUBECONFIG']) namespace = conf.get('KATIB_NAMESPACE') crd_info =conf.get('CRD_INFO')['experiment'] print(hp.experiment) k8s_client.create_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=namespace,body=hp.experiment) flash('部署完成','success') # kclient = kc.KatibClient() # kclient.create_experiment(hp, namespace=conf.get('KATIB_NAMESPACE')) self.update_redirect() return redirect(self.get_redirect()) # @pysnooper.snoop(watch_explode=()) def merge_trial_spec(self,item): image_secrets = conf.get('HUBSECRET',[]) user_hubsecrets = db.session.query(Repository.hubsecret).filter(Repository.created_by_fk == g.user.id).all() if user_hubsecrets: for hubsecret in user_hubsecrets: if hubsecret[0] not in image_secrets: image_secrets.append(hubsecret[0]) image_secrets = [ { "name": hubsecret } for hubsecret in image_secrets ] item.job_json={} if item.job_type=='TFJob': item.trial_spec=core.merge_tfjob_experiment_template( worker_num=item.tf_worker_num, node_selector=item.get_node_selector(), volume_mount=item.volume_mount, image=item.tf_worker_image, image_secrets = image_secrets, hostAliases=conf.get('HOSTALIASES',''), workingDir=item.working_dir, image_pull_policy=item.image_pull_policy, resource_memory=item.resource_memory, resource_cpu=item.resource_cpu, command=item.tf_worker_command ) item.job_json={ "tf_worker_num":item.tf_worker_num, "tf_worker_image": item.tf_worker_image, "tf_worker_command": item.tf_worker_command, } if item.job_type == 'Job': item.trial_spec=core.merge_job_experiment_template( node_selector=item.get_node_selector(), volume_mount=item.volume_mount, image=item.job_worker_image, image_secrets=image_secrets, hostAliases=conf.get('HOSTALIASES',''), workingDir=item.working_dir, image_pull_policy=item.image_pull_policy, resource_memory=item.resource_memory, resource_cpu=item.resource_cpu, command=item.job_worker_command ) item.job_json = { "job_worker_image": item.job_worker_image, "job_worker_command": item.job_worker_command, } if item.job_type == 'PyTorchJob': item.trial_spec=core.merge_pytorchjob_experiment_template( worker_num=item.pytorch_worker_num, node_selector=item.get_node_selector(), volume_mount=item.volume_mount, image=item.pytorch_worker_image, image_secrets=image_secrets, hostAliases=conf.get('HOSTALIASES', ''), workingDir=item.working_dir, image_pull_policy=item.image_pull_policy, resource_memory=item.resource_memory, resource_cpu=item.resource_cpu, master_command=item.pytorch_master_command, worker_command=item.pytorch_worker_command ) item.job_json = { "pytorch_worker_num":item.pytorch_worker_num, "pytorch_worker_image": item.pytorch_worker_image, "pytorch_master_command": item.pytorch_master_command, "pytorch_worker_command": item.pytorch_worker_command, } item.job_json = json.dumps(item.job_json,indent=4,ensure_ascii=False) # 检验参数是否有效 # @pysnooper.snoop() def validate_parameters(self,parameters,algorithm): try: parameters = json.loads(parameters) for parameter_name in parameters: parameter = parameters[parameter_name] if parameter['type'] == 'int' and 'min' in parameter and 'max' in parameter: parameter['min'] = int(parameter['min']) parameter['max'] = int(parameter['max']) if not parameter['max']>parameter['min']: raise Exception('min must lower than max') continue if parameter['type'] == 'double' and 'min' in parameter and 'max' in parameter: parameter['min'] = float(parameter['min']) parameter['max'] = float(parameter['max']) if not parameter['max']>parameter['min']: raise Exception('min must lower than max') if algorithm=='grid': parameter['step'] = float(parameter['step']) continue if parameter['type']=='categorical' and 'list' in parameter and type(parameter['list'])==list: continue raise MyappException('parameters type must in [int,double,categorical], and min\max\step\list should exist, and min must lower than max ') return json.dumps(parameters,indent=4,ensure_ascii=False) except Exception as e: print(e) raise MyappException('parameters not valid:'+str(e)) # @pysnooper.snoop() def pre_add(self, item): if item.job_type is None: raise MyappException("Job type is mandatory") core.validate_json(item.parameters) item.parameters = self.validate_parameters(item.parameters,item.algorithm_name) item.resource_memory=core.check_resource_memory(item.resource_memory,self.src_item_json.get('resource_memory',None) if self.src_item_json else None) item.resource_cpu = core.check_resource_cpu(item.resource_cpu,self.src_item_json.get('resource_cpu',None) if self.src_item_json else None) self.merge_trial_spec(item) self.make_experiment(item) def pre_update(self, item): self.pre_add(item) pre_add_get=set_column pre_update_get=set_column @action( "copy", __("Copy Hyperparameter Experiment"), confirmation=__('Copy Hyperparameter Experiment'), icon="fa-copy",multiple=True, single=False ) def copy(self, hps): if not isinstance(hps, list): hps = [hps] for hp in hps: new_hp = hp.clone() new_hp.name = new_hp.name+"-copy" new_hp.describe = new_hp.describe + "-copy" new_hp.created_on = datetime.datetime.now() new_hp.changed_on = datetime.datetime.now() db.session.add(new_hp) db.session.commit() return redirect(request.referrer) class Hyperparameter_Tuning_ModelView(Hyperparameter_Tuning_ModelView_Base,MyappModelView): datamodel = SQLAInterface(Hyperparameter_Tuning) conv = GeneralModelConverter(datamodel) # 添加视图和菜单 appbuilder.add_view(Hyperparameter_Tuning_ModelView,"katib超参搜索",icon = 'fa-shopping-basket',category = '超参搜索',category_icon = 'fa-glass') # 添加api class Hyperparameter_Tuning_ModelView_Api(Hyperparameter_Tuning_ModelView_Base,MyappModelRestApi): datamodel = SQLAInterface(Hyperparameter_Tuning) conv = GeneralModelConverter(datamodel) route_base = '/hyperparameter_tuning_modelview/api' list_columns = ['created_by','changed_by','created_on','changed_on','job_type','name','namespace','describe', 'parallel_trial_count','max_trial_count','max_failed_trial_count','objective_type', 'objective_goal','objective_metric_name','objective_additional_metric_names','algorithm_name', 'algorithm_setting','parameters','job_json','trial_spec','working_dir','node_selector', 'image_pull_policy','resource_memory','resource_cpu','experiment','alert_status'] add_columns = ['job_type','name','namespace','describe', 'parallel_trial_count','max_trial_count','max_failed_trial_count','objective_type', 'objective_goal','objective_metric_name','objective_additional_metric_names','algorithm_name', 'algorithm_setting','parameters','job_json','working_dir','node_selector','image_pull_policy', 'resource_memory','resource_cpu'] edit_columns = add_columns appbuilder.add_api(Hyperparameter_Tuning_ModelView_Api) # list正在运行的Experiments from myapp.views.view_workflow import Crd_ModelView_Base from myapp.models.model_katib import Experiments class Experiments_ModelView(Crd_ModelView_Base,MyappModelView,DeleteMixin): label_title='超参调度' datamodel = SQLAInterface(Experiments) list_columns = ['url','namespace_url','create_time','status','username'] crd_name = 'experiment' appbuilder.add_view(Experiments_ModelView,"katib超参调度",icon = 'fa-tasks',category = '超参搜索') # 添加api class Experiments_ModelView_Api(Crd_ModelView_Base,MyappModelRestApi): datamodel = SQLAInterface(Experiments) route_base = '/experiments_modelview/api' list_columns = ['url', 'namespace_url', 'create_time', 'status', 'username'] crd_name = 'experiment' appbuilder.add_api(Experiments_ModelView_Api) ``` #### File: myapp/views/view_kfserving.py ```python from flask import render_template,redirect from flask_appbuilder.models.sqla.interface import SQLAInterface from flask import Blueprint, current_app, jsonify, make_response, request # 将model添加成视图,并控制在前端的显示 from myapp.models.model_serving import Service,KfService from myapp.models.model_team import Project,Project_User from myapp.utils import core from flask_babel import gettext as __ from flask_babel import lazy_gettext as _ from flask_appbuilder.actions import action from myapp import app, appbuilder,db,event_logger import logging import re import uuid import requests from myapp.exceptions import MyappException from flask_appbuilder.security.decorators import has_access from myapp.models.model_job import Repository from flask_wtf.file import FileAllowed, FileField, FileRequired from werkzeug.datastructures import FileStorage from wtforms.ext.sqlalchemy.fields import QuerySelectField from myapp import security_manager import os,sys from wtforms.validators import DataRequired, Length, NumberRange, Optional,Regexp from wtforms import BooleanField, IntegerField, SelectField, StringField,FloatField,DateField,DateTimeField,SelectMultipleField,FormField,FieldList from flask_appbuilder.fieldwidgets import BS3TextFieldWidget,BS3PasswordFieldWidget,DatePickerWidget,DateTimePickerWidget,Select2ManyWidget,Select2Widget from myapp.forms import MyBS3TextAreaFieldWidget,MySelect2Widget,MyCodeArea,MyLineSeparatedListField,MyJSONField,MyBS3TextFieldWidget,MySelectMultipleField from myapp.utils.py import py_k8s import os, zipfile import shutil from flask import ( current_app, abort, flash, g, Markup, make_response, redirect, render_template, request, send_from_directory, Response, url_for, ) from .base import ( DeleteMixin, api, BaseMyappView, check_ownership, CsvResponse, data_payload_response, DeleteMixin, generate_download_headers, get_error_msg, get_user_roles, handle_api_exception, json_error_response, json_success, MyappFilter, MyappModelView, ) from sqlalchemy import and_, or_, select from .baseApi import ( MyappModelRestApi ) import kubernetes from kfserving import KFServingClient from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2CustomSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2TensorflowSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService from flask_appbuilder import CompactCRUDMixin, expose import pysnooper,datetime,time,json conf = app.config class KfService_ModelView(MyappModelView): datamodel = SQLAInterface(KfService) crd_name = 'inferenceservice' help_url = conf.get('HELP_URL', {}).get(datamodel.obj.__tablename__, '') if datamodel else '' show_columns = ['name', 'label','service_type','default_service','canary_service','canary_traffic_percent','k8s_yaml'] add_columns = ['name', 'label', 'service_type','default_service','canary_service','canary_traffic_percent'] list_columns = ['label_url','host','service','deploy','status','roll'] edit_columns = add_columns base_order = ('id','desc') order_columns = ['id'] @expose('/deploy1/<kfservice_id>',methods=['POST',"GET"]) def deploy1(self,kfservice_id): mykfservice = db.session.query(KfService).filter_by(id=kfservice_id).first() from myapp.utils.py.py_k8s import K8s k8s = K8s(mykfservice.project.cluster['KUBECONFIG']) namespace = conf.get('KFSERVING_NAMESPACE') crd_info = conf.get('CRD_INFO')['inferenceservice'] crd_list = k8s.get_crd(group=crd_info['group'], version=crd_info['version'], plural=crd_info['plural'], namespace=namespace) for crd_obj in crd_list: if crd_obj['name'] == mykfservice.name: k8s.delete_crd(group=crd_info['group'], version=crd_info['version'], plural=crd_info['plural'], namespace=namespace, name=mykfservice.name) def get_env(env_str): if not env_str: return [] envs = re.split('\r|\n', env_str) envs = [env.split('=') for env in envs if env and len(env.split('=')) == 2] return envs def get_kfjson(service,mykfservice): if not service: return None image_secrets = conf.get('HUBSECRET', []) user_hubsecrets = db.session.query(Repository.hubsecret).filter(Repository.created_by_fk == g.user.id).all() if user_hubsecrets: for hubsecret in user_hubsecrets: if hubsecret[0] not in image_secrets: image_secrets.append(hubsecret[0]) kfjson={ "minReplicas": service.min_replicas, "maxReplicas": service.max_replicas, "custom": { "affinity": { "nodeAffinity": { "requiredDuringSchedulingIgnoredDuringExecution": { "nodeSelectorTerms": [ { "matchExpressions": [ { "key": "gpu" if core.get_gpu(service.resource_gpu)[0] else "cpu", "operator": "In", "values": [ "true" ] }, ] } ] } }, }, "imagePullSecrets": [{"name":hubsecret} for hubsecret in image_secrets], "container": { "image": service.images, "imagePullPolicy": 'Always', "name": mykfservice.name+"-"+service.name, "workingDir": service.working_dir if service.working_dir else None, "command": ["sh", "-c",service.command] if service.command else None, "resources": { "requests": { "cpu": service.resource_cpu, "memory": service.resource_memory } }, "env":[{"name":env[0],"value":env[1]} for env in get_env(service.env)], # "volumeMounts": [ # { # "mountPath": "/mnt/%s" % service.created_by.username, # "name": "workspace", # "subPath": service.created_by.username # } # ], # "volumeDevices":[ # { # "devicePath": "/data/home/", # "name": "workspace" # } # ] } # "volumes": [ # { # "name": "workspace", # "persistentVolumeClaim": { # "claimName": "kubeflow-user-workspace" # } # } # ] } } return kfjson crd_json={ "apiVersion": "serving.kubeflow.org/v1alpha2", "kind": "InferenceService", "metadata": { "labels": { "app": mykfservice.name }, "name": mykfservice.name, "namespace": namespace }, "spec": { "canaryTrafficPercent": mykfservice.canary_traffic_percent, "default": { mykfservice.service_type: get_kfjson(mykfservice.default_service,mykfservice) }, "canary": { mykfservice.service_type: get_kfjson(mykfservice.canary_service,mykfservice), } if mykfservice.canary_service else None, } } import yaml ya = yaml.load(json.dumps(crd_json)) ya_str = yaml.safe_dump(ya, default_flow_style=False) logging.info(ya_str) crd_objects = k8s.create_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=namespace,body=crd_json) flash(category='warning',message='部署启动,一分钟后部署完成') return redirect('/kfservice_modelview/list/') # 创建kfserving @expose('/deploy/<kfservice_id>', methods=['POST', "GET"]) def deploy(self, kfservice_id): mykfservice = db.session.query(KfService).filter_by(id=kfservice_id).first() namespace = conf.get('KFSERVING_NAMESPACE') crd_info = conf.get('CRD_INFO')['inferenceservice'] # 根据service生成container def make_container(service,mykfservice): from myapp.utils.py.py_k8s import K8s k8s = K8s() # 不部署,不需要配置集群信息 container = k8s.make_container(name=mykfservice.name + "-" + service.name, command=["sh", "-c",service.command] if service.command else None, args=None, volume_mount=None, image_pull_policy='Always', image=service.images, working_dir=service.working_dir if service.working_dir else None, env=service.env, resource_memory=service.resource_memory, resource_cpu = service.resource_cpu, resource_gpu= service.resource_gpu, username = service.created_by.username ) return container api_version = crd_info['group'] + '/' + crd_info['version'] default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas= mykfservice.default_service.min_replicas, max_replicas=mykfservice.default_service.max_replicas, custom=V1alpha2CustomSpec( container=make_container(mykfservice.default_service,mykfservice) ) ) ) if mykfservice.default_service else None canary_endpoint_spec = V1alpha2EndpointSpec( predictor= V1alpha2PredictorSpec( min_replicas=mykfservice.canary_service.min_replicas, max_replicas=mykfservice.canary_service.max_replicas, custom=V1alpha2CustomSpec( container=make_container(mykfservice.canary_service,mykfservice) ) ) ) if mykfservice.canary_service else None metadata = kubernetes.client.V1ObjectMeta( name=mykfservice.name, labels={ "app":mykfservice.name, "rtx-user":mykfservice.created_by.username }, namespace=namespace ) isvc = V1alpha2InferenceService( api_version=api_version, kind=crd_info['kind'], metadata=metadata, spec=V1alpha2InferenceServiceSpec( default=default_endpoint_spec, canary=canary_endpoint_spec, canary_traffic_percent=mykfservice.canary_traffic_percent ) ) KFServing = KFServingClient() try: KFServing.delete(mykfservice.name, namespace=namespace,version=crd_info['version']) except Exception as e: print(e) KFServing.create(isvc,namespace=namespace,version=crd_info['version']) flash(category='warning', message='部署启动,一分钟后部署完成') return redirect('/kfservice_modelview/list/') # 灰度 @expose('/roll/<kfservice_id>', methods=['POST', "GET"]) def roll(self, kfservice_id): mykfservice = db.session.query(KfService).filter_by(id=kfservice_id).first() namespace = conf.get('KFSERVING_NAMESPACE') crd_info = conf.get('CRD_INFO')['inferenceservice'] # 根据service生成container def make_container(service, mykfservice): from myapp.utils.py.py_k8s import K8s k8s = K8s() # 不部署,不需要配置集群信息 container = k8s.make_container(name=mykfservice.name + "-" + service.name, command=["sh", "-c", service.command] if service.command else None, args=None, volume_mount=None, image_pull_policy='Always', image=service.images, working_dir=service.working_dir if service.working_dir else None, env=service.env, resource_memory=service.resource_memory, resource_cpu=service.resource_cpu, resource_gpu=service.resource_gpu, username=service.created_by.username, ports = service.ports ) return container canary_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=mykfservice.canary_service.min_replicas, max_replicas=mykfservice.canary_service.max_replicas, custom=V1alpha2CustomSpec( container=make_container(mykfservice.canary_service, mykfservice) ) ) ) if mykfservice.canary_service else None KFServing = KFServingClient() KFServing.rollout_canary(mykfservice.name, canary=canary_endpoint_spec, percent=mykfservice.canary_traffic_percent, namespace=namespace, timeout_seconds=120,version=crd_info['version']) flash(category='warning', message='滚动升级已配置,刷新查看当前流量比例') return redirect('/kfservice_modelview/list/') # 基础批量删除 # @pysnooper.snoop() def base_muldelete(self,items): if not items: abort(404) for item in items: try: k8s_client = py_k8s.K8s(item.project.cluster['KUBECONFIG']) crd_info = conf.get("CRD_INFO", {}).get(self.crd_name, {}) if crd_info: k8s_client.delete_crd(group=crd_info['group'],version=crd_info['version'],plural=crd_info['plural'],namespace=conf.get('KFSERVING_NAMESPACE'),name=item.name) except Exception as e: flash(str(e), "danger") def pre_delete(self,item): self.base_muldelete([item]) # @event_logger.log_this # @expose("/delete/<pk>") # @has_access # def delete(self, pk): # pk = self._deserialize_pk_if_composite(pk) # self.base_delete(pk) # url = url_for(f"{self.endpoint}.list") # return redirect(url) appbuilder.add_view(KfService_ModelView,"kfserving",icon = 'fa-tasks',category = '服务化') ``` #### File: myapp/views/view_runhistory.py ```python from flask import render_template,redirect from flask_appbuilder.models.sqla.interface import SQLAInterface # 将model添加成视图,并控制在前端的显示 from myapp.models.model_job import Repository,Images,Job_Template,Task,Pipeline,Workflow,Tfjob,Xgbjob,RunHistory,Pytorchjob from myapp import app, appbuilder,db,event_logger from wtforms import BooleanField, IntegerField,StringField, SelectField,FloatField,DateField,DateTimeField,SelectMultipleField,FormField,FieldList from flask_appbuilder.fieldwidgets import BS3TextFieldWidget,BS3PasswordFieldWidget,DatePickerWidget,DateTimePickerWidget,Select2ManyWidget,Select2Widget,BS3TextAreaFieldWidget from flask_babel import gettext as __ from flask_babel import lazy_gettext as _ from sqlalchemy import and_, or_, select from .baseApi import ( MyappModelRestApi ) from myapp import security_manager import kfp # 使用自定义的就要把pip安装的删除了 from werkzeug.datastructures import FileStorage from .base import ( api, BaseMyappView, check_ownership, data_payload_response, DeleteMixin, generate_download_headers, get_error_msg, get_user_roles, handle_api_exception, json_error_response, json_success, MyappFilter, MyappModelView, ) from flask_appbuilder import CompactCRUDMixin, expose import pysnooper,datetime,time,json conf = app.config logging = app.logger class RunHistory_Filter(MyappFilter): # @pysnooper.snoop() def apply(self, query, func): user_roles = [role.name.lower() for role in list(self.get_user_roles())] if "admin" in user_roles: return query pipeline_ids = security_manager.get_create_pipeline_ids(db.session) return query.filter( or_( self.model.pipeline_id.in_(pipeline_ids), # self.model.project.name.in_(['public']) ) ) class RunHistory_ModelView_Base(): label_title='定时调度历史' datamodel = SQLAInterface(RunHistory) base_order = ('id', 'desc') order_columns = ['id'] list_columns = ['pipeline_url','creator','created_on','execution_date','status_url','log','history'] edit_columns = ['status'] base_filters = [["id", RunHistory_Filter, lambda: []]] # 设置权限过滤器 add_form_extra_fields = { "status": SelectField( _(datamodel.obj.lab('status')), description="状态comed为已识别未提交,created为已提交", widget=Select2Widget(), choices=[['comed', 'comed'], ['created', 'created']] ), } edit_form_extra_fields = add_form_extra_fields class RunHistory_ModelView(RunHistory_ModelView_Base,MyappModelView,DeleteMixin): datamodel = SQLAInterface(RunHistory) appbuilder.add_view(RunHistory_ModelView,"定时调度记录",icon = 'fa-clock-o',category = '训练') # 添加api class RunHistory_ModelView_Api(RunHistory_ModelView_Base,MyappModelRestApi): datamodel = SQLAInterface(RunHistory) route_base = '/runhistory_modelview/api' appbuilder.add_api(RunHistory_ModelView_Api) ```
{ "source": "jolnanis/motus", "score": 3 }
#### File: motus/motus/dictools.py ```python from abc import ABC, abstractmethod import gc import mimetypes import pkgutil import yaml class FileHandlingException(Exception): """Exception raised during opening a dic file for Read/Write operations""" class ParsingException(FileHandlingException): """Exception raised durin parsing""" class NonAplhaWordException(ParsingException): """Raised when a word is not composed of A-Z letters""" class ConfigFileException(Exception): """Exception raised when Substitution file is poorly formed""" class DicStateException(Exception): """Exception raised when encountering a""" def new_dic(*args, **kwargs): if 'dic_path' in list(kwargs) or args != (): rd = Reader() rd.config(*args, **kwargs) return rd else: return Dic() class Dic: """Toolbox class used to manipulate, clean and save word sets. \n Words are cleaned automatically upon addition to the set. """ def __init__(self): self.content = dict() self._state_flag = True self._words_flag = True @property def state(self): if self._state_flag or self._state is None: if self.content == {} or self.content == []: self._state = 'empty' elif isinstance(self.content, list): self._state = 'list of words' elif isinstance(list(self.content)[0], str): self._state = 'various-initials dict' elif isinstance(self.content, dict): self._state = 'various-lengths dict' else: raise Exception('Internal Dictionnary corrupted') self._state_flag = False return self._state @property def words(self): if self._words_flag or self._words is None: content = self.content if self.state == 'various-lengths dict': self._words = [ word for length in list(content) for initial in list(content[length]) for word in content[length][initial] ] elif self.state == 'various-initials dict': self._words = [ word for initial in list(content) for word in content[initial] ] elif self.state == 'list of words': self._words = content elif self.state == 'empty': self._words = [] self._words_flag = False return self._words def _insert(self, word, container, state): self._state_flag = True if state == 'empty': return [word] elif state == 'list of words': if len(word) == len(container[0]): if container == [] or word[0] == container[0][0]: container.append(word) return container else: return {word[0]: [word], container[0][0]: container} else: return { len(word): {word[0]: [word]}, len(container[0]): {container[0][0]: container}, } elif state == 'various-initials dict': one_word = container[list(container)[0]][0] if len(word) == len(one_word): if word[0] in list(container): container[word[0]].append(word) return container else: container[word[0]] = [word] return container else: return { len(word): {word[0]: [word]}, len(one_word): container } elif state == 'various-lengths dict': if len(word) in list(container): container[len(word)] = self._insert( word, container[len(word)], 'various-initials dict', ) return container else: container[len(word)] = {word[0]: [word]} return container def insert(self, word): if word is None: return try: self.content = self._insert(word, self.content, self.state) except KeyError: err_str = ('Problem when adding an entry to the dic. ' 'Internal state corrupted') raise DicStateException(err_str) class FileHandler(ABC): """ Parent abstract class for dictools.Reader and dictools.Writer """ if mimetypes.guess_type('example.yml')[0] is None: mimetypes.add_type('application/x-yaml', '.yml') mimetypes.add_type('application/x-yaml', '.yaml') @abstractmethod def __init__(self): self.dic_path = None self.filetype = None self._infer_flag = True def config(self, dic_path, filetype): if dic_path is not None: self.dic_path = dic_path self._infer_flag = True if filetype is not None: self.filetype = filetype @property def inferred_filetype(self): if self._infer_flag or self._inferred_filetype is not None: if self.dic_path is not None: self._inferred_filetype = mimetypes.guess_type(self.dic_path)[0] self._infer_flag = False return self._inferred_filetype class Reader(FileHandler): def __init__(self, *args, **kwargs): super().__init__() self.pckg = None self._substitutions = {} self.config(*args, **kwargs) def config(self, dic_path=None, filetype=None, config=None, pckg=None): """Takes up to 4 positional keyword arguments :\n `dic_path`: str, path to the dictionary\n `filetype`: str, accepts `text/plain` and `application/x-yaml`\n `config`: str, path to a config file\n `pckg`: bool, `True` if the dic should be retrieved from the package """ if pckg is not None: self.pckg = pckg if config is not None: self._config_substitutions(config) super().config(dic_path, filetype) def add_substitution(self, old: str, new: str): print(self._substitutions) self._substitutions[old.upper()] = new.upper() def _config_substitutions(self, config_file): self._substitutions = dict() with open(config_file, 'r') as file: i = 0 for line in file: i = i+1 line = line.strip() if line == '' or line[0] == '#': continue try: old, new = line.split(' ') self.add_substitution(old, new) except ValueError as e: raise ConfigFileException( f'Could not parse line {i} of file {self.dic_path}:\n' f'{line}' ) from e def parse(self, dic_path=None, filetype=None, pckg=None): if (dic_path or filetype or pckg) is not None: self.config(dic_path=dic_path, filetype=filetype, pckg=pckg) if 'dic_path' not in dir(self) or self.dic_path is None: raise FileHandlingException('No Target file') if (('filetype' not in dir(self) or self.filetype is None) and self.inferred_filetype is None): raise FileHandlingException(f'Could not infer a file type for' f'{self.file_path}') if ((self.filetype and self.inferred_filetype) is not None and self.filetype != self.inferred_filetype): err_str = (f'Incompatible filetypes: {self.filetype}, ' f'{self.inferred_filetype}') raise FileHandlingException(err_str) return self._get_parser(self.filetype or self.inferred_filetype) def _get_parser(self, filetype): if filetype == 'text/plain': return self._txt_parser(self.dic_path) elif filetype == 'application/x-yaml': return self._yaml_parser(self.dic_path) else: raise FileHandlingException('Unknown filetype: {filetype}') def _txt_parser(self, path): d = new_dic() for line in open(path, 'r'): d.insert(self.clean(line)) return d def _yaml_parser(self, path): d = new_dic() if self.pckg: data = pkgutil.get_data('motus.dic', self.dic_path) d.content = yaml.safe_load(data.decode()) del data gc.collect() else: with open(path, 'r') as file: d.content = yaml.safe_load(file) if d.content is None: d.content = {} return d def clean(self, line): word = line.strip().upper() for old, new in self._substitutions.items(): word = word.replace(old, new) if word == '': return None if (ord(min(word)) > 64 and ord(max(word)) < 90): return word else: unauth = [char for char in word if ord(char) < 64 or ord(char) > 90] if len(unauth) == 1: error_str = f'Unauthorized character {unauth[0]} in word {word}' else: error_str = f'Unauthorized characters {unauth} in word {word}' raise NonAplhaWordException(error_str) class Writer(FileHandler): def __init__(self, *args, **kwargs): super().__init__() self.config(*args, **kwargs) def config(self, dic_path=None, filetype=None): """ Takes up to 2 positionnal keywoard arguments :\n `dic_path`: str, path to the dictionary being written\n `filetype`: str, accepts `text/plain` and `application/x-yaml` """ super().config(dic_path, filetype) def write(self, dic, dic_path=None, filetype=None): if (dic_path or filetype is not None): self.config(dic_path, filetype) if 'dic_path' not in dir(self) or self.dic_path is None: raise FileHandlingException('No Destination file') if (('filetype' not in dir(self) or self.filetype is None) and self.inferred_filetype is None): raise FileHandlingException(f'Could not infer a file type for' f'{self.dic_path}') if ((self.filetype and self.inferred_filetype) is not None and self.filetype != self.inferred_filetype): err_str = (f'Incompatible filetypes: {self.filetype}, ' f'{self.inferred_filetype}') raise FileHandlingException(err_str) return self._get_writer(self.filetype or self.inferred_filetype) @classmethod def _get_writer(cls, filetype): if filetype == 'text/plain': return cls._txt_writer elif filetype == 'application/x-yaml': return cls._yaml_writer else: raise FileHandlingException('Unknown filetype: {filetype}') @classmethod def _txt_writer(cls, dic, path): try: file = open(path, 'w') open_flag = True for word in dic.words: file.write(word + '\n') file.close() open_flag = False except Exception: if open_flag: file.close() raise @classmethod def _yaml_writer(cls, dic, path): try: file = open(path, 'w') open_flag = True yaml.dump(dic.content, file, default_flow_style=False) file.close() open_flag = False except Exception: if open_flag: file.close() raise ``` #### File: motus/tests/test_dictools_file_handler.py ```python import io import os import unittest from unittest import mock import tempfile from motus import dictools from motus.dictools import FileHandler, Reader, Writer DIC = 'motus.dictools.Dic' FILE_HANDLER = 'motus.dictools.FileHandler' READER = 'motus.dictools.Reader' WRITER = 'motus.dictools.Writer' class DictoolsTestReaderInstanciation(unittest.TestCase): def _test_reader_instanciation(self, *args, **kwargs): """`expected`: expected mock.call for Reader.config()""" if 'expected' in list(kwargs): expected = kwargs.pop('expected') else: expected = None with mock.patch(f'{FILE_HANDLER}.__init__') as fd_mock: with mock.patch(f'{READER}.config') as cfg_mock: rd = Reader(*args, **kwargs) self.assertIsInstance(rd, FileHandler) self.assertIsInstance(rd, Reader) self.assertEqual(rd._substitutions, dict()) fd_mock.assert_called_once_with() cfg_mock.assert_called_once() if expected is not None: self.assertEqual(cfg_mock.call_args, expected) def test_reader_instanciation_1(self): self._test_reader_instanciation() def test_reader_instanciation_2(self): self._test_reader_instanciation( 'path_to_dic', expected=mock.call('path_to_dic'), ) def test_reader_instanciation_3(self): self._test_reader_instanciation( 'path_to_dic', 'filetype', expected=mock.call('path_to_dic', 'filetype'), ) def test_reader_instanciation_4(self): self._test_reader_instanciation( 'path/to/dic.yml', 'application/x-yaml', 'config.txt', False, expected=( mock.call('path/to/dic.yml', 'application/x-yaml', 'config.txt', False,) ) ) def test_reader_instanciation_5(self): self._test_reader_instanciation( config='cfg.txt', dic_path='path/to/dic.txt', expected=( mock.call(config='cfg.txt', dic_path='path/to/dic.txt') ) ) EMPTY_LIST = [] EMPTY_LIST_TXT = ['\n'] EMPTY_LIST_YML = ['\n'] LIST_OF_WORDS = ['ASPIC', 'APRES', 'ARRET', 'ACTIF', 'ANNEE'] LIST_OF_WORDS_TXT = [ 'ASPIC\n', 'APRES\n', 'ARRET\n', 'ACTIF\n', 'ANNEE\n', ] LIST_OF_WORDS_YML = [ '- ASPIC\n', '- APRES\n', '- ARRET\n', '- ACTIF\n', '- ANNEE\n', ] DICT_OF_SAME_LENGTH = { 'A': ['ASPIC', 'ANNEE'], 'B': ['BELLE', 'BIERE', 'BUTTE'], 'C': ['COUPS'], } DICT_OF_SAME_LENGTH_TXT = [ 'ASPIC\n', 'ANNEE\n', 'BELLE\n', 'BIERE\n', 'BUTTE\n', 'COUPS\n', ] DICT_OF_SAME_LENGTH_YML = [ 'A:\n', '- ASPIC\n', '- ANNEE\n', 'B:\n', '- BELLE\n', '- BIERE\n', '- BUTTE\n', 'C:\n', '- COUPS\n', ] FULL_DIC = { 5: { 'A': ['ASPIC', 'ANNEE'], 'B': ['BELLE', 'BIERE', 'BUTTE'], 'C': ['COUPS'], }, 6: { 'M': ['MOUCHE'], 'S': ['SAUCES'], }, } FULL_DIC_TXT = [ 'ASPIC\n', 'ANNEE\n', 'BELLE\n', 'BIERE\n', 'BUTTE\n', 'COUPS\n', 'MOUCHE\n', 'SAUCES\n', ] FULL_DIC_YML = [ '5:\n', ' A:\n', ' - ASPIC\n', ' - ANNEE\n', ' B:\n', ' - BELLE\n', ' - BIERE\n', ' - BUTTE\n', ' C:\n', ' - COUPS\n', '6:\n', ' M:\n', ' - MOUCHE\n', ' S:\n', ' - SAUCES\n', ] FAKE_FULL_DIC = { 3: ['ART', 'ANS', 'AIR'], 5: ['ASPIC', 'APRES', 'ARRET'], } FAKE_FULL_DIC_TXT = [ 'ART\n', 'ANS\n', 'AIR\n', 'ASPIC\n', 'APRES\n', 'ARRET\n', ] FAKE_FULL_DIC_YML = [ '3:\n', '- ART\n', '- ANS\n', '- AIR\n', '5:\n', '- ASPIC\n', '- APRES\n', '- ARRET\n', ] class DictoolsTestReaderBasic(unittest.TestCase): def setUp(self): self.rd = Reader() class DictoolsTestReaderConfig(DictoolsTestReaderBasic): def _test_reader_config(self, *args, **kwargs): """`expected`: expected mock.call for Reader.config()""" if 'expected_sub' in list(kwargs): expected_sub = kwargs.pop('expected_sub') else: expected_sub = None if 'expected_super' in list(kwargs): expected_super = kwargs.pop('expected_super') else: expected_super = None if 'pckg' in list(kwargs): pckg = kwargs.pop('pckg') elif len(args) >= 4: pckg = args[3] else: pckg = None with mock.patch(f'{READER}._config_substitutions') as sub_mock: with mock.patch(f'{FILE_HANDLER}.config') as super_mock: self.rd.config(*args, **kwargs) super_mock.assert_called_once() if pckg is not None: self.assertEqual(self.rd.pckg, pckg) if expected_sub is not None: sub_mock.assert_called_once() self.assertEqual(sub_mock.call_args, expected_sub) if expected_super is not None: self.assertEqual(super_mock.call_args, expected_super) def test_reader_config_1(self): self._test_reader_config() def test_reader_config_2(self): self._test_reader_config( 'path_to_dic', expected_super=mock.call('path_to_dic', None), ) def test_reader_config_3(self): self._test_reader_config( 'path_to_dic', 'filetype', expected_super=mock.call('path_to_dic', 'filetype'), ) def test_reader_config_4(self): self._test_reader_config( 'path/to/dic.yml', 'application/x-yaml', 'config.txt', False, expected_super=( mock.call('path/to/dic.yml', 'application/x-yaml') ), expected_sub=( mock.call('config.txt') ), ) def test_reader_config_5(self): self._test_reader_config( config='cfg.txt', dic_path='path/to/dic.txt', expected_super=( mock.call('path/to/dic.txt', None) ), expected_sub=( mock.call('cfg.txt') ), ) class DictoolsTestReaderAddSubstitution(DictoolsTestReaderBasic): def setUp(self): super().setUp() self.assertEqual(self.rd._substitutions, dict()) def test_add_substitions_to_empty(self): self.rd.add_substitution('é', 'e') self.assertEqual(self.rd._substitutions, {'É': 'E'}) def test_add_substitions_to_existing(self): self.rd._substitutions = {'É': 'E'} self.rd.add_substitution('Ê', 'E') self.assertEqual(self.rd._substitutions, {'É': 'E', 'Ê': 'E'}) def test_add_substitions_modify(self): self.rd._substitutions = {'$': 'Z'} self.rd.add_substitution('$', 'S') self.assertEqual(self.rd._substitutions, {'$': 'S'}) CONFIG_SAMPLE = io.StringIO( "# Comment" "\n" "é e\n" "À a\n" "$ S \n" " ï I\n" "W vv\n" ) BROKEN_CONFIG_SAMPLE = io.StringIO( "é e\n" "À a\n" "é\n" ) class DictoolsTestReader_ConfigSubstitution(unittest.TestCase): def setUp(self): self.rd = Reader() self.rd.dic_path = 'example.yml' self.assertEqual(self.rd._substitutions, dict()) @mock.patch(f'{READER}.add_substitution') @mock.patch('builtins.open') def test__config_substitions(self, open_mock, add_mock): open_mock.return_value = CONFIG_SAMPLE self.rd._config_substitutions('cfg.txt') calls = [ mock.call('é', 'e'), mock.call('À', 'a'), mock.call('$', 'S'), mock.call('ï', 'I'), mock.call('W', 'vv'), ] add_mock.assert_called self.assertEqual(add_mock.call_args_list, calls) @mock.patch(f'{READER}.add_substitution') @mock.patch('builtins.open') def test_add_substitions_broken(self, open_mock, add_mock): open_mock.return_value = BROKEN_CONFIG_SAMPLE with self.assertRaises(dictools.ConfigFileException): self.rd._config_substitutions('cfg.txt') calls = [ mock.call('é', 'e'), mock.call('À', 'a'), ] self.assertEqual(add_mock.call_args_list, calls) class DictoolsTestReaderParse(DictoolsTestReaderBasic): def test_parse_no_path(self): with self.assertRaises(dictools.FileHandlingException): self.rd.parse() def test_parse_no_filetype(self): self.rd.dic_path = 'example.json' with self.assertRaises(dictools.FileHandlingException): self.rd.parse() def test_parse_filetype_different_than_inferred(self): self.rd.dic_path = 'example.txt' self.rd.filetype = 'application/x-yaml' with self.assertRaises(dictools.FileHandlingException): self.rd.parse() def test_parse_working(self): self.rd.dic_path = 'example.txt' self.rd.filetype = 'text/plain' with mock.patch('motus.dictools.Reader._get_parser') as mock_get: self.rd.parse() mock_get.assert_called_once_with('text/plain') def test_parse_working_2(self): self.rd.dic_path = 'example.yml' with mock.patch('motus.dictools.Reader._get_parser') as mock_get: self.rd.parse() mock_get.assert_called_once_with('application/x-yaml') class DictoolsTestReader_GetParser(DictoolsTestReaderBasic): def setUp(self): super().setUp() self.rd.dic_path = "example" def test__get_parser_txt(self): with mock.patch('motus.dictools.Reader._txt_parser') as mock_txt: self.rd._get_parser('text/plain'), mock_txt.assert_called_once_with(self.rd.dic_path) def test__get_parser_yaml(self): with mock.patch('motus.dictools.Reader._yaml_parser') as mock_yml: self.rd._get_parser('application/x-yaml'), mock_yml.assert_called_once_with(self.rd.dic_path) def test__get_parser_error(self): with self.assertRaises(dictools.FileHandlingException): self.rd._get_parser('application/json') # Not really unit tests but the parser involves too many method calls # for unit testing to be convenient. class DictoolsTestReader_TxtParser(DictoolsTestReaderBasic): def _test__txt_parser(self, file, expected): with mock.patch('builtins.open') as mock_open: mock_open.return_value = file d = self.rd._txt_parser('example.path') self.assertEqual(d.content, expected) def _test__yaml_parser(self, file, expected): with mock.patch('builtins.open') as mock_open: mock_open.return_value = file d = self.rd._yaml_parser('example.path') self.assertEqual(d.content, expected) # TXT def test__txt_parser_empty(self): self._test__txt_parser( io.StringIO(''.join(EMPTY_LIST_TXT)), {} ) def test__txt_parser_list(self): self._test__txt_parser( io.StringIO(''.join(LIST_OF_WORDS_TXT)), LIST_OF_WORDS ) def test__txt_parser_same_length(self): self._test__txt_parser( io.StringIO(''.join(DICT_OF_SAME_LENGTH_TXT)), DICT_OF_SAME_LENGTH ) def test__txt_parser_full_dic(self): self._test__txt_parser( io.StringIO(''.join(FULL_DIC_TXT)), FULL_DIC ) def test__txt_parser_fake_full_dic(self): # The fake Dic is not valid, txt_parser returns only a valid Dic # so the values won't be equal with self.assertRaises(AssertionError): self._test__txt_parser( io.StringIO(''.join(FAKE_FULL_DIC_TXT)), FAKE_FULL_DIC ) # YAML def test__yaml_parser_empty(self): self._test__yaml_parser( io.StringIO(''.join(EMPTY_LIST_YML)), {} ) def test__yaml_parser_list(self): self._test__yaml_parser( io.StringIO(''.join(LIST_OF_WORDS_YML)), LIST_OF_WORDS ) def test__yaml_parser_same_length(self): self._test__yaml_parser( io.StringIO(''.join(DICT_OF_SAME_LENGTH_YML)), DICT_OF_SAME_LENGTH ) def test__yaml_parser_full_dic(self): self._test__yaml_parser( io.StringIO(''.join(FULL_DIC_YML)), FULL_DIC ) def test__yaml_parser_fake_full_dic(self): # The yaml parser doens't check the validity of the Dic, maybe an # option should be provided self._test__yaml_parser( io.StringIO(''.join(FAKE_FULL_DIC_YML)), FAKE_FULL_DIC ) class DictoolsTestReaderClean(DictoolsTestReaderBasic): def _test_clean(self, substitutions, word, expected): self.rd._substitutions = substitutions self.assertEqual(self.rd.clean(word), expected) def test_clean_no_subs(self): self._test_clean({}, 'APRICOT \n', 'APRICOT') self._test_clean({}, ' pear\n', 'PEAR') self._test_clean({}, ' BanAna ', 'BANANA') def test_clean_subs(self): self._test_clean({'À': 'A'}, 'àpricot \n', 'APRICOT') self._test_clean({'Ö': 'O'}, ' pear\n', 'PEAR') self._test_clean({'A': 'E'}, ' BanAna ', 'BENENE') def test_clean_fails(self): with self.assertRaises(dictools.NonAplhaWordException): self._test_clean({'Ö': 'O'}, 'àpricot \n', 'APRICOT') with self.assertRaises(dictools.NonAplhaWordException): self._test_clean({'Ö': 'O'}, 'àpricoté \n', 'APRICOT') class DictoolsTestWriterInstanciation(unittest.TestCase): def _test_writer_instanciation(self, *args, **kwargs): """`expected`: expected mock.call for Writer.config()""" if 'expected' in list(kwargs): expected = kwargs.pop('expected') else: expected = None with mock.patch(f'{FILE_HANDLER}.__init__') as fd_mock: with mock.patch(f'{WRITER}.config') as cfg_mock: rd = Writer(*args, **kwargs) self.assertIsInstance(rd, FileHandler) self.assertIsInstance(rd, Writer) fd_mock.assert_called_once_with() cfg_mock.assert_called_once() if expected is not None: self.assertEqual(cfg_mock.call_args, expected) def test_writer_instanciation_1(self): self._test_writer_instanciation( expected=mock.call() ) def test_writer_instanciation_2(self): self._test_writer_instanciation( 'path_to_dic', expected=mock.call('path_to_dic'), ) def test_writer_instanciation_3(self): self._test_writer_instanciation( 'path_to_dic', 'filetype', expected=mock.call('path_to_dic', 'filetype'), ) def test_writer_instanciation_4(self): self._test_writer_instanciation( 'path/to/dic.txt', filetype='text/plain', expected=( mock.call('path/to/dic.txt', filetype='text/plain',) ) ) class DictoolsTestWriterBasic(unittest.TestCase): def setUp(self): self.wt = Writer() class DictoolsTestWriterConfig(DictoolsTestWriterBasic): def _test_writer_config(self, *args, **kwargs): expected = kwargs.pop('expected') """`expected`: expected mock.call for Writer.config()""" with mock.patch(f'{FILE_HANDLER}.config') as super_mock: self.wt.config(*args, **kwargs) super_mock.assert_called_once() self.assertEqual(super_mock.call_args, expected) def test_writer_config_1(self): self._test_writer_config( expected=mock.call(None, None) ) def test_writer_config_2(self): self._test_writer_config( 'path_to_dic', expected=mock.call('path_to_dic', None), ) def test_writer_config_3(self): self._test_writer_config( 'path_to_dic', 'filetype', expected=mock.call('path_to_dic', 'filetype'), ) def test_writer_config_4(self): self._test_writer_config( 'path/to/dic.txt', filetype='text/plain', expected=( mock.call('path/to/dic.txt', 'text/plain',) ) ) class DictoolsTestWriterParse(DictoolsTestWriterBasic): def setUp(self): super().setUp() self.dic = dictools.Dic() def test_write_no_path(self): with self.assertRaises(dictools.FileHandlingException): self.wt.write(self.dic) def test_write_no_filetype(self): self.wt.dic_path = 'example' with self.assertRaises(dictools.FileHandlingException): self.wt.write(self.dic) def test_write_filetype_different_than_inferred(self): self.wt.dic_path = 'example.txt' self.wt.filetype = 'application/x-yaml' with self.assertRaises(dictools.FileHandlingException): self.wt.write(self.dic) def test_write_working(self): self.wt.dic_path = 'example.txt' self.wt.filetype = 'text/plain' with mock.patch('motus.dictools.Writer._get_writer') as mock_get: self.wt.write(self.dic) mock_get.assert_called_once_with('text/plain') def test_write_working_2(self): self.wt.dic_path = 'example.yml' with mock.patch('motus.dictools.Writer._get_writer') as mock_get: self.wt.write(self.dic) mock_get.assert_called_once_with('application/x-yaml') class DictoolsTestWriter_GetParser(DictoolsTestWriterBasic): def test__get_writer_txt(self): self.assertEqual( self.wt._get_writer('text/plain'), self.wt._txt_writer ) def test__get_writer_yaml(self): self.assertEqual( self.wt._get_writer('application/x-yaml'), self.wt._yaml_writer ) def test__get_writer_error(self): with self.assertRaises(dictools.FileHandlingException): self.wt._get_writer('application/json') class TestDictoolsWriterWrite(DictoolsTestWriterBasic): def setUp(self): super().setUp() self.dic = dictools.Dic() tmp_handler, tmp_path = tempfile.mkstemp() self.tmp_handler = tmp_handler self.tmp_path = tmp_path self.tmp_file = open(tmp_path, 'r') def tearDown(self): self.tmp_file.close() os.close(self.tmp_handler) class TestDictoolsWriterWriteYaml(TestDictoolsWriterWrite): def _test_write_yaml(self, filetype, content, expected_file): self.dic.content = content self.wt.config(self.tmp_path, filetype) self.wt._yaml_writer(self.dic, self.tmp_path) self.assertEqual( self.tmp_file.readlines(), expected_file, ) def test_write_yaml_empty(self): self._test_write_yaml( 'application/x-yaml', EMPTY_LIST, ['[]\n'] ) def test_write_yaml_list(self): self._test_write_yaml( 'application/x-yaml', LIST_OF_WORDS, LIST_OF_WORDS_YML ) def test_write_yaml_same_length(self): self._test_write_yaml( 'application/x-yaml', DICT_OF_SAME_LENGTH, DICT_OF_SAME_LENGTH_YML ) def test_write_yaml_full_dic(self): self._test_write_yaml( 'application/x-yaml', FULL_DIC, FULL_DIC_YML ) class TestDictoolsWriterWriteTxt(TestDictoolsWriterWrite): def _test_write_txt(self, filetype, content, expected_file): self.dic.content = content self.wt._txt_writer(self.dic, self.tmp_path) self.assertEqual( self.tmp_file.readlines(), expected_file, ) def test_write_txt_empty(self): self._test_write_txt( 'text/plain', EMPTY_LIST, [] ) def test_write_txt_list(self): self._test_write_txt( 'text/plain', LIST_OF_WORDS, LIST_OF_WORDS_TXT ) def test_write_txt_same_length(self): self._test_write_txt( 'text/plain', DICT_OF_SAME_LENGTH, DICT_OF_SAME_LENGTH_TXT ) def test_write_txt_full_dic(self): self._test_write_txt( 'text/plain', FULL_DIC, FULL_DIC_TXT ) if __name__ == '__main__': unittest.main() ``` #### File: motus/tests/test_ui.py ```python from collections import Counter import re import unittest from unittest import mock from colorama import Fore, Style from motus.ui import UI class UITestSelectWordlength(unittest.TestCase): def _test_select_wordlength(self, bounds, mocked_input, expected_res): with mock.patch('builtins.input', side_effect=mocked_input): res = UI.select_wordlength(bounds[0], bounds[1]) self.assertEqual(res, expected_res) def test_select_wordlength_basic(self): self._test_select_wordlength([7, 12], ['8'], 8) def test_select_wordlength_change_bounds(self): self._test_select_wordlength([1, 6], ['5'], 5) def test_select_wordlength_extended(self): self._test_select_wordlength([7, 12], ['99', 'w', '!', ' ', '9'], 9) def test_select_wordlength_long_input(self): self._test_select_wordlength([7, 12], ['99', 'w', '!', ' ', '10', '11'], 10) class UITestPrompt(unittest.TestCase): def _test_prompt_basic(self, fun, mocked_input, expected_res): with mock.patch('builtins.input', side_effect=mocked_input): res = fun() self.assertEqual(res, expected_res) class UITestPromptGuess(UITestPrompt): def test_prompt_guess(self): self._test_prompt_basic(UI.prompt_guess, ['bateau'], 'BATEAU') self._test_prompt_basic(UI.prompt_guess, [' Avion'], 'AVION') self._test_prompt_basic(UI.prompt_guess, ['MANGER '], 'MANGER') self._test_prompt_basic(UI.prompt_guess, ['BANG BANG'], 'BANG BANG') self._test_prompt_basic(UI.prompt_guess, ['!'], '!') self._test_prompt_basic(UI.prompt_guess, [''], '') class UITestAskReplay(UITestPrompt): def test_ask_replay_yes(self): self._test_prompt_basic(UI.ask_replay, ['yes'], True) self._test_prompt_basic(UI.ask_replay, ['Yes'], True) self._test_prompt_basic(UI.ask_replay, ['yeS'], True) self._test_prompt_basic(UI.ask_replay, ['YES'], True) self._test_prompt_basic(UI.ask_replay, ['y'], True) self._test_prompt_basic(UI.ask_replay, ['Y'], True) def test_ask_replay_no(self): self._test_prompt_basic(UI.ask_replay, ['n'], False) self._test_prompt_basic(UI.ask_replay, ['N'], False) self._test_prompt_basic(UI.ask_replay, ['no'], False) self._test_prompt_basic(UI.ask_replay, ['NO'], False) self._test_prompt_basic(UI.ask_replay, ['No'], False) def test_ask_replay_ambiguous(self): self._test_prompt_basic(UI.ask_replay, [''], False) self._test_prompt_basic(UI.ask_replay, ['\n'], False) self._test_prompt_basic(UI.ask_replay, ['$'], False) self._test_prompt_basic(UI.ask_replay, ['maybe'], False) class UITestInitRound(unittest.TestCase): def _test_init_round(self, wordlength): UI.init_round(wordlength) self.assertIsNotNone(UI.wordlength) self.assertEqual(UI.wordlength, wordlength) def test_init_round(self): self._test_init_round(12) self._test_init_round(8) self._test_init_round(5) self._test_init_round(1) class UITestDisplay(unittest.TestCase): ALL_FORES = [Fore.__getattribute__(attr) for attr in dir(Fore) if attr[0].isalpha()] ALL_STYLES = [Style.__getattribute__(attr) for attr in dir(Style) if attr[0].isalpha()] ALL_MODS = ALL_FORES + ALL_STYLES def _to_regex(self, lst): return str.join('|', [re.escape(elem) for elem in lst]) def _extract_message(self, mock_print): mock_print.assert_called_once() name, args, kwargs = mock_print.mock_calls[0] message = args[0] return message def _no_mods(self, message): r_mods = self._to_regex(self.ALL_MODS) return re.sub(r_mods, '', message) def _style_only(self, message): r_styles = self._to_regex(self.ALL_STYLES) return str.join('', re.findall(r_styles, message)) def _fore_only(self, message): r_fores = self._to_regex(self.ALL_FORES) return str.join('', re.findall(r_fores, message)) def _test_display_basic(self, fun, *args, **kwargs): if 'expected_res' in list(kwargs): expected_res = kwargs.pop('expected_res') else: raise Exception("_test_display_basic needs an 'expected_res' kwarg") with mock.patch('builtins.print') as mock_print: fun(*args, **kwargs) message = self._extract_message(mock_print) self.assertEqual(message, expected_res) class UITestDisplayFirstWord(UITestDisplay): def _test_display_first_word(self, wordlength, first_letter): UI.wordlength = wordlength with mock.patch('builtins.print') as mock_print: UI.display_first_word(first_letter) message = self._extract_message(mock_print) self.assertEqual(len(message), wordlength * 3) letters = Counter(message) self.assertEqual(message[1], first_letter) self.assertIn(first_letter, list(letters)) self.assertEqual(letters[first_letter], 1) self.assertIn('-', list(letters)) self.assertEqual(letters['-'], wordlength - 1) def test_display_first_word(self): self._test_display_first_word(3, 'A') self._test_display_first_word(12, 'W') self._test_display_first_word(7, 'X') class UITest_DisplayLetter(UITestDisplay): # /!\ Method namespace broken for legibility def _test_printed_no_mods(self, letter, hint, expected_naked_message): with mock.patch('builtins.print') as mock_print: UI._display_letter(letter, hint) message = self._extract_message(mock_print) naked_message = self._no_mods(message) self.assertEqual(naked_message, expected_naked_message) # /!\ Method namespace broken for legibility def _test_printed_style(self, letter, hint, expected_style): with mock.patch('builtins.print') as mock_print: UI._display_letter(letter, hint) message = self._extract_message(mock_print) mod_section = message[:-3] style = self._style_only(mod_section) self.assertEqual(len(style), len(expected_style)) self.assertEqual(style, expected_style) # /!\ Method namespace broken for legibility def _test_printed_fore(self, letter, hint, expected_fore): with mock.patch('builtins.print') as mock_print: UI._display_letter(letter, hint) message = self._extract_message(mock_print) mod_section = message[:-3] fore = self._fore_only(mod_section) self.assertEqual(len(fore), len(expected_fore)) self.assertEqual(fore, expected_fore) # Double underscore to respect namespace def test__display_letter_no_mods(self): self._test_printed_no_mods('A', 'R', '[A]') self._test_printed_no_mods('X', 'W', ' X ') self._test_printed_no_mods('B', 'M', '(B)') self._test_printed_no_mods('W', 'W', ' W ') self._test_printed_no_mods('N', 'R', '[N]') # Double underscore to respect namespace def test__display_letter_style(self): self._test_printed_style('A', 'R', Style.BRIGHT) self._test_printed_style('X', 'W', '') self._test_printed_style('B', 'M', Style.BRIGHT) self._test_printed_style('W', 'W', '') self._test_printed_style('N', 'R', Style.BRIGHT) # Double underscore to respect namespace def test__display_letter_fore(self): self._test_printed_fore('A', 'R', Fore.RED) self._test_printed_fore('X', 'W', '') self._test_printed_fore('B', 'M', Fore.YELLOW) self._test_printed_fore('W', 'W', '') self._test_printed_fore('N', 'R', Fore.RED) def test__display_letter_error(self): with self.assertRaises(TypeError): UI._display_letter('B', '') with self.assertRaises(TypeError): UI._display_letter('G', 'A') class UITestDisplaySolution(UITestDisplay): def test_display_solution_short(self): self._test_display_basic( UI.display_solution, 'OUI', expected_res="Sorry, the right answer was: OUI" ) def test_display_solution_long(self): self._test_display_basic( UI.display_solution, 'MOUCHERON', expected_res="Sorry, the right answer was: MOUCHERON" ) def test_display_solution_empty(self): self._test_display_basic( UI.display_solution, '', expected_res="Sorry, the right answer was: " ) class UITestRightGuess(UITestDisplay): def test_right_guess_short(self): self._test_display_basic( UI.right_guess, 'OUI', expected_res="Congratulations, OUI was the right answer !" ) def test_right_guess_long(self): self._test_display_basic( UI.right_guess, 'MOUCHERON', expected_res="Congratulations, MOUCHERON was the right answer !" ) def test_right_guess_empty(self): self._test_display_basic( UI.right_guess, '', expected_res="Congratulations, was the right answer !" ) class UITestDisplayScoreSolo(UITestDisplay): def test_display_score_solo(self): self._test_display_basic( UI.display_score_solo, 0, 10, expected_res="You have 0 wins over 10 rounds." ) self._test_display_basic( UI.display_score_solo, 8, 8, expected_res="You have 8 wins over 8 rounds." ) class UITestDisplayCorrection(unittest.TestCase): def _extract_args(self, mock_call): args, kwargs = mock_call return args def _extract_args_list(self, mock_disp): return [self._extract_args(mock_call) for mock_call in mock_disp.call_args_list] def _test_display_correction(self, guess, correction, expected_res): with mock.patch('motus.ui.UI._display_letter') as mock_disp: UI.display_correction(guess, correction) res = self._extract_args_list(mock_disp) self.assertEqual(res, expected_res) def test_display_correction_correct(self): UI.wordlength = 7 self._test_display_correction( 'CORRECT', 'RRRRRRR', [ ('C', 'R'), ('O', 'R'), ('R', 'R'), ('R', 'R'), ('E', 'R'), ('C', 'R'), ('T', 'R'), ] ) def test_display_correction_wrong(self): UI.wordlength = 5 self._test_display_correction( 'WRONG', 'WWWWW', [ ('W', 'W'), ('R', 'W'), ('O', 'W'), ('N', 'W'), ('G', 'W'), ] ) def test_display_correction_incorrect(self): UI.wordlength = 9 self._test_display_correction( 'INCORRECT', 'RRWWMMWWR', [ ('I', 'R'), ('N', 'R'), ('C', 'W'), ('O', 'W'), ('R', 'M'), ('R', 'M'), ('E', 'W'), ('C', 'W'), ('T', 'R'), ] ) def test_display_correction_incomplete(self): UI.wordlength = 10 self._test_display_correction( 'INCOMPL', 'WWWWWWWWWW', [ ('I', 'W'), ('N', 'W'), ('C', 'W'), ('O', 'W'), ('M', 'W'), ('P', 'W'), ('L', 'W'), ('-', 'W'), ('-', 'W'), ('-', 'W'), ] ) if __name__ == '__main__': unittest.main() ```
{ "source": "jolo-dev/show-solidarity", "score": 3 }
#### File: show-solidarity/function/put_object.py ```python from src.image import SolidarityImage import json import numpy as np image = SolidarityImage() def handler(event, _context): """ Uses Rekognition APIs to detect faces for objects uploaded to S3. """ # Get the object from the event. bucket = event["bucketName"] key = event["key"] image_base64 = event["body"] try: source_image = image.decode_img(image_base64) # Call rekognition DetectFaces API to detect Text in S3 object. image.write_image_to_s3(np.array(source_image), bucket, key) return { "key": key, "bucketName": bucket, } except Exception as e: print( "Error putting object {} to bucket {}. Event {}".format( key, bucket, json.dumps(event, indent=2) ) ) raise e ``` #### File: show-solidarity/function/rekognition.py ```python import json from PIL import Image from src.image import SolidarityImage import base64 image = SolidarityImage() # --------------- Main handler ------------------ def handler(event, _context): """ Uses Rekognition APIs to detect faces for objects uploaded to S3. """ # Get the object from the event. bucket = event["source"]["Payload"]["bucketName"] key = event["source"]["Payload"]["key"] result_bucket = event["body"]["resultBucketName"] print(bucket, key, result_bucket) try: # Call rekognition DetectFaces API to detect Text in S3 object. response: Image = image.detect_faces(bucket, key) img = image.add_background_frame(response) print(response, base64.b64encode(img)) return { "body": base64.b64encode(img), "bucketName": result_bucket, "key": key, } except Exception as e: print( "Error processing object {} from bucket {}. Event {}".format( key, bucket, json.dumps(event, indent=2) ) ) raise e ``` #### File: show-solidarity/infrastructure/solidarity_bucket.py ```python from aws_cdk import CfnOutput from aws_cdk.aws_s3 import ( Bucket, BucketEncryption, BlockPublicAccess, CorsRule, HttpMethods, ) from constructs import Construct class SolidarityBucket(Bucket): def __init__(self, scope: Construct, id: str, **kwargs) -> None: super().__init__( scope, id, cors=[ CorsRule( allowed_methods=[ HttpMethods.PUT, HttpMethods.POST, HttpMethods.DELETE, ], allowed_origins=["*"], allowed_headers=["*"], max_age=3000, ) ], encryption=BucketEncryption.S3_MANAGED, block_public_access=BlockPublicAccess.BLOCK_ALL, **kwargs, ) CfnOutput(self, "BucketName", value=self.bucket_name) CfnOutput(self, "BucketArn", value=self.bucket_arn) ``` #### File: show-solidarity/tests/test_lambda.py ```python # from function.put_object import handler # import json # from os import path # import pytest # @pytest.fixture # def test_event(): # with open(path.join(path.dirname(__file__), "event.json"), "r") as f: # event = json.load(f) # return event # def test_lambda_handler(test_event): # response = handler(test_event, None) # assert response is not None ```
{ "source": "jolohan/detectron2", "score": 2 }
#### File: jolohan/detectron2/write_submission_from_json.py ```python import json from pprint import pprint import numpy as np from detectron.datasets.nuclei.mask_encoding import rle_encode from pycocotools import mask as mask_util import unicodecsv as csv from scipy import ndimage import sys import time from datetime import datetime, timedelta def join_results(seg_filename, annotation_filename, result_filename, intersection_thresh=0.3, mask_area_threshold=15, accuracy_threshold=0.5): TOL = 0.00001 annotations = load_json_file(annotation_filename) hex_to_id, id_to_hex = make_hex_to_id_dic(annotations['images']) #print(annotations['images'][0]) segmentations = load_json_file(seg_filename) #print(len(segmentations)) #print(segmentations[0]) csv_res = [['ImageId', 'EncodedPixels']] t0 = time.time() t1 = time.time() old_im_id = None all_masks = None all_masks_no_refine = None img_ids = [] segmentations_per_image = {} for i, seg in enumerate(segmentations): im_id = seg['image_id'] if not segmentations_per_image.has_key(im_id): segmentations_per_image[im_id] = [] segmentations_per_image[im_id].append(seg) """for i, id_key in enumerate(id_to_hex.keys()): im_name = id_to_hex[id_key] if id_key in segmentations_per_image: pass #csv_res.append([im_name, "1 1"]) else: csv_res.append([im_name, "1 1"])""" n = len(segmentations_per_image.keys()) for i, k in enumerate(segmentations_per_image.keys()): all_segs_in_image = segmentations_per_image[k] if i % 10 == 0: t2 = time.time() print(i/(n*1.0)) print("Processing file {} ({}%)".format(i, 100 * i // n)) #, end="") print(" {}s (total: {}s)".format(t2 - t1, t2 - t0)) time_left = ((t2 - t0) / (i + TOL)) * (n-i) time_left = ((t2 - t0)/(1.0*(i+TOL))) * (n-i) #print("Time left:") #print_time(time_left) #print("\n") t1 = t2 all_masks = None all_masks_no_refine = None for mask_number, mask in enumerate(all_segs_in_image): #print(mask) im_id = mask['image_id'] rle = mask['segmentation'] score = mask['score'] if score < accuracy_threshold: continue mask_int_orig = mask_util.decode(rle) #u_rle = rle_encode(mask_int) #print("u_rle:", u_rle) mask_int = ndimage.morphology.binary_fill_holes(mask_int_orig.copy()).astype(np.uint8) mask = mask_int > 0 mask_orig = mask_int_orig > 0 if all_masks is None: all_masks = mask.copy() all_masks[:] = False all_masks_no_refine = mask_orig.copy() all_masks_no_refine[:] = False intersection = mask & all_masks area_inter = intersection.sum() if area_inter > 0: # print("Area intersection > 0") total_area = mask.sum() if float(area_inter) / (float(total_area) + TOL) > intersection_thresh: continue mask = mask & ~all_masks if mask.sum() < mask_area_threshold: continue mask_int[~mask] = 0 # add this to all_masks mask all_masks = mask | all_masks all_masks_no_refine = all_masks_no_refine | mask_orig # rle = mask_util.encode(np.asarray(mask_int, order='F')) # u_rle = mask_util.decode(rle) u_rle = np.asarray(mask_int, order='F') u_rle = rle_encode(u_rle) # this # u_rle = mask_util.decode(rle) # u_rle = rle_encode(u_rle) # this #print(u_rle) im_name = id_to_hex[im_id] #print(u_rle) #print(u_rle[0]) u_rle = [''.join(str(x)) for x in zip(u_rle[0::2], u_rle[1::2])] u_rle = [x.replace(",", "") for x in u_rle] u_rle = [x[1:-1] for x in u_rle] u_rle = " ".join(x for x in u_rle) #if (i % 1000 == 0): # print(u_rle) if u_rle.strip(): csv_res.append([im_name, u_rle]) write_csv(result_filename, csv_res) def write_csv(filename, data): # Write CSV file with open(filename+'.csv', 'w') as fp: writer = csv.writer(fp, encoding='utf-8') # writer.writerow(["your", "header", "foo"]) # write header writer.writerows(data) print("Wrote file: "+ filename) def print_time(seconds): sec = timedelta(seconds) d = datetime(1, 1, 1) + sec print("MIN:SEC") print("%d:%d" % (d.minute, d.second)) def load_json_file(filename): with open(filename) as f: data = json.load(f) return data def make_hex_to_id_dic(annotations): hex_to_id = {} id_to_hex = {} #print(len(annotations)) for i, image in enumerate(annotations): #print(image) #print(image['file_name']) filename = image['file_name'].split('.')[0] image_id = image['id'] hex_to_id[filename] = image_id id_to_hex[image_id] = filename #print(image_id, filename) #print(hex_to_id["jjgj"]) # make it crash return hex_to_id, id_to_hex def write_results(seg_filename, annotation_filename, result_filename): join_results(seg_filename=seg_filename, annotation_filename=annotation_filename, result_filename=result_filename) if __name__ == '__main__': #annotation_filename = 'detectron/datasets/data/dsb18/annotations/test' # seg_filename = "/detectron/output/test/dsb18_test/generalized_rcnn/" \ # "segmentations_dsb18_test_results.json" seg_filename = "segm_18000.json" annotation_filename = 'detectron/datasets/data/dsb18/annotations/stage1_test.json' result_filename = 'test2.csv' if len(sys.argv) > 1: seg_filename = sys.argv[1] if len(sys.argv) > 2: annotation_filename = sys.argv[2] if len(sys.argv) > 3: result_filename = sys.argv[3] print("Writing results from seg file: ", seg_filename) print("And annotations file: ", annotation_filename) #seg_filename = "segmentations_dsb18_test_results" write_results(seg_filename=seg_filename, annotation_filename=annotation_filename, result_filename=result_filename) ```
{ "source": "jolorenzo/SlipStreamConnectors", "score": 2 }
#### File: tar/slipstream_cloudstack/CloudStackClientCloud.py ```python import re import time from .LibcloudCloudstackPatch import patch_libcloud patch_libcloud() import os from urlparse import urlparse from threading import RLock from slipstream.UserInfo import UserInfo from slipstream.ConfigHolder import ConfigHolder from slipstream.cloudconnectors.BaseCloudConnector import BaseCloudConnector from slipstream.utils.tasksrunner import TasksRunner from slipstream.NodeDecorator import NodeDecorator from slipstream.util import override import slipstream.util as util import slipstream.exceptions.Exceptions as Exceptions from libcloud.compute.base import KeyPair from libcloud.compute.types import Provider from libcloud.compute.providers import get_driver import libcloud.security def getConnector(configHolder): return getConnectorClass()(configHolder) def getConnectorClass(): return CloudStackClientCloud def instantiate_from_cimi(cimi_connector, cimi_cloud_credential): user_info = UserInfo(cimi_connector['instanceName']) cloud_params = { UserInfo.CLOUD_USERNAME_KEY: cimi_cloud_credential['key'], UserInfo.CLOUD_PASSWORD_KEY: cimi_cloud_credential['secret'], 'endpoint': cimi_connector.get('endpoint'), 'zone': cimi_connector.get('zone'), } user_info.set_cloud_params(cloud_params) config_holder = ConfigHolder(options={'verboseLevel': 0, 'retry': False}) os.environ['SLIPSTREAM_CONNECTOR_INSTANCE'] = cimi_connector['instanceName'] connector_instance = CloudStackClientCloud(config_holder) connector_instance._initialization(user_info) return connector_instance STATE_MAP = {0: 'Running', 1: 'Rebooting', 2: 'Terminated', 3: 'Pending', 4: 'Unknown', 5: 'Stopped'} class CloudStackClientCloud(BaseCloudConnector): cloudName = 'cloudstack' def __init__(self, configHolder): libcloud.security.VERIFY_SSL_CERT = False super(CloudStackClientCloud, self).__init__(configHolder) self._set_capabilities(contextualization=True, generate_password=True, direct_ip_assignment=True, orchestrator_can_kill_itself_or_its_vapp=True) self._zone = None self._zones = None self._sizes = None self._images = None self._lock_zone = RLock() self._lock_zones = RLock() self._lock_sizes = RLock() self._lock_images = RLock() self._lock_libcloud_driver = RLock() @property def libcloud_driver(self): with self._lock_libcloud_driver: if not hasattr(self._thread_local, '_libcloud_driver'): util.printDetail('Initializing libcloud driver') self._thread_local._libcloud_driver = self._get_driver(self.user_info) return self._thread_local._libcloud_driver @property def zones(self): if self._zones is None: with self._lock_zones: if self._zones is None: util.printDetail('Getting zones') self._zones = self.libcloud_driver.list_locations() return self._zones @property def zone(self): if self._zone is None: with self._lock_zone: if self._zone is None: util.printDetail('Getting zone') self._zone = self._get_zone(self.user_info) return self._zone @property def sizes(self): if self._sizes is None: with self._lock_sizes: if self._sizes is None: util.printDetail('Getting sizes') self._sizes = self.libcloud_driver.list_sizes(location=self.zone) return self._sizes @property def images(self): if self._images is None: with self._lock_images: if self._images is None: util.printDetail('Getting images') self._images = self.libcloud_driver.list_images(location=self.zone) return self._images @override def _initialization(self, user_info): util.printStep('Initialize the CloudStack connector.') self.user_info = user_info if self.is_build_image(): raise NotImplementedError('The run category "%s" is not yet implemented' % self.run_category) elif self.is_deployment(): try: self._import_keypair(user_info) except Exceptions.ExecutionException as e: util.printError(e) @override def _finalization(self, user_info): try: kp_name = user_info.get_keypair_name() if kp_name: self._delete_keypair(kp_name) except: # pylint: disable=bare-except pass @override def _start_image(self, user_info, node_instance, vm_name): return self._start_image_on_cloudstack(user_info, node_instance, vm_name) def _start_image_on_cloudstack(self, user_info, node_instance, vm_name): instance_name = self.format_instance_name(vm_name) instance_type = node_instance.get_instance_type() ip_type = node_instance.get_network_type() keypair = None contextualization_script = None if not node_instance.is_windows(): keypair = user_info.get_keypair_name() contextualization_script = self._get_bootstrap_script_if_not_build_image(node_instance) security_groups = node_instance.get_security_groups() security_groups = (len(security_groups) > 0) and security_groups or None try: size = [i for i in self.sizes if i.name == instance_type][0] except IndexError: raise Exceptions.ParameterNotFoundException("Couldn't find the specified instance type: %s" % instance_type) image = self._get_image(node_instance) if node_instance.is_windows(): instance = self.libcloud_driver.create_node( name=instance_name, size=size, image=image, location=self.zone, ex_security_groups=security_groups) else: instance = self.libcloud_driver.create_node( name=instance_name, size=size, image=image, location=self.zone, ex_keyname=keypair, ex_userdata=contextualization_script, ex_security_groups=security_groups) ip = self._get_instance_ip_address(instance, ip_type) if not ip: raise Exceptions.ExecutionException("Couldn't find a '%s' IP" % ip_type) vm = dict(instance=instance, ip=ip, id=instance.id) return vm def _get_zone(self, user_info): zone_name = user_info.get_cloud('zone', '') try: return [i for i in self.zones if i.name.lower() == zone_name.lower()][0] except IndexError: raise Exceptions.ParameterNotFoundException("Couldn't find the specified zone: %s" % zone_name) def _get_image(self, node_instance): image_id = node_instance.get_image_id() try: return [i for i in self.images if i.id == image_id][0] except IndexError: raise Exceptions.ParameterNotFoundException("Couldn't find the specified image: %s" % image_id) @override def list_instances(self): return self.libcloud_driver.list_nodes(location=self.zone) @override def _create_allow_all_security_group(self): sg_name = NodeDecorator.SECURITY_GROUP_ALLOW_ALL_NAME sg_desc = NodeDecorator.SECURITY_GROUP_ALLOW_ALL_DESCRIPTION driver = self.libcloud_driver if any([sg.get('name') == sg_name for sg in driver.ex_list_security_groups()]): return sg = driver.ex_create_security_group(sg_name, description=sg_desc) driver.ex_authorize_security_group_ingress(sg_name, 'tcp', '0.0.0.0/0', 0, 65535) driver.ex_authorize_security_group_ingress(sg_name, 'udp', '0.0.0.0/0', 0, 65535) driver.ex_authorize_security_group_ingress(sg_name, 'icmp', '0.0.0.0/0') def _stop_instances(self, instances): tasksRunnner = TasksRunner(self._stop_instance, max_workers=self.max_iaas_workers, verbose=self.verboseLevel) for instance in instances: tasksRunnner.put_task(instance) tasksRunnner.run_tasks() tasksRunnner.wait_tasks_processed() def _stop_instance(self, instance): self.libcloud_driver.destroy_node(instance) @override def _stop_deployment(self): instances = [vm['instance'] for vm in self.get_vms().itervalues()] self._stop_instances(instances) @override def _stop_vms_by_ids(self, ids): instances = [i for i in self.list_instances() if i.id in ids] self._stop_instances(instances) @staticmethod def _get_driver(user_info): CloudStack = get_driver(Provider.CLOUDSTACK) url = urlparse(user_info.get_cloud_endpoint()) secure = (url.scheme == 'https') return CloudStack(user_info.get_cloud_username(), user_info.get_cloud_password(), secure=secure, host=url.hostname, port=url.port, path=url.path) @override def _vm_get_password(self, vm): password = vm['instance'].extra.get('password', None) print 'VM Password: ', password return password @override def _vm_get_ip(self, vm): return vm['ip'] @override def _vm_get_id(self, vm): return vm['id'] @override def _vm_get_state(self, vm_instance): return STATE_MAP[vm_instance.state] def _get_vm_size(self, vm_instance): try: size = [i for i in self.sizes if i.id == vm_instance.extra.get('size_id')][0] except IndexError: return None else: return size @override def _vm_get_ip_from_list_instances(self, vm_instance): return self._get_instance_ip_address(vm_instance) @override def _vm_get_id_from_list_instances(self, vm): return vm.id @override def _vm_get_cpu(self, vm_instance): size = self._get_vm_size(vm_instance) if size and 'cpu' in size.extra: return size.extra.get('cpu') @override def _vm_get_ram(self, vm_instance): size = self._get_vm_size(vm_instance) if size: return size.ram @override def _vm_get_root_disk(self, vm_instance): size = self._get_vm_size(vm_instance) if size: return size.disk @override def _vm_get_instance_type(self, vm_instance): return vm_instance.extra.get('size_name') @override def _list_vm_sizes(self): return self.sizes @override def _size_get_cpu(self, vm_size): return vm_size.extra.get('cpu') @override def _size_get_ram(self, vm_size): return vm_size.ram @override def _size_get_instance_type(self, vm_size): return vm_size.name def _get_instance_ip_address(self, instance, ipType='public'): if ipType.lower() == 'private': return (len(instance.private_ips) != 0) and instance.private_ips[0] or (len(instance.public_ips) != 0) and instance.public_ips[0] or '' else: return (len(instance.public_ips) != 0) and instance.public_ips[0] or (len(instance.private_ips) != 0) and instance.private_ips[0] or '' def _import_keypair(self, user_info): kp_name = 'ss-key-%i' % int(time.time() * 1000000) public_key = user_info.get_public_keys() try: kp = self.libcloud_driver.import_key_pair_from_string(kp_name, public_key) except Exception as e: user_info.set_keypair_name(None) raise Exceptions.ExecutionException('Cannot import the public key. Reason: %s' % e) kp_name = kp.name user_info.set_keypair_name(kp_name) return kp_name def _create_keypair_and_set_on_user_info(self, user_info): kp_name = 'ss-build-image-%i' % int(time.time()) kp = self.libcloud_driver.create_key_pair(kp_name) user_info.set_private_key(kp.private_key) kp_name = kp.name user_info.set_keypair_name(kp_name) return kp_name def _delete_keypair(self, kp_name): kp = KeyPair(name=kp_name, public_key=None, fingerprint=None, driver=self.libcloud_driver) return self.libcloud_driver.delete_key_pair(kp) def format_instance_name(self, name): name = self.remove_bad_char_in_instance_name(name) return self.truncate_instance_name(name) def truncate_instance_name(self, name): if len(name) <= 63: return name else: return name[:31] + '-' + name[-31:] def remove_bad_char_in_instance_name(self, name): try: newname = re.sub(r'[^a-zA-Z0-9-]', '', name) m = re.search('[a-zA-Z]([a-zA-Z0-9-]*[a-zA-Z0-9]+)?', newname) return m.string[m.start():m.end()] except: raise Exceptions.ExecutionException( 'Cannot handle the instance name "%s". Instance name can ' 'contain ASCII letters "a" through "z", the digits "0" ' 'through "9", and the hyphen ("-"), must be between 1 and 63 ' 'characters long, and can\'t start or end with "-" ' 'and can\'t start with digit' % name) def _build_image(self, user_info, node_instance): raise Exceptions.ExecutionException("%s doesn't implement build image feature." % self.__class__.__name__) ``` #### File: tar/test/TestCloudStackClientCloudLive.py ```python import os import time import unittest from mock import Mock from slipstream.cloudconnectors.BaseCloudConnector import BaseCloudConnector from slipstream_cloudstack.CloudStackClientCloud import CloudStackClientCloud from slipstream.ConfigHolder import ConfigHolder from slipstream.UserInfo import UserInfo from slipstream.NodeInstance import NodeInstance from slipstream.NodeDecorator import RUN_CATEGORY_DEPLOYMENT, KEY_RUN_CATEGORY, NodeDecorator from slipstream import util CONFIG_FILE = os.path.join(os.path.dirname(__file__), 'pyunit.credentials.properties') # Example configuration file. """ [Test] General.ssh.public.key = ssh-rsa .... cloudstack.endpoint = https://api.exoscale.ch/compute cloudstack.key = xxx cloudstack.secret = yyy cloudstack.zone = CH-GV2 cloudstack.template = 8c7e60ae-3a30-4031-a3e6-29832d85d7cb cloudstack.instance.type = Micro cloudstack.security.groups = default cloudstack.max.iaas.workers = 2 """ # pylint: disable=pointless-string-statement # pylint: disable=protected-access class TestCloudStackClientCloud(unittest.TestCase): connector_instance_name = 'cloudstack' def constructKey(self, name): return self.connector_instance_name + '.' + name def setUp(self): BaseCloudConnector._publish_vm_info = Mock() # pylint: disable=protected-access os.environ['SLIPSTREAM_CONNECTOR_INSTANCE'] = self.connector_instance_name os.environ['SLIPSTREAM_BOOTSTRAP_BIN'] = 'http://example.com/bootstrap' os.environ['SLIPSTREAM_DIID'] = '00000000-0000-0000-0000-%s' % time.time() if not os.path.exists(CONFIG_FILE): raise Exception('Configuration file %s not found.' % CONFIG_FILE) self.ch = ConfigHolder(configFile=CONFIG_FILE, context={'foo': 'bar'}) self.ch.set(KEY_RUN_CATEGORY, '') self.ch.set('verboseLevel', self.ch.config['General.verbosity']) self.client = CloudStackClientCloud(self.ch) self.user_info = UserInfo(self.connector_instance_name) self.user_info[self.constructKey('endpoint')] = self.ch.config['cloudstack.endpoint'] self.user_info[self.constructKey('zone')] = self.ch.config['cloudstack.zone'] self.user_info[self.constructKey('username')] = self.ch.config['cloudstack.key'] self.user_info[self.constructKey('password')] = self.ch.config['cloudstack.secret'] security_groups = self.ch.config['cloudstack.security.groups'] instance_type = self.ch.config['cloudstack.instance.type'] self.user_info['General.' + UserInfo.SSH_PUBKEY_KEY] = self.ch.config['General.ssh.public.key'] image_id = self.ch.config[self.constructKey('template')] self.multiplicity = 2 self.max_iaas_workers = self.ch.config.get('cloudstack.max.iaas.workers', str(self.multiplicity)) self.node_name = 'test_node' self.node_instances = {} for i in range(1, self.multiplicity + 1): node_instance_name = self.node_name + '.' + str(i) self.node_instances[node_instance_name] = NodeInstance({ NodeDecorator.NODE_NAME_KEY: self.node_name, NodeDecorator.NODE_INSTANCE_NAME_KEY: node_instance_name, 'cloudservice': self.connector_instance_name, # 'index': i,s 'image.platform': 'linux', 'image.imageId': image_id, 'image.id': image_id, self.constructKey('instance.type'): instance_type, self.constructKey('security.groups'): security_groups, 'network': 'private' }) def tearDown(self): os.environ.pop('SLIPSTREAM_CONNECTOR_INSTANCE') os.environ.pop('SLIPSTREAM_BOOTSTRAP_BIN') self.client = None self.ch = None def xtest_1_startStopImages(self): self.client.run_category = RUN_CATEGORY_DEPLOYMENT try: self.client.start_nodes_and_clients(self.user_info, self.node_instances) util.printAndFlush('Instances started') vms = self.client.get_vms() assert len(vms) == self.multiplicity finally: self.client.stop_deployment() def xtest_2_buildImage(self): raise NotImplementedError() if __name__ == '__main__': unittest.main() ``` #### File: tar/test/TestCloudStackClientCloud.py ```python import os import unittest from slipstream.ConfigHolder import ConfigHolder from slipstream_cloudstack.CloudStackClientCloud import CloudStackClientCloud class TestCloudStackClientCloud(unittest.TestCase): connector_instance_name = 'cloudstack' def setUp(self): os.environ['SLIPSTREAM_CONNECTOR_INSTANCE'] = self.connector_instance_name def tearDown(self): pass def test_init(self): CloudStackClientCloud(ConfigHolder(context={'foo': 'bar'})) if __name__ == '__main__': unittest.main() ``` #### File: tar/slipstream_docker/DockerClientCluster.py ```python import time import slipstream.util as util import slipstream.exceptions.Exceptions as Exceptions from slipstream.util import override from slipstream.cloudconnectors.BaseCloudConnector import BaseCloudConnector from slipstream.utils.ssh import generate_keypair import ssl import urllib import re import base64 import requests import json import sys def getConnector(config_holder): return getConnectorClass()(config_holder) def getConnectorClass(): return DockerClientCluster class DockerClientCluster(BaseCloudConnector): def _resize(self, node_instance): raise Exceptions.ExecutionException('{0} doesn\'t implement resize feature.'.format(self.__class__.__name__)) def _detach_disk(self, node_instance): raise Exceptions.ExecutionException('{0} doesn\'t implement detach disk feature.'.format(self.__class__.__name__)) def _attach_disk(self, node_instance): raise Exceptions.ExecutionException('{0} doesn\'t implement attach disk feature.'.format(self.__class__.__name__)) cloudName = 'docker' def __init__(self, config_holder): super(DockerClientCluster, self).__init__(config_holder) self._set_capabilities(contextualization=True) self.user_info = None @override def _initialization(self, user_info, **kwargs): util.printStep('Initialize the Docker connector.') self.user_info = user_info def format_instance_name(self, name): new_name = self.remove_bad_char_in_instance_name(name) return self.truncate_instance_name(new_name) @staticmethod def truncate_instance_name(name): if len(name) <= 128: return name else: return name[:63] + '-' + name[-63:] @staticmethod def remove_bad_char_in_instance_name(name): return re.sub('[^a-zA-Z0-9-]', '', name) def _set_instance_name(self, vm_name): return self.format_instance_name(vm_name) @override def _start_image(self, user_info, node_instance, vm_name): # Adapt naming convention from IaaS model try: service = json.loads(node_instance.get_cloud_parameter("service")) except ValueError as ve: raise ValueError("Requested service is not in JSON format - %s" % ve), None, sys.exc_info()[2] except: raise service_name = service["Name"] if service.has_key("Name") else vm_name util.printStep('Deploy service %s to %s' % (service_name, user_info.get_cloud_endpoint())) return self._start_container_in_docker(user_info, node_instance, service_name) def _start_container_in_docker(self, user_info, node_instance, service_name): request_url = "%s/services/create" % (user_info.get_cloud_endpoint()) service = node_instance.get_cloud_parameter("service") try: create = requests.post(request_url, data=service, headers={'Content-Type': 'application/json', 'Accept': 'application/json'}) except requests.exceptions.ConnectionError as e: raise requests.exceptions.ConnectionError("Remote Docker API is not running - %s" % e), None, sys.exc_info()[2] except: raise response_json = json.loads(create.text) self.validate_start_image(response_json) return response_json def validate_start_image(self, response): """Takes the raw response from _start_container_in_docker and checks whether the service creation request was successful or not""" if len(response.keys()) == 1 and response.has_key("message"): raise Exceptions.ExecutionException(response["message"]) @override def list_instances(self): request_url = "%s/services" % (self.user_info.get_cloud_endpoint()) services_list = requests.get(request_url) # return a list of objects instead of plain text return json.loads(services_list.text) @override def _stop_vms_by_ids(self, ids): for service_id in ids: delete_url = "%s/services/%s" % (self.user_info.get_cloud_endpoint(), service_id) delete = requests.delete(delete_url) if delete.text: self._print_detail(delete.text) @override def _build_image(self, user_info, node_instance): return self._build_container_image(user_info, node_instance) def _build_container_image(self, user_info, node_instance): #TODO: build docker image and upload to registry return None def _vm_get_name(self, vm): # Return the service name return vm["Spec"]["Name"] def _vm_get_image_name(self, vm): # Return the container image name return vm["Spec"]["TaskTemplate"]["ContainerSpec"]["Image"] def _vm_get_port_mappings(self, vm): # string of hostPort:containerPort mappings return "%s:%s" % (vm["Endpoint"]["Ports"][0]["PublishedPort"], vm["Endpoint"]["Ports"][0]["TargetPort"]) def _vm_get_restart_policy(self, vm): # Return the container restart policy return vm["Spec"]["TaskTemplate"]["RestartPolicy"]["Condition"] def _vm_get_creation_time(self, vm): # Return the container creation time return vm['CreatedAt'] def _vm_get_start_time(self, vm): # Return the container creation time return vm['UpdatedAt'] @override def _vm_get_ip(self, vm): if vm.has_key("Endpoint"): return vm["Endpoint"]["VirtualIPs"][0]["Addr"] else: return vm def _vm_get_replicas(self, vm): return str(vm["Spec"]["Mode"]["Replicated"]["Replicas"]) @override def _vm_get_id(self, vm): return vm["ID"] @override def _vm_get_ip_from_list_instances(self, vm_instance): return self._vm_get_ip(vm_instance) @override def _vm_get_instance_type(self, vm_instance): return "service" ``` #### File: tar/slipstream_docker/DockerRunInstancesCommand.py ```python import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) from slipstream.command.CloudClientCommand import main from slipstream.command.RunInstancesCommand import RunInstancesCommand from slipstream_docker.DockerCommand import DockerCommand from slipstream.NodeDecorator import NodeDecorator from slipstream.NodeInstance import NodeInstance class DockerRunInstances(RunInstancesCommand, DockerCommand): SERVICE_REQUEST = "service" def __init__(self): super(DockerRunInstances, self).__init__() def set_cloud_specific_options(self, parser): DockerCommand.set_cloud_specific_options(self, parser) self.parser.add_option('--' + self.SERVICE_REQUEST, dest=self.SERVICE_REQUEST, help='Service request to be passed to Docker', default='', metavar='SERVICE-REQUEST') def _set_command_specific_options(self, parser): pass def _get_command_specific_user_cloud_params(self): # NodeDecorator.NATIVE_CONTEXTUALIZATION_KEY doesn't apply here, and it doesn't even exist anymore # so simply force return {} as it line 97 of RunInstancesCommand.py return {} def _get_node_instance(self): # the runtime parameters are not the same as for VMs runtime_parameters = { NodeDecorator.NODE_INSTANCE_NAME_KEY: self.get_node_instance_name(), 'cloudservice': self._cloud_instance_name } return NodeInstance(runtime_parameters) def get_cloud_specific_node_inst_cloud_params(self): node_params = DockerCommand.get_cloud_specific_node_inst_cloud_params(self) node_params[self.SERVICE_REQUEST] = self.get_option(self.SERVICE_REQUEST) return node_params def _get_command_specific_node_inst_cloud_params(self): # LOGIN_PASS_KEY does not apply to the Docker connector cloud_params = {} return cloud_params def get_cloud_specific_mandatory_options(self): return DockerCommand.get_cloud_specific_mandatory_options(self) def _get_command_mandatory_options(self): # Remove USER PASS from mandatory parameters as we might be dealing # with a no protected cluster return [self.SERVICE_REQUEST] if __name__ == "__main__": main(DockerRunInstances) ``` #### File: tar/slipstream_openstack/OpenStackCommand.py ```python from slipstream.command.CloudClientCommand import CloudClientCommand from slipstream_openstack.OpenStackClientCloud import OpenStackClientCloud, \ STATE_MAP class OpenStackCommand(CloudClientCommand): STATE_MAP = STATE_MAP DOMAIN_KEY = 'domain' REGION_KEY = 'region' PROJECT_KEY = 'project' ENDPOINT_KEY = 'endpoint' SERVICE_TYPE_KEY = 'service-type' SERVICE_NAME_KEY = 'service-name' IDENTITY_VERSION_KEY = 'identity-version' def __init__(self): super(OpenStackCommand, self).__init__() def get_connector_class(self): return OpenStackClientCloud def set_cloud_specific_options(self, parser): parser.add_option('--' + self.ENDPOINT_KEY, dest=self.ENDPOINT_KEY, help='Identity service (Keystone)', default='', metavar='ENDPOINT') parser.add_option('--' + self.REGION_KEY, dest=self.REGION_KEY, help='Region (default: regionOne)', default='regionOne', metavar='REGION') parser.add_option('--' + self.DOMAIN_KEY, dest=self.DOMAIN_KEY, help='Domain (Identity v3 only)', default='', metavar='DOMAIN') parser.add_option('--' + self.PROJECT_KEY, dest=self.PROJECT_KEY, help='Project (Tenant)', default='', metavar='PROJECT') parser.add_option('--' + self.IDENTITY_VERSION_KEY, dest=self.IDENTITY_VERSION_KEY, help='Identity API version (v2|v3)', default='v2', metavar='VERSION') parser.add_option('--' + self.SERVICE_TYPE_KEY, dest=self.SERVICE_TYPE_KEY, help='Type-name of the service which provides the instances functionality (default: compute)', default='compute', metavar='TYPE') parser.add_option('--' + self.SERVICE_NAME_KEY, dest=self.SERVICE_NAME_KEY, help='Name of the service which provides the instances functionality (optional)', default=None, metavar='NAME') def get_cloud_specific_user_cloud_params(self): return {'tenant-name': self.get_option(self.PROJECT_KEY), 'serviceRegion': self.get_option(self.REGION_KEY), 'domain-name': self.get_option(self.DOMAIN_KEY), self.ENDPOINT_KEY: self.get_option(self.ENDPOINT_KEY), 'serviceType': self.get_option(self.SERVICE_TYPE_KEY), 'serviceName': self.get_option(self.SERVICE_NAME_KEY), 'identityVersion': self.get_option(self.IDENTITY_VERSION_KEY)} def get_cloud_specific_mandatory_options(self): return [self.REGION_KEY, self.PROJECT_KEY, self.ENDPOINT_KEY, self.SERVICE_TYPE_KEY] ``` #### File: tar/slipstream_openstack/TestBaseLive.py ```python import os import sys import unittest import traceback from mock import Mock from pprint import pprint as pp from slipstream import util from slipstream.ConfigHolder import ConfigHolder from slipstream.NodeInstance import NodeInstance from slipstream.SlipStreamHttpClient import UserInfo from slipstream.NodeDecorator import KEY_RUN_CATEGORY from slipstream.NodeDecorator import RUN_CATEGORY_DEPLOYMENT def publish_vm_info(self, vm, node_instance): # pylint: disable=unused-argument, protected-access print '%s, %s' % (self._vm_get_id(vm), self._vm_get_ip(vm)) class TestBaseLive(unittest.TestCase): cin = '' node_instances = {} # of NodeInstance() multiplicity = 0 max_iaas_workers = 1 def construct_key(self, name): return self.cin + '.' + name def _conf_val(self, key, default=None): conf_key = self.construct_key(key) if default: return self.ch.config.get(conf_key, default) return self.ch.config[conf_key] def _build_user_info(self, keys): self.user_info = UserInfo(self.cin) self.user_info['General.' + UserInfo.SSH_PUBKEY_KEY] = self.ch.config[ 'General.ssh.public.key'] for k in keys: self.user_info[self.construct_key(k)] = self._conf_val(k) def _load_config(self, conf_file): if not os.path.exists(conf_file): raise Exception('Configuration file %s not found.' % conf_file) self.ch = ConfigHolder(configFile=conf_file, context={'foo': 'bar'}) self.ch.set(KEY_RUN_CATEGORY, '') def _build_client(self, testedCls): testedCls._publish_vm_info = publish_vm_info # pylint: disable=protected-access self.client = testedCls(self.ch) def _get_ex_msg(self, ex): if hasattr(ex, 'message'): return ex.message if hasattr(ex, 'arg'): return ex.arg return '' def _setUp(self, testedCls, conf_file, conf_keys): """(Re-)sets the following fields self.ch - ConfigHolder self.client - instance of BaseCloudConnector self.user_info - UserInfo self.multiplicity - int self.max_iaas_workers - str """ os.environ['SLIPSTREAM_CONNECTOR_INSTANCE'] = self.cin os.environ['SLIPSTREAM_BOOTSTRAP_BIN'] = 'http://example.com/bootstrap' os.environ['SLIPSTREAM_DIID'] = '00000000-0000-0000-0000-000000000000' self._load_config(conf_file) self._build_client(testedCls) self._build_user_info(conf_keys) pp(self.user_info) self.multiplicity = int(self._conf_val('multiplicity', 2)) self.max_iaas_workers = self._conf_val('max.iaas.workers', str(self.multiplicity)) def _test_start_stop_images(self): "Live test that starts and stops VMs on a cloud." self.client.run_category = RUN_CATEGORY_DEPLOYMENT success = True error = '' try: self.client.start_nodes_and_clients(self.user_info, self.node_instances) vms = self.client.get_vms() assert len(vms) == self.multiplicity util.printAction('Instances started.') pp(vms) except Exception as ex: success = False error = self._get_ex_msg(ex) util.printError("Exception caught while starting instances!") exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback) finally: util.printAction("Stopping deployment.") self.client.stop_deployment() self.assertEquals(success, True, error) ```
{ "source": "jolsfd/imagenamer", "score": 3 }
#### File: imagenamer/src/menu.py ```python import os from src.settings import Settings from src.rename import Rename from colorama import Fore, Back, Style class Menu: def __init__(self, path_to_settings): self.settings_objects = Settings(path_to_settings) self.settings = self.settings_objects.load_settings() self.error = self.settings_objects.check_settings(self.settings) self.rename_object = Rename(self.settings) def rename(self): excluded_folders = [] exclude_input = " " path = input("Please input a path: ") while len(exclude_input) > 0: exclude_input = input( f'Optional! Exclude folder (Press "ENTER" to skip!): ' ) if len(exclude_input) > 0: excluded_folders.append(exclude_input) if "\\" in path: path = path.replace("\\", "/") if os.path.exists(path): number_of_images, number_of_raws = self.rename_object.collect_files( path, excluded_folders ) print(f"Rename {number_of_images} images and {number_of_raws} raws") user_input = input("Yes/No [y/n]") if user_input == "y": self.rename_object.rename_images() else: print(Fore.RED + f"{path} does not exist!" + Fore.RESET) self.rename_object.clear() def new_settings(self): print(f'Enter new settings. If you do not want to change press "Enter"\n') # Get new attributes from user print(f'Current format: {self.settings["format"]}') print( f'"$Y": Year ; "$M": Month ; "$D": Day ; "$h": Hour ; "$m": Minute ; "$s": Seconds ; "MODEL": Camera Model' ) new_format = input(f"Enter new file format: ") print(Fore.CYAN + f"\nAll Extensions with dot!" + Fore.RESET) add_image_extension = input(f"Add new image extension: ") add_raw_extension = input(f"Add new raw extension: ") del_image_extension = input(f"Remove image extension:") del_raw_extension = input(f"Remove raw extension: ") if self.settings["raw_rename"] == False: raw_rename_input = input(f"Do you want to enable Raw Rename ? [y/n]") else: raw_rename_input = input(f"Do you want to disable Raw Rename ? [y/n]") if self.settings["safe_rename"] == False: safe_rename_input = input(f"Do you want to enable Safe Rename ? [y/n]") else: safe_rename_input = input(f"Do you want to disable Safe Rename ? [y/n]") # Make new settings new_settings = self.settings # Change attributes in new settings if raw_rename_input == "y": if self.settings["raw_rename"] == False: new_settings["raw_rename"] = True else: new_settings["raw_rename"] = False if safe_rename_input == "y": if self.settings["safe_rename"] == False: new_settings["safe_rename"] = True else: new_settings["safe_rename"] = False if len(new_format) > 0: new_settings["format"] = new_format new_settings["safe_string"] = new_format.partition("$")[0] if len(add_image_extension) > 0: new_settings["image_ext"].append(add_image_extension) if len(add_raw_extension) > 0: new_settings["raw_ext"].append(add_raw_extension) if len(del_image_extension) > 0: try: new_settings["image_ext"].remove(del_image_extension) except ValueError: pass if len(del_raw_extension) > 0: try: new_settings["raw_ext"].remove(del_raw_extension) except ValueError: pass # Print new settings print( "\n" f"Safe String: {new_settings['safe_string']}\n" f"File Format: {new_settings['format']}\n" f"Image extensions: {new_settings['image_ext']}\n" f"Raw extensions: {new_settings['raw_ext']}\n" f"Raw Rename: {new_settings['raw_rename']}\n" f"Safe Rename: {new_settings['safe_rename']}\n" ) # Confirm new settings confirm = input(f"Do you confirm settings ? [y/n]") if confirm == "y": # Save new settings into json file self.settings_objects.save_settings(new_settings) self.rename_object.update_settings(new_settings) else: print(Fore.RED + f"New settings were not saved.\n" + Fore.RESET) def help(self): print( Fore.BLUE + f'"rename"' + Fore.RESET + f" - renames all images in a folder structure\n" + Fore.BLUE + f'"settings"' + Fore.RESET + f" - change settings\n" + Fore.BLUE + f'"quit"' + Fore.RESET + f" - quits the application\n" + Fore.LIGHTMAGENTA_EX + f"\nFor more Help please visit https://github.com/jolsfd/imagenamer/ \n" + Fore.RESET ) ```
{ "source": "jolsfd/rsa-algorithm", "score": 3 }
#### File: jolsfd/rsa-algorithm/bench_rsa.py ```python import time import platform import cpuinfo import examples from rsa import RSA class Benchmark: def __init__(self, n: int, e: int, d: int, m: int, c: int, text: str) -> None: self.n = n self.e = e self.d = d self.m = m self.c = c self.text = text self.rsa = RSA() def bench_encrypt(self, n: int) -> float: start = time.time() for i in range(n): self.rsa.encrypt(self.m, self.e, self.n) return time.time() - start def bench_decrypt(self, n: int) -> float: start = time.time() for i in range(n): self.rsa.decrypt(self.c, self.d, self.n) return time.time() - start def bench_encrypt_text(self, n: int) -> float: start = time.time() for i in range(n): self.text_c = self.rsa.encrypt_text(self.text, self.d, self.n) return time.time() - start def bench_decrypt_text(self, n: int) -> float: start = time.time() for i in range(n): self.rsa.decrypt_text(self.text_c, self.d, self.n) return time.time() - start if __name__ == "__main__": m = examples.m_4096 c = examples.c_4096 text = """Die Kryptographie ist eine Wissenschaft, die sich mit den Methoden beschäftigt, die durch Verschlüsselung und verwandte Verfahren Daten vor unbefugtem Zugriff schützen sollen. Das eine wichtige Hilfsmittel der Kryptographie ist die Matehmatik, denn nur durch mathematische Denkweise und mithilfe von mathematischen Kenntnissen ist es möglich, Verfahren zur sicheren Verschlüsselung zu entwickeln. Das andere wichtige Hilfsmittel ist der Computer. Dieser führt die Verschlüsselungsverfahren aus und leistet wichtige Dienste bei der Untersuchung von kryptografischen Methoden und Schwachstellen.""" # Symsteminformationen print("=" * 40, "System Information", "=" * 40) computer = platform.uname() print(f"System: {computer.system}") print(f"Node Name: {computer.node}") print(f"Release: {computer.release}") print(f"Version: {computer.version}") print(f"Processor: {computer.processor}") print() # CPU Information print(f"=" * 40, "CPU Information", "=" * 40) info = cpuinfo.get_cpu_info() name = info["brand_raw"] cores = info["count"] print(f"Name: {name}") print(f"CPU Cores: {cores}") print() # Python Information print("=" * 40, "Python Information", "=" * 40) print(f"Version: {platform.python_version()}") print(f"Compiler: {platform.python_compiler()}") print() # Treiber Code count = 100 print(f"Running Benchmark {count} times...") bench = Benchmark(examples.n_4096, examples.e_4096, examples.d_4096, m, c, text) time_decrypt = bench.bench_encrypt(count) print(f"{time_decrypt}s for encryption.") time_encrypt = bench.bench_decrypt(count) print(f"{time_encrypt}s for decryption.") time_decrypt_text = bench.bench_encrypt_text(count) print(f"{time_decrypt_text}s for text encryption.") time_encrypt_text = bench.bench_decrypt_text(count) print(f"{time_encrypt_text}s for text decryption.") ``` #### File: jolsfd/rsa-algorithm/cli_rsa.py ```python import argparse from typing import List, Tuple from rsa import RSA def read_key_file(name: str) -> List[int]: """ Schlüssel von Datei lesen. """ file = open(name, "r") try: lines = file.readlines() return [int(line) for line in lines] finally: file.close() def write_key_file(name: str, key: List[int]): """ Schlüssel in Datei schreiben. """ file = open(name, "w") try: [file.write(str(el) + "\n") for el in key] finally: file.close() def main(): # defaults default_file = "key.txt" rsa = RSA() # Main parser parser = argparse.ArgumentParser( prog="RSA Cli", description="Command Line Interface als Beispielhafte Anwendung für RSA", ) # key files parser.add_argument( "--file", type=str, default=default_file, help="Dateispeicherort für Schlüsseldatei", ) subparsers = parser.add_subparsers(help="sub-command help", dest="command") # generate command generate_parser = subparsers.add_parser("generate", help="Generate rsa key files") generate_parser.add_argument( "--bits", type=int, default=2048, help="Länge des RSA-Moduls, welches durch 8 teilbar sein muss", ) # encrypt command decrypt_parser = subparsers.add_parser("encrypt", help="Encrypt message") decrypt_parser.add_argument("message", type=str, help="Naricht") # decrypt command encrypt_parser = subparsers.add_parser("decrypt", help="Decrypt message") encrypt_parser.add_argument( "cipher", type=int, nargs="+", help="Verschlüsselter Text" ) # parse arguments args = parser.parse_args() if args.command == "generate": print(f"Generating RSA key with {args.bits}bits...") if args.bits % 8 != 0: print("Bits müssen durch 8 teilbar sein!") public, private = rsa.generate_keys(args.bits) write_key_file(args.file, [public[0], public[1], private[0]]) elif args.command == "encrypt": print(f"Encrypting text message...") key = read_key_file(args.file) cipher = rsa.encrypt_text(args.message, int(key[0]), int(key[1])) print("=" * 20, "Cipher", "=" * 20) [print(c, end=" ") for c in cipher] print("\n" + "=" * 48) elif args.command == "decrypt": print(f"Decrypting text message...") key = read_key_file(args.file) message = rsa.decrypt_text(args.cipher, int(key[2]), int(key[1])) print("=" * 20, "Message", "=" * 20) print(message) print("=" * 49) if __name__ == "__main__": main() ```
{ "source": "jolsfd/unsafe", "score": 4 }
#### File: jolsfd/unsafe/HashPassphrase.py ```python from hashlib import pbkdf2_hmac import string chars = string.digits + string.ascii_letters + string.punctuation salt = "<PASSWORD>" def convert_bytes_to_string(hashed_bytes, length): number = int.from_bytes(hashed_bytes, byteorder="big") string = "" while number > 0 and len(string) < length: string = string + chars[number % len(chars)] number = number // len(chars) return string def convert_hash_string(hash_string): hashed_bytes = pbkdf2_hmac( "sha512", hash_string.encode("utf-8"), salt.encode("utf-8"), 4096 ) hashed_string = convert_bytes_to_string(hashed_bytes, 16) return hashed_string if __name__ == "__main__": hash_string = input("Hash String >>>") while len(hash_string) < 1: hash_string = input("Hash String >>>") hashed_string = convert_hash_string(hash_string) print(f"Hashed Passphrase >>> {hashed_string}") ```
{ "source": "jolsten/float-interpreter", "score": 3 }
#### File: typeconvert/types/ibm64.py ```python import numpy as np from numba import njit, vectorize signatures = [ 'f8(u8)', ] def func(value: np.uint64) -> np.float64: r"""Convert uint to IBM64 Interprets an unsigned integer as a IBM 64-bit Float and returns an IEEE 64-bit Float. Parameters ---------- value : unsigned integer Unsigned integer value of the data. Returns ------- np.float64 A float containing the interpretation of `value`. Examples -------- >>> out = func(0x4019999A) >>> type(out), out (<class 'numpy.float64'>, 0.1) """ value = np.uint64(value) s = (value >> np.uint8(63)) * np.uint64(1) e = (value >> np.uint8(56)) & np.uint64(0x7F) m = (value & np.uint64(0x00FFFFFFFFFFFFFF)) S = np.int8(-1) ** s E = np.int8(e) - np.int8(64) M = np.float64(m) / np.float64(2**56) return np.float64(S * M * np.float64(16)**E) jfunc = njit(signatures)(func) ufunc = vectorize(signatures)(func) ``` #### File: typeconvert/types/ti32.py ```python import numpy as np from numba import njit, vectorize from .twoscomp import jfunc as uint_to_twoscomp signatures = [ 'f8(u4)', ] def func(value: np.uint32) -> np.float64: r"""Convert uint to TI32 Interprets an unsigned integer as a Texas Instruments 32-bit Float and returns an IEEE 64-bit Float. Parameters ---------- value : unsigned integer Unsigned integer value of the data. Returns ------- np.float64 A float containing the interpretation of `value`. Examples -------- >>> out = func(0xFF800000) >>> type(out), out (<class 'numpy.float64'>, -1.0) """ # Reference: # https://www.ti.com/lit/an/spra400/spra400.pdf value = np.uint32(value) e = uint_to_twoscomp( (value & np.uint32(0xFF000000)) >> np.uint8(24), np.uint8(8) ) s = (value & np.uint32(0x00800000)) >> np.uint8(23) m = (value & np.uint32(0x007FFFFF)) if e == np.int64(-128): return np.float64(0) S = np.float64(-2) ** s E = np.float64(e) M = np.float64(m) return (S + M/np.float64(2**23)) * np.float64(2) ** E jfunc = njit(signatures)(func) ufunc = vectorize(signatures)(func) ``` #### File: float-interpreter/tests/test_dec32.py ```python import pytest import numpy as np from itertools import zip_longest from typeconvert.types.dec32 import func, jfunc, ufunc # https://pubs.usgs.gov/of/2005/1424/ TEST_ARRAY_SIZE = 100 TEST_CASES = [ # F4 (0x40800000, 1.000000), (0xC0800000, -1.000000), (0x41600000, 3.500000), (0xC1600000, -3.500000), (0x41490FD0, 3.141590), (0xC1490FD0, -3.141590), (0x7DF0BDC2, 9.9999999E+36), (0xFDF0BDC2, -9.9999999E+36), (0x03081CEA, 9.9999999E-38), (0x83081CEA, -9.9999999E-38), (0x409E0652, 1.234568), (0xC09E0652, -1.234568), (0x7FFFFFFF, 1.7014118e+38), # last two not from reference (0xFFFFFFFF, -1.7014118e+38), ] tests = [] for val_in, val_out in TEST_CASES: tests.append((np.uint32(val_in), pytest.approx(val_out))) @pytest.mark.parametrize('val_in, val_out', tests) def test_func(val_in, val_out): print('func', val_in, val_out) assert func(val_in) == val_out @pytest.mark.parametrize('val_in, val_out', tests) def test_njit(val_in, val_out): print('jfunc', val_in, val_out) assert jfunc(val_in) == val_out @pytest.mark.parametrize('val_in, val_out', tests) def test_vectorize(val_in, val_out): print('ufunc', val_in, val_out) data = np.array([val_in] * TEST_ARRAY_SIZE) expected = [val_out] * TEST_ARRAY_SIZE assert all([a == b for a, b in zip_longest(ufunc(data), expected)]) ``` #### File: float-interpreter/tests/test_ibm64.py ```python import pytest import numpy as np from itertools import zip_longest from typeconvert.types.ibm64 import func, jfunc, ufunc # Reference: # https://en.wikipedia.org/wiki/IBM_hexadecimal_floating-point TEST_ARRAY_SIZE = 100 TEST_CASES = [ (0x0010000000000000, 5.397605e-79), (0x8010000000000000, -5.397605e-79), (0x0000000000000000, 0.0), (0x401999999999999A, 0.1), (0xC01999999999999A, -0.1), ] tests = [] for val_in, val_out in TEST_CASES: tests.append((np.uint64(val_in), pytest.approx(val_out))) @pytest.mark.parametrize('val_in, val_out', tests) def test_func(val_in, val_out): print('func', val_in, val_out) assert func(val_in) == val_out @pytest.mark.parametrize('val_in, val_out', tests) def test_njit(val_in, val_out): print('jfunc', val_in, val_out) assert jfunc(val_in) == val_out @pytest.mark.parametrize('val_in, val_out', tests) def test_vectorize(val_in, val_out): print('ufunc', val_in, val_out) data = np.array([val_in] * TEST_ARRAY_SIZE) expected = [val_out] * TEST_ARRAY_SIZE assert all([a == b for a, b in zip_longest(ufunc(data), expected)]) ``` #### File: float-interpreter/tests/test_ti32.py ```python import pytest import numpy as np from itertools import zip_longest from typeconvert.types.ti32 import func, jfunc, ufunc TEST_ARRAY_SIZE = 100 # References: # https://www.ti.com/lit/an/spra400/spra400.pdf # https://stackoverflow.com/questions/64687130/convert-ti-tms320c30-32-bits-float-to-ieee-float-in-python TEST_CASES = ( (0x7F, 0, 0b11111111111111111111111, (2-2**-23) * 2**127), (0x7F, 0, 0b11111111111111111111110, (2-2**-22) * 2**127), (0x7F, 0, 0b11111111111111111111101, (2-2**-21+2**-23) * 2**127), (0x7F, 0, 0b11111111111111111111100, (2-2**-21) * 2**127), (0x7F, 0, 0b00000000000000000000000, 2**127), (0x7E, 0, 0b11111111111111111111111, (2-2**-23) * 2**126), (0x7E, 0, 0b11111111111111111111110, (2-2**-22) * 2**126), (0x7E, 0, 0b11111111111111111111101, (2-2**-21+2**-23) * 2**126), (0x00, 0, 0b00000000000000000000000, 1), (0xFF, 0, 0b11111111111111111111111, 1-2**-24), (0xFF, 0, 0b11111111111111111111110, 1-2**-23), (0xFF, 0, 0b11111111111111111111101, 1-2**-22+2**-24), (0xFF, 0, 0b00000000000000000000000, 2**-1), (0xFE, 0, 0b11111111111111111111111, (2-2**-23) * 2**-2), (0xFE, 0, 0b11111111111111111111110, (2-2**-22) * 2**-2), (0xFE, 0, 0b11111111111111111111101, (2-2**-21+2**-23) * 2**-2), (0x82, 0, 0b00000000000000000000000, 2**-126), (0x81, 0, 0b11111111111111111111111, (2-2**-23) * 2**-127), (0x81, 0, 0b11111111111111111111110, (2-2**-22) * 2**-127), (0x81, 0, 0b11111111111111111111101, (2-2**-21+2**-23) * 2**-127), (0x81, 0, 0b11111111111111111111100, (2-2**-21) * 2**-127), (0x81, 0, 0b00000000000000000000010, (1+2**-22) * 2**-127), (0x81, 0, 0b00000000000000000000001, (1+2**-23) * 2**-127), (0x81, 0, 0b00000000000000000000000, 2**-127), # e = -128 implies zero (0x80, 0, 0b11111111111111111111111, 0.0), (0x80, 0, 0b11111111111111111111110, 0.0), (0x80, 0, 0b11111111111111111111101, 0.0), (0x80, 0, 0b00000000000000000000001, 0.0), (0x80, 0, 0b00000000000000000000000, 0.0), (0x80, 1, 0b11111111111111111111111, 0.0), (0x80, 1, 0b11111111111111111111110, 0.0), (0x80, 1, 0b11111111111111111111101, 0.0), (0x80, 1, 0b00000000000000000000011, 0.0), (0x80, 1, 0b00000000000000000000010, 0.0), (0x80, 1, 0b00000000000000000000001, 0.0), (0x80, 1, 0b00000000000000000000000, 0.0), (0x81, 1, 0b11111111111111111111111, (-1-2**-23) * 2**-127), (0x81, 1, 0b11111111111111111111110, (-1-2**-22) * 2**-127), (0x81, 1, 0b11111111111111111111101, (-1-2**-21+2**-23) * 2**-127), (0x81, 1, 0b00000000000000000000010, (-2+2**-22) * 2**-127), (0x81, 1, 0b00000000000000000000001, (-2+2**-23) * 2**-127), (0x81, 1, 0b00000000000000000000000, - 2**-126), (0x82, 1, 0b11111111111111111111111, (-1-2**-23) * 2**-126), (0x82, 1, 0b11111111111111111111110, (-1-2**-22) * 2**-126), (0x82, 1, 0b11111111111111111111101, (-1-2**-21+2**-23) * 2**-126), (0xFF, 1, 0b00000000000000000000001, (-1+2**-24)), (0xFF, 1, 0b00000000000000000000000, -1.0), # These three tests appear to be wrong, # exp = 0 should yield 2**0, not 2**-1 # (0x00, 1, 0b11111111111111111111111, (-1-2**-23) * 2**-1), # (0x00, 1, 0b11111111111111111111110, (-1-2**-22) * 2**-1), # (0x00, 1, 0b11111111111111111111101, (-1-2**-21+2**-23) * 2**-1), # (0xFF, 1, 0b11111111111111111111111, (-1-2**-23) * 2**-1), (0xFF, 1, 0b11111111111111111111110, (-1-2**-22) * 2**-1), (0xFF, 1, 0b11111111111111111111101, (-1-2**-21+2**-23) * 2**-1), (0x00, 1, 0b11111111111111111111111, (-1-2**-23) * 2**0), (0x00, 1, 0b11111111111111111111110, (-1-2**-22) * 2**0), (0x00, 1, 0b11111111111111111111101, (-1-2**-21+2**-23) * 2**0), (0x00, 1, 0b00000000000000000000001, (-2+2**-23)), (0x00, 1, 0b00000000000000000000000, -2), (0x01, 1, 0b11111111111111111111111, -2-2**-22), (0x01, 1, 0b11111111111111111111110, -2-2**-21), (0x01, 1, 0b11111111111111111111101, -2-2**-20+2**-22), (0x7F, 1, 0b00000000000000000000001, (-2+2**-23) * 2**127), (0x7F, 1, 0b00000000000000000000000, - 2**128), ) tests = [] for e, s, m, val_out in TEST_CASES: val_in = np.uint32((e << 24) + (s << 23) + m) tests.append((val_in, pytest.approx(val_out))) @pytest.mark.parametrize('val_in, val_out', tests) def test_func(val_in, val_out): print('func') print(f'val_in = {val_in:08x}') assert func(val_in) == val_out @pytest.mark.parametrize('val_in, val_out', tests) def test_njit(val_in, val_out): print('jfunc', val_in, val_out) assert jfunc(val_in) == val_out @pytest.mark.parametrize('val_in, val_out', tests) def test_vectorize(val_in, val_out): print('ufunc') data = np.array([val_in] * TEST_ARRAY_SIZE) expected = [val_out] * TEST_ARRAY_SIZE assert all([a == b for a, b in zip_longest(ufunc(data), expected)]) ```
{ "source": "jolth/gpservi-2.0.0", "score": 3 }
#### File: gpservi-2.0.0/DB/pgSQL.py ```python import sys import traceback import psycopg2 as pgsql def connection(args=None): """ args, puede ser una cadena con todos los datos para conectarse a la base de datos o simplemente enviarse sin datos, para lo cual tomara la configuración por defecto almacenada en el fichero de configuración "config.cfg" (en la sección [DATABASE]). así: Usage: >>> from DB.pgSQL import connection >>> connection("dbname='test010' user='postgres' host='localhost' password='<PASSWORD>'") # Con argumentos >>> connection() # Sin argumento <connection object at 0xb715a72c; dsn: 'dbname='test009' user='postgres' host='localhost' password=<PASSWORD>', closed: 0> >>> conn = connection() >>> cursor = conn.cursor() >>> cursor.execute("select * from gps") >>> print cursor.fetchall() [(11, 'GPS0003', 2, False, datetime.datetime(2012, 7, 13, 8, 11, 31, 945952, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=1140, name=None))), ...] >>> """ if args is None: from Load.loadconfig import load args = {} args['dbname'] = load('DATABASE', 'DBNAME') args['user'] = load('DATABASE', 'USER') args['host'] = load('DATABASE', 'HOST') args['password'] = load('DATABASE', 'PASSWORD') args = " ".join(["%s=\'%s\'" % (k, v) for k, v in args.items()]) # Conexión a la base de datos: try: conn = pgsql.connect(args) except pgsql.OperationalError, e: print >> sys.stderr, "\nNo se pudo poner en marcha la base de datos.\n" print >> sys.stderr, e print >> sys.stdout, 'Error: Revisar el archivo de error.log' sys.exit(1) # Retornamos la conexión return conn class PgSQL(object): """ Crea un obejto conexión para la base de datos especificada. Recibe los mismos datos que la función connection(args=None). Por lo tanto, si se quiere usar la conexión a la base de datos por defecto se debe llamar a PgSQL() sin argumentos, asi: >>> conn = pgSQL.PgSQL() Usage: >>> import pgSQL >>> db = pgSQL.PgSQL("dbname='test009' user='postgres' host='localhost' password='<PASSWORD>'") >>> db <pgSQL.PgSQL object at 0xb740e5ec> >>> db.conn <connection object at 0xb718a72c; dsn: 'dbname='test009' user='postgres' host='localhost' password=<PASSWORD>', closed: 0> >>> dir(db.conn) ['DataError', 'DatabaseError', 'Error', 'IntegrityError', 'InterfaceError', 'InternalError', 'NotSupportedError', \ 'OperationalError', 'ProgrammingError', 'Warning', '__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', \ '__hash__', '__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', \ '__subclasshook__', 'async', 'binary_types', 'close', 'closed', 'commit', 'cursor', 'dsn', 'encoding', 'fileno', 'get_backend_pid', \ 'get_parameter_status', 'get_transaction_status', 'isexecuting', 'isolation_level', 'lobject', 'notices', 'notifies', 'poll', \ 'protocol_version', 'reset', 'rollback', 'server_version', 'set_client_encoding', 'set_isolation_level', 'status', 'string_types'] >>> >>> db.cur <cursor object at 0x83916bc; closed: 0> >>> """ def __init__(self, args=None): if args is not None: self.conn = connection(args) else: self.conn = connection() self.status = self.conn.status # Status self.procpid = self.conn.get_backend_pid() # Get backend process id. self.cur = self.conn.cursor() # Return a new cursor. #print "procpid:", self.procpid#(Print de Prueba) # process id (Print de Prueba) def exe(self, query, data=None): """ query, debe ser una cadena que contenga la Query SQL, así: "SELECT * FROM gps" data, debe ser una tupla o diccionario que cotenga los datos a pasar a la Query, así: "INSERT INTO test (num, data) VALUES (%s, %s)", (42, 'bar') usage: >>> import pgSQL >>> db = pgSQL.PgSQL("dbname='test009' user='postgres' host='localhost' password='<PASSWORD>'") >>> db.exe("SELECT * FROM gps") >>> db.cur.fetchall() [(11, 'GPS0003', 2, False, datetime.datetime(2012, 6, 10, 8, 11, 31, 945952, \ tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=1140, name=None))), (14, 'ANT051', \ 1, False, datetime.datetime(2012, 7, 13, 9, 5, 42, 747214, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=1140, name=None)))] >>> >>> db = pgSQL.PgSQL("dbname='test009' user='postgres' host='localhost' password='<PASSWORD>'") >>> db.exe("SELECT * FROM gps WHERE id=14") >>> db.cur.fetchone() (14, 'ANT051', 1, False, datetime.datetime(2012, 7, 13, 9, 5, 42, 747214, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=1140, name=None))) >>> >>> db.cur.fetchall() [(14, 'ANT051', 1, False, datetime.datetime(2012, 7, 13, 9, 5, 42, 747214, tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=1140, name=None)))] >>> >>> db = pgSQL.PgSQL("dbname='test009' user='postgres' host='localhost' password='<PASSWORD>'") >>> db.exe("INSERT INTO gps (name, type) VALUES (%s, %s)", ('GPS0004', 2)) 'INSERT 0 1' >>> # Si no, existen datos en una consoulta se puede manajar así: >>> db = pgSQL.PgSQL("dbname='test009' user='postgres' host='localhost' password='<PASSWORD>'") >>> r = db.exe("SELECT * FROM gps WHERE id=10") Actualizando y Cerranda la conexión >>> if r is not None: print "Record: ", r ... else: "No existen datos" ... 'No existen datos' >>> """ record = None if data is not None: try: self.cur.execute(query, data) return self.cur.statusmessage # Deberia retornar 1, si el insert se realizo except: exc_type, exc_value, exc_traceback = sys.exc_info() print >> sys.stderr, traceback.format_exc(exc_type) #return self.conn.status return self.conn.get_transaction_status() # Deberia retornar 0, si el insert no se realizo finally: print >> sys.stderr, "Actualizando y Cerranda la conexión" # Realizamos los cambios en la DB self.conn.commit() # Cerramos la comunicación self.cur.close() self.conn.close() else: try: self.cur.execute(query) # Execute the Query record = self.cur.fetchall() or record return record # Retornamo una lista con los resultados # de la consulta o None si no obtine nada except: exc_type, exc_value, exc_traceback = sys.exc_info() #print >> sys.stderr, traceback.format_exc(exc_type) print >> sys.stderr, "".join(traceback.format_exception_only(exc_type, exc_value)) #return self.conn.status return self.conn.get_transaction_status() # Deberia retornar -1, si sucede un Error. finally: print >> sys.stderr, "Actualizando y Cerranda la conexión" # Realizamos los cambios en la DB self.conn.commit() # Cerramos la comunicación self.cur.close() self.conn.close() def exemany(self): pass ``` #### File: gpservi-2.0.0/SendDevices/SD.py ```python import os import sys from datetime import datetime class sendData: """ """ def __init__(self, f, server, address, data): #self.server = server #self.address = address self.data = data self.file = f #self.file = os.getcwd() + '/out' with open(self.file, 'r') as f: # Nombre del Dispositivo self.device = f.readline().replace('\n', ''); #print >>sys.stderr, data #if self.device == self.data['id']: if data.find(self.device) is not -1: print "################# Device a Enviar Data:", self.device self.send(server, address) def send(self, server, address): #self.server.sendto('>SXADP10103148111847<', self.address) with open(self.file, 'r') as f: f.readline() s = 0 for l in f: # Send data #server.sendto('>SXADP10103148111847<', self.address) #sent = server.sendto('0×00 0×01 0×04 0×00'+l, address) print >>sys.stderr, '<-' * 34 print >>sys.stderr, 'Fecha: %s' % datetime.now() print >>sys.stderr, 'ID: %s' % self.device print >>sys.stderr, 'IP/Port: %s/%s' % (address[0], address[1]) d = '\x00\x01\x04\x00 ' + l #print >>sys.stderr, d #sent = server.sendto('\x00\x01\x04\x00 '+l.replace('\n', ''), address) sent = server.sendto(d, address) print >>sys.stderr, 'Sending: "%s"' % l #if l == 'AT$RESET' or l == 'at$reset' # Eliminamos el fichero de Envio #print >>sys.stderr, 'Eliminando %s' % self.file os.remove(self.file) # Receive response print >>sys.stderr, 'Waiting to Receive:\n' d, s = server.recvfrom(4096) #print >>sys.stderr, 'received "%s"' % d print >>sys.stderr, d print >>sys.stderr, '->' * 34 #os.delete(self.file) #os.delete(self.file) ```
{ "source": "joltwallet/jolt_wallet", "score": 2 }
#### File: joltwallet/jolt_wallet/idf_ext.py ```python import os import os.path as osp import importlib.util from pprint import pprint def add_unit_test_app_extension(base_actions, project_path=os.getcwd()): _spec = importlib.util.spec_from_file_location("idf_ext", osp.join(os.environ["IDF_PATH"], "tools", "unit-test-app", "idf_ext.py")) _unit_test_app_idf_ext = importlib.util.module_from_spec(_spec) _spec.loader.exec_module(_unit_test_app_idf_ext) extensions = _unit_test_app_idf_ext.action_extensions(base_actions, project_path=project_path) return extensions def action_extensions(base_actions, project_path=os.getcwd()): # Get the generic `build_target(target_name, ctx, args)` build_target = base_actions["actions"]["all"]["callback"] # Add the unit-testing-app extension extensions = add_unit_test_app_extension(base_actions, project_path=project_path) # All functions under extensions['global_action_callbacks'] # are always executed def callback(ctx, global_args, tasks): #if 'define_cache_entry' not in global_args: # global_args.define_cache_entry = [] pass extensions['global_action_callbacks'].append(callback) # Functions registered under extensions["actions"]["my_command_name"] # are invoked when `idf.py my_command_name` is ran def build_test(build_name, ctx, args): #args['no_warnings'] = True # Always add the jolt_os test component # This UNIT_TESTING is now available to CMake as a variable, # but it must be parsed and passed along by the CMakeLists.txt # to the actual build process. args['define_cache_entry'].extend([ 'TEST_ALL=0', 'TEST_COMPONENTS=jolt_os', 'UNIT_TESTING=1', ]) build_target("all", ctx, args) def build_compress(build_name, ctx, args): build_target(build_name, ctx, args) extensions["actions"]["tests"] = { "callback": build_test, } extensions["actions"]["compress"] = { "callback": build_compress, } return extensions ``` #### File: jolt_wallet/pyutils/rng_dump.py ```python import argparse import os, sys import serial from time import sleep, time import logging # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) log = logging.getLogger('elf2jelf') def parse_args(): this_path = os.path.dirname(__file__) default_output_fn = os.path.join(this_path, '..', 'rng.raw') parser = argparse.ArgumentParser() parser.add_argument('--output', type=str, default=default_output_fn, help='File to write raw values to.') parser.add_argument('-n', type=int, default=5000000, help="Number of 32-bit ints to generate. Defaults to 5 million.") parser.add_argument('--baudrate', type=int, default=230400, help="Baudrate") parser.add_argument('--port', type=str, default='/dev/ttyUSB0', help="Serial Port") parser.add_argument('--verbose', '-v', type=str, default='INFO', help=''' Valid options: SILENT INFO DEBUG ''') args = parser.parse_args() dargs = vars(args) global log logging_level = args.verbose.upper() if logging_level == 'INFO': log.setLevel(logging.INFO) elif logging_level == 'DEBUG': log.setLevel(logging.DEBUG) else: raise("Invalid Logging Verbosity") return (args, dargs) def consume(ser): ser.read(size=100000, ) def main(args): args, dargs = parse_args() # need to clear DTR, then clear RTS to properly reset device ser = serial.Serial(dsrdtr=True) ser.baudrate = args.baudrate ser.port = args.port ser.dtr = 1 ser.rts = 1 ser.timeout = 3 ser.open() ser.dtr = 0 ser.rts = 0 log.info("Waiting for device to boot/initialize") sleep(5) # Wait for device to boot consume(ser) cmd = b"rng %d\n" % (args.n * 4) log.debug('Sending "%s" command' % cmd.decode('utf-8')) ser.write( cmd ) t_start = time() with open(args.output, 'wb') as f: echo = ser.read(size=len(cmd)+1) assert( echo[:-2] == cmd[:-1] ) assert( echo[-2] == 13 ) # carriage return assert( echo[-1] == 10 ) # newline for i in range(args.n): data = ser.read(size=4) f.write(data) t_end = time() print("Dumped %d 32-bit RNG values in %.2f seconds" % (args.n, t_end - t_start)) if __name__ == '__main__': main(sys.argv) ```
{ "source": "jolufan/donkeycar_test", "score": 2 }
#### File: donkeycar/management/base.py ```python import argparse import os import shutil import stat import sys import donkeycar as dk from donkeycar.utils import * PACKAGE_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) TEMPLATES_PATH = os.path.join(PACKAGE_PATH, 'templates') HELP_CONFIG = 'location of config file to use. default: ./config.py' def make_dir(path): real_path = os.path.expanduser(path) print('making dir ', real_path) if not os.path.exists(real_path): os.makedirs(real_path) return real_path def load_config(config_path): ''' load a config from the given path ''' conf = os.path.expanduser(config_path) if not os.path.exists(conf): print("No config file at location: %s. Add --config to specify\ location or run from dir containing config.py." % conf) return None try: cfg = dk.load_config(conf) except: print("Exception while loading config from", conf) return None return cfg class BaseCommand(object): pass class CreateCar(BaseCommand): def parse_args(self, args): parser = argparse.ArgumentParser(prog='createcar', usage='%(prog)s [options]') parser.add_argument('--path', default=None, help='path where to create car folder') parser.add_argument('--template', default=None, help='name of car template to use') parser.add_argument('--overwrite', action='store_true', help='should replace existing files') parsed_args = parser.parse_args(args) return parsed_args def run(self, args): args = self.parse_args(args) self.create_car(path=args.path, template=args.template, overwrite=args.overwrite) def create_car(self, path, template='complete', overwrite=False): """ This script sets up the folder structure for donkey to work. It must run without donkey installed so that people installing with docker can build the folder structure for docker to mount to. """ # these are neeeded incase None is passed as path path = path or '~/mycar' template = template or 'complete' print("Creating car folder: {}".format(path)) path = make_dir(path) print("Creating data & model folders.") folders = ['models', 'data', 'logs'] folder_paths = [os.path.join(path, f) for f in folders] for fp in folder_paths: make_dir(fp) # add car application and config files if they don't exist app_template_path = os.path.join(TEMPLATES_PATH, template+'.py') config_template_path = os.path.join(TEMPLATES_PATH, 'cfg_' + template + '.py') myconfig_template_path = os.path.join(TEMPLATES_PATH, 'myconfig.py') train_template_path = os.path.join(TEMPLATES_PATH, 'train.py') calibrate_template_path = os.path.join(TEMPLATES_PATH, 'calibrate.py') car_app_path = os.path.join(path, 'manage.py') car_config_path = os.path.join(path, 'config.py') mycar_config_path = os.path.join(path, 'myconfig.py') train_app_path = os.path.join(path, 'train.py') calibrate_app_path = os.path.join(path, 'calibrate.py') if os.path.exists(car_app_path) and not overwrite: print('Car app already exists. Delete it and rerun createcar to replace.') else: print("Copying car application template: {}".format(template)) shutil.copyfile(app_template_path, car_app_path) os.chmod(car_app_path, stat.S_IRWXU) if os.path.exists(car_config_path) and not overwrite: print('Car config already exists. Delete it and rerun createcar to replace.') else: print("Copying car config defaults. Adjust these before starting your car.") shutil.copyfile(config_template_path, car_config_path) if os.path.exists(train_app_path) and not overwrite: print('Train already exists. Delete it and rerun createcar to replace.') else: print("Copying train script. Adjust these before starting your car.") shutil.copyfile(train_template_path, train_app_path) os.chmod(train_app_path, stat.S_IRWXU) if os.path.exists(calibrate_app_path) and not overwrite: print('Calibrate already exists. Delete it and rerun createcar to replace.') else: print("Copying calibrate script. Adjust these before starting your car.") shutil.copyfile(calibrate_template_path, calibrate_app_path) os.chmod(calibrate_app_path, stat.S_IRWXU) if not os.path.exists(mycar_config_path): print("Copying my car config overrides") shutil.copyfile(myconfig_template_path, mycar_config_path) # now copy file contents from config to myconfig, with all lines # commented out. cfg = open(car_config_path, "rt") mcfg = open(mycar_config_path, "at") copy = False for line in cfg: if "import os" in line: copy = True if copy: mcfg.write("# " + line) cfg.close() mcfg.close() print("Donkey setup complete.") class Train(BaseCommand): def parse_args(self, args): HELP_FRAMEWORK = 'the AI framework to use (tensorflow|pytorch). ' \ 'Defaults to config.DEFAULT_AI_FRAMEWORK' parser = argparse.ArgumentParser(prog='train', usage='%(prog)s [options]') parser.add_argument('--tub', nargs='+', help='tub data for training') parser.add_argument('--model', default=None, help='output model name') parser.add_argument('--type', default=None, help='model type') parser.add_argument('--config', default='./config.py', help=HELP_CONFIG) parser.add_argument('--framework', choices=['tensorflow', 'pytorch', None], required=False, help=HELP_FRAMEWORK) parser.add_argument('--checkpoint', type=str, help='location of checkpoint to resume training from') parser.add_argument('--transfer', type=str, help='transfer model') parser.add_argument('--comment', type=str, help='comment added to model database - use ' 'double quotes for multiple words') parsed_args = parser.parse_args(args) return parsed_args def run(self, args): args = self.parse_args(args) args.tub = ','.join(args.tub) cfg = load_config(args.config) framework = args.framework if args.framework \ else getattr(cfg, 'DEFAULT_AI_FRAMEWORK', 'tensorflow') if framework == 'tensorflow': from donkeycar.pipeline.training import train train(cfg, args.tub, args.model, args.type, args.transfer, args.comment) elif framework == 'pytorch': from donkeycar.parts.pytorch.torch_train import train train(cfg, args.tub, args.model, args.type, checkpoint_path=args.checkpoint) else: print(f"Unrecognized framework: {framework}. Please specify one of " f"'tensorflow' or 'pytorch'") def execute_from_command_line(): """ This is the function linked to the "donkey" terminal command. """ commands = { 'createcar': CreateCar, 'train': Train, } args = sys.argv[:] if len(args) > 1 and args[1] in commands.keys(): command = commands[args[1]] c = command() c.run(args[2:]) else: dk.utils.eprint('Usage: The available commands are:') dk.utils.eprint(list(commands.keys())) if __name__ == "__main__": execute_from_command_line() ```
{ "source": "Jolumine/exp-trk", "score": 2 }
#### File: exp-trk/src/setup.py ```python import os import platform import urllib.request import requests import logging import threading class Setup: Add_Logo_Link = "https://cdn-icons-png.flaticon.com/512/992/992651.png" Admin_Logo_Link = "https://cdn-icons-png.flaticon.com/512/2099/2099058.png" Delete_Logo_Link = "https://cdn-icons-png.flaticon.com/512/3096/3096673.png" Expense_Logo_Link = "https://cdn-icons-png.flaticon.com/512/61/61584.png" Eye_Logo_Link = "https://cdn-icons-png.flaticon.com/512/159/159604.png" Information_Logo_Link = "https://cdn-icons-png.flaticon.com/512/1/1176.png" Graph_Icon_Link = "https://cdn-icons-png.flaticon.com/512/3121/3121571.png" Login_Icon_Link = "https://cdn-icons-png.flaticon.com/512/126/126486.png" Main_Logo_Link = "https://cdn-icons-png.flaticon.com/512/2/2144.png" New_User_Logo_Link = "https://cdn1.iconfinder.com/data/icons/avatar-1-2/512/Add_User1-512.png" Wrong_Logo_Link = "https://cdn-icons-png.flaticon.com/512/1828/1828774.png" Mod_Logo_Link = "https://cdn-icons-png.flaticon.com/512/61/61456.png" Export_Logo_Link = "https://cdn-icons-png.flaticon.com/512/151/151900.png" Transfer_Logo_Link = "https://cdn-icons-png.flaticon.com/512/876/876784.png" Warning_Logo_Link = "https://cdn-icons-png.flaticon.com/512/159/159469.png" Stats_Logo_Link = "https://cdn-icons-png.flaticon.com/512/876/876171.png" Next_Logo_Link = "https://cdn-icons-png.flaticon.com/512/318/318476.png" Menu_Logo_Link = "https://cdn-icons-png.flaticon.com/512/56/56763.png" Exit_Logo_Link = "https://cdn-icons-png.flaticon.com/512/1286/1286853.png" Generate_Logo_Link = "https://cdn-icons-png.flaticon.com/128/3600/3600963.png" Copy_Logo_Link = "https://cdn-icons-png.flaticon.com/512/60/60990.png" def __init__(self): self.root = f"C:\\Users\\{os.getlogin()}\\AppData\\local\\Expense_Tracker" if self.get_os() == "Windows": self.dirs() thread1 = threading.Thread(target=self.download(), args=(None,)) thread2 = threading.Thread(target=self.create_log(), args=(None,)) thread1.start() thread2.start() else: raise OSError("[!] Unsupported OS") def dirs(self) -> None: if self.check(self.root) == False: os.chdir(f"C:/Users/{os.getlogin()}/AppData\\local") os.mkdir("Expense_Tracker") os.chdir(self.root) os.mkdir("resources") os.chdir(self.root+"\\resources") os.mkdir("Logos") os.chdir(self.root) os.mkdir("cache") os.mkdir("users") os.mkdir("admin") with open(self.root+"\\admin\\admindata.json", "w") as f: f.close() with open(self.root+"\\logs.log", "w") as f: f.close() logging.basicConfig(filename=f"C:\\Users\\{os.getlogin()}\\AppData\\local\\Expense_Tracker\\logs.log", encoding="utf-8", format='%(asctime)s %(message)s', level=logging.DEBUG) logging.info("Folder creation [OK]") def cache(self) -> None: os.chdir(self.root+"\\cache") with open(".cache", "w") as f: f.close() def get_os(self) -> str: return platform.system() def download(self) -> None: if self.check_connection() and self.check(self.root+"\\resources\\Add_Logo.png") == False: urllib.request.urlretrieve(self.Add_Logo_Link, f'{self.root+"/resources/"}Logos/Add_Logo.png') urllib.request.urlretrieve(self.Admin_Logo_Link, f'{self.root+"/resources/"}Logos/Admin_Logo.png') urllib.request.urlretrieve(self.Main_Logo_Link, f'{self.root+"/resources/"}Logos/Main_Logo.png') urllib.request.urlretrieve(self.Delete_Logo_Link, f'{self.root+"/resources/"}Logos/Delete_Logo.png') urllib.request.urlretrieve(self.Expense_Logo_Link, f'{self.root+"/resources/"}Logos/Expense_Logo.png') urllib.request.urlretrieve(self.Eye_Logo_Link, f'{self.root+"/resources/"}Logos/Eye_Logo.jpg') urllib.request.urlretrieve(self.Graph_Icon_Link, f'{self.root+"/resources/"}Logos/Graph_Logo.png') urllib.request.urlretrieve(self.Login_Icon_Link, f'{self.root+"/resources/"}Logos/Login_Icon.png') urllib.request.urlretrieve(self.New_User_Logo_Link, f'{self.root+"/resources/"}Logos/New_User_Logo.png') urllib.request.urlretrieve(self.Information_Logo_Link, f'{self.root+"/resources/"}Logos/Info_Logo.png') urllib.request.urlretrieve(self.Admin_Logo_Link, f'{self.root+"/resources/"}Logos/Welcome.png') urllib.request.urlretrieve(self.Wrong_Logo_Link, f'{self.root+"/resources/"}Logos/Wrong_Icon.png') urllib.request.urlretrieve(self.Mod_Logo_Link, f'{self.root+"/resources/"}Logos/Mod_Icon.png') urllib.request.urlretrieve(self.Export_Logo_Link, f'{self.root+"/resources/"}Logos/Export_Icon.png') urllib.request.urlretrieve(self.Transfer_Logo_Link, f'{self.root+"/resources/"}Logos/Transfer_Icon.png') urllib.request.urlretrieve(self.Warning_Logo_Link, f'{self.root+"/resources/"}Logos/Warning_Logo.png') urllib.request.urlretrieve(self.Stats_Logo_Link, f'{self.root+"/resources/"}Logos/Stats_Logo.png') urllib.request.urlretrieve(self.Next_Logo_Link, f'{self.root+"/resources/"}Logos/Next_Logo.png') urllib.request.urlretrieve(self.Menu_Logo_Link, f'{self.root+"/resources/"}Logos/Menu_Logo.png') urllib.request.urlretrieve(self.Exit_Logo_Link, f'{self.root+"/resources/"}Logos/Exit_Logo.png') urllib.request.urlretrieve(self.Generate_Logo_Link, f'{self.root+"/resources/"}Logos/Gen_Logo.png') urllib.request.urlretrieve(self.Copy_Logo_Link, f'{self.root+"/resources/"}Logos/Copy_Logo.png') logging.basicConfig(filename=f"C:\\Users\\{os.getlogin()}\\AppData\\local\\Expense_Tracker\\logs.log", encoding="utf-8", format='%(asctime)s %(message)s', level=logging.DEBUG) logging.info("Logo Download [OK]") def create_log(self) -> None: if self.check(self.root+"//logs.log"): pass else: with open(f"C:\\Users\\{os.getlogin()}\\AppData\\local\\Expense_Tracker\\logs.log", "w") as file: file.close() def check(self, folder) -> bool: if os.path.exists(folder): return True else: return False def check_connection(self) -> bool: try: request = requests.get("https://www.google.com", timeout=5) except Exception: return False else: logging.info("Internet Connection [OK]") return True ``` #### File: src/Templates/Home.py ```python from PyQt5.QtWidgets import QDialog, QLabel, QHBoxLayout, QPushButton, QVBoxLayout, QFrame from PyQt5.QtGui import QIcon from .Expense.Home_Expense import Home_Expense from .Revenue.Home_Income import Home_Income from .Plot.Plot_Window import Plot_Window from .Transfer.Transfer_Window import Transfer_Window from .Passive_Income.Passive_Income import Passive_Income_Window from .Passive_Expense.Passive_Expense import Passive_Expense_Window from .Export.Export_Window import Export_Window from .Profile_Stats.Statisitic_Window import Statistic_Window from .Settings.Settings_Window import Settings_Window from ..const import Main_Logo, Menu_Logo, Transfer_Logo, Stats_Logo, Export_Logo, Money_Logo, Graph_Icon, Settings_Logo class Root_Window(QDialog): def __init__(self, active_user, parent=None): super().__init__(parent) self.active_user = active_user self.exp_label = QLabel(self) self.exp_label.setText("Expenses Menu: ") self.Expense = QPushButton("Expenses", self) self.Expense.setToolTip("Click to open the Menu for Expenses") self.Expense.setIcon(QIcon(Menu_Logo)) self.Expense.clicked.connect(self.expense) self.rev_label = QLabel(self) self.rev_label.setText("Revenue Menu: ") self.Revenue = QPushButton("Revenues", self) self.Revenue.setToolTip("Click to open the Menu for your Revenues") self.Revenue.setIcon(QIcon(Menu_Logo)) self.Revenue.clicked.connect(self.revenue) self.pass_label = QLabel(self) self.pass_label.setText("Passive income: ") self.pass_btn_income = QPushButton("Passive Income", self) self.pass_btn_income.setToolTip("Click to add a source of passive income") self.pass_btn_income.setIcon(QIcon(Money_Logo)) self.pass_btn_income.clicked.connect(self.passive_income) self.pass_label_exp = QLabel(self) self.pass_label_exp.setText("Passive Expense: ") self.pass_btn_exp = QPushButton("Passive Expense", self) self.pass_btn_exp.setToolTip("Click to add a source of passive expense") self.pass_btn_exp.setIcon(QIcon(Money_Logo)) self.pass_btn_exp.clicked.connect(self.passive_expense) self.plot_label = QLabel(self) self.plot_label.setText("Plot Menu: ") self.Plot = QPushButton("Plot", self) self.Plot.setToolTip("Click to open the Plot Menu") self.Plot.setIcon(QIcon(Graph_Icon)) self.Plot.clicked.connect(self.plot) self.transfer_label = QLabel(self) self.transfer_label.setText("Transfer Menu: ") self.transfer_btn = QPushButton("Transfer", self) self.transfer_btn.setToolTip("Click to open the transfer menu") self.transfer_btn.setIcon(QIcon(Transfer_Logo)) self.transfer_btn.clicked.connect(self.transfer) self.stats_label = QLabel(self) self.stats_label.setText("Statistics: ") self.stats_btn = QPushButton("Statistics", self) self.stats_btn.setToolTip("Click to open the profile statistics") self.stats_btn.setIcon(QIcon(Stats_Logo)) self.stats_btn.clicked.connect(self.stats) self.export_label = QLabel(self) self.export_label.setText("Export: ") self.exportbtn = QPushButton("Export", self) self.exportbtn.setToolTip("Click to open the Export Menu") self.exportbtn.setIcon(QIcon(Export_Logo)) self.exportbtn.clicked.connect(self.export) self.settings_label = QLabel(self) self.settings_label.setText("Settings: ") self.settingsbtn = QPushButton("Settings", self) self.settingsbtn.setToolTip("Click to open the Settings") self.settingsbtn.setIcon(QIcon(Settings_Logo)) self.settingsbtn.clicked.connect(self.settings) expense_layout = QHBoxLayout() expense_layout.addWidget(self.exp_label) expense_layout.addWidget(self.Expense) rev_layout = QHBoxLayout() rev_layout.addWidget(self.rev_label) rev_layout.addWidget(self.Revenue) pass_layout = QHBoxLayout() pass_layout.addWidget(self.pass_label) pass_layout.addWidget(self.pass_btn_income) pass_layout_exp = QHBoxLayout() pass_layout_exp.addWidget(self.pass_label_exp) pass_layout_exp.addWidget(self.pass_btn_exp) plt_layout = QHBoxLayout() plt_layout.addWidget(self.plot_label) plt_layout.addWidget(self.Plot) stats_layout = QHBoxLayout() stats_layout.addWidget(self.stats_label) stats_layout.addWidget(self.stats_btn) trans_layout = QHBoxLayout() trans_layout.addWidget(self.transfer_label) trans_layout.addWidget(self.transfer_btn) export_layout = QHBoxLayout() export_layout.addWidget(self.export_label) export_layout.addWidget(self.exportbtn) settings_layout = QHBoxLayout() settings_layout.addWidget(self.settings_label) settings_layout.addWidget(self.settingsbtn) # New Layout space_item_1 = QFrame() space_item_1.setStyleSheet("background-color: darkgray") space_item_1.setFixedWidth(10) space_item_2 = QFrame() space_item_2.setStyleSheet("background-color: darkgray") space_item_2.setFixedWidth(10) space_item_3 = QFrame() space_item_3.setStyleSheet("background-color: darkgray") space_item_3.setFixedWidth(10) space_item_4 = QFrame() space_item_4.setStyleSheet("background-color: darkgray") space_item_4.setFixedWidth(10) col_1 = QVBoxLayout() col_1.addLayout(expense_layout) col_1.addLayout(rev_layout) col_1.addLayout(plt_layout) col_2 = QVBoxLayout() col_2.addLayout(pass_layout) col_2.addLayout(pass_layout_exp) col_2.addLayout(trans_layout) col_3 = QVBoxLayout() col_3.addLayout(stats_layout) col_3.addLayout(export_layout) col_3.addLayout(settings_layout) root_1 = QHBoxLayout() root_1.addWidget(space_item_1) root_1.addLayout(col_1) root_1.addWidget(space_item_2) root_1.addLayout(col_2) root_1.addWidget(space_item_3) root_1.addLayout(col_3) root_1.addWidget(space_item_4) self.setWindowTitle("Home") self.setLayout(root_1) self.setGeometry(300, 300, 500, 650) self.setWindowIcon(QIcon(Main_Logo)) self.exec_() def expense(self): dialog = Home_Expense(self.active_user) def revenue(self): dialog = Home_Income(self.active_user) def passive_income(self): dialog = Passive_Income_Window(self.active_user) def passive_expense(self): dialog = Passive_Expense_Window(self.active_user) def plot(self): dialog = Plot_Window(self.active_user) def transfer(self): dialog = Transfer_Window(self.active_user) def stats(self): dialog = Statistic_Window(self.active_user) def export(self): dialog = Export_Window(self.active_user) def settings(self): dialog = Settings_Window(self.active_user) ``` #### File: Templates/Login/Login_Screen.py ```python from PyQt5.QtWidgets import QPushButton, QLineEdit, QHBoxLayout, QVBoxLayout, QDialog, QLabel from PyQt5.QtGui import QIcon from ..Admin.Admin_Login import Admin_Login from .New_User import New_User from ..Home import Root_Window from ...const import Login_Icon, Eye_Logo, Wrong_Logo, log_file, Exit_Logo, Next_Logo, New_User_Logo, Admin_Logo from .security import check_login from ...algos import get_folder_number from ..Passive_Income.check_transfer import check_transfer_income from ..Passive_Expense.check_transfer import check_transfer_expenses import logging class Login_Page(QDialog): def __init__(self): super().__init__() self.username = QLineEdit(self) self.username.setPlaceholderText("Username") self.username.setToolTip("Enter your username") self.password = QLineEdit(self) self.password.setEchoMode(QLineEdit.Password) self.password.setPlaceholderText("Password") self.password.setToolTip("Enter your password") self.showPassword = QPushButton(self) self.showPassword.setIcon(QIcon(Eye_Logo)) self.showPassword.setToolTip("Click to show or hide your password") self.showPassword.setFixedHeight(38) self.showPassword.clicked.connect(self.showPassFunc) self.login = QPushButton("Login", self) self.login.setToolTip("Click to login") self.login.setIcon(QIcon(Next_Logo)) self.login.clicked.connect(self.loginFunction) self.admin = QPushButton("Admin", self) self.admin.setToolTip("Click to get access to the Admin Window") self.admin.setIcon(QIcon(Admin_Logo)) self.admin.clicked.connect(self.Admin) self.new = QPushButton("New User", self) self.new.setToolTip("Click to create a new User") self.new.setIcon(QIcon(New_User_Logo)) self.new.clicked.connect(self.newUser) self.exit = QPushButton("Exit", self) self.exit.setToolTip("Click to exit") self.exit.setIcon(QIcon(Exit_Logo)) self.exit.clicked.connect(self.close) password = QHBoxLayout() password.addWidget(self.password) password.addWidget(self.showPassword) layout = QVBoxLayout() layout.addWidget(self.username) layout.addLayout(password) layout.addWidget(self.login) layout.addWidget(self.admin) layout.addWidget(self.new) layout.addWidget(self.exit) self.setWindowTitle("Login") self.setGeometry(300, 300, 400, 700) self.setWindowIcon(QIcon(Login_Icon)) self.setLayout(layout) self.show() def loginFunction(self) -> None: username = self.username.text() password = <PASSWORD>() folder_number = get_folder_number(username, password) if check_login(username, password): self.close() check_transfer_expenses(folder_number) check_transfer_income(folder_number) logging.basicConfig(filename=log_file, encoding="utf-8", format='%(asctime)s %(message)s', level=logging.DEBUG) logging.info(f"{username} is logged in.") root = Root_Window(folder_number) else: info = QDialog() info.setWindowTitle("Login failed") info.setWindowIcon(QIcon(Wrong_Logo)) info.setGeometry(300, 300, 320, 100) infotext = QLabel(info) infotext.setText("The Username or password is incorrect, please retry...") info_layout = QVBoxLayout() info_layout.addWidget(infotext) info.setLayout(info_layout) info.exec_() logging.basicConfig(filename=log_file, encoding="utf-8", format='%(asctime)s %(message)s', level=logging.DEBUG) logging.info(f"Login failed.") def newUser(self): interface = New_User() def Admin(self): dial = Admin_Login() def showPassFunc(self): if self.password.echoMode() == 0: self.password.setEchoMode(QLineEdit.Password) else: self.password.setEchoMode(QLineEdit.Normal) ``` #### File: Templates/Login/security.py ```python import json import os import hashlib def check_login(username, password) -> bool: path = f"C:\\Users\\{os.getlogin()}\\AppData\\local\\Expense_Tracker\\users" all = os.listdir(path) for i in all: file = path + f"\\{i}\\data.json" with open(file, "r") as f: parsed = json.load(f) if parsed["Username"] == username and parsed["Password"] == get_hash(password): return True else: pass def get_hash(message: str): message = message.encode("utf-8") hash = hashlib.sha3_512(message) return hash.hexdigest() ``` #### File: Templates/Revenue/Add_Revenue.py ```python from PyQt5.QtWidgets import QComboBox, QLabel, QDialog, QVBoxLayout, QHBoxLayout, QPushButton, QTextEdit, QDoubleSpinBox from PyQt5.QtGui import QIcon from ...const import Add_Logo, months, years, types, days, field_names import csv class Add_Income(QDialog): def __init__(self, active_user, parent=None): super().__init__(parent) self.active = active_user self.amount_label = QLabel(self) self.amount_label.setText("Amount: ") self.amount = QDoubleSpinBox(self) self.amount.setToolTip("Enter the amount") self.amount.setMaximum(10000) self.day_label = QLabel(self) self.day_label.setText("Day: ") self.day = QComboBox(self) self.day.setToolTip("Enter the number of the day") self.day.addItems(days) self.month_label = QLabel(self) self.month_label.setText("Month: ") self.month = QComboBox(self) self.month.setToolTip("Enter the actual month") self.month.addItems(months) self.year_label = QLabel(self) self.year_label.setText("Year: ") self.year = QComboBox(self) self.year.setToolTip("Set the actual year") self.year.addItems(years) self.type_label = QLabel(self) self.type_label.setText("Type: ") self.type = QComboBox(self) self.type.addItems(types) self.descr_label = QLabel(self) self.descr_label.setText("Description: ") self.descr = QTextEdit(self) self.descr.setFixedHeight(60) self.descr.setFixedWidth(200) self.add = QPushButton("Add", self) self.add.setToolTip("Click to add the Expense") self.add.clicked.connect(self.AddRev) amount_layout = QHBoxLayout() amount_layout.addWidget(self.amount_label) amount_layout.addWidget(self.amount) day_layout = QHBoxLayout() day_layout.addWidget(self.day_label) day_layout.addWidget(self.day) month_layout = QHBoxLayout() month_layout.addWidget(self.month_label) month_layout.addWidget(self.month) year_layout = QHBoxLayout() year_layout.addWidget(self.year_label) year_layout.addWidget(self.year) type_layout = QHBoxLayout() type_layout.addWidget(self.type_label) type_layout.addWidget(self.type) descr_layout = QHBoxLayout() descr_layout.addWidget(self.descr_label) descr_layout.addWidget(self.descr) root = QVBoxLayout() root.addLayout(amount_layout) root.addLayout(day_layout) root.addLayout(month_layout) root.addLayout(year_layout) root.addLayout(type_layout) root.addLayout(descr_layout) root.addWidget(self.add) self.setWindowIcon(QIcon(Add_Logo)) self.setWindowTitle("Add Revenue") self.setGeometry(500, 500, 400, 550) self.setLayout(root) self.exec_() def AddRev(self): amount = self.amount.value() day = self.day.currentText() month = self.month.currentText() year = self.year.currentText() typ = self.type.currentText() descr = self.descr.toPlainText() file = f"C:\\Users\\<NAME>\\AppData\\local\\Expense_Tracker\\users\\{self.active}\\income.csv" with open(file, "a") as f: writer = csv.DictWriter(f, fieldnames=field_names, lineterminator="\n") data = { "Amount": amount, "Day": day, "Month": month, "Year": year, "Type":typ, "Description": descr } writer.writerow(data) f.close() self.close() ``` #### File: Templates/Revenue/Delete_Revenue.py ```python from PyQt5.QtWidgets import QComboBox, QDialog, QPushButton, QVBoxLayout from PyQt5.QtGui import QIcon from ...const import field_names, Delete_Logo import csv class Delete_Revenue(QDialog): def __init__(self, active_user,parent=None): super().__init__(parent) self.active = active_user all = [] self.file = f"C:\\Users\\<NAME>\\AppData\\local\\Expense_Tracker\\users\\{self.active}\\income.csv" with open(self.file, "r") as f: reader = csv.DictReader(f, fieldnames=field_names) for row in reader: output = row["Amount"] + "€-" + row["Day"] + "-" + row["Month"] + "-" + row["Year"] if output == "Amount€-Day-Month-Year": pass else: all.append(output) self.all = QComboBox(self) self.all.setToolTip("Select the Revenue Amount you want to delete") self.all.addItems(all) self.delete = QPushButton("Delete", self) self.delete.setToolTip("Click to delete the Amount") self.delete.clicked.connect(self.DeleteRev) layout = QVBoxLayout() layout.addWidget(self.all) layout.addWidget(self.delete) self.setWindowIcon(QIcon(Delete_Logo)) self.setWindowTitle("Delete Revenue") self.setGeometry(500, 500, 400, 550) self.setLayout(layout) self.exec_() def DeleteRev(self): selected = self.all.currentText() splitted = selected.split("-") update = [] with open(self.file, "r", newline='') as file: reader = csv.DictReader(file) for row in reader: if row["Amount"] + "€" == splitted[0] and row["Day"] == splitted[1] and row["Month"] == splitted[2] and row["Year"] == splitted[3]: pass else: update.append(row) with open(self.file, "w", newline="") as f: f.close() with open(self.file, "a", newline="") as f: f.write("Amount,Day,Month,Year,Type,Description\n") writer = csv.DictWriter(f, fieldnames=field_names, delimiter=",") for i in range(len(update)): amount = update[i]["Amount"] day = update[i]["Day"] month = update[i]["Month"] year = update[i]["Year"] row = {"Amount": amount, "Day" : day, "Month" : month, "Year": year} writer.writerow(row) self.close() ```
{ "source": "joluoch/data_structures", "score": 4 }
#### File: data_structures/backtracking/backtracking.py ```python def letterCombinations(self, digits: str) -> List[str]: if not digits: return [] ans = [''] digitToLetters = ['', '', 'abc', 'def', 'ghi', 'jkl', 'mno', 'pqrs', 'tuv', 'wxyz'] for d in digits: temp = [] for s in ans: for c in digitToLetters[ord(d) - ord('0')]: temp.append(s + c) ans = temp return ans '''search word one ''' def exist(board,word): row,col = len(board),len(board[0]) path = set() def dfs(r,c,i): if i == len(word): return True if (r <0 or c<0 or r>=row or c>=col or word[i] != board[r][c]or (r,c) in path): return False path.add((r,c)) res = (dfs(r+1,c,i+1) or dfs(r-1,c,i+1) or dfs(r,c+1,i+1) or dfs(r,c-1,i+1)) path.remove((r,c)) return res for r in range(row): for c in range(col): if (dfs(r,c,0)): return True return False '''wildcard matching Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*' where: '?' Matches any single character. '*' Matches any sequence of characters (including the empty sequence). The matching should cover the entire input string (not partial). ''' def isMatch(self, s: str, p: str) -> bool: s_len, p_len = len(s), len(p) s_idx = p_idx = 0 star_idx = s_tmp_idx = -1 while s_idx < s_len: # If the pattern character = string character # or pattern character = '?' if p_idx < p_len and p[p_idx] in ['?', s[s_idx]]: s_idx += 1 p_idx += 1 # If pattern character = '*' elif p_idx < p_len and p[p_idx] == '*': # Check the situation # when '*' matches no characters star_idx = p_idx #save start position for possible back tracking s_tmp_idx = s_idx # stringpointer p_idx += 1 # If pattern character != string character # or pattern is used up # and there was no '*' character in pattern elif star_idx == -1: return False # If pattern character != string character # or pattern is used up # and there was '*' character in pattern before else: # Backtrack: check the situation # when '*' matches one more character p_idx = star_idx + 1 s_idx = s_tmp_idx + 1 s_tmp_idx = s_idx # The remaining characters in the pattern should all be '*' characters return all(p[i] == '*' for i in range(p_idx, p_len)) '''regular expression matching TIme : O(s.p) top-down dynamic programming and memoization ''' def isMatch(self, s: str, p: str) -> bool: cache = {} def dfs(i,j): if (i,j) in cache: return cache[(i,j)] if i >= len(s) and j >= len(p): return True if j>= len(p): return False match = i < len(s) and (s[i] == p[j] or p[j] == '.') if (j+1) < len(p) and p[j+1] == '*': cache[(i,j)] = (dfs(i,j+2)or #dont use * (match and dfs(i+1,j))) #use it return cache[(i,j)] if match: cache [(i,j)] = dfs(i+1,j+1) return cache[(i,j)] cache[(i,j)] = False return False return dfs(0,0) ``` #### File: data_structures/linkedlist/flatten.py ```python class Soltion: def flatten(self,head): if head != None: self.flatten_rec(head) return head def flatten_rec(self,head): curr,tail = head,head while curr != None: child = curr.child next = curr.next if child != None: tail = self.flatten_rec(child) tail.next = next if next !=None: next.prev = tail curr.next = child child.prev = curr curr.child = None curr = tail else: curr = next if curr!= None: tail = curr return tail #https://www.youtube.com/watch?v=RIyPgR7AF7M ``` #### File: data_structures/stacks_and_queue/consecutive1.py ```python def findMaxConsecutiveOnes(self, nums) -> int: ans = 0 sum = 0 for num in nums: if num == 0: sum = 0 else: sum += num ans = max(ans, sum) return ans ``` #### File: data_structures/stacks_and_queue/evaluatepostfix.py ```python def evalRPN(tokens: List[str]) -> int: stack = [] #make a stack to hold the numberes and result calculation for char in tokens: #iterate through the tokens if char not in "+*-/": #if token is not an operator then it is a number so we add to stack stack.append(int(char)) else: #if it is an operator then we pop the last two values from the stack and the left + right r,l = stack.pop(),stack.pop() if char == "*": stack.append(l*r) elif char == "/": stack.append(int(float(l)/r)) elif char == "+": stack.append(l+r) elif char == "-": stack.append(l-r) return stack [-1] #explanation : https://www.youtube.com/watch?v=3wGTlsLnZE4&list=PLLOxZwkBK52Akgqf4oSWPOQO9ROWS_9rc&index=20 ```
{ "source": "jolurn/my-blog", "score": 3 }
#### File: jolurn/my-blog/app.py ```python from api.hello_api import HelloWorld # from api.categoria_api import CategoriaAPI from flask import Flask from flask_mysqldb import MySQL from flask_restful import Resource, Api app = Flask(__name__) mysql = MySQL(app) #toma nuestro obje e inicializa / amplia nuestra funcuionalidad de nuestra app api = Api(app) app.config['MYSQL_USER'] = 'root' app.config['MYSQL_PASSWORD'] = '<PASSWORD>' app.config['MYSQL_DB'] = 'myblog' app.config['MYSQL_CURSORCLASS'] = 'DictCursor' class PostCategoriaAPI(Resource): def get(self, id): cur = mysql.connection.cursor() cur.execute('''select p.titulo, c.nombre as categoria from myblog.post as p left join myblog.categoria as c on p.idcategoria = c.idcategoria where p.idcategoria= ''' + id ) result = cur.fetchall() return str(result) class CategoriaAPI(Resource): def get(self): cur = mysql.connection.cursor() cur.execute("select * from categoria") result = cur.fetchall() return str(result) class PostAPI(Resource): def get(self): cur = mysql.connection.cursor() cur.execute("select * from post") result = cur.fetchall() return str(result) api.add_resource(PostAPI, '/post')#agregar recurso api.add_resource(CategoriaAPI, '/categoria') api.add_resource(PostCategoriaAPI, '/categoria/<id>/post') ```
{ "source": "jolyDev/orto-ray", "score": 2 }
#### File: orto-ray/Core/DicomDataManager.py ```python import os import pydicom import pydicom.uid import numpy as np import scipy import scipy.ndimage import cupyx.scipy.ndimage import cupy as cp from Core.Projection import View from Core.Projection import view_to_int import Algorithms.Trim import cv2 import SimpleITK def getSlice(data, index: int, view: View): if view is View.FRONTAL and data.shape[0] >= index: return data[index, :, :] elif view is View.PROFILE and data.shape[1] >= index: return data[:, index, :] elif view is View.HORIZONTAL and data.shape[2] >= index: return data[:, :, index] class DicomDataManager(): class Rotation: x: float = 0.0 y: float = 0.0 z: float = 0.0 def __init__(self, dicom_rooth_path): self.listeners = [] self.origin = [] self.loadDicom(dicom_rooth_path) self.rotation = DicomDataManager.Rotation() self.updateBounds() def updateBounds(self): shape = self.modified.shape self.x_max = shape[0] - 1 self.x_min = 0 self.y_max = shape[1] - 1 self.y_min = 0 self.z_max = shape[2] - 1 self.z_min = 0 def subscribe(self, listener): self.listeners.append(listener) def _dataChanged(self): self.updateBounds() for subscriber in self.listeners: subscriber.on3DDataChanged() def getMax(self, view: View): return self.origin.shape[view_to_int(view)] def getMaxModified(self, view: View): return self.modified.shape[view_to_int(view)] def getSlice(self, index: int, view: View): return getSlice(self.modified, index, view) def get(self): return self.origin def trim(self, x_max, x_min, y_max, y_min, z_max, z_min): self.x_max = int(x_max) self.x_min = int(x_min) self.y_max = int(y_max) self.y_min = int(y_min) self.z_max = int(z_max) self.z_min = int(z_min) self.modified = Algorithms.Trim.Trim(self.origin, self.x_max, self.x_min, self.y_max, self.y_min, self.z_max, self.z_min) self._dataChanged() return self.modified def rotate(self, angles): init_min = self.origin.min() init_max = self.origin.max() # rotate around x axis x = angles[0] - self.rotation.x self.rotation.x = x data_gpu = cp.asarray(self.modified) rotated = cupyx.scipy.ndimage.rotate(data_gpu, x, (1, 2), order=1) # rotate around y axis y = angles[1] - self.rotation.y self.rotation.y = y rotated = cupyx.scipy.ndimage.rotate(rotated, y, (0, 2), order=1) # rotate around z axis z = angles[2] - self.rotation.z self.rotation.z = z rotated = cupyx.scipy.ndimage.rotate(rotated, z, (0, 1), order=1) self.modified = np.clip(cp.asnumpy(rotated), init_min, init_max) self.x_min = int(0) self.y_min = int(0) self.z_min = int(0) self._dataChanged() def getOrigin(self): return self.origin def resetModification(self): self.modified = self.getOriginDeepCopy() self._dataChanged() def getOriginDeepCopy(self): return np.copy(self.origin) def getModified(self): return self.modified def setNewData(self, new_origin): self.origin = new_origin self.modified = self.getOriginDeepCopy() self._dataChanged() def denoise(self, data): i = 0 for slice in data: print() return data#np.array(img_dilation, dtype=np.int64) #cv2.imshow('Input', img) #cv2.imshow('Erosion', img_erosion) #cv2.imshow('Dilation', img_dilation) #itk_data = SimpleITK.GetImageFromArray(data) #itk_data = SimpleITK.CurvatureFlow(itk_data, 0.125, 5) #itk_data = SimpleITK.VotingBinaryHoleFilling(image1=itk_data) #majorityThreshold=1, #backgroundValue=0, #foregroundValue=labelWhiteMatter) #return np.array(SimpleITK.GetArrayFromImage(itk_data), dtype=np.int64) #data = scipy.ndimage.uniform_filter(data, size=1) #data = scipy.ndimage.gaussian_filter(data, sigma=1) #return data def loadDicom(self, dicom_rooth_path): old_data = self.getOriginDeepCopy() try: slices = [pydicom.read_file(dicom_rooth_path + '/' + s) for s in os.listdir(dicom_rooth_path)] slices.sort(key=lambda x: int(x.InstanceNumber)) # pixel aspects, assuming all slices are the same ps = slices[0].PixelSpacing ss = slices[0].SliceThickness ax_aspect = ps[1] / ps[0] sag_aspect = ps[1] / ss cor_aspect = ss / ps[0] # create 3D array img_shape = list(slices[0].pixel_array.shape) img_shape.append(len(slices)) self.origin = np.zeros(img_shape) kernel = np.ones((5, 5), np.uint8) # fill 3D array with the images from the files for i, s in enumerate(slices): img2d = np.array(s.pixel_array, dtype=np.int64) self.origin[:, :, i] = img2d img_erosion = cv2.erode(self.origin[:, :, i], kernel, iterations=1) img_dilation = cv2.dilate(img_erosion, kernel, iterations=1) i = i + 1 if i == 50: cv2.imshow('Input', img_dilation) self.origin = np.array(self.origin, dtype=np.int64) self.modified = self.getOriginDeepCopy() self._dataChanged() except Exception as e: print(e) self.origin = old_data self.modified = old_data ``` #### File: orto-ray/Core/render3d.py ```python import pyvista as pv def volume(data): dataX = pv.wrap(data) dataX.plot(volume=True, eye_dome_lighting=True, parallel_projection=True) # Volume render ``` #### File: orto-ray/UI/Render3d.py ```python import sys # Setting the Qt bindings for QtPy import os os.environ["QT_API"] = "pyqt5" from PyQt5 import QtWidgets from PyQt5.QtWidgets import QMainWindow from PyQt5.QtWidgets import QRadioButton import numpy as np import pyvista as pv from pyvistaqt import QtInteractor import Style as styling class Render3D(QMainWindow): def __init__(self, data, parent=None, show=True): QtWidgets.QMainWindow.__init__(self, parent) # create the frame self.frame = QtWidgets.QFrame() vlayout = QtWidgets.QVBoxLayout() # add the pyvista interactor object self.plotter = QtInteractor(self.frame) self.plotter.set_background("royalblue", top="aliceblue") vlayout.addWidget(self.plotter.interactor) self.frame.setLayout(vlayout) self.setCentralWidget(self.frame) self.update3D(data) def update3D(self, data): self.plotter.clear() self.plotter.add_bounding_box() self.plotter.add_volume(data, cmap="gray") self.show() def updateSlice(self, data): self.plotter.clear() self.plotter.add_bounding_box() opacity = [0, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] self.plotter.add_volume(data, cmap="gray", opacity=opacity) self.show() ``` #### File: orto-ray/UI/Slider.py ```python from PyQt5.QtWidgets import (QWidget, QSlider, QHBoxLayout, QLabel, QApplication) from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap import sys class SliderImpl(QSlider): def __init__(self, callback): super().__init__() self.callback = callback def mouseReleaseEvent(self, event): super(QSlider, self).mouseReleaseEvent(event) self.callback() class Slider(QWidget): def __init__(self, parent, min, max, callback, release_callback): super().__init__() self.parent = parent self.callback = callback self.index = int((max - min ) / 2) hbox = QHBoxLayout() self.slider = SliderImpl(release_callback) self.slider.setOrientation(Qt.Horizontal) self.slider.setRange(min, max) self.slider.setValue(self.index) self.slider.setFocusPolicy(Qt.NoFocus) self.slider.setPageStep(1) self.slider.valueChanged.connect(self.onDataChanged) self.label = QLabel(str(min), self) self.label.setAlignment(Qt.AlignCenter | Qt.AlignVCenter) self.label.setMinimumWidth(80) self.label.setText(str(self.index)) hbox.addWidget(self.slider) hbox.addSpacing(15) hbox.addWidget(self.label) self.setLayout(hbox) def onDataChanged(self, value): self.index = value self.label.setText(str(value)) self.callback() def setRange(self, min, max): if min > self.slider.value(): self.index = min self.slider.setValue(self.index) self.callback() if max < self.slider.value(): self.index = max self.slider.setValue(self.index) self.callback() self.slider.setValue(self.index) self.onDataChanged(self.index) self.slider.setRange(min, max) def getIndex(self): return self.index ``` #### File: orto-ray/Utilities/logger.py ```python import numpy as np import matplotlib.pyplot as plt def log_image(image): plt.imshow(image) plt.show() ```
{ "source": "jolynch/python-hqsom", "score": 3 }
#### File: python-hqsom/hqsom/letter_learning.py ```python import numpy as np from PIL import Image import sys, traceback import timeit class Letter(object): """ Convenience class to read in the letter images and convert them to useful numpy arrays """ def __init__(self, letter, noise=None): image_loc = "data/alphabet/%s.png" % letter.capitalize() im = Image.open(image_loc) # Trim the data self.data = np.array(im.convert("L")) / 255.0 self.data = np.compress([False] * 4 + [True] * 8 + [False] * 4, self.data, axis=1) self.data = np.compress([False] * 1 + [True] * 8 + [False] * 1, self.data, axis=0) self.data = self.data.reshape(1, 64)[0] if noise is not None: noise_array = np.random.normal(0.0, noise, self.data.shape) self.data += noise_array def __getitem__(self, index): return self.data[index] def score_letters(genome, setup_data=None): """ We want to form the concept of a letter that is noise tolerant, so we show the network lots of A's, B's, C's and D's and then ask it to cluster noisy variants. A basic purity metric is used as the scoring function """ try: data = setup_data["data"] letters = setup_data["types"] output_size = genome.output_size clusters = setup_data["clusters"] timeout = setup_data["timeout"] hqsom = genome.to_hierarchy() total_repeat = 5 letter_repeat = 25 # Slow genomes are unfit mock_data = [.1] * genome.input_size single_update = timeit.timeit(lambda: hqsom.update(mock_data), number=1) if single_update > timeout: return -50 # Testing Strategy: # Expose the network to the clean letter many times, then reset the # RSOM difference matrices and do the same with the next letter. # Do this total_repeat times, and that's all she wrote for repeat in range(total_repeat): for letter in letters: for i in range(letter_repeat): hqsom.update(data["clean-%s" % letter]) hqsom.reset() all_results = {} all_labels = [i for j in clusters for i in j] for label in all_labels: all_results[label] = hqsom.activation_vector(data[label], continuous_output=True) # Purity metric, we like overfitting because we're trying to encompass a # lot of noise tolerance, so if we can make big clusters that separate the # data, cool purity = [0] * genome.output_size def score_column(column, clusters, results): cluster_scores = {} for cluster in clusters: cluster_score = 0 for name in cluster: cluster_score += results[name][column] cluster_scores[cluster] = cluster_score cluster_scores = cluster_scores.items() scores = [score for (i, score) in cluster_scores] golden = np.argmax(scores) return 2 * scores[golden] - np.sum(scores) for i in range(output_size): purity[i] = score_column(i, clusters, all_results) for cluster in clusters: print cluster[0], [hqsom.activation_vector(data[c]) for c in cluster] return np.sum(purity) except Exception as e: print "Tester failed, could be related to genome" print str(e) print genome traceback.print_exc(file=sys.stdout) return -100 def setup_letters(): letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" data = {} clusters = [] for l in letters: data["clean-%s" % l] = Letter(l).data np.random.seed(15717) for l in letters: noisy_letters = [] for i in range(1): data["noisy-%s-%d" % (l, i)] = Letter(l, .1).data noisy_letters.append("noisy-%s-%d" % (l, i)) clusters.append(tuple(["clean-%s" % l] + noisy_letters)) return [l for l in letters], data, clusters ## "letter_first" output size 5 ## Testing setup for the ABCD separation ## Noise of .1 stddev, 5 repeats of 25 exposure per letter ## 5 data points, 1 clean data point for training => letter_first ## "twelve" output size 16 ## Testing setup for the ABCD EFGH IJKL separation ## Noise of .25 stddev, 3 repeats of 25 exposure per letter ## 10 data points, 1 clean data point for training ## high_noise output size 5 ## Testing setup for the ABCD separation ## Noise of .3 stdev, 5 repeats of 25 exposure per letter ## 10 data points, 1 clean data point for training ``` #### File: python-hqsom/hqsom/som_test.py ```python from som import * from rsom import * from hqsom import * from hqsom_audio import * from preproc.images import * import preproc.audio as audio import getopt, sys import traceback #import matplotlib.pyplot as plt import pickle import genetic_algo tests = ("som","rsom", "hqsom", "hqsom_noise", "hqsom_noise_multiple", "image_gen", "hqsom_77_network", "hqsom_77", "audio") np.set_printoptions(precision=3) np.set_printoptions(suppress=True) use_pure = False input_vectors = np.array([ [0.1 , 0.1 , 0.1 , 0.1], [.01 ,.001 , 0.6 , 0.8 ], [0.3 , 0.3 , 0.3 , 0.3], [0.0 , 0.8 , 0.0 , 0.0], [1.0 , 0.9 , 0.95, 0.82], [0.35,0.95 , 0.24, 0.76]]) rate, spread, size, input_size = .4, .2, len(input_vectors), len(input_vectors[0]) def test_som(): som1 = SOM(input_size, size, pure=use_pure) assert som1 #Test that a single vector can be trained on print "-- Training on single input --" for i in range(10): som1.update(input_vectors[0], rate, spread) print "Got MSE of {}".format(som1.mse(input_vectors[0])) assert som1.mse(input_vectors[0]) < 1e-3 #Test that all vectors can be trained on in a 1:1 network input_size = size som1 = SOM(input_size, size, pure=use_pure) print "-- Training on all inputs --" for i in range(1000): som1.update(input_vectors[i%len(input_vectors)], rate, spread) total_mse = 0 for inp in input_vectors: total_mse += som1.mse(inp) print "Got MSE of {}".format(som1.mse(inp)) assert som1.mse(inp) < .3 assert total_mse < .05 * len(input_vectors) #Checking Activation vectors activated = set() for inp in input_vectors: activated.add(som1.bmu(inp)) print "Applying signal: {}".format(inp) print "Activating {}".format(som1.units[som1.bmu(inp)]) err = abs(len(activated) - len(input_vectors)) print activated print "All activated units: {}".format(activated) print "Error: {} vs max {}".format(err, .5*len(input_vectors)) assert err <= .5*len(input_vectors) #For paper, disregard #data = np.transpose(np.array([ #[.3 , .7 , .1 , .14 , .01], #[.3 , .1 , .01 , .16 , .9], #[.3 , .03 , .8 , .7 , .01]])) #som1 = SOM(3,5,True) #som1.units = data #som1.update(np.array((.1,.1,.1)), .2, 1) #print som1.units.transpose() #I'm kind of unsure how to really test this ... def test_rsom(): rsom1 = RSOM(input_size, size, pure=use_pure) alpha = .3 #Test a time dependent sequence print "-- Training on alternating values --" for i in range(1000): rsom1.update(input_vectors[i%2], rate, spread, alpha) rsom1.update(input_vectors[2], rate, spread, alpha) rsom1.reset() assert rsom1.differences[0][0] == 0 for i in range(3): print "Got MSE of {}".format(rsom1.mse(input_vectors[i])) print "Activation vector: {}".format(rsom1.activation_vector(input_vectors[i], True)) assert rsom1.mse(input_vectors[i%2]) < .3 def test_hqsom(): test_data = np.array([ [0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,0,0,0], [0,0,0,1,1,1,0,0,0], [0,0,0,0,0,0,1,1,1], [1,0,0,1,0,0,1,0,0], [0,1,0,0,1,0,0,1,0], [0,0,1,0,0,1,0,0,1]]) g1,g2,s1,s2,a = .1,.1,16,90,.1 hqsom = HQSOM(9,18,3, use_pure_implementation=use_pure) def flush(num): for l in range(num): hqsom.update(test_data[0], g1,g2,s1,s2,a) num_cycles, num_repeats = 25, 11 total_run_count, seq_count = num_cycles*num_repeats*9, 0 for j in range(num_cycles): for i in range(num_repeats): print "update {}/{}".format(seq_count,total_run_count) hqsom.reset() seq = () if i %2 == 0: seq = (1,2,3,1,2,3) else: seq = (4,5,6,4,5,6) for k in seq: hqsom.update(test_data[k], g1, g2, s1, s2, a) hqsom.reset() seq_count += 9 c = [hqsom.activation_vector(t) for t in test_data] print c assert c[0] != c[1] and c[1] != c[4] assert c[1] == c[2] and c[2] == c[3] assert c[4] == c[5] and c[5] == c[6] assert c[3] != c[4] def test_hqsom_noise(noise_std=.1): test_data = np.array([ [0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,0,0,0], [0,0,0,1,1,1,0,0,0], [0,0,0,0,0,0,1,1,1], [1,0,0,1,0,0,1,0,0], [0,1,0,0,1,0,0,1,0], [0,0,1,0,0,1,0,0,1]]) #Add in gausian noise noise = np.random.normal(0.0,noise_std,test_data.shape) test_data = test_data + noise g1,g2,s1,s2,a = .1,.1,16,90,.1 #Due to the noise we have to add many more map units hqsom = HQSOM(9,18,3, use_pure_implementation=use_pure) print "bleh" def flush(num): for l in range(num): hqsom.update(test_data[0], g1,g2,s1,s2,a) num_cycles, num_repeats = 25, 11 total_run_count, seq_count = num_cycles*num_repeats*9, 0 for j in range(num_cycles): for i in range(num_repeats): print "update {}/{}".format(seq_count,total_run_count) hqsom.reset() if i %2 == 0: seq = (1,2,3,1,2,3) else: seq = (4,5,6,4,5,6) for k in seq: hqsom.update(test_data[k], g1, g2, s1, s2, a) hqsom.reset() seq_count += 9 #Re-do the test data to test on different noisy data print "Generating different test data for activating" test_data = np.array([ [0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,0,0,0], [0,0,0,1,1,1,0,0,0], [0,0,0,0,0,0,1,1,1], [1,0,0,1,0,0,1,0,0], [0,1,0,0,1,0,0,1,0], [0,0,1,0,0,1,0,0,1]]) #Add in gausian noise noise = np.random.normal(0.0,noise_std,test_data.shape) test_data = test_data + noise g1,g2,s1,s2,a = .1,.1,16,90,.1 c = [hqsom.activation_vector(t) for t in test_data] print c assert c[0] != c[1] and c[1] != c[4] assert c[1] == c[2] and c[2] == c[3] assert c[4] == c[5] and c[5] == c[6] assert c[3] != c[4] def test_hqsom_noise_multiple(): num_errors, num_tests, noise_std = 0, 100, .2 for i in range(num_tests): try: test_hqsom_noise(noise_std) except: num_errors += 1 print "Passed {} out of {}".format(num_tests-num_errors, num_tests) assert num_errors < .25 * num_tests def enumerate_spiral(l): coords, coord, original_l = [], [0,0], l while l > 0: #Go down for i in range(l): if not tuple(coord) in coords: coords.append(tuple(coord)) coord[1]+=1 #print "going down from {} to {}".format(coords[-1], coord) if l < original_l: l -= 1 #Go right for i in range(l): if not tuple(coord) in coords: coords.append(tuple(coord)) coord[0]+=1 #print "going right from {} to {}".format(coords[-1], coord) #Go up for i in range(l): if not tuple(coord) in coords: coords.append(tuple(coord)) coord[1]-=1 #print "going up from {} to {}".format(coords[-1], coord) l -= 1 #Go left for i in range(l): if not tuple(coord) in coords: coords.append(tuple(coord)) coord[0]-=1 #print "going left from {} to {}".format(coords[-1], coord) coords.append(coord) return coords def test_hqsom_77_network(): output_size =17 hqsom = PaperFig3Hierarchy(65,17,513,output_size, use_pure_implementation=use_pure) g1,g2,g3,g4,s1,s2,s3,s4,a1,a2 = .1,.01,.1,.001, 16.0, 100.0, 4.0, 200.0, .1, .01 data_image = Square_Image(5,(1,1)) data = data_image.data() hqsom.update(data,g1,g2,s1,s2,a1,g3,g4,s3,s4,a2) print hqsom.activation_vector(data,False,True) assert hqsom.activation_vector(data) != None def test_hqsom_77(): #genetic_algo.Generate the test sequence, note that we must do a spiral exposure to get the #correct temporal-spatial representations in the SOMS #7x7 only has one possible test (cycled twice of course) coord_test = {"large":[(7,0,0),(7,0,0)]} #5x5 has 9 possible positions (cycled twice of course) coord_test["medium"] = [(5,i,j) for (i,j) in enumerate_spiral(2)] coord_test["medium"] = coord_test["medium"][::-1] + coord_test["medium"] #3x3 has 25 possible positions (cycled twice of course) coord_test["small"] = [(3,i,j) for (i,j) in enumerate_spiral(4)] coord_test["small"] = coord_test["small"][::-1] + coord_test["small"] #######The available data sets square_data, diamond_data, x_data = [], [], [] #First we spiral out, then back in for each data set for data_type,data_class,data_container in [("square", Square_Image, square_data), ("diamond", Diamond_Image, diamond_data), ("x", X_Image, x_data)]: for data_set in ("large","medium", "small"): for (w,x,y) in coord_test[data_set]: if data_type == "diamond": w,x,y = w/2, x+w/2, y+w/2 image_data = data_class(w,(x,y)) data_container.append(image_data.data()) image_data.save("data/{}_#{}#_".format(data_type, str(len(data_container)).zfill(2))) blank_data = [Data_Image().data() for i in range(20)] #print len(square_data) #print len(diamond_data) #print len(x_data) #Paper settings #Make sure we don't use any of our "improvements" #bottom_som_size, bottom_rsom_size, top_som_size, output_size = 65,17,513,17 #hqsom = PaperFig3Hierarchy(bottom_som_size, #bottom_rsom_size, #top_som_size,output_size, #use_pure_implementation = use_pure) #g1,g2,g3,g4,s1,s2,s3,s4,a1,a2 = .1,.01,.1,.001, 16.0, 100.0, 4.0, 250.0, .1, .01 #run_name = "PAPER_RUN_GAUSSIAN_" #num_cycles, data_sets, num_repeats = 150, [("SQUARE",square_data), ("DIAMOND",diamond_data), ("X",x_data)], 5 #Really good TWO classifier: #bottom_som_size, bottom_rsom_size, top_som_size, output_size = 10,80,10,5 #hqsom = PaperFig3Hierarchy(bottom_som_size, #bottom_rsom_size, #top_som_size,output_size, #use_pure_implementation = True) #g1,g2,g3,g4,s1,s2,s3,s4,a1,a2 = .2,.4,.1,.5, 10.0, 80.0, 14.0, 100.0, .8, .01 #run_name = "TWO_CLASS_" #num_cycles, data_sets, num_repeats = 1, [("SQUARE",square_data), ("DIAMOND",diamond_data), ("X",x_data)], 1 #Our settings bottom_som_size, bottom_rsom_size, top_som_size, output_size = 40, 25, 150, 7 hqsom = PaperFig3Hierarchy(bottom_som_size, bottom_rsom_size, top_som_size,output_size, use_pure_implementation=use_pure) g1,g2,g3,g4,s1,s2,s3,s4,a1,a2 = 0.1,0.01,0.1,0.05,20.0,150.0,15.0,250.0,0.1,0.02 run_name = "REFERENCE_19_OUR_SETTINGS_" num_cycles, data_sets, num_repeats = 50, [("SQUARE",square_data), ("DIAMOND",diamond_data), ("X",x_data)], 4 seq_num = 0 MAP_Image(hqsom.top_hqsom.rsom.units, "output/{}INITIAL_TOP_RSOM_".format(run_name)).save() total_run_count = num_cycles * len(data_sets)*(len(data_sets[0][1])*num_repeats) for i in range(num_cycles): for data_type, data_set in data_sets: for j in range(num_repeats): MAP_Image(hqsom.top_hqsom.rsom.units,"output/{}TOP_RSOM_{}_{}_{}".format(run_name,i,data_type,j)).save() for d in data_set: hqsom.update(d,g1,g2,s1,s2,a1,g3,g4,s3,s4,a2) print "{} update {}/{}".format(data_type, seq_num, total_run_count) print "{} current BMU: {}".format(data_type, hqsom.activation_vector(d)) seq_num += 1 data_type = "BLANK" #Instead of training on blank data print "Resetting SOMS" hqsom.reset() MAP_Image(hqsom.top_hqsom.rsom.units,"output/{}TOP_RSOM_{}_{}".format(run_name,i,data_type)).save() #for d in blank_data: #hqsom.update(d,g1,g2,s1,s2,a1,g3,g4,s3,s4,a2) #print "{} update {}/{}".format(data_type, seq_num, total_run_count) #print "{} current BMU: {}".format(data_type, hqsom.activation_vector(d)) #seq_num += 1 print "Collecting Classification Data, please wait this can take time" data_sets = [("BLANK", blank_data)]+data_sets output_hash = {"BLANK":[0]*output_size,"SQUARE":[0]*output_size,"DIAMOND":[0]*output_size,"X":[0]*output_size} for data_name, data_collection in data_sets: for i in data_collection: result = hqsom.activation_vector(i) output_hash[data_name][result] += 1 print "Run: {}".format(run_name) print "Using the parameters g1,g2,g3,g4,s1,s2,s3,s4,a1,a2 = {},{},{},{},{},{},{},{},{},{}".format(g1,g2,g3,g4,s1,s2,s3,s4,a1,a2) print "Using {} cycles of each data set repeated {} times".format(num_cycles, num_repeats) print "BSOM, BRSOM, TSOM, TRSOM sizes: {}, {}, {}, {}".format(bottom_som_size, bottom_rsom_size, top_som_size, output_size) for data_name, data_collection in data_sets: mode = np.argmax(output_hash[data_name]) num_items = float(len(data_collection)) print "#"*80 print "Data Set: {}".format(data_name) print "Most Frequently Classified As (MODE): {}".format(mode) results = np.array(output_hash[data_name]) print "Full Distribution over Final RSOM Map Space:" print results / num_items MAP_Image(hqsom.bottom_hqsom_list[5].rsom.units,"output/{}FINAL_MIDDLE_RSOM".format(run_name)).save() #WE ONLY SUPPORT wave files of the <b>same bitrate</b> def test_audio(hqsom=None): print "Loading songs into memory" song_rock = audio.Spectrogram("data/music/Californication.wav") song_rock2 = audio.Spectrogram("data/music/ByWay.wav") song_techno = audio.Spectrogram("data/music/Everybody.wav") song_techno2 = audio.Spectrogram("data/music/DayNNight.wav") song_classical = audio.Spectrogram("data/music/Bells.wav") song_classical2 = audio.Spectrogram("data/music/Symp9.wav") print "Done loading songs into memory" songs = [ ("Techno", song_techno), ("TechnoTEST", song_techno2), ("Classical", song_classical), ("ClassicalTEST", song_classical2), ("Rock", song_rock), ("RockTEST", song_rock2), ] song_types = [i for (i,j) in songs] num_seconds, test_length = .1, 10 #Get num_second second slices of each song, looking to a cache first try: (n,saved_songs,final_data) = pickle.load(open("cache.p", "rb")) if not n == num_seconds or not saved_songs == tuple(song_types): raise Exception print "Found data in cache, skipping generation" except: print "genetic_algo.Generating ffts" raw_data = dict([(i,None) for i in song_types]) for (song_type, song_file) in songs: print "genetic_algo.Generating data on the fly for {} song".format(song_type) fft_length = song_file.sample_rate * num_seconds #To get a power of 2 fft_length = int(2**np.ceil(np.log(fft_length)/np.log(2))); print "Using fft_length of {}".format(fft_length) raw_data[song_type] = song_file.get_spectrogram(fft_length) print "Reshaping ffts into length 128 inputs" final_data = {} for song_type in song_types: data = raw_data[song_type] new_data = np.zeros((data.shape[0], 128)) bucket_sum, spect = 0, None for spect_index in range(len(data)): print "{} of {} Spectrograms processed".format(spect_index, len(data)) spect = data[spect_index] window_size = len(spect) / 128 bucket_sum = 0 for i in range(128): #bucket_sum = np.mean(spect[i*window_size:i*window_size+window_size]) new_data[spect_index][i] = spect[i*window_size] #new_data[spect_index] = new_data[spect_index] - min(new_data[spect_index]) #new_data[spect_index] = new_data[spect_index] / np.linalg.norm(new_data[spect_index]) final_data[song_type] = new_data pickle.dump((num_seconds, tuple(song_types), final_data), open("cache.p","wb")) """ plt.matshow(np.transpose(final_data["Rock"])) plt.title("Rock") plt.matshow(np.transpose(final_data["Techno"])) plt.title("Techno") plt.matshow(np.transpose(final_data["Classical"])) plt.title("Classical") plt.matshow(np.transpose(final_data["ClassicalTEST"])) plt.title("Classical_TEST_DATA") plt.matshow(np.transpose(final_data["TechnoTEST"])) plt.title("Techno_TEST_DATA") plt.matshow(np.transpose(final_data["RockTEST"])) plt.title("Rock_TEST_DATA") """ if hqsom is None: output_size = 5 hqsom = Hierarchy1D( LayerConf1D(2, 64, 128, 0, 50, 0.2, 200, 40, .7, 0.15, 100, use_pure), LayerConf1D(2, 1, 2, 0, 50, 0.2, 200, 20, .7, 0.15, 100, use_pure), LayerConf1D(1, 2, 2, 0, 32, 0.2, 200, output_size, .05, 0.2, 100, use_pure), ) else: output_size = hqsom.output_size hqsom = hqsom.to_hierarchy() #hqsom = NaiveAudioClassifier(bottom_som_size, #bottom_rsom_size, #top_som_size,output_size, #use_pure_implementation = True) #hqsom = genetic_algo.Genome(128, output_size).to_hierarchy() #genome = genetic_algo.Genome(128, 5, [genetic_algo.Gene(128, 1, [128, 1, 0.5349470927446156, 58, 0.16262059789324113, 93, 69, 0.38946495945845583, 0.18591242958088183, 449]), # genetic_algo.Gene(1, 1, [1, 1, 0.9697823529658623, 67, 0.06338912516811035, 484, 5, 0.07069243885373111, 0.30821633466399, 312])]) #genome = genetic_algo.Genome(128, 5, [ # genetic_algo.Gene(128, 1, [128, 1, 0.8191182230079156, 86, 0.13323972043189236, 175, 31, 0.3806979377580392, 0.8121811036319838, 98]), # genetic_algo.Gene(1, 1, [1, 1, 0.8727135450401478, 62, 0.3453597203536144, 121, 50, 0.755878448191539, 0.6818380459687157, 325]), # genetic_algo.Gene(1, 1, [1, 1, 0.4174074007331876, 89, 0.7549203282530946, 50, 5, 0.7849685525193116, 0.5789786448249847, 263]) # ]) #hqsom = genome.to_hierarchy() print hqsom.layer_configs run_name = "AUDIO_TEST" #Testing schema: # 1) Expose to entirety of three songs # 2) Pick 3 random sequences of test_length in size from each song, run through # 3) Clear at each in between seq_num = 0 num_cycles, num_repeats = 1, 1 total_run_count = num_cycles*sum([(len(final_data[x])) for x in song_types]) for i in range(num_cycles): for song_type in song_types: if song_type == "ClassicalTEST" or song_type == "TechnoTEST" or song_type == "RockTEST": print "Skipping test data: {}".format(song_type) continue for spectrum in final_data[song_type]: hqsom.update(spectrum) #print hqsom.activation_vector(spectrum, True, True) print "{} update {}/{}".format(song_type, seq_num, total_run_count) seq_num += 1 print "Resetting RSOMs" hqsom.reset() total_run_count = num_cycles*2*len(song_types)*test_length seq_num = 0 for i in range(num_cycles*2): for song_type in song_types: if song_type == "ClassicalTEST" or song_type == "TechnoTEST" or song_type == "RockTEST": print "Skipping test data: {}".format(song_type) continue num_spectrograms = len(final_data[song_type]) r_index = np.random.randint(0,num_spectrograms-test_length) for index in range(r_index, r_index+test_length): hqsom.update(final_data[song_type][index]) #print hqsom.activation_vector(spectrum, False, True) print "{} update {}/{}".format(song_type, seq_num, total_run_count) seq_num += 1 print "Resetting RSOMs" hqsom.reset() print "Run: {}".format(run_name) print "Using Network:" print hqsom.layer_configs print "num_cycles, num_repeats, num_seconds, test_length = {}, {}, {}, {}".format(num_cycles, num_repeats, num_seconds, test_length) for data_name in song_types: print "#"*80 print "Results for {}".format(data_name) data_collection = final_data[data_name] results =[0]*output_size for spect in data_collection: results[hqsom.activation_vector(spect)] += 1 t = sum(results) results = [float(i)/t for i in results] results = np.array(results) print "Final Distribution Over Map Space" print results print "MODE: {}".format(np.argmax(results)) #plt.show() if __name__ == "__main__": try: opts, args = getopt.getopt(sys.argv[1:], "t:l", ["list","test="]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" #So that we get reproduceable results np.random.seed(15717) for o,a in opts: if o in ("-t", "--test"): print "Running {} test:".format(a) try: eval("test_"+a)() except Exception as e: print e traceback.print_exc(file=sys.stdout) print "!!! ERROR !!!" else: print "SUCCESS" elif o in ("-l", "--list"): print "List of tests: {}".format(tests) # print help information and exit: if len(opts) == 0: print "Running all Tests" for test in tests: print "#"*80 print "Running test on: {}".format(test) print "-"*80 try: eval("test_"+test)() except Exception as e : print e traceback.print_exc(file=sys.stdout) print "!!! ERROR !!!" else: print "SUCCESS" print "#"*80 ```
{ "source": "jolynch/python_performance_toolkit", "score": 3 }
#### File: notebooks/queueing_theory/simulator.py ```python import random import numpy as np import simpy class RequestSimulator(object): """ Simulates a M/G/k process common in request processing (computing) :param worker_desc: A tuple of (count, capacity) to construct workers with :param local_balancer: A function which takes the current request number and the list of workers and returns the index of the worker to send the next request to :param latency_fn: A parameterless function which returns the number of milliseconds a request took to process :param number_of_requests: The number of requests to run through the simulator :param request_per_s: The rate of requests per second. """ def __init__( self, worker_desc, load_balancer, latency_fn, number_of_requests, request_per_s ): self.worker_desc = worker_desc self.load_balancer = load_balancer self.latency_fn = latency_fn self.number_of_requests = int(number_of_requests) self.request_interval_ms = 1. / (request_per_s / 1000.) self.data = [] def simulate(self): # Setup and start the simulation random.seed(1) np.random.seed(1) self.env = simpy.Environment() count, cap = self.worker_desc self.workers = [ simpy.Resource(self.env, capacity=cap) for i in range(count) ] self.env.process(self.generate_requests()) self.env.run() def generate_requests(self): for i in range(self.number_of_requests): idx = self.load_balancer(i, self.workers) worker = self.workers[idx] response = self.process_request( 'Request%02d' % i, worker, ) self.env.process(response) # Exponential inter-arrival times == Poisson arrival_interval = random.expovariate( 1.0 / self.request_interval_ms ) yield self.env.timeout(arrival_interval) def process_request(self, name, worker): """ Request arrives, possibly queues, and then processes""" t_arrive = self.env.now with worker.request() as req: yield req t_start = self.env.now t_queued = t_start - t_arrive # Let the operation take w.e. amount of time the latency # function tells us to yield self.env.timeout(self.latency_fn()) t_done = self.env.now t_processing = t_done - t_start t_total_response = t_done - t_arrive datum = (t_queued, t_processing, t_total_response) self.data.append(datum) def queue_size(resource): return resource.count + len(resource.queue) def random_lb(request_num, workers): return random.randint(0, len(workers) - 1) def rr_lb(request_num, workers): return request_num % len(workers) def choice_two_lb(request_num, workers): r1 = random_lb(request_num, workers) r2 = random_lb(request_num, workers) if queue_size(workers[r1]) < queue_size(workers[r2]): return r1 return r2 def choice_two_adjacent_lb(request_num, workers): r1 = random_lb(request_num, workers) if r1 + 2 >= len(workers): r2 = r1 - 1 r3 = r1 - 2 else: r2 = r1 + 1 r3 = r1 + 2 iq = [(queue_size(workers[i]), i) for i in (r1, r2, r3)] return (sorted(iq)[0][1]) def shortest_queue_lb(request_num, workers): idx = 0 for i in range(len(workers)): if queue_size(workers[i]) < queue_size(workers[idx]): idx = i return idx lb_algos = { 'choice_two': choice_two_lb, 'random': random_lb, 'roundrobin': rr_lb, 'JSQ': shortest_queue_lb, } def pareto(mean, shape): # mean = scale * shape / (shape - 1) # solve for scale given mean and shape (aka skew) scale = mean - mean / shape return lambda: ((np.random.pareto(shape) + 1) * scale) def expon(mean): return lambda: random.expovariate(1.0 / mean) # Simulate the various choices NUM_REQUESTS = 50000 QPS = 20000 AVG_RESPONSE_MS = 0.4 SERVERS = 10 def run_simulation( worker_desc, load_balancer, num_requests, request_per_s, latency_fn ): simulator = RequestSimulator( worker_desc, load_balancer, latency_fn, num_requests, request_per_s ) simulator.simulate() return simulator.data # M/G/k queue mean slowdown for i in run_simulation( (1, SERVERS), rr_lb, NUM_REQUESTS, QPS, pareto(AVG_RESPONSE_MS, 2)): print(i[2] / i[1]) ``` #### File: queueing_theory/src/latency_aware_simulator.py ```python import random from collections import namedtuple import numpy as np import simpy LatencyDatum = namedtuple( 'LatencyDatum', ('t_queued', 't_processing', 't_total') ) class LatencyAwareRequestSimulator(object): """ Simulates a M/G/k process common in request processing (computing) :param worker_desc: A list of ints of capacities to construct workers with :param local_balancer: A function which takes the current request number the list of workers and the request time and returns the index of the worker to send the next request to :param latency_fn: A function which takes the curent request number and returns the number of milliseconds a request took to process :param number_of_requests: The number of requests to run through the simulator :param request_per_s: The rate of requests per second. """ def __init__( self, worker_desc, load_balancer, latency_fn, number_of_requests, request_per_s): self.worker_desc = worker_desc self.load_balancer = load_balancer self.latency_fn = latency_fn self.number_of_requests = int(number_of_requests) self.request_interval_ms = 1. / (request_per_s / 1000.) self.data = [] self.requests_per_worker = {} def simulate(self): # Setup and start the simulation random.seed(1) np.random.seed(1) self.env = simpy.Environment() self.workers = [] idx = 0 for cap in self.worker_desc: self.workers.append(simpy.Resource(self.env, capacity=cap)) self.requests_per_worker[idx] = 0 idx += 1 self.env.process(self.generate_requests()) self.env.run() def generate_requests(self): for i in range(self.number_of_requests): t_processing = self.latency_fn(i) idx = self.load_balancer(i, self.workers, t_processing) self.requests_per_worker[idx] += 1 worker = self.workers[idx] response = self.process_request( i, worker, t_processing ) self.env.process(response) # Exponential inter-arrival times == Poisson arrival_interval = random.expovariate( 1.0 / self.request_interval_ms ) yield self.env.timeout(arrival_interval) def process_request(self, request_id, worker, duration): """ Request arrives, possibly queues, and then processes""" t_arrive = self.env.now with worker.request() as req: yield req t_start = self.env.now t_queued = t_start - t_arrive yield self.env.timeout(duration) t_done = self.env.now t_processing = t_done - t_start t_total_response = t_done - t_arrive datum = LatencyDatum(t_queued, t_processing, t_total_response) self.data.append(datum) def run_simulation( worker_desc, load_balancer, num_requests, request_per_s, latency_fn): simulator = LatencyAwareRequestSimulator( worker_desc, load_balancer, latency_fn, num_requests, request_per_s ) simulator.simulate() return simulator.data, simulator.requests_per_worker ``` #### File: queueing_theory/src/latency_distributions.py ```python import random import numpy as np def zone(request): return "abc"[request % 3] def service(mean, slow, shape, slow_freq, slow_count): scale = mean - mean / shape scale_slow = slow - slow / shape def latency(request, worker): base = ((np.random.pareto(shape) + 1) * scale) if (zone(request) != worker.zone): base += 0.8 if (request % slow_freq) < slow_count: add_l = ((np.random.pareto(shape) + 1) * scale_slow) else: add_l = 0 return base + add_l return latency def pareto(mean, shape): # mean = scale * shape / (shape - 1) # solve for scale given mean and shape (aka skew) scale = mean - mean / shape def latency(request, worker): return ((np.random.pareto(shape) + 1) * scale) return latency def expon(mean): def latency(request, worker): return random.expovariate(1.0 / mean) return latency ``` #### File: queueing_theory/src/speculation_simulator.py ```python import random from collections import namedtuple import numpy as np import simpy LatencyDatum = namedtuple( 'LatencyDatum', ('t_queued', 't_processing', 't_total') ) class SpeculatingRequestExecutor(object): """ Simulates a M/G/k process common in request processing (computing) but with always on speculation to another host :param worker_desc: A tuple of (count, capacity) to construct workers with :param local_balancer: A function which takes the current request number and the list of workers and returns the index of the worker to send the next request to :param latency_fn: A function which takes the curent request number and the worker that was assigned by the load balancer and returns the number of milliseconds a request took to process :param number_of_requests: The number of requests to run through the simulator :param request_per_s: The rate of requests per second. """ def __init__( self, worker_desc, load_balancer, latency_fn, number_of_requests, request_per_s): self.worker_desc = worker_desc self.load_balancer = load_balancer self.latency_fn = latency_fn self.number_of_requests = int(number_of_requests) self.request_interval_ms = 1. / (request_per_s / 1000.) self.received_first = {'1': 0, '2': 0} self.data = [] def simulate(self): # Setup and start the simulation random.seed(1) np.random.seed(1) self.env = simpy.Environment() count, cap = self.worker_desc self.workers = [ simpy.Resource(self.env, capacity=cap) for i in range(count) ] self.env.process(self.generate_requests()) self.env.run() def generate_requests(self): for i in range(self.number_of_requests): workers = [] for j in range(2): idx = self.load_balancer(i, self.workers) workers.append(self.workers[idx]) response = self.process_request( i, workers[0], workers[1], ) self.env.process(response) # Exponential inter-arrival times == Poisson arrival_interval = random.expovariate( 1.0 / self.request_interval_ms ) yield self.env.timeout(arrival_interval) def process_request(self, request_id, worker1, worker2): """ Request arrives, possibly queues, and then processes""" t_arrive = self.env.now req1 = worker1.request() req2 = worker2.request() try: result = yield req1 | req2 if req1 in result: self.received_first['1'] += 1 req2.cancel() req2.resource.release(req2) else: self.received_first['2'] += 1 req1.cancel() req1.resource.release(req1) t_start = self.env.now t_queued = t_start - t_arrive # Let the operation take w.e. amount of time the latency # function tells us to yield self.env.timeout(self.latency_fn(request_id)) t_done = self.env.now t_processing = t_done - t_start t_total_response = t_done - t_arrive self.data.append(LatencyDatum( t_queued, t_processing, t_total_response)) finally: worker1.release(req1) worker2.release(req2) def run_speculation( worker_desc, load_balancer, num_requests, request_per_s, latency_fn): simulator = SpeculatingRequestExecutor( worker_desc, load_balancer, latency_fn, num_requests, request_per_s ) simulator.simulate() return simulator.data, simulator.received_first ```
{ "source": "jolynch/service-capacity-modeling", "score": 2 }
#### File: service_capacity_modeling/hardware/__init__.py ```python import json import logging import os from typing import Dict from typing import Optional from service_capacity_modeling.interface import Drive from service_capacity_modeling.interface import GlobalHardware from service_capacity_modeling.interface import Hardware from service_capacity_modeling.interface import Instance from service_capacity_modeling.interface import Pricing from service_capacity_modeling.interface import Service logger = logging.getLogger(__name__) def load_pricing(pricing: Dict) -> Pricing: return Pricing(regions=pricing) def load_hardware(hardware: Dict) -> Hardware: return Hardware(**hardware) def price_hardware(hardware: Hardware, pricing: Pricing) -> GlobalHardware: regions: Dict[str, Hardware] = {} for region, region_pricing in pricing.regions.items(): priced_instances: Dict[str, Instance] = {} priced_drives: Dict[str, Drive] = {} priced_services: Dict[str, Service] = {} for instance, iprice in region_pricing.instances.items(): priced_instances[instance] = hardware.instances[instance].copy() priced_instances[instance].annual_cost = iprice.annual_cost if iprice.lifecycle is not None: priced_instances[instance].lifecycle = iprice.lifecycle for drive, dprice in region_pricing.drives.items(): priced_drives[drive] = hardware.drives[drive].copy() priced_drives[drive].annual_cost_per_gib = dprice.annual_cost_per_gib priced_drives[ drive ].annual_cost_per_read_io = dprice.annual_cost_per_read_io priced_drives[ drive ].annual_cost_per_write_io = dprice.annual_cost_per_write_io for svc, svc_price in region_pricing.services.items(): priced_services[svc] = hardware.services[svc].copy() priced_services[svc].annual_cost_per_gib = svc_price.annual_cost_per_gib priced_services[ svc ].annual_cost_per_read_io = svc_price.annual_cost_per_read_io priced_services[ svc ].annual_cost_per_write_io = svc_price.annual_cost_per_write_io regions[region] = Hardware( instances=priced_instances, drives=priced_drives, services=priced_services, zones_in_region=region_pricing.zones_in_region, ) return GlobalHardware(regions=regions) def load_hardware_from_disk( price_path=os.environ.get("PRICE_PATH"), shape_path=os.environ.get("HARDWARE_SHAPES"), ) -> GlobalHardware: if price_path is not None and shape_path is not None: with open(price_path) as pfd: pricing = load_pricing(json.load(pfd)) with open(shape_path) as sfd: hardware = load_hardware(json.load(sfd)) return price_hardware(hardware=hardware, pricing=pricing) else: return GlobalHardware(regions={}) def load_hardware_from_s3(bucket, path) -> GlobalHardware: try: # boto is a heavy dependency so we only want to take it if # someone will be using it ... try: import boto3 import botocore except ImportError: return GlobalHardware(regions={}) s3 = boto3.resource("s3") obj = s3.Object(bucket, path) data = json.loads(obj.get()["Body"].read().decode("utf-8")) return GlobalHardware(**data) except botocore.exceptions.ClientError as exp: logger.exception(exp) return GlobalHardware(regions={}) class HardwareShapes: def __init__(self): self._hardware: Optional[GlobalHardware] = None def load(self, new_hardware: GlobalHardware) -> None: self._hardware = new_hardware @property def hardware(self) -> GlobalHardware: if self._hardware is None: from service_capacity_modeling.hardware.profiles import common_profiles self._hardware = common_profiles["aws-3yr-reserved"] return self._hardware def region(self, region: str) -> Hardware: return self.hardware.regions[region] shapes: HardwareShapes = HardwareShapes() ``` #### File: org/netflix/stateless_java.py ```python import math from decimal import Decimal from typing import Any from typing import Dict from typing import Optional from typing import Sequence from typing import Tuple from service_capacity_modeling.interface import AccessConsistency from service_capacity_modeling.interface import AccessPattern from service_capacity_modeling.interface import CapacityDesires from service_capacity_modeling.interface import CapacityPlan from service_capacity_modeling.interface import CapacityRegretParameters from service_capacity_modeling.interface import CapacityRequirement from service_capacity_modeling.interface import certain_float from service_capacity_modeling.interface import certain_int from service_capacity_modeling.interface import Clusters from service_capacity_modeling.interface import Consistency from service_capacity_modeling.interface import DataShape from service_capacity_modeling.interface import Drive from service_capacity_modeling.interface import FixedInterval from service_capacity_modeling.interface import GlobalConsistency from service_capacity_modeling.interface import Instance from service_capacity_modeling.interface import Interval from service_capacity_modeling.interface import QueryPattern from service_capacity_modeling.interface import RegionClusterCapacity from service_capacity_modeling.interface import RegionContext from service_capacity_modeling.interface import Requirements from service_capacity_modeling.models import CapacityModel from service_capacity_modeling.models.common import compute_stateless_region from service_capacity_modeling.models.common import simple_network_mbps from service_capacity_modeling.models.common import sqrt_staffed_cores def _estimate_java_app_requirement( desires: CapacityDesires, failover: bool = True, jvm_memory_overhead: float = 1.2, ) -> CapacityRequirement: needed_cores = sqrt_staffed_cores(desires) needed_network_mbps = simple_network_mbps(desires) if failover: # For failover provision at 40% utilization needed_cores = int(math.ceil(needed_cores * (1 / 0.4))) needed_network_mbps = int(math.ceil(needed_network_mbps * (1 / 0.4))) # Assume a Java application that can allocate about 1 GiB/s to heap # per 2 GiB of heap with some amount of overhead on the network traffic. # So for example if we have 512 MiB of network traffic there is some # overhead associated with that... # TODO: we should probably have the memory bandwidth attached to # the instance type, e.g. Intel CPUs and AMD CPUs have different # per core memory bandwidth. mem_allocation_mbps = needed_network_mbps * jvm_memory_overhead heap_allocation_gibps = (mem_allocation_mbps / 8) / 1024 network_heap = heap_allocation_gibps * 2 needed_memory_gib = network_heap return CapacityRequirement( requirement_type="java-app", core_reference_ghz=desires.core_reference_ghz, cpu_cores=certain_int(needed_cores), mem_gib=certain_float(needed_memory_gib), network_mbps=certain_float(needed_network_mbps), context={ "network_heap_gib": network_heap, "reserved_mem": desires.data_shape.reserved_instance_app_mem_gib, }, ) def _estimate_java_app_region( instance: Instance, drive: Drive, desires: CapacityDesires, root_disk_gib: int = 10, failover: bool = True, jvm_memory_overhead: float = 2, zones_per_region: int = 3, ) -> Optional[CapacityPlan]: if drive.name != "gp2": return None requirement = _estimate_java_app_requirement(desires, failover, jvm_memory_overhead) drive = drive.copy() drive.size_gib = root_disk_gib attached_drives = (drive,) cluster: RegionClusterCapacity = compute_stateless_region( instance=instance, needed_cores=int(requirement.cpu_cores.mid), needed_memory_gib=requirement.mem_gib.mid, needed_network_mbps=requirement.network_mbps.mid, core_reference_ghz=requirement.core_reference_ghz, num_zones=zones_per_region, ) cluster.cluster_type = "nflx-java-app" cluster.attached_drives = attached_drives # Generally don't want giant clusters # Especially not above 1000 because some load balancers struggle # with such large clusters if cluster.count <= 256: return CapacityPlan( requirements=Requirements(regional=[requirement]), candidate_clusters=Clusters( total_annual_cost=round(Decimal(cluster.annual_cost), 2), regional=[cluster], zonal=[], ), ) return None class NflxJavaAppCapacityModel(CapacityModel): @staticmethod def capacity_plan( instance: Instance, drive: Drive, context: RegionContext, desires: CapacityDesires, extra_model_arguments: Dict[str, Any], ) -> Optional[CapacityPlan]: failover: bool = extra_model_arguments.get("failover", True) jvm_memory_overhead: float = extra_model_arguments.get( "jvm_memory_overhead", 1.2 ) root_disk_gib: int = extra_model_arguments.get("root_disk_gib", 10) return _estimate_java_app_region( instance=instance, drive=drive, desires=desires, failover=failover, root_disk_gib=root_disk_gib, jvm_memory_overhead=jvm_memory_overhead, zones_per_region=context.zones_in_region, ) @staticmethod def description(): return "Netflix Streaming Java App Model" @staticmethod def extra_model_arguments() -> Sequence[Tuple[str, str, str]]: return ( ("failover", "bool = 1", "If this app participates in failover"), ( "jvm_memory_overhead", "float = 1.2", "How much overhead does the heap have per read byte", ), ("root_disk_gib", "int = 10", "How many GiB of root volume to attach"), ) @staticmethod def regret( regret_params: CapacityRegretParameters, optimal_plan: CapacityPlan, proposed_plan: CapacityPlan, ) -> Dict[str, float]: regret = super(NflxJavaAppCapacityModel, NflxJavaAppCapacityModel).regret( regret_params, optimal_plan, proposed_plan ) regret["disk_space"] = 0 return regret @staticmethod def default_desires(user_desires, extra_model_arguments): if user_desires.query_pattern.access_pattern == AccessPattern.latency: return CapacityDesires( query_pattern=QueryPattern( access_pattern=AccessPattern.latency, access_consistency=GlobalConsistency( same_region=Consistency( target_consistency=AccessConsistency.read_your_writes, ), cross_region=Consistency( target_consistency=AccessConsistency.never, ), ), estimated_mean_read_size_bytes=Interval( low=128, mid=1024, high=65536, confidence=0.95 ), estimated_mean_write_size_bytes=Interval( low=64, mid=128, high=1024, confidence=0.95 ), estimated_mean_read_latency_ms=Interval( low=0.2, mid=1, high=2, confidence=0.98 ), estimated_mean_write_latency_ms=Interval( low=0.2, mid=1, high=2, confidence=0.98 ), # "Single digit milliseconds SLO" read_latency_slo_ms=FixedInterval( minimum_value=0.5, maximum_value=10, low=1, mid=2, high=5, confidence=0.98, ), write_latency_slo_ms=FixedInterval( low=1, mid=2, high=5, confidence=0.98 ), ), data_shape=DataShape( # Assume 4 GiB heaps reserved_instance_app_mem_gib=4 ), ) else: return CapacityDesires( query_pattern=QueryPattern( access_pattern=AccessPattern.latency, access_consistency=GlobalConsistency( same_region=Consistency( target_consistency=AccessConsistency.read_your_writes, ), cross_region=Consistency( target_consistency=AccessConsistency.never, ), ), estimated_mean_read_size_bytes=Interval( low=128, mid=1024, high=65536, confidence=0.95 ), estimated_mean_write_size_bytes=Interval( low=64, mid=128, high=1024, confidence=0.95 ), # Throughput ops can be slower estimated_mean_read_latency_ms=Interval( low=0.2, mid=4, high=8, confidence=0.98 ), estimated_mean_write_latency_ms=Interval( low=0.2, mid=1, high=5, confidence=0.98 ), # "Tens of millisecond SLO" read_latency_slo_ms=FixedInterval( minimum_value=0.5, maximum_value=100, low=1, mid=5, high=40, confidence=0.98, ), write_latency_slo_ms=FixedInterval( minimum_value=0.5, maximum_value=100, low=1, mid=5, high=40, confidence=0.98, ), ), data_shape=DataShape( # Assume 4 GiB heaps reserved_instance_app_mem_gib=4 ), ) nflx_java_app_capacity_model = NflxJavaAppCapacityModel() ``` #### File: service-capacity-modeling/service_capacity_modeling/stats.py ```python from functools import lru_cache from typing import Tuple import numpy as np from scipy.optimize import minimize from scipy.optimize import OptimizeResult from scipy.optimize import root from scipy.special import gammainc as gammaf from scipy.stats import beta as beta_dist from scipy.stats import gamma as gamma_dist from scipy.stats import rv_continuous from service_capacity_modeling.interface import Interval from service_capacity_modeling.interface import IntervalModel # Parameter estimation of various scipy distributions using # See https://www.johndcook.com/quantiles_parameters.pdf for # background EPSILON = 0.001 # Gamma distribution G(alpha, beta) with mean alpha * beta def _gamma_fn_from_params(low, mid, high, confidence): assert 0 < low <= mid <= high confidence = min(confidence, 0.99) confidence = max(confidence, 0.01) low_p = 0 + (1 - confidence) / 2.0 high_p = 1 - (1 - confidence) / 2.0 # cdf(x) = F(k) * gammaf(shape, x / scale) # mean = shape * scale # We know the value at two points of the cdf and the mean so we can # basically setup a system of equations of cdf(high) / cdf(low) = known # and mean = known # # Then we can use numeric methods to solve for the remaining shape parameter def f(k): zero = high / low return gammaf(k, high_p * k / mid) / gammaf(k, low_p * k / mid) - zero return f def _gamma_dist_from_interval( interval: Interval, seed: int = 0xCAFE ) -> Tuple[float, rv_continuous]: # If we know cdf(high), cdf(low) and mean (mid) we can use an iterative # solver to find a possible gamma interval # Note we shift the lower bound and mean by the minimum (defaults to # half the lower bound so we don't end up with less than the minimum # estimate. This does distort the gamma but in a way that is useful for # capacity planning (sorta like a wet-bias in forcasting models) minimum = interval.minimum lower = interval.low - minimum mean = interval.mid - minimum if lower == 0: lower = EPSILON f = _gamma_fn_from_params(lower, mean, interval.high, interval.confidence) result = root(f, 2) shape = result.x[0] dist = gamma_dist(shape, loc=minimum, scale=(mean / shape)) dist.random_state = np.random.default_rng(seed=seed) return (shape, dist) # This can be expensive, so cache it @lru_cache(maxsize=128) def _gamma_for_interval(interval: Interval, seed: int = 0xCAFE) -> rv_continuous: return _gamma_dist_from_interval(interval, seed=seed)[1] def gamma_for_interval(interval: Interval, seed: int = 0xCAFE) -> rv_continuous: result = _gamma_for_interval(interval, seed) # Use the new Generator API instead of RandomState for ~20% speedup result.random_state = np.random.default_rng(seed=seed) return result # Beta distribution B(alpha, beta) with mean alpha / (alpha + beta) def _beta_cost_fn_from_params(low, mid, high, confidence): assert low <= mid <= high < 1.0 assert mid > 0 # Assume symmetric percentiles were provided confidence = min(confidence, 0.99) confidence = max(confidence, 0.01) low_p = 0.0 + (1 - confidence) / 2.0 high_p = 1.0 - (1 - confidence) / 2.0 def cost(alpha): beta = alpha / mid - alpha if alpha == 0 or beta == 0: return float("inf") cost = (beta_dist.cdf(low, alpha, beta) - low_p) ** 2 cost += (beta_dist.cdf(high, alpha, beta) - high_p) ** 2 return cost return cost def _beta_dist_from_interval( interval: Interval, seed: int = 0xCAFE ) -> Tuple[Tuple[float, float, OptimizeResult], rv_continuous]: # If we know cdf(high), cdf(low) and mean (mid) we can use an iterative # solver to find a possible beta fit if interval.minimum == interval.maximum: minimum = interval.low - EPSILON maximum = interval.high + EPSILON scale = maximum - minimum else: minimum = interval.minimum maximum = interval.maximum scale = maximum - minimum lower = (interval.low - minimum) / scale mean = (interval.mid - minimum) / scale upper = (interval.high - minimum) / scale f = _beta_cost_fn_from_params(lower, mean, upper, interval.confidence) result = minimize(f, x0=2, bounds=[(0.1, 40)]) alpha = result.x[0] dist = beta_dist(alpha, alpha / mean - alpha, loc=minimum, scale=scale) dist.random_state = np.random.default_rng(seed=seed) return (alpha, alpha / mean - alpha, result), dist # This can be expensive, so cache it @lru_cache(maxsize=128) def _beta_for_interval(interval: Interval, seed: int = 0xCAFE) -> rv_continuous: return _beta_dist_from_interval(interval, seed=seed)[1] def beta_for_interval(interval: Interval, seed: int = 0xCAFE) -> rv_continuous: result = _beta_for_interval(interval, seed) # Use the new Generator API instead of RandomState for ~20% speedup result.random_state = np.random.default_rng(seed=seed) return result def dist_for_interval(interval: Interval, seed: int = 0xCAFE) -> rv_continuous: if interval.model_with == IntervalModel.beta: result = beta_for_interval(interval=interval, seed=seed) elif interval.model_with == IntervalModel.gamma: result = gamma_for_interval(interval=interval, seed=seed) else: result = beta_for_interval(interval=interval, seed=seed) return result ``` #### File: tests/netflix/test_java_app.py ```python from service_capacity_modeling.capacity_planner import planner from service_capacity_modeling.interface import CapacityDesires from service_capacity_modeling.interface import certain_float from service_capacity_modeling.interface import certain_int from service_capacity_modeling.interface import DataShape from service_capacity_modeling.interface import Interval from service_capacity_modeling.interface import QueryPattern small_but_high_qps = CapacityDesires( service_tier=1, query_pattern=QueryPattern( estimated_read_per_second=certain_int(100000), estimated_write_per_second=certain_int(100000), estimated_mean_read_latency_ms=certain_float(0.4), estimated_mean_write_latency_ms=certain_float(0.4), ), data_shape=DataShape( estimated_state_size_gib=certain_int(10), ), ) large_footprint = CapacityDesires( service_tier=1, query_pattern=QueryPattern( estimated_read_per_second=certain_int(60000), estimated_write_per_second=certain_int(60000), estimated_mean_read_latency_ms=certain_float(0.8), estimated_mean_write_latency_ms=certain_float(0.5), ), data_shape=DataShape( estimated_state_size_gib=certain_int(4000), ), ) def test_java_app(): java_cap_plan = planner.plan_certain( model_name="org.netflix.stateless-java", region="us-east-1", desires=large_footprint, )[0] java_result = java_cap_plan.candidate_clusters.regional[0] cores = java_result.count * java_result.instance.cpu assert java_result.instance.name.startswith("m5.") assert 100 <= cores <= 300 java_cap_plan = planner.plan( model_name="org.netflix.stateless-java", region="us-east-1", desires=small_but_high_qps, ).least_regret[0] java_result = java_cap_plan.candidate_clusters.regional[0] cores = java_result.count * java_result.instance.cpu assert java_result.instance.name.startswith("m5.") assert 100 <= cores <= 300 def test_uncertain_java_app(): uncertain = CapacityDesires( service_tier=1, query_pattern=QueryPattern( estimated_read_per_second=Interval( low=2_000, mid=30_000, high=60_000, confidence=0.98 ), estimated_write_per_second=Interval( low=2_000, mid=30_000, high=60_000, confidence=0.98 ), ), # Should be ignored data_shape=DataShape( estimated_state_size_gib=Interval(low=50, mid=500, high=1000), reserved_instance_app_mem_gib=4, ), ) java_cap_plan = planner.plan( model_name="org.netflix.stateless-java", region="us-east-1", desires=uncertain, ) java_least_regret = java_cap_plan.least_regret[0] java_result = java_least_regret.candidate_clusters.regional[0] cores = java_result.count * java_result.instance.cpu assert java_result.instance.name.startswith("m5.") assert 100 <= cores <= 300 # KeyValue regional clusters should match kv_cap_plan = planner.plan( model_name="org.netflix.key-value", region="us-east-1", desires=uncertain, ) kv_least_regret = kv_cap_plan.least_regret[0] kv_result = kv_least_regret.candidate_clusters.regional[0] kv_cores = kv_result.count * kv_result.instance.cpu assert kv_result.instance.name.startswith("m5.") assert 0.5 <= float(kv_cores) / cores <= 1.5 assert kv_least_regret.candidate_clusters.zonal[0].count > 0 def test_java_heap_heavy(): large_heap = CapacityDesires( service_tier=1, query_pattern=QueryPattern( estimated_read_per_second=Interval( low=2_000, mid=10_000, high=60_000, confidence=0.98 ), estimated_write_per_second=Interval( low=2_000, mid=10_000, high=60_000, confidence=0.98 ), ), data_shape=DataShape( reserved_instance_app_mem_gib=40, ), ) java_cap_plan = planner.plan( model_name="org.netflix.stateless-java", region="us-east-1", desires=large_heap, ) java_least_regret = java_cap_plan.least_regret[0] java_result = java_least_regret.candidate_clusters.regional[0] cores = java_result.count * java_result.instance.cpu assert 20 <= cores <= 100 assert java_result.instance.ram_gib > 40 # Should bump the heap due to the traffic large_traffic = CapacityDesires( service_tier=1, query_pattern=QueryPattern( estimated_read_per_second=Interval( low=2_000, mid=30_000, high=60_000, confidence=0.98 ), estimated_write_per_second=Interval( low=2_000, mid=30_000, high=60_000, confidence=0.98 ), estimated_mean_write_size_bytes=Interval( low=1024, mid=32768, high=262144, confidence=0.98 ), ), ) java_cap_plan = planner.plan( model_name="org.netflix.stateless-java", region="us-east-1", desires=large_traffic, ) java_least_regret = java_cap_plan.least_regret[0] java_result = java_least_regret.candidate_clusters.regional[0] cores = java_result.count * java_result.instance.cpu assert 100 <= cores <= 300 # 32 KiB payloads * 30k/second is around 1 GiB per second # which should require a decent chunk of heap memory memory = java_result.count * java_result.instance.ram_gib assert memory > 50 ``` #### File: service-capacity-modeling/tests/test_common.py ```python from decimal import Decimal from service_capacity_modeling.hardware import shapes from service_capacity_modeling.interface import CapacityPlan from service_capacity_modeling.interface import CapacityRequirement from service_capacity_modeling.interface import Clusters from service_capacity_modeling.interface import Interval from service_capacity_modeling.interface import RegionClusterCapacity from service_capacity_modeling.interface import Requirements from service_capacity_modeling.interface import ZoneClusterCapacity from service_capacity_modeling.models.common import merge_plan def test_merge_plan(): left_requirement = CapacityRequirement( requirement_type="test", core_reference_ghz=2.3, cpu_cores=Interval(low=10, mid=20, high=30, confidence=0.98), mem_gib=Interval(low=20, mid=100, high=200, confidence=0.98), network_mbps=Interval(low=1000, mid=2000, high=3000, confidence=0.98), disk_gib=Interval(low=40, mid=200, high=500, confidence=0.98), ) right_requirement = CapacityRequirement( requirement_type="test", core_reference_ghz=2.3, cpu_cores=Interval(low=10, mid=20, high=30, confidence=0.98), mem_gib=Interval(low=20, mid=100, high=200, confidence=0.98), network_mbps=Interval(low=1000, mid=2000, high=3000, confidence=0.98), disk_gib=Interval(low=40, mid=200, high=500, confidence=0.98), ) left_instance = shapes.region("us-east-1").instances["r5d.2xlarge"] right_instance = shapes.region("us-east-1").instances["m5.2xlarge"] left_plan = CapacityPlan( requirements=Requirements(zonal=[left_requirement]), candidate_clusters=Clusters( total_annual_cost=Decimal(1234), zonal=[ ZoneClusterCapacity( cluster_type="left", count=2, instance=left_instance, attached_drives=[], annual_cost=1234, ) ], ), ) right_plan = CapacityPlan( requirements=Requirements(zonal=[right_requirement]), candidate_clusters=Clusters( total_annual_cost=Decimal(1468), regional=[ RegionClusterCapacity( cluster_type="right", count=2, instance=right_instance, attached_drives=[], annual_cost=234, ) ], zonal=[ ZoneClusterCapacity( cluster_type="right", count=4, instance=left_instance, attached_drives=[], annual_cost=1234, ) ], ), ) result = merge_plan(left_plan, right_plan) assert result is not None assert ( result.requirements.zonal[0].cpu_cores.mid + result.requirements.zonal[1].cpu_cores.mid == 40 ) assert ( result.requirements.zonal[0].network_mbps.mid + result.requirements.zonal[1].network_mbps.mid == 4000 ) assert result.candidate_clusters.regional == right_plan.candidate_clusters.regional assert left_plan.candidate_clusters.zonal[0] in result.candidate_clusters.zonal assert right_plan.candidate_clusters.zonal[0] in result.candidate_clusters.zonal ``` #### File: service-capacity-modeling/tests/test_desire_merge.py ```python from service_capacity_modeling.capacity_planner import planner from service_capacity_modeling.interface import CapacityDesires from service_capacity_modeling.interface import certain_int from service_capacity_modeling.interface import DataShape from service_capacity_modeling.interface import Interval from service_capacity_modeling.interface import QueryPattern user_desires = CapacityDesires( service_tier=0, query_pattern=QueryPattern( estimated_read_per_second=certain_int(100000), estimated_write_per_second=certain_int(100000), estimated_mean_read_size_bytes=Interval( low=10, mid=100, high=1000, confidence=0.98 ), ), data_shape=DataShape( estimated_state_size_gib=certain_int(10), ), ) def test_cassandra_merge(): cass_defaults = planner.models["org.netflix.cassandra"].default_desires( user_desires, {} ) merged = user_desires.merge_with(cass_defaults) # Should come from the user assert merged.service_tier == 0 assert merged.query_pattern.estimated_read_per_second.mid == 100000 assert merged.query_pattern.estimated_mean_read_size_bytes.low == 10 assert merged.data_shape.estimated_state_size_gib.mid == 10 # Should come from cassandra assert merged.query_pattern.estimated_mean_read_latency_ms.mid == 2.0 assert merged.query_pattern.estimated_mean_write_latency_ms.mid == 1.0 # Should come from overall defaults assert merged.data_shape.estimated_state_item_count is None assert merged.core_reference_ghz == 2.3 ```
{ "source": "jolyonb/chisquaredfields", "score": 4 }
#### File: chisquaredfields/source/mcintegrate.py ```python import numpy as np from math import sqrt from random import normalvariate, uniform def MCIntegrate(variables, integrand, probability, numsamples, parameters={}, burnin=1000) : """Perform a Metropolis-Hastings Monte Carlo integral for a 5D vector integrand""" # Initialize data collection samples = -burnin numsamples = int(numsamples) results = np.zeros([numsamples, 5]) accepted = 0 # Initialize values for each variable values = [0.0] * len(variables) lastprob = init_values(variables, values, probability, parameters) # Start integrating while samples < numsamples : # Jump to a new point values, lastprob, jumped = update_values(variables, values, probability, parameters, lastprob) # Are we done burning in? if samples >= 0 : # Count the number of iterations to compute the acceptance ratio if jumped : accepted += 1 # Compute the integrand intval = integrand(values, parameters) # Add it to the results results[samples] = intval # Increment samples samples += 1 # Compute integrals for the four different results (different types of stationary points) vals = [0] * 5 vals[0], vals[1], vals[2], vals[3], vals[4] = np.transpose(results) integrals = np.zeros(5) errors = np.zeros(5) variances = np.zeros(5) for i in range(5) : integrals[i] = np.sum(vals[i]) / numsamples delta = vals[i] - integrals[i] variances[i] = np.sum(delta * delta) / (numsamples - 1) errors[i] = sqrt(variances[i] / numsamples) # Return integrals, errors and acceptance rate return integrals, errors, float(accepted) / numsamples def update_values(variables, values, probability, parameters, lastprob) : """ Jump to a new point in the domain of integration using the Metropolis-Hastings approach """ newvalues = [0.0] * len(variables) # Generate a distance to jump for each variable for i, var in enumerate(variables) : vartype = var[1] varjump = var[2] if vartype == "n" : newvalues[i] = normalvariate(values[i], varjump) elif vartype == "pn" : newvalues[i] = abs(normalvariate(values[i], varjump)) # Calculate the new probability newprob = probability(newvalues, parameters) # Accept or reject? # Return the new values, new probability and whether or not a jump was made if newprob >= lastprob or uniform(0, 1) < newprob / lastprob : # Accept return newvalues, newprob, True else : # Reject return values, lastprob, False def init_values(variables, values, probability, parameters) : """Initialize variables for integration""" # Generate values for each variable for i, var in enumerate(variables) : vartype = var[1] if vartype == "n" : values[i] = normalvariate(0, 1) elif vartype == "pn" : values[i] = abs(normalvariate(0, 1)) # Return the probability where we've landed return probability(values, parameters) if __name__ == "__main__": print("This is a supporting library. It is not intended to be executed.") ``` #### File: chisquaredfields/source/plot.py ```python import matplotlib.pyplot as plt import numpy as np import argparse from common import signed_exact, lowgamma_extrema, lowgamma_saddles # # Deal with command line arguments # parser = argparse.ArgumentParser(description="Plot the number density of stationary points in chi^2 fields", epilog="By default, all plots and curves are shown.") # Input file parser.add_argument("-i", help="Input file (default 'data.dat')", type=argparse.FileType('r'), default="data.dat", dest="file") # Plot signed number density? parser.add_argument("-ns", help="Do not plot signed number density", dest="signed", action="store_false", default=True) # Plot individual number densities? parser.add_argument("-ni", help="Do not plot individual number densities", dest="individual", action="store_false", default=True) # Which lines to plot? parser.add_argument("-nx", help="Individual plot: Do not plot maxima", dest="max", action="store_false", default=True) parser.add_argument("-nn", help="Individual plot: Do not plot minima", dest="min", action="store_false", default=True) parser.add_argument("-nppm", help="Individual plot: Do not plot (++-) saddles", dest="saddleppm", action="store_false", default=True) parser.add_argument("-npmm", help="Individual plot: Do not plot (+--) saddles", dest="saddlepmm", action="store_false", default=True) # Plot low gamma analytic approximations parser.add_argument("-l", help="Plot low-gamma analytic approximations (default off)", dest="lowgamma", action="store_true", default=False) # Error scaling def pos_float(value): try: ivalue = float(value) except ValueError : raise argparse.ArgumentTypeError("must be a number. You supplied: %s" % value) if ivalue <= 0: raise argparse.ArgumentTypeError("must be > 0. You supplied: %s" % value) return ivalue parser.add_argument("-e", help="Error scaling (default 1.0)", dest="errscale", default=1.0, type=pos_float) # Quiet mode? parser.add_argument("-q", help="Quiet mode", action="store_true", dest="quiet", default=False) # Parse the command line args = parser.parse_args() # Print the header if not args.quiet : print __doc__ # # Processing starts here # # Read in the data data = args.file.readlines() args.file.close() # Process the data results = [map(float, x.split(", ")) for x in data] N, gamma, sigma0, sigma1, numsamples = results[0] data = np.transpose(results[1:]) nuvals = data[0] nucount = 1000 nuvalsexact = np.linspace(nuvals[0], nuvals[-1], nucount) integrals = data[1:6] errors = data[6:11] errors *= args.errscale # 11 is the exact signed number density at that nu # 12 is the acceptance rate from the MCMC (vegas will return zero) def plot_signed(integrals, errors, nuvals, nuvalsexact, exactvals) : """Plot the signed number density, along with the exact solution""" # Global marker size msize msize = 4 # Plot the data with errorbars and the exact solution fig, ax = plt.subplots() ax.errorbar(nuvals, integrals[4], yerr=errors[4], fmt='ro', markersize=msize, label="Numeric") ax.plot(nuvalsexact, exactvals, 'b-', label="Analytic") # Labels ax.set_title(r'Signed Number Density', fontsize=20) ax.set_xlabel(r'$\bar{\nu}$',fontsize=20) ax.set_ylabel(r'$\left\langle \frac{d{\cal N}^\mathrm{signed}}{d\bar{\nu}} \right\rangle$',fontsize=24,labelpad=-8) fig.subplots_adjust(left=0.16) # Legend h1, l1 = ax.get_legend_handles_labels() legend = ax.legend(h1,l1,loc='upper right',shadow=False,fancybox=True) # The frame is matplotlib.patches.Rectangle instance surrounding the legend. frame = legend.get_frame() frame.set_facecolor('1.0') # Set sizes for the legend for label in legend.get_texts(): label.set_fontsize(14) for label in legend.get_lines(): label.set_linewidth(1.5) # the legend line width # Tick marks ax.tick_params(axis='x', which='major', labelsize=16) ax.tick_params(axis='y', which='major', labelsize=16) # Text box of parameters textlist=[ r'$\sigma_0=%.2f$'%(sigma0)+'\n', r'$\sigma_1=%.2f$'%(sigma1)+'\n', r'$\gamma \,\, = %.2f$'%(gamma)+'\n', r'$N\, = %1d$'%(N)] textstr=''.join(textlist) props = dict(boxstyle='round', facecolor='white', edgecolor='black') ax.text(0.8, 0.8, textstr, transform=ax.transAxes, fontsize=16, verticalalignment='top', bbox=props) def plot_all(integrals, errors, nuvals, curves, nuvalsexact, extrema_vals, saddle_vals, lowgamma) : """Plot the individual number densities""" # A pretty purple! prettypurple = "#DE00FF" # Global marker size msize msize = 4 # Plot the data with errorbars and the exact solution fig, ax = plt.subplots() # plt.rc('text', usetex=True) # plt.rc('font', family='sans-serif') if curves[0] : ax.errorbar(nuvals, integrals[0], yerr=errors[0], markersize=msize, fmt='ro-', label="Minima") if curves[1] : ax.errorbar(nuvals, integrals[1], yerr=errors[1], markersize=msize, fmt='bo-', label="Saddle (+,+,--)") if curves[2] : ax.errorbar(nuvals, integrals[2], yerr=errors[2], markersize=msize, fmt='go-', label="Saddle (+,--,--)") if curves[3] : ax.errorbar(nuvals, integrals[3], yerr=errors[3], markersize=msize, color=prettypurple, fmt='o-', label="Maxima") # Plotting low gamma approximations if lowgamma and (curves[3] or curves[0]) : ax.plot(nuvalsexact, extrema_vals, 'r-') if lowgamma and (curves[2] or curves[1]) : ax.plot(nuvalsexact, saddle_vals, 'b-') # Labels ax.set_title(r'Number Density of Stationary Points', fontsize=20) ax.set_xlabel(r'$\bar{\nu}$',fontsize=20) ax.set_ylabel(r'$\left\langle \frac{d{\cal N}^\mathrm{stationary}}{d\bar{\nu}} \right\rangle$',fontsize=24,labelpad=-8) fig.subplots_adjust(left=0.16) # Legend h1, l1 = ax.get_legend_handles_labels() legend = ax.legend(h1,l1,loc='upper right',shadow=False,fancybox=True) # The frame is matplotlib.patches.Rectangle instance surrounding the legend. frame = legend.get_frame() frame.set_facecolor('1.0') # Set sizes for the legend for label in legend.get_texts(): label.set_fontsize(14) for label in legend.get_lines(): label.set_linewidth(1.5) # the legend line width # Tick marks ax.tick_params(axis='x', which='major', labelsize=16) ax.tick_params(axis='y', which='major', labelsize=16) # Text box of parameters textlist=[ r'$\sigma_0=%.2f$'%(sigma0)+'\n', r'$\sigma_1=%.2f$'%(sigma1)+'\n', r'$\gamma \,\, = %.2f$'%(gamma)+'\n', r'$N\, = %1d$'%(N)] textstr=''.join(textlist) props = dict(boxstyle='round', facecolor='white', edgecolor='black') ax.text(0.8, 0.65, textstr, transform=ax.transAxes, fontsize=16, verticalalignment='top', bbox=props) # Set some plotting parameters plt.rc('text', usetex=True) plt.rc('font', family='sans-serif') if args.signed : # Compute the exact solution for the signed number density exactvals = np.zeros(nucount) for i, nuval in enumerate(nuvalsexact) : exactvals[i] = signed_exact(N, gamma, nuval, sigma0, sigma1) # Plot the signed number density plot_signed(integrals, errors, nuvals, nuvalsexact, exactvals) if args.individual : if args.lowgamma : #Calculating the low gamma approximation for saddles and extrema. extrema_vals = np.zeros(nucount) saddle_vals = np.zeros(nucount) for i, nuval in enumerate(nuvalsexact) : extrema_vals[i] = lowgamma_extrema(N, gamma, nuval, sigma0, sigma1) saddle_vals[i] = lowgamma_saddles(N, gamma, nuval, sigma0, sigma1) else : extrema_vals = False saddle_vals = False nuvalsexact = False # Plot the individual number densities curves = [args.min, args.saddleppm, args.saddlepmm, args.max] if any(curves) : plot_all(integrals, errors, nuvals, curves, nuvalsexact, extrema_vals, saddle_vals, args.lowgamma) else : print "Error: No curves requested in individual number densities!" if args.signed or args.individual : plt.show() else : print "Error: No plots requested!" ``` #### File: chisquaredfields/source/stationary_vegas.py ```python import numpy as np import pyximport pyximport.install(setup_args={'include_dirs': np.get_include()}) import vegas import integrand as INT import time import common from math import pi def number_density(parameters, numsamples): N, gamma, nu, sigma0, sigma1 = parameters domain=[[-pi/2,pi/2],[-pi/2,pi/2],[-pi/2,pi/2],[0,pi/2],[0,pi/2],[0,pi/2],[-pi/2,pi/2],[-pi/2,pi/2],[-pi/2,pi/2]] f=INT.f_cython(dim=9,N=N,nu=nu,gamma=gamma) integ = vegas.Integrator(domain, nhcube_batch=1000) integ(f, nitn=10, neval=numsamples) vecresult = integ(f, nitn=10, neval=numsamples) scale = common.scale(*parameters) V_N = common.V_N(N,gamma) prefactor = scale/V_N integrals = np.zeros(5) errors = np.zeros(5) for i in range(1,vecresult.shape[0]): integrals[i-1] = prefactor*vecresult[i].mean errors[i-1] = prefactor*vecresult[i].sdev integrals[4] = prefactor*vecresult[0].mean errors[4] = prefactor*vecresult[0].sdev return integrals, errors, common.signed_exact(*parameters), 0.0 if __name__ == "__main__": # parameters = [N, gamma, nu, sigma0, sigma1] parameters = [4, 0.8, 1.0, 1.0, 1.0] numsamples = 1e5 print("*" * 60) print("Performing test run") print("Computing number densities with", int(numsamples), "samples...") print("N = ", parameters[0]) print("nu = ", parameters[2]) print("gamma = ", parameters[1]) print("sigma_0 = ", parameters[3]) print("sigma_1 = ", parameters[4]) start = time.time() integrals, errors, exact, acceptance = number_density(parameters, numsamples) end = time.time() print("Finished in", round(end - start, 4), "s") print("Minima: ", integrals[0], "+-", errors[0]) print("Saddle (++-):", integrals[1], "+-", errors[1]) print("Saddle (+--):", integrals[2], "+-", errors[2]) print("Maxima: ", integrals[3], "+-", errors[3]) print("Signed: ", integrals[4], "+-", errors[4]) print("Signed exact:", exact) print("Signed error:", abs(integrals[4] - exact)) ```
{ "source": "jolyonb/edXstructure", "score": 3 }
#### File: edXstructure/structgen/structgen.py ```python import argparse, os, shutil, csv, collections levels = {"course" : 0, "chapter" : 1, "sequential" : 2, "vertical" : 3, "html" : 4, "video" : 4, "problem" : 4} content_type = {"html": 0, "video": 1, "problem": 2} short = ["course", "chap", "seq", "vert", "html", "video", "problem"] def interpret(line) : ''' Reads a line, and returns a list containing the entry, url_name, display_name, and a list of any extras ''' entry = line[0] url_name = "" display_name = "" extras = [] if len(line) > 1 : url_name = line[1] if len(line) > 2 : display_name = line[2] if len(line) > 3 : extras = line[3:] return [entry, url_name, display_name, extras] class Node : def __init__(self, line) : ''' Store the information about this node ''' self.entry, self.url_name, self.display_name, self.extras = interpret(line) self.children = [] self.level = levels[self.entry] self.content_type = 0 if self.level == 4 : self.content_type = content_type[self.entry] self.extratext = " ".join(self.extras) if len(self.extratext) > 0 : self.extratext = " " + self.extratext def create_ID(self, counts) : ''' Creates a unique ID, and sets the url_name to this if it's empty ''' self.ID = short[self.level + self.content_type] + "-" + str(counts[self.level + self.content_type]) if self.url_name.strip() == "" : self.url_name = self.ID def print_node(self) : ''' Prints itself and all of its children ''' print " " * self.level + self.entry + ": " + self.display_name for i in self.children : i.print_node() def write_node(self, file_handle) : ''' Outputs the node and all children to file ''' # Write the opening tag if self.level == 0 : file_handle.write("<course>\n") elif self.level == 4 : file_handle.write(" " * self.level + "<" + self.entry + " url_name=\"" + self.url_name + "\" />\n") else : file_handle.write(" " * self.level + "<" + self.entry + " url_name=\"" + self.url_name + "\" display_name=\"" + self.display_name + "\"" + self.extratext + ">\n") # Write the children for i in self.children : i.write_node(file_handle) # Close the tag if self.level < 4 : file_handle.write(" " * self.level + "</" + self.entry + ">\n") def write_tree(self, location, file_handle, filename="") : ''' Outputs the node and all children to file in a tree structure ''' # Insert the link in the old file if not file_handle is None : # Write the opening tag in the given file file_handle.write(" <" + self.entry + " url_name=\"" + self.url_name + "\" />\n") # We write out courses, chapters, sequentials and verticals if self.level < 4 : # Come up with the filename to write if filename == "" : filename = os.path.join(location, self.entry, self.url_name + ".xml") else : filename = os.path.join(location, self.entry, filename) # Create a new file with open(filename, "w") as f : # Write this entry if self.level == 0 : f.write("<course>\n") else : f.write("<" + self.entry + " display_name=\"" + self.display_name + "\"" + self.extratext + ">\n") # Write the children for i in self.children : i.write_tree(location, f) # Close this tag f.write("</" + self.entry + ">\n") def read_csv_file(file): ''' Read in a CSV file, returning a list of lists. Provide the filename to read. ''' with open(file, 'r') as f: data = [row for row in csv.reader(f.read().splitlines())] return data def strip_line(line): ''' Takes in a list of fields from a line in a csv file. Trims all fields, and drops leading and trailing empty fields. ''' newline = map(lambda s: s.strip(), line) for i in range(len(newline)) : if newline[i] != "" : result = newline[i:] break while result and result[-1] == "" : result.pop() return result def strip_data(data): ''' Data should be a list of lists from a csv file. Looks at each line of the csv file, and removes any trailing empty fields. Then, if the first character in the first field is a #, ignores this line. Also turns the first entry to lower case, for later ease. ''' output = [] for line in data : working = strip_line(line) if working == [] : continue if working[0][0] == "#" : continue working[0] = working[0].lower() output.append(working) return output def validate(data) : ''' Checks to make sure that all input into the CSV is readable. ''' # Make sure all entries are understood and that structure is in the # correct order (eg no jumping from chapter to vertical) # Track the level. Level can only increase 1 level at a time, but can decrease arbitrarily. level = 0 content = ["html", "video", "problem"] translation = ["to begin with.", "after chapter.", "after sequential."] for line in data : if line[0] in levels : newlevel = levels[line[0]] else : print "Error: Unknown entry \"" + line[0] + "\". Full line is as follows." print "\"" + "\", \"".join(line) + "\"" return False if newlevel > level + 1 : print "Error: Inappropriate order of entries. Cannot have", line[0], translation[level], "Full line is as follows." print "\"" + "\", \"".join(line) + "\"" return False level = newlevel return True def xmlify(data) : ''' Turn the data into an XML structure using our node class ''' # The course is the root node course = Node(["course", "course", ""]) # Iterate over everything, remembering what the last node of each level is last_nodes = [course, 0, 0, 0, 0] count_nodes = [1,0,0,0,0,0,0] for i in range(len(data)) : # Create the new node newnode = Node(data[i]) # Add it to the last node of the next lower level last_nodes[newnode.level - 1].children.append(newnode) # Update the last_nodes list last_nodes[newnode.level] = newnode # Update the count count_nodes[newnode.level + newnode.content_type] += 1 # Create the unique-id for the node newnode.create_ID(count_nodes) # Return the root return course, count_nodes def make_dir(location, name) : ''' Creates a directory if necessary ''' path = os.path.join(location, name) if os.path.isdir(path) : return os.mkdir(path) def rm_dir(location, name) : ''' Removes a directory, if it exists ''' path = os.path.join(location, name) if os.path.isdir(path) : shutil.rmtree(path) def scan_url_names(course) : namelist = collections.Counter() def traverse(node) : namelist[node.url_name] += 1 for i in node.children : traverse(i) traverse(course) for elem, count in namelist.items() : if " " in elem : print "Warning: The url_name \"" + elem + "\" has spaces in it." if count > 1 : print "Warning: The url_name \"" + elem + "\" has " + str(count) + " instances." print "edX Structure Generator v1.0" print "by <NAME>, August 2016" # Deal with the command line arguments parser = argparse.ArgumentParser(description="Create edX XML course structure from CSV file") parser.add_argument("csv_file", help="CSV file to read structure from") # Write or test? group = parser.add_mutually_exclusive_group() group.add_argument("-t", "--test", help="Test only (do not write files)", dest="write", action="store_false") group.add_argument("-w", "--write", help="Write XML structure (default)", dest="write", default=True, action="store_true") # One file or multi-structure? group2 = parser.add_mutually_exclusive_group() group2.add_argument("-s", "--single", help="Write a single XML file", dest="tree", action="store_false") group2.add_argument("-T", "--tree", help="Write out an XML tree of files (default)", dest="tree", default=True, action="store_true") parser.add_argument("-l", dest="location", type=str, default="./", help="Set the output directory (defaults to \".\")") parser.add_argument("-o", dest="filename", type=str, default="course.xml", help="Set the root file name (defaults to \"course.xml\")") parser.add_argument("-c", "--counts", help="Print counts of each item", default=False, action="store_true") parser.add_argument("--clean", help="Clear all directories before writing (only for tree writes)", default=False, action="store_true") parser.add_argument("-m", "--map", help="Print the structure map to screen", default=False, action="store_true") # Parse the command line args = parser.parse_args() # print args # exit() # Read in the CSV file try : data = read_csv_file(args.csv_file) except IOError as e: print "Error reading", args.csv_file print "I/O error({0}): {1}".format(e.errno, e.strerror) exit() # Trim the data to the stuff we need data = strip_data(data) # Validate the data if not validate(data) : exit() # Process the data course, count_nodes = xmlify(data) print "Structure read." # Print item counts courses, chapters, seqs, verticals, htmls, videos, problems = count_nodes if args.counts : print "Chapters:", chapters print "Sequentials:", seqs print "Verticals:", verticals print "HTMLs:", htmls print "Videos:", videos print "Problems:", problems # Print content map if args.map : print "Content Map:" course.print_node() # Scan for duplicate url_names scan_url_names(course) # Write content map if args.write : print "Writing course structure." if args.tree == False : # Single file with open(os.path.join(args.location, args.filename), "w") as f : course.write_node(f) else : # Multi-file tree if args.clean : # Clean everything out before writing rm_dir(args.location, "course") rm_dir(args.location, "chapter") rm_dir(args.location, "sequential") rm_dir(args.location, "vertical") # Make sure directories exist (but only if necessary) if courses > 0 : make_dir(args.location, "course") if chapters > 0 : make_dir(args.location, "chapter") if seqs > 0 : make_dir(args.location, "sequential") if verticals > 0 : make_dir(args.location, "vertical") # Write the first node course.write_tree(args.location, None, filename=args.filename) print "Structure written." ```
{ "source": "jolzgrafe/phidl", "score": 3 }
#### File: phidl/phidl/path.py ```python from __future__ import division, print_function, absolute_import import numpy as np import warnings from phidl.device_layout import Path, CrossSection, _rotate_points def arc(radius = 10, angle = 90, num_pts = 720): """ Create a circular arc Path Parameters ---------- radius : int or float Radius of arc angle : int or float Total angle of arc num_pts : int Number of points used per 360 degrees Returns ------- Path A Path object with the specified arc """ num_pts = abs(int(num_pts*angle/360)) t = np.linspace(-90*np.pi/180, (angle-90)*np.pi/180, num_pts) x = radius*np.cos(t) y = radius*(np.sin(t)+1) points = np.array((x,y)).T * np.sign(angle) P = Path() # Manually add points & adjust start and end angles P.points = points P.start_angle = 0 P.end_angle = angle return P def straight(length = 5, num_pts = 100): """ Creates a straight Path Parameters ---------- length : int or float Total length of straight path num_pts : int Number of points along Path Returns ------- Path A Path object with the specified straight section """ x = np.linspace(0, length, num_pts) y = x*0 points = np.array((x,y)).T P = Path() P.append(points) return P #### Euler bends def _cumtrapz(x): """ Numpy-based implementation of the cumulative trapezoidal integration function usually found in scipy (scipy.integrate.cumtrapz) """ return np.cumsum((x[1:] + x[:-1])/2) def _fresnel(R0, s, num_pts, n_iter=8): """ Fresnel integral using a series expansion """ t = np.linspace(0,s/(np.sqrt(2)*R0), num_pts) x = np.zeros(num_pts) y = np.zeros(num_pts) for n in range(0,n_iter): x += (-1)**n * t**(4*n+1)/(np.math.factorial(2*n) * (4*n+1)) y += (-1)**n * t**(4*n+3)/(np.math.factorial(2*n+1) * (4*n+3)) return np.array([np.sqrt(2)*R0*x, np.sqrt(2)*R0*y]) def euler(radius = 3, angle = 90, p = 1.0, use_eff = False, num_pts = 720): """ Create an Euler bend (also known as "racetrack" or "clothoid" curves) that adiabatically transitions from straight to curved. By default, `radius` corresponds to the minimum radius of curvature of the bend. However, if `use_eff` is set to True, `radius` corresponds to the effective radius of curvature (making the curve a drop-in replacement for an arc). If p < 1.0, will create a "partial euler" curve as described in Vogelbacher et. al. https://dx.doi.org/10.1364/oe.27.031394 Parameters ---------- radius : int or float Minimum radius of curvature angle : int or float Total angle of curve p : float Proportion of curve that is an Euler curve use_eff : bool If False: `radius` corresponds to minimum radius of curvature of the bend If True: The curve will be scaled such that the endpoints match an arc with parameters `radius` and `angle` num_pts : int Number of points used per 360 degrees Returns ------- Path A Path object with the specified Euler curve """ if (p < 0) or (p > 1): raise ValueError('[PHIDL] euler() requires argument `p` be between 0 and 1') if p == 0: P = arc(radius = radius, angle = angle, num_pts = num_pts) P.info['Reff'] = radius P.info['Rmin'] = radius return P if angle < 0: mirror = True angle = np.abs(angle) else: mirror = False R0 = 1 alpha = np.radians(angle) Rp = R0 / (np.sqrt(p*alpha)) sp = R0 * np.sqrt(p*alpha) s0 = 2*sp + Rp*alpha*(1-p) num_pts = abs(int(num_pts*angle/360)) num_pts_euler = int(np.round(sp/(s0/2)*num_pts)) num_pts_arc = num_pts - num_pts_euler xbend1, ybend1 = _fresnel(R0, sp, num_pts_euler) xp, yp = xbend1[-1], ybend1[-1] dx = xp - Rp*np.sin(p*alpha/2) dy = yp - Rp*(1-np.cos(p*alpha/2)) s = np.linspace(sp, s0/2, num_pts_arc) xbend2 = Rp*np.sin((s-sp)/Rp + p*alpha/2) + dx ybend2 = Rp*(1 - np.cos((s-sp)/Rp + p*alpha/2)) + dy x = np.concatenate([xbend1, xbend2[1:]]) y = np.concatenate([ybend1, ybend2[1:]]) points1 = np.array([x,y]).T points2 = np.flipud(np.array([x,-y]).T) points2 = _rotate_points(points2, angle-180) points2 += -points2[0,:] + points1[-1,:] points = np.concatenate([points1[:-1],points2]) # Find y-axis intersection point to compute Reff start_angle = 180*(angle<0) end_angle = start_angle + angle dy = np.tan(np.radians(end_angle-90)) * points[-1][0] Reff = points[-1][1] - dy Rmin = Rp # Fix degenerate condition at angle == 180 if np.abs(180-angle) < 1e-3: Reff = points[-1][1]/2 # Scale curve to either match Reff or Rmin if use_eff == True: scale = radius/Reff else: scale = radius/Rmin points *= scale P = Path() # Manually add points & adjust start and end angles P.points = points P.start_angle = start_angle P.end_angle = end_angle P.info['Reff'] = Reff*scale P.info['Rmin'] = Rmin*scale if mirror == True: P.mirror((1,0)) return P def spiral(num_turns = 5, gap = 1, inner_gap = 2, num_pts = 10000): """ Creates a spiral geometry consisting of two oddly-symmetric semi-circular arcs in the centre and two Archimedean (involute) spiral arms extending outward from the ends of both arcs. Parameters ---------- num_turns : int or float The number of turns in the spiral. Must be greater than 1. A full spiral rotation counts as 1 turn, and the center arcs will together always be 0.5 turn. gap : int or float The distance between any point on one arm of the spiral and a point with the same angular coordinate on an adjacent arm. inner_gap : int or float The inner size of the spiral, equal to twice the chord length of the centre arcs. num_pts: int The number of points in the entire spiral. The actual number of points will be slightly different than the specified value, as they are dynamically allocated using the path lengths of the spiral. Returns ------- Path A Path object forming a spiral Notes ----- ``num_turns`` usage (x is any whole number): - ``num_turns = x.0``: Output arm will be extended 0.5 turn to be on the same side as the input. - ``num_turns < x.5``: Input arm will be extended by the fractional amount. - ``num_turns = x.5``: Both arms will be the same length and the input and output will be on opposite sides. - ``num_turns > x.5``: Output arm will be extended by the fractional amount. """ # Establishing number of turns in each arm if num_turns <= 1: raise ValueError('num_turns must be greater than 1') diff = num_turns - np.floor(num_turns) if diff < 0.5: num_turns1 = np.floor(num_turns) - 1 + 2*diff else: num_turns1 = np.floor(num_turns) if diff > 0.5: num_turns2 = np.floor(num_turns) - 1 + 2*diff else: num_turns2 = np.floor(num_turns) # Establishing relevant angles and spiral/centre arc parameters a1 = np.pi/2 a2 = np.array([np.pi*num_turns1 + a1, np.pi*num_turns2 + a1]) a = inner_gap/2 - gap/2 b = gap/np.pi Rc = inner_gap*np.sqrt(1 + (b/(a+b*a1))**2) / 4 theta = np.degrees(2*np.arcsin(inner_gap/4/Rc)) # Establishing number of points in each arm s_centre = Rc*np.radians(theta) s_spiral = ((a + a2*b)**2 + b**2)**(3/2) / (3*(a*b + (a2*b**2))) z = num_pts / (s_spiral[0] + s_spiral[1] + 2*s_centre) num_pts0 = int(z*s_centre) num_pts1 = int(z*s_spiral[0]) num_pts2 = int(z*s_spiral[1]) - num_pts1 # Forming both spiral arms arm1 = np.linspace(a1, a2[0], num_pts1) arm2 = np.linspace(a2[0], a2[1], num_pts2)[1:] a_spiral = np.array([arm1, np.concatenate([arm1, arm2])]) r_spiral = a + b*a_spiral x_spiral = np.array([np.zeros(num_pts1), np.zeros(len(a_spiral[1]))]) y_spiral = np.array([np.zeros(num_pts1), np.zeros(len(a_spiral[1]))]) for i in range(2): x_spiral[i] = r_spiral[i]*np.cos(a_spiral[i]) y_spiral[i] = r_spiral[i]*np.sin(a_spiral[i]) # Forming centre arcs pts = _rotate_points(arc(Rc, theta, 360*num_pts0/theta).points, -theta/2+90) x_centre = pts[:,0] + x_spiral[0][0] - pts[:,0][-1] y_centre = pts[:,1] + y_spiral[0][0] - pts[:,1][-1] x_centre = np.concatenate([-np.flip(x_centre), x_centre]) y_centre = np.concatenate([-np.flip(y_centre), y_centre]) # Combining into final spiral x = np.concatenate([-np.flip(x_spiral[1]), x_centre, x_spiral[0]]) y = np.concatenate([-np.flip(y_spiral[1]), y_centre, y_spiral[0]]) points = np.array((x,y)).T P = Path() # Manually add points & adjust start and end angles P.points = points nx1,ny1 = points[1] - points[0] P.start_angle = np.arctan2(ny1,nx1)/np.pi*180 nx2,ny2 = points[-1] - points[-2] P.end_angle = np.arctan2(ny2,nx2)/np.pi*180 # print(P.start_angle) # print(P.end_angle) return P def _compute_segments(points): points = np.asfarray(points) normals = np.diff(points, axis = 0) normals = (normals.T/np.linalg.norm(normals, axis = 1)).T dx = np.diff(points[:,0]) dy = np.diff(points[:,1]) ds = np.sqrt(dx**2 + dy**2) theta = np.degrees(np.arctan2(dy,dx)) dtheta = np.diff(theta) dtheta = dtheta - 360*np.floor((dtheta + 180)/360) return points, normals, ds, theta, dtheta def smooth( points = [(20,0), (40,0), (80,40), (80,10), (100,10),], radius = 4, corner_fun = euler, **kwargs ): """ Create a smooth path from a series of waypoints. Corners will be rounded using `corner_fun` and any additional key word arguments (for example, `use_eff = True` when `corner_fun = pp.euler`) Parameters ---------- points : array-like[N][2] or Path List of waypoints for the path to follow radius : int or float Radius of curvature, this argument will be passed to `corner_fun` corner_fun : function The function that controls how the corners are rounded. Typically either `arc()` or `euler()` **kwargs : dict Extra keyword arguments that will be passed to `corner_fun` Returns ------- Path A Path object with the specified smoothed path. """ if isinstance(points, Path): points = points.points points, normals, ds, theta, dtheta = _compute_segments(points) colinear_elements = np.concatenate([[False], np.abs(dtheta) < 1e-6, [False]]) if np.any(colinear_elements): new_points = points[~colinear_elements,:] points, normals, ds, theta, dtheta = _compute_segments(new_points) if np.any(np.abs(np.abs(dtheta)-180) < 1e-6): raise ValueError('[PHIDL] smooth() received points which double-back on themselves' + '--turns cannot be computed when going forwards then exactly backwards.') # FIXME add caching # Create arcs paths = [] radii = [] for dt in dtheta: P = corner_fun(radius = radius, angle = dt, **kwargs) chord = np.linalg.norm(P.points[-1,:] - P.points[0,:]) r = (chord/2)/np.sin(np.radians(dt/2)) r = np.abs(r) radii.append(r) paths.append(P) d = np.abs(np.array(radii)/np.tan(np.radians(180-dtheta)/2)) encroachment = np.concatenate([[0],d]) + np.concatenate([d,[0]]) if np.any(encroachment > ds): raise ValueError('[PHIDL] smooth(): Not enough distance between points to to fit curves. Try reducing the radius or spacing the points out farther') p1 = points[1:-1,:] - normals[:-1,:]*d[:,np.newaxis] # Move arcs into position new_points = [] new_points.append( [points[0,:]] ) for n,dt in enumerate(dtheta): P = paths[n] P.rotate(theta[n] - 0) P.move(p1[n]) new_points.append(P.points) new_points.append( [points[-1,:]] ) new_points = np.concatenate(new_points) P = Path() P.rotate(theta[0]) P.append(new_points) P.move(points[0,:]) return P def _sinusoidal_transition(y1, y2): dx = y2 - y1 return lambda t: y1 + (1 - np.cos(np.pi*t))/2*dx def _linear_transition(y1, y2): dx = y2 - y1 return lambda t: y1 + t*dx def transition(cross_section1, cross_section2, width_type = 'sine'): """ Creates a CrossSection that smoothly transitions between two input CrossSections. Only cross-sectional elements that have the `name` (as in X.add(..., name = 'wg') ) parameter specified in both input CrosSections will be created. Port names will be cloned from the input CrossSections in reverse. Parameters ---------- cross_section1 : CrossSection First input CrossSection cross_section2 : CrossSection Second input CrossSection width_type : {'sine', 'linear'} Sets the type of width transition used if any widths are different between the two input CrossSections. Returns ------- CrossSection A smoothly-transitioning CrossSection """ X1 = cross_section1 X2 = cross_section2 Xtrans = CrossSection() if not X1.aliases or not X2.aliases: raise ValueError("""[PHIDL] transition() found no named sections in one or both inputs (cross_section1/cross_section2).""") for alias in X1.aliases.keys(): if alias in X2.aliases: offset1 = X1[alias]['offset'] offset2 = X2[alias]['offset'] width1 = X1[alias]['width'] width2 = X2[alias]['width'] if callable(offset1): offset1 = offset1(1) if callable(offset2): offset2 = offset2(0) if callable(width1): width1 = width1(1) if callable(width2): width2 = width2(0) offset_fun = _sinusoidal_transition(offset1, offset2) if width_type == 'sine': width_fun = _sinusoidal_transition(width1, width2) elif width_type == 'linear': width_fun = _linear_transition(width1, width2) else: raise ValueError("[PHIDL] transition() width_type " + "argument must be one of {'sine','linear'}") Xtrans.add(width = width_fun, offset = offset_fun, layer = X1[alias]['layer'], ports = (X2[alias]['ports'][0], X1[alias]['ports'][1]), name = alias) return Xtrans ``` #### File: phidl/phidl/routing.py ```python from __future__ import division, print_function, absolute_import import numpy as np from numpy import sqrt, pi, cos, sin, log, exp, sinh, mod from numpy.linalg import norm from phidl.device_layout import Device, CrossSection, Port from phidl.device_layout import _parse_layer from phidl.geometry import turn import phidl.path as pp from phidl import Path import gdspy import warnings def _get_rotated_basis(theta): """Returns basis vectors rotated CCW by theta (in degrees) """ theta = np.radians(theta) e1 = np.array([np.cos(theta), np.sin(theta)]) e2 = np.array([-1*np.sin(theta), np.cos(theta)]) return e1, e2 def _arc(radius = 10, width = 0.5, theta = 45, start_angle = 0, angle_resolution = 2.5, layer = 0): """ Creates an arc of arclength ``theta`` starting at angle ``start_angle`` """ inner_radius = radius-width/2 outer_radius = radius+width/2 angle1 = (start_angle)*pi/180 angle2 = (start_angle + theta)*pi/180 t = np.linspace(angle1, angle2, int(np.ceil(abs(theta)/angle_resolution))) inner_points_x = (inner_radius*cos(t)).tolist() inner_points_y = (inner_radius*sin(t)).tolist() outer_points_x = (outer_radius*cos(t)).tolist() outer_points_y = (outer_radius*sin(t)).tolist() xpts = inner_points_x + outer_points_x[::-1] ypts = inner_points_y + outer_points_y[::-1] D = Device('arc') D.add_polygon(points = (xpts,ypts), layer = layer) D.add_port(name = 1, midpoint = (radius*cos(angle1), radius*sin(angle1)), width = width, orientation = start_angle - 90 + 180*(theta<0)) D.add_port(name = 2, midpoint = (radius*cos(angle2), radius*sin(angle2)), width = width, orientation = start_angle + theta + 90 - 180*(theta<0)) D.info['length'] = (abs(theta)*pi/180)*radius return D def _gradual_bend( radius = 20, width = 1.0, angular_coverage=15, num_steps=10, angle_resolution=0.1, start_angle=0, direction='ccw', layer=0, ): """ creates a 90-degree bent waveguide the bending radius is gradually increased until it reaches the minimum value of the radius at the "angular coverage" angle. it essentially creates a smooth transition to a bent waveguide mode. user can control number of steps provided. direction determined by start angle and cw or ccw switch ############ with the default 10 "num_steps" and 15 degree coverage, effective radius is about 1.5*radius. """ angular_coverage=np.deg2rad(angular_coverage) D = Device() #determines the increment in radius through its inverse from 0 to 1/r inc_rad =(radius**-1)/(num_steps) angle_step = angular_coverage/num_steps #construct a series of sub-arcs with equal angles but gradually decreasing bend radius arcs = [] for x in range(num_steps): A = _arc(radius=1/((x+1)*inc_rad),width=width,theta=np.rad2deg(angle_step),start_angle=x*np.rad2deg(angle_step),angle_resolution=angle_resolution,layer=layer) a = D.add_ref(A) arcs.append(a) if x>0: a.connect(port=1,destination=prevPort) prevPort=a.ports[2] D.add_port(name=1,port=arcs[0].ports[1]) #now connect a regular bend for the normal curved portion B = _arc(radius=radius,width=width,theta=45-np.rad2deg(angular_coverage),start_angle=angular_coverage,angle_resolution=angle_resolution,layer=layer) b = D.add_ref(B) b.connect(port=1,destination=prevPort) prevPort=b.ports[2] D.add_port(name=2,port=prevPort) #now create the overall structure Total = Device() #clone the half-curve into two objects and connect for a 90 deg bend. D1 = Total.add_ref(D) D2 = Total.add_ref(D) D2.mirror(p1=[0,0],p2=[1,1]) D2.connect(port=2,destination=D1.ports[2]) Total.xmin=0 Total.ymin=0 #orient to default settings... Total.mirror(p1=[0,0],p2=[1,1]) Total.mirror(p1=[0,0],p2=[1,0]) #orient to user-provided settings if direction == 'cw': Total.mirror(p1=[0,0],p2=[1,0]) Total.rotate(angle=start_angle,center=Total.center) Total.center=[0,0] Total.add_port(name=1,port=D1.ports[1]) Total.add_port(name=2,port=D2.ports[1]) return Total def route_basic(port1, port2, path_type = 'sine', width_type = 'straight', width1 = None, width2 = None, num_path_pts = 99, layer = 0): """ .. deprecated:: 1.6.0 `route_basic` will be removed in August 2022, please replace with `route_quad()` or `route_smooth()`. """ warnings.warn("""[PHIDL] Warning: route_basic() will be deprecated in August 2022, please replace with `route_quad()` or `route_smooth()`""") # Assuming they're both Ports for now point_a = np.array(port1.midpoint) if width1 is None: width1 = port1.width point_b = np.array(port2.midpoint) if width2 is None: width2 = port2.width if round(abs(mod(port1.orientation - port2.orientation,360)),3) != 180: raise ValueError('[DEVICE] route() error: Ports do not face each other (orientations must be 180 apart)') orientation = port1.orientation separation = point_b - point_a # Vector drawn from A to B distance = norm(separation) # Magnitude of vector from A to B rotation = np.arctan2(separation[1],separation[0])*180/pi # Rotation of vector from A to B angle = rotation - orientation # If looking out along the normal of ``a``, the angle you would have to look to see ``b`` forward_distance = distance*cos(angle*pi/180) lateral_distance = distance*sin(angle*pi/180) # Create a path assuming starting at the origin and setting orientation = 0 # use the "connect" function later to move the path to the correct location xf = forward_distance yf = lateral_distance if path_type == 'straight': curve_fun = lambda t: [xf*t, yf*t] curve_deriv_fun = lambda t: [xf + t*0, t*0] if path_type == 'sine': curve_fun = lambda t: [xf*t, yf*(1-cos(t*pi))/2] curve_deriv_fun = lambda t: [xf + t*0, yf*(sin(t*pi)*pi)/2] #if path_type == 'semicircle': # def semicircle(t): # t = np.array(t) # x,y = np.zeros(t.shape), np.zeros(t.shape) # ii = (0 <= t) & (t <= 0.5) # jj = (0.5 < t) & (t <= 1) # x[ii] = (cos(-pi/2 + t[ii]*pi/2))*xf # y[ii] = (sin(-pi/2 + t[ii]*pi/2)+1)*yf*2 # x[jj] = (cos(pi*3/2 - t[jj]*pi)+2)*xf/2 # y[jj] = (sin(pi*3/2 - t[jj]*pi)+1)*yf/2 # return x,y # curve_fun = semicircle # curve_deriv_fun = None if width_type == 'straight': width_fun = lambda t: (width2 - width1)*t + width1 if width_type == 'sine': width_fun = lambda t: (width2 - width1)*(1-cos(t*pi))/2 + width1 route_path = gdspy.Path(width = width1, initial_point = (0,0)) route_path.parametric(curve_fun, curve_deriv_fun, number_of_evaluations=num_path_pts, max_points=199, final_width=width_fun, final_distance=None) route_path_polygons = route_path.polygons # Make the route path into a Device with ports, and use "connect" to move it # into the proper location D = Device() D.add_polygon(route_path_polygons, layer = layer) p1 = D.add_port(name = 1, midpoint = (0,0), width = width1, orientation = 180) p2 = D.add_port(name = 2, midpoint = [forward_distance,lateral_distance], width = width2, orientation = 0) D.info['length'] = route_path.length D.rotate(angle = 180 + port1.orientation - p1.orientation, center = p1.midpoint) D.move(origin = p1, destination = port1) return D def route_quad(port1, port2, width1=None, width2=None, layer=0): """Routes a basic quadrilateral polygon directly between two ports. Parameters ---------- port1, port2 : Port objects Ports to route between. width1, width2 : int, float or None Width of quadrilateral at ports. If None, uses port widths. layer : int or array-like[2] Layer to put the route on. Returns --------- D : Device A Device containing the route and two ports (`1` and `2`) on either end. """ def get_port_edges(port, width): _, e1 = _get_rotated_basis(port.orientation) pt1 = port.midpoint + e1*width/2 pt2 = port.midpoint - e1*width/2 return pt1, pt2 if width1 is None: width1 = port1.width if width2 is None: width2 = port2.width vertices = np.array(get_port_edges(port1, width1) + get_port_edges(port2, width2)) center = np.mean(vertices, axis=0) displacements = vertices-center # sort vertices by angle from center of quadrilateral to make convex polygon angles = np.array([np.arctan2(disp[0], disp[1]) for disp in displacements]) vertices = [vert for _, vert in sorted(zip(angles, vertices), key=lambda x: x[0])] D = Device() D.add_polygon(points=vertices, layer=layer) D.add_port(name=1, midpoint=port1.midpoint, orientation=port1.orientation+180, width=width1) D.add_port(name=2, midpoint=port2.midpoint, orientation=port2.orientation+180, width=width2) return D def route_smooth( port1, port2, radius=5, width=None, path_type='manhattan', manual_path=None, smooth_options={'corner_fun': pp.euler, 'use_eff': True}, layer=np.nan, **kwargs ): """ Convenience function that routes a path between ports using pp.smooth(), then immediately extrudes the path to create polygons. Has several waypoint path type options. Equivalent to e.g. >>> pts = pr.path_manhattan(port1, port2, radius) >>> P = pp.smooth(pts, radius) >>> D = P.extrude(width) Parameters ---------- port1, port2 : Port objects Ports to route between. radius : int or float Bend radius passed to pp.smooth width : None, int, float, array-like[2], or CrossSection If None, the route linearly tapers between the widths the ports If set to a single number (e.g. `width=1.7`): makes a fixed-width route If set to a 2-element array (e.g. `width=[1.8,2.5]`): makes a route whose width varies linearly from width[0] to width[1] If set to a CrossSection: uses the CrossSection parameters for the route path_type : {'manhattan', 'L', 'U', 'J', 'C', 'V', 'Z', 'straight', 'manual'} Method of waypoint path creation. Should be one of - 'manhattan' - automatic manhattan routing (see path_manhattan() ). - 'L' - L-shaped path for orthogonal ports that can be directly connected (see path_L() ). - 'U' - U-shaped path for parrallel or facing ports (see path_U() ). - 'J' - J-shaped path for orthogonal ports that cannot be directly connected (see path_J() ). - 'C' - C-shaped path for ports that face away from each other (see path_C() ). - 'Z' - Z-shaped path with three segments for ports at any angles (see path_Z() ). - 'V' - V-shaped path with two segments for ports at any angles (see path_V() ). - 'straight' - straight path for ports that face each other see path_straight() ). - 'manual' - use an explicit waypoint path provided in manual_path. manual_path : array-like[N][2] or Path Waypoint path for creating a manual route smooth_options: dict Keyword arguments passed to pp.smooth layer : int or array-like[2] Layer to put route on. `layer=0` is used by default. **kwargs : Keyword arguments passed to the waypoint path function. Returns ---------- D : Device A Device containing the route and two ports (`1` and `2`) on either end. """ if path_type == 'straight': P = path_straight(port1, port2) elif path_type == 'manual': if not isinstance(manual_path, Path): P = Path(manual_path) else: P = manual_path elif path_type == 'L': P = path_L(port1, port2) elif path_type == 'U': P = path_U(port1, port2, **kwargs) elif path_type == 'J': P = path_J(port1, port2, **kwargs) elif path_type == 'C': P = path_C(port1, port2, **kwargs) elif path_type == 'manhattan': if smooth_options['corner_fun'] == pp.euler: use_eff = smooth_options.get('use_eff') if use_eff is None or use_eff == False: raise ValueError("""[PHIDL] route_smooth(): when using manhattan path type with euler bends, smooth_options['use_eff'] must be True.""") P = path_manhattan(port1, port2, radius=radius) elif path_type == 'Z': P = path_Z(port1, port2, **kwargs) elif path_type == 'V': P = path_V(port1, port2) else: raise ValueError("""[PHIDL] route_smooth() received an invalid path_type. Must be one of {'manhattan', 'L', 'U', 'J', 'C', 'V', 'Z', 'straight', 'manual'}""") P = pp.smooth(points=P, radius=radius, **smooth_options) if width is None: X1 = CrossSection().add(width=port1.width, ports=(1, 2), layer=layer, name='a') X2 = CrossSection().add(width=port2.width, ports=(1, 2), layer=layer, name='a') cross_section = pp.transition(cross_section1=X1, cross_section2=X2, width_type='linear') D = P.extrude(width=cross_section) else: D = P.extrude(width=width, layer=layer) if not isinstance(width, CrossSection): newport1 = D.add_port(port = port1, name = 1).rotate(180) newport2 = D.add_port(port = port2, name = 2).rotate(180) if np.size(width) == 1: newport1.width = width newport2.width = width if np.size(width) == 2: newport1.width = width[0] newport2.width = width[1] return D def route_sharp( port1, port2, width=None, path_type='manhattan', manual_path=None, layer=np.nan, **kwargs ): """ Convenience function that routes a path between ports and immediately extrudes the path to create polygons. Has several waypoint path type options. Equivalent to e.g. >>> P = pr.path_manhattan(port1, port2, radius) >>> D = P.extrude(width) Parameters ---------- port1, port2 : Port objects Ports to route between. width : None, int, float, array-like[2], or CrossSection If None, the route linearly tapers between the widths the ports If set to a single number (e.g. `width=1.7`): makes a fixed-width route If set to a 2-element array (e.g. `width=[1.8,2.5]`): makes a route whose width varies linearly from width[0] to width[1] If set to a CrossSection: uses the CrossSection parameters for the route path_type : {'manhattan', 'L', 'U', 'J', 'C', 'V', 'Z', 'straight', 'manual'} Method of waypoint path creation. Should be one of - 'manhattan' - automatic manhattan routing (see path_manhattan() ). - 'L' - L-shaped path for orthogonal ports that can be directly connected (see path_L() ). - 'U' - U-shaped path for parrallel or facing ports (see path_U() ). - 'J' - J-shaped path for orthogonal ports that cannot be directly connected (see path_J() ). - 'C' - C-shaped path for ports that face away from each other (see path_C() ). - 'Z' - Z-shaped path with three segments for ports at any angles (see path_Z() ). - 'V' - V-shaped path with two segments for ports at any angles (see path_V() ). - 'straight' - straight path for ports that face each other see path_straight() ). - 'manual' - use an explicit waypoint path provided in manual_path. manual_path : array-like[N][2] or Path Waypoint path for creating a manual route layer : int or array-like[2] Layer to put route on. `layer=0` is used by default. **kwargs : Keyword arguments passed to the waypoint path function. Returns ---------- D : Device A Device containing the route and two ports (`1` and `2`) on either end. """ if path_type == 'straight': P = path_straight(port1, port2) elif path_type == 'manual': if not isinstance(manual_path, Path): P = Path(manual_path) else: P = manual_path elif path_type == 'L': P = path_L(port1, port2) elif path_type == 'U': P = path_U(port1, port2, **kwargs) elif path_type == 'J': P = path_J(port1, port2, **kwargs) elif path_type == 'C': P = path_C(port1, port2, **kwargs) elif path_type == 'manhattan': radius = max(port1.width, port2.width) P = path_manhattan(port1, port2, radius=radius) elif path_type == 'Z': P = path_Z(port1, port2, **kwargs) elif path_type == 'V': P = path_V(port1, port2) else: raise ValueError("""[PHIDL] route_sharp() received an invalid path_type. Must be one of {'manhattan', 'L', 'U', 'J', 'C', 'V', 'Z', 'straight', 'manual'}""") if width is None: X1 = CrossSection().add(width=port1.width, ports=(1, 2), layer=layer, name='a') X2 = CrossSection().add(width=port2.width, ports=(1, 2), layer=layer, name='a') cross_section = pp.transition(cross_section1=X1, cross_section2=X2, width_type='linear') D = P.extrude(width=cross_section) else: D = P.extrude(width=width, layer=layer) if not isinstance(width, CrossSection): newport1 = D.add_port(port = port1, name = 1).rotate(180) newport2 = D.add_port(port = port2, name = 2).rotate(180) if np.size(width) == 1: newport1.width = width newport2.width = width if np.size(width) == 2: newport1.width = width[0] newport2.width = width[1] return D def path_straight(port1, port2): """Return waypoint path between port1 and port2 in a straight line. Useful when ports point directly at each other. Parameters ---------- port1, port2 : Port objects Ports to route between. Returns ---------- points : array[2][2] Waypoints for the route path to follow. """ delta_orientation = np.round(np.abs(np.mod(port1.orientation - port2.orientation, 360)), 3) e1, e2 = _get_rotated_basis(port1.orientation) displacement = port2.midpoint - port1.midpoint xrel = np.round(np.dot(displacement, e1), 3) # relative position of port 2, forward/backward yrel = np.round(np.dot(displacement, e2), 3) # relative position of port 2, left/right if (delta_orientation not in (0, 180, 360)) or (yrel != 0) or (xrel <= 0): raise ValueError('[PHIDL] path_straight(): ports must point directly at each other.') return Path(np.array([port1.midpoint, port2.midpoint])) def path_L(port1, port2): """Return waypoint path between port1 and port2 in an L shape. Useful when orthogonal ports can be directly connected with one turn. Parameters ---------- port1, port2 : Port objects Ports to route between. Returns ---------- points : Path Waypoints for the route path to follow. """ delta_orientation = np.round(np.abs(np.mod(port1.orientation - port2.orientation, 360)), 3) if delta_orientation not in (90, 270): raise ValueError('[PHIDL] path_L(): ports must be orthogonal.') e1, e2 = _get_rotated_basis(port1.orientation) # assemble waypoints pt1 = port1.midpoint pt3 = port2.midpoint delta_vec = pt3-pt1 pt2 = pt1 + np.dot(delta_vec, e1)*e1 return Path(np.array([pt1, pt2, pt3])) def path_U(port1, port2, length1=200): """Return waypoint path between port1 and port2 in a U shape. Useful when ports face the same direction or toward each other. Parameters ---------- port1, port2 : Port objects Ports to route between. length1 : int or float Length of segment exiting port1. Should be larger than bend radius. Returns ---------- points : Path Waypoints for the route path to follow. """ delta_orientation = np.round(np.abs(np.mod(port1.orientation - port2.orientation, 360)), 3) if delta_orientation not in (0, 180, 360): raise ValueError('[PHIDL] path_U(): ports must be parrallel.') theta = np.radians(port1.orientation) e1 = np.array([np.cos(theta), np.sin(theta)]) e2 = np.array([-1*np.sin(theta), np.cos(theta)]) # assemble waypoints pt1 = port1.midpoint pt4 = port2.midpoint pt2 = pt1 + length1*e1 # outward by length1 distance delta_vec = pt4-pt2 pt3 = pt2 + np.dot(delta_vec, e2)*e2 return Path(np.array([pt1, pt2, pt3, pt4])) def path_J(port1, port2, length1=200, length2=200): """Return waypoint path between port1 and port2 in a J shape. Useful when orthogonal ports cannot be connected directly with an L shape. Parameters ---------- port1, port2 : Port objects Ports to route between. length1 : int or float Length of segment exiting port1. Should be larger than bend radius. length2 : int or float Length of segment exiting port2. Should be larger than bend radius. Returns ---------- points : Path Waypoints for the route path to follow. """ delta_orientation = np.round(np.abs(np.mod(port1.orientation - port2.orientation, 360)), 3) if delta_orientation not in (90, 270): raise ValueError('[PHIDL] path_J(): ports must be orthogonal.') e1, _ = _get_rotated_basis(port1.orientation) e2, _ = _get_rotated_basis(port2.orientation) # assemble waypoints pt1 = port1.midpoint pt2 = pt1 + length1*e1 # outward from port1 by length1 pt5 = port2.midpoint pt4 = pt5 + length2*e2 # outward from port2 by length2 delta_vec = pt4-pt2 pt3 = pt2 + np.dot(delta_vec, e2)*e2 # move orthogonally in e2 direction return Path(np.array([pt1, pt2, pt3, pt4, pt5])) def path_C(port1, port2, length1=100, left1=100, length2=100): """Return waypoint path between port1 and port2 in a C shape. Useful when ports are parrallel and face away from each other. Parameters ---------- port1, port2 : Port objects Ports to route between. length1 : int or float Length of route segment coming out of port1. Should be at larger than bend radius. left1 : int or float Length of route segment that turns left (or right if negative) from port1. Should be larger than twice the bend radius. length2 : int or float Length of route segment coming out of port2. Should be larger than bend radius. Returns ---------- points : Path Waypoints for the route path to follow. """ delta_orientation = np.round(np.abs(np.mod(port1.orientation - port2.orientation, 360)), 3) if delta_orientation not in (0, 180, 360): raise ValueError('[PHIDL] path_C(): ports must be parrallel.') e1, e_left = _get_rotated_basis(port1.orientation) e2, _ = _get_rotated_basis(port2.orientation) # assemble route points pt1 = port1.midpoint pt2 = pt1 + length1*e1 # outward from port1 by length1 pt3 = pt2 + left1*e_left # leftward by left1 pt6 = port2.midpoint pt5 = pt6 + length2*e2 # outward from port2 by length2 delta_vec = pt5-pt3 pt4 = pt3 + np.dot(delta_vec, e1)*e1 # move orthogonally in e1 direction return Path(np.array([pt1, pt2, pt3, pt4, pt5, pt6])) def path_manhattan(port1, port2, radius): """Return waypoint path between port1 and port2 using manhattan routing. Routing is performed using straight, L, U, J, or C waypoint path as needed. Ports must face orthogonal or parallel directions. Parameters ---------- port1, port2 : Port objects Ports to route between. radius : float or int Bend radius for 90 degree bend. Returns ---------- points : Path Waypoints for the route path to follow. """ radius = radius + 0.1 # ensure space for bend radius e1, e2 = _get_rotated_basis(port1.orientation) displacement = port2.midpoint - port1.midpoint xrel = np.round(np.dot(displacement, e1), 3) # port2 position, forward(+)/backward(-) from port 1 yrel = np.round(np.dot(displacement, e2), 3) # port2 position, left(+)/right(-) from port1 orel = np.round(np.abs(np.mod(port2.orientation - port1.orientation, 360)), 3) # relative orientation if orel not in (0, 90, 180, 270, 360): raise ValueError('[PHIDL] path_manhattan(): ports must face parrallel or orthogonal directions.') if orel in (90, 270): # Orthogonal case if ((orel == 90 and yrel < -1*radius) or (orel == 270 and yrel > radius)) and xrel > radius: pts = path_L(port1, port2) else: # Adjust length1 and length2 to ensure intermediate segments fit bend radius direction = -1 if (orel == 270) else 1 length2 = 2*radius-direction*yrel if (np.abs(radius+direction*yrel) < 2*radius) else radius length1 = 2*radius+xrel if (np.abs(radius-xrel) < 2*radius) else radius pts = path_J(port1, port2, length1=length1, length2=length2) else: # Parrallel case if orel == 180 and yrel == 0 and xrel > 0: pts = path_straight(port1, port2) elif (orel == 180 and xrel <= 2*radius) or (np.abs(yrel) < 2*radius): # Adjust length1 and left1 to ensure intermediate segments fit bend radius left1 = np.abs(yrel)+2*radius if (np.abs(yrel) < 4*radius) else 2*radius y_direction = -1 if (yrel < 0) else 1 left1 = y_direction*left1 length2 = radius x_direction = -1 if (orel == 180) else 1 segmentx_length = np.abs(xrel+x_direction*length2-radius) if segmentx_length < 2*radius: length1 = xrel+x_direction*length2+2*radius else: length1 = radius pts = path_C(port1, port2, length1=length1, length2=length2, left1=left1) else: # Adjust length1 to ensure segment comes out of port2 length1 = radius+xrel if (orel == 0 and xrel > 0) else radius pts = path_U(port1, port2, length1=length1) return pts def path_Z(port1, port2, length1=100, length2=100): """Return waypoint path between port1 and port2 in a Z shape. Ports can have any relative orientation. Parameters ---------- port1, port2 : Port objects Ports to route between. length1 : int or float Length of route segment coming out of port1. length2 : int or float Length of route segment coming out of port2. Returns ---------- points : Path Waypoints for the route path to follow. """ # get basis vectors in port directions e1, _ = _get_rotated_basis(port1.orientation) e2, _ = _get_rotated_basis(port2.orientation) # assemble route points pt1 = port1.midpoint pt2 = pt1 + length1*e1 # outward from port1 by length1 pt4 = port2.midpoint pt3 = pt4 + length2*e2 # outward from port2 by length2 return Path(np.array([pt1, pt2, pt3, pt4])) def path_V(port1, port2): """Return waypoint path between port1 and port2 in a V shape. Useful when ports point to a single connecting point Parameters ---------- port1, port2 : Port objects Ports to route between. Returns ---------- points : Path Waypoints for the route path to follow. """ # get basis vectors in port directions e1, _ = _get_rotated_basis(port1.orientation) e2, _ = _get_rotated_basis(port2.orientation) # assemble route points pt1 = port1.midpoint pt3 = port2.midpoint # solve for intersection E = np.column_stack((e1, -1*e2)) pt2 = np.matmul(np.linalg.inv(E), pt3-pt1)[0]*e1 + pt1 return Path(np.array([pt1, pt2, pt3])) def path_xy(port1, port2, directions = 'xxyx'): """ Creates a Path that travels only in x and y directions (manhattan) from one point (or Port) to another. The `directions` string determines the order of the x/y steps. Example: `directions = 'xyx'` will travel 1/2 the distance in x from p1 to p2 The whole distance in y from p1 to p2 1/2 of the distance in x from p1 to p2 Parameters ---------- p1, p2 : array-like[2] points or Port objects Points to route between. directions : string of {'x','y'} characters Directions the Path will be routed along Returns ---------- Path Waypoints for the route path to follow. """ if isinstance(port1, Port): p1 = port1.midpoint elif np.size(port1) == 2: p1 = port1 if isinstance(port2, Port): p2 = port2.midpoint elif np.size(port2) == 2: p2 = port2 directions = directions.lower() num_x = sum([xy == 'x' for xy in directions]) num_y = sum([xy == 'y' for xy in directions]) distance = np.asarray(p2)-p1 points = [p1] for xy in directions: if xy == 'x': travel = np.array([distance[0]/num_x, 0]) new_point = points[-1] + travel elif xy == 'y': travel = np.array([0, distance[1]/num_y]) new_point = points[-1] + travel else: raise ValueError('[PHIDL] path_xy() directions argument must be string with only "x" or "y" characters') if np.abs(np.sum(travel)) > 1e-6: # Only add point if traveling some significant distance points.append(new_point) return Path(np.array(points)) def route_xy(port1, port2, directions = 'xxyx', width = None, layer = np.nan): """ Routes a path in x and y directions (manhattan) from one point (or Port) to another. The `directions` string determines the order of the x/y steps. Example: `directions = 'xyx'` will travel 1/2 the distance in x from p1 to p2 The whole distance in y from p1 to p2 1/2 of the distance in x from p1 to p2 Parameters ---------- port1, port2 : Ports pr array-like[2] points or Port objects Points to route between. directions : string of {'x','y'} characters Directions the Path will be routed along Returns ---------- D : Device A Device containing the route and two ports (`1` and `2`) on either end. """ P = path_xy(port1, port2, directions = directions) if width is None: X1 = CrossSection().add(width=port1.width, ports=(1, 2), layer=layer, name='a') X2 = CrossSection().add(width=port2.width, ports=(1, 2), layer=layer, name='a') cross_section = pp.transition(cross_section1=X1, cross_section2=X2, width_type='linear') D = P.extrude(width=cross_section) else: D = P.extrude(width=width, layer=layer) if not isinstance(width, CrossSection): newport1 = D.add_port(port = port1, name = 1).rotate(180) newport2 = D.add_port(port = port2, name = 2).rotate(180) if np.size(width) == 1: newport1.width = width newport2.width = width if np.size(width) == 2: newport1.width = width[0] newport2.width = width[1] # D = P.extrude(width, layer = layer) return D # ################ # gradual_bend() - variable radius-of-curvature bends for low-loss routing # note - these are not bezier spline curves, but are instead constructed by # subdividing the coverage angle into equal segments and implementing a gradual # decrease in bending radius until the minimum is reached. """ # ################ # route_manhattan() - routing between any two ports rotated in 90 degree increments # note - ports must be located diagonally from each other and oriented along # cardinal directions. Routing can be done with circular or gradual bends. # Waveguide width is set by the width parameter of the first port. # ################ # route_manhattan_auto() - handy routine which performs route_manhattan() on a # vector of ports provided to it, allowing easy connecting of many objects. class RoutingError(ValueError): pass def route_manhattan( port1, port2, bendType='circular', layer=0, radius=20 ): """ .. deprecated:: 1.6.0 `route_manhattan` will be removed in August 2022, please replace with `route_smooth()`. """ warnings.warn("""[PHIDL] Warning: route_manhattan() will be deprecated in August 2022, please replace with `route_smooth()`""") #route along cardinal directions between any two ports placed diagonally #from each other valid_bend_types = ["circular", "gradual"] if bendType not in valid_bend_types: raise ValueError("bendType%s= not in %s" % (bendType, valid_bend_types)) if bendType == "gradual": b = _gradual_bend(radius=radius) radius_eff = b.xsize else: radius_eff = radius if ( abs(port1.midpoint[0] - port2.midpoint[0]) < 2 * radius_eff or abs(port1.midpoint[1] - port2.midpoint[1]) < 2 * radius_eff ): raise RoutingError( "bend does not fit (radius = %s) you need radius <" % radius_eff, min( [ abs(port1.midpoint[0] - port2.midpoint[0]) / 2, abs(port1.midpoint[1] - port2.midpoint[1]) / 2, ] ), ) Total = Device() width=port1.width #first map into uniform plane with normal x,y coords #allows each situation to be put into uniform cases of quadrants for routing. #this is because bends change direction and positioning. if port1.orientation==0: p2=[port2.midpoint[0],port2.midpoint[1]] p1=[port1.midpoint[0],port1.midpoint[1]] if port1.orientation==90: p2=[port2.midpoint[1],-port2.midpoint[0]] p1=[port1.midpoint[1],-port1.midpoint[0]] if port1.orientation==180: p2=[-port2.midpoint[0],-port2.midpoint[1]] p1=[-port1.midpoint[0],-port1.midpoint[1]] if port1.orientation==270: p2=[-port2.midpoint[1],port2.midpoint[0]] p1=[-port1.midpoint[1],port1.midpoint[0]] Total.add_port(name=1,port=port1) Total.add_port(name=2,port=port2) if p2[1] == p1[1] or p2[0] == p1[0]: raise ValueError('Error - ports must be at different x AND y values.') #if it is parallel or anti-parallel, route with 180 option if (np.round(np.abs(np.mod(port1.orientation - port2.orientation,360)),3) == 180) or (np.round(np.abs(np.mod(port1.orientation - port2.orientation,360)),3) == 0): R1 = _route_manhattan180(port1=port1,port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) else: #first quadrant case if (p2[1] > p1[1]) & (p2[0] > p1[0]): #simple 90 degree single-bend case if port2.orientation == port1.orientation-90 or port2.orientation == port1.orientation+270: R1 = _route_manhattan90(port1=port1,port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) elif port2.orientation == port1.orientation+90 or port2.orientation == port1.orientation-270: if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=port1.orientation,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=port1.orientation,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b1.connect(port=1,destination=port1) R1 = _route_manhattan180(port1=b1.ports[2],port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) #second quadrant case if (p2[1] > p1[1]) & (p2[0] < p1[0]): if np.abs(port1.orientation-port2.orientation) == 90 or np.abs(port1.orientation-port2.orientation) == 270: if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=port1.orientation,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=port1.orientation,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b1.connect(port=1,destination=port1) R1 = _route_manhattan180(port1=b1.ports[2],port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) #third quadrant case if (p2[1] < p1[1]) & (p2[0] < p1[0]): if np.abs(port1.orientation-port2.orientation) == 90 or np.abs(port1.orientation-port2.orientation) == 270: if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=port1.orientation,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=port1.orientation,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b1.connect(port=1,destination=port1) R1 = _route_manhattan180(port1=b1.ports[2],port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) #fourth quadrant case if (p2[1] < p1[1]) & (p2[0] > p1[0]): #simple 90 degree single-bend case if port2.orientation == port1.orientation+90 or port2.orientation == port1.orientation-270: R1 = _route_manhattan90(port1=port1,port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) elif port2.orientation == port1.orientation-90 or port2.orientation == port1.orientation+270: if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=port1.orientation,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=port1.orientation,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b1.connect(port=1,destination=port1) R1 = _route_manhattan180(port1=b1.ports[2],port2=port2,bendType=bendType,layer=layer,radius=radius) r1 = Total.add_ref(R1) return Total def _route_manhattan180( port1, port2, bendType='circular', layer=0, radius=20 ): #this is a subroutine of route_manhattan() and should not be used by itself. Total = Device() width=port1.width #first map into uniform plane with normal x,y coords #allows each situation to be put into uniform cases of quadrants for routing. #this is because bends change direction and positioning. if port1.orientation==0: p2=[port2.midpoint[0],port2.midpoint[1]] p1=[port1.midpoint[0],port1.midpoint[1]] if port1.orientation==90: p2=[port2.midpoint[1],-port2.midpoint[0]] p1=[port1.midpoint[1],-port1.midpoint[0]] if port1.orientation==180: p2=[-port2.midpoint[0],-port2.midpoint[1]] p1=[-port1.midpoint[0],-port1.midpoint[1]] if port1.orientation==270: p2=[-port2.midpoint[1],port2.midpoint[0]] p1=[-port1.midpoint[1],port1.midpoint[0]] #create placeholder ports based on the imaginary coordinates we created Total.add_port(name='t1',midpoint=[0,0],orientation=0,width=width) if(port1.orientation!=port2.orientation): Total.add_port(name='t2',midpoint=list(np.subtract(p2,p1)),orientation=180,width=width) else: Total.add_port(name='t2',midpoint=list(np.subtract(p2,p1)),orientation=0,width=width) if port1.orientation==port2.orientation: #first quadrant target if (p2[1] > p1[1]) & (p2[0] > p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=90,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='ccw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=90,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b1.move([p2[0]-p1[0],0]) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]-radiusEff*2]) R1=route_basic(port1=Total.ports['t1'],port2=b1.ports[1],layer=layer) r1=Total.add_ref(R1) R2=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r2=Total.add_ref(R2) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=b2.ports[2]) #second quadrant target if (p2[1] > p1[1]) & (p2[0] < p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=90,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='ccw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=90,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]-radiusEff*2]) R1=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r1=Total.add_ref(R1) R2=route_basic(port1=b2.ports[2],port2=Total.ports['t2'],layer=layer) r2=Total.add_ref(R2) Total.add_port(name=1,port=b1.ports[1]) Total.add_port(name=2,port=r2.ports[2]) #third quadrant target if (p2[1] < p1[1]) & (p2[0] < p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=-90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=-90,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='cw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=-90,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]+radiusEff*2]) R1=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r1=Total.add_ref(R1) R2=route_basic(port1=b2.ports[2],port2=Total.ports['t2'],layer=layer) r2=Total.add_ref(R2) Total.add_port(name=1,port=b1.ports[1]) Total.add_port(name=2,port=r2.ports[2]) #fourth quadrant target if (p2[1] < p1[1]) & (p2[0] > p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=-90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=-90,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='cw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=-90,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b1.move([p2[0]-p1[0],0]) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]+radiusEff*2]) R1=route_basic(port1=Total.ports['t1'],port2=b1.ports[1],layer=layer) r1=Total.add_ref(R1) R2=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r2=Total.add_ref(R2) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=b2.ports[2]) #other port orientations are not supported: elif np.round(np.abs(np.mod(port1.orientation - port2.orientation,360)),3) != 180: raise ValueError('[DEVICE] route() error: Ports do not face each other (orientations must be 180 apart)') #otherwise, they are 180 degrees apart: else: #first quadrant target if (p2[1] > p1[1]) & (p2[0] > p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=90,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='ccw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=90,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b1.move([p2[0]-p1[0]-radiusEff*2,0]) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]-radiusEff*2]) R1=route_basic(port1=Total.ports['t1'],port2=b1.ports[1],layer=layer) r1=Total.add_ref(R1) R2=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r2=Total.add_ref(R2) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=b2.ports[2]) #second quadrant target if (p2[1] > p1[1]) & (p2[0] < p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=90,theta=90) B3=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=180,theta=-90) B4=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=90,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='ccw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=90,direction='ccw') B3=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=180,direction='cw') B4=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=90,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b3=Total.add_ref(B3) b4=Total.add_ref(B4) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]-radiusEff*4]) R1=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r1=Total.add_ref(R1) b3.connect(port=b3.ports[1],destination=b2.ports[2]) b3.move([p2[0]-p1[0],0]) R2=route_basic(port1=b2.ports[2],port2=b3.ports[1],layer=layer) r2=Total.add_ref(R2) b4.connect(port=b4.ports[1],destination=b3.ports[2]) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=b4.ports[2]) #third quadrant target if (p2[1] < p1[1]) & (p2[0] < p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=-90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=-90,theta=-90) B3=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=-180,theta=90) B4=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=-90,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='cw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=-90,direction='cw') B3=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=-180,direction='ccw') B4=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=-90,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b3=Total.add_ref(B3) b4=Total.add_ref(B4) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]+radiusEff*4]) R1=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r1=Total.add_ref(R1) b3.connect(port=b3.ports[1],destination=b2.ports[2]) b3.move([p2[0]-p1[0],0]) R2=route_basic(port1=b2.ports[2],port2=b3.ports[1],layer=layer) r2=Total.add_ref(R2) b4.connect(port=b4.ports[1],destination=b3.ports[2]) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=b4.ports[2]) #fourth quadrant target if (p2[1] < p1[1]) & (p2[0] > p1[0]): if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=-90) B2=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=-90,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='cw') B2=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=-90,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b2=Total.add_ref(B2) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b1.move([p2[0]-p1[0]-radiusEff*2,0]) b2.connect(port=b2.ports[1],destination=b1.ports[2]) b2.move([0,p2[1]-p1[1]+radiusEff*2]) R1=route_basic(port1=Total.ports['t1'],port2=b1.ports[1],layer=layer) r1=Total.add_ref(R1) R2=route_basic(port1=b1.ports[2],port2=b2.ports[1],layer=layer) r2=Total.add_ref(R2) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=b2.ports[2]) Total.rotate(angle = port1.orientation, center = p1) Total.move(origin = Total.ports['t1'], destination = port1) return Total def _route_manhattan90( port1, port2, bendType='circular', layer=0, radius=20 ): #this is a subroutine of route_manhattan() and should not be used by itself. Total = Device() width=port1.width #first map into uniform plane with normal x,y coords #allows each situation to be put into uniform cases of quadrants for routing. #this is because bends change direction and positioning. if port1.orientation==0: p2=[port2.midpoint[0],port2.midpoint[1]] p1=[port1.midpoint[0],port1.midpoint[1]] if port1.orientation==90: p2=[port2.midpoint[1],-port2.midpoint[0]] p1=[port1.midpoint[1],-port1.midpoint[0]] if port1.orientation==180: p2=[-port2.midpoint[0],-port2.midpoint[1]] p1=[-port1.midpoint[0],-port1.midpoint[1]] if port1.orientation==270: p2=[-port2.midpoint[1],port2.midpoint[0]] p1=[-port1.midpoint[1],port1.midpoint[0]] #create placeholder ports based on the imaginary coordinates we created Total.add_port(name='t1',midpoint=[0,0],orientation=0,width=width) #CHECK THIS #first quadrant target, route upward if (p2[1] > p1[1]) & (p2[0] > p1[0]): Total.add_port(name='t2',midpoint=list(np.subtract(p2,p1)),orientation=-90,width=width) if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='ccw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b1.move([p2[0]-p1[0]-radiusEff,0]) R1 = route_basic(port1=Total.ports['t1'],port2=b1.ports[1],layer=layer) R2 = route_basic(port1=b1.ports[2],port2=Total.ports['t2'],layer=layer) r1 = Total.add_ref(R1) r2 = Total.add_ref(R2) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=r2.ports[2]) #fourth quadrant target, route downward if (p2[1] < p1[1]) & (p2[0] > p1[0]): Total.add_port(name='t2',midpoint=list(np.subtract(p2,p1)),orientation=90,width=width) if bendType == 'circular': B1=_arc(radius=radius,width=width,layer=layer,angle_resolution=1,start_angle=0,theta=-90) radiusEff=radius if bendType == 'gradual': B1=_gradual_bend(radius=radius,width=width,layer=layer,start_angle=0,direction='cw') radiusEff=B1.xsize-width/2 b1=Total.add_ref(B1) b1.connect(port=b1.ports[1],destination=Total.ports['t1']) b1.move([p2[0]-p1[0]-radiusEff,0]) R1 = route_basic(port1=Total.ports['t1'],port2=b1.ports[1],layer=layer) R2 = route_basic(port1=b1.ports[2],port2=Total.ports['t2'],layer=layer) r1 = Total.add_ref(R1) r2 = Total.add_ref(R2) Total.add_port(name=1,port=r1.ports[1]) Total.add_port(name=2,port=r2.ports[2]) Total.rotate(angle = port1.orientation, center = p1) Total.move(origin = Total.ports['t1'], destination = port1) return Total def route_manhattan_auto( ports, bendType='circular', layer=0, radius=20 ): """ routes a one-dimensional array of ports using manhattan algorithm and give it a series of ports to route to in a continuous list. accepts same parameters as ordinary route_manhattan to determine bending """ Total=Device() for x in range(int(np.floor(len(ports)/2))+1): R = route_manhattan(port1=ports[x],port2=ports[x+1],bendType=bendType,layer=layer,radius=radius) r = Total.add_ref(R) return Total def route_turn_manhattan( port1, port2, layer=0, radius=20 ): """ Mahattan routing between two ports. If directions are not cardinal, adds a turn to make cardinal and then routes. Parameters ---------- port1, port2: Port objects Ports to route to and from layer: int (default: 0) Layer to use for the routes radius: float (default: 20) Curve radius for bends Returns ---------- Device object Notes ---------- If direction is not cardinal, will route to nearest cardinal, then call route_manhattan. """ D = Device() new_ports = [] for port in (port1, port2): if port.orientation % 90 == 0: new_ports.append(port) else: turn_angle = _get_turn_angle(port.orientation, _to_cardinal(port.orientation)) turn_route = turn(port, radius=radius, angle=turn_angle, layer=layer) D.add_ref(turn_route) new_ports.append(turn_route.ports[2]) #Manhattan on new ports route = route_manhattan(new_ports[0], new_ports[1], bendType='circular', layer=layer, radius=radius) D.add_ref(route) return D def _to_cardinal(angle): """ Determines which cardinal direction is closest to input angle Parameters ---------- angle : float Returns ------- angle : [-180, -90, 0, 90] Which cardinal direction is closest to the input angle """ angle = _map_to_pm180(angle) cardinals = np.array([-180, -90, 0, 90]) arg = np.argmin(np.abs(angle - cardinals)) return cardinals[arg] def _map_to_pm180(angle): """converts an angle to an angle between -180 (inclusive) to +180 (exclusive)""" return np.mod(angle + 180,360)-180 def _get_turn_angle(start_angle, target_angle): """ Difference in angle in the range -180 to +180 (where negative is counter clockwise) Parameters ---------- start_angle, target_angle : float Returns ------- float difference in angle. """ return _map_to_pm180(target_angle - start_angle) #============================================================================== # Test code for route_manhattan #============================================================================== # D=Device() # A=pg.compass() # A.add_port(name=1,port=A.ports['N']) # A.add_port(name=2,port=A.ports['E']) # A.add_port(name=3,port=A.ports['S']) # A.add_port(name=4,port=A.ports['W']) # points=[] # points.append((300,300)) # points.append((-300,300)) # points.append((-300,-300)) # points.append((300,-300)) # xoff=0 # yoff=0 # for x in range(4): # for y in range(4): # for z in range(4): # a = D.add_ref(A) # b = D.add_ref(A) # a.center=(xoff,yoff) # b.center=(xoff+(points[y])[0],yoff+(points[y])[1]) # C = route_manhattan(bendType='gradual',port1=a.ports[z+1],port2=b.ports[x+1]) # c=D.add_ref(C) # yoff+=600 # yoff+=600 # xoff+=600 # yoff=0 # quickplot(D) ``` #### File: phidl/tests/test_path.py ```python import pytest import numpy as np from phidl import Device, Group, Path, CrossSection import phidl.geometry as pg import phidl.path as pp # import phidl.utilities as pu def test_path_extrude_width1_constant(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) D = P.extrude(width = 1, layer = np.nan, simplify = None) h = D.hash_geometry(precision = 1e-4) assert(h == '048ae3e85ff393362d2283c0046db1f0a53b5fe7') def test_path_extrude_layer(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) D = P.extrude(width = 1, layer = 3, simplify = None) h = D.hash_geometry(precision = 1e-4) assert(h == '3ec778d98ce1760c4ba067bd1bdc0baf80dcbaf7') def test_path_extrude_simplify(): P = pp.arc(radius = 10, angle = 90, num_pts = 300) D = P.extrude(width = 1, layer = 3, simplify = 1e-1) h = D.hash_geometry(precision = 1e-4) assert(h == '92a41fb5afa37cde3b06b521ff14d8445d962069') def test_path_extrude_width2_linearly_varying(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) D = P.extrude(width = [2.5,3], layer = np.nan, simplify = None) h = D.hash_geometry(precision = 1e-4) assert(h == '2768e7f7ce7503a512089ddb80cd52ed0b43fd8d') def test_path_extrude_width3_crossection(): # Create a blank CrossSection X = CrossSection() # Add a a few "sections" to the cross-section X.add(width = 1, offset = 0, layer = 0, ports = ('in','out')) X.add(width = 3, offset = 2, layer = 2) X.add(width = 3, offset = -2, layer = 2) P = pp.arc(radius = 10, angle = 90, num_pts = 720) D = P.extrude(width = X, layer = np.nan, simplify = None) h = D.hash_geometry(precision = 1e-4) assert(h == 'e17c4ed7a7467412728dc893610006fa2d9982b0') def test_blank_path(): P = Path() h = P.hash_geometry(precision = 1e-4) assert(h == 'de8a847bff8c343d69b853a215e6ee775ef2ef96') def test_path_straight(): P = pp.straight(length = 15, num_pts = 100) h = P.hash_geometry(precision = 1e-4) assert(h == '3672036ccf29992546436e1cc5e62e667cde4af0') def test_path_euler1(): P = pp.euler(radius = 3, angle = 90, p = 1.0, use_eff = False, num_pts = 720) h = P.hash_geometry(precision = 1e-4) assert(h == 'd6134ba90167caf551de6d2f8c7230f7f072c562') def test_path_euler2(): P = pp.euler(radius = 3, angle = 90, p = 0.5, use_eff = False, num_pts = 720) h = P.hash_geometry(precision = 1e-4) assert(h == '78b325576400e3f4f9a04c27243432102e84cfe7') def test_path_euler3(): P = pp.euler(radius = 3, angle = 90, p = 0.5, use_eff = True, num_pts = 720) h = P.hash_geometry(precision = 1e-4) assert(h == '0c5fc2a47b910522b4bd37176dbb096f99ea1083') def test_path_arc(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) h = P.hash_geometry(precision = 1e-4) assert(h == '53eaa037b8872155a1d1cb81e2daa02a0da2eb91') def test_path_spiral(): P = pp.spiral(num_turns = 5, gap = 1, inner_gap = 2, num_pts = 10000) h = P.hash_geometry(precision = 1e-4) assert(h == '46c5da60268d4fb308b81e0a6de416af332b91fc') def test_path_smooth1(): P = pp.spiral(num_turns = 5, gap = 1, inner_gap = 2, num_pts = 10000) h = P.hash_geometry(precision = 1e-4) assert(h == '46c5da60268d4fb308b81e0a6de416af332b91fc') def test_path_smooth1(): P = pp.smooth( points = [(20,0), (40,0), (80,40), (80,10), (100,10),], radius = 2, corner_fun = pp.euler, use_eff = True, ) h = P.hash_geometry(precision = 1e-4) assert(h == '3a2526edee6cf4577cf7fb700ee18a28048e4967') def test_path_smooth2(): P = pp.smooth( points = [(20,0), (40,0), (80,40), (80,10), (100,10),], radius = 4, corner_fun = pp.arc, ) h = P.hash_geometry(precision = 1e-4) assert(h == 'f075520ab38933b35f3c8af110627de29e34b695') def test_path_rotate1(): P = Path() P.rotate(47) h = P.hash_geometry(precision = 1e-4) assert(h == 'f30d4e52e113a2954e7facee8144ac8bf4ea66c9') def test_path_rotate2(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) P.rotate(47) h = P.hash_geometry(precision = 1e-4) assert(h == 'd3bc47a30787fb6d9514fdd91f45d619c9afff02') def test_path_move1(): P = Path() P.move((16,17.7)) h = P.hash_geometry(precision = 1e-4) assert(h == '6be1a6e602c7ce3d5560176aa7c9ebbf1b6788d5') def test_path_move2(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) P.move((16,17.7)) h = P.hash_geometry(precision = 1e-4) assert(h == '200e897720aa4d4a7f54afeaa2ca1faaa0e6b3de') def test_path_bbox(): P = pp.arc(radius = 10, angle = 90, num_pts = 720) assert(np.allclose(P.bbox, np.array([[6.123234e-16, 0.000000e+00], [1.000000e+01, 1.000000e+01]]))) def test_path_append1(): P1 = pp.arc(radius = 12, angle = 47, num_pts = 720) P2 = pp.arc(radius = 12, angle = 63, num_pts = 720) P = Path() P.append(P1) P.append(P2) h = P.hash_geometry(precision = 1e-4) assert(h == '57a2cec018e695db668437a9b3dcdd8c595e300f') def test_path_append2(): P1 = pp.arc(radius = 12, angle = 47, num_pts = 720) P2 = pp.arc(radius = 12, angle = 63, num_pts = 720) P = Path([P1,P2]) h = P.hash_geometry(precision = 1e-4) assert(h == '57a2cec018e695db668437a9b3dcdd8c595e300f') def test_path_append3(): P1 = pp.arc(radius = 12, angle = 47, num_pts = 720) P2 = pp.arc(radius = 12, angle = -63, num_pts = 720) P = Path([[P1,P2],[P2,P1,P2]]) h = P.hash_geometry(precision = 1e-4) assert(h == '85646fba990cd2e72334df5d1e31678f090f6ce2') ``` #### File: phidl/tests/test_routing.py ```python import pytest import numpy as np from phidl import Device, Group, Path import phidl.geometry as pg import phidl.routing as pr import phidl.path as pp # import phidl.utilities as pu def test_route_quad(): D = Device() port1 = D.add_port(name = 1, midpoint = (30, 30), width = 20, orientation = 270) port2 = D.add_port(name = 2, midpoint = (0, 0), width = 20, orientation = 60) R = pr.route_quad(port1, port2, width1 = None, width2 = None) # width = None means use Port width h = R.hash_geometry(precision = 1e-4) assert(h == 'c42b130a3822aaefd368464d9e6558c750928b52') def test_route_smooth1(): D = Device() port1 = D.add_port(name='smooth1', midpoint=(40, 0), width=5, orientation=180) port2 = D.add_port(name='smooth2', midpoint=(0, -40), width=5, orientation=270) R = pr.route_smooth( port1, port2, radius=5, width=None, path_type='manhattan', manual_path=None, smooth_options={'corner_fun': pp.euler, 'use_eff': True}, layer=np.nan, ) h = R.hash_geometry(precision = 1e-4) assert(h == 'f7865e2b7f865a214b7847fdaa704d729842fde6') def test_route_smooth2(): D = Device() port1 = D.add_port(name='smooth1', midpoint=(40, 0), width=5, orientation=180) port2 = D.add_port(name='smooth2', midpoint=(0, -40), width=5, orientation=270) R = pr.route_smooth( port1, port2, radius=1.7, width=2.5, path_type='manhattan', manual_path=None, smooth_options={'corner_fun': pp.arc}, layer=3, ) h = R.hash_geometry(precision = 1e-4) assert(h == 'e47d0573b1c1adba357d7ea8f523f84425e474e4') def test_route_straight(): #straight path D = Device() port1 = D.add_port(name='S1', midpoint=(-50, 0), width=4, orientation=90) port2 = D.add_port(name='S2', midpoint=(-50, 50), width=4, orientation=270) D = pr.route_smooth(port1, port2, path_type='straight') h = D.hash_geometry(precision = 1e-4) assert(h == '051c27aed3cbf01700aadd83cf2dc7304d0236cf') def test_route_L(): D = Device() #L path port1 = D.add_port(name='L1', midpoint=(30,0), width=4, orientation=180) port2 = D.add_port(name='L2', midpoint=(0, 50), width=4, orientation=270) D = pr.route_smooth(port1, port2, path_type='L') h = D.hash_geometry(precision = 1e-4) assert(h == 'f3b8ee6096184a6cae2f6dab7cda038c7f80ba4b') def test_route_U1(): D = Device() #U path port1 = D.add_port(name='U1', midpoint=(50, 50), width=2, orientation=270) port2 = D.add_port(name='U2', midpoint=(80,50), width=4, orientation=270) D = pr.route_smooth(port1, port2, radius=10, path_type='U', length1=50) h = D.hash_geometry(precision = 1e-4) assert(h == 'abfd2a4c8d3d1d388675dc613efacf369bbd7e4a') def test_route_U2(): D = Device() #U path port1 = D.add_port(name='U3', midpoint=(50, 80), width=4, orientation=10) port2 = D.add_port(name='U4', midpoint=(80, 130), width=4, orientation=190) D = pr.route_smooth(port1, port2, path_type='U', length1=20) h = D.hash_geometry(precision = 1e-4) assert(h == '21f43cfcbede169789b4808771286e368bb363ca') def test_route_J1(): D = Device() #J path port1 = D.add_port(name='J1', midpoint=(100, 25), width=4, orientation=270) port2 = D.add_port(name='J2', midpoint=(130, 50), width=4, orientation=180) D = pr.route_smooth(port1, port2, path_type='J', length1=25, length2=10) h = D.hash_geometry(precision = 1e-4) assert(h == '1b17edad12788318cc113a8e1e76893ae301e6ca') def test_route_J2(): D = Device() port1 = D.add_port(name='J3', midpoint=(115, 105), width=5, orientation=270) port2 = D.add_port(name='J4', midpoint=(131, 130), width=5, orientation=180) D = pr.route_smooth(port1, port2, path_type='J', length1=25, length2=30) h = D.hash_geometry(precision = 1e-4) assert(h == '6872cc085a7f8829a8962cfe6b3ed53e253ac075') def test_route_C1(): D = Device() #C path port1 = D.add_port(name='C1', midpoint=(180, 35), width=4, orientation=90) port2 = D.add_port(name='C2', midpoint=(178, 15), width=4, orientation=270) D = pr.route_smooth(port1, port2, path_type='C', length1=15, left1=30, length2=15) h = D.hash_geometry(precision = 1e-4) assert(h == 'd9f1f76304ce01a775fe92b3ef662f26373fc2a6') def test_route_C2(): D = Device() port1 = D.add_port(name='C3', midpoint=(150, 105), width=4, orientation=90) port2 = D.add_port(name='C4', midpoint=(180, 105), width=4, orientation=270) D = pr.route_smooth(port1, port2, path_type='C', length1=25, left1=-15, length2=25) h = D.hash_geometry(precision = 1e-4) assert(h == 'b894692aa396ccda7f28fdcb3727d0e814e97935') def test_route_C3(): D = Device() port1 = D.add_port(name='C5', midpoint=(150, 170), width=4, orientation=0) port2 = D.add_port(name='C6', midpoint=(175, 170), width=4, orientation=0) D = pr.route_smooth(port1, port2, path_type='C', length1=10, left1=10, length2=10, radius=4) h = D.hash_geometry(precision = 1e-4) assert(h == '098cfe5cac505408cd4c78a1a239595d801904f2') def test_route_V(): D = Device() port1 = D.add_port(name='V1', midpoint=(200,50), width=5, orientation=284) port2 = D.add_port(name='V2', midpoint=(230, 50), width=5, orientation=270-14) D = pr.route_smooth(port1, port2, path_type='V') h = D.hash_geometry(precision = 1e-4) assert(h == 'b8a5cb77ad0e35e367530168f3aa9c72b3538117') def test_route_Z(): D = Device() port1 = D.add_port(name='Z1', midpoint=(280,0), width=4, orientation=190) port2 = D.add_port(name='Z2', midpoint=(250, 50), width=3, orientation=-10) D = pr.route_smooth(port1, port2, path_type='Z', length1=30, length2=40) h = D.hash_geometry(precision = 1e-4) assert(h == '1332b33414a4362b9e83d11649b8ecaffe8604b0') ```
{ "source": "JoMaAlves/Graph-Craftsman", "score": 4 }
#### File: src/components/vertex.py ```python from components.prints import * class vertex: def __init__(self, value, paths): self.value = value self.edges = [] self.prevEdges = [] self.nextEdges = [] self.paths = paths self.paths[value] = [0,[value]] # Adds an edge to the edges list if the graph is not directed def addEdge(self, edge): self.edges.append(edge) # Adds an edge to the nextEdges list if it is a directed graph def addNext(self, next): self.nextEdges.append(next) # Adds an edge to the prevEdges list if it is a directed graph def addPrevious(self, prev): self.prevEdges.append(prev) # Add new paths def addNewPaths(self, paths): for i in paths: self.paths[i] = [0,[]] # Checks if there is a connection between the vertex already def checkEdges(self, vertex, direc, weight): if(direc): for i in self.nextEdges: if(weight): if(i[0] == vertex): return True else: if(i == vertex): return True for i in self.prevEdges: if(weight): if(i[0] == vertex): return True else: if(i == vertex): return True else: for i in self.edges: if(weight): if(i[0] == vertex): return True else: if(i == vertex): return True return False # Gets the list of Adjacent Edges and place it into a string def listAdjacents(self, direc, weight): if(direc): next = "" prev = "" if(weight): for i in self.nextEdges: next += str(i[0].value) + " " for i in self.prevEdges: prev+=str(i[0].value) + " " else: for i in self.nextEdges: next += str(i.value) + " " for i in self.prevEdges: prev+=str(i.value) + " " printAdjList(direc, next.strip(), prev.strip()) else: all = "" if(weight): for i in self.edges: all +=str(i[0].value) + " " else: for i in self.edges: all +=str(i.value) + " " printAdjList(direc, all.strip()) # Check if two vertex are adjacent def adjacencyCheck(self, node, direc, weight): check = False if(direc): if(weight): for i in self.nextEdges: if(node == i[0].value): check = True for i in self.prevEdges: if(node == i[0].value): check = True else: for i in self.nextEdges: if(node == i.value): check = True for i in self.prevEdges: if(node == i.value): check = True else: if(weight): for i in self.edges: if(node == i[0].value): check = True else: for i in self.edges: if(node == i.value): check = True return check # Gets the degree of the vertex def getDegreeEdges(self,direc): if(direc): return len(self.nextEdges), len(self.prevEdges) else: return len(self.edges), None def getValuesList(self,direc, valor): lista_edges = [] if(direc): for i in self.nextEdges: if(valor): lista_edges.append(i[0].value) else: lista_edges.append(i.value) else: for i in self.edges: if(valor): lista_edges.append(i[0].value) else: lista_edges.append(i.value) return lista_edges, len(lista_edges) def getMatrixAdj(self, direc, valor,list_elements): lista_aux_edges = [] lista_final_edges = [] if(direc): for i in self.nextEdges: if(valor): lista_aux_edges.append(i[0]) else: lista_aux_edges.append(i) else: for i in self.edges: if(valor): lista_aux_edges.append(i[0]) else: lista_aux_edges.append(i) for i in list_elements: if i in lista_aux_edges: lista_final_edges.append(1) else: lista_final_edges.append(0) return lista_final_edges ```
{ "source": "jomalsan/cloud-custodian", "score": 2 }
#### File: c7n_azure/tests_azure/test_filters_parent.py ```python from __future__ import absolute_import, division, print_function, unicode_literals from .azure_common import BaseTest from c7n_azure.filters import ParentFilter from c7n_azure.resources.key_vault import KeyVault from c7n_azure.resources.key_vault_keys import KeyVaultKeys from c7n.config import Config, Bag from c7n.ctx import ExecutionContext from c7n.filters.core import ValueFilter class ParentFilterTest(BaseTest): def test_schema(self): self.assertTrue(self.load_policy({ 'name': 'test-policy', 'resource': 'azure.keyvault-keys', 'filters': [ {'type': 'parent', 'filter': { 'type': 'value', 'key': 'name', 'op': 'glob', 'value': 'cctestkv*' }}] }, validate=True)) self.assertTrue(self.load_policy({ 'name': 'test-policy', 'resource': 'azure.cosmosdb-collection', 'filters': [ {'type': 'parent', 'filter': { 'type': 'value', 'key': 'name', 'op': 'glob', 'value': 'cctestkv*' }}] }, validate=True)) def test_verify_parent_filter(self): manager = KeyVaultKeys( ExecutionContext( None, Bag(name="xyz", provider_name='azure'), Config.empty() ), { 'name': 'test-policy', 'resource': 'azure.keyvault-keys', 'filters': [ {'type': 'parent', 'filter': { 'type': 'value', 'key': 'name', 'op': 'glob', 'value': 'cctestkv*' }}]} ) self.assertEqual(len(manager.filters), 1) filter = manager.filters[0] self.assertTrue(isinstance(filter, ParentFilter)) self.assertTrue(isinstance(filter.parent_manager, KeyVault)) self.assertTrue(isinstance(filter.parent_filter, ValueFilter)) ```
{ "source": "JomaMinoza/COVID19-mesa", "score": 3 }
#### File: JomaMinoza/COVID19-mesa/batchrunner_local.py ```python import copy from itertools import product, count import pandas as pd from tqdm import tqdm from multiprocessing import Pool, cpu_count import os import random class ParameterError(TypeError): MESSAGE = ( "parameters must map a name to a value. " "These names did not match paramerets: {}" ) def __init__(self, bad_names): self.bad_names = bad_names def __str__(self): return self.MESSAGE.format(self.bad_names) class VariableParameterError(ParameterError): MESSAGE = ( "variable_parameters must map a name to a sequence of values. " "These parameters were given with non-sequence values: {}" ) def __init__(self, bad_names): super().__init__(bad_names) class FixedBatchRunner: """ This class is instantiated with a model class, and model parameters associated with one or more values. It is also instantiated with model and agent-level reporters, dictionaries mapping a variable name to a function which collects some data from the model or its agents at the end of the run and stores it. Note that by default, the reporters only collect data at the *end* of the run. To get step by step data, simply have a reporter store the model's entire DataCollector object. """ def __init__( self, model_cls, parameters_list=None, fixed_parameters=None, iterations=1, max_steps=1000, model_reporters=None, agent_reporters=None, display_progress=True, ): """ Create a new BatchRunner for a given model with the given parameters. Args: model_cls: The class of model to batch-run. parameters_list: A list of dictionaries of parameter sets. The model will be run with dictionary of paramters. For example, given parameters_list of [{"homophily": 3, "density": 0.8, "minority_pc": 0.2}, {"homophily": 2, "density": 0.9, "minority_pc": 0.1}, {"homophily": 4, "density": 0.6, "minority_pc": 0.5}] 3 models will be run, one for each provided set of parameters. fixed_parameters: Dictionary of parameters that stay same through all batch runs. For example, given fixed_parameters of {"constant_parameter": 3}, every instantiated model will be passed constant_parameter=3 as a kwarg. iterations: The total number of times to run the model for each set of parameters. max_steps: Upper limit of steps above which each run will be halted if it hasn't halted on its own. model_reporters: The dictionary of variables to collect on each run at the end, with variable names mapped to a function to collect them. For example: {"agent_count": lambda m: m.schedule.get_agent_count()} agent_reporters: Like model_reporters, but each variable is now collected at the level of each agent present in the model at the end of the run. display_progress: Display progresss bar with time estimation? """ self.model_cls = model_cls if parameters_list is None: parameters_list = [] self.parameters_list = list(parameters_list) self.fixed_parameters = fixed_parameters or {} self._include_fixed = len(self.fixed_parameters.keys()) > 0 self.iterations = iterations self.max_steps = max_steps self.model_reporters = model_reporters self.agent_reporters = agent_reporters if self.model_reporters: self.model_vars = {} if self.agent_reporters: self.agent_vars = {} self.display_progress = display_progress def _make_model_args(self): """Prepare all combinations of parameter values for `run_all` Returns: Tuple with the form: (total_iterations, all_kwargs, all_param_values) """ total_iterations = self.iterations all_kwargs = [] count = len(self.parameters_list) if count: for params in self.parameters_list: kwargs = params.copy() kwargs.update(self.fixed_parameters) #run each iterations specific number of times for iter in range(self.iterations): kwargs_repeated = kwargs.copy() all_kwargs.append([self.model_cls, kwargs_repeated, self.max_steps, iter]) elif len(self.fixed_parameters): count = 1 kwargs = self.fixed_parameters.copy() all_kwargs.append(kwargs) total_iterations *= count return all_kwargs, total_iterations #return (total_iterations, all_kwargs, all_param_values) def run_all(self): """ Run the model at all parameter combinations and store results. """ run_count = count() total_iterations, all_kwargs, all_param_values = self._make_model_args() with tqdm(total_iterations, disable=not self.display_progress) as pbar: for i, kwargs in enumerate(all_kwargs): param_values = all_param_values[i] for _ in range(self.iterations): self.run_iteration(kwargs, param_values, next(run_count)) pbar.update() @staticmethod def run_wrapper(iter_args): model_i = iter_args[0] kwargs = iter_args[1] max_steps = iter_args[2] iteration = iter_args[3] def run_iteration(model_i, kwargs, max_steps, iteration): #instantiate version of model with correct parameters model = model_i(**kwargs) while model.running and model.schedule.steps < max_steps: model.step() #add iteration number to dictionary to make unique_key kwargs["iteration"] = iteration if model.datacollector: return kwargs, model.datacollector.get_model_vars_dataframe() else: return kwargs, "no datacollector in model" return run_iteration(model_i, kwargs, max_steps, iteration) def run_model(self, model): """ Run a model object to completion, or until reaching max steps. If your model runs in a non-standard way, this is the method to modify in your subclass. """ while model.running and model.schedule.steps < self.max_steps: model.step() count+=1 def collect_model_vars(self, model): """ Run reporters and collect model-level variables. """ model_vars = {} for var, reporter in self.model_reporters.items(): model_vars[var] = reporter(model) return model_vars def collect_agent_vars(self, model): """ Run reporters and collect agent-level variables. """ agent_vars = {} for agent in model.schedule._agents.values(): agent_record = {} for var, reporter in self.agent_reporters.items(): agent_record[var] = getattr(agent, reporter) agent_vars[agent.unique_id] = agent_record return agent_vars ''' def get_model_vars_dataframe(self): """ Generate a pandas DataFrame from the model-level variables collected. """ return self._prepare_report_table(self.model_vars) def get_agent_vars_dataframe(self): """ Generate a pandas DataFrame from the agent-level variables collected. """ return self._prepare_report_table(self.agent_vars, extra_cols=["AgentId"]) def _prepare_report_table(self, vars_dict, extra_cols=None): """ Creates a dataframe from collected records and sorts it using 'Run' column as a key. """ extra_cols = ["Run"] + (extra_cols or []) index_cols = set() for params in self.parameters_list: index_cols |= params.keys() index_cols = list(index_cols) + extra_cols records = [] for param_key, values in vars_dict.items(): record = dict(zip(index_cols, param_key)) record.update(values) records.append(record) df = pd.DataFrame(records) rest_cols = set(df.columns) - set(index_cols) ordered = df[index_cols + list(sorted(rest_cols))] ordered.sort_values(by="Run", inplace=True) if self._include_fixed: for param in self.fixed_parameters.keys(): val = self.fixed_parameters[param] # avoid error when val is an iterable vallist = [val for i in range(ordered.shape[0])] ordered[param] = vallist return ordered ''' # This is kind of a useless class, but it does carry the 'source' parameters with it class ParameterProduct: def __init__(self, variable_parameters): if variable_parameters != None: self.param_names, self.param_lists = zip( *(copy.deepcopy(variable_parameters)).items() ) self._product = product(*self.param_lists) else: self.param_names = None self.param_lists = None def __iter__(self): return self def __next__(self): if self.param_names != None: return dict(zip(self.param_names, next(self._product))) else: return [] # Roughly inspired by sklearn.model_selection.ParameterSampler. Does not handle # distributions, only lists. class ParameterSampler: def __init__(self, parameter_lists, n, random_state=None): self.param_names, self.param_lists = zip( *(copy.deepcopy(parameter_lists)).items() ) self.n = n if random_state is None: self.random_state = random.Random() elif isinstance(random_state, int): self.random_state = random.Random(random_state) else: self.random_state = random_state self.count = 0 def __iter__(self): return self def __next__(self): self.count += 1 if self.count <= self.n: return dict( zip( self.param_names, [self.random_state.choice(l) for l in self.param_lists], ) ) raise StopIteration() class BatchRunner(FixedBatchRunner): """ This class is instantiated with a model class, and model parameters associated with one or more values. It is also instantiated with model and agent-level reporters, dictionaries mapping a variable name to a function which collects some data from the model or its agents at the end of the run and stores it. Note that by default, the reporters only collect data at the *end* of the run. To get step by step data, simply have a reporter store the model's entire DataCollector object. """ def __init__( self, model_cls, variable_parameters=None, fixed_parameters=None, iterations=1, max_steps=1000, model_reporters=None, agent_reporters=None, display_progress=True, ): """ Create a new BatchRunner for a given model with the given parameters. Args: model_cls: The class of model to batch-run. variable_parameters: Dictionary of parameters to lists of values. The model will be run with every combo of these paramters. For example, given variable_parameters of {"param_1": range(5), "param_2": [1, 5, 10]} models will be run with {param_1=1, param_2=1}, {param_1=2, param_2=1}, ..., {param_1=4, param_2=10}. fixed_parameters: Dictionary of parameters that stay same through all batch runs. For example, given fixed_parameters of {"constant_parameter": 3}, every instantiated model will be passed constant_parameter=3 as a kwarg. iterations: The total number of times to run the model for each combination of parameters. max_steps: Upper limit of steps above which each run will be halted if it hasn't halted on its own. model_reporters: The dictionary of variables to collect on each run at the end, with variable names mapped to a function to collect them. For example: {"agent_count": lambda m: m.schedule.get_agent_count()} agent_reporters: Like model_reporters, but each variable is now collected at the level of each agent present in the model at the end of the run. display_progress: Display progresss bar with time estimation? """ super().__init__( model_cls, ParameterProduct(variable_parameters), fixed_parameters, iterations, max_steps, model_reporters, agent_reporters, display_progress, ) class MPSupport(Exception): def __str__(self): return ( "BatchRunnerMP depends on pathos, which is either not " "installed, or the path can not be found. " ) class BatchRunnerMP(BatchRunner): """ Child class of BatchRunner, extended with multiprocessing support. """ def __init__(self, model_cls, nr_processes=None, **kwargs): """ Create a new BatchRunnerMP for a given model with the given parameters. Args: model_cls: The class of model to batch-run. nr_processes: the number of separate processes the BatchRunner should start, all running in parallel. kwargs: the kwargs required for the parent BatchRunner class """ if nr_processes == None: #identifies the number of processors available on users machine available_processors = cpu_count() self.processes = available_processors print ("Your system has {} available processors.".format(self.processes)) else: self.processes = nr_processes super().__init__(model_cls, **kwargs) self.pool = Pool(self.processes) def run_all(self): """ Run the model at all parameter combinations and store results, overrides run_all from BatchRunner. """ run_count = count() run_iter_args, total_iterations = self._make_model_args() # register the process pool and init a queue #results = [] results = {} #with tqdm(total_iterations, disable=not self.display_progress) as pbar: #for i, kwargs in enumerate(all_kwargs): # param_values = all_param_values[i] # for _ in range(self.iterations): # make a new process and add it to the queue #with self.pool as p: if self.processes > 1: for params, model_data in self.pool.imap_unordered(self.run_wrapper, run_iter_args): results[str(params)] = model_data #For debugging model due to difficulty of getting errors during multiprocessing else: for run in run_iter_args: params, model_data = self.run_wrapper(run) #params, model_data = self.run_wrapper(run) #no need for a dictionary since one set of results results[str(params)] = model_data return results # empty the queue ''' results = [] for task in job_queue: for model_vars, agent_vars in list(task): results.append((model_vars, agent_vars)) pbar.update() # store the results for model_vars, agent_vars in results: if self.model_reporters: for model_key, model_val in model_vars.items(): self.model_vars[model_key] = model_val if self.agent_reporters: for agent_key, reports in agent_vars.items(): self.agent_vars[agent_key] = reports with tqdm(total_iterations, disable=not self.display_progress) as pbar: for i, kwargs in enumerate(all_kwargs): param_values = all_param_values[i] for _ in range(self.iterations): # make a list of parameters for each model run job_queue.append((kwargs, param_values, next(run_count))) #start dictionary to store results #results[next(run_count)] =[param_values] # empty the queue results = [] print (len(job_queue)) with self.pool as p: results.append(p.imap_unordered(self.run_iteration, job_queue)) pbar.update() ''' ```
{ "source": "jomar83/airflow", "score": 2 }
#### File: cloud/hooks/test_oss.py ```python import os import unittest import oss2 from airflow.exceptions import AirflowException from airflow.providers.alibaba.cloud.hooks.oss import OSSHook from tests.providers.alibaba.cloud.utils.test_utils import skip_test_if_no_valid_conn_id TEST_CONN_ID = os.environ.get('TEST_OSS_CONN_ID', 'oss_default') TEST_REGION = os.environ.get('TEST_OSS_REGION', 'cn-hangzhou') TEST_BUCKET = os.environ.get('TEST_OSS_BUCKET', 'test-bucket') class TestOSSHook(unittest.TestCase): def setUp(self): try: self.hook = OSSHook(region=TEST_REGION, oss_conn_id=TEST_CONN_ID) self.hook.object_exists(key='test-obj', bucket_name=TEST_BUCKET) except AirflowException: self.hook = None except oss2.exceptions.ServerError as e: if e.status == 403: self.hook = None @skip_test_if_no_valid_conn_id def test_init(self): assert self.hook.oss_conn_id == TEST_CONN_ID @skip_test_if_no_valid_conn_id def test_get_conn(self): assert self.hook.get_conn() is not None @skip_test_if_no_valid_conn_id def test_parse_oss_url(self): parsed = self.hook.parse_oss_url(f"oss://{TEST_BUCKET}/this/is/not/a-real-key.txt") print(parsed) assert parsed == (TEST_BUCKET, "this/is/not/a-real-key.txt"), "Incorrect parsing of the oss url" @skip_test_if_no_valid_conn_id def test_parse_oss_object_directory(self): parsed = self.hook.parse_oss_url(f"oss://{TEST_BUCKET}/this/is/not/a-real-oss-directory/") assert parsed == ( TEST_BUCKET, "this/is/not/a-real-oss-directory/", ), "Incorrect parsing of the oss url" @skip_test_if_no_valid_conn_id def test_get_bucket(self): assert self.hook.get_bucket(TEST_BUCKET) is not None ```
{ "source": "JOmarCuenca/Unsplash-WebScrapper", "score": 3 }
#### File: JOmarCuenca/Unsplash-WebScrapper/imgScrapperUnsplash.py ```python import requests from selenium.webdriver import Chrome from selenium.webdriver.chrome.webdriver import WebDriver # from selenium.webdriver.common.by import By # from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.keys import Keys # from selenium.webdriver.support import expected_conditions as EC import time from fileManager import createFolder,deleteFolder import programArgs as pargs from progressbar import progressbar, streams import logging # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger() # Setup Progressbar wrapper function streams.wrap_stderr() _DEFAULT_SEPARATOR_LENGTH = 50 _WEBSITE_URL = "https://unsplash.com" _imgURL = [] def printSeparator(title : str, length = _DEFAULT_SEPARATOR_LENGTH): """ Prints a separator in console to visualize better the sections of the code. Args: title (str): Title of the separator length (int, optional): Length of the separator. Defaults to DEFAULT_SEPARATOR_LENGTH. """ logger.info(f" {title.upper()} ".center(length,'=')) def getURLs(images): """ Gets the URL's of the images to be downloaded from the website according to the website design. Args: images (List[str]): Array of HTML Attr with the target http link of the imgs. """ printSeparator("Getting imgs URL's current screen") for img in images: srcset = img.get_attribute("srcset") if(srcset == None): continue sources = srcset.split(" ") for src in sources: if("http" in src and "fit=crop&w=700" in src): _imgURL.append(src) def cleanDuplicates(): """ Cleans possible duplicate urls. """ global _imgURL _imgURL = list(dict.fromkeys(_imgURL)) def writeImgs(urls : list, trainPath : str, testPath : str = None, proportion : float = None): """ Saves the PNG files in the targeted dirs from the collected URLS. Args: urls (list): Targeted URL's of the img files trainPath (str): Training dir path testPath (str): Testing dir path """ targetFolder = trainPath switch = False printSeparator("Saving Imgs") for x in progressbar(range(len(urls))): if(not switch and testPath != None and proportion != None and x > len(urls) * proportion): switch = True targetFolder = testPath webImg = requests.get(urls[x]) f = open(f"./{targetFolder}img_{x + 1}.png","wb") f.write(webImg.content) f.close() def mainActivity(driver, currentHeight, targetNumImgs): global _imgURL # Get scroll height last_height = currentHeight new_height = -1 iters = 0 toBottom = False while len(_imgURL) < targetNumImgs and iters < 20: # Wait to load page time.sleep(1) # Scroll down to bottom driver.execute_script("window.scrollTo(0, document.body.scrollHeight*31/33);" if toBottom else "window.scrollTo(0, document.body.scrollHeight*9/11);") # Wait to load page time.sleep(2) # Calculate new scroll height and compare with last scroll height new_height = driver.execute_script("return document.body.scrollHeight") images = driver.find_elements_by_class_name("oCCRx") getURLs(images) cleanDuplicates() iters += 1 if new_height == last_height: logger.warning("Height didn't update") if(toBottom): break else: toBottom = True last_height = new_height if __name__ == "__main__": args = pargs.getArgs() openBrowser = True path = args.path driver : WebDriver = None if(path is None): try: with open("pathFile.txt","r") as pathFile: path = pathFile.readline().rstrip() pathFile.close() except Exception: openBrowser = False driver = Chrome(path) driver.get(_WEBSITE_URL) searchBar = driver.find_element_by_name("searchKeyword") try: if not openBrowser: raise Exception("No path to the selenium web driver") searchBar.send_keys(args.keyword) searchBar.send_keys(Keys.ENTER) except IndexError: openBrowser = False driver.close() # Get scroll height last_height = driver.execute_script("return document.body.scrollHeight") if(openBrowser): mainFolder = f"data/{args.keyword}/" trainFolder = None testFolder = None if(args.divide != None): trainFolder = f"{mainFolder}train/" testFolder = f"{mainFolder}test/" ## Delete existing folders, if any deleteFolder(trainFolder) deleteFolder(testFolder) ## Create Folders createFolder(trainFolder) createFolder(testFolder) else: # Delete folder if exists deleteFolder(mainFolder) # Create Folder createFolder(mainFolder) mainActivity(driver, last_height, args.targetNum) driver.close() if(args.divide != None): writeImgs(_imgURL,trainFolder,testFolder, proportion=args.divide) else: writeImgs(_imgURL,mainFolder) ```
{ "source": "jomarin38/piCAMTracker", "score": 2 }
#### File: jomarin38/piCAMTracker/runtracker.py ```python import picamera import picamera.array import numpy as np import datetime as dt import os import io import re from time import sleep,time import sys import subprocess from argparse import ArgumentParser import picamtracker import prctl max_temp = 75.0 temp = 20.0 #-- start an arbitrary shell (Python-2.7 subprocess.Popen) def shell(cmd, *argv): err = "Error for command: %s" % (cmd) command = [cmd] for item in argv: command.append(item) try: p = subprocess.Popen(command,stdout=subprocess.PIPE,stderr=subprocess.PIPE) out,err = p.communicate() if(len(err)): print >> sys.stderr, err except: print >> sys.stderr, err out = '' return out.strip() def get_raspi_revision(): rev_file = '/sys/firmware/devicetree/base/model' info = { 'pi': '', 'model': '', 'rev': ''} try: fd = os.open(rev_file, os.O_RDONLY) line = os.read(fd,256) os.close(fd) m = re.match('Raspberry Pi (\d+) Model (\w(?: Plus)?) Rev ([\d\.]+)', line) if m: info['pi'] = m.group(1) info['model'] = m.group(2) info['rev'] = m.group(3) except: pass return info def get_temp(): temp_file='/run/picamtracker/temp' temp = 20.0 try: fd = os.open(temp_file, os.O_RDONLY) temp_string = os.read(fd,256) os.close(fd) temp = float(temp_string) except: pass return temp def main(ashow=True, debug=False): global config preview = True show = 1 if ashow else 0 try: preview = config.conf['preview'] except: raise if debug: config.conf['debug'] = True print(get_raspi_revision()) #- open picamera device with picamera.PiCamera() as camera: #- determine camera module revision = camera._revision.upper() print("camera chip: %s" % revision) if revision == 'OV5647': # V1 module # 1280x720 has a bug. (wrong center value) resx = 1280 resy = 960 fps = 42 mode = 4 elif revision == 'IMX219': # V2 module resx = 1632 resy = 896 fps = 38 mode = 5 else: raise ValueError('Unknown camera device') #- check if the crossing line is in the center (this is not needed.) if config.conf['yCross'] > 0 and config.conf['yCross'] != (resy/32): print("WARNING: Y crossing %d expected but %d given!" % (resy/32, config.conf['yCross'])) if config.conf['xCross'] > 0 and config.conf['xCross'] != (resx/32): print("WARNING: X crossing bar is not in the center of the screen!") camera.resolution = (resx,resy) if show: preview = True camera.framerate = 25 x_disp = config.conf['offsetX'] y_disp = config.conf['offsetY'] display = picamtracker.Display(caption='piCAMTracker',x=x_disp,y=y_disp,w=resy/2,h=resx/2) else: display = None camera.sensor_mode = mode camera.framerate = fps print("warm-up 2 seconds...") #serialPort = picamtracker.SerialIO.SerialCommunication(port=config.conf['serialPort'],options=config.conf['serialConf']) greenLED = picamtracker.GPIOPort.gpioPort(config.conf['greenLEDPort'], is_active_low=config.conf['ledActiveLow'], duration=config.conf['signalLength'], start_blinks=3) redLED = picamtracker.GPIOPort.gpioPort(config.conf['redLEDPort'], duration=config.conf['signalLength'], is_active_low=config.conf['ledActiveLow']) sleep(1.0) print("...start") picamtracker.GPIOPort.statusLED(config.conf['statusLEDPort'], on=True) if preview: cl = np.zeros((resy,resx,3), np.uint8) ycross = config.conf['yCross'] if ycross > 0: ym = 16 * ycross cl[ym,:,:] = 0xff #horizantal line xcross = config.conf['xCross'] if xcross > 0: xm = 16 * xcross cl[:,xm,:] = 0xff #vertical line #- preview settings px = config.conf['previewX'] py = config.conf['previewY'] camera.start_preview() camera.preview.fullscreen = False if show: camera.preview.alpha = 192 else: camera.preview.alpha = 255 rotation = config.conf['viewAngle'] camera.preview.window = (px,py,resy/2,resx/2) camera.preview.rotation = rotation #- overlay settings overlay = camera.add_overlay(source=np.getbuffer(cl), size=(resx,resy),format='rgb') overlay.fullscreen = False overlay.alpha = 32 overlay.layer = 3 overlay.window = (px,py,resy/2,resx/2) overlay.rotation= rotation #- disable auto (exposure + white balance) #camera.shutter_speed = camera.exposure_speed #camera.exposure_mode = 'off' #g = camera.awb_gains #camera.awb_mode = 'off' #camera.awb_gains = g vstream = picamera.PiCameraCircularIO(camera, seconds=config.conf['videoLength']) tracker = picamtracker.Tracker(camera, greenLed=greenLED, redLed=redLED, config=config) writer = picamtracker.Writer(camera, stream=vstream, config=config) cmds = picamtracker.CommandInterface(config=config) cmds.subscribe(tracker.set_maxDist, 'maxDist') cmds.subscribe(tracker.set_trackMaturity, 'trackMaturity') cmds.subscribe(tracker.testCrossing, 'testBeep') cmds.subscribe(config.set_storeParams, 'storeParams') #cmds.subscribe(greenLED.check, 'testBeep') with picamtracker.MotionAnalyser(camera, tracker, display, show, config) as output: loop = 0 t_wait = 0.5 old_frames = 0 camera.annotate_text_size = 24 camera.start_recording(output=vstream, format='h264', level='4.2', motion_output=output) cmds.subscribe(output.set_vMax, 'vMax') cmds.subscribe(output.set_vMin, 'vMin') cmds.subscribe(output.set_maxArea, 'maxArea') cmds.subscribe(output.set_minArea, 'minArea') cmds.subscribe(output.set_sadThreshold, 'sadThreshold') cmds.subscribe(output.set_debug, 'debug') cmds.subscribe(output.set_baseB, 'baseB') if config.conf['debugInputPort']: picamtracker.GPIOPort.addCallback(config.conf['debugInputPort'], output.debug_button) prctl.set_name('python') try: while True: global temp loop += 1 # check temperature every minute if loop % 120 == 0: temp = get_temp() # update statistics every second if loop & 1: add_text = "" sep = "" if tracker.noise > 0.8: add_text += " NOISY" sep = " +" if camera.analog_gain > 7: add_text = add_text + sep + " DARK" if temp > max_temp: add_text = add_text + sep + " HOT (%4.1f)" % temp if len(add_text): add_text += " !" frames = output.processed_frames fs = (frames - old_frames) / (2 * t_wait) old_frames = frames camera.annotate_text = "%s (%3.1f f/s) %s" % (dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), fs, add_text) delay,frame,motion = tracker.getStatus() if frame != 0: #t0 = time() #camera.split_recording('after.h264') #vstream.copy_to('before.h264',size=2147483648) #vstream.copy_to('before.h264',size=1073741824) #vstream.clear() #camera.split_recording(vstream) #name = "AAA-%d.jpg" % loop #camera.capture(reader, format='rgb', use_video_port=True) writer.takeSnapshot(delay, frame, motion) tracker.releaseLock() #print("capture: %4.2fms" % (1000.0 * (time() - t0))) # check for USB stick every 60 seconds camera.wait_recording(t_wait) except KeyboardInterrupt: pass finally: # stop camera and preview #serialPort.terminated = True greenLED.terminated = True redLED.terminated = True camera.stop_recording() if preview: camera.stop_preview() camera.remove_overlay(overlay) # stop all threads if display is not None: display.terminated = True cmds.stop() tracker.stop() writer.stop() # wait and join threads sleep(0.5) if display is not None: display.join() #serialPort.join() greenLED.join() redLED.join() cmds.join() tracker.join() writer.join() picamtracker.GPIOPort.statusLED(config.conf['statusLEDPort'], on=False) #config.write() if __name__ == '__main__': parser = ArgumentParser(prog='piCAMTracker') parser.add_argument('-s', '--show', action='store_true', help = 'show internal graphical information (slow!)') parser.add_argument( '-d', '--debug', action='store_true', help = 'write debug information for later investigation') args = parser.parse_args() global config config = picamtracker.Configuration('config.json') os.system("[ ! -d /run/picamtracker ] && sudo mkdir -p /run/picamtracker && sudo chown pi:www-data /run/picamtracker && sudo chmod 775 /run/picamtracker") os.system("/home/pi/piCAMTracker/etc/background_service.sh </dev/null&") out = shell('/usr/bin/vcgencmd', 'measure_temp') print("Actual core %s" % out) main(args.show, args.debug) ```
{ "source": "jomasim/heroku-devops", "score": 3 }
#### File: v2/models/user.py ```python from app.api.v2.database import DBConnection from werkzeug.security import generate_password_hash from psycopg2 import sql,extras cur = DBConnection.get_connection().cursor(cursor_factory = extras.RealDictCursor) class User(object): ''' create user ''' @staticmethod def create(data): hashed=generate_password_hash(data['password']) query = "INSERT INTO users (name,username,email,password,role)" \ "VALUES('%s','%s', '%s', '%s', '%s')" % ( data['name'],data['username'],data['email'],hashed,data['role']) cur.execute(query) @staticmethod def create_admin(data): hashed=generate_password_hash(data['password']) query = "INSERT INTO users (name,username,email,password,role)" \ "VALUES('%s','%s', '%s', '%s', '%s')" % ( data['name'],data['username'],data['email'],hashed,"admin") cur.execute(query) @staticmethod def exists(data): if data['email']: query="SELECT * FROM users WHERE email = '%s';" % data['email'] cur.execute(query) return cur.fetchone() return False @staticmethod def get_by_email(email): if email: query="SELECT * FROM users WHERE email = '%s';" % email cur.execute(query) return cur.fetchone() @staticmethod def get_by_id(user_id): if user_id: query="SELECT * FROM users WHERE id = '%s';" % user_id cur.execute(query) return cur.fetchone() @staticmethod def get(): query="SELECT * FROM users" cur.execute(query) users=cur.fetchall() for user in users: user.pop("password") return users ``` #### File: v2/views/auth_resource.py ```python from flask import jsonify, make_response, request from flask_restful import Resource from app.api.v2.request import Request from app.api.v2.models.user import User from werkzeug.security import check_password_hash from flask_jwt_extended import create_access_token, jwt_required import datetime class AuthController(Resource): def post(self): data = request.get_json() request_schema = {'email': 'required|email', 'password': 'required|string|min:6|max:12'} validator = Request(data, request_schema) if validator.validate() == None: email = data['email'] password = data['password'] ''' verify password ''' if AuthController.__verify_password(email,password): user=User.get_by_email(email) exp = datetime.timedelta(minutes=45) token=AuthController.__generate_token(user['id'],exp) user.pop("password") return make_response(jsonify({"message": "Login successful", "access_token": token, "exp":str(exp), "user":user}), 200) else: return make_response(jsonify({"message": "Invalid credentials"}), 401) else: return make_response(jsonify(validator.validate()), 422) @staticmethod def __generate_token(user_id,exp): return create_access_token(user_id, exp) @staticmethod def __verify_password(email,password): if User.exists({'email':email}): user=User.get_by_email(email) return check_password_hash(user['password'], password) return False ``` #### File: v2/views/product_resource.py ```python from flask import jsonify, make_response, request from flask_restful import Resource from app.api.v2.request import Request from app.api.v2.models.product import Product from flask_jwt_extended import jwt_required, get_jwt_identity from app.api.v2.views.admin import admin_required ''' collect all key errors ''' key_errors = None class ProductController(Resource): def __init__(self): request_schema = {'name': 'required|string', 'category': 'required|string', 'description': 'required', 'price': 'required', 'quantity': 'required' } self.request_schema=request_schema @jwt_required def get(self, product_id=None): if not product_id: return make_response(jsonify({'products': Product.get()}), 200) else: ''' search for product using product_id ''' if not Product.get_by_id(product_id): return make_response(jsonify({'message': 'product not found'}), 404) else: return make_response(jsonify({'product': Product.get_by_id(product_id)}), 200) @admin_required def post(self): data = request.get_json() user = get_jwt_identity() ''' append user ''' data['created_by'] = user all_errors = self.get_validation_errors(data, self.request_schema) if all_errors == None: product = Product.get_by_name(data['name']) ''' check if product with the same name exists ''' if product: message = "product already exists consider updating the quantity" return make_response(jsonify({'message': message}), 409) else: ''' create product ''' Product.create(data) return make_response(jsonify({'message': "product created successfully"}), 201) else: return make_response(jsonify(all_errors), 422) @admin_required def delete(self, product_id=None): if not product_id: return make_response(jsonify({"message": "productid is required"}), 422) else: if Product.get_by_id(product_id) != None: Product.delete_by_Id(product_id) return make_response(jsonify({"message": "product deleted successfully"}), 200) else: return make_response(jsonify({"message": "product not found"}), 404) @admin_required def put(self, product_id=None): if not product_id: return make_response(jsonify({"message": "productid is required"}), 422) data = request.get_json() user = get_jwt_identity() if data != None and not Product.get_by_id(product_id): return make_response(jsonify({"message": "product not found"}), 404) ''' update product ''' updated_list=self.get_updated_list(data, self.get_existing(product_id)) ''' collect all errors ''' all_errors=self.validate_update(updated_list,self.get_existing(product_id)) if not all_errors: found=self.get_existing(product_id) update=all(updated_list[k] == found[k] for k in found) if update: return make_response(jsonify({"message": "nothing to update"}), 409) updated_list['created_by']=user Product.update(updated_list, product_id) return make_response(jsonify({'message': "product updated successfully"}), 201) return make_response(jsonify(all_errors), 422) def get_validation_errors(self, data, request_schema): validator = Request(data, request_schema) all_errors = validator.validate() if all_errors == None and int(data['price']) <= 0: all_errors = {} all_errors['errors'] = {"price": ['price should not be a zero or a negative value']} return all_errors def get_updated_list(self,data, existing): sect=[key for key in set(existing) if key in set(data)] if sect: for key in sect: existing[key]=data[key] try: existing['quantity']=int(existing['quantity']) except ValueError: existing['quantity']=0 return existing return None def validate_update(self,update,existing): all_errors={} if update == None: all_errors['errors']='invalid request' return all_errors all_errors = self.get_validation_errors(update,self.request_schema) return all_errors def get_existing(self,product_id): found=Product.get_by_id(product_id) found.pop("create_at") found.pop("updated_at") return found ``` #### File: heroku-devops/app/__init__.py ```python from flask import Flask, Blueprint,redirect, jsonify from flask_restful import Resource, Api from flask_jwt_extended import JWTManager from utils import env from instance.api_config import api_config from app.api.v2.views.user_resource import UserController from app.api.v2.views.auth_resource import AuthController from app.api.v2.views.product_resource import ProductController from app.api.v2.views.sale_resource import SalesController from app.api.v2.views.logout_resource import Logout from app.api.v2.models.user import User from app.api.v2.black_list import get_black_list from flask_cors import CORS api_blueprint = Blueprint("store-api", __name__, url_prefix='/api/v2') jwt = JWTManager() ''' store revoved tokens ''' blacklist = get_black_list() ''' setting api config ''' def create_app(config_setting): app = Flask(__name__) app.config.from_object(api_config[config_setting]) app.config['JWT_SECRET_KEY'] = env('JWT_SECRET') app.config['JWT_BLACKLIST_ENABLED'] = env('JWT_BLACKLIST') jwt.init_app(app) ''' setting api blueprint ''' api = Api(api_blueprint) api.add_resource(UserController, '/user/', strict_slashes=False, endpoint='post_user') api.add_resource(AuthController, '/login/', strict_slashes=False, endpoint='login') api.add_resource(Logout, '/logout/', strict_slashes=False, endpoint='logout') api.add_resource(ProductController, '/products/', strict_slashes=False, endpoint='products') api.add_resource(ProductController, '/products/<int:product_id>/', strict_slashes=False, endpoint='delete/put product') api.add_resource(SalesController, '/sales/', strict_slashes=False, endpoint='sales') api.add_resource(SalesController, '/sales/<int:sale_id>/', strict_slashes=False, endpoint='get_all_sales') app.register_blueprint(api_blueprint) # Catch all 404 errors @app.errorhandler(404) def not_found_error(error): return jsonify({"error": "Resource not found on server"}), 404 # Catch all 500 errors @app.errorhandler(500) def internal_server_error(error): return jsonify({"error": "Internal server error has occured"}), 500 # Catch all 400 errors @app.errorhandler(400) def bad_request_error(error): return jsonify({"error": "Bad request sent to the server"}), 400 @app.route('/') def root(): return redirect('https://storeapiv2.docs.apiary.io/') # add CORS handler CORS(app) return app @jwt.user_claims_loader def add_claims_to_access_token(identity): user_id=identity user=User.get_by_id(user_id) if user: if user['role'] == 'admin': return {'roles': 'admin'} else: return {'roles': 'normal'} @jwt.token_in_blacklist_loader def check_if_token_in_blacklist(decrypted_token): jti = decrypted_token['jti'] return jti in blacklist def add_to_blacklist(jti): return blacklist.add(jti) ``` #### File: tests/v2/auth_test.py ```python import json from app.tests.v2.base_test import BaseTestCase from app.api.v2.models.user import User from werkzeug.security import generate_password_hash, check_password_hash class TestAuth(BaseTestCase): def test_for_get_user_identity(self): user = User.get_by_email(self.sample_user['email']) self.assertTrue(user) self.assertEqual(user['name'], self.sample_user['name']) def test_match_password(self): user = User.get_by_email(self.sample_user['email']) password = "<PASSWORD>" self.assertTrue(user) self.assertTrue(check_password_hash(user['password'], password)) def test_login(self): user={"email": self.sample_user['email'], "password":<PASSWORD>['password'], } response = self.post('/api/v2/login', data=user) self.assertTrue(response) data=json.loads(response.data) self.assertEqual({"message":data['message']}, { 'message': 'Login successful'}) self.assertEqual(response.status_code,200) def test_login_with_invalid_credentials(self): user={"email": "<EMAIL>", "password": "<PASSWORD>" } response = self.post('/api/v2/login', data=user) self.assertTrue(response) self.assertEqual(json.loads(response.data), { 'message': 'Invalid credentials'}) self.assertEqual(response.status_code,401) def test_login_with_empty_data(self): user={"email": "", "password": "" } response = self.post('/api/v2/login', data=user) self.assertTrue(response) self.assertEqual(json.loads(response.data), {'errors': {'email': ['email is required'], 'password': ['<PASSWORD>']}}) self.assertEqual(response.status_code,422) ```
{ "source": "jomat/bender", "score": 3 }
#### File: bender/tests/test_callbacks.py ```python import unittest from unittest.mock import Mock import nio from my_project_name.callbacks import Callbacks from my_project_name.storage import Storage class CallbacksTestCase(unittest.TestCase): def setUp(self) -> None: # Create a Callbacks object and give it some Mock'd objects to use self.fake_client = Mock(spec=nio.AsyncClient) self.fake_client.user = "@fake_user:example.com" self.fake_storage = Mock(spec=Storage) # We don't spec config, as it doesn't currently have well defined attributes self.fake_config = Mock() self.callbacks = Callbacks( self.fake_client, self.fake_storage, self.fake_config ) if __name__ == "__main__": unittest.main() ```
{ "source": "jomauricio/abgthe", "score": 2 }
#### File: apps/games/models.py ```python from django.db import models from django.conf import settings from django.utils.translation import ugettext_lazy as _ from model_utils.models import TimeStampedModel from model_utils import Choices from localflavor.br.br_states import STATE_CHOICES from django.core.urlresolvers import reverse from autoslug import AutoSlugField from taggit.managers import TaggableManager from imagekit.models import ProcessedImageField from imagekit.processors import ResizeToFill class Game(TimeStampedModel): class Meta(): verbose_name = "Jogo" verbose_name_plural ="Jogos" slug = AutoSlugField(populate_from='name', unique=True) name = models.CharField("Nome", max_length=100, unique=True) image = ProcessedImageField(upload_to="games/image/%Y/%m/%d", blank=True, null=True, processors=[ResizeToFill(80, 90)], format='JPEG',options={'quality': 60}) description = models.TextField("Descrição", blank=True) number_players = models.CharField("Nº de Jogadores", blank=True, max_length=10) tags = TaggableManager(verbose_name='Tags', blank=True) def __unicode__(self): return u'%s' % (self.name) def get_absolute_url(self): return reverse('games:game_detail', args=[self.slug]) class Expansion(TimeStampedModel): class Meta(): verbose_name = "Expansão" verbose_name_plural ="Expansões" game = models.ForeignKey(Game, verbose_name="Jogo",related_name="expansions") slug = AutoSlugField(populate_from='name', unique=True) name = models.CharField("Nome", max_length=100, unique=True) image = ProcessedImageField(upload_to="games/image/%Y/%m/%d", blank=True, null=True, processors=[ResizeToFill(80, 90)], format='JPEG',options={'quality': 60}) description = models.TextField("Descrição", blank=True) number_players = models.CharField("Nº de Jogadores", blank=True, max_length=10) tags = TaggableManager(verbose_name='Tags', blank=True) def __unicode__(self): return u'%s' % (self.name) def get_absolute_url(self): return reverse('games:expansion_detail', args=[self.slug]) ``` #### File: apps/polls/admin.py ```python from django.contrib import admin #from ajax_select import make_ajax_form #from ajax_select.admin import AjaxSelectAdmin, AjaxSelectAdminTabularInline, AjaxSelectAdminStackedInline from .models import Poll, Item, SixListRanking, PurchaseAccept #from .forms import PollSixListForm, PollPurchaseForm class ItemInline(admin.StackedInline): model = Item extra = 0 def save_model(self, request, obj, form, change): obj.create_user = request.user obj.save() @admin.register(Poll) class PollAdmin(admin.ModelAdmin): model = Poll exclude = ('create_user',) #inlines = [ItemInline,] def save_model(self, request, obj, form, change): if not change: obj.create_user = request.user obj.save() else: obj.save() '''def save_formset(self, request, form, formset, change): instances = formset.save(commit=False) for obj in formset.deleted_objects: obj.delete() for instance in instances: instance.create_user = request.user instance.save() formset.save_m2m()''' @admin.register(SixListRanking) class SixListRankingAdmin(admin.ModelAdmin): model = SixListRanking def save_model(self, request, obj, form, change): obj.create_user = request.user obj.save() ``` #### File: users/signals/handlers.py ```python from django.db.models.signals import post_save from django.dispatch import receiver from abgthe.profiles.models import Profile from abgthe.users.models import User from allauth.socialaccount.models import SocialAccount from allauth.account.signals import user_signed_up from django.core.files import File from avatar.models import Avatar from urllib2 import urlopen import requests from django.core.files.temp import NamedTemporaryFile def download_avatar(self, url): """ """ r = requests.get(url) img_temp = NamedTemporaryFile(delete=True) img_temp.write(r.content) img_temp.flush() img_temp.seek(0) return File(img_temp) @receiver(post_save, sender=User) def save_in_user(sender, **kwargs): obj=kwargs['instance'] created=kwargs['created'] if created: p = Profile(user=obj, username=obj.username) p.save() @receiver(user_signed_up) def user_signed_up_(request, user, sociallogin=None, **kwargs): ''' When a social account is created successfully and this signal is received, django-allauth passes in the sociallogin param, giving access to metadata on the remote account, e.g.: sociallogin.account.provider # e.g. 'twitter' sociallogin.account.get_avatar_url() sociallogin.account.get_profile_url() sociallogin.account.extra_data['screen_name'] See the socialaccount_socialaccount table for more in the 'extra_data' field. ''' if sociallogin: # Extract first / last names from social nets and store on Profile record if sociallogin.account.provider == 'facebook': user.profile.first_name = sociallogin.account.extra_data['first_name'] user.profile.last_name = sociallogin.account.extra_data['last_name'] if sociallogin.account.provider == 'google': user.profile.first_name = sociallogin.account.extra_data['given_name'] user.profile.last_name = sociallogin.account.extra_data['family_name'] user.profile.save() mage_avatar = user.profile.download_avatar(sociallogin.account.get_avatar_url()) avatar = Avatar(user=user,primary=True, avatar=image_avatar) avatar.save() ```
{ "source": "Jomcgi/scrubadub", "score": 2 }
#### File: scrubadub/detectors/spacy.py ```python import os from wasabi import msg from typing import Generator, Iterable, Optional, Sequence try: import spacy except ImportError as e: if e.name == "spacy": raise ImportError( "Could not find module 'spacy'. If you want to use extras," " make sure you install scrubadub with 'pip install scrubadub[spacy]'" ) from . import register_detector from .base import Detector from ..filth import NamedEntityFilth, Filth, NameFilth, OrganizationFilth from ..utils import CanonicalStringSet class SpacyEntityDetector(Detector): """Use spacy's named entity recognition to clean named entities. List specific entities to include passing ``named_entities``, e.g. (PERSON) """ filth_cls_map = { 'PERSON': NameFilth, 'PER': NameFilth, 'ORG': OrganizationFilth } name = 'spacy' language_to_model = { "zh": "zh_core_web_trf", "nl": "nl_core_news_trf", "en": "en_core_web_trf", "fr": "fr_dep_news_trf", "de": "de_dep_news_trf", "es": "es_dep_news_trf", } disallowed_nouns = CanonicalStringSet(["skype"]) def __init__(self, named_entities: Iterable[str] = {'PERSON', 'PER'}, model: Optional[str] = None, **kwargs): super(SpacyEntityDetector, self).__init__(**kwargs) # Spacy NER are all upper cased self.named_entities = {entity.upper() for entity in named_entities} # Fixes a warning message from transformers that is pulled in via spacy os.environ['TOKENIZERS_PARALLELISM'] = 'false' self.check_spacy_version() if model is None: if self.language in self.language_to_model: model = self.language_to_model[self.language] else: model = "{}_core_news_lg".format(self.language) if not self.check_spacy_model(model): raise ValueError("Unable to find spacy model '{}'. Is your language supported? " "Check the list of models available here: " "https://github.com/explosion/spacy-models ".format(model)) self.nlp = spacy.load(model) # If the model doesn't support named entity recognition if 'ner' not in [step[0] for step in self.nlp.pipeline]: raise ValueError( "The spacy model '{}' doesn't support named entity recognition, " "please choose another model.".format(model) ) # Only enable necessary pipes self.nlp.select_pipes(enable=["transformer", "tagger", "parser", "ner"]) @staticmethod def check_spacy_version() -> bool: # spacy_info = spacy.info() spacy_version = spacy.__version__ # spacy_info.get('spaCy version', spacy_info.get('spacy_version', None)) spacy_major = 0 if spacy_version is None: raise ImportError('Spacy v3 needs to be installed. Unable to detect spacy version.') try: spacy_major = int(spacy_version.split('.')[0]) except Exception: raise ImportError('Spacy v3 needs to be installed. Spacy version {} is unknown.'.format(spacy_version)) if spacy_major != 3: raise ImportError('Spacy v3 needs to be installed. Detected version {}.'.format(spacy_version)) return True @staticmethod def check_spacy_model(model) -> bool: spacy_info = spacy.info() models = list(spacy_info.get('pipelines', spacy_info.get('models', None)).keys()) if models is None: raise ValueError('Unable to detect spacy models.') if model not in models: msg.info("Downloading spacy model {}".format(model)) spacy.cli.download(model) # spacy.info() doesnt update after a spacy.cli.download, so theres no point checking it models.append(model) # Always returns true, if it fails to download, spacy sys.exit()s return model in models def iter_filth_documents(self, doc_names: Sequence[Optional[str]], doc_list: Sequence[str]) -> Generator[Filth, None, None]: for doc_name, doc in zip(doc_names, self.nlp.pipe(doc_list)): for ent in doc.ents: if ent.label_ in self.named_entities: # If there is no standard 'filth', returns a NamedEntity filth filth_cls = self.filth_cls_map.get(ent.label_, NamedEntityFilth) yield filth_cls(beg=ent.start_char, end=ent.end_char, text=ent.text, document_name=(str(doc_name) if doc_name else None), # None if no doc_name provided detector_name=self.name, label=ent.label_, locale=self.locale) def iter_filth(self, text: str, document_name: Optional[str] = None) -> Generator[Filth, None, None]: yield from self.iter_filth_documents([document_name], [text]) @classmethod def supported_locale(cls, locale: str) -> bool: """Returns true if this ``Detector`` supports the given locale. :param locale: The locale of the documents in the format: 2 letter lower-case language code followed by an underscore and the two letter upper-case country code, eg "en_GB" or "de_CH". :type locale: str :return: ``True`` if the locale is supported, otherwise ``False`` :rtype: bool """ return True register_detector(SpacyEntityDetector, autoload=False) ``` #### File: scrubadub/filth/known.py ```python from .base import Filth import typing class KnownFilth(Filth): type = 'known' def __init__(self, *args, comparison_type: typing.Optional[str] = None, **kwargs): super(KnownFilth, self).__init__(*args, **kwargs) self.comparison_type = comparison_type # def __repr__(self) -> str: # return self._to_string(['text', 'document_name', 'beg', 'end', 'comparison_type', 'detector_name', 'locale']) ``` #### File: scrubadub/filth/ssn.py ```python from faker import Faker from .base import Filth class SSNFilth(Filth): type = 'ssn' @staticmethod def generate(faker: Faker) -> str: """Generates an example of this ``Filth`` type, usually using the faker python library. :param faker: The ``Faker`` class from the ``faker`` library :type faker: Faker :return: An example of this ``Filth`` :rtype: str """ return faker.ssn() ``` #### File: scrubadub/post_processors/base.py ```python from typing import Optional, Sequence from ..filth import Filth class PostProcessor(object): name = 'post_processor' # type: str def __init__(self, name: Optional[str] = None): if name is not None: self.name = name def process_filth(self, filth_list: Sequence[Filth]) -> Sequence[Filth]: raise NotImplementedError('must be overridden by base classes') ``` #### File: scrubadub/post_processors/__init__.py ```python import sys from typing import Dict, Type if sys.version_info >= (3, 8): from typing import TypedDict # pylint: disable=no-name-in-module else: from typing_extensions import TypedDict from .base import PostProcessor from .text_replacers.filth_type import FilthTypeReplacer from .text_replacers.hash import HashReplacer from .text_replacers.numeric import NumericReplacer from .text_replacers.prefix_suffix import PrefixSuffixReplacer PostProcessorConfigurationItem = TypedDict( 'PostProcessorConfigurationItem', {'post_processor': Type[PostProcessor], 'autoload': bool, 'index': int} ) post_processor_configuration = { # PostProcessors that are not automatically loaded by scrubadub NumericReplacer.name: {'post_processor': NumericReplacer, 'autoload': False, 'index': 0}, PrefixSuffixReplacer.name: {'post_processor': PrefixSuffixReplacer, 'autoload': False, 'index': 1}, FilthTypeReplacer.name: {'post_processor': FilthTypeReplacer, 'autoload': False, 'index': 0}, HashReplacer.name: {'post_processor': HashReplacer, 'autoload': False, 'index': 0}, } # type: Dict[str, PostProcessorConfigurationItem] def register_post_processor(post_processor: Type[PostProcessor], autoload: bool = False, index: int = 0): """Register a PostProcessor for use with the ``Scrubber`` class. This is used when you don't want to have to import a detector by default. It may be useful for certain detectors with large or unusual dependencies, which you may not always want to import. In this case you can use ``register_detector(NewDetector, autoload=True)`` after your detector definition so that if the file is imported it wil be automatically registered. This will mean that you don't need to import the ``NewDetector`` in this file and so it's dependencies won't need to be installed just to import this package. The argument ``autoload`` sets if a new ``Scrubber()`` instance should load this ``Detector`` by default. :param post_processor: The ``PostProcessor`` to register with the scrubadub post-processor configuration. :type post_processor: PostProcessor class :param autoload: Whether to automatically load this ``Detector`` on ``Scrubber`` initialisation. :type autoload: bool :param index: The location/index in which this ``PostProcessor`` should be added. :type index: int """ post_processor_configuration[post_processor.name] = { 'post_processor': post_processor, 'autoload': autoload, 'index': index, } current_module = __import__(__name__) setattr(current_module.post_processors, post_processor.__name__, post_processor) ``` #### File: scrubadub/scrubadub/utils.py ```python import re import locale as locale_module from typing import Optional, Tuple try: unicode # type: ignore # tell mypy to ignore the fact that this doesnt exist in python3 except NameError: basestring = str # Compatibility for Python 2 and 3 class CanonicalStringSet(set): """Just like a set, except it makes sure that all elements are lower case strings. """ def _cast_as_lower(self, x): if not isinstance(x, basestring): raise TypeError('CanonicalStringSet only works with strings') return x.lower() def __init__(self, *elements): super(CanonicalStringSet, self).__init__() if elements: self.update(*elements) def __contains__(self, element): return super(CanonicalStringSet, self).__contains__( self._cast_as_lower(element) ) def add(self, element): return super(CanonicalStringSet, self).add( self._cast_as_lower(element) ) def update(self, elements): for element in elements: self.add(element) def remove(self, element): return super(CanonicalStringSet, self).remove( self._cast_as_lower(element) ) def discard(self, element): return super(CanonicalStringSet, self).discard( self._cast_as_lower(element) ) class Lookup(object): """The Lookup object is used to create an in-memory reference table to create unique identifiers for ``Filth`` that is encountered. """ def __init__(self): self.table = {} def __getitem__(self, key): try: return self.table[key] except KeyError: self.table[key] = len(self.table) return self.table[key] def locale_transform(locale: str) -> str: """Normalise the locale string, e.g. 'fr' -> 'fr_FR'. :param locale: The locale of the documents in the format: 2 letter lower-case language code followed by an underscore and the two letter upper-case country code, eg "en_GB" or "de_CH". :type locale: str :return: The normalised locale string :rtype: str """ normalised = locale_module.normalize(locale.lower()) if normalised not in locale_module.locale_alias.values(): raise ValueError("Unknown locale '{}', not in locale.locale_alias".format(locale)) return normalised def locale_split(locale: str) -> Tuple[Optional[str], Optional[str]]: """Split the locale string into the language and region. :param locale: The locale of the documents in the format: 2 letter lower-case language code followed by an underscore and the two letter upper-case country code, eg "en_GB" or "de_CH". :type locale: str :return: The two-letter language code and the two-letter region code in a tuple. :rtype: tuple, (str, str) """ locale = locale_transform(locale) regex = r'(?P<language>[0-9a-zA-Z]+)(_(?P<region>[0-9a-zA-Z]+))?' \ r'(\.(?P<charset>[0-9a-zA-Z-]+)(@(?P<charset2>[0-9a-zA-Z]+))?)?' match = re.match(regex, locale) if match is None: raise ValueError('Locale does not match expected format.') return match.group('language').lower(), match.group('region').upper() ``` #### File: scrubadub/tests/run.py ```python import os import sys import subprocess import yaml from wasabi import msg def run_test(command, directory): """Execute a command that runs a test""" wrapped_command = "cd %s && %s" % (directory, command) pipe = subprocess.Popen( wrapped_command, shell=True, ) pipe.wait() if pipe.returncode == 0: msg.good("TEST PASSED") else: msg.fail("TEST FAILED") return pipe.returncode root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # load the script tests from the .travis.yml file with open(os.path.join(root_dir, '.travis.yml')) as stream: travis_yml = yaml.safe_load(stream.read()) tests = travis_yml['script'] # run the tests if isinstance(tests, str): returncode = run_test(tests, root_dir) elif isinstance(tests, (list, tuple)): returncode = 0 for test in tests: returncode += run_test(test, root_dir) if returncode == 0: msg.good("ALL TESTS PASSED") else: msg.fail("SOME TESTS FAILED, SEE ABOVE") sys.exit(returncode) ``` #### File: scrubadub/tests/test_api.py ```python import unittest import scrubadub class APITestCase(unittest.TestCase): def test_clean(self): """Test the top level clean api""" self.assertEqual( "This is a test message for {{EMAIL}}", scrubadub.clean("This is a test message for <EMAIL>"), ) def test_clean_documents(self): """Test the top level clean_documents api""" self.assertEqual( { "first.txt": "This is a test message for {{EMAIL}}", "second.txt": "Hello {{TWITTER}} call me on {{PHONE}}.", }, scrubadub.clean_documents( { "first.txt": "This is a test message for <EMAIL>", "second.txt": "Hello @Jane call me on +33 4 41 26 62 36.", }, ), ) def test_list_filth(self): """Test the top level list_filth api""" filths = scrubadub.list_filth("This is a test message for <EMAIL>") self.assertEqual( [scrubadub.filth.EmailFilth(text='<EMAIL>', detector_name='email', beg=27, end=46)], filths, ) def test_list_filth_docuemnts(self): """Test the top level list_filth_documents api""" filths = scrubadub.list_filth_documents( { "first.txt": "This is a test message for <EMAIL>", "second.txt": "Hello @Jane call me on +33 4 41 26 62 36.", } ) self.assertEqual( scrubadub.Scrubber._sort_filths([ scrubadub.filth.EmailFilth( text='<EMAIL>', document_name='first.txt', detector_name='email', beg=27, end=46 ), scrubadub.filth.TwitterFilth( text='@Jane', document_name='second.txt', detector_name='twitter', beg=6, end=11 ), scrubadub.filth.PhoneFilth( text='+33 4 41 26 62 36', document_name='second.txt', detector_name='phone', beg=23, end=40 ), ]), scrubadub.Scrubber._sort_filths(filths), ) def test_quickstart(self): """Test the example given in the quick start docs""" text = "My cat can be contacted on <EMAIL>, or 1800 555-5555" self.assertEqual( 'My cat can be contacted on {{EMAIL}}, or {{PHONE}}', scrubadub.clean(text), ) ``` #### File: scrubadub/tests/test_exceptions.py ```python import unittest from scrubadub import exceptions class ExceptionsTestCase(unittest.TestCase): def test_render(self): exception = exceptions.ScrubadubException() exception.var = 'there' self.assertEquals(exception.render('test'), 'test') self.assertEquals(exception.render('url %(issues_url)s'), 'url ' + exception.issues_url) self.assertEquals(exception.render('hello %(var)s'), 'hello there') ``` #### File: scrubadub/tests/test_filth.py ```python import re import unittest from scrubadub.filth import Filth, MergedFilth from scrubadub.exceptions import InvalidReplaceWith, FilthMergeError class FilthTestCase(unittest.TestCase): def test_disallowed_replace_with(self): """replace_with should fail gracefully""" filth = Filth() with self.assertRaises(InvalidReplaceWith): filth.replace_with('surrogate') with self.assertRaises(InvalidReplaceWith): filth.replace_with('something_invalid') def test_nonoverlapping_filth(self): """can't merge non-overlapping filth""" a_filth = Filth(beg=0, end=3, text="the") b_filth = Filth(beg=4, end=7, text="end") with self.assertRaises(FilthMergeError): a_filth.merge(b_filth) with self.assertRaises(FilthMergeError): b_filth.merge(a_filth) def test_text_merge(self): """make sure text length is correct""" class SomeFilth(Filth): type = 'something' text = "the end" a_filth = SomeFilth(beg=0, end=3, text=text[:3]) b_filth = SomeFilth(beg=1, end=7, text=text[1:]) c_filth = a_filth.merge(b_filth) self.assertEqual(c_filth.text, text) c_filth = b_filth.merge(a_filth) self.assertEqual(c_filth.text, text) d_filth = c_filth.merge(a_filth) self.assertEqual(d_filth.text, text) b_filth.end = 2 with self.assertRaises(FilthMergeError): b_filth.merge(a_filth) def test_invalid_merge_documents(self): """Ensure Filth in two different documents cant be merged""" filth_a = Filth(0, 2, text='aa', document_name='one') filth_b = Filth(1, 2, text='a', document_name='two') with self.assertRaises(FilthMergeError): filth_a.merge(filth_b) with self.assertRaises(FilthMergeError): filth_b.merge(filth_a) def test_filth_string(self): """Test the Filth to string function""" filth = Filth(beg=0, end=5) self.assertEqual(str(filth), "<Filth text='' beg=0 end=5>") filth = Filth(beg=0, end=5) self.assertEqual(filth.__repr__(), "<Filth text='' beg=0 end=5>") filth = Filth(beg=0, end=5) self.assertEqual(filth._to_string(), "<Filth text='' beg=0 end=5>") filth = Filth(beg=0, end=5, text='hello') self.assertEqual(str(filth), "<Filth text='hello' beg=0 end=5>") filth = Filth(beg=0, end=5, text='hello', document_name='hello.txt') self.assertEqual(str(filth), "<Filth text='hello' document_name='hello.txt' beg=0 end=5>") filth = Filth(beg=0, end=5, text='hello', document_name='hello.txt') self.assertEqual(filth._to_string(attributes=['text']), "<Filth text='hello'>") self.assertEqual(filth._to_string(attributes=['beg', 'end', 'text']), "<Filth beg=0 end=5 text='hello'>") self.assertEqual( filth._to_string(attributes=['text', 'document_name']), "<Filth text='hello' document_name='hello.txt'>" ) def test_merged_to_string(self): """Test the MergedFilth to string""" class TestFilth(Filth): type = 'test_filth' merged = MergedFilth(TestFilth(0, 2, 'ab'), Filth(1, 2, 'b')) self.assertEqual(merged.__repr__(), "<MergedFilth filths=[<TestFilth text='ab' beg=0 end=2>, <Filth text='b' beg=1 end=2>]>") def test_equality(self): """Test the filth equality function""" self.assertTrue( Filth(beg=0, end=5, text='hello') == Filth(beg=0, end=5, text='hello') ) self.assertTrue( Filth(beg=0, end=5, text='hello') == Filth(beg=0, end=5, text='hello', match=re.match('123', '1234')) ) self.assertTrue( Filth(beg=0, end=5, text='hello') != Filth(beg=1, end=5, text='hello') ) self.assertTrue( Filth(beg=0, end=5, text='hello') != Filth(beg=0, end=6, text='hello') ) self.assertTrue( Filth(beg=0, end=5, text='hello') != Filth(beg=0, end=5, text='hellou') ) self.assertTrue( Filth(beg=0, end=5, text='hello', document_name='test') == Filth(beg=0, end=5, text='hello', document_name='test') ) self.assertTrue( Filth(beg=0, end=5, text='hello') != Filth(beg=0, end=5, text='hello', document_name='test') ) self.assertTrue( Filth(beg=0, end=5, text='hello', document_name='test') != Filth(beg=0, end=5, text='hello') ) self.assertTrue( Filth(beg=0, end=5, text='hello', document_name='test') != Filth(beg=0, end=5, text='hello', document_name='another_test') ) self.assertTrue( Filth(beg=0, end=5, text='hello', detector_name='tester') == Filth(beg=0, end=5, text='hello', detector_name='tester') ) self.assertTrue( Filth(beg=0, end=5, text='hello', detector_name='tester') != Filth(beg=0, end=5, text='hello', detector_name='another_tester') ) self.assertTrue( Filth(beg=0, end=5, text='hello', detector_name='tester') != Filth(beg=0, end=5, text='hello') ) self.assertTrue( Filth(beg=0, end=5, text='hello') != Filth(beg=0, end=5, text='hello', detector_name='tester') ) self.assertTrue( Filth(beg=0, end=5, text='hello', document_name='test', detector_name='tester') == Filth(beg=0, end=5, text='hello', document_name='test', detector_name='tester') ) self.assertTrue( Filth(beg=0, end=5, text='hello', document_name='test', detector_name='tester') != Filth(beg=0, end=5, text='hello', document_name='test', detector_name='another_tester') ) self.assertTrue( Filth(beg=0, end=5, text='hello', document_name='test', detector_name='tester') != Filth(beg=0, end=5, text='hello', document_name='another_test', detector_name='tester') ) ```
{ "source": "jomey/isnobal-local", "score": 2 }
#### File: isnobal-local/comparison/common.py ```python import dask import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.patches as mpatches import matplotlib.font_manager as font_manager import holoviews as hv from holoviews import dim, opts from pathlib import Path from pathlib import Path, PurePath from snobedo.lib.dask_utils import start_cluster, client_ip_and_port from snobedo.snotel import SnotelLocations from raster_file import RasterFile SHARED_STORE = PurePath('/uufs/chpc.utah.edu/common/home/skiles-group1') DATA_DIR = SHARED_STORE.joinpath('jmeyer') HRRR_DIR = SHARED_STORE.joinpath('HRRR_water_years') SNOBAL_DIR = SHARED_STORE.joinpath('erw_isnobal') ASO_DIR = DATA_DIR.joinpath('ASO-data') CBRFC_DIR = DATA_DIR.joinpath('CBRFC') SNOTEL_DIR = DATA_DIR.joinpath( 'Snotel') FIGURES_DIR = DATA_DIR.joinpath('figures') # Plot styles BOKEH_FONT=dict(fontsize={'title': 14, 'labels': 12, 'xticks': 12, 'yticks': 12, 'legend': 12}) # Xarray options # Used in comparison to SNOTEL site locations COARSEN_OPTS = dict(x=2, y=2) RESAMPLE_1_DAY_OPTS = dict(time='1D', base=23) ## CBRFC zones # Corresponds to values in classification tif ALEC2HLF = 1 ALEC2HMF = 2 ALEC2HUF = 3 # CBRFC values are deliverd in inches INCH_TO_MM = 25.4 def aspect_classes(): aspects = RasterFile(DATA_DIR / 'project-data/iSnobal/ERW/aspect_class_ERW.tif') aspects_data = aspects.band_values() return aspects_data def cbrfc_zones(): zones = RasterFile(CBRFC_DIR / 'ERW_CBRFC_zones.tif') zone_data = zones.band_values() zone_data[zone_data==241] = 0 return zone_data # HRRR helpers def hrrr_pixel_index(hrrr_file, site): x_index = np.abs(hrrr_file.longitude.values - hrrr_longitude(site.lon)) y_index = np.abs(hrrr_file.latitude.values - site.lat) return np.unravel_index((x_index + y_index).argmin(), x_index.shape) def hrrr_longitude(longitude): return longitude % 360 @dask.delayed def hrrr_snotel_pixel(file, x_pixel_index, y_pixel_index): """ Read GRIB file surface values, remove unsed dimensions, and set the time dimension. Required to be able to concatenate all GRIB file to a time series """ hrrr_file = xr.open_dataset( file.as_posix(), engine='cfgrib', backend_kwargs={ 'errors': 'ignore', 'indexpath': '', 'filter_by_keys': { 'level': 0, 'typeOfLevel': 'surface', } }, ).isel(x=[x_pixel_index], y=[y_pixel_index]) del hrrr_file.coords['valid_time'] del hrrr_file.coords['surface'] del hrrr_file.coords['step'] return hrrr_file.expand_dims(time=[hrrr_file.time.values]) # Plot settings and helpers plt.rcParams.update( { 'axes.labelsize': 10 } ) LEGEND_TEXT = "{0:10} {1:8}" LEGEND_DATE = "%Y-%m-%d" def legend_text(label, value, color='none'): return mpatches.Patch( color=color, label=LEGEND_TEXT.format(label, value) ) def add_legend_box(ax, entries): ax.legend( handles=entries, loc='upper left', prop=font_manager.FontProperties( family='monospace', style='normal', size=8 ), ) ## Use hvplot def use_hvplot(): import hvplot.xarray import hvplot.pandas pd.options.plotting.backend = 'holoviews' ``` #### File: snobedo/lib/isnobal_helpers.py ```python import datetime def day_filter(dataset): """ There is an issue with AWSM (#55 on GitHub), where there is an extra hour in SMRF outputs. This filter removes the additional hour of the day. :param dataset: XArray dataset :return: Xarray dataset with `sel` filter applied """ return dataset.sel(time=dataset.time[0].dt.strftime('%Y-%m-%d').values) def hour_filter(dataset): """ iSnobal sometimes has an additional hour in their snow.nc outputs, aside from the expected end of day value. This filter ensure the datasets are only reading the last hour of the day value and ignore others. :param dataset: XArray dataset :return: Xarray dataset with `sel` filter applied """ return dataset.sel(time=datetime.time(23)) ```
{ "source": "jomey/raster_compare", "score": 3 }
#### File: raster_compare/base/raster_data_difference.py ```python import numpy as np from osgeo import gdal from .median_absolute_deviation import MedianAbsoluteDeviation from .raster_file import RasterFile class RasterDataDifference(object): GDAL_DRIVER = gdal.GetDriverByName('GTiff') def __init__(self, lidar, sfm, band_number): self.lidar = RasterFile(lidar, band_number) self.sfm = RasterFile(sfm, band_number) self._aspect = None self.band_values = self.sfm.band_values() - self.lidar.band_values() self.band_mask = self.band_values.mask self.mad = MedianAbsoluteDeviation(self.band_values.compressed()) self._slope = None @property def band_values(self): return self._band_values @band_values.setter def band_values(self, value): self._band_values = value @property def band_mask(self): return self._band_mask @band_mask.setter def band_mask(self, value): self._band_mask = np.copy(value) def band_outlier_max(self): return self.mad.data_median + self.mad.standard_deviation(2) def band_outlier_min(self): return self.mad.data_median - self.mad.standard_deviation(2) @property def band_filtered(self): self.band_values.mask = np.ma.mask_or( self.band_mask, np.ma.masked_outside( self.band_unfiltered, self.band_outlier_min(), self.band_outlier_max() ).mask ) return self.band_values @property def band_unfiltered(self): self.band_values.mask = self.band_mask return self.band_values @property def band_outliers(self): self.band_values.mask = np.ma.mask_or( self.band_mask, np.ma.masked_inside( self.band_unfiltered, self.band_outlier_min(), self.band_outlier_max() ).mask ) return self.band_values @property def aspect(self): if self._aspect is None: self._aspect = self.sfm.aspect - self.lidar.aspect return self._aspect @property def slope(self): if self._slope is None: self._slope = self.sfm.slope - self.lidar.slope return self._slope ``` #### File: raster_compare/plots/area_differences.py ```python import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np import statsmodels.api as sm from matplotlib.gridspec import GridSpec from palettable.colorbrewer.diverging import RdBu_5 as PlotColor from .plot_base import PlotBase # Plot differences between rasters and show histogram of the differences class AreaDifferences(PlotBase): TITLE = '{0} differences' HIST_TEXT = 'Median (abs): {:4.2f}\n' \ 'NMAD : {:4.2f}\n' \ '68.3% (abs): {:4.2f}\n' \ '95% (abs): {:4.2f}' HIST_BIN_WIDTH = 0.01 BOX_PLOT_TEXT = '{0:8}: {1:6.3f}' BOX_PLOT_WHISKERS = [5, 95] OUTPUT_FILE_NAME = 'elevation_differences.png' COLORMAP = PlotColor.mpl_colormap def add_hist_stats(self, ax): box_text = self.HIST_TEXT.format( self.data.mad.percentile(50, absolute=True), self.data.mad.normalized(), self.data.mad.standard_deviation(1, absolute=True), self.data.mad.standard_deviation(2, absolute=True), ) self.add_to_legend( ax, box_text, loc='upper left', handlelength=0, handletextpad=0, ) def add_box_plot_stats(self, ax, box_plot_data, data): text = [ self.BOX_PLOT_TEXT.format( 'Median', box_plot_data['medians'][0].get_ydata()[0] ), self.BOX_PLOT_TEXT.format('Mean', data.mean()), self.BOX_PLOT_TEXT.format('Nmad', self.data.mad.normalized()), self.BOX_PLOT_TEXT.format('Std', data.std()), ] self.add_to_legend( ax, '\n'.join(text), handlelength=0, handletextpad=0 ) # TODO - Zoom into each graph to only show values within the 95th # percentile def plot(self): self.print_status() figure = plt.figure( figsize=(17, 14), dpi=150, constrained_layout=False, ) grid_opts = dict(figure=figure, height_ratios=[3, 1]) difference = self.data.band_values if self.data_description == 'Elevation': grid_spec = GridSpec( nrows=2, ncols=3, width_ratios=[3, 2, 2], **grid_opts ) bins = np.arange( difference.min(), difference.max() + self.HIST_BIN_WIDTH, self.HIST_BIN_WIDTH ) bounds = dict( norm=colors.BoundaryNorm( boundaries=bins, ncolors=self.COLORMAP.N, ) ) else: grid_spec = GridSpec( nrows=2, ncols=2, width_ratios=[3, 2], **grid_opts ) bounds = dict() ax1 = figure.add_subplot(grid_spec[0, :]) diff_plot = ax1.imshow( difference, cmap=self.COLORMAP, alpha=0.8, extent=self.sfm.extent, **bounds ) ax1.set_title(self.TITLE.format(self.data_description)) self.insert_colorbar( ax1, diff_plot, self.SCALE_BAR_LABEL[self.data_description] ) difference = difference[np.isfinite(difference)].compressed() # Reset bins to entire range of values for Histogram bins = np.arange( np.nanmin(difference), np.nanmax(difference), self.HIST_BIN_WIDTH ) ax2 = figure.add_subplot(grid_spec[1, 0]) ax2.hist(difference, bins=bins) ax2.set_xlabel(self.SCALE_BAR_LABEL[self.data_description]) ax2.set_ylabel("Count $(10^5)$") ax2.ticklabel_format(style='sci', axis='y', scilimits=(4, 4)) ax2.yaxis.get_offset_text().set_visible(False) if self.data_description == 'Elevation': ax2.set_title('Relative Elevation Differences') ax3 = figure.add_subplot(grid_spec[1, 1]) box = ax3.boxplot( difference, sym='k+', whis=self.BOX_PLOT_WHISKERS, positions=[0.1] ) ax3.set_xlim([0, .35]) ax3.tick_params( axis='x', which='both', bottom=False, top=False, labelbottom=False ) ax3.set_ylabel(self.SCALE_BAR_LABEL[self.data_description]) self.add_box_plot_stats(ax3, box, difference) if self.data_description == 'Elevation': ax3.set_title('Relative Elevation Differences') if self.data_description == 'Elevation': ax4 = figure.add_subplot(grid_spec[1, 2]) probplot = sm.ProbPlot(difference) probplot.qqplot(ax=ax4, line='s') ax4.get_lines()[0].set(markersize=1) ax4.get_lines()[1].set(color='black', dashes=[4, 1]) ax4.set_title('Normal Q-Q Plot') plt.savefig(self.output_file) return figure ``` #### File: raster_compare/plots/plot_layout.py ```python import matplotlib.pyplot as plt class PlotLayout(object): @staticmethod def two_row(): """ Two row design with legend axes at the bottom :return: """ return plt.subplots( nrows=3, figsize=(6, 12), gridspec_kw={'height_ratios': [1, 1, 0.07], 'hspace': 0.3} ) @staticmethod def two_col(): """ Two column design with legend axes on the right :return: """ return plt.subplots( ncols=3, figsize=(12, 7), gridspec_kw={'width_ratios': [1, 1, 0.05], 'wspace': 0.07} ) ``` #### File: raster_compare/plots/regression.py ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import statsmodels.api as sm from .plot_base import PlotBase class Regression(PlotBase): EXPLANATORY_VARS = [ 'lidar_elevation', 'lidar_slope', 'lidar_aspect', 'sfm_elevation', 'sfm_slope', 'sfm_aspect', ] def __init__(self, data, **kwargs): super().__init__(data, **kwargs) self.df = self.load_data_frame() @property def df(self): return self._df @df.setter def df(self, value): self._df = value def load_data_frame(self): return pd.DataFrame({ 'diff': self.data.band_filtered.filled(np.NaN).ravel(), 'lidar_elevation': self.lidar.band_values().filled(np.NaN).ravel(), 'sfm_elevation': self.sfm.band_values().filled(np.NaN).ravel(), 'lidar_slope': self.lidar.slope.filled(np.NaN).ravel(), 'sfm_slope': self.sfm.slope.filled(np.NaN).ravel(), 'lidar_aspect': self.lidar.aspect.filled(np.NaN).ravel(), 'sfm_aspect': self.sfm.aspect.filled(np.NaN).ravel(), }) def save_plot(self, **kwargs): plt.savefig( self.output_path + '/{0}_scatter_plot.png'.format(kwargs['name']) ) def plot_lidar_vs_sfm(self): self.print_status('Lidar vs. SfM elevations') plt.figure() plt.scatter(self.sfm.band_filtered, self.lidar.band_filtered, s=0.5) plt.xlabel('Lidar') plt.ylabel('SfM') self.save_plot(name='Lidar_vs_sfm') def plot_for_query(self, query, name): fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(12, 8)) row = 0 col = 0 for variable in self.EXPLANATORY_VARS: self.print_status(name + ' difference values vs. ' + variable) query.plot( kind='scatter', x=variable, y='diff', s=0.5, ax=axes[row, col] ) axes[row, col].set_title(variable) axes[row, col].set_xlabel('') if col == 0: axes[row, col].set_ylabel('Difference in Elevation') else: axes[row, col].set_ylabel('') if col == 2: col = 0 row += 1 else: col += 1 self.save_plot(name=name + '_elevation_diff') def plot_difference_vs_source(self): self.plot_for_query(self.df.query('diff < 0'), 'negative') self.plot_for_query(self.df.query('diff > 0'), 'positive') @staticmethod def aspect_to_category(degree): if 45 < degree <= 135: return 'East' elif 135 < degree <= 225: return 'South' elif 225 < degree <= 315: return 'West' elif degree is np.NAN: return np.NaN else: return 'North' def categorize_aspect(self, column_name, from_column_name): self.df[column_name] = self.df.apply( lambda row: self.aspect_to_category(row[from_column_name]), axis=1 ) self.df[column_name].astype('category') def hexbin_plot(self): fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(12, 8)) row = 0 col = 0 for variable in self.EXPLANATORY_VARS: self.print_status('Hexbin plot for ' + variable) self.df.query('-.48 > diff | diff > 0.6').plot.hexbin( x='diff', y=variable, gridsize=40, ax=axes[row, col] ) axes[row, col].set_title(variable) axes[row, col].set_xlabel('') if col == 0: axes[row, col].set_ylabel('Difference in Elevation') else: axes[row, col].set_ylabel('') if col == 2: col = 0 row += 1 else: col += 1 self.save_plot(name='hexbin_elevation_diff') def qqplot(self): fig = plt.figure(figsize=(12,8)) probplot = sm.ProbPlot(self.data.band_filtered.compressed()) ax = fig.gca() probplot.qqplot(ax=ax, line='s') ax.get_lines()[0].set(markersize=1) ax.get_lines()[1].set(color='black', dashes=[4, 1]) ax.set_title('Normal Q-Q Plot') plt.savefig(self.output_path + '/qq_plot.png') def plot_all(self): self.plot_lidar_vs_sfm() self.plot_difference_vs_source() self.hexbin_plot() @staticmethod def fit_model(y, x, name): print('\n** OLS for: ' + name + ' **\n') model = sm.OLS(y, x, missing='drop').fit() print(model.summary()) def fit_difference_vs_source(self, source, name): for variable in self.TYPES: self.fit_model( self.elevation_differences, getattr(source, variable).ravel(), name + ': ' + variable, ) def fit_lidar_vs_sfm(self): self.fit_model( self.lidar.band_filtered.ravel(), self.sfm.band_filtered.ravel(), 'Lidar vs. SfM', ) def fit_all(self): self.fit_lidar_vs_sfm() self.fit_difference_vs_source(self.lidar, 'Lidar') self.fit_difference_vs_source(self.sfm, 'SfM') def run(self): # self.plot_all() self.qqplot() # self.fit_all() ```
{ "source": "jomido/tswss", "score": 3 }
#### File: jomido/tswss/server.py ```python import os import sys import json import random # 3rd party from twisted.python import log from autobahn.websocket import ( WebSocketServerFactory, WebSocketServerProtocol, listenWS ) # internal from client import ClientState # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / # # THE PROTOCOL (i.e. client) FOR THE WEBSOCKET SERVER # # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / class MyWebSocketServerProtocol(WebSocketServerProtocol): def onOpen(self): """ Register each client as it comes in (self == client) to the web socket server. """ self.factory.register(self) def onMessage(self, msg, binary): """ All websocket messages should be valid JSON. We pass the message and the client that sent the message (self) to the web socket server. """ if not binary: try: msg = json.loads(msg) except: msg = {} print ("Got message {} from {}".format(msg, self.peerstr)) self.factory.receive(msg, self) def connectionLost(self, reason): """ Unregister each client (self) as it disconnects. """ WebSocketServerProtocol.connectionLost(self, reason) self.factory.unregister(self) # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / # # WEB SOCKET SERVER COMPONENT # # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / class MyWebSocketServer(WebSocketServerFactory): protocol = MyWebSocketServerProtocol def __init__(self, url): WebSocketServerFactory.__init__(self, url) self.clients = [] self.client_state = {} self.tick() def tick(self): """ The server tick time. Housekeeping can be done here. NOTE: This is initially kicked off by self.__init__ """ print ("Server ticks.") reactor.callLater(1, self.tick) if random.choice([0, 0, 1]): self.broadcast(json.dumps({"number": random.randint(1, 10)})) def register(self, client): """ Register a client, associating some state. """ if not client in self.clients: print "registered client " + client.peerstr self.clients.append(client) self.client_state[client] = ClientState() def unregister(self, client): """ Remove a client from the registry. """ if client in self.clients: print "unregistered client " + client.peerstr self.clients.remove(client) del self.client_state[client] def send(self, msg, client): """ Send a message to a particular client. :msg should be a dict :client should be a WebSocketServerProtocol instance """ if client in self.clients: print ("Replying to {} with {}...".format(client.peerstr, msg)) client.sendMessage(json.dumps(msg)) # TODO: superize this so that # the client's sendMessage method # handles the json serializing def receive(self, msg, client): """ Websocket messages from clients come in here, along with the client. :msg should be a dict :client should be a WebSocketServerProtocol instance """ if client not in self.clients: return if not isinstance(msg, dict): return if msg.get("msgId", None) == None: return if msg.get("commandText", None) == None: return self.client_state[client].foo = 1 msg = dict( msgId=msg.get("msgId"), lines=["Hello.", "World."] ) self.reply(msg, client) def broadcast(self, msg): """ Broadcasts a message to all connected websockets. :msg should be valid json """ print ("broadcasting message '{}'...".format(msg)) for c in self.clients: print ("broadcasting to " + c.peerstr) c.sendMessage(msg) # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / # # STATIC SITE COMPONENT # # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / from twisted.web import resource class Home(resource.Resource): isLeaf = False def getChild(self, name, request): if name == '': return self # I assume by returning self I am returning # self.render_GET return resource.Resource.getChild(self, name, request) def render_GET(self, request): html = "<b>Ruh-roh.</b>" try: app_html = os.path.join(self.root_dir, self.app, 'app.html') with open(app_html, 'r') as f: html = f.read() except: log.err() pass return html # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / # # MAIN SCRIPT # # / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / def setup_websocket_component(port=6789): """ Setup and start the websocket portion of the server. """ log.startLogging(sys.stdout) address = "ws://localhost:" + str(port) server = MyWebSocketServer(address) listenWS(server) from twisted.internet import reactor def setup_static_component(port=8000, root=None, app="some-app", css="css", js="js", images="images", fonts="fonts"): """ Setup and start the static portion of the server. """ from twisted.web import server, static if not root: root = os.getcwd() site_root = Home() site_root.root_dir = root site_root.app = app if not root: root = os.getcwd() # Add static directories site_root.putChild('css', static.File(os.path.join(root, app, css))) site_root.putChild('js', static.File(os.path.join(root, app, js))) site_root.putChild('images', static.File(os.path.join(root, app, images))) site_root.putChild('fonts', static.File(os.path.join(root, app, fonts))) site = server.Site(site_root) reactor.listenTCP(port, site) def run(): reactor.run() # blocks if __name__ == '__main__': # 1 setup_websocket_component(port=6789) # 2 setup_static_component( port=8000, app='test-app' ) # 3 run() ```
{ "source": "Jomigi/Cone_angle_artifact_reduction", "score": 3 }
#### File: Cone_angle_artifact_reduction/code/utils.py ```python import matplotlib.pyplot as plt import numpy as np# linear algebra def plot_loss(epochs, results_folder, loss_list, loss_f, dataset): x_grid = list(range(epochs)) plt.title(dataset + ' Losses Across Epochs') plt.ylabel('MSE Loss') plt.xlabel('Epochs') plt.xticks(x_grid) plt.plot(loss_list) fig_path = results_folder + dataset + 'loss' plt.savefig(fig_path) #plt.show() plt.close('all') ```
{ "source": "jomih/escalator", "score": 3 }
#### File: jomih/escalator/script_tonalidad.py ```python import re """ Script para determinar las posibles tonalidades a partir de las notas insertadas Las notas se puede insertar del siguiente modo: C Cmaj7 Cmin7 Csus C# Por ahora, no se soporta poner "b". Cualquier bemol debe meterse como "#" """ def modo_jonico(nota): candidata = 0 #Cadencia jonico 7: 1 - 1 - 1/2 - 1 - 1 - 1 - 1/2 cadencia = (2, 2, 1, 2, 2, 2, 1) tonos = ('maj7', 'min7', 'min7', 'maj7', 'dom', 'min7', 'semi', 'maj7') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def modo_dorico(nota): candidata = 0 #Cadencia dorico 7: 1 - 1/2 - 1 - 1 - 1 - 1/2 - 1 cadencia = (2, 1, 2, 2, 2, 1, 2) tonos = ('min7', 'semi', 'maj7', 'min7', 'min7', 'maj7', 'dom', 'min7') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def modo_frigio(nota): candidata = 0 #Cadencia frigio 7: 1/2 - 1 - 1 - 1- 1/2 - 1 - 1 cadencia = (1, 2, 2, 2, 1, 2, 2) tonos = ('min7', 'maj7', 'dom', 'min7', 'dism', 'maj7', 'min7', 'min7') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def modo_lidio(nota): candidata = 0 #Cadencia lidio 7: 1 - 1 - 1 - 1/2 - 1 - 1- 1/2 cadencia = (2, 2, 2, 1, 2, 2, 1) tonos = ('maj7', 'dom', 'min7', 'dism', 'maj7', 'min7', 'min7', 'maj7') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def modo_mixolidio(nota): candidata = 0 #Cadencia mixolidio 7: 1 - 1 - 1/2 - 1 - 1 - 1/2 - 1 cadencia = (2, 2, 1, 2, 2, 1, 2) tonos = ('dom', 'min7', 'dism', 'maj7', 'min7', 'min7', 'maj7', 'dom') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def modo_eolico(nota): candidata = 0 #Cadencia eolico 7: 1 - 1/2 - 1 - 1- 1/2 - 1 - 1 cadencia = (2, 1, 2, 2, 1, 2, 2) tonos = ('min7', 'dism', 'maj7', 'min7', 'min7', 'maj7', 'dom', 'min7') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def modo_locria(nota): candidata = 0 #Cadencia locria 7: 1/2 - 1 - 1- 1/2 - 1 - 1 - 1 cadencia = (1, 2, 2, 1, 2, 2, 2) tonos = ('dism', 'maj7', 'min7', 'min7', 'maj7', 'dom', 'min7', 'dism') abanico_notas = ('C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B') base = abanico_notas.index(nota.replace('maj7','').replace('min7','')) #print ' posicion para', nota,' en mayor', base tono = [] index = 0 varTmp1 = abanico_notas[base] varTmp2 = tonos[index] varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) for value in cadencia: index = index + 1 #print 'index es', index #print 'buscara posicion', (base+value) % len(abanico_notas) varTmp1 = abanico_notas[(base+value) % len(abanico_notas)] #print ' nota encontrada', varTmp1 varTmp2 = tonos[index] #print ' tono para nota encontrada', varTmp2 varTmp3 = ''.join([varTmp1, varTmp2]) tono.append(varTmp3) base += value #print 'Tonalidad', nota,'mayor:' #for value in tono: # print ' ', value return (tono) def chequeo_tono(tono, notas_array): #print 'tono es', tono for value in notas_array: candidata = 0 #print 'value vale', value if (value.find('#') != -1): for nota in tono: #print 'nota es', nota if nota.startswith(value): candidata = 1 break else: for nota in tono: #print 'nota vale', nota if (nota.startswith(value) and not (nota.find('#') != -1)): candidata = 1 #print 'hizo match' break if not(candidata): break return(candidata) def main(): notas_input = raw_input("Inserta las notas separadas por espacio: ") notas_array = notas_input.split(' ') while ('' in notas_array): notas_array.remove('') #index = notas_array.index('') #notas_array.pop(index) posibles_tonos = [] for index in range(0,len(notas_array)): #Chequeo <NAME> (I) tono = modo_jonico(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Jonico I (maj7)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) #Chequeo Dorico Min7 (II) tono = modo_dorico(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Dorico II (min7)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) #Chequeo Frigio Min7 (III) tono = modo_frigio(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Frigio III (min7)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) #Chequeo <NAME> (IV) tono = modo_lidio(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Lidio IV (maj7)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) #Chequeo Mixolidio Dom (V) tono = modo_mixolidio(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Mixolidio V (dom)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) #Chequeo Eolico Min7 (VI) tono = modo_eolico(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Eolico VI (min7)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) #Chequeo Locria (VII) tono = modo_locria(notas_array[index]) candidata = chequeo_tono(tono, notas_array) if (candidata): posibles_tonos.append({}) posibles_tonos[-1]['modo'] = 'Locria VII (dism)' posibles_tonos[-1]['escala'] = [] posibles_tonos[-1]['escala'].append(tono) if (len(posibles_tonos)): print '\nPosibles tonalidades:' for index in range(0,len(posibles_tonos)): print ' # Tonalidad', posibles_tonos[index]['modo'] print ' Escala', posibles_tonos[index]['escala'] else: print '\nNo se han encontrado posibles tonos' #for line in sys.stdin: # print line ############## #Main Program ############## if __name__ == "__main__": print '\n## Script started\n' main() print '\n## Script finished\n' ```
{ "source": "jomih/Python_Automation_Training", "score": 3 }
#### File: Week1/Exercise8/script_exercise8.py ```python from ciscoconfparse import CiscoConfParse ############## ############## #Main Function ############## ############## def main(): #YAML file cisco_cfg = CiscoConfParse("./cisco_file.txt") crypto_sections = cisco_cfg.find_objects(r"^crypto map CRYPTO") #print 'Len of crypto_sections is', len(crypto_sections) for item in crypto_sections: print item.children print'\n' for index in range(0,len(crypto_sections)): print crypto_sections[index].text for item in crypto_sections[index].all_children: print item.text print'\n' ############## #Main Program ############## if __name__ == "__main__": print '\n## Script Automation Course: Exercise 8\n' main() print '\n## Script finished\n' ``` #### File: Week3/Exercise1/script_exercise1.py ```python import snmp_helper import time """ 1. Using SNMPv3 create a script that detects router configuration changes. If the running configuration has changed, then send an email notification to yourself identifying the router that changed and the time that it changed """ DEVICE = ('172.16.17.32', '161') #pynet-rtr2 (Cisco 881) OID = '1.3.6.1.4.1.9.9.43.1.1.1.0' #ccmHistoryRunningLastChanged = SNMP_USER = ('pysnmp', 'galileo1', 'galileo1') #username, auth_key, encrypt_key def send_mail(recipient, subject, message, sender): ''' Simple function to help simplify sending SMTP email Assumes a mailserver is available on localhost ''' import smtplib from email.mime.text import MIMEText message = MIMEText(message) message['Subject'] = subject message['From'] = sender message['To'] = recipient # Create SMTP connection object to localhost smtp_conn = smtplib.SMTP('localhost') # Send the email smtp_conn.sendmail(sender, recipient, message.as_string()) # Close SMTP connection smtp_conn.quit() return True def main(): previous_changed_seconds = 0 changes = 0 while (1): snmp_output = snmp_helper.snmp_get_oid_v3(DEVICE, SNMP_USER, oid=OID) print 'Raw output:', snmp_output current_changed_seconds = snmp_helper.snmp_extract(snmp_output) print '\nFormatted output:', current_changed_seconds print 'changes is', changes if (not(int(previous_changed_seconds) == int(current_changed_seconds))): if (changes): print '\nConfig changed (\#', str(changes),')', str(int(current_changed_seconds)/100),'secs ago' message_sender = '<EMAIL>' message_subject = 'config changed' message_recipient = '<EMAIL>' message_content = 'Config of router has recently changed' email_result = send_mail(message_recipient, message_subject, message_content, message_sender) if (email_result): print 'Email sent' else: print 'Error sending email' changes = changes + 1 previous_changed_seconds = current_changed_seconds else: print 'Nothing changed:' print ' previous_changed_seconds', previous_changed_seconds print ' current_changed_seconds', current_changed_seconds print ' changes', changes time.sleep(310) ############## #Main Program ############## if __name__ == "__main__": print '\n## Script started\n' main() print '\n## Script finished\n' ```