metadata
dict
text
stringlengths
60
3.49M
{ "source": "JonasDauster/mistgabel", "score": 3 }
#### File: JonasDauster/mistgabel/TestDataPrep.py ```python import glob from Bio import SeqIO import random import pandas as pd def slidingWindow(sequence, winSize, step=1): """Returns a generator that will iterate through the defined chunks of input sequence. Input sequence must be iterable.""" # Verify the inputs try: it = iter(sequence) except TypeError: raise Exception("**ERROR** sequence must be iterable.") if not ((type(winSize) == type(0)) and (type(step) == type(0))): raise Exception("**ERROR** type(winSize) and type(step) must be int.") if step > winSize: raise Exception("**ERROR** step must not be larger than winSize.") if winSize > len(sequence): raise Exception("**ERROR** winSize must not be larger than sequence length.") # Pre-compute number of chunks to emit numOfChunks = ((len(sequence) - winSize) / step) + 1 # Do the work for i in range(0, int(numOfChunks) * step, step): yield sequence[i:i + winSize] def positive(filepath): rlist1 = [] fastq_sequences = SeqIO.parse(open(filepath), 'fastq') for fastq in fastq_sequences: sequence = str(fastq.seq) rlist1.append(sequence) return rlist1 sequence=[] label=[] # insert your fastq to test here positive_list = positive("NCFB_D_MG000106_2020_R1.fastq") for x in range(len(positive_list)): to_insert = positive_list[x] #to_insert = random.choice(positive_list) # if you want to draw random lines from the file and test them change to_insert to the above line sequence.append(to_insert) if x == 1: label.append("insert") else: label.append("no_insert") insert_df = pd.DataFrame(sequence,label,columns=["sequence"]) print(insert_df) # data ready to be classified via DataLoad.py, a reference is found in example data insert_df.to_csv("real_data.csv") ```
{ "source": "Jonasdedeus/Genetic-Algorithm", "score": 4 }
#### File: Jonasdedeus/Genetic-Algorithm/IF42INT_1301183615.py ```python import pandas as pd # this library is using for finding a max and get index import math # this library is using for cos and sin import random # this library is to get the random numbers import time # this lirary is to run the output in the tuple based on the second from time import sleep # thus library is to support the time def getPop(size_pop,size_chrom): #this function is to get the population from the chromosome arpop = [] # initialize a list of population with variable arpop for i in range(size_pop): # to give a condition for inserting the population until the list full archrom = [] # initialize a list of chromosome with variable archrom for j in range (size_chrom): # to give a condition for inserting the chromosome until the list full get = random.randint(0,9) # store the random number in variable get archrom.append(get) # add the store random number to list of chromosome arpop.append(archrom) # add the list of chromosome to the list of population return arpop # return the all list of population def encodingGenotype(archrom,size_chrom): # this function is to get the phenotype rmax_x1,rmin_x1 = 2,-1 # initialize the limit of x1 that given in the assignment rmax_x2,rmin_x2 = 1,-1 # initialize the limit of x2 that given in the assignment valright,valright1,valdiv=0,0,0 # define new variable for storing for i in range(size_chrom-1): #to give a condition until each chromosome is calculated b = i+1 # initialize the be for the power value if i<=3: # give a condition until the end of first half calculation vd = 10**-b # variable vd is for storing the power of base 10 vr = archrom[i]*vd # variable vr is to calculate the each chromosome times vd valright+=vr # variable valright is to store every addition of vr valdiv+=vd # variable valdiv is to store every addition of vd for division else:# else condition for the last half calculation b = i-3 # to make the power value remain same as before vd = 10**-b # variable vd is for storing the power of base 10 vr = archrom[i]*vd # variable vr is to calculate the each chromosome times vd valright1+=vr # variable valright1 is to store every addition of vr x1 = rmin_x1+((rmax_x1 - rmin_x1) / (9 * valdiv)) * valright #initialize the variable x1 to store the value of x1 x2 = rmin_x2+((rmax_x2 - rmin_x2) / (9 * valdiv)) * valright1 #initialize the variable x1 to store the value of x2 return [x1,x2] # return the genotype (x1,x2) def function_h(archrom,size_chrom): # this function is to calculate the function of h using -h for minimization decode = encodingGenotype(archrom,size_chrom) # initialize decode variable to assign the function of encoding x1_val = decode[0] # initialize x1_val for the first index as x1 x2_val = decode[1] # initialize x2_val for the first index as x2 h = math.cos(x1_val)*math.sin(x2_val)-x1_val/x2_val**2 + 1 # variable h is to store the result return -h # return the h * -1 def fitness(arpop,size_chrom): #this function to find the maxfitness by collect it in the array Total_fit = [] # initialize a list of all fitness with variable Total_fit for i in range(len(arpop)): # to give a condition until lenth of population Total_fit.append(function_h(arpop[i],size_chrom)) # add the result of calculation to the total fit return Total_fit # return the all of the fitness of population def Findbestfitness(find): #this function is to get the best fitness from the calculation of function h get_index = pd.Series(find).idxmax() #this variable get_index is to store the the index of max fitness return get_index # return the index that store in get_index def parentSelection(arpop,size_chrom): #parent selection with tornament selection method best = [] # initialize a list of best fitness with variable best for i in range(0,4): # to give the condition until the range of tour which is 4 ind_chrom = arpop[random.randint(0,len(arpop)-1)] # initialize the ind_chrome to save the random index from list of population if (best == [] or function_h(ind_chrom,size_chrom) > function_h(best,size_chrom)):# the contidion is to check wheter the list of best is empty # or the result function - h in ind_chrom is greater than the result function - h in ind_chrom. best = ind_chrom # swap the value if the condition is meet. return best # return the best array. def crossover(parent1, parent2): # crossover function probability = random.random() # initialize variable probability to get the random percentage if (probability < 0.71): # to give a condition if probability is greater than 0.71 point_bounder1 = random.randint(0,1) # to make a first point randomly point_bounder2 = random.randint(4,7) # to make a second point randomly parent1 = parent1[:point_bounder1] + parent2[point_bounder1:point_bounder2] + parent1[point_bounder2:] # concatenate it from two point in parent 1 parent2 = parent2[:point_bounder1] + parent1[point_bounder1:point_bounder2] + parent2[point_bounder2:] # concatenate it from two point in parent 2 return [parent1, parent2] # retunn the result in array of parent 1 and parent 2 def mutation(child1, child2): # mutation function probability = random.random() # initialize variable probability to get the random percentage if (probability <= 0.01): # to give a condition if probability is greater than 0.01 child1[random.randint(0,7)] = random.randint(0,9) # to assign the random index with random value of child 1 child2[random.randint(0,7)] = random.randint(0,9) # to assign the random index with random value of child 2 return child1, child2 # return child 1 and child 2 def gen_replacement(arpop,bf_chrome,size_chrom): # generational replacement function is to process and generate the new generation new_gen = [] # initialize a list of new generation with variable new_gen for i in range(0,1): # to give a condition for add the two new generation from best chromosome new_gen.append(arpop[bf_chrome]) # add the two new generation from best chromosome i = 0 #initialize i equal to zero while i <(len(arpop)-2): # give a condition i less that population -2 (to minimize the size of making it stable) check = True # assign the check as a true parent1,parent2 = parentSelection(arpop,size_chrom),parentSelection(arpop,size_chrom) # assign parent 1 and parent 2 to the function of selection parent while check: # give a condition if check is true if (parent1 == parent2): # chech condition if there is same result of parent 1 and parent 2 parent2 = parentSelection(arpop,size_chrom) # assing again parent 2 to the function of selection parent else: # else condition is the result of parent 2 is diferent with parent 1 check = False # assign the check as false to finish the while offspring = crossover(parent1,parent2) # initialize off spring as a crossover result offspring = mutation(offspring[0],offspring[1]) # mutate the offsprint of child 1 and child 2 and store again in the offspring as updated new_gen+=offspring # add the last result of offspring to the new generation i+=2 # increase the i variable by adding to to make the looping of population size become stable. return new_gen # return the new generation list pop = int(input("Enter the number of population: ")) # initialize pop for inputting the size of population generation = int(input("Enter the number of generation: ")) # initialize generation for inputting the stopping generation number size_chrom = 8 # assign new variable of size chromosome as 8 population = getPop(pop,size_chrom) # assign new variable population to the function get population for i in range(generation): # to give a condition until all generation is completed calculating. best = fitness(population,size_chrom) # assign new variable best to function fitness bf_chrom = Findbestfitness(best) # assign new variable bf_chrom to the function findbestfitness best_fitness = function_h(population[bf_chrom],size_chrom) # assign new variable best_fitness to the function_h # Save the ouput in one tuple the print it by using function join. one_tuple = ('{Generation -', str(i+1), '|', 'Best Chromossome: ', str(population[bf_chrom]), '|', 'Best Fitness: ', str(best_fitness),'|','Decode Chromosome (x1,x2):',str(encodingGenotype(population[bf_chrom],size_chrom)),'}') print('\r', ' '.join(one_tuple), end='') # Change every 0.5 second time.sleep(0.05) population = gen_replacement(population,bf_chrom,size_chrom)# assign new variable population to the function generational replacement to proceed the next generation print("\n\nThe last Generation") # print the string the last generation print("************************") # print the star print("Best Chromossome:",population[bf_chrom])# print the best chromosome from population print("Fitness: ",best_fitness) # print the best fitness print("X1,x2: ",encodingGenotype(population[bf_chrom],size_chrom)) #print the x1 and x2 of encoding genotype function. ```
{ "source": "jonasdegrave/peptideClassifier", "score": 3 }
#### File: peptideClassifier/src/bulkDownload.py ```python import os import tqdm import requests import multiprocessing # Import project files from config import * # Verifies if a file exists; def fileExists(fileName): return os.path.isfile(fileName) # Verifies if a folder exists, if not, creates the folder; def createFolder(folderPath): if not os.path.isdir(folderPath): if DEBUG: print("[Debug] Folder {} does not exist. Creating folder.".format(folderPath)) os.mkdir(folderPath) else: if DEBUG: print("[Debug] Folder {} already exists. Moving on.".format(folderPath)) def download(url): try: fileName = TEMP_FILES_FOLDER + url[url.rfind("/")+1:] if not DOWNLOAD_AGAIN and fileExists(fileName): return response = requests.get(url, stream=True) if response.status_code == requests.codes.ok: with open(fileName, "wb") as file: for data in response: file.write(data) else: print("[Error] Could not download {}. Error: {}".format(fileName, response.status_code)) except Exception as e: print("[Error] {}".format(e)) def main(inputFileName): if VERBOSE: print() # Create working folders createFolder(TEMP_FILES_FOLDER) createFolder(INPUT_FILES_FOLDER) createFolder(OUTPUT_FILES_FOLDER) # Parse input files inputFile = open(inputFileName, "r") inputValues = inputFile.read() inputFile.close() fileList = ["{}{}{}".format(SOURCE_URL, inputValue, FILE_EXTENSION) for inputValue in inputValues.split("\n")] # Create multiprocessing work pool N_CPUS = min(multiprocessing.cpu_count(), MAXIMUM_THREADS) * 8 # Multiply by 8 is a test if VERBOSE: print("[Info] System has {} CPUs. Using {} threads for parallel work.".format(multiprocessing.cpu_count(), N_CPUS)) if VERBOSE: print("[Info] Initializing bulk file download. Total of {} files in queue. This may take a while.".format(len(fileList))) with multiprocessing.Pool(N_CPUS) as processPool: result = list(tqdm.tqdm(processPool.imap(download, fileList), total=len(fileList))) if VERBOSE: print("[Info] File downloading is complete!") if __name__ == "__main__": main(INPUT_FILES_FOLDER + DOWNLOAD_INDEX) ```
{ "source": "JonasDeichelmann/uMusic", "score": 4 }
#### File: JonasDeichelmann/uMusic/functions.py ```python import random import math #This function adds all the Steps between the main notes def makeMelody(randInput): melody = [] for i in range(len(randInput)-1): #Checks if the distance between the two notes is bigger then 2, if so then generate the numbers between if abs(int(randInput[i])-int(randInput[i+1])) > 2: k=0 #As many steps as the two notes are away from each other, divided by 2 for j in range(int(abs(int(randInput[i])-int(randInput[i+1]))/2)): #check wich way it have to go if randInput[i]> randInput[i+1]: melody.append(randInput[i]-k) else: melody.append(randInput[i]+k) k += 2 else: melody.append(randInput[i]) return melody #This function creates an random number between 20 and 100, with the user input and then returns the randomNumber def createRondom(myInput): #create a randomNumber between 50 and 90 randomNumber = int(random.uniform(50,90)) #Divide the randomNumber by the ASII input randomNumber1 = randomNumber/myInput #Multiply the randomNumber with the new divided randomNumber randomNumber = randomNumber*randomNumber1 #if the randomNumber is to big, then create a new one if int(randomNumber) > 100: createRondom(int(randomNumber)) #if the randomNumber is to small, then creat a new one if int(randomNumber) < 20: createRondom(int(randomNumber)) # return the randomNumber, since it is okay return int(randomNumber) def handleInput(myInput): out = [] inp = myInput #Converting each character from the input into an ASCII Number and add these to the list for i in inp: out.append(ord(i)) for j in range(len(out)): #Call the random function with the ASCII Letter temp = createRondom(int(out[j])) out[j]=temp #Create the steps between the numbers out = makeMelody(out) return(out) ``` #### File: JonasDeichelmann/uMusic/generate_music.py ```python import os import glob import pitch def GenerateMusic(notes_per_second=3, input_melody=[60,-1,62], input_chord=[60, 64, 67], pitch_class="[2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1]"): os.system("del /q static\\music\\*") performance = "multiconditioned_performance_with_dynamics" first = "performance_rnn_generate --config=" + performance + " --bundle_file=" + performance + ".mag --output_dir=static/music/ --num_outputs=1" # A step is 10 ms. Hence, 3000 steps will generate 30 seconds of music steps = "--num_steps=3000" notes_per_second = "--notes_per_second=" + str(notes_per_second) # melody is the starting sequence of notes given to the network primer = "--primer_melody=\"" + str(input_melody) + "\"" chord = "--primer_pitches=\"" + str(input_chord) + "\"" pitch = "--pitch_class_histogram=\"" + pitch_class + "\"" command = first + " " + pitch + " " + steps + " " + notes_per_second + " " + primer + " " + chord # Converting the midi file to a wav file using pySynth, the .wav is placed in the current directory os.system(command) files = glob.glob("static/music/*.mid") # Converting the midi file to a wav file using pySynth, the .wav is placed in the current directory os.system("python .\PySynth-2.3\\readmidi.py " + files[0]) os.replace("midi.wav", "static/music/midi.wav") # Remove the midi file #files = glob.glob("\static\music\*.mid") #print(files[0]) ``` #### File: JonasDeichelmann/uMusic/page.py ```python from generate_music import GenerateMusic import functions import pitch from flask import Flask, render_template, request, redirect, url_for from flask_bootstrap import Bootstrap from pprint import pprint app = Flask(__name__) Bootstrap(app) pitch_dict = pitch.mood pitch_classes = pitch.pitch_classes @app.route('/', methods=['GET', 'POST']) @app.route('/index', methods=['GET', 'POST']) def index(): if request.method == "POST": mood = request.form['mood'] sentence = request.form['sentence'] speed = request.form['speed'] per_second = 5 pitch = pitch_classes[pitch_dict[mood]] if (speed == "Fast"): per_second = 7 elif (speed == "Slow"): per_second = 3 note_list = functions.handleInput(sentence) GenerateMusic(notes_per_second=per_second, input_melody=note_list, pitch_class=pitch) return render_template('sound.html') return render_template('index.html') @app.route('/test') def test(): return render_template('test.html') ```
{ "source": "JonasDHomburg/LAMARCK", "score": 2 }
#### File: LAMARCK/examples/basics1.py ```python from LAMARCK_ML.models import GenerationalModel from LAMARCK_ML.metrics import CartesianFitness from LAMARCK_ML.selection import TournamentSelection, ExponentialRankingSelection, MaxDiversitySelection, LinearRankingSelection from LAMARCK_ML.reproduction import Mutation, Recombination, RandomStep from LAMARCK_ML.replacement import NElitism from LAMARCK_ML.utils.stopGenerational import StopByNoProgress, StopByGenerationIndex from LAMARCK_ML.utils.dataSaver import DSSqlite3 from LAMARCK_ML.utils.modelStateSaverLoader import ModelStateSaverLoader from LAMARCK_ML.utils.SlowDown import SlowDown from LAMARCK_ML.models.initialization import RandomInitializer from LAMARCK_ML.utils.evaluation import BaseEH from LAMARCK_ML.individuals import CartesianIndividual from LAMARCK_ML.utils.benchmark import Benchmark def run_model(): model = GenerationalModel() model.add([ # Initializing generation RandomInitializer(**{ RandomInitializer.arg_CLASS: CartesianIndividual, RandomInitializer.arg_GEN_SIZE: 36, # RandomInitializer.arg_GEN_SIZE: 10, RandomInitializer.arg_PARAM: {CartesianIndividual.arg_Dimensions: 2}, }), # Metric CartesianFitness(), # Selection strategy # ExponentialRankingSelection(**{ExponentialRankingSelection.arg_LIMIT: 6,}), # LinearRankingSelection(**{LinearRankingSelection.arg_LIMIT: 10}), MaxDiversitySelection(**{ MaxDiversitySelection.arg_LIMIT: 20, # MaxDiversitySelection.arg_LIMIT: 4, MaxDiversitySelection.arg_DIVERSITY: .8, }), # Reproduction Recombination(**{ Recombination.arg_LIMIT: 36, # Recombination.arg_LIMIT: 10, Recombination.arg_DESCENDANTS: 2, }), # Mutation(**{ # Mutation.arg_P: 4, # Mutation.arg_DESCENDANTS: 1, # Mutation.arg_LIMIT: 36, # }), RandomStep(**{ RandomStep.arg_P: .7, RandomStep.arg_STEP_SIZE: 3, RandomStep.arg_DESCENDANTS: 1, RandomStep.arg_LIMIT: 36, # RandomStep.arg_LIMIT: 10, }), # Replacement method NElitism(), # Stopping # StopByNoProgress(**{StopByNoProgress.arg_PATIENCE: 25,}), StopByGenerationIndex(**{StopByGenerationIndex.arg_GENERATIONS: 25}), # Saving states # ModelStateSaverLoader(**{ # ModelStateSaverLoader.arg_REPRODUCTION: True, # # ModelStateSaverLoader.arg_SELECTION: True, # ModelStateSaverLoader.arg_REPLACEMENT: True, # }), DSSqlite3(**{DSSqlite3.arg_FILE: '/media/data/LAMARCK_DATA/shit3/history.db3'}), # Slowing down the process # SlowDown(**{SlowDown.arg_SLEEP_TIME: 10}), # evaluation BaseEH(), # Benchmark # Benchmark(), ]) if model.reset(): model.run() print([ind.fitness for ind in model.generation]) else: print('Model failed!') if __name__ == '__main__': run_model() ``` #### File: LAMARCK_ML/architectures/dataFlow.py ```python from typing import Dict, Tuple, List from LAMARCK_ML.data_util import TypeShape from LAMARCK_ML.data_util import ProtoSerializable class DataFlow(ProtoSerializable): def __init__(self, *args, **kwargs): super(DataFlow, self).__init__(**kwargs) @property def outputs(self) -> Dict[str, TypeShape]: """ Set of named data output shape and type of DataFlow object. :return: Set of TypeShape """ raise NotImplementedError() @property def inputLabels(self) -> List[str]: """ Labels for one or more inputs. :return: List of labels for inputs """ raise NotImplementedError() @property def inputs(self) -> Dict[str, Tuple[str, str]]: """ DataFlow connections: Dict[obj_inputLabel, Tuple[other_outputLabel, DataFlow object/id_name]] :return: Dict[IOLabel, Tuple[IOLabel, DataFlow(str)]] """ raise NotImplementedError() # def connect(self, dataFlow_obj: 'DataFlow', connection: Dict[IOLabel, IOLabel]): # """ # Add a DataFlow object as input to another DataFlow object. # :param dataFlow_obj: data providing DataFlow object # :param connection: inputLabel -> outputLabel # """ # raise NotImplementedError() @property def id_name(self) -> str: """ :return: unique object name, typically composition of class name and class wide unique identifier """ raise NotImplementedError() pass ``` #### File: functions/implementations/Conv2D.py ```python import math from enum import Enum from random import sample from typing import Tuple, List, Dict, Set from random import choice, random from LAMARCK_ML.architectures.functions.interface import Function from LAMARCK_ML.architectures.variables import Variable from LAMARCK_ML.architectures.variables.initializer import * from LAMARCK_ML.architectures.variables.regularisation import * from LAMARCK_ML.data_util import DimNames, TypeShape, IOLabel from LAMARCK_ML.data_util.dataType import \ DHalf, \ DFloat, \ DDouble, \ DInt64, \ DInt32, \ DInt16, \ DInt8 from LAMARCK_ML.data_util.shape import Shape from LAMARCK_ML.reproduction.methods import Mutation from LAMARCK_ML.metrics.implementations import FlOps, Parameters class Conv2D(Function, Mutation.Interface, FlOps.Interface, Parameters.Interface): # IOLabel.CONV2D_IN = 'CONV2D_IN' IOLabel.CONV2D_IN = 'DATA_IN' # IOLabel.CONV2D_OUT = 'CONV2D_OUT' IOLabel.CONV2D_OUT = 'DATA_OUT' class Padding(Enum): SAME = 'SAME' VALID = 'VALID' allowedTypes = [DFloat, DDouble, DHalf, DInt8, DInt16, DInt32, DInt64] _DF_INPUTS = [IOLabel.CONV2D_IN] arg_OUT_NAMED_TYPE_SHAPES = 'outTypeShape' arg_KERNEL_WIDTH = 'kernel_width' arg_KERNEL_HEIGHT = 'kernel_height' arg_STRIDE_WIDTH = 'stride_width' arg_STRIDE_HEIGHT = 'stride_height' arg_PADDING = 'padding' arg_FILTER = 'channel' arg_IN_WIDTH = 'in_width' arg_IN_HEIGHT = 'in_height' arg_IN_CHANNEL = 'in_channel' __min_f_hw = .5 __max_f_hw = 1 __min_f_c = .5 __max_f_c = 1.5 @classmethod def possible_output_shapes(cls, input_ntss: Dict[str, TypeShape], target_output: TypeShape, is_reachable, max_possibilities: int = 10, **kwargs) -> \ List[Tuple[Dict[str, TypeShape], Dict[str, TypeShape], Dict[str, str]]]: target_shape = target_output.shape for label, nts in input_ntss.items(): if nts.dtype not in cls.allowedTypes: continue possible_sizes = [] names = [] invalid_dim = False for _dim in nts.shape.dim: target_size = target_shape[_dim.name] if _dim.name == DimNames.WIDTH or \ _dim.name == DimNames.HEIGHT: lower_border = max(math.floor(_dim.size * cls.__min_f_hw), (min(2, target_size) if target_size is not None else 2)) upper_border = math.ceil(_dim.size * cls.__max_f_hw) pool = list(range(lower_border + 1, upper_border)) border_pool = list({lower_border, upper_border}) if target_size is None or not (lower_border < target_size < upper_border): pool = sample(pool, k=min(max(max_possibilities - len(border_pool), 0), len(pool))) else: pool.remove(target_size) pool = sample(pool, k=min(max(max_possibilities - len(border_pool) - 1, 0), len(pool))) + [target_size] pool = pool + border_pool elif _dim.name == DimNames.CHANNEL: lower_border = max(math.floor(_dim.size * cls.__min_f_c), (min(2, target_size) if target_size is not None else 2)) upper_border = math.ceil(_dim.size * cls.__max_f_c) pool = list(range(lower_border + 1, upper_border)) border_pool = list({lower_border, upper_border}) if target_size is None or not (lower_border < target_size < upper_border): pool = sample(pool, k=min(max(max_possibilities - len(border_pool), 0), len(pool))) else: pool.remove(target_size) pool = sample(pool, k=min(max(max_possibilities - len(border_pool) - 1, 0), len(pool))) + [target_size] pool = pool + border_pool elif _dim.name == DimNames.BATCH: pool = [_dim.size] else: invalid_dim = True break possible_sizes.append(pool) names.append(_dim.name) if invalid_dim: continue for comb in Shape.random_dimension_product(possible_sizes): out_nts = TypeShape(nts.dtype, Shape(*zip(names, comb))) if is_reachable(out_nts, target_output): yield ({}, {IOLabel.CONV2D_OUT: out_nts}, {IOLabel.CONV2D_IN: label}) @classmethod def configurations(cls, h_i, h_o, w_i, w_o, c): def stride_range(in_, out_): if out_ == 1: return [in_] else: lower_limit = math.ceil(in_ / out_) upper_limit = math.ceil(in_ / (out_ - 1)) - 1 if lower_limit == 0 or \ math.ceil(in_ / lower_limit) < out_ or \ upper_limit == 0 or \ math.ceil(in_ / upper_limit) > out_: return [] return list(range(lower_limit, upper_limit + 1)) def filter_range(in_, out_): lower_limit = 1 upper_limit = in_ - out_ + 1 return list(range(lower_limit, upper_limit + 1)) configurations = list() for s_h in stride_range(h_i, h_o): for s_w in stride_range(w_i, w_o): for k_h in range(1, 10): for k_w in range(1, 10): configurations.append({ cls.arg_KERNEL_HEIGHT: k_h, cls.arg_KERNEL_WIDTH: k_w, cls.arg_STRIDE_HEIGHT: s_h, cls.arg_STRIDE_WIDTH: s_w, cls.arg_PADDING: Conv2D.Padding.SAME.value, cls.arg_FILTER: c }) for k_w in filter_range(w_i, w_o): for k_h in filter_range(h_i, h_o): for s_h in stride_range(h_i - k_h + 1, h_o): for s_w in stride_range(w_i - k_w + 1, w_o): configurations.append({ cls.arg_KERNEL_HEIGHT: k_h, cls.arg_KERNEL_WIDTH: k_w, cls.arg_STRIDE_HEIGHT: s_h, cls.arg_STRIDE_WIDTH: s_w, cls.arg_PADDING: Conv2D.Padding.VALID.value, cls.arg_FILTER: c }) return configurations @classmethod def generateParameters(cls, input_dict: Dict[str, Tuple[str, Dict[str, TypeShape], str]], expected_outputs: Dict[str, TypeShape], variable_pool: dict = None) -> \ Tuple[List[Dict[str, object]], List[float]]: if len(input_dict) != 1 or \ len(expected_outputs) != 1: return [], [] input_nts_id, input_outputs, input_id = input_dict[IOLabel.CONV2D_IN] in_nts = input_outputs[input_nts_id] out_label, out_nts = next(iter(expected_outputs.items())) if in_nts.dtype != out_nts.dtype: return [], [] allowed_dimensions = [DimNames.BATCH, DimNames.CHANNEL, DimNames.WIDTH, DimNames.HEIGHT] for _dim in in_nts.shape.dim: if _dim.name not in allowed_dimensions: return [], [] for _dim in out_nts.shape.dim: if _dim.name not in allowed_dimensions: return [], [] h_i = in_nts.shape[DimNames.HEIGHT] h_o = out_nts.shape[DimNames.HEIGHT] w_i = in_nts.shape[DimNames.WIDTH] w_o = out_nts.shape[DimNames.WIDTH] c_i = in_nts.shape[DimNames.CHANNEL] configurations = cls.configurations( h_i=h_i, h_o=h_o, w_i=w_i, w_o=w_o, c=out_nts.shape[DimNames.CHANNEL]) result_with_var = list() result_without_var = list() for config in configurations: result_without_var.append({cls.arg_ATTRIBUTES: {**config, **{cls.arg_OUT_NAMED_TYPE_SHAPES: {out_label: out_nts}, cls.arg_IN_WIDTH: w_i, cls.arg_IN_HEIGHT: h_i, cls.arg_IN_CHANNEL: c_i}}, cls.arg_INPUT_MAPPING: dict( [(l_in, (l_out, id_name)) for l_in, (l_out, _, id_name) in input_dict.items()]), cls.arg_VARIABLES: [ Variable(**{ Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|kernel', Variable.arg_SHAPE: ( config.get(cls.arg_KERNEL_HEIGHT), config.get(cls.arg_KERNEL_WIDTH), in_nts.shape[DimNames.CHANNEL], out_nts.shape[DimNames.CHANNEL]), Variable.arg_INITIALIZER: GlorotUniform(), Variable.arg_REGULARISATION: NoRegularisation() }), Variable(**{ Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|bias', Variable.arg_SHAPE: ( out_nts.shape[DimNames.CHANNEL],), Variable.arg_INITIALIZER: GlorotUniform(), Variable.arg_REGULARISATION: NoRegularisation() }) ]}) possibleKernels = [v for v in variable_pool.get(cls.__name__ + '|kernel', []) if v.shape == (config.get(cls.arg_KERNEL_HEIGHT), config.get(cls.arg_KERNEL_WIDTH), c_i, config.get(cls.arg_FILTER))] for kernel in possibleKernels: result_with_var.append({cls.arg_ATTRIBUTES: {**config, **{cls.arg_OUT_NAMED_TYPE_SHAPES: {out_label: out_nts}, cls.arg_IN_WIDTH: w_i, cls.arg_IN_HEIGHT: h_i, cls.arg_IN_CHANNEL: c_i}}, cls.arg_INPUT_MAPPING: dict( [(l_in, (l_out, id_name)) for l_in, (l_out, _, id_name) in input_dict.items()]), cls.arg_VARIABLES: [kernel, Variable(**{ Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|bias', Variable.arg_SHAPE: ( out_nts.shape[DimNames.CHANNEL],), Variable.arg_INITIALIZER: GlorotUniform(), Variable.arg_REGULARISATION: NoRegularisation() }) ]}) possibleBias = [v for v in variable_pool.get(cls.__name__ + '|bias', []) if v.shape == (out_nts.shape[DimNames.CHANNEL],)] for bias in possibleBias: result_with_var.append({cls.arg_ATTRIBUTES: {**config, **{cls.arg_OUT_NAMED_TYPE_SHAPES: {out_label: out_nts}, cls.arg_IN_WIDTH: w_i, cls.arg_IN_HEIGHT: h_i, cls.arg_IN_CHANNEL: c_i}}, cls.arg_INPUT_MAPPING: dict( [(l_in, (l_out, id_name)) for l_in, (l_out, _, id_name) in input_dict.items()]), cls.arg_VARIABLES: [ Variable(**{ Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|kernel', Variable.arg_SHAPE: ( config.get(cls.arg_KERNEL_HEIGHT), config.get(cls.arg_KERNEL_WIDTH), c_i, out_nts.shape[DimNames.CHANNEL]), Variable.arg_INITIALIZER: GlorotUniform(), Variable.arg_REGULARISATION: NoRegularisation() }), bias ]}) result_params = list() result_prob = list() amount_var = len(result_with_var) if amount_var > 0: prob = 1 / 2 / amount_var result_params.extend(result_with_var) result_prob.extend([prob for _ in range(amount_var)]) amount_without_var = len(result_without_var) prob = 1 / amount_without_var if amount_var > 0: prob /= 2 result_params.extend(result_without_var) result_prob.extend([prob for _ in range(amount_without_var)]) return result_params, result_prob def __init__(self, **kwargs): super(Conv2D, self).__init__(**kwargs) if not (isinstance(self.attr[self.arg_OUT_NAMED_TYPE_SHAPES], dict) and all([isinstance(nts, TypeShape) and isinstance(label, str) for label, nts in self.attr[self.arg_OUT_NAMED_TYPE_SHAPES].items()])): raise Exception('Wrong output TypeShapes!') @property def outputs(self) -> Set[TypeShape]: return self.attr[self.arg_OUT_NAMED_TYPE_SHAPES] def mutate(self, prob, variable_pool=None): def resetVariable(v): v.value = None v.trainable = True return v def keepTraining(v): v.trainable = True return v def replaceVariable(v): variable = choice( [_v for _v in variable_pool.get(self.__name__ + '|kernel', []) if v.shape == _v.shape]) return variable result = Conv2D.__new__(Conv2D) result.__setstate__(self.get_pb()) if random() < .8: functions = [resetVariable, keepTraining] if variable_pool is not None: functions.append(replaceVariable) new_variables = list() changed = False for _v in result.variables: if random() < prob: new_variable = choice(functions)(_v) changed = True else: new_variable = _v new_variables.append(new_variable) result.variables = new_variables if changed: result._id_name = Conv2D.getNewName() else: if random() < prob: result._id_name = Conv2D.getNewName() out_nts = self.attr[self.arg_OUT_NAMED_TYPE_SHAPES][IOLabel.CONV2D_OUT] h_o = out_nts.shape[DimNames.HEIGHT] w_o = out_nts.shape[DimNames.WIDTH] c = out_nts.shape[DimNames.CHANNEL] config = choice(Conv2D.configurations(h_i=self.attr[self.arg_IN_HEIGHT], h_o=h_o, w_i=self.attr[self.arg_IN_WIDTH], w_o=w_o, c=c)) result.attr = {**result.attr, **config} result.variables = [Variable(**{Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: self.__class__.__name__ + '|kernel', Variable.arg_SHAPE: ( config.get(self.arg_KERNEL_HEIGHT), config.get(self.arg_KERNEL_WIDTH), self.attr[self.arg_IN_CHANNEL], out_nts.shape[DimNames.CHANNEL]), Variable.arg_INITIALIZER: GlorotUniform(), Variable.arg_REGULARISATION: NoRegularisation() }), Variable(**{ Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: self.__class__.__name__ + '|bias', Variable.arg_SHAPE: ( out_nts.shape[DimNames.HEIGHT], out_nts.shape[DimNames.WIDTH], out_nts.shape[DimNames.CHANNEL]), Variable.arg_INITIALIZER: GlorotUniform(), Variable.arg_REGULARISATION: NoRegularisation() })] return result @classmethod def min_transform(cls, nts): if nts.dtype not in cls.allowedTypes: return None s = Shape() result = TypeShape(nts.dtype, s) for _dim in nts.shape.dim: if _dim.name == DimNames.BATCH: s.dim.append(Shape.Dim(_dim.name, _dim.size)) elif _dim.name == DimNames.CHANNEL: s.dim.append(Shape.Dim(_dim.name, int(math.floor(_dim.size * cls.__min_f_c)))) elif _dim.name == DimNames.WIDTH or \ _dim.name == DimNames.HEIGHT: s.dim.append(Shape.Dim(_dim.name, int(math.floor(_dim.size * cls.__min_f_hw)))) else: return None return result @classmethod def max_transform(cls, nts): if nts.dtype not in cls.allowedTypes: return None s = Shape() result = TypeShape(nts.dtype, s) for _dim in nts.shape.dim: if _dim.name == DimNames.BATCH: s.dim.append(Shape.Dim(_dim.name, _dim.size)) elif _dim.name == DimNames.CHANNEL: s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * cls.__max_f_c)))) elif _dim.name == DimNames.WIDTH or \ _dim.name == DimNames.HEIGHT: s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * cls.__max_f_hw)))) else: return None return result def flops_per_sample(self): out_shape = self.attr[self.arg_OUT_NAMED_TYPE_SHAPES][IOLabel.CONV2D_OUT].shape return self.attr[self.arg_KERNEL_HEIGHT] * self.attr[self.arg_KERNEL_WIDTH] * self.attr[self.arg_IN_CHANNEL] * \ out_shape[DimNames.HEIGHT] * out_shape[DimNames.WIDTH] * out_shape[DimNames.CHANNEL] \ + out_shape[DimNames.HEIGHT] * out_shape[DimNames.WIDTH] * out_shape[DimNames.CHANNEL] # ReLU def parameters(self): return self.attr[self.arg_KERNEL_WIDTH] * self.attr[self.arg_KERNEL_HEIGHT] * \ self.attr[self.arg_IN_CHANNEL] * self.attr[self.arg_FILTER] @property def inputLabels(self) -> List[str]: return self._DF_INPUTS ``` #### File: functions/implementations/Dense.py ```python import math from random import random, choice from random import sample from typing import Tuple, List, Dict, Set from LAMARCK_ML.architectures.functions.interface import Function from LAMARCK_ML.architectures.variables import Variable from LAMARCK_ML.architectures.variables.initializer import * from LAMARCK_ML.architectures.variables.regularisation import * from LAMARCK_ML.data_util import DimNames, TypeShape, IOLabel from LAMARCK_ML.data_util.dataType import \ DHalf, \ DFloat, \ DDouble, \ DInt64, \ DInt32, \ DInt16, \ DInt8 from LAMARCK_ML.data_util.shape import Shape from LAMARCK_ML.reproduction.methods import Mutation from LAMARCK_ML.metrics.implementations import FlOps, Parameters, Nodes class Dense(Function, Mutation.Interface, FlOps.Interface, Parameters.Interface, Nodes.Interface, ): # IOLabel.DENSE_OUT = 'DENSE_OUT' IOLabel.DENSE_OUT = 'DATA_OUT' # IOLabel.DENSE_IN = 'DENSE_IN' IOLabel.DENSE_IN = 'DATA_IN' allowedTypes = [DFloat, DDouble, DHalf, DInt8, DInt16, DInt32, DInt64] _DF_INPUTS = [IOLabel.DENSE_IN] arg_UNITS = 'units' arg_IN_UNITS = 'in_units' arg_OUT_NAMED_TYPE_SHAPES = 'outTypeShape' __min_f = .5 __max_f = 1.5 @classmethod def possible_output_shapes(cls, input_ntss: Dict[str, TypeShape], target_output: TypeShape, is_reachable, max_possibilities: int = 10, **kwargs) -> \ List[Tuple[Dict[str, TypeShape], Dict[str, TypeShape], Dict[str, str]]]: target_shape = target_output.shape for label, nts in input_ntss.items(): if nts.dtype not in cls.allowedTypes: continue possible_sizes = [] names = [] invalid_dim = False for _dim in nts.shape.dim: target_size = target_shape[_dim.name] # if _dim.name == DimNames.WIDTH or \ # _dim.name == DimNames.HEIGHT or \ # _dim.name == DimNames.CHANNEL or \ if _dim.name == DimNames.UNITS: lower_border = max(math.floor(_dim.size * cls.__min_f), (min(2, target_size) if target_size is not None else 2)) upper_border = math.ceil(_dim.size * cls.__max_f) pool = list(range(lower_border + 1, upper_border)) border_pool = list({lower_border, upper_border}) if target_size is None or not (lower_border < target_size < upper_border): pool = sample(pool, k=min(max(max_possibilities - len(border_pool), 0), len(pool))) else: pool.remove(target_size) pool = sample(pool, k=min(max(max_possibilities - len(border_pool) - 1, 0), len(pool))) + [target_size] pool = pool + border_pool elif _dim.name == DimNames.BATCH: # or \ # _dim.name == DimNames.TIME: pool = [_dim.size] else: invalid_dim = True break possible_sizes.append(pool) names.append(_dim.name) if invalid_dim: continue for dim_combination in Shape.random_dimension_product(possible_sizes): out_nts = TypeShape(nts.dtype, Shape(*zip(names, dim_combination))) if is_reachable(out_nts, target_output): yield ({}, {IOLabel.DENSE_OUT: out_nts}, {IOLabel.DENSE_IN: label}) @classmethod def generateParameters(cls, input_dict: Dict[str, Tuple[str, Dict[str, TypeShape], str]], expected_outputs: Dict[str, TypeShape], variable_pool: dict = None) -> \ Tuple[List[Dict[str, object]], List[float]]: if len(input_dict) != 1 or \ len(expected_outputs) != 1: return [], [] input_nts_id, inputs_outputs, _ = input_dict[IOLabel.DENSE_IN] in_nts = inputs_outputs[input_nts_id] out_label, out_nts = next(iter(expected_outputs.items())) if in_nts.dtype != out_nts.dtype: return [], [] inUnits = in_nts.shape.units outUnits = out_nts.shape.units possibleKernels = [] possibleBias = [] if variable_pool is not None: possibleKernels = [v for v in variable_pool.get(cls.__name__ + '|kernel', []) if v.shape == (inUnits, outUnits)] possibleBias = [v for v in variable_pool.get(cls.__name__ + '|bias', []) if v.shape == (outUnits,)] _dict = {cls.arg_ATTRIBUTES: {cls.arg_UNITS: outUnits, cls.arg_OUT_NAMED_TYPE_SHAPES: {out_label: out_nts}, cls.arg_IN_UNITS: inUnits}, cls.arg_INPUT_MAPPING: dict( [(l_in, (l_out, id_name)) for l_in, (l_out, _, id_name) in input_dict.items()]), } amount_ = len(possibleBias) + len(possibleKernels) init_ = Constant() reg_ = NoRegularisation() prob_ = 0 if amount_ > 0: prob_ = 1 / 2 / amount_ _init = [GlorotUniform()] _reg = [NoRegularisation()] _amount = len(_init) * len(_reg) _prob = 1 / 2 / _amount if amount_ > 0 else 1 / _amount return ([{**_dict, **{cls.arg_VARIABLES: [k, Variable(**{Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|bias', Variable.arg_SHAPE: (outUnits,), Variable.arg_INITIALIZER: init_, Variable.arg_REGULARISATION: reg_ })]}} for k in possibleKernels] + [{**_dict, **{cls.arg_VARIABLES: [b, Variable(**{Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|kernel', Variable.arg_SHAPE: (inUnits, outUnits), Variable.arg_INITIALIZER: init_, Variable.arg_REGULARISATION: reg_, })]}} for b in possibleBias] + [{**_dict, **{cls.arg_VARIABLES: [Variable(**{Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|kernel', Variable.arg_SHAPE: (inUnits, outUnits), Variable.arg_INITIALIZER: _init_, Variable.arg_REGULARISATION: _reg_}), Variable(**{Variable.arg_DTYPE: out_nts.dtype, Variable.arg_TRAINABLE: True, Variable.arg_NAME: cls.__name__ + '|bias', Variable.arg_SHAPE: (outUnits,), Variable.arg_INITIALIZER: _init_, Variable.arg_REGULARISATION: _reg_}) ]}} for _init_ in _init for _reg_ in _reg]), \ [prob_ for _ in range(amount_)] + \ [_prob for _ in range(_amount)] def __init__(self, **kwargs): super(Dense, self).__init__(**kwargs) if not (isinstance(self.attr[self.arg_OUT_NAMED_TYPE_SHAPES], dict) and all([isinstance(nts, TypeShape) and isinstance(label, str) for label, nts in self.attr[self.arg_OUT_NAMED_TYPE_SHAPES].items()])): raise Exception('Wrong output TypeShapes!') @property def outputs(self) -> Set[TypeShape]: return self.attr[self.arg_OUT_NAMED_TYPE_SHAPES] def mutate(self, prob, variable_pool=None): def resetVariable(v): v.value = None v.trainable = True return v def keepTraining(v): v.trainable = True return v def replaceVariable(v): variable = choice( [_v for _v in variable_pool.get(self.__name__ + '|kernel', []) if v.shape == _v.shape]) return variable functions = [resetVariable, keepTraining] if variable_pool is not None: functions.append(replaceVariable) result = Dense.__new__(Dense) result.__setstate__(self.get_pb()) new_variables = list() changed = False for _v in result.variables: if random() < prob: new_variable = choice(functions)(_v) changed = True else: new_variable = _v new_variables.append(new_variable) result.variables = new_variables if changed: result._id_name = Dense.getNewName() return result @classmethod def min_transform(cls, nts): if nts.dtype not in cls.allowedTypes: return None s = Shape() result = TypeShape(nts.dtype, s) for _dim in nts.shape.dim: if _dim.name == DimNames.BATCH: s.dim.append(Shape.Dim(_dim.name, _dim.size)) elif _dim.name == DimNames.UNITS: s.dim.append(Shape.Dim(_dim.name, int(math.floor(_dim.size * cls.__min_f)))) else: return None return result @classmethod def max_transform(cls, nts): if nts.dtype not in cls.allowedTypes: return None s = Shape() result = TypeShape(nts.dtype, s) for _dim in nts.shape.dim: if _dim.name == DimNames.BATCH: s.dim.append(Shape.Dim(_dim.name, _dim.size)) elif _dim.name == DimNames.UNITS: s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * cls.__max_f)))) else: return None return result def flops_per_sample(self): return self.attr[self.arg_IN_UNITS] * self.attr[self.arg_UNITS] \ + self.attr[self.arg_UNITS] # ReLU def parameters(self): return self.attr[self.arg_IN_UNITS] * self.attr[self.arg_UNITS] + self.attr[self.arg_UNITS] def nodes(self): return self.attr[self.arg_UNITS] @property def inputLabels(self) -> List[str]: return self._DF_INPUTS ``` #### File: functions/implementations/Softmax.py ```python from typing import List, Dict, Tuple from LAMARCK_ML.architectures.functions.interface import Function from LAMARCK_ML.data_util import IOLabel, TypeShape from LAMARCK_ML.data_util.dataType import \ DHalf, \ DFloat, \ DDouble, \ DInt64, \ DInt32, \ DInt16, \ DInt8 class Softmax(Function, ): allowedTypes = {DFloat, DDouble, DHalf, DInt8, DInt16, DInt32, DInt64} IOLabel.SOFTMAX_OUT = 'SOFTMAX_OUT' IOLabel.SOFTMAX_IN = 'SOFTMAX_IN' arg_OUT_TYPE_SHAPE = 'outTypeShape' @classmethod def possible_output_shapes(cls, input_ntss: Dict[str, TypeShape], target_output: TypeShape, is_reachable, max_possibilities: int = 10, **kwargs) -> \ List[Tuple[Dict[str, TypeShape], Dict[str, TypeShape], Dict[str, str]]]: for label, nts in input_ntss.items(): if nts.dtype not in cls.allowedTypes: continue yield ({}, {IOLabel.SOFTMAX_OUT: nts}, {IOLabel.SOFTMAX_IN: label}) @classmethod def generateParameters(cls, input_dict: Dict[str, Tuple[str, Dict[str, TypeShape], str]], expected_outputs: Dict[str, TypeShape], variable_pool: dict = None) -> \ Tuple[List[Dict[str, object]], List[float]]: if len(input_dict) != 1 or \ len(expected_outputs) != 1: print(len(input_dict)) print(len(expected_outputs)) return [], [] return [{cls.arg_ATTRIBUTES: {cls.arg_OUT_TYPE_SHAPE: expected_outputs, }, cls.arg_VARIABLES: [], cls.arg_INPUT_MAPPING: {l_in: (l_out, id_name) for l_in, (l_out, _, id_name) in input_dict.items()} }], [1] @classmethod def min_transform(cls, nts: TypeShape): if nts.dtype not in cls.allowedTypes: return None return nts @classmethod def max_transform(cls, nts: TypeShape): if nts.dtype not in cls.allowedTypes: return None return nts def __init__(self, **kwargs): super(Softmax, self).__init__(**kwargs) if not (isinstance(self.attr[self.arg_OUT_TYPE_SHAPE], dict) and all([isinstance(nts, TypeShape) and isinstance(label, str) for label, nts in self.attr[self.arg_OUT_TYPE_SHAPE].items()])): raise Exception('Wrong output TypeShapes!') @property def outputs(self) -> Dict[str, TypeShape]: return self.attr[self.arg_OUT_TYPE_SHAPE] @property def inputLabels(self) -> List[str]: return list(self.input_mapping.keys()) ``` #### File: LAMARCK_ML/architectures/neuralNetwork_test.py ```python import unittest import os from LAMARCK_ML.architectures.functions import * from LAMARCK_ML.architectures.neuralNetwork import NeuralNetwork from LAMARCK_ML.data_util import DimNames, Shape, \ DFloat, TypeShape, IOLabel import networkx as nx import time @unittest.skipIf((os.environ.get('test_fast', False) in {'True', 'true', '1'}), 'time consuming') class TestNeuralNetwork(unittest.TestCase): def test_instantiation_USD_outputTypeShapes(self): batch = 3 _data = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.CHANNEL, 3), (DimNames.HEIGHT, 4), (DimNames.WIDTH, 5))) outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 60)) self.assertRaises(InvalidFunctionType, NeuralNetwork, **{ NeuralNetwork.arg_INPUTS: {'data_in', (_data, 'Dataset')}, NeuralNetwork.arg_OUTPUT_TARGETS: {'out0': TypeShape(DFloat, outShape)}}) def test_instantiation_USD_ONTS_Dense_Merge(self): for i in range(10): batch = 1 _data = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.UNITS, 20))) IOLabel.DS1 = 'DS1' IOLabel.DS2 = 'DS2' inputs = {IOLabel.DS1: (IOLabel.DATA, _data, 'Dataset'), IOLabel.DS2: (IOLabel.DATA, _data, 'Dataset')} outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 10)) outShape1 = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 15)) outputs = {'out0': TypeShape(DFloat, outShape), 'out1': TypeShape(DFloat, outShape1)} functions = [Merge, Dense] NN = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: inputs, NeuralNetwork.arg_OUTPUT_TARGETS: outputs, NeuralNetwork.arg_FUNCTIONS: functions, NeuralNetwork.arg_MAX_BRANCH: 2}) self.assertIsNotNone(NN) pb = NN.get_pb() state = NN.__getstate__() NN_pb = NeuralNetwork.__new__(NeuralNetwork) NN_pb.__setstate__(pb) self.assertIsNot(NN, NN_pb) NN_state = NeuralNetwork.__new__(NeuralNetwork) NN_state.__setstate__(state) self.assertIsNot(NN, NN_state) NN_mut = NN.mutate(1)[0] self.assertEqual(pb, NN.get_pb()) self.assertIsNot(NN, NN_mut) self.assertNotEqual(NN, NN_mut) f_ids = dict([(_id, None) for _, _id in NN_mut.inputs.values()]) for _f in NN_mut.functions: f_ids[_f.id_name] = _f for _f in NN_mut.functions: for _f_input, (other_output, other_id) in _f.inputs.items(): if other_id not in f_ids: self.assertTrue(False) stack = [f_id for _, f_id in NN_mut.output_mapping.values()] required_ids = set() while stack: f_id = stack.pop() required_ids.add(f_id) f_ = f_ids.get(f_id) if f_ is not None: stack.extend([f_id for _, f_id in f_.inputs.values()]) self.assertSetEqual(required_ids, set(f_ids.keys())) NN_mut = NN.mutate(1)[0] self.assertEqual(pb, NN.get_pb()) self.assertIsNot(NN, NN_mut) self.assertNotEqual(NN, NN_mut) f_ids = dict([(_id, None) for _, _id in NN_mut.inputs.values()]) for _f in NN_mut.functions: f_ids[_f.id_name] = _f for _f in NN_mut.functions: for _f_input, (other_output, other_id) in _f.inputs.items(): if other_id not in f_ids: self.assertTrue(False) stack = [f_id for _, f_id in NN_mut.output_mapping.values()] required_ids = set() while stack: f_id = stack.pop() required_ids.add(f_id) f_ = f_ids.get(f_id) if f_ is not None: stack.extend([f_id for _, f_id in f_.inputs.values()]) self.assertSetEqual(required_ids, set(f_ids.keys())) NN_mut = NN.mutate(0)[0] NN_mut._id_name = NN._id_name self.assertNotEqual(NN, NN_mut) def test_instantiation_Conv2D_Pool2D_Flatten(self): for i in range(10): batch = 1 _data = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.HEIGHT, 64), (DimNames.WIDTH, 64), (DimNames.CHANNEL, 3))) _target = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.UNITS, 100), )) outputs = {'out0': _target} IOLabel.DS = 'DS' inputs = {IOLabel.DS: (IOLabel.DATA, _data, 'Dataset')} functions = [QConv2D, QPooling2D, Flatten] NN1 = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: inputs, NeuralNetwork.arg_OUTPUT_TARGETS: outputs, NeuralNetwork.arg_FUNCTIONS: functions}) self.assertIsNotNone(NN1) # print(i) pb = NN1.get_pb() state = NN1.__getstate__() NN_pb = NeuralNetwork.__new__(NeuralNetwork) NN_pb.__setstate__(pb) self.assertIsNot(NN1, NN_pb) NN_state = NeuralNetwork.__new__(NeuralNetwork) NN_state.__setstate__(state) self.assertIsNot(NN1, NN_state) NN_mut = NN1.mutate(100) self.assertIsNot(NN1, NN_mut) self.assertNotEqual(NN1, NN_mut) NN_mut = NN1.mutate(0) self.assertIsNot(NN1, NN_mut) self.assertNotEqual(NN1, NN_mut) NN2 = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: inputs, NeuralNetwork.arg_OUTPUT_TARGETS: outputs, NeuralNetwork.arg_FUNCTIONS: functions}) NN_rec = NN1.recombine(NN2)[0] self.assertIsNotNone(NN_rec) f_ids = dict([(_id, None) for _, _id in NN_rec.inputs.values()]) for _f in NN_rec.functions: f_ids[_f.id_name] = _f for _f in NN_rec.functions: for _f_input, (other_output, other_id) in _f.inputs.items(): if other_id not in f_ids: self.assertTrue(False) stack = [f_id for _, f_id in NN_rec.output_mapping.values()] required_ids = set() while stack: f_id = stack.pop() required_ids.add(f_id) f_ = f_ids.get(f_id) if f_ is not None: stack.extend([f_id for _, f_id in f_.inputs.values()]) self.assertSetEqual(required_ids, set(f_ids.keys())) def test_instantiation_Conv2D_Pool2D_Flatten_Dense(self): for i in range(10): batch = 1 _data = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.HEIGHT, 32), (DimNames.WIDTH, 32), (DimNames.CHANNEL, 3))) _target = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.UNITS, 10), )) outputs = {'out0': _target} IOLabel.DS = 'DS' inputs = {IOLabel.DS: (IOLabel.DATA, _data, 'Dataset')} functions = [Conv2D, Pooling2D, Flatten, Dense] NN = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: inputs, NeuralNetwork.arg_OUTPUT_TARGETS: outputs, NeuralNetwork.arg_FUNCTIONS: functions}) self.assertIsNotNone(NN) pb = NN.get_pb() state = NN.__getstate__() f_ids = dict([(_id, None) for _, _id in NN.inputs.values()]) for _f in NN.functions: f_ids[_f.id_name] = _f for _f in NN.functions: for _f_input, (other_output, other_id) in _f.inputs.items(): if other_id not in f_ids: self.assertTrue(False) stack = [f_id for _, f_id in NN.output_mapping.values()] required_ids = set() while stack: f_id = stack.pop() required_ids.add(f_id) f_ = f_ids.get(f_id) if f_ is not None: stack.extend([f_id for _, f_id in f_.inputs.values()]) self.assertSetEqual(required_ids, set(f_ids.keys())) NN_pb = NeuralNetwork.__new__(NeuralNetwork) NN_pb.__setstate__(pb) self.assertIsNot(NN, NN_pb) NN_state = NeuralNetwork.__new__(NeuralNetwork) NN_state.__setstate__(state) self.assertIsNot(NN, NN_state) NN_mut = NN.mutate(100) self.assertIsNot(NN, NN_mut) self.assertNotEqual(NN, NN_mut) NN_mut = NN.mutate(0) self.assertIsNot(NN, NN_mut) self.assertNotEqual(NN, NN_mut) def test_recombination_Dense_Merge(self): for i in range(100): batch = 1 _data = TypeShape(DFloat, Shape((DimNames.BATCH, batch), (DimNames.UNITS, 20))) IOLabel.DS1 = 'DS1' IOLabel.DS2 = 'DS2' inputs = {IOLabel.DS1: (IOLabel.DATA, _data, 'Dataset'), IOLabel.DS2: (IOLabel.DATA, _data, 'Dataset')} outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 10)) outShape1 = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 15)) outputs = {'out0': TypeShape(DFloat, outShape), 'out1': TypeShape(DFloat, outShape1)} functions = [Merge, Dense] NN1 = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: inputs, NeuralNetwork.arg_OUTPUT_TARGETS: outputs, NeuralNetwork.arg_FUNCTIONS: functions, NeuralNetwork.arg_RECOMBINATION_PROBABILITY: 1.0}) self.assertIsNotNone(NN1) NN2 = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: inputs, NeuralNetwork.arg_OUTPUT_TARGETS: outputs, NeuralNetwork.arg_FUNCTIONS: functions, NeuralNetwork.arg_RECOMBINATION_PROBABILITY: 1.0}) self.assertIsNotNone(NN2) NN_rec = NN1.recombine(NN2)[0] f_ids = dict([(_id, None) for _, _id in NN_rec.inputs.values()]) for _f in NN_rec.functions: f_ids[_f.id_name] = _f for _f in NN_rec.functions: for _f_input, (other_output, other_id) in _f.inputs.items(): if other_id not in f_ids: self.assertTrue(False) stack = [f_id for _, f_id in NN_rec.output_mapping.values()] required_ids = set() while stack: f_id = stack.pop() required_ids.add(f_id) f_ = f_ids.get(f_id) if f_ is not None: stack.extend([f_id for _, f_id in f_.inputs.values()]) self.assertSetEqual(required_ids, set(f_ids.keys())) for f in NN_rec.functions: if f.__class__ != Dense: continue kernel = [v for v in f.variables if v.name.endswith('|kernel')][0] label, f_id = f.inputs['DATA_IN'] _f = f_ids[f_id] if _f is not None: self.assertEqual(kernel.shape, (_f.outputs[label].shape[DimNames.UNITS], f.attr[f.arg_OUT_NAMED_TYPE_SHAPES]['DATA_OUT'].shape[DimNames.UNITS])) @unittest.skip('debug') def test_reachable(self): # target = TypeShape(DFloat, Shape((DimNames.BATCH, 1), # (DimNames.UNITS, 20))) input_shape = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.HEIGHT, 32), (DimNames.WIDTH, 32), (DimNames.CHANNEL, 3) )) depth = 8 for i in range(1, 100): # input_shape = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, i))) target = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, i * 10))) print() print(input_shape) print(target) print(NeuralNetwork.reachable(input_nts=input_shape, target_nts=target, max_depth=depth, function_pool={Conv2D, Flatten})) print(list(Dense.possible_output_shapes(input_ntss={IOLabel.DEFAULT: input_shape}, target_output=target, is_reachable= lambda x, y: NeuralNetwork.reachable(x, y, depth - 1, {Dense, Merge}), ) )) pass @unittest.skip('debugging') def test_simple_path(self): ntss = {IOLabel.DEFAULT: TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 23)))} target = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 154))) depth = 5 debug_node = 'debug' before = time.time() for _ in range(1): NeuralNetwork.reachable(next(iter(ntss)), target, depth, {Dense, Merge}) print('Time', time.time() - before) print(NeuralNetwork.reachable(next(iter(ntss)), target, depth, {Dense, Merge})) print(ntss) runs = 10000 fails = 0 for i in range(runs): blueprint = nx.DiGraph() blueprint.add_node(debug_node, ntss=ntss, DataFlowObj=None) out_node, nts_id, nodes = next(NeuralNetwork.simple_path(input_node=debug_node, input_ntss=ntss, output_shape=target, output_label=IOLabel.DEFAULT, blueprint=blueprint, min_depth=0, max_depth=depth, function_pool={Dense, Merge}, ), (None, None, None)) if out_node is None: # print(i, 'Error') fails += 1 # else: # print(i, 'Success') print('percentage failed:', fails / runs) pass @unittest.skip('debugging') def test_func_children(self): ntss = {IOLabel.DEFAULT: TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.HEIGHT, 10), (DimNames.WIDTH, 10), (DimNames.CHANNEL, 2)))} target = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 200) # (DimNames.HEIGHT, 32), # (DimNames.WIDTH, 32), # (DimNames.CHANNEL, 3) )) _f = Flatten for _, out_nts, _ in _f.possible_output_shapes( ntss, target, lambda x, y: NeuralNetwork.reachable(x, y, 0, {Flatten}), 10): print(next(iter(out_nts.values()))) pass ``` #### File: LAMARCK_ML/datasets/interface.py ```python from LAMARCK_ML.architectures import DataFlow from LAMARCK_ML.data_util.attribute import pb2attr from LAMARCK_ML.datasets.Dataset_pb2 import DatasetProto class ResetState(Exception): pass class InvalidBatchSize(Exception): pass class DatasetInterface(DataFlow): arg_NAME = 'name' arg_CLSNAME = 'cls_name' def __init__(self, **kwargs): super(DatasetInterface, self).__init__(**kwargs) self._id_name = kwargs.get(self.arg_NAME, 'None') def get_pb(self, result=None): if not isinstance(result, DatasetProto): result = DatasetProto() result.name_val = self._id_name result.cls_name = self.__class__.__name__ return result def restore_attributes(self, attr: dict): raise NotImplementedError() def __getstate__(self): self.get_pb().SerializeToString() @staticmethod def getClassByName(cls_name: str): stack = [DatasetInterface] while stack: cls = stack.pop(0) if cls.__name__ == cls_name: return cls stack.extend(cls.__subclasses__()) raise Exception("Couldn't find class with name: " + cls_name) def __setstate__(self, state): if isinstance(state, str) or isinstance(state, bytes): _dataset = DatasetProto() _dataset.ParseFromString(state) elif isinstance(state, DatasetProto): _dataset = state else: return cls_name = _dataset.cls_name try: self.__class__ = DatasetInterface.getClassByName(cls_name) except: pass self._id_name = _dataset.name_val attr_d = dict([pb2attr(attr) for attr in _dataset.attr_val]) self.restore_attributes(attr_d) def __next__(self): """ :return: Dictionary (label, data) """ raise NotImplementedError() def __iter__(self): return self def __eq__(self, other): if isinstance(other, self.__class__) and \ self._id_name == other._id_name: return True return False def __hash__(self): return hash(int.from_bytes(self._id_name.encode('utf-8'), byteorder='big')) @property def id_name(self) -> str: return self._id_name @property def inputs(self): return {} pass ``` #### File: LAMARCK_ML/data_util/attribute.py ```python from enum import Enum import numpy as np from LAMARCK_ML.data_util import Shape, BaseType, TypeShape from LAMARCK_ML.data_util.Attribute_pb2 import AttributeProto def value2pb(value, v=None): if v is None: v = AttributeProto.Value() if isinstance(value, int): v.int_val = value elif isinstance(value, float): v.double_val = value elif isinstance(value, bool): v.bool_val = value elif isinstance(value, str): v.string_val = value elif isinstance(value, bytes): v.bytes_val = value elif isinstance(value, Shape): value.get_pb(v.shape_val) elif isinstance(value, TypeShape): value.get_pb(v.nts_val) elif isinstance(value, set): v.set_val.v.extend([value2pb(_v) for _v in value]) elif isinstance(value, list): v.list_val.v.extend([value2pb(_v) for _v in value]) elif isinstance(value, tuple): v.tuple_val.v.extend([value2pb(_v) for _v in value]) elif isinstance(value, dict): # v.dict_val.vs.extend([attr2pb(name=_k, value=_v) for _k, _v in value.items()]) v.dict_val.v.extend([value2pb(kv) for kv in value.items()]) elif isinstance(value, Enum): value2pb(value.value, v=v) elif isinstance(value, np.ndarray): value2pb(value.tolist(), v=v) v.list_val.numpy = True # elif inspect.isclass(value) and issubclass(value, BaseType): elif isinstance(value, type) and issubclass(value, BaseType): value.get_pb(v.type_val) elif value is not None: v.bytes_val = bytes(value) return v def attr2pb(name, value): attr = AttributeProto() attr.name = name value2pb(value, attr.v) return attr def pb2val(pb): whichone = pb.WhichOneof("v") if whichone == 'shape_val': shape_ = Shape.__new__(Shape) shape_.__setstate__(getattr(pb, whichone)) return shape_ elif whichone == 'type_val': return BaseType.pb2cls(getattr(pb, whichone))[0] elif whichone == 'list_val': _list = [pb2val(_pb) for _pb in pb.list_val.v] return np.asarray(_list) if getattr(pb.list_val, 'numpy', False) else _list elif whichone == 'set_val': return set([pb2val(_pb) for _pb in pb.set_val.v]) elif whichone == 'tuple_val': return tuple([pb2val(_pb) for _pb in pb.tuple_val.v]) elif whichone == 'nts_val': return TypeShape.from_pb(pb.nts_val) elif whichone == 'dict_val': # return dict([(elem.name, pb2val(elem.v)) for elem in pb.dict_val.vs]) return dict([pb2val(elem) for elem in pb.dict_val.v]) else: attr = str(whichone) if attr != 'None': return getattr(pb, attr) return None def pb2attr(attr): return attr.name, pb2val(attr.v) ``` #### File: LAMARCK_ML/data_util/dataType.py ```python from LAMARCK_ML.data_util.DType_pb2 import \ DInvalid as DInvalidProto, \ DBinary as DBinaryProto, \ DUInt as DUIntProto, \ DInt as DIntProto, \ DFloat as DFloatProto, \ DComplex as DComplexProto, \ DBool as DBoolProto, \ DString as DStringProto, \ DTypeProto class InvalidDatatype(Exception): pass class BaseType(type): attr = 'bytes_val' pb = DInvalidProto bits = None def __eq__(self, other): if not isinstance(other, self.__class__): return False return True def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.__class__) @staticmethod def pb2cls(pb_type, _class=None): if _class is None: _class = BaseType for _subclass in _class.__subclasses__(_class): if _subclass.pb == pb_type.type_val and \ _subclass.bits == getattr(pb_type, 'bits_val', None): return _subclass, True else: _sc, found = BaseType.pb2cls(pb_type, _subclass) if found: return _sc, found return None, False @staticmethod def str2cls(str_type, _class=None): if _class is None: _class = BaseType for _subclass in _class.__subclasses__(_class): if _subclass.__name__ == str_type: return _subclass, True else: _sc, found = BaseType.str2cls(str_type, _subclass) if found: return _sc, found return None, False @classmethod def get_pb(cls, result=None): if not isinstance(result, DTypeProto): result = DTypeProto() result.type_val = cls.pb if cls.bits is not None: result.bits_val = cls.bits return result @classmethod def __str__(cls): return cls.__name__ + ':' + str(cls.bits) pass class DHalf(BaseType): attr = 'half_val' pb = DFloatProto bits = 16 class DFloat(BaseType): attr = 'float_val' pb = DFloatProto bits = 32 class DDouble(BaseType): attr = 'double_val' pb = DFloatProto bits = 64 class DInt8(BaseType): attr = 'int_val' pb = DIntProto bits = 8 class DInt16(BaseType): attr = 'int_val' pb = DIntProto bits = 16 class DInt32(BaseType): attr = 'int_val' pb = DIntProto bits = 32 class DInt64(BaseType): attr = 'int64_val' pb = DIntProto bits = 64 class DString(BaseType): attr = 'string_val' pb = DStringProto class DBool(BaseType): attr = 'bool_val' pb = DBoolProto bits = 1 class DComplex64(BaseType): attr = 'scomplex_val' pb = DComplexProto bits = 64 class DComplex128(BaseType): attr = 'dcomplex_val' pb = DComplexProto bits = 128 class DUInt8(BaseType): attr = 'uint32_val' pb = DUIntProto bits = 8 class DUInt16(BaseType): attr = 'uint32_val' pb = DUIntProto bits = 16 class DUInt32(BaseType): attr = 'uint32_val' pb = DUIntProto bits = 32 class DUInt64(BaseType): attr = 'uint64_val' pb = DUIntProto bits = 64 class DBinary(BaseType): attr = 'bytes_val' pb = DBinaryProto bits = None ``` #### File: individuals/implementations/classifierIndividualACDG.py ```python from LAMARCK_ML.architectures.functions import Dense from LAMARCK_ML.architectures.losses import Reduce, LossInterface from LAMARCK_ML.architectures.losses import SoftmaxCrossEntropyWithLogits, MeanSquaredError from LAMARCK_ML.architectures.neuralNetwork import NeuralNetwork from LAMARCK_ML.architectures.functions import Softmax from LAMARCK_ML.data_util import IOLabel, DimNames from LAMARCK_ML.individuals.implementations.networkIndividualInterface import NetworkIndividualInterface from LAMARCK_ML.reproduction.methods import Mutation, Recombination class ClassifierIndividualACDG(NetworkIndividualInterface, Mutation.Interface, Recombination.Interface): arg_MAX_NN_DEPTH = 'max_depth' arg_MIN_NN_DEPTH = 'min_depth' arg_MAX_NN_BRANCH = 'max_branch' arg_NN_FUNCTIONS = 'functions' def __init__(self, **kwargs): super(ClassifierIndividualACDG, self).__init__(**kwargs) if len(self._networks) > 1: raise Exception('Expected 1 or 0 networks got: ' + str(len(self._networks))) elif len(self._networks) == 1: self.network = self._networks[0] else: _input = (IOLabel.DATA, *self._data_nts[IOLabel.DATA]) _output = {IOLabel.TARGET: self._data_nts[IOLabel.TARGET][0]} _input = {'NN_DATA': _input} self.network = NeuralNetwork(**{ NeuralNetwork.arg_INPUTS: _input, NeuralNetwork.arg_OUTPUT_TARGETS: _output, NeuralNetwork.arg_FUNCTIONS: kwargs.get(self.arg_NN_FUNCTIONS, [Dense]), NeuralNetwork.arg_MAX_DEPTH: kwargs.get(self.arg_MAX_NN_DEPTH, 7), NeuralNetwork.arg_MIN_DEPTH: kwargs.get(self.arg_MIN_NN_DEPTH, 2), NeuralNetwork.arg_MAX_BRANCH: kwargs.get(self.arg_MAX_NN_BRANCH, 1) }) self._networks.append(self.network) if len(self._losses) != 0: raise Exception('Expected no loss!') _output = self._data_nts[IOLabel.TARGET][0] _output_units = _output.shape[DimNames.UNITS] if _output_units == 1: self.loss = MeanSquaredError(**{ LossInterface.arg_REDUCE: Reduce.MEAN, }) else: self.loss = SoftmaxCrossEntropyWithLogits(**{ LossInterface.arg_REDUCE: Reduce.MEAN }) self._losses.append(self.loss) def _cls_setstate(self, _individual): super(ClassifierIndividualACDG, self)._cls_setstate(_individual) if len(self._networks) != 1: raise Exception('Restored individual has an invalid number of networks: ' + str(len(self._networks))) self.network = self._networks[0] if len(self._losses) != 1: raise Exception('Restored individual has an invalid number of losses: ' + str(len(self._losses))) self.loss = self._losses[0] def __eq__(self, other): if (super(ClassifierIndividualACDG, self).__eq__(other) and self.loss == other.loss and self.network == other.network ): return True return False def mutate(self, prob): result = ClassifierIndividualACDG.__new__(ClassifierIndividualACDG) pb = self.get_pb() result.__setstate__(pb) result.network = self.network.mutate(prob=prob)[0] result._networks = [result.network] result._id_name = self.getNewName() return [result] def recombine(self, other): result = ClassifierIndividualACDG.__new__(ClassifierIndividualACDG) pb = self.get_pb() result.__setstate__(pb) result.network = self.network.recombine(other.network)[0] result._networks = [result.network] result._id_name = self.getNewName() return [result] def norm(self, other): return self.network.norm(other.network) def update_state(self, *args, **kwargs): self.network.update_state(*args, **kwargs) def build_instance(self, nn_framework): nn_framework.init_model({IOLabel.DATA}, {IOLabel.TARGET}) f_id2obj = dict() for f in self.network.functions: nn_framework.add_function(f) f_id2obj[f.id_name] = f nn_framework.set_train_parameters(**{ nn_framework.arg_LOSS: self.loss.__class__, }) softmax_out = list() for label, f_id in self.network.output_mapping.values(): f_obj = f_id2obj[f_id] softmax = Softmax(**Softmax.generateParameters( input_dict={IOLabel.SOFTMAX_IN: (label, f_obj.outputs, f_id)}, expected_outputs={IOLabel.SOFTMAX_OUT: f_obj.outputs[label]}, )[0][0]) nn_framework.add_function(softmax) softmax_out.append((IOLabel.SOFTMAX_OUT, softmax.id_name)) nn_framework.finalize_model(output_ids=softmax_out) def train_instance(self, nn_framework): return nn_framework.train() ``` #### File: individuals/implementations/weightAgnosticIndividual.py ```python from itertools import product from LAMARCK_ML.data_util import IOLabel from LAMARCK_ML.reproduction.methods import Mutation, Recombination, RandomStep from LAMARCK_ML.architectures.losses import Reduce, LossInterface from LAMARCK_ML.architectures.losses import SoftmaxCrossEntropyWithLogits, MeanSquaredError from LAMARCK_ML.individuals.implementations.networkIndividualInterface import NetworkIndividualInterface from LAMARCK_ML.individuals.implementations.NetworkIndividual_pb2 import NetworkIndividualProto from LAMARCK_ML.architectures.weightAgnosticNN import WeightAgnosticNeuralNetwork from LAMARCK_ML.data_util.attribute import attr2pb, pb2attr from LAMARCK_ML.data_util import TypeShape, Shape, DimNames from LAMARCK_ML.architectures.functions import Perceptron from LAMARCK_ML.metrics import Accuracy class WeightAgnosticIndividual(NetworkIndividualInterface, Recombination.Interface, Mutation.Interface, RandomStep.Interface, Accuracy.Interface, ): arg_WEIGHTS = 'test_weights' arg_NODES = 'nodes' arg_INITIAL_DEPTH = 'initial_depth' def __init__(self, **kwargs): super(WeightAgnosticIndividual, self).__init__(**kwargs) if len(self._networks) > 1: raise Exception('Expected 1 or 0 networks got: ' + str(len(self._networks))) elif len(self._networks) == 1: self.network = self._networks[0] else: _input = self._data_nts[IOLabel.DATA] _output = self._data_nts[IOLabel.TARGET] in_name = _input[1] shapes = list() batch = _input[0].shape[DimNames.BATCH] has_batch = False dtype = _input[0].dtype for dim in _input[0].shape.dim: if dim.name != DimNames.BATCH: shapes.append(list(range(dim.size))) else: has_batch = True _input = dict() for p in product(*shapes): key = ':'.join([str(i) for i in p]) _input[key] = (IOLabel.DATA, TypeShape(dtype, Shape((DimNames.UNITS, 1) if not has_batch else (DimNames.BATCH, batch), (DimNames.UNITS, 1))), in_name + '_' + key) shapes = list() batch = _output[0].shape[DimNames.BATCH] has_batch = False dtype = _output[0].dtype for dim in _output[0].shape.dim: if dim.name != DimNames.BATCH: shapes.append(list(range(dim.size))) else: has_batch = True _output = dict() for p in product(*shapes): _output[':'.join([str(i) for i in p])] = \ TypeShape(dtype, Shape((DimNames.UNITS, 1) if not has_batch else (DimNames.BATCH, batch), (DimNames.UNITS, 1))) self.network = WeightAgnosticNeuralNetwork(**{ WeightAgnosticNeuralNetwork.arg_INPUTS: _input, WeightAgnosticNeuralNetwork.arg_OUTPUT_TARGETS: _output, WeightAgnosticNeuralNetwork.arg_FUNCTIONS: kwargs.get(self.arg_WEIGHTS, [Perceptron]), WeightAgnosticNeuralNetwork.arg_INITIAL_DEPTH: kwargs.get(self.arg_INITIAL_DEPTH, 1), }) self._networks.append(self.network) weights = kwargs.get(self.arg_WEIGHTS) if weights is None or not (isinstance(weights, list) and all([isinstance(w, float) for w in weights])): weights = [i - 2 for i in range(5)] self.attr[self.arg_WEIGHTS] = weights if len(self._losses) != 0: raise Exception('Expected no loss!') _output = self._data_nts[IOLabel.TARGET][0] _output_units = _output.shape[DimNames.UNITS] if _output_units == 1: self.loss = MeanSquaredError(**{ LossInterface.arg_REDUCE: Reduce.MEAN, }) else: self.loss = SoftmaxCrossEntropyWithLogits(**{ LossInterface.arg_REDUCE: Reduce.MEAN }) self._losses.append(self.loss) def __sub__(self, other): if not isinstance(other, self.__class__): return -1 return self.network - other.network def _cls_setstate(self, state): if isinstance(state, str) or isinstance(state, bytes): _individual = NetworkIndividualProto() _individual.ParseFromString(state) elif isinstance(state, NetworkIndividualProto): _individual = state else: return self._networks = list() for network in _individual.networks: _obj = WeightAgnosticNeuralNetwork.__new__(WeightAgnosticNeuralNetwork) _obj.__setstate__(network) self._networks.append(_obj) self._data_nts = dict([(d.label, (TypeShape.from_pb(d.tsp), d.id_name)) for d in _individual.data_sources]) self._losses = list() for loss in _individual.losses: _obj = LossInterface.__new__(LossInterface) _obj.__setstate__(loss) self._losses.append(_obj) super(NetworkIndividualInterface, self)._cls_setstate(_individual.baseIndividual) if len(self._networks) != 1: raise Exception('Restored individual has an invalid number of networks: ' + str(len(self._networks))) self.network = self._networks[0] if len(self._losses) != 1: raise Exception('Restored individual has an invalid number of losses: ' + str(len(self._losses))) self.loss = self._losses[0] def __eq__(self, other): if (super(WeightAgnosticIndividual, self).__eq__(other) and self.loss == other.loss and self.network == other.network ): return True return False def norm(self, other): if not isinstance(other, self.__class__): return 0 return self.network.norm(other.network) def update_state(self, *args, **kwargs): self.network.update_state(*args, **kwargs) def mutate(self, prob): result = WeightAgnosticIndividual.__new__(WeightAgnosticIndividual) result.metrics = dict() result.attr = dict([pb2attr(attr2pb(key, value)) for key, value in self.attr.items()]) result._data_nts = {label: (nts.__copy__(), id_name) for label, (nts, id_name) in self._data_nts.items()} result._losses = list(self._losses) result.loss = self.loss result._networks = self.network.mutate(prob=prob) result.network = result._networks[0] result._id_name = self.getNewName() return [result] def step(self, step_size): result = WeightAgnosticIndividual.__new__(WeightAgnosticIndividual) result.metrics = dict() result.attr = dict([pb2attr(attr2pb(key, value)) for key, value in self.attr.items()]) result._data_nts = {label: (nts.__copy__(), id_name) for label, (nts, id_name) in self._data_nts.items()} result._losses = list(self._losses) result.loss = self.loss result._networks = self.network.step(step_size=step_size) result.network = result._networks[0] result._id_name = self.getNewName() return [result] def recombine(self, other): result = WeightAgnosticIndividual.__new__(WeightAgnosticIndividual) result.metrics = dict() result.attr = dict([pb2attr(attr2pb(key, value)) for key, value in self.attr.items()]) result._data_nts = {label: (nts.__copy__(), id_name) for label, (nts, id_name) in self._data_nts.items()} result._losses = list(self._losses) result.loss = self.loss result._networks = self.network.recombine(other.network) result.network = result._networks[0] result._id_name = self.getNewName() return [result] def build_instance(self, nn_framework): nn_framework.init_model() for f in self.network.functions: nn_framework.add_function(f) nn_framework.set_train_parameters(**{ nn_framework.arg_LOSS: self.loss.__class__, }) nn_framework.finalize_model(output_ids=self.network.output_mapping.values()) # nn_framework.train() # This individual doesn't need to be trained def train_instance(self, nn_framework): return dict() def accuracy(self, nn_framework): acc = 0 weights = self.attr.get(self.arg_WEIGHTS, []) for w in weights: nn_framework.set_weights(**{ f.id_name: w for f in self.network.functions }) acc += nn_framework.accuracy(self) return acc / len(weights) ``` #### File: LAMARCK_ML/metrics/interface.py ```python class MetricInterface(object): ID = 'NONE' def __init__(self, **kwargs): pass def evaluate(self, individual, framework): raise NotImplementedError("Function evaluateIndividual has to be inplemented!") @staticmethod def getMetricByName(name='NONE'): stack = [MetricInterface] while stack: cls = stack.pop(0) if cls.__name__ == name: return cls stack.extend(cls.__subclasses__()) raise Exception("Couldn't find class with name: " + name) ``` #### File: LAMARCK_ML/nn_framework/nvidia_tensorflow.py ```python import os from typing import Dict, List, Tuple, Set from deprecated import deprecated from LAMARCK_ML.architectures.functions import * from LAMARCK_ML.architectures.losses import * from LAMARCK_ML.architectures.variables.initializer import * from LAMARCK_ML.architectures.variables.regularisation import * from LAMARCK_ML.architectures.functions.activations import Activations from LAMARCK_ML.data_util import DimNames, IOLabel, TypeShape from LAMARCK_ML.data_util.dataType import * from LAMARCK_ML.individuals import IndividualInterface from LAMARCK_ML.metrics import Accuracy, TimeMetric, MemoryMetric, FlOps, Parameters from LAMARCK_ML.nn_framework import NeuralNetworkFrameworkInterface os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine.input_spec import InputSpec from tensorflow.python.ops import nn_ops from tensorflow.python.keras.utils import conv_utils class NVIDIATensorFlow(NeuralNetworkFrameworkInterface, Accuracy.Interface, TimeMetric.Interface, MemoryMetric.Interface, FlOps.Interface, Parameters.Interface): arg_SESSION_CFG = 'session_cfg' arg_BATCH_SIZE = 'batch_size' arg_TMP_FILE = 'tmp_file' arg_EPOCHS = 'epochs' mapping_dtype = { DHalf: tf.float16, DFloat: tf.float32, DDouble: tf.float64, DInt8: tf.int8, DInt16: tf.int16, DInt32: tf.int32, DInt64: tf.int64, DUInt8: tf.uint8, DUInt16: tf.uint16, DUInt32: tf.uint32, DUInt64: tf.uint64, } mapping_initializer = { GlorotUniform: tf.keras.initializers.glorot_uniform, GlorotNormal: tf.keras.initializers.glorot_normal, Constant: tf.keras.initializers.constant, Zeros: tf.keras.initializers.zeros, Ones: tf.keras.initializers.ones, } mapping_regularizer = { NoRegularisation: None, L1: tf.keras.regularizers.l1, L2: tf.keras.regularizers.l2, L1L2: tf.keras.regularizers.l1_l2, } mapping_loss = { SoftmaxCrossEntropyWithLogits: tf.keras.losses.CategoricalCrossentropy, SparseSoftmaxCrossEntropyWithLogits: tf.keras.losses.SparseCategoricalCrossentropy, BinaryCrossentropy: tf.keras.losses.BinaryCrossentropy, MeanSquaredError: tf.keras.losses.MeanSquaredError, MeanAbsoluteError: tf.keras.losses.MeanAbsoluteError, } nativ_activations = { Activations.sigmoid: tf.keras.activations.sigmoid, Activations.tanh: tf.keras.activations.tanh, Activations.linear: tf.keras.activations.linear, Activations.relu: tf.keras.activations.relu, Activations.selu: tf.keras.activations.selu, Activations.elu: tf.keras.activations.elu, Activations.exponential: tf.keras.activations.exponential, Activations.hard_sigmoid: tf.keras.activations.hard_sigmoid, Activations.softmax: tf.keras.activations.softmax, Activations.softplus: tf.keras.activations.softplus, Activations.softsign: tf.keras.activations.softsign, } def __init__(self, **kwargs): super(NVIDIATensorFlow, self).__init__(**kwargs) self._sess_cfg = kwargs.get(self.arg_SESSION_CFG) self.batch_size = kwargs.get(self.arg_BATCH_SIZE, 32) self.tmp_file = kwargs.get(self.arg_TMP_FILE, 'state.ckpt') self.epochs = kwargs.get(self.arg_EPOCHS, 10) self._memory = None self._time = None self._flops = None self._parameters = None self._id2tfTensor = dict() self._id2tfObj = dict() self._inputs = list() self._outputs = list() self._train_params = dict() self._scheduled_functions = list() self._model = None self._sess = None self.QConv2D__ = self.Conv2D__ self.QPooling2D__ = self.Pooling2D__ class C_Dense(tf.keras.layers.Dense): def __init__(self, kernel_trainable=True, bias_trainable=True, **kwargs): super(NVIDIATensorFlow.C_Dense, self).__init__(**kwargs) self.kernel_trainable = kernel_trainable self.bias_trainable = bias_trainable def build(self, input_shape): dtype = dtypes.as_dtype(self.dtype or K.floatx()) if not (dtype.is_floating or dtype.is_complex): raise TypeError('Unable to build `Dense` layer with non-floating point ' 'dtype %s' % (dtype,)) input_shape = tensor_shape.TensorShape(input_shape) if tensor_shape.dimension_value(input_shape[-1]) is None: raise ValueError('The last dimension of the inputs to `Dense` ' 'should be defined. Found `None`.') last_dim = tensor_shape.dimension_value(input_shape[-1]) self.input_spec = InputSpec(min_ndim=2, axes={-1: last_dim}) self.kernel = self.add_weight( 'kernel', shape=[last_dim, self.units], initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, dtype=self.dtype, trainable=self.kernel_trainable) if self.use_bias: self.bias = self.add_weight( 'bias', shape=[self.units, ], initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, dtype=self.dtype, trainable=self.bias_trainable) else: self.bias = None self.built = True @deprecated(version='0.2') def setup_individual(self, individual: IndividualInterface): self._memory = None self._time = None self._flops = None self._parameters = None self._sess = tf.compat.v1.Session(config=self._sess_cfg) K.set_session(self._sess) id2tfTensor = dict() id2tfObj = dict() self._inputs = list() for ds in self.data_sets: for output_id_name, output in ds.outputs.items(): if output_id_name != IOLabel.DATA: continue shape = tuple([dim.size for dim in output.shape.dim if dim.name != DimNames.BATCH]) batch_size = output.shape[DimNames.BATCH] name = ds.id_name + '_' + output_id_name dtype = self.mapping_dtype.get(output.dtype) tfObj = tf.keras.Input(shape=shape, batch_size=batch_size, name=name, dtype=dtype) id2tfTensor[ds.id_name] = {**id2tfTensor.get(ds.id_name, dict()), **{output_id_name: tfObj}} self._inputs.append(tfObj) functionStack = [] for network in individual._networks: functionStack.extend(network.functions) while functionStack: _func = functionStack.pop(0) all_found = True func_inputs = dict() for _input, out_mapping in _func.inputs.items(): out_dict = id2tfTensor.get(out_mapping[1]) if out_dict is None or out_dict.get(out_mapping[0]) is None: all_found = False break func_inputs[_input] = out_dict.get(out_mapping[0]) if not all_found: functionStack.append(_func) continue id2tfTensor[_func.id_name], id2tfObj[_func.id_name] = \ getattr(self, _func.__class__.__name__ + '__')(_func, **func_inputs) self._outputs = list() for label, id_name in individual.network.output_mapping.values(): out_dict = id2tfTensor.get(id_name) if out_dict is not None and out_dict.get(label) is not None: tfObj = out_dict.get(label) tfObj = tf.keras.layers.Softmax()(tfObj) self._outputs.append(tfObj) self._model = tf.keras.Model(inputs=self._inputs, outputs=self._outputs) self._model.compile( optimizer=tf.keras.optimizers.Adam(), loss=self.mapping_loss.get(individual.loss.__class__)(), metrics=['accuracy'] ) self.data_sets[0]('train') valid_exists = self.data_sets[0].valid_X is not None and self.data_sets[0].valid_Y is not None self._model.fit(**{'x': self.data_sets[0].data_X, 'y': self.data_sets[0].data_Y, 'batch_size': self.batch_size, 'validation_data': (self.data_sets[0].valid_X, self.data_sets[0].valid_Y) if valid_exists else None, 'epochs': self.epochs, 'verbose': 0, 'callbacks': [tf.keras.callbacks.ModelCheckpoint(save_weights_only=True, save_best_only=True, filepath=self.tmp_file, verbose=0), tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) ] if valid_exists else None, }) if valid_exists: self._model.load_weights(self.tmp_file) functionStack = [] for network in individual._networks: functionStack.extend(network.functions) state = dict() for f in functionStack: tfObj, v_names = id2tfObj[f.id_name] variable_names = tfObj.variables state[f.id_name] = dict([(v_names[variable.name], value) for variable, value in zip(variable_names, K.batch_get_value(variable_names))]) state[NeuralNetworkFrameworkInterface.arg_CMP] = self.cmp return state @deprecated(version='0.2') def reset_framework(self): self._memory = None self._time = None self._flops = None self._parameters = None del self._model K.clear_session() tf.compat.v1.reset_default_graph() def init_model(self, dataset_input_data: Set[str], dataset_target_data: Set[str]): self.reset() self._sess = tf.compat.v1.Session(config=self._sess_cfg) K.set_session(self._sess) for ds in self.data_sets: for output_id_name, output in ds.outputs.items(): if not output_id_name in dataset_input_data: continue shape = tuple([dim.size for dim in output.shape.dim if dim.name != DimNames.BATCH]) batch_size = output.shape[DimNames.BATCH] name = ds.id_name + '_' + output_id_name dtype = self.mapping_dtype.get(output.dtype) tfObj = tf.keras.Input(shape=shape, batch_size=batch_size, name=name, dtype=dtype) self._id2tfTensor[ds.id_name] = {**self._id2tfTensor.get(ds.id_name, dict()), **{output_id_name: tfObj}} self._inputs.append(tfObj) def finalize_model(self, output_ids: List[Tuple[str, str]]): while self._scheduled_functions: _func = self._scheduled_functions.pop(0) all_found = True func_inputs = dict() for _input, (out_label, obj_id) in _func.inputs.items(): out_dict = self._id2tfTensor.get(obj_id) if out_dict is None or out_dict.get(out_label) is None: all_found = False break func_inputs[_input] = out_dict.get(out_label) if not all_found: self._scheduled_functions.append(_func) continue self._id2tfTensor[_func.id_name], self._id2tfObj[_func.id_name] = \ getattr(self, _func.__class__.__name__ + '__')(_func, **func_inputs) for label, id_name in output_ids: out_dict = self._id2tfTensor.get(id_name) if out_dict is not None and out_dict.get(label) is not None: t = out_dict.get(label) self._outputs.append(out_dict.get(label)) self._model = tf.keras.Model(inputs=self._inputs, outputs=self._outputs) self._model.compile(**self._train_params) def set_weights(self, weights: Dict): for id, value in weights.items(): try: self._id2tfObj.get(id).set_weights(value) except Exception as e: print('Failed to set weights for ' + id + ': ' + str(e)) def set_train_parameters(self, **kwargs): self._train_params = { 'optimizer': tf.keras.optimizers.Adam(), 'loss': self.mapping_loss.get(kwargs.get(self.arg_LOSS, tf.keras.losses.SparseCategoricalCrossentropy))(), 'metrics': ['accuracy'], } def add_function(self, function: Function): self._scheduled_functions.append(function) for _func in self._scheduled_functions: all_found = True func_inputs = dict() for _input, (out_label, obj_id) in _func.inputs.items(): out_dict = self._id2tfTensor.get(obj_id) if out_dict is None or out_dict.get(out_label) is None: all_found = False break func_inputs[_input] = out_dict.get(out_label) if not all_found: continue self._id2tfTensor[_func.id_name], self._id2tfObj[_func.id_name] = \ getattr(self, _func.__class__.__name__ + '__')(_func, **func_inputs) self._scheduled_functions.remove(_func) def train(self) -> Dict: for data_set in self.data_sets: data_set('train') valid_exists = all(data_set.valid_X is not None and data_set.valid_Y is not None for data_set in self.data_sets) self._model.fit(**{ 'x': self.data_sets[0].data_X, 'y': self.data_sets[0].data_Y, 'batch_size': self.batch_size, 'validation_data': (self.data_sets[0].valid_X, self.data_sets[0].valid_Y) if valid_exists else None, 'epochs': self.epochs, 'verbose': 0, 'callbacks': [tf.keras.callbacks.ModelCheckpoint(save_weights_only=True, save_best_only=True, filepath=self.tmp_file, verbose=0), tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) ] if valid_exists else None, }) if valid_exists: self._model.load_weights(self.tmp_file) state = dict() for f, (tfObj, vname_dict) in self._id2tfObj.items(): variables = tfObj.variables state[f] = {vname_dict[variable.name]: value for variable, value in zip(variables, K.batch_get_value(variables))} state[NeuralNetworkFrameworkInterface.arg_CMP] = self.cmp return state def reset(self): self._memory = None self._time = None self._flops = None self._parameters = None self._sess = None self._id2tfTensor = dict() self._id2tfObj = dict() self._inputs = list() self._outputs = list() self._train_params = dict() self._scheduled_functions = list() if hasattr(self, '_model'): del self._model tf.compat.v1.reset_default_graph() K.clear_session() def _build_activation(self, activation, x): if activation is Activations.sign: return tf.math.sign(x) elif activation is Activations.sine: return tf.math.sin(x) elif activation is Activations.cosine: return tf.math.cos(x) elif activation is Activations.absolute: return tf.math.abs(x) elif activation is Activations.inverse: return tf.math.reciprocal(x) elif activation is Activations.gaussian: print('Gaussian activation is currently not implemented: using linear') return x return x def Dense__(self, func, **kwargs): kernel = [var for var in func.variables if var.name.endswith('kernel')][0] bias = [var for var in func.variables if var.name.endswith('bias')][0] units = func.attr.get(func.arg_UNITS) kernel_init = self.mapping_initializer.get(kernel.initializer.__class__)() if kernel.value is not None: kernel_init = tf.keras.initializers.Constant(value=kernel.value) bias_init = self.mapping_initializer.get(bias.initializer.__class__)() if bias.value is not None: bias_init = tf.keras.initializers.Constant(value=bias.value) kernel_reg = self.mapping_regularizer.get(kernel.regularisation.__class__) bias_reg = self.mapping_regularizer.get(bias.regularisation.__class__) f_activation = func.attr.get(func.arg_ACTIVATION) if f_activation is None: activation = tf.keras.activations.relu else: activation = self.nativ_activations.get(f_activation) tfObj = NVIDIATensorFlow.C_Dense( units=units, # activation=tf.keras.activations.relu, activation=activation, use_bias=True, kernel_initializer=kernel_init, bias_initializer=bias_init, kernel_regularizer=kernel_reg() if kernel_reg is not None else None, bias_regularizer=bias_reg() if bias_reg is not None else None, kernel_trainable=kernel.trainable, bias_trainable=bias.trainable, name=func.id_name, ) outNTS = next(iter(func.outputs)) func_input = next(iter(kwargs.values())) # TODO: only working with units not images tmp = tfObj(func_input) if activation is None and f_activation is not None: tmp = self._build_activation(f_activation, tmp) return {outNTS: tmp}, (tfObj, dict([(v.name, 'Dense|kernel' if 'kernel' in v.name else 'Dense|bias') for v in tfObj.variables])) def BiasLessDense__(self, func, **kwargs): kernel = [var for var in func.variables if var.name.endswith('kernel')][0] units = func.attr.get(func.arg_UNITS) kernel_init = self.mapping_initializer.get(kernel.initializer.__class__)() if kernel.value is not None: kernel_init = tf.keras.initializers.Constant(value=kernel.value) kernel_reg = self.mapping_regularizer.get(kernel.regularisation.__class__) f_activation = func.attr.get(func.arg_ACTIVATION) if f_activation is None: activation = tf.keras.activations.relu else: activation = self.nativ_activations.get(f_activation) tfObj = NVIDIATensorFlow.C_Dense( units=units, activation=activation, use_bias=False, kernel_initializer=kernel_init, kernel_regularizer=kernel_reg(l=0.001) if kernel_reg is not None else tf.keras.regularizers.l2(l=0.001), kernel_trainable=kernel.trainable, name=func.id_name, ) outNTS = next(iter(func.outputs)) func_input = next(iter(kwargs.values())) tmp = tfObj(func_input) if activation is None and f_activation is not None: tmp = self._build_activation(f_activation, tmp) return {outNTS: tmp}, (tfObj, {v.name: 'BiasLessDense|kernel' for v in tfObj.variables if 'kernel' in v.name}) def Merge__(self, func, **kwargs): first = kwargs.get(func.inputLabels[0]) second = kwargs.get(func.inputLabels[1]) outNTS_id, outNTS = next(iter(func.outputs.items())) axis = [i for i, d in enumerate(outNTS.shape.dim) if d.name == DimNames.UNITS or d.name == DimNames.CHANNEL][0] tfObj = tf.keras.layers.Concatenate(axis=axis, name=func.id_name.replace(':', '_'), ) return {outNTS_id: tfObj([first, second])}, (tfObj, dict()) def Conv2D__(self, func, **kwargs): class C_Conv2D(tf.keras.layers.Conv2D): def __init__(self, kernel_trainable=True, bias_trainable=True, **kwargs): super(C_Conv2D, self).__init__(**kwargs) self.kernel_trainable = kernel_trainable self.bias_trainable = bias_trainable def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape.dims[channel_axis].value is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = int(input_shape[channel_axis]) kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_weight( name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=self.kernel_trainable, dtype=self.dtype) if self.use_bias: self.bias = self.add_weight( name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=self.bias_trainable, dtype=self.dtype) else: self.bias = None self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) if self.padding == 'causal': op_padding = 'valid' else: op_padding = self.padding if not isinstance(op_padding, (list, tuple)): op_padding = op_padding.upper() self._convolution_op = nn_ops.Convolution( input_shape, filter_shape=self.kernel.shape, dilation_rate=self.dilation_rate, strides=self.strides, padding=op_padding, data_format=conv_utils.convert_data_format(self.data_format, self.rank + 2)) self.built = True kernel = [var for var in func.variables if var.name.endswith('kernel')][0] bias = [var for var in func.variables if var.name.endswith('bias')][0] kernel_init = self.mapping_initializer.get(kernel.initializer.__class__)() if kernel.value is not None: kernel_init = tf.keras.initializers.Constant(value=kernel.value) bias_init = self.mapping_initializer.get(bias.initializer.__class__)() if bias.value is not None: bias_init = tf.keras.initializers.Constant(value=bias.value) kernel_reg = self.mapping_regularizer.get(kernel.regularisation.__class__) bias_reg = self.mapping_regularizer.get(bias.regularisation.__class__) f_activation = func.attr.get(func.arg_ACTIVATION) if f_activation is None: activation = tf.keras.activations.relu else: activation = self.nativ_activations.get(f_activation) tfObj = C_Conv2D(filters=func.attr.get(func.arg_FILTER), kernel_size=(func.attr.get(func.arg_KERNEL_HEIGHT), func.attr.get(func.arg_KERNEL_WIDTH)), strides=(func.attr.get(func.arg_STRIDE_HEIGHT), func.attr.get(func.arg_STRIDE_WIDTH)), padding=func.attr.get(func.arg_PADDING), use_bias=True, kernel_initializer=kernel_init, bias_initializer=bias_init, kernel_regularizer=kernel_reg, bias_regularizer=bias_reg, kernel_trainable=kernel.trainable, bias_trainable=bias.trainable, # activation=tf.keras.activations.relu, activation=activation, data_format='channels_last', name=func.id_name, ) outNTS = next(iter(func.outputs)) func_input = next(iter(kwargs.values())) tmp = tfObj(func_input) if activation is None and f_activation is not None: tmp = self._build_activation(f_activation, tmp) return {outNTS: tmp}, (tfObj, dict( [(v.name, func.__class__.__name__ + '|kernel' if 'kernel' in v.name else func.__class__.__name__ + '|bias') for v in tfObj.variables])) def Pooling2D__(self, func, **kwargs): class C_MinPooling2D(tf.keras.layers.MaxPooling2D): def pooling_function(inputs, pool_size, strides, padding, data_format): return -K.pool2d(-inputs, pool_size, strides, padding, data_format, pool_mode='max') type2tfObj = { Pooling2D.PoolingType.MIN.value: C_MinPooling2D, Pooling2D.PoolingType.MAX.value: tf.keras.layers.MaxPooling2D, Pooling2D.PoolingType.MEAN.value: tf.keras.layers.AveragePooling2D, } tfObj = type2tfObj.get(func.attr.get(Pooling2D.arg_POOLING_TYPE))( pool_size=(func.attr.get(Pooling2D.arg_POOLING_HEIGHT), func.attr.get(Pooling2D.arg_POOLING_WIDTH)), strides=(func.attr.get(Pooling2D.arg_STRIDE_HEIGHT), func.attr.get(Pooling2D.arg_STRIDE_WIDTH)), padding=func.attr.get(Pooling2D.arg_PADDING), data_format='channels_last', name=func.id_name, ) outNTS = next(iter(func.outputs)) func_input = next(iter(kwargs.values())) return {outNTS: tfObj(func_input)}, (tfObj, list()) def Flatten__(self, func, **kwargs): tfObj = tf.keras.layers.Flatten() outNTS = next(iter(func.outputs)) func_inputs = next(iter(kwargs.values())) return {outNTS: tfObj(func_inputs)}, (tfObj, list()) def Softmax__(self, func, **kwargs): tfObj = tf.keras.layers.Softmax() func_input = next(iter(kwargs.values())) outNTS = next(iter(func.outputs)) return {outNTS: tfObj(func_input)}, (tfObj, dict()) def _time_memory_flops_params(self): self.data_sets[0].batch = 1 random_input = next(iter(self.data_sets[0])).get(IOLabel.DATA) run_meta = tf.RunMetadata() self._sess.run(self._outputs[0].name, feed_dict={self._inputs[0]: random_input}, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=run_meta) options = tf.profiler.ProfileOptionBuilder.time_and_memory(min_micros=0, min_bytes=0, ) options['output'] = 'none' options['verbose'] = 0 time_mem = tf.profiler.profile(self._sess.graph, run_meta=run_meta, cmd='op', options=options, ) def catch_sum(line='', text=list(), _ret=False): if _ret: return text[0] if line.startswith('Total params'): text.append(float(line.split(': ')[1].replace(',', ''))) self._model.summary(print_fn=catch_sum) self._parameters = catch_sum(_ret=True) options = tf.profiler.ProfileOptionBuilder.float_operation() options['output'] = 'none' options['verbose'] = 0 self._flops = tf.profiler.profile(graph=self._sess.graph, run_meta=tf.RunMetadata(), cmd='op', options=options).total_float_ops self._time = time_mem.total_exec_micros self._memory = time_mem.total_peak_bytes def time(self): if self._time is None: self._time_memory_flops_params() return float(self._time) def memory(self): if self._memory is None: self._time_memory_flops_params() return float(self._memory) def accuracy(self, _): for ds in self.data_sets: ds('test') _, acc = self._model.evaluate(self.data_sets[0].data_X, self.data_sets[0].data_Y, batch_size=self.batch_size, verbose=0) return float(acc) @deprecated(version='0.2', reason='Shifted to internal representation since this ' 'might not be supported by future versions of TF.') def flops_per_sample(self): if self._flops is None: self._time_memory_flops_params() return float(self._flops) @deprecated(version='0.2', reason='Shifted to internal representation since this ' 'might not be supported by future versions of TF.') def parameters(self): if self._parameters is None: self._time_memory_flops_params() return float(self._parameters) pass ``` #### File: LAMARCK_ML/replacement/interface.py ```python class ReplacementSchemeInterface(): """ Base Class For Replacement Schemes """ def __init__(self, **kwargs): pass def new_generation(self, prev_gen, descendants): raise NotImplementedError() pass ``` #### File: LAMARCK_ML/replacement/replacement_test.py ```python import random import unittest import os from LAMARCK_ML.individuals import IndividualInterface from LAMARCK_ML.replacement import \ GenerationalReplacement, \ NElitism, \ NWeakElitism, \ DeleteN, \ DeleteNLast from LAMARCK_ML.reproduction.methods import Mutation @unittest.skipIf((os.environ.get('test_fast', False) in {'True', 'true', '1'}), 'time consuming') class TestReplacementSchemes(unittest.TestCase): class OneMetricIndividual(IndividualInterface, Mutation.Interface): def __init__(self): self._fitness = random.random() self._random_loc = random.random() * 1e2 self._id_name = self.getNewName() self.metrics = dict() self.attr = dict() def __sub__(self, other): return abs(self._random_loc - other._random_loc) def mutate(self, prob): return self @staticmethod def reverse_cmp(x, y): return 0 if x == y else 1 if x < y else -1 def setUp(self) -> None: self.prev_gen = [TestReplacementSchemes.OneMetricIndividual() for _ in range(int(1e2))] self.descendants = [[TestReplacementSchemes.OneMetricIndividual() for _ in range(int(1e2))] for _ in range(10)] def tearDown(self) -> None: del self.prev_gen del self.descendants def test_GenerationalReplacement(self): rep_obj = GenerationalReplacement() new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(self.descendants[-1]), len(new_gen)) self.assertListEqual(new_gen, self.descendants[-1]) pass def test_NElitism(self): n = random.randint(1, 10) rep_obj = NElitism(**{ NElitism.arg_N: n }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(self.descendants[-1]) + n, len(new_gen)) self.assertEqual(len([ind for ind in new_gen if ind in self.prev_gen]), n) rep_obj = NElitism(**{ NElitism.arg_N: n, NElitism.arg_CMP: TestReplacementSchemes.reverse_cmp }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(self.descendants[-1]) + n, len(new_gen)) self.assertEqual(len([ind for ind in new_gen if ind in self.prev_gen]), n) pass def test_NWeakElitism(self): n = random.randint(1, 10) rep_obj = NWeakElitism(**{ NWeakElitism.arg_N: n }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(new_gen), len(self.prev_gen) + n) self.assertEqual(len([ind for ind in new_gen if ind not in self.descendants[-1]]), n) self.assertEqual(len([ind for ind in new_gen if ind in self.descendants[-1]]), len(self.descendants[-1])) rep_obj = NWeakElitism(**{ NWeakElitism.arg_N: n, NWeakElitism.arg_CMP: TestReplacementSchemes.reverse_cmp }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(new_gen), len(self.prev_gen) + n) pass def test_DeleteN(self): n = random.randint(1, 10) rep_obj = DeleteN(**{ DeleteN.arg_N: n }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(new_gen), len(self.prev_gen)) self.assertEqual(len([ind for ind in new_gen if ind in self.prev_gen]) + n, len(self.prev_gen)) pass def test_DeleteNLast(self): n = random.randint(1, 10) rep_obj = DeleteN(**{ DeleteNLast.arg_N: n }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(new_gen), len(self.prev_gen)) self.assertEqual(len([ind for ind in new_gen if ind in self.prev_gen]) + n, len(self.prev_gen)) rep_obj = DeleteN(**{ DeleteNLast.arg_N: n, DeleteNLast.arg_CMP: TestReplacementSchemes.reverse_cmp }) new_gen = rep_obj.new_generation(self.prev_gen, self.descendants) self.assertEqual(len(new_gen), len(self.prev_gen)) self.assertEqual(len([ind for ind in new_gen if ind in self.prev_gen]) + n, len(self.prev_gen)) pass ``` #### File: LAMARCK/LAMARCK_ML/Test_Example.py ```python import unittest @unittest.skip("showing class skipping") class TestExample(unittest.TestCase): def setUp(self): # self.widget = Widget('The widget') pass def tearDown(self): # self.widget.dispose() pass @unittest.expectedFailure def test_return5(self): ex = Example() self.assertEqual(ex.return5(), 6) @unittest.skip("demonstrating skipping") def test_nothing(self): self.fail("shouldn't happen") @unittest.skipIf(mylib.__version__ < (1, 3), "not supported in this library version") def test_format(self): # Tests that work for only a certain version of the library. pass @unittest.skipUnless(sys.platform.startswith("win"), "requires Windows") def test_windows_support(self): # windows specific testing code pass def test_even(self): """ Test that numbers between 0 and 5 are all even. """ for i in range(0, 6): with self.subTest(i=i): self.assertEqual(i % 2, 0) ``` #### File: LAMARCK_ML/utils/benchmark.py ```python from LAMARCK_ML.models.interface import ModellUtil from datetime import datetime class Benchmark(ModellUtil): def __init__(self, **kwargs): super(Benchmark, self).__init__(**kwargs) self.last_time_stamp = datetime.now() def print(self, func, func_name): print('%s: %s' % (func_name, datetime.now() - self.last_time_stamp)) before = datetime.now() func() end = datetime.now() print('Hooks: %s' % (end - before)) print('============') self.last_time_stamp = datetime.now() def end_prepare(self, func): def wrapper(model): print('%s: %s' % ('Prepare', datetime.now() - self.last_time_stamp)) before = datetime.now() func() end = datetime.now() print('Hooks: %s' % (end - before)) print('============') self.last_time_stamp = datetime.now() return wrapper def end_evaluate(self, func): def wrapper(model): self.print(func, 'Evaluate') return wrapper def end_select(self, func): def wrapper(model): self.print(func, 'Select') return wrapper def end_replace(self, func): def wrapper(model): self.print(func, 'Replace') return wrapper def end_reproduce(self, func): def wrapper(model): self.print(func, 'Reproduce') return wrapper def end_reproduce_step(self, func): def wrapper(model): self.print(func, 'Reproduce Step') return wrapper def new_done(self, func): def wrapper(model): self.print(func, 'Done') return wrapper ``` #### File: LAMARCK_ML/utils/compareClass_test.py ```python import unittest from LAMARCK_ML.utils.compareClass import CompareClass class TestCompareClass(unittest.TestCase): def test_comparefunction(self): prim = 'a' sec0 = 'b' sec1 = 'c' cmp = CompareClass(**{ CompareClass.arg_PRIMARY_ALPHA: -1, CompareClass.arg_PRIMARY_OBJECTIVE: prim, CompareClass.arg_PRIMARY_THRESHOLD: 0.5, CompareClass.arg_SECONDARY_OBJECTIVES: {sec0: -10/0.1, sec1: -20/0.1} }) one = {prim: -0.7, sec0: 10000, sec1: 40} other = {prim: -0.6, sec0: 10000, sec1: 30} self.assertTrue(cmp.greaterThan(one, other)) self.assertFalse(cmp.greaterThan(other, one)) ``` #### File: utils/dataSaver/dataSaver_test.py ```python import os import types import unittest from LAMARCK_ML.data_util import TypeShape, IOLabel, DFloat, Shape, DimNames from LAMARCK_ML.individuals import ClassifierIndividualOPACDG, NetworkIndividualInterface from LAMARCK_ML.models.models import GenerationalModel from LAMARCK_ML.reproduction import Mutation, Recombination, AncestryEntity from LAMARCK_ML.utils.dataSaver.dbSqlite3 import DSSqlite3 @unittest.skipIf((os.environ.get('test_fast', False) in {'True', 'true', '1'}), 'time consuming') class TestDBSqlite3(unittest.TestCase): class dummyModel(GenerationalModel): def __init__(self, **kwargs): super(TestDBSqlite3.dummyModel, self).__init__(**kwargs) _data_nts = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 20))) _target_nts = TypeShape(DFloat, Shape((DimNames.BATCH, 1), (DimNames.UNITS, 10))) self.ci = ClassifierIndividualOPACDG(**{ NetworkIndividualInterface.arg_DATA_NTS: {IOLabel.DATA: (_data_nts, 'Dataset'), IOLabel.TARGET: (_target_nts, 'Dataset')}, }) self.anc1 = ClassifierIndividualOPACDG(**{ NetworkIndividualInterface.arg_DATA_NTS: {IOLabel.DATA: (_data_nts, 'Dataset'), IOLabel.TARGET: (_target_nts, 'Dataset')}, }) self.anc2 = ClassifierIndividualOPACDG(**{ NetworkIndividualInterface.arg_DATA_NTS: {IOLabel.DATA: (_data_nts, 'Dataset'), IOLabel.TARGET: (_target_nts, 'Dataset')}, }) self._GENERATION = [self.ci] self._GENERATION_IDX = 1 def mut(self): mut = Mutation() self._REPRODUCTION = [(mut, [AncestryEntity(mut.ID, self.anc1.id_name, [self.ci.id_name]), AncestryEntity(mut.ID, self.anc2.id_name, [self.ci.id_name])])] def rec(self): rec = Recombination() self._REPRODUCTION = [(rec, [AncestryEntity(rec.ID, self.ci.id_name, [self.anc1.id_name, self.anc2.id_name])])] def test_db_generation(self): db_file = './test_db_gen.db3' ds = DSSqlite3(**{ DSSqlite3.arg_FILE: db_file, }) dummyM = TestDBSqlite3.dummyModel() setattr(dummyM, '_end_evaluate', types.MethodType(ds.end_evaluate( getattr(dummyM, '_end_evaluate')), dummyM)) dummyM._end_evaluate() origin = dummyM.generation[0] ind = ds.get_individual_by_name(origin.id_name) self.assertEqual(origin, ind) self.assertIsNot(origin, ind) os.remove(db_file) def test_db_ancestry_mut(self): db_file = './test_db_anc_mut.db3' ds = DSSqlite3(**{ DSSqlite3.arg_FILE: db_file, }) dummyM = TestDBSqlite3.dummyModel() setattr(dummyM, '_end_reproduce', types.MethodType(ds.end_reproduce( getattr(dummyM, '_end_reproduce')), dummyM)) dummyM.mut() dummyM._end_reproduce() _, anc_ent = ds.get_ancestry_for_ind(dummyM.anc1.id_name) self.assertEqual(anc_ent.method, Mutation.ID) self.assertEqual(anc_ent.descendant, dummyM.anc1.id_name) self.assertListEqual(anc_ent.ancestors, [dummyM.ci.id_name]) _, anc_ent = ds.get_ancestry_for_ind(dummyM.anc2.id_name) self.assertEqual(anc_ent.method, Mutation.ID) self.assertEqual(anc_ent.descendant, dummyM.anc2.id_name) self.assertListEqual(anc_ent.ancestors, [dummyM.ci.id_name]) self.assertEqual(ds.get_ancestry_for_ind(dummyM.ci.id_name), (None, None)) os.remove(db_file) def test_db_ancestry_rec(self): db_file = './test_db_anc_rec.db3' ds = DSSqlite3(**{ DSSqlite3.arg_FILE: db_file, }) dummyM = TestDBSqlite3.dummyModel() setattr(dummyM, '_end_reproduce', types.MethodType(ds.end_reproduce( getattr(dummyM, '_end_reproduce')), dummyM)) dummyM.rec() dummyM._end_reproduce() self.assertEqual(ds.get_ancestry_for_ind(dummyM.anc1.id_name), (None, None)) self.assertEqual(ds.get_ancestry_for_ind(dummyM.anc2.id_name), (None, None)) _, anc_ent = ds.get_ancestry_for_ind(dummyM.ci.id_name) self.assertIsNotNone(anc_ent) self.assertEqual(anc_ent.method, Recombination.ID) self.assertEqual(anc_ent.descendant, dummyM.ci.id_name) self.assertListEqual(anc_ent.ancestors, [dummyM.anc1.id_name, dummyM.anc2.id_name]) os.remove(db_file) ``` #### File: utils/dataSaver/interface.py ```python from LAMARCK_ML.models.interface import ModellUtil class DataSaverInterface(ModellUtil): def __init__(self, **kwargs): super(DataSaverInterface, self).__init__(**kwargs) def get_individual_by_name(self, name): raise NotImplementedError() def get_ancestry_for_ind(self, ind_name): raise NotImplementedError() def get_ancestries(self): raise NotImplementedError() def get_individual_names(self): raise NotImplementedError() ``` #### File: utils/evaluation/evaluationHelper.py ```python from LAMARCK_ML.nn_framework import NeuralNetworkFrameworkInterface from LAMARCK_ML.utils.evaluation.interface import EvaluationHelperInterface from joblib import Parallel, delayed import threading import queue import time class BaseEH(EvaluationHelperInterface): def __init__(self, **kwargs): super(BaseEH, self).__init__() def evaluate(self, generation, metrics): for individual in generation: individual.metrics = dict([(m.ID, m.evaluate(individual=individual, framework=None)) for m in metrics]) class LocalEH(EvaluationHelperInterface): arg_NN_FRAMEWORK = 'framework' def __init__(self, **kwargs): super(LocalEH, self).__init__() self._framework = kwargs.get(self.arg_NN_FRAMEWORK) # TODO: setup framework if not isinstance(self._framework, NeuralNetworkFrameworkInterface): raise Exception() def evaluate(self, generation, metrics): for individual in generation: individual.build_instance(self._framework) state = individual.train_instance(self._framework) individual.metrics = {m.ID: m.evaluate(individual=individual, framework=self._framework) for m in metrics} individual.update_state(**state) self._framework.reset() class LocalParallelEH_joblib(EvaluationHelperInterface): arg_NN_FRAMEWORK_CLASS = 'framework_cls' arg_NN_FRAMEWORK_KWARGS = 'framework_kwargs' arg_PARALLEL = 'parallel' arg_ADAPT_KWARGS = 'adapt_kwargs' def __init__(self, **kwargs): super(LocalParallelEH_joblib, self).__init__() self._parallel = kwargs.get(self.arg_PARALLEL, 1) self._framework_cls = kwargs.get(self.arg_NN_FRAMEWORK_CLASS) self._framework_kwargs = kwargs.get(self.arg_NN_FRAMEWORK_KWARGS, dict()) adapt_kwargs = kwargs.get(self.arg_ADAPT_KWARGS, []) self._framworks = list() for i in range(self._parallel): kwargs = {k: (v if k not in adapt_kwargs else v.format(i)) for k, v in self._framework_kwargs.items()} self._framworks.append(self._framework_cls(**kwargs)) def evaluate(self, generation, metrics): def eval(ind): framework = self._framworks.pop(0) ind.build_instance(framework) state = ind.train_instance(framework) ind.metrics = {m.ID: m.evaluate(individual=ind, framework=framework) for m in metrics} ind.update_state(**state) framework.reset() self._framworks.append(framework) pass for _ in Parallel(n_jobs=self._parallel, require='sharedmem')( delayed(eval)(ind) for ind in generation ): pass class LocalParallelEH_threading(EvaluationHelperInterface): arg_NN_FRAMEWORK_CLASS = 'framework_cls' arg_NN_FRAMEWORK_KWARGS = 'framework_kwargs' arg_PARALLEL = 'parallel' arg_ADAPT_KWARGS = 'adapt_kwargs' class nn_thread(threading.Thread): def __init__(self, q_in, q_out, framework, *args, **kwargs): super(LocalParallelEH_threading.nn_thread, self).__init__(*args, **kwargs) self.q_in = q_in self.q_out = q_out self.framework = framework def run(self): while True: try: ind, metrics = self.q_in.get() ind.build_instance(self.framework) ind_state = ind.train_instance(self.framework) ind_metrics = {m.ID: m.evaluate(individual=ind, framework=self.framework) for m in metrics} self.q_out.put((ind.id_name, ind_state, ind_metrics)) self.framework.reset() except queue.Empty: continue def __init__(self, **kwargs): super(LocalParallelEH_threading, self).__init__() self._parallel = kwargs.get(self.arg_PARALLEL, 1) self._framework_cls = kwargs.get(self.arg_NN_FRAMEWORK_CLASS) self._framework_kwargs = kwargs.get(self.arg_NN_FRAMEWORK_KWARGS, dict()) adapt_kwargs = kwargs.get(self.arg_ADAPT_KWARGS, []) self.q_eval = queue.Queue() self.q_res = queue.Queue() self._framworks = list() for i in range(self._parallel): kwargs = {k: (v if k not in adapt_kwargs else v.format(i)) for k, v in self._framework_kwargs.items()} f = LocalParallelEH_threading.nn_thread(self.q_eval, self.q_res, self._framework_cls(**kwargs)) f.start() self._framworks.append(f) def evaluate(self, generation, metrics): waiting = dict() for ind in generation: self.q_eval.put((ind, metrics)) waiting[ind.id_name] = ind while waiting: ind_id, ind_state, ind_metrics = self.q_res.get() ind = waiting.pop(ind_id) ind.metrics = ind_metrics ind.update_state(**ind_state) class GraphLayoutEH(EvaluationHelperInterface): def __init__(self, **kwargs): super(GraphLayoutEH, self).__init__(**kwargs) def evaluate(self, generation, metrics): for individual in generation: individual.metrics = dict([(m.ID, m.evaluate(individual=individual, framework=None)) for m in metrics]) ``` #### File: LAMARCK_ML/utils/SlowDown.py ```python from LAMARCK_ML.models import ModellUtil import time class SlowDown(ModellUtil): arg_SLEEP_TIME = 'sleep_time' def __init__(self, **kwargs): super(SlowDown, self).__init__(**kwargs) self.sleep_time = kwargs.get(self.arg_SLEEP_TIME, 0) def end_replace(self, func): def wrapper(model): func() if self.sleep_time > 0: time.sleep(self.sleep_time) return wrapper ``` #### File: LAMARCK_ML/utils/sortingClass.py ```python class SortingClass(object): def __init__(self, obj, cmp=None): self.obj = obj self.cmp = cmp if self.cmp is None: self.cmp = lambda x, y: 1 if x > y else -1 if y > x else 0 def __gt__(self, other): return self.cmp(self.obj, other.obj) > 0 ``` #### File: LAMARCK_ML/utils/stopGenerational.py ```python from LAMARCK_ML.models import ModellUtil, NEADone from LAMARCK_ML.utils.sortingClass import SortingClass class StopByGenerationIndex(ModellUtil): arg_GENERATIONS = 'index' def __init__(self, **kwargs): super(StopByGenerationIndex, self).__init__(**kwargs) self.max_t = kwargs.get(self.arg_GENERATIONS, 100) def end_select(self, func): def wrapper(model): func() if model.abstract_timestamp >= self.max_t: raise NEADone() return wrapper class StopByNoProgress(ModellUtil): arg_PATIENCE = 'patience' arg_CMP = 'cmp' class MetricContainer(): pass def __init__(self, **kwargs): super(StopByNoProgress, self).__init__(**kwargs) self.patience = kwargs.get(self.arg_PATIENCE, 5) self.cmp = kwargs.get(self.arg_CMP) self.best_ind_sc = None self.best_ind_metrics = None self.waiting = 0 def end_evaluate(self, func): def wrapper(model): # new_best_ind_sc = StopByNoProgress.MetricContainer() new_best_ind_sc = max([SortingClass(obj=ind, cmp=self.cmp) for ind in model.generation]) new_best_metrics = dict(new_best_ind_sc.obj.metrics) if (self.best_ind_sc is None or (self.cmp is not None and self.cmp(new_best_ind_sc.obj, self.best_ind_sc.obj)) or new_best_ind_sc > self.best_ind_sc): self.waiting = 0 self.best_ind_sc = new_best_ind_sc self.best_ind_metrics = new_best_metrics else: self.waiting += 1 if self.waiting > self.patience: raise NEADone() func() return wrapper ``` #### File: visualization/generational/main.py ```python import colorsys import math import os import random import time from shutil import copyfile import dash import dash_core_components as dcc import dash_html_components as html import numba import plotly import plotly.graph_objs as go from dash.dependencies import Input, Output, ClientsideFunction, State from dash.exceptions import PreventUpdate from sklearn.manifold import TSNE import umap import numpy as np from LAMARCK_ML.architectures.neuralNetwork import NeuralNetwork from LAMARCK_ML.metrics import LayoutCrossingEdges, LayoutDistanceX, LayoutDistanceY from LAMARCK_ML.models import GenerationalModel from LAMARCK_ML.models.initialization import RandomGraphLayoutInitializer from LAMARCK_ML.replacement import NElitism from LAMARCK_ML.reproduction import Mutation, Recombination from LAMARCK_ML.selection import ExponentialRankingSelection from LAMARCK_ML.utils.dataSaver.dbSqlite3 import DSSqlite3 from LAMARCK_ML.utils.evaluation import GraphLayoutEH from LAMARCK_ML.utils.stopGenerational import StopByGenerationIndex, StopByNoProgress from LAMARCK_ML.reproduction import AncestryEntity random.seed() def test_save(): print('Debug save') class dashVis(): """ Visualizes the NEA parameters and its progress if connected to a database. For Unix: - expose server with 'server = obj.server' - start server with 'gunicorn my_python_file:server' """ arg_DB_CONFIGS = 'db_configs' arg_AS_SERVER = 'asServer' blank_label = '#blank' def __init__(self, **kwargs): @numba.njit def metric(a, b): return a[0].norm(b[0]) db_config = kwargs.get(self.arg_DB_CONFIGS) self.projection = [] projection_texts = dict() projection_distances = dict() individuals = dict() # ancestry_inidividuals = set() # ancestry_edges = dict() metrics_individuals = set() # metrics_values = # train_samples = 1 # # train_X = [np.random.rand(12288).reshape((64, 64, 3)) for _ in range(train_samples)] # train_X = [np.random.rand(20) for _ in range(train_samples)] # # # train_Y = [np.random.rand(1024) for _ in range(train_samples)] # train_Y = [np.random.rand(10) for _ in range(train_samples)] # # _data = TypeShape(DFloat, Shape((DimNames.HEIGHT, 32), # (DimNames.WIDTH, 32), # (DimNames.CHANNEL, 3))) # _data2 = TypeShape(DFloat, Shape((DimNames.HEIGHT, 32), # (DimNames.WIDTH, 32), # (DimNames.CHANNEL, 3))) # # _data = TypeShape(DFloat, Shape((DimNames.UNITS, 20))) # batch = 1 # dataset = UncorrelatedSupervised(train_X=train_X, # train_Y=train_Y, # batch=batch, # typeShapes={IOLabel.DATA: _data, # IOLabel.TARGET: TypeShape(DFloat, Shape((DimNames.UNITS, 10)))}, # name='Dataset') # IOLabel.DATA2 = 'DATA2' # dataset2 = UncorrelatedSupervised(train_X=train_X, # train_Y=train_Y, # batch=batch, # typeShapes={IOLabel.DATA2: _data2, # IOLabel.TARGET: TypeShape(DFloat, Shape((DimNames.UNITS, 10)))}, # name='Dataset2') # datasets = [dataset] # IOLabel.DS1 = 'DS1' # IOLabel.DS2 = 'DS2' # self.inputs = {IOLabel.DS1: (IOLabel.DATA, _data, dataset.id_name), # IOLabel.DS2: (IOLabel.DATA2, _data, dataset2.id_name)} # # self.inputs = {IOLabel.DS1: (IOLabel.DATA, _data, dataset.id_name)} # # # outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 512)) # outShape = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 10)) # outShape1 = Shape((DimNames.BATCH, batch), (DimNames.UNITS, 15)) # self.outputs = {'out0': TypeShape(DFloat, outShape), 'out1':TypeShape(DFloat, outShape1)} # # self.outputs = {'out': TypeShape(DFloat, outShape)} # self.functions = [Merge, Conv2D, Flatten, Dense] # # self.functions = [Dense, Merge] # blueprints = dict() # self.projection = None # self.index = 0 # _nn = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: dict(self.inputs), # NeuralNetwork.arg_OUTPUT_TARGETS: self.outputs, # NeuralNetwork.arg_FUNCTIONS: self.functions, # NeuralNetwork.arg_RECOMBINATION_PROBABILITY: 1}) # blueprints['Network_' + str(self.index)] = _nn # self.index += 1 # for i in range(5): # nn = NeuralNetwork(**{NeuralNetwork.arg_INPUTS: dict(self.inputs), # NeuralNetwork.arg_OUTPUT_TARGETS: self.outputs, # NeuralNetwork.arg_FUNCTIONS: self.functions, # NeuralNetwork.arg_RECOMBINATION_PROBABILITY: 1}) # blueprints['Network_' + str(self.index)] = nn # self.index += 1 # print(i) # # for i in range(5): # nn = random.choice(list(blueprints.values())).mutate(1)[0] # blueprints['Network_' + str(self.index)] = nn # self.index += 1 # print(i) # # for i in range(5): # nn = random.choice(list(blueprints.values())).recombine(random.choice(list(blueprints.values())))[0] # blueprints['Network_' + str(self.index)] = nn # self.index += 1 # print(i) # self.manifold = MDS(n_components=2, # max_iter=1, # n_init=1, # dissimilarity='precomputed' # ) self.manifold = umap.UMAP(n_components=2, n_neighbors=2, min_dist=1, random_state=0, # metric='precomputed', metric='euclidean', # n_epochs=11, # learning_rate=.1, ) # self.manifold = TSNE() self.metrics = [('metric_id0', 'metric label 0'), ('metric_id1', 'metric label 1')] ss_info_ancestry_layout = { 'plot_bgcolor': '#333', 'paper_bgcolor': '#333', 'xaxis': { 'showgrid': False, 'zeroline': False, 'showticklabels': False }, 'yaxis': { 'showgrid': False, 'zeroline': False, 'showticklabels': False, }, 'margin': go.layout.Margin( l=0, r=0, b=0, t=25, pad=0, ), 'showlegend': True, 'hovermode': 'closest', 'legend': {'font': {'color': '#ffffff'}, 'xanchor': 'center', 'yanchor': 'top', 'x': 0.5, 'y': 0, }, # 'height': 800, } self.app = dash.Dash(__name__) self.app.layout = html.Div(id='root', children=[ html.H1(children="LAMARCK_ML"), dcc.Tabs(parent_className='custom-tabs', className='contentArea', id='plotArea', children=[ dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='NEA Parameters', style={'display': 'none'}, id='neaParamA', children=[html.H1('NEA Parameters'), html.P([ 'Web-UI update interval [s]: ', dcc.Input( id='update-interval', type='number', value='300' ) ]), ]), dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='Search Space', id='SSViewA', children=[html.H1('Search Space View'), dcc.Interval( id='auto-update-projection', interval=1 * 1000, # n_intervals=0 ), html.Div(className='graphArea', children=[ dcc.Graph(className='graph', id='searchSpaceProjection', config={'modeBarButtonsToRemove': [ 'select2d', 'lasso2d', 'hoverCompareCartesian', 'toggleSpikelines' ], 'displaylogo': False, 'displayModeBar': True, }), ]), html.Div(className='infoArea', children=[ dcc.Tabs(className='SideInfo', children=[ dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='Structure', children=[dcc.Graph(className='graph', id='network-structure', config={'modeBarButtonsToRemove': [ # 'zoom2d', # 'pan2d', # 'zoomIn2d', # 'zoomOut2d', # 'autoScale2d', # 'resetScale2d', 'select2d', 'lasso2d', # 'hoverClosestCartesian', 'hoverCompareCartesian', # 'toImage', 'toggleSpikelines' ], 'displaylogo': False, 'displayModeBar': True, }), ]), dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='Ancestry', children=[dcc.Graph(className='graph', id='searchSpaceAncestry', config={'modeBarButtonsToRemove': ['select2d', 'lasso2d', 'hoverCompareCartesian', 'toggleSpikelines'], 'displaylogo': False, 'displayModeBar': True, }), ]), dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='Download', children=[ html.Div(className='infoArea H1', children='Graphic', style={'marginTop': 10}), dcc.RadioItems(id='SSDownloadGraphic', options=[ {'label': 'Projection', 'value': 'Projection'}, {'label': 'Structure', 'value': 'Structure'}, {'label': 'Ancestry', 'value': 'Ancestry'} ], value='Projection', labelStyle={'display': 'block'}), html.Div(className='infoArea spacer'), html.Div(className='infoArea H1', children='Format'), dcc.RadioItems(id='SSDownloadFormat', options=[ {'label': 'SVG', 'value': 'svg'}, {'label': 'PNG', 'value': 'png'}, {'label': 'JPEG', 'value': 'jpeg'}, {'label': 'WebP', 'value': 'webp'}, {'label': 'PDF', 'value': 'pdf'}, {'label': 'EPS', 'value': 'eps'}, ], value='svg', labelStyle={'display': 'block'}), html.Div(className='infoArea spacer'), html.Div(className='infoArea H1', children='Filename'), dcc.Input(id='SSDownloadFileName', style={'width': '98.5%', 'height': '12pt', }, value='LAMARCK_plot'), html.Button('Download', id='SearchSpaceDownload', className='downloadButton', style={'width': '100%', 'height': '50px', 'margin-top': 10, }, ), html.Div(children='test', style={'display': 'none'}, id='dummy') ]) ]), ]), ]), dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='Ancestry', id='AncestryViewA', children=[html.H1('Ancestry View'), dcc.Interval( id='auto-update-ancestry', interval=1 * 1000, # n_intervals=0 ), html.Div(className='graphArea', children=[ dcc.Graph(className='graph', id='ancestry-vis', config={'modeBarButtonsToRemove': [ 'select2d', 'lasso2d', 'hoverCompareCartesian', 'toggleSpikelines' ], 'displaylogo': False, 'displayModeBar': True, }), ]), html.Div(className='infoArea', children=[ html.Div(className='infoArea H1', children='Reproduction'), dcc.RadioItems(options=[ {'label': 'Hover', 'value': 'hover'}, {'label': 'All', 'value': 'all'}, ], value='hover', id='ancestry-rep-style'), html.Div(className='infoArea spacer'), html.Div(className='infoArea H1', children='Styling'), dcc.Checklist(options=[ {'label': 'Repeat Individuals', 'value': 'repInd'} ], id='ancestry-ind-style', value=[]), ]), ]), dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label='Metrics', id='plotsA', children=[html.H1('Metrics'), dcc.Interval( id='auto-update-metrics', interval=1 * 1000, # n_intervals=0 ), html.Div(className='metricArea', children=[ dcc.Tabs(id='metric-tabs', children=[ dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label=metric_label, children=[ dcc.Graph(className='graph', id=metric_id), ]) for metric_id, metric_label in self.metrics]), ]), ]) ]), html.Div(id="output-clientside"), ]) self.app.clientside_callback( ClientsideFunction(namespace="clientside", function_name="resize"), Output("output-clientside", "children"), [Input('neaParamA', ''), Input('SSViewA', ''), Input('AncestryViewA', ''), Input('plotsA', '')] ) @self.app.callback( output=[Output(component_id='dummy', component_property='children')], inputs=[Input(component_id='SearchSpaceDownload', component_property='n_clicks')], state=[State(component_id='SSDownloadFileName', component_property='value'), State(component_id='SSDownloadGraphic', component_property='value'), State(component_id='SSDownloadFormat', component_property='value'), State(component_id='searchSpaceProjection', component_property='figure'), State(component_id='network-structure', component_property='figure'), State(component_id='searchSpaceAncestry', component_property='figure') ] ) def searchSpaceDownload(n_clicks, _f, graphic_label, format_label, projection_figure, structure_figure, ancestry_figure): if graphic_label == 'Projection': fig = projection_figure elif graphic_label == 'Structure': fig = structure_figure else: fig = ancestry_figure if fig is None: raise PreventUpdate fig = go.Figure(fig) plotly.io.write_image(fig, file='/tmp/' + _f, format=format_label) time.sleep(1) path = os.path.expanduser('~/Downloads') file_name = '{}/{}.{}'.format(path, _f, format_label) idx = 0 while os.path.exists(file_name): file_name = '{}/{}_{}.{}'.format(path, _f, str(idx), format_label) idx += 1 copyfile('/tmp/' + _f, file_name) return ['Test'] def getStructureColor(name, colors=dict(), remaining_val=[10]): if name == dashVis.blank_label: return '#777' color = colors.get(name) if color is None: r = remaining_val.pop(0) color = '#' + ''.join(['%0.2X' % int(v * 255) for v in colorsys.hsv_to_rgb(r / 360, .75, .75)]), r colors[name] = color if len(remaining_val) == 0: add = 360 / (len(colors) * 2) remaining_val.extend([v[1] + add for v in colors.values()]) return color[0] def getAncColor(name, colors=dict(), remaining_val=[10]): return getStructureColor(name, colors=colors, remaining_val=remaining_val) def NetworkLayout2(nn: NeuralNetwork, datasets=[]): edges = set() for f in nn.functions: for _, o_id in f.inputs.values(): edges.add((o_id, f.id_name)) model = GenerationalModel() model.add([ RandomGraphLayoutInitializer(**{ RandomGraphLayoutInitializer.arg_DISTANCE: 1, RandomGraphLayoutInitializer.arg_GEN_SIZE: 30, RandomGraphLayoutInitializer.arg_EDGES: edges, RandomGraphLayoutInitializer.arg_METRIC_WEIGHTS: { # LayoutCrossingEdges.ID: .25, # LayoutDistanceX.ID: .5, # LayoutDistanceY.ID: .25, } }), GraphLayoutEH(), LayoutCrossingEdges(), LayoutDistanceX(), LayoutDistanceY(), # MaxDiversitySelection(**{MaxDiversitySelection.arg_LIMIT: 20}), ExponentialRankingSelection(**{ExponentialRankingSelection.arg_LIMIT: 6}), Recombination(), Mutation(**{Mutation.arg_P: .25, Mutation.arg_DESCENDANTS: 1}), NElitism(**{NElitism.arg_N: 2}), StopByGenerationIndex(**{StopByGenerationIndex.arg_GENERATIONS: 750}), StopByNoProgress(**{StopByNoProgress.arg_PATIENCE: 100}) ]) model.reset() model.run() ind = max(model.generation) # print(ind.metrics, ind.fitness, model.generation_idx) # print(min(ind.node2X.values()), max(ind.node2X.values())) del model n2d = dict([(n, d) for d, nodes in ind.depth2nodes.items() for n in nodes]) nodes = dict() edges = dict() for _in in set([id_name for _, id_name in nn.inputs.values()]): node_x, node_y, node_text = nodes.get(_in, ([], [], [])) node_x.append(ind.node2X[_in]) node_y.append(n2d[_in]) node_text.append(',<br />'.join( ['{' + nts_id_name + ': ' + nts.dtype.__str__() + ', ' + str(nts.shape) + '}' for d in datasets if d.id_name == _in for nts_id_name, nts in d.outputs.items()])) if _in not in nodes: nodes[_in] = (node_x, node_y, node_text) pseudo_edges = dict() stack = list(ind.edges) while stack: e = stack.pop(0) e0, e1 = e if e0 in ind.real_nodes: tmp = [e] container = [e1] while container[0] not in ind.real_nodes: for e_ in stack: v0, v1 = e_ if v0 == container[0]: tmp.append(e_) stack.remove(e_) container[0] = v1 break pseudo_edges[(e0, container[0])] = tmp else: stack.append(e) for _f in nn.functions: f_name = _f.__class__.__name__ node_x, node_y, node_text = nodes.get(f_name, ([], [], [])) node_x.append(ind.node2X[_f.id_name]) node_y.append(n2d[_f.id_name]) node_text.append(',<br />'.join( ['{' + nts_id_name + ': ' + nts.dtype.__str__() + ', ' + str(nts.shape) + '}' for nts_id_name, nts in _f.outputs.items()])) if f_name not in nodes: nodes[f_name] = (node_x, node_y, node_text) for label_to, (label_from, node_from) in _f.inputs.items(): to_x, to_y = ind.node2X[_f.id_name], n2d[_f.id_name] from_x, from_y = ind.node2X[node_from], n2d[node_from] intermediat_edges = pseudo_edges[(node_from, _f.id_name)] if len(intermediat_edges) <= 1: m_x, m_y = (to_x + from_x) / 2, (to_y + from_y) / 2 edge_x, edge_y = edges.get(label_to, ([], [])) edge_x.extend([m_x, to_x, None]) edge_y.extend([m_y, to_y, None]) if label_to not in edges: edges[label_to] = (edge_x, edge_y) edge_x, edge_y = edges.get(label_from, ([], [])) edge_x.extend([from_x, m_x, None]) edge_y.extend([from_y, m_y, None]) if label_from not in edges: edges[label_from] = (edge_x, edge_y) else: edge_x, edge_y = edges.get(label_from, ([], [])) m_id = intermediat_edges[0][1] m_x, m_y = ind.node2X[m_id], n2d[m_id] edge_x.extend([from_x, m_x, None]) edge_y.extend([from_y, m_y, None]) if label_from not in edges: edges[label_from] = (edge_x, edge_y) print(intermediat_edges) for i in range(1, len(intermediat_edges) - 1): # print(intermediat_edges[i]) m_id = intermediat_edges[i][0] from_x, from_y = ind.node2X[m_id], n2d[m_id] m_id = intermediat_edges[i][1] m_x, m_y = ind.node2X[m_id], n2d[m_id] edge_x, edge_y = edges.get(dashVis.blank_label, ([], [])) edge_x.extend([from_x, m_x, None]) edge_y.extend([from_y, m_y, None]) if dashVis.blank_label not in edges: edges[dashVis.blank_label] = (edge_x, edge_y) m_id = intermediat_edges[-1][0] m_x, m_y = ind.node2X[m_id], n2d[m_id] edge_x, edge_y = edges.get(label_to, ([], [])) edge_x.extend([m_x, to_x, None]) edge_y.extend([m_y, to_y, None]) if label_to not in edges: edges[label_to] = (edge_x, edge_y) return nodes, edges, \ (min(ind.depth2nodes.keys()) - 1, max(ind.depth2nodes.keys()) + 1), \ (min(ind.node2X.values()) - 1, max(ind.node2X.values()) + 1) def NetworkLayout(nn: NeuralNetwork, datasets=[]): stack = list(nn.functions) df_name2obj = dict([(_f.id_name, _f) for _f in stack]) inputs = set([id_name for _, id_name in nn.inputs.values()]) pos_y = dict([(id_name, 0) for id_name in inputs]) y_pos = dict([(0, [id_name]) for id_name in inputs]) while stack: _f = stack.pop() y_coord = 0 all_found = True for predecessor in [id_name for _, id_name in _f.inputs.values()]: if (predecessor not in pos_y and predecessor not in inputs): predecessor = df_name2obj.get(predecessor) stack.append(_f) try: stack.remove(predecessor) stack.append(predecessor) except ValueError: pass all_found = False break else: y_coord = max(pos_y.get(predecessor) + 1, y_coord) if all_found: pos_y[_f.id_name] = y_coord y_pos[y_coord] = y_pos.get(y_coord, []) + [_f] pos_x = dict([(_id, x) for x, _id in enumerate(inputs)]) y_x = {0: len(inputs)} for y in range(1, max(y_pos.keys()) + 1): for _f in y_pos.get(y, []): predecessors = list([id_name for _, id_name in _f.inputs.values()]) x_pos = set() pred_x = 0 for pred in predecessors: x = pos_x[pred] if x in x_pos: x += 1 for n in y_pos[pos_y[pred]]: if isinstance(n, str): _x = pos_x[n] pos_x[n] = _x + 1 if _x >= x else _x else: _x = pos_x[n.id_name] pos_x[n.id_name] = _x + 1 if _x >= x else _x x_pos.add(x) pred_x += x _y_x = 0 if y_x.get(y) is None else y_x[y] + 1 y_x[y] = _y_x + pred_x pred_x = max(pred_x * 1.0 / (len(predecessors) if len(predecessors) > 0 else 1), _y_x) pos_x[_f.id_name] = pred_x nodes = dict() for _in in inputs: node_x, node_y, node_text = nodes.get(_in, ([], [], [])) node_x.append(pos_x[_in]) node_y.append(pos_y[_in]) node_text.append(',<br />'.join( ['{' + nts_id_name + ': ' + nts.dtype.__str__() + ', ' + str(nts.shape) + '}' for d in datasets if d.id_name == _in for nts_id_name, nts in d.outputs.items()])) if _in not in nodes: nodes[_in] = (node_x, node_y, node_text) for _f in nn.functions: f_name = _f.__class__.__name__ node_x, node_y, node_text = nodes.get(f_name, ([], [], [])) node_x.append(pos_x[_f.id_name]) node_y.append(pos_y[_f.id_name]) node_text.append(',<br />'.join( ['{' + nts_id_name + ': ' + nts.dtype.__str__() + ', ' + str(nts.shape) + '}' for nts_id_name, nts in _f.outputs.items()])) if f_name not in nodes: nodes[f_name] = (node_x, node_y, node_text) edges = dict() for _f in nn.functions: for label_to, (label_from, node_from) in _f.inputs.items(): to_x, to_y = pos_x[_f.id_name], pos_y[_f.id_name] from_x, from_y = pos_x[node_from], pos_y[node_from] m_x, m_y = (to_x + from_x) / 2, (to_y + from_y) / 2 edge_x, edge_y = edges.get(label_to, ([], [])) edge_x.extend([m_x, to_x, None]) edge_y.extend([m_y, to_y, None]) if label_to not in edges: edges[label_to] = (edge_x, edge_y) edge_x, edge_y = edges.get(label_from, ([], [])) edge_x.extend([from_x, m_x, None]) edge_y.extend([from_y, m_y, None]) if label_from not in edges: edges[label_from] = (edge_x, edge_y) return nodes, edges, max(y_pos.keys()) + 1 @self.app.callback( [Output(component_id='network-structure', component_property='figure'), Output(component_id='searchSpaceAncestry', component_property='figure')], [Input(component_id='searchSpaceProjection', component_property='clickData')] ) def update_searchSpace_info(input_data): if input_data is None: return [{'layout': ss_info_ancestry_layout}, {}] id_name = input_data['points'][0]['text'] dataSaver = DSSqlite3(**db_config) individual = dataSaver.get_individual_by_name(id_name) # TODO: got exception in next line _, ancestry = dataSaver.get_ancestry_for_ind(id_name) if ancestry is not None: levelOneAnc = [dataSaver.get_ancestry_for_ind(ind)[1] for ind in ancestry.ancestors] del dataSaver nodes, edges, y_range, x_range = NetworkLayout2(individual.network) adapted_layout = dict(ss_info_ancestry_layout) adapted_layout['height'] = y_range[1] * 30 + 200 adapted_layout['yaxis'] = dict(adapted_layout['yaxis']) adapted_layout['yaxis']['range'] = [y_range[0], y_range[1]] adapted_layout['xaxis'] = dict(adapted_layout['xaxis']) adapted_layout['xaxis']['range'] = [x_range[0], x_range[1]] nodes = [{'x': node_x, 'y': node_y, 'text': node_text, 'mode': 'markers', 'marker': {'size': 10, 'symbol': 'circle', 'color': getStructureColor(name)}, 'hoverinfo': 'text', # 'textposition': 'center right', 'showlegend': True, 'name': name } for name, (node_x, node_y, node_text) in nodes.items()] edges = [{'x': edge_x, 'y': edge_y, 'mode': 'lines', 'hoverinfo': 'none', 'name': name, 'showlegend': name != dashVis.blank_label, 'line': {'color': getStructureColor(name)} } for name, (edge_x, edge_y) in edges.items()] structure_fig = { 'data': edges + nodes, 'layout': adapted_layout, } # ================== nodes = list() edges = dict() nodes.append({ 'x': [0], 'y': [0], 'mode': 'markers', 'hoverinfo': 'text', 'text': id_name, 'name': 'selected', 'showlegend': False, 'marker': {'size': 10, 'symbol': 'dot', 'color': '#a55'} }) if ancestry is not None: tmp = -(len(ancestry.ancestors) - 1) * .5 offsets = [tmp + i for i in range(len(ancestry.ancestors))] xs, ys = edges.get(ancestry.method, ([], [])) xs.extend([x for offset in offsets for x in [0, offset, None]]) ys.extend([y for _ in offsets for y in [0, 1, None]]) edges[ancestry.method] = xs, ys nodes.append({ 'x': [offset for offset in offsets], 'y': [1 for _ in offsets], 'mode': 'markers', 'hoverinfo': 'text', 'text': ancestry.ancestors, 'name': 'ancestors 0', 'showlegend': False, 'marker': {'size': 10, 'symbol': 'dot', 'color': [getAncColor(c) for c in ancestry.ancestors]} }) # TODO: fix this # for anc, mid in zip(levelOneAnc, offsets): # if anc is not None: # anc_l = len(anc.ancestors) # tmp = -(anc_l - 1) / anc_l * .8 + mid # _offsets = [tmp + i * .8 / (anc_l - 1) for i in range(anc_l)] # xs, ys = edges.get(anc.method, ([], [])) # xs.extend([x for offset in _offsets for x in [mid, offset, None]]) # ys.extend([y for _ in _offsets for y in [1, 2, None]]) # edges[anc.method] = xs, ys # nodes.append({ # 'x': [offset for offset in _offsets], # 'y': [2 for _ in _offsets], # 'mode': 'markers', # 'hoverinfo': 'text', # 'text': anc.ancestors, # 'name': 'ancestors 1', # 'showlegend': False, # 'marker': {'size': 10, # 'symbol': 'dot', # 'color': [getAncColor(c) # for c in anc.ancestors]} # }) edges = [{ 'x': xs, 'y': ys, 'mode': 'lines', 'hoverinfo': 'none', 'name': method, 'showleged': method != dashVis.blank_label, 'line': {'color': getAncColor(method)} } for method, (xs, ys) in edges.items()] adapted_layout = dict(ss_info_ancestry_layout) adapted_layout['yaxis'] = dict(adapted_layout['yaxis']) adapted_layout['yaxis']['range'] = [-.5, 2.5] ancestry_fig = { 'data': edges + nodes, 'layout': adapted_layout, } return [structure_fig, ancestry_fig] @self.app.callback( [Output(component_id='auto-update-projection', component_property='interval'), Output(component_id='auto-update-ancestry', component_property='interval'), Output(component_id='auto-update-metrics', component_property='interval')], [Input(component_id='update-interval', component_property='value')] ) def change_update_interval(input_data): interval = int(input_data) * 1000 return interval, interval, interval @self.app.callback( Output(component_id='searchSpaceProjection', component_property='figure') , [Input(component_id='auto-update-projection', component_property='n_intervals')] ) def auto_update_projection(data): print('=============== begin projection ===============') dataSaver = DSSqlite3(**db_config) abstract_time_stamps = sorted(dataSaver.get_abstract_time_stamps()) base_ind = [set(dataSaver.get_individual_functions(name)) for name in dataSaver.get_individual_names_by_abstract_time_stamp(abstract_time_stamps[0])] function_vectors = dict() projection_texts = dict() # for time_stamp in abstract_time_stamps[15:]: for name in dataSaver.get_individual_names(): print(name) ind_f = set(dataSaver.get_individual_functions(name)) v = [len(i.union(ind_f))-len(i.intersection(ind_f)) for i in base_ind] function_vectors[name] = v projection_texts[name] = dataSaver.get_individual_metrics(name).get('ACC', 0) #next(iter(ind.metrics.values())) if ind.metrics else 0) xs, ys = zip(*self.manifold.fit_transform(list(function_vectors.values()))) del dataSaver # all_ind_names = set(dataSaver.get_individual_names()) # set_names = set(projection_texts.keys()) # new_ind_names = [n for n in all_ind_names if n not in set_names] # all_ind_names = set_names.union(new_ind_names) # # idx_m = len(new_ind_names) # print(new_ind_names) # for i, ind0 in enumerate(new_ind_names): # # ind0_ = dataSaver.get_individual_by_name(ind0) # ind0_functions = set(dataSaver.get_individual_functions(ind0)) # # projection_texts[ind0] = (next(iter(ind0_.metrics.values())) if ind0_.metrics else 0) # projection_texts[ind0] = dataSaver.get_individual_metrics(ind0).get('ACC', 0) # # print(ind0, projection_texts[ind0]) # for ind1 in set_names: # if (ind0, ind1) not in projection_distances: # # dist = ind0_.norm(dataSaver.get_individual_by_name(ind1)) # ind1_functions = set(dataSaver.get_individual_functions(ind1)) # dist = len(ind0_functions.union(ind1_functions))-len(ind0_functions.intersection(ind1_functions)) # projection_distances[ind0, ind1] = dist # projection_distances[ind1, ind0] = dist # for j in range(i + 1, idx_m): # ind1 = new_ind_names[j] # # dist = ind0_.norm(dataSaver.get_individual_by_name(ind1)) # ind1_functions = set(dataSaver.get_individual_functions(ind1)) # dist = len(ind0_functions.union(ind1_functions)) - len(ind0_functions.intersection(ind1_functions)) # projection_distances[ind0, ind1] = dist # projection_distances[ind1, ind0] = dist # projection_distances[ind0, ind0] = 0 # # del dataSaver # # if len(new_ind_names) > 0: # distance = [projection_distances[ind0, ind1] for ind0 in all_ind_names for ind1 in all_ind_names] # distance = np.asarray(distance) # distance = distance.reshape((len(all_ind_names), -1)) # self.projection = self.manifold.fit_transform(distance) # xs, ys = zip(*self.projection) ssprojection = { 'data': [{ 'x': list(xs), 'y': list(ys), 'text': list(projection_texts.keys()), 'name': 'text', 'mode': 'markers', 'marker': {'size': 7, 'symbol': ['cross-thin-open' if ev else 'dot' for ev in projection_texts.values()], 'color': list(projection_texts.values()), 'colorscale': 'Oranges', 'showscale': True, }, 'hoverinfo': 'text', 'showlegend': False, }], 'layout': { 'plot_bgcolor': '#333', 'paper_bgcolor': '#333', 'xaxis': { 'showgrid': False, 'zeroline': False, 'showticklabels': False }, 'yaxis': { 'showgrid': False, 'zeroline': False, 'showticklabels': False, }, 'margin': go.layout.Margin( l=0, r=0, b=0, t=25, pad=0, ), 'hovermode': 'closest', } } print('update projection') return ssprojection def hash2binary(h_value, size, mem=dict(), values=dict()): if h_value not in mem.get(size, dict()): _values = values.get(size, set()) _size = 2 ** (size ** 2) if len(_values) >= _size: raise Exception('collision!') v = h_value % _size while v in _values: v += 1 v = v % _size _values.add(v) values[size] = _values binary = [v & (1 << i) != 0 for i in range(size ** 2)] mem_size = mem.get(size, dict()) mem_size[h_value] = binary mem[size] = mem_size return mem[size][h_value] def binary2coordinates(binary, center=(0, 0), size=1.0): edge_l = int(math.sqrt(len(binary))) c_x, c_y = center coordinates = {True: [], False: []} if edge_l % 2 == 0: d = size / edge_l idx = 0 for i in range(1, edge_l): for j in range(i): xs = [c_x + j * d * 2 - (i - 1) * d + k * d for k in range(2)] + \ [c_x + j * d * 2 - (i - 1) * d - k * d for k in range(2)] + \ [c_x + j * d * 2 - (i - 1) * d, None] ys = [c_y + size - k * d - (i - 1) * d for k in range(3)] + \ [c_y + size - k * d - (i - 1) * d for k in range(1, -1, -1)] + [None] coordinates[binary[idx]].append((xs, ys)) idx += 1 for i in range(edge_l, 0, -1): for j in range(i): xs = [c_x + j * d * 2 - (i - 1) * d + k * d for k in range(2)] + \ [c_x + j * d * 2 - (i - 1) * d - k * d for k in range(2)] + \ [c_x + j * d * 2 - (i - 1) * d, None] ys = [c_y - size - k * d + (i + 1) * d for k in range(3)] + \ [c_y - size - k * d + (i + 1) * d for k in range(1, -1, -1)] + [None] coordinates[binary[idx]].append((xs, ys)) idx += 1 else: pass return coordinates @self.app.callback( Output(component_id='ancestry-vis', component_property='figure'), [Input(component_id='auto-update-ancestry', component_property='n_intervals'), Input(component_id='ancestry-rep-style', component_property='value'), Input(component_id='ancestry-ind-style', component_property='value')] ) def auto_update_ancestry(int_v, rep_style, ind_style): # return {} print('rep_style', rep_style) print('ind_style', ind_style) marker_size = 1 marker_gapX = .5 marker_gapY = 1 def get_width_depth(individual, anc_dict, mem): if individual not in mem: if individual in anc_dict: mem[individual] = (sum([get_width_depth(anc, anc_dict, mem)[0] for anc in anc_dict[individual].ancestors]) + \ (len(anc_dict[individual].ancestors) - 1) * marker_gapX, max([get_width_depth(anc, anc_dict, mem)[1] for anc in anc_dict[individual].ancestors]) + marker_gapY + marker_size) else: mem[individual] = marker_size, marker_size return mem[individual] def get_x_y(individual, anc_dict, mem, edges, coords, x_offset, y_offset): w, h = get_width_depth(individual, anc_dict, mem) if individual in anc_dict: x = 0 y = y_offset + marker_size / 2 edge_to = list() _x_offset = x_offset w -= (len(anc_dict[individual].ancestors) - 1) * marker_gapX for anc in anc_dict[individual].ancestors: dw, dh = get_width_depth(anc, anc_dict, mem) dx, dy = get_x_y(anc, anc_dict, mem, edges, coords, _x_offset, y_offset + marker_gapY + marker_size) edge_to.append((dx, dy)) x += dw / w * dx _x_offset += dw + marker_gapX for e in edge_to: edges[anc_dict[individual].method] = edges.get(anc_dict[individual].method, []) + [(e, (x, y))] else: x, y = w / 2 + x_offset, y_offset + marker_size / 2 coords[(x, y)] = individual return x, y coordinates = {True: [], False: []} ancestry_edges = dict() dataSaver = DSSqlite3(**db_config) abstract_time_ancestries = dict() for abstract_time, ancestry in dataSaver.get_ancestries(): abstract_time_ancestries[abstract_time] = abstract_time_ancestries.get(abstract_time, []) + [ancestry] y_offset = 0 for abstract_time in sorted(abstract_time_ancestries.keys())[:5]: descendants = set() ancestors = set() anc_dict = dict() for ancestry in abstract_time_ancestries[abstract_time]: if isinstance(ancestry, AncestryEntity): descendants.add(ancestry.descendant) ancestors.update(set(ancestry.ancestors)) anc_dict[ancestry.descendant] = ancestry else: pass mem = dict() max_depth = max([get_width_depth(next_gen_ind, anc_dict, mem)[1] for next_gen_ind in descendants.difference(ancestors)]) x_offset = 0 for next_gen_ind in descendants.difference(ancestors): coords = dict() edges = dict() coords[get_x_y(next_gen_ind, anc_dict, mem, edges, coords, x_offset, y_offset)] = next_gen_ind for (x, y), individual in coords.items(): c = binary2coordinates(hash2binary(hash(individual), 4), center=(x, y), size=.5) coordinates[True].extend(c[True]) coordinates[False].extend(c[False]) x_offset += get_width_depth(next_gen_ind, anc_dict, mem)[0] + 2 * marker_gapX for anc_method, edge_list in edges.items(): method_edges = ancestry_edges.get(anc_method, {'x': [], 'y': []}) for (f_x, f_y), (t_x, t_y) in edge_list: method_edges['x'].extend([f_x, t_x, None]) method_edges['y'].extend([f_y, t_y, None]) ancestry_edges[anc_method] = method_edges y_offset -= max_depth + marker_gapY ancestry = { 'data': [{ 'x': coordinates['x'], 'y': coordinates['y'], 'mode': 'lines', 'line': { 'color': getAncColor(method), 'width': 2.0, }, 'name': method, 'showlegend': True } for method, coordinates in ancestry_edges.items()] + [{ 'x': xs, 'y': ys, 'mode': 'none', 'fill': 'tozeroy', 'fillcolor': '#ffffffff', 'hoverinfo': 'none', 'line': { 'color': '#000f', 'width': .5, }, 'showlegend': False, } for xs, ys in coordinates[True]] + [{ 'x': xs, 'y': ys, 'mode': 'none', 'fill': 'tozeroy', 'fillcolor': '#000000ff', 'hoverinfo': 'none', 'line': { 'color': '#ffff', 'width': .5, }, 'showlegend': False, } for xs, ys in coordinates[False]], 'layout': { 'plot_bgcolor': '#333', 'paper_bgcolor': '#333', 'xaxis': { 'showgrid': False, 'zeroline': False, 'showticklabels': False, }, 'yaxis': { 'showgrid': False, 'zeroline': False, 'showticklabels': True, 'scaleanchor': 'x', 'scaleratio': 1, }, 'margin': go.layout.Margin( l=0, r=0, b=0, t=25, pad=0, ), 'hovermode': 'closest', } } return ancestry @self.app.callback( [Output(component_id='metric-tabs', component_property='children')], [Input(component_id='auto-update-metrics', component_property='n_intervals')] ) def auto_update_metrics(data): dataSaver = DSSqlite3(**db_config) individual_names = dataSaver.get_individual_names() data = dict() count = 0 for ind in individual_names: if ind in individuals: continue count += 1 if count > 10: break # individual = dataSaver.get_individual_by_name(ind) metrics = dataSaver.get_individual_metrics(ind) time_stamps = dataSaver.time_stamps_by_individual_name(ind) individuals[ind] = metrics, time_stamps # if len(time_stamps) > 1: # print(metrics.items()) # print(time_stamps) # print(ind) for metrics, time_stamps in individuals.values(): for m, value in metrics.items(): data_m = data.get(m, dict()) for real, abstract in time_stamps: data_m[abstract] = data_m.get(abstract, []) + [value] data[m] = data_m del dataSaver # print('================') tabs = list() for m_label, m_data in data.items(): xs = list() ys = list() for t in sorted(m_data.keys()): for v in m_data[t]: xs.append(t) ys.append(v) tabs.append(dcc.Tab(className='custom-tab', selected_className='custom-selected-tab', label=m_label, children=[ dcc.Graph(className='graph', id=m_label, figure={'data': [{'x': xs, 'y': ys, 'mode': 'markers'}], 'layout': {}}) ])) return [tabs] if not kwargs.get(self.arg_AS_SERVER, False): self.app.run_server(debug=False, port=8050) @property def server(self): return self.app.server pass if __name__ == '__main__': dashVis_ = dashVis(**{dashVis.arg_AS_SERVER: False, dashVis.arg_DB_CONFIGS: { DSSqlite3.arg_FILE: '/path/to/dabase/file.db3' }}) # else: # dashVis_ = dashVis(asServer=True) # server = dashVis_.server # # dcc.Dropdown( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montréal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # value='MTL' # ), # dcc.Dropdown( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montréal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # value=['MTL', 'SF'], # multi=True # ), # dcc.RadioItems( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montréal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # value='MTL' # ), # dcc.Checklist( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montréal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # value=['MTL', 'SF'] # ), # dcc.Input(value='MTL', type='text'), # dcc.Slider( # min=0, # max=9, # marks={i: 'Label {}'.format(i) if i == 1 else str(i) for i in range(1, 6)}, # value=5, # ), # html.Button(id='submit-button', n_clicks=0, children='Submit'), # [Input('submit-button', 'n_clicks')], # dcc.Input(id='input-1-state', type='text', value='Montréal'), # dcc.Input(id='input-2-state', type='text', value='Canada'), # [State('input-1-state', 'value'), # State('input-2-state', 'value')]) # dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), ```
{ "source": "jonas-eberle/pyEOM", "score": 2 }
#### File: predefined/MODIS/MCD45A1.py ```python __author__ = 'we32zac' from pyEOM.datasets import Dataset as DatasetAbs class Dataset(DatasetAbs): shortname = 'MCD45A1' platform = 'Combined' collection = '005' rastertype = 'Tile' timeInterval = 'P1M' host = 'http://e4ftl01.cr.usgs.gov' dir = '/MODIS_Composites/MOTA/MCD45A1.005' sources = ['LPDAAC'] def getDownloadInfo(self): return dict(shortname=self.shortname, platform=self.platform, collection=self.collection, rastertype=self.rastertype, host=self.host, directory=self.dir, sources=self.sources) def getBands(self): return self.bands def getThematicBands(self): return [self.bands['Burndate']] def getQualityBands(self): return [] bands = dict(Burndate={ 'name': 'MOD_GRID_Monthly_500km_BA:burndate', 'nodata': 11111, 'scale': None, 'offset': None, 'imagetype': 'thematicClassification', 'identifier': 'MODIS_MCD45_A1_BurntArea_Date_Series', 'title': 'Monthly Burnt Area Date from MODIS Aqua and Terra', 'abstract': 'Time-series of monthly MODIS Aqua and Terra Burnt Area at 500 m spatial resolution. Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOTA/).', 'keywords': 'Modis,Aqua,Terra,Siberia,Burnt Area,Fire,Global,Monthly,Series', 'lineage': 'Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOTA/) and processed with GDAL 1.9.0.', 'datasetname': 'Burnt Area', 'datatype': 'RASTER', 'resolution': 500.0, 'layername': 'mcd45a1_burndate', 'templates': 'template_header_evi.html', 'wcs_description': 'MODIS Combined Burnt Area Date Monthly', 'wms_description': 'MODIS Combined Burnt Area Date Monthly', 'colormap': 'burntarea_colorbar.map', 'resolution_unit': 'm', 'unit': 'None' } ) ``` #### File: predefined/MODIS/MOD10A1.py ```python __author__ = 'we32zac' from pyEOM.datasets import Dataset as DatasetAbs class Dataset(DatasetAbs): shortname = 'MOD10A1' platform = 'Terra' collection = '005' rastertype = 'Tile' timeInterval = 'P1D' documentation = 'http://nsidc.org/data/docs/daac/mod10_modis_snow/version_5/mod10a1_local_attributes.html' host = 'n5eil01u.ecs.nsidc.org' dir = '/SAN/MOST/MOD10A1.005/' sources = ['NSIDC'] def getDownloadInfo(self): return dict(shortname=self.shortname, platform=self.platform, collection=self.collection, rastertype=self.rastertype, host=self.host, directory=self.dir, sources=self.sources) def getBands(self): return self.bands def getThematicBands(self): return [self.bands['SnowCover'], self.bands['SnowAlbedo'], self.bands['FractSnowCover']] def getQualityBands(self): return [self.bands['SnowQA']] bands = dict(SnowCover={ 'name': 'MOD_Grid_Snow_500m:Snow_Cover_Daily_Tile', 'nodata': 255, 'scale': 1, 'imagetype': 'thematicClassification', 'offset': None, 'identifier': 'MODIS_MOD10_A1_SnowCover_Series', 'title': 'Daily Snow Cover from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Snow Cover', 'datatype': 'RASTER', 'resolution': 500, 'layername': 'mod10a1_snowcover', 'templates': 'template_header_snow.html', 'wcs_description': 'MODIS Terra Snow Cover Daily', 'wms_description': 'MODIS Terra Snow Cover Daily', 'colormap': 'snow_colorbar.map', 'resolution_unit': 'm', 'unit': 'Index' }, SnowQA={ 'name': 'MOD_Grid_Snow_500m:Snow_Spatial_QA', 'scale': 1, 'nodata': 255, 'imagetype': 'qualityInformation', 'offset': None, 'quality_datatype': 'int', 'identifier': 'MODIS_MOD10_A2_SnowSpatialQA_Series', 'title': 'Daily Snow Spatial QA from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Snow Spatial QA', 'datatype': 'RASTER', 'resolution': 500, 'layername': 'mod10a1_snowspatialqa', 'templates': 'template_header_snowspatialqa.html', 'wcs_description': 'MODIS Terra Snow Spatial QA Daily', 'wms_description': 'MODIS Terra Snow Spatial QA Daily', 'colormap': 'snowspatialqa_colorbar.map', 'resolution_unit': 'm', 'unit': '' }, SnowAlbedo={ 'name': 'MOD_Grid_Snow_500m:Snow_Albedo_Daily_Tile', 'scale': 1, 'nodata': -6, 'imagetype': 'thematicClassification', 'offset': None, 'identifier': 'MODIS_MOD10_A2_SnowAlbedo_Series', 'title': 'Daily Snow Albedo from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Snow Albedo', 'datatype': 'RASTER', 'resolution': 500, 'layername': 'mod10a1_snowalbedo', 'templates': 'template_header_snowalbedo.html', 'wcs_description': 'MODIS Terra Snow Albedo Daily', 'wms_description': 'MODIS Terra Snow Albedo Daily', 'colormap': 'snowalbedo_colorbar.map', 'resolution_unit': 'm', 'unit': '' }, FractSnowCover={ 'name': 'MOD_Grid_Snow_500m:Fractional_Snow_Cover', 'scale': 1, 'nodata': 255, 'imagetype': 'thematicClassification', 'offset': None, 'identifier': 'MODIS_MOD10_A2_FractSnowCover_Series', 'title': 'Daily Fractional Snow Cover from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Fractional Snow Cover', 'datatype': 'RASTER', 'resolution': 500, 'layername': 'mod10a1_factsnowcover', 'templates': 'template_header_factsnowcover.html', 'wcs_description': 'MODIS Terra Fractional Snow Cover Daily', 'wms_description': 'MODIS Terra Fractional Snow Cover Daily', 'colormap': 'factsnowcover_colorbar.map', 'resolution_unit': 'm', 'unit': '' } ) ``` #### File: predefined/MODIS/MOD10CM.py ```python __author__ = 'we32zac' from pyEOM.datasets import Dataset as DatasetAbs class Dataset(DatasetAbs): shortname = 'MOD10CM' platform = 'Terra' collection = '005' rastertype = 'CMG' timeInterval = 'P1M' documentation = 'http://nsidc.org/data/docs/daac/mod10_modis_snow/version_5/mod10cm_local_attributes.html' host = 'n5eil01u.ecs.nsidc.org' dir = '/SAN/MOST/MOD10CM.005/' sources = ['NSIDC'] def getDownloadInfo(self): return dict(shortname=self.shortname, platform=self.platform, collection=self.collection, rastertype=self.rastertype, host=self.host, directory=self.dir, sources=self.sources) def getBands(self): return self.bands def getThematicBands(self): return [self.bands['SnowCover']] def getQualityBands(self): return [self.bands['SnowQA']] bands = dict(SnowCover={ 'name': 'MOD_CMG_Snow_5km:Snow_Cover_Monthly_CMG', 'nodata': 255, 'scale': 1, 'imagetype': 'thematicClassification', 'offset': None }, SnowQA={ 'name': 'MOD_CMG_Snow_5km:Snow_Spatial_QA', 'scale': 1, 'nodata': 255, 'imagetype': 'qualityInformation', 'offset': None, 'quality_datatype': 'int' } ) ``` #### File: predefined/MODIS/MOD13Q1.py ```python __author__ = 'we32zac' from pyEOM.datasets import Dataset as DatasetAbs class Dataset(DatasetAbs): shortname = 'MOD13Q1' platform = 'Terra' collection = '005' rastertype = 'Tile' timeInterval = 'P16D' host = 'http://e4ftl01.cr.usgs.gov' dir = '/MODIS_Composites/MOLT/MOD13Q1.005' sources = ['LPDAAC','GEE'] def getDownloadInfo(self): return dict(shortname=self.shortname, platform=self.platform, collection=self.collection, rastertype=self.rastertype, host=self.host, directory=self.dir, sources=self.sources) def getBands(self): return self.bands def getThematicBands(self): return [self.bands['EVI'], self.bands['NDVI']] def getQualityBands(self): return [self.bands['PR'], self.bands['QC']] bands = dict(EVI={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days EVI', 'nodata': -3000, 'scale': 0.0001, 'offset': None, 'imagetype': 'thematicClassification', 'identifier': 'MODIS_MOD13_Q1_EVI_Series', 'title': '16-daily Enhanced Vegetation Index from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Enhanced Vegetation Index', 'datatype': 'RASTER', 'resolution': 250, 'layername': 'mod13q1_evi', 'templates': 'template_header_evi.html', 'wcs_description': 'MODIS Terra EVI 16-daily', 'wms_description': 'MODIS Terra EVI 16-daily', 'colormap': 'evi_colorbar.map', 'resolution_unit': 'm', 'unit': 'Index' }, NDVI={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days NDVI', 'scale': 0.0001, 'nodata': -3000, 'imagetype': 'thematicClassification', 'offset': None, 'identifier': 'MODIS_MOD13_Q1_NDVI_Series', 'title': '16-daily Normalized Difference Vegetation Index from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Normalized Difference Vegetation Index', 'datatype': 'RASTER', 'resolution': 250, 'layername': 'mod13q1_ndvi', 'templates': 'template_header_ndvi.html', 'wcs_description': 'MODIS Terra NDVI 16-daily', 'wms_description': 'MODIS Terra NDVI 16-daily', 'colormap': 'ndvi_colorbar.map', 'resolution_unit': 'm', 'unit': 'Index' }, PR={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days pixel reliability', 'scale': 1, 'nodata': -1, 'imagetype': 'qualityInformation', 'offset': None, 'quality_datatype': 'int', 'identifier': 'MODIS_MOD13_Q1_PR_Series', 'title': '16-daily Vegetation Indices Pixel Reliability from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Pixel reliability', 'datatype': 'RASTER', 'resolution': 250, 'layername': 'mod13q1_pr', 'templates': 'template_header_vi_qc.html', 'wcs_description': 'MODIS Terra VI Pixel Reliability 16-daily', 'wms_description': 'MODIS Terra VI Pixel Reliability 16-daily', 'colormap': 'vi_pr_colormap.map', 'resolution_unit': 'm', 'unit': None }, QC={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days VI Quality', 'scale': 1, 'nodata': 65535, 'imagetype': 'qualityInformation', 'offset': None, 'quality_datatype': 'bit', 'identifier': 'MODIS_MOD13_Q1_QC_Series', 'title': '16-daily Vegetation Indices Quality from MODIS Terra', 'abstract': '', 'keywords': '', 'lineage': '', 'datasetname': 'Quality Flags', 'datatype': 'RASTER', 'resolution': 250, 'layername': 'mod13q1_qc', 'templates': 'template_header_vi_qc.html', 'wcs_description': 'MODIS Terra VI Quality 16-daily', 'wms_description': 'MODIS Terra VI Quality 16-daily', 'colormap': 'vi_qc_colormap.map', 'resolution_unit': 'm', 'unit': None } ) ``` #### File: predefined/MODIS/MYD13Q1.py ```python __author__ = 'we32zac' from pyEOM.datasets import Dataset as DatasetAbs class Dataset(DatasetAbs): shortname = 'MYD13Q1' platform = 'Aqua' collection = '005' rastertype = 'Tile' timeInterval = 'P16D' host = 'http://e4ftl01.cr.usgs.gov' dir = '/MODIS_Composites/MOLA/MYD13Q1.005' sources = ['LPDAAC'] def getDownloadInfo(self): return dict(shortname=self.shortname, platform=self.platform, collection=self.collection, rastertype=self.rastertype, host=self.host, directory=self.dir, sources=self.sources) def getBands(self): return self.bands def getThematicBands(self): return [self.bands['EVI'], self.bands['NDVI']] def getQualityBands(self): return [self.bands['PR'], self.bands['QC']] bands = dict(PR={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days pixel reliability', 'nodata': -1, 'scale': 1, 'offset': None, 'imagetype': 'qualityInformation', 'identifier': 'MODIS_MYD13_Q1_PR_Series', 'title': '16-daily Vegetation Indices Pixel Reliability from MODIS Aqua', 'abstract': 'Pixel Reliability from time-series of 16-daily Aqua MODIS Vegetation Indices at 250 m spatial resolution. Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLT/).', 'keywords': 'MODIS,Aqua,Quality,Pixel,Reliability,Vegetation,NDVI,EVI,Global,16-daily,Series', 'lineage': 'Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLT/) and processed with GDAL 1.9.0.', 'datasetname': 'Pixel Reliability', 'datatype': 'RASTER', 'resolution': 250.0, 'layername': 'myd13q1_pr', 'templates': 'template_header_evi.html', 'wcs_description': 'MODIS Aqua VI Pixel Reliability 16-daily', 'wms_description': 'MODIS Aqua VI Pixel Reliability 16-daily', 'colormap': 'vi_pr_colormap.map', 'resolution_unit': 'm', 'unit': 'Index' },QC={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days VI Quality', 'nodata': 65535, 'scale': 1, 'offset': None, 'imagetype': 'qualityInformation', 'identifier': 'MODIS_MYD13_Q1_QC_Series', 'title': '16-daily Vegetation Indices Quality from MODIS Aqua', 'abstract': 'Quality data from time-series of 16-daily Aqua MODIS Vegetation Indices at 250 m spatial resolution. Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLT/).', 'keywords': 'MODIS,Aqua,Quality,Vegetation,NDVI,EVI,Global,16-daily,Series', 'lineage': 'Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLT/) and processed with GDAL 1.9.0.', 'datasetname': 'Quality Flags', 'datatype': 'RASTER', 'resolution': 250.0, 'layername': 'myd13q1_qc', 'templates': 'template_header_evi.html', 'wcs_description': 'MODIS Aqua VI Quality 16-daily', 'wms_description': 'MODIS Aqua VI Quality 16-daily', 'colormap': 'vi_qc_colormap.map', 'resolution_unit': 'm', 'unit': 'Index' },NDVI={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days NDVI', 'nodata': -3000, 'scale': 0.0001, 'offset': None, 'imagetype': 'thematicClassification', 'identifier': 'MODIS_MYD13_Q1_NDVI_Series', 'title': '16-daily Normalized Difference Vegetation Index from MODIS Aqua', 'abstract': 'Time-series of 16-daily Aqua MODIS Normalized Difference Vegetation Index (NDVI) at 250 m spatial resolution. To retrieve actual values a scale factor of 0.0001 has to be applied. The unscaled nodata value is encoded as 0. Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLA/).', 'keywords': 'MODIS,Aqua,Siberia,NDVI,Normalized Difference Vegetation Index,Vegetation,Index,Global,16-daily,Series', 'lineage': 'Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLA/) and processed with GDAL 1.9.0.', 'datasetname': 'Normalized Difference Vegetation Index', 'datatype': 'RASTER', 'resolution': 250.0, 'layername': 'myd13q1_ndvi', 'templates': 'template_header_evi.html', 'wcs_description': 'MODIS Aqua NDVI 16-daily', 'wms_description': 'MODIS Aqua NDVI 16-daily', 'colormap': 'ndvi_colorbar.map', 'resolution_unit': 'm', 'unit': 'None' },EVI={ 'name': 'MODIS_Grid_16DAY_250m_500m_VI:250m 16 days EVI', 'nodata': -3000, 'scale': 0.0001, 'offset': None, 'imagetype': 'thematicClassification', 'identifier': 'MODIS_MYD13_Q1_EVI_Series', 'title': '16-daily Enhanced Vegetation Index from MODIS Aqua', 'abstract': 'Time-series of 16-daily Aqua MODIS Enhanced Vegetation Index (EVI) at 250 m spatial resolution. To retrieve actual values a scale factor of 0.0001 has to be applied. The unscaled nodata value is encoded as 0. Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLA/).', 'keywords': 'MODIS,Aqua,Siberia,EVI,Enhanced Vegetation Index,Vegetation,Index,Global,16-daily,Series', 'lineage': 'Original MODIS data retrieved from the Land Processes Distributed Active Archive Center (ftp://e4ftl01.cr.usgs.gov/MOLA/) and processed with GDAL 1.9.0.', 'datasetname': 'Enhanced Vegetation Index', 'datatype': 'RASTER', 'resolution': 250.0, 'layername': 'myd13q1_evi', 'templates': 'template_header_evi.html', 'wcs_description': 'MODIS Aqua EVI 16-daily', 'wms_description': 'MODIS Aqua EVI 16-daily', 'colormap': 'evi_colorbar.map', 'resolution_unit': 'm', 'unit': 'None' } ) ```
{ "source": "jonas-eberle/stactools", "score": 2 }
#### File: tests/landsat/test_create_stac.py ```python import os from tempfile import TemporaryDirectory from typing import cast import pystac from pystac.utils import is_absolute_href from shapely.geometry import box, shape, mapping import rasterio from stactools.core.projection import reproject_geom from stactools.landsat.assets import SR_ASSET_DEFS, THERMAL_ASSET_DEFS from stactools.landsat.commands import create_landsat_command from stactools.landsat.constants import (L8_SR_BANDS, L8_SP_BANDS) from tests.utils import CliTestCase from tests.landsat.data import TEST_MTL_PATHS class CreateItemTest(CliTestCase): def create_subcommand_functions(self): return [create_landsat_command] def test_create_item(self): def check_proj_bbox(item, tif_bounds): bbox = item.bbox bbox_shp = box(*bbox) proj_bbox = item.ext.projection.bbox self.assertEqual(proj_bbox, list(tif_bounds)) proj_bbox_shp = box(*proj_bbox) reproj_bbox_shp = shape( reproject_geom(f"epsg:{item.ext.projection.epsg}", "epsg:4326", mapping(proj_bbox_shp))) self.assertLess((reproj_bbox_shp - bbox_shp).area, 0.0001 * reproj_bbox_shp.area) for mtl_path in TEST_MTL_PATHS: with self.subTest(mtl_path): base_path = "_".join(mtl_path.split("_")[:-1]) tif_path = f"{base_path}_SR_B3.TIF" with rasterio.open(tif_path) as dataset: tif_bounds = dataset.bounds with TemporaryDirectory() as tmp_dir: cmd = [ 'landsat', 'create-item', '--mtl', mtl_path, '--output', tmp_dir ] self.run_command(cmd) jsons = [ p for p in os.listdir(tmp_dir) if p.endswith('.json') ] self.assertEqual(len(jsons), 1) fname = jsons[0] item = pystac.read_file(os.path.join(tmp_dir, fname)) item.validate() bands_seen = set() for asset in item.assets.values(): self.assertTrue(is_absolute_href(asset.href)) bands = item.ext.eo.get_bands(asset) if bands is not None: bands_seen |= set(b.name for b in bands) if item.properties['landsat:processing_level'] == 'L2SP': self.assertEqual( bands_seen, set(L8_SR_BANDS.keys()) | set(L8_SP_BANDS.keys())) else: self.assertEqual(bands_seen, set(L8_SR_BANDS.keys())) check_proj_bbox(item, tif_bounds) def test_convert_and_create_agree(self): def get_item(output_dir: str) -> pystac.Item: jsons = [p for p in os.listdir(output_dir) if p.endswith('.json')] self.assertEqual(len(jsons), 1) fname = jsons[0] item = cast(pystac.Item, pystac.read_file(os.path.join(output_dir, fname))) item.validate() return item for mtl_path in TEST_MTL_PATHS: with self.subTest(mtl_path): with TemporaryDirectory() as tmp_dir: create_dir = os.path.join(tmp_dir, 'create') convert_dir = os.path.join(tmp_dir, 'convert') original_dir = os.path.join(tmp_dir, 'original') os.makedirs(create_dir, exist_ok=True) os.makedirs(convert_dir, exist_ok=True) os.makedirs(original_dir, exist_ok=True) create_cmd = [ 'landsat', 'create-item', '--mtl', mtl_path, '--output', create_dir ] self.run_command(create_cmd) stac_path = mtl_path.replace('_MTL.xml', '_SR_stac.json') import shutil shutil.copy( stac_path, os.path.join(original_dir, os.path.basename(stac_path))) convert_cmd = [ 'landsat', 'convert', '--stac', stac_path, '--dst', convert_dir ] self.run_command(convert_cmd) created_item = get_item(create_dir) # Ensure media_type is set for asset in created_item.assets.values(): self.assertTrue(asset.media_type is not None) for asset_def in SR_ASSET_DEFS: self.assertIn(asset_def.key, created_item.assets) if created_item.properties[ 'landsat:processing_level'] == 'L2SP': for asset_def in THERMAL_ASSET_DEFS: self.assertIn(asset_def.key, created_item.assets) # TODO: Resolve disagreements between convert and create. # This might best be informed by USGS's own STAC 1.0.* items # when they are made available. # created_item = get_item(create_dir) # converted_item = get_item(convert_dir) # self.assertTrue( # set(converted_item.assets.keys()).issubset( # set(created_item.assets.keys())), # msg= # f"{set(converted_item.assets.keys()) - set(created_item.assets.keys())}" # ) ```
{ "source": "jonaseck2/kubernetes-labs", "score": 3 }
#### File: lab1/python/app.py ```python from flask import Flask import os app = Flask(__name__) @app.route("/") def hello(): return "Hello " + os.environ.get("NAME", "you") + "\n" if __name__ == "__main__": port = int(os.environ.get("PORT", 3000)) app.run(debug=True,host='0.0.0.0',port=port) ```
{ "source": "jonaseck2/rabbitmq-credentials-test", "score": 2 }
#### File: jonaseck2/rabbitmq-credentials-test/start.py ```python import pika import os config = { 'rabbitmq': { 'host': 'localhost', 'port': 5672, 'virtual_host': '/', 'user': 'guest', 'password': '<PASSWORD>', } } for section in config: for key,value in config[section].items(): env = os.getenv(section.upper() + '_' + key.upper()) if env: print("%s_%s=\"%s\" as %s" % (section.upper(), key.upper(), env, type(value))) config[section][key] = type(value)(env) config['rabbitmq']['credentials'] = pika.PlainCredentials(config['rabbitmq'].pop('user'), config['rabbitmq'].pop('password')) connection = pika.BlockingConnection(pika.ConnectionParameters(**config['rabbitmq'])) channel = connection.channel() channel.queue_declare(queue='test') # publish body='Hello World!' print(" [x] Sent %r" % body) channel.basic_publish(exchange='', routing_key='test', body=body) # subscribe def callback(ch, method, properties, body): print(" [x] Received %r" % body) connection.close() channel.basic_consume(callback, queue='test', no_ack=True) channel.start_consuming() ```
{ "source": "jonasehrlich/argparse-shell", "score": 3 }
#### File: argparse-shell/argparse_shell/decorators.py ```python import typing as ty from . import constants def no_shell_cmd(func: ty.Any) -> ty.Any: """ Decorator to mark a function, that it is not added as a command to the argument parser or the interactive shell """ setattr(func, constants.ARGPARSE_SHELL_CMD_ATTRIBUTE_NAME, False) return func def command_name(name: str) -> ty.Any: """Decorator to explicitly set a name for a command""" def inner(func: ty.Any): setattr(func, constants.ARGPARSE_SHELL_CMD_ATTRIBUTE_NAME, name) return func return inner ``` #### File: argparse-shell/argparse_shell/namespace.py ```python from __future__ import annotations import collections import inspect import typing as ty from . import utils from .command import Command, UnsupportedCommandTypeError, UnboundCommand __all__ = ["Namespace", "UnboundNamespace"] T = ty.TypeVar("T") Command_T = ty.TypeVar("Command_T") class DuplicateCommandNameError(KeyError): """Raised if a command name is added for a second time to a namespace""" class _NamespaceBase(collections.UserDict, ty.Dict[str, Command_T]): def __repr__(self) -> str: return f"{self.__class__.__name__}({super().__repr__()})" def __setitem__(self, key: str, item: Command_T) -> None: if key in self: raise DuplicateCommandNameError(f"Command '{key}' is already defined in namespace") return super().__setitem__(key, item) class Namespace(_NamespaceBase[Command]): @classmethod def from_object( cls: ty.Type[T], obj: ty.Any, nested_namespaces: ty.Optional[ty.Mapping[str, UnboundNamespace]] = None ) -> T: """Build a namespace from an object. The namespace is a mapping of command names to callback functions. This layer wraps coroutine functions and descriptors in functions, to allow them being called directly. :param obj: Object to build the namespace from :type obj: ty.Any :param nested_namespaces: Mappin :return: Mapping of command names defined in an object :rtype: Namespace """ unbound_namespace = UnboundNamespace.from_object(obj, nested_namespaces=nested_namespaces) return unbound_namespace.bind(obj, cls) class UnboundNamespace(_NamespaceBase[UnboundCommand]): def bind(self, obj: ty.Any, namespace_cls: ty.Type[T] = Namespace) -> T: namespace = namespace_cls() for cmd in self.values(): namespace[cmd.name] = cmd.bind(obj) return namespace @classmethod def from_object( # noqa: C901 cls: ty.Type[T], obj: ty.Any, nested_namespaces: ty.Optional[ty.Mapping[str, UnboundNamespace]] = None ) -> T: """Build a namespace from an object. The namespace is a mapping of command names to callback functions. This layer wraps coroutine functions and descriptors in functions, to allow them being called directly. :param obj: Object to build the namespace from :type obj: ty.Any :param nested_namespaces: Mapping of namespace names to unbound, nested namespaces, defaults to None :type nested_namespaces: ty.Mapping[str, UnboundNamespace], optional :return: Mapping of command names defined in a namespace to :py:class:`UnboundCommand` objects :rtype: UnboundNamespace """ namespace = cls() nested_namespaces = dict(nested_namespaces) if nested_namespaces else dict() if inspect.isclass(obj) or inspect.ismodule(obj): detect_obj = obj is_instance = False else: # Use the class of arbitrary objects to build a namespace detect_obj = obj.__class__ is_instance = True for name, nested_command in inspect.getmembers(detect_obj): if not utils.is_shell_cmd(nested_command, name): continue nested_namespace = nested_namespaces.pop(name, None) if nested_namespace: for cmd_name, nested_command in nested_namespace.items(): namespace_cmd = nested_command.for_namespace(name) namespace[namespace_cmd.name] = namespace_cmd continue cmd_name = utils.get_command_name(nested_command, name) try: namespace[cmd_name] = UnboundCommand.from_callable(cmd_name, nested_command) except UnsupportedCommandTypeError: pass if nested_namespaces and is_instance: # We have still nested namespaces left and the object argument was not a class or a module, # check if the namespaces exist in the object and were defined during initialization of the class nested_namespaces_copy = dict(nested_namespaces) instance_attributes = set(dir(obj)) for name, nested_namespace in nested_namespaces_copy.items(): if name in instance_attributes: for cmd_name, nested_command in nested_namespace.items(): namespace_cmd = nested_command.for_namespace(name) namespace[namespace_cmd.name] = nested_command.for_namespace(name) nested_namespaces.pop(name, None) if nested_namespaces: # Nested namespaces were defined but could not be found, raise a RuntimeError raise RuntimeError( f"Defined nested namespaces: {list(nested_namespaces)} could not be found in object {obj!r}" ) return namespace ``` #### File: argparse-shell/test/test_argparse_shell.py ```python import types import typing as ty import pytest from argparse_shell import ArgparseShell T = ty.TypeVar("T", int, float, str, bytes) class Calculator: """Super calculator""" def add(self, a: T, b: T) -> T: """Add two numbers :param a: First number :param b: Second number :return: Sum of two numbers """ return a + b def div(self, a: float, b: float) -> float: """ Divide numbers :param a: First number :param b: Second number :return: Division of two numbers""" return a / b def multiply(self, a: float, b: float) -> float: """Multiply two numbers :param a: First number :param b: Second number :return: Product of two numbers """ return a * b calculator_module = types.ModuleType("calculator") setattr(calculator_module, "add", lambda a, b: a + b) setattr(calculator_module, "div", lambda a, b: a / b) def test_cli_instance(capsys: pytest.CaptureFixture, subtests): """Test that we can run methods through a CLI created with an instance and that the output is printed""" drv = Calculator() shell = ArgparseShell.from_object(drv, "calc") a = 1 b = 5 with subtests.test("add"): shell.main(["add", str(a), str(b)]) captured = capsys.readouterr() assert captured.out.strip() == str(a + b) with subtests.test("div"): shell.main(["div", str(a), str(b)]) captured = capsys.readouterr() assert captured.out.strip() == str(a / b) with subtests.test("div0"): with pytest.raises(ZeroDivisionError): shell.main(["div", str(a), "0"]) def test_cli_module(capsys: pytest.CaptureFixture, subtests): """Test that we can run methods through a CLI created with a and that the output is printed""" shell = ArgparseShell.from_object(calculator_module, "calc") a = 1 b = 5 with subtests.test("add"): shell.main(["add", str(a), str(b)]) captured = capsys.readouterr() assert captured.out.strip() == str(a + b) with subtests.test("div"): shell.main(["div", str(a), str(b)]) captured = capsys.readouterr() assert captured.out.strip() == str(a / b) with subtests.test("div0"): with pytest.raises(ZeroDivisionError): shell.main(["div", str(a), "0"]) ```
{ "source": "jonasek369/puzzle-game", "score": 3 }
#### File: jonasek369/puzzle-game/mapGenerator.py ```python import time import random from colorama import Fore class mapGenerator: def __init__(self, current_level, preset="abcdefghij"): """ :param current_level: Int : number of current level :param preset: Ste : string of level layout """ self.map = dict() self.biom_info = {"land": 0, "box": 0, "destination": 0} self.torf = [ True, False ] self.max_boxes = current_level self.alphabet = list(preset) self.borders = [] for i in range(len(self.alphabet)): self.borders.append(f"{preset[0]}{i + 1}") for i in self.alphabet: self.borders.append(f"{i}1") for i in range(len(self.alphabet)): self.borders.append(f"{self.alphabet[len(self.alphabet) - 1]}{i + 1}") for i in self.alphabet: self.borders.append(f"{i}{len(self.alphabet)}") # all directions used in game self.directions = [ "up", "down", "left", "right" ] # biom/tile type self.bioms = [ "land", "box", "destination" ] def generate_map(self, debugger=False): """ :param debugger: Bool : T/F if you want to see debugger info for normal game False :return: """ if debugger: start = time.time() for pos, x in enumerate(self.alphabet): for y in range(len(self.alphabet)): y = y + 1 up, down, left, right = self.create_cords_for_axies(x, y, pos) self.map[f"{x}{y}"] = { "cords": f"{x}{y}", "biom": "", "up": up, "left": left, "right": right, "down": down } if debugger: print("generated map with layout of", self.alphabet, "took", round(time.time() - start, 10) * 1000, "ms") return self.map def generate_bioms(self, debugger=False): """ :param debugger: Bool : T/F if you want to see debugger info for normal game False :return: """ if debugger: start = time.time() self.biom_info["box"] = 0 self.biom_info["destination"] = 0 while self.biom_info["destination"] != self.max_boxes: if self.biom_info["box"] == self.max_boxes: break random_x = random.choice(self.alphabet) random_y = random.randint(1, len(self.alphabet)) if self.map[f"{random_x}{random_y}"]["cords"] not in self.borders: if self.map[f"{random_x}{random_y}"]["biom"] == "": self.map[f"{random_x}{random_y}"]["biom"] = "box" self.biom_info["box"] += 1 else: continue else: continue while True: if self.biom_info["destination"] == self.max_boxes: break random_x = random.choice(self.alphabet) random_y = random.randint(1, len(self.alphabet)) if self.map[f"{random_x}{random_y}"]["biom"] == "": self.map[f"{random_x}{random_y}"]["biom"] = "destination" self.biom_info["destination"] += 1 else: continue # cleanup for i in self.map: if self.map[i]["biom"] == "": self.map[i]["biom"] = "land" else: continue if debugger: print("created bioms with set of", self.biom_info, "took", round(time.time() - start, 10) * 1000, "ms") def show_map(self, player_pos): # render fuction """ :param player_pos: Str : example a1 pos of user for displaying on map :return: """ form_map = "" for i in self.map: if self.map[i]["cords"] == player_pos: if str(len(self.alphabet)) in self.map[i]["cords"]: form_map += Fore.MAGENTA + i + Fore.WHITE + "\n" continue else: form_map += Fore.MAGENTA + i + Fore.WHITE continue if self.map[i]["biom"] == "land": if str(len(self.alphabet)) in self.map[i]["cords"]: form_map += Fore.GREEN + i + Fore.WHITE + "\n" continue else: form_map += Fore.GREEN + i + Fore.WHITE continue # if self.map[i]["biom"] == "box": if str(len(self.alphabet)) in self.map[i]["cords"]: form_map += Fore.YELLOW + i + Fore.WHITE + "\n" continue else: form_map += Fore.YELLOW + i + Fore.WHITE continue if self.map[i]["biom"] == "destination": if str(len(self.alphabet)) in self.map[i]["cords"]: form_map += Fore.RED + i + Fore.WHITE + "\n" continue else: form_map += Fore.RED + i + Fore.WHITE continue # if self.map[i]["biom"] == "locked_box": if str(len(self.alphabet)) in self.map[i]["cords"]: form_map += Fore.CYAN + i + Fore.WHITE + "\n" continue else: form_map += Fore.CYAN + i + Fore.WHITE continue if str(len(self.alphabet)) in self.map[i]["cords"]: form_map += i + "\n" continue else: form_map += i continue return form_map def create_cords_for_axies(self, x, y, pos): """ :param x: Str : examole a or h :param y: Int : examole 1 or 3 :param pos: Int : pos in enumrate of the preset :return: """ if pos - 1 >= 0: try: up = str(self.alphabet[pos - 1]) + str(y) except IndexError: up = None else: up = None # down try: down = str(self.alphabet[pos + 1]) + str(y) except IndexError: down = None # left if len(self.alphabet) >= y - 1 > 0: left = x + str(y - 1) else: left = None # right if len(self.alphabet) >= y + 1 > 0: right = x + str(y + 1) else: right = None return up, down, left, right def create_new_level(self): # cleares current map and create map with +1 level self.map.clear() self.max_boxes += 1 mapGenerator.generate_map(self, debugger=False) # enabled debugger for more info (timing) mapGenerator.generate_bioms(self, debugger=False) # enabled debugger for more info (timing) ```
{ "source": "jonasengelmann/bibliographic_corpus_webapp", "score": 2 }
#### File: bibliographic_corpus_webapp/app/app.py ```python from flask import Flask # Local imports from app import main, corpus from app.extensions import sparqlstore def create_app(config_object='app.settings'): ''' Create application factory, as explained here: http://flask.pocoo.org/docs/patterns/appfactories/. :param config_object: The configuration object to use. ''' app = Flask(__name__.split('.')[0]) app.config.from_object(config_object) register_extensions(app) register_blueprints(app) return app def register_blueprints(app): '''Register Flask blueprints.''' app.register_blueprint(main.views.blueprint) app.register_blueprint(corpus.views.blueprint) return None def register_extensions(app): '''Register Flask extensions.''' sparqlstore.init_app(app) ``` #### File: app/main/views.py ```python from flask import Blueprint, render_template blueprint = Blueprint('main', __name__, static_folder='../static') @blueprint.route('/') @blueprint.route('/query') def query(): return render_template('main/query.html') ``` #### File: bibliographic_corpus_webapp/flask_sparql/flask_sparql.py ```python from flask import current_app, _app_ctx_stack from SPARQLWrapper import SPARQLWrapper, SPARQLExceptions class SPARQLStore(object): def __init__(self, app=None): self.app = app if app is not None: self.init_app(app) def init_app(self, app): pass def connect(self): return SPARQLWrapper( endpoint=current_app.config['SPARQL_ENDPOINT'], returnFormat='json' ) def connection(self): ctx = _app_ctx_stack.top if ctx is not None: if not hasattr(ctx, 'sparqlstore'): ctx.sparqlstore = self.connect() return ctx.sparqlstore def query(self, query): sparqlstore = self.connection() sparqlstore.setMethod('GET') sparqlstore.setQuery(query) try: results = sparqlstore.queryAndConvert() except SPARQLExceptions.SPARQLWrapperException as ex: raise ex return results['results']['bindings'] ```
{ "source": "JonasEngstrom/hkrmlcourse", "score": 3 }
#### File: src/hkrmlcourse/drop_old_stocks.py ```python import pandas def drop_old_stocks(stock_data: pandas.DataFrame, threshold: int = 15000) -> pandas.DataFrame: """ Drops stocks from a data frame downloaded from Yahoo Finance based on an age threshold, i.e. stocks that have data for more days than the threshold value are dropped. Default threshold is 15,000 days. :param stock_data: Stock data from Yahoo Finance. :type stock_data: pandas.DataFrame :param threshold: Maximum allowed number of days for which data can exist. :type threshold: int :return: A data frame without the dropped stocks. :rtype: pandas.DataFrame """ ticker_ages = stock_data.Open.count() old_tickers = ticker_ages[ticker_ages > threshold].index return stock_data.drop(old_tickers, axis = 1, level = 1) ``` #### File: src/hkrmlcourse/drop_young_stocks.py ```python import pandas def drop_young_stocks(stock_data: pandas.DataFrame, threshold: int = 3650) -> pandas.DataFrame: """ Drops stocks from a data frame downloaded from Yahoo Finance based on an age threshold, i.e. stocks that have data for fewer days than the threshold value are dropped. Default threshold is 3,650 days. :param stock_data: Stock data from Yahoo Finance. :type stock_data: pandas.DataFrame :param threshold: Minimum required number of days for which data exists. :type threshold: int :return: A data frame without the dropped stocks. :rtype: pandas.DataFrame """ ticker_ages = stock_data.Open.count() young_tickers = ticker_ages[ticker_ages < threshold].index return stock_data.drop(young_tickers, axis = 1, level = 1) ``` #### File: src/hkrmlcourse/generate_appreciation_labels.py ```python import pandas import hkrmlcourse.generate_multiindex def generate_appreciation_labels(stock_history: pandas.DataFrame, shift_days: int = -1) -> pandas.DataFrame: """ Takes a stock history data frame from Yahoo Finance and returns a data frame with boolean labels whether the stock appreciated the day after (with default settings). :param stock_history: Stock history from Yahoo Finance. :type stock_history: pandas.DataFrame :param shift_days: Number of days to shift labels (default -1). :type shift_days: int :return: A labels indexed by date and ticker symbols. :rtype: pandas.DataFrame """ label_data_frame = stock_history.Close / stock_history.Open - 1 > 0 shifted_data_frame = label_data_frame.shift(shift_days) column_titles = hkrmlcourse.generate_multiindex.generate_multiindex( shifted_data_frame, f"BoolIntraDayAppreciation{abs(shift_days)}Day" f"{'s' if abs(shift_days) != 1 else ''}InThe" f"{'Future' if shift_days <= 0 else 'Past'}" ) shifted_data_frame.columns = column_titles return shifted_data_frame ``` #### File: src/hkrmlcourse/make_divisible_by.py ```python import pandas def make_divisible_by(input_data_frame: pandas.DataFrame, divisor: int) -> pandas.DataFrame: """ Removes the first rows of a data frame as to make the row number divisible by a desired number. :param input_data_frame: The input data frame. :type input_data_frame: pandas.DataFrame :param divisor: The desired divisor. :type divisor: int :return: A dataframe with a number of rows divisible by the divisor. :rtype: pandas.DataFrame """ return input_data_frame[len(input_data_frame) % divisor] ``` #### File: src/hkrmlcourse/setup_tpu.py ```python import os import tensorflow as tf from tensorflow import keras def setup_tpu() -> tf.distribute.TPUStrategy: """ Sets up TPU for usage in Google Colab. Returns a TPU strategy. :return: A TPU strategy. :rtype: tf.distribute.TPUStrategy """ TF_MASTER = f"grpc://{os.environ['COLAB_TPU_ADDR']}" resolver = tf.distribute.cluster_resolver.TPUClusterResolver(TF_MASTER) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) return tf.distribute.TPUStrategy(resolver) ```
{ "source": "JonasErkert/ULTA", "score": 2 }
#### File: JonasErkert/ULTA/__init__.py ```python bl_info = { "name": "UlTA", "description": "Useful little tools for gamedev", "author": "<NAME>", "version": (0, 1), "blender": (2, 80, 0), "location": "View3D", "category": "Object", } import bpy from . ulta_menus import ULTA_MT_Pie_Menu from . ulta_quick_export import ULTA_QuickExport from . ulta_join_multiuser import ULTA_JoinMultiuser from . ulta_create_bb import ULTA_CreateBB from . ulta_prefix_selected import ULTA_PrefixSelected from . ulta_apply_modifiers import ULTA_ApplyModifiers addon_keymaps = [] classes = ( ULTA_QuickExport, ULTA_JoinMultiuser, ULTA_CreateBB, ULTA_PrefixSelected, ULTA_ApplyModifiers, ULTA_MT_Pie_Menu ) def register(): for c in classes: bpy.utils.register_class(c) # add keymap entry kc = bpy.context.window_manager.keyconfigs.addon km = kc.keymaps.new(name='3D View', space_type='VIEW_3D') kmi_menu = km.keymap_items.new("wm.call_menu_pie", "COMMA", "PRESS", shift=True) kmi_menu.properties.name = ULTA_MT_Pie_Menu.bl_idname addon_keymaps.append((km, kmi_menu)) def unregister(): for c in classes: bpy.utils.unregister_class(c) # remove keymap entry for km, kmi in addon_keymaps: km.keymap_items.remove(kmi) addon_keymaps.clear() ``` #### File: JonasErkert/ULTA/ulta_prefix_selected.py ```python import bpy from bpy.types import Operator class ULTA_PrefixSelected(Operator): bl_idname = "object.prefix_selected" bl_label = "Prefix Selected" bl_description = "Prefix selected objects with SM_, SK_ and materials with M_ or UCX" bl_options = {'REGISTER', 'UNDO'} is_collision_mesh: bpy.props.BoolProperty( name="Is Collision Mesh", description="Prefix with UCX_ and append _0x", default=False ) @classmethod def poll(cls, context): return context.object.select_get() def execute(self, context): selected_objs = bpy.context.selected_objects if not self.is_collision_mesh: static_mesh_prefix = 'SM_' skeletal_mesh_prefix = 'SK_' material_prefix = 'M_' # rename meshes and armature for obj in selected_objs: obj_name = obj.name if obj.type == 'MESH' and static_mesh_prefix not in obj_name: obj.name = static_mesh_prefix + obj_name if obj.type == 'ARMATURE' and skeletal_mesh_prefix not in obj_name: obj.name = skeletal_mesh_prefix + obj.name # rename materials for mat in bpy.data.materials: if material_prefix not in mat.name: mat.name = material_prefix + mat.name else: collision_mesh_prefix = "UCX_" # check if already prefixed for i, obj in enumerate(selected_objs): if collision_mesh_prefix not in obj.name: obj.name = collision_mesh_prefix + obj.name + "_0" + str(i+1) return {'FINISHED'} ``` #### File: JonasErkert/ULTA/ulta_utils.py ```python import bpy def activate_collection_of_selected_obj(): obj = bpy.context.object object_coll = obj.users_collection # recursively transverse layer_collection for a particular name def recur_layer_collection(layer_coll, coll_name): found = None if layer_coll.name == coll_name: return layer_coll for layer in layer_coll.children: found = recur_layer_collection(layer, coll_name) if found: return found # switching active Collection to active Object selected for coll in object_coll: layer_collection = bpy.context.view_layer.layer_collection layer_coll = recur_layer_collection(layer_collection, coll.name) bpy.context.view_layer.active_layer_collection = layer_coll # This doesn't work, only gets correct key when creating new collection # collection = bpy.data.collections.new('My Collection') # bpy.context.scene.collection.children.link(collection) # parent_collection = selected_obj.users_collection # layer_collection = bpy.context.view_layer.layer_collection.children[parent_collection[0].name] # bpy.context.view_layer.active_layer_collection = layer_collection ```
{ "source": "jonas-eschle/hep_ml", "score": 3 }
#### File: hep_ml/hep_ml/speedup.py ```python from __future__ import division, print_function, absolute_import import numpy import pandas from collections import OrderedDict from sklearn.base import ClassifierMixin, BaseEstimator, clone from .commonutils import to_pandas_dataframe, check_xyw, check_sample_weight, weighted_quantile __author__ = '<NAME>' class LookupClassifier(BaseEstimator, ClassifierMixin): def __init__(self, base_estimator, n_bins=16, max_cells=500000000, keep_trained_estimator=True): """ LookupClassifier splits each of features into bins, trains a base_estimator to use this data. To predict class for new observation, results of base_estimator are kept for all possible combinations of bins, and saved together :param n_bins: * int: how many bins to use for each axis * dict: feature_name -> int, specialize how many bins to use for each axis * dict: feature_name -> list of floats, set manually edges of bins By default, the (weighted) quantiles are used to compute bin edges. :type n_bins: int | dict :param int max_cells: raise error if lookup table will have more items. :param bool keep_trained_estimator: if True, trained estimator will be saved. See also: this idea is used inside LHCb triggers, see <NAME>, <NAME>, 'Bonsai BDT' Resulting formula is very simple and can be rewritten in other language or environment (C++, CUDA, etc). """ self.base_estimator = base_estimator self.n_bins = n_bins self.max_cells = max_cells self.keep_trained_estimator = keep_trained_estimator def fit(self, X, y, sample_weight=None): """Train a classifier and collect predictions for all possible combinations. :param X: pandas.DataFrame or numpy.array with data of shape [n_samples, n_features] :param y: array with labels of shape [n_samples] :param sample_weight: None or array of shape [n_samples] with weights of events :return: self """ self.classes_ = numpy.unique(y) X, y, normed_weights = check_xyw(X, y, sample_weight=sample_weight, classification=True) X = to_pandas_dataframe(X) normed_weights = check_sample_weight(y, sample_weight=normed_weights, normalize_by_class=True, normalize=True) self.bin_edges = self._compute_bin_edges(X, normed_weights=normed_weights) n_parameter_combinations = numpy.prod([len(bin_edge) + 1 for name, bin_edge in self.bin_edges.items()]) assert n_parameter_combinations <= self.max_cells, \ 'the total size of lookup table exceeds {}, ' \ 'reduce n_bins or number of features in use'.format(self.max_cells) transformed_data = self.transform(X) trained_estimator = clone(self.base_estimator) fit_params = {} if sample_weight is not None: fit_params['sample_weights'] = sample_weight trained_estimator.fit(transformed_data, y, **fit_params) all_lookup_indices = numpy.arange(int(n_parameter_combinations)) all_combinations = self.convert_lookup_index_to_bins(all_lookup_indices) self._lookup_table = trained_estimator.predict_proba(all_combinations) if self.keep_trained_estimator: self.trained_estimator = trained_estimator return self def _compute_bin_edges(self, X, normed_weights): """ Compute edges of bins, weighted quantiles are used, """ bins_over_axis = OrderedDict() for column in X.columns: if isinstance(self.n_bins, int): bins_over_axis[column] = self.n_bins else: bins_over_axis[column] = self.n_bins[column] bin_edges = OrderedDict() for column, column_bins in bins_over_axis.items(): if isinstance(column_bins, int): quantiles = numpy.linspace(0., 1., column_bins + 1)[1:-1] bin_edges[column] = weighted_quantile(X[column], quantiles=quantiles, sample_weight=normed_weights) else: bin_edges[column] = numpy.array(list(column_bins)) return bin_edges def convert_bins_to_lookup_index(self, bins_indices): """ :param bins_indices: numpy.array of shape [n_samples, n_columns], filled with indices of bins. :return: numpy.array of shape [n_samples] with corresponding index in lookup table """ lookup_indices = numpy.zeros(len(bins_indices), dtype=int) bins_indices = numpy.array(bins_indices) assert bins_indices.shape[1] == len(self.bin_edges) for i, (column_name, bin_edges) in enumerate(self.bin_edges.items()): lookup_indices *= len(bin_edges) + 1 lookup_indices += bins_indices[:, i] return lookup_indices def convert_lookup_index_to_bins(self, lookup_indices): """ :param lookup_indices: array of shape [n_samples] with positions at lookup table :return: array of shape [n_samples, n_features] with indices of bins. """ result = numpy.zeros([len(lookup_indices), len(self.bin_edges)], dtype='uint8') for i, (column_name, bin_edges) in list(enumerate(self.bin_edges.items()))[::-1]: n_columns = len(bin_edges) + 1 result[:, i] = lookup_indices % n_columns lookup_indices = lookup_indices // n_columns return result def transform(self, X): """Convert data to bin indices. :param X: pandas.DataFrame or numpy.array with data :return: pandas.DataFrame, where each column is replaced with index of bin """ X = to_pandas_dataframe(X) assert list(X.columns) == list(self.bin_edges.keys()), 'passed dataset with wrong columns' result = numpy.zeros(X.shape, dtype='uint8') for i, column in enumerate(X.columns): edges = self.bin_edges[column] result[:, i] = numpy.searchsorted(edges, X[column]) return pandas.DataFrame(result, columns=X.columns) def predict(self, X): """Predict class for each event :param X: pandas.DataFrame with data :return: array of shape [n_samples] with predicted class labels. """ return self.classes_[numpy.argmax(self.predict_proba(X), axis=1)] def predict_proba(self, X): """ Predict probabilities for new observations :param X: pandas.DataFrame with data :return: probabilities, array of shape [n_samples, n_classes] """ bins_indices = self.transform(X) lookup_indices = self.convert_bins_to_lookup_index(bins_indices) return self._lookup_table[lookup_indices] ``` #### File: hep_ml/tests/test_gradientboosting.py ```python from __future__ import division, print_function, absolute_import import numpy from sklearn.metrics import mean_squared_error, roc_auc_score from sklearn.base import clone from hep_ml.commonutils import generate_sample from hep_ml.losses import LogLossFunction, MSELossFunction, AdaLossFunction from hep_ml import losses from hep_ml.gradientboosting import UGradientBoostingClassifier, UGradientBoostingRegressor import copy def test_gb_with_ada_and_log(n_samples=1000, n_features=10, distance=0.6): testX, testY = generate_sample(n_samples, n_features, distance=distance) trainX, trainY = generate_sample(n_samples, n_features, distance=distance) for loss in [LogLossFunction(), AdaLossFunction()]: clf = UGradientBoostingClassifier(loss=loss, min_samples_split=20, max_depth=5, learning_rate=.2, subsample=0.7, n_estimators=10, train_features=None) clf.fit(trainX, trainY) assert clf.n_features == n_features assert len(clf.feature_importances_) == n_features # checking that predict proba works for p in clf.staged_predict_proba(testX): assert p.shape == (n_samples, 2) assert numpy.all(p == clf.predict_proba(testX)) assert roc_auc_score(testY, p[:, 1]) > 0.8, 'quality is too low' # checking clonability _ = clone(clf) clf_copy = copy.deepcopy(clf) assert (clf.predict_proba(trainX) == clf_copy.predict_proba(trainX)).all(), 'copied classifier is different' def test_gradient_boosting(n_samples=1000): """ Testing workability of GradientBoosting with different loss function """ # Generating some samples correlated with first variable distance = 0.6 testX, testY = generate_sample(n_samples, 10, distance) trainX, trainY = generate_sample(n_samples, 10, distance) # We will try to get uniform distribution along this variable uniform_features = ['column0'] loss1 = LogLossFunction() loss2 = AdaLossFunction() loss3 = losses.CompositeLossFunction() loss4 = losses.KnnAdaLossFunction(uniform_features=uniform_features, uniform_label=1) loss5 = losses.KnnAdaLossFunction(uniform_features=uniform_features, uniform_label=[0, 1]) loss6bin = losses.BinFlatnessLossFunction(uniform_features, fl_coefficient=2., uniform_label=0) loss7bin = losses.BinFlatnessLossFunction(uniform_features, fl_coefficient=2., uniform_label=[0, 1]) loss6knn = losses.KnnFlatnessLossFunction(uniform_features, fl_coefficient=2., uniform_label=1) loss7knn = losses.KnnFlatnessLossFunction(uniform_features, fl_coefficient=2., uniform_label=[0, 1]) for loss in [loss1, loss2, loss3, loss4, loss5, loss6bin, loss7bin, loss6knn, loss7knn]: clf = UGradientBoostingClassifier(loss=loss, min_samples_split=20, max_depth=5, learning_rate=0.2, subsample=0.7, n_estimators=25, train_features=None) \ .fit(trainX[:n_samples], trainY[:n_samples]) result = clf.score(testX, testY) assert result >= 0.7, "The quality is too poor: {} with loss: {}".format(result, loss) trainX['fake_request'] = numpy.random.randint(0, 4, size=len(trainX)) for loss in [losses.MSELossFunction(), losses.MAELossFunction(), losses.RankBoostLossFunction(request_column='fake_request')]: print(loss) clf = UGradientBoostingRegressor(loss=loss, max_depth=3, n_estimators=50, learning_rate=0.01, subsample=0.5, train_features=list(trainX.columns[1:])) clf.fit(trainX, trainY) roc_auc = roc_auc_score(testY, clf.predict(testX)) assert roc_auc >= 0.7, "The quality is too poor: {} with loss: {}".format(roc_auc, loss) def test_gb_regression(n_samples=1000): X, _ = generate_sample(n_samples, 10, distance=0.6) y = numpy.tanh(X.sum(axis=1)) clf = UGradientBoostingRegressor(loss=MSELossFunction()) clf.fit(X, y) y_pred = clf.predict(X) zeromse = 0.5 * mean_squared_error(y, y * 0.) assert mean_squared_error(y, y_pred) < zeromse, 'something wrong with regression quality' def test_gb_ranking(n_samples=1000): distance = 0.6 testX, testY = generate_sample(n_samples, 10, distance) trainX, trainY = generate_sample(n_samples, 10, distance) rank_variable = 'column1' trainX[rank_variable] = numpy.random.randint(0, 3, size=len(trainX)) testX[rank_variable] = numpy.random.randint(0, 3, size=len(testX)) rank_loss1 = losses.RankBoostLossFunction(request_column=rank_variable, update_iterations=1) rank_loss2 = losses.RankBoostLossFunction(request_column=rank_variable, update_iterations=2) rank_loss3 = losses.RankBoostLossFunction(request_column=rank_variable, update_iterations=10) for loss in [rank_loss1, rank_loss2, rank_loss3]: clf = UGradientBoostingRegressor(loss=loss, min_samples_split=20, max_depth=5, learning_rate=0.2, subsample=0.7, n_estimators=25, train_features=None) \ .fit(trainX[:n_samples], trainY[:n_samples]) result = roc_auc_score(testY, clf.predict(testX)) assert result >= 0.8, "The quality is too poor: {} with loss: {}".format(result, loss) def test_constant_fitting(n_samples=1000, n_features=5): """ Testing if initial constant fitted properly """ X, y = generate_sample(n_samples=n_samples, n_features=n_features) y = y.astype(numpy.float) + 1000. for loss in [MSELossFunction(), losses.MAELossFunction()]: gb = UGradientBoostingRegressor(loss=loss, n_estimators=10) gb.fit(X, y) p = gb.predict(X) assert mean_squared_error(p, y) < 0.5 def test_weight_misbalance(n_samples=1000, n_features=10, distance=0.6): """ Testing how classifiers work with highly misbalanced (in the terms of weights) datasets. """ testX, testY = generate_sample(n_samples, n_features, distance=distance) trainX, trainY = generate_sample(n_samples, n_features, distance=distance) trainW = trainY * 10000 + 1 testW = testY * 10000 + 1 for loss in [LogLossFunction(), AdaLossFunction(), losses.CompositeLossFunction()]: clf = UGradientBoostingClassifier(loss=loss, min_samples_split=20, max_depth=5, learning_rate=.2, subsample=0.7, n_estimators=10, train_features=None) clf.fit(trainX, trainY, sample_weight=trainW) p = clf.predict_proba(testX) assert roc_auc_score(testY, p[:, 1], sample_weight=testW) > 0.8, 'quality is too low' ``` #### File: hep_ml/tests/test_speedup.py ```python from __future__ import division, print_function, absolute_import __author__ = '<NAME>' import numpy import pandas from hep_ml.speedup import LookupClassifier from hep_ml.commonutils import generate_sample from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import roc_auc_score from collections import OrderedDict import time def test_lookup(n_samples=10000, n_features=7, n_bins=8): X, y = generate_sample(n_samples=n_samples, n_features=n_features, distance=0.6) base_estimator = GradientBoostingClassifier() clf = LookupClassifier(base_estimator=base_estimator, n_bins=n_bins, keep_trained_estimator=True).fit(X, y) p = clf.predict_proba(X) assert roc_auc_score(y, p[:, 1]) > 0.8, 'quality of classification is too low' assert p.shape == (n_samples, 2) assert numpy.allclose(p.sum(axis=1), 1), 'probabilities are not summed up to 1' # checking conversions lookup_size = n_bins ** n_features lookup_indices = numpy.arange(lookup_size, dtype=int) bins_indices = clf.convert_lookup_index_to_bins(lookup_indices=lookup_indices) lookup_indices2 = clf.convert_bins_to_lookup_index(bins_indices=bins_indices) assert numpy.allclose(lookup_indices, lookup_indices2), 'something wrong with conversions' assert len(clf._lookup_table) == n_bins ** n_features, 'wrong size of lookup table' # checking speed X = pandas.concat([X] * 10) start = time.time() p1 = clf.trained_estimator.predict_proba(clf.transform(X)) time_old = time.time() - start start = time.time() p2 = clf.predict_proba(X) time_new = time.time() - start print(time_old, ' now takes ', time_new) assert numpy.allclose(p1, p2), "pipeline doesn't work as expected" def test_sizes(n_samples=10000, n_features=4, n_bins=8): X, y = generate_sample(n_samples=n_samples, n_features=n_features, distance=0.6) base_estimator = GradientBoostingClassifier(n_estimators=1) clf = LookupClassifier(base_estimator=base_estimator, n_bins=n_bins).fit(X, y) bin_indices = clf.transform(X) assert numpy.allclose(numpy.max(bin_indices, axis=0) + 1, n_bins) maximals = OrderedDict() for column in X.columns: maximals[column] = numpy.random.randint(low=n_bins // 2, high=n_bins) clf = LookupClassifier(base_estimator=base_estimator, n_bins=maximals).fit(X, y) bin_indices = clf.transform(X) assert numpy.allclose(numpy.max(bin_indices, axis=0) + 1, list(maximals.values())) assert numpy.allclose(numpy.min(bin_indices, axis=0), 0) ```
{ "source": "jonas-eschle/jax", "score": 2 }
#### File: jax/experimental/global_device_array.py ```python from collections import Counter import dataclasses import functools import numpy as np from typing import Callable, Sequence, Tuple, Union, Mapping, Optional, List, Dict, NamedTuple from jax import core from jax._src.lib import xla_bridge as xb from jax._src.lib import xla_client as xc from jax.interpreters import pxla, xla from jax._src.util import prod, safe_zip, cache from jax._src.api import device_put from jax.interpreters.sharded_jit import PartitionSpec Shape = Tuple[int, ...] MeshAxes = Sequence[Union[str, Tuple[str], None]] DeviceArray = xc.Buffer Device = xc.Device ArrayLike = Union[np.ndarray, DeviceArray] Index = Tuple[slice, ...] _hashed_index = lambda x: hash(tuple((v.start, v.stop) for v in x)) def _convert_list_args_to_tuple(f): @functools.wraps(f) def wrapper(*args, **kwargs): args = [tuple(a) if isinstance(a, list) else a for a in args] kwargs = {k: (tuple(v) if isinstance(v, list) else v) for k, v in kwargs.items()} return f(*args, **kwargs) return wrapper def _canonicalize_mesh_axes(mesh_axes): if not isinstance(mesh_axes, PartitionSpec): pspec = PartitionSpec(*mesh_axes) else: pspec = mesh_axes return pspec def _get_indices(global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes) -> Tuple[Index, ...]: # Import here to avoid cyclic import error when importing gda in pjit.py. from jax.experimental.pjit import get_array_mapping, _prepare_axis_resources pspec = _canonicalize_mesh_axes(mesh_axes) parsed_pspec, _, _ = _prepare_axis_resources(pspec, "mesh_axes") array_mapping = get_array_mapping(parsed_pspec) # The dtype doesn't matter for creating sharding specs. aval = core.ShapedArray(global_shape, np.float32) sharding_spec = pxla.mesh_sharding_specs( global_mesh.shape, global_mesh.axis_names)(aval, array_mapping) indices = pxla.spec_to_indices(global_shape, sharding_spec) return indices # type: ignore @_convert_list_args_to_tuple @cache() def get_shard_indices(global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes) -> Mapping[Device, Index]: indices = _get_indices(global_shape, global_mesh, mesh_axes) # The type: ignore is to ignore the type returned by `spec_to_indices`. return dict( (d, i) for d, i in safe_zip(global_mesh.devices.flat, indices)) # type: ignore @_convert_list_args_to_tuple @cache() def get_shard_indices_replica_ids( global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes) -> Mapping[Device, Tuple[Index, int]]: return _get_shard_indices_replica_ids_uncached(global_shape, global_mesh, mesh_axes) def _get_shard_indices_replica_ids_uncached( global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes) -> Mapping[Device, Tuple[Index, int]]: indices = _get_indices(global_shape, global_mesh, mesh_axes) index_to_replica: Dict[int, int] = Counter() out = {} unique_shards = 0 for device, index in safe_zip(global_mesh.devices.flat, indices): h_index = _hashed_index(index) replica_id = index_to_replica[h_index] if replica_id == 0: unique_shards += 1 index_to_replica[h_index] += 1 out[device] = (index, replica_id) shard_shape = get_shard_shape(global_shape, global_mesh, mesh_axes) expected_unique_shards = prod( [g // s for g, s in safe_zip(global_shape, shard_shape) if g != 0 or s != 0]) if expected_unique_shards != unique_shards: raise RuntimeError( f'Number of expected unique shards are: {expected_unique_shards} but ' f'got {unique_shards}. Please file a bug at ' 'https://github.com/google/jax/issues.') return out @_convert_list_args_to_tuple @cache() def get_shard_shape(global_shape, global_mesh, mesh_axes) -> Shape: chunk_size = [] for mesh_axis, size in zip(mesh_axes, global_shape): if not mesh_axis: chunk_size.append(size) elif isinstance(mesh_axis, tuple): m = prod([global_mesh.shape[ma] for ma in mesh_axis]) chunk_size.append(size // m) else: chunk_size.append(size // global_mesh.shape[mesh_axis]) if len(chunk_size) != len(global_shape): chunk_size.extend(global_shape[len(chunk_size):]) return tuple(chunk_size) @dataclasses.dataclass(frozen=True) class Shard: """A single data shard of a GlobalDeviceArray. Args: device : Which device this shard resides on. index : The index into the global array of this shard. replica_id : Integer id indicating which replica of the global array this shard is part of. Always 0 for fully sharded data (i.e. when there’s only 1 replica). data : The data of this shard. None if ``device`` is non-local. """ device: Device index: Index replica_id: int # None if this `Shard` lives on a non-local device. data: Optional[DeviceArray] = None class _GdaFastPathArgs(NamedTuple): global_indices_replica_ids: Mapping[Device, Tuple[Index, int]] local_devices: Sequence[Device] class GlobalDeviceArray: """A logical array with data sharded across multiple devices and processes. If you’re not already familiar with JAX’s multi-process programming model, please read https://jax.readthedocs.io/en/latest/multi_process.html. A GlobalDeviceArray (GDA) can be thought of as a view into a single logical array sharded across processes. The logical array is the “global” array, and each process has a GlobalDeviceArray object referring to the same global array (similarly to how each process runs a multi-process pmap or pjit). Each process can access the shape, dtype, etc. of the global array via the GDA, pass the GDA into multi-process pjits, and get GDAs as pjit outputs (coming soon: xmap and pmap). However, each process can only directly access the shards of the global array data stored on its local devices. GDAs can help manage the inputs and outputs of multi-process computations. A GDA keeps track of which shard of the global array belongs to which device, and provides callback-based APIs to materialize the correct shard of the data needed for each local device of each process. A GDA consists of data shards. Each shard is stored on a different device. There are local shards and global shards. Local shards are those on local devices, and the data is visible to the current process. Global shards are those across all devices (including local devices), and the data isn’t visible if the shard is on a non-local device with respect to the current process. Please see the ``Shard`` class to see what information is stored inside that data structure. Note: to make pjit output GlobalDeviceArrays, set the environment variable ``JAX_PARALLEL_FUNCTIONS_OUTPUT_GDA=true`` or add the following to your code: ``jax.config.update('jax_parallel_functions_output_gda', True)`` Args: global_shape : The global shape of the array. global_mesh : The global mesh representing devices across multiple processes. mesh_axes : A sequence with length less than or equal to the rank of the global array (i.e. the length of the global shape). Each element can be: * An axis name of ``global_mesh``, indicating that the corresponding global array axis is partitioned across the given device axis of ``global_mesh``. * A tuple of axis names of ``global_mesh``. This is like the above option except the global array axis is partitioned across the product of axes named in the tuple. * None indicating that the corresponding global array axis is not partitioned. For more information, please see: https://jax.readthedocs.io/en/latest/jax-101/08-pjit.html#more-information-on-partitionspec device_buffers: DeviceArrays that are on the local devices of ``global_mesh``. Attributes: shape : Global shape of the array. dtype : Dtype of the global array. local_shards : List of :class:`Shard` on the local devices of the current process. Data is materialized for all local shards. global_shards : List of all :class:`Shard` of the global array. Data isn’t available if a shard is on a non-local device with respect to the current process. is_fully_replicated : True if the full array value is present on all devices of the global mesh. Example:: # Logical mesh is (hosts, devices) assert global_mesh.shape == {'x': 4, 'y': 8} global_input_shape = (64, 32) mesh_axes = P('x', 'y') # Dummy example data; in practice we wouldn't necessarily materialize global data # in a single process. global_input_data = np.arange( np.prod(global_input_shape)).reshape(global_input_shape) def get_local_data_slice(index): # index will be a tuple of slice objects, e.g. (slice(0, 16), slice(0, 4)) # This method will be called per-local device from the GDA constructor. return global_input_data[index] gda = GlobalDeviceArray.from_callback( global_input_shape, global_mesh, mesh_axes, get_local_data_slice) f = pjit(lambda x: x @ x.T, out_axis_resources = P('y', 'x')) with mesh(global_mesh.shape, global_mesh.axis_names): out = f(gda) print(type(out)) # GlobalDeviceArray print(out.shape) # global shape == (64, 64) print(out.local_shards[0].data) # Access the data on a single local device, # e.g. for checkpointing print(out.local_shards[0].data.shape) # per-device shape == (8, 16) print(out.local_shards[0].index) # Numpy-style index into the global array that # this data shard corresponds to # `out` can be passed to another pjit call, out.local_shards can be used to # export the data to non-jax systems (e.g. for checkpointing or logging), etc. """ def __init__(self, global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes, device_buffers: Sequence[DeviceArray], _gda_fast_path_args: Optional[_GdaFastPathArgs] = None): self._global_shape = global_shape self._global_mesh = global_mesh self._mesh_axes = mesh_axes self._device_buffers = device_buffers # Optionally precomputed for performance. self._gda_fast_path_args = _gda_fast_path_args self._current_process = xb.process_index() if self._gda_fast_path_args is None: self._local_devices = self._global_mesh.local_devices else: self._local_devices = self._gda_fast_path_args.local_devices for db, ld in safe_zip(device_buffers, self._local_devices): if db.device() != ld: raise ValueError( "The `global_mesh.local_devices` and `device_buffers` device order " "doesn't match. Please use `global_mesh.local_devices` to put " "arrays on devices instead of `jax.local_devices()`") self._local_shards = self._create_local_shards() ss = get_shard_shape(self._global_shape, self._global_mesh, self._mesh_axes) assert all(db.shape == ss for db in device_buffers), ( f"Expected shard shape {ss} doesn't match the device buffer " f"shape {device_buffers[0].shape}") dtype = device_buffers[0].dtype assert all(db.dtype == dtype for db in device_buffers), ( "Input arrays to GlobalDeviceArray must have matching dtypes, " f"got: {[db.dtype for db in device_buffers]}") self.dtype = dtype def __eq__(self, other: object): raise NotImplementedError( "GlobalDeviceArray equality is intentionally unimplemented. " "Implement desired functionality explicitly, e.g. to check if all " "values are equal: " "pjit(lambda x, y: x == y, " "in_axis_resources=FROM_GDA, out_axis_resources=None)" ) def __str__(self): return f'GlobalDeviceArray(shape={self.shape}, dtype={self.dtype})' def __repr__(self): return (f'GlobalDeviceArray(shape={self.shape}, dtype={self.dtype}, ' f'global_mesh_shape={dict(self._global_mesh.shape)}, ' f'mesh_axes={self._mesh_axes})') @property def shape(self) -> Shape: return self._global_shape @property def is_fully_replicated(self) -> bool: return self.shape == self.local_data(0).shape def _create_local_shards(self) -> Sequence[Shard]: if self._gda_fast_path_args is not None: global_indices_rid = self._gda_fast_path_args.global_indices_replica_ids else: global_indices_rid = get_shard_indices_replica_ids( self._global_shape, self._global_mesh, self._mesh_axes) out = [] for db in self._device_buffers: device = db.device() index, rid = global_indices_rid[device] out.append(Shard(device, index, rid, db)) return out @pxla.maybe_cached_property def local_shards(self) -> Sequence[Shard]: for s in self._local_shards: # Ignore the type because mypy thinks data is None but local_shards # cannot have data=None which is checked in `_create_local_shards`. if s.data.aval is None: # type: ignore s.data.aval = core.ShapedArray(s.data.shape, s.data.dtype) # type: ignore return self._local_shards @pxla.maybe_cached_property def global_shards(self) -> Sequence[Shard]: # Populating global_shards lazily (i.e. when requested) because populating # sthem eagerly leads to a performance regression when training on large # models. # Also as this a cached property, once calculated, it should be cached. So # multiple accesses should be cheap. global_indices_rid = get_shard_indices_replica_ids( self._global_shape, self._global_mesh, self._mesh_axes) device_to_buffer = dict((db.device(), db) for db in self._device_buffers) global_shards = [] for device, (index, rid) in global_indices_rid.items(): local_shard = device.process_index == self._current_process buf = device_to_buffer[device] if local_shard else None if buf is not None and buf.aval is None: buf.aval = core.ShapedArray(buf.shape, buf.dtype) sh = Shard(device, index, rid, buf) global_shards.append(sh) return global_shards def local_data(self, index) -> DeviceArray: return self.local_shards[index].data @classmethod def from_callback(cls, global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes, data_callback: Callable[[Index], ArrayLike]): """Constructs a GlobalDeviceArray via data fetched from ``data_callback``. ``data_callback`` is used to fetch the data for each local slice of the returned GlobalDeviceArray. Example:: global_input_shape = (8, 2) global_input_data = np.arange(prod(global_input_shape)).reshape(global_input_shape) def cb(index): return global_input_data[index] gda = GlobalDeviceArray.from_callback(global_input_shape, global_mesh, mesh_axes, cb) Args: global_shape : The global shape of the array global_mesh : The global mesh representing devices across multiple processes. mesh_axes : See the ``mesh_axes`` parameter of GlobalDeviceArray. data_callback : Callback that takes indices into the global array value as input and returns the corresponding data of the global array value. The data can be returned as any array-like object, e.g. a ``numpy.ndarray``. """ global_indices_rid = get_shard_indices_replica_ids( global_shape, global_mesh, mesh_axes) local_devices = global_mesh.local_devices dbs = [ device_put(data_callback(global_indices_rid[device][0]), device) for device in local_devices ] return cls(global_shape, global_mesh, mesh_axes, dbs, _gda_fast_path_args=_GdaFastPathArgs(global_indices_rid, local_devices)) @classmethod def from_batched_callback(cls, global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes, data_callback: Callable[[Sequence[Index]], Sequence[ArrayLike]]): """Constructs a GlobalDeviceArray via batched data fetched from ``data_callback``. Like ``from_callback``, except the callback function is called only once to fetch all data local to this process. Example:: global_input_shape = (8, 2) global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def batched_cb(indices): self.assertEqual(len(indices),len(global_mesh.local_devices)) return [global_input_data[index] for index in indices] gda = GlobalDeviceArray.from_batched_callback(global_input_shape, global_mesh, mesh_axes, batched_cb) Args: global_shape : The global shape of the array global_mesh : The global mesh representing devices across multiple processes. mesh_axes : See the ``mesh_axes`` parameter of GlobalDeviceArray. data_callback : Callback that takes a batch of indices into the global array value with length equal to the number of local devices as input and returns the corresponding data for each index. The data can be returned as any array-like objects, e.g. ``numpy.ndarray`` """ global_indices_rid = get_shard_indices_replica_ids( global_shape, global_mesh, mesh_axes) local_devices = global_mesh.local_devices local_indices = [global_indices_rid[d][0] for d in local_devices] local_arrays = data_callback(local_indices) dbs = pxla.device_put(local_arrays, local_devices) return cls(global_shape, global_mesh, mesh_axes, dbs, _gda_fast_path_args=_GdaFastPathArgs(global_indices_rid, local_devices)) @classmethod def from_batched_callback_with_devices( cls, global_shape: Shape, global_mesh: pxla.Mesh, mesh_axes: MeshAxes, data_callback: Callable[[Sequence[Tuple[Index, Tuple[Device, ...]]]], Sequence[DeviceArray]]): """Constructs a GlobalDeviceArray via batched DeviceArrays fetched from ``data_callback``. Like ``from_batched_callback``, except the callback function is responsible for returning on-device data (e.g. by calling ``jax.device_put``). Example:: global_input_shape = (8, 2) global_input_data = np.arange(prod(global_input_shape), dtype=np.float32).reshape(global_input_shape) def cb(cb_inp): self.assertLen(cb_inp, len(global_mesh.local_devices)) dbs = [] for inp in cb_inp: index, devices = inp array = global_input_data[index] dbs.extend([jax.device_put(array, device) for device in devices]) return dbs gda = GlobalDeviceArray.from_batched_callback_with_devices(global_input_shape, global_mesh, mesh_axes, cb) Args: global_shape : The global shape of the array global_mesh : The global mesh representing devices across multiple processes. mesh_axes : See the ``mesh_axes`` parameter of GlobalDeviceArray. data_callback : Callback that takes agets batch of indices into the global array value with length equal to the number of local devices as input and returns the corresponding data for each index. The data must be returned as jax DeviceArrays. """ global_indices_rid = get_shard_indices_replica_ids( global_shape, global_mesh, mesh_axes) local_devices = global_mesh.local_devices index_to_device: Dict[int, Tuple[Index, List[Device]]] = {} for device in local_devices: index = global_indices_rid[device][0] h_index = _hashed_index(index) if h_index not in index_to_device: index_to_device[h_index] = (index, [device]) else: index_to_device[h_index][1].append(device) cb_inp = [ (index, tuple(devices)) for index, devices in index_to_device.values() ] dbs = data_callback(cb_inp) return cls(global_shape, global_mesh, mesh_axes, dbs, _gda_fast_path_args=_GdaFastPathArgs(global_indices_rid, local_devices)) core.pytype_aval_mappings[GlobalDeviceArray] = lambda x: core.ShapedArray( x.shape, x.dtype) xla.pytype_aval_mappings[GlobalDeviceArray] = lambda x: core.ShapedArray( x.shape, x.dtype) xla.canonicalize_dtype_handlers[GlobalDeviceArray] = pxla.identity def _gda_shard_arg(x, devices, indices): return [s.data for s in x.local_shards] pxla.shard_arg_handlers[GlobalDeviceArray] = _gda_shard_arg def _gda_array_result_handler(global_aval, out_axis_resources, global_mesh): global_idx_rid = get_shard_indices_replica_ids(global_aval.shape, global_mesh, out_axis_resources) local_devices = global_mesh.local_devices fast_path_args = _GdaFastPathArgs(global_idx_rid, local_devices) return lambda bufs: GlobalDeviceArray( global_aval.shape, global_mesh, out_axis_resources, bufs, fast_path_args) pxla.global_result_handlers[core.ShapedArray] = _gda_array_result_handler pxla.global_result_handlers[core.ConcreteArray] = _gda_array_result_handler ``` #### File: jax/tests/global_device_array_test.py ```python from absl.testing import absltest from absl.testing import parameterized import unittest import numpy as np import jax from jax import core from jax._src import test_util as jtu from jax._src.util import prod, safe_zip from jax.experimental import PartitionSpec as P from jax.experimental.maps import Mesh import jax.experimental.global_device_array as gda_lib from jax.experimental.global_device_array import GlobalDeviceArray, get_shard_indices from jax.config import config config.parse_flags_with_absl() class GDATest(jtu.JaxTestCase): @parameterized.named_parameters( ("mesh_x_y", ["x", "y"], # There are more slices but for convienient purposes, checking for only # 2. The indices + shard_shape + replica_id should be unique enough. ((slice(0, 2), slice(0, 1)), (slice(0, 2), slice(1, 2))), (2, 1), [0, 0, 0, 0, 0, 0, 0, 0], False), ("mesh_x_y_pspec", P("x", "y"), ((slice(0, 2), slice(0, 1)), (slice(0, 2), slice(1, 2))), (2, 1), [0, 0, 0, 0, 0, 0, 0, 0], False), ("mesh_x", ["x"], ((slice(0, 2), slice(None)), (slice(0, 2), slice(None))), (2, 2), [0, 1, 0, 1, 0, 1, 0, 1], False), ("mesh_y", ["y"], ((slice(0, 4), slice(None)), (slice(4, 8), slice(None))), (4, 2), [0, 0, 1, 1, 2, 2, 3, 3], False), ("mesh_none_y", [None, "y"], ((slice(None), slice(0, 1)), (slice(None), slice(1, 2))), (8, 1), [0, 0, 1, 1, 2, 2, 3, 3], False), ("mesh_xy", [("x", "y")], ((slice(0, 1), slice(None)), (slice(1, 2), slice(None))), (1, 2), [0, 0, 0, 0, 0, 0, 0, 0], False), ("mesh_fully_replicated", [], ((slice(None), slice(None)), (slice(None), slice(None))), (8, 2), [0, 1, 2, 3, 4, 5, 6, 7], True), ) def test_gda_2d_shard(self, mesh_axes, expected_index, expected_shard_shape, expected_replica_ids, expected_is_fully_replicated): global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y')) global_input_shape = (8, 2) global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def cb(index): return global_input_data[index] gda = GlobalDeviceArray.from_callback(global_input_shape, global_mesh, mesh_axes, cb) self.assertEqual(gda.local_shards[0].index, expected_index[0]) self.assertArraysEqual(gda.local_data(0), global_input_data[expected_index[0]]) self.assertEqual(gda.local_shards[1].index, expected_index[1]) self.assertArraysEqual(gda.local_data(1), global_input_data[expected_index[1]]) self.assertEqual(gda.local_data(0).shape, expected_shard_shape) replica_ids = [i.replica_id for i in gda.local_shards] self.assertListEqual(replica_ids, expected_replica_ids) self.assertListEqual([i.device.id for i in gda.local_shards], [0, 1, 2, 3, 4, 5, 6, 7]) self.assertEqual(gda.is_fully_replicated, expected_is_fully_replicated) for s in gda.local_shards: self.assertEqual(s.data.aval, core.ShapedArray(expected_shard_shape, s.data.dtype)) for g, l in safe_zip(gda.global_shards, gda.local_shards): self.assertEqual(g.device, l.device) self.assertEqual(g.index, l.index) self.assertEqual(g.replica_id, l.replica_id) self.assertEqual(g.data.aval, l.data.aval) self.assertArraysEqual(g.data, l.data) @parameterized.named_parameters( ("mesh_x_y_z", ["x", "y", "z"], # There are more slices but for convienient purposes, checking for only # 2. The indices + shard_shape + replica_id should be unique enough. ((slice(0, 4), slice(0, 2), slice(0, 1)), (slice(0, 4), slice(0, 2), slice(1, 2))), (4, 2, 1), [0, 0, 0, 0, 0, 0, 0, 0]), ("mesh_xy_z", [("x", "y"), "z"], ((slice(0, 2), slice(0, 2), slice(None)), (slice(0, 2), slice(2, 4), slice(None))), (2, 2, 2), [0, 0, 0, 0, 0, 0, 0, 0]), ("mesh_z", ["z"], ((slice(0, 4), slice(None), slice(None)), (slice(4, 8), slice(None), slice(None))), (4, 4, 2), [0, 0, 1, 1, 2, 2, 3, 3]), ) def test_gda_3d_shard(self, mesh_axes, expected_index, expected_shard_shape, expected_replica_ids): global_mesh = jtu.create_global_mesh((2, 2, 2), ('x', 'y', 'z')) global_input_shape = (8, 4, 2) global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def cb(index): return global_input_data[index] gda = GlobalDeviceArray.from_callback(global_input_shape, global_mesh, mesh_axes, cb) self.assertEqual(gda.local_shards[0].index, expected_index[0]) self.assertArraysEqual(gda.local_data(0), global_input_data[expected_index[0]]) self.assertEqual(gda.local_shards[1].index, expected_index[1]) self.assertArraysEqual(gda.local_data(1), global_input_data[expected_index[1]]) self.assertEqual(gda.local_data(0).shape, expected_shard_shape) replica_ids = [i.replica_id for i in gda.local_shards] self.assertListEqual(replica_ids, expected_replica_ids) @parameterized.named_parameters( ("mesh_x", ["x"], # There are more slices but for convienient purposes, checking for only # 2. The indices + shard_shape + replica_id should be unique enough. ((slice(0, 2),), (slice(2, 4),)), (2,), [0, 0, 0, 0, 0, 0, 0, 0]), ("mesh_none", [], ((slice(None),), (slice(None),)), (16,), [0, 1, 2, 3, 4, 5, 6, 7]), ) def test_gda_1d_shard(self, mesh_axes, expected_index, expected_shard_shape, expected_replica_ids): global_mesh = jtu.create_global_mesh((8,), ('x')) global_input_shape = (16,) global_input_data = np.arange(prod(global_input_shape)).reshape(-1) def cb(index): return global_input_data[index] gda = GlobalDeviceArray.from_callback(global_input_shape, global_mesh, mesh_axes, cb) self.assertEqual(gda.local_shards[0].index, expected_index[0]) self.assertArraysEqual(gda.local_data(0), global_input_data[expected_index[0]]) self.assertEqual(gda.local_shards[1].index, expected_index[1]) self.assertArraysEqual(gda.local_data(1), global_input_data[expected_index[1]]) self.assertEqual(gda.local_data(0).shape, expected_shard_shape) replica_ids = [i.replica_id for i in gda.local_shards] self.assertListEqual(replica_ids, expected_replica_ids) def test_gda_shape_0_1d_mesh(self): global_mesh = jtu.create_global_mesh((8,), ('x')) global_input_shape = (0,) mesh_axes = [None] def cb(index): return np.array([]) gda = GlobalDeviceArray.from_callback(global_input_shape, global_mesh, mesh_axes, cb) for i, s in enumerate(gda.local_shards): self.assertEqual(s.index, (slice(None),)) self.assertEqual(s.replica_id, i) self.assertArraysEqual(s.data.to_py(), np.array([])) self.assertEqual(gda.dtype, np.float32) self.assertEqual( gda_lib.get_shard_shape(global_input_shape, global_mesh, mesh_axes), (0,)) @parameterized.named_parameters( ("mesh_x_y", ["x", "y"], # There are more slices but for convienient purposes, checking for only # 2. The indices + shard_shape + replica_id should be unique enough. ((slice(0, 4), slice(0, 1)), (slice(0, 4), slice(1, 2))), (4, 1), [0, 0, 0, 0]), ) def test_gda_subset_devices(self, mesh_axes, expected_index, expected_shard_shape, expected_replica_ids): global_mesh = jtu.create_global_mesh((2, 2), ('x', 'y')) global_input_shape = (8, 2) global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def cb(index): return global_input_data[index] gda = GlobalDeviceArray.from_callback(global_input_shape, global_mesh, mesh_axes, cb) self.assertEqual(gda.local_shards[0].index, expected_index[0]) self.assertArraysEqual(gda.local_data(0), global_input_data[expected_index[0]]) self.assertEqual(gda.local_shards[1].index, expected_index[1]) self.assertArraysEqual(gda.local_data(1), global_input_data[expected_index[1]]) self.assertEqual(gda.local_data(0).shape, expected_shard_shape) replica_ids = [i.replica_id for i in gda.local_shards] self.assertListEqual(replica_ids, expected_replica_ids) for g, l in safe_zip(gda.global_shards, gda.local_shards): self.assertEqual(g.device, l.device) self.assertEqual(g.index, l.index) self.assertEqual(g.replica_id, l.replica_id) self.assertArraysEqual(g.data, l.data) def test_gda_batched_callback(self): global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y')) global_input_shape = (8, 2) mesh_axes = [('x', 'y')] global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def cb(indices): self.assertEqual(len(indices), len(global_mesh.local_devices)) return [global_input_data[index] for index in indices] gda = GlobalDeviceArray.from_batched_callback( global_input_shape, global_mesh, mesh_axes, cb) expected_first_shard_value = np.array([[0, 1]]) self.assertArraysEqual(gda.local_data(0).to_py(), expected_first_shard_value) expected_second_shard_value = np.array([[2, 3]]) self.assertArraysEqual(gda.local_data(1).to_py(), expected_second_shard_value) def test_gda_batched_callback_with_devices(self): global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y')) global_input_shape = (8, 2) mesh_axes = ['x'] global_input_data = np.arange( prod(global_input_shape), dtype=np.float32).reshape(global_input_shape) def cb(cb_inp): self.assertLen(cb_inp, 4) dbs = [] for inp in cb_inp: index, devices = inp self.assertLen(devices, 2) array = global_input_data[index] dbs.extend([jax.device_put(array, device) for device in devices]) return dbs gda = GlobalDeviceArray.from_batched_callback_with_devices( global_input_shape, global_mesh, mesh_axes, cb) expected_first_shard_value = np.array([[0, 1], [2, 3]], dtype=np.float32) self.assertArraysEqual(gda.local_data(0).to_py(), expected_first_shard_value) expected_second_shard_value = np.array([[0, 1], [2, 3]], dtype=np.float32) self.assertArraysEqual(gda.local_data(1).to_py(), expected_second_shard_value) def test_gda_str_repr(self): global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y')) global_input_shape = (8, 2) mesh_axes = [('x', 'y')] global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def cb(index): return global_input_data[index] gda = GlobalDeviceArray.from_callback( global_input_shape, global_mesh, mesh_axes, cb) self.assertEqual(str(gda), 'GlobalDeviceArray(shape=(8, 2), dtype=int32)') self.assertEqual( repr(gda), ("GlobalDeviceArray(shape=(8, 2), dtype=int32, " "global_mesh_shape={'x': 4, 'y': 2}, mesh_axes=[('x', 'y')])")) def test_gda_equality_raises_not_implemented(self): global_mesh = jtu.create_global_mesh((1, 2), ('x', 'y')) global_input_shape = (8, 2) mesh_axes = P(None,) global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) def cb(index): return global_input_data[index] input_gda = GlobalDeviceArray.from_callback( global_input_shape, global_mesh, mesh_axes, cb) same_input_gda = GlobalDeviceArray.from_callback( global_input_shape, global_mesh, mesh_axes, cb) with self.assertRaisesRegex(NotImplementedError, 'GlobalDeviceArray equality is intentionally unimplemented.'): input_gda == same_input_gda def test_mesh_hash(self): global_mesh1 = jtu.create_global_mesh((4, 2), ('x', 'y')) global_mesh2 = jtu.create_global_mesh((2, 4), ('x', 'y')) global_mesh3 = jtu.create_global_mesh((4, 2), ('x', 'y')) self.assertNotEqual(hash(global_mesh1), hash(global_mesh2)) self.assertEqual(hash(global_mesh1), hash(global_mesh3)) def test_device_mismatch(self): devices = jax.devices() if len(devices) < 8: raise unittest.SkipTest("Test requires 8 global devices.") mesh_devices = np.array([[devices[0], devices[2]], [devices[3], devices[1]], [devices[4], devices[6]], [devices[7], devices[5]]]) global_mesh = Mesh(mesh_devices, ('x', 'y')) global_input_shape = (8, 2) mesh_axes = ['x', 'y'] global_input_data = np.arange( prod(global_input_shape)).reshape(global_input_shape) indices = get_shard_indices(global_input_shape, global_mesh, mesh_axes) dbs = [ jax.device_put(global_input_data[indices[d]], d) for d in jax.local_devices() ] with self.assertRaisesRegex( ValueError, 'The `global_mesh.local_devices` and `device_buffers` device order'): GlobalDeviceArray(global_input_shape, global_mesh, mesh_axes, dbs) if __name__ == '__main__': absltest.main(testLoader=jtu.JaxTestLoader()) ```
{ "source": "jonas-eschle/raredecay", "score": 2 }
#### File: raredecay/analysis/compatibility_tools.py ```python from raredecay.tools import dev_tool def _make_data( original_data, target_data=None, features=None, target_from_data=False, weights_ratio=0, weights_original=None, weights_target=None, ): """Return the concatenated data, weights and labels for classifier training. Differs to only *make_dataset* from the |hepds_type| by providing the possibility of using other weights. """ # make temporary weights if specific weights are given as parameters temp_ori_weights = None temp_tar_weights = None if not dev_tool.is_in_primitive(weights_original, None): temp_ori_weights = original_data.weights original_data.set_weights(weights_original) if not dev_tool.is_in_primitive(weights_target, None): temp_tar_weights = target_data.weights target_data.set_weights(weights_target) # create the data, target and weights data_out = original_data.make_dataset( target_data, columns=features, targets_from_data=target_from_data, weights_ratio=weights_ratio, ) # reassign weights if specific weights have been used if not dev_tool.is_in_primitive(temp_ori_weights, None): original_data.set_weights(temp_ori_weights) if not dev_tool.is_in_primitive(temp_tar_weights, None): original_data.set_weights(temp_tar_weights) return data_out ``` #### File: raredecay/analysis/reweight.py ```python import sys # noqa import warnings # noqa import numpy as np # noqa from matplotlib import pyplot as plt # noqa from raredecay.tools import dev_tool, data_tools, data_storage # noqa from .. import meta_config # noqa from ..globals_ import out # noqa import copy import hep_ml.reweight import pandas as pd # import configuration from .. import meta_config as meta_cfg from .. import config as cfg # HACK as reweight also uses meta_cfg for reweight_cfg meta_cfg_module = meta_cfg logger = dev_tool.make_logger(__name__, **cfg.logger_cfg) def reweight_train( mc, real, columns=None, reweighter="gb", reweight_cfg=None, reweight_saveas=None, weights_ratio=1, weights_mc=None, weights_real=None, ): """Return a trained reweighter from a (mc/real) distribution comparison. | Reweighting a distribution is a "making them the same" by changing the weights of the bins (instead of 1) for each event. Mostly, and therefore the naming, you want to change the mc-distribution towards the real one. | There are two possibilities * normal bins reweighting: divides the bins from one distribution by the bins of the other distribution. Easy and fast, but unstable and inaccurat for higher dimensions. * Gradient Boosted reweighting: uses several decision trees to reweight the bins. Slower, but more accurat. Very useful in higher dimensions. But be aware, that you can easily screw up things by overfitting. Parameters ---------- mc : |hepds_type| The Monte-Carlo data to compare with the real data. real : |hepds_type| Same as *mc_data* but for the real data. columns : list of strings The columns/features/branches you want to use for the reweighting. reweighter : {'gb', 'bins'} Specify which reweighter to be used. - **gb**: The GradientBoosted Reweighter from REP, :func:`~hep_ml.reweight.GBReweighter` - **bins**: The simple bins reweighter from REP, :func:`~hep_ml.reweight.BinsReweighter` reweight_saveas : string To save a trained reweighter in addition to return it. The value is the filepath + name. reweight_cfg : dict Contains the parameters for the bins/gb-reweighter. See also :func:`~hep_ml.reweight.BinsReweighter` and :func:`~hep_ml.reweight.GBReweighter`. weights_ratio : numeric or None, False The ratio of the sum of mc weights / sum of real weights. If set to one, the reweighter will learn from nicely normalized distributions. A value greater than 1 means there are in total more mc events than data points. weights_mc : numpy.array [n_samples] Explicit weights for the Monte-Carlo data. Only specify if you don't want to use the weights in the |hepds_type|. weights_real : numpy.array [n_samples] Explicit weights for the real data. Only specify if you don't want to use the weights in the |hepds_type|. Returns ------- out : object of type reweighter Reweighter is trained to the data. Can, for example, be used with :func:`~hep_ml.reweight.GBReweighter.predict_weights` """ __REWEIGHT_MODE = {"gb": "GB", "bins": "Bins", "bin": "Bins"} # HACK from raredecay.analysis.compatibility_tools import _make_data # Python 2/3 compatibility, str columns = dev_tool.entries_to_str(columns) reweighter = dev_tool.entries_to_str(reweighter) reweight_saveas = dev_tool.entries_to_str(reweight_saveas) reweight_cfg = dev_tool.entries_to_str(reweight_cfg) # check for valid user input if data_tools.is_pickle(reweighter): return data_tools.adv_return(reweighter, save_name=reweight_saveas) if reweighter not in __REWEIGHT_MODE: raise ValueError("Reweighter invalid: " + reweighter) reweighter = __REWEIGHT_MODE.get(reweighter.lower()) reweighter += "Reweighter" # logging and writing output msg = ["Reweighter:", reweighter, "with config:", reweight_cfg] logger.info(msg) out.add_output( msg + [ "\nData used:\n", mc.name, " and ", real.name, "\ncolumns used for the reweighter training:\n", columns, ], section="Training the reweighter", obj_separator=" ", ) if columns is None: # use the intesection of both colomns common_cols = set(mc.columns) common_cols.intersection_update(real.columns) columns = list(common_cols) if columns != mc.columns or columns != real.columns: logger.warning( "No columns specified for reweighting, took intersection" + " of both dataset, as it's columns are not equal." + "\nTherefore some columns were not used!" ) reweight_cfg.warning_occured() # create data normalize_real = 1 if weights_ratio else None mc, _t, mc_weights = _make_data( original_data=mc, features=columns, weights_original=weights_mc, weights_ratio=weights_ratio, ) real, _t, real_weights = _make_data( real, features=columns, weights_original=weights_real, weights_ratio=normalize_real, ) del _t # train the reweighter reweight_cfg = {} if reweight_cfg is None else reweight_cfg if reweighter == "GBReweighter": reweighter = hep_ml.reweight.GBReweighter(**reweight_cfg) elif reweighter == "BinsReweighter": reweighter = hep_ml.reweight.BinsReweighter(**reweight_cfg) reweighter.fit( original=mc, target=real, original_weight=mc_weights, target_weight=real_weights ) return data_tools.adv_return(reweighter, save_name=reweight_saveas) def reweight_weights( apply_data, reweighter_trained, columns=None, normalize=True, add_weights=True ): """Apply reweighter to the data and (add +) return the weights (multiplied by already existing weights). Can be seen as a wrapper for the :py:func:`~hep_ml.reweight.GBReweighter.predict_weights` method. Additional functionality: * Takes a trained reweighter as argument, but can also unpickle one from a file. Parameters ---------- apply_data : |hepds_type| The data for which the weights are predicted. reweighter_trained : (pickled) reweighter (*from hep_ml*) The trained reweighter, which predicts the new weights. columns : list(str, str, str,...) The columns to use for the reweighting. normalize : boolean or int If True, the weights will be normalized (scaled) to the value of normalize. add_weights : boolean If set to False, the weights will only be returned and not updated in the data (|hepds_type|). If you want to use the data later on in the script with the new weights, set this value to True. Returns ------ out : :py:class:`~pd.Series` Return an instance of pandas Series of shape [n_samples] containing the new weights. """ # HACK # Python 2/3 compatibility, str reweighter_trained = dev_tool.entries_to_str(reweighter_trained) columns = dev_tool.entries_to_str(columns) normalize = 1 if normalize is True else normalize reweighter_trained = data_tools.try_unpickle(reweighter_trained) if columns is None: columns = reweighter_trained.columns # new_weights = reweighter_trained.predict_weights(reweight_data.pandasDF(), new_weights = reweighter_trained.predict_weights( apply_data.pandasDF(columns=columns), original_weight=apply_data.weights ) # write to output out.add_output( [ "Using the reweighter:\n", reweighter_trained, "\n to reweight ", apply_data.name, ], obj_separator="", ) if isinstance(normalize, (int, float)) and not isinstance(normalize, bool): warnings.warn( "Normalizing weights. This does not 'correctly' normalize by using the training" " weights but just uses the predictet weights. May consider using `normalize=False` and" " normalize by hand correctly." ) new_weights *= new_weights.size / new_weights.sum() * normalize new_weights = pd.Series(new_weights, index=apply_data.index) if add_weights: apply_data.set_weights(new_weights) return new_weights # NEW def reweight( apply_data=None, mc=None, real=None, columns=None, reweighter="gb", reweight_cfg=None, n_reweights=1, add_weights=True, normalize=True, ): """(Train a reweighter and) apply the reweighter to get new weights (multiplied by already existing weights). Train a reweighter from the real data and the corresponding MC differences. Then, try to correct the apply data (MC as well) the same as the first MC would have been corrected to look like its real counterpart. Parameters ---------- apply_data : |hepds_type| The data which shall be corrected real : |hepds_type| The real data to train the reweighter on mc : |hepds_type| The MC data to train the reweighter on columns : list(str, str, str,...) The branches to use for the reweighting process. reweighter : {'gb', 'bins'} or trained hep_ml-reweighter (also pickled) Either a string specifying which reweighter to use or an already trained reweighter from the hep_ml-package. The reweighter can also be a file-path (str) to a pickled reweighter. reweight_cfg : dict A dict containing all the keywords and values you want to specify as parameters to the reweighter. n_reweights : int To get more stable weights, the mean of each weight over many reweighting runs (training and predicting) can be used. The n_reweights specifies how many runs to do. add_weights : boolean If True, the weights will be added to the data directly, therefore the data-storage will be modified. normalize : bool If True, normalizes the weights to the value given. This is maybe improper handling. Preferably use `False` and normalize on your own. Return ------ out : dict Return a dict containing the weights as well as the reweighter. The keywords are: - *reweighter* : The trained reweighter - *weights* : pandas Series containing the new weights of the data. The weights are multiplied with the already existing weights in `apply_data` """ # from raredecay.globals_ import out from raredecay.tools import data_tools output = {} reweighter_list = False new_reweighter_list = [] reweighter = data_tools.try_unpickle(reweighter) if isinstance(reweighter, list): n_reweights = len(reweighter) reweighter_list = copy.deepcopy(reweighter) for run in range(n_reweights): if reweighter_list: reweighter = reweighter_list[run] reweighter = data_tools.try_unpickle(reweighter) if reweighter in ("gb", "bins"): new_reweighter = reweight_train( mc=mc, real=real, columns=columns, reweight_cfg=reweight_cfg, reweighter=reweighter, ) # TODO: hack which adds columns, good idea? assert not hasattr( new_reweighter, "columns" ), "Newly created reweighter has column attribute, which should be set on the fly now. Changed object reweighter?" new_reweighter.columns = data_tools.to_list(columns) else: new_reweighter = reweighter if n_reweights > 1: new_reweighter_list.append(new_reweighter) else: new_reweighter_list = new_reweighter if apply_data is not None: tmp_weights = reweight_weights( apply_data=apply_data, columns=columns, reweighter_trained=new_reweighter, add_weights=False, normalize=normalize, ) if run == 0: new_weights = tmp_weights else: new_weights += tmp_weights if apply_data is not None: new_weights /= n_reweights new_weights.sort_index() if add_weights: apply_data.set_weights(new_weights) output["weights"] = new_weights output["reweighter"] = new_reweighter_list return output def reweight_kfold( mc, real, columns=None, n_folds=10, reweighter="gb", reweighter_cfg=None, n_reweights=1, add_weights=True, normalize=True, ): """Kfold reweight the data by "itself" for *scoring* and hyper-parameters. .. warning:: Do NOT use for the real reweighting process! (except if you really want to reweight the data "by itself") If you want to figure out the hyper-parameters for a reweighting process or just want to find out how good the reweighter works, you may want to apply this to the data itself. This means: - train a reweighter on mc/real - apply it to get new weights for mc - compare the mc/real distribution The problem arises with biasing your reweighter. As in classification tasks, where you split your data into train/test sets for Kfolds, you want to do the same here. Therefore: - split the mc data into (n_folds-1)/n_folds (training) - train the reweighter on the training mc/complete real (if mcreweighted_as_real_score is True, the real data will be folded too for unbiasing the score) - reweight the leftout mc test-fold - do this n_folds times - getting unbiased weights The parameters are more or less the same as for the :py:func:`~raredecay.analysis.ml_analysis.reweight_train` and :py:func:`~raredecay.analysis.ml_analysis.reweight_weights` Parameters ---------- mc : |hepds_type| The Monte-Carlo data, which has to be "fitted" to the real data. real : |hepds_type| Same as *mc_data* but for the real data. columns : list of strings The columns/features/branches you want to use for the reweighting. n_folds : int >= 1 The number of folds to split the data. Usually, the more folds the "better" the reweighting (especially for small datasets). If n_folds = 1, the data will be reweighted directly and the benefit of Kfolds and the unbiasing *disappears* reweighter : {'gb', 'bins'} Specify which reweighter to use. - **gb**: GradientBoosted Reweighter from REP - **bins**: Binned Reweighter from REP reweighter_cfg : dict Contains the parameters for the bins/gb-reweighter. See also :func:`~hep_ml.reweight.BinsReweighter` and :func:`~hep_ml.reweight.GBReweighter`. n_reweights : int As the reweighting often yields different weights depending on random parameters like the splitting of the data, the new weights can be produced by taking the average of the weights over many reweighting runs. n_reweights is the number of reweight runs to average over. add_weights : boolean If True, the new weights will be added (in place) to the mc data and returned. Otherwise, the weights will only be returned. normalize : bool If True, normalizes the weights to the value given. This is maybe improper handling. Preferably use `False` and normalize on your own. Return ------ out : :py:class:`~pd.Series` Return the new weights obtained from the reweighting _multiplied_ by the already existing weights in `mc`. """ # Python 2/3 compatibility, str columns = dev_tool.entries_to_str(columns) reweighter = dev_tool.entries_to_str(reweighter) reweighter_cfg = dev_tool.entries_to_str(reweighter_cfg) normalize = 1 if normalize is True else normalize output = {} out.add_output( ["Doing reweighting_Kfold with ", n_folds, " folds"], title="Reweighting Kfold", obj_separator="", ) # create variables assert n_folds >= 1 and isinstance( n_folds, int ), "n_folds has to be >= 1, its currently" + str(n_folds) assert isinstance( mc, data_storage.HEPDataStorage ), "wrong data type. Has to be HEPDataStorage, is currently" + str(type(mc)) assert isinstance( real, data_storage.HEPDataStorage ), "wrong data type. Has to be HEPDataStorage, is currently" + str(type(real)) new_weights_tot = pd.Series(np.zeros(len(mc)), index=mc.index) if not add_weights: old_mc_tot_weights = mc.weights for run in range(n_reweights): new_weights_all = [] new_weights_index = [] # split data to folds and loop over them mc.make_folds(n_folds=n_folds) real.make_folds(n_folds=n_folds) def do_reweighting(fold): """ Inline loop for parallelization Parameters ---------- fold : int Which fold Returns ------- """ # create train/test data if n_folds > 1: train_real, test_real = real.get_fold(fold) train_mc, test_mc = mc.get_fold(fold) else: train_real = test_real = real train_mc = test_mc = mc # if mcreweighted_as_real_score: # old_mc_weights = test_mc.get_weights() # plot the first fold as example (the first one surely exists) plot_importance1 = 2 if fold == 0 else 1 if n_folds > 1 and plot_importance1 > 1 and run == 0: train_real.plot( figure="Reweighter trainer, example, fold " + str(fold), importance=plot_importance1, ) train_mc.plot( figure="Reweighter trainer, example, fold " + str(fold), importance=plot_importance1, ) # train reweighter on training data reweighter_trained = reweight_train( mc=train_mc, real=train_real, columns=columns, reweighter=reweighter, reweight_cfg=reweighter_cfg, ) new_weights = reweight_weights( apply_data=test_mc, reweighter_trained=reweighter_trained, columns=columns, add_weights=True, ) # fold only, not full data # plot one for example of the new weights if (n_folds > 1 and plot_importance1 > 1) or max(new_weights) > 50: out.save_fig( "new weights of fold " + str(fold), importance=plot_importance1 ) plt.hist(new_weights, bins=40, log=True) return (new_weights, test_mc.get_index()) weights_and_indexes = map(do_reweighting, range(n_folds)) for w, i in weights_and_indexes: new_weights_all.append(w) new_weights_index.append(i) if n_folds == 1: new_weights_all = np.array(new_weights_all) new_weights_index = np.array(new_weights_index) else: new_weights_all = np.concatenate(new_weights_all) new_weights_index = np.concatenate(new_weights_index) new_weights_tot += pd.Series(new_weights_all, index=new_weights_index) out.save_fig(figure="New weights of run " + str(run), importance=3) hack_array = np.array(new_weights_all) plt.hist(hack_array, bins=30, log=True) plt.title("New weights of reweighting at end of run " + str(run)) # after for loop for weights creation new_weights_tot /= n_reweights if add_weights: mc.set_weights(new_weights_tot) else: mc.set_weights(old_mc_tot_weights) out.save_fig(figure="New weights of total mc", importance=4) plt.hist(new_weights_tot, bins=30, log=True) plt.title("New weights of reweighting with Kfold") if isinstance(normalize, (int, float)) and not isinstance(normalize, bool): new_weights_tot *= new_weights_tot.size / new_weights_tot.sum() * normalize output["weights"] = new_weights_tot return output ``` #### File: raredecay/analysis/statistics.py ```python from .. import config as cfg # noqa import numpy as np # from raredecay.globals_ import out from .. import meta_config as meta_cfg from ..tools import dev_tool # import matplotlib.pyplot as plt def ks_2samp_ds(data1, data2, column): """ Parameters ---------- data1 : |hepds_type| Data set one for the 2sample test data2 : |hepds_type| Data set two for the 2sample test column : str Which column to use. Has to be the same name in both data sets Returns ------- numeric Return the K-S two sample test hypothesis score. """ # Python 2/3 compatibility, str column = str(column) # create data from HEPDS data1, _, weights1 = data1.make_dataset(columns=column) data2, _, weights2 = data2.make_dataset(columns=column) weights1 = np.array(weights1) weights2 = np.array(weights2) data1 = np.array(data1[column].values) data2 = np.array(data2[column].values) # call ks_test ks_score = ks_2samp(data1=data1, data2=data2, weights1=weights1, weights2=weights2) return ks_score def ks_2samp(data1, data2, weights1=None, weights2=None): """Weighted two sample Komlogorov-Smirnov hypothesis test. The weighted version of the Kolmogorov-Smirnov test if two samples *data1* and *data2* with weights *weights1* and *weights2* respectively are drawn from the same continuos distribution. Parameters ---------- data1 : array-like The first distribution. data2 : array-like The second distribution. weights1 : array-like The weights of the first distribution. The length has to be equal to the length of *data1*. weights2 : array-like The weights of the second distribution. The length has to be equal to the length of *data2*. Returns ------- numeric Return the K-S two sample test hypothesis score. """ # check and set input weights1 = ( np.ones(len(data1)) if dev_tool.is_in_primitive(weights1) else np.array(weights1) ) weights2 = ( np.ones(len(data2)) if dev_tool.is_in_primitive(weights2) else np.array(weights2) ) data1 = np.array(data1) data2 = np.array(data2) # start calculation ix1 = np.argsort(data1) ix2 = np.argsort(data2) data1 = data1[ix1] data2 = data2[ix2] weights1 = weights1[ix1] weights2 = weights2[ix2] data = np.concatenate([data1, data2]) cwei1 = np.hstack([0, np.cumsum(weights1) / sum(weights1)]) cwei2 = np.hstack([0, np.cumsum(weights2) / sum(weights2)]) cdf1we = cwei1[[np.searchsorted(data1, data, side="right")]] cdf2we = cwei2[[np.searchsorted(data2, data, side="right")]] return np.max(np.abs(cdf1we - cdf2we)) ks_2samp_ds.__doc__ = ks_2samp.__doc__.split("Parameter", 1)[0] + ks_2samp_ds.__doc__ def ad_2samp(data1, data2, column): # Python 2/3 compatibility, str column = str(column) # prepare data data1, targets1, weights1 = data1.make_dataset(columns=column) data2, targets2, weights2 = data2.make_dataset(columns=column) weights1 = np.array(weights1) weights2 = np.array(weights2) data1 = np.array(data1[column].values) data2 = np.array(data2[column].values) # sort data ix1 = np.argsort(data1) ix2 = np.argsort(data2) data1 = data1[ix1] data2 = data2[ix2] weights1 = weights1[ix1] weights2 = weights2[ix2] n = np.sum(weights1) m = np.sum(weights2) def _anderson_2samp_right(samples, data_sorted, data_unique_sorted, n_events): n_tot = sum(n_events) def fit_mass( data, column, x, sig_pdf=None, bkg_pdf=None, n_sig=None, n_bkg=None, blind=False, nll_profile=False, second_storage=None, log_plot=False, pulls=True, sPlot=False, bkg_in_region=False, importance=3, plot_importance=3, ): """Fit a given pdf to a variable distribution. A quite versatile function doing several things connected to fitting. Parameters ---------- data : |hepds_type| The data containing the variable to fit to column : str The name of the column to fit the pdf to x : RooRealVar The RooRealVar to fit to. sig_pdf : RooFit pdf The signal Probability Density Function. The variable to fit to has to be named 'x'. bkg_pdf : RooFit pdf The background Probability Density Function. The variable to fit to has to be named 'x'. n_sig : None or numeric The number of signals in the data. If it should be fitted, use None. n_bkg : None or numeric The number of background events in the data. If it should be fitted, use None. blind : boolean or tuple(numberic, numberic) If False, the data is fitted. If a tuple is provided, the values are used as the lower (the first value) and the upper (the second value) limit of a blinding region, which will be omitted in plots. Additionally, no true number of signal will be returned but only fake. nll_profile : boolean If True, a Negative Log-Likelihood Profile will be generated. Does not work with blind fits. second_storage : |hepds_type| A second data-storage that will be concatenated with the first one. importance : |importance_type| |importance_docstring| plot_importance : |plot_importance_type| |plot_importance_docstring| Return ------ tuple(numerical, numerical) Return the number of signals and the number of backgrounds in the signal-region. If a blind fit is performed, the signal will be a fake number. If no number of background events is required, -999 will be returned. """ import ROOT from ROOT import ( RooRealVar, RooArgList, RooArgSet, RooAddPdf, RooDataSet, RooAbsReal, ) from ROOT import RooFit, RooCBShape, RooExponential from ROOT import RooGaussian, RooMinuit from ROOT import ( TCanvas, ) # HACK to prevent not plotting canvas by root_numpy import. BUG. from root_numpy import array2tree from ROOT import RooCategory, RooUnblindPrecision # Python 2/3 compatibility, str column = dev_tool.entries_to_str(column) if not (isinstance(column, str) or len(column) == 1): raise ValueError( "Fitting to several columns " + str(column) + " not supported." ) if type(sig_pdf) == type(bkg_pdf) == None: raise ValueError("sig_pdf and bkg_pdf are both None-> no fit possible") if blind is not False: lower_blind, upper_blind = blind blind = True n_bkg_below_sig = -999 # create data data_name = data.name data_array, _t1, _t2 = data.make_dataset(second_storage, columns=column) del _t1, _t2 # double crystalball variables min_x, max_x = min(data_array[column]), max(data_array[column]) # x = RooRealVar("x", "x variable", min_x, max_x) # create data data_array = np.array([i[0] for i in data_array.as_matrix()]) try: data_array.dtype = [("x", np.float64)] except: data_array.dtype = [("x", np.float64)] print("hack needed") tree1 = array2tree(data_array, "x") data = RooDataSet("data", "Data", RooArgSet(x), RooFit.Import(tree1)) # # TODO: export somewhere? does not need to be defined inside... # mean = RooRealVar("mean", "Mean of Double CB PDF", 5280, 5100, 5600)#, 5300, 5500) # sigma = RooRealVar("sigma", "Sigma of Double CB PDF", 40, 0.001, 200) # alpha_0 = RooRealVar("alpha_0", "alpha_0 of one side", 5.715)#, 0, 150) # alpha_1 = RooRealVar("alpha_1", "alpha_1 of other side", -4.019)#, -200, 0.) # lambda_0 = RooRealVar("lambda_0", "Exponent of one side", 3.42)#, 0, 150) # lambda_1 = RooRealVar("lambda_1", "Exponent of other side", 3.7914)#, 0, 500) # # # TODO: export somewhere? pdf construction # frac = RooRealVar("frac", "Fraction of crystal ball pdfs", 0.479, 0.01, 0.99) # # crystalball1 = RooCBShape("crystallball1", "First CrystalBall PDF", x, # mean, sigma, alpha_0, lambda_0) # crystalball2 = RooCBShape("crystallball2", "Second CrystalBall PDF", x, # mean, sigma, alpha_1, lambda_1) # doubleCB = RooAddPdf("doubleCB", "Double CrystalBall PDF", # crystalball1, crystalball2, frac) # n_sig = RooRealVar("n_sig", "Number of signals events", 10000, 0, 1000000) # test input if n_sig == n_bkg == 0: raise ValueError("n_sig as well as n_bkg is 0...") if n_bkg is None: n_bkg = RooRealVar("n_bkg", "Number of background events", 10000, 0, 500000) elif n_bkg >= 0: n_bkg = RooRealVar("n_bkg", "Number of background events", int(n_bkg)) else: raise ValueError("n_bkg is not >= 0 or None") if n_sig is None: n_sig = RooRealVar("n_sig", "Number of signal events", 1050, 0, 200000) # START BLINDING blind_cat = RooCategory("blind_cat", "blind state category") blind_cat.defineType("unblind", 0) blind_cat.defineType("blind", 1) if blind: blind_cat.setLabel("blind") blind_n_sig = RooUnblindPrecision( "blind_n_sig", "blind number of signals", "wasistdas", n_sig.getVal(), 10000, n_sig, blind_cat, ) else: # blind_cat.setLabel("unblind") blind_n_sig = n_sig print("n_sig value " + str(n_sig.getVal())) # END BLINDING elif n_sig >= 0: n_sig = RooRealVar("n_sig", "Number of signal events", int(n_sig)) else: raise ValueError("n_sig is not >= 0") # if not blind: # blind_n_sig = n_sig # # create bkg-pdf # lambda_exp = RooRealVar("lambda_exp", "lambda exp pdf bkg", -0.00025, -1., 1.) # bkg_pdf = RooExponential("bkg_pdf", "Background PDF exp", x, lambda_exp) if blind: comb_pdf = RooAddPdf( "comb_pdf", "Combined DoubleCB and bkg PDF", RooArgList(sig_pdf, bkg_pdf), RooArgList(blind_n_sig, n_bkg), ) else: comb_pdf = RooAddPdf( "comb_pdf", "Combined DoubleCB and bkg PDF", RooArgList(sig_pdf, bkg_pdf), RooArgList(n_sig, n_bkg), ) # create test dataset # mean_gauss = RooRealVar("mean_gauss", "Mean of Gaussian", 5553, -10000, 10000) # sigma_gauss = RooRealVar("sigma_gauss", "Width of Gaussian", 20, 0.0001, 300) # gauss1 = RooGaussian("gauss1", "Gaussian test dist", x, mean_gauss, sigma_gauss) # lambda_data = RooRealVar("lambda_data", "lambda exp data", -.002) # exp_data = RooExponential("exp_data", "data example exp", x, lambda_data) # frac_data = RooRealVar("frac_data", "Fraction PDF of data", 0.15) # # data_pdf = RooAddPdf("data_pdf", "Data PDF", gauss1, exp_data, frac_data) # data = data_pdf.generate(RooArgSet(x), 30000) # data.printValue() # xframe = x.frame() # data_pdf.plotOn(xframe) # print "n_cpu:", meta_cfg.get_n_cpu() # input("test") # comb_pdf.fitTo(data, RooFit.Extended(ROOT.kTRUE), RooFit.NumCPU(meta_cfg.get_n_cpu())) # HACK to get 8 cores in testing c5 = TCanvas("c5", "RooFit pdf not fit vs " + data_name) c5.cd() x_frame1 = x.frame() # data.plotOn(x_frame1) # comb_pdf.pdfList()[1].plotOn(x_frame1) if __name__ == "__main__": n_cpu = 8 else: n_cpu = meta_cfg.get_n_cpu() print("n_cpu = ", n_cpu) # HACK # n_cpu = 8 result_fit = comb_pdf.fitTo( data, RooFit.Minos(ROOT.kTRUE), RooFit.Extended(ROOT.kTRUE), RooFit.NumCPU(n_cpu), ) # HACK end if bkg_in_region: x.setRange("signal", bkg_in_region[0], bkg_in_region[1]) bkg_pdf_fitted = comb_pdf.pdfList()[1] int_argset = RooArgSet(x) # int_argset = x # int_argset.setRange("signal", bkg_in_region[0], bkg_in_region[1]) integral = bkg_pdf_fitted.createIntegral( int_argset, RooFit.NormSet(int_argset), RooFit.Range("signal") ) bkg_cdf = bkg_pdf_fitted.createCdf(int_argset, RooFit.Range("signal")) bkg_cdf.plotOn(x_frame1) # integral.plotOn(x_frame1) n_bkg_below_sig = integral.getVal(int_argset) * n_bkg.getVal() x_frame1.Draw() if plot_importance >= 3: c2 = TCanvas("c2", "RooFit pdf fit vs " + data_name) c2.cd() x_frame = x.frame() # if log_plot: # c2.SetLogy() # x_frame.SetTitle("RooFit pdf vs " + data_name) x_frame.SetTitle(data_name) if pulls: pad_data = ROOT.TPad("pad_data", "Pad with data and fit", 0, 0.33, 1, 1) pad_pulls = ROOT.TPad("pad_pulls", "Pad with data and fit", 0, 0, 1, 0.33) pad_data.SetBottomMargin(0.00001) pad_data.SetBorderMode(0) if log_plot: pad_data.SetLogy() pad_pulls.SetTopMargin(0.00001) pad_pulls.SetBottomMargin(0.2) pad_pulls.SetBorderMode(0) pad_data.Draw() pad_pulls.Draw() pad_data.cd() else: if log_plot: c2.SetLogy() if blind: # HACK column = "x" # END HACK x.setRange("lower", min_x, lower_blind) x.setRange("upper", upper_blind, max_x) range_str = "lower,upper" lower_cut_str = ( str(min_x) + "<=" + column + "&&" + column + "<=" + str(lower_blind) ) upper_cut_str = ( str(upper_blind) + "<=" + column + "&&" + column + "<=" + str(max_x) ) sideband_cut_str = "(" + lower_cut_str + ")" + "||" + "(" + upper_cut_str + ")" n_entries = data.reduce(sideband_cut_str).numEntries() / data.numEntries() # raw_input("n_entries: " + str(n_entries)) if plot_importance >= 3: data.plotOn( x_frame, RooFit.CutRange(range_str), RooFit.NormRange(range_str) ) comb_pdf.plotOn( x_frame, RooFit.Range(range_str), RooFit.Normalization(n_entries, RooAbsReal.Relative), RooFit.NormRange(range_str), ) if pulls: # pull_hist(pull_frame=x_frame, pad_data=pad_data, pad_pulls=pad_pulls) x_frame_pullhist = x_frame.pullHist() else: if plot_importance >= 3: data.plotOn(x_frame) comb_pdf.plotOn(x_frame) if pulls: pad_pulls.cd() x_frame_pullhist = x_frame.pullHist() pad_data.cd() comb_pdf.plotOn( x_frame, RooFit.Components(sig_pdf.namePtr().GetName()), RooFit.LineStyle(ROOT.kDashed), ) comb_pdf.plotOn( x_frame, RooFit.Components(bkg_pdf.namePtr().GetName()), RooFit.LineStyle(ROOT.kDotted), ) # comb_pdf.plotPull(n_sig) if plot_importance >= 3: x_frame.Draw() if pulls: pad_pulls.cd() x_frame.SetTitleSize(0.05, "Y") x_frame.SetTitleOffset(0.7, "Y") x_frame.SetLabelSize(0.04, "Y") # c11 = TCanvas("c11", "RooFit\ pulls" + data_name) # c11.cd() # frame_tmp = x_frame frame_tmp = x.frame() # frame_tmp.SetTitle("significance") frame_tmp.SetTitle(r"Roofit\ pulls\ " + data_name) frame_tmp.addObject(x_frame_pullhist) frame_tmp.SetMinimum(-5) frame_tmp.SetMaximum(5) # frame_tmp.GetYaxis().SetTitle("significance") frame_tmp.GetYaxis().SetNdivisions(5) frame_tmp.SetTitleSize(0.1, "X") frame_tmp.SetTitleOffset(1, "X") frame_tmp.SetLabelSize(0.1, "X") frame_tmp.SetTitleSize(0.1, "Y") frame_tmp.SetTitleOffset(0.5, "Y") frame_tmp.SetLabelSize(0.1, "Y") frame_tmp.Draw() # raw_input("") if not blind and nll_profile: # nll_range = RooRealVar("nll_range", "Signal for nLL", n_sig.getVal(), # -10, 2 * n_sig.getVal()) sframe = n_sig.frame(RooFit.Bins(20), RooFit.Range(1, 1000)) # HACK for best n_cpu lnL = comb_pdf.createNLL(data, RooFit.NumCPU(8)) # HACK end lnProfileL = lnL.createProfile(ROOT.RooArgSet(n_sig)) lnProfileL.plotOn(sframe, RooFit.ShiftToZero()) c4 = TCanvas("c4", "NLL Profile") c4.cd() # input("press ENTER to show plot") sframe.Draw() if plot_importance >= 3: pass params = comb_pdf.getVariables() params.Print("v") # print bkg_cdf.getVal() if sPlot: sPlotData = ROOT.RooStats.SPlot( "sPlotData", "sPlotData", data, # variable fitted to, RooDataSet comb_pdf, # fitted pdf ROOT.RooArgList( n_sig, n_bkg, # NSigB0s ), ) sweights = np.array( [sPlotData.GetSWeight(i, "n_sig") for i in range(data.numEntries())] ) return n_sig.getVal(), n_bkg_below_sig, sweights if blind: return blind_n_sig.getVal(), n_bkg_below_sig, comb_pdf else: return n_sig.getVal(), n_bkg_below_sig, comb_pdf # nll_plot = RooRealVar("nll_plot", "NLL plotting range", 0.01, 0.99) # nll_frame = nll_plot.frame() # my_nll = comb_pdf.createNLL(data, RooFit.NumCPU(8)) # RooMinuit(my_nll).migrad() # my_nll.plotOn(nll_frame) # nll_frame.Draw() # data.plotOn(xframe) # comb_pdf.plotOn(xframe) # xframe.Draw() # return xframe def pull_hist(pull_frame, pad_data, pad_pulls): """Add pulls into the current pad.""" # import ROOT # from ROOT import RooRealVar, RooArgList, RooArgSet, RooAddPdf, RooDataSet, RooAbsReal # from ROOT import RooFit, RooCBShape, RooExponential # from ROOT import RooGaussian, RooMinuit # from ROOT import TCanvas # HACK to prevent not plotting canvas by root_numpy import. BUG. # from root_numpy import array2tree # from ROOT import RooCategory, RooUnblindPrecision pad_data.cd() dataHist = pull_frame.getHist("datahistogram") curve1 = pull_frame.getObject( 1 ) # 1 is index in the list of RooPlot items (see printout from massplot->Print("V") curve2 = pull_frame.getObject(2) hresid1 = dataHist.makePullHist(curve1, True) hresid2 = dataHist.makePullHist(curve2, True) # RooHist* hresid = massplot->pullHist("datahistogram","blindtot") pad_pulls.cd() # resid = M_OS.frame() pull_frame.addPlotable(hresid1, "P") pull_frame.addPlotable(hresid2, "P") pull_frame.SetTitle("") # pull_frame.GetXaxis().SetTitle("#it{m}(#it{#pi}^{ #plus}#it{#pi}^{ #minus}) [MeV/#it{c}^{2}]") # gStyle->SetPadLeftMargin(0.1) def metric_vs_cut_fitted( data, predict_col, fit_col, sig_pdf, bkg_pdf, x, region, second_storage=None, metric="punzi", n_sig=None, n_bkg=None, stepsize=0.025, plot_importance=3, ): """Calculate a metric vs a given cut by estimating the bkg from the fit. Parameters ---------- data : |hepds_type| predict_col : str fit_col : str region : tuple(numerical, numerical) The lower and upper points to integrate over. x : RooRealVar """ from raredecay.tools.metrics import punzi_fom, precision_measure predict_col = dev_tool.entries_to_str(predict_col) fit_col = dev_tool.entries_to_str(fit_col) metric_name = metric if metric == "punzi": metric = punzi_fom elif metric == "precision": metric = precision_measure # TODO: convert meric strings to metric n_steps = int(np.floor_divide(1, stepsize)) if n_steps < 1: raise ValueError("stepsize has to be smaller then 1, not", stepsize) cuts = np.linspace(0, 1, num=n_steps, endpoint=False) plots = int(10 / n_steps) current_plot = 0 if not isinstance(predict_col, str) or not isinstance(fit_col, str): raise TypeError("predict_col and/or fit_col is not a string but has to be.") scores = [] for cut in cuts: if plot_importance > 2: temp_plot_importance = plot_importance if plots > current_plot else 0 temp_data = data.copy_storage(columns=[predict_col, fit_col], add_to_name="") temp_df = temp_data.pandasDF() temp_df = temp_df[cut < temp_df[predict_col]] temp_data.set_data(temp_df) n_sig_weighted = sum(temp_data.get_weights()[temp_data.get_targets() == 1]) if second_storage is not None: temp_second_storage = second_storage.copy_storage( columns=[predict_col, fit_col], add_to_name="" ) temp_df = temp_second_storage.pandasDF() temp_df = temp_df[cut < temp_df[predict_col]] temp_second_storage.set_data(temp_df) n_sig_weighted += sum( temp_second_storage.get_weights()[ temp_second_storage.get_targets() == 1 ] ) else: temp_second_storage = second_storage n_sig_fit, n_bkg_fit = fit_mass( data=temp_data, column=fit_col, x=x, sig_pdf=sig_pdf, bkg_pdf=bkg_pdf, n_sig=n_sig, n_bkg=n_bkg, blind=False, nll_profile=False, second_storage=temp_second_storage, plot_importance=temp_plot_importance, bkg_in_region=region, ) scores.append(metric(n_signal=n_sig_weighted, n_background=n_bkg_fit)) return cuts, scores if __name__ == "__main__": import ROOT from ROOT import ( RooRealVar, RooArgList, RooArgSet, RooAddPdf, RooDataSet, RooAbsReal, ) from ROOT import RooFit, RooCBShape, RooExponential from ROOT import RooGaussian, RooMinuit from ROOT import ( TCanvas, ) # HACK to prevent not plotting canvas by root_numpy import. BUG. from root_numpy import array2tree from ROOT import RooCategory, RooUnblindPrecision # data = RooDataSet("data", ) from raredecay.tools.data_storage import HEPDataStorage import pandas as pd import matplotlib.pyplot as plt # np.random.seed(40) mode = "fit" # mode = 'fit_metric' # mode = "sPlot" # mode = 'ks' # create signal pdf BEGIN lower_bound = 4800 # lower_bound = 5000 x = RooRealVar("x", "x variable", lower_bound, 6000) # x = RooRealVar("x", "x variable", 4800, 6000) # TODO: export somewhere? does not need to be defined inside... mean = RooRealVar( "mean", "Mean of Double CB PDF", 5280, 5270, 5290 ) # , 5300, 5500) sigma = RooRealVar("sigma", "Sigma of Double CB PDF", 40, 0, 45) alpha_0 = RooRealVar("alpha_0", "alpha_0 of one side", 40, 30, 50) alpha_1 = RooRealVar("alpha_1", "alpha_1 of other side", -40, -50, -30.0) lambda_0 = RooRealVar("lambda_0", "Exponent of one side", 40, 30, 50) lambda_1 = RooRealVar("lambda_1", "Exponent of other side", 40, 30, 50) # TODO: export somewhere? pdf construction frac = RooRealVar("frac", "Fraction of crystal ball pdfs", 0.479, 0.01, 0.99) crystalball1 = RooCBShape( "crystallball1", "First CrystalBall PDF", x, mean, sigma, alpha_0, lambda_0 ) crystalball2 = RooCBShape( "crystallball2", "Second CrystalBall PDF", x, mean, sigma, alpha_1, lambda_1 ) doubleCB = RooAddPdf( "doubleCB", "Double CrystalBall PDF", crystalball1, crystalball2, frac ) # create signal pdf END # create bkg-pdf BEGIN lambda_exp = RooRealVar( "lambda_exp", "lambda exp pdf bkg", -0.002, -10.0, -0.000001 ) bkg_pdf = RooExponential("bkg_pdf", "Background PDF exp", x, lambda_exp) # create bkg-pdf END n_sig = 25000 data = pd.DataFrame( np.random.normal(loc=5280, scale=37, size=(n_sig, 3)), columns=["x", "y", "pred"], ) # data['pred'] = np.array([min((abs(y), 0.99)) for y in np.random.normal(loc=0.6, scale=0.25, size=n_sig)]) bkg_data = np.array( [ i for i in (np.random.exponential(scale=300, size=(7500, 3)) + 4800) if i[0] < 6000 ] ) bkg_data[:, 2] = np.array( [ min((abs(y), 0.96)) for y in np.random.normal(loc=0.4, scale=0.4, size=len(bkg_data)) ] ) data = pd.concat( [data, pd.DataFrame(bkg_data, columns=["x", "y", "pred"])], ignore_index=True ) data = HEPDataStorage( data, target=np.concatenate((np.ones(n_sig), np.zeros(len(bkg_data)))) ) data_copy = data.copy_storage() if mode == "fit": fit_result = fit_mass( data=data, column="x", sig_pdf=doubleCB, x=x, bkg_pdf=bkg_pdf, # blind=False, blind=(5100, 5380), plot_importance=4, # bkg_in_region=(5100, 5380) ) print(fit_result) print("True values: nsig =", n_sig, " n_bkg =", len(bkg_data)) elif mode == "fit_metric": result = metric_vs_cut_fitted( data=data, predict_col="pred", fit_col="x", sig_pdf=doubleCB, bkg_pdf=bkg_pdf, x=x, region=(5100, 5380), stepsize=0.01, ) print(result) plt.plot(*result) elif mode == "sPlot": fit_result = fit_mass( data=data, column="x", sig_pdf=doubleCB, x=x, bkg_pdf=bkg_pdf, blind=False, plot_importance=1, # bkg_in_region=(5100, 5380) sPlot=True, ) n_sig, n_bkg, sweights = fit_result import copy sweights = copy.deepcopy(sweights) plt.figure("new figure") # plt.hist(range(100)) # plt.figure("new figure") plt.hist(sweights, bins=30) data_copy.set_weights(sweights) data_copy.plot() elif mode == "ks": pass input("Finished, press 'Enter' to close ROOT plots.") plt.show() input("Finished, press 'Enter' to close plots.") ``` #### File: raredecay/raredecay/meta_config.py ```python import pickle as pickle import multiprocessing import random import numpy as np # ============================================================================== # Parameters which can be changed WITHOUT affecting stability of a single run. # Be aware: certain tasks like loading a pickled file may fail if the file- # endings are changed. # ============================================================================== __all__ = [ "PROMPT_FOR_COMMENT", "MULTITHREAD", "MULTIPROCESSING", "n_cpu_max", "use_gpu", "use_stratified_folding", "get_n_cpu", "set_parallel_profile", "PICKLE_DATATYPE", "ROOT_DATATYPE", "PICKLE_PATH", "GIT_DIR_PATH", "PICKLE_PROTOCOL", "SUPPRESS_WRONG_SKLEARN_VERSION", "SUPPRESS_FUTURE_IMPORT_ERROR", "MAX_AUTO_FOLDERS", "NO_PROMPT_ASSUME_YES", "MAX_ERROR_COUNT", "MAX_FIGURES", "DEFAULT_OUTPUT_FOLDERS", "DEFAULT_HIST_SETTINGS", "DEFAULT_SAVE_FIG", "DEFAULT_EXT_SAVE_FIG", "DEFAULT_LOGGER_CFG", "DEFAULT_CLF_XGB", "DEFAULT_CLF_TMVA", "DEFAULT_CLF_RDF", "DEFAULT_CLF_GB", "DEFAULT_CLF_ADA", "DEFAULT_CLF_NN", "DEFAULT_CLF_CONFIG", "DEFAULT_CLF_NAME", "max_difference_feature_selection", "DEFAULT_HYPER_GENERATOR", "loggers", "verbosity", "plot_verbosity", "set_verbosity", "set_plot_verbosity", "rand_seed", "randint", "randfloat", "set_seed", "error_occured", "warning_occured", ] # ------------------------------------------------------------------------------ # General run parameters # ------------------------------------------------------------------------------ PROMPT_FOR_COMMENT = False # let you add an extension to the run/file name MULTITHREAD = True # if False, no parallel work will be done MULTIPROCESSING = True # requires MULTITHREAD to be true, else it's False n_cpu_max = 1 # VAGUE ESTIMATION but not a strict limit. If None, number of cores will be assigned use_gpu = ( False # If True, optimisation for GPU use is done (e.g. nn not parallel on cpu). ) # This does NOT use the GPU yet, but "not use the cpu" where the GPU will be invoked use_stratified_folding = ( True # StratifiedKFolding is better, from a statistical point of view, ) # but also needs more memory, mostly insignificantly but can be large def get_n_cpu(n_cpu=None): """Return the number of cpus to use. None means all. Can be -1, -2...""" if n_cpu is None: n_cpu = -1 if isinstance(n_cpu, int): if n_cpu < 0: n_cpu = max([n_cpu_max + n_cpu + 1, 1]) # n_cpu = min([n_cpu, n_cpu_max]) return n_cpu # set meta-config variables def set_parallel_profile(n_cpu=-1, gpu_in_use=False, stratified_kfolding=True): """Set the number of cpus and whether a gpu is in use or not.""" global MULTIPROCESSING, MULTITHREAD, n_cpu_max, use_gpu, use_stratified_folding use_stratified_folding = stratified_kfolding MULTIPROCESSING = MULTITHREAD = True if n_cpu == 1: n_cpu_max = 1 elif n_cpu is None: pass elif isinstance(n_cpu, int): if n_cpu > 1: n_cpu_max = n_cpu elif n_cpu < 0: n_cpu_max = max( [multiprocessing.cpu_count() + n_cpu + 1, 1] ) # -1 is "all cpus" else: raise ValueError("Invalid n_cpu argument: " + str(n_cpu)) else: raise TypeError( "Wrong n_cpu argument, type: " + str(type(n_cpu)) + " not allowed" ) use_gpu = gpu_in_use if gpu_in_use is not None else use_gpu # ------------------------------------------------------------------------------ # Datatype ending variables # ------------------------------------------------------------------------------ # The ending of a certain variable type. Change with caution and good reason. PICKLE_DATATYPE = "pickle" # default: 'pickle' ROOT_DATATYPE = "root" # default 'root' # ------------------------------------------------------------------------------ # SHARED OBJECT PATHES INPUT & OUTPUT # ------------------------------------------------------------------------------ # folder where the pickled objects are stored PICKLE_PATH = "/home/mayou/Documents/uniphysik/Bachelor_thesis/analysis/pickle/" # folder where the git-directory is located. Can be an empty string GIT_DIR_PATH = ( "/home/mayou/Documents/uniphysik/Bachelor_thesis/" + "python_workspace/raredecay/raredecay" ) # ------------------------------------------------------------------------------ # Debug related options # ------------------------------------------------------------------------------ # This options should not directly affect the behaviour (except of speed etc) # IF the right environment is used. Don't touch until you have good reasons to do. PICKLE_PROTOCOL = pickle.HIGHEST_PROTOCOL # default: pickle.HIGHEST_PROTOCOL SUPPRESS_WRONG_SKLEARN_VERSION = False # Should NOT BE CHANGED. SUPPRESS_FUTURE_IMPORT_ERROR = False # ============================================================================== # Parameters which may affect stability # setting for example MAX_AUTO_FOLDERS to 0, it will surely not work # ============================================================================== # ------------------------------------------------------------------------------ # Limits for auto-methods # ------------------------------------------------------------------------------ # If a folder already exists and no overwrite is in use, a new folder (with a # trailing number) will be created. There can be set a limit to prevent a full # disk in case of an endless loop-error or similar. MAX_AUTO_FOLDERS = 10000 # max number of auto-generated folders by initialize NO_PROMPT_ASSUME_YES = ( True # no userinput required, assumes yes (e.g. when overwritting files) ) MAX_ERROR_COUNT = ( 1000 # set a maximum number of possible errors (not able to save figure etc.) ) # Criticals will end the run anyway. MAX_FIGURES = 1000 # max number of figures to be plotted # ============================================================================== # DEFAULT SETTINGS for different things # ============================================================================== # ------------------------------------------------------------------------------ # Output and plot configurations # ------------------------------------------------------------------------------ # available output folders. Do NOT CHANGE THE KEYS as modules depend on them! # You may add additional key-value pairs or just change some values # The name of the folders created inside the run-folder DEFAULT_OUTPUT_FOLDERS = dict( log="log", # contains the logger informations plots="plots", # contains all the plots results="results", # contains the written output config="config", # NOT YET IMPLEMENTED, but cound contain the config file used ) # The default histogram settings used for some plots DEFAULT_HIST_SETTINGS = dict( bins=40, # default: 40 density=True, # default: True, useful for shape comparison of distributions alpha=0.5, # transparency [0.0, 1.0] histtype="stepfilled", ) # Default configuration for most of the figures for save_fig from OutputHandler() DEFAULT_SAVE_FIG = dict( file_format=["png", "pdf"], # default: ['png', 'svg'], the file formats dpi=150, # to be saved to. For implementations, see OutputHandler() to_pickle=True, # whether to pickle the plot (and therefore be able to replot) # save_cfg=None ) # Default configuration for additional figures (plots you mostly do not care # about but may be happy to have them saved somewhere) DEFAULT_EXT_SAVE_FIG = dict( file_format=["png", "pdf"], to_pickle=True # save_cfg=None ) # A logger writes some stuff during the run just for the control of the # correct execution. The log will be written to console, to file, or both. # Each message has a level ranging from the lowest (most unimportant) 'debug' # to 'critical'. You can specify which level (+ the more important one) will # appear where. # Example: you can set console to 'error'. and file to 'info'. This way you # collect also seemingly unneccesary informations (which are maybe later nice # to check if a variable was meaningful) but on the screen you will only see # if an error or critical occurs. DEFAULT_LOGGER_CFG = dict( logging_mode="console", # define where the logger is written to # take 'both', 'file', 'console' or 'no' log_level_file="debug", # 'debug', 'info', warning', 'error', 'critical' # specifies the level to be logged to the file log_level_console="debug", # 'debug', 'info', warning', 'error', 'critical' # specify the level to be logged to the console overwrite_file=True, # specifies whether it should overwrite the log file each time # or instead make a new one each run log_file_name="AAlastRun", # the beginning ofthe name of the logfile, like 'project1' log_file_dir=DEFAULT_OUTPUT_FOLDERS.get("log"), ) # ------------------------------------------------------------------------------ # Classifier configurations # ------------------------------------------------------------------------------ # Some modules use classifiers for different tasks where it is mostly not # important to have a fully optimized classifier but just a "good enough" one. # Like in the data_ROC where you can see how well two datasets differ from # each other. # Changing this default values will surely affect your results (over- or # underfitting for example), but is mostly not required at all. DEFAULT_CLF_XGB = dict( n_estimators=150, # default 75 eta=0.1, # default 0.1, learning-rate min_child_weight=0, # #0 stage 2 to optimize max_depth=5, # #6 stage 2 to optimize gamma=0.1, # stage 3, minimum loss-reduction required to make a split. # Higher value-> more conservative subsample=0.8, # stage 4, subsample of data. 1 means all data, 0.7 means only 70% of data # for a tree colsample=1, ) DEFAULT_CLF_TMVA = dict(method="kBDT") DEFAULT_CLF_RDF = dict( n_estimators=150, max_features=None, # max_depth=100 ) DEFAULT_CLF_GB = dict( n_estimators=200, learning_rate=0.15, max_depth=5, subsample=0.9, max_features=None ) DEFAULT_CLF_ADA = dict(n_estimators=200, learning_rate=0.2) DEFAULT_CLF_NN = dict( layers=[500, 500, 500], hidden_activation="logistic", output_activation="linear", input_noise=0, # [0,1,2,3,4,5,10,20], hidden_noise=0, input_dropout=0, hidden_dropout=0.03, decode_from=1, weight_l1=0.01, weight_l2=0.01, scaler="standard", trainers=[ { "optimize": "adagrad", "patience": 10, "learning_rate": 0.1, "min_improvement": 0.01, "momentum": 0.5, "nesterov": True, "loss": "xe", } ], ) # default clf config collection DEFAULT_CLF_CONFIG = dict( xgb=DEFAULT_CLF_XGB, tmva=DEFAULT_CLF_TMVA, gb=DEFAULT_CLF_GB, ada=DEFAULT_CLF_ADA, nn=DEFAULT_CLF_NN, rdf=DEFAULT_CLF_RDF, ) # default clf names collection DEFAULT_CLF_NAME = dict( xgb="XGBoost clf", tmva="TMVA clf", gb="Gradient Boosted Trees clf", ada="AdaBoost over Trees clf", nn="Theanets Neural Network clf", knn="K-Nearest Neighbour clf", rdf="Random Forest clf", ) # ------------------------------------------------------------------------------ # Hyper parameter optimization # ------------------------------------------------------------------------------ # The backwards feature selection uses first all features and determines the ROC AUC. # Then it removes one feature at a time, the one which yields the smallest difference # to the 'all_features' roc auc is then removed. This continues until the smallest # score difference is bigger then max_difference_feature_selection. max_difference_feature_selection = ( 0.08 # the biggest score difference to 'all features' ) # allowed in auc when removing features DEFAULT_HYPER_GENERATOR = "subgrid" # The default cenerater for the hyperspace search # ============================================================================== # END OF CONFIGURABLE PARAMETERS - DO NOT CHANGE WHAT IS BELOW # ============================================================================== # DO NOT CROSS THIS LINE DO NOT CROSS THIS LINE DO NOT CROSS THIS LINE # DO NOT CROSS THIS LINE DO NOT CROSS THIS LINE DO NOT CROSS THIS LINE # DO NOT CROSS THIS LINE DO NOT CROSS THIS LINE DO NOT CROSS THIS LINE # ============================================================================== # START INTERNAL CONFIGURATION - DO NOT CHANGE # ============================================================================== # run_config = "raredecay.run_config.config" # manipulated by OutputHandler() loggers = {} verbosity = 4 plot_verbosity = 3 def set_verbosity(new_verbosity): """Set the verbosity.""" global verbosity verbosity = round(new_verbosity) _check_verbosity(verbosity) def set_plot_verbosity(new_plot_verbosity): """Set the plot verbosity.""" global plot_verbosity plot_verbosity = round(new_plot_verbosity) _check_verbosity(plot_verbosity) def _check_verbosity(verbosity): if verbosity not in list(range(-1, 7)): raise ValueError("Verbosity has to be int {0, 1, 2, 3, 4, 5}") # ============================================================================== # Random integer generator for pseudo random generator (or other things) # ============================================================================== rand_seed = 42 # random.randint(123, 1512412) # 357422 or 566575 # random.seed(rand_seed) def randint(): """Return random integer.""" return random.randint(51, 523753) def randfloat(): """Return a random float between 0 and 1.""" return random.random() def set_seed(seed): """Set the global random seed.""" global rand_seed rand_seed = seed random.seed(rand_seed) np.random.seed(rand_seed) # ------------------------------------------------------------------------------ # parallel profile # ------------------------------------------------------------------------------ # ============================================================================== # ERROR HANDLING # ============================================================================== _error_count = 0 # increases if an error happens _warning_count = 0 # increases if an error happens def error_occured(max_error_count=MAX_ERROR_COUNT): """Call this function every time a non-critical error (saving etc) occurs.""" global _error_count _error_count += 1 if _error_count >= max_error_count: raise RuntimeError("Too many errors encountered from different sources") def warning_occured(): """Call this function every time a warning occurs.""" global _warning_count _warning_count += 1 if __name__ == "__main__": pass ``` #### File: raredecay/tools/data_storage.py ```python import copy import warnings import math import random import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt from rep.data.storage import LabeledDataStorage from ..tools import data_tools, dev_tool try: from raredecay.globals_ import out out_imported = True except ImportError: warnings.warn( ImportWarning, "could not import out. Some functions regarding output" + "(save figure etc.) won't be available", ) out_imported = False # TODO: import config not needed?? remove because its from the old structure # import configuration from .. import meta_config as meta_cfg from .. import config as cfg modul_logger = dev_tool.make_logger(__name__, **cfg.logger_cfg) class HEPDataStorage: """Data-storage for data, weights, targets; conversion; plots and more""" # define constants for independence __ROOT_DATATYPE = meta_cfg.ROOT_DATATYPE __figure_number = 0 __figure_dic = {} latex_replacements = { # "CHI2": r"\chi^2", r"_PT": r" p_T", r"JPsi": r"J/\psi", r"K1": r"K_1 ", r"_1270": "", r"_ENDVERTEX_CHI2": r"\ \chi^2_{VTX}", r"_IPCHI2": r"\ \chi^2_{IP}", r"_FDCHI2": r"\ \chi^2_{FD}", r"_TRACK_CHI2": r"\ \chi^2_{track}", r"_OWNPV": r"\ ownPV", r"_CosTheta": r"\ cos(\theta)", r"NDOF": r"/N_{degree of freedom}", r"AMAXDOCA": r"\ AMAXDOCA", # "_": "\ " } def __init__( self, data, index=None, target=None, sample_weights=None, data_name=None, data_name_addition=None, column_alias=None, ): """Initialize instance and load data. Parameters ---------- data : |data_type| The data itself. This can be two different types - **root-tree dict** (*root-dict*): Dictionary which specifies all the information to convert a root- tree to an array. Directly given to :py:func:`~root_numpy.root2rec` - **pandas DataFrame**: A pandas DataFrame. The index (if not explicitly defined) and column names will be taken. index : 1-D array-like The indices of the data that will be used. target : list or 1-D array or int {0, 1} Labels the data for the machine learning. Usually the y. sample_weights : |sample_weights_type| |sample_weights_docstring| .. note:: If None or 1 specified, 1 will be assumed for all. data_name : str | Name of the data, human-readable. Displayed in the title of plots. | *Example: 'Bu2K1piee mc', 'beta-decay real data' etc.* data_name_addition : str | Additional remarks to the data, human readable. Displayed in the title of plots. | *Example: 'reweighted', 'shuffled', '5 GeV cut applied' etc.* column_alias : |column_alias_type| |column_alias_docstring| """ # initialize logger self.logger = modul_logger # initialize index # self._index = None # initialize data # self._data = None self._data_type = None self.column_alias = {} if column_alias is None else column_alias self._fold_index = None # list with indeces of folds self._fold_status = None # tuple (my_fold_number, total_n_folds) self._length = None self.set_data(data=data, index=index) # self._columns = None # data name self._name = ["", "", ""] data_name = "unnamed data" if data_name is None else data_name self.data_name = data_name self.data_name_addition = data_name_addition self.fold_name = None # initialize targets self._set_target(target=target) # # data-labels human readable, initialize with the column name # self._label_dic = {} # self._label_dic = {col: col for col in self.columns if self._label_dic.get(col) is None} # TODO: delete? # self.set_labels(data_labels=data_labels) # initialize weights self._weights = None self.set_weights(sample_weights) # plot settings hist_settings = meta_cfg.DEFAULT_HIST_SETTINGS self.hist_settings = hist_settings self.supertitle_fontsize = 18 def __len__(self): if self._length is None: self._set_length() return self._length # TODO: remove obsolet def get_name(self): """Return the human-readable name of the data as a string.""" warnings.warn( "Depreceated, obj.get_name() will be removed. Use obj.name instead.", FutureWarning, ) return self._get_name() @property def name(self): """Return the **full** human-readable name of the data as a string.""" return self._get_name() def _get_name(self): out_str = data_tools.obj_to_string(self._name, separator=" ") return out_str def _set_name(self, data_name=None, data_name_addition=None, fold_name=None): """Set the data name.""" # set the new name in self._name for i, name in enumerate([data_name, data_name_addition, fold_name]): if name is not None: self._name[i] = str(name) # TODO: change the naming into a dict? @property def data_name(self): """The name of the data.""" return self._name[0] @property def data_name_addition(self): """The data name addition.""" return self._name[1] @property def fold_name(self): """The name of the fold (like *fold 2 of 5*).""" return self._name[2] @data_name.setter def data_name(self, data_name): self._set_name(data_name=data_name) @data_name_addition.setter def data_name_addition(self, data_name_addition): self._set_name(data_name_addition=data_name_addition) @fold_name.setter def fold_name(self, fold_name): self._set_name(fold_name=fold_name) @property def data_type(self): """ "Return the data-type like 'root', 'df' etc.""" return self._data_type def get_index(self): """Return the index used inside the DataStorage. Advanced feature.""" warnings.warn( "Will be removed in the future. Use obj.index instead", FutureWarning ) return self._make_index() @property def index(self): """The internal index""" return self._make_index() @index.setter def index(self, index): self._set_index(index) def _make_index(self, index=None): """Return the index, else the self._index. If none exist, **create** the normal one It has the following priorities: 1. if the given index is not None, it will be taken 2. next look for the self._index. If there is one, it will be returned 3. otherwise, a list of indeces as usuall (0, len-1) will be returned """ if index is None: temp = list(range(len(self))) if self._index is None else self._index else: temp = index return temp def _set_index(self, index): """If index is not None -> assign. Else try to get from data""" if index is None: self._index = None if self._data_type == "root": pass # no index contained in root-dicts elif self._data_type == "array": pass # no index information contained in an array elif self._data_type == "df": index_list = self._data.index.tolist() # TODO: remove HACK with length, replace with len(self) if not index_list == list(range(len(self))): # if special indexing self._index = index_list else: self._index = index @property def columns(self): """The columns/branches of the data""" return self._columns @columns.setter def columns(self, columns): # TODO: maybe check? if columns is not None: columns = data_tools.to_list(columns) columns = dev_tool.entries_to_str(columns) self._set_columns(columns=columns) def _set_columns(self, columns): if columns is None: if self._data_type == "root": self._columns = data_tools.to_list(self._data["branches"]) elif self._data_type == "df": self._columns = data_tools.to_list(self._data.columns.values) # TODO: remove below? # elif self._data_type == 'array': # self._columns = ['feature_' + str(i) for i in range(len(self._data))] else: self._columns = data_tools.to_list(columns) self._columns = [str(col) for col in self._columns] def _set_length(self): # determine whether to set length individually from the data or not index = self._index if index is None: if self._data_type == "root": temp_root_dict = copy.deepcopy(self._data) temp_branch = temp_root_dict.pop( "branches" ) # remove to only use one branch temp_branch = data_tools.to_list(temp_branch) self._length = len( data_tools.to_pandas( dict(branches=temp_branch[0], **temp_root_dict) ) ) elif self._data_type == "df": self._length = len(self._data) # TODO: remove below? # elif self._data_type == 'array': # self._length = self._data.shape[1] else: self._length = len(index) @staticmethod def _get_data_type(data): """Return the type of the data. - 'df' : pandas DataFrame - 'root': root-file - 'array': numpy array """ data_type = None if isinstance(data, dict): if "filenames" in data and data["filenames"].endswith( HEPDataStorage.__ROOT_DATATYPE ): data_type = "root" elif isinstance(data, pd.DataFrame): data_type = "df" # TODO: remove below # elif isinstance(data, (np.ndarray, np.array)): # data_type = 'array' return data_type @property def data(self): """Return the data as is without conversion, e.g. a root-dict, pandasDF etc.""" return self._data def set_data(self, data, index=None, columns=None, column_alias=None): """Set the data and also change index and columns. Parameters ---------- data : |data_type| The new data index : |index_type| |index_docstring| columns : list(str, str, str,...) The columns for the data to use column_alias : |column_alias_type| |column_alias_docstring| """ if column_alias is not None: self.column_alias.update(column_alias) self.column_alias = dev_tool.entries_to_str(column_alias) self._set_data(data=data, index=index, columns=columns) def _set_data(self, data, index=None, columns=None): """Set the data, length- and columns-attribute. Convert the data to the right (root-dict, df etc.) format (and save). Also set the length and columns. currently implemented: - ROOT-data file (*root-dict*) - Pandas DataFrame """ # Python2/3 compatibility, str if isinstance(data, dict): data = dev_tool.entries_to_str(data) # get the data_type self._data = data self._data_type = self._get_data_type(data) self.index = index self.columns = columns self._set_length() # convert the data (and save it) # root data if self._data_type == "root": pass # pandas DataFrame elif self._data_type == "df": self._data = self._make_df(index=self._index) # No cols, it's set above # TODO: remove below? # elif self._data_type == 'array': # self._data = self._make_df(index=self._index) # warnings.warn(DeprecationWarning, "Not safe, it's better to use pandas DataFrame") else: raise NotImplementedError("Other dataformats are not yet implemented") def get_weights(self, index=None, normalize=True, **kwargs): """Return the weights of the specified indeces or, if None, return all. Parameters ---------- normalize : boolean or float > 0 If True, the weights will be normalized to 1 (the mean is 1). If a float is provided, the mean of the weights will be equal to *normalize*. So *True* and *1* will yield the same results. index : |index_type| |index_docstring| Return ------ out: 1-D pandas Series Return the weights as pandas Series """ index = self._index if index is None else list(index) length = len(self) if index is None else len(index) normalize = 1 if normalize is True else normalize normalize = 0 if normalize is None or normalize is False else normalize second_storage = kwargs.get("second_storage") normalize_1 = 1 normalize_2 = 1 # HACK weights_ratio = normalize # TODO: implement if targets are different if weights_ratio > 0 and second_storage is not None: weights_1 = self.get_weights(index=index) weights_2 = second_storage.get_weights() sum_weight_1 = float(sum(weights_1)) sum_weight_2 = float(sum(weights_2)) ratio_1 = weights_ratio * sum_weight_2 / sum_weight_1 self.logger.info("ratio_1 = " + str(ratio_1)) if ratio_1 >= 1: ratio_2 = 1.0 else: ratio_2 = 1.0 / ratio_1 ratio_1 = 1.0 normalize_1 = ratio_1 normalize_2 = ratio_2 elif weights_ratio > 0 and second_storage is None: normalize_1 = weights_ratio else: normalize_1 = normalize_2 = False weights_out = self._get_weights(index=index, normalize=normalize_1) if dev_tool.is_in_primitive(weights_out, (None, 1)): weights_out = pd.Series(data=np.ones(length), index=index) * normalize_1 if second_storage is not None: weights_2 = second_storage.get_weights(normalize=normalize_2) weights_out = np.concatenate((weights_out, weights_2)) return weights_out def _get_weights(self, index=None, normalize=True): """Return pandas Series of weights or None, 1.""" # initialize values index = self._index if index is None else list(index) length = len(self) if index is None else len(index) # TODO: allow other primitive weights if dev_tool.is_in_primitive(self._weights, (None, 1)): weights_out = self._weights if normalize != 1 or normalize is not True: weights_out = pd.Series(np.ones(length), index=index) else: normalize = False elif index is None: weights_out = self._weights else: weights_out = self._weights.loc[index] weights_out = copy.deepcopy(weights_out) if normalize or normalize > 0: normalize = 1 if normalize is True else normalize weights_out *= normalize / weights_out.mean() return weights_out @property def weights(self): return self.get_weights(index=None, normalize=False) @weights.setter def weights(self, sample_weights): """Set the weights of the sample. Parameters ---------- sample_weights : |sample_weights_type| |sample_weights_docstring| """ self.set_weights(sample_weights=sample_weights) def set_weights(self, sample_weights, index=None): """Set the weights of the sample. Parameters ---------- sample_weights : |sample_weights_type| |sample_weights_docstring| index : 1-D array or list or None The indeces for the weights to be set. Only the index given will be set/used as weights. """ index = self._index if index is None else index if isinstance(sample_weights, (str, dict)) and self._data_type == "root": assert ( isinstance(sample_weights, list) and (len(sample_weights) == 1) ) or isinstance(sample_weights, str), "Can only be one branche" assert isinstance( self._data, dict ), "data should be root-dict but is no more..." tmp_root = copy.deepcopy(self._data) if isinstance(sample_weights, str): sample_weights = {"branches": sample_weights} tmp_root.update(sample_weights) sample_weights = data_tools.to_ndarray(tmp_root) self._set_weights(sample_weights=sample_weights, index=index) def _set_weights(self, sample_weights, index=None): """Set the weights""" index = self.index if index is None else index length = len(self) if index is None else len(index) if dev_tool.is_in_primitive(sample_weights, (None, 1)): if index is None or len(self) == len(index): self._weights = 1 return else: sample_weights = pd.Series(np.ones(len(index)), index=index) # else: # sample_weights = np.ones(length) elif isinstance(sample_weights, pd.Series): sample_weights = sample_weights[index] else: sample_weights = pd.Series(sample_weights, index=index, dtype="f8") if len(self) == length and index is None: self._weights = sample_weights else: if dev_tool.is_in_primitive(self._weights, (None, 1)): self._weights = pd.Series(np.ones(len(self)), index=self._index) self._weights.update(sample_weights) def set_root_selection(self, selection, exception_if_failure=True): """Set the selection in a root-file. Only possible if a root-file is provided.""" warnings.warn("Method set_root_selection very unsafe currently!") meta_cfg.warning_occured() if self._data_type == "root": self.data["selection"] = selection self.set_data(self.data, columns=self.columns) self.data_name_addition += "INDEX CRASHED!" elif exception_if_failure: raise RuntimeError("selection could not be applied, no root-dict") else: self.logger.error("selection not applied, no root-dict") def pandasDF(self, columns=None, index=None): """Return a pandas DataFrame representation of the data Return a pandas DataFrame. Parameters --------- columns : str Arguments for the :py:func:`~root_numpy.root2rec` ls function. index : |index_type| |index_docstring| """ # initialize variables index = None if index is None else list(index) if columns is None: columns = None else: columns = data_tools.to_list(columns) columns = dev_tool.entries_to_str(columns) # create data data_out = self._make_df(columns=columns, index=index, copy=True) # TODO: leave away below?! # if not data_out.index.tolist() == range(len(data_out)): # if not, convert the indices to # data_out.reset_index(drop=True, inplace=True) return data_out def _make_df(self, columns=None, index=None, copy=False): """Return a DataFrame from the internal data. Does some dirty, internal work.""" # initialize data # TODO: remove trailing comment? data = self._data # if dev_tool.is_in_primitive(data) else data columns = self.columns if columns is None else data_tools.to_list(columns) index = self._index if index is None else data_tools.to_list(index) if self._data_type == "root": # update root dictionary # TODO: change keyword branches or something, due to incompatibility with root_pandas temp_root_dict = dict(data, **{"branches": columns}) for key, val in list(temp_root_dict.items()): if dev_tool.is_in_primitive(val, None): temp_root_dict[key] = self.data.get(key) data = data_tools.to_pandas(temp_root_dict, columns=columns, index=index) # if index is not None: # data.set_index([index], inplace=True, verify_integrity=True) # TODO: remove below? # elif self._data_type == 'array': # data = pd.DataFrame(data, index=index, columns=columns, copy=copy) elif self._data_type == "df": if columns is not None: data = data[columns] else: raise NotImplementedError("Unknown/not yet implemented data type") assert isinstance(data, pd.DataFrame), "data did not convert correctly" data = data if index is None else data.loc[index] if isinstance(self.column_alias, dict) and len(self.column_alias) > 0: data.rename(columns=self.column_alias, inplace=True, copy=False) return data # def get_labels(self, columns=None, as_list=False): # """Return the human readable branch-labels of the data. # # Parameters # ---------- # columns : list with str or str # The labels of the columns to return # as_list : boolean # If true, the labels will be returned as a list instead of a dict. # # Return # ------ # out : list or dict # Return a list or dict containing the labels. # """ # if columns is None: # columns = self.columns # columns = data_tools.to_list(columns) # if as_list: # labels_out = [self._label_dic.get(col, col) for col in columns] # else: # labels_out = {key: self._label_dic.get(key) for key in columns} # return labels_out # TODO: delete? # def set_labels(self, data_labels, replace=False): # """Set the human readable data-labels (for the columns). # # Sometimes you want to change the labels(names) of columns. This can be # done by passing a dictionary containing the column as key and a # human-readable name as value. # # Parameters # ---------- # data_labels : dict # It has the form: {column: name} # replace : boolean # """ # if data_labels is None: # return # assert isinstance(data_labels, dict), "Not a dictionary" # self._set_data_labels(data_labels=data_labels, replace=replace) # # def _set_data_labels(self, data_labels, replace): # """Update the data labels""" # if replace: # self._label_dic = data_labels # else: # self._label_dic.update(data_labels) @property def targets(self): return self.get_targets() @targets.setter def targets(self, targets): self.set_targets(targets=targets) def get_targets(self, index=None): """Return the targets of the data as a pandas Series.""" # assing defaults index = self._index if index is None else list(index) length = len(self) if index is None else len(index) # get targets via internal method out_targets = self._get_targets(index=index) # create targets if targets are "simpel" for output if isinstance(out_targets, (int, float)) or out_targets is None: if self._target is None: self.logger.warning("Target list consists of None!") out_targets = dev_tool.make_list_fill_var([], length, self._target) out_targets = pd.Series(out_targets, index=index) return out_targets def _get_targets(self, index=None): """Return targets as pandas Series or primitive type.""" # assign defaults index = self._index if index is None else list(index) # length = len(self) if index is None else len(index) if index is None or dev_tool.is_in_primitive(self._target, (-1, 0, 1, None)): out_targets = self._target else: out_targets = self._target.loc[index] return out_targets def set_targets(self, targets, index=None): """Set the targets of the data. Either an array-like object or {0, 1}.""" if not dev_tool.is_in_primitive(targets, (-1, 0, 1, None)): assert len(self) == len(targets), "Invalid targets" self._set_target(target=targets, index=index) def _set_target(self, target, index=None): """Set the target. Attention with Series, index must be the same as data-index.""" index = self._index if dev_tool.is_in_primitive(index) else index if isinstance(target, (list, np.ndarray, pd.Series)): target = pd.Series(target, index=index, copy=True) target.sort_index(inplace=True) self._target = target def make_dataset( self, second_storage=None, index=None, index_2=None, columns=None, weights_ratio=0, shuffle=False, targets_from_data=False, ): """Create data, targets and weights of the instance (and another one). In machine-learning, it is very often required to have data, it's targets (or labeling, the 'y') and the weights. In most cases, we are not only interested in one such pair, but need to concatenate it to other data (for example signal and background). This is exactly, what make_dataset does. Parameters ---------- second_storage : |hepds_type| A second data-storage. If provided, the data/targets/weights will be concatenated and returned as one. index : |index_type| The index for the **calling** (the *first*) storage instance. |index_docstring| index_2 : list(int, int, int, ...) The index for the (optional) **second storage instance**. |index_docstring| columns : list(str, str, str, ...) The columns to be used of **both** data-storages. weights_ratio : float >= 0 The (relative) normalization. If a second data storage is provided it is assumed (will be changed in future ?) that the two storages can be seen as the two different targets. If zero, nothing happens. If it is bigger than zero, it represents the ratio of the sum of the weights from the first to the second storage. If set to 1, they both are equally weighted. If no second storage is provided, it is the normalization of the storage called. Ratio := sum(weights_1) / sum(weights_2) with a second storage Ratio := sum(weights_1) / mean(weights_1) shuffle : boolean or int If True or int, the dataset will be shuffled before returned. If an int is provided, it will be used as a seed to the pseudo-random generator. targets_from_data OUTDATED, dont use it. Use two datastorage, one labeled 0, one 1 """ # initialize values # normalize_1 = 1 # normalize_2 = 1 # # if weights_ratio > 0 and second_storage is not None: # weights_1 = self.get_weights(index=index) # weights_2 = second_storage.get_weights(index=index_2) # # sum_weight_1 = float(sum(weights_1)) # sum_weight_2 = float(sum(weights_2)) # # ratio_1 = weights_ratio * sum_weight_2 / sum_weight_1 # self.logger.info("ratio_1 = " + str(ratio_1)) # if ratio_1 >= 1: # ratio_2 = 1.0 # else: # ratio_2 = 1.0 / ratio_1 # ratio_1 = 1.0 # # normalize_1 = ratio_1 # normalize_2 = ratio_2 # elif weights_ratio > 0 and second_storage is None: # normalize_1 = weights_ratio # else: # normalize_1 = None if shuffle: index = self.index if index is None else index index = copy.deepcopy(index) if isinstance(shuffle, int) and shuffle is not True: rand_seed = shuffle rand_seed_2 = shuffle + 74 else: rand_seed = rand_seed_2 = None random.shuffle(index, random=rand_seed) data = self.pandasDF(columns=columns, index=index) if second_storage is None: targets = self.get_targets(index=index) # weights = self.get_weights(index=index, normalize=normalize_1) if second_storage is not None: assert isinstance( second_storage, HEPDataStorage ), "Wrong type, not an HEPDataStorage" if shuffle is not False: index_2 = second_storage.index if index_2 is None else index_2 index_2 = copy.deepcopy(index_2) random.shuffle(index_2, random=rand_seed_2) data_2 = second_storage.pandasDF(columns=columns, index=index_2) data = pd.concat((data, data_2), ignore_index=True, copy=False) targets_1 = self.get_targets() targets_2 = second_storage.get_targets() targets = np.concatenate((targets_1, targets_2)) if ( max(targets_1) != min(targets_1) or max(targets_2) != min(targets_2) ) and weights_ratio > 0: raise ValueError( "Very unfortunately is the case of mixed targets in a HEPDataStorage and weights_ratio" + " > 0, this case is not yet implemented. Please make an issue!" ) weights = self.get_weights( normalize=weights_ratio, second_storage=second_storage ) return data, targets, weights def copy_storage(self, columns=None, index=None, add_to_name=" cp"): """Return a copy of self (with only some of the columns, indices etc). Parameters ---------- columns : str or list(str, str, str, ...) The columns which will be in the new storage. index : |index_type| The indices of the rows (and corresponding weights, targets etc.) for the new storage. |index_docstring| add_to_name : str An addition to the data_name_addition of the copy. """ index = self._index if index is None else list(index) columns = self.columns if columns is None else columns new_data = copy.deepcopy(self.data) new_targets = copy.deepcopy(self._get_targets(index=index)) new_weights = copy.deepcopy(self._get_weights(index=index, normalize=False)) new_index = copy.deepcopy(index) new_column_alias = copy.deepcopy(self.column_alias) new_storage = HEPDataStorage( new_data, target=new_targets, sample_weights=new_weights, index=new_index, column_alias=new_column_alias, data_name=self.data_name, data_name_addition=self.data_name_addition + add_to_name, ) new_storage.columns = columns return new_storage # TODO: add second data_storage def get_LabeledDataStorage(self, columns=None, index=None, shuffle=False): """Create and return an instance of class "LabeledDataStorage" from the REP repository. Parameters ---------- columns : str or list(str, str, str, ...) The columns to use for the LabeledDataStorage. index : |index_type| |index_docstring| shuffle : boolean Argument is passed to the LabeledDataStorage. If True, the data will be shuffled. Return ------ out: LabeledDataStorage instance Return a Labeled Data Storage instance created with the data from inside this instance. """ index = self.index if index is None else list(index) if columns is None: columns = self.columns else: columns = columns columns = dev_tool.entries_to_str(columns) random_state = meta_cfg.randint() new_lds = LabeledDataStorage( self.pandasDF(columns=columns, index=index), target=self.get_targets(index=index), sample_weight=self.get_weights(index=index), random_state=random_state, shuffle=shuffle, ) return new_lds def make_folds(self, n_folds=10, shuffle=True): """Create shuffled train-test folds which can be accessed via :py:meth:`~raredecay.data.HEPDataStorage.get_fold()`. Split the data into n folds (for usage in KFold validaten etc.). Then every fold consists of a train dataset, which consists of n-1/n part of the data and a test dataset, which consists of 1/n part of the whole data. The folds will be created as |hepds_type|. To get a certain fold (train-test pair), use :py:meth:`~raredecay.data.HEPDataStorage.get_fold()` Parameters ---------- n_folds : int > 1 The number of folds to be created from the data. If you want, for example, a simple 2/3-1/3 split, just specify n_folds = 3 and just take one fold. shuffle : boolean or int If True or int, shuffle the data before slicing. """ if not n_folds > 1: raise ValueError("Number of folds has to be higher then 1") self._fold_index = [] # split indices of shuffled list length = len(self) temp_indeces = [int(round(length / n_folds)) * i for i in range(n_folds)] temp_indeces.append(length) # add last index. len(index) = n_folds + 1 # get a copy of index and shuffle it if True temp_index = copy.deepcopy(self._make_index()) if shuffle is not False: random.shuffle(temp_index, random=meta_cfg.randfloat) for i in range(n_folds): self._fold_index.append(temp_index[temp_indeces[i] : temp_indeces[i + 1]]) def get_fold(self, fold): """Return the specified fold: train and test data as instance of |hepds_type|. Parameters ---------- fold : int The number of the fold to return. From 0 to n_folds - 1 Return ------ out : tuple(|hepds_type|, |hepds_type|) Return the *train* and the *test* data in a |hepds_type| """ assert self._fold_index is not None, ( "Tried to get a fold but data has no folds." + " First create them (make_folds())" ) assert isinstance(fold, int) and fold < len( self._fold_index ), "Value of fold is invalid" train_index = [] for i, index_slice in enumerate(self._fold_index): if i == fold: test_index = copy.deepcopy(index_slice) else: train_index += copy.deepcopy(index_slice) n_folds = len(self._fold_index) test_DS = self.copy_storage(index=test_index) test_DS._fold_status = (fold, n_folds) # + 1 human-readable test_DS.fold_name = "test set fold " + str(fold + 1) + " of " + str(n_folds) train_DS = self.copy_storage(index=train_index) train_DS._fold_status = (fold, n_folds) train_DS.fold_name = "train set fold " + str(fold + 1) + " of " + str(n_folds) return train_DS, test_DS def get_n_folds(self): """Return how many folds are currently availabe or 0 if no folds have been created. Return ------ out : int The number of folds which are currently available. """ return 0 if self._fold_index is None else len(self._fold_index) def plot_correlation( self, second_storage=None, figure=None, columns=None, method="pearson", plot_importance=5, ): """ .. warning:: does not support weights. Maybe in the future. Plot the feature correlation for the data (combined with other data) Calculate the feature correlation, return it and plot them. Parameters ---------- second_storage : |hepds_type| or None If a second data-storage is provided, the data will be merged and then the correlation will be calculated. Otherwise, only this datas correlation will be calculated and plotted. method : str {'pearson', 'kendall', 'spearman'} The method to calculate the correlation. plot_importance : int {1, 2, 3, 4, 5} The higher the more likely it gets plotted. Depends on the plot_verbosity. To make sure the correlation... - *does* get plotted, chose 5 - does *not* get plotted, chose 1 Return ------ out : pandas DataFrame Return the feature-correlations in a pandas DataFrame """ from statsmodels.stats.weightstats import DescrStatsW columns = self.columns if columns is None else columns data_name = self.name if second_storage is not None: data_name += " and " + second_storage.name data, _tmp, weights = self.make_dataset( second_storage=second_storage, shuffle=True, columns=columns ) del _tmp out.save_fig(figure, importance=plot_importance) ds = DescrStatsW(data.as_matrix(), weights=weights) correlation = ds.cov correlation = data.corr(method=method) corr_plot = sns.heatmap(correlation.T) corr_plot.set_title("Correlation of " + data_name) # turn the axis label for item in corr_plot.get_yticklabels(): item.set_rotation(0) for item in corr_plot.get_xticklabels(): item.set_rotation(90) return correlation def plot( self, figure=None, columns=None, index=None, title=None, sub_title=None, data_name=None, bins=None, log_y_axes=False, plot_range=None, x_label=None, y_label="probability density", sample_weights=None, importance=3, see_all=False, hist_settings=None, figure_kwargs=None, ): """Draw histograms of the data. .. warning:: Only 99.98% of the newest plotted data will be shown to focus on the essential parts (the axis limits will be set accordingly). This implies a risk of cutting the previously (in the same figure) plotted data (mostly, if they do not overlap a lot). To ensure that all data is plotted, set *see_all* to *True*. Parameters ---------- figure : str or int The name of the figure. If the figure already exists, the plots will be plotted in the same window (can be intentional, for example to compare data) columns : str or list(str, str, str, ...) The columns of the data to be plotted. If None, all are plotted. index : |index_type| |index_docstring| title : str | The title of the whole plot (NOT of the subplots). If several titles for the same figures are given, they will be *concatenated*. | So for a "simple" title, specify the title only once. data_name: | Additional, (to the *data_name* and *data_name_addition*), human- readable name for the legend. | Examples: "before cut", "after cut" etc bins : int Number of bins to plot. log_y_axes : boolean If True, the y-axes will be scaled logarithmically. plot_range : tuple (float, float) or None The lower and upper range of the bins. If None, 99.98% of the data will be plottet automatically. sample_weights : pandas Series The weights for the data, how "high" a bin is. Actually, how much it should account for the whole distribution or how "often" it occures. If None is specified, the weights are taken from the data. importance : |importance_type| |importance_docstring| see_all : boolean If True, all data (not just 99.98%) will be plotted. hist_settings : dict A dictionary containing the settings as keywords for the :py:func:`~matplotlib.pyplot.hist()` function. """ # ============================================================================== # initialize values # ============================================================================== if sample_weights is None: sample_weights = self._get_weights(index=index) if dev_tool.is_in_primitive(sample_weights, 1): sample_weights = None figure_kwargs = {} if figure_kwargs is None else figure_kwargs # update hist_settings if dev_tool.is_in_primitive(hist_settings, None): hist_settings = {} if isinstance(hist_settings, dict): hist_settings = dict(meta_cfg.DEFAULT_HIST_SETTINGS, **hist_settings) if bins is not None: hist_settings["bins"] = bins if plot_range is not None: hist_settings["range"] = plot_range # create data data_plot = self.pandasDF(columns=columns, index=index) columns = data_plot.columns.values self.logger.debug("plot columns from pandasDataFrame: " + str(columns)) # set the right number of rows and columns for the subplot subplot_col = int(math.ceil(math.sqrt(len(columns)))) subplot_row = int(math.ceil(float(len(columns)) / subplot_col)) # assign a free figure if argument is None if dev_tool.is_in_primitive(figure, None): while True: safety = 0 figure = self.__figure_number + 1 self.__figure_number += 1 assert safety < meta_cfg.MAX_FIGURES, "stuck in an endless while loop" if figure not in list(self.__figure_dic.keys()): x_limits_col = {} # TODO: improve figure dict with title.... self.__figure_dic.update( {figure: x_limits_col, str(figure) + "_title": ""} ) break elif figure not in list(self.__figure_dic.keys()): x_limits_col = {} self.__figure_dic.update({figure: x_limits_col, str(figure) + "_title": ""}) out_figure = out.save_fig( figure, importance=importance, figure_kwargs=figure_kwargs, **cfg.save_fig_cfg ) # create a label label_name = data_tools.obj_to_string( [self._name[0], self._name[1], data_name], separator=" - " ) self.__figure_dic[str(figure) + "_title"] += "" if title is None else title plt.suptitle( self.__figure_dic.get(str(figure) + "_title"), fontsize=self.supertitle_fontsize, ) # ============================================================================== # Start plotting # ============================================================================== # plot the distribution column by column for col_id, column in enumerate(columns, 1): # create sub title sub_title_tmp = column if sub_title is None else sub_title x_label = "" if x_label is None else x_label # only plot in range x_limits, otherwise the plot is too big x_limits = self.__figure_dic.get(figure).get(column) lower, upper = np.percentile(np.hstack(data_plot[column]), [0.01, 99.99]) if dev_tool.is_in_primitive(x_limits, None): x_limits = (lower, upper) elif see_all: # choose the maximum range. Bins not nicely overlapping. x_limits = (min(x_limits[0], lower), max(x_limits[1], upper)) if "range" in hist_settings: x_limits = hist_settings.pop("range") self.__figure_dic[figure].update({column: x_limits}) plt.subplot(subplot_row, subplot_col, col_id) plt.hist( data_plot[column], weights=sample_weights, log=log_y_axes, range=x_limits, label=label_name, **hist_settings ) # set labels, titles... plt.title(self.latex_replacements.get(sub_title_tmp, sub_title_tmp)) ha = "center" plt.xlabel(x_label, ha=ha, position=(0.5, 0)) if y_label is not None: plt.ylabel(y_label, ha=ha, position=(0, 0.5)) plt.legend() return out_figure def plot_parallel_coordinates(self, columns=None, figure=0, second_storage=None): """Plot the parallel coordinates. .. warning:: No weights supported so far! """ data, targets, weights = self.make_dataset( second_storage=second_storage, columns=columns ) targets.name = "targets" data = pd.concat([data, targets], axis=1) out_figure = out.save_fig(figure) pd.tools.plotting.parallel_coordinates(data, "targets") return out_figure def plot2Dhist(self, x_columns, y_columns=None): """Plot a 2D hist of x_columns vs itself or y_columns. .. warning:: this can produce A LOT of plots! (x_columns * y_columns) Parameters ---------- x_columns : list(str, str, str,...) The x columns to plot agains y_columns : list(str, str, str,...) The y columns to plot agains """ x_columns = self.columns if x_columns == "all" else x_columns y_columns = self.columns if y_columns == "all" else y_columns y_columns = x_columns if y_columns is None else y_columns for x_col in x_columns: for y_col in y_columns: df = self.pandasDF(columns=[x_col, y_col]) df.plot.hexbin(x_col, y_col, gridsize=30) def plot2Dscatter(self, x_branch, y_branch, dot_scale=20, color="b", figure=None): """Plot two columns against each other to see the distribution. The dots size is proportional to the weights, so you have a good overview on the data and the weights. Parameters ---------- x_branch : str The x column to plot x_branch : str Thy y column to plot dot_scale : int or float The overall scaling factor for the dots color : str A valid (matplotlib.pyplot-compatible) color figure : str or int or figure The figure to be plotted in Return ------ out : figure Return the figure """ # TODO: make nice again out_figure = out.save_fig(figure) weights = self.get_weights() assert len(weights) == len(self), "Wrong length of weigths" size = weights * dot_scale temp_label = data_tools.obj_to_string([i for i in self._name]) plt.scatter( self.pandasDF(columns=x_branch), self.pandasDF(columns=y_branch), s=size, c=color, alpha=0.5, label=temp_label, ) plt.xlabel(x_branch) plt.ylabel(y_branch) plt.legend() return out_figure # TODO: add correlation matrix # ============================================================================== # Docs # ============================================================================== data_storage_docstring = """ .. |data_type| replace:: root-tree dict (:py:func:`~raredecay.tools.data_tools.make_root_dict`) or :py:class:`~pd.DataFrame` .. |sample_weights_type| replace:: :py:class:`~pd.Series` or :py:class:`~np.array` or int {1} or str/dict for root-trees (:py:func:`~raredecay.tools.data_tools.make_root_dict`) .. |sample_weights_docstring| replace:: The new weights for the dataset. If the new weights are a pandas Series, the index must match the internal index If the data is a root-tree file, a string (naming the branche) or a whole root-dict can be given, pointing to the weights stored. .. |index_type| replace:: list or :py:class:`~np.array` .. |index_docstring| replace:: The index of the data to use. .. |column_alias_type| replace:: dict{str: str, str: str, ...} .. |column_alias_docstring| replace:: To change the name of a branch. The argument should be a dict looking like {'current_branch_name_in_root_tree/DataFrame': 'desired_name'}. The current_branch has to exist in the root-tree or DataFrame, the desired_name can be anything. """ try: HEPDataStorage.__doc__ += data_storage_docstring except AttributeError: # Python 2 pass ``` #### File: raredecay/tools/data_tools.py ```python import warnings import os import copy import pandas as pd import numpy as np import uproot import pickle from . import dev_tool # both produce error (27.07.2016) when importing them if run from main.py. # No problem when run as main... # from raredecay.tools import dev_tool from .. import meta_config as meta_cfg def apply_cuts(signal_data, bkg_data, percent_sig_to_keep=100, bkg_length=None): """Search for best cut on value to still keep percent_sig_to_keep of signal Parameters ---------- signal_data : 1-D numpy array The signal bkg_data : 1-D numpy array The background data percent_sig_to_keep : 0 < float <= 100 What percentage of the data to keep in order to apply the cuts. """ # if percent_sig_to_keep < 100: # raise NotImplementedError("percentage of < 100 not yet imlemented") percentile = [0, percent_sig_to_keep] # TODO: modify for percent_sig_to_keep bkg_length_before = len(bkg_data) bkg_length = len(bkg_data) if bkg_length in (None, 0) else bkg_length lower_cut, upper_cut = np.percentile(signal_data, percentile) cut_bkg = np.count_nonzero( np.logical_or(bkg_data < lower_cut, bkg_data > upper_cut) ) rejected_bkg = (bkg_length_before - cut_bkg) / bkg_length return [lower_cut, upper_cut], rejected_bkg def make_root_dict(path_to_rootfile, tree_name, branches): """Returns a root_numpy compatible "root-dict" of a root-tree. Parameters ---------- path_to_rootfile : str The exact path to the root-tree including the filename. Example: /home/user1/data/myRootTree1.root tree_name : str The name of the tree branches : str or list[str, str, str,... ] The branches of the tree to use """ output = dict(filenames=path_to_rootfile, treename=tree_name, branches=branches) output = dev_tool.entries_to_str(output) return output def add_to_rootfile(rootfile, new_branch, branch_name=None, overwrite=True): """Adds a new branch to a given root file. .. warning:: Overwrite not working currently! Parameters ---------- rootfile : root-dict The ROOT-file where the data should be added new_branch : numpy.array 1-D, list, root-dict A one-dimensional numpy array that contains the data. branch_name : str The name of the branche resp. the name in the dtype of the array. """ from root_numpy import array2root from rootpy.io import root_open rootfile = dev_tool.entries_to_str(rootfile) new_branch = dev_tool.entries_to_str(new_branch) branch_name = dev_tool.entries_to_str(branch_name) # get the right parameters # TODO: what does that if there? an assertion maybe? write_mode = "update" branch_name = "new_branch1" if branch_name is None else branch_name if isinstance(rootfile, dict): filename = rootfile.get("filenames") treename = rootfile.get("treename") new_branch = to_ndarray(new_branch) # new_branch.dtype = [(branch_name, 'f8')] # write to ROOT-file write_to_root = False if os.path.isfile(filename): with root_open(filename, mode="a") as root_file: tree = getattr(root_file, treename) # test if not tree.has_branch(branch_name): write_to_root = True # array2tree(new_branch, tree=tree) # f.write("", TObject.kOverwrite) # overwrite, does not create friends else: write_mode = "recreate" write_to_root = True if write_to_root: arr = np.core.records.fromarrays([new_branch], names=branch_name) array2root(arr=arr, filename=filename, treename=treename, mode=write_mode) return 0 else: return 1 # TODO: remove? outdated def format_data_weights(data_to_shape, weights): """Format the data and the weights perfectly. Same length and more. Change the data to pandas.DataFrame and fill the weights with ones where nothing or None is specified. Returns both in lists. Very useful to loop over several data and weights. Parameters ---------- data_to_shape : (root_dict, numpy.array, pandas.DataFrame) The data for which we apply the weights. Usual 2-D shape. weights : (list, numpy.array, pandas.DataFrame, None) The weights to be reshaped *Best format* : [array(weights),array(weights), None, array(weights),...] *None* can be used if no special weights are specified. If weights contains less "weight-containing array-like objects" then data_to_shape does, the difference will be filled with *1* Return ------ out : list(pandas.DataFrame(data), pandas.DataFrame(data),...) Return a list containing data out : list(numpy.array(weight), numpy.array(weight),...) Return a list with the weights, converted and filled. """ # conver the data if not isinstance(data_to_shape, list): data_to_shape = [data_to_shape] data_to_shape = list(map(to_pandas, data_to_shape)) # convert the weights if not isinstance(weights, list): weights = [weights] if weights[0] is not None: if len(weights[0]) == 1: weights = [weights] # convert to pandas assert isinstance(weights, list), "weights could not be converted to list" for data_id, data in enumerate(data_to_shape): if data_id >= len(weights): weights.append(None) if weights[data_id] is None: weights[data_id] = np.array([1] * len(data)) weights[data_id] = to_pandas(weights[data_id]).squeeze().values return data_to_shape, weights def obj_to_string(objects, separator=None): """Return a string containing all objects as strings, separated by the separator. Useful for automatic conversion for different types. The following objects will automatically be converted: - None will be omitted Parameters ---------- objects : any object or list(obj, obj, ...) with a string representation The objects will be converted to a string and concatenated, separated by the separator. separator : str The separator between the objects. Default is " - ". """ objects = dev_tool.entries_to_str(objects) if isinstance(objects, str): # no need to change things return objects separator = " - " if separator is None else separator assert isinstance(separator, str), "Separator not a str" objects = to_list(objects) objects = [str(obj) for obj in objects if obj not in (None, "")] # remove Nones string_out = "" for word in objects: string_out += word + separator if word != objects[-1] else word return string_out def is_root(data_to_check): """Check whether a given data is a root file. Needs dicts to be True.""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, dict): path_name = data_to_check.get("filenames") # assert isinstance(path_name, str), ("'filenames' of the dictionary " + # str(data_to_check) + "is not a string") if path_name.endswith(meta_cfg.ROOT_DATATYPE): flag = True return flag def is_list(data_to_check): """Check whether the given data is a list.""" flag = False if isinstance(data_to_check, list): flag = True return flag def is_ndarray(data_to_check): """Check whether a given data is an ndarray.""" flag = False if isinstance(data_to_check, np.ndarray): flag = True return flag def is_pickle(data_to_check): """Check if the file is a pickled file (checks the ending).""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, str): if data_to_check.endswith(meta_cfg.PICKLE_DATATYPE): flag = True return flag def to_list(data_in): """Convert the data into a list. Does not pack lists into a new one. If your input is, for example, a string or a list of strings, or a tuple filled with strings, you have, in general, a problem: - just iterate through the object will fail because it iterates through the characters of the string. - using list(obj) converts the tuple, leaves the list but splits the strings characters into single elements of a new list. - using [obj] creates a list containing a string, but also a list containing a list or a tuple, which you did not want to. Solution: use to_list(obj), which creates a new list in case the object is a single object (a string is a single object in this sence) or converts to a list if the object is already a container for several objects. Parameters ---------- data_in : any obj So far, any object can be entered. Returns ------- out : list Return a list containing the object or the object converted to a list. """ if isinstance(data_in, (str, int, float)): data_in = [data_in] data_in = list(data_in) return data_in def to_ndarray(data_in, float_array=False): """Convert data to numpy array (containing only floats). Parameters ---------- data_in : any reasonable data The data to be converted """ import uproot if is_root(data_in): with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] branches = to_list(data_in["branches"]) loaded = tree.arrays(branches, library="np") loaded = np.stack([loaded[branch] for branch in branches]) if len(branches) == 1: loaded = loaded[0] data_in = loaded # change numpy.void to normal floats if isinstance(data_in, (pd.Series, pd.DataFrame)): test_sample = data_in.iloc[0] else: test_sample = data_in[0] if isinstance(test_sample, np.void): data_in = np.array([val[0] for val in data_in]) if isinstance(data_in, (np.recarray, np.ndarray)): data_in = data_in.tolist() if is_list(data_in) or isinstance(data_in, pd.Series): data_in = np.array(data_in) if not isinstance(data_in[0], (int, float, str, bool)): if float_array: iter_data = copy.deepcopy(data_in) # HACK data_in = np.ndarray(shape=len(data_in), dtype=data_in.dtype) # HACK END for i, element in enumerate(iter_data): if not isinstance(element, (int, float, str, bool)): # does that work or should we iterate over copy? try: element_len = len(element) except TypeError: element_len = 1 if element_len > 1: data_in[i] = to_ndarray(element) float_array = False elif element_len == 1: data_in[i] = float(element) warnings.warn("Could not force float array") if float_array: data_in = np.asfarray(data_in) assert is_ndarray(data_in), "Error, could not convert data to numpy array" return data_in def to_pandas_old(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ # TODO: generalize root_index_name = "__index__" data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): root_index = None import root_numpy if root_index_name in root_numpy.list_branches( filename=data_in["filenames"], treename=data_in.get("treename") ): root_index = root_numpy.root2array( filenames=data_in["filenames"], treename=data_in.get("treename"), selection=data_in.get("selection"), branches=root_index_name, ) data_in = root_numpy.root2array(**data_in) # why **? it's a root dict if is_list(data_in): data_in = np.array(data_in) if is_ndarray(data_in): if (isinstance(columns, (list, tuple)) and len(columns) == 1) or isinstance( columns, str ): data_in = to_ndarray(data_in) data_in = pd.DataFrame(data_in, columns=columns, index=root_index) if index is not None: data_in = data_in.loc[index] elif isinstance(data_in, pd.DataFrame): pass else: raise TypeError("Could not convert data to pandas. Data: " + data_in) return data_in def to_pandas(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): if columns is None: columns = data_in["branches"] with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] if "__index__" in tree.keys(): # legacy, we can also convert this return to_pandas_old(data_in=data_in, index=index, columns=columns) branches = to_list(columns) loaded = tree.arrays(branches, library="pd") if index is not None: loaded = loaded.loc[index] return loaded else: # HACK START return to_pandas_old(data_in=data_in, index=index, columns=columns) # HACK END # from root_pandas import read_root # # root_pandas_numpy_map = dict(filenames='paths', treename='key', branches='columns', # selection='where') # # if is_root(data_in): # is_root2array = False # for key, val in copy.deepcopy(list(data_in.items())): # if key in root_pandas_numpy_map: # is_root2array = True # del data_in[key] # data_in[root_pandas_numpy_map[key]] = val # data_in['columns'] = to_list(data_in['columns']) # if is_root2array: # data_in['columns'] = ['noexpand:'+col for col in data_in['columns'] if not col.startswith('noexpand:')] # remove the noexpand: # data_in = read_root(**data_in) # why **? it's a root dict # if is_list(data_in): # data_in = np.array(data_in) # if is_ndarray(data_in): # if ((isinstance(columns, (list, tuple)) and len(columns) == 1) or # isinstance(columns, string)): # # data_in = to_ndarray(data_in) # data_in = pd.DataFrame(data_in, columns=columns) # if index is not None: # data_in = data_in.loc[index] # elif isinstance(data_in, pd.DataFrame): # pass # else: # raise TypeError("Could not convert data to pandas. Data: " + data_in) # return data_in def adv_return(return_value, save_name=None): """Save the value if save_name specified, otherwise just return input. Can be wrapped around the return value. Without any arguments, the return of your function will be exactly the same. With arguments, the value can be saved (**pickled**) before it is returned. Parameters ---------- return_value : any python object The python object which should be pickled. save_name : str, None | The (file-)name for the pickled file. File-extension will be added \ automatically if specified in *raredecay.meta_config*. | If *None* is passed, the object won't be pickled. Return ------ out : python object Return return_value without changes. **Usage**: Instead of a simple return statement >>> return my_variable/my_object one can use the **completely equivalent** statement >>> return adv_return(my_variable/my_object) If the return value should be saved in addition to be returned, use >>> return adv_return(my_variable/my_object, save_name='my_object.pickle') (*the .pickle ending is not required but added automatically if omitted*) which returns the value and saves it. """ save_name = dev_tool.entries_to_str(save_name) if save_name not in (None, False): if isinstance(save_name, str): save_name = meta_cfg.PICKLE_PATH + save_name if not is_pickle(save_name): save_name += "." + meta_cfg.PICKLE_DATATYPE with open(str(save_name), "wb") as f: pickle.dump(return_value, f, meta_cfg.PICKLE_PROTOCOL) print(str(return_value) + " pickled to " + save_name) else: pass # HACK how to solve logger problem? # logger.error("Could not pickle data, name for file (" + # str(save_name) + ") is not a string!" + # "\n Therefore, the following data was only returned" + # " but not saved! \n Data:" + str(return_value)) return return_value def try_unpickle(file_to_unpickle, use_metapath_bkwcomp=False): """Try to unpickle a file and return, otherwise just return input.""" file_to_unpickle = dev_tool.entries_to_str(file_to_unpickle) if is_pickle(file_to_unpickle): extra_path = meta_cfg.PICKLE_PATH if use_metapath_bkwcomp else "" with open(extra_path + file_to_unpickle, "rb") as f: file_to_unpickle = pickle.load(f) return file_to_unpickle ``` #### File: raredecay/tools/ml_scores.py ```python import math as mt import numpy as np from . import dev_tool, data_storage def mayou_score( mc_data, real_data, features=None, old_mc_weights=1, clf="xgb", splits=2, n_folds=10 ): """An experimental score using a "loss" function for data-similarity""" import raredecay.analysis.ml_analysis as ml_ana from raredecay.globals_ import out features = dev_tool.entries_to_str(features) clf = dev_tool.entries_to_str(clf) # initialize variables output = {} score_mc_vs_mcr = [] score_mcr_vs_real = [] # splits *= 2 # because every split is done with fold 0 and 1 (<- 2 *) # loop over number of splits, split the mc data mc_data.make_folds(n_folds) real_data.make_folds(n_folds) # mc reweighted vs mc for fold in range(n_folds): mc_data_train, mc_data_test = mc_data.get_fold(fold) # TODO: no real folds? It is better to test on full data always? # mc_data_train, mc_data_test = real_data.get_fold(fold) for split in range(splits * 2): # because two possibilities per split if split % 2 == 0: mc_data_train.make_folds(2) mc_normal, mc_reweighted = mc_data_train.get_fold(split % 2) mc_normal.set_weights(old_mc_weights) score_mc_vs_mcr.append( ml_ana.classify( original_data=mc_normal, target_data=mc_reweighted, features=features, validation=[mc_data_test, real_data], clf=clf, plot_importance=1, # TODO: no weights ratio? (roc auc) weights_ratio=0, )[1] ) out.add_output( [ "mayou_score mc vs mc reweighted test on mc vs real score: ", score_mc_vs_mcr, "\nMean: ", np.mean(score_mc_vs_mcr), " +-", np.std(score_mc_vs_mcr) / mt.sqrt(len(score_mc_vs_mcr) - 1), ], subtitle="Mayou score", to_end=True, ) output["mc_distance"] = np.mean(score_mc_vs_mcr) # mc_reweighted vs real for fold in range(n_folds): real_train, real_test = real_data.get_fold(fold) mc_train, mc_test = mc_data.get_fold(fold) mc_test.set_weights(old_mc_weights) score_mcr_vs_real.append( ml_ana.classify( original_data=mc_train, target_data=real_train, features=features, validation=[mc_test, real_test], clf=clf, plot_importance=1, # TODO: no weights ratio? (roc auc) weights_ratio=0, )[1] ) out.add_output( [ "mayou_score real vs mc reweighted test on mc vs real score: ", score_mcr_vs_real, "\nMean: ", np.mean(score_mcr_vs_real), " +-", np.std(score_mcr_vs_real) / mt.sqrt(len(score_mcr_vs_real) - 1), ], to_end=True, ) output["real_distance"] = np.mean(score_mcr_vs_real) def train_similar( mc_data, real_data, features=None, n_checks=10, n_folds=10, clf="xgb", test_max=True, test_shuffle=True, test_mc=False, old_mc_weights=1, test_predictions=False, clf_pred="rdf", ): """Score for reweighting. Train clf on mc reweighted/real, test on real; minimize score. Enter two datasets and evaluate the score described below. Return a dictionary containing the different scores. The test_predictions is another scoring, which is built upon the train_similar method. **Scoring method description** **Idea**: A clf is trained on the reweighted mc as well as on the real data of a certain decay. Therefore, the classifier learns to distinguish between Monte-Carlo data and real data. Then we let the classifier predict some real data (an unbiased test set) and see, how many he is able to classify as real events. The lower the score, the less differences he was able to learn from the train data therefore the more similar the train data therefore the better the reweighting. **Advandages**: It is quite difficult to cheat on this method. Most of all it is robust to single high-weight events (which mcreweighted_as_real is not) and, in general, seems to be the best scoring so far. **Disadvantages**: If you insert a gaussian shaped 1.0 as mc and a gaussian shaped 1.1 as real, the score will be badly (around 0.33). So far, this was only observed for "artificial" distributions (even dough, of course, we do not know if it affects real distributions aswell partly) **Output explanation** The return is a dictionary containing several values. Of course, only the values, which are set to be evaluated, are contained. The keys are: - '**score**' : The average of all train_similar scores (as we use KFolding, there will be n_folds scores). *The* score. - '**score_std**' : The std of a single score, just for curiosity - '**score_max**' : The (average of all) "maximum" score. Actually the train_similar score but with mc instead of *reweighted* mc. Should be higher then the reweighted score. - '**score_max_std**' : The std of a single score, just for curiosity - '**score_pred**' : The score of the test_predictions method. - '**score_mc_pred**' : The score of the test_predictions method but on the predictions of the mc instead of the *reweighted* mc. Parameters ---------- mc_data : |hepds_type| The reweighted Monte-Carlo data, assuming the new weights are applied already. real_data : |hepds_type| The real data n_checks : int >= 1 Number of checks to perform. Has to be <= n_folds n_folds : int > 1 Number of folds the data will be split into clf : str The name of a classifier to be used in :py:func:`~raredecay.analysis.ml_analysis.classify`. test_max : boolean If true, test for the "maximum value" by training also on mc/real (instead of *reweighted* mc/real) and test on real. The score for only mc should be higher than for reweighted mc/real. It *should* most probably but does not have to be! old_mc_weights : array-like or 1 If *test_max* is True, the weights for mc before reweighting will be taken to be *old_mc_weights*, the weights the mc distribution had before the reweighting. The default is 1. test_predictions : boolean If true, try to distinguish the predictions. Advanced feature and not yet really discoverd how to interpret. Gives very high ROC somehow. clf_pred : str The classifier to be used to distinguish the predictions. Required for the *test_predictions*. Return ------ out : dict A dictionary conaining the different scores. Description see above. """ import raredecay.analysis.ml_analysis as ml_ana from raredecay.globals_ import out features = dev_tool.entries_to_str(features) clf = dev_tool.entries_to_str(clf) clf_pred = dev_tool.entries_to_str(clf_pred) # initialize variables assert ( 1 <= n_checks <= n_folds and n_folds > 1 ), "wrong n_checks/n_folds. Check the docs" assert isinstance(mc_data, data_storage.HEPDataStorage), ( "mc_data wrong type:" + str(type(mc_data)) + ", has to be HEPDataStorage" ) assert isinstance(real_data, data_storage.HEPDataStorage), ( "real_data wrong type:" + str(type(real_data)) + ", has to be HEPDataStorage" ) # assert isinstance(clf, str),\ # "clf has to be a string, the name of a valid classifier. Check the docs!" output = {} scores = np.ones(n_checks) scores_shuffled = np.ones(n_checks) scores_mc = np.ones(n_checks) scores_max = np.ones(n_checks) # required due to output of loop scores_mc_max = np.ones(n_checks) # scores_weighted = [] scores_max_weighted = [] probas_mc = [] probas_reweighted = [] weights_mc = [] weights_reweighted = [] real_pred = [] real_test_index = [] real_mc_pred = [] # initialize data tmp_mc_targets = mc_data.get_targets() mc_data.set_targets(0) real_data.make_folds(n_folds=n_folds) if test_mc: mc_data.make_folds(n_folds=n_folds) for fold in range(n_checks): real_train, real_test = real_data.get_fold(fold) if test_mc: mc_train, mc_test = mc_data.get_fold(fold) mc_test.set_targets(0) else: mc_train = mc_data.copy_storage() mc_train.set_targets(0) real_test.set_targets(1) real_train.set_targets(1) tmp_out = ml_ana.classify( mc_train, real_train, validation=real_test, clf=clf, plot_title="train on mc reweighted/real, test on real", weights_ratio=1, get_predictions=True, features=features, plot_importance=1, importance=1, ) clf_trained, scores[fold], pred_reweighted = tmp_out tmp_weights = mc_train.get_weights() if test_shuffle: import copy shuffled_weights = copy.deepcopy(tmp_weights) shuffled_weights.reindex(np.random.permutation(shuffled_weights.index)) mc_train.set_weights(shuffled_weights) tmp_out = ml_ana.classify( mc_train, real_train, validation=real_test, clf=clf, plot_title="train on mc reweighted/real, test on real", weights_ratio=1, get_predictions=True, features=features, plot_importance=1, importance=1, ) scores_shuffled[fold] = tmp_out[1] mc_train.set_weights(tmp_weights) if test_mc: clf_trained, scores_mc[fold] = ml_ana.classify( validation=mc_test, clf=clf_trained, plot_title="train on mc reweighted/real, test on mc", weights_ratio=1, get_predictions=False, features=features, plot_importance=1, importance=1, ) # del clf_trained, tmp_pred probas_reweighted.append(pred_reweighted["y_proba"]) weights_reweighted.append(pred_reweighted["weights"]) real_pred.extend(pred_reweighted["y_pred"]) real_test_index.extend(real_test.get_index()) if test_max: temp_weights = mc_data.get_weights() mc_data.set_weights(old_mc_weights) tmp_out = ml_ana.classify( mc_data, real_train, validation=real_test, plot_title="real/mc NOT reweight trained, validate on real", weights_ratio=1, get_predictions=True, clf=clf, features=features, plot_importance=1, importance=1, ) clf_trained, scores_max[fold], pred_mc = tmp_out if test_mc: clf_trained, scores_mc_max[fold] = ml_ana.classify( validation=mc_test, clf=clf_trained, plot_title="train on mc NOT reweighted/real, test on mc", weights_ratio=1, get_predictions=False, features=features, plot_importance=1, importance=1, ) del clf_trained # HACK tmp_pred = pred_mc["y_proba"][:, 1] * pred_mc["weights"] scores_max_weighted.extend(tmp_pred * (pred_mc["y_true"] * 2 - 1)) # HACK END mc_data.set_weights(temp_weights) probas_mc.append(pred_mc["y_proba"]) weights_mc.append(pred_mc["weights"]) real_mc_pred.extend(pred_mc["y_pred"]) output["score"] = np.round(scores.mean(), 4) output["score_std"] = np.round(scores.std(), 4) if test_shuffle: output["score_shuffled"] = np.round(scores_shuffled.mean(), 4) output["score_shuffled_std"] = np.round(scores_shuffled.std(), 4) if test_mc: output["score_mc"] = np.round(scores_mc.mean(), 4) output["score_mc_std"] = np.round(scores_mc.std(), 4) out.add_output( [ "Score train_similar (recall, lower means better): ", str(output["score"]) + " +- " + str(output["score_std"]), ], subtitle="Clf trained on real/mc reweight, tested on real", ) if test_max: output["score_max"] = np.round(scores_max.mean(), 4) output["score_max_std"] = np.round(scores_max.std(), 4) if test_mc: output["score_mc_max"] = np.round(scores_mc_max.mean(), 4) output["score_mc_max_std"] = np.round(scores_mc_max.std(), 4) out.add_output(["No reweighting score: ", round(output["score_max"], 4)]) if test_predictions: # test on the reweighted/real predictions real_data.set_targets(targets=real_pred, index=real_test_index) tmp_, score_pred = ml_ana.classify( real_data, target_from_data=True, clf=clf_pred, features=features, plot_title="train on predictions reweighted/real, real as target", weights_ratio=1, validation=n_checks, plot_importance=3, ) output["score_pred"] = round(score_pred, 4) if test_predictions and test_max: # test on the mc/real predictions real_data.set_targets(targets=real_mc_pred, index=real_test_index) tmp_, score_mc_pred = ml_ana.classify( real_data, target_from_data=True, clf=clf_pred, validation=n_checks, plot_title="mc not rew/real pred, real as target", weights_ratio=1, plot_importance=3, ) output["score_mc_pred"] = np.round(score_mc_pred, 4) mc_data.set_targets(tmp_mc_targets) output["similar_dist"] = similar_dist( predictions=np.concatenate(probas_reweighted)[:, 1], weights=np.concatenate(weights_reweighted), ) return output def estimate_weights_bias(mc, real, columns=None, n_folds=10, clf="xgb"): pass def train_similar_new( mc, real, columns=None, n_checks=10, n_folds=10, clf="xgb", test_max=True, test_shuffle=True, test_mc=False, old_mc_weights=1, test_predictions=False, clf_pred="rdf", ): """Score for reweighting. Train clf on mc reweighted/real, test on real; minimize score. Enter two datasets and evaluate the score described below. Return a dictionary containing the different scores. The test_predictions is another scoring, which is built upon the train_similar method. **Scoring method description** **Idea**: A clf is trained on the reweighted mc as well as on the real data of a certain decay. Therefore, the classifier learns to distinguish between Monte-Carlo data and real data. Then we let the classifier predict some real data (an unbiased test set) and see, how many he is able to classify as real events. The lower the score, the less differences he was able to learn from the train data therefore the more similar the train data therefore the better the reweighting. **Advandages**: It is quite difficult to cheat on this method. Most of all it is robust to single high-weight events (which mcreweighted_as_real is not) and, in general, seems to be the best scoring so far. **Disadvantages**: If you insert a gaussian shaped 1.0 as mc and a gaussian shaped 1.1 as real, the score will be badly (around 0.33). So far, this was only observed for "artificial" distributions (even dough, of course, we do not know if it affects real distributions aswell partly) **Output explanation** The return is a dictionary containing several values. Of course, only the values, which are set to be evaluated, are contained. The keys are: - '**score**' : The average of all train_similar scores (as we use KFolding, there will be n_folds scores). *The* score. - '**score_std**' : The std of a single score, just for curiosity - '**score_max**' : The (average of all) "maximum" score. Actually the train_similar score but with mc instead of *reweighted* mc. Should be higher then the reweighted score. - '**score_max_std**' : The std of a single score, just for curiosity - '**score_pred**' : The score of the test_predictions method. - '**score_mc_pred**' : The score of the test_predictions method but on the predictions of the mc instead of the *reweighted* mc. Parameters ---------- mc : |hepds_type| The reweighted Monte-Carlo data, assuming the new weights are applied already. real : |hepds_type| The real data n_checks : int >= 1 Number of checks to perform. Has to be <= n_folds n_folds : int > 1 Number of folds the data will be split into clf : str The name of a classifier to be used in :py:func:`~raredecay.analysis.ml_analysis.classify`. test_max : boolean If true, test for the "maximum value" by training also on mc/real (instead of *reweighted* mc/real) and test on real. The score for only mc should be higher than for reweighted mc/real. It *should* most probably but does not have to be! old_mc_weights : array-like or 1 If *test_max* is True, the weights for mc before reweighting will be taken to be *old_mc_weights*, the weights the mc distribution had before the reweighting. The default is 1. test_predictions : boolean If true, try to distinguish the predictions. Advanced feature and not yet really discoverd how to interpret. Gives very high ROC somehow. clf_pred : str The classifier to be used to distinguish the predictions. Required for the *test_predictions*. Return ------ out : dict A dictionary conaining the different scores. Description see above. """ import raredecay.analysis.ml_analysis as ml_ana from raredecay.tools.data_storage import HEPDataStorage from raredecay.analysis import statistics # Python 2/3 compatibility, str columns = dev_tool.entries_to_str(columns) clf = dev_tool.entries_to_str(clf) clf_pred = dev_tool.entries_to_str(clf_pred) # initialize variables assert ( 1 <= n_checks <= n_folds and n_folds > 1 ), "wrong n_checks/n_folds. Check the docs" assert isinstance(mc, data_storage.HEPDataStorage), ( "mc_data wrong type:" + str(type(mc)) + ", has to be HEPDataStorage" ) assert isinstance(real, data_storage.HEPDataStorage), ( "real_data wrong type:" + str(type(real)) + ", has to be HEPDataStorage" ) # assert isinstance(clf, str),\ # "clf has to be a string, the name of a valid classifier. Check the docs!" output = {} predictions = [] predictions_weights = [] predictions_max = [] predictions_max_weights = [] predictions_min = [] predictions_min_weights = [] # initialize data tmp_mc_targets = mc.get_targets() mc.set_targets(0) real.make_folds(n_folds=n_folds) for fold in range(n_checks): real_train, real_test = real.get_fold(fold) mc_train = mc.copy_storage() mc_train.set_targets(0) real_test.set_targets(1) real_train.set_targets(1) tmp_out = ml_ana.classify( mc_train, real_train, validation=real_test, clf=clf, plot_title="train on mc reweighted/real, test on real", weights_ratio=1, get_predictions=True, features=columns, plot_importance=1, importance=1, ) clf_trained, _, pred = tmp_out predictions.append(pred["y_proba"][:, 1]) predictions_weights.append(pred["weights"]) temp_weights = mc_train.weights mc_train.set_weights(old_mc_weights) tmp_out = ml_ana.classify( original_data=mc_train, target_data=real_train, validation=real_test, plot_title="real/mc NOT reweight trained, validate on real", weights_ratio=1, get_predictions=True, clf=clf, features=columns, plot_importance=1, importance=1, ) clf_trained, _, pred = tmp_out predictions_max.append(pred["y_proba"][:, 1]) predictions_max_weights.append(pred["weights"]) mc_train.set_weights(temp_weights) predictions = np.concatenate(predictions) predictions_weights = np.concatenate(predictions_weights) predictions_max = np.concatenate(predictions_max) predictions_max_weights = np.concatenate(predictions_max_weights) # mix mc and real to get a nice shape of two similar dists # TODO: commented below out mc.set_weights(old_mc_weights) mc.make_folds(2) real.make_folds(2) mc1, mc2 = mc.get_fold(0) real1, real2 = real.get_fold(0) data1, target1, weights1 = mc1.make_dataset(real1) data2, target2, weights2 = mc2.make_dataset(real2) data1 = HEPDataStorage(data=data1, sample_weights=weights1, target=0) data2 = HEPDataStorage(data=data2, sample_weights=weights2, target=1) tmp_out = ml_ana.classify( original_data=data1, target_data=data2, validation=n_folds, plot_title="real/mc mixed", weights_ratio=1, get_predictions=True, clf=clf, features=columns, plot_importance=1, importance=1, ) clf_trained, _, pred = tmp_out predictions_min = np.array(pred["y_proba"][:, 1]) predictions_min_weights = np.array(pred["weights"]) mc.set_weights(temp_weights) mc.set_targets(tmp_mc_targets) # HACK import matplotlib.pyplot as plt n_bins = 20 plt.figure("comparing the predictions") plt.hist(predictions, alpha=0.3, label="predictions", bins=n_bins, density=1) plt.hist( predictions_min, alpha=0.3, label="predictions_min", bins=n_bins, density=1 ) plt.hist( predictions_max, alpha=0.3, label="predictions_max", bins=n_bins, density=1 ) plt.legend() # plt.autoscale() output["similar_ks_minimize"] = statistics.ks_2samp( predictions, predictions_min, weights1=predictions_weights, weights2=predictions_min_weights, ) output["similar_ks_max"] = statistics.ks_2samp( predictions_max, predictions_min, weights1=predictions_max_weights, weights2=predictions_min_weights, ) output["similar_ks_maximize"] = statistics.ks_2samp( predictions, predictions_max, weights1=predictions_weights, weights2=predictions_max_weights, ) return output def similar_dist(predictions, weights=None, true_y=1, threshold=0.5): """Metric to evaluate the predictions on one label only for similarity test. This metric is used inside the mayou_score Parameters ---------- predictions : :py:class:`~np.array` The predicitons weights : array-like The weights for the predictions true_y : {0 , 1} The "true" label of the data threshold : float The threshold for the predictions to decide whether a point belongs to 0 or 1. """ # HACK scale = 2 # otherwise, the predictions will be [-0.5, 0.5] # HACK END data_valid = min(predictions) < threshold < max(predictions) if not data_valid: raise ValueError("Predictions are all above or below the threshold") if true_y == 0: predictions = 1 - predictions predictions -= threshold predictions *= scale true_pred = predictions[predictions > 0] false_pred = predictions[predictions <= 0] * -1 true_weights = false_weights = 1 if not dev_tool.is_in_primitive(weights, None): true_weights = weights[predictions > 0] false_weights = weights[predictions <= 0] score = sum( ((np.exp(1.3 * np.square(true_pred + 0.6)) - 1.5969) * 0.5) * true_weights ) score -= sum( ((np.sqrt(false_pred) - np.power(false_pred, 0.8)) * 2) * false_weights ) score /= sum(weights) return score ``` #### File: raredecay/tools/output.py ```python import os import subprocess import sys import timeit import time import io as StringIO import copy import matplotlib.pyplot as plt import pickle as pickle import seaborn as sns from .. import meta_config as meta_cfg from ..tools import dev_tool # , data_tools class OutputHandler: """Class for output handling.""" __SAVE_STDOUT = sys.stdout _IMPLEMENTED_FORMATS = {"png", "jpg", "pdf", "svg"} _MOST_REPLACE_CHAR = [" ", "-", "<", ">", "&", "!", "?", "=", "*", "%", "."] _REPLACE_CHAR = _MOST_REPLACE_CHAR + ["/"] def __init__(self): """Initialize an output handler""" self.output = "" self.end_output = "" self._loud_end_output = "" self._IO_string = "" self.logger = None self._logger_cfg = None self._is_initialized = False self._save_output = False self._run_name = "" self._output_path = None self._output_folders = None self._path_to_be_overriden = None self._figures = {} self._formats_used = set() self._pickle_folder = False # start timer and log current time self._start_timer = timeit.default_timer() self._start_time = time.strftime("%c") # set plotting style sns.set_context("poster") plt.rc("figure", figsize=(20, 20)) setattr(self, "print", self._print) def _check_initialization(self, return_error=False): if not self._is_initialized and not return_error: self.initialize() elif not self._is_initialized and return_error: raise Exception( "OutputHandler not initialized! You have to initialize it first" ) def initialize_save( self, output_path, run_name="", run_message="", output_folders=None, del_existing_folders=False, logger_cfg=None, ): output_path = dev_tool.entries_to_str(output_path) """Initialize the run. Create the neccesary folders. Parameters ---------- Best Practice: enter a whole config file output_path : str Absolute path to the folder where the run output folder will be created (named after the run) which will contain all the output folders (logfile, figures, output etc) run_name : str The name of the run and also of the output folder. run_message : str A message that is displayed below the titel: a further comment on what you do in the script output_folders : dict Contain the name of the folders for the different outputs. For the available keys see :py:const:`~raredecay.meta_config.__DEFAULT_OUTPUT_FOLDERS`. del_existing_dir : boolean If True, an already existing folder with the same name will be deleted. If False and the folder exists already, an exception will be raised. logger_cfg : dict The configuration for the logger, which will be created later. If not specified (or only a few arguments), the meta_config will be taken. """ run_name = dev_tool.entries_to_str(run_name) run_message = dev_tool.entries_to_str(run_message) output_folders = dev_tool.entries_to_str(output_folders) logger_cfg = dev_tool.entries_to_str(logger_cfg) self._save_output = True # initialize defaults logger_cfg = {} if logger_cfg is None else logger_cfg self._logger_cfg = dict(meta_cfg.DEFAULT_LOGGER_CFG, **logger_cfg) assert isinstance(output_path, str), "output_path not a string" output_folders = {} if output_folders is None else output_folders self._output_folders = dict(meta_cfg.DEFAULT_OUTPUT_FOLDERS, **output_folders) # make sure no blank spaces are left in the folder names for key, value in list(self._output_folders.items()): assert isinstance(value, str), "path is not a string: " + str(value) self._output_folders[key] = value.replace(" ", "_") # ask if you want to add something to the run_name (and folder name) if meta_cfg.PROMPT_FOR_COMMENT: prompt_message = ( "Enter an (optional) extension to the run-name and press 'enter':\n" ) temp_add = str(input(prompt_message)) run_name += " " + temp_add if temp_add != "" else "" # del temp_add # TODO: implement promt with timeout self._run_name = run_name # "clean" and correct the path-name for char in self._REPLACE_CHAR: run_name = run_name.replace(char, "_") output_path += run_name if output_path.endswith("/") else "/" + run_name self._output_path = os.path.expanduser( output_path ) # replaces ~ with /home/myUser # find a non-existing folder temp_i = 1 while os.path.isdir(self._output_path): if del_existing_folders: self._path_to_be_overriden = output_path if not self._path_to_be_overriden.endswith("/"): self._path_to_be_overriden += "/" self._output_path = output_path + "_" + str(temp_i) temp_i += 1 assert ( temp_i < meta_cfg.MAX_AUTO_FOLDERS ), "possible endless loop when trying to create a non-existing folder" self._output_path += "" if output_path.endswith("/") else "/" # create subfolders for value in list(self._output_folders.values()): subprocess.call(["mkdir", "-p", self._output_path + value]) subprocess.call( ["touch", self._output_path + "run_NOT_finished"] ) # show that ongoing run # set meta-config variables meta_cfg.set_parallel_profile( n_cpu=meta_cfg.n_cpu_max, gpu_in_use=meta_cfg.use_gpu ) self._is_initialized = True self.add_output( run_message, title="Run: " + self._run_name, importance=0, subtitle="Comments about the run", ) def initialize(self, run_name="", prompt_for_comment=False): """Initialization for external use, no folders created, config.py logger.""" # initialize defaults from raredecay.globals_ import logger_cfg run_name = dev_tool.entries_to_str(run_name) self._logger_cfg = logger_cfg self._is_initialized = True self.make_me_a_logger() # ask if you want to add something to the run_name (and folder name) if prompt_for_comment: prompt_message = ( "Enter an (optional) extension to the run-name and press 'enter':\n" ) temp_add = str(input(prompt_message)) run_name += " " + temp_add if temp_add != "" else "" self._run_name = str(run_name) def get_logger_path(self): """Return the path for the log folder.""" if self._save_output: path_out = self._output_path + self._output_folders.get("log") path_out += "" if path_out.endswith("/") else "/" else: path_out = None return path_out def get_plots_path(self): """Return the path for the log folder.""" if self._save_output: path_out = self._output_path + self._output_folders.get("plots") path_out += "" if path_out.endswith("/") else "/" else: path_out = None return path_out def make_me_a_logger(self): """Create a logger in OutputHandler instance. Dependency "hack". Call after :py:meth:`~raredecay.tools.output.OutputHandler.initialize_save()` has ben called. """ # create logger self.logger = dev_tool.make_logger(__name__, **self._logger_cfg) def IO_to_string(self): """Rederict stdout (print etc.) to string.""" self._IO_string = "" self._IO_string = StringIO.StringIO() sys.stdout = self._IO_string def IO_to_sys(self, importance=3, **add_output_kwarg): """Direct stdout back to the sys.stdout and return/save string to output. Parameters ---------- importance : int {0, 1, 2, 3, 4, 5} | The importance of the output. The higher, the more likely it will | be added to the output. To not add it at all but only rederict | the output, choose 0. | Additional keyword-arguments for the | :py:meth:`~raredecay.tools.output.add_output()` method can be | passed. Return ------ out : str Returns the collected string from the redirection. """ sys.stdout = self.__SAVE_STDOUT add_output_kwarg = dev_tool.entries_to_str(add_output_kwarg) self.add_output( self._IO_string.getvalue(), importance=importance, **add_output_kwarg ) return self._IO_string.getvalue() def figure(self, *args, **kwargs): """FUTURE: Wrapper around save_fig().""" return self.save_fig(*args, **kwargs) def save_fig( self, figure, importance=3, file_format=None, to_pickle=True, figure_kwargs=None, **save_cfg ): """Advanced :py:meth:`matplotlib.pyplot.figure()`. Create and save a certain figure at the end of the run. To create and save a figure, you just enter an already created or a new figure as a Parameters and specify the fileformats it should be saved to. The figure can also be pickled so that it can be re-plotted anytime. .. note:: The figure will be saved at the end of the run (by calling :py:meth:`~raredecay.tools.output.OutputHandler.finalize`) so any change you make until the end will be applied to the plot. Parameters ---------- figure : instance of :py:class:`matplotlib.figure.Figure` (e.g. returned \ by :func:`matplotlib.figure`) The figure to be saved. importance : {0, 1, 2, 3, 4, 5} Specify the importance level, ranging from 1 to 5, of the plot. The higher the importance level, the more important. If the importance level is *higher* the more it will be plotted. If it is plotted depends on the plot verbosity set (5 - importance_level < plot_verbosity). Therefore, a 0 corresponds to "no plot" and a 5 means "always plot". file_format : str or list(str, str, str,...) The ending of the desired format, example: 'png' (default). If you don't want to save it, enter a blank list. to_pickle : boolean If True, the plot will be saved to a pickle file. **save_cfg : keyword args Will be used as arguments in :py:func:`~matplotlib.pyplot.savefig()` Return ------ out : :py:class:`~matplotlib.pyplot.figure` Return the figure. """ figure = dev_tool.entries_to_str(figure) file_format = dev_tool.entries_to_str(file_format) save_cfg = dev_tool.entries_to_str(save_cfg) plot = 5 - round(importance) < meta_cfg.plot_verbosity # to plot or not to plot figure_kwargs = {} if figure_kwargs is None else figure_kwargs if self._save_output: self._pickle_folder = self._pickle_folder or to_pickle if isinstance(figure, (int, str)): figure = plt.figure(figure, **figure_kwargs) # TODO: changeable? file_format = ( meta_cfg.DEFAULT_SAVE_FIG["file_format"] if file_format is None else file_format ) if isinstance(file_format, str): file_format = [file_format] file_format = set(file_format) file_format.intersection_update(self._IMPLEMENTED_FORMATS) self._formats_used.update(file_format) # change layout of figures # figure.tight_layout() # figure.set_figheight(20) # figure.set_figwidth(20) # add figure to dict for later output to file figure_dict = { "figure": figure, "file_format": file_format, "to_pickle": to_pickle, "plot": plot, "save_cfg": save_cfg, } self._figures[figure.get_label()] = figure_dict else: self._check_initialization() if plot and isinstance(figure, (int, str)): figure = plt.figure(figure, **figure_kwargs) return figure def _figure_to_file(self): """Write all figures from the _figures dictionary to file.""" # check if there are figures to plot, else return if self._figures == {}: self.logger.info("_figure_to_file called but nothing to save/plot") return None # create folders if they don't exist already path = self.get_plots_path() for format_ in self._formats_used: assert isinstance(format_, str), "Format is not a str: " + str(format_) subprocess.call(["mkdir", "-p", path + format_]) if self._pickle_folder: subprocess.call(["mkdir", "-p", path + meta_cfg.PICKLE_DATATYPE]) # save figures to file for fig_name, fig_dict in list(self._figures.items()): for char in self._REPLACE_CHAR: fig_name = fig_name.replace(char, "_") for extension in fig_dict.get("file_format"): file_path = path + extension + "/" file_name = file_path + fig_name + "." + extension try: figure_tmp = fig_dict["figure"] # figure_tmp.tight_layout() figure_tmp.savefig( file_name, format=extension, **fig_dict.get("save_cfg") ) except: self.logger.error("Could not save figure" + str(figure_tmp)) meta_cfg.error_occured() if fig_dict.get("to_pickle"): file_name = ( path + meta_cfg.PICKLE_DATATYPE + "/" + fig_name + "." + meta_cfg.PICKLE_DATATYPE ) try: with open(str(file_name), "wb") as f: pickle.dump(fig_dict.get("figure"), f, meta_cfg.PICKLE_PROTOCOL) except: self.logger.error( "Could not open file" + str(file_name) + " OR pickle the figure to it" ) meta_cfg.error_occured() # delete if it is not intended to be plotted if not fig_dict.get("plot"): plt.close(fig_dict.get("figure")) # clear the _figures dict self._figures = {} @staticmethod def _make_title(title, title_format): """Create a title/subtitle/section in the reST-format and return it as a string. Parameters ---------- title : str The title in words title_format : (str, str) | The surrounding lines. The titel will be: | | title_format[0] * len(title) | title | title_format[1] * len(title) """ out_str = "" if title is not None: title = str(title) out_str += "\n" + title_format[0] * len(title) out_str += "\n" + title out_str += "\n" + title_format[1] * len(title) + "\n" return out_str def _print( self, data, to_end=False, importance=3, title=None, subtitle=None, section=None, obj_separator=" ", data_separator="\n\n", force_newline=True, ): return self.add_output( data_out=data, to_end=to_end, importance=importance, title=title, subtitle=subtitle, section=section, obj_separator=obj_separator, data_separator=data_separator, force_newline=force_newline, ) def add_output( self, data_out, to_end=False, importance=3, title=None, subtitle=None, section=None, obj_separator=" ", data_separator="\n\n", force_newline=True, ): """A method to collect the output and format it nicely. All the objects in data_out get converted to strings and concatenated with obj_separator in between. After the objects, a data_separator is added. In the end, the whole output gets printed to a file and saved. Available options: - You can add the data at the end of the output file instead of right in place. - You can add the data to the output "silently", without printing. - Add title, subtitle and section on top of the data. Parameters ---------- data_out : obj or list(obj, obj, obj, ...) The data to be added to the output. Has to be convertible to str! to_end : boolean If True, the data will be added at the end of the file and not printed. For example all information which is not interesting in the run but maybe later, like configuration, version number etc. importance : int {0, 1, 2, 3, 4, 5} The importance of the output. The higher, the more likely it gets printed (otherwise only saved). A 0 means "don't print, only save". The decisive variable is the verbosity level. The lower the verbosity level, the less likely the output will be printed. title : str The title of the data_out, like "roc auc of different classifiers". If None, no title will be set. subtitle : str A subtitle which can be additional to a title or exclusive. section : str The section title. Can be additional to the others or exclusive. obj_separator : str The separator between the objects in data_out. Default is a new line. data_separator : str Separates the data_outs from each other. Inserted at the end and creates a separation from the next call of add_output. Default is a blank line as separation. force_newline : boolean If true, the data_out will be written on a new line and not just concatenated to the data written before """ title = dev_tool.entries_to_str(title) subtitle = dev_tool.entries_to_str(subtitle) section = dev_tool.entries_to_str(section) obj_separator = dev_tool.entries_to_str(obj_separator) data_separator = dev_tool.entries_to_str(data_separator) data_out = dev_tool.entries_to_str(data_out) # initialize defaults assert isinstance(obj_separator, str), ( str(obj_separator) + " is of type " + str(type(obj_separator)) + " instead of string" ) assert isinstance(data_separator, str), ( str(data_separator) + " is of type " + str(type(data_separator)) + " instead of string" ) self._check_initialization() do_print = 5 - round(importance) < meta_cfg.verbosity data_out = dev_tool.make_list_fill_var(data_out) temp_out = "" # enforce new line if (len(self.output) > 0) and (not self.output.endswith("\n")): temp_out = "\n" if force_newline else "" # set title, subtitle and section with title_format, subtitle_format... title_f = ("=", "=") subtitle_f = ("-", "-") section_f = ("", "=") for name, form in ( (title, title_f), (subtitle, subtitle_f), (section, section_f), ): temp_out += self._make_title(name, form) # Concatenation of the objects for word in data_out: # Make nice format for dictionaries if isinstance(word, dict): word = dev_tool.entries_to_str(word) for key, val in list(word.items()): if isinstance(val, dict): temp_out += self._make_title(" " + str(key), ("", "^")) for key2, val2 in list(val.items()): temp_out += " " + str(key2) + " : " + str(val2) + "\n" else: sepr = "" if temp_out.endswith("\n") else "\n" temp_out += sepr + " " + str(key) + " : " + str(val) else: temp_out += str(word) temp_out += obj_separator if word is not data_out[-1] else data_separator # print and add to output collector if do_print: if to_end: self._loud_end_output += temp_out sys.stdout.write(temp_out) # to print even dough the print is redirected if to_end: self.end_output += temp_out self.output += temp_out def finalize(self, show_plots=True, play_sound_at_end=False): """Finalize the run. Save everything and plot. Parameters ---------- show_plots : boolean If True, show the plots. Equivalent to writing plt.show(). play_sound_at_end : boolean If True, tries to play a beep-sound at the end of a run to let you know it finished. """ # ============================================================================== # write all the necessary things to the output # ============================================================================== self.add_output("\n", title="END OF RUN " + self._run_name, importance=4) self.add_output( ["Random generator seed", meta_cfg.rand_seed], title="Different parameters", obj_separator=" : ", importance=2, ) # print the output which should be printed at the end of the run sys.stdout.write( self._loud_end_output ) # to print even dough the print is redirected self.output += self.end_output # add current version (if available) if self._save_output and os.path.isdir(meta_cfg.GIT_DIR_PATH): try: git_version = subprocess.check_output( ["git", "-C", meta_cfg.GIT_DIR_PATH, "describe"] ) self.add_output( ["Program version from Git", git_version], section="Git information", importance=0, obj_separator=" : ", ) except: meta_cfg.error_occured() self.logger.error("Could not get version number from git") # time information elapsed_time = timeit.default_timer() - self._start_timer elapsed_time = time.strftime("%H:%M:%S", time.gmtime(elapsed_time)) self.add_output( ["Run startet at", self._start_time, "\nand lasted for", elapsed_time], section="Time information", obj_separator=" ", ) # error information self.add_output( ["Errors encountered during run", meta_cfg._error_count], obj_separator=" : ", ) self.add_output( ["Warnings encountered during run", meta_cfg._warning_count], obj_separator=" : ", ) output = copy.deepcopy(self.output) # ============================================================================== # save output to file # ============================================================================== if self._save_output: # save figures to file self._figure_to_file() # Write output to file # --------------------- # remove leading blank lines for i in range(1, 100): if not self.output.startswith("\n" * i): # "break" condition self.output = self.output[i - 1 :] break temp_out_file = ( self._output_path + self._output_folders.get("results") + "/output.txt" ) try: with open(temp_out_file, "w") as f: f.write(self.output) except: self.logger.error("Could not save output to file") meta_cfg.error_occured() warnings.warn("Could not save output. Check the logs!", RuntimeWarning) # if a folder to overwrite exists, delete it and move the temp folder if self._path_to_be_overriden is not None: stop_del = "" if not meta_cfg.NO_PROMPT_ASSUME_YES: stop_del = str( input( "ATTENTION! The folder " + self._path_to_be_overriden + " will be deleted and replaced with the output " + "of the current run.\nTo DELETE that folder and " + "overwrite, press ENTER.\n\nIf you want to keep the " + "folder and save the current run under " + self._output_path + ", please enter any input " + "and press enter.\n\nYour input:" ) ) if stop_del == "": subprocess.call(["rm", "-r", self._path_to_be_overriden]) subprocess.call( ["mv", self._output_path, self._path_to_be_overriden] ) path = self._path_to_be_overriden else: path = self._output_path else: path = self._output_path print("All output saved under: " + path) subprocess.call(["rm", path + "run_NOT_finished"]) # .finished shows if the run finished subprocess.call(["touch", path + "run_finished_succesfully"]) self.output = self._loud_end_output = self.end_output = "" if play_sound_at_end: try: from raredecay.tools.dev_tool import play_sound play_sound() except: print("BEEEEEP, no sound could be played") if show_plots: if not meta_cfg.NO_PROMPT_ASSUME_YES: str(input(["Run finished, press Enter to show the plots"])) plt.show() return output if __name__ == "__main__": out = OutputHandler() out.initialize("test") out.add_output(["test: ", {"a": 1, "b": 2}], importance=5) print("hello world") out.finalize() ``` #### File: jonas-eschle/raredecay/setup.py ```python import io import os import subprocess from setuptools import setup here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, "requirements.txt")) as f: requirements = f.read().splitlines() def readme(): with open("README.rst") as f: return f.read() git_version = "2.3.0" if __name__ == "__main__": setup( name="raredecay", version=git_version, description="A package with multivariate analysis and reweighting " "algorithms", long_description=readme(), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Operating System :: MacOS", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX :: Linux", "Operating System :: Unix", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Information Analysis", ], keywords="particle physics, analysis, machine learning, reweight, high energy physics", url="https://github.com/mayou36/raredecay", author="<NAME>", author_email="<EMAIL>", license="Apache-2.0 License", install_requires=requirements, packages=[ "raredecay", "raredecay.analysis", "raredecay.tools", ], include_package_data=True, python_requires=">2.7,!=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*", zip_safe=False, ) # build docs try: subprocess.Popen( "chmod u+x " + os.path.join(here, "docs/make_docs.sh"), shell=True ) subprocess.Popen("bash " + os.path.join(here, "docs/make_docs.sh"), shell=True) except Exception as err: print("Failed to build docs.") raise err ```
{ "source": "jonas-eschmann/SoftActorCritic-Pendulum", "score": 2 }
#### File: jonas-eschmann/SoftActorCritic-Pendulum/SAC.py ```python import datetime import gym import numpy as np import tensorflow as tf from tensorflow.keras import Model, Sequential from tensorflow.keras.layers import Dense, Input from tensorflow.keras.losses import MSE from tensorflow.keras.optimizers import Adam import tensorflow_probability as tfp warm_start_interactions = 1000 gamma = 0.99 alpha = 0.2 lr = 3e-4 state_dim = 3 action_dim = 1 replay_buffer_pos = 0 replay_buffer_cap = 1000000 replay_buffer_populated = False replay_buffer = { "states": np.zeros((replay_buffer_cap, state_dim)), "actions": np.zeros((replay_buffer_cap, action_dim)), "rewards": np.zeros((replay_buffer_cap, )), "next_states": np.zeros((replay_buffer_cap, state_dim)), "done": np.zeros((replay_buffer_cap, )) } def add_to_replay_buffer(s, a, r, s2, d): global replay_buffer_pos, replay_buffer_populated if replay_buffer_pos >= replay_buffer_cap: replay_buffer_pos = 0 replay_buffer_populated = True replay_buffer["states"][replay_buffer_pos, :] = s replay_buffer["actions"][replay_buffer_pos, :] = a replay_buffer["rewards"][replay_buffer_pos] = r replay_buffer["next_states"][replay_buffer_pos, :] = s2 replay_buffer["done"][replay_buffer_pos] = d replay_buffer_pos += 1 def build_critic(input_dim): return Sequential([ Input(input_dim), Dense(64, activation="relu"), Dense(64, activation="relu"), Dense(1) ]) critic_1, critic_2 = [build_critic(state_dim + action_dim) for _ in range(2)] critic_1_target, critic_2_target = [tf.keras.models.clone_model(c) for c in [critic_1, critic_2]] critic_opt = Adam(learning_rate=lr) def polyak(target, source, factor=0.995): for lt, ls in zip(target.layers, source.layers): for wt, ws in zip(lt.trainable_weights, ls.trainable_weights): wt.assign(wt * factor + (1-factor)*ws) def build_actor(): input = Input(state_dim) stub = Sequential([ Dense(64, activation="relu"), Dense(64, activation="relu"), ])(input) mean = Dense(action_dim)(stub) log_std = Dense(action_dim)(stub) return Model(inputs=input, outputs=(mean, log_std)) actor = build_actor() aopt = Adam(learning_rate=lr) def sample_action(state, deterministic=False): mean, log_std = actor(state) action_dist = tfp.distributions.Normal(mean, tf.exp(log_std)) action = action_dist.sample() if not deterministic else mean action_log_prob = tf.reduce_sum(action_dist.log_prob(action), axis=-1) action_log_prob -= tf.reduce_sum(2 * (tf.math.log(2.0) - action - tf.math.softplus(-2*action)), axis=-1) action_squashed = tf.tanh(action) return action_squashed, action_log_prob def training_step(batch_size=256, done_is_dead=False): upper = replay_buffer_cap if replay_buffer_populated else replay_buffer_pos idx = np.arange(upper) np.random.shuffle(idx) batch_idx = idx[:batch_size] states = replay_buffer["states"][batch_idx] actions = replay_buffer["actions"][batch_idx] rewards = replay_buffer["rewards"][batch_idx] next_states = replay_buffer["next_states"][batch_idx] done = replay_buffer["done"][batch_idx] next_actions, next_actions_log_prob = sample_action(next_states) next_critic_input = tf.concat((next_states, next_actions), axis=-1) next_min_q = tf.minimum(critic_1_target(next_critic_input)[:, 0], critic_2_target(next_critic_input)[:, 0]) q_target = rewards + gamma * (next_min_q - alpha * next_actions_log_prob) * (1.0 - done if done_is_dead else 1.0) critic_input = tf.concat((states, actions), axis=-1) with tf.GradientTape() as c_tape: critic_loss = MSE(critic_1(critic_input)[:, 0], q_target) + MSE(critic_2(critic_input)[:, 0], q_target) c1_grad, c2_grad = c_tape.gradient(critic_loss, [critic_1.trainable_weights, critic_2.trainable_weights]) critic_opt.apply_gradients(zip(c1_grad, critic_1.trainable_weights)) critic_opt.apply_gradients(zip(c2_grad, critic_2.trainable_weights)) polyak(critic_1_target, critic_1) polyak(critic_2_target, critic_2) with tf.GradientTape() as a_tape: new_actions, new_actions_log_prob = sample_action(states) new_critic_input = tf.concat((states, new_actions), axis=-1) new_min_q = tf.minimum(critic_1(new_critic_input)[:, 0], critic_2(new_critic_input)[:, 0]) actor_loss = -(new_min_q - alpha * new_actions_log_prob) a_grad = a_tape.gradient(actor_loss, actor.trainable_weights) aopt.apply_gradients(zip(a_grad, actor.trainable_weights)) def main(): current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") log_dir = 'logs/SACpy/' + current_time summary_writer = tf.summary.create_file_writer(log_dir) env = gym.make("Pendulum-v0") state = env.reset() interaction = 0 episode = 0 episode_return = 0 render_interval = 5 while True: if interaction < warm_start_interactions: action = np.random.rand() * 2 - 1 else: action, _ = sample_action(state.reshape(1, -1)) action = action[:, 0] action = env.action_space.low + (action + 1) / 2 * (env.action_space.high - env.action_space.low) next_state, reward, done, _ = env.step(action) add_to_replay_buffer(state, action, reward, next_state, done) training_step() episode_return += reward if not done: state = next_state else: state = env.reset() with summary_writer.as_default(): print(f"Episode: {episode} return: {episode_return} (total interactions: {interaction+1})") tf.summary.scalar('Return', episode_return, step=interaction) episode_return = 0 episode += 1 if render_interval is not None and episode % render_interval == 0: done = False while not done: state, reward, done, _ = env.step(sample_action(state.reshape(1, -1), deterministic=True)[0]) episode_return += reward env.render() state = env.reset() print(f"Deterministic episode return: {episode_return}") episode_return = 0 interaction += 1 main() if __name__ == "__main__" else None ```
{ "source": "JonasEssen/Polling-Bot", "score": 3 }
#### File: JonasEssen/Polling-Bot/main.py ```python import os from dotenv import load_dotenv import discord from discord.ext import commands load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') bot = commands.Bot(command_prefix = '!', help_command=None) # Permissions needed for the bot: # - View Channels # - Send Messages # - Manage Messages # - Embed Links # - Read Message History @bot.event async def on_ready(): await bot.change_presence(activity=discord.Activity(type=discord.ActivityType.playing, name="!help")) print(f'{bot.user} has connected to Discord!') # Create Poll @bot.command() async def poll(ctx, *, input): # Delete called command await ctx.message.delete() # Separate title and options splitted = input.split('" ') title = splitted[0].replace('"', '') options = splitted[1:] for i in range(len(options)): options[i] = options[i].replace('"', '') # Check if there is more than 1 option if len(options) <= 1: embed = discord.Embed( description = ':x: There must be at least 2 options to make a poll!', colour = discord.Colour.red(), ) await ctx.send(embed=embed) return # Check if there are less than 20 options (because of Discord limits) if len(options) > 20: embed = discord.Embed( description = ':x: There can\'t be more than 20 options', colour = discord.Colour.red(), ) await ctx.send(embed=embed) return # Checks wether poll is a Yes/No Question or a Multiple Choice Question if len(options) == 2 and options[0].lower() == 'yes' and options[1].lower() == 'no': reactions = ['✅', '❌'] else: # Regional Indicators reactions = [ '🇦', '🇧', '🇨', '🇩', '🇪', '🇫', '🇬', '🇭', '🇮', '🇯', '🇰', '🇱', '🇲', '🇳', '🇴', '🇵', '🇶', '🇷', '🇸', '🇹'] # Create embed response description = [] for x, option in enumerate(options): description += '{} {}\n\n'.format(reactions[x], option) embed = discord.Embed( title=title, description=''.join(description), colour = discord.Colour.blue() ) message = await ctx.send(embed=embed) for reaction in reactions[:len(options)]: await message.add_reaction(reaction) @bot.command() async def help(ctx): embed = discord.Embed( title='Polling Bot | Help', description='A simple Discord bot that allows you to easily create polls using reactions', colour = discord.Colour.gold() ) embed.add_field(name='Usage', value='''The BOT has a unique command that allows you to generate a poll. Example usage: !poll "Poll Title" "Option 1" "Option 2" ... This command allows a maximum of 20 options (because of Discord limitations).\n\n Alternatively, if the only options given to the BOT are "Yes" and "No", it will generate a Yes/No Poll. Example usage: !poll "Poll Title" "Yes" "No"''', inline=True ) await ctx.send(embed=embed) # Error Management @poll.error async def poll_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): embed = discord.Embed( description = ':x: You must specify a title and at least two options!', colour = discord.Colour.red(), ) await ctx.send(embed=embed) if isinstance(error, commands.MissingRole): embed = discord.Embed( description = ':x: You don\'t have the permission to use this command!', colour = discord.Colour.red(), ) await ctx.send(embed=embed) bot.run(TOKEN) ```
{ "source": "jonasfj/dxr", "score": 2 }
#### File: plugins/buglink/htmlifier.py ```python import dxr.plugins import re import sys bugFinder = re.compile("(?i)bug\s+#?([0-9]+)") # also used in hg plugin # Global variables bugzilla = None name = None # Load global variables def load(tree, conn): global bugzilla # Get bugzilla link if hasattr(tree, 'plugin_buglink_bugzilla'): bugzilla = tree.plugin_buglink_bugzilla else: print >> sys.stderr, "buglink plugin needs plugin_buglink_bugzilla configuration key" sys.exit(1) # Get bug tracker name if hasattr(tree, 'plugin_buglink_name'): name = tree.plugin_buglink_name else: print >> sys.stderr, "buglink plugin needs plugin_buglink_name configuration key" sys.exit(1) class BugLinkHtmlifier: def __init__(self, text): self.text = text def refs(self): for m in bugFinder.finditer(self.text): bug = m.group(1) yield m.start(0), m.end(0), [{ 'text': "Lookup #%s" % bug, 'title': "Find this bug number at %s" % name, 'href': bugzilla % bug, 'icon': 'buglink' }] def regions(self): return [] def annotations(self): return [] def links(self): return [] def htmlify(path, text): return BugLinkHtmlifier(text) __all__ = dxr.plugins.htmlifier_exports() ``` #### File: plugins/pygmentize/htmlifier.py ```python import dxr.plugins import pygments import pygments.lexers from pygments.token import Token import os, sys import fnmatch class Pygmentizer: """ Pygmentizer add syntax regions for file """ def __init__(self, text, lexer): self.text = text self.lexer = lexer def refs(self): return [] def regions(self): for index, token, text in self.lexer.get_tokens_unprocessed(self.text): cls = None if token is Token.Keyword: cls = 'k' if token is Token.Name: cls = None if token is Token.Literal: cls = None if token is Token.String: cls = 'str' if token is Token.Operator: cls = None if token is Token.Punctuation: cls = None if token is Token.Comment: cls = 'c' if cls: yield index, index + len(text), cls def annotations(self): return [] def links(self): return [] def load(tree, conn): pass def htmlify(path, text): # TODO Enable C++ highlighting using pygments, pending fix for infinite # looping that we don't like, see: # https://bitbucket.org/birkenfeld/pygments-main/issue/795/ if any((path.endswith(e) for e in ('.c', '.cc', '.cpp', '.cxx', '.h', '.hpp'))): return None # Options and filename options = {'encoding': 'utf-8'} filename = os.path.basename(path) try: lexer = pygments.lexers.get_lexer_for_filename(filename, **options) except pygments.util.ClassNotFound: # Small hack for js highlighting of jsm files if fnmatch.fnmatchcase(filename, "*.jsm"): lexer = pygments.lexers.JavascriptLexer(**options) else: print >> sys.stderr, "pygments: No lexer for '%s'" % filename return None return Pygmentizer(text, lexer) __all__ = dxr.plugins.htmlifier_exports() ``` #### File: dxr/dxr/server_utils.py ```python import ctypes import os.path import sqlite3 import sys # Load trilite _trilite_loaded = False def load_tokenizer(): global _trilite_loaded if _trilite_loaded: return try: ctypes.CDLL("libtrilite.so").load_trilite_extension() _trilite_loaded = True return True except: return False # This makes results a lot more fun! def _collate_loc(str1, str2): parts1 = str1.split(':') parts2 = str2.split(':') for i in range(1, len(parts1)): parts1[i] = int(parts1[i]) for i in range(2, len(parts2)): parts2[i] = int(parts2[i]) return cmp(parts1, parts2) # Get database connection for tree def connect_db(tree, instance_path): load_tokenizer() dbname = os.path.join(instance_path, 'trees', tree, '.dxr-xref.sqlite') try: conn = sqlite3.connect(dbname) conn.text_factory = str conn.execute("PRAGMA temp_store = MEMORY;") conn.create_collation("loc", _collate_loc) conn.row_factory = sqlite3.Row return conn except: # TODO: Die, bare except, die! return None # Log message def log(msg): print >> sys.stderr, "Log: %s" % msg ``` #### File: dxr/dxr/utils.py ```python import sqlite3 import ctypes import ConfigParser import os, sys, subprocess import jinja2 import string from datetime import datetime import dxr # Please keep these config objects as simple as possible and in sync with # docs/configuration.mkd. I'm well aware that this is not the most compact way # of writing things, but it sure is doomed to fail when user forgets an important # key. It's also fairly easy to extract default values, and config keys from # this code, so enjoy. class Config(object): """ Configuration for DXR """ def __init__(self, configfile, **override): # Create parser with sane defaults parser = ConfigParser.ConfigParser({ 'dxrroot': os.path.dirname(dxr.__file__), 'plugin_folder': "%(dxrroot)s/plugins", 'nb_jobs': "1", 'temp_folder': "/tmp/dxr-temp", 'log_folder': "%(temp_folder)s/logs", 'template': "%(dxrroot)s/templates", 'wwwroot': "/", 'enabled_plugins': "*", 'disabled_plugins': " ", 'directory_index': ".dxr-directory-index.html", 'generated_date': datetime.utcnow().strftime("%a, %d %b %Y %H:%M:%S +0000") }) parser.read(configfile) # Set config values self.dxrroot = parser.get('DXR', 'dxrroot', False, override) self.plugin_folder = parser.get('DXR', 'plugin_folder', False, override) self.nb_jobs = parser.get('DXR', 'nb_jobs', False, override) self.temp_folder = parser.get('DXR', 'temp_folder', False, override) self.target_folder = parser.get('DXR', 'target_folder', False, override) self.log_folder = parser.get('DXR', 'log_folder', False, override) self.template_folder = parser.get('DXR', 'template', False, override) self.wwwroot = parser.get('DXR', 'wwwroot', False, override) self.enabled_plugins = parser.get('DXR', 'enabled_plugins', False, override) self.disabled_plugins = parser.get('DXR', 'disabled_plugins', False, override) self.directory_index = parser.get('DXR', 'directory_index', False, override) self.generated_date = parser.get('DXR', 'generated_date', False, override) # Set configfile self.configfile = configfile self.trees = [] # Set template parameters (using new parser to avoid defaults) tmp_cfg = ConfigParser.ConfigParser() tmp_cfg.read(configfile) self.template_parameters = dict(tmp_cfg.items('Template')) # Read all plugin_ keys for key, value in tmp_cfg.items('DXR'): if key.startswith('plugin_'): setattr(self, key, value) # Render all paths absolute self.dxrroot = os.path.abspath(self.dxrroot) self.plugin_folder = os.path.abspath(self.plugin_folder) self.temp_folder = os.path.abspath(self.temp_folder) self.log_folder = os.path.abspath(self.log_folder) self.target_folder = os.path.abspath(self.target_folder) self.template_folder = os.path.abspath(self.template_folder) # Make sure wwwroot doesn't end in / if self.wwwroot[-1] == '/': self.wwwroot = self.wwwroot[:-1] # Convert disabled plugins to a list if self.disabled_plugins == "*": self.disabled_plugins = os.listdir(self.plugin_folder) else: self.disabled_plugins = self.disabled_plugins.split() # Convert enabled plugins to a list if self.enabled_plugins == "*": self.enabled_plugins = [p for p in os.listdir(self.plugin_folder) if p not in self.disabled_plugins] else: self.enabled_plugins = self.enabled_plugins.split() # Test for conflicting plugins settings if any((p in self.disabled_plugins for p in self.enabled_plugins)): msg = "Plugin: '%s' is both enabled and disabled in '%s'" print >> sys.stderr, msg % (p, name) sys.exit(1) # Load trees def section_cmp(a, b): if parser.has_option(a, "order") and parser.has_option(b, "order"): return cmp(parser.getint(a, "order"), parser.getint(b, "order")) if (not parser.has_option(a, "order")) and (not parser.has_option(b, "order")): return cmp(a, b) return -1 if parser.has_option(a, "order") else 1 for tree in sorted(parser.sections(), section_cmp): if tree not in ('DXR', 'Template'): self.trees.append(TreeConfig(self, self.configfile, tree)) class TreeConfig(object): """ Tree configuration for DXR """ def __init__(self, config, configfile, name): # Create parser with sane defaults parser = ConfigParser.ConfigParser({ 'enabled_plugins': "*", 'disabled_plugins': "", 'temp_folder': os.path.join(config.temp_folder, name), 'log_folder': os.path.join(config.log_folder, name), 'ignore_patterns': ".hg .git CVS .svn .bzr .deps .libs", 'build_command': "make -j $jobs" }) parser.read(configfile) # Set config values self.enabled_plugins = parser.get(name, 'enabled_plugins', False) self.disabled_plugins = parser.get(name, 'disabled_plugins', False) self.temp_folder = parser.get(name, 'temp_folder', False) self.log_folder = parser.get(name, 'log_folder', False) self.object_folder = parser.get(name, 'object_folder', False) self.source_folder = parser.get(name, 'source_folder', False) self.build_command = parser.get(name, 'build_command', False) self.ignore_patterns = parser.get(name, 'ignore_patterns', False) # You cannot redefine the target folder! self.target_folder = os.path.join(config.target_folder, 'trees', name) # Set config file and DXR config object reference self.configfile = configfile self.config = config self.name = name # Read all plugin_ keys for key, value in parser.items(name): if key.startswith('plugin_'): setattr(self, key, value) # Convert ignore patterns to list self.ignore_patterns = self.ignore_patterns.split() self.ignore_paths = filter(lambda p: p.startswith("/"), self.ignore_patterns) self.ignore_patterns = filter(lambda p: not p.startswith("/"), self.ignore_patterns) # Render all path absolute self.temp_folder = os.path.abspath(self.temp_folder) self.log_folder = os.path.abspath(self.log_folder) self.object_folder = os.path.abspath(self.object_folder) self.source_folder = os.path.abspath(self.source_folder) # Convert disabled plugins to a list if self.disabled_plugins == "*": self.disabled_plugins = config.enabled_plugins else: self.disabled_plugins = self.disabled_plugins.split() for p in config.disabled_plugins: if p not in self.disabled_plugins: self.disabled_plugins.append(p) # Convert enabled plugins to a list if self.enabled_plugins == "*": self.enabled_plugins = [p for p in config.enabled_plugins if p not in self.disabled_plugins] else: self.enabled_plugins = self.enabled_plugins.split() # Test for conflicting plugins settings if any(p in self.disabled_plugins for p in self.enabled_plugins): msg = "Plugin: '%s' is both enabled and disabled in '%s'" print >> sys.stderr, msg % (p, name) sys.exit(1) # Warn if $jobs isn't used... if "$jobs" not in self.build_command: msg = "Warning: $jobs is not used in build_command for '%s'" print >> sys.stderr, msg % name _trilite_loaded = False def load_trilite(config): """ Load trilite if not loaded before""" global _trilite_loaded if _trilite_loaded: return ctypes.CDLL("libtrilite.so").load_trilite_extension() _trilite_loaded = True def connect_database(tree): """ Connect to database ensuring that dependencies are built first """ # Build and load tokenizer if needed load_trilite(tree.config) # Create connection conn = sqlite3.connect(os.path.join(tree.target_folder, ".dxr-xref.sqlite")) # Configure connection conn.execute("PRAGMA synchronous=off") # TODO Test performance without this conn.execute("PRAGMA page_size=32768") # Optimal page should probably be tested, we get a hint from: # http://www.sqlite.org/intern-v-extern-blob.html conn.text_factory = str conn.row_factory = sqlite3.Row return conn _template_env = None def load_template_env(temp_folder, template_folder): """ Load template environment (lazily) """ global _template_env if not _template_env: # Cache folder for jinja2 tmpl_cache = os.path.join(temp_folder, 'jinja2_cache') if not os.path.isdir(tmpl_cache): os.mkdir(tmpl_cache) # Create jinja2 environment _template_env = jinja2.Environment( loader = jinja2.FileSystemLoader(template_folder), auto_reload = False, bytecode_cache = jinja2.FileSystemBytecodeCache(tmpl_cache) ) return _template_env _next_id = 1 def next_global_id(): """ Source of unique ids """ #TODO Please stop using this, it makes distribution and parallelization hard # Also it's just stupid!!! When whatever SQL database we use supports this global _next_id n = _next_id _next_id += 1 return n def open_log(config_or_tree, name): """ Get an open log file given config or tree and name """ return open(os.path.join(config_or_tree.log_folder, name), 'w') ``` #### File: tests/test_basic/test_basic.py ```python from dxr.testing import DxrInstanceTestCase class BasicTests(DxrInstanceTestCase): """Tests for functionality that isn't specific to particular filters""" def test_text(self): """Assert that a plain text search works.""" self.found_files_eq('main', ['main.c', 'makefile']) def test_extensions(self): """Try search by filename extension.""" self.found_files_eq('ext:c', ['main.c', 'dot_c.c']) ```
{ "source": "JonasFovea/PyDocToLaTeX", "score": 3 }
#### File: JonasFovea/PyDocToLaTeX/examplecode.py ```python a = 1 """a is a variable""" varB = "abcdefg" """varB is another variable""" V_ariable_C = 3.14 def funcA(): """Function A does nothing""" pass def funcB(a, b: str): """Function B also does nothing""" pass class TestClass: """TestClass description""" var1 = 42 var2 = "this is a string" """var2 contains a string""" def __init__(self): """init method of TestClass""" pass ``` #### File: JonasFovea/PyDocToLaTeX/test_pyToTeX.py ```python import unittest import os.path import os from pyToTeX import * class MyTestCase(unittest.TestCase): def test_convert(self): fn = "examplecode.py" convert(fn, True) self.assertTrue(os.path.isfile("examplecode.tex")) def test_cliMissingFileName(self): stream = os.popen("python pyToTeX.py") out = stream.read().strip() self.assertEqual(out, "ERROR: Please provide a path to a .py file, which you want to convert.\n\tAdditional option for overwriting existing .tex files: -o") def test_cliTestFalseFileName(self): stream = os.popen("python pyToTeX.py testNotFound.py") out = stream.read().strip() self.assertEqual(out, "ERROR: File or path not found") if __name__ == '__main__': unittest.main() ```
{ "source": "JonasFrey96/DenseFusion", "score": 2 }
#### File: DenseFusion/src/lightning.py ```python import warnings warnings.simplefilter("ignore", UserWarning) import sys import os sys.path.insert(0, os.getcwd()) sys.path.append(os.path.join(os.getcwd() + '/src')) sys.path.append(os.path.join(os.getcwd() + '/lib')) print( os.getcwd() ) import copy import datetime import time import shutil import argparse import logging import signal import pickle # misc import numpy as np import pandas as pd import random import sklearn import yaml from math import pi import coloredlogs import datetime import torch import torch.autograd.profiler as profiler from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.base import Callback from scipy.spatial.transform import Rotation as R coloredlogs.install() # network dense fusion from lib.network import PoseNet, PoseRefineNet # src modules from helper import pad from helper import flatten_dict from dataset import GenericDataset from visu import Visualizer from rotations import * from loss import compute_auc, LossAddS, Loss_refine, Loss from eval import * def ret_cropped_image(img): test = torch.nonzero(img[:, :, :]) a = torch.max(test[:, 0]) + 1 b = torch.max(test[:, 1]) + 1 c = torch.max(test[:, 2]) + 1 return img[:a, :b, :c] def padded_cat(list_of_images, device): """returns torch.tensor of concatenated images with dim = max size of image padded with zeros Args: list_of_images ([type]): List of Images Channels x Heigh x Width Returns: padded_cat [type]: Tensor of concatination result len(list_of_images) x Channels x max(Height) x max(Width) valid_indexe: len(list_of_images) x 2 """ c = list_of_images[0].shape[0] h = [x.shape[1] for x in list_of_images] w = [x.shape[2] for x in list_of_images] max_h = max(h) max_w = max(w) padded_cat = torch.zeros( (len(list_of_images), c, max_h, max_w), device=device) for i, img in enumerate(list_of_images): padded_cat[i, :, :h[i], :w[i]] = img valid_indexes = torch.tensor([h, w], device=device) return padded_cat, valid_indexes def tight_image_batch(img_batch, device): ls = [] for i in range(img_batch.shape[0]): ls.append(ret_cropped_image(img_batch[i])) tight_padded_img_batch, valid_indexes = padded_cat( ls, device=device) return tight_padded_img_batch def check_exp(exp): if exp['d_test'].get('overfitting_nr_idx', -1) != -1 or exp['d_train'].get('overfitting_nr_idx', -1) != -1: print('Overfitting on ONE batch is activated') time.sleep(5) class DenseFusionLightning(LightningModule): def __init__(self, exp, env): super().__init__() self._mode = 'init' # check experiment cfg for errors check_exp(exp) # logging h-params exp_config_flatten = flatten_dict(copy.deepcopy(exp)) for k in exp_config_flatten.keys(): if exp_config_flatten[k] is None: exp_config_flatten[k] = 'is None' self.hparams = exp_config_flatten self.hparams['lr'] = exp['training']['lr'] self.test_size = exp['training']['test_size'] self.env, self.exp = env, exp # number of input points to the network num_points_small = exp['d_train']['num_pt_mesh_small'] num_points_large = exp['d_train']['num_pt_mesh_large'] num_obj = exp['d_train']['objects'] self.df_pose_estimator = PoseNet( num_points=exp['d_test']['num_points'], num_obj=num_obj) self.df_refiner = PoseRefineNet( num_points=exp['d_test']['num_points'], num_obj=num_obj) if exp.get('model', {}).get('df_load', False): self.df_pose_estimator.load_state_dict( torch.load(exp['model']['df_pose_estimator'])) if exp.get('model', {}).get('df_refine', False): self.df_refiner.load_state_dict( torch.load(exp['model']['df_refiner'])) sl = exp['d_train']['obj_list_sym'] self.df_criterion = Loss( num_points_large, sl) self.df_criterion_refine = Loss_refine( num_points_large, sl) self.criterion_adds = LossAddS(sym_list=sl) self.visualizer = Visualizer(self.exp['model_path'] + '/visu/', None) self._dict_track = {} self.number_images_log_test = self.exp.get( 'visu', {}).get('number_images_log_test', 1) self.counter_images_logged = 0 self.init_train_vali_split = False mp = exp['model_path'] fh = logging.FileHandler(f'{mp}/Live_Logger_Lightning.log') fh.setLevel(logging.DEBUG) logging.getLogger("lightning").addHandler(fh) self.start = time.time() self.best_val_loss = 999 # optional, set the logging level if self.exp.get('visu', {}).get('log_to_file', False): console = logging.StreamHandler() console.setLevel(logging.DEBUG) logging.getLogger("lightning").addHandler(console) log = open(f'{mp}/Live_Logger_Lightning.log', "a") sys.stdout = log logging.info('Logging to File') def forward(self, batch): st = time.time() # unpack batch points, choose, img, target, model_points, idx = batch[0:6] log_scalars = {} bs = points.shape[0] tight_padded_img_batch = tight_image_batch( img, device=self.device) pred_r = torch.zeros((bs, 1000, 4), device=self.device) pred_t = torch.zeros((bs, 1000, 3), device=self.device) pred_c = torch.zeros((bs, 1000, 1), device=self.device) emb = torch.zeros((bs, 32, 1000), device=self.device) for i in range(bs): pred_r[i], pred_t[i], pred_c[i], emb[i] = self.df_pose_estimator( ret_cropped_image(img[i])[None], points[i][None], choose[i][None], idx[i][None]) refine = True if exp['model']['df_refine_iterations'] > 0 else False loss, dis, new_points, new_target, pred_r_current, pred_t_current = self.df_criterion( pred_r, pred_t, pred_c, target, model_points, idx, points, exp['model']['df_w'], refine) for i in range( self.exp['model']['df_refine_iterations'] ): pred_r, pred_t = self.df_refiner(new_points, emb, idx) dis, new_points, new_target, pred_r_current, pred_t_current = self.df_refine_criterion( pred_r, pred_t, new_target, model_points, idx, new_points, pred_r_current, pred_t_current) return loss, dis, pred_r_current, pred_t_current, new_points, log_scalars def training_step(self, batch, batch_idx): self._mode = 'train' st = time.time() total_loss = 0 total_dis = 0 # forward loss, dis, pred_r_current, pred_t_current, new_points, log_scalars = self(batch[0]) if self.counter_images_logged < self.exp.get('visu', {}).get('images_train', 1): # self.visu_batch(batch, pred_trans, pred_rot_wxyz, pred_points) TODO pass # tensorboard logging loss = torch.mean(loss, dim= 0) tensorboard_logs = {'train_loss': float(loss)} tensorboard_logs = {**tensorboard_logs, **log_scalars} self._dict_track = {**self._dict_track} return {'train_loss': loss, 'log': tensorboard_logs,'progress_bar': {'Loss': loss, 'ADD-S': torch.mean(dis, dim= 0) } } def validation_step(self, batch, batch_idx): self._mode = 'train' st = time.time() total_loss = 0 total_dis = 0 # forward loss, dis, pred_r_current, pred_t_current, new_points, log_scalars = self(batch[0]) if self.counter_images_logged < self.exp.get('visu', {}).get('images_train', 1): self.visu_batch(batch[0], pred_r_current, pred_t_current, new_points) # tensorboard logging loss = torch.mean(loss, dim= 0) dis = torch.mean(dis, dim= 0) tensorboard_logs = {'val_loss': float( loss ), 'val_dis': loss, 'val_dis_float': float(loss) } tensorboard_logs = {**tensorboard_logs, **log_scalars} self._dict_track = {**self._dict_track,'val_dis_float': float(loss), 'val_dis': float(loss), 'val_loss': float(loss)} return{'val_loss': loss, 'val_dis': loss, 'log': tensorboard_logs} # 'progress_bar': {'L_Seg': log_scalars['loss_segmentation'], 'L_Add': log_scalars['loss_pose_add'], 'L_Tra': log_scalars[f'loss_translation']}} def test_step(self, batch, batch_idx): self._mode = 'train' st = time.time() total_loss = 0 total_dis = 0 # forward loss, dis, pred_r_current, pred_t_current, new_points, log_scalars = self(batch[0]) if self.counter_images_logged < self.exp.get('visu', {}).get('images_train', 1): # self.visu_batch(batch, pred_trans, pred_rot_wxyz, pred_points) TODO pass # tensorboard logging tensorboard_logs = {'train_loss': float(dis)} tensorboard_logs = {**tensorboard_logs, **log_scalars} self._dict_track = {**self._dict_track} return {'loss': dis, 'log': tensorboard_logs} # 'progress_bar': {'L_Seg': log_scalars['loss_segmentation'], 'L_Add': log_scalars['loss_pose_add'], 'L_Tra': log_scalars[f'loss_translation']}} def validation_epoch_end(self, outputs): avg_dict = {} self.counter_images_logged = 0 # reset image log counter # only keys that are logged in tensorboard are removed from log_scalars ! for old_key in list(self._dict_track.keys()): if old_key.find('val') == -1: continue newk = 'avg_' + old_key avg_dict['avg_' + old_key] = float(np.mean(np.array(self._dict_track[old_key]))) p = old_key.find('adds_dis') if p != -1: auc = compute_auc(self._dict_track[old_key]) avg_dict[old_key[:p] + 'auc [0 - 100]'] = auc self._dict_track.pop(old_key, None) df1 = dict_to_df(avg_dict) df2 = dict_to_df(get_df_dict(pre='val')) img = compare_df(df1, df2, key='auc [0 - 100]') tag = 'val_table_res_vs_df' img.save(self.exp['model_path'] + f'/visu/{self.current_epoch}_{tag}.png') self.logger.experiment.add_image(tag, np.array(img).astype( np.uint8), global_step=self.current_epoch, dataformats='HWC') avg_val_dis_float = float(0) if avg_dict.get( 'avg_val_loss',999) < self.best_val_loss: self.best_val_loss = avg_dict.get( 'avg_val_loss',999) return {'avg_val_dis_float': float(avg_dict.get( 'avg_val_loss',999)), 'log': avg_dict} def train_epoch_end(self, outputs): self.counter_images_logged = 0 # reset image log counter avg_dict = {} for old_key in list(self._dict_track.keys()): if old_key.find('train') == -1: continue avg_dict['avg_' + old_key] = float(np.mean(np.array(self._dict_track[old_key]))) self._dict_track.pop(old_key, None) string = 'Time for one epoch: ' + str(time.time() - self.start) print(string) self.start = time.time() return {**avg_dict, 'log': avg_dict} def test_epoch_end(self, outputs): self.counter_images_logged = 0 # reset image log counter avg_dict = {} # only keys that are logged in tensorboard are removed from log_scalars ! for old_key in list(self._dict_track.keys()): if old_key.find('test') == -1: continue newk = 'avg_' + old_key avg_dict['avg_' + old_key] = float(np.mean(np.array(self._dict_track[old_key]))) p = old_key.find('adds_dis') if p != -1: auc = compute_auc(self._dict_track[old_key]) avg_dict[old_key[:p] + 'auc [0 - 100]'] = auc self._dict_track.pop(old_key, None) avg_test_dis_float = float(avg_dict['avg_test_loss [+inf - 0]']) df1 = dict_to_df(avg_dict) df2 = dict_to_df(get_df_dict(pre='test')) img = compare_df(df1, df2, key='auc [0 - 100]') tag = 'test_table_res_vs_df' img.save(self.exp['model_path'] + f'/visu/{self.current_epoch}_{tag}.png') self.logger.experiment.add_image(tag, np.array(img).astype( np.uint8), global_step=self.current_epoch, dataformats='HWC') return {'avg_test_dis_float': avg_test_dis_float, 'avg_test_dis': avg_dict['avg_test_loss [+inf - 0]'], 'log': avg_dict} def visu_batch(self, batch, pred_r_current, pred_t_current, new_points): target = copy.deepcopy(batch[3][0].detach().cpu().numpy()) mp = copy.deepcopy(batch[4][0].detach().cpu().numpy()) gt_rot_wxyz, gt_trans, unique_desig = batch[10:13] img = batch[8].detach().cpu().numpy()[0] cam = batch[9][0] pre = f'%s_obj%d' % (str(unique_desig[0][0]).replace('/', "_"), int(unique_desig[1][0])) store = self.exp['visu'].get('store', False) self.visualizer.plot_estimated_pose(tag=f'target_{pre}', epoch=self.current_epoch, img=img, points=target, cam_cx=float(cam[0]), cam_cy=float(cam[1]), cam_fx=float(cam[2]), cam_fy=float(cam[3]), store=store) self.visualizer.plot_estimated_pose(tag=f'new_points_{pre}', epoch=self.current_epoch, img=img, points=new_points[0].clone().detach().cpu().numpy(), cam_cx=float(cam[0]), cam_cy=float(cam[1]), cam_fx=float(cam[2]), cam_fy=float(cam[3]), store=store) t = pred_t_current.detach().cpu().numpy()[0,:][None,:] mat = quat_to_rot(pred_r_current).detach().cpu().numpy()[0] self.visualizer.plot_estimated_pose(tag=f'pred_{pre}', epoch=self.current_epoch, img=img, points=mp, trans=t, rot_mat=mat, cam_cx=float(cam[0]), cam_cy=float(cam[1]), cam_fx=float(cam[2]), cam_fy=float(cam[3]), store=store) # self.visualizer.plot_contour(tag='gt_contour_%s_obj%d' % (str(unique_desig[0][0]).replace('/', "_"), int(unique_desig[1][0])), # epoch=self.current_epoch, # img=img, # points=points, # cam_cx=float(cam[0]), # cam_cy=float(cam[1]), # cam_fx=float(cam[2]), # cam_fy=float(cam[3]), # store=store) # t = pred_t.detach().cpu().numpy() # r = pred_r.detach().cpu().numpy() # rot = R.from_quat(re_quat(r, 'wxyz')) # self.visualizer.plot_estimated_pose(tag='pred_%s_obj%d' % (str(unique_desig[0][0]).replace('/', "_"), int(unique_desig[1][0])), # epoch=self.current_epoch, # img=img, # points=copy.deepcopy( # model_points[:, :].detach( # ).cpu().numpy()), # trans=t.reshape((1, 3)), # rot_mat=rot.as_matrix(), # cam_cx=float(cam[0]), # cam_cy=float(cam[1]), # cam_fx=float(cam[2]), # cam_fy=float(cam[3]), # store=store) # self.visualizer.plot_contour(tag='pred_contour_%s_obj%d' % (str(unique_desig[0][0]).replace('/', "_"), int(unique_desig[1][0])), # epoch=self.current_epoch, # img=img, # points=copy.deepcopy( # model_points[:, :].detach( # ).cpu().numpy()), # trans=t.reshape((1, 3)), # rot_mat=rot.as_matrix(), # cam_cx=float(cam[0]), # cam_cy=float(cam[1]), # cam_fx=float(cam[2]), # cam_fy=float(cam[3]), # store=store) # render_img, depth, h_render = self.vm.get_closest_image_batch( # i=idx.unsqueeze(0), rot=pred_r.unsqueeze(0), conv='wxyz') # # get the bounding box ! # w = 640 # h = 480 # real_img = torch.zeros((1, 3, h, w), device=self.device) # # update the target to get new bb # base_inital = quat_to_rot( # pred_r.unsqueeze(0), 'wxyz', device=self.device).squeeze(0) # base_new = base_inital.view(-1, 3, 3).permute(0, 2, 1) # pred_points = torch.add( # torch.bmm(model_points.unsqueeze(0), base_inital.unsqueeze(0)), pred_t) # # torch.Size([16, 2000, 3]), torch.Size([16, 4]) , torch.Size([16, 3]) # bb_ls = get_bb_real_target( # pred_points, cam.unsqueeze(0)) # for j, b in enumerate(bb_ls): # if not b.check_min_size(): # pass # c = cam.unsqueeze(0) # center_real = backproject_points( # pred_t.view(1, 3), fx=c[j, 2], fy=c[j, 3], cx=c[j, 0], cy=c[j, 1]) # center_real = center_real.squeeze() # b.move(-center_real[0], -center_real[1]) # b.expand(1.1) # b.expand_to_correct_ratio(w, h) # b.move(center_real[0], center_real[1]) # crop_real = b.crop(img_orig).unsqueeze(0) # up = torch.nn.UpsamplingBilinear2d(size=(h, w)) # crop_real = torch.transpose(crop_real, 1, 3) # crop_real = torch.transpose(crop_real, 2, 3) # real_img[j] = up(crop_real) # inp = real_img[0].unsqueeze(0) # inp = torch.transpose(inp, 1, 3) # inp = torch.transpose(inp, 1, 2) # data = torch.cat([inp, render_img], dim=3) # data = torch.transpose(data, 1, 3) # data = torch.transpose(data, 2, 3) # self.visualizer.visu_network_input(tag='render_real_comp_%s_obj%d' % (str(unique_desig[0][0]).replace('/', "_"), int(unique_desig[1][0])), # epoch=self.current_epoch, # data=data, # max_images=1, store=store) def configure_optimizers(self): optimizer = torch.optim.Adam( [{'params': self.df_pose_estimator.parameters()}], lr=self.hparams['lr']) scheduler = { 'scheduler': torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, **self.exp['lr_cfg']['on_plateau_cfg']), **self.exp['lr_cfg']['scheduler'] } return [optimizer], [scheduler] def train_dataloader(self): self.visualizer.writer = self.logger.experiment dataset_train = GenericDataset( cfg_d=self.exp['d_train'], cfg_env=self.env) # initalize train and validation indices if not self.init_train_vali_split: self.init_train_vali_split = True self.indices_valid, self.indices_train = sklearn.model_selection.train_test_split( range(0, len(dataset_train)), test_size=self.test_size) dataset_subset = torch.utils.data.Subset( dataset_train, self.indices_train) dataloader_train = torch.utils.data.DataLoader(dataset_train, **self.exp['loader']) return dataloader_train def test_dataloader(self): self.visualizer.writer = self.logger.experiment dataset_test = GenericDataset( cfg_d=self.exp['d_test'], cfg_env=self.env) dataloader_test = torch.utils.data.DataLoader(dataset_test, **self.exp['loader']) return dataloader_test def val_dataloader(self): self.visualizer.writer = self.logger.experiment dataset_val = GenericDataset( cfg_d=self.exp['d_train'], cfg_env=self.env) # initalize train and validation indices if not self.init_train_vali_split: self.init_train_vali_split = True self.indices_valid, self.indices_train = sklearn.model_selection.train_test_split( range(0, len(dataset_val)), test_size=self.test_size) dataset_subset = torch.utils.data.Subset( dataset_val, self.indices_valid) dataloader_val = torch.utils.data.DataLoader(dataset_val, **self.exp['loader']) return dataloader_val def file_path(string): if os.path.isfile(string): return string else: raise NotADirectoryError(string) def move_dataset_to_ssd(env, exp): # costum code to move dataset on cluster try: if env.get('leonhard', {}).get('copy', False): files = ['data', 'data_syn', 'models'] p_ls = os.popen('echo $TMPDIR').read().replace('\n', '') p_ycb_new = p_ls + '/YCB_Video_Dataset' p_ycb = env['p_ycb'] try: os.mkdir(p_ycb_new) os.mkdir('$TMPDIR/YCB_Video_Dataset') except: pass for f in files: p_file_tar = f'{p_ycb}/{f}.tar' logging.info(f'Copying {f} to {p_ycb_new}/{f}') if os.path.exists(f'{p_ycb_new}/{f}'): logging.info( "data already exists! Interactive session?") else: start_time = time.time() if f == 'data': bashCommand = "tar -xvf" + p_file_tar + \ " -C $TMPDIR | awk 'BEGIN {ORS=\" \"} {if(NR%1000==0)print NR}\' " else: bashCommand = "tar -xvf" + p_file_tar + \ " -C $TMPDIR/YCB_Video_Dataset | awk 'BEGIN {ORS=\" \"} {if(NR%1000==0)print NR}\' " os.system(bashCommand) logging.info( f'Transferred {f} folder within {str(time.time() - start_time)}s to local SSD') env['p_ycb'] = p_ycb_new except: env['p_ycb'] = p_ycb_new logging.info('Copying data failed') return exp, env def move_background(env, exp): try: # Update the env for the model when copying dataset to ssd if env.get('leonhard', {}).get('copy', False): p_file_tar = env['p_background'] + '/indoorCVPR_09.tar' p_ls = os.popen('echo $TMPDIR').read().replace('\n', '') p_n = p_ls + '/Images' try: os.mkdir(p_n) except: pass if os.path.exists(f'{p_n}/office'): logging.info( "data already exists! Interactive session?") else: start_time = time.time() bashCommand = "tar -xvf" + p_file_tar + \ " -C $TMPDIR | awk 'BEGIN {ORS=\" \"} {if(NR%1000==0)print NR}\' " os.system(bashCommand) env['p_background'] = p_n except: logging.info('Copying data failed') return exp, env def load_from_file(p): if os.path.isfile(p): with open(p, 'r') as f: data = yaml.safe_load(f) else: raise ValueError return data class CallbackRefine(Callback): def on_epoch_start(self, trainer, pl_module): if pl_module.best_val_loss < 0.016: logging.warning('Refine Started') pl_module.exp['model']['df_refine_iterations'] = 2 optimizer = torch.optim.Adam( [{'params': pl_module.df_pose_refiner.parameters()}], lr=pl_module.hparams['lr']) scheduler = { 'scheduler': torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, **pl_module.exp['lr_cfg']['on_plateau_cfg']), **pl_module.exp['lr_cfg']['scheduler'] } trainer.optimizers = [optimizer] trainer.lr_schedulers = trainer.configure_schedulers([scheduler]) if __name__ == "__main__": seed_everything(42) def signal_handler(signal, frame): print('exiting on CRTL-C') sys.exit(0) signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) parser = argparse.ArgumentParser() parser.add_argument('--exp', type=file_path, default='cfg/exp/exp.yml', help='The main experiment yaml file.') parser.add_argument('--env', type=file_path, default='cfg/env/env.yml', help='The environment yaml file.') args = parser.parse_args() exp_cfg_path = args.exp env_cfg_path = args.env exp = load_from_file(exp_cfg_path) env = load_from_file(env_cfg_path) if exp['model_path'].split('/')[-2] == 'debug': p = '/'.join(exp['model_path'].split('/')[:-1]) try: shutil.rmtree(p) except: pass timestamp = '_' else: timestamp = datetime.datetime.now().replace(microsecond=0).isoformat() p = exp['model_path'].split('/') p.append(str(timestamp) + '_' + p.pop()) new_path = '/'.join(p) exp['model_path'] = new_path model_path = exp['model_path'] # copy config files to model path if not os.path.exists(model_path): os.makedirs(model_path) print((pad("Generating network run folder"))) else: print((pad("Network run folder already exits"))) if exp.get('visu', {}).get('log_to_file', False): log = open(f'{model_path}/Live_Logger_Lightning.log', "a") sys.stdout = log print('Logging to File') exp_cfg_fn = os.path.split(exp_cfg_path)[-1] env_cfg_fn = os.path.split(env_cfg_path)[-1] print(pad(f'Copy {env_cfg_path} to {model_path}/{exp_cfg_fn}')) shutil.copy(exp_cfg_path, f'{model_path}/{exp_cfg_fn}') shutil.copy(env_cfg_path, f'{model_path}/{env_cfg_fn}') exp, env = move_dataset_to_ssd(env, exp) exp, env = move_background(env, exp) dic = {'exp': exp, 'env': env} model = DenseFusionLightning(**dic) early_stop_callback = EarlyStopping( **exp['early_stopping']) checkpoint_callback = ModelCheckpoint( filepath=exp['model_path'] + '/{epoch}-{avg_val_dis_float:.4f}', **exp['model_checkpoint']) if exp.get('checkpoint_restore', False): checkpoint = torch.load( exp['checkpoint_load'], map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) # with torch.autograd.set_detect_anomaly(True): trainer = Trainer(**exp['trainer'], checkpoint_callback=checkpoint_callback, early_stop_callback=early_stop_callback, callbacks=[CallbackRefine()], default_root_dir=exp['model_path']) 0 if exp.get('model_mode', 'fit') == 'fit': trainer.fit(model) elif exp.get('model_mode', 'fit') == 'test': trainer.test(model) else: print("Wrong model_mode defined in exp config") raise Exception ``` #### File: src/loss/loss.py ```python from torch.nn.modules.loss import _Loss from torch.autograd import Variable import torch import numpy as np import random from rotations import quat_to_rot def knn(ref, query): """return indices of ref for each query point. L2 norm Args: ref ([type]): points * 3 query ([type]): tar_points * 3 Returns: [knn]: distance = query * 1 , indices = query * 1 """ mp2 = ref.unsqueeze(0).repeat(query.shape[0], 1, 1) tp2 = query.unsqueeze(1).repeat(1, ref.shape[0], 1) dist = torch.norm(mp2 - tp2, dim=2, p=None) knn = dist.topk(1, largest=False) return knn def loss_calculation(pred_r, pred_t, pred_c, target, model_points, idx, points, w, refine, num_point_mesh, sym_list): """ works i checked if manually to give the same result as loss_calculation Args: pred_r ([type]): [description] pred_t ([type]): [description] pred_c ([type]): [description] target ([type]): [description] model_points ([type]): [description] idx ([type]): [description] points ([type]): [description] w ([type]): [description] refine ([type]): [description] num_point_mesh ([type]): [description] sym_list ([type]): [description] device ([type]): [description] Returns: [type]: [description] """ bs, num_p, _ = pred_c.size() pred_r = pred_r / (torch.norm(pred_r, dim=2).view(bs, num_p, 1)) base = quat_to_rot(pred_r.contiguous().view(-1, 4), 'wxyz', device=points.device) ori_base = base base = base.contiguous().transpose(2, 1).contiguous() model_points = model_points.view(bs, 1, num_point_mesh, 3).repeat( 1, num_p, 1, 1).view(bs * num_p, num_point_mesh, 3) target = target.view(bs, 1, num_point_mesh, 3).repeat( 1, num_p, 1, 1).view(bs * num_p, num_point_mesh, 3) ori_target = target pred_t = pred_t.contiguous().view(bs * num_p, 1, 3) ori_t = pred_t points = points.contiguous().view(bs * num_p, 1, 3) pred_c = pred_c.contiguous().view(bs * num_p) pred = torch.add(torch.bmm(model_points, base), points + pred_t) if not refine: if idx[0].item() in sym_list: knn_obj = knn( ref=target[0, :, :], query=pred[0, :, :]) inds = knn_obj.indices target[0, :, :] = target[0, inds[:, 0], :] dis = torch.mean(torch.norm( (pred - target), dim=2), dim=1) loss = torch.mean((dis * pred_c - w * torch.log(pred_c)), dim=0) pred_c = pred_c.view(bs, num_p) _, which_max = torch.max(pred_c, 1) dis = dis.view(bs, num_p) enum = torch.arange(0, bs, 1, device=points.device, dtype=torch.long) ori_t_sel = ori_t.view(bs, num_p, 3)[enum, which_max, :] points_sel = points.view(bs, num_p, 3)[enum, which_max, :] ori_base_sel = ori_base.view(bs, num_p, 3, 3)[enum, which_max, :, :] t = ori_t_sel + points_sel r = pred_r[enum, which_max, :] ori_base = ori_base_sel points = points.view(bs, num_p, 3) ori_t = t[:,None,:].repeat(1, num_p, 1) new_points = torch.bmm( (points - ori_t), ori_base) tmp1 = ori_target.view(bs, num_p, num_point_mesh, 3) new_target = tmp1[:, 0, :, :].view(bs, num_point_mesh, 3) # ori_t 16 2000 3 ori_t = t[:,None,:].repeat(1, num_point_mesh, 1) new_target = torch.bmm((new_target - ori_t), ori_base) # print('------------> ', dis[0][which_max[0]].item(), pred_c[0][which_max[0]].item(), idx[0].item()) return loss, dis[enum, which_max], new_points.detach(), new_target.detach(), r.detach(), t.detach() #TODO class Loss(_Loss): def __init__(self, num_points_mesh, sym_list): super(Loss, self).__init__(True) self.num_pt_mesh = num_points_mesh self.sym_list = sym_list def forward(self, pred_r, pred_t, pred_c, target, model_points, idx, points, w, refine): return loss_calculation(pred_r, pred_t, pred_c, target, model_points, idx, points, w, refine, self.num_pt_mesh, self.sym_list) ``` #### File: src/loss/loss_refiner.py ```python from torch.nn.modules.loss import _Loss from torch.autograd import Variable import torch import numpy as np import random from rotations import quat_to_rot, compose_quat from helper import knn class Loss_refine(_Loss): def __init__(self, num_points_mesh, sym_list): super(Loss_refine, self).__init__(True) self.num_pt_mesh = num_points_mesh self.sym_list = sym_list def forward(self, pred_r, pred_t, target, model_points, idx, points, pred_r_current, pred_t_current, use_orig=False): bs, _ = pred_r.size() num_p = len(points[0]) pred_r = pred_r / (torch.norm(pred_r, dim=1).view(bs, 1)) base = quat_to_rot(pred_r.contiguous().view(-1, 4), 'wxyz', device=points.device) ori_base = base base = base.contiguous().transpose(2, 1).unsqueeze( 0).contiguous().view(-1, 3, 3) model_points = model_points.view( bs, 1, self.num_pt_mesh, 3).view(bs, self.num_pt_mesh, 3) target = target.view(bs, 1, self.num_pt_mesh, 3).view( bs, self.num_pt_mesh, 3) ori_target = target pred_t = pred_t.unsqueeze(1).repeat( 1, self.num_pt_mesh, 1).contiguous() # .view(bs * num_p, 1, 3) ori_t = pred_t # model_points 16 x 2000 x 3 # base 16 X 3 x 3 # points 16 X 1 x 3 pred = torch.add(torch.bmm(model_points, base), pred_t) if idx[0].item() in self.sym_list: knn_obj = knn( ref=target[0, :, :], query=pred[0, :, :]) inds = knn_obj.indices target[0, :, :] = target[0, inds[:, 0], :] dis = torch.mean(torch.norm((pred - target), dim=2), dim=1) t = ori_t num_input_points = points.shape[1] points = points.view(bs, num_input_points, 3) ori_base = ori_base.view(bs, 3, 3).contiguous() ori_t = t[:, 0, :].unsqueeze(1).repeat( 1, num_input_points, 1).contiguous().view(bs, num_input_points, 3) new_points = torch.bmm((points - ori_t), ori_base).contiguous() new_target = ori_target[0].view(1, self.num_pt_mesh, 3).contiguous() ori_t = t[:, 0, :].unsqueeze(1).repeat( 1, self.num_pt_mesh, 1).contiguous().view(bs, self.num_pt_mesh, 3) new_target = torch.bmm((new_target - ori_t), ori_base).contiguous() # print('------------> ', dis.item(), idx[0].item()) pred_r_current = compose_quat( pred_r_current, pred_r) #TODO check if this is working !!! return dis, new_points.detach(), new_target.detach(), pred_r_current, pred_t_current+pred_t ```
{ "source": "JonasFrey96/FlowPose6D", "score": 2 }
#### File: src/deep_im/flownet.py ```python import torch import torch.nn as nn from torch.nn.init import kaiming_normal_, constant_ import torch.nn as nn import torch.nn.functional as F def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1): if batchNorm: return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, bias=False), nn.BatchNorm2d(out_planes), nn.LeakyReLU(0.1, inplace=True) ) else: return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, bias=True), nn.LeakyReLU(0.1, inplace=True) ) def predict_flow(in_planes): return nn.Conv2d(in_planes, 2, kernel_size=3, stride=1, padding=1, bias=False) def deconv(in_planes, out_planes): return nn.Sequential( nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=False), nn.LeakyReLU(0.1, inplace=True) ) def correlate(input1, input2): out_corr = spatial_correlation_sample(input1, input2, kernel_size=1, patch_size=21, stride=1, padding=0, dilation_patch=2) # collate dimensions 1 and 2 in order to be treated as a # regular 4D tensor b, ph, pw, h, w = out_corr.size() out_corr = out_corr.view(b, ph * pw, h, w) / input1.size(1) return F.leaky_relu_(out_corr, 0.1) def crop_like(input, target): if input.size()[2:] == target.size()[2:]: return input else: return input[:, :, :target.size(2), :target.size(3)] __all__ = [ 'flownets', 'flownets_bn' ] class FlowNetS(nn.Module): expansion = 1 def __init__(self, batchNorm=True): super(FlowNetS, self).__init__() self.batchNorm = batchNorm self.conv1 = conv(self.batchNorm, 6, 64, kernel_size=7, stride=2) self.conv2 = conv(self.batchNorm, 64, 128, kernel_size=5, stride=2) self.conv3 = conv(self.batchNorm, 128, 256, kernel_size=5, stride=2) self.conv3_1 = conv(self.batchNorm, 256, 256) self.conv4 = conv(self.batchNorm, 256, 512, stride=2) self.conv4_1 = conv(self.batchNorm, 512, 512) self.conv5 = conv(self.batchNorm, 512, 512, stride=2) self.conv5_1 = conv(self.batchNorm, 512, 512) self.conv6 = conv(self.batchNorm, 512, 1024, stride=2) self.conv6_1 = conv(self.batchNorm, 1024, 1024) self.deconv5 = deconv(1024, 512) self.deconv4 = deconv(1026, 256) self.deconv3 = deconv(770, 128) self.deconv2 = deconv(386, 64) self.predict_flow6 = predict_flow(1024) self.predict_flow5 = predict_flow(1026) self.predict_flow4 = predict_flow(770) self.predict_flow3 = predict_flow(386) self.predict_flow2 = predict_flow(194) self.upsampled_flow6_to_5 = nn.ConvTranspose2d( 2, 2, 4, 2, 1, bias=False) self.upsampled_flow5_to_4 = nn.ConvTranspose2d( 2, 2, 4, 2, 1, bias=False) self.upsampled_flow4_to_3 = nn.ConvTranspose2d( 2, 2, 4, 2, 1, bias=False) self.upsampled_flow3_to_2 = nn.ConvTranspose2d( 2, 2, 4, 2, 1, bias=False) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): kaiming_normal_(m.weight, 0.1) if m.bias is not None: constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): constant_(m.weight, 1) constant_(m.bias, 0) def forward(self, x): out_conv2 = self.conv2(self.conv1(x)) out_conv3 = self.conv3_1(self.conv3(out_conv2)) out_conv4 = self.conv4_1(self.conv4(out_conv3)) out_conv5 = self.conv5_1(self.conv5(out_conv4)) out_conv6 = self.conv6_1(self.conv6(out_conv5)) # DeepIm used for prediction head flow6 = self.predict_flow6(out_conv6) flow6_up = crop_like(self.upsampled_flow6_to_5(flow6), out_conv5) out_deconv5 = crop_like(self.deconv5(out_conv6), out_conv5) concat5 = torch.cat((out_conv5, out_deconv5, flow6_up), 1) flow5 = self.predict_flow5(concat5) flow5_up = crop_like(self.upsampled_flow5_to_4(flow5), out_conv4) out_deconv4 = crop_like(self.deconv4(concat5), out_conv4) concat4 = torch.cat((out_conv4, out_deconv4, flow5_up), 1) # concat4 used for DeepIM Feature map 1d convs ? flow4 = self.predict_flow4(concat4) flow4_up = crop_like(self.upsampled_flow4_to_3(flow4), out_conv3) out_deconv3 = crop_like(self.deconv3(concat4), out_conv3) concat3 = torch.cat((out_conv3, out_deconv3, flow4_up), 1) flow3 = self.predict_flow3(concat3) flow3_up = crop_like(self.upsampled_flow3_to_2(flow3), out_conv2) out_deconv2 = crop_like(self.deconv2(concat3), out_conv2) concat2 = torch.cat((out_conv2, out_deconv2, flow3_up), 1) flow2 = self.predict_flow2(concat2) if self.training: return flow2, flow3, flow4, flow5, flow6, out_conv6 else: return flow2, flow3, flow4, flow5, flow6, out_conv6 def weight_parameters(self): return [param for name, param in self.named_parameters() if 'weight' in name] def bias_parameters(self): return [param for name, param in self.named_parameters() if 'bias' in name] def flownets(data=None): """FlowNetS model architecture from the "Learning Optical Flow with Convolutional Networks" paper (https://arxiv.org/abs/1504.06852) Args: data : pretrained weights of the network. will create a new one if not set """ model = FlowNetS(batchNorm=False) if data is not None: model.load_state_dict(data['state_dict']) return model def flownets_bn(data=None): """FlowNetS model architecture from the "Learning Optical Flow with Convolutional Networks" paper (https://arxiv.org/abs/1504.06852) Args: data : pretrained weights of the network. will create a new one if not set """ model = FlowNetS(batchNorm=True) if data is not None: model.load_state_dict(data['state_dict']) return model # net = FlowNetS() # img = torch.ones((1, 6, 480, 640), dtype=torch.float32) # net(img) ``` #### File: src/deep_im/renderer_ycb.py ```python import os import numpy as np import torch import sys import argparse import copy sys.path.insert(0, os.getcwd()) sys.path.append(os.path.join(os.getcwd() + '/src')) sys.path.append(os.path.join(os.getcwd() + '/lib')) sys.path.append(os.path.join(os.getcwd() + '/src/deep_im/lib')) from loaders_v2 import ConfigLoader from loaders_v2 import GenericDataset from src.deep_im.lib.render_glumpy.render_py_light import Render_Py_Light def mat2quat(M): # Qyx refers to the contribution of the y input vector component to # the x output vector component. Qyx is therefore the same as # M[0,1]. The notation is from the Wikipedia article. Qxx, Qyx, Qzx, Qxy, Qyy, Qzy, Qxz, Qyz, Qzz = M.flat # Fill only lower half of symmetric matrix K = ( np.array( [ [Qxx - Qyy - Qzz, 0, 0, 0], [Qyx + Qxy, Qyy - Qxx - Qzz, 0, 0], [Qzx + Qxz, Qzy + Qyz, Qzz - Qxx - Qyy, 0], [Qyz - Qzy, Qzx - Qxz, Qxy - Qyx, Qxx + Qyy + Qzz], ] ) / 3.0 ) # Use Hermitian eigenvectors, values for speed vals, vecs = np.linalg.eigh(K) # Select largest eigenvector, reorder to w,x,y,z quaternion q = vecs[[3, 0, 1, 2], np.argmax(vals)] # Prefer quaternion with positive w if q[0] < 0: q *= -1 return q class RendererYCB(): def __init__(self, p_ycb, obj_name_2_idx, K1, K2): # loads all models self.renderes = {} K = np.array([[1066.778, 0, 312.9869], [ 0, 1067.487, 241.3109], [0, 0, 1]]) ZNEAR = 0.25 ZFAR = 6.0 for name, idx in obj_name_2_idx.items(): model_dir = f'{p_ycb}/models/{name}' width = 640 height = 480 brightness_ratios = [0.3] # add for each camera calibration a costum renderer self.renderes[idx] = [Render_Py_Light(model_dir, K1, width, height, ZNEAR, ZFAR, brightness_ratios=brightness_ratios), Render_Py_Light(model_dir, K2, width, height, ZNEAR, ZFAR, brightness_ratios=brightness_ratios)] def render(self, obj_idx, r_mat, trans, noise, cam): """[summary] Parameters ---------- obj_idx : int 0 - (max_obj-1) r_mat : np.array 3x3 [description] trans : np.array 3 translaton xyz noise : [type] [description] cam : int 0 - 1 what set of camera parameters should be used """ rend = self.renderes[obj_idx][cam] r_quat = mat2quat(r_mat) rgb, depth = rend.render(r_quat, t, light_position=[ 0, 0, -1], light_intensity=[0, 0, 0], brightness_k=0) # how can i verfiy that anything works ? def file_path(string): if os.path.isfile(string): return string else: raise NotADirectoryError(string) def get_flags(): parser = argparse.ArgumentParser() parser.add_argument('--exp', type=file_path, default='yaml/exp/exp_ws_motion_train.yml', # required=True, help='The main experiment yaml file.') parser.add_argument('--env', type=file_path, default='yaml/env/env_natrix_jonas.yml', help='The environment yaml file.') return parser.parse_args() if __name__ == "__main__": args = get_flags() exp = ConfigLoader().from_file(args.exp).get_FullLoader() env = ConfigLoader().from_file(args.env).get_FullLoader() dataset_train = GenericDataset( cfg_d=exp['d_train'], cfg_env=env) K1 = np.array([[1066.778, 0, 312.9869], [ 0, 1067.487, 241.3109], [0, 0, 1]]) K2 = np.array([[1066.778, 0, 312.9869], [ 0, 1067.487, 241.3109], [0, 0, 1]]) obj_name_2_idx = copy.deepcopy(dataset_train._backend._name_to_idx) RendererYCB('/media/scratch1/jonfrey/datasets/YCB_Video_Dataset', obj_name_2_idx=obj_name_2_idx, K1=K1, K2=K2) ``` #### File: src/loaders_v2/dataset_generic.py ```python from loaders_v2 import YCB, Backend import random import time import torch class GenericDataset(): def __init__(self, cfg_d, cfg_env): self.overfitting_nr_idx = cfg_d['output_cfg'].get( 'overfitting_nr_idx', -1) if cfg_d['name'] == "ycb": self._backend = self._backend = YCB(cfg_d=cfg_d, cfg_env=cfg_env) else: raise ValueError('dataset not implemented in cfg_d') self._obj_list_sym = cfg_d['obj_list_sym'] self._obj_list_fil = cfg_d['obj_list_fil'] self._batch_list = self._backend._batch_list self._force_one_object_visible = cfg_d['output_cfg']['force_one_object_visible'] self._no_list_for_sequence_len_one = cfg_d['output_cfg'].get( 'no_list_for_sequence_len_one', False) if self._no_list_for_sequence_len_one and \ cfg_d['output_cfg'].get('seq_length', 1): raise ValueError( 'Its not possible to return the batch not as a list if the sequence length is larger than 1.') if self._obj_list_fil is not None: self._batch_list = [ x for x in self._batch_list if x[0] in self._obj_list_fil] self._length = len(self._batch_list) self._backend._length = len(self._batch_list) def __len__(self): return self._length def __str__(self): string = "Generic Dataloader of length %d" % len(self) string += "\n Backbone is set to %s" % self._backend return string @property def visu(self): return self._backend.visu @visu.setter def visu(self, vis): self._backend.visu = vis @property def sym_list(self): return self._obj_list_sym @property def refine(self): return self._backend.refine @refine.setter def refine(self, refine): self._backend.refine = refine @property def seq_length(self): return len(self._batch_list[0][2]) def get_num_points_mesh(self, refine=False): # onlt implemented for backwards compatability. Refactor this if refine == False: return self._backend._num_pt_mesh_small else: return self._backend._num_pt_mesh_large def __getitem__(self, index): if self.overfitting_nr_idx != -1: index = random.randrange(0, self.overfitting_nr_idx) * 1000 % self._length seq = [] one_object_visible = False # iterate over a sequence specified in the batch list fails = 0 for k in self._batch_list[index][2]: tmp = False while type(tmp) is bool: num = '0' * int(6 - len(str(k))) + str(k)# tmp = self._backend.getElement( desig=f'{self._batch_list[index][1]}/{num}', obj_idx=self._batch_list[index][0]) if type (tmp) is bool: fails += 1 index = random.randrange(0, len(self)-1) if self.overfitting_nr_idx != -1: index = random.randrange( 0, self.overfitting_nr_idx) * 1000 % self._length k = self._batch_list[index][2][0] seq.append(tmp) return seq ``` #### File: loaders_v2/laval/data.py ```python from scipy import ndimage import numpy as np import random from skimage.color import rgb2hsv, hsv2rgb def add_hsv_noise(rgb, hue_offset, saturation_offset, value_offset, proba=0.5): mask = np.all(rgb != 0, axis=2) hsv = rgb2hsv(rgb/255) if random.uniform(0, 1) > proba: hsv[:, :, 0] = ( hsv[:, :, 0] + random.uniform(-hue_offset, hue_offset)) % 1 if random.uniform(0, 1) > proba: hsv[:, :, 1] = ( hsv[:, :, 1] + random.uniform(-saturation_offset, saturation_offset)) % 1 if random.uniform(0, 1) > proba: hsv[:, :, 2] = ( hsv[:, :, 2] + random.uniform(-value_offset, value_offset)) % 1 rgb = hsv2rgb(hsv) * 255 return rgb.astype(np.uint8) * mask[:, :, np.newaxis] def depth_blend(rgb1, depth1, rgb2, depth2): new_depth2 = depth2.copy() new_depth1 = depth1.copy() rgb1_mask = np.all(rgb1 == 0, axis=2) rgb2_mask = np.all(rgb2 == 0, axis=2) rgb1_mask = ndimage.binary_dilation(rgb1_mask) new_depth2[rgb2_mask] = -100000 new_depth1[rgb1_mask] = -100000 mask = (new_depth1 < new_depth2) pos_mask = mask.astype(np.uint8) neg_mask = (mask == False).astype(np.uint8) masked_rgb_occluder = rgb1 * pos_mask[:, :, np.newaxis] masked_rgb_object = rgb2 * neg_mask[:, :, np.newaxis] masked_depth_occluder = depth1 * pos_mask masked_depth_object = depth2 * neg_mask blend_rgb = masked_rgb_occluder + masked_rgb_object blend_depth = masked_depth_occluder + masked_depth_object return blend_rgb, blend_depth, pos_mask def gaussian_noise(img, gaussian_std): type = img.dtype copy = img.astype(np.float) gaussian_noise = np.random.normal(0, gaussian_std, img.shape) copy = (gaussian_noise + copy) if type == np.uint8: copy[copy < 0] = 0 copy[copy > 255] = 255 return copy.astype(type) def color_blend(rgb1, depth1, rgb2, depth2): mask = np.all(rgb1 == 0, axis=2) mask = ndimage.binary_dilation(mask).astype(mask.dtype) depth1[mask] = 0 rgb1[mask, :] = 0 mask = mask.astype(np.uint8) new_depth = depth2 * mask + depth1 new_color = rgb2 * mask[:, :, np.newaxis] + rgb1 return new_color.astype(np.uint8), new_depth def show_frames(rgbA, depthA, rgbB, depthB): import matplotlib.pyplot as plt fig, axis = plt.subplots(2, 3) ax1, ax2, ax5 = axis[0, :] ax3, ax4, ax6 = axis[1, :] ax1.imshow(rgbA.astype(np.uint8)) ax2.imshow(rgbB.astype(np.uint8)) ax3.imshow(depthA) ax4.imshow(depthB) ax5.imshow((rgbA - rgbB).sum(axis=2)) ax6.imshow(depthA - depthB) plt.show() def compute_2Dboundingbox(pose, camera, scale_size=230, scale=(1, 1, 1)): obj_x = pose.matrix[0, 3] * scale[0] obj_y = pose.matrix[1, 3] * scale[1] obj_z = pose.matrix[2, 3] * scale[2] offset = scale_size / 2 points = np.ndarray((4, 3), dtype=np.float) points[0] = [obj_x - offset, obj_y - offset, obj_z] # top left points[1] = [obj_x - offset, obj_y + offset, obj_z] # top right points[2] = [obj_x + offset, obj_y - offset, obj_z] # bottom left points[3] = [obj_x + offset, obj_y + offset, obj_z] # bottom right return camera.project_points(points).astype(np.int32) def project_center(pose, camera, scale=(1, 1, 1)): obj_x = pose.matrix[0, 3] * scale[0] obj_y = pose.matrix[1, 3] * scale[1] obj_z = pose.matrix[2, 3] * scale[2] points = np.ndarray((1, 3), dtype=np.float) points[0] = [obj_x, obj_y, obj_z] return camera.project_points(points).astype(np.int32) def normalize_scale(color, depth, boundingbox, output_size=(100, 100)): import cv2 left = np.min(boundingbox[:, 1]) right = np.max(boundingbox[:, 1]) top = np.min(boundingbox[:, 0]) bottom = np.max(boundingbox[:, 0]) # Compute offset if bounding box goes out of the frame (0 padding) h, w, c = color.shape crop_w = right - left crop_h = bottom - top color_crop = np.zeros((crop_h, crop_w, 3), dtype=color.dtype) depth_crop = np.zeros((crop_h, crop_w), dtype=np.float) top_offset = abs(min(top, 0)) bottom_offset = min(crop_h - (bottom - h), crop_h) right_offset = min(crop_w - (right - w), crop_w) left_offset = abs(min(left, 0)) top = max(top, 0) left = max(left, 0) bottom = min(bottom, h) right = min(right, w) color_crop[top_offset:bottom_offset, left_offset:right_offset, :] = color[top:bottom, left:right, :] depth_crop[top_offset:bottom_offset, left_offset:right_offset] = depth[top:bottom, left:right] resized_rgb = cv2.resize(color_crop, output_size, interpolation=cv2.INTER_NEAREST) resized_depth = cv2.resize( depth_crop, output_size, interpolation=cv2.INTER_NEAREST) mask_rgb = resized_rgb != 0 mask_depth = resized_depth != 0 resized_depth = resized_depth.astype(np.uint16) final_rgb = resized_rgb * mask_rgb final_depth = resized_depth * mask_depth return final_rgb, final_depth def combine_view_transform(vp, view_transform): """ combines a camera space transform with a camera axis dependent transform. Whats important here is that view transform's translation represent the displacement from each axis, and rotation from each axis. The rotation is applied around the translation point of view_transform. :param vp: :param view_transform: :return: """ camera_pose = vp.copy() R = camera_pose.rotation T = camera_pose.translation rand_R = view_transform.rotation rand_T = view_transform.translation rand_R.combine(R) T.combine(rand_R) rand_T.combine(T) return rand_T def image_blend(foreground, background): """ Uses pixel 0 to compute blending mask :param foreground: :param background: :return: """ if len(foreground.shape) == 2: mask = foreground[:, :] == 0 else: mask = foreground[:, :, :] == 0 mask = np.all(mask, axis=2)[:, :, np.newaxis] return background * mask + foreground def compute_axis(pose, camera): points = np.ndarray((4, 3), dtype=np.float) points[0] = [0, 0, 0] points[1] = [1, 0, 0] points[2] = [0, 1, 0] points[3] = [0, 0, 1] points *= 0.1 camera_points = pose.dot(points) camera_points[:, 0] *= -1 return camera.project_points(camera_points).astype(np.int32) def center_pixel(pose, camera): obj_x = pose.matrix[0, 3] * 1000 obj_y = pose.matrix[1, 3] * 1000 obj_z = pose.matrix[2, 3] * 1000 point = [obj_x, -obj_y, -obj_z] return camera.project_points(np.array([point])).astype(np.uint32) ``` #### File: src/loss/loss_focal.py ```python from torch.nn.modules.loss import _Loss import torch import torch.nn.functional as F class FocalLoss(_Loss): def __init__(self, gamma=2.0, alpha=0.25, size_average=True, per_batch=True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.size_average = size_average self.per_batch = per_batch def forward(self, input_x, target): """ semantic: N x C x H x W object_ids: N x H x W """ N, C, H, W = input_x.shape target = target logp = F.log_softmax(input_x, dim=1) logp_t = logp.gather(1, target[:, None]) p_t = torch.exp(logp_t) a_t = torch.full(target.shape, self.alpha, dtype=input_x.dtype, device=input_x.device) a_t[target == 0] = (1.0 - self.alpha) loss = -a_t * torch.pow(1.0 - p_t, self.gamma) * logp_t if self.per_batch: return loss.mean(dim=3).mean(dim=2).mean(dim=1) elif self.size_average: return loss.mean() else: return loss.sum() ``` #### File: src/model/efficient_disparity.py ```python import torch from efficientnet_pytorch import EfficientNet from torch import nn from torchvision import transforms def deconv(in_planes, out_planes, bias=False): return nn.Sequential( nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=bias), nn.LeakyReLU(0.1, inplace=True) ) def predict_flow(in_planes): return nn.Conv2d(in_planes, 2, kernel_size=3, stride=1, padding=1, bias=False) def cat(x, y): if x == None: return y else: return torch.cat( [x,y], dim= 1) class EfficientDisparity(nn.Module): def __init__(self, num_classes = 22, backbone= 'efficientnet-b1', seperate_flow_head= False, pred_flow_pyramid=True, pred_flow_pyramid_add=True, ced_real=1, ced_render=1, ced_render_d=1,ced_real_d=1): # tested with b6 super().__init__() self.feature_extractor = EfficientNet.from_pretrained(backbone) self.size = self.feature_extractor.get_image_size( backbone ) self.seperate_flow_head = seperate_flow_head self.ced_real = ced_real self.ced_render = ced_render self.ced_real_d = ced_real_d self.ced_render_d = ced_render_d self.pred_flow_pyramid_add = pred_flow_pyramid_add self.pred_flow_pyramid = pred_flow_pyramid idxs, feats, res = self.feature_extractor.layer_info( torch.ones( (4,3,self.size, self.size))) if ced_render_d > 0 or ced_real_d > 0: self.depth_backbone = True else: self.depth_backbone = False if self.depth_backbone: self.feature_extractor_depth = EfficientNet.from_name(backbone, in_channels=1) r = res[0] self.idx_extract = [] self.feature_sizes = [] for i in range(len(idxs)): if r != res[i]: self.idx_extract.append(i-1) r = res[i] self.feature_sizes.append( feats[i-1] ) self.idx_extract.append(len(idxs)-1) self.feature_sizes.append( feats[len(idxs)-1] ) self._num_classes = num_classes dc = [] pred_flow_pyramid = [] upsample_flow_layers = [] self.feature_sizes = [8] + self.feature_sizes label_feat = [16,8, num_classes] label_layers = [] label_i = -1 for i in range( 1, len(self.feature_sizes) ): if i == 1: inc_feat_0 = (int(ced_real>0) + int(ced_render>0) + int(ced_render_d>0) + int(ced_real_d>0)) * self.feature_sizes[-i ] else: inc_feat_0 = (int(ced_real>=i) + int(ced_render>=i) + int(ced_render_d>=i) + int(ced_real_d>=i) + 1 ) * self.feature_sizes[-i] if self.pred_flow_pyramid_add and self.pred_flow_pyramid: inc_feat_0 += 2 out_feat = self.feature_sizes[- (i+1) ] #leave this number for now on constant dc.append( deconv( inc_feat_0 , out_feat ) ) print( 'Network inp:', inc_feat_0, ' out: ', out_feat ) if i > len(self.feature_sizes)-len(label_feat): if label_i == -1: inc_feat_label = inc_feat_0 else: inc_feat_label = label_feat[label_i] label_i += 1 out_feat_label = label_feat[label_i] label_layers.append( deconv( inc_feat_label , out_feat_label, bias=True ) ) if self.pred_flow_pyramid: pred_flow_pyramid.append( predict_flow( inc_feat_0 ) ) upsample_flow_layers.append( nn.ConvTranspose2d( 2, 2, 4, 2, 1, bias=False)) label_layers.append( deconv(label_feat[-2], label_feat[-1], bias=True) ) self.label_layers = nn.ModuleList(label_layers) self.deconvs = nn.ModuleList(dc) pred_flow_pyramid.append( predict_flow( self.feature_sizes[0]) ) if self.pred_flow_pyramid: self.pred_flow_pyramid= nn.ModuleList( pred_flow_pyramid ) self.upsample_flow_layers = nn.ModuleList(upsample_flow_layers) self.up_in = torch.nn.UpsamplingBilinear2d(size=(self.size, self.size)) self.input_trafos = transforms.Compose([ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) self.norm_depth = transforms.Normalize([0.485,0.485], [0.229,0.229]) self.up_out = torch.nn.UpsamplingNearest2d(size=(480, 640)) self.up_out_bl = torch.nn.UpsamplingBilinear2d(size=(480, 640)) self.up_nn_in= torch.nn.UpsamplingNearest2d(size=(self.size, self.size)) def forward(self, data, idx=False, label=None): """Forward pass Args: data ([torch.tensor]): BS,C,H,W (C=6) if self.depth_backbone: C = 8 else: C = 6 idx ([torch.tensor]): BS,1 starting for first object with 0 endind with num_classes-1 label ([type], optional): [description]. Defaults to None. Returns: flow ([torch.tensor]): BS,2,H,W segmentation ([torch.tensor]): BS,num_classes,H,W """ # is it smart to have the residual skip connections only for the real image of course the information should be given for the real image but therfore the network needs to learn how to fully encode the rendered image correctly # data BS, C, H, W BS,C,H,W = data.shape real = self.up_in(data[:,:3] ) render = self.up_in(data[:,3:6] ) if self.depth_backbone: data[:,6:] = data[:,6:]/10000 for i in range(BS): real[i] = self.input_trafos( real[i] ) render[i] = self.input_trafos( render[i] ) if self.depth_backbone: real_d = self.up_nn_in(data[:,6][:,None,:,:] ) render_d = self.up_nn_in(data[:,7][:,None,:,:] ) feat_real_d = self.feature_extractor_depth.extract_features_layerwise( real_d , idx_extract = self.idx_extract[-(self.ced_real_d):]) feat_render_d = self.feature_extractor_depth.extract_features_layerwise( render_d , idx_extract = self.idx_extract[-(self.ced_render_d):]) feat_real = self.feature_extractor.extract_features_layerwise( real , idx_extract = self.idx_extract) feat_render = self.feature_extractor.extract_features_layerwise( render, idx_extract = self.idx_extract) pred_flow_pyramid_feat = [] x = None for j in range( 1,len( self.deconvs)+1 ): # calculate input: # accumulate input to each layer if j-1 < self.ced_real: x = cat( x, feat_real[-j] ) if j-1 < self.ced_render: x = cat( x, feat_render[-j]) if j-1 < self.ced_real_d: x = cat( x, feat_real_d[-j]) if j-1 < self.ced_render_d: x = cat( x, feat_render_d[-j]) if j > 1 and self.pred_flow_pyramid_add: dim = x.shape[3] # upsample flow f_up = self.upsample_flow_layers[j-2]( pred_flow_pyramid_feat[-1]) [:,:,:dim,:dim] x = cat( x, f_up ) # predict flow at each level if self.pred_flow_pyramid: pred_flow_pyramid_feat.append( self.pred_flow_pyramid[ j-1 ](x) ) try: dim = feat_real[-(j+1)].shape[3] pred_flow_pyramid_feat[-1] = pred_flow_pyramid_feat[-1][:,:,:dim,:dim] except: pass if j == len(self.deconvs) - len(self.label_layers)+2 : # clone features for mask prediction. # here the conv are with bias !!! segmentation = x.clone() # apply upcovn layer x = self.deconvs[j-1](x) try: dim = feat_real[-(j+1)].shape[3] x = x[:,:,:dim,:dim] except: pass # predict label for l in self.label_layers: segmentation = l(segmentation) segmentation = self.up_out(segmentation) # predict flow pred_flow_pyramid_feat.append( self.pred_flow_pyramid[-1](x) ) pred_flow_pyramid_feat.append( self.up_out_bl( pred_flow_pyramid_feat[-1] ) ) if label is None: label = segmentation.argmax(dim=1) return pred_flow_pyramid_feat, segmentation if __name__ == "__main__": model = EfficientDisparity(num_classes = 22, backbone= 'efficientnet-b2', seperate_flow_head= False, pred_flow_pyramid=True, pred_flow_pyramid_add=True, ced_real=3, ced_render=3, ced_render_d=2,ced_real_d=2) BS = 2 H = 480 W = 640 C = 8 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') data = torch.ones( (BS,C,H,W), device=device ) model = model.to(device) idx = torch.linspace(0,BS-1,BS)[:,None] out = model(data, idx = idx) # for i in range(0,7): # model = EfficientDisparity(num_classes = 22, backbone= f'efficientnet-b{i}', connections_encoder_decoder = 2, depth_backbone = True) ``` #### File: src/rotations/rot_to_quat.py ```python import torch if __name__ == "__main__": import os import sys sys.path.insert(0, os.getcwd()) sys.path.append(os.path.join(os.getcwd() + '/src')) sys.path.append(os.path.join(os.getcwd() + '/lib')) from helper import re_quat from rotations import norm_quat def _copysign(a, b): """ From PyTorch3D see def _copysign(a, b) Return a tensor where each element has the absolute value taken from the, corresponding element of a, with sign taken from the corresponding element of b. This is like the standard copysign floating-point operation, but is not careful about negative 0 and NaN. Args: a: source tensor. b: tensor whose signs will be used, of the same shape as a. Returns: Tensor of the same shape as a with the signs of b. """ signs_differ = (a < 0) != (b < 0) return torch.where(signs_differ, -a, a) def rot_to_quat(matrix, conv='wxyz'): """From PyTorch3D see def matrix_to_quaternion(matrix) Args: rot ([type]): [description] conv (str, optional): [description]. Defaults to 'wxyz'. """ if matrix.shape == (3, 3): matrix = matrix.reshape((1, 3, 3)) if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") zero = matrix.new_zeros((1,)) m00 = matrix[..., 0, 0] m11 = matrix[..., 1, 1] m22 = matrix[..., 2, 2] o0 = 0.5 * torch.sqrt(torch.max(zero, 1 + m00 + m11 + m22)) x = 0.5 * torch.sqrt(torch.max(zero, 1 + m00 - m11 - m22)) y = 0.5 * torch.sqrt(torch.max(zero, 1 - m00 + m11 - m22)) z = 0.5 * torch.sqrt(torch.max(zero, 1 - m00 - m11 + m22)) o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) if conv == 'xyzw': return norm_quat(torch.stack((o1, o2, o3, o0), -1)) elif conv == 'wxyz': return norm_quat(torch.stack((o0, o1, o2, o3), -1)) else: raise Exception('undefined quaternion convention') def test_rot_to_quat(): from scipy.spatial.transform import Rotation as R import numpy as np from scipy.stats import special_ortho_group from rotations import RearangeQuat import time bs = 1000 re_q = RearangeQuat(bs) mat = special_ortho_group.rvs(dim=3, size=bs) quat = R.from_matrix(mat).as_quat() q_test = rot_to_quat(torch.tensor(mat), conv='wxyz') print(quat,'\n \n ', q_test) m = q_test[:,0] > 0 mat2 = R.from_quat( q_test.numpy() ).as_matrix() print("Fiff", torch.sum(torch.norm( torch.tensor(mat-mat2), dim=(1,2) ), dim=0)) #print( "DIF", torch.sum(torch.norm( torch.tensor(quat[m]) - q_test[m], dim=1 ), dim=0)) # q = torch.from_numpy(quat.astype(np.float32)).cuda() # re_q(q, input_format='xyzw') # mat2 = special_ortho_group.rvs(dim=3, size=bs) # quat2 = R.from_matrix(mat2).as_quat() # q2 = torch.from_numpy(quat2.astype(np.float32)).cuda() # re_q(q2, input_format='xyzw') # r1 = R.from_matrix(mat) # R_out = r1 * R.from_matrix(mat2) # print(f'scipy xyzw {R_out.as_quat()}') # st = time.time() # for i in range(0, 1000): # out = compose_quat(q, q2) # print(f'torch wxyz { compose_quat(q, q2) } ') # print(f'took for 1000 iterations of {bs} bs {time.time()-st}s') if __name__ == "__main__": test_rot_to_quat() pass ``` #### File: FlowPose6D/tools/main.py ```python import os import sys sys.path.insert(0, os.getcwd()) sys.path.append(os.path.join(os.getcwd() + '/src')) sys.path.append(os.path.join(os.getcwd() + '/lib')) import shutil import datetime import argparse import signal import coloredlogs coloredlogs.install() import torch from pytorch_lightning import seed_everything,Trainer from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.callbacks import ModelCheckpoint from lightning import TrackNet6D from helper import pad from loaders_v2 import ConfigLoader from helper import move_dataset_to_ssd from helper import move_background def file_path(string): if os.path.isfile(string): return string else: raise NotADirectoryError(string) if __name__ == "__main__": # for reproducability seed_everything(42) def signal_handler(signal, frame): print('exiting on CRTL-C') sys.exit(0) # this is needed for leonhard to use interactive session and dont freeze on # control-C !!!! signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) parser = argparse.ArgumentParser() parser.add_argument('--exp', type=file_path, default='/home/jonfrey/PLR3/yaml/exp/exp_natrix.yml', # required=True, help='The main experiment yaml file.') parser.add_argument('--env', type=file_path, default='yaml/env/env_natrix_jonas.yml', help='The environment yaml file.') args = parser.parse_args() exp_cfg_path = args.exp env_cfg_path = args.env exp = ConfigLoader().from_file(exp_cfg_path).get_FullLoader() env = ConfigLoader().from_file(env_cfg_path).get_FullLoader() if exp['model_path'].split('/')[-2] == 'debug': p = '/'.join(exp['model_path'].split('/')[:-1]) try: shutil.rmtree(p) except: pass timestamp = '_' else: timestamp = datetime.datetime.now().replace(microsecond=0).isoformat() p = exp['model_path'].split('/') p.append(str(timestamp) + '_' + p.pop()) new_path = '/'.join(p) exp['model_path'] = new_path model_path = exp['model_path'] # copy config files to model path if not os.path.exists(model_path): os.makedirs(model_path) print((pad("Generating network run folder"))) else: print((pad("Network run folder already exits"))) exp_cfg_fn = os.path.split(exp_cfg_path)[-1] env_cfg_fn = os.path.split(env_cfg_path)[-1] print(pad(f'Copy {env_cfg_path} to {model_path}/{exp_cfg_fn}')) shutil.copy(exp_cfg_path, f'{model_path}/{exp_cfg_fn}') shutil.copy(env_cfg_path, f'{model_path}/{env_cfg_fn}') exp, env = move_dataset_to_ssd(env, exp) exp, env = move_background(env, exp) dic = {'exp': exp, 'env': env} model = TrackNet6D(**dic) early_stop_callback = EarlyStopping( monitor='avg_val_disparity', patience=exp.get('early_stopping_cfg', {}).get('patience', 100), strict=False, verbose=True, mode='min', min_delta = exp.get('early_stopping_cfg', {}).get('min_delta', -0.1) ) checkpoint_callback = ModelCheckpoint( filepath=exp['model_path'] + '/{epoch}-{avg_val_disparity_float:.4f}', verbose=True, monitor="avg_val_disparity", mode="min", prefix="", save_last=True, save_top_k=10, ) if exp.get('checkpoint_restore', False): checkpoint = torch.load( exp['checkpoint_load'], map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) # with torch.autograd.set_detect_anomaly(True): # early_stop_callback=early_stop_callback, trainer = Trainer(**exp['trainer'], checkpoint_callback=checkpoint_callback, default_root_dir=exp['model_path'], callbacks=[early_stop_callback]) if exp.get('model_mode', 'fit') == 'fit': trainer.fit(model) elif exp.get('model_mode', 'fit') == 'test': trainer.test(model) else: print("Wrong model_mode defined in exp config") raise Exception ```
{ "source": "JonasFrey96/PLR2", "score": 2 }
#### File: src/helper/helper.py ```python import yagmail from sklearn.neighbors import NearestNeighbors import yaml import numpy as np import collections import torch import copy def flatten_list(d, parent_key='', sep='_'): items = [] for num, element in enumerate(d): new_key = parent_key + sep + str(num) if parent_key else str(num) if isinstance(element, collections.MutableMapping): items.extend(flatten_dict(element, new_key, sep=sep).items()) else: if isinstance(element, list): if isinstance(element[0], dict): items.extend(flatten_list(element, new_key, sep=sep)) continue items.append((new_key, element)) return items def flatten_dict(d, parent_key='', sep='_'): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten_dict(v, new_key, sep=sep).items()) else: if isinstance(v, list): if isinstance(v[0], dict): items.extend(flatten_list(v, new_key, sep=sep)) continue items.append((new_key, v)) return dict(items) def norm_quat(q): # ToDo raise type and dim error return q / torch.sqrt(torch.sum(q * q)) def pad(s, sym='-', p='l', length=80): if len(s) > length: return s else: if p == 'c': front = int((length - len(s)) / 2) s = sym * front + s back = int(length - len(s)) s = s + sym * back if p == 'l': back = int(length - len(s)) s = s + sym * back return s def re_quat(q, input_format): if input_format == 'xyzw': if isinstance(q, torch.Tensor): v0 = q[0].clone() else: v0 = copy.deepcopy(q[0]) q[0] = q[3] q[3] = q[2] q[2] = q[1] q[1] = v0 return q elif input_format == 'wxyz': if isinstance(q, torch.Tensor): v0 = q[0].clone() else: v0 = copy.deepcopy(q[0]) q[0] = q[1] q[1] = q[2] q[2] = q[3] q[3] = v0 return q def send_email(text): yag = yagmail.SMTP('trackthisplr', "TrackThis") contents = [ "Run is finished!", text ] yag.send('<EMAIL>', 'PLR - TrackThis - Lagopus', contents) yag.send('<EMAIL>', 'PLR - TrackThis - Lagopus', contents) def compose_quat(p, q, device): """ input is wxyz """ q = norm_quat(re_quat(q.squeeze(), 'wxyz')).unsqueeze(0) p = norm_quat(re_quat(p.squeeze(), 'wxyz')).unsqueeze(0) product = torch.zeros( (max(p.shape[0], q.shape[0]), 4), dtype=torch.float32, device=device) product[:, 3] = p[:, 3] * q[:, 3] - torch.sum(p[:, :3] * q[:, :3], (1)) product[:, :3] = (p[:, None, 3] * q[:, :3] + q[:, None, 3] * p[:, :3] + torch.cross(p[:, :3], q[:, :3])) return re_quat(product.squeeze(0), 'xyzw') def rotation_angle(q, device): # in radians q = norm_quat(q) unit_r = torch.t(torch.tensor( [[0, 0, 0, 1]], dtype=torch.float32, device=device)) return torch.asin(torch.mm(q, unit_r)) * 2 def nearest_neighbor(src, dst): assert src.shape[1] == dst.shape[1] neigh = NearestNeighbors(n_neighbors=1, n_jobs=8) neigh.fit(dst) distances, indices = neigh.kneighbors(src, return_distance=True) return distances.ravel(), indices.ravel() def replace_item(obj, key, replace_value): for k, v in obj.items(): if isinstance(v, dict): obj[k] = replace_item(v, key, replace_value) if key in obj: obj[key] = replace_value return obj def generate_unique_idx(num, max_idx): a = random.sample(range(0, max_idx), k=min(num, max_idx)) while len(a) < num: a = a + random.sample( range(0, max_idx), k=min(max_idx, num - len(a))) return a def get_bbox_480_640(label): border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680] img_width = 480 img_length = 640 # print(type(label)) rows = np.any(label, axis=1) cols = np.any(label, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] rmax += 1 cmax += 1 r_b = rmax - rmin for tt in range(len(border_list)): if r_b > border_list[tt] and r_b < border_list[tt + 1]: r_b = border_list[tt + 1] break c_b = cmax - cmin for tt in range(len(border_list)): if c_b > border_list[tt] and c_b < border_list[tt + 1]: c_b = border_list[tt + 1] break center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)] rmin = center[0] - int(r_b / 2) rmax = center[0] + int(r_b / 2) cmin = center[1] - int(c_b / 2) cmax = center[1] + int(c_b / 2) if rmin < 0: delt = -rmin rmin = 0 rmax += delt if cmin < 0: delt = -cmin cmin = 0 cmax += delt if rmax > img_width: delt = rmax - img_width rmax = img_width rmin -= delt if cmax > img_length: delt = cmax - img_length cmax = img_length cmin -= delt return rmin, rmax, cmin, cmax ``` #### File: src/helper/plotting.py ```python import k3d import numpy as np def plot_points(x, point_size = 0.005, c='g'): """ x: point_nr,3 """ if c == 'b': k = 245 elif c == 'g': k =25811000 elif c == 'r': k =11801000 elif c == 'black': k =2580 else: k =2580 colors = np.ones(x.shape[0])*k plot = k3d.plot(name='points') print(colors.shape) plt_points = k3d.points(x, colors.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader='3d' plot.display() def plot_two_pc(x, y, point_size = 0.005, c1='g',c2='r' ): if c1 == 'b': k = 245 elif c1 == 'g': k =25811000 elif c1 == 'r': k =11801000 elif c1 == 'black': k =2580 else: k =2580 if c2 == 'b': k2 = 245 elif c2 == 'g': k2 =25811000 elif c2 == 'r': k2 =11801000 elif c2 == 'black': k2 =2580 else: k2 =2580 col1 = np.ones(x.shape[0])*k col2 = np.ones(y.shape[0])*k2 plot = k3d.plot(name='points') plt_points = k3d.points(x, col1.astype(np.uint32), point_size=point_size) plot += plt_points plt_points = k3d.points(y, col2.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader='3d' plot.display() ``` #### File: src/helper/postprocess.py ```python import numpy as np import os import sys sys.path.append('/home/jonfrey/PLR/src/') sys.path.append('/home/jonfrey/PLR/src/dense_fusion') from math import pi from PIL import Image from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from helper import re_quat, compose_quat, rotation_angle from estimation.filter import Linear_Estimator, Kalman_Filter from estimation.state import State_R3xQuat, State_SE3, points from estimation.errors import ADD, ADDS, translation_error, rotation_error from visu import plot_pcd, SequenceVisualizer from copy import deepcopy from scipy.spatial.transform import Rotation as R import pandas as pd import pickle as pkl import copy import glob import k3d sym_list = [12, 15, 18, 19, 20] def kf_sequence(data_old, var_motion, var_sensor, params): ## extract relevant data data = copy.deepcopy(data_old) data = list(data) for i, seq in enumerate(data): # print('Loading sequence {}'.format(i)) # setup of filter idx = np.squeeze(seq[0]['dl_dict']['idx']) model_points_np = np.squeeze(seq[0]['dl_dict']['model_points']) model_points = points(model_points_np) ## set up kalman filter prior = State_R3xQuat([0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]) prior.add_noise([0, 0, 0, 0, 2 * pi, 3]) prior_variance = State_R3xQuat([10,10,10,10,10,10,20*pi]) prior_variance = prior_variance.state.reshape(7,) kf = Kalman_Filter(state_type = 'State_R3xQuat', motion_model = 'Linear_Motion', trajectory = None, observations = None, variance_motion = var_motion, variance_sensor = var_sensor, params = params) kf.set_prior(prior, prior_variance) for obs_data in seq: ## run the kalman filter over the observation obs_t = np.array(obs_data['final_pred_obs']['t']) obs_r = re_quat(np.array(obs_data['final_pred_obs']['r_wxyz']), 'wxyz') obs_c = obs_data['final_pred_obs']['c'] gt_pose = State_R3xQuat(np.concatenate((obs_data['dl_dict']['gt_trans'][0], re_quat(copy.deepcopy(obs_data['dl_dict']['gt_rot_wxyz'][0]), 'wxyz')), axis=0)) obs = State_R3xQuat(np.concatenate((obs_t, obs_r), axis=0)) # need to convert quat to xyzw variance = np.true_divide(var_sensor, obs_c) f_pose, _ = kf.update(obs, variance) kf.predict() filter_pred = {'t': f_pose.state[0:3, 0], 'r_wxyz': re_quat(copy.deepcopy(f_pose.state[3:7, 0]), 'xyzw')} # calculate the ADD error if idx in sym_list: filter_error_ADD = ADDS(model_points, gt_pose, f_pose) else: filter_error_ADD = ADD(model_points, gt_pose, f_pose) obs_data['filter_pred'] = filter_pred obs_data['ADD'] = filter_error_ADD obs_data['translation_error'] = translation_error(gt_pose, f_pose) obs_data['rotation_error'] = rotation_error(gt_pose, f_pose) # print('Processed sequence.') return data ``` #### File: src/visu/visualizer.py ```python import numpy as np import sys import os from PIL import Image from visu.helper_functions import save_image from scipy.spatial.transform import Rotation as R from helper import re_quat import copy import torch import numpy as np import k3d class Visualizer(): def __init__(self, p_visu, writer=None): if p_visu[-1] != '/': p_visu = p_visu + '/' self.p_visu = p_visu self.writer = writer if not os.path.exists(self.p_visu): os.makedirs(self.p_visu) def plot_estimated_pose(self, tag, epoch, img, points, trans=[[0, 0, 0]], rot_mat=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], cam_cx=0, cam_cy=0, cam_fx=0, cam_fy=0, store=False, jupyter=False, w=2): """ tag := tensorboard tag epoch := tensorboard epoche store := ture -> stores the image to standard path path := != None creats the path and store to it path/tag.png img:= original_image, [widht,height,RGB] points:= points of the object model [length,x,y,z] trans: [1,3] rot: [3,3] """ img_d = copy.deepcopy(img) points = np.dot(points, rot_mat.T) points = np.add(points, trans[0, :]) for i in range(0, points.shape[0]): p_x = points[i, 0] p_y = points[i, 1] p_z = points[i, 2] u = int(((p_x / p_z) * cam_fx) + cam_cx) v = int(((p_y / p_z) * cam_fy) + cam_cy) try: img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 img_d[v - w:v + w + 1, u - w:u + w + 1, 1] = 255 img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 except: #print("out of bounce") pass if jupyter: display(Image.fromarray(img_d)) if store: #store_ar = (img_d* 255).round().astype(np.uint8) #print("IMAGE D:" ,img_d,img_d.shape ) save_image(img_d, tag=str(epoch) + tag, p_store=self.p_visu) if self.writer is not None: self.writer.add_image(tag, img_d.astype( np.uint8), global_step=epoch, dataformats='HWC') def plot_bounding_box(self, tag, epoch, img, rmin=0, rmax=0, cmin=0, cmax=0, str_width=2, store=False, jupyter=False, b=None): """ tag := tensorboard tag epoch := tensorboard epoche store := ture -> stores the image to standard path path := != None creats the path and store to it path/tag.png img:= original_image, [widht,height,RGB] """ if isinstance(b, dict): rmin = b['rmin'] rmax = b['rmax'] cmin = b['cmin'] cmax = b['cmax'] # ToDo check Input data img_d = np.array(copy.deepcopy(img)) c = [0, 0, 255] rmin_mi = max(0, rmin - str_width) rmin_ma = min(img_d.shape[0], rmin + str_width) rmax_mi = max(0, rmax - str_width) rmax_ma = min(img_d.shape[0], rmax + str_width) cmin_mi = max(0, cmin - str_width) cmin_ma = min(img_d.shape[1], cmin + str_width) cmax_mi = max(0, cmax - str_width) cmax_ma = min(img_d.shape[1], cmax + str_width) img_d[rmin_mi:rmin_ma, cmin:cmax, :] = c img_d[rmax_mi:rmax_ma, cmin:cmax, :] = c img_d[rmin:rmax, cmin_mi:cmin_ma, :] = c img_d[rmin:rmax, cmax_mi:cmax_ma, :] = c print("STORE", store) img_d = img_d.astype(np.uint8) if store: #store_ar = (img_d* 255).round().astype(np.uint8) save_image(img_d, tag=str(epoch) + tag, p_store=self.p_visu) if jupyter: display(Image.fromarray(img_d)) if self.writer is not None: self.writer.add_image(tag, img_d.astype( np.uint8), global_step=epoch, dataformats='HWC') def plot_pcd(x, point_size=0.005, c='g'): """ x: point_nr,3 """ if c == 'b': k = 245 elif c == 'g': k = 25811000 elif c == 'r': k = 11801000 elif c == 'black': k = 2580 else: k = 2580 colors = np.ones(x.shape[0]) * k plot = k3d.plot(name='points') plt_points = k3d.points(x, colors.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader = '3d' plot.display() def plot_two_pcd(x, y, point_size=0.005, c1='g', c2='r'): if c1 == 'b': k = 245 elif c1 == 'g': k = 25811000 elif c1 == 'r': k = 11801000 elif c1 == 'black': k = 2580 else: k = 2580 if c2 == 'b': k2 = 245 elif c2 == 'g': k2 = 25811000 elif c2 == 'r': k2 = 11801000 elif c2 == 'black': k2 = 2580 else: k2 = 2580 col1 = np.ones(x.shape[0]) * k col2 = np.ones(y.shape[0]) * k2 plot = k3d.plot(name='points') plt_points = k3d.points(x, col1.astype(np.uint32), point_size=point_size) plot += plt_points plt_points = k3d.points(y, col2.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader = '3d' plot.display() class SequenceVisualizer(): def __init__(self, seq_data, images_path, output_path=None): self.seq_data = seq_data self.images_path = images_path self.output_path = output_path def plot_points_on_image(self, seq_no, frame_no, jupyter=False, store=False, pose_type='filtered'): seq_data = self.seq_data images_path = self.images_path output_path = self.output_path frame = seq_data[seq_no][frame_no] unique_desig = frame['dl_dict']['unique_desig'][0] if pose_type == 'ground_truth': # ground truth t = frame['dl_dict']['gt_trans'].reshape(1, 3) rot_quat = re_quat(copy.deepcopy( frame['dl_dict']['gt_rot_wxyz'][0]), 'wxyz') rot = R.from_quat(rot_quat).as_matrix() elif pose_type == 'filtered': # filter pred t = np.array(frame['filter_pred']['t']).reshape(1, 3) rot_quat = re_quat(copy.deepcopy( frame['filter_pred']['r_wxyz']), 'wxyz') rot = R.from_quat(rot_quat).as_matrix() elif pose_type == 'final_pred_obs': # final pred t = np.array(frame['final_pred_obs']['t']).reshape(1, 3) rot_quat = re_quat(copy.deepcopy( frame['final_pred_obs']['r_wxyz']), 'wxyz') rot = R.from_quat(rot_quat).as_matrix() else: raise Exception('Pose type not implemented.') w = 2 if type(unique_desig) != str: im = np.array(Image.open( images_path + unique_desig[0] + '-color.png')) # ycb else: im = np.array(Image.open( images_path + unique_desig + '.png')) # laval img_d = copy.deepcopy(im) dl_dict = frame['dl_dict'] points = copy.deepcopy( seq_data[seq_no][0]['dl_dict']['model_points'][0, :, :]) points = np.dot(points, rot.T) points = np.add(points, t[0, :]) cam_cx = dl_dict['cam_cal'][0][0] cam_cy = dl_dict['cam_cal'][0][1] cam_fx = dl_dict['cam_cal'][0][2] cam_fy = dl_dict['cam_cal'][0][3] for i in range(0, points.shape[0]): p_x = points[i, 0] p_y = points[i, 1] p_z = points[i, 2] u = int(((p_x / p_z) * cam_fx) + cam_cx) v = int(((p_y / p_z) * cam_fy) + cam_cy) try: img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 img_d[v - w:v + w + 1, u - w:u + w + 1, 1] = 255 img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 except: #print("out of bounds") pass img_disp = Image.fromarray(img_d) if jupyter: display(img_disp) if store: outpath = output_path + \ '{}_{}_{}.png'.format(pose_type, seq_no, frame_no) img_disp.save(outpath, "PNG", compress_level=1) print("Saved image to {}".format(outpath)) def save_sequence(self, seq_no, pose_type='filtered', name=''): for fn in range(len(self.seq_data)): self.plot_points_on_image(seq_no, fn, False, True, pose_type) if name: video_name = '{}_{}_{}'.format(name, pose_type, seq_no) else: video_name = '{}_{}'.format(pose_type, seq_no) cmd = "cd {} && ffmpeg -r 10 -i ./filtered_{}_%d.png -vcodec mpeg4 -y {}.mp4".format( self.output_path, seq_no, video_name) os.system(cmd) ```
{ "source": "JonasFrey96/RAFT", "score": 2 }
#### File: JonasFrey96/RAFT/eval.py ```python import sys import os # os.chdir(os.path.join(os.getenv('HOME'), 'RAFT')) sys.path.append('./core') import argparse import cv2 import glob import numpy as np import torch from PIL import Image from raft import RAFT from utils.utils import InputPadder import yaml def file_path(string): if os.path.isfile(string): return string else: raise NotADirectoryError(string) def load_yaml(path): with open(path) as file: res = yaml.load(file, Loader=yaml.FullLoader) return res import coloredlogs coloredlogs.install() import time import argparse from pathlib import Path import gc from utils.utils import InputPadder # Frameworks import torch from torchvision import transforms from torchvision import transforms as tf import numpy as np import imageio import cv2 import time def writeFlowKITTI(filename, uv): uv = 64.0 * uv + 2**15 valid = np.ones([uv.shape[0], uv.shape[1], 1]) uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) cv2.imwrite(filename, uv[..., ::-1]) class DotDict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--scannet_root', type=str, default="/home/jonfrey/datasets/scannet/scans", help='Scannet-Folder') parser.add_argument('--output_dir', type=str, default="/media/scratch2/jonfrey/optical_flow_scannet", help='Output-Folder') parser.add_argument('--limit_scenes', type=int, default=10, help='Number of scenes to generate flow for.') parser.add_argument('--model_checkpoint', type=file_path, default="/media/scratch1/jonfrey/results/rpose/models/raft-sintel.pth", help='RAFT-Model-Checkpoint') parser.add_argument('--device', type=str, default="cuda:0", help='Device') args = parser.parse_args() # SETUP MODEL model_args = DotDict({ 'model': args.model_checkpoint, 'small': False, 'mixed_precision': False, 'alternate_corr': False, } ) os.chdir(os.path.join(os.getenv('HOME'), 'RAFT')) model = torch.nn.DataParallel(RAFT(model_args)) model.load_state_dict(torch.load(model_args.model)) model = model.module model.to(args.device) model.eval() # CREATE RESULT FOLDER Path( args.output_dir).mkdir(parents=True, exist_ok=True) def get_sequence_paths( sub, root, limit_scenes=10): paths = [ str(s) for s in Path(root).rglob("*.jpg") if str(s).find('color') != -1 and int( str(s).split('/')[-3][5:9]) < limit_scenes and int( str(s).split('/')[-1][:-4]) % sub == 0] paths.sort(key= lambda x: int(x.split('/')[-3][5:9]) * 1000000 + int( x.split('/')[-3][10:] ) * 10000 + int( x.split('/')[-1][:-4] ) ) current_scene = "0" # paths.split('/')[-3] paths_sorted = [] for p in paths: if current_scene != p.split('/')[-3]: current_scene = p.split('/')[-3] paths_sorted.append( [p] ) else: paths_sorted[-1].append(p) return paths_sorted # GET ALL SCANNET FILES sequence_paths = get_sequence_paths( sub=10, root=args.scannet_root, limit_scenes= args.limit_scenes) @torch.no_grad() def gen_flow_for_sequence(paths, folder, device): # trick to avoid last frame. Compute flow with itself paths.append( paths[-1] ) for j,p in enumerate( paths[:-1] ): img1 = torch.from_numpy( imageio.imread(p)).to( device=device)[None].type(torch.float) img2 = torch.from_numpy( imageio.imread( paths[j+1])).to( device=device)[None].type(torch.float) _, h, w ,_ = img1.shape img1 = img1.permute(0, 3, 1, 2) img2 = img2.permute(0, 3, 1, 2) tra = tf.Resize(( int(h/2) ,int( w/2))) tra_up = tf.Resize(( h,w)) img1 = tra( img1 ) img2 = tra( img2 ) padder = InputPadder( img1.shape ) img1, img2 = padder.pad(img1,img2) # flow_low, flow_up = model(tra( images ), tra( images_next_frame ), iters=20, test_mode=True) flow_low, flow_up = model( img1, img2, iters=12, test_mode=True) store_file = os.path.join(folder, p.split('/')[-1].replace('.jpg', '.png')) pred = tra_up(flow_up) writeFlowKITTI(store_file , pred[0].permute(1,2,0).cpu().detach().numpy() ) print(p) for paths in sequence_paths: out = os.path.join( args.output_dir, paths[0].split('/')[-3]) Path(out).mkdir(parents=True, exist_ok=True) gen_flow_for_sequence(paths, folder=out, device=args.device) print("Done") ```
{ "source": "JonasFrey96/RPOSE", "score": 2 }
#### File: RPOSE/scripts/time_network.py ```python import os import sys os.chdir(os.path.join(os.getenv('HOME'), 'RPOSE')) sys.path.insert(0, os.getcwd()) sys.path.append(os.path.join(os.getcwd() + '/src')) sys.path.append(os.path.join(os.getcwd() + '/core')) sys.path.append(os.path.join(os.getcwd() + '/segmentation')) from src_utils import DotDict from raft import RAFT import numpy as np model = RAFT(args = DotDict( {'small':False}) ) import torch device = 'cuda:0' BS,H,W,C = 1,480,640,3 half = True inp1 = torch.randn(BS, C,H,W, dtype=torch.float).to(device) inp2 = torch.randn(BS, C,H,W, dtype=torch.float).to(device) model.to(device) model.eval() pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print( pytorch_total_params ) def time_model( model, inp, repetitions = 10): starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) timings=np.zeros((repetitions,1)) #GPU-WARM-UP for _ in range(50): _ = model( *inp) # MEASURE PERFORMANCE with torch.no_grad(): for rep in range(repetitions): starter.record() _ = model(*inp) ender.record() # WAIT FOR GPU SYNC torch.cuda.synchronize() curr_time = starter.elapsed_time(ender) timings[rep] = curr_time mean_syn = np.sum(timings) / repetitions std_syn = np.std(timings) print(mean_syn, std_syn, timings.min(), timings.max()) print("HZ: ", 1/(mean_syn/1000) , " STD in ms : ",(std_syn), " STD in hz : ",1/(std_syn/1000)) print("\nFlow 24") time_model( model, (inp1,inp2,24), repetitions = 100) print("\nFlow 12") time_model( model, (inp1,inp2,12), repetitions = 100) print("\nFlow 6") time_model( model, (inp1,inp2,6), repetitions = 100) print("\nFlow 2") time_model( model, (inp1,inp2,2), repetitions = 100) from models_asl import FastSCNN model = FastSCNN(num_classes= 2, aux = False, extraction = {"active":False, "layer":'learn_to_down'}, input_channels = 6) model.to(device) model.eval() print("\nSEGMENTATION") pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print( pytorch_total_params ) time_model( model, (torch.cat ( [inp1,inp2],dim=1),), repetitions = 1000) ``` #### File: common/ycb/get_ycb_dataloader.py ```python import torch.utils.data as data from .ycb import YCB __all__ = "get_ycb_dataloader" def get_ycb_dataloader(cfg, env): train_dataset = YCB( root=env["ycb"], mode=cfg["mode"], image_size=cfg["image_size"], cfg_d=cfg["cfg_ycb"], ) train_loader = data.DataLoader(train_dataset, **cfg["loader"], drop_last=True) return train_loader ``` #### File: flow/pose_estimation/flow_to_trafo_PnP.py ```python import torch import numpy as np import copy from scipy.spatial.transform import Rotation as R import cv2 from .pose_estimate_violations import Violation def filter_pcd(pcd, tol=0.05): """ input: pcd : Nx3 torch.float32 returns: mask : N torch.bool """ return pcd[:, 2] > tol def rvec_tvec_to_H(r_vec, t_vec): """ input: r_vec: 3 torch.float32 t_vec: 3 torch.float32 returns: h: np.array( [4,4] ) """ rot = R.from_rotvec(r_vec) h = np.eye(4) h[:3, :3] = rot.as_matrix() h[:3, 3] = t_vec.T return h def get_H(pcd): pcd_ret = torch.ones( (pcd.shape[0], pcd.shape[1] + 1), device=pcd.device, dtype=pcd.dtype ) pcd_ret[:, :3] = pcd return pcd_ret def flow_to_trafo_PnP(*args, **kwargs): """ input: real_br: torch.tensor torch.Size([2]) real_tl: torch.tensor torch.Size([2]) ren_br: torch.tensor torch.Size([2]) ren_tl: torch.tensor torch.Size([2]) flow_mask: torch.Size([480, 640]) u_map: torch.Size([480, 640]) v_map: torch.Size([480, 640]) K_ren: torch.Size([3, 3]) render_d: torch.Size([480, 640]) h_render: torch.Size([4, 4]) h_real_est: torch.Size([4, 4]) output: suc: bool h: torch.Size([4, 4]) """ real_br = kwargs["real_br"] real_tl = kwargs["real_tl"] ren_br = kwargs["ren_br"] ren_tl = kwargs["ren_tl"] flow_mask = kwargs["flow_mask"] u_map = kwargs["u_map"] v_map = kwargs["v_map"] K_ren = kwargs["K_ren"] K_real = kwargs["K_real"] render_d = kwargs["render_d"] h_render = kwargs["h_render"] h_real_est = kwargs["h_real_est"] typ = u_map.dtype # Grid for upsampled real grid_real_h = torch.linspace( int(real_tl[0]), int(real_br[0]), 480, device=u_map.device )[:, None].repeat(1, 640) grid_real_w = torch.linspace( int(real_tl[1]), int(real_br[1]), 640, device=u_map.device )[None, :].repeat(480, 1) # Project depth map to the pointcloud real cam_scale = 10000 real_pixels = torch.stack( [ grid_real_w[flow_mask], grid_real_h[flow_mask], torch.ones(grid_real_h.shape, device=u_map.device, dtype=u_map.dtype)[flow_mask], ], dim=1, ).type(typ) grid_ren_h = torch.linspace(int(ren_tl[0]), int(ren_br[0]), 480, device=u_map.device)[ :, None ].repeat(1, 640) grid_ren_w = torch.linspace(int(ren_tl[1]), int(ren_br[1]), 640, device=u_map.device)[ None, : ].repeat(480, 1) crop_d_pixels = torch.stack( [ grid_ren_w.flatten(), grid_ren_h.flatten(), torch.ones(grid_ren_w.shape, device=u_map.device, dtype=torch.float32).flatten(), ], dim=1, ).type(typ) K_inv = torch.inverse(K_ren.type(torch.float32)).type(typ) P_crop_d = K_inv @ crop_d_pixels.T.type(typ) P_crop_d = P_crop_d.type(torch.float32) * render_d.flatten() / cam_scale P_crop_d = P_crop_d.T render_d_ind_h = torch.linspace(0, 479, 480, device=u_map.device)[:, None].repeat( 1, 640 ) render_d_ind_w = torch.linspace(0, 639, 640, device=u_map.device)[None, :].repeat( 480, 1 ) render_d_ind_h = torch.clamp( (render_d_ind_h - u_map).type(torch.float32), 0, 479 ).type(torch.long)[flow_mask] render_d_ind_w = torch.clamp( (render_d_ind_w - v_map).type(torch.float32), 0, 639 ).type(torch.long)[flow_mask] if render_d_ind_h.shape[0] < 50: return ( False, torch.eye(4, dtype=u_map.dtype, device=u_map.device), np.inf, 0, Violation.MINIMAL_NR_VALID_CONSTRAINT, ) # Avoid two different 3D points pointing to the same 2D pixels res, indices = np.unique( torch.stack([render_d_ind_h, render_d_ind_w]).numpy(), axis=1, return_index=True ) indices = torch.from_numpy(indices) render_d_ind_h = render_d_ind_h[indices] render_d_ind_w = render_d_ind_w[indices] real_pixels = real_pixels[indices] render_pixels = torch.stack( [render_d_ind_h, render_d_ind_w, torch.ones_like(render_d_ind_w)], dim=1 ) # Hacky indexing along two dimensions index = render_d_ind_h * 640 + render_d_ind_w P_crop_d = P_crop_d[index] m = filter_pcd(P_crop_d) if torch.sum(m) < 50: return ( False, torch.eye(4, dtype=u_map.dtype, device=u_map.device), np.inf, 0, Violation.MINIMAL_NR_VALID_CONSTRAINT, ) P_crop_d = P_crop_d[m] real_pixels = real_pixels[m] render_pixels = render_pixels[m] P_ren = P_crop_d if kwargs.get("shuffel", "random") == "random": # random shuffel pts_trafo = min(P_ren.shape[0], kwargs.get("max_corrospondences", 200000)) idx = torch.randperm(P_ren.shape[0])[0:pts_trafo] P_ren = P_ren[idx] real_pixels = real_pixels[idx] render_pixels = render_pixels[idx] elif kwargs.get("shuffel", "random") == "distance_populating": # STEP0: Shuffle corrospondences idx = torch.randperm(P_ren.shape[0]) P_ren = P_ren[idx] real_pixels = real_pixels[idx] render_pixels = render_pixels[idx] # STEP1: Bin values into grids u_bins = np.digitize( render_pixels[:, 0].numpy(), bins=np.arange(render_pixels[:, 0].min(), render_pixels[:, 0].max(), 5), ) v_bins = np.digitize( render_pixels[:, 1].numpy(), bins=np.arange(render_pixels[:, 1].min(), render_pixels[:, 1].max(), 5), ) indis_ori = np.arange(0, u_bins.shape[0]) selected_points = [] # STEP2: Iterate over every 2-th u-bin for u_bin in range(0, u_bins.max(), 2): # Create pixel mask for the bin. m = v_bins == u_bin s2_tmp = u_bins[m] indis_tmp = indis_ori[m] # STEP3: find unique indices in the v-bins with the u-bin mask applied a, indi = np.unique(s2_tmp, return_index=True) selection = indis_tmp[indi[::2]] # STEP4: append the corresponding indices of the orginale point cloud selected_points += selection.tolist() # STEP5: Fall back to random selection if necessary if len(selected_points) > kwargs.get("min_corrospondences", 30): P_ren = P_ren[selected_points] real_pixels = real_pixels[selected_points] render_pixels = render_pixels[selected_points] else: print(f"Sampling failed found {len( selected_points)} corrospondences") pts_trafo = min(P_ren.shape[0], kwargs.get("max_corrospondences", 50000)) P_ren = P_ren[0:pts_trafo] real_pixels = real_pixels[0:pts_trafo] render_pixels = render_pixels[0:pts_trafo] else: raise ValueError( "Shuffle in flow_to_trafo not found", kwargs.get("shuffel", "random") ) # Move the rendered points to the origin P_ren_in_origin = ( get_H(P_ren).type(typ) @ torch.inverse(h_render.type(torch.float32)).type(typ).T )[:, :3] # PNP estimation objectPoints = P_ren_in_origin.cpu().type(torch.float32).numpy() imagePoints = real_pixels[:, :2].cpu().type(torch.float32).numpy() dist = np.array([[0.0, 0.0, 0.0, 0.0]]) if objectPoints.shape[0] < 8: print(f"Failed due to missing corsspondences ({ objectPoints.shape[0]})") return ( False, torch.eye(4, dtype=u_map.dtype, device=u_map.device), np.inf, 0, Violation.MINIMAL_NR_VALID_CONSTRAINT, ) # set current guess as the inital estimate rvec = R.from_matrix(h_real_est[:3, :3].cpu().numpy()).as_rotvec().astype(np.float32) tvec = h_real_est[:3, 3].cpu().numpy().astype(np.float32) # calculate PnP between the pixels coordinates in the real image and the corrosponding points in the origin frame if kwargs.get("method", "solvePnPRansac") == "solvePnPRansac": import time sta = time.time() for i in range(0, 100): retval, r_vec2, t_vec2, inliers = cv2.solvePnPRansac( objectPoints, imagePoints, cameraMatrix=K_real.cpu().type(torch.float32).numpy(), distCoeffs=dist, rvec=rvec, tvec=tvec, useExtrinsicGuess=True, iterationsCount=kwargs.get("iterationsCount", 100), reprojectionError=kwargs.get("reprojectionError", 5), flags=kwargs.get("flags", 5), ) sto = time.time() print("EPE", sto - sta) elif kwargs.get("method", "solvePnPRefineLM") == "solvePnPRefineLM": objP = copy.deepcopy(objectPoints) imgP = copy.deepcopy(imagePoints) K_rea = K_real.cpu().type(torch.float32).numpy() rvec_ = copy.deepcopy(rvec)[:, None] tvec_ = copy.deepcopy(tvec)[:, None] import time sta = time.time() lis = [] for i in range(0, 100): r_vec2, t_vec2 = cv2.solvePnPRefineLM( objP, imgP, K_rea, dist, rvec_, tvec_, ) sto = time.time() print("LM", sto - sta) elif kwargs.get("method", "solvePnPRefineLM") == "solveBoth": retval, r_vec2, t_vec2, inliers = cv2.solvePnPRansac( objectPoints, imagePoints, cameraMatrix=K_real.cpu().type(torch.float32).numpy(), distCoeffs=dist, rvec=rvec, tvec=tvec, useExtrinsicGuess=True, iterationsCount=kwargs.get("iterationsCount", 100), reprojectionError=kwargs.get("reprojectionError", 5), flags=kwargs.get("flags", 5), ) r_vec2, t_vec2 = cv2.solvePnPRefineLM( copy.deepcopy(objectPoints), copy.deepcopy(imagePoints), K_real.cpu().type(torch.float32).numpy(), dist, copy.deepcopy(r_vec2), copy.deepcopy(t_vec2), ) else: raise ValueError("NotDefined") h = rvec_tvec_to_H(r_vec2[:, 0], t_vec2) # calculate reprojection error imagePointsEst, jac = cv2.projectPoints( objectPoints[None], r_vec2, t_vec2, K_real.cpu().type(torch.float32).numpy(), dist ) repro_error = np.linalg.norm( imagePointsEst[:, 0, :] - imagePoints, ord=2, axis=1 ).mean() ratio = ( np.linalg.norm(imagePointsEst[:, 0, :] - imagePoints, ord=2, axis=1) < kwargs.get("reprojectionError", 5) ).sum() / objectPoints.shape[0] return ( True, torch.tensor(h, device=u_map.device).type(u_map.dtype), repro_error, ratio, Violation.SUCCESS, ) ```
{ "source": "jonasfrey/pydualsense", "score": 3 }
#### File: pydualsense/examples/controller_demo.py ```python from pydualsense import * import time from tkinter import * from tkinter.ttk import * import json import random import colorsys import gc import autopy class PixelObject: def __init__(self, x, y, w, h, color): self.x = x # changable value self.y = y # changable value self.w = w # changable value self.h = h # changable value self._x = x # initial value self._y = y # initial value self._w = w # initial value self._h = h # initial value self.color = color class ControllerPixelObject: def __init__(self, width, height): self.width = width self.height = height self.set_active_and_inactive_color_by_hue(0.5) self.l2 = PixelObject(2, 1 , 3, 2, "blue") self.l2.boolean_pressed_name = "L2" self.l1 = PixelObject(2, 4 , 3, 1, "blue") self.l1.boolean_pressed_name = "L1" #mirrored l2_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.l2)) self.r2 = PixelObject(l2_mirrored_x_y_w_h[0], l2_mirrored_x_y_w_h[1], l2_mirrored_x_y_w_h[2], l2_mirrored_x_y_w_h[3], "blue") self.r2.boolean_pressed_name = "R2" l1_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.l1)) self.r1 = PixelObject(l1_mirrored_x_y_w_h[0], l1_mirrored_x_y_w_h[1], l1_mirrored_x_y_w_h[2], l1_mirrored_x_y_w_h[3], "blue") self.r1.boolean_pressed_name = "R1" #self.dualsense.state.DpadUp self.DpadUp = PixelObject(3, 8, 1, 1, "blue") self.DpadUp.boolean_pressed_name = "DpadUp" #self.dualsense.state.DpadDown self.DpadDown = PixelObject(3, 10, 1, 1, "blue") self.DpadDown.boolean_pressed_name = "DpadDown" #self.dualsense.state.DpadLeft self.DpadLeft = PixelObject(2, 9, 1, 1, "blue") self.DpadLeft.boolean_pressed_name = "DpadLeft" #self.dualsense.state.DpadRight self.DpadRight = PixelObject(4, 9, 1, 1, "blue") self.DpadRight.boolean_pressed_name = "DpadRight" #mirrored #self.dualsense.state.triangle DpadUp_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.DpadUp)) self.triangle = PixelObject(DpadUp_mirrored_x_y_w_h[0], DpadUp_mirrored_x_y_w_h[1], DpadUp_mirrored_x_y_w_h[2], DpadUp_mirrored_x_y_w_h[3], "blue") self.triangle.boolean_pressed_name = "triangle" #self.dualsense.state.cross DpadDown_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.DpadDown)) self.cross = PixelObject(DpadDown_mirrored_x_y_w_h[0], DpadDown_mirrored_x_y_w_h[1], DpadDown_mirrored_x_y_w_h[2], DpadDown_mirrored_x_y_w_h[3], "blue") self.cross.boolean_pressed_name = "cross" #self.dualsense.state.circle DpadLeft_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.DpadLeft)) self.circle = PixelObject(DpadLeft_mirrored_x_y_w_h[0], DpadLeft_mirrored_x_y_w_h[1], DpadLeft_mirrored_x_y_w_h[2], DpadLeft_mirrored_x_y_w_h[3], "blue") self.circle.boolean_pressed_name = "circle" #self.dualsense.state.square DpadRight_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.DpadRight)) self.square = PixelObject(DpadRight_mirrored_x_y_w_h[0], DpadRight_mirrored_x_y_w_h[1], DpadRight_mirrored_x_y_w_h[2], DpadRight_mirrored_x_y_w_h[3], "blue") self.square.boolean_pressed_name = "square" # self.packerC = 0 # self.square, self.triangle, self.circle, self.cross = False, False, False, False # self.DpadUp, self.DpadDown, self.DpadLeft, self.DpadRight = False, False, False, False # self.L1, self.L2, self.L3, self.R1, self.R2, self.R3, self.R2Btn, self.L2Btn = False, False, False, False, False, False, False, False # self.share, self.options, self.ps, self.touch1, self.touch2, self.touchBtn, self.touchRight, self.touchLeft = False, False, False, False, False, False, False, False # self.touchFinger1, self.touchFinger2 = False, False # self.RX, self.RY, self.LX, self.LY = 128,128,128,128 # self.trackPadTouch0, self.trackPadTouch1 = DSTouchpad(), DSTouchpad() #self.dualsense.state.share self.share = PixelObject(5, 6, 1, 1, "blue") self.share.boolean_pressed_name = "share" #self.dualsense.state.options share_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.share)) self.options = PixelObject(share_mirrored_x_y_w_h[0], share_mirrored_x_y_w_h[1], share_mirrored_x_y_w_h[2], share_mirrored_x_y_w_h[3], "blue") self.options.boolean_pressed_name = "options" #left stick self.lstick = PixelObject(6, 11, 1, 1, "blue") self.lstick.boolean_pressed_name = "L3" #right stick lstick_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lstick)) self.rstick = PixelObject(lstick_mirrored_x_y_w_h[0], lstick_mirrored_x_y_w_h[1], lstick_mirrored_x_y_w_h[2], lstick_mirrored_x_y_w_h[3], "blue") self.rstick.boolean_pressed_name = "R3" self.touchpad = PixelObject(6, 7, 7, 3, "blue") self.touchpad.boolean_pressed_name = "touchBtn" self.psbutton = PixelObject(8, 11, 3, 1, "blue") self.psbutton.boolean_pressed_name = "ps" self.micmutebutton = PixelObject(8, 13, 3, 1, "blue") self.touchpadfinger1 = PixelObject(6, 7, 1, 1, "blue") self.lborder1 = PixelObject(1, 5, 1, 13, "black") self.lborder1.hsv_color = self.hsv_color_inactive lborder1_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lborder1)) self.rborder1 = PixelObject(lborder1_mirrored_x_y_w_h[0], lborder1_mirrored_x_y_w_h[1], lborder1_mirrored_x_y_w_h[2], lborder1_mirrored_x_y_w_h[3], "black") self.rborder1.hsv_color = self.hsv_color_inactive self.lbordertop1 = PixelObject(2, 5, 8, 1, "black") lbordertop1_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lbordertop1)) self.rbordertop1 = PixelObject(lbordertop1_mirrored_x_y_w_h[0], lbordertop1_mirrored_x_y_w_h[1], lbordertop1_mirrored_x_y_w_h[2], lbordertop1_mirrored_x_y_w_h[3], "black") self.lborderbottom1 = PixelObject(2, 17, 4, 1, self.hex_color_inactive) lborderbottom1_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lborderbottom1)) self.rborderbottom1 = PixelObject(lborderbottom1_mirrored_x_y_w_h[0], lborderbottom1_mirrored_x_y_w_h[1], lborderbottom1_mirrored_x_y_w_h[2], lborderbottom1_mirrored_x_y_w_h[3], "black") self.lborder2 = PixelObject(5, 17-4, 1, 5, "black") lborder2_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lborder2)) self.rborder2 = PixelObject(lborder2_mirrored_x_y_w_h[0], lborder2_mirrored_x_y_w_h[1], lborder2_mirrored_x_y_w_h[2], lborder2_mirrored_x_y_w_h[3], "black") self.lborder3 = PixelObject(6, 17-4, 1, 1, "black") lborder3_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lborder3)) self.rborder3 = PixelObject(lborder3_mirrored_x_y_w_h[0], lborder3_mirrored_x_y_w_h[1], lborder3_mirrored_x_y_w_h[2], lborder3_mirrored_x_y_w_h[3], "black") self.lborder4 = PixelObject(6, 17-3, 4, 1, "black") lborder4_mirrored_x_y_w_h = (self.get_mirrored_x_y_w_h(self.lborder4)) self.rborder4 = PixelObject(lborder4_mirrored_x_y_w_h[0], lborder4_mirrored_x_y_w_h[1], lborder4_mirrored_x_y_w_h[2], lborder4_mirrored_x_y_w_h[3], "black") def get_mirrored_x_y_w_h(self, obj): return [self.width-(obj.x-2)-obj.w, obj.y, obj.w, obj.h] def set_active_and_inactive_color_by_hue(self, hue): hsv_color = [hue,1,0.75] rgb_color = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], hsv_color[2]) hex_color = ('#%02x%02x%02x'%(round(rgb_color[0]*255),round(rgb_color[1]*255),round(rgb_color[2]*255))) self.hex_color_active = hex_color self.hsv_color_active = hsv_color hsv_color = [hue,1,0.5] rgb_color = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], hsv_color[2]) hex_color = ('#%02x%02x%02x'%(round(rgb_color[0]*255),round(rgb_color[1]*255),round(rgb_color[2]*255))) self.hex_color_inactive = hex_color self.hsv_color_inactive = hsv_color class App: def __init__(self): self.controller_pixel_object = ControllerPixelObject(17, 17) self.running = True self.render_id = 0 # creating tkinter window self.tk_root = Tk() self.tk_root.title("Python GUI") self.tk_root_w = 500 self.tk_root_h = 500 self.tk_root.geometry(str(self.tk_root_w)+"x"+str(self.tk_root_h)) self.tk_root.protocol("WM_DELETE_WINDOW", self.end) # create dualsense self.dualsense = pydualsense() # find device and initialize self.dualsense.init() self.trigger_modes = [ "Off", "Rigid", "Pulse", "Rigid_A", "Rigid_B", "Rigid_AB", "Pulse_A", "Pulse_B", "Pulse_AB", "Calibration"] self.trigger_mode = "Off" self.trigger_mode_index = 0 self.trigger_mode_change_delta = 0 self.trigger_mode_last_change_ts = 0 # Progress bar widget # self.progress_l = Progressbar(self.tk_root, orient = VERTICAL, length = 100, mode = 'determinate') # self.progress_r = Progressbar(self.tk_root, orient = VERTICAL, length = 100, mode = 'determinate') # self.progress_l.pack(pady = 10) # self.progress_r.pack(pady = 10) self.label_text = StringVar() self.label_text.set("test") self.label = Label(self.tk_root, textvariable=self.label_text).place(x=5, y=0) #self.label.pack() self.label2_text = StringVar() self.label2_text.set("test") self.label2 = Label(self.tk_root, textvariable=self.label2_text).place(x=5, y=0) #self.label2.pack() # self.button = Button(self.tk_root, text ="close", command = self.end) # self.button.pack(pady = 10) if(self.controller_pixel_object.width > self.controller_pixel_object.height): self.controller_pixel_object_factor = self.tk_root_w / (self.controller_pixel_object.width+2) else: self.controller_pixel_object_factor = self.tk_root_h /( self.controller_pixel_object.height+2) self.tk_canvas = Canvas(self.tk_root, width=self.tk_root_w, height=self.tk_root_h) self.tk_canvas.pack() self.reset_touchpad_autopy_mouse() self.start() def end(self): #print(TriggerModes.__dict__) self.running = False self.dualsense.close() self.tk_root.destroy() self.tk_root.quit() def render_canvas(self): for obj in gc.get_objects(): if isinstance(obj, PixelObject): factor = self.controller_pixel_object_factor x0 = obj.x * factor y0 = obj.y * factor x1 = x0 + obj.w * factor y1 = y0 + obj.h * factor color = obj.color if hasattr(obj, 'boolean_pressed_name'): if(getattr(self.dualsense.state, obj.boolean_pressed_name)): color = self.controller_pixel_object.hex_color_active else: color = self.controller_pixel_object.hex_color_inactive self.tk_canvas.create_rectangle(x0, y0, x1, y1, fill=color) def reset_touchpad_autopy_mouse(self): self.touch0_up = True self.touch0_down_autopy_mouse_location = None self.touch0_down_dualsense_state_trackpadtouch0_x = None self.touch0_down_dualsense_state_trackpadtouch0_y = None self.touch0_down_dualsense_state_trackpadtouch0_x_delta = None self.touch0_down_dualsense_state_trackpadtouch0_y_delta = None def start(self): try: while self.running: self.tk_canvas.delete("all") #render canvas self.render_canvas() self.render_id = self.render_id + 1 #print(dualsense.state.RY) if(self.dualsense.state.R1): print("move right stick up and down to change force on right rumble") self.dualsense.setRightMotor((255-(127+self.dualsense.state.RY))) print("move left stick up and down to change force on left rumble") self.dualsense.setLeftMotor((255-(127+self.dualsense.state.LY))) else: print("move right stick up and down to change force on right rumble") self.dualsense.setRightMotor(0) print("move left stick up and down to change force on left rumble") self.dualsense.setLeftMotor(0) if(self.dualsense.state.cross): self.trigger_mode_change_delta = time.time() - self.trigger_mode_last_change_ts if(self.trigger_mode_change_delta > 0.1): self.trigger_mode_last_change_ts = time.time() self.trigger_mode_index = (self.trigger_mode_index + 1) % len(self.trigger_modes) self.trigger_mode = self.trigger_modes[self.trigger_mode_index] # self.progress_l['value'] = (100/255)*(255-(127+self.dualsense.state.LY)) # self.progress_r['value'] = (100/255)*(255-(127+self.dualsense.state.RY)) self.dualsense.triggerR.setMode(TriggerModes[self.trigger_mode]) self.dualsense.triggerR.setForce(int(((128+self.dualsense.state.LY)/255)*6), 127+self.dualsense.state.RY) self.dualsense.triggerL.setMode(TriggerModes[self.trigger_mode]) self.dualsense.triggerL.setForce(int(((128+self.dualsense.state.LY)/255)*6), 127+self.dualsense.state.RY) self.label_text.set("press x to change, trigger mode:"+str(self.trigger_mode)) self.tk_root.title("press x to change, trigger mode:"+str(self.trigger_mode)) if(self.dualsense.state.triangle): if((self.render_id)%10== 0): #self.dualsense.light.setColorI(random.randint(0,255),random.randint(0,255), random.randint(0,255)) random_hsv = [(1/100)*random.randint(0,100),1,1] self.controller_pixel_object.set_active_and_inactive_color_by_hue(random_hsv[0]) random_color = colorsys.hsv_to_rgb(random_hsv[0], random_hsv[1], random_hsv[2]) #self.dualsense.light.setColorI(int(random_color[0]*255), int(random_color[1]*255), int(random_color[2]*255)) self.dualsense.light.setColorI(int(random_color[0]*255), int(random_color[1]*255), int(random_color[2]*255)) for obj in gc.get_objects(): if isinstance(obj, PixelObject): obj.color = self.controller_pixel_object.hex_color_inactive #print(Brightness.__dict__)#{'_generate_next_value_': <function Flag._generate_next_value_ at 0x00000225991D83A0>, '__module__': 'pydualsense.enums', '__doc__': 'An enumeration.', '_member_names_': ['high', 'medium', 'low'], '_member_map_': {'high': <Brightness.high: 0>, 'medium': <Brightness.medium: 1>, 'low': <Brightness.low: 2>}, '_member_type_': <class 'int'>, '_value2member_map_': {0: <Brightness.high: 0>, 1: <Brightness.medium: 1>, 2: <Brightness.low: 2>}, 'high': <Brightness.high: 0>, 'medium': <Brightness.medium: 1>, 'low': <Brightness.low: 2>, '__new__': <function Enum.__new__ at 0x00000225991D5CA0>} else: if(self.odd_frame_ids(20)): #autopy.mouse.move(200,200) self.dualsense.light.setBrightness(Brightness.low) else: self.dualsense.light.setBrightness(Brightness.high) if(self.dualsense.state.L1): self.controller_pixel_object.l1.color = self.controller_pixel_object.hex_color_active else: self.controller_pixel_object.l1.color = self.controller_pixel_object.hex_color_inactive self.controller_pixel_object.rstick.x = self.controller_pixel_object.rstick._x + (1/127)*self.dualsense.state.RX self.controller_pixel_object.rstick.y = self.controller_pixel_object.rstick._y + (1/127)*self.dualsense.state.RY self.controller_pixel_object.lstick.x = self.controller_pixel_object.lstick._x + (1/127)*self.dualsense.state.LX self.controller_pixel_object.lstick.y = self.controller_pixel_object.lstick._y + (1/127)*self.dualsense.state.LY self.controller_pixel_object.lborder1.hsv_color[2] = ((self.controller_pixel_object.lborder1.hsv_color[2] + (((self.dualsense.leftMotor+1)/(255+1))*0.1) )) % 0.5 + 0.5 rgb_color = colorsys.hsv_to_rgb(self.controller_pixel_object.lborder1.hsv_color[0], self.controller_pixel_object.lborder1.hsv_color[1], self.controller_pixel_object.lborder1.hsv_color[2]) hex_color = ('#%02x%02x%02x'%(round(rgb_color[0]*255),round(rgb_color[1]*255),round(rgb_color[2]*255))) self.controller_pixel_object.lborder1.color = hex_color self.controller_pixel_object.rborder1.hsv_color[2] = ((self.controller_pixel_object.rborder1.hsv_color[2] + (((self.dualsense.rightMotor+1)/(255+1))*0.1) )) % 0.5 + 0.5 rgb_color = colorsys.hsv_to_rgb(self.controller_pixel_object.rborder1.hsv_color[0], self.controller_pixel_object.rborder1.hsv_color[1], self.controller_pixel_object.rborder1.hsv_color[2]) hex_color = ('#%02x%02x%02x'%(round(rgb_color[0]*255),round(rgb_color[1]*255),round(rgb_color[2]*255))) self.controller_pixel_object.rborder1.color = hex_color if(self.dualsense.state.touchBtn): autopy.mouse.click() self.controller_pixel_object.touchpadfinger1.color = self.controller_pixel_object.hex_color_inactive if(self.dualsense.state.trackPadTouch0.isActive == True): self.controller_pixel_object.touchpadfinger1.color = self.controller_pixel_object.hex_color_active if(self.touch0_down_autopy_mouse_location == None): self.touch0_down_autopy_mouse_location = autopy.mouse.location() self.touch0_down_dualsense_state_trackpadtouch0_x = self.dualsense.state.trackPadTouch0.X self.touch0_down_dualsense_state_trackpadtouch0_y = self.dualsense.state.trackPadTouch0.Y else: self.touch0_up = False #trackpad has FullHD 1920 x 1080 :0 self.label2_text.set(str(self.dualsense.state.trackPadTouch0.X)+":"+str(self.dualsense.state.trackPadTouch0.Y)) self.touch0_down_dualsense_state_trackpadtouch0_x_delta = self.touch0_down_dualsense_state_trackpadtouch0_x - self.dualsense.state.trackPadTouch0.X self.touch0_down_dualsense_state_trackpadtouch0_y_delta = self.touch0_down_dualsense_state_trackpadtouch0_y - self.dualsense.state.trackPadTouch0.Y mouse_move_sensitivity = 0.5 autopy.mouse.move(self.touch0_down_autopy_mouse_location[0]-(self.touch0_down_dualsense_state_trackpadtouch0_x_delta*mouse_move_sensitivity),self.touch0_down_autopy_mouse_location[1]-(self.touch0_down_dualsense_state_trackpadtouch0_y_delta*mouse_move_sensitivity)) finger_x = ((self.controller_pixel_object.touchpad.w-1) / 1920) * self.dualsense.state.trackPadTouch0.X finger_y = ((self.controller_pixel_object.touchpad.h-1) / 1080) * self.dualsense.state.trackPadTouch0.Y self.controller_pixel_object.touchpadfinger1.x = self.controller_pixel_object.touchpadfinger1._x + finger_x self.controller_pixel_object.touchpadfinger1.y = self.controller_pixel_object.touchpadfinger1._y + finger_y else: if(self.touch0_down_autopy_mouse_location != None): self.reset_touchpad_autopy_mouse() self.tk_root.update_idletasks() self.tk_root.update() time.sleep(0.001) #self.dualsense.light.setPulseOption(PulseOptions.FadeBlue) #print(LedOptions.__dict__) #print(PulseOptions.__dict__) #self.label_text.set((self.state.trackPadTouch0.X)) except KeyboardInterrupt: pass def odd_frame_ids(self, frame_ids): return int(self.render_id/frame_ids)%2 == 0 app = App() ```
{ "source": "jonasfreyr/Home-Projects", "score": 3 }
#### File: Home-Projects/GunGame/GunGame.py ```python import pygame, math, time wW = 1200 wH = 900 pygame.init() class game: def __init__(self, wW, wH): self.screen = pygame.display.set_mode((wW, wH)) self.clock = pygame.time.Clock() self.wW = wW self.wH = wH telR = 0 telL = 0 color = (0, 0, 0) Scolor = (255, 255, 255) self.fontSize = 50 self.font = pygame.font.SysFont("monospace", self.fontSize) self.speed = 5 self.GunSpeed = 7 self.GunWait = 50 self.FPS = 120 self.cheats = False self.gP = False self.win = 10 game.restart(self, telR, telL, color, Scolor) def restart(self, telR, telL, color, Scolor): self.x = int((self.wW / 2) / 2) self.y = int((self.wH / 2)) self.x2 = int((self.wW / 2) + self.wW / 4) self.y2 = int((self.wH / 2)) if self.cheats == False: self.respos = True self.f3 = False self.f4 = False self.f5 = False self.f6 = False self.won = False self.size = 50 self.shotSize = 10 self.shotsL = [] self.shotsR = [] self.color = color self.Scolor = Scolor self.telR = telR self.telL = telL def shoot(self, x, y, dire): if dire == True: self.shotsR.append([x + self.size, y]) elif dire == False: self.shotsL.append([x - self.size - self.shotSize * 2, y]) def check(self): temp = self.shotsR for a in temp: x = a[0] y = a[1] vector1 = [] vector1.append(self.x2 - x) vector1.append(self.y2 - y) vector2 = [] vector2.append(self.x2 - x) vector2.append(self.y2 - (y + self.shotSize)) vector3 = [] vector3.append(self.x2 - (x + self.shotSize * 2)) vector3.append(self.y2 - y) vector4 = [] vector4.append(self.x2 - (x + self.shotSize * 2)) vector4.append(self.y2 - (y + self.shotSize)) if (self.size >= int(math.sqrt(math.pow(vector1[0], 2) + math.pow(vector1[1], 2)))) or (self.size >= int(math.sqrt(math.pow(vector2[0], 2) + math.pow(vector2[1], 2)))) or (self.size >= int(math.sqrt(math.pow(vector3[0], 2) + math.pow(vector3[1], 2)))) or (self.size >= int(math.sqrt(math.pow(vector4[0], 2) + math.pow(vector4[1], 2)))): if self.respos == False: self.shotsR.remove(a) self.telR += 1 else: game.restart(self, self.telR + 1, self.telL, self.color, self.Scolor) temp = self.shotsL for a in temp: x = a[0] y = a[1] vector1 = [] vector1.append(self.x - x) vector1.append(self.y - y) vector2 = [] vector2.append(self.x - x) vector2.append(self.y - (y + self.shotSize)) vector3 = [] vector3.append(self.x - (x + self.shotSize * 2)) vector3.append(self.y - y) vector4 = [] vector4.append(self.x - (x + self.shotSize * 2)) vector4.append(self.y - (y + self.shotSize)) if (self.size >= int(math.sqrt(math.pow(vector1[0], 2) + math.pow(vector1[1], 2)))) or (self.size >= int(math.sqrt(math.pow(vector2[0], 2) + math.pow(vector2[1], 2)))) or (self.size >= int(math.sqrt(math.pow(vector3[0], 2) + math.pow(vector3[1], 2)))) or (self.size >= int(math.sqrt(math.pow(vector4[0], 2) + math.pow(vector4[1], 2)))): if self.respos == False: self.shotsL.remove(a) self.telL += 1 else: game.restart(self, self.telR, self.telL + 1, self.color, self.Scolor) def shots(self): for a in range(len(self.shotsR)): x = self.shotsR[a][0] y = self.shotsR[a][1] pygame.draw.rect(self.screen, self.color ,pygame.Rect(x, y, self.shotSize * 2, self.shotSize )) self.shotsR[a].insert(0 ,x + self.GunSpeed) self.shotsR[a].remove(x) for a in range(len(self.shotsL)): x = self.shotsL[a][0] y = self.shotsL[a][1] pygame.draw.rect(self.screen, self.color ,pygame.Rect(x, y, self.shotSize * 2, self.shotSize )) self.shotsL[a].insert(0 ,x - self.GunSpeed) self.shotsL[a].remove(x) temp = self.shotsR for a in temp: if a[0] > self.wW: self.shotsR.remove(a) temp = self.shotsL for a in temp: if a[0] < 0: self.shotsL.remove(a) def colorChange(self): if self.color == (0, 0, 0): self.color = (255,255,255) self.Scolor = (0, 0, 0) elif self.color == (255, 255, 255): self.color = (0, 0, 0) self.Scolor = (255, 255, 255) def winner(self,vann): self.won = True label = self.font.render(vann + " won!", 1, self.color) self.screen.blit(label,(self.wW / 2 - self.fontSize * 3, self.wH / 2 - (self.fontSize / 2))) def loop(self): tel1 = self.GunWait tel2 = self.GunWait while True: pressed = pygame.key.get_pressed() for event in pygame.event.get(): if event.type == pygame.QUIT: quit() if event.type == pygame.KEYUP: if event.key == pygame.K_F1: game.colorChange(self) if event.key == pygame.K_F2: self.respos = not self.respos if event.key == pygame.K_F3: self.f3 = not self.f3 if event.key == pygame.K_F4: self.f4 = not self.f4 if event.key == pygame.K_F5: self.f5 = not self.f5 if event.key == pygame.K_F6: self.f6 = not self.f6 if event.key == pygame.K_ESCAPE: self.gP = not self.gP if self.gP == False and self.won == False: self.screen.fill(self.Scolor) if self.f3 or self.f4 or self.f5 or self.f6: self.cheats = True if self.f3 == True: self.GunSpeed = 20 elif self.f3 == False: self.GunSpeed = 7 if self.f4 == True: self.GunWait = 15 elif self.f4 == False: self.GunWait = 50 if self.f5 == True: self.FPS = 30 elif self.f5 == False: self.FPS = 120 if self.f6 == True: self.speed = 15 elif self.f6 == False: self.speed = 5 if self.y > 0 + self.size: if pressed[pygame.K_w]: self.y -= self.speed if self.y < self.wH - self.size: if pressed[pygame.K_s]: self.y += self.speed if self.x > 0 + self.size: if pressed[pygame.K_a]: self.x -= self.speed if self.x < int(self.wW /2) - self.size: if pressed[pygame.K_d]: self.x += self.speed if tel1 >= self.GunWait: if pressed[pygame.K_SPACE]: game.shoot(self, self.x, self.y, True) tel1 = 0 if self.y2 > 0 + self.size: if pressed[pygame.K_UP]: self.y2 -= self.speed if self.y2 < self.wH - self.size: if pressed[pygame.K_DOWN]: self.y2 += self.speed if self.x2 > int(self.wW / 2) + self.size: if pressed[pygame.K_LEFT]: self.x2 -= self.speed if self.x2 < int(self.wW) - self.size: if pressed[pygame.K_RIGHT]: self.x2 += self.speed if tel2 >= self.GunWait: if pressed[pygame.K_KP0]: game.shoot(self, self.x2, self.y2, False) tel2 = 0 tel1 += 1 tel2 += 1 game.check(self) pygame.draw.line(self.screen,self.color,[self.wW / 2, 0],[self.wW / 2, self.wH]) pygame.draw.circle(self.screen, self.color,(self.x, self.y), self.size) pygame.draw.circle(self.screen, self.color, (self.x2, self.y2), self.size) game.shots(self) scoreR = self.font.render(str(self.telR), 1, self.color) scoreL = self.font.render(str(self.telL), 1, self.color) if self.telR < 10: self.screen.blit(scoreR, ((self.wW / 2) - self.fontSize, 0)) elif self.telR >= 10 and self.telR < 100: self.screen.blit(scoreR, ((self.wW / 2) - self.fontSize - 15, 0)) elif self.telR >= 100 and self.telR < 1000: self.screen.blit(scoreR, ((self.wW / 2) - self.fontSize - 45, 0)) elif self.telR >= 1000: self.screen.blit(scoreR, ((self.wW / 2) - self.fontSize - 75, 0)) self.screen.blit(scoreL, ((self.wW / 2) + 15, 0)) if self.telR == self.win: game.winner(self,"Left") elif self.telL == self.win: game.winner(self,"Right") if pressed[pygame.K_r]: self.cheats = False game.restart(self, 0, 0, self.color, self.Scolor) pygame.display.flip() self.clock.tick(self.FPS) H = game(wW, wH) H.loop() ``` #### File: Home-Projects/Pong/obj.py ```python from constants import * from vector import Vector def draw_text(screen, text, color, x, y): ''' Draws a text on the desired position ''' # Puts the text into a surface text_surface = FONT.render(text, True, color) # Creates a rect object at the desired position text_rect = text_surface.get_rect() text_rect.center = (x, y) # Adds the text surface into the screen surface on the rect position screen.blit(text_surface, text_rect) class Player: ''' A player object that holds all the necessary methods ''' def __init__(self, x, y, screen): ''' Just takes in the position and the screen surface ''' self.pos = Vector(x, y) # Make the velocity 0 self.vel = Vector() self.screen = screen def move(self, y): ''' Function that moves the player by y pixels ''' self.vel.y = y def check_ball(self, ball): ''' Function that checks if the ball is colliding with the player ''' if (ball.pos.x + BALL_SIZE > self.pos.x and ball.pos.y + BALL_SIZE > self.pos.y) and ( ball.pos.x < self.pos.x + PLAYER_DIMENSIONS[0] and ball.pos.y < self.pos.y + PLAYER_DIMENSIONS[1]): return True return False def update(self, dt): ''' Function that updates the position ''' # Multiply by delta time so the game stay the same no matter the Fps self.pos += self.vel * dt # Checks if the player move too low if self.pos.y < 0: self.pos.y = 0 # Check if the player moves to high elif self.pos.y + PLAYER_DIMENSIONS[1] > WINDOW_HEIGHT: self.pos.y = WINDOW_HEIGHT - PLAYER_DIMENSIONS[1] # Reset the velocity so when the player lets go of the key, # it will stop moving self.vel *= 0 def draw(self): ''' Function that draws the player ''' pygame.draw.rect(self.screen, COLOR, pygame.Rect(self.pos.x, self.pos.y, PLAYER_DIMENSIONS[0], PLAYER_DIMENSIONS[1])) class Ball: ''' A ball object that holds all the necessary methods ''' def __init__(self, x, y, screen): ''' Just takes in the position and the screen surface ''' self.pos = Vector(x, y) # Make the velocity 0 self.vel = Vector() self.screen = screen def update(self, dt): ''' Function that updates the position ''' # Multiply by delta time so the game stay the same no matter the Fps self.pos += self.vel * dt def draw(self): ''' Function that draws the ball ''' pygame.draw.rect(self.screen, COLOR, pygame.Rect(self.pos.x, self.pos.y, BALL_SIZE, BALL_SIZE)) ``` #### File: Home-Projects/Pong/Pong.py ```python from obj import * import random class Game: def __init__(self): self.screen = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT)) self.FPS = FPS self.clock = pygame.time.Clock() # The inital position of the ball x1 = random.choice([-BALL_SPEED, BALL_SPEED]) y1 = random.choice([-BALL_SPEED, BALL_SPEED]) # A boolean to see who hit the ball last # Used to fix a bug that makes the player hit the ball # multiple times. self.right = True if x1 < 0 else False # Make an instance of the ball self.ball = Ball(WINDOW_WIDTH / 2, WINDOW_HEIGHT / 2, self.screen) self.ball.vel.x = x1 self.ball.vel.y = y1 # The position of player 1 x1 = PLAYER_PIXELS_FROM_SIDE y1 = WINDOW_HEIGHT / 2 - PLAYER_DIMENSIONS[1] / 2 # Make an instance of player 1 player1 = Player(x1, y1, self.screen) # The position of player 2 x2 = WINDOW_WIDTH - PLAYER_PIXELS_FROM_SIDE - PLAYER_DIMENSIONS[0] # Make an instance of player 2 player2 = Player(x2, y1, self.screen) # Add the players into a list to be used later self.players = [player1, player2] # Set all the necessary variables self.restart = False self.score = [0, 0] self.served = False self.finished = False # print(pygame.font.get_fonts()) # To see all the available fonts def reset(self): # Reset the ball position self.ball.pos.x = WINDOW_WIDTH / 2 self.ball.pos.y = WINDOW_HEIGHT / 2 self.served = False def checkBall(self): ''' A function to check if the ball collides with something ''' # To check if the player collides with player 1 if self.players[0].check_ball(self.ball) and self.right: self.ball.vel.x *= -1 self.right = not self.right HIT_PADDLE_SOUND.play() # To check if the player collides with player 2 elif self.players[1].check_ball(self.ball) and not self.right: self.ball.vel.x *= -1 self.right = not self.right HIT_PADDLE_SOUND.play() # If the ball collides with the wall if self.ball.pos.y < 0 or self.ball.pos.y + BALL_SIZE > WINDOW_HEIGHT: self.ball.vel.y *= -1 HIT_WALL_SOUND.play() # If the ball goes outside the screen if self.ball.pos.x < 0: self.score[1] += 1 self.reset() SCORE_SOUND.play() elif self.ball.pos.x + BALL_SIZE > WINDOW_WIDTH: self.score[0] += 1 self.reset() SCORE_SOUND.play() def loop(self): ''' The main game loop ''' while True: self.events() if not self.finished: self.update() self.draw() if self.restart is True: break def events(self): ''' A function that checks the inputs ''' # For loop to check the KEYUP events for event in pygame.event.get(): if event.type == pygame.QUIT or (event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE): quit() if event.type == pygame.KEYUP: if event.key == pygame.K_r: self.restart = True if not self.finished: if event.key == pygame.K_SPACE: self.served = True if not self.finished: # Get all the keys being held down pressed = pygame.key.get_pressed() if pressed[pygame.K_w]: self.players[0].move(-PLAYER_SPEED) if pressed[pygame.K_s]: self.players[0].move(PLAYER_SPEED) if pressed[pygame.K_UP]: self.players[1].move(-PLAYER_SPEED) if pressed[pygame.K_DOWN]: self.players[1].move(PLAYER_SPEED) def update(self): ''' Updates all the objects f.ex Adds the velocity to the position of an object ''' # Get the delta time since the last call # Is used to make sure the game plays the same on different Fps dt = self.clock.tick(self.FPS) self.checkBall() if self.served: self.ball.update(dt) for player in self.players: player.update(dt) if self.score[0] == 10 or self.score[1] == 10: self.finished = True def draw(self): ''' Function that draws everything on the screen. ''' self.screen.fill(BACKGROUND_COLOR) pygame.draw.line(self.screen, COLOR, (WINDOW_WIDTH / 2, 0), (WINDOW_WIDTH / 2, WINDOW_HEIGHT), 1) self.drawPlayers() self.ball.draw() self.draw_text() pygame.display.flip() def drawPlayers(self): ''' Function that draws all the players ''' for player in self.players: player.draw() def draw_text(self): ''' Function that draws all the text ''' # If the game is not over and the ball is to be served if not self.served and not self.finished: draw_text(self.screen, "Serve the ball!", SERVE_COLOR, WINDOW_WIDTH / 2, WINDOW_HEIGHT / 5) # Draws the scores draw_text(self.screen, str(self.score[0]), COLOR, WINDOW_WIDTH / 5, WINDOW_HEIGHT / 10) draw_text(self.screen, str(self.score[1]), COLOR, WINDOW_WIDTH / 5*4, WINDOW_HEIGHT / 10) # If someone won, draw who won if self.finished: if self.score[0] == 10: draw_text(self.screen, "Left Won!", SERVE_COLOR, WINDOW_WIDTH / 2, WINDOW_HEIGHT / 5) elif self.score[1] == 10: draw_text(self.screen, "Right Won!", SERVE_COLOR, WINDOW_WIDTH / 2, WINDOW_HEIGHT / 5) while True: h = Game() h.loop() ``` #### File: Home-Projects/pyglet_test/GameObjects.py ```python import pyglet def preload_img(img): return pyglet.image.load("res/sprites/" + img) class GameObject: def __init__(self, posx, posy, sprite=None): self.posx = posx self.posy = posy self.velx = 0 self.vely = 0 if sprite is not None: self.sprite = sprite self.sprite.x = self.posx self.sprite.y = self.posy def draw(self): self.sprite.draw() def update(self, dt): self.posx += self.velx * dt self.posy += self.vely * dt self.sprite.x = self.posx self.sprite.y = self.posy ``` #### File: Home-Projects/Shooter/sprites.py ```python import pygame as pg from settings import * from tilemap import collide_hit_rect import random, math import pytweening as tween from hud import * def collide_with_walls(sprite, group, dir): if dir == 'x': hits = pg.sprite.spritecollide(sprite, group, False, collide_hit_rect) if hits: if hits[0].rect.centerx > sprite.hit_rect.centerx: sprite.pos.x = hits[0].rect.left - sprite.hit_rect.width / 2 if hits[0].rect.centerx < sprite.hit_rect.centerx: sprite.pos.x = hits[0].rect.right + sprite.hit_rect.width / 2 sprite.vel.x = 0 sprite.hit_rect.centerx = sprite.pos.x if dir == 'y': hits = pg.sprite.spritecollide(sprite, group, False, collide_hit_rect) if hits: if hits[0].rect.centery > sprite.hit_rect.centery: sprite.pos.y = hits[0].rect.top - sprite.hit_rect.height / 2 if hits[0].rect.centery < sprite.hit_rect.centery: sprite.pos.y = hits[0].rect.bottom + sprite.hit_rect.height / 2 sprite.vel.y = 0 sprite.hit_rect.centery = sprite.pos.y class Player(pg.sprite.Sprite): def __init__(self, game, x, y): self._layer = PLAYER_LAYER self.groups = game.all_sprites pg.sprite.Sprite.__init__(self, self.groups) self.game = game self.weapon = "pistol" self.image = game.player_images[self.weapon] self.rect = self.image.get_rect() self.rect.center = (x, y) self.hit_rect = PLAYER_HIT_RECT self.hit_rect.center = self.rect.center self.vel = vec(0, 0) self.pos = vec(x, y) self.rot = 0 self.last_shot = 0 self.health = PLAYER_HEALTH self.armor = 0 self.ammo = WEAPONS[self.weapon]['ammo_clip'] self.maxammo = WEAPONS[self.weapon]['ammo_max'] self.cursor = self.game.crosshair_img self.cursor_rect = self.cursor.get_rect() def add_health(self, amount): self.health += amount if self.health > PLAYER_HEALTH: self.health = PLAYER_HEALTH def reload(self): self.game.effects_sounds['reload'].play() if WEAPON_TYPES[self.weapon] != 'shotgun': a = WEAPONS[self.weapon]['ammo_clip'] - self.ammo if self.maxammo - a < 0: a = self.maxammo self.maxammo = 0 else: self.maxammo -= a self.ammo += a else: self.ammo += 1 self.maxammo -= 1 def draw_hit_box(self): hit_box = self.hit_rect.move(self.game.camera.camera.topleft) pg.draw.rect(self.game.screen, WHITE, hit_box, 2) def get_mouse(self): posM = pg.mouse.get_pos() self.cursor_rect.center = posM self.cursor_rect = self.game.camera.apply_mouse_rect(self.cursor_rect) v = self.pos - self.cursor_rect.center self.rot = v.angle_to(vec(-1, 0)) def get_keys(self): self.vel = vec(0, 0) mouse = pg.mouse.get_pressed() keys = pg.key.get_pressed() if keys[pg.K_a]: self.vel.x -= PLAYER_SPEED if keys[pg.K_d]: self.vel.x += PLAYER_SPEED if keys[pg.K_s]: self.vel.y += PLAYER_SPEED if keys[pg.K_w]: self.vel.y -= PLAYER_SPEED if keys[pg.K_TAB]: self.game.tab = True self.get_mouse() if mouse[0] == 1: if self.ammo != 0: self.shoot() else: now = pg.time.get_ticks() if now - self.last_shot > WEAPONS[self.weapon]['rate']: self.last_shot = now self.game.out_ammo.play() if self.vel.x != 0 and self.vel.y != 0: self.vel *= 0.7071 def shoot(self): now = pg.time.get_ticks() if now - self.last_shot > WEAPONS[self.weapon]['rate']: self.ammo -= 1 self.last_shot = now dir = vec(1, 0).rotate(-self.rot) pos = self.pos + BARREL_OFFSET.rotate(-self.rot) for a in range(WEAPONS[self.weapon]['bullet_count']): spread = random.uniform(-WEAPONS[self.weapon]['spread'], WEAPONS[self.weapon]['spread']) Bullet(self.game, pos, dir.rotate(spread), self.rot, self.weapon) snd = random.choice(self.game.weapon_sounds[self.weapon]) if snd.get_num_channels() > 2: snd.stop() snd.play() MuzzleFlash(self.game, pos, self.rot, self.vel) self.vel = vec(-WEAPONS[self.weapon]['kickback']).rotate(-self.rot) def update(self): self.get_keys() self.pos += self.vel * self.game.dt self.image = pg.transform.rotate(self.game.player_images[self.weapon], self.rot) self.rect = self.image.get_rect() self.hit_rect.centerx = self.pos.x collide_with_walls(self, self.game.walls, 'x') collide_with_walls(self, self.game.windows, 'x') self.hit_rect.centery = self.pos.y collide_with_walls(self, self.game.walls, 'y') collide_with_walls(self, self.game.windows, 'y') self.rect.center = self.hit_rect.center class Enemy(pg.sprite.Sprite): def __init__(self, game, x, y, weapon, last_known=None): self._layer = ENEMY_LAYER self.groups = game.all_sprites, game.enemies pg.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = game.enemy_images[weapon].copy() self.rect = self.image.get_rect() self.rect.center = (x, y) self.hit_rect = ENEMY_HIT_RECT.copy() self.hit_rect.center = self.rect.center self.pos = vec(x, y) self.rect.center = self.pos self.vel = vec(0, 0) self.acc = vec(0, 0) self.rot = 0 if weapon != "mini": self.health = ENEMY_HEALTH self.maxHealth = ENEMY_HEALTH elif weapon == "mini": self.health = BOSS_HEALTH self.maxHealth = BOSS_HEALTH self.last_shot = 0 self.target = game.player if last_known is None or weapon == "mini": self.moving = False self.last_known = [int(self.pos.x), int(self.pos.y)] else: self.moving = True self.last_known = last_known self.weapon = weapon def draw_hit_box(self): hit_box = self.hit_rect.move(self.game.camera.camera.topleft) pg.draw.rect(self.game.screen, WHITE, hit_box, 2) def avoid_mobs(self): for enemy in self.game.enemies: if enemy != self: dist = self.pos - enemy.pos if 0 < dist.length() < AVOID_RADIUS: self.acc += dist.normalize() def lineLine(self, x1, y1, x2, y2, x3, y3, x4, y4): uA = ((x4-x3)*(y1-y3) - (y4-y3)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1)) uB = ((x2-x1)*(y1-y3) - (y2-y1)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1)) if (uA >= 0 and uA <= 1 and uB >= 0 and uB <= 1): return True else: return False def line_collide(self): target_dist = self.target.pos - self.pos rot = target_dist.angle_to(vec(1, 0)) pos = self.pos + BARREL_OFFSET.rotate(-rot) for a in self.game.walls: r = a.rect.copy() topleft = r.topleft topright = r.topright bottomleft = r.bottomleft bottomright = r.bottomright left = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topleft[0], bottomleft[1]) right = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topright[0], topright[1], topright[0], bottomright[1]) top = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topright[0], topright[1]) bottom = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, bottomleft[0], bottomleft[1], bottomright[0], bottomright[1]) if left or right or top or bottom: return True for a in self.game.enemies: r = a.hit_rect.copy() topleft = r.topleft topright = r.topright bottomleft = r.bottomleft bottomright = r.bottomright left = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topleft[0], bottomleft[1]) right = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topright[0], topright[1], topright[0], bottomright[1]) top = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topright[0], topright[1]) bottom = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, bottomleft[0], bottomleft[1], bottomright[0], bottomright[1]) if left or right or top or bottom: return True return False def rot_towards_target(self, target_dist): rotT = target_dist.angle_to(vec(1, 0)) angle = math.atan2(-target_dist.x, -target_dist.y)/math.pi * 180.0 diff = (angle - self.rot - 90) % 360 if 175 < int(diff) < 183: rot = rotT elif diff > 180: rot = self.rot + ENEMY_ROTATION_SPEED else: rot = self.rot - ENEMY_ROTATION_SPEED return rot def move(self): target_dist = self.last_known - self.pos self.rot = self.rot_towards_target(target_dist) # self.rot = target_dist.angle_to(vec(1, 0)) self.acc = vec(1, 0).rotate(-self.rot) self.avoid_mobs() try: self.acc.scale_to_length(ENEMY_SPEED) except: pass self.acc += self.vel * -1.5 self.vel += self.acc * self.game.dt self.pos += self.vel * self.game.dt + 0.5 * self.acc * self.game.dt ** 2 self.hit_rect.centerx = self.pos.x collide_with_walls(self, self.game.walls, "x") collide_with_walls(self, self.game.windows, "x") self.hit_rect.centery = self.pos.y collide_with_walls(self, self.game.walls, "y") collide_with_walls(self, self.game.windows, "y") self.rect.center = self.hit_rect.center def update(self): self.target = self.game.player closest = self.target.pos - self.pos for a in self.game.ally: target_dist = a.pos - self.pos if target_dist.length() < closest.length(): closest = target_dist self.target = a target_dist = closest if target_dist.length_squared() < (WEAPONS[self.weapon]['detect_radius'] - NIGHT_RADIUS) ** 2: if self.line_collide() is False: self.moving = False self.vel = vec(0, 0) self.last_known = [int(self.target.pos.x), int(self.target.pos.y)] pos = self.pos + BARREL_OFFSET.rotate(-self.rot) target_distA = self.target.pos - pos self.rot = self.rot_towards_target(target_distA) self.image = pg.transform.rotate(self.game.enemy_images[self.weapon], self.rot) self.rect = self.image.get_rect() self.rect.center = self.pos rot = target_dist.angle_to(vec(1, 0)) if self.rot - 20 < rot < self.rot + 20: self.shoot() else: self.moving = True self.image = pg.transform.rotate(self.game.enemy_images[self.weapon], self.rot) else: self.moving = True self.image = pg.transform.rotate(self.game.enemy_images[self.weapon], self.rot) pos = [int(self.pos.x), int(self.pos.y)] if ((pos[0] - 5 < self.last_known[0]) and (pos[1] - 5 < self.last_known[1])) and ((pos[0] + 5 > self.last_known[0]) and (pos[1] + 5 > self.last_known[1])): self.moving = False if self.moving and self.weapon != "mini": self.move() if self.health <= 0: random.choice(self.game.enemy_hit_sounds).play() self.kill() self.game.map_img.blit(self.game.blood, self.pos - vec(TILESIZE / 2, TILESIZE / 2)) self.game.kills += 1 def shoot(self): now = pg.time.get_ticks() if now - self.last_shot > WEAPONS[self.weapon]['rate']: self.last_shot = now dir = vec(1, 0).rotate(-self.rot) pos = self.pos + BARREL_OFFSET.rotate(-self.rot) for a in range(WEAPONS[self.weapon]['bullet_count']): spread = random.uniform(-WEAPONS[self.weapon]['spread'], WEAPONS[self.weapon]['spread']) Bullet(self.game, pos, dir.rotate(spread), self.rot, self.weapon) snd = random.choice(self.game.weapon_sounds[self.weapon]) if snd.get_num_channels() > 2: snd.stop() snd.play() MuzzleFlash(self.game, pos, self.rot, self.vel) #self.vel = vec(-WEAPONS[self.weapon]['kickback']).rotate(-self.rot) def draw_health(self): if self.health > int((self.maxHealth / 3) * 2): col = GREEN elif self.health > int(self.maxHealth / 3): col = YELLOW else: col = RED width = int(self.rect.width * self.health / self.maxHealth) self.health_bar = pg.Rect(0, 0, width, 7) if self.health < self.maxHealth: pg.draw.rect(self.image, col, self.health_bar) class Ally(pg.sprite.Sprite): def __init__(self, game, x, y, weapon, last_known=None): self._layer = ENEMY_LAYER self.groups = game.all_sprites, game.ally pg.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = game.player_images[weapon].copy() self.rect = self.image.get_rect() self.rect.center = (x, y) self.hit_rect = ENEMY_HIT_RECT.copy() self.hit_rect.center = self.rect.center self.pos = vec(x, y) self.rect.center = self.pos self.vel = vec(0, 0) self.acc = vec(0, 0) self.rot = 0 self.health = ENEMY_HEALTH self.last_shot = 0 self.target = game.enemies if last_known is None: self.moving = False self.last_known = [int(self.pos.x), int(self.pos.y)] else: self.moving = True self.last_known = last_known self.weapon = weapon self.selected = False def draw_hit_box(self): hit_box = self.hit_rect.move(self.game.camera.camera.topleft) pg.draw.rect(self.game.screen, WHITE, hit_box, 2) def avoid_mobs(self): for enemy in self.game.enemies: if enemy != self: dist = self.pos - enemy.pos if 0 < dist.length() < AVOID_RADIUS: self.acc += dist.normalize() def lineLine(self, x1, y1, x2, y2, x3, y3, x4, y4): uA = ((x4-x3)*(y1-y3) - (y4-y3)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1)) uB = ((x2-x1)*(y1-y3) - (y2-y1)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1)) if (uA >= 0 and uA <= 1 and uB >= 0 and uB <= 1): return True else: return False def line_collide(self,): target_dist = self.target.pos - self.pos rot = target_dist.angle_to(vec(1, 0)) pos = self.pos + BARREL_OFFSET.rotate(-rot) for a in self.game.walls: r = a.rect.copy() topleft = r.topleft topright = r.topright bottomleft = r.bottomleft bottomright = r.bottomright left = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topleft[0], bottomleft[1]) right = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topright[0], topright[1], topright[0], bottomright[1]) top = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topright[0], topright[1]) bottom = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, bottomleft[0], bottomleft[1], bottomright[0], bottomright[1]) if left or right or top or bottom: return True for a in self.game.ally: r = a.hit_rect.copy() topleft = r.topleft topright = r.topright bottomleft = r.bottomleft bottomright = r.bottomright left = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topleft[0], bottomleft[1]) right = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topright[0], topright[1], topright[0], bottomright[1]) top = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, topleft[0], topleft[1], topright[0], topright[1]) bottom = self.lineLine(pos.x, pos.y, self.target.pos.x, self.target.pos.y, bottomleft[0], bottomleft[1], bottomright[0], bottomright[1]) if left or right or top or bottom: return True return False def rot_towards_target(self, target_dist): rotT = target_dist.angle_to(vec(1, 0)) angle = math.atan2(-target_dist.x, -target_dist.y)/math.pi * 180.0 diff = (angle - self.rot - 90) % 360 if 175 < int(diff) < 183: rot = rotT elif diff > 180: rot = self.rot + ENEMY_ROTATION_SPEED else: rot = self.rot - ENEMY_ROTATION_SPEED return rot def update(self): closest = vec(9999, 9999) for a in self.game.enemies: target_dist = a.pos - self.pos if target_dist.length() < closest.length(): closest = target_dist self.target = a if closest.length_squared() < (WEAPONS[self.weapon]['detect_radius'] - NIGHT_RADIUS) ** 2: if self.line_collide() is False: self.moving = False self.vel = vec(0, 0) self.last_known = [int(self.target.pos.x), int(self.target.pos.y)] pos = self.pos + BARREL_OFFSET.rotate(-self.rot) target_distA = self.target.pos - pos self.rot = self.rot_towards_target(target_distA) self.image = pg.transform.rotate(self.game.player_images[self.weapon], self.rot) self.rect = self.image.get_rect() self.rect.center = self.pos rot = closest.angle_to(vec(1, 0)) if self.rot - 20 < rot < self.rot + 20: self.shoot() else: self.moving = True self.image = pg.transform.rotate(self.game.player_images[self.weapon], self.rot) else: self.moving = True self.image = pg.transform.rotate(self.game.player_images[self.weapon], self.rot) pos = [int(self.pos.x), int(self.pos.y)] if ((pos[0] - 5 < self.last_known[0]) and (pos[1] - 5 < self.last_known[1])) and ((pos[0] + 5 > self.last_known[0]) and (pos[1] + 5 > self.last_known[1])): self.moving = False self.moving = False if self.moving: target_dist = self.last_known - self.pos self.rot = self.rot_towards_target(target_dist) #self.rot = target_dist.angle_to(vec(1, 0)) self.acc = vec(1, 0).rotate(-self.rot) self.avoid_mobs() try: self.acc.scale_to_length(ENEMY_SPEED) except: pass self.acc += self.vel * -1.5 self.vel += self.acc * self.game.dt self.pos += self.vel * self.game.dt + 0.5 * self.acc * self.game.dt ** 2 self.hit_rect.centerx = self.pos.x collide_with_walls(self, self.game.walls, "x") collide_with_walls(self, self.game.windows, "x") self.hit_rect.centery = self.pos.y collide_with_walls(self, self.game.walls, "y") collide_with_walls(self, self.game.windows, "y") self.rect.center = self.hit_rect.center if self.health <= 0: random.choice(self.game.enemy_hit_sounds).play() self.kill() self.game.map_img.blit(self.game.blood, self.pos - vec(TILESIZE / 2, TILESIZE / 2)) self.game.deaths += 1 def shoot(self): now = pg.time.get_ticks() if now - self.last_shot > WEAPONS[self.weapon]['rate']: self.last_shot = now dir = vec(1, 0).rotate(-self.rot) pos = self.pos + BARREL_OFFSET.rotate(-self.rot) for a in range(WEAPONS[self.weapon]['bullet_count']): spread = random.uniform(-WEAPONS[self.weapon]['spread'], WEAPONS[self.weapon]['spread']) Bullet(self.game, pos, dir.rotate(spread), self.rot, self.weapon) snd = random.choice(self.game.weapon_sounds[self.weapon]) if snd.get_num_channels() > 2: snd.stop() snd.play() MuzzleFlash(self.game, pos, self.rot, self.vel) #self.vel = vec(-WEAPONS[self.weapon]['kickback']).rotate(-self.rot) def draw_health(self): if self.health > 60: col = GREEN elif self.health > 30: col = YELLOW else: col = RED width = int(self.rect.width * self.health / ENEMY_HEALTH) self.health_bar = pg.Rect(0, 0, width, 7) if self.health < ENEMY_HEALTH: pg.draw.rect(self.image, col, self.health_bar) class Bullet(pg.sprite.Sprite): def __init__(self, game, pos, dir, angle, weapon): self._layer = BULLET_LAYER self.groups = game.all_sprites, game.bullets pg.sprite.Sprite.__init__(self, self.groups) self.game = game self.rot = angle self.image = game.bullet_images[WEAPONS[weapon]['bullet_size']] self.image = pg.transform.rotate(self.image, self.rot) self.rect = self.image.get_rect() self.pos = vec(pos) self.rect.center = pos #spread = random.uniform(-GUN_SPREAD, GUN_SPREAD) self.vel = dir * WEAPONS[game.player.weapon]['bullet_speed'] * random.uniform(0.9, 1.1) self.spawn_time = pg.time.get_ticks() self.weapon = weapon def update(self): self.pos += self.vel * self.game.dt self.rect.center = self.pos if (pg.time.get_ticks() - self.spawn_time > WEAPONS[self.weapon]['bullet_lifetime']) or (pg.sprite.spritecollideany(self, self.game.walls)): self.kill() class Obstacle(pg.sprite.Sprite): def __init__(self, game, x, y, w, h, type): self._layer = WALL_LAYER if type == "Wall": self.groups = game.walls elif type == "Window": self.groups = game.windows pg.sprite.Sprite.__init__(self, self.groups) self.game = game self.rect = pg.Rect(x, y, w, h) self.x = x self.y = y self.rect.x = x self.rect.y = y class MuzzleFlash(pg.sprite.Sprite): def __init__(self, game, pos, rot, vel): self._layer = EFFECTS_LAYER self.groups = game.all_sprites self.game = game pg.sprite.Sprite.__init__(self, self.groups) size = random.randint(20, 50) self.image = pg.transform.scale(game.gun_flash, (size * 2, size)) self.image = pg.transform.rotate(self.image, rot) self.rect = self.image.get_rect() self.pos = pos self.rect.center = pos self.vel = vel self.spawn_time = pg.time.get_ticks() def update(self): if pg.time.get_ticks() - self.spawn_time > FLASH_DURATION: self.kill() self.rect.center += self.vel * self.game.dt class Item(pg.sprite.Sprite): def __init__(self, game, pos, type): self._layer = ITEMS_LAYER self.groups = game.all_sprites, game.items pg.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = game.item_images[type] self.image = pg.transform.scale(self.image, ITEM_SIZES[type]) self.rect = self.image.get_rect() self.rect.center = pos self.pos = pos self.type = type self.tween = tween.easeInOutSine self.step = 0 self.dir = 1 def update(self): offset = BOB_RANGE * (self.tween(self.step / BOB_RANGE) - 0.5) self.rect.centery = self.pos.y + offset * self.dir self.step += BOB_SPEED if self.step > BOB_RANGE: self.step = 0 self.dir *= -1 ``` #### File: Home-Projects/Shooter/test.py ```python class Class1: def __init__(self, obj): self.obj = obj def print(self): print(self.obj.x) class Class2: def __init__(self): self.x = 5 g = Class2() h = Class1(g) h.print() ``` #### File: Home-Projects/WireWorld/camera.py ```python import pygame as pg from settings import * def collide_rect(one, two): return one.rect.colliderect(two.rect) class Mouse: def __init__(self): self.x = 0 self.y = 0 def update(self): mouse = pg.mouse.get_pos() self.x = mouse[0] self.y = mouse[1] class Player: def __init__(self, x, y): self.rect = pg.Rect(x, y, camera_width, camera_height) self.x = self.rect.centerx self.y = self.rect.centery def update(self): if self.x >= camera_width / 2 and self.x < ww - camera_width / 2: self.rect.centerx = self.x else: self.x = self.rect.centerx if self.y > camera_height / 2 and self.y < wh - camera_height / 2: self.rect.centery = self.y else: self.y = self.rect.centery class Camera: def __init__(self, width, height): self.camera = pg.Rect(0, 0, width, height) self.width = width self.height = height def apply(self, entity): return entity.rect.move(self.camera.topleft) def apply_rect(self, rect): return rect.move(self.camera.topleft) def apply_mouse_rect(self, rect): tops = [-self.camera.topleft[0], -self.camera.topleft[1]] return rect.move(tops) def update(self, target): x = -target.rect.centerx + int(camera_width / 2) y = -target.rect.centery + int(camera_height / 2) x = min(0, x) y = min(0, y) x = max(-(self.width - camera_width), x) y = max(-(self.height - camera_height), y) self.camera = pg.Rect(x, y, self.width, self.height) ``` #### File: Home-Projects/WireWorld/Tile.py ```python import pygame as pg from settings import * class Tile(pg.sprite.Sprite): def __init__(self, x, y, game, state="none"): self.group = game.tiles pg.sprite.Sprite.__init__(self, self.group) self.x = x self.y = y self.size = tile_size self.rect = pg.Rect(x, y, self.size, self.size) self.game = game self.state = state self.color = states[state] def update(self): pass ```
{ "source": "jonasfreyr/Lokaverkefni-Forritun", "score": 3 }
#### File: Lokaverkefni-Forritun/Lokaverkefni/Lokaverkefni.py ```python from tkinter import * import math,random #Fall sem heldur utan um þríhyrninga liðinn def thry(): for a in root.winfo_children(): a.destroy() #Fall sem reiknar rúmmál þríhyrnings def rummal(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): lengd = float(entry_1.get()) breidd = float(entry_2.get()) haed = float(entry_3.get()) svar = ((lengd * breidd) * haed)/3 label_4.configure(text = round(svar,2)) label_1 = Label(root, text = " Sláðu inn Lengd ") label_2 = Label(root, text = " Sláðu inn Breidd ") label_3 = Label(root, text = " Sláðu inn Hæð ") label_4 = Label(root, text = "") label_5 = Label(root, text = "Svar:") entry_1 = Entry(root, textvariable = StringVar()) entry_2 = Entry(root, textvariable=StringVar()) entry_3 = Entry(root, textvariable=StringVar()) label_1.grid(row = 1, column = 1) label_2.grid(row=2, column=1) label_3.grid(row=3, column=1) label_4.grid(row=4, column=2) label_5.grid(row=4, column=1) entry_1.grid(row = 1, column = 2) entry_2.grid(row=2, column=2) entry_3.grid(row=3, column=2) button_1 = Button(root, text = " Reikna ", command = reikna) button_1.grid(columnspan = 2) button_2 = Button(root, text = " Til baka ",command = thry) button_2.grid(columnspan = 3) #Fall sem reiknar yfirflatarmál def yfirflat(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): lengd = float(entry_1.get()) breidd = float(entry_2.get()) haed = float(entry_3.get()) svar = lengd * breidd c = math.sqrt(math.pow((lengd/2),2)+math.pow(haed,2)) c2 = math.sqrt(math.pow((breidd / 2), 2) + math.pow(haed, 2)) svar = svar + (((c * breidd)/2)*2) + (((c2 * lengd)/2)*2) label_4.configure(text = round(svar,2)) label_1 = Label(root, text=" Sláðu inn Lengd ") label_2 = Label(root, text=" Sláðu inn Breidd ") label_3 = Label(root, text=" Sláðu inn Hæð ") label_4 = Label(root, text="") label_5 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) entry_2 = Entry(root, textvariable=StringVar()) entry_3 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=1) label_3.grid(row=3, column=1) label_4.grid(row=4, column=2) label_5.grid(row=4, column=1) entry_1.grid(row=1, column=2) entry_2.grid(row=2, column=2) entry_3.grid(row=3, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=thry) button_2.grid(columnspan=3) #Fall sem reiknar pythogoras def pygor(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def py(): # tala1 er það sem er í entry_1 tala1 = float(entry_1.get()) # tala2 er það sem er í entry_2 tala2 = float(entry_2.get()) # tala3 er það sem er í entry_3 tala3 = float(entry_3.get()) # Ef tala1 og tala2 og tala3 eru meira en 0 if tala1 > 0 and tala2 > 0 and tala3 > 0: # Breyti hvað er í lable_4 og set strengin label_4.configure(text="Ein hlið þarf að vera óþekkt") # Ef einhverjar tvær tölur eru 0 elif (tala1 == 0 and tala2 == 0) or (tala1 == 0 and tala3 == 0) or (tala2 == 0 and tala3 == 0): # Breyti hvað er í lable_4 og set strengin label_4.configure(text="Villa meiri en ein hlið er með lengdina 0") # Ef tala3 er meira en 0 en minna en annhvort tala1 eða tala2 elif (tala3 <= tala1 or tala3 <= tala2) and tala3 > 0: # Breyti hvað er í lable_4 og set strengin label_4.configure(text="Langhlið getur ekki verið minni eða sama og skammhlið") # Ef tala3 er 0 elif tala3 == 0: # Reikna pýþagóras utkoma = math.sqrt((math.pow(tala1, 2)) + (math.pow(tala2, 2))) # Breyti hvað er í lable_4 og set utkoma label_4.configure(text=round(utkoma, 2)) elif tala2 == 0: # Reikna pýþagóras utkoma = math.sqrt((math.pow(tala3, 2)) - (math.pow(tala1, 2))) # Breyti hvað er í lable_4 og set utkoma label_4.configure(text=round(utkoma, 2)) elif tala1 == 0: # Reikna pýþagóras utkoma = math.sqrt((math.pow(tala3, 2)) - (math.pow(tala2, 2))) # Breyti hvað er í lable_4 og set utkoma label_4.configure(text=round(utkoma, 2)) # label_1 er texti label_1 = Label(root, text="Sláðu inn skammhlið eitt ") # label_2 er texti label_2 = Label(root, text="Sláðu inn skammhlið tvö ") # label_3 er texti label_3 = Label(root, text="Sláðu inn langhlið ") # label_5 er texti label_5 = Label(root, text="Óþekkta hliðin: ") # label_6 er texti label_6 = Label(root, text="Hliðin sem þú veist ekki slærðu inn 0") # texti er mismunadi strengur texti = StringVar() # texti2 er mismunadi strengur texti2 = StringVar() # texti3 er mismunadi strengur texti3 = StringVar() # entry_1 er input sem tekur inn mismunandi streng entry_1 = Entry(root, textvariable=texti) # entry_2 er input sem tekur inn mismunandi streng entry_2 = Entry(root, textvariable=texti2) # entry_3 er input sem tekur inn mismunandi streng entry_3 = Entry(root, textvariable=texti3) # texti er það sem er í entry_1 texti = entry_1.get() # label_4 er tómur texti label_4 = Label(root, text="") # Stað set öll stök(strengi,inputs...) label_6.grid(columnspan=2) label_1.grid(row=1, sticky=E) label_2.grid(row=2, sticky=E) label_3.grid(row=3, sticky=E) label_5.grid(row=4, sticky=E) entry_1.grid(row=1, column=1) entry_2.grid(row=2, column=1) entry_3.grid(row=3, column=1) label_4.grid(row=4, column=1) # button_1 er takki sem kallar á fallið py button_1 = Button(root, text=" <NAME> ", command=py) # Staðsetji takkan button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=thry) button_2.grid(columnspan=3) # Forritið keyrir í loopu label_1 = Label(root, text="Vel<NAME>ð þú vilt gera") button_1 = Button(root, text=" Rúmmál ", command=rummal) button_2 = Button(root, text=" Yfirborðsflatarmál ", command=yfirflat) button_3 = Button(root, text=" Pythogoras ", command=pygor) button_4 = Button(root, text=" Til baka ", command=home) button_1.grid(row=1, column=1) button_2.grid(row=1, column=2) button_3.grid(row=1, column=3) button_4.grid(row=1, column=4) label_1.grid(columnspan=5) #Fall sem heldur utan um kúlu liðinn def kula(): for a in root.winfo_children(): a.destroy() #Fall sem reiknar rúmmál def rummal(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): radius = float(entry_1.get()) svar = (4*math.pi*radius**3)/3 label_2.configure(text=round(svar, 2)) label_1 = Label(root, text=" Sláðu inn radíus ") label_2 = Label(root, text="") label_3 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=2) label_3.grid(row=2, column=1) entry_1.grid(row=1, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=kula) button_2.grid(columnspan=3) #Fall sem reiknar yfirborðsflatarmál def yfirflat(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): radius = float(entry_1.get()) svar = (4 * math.pi * radius ** 2) label_2.configure(text=round(svar, 2)) label_1 = Label(root, text=" Sláðu inn radíus ") label_2 = Label(root, text="") label_3 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=2) label_3.grid(row=2, column=1) entry_1.grid(row=1, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=kula) button_2.grid(columnspan=3) #Fall sem reiknar flatarmál def flatar(): for a in root.winfo_children(): a.destroy() #Fall sem framvæmir reikni aðgerðina def reikna(): radius = float(entry_1.get()) svar = (math.pi * radius ** 2) label_2.configure(text=round(svar, 2)) label_1 = Label(root, text=" Sláðu inn radíus ") label_2 = Label(root, text="") label_3 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=2) label_3.grid(row=2, column=1) entry_1.grid(row=1, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=kula) button_2.grid(columnspan=3) label_1 = Label(root, text="Veldu hvað þú vilt gera") button_1 = Button(root, text=" Rúmmál ", command=rummal) button_2 = Button(root, text=" Yfirborðsflatarmál ", command=yfirflat) button_3 = Button(root, text=" Flatarmál Hrings ", command=flatar) button_4 = Button(root, text=" Til baka ", command=home) button_1.grid(row=1, column=1) button_2.grid(row=1, column=2) button_3.grid(row=1, column=3) button_4.grid(row=1, column=4) label_1.grid(columnspan=5) #Fall sem heldur utan um kassa liðinn def kassi(): for a in root.winfo_children(): a.destroy() #Fall sem reiknar flatarmál def flatar(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): lengd = float(entry_1.get()) breidd = float(entry_2.get()) svar = lengd * breidd label_3.configure(text=round(svar, 2)) label_1 = Label(root, text=" Sláðu inn Lengd ") label_2 = Label(root, text=" Sláðu inn Breidd ") label_3 = Label(root, text="") label_4 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) entry_2 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=1) label_4.grid(row=3, column=1) label_3.grid(row=3, column=2) entry_1.grid(row=1, column=2) entry_2.grid(row=2, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=kassi) button_2.grid(columnspan=3) #Fall sem reiknar rúmmál def rummal(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): lengd = float(entry_1.get()) breidd = float(entry_2.get()) haed = float(entry_3.get()) svar = lengd * breidd * haed label_4.configure(text = round(svar,2)) label_1 = Label(root, text=" Sláðu inn Lengd ") label_2 = Label(root, text=" Sláðu inn Breidd ") label_3 = Label(root, text=" Sláðu inn Hæð ") label_4 = Label(root, text="") label_5 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) entry_2 = Entry(root, textvariable=StringVar()) entry_3 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=1) label_3.grid(row=3, column=1) label_4.grid(row=4, column=2) label_5.grid(row=4, column=1) entry_1.grid(row=1, column=2) entry_2.grid(row=2, column=2) entry_3.grid(row=3, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=kassi) button_2.grid(columnspan=3) #Fall er reiknar yfirborðsflatarmál def yfirflat(): for a in root.winfo_children(): a.destroy() #Fall sem framkvæmir reikni aðgerðina def reikna(): lengd = float(entry_1.get()) breidd = float(entry_2.get()) haed = float(entry_3.get()) hl_1 = lengd * breidd * 2 hl_2 = lengd * haed *2 hl_3 = breidd * haed * 2 svar = hl_1 + hl_2 + hl_3 label_4.configure(text=round(svar)) label_1 = Label(root, text=" Sláðu inn Lengd ") label_2 = Label(root, text=" Sláðu inn Breidd ") label_3 = Label(root, text=" Sláðu inn Hæð ") label_4 = Label(root, text="") label_5 = Label(root, text="Svar:") entry_1 = Entry(root, textvariable=StringVar()) entry_2 = Entry(root, textvariable=StringVar()) entry_3 = Entry(root, textvariable=StringVar()) label_1.grid(row=1, column=1) label_2.grid(row=2, column=1) label_3.grid(row=3, column=1) label_4.grid(row=4, column=2) label_5.grid(row=4, column=1) entry_1.grid(row=1, column=2) entry_2.grid(row=2, column=2) entry_3.grid(row=3, column=2) button_1 = Button(root, text=" Reikna ", command=reikna) button_1.grid(columnspan=2) button_2 = Button(root, text=" Til baka ", command=kassi) button_2.grid(columnspan=3) label_1 = Label(root, text = " Veldu hvað þú vilt gera ") button_1 = Button(root, text=" Rúmmál ", command=rummal) button_2 = Button(root, text=" Yfirborðsflatarmál ", command=yfirflat) button_3 = Button(root, text="Flatarmál ferhyrnings", command=flatar) button_4 = Button(root, text=" Til baka ", command=home) button_1.grid(row=1, column=1) button_2.grid(row=1, column=2) button_3.grid(row=1, column=3) button_4.grid(row=1, column=4) label_1.grid(columnspan=5) #Fall sem heldur utan um home def home(): for a in root.winfo_children(): a.destroy() label_1 = Label(root, text = "Veldu hvað þú vilt gera") button_1 = Button(root, text=" Pýramídi ", command = thry) button_2 = Button(root, text=" Kassi ", command = kassi) button_3 = Button(root, text=" Kúla ", command = kula) button_4 = Button(root, text=" Leikir ", command = leikir) button_1.grid(row = 1, column = 1) button_2.grid(row = 1, column = 2) button_3.grid(row = 1, column = 3) button_4.grid(row = 1, column = 4) label_1.grid(columnspan=5) #Fall sem heldur utan um leikina def leikir(): for a in root.winfo_children(): a.destroy() global Owin global Xwin global ai Owin = 0 Xwin = 0 ai = False #Klasi sem keyrir þegar er ýtt á takka í myllu class push: def __init__(self): for a in root.winfo_children(): a.destroy() #Ef valið var takka 1 def p1(): global label_p1 if label_p1 == " ": global tel if tel == "X": label_p1 = "X" tel = "O" elif tel == "O": label_p1 = "O" tel = "X" homeG() # Ef valið var takka 2 def p2(): global label_p2 if label_p2 == " ": global tel if tel == "X": label_p2 = "X" tel = "O" elif tel == "O": label_p2 = "O" tel = "X" homeG() # Ef valið var takka 3 def p3(): global label_p3 if label_p3 == " ": global tel if tel == "X": label_p3 = "X" tel = "O" elif tel == "O": label_p3 = "O" tel = "X" homeG() # Ef valið var takka 4 def p4(): global label_p4 if label_p4 == " ": global tel if tel == "X": label_p4 = "X" tel = "O" elif tel == "O": label_p4 = "O" tel = "X" homeG() # Ef valið var takka 5 def p5(): global label_p5 if label_p5 == " ": global tel if tel == "X": label_p5 = "X" tel = "O" elif tel == "O": label_p5 = "O" tel = "X" homeG() # Ef valið var takka 6 def p6(): global label_p6 if label_p6 == " ": global tel if tel == "X": label_p6 = "X" tel = "O" elif tel == "O": label_p6 = "O" tel = "X" homeG() # Ef valið var takka 7 def p7(): global label_p7 if label_p7 == " ": global tel if tel == "X": label_p7 = "X" tel = "O" elif tel == "O": label_p7 = "O" tel = "X" homeG() # Ef valið var takka 8 def p8(): global label_p8 if label_p8 == " ": global tel if tel == "X": label_p8 = "X" tel = "O" elif tel == "O": label_p8 = "O" tel = "X" homeG() # Ef valið var takka 9 def p9(): global label_p9 if label_p9 == " ": global tel if tel == "X": label_p9 = "X" tel = "O" elif tel == "O": label_p9 = "O" tel = "X" homeG() #Klasi fyrir ef þú ert að spila á móti tölvunni class ai_turn: def __init__(self): for a in root.winfo_children(): a.destroy() # Ef valið var takka 1 def p1(): global label_p1 if label_p1 == " ": label_p1 = "O" listi.remove(1) turn_ai() # Ef valið var takka 2 def p2(): global label_p2 if label_p2 == " ": label_p2 = "O" listi.remove(2) turn_ai() # Ef valið var takka 3 def p3(): global label_p3 if label_p3 == " ": label_p3 = "O" listi.remove(3) turn_ai() # Ef valið var takka 4 def p4(): global label_p4 if label_p4 == " ": label_p4 = "O" listi.remove(4) turn_ai() # Ef valið var takka 5 def p5(): global label_p5 if label_p5 == " ": label_p5 = "O" listi.remove(5) turn_ai() # Ef valið var takka 6 def p6(): global label_p6 if label_p6 == " ": label_p6 = "O" listi.remove(6) turn_ai() # Ef valið var takka 7 def p7(): global label_p7 if label_p7 == " ": label_p7 = "O" listi.remove(7) turn_ai() # Ef valið var takka 8 def p8(): global label_p8 if label_p8 == " ": label_p8 = "O" listi.remove(8) turn_ai() # Ef valið var takka 9 def p9(): global label_p9 if label_p9 == " ": label_p9 = "O" listi.remove(9) turn_ai() #Fall fyrir tölvuna að gera def turn_ai(): global listi global label_p1 global label_p2 global label_p3 global label_p4 global label_p5 global label_p6 global label_p7 global label_p8 global label_p9 #Reyni try: val = random.choice(listi) #Ef notandi er búin að vinna if (label_p1 == "O" and label_p2 == "O" and label_p3 == "O") or ( label_p4 == "O" and label_p5 == "O" and label_p6 == "O") or ( label_p7 == "O" and label_p8 == "O" and label_p9 == "O") or ( label_p1 == "O" and label_p4 == "O" and label_p7 == "O") or ( label_p2 == "O" and label_p5 == "O" and label_p8 == "O") or ( label_p3 == "O" and label_p6 == "O" and label_p9 == "O") or ( label_p1 == "O" and label_p5 == "O" and label_p9 == "O") or ( label_p3 == "O" and label_p5 == "O" and label_p7 == "O"): vinner("O vinnur!") elif val == 1: label_p1 = "X" elif val == 2: label_p2 = "X" elif val == 3: label_p3 = "X" elif val == 4: label_p4 = "X" elif val == 5: label_p5 = "X" elif val == 6: label_p6 = "X" elif val == 7: label_p7 = "X" elif val == 8: label_p8 = "X" elif val == 9: label_p9 = "X" listi.remove(val) #Annars except: homeG() homeG() #Fall tuk að reseta leikinn def reset(): global listi listi = [1, 2, 3, 4, 5, 6, 7, 8, 9] global tel tel = "O" global label_p1 label_p1 = " " global label_p2 label_p2 = " " global label_p3 label_p3 = " " global label_p4 label_p4 = " " global label_p5 label_p5 = " " global label_p6 label_p6 = " " global label_p7 label_p7 = " " global label_p8 label_p8 = " " global label_p9 label_p9 = " " homeG() #Fall þegar einhver er búin að vinna def vinner(x): for a in root.winfo_children(): a.destroy() r1c1 = Button(root, text=label_p1, command="") r1c2 = Button(root, text=label_p2, command="") r1c3 = Button(root, text=label_p3, command="") r2c1 = Button(root, text=label_p4, command="") r2c2 = Button(root, text=label_p5, command="") r2c3 = Button(root, text=label_p6, command="") r3c1 = Button(root, text=label_p7, command="") r3c2 = Button(root, text=label_p8, command="") r3c3 = Button(root, text=label_p9, command="") label = Label(root, text=x) res = Button(root, text="Reset", command=reset) haetta = Button(root, text ="Hætta",command=leikir) r1c1.grid(row=1, column=1) r1c2.grid(row=1, column=2) r1c3.grid(row=1, column=3) r2c1.grid(row=2, column=1) r2c2.grid(row=2, column=2) r2c3.grid(row=2, column=3) r3c1.grid(row=3, column=1) r3c2.grid(row=3, column=2) r3c3.grid(row=3, column=3) label.grid(columnspan=5) res.grid(columnspan=5) haetta.grid(columnspan=5) #Fall ef valið er að spila á móti tölvu def tolva(): global ai ai = True homeG() # Fall ef valið er að spila á móti leikmann def leikmann(): global ai ai = False homeG() # Fall sem spyr þig hvor þú vil spila á móti tölvu eða leikmann def homeT(): for a in root.winfo_children(): a.destroy() button_1 = Button(root, text="Tölva", command=tolva) button_2 = Button(root, text="Leikmann", command=leikmann) label = Label(root, text="Veldu hvor þú vilt spila á móti") label.grid(columnspan=3) button_1.grid(row=1, column=1) button_2.grid(row=1, column=2) #Aðal heimaskjár myllu def homeG(): for a in root.winfo_children(): a.destroy() if ai == False: r1c1 = Button(root, text=label_p1, command=push.p1) r1c2 = Button(root, text=label_p2, command=push.p2) r1c3 = Button(root, text=label_p3, command=push.p3) r2c1 = Button(root, text=label_p4, command=push.p4) r2c2 = Button(root, text=label_p5, command=push.p5) r2c3 = Button(root, text=label_p6, command=push.p6) r3c1 = Button(root, text=label_p7, command=push.p7) r3c2 = Button(root, text=label_p8, command=push.p8) r3c3 = Button(root, text=label_p9, command=push.p9) elif ai == True: r1c1 = Button(root, text=label_p1, command=ai_turn.p1) r1c2 = Button(root, text=label_p2, command=ai_turn.p2) r1c3 = Button(root, text=label_p3, command=ai_turn.p3) r2c1 = Button(root, text=label_p4, command=ai_turn.p4) r2c2 = Button(root, text=label_p5, command=ai_turn.p5) r2c3 = Button(root, text=label_p6, command=ai_turn.p6) r3c1 = Button(root, text=label_p7, command=ai_turn.p7) r3c2 = Button(root, text=label_p8, command=ai_turn.p8) r3c3 = Button(root, text=label_p9, command=ai_turn.p9) res = Button(root, text="Reset", command=reset) global Owin global Xwin lable_O = Label(root, text="Sigrar O: " + str(Owin)) lable_X = Label(root, text="Sigrar X: " + str(Xwin)) r1c1.grid(row=1, column=1) r1c2.grid(row=1, column=2) r1c3.grid(row=1, column=3) r2c1.grid(row=2, column=1) r2c2.grid(row=2, column=2) r2c3.grid(row=2, column=3) r3c1.grid(row=3, column=1) r3c2.grid(row=3, column=2) r3c3.grid(row=3, column=3) res.grid(columnspan=4) lable_O.grid(row=1, column=4) lable_X.grid(row=2, column=4) if (label_p1 == "X" and label_p2 == "X" and label_p3 == "X") or ( label_p4 == "X" and label_p5 == "X" and label_p6 == "X") or ( label_p7 == "X" and label_p8 == "X" and label_p9 == "X") or ( label_p1 == "X" and label_p4 == "X" and label_p7 == "X") or ( label_p2 == "X" and label_p5 == "X" and label_p8 == "X") or ( label_p3 == "X" and label_p6 == "X" and label_p9 == "X") or ( label_p1 == "X" and label_p5 == "X" and label_p9 == "X") or ( label_p3 == "X" and label_p5 == "X" and label_p7 == "X"): vinner("X Vinnur!") Xwin += 1 elif (label_p1 == "O" and label_p2 == "O" and label_p3 == "O") or ( label_p4 == "O" and label_p5 == "O" and label_p6 == "O") or ( label_p7 == "O" and label_p8 == "O" and label_p9 == "O") or ( label_p1 == "O" and label_p4 == "O" and label_p7 == "O") or ( label_p2 == "O" and label_p5 == "O" and label_p8 == "O") or ( label_p3 == "O" and label_p6 == "O" and label_p9 == "O") or ( label_p1 == "O" and label_p5 == "O" and label_p9 == "O") or ( label_p3 == "O" and label_p5 == "O" and label_p7 == "O"): vinner("O Vinnur!") Owin += 1 elif label_p1 != " " and label_p2 != " " and label_p3 != " " and label_p4 != " " and label_p5 != " " and label_p6 != " " and label_p7 != " " and label_p8 != " " and label_p9 != " ": vinner("<NAME>") #Fall sem byrjar myllu def mylla(): reset() homeT() #Fall sem heldur utan um leikinn Planets def Planets(): #Fall sem resetar leikinn def reset(): for a in root.winfo_children(): a.destroy() global dot global canvas global Sx global Sy global wW global wH global fY global speed global room global oldroom global Cy global Cx global star global Seaty global Seatx global sol global dod global tel global planets global rooms global Dx global Dy global Dr global fuel global maxfuel global eydsla global Etel Sx = 200 Sy = 200 wW = 1200 wH = 900 Seaty = wH / 2 Seatx = 800 Cx = Seatx Cy = Seaty fY = "a" tel = 0 speed = 7 planets = [] star = [] rooms = ["R1", "R2", "R3", "R4"] oldroom = "" Dx = random.randint(10, 600) Dy = random.randint(10, 600) Dr = "R1" maxfuel = 100 fuel = 100 eydsla = 20 Etel = 1 sol = [] dod = False canvas = Canvas(root, width=wW, height=wH, borderwidth=0, highlightthickness=0, bg="black") dot = canvas.create_circle(Dx, Dy, 3, fill="yellow") stars(500, 10, 10, wW, wH) R1() canvas.bind("<Key>", key) canvas.bind("<Button-1>", callback) canvas.pack() root.wm_title("Planets") homeS() # Svo það er þæginlegt að búa til hringi def _create_circle(self, x, y, r, **kwargs): global canvas return self.create_oval(x - r, y - r, x + r, y + r, **kwargs) # Til að geta notað command til að búa til hring Canvas.create_circle = _create_circle # Svo það er þæginlegt að búa til pizzu form def _create_circle_arc(self, x, y, r, **kwargs): global canvas if "start" in kwargs and "end" in kwargs: kwargs["extent"] = kwargs["end"] - kwargs["start"] del kwargs["end"] return self.create_arc(x - r, y - r, x + r, y + r, **kwargs) # Til að geta notað command til að búa til pizzu form Canvas.create_circle_arc = _create_circle_arc # Þegar er ýtt á takka er farið hér def key(event): global canvas global listi for a in listi: canvas.delete(a) print("pressed", repr(event.char)) global fuel global maxfuel global eydsla global Etel global Sx global Sy global wW global wH global fY global speed global room global oldroom global Cy global Cx global star global Seaty global Seatx global sol global dod if event.char == "q": if room == "sR1" and Cx == Seatx and Cy == Seaty: if oldroom == "R1": R1() elif oldroom == "R2": R2() elif oldroom == "R3": R3() elif oldroom == "R4": R4() elif room != "sR1" and room != "sR2" and room != "sR3": oldroom = room sR1() if room == "sR1" or room == "sR2" or room == "sR3": if event.char == "w": if Cy > 254: Cy -= speed elif event.char == "s": if Cy < wH - 254: Cy += speed elif event.char == "a": if room != "sR3": if Cx > 50: Cx -= speed else: if room == "sR2": sR3() elif room == "sR1": sR2() Cx = wW else: if Cx > 303 + 50: Cx -= speed elif event.char == "d": if room != "sR1": if Cx < wW - 50: Cx += speed else: if room == "sR2": sR1() elif room == "sR3": sR2() Cx = 2 else: if Cx < 934 - 50: Cx += speed else: if Etel % eydsla == 0: fuel = fuel - 1 Etel += 1 if event.char == "w": if Sy > 8: Sy -= speed fY = "w" else: if room == "R3": R1() Sy = wH elif room == "R4": R2() Sy = wH elif event.char == "s": if Sy < wH - 6: Sy += speed fY = "s" else: if room == "R1": R3() Sy = 0 elif room == "R2": R4() Sy = 0 elif event.char == "a": if Sx > 8: Sx -= speed fY = "a" else: if room == "R2": R1() Sx = wW elif room == "R4": R3() Sx = wW elif event.char == "d": if Sx < wW - 6: Sx += speed fY = "d" else: if room == "R1": R2() Sx = 0 elif room == "R3": R4() Sx = 0 for a in sol: canvas.delete(a) inn = False if room == "R1": tel = 0 for a in range(628): if Sy > round(900 + 400 * math.sin(tel)) and Sx > round( 1200 + 400 * math.cos(tel)): # 1200, 900 inn = True if Sy > round(900 + 300 * math.sin(tel)) and Sx > round(1200 + 300 * math.cos(tel)): dod = True break tel = round(tel + 0.01, 2) elif room == "R2": tel = 0 for a in range(628): if Sy > round(900 + 400 * math.sin(tel)) and Sx < round(0 + 400 * math.cos(tel)): # 0, 900 inn = True if Sy > round(900 + 300 * math.sin(tel)) and Sx < round(0 + 300 * math.cos(tel)): dod = True break tel = round(tel + 0.01, 2) elif room == "R3": tel = 0 for a in range(628): if Sy < round(0 + 400 * math.sin(tel)) and Sx > round(1200 + 400 * math.cos(tel)): # 1200, 0 inn = True if Sy < round(0 + 300 * math.sin(tel)) and Sx > round(1200 + 300 * math.cos(tel)): dod = True break tel = round(tel + 0.01, 2) elif room == "R4": tel = 0 for a in range(628): if Sy < round(0 + 400 * math.sin(tel)) and Sx < round(0 + 400 * math.cos(tel)): # 0, 0 inn = True if Sy < round(0 + 300 * math.sin(tel)) and Sx < round(0 + 300 * math.cos(tel)): dod = True break tel = round(tel + 0.01, 2) if inn == True: if dod == True: for a in sol: canvas.delete(a) destroy(15) elif dod == False: sol.append(canvas.create_text(wW / 2, wH / 2, text="Heat Warning!", fill="white")) if room == "sR1" or room == "sR2" or room == "sR3": homeSS() else: homeS() #Fall fyrir ef þú ert bensínlaus def emty(): global dod global sol dod = True canvas.bind("<Key>", dead) for a in sol: canvas.delete(a) user() canvas.create_text(wW / 2, wH / 2, text="Ship is out of fuel!", fill="white") canvas.create_rectangle((wW / 2) - 50, (wH / 2) + 10, (wW / 2) + 50, (wH / 2) + 50, fill="grey") canvas.create_text(wW / 2, (wH / 2) + 30, text="Restart", fill="white", anchor="center") # Dautt fall(bara svo að þegar þú ert dauður getur ekki haldið áfram) def dead(key): pass # Þegar þú deyrð def destroy(boom): global canvas global listi global sol global wW global wH canvas.create_circle(Sx, Sy, boom, fill="orange") for a in listi: canvas.delete(a) canvas.bind("<Key>", dead) user() canvas.create_text(wW / 2, wH / 2, text="Ship destroyed!", fill="white") canvas.create_rectangle((wW / 2) - 50, (wH / 2) + 10, (wW / 2) + 50, (wH / 2) + 50, fill="grey") canvas.create_text(wW / 2, (wH / 2) + 30, text="Restart", fill="white", anchor="center") def user(): global wW global wH global e1 e1 = Entry(canvas) canvas.create_text(wW / 2, (wH / 2) + 60, text="Sláðu inn notenda nafn þitt", fill="white") canvas.create_window(wW / 2, (wH / 2) + 80, window=e1) # Ef það er ýtt á músa takkann def callback(event): global canvas global dod global tel global e1 canvas.focus_set() print("clicked at", event.x, event.y) if dod == True: if event.x > (wW / 2) - 50 and event.y > (wH / 2) + 10 and event.x < (wW / 2) + 50 and event.y < (wH / 2) + 50: nafn = e1.get() if nafn != "": entry = ","+nafn+":"+str(tel) with open("scores.txt","a") as f: f.write(entry) reset() # Til að búa til punkt def new_dot(): global canvas global speed global dot global tel tel += 1 global Dx global Dy global Dr global rooms global room global dtel Dx = random.randint(0, 1200) Dy = random.randint(0, 900) Dr = random.choice(rooms) tel1 = 0 for a in range(628): if Dr == "R1": print("Y:", Dy) print("X:", Dx) print("Ry:", round(900 + 300 * math.sin(tel))) print("Rx:", round(1200 + 300 * math.cos(tel))) if Dy > round(900 + 300 * math.sin(tel1)) and Dx > round(1200 + 300 * math.cos(tel1)): print("yay!!") new_dot() elif Dr == "R2": if Dy > round(900 + 300 * math.sin(tel1)) and Dx < round(0 + 300 * math.cos(tel1)): new_dot() elif Dr == "R3": if Dy < round(0 + 300 * math.sin(tel1)) and Dx > round(1200 + 300 * math.cos(tel1)): new_dot() elif Dr == "R4": if Dy < round(0 + 300 * math.sin(tel1)) and Dx < round(0 + 300 * math.cos(tel1)): new_dot() tel1 = round(tel1 + 0.01, 2) # print(tel) # Aðal skjár í geimskipi def homeSS(): global canvas global dot global Cx global Cy global listi canvas.delete(dot) listi = [] listi.append(canvas.create_circle(Cx, Cy, 50, fill="white", outline="")) # Aðal skjár í geimnum def homeS(): global canvas global dot canvas.delete(dot) global Sx global Sy global listi listi = [] global fY global room global Dr global dod global maxfuel global fuel global wW global wH if room == Dr: dot = canvas.create_circle(Dx, Dy, 3, fill="yellow") try: with open("scores.txt","r") as f: text = f.read() users = text.split(",") telja = 0 for a in users: nota = a.split(":") if int(nota[1]) > int(telja): nafn = nota[0] telja = nota[1] listi.append(canvas.create_text(wW/2,0,text="Hæsti notandi: "+nafn+" : "+str(telja),fill ="white",anchor = N)) except: listi.append( canvas.create_text(wW / 2, 0, text="Hæsti notandi: Enginn", fill="white",anchor=N)) if dod == False: if fY == "s": listi.append(canvas.create_circle(Sx, Sy - 8, 3, fill="lightblue", outline="")) elif fY == "w": listi.append(canvas.create_circle(Sx, Sy + 2, 3, fill="lightblue", outline="")) elif fY == "a": listi.append(canvas.create_circle(Sx + 2, Sy, 3, fill="lightblue", outline="")) elif fY == "d": listi.append(canvas.create_circle(Sx - 8, Sy, 3, fill="lightblue", outline="")) if fY == "s" or fY == "w": listi.append(canvas.create_circle(Sx, Sy, 3, fill="grey", outline="")) listi.append(canvas.create_circle(Sx, Sy - 2, 3, fill="grey", outline="")) listi.append(canvas.create_circle(Sx, Sy - 4, 3, fill="grey", outline="")) listi.append(canvas.create_circle(Sx, Sy - 6, 3, fill="grey", outline="")) elif fY == "a" or fY == "d": listi.append(canvas.create_circle(Sx, Sy, 3, fill="grey", outline="")) listi.append(canvas.create_circle(Sx - 2, Sy, 3, fill="grey", outline="")) listi.append(canvas.create_circle(Sx - 4, Sy, 3, fill="grey", outline="")) listi.append(canvas.create_circle(Sx - 6, Sy, 3, fill="grey", outline="")) if Sx - 3 <= Dx + 3 and Sx + 3 >= Dx - 3 and Sy - 3 <= Dy + 3 and Sy + 3 >= Dy - 3 and room == Dr: fuel = fuel + 10 if fuel > maxfuel: fuel = maxfuel new_dot() if fuel == 0: emty() listi.append(canvas.create_text(wW - 10, 10, text="Stig: " + str(tel), width=100, anchor=NE, fill="white")) listi.append(canvas.create_text(0 + 10, 10, text="Fuel: " + str(fuel), width=100, anchor=NW, fill="white")) # Til að búa til stjörnur def stars(numb, x1, y1, x2, y2): global canvas for a in range(numb): x = random.randint(x1, x2) y = random.randint(y1, y2) star.append(canvas.create_circle(x, y, 1, fill="white", outline="")) # Herbergi 1 í geimnum def R1(): global canvas global dot global room room = "R1" canvas.delete(dot) for a in planets: canvas.delete(a) planets.append(canvas.create_circle(100, 120, 50, fill="blue", outline="lightblue", width=4)) planets.append(canvas.create_circle_arc(100, 120, 48, fill="green", outline="", start=45, end=140)) planets.append(canvas.create_circle_arc(100, 120, 48, fill="green", outline="", start=275, end=305)) planets.append(canvas.create_circle_arc(100, 120, 45, style="arc", outline="white", width=6, start=270 - 25, end=270 + 25)) planets.append(canvas.create_circle(150, 40, 20, fill="#BBB", outline="")) planets.append(canvas.create_circle(140, 40, 2, fill="darkgrey", outline="")) planets.append(canvas.create_circle(160, 50, 4, fill="darkgrey", outline="")) planets.append(canvas.create_circle(160, 30, 3, fill="darkgrey", outline="")) planets.append(canvas.create_circle(1200, 900, 300, fill="#FF5C00")) planets.append(canvas.create_circle(1200, 900, 400, outline="#FF5C00")) # Herbergi 2 í geimnum def R2(): global canvas global dot global room room = "R2" canvas.delete(dot) for a in planets: canvas.delete(a) planets.append(canvas.create_circle(0, 900, 300, fill="#FF5C00")) planets.append(canvas.create_circle(0, 900, 400, outline="#FF5C00")) planets.append(canvas.create_circle(900, 500, 45, fill="red")) planets.append(canvas.create_circle(880, 520, 10, fill="#E82A00", outline="")) planets.append(canvas.create_circle(920, 520, 8, fill="#E82A00", outline="")) planets.append(canvas.create_circle(900, 480, 5, fill="#E82A00", outline="")) planets.append(canvas.create_circle(500, 100, 60, fill="#FFA30B", outline="#FFBD05", width=4)) # Herbergi 3 í geimnum def R3(): global canvas global dot global room room = "R3" canvas.delete(dot) for a in planets: canvas.delete(a) planets.append(canvas.create_circle(1200, 0, 300, fill="#FF5C00")) planets.append(canvas.create_circle(1200, 0, 400, outline="#FF5C00")) # Herbergi 4 í geimnum def R4(): global canvas global dot global room room = "R4" canvas.delete(dot) for a in planets: canvas.delete(a) planets.append(canvas.create_circle(0, 0, 300, fill="#FF5C00")) planets.append(canvas.create_circle(0, 0, 400, outline="#FF5C00")) planets.append(canvas.create_circle(900, 600, 150, fill="#FFA700")) planets.append(canvas.create_circle(900, 600, 225, outline="#FFE100", width=40)) # Herbergi 1 í geimskipi def sR1(): global canvas global dot global wW global wH global Seatx global Seaty global room room = "sR1" canvas.delete(dot) for a in planets: canvas.delete(a) planets.append(canvas.create_rectangle(0, 200, (wW / 4) * 3, 700, fill="darkgrey")) planets.append(canvas.create_polygon(900, 200, wW, wH / 2, 900, 700, fill="darkgrey")) planets.append( canvas.create_rectangle(Seatx - 50, Seaty - 50, Seatx + 50, Seaty + 50, fill="brown", outline="")) # Herbergi 2 í geimskipi def sR2(): global canvas global wW global wH global room room = "sR2" for a in planets: canvas.delete(a) planets.append(canvas.create_rectangle(0, 200, wW, 700, fill="darkgrey")) # Herbergi 3 í geimskipi def sR3(): global canvas global wW global wH global room room = "sR3" for a in planets: canvas.delete(a) planets.append(canvas.create_circle(300, wH / 2, 250, fill="lightblue", outline="")) planets.append(canvas.create_rectangle(300, 200, wW, 700, fill="darkgrey", outline="")) root = Tk() reset() root.mainloop() #Fall sem heldur utan um skæri, blað, steinn def sbs(): global tel1 global tel2 global tel3 tel1 = 0 tel2 = 0 tel3 = 0 for a in root.winfo_children(): a.destroy() #Fall fyrir ef það er valið skæri def skaeri(): global tel1 global tel2 global tel3 tala = random.randint(1, 3) if tala == 1: labelU.configure(text="Notandi: Skæri") labelT.configure(text="Tölva: Skæri") labelV.configure(text="Jafntefli") tel3 = tel3 + 1 labelTj.configure(text=tel3) elif tala == 2: labelU.configure(text="Notandi: Skæri") labelT.configure(text="Tölva: Blað") labelV.configure(text="Notandi vinnur") tel1 = tel1 + 1 labelTv.configure(text=tel1) else: labelU.configure(text="Notandi: Skæri") labelT.configure(text="Tölva: Steinn") labelV.configure(text="T<NAME>") tel2 = tel2 + 1 labelTt.configure(text=tel2) #Fall fyrir ef það er valið blað def blad(): global tel1 global tel2 global tel3 tala = random.randint(1, 3) if tala == 1: labelU.configure(text="Notandi: Blað") labelT.configure(text="Tölva: Skæri") labelV.configure(text="T<NAME>") tel2 = tel2 + 1 labelTt.configure(text=tel2) elif tala == 2: labelU.configure(text="Notandi: Blað") labelT.configure(text="Tölva: Blað") labelV.configure(text="Jafntefli") tel3 = tel3 + 1 labelTj.configure(text=tel3) else: labelU.configure(text="Notandi: Blað") labelT.configure(text="Tölva: Steinn") labelV.configure(text="Notandi vinnur") tel1 = tel1 + 1 labelTv.configure(text=tel1) #Fall fyrir ef það er valið stein def steinn(): global tel1 global tel2 global tel3 tala = random.randint(1, 3) if tala == 1: labelU.configure(text="Notandi: Steinn") labelT.configure(text="Tölva: Skæri") labelV.configure(text="Notandi vinnur") tel1 = tel1 + 1 labelTv.configure(text=tel1) elif tala == 2: labelU.configure(text="Notandi: Steinn") labelT.configure(text="Tölva: Blað") labelV.configure(text="Tölva vinnur") tel2 = tel2 + 1 labelTt.configure(text=tel2) else: labelU.configure(text="Notandi: Steinn") labelT.configure(text="Tölva: Blað") labelV.configure(text="Jafntefli") tel3 = tel3 + 1 labelTj.configure(text=tel3) button_1 = Button(root, text="Skæri", command=skaeri) button_2 = Button(root, text="Blað", command=blad) button_3 = Button(root, text="Steinn", command=steinn) button_4 = Button(root, text="Til baka", command=leikir) labelU = Label(root, text="") labelT = Label(root, text="") labelV = Label(root, text="") labelTtxt = Label(root, text="Sigrar:") labelUtxt = Label(root, text="Töp:") labelVtxt = Label(root, text="Jafntefli:") labelTv = Label(root, text=tel1) labelTt = Label(root, text=tel2) labelTj = Label(root, text=tel3) button_1.grid(row=1, column=1) button_2.grid(row=2, column=1) button_3.grid(row=3, column=1) button_4.grid(columnspan=5) labelU.grid(row=1, column=2) labelT.grid(row=2, column=2) labelV.grid(row=3, column=2) labelTtxt.grid(row=1, column=3) labelUtxt.grid(row=2, column=3) labelVtxt.grid(row=3, column=3) labelTv.grid(row = 1, column = 4) labelTt.grid(row=2, column=4) labelTj.grid(row=3, column=4) label_1 = Label(root, text="Veldu hvað þú vilt gera") button_1 = Button(root, text=" Skæri, blað, steinn ", command=sbs) button_2 = Button(root, text=" Mylla ", command=mylla) button_3 = Button(root, text=" Planets ", command=Planets) button_4 = Button(root, text=" Til baka ", command=home) button_1.grid(row=1, column=1) button_2.grid(row=1, column=2) button_3.grid(row=1, column=3) button_4.grid(row=1, column=4) label_1.grid(columnspan=5) #Bý til glugga root = Tk() #By<NAME> home() #Læt gluggan keyra í loopu root.mainloop() ```
{ "source": "jonasfreyr/Lokaverkefni-Vefforritun2018", "score": 3 }
#### File: Lokaverkefni-Vefforritun2018/Final/app.py ```python from flask import * a = "api" app = Flask(__name__) # create the application instance :) app.config.from_object(__name__) # load config from this file @app.route('/') @app.route('/home') def home(): return render_template('index.html') @app.route('/stjornendur') def stjornendur(): return render_template('stjorn.html') @app.route('/verslanir') def verslanir(): return render_template('vefverslanir.html') @app.route('/login') def login(): return render_template('login.html') @app.route('/blog') def blog(): return render_template('blog.html') @app.route('/new') def new(): return render_template('nyskraning.html') @app.route('/logon', methods=['POST']) def logon(): email = request.form['email'] passw = request.form['password'] print(email) print(passw) @app.route('/new-user') def newuser(): conn = MySQLdb.connect("tsuts.tskoli.is", "2801002260", "mypassword", "<PASSWORD>") db = conn.cursor() commant = "INSERT INTO Notandi (USER_ID, USER_NAME, USER_PASS, USER_ADMIN) VALUES (1, '2341234', '1234', TRUE)" try: db.execute(commant) conn.commit() except: conn.rollback() conn.close() if __name__ == "__main__": app.run(host='0.0.0.0') ```
{ "source": "jonasfreyr/Net-forritun", "score": 3 }
#### File: Net-forritun/Verkefni6/mp.py ```python import multiprocessing as mp import logging import socket import time logger = mp.log_to_stderr(logging.DEBUG) def worker(socket): while True: client, address = socket.accept() logger.debug("{u} connected".format(u=address)) client.send("OK") client.close() if __name__ == '__main__': num_workers = 5 serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serversocket.bind(('',9090)) serversocket.listen(5) workers = [mp.Process(target=worker, args=(serversocket,)) for i in range(num_workers)] for p in workers: p.daemon = True p.start() while True: try: time.sleep(10) except: break ```
{ "source": "JonasFurrer/django_channels", "score": 2 }
#### File: src/sensor/views.py ```python from django.shortcuts import render def sensor_view(request): return render(request, "sensor.html", {'sensor': '99'}) ```
{ "source": "JonasGeiping/breaching", "score": 2 }
#### File: JonasGeiping/breaching/benchmark_breaches.py ```python import hydra from omegaconf import OmegaConf import datetime import time import logging import breaching import os os.environ["HYDRA_FULL_ERROR"] = "0" log = logging.getLogger(__name__) def main_process(process_idx, local_group_size, cfg, num_trials=100): """This function controls the central routine.""" total_time = time.time() # Rough time measurements here setup = breaching.utils.system_startup(process_idx, local_group_size, cfg) model, loss_fn = breaching.cases.construct_model(cfg.case.model, cfg.case.data, cfg.case.server.pretrained) if cfg.num_trials is not None: num_trials = cfg.num_trials server = breaching.cases.construct_server(model, loss_fn, cfg.case, setup) model = server.vet_model(model) attacker = breaching.attacks.prepare_attack(model, loss_fn, cfg.attack, setup) if cfg.case.user.user_idx is not None: print("The argument user_idx is disregarded during the benchmark. Data selection is fixed.") log.info( f"Partitioning is set to {cfg.case.data.partition}. Make sure there exist {num_trials} users in this scheme." ) cfg.case.user.user_idx = -1 run = 0 overall_metrics = [] while run < num_trials: local_time = time.time() # Select data that has not been seen before: cfg.case.user.user_idx += 1 try: user = breaching.cases.construct_user(model, loss_fn, cfg.case, setup) except ValueError: log.info("Cannot find other valid users. Finishing benchmark.") break if cfg.case.data.modality == "text": dshape = user.dataloader.dataset[0]["input_ids"].shape data_shape_mismatch = any([d != d_ref for d, d_ref in zip(dshape, cfg.case.data.shape)]) else: data_shape_mismatch = False # Handled by preprocessing for images if len(user.dataloader.dataset) < user.num_data_points or data_shape_mismatch: log.info(f"Skipping user {user.user_idx} (has not enough data or data shape mismatch).") else: log.info(f"Now evaluating user {user.user_idx} in trial {run}.") run += 1 # Run exchange shared_user_data, payloads, true_user_data = server.run_protocol(user) # Evaluate attack: try: reconstruction, stats = attacker.reconstruct( payloads, shared_user_data, server.secrets, dryrun=cfg.dryrun ) # Run the full set of metrics: metrics = breaching.analysis.report( reconstruction, true_user_data, payloads, server.model, order_batch=True, compute_full_iip=True, compute_rpsnr=True, compute_ssim=True, cfg_case=cfg.case, setup=setup, ) # Add query metrics metrics["queries"] = user.counted_queries # Save local summary: breaching.utils.save_summary(cfg, metrics, stats, time.time() - local_time, original_cwd=False) overall_metrics.append(metrics) # Save recovered data: if cfg.save_reconstruction: breaching.utils.save_reconstruction(reconstruction, payloads, true_user_data, cfg) if cfg.dryrun: break except Exception as e: # noqa # yeah we're that close to the deadlines log.info(f"Trial {run} broke down with error {e}.") # Compute average statistics: average_metrics = breaching.utils.avg_n_dicts(overall_metrics) # Save global summary: breaching.utils.save_summary( cfg, average_metrics, stats, time.time() - total_time, original_cwd=True, table_name="BENCHMARK_breach" ) @hydra.main(version_base="1.1", config_path="breaching/config", config_name="cfg") def main_launcher(cfg): """This is boiler-plate code for the launcher.""" log.info("--------------------------------------------------------------") log.info("-----Launching federating learning breach experiment! --------") launch_time = time.time() if cfg.seed is None: cfg.seed = 233 # The benchmark seed is fixed by default! log.info(OmegaConf.to_yaml(cfg)) breaching.utils.initialize_multiprocess_log(cfg) # manually save log configuration main_process(0, 1, cfg) log.info("-------------------------------------------------------------") log.info( f"Finished computations with total train time: " f"{str(datetime.timedelta(seconds=time.time() - launch_time))}" ) log.info("-----------------Job finished.-------------------------------") if __name__ == "__main__": main_launcher() ``` #### File: JonasGeiping/breaching/simulate_breach.py ```python import torch import hydra from omegaconf import OmegaConf import datetime import time import logging import breaching import os os.environ["HYDRA_FULL_ERROR"] = "0" log = logging.getLogger(__name__) def main_process(process_idx, local_group_size, cfg): """This function controls the central routine.""" local_time = time.time() setup = breaching.utils.system_startup(process_idx, local_group_size, cfg) # Propose a model architecture: # (Replace this line with your own model if you want) model, loss_fn = breaching.cases.construct_model(cfg.case.model, cfg.case.data, cfg.case.server.pretrained) # Instantiate server and vet model # This is a no-op for an honest-but-curious server, but a malicious-model server can modify the model in this step. server = breaching.cases.construct_server(model, loss_fn, cfg.case, setup) model = server.vet_model(model) # Instantiate user and attacker user = breaching.cases.construct_user(model, loss_fn, cfg.case, setup) attacker = breaching.attacks.prepare_attack(model, loss_fn, cfg.attack, setup) # Summarize startup: breaching.utils.overview(server, user, attacker) # Simulate a simple FL protocol shared_user_data, payloads, true_user_data = server.run_protocol(user) # Run an attack using only payload information and shared data reconstructed_user_data, stats = attacker.reconstruct(payloads, shared_user_data, server.secrets, dryrun=cfg.dryrun) # How good is the reconstruction? metrics = breaching.analysis.report( reconstructed_user_data, true_user_data, payloads, model, cfg_case=cfg.case, setup=setup ) # Save to summary: breaching.utils.save_summary(cfg, metrics, stats, user.counted_queries, time.time() - local_time) # Save to output folder: breaching.utils.dump_metrics(cfg, metrics) if cfg.save_reconstruction: breaching.utils.save_reconstruction(reconstructed_user_data, payloads, true_user_data, cfg) @hydra.main(version_base="1.1", config_path="breaching/config", config_name="cfg") def main_launcher(cfg): """This is boiler-plate code for the launcher.""" log.info("--------------------------------------------------------------") log.info("-----Launching federating learning breach experiment! --------") launch_time = time.time() if cfg.seed is None: cfg.seed = torch.randint(0, 2**32 - 1, (1,)).item() log.info(OmegaConf.to_yaml(cfg)) breaching.utils.initialize_multiprocess_log(cfg) # manually save log configuration main_process(0, 1, cfg) log.info("-------------------------------------------------------------") log.info( f"Finished computations with total train time: " f"{str(datetime.timedelta(seconds=time.time() - launch_time))}" ) log.info("-----------------Job finished.-------------------------------") if __name__ == "__main__": main_launcher() ```
{ "source": "JonasGoebel/lost", "score": 2 }
#### File: api/label/endpoint.py ```python from flask import request, make_response from flask_restx import Resource from flask_jwt_extended import jwt_required, get_jwt_identity from lost.api.api import api from lost.api.label.api_definition import label_leaf from lost.api.label.parsers import update_label_parser, create_label_parser from lost.db import model, roles, access from lost.db.vis_level import VisLevel from lost.settings import LOST_CONFIG from lost.logic.label import LabelTree from io import BytesIO import flask namespace = api.namespace('label', description='Label API.') @namespace.route('/tree/<string:visibility>') class LabelTrees(Resource): <EMAIL>() @jwt_required def get(self, visibility): dbm = access.DBMan(LOST_CONFIG) identity = get_jwt_identity() user = dbm.get_user_by_id(identity) flask.current_app.logger.info(visibility) default_group = dbm.get_group_by_name(user.user_name) if visibility == VisLevel().USER: if not user.has_role(roles.DESIGNER): dbm.close_session() return "You are not authorized.", 401 else: root_leaves = dbm.get_all_label_trees(group_id=default_group.idx) trees = list() for root_leaf in root_leaves: trees.append(LabelTree(dbm, root_leaf.idx).to_hierarchical_dict()) dbm.close_session() return trees if visibility == VisLevel().GLOBAL: if not user.has_role(roles.ADMINISTRATOR): dbm.close_session() return "You are not authorized.", 401 else: root_leaves = dbm.get_all_label_trees(global_only=True) trees = list() for root_leaf in root_leaves: trees.append(LabelTree(dbm, root_leaf.idx).to_hierarchical_dict()) dbm.close_session() return trees dbm.close_session() return "You are not authorized.", 401 @namespace.route('/<string:visibility>') class LabelEditNew(Resource): @api.expect(update_label_parser) @jwt_required def patch(self, visibility): args = update_label_parser.parse_args() dbm = access.DBMan(LOST_CONFIG) identity = get_jwt_identity() user = dbm.get_user_by_id(identity) if not user.has_role(roles.DESIGNER): dbm.close_session() return "You are not authorized.", 401 else: label = dbm.get_label_leaf(int(args.get('id'))) label.name = args.get('name') label.description = args.get('description') label.abbreviation = args.get('abbreviation') label.external_id = args.get('external_id') label.color = args.get('color') dbm.save_obj(label) dbm.close_session() return 'success' @api.expect(create_label_parser) @jwt_required def post(self, visibility): args = create_label_parser.parse_args() dbm = access.DBMan(LOST_CONFIG) identity = get_jwt_identity() user = dbm.get_user_by_id(identity) default_group = dbm.get_group_by_name(user.user_name) if visibility == VisLevel().USER: if not user.has_role(roles.DESIGNER): dbm.close_session() return "You are not authorized.", 401 else: label = model.LabelLeaf(name=args.get('name'),abbreviation=args.get('abbreviation'), \ description=args.get('description'),external_id=args.get('external_id'), is_root=args.get('is_root'),color=args.get('color'), group_id=default_group.idx) if args.get('parent_leaf_id'): label.parent_leaf_id = args.get('parent_leaf_id'), dbm.save_obj(label) dbm.close_session() return "success" if visibility == VisLevel().GLOBAL: if not user.has_role(roles.ADMINISTRATOR): dbm.close_session() return "You are not authorized.", 401 else: label = model.LabelLeaf(name=args.get('name'),abbreviation=args.get('abbreviation'), \ description=args.get('description'),external_id=args.get('external_id'), is_root=args.get('is_root'),color=args.get('color')) if args.get('parent_leaf_id'): label.parent_leaf_id = args.get('parent_leaf_id'), dbm.save_obj(label) dbm.close_session() return "success" dbm.close_session() return "You are not authorized.", 401 @namespace.route('/<int:label_leaf_id>') @namespace.param('label_leaf_id', 'The group identifier') class Label(Resource): @api.marshal_with(label_leaf) @jwt_required def get(self,label_leaf_id): dbm = access.DBMan(LOST_CONFIG) identity = get_jwt_identity() user = dbm.get_user_by_id(identity) if not user.has_role(roles.DESIGNER): dbm.close_session() return "You are not authorized.", 401 else: re = dbm.get_label_leaf(label_leaf_id) dbm.close_session() return re @jwt_required def delete(self,label_leaf_id): dbm = access.DBMan(LOST_CONFIG) identity = get_jwt_identity() user = dbm.get_user_by_id(identity) if not user.has_role(roles.DESIGNER): dbm.close_session() return "You are not authorized.", 401 else: label = dbm.get_label_leaf(label_leaf_id) dbm.delete(label) dbm.commit() dbm.close_session() return "success" @namespace.route('/export/<int:label_leaf_id>') class ExportLabelTree(Resource): @jwt_required def get(self,label_leaf_id): dbm = access.DBMan(LOST_CONFIG) identity = get_jwt_identity() user = dbm.get_user_by_id(identity) if not user.has_role(roles.DESIGNER): dbm.close_session() return "You are not authorized.", 401 else: label_tree = LabelTree(dbm, root_id=label_leaf_id) ldf = label_tree.to_df() dbm.close_session() f = BytesIO() ldf.to_csv(f) f.seek(0) resp = make_response(f.read()) resp.headers["Content-Disposition"] = f"attachment; filename={label_tree.root.name}.csv" resp.headers["Content-Type"] = "blob" return resp ``` #### File: api/user/login_manager.py ```python import datetime from flask_ldap3_login import LDAP3LoginManager, AuthenticationResponseStatus from lost.settings import LOST_CONFIG, FLASK_DEBUG from flask_jwt_extended import create_access_token, create_refresh_token from lost.db.model import User as DBUser, Group from lost.db import roles class LoginManager(): def __init__(self, dbm, user_name, password): self.dbm = dbm self.user_name = user_name self.password = password def login(self): if LOST_CONFIG.ldap_config['LDAP_ACTIVE']: access_token, refresh_token = self.__authenticate_ldap() else: access_token, refresh_token = self.__authenticate_flask() if access_token and refresh_token: return { 'token': access_token, 'refresh_token': refresh_token }, 200 return {'message': 'Invalid credentials'}, 401 def __get_token(self, user_id): expires = datetime.timedelta(minutes=LOST_CONFIG.session_timeout) expires_refresh = datetime.timedelta(minutes=LOST_CONFIG.session_timeout + 2) if FLASK_DEBUG: expires = datetime.timedelta(days=365) expires_refresh = datetime.timedelta(days=366) access_token = create_access_token(identity=user_id, fresh=True, expires_delta=expires) refresh_token = create_refresh_token(user_id, expires_delta=expires_refresh) return access_token, refresh_token def __authenticate_flask(self): if self.user_name: user = self.dbm.find_user_by_user_name(self.user_name) if user and user.check_password(self.password): return self.__get_token(user.idx) return None, None def __authenticate_ldap(self): # auth with ldap ldap_manager = LDAP3LoginManager() ldap_manager.init_config(LOST_CONFIG.ldap_config) # Check if the credentials are correct response = ldap_manager.authenticate(self.user_name, self.password) if response.status != AuthenticationResponseStatus.success: # no user found in ldap, try it with db user: return self.__authenticate_flask() user_info = response.user_info user = self.dbm.find_user_by_user_name(self.user_name) # user not in db: if not user: user = self.__create_db_user(user_info) else: # user in db -> synch with ldap user = self.__update_db_user(user_info, user) return self.__get_token(user.idx) def __create_db_user(self, user_info): user = DBUser(user_name=user_info['uid'], email=user_info['mail'], email_confirmed_at=datetime.datetime.now(), first_name=user_info['givenName'], last_name=user_info['sn'], is_external=True) anno_role = self.dbm.get_role_by_name(roles.ANNOTATOR) user.roles.append(anno_role) user.groups.append(Group(name=user.user_name, is_user_default=True)) self.dbm.save_obj(user) return user def __update_db_user(self, user_info, user): user.email = user_info['mail'] user.first_name = user_info['givenName'] user.last_name = user_info['sn'] self.dbm.save_obj(user) return user ``` #### File: lost/db/patches.py ```python import lost from lost.logic.file_man import AppFileMan from lostconfig import LOSTConfig import os import json from lost.db.db_patch import DBPatcher def update_version_log(): fm = AppFileMan(LOSTConfig()) path = fm.get_version_log_path() if not os.path.exists(path): print('Patchsystem: Created version log file: {}'.format(path)) versions = [] versions.append(lost.__version__) with open(path, 'w') as json_file: json.dump(versions, json_file) else: with open(path) as json_file: versions = json.load(json_file) print("Versions: ", versions) if versions[-1] == lost.__version__: print('Patchsystem: No version change!') else: print('Patchsystem: We maybe need to patch!') dbp = DBPatcher() dbp.patch() versions.append(lost.__version__) with open(path, 'w') as json_file: json.dump(versions, json_file) ``` #### File: logic/jobs/cron_jobs.py ```python import argparse import traceback from lost.logic import dask_session from lost.logic.pipeline import cron from lost.logic.pipeline import worker import lostconfig as config from lost.db.access import DBMan import time import threading from dask.distributed import Client from lost.logic.log import get_file_logger from lost.logic.file_man import FileMan, AppFileMan import logging from lost.logic.jobs import jobs from lost.logic.dask_session import ds_man def process_pipes(log_name, client): lostconfig = config.LOSTConfig() dbm = DBMan(lostconfig) pipe_list = dbm.get_pipes_to_process() # For each task in this project for p in pipe_list: pipe_man = cron.PipeEngine(dbm=dbm, pipe=p, lostconfig=lostconfig, client=client, logger_name=log_name) pipe_man.process_pipeline() dbm.close_session() def run_loop(run, sleep_time, **kwargs): logger = logging.getLogger(kwargs["log_name"]) logger.info('Starting {} loop'.format(run.__name__)) while True: try: run(**kwargs) time.sleep(sleep_time) except Exception as e: logger.error(traceback.format_exc()) time.sleep(1) def process_pipes_loop(log_name): lostconfig = config.LOSTConfig() if lostconfig.worker_management != 'dynamic': client = Client('{}:{}'.format( lostconfig.scheduler_ip, lostconfig.scheduler_port) ) else: client = None run_loop(process_pipes, lostconfig.pipe_schedule, log_name=log_name, client=client) def worker_lifesign(log_name): worker.send_life_sign() def worker_lifesign_loop(log_name): lostconfig = config.LOSTConfig() run_loop(worker_lifesign, lostconfig.worker_beat, log_name=log_name) def release_annos(log_name): logger = logging.getLogger(log_name) c_imgs, c_annos = jobs.release_annos_on_session_timeout() logger.info('Released img_annos: {}, 2d_annos: {}'.format(c_imgs, c_annos)) def release_annos_loop(log_name): lostconfig = config.LOSTConfig() run_loop(release_annos, lostconfig.session_timeout*60, log_name=log_name) def main(): parser = argparse.ArgumentParser(description='Run LOST cronjobs') parser.add_argument('--debug', action='store_true', help='start cronjobs just once for debugging') args = parser.parse_args() lostconfig = config.LOSTConfig() fm = AppFileMan(lostconfig) log_name = 'cron_jobs' logger = get_file_logger(log_name, fm.get_app_log_path('cron_jobs.log') ) logger.info('Starting cron jobs!') if args.debug: t = threading.Thread( target=worker_lifesign_loop, args=(log_name,), daemon=True ) t.start() client = Client('{}:{}'.format( lostconfig.scheduler_ip, lostconfig.scheduler_port) ) process_pipes(log_name, client) else: jobs = [ process_pipes_loop, worker_lifesign_loop, release_annos_loop ] if lostconfig.worker_management == 'dynamic': jobs.append(dask_session.release_client_by_timeout_loop) jobs += lostconfig.extra_cron_jobs threads = [] for j in jobs: t = threading.Thread( target=j, args=(log_name,), daemon=True ) t.start() threads.append(t) [t.join() for t in threads] if __name__ == "__main__": main() ``` #### File: logic/pipeline/exec_utils.py ```python import os import hashlib import importlib import zipfile def zipdir(path, out_path, timestamp=None): # zipf is zipfile handle zipf = zipfile.ZipFile(out_path, 'w', zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk(path): for file in files: src = os.path.join(root, file) if timestamp is None: dst = os.path.relpath(os.path.join(root, file), os.path.join(path, '..')) else: dst = os.path.relpath(os.path.join(f'{root}_{timestamp}', file), os.path.join(path, '..')) zipf.write(src, dst) zipf.close() # def module_to_bytes(path, ignore=['__pycache__']): # # zipf is zipfile handle # cont = b'' # for root, dirs, files in os.walk(path): # for file in files: # for i in ignore: # src = os.path.join(root, file) # if i not in src: # with open(src, 'rb') as f: # cont += f.read() # return cont def get_module_hash(path, ignore=['__pycache__']): # zipf is zipfile handle sha = hashlib.sha256() for root, dirs, files in os.walk(path): for file in files: for i in ignore: src = os.path.join(root, file) if i not in src: with open(src, 'rb') as f: sha.update(f.read()) # cont += f.read() return sha.hexdigest() def import_by_string(full_name): module_name, unit_name = full_name.rsplit('.', 1) mod = importlib.import_module(module_name) return getattr(mod, unit_name) def exec_dyn_class(idx, class_name): my_class = import_by_string(class_name) instance = my_class(idx) return instance._run(ret_success=True) def get_import_name_by_script(script_name, timestamp=None): mod_name = os.path.splitext(script_name)[0] if timestamp is not None: mod_list = mod_name.split('.') mod_list[0] = f'{mod_list[0]}_{timestamp}' mod_name = '.'.join(mod_list) return f'{mod_name}.LostScript' ``` #### File: lost/logic/sia.py ```python import lost import json import os from lost.db import dtype, state, model from lost.logic.anno_task import set_finished, update_anno_task from datetime import datetime from lost.logic.file_man import FileMan __author__ = "<NAME>" def get_first(db_man, user_id, media_url): """ Get first image anno. :type db_man: lost.db.access.DBMan """ at = get_sia_anno_task(db_man, user_id) iteration = db_man.get_pipe_element(pipe_e_id=at.pipe_element_id).iteration tmp_anno = db_man.get_first_sia_anno(at.idx, iteration, user_id) if tmp_anno: image_anno_id = tmp_anno.idx image_anno = db_man.get_image_anno(image_anno_id) if image_anno: image_anno.timestamp_lock = datetime.now() if image_anno.state == state.Anno.UNLOCKED: image_anno.state = state.Anno.LOCKED elif image_anno.state == state.Anno.LABELED: image_anno.state = state.Anno.LABELED_LOCKED is_last_image = __is_last_image__(db_man, user_id, at.idx, iteration, image_anno.idx) current_image_number, total_image_amount = get_image_progress(db_man, at, image_anno.idx, at.pipe_element.iteration) sia_serialize = SiaSerialize(image_anno, user_id, media_url, True, is_last_image, current_image_number, total_image_amount) db_man.save_obj(image_anno) return sia_serialize.serialize() else: return "nothing available" def get_next(db_man, user_id, img_id, media_url): # ptvsd.wait_for_attach() # ptvsd.break_into_debugger() """ Get next ImageAnno with all its TwoDAnnos :type db_man: lost.db.access.DBMan """ at = get_sia_anno_task(db_man, user_id) if at and at.pipe_element.pipe.state != state.Pipe.PAUSED: image_anno = None iteration = db_man.get_pipe_element(pipe_e_id=at.pipe_element_id).iteration if int(img_id) == -1: tmp_annos = db_man.get_next_locked_sia_anno(at.idx, user_id, iteration) if len(tmp_annos) > 0: image_anno = tmp_annos[0] if image_anno is None: image_anno = db_man.get_next_unlocked_sia_anno(at.idx, iteration) if image_anno is None: tmp_anno = db_man.get_last_sia_anno(at.idx, iteration, user_id) if tmp_anno: image_anno_id = tmp_anno.idx image_anno = db_man.get_image_anno(image_anno_id) else: image_anno = db_man.get_next_sia_anno_by_last_anno(at.idx, user_id, img_id, iteration) if image_anno is None: tmp_annos = db_man.get_next_locked_sia_anno(at.idx, user_id, iteration) if len(tmp_annos) > 0: image_anno = tmp_annos[0] if image_anno is None: image_anno = db_man.get_next_unlocked_sia_anno(at.idx, iteration) if image_anno: is_first_image = True image_anno.timestamp_lock = datetime.now() if image_anno.state == state.Anno.UNLOCKED: image_anno.state = state.Anno.LOCKED elif image_anno.state == state.Anno.LABELED: image_anno.state = state.Anno.LABELED_LOCKED image_anno.user_id = user_id db_man.save_obj(image_anno) first_image_anno = db_man.get_first_sia_anno(at.idx, iteration, user_id) if first_image_anno is not None and first_image_anno.idx != image_anno.idx: is_first_image = False is_last_image = __is_last_image__(db_man, user_id, at.idx, iteration, image_anno.idx) current_image_number, total_image_amount = get_image_progress(db_man, at, image_anno.idx, at.pipe_element.iteration) sia_serialize = SiaSerialize(image_anno, user_id, media_url, is_first_image, is_last_image, current_image_number, total_image_amount) db_man.save_obj(image_anno) return sia_serialize.serialize() return "nothing available" def get_previous(db_man, user_id, img_id, media_url): """ Get previous image anno :type db_man: lost.db.access.DBMan """ at = get_sia_anno_task(db_man, user_id) iteration = db_man.get_pipe_element(pipe_e_id=at.pipe_element_id).iteration image_anno = db_man.get_previous_sia_anno(at.idx, user_id, img_id, iteration) is_last_image = False is_first_image = False first_anno = db_man.get_first_sia_anno(at.idx, iteration, user_id) if image_anno is None: if first_anno: image_anno = db_man.get_image_anno(img_anno_id=first_anno.idx) if image_anno: if first_anno.idx == image_anno.idx: is_first_image = True image_anno.timestamp_lock = datetime.now() db_man.save_obj(image_anno) current_image_number, total_image_amount = get_image_progress(db_man, at, image_anno.idx, at.pipe_element.iteration) sia_serialize = SiaSerialize(image_anno, user_id, media_url, is_first_image, is_last_image, current_image_number, total_image_amount) return sia_serialize.serialize() else: return "nothing available" def get_label_trees(db_man, user_id, at=None): """ :type db_man: lost.db.access.DBMan """ if at is None: at = get_sia_anno_task(db_man, user_id) label_trees_json = dict() label_trees_json['labels'] = list() if at: for rll in db_man.get_all_required_label_leaves(at.idx): #type: lost.db.model.RequiredLabelLeaf for label_leaf in db_man.get_all_child_label_leaves(rll.label_leaf.idx): #type: lost.db.model.LabelLeaf label_leaf_json = dict() label_leaf_json['id'] = label_leaf.idx label_leaf_json['label'] = label_leaf.name label_leaf_json['nameAndClass'] = label_leaf.name + " (" + rll.label_leaf.name + ")" label_leaf_json['description'] = label_leaf.description if label_leaf.color and label_leaf.color != '': label_leaf_json['color'] = label_leaf.color label_trees_json['labels'].append(label_leaf_json) return label_trees_json else: label_trees = dict() label_trees['labels'] = list() return label_trees def get_configuration(db_man, user_id): at = get_sia_anno_task(db_man,user_id) return json.loads(at.configuration) def get_sia_anno_task(db_man, user_id): for cat in db_man.get_choosen_annotask(user_id): if cat.anno_task.dtype == dtype.AnnoTask.SIA: return cat.anno_task return None def get_image_progress(db_man, anno_task, img_id, iteration=None): '''Get image progress for current request Args: db_man (access.DBMan): Database manager anno_task (model.AnnoTask): Annotation task img_id (int): Id of the current image iteration (int): int or None. If None all annotations will be considered ''' anno_ids = list() if iteration is None: for anno in db_man.get_all_image_annos(anno_task.idx): anno_ids.append(anno.idx) else: for anno in db_man.get_all_image_annos_by_iteration(anno_task.idx, iteration): anno_ids.append(anno.idx) total_image_amount = len(anno_ids) current_image_number = anno_ids.index(img_id) + 1 return current_image_number, total_image_amount def __is_last_image__(db_man, user_id, at_id, iteration, img_id): """ :type db_man: lost.db.access.DBMan """ # three ways to check # first: are there some next locked annos for that user ? image_annos = db_man.get_next_locked_sia_anno(at_id, user_id, iteration) if image_annos: # has to be more than one, current viewed image is not part of condition if len(image_annos) > 1: return False # second: are we in a previous view ? - check for next allready labeled anno by last anno image_anno = db_man.get_next_sia_anno_by_last_anno(at_id, user_id, img_id, iteration) if image_anno: return False # third: is there one next free anno for that user ? image_anno = db_man.get_next_unlocked_sia_anno(at_id, iteration) if image_anno: # found one - lock it ! img = db_man.get_image_anno(image_anno.idx) img.user_id = user_id img.state = state.Anno.LOCKED db_man.save_obj(img) return False else: return True def update(db_man, data, user_id): """ Update Image and TwoDAnnotation from SIA :type db_man: lost.db.access.DBMan """ anno_task = get_sia_anno_task(db_man, user_id) sia_update = SiaUpdate(db_man, data, user_id, anno_task) return sia_update.update() def review_update(db_man, data, user_id, pe_id): """ Update Image and TwoDAnnotation from SIA :type db_man: lost.db.access.DBMan """ pe = db_man.get_pipe_element(pipe_e_id=pe_id) at = pe.anno_task sia_update = SiaUpdate(db_man, data, user_id, at, sia_type='review') return sia_update.update() def finish(db_man, user_id): at = get_sia_anno_task(db_man, user_id) if at.idx: return set_finished(db_man, at.idx) else: return "error: anno_task not found" def junk(db_man, user_id, img_id): image_anno = db_man.get_image_anno(img_id) #type: lost.db.model.ImageAnno if image_anno: image_anno.state = state.Anno.JUNK image_anno.user_id = user_id image_anno.timestamp = datetime.now() db_man.save_obj(image_anno) return "success" else: return "error: image_anno not found" class SiaUpdate(object): def __init__(self, db_man, data, user_id, anno_task, sia_type='sia'): """ :type db_man: lost.db.access.DBMan """ self.sia_type = sia_type self.timestamp = datetime.now() self.db_man = db_man self.user_id = user_id self.at = anno_task #type: lost.db.model.AnnoTask # self.sia_history_file = FileMan(self.db_man.lostconfig).get_sia_history_path(self.at) self.iteration = db_man.get_pipe_element(pipe_e_id=self.at.pipe_element_id).iteration self.image_anno = self.db_man.get_image_annotation(data['imgId']) self.image_anno.timestamp = self.timestamp if self.image_anno.anno_time is None: self.image_anno.anno_time = 0.0 if self.sia_type == 'sia': # Do not update image annotation time for sia review self.image_anno.anno_time = data['annoTime'] self.b_boxes = list() self.points = list() self.lines = list() self.polygons = list() self.history_json = dict() self.history_json['annotations'] = dict() self.history_json['annotations']['new'] = list() self.history_json['annotations']['unchanged'] = list() self.history_json['annotations']['changed'] = list() self.history_json['annotations']['deleted'] = list() self._update_img_labels(data) self.image_anno.is_junk = data['isJunk'] # store certain annotations if 'bBoxes' in data['annotations']: self.b_boxes = data['annotations']['bBoxes'] else: self.b_boxes = None if 'points' in data['annotations']: self.points = data['annotations']['points'] else: self.points = None if 'lines' in data['annotations']: self.lines = data['annotations']['lines'] else: self.lines = None if 'polygons' in data['annotations']: self.polygons = data['annotations']['polygons'] else: self.polygons = None def _update_img_labels(self, data): if(data['imgLabelChanged']): old = set([lbl.label_leaf_id for lbl in self.image_anno.labels]) new = set(data['imgLabelIds']) to_delete = old - new to_add = new - old for lbl in self.image_anno.labels: if lbl.label_leaf_id in to_delete: self.image_anno.labels.remove(lbl) # self.db_man.delete(lbl) for ll_id in to_add: self.image_anno.labels.append(model.Label(label_leaf_id=ll_id)) def update(self): if self.at.pipe_element.pipe.state == state.Pipe.PAUSED: return "pipe is paused" if self.b_boxes is not None: self.__update_annotations(self.b_boxes, dtype.TwoDAnno.BBOX) if self.points is not None: self.__update_annotations(self.points, dtype.TwoDAnno.POINT) if self.lines is not None: self.__update_annotations(self.lines, dtype.TwoDAnno.LINE) if self.polygons is not None: self.__update_annotations(self.polygons, dtype.TwoDAnno.POLYGON) self.image_anno.state = state.Anno.LABELED # Update Image Label # self.image_anno.labels = self.img_labels self.db_man.add(self.image_anno) self.db_man.commit() # self.__update_history_json_file() update_anno_task(self.db_man, self.at.idx, self.user_id) return "success" def __update_annotations(self, annotations, two_d_type): annotation_json = dict() annotation_json['unchanged'] = list() annotation_json['deleted'] = list() annotation_json['new'] = list() annotation_json['changed'] = list() for annotation in annotations: if annotation['status'] != "database" \ and annotation['status'] != "deleted" \ and annotation['status'] != "new" \ and annotation['status'] != "changed": error_msg = "Status: '" + str(annotation['status']) + "' is not valid." raise SiaStatusNotFoundError(error_msg) for annotation in annotations: if annotation['status'] == "database": two_d = self.db_man.get_two_d_anno(annotation['id']) #type: lost.db.model.TwoDAnno two_d.user_id = self.user_id two_d.state = state.Anno.LABELED two_d.timestamp = self.timestamp two_d.timestamp_lock = self.image_anno.timestamp_lock if two_d.anno_time is None: two_d.anno_time = 0.0 # two_d.anno_time += average_anno_time two_d_json = self.__serialize_two_d_json(two_d) annotation_json['unchanged'].append(two_d_json) self.db_man.save_obj(two_d) elif annotation['status'] == "deleted": try: two_d = self.db_man.get_two_d_anno(annotation['id']) #type: lost.db.model.TwoDAnno two_d_json = self.__serialize_two_d_json(two_d) annotation_json['deleted'].append(two_d_json) for label in self.db_man.get_all_two_d_label(two_d.idx): self.db_man.delete(label) self.db_man.delete(two_d) except KeyError: print('SIA bug backend fix! Do not try to delete annotations that are not in db!') elif annotation['status'] == "new": annotation_data = annotation['data'] try: annotation_data.pop('left') annotation_data.pop('right') annotation_data.pop('top') annotation_data.pop('bottom') except: pass two_d = model.TwoDAnno(anno_task_id=self.at.idx, img_anno_id=self.image_anno.idx, timestamp=self.timestamp, timestamp_lock=self.image_anno.timestamp_lock, anno_time=annotation['annoTime'], data=json.dumps(annotation_data), user_id=self.user_id, iteration=self.iteration, dtype=two_d_type, state=state.Anno.LABELED) self.db_man.save_obj(two_d) for l_id in annotation['labelIds']: label = model.Label(two_d_anno_id=two_d.idx, label_leaf_id=l_id, dtype=dtype.Label.TWO_D_ANNO, timestamp=self.timestamp, annotator_id=self.user_id, timestamp_lock=self.image_anno.timestamp_lock, anno_time=annotation['annoTime']) self.db_man.save_obj(label) two_d_json = self.__serialize_two_d_json(two_d) annotation_json['new'].append(two_d_json) elif annotation['status'] == "changed": annotation_data = annotation['data'] try: annotation_data.pop('left') annotation_data.pop('right') annotation_data.pop('top') annotation_data.pop('bottom') except: pass two_d = self.db_man.get_two_d_anno(annotation['id']) #type: lost.db.model.TwoDAnno two_d.timestamp = self.timestamp two_d.timestamp_lock = self.image_anno.timestamp_lock two_d.data = json.dumps(annotation_data) two_d.user_id = self.user_id if two_d.anno_time is None: two_d.anno_time = 0.0 two_d.anno_time = annotation['annoTime'] two_d.state = state.Anno.LABELED l_id_list = list() # get all labels of that two_d_anno. for label in self.db_man.get_all_two_d_label(two_d.idx): # save id. l_id_list.append(label.idx) # delete labels, that are not in user labels list. if label.idx not in annotation['labelIds']: self.db_man.delete(label) # labels that are in the list get a new anno_time else: if label.anno_time is None: label.anno_time = 0.0 label.anno_time = annotation['annoTime'] label.timestamp = self.timestamp label.annotator_id=self.user_id, label.timestamp_lock = self.image_anno.timestamp_lock self.db_man.save_obj(label) # new labels for l_id in annotation['labelIds']: if l_id not in l_id_list: label = model.Label(two_d_anno_id=two_d.idx, label_leaf_id=l_id, dtype=dtype.Label.TWO_D_ANNO, timestamp=self.timestamp, annotator_id=self.user_id, timestamp_lock=self.image_anno.timestamp_lock, anno_time=annotation['annoTime']) self.db_man.save_obj(label) self.db_man.save_obj(two_d) two_d_json = self.__serialize_two_d_json(two_d) annotation_json['changed'].append(two_d_json) else: continue self.history_json['annotations'] = annotation_json return "success" def __serialize_two_d_json(self, two_d): two_d_json = dict() two_d_json['id'] = two_d.idx two_d_json['user_id'] = two_d.user_id if two_d.annotator: two_d_json['user_name'] = two_d.annotator.first_name + " " + two_d.annotator.last_name else: two_d_json['user_name'] = None two_d_json['anno_time'] = two_d.anno_time two_d_json['data'] = two_d.data label_list_json = list() if two_d.labels: label_json = dict() label_json['id'] = [lbl.idx for lbl in two_d.labels] label_json['label_leaf_id'] = [lbl.label_leaf.idx for lbl in two_d.labels] label_json['label_leaf_name'] = [lbl.label_leaf.name for lbl in two_d.labels] label_list_json.append(label_json) two_d_json['labels'] = label_list_json return two_d_json # def __update_history_json_file(self): # # create history directory if not exist # if self.sia_type == 'sia': # self.history_json['timestamp'] = self.timestamp.strftime("%Y-%m-%d %H:%M:%S.%f") # self.history_json['timestamp_lock'] = self.image_anno.timestamp_lock.strftime("%Y-%m-%d %H:%M:%S.%f") # self.history_json['image_anno_time'] = self.image_anno.anno_time # self.history_json['user_id'] = self.user_id # self.history_json['user_name'] = None # if self.image_anno.annotator: # self.history_json['user_name'] = self.image_anno.annotator.first_name + " " + self.image_anno.annotator.last_name # if not os.path.exists(self.sia_history_file): # with open(self.sia_history_file, 'w') as f: # event_json = dict() # json.dump(event_json, f) # with open(self.sia_history_file) as f: # data = json.load(f) # if str(self.image_anno.idx) in data: # data[str(self.image_anno.idx)].append(self.history_json) # else: # data[str(self.image_anno.idx)] = list() # data[str(self.image_anno.idx)].append(self.history_json) # with open(self.sia_history_file, 'w') as f: # json.dump(data, f) class SiaSerialize(object): def __init__(self, image_anno, user_id, media_url, is_first_image, is_last_image, current_image_number, total_image_amount): self.sia_json = dict() self.image_anno = image_anno #type: lost.db.model.ImageAnno self.user_id = user_id self.media_url = media_url self.is_first_image = is_first_image self.is_last_image = is_last_image self.current_image_number = current_image_number self.total_image_amount = total_image_amount def serialize(self): self.sia_json['image'] = dict() self.sia_json['image']['id'] = self.image_anno.idx self.sia_json['image']['url'] = "/" + self.image_anno.img_path self.sia_json['image']['isFirst'] = self.is_first_image self.sia_json['image']['isLast'] = self.is_last_image self.sia_json['image']['number'] = self.current_image_number self.sia_json['image']['amount'] = self.total_image_amount self.sia_json['image']['isJunk'] = self.image_anno.is_junk self.sia_json['image']['annoTime'] = self.image_anno.anno_time if self.image_anno.labels is None: self.sia_json['image']['labelIds'] = [] else: self.sia_json['image']['labelIds'] = [lbl.label_leaf_id for lbl in self.image_anno.labels] self.sia_json['annotations'] = dict() self.sia_json['annotations']['bBoxes'] = list() self.sia_json['annotations']['points'] = list() self.sia_json['annotations']['lines'] = list() self.sia_json['annotations']['polygons'] = list() for two_d_anno in self.image_anno.twod_annos: #type: lost.db.model.TwoDAnno if two_d_anno.dtype == dtype.TwoDAnno.BBOX: bbox_json = dict() bbox_json['id'] = two_d_anno.idx bbox_json['labelIds'] = list() if two_d_anno.labels: #type: lost.db.model.Label bbox_json['labelIds'] = [lbl.label_leaf_id for lbl in two_d_anno.labels] bbox_json['data'] = json.loads(two_d_anno.data) bbox_json['annoTime'] = two_d_anno.anno_time self.sia_json['annotations']['bBoxes'].append(bbox_json) elif two_d_anno.dtype == dtype.TwoDAnno.POINT: point_json = dict() point_json['id'] = two_d_anno.idx point_json['labelIds'] = list() if two_d_anno.labels: #type: lost.db.model.Label point_json['labelIds'] = [lbl.label_leaf_id for lbl in two_d_anno.labels] point_json['data'] = json.loads(two_d_anno.data) point_json['annoTime'] = two_d_anno.anno_time self.sia_json['annotations']['points'].append(point_json) elif two_d_anno.dtype == dtype.TwoDAnno.LINE: line_json = dict() line_json['id'] = two_d_anno.idx line_json['labelIds'] = list() if two_d_anno.labels: #type: lost.db.model.Label line_json['labelIds'] = [lbl.label_leaf_id for lbl in two_d_anno.labels] line_json['data'] = json.loads(two_d_anno.data) line_json['annoTime'] = two_d_anno.anno_time self.sia_json['annotations']['lines'].append(line_json) elif two_d_anno.dtype == dtype.TwoDAnno.POLYGON: polygon_json = dict() polygon_json['id'] = two_d_anno.idx polygon_json['labelIds'] = list() if two_d_anno.labels: #type: lost.db.model.Label polygon_json['labelIds'] = [lbl.label_leaf_id for lbl in two_d_anno.labels] polygon_json['data'] = json.loads(two_d_anno.data) polygon_json['annoTime'] = two_d_anno.anno_time self.sia_json['annotations']['polygons'].append(polygon_json) return self.sia_json class SiaStatusNotFoundError(Exception): """ Base class for SiaStatusNotFoundError """ pass def get_last_image_id(dbm, user_id): at = get_sia_anno_task(dbm, user_id) if at: iteration = dbm.get_pipe_element(pipe_e_id=at.pipe_element_id).iteration tmp_anno = dbm.get_last_edited_sia_anno(at.idx, iteration, user_id) if tmp_anno: return tmp_anno.idx -1 return None def review(dbm, data, user_id, media_url): direction = data['direction'] current_idx = data['image_anno_id'] iteration = data['iteration'] pe_id = data['pe_id'] at = dbm.get_pipe_element(pipe_e_id=pe_id).anno_task first_anno = dbm.get_sia_review_first(at.idx, iteration) if direction == 'first': image_anno = first_anno elif direction == 'next': image_anno = dbm.get_sia_review_next(at.idx, current_idx, iteration) elif direction == 'previous': image_anno = dbm.get_sia_review_prev(at.idx, current_idx, iteration) if image_anno: # all_iterations = True # if iteration: # all_iterations = False current_image_number, total_image_amount = get_image_progress(dbm, at, image_anno.idx, iteration) is_first_image = False if first_anno.idx == image_anno.idx: is_first_image = True is_last_image = False if current_image_number == total_image_amount: is_last_image = True sia_serialize = SiaSerialize(image_anno, user_id, media_url, is_first_image, is_last_image, current_image_number, total_image_amount) return sia_serialize.serialize() else: return 'no annotation found' def reviewoptions(dbm, pe_id, user_id): options = {} pipe_element = dbm.get_pipe_element(pipe_e_id=pe_id) if pipe_element.state == state.PipeElement.PENDING: options['max_iteration'] = pipe_element.iteration - 1 else: options['max_iteration'] = pipe_element.iteration options['possible_labels'] = get_label_trees(dbm, user_id, pipe_element.anno_task)['labels'] return options ``` #### File: lost/utils/testils.py ```python from lost.db import model, dtype from lost.logic.label import LabelTree import datetime import pandas as pd from lost.logic.pipeline.instance import PipeInstance def get_user(dbm): email = '<EMAIL>' user = None for u in dbm.get_users(): if u.email == email: user = u break if user is None: user = model.User( user_name = 'test', email=email, email_confirmed_at=datetime.datetime.utcnow(), password='<PASSWORD>', first_name= 'Test', last_name='User' ) user.groups.append(model.Group(name=user.user_name, is_user_default=True)) dbm.add(user) dbm.commit() return user def delete_user(dbm, user): for g in user.groups: if g.is_user_default: dbm.delete(g) dbm.delete(user) dbm.commit() def get_voc_label_tree(dbm): tree = LabelTree(dbm) df = pd.read_csv('/code/src/backend/lost/pyapi/examples/label_trees/pascal_voc2012.csv') root = tree.import_df(df) if root is None: name = df[df['parent_leaf_id'].isnull()]['name'].values[0] tree = LabelTree(dbm, name=name) return tree def get_script_pipeline_fragment(dbm): '''Get a fragment of a pipeline Script -> AnnoTask: A Script connected to an AnnoTask Returns: :class:`lost.db.model.PipeElement`, :class:`lost.db.model.PipeElement`, :class:`lost.db.model.Pipe`: (script_element, annotation_task_element, pipeline) ''' pipe = model.Pipe(name='TestPipe') dbm.add(pipe) dbm.commit() script = model.Script(name='TestScript', path='data/pipes/test/test.py') dbm.add(script) dbm.commit() pe_s = model.PipeElement(pipe_id=pipe.idx, dtype=dtype.PipeElement.SCRIPT) pe_s.script = script dbm.add(pe_s) dbm.commit() script_result = model.Result() dbm.add(script_result) dbm.commit() anno_task = model.AnnoTask(name='TestAnnoTask') dbm.add(anno_task) pe_a = model.PipeElement(pipe_id=pipe.idx, dtype=dtype.PipeElement.ANNO_TASK) pe_a.anno_task = anno_task # pe_a.result_in.append(script_result) # pe_a.result_out.append(script_result) dbm.add(pe_a) dbm.commit() # pe_s.pe_outs.append(pe_a) # dbm.commit() # Link elements res_link_s = model.ResultLink(result_id=script_result.idx, pe_n=pe_s.idx, pe_out=pe_a.idx ) res_link_a = model.ResultLink(result_id=script_result.idx, pe_n=pe_a.idx, pe_out=None ) dbm.add(res_link_s) dbm.add(res_link_a) dbm.commit() return pe_s, pe_a, pipe def delete_script_pipeline_fragment(dbm, pipe): '''Delete a fragment of a pipeline Script -> AnnoTask: A Script connected to an AnnoTask ''' # pi = PipeInstance(dbm, pipe) # pi.delete_pipeline() print('We should implement a working clean up here!') ```
{ "source": "jonasgrebe/pt-femb-face-embeddings", "score": 3 }
#### File: femb/data/face_image_folder_dataset.py ```python from .face_dataset import FaceDataset import os import logging class FaceImageFolderDataset(FaceDataset): def __init__(self, auto_initialize=True, **kwargs): super(FaceImageFolderDataset, self).__init__(**kwargs) self.img_paths = [] self.img_ids = [] self.img_id_labels = [] if auto_initialize: self.init_from_directories() def init_from_directories(self): if not self.dataset_exists(): logging.warning(f"The dataset {self.name} does not contain any images under {os.path.join(self.root, self.name, 'images')}") return logging.info(f"Creating a FaceImageFolderDataset ({self.name}) with data from {os.path.join(self.root, self.name, 'images')}.") images_dir = os.path.join(self.root, self.name, 'images') for label, identity in enumerate(os.listdir(images_dir)): id_path = os.path.join(images_dir, identity) for img_file in os.listdir(id_path): self.img_paths.append(os.path.join(id_path, img_file)) self.img_ids.append(identity) self.img_id_labels.append(label) def dataset_exists(self): images_dir = os.path.join(self.root, self.name, 'images') return os.path.isdir(images_dir) and len(os.listdir(images_dir)) > 0 ``` #### File: femb/evaluation/verification_evaluator.py ```python import torch from tqdm import tqdm import numpy as np import logging from itertools import combinations, product from sklearn.metrics import roc_curve from .similarity import get_similarity_function from .evaluator import Evaluator class VerificationEvaluator(Evaluator): def __init__(self, similarity, metrics=['eer'], limit=50, batch_size=32): self.similarity = similarity self.limit = limit def evaluate(self, features, labels): genuine_scores, imposter_scores = compute_comparison_scores(features, labels, self.similarity, self.limit) fpr, tpr, threshold = compute_roc(genuine_scores, imposter_scores) fnr = 1 - tpr eer_threshold = threshold[np.nanargmin(np.absolute((fnr - fpr)))] eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))] stats = { 'eer': eer, 'eer_threshold': eer_threshold, # add other metrics here } return stats def compute_comparison_scores(features, labels, similarity, limit): assert len(features) > 0 similarity = get_similarity_function(similarity) distinct_labels = np.unique(labels).astype(int) genuine_idxs = {label: np.random.permutation(np.argwhere(labels == label))[:limit] for label in distinct_labels} imposter_idxs = {label: np.random.permutation(np.argwhere(labels != label))[:limit] for label in distinct_labels} genuine_scores = [] imposter_scores = [] for label in distinct_labels: for idx0, idx1 in combinations(genuine_idxs[label], r=2): score = similarity(features[idx0], features[idx1]) genuine_scores.append(score) for idx0, idx1 in product(genuine_idxs[label], imposter_idxs[label]): score = similarity(features[idx0], features[idx1]) imposter_scores.append(score) return np.nan_to_num(np.array(genuine_scores)), np.nan_to_num(np.array(imposter_scores)) def compute_roc(genuine, imposter): return roc_curve(np.hstack([np.ones(len(genuine)), np.zeros(len(imposter))]), np.hstack([genuine, imposter])) ``` #### File: femb/headers/arcface.py ```python from .arcmargin import ArcMarginHeader class ArcFaceHeader(ArcMarginHeader): """ ArcFaceHeader class""" def __init__(self, in_features, out_features, s=64.0, m=0.5): super(ArcFaceHeader, self).__init__(in_features=in_features, out_features=out_features, s=s, m2=m) ``` #### File: pt-femb-face-embeddings/femb/model.py ```python import os from tqdm import tqdm import torch import torchvision import numpy as np import random import cv2 import logging from .backbones import count_parameters class FaceEmbeddingModel: def __init__(self, backbone, header, loss): self.backbone = backbone self.header = header self.loss = loss # join parameter sets of backbone and header self.params = list(backbone.parameters()) self.params.extend(list(header.parameters())) self.params = [{'params': backbone.parameters()}, {'params': header.parameters()}] self.name = f"model_{backbone.__class__.__name__}-{header.__class__.__name__}-{loss.__class__.__name__}".lower() print(f"Built Embedding Model: [{backbone.__class__.__name__} -> {header.__class__.__name__} -> {loss.__class__.__name__}]") print(f"#Trainable parameters: {count_parameters(backbone)} (Backbone)") print(f"#Trainable parameters: {count_parameters(header)} (Header)") print(f"#Trainable parameters: {count_parameters(loss)} (Loss)") self.loss_window = 100 def fit(self, train_dataset, batch_size, device, optimizer, max_epochs=0, max_training_steps=0, lr_global_step_scheduler=None, lr_epoch_scheduler=None, evaluator=None, val_dataset=None, evaluation_steps=0, tensorboard=False): assert max_epochs > 0 or max_training_steps > 0 training_id = self.name + '_' + str(random.randint(0, 9999999)).zfill(7) training_path = os.path.join('output', training_id) if not os.path.exists(training_path): os.makedirs(training_path) logging.basicConfig( filename=os.path.join(training_path, 'training.log'), level=logging.INFO, format='[%(levelname)s] %(asctime)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') print(f"Logs will be written to {os.path.join(training_path, 'training.log')}") train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) if tensorboard: from tensorboardX import SummaryWriter writer = SummaryWriter(logdir=os.path.join('tensorboard', training_id)) def evaluate(global_step): features, labels, thumbnails = self.encode_dataset(val_dataset, batch_size=batch_size, device=device, return_labels=True, return_thumbnails=True) stats = evaluator(features, labels) logging.info(evaluator.__class__.__name__ + ': ' + str(stats)) writer.add_scalars(evaluator.__class__.__name__, stats, global_step=global_step) writer.add_embedding(features, metadata=labels, label_img=thumbnails, global_step=global_step) else: def evaluate(global_step): features, labels = self.encode_dataset(val_dataset, batch_size=batch_size, device=device, return_labels=True) stats = evaluator(features, labels) logging.info(evaluator.__class__.__name__ + ': ' + str(stats)) if type(device) == str: device = torch.device(device) self.header.to(device) self.backbone.to(device) global_step = 0 epoch = 0 while(True): logging.info(f"Epoch {epoch}:") train_losses = np.empty(len(train_dataloader)) self.header.train() self.backbone.train() pbar = tqdm(enumerate(train_dataloader), total=len(train_dataloader)) for step, batch in pbar: # skip batch if singleton if len(batch[0]) <= 1: continue inputs = batch[0].to(device) labels = batch[1].to(device).long().view(-1) features = self.backbone(inputs) features = features.view(features.shape[0], features.shape[1]) outputs = self.header(features, labels) loss_value = self.loss(outputs, labels) train_losses[step] = loss_value optimizer.zero_grad() loss_value.backward() optimizer.step() status = self.get_status_format_string(epoch, step, train_dataloader, global_step, max_epochs, max_training_steps, train_losses) pbar.set_description_str(status) if evaluator is not None and evaluation_steps > 0 and step % evaluation_steps == 0: evaluate(global_step) if tensorboard: writer.add_scalar(self.loss.__class__.__name__, loss_value, global_step=global_step) global_step += 1 if max_training_steps > 0 and global_step >= max_training_steps: return if lr_global_step_scheduler is not None: lr_global_step_scheduler.step() if evaluator is not None and max_epochs > 0 and evaluation_steps == 0: evaluate(global_step) epoch += 1 if max_epochs > 0 and epoch >= max_epochs: return if lr_epoch_scheduler is not None: lr_epoch_scheduler.step() def get_status_format_string(self, epoch, step, train_dataloader, global_step, max_epochs, max_training_steps, train_losses): epoch_status = f"Epoch: {epoch+1}" status = [epoch_status] global_step_status = f"Global Step: {global_step}/{max_training_steps} ({global_step / max_training_steps * 100:.2f} %)" status.append(global_step_status) status.append(f"Train_Loss: {train_losses[max([0, step-self.loss_window+1]):step+1].mean()}") status = ' - '.join(status) return status def encode_dataset(self, dataset, batch_size, device, return_labels=False, return_thumbnails=False, thumbnail_size=32): dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False) all_features = [] all_labels = [] all_thumbnails = [] self.backbone.eval() with torch.no_grad(): for step, batch in enumerate(dataloader): inputs = batch[0] labels = batch[1].view(-1) features = self.backbone(inputs.to(device)) features = features.view(features.shape[0], features.shape[1]).cpu().numpy() all_features.extend([f for f in features]) if return_labels: all_labels.extend([l for l in labels.numpy()]) if return_thumbnails: all_thumbnails.extend([cv2.resize(img, dsize=(thumbnail_size, thumbnail_size), interpolation=cv2.INTER_CUBIC) for img in inputs.numpy().transpose(0, 2, 3, 1)]) self.backbone.train() encoded = [np.array(all_features)] if return_labels: encoded.append(np.array(all_labels)) if return_thumbnails: all_thumbnails = np.array(all_thumbnails) if len(all_thumbnails.shape) == 3: all_thumbnails = np.expand_dims(all_thumbnails, axis=-1) encoded.append(all_thumbnails.transpose(0, 3, 1, 2)) return encoded ```
{ "source": "JonasGroeger/ars", "score": 3 }
#### File: JonasGroeger/ars/ars.py ```python import json import pathlib import requests import untangle class ArsCodelistProvider(object): def __init__(self): self.api = "https://www.xrepository.de/api" self.ars_urn = "urn:de:bund:destatis:bevoelkerungsstatistik:schluessel:rs" self.ars_list = [] latest_xml = self._get_latest_xml() self.version_uri = ( latest_xml.gc_CodeList.Identification.CanonicalVersionUri.cdata ) for entry in latest_xml.gc_CodeList.SimpleCodeList.Row: ars = entry.Value[0].SimpleValue.cdata name = entry.Value[1].SimpleValue.cdata self.ars_list.append({"name": name, "ars": ars}) def write(self, out_dir): out_file = out_dir.joinpath(self.version_uri + ".json") latest_file = out_dir.joinpath("latest.json") to_write = { "data": self.ars_list, "urn": self.ars_urn, "version_uri": self.version_uri, "version": self.version_uri.rsplit("_", 1)[-1], } with open(out_file, "w", encoding="UTF-8") as f: json.dump(to_write, f, indent=2, ensure_ascii=False) with open(latest_file, "w", encoding="UTF-8") as f: json.dump(to_write, f, indent=2, ensure_ascii=False) def _get_latest_urn(self): xml = untangle.parse(f"{self.api}/codeliste/{self.ars_urn}/gueltigeVersion") return xml.dat_VersionCodeliste.dat_kennung.cdata def _get_all_urns(self): xml = untangle.parse(f"{self.api}/xrepository/{self.ars_urn}") return map(lambda x: x.cdata, xml.dat_Codeliste.dat_versionCodeliste_kennung) def _get_latest_xml(self): latest_urn = self._get_latest_urn() latest = requests.get(f"{self.api}/version_codeliste/{latest_urn}/genericode") return untangle.parse(latest.text) if __name__ == "__main__": PROJECT_DIR = pathlib.Path(__file__).parent acp = ArsCodelistProvider() acp.write(PROJECT_DIR.joinpath("data")) ```
{ "source": "JonasGroeger/SPEER", "score": 3 }
#### File: JonasGroeger/SPEER/packet.py ```python import struct class Packet(object): def __init__(self, sender, broker, receiver, type, data): self.sender = sender self.broker = broker self.receiver = receiver self.type = type self.data = data def pack(self): sender_enc = self.sender.encode() broker_enc = self.broker.encode() receiver_enc = self.receiver.encode() type_enc = self.type.encode() data_enc = self.data.encode() return struct.pack( ">IIIII{}s{}s{}s{}s{}s".format(len(sender_enc), len(broker_enc), len(receiver_enc), len(type_enc), len(data_enc)), len(sender_enc), len(broker_enc), len(receiver_enc), len(type_enc), len(data_enc), sender_enc, broker_enc, receiver_enc, type_enc, data_enc, ) @staticmethod def retrieve_packet(packet): return Packet(*Packet.unpack(packet)) @staticmethod def unpack(packet): sender_len = struct.unpack(">I", packet[0:4])[0] broker_len = struct.unpack(">I", packet[4:8])[0] receiver_len = struct.unpack(">I", packet[8:12])[0] type_len = struct.unpack(">I", packet[12:16])[0] data_len = struct.unpack(">I", packet[16:20])[0] return [x for x in map(lambda x: x.decode(), struct.unpack(">{}s{}s{}s{}s{}s".format(sender_len, broker_len, receiver_len, type_len, data_len), packet[20:])) ] def __repr__(self): return 'Packet(' + ', '.join([self.sender, self.broker, self.receiver, self.type, self.data]) + ')' def __eq__(self, other): try: return all(getattr(self, key) == getattr(other, key) for key in self.__dict__ if not key.startswith('_')) except AttributeError: return False if __name__ == '__main__': assert ["Alice", "Broker1", "Bob", "Message", "Hello World"] == Packet.unpack( Packet("Alice", "Broker1", "Bob", "Message", "Hello World").pack()) ```
{ "source": "Jonas-Grundler/Warehouse-Simulation-Tool", "score": 4 }
#### File: Warehouse-Simulation-Tool/simulation_tool/data.py ```python import pandas as pd import numpy as np ''' ############################################################################# DESCRIPTION DATA.PY Author: <NAME> (University of Edinburgh) This module can be used to generate random order data. Functions: - generate_orders(): Generate some input data (order information) for our simulation experiments. ############################################################################# ''' def generate_orders(seed_no, simulation_period = 120, backlog = 100, interval = 15, arrival_mean = 5, arrival_stddev = 0, arrival_list = None, min_lead = 30, avg_items_per_order = 1.5, first_due = 30, inter_due = 30, aisle_no = 10, aisle_length = 45, log_file = 'logging.txt', metrics_file = 'metrics.txt'): ''' Generate some input data (order information) for our simulation experiments. Users can specify their desired time horizon, backlog of orders, arrival process as well as many other parameters and receive a data frame containing the arrival and departure times, size and location of the various generated orders. Inputs: seed_no (int): random seed for replication purposes simulation_period (int): time horizon of simulation (in minutes) backlog (int): number of orders in backlog at t=0 interval (int): interval in which lambda changes (exponential arrival process) arrival_mean (float): mean of lambda (exponential arrival process) arrival_stddev (float): standard dev. of lambda (exponential arrival process) arrival_list (list): list with prespecified lambdas (exponential arrival process); alternatively to arrival_mean and arrival_stddev min_lead (int): minimum time between order arrival and departure avg_items_per_order (int): avg. no. of items (SKUs) included in a single order first_due (int): departure time of first vehicle (in minutes after t=0) inter_due (int): time between two vehicle departures aisle_no (int): number of aisles in considered one-block warehouse aisle_length (int): length of aisles (in meters) in considered one-block warehouse log_file (.txt): file for simulation run protocol metrics_file (.txt): file for simulation run results Outputs: df (DataFrame): DataFrame containing information on - order ID - order arrivaltime - order departuretime - number of items - size of each item - location of each item (x,y) ''' #WRITE HEADER FOR RESULT FILES for files in [log_file, metrics_file]: file = open(files, 'a') file.write(f"" + '\n') file.write(f"###### DATA INFORMATION ########"+ '\n') file.write(f"simulation_period: {simulation_period}" + '\n') file.write(f"backlog: {backlog}" + '\n') file.write(f"min_lead: {min_lead}" + '\n') if(arrival_list != None): file.write(f"arrivals: list = {arrival_list} (interval = {interval})" + '\n') else: file.write(f"arrivals: mean = {arrival_mean}, stddev = {arrival_stddev} (interval = {interval})" + '\n') file.write(f"seed_no: {seed_no}" + '\n') file.write(f"" + '\n') file.close() #Initialize df cols = ["order_ID", "arrivaltime", "departuretime", "size", "x_coord", "y_coord"] df = pd.DataFrame(columns = cols) #Initialize random number generator and other parameters rng = np.random.default_rng(seed = seed_no) t = 0 d = 1 order_ID = 0 # GENERATE BACKLOG for i in range(backlog): arrivaltime = t order_ID = order_ID + 1 #Assign order to one of the vehicles and get departuretime lead = rng.binomial(n = 5, p = 0.1) departuretime = first_due + lead * inter_due #Generate no_items included in order #for each order: generate row entry no_items = rng.geometric(1/avg_items_per_order) for k in range(no_items): size = rng.integers(1,10) x_coord = rng.integers(0, aisle_no) y_coord = rng.integers(1, aisle_length+1) df = df.append({"order_ID": order_ID, "arrivaltime": arrivaltime, "departuretime": departuretime, "size": size, "x_coord": x_coord, "y_coord": y_coord}, ignore_index=True) # GENERATE NEW ARRIVING ORDERS #Determine arrivalrate # Option 1: specfic arrival list as input if(arrival_list != None): arrivalrate = arrival_list[0] # Option 2: generate normally distributed arrival rate else: arrivalrate = rng.normal(arrival_mean, arrival_stddev) #Note: arrival rates <= 0 are not valid if arrivalrate < 0: arrivalrate = 0.05 # Generate first arrivaltime t = rng.exponential(1/arrivalrate) while t < simulation_period: arrivaltime = t order_ID = order_ID + 1 #Assign order to one of the vehicles and get departuretime earliest_departure = t + min_lead index_earliest_vehicle = max(0,np.ceil((earliest_departure-first_due)/inter_due)) lead = rng.binomial(n = 5, p = 0.1) departuretime = first_due + (index_earliest_vehicle + lead)*inter_due #Generate no_items included in order #for each order: generate row entry no_items = rng.geometric(1/avg_items_per_order) for k in range(no_items): size = rng.integers(1,10) x_coord = rng.integers(0, aisle_no) y_coord = rng.integers(1, aisle_length+1) df = df.append({"order_ID": order_ID, "arrivaltime": arrivaltime, "departuretime": departuretime, "size": size, "x_coord": x_coord, "y_coord": y_coord}, ignore_index=True) #Check if arrivalrate has to be updated if(arrivaltime > d*interval): #Update interval_counter d += 1 #Determine arrivalrate # Option 1: specfic arrival list as input if(arrival_list != None): arrivalrate = arrival_list[d-1] # Option 2: generate normally distributed arrival rate else: arrivalrate = rng.normal(arrival_mean, arrival_stddev) #Note: arrival rates <= 0 are not valid if arrivalrate < 0: arrivalrate = 0.05 #Generate next arrivaltime t = arrivaltime + rng.exponential(1/arrivalrate) #Change data types of columns df = df.astype({"order_ID": int, "arrivaltime": float, "departuretime": float, "size": int, "x_coord": int, "y_coord":int}) return df ``` #### File: Warehouse-Simulation-Tool/simulation_tool/evaluation.py ```python import numpy as np import pandas as pd import simulation_tool.data as dax import simulation_tool.initialization as init import simulation_tool.measures as ms import simulation_tool.distance as ds import simulation_tool.batching as bt ''' ############################################################################# DESCRIPTION EVALUATION.PY Author: <NAME> (University of Edinburgh) This module mainly fulfills two tasks. Firstly, it helps to translate the ’raw’ output data coming from the simulate system() function into reasonable performance metrics. Secondly, the package ensures that a detailed protocol of each individual test run is created. Functions: - log(): Write entry for different 'events' to log_file - evaluate_system(): Evaluate simulation experiments by calculating various KPI's. ############################################################################# ''' def log(log_file, event, backlog = None, backlog_size = None, t = None, batch = None, batch_size = None, used_method = None, i = None, tour_time = None): ''' Write entry for different 'events' to log_file. Inputs: log_file (.txt): File for simulation run protocol event (string): Event that should be written to log_file - backlog_before - backlog_after - batch_created - picker_tour backlog (int): Number of orders currently in backlog backlog_size (int): Current backlog size t (float): Current point in time (in min) batch (list): List of orders included in current batch batch_size (int): Current batch size used_method (string): String incl. used batching method (for protocol) i (int): Picker ID tour_time (float): Tour time of next batch Outputs: None. Write various events to log_file, e.g: - Backlog before batching: 76 orders (size: 578) - Backlog after batching: 38 orders (size: 299) - TIME 19.9: Batch created with orders [179, 182, ..., 133] - Picker 3 starts tour (tour_time: 16.88 min). ''' file = open(log_file, 'a') if(event == "backlog_before"): file.write(f"Backlog before batching: {backlog} orders (size: {backlog_size})"+ '\n') elif(event == "backlog_after"): file.write(f"Backlog after batching: {backlog} orders (size: {backlog_size})"+ '\n') elif(event == "batch_created"): file.write(f"TIME {np.round(t,1)}: Batch created with orders {batch} (size: {batch_size}). {used_method}"+ '\n') elif(event == "picker_tour"): file.write(f"Picker {i+1} starts tour (tour_time: {np.round(tour_time,2)} min)."+ '\n') file.close() return None def evaluate_system(eval_df, picker_df, simulation_period, metrics_file): ''' Evaluate simulation experiments by calculating various KPI's. Inputs: eval_df (DataFrame): DataFrame containing order statistics picker_df (DataFrame): DataFrame containing picker statistics simulation_period (int): Time horizon of simulation (in min) metrics_file (.txt): File for simulation run results Outputs: stats (DataFrame): DataFrame with various KPI's for simulation run Customer Service Metrics: - no_finished - no_delayed - avg_delay_time - avg_waiting_time - avg_service_time - delivery_rate - delay_finished_ratio Efficiency metrics: - total_travel_time - time_per_item - items_per_tour Additionally all KPI's are written to the metrics_file. ''' #Allow for chained pd.assignment pd.options.mode.chained_assignment = None #Get total no. of orders total_no_orders = eval_df.loc[:,"order_ID"].nunique() ### CUSTOMER SERVICE METRICS #Calculate helper columns eval_df.loc[:,"started"] = np.where(eval_df.loc[:,"batch_start"] <= simulation_period, 1, 0) eval_df.loc[:,"finished"] = np.where(eval_df.loc[:,"batch_end"] <= simulation_period, 1, 0) eval_df.loc[:,"due"] = np.where(eval_df.loc[:,"departuretime"] <= simulation_period, 1, 0) eval_df.loc[:,"now_delayed"] = np.where((eval_df["batch_end"] > eval_df["departuretime"]), 1, 0) eval_df.loc[:,"later_delayed"] = np.where((eval_df.loc[:,"started"] == 0) & (eval_df.loc[:,"due"] == 1), 1, 0) eval_df.loc[:,"delayed"] = np.where((eval_df["now_delayed"] == 1) | (eval_df["later_delayed"] == 1), 1, 0) #Calculate number components no_finished = eval_df.loc[:,"finished"].sum() no_delayed = eval_df.loc[:,"delayed"].sum() now_delayed = eval_df.loc[:,"now_delayed"].sum() later_delayed = eval_df.loc[:,"later_delayed"].sum() delivery_rate = 100*(no_finished/total_no_orders) delay_finished_ratio = 100*(no_delayed/no_finished) #Calculate time components eval_df.loc[:,"delay_time"] = np.where(eval_df.loc[:,"batch_end"] <= eval_df.loc[:,"departuretime"], 0, eval_df.loc[:,"batch_end"] - eval_df.loc[:,"departuretime"]) eval_df.loc[:,"waiting_time"] = eval_df.loc[:,"batch_start"] - eval_df.loc[:,"arrivaltime"] eval_df.loc[:,"serivce_time"] = eval_df.loc[:,"batch_end"] - eval_df.loc[:,"batch_start"] avg_delay_time = eval_df[eval_df["delay_time"] > 0]["delay_time"].mean() avg_waiting_time = eval_df.loc[:,"waiting_time"].mean() avg_service_time = eval_df.loc[:,"serivce_time"].mean() ### EFFICIENCY METRICS no_tours = picker_df.loc[:,"no_tours"].sum() no_orders = picker_df.loc[:,"no_orders"].sum() no_items = picker_df.loc[:,"no_items"].sum() total_travel_time = picker_df.loc[:,"total_travel_time"].sum() items_per_tour = no_items/no_tours time_per_item = total_travel_time/no_items #Write to metrics_file file = open(metrics_file, 'a') file.write(""+ '\n') file.write("CUSTOMER SERVICE METRICS"+ '\n') file.write(f"no_finished: {no_finished}"+ '\n') file.write(f"no_delayed: {no_delayed} (now: {now_delayed}, later: {later_delayed})"+ '\n') file.write(f"avg_delay_time: {avg_delay_time}"+ '\n') file.write(f"avg_waiting_time: {avg_waiting_time}"+ '\n') file.write(f"avg_service_time: {avg_service_time}"+ '\n') file.write(f"delivery_rate: {delivery_rate}"+ '\n') file.write(f"delay_finished_ratio: {delay_finished_ratio}"+ '\n') file.write(""+ '\n') file.write("EFFICIENCY METRICS"+ '\n') file.write(f"total_travel_time: {total_travel_time}"+ '\n') file.write(f"time_per_item: {time_per_item}"+ '\n') file.write(f"items_per_tour: {items_per_tour}"+ '\n') file.write(""+ '\n') file.close() #Append statistics to stats dictionary stats = {"no_finished": no_finished, "no_delayed": no_delayed, "avg_delay_time": avg_delay_time, "avg_waiting_time": avg_waiting_time, "avg_service_time": avg_service_time, "delivery_rate": delivery_rate, "delay_finished_ratio": delay_finished_ratio, "total_travel_time": total_travel_time, "time_per_item": time_per_item, "items_per_tour": items_per_tour} return stats ```
{ "source": "jonashaag/CountNet", "score": 2 }
#### File: jonashaag/CountNet/predict_api.py ```python import base64 import json import numpy as np from werkzeug.wrappers import Request, Response import predict def decode_audio(audio_bytes): return np.frombuffer(base64.b64decode(audio_bytes), dtype="float32") def make_app(estimate_func): def app(environ, start_response): inputs = json.loads(Request(environ).get_data()) outputs = [] for inp in inputs: try: est = int(estimate_func(decode_audio(inp))) except Exception as e: print(f"Error estimating speaker count for input {len(outputs)}: {e}") est = None outputs.append(est) return Response(json.dumps(outputs))(environ, start_response) return app if __name__ == "__main__": import argparse import functools from werkzeug.serving import run_simple parser = argparse.ArgumentParser( description="Run simple JSON api server to predict speaker count" ) parser.add_argument("--model", default="CRNN", help="model name") args = parser.parse_args() model = predict.load_model(args.model) scaler = predict.load_scaler() app = make_app(functools.partial(predict.count, model=model, scaler=scaler)) run_simple("0.0.0.0", 5000, app, use_debugger=True) ```
{ "source": "jonashaag/django-autocomplete-light", "score": 3 }
#### File: autocomplete_light/autocomplete/base.py ```python from django.core import urlresolvers from django.core.exceptions import ImproperlyConfigured from django.utils.translation import ugettext_lazy as _ __all__ = ('AutocompleteInterface', 'AutocompleteBase') class AutocompleteInterface(object): """ This is the minimum to implement in a custom Autocomplete class. It has two attributes: values A list of values which validate_values() and choices_for_values() should use. request A request object which choices_for_request() and autocomplete_html() should use. An autocomplete proposes "choices". A choice has a "value". When the user selects a "choice", then it is converted to a "value". """ def __init__(self, request=None, values=None): """ Class constructor sets the given request and values as instance attributes, casting values to list if necessary. """ self.request = request if hasattr(values, '__iter__'): self.values = values else: self.values = [values] def autocomplete_html(self): """ Return the HTML autocomplete that should be displayed under the text input. Use self.request if set. """ raise NotImplemented() def validate_values(self): """ Return True if self.values are all valid. """ raise NotImplemented() def choices_for_values(self): """ Return the list of choices corresponding to self.values. """ raise NotImplemented() def get_absolute_url(self): """ Return the absolute url for this autocomplete, using autocomplete_light_autocomplete url """ try: return urlresolvers.reverse('autocomplete_light_autocomplete', args=(self.__class__.__name__,)) except urlresolvers.NoReverseMatch, e: # Such error will ruin form rendering. It would be automatically # silenced because of e.silent_variable_failure=True, which is # something we don't want. Let's give the user a hint: raise ImproperlyConfigured("URL lookup for autocomplete '%s' " "failed. Have you included autocomplete_light.urls in " "your urls.py?" % (self.__class__.__name__,)) class AutocompleteBase(AutocompleteInterface): """ A basic implementation of AutocompleteInterface that renders HTML and should fit most cases. However, it requires to overload choices_for_request(). """ choice_html_format = u'<span class="div" data-value="%s">%s</span>' empty_html_format = u'<span class="div"><em>%s</em></span>' autocomplete_html_format = u'%s' add_another_url_name = None def choices_for_request(self): """ Return the list of choices that are available. Uses self.request if set. Use self.request if set, may be used by autocomplete_html(). """ raise NotImplemented() def validate_values(self): """ Return True if all the values are available in choices_for_values(). """ return len(self.choices_for_values()) == len(self.values) def autocomplete_html(self): """ Simple rendering of the autocomplete. """ html = [] for choice in self.choices_for_request(): html.append(self.choice_html(choice)) if not html: html = self.empty_html_format % _('no matches found').capitalize() return self.autocomplete_html_format % ''.join(html) def choice_html(self, choice): """ Return a choice formated according to self.choice_html_format. """ return self.choice_html_format % ( self.choice_value(choice), self.choice_label(choice)) def choice_value(self, choice): """ Convert a choice to a value. """ return unicode(choice) def choice_label(self, choice): """ Convert a choice to a label. """ return unicode(choice) ``` #### File: autocomplete_light/autocomplete/generic.py ```python from django.contrib.contenttypes.models import ContentType from django.db.models import Q from autocomplete_light.generic import GenericModelChoiceField from .model import AutocompleteModel __all__ = ['AutocompleteGeneric'] class AutocompleteGeneric(AutocompleteModel): choices = None search_fields = None def choice_value(self, choice): """ Rely on GenericModelChoiceField to return a string containing the content type id and object id of the result. Because this autocomplete is made for that field, and to avoid code duplication. """ field = GenericModelChoiceField() return field.prepare_value(choice) def validate_values(self): """ Ensure that every choice is part of a queryset. """ assert self.choices, 'autocomplete.choices should be a queryset list' for value in self.values: if not isinstance(value, basestring): return False try: content_type_id, object_id = value.split('-') except ValueError: return False try: content_type = ContentType.objects.get_for_id(content_type_id) except ContentType.DoesNotExist: return False model_class = content_type.model_class() found = False for queryset in self.choices: if queryset.model != model_class: continue if queryset.filter(pk=object_id).count() == 1: found = True else: return False if not found: # maybe a user would cheat by using a forbidden ctype id ! return False return True def choices_for_request(self): """ Propose local results and fill the autocomplete with remote suggestions. """ assert self.choices, 'autocomplete.choices should be a queryset list' q = self.request.GET.get('q', '') request_choices = [] querysets_left = len(self.choices) i = 0 for queryset in self.choices: conditions = Q() if q: for search_field in self.search_fields[i]: conditions |= Q(**{search_field + '__icontains': q}) limit = ((self.limit_choices - len(request_choices)) / querysets_left) for choice in queryset.filter(conditions)[:limit]: request_choices.append(choice) querysets_left -= 1 i += 1 return request_choices def choices_for_values(self): """ Values which are not found in the querysets are ignored. """ values_choices = [] for queryset in self.choices: ctype = ContentType.objects.get_for_model(queryset.model).pk try: ids = [x.split('-')[1] for x in self.values if x is not None and int(x.split('-')[0]) == ctype] except ValueError: continue for choice in queryset.filter(pk__in=ids): values_choices.append(choice) return values_choices ``` #### File: autocomplete_light/autocomplete/template.py ```python import types from django.template import loader from .base import AutocompleteBase class AutocompleteTemplate(AutocompleteBase): """ This replacement for AutocompleteBase supports two new attributes: choice_template Name of the template to use to render a choice in the autocomplete. If none is specified, then ``AutocompleteBase`` will render the choice. autocomplete_template Name of the template to use to render the autocomplete. Again, fall back on ``AutocompleteBase`` if this is None. """ choice_template = None autocomplete_template = None def get_base_context(self): """ Return a dict to use as base context for all templates. It contains: - ``{{ request }}`` if available, - ``{{ autocomplete }}`` the "self" instance. """ return { 'request': self.request, 'autocomplete': self, } def render_template_context(self, template, extra_context=None): """ Render ``template`` with base context and ``extra_context``. """ context = self.get_base_context() context.update(extra_context or {}) return loader.render_to_string(template, context) def autocomplete_html(self): """ Render ``autocomplete_template`` with base context and ``{{ choices }}``. If ``autocomplete_template`` is none then fall back on ``AutocompleteBase``. """ if self.autocomplete_template: choices = self.choices_for_request() return self.render_template_context(self.autocomplete_template, {'choices': choices}) else: return super(AutocompleteTemplate, self).autocomplete_html() def choice_html(self, choice): """ Render choice_template with base context and ``{{ choice }}``. If ``choice_template`` is none then fall back on ``AutocompleteBase``. """ if self.choice_template: return self.render_template_context(self.choice_template, {'choice': choice}) else: return super(AutocompleteTemplate, self).choice_html(choice) ``` #### File: autocomplete_light/contrib/generic_m2m.py ```python from genericm2m.models import RelatedObjectsDescriptor from ..generic import GenericModelChoiceField, GenericModelForm class GenericModelForm(GenericModelForm): """ Extension of autocomplete_light.GenericModelForm, that handles genericm2m's RelatedObjectsDescriptor. """ def __init__(self, *args, **kwargs): """ Add related objects to initial for each generic m2m field. """ super(GenericModelForm, self).__init__(*args, **kwargs) for name, field in self.generic_m2m_fields(): related_objects = getattr(self.instance, name).all() self.initial[name] = [x.object for x in related_objects] def generic_m2m_fields(self): """ Yield name, field for each RelatedObjectsDescriptor of the model of this ModelForm. """ for name, field in self.fields.items(): if not isinstance(field, GenericModelMultipleChoiceField): continue model_class_attr = getattr(self._meta.model, name, None) if not isinstance(model_class_attr, RelatedObjectsDescriptor): continue yield name, field def save(self, commit=True): """ Save the form and particularely the generic many to many relations. """ instance = super(GenericModelForm, self).save(commit=commit) def save_m2m(): for name, field in self.generic_m2m_fields(): model_attr = getattr(instance, name) selected_relations = self.cleaned_data.get(name, []) for related in model_attr.all(): if related.object not in selected_relations: model_attr.remove(related) for related in selected_relations: model_attr.connect(related) if hasattr(self, 'save_m2m'): old_m2m = self.save_m2m def _(): save_m2m() old_m2m() self.save_m2m = _ else: save_m2m() return instance class GenericModelMultipleChoiceField(GenericModelChoiceField): """ Simple form field that converts strings to models. """ def prepare_value(self, value): return [super(GenericModelMultipleChoiceField, self ).prepare_value(v) for v in value] def to_python(self, value): return [super(GenericModelMultipleChoiceField, self).to_python(v) for v in value] ``` #### File: autocomplete_light/contrib/taggit_tagfield.py ```python from taggit.forms import TagField as TaggitTagField from taggit.utils import edit_string_for_tags from ..widgets import TextWidget class TagWidget(TextWidget): def render(self, name, value, attrs=None): if value is not None and not isinstance(value, basestring): value = edit_string_for_tags( [o.tag for o in value.select_related("tag")]) return super(TagWidget, self).render(name, value, attrs) class TagField(TaggitTagField): widget = TagWidget ``` #### File: tests/autocomplete/model.py ```python from .case import * from django.contrib.auth.models import User class AutocompleteModelMock(autocomplete_light.AutocompleteModelBase): limit_choices = 2 choices = User.objects.all() search_fields = ('username', 'email') class FormMock(forms.Form): x = forms.ModelChoiceField(queryset=AutocompleteModelMock.choices, widget=autocomplete_light.ChoiceWidget( autocomplete=AutocompleteModelMock)) class MultipleFormMock(forms.Form): x = forms.ModelMultipleChoiceField(queryset=AutocompleteModelMock.choices, widget=autocomplete_light.MultipleChoiceWidget( autocomplete=AutocompleteModelMock)) class AutocompleteModelTestCase(AutocompleteTestCase): autocomplete_mock = AutocompleteModelMock def setUp(self): User.objects.all().delete() self.abe = User(username='Abe', email='<EMAIL>') self.jack = User(username='Jack', email='<EMAIL>') self.james = User(username='James', email='<EMAIL>') self.john = User(username='John', email='<EMAIL>') self.abe.save() self.jack.save() self.james.save() self.john.save() def assert_choices_equal(self, result, test): self.assertEqual(list(result), test['expected']) def get_choices_for_values_tests(self): return ( { 'fixture': [1, 4], 'expected': [ self.abe, self.john, ] }, ) def get_choices_for_request_tests(self): return ( { 'fixture': make_get_request('q=j'), 'expected': [ self.jack, self.james, ] }, { 'fixture': make_get_request('q=sale'), 'expected': [ self.abe, self.james, ] }, { 'fixture': make_get_request(), 'expected': [ self.abe, self.jack, ] } ) def get_validate_tests(self): return ( { 'fixture': [1, 4], 'expected': True, }, { 'fixture': [1, 4, 123], 'expected': False, }, ) def get_autocomplete_html_tests(self): return ( { 'fixture': make_get_request('q=j'), 'expected': u''.join([ '<span class="div" data-value="%s">%s</span>' % ( self.jack.pk, unicode(self.jack)), '<span class="div" data-value="%s">%s</span>' % ( self.james.pk, unicode(self.james)), ]) }, { 'fixture': make_get_request(), 'expected': u''.join([ '<span class="div" data-value="%s">%s</span>' % ( self.abe.pk, unicode(self.abe)), '<span class="div" data-value="%s">%s</span>' % ( self.jack.pk, unicode(self.jack)), ]) }, ) def get_widget_tests(self): return ( { 'form_class': FormMock, 'fixture': 'x=4', 'expected_valid': True, 'expected_data': self.john, }, { 'form_class': FormMock, 'fixture': 'x=3&x=4', 'expected_valid': True, 'expected_data': self.john, }, { 'fixture': 'x=abc', 'expected_valid': False, }, { 'form_class': MultipleFormMock, 'fixture': 'x=4&x=2', 'expected_valid': True, 'expected_data': [self.jack, self.john], }, { 'fixture': 'x=abc&x=2', 'expected_valid': False, }, ) ```
{ "source": "jonashaag/django-floppyforms", "score": 2 }
#### File: floppyforms/tests/base.py ```python import difflib from copy import copy from django.test import TestCase from django.test.signals import template_rendered from django.test.utils import ContextList from django.utils.unittest.util import safe_repr from .html import HTMLParseError, parse_html class InvalidVariable(unicode): def __nonzero__(self): return False class _AssertTemplateUsedContext(object): def __init__(self, test_case, template_name): self.test_case = test_case self.template_name = template_name self.rendered_templates = [] self.rendered_template_names = [] self.context = ContextList() def on_template_render(self, sender, signal, template, context, **kwargs): self.rendered_templates.append(template) self.rendered_template_names.append(template.name) self.context.append(copy(context)) def test(self): return self.template_name in self.rendered_template_names def message(self): return u'%s was not rendered.' % self.template_name def __enter__(self): template_rendered.connect(self.on_template_render) return self def __exit__(self, exc_type, exc_value, traceback): template_rendered.disconnect(self.on_template_render) if exc_type is not None: return if not self.test(): message = self.message() if len(self.rendered_templates) == 0: message += u' No template was rendered.' else: message += u' Following templates were rendered: %s' % ( ', '.join(self.rendered_template_names)) self.test_case.fail(message) class _AssertTemplateNotUsedContext(_AssertTemplateUsedContext): def test(self): return self.template_name not in self.rendered_template_names def message(self): return u'%s was rendered.' % self.template_name class TemplatesTestCase(object): def assertTemplateUsed(self, response=None, template_name=None, msg_prefix=''): """ Asserts that the template with the provided name was used in rendering the response. Also usable as context manager. """ if response is None and template_name is None: raise TypeError(u'response and/or template_name argument must be provided') if msg_prefix: msg_prefix += ": " # Use assertTemplateUsed as context manager. if not hasattr(response, 'templates') or (response is None and template_name): if response: template_name = response response = None context = _AssertTemplateUsedContext(self, template_name) return context template_names = [t.name for t in response.templates] if not template_names: self.fail(msg_prefix + "No templates used to render the response") self.assertTrue( template_name in template_names, msg_prefix + "Template '%s' was not a template used to render" " the response. Actual template(s) used: %s" % (template_name, u', '.join(template_names)) ) def assertTemplateNotUsed(self, response=None, template_name=None, msg_prefix=''): """ Asserts that the template with the provided name was NOT used in rendering the response. Also usable as context manager. """ if response is None and template_name is None: raise TypeError(u'response and/or template_name argument must be provided') if msg_prefix: msg_prefix += ": " # Use assertTemplateUsed as context manager. if not hasattr(response, 'templates') or (response is None and template_name): if response: template_name = response response = None context = _AssertTemplateNotUsedContext(self, template_name) return context template_names = [t.name for t in response.templates] self.assertFalse( template_name in template_names, msg_prefix + "Template '%s' was used unexpectedly in rendering" " the response" % template_name) def assert_and_parse_html(self, html, user_msg, msg): try: dom = parse_html(html) except HTMLParseError, e: standardMsg = u'%s\n%s' % (msg, e.msg) self.fail(self._formatMessage(user_msg, standardMsg)) return dom class HTMLTestCase(object): def assertHTMLEqual(self, html1, html2, msg=None): """ Asserts that two HTML snippets are semantically the same. Whitespace in most cases is ignored, and attribute ordering is not significant. The passed-in arguments must be valid HTML. """ dom1 = assert_and_parse_html(self, html1, msg, u'First argument is not valid HTML:') dom2 = assert_and_parse_html(self, html2, msg, u'Second argument is not valid HTML:') if dom1 != dom2: standardMsg = '%s != %s' % ( safe_repr(dom1, True), safe_repr(dom2, True)) diff = ('\n' + '\n'.join(difflib.ndiff( unicode(dom1).splitlines(), unicode(dom2).splitlines()))) standardMsg = self._truncateMessage(standardMsg, diff) self.fail(self._formatMessage(msg, standardMsg)) def assertHTMLNotEqual(self, html1, html2, msg=None): """Asserts that two HTML snippets are not semantically equivalent.""" dom1 = assert_and_parse_html(self, html1, msg, u'First argument is not valid HTML:') dom2 = assert_and_parse_html(self, html2, msg, u'Second argument is not valid HTML:') if dom1 == dom2: standardMsg = '%s == %s' % ( safe_repr(dom1, True), safe_repr(dom2, True)) self.fail(self._formatMessage(msg, standardMsg)) class FloppyFormsTestCase(HTMLTestCase, TemplatesTestCase, TestCase): pass ``` #### File: floppyforms/tests/fields.py ```python from .base import FloppyFormsTestCase import floppyforms as forms class IntegerFieldTests(FloppyFormsTestCase): def test_parse_int(self): int_field = forms.IntegerField() result = int_field.clean('15') self.assertEqual(15, result) self.assertIsInstance(result, int) ```
{ "source": "jonashaag/django-indisposable", "score": 2 }
#### File: django-indisposable/django_indisposable/__init__.py ```python import MailChecker from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ValidationError def validate(email): if email and '@' in email and MailChecker.MailChecker.is_blacklisted(email): host = email.rsplit('@', 1)[1] raise ValidationError(_('%(host)s email addresses are not accepted'), params={'host': host}) ```
{ "source": "jonashaag/german-normalize", "score": 3 }
#### File: jonashaag/german-normalize/german_normalize.py ```python from __future__ import unicode_literals import re import unicodedata def normalize(text, lexicographic=False, heuristic_case=False): assert not heuristic_case or not lexicographic, "'heuristic_case' conflicts with 'lexicographic'" text = text.replace('ß', 'ss').replace('ẞ', 'SS') if not lexicographic: if heuristic_case: text = re.sub('Ä(?=[a-z])', 'Ae', text) text = re.sub('Ö(?=[a-z])', 'Oe', text) text = re.sub('Ü(?=[a-z])', 'Ue', text) for original, replacement in (('ä', 'ae'), ('ö', 'oe'), ('ü', 'ue'), ('Ä', 'AE'), ('Ö', 'OE'), ('Ü', 'UE')): text = text.replace(original, replacement) return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode() ```
{ "source": "jonashaag/karellen-kombu-ext", "score": 2 }
#### File: django/south_migrations/0001_initial.py ```python from __future__ import absolute_import, unicode_literals # flake8: noqa import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Queue' db.create_table('djkombu_queue', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(unique=True, max_length=200)), )) db.send_create_signal('django', ['Queue']) # Adding model 'Message' db.create_table('djkombu_message', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('visible', self.gf('django.db.models.fields.BooleanField')(default=True, db_index=True)), ('sent_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, null=True, db_index=True, blank=True)), ('payload', self.gf('django.db.models.fields.TextField')()), ('queue', self.gf('django.db.models.fields.related.ForeignKey')(related_name='messages', to=orm['django.Queue'])), )) db.send_create_signal('django', ['Message']) def backwards(self, orm): # Deleting model 'Queue' db.delete_table('djkombu_queue') # Deleting model 'Message' db.delete_table('djkombu_message') models = { 'django.message': { 'Meta': {'object_name': 'Message', 'db_table': "'djkombu_message'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'payload': ('django.db.models.fields.TextField', [], {}), 'queue': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'messages'", 'to': "orm['django.Queue']"}), 'sent_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}) }, 'django.queue': { 'Meta': {'object_name': 'Queue', 'db_table': "'djkombu_queue'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '200'}) } } complete_apps = ['django'] ```
{ "source": "jonashaag/kartothek", "score": 2 }
#### File: io/dask/_update.py ```python from functools import partial from typing import List import numpy as np import pandas as pd from kartothek.io_components.metapartition import ( MetaPartition, parse_input_to_metapartition, ) from kartothek.io_components.utils import sort_values_categorical from ._utils import map_delayed _KTK_HASH_BUCKET = "__KTK_HASH_BUCKET" def _hash_bucket(df: pd.DataFrame, subset: List[str], num_buckets: int): """ Categorize each row of `df` based on the data in the columns `subset` into `num_buckets` values. This is based on `pandas.util.hash_pandas_object` """ if subset is None: subset = df.columns hash_arr = pd.util.hash_pandas_object(df[subset], index=False) buckets = hash_arr % num_buckets available_bit_widths = np.array([8, 16, 32, 64]) mask = available_bit_widths > np.log2(num_buckets) bit_width = min(available_bit_widths[mask]) df[_KTK_HASH_BUCKET] = buckets.astype(f"uint{bit_width}") return df def _update_dask_partitions_shuffle( ddf, table, secondary_indices, metadata_version, partition_on, store_factory, df_serializer, dataset_uuid, num_buckets, sort_partitions_by, bucket_by, ): if ddf.npartitions == 0: return ddf if num_buckets is not None: meta = ddf._meta meta[_KTK_HASH_BUCKET] = np.uint64(0) ddf = ddf.map_partitions(_hash_bucket, bucket_by, num_buckets, meta=meta) group_cols = [partition_on[0], _KTK_HASH_BUCKET] else: group_cols = [partition_on[0]] ddf = ddf.groupby(by=group_cols) ddf = ddf.apply( partial( _store_partition, secondary_indices=secondary_indices, sort_partitions_by=sort_partitions_by, table=table, dataset_uuid=dataset_uuid, partition_on=partition_on, store_factory=store_factory, df_serializer=df_serializer, metadata_version=metadata_version, ), meta=("MetaPartition", "object"), ) return ddf def _update_dask_partitions_one_to_one( delayed_tasks, secondary_indices, metadata_version, partition_on, store_factory, df_serializer, dataset_uuid, sort_partitions_by, ): input_to_mps = partial( parse_input_to_metapartition, metadata_version=metadata_version, expected_secondary_indices=secondary_indices, ) mps = map_delayed(delayed_tasks, input_to_mps) if sort_partitions_by: mps = map_delayed( mps, MetaPartition.apply, partial(sort_values_categorical, column=sort_partitions_by), ) if partition_on: mps = map_delayed(mps, MetaPartition.partition_on, partition_on) if secondary_indices: mps = map_delayed(mps, MetaPartition.build_indices, secondary_indices) return map_delayed( mps, MetaPartition.store_dataframes, store=store_factory, df_serializer=df_serializer, dataset_uuid=dataset_uuid, ) def _store_partition( df, secondary_indices, sort_partitions_by, table, dataset_uuid, partition_on, store_factory, df_serializer, metadata_version, ): store = store_factory() # I don't have access to the group values mps = parse_input_to_metapartition( {"data": {table: df}}, metadata_version=metadata_version ) # delete reference to enable release after partition_on; before index build del df if sort_partitions_by: mps = mps.apply(partial(sort_values_categorical, column=sort_partitions_by)) if partition_on: mps = mps.partition_on(partition_on) if secondary_indices: mps = mps.build_indices(secondary_indices) return mps.store_dataframes( store=store, dataset_uuid=dataset_uuid, df_serializer=df_serializer ) ``` #### File: io/testing/write.py ```python import string from collections import OrderedDict import numpy as np import pandas as pd import pandas.util.testing as pdt import pytest from kartothek.core.dataset import DatasetMetadata from kartothek.core.index import ExplicitSecondaryIndex from kartothek.core.uuid import gen_uuid from kartothek.io_components.metapartition import MetaPartition from kartothek.serialization import DataFrameSerializer def test_file_structure_dataset_v4(store_factory, bound_store_dataframes): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=4 ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() # TODO: json -> msgpack expected_keys = set( [ "dataset_uuid.by-dataset-metadata.json", "dataset_uuid/helper/cluster_1.parquet", "dataset_uuid/helper/cluster_2.parquet", "dataset_uuid/helper/_common_metadata", "dataset_uuid/core/cluster_1.parquet", "dataset_uuid/core/cluster_2.parquet", "dataset_uuid/core/_common_metadata", ] ) assert set(expected_keys) == set(store.keys()) def test_file_structure_dataset_v4_partition_on(store_factory, bound_store_dataframes): store = store_factory() assert set(store.keys()) == set() df = pd.DataFrame( {"P": [1, 2, 3, 1, 2, 3], "L": [1, 1, 1, 2, 2, 2], "TARGET": np.arange(10, 16)} ) df_helper = pd.DataFrame( { "P": [1, 2, 3, 1, 2, 3], "L": [1, 1, 1, 2, 2, 2], "info": string.ascii_lowercase[:2], } ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) assert isinstance(dataset, DatasetMetadata) assert dataset.partition_keys == ["P", "L"] assert len(dataset.partitions) == 12 store = store_factory() expected_keys = set( [ "dataset_uuid.by-dataset-metadata.json", "dataset_uuid/helper/P=1/L=1/cluster_1.parquet", "dataset_uuid/helper/P=1/L=1/cluster_2.parquet", "dataset_uuid/helper/P=1/L=2/cluster_1.parquet", "dataset_uuid/helper/P=1/L=2/cluster_2.parquet", "dataset_uuid/helper/P=2/L=1/cluster_1.parquet", "dataset_uuid/helper/P=2/L=1/cluster_2.parquet", "dataset_uuid/helper/P=2/L=2/cluster_1.parquet", "dataset_uuid/helper/P=2/L=2/cluster_2.parquet", "dataset_uuid/helper/P=3/L=1/cluster_1.parquet", "dataset_uuid/helper/P=3/L=1/cluster_2.parquet", "dataset_uuid/helper/P=3/L=2/cluster_1.parquet", "dataset_uuid/helper/P=3/L=2/cluster_2.parquet", "dataset_uuid/helper/_common_metadata", "dataset_uuid/core/P=1/L=1/cluster_1.parquet", "dataset_uuid/core/P=1/L=1/cluster_2.parquet", "dataset_uuid/core/P=1/L=2/cluster_1.parquet", "dataset_uuid/core/P=1/L=2/cluster_2.parquet", "dataset_uuid/core/P=2/L=1/cluster_1.parquet", "dataset_uuid/core/P=2/L=1/cluster_2.parquet", "dataset_uuid/core/P=2/L=2/cluster_1.parquet", "dataset_uuid/core/P=2/L=2/cluster_2.parquet", "dataset_uuid/core/P=3/L=1/cluster_1.parquet", "dataset_uuid/core/P=3/L=1/cluster_2.parquet", "dataset_uuid/core/P=3/L=2/cluster_1.parquet", "dataset_uuid/core/P=3/L=2/cluster_2.parquet", "dataset_uuid/core/_common_metadata", ] ) assert set(expected_keys) == set(store.keys()) def test_file_structure_dataset_v4_partition_on_second_table_no_index_col( store_factory, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 2), "L": np.arange(0, 2), "TARGET": np.arange(10, 12)} ) df_helper = pd.DataFrame({"P": [0, 0, 1], "info": string.ascii_lowercase[:2]}) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] with pytest.raises(Exception): bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) def test_file_structure_dataset_v4_partition_on_second_table_no_index_col_simple_group( store_factory, bound_store_dataframes ): """ Pandas seems to stop evaluating the groupby expression if the dataframes after the first column split is of length 1. This seems to be an optimization which should, however, still raise a KeyError """ df = pd.DataFrame( {"P": np.arange(0, 2), "L": np.arange(0, 2), "TARGET": np.arange(10, 12)} ) df_helper = pd.DataFrame({"P": [0, 1], "info": string.ascii_lowercase[:2]}) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] with pytest.raises(Exception): bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "L"], metadata_version=4, ) def test_store_dataframes_as_dataset( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, { "label": "cluster_2", "data": [("core", df.copy(deep=True)), ("helper", df_helper)], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, secondary_indices=["P"], ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 assert "P" in dataset.indices store = store_factory() stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions index_dct = stored_dataset.indices["P"].load(store).index_dct assert sorted(index_dct.keys()) == list(range(0, 10)) assert any([sorted(p) == ["cluster_1", "cluster_2"] for p in index_dct.values()]) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["core"], store=store ) pdt.assert_frame_equal(df, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["core"], store=store ) pdt.assert_frame_equal(df, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["helper"], store=store ) pdt.assert_frame_equal(df_helper, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["helper"], store=store ) pdt.assert_frame_equal(df_helper, df_stored) def test_store_dataframes_as_dataset_empty_dataframe( store_factory, metadata_version, df_all_types, bound_store_dataframes ): """ Test that writing an empty column succeeds. In particular, this may fail due to too strict schema validation. """ df_empty = df_all_types.drop(0) # Store a second table with shared columns. All shared columns must be of the same type # This may fail in the presence of empty partitions if the schema validation doesn't account for it df_shared_cols = df_all_types.loc[:, df_all_types.columns[:3]] df_shared_cols["different_col"] = "a" assert df_empty.empty df_list = [ { "label": "cluster_1", "data": [("tableA", df_empty), ("tableB", df_shared_cols.copy(deep=True))], }, { "label": "cluster_2", "data": [ ("tableA", df_all_types), ("tableB", df_shared_cols.copy(deep=True)), ], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["tableA"], store=store ) pdt.assert_frame_equal(df_empty, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["tableA"], store=store ) # Roundtrips for type date are not type preserving df_stored["date"] = df_stored["date"].dt.date pdt.assert_frame_equal(df_all_types, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["tableB"], store=store ) pdt.assert_frame_equal(df_shared_cols, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["tableB"], store=store ) pdt.assert_frame_equal(df_shared_cols, df_stored) def test_store_dataframes_as_dataset_batch_mode( store_factory, metadata_version, bound_store_dataframes ): values_p1 = [1, 2, 3] values_p2 = [4, 5, 6] df = pd.DataFrame({"P": values_p1}) df2 = pd.DataFrame({"P": values_p2}) df_list = [ [ { "label": "cluster_1", "data": [("core", df)], "indices": { "P": ExplicitSecondaryIndex( "P", {v: ["cluster_1"] for v in values_p1} ) }, }, { "label": "cluster_2", "data": [("core", df2)], "indices": { "P": ExplicitSecondaryIndex( "P", {v: ["cluster_2"] for v in values_p2} ) }, }, ] ] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 store = store_factory() stored_dataset = DatasetMetadata.load_from_store( "dataset_uuid", store ).load_all_indices(store) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_1"].files["core"], store=store ) pdt.assert_frame_equal(df, df_stored) df_stored = DataFrameSerializer.restore_dataframe( key=dataset.partitions["cluster_2"].files["core"], store=store ) pdt.assert_frame_equal(df2, df_stored) assert stored_dataset.indices["P"].to_dict() == { 1: np.array(["cluster_1"], dtype=object), 2: np.array(["cluster_1"], dtype=object), 3: np.array(["cluster_1"], dtype=object), 4: np.array(["cluster_2"], dtype=object), 5: np.array(["cluster_2"], dtype=object), 6: np.array(["cluster_2"], dtype=object), } def test_store_dataframes_as_dataset_auto_uuid( store_factory, metadata_version, mock_uuid, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_helper = pd.DataFrame( {"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]} ) df_list = [ { "label": "cluster_1", "data": [ ("core", df.copy(deep=True)), ("helper", df_helper.copy(deep=True)), ], }, { "label": "cluster_2", "data": [ ("core", df.copy(deep=True)), ("helper", df_helper.copy(deep=True)), ], }, ] dataset = bound_store_dataframes( df_list, store=store_factory, metadata_version=metadata_version ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 stored_dataset = DatasetMetadata.load_from_store( "auto_dataset_uuid", store_factory() ) assert dataset.uuid == stored_dataset.uuid assert dataset.metadata == stored_dataset.metadata assert dataset.partitions == stored_dataset.partitions def test_store_dataframes_as_dataset_list_input( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df2 = pd.DataFrame( { "P": np.arange(100, 110), "L": np.arange(100, 110), "TARGET": np.arange(10, 20), } ) df_list = [df, df2] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 2 stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store_factory()) assert dataset == stored_dataset def test_store_dataframes_as_dataset_mp_partition_on_none( metadata_version, store, store_factory, bound_store_dataframes ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df2 = pd.DataFrame({"P": np.arange(0, 10), "info": np.arange(100, 110)}) mp = MetaPartition( label=gen_uuid(), data={"core": df, "helper": df2}, metadata_version=metadata_version, ) df_list = [None, mp] dataset = bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=metadata_version, partition_on=["P"], ) assert isinstance(dataset, DatasetMetadata) assert dataset.partition_keys == ["P"] assert len(dataset.partitions) == 10 assert dataset.metadata_version == metadata_version stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset == stored_dataset def test_store_dataframes_partition_on(store_factory, bound_store_dataframes): df = pd.DataFrame( OrderedDict([("location", ["0", "1", "2"]), ("other", ["a", "a", "a"])]) ) # First partition is empty, test this edgecase input_ = [ { "label": "label", "data": [("order_proposals", df.head(0))], "indices": {"location": {}}, }, { "label": "label", "data": [("order_proposals", df)], "indices": {"location": {k: ["label"] for k in df["location"].unique()}}, }, ] dataset = bound_store_dataframes( input_, store=store_factory, dataset_uuid="dataset_uuid", metadata_version=4, partition_on=["other"], ) assert len(dataset.partitions) == 1 assert len(dataset.indices) == 1 assert dataset.partition_keys == ["other"] def _exception_str(exception): """ Extract the exception message, even if this is a re-throw of an exception in distributed. """ if isinstance(exception, ValueError) and exception.args[0] == "Long error message": return exception.args[1] return str(exception) @pytest.mark.parametrize( "dfs,ok", [ ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.int64), } ), ], True, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int32), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.int16), } ), ], True, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int16), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int32), "X": pd.Series([2], dtype=np.int64), } ), ], True, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.uint64), } ), ], False, ), ( [ pd.DataFrame( { "P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([2], dtype=np.int64), "X": pd.Series([2], dtype=np.int64), "Y": pd.Series([2], dtype=np.int64), } ), ], False, ), ( [ pd.DataFrame( { "P": pd.Series([1, 2], dtype=np.int64), "X": pd.Series([1, 2], dtype=np.int64), } ), pd.DataFrame( { "P": pd.Series([3], dtype=np.int64), "X": pd.Series([3], dtype=np.uint64), } ), ], False, ), ], ) def test_schema_check_write(dfs, ok, store_factory, bound_store_dataframes): df_list = [{"label": "cluster_1", "data": [("core", df)]} for df in dfs] if ok: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P"], metadata_version=4, ) else: with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P"], metadata_version=4, ) assert ( "Schemas for table 'core' of dataset 'dataset_uuid' are not compatible!" in _exception_str(exc.value) ) def test_schema_check_write_shared(store_factory, bound_store_dataframes): df1 = pd.DataFrame( {"P": pd.Series([1], dtype=np.int64), "X": pd.Series([1], dtype=np.int64)} ) df2 = pd.DataFrame( {"P": pd.Series([1], dtype=np.uint64), "Y": pd.Series([1], dtype=np.int64)} ) df_list = [ {"label": "cluster_1", "data": [("core", df1)]}, {"label": "cluster_2", "data": [("prediction", df2)]}, ] with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P"], metadata_version=4, ) assert 'Found incompatible entries for column "P"' in str(exc.value) def test_schema_check_write_nice_error(store_factory, bound_store_dataframes): df1 = pd.DataFrame( { "P": pd.Series([1, 1], dtype=np.int64), "Q": pd.Series([1, 2], dtype=np.int64), "X": pd.Series([1, 1], dtype=np.int64), } ) df2 = pd.DataFrame( { "P": pd.Series([2, 2], dtype=np.uint64), "Q": pd.Series([1, 2], dtype=np.int64), "X": pd.Series([1, 1], dtype=np.int64), } ) df_list = [ {"label": "uuid1", "data": [("core", df1)]}, {"label": "uuid2", "data": [("core", df2)]}, ] with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "Q"], metadata_version=4, ) assert _exception_str(exc.value).startswith( """Schemas for table 'core' of dataset 'dataset_uuid' are not compatible! Schema violation Origin schema: {core/P=2/Q=2/uuid2} Origin reference: {core/P=1/Q=2/uuid1} Diff: """ ) def test_schema_check_write_cut_error(store_factory, bound_store_dataframes): df1 = pd.DataFrame( { "P": pd.Series([1] * 100, dtype=np.int64), "Q": pd.Series(range(100), dtype=np.int64), "X": pd.Series([1] * 100, dtype=np.int64), } ) df2 = pd.DataFrame( { "P": pd.Series([2] * 100, dtype=np.uint64), "Q": pd.Series(range(100), dtype=np.int64), "X": pd.Series([1] * 100, dtype=np.int64), } ) df_list = [ {"label": "uuid1", "data": [("core", df1)]}, {"label": "uuid2", "data": [("core", df2)]}, ] with pytest.raises(Exception) as exc: bound_store_dataframes( df_list, store=store_factory, dataset_uuid="dataset_uuid", partition_on=["P", "Q"], metadata_version=4, ) assert _exception_str(exc.value).startswith( """Schemas for table 'core' of dataset 'dataset_uuid' are not compatible! Schema violation Origin schema: {core/P=2/Q=99/uuid2} Origin reference: {core/P=1/Q=99/uuid1} Diff: """ ) def test_metadata_consistency_errors_fails( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame({"W": np.arange(0, 10), "L": np.arange(0, 10)}) df_2 = pd.DataFrame( {"P": np.arange(10, 20), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_list = [ {"label": "cluster_1", "data": [("core", df)]}, {"label": "cluster_2", "data": [("core", df_2)]}, ] # Also test `df_list` in reverse order, as this could lead to different results for dfs in [df_list, list(reversed(df_list))]: with pytest.raises( Exception, match=r"Schemas for table .* of dataset .* are not compatible!" ): return bound_store_dataframes( dfs, store=store_factory, metadata_version=metadata_version ) def test_table_consistency_resistance( store_factory, metadata_version, bound_store_dataframes ): df = pd.DataFrame({"P": np.arange(0, 10)}) df_helper = pd.DataFrame( {"P": np.arange(15, 35), "info": string.ascii_lowercase[:10]} ) df_list = [ {"label": "cluster_1", "data": [("core", df)]}, {"label": "cluster_2", "data": [("core", df), ("helper", df_helper)]}, ] store_kwargs = dict(store=store_factory, metadata_version=metadata_version) metadata1 = bound_store_dataframes(df_list, **store_kwargs) metadata2 = bound_store_dataframes(list(reversed(df_list)), **store_kwargs) assert set(metadata1.tables) == set(metadata2.tables) == {"core", "helper"} def test_store_dataframes_as_dataset_overwrite( store_factory, dataset_function, bound_store_dataframes ): with pytest.raises(RuntimeError): bound_store_dataframes( [pd.DataFrame()], store=store_factory, dataset_uuid=dataset_function.uuid ) bound_store_dataframes( [pd.DataFrame()], store=store_factory, dataset_uuid=dataset_function.uuid, overwrite=True, ) bound_store_dataframes( [pd.DataFrame()], store=store_factory, dataset_uuid="new_dataset_uuid" ) def test_store_empty_dataframes_partition_on(store_factory, bound_store_dataframes): df1 = pd.DataFrame({"x": [1], "y": [1]}).iloc[[]] md1 = bound_store_dataframes( [df1], store=store_factory, dataset_uuid="uuid", partition_on=["x"] ) assert md1.tables == ["table"] assert set(md1.table_meta["table"].names) == set(df1.columns) df2 = pd.DataFrame({"x": [1], "y": [1], "z": [1]}).iloc[[]] md2 = bound_store_dataframes( [df2], store=store_factory, dataset_uuid="uuid", partition_on=["x"], overwrite=True, ) assert md2.tables == ["table"] assert set(md2.table_meta["table"].names) == set(df2.columns) df3 = pd.DataFrame({"x": [1], "y": [1], "a": [1]}).iloc[[]] md3 = bound_store_dataframes( [{"table2": df3}], store=store_factory, dataset_uuid="uuid", partition_on=["x"], overwrite=True, ) assert md3.tables == ["table2"] assert set(md3.table_meta["table2"].names) == set(df3.columns) def test_store_overwrite_none(store_factory, bound_store_dataframes): df1 = pd.DataFrame({"x": [1], "y": [1]}) md1 = bound_store_dataframes( [df1], store=store_factory, dataset_uuid="uuid", partition_on=["x"] ) assert md1.tables == ["table"] assert set(md1.table_meta["table"].names) == set(df1.columns) md2 = bound_store_dataframes( [{}], store=store_factory, dataset_uuid="uuid", partition_on=["x"], overwrite=True, ) assert md2.tables == [] ```
{ "source": "jonashaag/lleaves", "score": 3 }
#### File: compiler/ast/parser.py ```python from lleaves.compiler.ast.nodes import DecisionNode, Forest, LeafNode, Tree from lleaves.compiler.ast.scanner import cat_args_bitmap, scan_model_file from lleaves.compiler.utils import DecisionType def _parse_tree_to_ast(tree_struct, cat_bitmap): n_nodes = len(tree_struct["decision_type"]) leaves = [ LeafNode(idx, value) for idx, value in enumerate(tree_struct["leaf_value"]) ] # Create the nodes using all non-specific data # categorical nodes are finalized later nodes = [ DecisionNode( idx, split_feature, threshold, decision_type_id, left_idx, right_idx ) for idx, ( split_feature, threshold, decision_type_id, left_idx, right_idx, ) in enumerate( zip( tree_struct["split_feature"], tree_struct["threshold"], tree_struct["decision_type"], tree_struct["left_child"], tree_struct["right_child"], ) ) ] assert len(nodes) == n_nodes categorical_nodes = [ idx for idx, decision_type_id in enumerate(tree_struct["decision_type"]) if DecisionType(decision_type_id).is_categorical ] for idx in categorical_nodes: node = nodes[idx] thresh = int(node.threshold) # pass just the relevant vector entries start = tree_struct["cat_boundaries"][thresh] end = tree_struct["cat_boundaries"][thresh + 1] node.finalize_categorical( cat_threshold=tree_struct["cat_threshold"][start:end], ) for node in nodes: # in the model_file.txt, the outgoing left + right nodes are specified # via their index in the list. negative numbers are leaves, positive numbers # are other nodes children = [ leaves[abs(idx) - 1] if idx < 0 else nodes[idx] for idx in (node.left_idx, node.right_idx) ] node.add_children(*children) for node in nodes: node.validate() if nodes: return Tree(tree_struct["Tree"], nodes[0], cat_bitmap) else: # special case for when tree is just single leaf assert len(leaves) == 1 return Tree(tree_struct["Tree"], leaves[0], cat_bitmap) def parse_to_ast(model_path): scanned_model = scan_model_file(model_path) n_args = scanned_model["general_info"]["max_feature_idx"] + 1 cat_bitmap = cat_args_bitmap(scanned_model["general_info"]["feature_infos"]) assert n_args == len(cat_bitmap), "Ill formed model file" trees = [ _parse_tree_to_ast(tree_struct, cat_bitmap) for tree_struct in scanned_model["trees"] ] return Forest(trees, cat_bitmap) ``` #### File: lleaves/lleaves/lleaves.py ```python import concurrent.futures import os from ctypes import CFUNCTYPE, POINTER, c_double, c_int from pathlib import Path import llvmlite.binding as llvm import numpy as np from lleaves import compiler from lleaves.compiler.ast import scanner from lleaves.compiler.objective_funcs import get_objective_func try: from pandas import DataFrame as pd_DataFrame except ImportError: class pd_DataFrame: """Dummy class for pandas.DataFrame.""" pass # Habe das Gefuehl dass in der `Model` Klasse mindestens 2 Dinge passieren die nicht # unbedingt zusammen gehoeren: # 1) Data preprocessing, das eigentlich rein funktional/stateless ist # 2) "Lazy" compilation mit caching. Koennte man das nicht einfach komplett von der # Klasse trennen und auf den Nutzer abwaelzen, dass das nicht mehrfach kompiliert wird? # Also das Interface so aendern, dass es wie folgt benutzt wird: # # parsed_model = parse_model(filepath) # predict_func = compile_to_func(parsed_model) # objective_func = get_objective_func(parsed_model) # # Dann koennte das sklearn interface nur ein wrapper darum sein: # # CompiledModel(predict_func, objective_func, parsed_model.number_of_features) # # Und dann kann man das Caching ganz loeschen. Ist flexibler, wenn der Nutzer das # macht, oder? # # Meine Vision fuer dieses Modul ist, dass es ein Haufen unabhaengiger Funktionen # ist, und die `Model`-Klasse nur ein ca. 10-zeiliger Wrapper, um das sklearn # Interface zu unterstuetzen. class Model: """ The base class of lleaves. """ # machine-targeted compiler & exec engine. _execution_engine = None # LLVM IR Module _IR_module: llvm.ModuleRef = None # prediction function, drops GIL on entry _c_entry_func = None def __init__(self, model_file=None): # model_file darf nicht None sein. """ Initialize the uncompiled model. :param model_file: Path to the model.txt. """ self.model_file = model_file self.is_compiled = False # model_file darf nicht None sein. # Finde es bisschen ueberraschend, dass hier direkt mit dem Lexer/Scanner interagiert wird. # Normalerweise wird ein Lexer nur vom Parser benutzt. scanned_model = scanner.scan_model_file(model_file, general_info_only=True) # Finde es bisschen seltsam, dass zweimal geparsed wird, 1x hier und 1x beim Compilen. self._general_info = scanned_model["general_info"] # ist das nicht identisch? # self._pandas_categorical = scanner.scan_pandas_categorical(model_file) self._pandas_categorical = scanned_model["pandas_categorical"] # objective function is implemented as an np.ufunc. self.objective_transf = get_objective_func(self._general_info["objective"]) def num_feature(self): """ Returns the number of features used by this model. """ return self._general_info["max_feature_idx"] + 1 # _get_execution_engine ist unused? Oder nicht? def _get_llvm_module(self): if self._IR_module: return self._IR_module self._IR_module = compiler.compile_to_module(self.model_file) return self._IR_module def compile(self, cache=None): """ Generate the LLVM IR for this model and compile it to ASM. This function can be called multiple times, but will only compile once. :param cache: Path to a cache file. If this path doesn't exist, binary will be dumped at path after compilation. If path exists, binary will be loaded and compilation skipped. No effort is made to check staleness / consistency. The precise workings of the cache parameter will be subject to future changes. """ if self.is_compiled: return # Hat LLVM hier globalen state? was passiert wenn man das mehrfach aufruft oder # parallel aufruft? llvm.initialize() llvm.initialize_native_target() llvm.initialize_native_asmprinter() # Create a target machine representing the host target = llvm.Target.from_default_triple() target_machine = target.create_target_machine() if cache is None or not Path(cache).exists(): # Compile to LLVM IR module = self._get_llvm_module() else: # when loading binary from cache we use a dummy empty module module = llvm.parse_assembly("") # Create execution engine for our module self._execution_engine = llvm.create_mcjit_compiler(module, target_machine) # Ich glaube der cache-Code wird einfacher wenn man explizit zwei Faelle # hinschreibt (Cache hit/miss). # Wenn ich den Code richtig verstehe, wird gerade bei Cache hit auch # "save_to_cache" ausgefuehrt und hat dann Abbruch durch den exists() # call? Waere es nicht besser, im Fall von Cache hit einfach set_object_cache ohne # notify_func= aufzurufen? # when caching we dump the executable once the module finished compiling def save_to_cache(module, buffer): if cache and not Path(cache).exists(): with open(cache, "wb") as file: file.write(buffer) # when caching load the executable if it exists def load_from_cache(module): if cache and Path(cache).exists(): return Path(cache).read_bytes() self._execution_engine.set_object_cache( notify_func=save_to_cache, getbuffer_func=load_from_cache ) # compile IR to ASM self._execution_engine.finalize_object() self._execution_engine.run_static_constructors() # construct entry func addr = self._execution_engine.get_function_address("forest_root") # evtl. besser den Ctypes-Typen auf Modulebene hinzuschreiben und hier # nur den pointer zu erzeugen (also "ENTRY_FUNC_TYPE(addr)" oder so). # CFUNCTYPE params: void return, pointer to data, pointer to results arr, start_idx, end_idx # Drops GIL during call, re-aquires it after self._c_entry_func = CFUNCTYPE( None, POINTER(c_double), POINTER(c_double), c_int, c_int )(addr) self.is_compiled = True def predict(self, data, n_jobs=os.cpu_count()): """ Return predictions for the given data. The model needs to be compiled before prediction. :param data: Pandas df, numpy 2D array or Python list. For fastest speed pass 2D float64 numpy arrays only. Wenn es ein df ist, wie muss dieser aussehen? Gibt es eigentlich einen Check, dass data das richtige Format hat? z.B. richtige Anzahl features :param n_jobs: Number of threads to use for prediction. Defaults to number of CPUs. For single-row prediction this should be set to 1. :return: 1D numpy array (dtype float64) """ if not self.is_compiled: raise RuntimeError( "Model needs to be compiled before prediction. Run model.compile()." ) if isinstance(data, pd_DataFrame): data = self._data_from_pandas(data) data, n_preds = self._to_1d_ndarray(data) ptr_data = data.ctypes.data_as(POINTER(c_double)) preds = np.zeros(n_preds, dtype=np.float64) ptr_preds = preds.ctypes.data_as(POINTER(c_double)) if n_jobs > 1: # was ist die Bedeutung des Teils nach dem "+"? batchsize = n_preds // n_jobs + (n_preds % n_jobs > 0) def f(start_idx): self._c_entry_func( ptr_data, ptr_preds, start_idx, min(start_idx + batchsize, n_preds) ) with concurrent.futures.ThreadPoolExecutor(max_workers=n_jobs) as executor: for i in range(0, n_preds, batchsize): executor.submit(f, i) else: self._c_entry_func(ptr_data, ptr_preds, 0, n_preds) # Es koennte nuetzlich sein, als dritte Option fuer die Parallelisierung # zu ermoeglichen, dass man seinen eigenen Code fuer Parallelisierung nutzt. # Ich habe nicht genau durchdacht wie das aussehen koennte, aber ich denke es # waere hilfreich den ganzen Preprocessing-Kram (to-1d, to-ctypes, ...) separat # ausfuehren zu koenne, sodass ich so etwas hinschreiben kann: # inputs, outputs, func = prepare(data) # my_run_parallel(inputs, outputs, func) return self.objective_transf(preds) def _data_from_pandas(self, data): # Was macht diese Funktion? # Kann man sie von der Model-Klasse trennen? if len(data.shape) != 2 or data.shape[0] < 1: raise ValueError("Input data must be 2D and non-empty.") cat_cols = list(data.select_dtypes(include=["category"]).columns) if len(cat_cols) != len(self._pandas_categorical): raise ValueError( "The categorical features passed don't match the train dataset." ) for col, category in zip(cat_cols, self._pandas_categorical): # we use set_categories to get the same (category -> code) mapping that we used during train if list(data[col].cat.categories) != list(category): data[col] = data[col].cat.set_categories(category) if len(cat_cols): # cat_cols is list data = data.copy() # apply (category -> code) mapping. Categories become floats data[cat_cols] = ( data[cat_cols].apply(lambda x: x.cat.codes).replace({-1: np.nan}) ) data = data.values if data.dtype != np.float32 and data.dtype != np.float64: data = data.astype(np.float64) return data def _to_1d_ndarray(self, data): # Von Model-Klasse trennen if isinstance(data, list): try: data = np.array(data, dtype=np.float64) except BaseException: raise ValueError("Cannot convert data list to appropriate np array") if not isinstance(data, np.ndarray): raise ValueError(f"Expecting list or numpy.ndarray, got {type(data)}") if len(data.shape) != 2: raise ValueError( f"Data must be 2 dimensional, is {len(data.shape)} dimensional" ) n_preds = data.shape[0] if data.dtype == np.float64: # flatten the array to 1D data = np.array(data.reshape(data.size), dtype=np.float64, copy=False) else: data = np.array(data.reshape(data.size), dtype=np.float64) return data, n_preds ``` #### File: lleaves/tests/test_nans.py ```python import lightgbm as lgb import numpy as np import numpy.testing as npt import pytest import lleaves # 2: MissingType None, default left # 4: MissingType 0, default right # 6: MissingType 0, default left # 8: MissingType NaN, default left # 10: MissingType NaN, default right @pytest.mark.parametrize( "decision_type, threshold_le_zero", [ (0, True), (2, True), (4, True), (6, True), (8, True), (10, True), (0, False), (2, False), (4, False), (6, False), (8, False), (10, False), ], ) def test_zero_as_missing_numerical(tmp_path, decision_type, threshold_le_zero): model_txt = tmp_path / "model.txt" with open("tests/models/tiniest_single_tree/model.txt") as infile, open( model_txt, "w" ) as outfile: for line in infile.readlines(): if line.startswith("decision_type="): outfile.write(line.replace("2", str(decision_type))) elif threshold_le_zero and line.startswith("threshold="): outfile.write(line.replace("0.", "-0.")) else: outfile.write(line) lgbm_model = lgb.Booster(model_file=str(model_txt)) llvm_model = lleaves.Model(model_file=str(model_txt)) llvm_model.compile() nan = float("NaN") data = [ [0.0, 1.0, 1.0], [0.0, -1.0, -1.0], [0.0, 1.0, 0.5], [0.0, -1.0, -0.5], [0.0, 0.5, 1.0], [0.0, -0.5, -1.0], [0.0, 0.5, 0.0], [0.0, -0.5, 0.0], [-0.01, -0.01, -0.01], [0.0, 0.0, 0.0], [0.01, 0.01, 0.01], [nan, nan, nan], [None, None, None], ] npt.assert_equal(llvm_model.predict(data), lgbm_model.predict(data)) @pytest.mark.parametrize( "decision_type, zero_in_bitvec", [ (1, True), (3, True), (5, True), (7, True), (9, True), (11, True), (1, False), (3, False), (5, False), (7, False), (9, False), (11, False), ], ) def test_zero_as_missing_categorical(tmp_path, decision_type, zero_in_bitvec): model_txt = tmp_path / "model.txt" with open("tests/models/pure_categorical/model.txt") as infile, open( model_txt, "w" ) as outfile: for line in infile.readlines(): if line.startswith("decision_type"): outfile.write(line.replace("1", str(decision_type))) elif line.startswith("cat_threshold") and not zero_in_bitvec: outfile.write(line.replace("23", "22")) else: outfile.write(line) lgbm_model = lgb.Booster(model_file=str(model_txt)) llvm_model = lleaves.Model(model_file=str(model_txt)) llvm_model.compile() nan = float("NaN") data = [ [1.0, 6.0, 0.0], [nan, 6.0, 0.0], [nan, 1.0, 0.0], [None, 1.0, 0.0], [1.0, nan, 0.0], [3.0, nan, 0.0], [3.0, None, 0.0], [0.0, 6.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [1.0, -0.001, 0.0], [1.0, 0.001, 0.0], [3.0, 0.0, 0.0], [3.0, -0.001, 0.0], [3.0, 0.001, 0.0], [nan, nan, nan], [None, None, None], ] npt.assert_equal(llvm_model.predict(data), lgbm_model.predict(data)) def test_lightgbm_nan_pred_inconsistency(tmp_path): # see https://github.com/dmlc/treelite/issues/277 model_file = str(tmp_path / "model.txt") X = np.array(30 * [[1]] + 30 * [[2]] + 30 * [[0]]) y = np.array(60 * [5] + 30 * [10]) train_data = lgb.Dataset(X, label=y, categorical_feature=[0]) bst = lgb.train({}, train_data, 1, categorical_feature=[0]) bst.save_model(model_file) # just to make sure it's not due to LightGBM model export lgbm_model = lgb.Booster(model_file=model_file) llvm_model = lleaves.Model(model_file=model_file) llvm_model.compile() data = np.array([[np.NaN], [0.0], [-0.1], [0.1], [10.0], [np.Inf], [-np.NaN]]) npt.assert_equal(lgbm_model.predict(data), llvm_model.predict(data)) def test_nan_prediction_numerical(): model_path = "tests/models/tiniest_single_tree/model.txt" llvm_model = lleaves.Model(model_file=model_path) llvm_model.compile() lgbm_model = lgb.Booster(model_file=model_path) nan = float("NaN") inf = float("Inf") data = [ 3 * [nan], 3 * [inf], [nan, inf, nan], [0.0, nan, 0.0], [0.0, inf, 0.0], [0.0, nan, 1.0], [0.0, inf, 1.0], [0.0, 0.0, nan], [0.0, 0.0, inf], [0.0, 1.0, nan], [0.0, 1.0, inf], ] npt.assert_equal(llvm_model.predict(data), lgbm_model.predict(data)) def test_nan_prediction_categorical(): model_path = "tests/models/pure_categorical/model.txt" llvm_model = lleaves.Model(model_file=model_path) llvm_model.compile() lgbm_model = lgb.Booster(model_file=model_path) nan = float("NaN") inf = float("Inf") data = [ 3 * [nan], 3 * [inf], [nan, inf, nan], # run both branches with Nans [1.0, nan, 0.0], [1.0, inf, 0.0], [0.0, nan, 0.0], [0.0, inf, 0.0], [nan, 6.0, 0.0], [inf, 6.0, 0.0], [nan, 0.0, 0.0], [inf, 0.0, 0.0], ] npt.assert_equal(llvm_model.predict(data), lgbm_model.predict(data)) ``` #### File: lleaves/tests/test_parsing.py ```python from pathlib import Path from lleaves.compiler.ast.scanner import scan_model_file, scan_pandas_categorical def test_parser(): model_file = "tests/models/boston_housing/model.txt" result = scan_model_file(model_file) assert result["general_info"]["max_feature_idx"] == 12 assert result["pandas_categorical"] is None assert len(result["trees"]) == 100 tree_3 = result["trees"][3] assert tree_3["num_leaves"] == 18 assert tree_3["left_child"] == [ 1, 3, -2, -1, 9, 8, 7, 10, 15, 16, -5, -9, -8, 14, -14, -6, -3, ] tree_95 = result["trees"][95] assert tree_95["Tree"] == 95 assert tree_95["num_leaves"] == 21 model_file = "tests/models/tiniest_single_tree/model.txt" result = scan_model_file(model_file) assert len(result["trees"]) == 1 tree_0 = result["trees"][0] assert tree_0["num_leaves"] == 4 assert result["pandas_categorical"] is None def test_parsing_pandas(tmp_path): mod_model_file = tmp_path / "mod_model.txt" model_file = Path("tests/models/pure_categorical/model.txt") with open(model_file, "r") as file: lines = file.readlines() assert lines[-1].startswith("pandas_categorical") lines[ -1 ] = 'pandas_categorical:[["a", "b", "c"], ["b", "c", "d"], ["w", "x", "y", "z"]]' with open(mod_model_file, "x") as file: file.writelines(lines) pandas_categorical = scan_pandas_categorical(model_file) assert pandas_categorical is None pandas_categorical = scan_pandas_categorical(mod_model_file) assert pandas_categorical == [ ["a", "b", "c"], ["b", "c", "d"], ["w", "x", "y", "z"], ] ```
{ "source": "jonashaag/PhoneFortifiedPerceptualLoss", "score": 3 }
#### File: jonashaag/PhoneFortifiedPerceptualLoss/utils.py ```python import torch from torch.nn.utils import rnn def rnn_collate(batch): n = rnn.pad_sequence([b[0] for b in batch]).transpose(0, 1) c = rnn.pad_sequence([b[1] for b in batch]).transpose(0, 1) l = torch.LongTensor([b[2] for b in batch]) return n, c, l ```
{ "source": "jonashaag/pint", "score": 2 }
#### File: pint/compat/__init__.py ```python from __future__ import division, unicode_literals, print_function, absolute_import import sys from io import BytesIO from numbers import Number from decimal import Decimal from . import tokenize ENCODING_TOKEN = tokenize.ENCODING PYTHON3 = sys.version >= '3' def tokenizer(input_string): for tokinfo in tokenize.tokenize(BytesIO(input_string.encode('utf-8')).readline): if tokinfo.type == ENCODING_TOKEN: continue yield tokinfo if PYTHON3: string_types = str def u(x): return x maketrans = str.maketrans long_type = int else: string_types = basestring import codecs def u(x): return codecs.unicode_escape_decode(x)[0] maketrans = lambda f, t: dict((ord(a), b) for a, b in zip(f, t)) long_type = long try: from collections import Chainmap except ImportError: from .chainmap import ChainMap try: from functools import lru_cache except ImportError: from .lrucache import lru_cache try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest try: import numpy as np from numpy import ndarray HAS_NUMPY = True NUMPY_VER = np.__version__ NUMERIC_TYPES = (Number, Decimal, ndarray, np.number) def _to_magnitude(value, force_ndarray=False): if isinstance(value, (dict, bool)) or value is None: raise TypeError('Invalid magnitude for Quantity: {0!r}'.format(value)) elif isinstance(value, string_types) and value == '': raise ValueError('Quantity magnitude cannot be an empty string.') elif isinstance(value, (list, tuple)): return np.asarray(value) if force_ndarray: return np.asarray(value) return value except ImportError: np = None class ndarray(object): pass HAS_NUMPY = False NUMPY_VER = '0' NUMERIC_TYPES = (Number, Decimal) def _to_magnitude(value, force_ndarray=False): if isinstance(value, (dict, bool)) or value is None: raise TypeError('Invalid magnitude for Quantity: {0!r}'.format(value)) elif isinstance(value, string_types) and value == '': raise ValueError('Quantity magnitude cannot be an empty string.') elif isinstance(value, (list, tuple)): raise TypeError('lists and tuples are valid magnitudes for ' 'Quantity only when NumPy is present.') return value try: from uncertainties import ufloat HAS_UNCERTAINTIES = True except ImportError: ufloat = None HAS_UNCERTAINTIES = False try: from babel import Locale as Loc from babel import units as babel_units HAS_BABEL = True HAS_PROPER_BABEL = hasattr(babel_units, 'format_unit') except ImportError: HAS_PROPER_BABEL = HAS_BABEL = False if not HAS_PROPER_BABEL: Loc = babel_units = None try: import pandas as pd HAS_PANDAS = True HAS_PROPER_PANDAS = ( hasattr(pd.core, "arrays") and hasattr(pd.core.arrays.base, "ExtensionOpsMixin") ) except ImportError: HAS_PROPER_PANDAS = HAS_PANDAS = False try: import pytest HAS_PYTEST = True except ImportError: HAS_PYTEST = False ```
{ "source": "jonashaag/quetz", "score": 2 }
#### File: quetz_content_trust/quetz_content_trust/main.py ```python import logging from pathlib import Path from sqlalchemy import desc import quetz from quetz.database import get_db_manager from . import db_models from .api import router logger = logging.getLogger("quetz") @quetz.hookimpl def register_router(): return router @quetz.hookimpl def post_index_creation(raw_repodata: dict, channel_name, subdir): """Use available online keys to sign packages""" with get_db_manager() as db: query = ( db.query(db_models.SigningKey) .join(db_models.RoleDelegation.keys) .filter( db_models.RoleDelegation.channel == channel_name, db_models.RoleDelegation.type == "pkg_mgr", db_models.SigningKey.private_key is not None, ) .order_by(desc('time_created')) .all() ) if query: import json from libmambapy import bindings as libmamba_api signatures = {} for name, metadata in raw_repodata["packages"].items(): sig = libmamba_api.sign( json.dumps(metadata, indent=2, sort_keys=True), query[0].private_key ) if name not in signatures: signatures[name] = {} signatures[name][query[0].public_key] = dict(signature=sig) logger.info(f"Signed {Path(channel_name) / subdir}") raw_repodata["signatures"] = signatures ``` #### File: quetz/tests/conftest.py ```python import uuid from pytest import fixture from quetz.db_models import Profile, User pytest_plugins = "quetz.testing.fixtures" @fixture def user_role(): return None @fixture def user_without_profile(db, user_role): new_user = User(id=uuid.uuid4().bytes, username="bartosz", role=user_role) db.add(new_user) db.commit() yield new_user db.delete(new_user) db.commit() @fixture def user(db, user_without_profile): profile = Profile( name="Bartosz", avatar_url="http:///avatar", user=user_without_profile ) db.add(profile) db.commit() yield user_without_profile db.query(Profile).filter( Profile.name == profile.name, Profile.avatar_url == profile.avatar_url, Profile.user_id == user_without_profile.id, ).delete() db.commit() ```
{ "source": "jonashaag/source_separation", "score": 2 }
#### File: source_separation/source_separation/train.py ```python import fire import os import torch import torch.nn as nn from typing import Tuple from pytorch_sound.data.meta import voice_bank, dsd100, musdb18 from pytorch_sound.models import build_model from torch.optim.lr_scheduler import MultiStepLR from source_separation.dataset import get_datasets from source_separation.trainer import Wave2WaveTrainer, LossMixingTrainer def main(meta_dir: str, save_dir: str, save_prefix: str, pretrained_path: str = '', model_name: str = 'refine_unet_base', batch_size: int = 128, num_workers: int = 16, fix_len: float = 2., lr: float = 5e-4, betas: Tuple[float] = (0.5, 0.9), weight_decay: float = 0.0, max_step: int = 200000, valid_max_step: int = 30, save_interval: int = 1000, log_interval: int = 50, grad_clip: float = 0.0, grad_norm: float = 30.0, is_augment: bool = True, milestones: Tuple[int] = None, gamma: float = 0.1, case_name: str = 'voice_bank', mix_loss: bool = False): # check args assert os.path.exists(meta_dir) # create model model = build_model(model_name).cuda() # multi-gpu if torch.cuda.device_count() > 1: model = nn.DataParallel(model) # create optimizers optimizer = torch.optim.Adam(model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) if milestones: milestones = [int(x) for x in list(milestones)] scheduler = MultiStepLR(optimizer, milestones, gamma=gamma) else: scheduler = None # handle cases train_loader, valid_loader, sr = handle_cases(case_name, is_augment, meta_dir, batch_size, num_workers, fix_len) if mix_loss: trainer = LossMixingTrainer else: trainer = Wave2WaveTrainer # train trainer( model, optimizer, train_loader, valid_loader, max_step=max_step, valid_max_step=min(valid_max_step, len(valid_loader)), save_interval=save_interval, log_interval=log_interval, save_dir=save_dir, save_prefix=save_prefix, grad_clip=grad_clip, grad_norm=grad_norm, pretrained_path=pretrained_path, scheduler=scheduler, sr=sr ).run() def handle_cases(case_name: str, is_augment: bool, meta_dir: str, batch_size: int, num_workers: int, fix_len: int): assert case_name in ['voice_bank', 'musdb18', 'dsd100'], \ f'{case_name} is not implemented ! choose one in [\'voice_bank\', \'musdb18\', \'dsd100\']' sr = 44100 if is_augment: is_audioset = False if case_name == 'dsd100': dataset_func = get_datasets meta_cls = dsd100.DSD100Meta elif case_name == 'musdb18': dataset_func = get_datasets meta_cls = musdb18.MUSDB18Meta elif case_name == 'voice_bank': sr = 22050 dataset_func = get_datasets meta_cls = voice_bank.VoiceBankMeta is_audioset = True train_loader, valid_loader = dataset_func( meta_dir, batch_size=batch_size, num_workers=num_workers, meta_cls=meta_cls, fix_len=int(fix_len * sr), audio_mask=True, is_audioset=is_audioset ) else: if case_name == 'dsd100': dataset_func = dsd100.get_datasets elif case_name == 'musdb18': dataset_func = musdb18.get_datasets elif case_name == 'voice_bank': dataset_func = voice_bank.get_datasets sr = 22050 train_loader, valid_loader = dataset_func( meta_dir, batch_size=batch_size, num_workers=num_workers, fix_len=int(fix_len * sr), audio_mask=True ) return train_loader, valid_loader, sr if __name__ == '__main__': fire.Fire(main) ```
{ "source": "jonashaag/WSGITest", "score": 3 }
#### File: WSGITest/tests/test_environ.py ```python from wsgitest import expect from wsgitest.config import SERVER_HOST, SERVER_PORT_RANGE from wsgitest.testutils import * def test_GET(env, start_response): assert_equal(env['REQUEST_METHOD'], 'GET') start_response('200 ok', []) return () def test_POST(env, start_response): ''' POST / HTTP/1.0 Content-Length: 12 hello\\nworld! ''' assert_equal(env['REQUEST_METHOD'], 'POST') assert_equal(env['CONTENT_LENGTH'], '12') assert_equal(env['wsgi.input'].read(), 'hello\nworld!') start_response('200 ok', []) return [] @expect.Status(400) def test_BLAH(env, start_response): ''' BLAH / HTTP/1.0 ''' assert_equal(env['REQUEST_METHOD'], 'BLAH') start_response('200 ok', []) return '' # TODO: SCRIPT_NAME # PATH_INFO def test_query_string(env, start_response): ''' GET /hello?foo=bar&x=y HTTP/1.0 ''' assert_equal(env['QUERY_STRING'], 'foo=bar&x=y') start_response('200 ok', []) return iter(lambda: None, None) def test_content__star(env, start_response): ''' GET / HTTP/1.1 Content-Type: text/x-python Content-Length: 3 Hi! ''' assert_equal(env['CONTENT_TYPE'], 'text/x-python') assert_equal(env['CONTENT_LENGTH'], '3') start_response('200 ok', []) return [''] def test_empty_query_string(env, start_response): ''' GET / HTTP/1.0 ''' assert_equal(env.get('QUERY_STRING', ''), '') start_response('200 ok', []) return ['blah'] def test_server_star(env, start_response): assert_equal(env['SERVER_NAME'], SERVER_HOST) assert_contains(SERVER_PORT_RANGE, int(env['SERVER_PORT'])) start_response('200 ok', []) return () def test_server_protocol(env, start_response): assert_equal(env['SERVER_PROTOCOL'], 'HTTP/1.1') start_response('200 ok', []) return [] def test_http_vars(env, start_response): ''' GET /foo HTTP/1.1 x-hello-iam-a-header: 42,42 header-twice: 1 IgNoREtheCAsE_pLeas-E: hello world! header-twice: 2 and-a-multiline-value: foo 42 \tbar and\\r\\n\t \tso on ''' # normalize the joined header because # RFC2616 does not specify whether # \r\n(\t| ) has to be replaced by ' ' env['HTTP_AND_A_MULTILINE_VALUE'] = \ env['HTTP_AND_A_MULTILINE_VALUE'].replace('\r\n', '').replace('\t', ' ') assert_subdict( env, { 'HTTP_X_HELLO_IAM_A_HEADER' : '42,42', 'HEADER_TWICE' : '1,2', 'HTTP_IGNORETHECASE_PLEAS_E' : 'hello world!', 'HTTP_AND_A_MULTILINE_VALUE' : 'foo 42 bar and so on'} ) start_response('200 ok', []) return [] @expect.Status(200, 'ok') def test_wsgi_vars(env, start_response): assert_isinstance(env['wsgi.version'], tuple) assert_equal(len(env['wsgi.version']), 2) assert_equal(env['wsgi.url_scheme'][:4], 'http') assert_isinstance(env['wsgi.multithread'], bool) assert_isinstance(env['wsgi.multiprocess'], bool) assert_isinstance(env['wsgi.run_once'], bool) start_response('200 ok', []) return [] @expect.Status(200) @expect.Body('yay') def test_input(env, start_response): ''' POST /foo HTTP/1.1 Content-Length: 29 Hello<NL>World,\r<NL>\twhat's\r<NL>\r<NL><NL>up? ''' input_ = env['wsgi.input'] assert_equal(input_.read(1), 'H') assert_equal(input_.readline(), 'ello\n') for line in input_: assert_equal(line, 'World,\r\n') break assert_equal(input_.read(4), '\twha') assert_equal(input_.readlines(), ["t's\r\n", "\r\n", "\n", "up?"]) assert_equal(input_.read(123), '') start_response('200 ok', []) return 'yay' @expect.Status(200) @expect.Body('yay') @expect.ServerError('ExpectedError') def test_errors(env, start_response): errors = env['wsgi.errors'] errors.write("Hello World, this is an error\n") errors.writelines(["Hello\n", "ExpectedError: blah"]) errors.flush() start_response('200 ok', []) return 'yay' ``` #### File: WSGITest/wsgitest/request.py ```python from wsgitest.utils import normalize_docstring class MalformedHeader(Exception): pass class Request(object): def __init__(self, method, path, protocol='HTTP/1.1', header=None, body=None): self.method = method self.path = path self.protocol = protocol self.header = header or [] if isinstance(body, (dict, tuple, list)): if method != 'POST': raise TypeError( "body may only be sequence/mapping if method is 'POST'") else: raise NotImplementedError() self.body = body @classmethod def from_docstring(cls, docstring): lines = normalize_docstring(docstring) method, path, protocol = lines.next().split() header = [] name = value = None for line in lines: if not line: # end of header body = '\r\n'.join(lines).replace('<NL>', '\n').rstrip('\r\n') break if line[0] in ' \t': if name is None: raise MalformedHeader('Continuation without field name') # continue previous value value += '\r\n' + line else: if name is not None: header.append((name, value)) name = value = None name, value = line.split(': ') else: body = None if name is not None: header.append((name, value)) return cls(method, path, protocol, header, body) ``` #### File: WSGITest/wsgitest/run.py ```python import os import time from wsgitest.base import Test, Testsuite, TestsuiteResult from wsgitest.client import Client from wsgitest.server import Rack from wsgitest.utils import import_file, chain_iterable def find_tests(files_and_folders): files = [] for obj in files_and_folders: if os.path.isfile(obj): files.append(obj) continue for file in os.listdir(obj): if file.endswith('.py'): files.append(os.path.join(obj, file)) modules = [] for file in files: modules.append(import_file(file)) suite = Testsuite() for module in modules: module_tests = [Test.from_func(getattr(module, obj)) \ for obj in dir(module) if obj.startswith('test_')] if module_tests: suite.add_tests(module, module_tests) return suite def run_tests(files): testsuite = find_tests(files) rack = Rack() client = Client() gen = rack.start_servers_lazily(testsuite.tests.chainvalues()) start = time.time() client.run(testsuite, gen) duration = time.time() - start rack.stop_servers() return testsuite.get_result(client.responses, rack.outputs, duration) ``` #### File: WSGITest/wsgitest/testutils.py ```python def assert_equal(a, b): assert a == b, '%r != %r (expected the latter)' % (a, b) def assert_isinstance(obj, types): assert isinstance(obj, types), \ '%r object of type %r not of type(s) %r' % (obj, type(obj), types) def assert_subdict(a, b): a_sub = dict((k, a[k]) for k in b) assert_equal(a_sub, b) def assert_contains(haystack, needle): assert needle in haystack, '%r not in %r' % (needle, haystack) ```
{ "source": "JonasHablitzel/spaczz", "score": 3 }
#### File: spaczz/search/fuzzysearcher.py ```python from __future__ import annotations from typing import Any, Union from spacy.tokens import Doc, Span, Token from spacy.vocab import Vocab from . import _PhraseSearcher from ..process import FuzzyFuncs class FuzzySearcher(_PhraseSearcher): """Class for fuzzy searching/matching in spacy `Doc` objects. Fuzzy searching is done on the token level. The class provides methods for finding the best fuzzy match span in a `Doc`, the n best fuzzy matched spans in a `Doc`, and fuzzy matching between any two given spaCy containers (`Doc`, `Span`, `Token`). Fuzzy matching is currently provided by rapidfuzz and the searcher provides access to all rapidfuzz matchers with default settings. Attributes: vocab (Vocab): The shared vocabulary. Included for consistency and potential future-state. _fuzzy_funcs (FuzzyFuncs): Container class housing fuzzy matching functions. Functions are accessible via the classes `get()` method by their given key name. All rapidfuzz matching functions with default settings are available: "simple" = `ratio` "partial" = `partial_ratio` "token_set" = `token_set_ratio` "token_sort" = `token_sort_ratio` "partial_token_set" = `partial_token_set_ratio` "partial_token_sort" = `partial_token_sort_ratio` "quick" = `QRatio` "weighted" = `WRatio` "quick_lev" = `quick_lev_ratio` """ def __init__(self: FuzzySearcher, vocab: Vocab) -> None: """Initializes a fuzzy searcher. Args: vocab: A spaCy `Vocab` object. Purely for consistency between spaCy and spaczz matcher APIs for now. spaczz matchers are mostly pure-Python currently and do not share vocabulary with spaCy pipelines. """ super().__init__(vocab=vocab) self._fuzzy_funcs: FuzzyFuncs = FuzzyFuncs(match_type="phrase") def compare( self: FuzzySearcher, query: Union[Doc, Span, Token], reference: Union[Doc, Span, Token], ignore_case: bool = True, fuzzy_func: str = "simple", *args: Any, **kwargs: Any, ) -> int: """Peforms fuzzy matching between two spaCy container objects. Applies the given fuzzy matching algorithm (`fuzzy_func`) to two spacy containers (`Doc`, `Span`, `Token`) and returns the resulting fuzzy ratio. Args: query: First container for comparison. reference: Second container for comparison. ignore_case: Whether to lower-case `query` and `reference` before comparison or not. Default is `True`. fuzzy_func: Key name of fuzzy matching function to use. All rapidfuzz matching functions with default settings are available: "simple" = `ratio` "partial" = `partial_ratio` "token_set" = `token_set_ratio` "token_sort" = `token_sort_ratio` "partial_token_set" = `partial_token_set_ratio` "partial_token_sort" = `partial_token_sort_ratio` "quick" = `QRatio` "weighted" = `WRatio` "token" = `token_ratio` "partial_token" = `partial_token_ratio` Default is `"simple"`. *args: Overflow for child positional arguments. **kwargs: Overflow for child keyword arguments. Returns: The fuzzy ratio between `query` and `reference` as an `int`. Example: >>> import spacy >>> from spaczz.search import FuzzySearcher >>> nlp = spacy.blank("en") >>> searcher = FuzzySearcher(nlp.vocab) >>> searcher.compare(nlp("spaczz"), nlp("spacy")) 73 """ if ignore_case: query_text = query.text.lower() reference_text = reference.text.lower() else: query_text = query.text reference_text = reference.text return round(self._fuzzy_funcs.get(fuzzy_func)(query_text, reference_text)) ``` #### File: spaczz/search/tokensearcher.py ```python from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union import regex from spacy.tokens import Doc, Token from spacy.vocab import Vocab from ..process import FuzzyFuncs from ..util import n_wise class TokenSearcher: """Class for flexbile token searching in spaCy `Doc` objects. Uses individual (and extended) spaCy token matching patterns to find match candidates. Candidates are used to generate new patterns to add to a spaCy `Matcher`. "FUZZY" and "FREGEX" are the two additional spaCy token pattern options. For example: {"TEXT": {"FREGEX": "(database){e<=1}"}}, {"LOWER": {"FUZZY": "access", "MIN_R": 85, "FUZZY_FUNC": "quick_lev"}} Make sure to use uppercase dictionary keys in patterns. Attributes: vocab (Vocab): The shared vocabulary. Included for consistency and potential future-state. _fuzzy_funcs (FuzzyFuncs): Container class housing fuzzy matching functions. Functions are accessible via the classes `get()` method by their given key name. The following rapidfuzz matching functions with default settings are available: "simple" = `ratio` "quick" = `QRatio` "quick_lev" = `quick_lev_ratio` """ def __init__(self: TokenSearcher, vocab: Vocab) -> None: """Initializes a token searcher. Args: vocab: A spaCy `Vocab` object. Purely for consistency between spaCy and spaczz matcher APIs for now. spaczz matchers are mostly pure-Python currently and do not share vocabulary with spaCy pipelines. """ self.vocab = vocab self._fuzzy_funcs: FuzzyFuncs = FuzzyFuncs(match_type="token") def fuzzy_compare( self: TokenSearcher, a: str, b: str, ignore_case: bool = True, fuzzy_func: str = "simple", ) -> int: """Peforms fuzzy matching between two strings. Applies the given fuzzy matching algorithm (fuzzy_func) to two strings and returns the resulting fuzzy ratio. Args: a: First string for comparison. b: Second string for comparison. ignore_case: Whether to lower-case a and b before comparison or not. Default is `True`. fuzzy_func: Key name of fuzzy matching function to use. The following rapidfuzz matching functions with default settings are available: "simple" = `ratio` "quick" = `QRatio` Default is `"simple"`. Returns: The fuzzy ratio between a and b. Example: >>> import spacy >>> from spaczz.search import TokenSearcher >>> nlp = spacy.blank("en") >>> searcher = TokenSearcher(nlp.vocab) >>> searcher.fuzzy_compare("spaczz", "spacy") 73 """ if ignore_case: a = a.lower() b = b.lower() return round(self._fuzzy_funcs.get(fuzzy_func)(a, b)) def match( self: TokenSearcher, doc: Doc, pattern: List[Dict[str, Any]], min_r: int = 75, fuzzy_func: str = "simple", ) -> List[List[Optional[Tuple[str, str]]]]: """Finds potential token pattern matches in a `Doc` object. Make sure to use uppercase dictionary keys in patterns. Args: doc: `Doc` object to search over. pattern: Individual spaCy token pattern. min_r: Minimum match ratio required for fuzzy matching. Can be overwritten with token pattern options. Default is `75`. fuzzy_func: Fuzzy matching function to use. Can be overwritten with token pattern options. Default is `simple`. Returns: A list of lists with each inner list representing a potential match. The inner lists will be populated with key, value tuples of token matches and `None` for placeholder tokens representing non-fuzzy tokens. Raises: TypeError: doc must be a `Doc` object. TypeError: pattern must be a `Sequence`. ValueError: pattern cannot have zero tokens. Example: >>> import spacy >>> from spaczz.search import TokenSearcher >>> nlp = spacy.blank("en") >>> searcher = TokenSearcher(nlp) >>> doc = nlp("I was prescribed zithramax and advar") >>> pattern = [ {"TEXT": {"FUZZY": "zithromax"}}, {"POS": "CCONJ"}, {"TEXT": {"FREGEX": "(advair){e<=1}"}} ] >>> searcher.match(doc, pattern) [[('TEXT', 'zithramax'), None, ('TEXT', 'advar')]] """ if not isinstance(doc, Doc): raise TypeError("doc must be a Doc object.") if not isinstance(pattern, list): raise TypeError( "pattern must be a list", "Make sure pattern is wrapped in a list.", ) if len(pattern) == 0: raise ValueError("pattern cannot have zero tokens.") matches = [] for seq in n_wise(doc, len(pattern)): seq_matches = self._iter_pattern(seq, pattern, min_r, fuzzy_func) if seq_matches: matches.append(seq_matches) if matches: filtered_matches = [ i for n, i in enumerate(matches) if i not in matches[:n] ] return filtered_matches else: return matches @staticmethod def regex_compare(text: str, pattern: str, ignore_case: bool = False) -> bool: """Performs fuzzy-regex supporting regex matching between two strings. Args: text: The string to match against. pattern: The regex pattern string. ignore_case: Whether to lower-case text before comparison or not. Default is `False`. Returns: `True` if match, `False` if not. Example: >>> import spacy >>> from spaczz.search import TokenSearcher >>> nlp = spacy.blank("en") >>> searcher = TokenSearcher(nlp) >>> searcher.regex_compare("sequel", "(sql){i<=3}") True """ if ignore_case: text = text.lower() if regex.match(pattern, text): return True else: return False def _iter_pattern( self: TokenSearcher, seq: Tuple[Token, ...], pattern: List[Dict[str, Any]], min_r: int, fuzzy_func: str, ) -> List[Optional[Tuple[str, str]]]: """Evaluates each token in a pattern against a doc token sequence.""" seq_matches: List[Optional[Tuple[str, str]]] = [] for i, token in enumerate(pattern): pattern_dict, case, case_bool = self._parse_case(token) if isinstance(pattern_dict, dict): pattern_text, pattern_type = self._parse_type(pattern_dict) if pattern_text and pattern_type == "FUZZY": if ( self.fuzzy_compare( seq[i].text, pattern_text, case_bool, pattern_dict.get("FUZZY_FUNC", fuzzy_func), ) >= pattern_dict.get("MIN_R", min_r) ): seq_matches.append((case, seq[i].text)) else: return [] elif pattern_text and pattern_type == "FREGEX": if self.regex_compare(seq[i].text, pattern_text, case_bool): seq_matches.append((case, seq[i].text)) else: return [] else: seq_matches.append(None) else: seq_matches.append(None) return seq_matches @staticmethod def _parse_case(token: Dict[str, Any]) -> Tuple[Union[str, Dict, None], str, bool]: """Parses the case of a token pattern.""" if token.get("TEXT"): return token.get("TEXT"), "TEXT", False else: return token.get("LOWER"), "LOWER", True @staticmethod def _parse_type(pattern_dict: Dict[str, Any]) -> Tuple[str, str]: """Parses the type of a token pattern.""" fuzzy_text = pattern_dict.get("FUZZY") regex_text = pattern_dict.get("FREGEX") if isinstance(fuzzy_text, str): return fuzzy_text, "FUZZY" elif isinstance(regex_text, str): return regex_text, "FREGEX" else: return "", "" ``` #### File: tests/test_matcher/test_tokenmatcher.py ```python import pickle from typing import List, Tuple import warnings import pytest import spacy from spacy.errors import MatchPatternError from spacy.language import Language from spacy.tokens import Doc, Span from spaczz.matcher import TokenMatcher def add_name_ent( matcher: TokenMatcher, doc: Doc, i: int, matches: List[Tuple[str, int, int, None]] ) -> None: """Callback on match function. Adds "NAME" entities to doc.""" _match_id, start, end, _details = matches[i] entity = Span(doc, start, end, label="NAME") doc.ents += (entity,) @pytest.fixture def matcher(nlp: Language) -> TokenMatcher: """It returns a token matcher.""" matcher = TokenMatcher(vocab=nlp.vocab) matcher.add( "DATA", [ [ {"TEXT": "SQL"}, {"LOWER": {"FREGEX": "(database){s<=1}"}}, {"LOWER": {"FUZZY": "access"}}, ], [{"TEXT": {"FUZZY": "Sequel"}}, {"LOWER": "db"}], ], ) matcher.add("NAME", [[{"TEXT": {"FUZZY": "Garfield"}}]], on_match=add_name_ent) return matcher @pytest.fixture def doc(nlp: Language) -> Doc: """Example doc for search.""" return nlp( """The manager gave me SQL databesE acess so now I can acces the Sequal DB. My manager's name is Grfield. """ ) def test_adding_patterns(matcher: TokenMatcher) -> None: """It adds the "TEST" label and some patterns to the matcher.""" assert matcher.patterns == [ { "label": "DATA", "pattern": [ {"TEXT": "SQL"}, {"LOWER": {"FREGEX": "(database){s<=1}"}}, {"LOWER": {"FUZZY": "access"}}, ], "type": "token", }, { "label": "DATA", "pattern": [{"TEXT": {"FUZZY": "Sequel"}}, {"LOWER": "db"}], "type": "token", }, { "label": "NAME", "pattern": [{"TEXT": {"FUZZY": "Garfield"}}], "type": "token", }, ] def test_add_without_list_of_patterns_raises_error(matcher: TokenMatcher) -> None: """Trying to add non-sequences of patterns raises a TypeError.""" with pytest.raises(TypeError): matcher.add("TEST", [{"TEXT": "error"}]) # type: ignore def test_add_with_zero_len_pattern(matcher: TokenMatcher) -> None: """Trying to add zero-length patterns raises a ValueError.""" with pytest.raises(ValueError): matcher.add("TEST", [[]]) def test_len_returns_count_of_labels_in_matcher(matcher: TokenMatcher) -> None: """It returns the sum of unique labels in the matcher.""" assert len(matcher) == 2 def test_in_returns_bool_of_label_in_matcher(matcher: TokenMatcher) -> None: """It returns whether a label is in the matcher.""" assert "DATA" in matcher def test_labels_returns_label_names(matcher: TokenMatcher) -> None: """It returns a tuple of all unique label names.""" assert all(label in matcher.labels for label in ("DATA", "NAME")) def test_vocab_prop_returns_vocab(matcher: TokenMatcher, nlp: Language) -> None: """It returns the vocab it was initialized with.""" assert matcher.vocab == nlp.vocab def test_remove_label(matcher: TokenMatcher) -> None: """It removes a label from the matcher.""" matcher.add("TEST", [[{"TEXT": "test"}]]) assert "TEST" in matcher matcher.remove("TEST") assert "TEST" not in matcher def test_remove_label_raises_error_if_label_not_in_matcher( matcher: TokenMatcher, ) -> None: """It raises a ValueError if trying to remove a label not present.""" with pytest.raises(ValueError): matcher.remove("TEST") def test_matcher_returns_matches(matcher: TokenMatcher, doc: Doc) -> None: """Calling the matcher on a `Doc` object returns matches.""" assert matcher(doc) == [ ("DATA", 4, 7, None), ("DATA", 13, 15, None), ("NAME", 22, 23, None), ] def test_matcher_returns_matches_in_expected_order(nlp: Language) -> None: """Calling the matcher on a `Doc` object returns matches in expected order.""" matcher = TokenMatcher(nlp.vocab) matcher.add( "COMPANY", [ [ {"IS_UPPER": True, "OP": "+"}, {"IS_PUNCT": True, "OP": "?"}, {"TEXT": {"REGEX": r"S\.\s?[A-Z]\.?\s?[A-Z]?\.?"}}, {"IS_PUNCT": True, "OP": "?"}, ] ], ) doc = nlp("My company is called LARGO AND MARMG S.L.") matches = matcher(doc) assert doc[matches[0][1] : matches[0][2]].text == "LARGO AND MARMG S.L." def test_matcher_returns_empty_list_if_no_matches(nlp: Language) -> None: """Calling the matcher on a `Doc` object with no matches returns empty list.""" matcher = TokenMatcher(nlp.vocab) matcher.add("TEST", [[{"TEXT": {"FUZZY": "blah"}}]]) doc = nlp("No matches here.") assert matcher(doc) == [] def test_matcher_warns_if_unknown_pattern_elements(nlp: Language) -> None: """Calling the matcher on a `Doc` object with no matches returns empty list.""" matcher = TokenMatcher(nlp.vocab) matcher.add("TEST", [[{"TEXT": {"fuzzy": "test"}}]]) doc = nlp("test") if spacy.__version__ < "3.0.0": with pytest.warns(UserWarning): matcher(doc) else: with pytest.raises(MatchPatternError): matcher(doc) def test_matcher_uses_on_match_callback(matcher: TokenMatcher, doc: Doc) -> None: """It utilizes callback on match functions passed when called on a Doc object.""" matcher(doc) ent_text = [ent.text for ent in doc.ents] assert "Grfield" in ent_text def test_matcher_pipe(nlp: Language) -> None: """It returns a stream of Doc objects.""" warnings.filterwarnings("ignore") doc_stream = ( nlp("test doc 1: Corvold"), nlp("test doc 2: Prosh"), ) matcher = TokenMatcher(nlp.vocab) output = matcher.pipe(doc_stream) assert list(output) == list(doc_stream) def test_matcher_pipe_with_context(nlp: Language) -> None: """It returns a stream of Doc objects as tuples with context.""" warnings.filterwarnings("ignore") doc_stream = ( (nlp("test doc 1: Corvold"), "Jund"), (nlp("test doc 2: Prosh"), "Jund"), ) matcher = TokenMatcher(nlp.vocab) output = matcher.pipe(doc_stream, as_tuples=True) assert list(output) == list(doc_stream) def test_matcher_pipe_with_matches(nlp: Language) -> None: """It returns a stream of Doc objects and matches as tuples.""" warnings.filterwarnings("ignore") doc_stream = ( nlp("test doc 1: Corvold"), nlp("test doc 2: Prosh"), ) matcher = TokenMatcher(nlp.vocab) matcher.add( "DRAGON", [[{"TEXT": {"FUZZY": "Korvold"}}], [{"TEXT": {"FUZZY": "Prossh"}}]], ) output = matcher.pipe(doc_stream, return_matches=True) matches = [entry[1] for entry in output] assert matches == [[("DRAGON", 4, 5, None)], [("DRAGON", 4, 5, None)]] def test_matcher_pipe_with_matches_and_context(nlp: Language) -> None: """It returns a stream of Doc objects and matches and context as tuples.""" warnings.filterwarnings("ignore") doc_stream = ( (nlp("test doc 1: Corvold"), "Jund"), (nlp("test doc 2: Prosh"), "Jund"), ) matcher = TokenMatcher(nlp.vocab) matcher.add( "DRAGON", [[{"TEXT": {"FUZZY": "Korvold"}}], [{"TEXT": {"FUZZY": "Prossh"}}]], ) output = matcher.pipe(doc_stream, return_matches=True, as_tuples=True) matches = [(entry[0][1], entry[1]) for entry in output] assert matches == [ ([("DRAGON", 4, 5, None)], "Jund"), ([("DRAGON", 4, 5, None)], "Jund"), ] def test_pickling_matcher(nlp: Language) -> None: """It pickles the matcher object.""" matcher = TokenMatcher(nlp.vocab) matcher.add("NAME", [[{"TEXT": {"FUZZY": "Ridley"}}, {"TEXT": {"FUZZY": "Scott"}}]]) bytestring = pickle.dumps(matcher) assert type(bytestring) == bytes def test_unpickling_matcher(nlp: Language) -> None: """It unpickles the matcher object.""" matcher = TokenMatcher(nlp.vocab) matcher.add("NAME", [[{"TEXT": {"FUZZY": "Ridley"}}, {"TEXT": {"FUZZY": "Scott"}}]]) bytestring = pickle.dumps(matcher) matcher = pickle.loads(bytestring) doc = nlp("<NAME> was the director of Alien.") assert matcher(doc) == [("NAME", 0, 2, None)] ``` #### File: tests/test_search/test_tokensearcher.py ```python import pytest from spacy.language import Language from spacy.tokens import Doc from spaczz.search import TokenSearcher @pytest.fixture def searcher(nlp: Language) -> TokenSearcher: """It returns a token searcher.""" return TokenSearcher(vocab=nlp.vocab) @pytest.fixture def example(nlp: Language) -> Doc: """Example doc for search.""" return nlp( "The manager gave me SQL databesE ACESS so now I can acces the SQL databasE." ) def test_match_lower(searcher: TokenSearcher, example: Doc) -> None: """The searcher with lower-cased text is working as intended.""" assert ( searcher.match( example, [ {"TEXT": "SQL"}, {"LOWER": {"FREGEX": "(database){e<=1}"}}, {"LOWER": {"FUZZY": "access"}, "POS": "NOUN"}, ], ) == [[None, ("LOWER", "databesE"), ("LOWER", "ACESS")]] ) def test_match_text(searcher: TokenSearcher, example: Doc) -> None: """The searcher with verbatim text is working as intended.""" assert ( searcher.match( example, [ {"TEXT": {"FUZZY": "access"}, "POS": "NOUN"}, {}, {"TEXT": {"REGEX": "[Ss][Qq][Ll]"}}, {"TEXT": {"FREGEX": "(database){e<=1}"}}, ], ) == [[("TEXT", "acces"), None, None, ("TEXT", "databasE.")]] ) def test_match_multiple_matches(searcher: TokenSearcher, example: Doc) -> None: """The searcher with lower-cased text will return multiple matches if found.""" assert searcher.match(example, [{"LOWER": {"FUZZY": "access"}}]) == [ [("LOWER", "ACESS")], [("LOWER", "acces")], ] def test_no_matches(searcher: TokenSearcher, example: Doc) -> None: """No matches returns empty list.""" assert searcher.match(example, [{"TEXT": {"FUZZY": "MongoDB"}}]) == [] def test_empty_doc(searcher: TokenSearcher, nlp: Language) -> None: """Empty doc returns empty list.""" doc = nlp("") assert searcher.match(doc, [{"TEXT": {"FUZZY": "MongoDB"}}]) == [] def test_raises_type_error_when_doc_not_doc(searcher: TokenSearcher) -> None: """It raises a type error if doc is not a `Doc`.""" with pytest.raises(TypeError): searcher.match( "example", [ {"TEXT": "SQL"}, {"LOWER": {"FREGEX": "(database){e<=1}"}}, {"LOWER": {"FUZZY": "access"}, "POS": "NOUN"}, ], ) def test_raises_type_error_when_pattern_not_list( searcher: TokenSearcher, example: Doc ) -> None: """It raises a type error if pattern is not a `list`.""" with pytest.raises(TypeError): searcher.match( example, {"TEXT": "SQL"}, # type: ignore ) def test_raises_value_error_when_pattern_has_zero_tokens( searcher: TokenSearcher, example: Doc ) -> None: """It raises a value error if pattern has zero tokens.""" with pytest.raises(ValueError): searcher.match(example, []) ```
{ "source": "jonashackt/molecule-ansible-vagrant-macosx", "score": 2 }
#### File: molecule/tests/test_docker.py ```python import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_run_hello_world_container_successfully_on_macos(host, Command): if host.system_info.type == "darwin": hello_world_ran = Command("sudo docker run hello-world") assert 'Hello from Docker!' in hello_world_ran.stdout assert host.system_info.distribution == "Mac OS X" def test_is_docker_installed(host): package_docker = host.package('docker-ce') assert package_docker.is_installed def test_run_hello_world_container_successfully(host): hello_world_ran = host.run("sudo docker run hello-world") assert 'Hello from Docker!' in hello_world_ran.stdout ```
{ "source": "jonas-hagen/databird", "score": 2 }
#### File: databird/databird/configuration.py ```python from dict_recursive_update import recursive_update from frozendict import frozendict from ruamel.yaml import YAML import collections import glob import os from databird import Repository from databird import Profile import importlib _settings = {} class ConfigurationError(ValueError): pass class Settings(collections.UserDict): """Combine multiple mappings for sequential lookup. """ def __init__(self, base_config_file): self._maps = {} self.data = frozendict() self._base_config = base_config_file base_config = self.add_file(base_config_file) if "includes" in base_config: root = os.path.dirname(base_config_file) for inc in base_config["includes"]: if not os.path.isabs(inc): inc = os.path.normpath(os.path.join(root, inc)) for fn in glob.glob(inc): self.add_file(fn) self.data = self.parse() def __setitem__(self, key, value): raise TypeError("immutable") def add_file(self, fn): yaml = YAML(typ="safe") with open(fn) as doc: config = yaml.load(doc) self._maps[fn] = config return config def _collect(self): merged = {} for m in self._maps.values(): merged = recursive_update(merged, m) return frozendict(merged) def parse(self): config = self._collect() # Drivers driver_names = [] for name, profile in config["profiles"].items(): if "driver" not in profile: raise ConfigurationError( "Profile {} is missing driver field.".format(name) ) driver_names.append(profile["driver"]) drivers = {} for name in driver_names: parts = name.split(".") package_name = ".".join(parts[:-1]) class_name = parts[-1] module_name = "databird_drivers." + package_name try: module = importlib.import_module(module_name) except ModuleNotFoundError: raise ConfigurationError( "Driver module not found: '{}' for driver '{}'".format( module_name, name ) ) try: drivers[name] = getattr(module, class_name) except AttributeError: raise ConfigurationError( "Driver module '{}' has no class '{}'.".format( module_name, class_name ) ) # Profiles if "profiles" in config: for name, profile_config in config["profiles"].items(): profile_config["driver"] = drivers[profile_config["driver"]] config["profiles"][name] = Profile(name, **profile_config) # Repositories if "repositories" in config: for name, repo_config in config["repositories"].items(): if not "profile" in repo_config: raise ConfigurationError( "Repository `{}` is missing profile field.".format(name) ) profile = config["profiles"][repo_config["profile"]] repo_config["profile"] = profile repo_config_complete = profile.kwargs.copy() repo_config_complete.update(repo_config) config["repositories"][name] = Repository(name, **repo_config_complete) return config def get_settings(): return _settings def initialize(base_config): global _settings _settings = Settings(base_config) ``` #### File: databird_drivers/standard/command.py ```python from databird import BaseDriver import logging import os import subprocess import shutil logger = logging.getLogger("databird_drivers.command") class CommandDriver(BaseDriver): """ Execute a shell command to retrieve files. Configuration options: - command: The command to call (absolute path is preferred) - check: Check if exit status is 0 - env: A key -> value map for environment variables to export - patterns: A target_name->[param list] map. This map specifies a pattern (that is rendered in context) for every target name in the repository. Example configuration: ``` command: nsck check: True env: API_KEY: <KEY> patterns: merra_temperature: - "-v lat,lon,time,lev,T" - "https://goldsmr5.gesdisc.eosdis.nasa.gov/opendap/MERRA2/M2I3NPASM.5.12.4/{time:%Y}/{time:%m}/MERRA2_400.inst3_3d_asm_Np.{time:%Y%m%d}.nc4" - "{target_file}" ``` """ @classmethod def check_config(cls, config): super().check_config(config) assert "command" in config assert isinstance(config["check"], bool) assert isinstance(config["env"], dict) assert "patterns" in config assert isinstance(config["patterns"], dict) for v in config["patterns"].values(): assert isinstance(v, list) @classmethod def default_config(cls): return {"env": dict(), "check": True} def check_connection(self): return shutil.which(self._config["command"]) is not None def is_available(self, context): return self.check_connection() def _render_arguments(self, context, target, name): pattern = self._config["patterns"][name] rendered = [arg.format(target_file=target, **context) for arg in pattern] return rendered def retrieve_single(self, context, target, name): # target is an absolute local path to a file self.create_dir(target) args = self._render_arguments(context, target, name) command = [self._config["command"]] + args env = os.environ.copy() env = env.update(self._config["env"]) subprocess.run(command, env=env, check=self._config["check"]) ``` #### File: databird/databird/runner.py ```python from collections import defaultdict from databird import Repository from databird import utils from typing import List import datetime as dt import logging from databird.queue import MultiQueue from redis import Redis logger = logging.getLogger("databird.runner") def retrieve_missing( root_dir, repos: List[Repository], redis_conn=None, is_async=True, ref_time=None ): """Retrieve all targets that are missing from the repositories.""" if redis_conn is None: redis_conn = Redis() queue = MultiQueue(redis_conn, is_async=is_async) if ref_time is None: ref_time = dt.datetime.now() logger.debug("ref time is " + str(ref_time)) submitted_jobs = [] for repo in repos: logger.debug("checking repo " + repo.name) for context, targets in repo.iter_missing(root_dir, ref_time): logger.debug( "missing {} targets for {}".format(len(targets), str(context["time"])) ) driver_name = str(type(repo.driver).__name__) info = "Repo {} with {} for targets {} at {}".format( repo.name, driver_name, ", ".join(targets), str(context["time"]) ) job_id = "db_" + utils.hash_dict(targets) job = queue.submit_job( repo.queue, job_id, repo.driver.retrieve_safe, context, targets, description=info, ) if job is not None: logger.info("Sumitted job " + job_id) submitted_jobs.append(job) else: status = queue.job_status(job_id) logger.info("Job {} already in queue: {}".format(job_id, str(status))) return submitted_jobs ``` #### File: databird/databird/utils.py ```python import hashlib from databird import dtutil def hash_dict(d: dict): m = hashlib.sha1() for k in sorted(d): v = d[k] if not isinstance(k, str) or not isinstance(v, str): raise NotImplementedError("hash for other than dict(str->str)") m.update(v.encode()) return m.hexdigest() def get_context(time): context = { "time": time, "month_last_date": dtutil.month_last_day(time), "month_first_date": dtutil.month_first_day(time), "iso_date": dtutil.iso_date(time), } return context def render_dict(d: dict, context: dict): d2 = dict() for key, value in d.items(): if isinstance(value, str): d2[key] = value.format(**context) elif isinstance(value, dict): d2[key] = render_dict(value, context) else: d2[key] = value return d2 ``` #### File: tests/drivers/test_command.py ```python from databird_drivers.standard import CommandDriver import datetime as dt import glob def test_args_render(): config = dict( command="cp", patterns=dict(default=["-v", "simple_{date:%Y-%m-%d}.txt", "{target_file}"]), ) cd = CommandDriver(config) context = dict(date=dt.date(2019, 3, 1)) assert cd._render_arguments( context, "file.x", "default" ) == "-v simple_2019-03-01.txt file.x".split(" ") def test_command(tmpdir): source_root = tmpdir.mkdir("source") repo_root = tmpdir.mkdir("repo") # Create new source file (source_root.join("simple_2019-03-01.txt")).open("w").close() config = dict( command="cp", patterns=dict( default=[ "-f", str(source_root.join("simple_{date:%Y-%m-%d}.txt")), "{target_file}", ] ), ) dri = CommandDriver(config) context = dict(date=dt.date(2019, 3, 1)) assert dri.is_available(context) assert len(list(glob.glob(str(repo_root.join("*.txt"))))) == 0 dri.retrieve(context, dict(default=repo_root.join("new_file.txt"))) assert len(list(glob.glob(str(repo_root.join("*.txt"))))) == 1 ``` #### File: tests/drivers/test_ftp.py ```python from databird.utils import get_context from databird_drivers.standard import FtpDriver import datetime as dt import pytest @pytest.mark.external_service def test_ftp(tmpdir): fd = FtpDriver( dict( host="cddis.nasa.gov", user="anonymous", password="", tls=False, root="/gnss/data/daily", patterns=dict(status="{time:%Y}/{time:%j}/{time:%y%j}.status"), ) ) context = get_context(time=dt.datetime(2019, 1, 11)) target = tmpdir.join("file.status") # Since we are connecting a third-party service, # only run the test if the connection can be established if fd.check_connection(): assert fd.is_available(context) fd.retrieve(context, dict(status=target)) with open(target) as f: first_line = f.readline() assert first_line.startswith( "IGS Tracking Network Status (RINEX V2 Data) for 11-Jan-19" ) ```
{ "source": "jonas-hagen/dogatrest", "score": 2 }
#### File: jonas-hagen/dogatrest/dogatrest.py ```python import falcon import logging import datetime import requests import json from apscheduler.schedulers.background import BackgroundScheduler logging.basicConfig(level=logging.INFO) class StorageEngine: """ Simple key value store. """ def __init__(self): self.store = dict() def __getitem__(self, key): key = tuple(key) try: value = self.store[key] except KeyError: raise StorageError(f'No entry found for {key}.') return value def __setitem__(self, key, value): key = tuple(key) self.store[key] = value def load_file(self, filename, prefix=None): with open(filename) as f: items = json.load(f) for id, item in items.items(): if prefix is not None: self.store[prefix, id] = item else: self.store[id] = item logging.info(f'Loaded {len(items)} items to db.') class StorageError(Exception): def __init__(self, message): self.message = message @staticmethod def handle(ex, req, resp, params): description = (f'Sorry, could not write or read your thing to or from the ' f'database: {ex.message}.') raise falcon.HTTPError(falcon.HTTP_725, 'Database Error', description) class RequireJSON: def process_request(self, req, resp): if not req.client_accepts_json: raise falcon.HTTPNotAcceptable( 'This API only supports responses encoded as JSON.', href='http://docs.examples.com/api/json') if req.method in ('POST', 'PUT'): if 'application/json' not in req.content_type: raise falcon.HTTPUnsupportedMediaType( 'This API only supports requests encoded as JSON.', href='http://docs.examples.com/api/json') def max_body(limit): def hook(req, resp, resource, params): length = req.content_length if length is not None and length > limit: msg = ('The size of the request is too large. The body must not ' 'exceed ' + str(limit) + ' bytes in length.') raise falcon.HTTPRequestEntityTooLarge( 'Request body is too large', msg) return hook class DogResource: def __init__(self, db): self.db = db def on_get(self, req, resp, dog_id): # Upon get, we return the data resp.media = self.db['dog', dog_id] resp.status = falcon.HTTP_200 @falcon.before(max_body(64 * 1024)) def on_post(self, req, resp, dog_id): # Upon post we reset the last_time data = req.context or dict() now = datetime.datetime.utcnow() dog = self.db['dog', dog_id] dog['last_time'] = now.timestamp() dog['last_time_str'] = now.isoformat() dog['last_data'] = data self.db['dog', dog_id] = dog resp.status = falcon.HTTP_200 resp.media = self.db['dog', dog_id] def check_dogs(): dogs = {id: value for (_, id), value in db.store.items()} overdue = dict() now = datetime.datetime.utcnow().timestamp() for id, dog in dogs.items(): if 'last_time' in dog: delta = (now - dog['last_time']) / 60 if delta > dog['interval'] and dog.get('alive', True): dog['bark_status'] = bark_dead(dog) dog['alive'] = False elif delta < dog['interval'] and not dog.get('alive', False): dog['bark_status'] = bark_alive(dog) dog['alive'] = True if not dog.get('alive', True): overdue[id] = dog logging.info(f'{len(overdue)} dogs are dead.') return overdue def bark_dead(dog): default_template = {'message': 'I am probably dead. Could anyone check?', 'user': '{name}'} data = dict() for key, value in dog.get('template_dead', default_template).items(): data[key] = value.format(**dog) r = requests.post(dog['hook'], json=data) logging.info(f"Hooked {dog['name']}: Dead.") return r.status_code def bark_alive(dog): default_template = {'message': 'Back to life! Thanks.', 'user': '{name}'} data = dict() for key, value in dog.get('template_alive', default_template).items(): data[key] = value.format(**dog) r = requests.post(dog['hook'], json=data) logging.info(f"Hooked {dog['name']}: Alive.") return r.status_code db = StorageEngine() db.load_file('data/dogs.json', 'dog') app = falcon.API(middleware=[ RequireJSON(), ]) dogs = DogResource(db) app.add_route('/dog/{dog_id}/', dogs) app.add_error_handler(StorageError, StorageError.handle) scheduler = BackgroundScheduler(timezone='UTC') scheduler.add_job(check_dogs, 'interval', seconds=60) scheduler.start() ```
{ "source": "jonas-hagen/ofcourse", "score": 3 }
#### File: ofcourse/ofcourse/models.py ```python from dataclasses import dataclass from dataclasses import field import datetime import typing import phonenumbers @dataclass class Contact: channel: str address: str order: int = field(repr=False, default=0) def __post_init__(self): self.normalize() @property def is_phone(self): return self.channel in ("mobile", "phone", "emergency") @classmethod def _get_channel_order(cls): return ("mobile", "phone", "email", "emergency") @classmethod def key(cls, obj): return cls._get_channel_order().index(obj.channel), obj.order def normalize(self): if self.channel not in self._get_channel_order(): raise ValueError("Unknown channel " + self.channel) if self.is_phone: phone = phonenumbers.parse(str(self.address), "CH") if not phonenumbers.is_valid_number(phone): raise ValueError("Invalid phone number " + self.address) self.address = phonenumbers.format_number( phone, phonenumbers.PhoneNumberFormat.INTERNATIONAL ) @dataclass class Person: first_name: str last_name: str adress: str = field(repr=False, default="") city: str = field(default="") plz: str = field(repr=False, default="") country: str = field(default="CH") birthdate: datetime.date = field(default=None) gender: str = field(default="") contact: typing.List[Contact] = field(repr=False, default_factory=list) notes: typing.List[str] = field(repr=False, default_factory=list) def __post_init__(self): self.normalize() @property def full_name(self): return self.first_name + " " + self.last_name @property def identifier(self): return self.full_name.replace(" ", "_") @property def primary_email(self): return list(filter(lambda c: c.channel == "email", self.contact))[0].address def age(self, date=None): if not self.birthdate: return None if not date: date = datetime.date.today() age = ( date.year - self.birthdate.year - ((date.month, date.day) < (self.birthdate.month, self.birthdate.day)) ) return age @classmethod def key(cls, obj): return obj.full_name, obj.birthdate def normalize(self): if self.gender: if self.gender not in ("o", "f", "m"): raise ValueError("Unknown gender " + self.gender) if self.plz: if isinstance(self.plz, int): self.plz = str(self.plz) if "-" in self.plz: country, plz = self.plz.split("-") self.country = country self.plz = plz try: int(self.plz) except ValueError as e: raise ValueError("Invalid plz code " + self.plz) if self.notes: if not isinstance(self.notes, (tuple, list)): self.notes = [self.notes] @dataclass class Course: title: str first_date: datetime.date = field(default=None) last_date: datetime.date = field(default=None) number: int = field(repr=False, default=0) code: str = field(default="") costs: float = field(default=0) notes: typing.List[str] = field(repr=False, default_factory=list) participants: typing.List[Person] = field(repr=False, default_factory=list) waitlist: typing.List[str] = field(repr=False, default_factory=list) instructors: typing.List[Person] = field(repr=False, default_factory=list) ``` #### File: ofcourse/ofcourse/parsers.py ```python from ruamel import yaml from ofcourse import models def contacts_to_list(contacts): lst = list() for channel, adresses in contacts.items(): if not isinstance(adresses, (list, tuple)): adresses = [adresses] for i, a in enumerate(adresses): lst.append(models.Contact(channel=channel, address=a, order=i)) return lst def person_list_parser(f): y = yaml.YAML() lst = list() for key, p_dict in y.load(f).items(): if "contact" in p_dict: p_dict["contact"] = contacts_to_list(p_dict["contact"]) if "first_name" not in p_dict: p_dict["first_name"] = key.split("_")[0] if "last_name" not in p_dict: p_dict["last_name"] = key.split("_")[-1] lst.append(models.Person(**p_dict)) return lst def course_parser(f, person_list): y = yaml.YAML() course_dict = y.load(f) person_dict = {p.identifier: p for p in person_list} course_dict["participants"] = [ person_dict[name] for name in course_dict["participants"] ] course = models.Course(**course_dict) return course ``` #### File: ofcourse/scripts/from_fixture.py ```python import click import json from docopt import docopt from ruamel import yaml from collections import defaultdict from ofcourse import people from datetime import datetime import sys @click.command() @click.argument('filename') def get_people(filename): with open(filename, 'r') as f: data = json.load(f) persons = {el['pk']: el['fields'] for el in data if el['model'] == 'kumi.person'} contacts = {el['pk']: el['fields'] for el in data if el['model'] == 'kumi.kontakt'} c_map = { 'e': 'email', 'e2': 'email2', 'N': 'emergency', 'm': 'mobile', 'p': 'phone', } ps = list() for pk, p in persons.items(): name = p['vorname'] + ' ' + p['nachname'] pn = dict() pn['first_name'] = p['vorname'] pn['last_name'] = p['nachname'] pn['adress'] = p['adresse'] pn['plz'] = p['plz'] pn['city'] = p['ort'] pn['birthdate'] = datetime.strptime(p['geburtsdatum'], '%Y-%m-%d').date() if p['geschlecht']: pn['gender'] = p['geschlecht'] if p['bemerkungen']: pn['notes'] = p['bemerkungen'] c_data = [el for el in contacts.values() if el['person'] == pk] c = defaultdict(list) for k in c_data: c[c_map[k['kanal']]].append(k['adresse']) # keep secondary email at end c['email'] += c.get('email2', []) if not c['email']: del c['email'] if 'email2' in c: del c['email2'] pn['contact'] = c try: ps.append(people.normalize_person(pn, name)) except people.PersonError as e: print('While at {} -> {}:'.format(pk, name), file=sys.stderr) print(pn, file=sys.stderr) print(' ' + str(e), file=sys.stderr) people.dump(sys.stdout, dict(ps)) if __name__ == '__main__': get_people() ```
{ "source": "jonas-hagen/pyretrievals", "score": 3 }
#### File: data/ecmwf/store.py ```python from retrievals.data import dtutils from retrievals.data.ecmwf import levels import pandas as pd import xarray as xr class ECMWFLocationFileStore: """ This data store assumes that the files are organised in the following way: * One day per file * One location `(lat, lon)` per file. * All data is along a `loc` coordinate and `lat`, `lon` are along this coordinate. * The variable holding the logarithm of surface pressure is `logarithm_of_surface_pressure` * The variable holding the level is called `level` """ def __init__(self, path, fmt): """ Build a store given the path and format. If the files are organized as `/path/to/folder/2018/ecmwf_2018-01-01.nc`, one can build the store with: >>> es = ECMWFLocationFileStore('/path/to/folder', '%Y/ecmwf_%Y-%m-%d.nc') and then ask for desired data: >>> es.select_time('2018-01-01 12:30', '2018-01-02 16:45') :param path: The base path to the files. :param fmt: The format string for the file names as used by :py:meth:`datetime.datetime.strftime` """ self._path = path self._fmt = fmt self._files = dict(dtutils.date_glob(path, fmt)) def select_time(self, t1, t2, **kwargs): """ Select all data within time interval `(t1, t2)` :param t1: Start time :type t1: Anything understood by :py:func:`pandas.to_datetime` :param t2: End time :type t2: Anything understood by :py:func:`pandas.to_datetime` :param kwargs: Additional arguments to :py:func:`xarray.open_mfdataset` :return: A dataset that has been normalized by :py:meth:`normalize` :rtype: xarray.Dataset """ ts1 = pd.to_datetime(t1) ts2 = pd.to_datetime(t2) days = pd.date_range(ts1.floor('D'), ts2.floor('D'), freq='D') try: files = sorted(self._files[d] for d in days) except KeyError as e: raise KeyError('No ECMWF data found for {}'.format(e.args[0])) from e ds_mf = xr.open_mfdataset(files, **kwargs) ds = ds_mf.sel(time=slice(ts1, ts2)).compute().copy(deep=True) ds_mf.close() return self.normalize(ds) def select_hours(self, t1, t2, hour1, hour2): """ Select all data for certain hours within time interval `[t1, t2]` (inclusive). :param t1: Start time :type t1: Anything understood by :py:func:`pandas.to_datetime` :param t2: End time :type t2: Anything understood by :py:func:`pandas.to_datetime` :param int hour1: First hour :param int hour2: Last hour (might be smaller than `hour1` if range spans midnight) :return: A dataset that has been normalized by :py:meth:`normalize` :rtype: xarray.Dataset """ ds = self.select_time(t1, t2) rel_hours = (ds['time.hour'] - hour1) % 24 rel_hour2 = (hour2 - hour1) % 24 ds = ds.where(rel_hours <= rel_hour2, drop=True) return ds @staticmethod def normalize(ds): """ Normalize an ECMWF dataset in the following way: * Strip the (single) location * Add a pressure field * Sort by increasing altitude (decreasing level) * Sort by time """ # We only have one location ds = ds.isel(loc=0) # Add Pressure a = levels.hybrid_level['a'] b = levels.hybrid_level['b'] sp = xr.ufuncs.exp(ds['logarithm_of_surface_pressure']) ds['pressure'] = a + b * sp # Sort it from surface to top of atmosphere ds = ds.sortby('level', ascending=False) ds = ds.sortby('time') return ds @property def path(self): return self._path @property def fmt(self): return self._fmt @property def file_index(self): return self._files @property def file_names(self): return sorted(set(self._files.values())) @property def location(self): ds = xr.open_dataset(self.file_names[0]) name = ds['loc'].values[0] lat = ds['lat'].values[0] lon = ds['lon'].values[0] return name, lat, lon ```
{ "source": "jonashagstedt/django-jsx", "score": 2 }
#### File: django-jsx/django_jsx/apps.py ```python from django.apps import AppConfig from django.conf import settings from .server.template_server import TemplateServer import atexit template_server = TemplateServer() class DjangoJsxConfig(AppConfig): name = 'django_jsx' verbose_name = "Django JSX" def ready(self): if getattr(settings, 'DJANGO_ISOMORPHIC_AUTOSTART', True): template_server.start() def kill_server(): if template_server.started: print('Closing template server') template_server.terminate() atexit.register(kill_server) ``` #### File: django_jsx/server/template_server.py ```python from subprocess import Popen from django.conf import settings import os import signal class TemplateServer(): def __init__(self): self.started = False self.proc = None def get_cwd(self): pth = os.path.join( os.path.dirname(__file__), '../../javascript/dist/' ) return pth def get_options(self): options = [ 'debug={}'.format(settings.DEBUG), ] renderer = getattr(settings, 'DJANGO_ISOMORPHIC_RENDERER', None) if renderer: options.append('renderer={}'.format(renderer)) return options def start(self): if self.started: return self.started = True cwd = self.get_cwd() options = self.get_options() self.proc = Popen(['node', 'template-server.js'] + options, cwd=cwd, preexec_fn=os.setsid) def terminate(self): os.killpg(self.proc.pid, signal.SIGTERM) ``` #### File: django-jsx/tests/test_backend.py ```python from django.conf import settings from django.test import TestCase from django_jsx.template.backend import JsTemplates, JsTemplate class TestEngine(TestCase): def test_get_template(self): """ Get a template by name """ params = { 'DIRS': [settings.TEMPLATE_DIR], 'APP_DIRS': False, 'NAME': 'backend', 'OPTIONS': {} } templates = JsTemplates(params) template = templates.get_template('empty-template.js') self.assertIsInstance(template, JsTemplate) ``` #### File: django-jsx/tests/test_template_tag.py ```python from django.template import RequestContext from django.test import TestCase from django_jsx.templatetags import djangojs from django_jsx.templatetags.djangojs import JsMissingTemplateDirException class TestLoader(TestCase): def test_render_template(self): """ Render a template with the template tag """ context = RequestContext(request=None) template = djangojs.include_js(context, template_name='test-component.js') self.assertEqual(template, '<span>Test component</span>') def test_try_to_render_template_without_the_js_backend(self): """ Raises JsMissingTemplateDirException if the backend is not specified """ context = RequestContext(request=None) with self.settings(TEMPLATES=[{'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': []}]): with self.assertRaises(JsMissingTemplateDirException): djangojs.include_js(context, template_name='test-component.js') ```
{ "source": "jonashagstedt/django-nodetest", "score": 2 }
#### File: django-nodetest/nodetest/node_runner.py ```python from os import remove from django.conf import settings from .utils import make_temp_file, parse_repl import subprocess import tempfile import sys import json class JavaScriptException(Exception): pass def _get_script_root(): assert hasattr(settings, 'NODETEST_SCRIPT_ROOT'), """Set "NODETEST_SCRIPT_ROOT" in settings, \ne.g: NODETEST_SCRIPT_ROOT = join(BASE_DIR, 'static', 'js')""" return settings.NODETEST_SCRIPT_ROOT def process_script(script_file, plaintext=False, enable_console=False): js_dir = _get_script_root() copied_script_path = make_temp_file(js_dir, script_file) # Only parse REPL if the console is enabled # or the script will hang waiting for input if enable_console: parse_repl(copied_script_path['absolute_path']) try: err, out = run_node_script( js_dir, copied_script_path['relative_path'], enable_console ) if err: err = '\n\n-------------- JAVASCRIPT EXCEPTION --------------\n{}'.format(err) raise JavaScriptException(err) if plaintext: return out.strip() if out == '': return {} return json.loads(out.strip()) except Exception as ex: raise ex finally: remove(copied_script_path['absolute_path']) def run_node_script(js_dir, script_path, enable_console=False): node_path = getattr(settings, 'NODETEST_NODE_BIN', 'node') with tempfile.TemporaryFile() as stdout_file, tempfile.TemporaryFile() as stderr_file: # Enabling console means output is written to stdout. # this means no return values from the JavaScript code # but it makes it possible to enter the Node REPL if enable_console: stdout_file = sys.stdout # cmd = 'babel-node {}'.format(script_path) cmd = '{} {}'.format(node_path, script_path) popen = subprocess.Popen(cmd, stdout=stdout_file, stderr=stderr_file, shell=True, cwd=js_dir) popen.wait() stderr_file.seek(0) stderr = stderr_file.read() stderr = stderr.decode() if not enable_console: stdout_file.seek(0) stdout = stdout_file.read() stdout = stdout.decode() else: stdout = '' return stderr, stdout ```
{ "source": "jonashagstedt/django-reform", "score": 2 }
#### File: django-reform/reform/form.py ```python from collections import OrderedDict from django.core.urlresolvers import reverse from .drf_fields import drf_field_to_field from .fields import Field class ReactFormMeta(object): def __init__(self, options=None): self.fields = [] self.serializer_class = None self.exclude = [] if options: self.serializer_class = getattr(options, 'serializer_class', None) self.fields = getattr(options, 'fields', []) self.exclude = getattr(options, 'exclude', []) class ReactForm(object): Meta = None create_url_name = None create_url = None update_url_name = None update_url = None form_name = None id_field = 'id' def __init__(self, name=None): if name: self.form_name = name assert self.form_name is not None, 'A ReactForm requires a unique "name" per form' self.opts = ReactFormMeta(self.Meta) self.fields = OrderedDict() fields = {} if self.opts.serializer_class: drf_fields = self.opts.serializer_class().fields.items() for name, drf_field in drf_fields: if name in self.opts.exclude: continue if self.opts.fields and name not in self.opts.fields: continue field = drf_field_to_field(drf_field) if field: fields[name] = field for name, field in self.__class__.__dict__.items(): if name in self.opts.exclude or not isinstance(field, Field): continue fields[name] = field if self.opts.fields: for name in self.opts.fields: self.fields[name] = fields[name] else: self.fields = fields def get_create_url(self, **kwargs): if self.create_url_name: return reverse(self.create_url_name) return self.create_url def get_update_url(self, **kwargs): if self.update_url_name: return reverse(self.update_url_name) return self.update_url def to_dict(self): data = dict({ 'name': self.form_name, 'create_url': self.get_create_url(), 'update_url': self.get_update_url(), 'id_field': self.id_field }) data['fields'] = [] for name, field in self.fields.items(): field_data = field.to_dict(name=name, id_field='id-{}-{}'.format(self.form_name, name)) data['fields'].append(field_data.copy()) return data def is_valid(self): return True # Implement this def values(self, post_data): data = {} for name, field in self.fields.items(): key = '{}-{}'.format(self.form_name, name) data[name] = field.get_value(post_data, key) return data ``` #### File: reform/tests/test_form_get_url.py ```python from unittest import TestCase from django.core.urlresolvers import NoReverseMatch from ..form import ReactForm class FooForm(ReactForm): form_name = 'foo-form' create_url_name = 'test_url' update_url_name = 'test_url' class BarForm(ReactForm): form_name = 'bar-form' create_url = '/test/' update_url = '/test/' class ReactFormTest(TestCase): def test_get_url_by_name(self): form = FooForm() with self.assertRaises(NoReverseMatch): form.get_create_url() def test_get_url_by_url(self): form = BarForm() self.assertEqual(form.get_create_url(), '/test/') ```
{ "source": "jonashein/baseline_combination", "score": 2 }
#### File: meshreg/models/domainnorm.py ```python import torch import torch.nn as nn import torch.nn.functional as F class DomainNorm(nn.Module): def __init__(self, channel, l2=True): super(DomainNorm, self).__init__() self.normalize = nn.InstanceNorm2d(num_features=channel, affine=False) self.l2 = l2 self.weight = nn.Parameter(torch.ones(1,channel,1,1)) self.bias = nn.Parameter(torch.zeros(1,channel,1,1)) self.weight.requires_grad = True self.bias.requires_grad = True def forward(self, x): x = self.normalize(x) if self.l2: return F.normalize(x, p=2, dim=1) return x * self.weight + self.bias ``` #### File: meshreg/models/pvnetutils.py ```python import numpy as np import cv2 from scipy.linalg import sqrtm from scipy.optimize import leastsq #from meshreg.models.uncertainty_pnp import un_pnp_utils from joblib import Parallel, delayed import multiprocessing def pnp(points_3d, points_2d, camera_matrix, method=cv2.SOLVEPNP_EPNP): try: dist_coeffs = pnp.dist_coeffs except: dist_coeffs = np.zeros(shape=[8, 1], dtype='float64') assert points_3d.shape[0] == points_2d.shape[0], 'points 3D and points 2D must have same number of vertices' if method == cv2.SOLVEPNP_EPNP: points_3d = np.expand_dims(points_3d, 0) points_2d = np.expand_dims(points_2d, 0) points_2d = np.ascontiguousarray(points_2d.astype(np.float64)) points_3d = np.ascontiguousarray(points_3d.astype(np.float64)) camera_matrix = camera_matrix.astype(np.float64) _, R_exp, t = cv2.solvePnP(points_3d, points_2d, camera_matrix, dist_coeffs, flags=method) # , None, None, False, cv2.SOLVEPNP_UPNP) # R_exp, t, _ = cv2.solvePnPRansac(points_3D, # points_2D, # cameraMatrix, # distCoeffs, # reprojectionError=12.0) R, _ = cv2.Rodrigues(R_exp) # trans_3d=np.matmul(points_3d,R.transpose())+t.transpose() # if np.max(trans_3d[:,2]<0): # R=-R # t=-t return np.concatenate([R, t], axis=-1) # def uncertainty_pnp(kpt_3d, kpt_2d, var, K, method=cv2.SOLVEPNP_P3P): # cov_invs = [] # for vi in range(var.shape[0]): # if var[vi, 0, 0] < 1e-6 or np.sum(np.isnan(var)[vi]) > 0: # cov_invs.append(np.zeros([2, 2]).astype(np.float32)) # else: # cov_inv = np.linalg.inv(sqrtm(var[vi])) # cov_invs.append(cov_inv) # # cov_invs = np.asarray(cov_invs) # pn,2,2 # weights = cov_invs.reshape([-1, 4]) # weights = weights[:, (0, 1, 3)] # pose_pred = un_pnp_utils.uncertainty_pnp(kpt_2d, weights, kpt_3d, K, method) # return pose_pred def uncertainty_pnp(points_3d, points_2d, var, camera_matrix, method=cv2.SOLVEPNP_EPNP): # Compute weights cov_invs = [] for vi in range(var.shape[0]): if var[vi, 0, 0] < 1e-6 or np.sum(np.isnan(var)[vi]) > 0: cov_invs.append(np.zeros([2, 2]).astype(np.float32)) else: cov_inv = np.linalg.inv(sqrtm(var[vi])) cov_invs.append(cov_inv) cov_invs = np.asarray(cov_invs) # K,2,2 # Compute initialization with 4 best points weights = cov_invs.reshape([-1, 4]) weights = weights[:, (0, 1, 3)] idxs = np.argsort(weights[:, 0]+weights[:, 1])[-4:] #idxs = np.argsort(weights[:, 0] + weights[:, 1])#[-6:] init_rvec = np.array([np.pi, 0.0, 0.0]) init_tvec = np.array([0.0, 0.2, 0.4]) _, R_exp, t = cv2.solvePnP(np.expand_dims(points_3d[idxs, :], 0), np.expand_dims(points_2d[idxs, :], 0), camera_matrix, None, init_rvec, init_tvec, True, flags=cv2.SOLVEPNP_EPNP) Rt_vec = np.concatenate([R_exp, t], axis=0) # Return if we only have 4 points if points_2d.shape[0] == 4: R, _ = cv2.Rodrigues(Rt_vec[:3]) Rt = np.concatenate([R, Rt_vec[3:]], axis=-1) return Rt # Minimize Mahalanobis distance Rt_vec, _ = leastsq(mahalanobis, Rt_vec, args=(points_3d, points_2d, cov_invs, camera_matrix)) R, _ = cv2.Rodrigues(Rt_vec[:3]) Rt = np.concatenate([R, Rt_vec[3:, None]], axis=-1) return Rt def mahalanobis(Rt_vec, points_3d, points_2d, var, camera_matrix): # Rt_vec.shape: (6,) # points_3d.shape: (K,3) # points_2d.shape: (K,2) # var.shape: (K,2,2) # camera_matrix.shape: (3,3) if np.any(np.iscomplex(var)): var = np.real(var) R, _ = cv2.Rodrigues(Rt_vec[:3]) Rt = np.concatenate([R, Rt_vec[3:, None]], axis=-1) points_3d_hom = np.concatenate([points_3d, np.ones((points_3d.shape[0], 1))], axis=-1) # (K,4) proj_2d_hom = camera_matrix @ Rt @ points_3d_hom.transpose() # (3, K) proj_2d = proj_2d_hom[:2, :] / proj_2d_hom[2:, :] # (2,K) err_2d = proj_2d.transpose() - points_2d # (K,2) err_2d = np.expand_dims(err_2d, axis=1) # (K,1,2) err = err_2d @ var @ err_2d.transpose((0,2,1)) # (K,1,2) x (K,2,2) x (K,2,1) = (K,1,1) err = np.sqrt(err.squeeze()) return err def _process_sample_pnp(points_3d, points_2d, camera_matrix, var=None, method=cv2.SOLVEPNP_EPNP): if var is not None: pose = uncertainty_pnp(points_3d, points_2d, var, camera_matrix, method) else: pose = pnp(points_3d, points_2d, camera_matrix, method) return pose def batched_pnp(points_3d, points_2d, camera_matrix, var=None, method=cv2.SOLVEPNP_EPNP): batch_size = points_3d.shape[0] # poses = [_process_sample_pnp(points_3d[0], # points_2d[0], # camera_matrix[0], # None if var is None else var[0], # method)] poses = Parallel(n_jobs=8)(delayed(_process_sample_pnp)(points_3d[i], points_2d[i], camera_matrix[i], None if var is None else var[i], method) for i in range(batch_size)) return np.stack(poses, axis=0) def transform(verts, trans, convert_to_homogeneous=False): assert len(verts.shape) == 2, "Expected 2 dimensions for verts, got: {}.".format(len(verts.shape)) assert len(trans.shape) == 2, "Expected 2 dimensions for trans, got: {}.".format(len(trans.shape)) if convert_to_homogeneous: hom_verts = np.concatenate([verts, np.ones([verts.shape[0], 1])], axis=1) else: hom_verts = verts assert trans.shape[1] == hom_verts.shape[1], \ "Incompatible shapes: verts.shape: {}, trans.shape: {}".format(verts.shape, trans.shape) trans_verts = np.dot(trans, hom_verts.transpose()).transpose() return trans_verts # def batch_transform(points, camintr=None, camextr=None, add_hom=False, rem_hom=False): # """Apply extrinsic transformation and/or intrinsic projection to points tensor. # points has shape [batch, num_points, dim], where # camintr has shape [batch, M, M] # camextr has shape [batch, N, N] # If add_hom, the points are converted to homogeneous points by adding another dimension at the end. # If rem_hom, the transformed points are normalized by the last dimension. The last dimension is removed in the result. # """ # if add_hom: # torch.cat([points, torch.ones(points[:-1])]) # # if camextr ``` #### File: meshreg/netscripts/evaluate.py ```python def parse_evaluators(evaluators, config=None): """ Parse evaluators for which PCK curves and other statistics must be computed """ if config is None: config = { # "joints2d_trans": [0, 50, 20], "joints2d_base": [0, 100, 100], "corners2d_base": [0, 100, 100], "verts2d_base": [0, 100, 100], "joints3d_cent": [0, 0.2, 20], "joints3d": [0, 0.5, 20], } eval_results = {} for evaluator_name, evaluator in evaluators.items(): start, end, steps = [config[evaluator_name][idx] for idx in range(3)] (epe_mean, epe_mean_joints, epe_median, auc, pck_curve, thresholds) = evaluator.get_measures( start, end, steps ) eval_results[evaluator_name] = { "epe_mean": epe_mean, "epe_mean_joints": epe_mean_joints, "epe_median": epe_median, "auc": auc, "thresholds": thresholds, "pck_curve": pck_curve, } return eval_results ``` #### File: meshreg/visualize/evalvis.py ```python from matplotlib import pyplot as plt def eval_vis(eval_res, save_img_path, fig=None): fig = None fig = plt.figure(figsize=(10, 10)) fig_nb = len(eval_res) axes = fig.subplots(len(eval_res)) for eval_idx, (eval_name, eval_res) in enumerate(eval_res.items()): if fig_nb > 1: ax = axes[eval_idx] else: ax = axes ax.plot(eval_res["thresholds"], eval_res["pck_curve"], "ro-", markersize=1, label="Ours") print("eval_name: {}".format(eval_name)) print("Thresholds: {}".format(eval_res["thresholds"])) print("pck_curve: {}".format(eval_res["pck_curve"])) auc = eval_res["auc"] epe_mean = eval_res["epe_mean"] epe_med = eval_res["epe_median"] ax.set_title(f"{eval_name} epe_mean: {epe_mean:.3f}, auc: {auc:.3f}, epe_med: {epe_med:.3f}") fig.savefig(save_img_path) ```
{ "source": "jonashein/handobjectnet_baseline", "score": 2 }
#### File: meshreg/datasets/syn_colibri_v1_utils.py ```python from functools import lru_cache import os import pickle import numpy as np @lru_cache(128) def load_manoinfo(pkl_path): with open(pkl_path, "rb") as p_f: data = pickle.load(p_f) return data def transform(verts, trans, convert_to_homogeneous=False): assert len(verts.shape) == 2, "Expected 2 dimensions for verts, got: {}.".format(len(verts.shape)) assert len(trans.shape) == 2, "Expected 2 dimensions for trans, got: {}.".format(len(trans.shape)) if convert_to_homogeneous: hom_verts = np.concatenate([verts, np.ones([verts.shape[0], 1])], axis=1) else: hom_verts = verts assert trans.shape[1] == hom_verts.shape[1], \ "Incompatible shapes: verts.shape: {}, trans.shape: {}".format(verts.shape, trans.shape) trans_verts = np.dot(trans, hom_verts.transpose()).transpose() return trans_verts def compute_vertex(mask, kpt_2d): h, w = mask.shape m = kpt_2d.shape[0] xy = np.argwhere(mask != 0)[:, [1, 0]] vertex = kpt_2d[None] - xy[:, None] norm = np.linalg.norm(vertex, axis=2, keepdims=True) norm[norm < 1e-3] += 1e-3 vertex = vertex / norm vertex_out = np.zeros([h, w, m, 2], np.float32) vertex_out[xy[:, 1], xy[:, 0]] = vertex vertex_out = np.reshape(vertex_out, [h, w, m * 2]) return vertex_out ``` #### File: meshreg/netscripts/epochpass.py ```python import os import pickle from tqdm import tqdm import torch from libyana.evalutils.avgmeter import AverageMeters from libyana.evalutils.zimeval import EvalUtil from meshreg.datasets.queries import BaseQueries from meshreg.visualize import samplevis from meshreg.visualize import consistdisplay from meshreg.netscripts.monitor import MetricMonitor from meshreg.netscripts.metrics import evaluate def epoch_pass( loader, model, train=False, optimizer=None, scheduler=None, epoch=0, img_folder=None, fig=None, display_freq=10, epoch_display_freq=1, lr_decay_gamma=0, freeze_batchnorm=True, monitor=None, ): if train: prefix = "train" if not freeze_batchnorm: model.train() else: prefix = "val" model.eval() render_step = 0 # Loop over dataset for batch_idx, batch in enumerate(tqdm(loader, desc="batch")): if 'compute_pnp' in dir(model): model.compute_pnp = not train or (batch_idx % display_freq == 0 and epoch % epoch_display_freq == 0) # Compute outputs and losses if train: loss, results, losses = model(batch) # Optimize model if torch.isnan(loss): raise ValueError(f"Loss made of {losses} became nan!") optimizer.zero_grad() loss.backward() optimizer.step() else: with torch.no_grad(): loss, results, losses = model(batch) # Update metrics if monitor is not None: # Create loss dict, add _loss suffix where necessary loss_dict = {} for loss_name, loss_val in losses.items(): if not (loss_name.startswith("loss_") or loss_name.endswith("_loss")): loss_name = "loss_{}".format(loss_name) if loss_val is not None: if isinstance(loss_val, torch.Tensor): loss_val = loss_val.cpu().detach().numpy() loss_dict[loss_name] = loss_val monitor.add(prefix, epoch + 1, loss_dict) monitor.add(prefix, epoch + 1, evaluate(batch, results)) # Visualize sample outputs if batch_idx % display_freq == 0 and epoch % epoch_display_freq == 0: img_filepath = f"{prefix}_epoch{epoch:04d}_batch{batch_idx:06d}.png" save_img_path = os.path.join(img_folder, img_filepath) samplevis.sample_vis(batch, results, fig=fig, save_img_path=save_img_path) if lr_decay_gamma and scheduler is not None: scheduler.step() save_dict = {} return save_dict ``` #### File: meshreg/visualize/samplevis.py ```python import torch import numpy as np from libyana.visutils.viz2d import visualize_joints_2d from meshreg.datasets.queries import BaseQueries, TransQueries from meshreg.visualize import consistdisplay def get_check_none(data, key, cpu=True): if key in data and data[key] is not None: if cpu: return data[key].cpu().detach() else: return data[key].detach().cuda() else: return None def sample_vis(sample, results, save_img_path, fig=None, max_rows=5, display_centered=False): fig.clf() images = sample[TransQueries.IMAGE].permute(0, 2, 3, 1).cpu() + 0.5 batch_size = images.shape[0] # pred_handverts2d = get_check_none(results, "verts2d") gt_objverts2d = get_check_none(sample, TransQueries.OBJVERTS2D) pred_objverts2d = get_check_none(results, "obj_verts2d") gt_objcorners2d = None #get_check_none(sample, TransQueries.OBJCORNERS2D) pred_objcorners2d = None #get_check_none(results, "obj_corners2d") gt_objcorners3dw = None #get_check_none(sample, BaseQueries.OBJCORNERS3D) pred_objcorners3d = None #get_check_none(results, "obj_corners3d") gt_objverts3d = get_check_none(sample, TransQueries.OBJVERTS3D) pred_objverts3d = get_check_none(results, "obj_verts3d") gt_canobjverts3d = get_check_none(sample, TransQueries.OBJCANROTVERTS) pred_objverts3dw = get_check_none(results, "recov_objverts3d") gt_canobjcorners3d = get_check_none(sample, TransQueries.OBJCANROTCORNERS) pred_objcorners3dw = None #get_check_none(results, "recov_objcorners3d") gt_handjoints2d = get_check_none(sample, TransQueries.JOINTS2D) pred_handjoints2d = get_check_none(results, "joints2d") gt_handjoints3d = get_check_none(sample, TransQueries.JOINTS3D) pred_handjoints3d = get_check_none(results, "joints3d") gt_handverts3d = get_check_none(sample, TransQueries.HANDVERTS3D) pred_handverts3d = get_check_none(results, "verts3d") gt_objverts3dw = get_check_none(sample, BaseQueries.OBJVERTS3D) gt_handjoints3dw = get_check_none(sample, BaseQueries.JOINTS3D) pred_handjoints3dw = get_check_none(results, "recov_joints3d") row_nb = min(max_rows, batch_size) if display_centered: col_nb = 7 else: col_nb = 4 axes = fig.subplots(row_nb, col_nb) for row_idx in range(row_nb): # Column 0 axes[row_idx, 0].imshow(images[row_idx]) axes[row_idx, 0].axis("off") # Visualize 2D hand joints if pred_handjoints2d is not None: visualize_joints_2d(axes[row_idx, 0], pred_handjoints2d[row_idx], alpha=1, joint_idxs=False) if gt_handjoints2d is not None: visualize_joints_2d(axes[row_idx, 0], gt_handjoints2d[row_idx], alpha=0.5, joint_idxs=False) # Column 1 axes[row_idx, 1].imshow(images[row_idx]) axes[row_idx, 1].axis("off") # Visualize 2D object vertices if pred_objverts2d is not None: axes[row_idx, 1].scatter( pred_objverts2d[row_idx, :, 0], pred_objverts2d[row_idx, :, 1], c="r", s=1, alpha=0.2 ) if gt_objverts2d is not None: axes[row_idx, 1].scatter( gt_objverts2d[row_idx, :, 0], gt_objverts2d[row_idx, :, 1], c="b", s=1, alpha=0.02 ) # Visualize 2D object bounding box if pred_objcorners2d is not None: visualize_joints_2d( axes[row_idx, 1], pred_objcorners2d[row_idx], alpha=1, joint_idxs=False, links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], ) if gt_objcorners2d is not None: visualize_joints_2d( axes[row_idx, 1], gt_objcorners2d[row_idx], alpha=0.5, joint_idxs=False, links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], ) # Visualize some (vertex position) errors for the 2D object vertices if gt_objverts2d is not None and pred_objverts2d is not None: idxs = list(range(6)) arrow_nb = len(idxs) arrows = torch.cat([gt_objverts2d[:, idxs].float(), pred_objverts2d[:, idxs].float()], 1) links = [[i, i + arrow_nb] for i in range(arrow_nb)] visualize_joints_2d( axes[row_idx, 1], arrows[row_idx], alpha=0.5, joint_idxs=False, links=links, color=["k"] * arrow_nb, ) # Column 2 # view from the top col_idx = 2 # axes[row_idx, col_idx].set_title("rotY: {:.1f}".format(gt_drill_angle_Y[row_idx])) if gt_objverts3dw is not None: axes[row_idx, col_idx].scatter( gt_objverts3dw[row_idx, :, 2], gt_objverts3dw[row_idx, :, 0], c="b", s=1, alpha=0.02 ) if pred_objverts3dw is not None: axes[row_idx, col_idx].scatter( pred_objverts3dw[row_idx, :, 2], pred_objverts3dw[row_idx, :, 0], c="r", s=1, alpha=0.02 ) if pred_handjoints3dw is not None: visualize_joints_2d( axes[row_idx, col_idx], pred_handjoints3dw[row_idx, :, [2, 0]], alpha=1, joint_idxs=False ) if gt_handjoints3dw is not None: visualize_joints_2d( axes[row_idx, col_idx], gt_handjoints3dw[row_idx, :, [2, 0]], alpha=0.5, joint_idxs=False ) axes[row_idx, col_idx].invert_yaxis() # if pred_objcorners3dw is not None: # visualize_joints_2d( # axes[row_idx, col_idx], # pred_objcorners3dw[row_idx], # alpha=1, # joint_idxs=False, # links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], # ) # if gt_objcorners3dw is not None: # visualize_joints_2d( # axes[row_idx, col_idx], # gt_objcorners3dw[row_idx], # alpha=0.5, # joint_idxs=False, # links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], # ) # if pred_objverts3dw is not None and gt_objverts3dw is not None: # arrow_nb = 6 # arrows = torch.cat([gt_objverts3dw[:, :arrow_nb], pred_objverts3dw[:, :arrow_nb]], 1) # links = [[i, i + arrow_nb] for i in range(arrow_nb)] # visualize_joints_2d( # axes[row_idx, col_idx], # arrows[row_idx], # alpha=0.5, # joint_idxs=False, # links=links, # color=["k"] * arrow_nb, # ) # Column 3 # view from the right col_idx = 3 # axes[row_idx, col_idx].set_title("rotX: {:.1f}".format(gt_drill_angle_X[row_idx])) # invert second axis here for more consistent viewpoints if gt_objverts3dw is not None: axes[row_idx, col_idx].scatter( gt_objverts3dw[row_idx, :, 2], -gt_objverts3dw[row_idx, :, 1], c="b", s=1, alpha=0.02 ) if pred_objverts3dw is not None: axes[row_idx, col_idx].scatter( pred_objverts3dw[row_idx, :, 2], -pred_objverts3dw[row_idx, :, 1], c="r", s=1, alpha=0.02 ) if pred_handjoints3dw is not None: pred_handjoints3dw_inv = np.stack([pred_handjoints3dw[:, :, 2], -pred_handjoints3dw[:, :, 1]], axis=-1) visualize_joints_2d( axes[row_idx, col_idx], pred_handjoints3dw_inv[row_idx, :, :], alpha=1, joint_idxs=False ) if gt_handjoints3dw is not None: gt_handjoints3dw_inv = np.stack([gt_handjoints3dw[:, :, 2], -gt_handjoints3dw[:, :, 1]], axis=-1) visualize_joints_2d( axes[row_idx, col_idx], gt_handjoints3dw_inv[row_idx, :, :], alpha=0.5, joint_idxs=False ) # if pred_objcorners3dw is not None: # visualize_joints_2d( # axes[row_idx, col_idx], # pred_objcorners3dw[row_idx, :, 1:], # alpha=1, # joint_idxs=False, # links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], # ) # if gt_objcorners3dw is not None: # visualize_joints_2d( # axes[row_idx, col_idx], # gt_objcorners3dw[row_idx, :, 1:], # alpha=0.5, # joint_idxs=False, # links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], # ) # if pred_objverts3dw is not None and gt_objverts3dw is not None: # arrow_nb = 6 # arrows = torch.cat([gt_objverts3dw[:, :arrow_nb, 1:], pred_objverts3dw[:, :arrow_nb, 1:]], 1) # links = [[i, i + arrow_nb] for i in range(arrow_nb)] # visualize_joints_2d( # axes[row_idx, col_idx], # arrows[row_idx], # alpha=0.5, # joint_idxs=False, # links=links, # color=["k"] * arrow_nb, # ) if display_centered: # Column 4 col_idx = 4 if gt_canobjverts3d is not None: axes[row_idx, col_idx].scatter( gt_canobjverts3d[row_idx, :, 0], gt_canobjverts3d[row_idx, :, 1], c="b", s=1, alpha=0.02 ) if pred_objverts3d is not None: axes[row_idx, col_idx].scatter( pred_objverts3d[row_idx, :, 0], pred_objverts3d[row_idx, :, 1], c="r", s=1, alpha=0.02 ) if pred_objcorners3d is not None: visualize_joints_2d( axes[row_idx, col_idx], pred_objcorners3d[row_idx], alpha=1, joint_idxs=False, links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], ) if gt_canobjcorners3d is not None: visualize_joints_2d( axes[row_idx, col_idx], gt_canobjcorners3d[row_idx], alpha=0.5, joint_idxs=False, links=[[0, 1, 3, 2], [4, 5, 7, 6], [1, 5], [3, 7], [4, 0], [0, 2, 6, 4]], ) if pred_objcorners3d is not None and gt_canobjcorners3d is not None: arrow_nb = 6 arrows = torch.cat([gt_canobjcorners3d[:, :arrow_nb], pred_objcorners3d[:, :arrow_nb]], 1) links = [[i, i + arrow_nb] for i in range(arrow_nb)] visualize_joints_2d( axes[row_idx, col_idx], arrows[row_idx], alpha=0.5, joint_idxs=False, links=links, color=["k"] * arrow_nb, ) axes[row_idx, col_idx].set_aspect("equal") axes[row_idx, col_idx].invert_yaxis() # Column 5 col_idx = 5 if gt_objverts3d is not None: axes[row_idx, col_idx].scatter( gt_objverts3d[row_idx, :, 0], gt_objverts3d[row_idx, :, 1], c="b", s=1, alpha=0.02 ) # if pred_objverts3d is not None: # axes[row_idx, 2].scatter( # pred_objverts3d[row_idx, :, 0], pred_objverts3d[row_idx, :, 1], c="r", s=1, alpha=0.02 # ) if gt_handverts3d is not None: axes[row_idx, col_idx].scatter( gt_handverts3d[row_idx, :, 0], gt_handverts3d[row_idx, :, 1], c="g", s=1, alpha=0.2 ) if pred_handverts3d is not None: axes[row_idx, col_idx].scatter( pred_handverts3d[row_idx, :, 0], pred_handverts3d[row_idx, :, 1], c="c", s=1, alpha=0.2 ) if pred_handjoints3d is not None: visualize_joints_2d( axes[row_idx, col_idx], pred_handjoints3d[row_idx], alpha=1, joint_idxs=False ) if gt_handjoints3d is not None: visualize_joints_2d( axes[row_idx, col_idx], gt_handjoints3d[row_idx], alpha=0.5, joint_idxs=False ) axes[row_idx, col_idx].invert_yaxis() # Column 6 col_idx = 6 if gt_objverts3d is not None: axes[row_idx, col_idx].scatter( gt_objverts3d[row_idx, :, 1], gt_objverts3d[row_idx, :, 2], c="b", s=1, alpha=0.02 ) # if pred_objverts3d is not None: # axes[row_idx, 3].scatter( # pred_objverts3d[row_idx, :, 1], pred_objverts3d[row_idx, :, 2], c="r", s=1, alpha=0.02 # ) if gt_handverts3d is not None: axes[row_idx, col_idx].scatter( gt_handverts3d[row_idx, :, 1], gt_handverts3d[row_idx, :, 2], c="g", s=1, alpha=0.2 ) if pred_handverts3d is not None: axes[row_idx, col_idx].scatter( pred_handverts3d[row_idx, :, 1], pred_handverts3d[row_idx, :, 2], c="c", s=1, alpha=0.2 ) if pred_handjoints3d is not None: visualize_joints_2d( axes[row_idx, col_idx], pred_handjoints3d[row_idx][:, 1:], alpha=1, joint_idxs=False ) if gt_handjoints3d is not None: visualize_joints_2d( axes[row_idx, col_idx], gt_handjoints3d[row_idx][:, 1:], alpha=0.5, joint_idxs=False ) consistdisplay.squashfig(fig) fig.savefig(save_img_path, dpi=300) ```
{ "source": "jonashein/pvnet_baseline", "score": 2 }
#### File: lib/datasets/dataset_catalog.py ```python from lib.config import cfg class DatasetCatalog(object): dataset_attrs = { 'SynColibriV1_Train': { 'id': 'custom', 'data_root': 'data/syn_colibri_v1_train', 'ann_file': 'data/syn_colibri_v1_train/train.json', 'split': 'train' }, 'SynColibriV1_Val': { 'id': 'custom', 'data_root': 'data/syn_colibri_v1_val', 'ann_file': 'data/syn_colibri_v1_val/train.json', 'split': 'test' }, 'SynColibriV1_Test': { 'id': 'custom', 'data_root': 'data/syn_colibri_v1_test', 'ann_file': 'data/syn_colibri_v1_test/train.json', 'split': 'test' }, 'RealColibriV1_Train': { 'id': 'custom', 'data_root': 'data/real_colibri_v1_train', 'ann_file': 'data/real_colibri_v1_train/train.json', 'split': 'train' }, 'RealColibriV1_Val': { 'id': 'custom', 'data_root': 'data/real_colibri_v1_val', 'ann_file': 'data/real_colibri_v1_val/train.json', 'split': 'test' }, 'RealColibriV1_Test': { 'id': 'custom', 'data_root': 'data/real_colibri_v1_test', 'ann_file': 'data/real_colibri_v1_test/train.json', 'split': 'test' } } @staticmethod def get(name): attrs = DatasetCatalog.dataset_attrs[name] return attrs.copy() ```
{ "source": "Jonas-Heinrich/TelegramBot", "score": 2 }
#### File: Jonas-Heinrich/TelegramBot/telegram_bot.py ```python import telegram from telegram.ext import Updater, CommandHandler, CallbackQueryHandler import threading import traceback import atexit import datetime import random import string from . import telegram_config class TelegramBot: def __init__(self, token, chat_id, send_start=True, send_exit=True, print_to_console=True): self.__chat_id = chat_id self.__bot = telegram.Bot(token) self.__updater = Updater(token) self.print_to_console = print_to_console self.option_registry = {} # Option Registry # Each key has an array of options associated with it. # In this array is a tuple describing each option, i.e. the text and callback function. self.__updater.dispatcher.add_handler(CallbackQueryHandler(self.__option_pressed)) self.__updater.dispatcher.add_error_handler(self.error) if send_start: self.send_meta_message("--Python Script Start--") if send_exit: def exit_handler(): self.send_meta_message("--Python Script Termination--") atexit.register(exit_handler) # Start the Bot # # Helper # def __get_chat_id(self, chat_id): """Returns the default chat_id if the given parameter is None.""" if chat_id == None: return self.__chat_id return chat_id def __log(self, action, message, chat_id): """Logs the action, message and chat_id to the console, if enabled.""" if self.print_to_console: print('[TELEGRAM] {} to {} ({}): "{}"'.format( action, chat_id, datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message )) def __generate_random_string(self, length=32): """Generates a string with random ascii letters and digits with the given length (default: 32)""" return ''.join( [random.choice(string.ascii_letters + string.digits) for n in range(32)] ) # # Error # def error(self, update, context): self.__log( "Error", 'Update "{}" caused error "{}"'.format(update, context.error), None ) # # Text Messages # def send_meta_message(self, message, chat_id=None): """Sends a message about the chatbot / program to the chat_id.""" self.send_markdown_message("*" + message + "*", self.__get_chat_id(chat_id)) def send_markdown_message(self, message, chat_id=None): """Sends a message that allows markdown tags.""" chat_id = self.__get_chat_id(chat_id) self.__bot.send_message( chat_id=chat_id, text=message, parse_mode=telegram.ParseMode.MARKDOWN ) self.__log("Message", message, chat_id) def send_message(self, message, chat_id=None): """Sends a plain text message to the given chat_id.""" chat_id = self.__get_chat_id(chat_id) self.__bot.send_message( chat_id, text=message ) self.__log("Message", message, chat_id) # # Image Messages # def send_image(self, path, chat_id=None): """Sends an image to the given chat_id.""" chat_id = self.__get_chat_id(chat_id) self.__bot.send_photo( chat_id=chat_id, photo=open(path, 'rb') ) self.__log("Image", path, chat_id) # # Options Helper # def __generate_option_id(self, options_id, option): """Generates an option_id for a given option and appends it to the option_registry.""" self.option_registry[options_id].append(option) return options_id + "|" + str(len(self.option_registry[options_id]) - 1) def __generate_options_id(self): """Generates a new options_id and creates it in the options_registry.""" options_id = self.__generate_random_string() self.option_registry[options_id] = [] return options_id # # Options # def __option_pressed(self, context, update): """Handles all inline options presses.""" option_id = update["callback_query"]["data"].split("|") if option_id[0] in self.option_registry: # Get function from option_id function = self.option_registry[option_id[0]][int(option_id[1])][1] del self.option_registry[option_id[0]] # Invoke and print errors try: function(update) except Exception: print() print(80 * "-") print("An error occurred while handling an option callback:\n") print(traceback.format_exc()) print(80 * "-") else: self.send_message( 'The option selection does either not exist or has become invalid.', update["callback_query"]["message"]["chat"]["id"] ) if len(self.option_registry.keys()) == 0: # New thread to avoid racing condition: # Since this is running in the handler, the join_thread method of the updater # waits for its own shutdown call to finish. x = threading.Thread(target=self.__kill_updater) x.start() def __kill_updater(self): """Kills the updater poll if there are no options left to respond to.""" if len(self.option_registry.keys()) == 0: self.__updater.stop() def input_get_option(self, options, message="Please choose one keyboard action", chat_id=None): """Generates a option input dialogue. Each option should be a tuple containing a text and callback function. You can also put several options into a nested tuple to put them into one line.""" chat_id = self.__get_chat_id(chat_id) # Build keyboard options_id = self.__generate_options_id() keyboard = [] for option_line in options: line = [] # Option line actually has several options in it if isinstance(option_line[0], tuple) or isinstance(option_line[0], list): for option in option_line: line.append( telegram.InlineKeyboardButton( option[0], callback_data=self.__generate_option_id(options_id, option) ) ) # Option line is just one item else: line.append( telegram.InlineKeyboardButton( option_line[0], callback_data=self.__generate_option_id(options_id, option_line) ) ) keyboard.append(line) reply_markup = telegram.InlineKeyboardMarkup(keyboard) # Send self.__bot.send_message( self.__get_chat_id(chat_id), text=message, reply_markup=reply_markup ) # Log self.__log("Option Keyboard", str(options), chat_id) self.__updater.start_polling() def get_bot(): return TelegramBot( telegram_config.TOKEN, telegram_config.CHAT_ID, telegram_config.SEND_START, telegram_config.SEND_EXIT, telegram_config.PRINT_TO_CONSOLE ) ```
{ "source": "jonashellmann/informaticup21-team-chillow", "score": 2 }
#### File: chillow/controller/ai_evaluation_controller.py ```python from contextlib import closing from datetime import datetime, timedelta, timezone from random import randint import sqlite3 from typing import List from chillow.controller import OfflineController from chillow.model.cell import Cell from chillow.model.direction import Direction from chillow.model.game import Game from chillow.model.player import Player from chillow.service.ai import NotKillingItselfAI, PathfindingSearchTreeAI, PathfindingAI, SearchTreeAI, \ SearchTreePathfindingAI, RandomAI, AIOptions from chillow.service.ai.artificial_intelligence import ArtificialIntelligence from chillow.view.headless_view import HeadlessView # These AIs are considered as the top 25 after 1000 simulated game in the first part of the evaluation best_ais_configurations = [ (PathfindingSearchTreeAI.__name__, (1, 50, 2, 0.75, 30)), (SearchTreePathfindingAI.__name__, (1, 25, 2, 20)), (PathfindingSearchTreeAI.__name__, (1, 25, 2, 0.75, 10)), (PathfindingSearchTreeAI.__name__, (1, 75, 3, 0.75, 10)), (PathfindingSearchTreeAI.__name__, (2, 75, 3, 0.75, 20)), (PathfindingSearchTreeAI.__name__, (1, 75, 2, 0.75, 10)), (PathfindingAI.__name__, (1, 50)), (PathfindingSearchTreeAI.__name__, (1, 25, 2, 0.75, 20)), (PathfindingSearchTreeAI.__name__, (2, 50, 2, 0.75, 20)), (PathfindingSearchTreeAI.__name__, (1, 50, 2, 0.75, 20)), (NotKillingItselfAI.__name__, ([AIOptions.max_distance], 1, 0, 1)), (NotKillingItselfAI.__name__, ([AIOptions.max_distance], 2, 0, 3)), (PathfindingSearchTreeAI.__name__, (1, 50, 3, 0.75, 10)), (PathfindingSearchTreeAI.__name__, (1, 75, 3, 0.75, 30)), (SearchTreePathfindingAI.__name__, (1, 75, 2, 10)), (PathfindingAI.__name__, (1, 75)), (PathfindingSearchTreeAI.__name__, (1, 75, 3, 0.75, 20)), (SearchTreePathfindingAI.__name__, (2, 50, 2, 20)), (SearchTreePathfindingAI.__name__, (1, 25, 2, 10)), (PathfindingSearchTreeAI.__name__, (1, 75, 2, 0.75, 20)), (PathfindingAI.__name__, (1, 25)), (PathfindingSearchTreeAI.__name__, (1, 50, 3, 0.75, 30)), (PathfindingSearchTreeAI.__name__, (1, 50, 3, 0.75, 20)), (PathfindingSearchTreeAI.__name__, (2, 75, 2, 0.75, 30)), (SearchTreePathfindingAI.__name__, (1, 50, 2, 10)) ] class AIEvaluationController(OfflineController): """Executes multiple games after each other with randomly created games and players. The result of every game and the execution time for each player in each round is saved in an SQLite database.""" def __init__(self, runs: int, db_path: str, evaluation_type: int): """ Creates a new AI evaluation controller. Args: runs: The number of games to be simulated. db_path: The path of the SQLite database file. evaluation_type: Defines which evaluation should be performed """ super().__init__(HeadlessView()) self.__runs = runs self.__db_path = db_path if 1 <= evaluation_type <= 2: self.__evaluation_type = evaluation_type else: self.__evaluation_type = 1 self.__connection = None self.__cursor = None self.__current_game_id = None def play(self): """See base class.""" with closing(sqlite3.connect(self.__db_path)) as connection: with closing(connection.cursor()) as cursor: self.__connection = connection self.__cursor = cursor self.__create_db_tables() max_game_id = self.__cursor.execute("SELECT MAX(id) FROM games").fetchone()[0] if max_game_id is None: max_game_id = 0 self.__run_simulations(max_game_id) def _create_game(self) -> None: height = randint(30, 70) width = randint(30, 70) player_count = randint(3, 6) players = [] occupied_coordinates = [] for i in range(1, player_count + 1): next_coordinate = (randint(0, width - 1), randint(0, height - 1)) while next_coordinate in occupied_coordinates: next_coordinate = (randint(0, width - 1), randint(0, height - 1)) occupied_coordinates.append(next_coordinate) player = Player(i, next_coordinate[0], next_coordinate[1], Direction.get_random_direction(), 1, True, str(i)) players.append(player) cells = [[Cell() for _ in range(width)] for _ in range(height)] for player in players: cells[player.y][player.x] = Cell([player]) self._game = Game(width, height, cells, players, 1, True, datetime.now() + timedelta(5, 15)) self._game_round = 0 self._ais = [] if self.__evaluation_type == 1: self.__generate_ais_for_first_evaluation(player_count, players) elif self.__evaluation_type == 2: self.__generate_ais_for_second_evaluation(player_count, players) def __generate_ais_for_first_evaluation(self, player_count: int, players: List[Player]) -> None: self._ais.append(PathfindingAI(players[0], randint(1, 3), randint(1, 3) * 25)) self._ais.append(PathfindingSearchTreeAI(players[1], randint(1, 3), randint(1, 3) * 25, randint(2, 3), 0.75, randint(1, 3) * 10)) self._ais.append(SearchTreePathfindingAI(players[2], randint(1, 3), randint(1, 3) * 25, 2, randint(1, 3) * 10)) if player_count > 3: self._ais.append(SearchTreeAI(players[3], randint(1, 3), randint(2, 3), True, randint(1, 3) * 10)) if player_count > 4: self._ais.append(NotKillingItselfAI(players[4], [AIOptions.max_distance], randint(1, 3), 0, randint(1, 3))) if player_count > 5: self._ais.append(RandomAI(players[5], randint(1, 3))) def __generate_ais_for_second_evaluation(self, player_count: int, players: List[Player]) -> None: used_ai_indices = [] for i in range(player_count): ai_index = randint(0, len(best_ais_configurations) - 1) # Prevent that the same AI configuration is used in one game while ai_index in used_ai_indices: ai_index = randint(0, len(best_ais_configurations) - 1) used_ai_indices.append(ai_index) ai = best_ais_configurations[ai_index] self._ais.append(globals()[ai[0]](players[i], *ai[1])) def __run_simulations(self, max_game_id): for i in range(self.__runs): self.__current_game_id = i + 1 + max_game_id super().play() self.__cursor.execute("INSERT INTO games VALUES ({}, {}, {}, '{}', NULL)" .format(self.__current_game_id, self._game.width, self._game.height, datetime.now(timezone.utc))) winner_player = self._game.get_winner() for ai in self._ais: ai_class = ai.__class__.__name__ ai_info = ai.get_information() player_id = self.__get_player_id(ai_class, ai_info) # Save how often an AI configuration participated in a game self.__cursor.execute("INSERT INTO participants VALUES ({}, {})" .format(player_id, self.__current_game_id)) # Save how often an AI configuration won a game if ai.player == winner_player: self.__cursor.execute("UPDATE games SET winner_id = {} WHERE id = {}" .format(player_id, self.__current_game_id)) self.__connection.commit() def __create_db_tables(self): self.__cursor.execute("CREATE TABLE IF NOT EXISTS players (" "id INTEGER NOT NULL PRIMARY KEY," "class TEXT NOT NULL," "info TEXT)") self.__cursor.execute("CREATE TABLE IF NOT EXISTS games (" "id INTEGER NOT NULL PRIMARY KEY," "width INTEGER NOT NULL," "height INTEGER NOT NULL," "date TEXT NOT NULL," "winner_id INTEGER," "FOREIGN KEY (winner_id) REFERENCES players (id))") self.__cursor.execute("CREATE TABLE IF NOT EXISTS participants (" "player_id INTEGER NOT NULL," "game_id INTEGER NOT NULL," "PRIMARY KEY(player_id, game_id)," "FOREIGN KEY (player_id) REFERENCES players (id)," "FOREIGN KEY (game_id) REFERENCES games (id))") self.__cursor.execute("CREATE TABLE IF NOT EXISTS execution_times (" "player_id INTEGER NOT NULL," "game_id INTEGER NOT NULL," "game_round INTEGER NOT NULL," "execution REAL NOT NULL," "PRIMARY KEY(player_id, game_id, game_round)," "FOREIGN KEY (player_id) REFERENCES players (id)," "FOREIGN KEY (game_id) REFERENCES games (id))") def _log_execution_time(self, ai: ArtificialIntelligence, execution_time: float): ai_class = ai.__class__.__name__ ai_info = ai.get_information() player_id = self.__get_player_id(ai_class, ai_info) self.__cursor.execute("INSERT INTO execution_times VALUES ({}, {}, {}, {})" .format(player_id, self.__current_game_id, self._game_round, execution_time)) def __get_player_id(self, ai_class: str, ai_info: str) -> int: player_id = self.__cursor.execute( "SELECT MAX(id) FROM players p WHERE p.class = '{}' AND p.info = '{}'" .format(ai_class, ai_info)).fetchone()[0] if player_id is None: max_player_id = self.__cursor.execute("SELECT MAX(id) FROM players").fetchone()[0] if max_player_id is None: max_player_id = 0 player_id = max_player_id + 1 self.__cursor.execute("INSERT INTO players VALUES ({}, '{}', '{}')".format(player_id, ai_class, ai_info)) return player_id ``` #### File: chillow/model/action.py ```python import random from enum import Enum from itertools import product from typing import Any, List, Tuple class Action(Enum): """Enum to represent all possible actions which a player can perform to in a game.""" turn_left, turn_right, speed_up, slow_down, change_nothing = range(5) @staticmethod def get_actions(randomize: bool = False): """Returns all actions defined in this enum. Args: randomize: If this flag is true, the returned list is not in order but shuffled randomly. Returns: Returns all actions defined in this enum. """ if randomize: return Action.__get_random_actions() return list(Action) @staticmethod def get_random_action(): """Randomly chooses one of the defined actions in this enum. Returns: A random action. """ return random.choice(Action.get_actions()) @staticmethod def __get_random_actions(): actions = Action.get_actions() random.shuffle(actions) return actions @staticmethod def get_combinations(player_count: int) -> List[Tuple[Any]]: """Creates all combinations of actions. E.g. if the parameter is 3, the returned list looks like following and contains 5^3 tuples. [(left, left, left), (left, left, right), ..., (change_nothing, change_nothing, change_nothing)] Args: player_count: Defines how many actions should be in one tuple. Returns: A list of tuples with all possible combinations of actions. """ return list(product(Action.get_actions(), repeat=player_count)) @staticmethod def get_by_index(index: int): """Finds an action by its position in the enum. Args: index: The index of the enum element. Returns: The enum element at the index. """ return Action.get_actions()[index] def get_index(self): """Gets the index of an element in the enum. Returns: The index of an element in the enum """ return Action.get_actions().index(self) @staticmethod def get_default(): """Defines the default action. Returns: The defined default action. """ return Action.change_nothing ``` #### File: chillow/model/direction.py ```python from enum import Enum import random class Direction(Enum): """Enum to represent all possible directions in which a player can be directed to in a game.""" left, right, up, down = range(4) @staticmethod def get_random_direction(): """Randomly chooses one of the defined directions in this enum. Returns: A random direction. """ return random.choice(list(Direction)) ``` #### File: service/ai/not_killing_itself_ai.py ```python import copy import logging import pickle from enum import Enum from random import choice from typing import List, Dict from multiprocessing import Value from chillow.exceptions import InvalidPlayerMoveException from chillow.service.ai.artificial_intelligence import ArtificialIntelligence from chillow.model.action import Action from chillow.model.game import Game from chillow.model.player import Player from chillow.service.game_service import GameService class AIOptions(Enum): """Enumeration that holds possible options for the AIs.""" max_distance = range(1) class NotKillingItselfAI(ArtificialIntelligence): """AI implementation to choose an action that simply does not kill the player for the next rounds. It does not consider the opponent's player actions. Attributes: player: The player associated with this AI. """ def __init__(self, player: Player, options: List[AIOptions], max_speed: int, max_worse_distance: int, depth: int): """Creates a new object of the NotKillingItselfAI. Args: player: The player assigned to the AI. options: List of possible options to change the behavior of the AI. max_speed: The maximum speed the AI can reach. max_worse_distance: A tolerance, whereby more than just the best action is calculated. Actions which are worse, but within this tolerance, are also considered. depth: Number of player actions that are looked into the future. """ super().__init__(player, max_speed) self.__options = options self.__max_worse_distance = max_worse_distance assert depth > 0, "depth must be greater than 0" self.__depth = depth def get_information(self) -> str: """See base class.""" return (super().get_information() + ", max_worse_distance=" + str(self.__max_worse_distance) + ", depth=" + str(self.__depth)) def create_next_action(self, game: Game, return_value: Value): """See base class.""" self._turn_ctr += 1 game_service = GameService(game) game_service.turn.turn_ctr = self._turn_ctr surviving_actions = self.find_surviving_actions_with_best_depth(game_service) if AIOptions.max_distance in self.__options: max_distance_actions = self.calc_action_with_max_distance_to_visited_cells(game_service, surviving_actions) action = choice(max_distance_actions) if max_distance_actions is not None and len( max_distance_actions) > 0 else Action.change_nothing else: action = choice(surviving_actions) if surviving_actions is not None and len( surviving_actions) > 0 else Action.change_nothing return_value.value = action.get_index() def calc_action_with_max_distance_to_visited_cells(self, game_service: GameService, actions: List[Action]) -> List[Action]: """Calculates a list of actions that have the property to have as many free cells as possible in front of them while running straight after the action has been executed. Args: game_service: The game service used for simulation of actions. actions: The actions to be checked Returns: List of best actions with the property having as many free cells as possible in front of the player. """ max_straight_distance = 0 best_actions: Dict[Action, int] = {} for action in actions: gs_copy = copy.deepcopy(game_service) try: player = gs_copy.game.get_player_by_id(self.player.id) gs_copy.visited_cells_by_player[player.id] = gs_copy.get_and_visit_cells(player, action) straight_distance = 0 horizontal_multiplier, vertical_multiplier = GameService.get_horizontal_and_vertical_multiplier(player) for i in range(max(gs_copy.game.height, gs_copy.game.width)): x = player.x + (i + 1) * horizontal_multiplier y = player.y + (i + 1) * vertical_multiplier if x in range(gs_copy.game.width) and y in range(gs_copy.game.height) and ( gs_copy.game.cells[y][x].players is None or len(gs_copy.game.cells[y][x].players) == 0): straight_distance += 1 else: break if len(best_actions) == 0 or straight_distance > max_straight_distance: max_straight_distance = straight_distance best_actions[action] = straight_distance updated_best_actions: Dict[Action, int] = {} for (act, dist) in best_actions.items(): # new max_straight_distance. Remove worth options if dist >= max_straight_distance - self.__max_worse_distance: updated_best_actions[act] = dist best_actions = updated_best_actions elif straight_distance >= max_straight_distance - self.__max_worse_distance: # still good option best_actions[action] = straight_distance except InvalidPlayerMoveException as ex: logging.warning(ex) continue return list(best_actions.keys()) def find_surviving_actions(self, game_service: GameService, depth: int) -> List[Action]: """Finds all actions that will let the player survive for the next rounds. Args: game_service: The game service used for simulation of actions. depth: The number of rounds the player should survive at least. Returns: Actions that will not kill the player in the next rounds. """ result: List[Action] = [] for action in Action: gs_copy = pickle.loads(pickle.dumps(game_service)) try: player = gs_copy.game.get_player_by_id(self.player.id) if player.speed == self._max_speed and action == Action.speed_up: continue gs_copy.visited_cells_by_player[player.id] = gs_copy.get_and_visit_cells(player, action) except InvalidPlayerMoveException: continue gs_copy.check_and_set_died_players() if player.active: interim_result = [] if depth > 1: # recursive call to look further into the future interim_result = self.find_surviving_actions(gs_copy, depth - 1) if len(interim_result) > 0 or depth == 1: result += [action] return result def find_surviving_actions_with_best_depth(self, game_service: GameService) -> List[Action]: """Finds all actions that won't kill the player in the next rounds. The number of pre-calculated player moves is reduced until surviving actions are found. Args: game_service: The game service used for simulation of actions. Returns: Actions that will not kill the player in the next rounds. """ result: List[Action] = [] for current_depth in reversed(range(1, self.__depth + 1)): result = self.find_surviving_actions(game_service, current_depth) if len(result) > 0: break return result ``` #### File: chillow/view/graphical_view.py ```python import sys import time from chillow.model.action import Action from chillow.model.cell import Cell from chillow.model.game import Game from chillow.view.view import View class GraphicalView(View): """Provides a graphical UI using PyGame.""" RECT_SIZE = 10 CLOCK_TICK = 60 def __init__(self, pygame): """Creates a new graphical view. Args: pygame: The PyGame library. """ colors = [(255, 61, 0), (156, 204, 101), (171, 71, 188), (38, 166, 154), (255, 238, 88), (66, 165, 245)] super().__init__(colors) self.__pygame = pygame self.__clock = self.__pygame.time.Clock() pygame.init() self.__clock.tick(self.CLOCK_TICK) self.__next_action = True # Flag to wait for a KEYUP event. # Otherwise the user is doing multiple actions with one click. self.__screen = None def update(self, game: Game): """See base class.""" if not self._interface_initialized: self._initialize_interface(game) if not game.running: player = game.get_winner() if player is None: print("No winner in game.") else: print("Winner: Player " + str(player.id) + " (" + player.name + "). Your player ID was " + str(game.you.id) + ".") self.__screen.fill((0, 0, 0)) # black background for row in range(game.height): for col in range(game.width): self.__pygame.draw.rect(self.__screen, self.__get_player_color(game.cells[row][col]), (col * self.RECT_SIZE + col, row * self.RECT_SIZE + row, self.RECT_SIZE, self.RECT_SIZE)) if game.cells[row][col].get_player_id() != 0: player = game.get_player_by_id(game.cells[row][col].get_player_id()) if player.x == col and player.y == row: # print head border_width = 2 if player == game.you: border_width = 4 # head of the own player has a smaller dot self.__pygame.draw.rect(self.__screen, self._player_colors[0], (col * self.RECT_SIZE + col + border_width, row * self.RECT_SIZE + row + border_width, self.RECT_SIZE - (2 * border_width), self.RECT_SIZE - (2 * border_width))) self.__pygame.display.update() self.__clock.tick(60) def __get_player_color(self, cell: Cell): return self._player_colors[cell.get_player_id()] def read_next_action(self) -> Action: # noqa: C901 """See base class.""" while True: for event in self.__pygame.event.get(): if event.type == self.__pygame.QUIT: # Allows to close the pygame-window self.end() return Action.get_default() elif event.type == self.__pygame.KEYDOWN: pressed_key = self.__pygame.key.get_pressed() self.__next_action = False if pressed_key[self.__pygame.K_UP]: return Action.speed_up elif pressed_key[self.__pygame.K_DOWN]: return Action.slow_down elif pressed_key[self.__pygame.K_RIGHT]: return Action.turn_right elif pressed_key[self.__pygame.K_LEFT]: return Action.turn_left elif pressed_key[self.__pygame.K_SPACE]: return Action.change_nothing elif event.type == self.__pygame.KEYUP: self.__next_action = True def end(self): """See base class.""" time.sleep(10) self.__pygame.display.quit() self.__pygame.quit() sys.exit() def _initialize_interface(self, game: Game): super()._initialize_interface(game) self.__screen = self.__pygame.display.set_mode( [game.width * self.RECT_SIZE + game.width, game.height * self.RECT_SIZE + game.height]) ``` #### File: chillow/view/headless_view.py ```python from chillow.model.game import Game from chillow.view.view import View class HeadlessView(View): """This view may be used when there is no need for any feedback on how the game is progressing. There is no UI and no human player can interact with the game using this view. """ def __init__(self): """Creates a new headless view.""" colors = ['red', 'blue', 'green', 'yellow', 'magenta', 'cyan'] super().__init__(colors) def update(self, game: Game): """See base class.""" pass def read_next_action(self): """See base class.""" pass def end(self): """See base class.""" pass ``` #### File: chillow/view/view.py ```python from abc import ABCMeta, abstractmethod from typing import List, Any from chillow.model.game import Game class View(metaclass=ABCMeta): """Provides an UI to show the game progress.""" def __init__(self, colors: List[Any]): """Creates a new view. Args: colors: A list of values that define colors in the specific view. This may be human readable strings or strings with hex values. The list may not be empty. Raises: AssertionError: The parameter list is empty. """ self._interface_initialized = False self._player_colors = {0: (0, 0, 0)} assert colors is not None and len(colors) > 0, "No colors available for interface" self.__colors = colors @abstractmethod def update(self, game: Game): """Updates the view with the new game state. Args: game: The state of the game that should be shown in the view. """ pass @abstractmethod def read_next_action(self): """Reads the next action to be performed by a human player.""" pass @abstractmethod def end(self): """Performs actions to shut down the view.""" pass def _initialize_interface(self, game: Game): self._interface_initialized = True for i in range(0, len(game.players)): self._player_colors[int(game.players[i].id)] = self.__colors[i % (len(self.__colors) - 1)] ``` #### File: tests/model/test_direction.py ```python import unittest from chillow.model.direction import Direction class DirectionTest(unittest.TestCase): def test_should_have_four_different_directions(self): self.assertEqual(len(Direction), 4) ``` #### File: tests/model/test_game.py ```python import unittest from datetime import datetime, timezone import tests from chillow.model.cell import Cell from chillow.model.direction import Direction from chillow.model.game import Game from chillow.model.player import Player from chillow.exceptions import WrongGameWidthException, WrongGameHeightException, OwnPlayerMissingException, \ PlayerPositionException, PlayerWithGivenIdNotAvailableException from chillow.service.data_loader import JSONDataLoader class GameTest(unittest.TestCase): def test_examines_your_player_after_creation(self): player1 = Player(1, 0, 1, Direction.up, 0, True, "Name 1") player2 = Player(2, 1, 0, Direction.up, 0, True, "Name 2") player3 = Player(3, 0, 0, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [[Cell([player3]), Cell([player2])], [Cell([player1]), Cell()]] game = Game(2, 2, cells, players, 2, True, datetime.now()) self.assertEqual(game.you, player2) def test_raise_exception_on_non_existing_own_player(self): player1 = Player(1, 0, 1, Direction.up, 0, True, "Name 1") player3 = Player(3, 0, 0, Direction.up, 0, True, "Name 3") players = [player1, player3] cells = [[Cell([player3]), Cell([])], [Cell([player1]), Cell()]] with self.assertRaises(OwnPlayerMissingException): Game(2, 2, cells, players, 2, True, datetime.now()) def test_raise_exception_on_wrong_player_position(self): player1 = Player(1, 1, 1, Direction.up, 0, True, "Name 1") player2 = Player(2, 0, 0, Direction.up, 0, True, "Name 2") player3 = Player(3, 0, 1, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [[Cell([player2]), Cell([player3])], [Cell(), Cell([player1])]] with self.assertRaises(PlayerPositionException): Game(2, 2, cells, players, 2, True, datetime.now()) def test_dont_raise_exception_on_wrong_inactive_player_position(self): player1 = Player(1, 1, 1, Direction.up, 0, False, "Name 1") player2 = Player(2, 1, 0, Direction.up, 0, True, "Name 2") player3 = Player(3, 0, 1, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [[Cell([]), Cell([player2])], [Cell([player3]), Cell([player3])]] game = Game(2, 2, cells, players, 2, True, datetime.now()) self.assertEqual(game.you, player2) def test_raise_exception_on_wrong_width(self): cells = [ [ Cell() ], [ Cell(), Cell() ] ] with self.assertRaises(WrongGameWidthException): Game(2, 2, cells, [], 0, True, datetime.now()) def test_raise_exception_on_wrong_height(self): cells = [ [ Cell(), Cell() ] ] with self.assertRaises(WrongGameHeightException): Game(2, 2, cells, [], 0, True, datetime.now()) def test_find_winner_in_ended_game(self): player1 = Player(1, 0, 0, Direction.up, 0, False, "Name") player2 = Player(1, 1, 0, Direction.up, 0, True, "Name") cells = [[Cell([player1]), Cell([player2])]] game = Game(2, 1, cells, [player1, player2], 1, False, datetime.now()) result = game.get_winner() self.assertEqual(player2, result) def test_raise_exception_for_winner_in_running_game(self): player = Player(1, 0, 0, Direction.up, 0, True, "Name") cells = [[Cell([player]), Cell()]] game = Game(2, 1, cells, [player], 1, True, datetime.now()) with self.assertRaises(Exception): game.get_winner() def test_return_no_winner_in_ended_game(self): player1 = Player(1, 0, 0, Direction.up, 0, False, "Name") player2 = Player(1, 1, 0, Direction.up, 0, False, "Name") cells = [[Cell([player1]), Cell([player2])]] game = Game(2, 1, cells, [player1, player2], 1, False, datetime.now()) result = game.get_winner() self.assertEqual(None, result) def test_player_with_id_should_be_returned(self): player1 = Player(1, 0, 0, Direction.up, 0, True, "Name") player2 = Player(2, 1, 0, Direction.up, 0, True, "Name") cells = [[Cell([player1]), Cell([player2])]] game = Game(2, 1, cells, [player1, player2], 1, True, datetime.now()) self.assertEqual(player1, game.get_player_by_id(1)) def test_raise_exception_when_player_id_invalid(self): player1 = Player(1, 1, 0, Direction.up, 0, True, "Name") player2 = Player(2, 0, 0, Direction.up, 0, True, "Name") cells = [[Cell([player2]), Cell([player1])]] game = Game(2, 1, cells, [player1, player2], 1, True, datetime.now()) with self.assertRaises(PlayerWithGivenIdNotAvailableException): game.get_player_by_id(100) def test_return_all_other_players(self): player1 = Player(1, 1, 1, Direction.up, 0, True, "Name 1") player2 = Player(2, 1, 0, Direction.up, 0, True, "Name 2") player3 = Player(3, 0, 0, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [[Cell([player3]), Cell([player2])], [Cell([]), Cell([player1])]] game = Game(2, 2, cells, players, 2, True, datetime.now()) result = game.get_other_player_ids(player2) self.assertEqual([1, 3], result) def test_return_all_other_active_players(self): player1 = Player(1, 1, 1, Direction.up, 0, True, "Name 1") player2 = Player(2, 1, 0, Direction.up, 0, False, "Name 2") player3 = Player(3, 0, 0, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [[Cell([player3]), Cell([player2])], [Cell([]), Cell([player1])]] game = Game(2, 2, cells, players, 1, True, datetime.now()) result = game.get_other_player_ids(player1, check_active=True) self.assertEqual([3], result) def test_return_all_players_except_one_within_distance_1(self): player1 = Player(1, 3, 3, Direction.up, 0, True, "Name 1") player2 = Player(2, 1, 3, Direction.up, 0, True, "Name 2") player3 = Player(3, 0, 0, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [ [Cell([player3]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell([player2]), Cell(), Cell([player1]), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()] ] game = Game(5, 5, cells, players, 1, True, datetime.now()) result = game.get_other_player_ids(player1, 2) self.assertEqual([2], result) def test_return_all_players_except_one_within_distance_2(self): player1 = Player(1, 4, 4, Direction.up, 0, True, "Name 1") player2 = Player(2, 2, 3, Direction.up, 0, True, "Name 2") player3 = Player(3, 1, 4, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [ [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player3]), Cell([player2]), Cell(), Cell([player1])] ] game = Game(5, 5, cells, players, 1, True, datetime.now()) result = game.get_other_player_ids(player1, 3) self.assertEqual([2], result) def test_return_no_player_who_is_not_reachable(self): player1 = Player(1, 4, 4, Direction.up, 0, True, "Name 1") player2 = Player(2, 2, 3, Direction.up, 0, True, "Name 2") player3 = Player(3, 1, 4, Direction.up, 0, True, "Name 3") players = [player1, player2, player3] cells = [ [Cell(), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player3]), Cell([player2]), Cell(), Cell([player1])] ] game = Game(5, 5, cells, players, 1, True, datetime.now()) result = game.get_other_player_ids(player1, 3) self.assertEqual([2], result) def test_translate_cell_matrix_to_pathfinding_matrix_should_be_correct(self): player1 = Player(1, 0, 0, Direction.up, 1, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell([player1]), Cell()], [Cell([player2]), Cell()], [Cell(), Cell()]] game = Game(2, 3, cells, players, 2, True, datetime.now()) expected_matrix = [[0, 1], [0, 1], [1, 1]] matrix = game.translate_cell_matrix_to_pathfinding_matrix() self.assertEqual(matrix, expected_matrix) def test_copying_a_game_should_return_same_game_but_different_identity(self): player1 = Player(1, 1, 1, Direction.up, 0, True, "Name") player2 = Player(2, 1, 0, Direction.up, 0, True, "Name2") player3 = Player(3, 0, 0, Direction.up, 0, True, "Name3") players = [player1, player2, player3] cells = [[Cell([player3]), Cell([player2])], [Cell([]), Cell([player1])]] game = Game(2, 2, cells, players, 2, True, datetime.now()) result = game.copy() self.assertEqual(game, result) self.assertNotEqual(id(game), id(result)) def test_normalize_game_deadline_1(self): server_time = datetime(2020, 11, 20, 10, 33, 11, 0, timezone.utc) own_time = datetime(2020, 11, 20, 10, 33, 12, 941748, timezone.utc) game = JSONDataLoader().load(tests.read_test_file("model/game_1.json")) game.deadline = datetime(2020, 11, 20, 10, 33, 18, 0, timezone.utc) expected = datetime(2020, 11, 20, 10, 33, 19, 941748, timezone.utc) game.normalize_deadline(server_time, own_time) self.assertEqual(expected, game.deadline) def test_normalize_game_deadline_2(self): server_time = datetime(2020, 11, 20, 10, 33, 12, 941748, timezone.utc) own_time = datetime(2020, 11, 20, 10, 33, 11, 0, timezone.utc) game = JSONDataLoader().load(tests.read_test_file("model/game_1.json")) game.deadline = datetime(2020, 11, 20, 10, 33, 18, 941748, timezone.utc) expected = datetime(2020, 11, 20, 10, 33, 17, 0, timezone.utc) game.normalize_deadline(server_time, own_time) self.assertEqual(expected, game.deadline) ``` #### File: service/ai/test_not_killing_itself_ai.py ```python import unittest from datetime import datetime, timezone from typing import List from chillow.service.ai.not_killing_itself_ai import NotKillingItselfAI from chillow.model.action import Action from chillow.model.cell import Cell from chillow.model.direction import Direction from chillow.model.game import Game from chillow.model.player import Player from chillow.service.game_service import GameService class NotKillingItselfAITest(unittest.TestCase): def test_ai_should_choose_the_own_non_killing_itself_action(self): player1 = Player(1, 0, 0, Direction.up, 1, True, "") player2 = Player(2, 4, 4, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell([player1]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell([player2])]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself(self): player1 = Player(1, 0, 1, Direction.up, 1, True, "") player2 = Player(2, 4, 4, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell([player2])]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.change_nothing in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself2(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell([player2]), Cell(), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.turn_left in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself_in_turn_6(self): player1 = Player(1, 0, 4, Direction.up, 3, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) game_service.turn.turn_ctr = 6 sut = NotKillingItselfAI(player1, [], 4, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 1) self.assertTrue(Action.slow_down in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(Action.speed_up in actions) self.assertTrue(len(actions) == 3) def test_ai_should_not_choose_speed_up_if_max_speed_is_allready_reached(self): MAX_SPEED = 3 player1 = Player(1, 0, 4, Direction.up, MAX_SPEED, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], MAX_SPEED, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 1) self.assertTrue(Action.slow_down in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) def test_ai_should_calc_action_with_max_distance(self): player1 = Player(1, 0, 4, Direction.up, 1, True, "") player2 = Player(2, 0, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.calc_action_with_max_distance_to_visited_cells(game_service, [Action.speed_up, Action.change_nothing, Action.turn_right]) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_calc_all_action_with_max_distance_with_max_worse_distance(self): MAX_WORSE_DISTANCE = 1 player1 = Player(1, 0, 4, Direction.up, 1, True, "") player2 = Player(2, 4, 4, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player1]), Cell(), Cell(), Cell(), Cell([player2])]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, MAX_WORSE_DISTANCE, 3) actions: List[Action] = sut.calc_action_with_max_distance_to_visited_cells(game_service, [Action.speed_up, Action.change_nothing, Action.turn_right]) self.assertTrue(Action.speed_up in actions) self.assertTrue(Action.change_nothing in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 3) def test_get_information(self): player = Player(1, 0, 4, Direction.up, 1, True, "") sut = NotKillingItselfAI(player, [], 3, 1, 3) expected = "max_speed=3, max_worse_distance=1, depth=3" result = sut.get_information() self.assertEqual(expected, result) def test_ai_should_choose_the_correct_list_of_actions_non_killing_itself_with_depth_greater_than_one(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell(), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell(), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 2) actions: List[Action] = sut.find_surviving_actions(game_service, 2) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_empty_list_with_depth_greater_than_one_and_no_surviving_action(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell([player2]), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 2) actions: List[Action] = sut.find_surviving_actions(game_service, 2) self.assertTrue(len(actions) == 0) def test_ai_should_choose_correct_list_with_depth_three_and_surviving_action(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell(), Cell(), Cell()], [Cell(), Cell(), Cell(), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_empty_list_with_depth_three_and_no_surviving_action(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell([player2]), Cell(), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 3) actions: List[Action] = sut.find_surviving_actions(game_service, 3) self.assertTrue(len(actions) == 0) def test_ai_should_choose_best_list_of_actions_by_depth_from_lower_depth(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell([player2]), Cell(), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 5) actions: List[Action] = sut.find_surviving_actions_with_best_depth(game_service) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_best_list_of_actions_by_depth(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell(), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 5) actions: List[Action] = sut.find_surviving_actions_with_best_depth(game_service) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 1) def test_ai_should_choose_best_list_of_actions_in_lowest_possible_depth(self): player1 = Player(1, 1, 2, Direction.up, 1, True, "") player2 = Player(2, 1, 1, Direction.down, 3, True, "") players = [player1, player2] cells = [[Cell(), Cell(), Cell(), Cell(), Cell()], [Cell([player2]), Cell([player2]), Cell([player2]), Cell(), Cell()], [Cell(), Cell([player1]), Cell(), Cell([player2]), Cell()], [Cell([player2]), Cell(), Cell([player2]), Cell([player2]), Cell()], [Cell(), Cell(), Cell([player2]), Cell(), Cell()]] time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) game = Game(5, 5, cells, players, 2, True, time) game_service = GameService(game) sut = NotKillingItselfAI(player1, [], 3, 0, 5) actions: List[Action] = sut.find_surviving_actions_with_best_depth(game_service) self.assertTrue(Action.turn_left in actions) self.assertTrue(Action.turn_right in actions) self.assertTrue(len(actions) == 2) ``` #### File: service/ai/test_search_tree_pathfinding_ai.py ```python import unittest from multiprocessing import Value import tests from chillow.service.ai.search_tree_pathfinding_ai import SearchTreePathfindingAI from chillow.model.action import Action from chillow.service.data_loader import JSONDataLoader class SearchTreePathfindingAITest(unittest.TestCase): def setUp(self): self.data_loader = JSONDataLoader() def test_should_select_action_to_let_player_survive_next_two_rounds(self): game = self.data_loader.load(tests.read_test_file("ai/game_4.json")) sut = SearchTreePathfindingAI(game.you, 3, 100, 2) result = Value('i') sut.create_next_action(game, result) self.assertEqual(Action.turn_left, Action.get_by_index(result.value)) def test_should_select_action_of_pathfinding_ai_if_surviving_next_two_rounds_is_not_possible(self): game = self.data_loader.load(tests.read_test_file("ai/game_5.json")) sut = SearchTreePathfindingAI(game.you, 3, 50, 10) result = Value('i') sut.create_next_action(game, result) self.assertEqual(Action.turn_right, Action.get_by_index(result.value)) def test_should_select_default_action(self): game = self.data_loader.load(tests.read_test_file("ai/game_6.json")) sut = SearchTreePathfindingAI(game.you, 3, 50, 10) result = Value('i') sut.create_next_action(game, result) self.assertEqual(Action.get_default(), Action.get_by_index(result.value)) def test_get_information(self): game = self.data_loader.load(tests.read_test_file("ai/game_4.json")) sut = SearchTreePathfindingAI(game.you, 3, 100, 2, 5) expected = "max_speed=3, count_paths_to_check=100, depth=2, distance_to_check=5" result = sut.get_information() self.assertEqual(expected, result) ``` #### File: tests/service/test_game_service.py ```python import unittest from datetime import datetime, timezone from chillow.service.game_service import GameService from chillow.model.action import Action from chillow.model.cell import Cell from chillow.model.direction import Direction from chillow.model.game import Game from chillow.model.player import Player class GameTest(unittest.TestCase): def setUp(self): self.player1 = Player(1, 10, 10, Direction.down, 1, True, "") self.player2 = Player(2, 10, 30, Direction.down, 3, True, "") self.player3 = Player(3, 30, 10, Direction.right, 2, True, "Name 3") players = [self.player1, self.player2, self.player3] cells = [[Cell() for _ in range(40)] for _ in range(40)] cells[self.player1.y][self.player1.x] = Cell([self.player1]) cells[self.player2.y][self.player2.x] = Cell([self.player2]) cells[self.player3.y][self.player3.x] = Cell([self.player3]) time = datetime(2020, 10, 1, 12, 5, 13, 0, timezone.utc) self.game = Game(40, 40, cells, players, 2, True, time) self.sut = GameService(self.game) def test_game_should_end_when_less_than_two_players_are_left(self): self.player1.active = False self.player2.active = False self.assertEqual(self.sut.is_game_running(), False) def test_game_should_not_end_when_more_than_one_players_are_left(self): self.player1.active = False self.assertEqual(self.sut.is_game_running(), True) def test_player_should_loose_if_he_did_more_than_one_action_in_one_round(self): self.sut.do_action(self.player1, Action.speed_up) self.sut.do_action(self.player1, Action.speed_up) self.assertEqual(self.player1.active, False) def test_player_should_not_loose_if_he_did_exactly_one_action_in_one_round(self): self.sut.do_action(self.player1, Action.speed_up) self.assertEqual(self.player1.active, True) def test_visited_cells_should_be_calculated_correctly_turn_1_to_5(self): self.player1.direction = Direction.down self.player1.speed = 1 player1_x = self.player1.x player1_y = self.player1.y self.game.cells[self.player1.y][self.player1.x] = Cell([self.player1]) self.player2.direction = Direction.up self.player2.speed = 3 player2_x = self.player2.x player2_y = self.player2.y self.game.cells[self.player2.y][self.player2.x] = Cell([self.player2]) self.player3.direction = Direction.down self.player3.speed = 5 player3_x = self.player3.x player3_y = self.player3.y self.game.cells[self.player3.y][self.player3.x] = Cell([self.player3]) visited_cells_p1_expected = [(player1_x, player1_y + 1), (player1_x, player1_y + 2)] visited_cells_p2_expected = [(player2_x, player2_y - 1), (player2_x, player2_y - 2)] visited_cells_p3_expected = [(player3_x + 1, player3_y), (player3_x + 2, player3_y), (player3_x + 3, player3_y), (player3_x + 4, player3_y), (player3_x + 5, player3_y)] visited_cells_p1 = self.sut.get_and_visit_cells(self.player1, Action.speed_up) visited_cells_p2 = self.sut.get_and_visit_cells(self.player2, Action.slow_down) visited_cells_p3 = self.sut.get_and_visit_cells(self.player3, Action.turn_left) self.assertEqual(visited_cells_p1_expected, visited_cells_p1) self.assertEqual(visited_cells_p2_expected, visited_cells_p2) self.assertEqual(visited_cells_p3_expected, visited_cells_p3) self.assertTrue(self.player1 in self.game.cells[player1_y + 1][player1_x].players) self.assertTrue(self.player1 in self.game.cells[player1_y + 2][player1_x].players) self.assertTrue(self.player2 in self.game.cells[player2_y - 2][player2_x].players) self.assertTrue(self.player2 in self.game.cells[player2_y - 2][player2_x].players) self.assertTrue(self.player3 in self.game.cells[player3_y][player3_x + 1].players) self.assertTrue(self.player3 in self.game.cells[player3_y][player3_x + 2].players) self.assertTrue(self.player3 in self.game.cells[player3_y][player3_x + 3].players) self.assertTrue(self.player3 in self.game.cells[player3_y][player3_x + 4].players) self.assertTrue(self.player3 in self.game.cells[player3_y][player3_x + 5].players) def test_visited_cells_should_be_calculated_correctly_turn_6(self): self.sut.turn.turn_ctr = 12 # 6, 12, 18 should all work self.player1.direction = Direction.down self.player1.speed = 1 player1_x = self.player1.x player1_y = self.player1.y self.game.cells[10][10] = Cell([self.player1]) self.player2.direction = Direction.up self.player2.speed = 5 player2_x = self.player2.x player2_y = self.player2.y self.game.cells[10][30] = Cell([self.player2]) visited_cells_p1_expected = [(player1_x, player1_y + 1), (player1_x, player1_y + 2)] visited_cells_p2_expected = [(player2_x, player2_y - 1), (player2_x, player2_y - 6)] visited_cells_p1 = self.sut.get_and_visit_cells(self.player1, Action.speed_up) visited_cells_p2 = self.sut.get_and_visit_cells(self.player2, Action.speed_up) self.assertEqual(visited_cells_p1_expected, visited_cells_p1) self.assertEqual(visited_cells_p2_expected, visited_cells_p2) self.assertTrue(self.player1 in self.game.cells[player1_y + 1][player1_x].players) self.assertTrue(self.player1 in self.game.cells[player1_y + 2][player1_x].players) self.assertTrue(self.player2 in self.game.cells[player2_y - 1][player2_x].players) self.assertTrue(self.player2 in self.game.cells[player2_y - 6][player2_x].players) def test_game_cells_should_be_correct_after_collision(self): self.player1.direction = Direction.left self.player1.speed = 4 self.player1.x = 2 self.player1.y = 0 self.game.cells[self.player1.y][self.player1.x] = Cell([self.player1]) self.game.cells[self.player1.y][1] = Cell([self.player1]) self.sut.get_and_visit_cells(self.player1, Action.speed_up) self.assertEqual(self.player1.x, 0) self.assertEqual(self.player1.y, 0) self.assertTrue(self.player1 in self.game.cells[0][0].players) self.assertTrue(self.player1 in self.game.cells[0][1].players) self.assertTrue(self.player1 in self.game.cells[0][2].players) def test_visited_cells_should_be_correct_after_collision(self): self.player1.direction = Direction.left self.player1.speed = 4 self.player1.x = 2 self.player1.y = 0 self.game.cells[self.player1.y][self.player1.x] = Cell([self.player1]) self.game.cells[self.player1.y][1] = Cell([self.player1]) visited_cells = self.sut.get_and_visit_cells(self.player1, Action.speed_up) self.assertEqual(self.player1.x, 0) self.assertEqual(self.player1.y, 0) self.assertTrue((0, 0) in visited_cells) self.assertTrue((1, 0) in visited_cells) def test_playerX_playerY_should_be_correct_after_collision(self): self.player1.direction = Direction.left self.player1.speed = 2 self.player1.x = 1 self.player1.y = 0 self.game.cells[self.player1.y][self.player1.x] = Cell([self.player1]) self.sut.get_and_visit_cells(self.player1, Action.speed_up) self.assertEqual(self.player1.x, 0) self.assertEqual(self.player1.y, 0) def test_playerX_playerY_should_be_correct_without_collision(self): self.player1.direction = Direction.left self.player1.speed = 2 self.player1.x = 10 self.player1.y = 0 self.game.cells[self.player1.y][self.player1.x] = Cell([self.player1]) self.sut.get_and_visit_cells(self.player1, Action.change_nothing) self.assertEqual(self.player1.x, 8) self.assertEqual(self.player1.y, 0) def test_correct_multiplier_should_be_returned_direction_up(self): self.player1.direction = Direction.up self.assertEqual((0, -1), self.sut.get_horizontal_and_vertical_multiplier(self.player1)) def test_correct_multiplier_should_be_returned_direction_down(self): self.player1.direction = Direction.down self.assertEqual((0, 1), self.sut.get_horizontal_and_vertical_multiplier(self.player1)) def test_correct_multiplier_should_be_returned_direction_left(self): self.player1.direction = Direction.left self.assertEqual((-1, 0), self.sut.get_horizontal_and_vertical_multiplier(self.player1)) def test_correct_multiplier_should_be_returned_direction_right(self): self.player1.direction = Direction.right self.assertEqual((1, 0), self.sut.get_horizontal_and_vertical_multiplier(self.player1)) ``` #### File: tests/view/test_graphical_view.py ```python import io import unittest from datetime import datetime from unittest.mock import Mock, ANY, call, patch from chillow.model.action import Action from chillow.model.cell import Cell from chillow.model.direction import Direction from chillow.model.game import Game from chillow.model.player import Player from chillow.view.graphical_view import GraphicalView pygame_mock = Mock() class GraphicalViewTest(unittest.TestCase): def setUp(self) -> None: self.sut = GraphicalView(pygame_mock) mock_event = Mock() mock_event.type = pygame_mock.KEYDOWN = 1 pygame_mock.event.get.return_value = [mock_event] pygame_mock.K_UP = 0 pygame_mock.K_DOWN = 1 pygame_mock.K_RIGHT = 2 pygame_mock.K_LEFT = 3 pygame_mock.K_SPACE = 4 pygame_mock.key.get_pressed.return_value = [False for _ in range(pygame_mock.K_SPACE + 1)] def test_draws_all_players_correctly(self): player1 = Player(1, 0, 0, Direction.up, 1, True, "p1") player2 = Player(2, 0, 1, Direction.down, 3, True, "") cells = [[Cell([player1]), Cell([player1])], [Cell([player2]), Cell()]] game = Game(2, 2, cells, [player1, player2], 2, True, datetime.now()) expected_calls = [ call(ANY, (255, 61, 0), (0, 0, 10, 10)), call(ANY, (0, 0, 0), (2, 2, 6, 6)), call(ANY, (255, 61, 0), (11, 0, 10, 10)), call(ANY, (156, 204, 101), (0, 11, 10, 10)), call(ANY, (0, 0, 0), (4, 15, 2, 2)), call(ANY, (0, 0, 0), (11, 11, 10, 10)) ] self.sut.update(game) pygame_mock.init.assert_called_once() pygame_mock.draw.rect.assert_has_calls(expected_calls, any_order=False) @patch('sys.stdout', new_callable=io.StringIO) def test_draws_all_players_correctly_in_ended_game_no_winner(self, mock_stdout): player1 = Player(1, 0, 0, Direction.up, 1, False, "p1") player2 = Player(2, 0, 1, Direction.down, 3, False, "") cells = [[Cell([player1]), Cell([player1])], [Cell([player2]), Cell()]] game = Game(2, 2, cells, [player1, player2], 2, False, datetime.now()) self.sut.update(game) self.assertTrue("No winner in game." in str(mock_stdout.getvalue())) @patch('sys.stdout', new_callable=io.StringIO) def test_draws_all_players_correctly_in_ended_game_with_winner(self, mock_stdout): player1 = Player(1, 1, 0, Direction.up, 1, True, "Jonas") player2 = Player(2, 0, 1, Direction.down, 3, False, "Florian") cells = [[Cell(), Cell([player1])], [Cell([player2]), Cell()]] game = Game(2, 2, cells, [player1, player2], 2, False, datetime.now()) self.sut.update(game) self.assertTrue("Winner: Player 1 (Jonas). Your player ID was 2." in str(mock_stdout.getvalue())) @patch('sys.exit') @patch('time.sleep') def test_end_view(self, sys_exit, time_sleep): self.sut.end() pygame_mock.display.quit.assert_called_once() pygame_mock.quit.assert_called_once() def test_read_next_action_should_return_correct_action_input_up(self): pygame_mock.key.get_pressed.return_value[pygame_mock.K_UP] = True self.assertEqual(Action.speed_up, self.sut.read_next_action()) def test_read_next_action_should_return_correct_action_input_down(self): pygame_mock.key.get_pressed.return_value[pygame_mock.K_DOWN] = True self.assertEqual(Action.slow_down, self.sut.read_next_action()) def test_read_next_action_should_return_correct_action_input_right(self): pygame_mock.key.get_pressed.return_value[pygame_mock.K_RIGHT] = True self.assertEqual(Action.turn_right, self.sut.read_next_action()) def test_read_next_action_should_return_correct_action_input_left(self): pygame_mock.key.get_pressed.return_value[pygame_mock.K_LEFT] = True self.assertEqual(Action.turn_left, self.sut.read_next_action()) def test_read_next_action_should_return_correct_action_input_space(self): pygame_mock.key.get_pressed.return_value[pygame_mock.K_SPACE] = True self.assertEqual(Action.change_nothing, self.sut.read_next_action()) @patch('sys.exit') @patch('time.sleep') def test_read_next_action_should_return_correct_action_input_close(self, sys_exit, time_sleep): mock_event = Mock() mock_event.type = pygame_mock.QUIT = 2 pygame_mock.event.get.return_value = [mock_event] result = self.sut.read_next_action() self.assertEqual(Action.get_default(), result) pygame_mock.display.quit.assert_called() pygame_mock.quit.assert_called() ```
{ "source": "JonasHell/torch-em", "score": 2 }
#### File: dsb/spoco/train_spoco.py ```python import torch import torch_em import torch_em.loss.spoco_loss as spoco from torch_em.model import UNet2d from torch_em.data.datasets import get_dsb_loader from torch_em.trainer.spoco_trainer import SPOCOTrainer def train_boundaries(args): model = UNet2d(in_channels=1, out_channels=8, initial_features=64) patch_shape = (1, 256, 256) train_loader = get_dsb_loader( args.input, patch_shape, split="train", download=True, batch_size=args.batch_size, label_dtype=torch.int64, label_transform=torch_em.transform.label_consecutive, num_workers=4, ) val_loader = get_dsb_loader( args.input, patch_shape, split="test", batch_size=args.batch_size, label_dtype=torch.int64, label_transform=torch_em.transform.label_consecutive, num_workers=4, ) delta_var = 0.75 delta_dist = 2.0 pmaps_threshold = 0.9 aux_loss = "dice" loss = spoco.SPOCOLoss(delta_var, delta_dist, aux_loss=aux_loss) metric = spoco.SPOCOMetric(delta_dist, pmaps_threshold=pmaps_threshold) trainer = torch_em.default_segmentation_trainer( name="dsb-spoco-model", model=model, train_loader=train_loader, val_loader=val_loader, loss=loss, metric=metric, learning_rate=1e-4, device=args.device, mixed_precision=True, log_image_interval=50, trainer_class=SPOCOTrainer, ) trainer.fit(iterations=args.n_iterations) if __name__ == '__main__': parser = torch_em.util.parser_helper(default_batch_size=8) args = parser.parse_args() train_boundaries(args) ``` #### File: experiments/epithelia/export_bioimageio_model.py ```python import z5py from torch_em.util import export_bioimageio_model, get_default_citations, export_parser_helper def _load_data(): path = "/g/kreshuk/pape/Work/data/epethelia/test/per02_100.zarr" with z5py.File(path, "r") as f: raw = f["raw"][:] return raw def export_to_bioimageio(checkpoint, output): input_data = _load_data() postprocessing = None offsets = [ [-1, 0], [0, -1], [-3, 0], [0, -3], [-9, 0], [0, -9], [-27, 0], [0, -27] ] config = {"mws": {"offsets": offsets}} name = "EpitheliaAffinityModel" tags = ["u-net", "segmentation"] cite = get_default_citations(model="UNet2d", model_output="affinities") doc = "Affinity prediction for epithelia cells" export_bioimageio_model( checkpoint, output, input_data, name=name, authors=[{"name": "<NAME>; @constantinpape"}], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, config=config ) if __name__ == "__main__": parser = export_parser_helper() args = parser.parse_args() export_to_bioimageio(args.checkpoint, args.output) ``` #### File: experiments/livecell/check_dataset.py ```python from torch_em.data.datasets.livecell import get_livecell_loader from torch_em.util.debug import check_loader PATH = "/home/pape/Work/data/livecell" def check_livecell_size(): patch_shape = (512, 512) loader = get_livecell_loader(PATH, patch_shape, "train", download=True, batch_size=1) print("Training images:", len(loader.dataset)) loader = get_livecell_loader(PATH, patch_shape, "val", download=True, batch_size=1) print("Val images:", len(loader.dataset)) def check_livecell_images(): patch_shape = (512, 512) loader = get_livecell_loader(PATH, patch_shape, "train", download=True, batch_size=1) check_loader(loader, 10, instance_labels=True) # NOTE: # - Tischi had a problem containing similar data # - overlapping instances! are not reflected in the current label processing! # - there seem to be quite a lot of cells not captured in the segmentation labels if __name__ == "__main__": check_livecell_size() check_livecell_images() ``` #### File: experiments/livecell/validate_model.py ```python import argparse import os from glob import glob from pathlib import Path import imageio import h5py import pandas as pd from bioimageio.core import load_resource_description from bioimageio.core.prediction import predict_with_padding from bioimageio.core.prediction_pipeline import create_prediction_pipeline from elf.evaluation import mean_average_precision from torch_em.util.segmentation import (connected_components_with_boundaries, mutex_watershed, size_filter) from tqdm import tqdm from xarray import DataArray try: import napari except ImportError: napari = None def segment(prediction_pipeline, path, out_path, view, offsets=None, strides=None, min_seg_size=50): image = imageio.imread(path) assert image.ndim == 2 input_ = DataArray(image[None, None], dims=prediction_pipeline.input_specs[0].axes) padding = {"x": 16, "y": 16} prediction = predict_with_padding(prediction_pipeline, input_, padding)[0][0] foreground, prediction = prediction[0], prediction[1:] if offsets is None: assert prediction.shape[0] == 1, f"{prediction.shape}" prediction = prediction[0] assert foreground.shape == prediction.shape seg = connected_components_with_boundaries(foreground, prediction) else: assert len(offsets) == prediction.shape[0] mask = foreground > 0.5 seg = mutex_watershed(prediction, offsets, mask=mask, strides=strides) seg = size_filter(seg, min_seg_size, hmap=prediction, with_background=True) # implement more postprocessing? # - merge noisy foreground prediction (that only have very weak boundary predictions) into the background if out_path is not None: with h5py.File(out_path, "w") as f: f.create_dataset("prediction", data=prediction, compression="gzip") f.create_dataset("foreground", data=foreground, compression="gzip") f.create_dataset("segmentation", data=seg, compression="gzip") if view: assert napari is not None v = napari.Viewer() v.add_image(image) v.add_image(foreground) v.add_image(prediction) v.add_labels(seg) napari.run() return seg def validate(seg, gt_path): gt = imageio.imread(gt_path) assert gt.shape == seg.shape map_, scores = mean_average_precision(seg, gt, return_aps=True) # map, iou50, iou75, iou90 return [map_, scores[0], scores[5], scores[-1]] def run_prediction(model_path, input_files, target_files, output_folder, view, min_seg_size, device): model = load_resource_description(model_path) offsets, strides = None, None if "mws" in model.config: offsets = model.config["mws"]["offsets"] strides = [4, 4] if output_folder is not None: os.makedirs(output_folder, exist_ok=True) validation_results = [] devices = None if device is None else [device] with create_prediction_pipeline(bioimageio_model=model, devices=devices) as pp: for in_path, target_path in tqdm(zip(input_files, target_files), total=len(input_files)): fname = str(Path(in_path).stem) out_path = None if output_folder is None else os.path.join(output_folder, f"{fname}.h5") seg = segment(pp, in_path, out_path, view, offsets=offsets, strides=strides, min_seg_size=min_seg_size) if target_path: val = validate(seg, target_path) validation_results.append([fname] + val) if validation_results: cols = ["name", "mAP", "IoU50", "IoU75", "IoU90"] validation_results = pd.DataFrame(validation_results, columns=cols) print("Validation results averaged over all", len(input_files), "images:") print(validation_results[cols[1:]].mean(axis=0)) return validation_results # TODO needs update for live-cell data structure def _load_data(input_folder, ext): input_data = glob(os.path.join(input_folder, "images", f"*.{ext}")) input_data.sort() if os.path.exists(os.path.join(input_folder, "masks")): input_target = glob(os.path.join(input_folder, "masks", f"*.{ext}")) input_target.sort() else: input_target = [None] * len(input_data) assert len(input_data) == len(input_target) return input_data, input_target def main(): parser = argparse.ArgumentParser( "Run prediction and segmentation with a bioimagie.io model and save or validate the results." "If 'output_folder' is passed, the results will be saved as hdf5 files with keys:" "prediction: the affinity or boundary predictions" "foreground: the foreground predictions" "segmentation: the nucleus instance segmentation" ) parser.add_argument("-m", "--model", required=True, help="Path to the bioimage.io model.") parser.add_argument("-i", "--input_folder", required=True, help="The root input folder with subfolders 'images' and (optionally) 'masks'") parser.add_argument("--ext", default="tif", help="The file extension of the input files.") parser.add_argument("-o", "--output_folder", default=None, help="Where to save the results.") parser.add_argument("-v", "--view", default=0, help="Whether to show segmentation results (needs napari).", type=int) parser.add_argument("--min_seg_size", default=25, type=int) parser.add_argument("--device", default=None, help="The device used for inference.") parser.add_argument("--save_path", "-s", default=None, help="Where to save a csv with the validation results.") args = parser.parse_args() input_files, target_files = _load_data(args.input_folder, args.ext) res = run_prediction(args.model, input_files, target_files, args.output_folder, view=bool(args.view), min_seg_size=args.min_seg_size, device=args.device) if args.save_path is not None: assert res is not None res.to_csv(args.save_path, index=False) if __name__ == "__main__": main() ``` #### File: mito-em/challenge/segment_and_validate.py ```python import os import numpy as np import pandas as pd import z5py from segmentation_impl import segment_with_affinities, segment_with_boundaries def compute_summaries(metric): def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100): p = metric.params aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] if ap == 1: # dimension of precision: [TxRxKxAxM] s = metric.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, aind] else: # dimension of recall: [TxKxAxM] s = metric.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, aind] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s = np.mean(s[s > -1]) return mean_s def _summarizeDets(): stats = np.zeros(6) names = ['mean_ap', 'ap-.5', 'ap-.75', 'ap-.75_small', 'ap-.75_medium', 'ap-.75_large'] stats[0] = _summarize(1) stats[1] = _summarize(1, iouThr=.5) stats[2] = _summarize(1, iouThr=.75) stats[3] = _summarize(1, areaRng='small', iouThr=.75) stats[4] = _summarize(1, areaRng='medium', iouThr=.75) stats[5] = _summarize(1, areaRng='large', iouThr=.75) return names, stats if not metric.eval: raise Exception('Please run accumulate() first') return _summarizeDets() # the code looks pretty inefficient, I can probably compute the # same with elf / cluster_tools stuff and do it out of core def map3d_impl(seg, gt): from map3d.vol3d_eval import VOL3Deval from map3d.vol3d_util import seg_iou3d_sorted ui, uc = np.unique(seg, return_counts=True) uc = uc[ui > 0] ui = ui[ui > 0] pred_score = np.ones((len(ui), 2), int) pred_score[:, 0] = ui pred_score[:, 1] = uc thres = [5e3, 1.5e4] area_rng = np.zeros((len(thres) + 2, 2), int) area_rng[0, 1] = 1e10 area_rng[-1, 1] = 1e10 area_rng[2:, 0] = thres area_rng[1:-1, 1] = thres result_p, result_fn, pred_score_sorted = seg_iou3d_sorted(seg, gt, pred_score, area_rng) v3dEval = VOL3Deval(result_p, result_fn, pred_score_sorted) v3dEval.params.areaRng = area_rng v3dEval.accumulate() v3dEval.summarize() names, stats = compute_summaries(v3dEval) return names, stats def validate(checkpoint, sample, seg_name, seg_key): print("Validating", sample, seg_key, "...") path = f'./data/{sample}.n5' labels_key = 'labels' name = os.path.split(checkpoint)[1] bb = np.s_[:] # bb = np.s_[:25, :256, :256] with z5py.File(path, 'r') as f: ds_labels = f[labels_key] ds_labels.n_threads = 16 ds_seg = f[seg_key] ds_seg.n_threads = 16 labels = ds_labels[bb] seg = ds_seg[bb] names, stats = map3d_impl(labels, seg) data = np.array([name, sample, seg_name] + stats.tolist()) result_table = './validation_results.csv' if os.path.exists(result_table): results = pd.read_csv(result_table) results = results.append(pd.DataFrame(data[None], columns=results.columns)) else: columns = ['network', 'sample', 'method'] + names results = pd.DataFrame(data[None], columns=columns) results.to_csv(result_table, index=False) def prep_affinity_cache(checkpoint, sample): checkpoint_name = os.path.split(checkpoint)[1] tmp_folder = os.path.join('./tmp_folders', f'tmp_{checkpoint_name}_{sample}_mws') os.makedirs(tmp_folder, exist_ok=True) inference_log = os.path.join(tmp_folder, 'inference.log') with open(inference_log, 'w'): pass def segment_and_validate(checkpoint, samples, target, beta, gpus, only_prediction=False, gpu_type='2080Ti'): checkpoint_name = os.path.split(checkpoint)[1] is_affinity_model = 'affinity' in checkpoint_name for sample in samples: segment_with_boundaries(sample, checkpoint, target=target, beta=beta, gpus=gpus, only_prediction=only_prediction, gpu_type=gpu_type, is_affinity_model=is_affinity_model) if only_prediction: continue if is_affinity_model: prep_affinity_cache(checkpoint, sample) segment_with_affinities(sample, checkpoint, target, gpus, gpu_type=gpu_type) validate(checkpoint, sample, seg_name='multicut', seg_key=f'segmentation/{checkpoint_name}/multicut_postprocessed') if is_affinity_model: validate(checkpoint, sample, seg_name='mutex_watershed', seg_key=f'segmentation/{checkpoint_name}/mutex_watershed_postprocessed') def val_v1(): checkpoints = ['./checkpoints/affinity_model_large_human_rat', './checkpoints/affinity_model_large_train_on_val_human_rat'] # checkpoints = ['./checkpoints/affinity_model_default_human_rat'] samples = ['human_val', 'rat_val'] beta = .5 target = 'local' only_prediction = False gpus = list(range(2)) gpu_type = 'A100' # gpus = [1, 2, 3, 5] # gpu_type = '2080Ti' for checkpoint in checkpoints: segment_and_validate(checkpoint, samples, target, beta, gpus=gpus, only_prediction=only_prediction, gpu_type=gpu_type) if __name__ == '__main__': val_v1() ``` #### File: experiments/mito-em/export_bioimageio_model.py ```python import os from elf.io import open_file from torch_em.data.datasets import get_bioimageio_dataset_id from torch_em.util import (add_weight_formats, export_parser_helper, export_bioimageio_model, get_default_citations, get_training_summary) def _get_name_and_description(is_aff): name = "MitochondriaEMSegmentation" if is_aff: name += "AffinityModel" else: name += "BoundaryModel" description = "Mitochondria segmentation for electron microscopy." return name, description def _load_data(input_): with open_file(input_, 'r') as f: ds = f['raw'] shape = ds.shape halo = [16, 128, 128] bb = tuple(slice(sh // 2 - ha, sh // 2 + ha) for sh, ha in zip(shape, halo)) raw = ds[bb] return raw def _get_doc(is_aff_model, ckpt, name): if is_aff_model: pred_type = "affinity maps" pp = "The affinities can be processed with the Mutex Watershed to obtain an instance segmentation." else: pred_type = "boundary maps" pp = "The boundaries can be processed with Multicut to obtain an instance segmentation." training_summary = get_training_summary(ckpt, to_md=True, lr=1.0e-4) model_tag = name.lower() doc = f"""# U-Net for Mitochondria Segmentation This model segments mitochondria in electron microscopy images. It predicts {pred_type} and foreground probabilities. {pp} ## Training The network was trained on data from the [MitoEM Segmentation Challenge](https://mitoem.grand-challenge.org/). The training script can be found [here](https://github.com/constantinpape/torch-em/tree/main/experiments/mito-em). This folder also includes example usages of this model. ### Training Data - Imaging modality: serial blockface electron microscopy - Dimensionality: 3D - Source: https://mitoem.grand-challenge.org/ ### Recommended Validation It is recommended to validate the instance segmentation obtained from this model using intersection-over-union. See [the validation script](https://github.com/constantinpape/torch-em/tree/main/experiments/mito-em/validate_model.py). This model can also be used in ilastik, deepimageJ or other software that supports the bioimage.io model format. ### Training Schedule {training_summary} ## Contact For questions or issues with this models, please reach out by: - opening a topic with tags bioimageio and {model_tag} on [image.sc](https://forum.image.sc/) - or creating an issue in https://github.com/constantinpape/torch-em""" return doc def export_to_bioimageio(checkpoint, input_, output, affs_to_bd, additional_formats): root, ckpt_name = os.path.split(checkpoint) if input_ is None: input_data = None else: input_data = _load_data(input_) is_aff_model = "affinity" in ckpt_name if is_aff_model and affs_to_bd: postprocessing = "affinities_with_foreground_to_boundaries3d" else: postprocessing = None if is_aff_model and affs_to_bd: is_aff_model = False name, desc = _get_name_and_description(is_aff_model) if is_aff_model: offsets = [ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-2, 0, 0], [0, -3, 0], [0, 0, -3], [-3, 0, 0], [0, -9, 0], [0, 0, -9] ] config = {"mws": {"offsets": offsets}} else: config = {} cite = get_default_citations( model="AnisotropicUNet", model_output="affinities" if is_aff_model else "boundaries" ) cite["data"] = "https://doi.org/10.1007/978-3-030-59722-1_7" tags = ["3d", "electron-microscopy", "mitochondria", "instance-segmentation", "unet"] doc = _get_doc(is_aff_model, checkpoint, name) if additional_formats is None: additional_formats = [] export_bioimageio_model( checkpoint, output, input_data=input_data, name=name, description=desc, authors=[{"name": "<NAME>; @constantinpape"}], tags=tags, license="CC-BY-4.0", documentation=doc, git_repo="https://github.com/constantinpape/torch-em.git", cite=cite, model_postprocessing=postprocessing, input_optional_parameters=False, for_deepimagej="torchscript" in additional_formats, links=[get_bioimageio_dataset_id("mitoem")], maintainers=[{"github_user": "constantinpape"}], config=config, ) add_weight_formats(output, additional_formats) if __name__ == "__main__": parser = export_parser_helper() args = parser.parse_args() export_to_bioimageio(args.checkpoint, args.input, args.output, bool(args.affs_to_bd), args.additional_formats) ``` #### File: neuron-segmentation/isbi2012/predict_and_segment.py ```python import argparse import numpy as np import torch from elf.io import open_file from train_boundaries_2d import get_model # TODO # - prediction in 3d # - prediction with affinities # - segmentation with multicut (for boundaries), mutex watershed (for affinities) def predict_boundaries_2d(in_path, out_path, checkpoint, device=torch.device('cuda')): model = get_model() state = torch.load(checkpoint)['model_state'] model.load_state_dict(state) model.to(device) model.eval() with open_file(in_path, 'r') as f: raw = f['raw'][:] prediction = np.zeros_like(raw, dtype='float32') with torch.no_grad(): for z in range(raw.shape[0]): input_ = raw[z].astype('float32') / 255. input_ = torch.from_numpy(input_[None, None]).to(device) pred = model(input_).cpu().numpy()[0, 0] prediction[z] = pred with open_file(out_path, 'a') as f: ds = f.require_dataset('boundaries', prediction.shape, compression='gzip', dtype='float32', chunks=(1,) + prediction.shape[1:]) ds[:] = prediction return prediction if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', required=True) parser.add_argument('-o', '--output', required=True) parser.add_argument('-c', '--checkpoint', required=True) args = parser.parse_args() in_path = args.input out_path = args.output checkpoint = args.checkpoint predict_boundaries_2d(in_path, out_path, checkpoint) ``` #### File: neuron-segmentation/snemi/train_affinities.py ```python import numpy as np import torch_em from torch_em.model import AnisotropicUNet from torch_em.loss import DiceLoss, LossWrapper, ApplyAndRemoveMask from torch_em.data.datasets import get_snemi_loader from torch_em.util import parser_helper OFFSETS = [ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-2, 0, 0], [0, -3, 0], [0, 0, -3], [-3, 0, 0], [0, -9, 0], [0, 0, -9], [-4, 0, 0], [0, -27, 0], [0, 0, -27] ] def get_loader(input_path, train, patch_shape, batch_size=1, n_samples=None): n_slices = 100 z = n_slices - patch_shape[0] roi = np.s_[:z, :, :] if train else np.s_[z:, :, :] return get_snemi_loader( path=input_path, patch_shape=patch_shape, batch_size=batch_size, rois=roi, offsets=OFFSETS, n_samples=n_samples, num_workers=8*batch_size, shuffle=True, download=True ) def get_model(): n_out = len(OFFSETS) model = AnisotropicUNet( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=32, gain=2, final_activation="Sigmoid" ) return model def train_affinities(args): model = get_model() patch_shape = [32, 320, 320] train_loader = get_loader( args.input, train=True, patch_shape=patch_shape, n_samples=1000 ) val_loader = get_loader( args.input, train=False, patch_shape=patch_shape, n_samples=50 ) loss = LossWrapper(loss=DiceLoss(), transform=ApplyAndRemoveMask()) name = "affinity_model" trainer = torch_em.default_segmentation_trainer( name=name, model=model, train_loader=train_loader, val_loader=val_loader, loss=loss, metric=loss, learning_rate=1e-4, mixed_precision=True, log_image_interval=50 ) if args.from_checkpoint: trainer.fit(args.n_iterations, "latest") else: trainer.fit(args.n_iterations) def check(args, train=True, val=True, n_images=2): from torch_em.util.debug import check_loader patch_shape = [32, 320, 320] if train: print("Check train loader") loader = get_loader(args.input, True, patch_shape) check_loader(loader, n_images) if val: print("Check val loader") loader = get_loader(args.input, False, patch_shape) check_loader(loader, n_images) if __name__ == "__main__": parser = parser_helper() args = parser.parse_args() if args.check: check(args, train=True, val=True) else: train_affinities(args) ``` #### File: bioimageio-examples/diff-output-shape/resize_unet.py ```python import torch import torch.nn as nn class UNetBase(nn.Module): """ """ def __init__( self, encoder, base, decoder, out_conv=None, final_activation=None ): super().__init__() if len(encoder) != len(decoder): raise ValueError(f"Incompatible depth of encoder (depth={len(encoder)}) and decoder (depth={len(decoder)})") self.encoder = encoder self.base = base self.decoder = decoder if out_conv is None: self._out_channels = self.decoder.out_channels else: self._out_channels = out_conv.out_channels self.out_conv = out_conv self.final_activation = self._get_activation(final_activation) @property def in_channels(self): return self.encoder.in_channels @property def out_channels(self): return self._out_channels @property def depth(self): return len(self.encoder) def _get_activation(self, activation): return_activation = None if activation is None: return None if isinstance(activation, nn.Module): return activation if isinstance(activation, str): return_activation = getattr(nn, activation, None) if return_activation is None: raise ValueError(f"Invalid activation: {activation}") return return_activation() # load encoder / decoder / base states for pretraining def load_encoder_state(self, state): self.encoder.load_state_dict(state) def load_decoder_state(self, state): self.decoder.load_state_dict(state) def load_base_state(self, state): self.base.load_state_dict(state) def _apply_default(self, x): self.encoder.return_outputs = True self.decoder.return_outputs = False x, encoder_out = self.encoder(x) x = self.base(x) x = self.decoder(x, encoder_inputs=encoder_out[::-1]) if self.out_conv is not None: x = self.out_conv(x) x = torch.nn.functional.interpolate(x, scale_factor=0.5) if self.final_activation is not None: x = self.final_activation(x) return x def forward(self, x): out = self._apply_default(x) return out def _update_conv_kwargs(kwargs, scale_factor): # if the scale factor is a scalar or all entries are the same we don't need to update the kwargs if isinstance(scale_factor, int) or scale_factor.count(scale_factor[0]) == len(scale_factor): return kwargs else: # otherwise set anisotropic kernel kernel_size = kwargs.get('kernel_size', 3) padding = kwargs.get('padding', 1) # bail out if kernel size or padding aren't scalars, because it's # unclear what to do in this case if not (isinstance(kernel_size, int) and isinstance(padding, int)): return kwargs kernel_size = tuple(1 if factor == 1 else kernel_size for factor in scale_factor) padding = tuple(0 if factor == 1 else padding for factor in scale_factor) kwargs.update({'kernel_size': kernel_size, 'padding': padding}) return kwargs class Encoder(nn.Module): def __init__( self, features, scale_factors, conv_block_impl, pooler_impl, anisotropic_kernel=False, **conv_block_kwargs ): super().__init__() if len(features) != len(scale_factors) + 1: raise ValueError("Incompatible number of features {len(features)} and scale_factors {len(scale_factors)}") conv_kwargs = [conv_block_kwargs] * len(scale_factors) if anisotropic_kernel: conv_kwargs = [_update_conv_kwargs(kwargs, scale_factor) for kwargs, scale_factor in zip(conv_kwargs, scale_factors)] self.blocks = nn.ModuleList( [conv_block_impl(inc, outc, **kwargs) for inc, outc, kwargs in zip(features[:-1], features[1:], conv_kwargs)] ) self.poolers = nn.ModuleList( [pooler_impl(factor) for factor in scale_factors] ) self.return_outputs = True self.in_channels = features[0] self.out_channels = features[-1] def __len__(self): return len(self.blocks) def forward(self, x): encoder_out = [] for block, pooler in zip(self.blocks, self.poolers): x = block(x) encoder_out.append(x) x = pooler(x) if self.return_outputs: return x, encoder_out else: return x class Decoder(nn.Module): def __init__( self, features, scale_factors, conv_block_impl, sampler_impl, anisotropic_kernel=False, **conv_block_kwargs ): super().__init__() if len(features) != len(scale_factors) + 1: raise ValueError("Incompatible number of features {len(features)} and scale_factors {len(scale_factors)}") conv_kwargs = [conv_block_kwargs] * len(scale_factors) if anisotropic_kernel: conv_kwargs = [_update_conv_kwargs(kwargs, scale_factor) for kwargs, scale_factor in zip(conv_kwargs, scale_factors)] self.blocks = nn.ModuleList( [conv_block_impl(inc, outc, **kwargs) for inc, outc, kwargs in zip(features[:-1], features[1:], conv_kwargs)] ) self.samplers = nn.ModuleList( [sampler_impl(factor, inc, outc) for factor, inc, outc in zip(scale_factors, features[:-1], features[1:])] ) self.return_outputs = False self.in_channels = features[0] self.out_channels = features[-1] def __len__(self): return len(self.blocks) # FIXME this prevents traces from being valid for other input sizes, need to find # a solution to traceable cropping def _crop(self, x, shape): shape_diff = [(xsh - sh) // 2 for xsh, sh in zip(x.shape, shape)] crop = tuple([slice(sd, xsh - sd) for sd, xsh in zip(shape_diff, x.shape)]) return x[crop] # # Implementation with torch.narrow, does not fix the tracing warnings! # for dim, (sh, sd) in enumerate(zip(shape, shape_diff)): # x = torch.narrow(x, dim, sd, sh) # return x def _concat(self, x1, x2): return torch.cat([x1, self._crop(x2, x1.shape)], dim=1) def forward(self, x, encoder_inputs): if len(encoder_inputs) != len(self.blocks): raise ValueError(f"Invalid number of encoder_inputs: expect {len(self.blocks)}, got {len(encoder_inputs)}") decoder_out = [] for block, sampler, from_encoder in zip(self.blocks, self.samplers, encoder_inputs): x = sampler(x) x = block(self._concat(x, from_encoder)) decoder_out.append(x) if self.return_outputs: return decoder_out + [x] else: return x def get_norm_layer(norm, dim, channels, n_groups=32): if norm is None: return None if norm == 'InstanceNorm': return nn.InstanceNorm2d(channels) if dim == 2 else nn.InstanceNorm3d(channels) elif norm == 'GroupNorm': return nn.GroupNorm(min(n_groups, channels), channels) elif norm == 'BatchNorm': return nn.BatchNorm2d(channels) if dim == 2 else nn.BatchNorm3d(channels) else: raise ValueError(f"Invalid norm: expect one of 'InstanceNorm', 'BatchNorm' or 'GroupNorm', got {norm}") class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, dim, kernel_size=3, padding=1, norm='InstanceNorm'): super().__init__() self.in_channels = in_channels self.out_channels = out_channels conv = nn.Conv2d if dim == 2 else nn.Conv3d if norm is None: self.block = nn.Sequential( conv(in_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.ReLU(inplace=True), conv(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.ReLU(inplace=True) ) else: self.block = nn.Sequential( get_norm_layer(norm, dim, in_channels), conv(in_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.ReLU(inplace=True), get_norm_layer(norm, dim, out_channels), conv(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.ReLU(inplace=True) ) def forward(self, x): return self.block(x) class Upsampler(nn.Module): def __init__(self, scale_factor, in_channels, out_channels, dim, mode): super().__init__() self.mode = mode self.scale_factor = scale_factor conv = nn.Conv2d if dim == 2 else nn.Conv3d self.conv = conv(in_channels, out_channels, 1) def forward(self, x): x = nn.functional.interpolate(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=False) x = self.conv(x) return x # # 2d unet implementations # class ConvBlock2d(ConvBlock): def __init__(self, in_channels, out_channels, **kwargs): super().__init__(in_channels, out_channels, dim=2, **kwargs) class Upsampler2d(Upsampler): def __init__(self, scale_factor, in_channels, out_channels, mode='bilinear'): super().__init__(scale_factor, in_channels, out_channels, dim=2, mode=mode) class ResizeUNet(UNetBase): def __init__( self, in_channels, out_channels, depth=4, initial_features=32, gain=2, final_activation=None, return_side_outputs=False, conv_block_impl=ConvBlock2d, pooler_impl=nn.MaxPool2d, sampler_impl=Upsampler2d, **conv_block_kwargs ): features_encoder = [in_channels] + [initial_features * gain ** i for i in range(depth)] features_decoder = [initial_features * gain ** i for i in range(depth + 1)][::-1] scale_factors = depth * [2] if return_side_outputs: if isinstance(out_channels, int) or out_channels is None: out_channels = [out_channels] * depth if len(out_channels) != depth: raise ValueError() out_conv = nn.ModuleList( [nn.Conv2d(feat, outc, 1) for feat, outc in zip(features_decoder[1:], out_channels)] ) else: out_conv = None if out_channels is None else nn.Conv2d(features_decoder[-1], out_channels, 1) super().__init__( encoder=Encoder( features=features_encoder, scale_factors=scale_factors, conv_block_impl=conv_block_impl, pooler_impl=pooler_impl, **conv_block_kwargs ), decoder=Decoder( features=features_decoder, scale_factors=scale_factors[::-1], conv_block_impl=conv_block_impl, sampler_impl=sampler_impl, **conv_block_kwargs ), base=conv_block_impl( features_encoder[-1], features_encoder[-1] * gain, **conv_block_kwargs ), out_conv=out_conv, final_activation=final_activation, ) self.init_kwargs = {'in_channels': in_channels, 'out_channels': out_channels, 'depth': depth, 'initial_features': initial_features, 'gain': gain, 'final_activation': final_activation, 'return_side_outputs': return_side_outputs, 'conv_block_impl': conv_block_impl, 'pooler_impl': pooler_impl, 'sampler_impl': sampler_impl, **conv_block_kwargs} ``` #### File: data/datasets/covid_if.py ```python import os from glob import glob import torch_em from .util import download_source, unzip, update_kwargs COVID_IF_URL = "https://zenodo.org/record/5092850/files/covid-if-groundtruth.zip?download=1" CHECKSUM = "d9cd6c85a19b802c771fb4ff928894b19a8fab0e0af269c49235fdac3f7a60e1" def _download_covid_if(path, download): url = COVID_IF_URL checksum = CHECKSUM if os.path.exists(path): return os.makedirs(path, exist_ok=True) zip_path = os.path.join(path, "covid-if.zip") download_source(zip_path, url, download, checksum) unzip(zip_path, path, True) def get_covid_if_loader(path, patch_shape, sample_range=None, target="cells", download=False, offsets=None, boundaries=False, binary=False, **kwargs): available_targets = ("cells", "nuclei") # TODO support all of these # available_targets = ("cells", "nuclei", "infected_cells") assert target in available_targets, f"{target} not found in {available_targets}" if target == "cells": raw_key = "raw/serum_IgG/s0" label_key = "labels/cells/s0" elif target == "nuclei": raw_key = "raw/nuclei/s0" label_key = "labels/nuclei/s0" # elif target == "infected_cells": _download_covid_if(path, download) file_paths = glob(os.path.join(path, "*.h5")) file_paths.sort() if sample_range is not None: start, stop = sample_range if start is None: start = 0 if stop is None: stop = len(file_paths) file_paths = [os.path.join(path, f"gt_image_{idx:03}.h5") for idx in range(start, stop)] assert all(os.path.exists(fp) for fp in file_paths), f"Invalid sample range {sample_range}" assert sum((offsets is not None, boundaries, binary)) <= 1 if offsets is not None: # we add a binary target channel for foreground background segmentation label_transform = torch_em.transform.label.AffinityTransform(offsets=offsets, add_binary_target=True, add_mask=True) msg = "Offsets are passed, but 'label_transform2' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform2", label_transform, msg=msg) elif boundaries: label_transform = torch_em.transform.label.BoundaryTransform(add_binary_target=True) msg = "Boundaries is set to true, but 'label_transform' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform", label_transform, msg=msg) elif binary: label_transform = torch_em.transform.label.labels_to_binary msg = "Binary is set to true, but 'label_transform' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform", label_transform, msg=msg) kwargs = update_kwargs(kwargs, "patch_shape", patch_shape) kwargs = update_kwargs(kwargs, "ndim", 2) return torch_em.default_segmentation_loader( file_paths, raw_key, file_paths, label_key, **kwargs ) ``` #### File: data/datasets/hpa.py ```python import os import json import shutil from concurrent import futures from functools import partial from glob import glob import imageio import h5py import numpy as np from PIL import Image, ImageDraw from skimage import draw as skimage_draw from skimage import morphology from tqdm import tqdm import torch_em from .util import download_source, unzip, update_kwargs URLS = { "segmentation": "https://zenodo.org/record/4665863/files/hpa_dataset_v2.zip" } CHECKSUMS = { "segmentation": "dcd6072293d88d49c71376d3d99f3f4f102e4ee83efb0187faa89c95ec49faa9" } def _download_hpa_data(path, name, download): os.makedirs(path, exist_ok=True) url = URLS[name] checksum = CHECKSUMS[name] zip_path = os.path.join(path, "data.zip") download_source(zip_path, url, download=download, checksum=checksum) unzip(zip_path, path, remove=True) def _load_features(features): # Loop over list and create simple dictionary & get size of annotations annot_dict = {} skipped = [] for feat_idx, feat in enumerate(features): if feat["geometry"]["type"] not in ["Polygon", "LineString"]: skipped.append(feat["geometry"]["type"]) continue # skip empty roi if len(feat["geometry"]["coordinates"][0]) <= 0: continue key_annot = "annot_" + str(feat_idx) annot_dict[key_annot] = {} annot_dict[key_annot]["type"] = feat["geometry"]["type"] annot_dict[key_annot]["pos"] = np.squeeze( np.asarray(feat["geometry"]["coordinates"]) ) annot_dict[key_annot]["properties"] = feat["properties"] # print("Skipped geometry type(s):", skipped) return annot_dict def _generate_binary_masks(annot_dict, shape, erose_size=5, obj_size_rem=500, save_indiv=False): # Get dimensions of image and created masks of same size # This we need to save somewhere (e.g. as part of the geojson file?) # Filled masks and edge mask for polygons mask_fill = np.zeros(shape, dtype=np.uint8) mask_edge = np.zeros(shape, dtype=np.uint8) mask_labels = np.zeros(shape, dtype=np.uint16) rr_all = [] cc_all = [] if save_indiv is True: mask_edge_indiv = np.zeros( (shape[0], shape[1], len(annot_dict)), dtype=np.bool ) mask_fill_indiv = np.zeros( (shape[0], shape[1], len(annot_dict)), dtype=np.bool ) # Image used to draw lines - for edge mask for freelines im_freeline = Image.new("1", (shape[1], shape[0]), color=0) draw = ImageDraw.Draw(im_freeline) # Loop over all roi i_roi = 0 for roi_key, roi in annot_dict.items(): roi_pos = roi["pos"] # Check region type # freeline - line if roi["type"] == "freeline" or roi["type"] == "LineString": # Loop over all pairs of points to draw the line for ind in range(roi_pos.shape[0] - 1): line_pos = ( roi_pos[ind, 1], roi_pos[ind, 0], roi_pos[ind + 1, 1], roi_pos[ind + 1, 0], ) draw.line(line_pos, fill=1, width=erose_size) # freehand - polygon elif ( roi["type"] == "freehand" or roi["type"] == "polygon" or roi["type"] == "polyline" or roi["type"] == "Polygon" ): # Draw polygon rr, cc = skimage_draw.polygon( [shape[0] - r for r in roi_pos[:, 1]], roi_pos[:, 0] ) # Make sure it's not outside rr[rr < 0] = 0 rr[rr > shape[0] - 1] = shape[0] - 1 cc[cc < 0] = 0 cc[cc > shape[1] - 1] = shape[1] - 1 # Test if this region has already been added if any(np.array_equal(rr, rr_test) for rr_test in rr_all) and any( np.array_equal(cc, cc_test) for cc_test in cc_all ): # print('Region #{} has already been used'.format(i + # 1)) continue rr_all.append(rr) cc_all.append(cc) # Generate mask mask_fill_roi = np.zeros(shape, dtype=np.uint8) mask_fill_roi[rr, cc] = 1 # Erode to get cell edge - both arrays are boolean to be used as # index arrays later mask_fill_roi_erode = morphology.binary_erosion( mask_fill_roi, np.ones((erose_size, erose_size)) ) mask_edge_roi = ( mask_fill_roi.astype("int") - mask_fill_roi_erode.astype("int") ).astype("bool") # Save array for mask and edge mask_fill[mask_fill_roi > 0] = 1 mask_edge[mask_edge_roi] = 1 mask_labels[mask_fill_roi > 0] = i_roi + 1 if save_indiv is True: mask_edge_indiv[:, :, i_roi] = mask_edge_roi.astype("bool") mask_fill_indiv[:, :, i_roi] = mask_fill_roi_erode.astype("bool") i_roi = i_roi + 1 else: roi_type = roi["type"] raise NotImplementedError( f'Mask for roi type "{roi_type}" can not be created' ) del draw # Convert mask from free-lines to numpy array mask_edge_freeline = np.asarray(im_freeline) mask_edge_freeline = mask_edge_freeline.astype("bool") # Post-processing of fill and edge mask - if defined mask_dict = {} if np.any(mask_fill): # (1) remove edges , (2) remove small objects mask_fill = mask_fill & ~mask_edge mask_fill = morphology.remove_small_objects( mask_fill.astype("bool"), obj_size_rem ) # For edge - consider also freeline edge mask mask_edge = mask_edge.astype("bool") mask_edge = np.logical_or(mask_edge, mask_edge_freeline) # Assign to dictionary for return mask_dict["edge"] = mask_edge mask_dict["fill"] = mask_fill.astype("bool") mask_dict["labels"] = mask_labels.astype("uint16") if save_indiv is True: mask_dict["edge_indiv"] = mask_edge_indiv mask_dict["fill_indiv"] = mask_fill_indiv else: mask_dict["edge_indiv"] = np.zeros(shape + (1,), dtype=np.uint8) mask_dict["fill_indiv"] = np.zeros(shape + (1,), dtype=np.uint8) # Only edge mask present elif np.any(mask_edge_freeline): mask_dict["edge"] = mask_edge_freeline mask_dict["fill"] = mask_fill.astype("bool") mask_dict["labels"] = mask_labels.astype("uint16") mask_dict["edge_indiv"] = np.zeros(shape + (1,), dtype=np.uint8) mask_dict["fill_indiv"] = np.zeros(shape + (1,), dtype=np.uint8) else: raise Exception("No mask has been created.") return mask_dict # adapted from # https://github.com/imjoy-team/kaibu-utils/blob/main/kaibu_utils/__init__.py#L267 def _get_labels(annotation_file, shape, label="*"): with open(annotation_file) as f: features = json.load(f)["features"] if len(features) == 0: return np.zeros(shape, dtype="uint16") annot_dict_all = _load_features(features) annot_types = set( annot_dict_all[k]["properties"].get("label", "default") for k in annot_dict_all.keys() ) for annot_type in annot_types: if label and label != "*" and annot_type != label: continue # print("annot_type: ", annot_type) # Filter the annotations by label annot_dict = { k: annot_dict_all[k] for k in annot_dict_all.keys() if label == "*" or annot_dict_all[k]["properties"].get("label", "default") == annot_type } mask_dict = _generate_binary_masks( annot_dict, shape, erose_size=5, obj_size_rem=500, save_indiv=True, ) mask = mask_dict["labels"] return mask raise RuntimeError def _process_image(in_folder, out_path, channels, with_labels): # TODO double check the default order and color matching # correspondence to the HPA kaggle data: # microtubules: red # nuclei: blue # er: yellow # protein: green # default order: rgby = micro, prot, nuclei, er all_channels = {"microtubules", "protein", "nuclei", "er"} assert len(list(set(channels) - all_channels)) == 0 raw = [] for chan in channels: im_path = os.path.join(in_folder, f"{chan}.png") assert os.path.exists(im_path), im_path raw.append(imageio.imread(im_path)[None]) raw = np.concatenate(raw, axis=0) if with_labels: annotation_file = os.path.join(in_folder, "annotation.json") assert os.path.exists(annotation_file), annotation_file labels = _get_labels(annotation_file, raw.shape[1:]) assert labels.shape == raw.shape[1:] with h5py.File(out_path, "w") as f: f.create_dataset("raw", data=raw, compression="gzip") if with_labels: f.create_dataset("labels", data=labels, compression="gzip") def _process_split(root_in, root_out, channels, n_workers, with_labels): os.makedirs(root_out, exist_ok=True) inputs = glob(os.path.join(root_in, "*")) outputs = [os.path.join(root_out, f"{os.path.split(inp)[1]}.h5") for inp in inputs] process = partial(_process_image, channels=channels, with_labels=with_labels) with futures.ProcessPoolExecutor(n_workers) as pp: list(tqdm(pp.map(process, inputs, outputs), total=len(inputs), desc=f"Process data in {root_in}")) # save data as h5 with 4 channel raw data and labels extracted from the geo json def _process_hpa_data(path, channels, n_workers, remove): in_path = os.path.join(path, "hpa_dataset_v2") assert os.path.exists(in_path), in_path for split in ("train", "test", "valid"): out_split = "val" if split == "valid" else split _process_split(os.path.join(in_path, split), os.path.join(path, out_split), channels=channels, n_workers=n_workers, with_labels=split != "test") if remove: shutil.rmtree(in_path) def _check_data(path): have_train = len(glob(os.path.join(path, "train", "*.h5"))) == 257 have_test = len(glob(os.path.join(path, "test", "*.h5"))) == 10 have_val = len(glob(os.path.join(path, "val", "*.h5"))) == 9 return have_train and have_test and have_val def get_hpa_segmentation_loader(path, patch_shape, split, offsets=None, boundaries=False, binary=False, channels=["microtubules", "protein", "nuclei", "er"], download=False, n_workers_preproc=8, **kwargs): data_is_complete = _check_data(path) if not data_is_complete: _download_hpa_data(path, "segmentation", download) _process_hpa_data(path, channels, n_workers_preproc, remove=True) assert sum((offsets is not None, boundaries, binary)) <= 1 if offsets is not None: # we add a binary target channel for foreground background segmentation label_transform = torch_em.transform.label.AffinityTransform(offsets=offsets, add_binary_target=True, add_mask=True) msg = "Offsets are passed, but 'label_transform2' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform2", label_transform, msg=msg) elif boundaries: label_transform = torch_em.transform.label.BoundaryTransform(add_binary_target=True) msg = "Boundaries is set to true, but 'label_transform' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform", label_transform, msg=msg) elif binary: label_transform = torch_em.transform.label.labels_to_binary msg = "Binary is set to true, but 'label_transform' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform", label_transform, msg=msg) kwargs = update_kwargs(kwargs, "patch_shape", patch_shape) kwargs = update_kwargs(kwargs, "ndim", 2) kwargs = update_kwargs(kwargs, "with_channels", True) paths = glob(os.path.join(path, split, "*.h5")) raw_key = "raw" label_key = "labels" return torch_em.default_segmentation_loader( paths, raw_key, paths, label_key, **kwargs ) ``` #### File: data/datasets/plantseg.py ```python import os from glob import glob import numpy as np import torch_em from elf.io import open_file, is_group from skimage.transform import rescale from .util import download_source, update_kwargs # TODO just download the full zip from https://osf.io/uzq3w/ instead # but this is currently broken URLS = { "root": { "cells": [], "nuclei": [ "https://osf.io/n9y34/download", "https://osf.io/su27h/download", "https://osf.io/q5rxz/download", ] }, "ovules": { "cells": [] } } CHECKSUMS = { "root": { "cells": [], "nuclei": [ "ff9e86cb05d56ae2463e7482ad248a985a2378b1c7f3d92022d1191a6504adfa", "b21fd70556591ca04e83b1461324d0a14e31b1dad24fe4b1efe9712dded2281c", "c8976fefdc06d92290ba6c2b7686fd2c1a285a800a3b6d8a002e1ec67caca072", ] }, "ovules": { "cells": [] } } NATIVE_RESOLUTION = (0.235, 0.075, 0.075) def _resize(path, native_resolution, target_resolution): assert len(native_resolution) == len(target_resolution) scale_factor = tuple(nres / tres for nres, tres in zip(native_resolution, target_resolution)) paths = glob(os.path.join(path, "*.h5")) # check if anything needs to be resized need_resize = [] for pp in paths: with open_file(pp, "r") as f: for name, obj in f.items(): rescaled_name = f"rescaled/{name}" if is_group(obj): continue if rescaled_name in f: this_resolution = f[rescaled_name].attrs["resolution"] correct_res = all( np.isclose(this_re, target_re) for this_re, target_re in zip(this_resolution, target_resolution) ) if correct_res: continue need_resize.append(path) # resize if necessary need_resize = list(set(need_resize)) for pp in need_resize: with open_file(pp, mode="a") as f: if "rescaled" in f: del f["rescaled"] for name, obj in f.items(): print("Resizing", pp, name) print("from resolution (microns)", native_resolution, "to", target_resolution) print("with scale factor", scale_factor) vol = obj[:] if name == "raw": vol = rescale(vol, scale_factor, preserve_range=True).astype(vol.dtype) else: vol = rescale( vol, scale_factor, preserve_range=True, order=0, anti_aliasing=False ).astype(vol.dtype) ds = f.create_dataset(rescaled_name, data=vol, compression="gzip") ds.attrs["resolution"] = target_resolution def _download_plantseg(path, download, name, type_): urls = URLS[name][type_] checksums = CHECKSUMS[name][type_] assert len(urls) == len(checksums) os.makedirs(path, exist_ok=True) for ii, (url, checksum) in enumerate(zip(urls, checksums)): out_path = os.path.join(path, f"{name}_{type_}_{ii}.h5") if os.path.exists(out_path): continue download_source(out_path, url, download, checksum) def get_root_nucleus_loader( path, patch_shape, samples=None, target_resolution=None, download=False, offsets=None, boundaries=False, binary=False, **kwargs, ): assert len(patch_shape) == 3 _download_plantseg(path, download, "root", "nuclei") if target_resolution is not None: _resize(path, NATIVE_RESOLUTION, target_resolution) file_paths = glob(os.path.join(path, "*.h5")) file_paths.sort() if samples is not None: assert all(isinstance(sample, int) for sample in samples) assert all(sample < len(file_paths) for sample in samples) file_paths = [file_paths[sample] for sample in samples] assert sum((offsets is not None, boundaries, binary)) <= 1 if offsets is not None: # we add a binary target channel for foreground background segmentation label_transform = torch_em.transform.label.AffinityTransform(offsets=offsets, add_binary_target=True, add_mask=True) msg = "Offsets are passed, but 'label_transform2' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform2", label_transform, msg=msg) elif boundaries: label_transform = torch_em.transform.label.BoundaryTransform(add_binary_target=True) msg = "Boundaries is set to true, but 'label_transform' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform", label_transform, msg=msg) elif binary: label_transform = torch_em.transform.label.labels_to_binary msg = "Binary is set to true, but 'label_transform' is in the kwargs. It will be over-ridden." kwargs = update_kwargs(kwargs, "label_transform", label_transform, msg=msg) kwargs = update_kwargs(kwargs, "patch_shape", patch_shape) kwargs = update_kwargs(kwargs, "ndim", 3) if target_resolution is None: raw_key, label_key = "raw", "label_uint16_smooth" else: raw_key, label_key = "rescaled/raw", "rescaled/label_uint16_smooth" return torch_em.default_segmentation_loader( file_paths, raw_key, file_paths, label_key, **kwargs ) # TODO def get_root_cell_loader(): pass # TODO def get_ovules_loader(): pass ``` #### File: torch_em/data/image_collection_dataset.py ```python import numpy as np import torch from ..util import (ensure_spatial_array, ensure_tensor_with_channels, load_image, supports_memmap) # TODO pad images that are too small for the patch shape class ImageCollectionDataset(torch.utils.data.Dataset): def _check_inputs(self, raw_images, label_images): if len(raw_images) != len(label_images): raise ValueError(f"Expect same number of and label images, got {len(raw_images)} and {len(label_images)}") is_multichan = None for raw_im, label_im in zip(raw_images, label_images): # we only check for compatible shapes if both images support memmap, because # we don't want to load everything into ram if supports_memmap(raw_im) and supports_memmap(label_im): shape = load_image(raw_im).shape assert len(shape) in (2, 3) multichan = len(shape) == 3 if is_multichan is None: is_multichan = multichan else: assert is_multichan == multichan # we assume axis last if is_multichan: shape = shape[:-1] label_shape = load_image(label_im).shape if shape != label_shape: msg = f"Expect raw and labels of same shape, got {shape}, {label_shape} for {raw_im}, {label_im}" raise ValueError(msg) def __init__( self, raw_image_paths, label_image_paths, patch_shape, raw_transform=None, label_transform=None, label_transform2=None, transform=None, dtype=torch.float32, label_dtype=torch.float32, n_samples=None, ): self._check_inputs(raw_image_paths, label_image_paths) self.raw_images = raw_image_paths self.label_images = label_image_paths self._ndim = 2 assert len(patch_shape) == self._ndim self.patch_shape = patch_shape self.raw_transform = raw_transform self.label_transform = label_transform self.label_transform2 = label_transform2 self.transform = transform self.dtype = dtype self.label_dtype = label_dtype if n_samples is None: self._len = len(self.raw_images) self.sample_random_index = False else: self._len = n_samples self.sample_random_index = True def __len__(self): return self._len @property def ndim(self): return self._ndim def _sample_bounding_box(self, shape): if any(sh < psh for sh, psh in zip(shape, self.patch_shape)): raise NotImplementedError("Image padding is not supported yet.") bb_start = [ np.random.randint(0, sh - psh) if sh - psh > 0 else 0 for sh, psh in zip(shape, self.patch_shape) ] return tuple(slice(start, start + psh) for start, psh in zip(bb_start, self.patch_shape)) def _get_sample(self, index): if self.sample_random_index: index = np.random.randint(0, len(self.raw_images)) # these are just the file paths raw, label = self.raw_images[index], self.label_images[index] raw = load_image(raw) label = load_image(label) have_raw_channels = raw.ndim == 3 have_label_channels = label.ndim == 3 if have_label_channels: raise NotImplementedError("Multi-channel labels are not supported.") shape = raw.shape # we assume images are loaded with channel last! if have_raw_channels: shape = shape[:-1] # sample random bounding box for this image bb = self._sample_bounding_box(shape) raw = np.array(raw[bb]) label = np.array(label[bb]) # to channel first if have_raw_channels: raw = raw.transpose((2, 0, 1)) return raw, label def __getitem__(self, index): raw, labels = self._get_sample(index) initial_label_dtype = labels.dtype if self.raw_transform is not None: raw = self.raw_transform(raw) if self.label_transform is not None: labels = self.label_transform(labels) if self.transform is not None: raw, labels = self.transform(raw, labels) # if self.trafo_halo is not None: # raw = self.crop(raw) # labels = self.crop(labels) # support enlarging bounding box here as well (for affinity transform) ? if self.label_transform2 is not None: labels = ensure_spatial_array(labels, self.ndim, dtype=initial_label_dtype) labels = self.label_transform2(labels) raw = ensure_tensor_with_channels(raw, ndim=self._ndim, dtype=self.dtype) labels = ensure_tensor_with_channels(labels, ndim=self._ndim, dtype=self.label_dtype) return raw, labels ``` #### File: torch_em/shallow2deep/shallow2deep_dataset.py ```python import pickle import numpy as np import torch from torch_em.segmentation import (check_paths, is_segmentation_dataset, get_data_loader, get_raw_transform, samples_to_datasets, _get_default_transform) from torch_em.data import ConcatDataset, SegmentationDataset from .prepare_shallow2deep import _get_filters, _apply_filters from ..util import ensure_tensor_with_channels, ensure_spatial_array class Shallow2DeepDataset(SegmentationDataset): _rf_paths = None _filter_config = None @property def rf_paths(self): return self._rf_paths @rf_paths.setter def rf_paths(self, value): self._rf_paths = value @property def filter_config(self): return self._filter_config @filter_config.setter def filter_config(self, value): self._filter_config = value @property def rf_channels(self): return self._rf_channels @rf_channels.setter def rf_channels(self, value): if isinstance(value, int): self.rf_channels = (value,) else: assert isinstance(value, tuple) self._rf_channels = value def _predict_rf(self, raw): n_rfs = len(self._rf_paths) rf_path = self._rf_paths[np.random.randint(0, n_rfs)] with open(rf_path, "rb") as f: rf = pickle.load(f) filters_and_sigmas = _get_filters(self.ndim, self._filter_config) features = _apply_filters(raw, filters_and_sigmas) assert rf.n_features_in_ == features.shape[1], f"{rf.n_features_in_}, {features.shape[1]}" try: pred_ = rf.predict_proba(features) assert pred_.shape[1] > max(self.rf_channels), f"{pred_.shape}, {self.rf_channels}" pred_ = pred_[:, self.rf_channels] except IndexError: print("Prediction failed:", features.shape) pred_shape = (len(features), len(self.rf_channels)) pred_ = np.zeros(pred_shape, dtype="float32") spatial_shape = raw.shape out_shape = (len(self.rf_channels),) + spatial_shape prediction = np.zeros(out_shape, dtype="float32") for chan in range(pred_.shape[1]): prediction[chan] = pred_[:, chan].reshape(spatial_shape) return prediction def __getitem__(self, index): assert self._rf_paths is not None raw, labels = self._get_sample(index) initial_label_dtype = labels.dtype if self.raw_transform is not None: raw = self.raw_transform(raw) if self.label_transform is not None: labels = self.label_transform(labels) if self.transform is not None: raw, labels = self.transform(raw, labels) if self.trafo_halo is not None: raw = self.crop(raw) labels = self.crop(labels) # support enlarging bounding box here as well (for affinity transform) ? if self.label_transform2 is not None: labels = ensure_spatial_array(labels, self.ndim, dtype=initial_label_dtype) labels = self.label_transform2(labels) if isinstance(raw, (list, tuple)): # this can be a list or tuple due to transforms assert len(raw) == 1 raw = raw[0] raw = ensure_tensor_with_channels(raw, ndim=self._ndim, dtype=self.dtype) if raw.shape[0] > 1: raise NotImplementedError( f"Shallow2Deep training not implemented for multi-channel input yet; got {raw.shape[0]} channels" ) # NOTE we assume single channel raw data here; this needs to be changed for multi-channel prediction = self._predict_rf(raw[0].numpy()) prediction = ensure_tensor_with_channels(prediction, ndim=self._ndim, dtype=self.dtype) labels = ensure_tensor_with_channels(labels, ndim=self._ndim, dtype=self.label_dtype) return prediction, labels def _load_shallow2deep_dataset(raw_paths, raw_key, label_paths, label_key, rf_paths, rf_channels, **kwargs): rois = kwargs.pop("rois", None) filter_config = kwargs.pop("filter_config", None) if isinstance(raw_paths, str): if rois is not None: assert len(rois) == 3 and all(isinstance(roi, slice) for roi in rois) ds = Shallow2DeepDataset(raw_paths, raw_key, label_paths, label_key, roi=rois, **kwargs) ds.rf_paths = rf_paths ds.filter_config = filter_config ds.rf_channels = rf_channels else: assert len(raw_paths) > 0 if rois is not None: assert len(rois) == len(label_paths), f"{len(rois)}, {len(label_paths)}" assert all(isinstance(roi, tuple) for roi in rois) n_samples = kwargs.pop("n_samples", None) samples_per_ds = ( [None] * len(raw_paths) if n_samples is None else samples_to_datasets(n_samples, raw_paths, raw_key) ) ds = [] for i, (raw_path, label_path) in enumerate(zip(raw_paths, label_paths)): roi = None if rois is None else rois[i] dset = Shallow2DeepDataset( raw_path, raw_key, label_path, label_key, roi=roi, n_samples=samples_per_ds[i], **kwargs ) dset.rf_paths = rf_paths dset.filter_config = filter_config dset.rf_channels = rf_channels ds.append(dset) ds = ConcatDataset(*ds) return ds def get_shallow2deep_dataset( raw_paths, raw_key, label_paths, label_key, rf_paths, patch_shape, raw_transform=None, label_transform=None, transform=None, dtype=torch.float32, rois=None, n_samples=None, sampler=None, ndim=None, is_seg_dataset=None, with_channels=False, filter_config=None, rf_channels=(1,), ): check_paths(raw_paths, label_paths) if is_seg_dataset is None: is_seg_dataset = is_segmentation_dataset(raw_paths, raw_key, label_paths, label_key) # we always use a raw transform in the convenience function if raw_transform is None: raw_transform = get_raw_transform() # we always use augmentations in the convenience function if transform is None: transform = _get_default_transform( raw_paths if isinstance(raw_paths, str) else raw_paths[0], raw_key, is_seg_dataset, ndim ) if is_seg_dataset: ds = _load_shallow2deep_dataset( raw_paths, raw_key, label_paths, label_key, rf_paths, patch_shape=patch_shape, raw_transform=raw_transform, label_transform=label_transform, transform=transform, rois=rois, n_samples=n_samples, sampler=sampler, ndim=ndim, dtype=dtype, with_channels=with_channels, filter_config=filter_config, rf_channels=rf_channels, ) else: raise NotImplementedError("Image collection dataset for shallow2deep not implemented yet.") return ds def get_shallow2deep_loader( raw_paths, raw_key, label_paths, label_key, rf_paths, batch_size, patch_shape, filter_config=None, raw_transform=None, label_transform=None, transform=None, rois=None, n_samples=None, sampler=None, ndim=None, is_seg_dataset=None, with_channels=False, rf_channels=(1,), **loader_kwargs, ): ds = get_shallow2deep_dataset( raw_paths=raw_paths, raw_key=raw_key, label_paths=label_paths, label_key=label_key, rf_paths=rf_paths, patch_shape=patch_shape, raw_transform=raw_transform, label_transform=label_transform, transform=transform, rois=rois, n_samples=n_samples, sampler=sampler, ndim=ndim, is_seg_dataset=is_seg_dataset, with_channels=with_channels, filter_config=filter_config, rf_channels=rf_channels, ) return get_data_loader(ds, batch_size=batch_size, **loader_kwargs) ``` #### File: torch_em/util/submit_slurm.py ```python import os import sys import inspect import subprocess from datetime import datetime # two days in minutes TWO_DAYS = 2 * 24 * 60 def write_slurm_template(script, out_path, env_name, n_threads, gpu_type, n_gpus, mem_limit, time_limit, qos, mail_address, exclude_nodes): slurm_template = ("#!/bin/bash\n" "#SBATCH -A kreshuk\n" "#SBATCH -N 1\n" f"#SBATCH -c {n_threads}\n" f"#SBATCH --mem {mem_limit}\n" f"#SBATCH -t {time_limit}\n" f"#SBATCH --qos={qos}\n" "#SBATCH -p gpu\n" f"#SBATCH -C gpu={gpu_type}\n" f"#SBATCH --gres=gpu:{n_gpus}\n") if mail_address is not None: slurm_template += ("#SBATCH --mail-type=FAIL,BEGIN,END\n" f"#SBATCH --mail-user={mail_address}\n") if exclude_nodes is not None: slurm_template += "#SBATCH --exclude=%s\n" % ",".join(exclude_nodes) slurm_template += ("\n" "module purge \n" "module load GCC \n" "source activate {env_name}\n" "\n" "export TRAIN_ON_CLUSTER=1\n" # we set this env variable, so that script know we"re on slurm f"python {script} $@ \n") with open(out_path, "w") as f: f.write(slurm_template) def submit_slurm(script, input_, n_threads=7, n_gpus=1, gpu_type="2080Ti", mem_limit="64G", time_limit=TWO_DAYS, qos="normal", env_name=None, mail_address=None, exclude_nodes=None): """ Submit python script that needs gpus with given inputs on a slurm node. """ tmp_folder = os.path.expanduser("~/.torch_em/submission") os.makedirs(tmp_folder, exist_ok=True) print("Submitting training script %s to cluster" % script) print("with arguments %s" % " ".join(input_)) script_name = os.path.split(script)[1] dt = datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f") tmp_name = os.path.splitext(script_name)[0] + dt batch_script = os.path.join(tmp_folder, "%s.sh" % tmp_name) log = os.path.join(tmp_folder, "%s.log" % tmp_name) err = os.path.join(tmp_folder, "%s.err" % tmp_name) if env_name is None: env_name = os.environ.get("CONDA_DEFAULT_ENV", None) if env_name is None: raise RuntimeError("Could not find conda") print("Batch script saved at", batch_script) print("Log will be written to %s, error log to %s" % (log, err)) write_slurm_template(script, batch_script, env_name, int(n_threads), gpu_type, int(n_gpus), mem_limit, int(time_limit), qos, mail_address, exclude_nodes=exclude_nodes) cmd = ["sbatch", "-o", log, "-e", err, "-J", script_name, batch_script] cmd.extend(input_) subprocess.run(cmd) def scrape_kwargs(input_): params = inspect.signature(submit_slurm).parameters kwarg_names = [name for name in params if params[name].default != inspect._empty] kwarg_names.extend([f"-{name}" for name in kwarg_names]) kwarg_names.extend([f"--{name}" for name in kwarg_names]) kwarg_positions = [i for i, inp in enumerate(input_) if inp in kwarg_names] kwargs = {input_[i].lstrip("-"): input_[i + 1] for i in kwarg_positions} kwarg_positions += [i + 1 for i in kwarg_positions] input_ = [inp for i, inp in enumerate(input_) if i not in kwarg_positions] return input_, kwargs def main(): script = os.path.realpath(os.path.abspath(sys.argv[1])) input_ = sys.argv[2:] # scrape the additional arguments (n_threads, mem_limit, etc. from the input) input_, kwargs = scrape_kwargs(input_) submit_slurm(script, input_, **kwargs) ``` #### File: torch_em/util/validation.py ```python import os import imageio import numpy as np from elf.io import open_file from elf.util import normalize_index from ..data import ConcatDataset, ImageCollectionDataset, SegmentationDataset from .util import get_trainer, get_normalizer from .prediction import predict_with_halo try: import napari except ImportError: napari = None # TODO implement prefab metrics class SampleGenerator: def __init__(self, trainer, max_samples, need_gt, n_threads): self.need_gt = need_gt self.n_threads = n_threads dataset = trainer.val_loader.dataset self.ndim = dataset.ndim (n_samples, load_2d_from_3d, rois, raw_paths, raw_key, label_paths, label_key) = self.paths_from_ds(dataset) if max_samples is None: self.n_samples = n_samples else: self.n_samples = min(max_samples, n_samples) self.load_2d_from_3d = load_2d_from_3d self.rois = rois self.raw_paths, self.raw_key = raw_paths, raw_key self.label_paths, self.label_key = label_paths, label_key if self.load_2d_from_3d: shapes = [ open_file(rp, 'r')[self.raw_key].shape if roi is None else tuple(r.stop - r.start for r in roi) for rp, roi in zip(self.raw_paths, self.rois) ] lens = [shape[0] for shape in shapes] self.offsets = np.cumsum(lens) def paths_from_ds(self, dataset): if isinstance(dataset, ConcatDataset): datasets = dataset.datasets (n_samples, load_2d_from_3d, rois, raw_paths, raw_key, label_paths, label_key) = self.paths_from_ds(datasets[0]) for ds in datasets[1:]: ns, l2d3d, bb, rp, rk, lp, lk = self.paths_from_ds(ds) assert rk == raw_key assert lk == label_key assert l2d3d == load_2d_from_3d raw_paths.extend(rp) label_paths.extend(lp) rois.append(bb) n_samples += ns elif isinstance(dataset, ImageCollectionDataset): raw_paths, label_paths = dataset.raw_images, dataset.label_images raw_key, label_key = None, None n_samples = len(raw_paths) load_2d_from_3d = False rois = [None] * n_samples elif isinstance(dataset, SegmentationDataset): raw_paths, label_paths = [dataset.raw_path], [dataset.label_path] raw_key, label_key = dataset.raw_key, dataset.label_key shape = open_file(raw_paths[0], 'r')[raw_key].shape roi = getattr(dataset, 'roi', None) if roi is not None: roi = normalize_index(roi, shape) shape = tuple(r.stop - r.start for r in roi) rois = [roi] if self.ndim == len(shape): n_samples = len(raw_paths) load_2d_from_3d = False elif self.ndim == 2 and len(shape) == 3: n_samples = shape[0] load_2d_from_3d = True else: raise RuntimeError else: raise RuntimeError(f"No support for dataset of type {type(dataset)}") return (n_samples, load_2d_from_3d, rois, raw_paths, raw_key, label_paths, label_key) def load_data(self, path, key, roi, z): if key is None: assert roi is None and z is None return imageio.imread(path) bb = np.s_[:, :, :] if roi is None else roi if z is not None: bb[0] = z if roi is None else roi[0].start + z with open_file(path, 'r') as f: ds = f[key] ds.n_threads = self.n_threads data = ds[bb] return data def load_sample(self, sample_id): if self.load_2d_from_3d: ds_id = 0 while True: if sample_id < self.offsets[ds_id]: break ds_id += 1 offset = self.offsets[ds_id - 1] if ds_id > 0 else 0 z = sample_id - offset else: ds_id = sample_id z = None roi = self.rois[ds_id] raw = self.load_data(self.raw_paths[ds_id], self.raw_key, roi, z) if not self.need_gt: return raw gt = self.load_data(self.label_paths[ds_id], self.label_key, roi, z) return raw, gt def __iter__(self): for sample_id in range(self.n_samples): sample = self.load_sample(sample_id) yield sample def _predict(model, raw, trainer, gpu_ids, save_path, sample_id): save_key = f"sample{sample_id}" if save_path is not None and os.path.exists(save_path): with open_file(save_path, 'r') as f: if save_key in f: print("Loading predictions for sample", sample_id, "from file") ds = f[save_key] ds.n_threads = 8 return ds[:] normalizer = get_normalizer(trainer) dataset = trainer.val_loader.dataset ndim = dataset.ndim if isinstance(dataset, ConcatDataset): patch_shape = dataset.datasets[0].patch_shape else: patch_shape = dataset.patch_shape if ndim == 2 and len(patch_shape) == 3: patch_shape = patch_shape[1:] assert len(patch_shape) == ndim # choose a small halo and set the correct block shape halo = (32, 32) if ndim == 2 else (8, 16, 16) block_shape = tuple(psh - 2 * ha for psh, ha in zip(patch_shape, halo)) if save_path is None: output = None else: f = open_file(save_path, 'a') out_shape = (trainer.model.out_channels,) + raw.shape chunks = (1,) + block_shape output = f.create_dataset(save_key, shape=out_shape, chunks=chunks, compression='gzip', dtype='float32') gpu_ids = [int(gpu) if gpu != 'cpu' else gpu for gpu in gpu_ids] pred = predict_with_halo( raw, model, gpu_ids, block_shape, halo, preprocess=normalizer, output=output ) if output is not None: f.close() return pred def _visualize(raw, prediction, ground_truth): with napari.gui_qt(): viewer = napari.Viewer() viewer.add_image(raw) viewer.add_image(prediction) if ground_truth is not None: viewer.add_labels(ground_truth) def validate_checkpoint( checkpoint, gpu_ids, save_path=None, samples=None, max_samples=None, visualize=True, metrics=None, n_threads=None ): """Validate model for the given checkpoint visually and/or via metrics. """ if visualize and napari is None: raise RuntimeError trainer = get_trainer(checkpoint, device='cpu') n_threads = trainer.train_loader.num_workers if n_threads is None else n_threads model = trainer.model model.eval() need_gt = metrics is not None if samples is None: samples = SampleGenerator(trainer, max_samples, need_gt, n_threads) else: assert isinstance(samples, (list, tuple)) if need_gt: assert all(len(sample, 2) for sample in samples) else: assert all(isinstance(sample, np.ndarray) for sample in samples) results = [] for sample_id, sample in enumerate(samples): raw, gt = sample if need_gt else sample, None pred = _predict(model, raw, trainer, gpu_ids, save_path, sample_id) if visualize: _visualize(raw, pred, gt) if metrics is not None: res = metrics(gt, pred) results.append(res) return results def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('-p', '--path', required=True, help="Path to the checkpoint") parser.add_argument('-g', '--gpus', type=str, nargs='+', required=True) parser.add_argument('-n', '--max_samples', type=int, default=None) parser.add_argument('-d', '--data', default=None) parser.add_argument('-s', '--save_path', default=None) parser.add_argument('-k', '--key', default=None) parser.add_argument('-t', '--n_threads', type=int, default=None) args = parser.parse_args() # TODO implement loading data assert args.data is None validate_checkpoint(args.path, args.gpus, args.save_path, max_samples=args.max_samples, n_threads=args.n_threads) ```
{ "source": "jonashering/webtable-recognition", "score": 3 }
#### File: webtable-recognition/webtable_recognition/loader.py ```python import os from sklearn.datasets import load_files from pandas import DataFrame def load_from_directory(container_path): """ Load text files with categories as subfolder names to dataframe Args: container_path: Path to the main folder holding one subfolder per category Returns: Dataframe containing raw file in raw column and true label in label column """ if not os.path.isdir(container_path): raise NotADirectoryError(container_path) dataset = load_files(container_path, random_state=0) label_names = dataset['target_names'] raw = [idx.decode('utf-8', 'replace') for idx in dataset['data']] labels = [label_names[idx] for idx in dataset['target']] filenames = dataset['filenames'] return DataFrame({ 'raw': raw, 'label': labels, 'path': filenames }) ``` #### File: webtable-recognition/webtable_recognition/transformer.py ```python from tempfile import NamedTemporaryFile from unicodedata import normalize import numpy as np import PIL import imgkit import regex as re from pandas import read_html, DataFrame from bs4 import BeautifulSoup as bs from joblib import Parallel, delayed from tqdm import tqdm_notebook as tqdm class _BaselineSample(object): def __init__(self, obj): super().__init__() self.obj = obj self.raw = str(bs(self.obj['raw'], 'html.parser').find_all('table')[0]) self.as_df = read_html(self.raw)[0].fillna('') def _load_row_html(self, idx): row = '' try: row = bs(self.raw, 'html.parser').find_all('tr')[idx] except IndexError: row = bs(self.raw, 'html.parser').find_all('tr')[-1] cells = [] for cell in row.find_all(['td', 'th']): cells.append(str(cell)) return cells def _load_row_clean(self, idx): try: row = self.as_df.iloc[idx, :] except IndexError: row = self.as_df.iloc[-1, :] return row def _load_col_html(self, idx): col = bs(self.raw, 'html.parser').find_all('tr') cells = [] for row in col: cell = '' try: cell = row.find_all(['td', 'th'])[idx] except IndexError: cell = row.find_all(['td', 'th'])[-1] cells.append(str(cell)) return cells def _load_col_clean(self, idx): try: col = self.as_df.iloc[:, idx] except IndexError: col = self.as_df.iloc[: -1] return col def _parse(self): self.as_df = read_html(self.raw)[0].fillna('') self.rows = [ (self._load_row_html(0), self._load_row_clean(0)), (self._load_row_html(1), self._load_row_clean(1)), (self._load_row_html(self.as_df.shape[0] - 1), self._load_row_clean(self.as_df.shape[0] - 1)) ] self.cols = [ (self._load_col_html(0), self._load_col_clean(0)), (self._load_col_html(1), self._load_col_clean(1)), (self._load_col_html(self.as_df.shape[1] - 1), self._load_col_clean(self.as_df.shape[1] - 1)) ] def _add_global_layout_features(self): features = { 'max_rows': self.as_df.shape[0], 'max_cols': self.as_df.shape[1], 'max_cell_length': max([len(str(elem)) for elem in np.array(self.as_df).flatten()]), } self.obj.update(features) def _add_layout_features(self): for idx, i in enumerate(self.cols): total_rowspan = np.sum( [int(bs(x, 'html.parser').find_all(['td', 'th'])[0].attrs.get('rowspan', 0)) for x in i[0]] ) num_rowspan = len([1 for x in i[0] if 'rowspan' in bs(x, 'html.parser').find_all(['td', 'th'])[0].attrs]) features = { f'avg_length_{idx}': np.mean([len(str(elem)) for elem in i[1]]), f'length_variance_{idx}': np.var([len(str(elem)) for elem in i[1]]), f'ratio_colspan_{idx}': 0, # this is a row! f'ratio_rowspan_{idx}': (total_rowspan - num_rowspan) / len(i[1]) } self.obj.update(features) for idx, i in enumerate(self.rows): total_colspan = np.sum( [int(bs(x, 'html.parser').find_all(['td', 'th'])[0].attrs.get('colspan', 0)) for x in i[0]] ) num_colspan = len([1 for x in i[0] if 'colspan' in bs(x, 'html.parser').find_all(['td', 'th'])[0].attrs]) features = { f'avg_length_{idx}': np.mean([len(str(elem)) for elem in i[1]]), f'length_variance_{idx}': np.var([len(str(elem)) for elem in i[1]]), f'ratio_colspan_{idx}': (total_colspan - num_colspan) / len(i[1]), f'ratio_rowspan_{idx}': 0 } self.obj.update(features) def _add_html_features(self): for idx, i in enumerate(self.rows + self.cols): features = { f'dist_tags_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('br'))]) / len(i[0]), f'ratio_th_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('th'))]) / len(i[0]), f'ratio_anchor_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('a'))]) / len(i[0]), f'ratio_img_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('img'))]) / len(i[0]), f'ratio_input_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('input'))]) / len(i[0]), f'ratio_select_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('select'))]) / len(i[0]), f'ratio_f_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all(['b', 'u', 'font', 'i']))]) / len(i[0]), f'ratio_br_{idx}': len([1 for x in i[0] if len(bs(x, 'html.parser').find_all('br'))]) / len(i[0]), } self.obj.update(features) def _add_lexical_features(self): for idx, i in enumerate(self.rows + self.cols): features = { f'dist_string_{idx}': len(list(set([re.sub(r'\b\d+\b', '', str(x)) for x in i[1]]))) / len(i[1]), f'ratio_colon_{idx}': np.mean([int(str(x).endswith(':')) for x in i[1]]), f'ratio_contain_number_{idx}': np.mean([int(any(char.isdigit() for char in str(x))) for x in i[1]]), f'ratio_is_number_{idx}': np.mean([int(type(x) in ['float', 'int']) for x in i[1]]), f'ratio_nonempty_{idx}': np.mean([int(len(str(x)) > 0) for x in i[1]]), } self.obj.update(features) def transform(self): """ Generate feature vector for a single web table according to baseline Args: None Returns: Dataframe with raw, label and feture vector for a single web column """ self._parse() self._add_global_layout_features() self._add_layout_features() self._add_html_features() self._add_lexical_features() return self.obj def transform_for_baseline(raw_dataframe): """ Transform an unprocessed web table dataset to feature space according to baseline Args: Dataframe with columns raw and label Returns: Dataframe with columns raw, label and feature space (107 columns) """ records = raw_dataframe.to_dict('records') new_records = [] def _transform(rec): try: new_records.append(_BaselineSample(rec).transform()) except: print('Skip ', rec['path']) Parallel(n_jobs=-1, require='sharedmem')(delayed(_transform)(i) for i in tqdm(records)) return DataFrame(new_records) class _ApproachSample(object): def __init__(self, obj, strategy=None, scale_cell_dimensions=True, cell_size='5px', long_text_threshold=10, use_long_text_threshold=False, remove_borders=False, target_shape=(224, 224), resize_mode='stretch'): super().__init__() self.obj = obj self.strategy = strategy self.scale_cell_dimensions = scale_cell_dimensions self.cell_size = cell_size self.long_text_threshold = long_text_threshold self.use_long_text_threshold = use_long_text_threshold self.remove_borders = remove_borders self.target_shape = target_shape self.resize_mode = resize_mode def _clear_styling_attributes(self, soup): # clear all attributes that could impact styling (except col- and rowspan) for tag in soup.find_all(): new_attr = {} if 'colspan' in tag.attrs: new_attr['colspan'] = tag.attrs['colspan'] if 'rowspan' in tag.attrs: new_attr['rowspan'] = tag.attrs['rowspan'] tag.attrs = new_attr return soup def _scale_cell_dimensions(self, tag): if self.scale_cell_dimensions: tag['width'] = self.cell_size tag['height'] = self.cell_size return tag def _remove_borders(self, soup): if self.remove_borders: tag = soup.find('table') tag['cellspacing'] = 0 tag['cellpadding'] = 0 return soup def _is_emphasized(self, tag): return len(tag.find_all(['b', 'strong', 'i'])) > 0 def _preprocess_html_color_shades(self): soup = bs(self.obj['raw'], 'html.parser') soup = self._clear_styling_attributes(soup) for tag in soup.find_all(['th', 'td']): tag = self._scale_cell_dimensions(tag) text = tag.text.strip() # set red for data type # set r_step so there is an equivalent distance between the groups (255 / 6 ~= 42) r_step = 42 r = 0 * r_step if tag.find('a'): r = 1 * r_step elif tag.find('img'): r = 2 * r_step elif tag.find('button'): r = 3 * r_step elif tag.find('form') or tag.find('input'): r = 4 * r_step elif len(text) > 0: # cells text majority are numeric characters if sum(c.isdigit() for c in text) > (len(text) / 2): r = 5 * r_step else: r = 255 # set green for content length g = min(len(text), 255) # set blue for styling b = 0 if self._is_emphasized(tag): b = 127 elif tag.name == 'th': b = 255 tag['style'] = f'background-color: rgb({r},{g},{b})' tag.clear() soup = self._remove_borders(soup) self.obj.update({ 'transformed_html': str(soup.prettify(formatter='minimal')) }) def _preprocess_html_grid(self): soup = bs(self.obj['raw'], 'html.parser') soup = self._clear_styling_attributes(soup) for tag in soup.find_all(['th', 'td']): tag = self._scale_cell_dimensions(tag) color = 'yellow' if tag.name == 'th': color = 'grey' elif tag.find('a'): color = 'blue' elif tag.find('img'): color = 'green' elif tag.find('button'): color = 'purple' elif tag.find('form') or tag.find('input'): color = 'pink' else: text = tag.text.strip() # cells text majority are numeric characters if sum(c.isdigit() for c in text) > (len(text) / 2): color = 'red' elif self.use_long_text_threshold and len(text) > self.long_text_threshold: color = 'brown' elif self._is_emphasized(tag): color = 'orange' tag['style'] = f'background-color: {color}' # replace content # ALTERNATIVE CODE INCASE WE DECIDE TO KEEP THE STRUCTURE # if KEEP_STRUCTURE and tag.string: # tag.string = "&nbsp;" * len(tag.string.strip()) tag.clear() soup = self._remove_borders(soup) self.obj.update({ 'transformed_html': str(soup.prettify(formatter='minimal')) }) def _preprocess_html_char_blocks(self): soup = bs(self.obj['raw'], 'html.parser') for cell in soup.find_all(): # table head cells if 'style' in cell: cell['style'] += ';background-color:none !important' else: cell['style'] = ';background-color:none !important' # replace character classes with block symbol : digits, alphabetical, punctuation, whitespace for elem in soup.find_all(text=True): content = normalize('NFKD', elem) for char in content: color = 'white' if re.match(r'[\p{N}]', char) is not None: # digits color = 'red' elif re.match(r'[\p{L}]', char) is not None: # alpha color = 'blue' elif re.match(r'[!"\#$%&\'()*+,\-./:;<=>?@\[\\\]^_`{|}~]', char) is not None: # punctuation color = 'green' new_char = soup.new_tag('span', style=f'color: {color} !important') new_char.string = '█' if re.match(r'[ \t\r\n\v\f]', char) is None else char # whitespace elem.parent.append(new_char) elem.replace_with('') # images for img in soup.find_all('img'): img['style'] = img.get('style', '') + ';background-color:yellow !important' # emphasized text for emp in soup.find_all(['a', 'strong', 'b', 'i', 'u', 'title']): emp['style'] = emp.get('style', '') + ';opacity:0.4 !important' # table head cells for th in soup.find_all('th'): th['style'] = th.get('style', '') + ';background-color:grey !important' # input elements for inp in soup.find_all(['button', 'select', 'input']): inp['style'] = inp.get('style', '') + ';background-color:pink !important; border: 0; padding: 5px;' # draw table border for tab in soup.find_all('table'): tab['style'] = 'border-collapse: collapse ! important' tab['cellpadding'] = '5' # draw table border pt. 2 for cell in soup.find_all(['th', 'td']): cell['style'] = cell.get('style', '') + ';border: 2px solid black !important' self.obj.update({ 'transformed_html': str(soup.prettify(formatter='minimal')) }) def _generate_image_from_html(self, html): with NamedTemporaryFile(suffix='.png') as f: try: # tables containing iframes or similar external sources cannot be rendered imgkit.from_string(f'<meta charset="utf-8">{html}', f.name, options={'quiet': '', 'disable-plugins': '', 'no-images': '', 'disable-javascript': '', 'height': 1024, 'width': 1024, 'load-error-handling': 'ignore'}) image = PIL.Image.open(f.name) except: image = PIL.Image.new('RGB', self.target_shape, (255, 255, 255)) return image.convert('RGB') def _crop_surrounding_whitespace(self, image): bg = PIL.Image.new(image.mode, image.size, (255, 255, 255)) diff = PIL.ImageChops.difference(image, bg) bbox = diff.getbbox() if not bbox: return image return image.crop(bbox) def _resize(self, image): if self.resize_mode == 'none': return image if self.resize_mode == 'resize': canvas = PIL.Image.new('RGB', self.target_shape, color=(255, 255, 255)) image.thumbnail(self.target_shape, PIL.Image.ANTIALIAS) canvas.paste(image) elif self.resize_mode == 'resize_fullwidth': canvas = PIL.Image.new('RGB', self.target_shape, color=(255, 255, 255)) image.thumbnail((self.target_shape[0], 1024), PIL.Image.ANTIALIAS) canvas.paste(image) canvas = canvas.crop((0, 0, self.target_shape[0], self.target_shape[1])) elif self.resize_mode == 'stretch': canvas = image.resize(self.target_shape, PIL.Image.ANTIALIAS) elif self.resize_mode == 'crop': canvas = PIL.Image.new('RGB', self.target_shape, color=(255, 255, 255)) canvas.paste(image) canvas = canvas.crop((0, 0, self.target_shape[0], self.target_shape[1])) return canvas def _render_html(self): image = self._generate_image_from_html(self.obj['transformed_html']) # .decode('utf-8', 'replace')) image = self._crop_surrounding_whitespace(image) image = self._resize(image) self.obj.update({ 'image': image }) def transform(self): """ Generate image re for a single web table according to our approach Args: None Returns: Dataframe with raw, label and feture vector for a single web column """ if self.strategy == 'raw': self.obj['transformed_html'] = self.obj['raw'] elif self.strategy == 'grid': self._preprocess_html_grid() elif self.strategy == 'char_blocks': self._preprocess_html_char_blocks() elif self.strategy == 'color_shades': self._preprocess_html_color_shades() self._render_html() return self.obj def transform_for_approach(raw_dataframe, strategy='raw', resize_mode='stretch'): """ Transform an unprocessed web table dataset to feature space according to our approach Args: Dataframe with columns raw and label strategy: raw, grid, char_blocks, color_shades resize_mode: stretch, resize, resize_fullwidth, crop Returns: Dataframe with columns raw, label, transformed_html and image Generates image representations of web table """ records = raw_dataframe.to_dict('records') new_records = [] def _transform(rec): try: new_records.append(_ApproachSample(rec, strategy=strategy, resize_mode=resize_mode).transform()) except: print('Skip ', rec['path']) Parallel(n_jobs=-1, require='sharedmem')(delayed(_transform)(i) for i in tqdm(records)) return DataFrame(new_records) ```
{ "source": "JonasHimmetsbergerStudent/ScribbleFight", "score": 3 }
#### File: gym_game/envs/custom_env.py ```python import gym from gym import spaces import numpy as np from gym_game.envs.pygame_2d import PyGame2D class CustomEnv(gym.Env): #metadata = {'render.modes' : ['human']} def __init__(self): self.pygame = PyGame2D() self.action_space = spaces.Discrete(3) self.observation_space = spaces.Box(np.array([0, 0, 0, 0, 0]), np.array([10, 10, 10, 10, 10]), dtype=np.int) def reset(self): del self.pygame self.pygame = PyGame2D() obs = self.pygame.observe() return obs def step(self, action): self.pygame.action(action) obs = self.pygame.observe() reward = self.pygame.evaluate() done = self.pygame.is_done() return obs, reward, done, {} def render(self, mode="human", close=False): self.pygame.view() ``` #### File: test_game_ai/neat_v01/thisisneat.py ```python import multiprocessing import os import pickle import neat import numpy as np import gym runs_per_net = 2 # simulation_seconds = 60.0 # Use the NN network phenotype and the discrete actuator force function. def eval_genome(genome, config): net = neat.nn.FeedForwardNetwork.create(genome, config) fitnesses = [] for runs in range(runs_per_net): env = gym.make("CartPole-v1") observation = env.reset() # Run the given simulation for up to num_steps time steps. fitness = 0.0 done = False while not done: action = np.argmax(net.activate(observation)) observation, reward, done, _ = env.step(action=action) fitness += reward fitnesses.append(fitness) # The genome's fitness is its worst performance across all runs. return min(fitnesses) def eval_genomes(genomes, config): for genome_id, genome in genomes: genome.fitness = eval_genome(genome, config) def run(): # Load the config file, which is assumed to live in # the same directory as this script. local_dir = os.path.dirname(__file__) config_path = os.path.join(local_dir, 'config') config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_path) pop = neat.Population(config) stats = neat.StatisticsReporter() pop.add_reporter(stats) pop.add_reporter(neat.StdOutReporter(True)) pe = neat.ParallelEvaluator(multiprocessing.cpu_count(), eval_genome) winner = pop.run(pe.evaluate) # Save the winner. with open('winner', 'wb') as f: pickle.dump(winner, f) print(winner) if __name__ == '__main__': run() ``` #### File: AI/KI_versions/multiAgent.py ```python from stable_baselines3 import A2C, PPO from stable_baselines3.common.env_util import make_vec_env # threading import threading from threads.socketHandler import * # import env import KI_v01 # important # other import os class KI(): def __init__(self): self.env = make_vec_env('ScribbleFight-v0', n_envs=2) def run(self): log_path = os.path.join('Traning', 'Logs') model = A2C("MlpPolicy", self.env, verbose=1, tensorboard_log=log_path) model = PPO("MlpPolicy", self.env, verbose=1, tensorboard_log=log_path) model.learn(total_timesteps=4500000) self.env.close() if __name__ == "__main__": ki = KI() for item in ki.env.get_attr('pygame'): while not item.scribble_fight.readystate: continue ki.run() ``` #### File: threads/dischargedConcept/singleAgent.py ```python import gym from gym import Env from gym.spaces import Discrete, Box, Dict, Tuple, MultiBinary, MultiDiscrete # stable baselines from stable_baselines3 import A2C from stable_baselines3.common.env_util import make_vec_env from stable_baselines3 import PPO from stable_baselines3.common.vec_env import VecFrameStack from stable_baselines3.common.evaluation import evaluate_policy # threading import threading from threads.socketHandler import * # import env import KI_v01 # other import time import os from KI_v01.env.gym_env import CustomEnv # NOTE TESTING # class KI(threading.Thread): # def __init__(self): # threading.Thread.__init__(self) # self.env = CustomEnv() # def run(self): # episodes = 100 # for episode in range(1, episodes+1): # state = self.env.reset() # done = False # score = 0 # while not done: # # self.env.render() # actions = self.env.action_space.sample() # # actions[0] = 1 # # actions[1] = 1 # state, reward, done, info = self.env.step(actions) # score += reward # print('Episode:{} Score:{}'.format(episode, score)) # self.env.close() class KI(threading.Thread): def __init__(self): threading.Thread.__init__(self) # self.env = CustomEnv() self.env = gym.make('ScribbleFight-v0') def run(self): log_path = os.path.join('Traning', 'Logs') model = A2C("MlpPolicy", self.env, verbose=1, tensorboard_log=log_path) model.learn(total_timesteps=200) if __name__ == "__main__": threads = [] thread1 = KI() while not thread1.env.pygame.scribble_fight.readystate: continue thread2 = thread1.env.pygame.scribble_fight.socket_handler # Start new Threads print("now starting Game Thread") thread1.start() print("now starting Observation Thread") thread2.start() threads.append(thread1) threads.append(thread2) for t in threads: t.join() ``` #### File: dischargedConcept/testSocketio/tread.py ```python import threading import time import engineio import asyncio import socketio from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException exitFlag = 0 class Game(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.driver = None self.startBrowser() def startBrowser(self): options = webdriver.ChromeOptions() options.add_argument("start-maximized") options.add_argument("disable-infobars") self.driver = webdriver.Chrome(options=options, executable_path=ChromeDriverManager().install()) url = 'http://localhost:3000/' self.driver.get(url) def isPlaying(self): try: self.driver.execute_script( 'return myPlayer.id;') except: return False return True def run(self): while True: self.driver.execute_script('moveRight();') class SocketHandl(threading.Thread): def __init__(self, driver): threading.Thread.__init__(self) self.obs = None self.sio = None self.driver = driver async def start_server(self): await self.sio.connect('http://localhost:3001') myPlayerId = self.driver.execute_script('return myPlayer.id;') await self.sio.emit('clientId', myPlayerId) self.sio.on('visCopyToPython', self.visCopyToPython) await self.sio.wait() async def connect(self): print('connected to server !!!!!!!!!!!!!') async def disconnect(self): print('disconnect !!!!!!!!!!!!!') async def visCopyToPython(self, data): print('A') self.obs = data def run(self): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) self.sio = socketio.AsyncClient(reconnection=True, logger=False, engineio_logger=False) loop.run_until_complete(self.start_server()) def get_or_create_eventloop(self): try: return asyncio.get_event_loop() except RuntimeError as ex: if "There is no current event loop in thread" in str(ex): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return asyncio.get_event_loop() class Fusion(): def init(self): pass def letsego(self): threads = [] # Create new threads thread1 = Game() time.sleep(2) thread2 = SocketHandl(thread1.driver) # Start new Threads print("now starting Thread 1") thread1.start() print("now starting Thread 2") thread2.start() threads.append(thread1) threads.append(thread2) for item in range(10): time.sleep(1) print(thread2.obs) for t in threads: t.join() fusion = Fusion() Fusion.letsego(fusion) ``` #### File: prototypes/document scanner/zwischenstand.py ```python import cv2 import numpy as np import utlis import imutils from time import sleep from threading import Thread ######################################################################## webCamFeed = True pathImage = "1.jpg" cap = cv2.VideoCapture(1) cap.set(10, 160) heightImg = 480 widthImg = 640 borderColor = (1, 59, 218) ######################################################################## utlis.initializeTrackbars() count = 0 printed = False oldBiggest = [] # def check(): while True: # SECTION webcam to open-cv # NOTE checks webcam connection # converts webcam image to readable open-cv data # uses threshold values that can be set via slider if webCamFeed: success, img = cap.read() if success: if not printed: # BOOLEAN WHICH DESCRIBES IF STARTING MESSAGE IS PRINTED OR NOT printed = True print("document scanner running\nTh1:40\nTh2:20\nAcc:20\nArea:4000") else: print("scanner failed") else: img = cv2.imread(pathImage) print("scanner failed") img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED imgBlank = np.zeros((heightImg, widthImg, 3), np.uint8) # CONVERT IMAGE TO GRAY SCALE imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR thres = utlis.valTrackbars() # GET TRACK BAR VALUES FOR THRESHOLDS threshold1 = thres[0] threshold2 = thres[1] # threshold1 = 40 # threshold2 = 20 imgThreshold = cv2.Canny( imgBlur, threshold1, threshold2) # APPLY CANNY BLUR # kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2)) kernel = None imgDial = cv2.dilate(imgThreshold, kernel, iterations=2) # APPLY DILATION imgThreshold = cv2.erode(imgDial, kernel, iterations=1) # APPLY EROSION # !SECTION # SECTION find all contours + draw them imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES contours, hierarchy = cv2.findContours( imgThreshold, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS # if len(contours) >= 5: # IF LESS THEN 5 CONTOURS WERE FOUND THE CODE THREW ERROR # cnt = contours[4] # ONLY CONTOURS WITH 4 POINTS # cv2.drawContours(img, [cnt], 0, borderColor, 3) # else: # cv2.drawContours(imgContours, contours, -1, borderColor, # 3) # DRAW ALL DETECTED CONTOURS # cv2.drawContours(imgContours, contours, -1, borderColor, # 2) # DRAW ALL DETECTED CONTOURS # FIND THE BIGGEST COUNTOUR accuracy = thres[2]/1000 # accuracy = 20 / 1000 area = thres[3] # area = 4000 biggest, maxArea = utlis.biggestContour( contours, accuracy, area) # FIND THE BIGGEST CONTOUR cnts = cv2.findContours(imgThreshold.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) if len(cnts) != 0 and cv2.contourArea: c = max(cnts, key=cv2.contourArea) cv2.drawContours(imgContours, [c], -1, (0, 255, 255), 2) if len(oldBiggest) == 0: oldBiggest = biggest a = np.array(biggest) b = np.array(oldBiggest) # RAISES NAN ERRORS THAT CAN BE IGNORED (CAN!!!) biggestChanged = np.mean(a != b) # BLUE BORDER WHICH WRAPS UP SMALL BORDERS hull = utlis.findHulls(biggest) for i in range(len(hull)): cv2.drawContours(imgContours, hull, i, (255, 0, 0), 1, 8) #!SECTION # SECTION evaluate contours and draw biggest + flip image into perspective if biggest.size != 0 and (biggestChanged >= 0.5 or biggestChanged is None) and biggest.tolist() != oldBiggest.tolist(): biggest = utlis.reorder(biggest) oldBiggest = biggest else: # imageArray = ([img, imgGray, imgThreshold, imgContours], # [imgBlank, imgBlank, imgBlank, imgBlank]) margin = 10 height, width, chanel = img.shape width -= margin height -= margin windowPoints = np.array([[[margin, margin]], [[width, margin]], [[margin, height]], [[width, height]]]) if biggest.size == 0 and oldBiggest.tolist() != windowPoints.tolist(): oldBiggest = biggest = windowPoints # cv2.drawContours(imgBigContour, biggest, -1, # (0, 255, 0), 10) # DRAW CIRCLES # DRAW THE BIGGEST CONTOUR imgBigContour = utlis.drawRectangle( imgBigContour, oldBiggest, borderColor, 2) pts1 = np.float32(oldBiggest) # PREPARE POINTS FOR WARP pts2 = np.float32([[0, 0], [widthImg, 0], [0, heightImg], [ widthImg, heightImg]]) # PREPARE POINTS FOR WARP matrix = cv2.getPerspectiveTransform(pts1, pts2) imgWarpColored = cv2.warpPerspective( img, matrix, (widthImg, heightImg)) # REMOVE 20 PIXELS FORM EACH SIDE imgWarpColored = imgWarpColored[20:imgWarpColored.shape[0] - 20, 20:imgWarpColored.shape[1] - 20] imgWarpColored = cv2.resize(imgWarpColored, (widthImg, heightImg)) # APPLY ADAPTIVE THRESHOLD imgWarpGray = cv2.cvtColor(imgWarpColored, cv2.COLOR_BGR2GRAY) imgAdaptiveThre = cv2.adaptiveThreshold(imgWarpGray, 255, 1, 1, 7, 2) imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre) imgAdaptiveThre = cv2.medianBlur(imgAdaptiveThre, 3) # Image Array for Display # imageArray = ([img, imgGray, imgThreshold, imgContours], # [imgBigContour, imgWarpColored, imgWarpGray, imgAdaptiveThre]) imageArray = ([imgThreshold, imgContours], [imgBigContour, imgWarpColored]) # !SECTION # SECTION draw open-cv data # LABELS FOR DISPLAY # lables = [["Original", "Gray", "Threshold", "Contours"], # ["Biggest Contour", "Warp Prespective", "Warp Gray", "Adaptive Threshold"]] lables = [["Threshold", "Contours"], ["Biggest Contour", "Warp Prespective"]] stackedImage = utlis.stackImages(imageArray, 0.75, lables) cv2.imshow("Result", stackedImage) # !SECTION # SAVE IMAGE WHEN 's' key is pressed if cv2.waitKey(1) & 0xFF == ord('s'): cv2.imwrite("Scanned/myImage"+str(count)+".jpg", imgWarpColored) cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50), (1100, 350), borderColor, cv2.FILLED) cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)), cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA) cv2.imshow('Result', stackedImage) cv2.waitKey(300) count += 1 print("image saved") # sleep(0.25) ``` #### File: streamFusion/scanner/cv2scan.py ```python from .utlis import * from PIL import Image import cv2 import numpy as np import imutils import sys import math def check(img): contours = oldBiggest = biggest = np.array([]) imgGray = imgThreshold = imgContours = imgBlank = None biggestChanged = 1 if img is not None: heightImg, widthImg, chanel = img.shape # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED imgBlank = np.zeros((heightImg, widthImg, 3), np.uint8) imgGray = imgThreshold = imgContours = imgBlank # CONVERT IMAGE TO GRAY SCALE imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR upperThres = 40 lowerThres = 40 imgThreshold = cv2.Canny( imgBlur, upperThres, lowerThres) # APPLY CANNY BLUR image_contours = np.zeros((heightImg, widthImg, 1), np.uint8) image_binary = np.zeros((heightImg, widthImg, 1), np.uint8) for channel in range(img.shape[2]): ret, image_thresh = cv2.threshold( img[:, :, channel], 200, 200, cv2.THRESH_BINARY) special_contours = cv2.findContours(image_thresh, 1, 1)[0] cv2.drawContours(image_contours, special_contours, - 1, (255, 255, 255), 3) special_contours = cv2.findContours(image_contours, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0] if len(special_contours) > 0: cv2.drawContours(image_binary, [max(special_contours, key=cv2.contourArea, default=0)], -1, (255, 255, 255), -1) cv2.drawContours(image_binary, special_contours, -1, (255, 255, 0), 2) imgGray = image_binary kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2)) # kernel = None imgDial = cv2.dilate(imgThreshold, kernel, iterations=3) # APPLY DILATION imgThreshold = cv2.erode( imgDial, kernel, iterations=3) # APPLY EROSION # !SECTION contours, hierarchy = cv2.findContours( imgThreshold, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS # SECTION find all contours + draw them imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES # FIND THE BIGGEST COUNTOUR accuracy = 25/1000 area = 1000 biggest, maxArea = biggestContour( contours, accuracy, area) # FIND THE BIGGEST CONTOUR # SECTION draw enclosing yellow border cnts = cv2.findContours(imgThreshold.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) if len(cnts) != 0 and cv2.contourArea: c = max(cnts, key=cv2.contourArea) cv2.drawContours( imgContours, [c], -1, (0, 255, 255), -1) # !SECTION if len(oldBiggest) == 0: oldBiggest = biggest # CALCULATE PERCENTAGE DIFFERENCE BETWEEN NEW AND OLD CONOURS a = np.array(biggest) b = np.array(oldBiggest) # RAISES NAN ERRORS THAT CAN BE IGNORED (CAN!!!) biggestChanged = np.mean( a != b) if a.size != 0 and b.size != 0 else 1 #!SECTION edges = getEdges(oldBiggest, biggest, contours, img, biggestChanged) return edges def getWrappedImg(img, snipset): snipset = squarify(snipset) pt_A = snipset[0] pt_B = snipset[1] pt_C = snipset[2] pt_D = snipset[3] lineAB = np.array([pt_A, pt_B]) lineBC = np.array([pt_B, pt_C]) lineCD = np.array([pt_C, pt_D]) lineDA = np.array([pt_D, pt_A]) width_AD = np.sqrt(((pt_A[0] - pt_D[0]) ** 2) + ((pt_A[1] - pt_D[1]) ** 2)) width_BC = np.sqrt(((pt_B[0] - pt_C[0]) ** 2) + ((pt_B[1] - pt_C[1]) ** 2)) maxHeight = max(int(width_AD), int(width_BC)) if maxHeight == width_AD: lineA = lineDA else: lineA = lineBC height_AB = np.sqrt(((pt_A[0] - pt_B[0]) ** 2) + ((pt_A[1] - pt_B[1]) ** 2)) height_CD = np.sqrt(((pt_C[0] - pt_D[0]) ** 2) + ((pt_C[1] - pt_D[1]) ** 2)) maxWidth = max(int(height_AB), int(height_CD)) if maxWidth == height_AB: lineB = lineAB else: lineB = lineCD angle = ang(lineA, lineB) if angle == 90: factor = 1 if angle > 90: factor = 90 / (180-angle) if angle < 90: factor = 90 / angle maxHeight *= factor m = np.array([pt_A, pt_B, pt_C, pt_D]) m = rotateCW(m) input_pts = np.float32(m) output_pts = np.float32([[0, 0], [0, maxHeight - 1], [maxWidth - 1, maxHeight - 1], [maxWidth - 1, 0]]) M = cv2.getPerspectiveTransform(input_pts, output_pts) dst = cv2.warpPerspective( img, M, (int(maxWidth), int(maxHeight)), flags=cv2.INTER_LINEAR) return dst def getPlayableArray(img): np.set_printoptions(threshold=sys.maxsize) alpha_img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA) # rgba imgWarpGray = cv2.cvtColor(alpha_img, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(imgWarpGray, (7, 7), 0) imgAdaptiveThre = cv2.adaptiveThreshold( blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 7, 2) imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre) imgAdaptiveThre = cv2.medianBlur(imgAdaptiveThre, 3) # make image square imgAdaptiveThre = np.array(makeSquare( cv2.cvtColor(imgAdaptiveThre, cv2.COLOR_BGR2BGRA))) img = cv2.cvtColor(imgAdaptiveThre, cv2.COLOR_BGR2BGRA) # pippoRGBA2 = Image.fromarray(np.array(img).astype('uint8'), mode='RGBA') # pippoRGBA2.show() cv2.imwrite( './source/prototypes/streamFusion/output/imgAdaptiveThre.png', imgAdaptiveThre) iar = np.asarray(img).tolist() rows = len(iar) columns = len(iar[0]) meshes = 3025 # percent = perc(rows * columns) percent = 95 n = math.ceil(np.sqrt(rows * columns / meshes)) x = 0 y = 0 newImg = [] while y < rows: newImg.append([]) while x < columns: i = 0 j = 0 bg = 0 while i < n: while j < n: if (y + j) < rows and (x + i) < columns: if np.all(iar[y + j][x + i][:3] == [255, 255, 255], 0): bg += 1 else: bg += 1 j += 1 j = 0 i += 1 bgPercent = bg / (n**2) if (bgPercent < (percent / 100)): newImg[int(y / n)].append([0, 0, 0, 255]) else: newImg[int(y / n)].append([255, 255, 255, 0]) x += n x = 0 y += n iar = np.asarray(newImg).tolist() with open('./source/prototypes/streamFusion/output/mapArray.txt', 'w') as f: f.writelines(repr(iar)) # pippoRGBA2 = Image.fromarray(np.array(newImg).astype('uint8'), mode='RGBA') # pippoRGBA2.show() cv2.imwrite( './source/prototypes/streamFusion/output/newImg.png', np.array(newImg)) return newImg def makeSquare(im, size=8 * 55, fill_color=(255, 255, 255, 1)): im = Image.fromarray(np.array(im).astype('uint8'), mode='RGBA') # cv2 img to PIL img x, y = im.size # get mesurements new_im = Image.new('RGBA', (size, size), fill_color) new_im.paste(im, (int((size - x) / 2), int((size - y) / 2))) return new_im ```
{ "source": "jonashleyo/judge-pics", "score": 3 }
#### File: judge_pics/scrapers/dc_circuit_judges.py ```python import hashlib import json import re import requests import shutil import subprocess import os from lxml import html from judge_pics import judge_pics, judge_root root_url = 'http://dcchs.org/Portraits/' line_re = re.compile('<a href="(.*)">(.*)</a') def make_slug(name, path): last_name = re.search('(.*),', name).group(1).lower() first_name = re.search('([A-Z].*)[A-Z]', path).group(1).lower() return '%s-%s' % (last_name, first_name) def get_artist_and_date_created(full_url): # Open firefox, prompt for answer, sanitize answer and return it. subprocess.Popen(['firefox', full_url], shell=False).communicate() artist = raw_input('Who made this: ') if artist == '': artist = None d = raw_input('When did they make it: ') if d == '': d = None return artist, d def get_hash_from_file(image): """Get the hash from the current file""" with open(image, 'r') as f: return hashlib.sha256(f.read()).hexdigest() def run_things(): with open('sources.txt', 'r') as f: for line in f: # <a href="JesseAdkins.html"><NAME>.</a><br> path = line_re.search(line).group(1) name = line_re.search(line).group(2) slug = make_slug(name, path) full_url = root_url + path r = requests.get(full_url, headers={'UserAgent': 'freelawproject.org'}) tree = html.fromstring(r.text) try: img_path = tree.xpath('//div[@id="contentcolumn"]//img/@src')[0] full_img_src = root_url + img_path except IndexError: print "Failed to find image for %s" % full_url continue r_img = requests.get(full_img_src, stream=True) if r_img.status_code == 200: with open(slug + '.jpeg', 'wb') as f_img: r_img.raw.decode_content = True shutil.copyfileobj(r_img.raw, f_img) artist, date_created = get_artist_and_date_created(full_url) img_hash = get_hash_from_file(slug + '.jpeg') # Update judges.json judge_pics[slug] = { 'artist': artist, 'date_created': date_created, 'license': 'Work of Federal Government', 'source': 'Historical Society of the District of Columbia ' 'Circuit', 'hash': img_hash, } json.dump( judge_pics, open(os.path.join(judge_root, 'judges.json'), 'w'), sort_keys=True, indent=2, ) if __name__ == '__main__': run_things() ```
{ "source": "jonashoechst/cbor2", "score": 3 }
#### File: cbor2/scripts/half_float_tables.py ```python from itertools import zip_longest def grouper(iterable, n, fillvalue=None): args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) def sigtable(): print("static const uint32_t sigtable[] = {") values = ( 0 if i == 0 else convertsig(i) if 1 <= i < 1024 else 0x38000000 + ((i - 1024) << 13) for i in range(2048) ) values = ('{:#010x}'.format(i) for i in values) for row in grouper(values, 8): print(' ' + (', '.join(row)) + ',') print("};") def exptable(): values = ( 0 if i == 0 else 0x47800000 if i == 31 else 0x80000000 if i == 32 else i << 23 if 1 <= i < 31 else 0x80000000 + ((i - 32) << 23) if 33 <= i < 63 else 0xC7800000 # i == 63 for i in range(64) ) print("static const uint32_t exptable[] = {") values = ('{:#010x}'.format(i) for i in values) for row in grouper(values, 8): print(' ' + (', '.join(row)) + ',') print("};") def offsettable(): values = ( 0 if i in (0, 32) else 1024 for i in range(64) ) print("static const uint16_t offsettable[] = {") values = ('{:#06x}'.format(i) for i in values) for row in grouper(values, 8): print(' ' + (', '.join(row)) + ',') print("};") def convertsig(i): if not i: return 0 m = i << 13 e = 0 while not m & 0x00800000: e -= 0x00800000 m <<= 1 m &= ~0x00800000 e += 0x38800000 return m | e def basetable(): values = [0] * 512 for i in range(256): e = i - 127 if e < -24: # underflow to 0 values[i | 0x000] = 0 values[i | 0x100] = 0x8000 elif e < -14: # smalls to denorms values[i | 0x000] = (0x400 >> (-e - 14)) values[i | 0x100] = (0x400 >> (-e - 14)) | 0x8000 elif e < 15: # normal case values[i | 0x000] = ((e + 15) << 10) values[i | 0x100] = ((e + 15) << 10) | 0x8000 elif e < 128: # overflow to inf values[i | 0x000] = 0x7c00 values[i | 0x100] = 0xfc00 else: # inf and nan values[i | 0x000] = 0x7c00 values[i | 0x100] = 0xfc00 print("static const uint16_t basetable[] = {") values = ('{:#06x}'.format(i) for i in values) for row in grouper(values, 8): print(' ' + (', '.join(row)) + ',') print("};") def shifttable(): values = [0] * 512 for i in range(256): e = i - 127 if e < -24: # underflow to 0 values[i | 0x000] = 24 values[i | 0x100] = 24 elif e < -14: # smalls to denorms values[i | 0x000] = -e - 1 values[i | 0x100] = -e - 1 elif e < 15: # normal case values[i | 0x000] = 13 values[i | 0x100] = 13 elif e < 128: # overflow to inf values[i | 0x000] = 24 values[i | 0x100] = 24 else: # inf and nan values[i | 0x000] = 13 values[i | 0x100] = 13 print("static const uint16_t shifttable[] = {") values = ('{:#06x}'.format(i) for i in values) for row in grouper(values, 8): print(' ' + (', '.join(row)) + ',') print("};") sigtable() print() exptable() print() offsettable() print() basetable() print() shifttable() ```
{ "source": "jonasht/CursoEmVideo-CursoDePython3", "score": 3 }
#### File: CursoEmVideo-CursoDePython3/mundo3-EstruturasCompostas/084-listaCompostaEAnaliseDeDados1.py ```python import colorama colorama.init() # p/ funcionar no windows, linux funciona normalmente r = '\033[31m' # red b = '\033[34m' # blue g = '\033[32m' # green f = '\33[m' pessoas = list() obter = list() qtdp = maior = menor = 0 def l(): print(g, '=-'*30 + '=',f) while 1: l() qtdp += 1 obter.append(str(input(f'{qtdp} nome:'))) obter.append(float(input(f'{qtdp} peso:'))) if len(pessoas) == 0: maior = menor = obter[1] else: if obter[1] > maior: maior = obter[1] if obter[1] < menor: menor = obter[1] pessoas.append(obter[:]) obter.clear() sair = input('quer continuar [S/n]:') if sair in 'nN': break l() print(f'quandidade de pessoas {qtdp} ') print(r, f'maior peso foi de {maior}kg. o peso de ', f, end='') for p in pessoas: if p[1] == maior: print(f' {p[0]}', end='') print(b, f'\nmenor peso foi de {menor}kg. o peso de ', end='') for p in pessoas: if p[1] == menor: print(f' {p[0]}') # Exercício Python 084: # Faça um programa que leia nome e peso de várias pessoas, # guardando tudo em uma lista. No final, mostre: #A) Quantas pessoas foram cadastradas. #B) Uma listagem com as pessoas mais pesadas. #C) Uma listagem com as pessoas mais leves. ``` #### File: CursoEmVideo-CursoDePython3/mundo3-EstruturasCompostas/086-matriz.py ```python def l(ll): print(30*ll) matriz = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] l('=') print('valores de matriz a serem adionados') for i in range(len(matriz)): for ii in range(len(matriz)): matriz[i][ii] = int(input(f'[{i}|{ii}]numero: ')) l('_') print('Valores de matriz:') for i in range(3): for ii in range(3): print(f'{matriz[i][ii]:^10} ', end='') print() l('-') ``` #### File: CursoEmVideo-CursoDePython3/mundo3-EstruturasCompostas/087-matriz.py ```python def l(ll): print(30*ll) matriz = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] sumPar = terC = 0 l('=') print('valores de matriz a serem adionados') for i in range(len(matriz)): for ii in range(len(matriz)): matriz[i][ii] = int(input(f'[{i}|{ii}]numero: ')) l('_') print('Valores de matriz:') for i in range(3): for ii in range(3): print(f'{matriz[i][ii]:^10} ', end='') sumPar = sumPar+matriz[i][ii] if matriz[i][ii]%2==0 else sumPar # soma de tds os valores pares digitds terC = terC + matriz[i][ii] if ii == 2 else terC print() l('_') print(f'soma dos numeros pares: {sumPar}') print(f'soma dos valores da terceira coluna: {terC}')# A soma dos valores da terceira coluna print(f'maior valor da segunda linha: {max(matriz[1])}')# O maior valor da segunda linha ``` #### File: CursoEmVideo-CursoDePython3/mundo3-EstruturasCompostas/093-CadastroDeJogadorDeFutebol.py ```python dados = dict() qtd_gols = [] dados['nome'] = input('nome do jogador: ') def l(): print('\n'+'=-'*25+'=') qtd_partida = int(input('quantas partidas:')) for i in range(qtd_partida): qtd_gols.append(int(input(f'quantos gols na {1+i}º partida: '))) dados['gols'] = qtd_gols[:] dados['total'] = sum(qtd_gols) l() print(dados) l() for chave, valor in dados.items(): print(f'o campo {chave} tem o valor {valor}') l() print(f"o jogador {dados['nome']} jogou {len(dados['gols'])} partidas.") for i, v in enumerate(dados['gols']): print(f"\t=> Na {i+1}º partida, fez {dados['gols'][i]}") l() ``` #### File: CursoEmVideo-CursoDePython3/mundo3-EstruturasCompostas/098-funcaoContador.py ```python import time inicio = fim = passo = 0 def contador(inicio, fim, passo=1): print('=-'*30+'=') print(f'contagem de {inicio} até {fim} com o passo {passo}') # o proprio FOR evita loop infinito caso a regra não seja dada for i in range(inicio, fim, passo): print(f'{i} ', flush=True, end='') time.sleep(.1) print() print('=-'*30+'=') contador(1, 10) contador(10, 0, -2) inicio = int(input('(inicio) DE:')) fim = int(input(' (fim) até: ')) passo = int(input(' passo: ')) contador(inicio, fim, passo) ``` #### File: CursoEmVideo-CursoDePython3/mundo3-EstruturasCompostas/102-funcaoFatorial.py ```python def fatorial(n, show=False): ''' -> calcula um fatorial de um numero :para n: o numero para ser calculado :para show: (opcional) mostrar ou não aconta (False/True) :return: o valor do fatorial 'numero' ''' fatorial = [i for i in range(1, 1+n)] soma = 1 resposta = '' for i in fatorial: soma *= i if show: for i in fatorial: resposta += f'{i} X ' return f'{resposta[:-2] }= {soma}' if resposta else soma print(fatorial(5, True)) print(fatorial(9)) help(fatorial) ```
{ "source": "jonasht/Python", "score": 3 }
#### File: 02-snake-pygame/cobra-v1/main.py ```python import pygame from pygame.locals import * import random def on_grid_random(): x = random.randint(0,590) y = random.randint(0,590) return (x//10 * 10, y//10 * 10) def collision(c1, c2): return (c1[0] == c2[0]) and (c1[1] == c2[1]) UP = 0 RIGHT = 1 DOWN = 2 LEFT = 3 pygame.init() tela = pygame.display.set_mode((600,600)) pygame.display.set_caption('cobra') cobra = [(200, 200), (210, 200), (220,200)] cobra_skin = pygame.Surface((10,10)) cobra_skin.fill((255,255,255)) cobra_posicao = on_grid_random() maca = pygame.Surface((10,10)) maca.fill((255,0,0)) my_direction = LEFT clock = pygame.time.Clock() while 1: clock.tick(10) for event in pygame.event.get(): if event.type == QUIT: pygame.quit() if event.type == KEYDOWN: if event.key == K_UP: my_direction = UP if event.key == K_DOWN: my_direction = DOWN if event.key == K_LEFT: my_direction = LEFT if event.key == K_RIGHT: my_direction = RIGHT if collision(cobra[0], cobra_posicao): cobra_posicao = on_grid_random() cobra.append((0,0)) for i in range(len(cobra) - 1, 0, -1): cobra[i] = (cobra[i-1][0], cobra[i-1][1]) if my_direction == UP: cobra[0] = (cobra[0][0], cobra[0][1] - 10) if my_direction == DOWN: cobra[0] = (cobra[0][0], cobra[0][1] + 10) if my_direction == RIGHT: cobra[0] = (cobra[0][0] + 10, cobra[0][1]) if my_direction == LEFT: cobra[0] = (cobra[0][0] - 10, cobra[0][1]) tela.fill((0,0,0)) tela.blit(maca, cobra_posicao) for pos in cobra: tela.blit(cobra_skin, pos) pygame.display.update() ``` #### File: 0-versoesAnteriores/contador-v1/contador1.py ```python from tkinter import* janela = Tk() janela.title('contagem') janela['bg']='Black' segundos = None #dimisões da janela largura = 230 altura = 250 #resolução do sistema largura_screen = janela.winfo_screenwidth() altura_screen = janela.winfo_screenheight() #posição da janela posX = largura_screen/2 - largura/2 posY = altura_screen/2 - altura/2 #definir a geometry janela.geometry('%dx%d+%d+%d' % (largura, altura, posX, posY)) def Contagem(): global ate global segundos if segundos == None: ate = int(entrada.get()) segundos = -1 if segundos == ate: lb_contagem['text'] = 'Fim' else: segundos = segundos + 1 lb_contagem['text'] = segundos lb_contagem.after(1000, Contagem) label = Label(janela, text="quantos segundos:", fg='green', bg='black') label.grid(row=0, column=0) entrada = Entry(janela, textvariable=0, bg='gray') entrada.grid(row=0, column=1) lb_contagem = Label(janela, fg='green', font='Times 100 bold', bg='black', text='0') lb_contagem.grid(row=2, column=0, columnspan=2, sticky=W+E) bt = Button(janela, fg='dark green', bg='light sea green', text='Começar', command=Contagem, font='Arial 20 bold') bt.grid(row=3, column=0, columnspan=2, sticky=W+E) janela.mainloop() ``` #### File: 0-versoesAnteriores/contador-v4/main.py ```python from tkinter import Tk from tkinter.constants import DISABLED from frame import Interface class Principal(Tk): def __init__(self): super().__init__() self.frame = Interface(self) self.frame.pack() self.bind('<Return>', self.teclaEnter) # self.frame.entrada.focus() def teclaEnter(self, event): self.iniciar() def iniciar(self): self.frame.Contagem() if __name__ == '__main__': root = Principal() root.mainloop() ``` #### File: 04-AprendizagemDeTabuada/0-versoesAnteriores/tabuadaLearning3.py ```python from tkinter import * import random print('feito no windows') t = Tk() t.title('FTabuada v3') t.iconbitmap('04/ico.xbm') conta_1 = 2 conta_2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] random.shuffle(conta_2) c = 0 incorreto = correto = 0 def Start(): conta_1 = valor.get() conta_total = [conta_1 * conta_2[0], (conta_1 * conta_2[0]) + 2, (conta_1 * conta_2[c]) * 1 ] random.shuffle(conta_total) lb_conta.config(text=str(conta_1) + ' X ' + str(conta_2[0])) bt0.config(text=conta_total[0], state=NORMAL) bt1.config(text=conta_total[1], state=NORMAL) bt2.config(text=conta_total[2], state=NORMAL) bt_start.config(state=DISABLED, fg='white', bg='white') def comando(res_comando): global conta_total global conta_1 global conta_2 global c global correto global incorreto conta_1 = valor.get() if c <= len(conta_2): c = c + 1 conta_total = [conta_1 * conta_2[c], (conta_1 * conta_2[c]) + 7,(conta_1 * conta_2[c]) * 2 + 9 ] lb_conta.config(text=str(conta_1) + ' X ' + str(conta_2[c])) lb_conta_resposta.config(text=str(conta_1) + ' X ' + str(conta_2[c-1]) + ' = ' + str(conta_1 * conta_2[c-1])) bt0.config(text=conta_total[0], state=NORMAL) bt1.config(text=conta_total[1], state=NORMAL) bt2.config(text=conta_total[2], state=NORMAL) if (conta_1 * conta_2[c]) == conta_total[res_comando]: lb_resposta.config(text='correto') correto = correto + 1 lb_correto.config(text=correto) random.shuffle(conta_total) else: lb_resposta.config(text='incorreto') incorreto = incorreto + 1 lb_incorreto.config(text=incorreto) random.shuffle(conta_total) lb_conta = Label(t, text='=-=-=-=', width=5, fg='red', font='arial 80 bold') lb_resposta = Label(t, text='=-=-=-=-=-=', fg='blue', font='arial 20 bold') lb_conta_resposta = Label(t, text='=-=-=-=-=-=', fg='dark blue', font='arial 20 bold') bt0 = Button(t, text='', command=lambda: comando(0), state=DISABLED, font='arial 20 bold', width=5, borderwidth=2) bt1 = Button(t, text='', command=lambda: comando(1), state=DISABLED, font='arial 20 bold', width=5, borderwidth=2) bt2 = Button(t, text='', command=lambda: comando(2), state=DISABLED, font='arial 20 bold', width=5, borderwidth=2) bt_start = Button(t, text='start', command=Start, font='arial 20') frame_op = Frame(t) frame_op.grid(row=0, column=0, columnspan=3, sticky=W+E) valor = IntVar() lb_op = Label(frame_op, text='qual tabuada?:') lb_op.grid(row=0) rbt1 = Radiobutton(frame_op, text='1', variable=valor, value=1, indicatoron=0, padx=10, pady=10, bg='green') rbt1.grid(row=0, column=1) rbt2 = Radiobutton(frame_op, text='2', variable=valor, value=2, indicatoron=0, padx=10, pady=10, bg='green') rbt2.grid(row=0, column=2) rbt3 = Radiobutton(frame_op, text='3', variable=valor, value=3, indicatoron=0, padx=10, pady=10, bg='green') rbt3.grid(row=0, column=3) rbt4 = Radiobutton(frame_op, text='4', variable=valor, value=4, indicatoron=0, padx=10, pady=10, bg='green') rbt4.grid(row=0, column=4) rbt5 = Radiobutton(frame_op, text='5', variable=valor, value=5, indicatoron=0, padx=10, pady=10, bg='green') rbt5.grid(row=0, column=5) rbt6 = Radiobutton(frame_op, text='6', variable=valor, value=6, indicatoron=0, padx=10, pady=10, bg='green') rbt6.grid(row=0, column=6) rbt7 = Radiobutton(frame_op, text='7', variable=valor, value=7, indicatoron=0, padx=10, pady=10, bg='green') rbt7.grid(row=0, column=7) rbt8 = Radiobutton(frame_op, text='8', variable=valor, value=8, indicatoron=0, padx=10, pady=10, bg='green') rbt8.grid(row=0, column=8) rbt9 = Radiobutton(frame_op, text='9', variable=valor, value=9, indicatoron=0, padx=10, pady=10, bg='green') rbt9.grid(row=0, column=9) rbt10 = Radiobutton(frame_op, text='10', variable=valor, value=10, indicatoron=0, padx=10, pady=10, bg='green') rbt10.grid(row=0, column=10) rbt9.select() lb_conta.grid(row=1, columnspan=3, sticky=W+E) lb_resposta.grid(row=2, column=1,columnspan=2, sticky=W+E) lb_conta_resposta.grid(row=3, column=1, columnspan=2, sticky=W+E) bt0.grid(row=2, sticky=W+E) bt1.grid(row=3, sticky=W+E) bt2.grid(row=4, sticky=W+E) bt_start.grid(row=5, columnspan=3, sticky=W+E) lb_correto = Label(t, text=0, fg='blue', font='arial 20 bold') lb_incorreto = Label(t, text=0, fg='red', font='arial 20 bold') lb_incorreto.grid(row=4, column=1) lb_correto.grid(row=4, column=2) t.mainloop() ``` #### File: 0-versoesAnteriores/tabuada-V4/conta.py ```python from random import shuffle class Conta: def __init__(self): self.contas = list() # self.fazerContas() def set_numero1(self, n): self.fazerContas(n) def fazerContas(self, numero1): numero2 = list(range(10)) for conta in numero2: self.contas.append([numero1, conta]) shuffle(self.contas) def mostrar(self): print(self.contas) if __name__ == '__main__': conta = Conta() conta.set_numero1(9) conta.mostrar() ``` #### File: 04-AprendizagemDeTabuada/tabuada-V5/frameMenu.py ```python from tkinter import * class FrameMenu(Frame): def __init__(self, parent, controller): Frame.__init__(self, parent) self.controller = controller self.opcaoMenu = Frame(self) self.bt_start = Button(self, text='Start', font='arial 20', command=lambda: controller.show_frame('FrameStart')) self.valor = IntVar() self.lb_op = Label(self.opcaoMenu, text='qual tabuada?:') self.lb_op.pack() # ======= radio Button =========================================== # radio button das opcao para escolher self.rbt1 = Radiobutton(self.opcaoMenu, text='1', variable=self.valor, value=1, indicatoron=0, padx=10, pady=10, bg='green') self.rbt2 = Radiobutton(self.opcaoMenu, text='2', variable=self.valor, value=2, indicatoron=0, padx=10, pady=10, bg='green') self.rbt3 = Radiobutton(self.opcaoMenu, text='3', variable=self.valor, value=3, indicatoron=0, padx=10, pady=10,bg='green') self.rbt4 = Radiobutton(self.opcaoMenu, text='4', variable=self.valor, value=4, indicatoron=0, padx=10, pady=10, bg='green') self.rbt5 = Radiobutton(self.opcaoMenu, text='5', variable=self.valor, value=5, indicatoron=0, padx=10, pady=10, bg='green') self.rbt6 = Radiobutton(self.opcaoMenu, text='6', variable=self.valor, value=6, indicatoron=0, padx=10, pady=10,bg='green') self.rbt7 = Radiobutton(self.opcaoMenu, text='7', variable=self.valor, value=7, indicatoron=0, padx=10, pady=10,bg='green') self.rbt8 = Radiobutton(self.opcaoMenu, text='8', variable=self.valor, value=8, indicatoron=0, padx=10, pady=10,bg='green') self.rbt9 = Radiobutton(self.opcaoMenu, text='9', variable=self.valor, value=9, indicatoron=0, padx=10, pady=10, bg='green') self.rbt1.pack (side=LEFT) self.rbt2.pack (side=LEFT) self.rbt3.pack (side=LEFT) self.rbt4.pack (side=LEFT) self.rbt5.pack (side=LEFT) self.rbt6.pack (side=LEFT) self.rbt7.pack (side=LEFT) self.rbt8.pack (side=LEFT) self.rbt9.pack (side=LEFT) self.rbt9.select() self.opcaoMenu.pack(anchor=CENTER, padx=10, pady=20) self.bt_start.pack(anchor=CENTER) if __name__ == '__main__': import main # root = Tk() # frame = FrameMenu(root) # def tecla1(event): # print('1 apertado') # frame.rbt1.select() # def tecla2(event): # print('2 apertado') # frame.rbt2.select() # root.bind('1', tecla1) # root.bind('2', tecla2) # frame.pack() # root.mainloop() ``` #### File: 06-sistemaLinear3x3/0versoesAnteriores/0-v0-delta.py ```python conta = [ {'x': 1, 'y': 2, 'z': 1, '=': 8}, {'x': 2, 'y':-1, 'z': 1, '=': 3}, {'x': 3, 'y': 1, 'z':-1, '=': 2} ] def enfeitar(): print('-' * 30) for c in conta: print(c) enfeitar() for dic in conta: for chave, item in dic.items(): if chave == '=': print(f' = {item}', end='') else: print(f' {item}{chave}', end='') print() enfeitar() print('delta:') lista_delta = [[], [], []] for i, dic in enumerate(conta): for chave, item in dic.items(): if chave != '=': print(f' {item}', end='') lista_delta[i].append(item) print() for i in range(3): for ii in range(2): lista_delta[i].append(lista_delta[i][ii]) enfeitar() def mostrar_delta(): for lista in lista_delta: for n in lista: if len(str(n)) == 1: print(f' {n}', end='') else: print(f' {n}', end='') print() mostrar_delta() enfeitar() print(lista_delta) d_resultado = 1 def somarMatriz(): multiplicacao = 1 resultado = 0 for seguinte in range(3): for i in range(3): multiplicacao *= lista_delta[i][i+seguinte] resultado += multiplicacao multiplicacao = 1 for seguinte in range(3): for i in range(3): multiplicacao *= -(lista_delta[-(i-2)][i+seguinte]) resultado += multiplicacao multiplicacao = 1 return resultado enfeitar() delta = somarMatriz() print(f'delta = {delta}') ``` #### File: 0versoesAnteriores/3X3-v8/principal.py ```python from cl_3x3 import * # -------------------------------------------------- conta = [ {'x': 1, 'y': 2, 'z': 1, '=': 8}, {'x': 2, 'y': -1, 'z': 1, '=': 3}, {'x': 3, 'y': 1, 'z': -1, '=': 2} ] # -------------------------------------------------- def enfeitar(oque='-', qtd=50): print(oque * qtd) a = cl_3x3(conta) print() enfeitar() print('conta:') a.mostrar_conta() enfeitar() print('matriz delta:') a.mostrar_matriz() print(f'delta = {a.delta}') enfeitar() a.mostrar_matriz('x') print(f'deltaX = {a.deltaX}') enfeitar() a.mostrar_matriz('y') print(f'deltaX = {a.deltaY}') enfeitar() a.mostrar_matriz('z') print(f'deltaZ = {a.deltaZ}') enfeitar() print(f'delta={a.delta}, deltaX={a.deltaX}, deltaY={a.deltaY}, deltaZ={a.deltaZ}') print(f'x = {a.deltaX}/{a.delta} = {a.x}\n') print(f'y = {a.deltaY}/{a.delta} = {a.y}\n') print(f'z = {a.deltaZ}/{a.delta} = {a.z}\n') enfeitar() print(f'x = {a.x}, y = {a.y}, z = {a.z}') ``` #### File: 0versoesAnteriores/7-3X3/principal.py ```python from cl_3x3 import * # -------------------------------------------------- conta = [ {'x': 1, 'y': 2, 'z': 1, '=': 8}, {'x': 2, 'y': -1, 'z': 1, '=': 3}, {'x': 3, 'y': 1, 'z': -1, '=': 2} ] # -------------------------------------------------- def enfeitar(): print('-' * 30) a = cl_3x3(conta) print() enfeitar() print('conta:') a.mostrar_conta() enfeitar() print('matriz delta:') a.mostrar_matriz(a.matriz_delta) print(f'delta = {a.delta}') enfeitar() a.mostrar_matriz(a.matriz_deltaX) print(f'deltaX = {a.deltaX}') enfeitar() a.mostrar_matriz(a.matriz_deltaY) print(f'deltaX = {a.deltaY}') enfeitar() a.mostrar_matriz(a.matriz_deltaZ) print(f'deltaZ = {a.deltaZ}') enfeitar() print(f'delta={a.delta}, deltaX={a.deltaX}, deltaY={a.deltaY}, deltaZ={a.deltaZ}') print(f'x = {a.deltaX}/{a.delta} = {a.x}') print(f'y = {a.deltaY}/{a.delta} = {a.y}') print(f'z = {a.deltaZ}/{a.delta} = {a.z}') enfeitar() print(f'x = {a.x}, y = {a.y}, z = {a.z}') ```
{ "source": "jonasht/python", "score": 3 }
#### File: teste/testeCores/corFunc.py ```python def get_vars(conta) -> list: vars = list() for c in conta: # print(c) if c.isalpha() or c == '=': vars.append(c) # print(c, vars) # print(vars) return vars cores = ['blue', 'green', 'yellow', 'red', 'white'] def formatar(num, conta) -> dict: formatado = list() print(conta) vars = get_vars(conta) if '=' in vars: vars.remove('=') for i, v in enumerate(vars): p1 = conta.find(vars[i]) vars.pop(p1) p2 = p1 +1 # print('i', 'v', 'p1 p2') # print(i, v, p1, p2) d = { 'nome':v+str(num+1), 'p1': str(num+1)+'.'+str(p1), 'p2':str(num+1)+'.'+str(p2), 'fg':cores[i] } formatado.append(d) # mostrar return formatado if __name__ == '__main__': print(get_vars('xxx')) ``` #### File: sistemaLinear_v11/teste/textEventTest.py ```python from tkinter import ttk from tkinter import * class App(Tk): def __init__(self): super().__init__() self.text = Text(self, background='black', foreground='white', font='arial 20 bold', height=10, width=30) self.bind('<KeyRelease>', self.event) self.text.pack() def event(self, event): print(self.text.get('1.0', END)) root = App() root.mainloop() ```
{ "source": "jonasht/Python", "score": 3 }
#### File: 0versoesAntigas/0-algoritmo/0.py ```python from time import sleep from random import shuffle lista = list(range(1, 11)) shuffle(lista) mostrarLista = [([0 for i in range(10)]) for i in range(10)] print() def mostrar(): for ls in mostrarLista: for l in ls: if l == True: print(f'{l} ', end='') else: print(' ', end='') #print(f'{l} ', end='') print() for i in lista: print(f'{i} ', end='') #mostrarLista[1][1] = 1 for contador in range(len(lista)): for i, chars in enumerate(mostrarLista[::-1]): if lista[contador] == i: break chars[contador] = 1 sleep(.02) mostrar() ``` #### File: 0versoesAntigas/4-programa/programa.py ```python from time import sleep from random import shuffle from os import system f = '\33[m' bgBlue = '\033[44m' # backgournd blue bgYellow = '\033[43m' #backgournd yellow bgRed = '\033[41m' #backgournd red # definição do tamanho da lista tamanhoDaLista = 30 lista = list(range(1, tamanhoDaLista)) shuffle(lista) print() # mostrar lista, serve para mostrar a lista de forma legal def Mostrar(mostrarLista): system('clear') for cs in mostrarLista: for c in cs: if c == 1: print(f'{bgBlue} {f}', end='') elif c == 2: print(f'{bgYellow} {f}', end='') else: print(' ', end='') print() sleep(.01) #mostrarLista.clear() #mostrarLista[1][1] = 1 # aqui serve para tranformar uma lista em matrix para mostrar() conseguir mostrar def converterPMostrar(n): mostrarLista = [([0 for i in range(tamanhoDaLista)]) for i in range(tamanhoDaLista)] for contador in range(len(lista)): for i, chars in enumerate(mostrarLista[::-1]): if lista[contador] == i: break chars[contador] = 1 if contador == n: chars[contador] = 2 Mostrar(mostrarLista) mostrarLista.clear() sleep(.02) print(lista) def Maneira(): guardarNumero = 0 for c in range(len(lista)): for i in range(len(lista)): #print(i, len(lista)) if i+1 == len(lista): continue else: if lista[i] > lista[i+1]: guardarNumero = lista[i] lista[i] = lista[i+1] lista[i+1] = guardarNumero converterPMostrar(i+1) Maneira() ``` #### File: 0versoesAntigas/5-programa/programa.py ```python from time import sleep from random import shuffle from os import system class Interface: def __init__(self): self.f = '\33[1;0m' self.bgblack = '\033[1;40m' # background black self.bggreen = '\033[1;42m' # background green self.bgBlue = '\033[1;44m' # backgournd blue self.bgYellow = '\033[1;43m'# backgournd yellow self.bgRed = '\033[1;41m' # backgournd red self.bgwhite = '\033[1;107m'# background white # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # definição do tamanho da lista self.tamanhoDaLista = 15 # =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= self.lista = list(range(1, self.tamanhoDaLista)) shuffle(self.lista) # mostrar lista, serve para mostrar a lista de forma legal def Mostrar(self, mostrarLista): system('clear') for cs in mostrarLista: for c in cs: if c == 1: print(f'{self.bgBlue} {self.f}', end='') elif c == 2: print(f'{self.bggreen} {self.f}', end='') else: print(f' ', end='') print() sleep(.01) #mostrarLista.clear() #mostrarLista[1][1] = 1 # aqui serve para tranformar uma lista em matrix para mostrar() conseguir mostrar def converterPMostrar(self, n): mostrarLista = [([0 for i in range(self.tamanhoDaLista)]) for i in range(self.tamanhoDaLista)] for contador in range(len(self.lista)): for i, chars in enumerate(mostrarLista[::-1]): if self.lista[contador] == i: break chars[contador] = 1 if contador == n: chars[contador] = 2 self.Mostrar(mostrarLista) mostrarLista.clear() sleep(.02) def Maneira(self): guardarNumero = 0 for c in range(len(self.lista)): for i in range(len(self.lista)): #print(i, len(lista)) if i+1 == len(self.lista): continue else: if self.lista[i] > self.lista[i+1]: guardarNumero = self.lista[i] self.lista[i] = self.lista[i+1] self.lista[i+1] = guardarNumero self.converterPMostrar(i+1) m1 = Interface() m1.Maneira() ``` #### File: 0-versoesAntigas/torre1/torre.py ```python from auroDesenhante import * fim = '\033[0m' black = '\033[40m' red = '\033[41m' green = '\033[42m' yellow = '\033[43m' blue = '\033[44m' pink = '\033[45m' white = '\033[107m' def magica(): sleep(0.2) system('clear') # Y # | # | # ---|----X # | # a = auro(40, 10, f'{black} {fim}') # partes parte3 = 20 # magica() # a.mostrar() # a.desenhar(f'{blue} {fim}', x=5 + parte3, y=9, qtdCasas= 9 ) # magica() # a.mostrar() # a.desenhar(f'{red} {fim}', x=6 + parte3, y=8, qtdCasas=7) # magica() # a.mostrar() # a.desenhar(f'{yellow} {fim}', x=7 + parte3, y=7, qtdCasas=5) # magica() # a.mostrar() # a.desenhar(f'{green} {fim}', x=8 + parte3, y=6, qtdCasas=3) # magica() # a.mostrar() def erguer(nomeBarra, x, y, qtdCasas, erguerAte=5): ry = 0 for i in range(1, erguerAte): backend.desenhar(nomeBarra, x, y-i, qtdCasas) backend.apagar(x, y-i+1, qtdCasas) backend.mostrar() magica() ry = y-1 # print('X: ', x, 'Y: ', ry ) return nomeBarra, x, ry, qtdCasas def baixar(): pass def movimentar(nomeBarra, x, y, qtdCasas, moveAte = 5): pass magica() backend = auro(40, 10, f' ') backend.mostrar() backend.desenhar(f'4', x=5 + parte3, y=9, qtdCasas= 9 ) magica() backend.mostrar() backend.desenhar(f'3', x=6 + parte3, y=8, qtdCasas=7) magica() backend.mostrar() backend.desenhar(f'2', x=7 + parte3, y=7, qtdCasas=5) magica() backend.mostrar() backend.desenhar('1', x=8 + parte3, y=6, qtdCasas=3) magica() backend.mostrar() magica() rnomeBarra, rx, ry, rqtdCasas = erguer('1', x=8 + parte3, y=6, qtdCasas=3) backend.mostrar() ``` #### File: 09-contadorComChars/0-versoesAntigas/contador0.py ```python import random import os #feito no window/ it was made on windows cont = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def l(): print('=-=-'*15,'=') for i in cont: print(' \n', end='') for ii in cont: print(f'{i}{ii}', end=' ') ``` #### File: 09-contadorComChars/0-versoesAntigas/contador5.py ```python c = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'X', 'Y'] def l(): print('\n', '=-=-'*15 +'=') l() pl = 0 # pula linha part = 0 l() while 1: qtd=int(input('type 0 to exit\ndigite 0 p/ sair\ncount until:\ncontar ate\n decimal n:')) if qtd == 0: break qtd+=1 parts = [] for i in range(0, len(str(qtd))): parts.insert(i, 0) for i in range (0, qtd): for p in reversed(parts): # mostrar print(c[p], end='') pl += 1 if pl == 10: print('\n') pl = 0 parts[part] = parts[part] + 1 for ii in range(0, len(parts)-1): print(' ', end='') if parts[ii] == 12: parts[ii] = 0 parts[ii+1] = parts[ii+1] + 1 l() l() print('\n\tfinished program/ fim de programa') l() ``` #### File: 11-auroTUI/0auroDesenhante/2- emDev.py ```python class auro: def __init__(self, largura, altura, encher=0): self.largura = largura self.altura = altura self.encher = encher self.desenho = [[self.encher for ii in range(self.largura)] for i in range(self.altura)] def desenhar(self, comOque, x=2, y=2, qtdCasas=2, ): for i in range(qtdCasas): self.desenho[y][x+i] = comOque def mostrar(self): for chars in self.desenho: for char in chars: print(f'{char}', end='') print() a = auro(20, 10, '0 ') a.mostrar() print('----------------------------------------') a.desenhar(' ', x=5, y=2, qtdCasas= 5 ) a.mostrar() ``` #### File: 11-auroTUI/1tela/tela3.py ```python r = '\033[31m' # red b = '\033[34m' # blue g = '\033[32m' # green y = '\033[33m' # yellow f = '\33[m' bb = '\033[44m' # backgournd blue def tela(mensagem, colunatxt=5): espaco = bb + ' ' + f mensagem = bb + y + mensagem for i in range(12): print('') if i == 5: print(espaco * colunatxt + mensagem + espaco*(50 - (len(mensagem)-colunatxt)), end='') else: for ii in range(50): print(espaco, end='') print() tela('aqui tem uma mensagem escrita') ``` #### File: 12-painterPrint/0-versoesAnterioes/a1.py ```python import keyboard from os import system red = '\033[31m' # red blue = '\033[35m' # blue green = '\033[32m' # green yellow = '\033[33m' # yellow f = '\33[m' bgBlue = '\033[44m' # backgournd blue bgYellow = '\033[43m' #backgournd yellow bgRed = '\033[41m' #backgournd red bgGreen = '\033[42m' # background green bgWhite = '\033[47m' # backgroundwhite x = y = 0 tamanhaDeX = 15 tamanhaDeY = 10 picss = list(list(bgWhite+' ' + f for i in range(tamanhaDeX))for ii in range(tamanhaDeY)) corDeLapis = green corDePrint = bgWhite def mostrar(): global x global y global corDeLapis global corDePrint system('clear') print('\n') print('space for printing// espaço p pintar') print('aperte esc para sair// ESC to exit') print(f'{bgRed} 1 {bgGreen} 2 {bgYellow} 3 {bgBlue} 4 {f}'+ f) for i, pics in enumerate(picss): for l, pic in enumerate(pics): if i == x and l == y: print(f'{bgWhite+corDeLapis}><', flush=True, end='') else: print(f'{pic}', flush=True, end='') print(f) mostrar() def up(): global x if x == 0: return x -= 1 mostrar() def down(): global x if x == tamanhaDeY: return x += 1 mostrar() def left(): global y if y == 0: return y -= 1 mostrar() def right(): global y if y == tamanhaDeX: return y += 1 mostrar() def space(): global corDePrint picss[x][y] = corDePrint + ' ' mostrar() def lapis1(): # vermelho red global corDeLapis global corDePrint corDeLapis = bgRed corDePrint = bgRed mostrar() def lapis2(): # verde green global corDeLapis global corDePrint corDeLapis = bgGreen corDePrint = bgGreen mostrar() def lapis3(): # amarelo yellow global corDeLapis global corDePrint corDeLapis = bgYellow corDePrint = bgYellow mostrar() def lapis4(): # azul blue global corDeLapis global corDePrint corDeLapis = bgBlue corDePrint = bgBlue mostrar() keyboard.add_hotkey('up', up) keyboard.add_hotkey('down', down) keyboard.add_hotkey('right', right) keyboard.add_hotkey('left', left) keyboard.add_hotkey('w', up) keyboard.add_hotkey('s', down) keyboard.add_hotkey('d', right) keyboard.add_hotkey('a', left) keyboard.add_hotkey('1', lapis1) keyboard.add_hotkey('2', lapis2) keyboard.add_hotkey('3', lapis3) keyboard.add_hotkey('4', lapis4) keyboard.add_hotkey('space', space) keyboard.wait('ESC') ``` #### File: Python/13-criptografiaSimples/1.py ```python import colorama colorama.init() red = '\033[31m' # red blue = '\033[34m' # blue green = '\033[32m' # green yellow = '\033[33m' # yellow f = '\33[m' bgBlue = '\033[46m' # backgournd blue bgYellow = '\033[43m' #backgournd yellow bgRed = '\033[41m' #backgournd red palavras = [] palavrasN = [] tipo = [] def tprint(p='', bg=bgBlue , fg=green, op=1, tamanhoDaPalavra=0): if tamanhoDaPalavra!= 0: # decidir o tamanho da palavra palavrasN.append(tamanhoDaPalavra) else: palavrasN.append(len(p)) if op == 2: # enfeite if p!='': tipo.append(2) palavras.append(bg + fg + p) else: tipo.append(2) palavras.append(bg + fg + '=') if op == 1 and p != '': # pohr texto tipo.append(1) palavras.append(bg + fg + ' ' + p + ' ' + ' ' * (max(palavrasN) - len(p))) if op == 0: # iniciar print(end='') for i, palavra in enumerate(palavras): if tipo[i] == 2: print(palavra * (max(palavrasN)+2) + f) else: print(palavra + f) print(f, end='') mensagem = 'esta eh uma mensagem' letras = [] print(f'\nmensagem a ser criptada:\n {mensagem}') letras.extend(mensagem) cletras = [] for letra in letras: cletras.append(chr(ord(letra)+1)) tprint('/', op=2) tprint(op=2) tprint(tamanhoDaPalavra=30) tprint('mensagem para ser criptografada:'.upper()) tprint(mensagem.title()) tprint('-', op=2) tprint('mensagem criptada:'.upper()) tprint(''.join(cletras) ) tprint(op=2) tprint('/', op=2) tprint(op=0) ```
{ "source": "jonasht/python", "score": 3 }
#### File: versaoInterfaceGrafica/teste/checkbt.py ```python from tkinter import * from tkinter import ttk from webbrowser import BackgroundBrowser root = Tk() chbt_value = BooleanVar() lb = ttk.Label(root, text='=-=-=') def c_evento(): print('checkbt:', chbt_value.get()) if chbt_value.get(): print('ch ativado') lb.config(foreground='green', text='ativado') else: print('ch desativado') lb.config(foreground='red', text='desativado') root.geometry('500x500') chbt = ttk.Checkbutton(root, text='teste', variable=chbt_value, command=c_evento) chbt.pack(anchor=CENTER) lb.pack(anchor=CENTER) root.config(background='orange') lb.config(font='gothic 40 bold', background='orange') c_evento() from sys import exit root.bind('q', exit) root.mainloop() ``` #### File: 13-criptografiaSimples/versaoInterfaceGrafica/uteis.py ```python from cryptography.fernet import Fernet def criptar(msg): key = Fernet.generate_key() f = Fernet(key) token = f.encrypt(msg.encode()) # convertendo para string key = key.decode('utf-8') token = token.decode('utf-8') return key, token def descriptar(key, t): key = key.encode() print() print('tipo:', type(t)) print('t:', t) t = t.encode() f = Fernet(key) msg = f.decrypt(t) msg = msg.decode('utf-8') return msg if __name__ == '__main__': key = '<KEY> msg = '<KEY> print(descriptar(key, msg)) ```
{ "source": "jonasht/Python", "score": 3 }
#### File: 1-versaoTerminal/flashcardsContador3/flashcardsContador.py ```python from Soma import * # cores para definir fim = '\033[0m' black = '\033[40m' red = '\033[31m' green = '\033[32m' yellow = '\033[33m' blue = '\033[34m' pink = '\033[35m' white = '\033[107m' # definindo soma recomeçar = Soma() começar = Soma() def mostrar(): system('clear') print('digite 0 para sair') print('=-'*30+'=') print(f'|\tCartas para ReComeçar: {green}{recomeçar.Somar()}{fim}') print(f'|\tCartas para Começar: {blue}{começar.Somar()}{fim}') print(f'|\tFaltam {red}{30-(recomeçar.Somar()+começar.Somar())}{fim} Total: {blue}{recomeçar.Somar()+começar.Somar()}{fim}') while True: mostrar() n = input(f'|\tNumero Para ReComeçar: ') if n == '0': break recomeçar.set_numeroDeCartas(n) while True: mostrar() n = input(f'|\tNumero Para Começar: ') if n == '0': break começar.set_numeroDeCartas(n) mostrar() print('=-'*30+'=') print('\n') ``` #### File: 2-versaoInterfaceGrafica/frashcardsContador-v3/frame.py ```python from tkinter import ttk import tkinter as tk from tkinter.constants import LEFT, RIGHT class Interface(ttk.Frame): def __init__ (self, parent): super().__init__(parent) self.frameRecomecar = ttk.Frame(self) self.frameComecar = ttk.Frame(self) self.frameTotal = ttk.Frame(self) self.lb1 = ttk.Label(self.frameRecomecar, text='Cartas para Recomeçar:', width=20, font='arial 16') self.lb_numero1 = ttk.Label(self.frameRecomecar, text='0', foreground='purple', font='arial 16 bold', width=2) self.lb2 = ttk.Label(self.frameComecar, text='Cartas para Começar:', width=20, font='arial 16') self.lb_numero2 = ttk.Label(self.frameComecar, text='0', foreground='blue', font='arial 16 bold', width=2) self.lb_falta = ttk.Label(self.frameTotal, text='Faltam:', width=8, font='arial 16') self.lb_faltaNum = ttk.Label(self.frameTotal, text='0', foreground='red', width=2, font='arial 16 bold') self.lb_total = ttk.Label(self.frameTotal, text=' Total:', width=9, font='arial 16') self.lb_totalNum = ttk.Label(self.frameTotal, text='0', foreground='blue', font='arial 16 bold') self.lb_lista1 = ttk.Label(self, text='', foreground='purple') self.lb_lista2 = ttk.Label(self, text='', foreground='blue') self.lb_falta.pack(side=LEFT) self.lb_faltaNum.pack(side=LEFT) self.lb_total.pack(side=LEFT) self.lb_totalNum.pack(side=RIGHT) self.lb1.pack(side=LEFT) self.lb_numero1.pack(side=RIGHT) self.lb2.pack(side=LEFT) self.lb_numero2.pack(side=RIGHT) self.frameRecomecar.pack() self.frameComecar.pack() self.frameTotal.pack() self.lb_lista1.pack() self.lb_lista2.pack() def atualizarTotal(self, n): self.lb_totalNum.config(text=n) def atualizarRecomecar(self, n): self.lb_numero1.config(text=n) def atualizarComecar(self, n): self.lb_numero2.config(text=n) def atualizarRestanteDeCartas(self, n): if n > 0: self.lb_faltaNum.config(text=n, foreground='blue') else: self.lb_faltaNum.config(text=n, foreground='red') if __name__ == '__main__': root = tk.Tk() root.geometry('400x300') frame = Interface(root) frame.pack() root.mainloop() ``` #### File: 0-versoesAntigas/3-versao3/interfaceCadastro.py ```python from tkinter import * from registradorDB import Db class FrameCadastro(Frame): def __init__(self, container): super().__init__(container) self.db = Db() # id self.lb_id = Label(self, text='Id:', width=10) self.lb_id_mostrar = Label(self, text=self.db.get_nextId()) self.lb_nome = Label(self, text='Nome:', width=10) # nome self.etd_nome = Entry(self) self.etd_nome.bind('<Return>', self.onReturn) # # sexo # lbsexo = Label(self, text='sexo:') # entdSexo = Entry(self) # lbsexo.grid(row=2, column=1, pady=2) # entdSexo.grid(row=2, column=2, pady=2) # idade self.lb_idade = Label(self, text='Idade:', width=10) self.etd_idade = Entry(self) self.etd_idade.bind('<Return>', self.onReturn) # label de aviso self.lb_aviso = Label(self, text=' ') # botao cadatrar, limpar, sair self.bt_cadastrar = Button(self, text='Cadastrar', command=self.cadastrar) self.bt_limpar = Button(self, text='Limpar', width=10, command=self.limpar_Entradas) # labels de confirmacao self.lb_id_confirmacao = Label(self, width=15) self.lb_nome_confirmacao = Label(self, width=15) self.lb_idade_confirmacao = Label(self, width=15) # --- posicoes --------------- # id:, id_mostrar, entradaNome, lb_idade, entrada_idade self.lb_id.grid(row=0, column=1, pady=2) self.lb_id_mostrar.grid(row=0, column=2, pady=2) self.lb_nome.grid(row=1, column=1, pady=2) self.etd_nome.grid(row=1, column=2, pady=2) self.lb_idade.grid(row=3, column=1, pady=2) self.etd_idade.grid(row=3, column=2, pady=2) # lb aviso self.lb_aviso.grid(row=4, column=1, columnspan=3, padx=2, pady=2, sticky='news') # botao cadastrar, limpar, sair self.bt_cadastrar.grid(row=5, column=2, columnspan=3, padx=2, pady=2, sticky='news') self.bt_limpar.grid(row=5, column=1, padx=2, pady=2) # confirmacoes self.lb_id_confirmacao.grid(row=0, column=3, padx=2, pady=2) self.lb_nome_confirmacao.grid(row=1, column=3, padx=2, pady=2) self.lb_idade_confirmacao.grid(row=3, column=3) def ehNumero(self, n): try: int(n) return True except: return False def limpar_Entradas(self): self.etd_nome.delete(0, END) self.etd_idade.delete(0, END) def proximoId(self): id = int(self.db.id)+1 return id # botao return (key=enter) def onReturn(self, evento): self.cadastrar() def cadastrar(self): nome = self.etd_nome.get() idade = self.etd_idade.get() if not self.ehNumero(idade) and nome: self.lb_aviso.config(text='idade precisa ser numero', fg='red') self.etd_idade.config(relief=SOLID, highlightbackground='red') elif nome and idade: self.db.nome = nome self.db.idade = idade self.db.cadastrar() self.db.mostrar() print(self.db.get_db()[self.db.id]) # mostrando a confirmacao na tela do que foi salvo self.lb_aviso.config(text='cadastro feito com sucesso', fg='green') self.lb_id_confirmacao.config(text='Id: '+self.db.id, fg='green') self.lb_nome_confirmacao.config( text='Nome: '+self.db.get_db()[self.db.id]['nome'], fg='green') self.lb_idade_confirmacao.config( text='Idade: '+self.db.get_db()[self.db.id]['idade'], fg='green') self.lb_id_mostrar.config(text=self.db.get_nextId()) # limpar todas as entradas/entry self.limpar_Entradas() else: self.lb_aviso.config(text='preencha todos os pontos', fg='red') class Cadastro(Tk): def __init__(self): super().__init__() self.title('cadastro') self.geometry('407x200+651+300') self.frame = FrameCadastro(self) self.frame.grid() if __name__ == '__main__': cadastro = Cadastro() cadastro.mainloop() ``` #### File: 16-jogoDaVelha/versao-terminal-EmDev/teste.py ```python import colors as c from uteis import * from random import shuffle # colocar numero no local de matriz def colocarNumeros(matriz): matrizNum = [[0 for _ in range(3)] for _ in range(3)] for i, ms in enumerate(matriz): for ii, m in enumerate(ms): if m == 'X': matrizNum[i][ii] = 3 elif m == 'O': matrizNum[i][ii] = 2 else: matrizNum[i][ii] = 0 print('colocarNumero, matrizNum:', matrizNum) return matrizNum # somar numeros, de todas possibidades def somarNumeros(matrizNum): matrizNum = colocarNumeros(matrizNum) numeros = [] soma = 0 for i, ms in enumerate(matrizNum): for ii, m in enumerate(ms): soma += matrizNum[ii][i] numeros.append(soma) soma = 0 soma = 0 # / for i in range(3): soma += matrizNum[2-i][i] # soma todas as fileiras numeros.append(soma) for ms in matrizNum: numeros.append(sum(ms)) soma=0 # \ for i in range(3): soma += matrizNum[i][i] numeros.append(soma) print('somar numeros: numeros:', numeros) return numeros, matrizNum # encontrar espaca na matrizNum para poder colocar em uma determinada fileira def encontrarEspoco(opcao, matrizNum): fileira = [] for i, ms in enumerate(matrizNum): # ||| 1,2,3 if opcao == 0: if matrizNum[i][0] == 0: fileira.append([i, 0]) elif opcao == 1: if matrizNum[i][1] == 0: fileira.append([i, 1]) elif opcao == 2: if matrizNum[i][2] == 0: fileira.append([i, 2]) # / 3 elif opcao == 3: if matriz[2-i][i] == 0: fileira.append([2-i, i]) # --- 4 elif opcao == 4: if matrizNum[0][i] == 0: fileira.append([0, i]) elif opcao == 5: if matrizNum[1][i] == 0: fileira.append([1, i]) elif opcao == 6: if matrizNum[2][i] == 0: fileira.append([2, i]) # ======================================= # \ 7 elif opcao == 7: if matrizNum[i][i] == 0: fileira.append([i, i]) shuffle(fileira) print('fileira:', fileira) return fileira[0] def fazerJogada(matriz): numeros, matrizNum = somarNumeros(matriz) maior = 0 for char in numeros: if (char > maior and char <= 6) and char != 5: maior = char print('maior:', maior) fileira = numeros.index(maior) print('retornarEspaço: fileira:', fileira, matrizNum) return encontrarEspoco(fileira, matrizNum) # fazer a matriz matriz = [[str(i)+str(ii) for ii in range(3)] for i in range(3)] # mostrar(matriz) # colocar('O', 0, 0, matriz) # mostrar(matriz) # colocar('x', 0, 1, matriz) # mostrar(matriz) # colocar('o', 1, 0, matriz) # # colocar('x', 1, 1, matriz) # x, y = fazerJogada(matriz) # print('x:', x, 'y:', y) # mostrar(matriz) colocar('o', 0, 0, matriz) mostrar(matriz) x, y = fazerJogada(matriz) colocar('x', x, y, matriz) mostrar(matriz) colocar('o', 1, 1, matriz) mostrar(matriz) x, y = fazerJogada(matriz) colocar('x', x, y, matriz) mostrar(matriz) colocar('o', 0, 2, matriz) mostrar(matriz) x, y = fazerJogada(matriz) colocar('x', x, y, matriz) mostrar(matriz) ```
{ "source": "jonasht/python", "score": 3 }
#### File: 18-gerador_de_documento/frames/cns.py ```python from tkinter import ttk from tkinter import * from validate_docbr import CNS import pyperclip as pc class Fr_CNS(ttk.Frame): def __init__(self, parent): super().__init__(parent) self.CNS = CNS() self.CNS_num = '' # CNS ================================================= self.lbfr = ttk.Labelframe(self, text='CNS', border=10) self.etd = ttk.Entry(self.lbfr) self.bt_gerar = ttk.Button(self.lbfr, text='Gerar', command=self.gerar) self.chbt_mask = ttk.Checkbutton(self.lbfr, text='mask', command=self.chbt_Evento) self.bt_copy = ttk.Button(self.lbfr, text='Copiar', command=self.copiar) self.etd.grid(row=0, column=0, padx=2, pady=5, columnspan=2, sticky=EW) self.bt_gerar.grid(row=1, column=1, padx=2, pady=5) self.chbt_mask.grid(row=1, column=2, padx=2, pady=5) self.bt_copy.grid(row=1, column=0, padx=2, pady=5) self.lbfr.pack() # gerando =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= self.gerar() # desativando checkbox self.chbt_mask.state(['!alternate']) def gerar(self): self.etd.delete(0, END) self.CNS_num = self.CNS.generate() self.etd.insert(0, self.CNS_num) if 'selected' in self.chbt_mask.state(): self.chbt_Evento() def copiar(self): pc.copy(self.etd.get()) def chbt_Evento(self): if 'selected' in self.chbt_mask.state(): self.etd.delete(0, END) self.etd.insert(0, self.CNS.mask(self.CNS_num)) else: self.etd.delete(0, END) self.etd.insert(0, self.CNS_num) ```
{ "source": "jonasht/Python", "score": 2 }
#### File: 19-programaDeVendas-EmDev/frames/frameCadastroCliente.py ```python from tkinter import ttk import tkinter as tk from tkinter.constants import BOTH, END, LEFT, RIGHT, W, EW # import func_clientes as fc import func.clientes as fc from validate_docbr import CPF class FrameCadastroCliente(ttk.Frame): def __init__(self, parent): super().__init__(parent) self.lbfr_cadastrarCliente = ttk.LabelFrame(self, text='Cadastrar Cliente') self.lb_nome = ttk.Label(self.lbfr_cadastrarCliente, text='Nome:') self.etd_nome = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_cpf = ttk.Label(self.lbfr_cadastrarCliente, text='CPF:') self.etd_cpf = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_uf = ttk.Label(self.lbfr_cadastrarCliente, text='UF:') self.etd_uf = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_cidade = ttk.Label(self.lbfr_cadastrarCliente, text='Cidade:') self.etd_cidade = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_rua = ttk.Label(self.lbfr_cadastrarCliente, text='Rua:') self.etd_rua = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_numeroCasa = ttk.Label(self.lbfr_cadastrarCliente, text='Numero:') self.etd_numeroCasa = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_telefone = ttk.Label(self.lbfr_cadastrarCliente, text='Telefone:') self.etd_telefone = ttk.Entry(self.lbfr_cadastrarCliente) self.lb_email = ttk.Label(self.lbfr_cadastrarCliente, text='Email:') self.etd_email = ttk.Entry(self.lbfr_cadastrarCliente) self.fr_bts = ttk.Frame(self) self.bt_cadastrar = ttk.Button(self.fr_bts, text='Cadastrar', command=self.cadastrar) self.bt_resetar = ttk.Button(self.fr_bts, text='Resetar', command=self.resetar) # label aviso self.lb_aviso = ttk.Label(self, text='') # ------------------------------------------------- self.lb_nome.grid(row=0, column=0, padx=5, pady=2) self.etd_nome.grid(row=0, column=1, padx=5, pady=2) self.lb_cpf.grid(row=1, column=0, padx=5, pady=2) self.etd_cpf.grid(row=1, column=1, padx=5, pady=2) self.lb_uf.grid(row=2, column=0, padx=5, pady=2) self.etd_uf.grid(row=2, column=1, padx=5, pady=2) self.lb_cidade.grid(row=3, column=0, padx=5, pady=2) self.etd_cidade.grid(row=3, column=1, padx=5, pady=2) self.lb_rua.grid(row=4, column=0, padx=5, pady=2) self.etd_rua.grid(row=4, column=1, padx=5, pady=2) self.lb_numeroCasa.grid(row=5, column=0, padx=5, pady=2) self.etd_numeroCasa.grid(row=5, column=1, padx=5, pady=2) self.lb_telefone.grid(row=6, column=0, padx=5, pady=2) self.etd_telefone .grid(row=6, column=1, padx=5, pady=2) self.lb_email.grid(row=7, column=0, padx=5, pady=2) self.etd_email.grid(row=7, column=1, padx=5, pady=2) self.bt_cadastrar.pack(side=RIGHT, fill=BOTH, expand=True, padx=1, pady=2) self.bt_resetar.pack(side=LEFT, fill=BOTH, expand=True, padx=1, pady=2) # colocando labelFrame self.lbfr_cadastrarCliente.pack() self.fr_bts.pack(fill=BOTH, expand=True) self.lb_aviso.pack() # focar no nome self.etd_nome.focus() def cadastrar(self): nome = self.etd_nome.get() cpf = self.etd_cpf.get() uf = self.etd_uf.get() cidade = self.etd_cidade.get() rua = self.etd_rua.get() numero = self.etd_numeroCasa.get() telefone = self.etd_telefone.get() email = self.etd_email.get() # print('dados:') # print('nome:', nome, 'cpf:', cpf ) # print('uf:', uf, 'cidade:', cidade, 'rua:', rua, numero) # print('fone:', telefone, 'email:', email) v_cpf = CPF() if cpf == '' or v_cpf.validate(cpf): if nome != '': fc.add_(nome, cpf, uf, cidade, rua, numero, telefone, email) self.resetar() self.lb_aviso.config(text='cadastro feito com sucesso', foreground='green') else: self.lb_aviso.config(text='campo nome obrigatorio', foreground='red') else: self.lb_aviso.config(text='CPF invalido', foreground='red') def resetar(self): self.etd_nome.delete(0, END) self.etd_cpf.delete(0, END) self.etd_uf.delete(0, END) self.etd_cidade.delete(0, END) self.etd_rua.delete(0, END) self.etd_numeroCasa.delete(0, END) self.etd_telefone.delete(0, END) self.etd_email.delete(0, END) self.etd_nome.focus() if __name__ == '__main__': root = tk.Tk() frame = FrameCadastroCliente(root) frame.pack() root.geometry('600x500') root.mainloop() ``` #### File: Python/19-programaDeVendas-EmDev/frameVenda_lbCliente.py ```python from tkinter import ttk import tkinter as tk class Fr_lbCliente(ttk.Frame): def __init__(self, parent): super().__init__(parent) self.lbfr_dadosClientes = ttk.LabelFrame(self, text='Info clientes') self.fr1 = ttk.Frame(self.lbfr_dadosClientes) self.fr2 = ttk.Frame(self.lbfr_dadosClientes) self.lb_id = ttk.Label(self.fr1, text='id:', width=7) self.lb_nome = ttk.Label(self.fr1, text='nome:', width=7) self.lb_cpf = ttk.Label(self.fr1, text='cpf:', width=7) self.lb_uf = ttk.Label(self.fr1, text='uf:', width=7) self.lb_cidade = ttk.Label(self.fr1, text='cidade:', width=7) self.lb_rua = ttk.Label(self.fr1, text='rua:', width=7) self.lb_numero = ttk.Label(self.fr1, text='numero:', width=7) self.lb_telefone = ttk.Label(self.fr1, text='telefone:', width=7) self.lb_email = ttk.Label(self.fr1, text='email:', width=7) self.lb_id.grid(row=0, column=0, padx=5, pady=2) self.lb_nome.grid(row=1, column=0, padx=5, pady=2) self.lb_cpf.grid(row=2, column=0, padx=5, pady=2) self.lb_uf.grid(row=3, column=0, padx=5, pady=2) self.lb_cidade.grid(row=4, column=0, padx=5, pady=2) self.lb_rua.grid(row=5, column=0, padx=5, pady=2) self.lb_numero.grid(row=6, column=0, padx=5, pady=2) self.lb_telefone.grid(row=7, column=0, padx=5, pady=2) self.lb_email.grid(row=8, column=0, padx=5, pady=2) self.lb_idInfo = ttk.Label(self.fr2, text='', width=30) self.lb_nomeInfo = ttk.Label(self.fr2, text='', width=30) self.lb_cpfInfo = ttk.Label(self.fr2, text='', width=30) self.lb_ufInfo = ttk.Label(self.fr2, text='', width=30) self.lb_cidadeInfo = ttk.Label(self.fr2, text='', width=30) self.lb_ruaInfo = ttk.Label(self.fr2, text='', width=30) self.lb_numeroInfo = ttk.Label(self.fr2, text='', width=30) self.lb_telefoneInfo = ttk.Label(self.fr2, text='', width=30) self.lb_emailInfo = ttk.Label(self.fr2, text='', width=30) self.lb_idInfo.grid(row=0, column=1, padx=5, pady=2) self.lb_nomeInfo.grid(row=1, column=1, padx=5, pady=2) self.lb_cpfInfo.grid(row=2, column=1, padx=5, pady=2) self.lb_ufInfo.grid(row=3, column=1, padx=5, pady=2) self.lb_cidadeInfo.grid(row=4, column=1, padx=5, pady=2) self.lb_ruaInfo.grid(row=5, column=1, padx=5, pady=2) self.lb_numeroInfo.grid(row=6, column=1, padx=5, pady=2) self.lb_telefoneInfo.grid(row=7, column=1, padx=5, pady=2) self.lb_emailInfo.grid(row=8, column=1, padx=5, pady=2) self.fr1.grid(row=0, column=0) self.fr2.grid(row=0, column=1) self.lbfr_dadosClientes.pack() def inserir_dados(self, dados): # dados = dados[0] # print(dados) id = dados[0] nome = dados[1] cpf = dados[2] uf = dados[3] cidade = dados[4] rua = dados[5] numero = dados[6] telefone = dados[7] email = dados[8] # print('id:', id) # print('nome:', nome) # print('cpf:', cpf) # print('uf:', uf) # print('cidade:', cidade) # print('rua:', rua) # print('numero:', numero) # print('telefone:', telefone) # print('email:', email) self.lb_idInfo.config(text=id) self.lb_nomeInfo.config(text=nome) self.lb_cpfInfo.config(text=cpf) self.lb_ufInfo.config(text=uf) self.lb_cidadeInfo.config(text=cidade) self.lb_ruaInfo.config(text=rua) self.lb_numeroInfo.config(text=numero) self.lb_telefoneInfo.config(text=telefone) self.lb_emailInfo.config(text=email) def deletar_dados(self): self.lb_idInfo.config(text='') self.lb_nomeInfo.config(text='') self.lb_cpfInfo.config(text='') self.lb_ufInfo.config(text='') self.lb_cidadeInfo.config(text='') self.lb_ruaInfo.config(text='') self.lb_numeroInfo.config(text='') self.lb_telefoneInfo.config(text='') self.lb_emailInfo.config(text='') if __name__ == '__main__': dados = (5, 'Henrique', '522', 'SP', 'CAMPINAS', '<NAME>', '896', '1938363132', '<EMAIL>') root = tk.Tk() root.geometry('500x500') frame = Fr_lbCliente(root) frame.inserir_dados(dados) frame.pack() root.mainloop() ``` #### File: Python/19-programaDeVendas-EmDev/frameVenda_lbProduto.py ```python from tkinter import Tk, Text, ttk from tkinter.constants import ANCHOR, BOTTOM, END, LEFT, NW, RIGHT, SW, W class Fr_lbProduto(ttk.Frame): def __init__(self, parent): super().__init__(parent) self.lbfr_produto = ttk.Labelframe(self, text='Info Produto') self.fr = ttk.Frame(self.lbfr_produto) self.fr1 = ttk.Frame(self.fr) self.fr2 = ttk.Frame(self.fr) self.fr_descricao = ttk.Frame(self.lbfr_produto) self.lb_id = ttk.Label(self.fr1, text='id:', width=10) self.lb_nome = ttk.Label(self.fr1, text='nome:', width=10) self.lb_marca = ttk.Label(self.fr1, text='marca:', width=10) self.lb_qtd = ttk.Label(self.fr1, text='Qtd:', width=10) self.lb_preco = ttk.Label(self.fr1, text='R$:', width=10) self.lb_descricao = ttk.Label(self.fr_descricao, text='descrição:', width=10) self.lb_id.grid(row=0, column=0) self.lb_nome.grid(row=1, column=0) self.lb_marca.grid(row=2, column=0) self.lb_qtd.grid(row=3, column=0) self.lb_preco.grid(row=4, column=0) self.lb_descricao.grid(row=0, column=0) self.lb_idInfo = ttk.Label(self.fr2, text='', width=25) self.lb_nomeInfo = ttk.Label(self.fr2, text='', width=25) self.lb_marcaInfo = ttk.Label(self.fr2, text='', width=25) self.lb_qtdInfo = ttk.Label(self.fr2, text='', width=25) self.lb_precoInfo = ttk.Label(self.fr2, text='', width=25) self.txt_discricao = Text(self.fr_descricao, width=35, height=6) self.lb_idInfo.grid(row=0, column=1) self.lb_nomeInfo.grid(row=1, column=1) self.lb_marcaInfo.grid(row=2, column=1) self.lb_qtdInfo.grid(row=3, column=1) self.lb_precoInfo.grid(row=4, column=1) self.txt_discricao.grid(row=1, column=0) self.fr1.pack(side=LEFT, anchor=NW) self.fr2.pack(side=LEFT, anchor=NW) self.fr.pack() self.fr_descricao.pack(side=BOTTOM) self.lbfr_produto.pack() def inserir_dados(self, dados): id = dados[0] nome = dados[1] marca = dados[2] qtd = dados[3] preco = dados[4] descricao = dados[5] # print('id:', id) # print('nome:', nome) # print('marca:', marca) # print('qtd:', qtd) # print('preco:', preco) # print('descricao:', descricao) self.lb_idInfo.config(text=id) self.lb_nomeInfo.config(text=nome) self.lb_marcaInfo.config(text=marca) self.lb_qtdInfo.config(text=qtd) self.lb_precoInfo.config(text=preco) # self.txt_discricao.config(text=descricao) self.txt_discricao.delete(1.0, END) self.txt_discricao.insert(1.0, descricao) def deletar_dados(self): self.lb_idInfo.config(text='') self.lb_nomeInfo.config(text='') self.lb_marcaInfo.config(text='') self.lb_qtdInfo.config(text='') self.lb_precoInfo.config(text='') # self.txt_discricao.config(text='') self.txt_discricao.delete(1.0, END) if __name__ == '__main__': # print('so um teste') root = Tk() root.geometry('500x500') dados = (5, 'Iphone', 'Apple', 5254, 20000.0, 'um smartphone caro, que vem carregador\n\n\n\n') frame = Fr_lbProduto(root) frame.inserir_dados(dados) frame.pack() root.mainloop() ``` #### File: Python/19-programaDeVendas-EmDev/frameVenda_treeVenda.py ```python from tkinter import ttk import tkinter as tk from tkinter.constants import END, EW, NS, VERTICAL class Fr_treeVenda(ttk.Frame): def __init__(self, parent): super().__init__(parent) # Treeview produto ------------------------------------ # definindo colunas self.colunas = ['cod', 'nome', 'marca', 'preco', 'x', 'total'] self.tree_venda = ttk.Treeview(self, columns=self.colunas, show='headings') # definindo heading self.tree_venda.heading('cod', text='ID') self.tree_venda.heading('nome', text='Nome') self.tree_venda.heading('marca', text='Marca') self.tree_venda.heading('preco', text='Preço') self.tree_venda.heading('x', text='X') self.tree_venda.heading('total', text='Total') # definindo tamanho da coluna self.tree_venda.column('cod', width=20) self.tree_venda.column('nome', width=125) self.tree_venda.column('marca', width=90) self.tree_venda.column('preco', width=100) self.tree_venda.column('x', width=40) self.tree_venda.column('total', width=100) self.scroll = ttk.Scrollbar(self, orient=VERTICAL, command=self.tree_venda.yview) self.tree_venda.grid(row=1, column=0, columnspan=1) self.scroll.grid(row=1, column=1, rowspan=1, sticky=NS) # total de tudo self.fr_total = ttk.Frame(self) self.total = 0 self.lb_total = ttk.Label(self.fr_total, text='Total:') self.lb_totalInfo = ttk.Label(self.fr_total, text='----') self.lb_total.grid(row=0, column=0) self.lb_totalInfo.grid(row=0, column=1) self.fr_total.grid(row=2, column=0) def editar_dados(self) -> None: # print(self.codigo) if self.codigo != '': codigo = self.codigo qtd =self.etd_qtd.get() preco =self.etd_preco.get() # add dados =-=-=-=-=-=-=-=-=-=-=-=-= # print('codigo:', codigo) # # print('nome:', nome) # # print('marca:', marca) # print('qtd:', qtd) # print('preco:', preco) self.deletar_tree() self.mostrar_tree() def item_selected(self, event): for selected_item in self.tree_venda.selection(): item = self.tree_venda.item(selected_item) record = item['values'] # print(record) self.codigo = record[0] self.inserir_dados() def digitar_evento(self, event): variavel = event.widget.get() # print(variavel) # deletar tree view self.deletar_tree() # mostrar treeview com a palavra digitada self.mostrar_tree(palavras=variavel) def deletar_tree(self): # deletar toda a tree view self.tree_venda.delete(*self.tree_venda.get_children()) def adicionar(self, d): self.total = float(self.total) + float(d[5]) self.tree_venda.insert('', END, values=d) self.lb_totalInfo.config(text=f'{self.total:.2f}') def get_items(self) -> list: listas = [] for line in self.tree_venda.get_children(): listas.append(self.tree_venda.item(line)['values']) return listas if __name__ == '__main__': root = tk.Tk() frame = Fr_treeVenda(root) frame.pack() d = [1, 'celular', 'sony', 2000.0, 1, 2000.0] frame.adicionar(d) d = [2, 'celular', 'sony', 1000.0, 2, 2000.0] frame.adicionar(d) print(frame.get_items()) # print(frame.tree_venda.get_children()) # for line in frame.tree_venda.get_children(): # print(frame.tree_venda.item(line)['values']) # for value in frame.tree_venda.item(line)['values']: # print(value) root.geometry('800x800') root.mainloop() ``` #### File: 19-programaDeVendas-EmDev/teste/cpf.py ```python from validate_docbr import CPF from colorama.ansi import Fore from random import randint def validar_cpf(cpf): va = CPF() if cpf == '' or va.validate(cpf): print(Fore.GREEN+'cadastro feito com sucesso', Fore.RESET) else: print(Fore.RED+'erro de cpf', Fore.RESET) cpf1 = '' cpf2 = '123' # cpf valido cpf3 = '38218758100' # outro cpf cpf4 = '821875810d0' validar_cpf(cpf1) validar_cpf(cpf2) validar_cpf(cpf3) validar_cpf(cpf4) ``` #### File: teste/testeSomaPreco/0.py ```python import tkinter as tk from tkinter import ttk from tkinter.constants import END class Fr(ttk.Frame): def __init__(self, parent): super().__init__(parent) self.valor = 9 ttk.Label(self, text='rtee').pack() self.lb_valor = ttk.Label(self, text=self.valor) self.etd = ttk.Entry(self) self.lb_valor.pack() self.etd.pack() self.etd.insert(0, 1) self.etd.bind('<KeyRelease>', self.evento_somar) def evento_somar(self, event): # serve para somar a entrada do valor quando colocado (tempo real) valor_etd = self.etd.get() if not valor_etd: print('nenhum valor') self.lb_valor.config(text=self.valor) elif valor_etd.isnumeric(): print(valor_etd, 'tipo:', type(valor_etd)) valor_etd = int(valor_etd) self.lb_valor.config(text=valor_etd*self.valor) else: # digete apenas numeros print('por favor digite apenas numeros') def main(): root = tk.Tk() frame = Fr(root) frame.pack() root.geometry('500x500') root.mainloop() if __name__ == '__main__': main() ```
{ "source": "jonasht/python", "score": 3 }
#### File: python/20-leitorDeTexto/1.py ```python import gtts import gtts.langs from playsound import playsound def speak(): with open('frase.txt', 'r') as arq: for linha in arq: # frase = gtts.gTTS(linha, lang='pt-br') frase = gtts.gTTS(linha, lang='pt-br') frase.save('fraseTeste.mp3') playsound('./fraseTeste.mp3') playsound('./musica.mp3') speak() ``` #### File: python/20-leitorDeTexto/main.py ```python from tkinter import END, EW, BooleanVar, ttk, Tk, Text import func class Fr(ttk.Frame): def __init__(self, parent): super().__init__(parent) self.event_ch = BooleanVar() self.bt_read = ttk.Button(self, text='ler') self.bt_read.config(command=self.bt_press) self.txt = Text(self) self.txt.grid(row=0, column=0, pady=3) self.bt_read.grid(row=1, column=0, padx=3, ipady=2, sticky=EW) self.txt.config(font='arial 15 bold') def bt_press(self): txt = self.txt.get('1.0', END) print(txt) print(txt.split('\n')) func.read(txt) if __name__ == '__main__': root = Tk() root.title('leitorDeTexto') fr = Fr(root) fr.pack() root.geometry('890x640') root.mainloop() ```
{ "source": "jonasht/Python", "score": 4 }
#### File: 21-conversorNumerico/frames/uteis.py ```python def dec_to_base(num, base): #base maxima - 36 base_num = '' while num>0: dig = int(num%base) if dig < 10: base_num += str(dig) else: base_num += chr(ord('A')+dig-10) num //= base base_num = base_num[::-1] return base_num def to_dec(num): if '0b' in num: return int(num, 2) elif '0o' in num: return int(num, 8) elif '0x' in num: return int(num, 16) else: return num if __name__ == '__main__': var = 10 print(var) varbin = bin(var) print(to_dec(varbin)) print() varoct = oct(var) print('oct:', varoct) print('convertido:', to_dec(varoct)) print() varhex = hex(var) print('hex:', varhex) print('convertido:', to_dec(varhex)) print() varduo = dec_to_base(var, 12) print('duodecimal:', varduo) print('convertido:', int(varduo, 12)) ```
{ "source": "jonasht/python", "score": 3 }
#### File: 23-noName-emDev/teste/testImg.py ```python from tkinter import * from PIL import Image, ImageTk class Window(Frame): def __init__(self, master=None): Frame.__init__(self, master) self.master = master self.pack(fill=BOTH, expand=1) load = Image.open("./placas de transito/R-1.jpg") resize_img = load.resize((200, 200)) render = ImageTk.PhotoImage(resize_img) img = Label(self, image=render) img.image = render img.place(x=0, y=0) if __name__ == '__main__': root = Tk() app = Window(root) root.geometry("1000x1000") root.mainloop() ``` #### File: python/24-programaDeVendas-EmDev/frameVenda_frFinalizacao.py ```python from tkinter import ttk import tkinter as tk from tkinter.constants import DISABLED, END, EW, NORMAL from func.venda import add_venda, add_entregas class Fr_finalizacao(ttk.Frame): def __init__(self, parent, con): super().__init__(parent) self.con = con self.chbt_cpf = ttk.Checkbutton(self, text='CPF na nota', command=self.chbt_cpfEvento) self.etd_cpf = ttk.Entry(self) self.chbt_entrega = ttk.Checkbutton(self, text='É para a entrega') self.bt_finalizar = ttk.Button(self, text='Finalizar', command=self.finalizar_evento) self.chbt_cpf.grid(padx=5, pady=2) self.etd_cpf.grid(padx=5, pady=2) self.chbt_entrega.grid(padx=5, pady=2) self.bt_finalizar.grid(sticky=EW) self.chbt_cpf.state(['!alternate']) self.chbt_entrega.state(['!alternate']) def chbt_cpfEvento(self): cpf = self.con.dados_cliente[2] if 'selected' in self.chbt_cpf.state(): self.etd_cpf.config(state=NORMAL) self.etd_cpf.delete(0, END) self.etd_cpf.insert(0, cpf) else: self.etd_cpf.delete(0, END) self.etd_cpf.config(state=DISABLED) def finalizar_evento(self): # gravar dados # pegar items/produtos p registrar a venda dados_produto = self.con.get_itemsTreeVenda() dados_cliente = self.con.dados_cliente total = self.con.get_totalTreeVenda() # adicionando no banco de dados a venda add_venda( dados_cliente=dados_cliente, dados_produto=dados_produto total=total ) self.etd_cpf.delete(0, END) self.chbt_cpf.state(['!selected']) self.chbt_entrega.state(['!selected']) self.con.apagar_tudo() if __name__ == '__main__': root = tk.Tk() frame = Fr_finalizacao(root, root) frame.pack() root.geometry('500x500') root.mainloop() ```
{ "source": "jonasht/pythonEstudos", "score": 3 }
#### File: 01-coisas-E-Estudos/0diritories0to9/02.py ```python def oi(nome, maisculo=False): if maisculo: msg = f'oi, {nome.upper()}' else: msg = f'oi, {nome}' return msg print(oi('jonas')) print(oi('jonas', 1)) print(oi('jonas', 'sim')) ``` #### File: alura/1-python3IntroOrientacaoObjetos/cliente.py ```python class Cliente: def __init__(self, nome) -> None: self.__nome = nome @property def nome(self): print('chamando property') return self.__nome.title() @nome.setter def nome(self, novoNome): print('chamando setter') self.__nome = novoNome ``` #### File: alura/1-python3IntroOrientacaoObjetos/conta.py ```python from colorama.ansi import Back, Fore, Style class Conta: def __init__(self, numero, titular, saldo, limite ): self.__numero = numero self.__titular = titular.title() self.__saldo = float(saldo) self.__limite = float(limite) self.__codigoBanco = '001' def extrato(self): print('=-'*20+'=') print(Fore.BLUE+ f' nome: {Fore.RESET}{self.__titular:^5}') saldo = f'{self.__saldo:.2f}' print(Fore.BLUE+ f'saldo: {Fore.GREEN}R${saldo:^5}{Fore.RESET}') print('=-'*20+'=') def depositar(self, valor): self.__saldo += valor def __pode_sacar(self, valorASacar): valorDisponivelASacar = self.__saldo + self.__limite return True if valorASacar <= valorDisponivelASacar else False def sacar(self, valor): if self.__pode_sacar(valor): self.__saldo -= valor else: print(f'o vaor {valor} passou o limite') def transferir(self, destino, valor): self.sacar(valor) destino.depositar(valor) print('=-'*20+'=') print(f'tranferencia:\n', f'\t de: {self.__titular:^5}\n', f'\tpara: {destino.__titular:^5}\n' f'feita com {Fore.GREEN}sucesso{Fore.RESET}') print('=-'*20+'=') @property def saldo(self): return self.__saldo @property def titular(self): return self.__titular @property def limite(self): return self.__limite @limite.setter def limite(self, NovoLimite): self.__limite = float(NovoLimite) @staticmethod def codigoBanco(): return '001' @staticmethod def codigoBancos(): return {'BB':'001', 'caixa':'104', 'bradesco':'237'} if __name__ == '__main__': conta1 = Conta(123, 'jonas', 520.0, 1000.0) conta1.extrato() conta2 = Conta(123, 'henrique', 520.0, 1000.0) conta2.extrato() conta1.transferir(destino=conta2, valor=10) conta1.limite ``` #### File: 2-python3AvacandoNaOrientacaoAObjetos/01-/modulo.py ```python class Filme: def __init__(self, nome, ano, duracao): self.nome = nome self.ano = ano self.duracao = duracao class Serie: def __init__(self, nome, ano, temporadas): self.nome = nome self.ano = ano self.temporada = temporadas vingadores = Filme('vigadores - a guerra', 2020, 160) print(f'nome: {vingadores.nome} - ano: {vingadores.ano} - duracao: {vingadores.duracao}') gameOf = Serie('game of thrones', 2010, 9) print(f'Nome: {gameOf.nome} - ano: {gameOf.ano} - temporadas: {gameOf.temporada}') ``` #### File: mqtt/0coisas/1.py ```python import paho.mqtt.client as mqtt import sys #definicoes: Broker = "iot.eclipse.org" PortaBroker = 1883 KeepAliveBroker = 60 TopicoSubscribe = "PAHOMQTTRaspPi3" #dica: troque o nome do topico por algo "unico", #Dessa maneira, ninguem ira saber seu topico de #subscribe e interferir em seus testes #Callback - conexao ao broker realizada def on_connect(client, userdata, flags, rc): print("[STATUS] Conectado ao Broker. Resultado de conexao: "+str(rc)) #faz subscribe automatico no topico client.subscribe(TopicoSubscribe) #Callback - mensagem recebida do broker def on_message(client, userdata, msg): MensagemRecebida = str(msg.payload) print("[MSG RECEBIDA] Topico: "+msg.topic+" / Mensagem: "+MensagemRecebida) #programa principal: try: print("[STATUS] Inicializando MQTT...") #inicializa MQTT: client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect(Broker, PortaBroker, KeepAliveBroker) client.loop_forever() except KeyboardInterrupt: print "\nCtrl+C pressionado, encerrando aplicacao e saindo..." sys.exit(0) ``` #### File: paraVerComoFuncionaAlgumasCoisas/projetoUm-emDev/opcua_generalFunc.py ```python import sqlite3 def set_delayBetweenScan(delay): banco = sqlite3.connect('bancoDeDados.db') cursor = banco.cursor() cursor.execute(""" UPDATE tbl_opcua_general SET delayBetweenScan = ? """, (delay, )) banco.commit() banco.close() def get_delayBetweenScan(): banco = sqlite3.connect('bancoDeDados.db') cursor = banco.cursor() cursor.execute('SELECT delayBetweenScan FROM tbl_opcua_general') retornar = cursor.fetchall() banco.commit() banco.close() return retornar[0][0] def mostrar(): banco = sqlite3.connect('bancoDeDados.db') cursor = banco.cursor() cursor.execute('SELECT * FROM tbl_opcua_general') print(cursor.fetchall()) banco.commit() banco.close() if __name__ == '__main__': set_delayBetweenScan(1) print(get_delayBetweenScan()) mostrar() ``` #### File: 0-outros/outro2/2.py ```python from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * import sys class Window(QWindow): def __init__(self): QWindow.__init__(self) self.setTitle('janela') self.resize(400,300) app = QApplication(sys.argv) tela = Window() tela.show() sys.exit(app.exec_()) ``` #### File: paraVerComoFuncionaAlgumasCoisas/pyQt5/2-BuildingSignal-slotConnection.py ```python import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * def window(): app = QApplication(sys.argv) win = QDialog() # definindo botao 1 bt1 = QPushButton(win) bt1.setText('botao 1') bt1.move(50, 20) bt1.clicked.connect(bt1_clicado) # definindo botao 2 bt2 = QPushButton(win) bt2.setText('botao 2') bt2.move(50, 50) bt2.clicked.connect(bt2_clicado) win.setGeometry(100,100,200,100) win.show() sys.exit(app.exec_()) def bt1_clicado(): print('botao 1 foi clicado') def bt2_clicado(): print('botao 2 foi clicado') if __name__ == '__main__': window() ``` #### File: tkinter-coisas/treeview_codeYoutube/0.py ```python from tkinter import * from tkinter import ttk from tkinter import messagebox import sqlite3 from tkinter import colorchooser root = Tk() root.title('Codemy.com - TreeBase') root.iconbitmap('') root.geometry("1000x550") def query_database(): # Clear the Treeview for record in my_tree.get_children(): my_tree.delete(record) # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() c.execute("SELECT rowid, * FROM customers") records = c.fetchall() # Add our data to the screen global count count = 0 #for record in records: # print(record) for record in records: if count % 2 == 0: my_tree.insert(parent='', index='end', iid=count, text='', values=(record[1], record[2], record[0], record[4], record[5], record[6], record[7]), tags=('evenrow',)) else: my_tree.insert(parent='', index='end', iid=count, text='', values=(record[1], record[2], record[0], record[4], record[5], record[6], record[7]), tags=('oddrow',)) # increment counter count += 1 # Commit changes conn.commit() # Close our connection conn.close() def search_records(): lookup_record = search_entry.get() # close the search box search.destroy() # Clear the Treeview for record in my_tree.get_children(): my_tree.delete(record) # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() c.execute("SELECT rowid, * FROM customers WHERE last_name like ?", (lookup_record,)) records = c.fetchall() # Add our data to the screen global count count = 0 #for record in records: # print(record) for record in records: if count % 2 == 0: my_tree.insert(parent='', index='end', iid=count, text='', values=(record[1], record[2], record[0], record[4], record[5], record[6], record[7]), tags=('evenrow',)) else: my_tree.insert(parent='', index='end', iid=count, text='', values=(record[1], record[2], record[0], record[4], record[5], record[6], record[7]), tags=('oddrow',)) # increment counter count += 1 # Commit changes conn.commit() # Close our connection conn.close() def lookup_records(): global search_entry, search search = Toplevel(root) search.title("Lookup Records") search.geometry("400x200") search.iconbitmap('c:/gui/codemy.ico') # Create label frame search_frame = LabelFrame(search, text="<NAME>") search_frame.pack(padx=10, pady=10) # Add entry box search_entry = Entry(search_frame, font=("Helvetica", 18)) search_entry.pack(pady=20, padx=20) # Add button search_button = Button(search, text="Search Records", command=search_records) search_button.pack(padx=20, pady=20) def primary_color(): # Pick Color primary_color = colorchooser.askcolor()[1] # Update Treeview Color if primary_color: # Create Striped Row Tags my_tree.tag_configure('evenrow', background=primary_color) def secondary_color(): # Pick Color secondary_color = colorchooser.askcolor()[1] # Update Treeview Color if secondary_color: # Create Striped Row Tags my_tree.tag_configure('oddrow', background=secondary_color) def highlight_color(): # Pick Color highlight_color = colorchooser.askcolor()[1] #Update Treeview Color # Change Selected Color if highlight_color: style.map('Treeview', background=[('selected', highlight_color)]) # Add Menu my_menu = Menu(root) root.config(menu=my_menu) # Configure our menu option_menu = Menu(my_menu, tearoff=0) my_menu.add_cascade(label="Options", menu=option_menu) # Drop down menu option_menu.add_command(label="Primary Color", command=primary_color) option_menu.add_command(label="Secondary Color", command=secondary_color) option_menu.add_command(label="Highlight Color", command=highlight_color) option_menu.add_separator() option_menu.add_command(label="Exit", command=root.quit) #Search Menu search_menu = Menu(my_menu, tearoff=0) my_menu.add_cascade(label="Search", menu=search_menu) # Drop down menu search_menu.add_command(label="Search", command=lookup_records) search_menu.add_separator() search_menu.add_command(label="Reset", command=query_database) # Add Fake Data ''' data = [ ["John", "Elder", 1, "123 Elder St.", "Las Vegas", "NV", "89137"], ["Mary", "Smith", 2, "435 West Lookout", "Chicago", "IL", "60610"], ["Tim", "Tanaka", 3, "246 Main St.", "New York", "NY", "12345"], ["Erin", "Erinton", 4, "333 Top Way.", "Los Angeles", "CA", "90210"], ["Bob", "Bobberly", 5, "876 Left St.", "Memphis", "TN", "34321"], ["Steve", "Smith", 6, "1234 Main St.", "Miami", "FL", "12321"], ["Tina", "Browne", 7, "654 Street Ave.", "Chicago", "IL", "60611"], ["Mark", "Lane", 8, "12 East St.", "Nashville", "TN", "54345"], ["John", "Smith", 9, "678 North Ave.", "St. Louis", "MO", "67821"], ["Mary", "Todd", 10, "9 Elder Way.", "Dallas", "TX", "88948"], ["John", "Lincoln", 11, "123 Elder St.", "Las Vegas", "NV", "89137"], ["Mary", "Bush", 12, "435 West Lookout", "Chicago", "IL", "60610"], ["Tim", "Reagan", 13, "246 Main St.", "New York", "NY", "12345"], ["Erin", "Smith", 14, "333 Top Way.", "Los Angeles", "CA", "90210"], ["Bob", "Field", 15, "876 Left St.", "Memphis", "TN", "34321"], ["Steve", "Target", 16, "1234 Main St.", "Miami", "FL", "12321"], ["Tina", "Walton", 17, "654 Street Ave.", "Chicago", "IL", "60611"], ["Mark", "Erendale", 18, "12 East St.", "Nashville", "TN", "54345"], ["John", "Nowerton", 19, "678 North Ave.", "St. Louis", "MO", "67821"], ["Mary", "Hornblower", 20, "9 Elder Way.", "Dallas", "TX", "88948"] ] ''' # Do some database stuff # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() # Create Table c.execute("""CREATE TABLE if not exists customers ( first_name text, last_name text, id integer, address text, city text, state text, zipcode text) """) # Add dummy data to table ''' for record in data: c.execute("INSERT INTO customers VALUES (:first_name, :last_name, :id, :address, :city, :state, :zipcode)", { 'first_name': record[0], 'last_name': record[1], 'id': record[2], 'address': record[3], 'city': record[4], 'state': record[5], 'zipcode': record[6] } ) ''' # Commit changes conn.commit() # Close our connection conn.close() # Add Some Style style = ttk.Style() # Pick A Theme style.theme_use('default') # Configure the Treeview Colors style.configure("Treeview", background="#D3D3D3", foreground="black", rowheight=25, fieldbackground="#D3D3D3") # Change Selected Color style.map('Treeview', background=[('selected', "#347083")]) # Create a Treeview Frame tree_frame = Frame(root) tree_frame.pack(pady=10) # Create a Treeview Scrollbar tree_scroll = Scrollbar(tree_frame) tree_scroll.pack(side=RIGHT, fill=Y) # Create The Treeview my_tree = ttk.Treeview(tree_frame, yscrollcommand=tree_scroll.set, selectmode="extended") my_tree.pack() # Configure the Scrollbar tree_scroll.config(command=my_tree.yview) # Define Our Columns my_tree['columns'] = ("<NAME>", "<NAME>", "ID", "Address", "City", "State", "Zipcode") # Format Our Columns my_tree.column("#0", width=0, stretch=NO) my_tree.column("<NAME>", anchor=W, width=140) my_tree.column("<NAME>", anchor=W, width=140) my_tree.column("ID", anchor=CENTER, width=100) my_tree.column("Address", anchor=CENTER, width=140) my_tree.column("City", anchor=CENTER, width=140) my_tree.column("State", anchor=CENTER, width=140) my_tree.column("Zipcode", anchor=CENTER, width=140) # Create Headings my_tree.heading("#0", text="", anchor=W) my_tree.heading("<NAME>", text="<NAME>", anchor=W) my_tree.heading("<NAME>", text="<NAME>", anchor=W) my_tree.heading("ID", text="ID", anchor=CENTER) my_tree.heading("Address", text="Address", anchor=CENTER) my_tree.heading("City", text="City", anchor=CENTER) my_tree.heading("State", text="State", anchor=CENTER) my_tree.heading("Zipcode", text="Zipcode", anchor=CENTER) # Create Striped Row Tags my_tree.tag_configure('oddrow', background="white") my_tree.tag_configure('evenrow', background="lightblue") # Add Record Entry Boxes data_frame = LabelFrame(root, text="Record") data_frame.pack(fill="x", expand="yes", padx=20) fn_label = Label(data_frame, text="<NAME>") fn_label.grid(row=0, column=0, padx=10, pady=10) fn_entry = Entry(data_frame) fn_entry.grid(row=0, column=1, padx=10, pady=10) ln_label = Label(data_frame, text="<NAME>") ln_label.grid(row=0, column=2, padx=10, pady=10) ln_entry = Entry(data_frame) ln_entry.grid(row=0, column=3, padx=10, pady=10) id_label = Label(data_frame, text="ID") id_label.grid(row=0, column=4, padx=10, pady=10) id_entry = Entry(data_frame) id_entry.grid(row=0, column=5, padx=10, pady=10) address_label = Label(data_frame, text="Address") address_label.grid(row=1, column=0, padx=10, pady=10) address_entry = Entry(data_frame) address_entry.grid(row=1, column=1, padx=10, pady=10) city_label = Label(data_frame, text="City") city_label.grid(row=1, column=2, padx=10, pady=10) city_entry = Entry(data_frame) city_entry.grid(row=1, column=3, padx=10, pady=10) state_label = Label(data_frame, text="State") state_label.grid(row=1, column=4, padx=10, pady=10) state_entry = Entry(data_frame) state_entry.grid(row=1, column=5, padx=10, pady=10) zipcode_label = Label(data_frame, text="Zipcode") zipcode_label.grid(row=1, column=6, padx=10, pady=10) zipcode_entry = Entry(data_frame) zipcode_entry.grid(row=1, column=7, padx=10, pady=10) # Move Row Up def up(): rows = my_tree.selection() for row in rows: my_tree.move(row, my_tree.parent(row), my_tree.index(row)-1) # Move Rown Down def down(): rows = my_tree.selection() for row in reversed(rows): my_tree.move(row, my_tree.parent(row), my_tree.index(row)+1) # Remove one record def remove_one(): x = my_tree.selection()[0] my_tree.delete(x) # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() # Delete From Database c.execute("DELETE from customers WHERE oid=" + id_entry.get()) # Commit changes conn.commit() # Close our connection conn.close() # Clear The Entry Boxes clear_entries() # Add a little message box for fun messagebox.showinfo("Deleted!", "Your Record Has Been Deleted!") # Remove Many records def remove_many(): # Add a little message box for fun response = messagebox.askyesno("WOAH!!!!", "This Will Delete EVERYTHING SELECTED From The Table\nAre You Sure?!") #Add logic for message box if response == 1: # Designate selections x = my_tree.selection() # Create List of ID's ids_to_delete = [] # Add selections to ids_to_delete list for record in x: ids_to_delete.append(my_tree.item(record, 'values')[2]) # Delete From Treeview for record in x: my_tree.delete(record) # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() # Delete Everything From The Table c.executemany("DELETE FROM customers WHERE id = ?", [(a,) for a in ids_to_delete]) # Reset List ids_to_delete = [] # Commit changes conn.commit() # Close our connection conn.close() # Clear entry boxes if filled clear_entries() # Remove all records def remove_all(): # Add a little message box for fun response = messagebox.askyesno("WOAH!!!!", "This Will Delete EVERYTHING From The Table\nAre You Sure?!") #Add logic for message box if response == 1: # Clear the Treeview for record in my_tree.get_children(): my_tree.delete(record) # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() # Delete Everything From The Table c.execute("DROP TABLE customers") # Commit changes conn.commit() # Close our connection conn.close() # Clear entry boxes if filled clear_entries() # Recreate The Table create_table_again() # Clear entry boxes def clear_entries(): # Clear entry boxes fn_entry.delete(0, END) ln_entry.delete(0, END) id_entry.delete(0, END) address_entry.delete(0, END) city_entry.delete(0, END) state_entry.delete(0, END) zipcode_entry.delete(0, END) # Select Record def select_record(event): # Clear entry boxes fn_entry.delete(0, END) ln_entry.delete(0, END) id_entry.delete(0, END) address_entry.delete(0, END) city_entry.delete(0, END) state_entry.delete(0, END) zipcode_entry.delete(0, END) # Grab record Number selected = my_tree.focus() # Grab record values values = my_tree.item(selected, 'values') # outpus to entry boxes fn_entry.insert(0, values[0]) ln_entry.insert(0, values[1]) id_entry.insert(0, values[2]) address_entry.insert(0, values[3]) city_entry.insert(0, values[4]) state_entry.insert(0, values[5]) zipcode_entry.insert(0, values[6]) # Update record def update_record(): # Grab the record number selected = my_tree.focus() # Update record my_tree.item(selected, text="", values=(fn_entry.get(), ln_entry.get(), id_entry.get(), address_entry.get(), city_entry.get(), state_entry.get(), zipcode_entry.get(),)) # Update the database # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() c.execute("""UPDATE customers SET first_name = :first, last_name = :last, address = :address, city = :city, state = :state, zipcode = :zipcode WHERE oid = :oid""", { 'first': fn_entry.get(), 'last': ln_entry.get(), 'address': address_entry.get(), 'city': city_entry.get(), 'state': state_entry.get(), 'zipcode': zipcode_entry.get(), 'oid': id_entry.get(), }) # Commit changes conn.commit() # Close our connection conn.close() # Clear entry boxes fn_entry.delete(0, END) ln_entry.delete(0, END) id_entry.delete(0, END) address_entry.delete(0, END) city_entry.delete(0, END) state_entry.delete(0, END) zipcode_entry.delete(0, END) # add new record to database def add_record(): # Update the database # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() # Add New Record c.execute("INSERT INTO customers VALUES (:first, :last, :id, :address, :city, :state, :zipcode)", { 'first': fn_entry.get(), 'last': ln_entry.get(), 'id': id_entry.get(), 'address': address_entry.get(), 'city': city_entry.get(), 'state': state_entry.get(), 'zipcode': zipcode_entry.get(), }) # Commit changes conn.commit() # Close our connection conn.close() # Clear entry boxes fn_entry.delete(0, END) ln_entry.delete(0, END) id_entry.delete(0, END) address_entry.delete(0, END) city_entry.delete(0, END) state_entry.delete(0, END) zipcode_entry.delete(0, END) # Clear The Treeview Table my_tree.delete(*my_tree.get_children()) # Run to pull data from database on start query_database() def create_table_again(): # Create a database or connect to one that exists conn = sqlite3.connect('tree_crm.db') # Create a cursor instance c = conn.cursor() # Create Table c.execute("""CREATE TABLE if not exists customers ( first_name text, last_name text, id integer, address text, city text, state text, zipcode text) """) # Commit changes conn.commit() # Close our connection conn.close() # Add Buttons button_frame = LabelFrame(root, text="Commands") button_frame.pack(fill="x", expand="yes", padx=20) update_button = Button(button_frame, text="Update Record", command=update_record) update_button.grid(row=0, column=0, padx=10, pady=10) add_button = Button(button_frame, text="Add Record", command=add_record) add_button.grid(row=0, column=1, padx=10, pady=10) remove_all_button = Button(button_frame, text="Remove All Records", command=remove_all) remove_all_button.grid(row=0, column=2, padx=10, pady=10) remove_one_button = Button(button_frame, text="Remove One Selected", command=remove_one) remove_one_button.grid(row=0, column=3, padx=10, pady=10) remove_many_button = Button(button_frame, text="Remove Many Selected", command=remove_many) remove_many_button.grid(row=0, column=4, padx=10, pady=10) move_up_button = Button(button_frame, text="Move Up", command=up) move_up_button.grid(row=0, column=5, padx=10, pady=10) move_down_button = Button(button_frame, text="Move Down", command=down) move_down_button.grid(row=0, column=6, padx=10, pady=10) select_record_button = Button(button_frame, text="Clear Entry Boxes", command=clear_entries) select_record_button.grid(row=0, column=7, padx=10, pady=10) # Bind the treeview # my_tree.bind("", select_record) # Run to pull data from database on start query_database() root.mainloop() ``` #### File: tkinter-coisas/treeview_tutoriais/frame1.py ```python import tkinter as tk from tkinter import Button, Entry, ttk from tkinter.constants import NSEW, VERTICAL from tkinter.messagebox import showinfo class Fr1(ttk.Frame): def __init__(self, parent, controller): ttk.Frame.__init__(self, parent) self.controller = controller self.lb_pesquisar = ttk.Label(self, text='pesquisar:') self.etd_pesquisar = ttk.Entry(self) self.bt_pesquisar = ttk.Button(self, text='pesquisar') self.lb_pesquisar.grid() self.etd_pesquisar.grid() self.bt_pesquisar.grid() self.tree = self.create_tree_widget() def create_tree_widget(self): columns = ('first_name', 'last_name', 'email') tree = ttk.Treeview(self, columns=columns, show='headings') # define headings tree.heading('first_name', text='First Name') tree.heading('last_name', text='Last Name') tree.heading('email', text='Email') tree.bind('<<TreeviewSelect>>', self.item_selected) tree.grid(row=0, column=0, sticky=NSEW) # add a scrollbar scrollbar = ttk.Scrollbar(self, orient=VERTICAL, command=tree.yview) tree.configure(yscroll=scrollbar.set) scrollbar.grid(row=0, column=1, sticky='ns') # generate sample data contacts = [] for n in range(1, 100): contacts.append((f'first {n}', f'last {n}', f'<EMAIL>')) # add data to the treeview for contact in contacts: tree.insert('', tk.END, values=contact) return tree def item_selected(self, event): for selected_item in self.tree.selection(): item = self.tree.item(selected_item) record = item['values'] # show a message showinfo(title='Information', message=','.join(record)) print(record) self.controller.mostrar_dados(record) if __name__ == '__main__': root = tk.Tk() frame = Fr(root) frame.pack() root.title('Treeview demo') root.geometry('620x200') root.mainloop() ``` #### File: tkinter-gui-basico/2-tk/2-tk.py ```python from tkinter import * from tkinter.messagebox import showinfo def replay(): showinfo(title='popup', message = 'botão apertado') janela = Tk() botao = Button(janela, text='press', command=replay) botao.pack() janela.mainloop() ``` #### File: tkinter-gui-basico/5-tk-poo/MeuGui.py ```python from tkinter import * from tkinter.messagebox import showinfo class MeuGui(Frame): def __init__(self, parent=None): Frame.__init__(self, parent) botao = Button(self, text='Aperte aqui', width=50, height=25, command=self.reply) botao.pack() def reply(self): showinfo(title='popup', message='botao apertado') if __name__ == '__main__': janela = MeuGui() janela.pack() janela.mainloop() ``` #### File: meu_site/blog/models.py ```python from django.db import models from django.utils import timezone from django.contrib.auth.models import User # Create your models here. class PublishedManager(models.Manager): def get_queryset(self): return super(PublishedManager, self).get_queryset().filter(status='publicado') class Post(models.Model): STATUS = ( ('rascunho', 'Rascunho'), ('publicado', 'Publicado')) titulo = models.CharField(max_length=250) slug = models.SlugField(max_length=250) autor = models.ForeignKey(User, on_delete=models.CASCADE) conteudo = models.TextField() publicado = models.DateTimeField(default=timezone.now) criado = models.DateTimeField(auto_now_add=True) alterado = models.DateTimeField(auto_now=True) status = models.CharField( max_length=10, choices=STATUS, default='rascunho') objects = models.Manager() published = PublishedManager() class meta: ordering = ('-publicado',) def __str__(self): # return f'{self.slug} - {self.conte}' # return f'{self.slug} - {self.titulo}' return self.titulo ```
{ "source": "jonashund/mechkit", "score": 3 }
#### File: source/notebooks/02.py ```python import mechkit import numpy as np import sympy as sp import itertools np.set_printoptions( linewidth=140, precision=3, # suppress=False, ) # ### Symbolic with numbers converter = mechkit.notation.ConverterSymbolic() ones_tensor = np.ones((3, 3, 3, 3), dtype=sp.Symbol) print(ones_tensor) ones_mandel6 = converter.to_mandel6(ones_tensor) print(ones_mandel6) ones_mandel9 = converter.to_mandel9(ones_tensor) print(ones_mandel9) # ### Symbolic with letters def tensor( order=2, symbol="A", dim=3, latex_index=False, kwargs_symbol={}, indice_offset=0 ): A = np.zeros((dim,) * order, dtype=sp.Symbol) for x in itertools.product(range(dim), repeat=order): index = "".join(map(str, map(lambda x: x + indice_offset, x))) if latex_index: index = "_{" + index + "}" A[x] = sp.Symbol(symbol + index, **kwargs_symbol) return A def make_it_hooke_symmetric(A, dim=3): for i in range(dim): for j in range(dim): for k in range(dim): for m in range(dim): A[i, j, m, k] = A[i, j, k, m] A[j, i, m, k] = A[i, j, k, m] A[k, m, i, j] = A[i, j, k, m] return A def make_it_left_symmetric(A, dim=3): for i in range(dim): for j in range(dim): for k in range(dim): for m in range(dim): A[j, i, k, m] = A[i, j, k, m] return A def make_it_right_symmetric(A, dim=3): for i in range(dim): for j in range(dim): for k in range(dim): for m in range(dim): A[i, j, m, k] = A[i, j, k, m] return A def make_it_minor_symmetric(A, dim=3): tmp = make_it_left_symmetric(A) tmp = make_it_right_symmetric(A) return tmp tensor = make_it_minor_symmetric(tensor(order=4, indice_offset=1)) print(tensor) tensor_mandel6 = converter.to_mandel6(tensor) print(tensor_mandel6) tensor_mandel9 = converter.to_mandel9(tensor) print(tensor_mandel9) ``` #### File: mechkit/test/test_fabric_tensors.py ```python import numpy as np from pprint import pprint import mechkit basic = mechkit.tensors.Basic() con = mechkit.notation.Converter() ########################################## # Helpers def evenly_distributed_vectors_on_sphere(nbr_vectors=1000): """ Define nbr_vectors evenly distributed vectors on a sphere Using the golden spiral method kindly provided by stackoverflow-user "<NAME>" https://stackoverflow.com/a/44164075/8935243 """ from numpy import pi, cos, sin, arccos, arange indices = arange(0, nbr_vectors, dtype=float) + 0.5 phi = arccos(1 - 2 * indices / nbr_vectors) theta = pi * (1 + 5 ** 0.5) * indices x, y, z = cos(theta) * sin(phi), sin(theta) * sin(phi), cos(phi) orientations = np.column_stack((x, y, z)) return orientations def evenly_distributed_vectors_on_circle_on_zplane(nbr_vectors=1000): """ Define nbr_vectors evenly distributed vectors on a sphere Using the golden spiral method kindly provided by stackoverflow-user "<NAME>" https://stackoverflow.com/a/44164075/8935243 """ phi = np.linspace(0, 2.0 * np.pi, nbr_vectors, endpoint=False) x, y, z = np.cos(phi), np.sin(phi), np.zeros_like(phi) orientations = np.column_stack((x, y, z)) return orientations ########################################## # Tests def test_isotropic_discrete_N2(): converter = mechkit.notation.Converter() orientations = evenly_distributed_vectors_on_sphere(10000) basic = converter.to_tensor(mechkit.fabric_tensors.Basic().N2["iso"]) discrete = mechkit.fabric_tensors.first_kind_discrete( order=2, orientations=orientations ) pprint(basic) pprint(discrete) assert np.allclose(basic, discrete, rtol=1e-6, atol=1e-6) def test_isotropic_discrete_N4(): converter = mechkit.notation.Converter() orientations = evenly_distributed_vectors_on_sphere(10000) basic = converter.to_tensor(mechkit.fabric_tensors.Basic().N4["iso"]) discrete = mechkit.fabric_tensors.first_kind_discrete( order=4, orientations=orientations ) pprint(basic) pprint(discrete) assert np.allclose(basic, discrete, rtol=1e-6, atol=1e-6) def test_planar_isotropic_discrete_N4(): converter = mechkit.notation.Converter() orientations = evenly_distributed_vectors_on_circle_on_zplane(10000) basic = converter.to_tensor(mechkit.fabric_tensors.Basic().N4["planar_iso_xy"]) discrete = mechkit.fabric_tensors.first_kind_discrete( order=4, orientations=orientations ) pprint("basic") pprint(converter.to_mandel6(basic)) pprint("discrete") pprint(converter.to_mandel6(discrete)) assert np.allclose(basic, discrete, rtol=1e-6, atol=1e-6) def test_fabric_tensor_first_kind_discrete(): """Compare einsum-implementation with loop-implementation""" orientations = np.random.rand(10, 3) # Ten random vectors in 3D # Normalize orientations orientations = [np.array(v) / np.linalg.norm(v) for v in orientations] def oT_loops(orientations, order=4): N = np.zeros((3,) * order) for p in orientations: out = p for index in range(order - 1): out = np.multiply.outer(out, p) N[:] = N[:] + out N = N / len(orientations) return N for order in range(1, 6): assert np.allclose( mechkit.fabric_tensors.first_kind_discrete( order=order, orientations=orientations ), oT_loops(order=order, orientations=orientations), ) def test_fabric_tensor_first_kind_discrete_benchmarks(): orientations = [ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], ] converter = mechkit.notation.Converter() f = mechkit.fabric_tensors.first_kind_discrete assert np.allclose( converter.to_tensor(mechkit.fabric_tensors.Basic().N2["iso"]), f(order=2, orientations=orientations), ) if __name__ == "__main__": pass ``` #### File: mechkit/test/test_visualization.py ```python import numpy as np import mechkit class Test_StiffnessAnalyser: def test_get_E_in_principal_direction_and_perpendicular_transverselly_iso(self): direction = [1, 1, 0] E_l = 100.0 E_t = 20.0 mat = mechkit.material.TransversalIsotropic( E_l=E_l, E_t=E_t, nu_lt=0.3, G_lt=10.0, G_tt=7.0, principal_axis=direction, ) analyzer = mechkit.visualization.StiffnessAnalyser(stiffness=mat.stiffness) # E Modulus in principal direction has to be equal to E_l assert np.allclose(analyzer.E_in_direction(direction=direction), E_l) # E Modulus in any direction perpendicular to principal direction # has to be equal to E_t assert np.allclose(analyzer.E_in_direction(direction=[0, 0, 1]), E_t) def test_E_and_K_generalized_of_isotropic_vectorized(self): E_modul = 2e3 K_modul = 1e3 mat = mechkit.material.Isotropic(E=E_modul, K=K_modul) analyzer = mechkit.visualization.StiffnessAnalyser(stiffness=mat.stiffness) shape = (2, 4) tmp_1, tmp_2 = shape # Unpacking by "*shape" is not valid Python2.x directions = np.random.rand(tmp_1, tmp_2, 3) youngs_moduli = analyzer.E_in_direction(direction=directions) print(youngs_moduli) assert youngs_moduli.shape == shape assert np.allclose(youngs_moduli, np.ones(shape) * E_modul) gen_bulk_modulus = analyzer.K_in_direction(direction=directions) print(gen_bulk_modulus) assert gen_bulk_modulus.shape == shape assert np.allclose(gen_bulk_modulus, np.ones(shape) * K_modul) if __name__ == "__main__": instance = Test_StiffnessAnalyser() instance.test_get_E_in_principal_direction_and_perpendicular_transverselly_iso() instance.test_E_and_K_generalized_of_isotropic_vectorized() ```
{ "source": "jonasitzmann/pix2latent", "score": 2 }
#### File: pix2latent/pix2latent/loss_functions.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import os.path as osp import sys import logging import traceback import torch from torch import nn import lpips from pix2latent.utils.misc import HiddenPrints def l1_loss(out, target): """ computes loss = | x - y |""" return torch.abs(target - out) def l2_loss(out, target): """ computes loss = (x - y)^2 """ return ((target - out) ** 2) def invertibility_loss(ims, target_transform, transform_params, mask=None): """ Computes invertibility loss MSE(ims - T^{-1}(T(ims))) """ if ims.size(0) == 1: ims = ims.repeat(len(transform_params), 1, 1, 1) transformed = target_transform(ims, transform_params) inverted = target_transform(transformed, transform_params, invert=True) if mask is None: return torch.mean((ims - inverted) ** 2, [1, 2, 3]) return masked_l2_loss(ims, inverted, mask) def masked_l1_loss(out, target, mask): if mask.size(0) == 1: mask = mask.repeat(out.size(0), 1, 1, 1) if target.size(0) == 1: target = target.repeat(out.size(0), 1, 1, 1) loss = l1_loss(out, target) n = torch.sum(loss * mask, [1, 2, 3]) d = torch.sum(mask, [1, 2, 3]) return (n / d) def masked_l2_loss(out, target, mask): if mask.size(0) == 1: mask = mask.repeat(out.size(0), 1, 1, 1) if target.size(0) == 1: target = target.repeat(out.size(0), 1, 1, 1) loss = l2_loss(out, target) n = torch.sum(loss * mask, [1, 2, 3]) d = torch.sum(mask, [1, 2, 3]) return (n / d) def weight_regularization(orig_model, curr_model, reg='l1', weight_dict=None): w = 1.0 reg_loss = 0.0 orig_state_dict = orig_model.state_dict() for param_name, curr_param in curr_model.named_parameters(): if 'bn' in param_name: continue orig_param = orig_state_dict[param_name] if reg == 'l1': l = torch.abs(curr_param - orig_param).mean() elif reg == 'l2': l = ((curr_param - orig_param) ** 2).mean() elif reg == 'inf': l = torch.max(torch.abs(curr_param - orig_param)) if weight_dict is not None: w = weight_dict[param_name] reg_loss += w * l return reg_loss class ProjectionLoss(nn.Module): """ The default loss that is used in the paper """ def __init__(self, lpips_net='alex', beta=10): super().__init__() self.beta = beta self.rloss_fn = ReconstructionLoss() self.ploss_fn = PerceptualLoss(net=lpips_net) return def __call__(self, output, target, weight=None, loss_mask=None): rec_loss = self.rloss_fn(output, target, weight, loss_mask) per_loss = self.ploss_fn(output, target, weight, loss_mask) return rec_loss + (self.beta * per_loss) class ReconstructionLoss(nn.Module): """ Reconstruction loss with spatial weighting """ def __init__(self, loss_type='l1'): super(ReconstructionLoss, self).__init__() if loss_type in ['l1', 1]: self.loss_fn = l1_loss elif loss_type in ['l2', 2]: self.loss_fn = l2_loss else: raise ValueError('Unknown loss_type {}'.format(loss_type)) return def __call__(self, output, target, weight=None, loss_mask=None): loss = self.loss_fn(output, target) if weight is not None: _weight = weight if loss_mask == None else (loss_mask * weight) n = torch.sum(loss * _weight, [1, 2, 3]) d = torch.sum(_weight, [1, 2, 3]) loss = n / d return loss class PerceptualLoss(nn.Module): def __init__(self, net='vgg', use_gpu=True): """ LPIPS loss with spatial weighting """ super(PerceptualLoss, self).__init__() self.loss_fn = lpips.LPIPS(net=net, spatial=True) if torch.cuda.is_available(): self.loss_fn = self.loss_fn.cuda() # current pip version does not support DataParallel # self.loss_fn = nn.DataParallel(self.loss_fn) return def __call__(self, output, target, weight=None, loss_mask=None): # lpips takes the sum of each spatial map loss = self.loss_fn(output, target) if weight is not None: _weight = weight if loss_mask == None else (loss_mask * weight) n = torch.sum(loss * _weight, [1, 2, 3]) d = torch.sum(_weight, [1, 2, 3]) loss = n / d return loss ```
{ "source": "jonasitzmann/ultimate-tactic-board", "score": 2 }
#### File: jonasitzmann/ultimate-tactic-board/mode.py ```python from abc import ABC from kivy.graphics import Rectangle, Color from kivy.properties import ObjectProperty from kivy.uix.behaviors import DragBehavior from kivy.uix.boxlayout import BoxLayout from kivy.uix.label import Label from kivy.uix.widget import Widget import cfg from player_widget import PlayerWidget import command import numpy as np class SelectionRect(Widget): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.p1 = self.pos.copy() self.p2 = self.pos.copy() self.set_p2(self.p2) def set_p2(self, p2): self.p2 = p2 self.x = min(self.p1[0], self.p2[0]) self.y = min(self.p1[1], self.p2[1]) self.width = abs(self.p1[0] - self.p2[0]) self.height = abs(self.p1[1] - self.p2[1]) return class Mode(ABC): def __init__(self, field, get_widgets_func=None): self.get_widgets = get_widgets_func or self.get_players self.field = field field.reset() self.widgets = [] self.add_widgets() def add_widgets(self): self.widgets = self.get_widgets() for w in self.widgets: self.field.add_widget(w) def remove_widgets(self): for widget in self.widgets: self.field.remove_widget(widget) def on_touch_down(self, touch): pass def on_touch_up(self, touch): pass def on_touch_move(self, touch): pass def reload(self): self.remove_widgets() self.add_widgets() pass def get_widget_at(self, pos, widget_list=None): if widget_list is None: widget_list = self.widgets for widget in widget_list: if widget.collide_point(*pos): return widget def get_players(self): return [PlayerWidget(p, self.field) for p in self.field.state.players] def __del__(self): self.remove_widgets() class EditPoseMode(Mode): def __init__(self, field): super().__init__(field) self.angle_mode = False self.current_player = None def on_touch_down(self, touch): self.current_player = self.get_widget_at(touch.pos) if self.current_player is not None: if touch.button == 'right' or self.field.ctrl_pressed: self.angle_mode = True else: self.current_player.on_touch_down(touch) def on_touch_up(self, touch): if self.current_player is not None: angle = pos = None if not touch.button == 'left' or not self.field.ctrl_pressed: self.current_player.on_touch_up(touch) pos = self.current_player.pix2pos() prev_player = self.field.get_previous_player(self.current_player.player_state) if prev_player is not None: max_distance_no_turn = 3 move_distance = np.linalg.norm(pos - prev_player.pos) if move_distance > max_distance_no_turn: angle = float(np.arctan2(*(pos - prev_player.pos)) * -180 / np.pi) elif self.angle_mode and not self.current_player.collide_point(*touch.pos): pos1 = self.current_player.pix2pos() pos2 = self.field.pix2pos(*touch.pos) angle = int(np.arctan2(*(pos2 - pos1)) * -180 / np.pi) if pos is not None or angle is not None: cmd = command.MovePlayer(self.field, self.current_player.player_state, pos, angle) self.field.execute_cmd(cmd) self.current_player = None self.angle_mode = False class AddPlayerMode(Mode): def __init__(self, field): super().__init__(field) self.current_player = None def on_touch_down(self, touch): role = 'd' if self.field.ctrl_pressed else 'o' if not self.field.collide_point(*touch.pos): return pos = self.field.pix2pos(*touch.pos) if touch.button == 'left': cmd = command.AddPlayer(self.field, role, pos) self.field.execute_cmd(cmd) self.current_player = cmd.player_widget def on_touch_up(self, touch): if self.current_player is None or self.current_player.player_state is None or self.current_player.collide_point(*touch.pos): return pos1 = self.current_player.player_state.pos pos2 = self.field.pix2pos(touch.x, touch.y) angle = int(np.arctan2(*(pos2 - pos1)) * -180 / np.pi) cmd = command.MovePlayer(self.field, self.current_player.player_state, None, angle) self.field.execute_cmd(cmd) self.current_player = None class SetupHexMode(Mode): def __init__(self, field): super().__init__(field) self.pos = None def on_touch_down(self, touch): if touch.button == 'left': self.pos = self.field.pix2pos(*touch.pos) self.field.state.setup_hex(self.pos) self.field.update_img() # def on_touch_up(self, touch): # if self.pos is not None: # pos2 = self.field.pix2pos(touch.x, touch.y) # angle = int(np.arctan2(*(pos2 - self.pos)) * 180 / np.pi + 180) # self.field.state.setup_hex(angle, self.pos) # self.field.update_img() class SelectMode(Mode): def __init__(self, field): super().__init__(field) # self.selection_commands = [] self.selected_players = [] self.selection_rect = None def __del__(self): super().__del__() self.undo_annotations() def undo_annotations(self): # for cmd in self.selection_commands: # self.field.do_and_reload(cmd.undo) # self.selection_commands = [] self.selected_players = [] def on_touch_down(self, touch): self.undo_annotations() if touch.button == 'left': player = self.get_widget_at(touch.pos) if isinstance(player, PlayerWidget): # cmd = command.FieldOfView(self.field, player.player_state) self.selected_players = [player.player_state] # self.field.do_and_reload(cmd.execute) # self.selection_commands.append(cmd) else: self.selection_rect = SelectionRect(pos=touch.pos) self.widgets.append(self.selection_rect) self.field.add_widget(self.selection_rect) def on_touch_move(self, touch): if self.selection_rect is not None: self.selection_rect.set_p2(touch.pos) def on_touch_up(self, touch): if self.selection_rect is not None: self.selected_players = [ p.player_state for p in self.widgets if self.selection_rect.collide_widget(p) and p is not self.selection_rect] self.field.remove_widget(self.selection_rect) self.widgets.remove(self.selection_rect) self.selection_rect = None if self.selected_players: self.field.set_mode_(PlayersSelectedMode(self.field, self.selected_players)) class SelectionMenu(BoxLayout): mode = ObjectProperty(None) class PlayersSelectedMode(Mode): def __init__(self, field, players): self.players = players super().__init__(field, self.get_widgets) self.drag = False self.menu = SelectionMenu(mode=self) self.field.parent.add_widget(self.menu, index=1) self.highlight_cmd = None self.fov_annotations = None def __del__(self): self.field.parent.remove_widget(self.menu) super().__del__() def get_widgets(self): player_states = [self.field.state.get_player(p) for p in self.players] return [PlayerWidget(p, self.field) for p in player_states] def on_touch_down(self, touch): if self.get_widget_at(touch.pos) is None: self.field.set_mode_(SelectMode(self.field)) self.field.mode.on_touch_down(touch) else: self.drag = True def on_touch_move(self, touch): if self.drag: for widget in self.widgets: widget.x += touch.dx widget.y += touch.dy def on_touch_up(self, touch): if self.drag: cmds = [] for player_widget in self.widgets: cmds.append(command.MovePlayer(self.field, player_widget.player_state, pos=player_widget.pix2pos())) self.field.execute_cmd(command.CommandList(cmds)) self.drag = False def align_x(self): self.field.do_and_reload(lambda: self.field.state.align_x(' '.join([p.name for p in self.players]))) def align_y(self): self.field.do_and_reload(lambda: self.field.state.align_y(' '.join([p.name for p in self.players]))) def highlight_toggle(self): if self.highlight_cmd is None: self.highlight_cmd = command.HighlightPlayers(self.field, *self.players) self.field.do_and_reload(self.highlight_cmd.execute) else: self.field.do_and_reload(self.highlight_cmd.undo) self.highlight_cmd = None self.field.do_and_reload(lambda: None) def fov_toggle(self): if self.fov_annotations is None: self.fov_annotations = command.FieldOfView(self.field, *self.players) self.field.do_and_reload(self.fov_annotations.execute) else: self.field.do_and_reload(self.fov_annotations.undo) self.fov_annotations = None self.field.do_and_reload(lambda: None) class ViewMode(Mode): pass ``` #### File: not_a_playbook/0_what_is_a_playbook/intro_scene.py ```python from manim_animations import create_movie from scenes import UltimateScene from manim import * from manim_presentation import Slide class Play1(UltimateScene, Slide): def pplay(self, *args, **kwargs): self.play(*args, **kwargs) self.pause() def construct(self): plan_a = Tex("Plan A").to_edge(UP, MED_SMALL_BUFF).shift(2*RIGHT) plan_b = Tex("Plan B").to_corner(UR, MED_SMALL_BUFF).shift(LEFT) tex = Tex(self.get_tex('slide_1')).to_corner(UL, MED_SMALL_BUFF) self.wait(0.1) self.pause() self.pplay(Write(tex)) self.play(Write(plan_a)) f_1, s = self.prepare() f_1.landscape_to_portrait(animate=False).scale(0.9).next_to(plan_a, DOWN, MED_SMALL_BUFF) self.play(FadeIn(f_1)) plan_a_arrows = f_1.get_arrows(s[0], s[1]) f_1.add(plan_a_arrows) self.play(Write(plan_a_arrows)) self.add(plan_a_arrows) self.pause() f_1.transition(s[1], run_time=3, disc_delay=0.2) self.pause() f2 = f_1.copy().next_to(plan_b, DOWN) self.play(Write(plan_b)) self.play(FadeIn(f2)) plan_b_arrows = f2.get_arrows(s[2], s[3]) self.add(plan_b_arrows) self.pause() f2.transition(s[0], run_time=0.3) self.play(Write(plan_b_arrows)) f2.add(plan_b_arrows) self.pause() f2.transition(s[2], run_time=3), f2.transition(s[3], run_time=3) self.pause() l1 = Line(f_1.get_corner(UL), f2.get_corner(DR), color=RED_D, stroke_width=10, z_index=5) l2 = Line(f_1.get_corner(DL), f2.get_corner(UR), color=RED_D, stroke_width=10, z_index=5) self.pplay(DrawBorderThenFill(l1), DrawBorderThenFill(l2)) self.wait() def render_scene(): # create_movie(Play1, debug=False, hq=True, output_file='play1.mp4') bin_dir = '/home/jonas/.conda/envs/tactics_board/bin' os.system(f'{bin_dir}/manim-presentation Play1 --fullscreen') if __name__ == '__main__': render_scene() ``` #### File: scenes/profile_scene/profile_scene.py ```python import sys from scenes import UltimateScene from manim_animations import create_movie from contextlib import contextmanager import cProfile import os def main(): create_movie(ProfileScene, debug=True, hq=True, opengl=False) @contextmanager def profile(filename=None, *args, **kwargs): profiler = cProfile.Profile(*args, **kwargs) profiler.enable() yield profiler.disable() if filename: profiler.dump_stats(os.path.expanduser(filename)) profiler.print_stats(sort=1) class ProfileScene(UltimateScene): def construct(self): f, s = self.prepare() f.transition(s[1], run_time=5) if __name__ == '__main__': main() ```
{ "source": "Jonasiz/milestone_task", "score": 2 }
#### File: Jonasiz/milestone_task/demo_modes.py ```python import json import os import random import time from dotenv import load_dotenv from ClientManager import ClientManager from MQTT import MQTTClient import console_prompts def freezer_callback(client, userdata, message): print_msg = 'Received {0} on topic: {1} with QoS {2}'.format( message.payload, message.topic, message.qos ) client.logger.info(print_msg) living_room_temp = json.loads(message.payload)['temp'] client.temperature = living_room_temp - 30 client.logger.info('Updated freezer temperature to {0} C (living room temp: {1})'.format( client.temperature, living_room_temp )) def living_room_callback(client, userdata, message): print_msg = 'Received {0} on topic: {1} with QoS {2}'.format( message.payload, message.topic, message.qos ) client.logger.info(print_msg) freezer_temp = json.loads(message.payload)['temp'] client.temperature = freezer_temp + 30 client.logger.info('Updated living room temperature to {0} C (freezer temp: {1})'.format( client.temperature, freezer_temp )) def main(): load_dotenv() broker_domain = str(os.getenv('BROKER_HOST')) broker_port = int(os.getenv('BROKER_PORT')) living_room_sensor = 'interview/ioma/sensors/temperature/living_room/ABC1' freezer_sensor = 'interview/ioma/sensors/temperature/freezer/CBA1' # Freezer client/sensor freezer_client = MQTTClient('freezer_id', clean_session=True, msg_handler=freezer_callback) freezer_client.connect(broker_domain, port=broker_port, keepalive=120) freezer_client.subscribe(living_room_sensor, qos=1) # Living room client/sensor living_room_client = MQTTClient('living_room_id', clean_session=True, msg_handler=living_room_callback) living_room_client.connect(broker_domain, port=broker_port, keepalive=60) living_room_client.subscribe(freezer_sensor, qos=1) print('Both clients started! Check log files') try: while True: # Fluctuate freezer temperature freezer_temp = freezer_client.temperature + random.randint(-5, 5) freezer_client.publish(freezer_sensor, json.dumps({'temp': freezer_temp}), qos=1) time.sleep(random.randint(1, 2)) # Fluctuate living room temperature living_room_temp = living_room_client.temperature + random.randint(-5, 5) living_room_client.publish(living_room_sensor, json.dumps({'temp': living_room_temp}), qos=1) time.sleep(random.randint(1, 2)) except KeyboardInterrupt: freezer_client.disconnect() living_room_client.disconnect() print('Interrupted, exiting...') def main_interactive(): load_dotenv() broker_domain = str(os.getenv('BROKER_HOST')) broker_port = int(os.getenv('BROKER_PORT')) client_manager = ClientManager() try: while True: client_ids = [client.client_id for client in client_manager.clients] choice = console_prompts.main_menu() if choice == console_prompts.main_actions['show']: console_prompts.show_clients(client_ids) elif choice == console_prompts.main_actions['add']: inputs = console_prompts.add_client(client_ids, broker_domain, broker_port) client_manager.add_client(inputs['client_id'], inputs['host'], int(inputs['port']), int(inputs['keepalive']), inputs['clean_session'] == 'y') print('Client added and connected.') elif choice == console_prompts.main_actions['remove']: removed_id = console_prompts.remove_client(client_ids) if removed_id is not None: client_manager.remove_client(removed_id) print('Client removed and disconnected.') elif choice == console_prompts.main_actions['pub']: inputs = console_prompts.publish(client_ids) if inputs is not None: client_manager.client_publish(inputs['pub_id'], inputs['topic'], inputs['data'], int(inputs['qos'])) print('Published "{0}" to topic {1} for client "{2}" (qos={3})'.format( inputs['data'], inputs['topic'], inputs['pub_id'], inputs['qos'] )) elif choice == console_prompts.main_actions['sub']: inputs = console_prompts.subscribe_client(client_ids) if inputs is not None: client_manager.client_subscribe(inputs['sub_id'], inputs['topic'], int(inputs['qos'])) print('Subscribed client "{0}" to topic "{1}" (QoS: {2})'.format( inputs['sub_id'], inputs['topic'], inputs['qos'] )) elif choice == console_prompts.main_actions['unsub']: unsub_id = console_prompts.unsubscribe_client_id(client_ids) client = [client for client in client_manager.clients if client.client_id == unsub_id][0] unsub_topic = console_prompts.unsubscribe_client_topic(client) if unsub_topic is not None: client_manager.client_unsubscribe(client.client_id, unsub_topic) print('Unsubscribed client "{0}" from topic "{1}"'.format( unsub_id, unsub_topic )) except (EOFError, KeyError): print('Interrupted, exiting...') client_manager.disconnect_all() print('Done.') ```
{ "source": "jonasj76/lldpd", "score": 2 }
#### File: integration/fixtures/programs.py ```python import pytest import glob import os import pwd import grp import re import signal import subprocess import multiprocessing import uuid import time import platform import ctypes from collections import namedtuple libc = ctypes.CDLL('libc.so.6', use_errno=True) def mount_bind(source, target): ret = libc.mount(source.encode('ascii'), target.encode('ascii'), None, 4096, # MS_BIND None) if ret == -1: e = ctypes.get_errno() raise OSError(e, os.strerror(e)) def mount_tmpfs(target, private=False): flags = [0] if private: flags.append(1 << 18) # MS_PRIVATE flags.append(1 << 19) # MS_SLAVE for fl in flags: ret = libc.mount(b"none", target.encode('ascii'), b"tmpfs", fl, None) if ret == -1: e = ctypes.get_errno() raise OSError(e, os.strerror(e)) def _mount_proc(target): flags = [2 | 4 | 8] # MS_NOSUID | MS_NODEV | MS_NOEXEC flags.append(1 << 18) # MS_PRIVATE flags.append(1 << 19) # MS_SLAVE for fl in flags: ret = libc.mount(b"proc", target.encode('ascii'), b"proc", fl, None) if ret == -1: e = ctypes.get_errno() raise OSError(e, os.strerror(e)) def mount_proc(target="/proc"): # We need to be sure /proc is correct. We do that in another # process as this doesn't play well with setns(). if not os.path.isdir(target): os.mkdir(target) p = multiprocessing.Process(target=_mount_proc, args=(target,)) p.start() p.join() def most_recent(*args): """Return the most recent files matching one of the provided glob expression.""" candidates = [l for location in args for l in glob.glob(location)] candidates.sort(key=lambda x: os.stat(x).st_mtime) assert len(candidates) > 0 return candidates[0] libtool_location = most_recent('../../libtool', '../../*/libtool') lldpcli_location = most_recent('../../src/client/lldpcli', '../../*/src/client/lldpcli') lldpd_location = most_recent('../../src/daemon/lldpd', '../../*/src/daemon/lldpd') def _replace_file(tmpdir, target, content): tmpname = str(uuid.uuid1()) with tmpdir.join(tmpname).open("w") as tmp: tmp.write(content) mount_bind(str(tmpdir.join(tmpname)), target) @pytest.fixture def replace_file(tmpdir): """Replace a file by another content by bind-mounting on it.""" return lambda target, content: _replace_file(tmpdir, target, content) def format_process_output(program, args, result): """Return a string representing the result of a process.""" return "\n".join([ 'P: {} {}'.format(program, " ".join(args)), 'C: {}'.format(os.getcwd()), '\n'.join(['O: {}'.format(l) for l in result.stdout.decode( 'ascii', 'ignore').strip().split('\n')]), '\n'.join(['E: {}'.format(l) for l in result.stderr.decode( 'ascii', 'ignore').strip().split('\n')]), 'S: {}'.format(result.returncode), '']) class LldpdFactory(object): """Factory for lldpd. When invoked, lldpd will configure the current namespace to be in a reproducible environment and spawn itself in the background. On termination, output will be logged to temporary file. """ def __init__(self, tmpdir, config): """Create a new wrapped program.""" tmpdir.join('lldpd-outputs').ensure(dir=True) self.tmpdir = tmpdir self.config = config self.pids = [] self.threads = [] self.counter = 0 def __call__(self, *args, sleep=3, silent=False): self.counter += 1 self.setup_namespace("ns-{}".format(self.counter)) args = (self.config.option.verbose > 2 and "-dddd" or "-dd", "-L", lldpcli_location, "-u", str(self.tmpdir.join("ns", "lldpd.socket"))) + args p = subprocess.Popen((libtool_location, 'execute', lldpd_location) + args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.pids.append(p.pid) t = multiprocessing.Process(target=self.run, args=(p, args, silent)) self.threads.append(t) t.start() time.sleep(sleep) return t def run(self, p, args, silent): stdout, stderr = p.communicate() self.pids.remove(p.pid) if not silent: o = format_process_output("lldpd", args, namedtuple('ProcessResult', ['returncode', 'stdout', 'stderr'])( p.returncode, stdout, stderr)) self.tmpdir.join('lldpd-outputs', '{}-{}'.format( os.getpid(), p.pid)).write(o) def killall(self): for p in self.pids[:]: os.kill(p, signal.SIGTERM) for t in self.threads: if t.is_alive(): t.join(1) for p in self.pids[:]: os.kill(p, signal.SIGKILL) for t in self.threads: if t.is_alive(): t.join(1) def setup_namespace(self, name): # Setup privsep. While not enforced, we assume we are running in a # throwaway mount namespace. tmpdir = self.tmpdir mount_proc() if self.config.lldpd.privsep.enabled: # Chroot chroot = self.config.lldpd.privsep.chroot if os.path.isdir(chroot): mount_tmpfs(chroot) else: parent = os.path.abspath(os.path.join(chroot, os.pardir)) assert os.path.isdir(parent) mount_tmpfs(parent) if not os.path.isdir(chroot): os.mkdir(chroot) mount_proc(os.path.join(chroot, "proc")) # User/group user = self.config.lldpd.privsep.user group = self.config.lldpd.privsep.group try: pwd.getpwnam(user) grp.getgrnam(group) except KeyError: passwd = "" for l in open("/etc/passwd", "r").readlines(): if not l.startswith("{}:".format(user)): passwd += l passwd += "{}:x:39861:39861::{}:/bin/false\n".format( user, chroot) fgroup = "" for l in open("/etc/group", "r").readlines(): if not l.startswith("{}:".format(group)): fgroup += l fgroup += "{}:x:39861:\n".format(group) _replace_file(tmpdir, "/etc/passwd", passwd) _replace_file(tmpdir, "/etc/group", fgroup) # Also setup the "namespace-dependant" directory tmpdir.join("ns").ensure(dir=True) mount_tmpfs(str(tmpdir.join("ns")), private=True) # We also need a proper /etc/os-release _replace_file(tmpdir, "/etc/os-release", """PRETTY_NAME="Spectacular GNU/Linux 2016" NAME="Spectacular GNU/Linux" ID=spectacular HOME_URL="https://www.example.com/spectacular" SUPPORT_URL="https://www.example.com/spectacular/support" BUG_REPORT_URL="https://www.example.com/spectacular/bugs" """) # We also need a proper name subprocess.check_call(["hostname", name]) # And we need to ensure name resolution is sane _replace_file(tmpdir, "/etc/hosts", """ 127.0.0.1 localhost.localdomain localhost 127.0.1.1 {name}.example.com {name} ::1 ip6-localhost ip6-loopback """.format(name=name)) _replace_file(tmpdir, "/etc/nsswitch.conf", """ passwd: <PASSWORD> group: files shadow: files hosts: files networks: files protocols: files services: files """) # Remove any config path = os.path.join(self.config.lldpd.confdir, "lldpd.conf") if os.path.isfile(path): _replace_file(tmpdir, path, "") path = os.path.join(self.config.lldpd.confdir, "lldpd.d") if os.path.isdir(path): mount_tmpfs(path) @pytest.fixture() def lldpd(request, tmpdir): """Execute ``lldpd``.""" p = LldpdFactory(tmpdir, request.config) request.addfinalizer(p.killall) return p @pytest.fixture() def lldpd1(lldpd, links, namespaces): """Shortcut for a first receive-only lldpd daemon.""" links(namespaces(1), namespaces(2)) with namespaces(1): lldpd("-r") @pytest.fixture() def lldpcli(request, tmpdir): """Execute ``lldpcli``.""" socketdir = tmpdir.join("ns", "lldpd.socket") count = [0] def run(*args): cargs = ("-u", str(socketdir)) + args p = subprocess.Popen((libtool_location, 'execute', lldpcli_location) + cargs, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate(timeout=30) result = namedtuple('ProcessResult', ['returncode', 'stdout', 'stderr'])( p.returncode, stdout, stderr) request.node.add_report_section( 'run', 'lldpcli output {}'.format(count[0]), format_process_output("lldpcli", cargs, result)) count[0] += 1 # When keyvalue is requested, return a formatted result if args[:2] == ("-f", "keyvalue"): assert result.returncode == 0 out = {} for k, v in [l.split('=', 2) for l in result.stdout.decode('ascii').split("\n") if '=' in l]: if k in out: out[k] += [v] else: out[k] = [v] for k in out: if len(out[k]) == 1: out[k] = out[k][0] return out # Otherwise, return the named tuple return result return run def pytest_runtest_makereport(item, call): """Collect outputs written to tmpdir and put them in report.""" # Only do that after tests are run, but not on teardown (too late) if call.when != 'call': return # We can't wait for teardown, kill any running lldpd daemon right # now. Otherwise, we won't get any output. if "lldpd" in item.fixturenames and "lldpd" in item.funcargs: lldpd = item.funcargs["lldpd"] lldpd.killall() if "tmpdir" in item.fixturenames and "tmpdir" in item.funcargs: tmpdir = item.funcargs["tmpdir"] if tmpdir.join('lldpd-outputs').check(dir=1): for path in tmpdir.join('lldpd-outputs').visit(): item.add_report_section( call.when, 'lldpd {}'.format(path.basename), path.read()) def pytest_configure(config): """Put lldpd/lldpcli configuration into the config object.""" output = subprocess.check_output([lldpcli_location, "-vv"]) output = output.decode('ascii') config.lldpcli = namedtuple( 'lldpcli', ['version', 'outputs'])( re.search( r"^lldpcli (.*)$", output, re.MULTILINE).group(1), re.search( r"^Additional output formats:\s+(.*)$", output, re.MULTILINE).group(1).split(", ")) output = subprocess.check_output([lldpd_location, "-vv"]) output = output.decode('ascii') if {"enabled": True, "disabled": False}[re.search(r"^Privilege separation:\s+(.*)$", output, re.MULTILINE).group(1)]: privsep = namedtuple('privsep', ['user', 'group', 'chroot', 'enabled'])( re.search( r"^Privilege separation user:\s+(.*)$", output, re.MULTILINE).group(1), re.search( r"^Privilege separation group:\s+(.*)$", output, re.MULTILINE).group(1), re.search( r"^Privilege separation chroot:\s(.*)$", output, re.MULTILINE).group(1), True) else: privsep = namedtuple('privsep', ['enabled'])(False) config.lldpd = namedtuple('lldpd', ['features', 'protocols', 'confdir', 'snmp', 'privsep', 'version'])( re.search( r"^Additional LLDP features:\s+(.*)$", output, re.MULTILINE).group(1).split(", "), re.search( r"^Additional protocols:\s+(.*)$", output, re.MULTILINE).group(1).split(", "), re.search( r"^Configuration directory:\s+(.*)$", output, re.MULTILINE).group(1), {"yes": True, "no": False}[re.search( r"^SNMP support:\s+(.*)$", output, re.MULTILINE).group(1)], privsep, re.search(r"^lldpd (.*)$", output, re.MULTILINE).group(1)) def pytest_report_header(config): """Report lldpd/lldpcli version and configuration.""" print('lldpd: {} {}'.format(config.lldpd.version, ", ".join(config.lldpd.protocols + config.lldpd.features))) print('lldpcli: {} {}'.format(config.lldpcli.version, ", ".join(config.lldpcli.outputs))) print('{}: {} {} {}'.format(platform.system().lower(), platform.release(), platform.version(), platform.machine())) ```
{ "source": "jonasjancarik/waybackpy", "score": 2 }
#### File: waybackpy/tests/test_cli.py ```python import sys import os import pytest import random import string import argparse import waybackpy.cli as cli from waybackpy.wrapper import Url # noqa: E402 from waybackpy.__version__ import __version__ def test_save(): args = argparse.Namespace( user_agent=None, url="https://hfjfjfjfyu6r6rfjvj.fjhgjhfjgvjm", total=False, version=False, file=False, oldest=False, save=True, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "could happen because either your waybackpy" or "cannot be archived by wayback machine as it is a redirect" in str(reply) def test_json(): args = argparse.Namespace( user_agent=None, url="https://pypi.org/user/akamhy/", total=False, version=False, file=False, oldest=False, save=False, json=True, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "archived_snapshots" in str(reply) def test_archive_url(): args = argparse.Namespace( user_agent=None, url="https://pypi.org/user/akamhy/", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=True, newest=False, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "https://web.archive.org/web/" in str(reply) def test_oldest(): args = argparse.Namespace( user_agent=None, url="https://pypi.org/user/akamhy/", total=False, version=False, file=False, oldest=True, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "pypi.org/user/akamhy" in str(reply) uid = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(6) ) url = "https://pypi.org/yfvjvycyc667r67ed67r" + uid args = argparse.Namespace( user_agent=None, url=url, total=False, version=False, file=False, oldest=True, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "Can not find archive for" in str(reply) def test_newest(): args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://pypi.org/user/akamhy/", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=True, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "pypi.org/user/akamhy" in str(reply) uid = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(6) ) url = "https://pypi.org/yfvjvycyc667r67ed67r" + uid args = argparse.Namespace( user_agent=None, url=url, total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=True, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert "Can not find archive for" in str(reply) def test_total_archives(): args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://pypi.org/user/akamhy/", total=True, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get=None, ) reply = cli.args_handler(args) assert isinstance(reply, int) def test_known_urls(): args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://www.keybr.com", total=False, version=False, file=True, oldest=False, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=True, get=None, ) reply = cli.args_handler(args) assert "keybr" in str(reply) def test_near(): args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://pypi.org/user/akamhy/", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=True, subdomain=False, known_urls=False, get=None, year=2020, month=7, day=15, hour=1, minute=1, ) reply = cli.args_handler(args) assert "202007" in str(reply) uid = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(6) ) url = "https://pypi.org/yfvjvycyc667r67ed67r" + uid args = argparse.Namespace( user_agent=None, url=url, total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=True, subdomain=False, known_urls=False, get=None, year=2020, month=7, day=15, hour=1, minute=1, ) reply = cli.args_handler(args) assert "Can not find archive for" in str(reply) def test_get(): args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://github.com/akamhy", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get="url", ) reply = cli.args_handler(args) assert "waybackpy" in str(reply) args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://github.com/akamhy/waybackpy", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get="oldest", ) reply = cli.args_handler(args) assert "waybackpy" in str(reply) args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://akamhy.github.io/waybackpy/", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get="newest", ) reply = cli.args_handler(args) assert "waybackpy" in str(reply) args = argparse.Namespace( user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 \ (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9", url="https://pypi.org/user/akamhy/", total=False, version=False, file=False, oldest=False, save=False, json=False, archive_url=False, newest=False, near=False, subdomain=False, known_urls=False, get="foobar", ) reply = cli.args_handler(args) assert "get the source code of the" in str(reply) def test_args_handler(): args = argparse.Namespace(version=True) reply = cli.args_handler(args) assert ("waybackpy version %s" % (__version__)) == reply args = argparse.Namespace(url=None, version=False) reply = cli.args_handler(args) assert ("waybackpy %s" % (__version__)) in str(reply) def test_main(): # This also tests the parse_args method in cli.py cli.main(["temp.py", "--version"]) ```
{ "source": "jonasjeeliasson/core", "score": 2 }
#### File: components/adguard/switch.py ```python from __future__ import annotations from datetime import timedelta import logging from typing import Callable from adguardhome import AdGuardHome, AdGuardHomeConnectionError, AdGuardHomeError from homeassistant.components.switch import SwitchEntity from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.entity import Entity from . import AdGuardHomeDeviceEntity from .const import DATA_ADGUARD_CLIENT, DATA_ADGUARD_VERSION, DOMAIN _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(seconds=10) PARALLEL_UPDATES = 1 async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: Callable[[list[Entity], bool], None], ) -> None: """Set up AdGuard Home switch based on a config entry.""" adguard = hass.data[DOMAIN][entry.entry_id][DATA_ADGUARD_CLIENT] try: version = await adguard.version() except AdGuardHomeConnectionError as exception: raise PlatformNotReady from exception hass.data[DOMAIN][entry.entry_id][DATA_ADGUARD_VERSION] = version switches = [ AdGuardHomeProtectionSwitch(adguard, entry), AdGuardHomeFilteringSwitch(adguard, entry), AdGuardHomeParentalSwitch(adguard, entry), AdGuardHomeSafeBrowsingSwitch(adguard, entry), AdGuardHomeSafeSearchSwitch(adguard, entry), AdGuardHomeQueryLogSwitch(adguard, entry), ] async_add_entities(switches, True) class AdGuardHomeSwitch(AdGuardHomeDeviceEntity, SwitchEntity): """Defines a AdGuard Home switch.""" def __init__( self, adguard: AdGuardHome, entry: ConfigEntry, name: str, icon: str, key: str, enabled_default: bool = True, ) -> None: """Initialize AdGuard Home switch.""" self._state = False self._key = key super().__init__(adguard, entry, name, icon, enabled_default) @property def unique_id(self) -> str: """Return the unique ID for this sensor.""" return "_".join( [DOMAIN, self.adguard.host, str(self.adguard.port), "switch", self._key] ) @property def is_on(self) -> bool: """Return the state of the switch.""" return self._state async def async_turn_off(self, **kwargs) -> None: """Turn off the switch.""" try: await self._adguard_turn_off() except AdGuardHomeError: _LOGGER.error("An error occurred while turning off AdGuard Home switch") self._available = False async def _adguard_turn_off(self) -> None: """Turn off the switch.""" raise NotImplementedError() async def async_turn_on(self, **kwargs) -> None: """Turn on the switch.""" try: await self._adguard_turn_on() except AdGuardHomeError: _LOGGER.error("An error occurred while turning on AdGuard Home switch") self._available = False async def _adguard_turn_on(self) -> None: """Turn on the switch.""" raise NotImplementedError() class AdGuardHomeProtectionSwitch(AdGuardHomeSwitch): """Defines a AdGuard Home protection switch.""" def __init__(self, adguard: AdGuardHome, entry: ConfigEntry) -> None: """Initialize AdGuard Home switch.""" super().__init__( adguard, entry, "AdGuard Protection", "mdi:shield-check", "protection" ) async def _adguard_turn_off(self) -> None: """Turn off the switch.""" await self.adguard.disable_protection() async def _adguard_turn_on(self) -> None: """Turn on the switch.""" await self.adguard.enable_protection() async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" self._state = await self.adguard.protection_enabled() class AdGuardHomeParentalSwitch(AdGuardHomeSwitch): """Defines a AdGuard Home parental control switch.""" def __init__(self, adguard: AdGuardHome, entry: ConfigEntry) -> None: """Initialize AdGuard Home switch.""" super().__init__( adguard, entry, "AdGuard Parental Control", "mdi:shield-check", "parental" ) async def _adguard_turn_off(self) -> None: """Turn off the switch.""" await self.adguard.parental.disable() async def _adguard_turn_on(self) -> None: """Turn on the switch.""" await self.adguard.parental.enable() async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" self._state = await self.adguard.parental.enabled() class AdGuardHomeSafeSearchSwitch(AdGuardHomeSwitch): """Defines a AdGuard Home safe search switch.""" def __init__(self, adguard: AdGuardHome, entry: ConfigEntry) -> None: """Initialize AdGuard Home switch.""" super().__init__( adguard, entry, "AdGuard Safe Search", "mdi:shield-check", "safesearch" ) async def _adguard_turn_off(self) -> None: """Turn off the switch.""" await self.adguard.safesearch.disable() async def _adguard_turn_on(self) -> None: """Turn on the switch.""" await self.adguard.safesearch.enable() async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" self._state = await self.adguard.safesearch.enabled() class AdGuardHomeSafeBrowsingSwitch(AdGuardHomeSwitch): """Defines a AdGuard Home safe search switch.""" def __init__(self, adguard: AdGuardHome, entry: ConfigEntry) -> None: """Initialize AdGuard Home switch.""" super().__init__( adguard, entry, "AdGuard Safe Browsing", "mdi:shield-check", "safebrowsing" ) async def _adguard_turn_off(self) -> None: """Turn off the switch.""" await self.adguard.safebrowsing.disable() async def _adguard_turn_on(self) -> None: """Turn on the switch.""" await self.adguard.safebrowsing.enable() async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" self._state = await self.adguard.safebrowsing.enabled() class AdGuardHomeFilteringSwitch(AdGuardHomeSwitch): """Defines a AdGuard Home filtering switch.""" def __init__(self, adguard: AdGuardHome, entry: ConfigEntry) -> None: """Initialize AdGuard Home switch.""" super().__init__( adguard, entry, "AdGuard Filtering", "mdi:shield-check", "filtering" ) async def _adguard_turn_off(self) -> None: """Turn off the switch.""" await self.adguard.filtering.disable() async def _adguard_turn_on(self) -> None: """Turn on the switch.""" await self.adguard.filtering.enable() async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" self._state = await self.adguard.filtering.enabled() class AdGuardHomeQueryLogSwitch(AdGuardHomeSwitch): """Defines a AdGuard Home query log switch.""" def __init__(self, adguard: AdGuardHome, entry: ConfigEntry) -> None: """Initialize AdGuard Home switch.""" super().__init__( adguard, entry, "AdGuard Query Log", "mdi:shield-check", "querylog", enabled_default=False, ) async def _adguard_turn_off(self) -> None: """Turn off the switch.""" await self.adguard.querylog.disable() async def _adguard_turn_on(self) -> None: """Turn on the switch.""" await self.adguard.querylog.enable() async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" self._state = await self.adguard.querylog.enabled() ``` #### File: components/canary/__init__.py ```python from datetime import timedelta import logging from canary.api import Api from requests import ConnectTimeout, HTTPError import voluptuous as vol from homeassistant.components.camera.const import DOMAIN as CAMERA_DOMAIN from homeassistant.config_entries import SOURCE_IMPORT, ConfigEntry from homeassistant.const import CONF_PASSWORD, CONF_TIMEOUT, CONF_USERNAME from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady import homeassistant.helpers.config_validation as cv from .const import ( CONF_FFMPEG_ARGUMENTS, DATA_COORDINATOR, DATA_UNDO_UPDATE_LISTENER, DEFAULT_FFMPEG_ARGUMENTS, DEFAULT_TIMEOUT, DOMAIN, ) from .coordinator import CanaryDataUpdateCoordinator _LOGGER = logging.getLogger(__name__) MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=30) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int, } ) }, extra=vol.ALLOW_EXTRA, ) PLATFORMS = ["alarm_control_panel", "camera", "sensor"] async def async_setup(hass: HomeAssistant, config: dict) -> bool: """Set up the Canary integration.""" hass.data.setdefault(DOMAIN, {}) if hass.config_entries.async_entries(DOMAIN): return True ffmpeg_arguments = DEFAULT_FFMPEG_ARGUMENTS if CAMERA_DOMAIN in config: camera_config = next( (item for item in config[CAMERA_DOMAIN] if item["platform"] == DOMAIN), None, ) if camera_config: ffmpeg_arguments = camera_config.get( CONF_FFMPEG_ARGUMENTS, DEFAULT_FFMPEG_ARGUMENTS ) if DOMAIN in config: if ffmpeg_arguments != DEFAULT_FFMPEG_ARGUMENTS: config[DOMAIN][CONF_FFMPEG_ARGUMENTS] = ffmpeg_arguments hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=config[DOMAIN], ) ) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up Canary from a config entry.""" if not entry.options: options = { CONF_FFMPEG_ARGUMENTS: entry.data.get( CONF_FFMPEG_ARGUMENTS, DEFAULT_FFMPEG_ARGUMENTS ), CONF_TIMEOUT: entry.data.get(CONF_TIMEOUT, DEFAULT_TIMEOUT), } hass.config_entries.async_update_entry(entry, options=options) try: canary_api = await hass.async_add_executor_job(_get_canary_api_instance, entry) except (ConnectTimeout, HTTPError) as error: _LOGGER.error("Unable to connect to Canary service: %s", str(error)) raise ConfigEntryNotReady from error coordinator = CanaryDataUpdateCoordinator(hass, api=canary_api) await coordinator.async_config_entry_first_refresh() undo_listener = entry.add_update_listener(_async_update_listener) hass.data[DOMAIN][entry.entry_id] = { DATA_COORDINATOR: coordinator, DATA_UNDO_UPDATE_LISTENER: undo_listener, } hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN][entry.entry_id][DATA_UNDO_UPDATE_LISTENER]() hass.data[DOMAIN].pop(entry.entry_id) return unload_ok async def _async_update_listener(hass: HomeAssistant, entry: ConfigEntry) -> None: """Handle options update.""" await hass.config_entries.async_reload(entry.entry_id) def _get_canary_api_instance(entry: ConfigEntry) -> Api: """Initialize a new instance of CanaryApi.""" canary = Api( entry.data[CONF_USERNAME], entry.data[CONF_PASSWORD], entry.options.get(CONF_TIMEOUT, DEFAULT_TIMEOUT), ) return canary ``` #### File: components/gdacs/config_flow.py ```python import logging import voluptuous as vol from homeassistant import config_entries from homeassistant.const import ( CONF_LATITUDE, CONF_LONGITUDE, CONF_RADIUS, CONF_SCAN_INTERVAL, ) from homeassistant.helpers import config_validation as cv from .const import CONF_CATEGORIES, DEFAULT_RADIUS, DEFAULT_SCAN_INTERVAL, DOMAIN DATA_SCHEMA = vol.Schema( {vol.Optional(CONF_RADIUS, default=DEFAULT_RADIUS): cv.positive_int} ) _LOGGER = logging.getLogger(__name__) class GdacsFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle a GDACS config flow.""" CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL async def _show_form(self, errors=None): """Show the form to the user.""" return self.async_show_form( step_id="user", data_schema=DATA_SCHEMA, errors=errors or {} ) async def async_step_import(self, import_config): """Import a config entry from configuration.yaml.""" return await self.async_step_user(import_config) async def async_step_user(self, user_input=None): """Handle the start of the config flow.""" _LOGGER.debug("User input: %s", user_input) if not user_input: return await self._show_form() latitude = user_input.get(CONF_LATITUDE, self.hass.config.latitude) user_input[CONF_LATITUDE] = latitude longitude = user_input.get(CONF_LONGITUDE, self.hass.config.longitude) user_input[CONF_LONGITUDE] = longitude identifier = f"{user_input[CONF_LATITUDE]}, {user_input[CONF_LONGITUDE]}" await self.async_set_unique_id(identifier) self._abort_if_unique_id_configured() scan_interval = user_input.get(CONF_SCAN_INTERVAL, DEFAULT_SCAN_INTERVAL) user_input[CONF_SCAN_INTERVAL] = scan_interval.total_seconds() categories = user_input.get(CONF_CATEGORIES, []) user_input[CONF_CATEGORIES] = categories return self.async_create_entry(title=identifier, data=user_input) ``` #### File: components/knx/switch.py ```python from __future__ import annotations from collections.abc import Iterable from typing import Any, Callable from xknx import XKNX from xknx.devices import Switch as XknxSwitch from homeassistant.components.switch import SwitchEntity from homeassistant.const import CONF_NAME from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import Entity from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType from .const import DOMAIN, KNX_ADDRESS from .knx_entity import KnxEntity from .schema import SwitchSchema async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: Callable[[Iterable[Entity]], None], discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up switch(es) for KNX platform.""" if not discovery_info or not discovery_info["platform_config"]: return platform_config = discovery_info["platform_config"] xknx: XKNX = hass.data[DOMAIN].xknx entities = [] for entity_config in platform_config: entities.append(KNXSwitch(xknx, entity_config)) async_add_entities(entities) class KNXSwitch(KnxEntity, SwitchEntity): """Representation of a KNX switch.""" def __init__(self, xknx: XKNX, config: ConfigType) -> None: """Initialize of KNX switch.""" self._device: XknxSwitch super().__init__( device=XknxSwitch( xknx, name=config[CONF_NAME], group_address=config[KNX_ADDRESS], group_address_state=config.get(SwitchSchema.CONF_STATE_ADDRESS), invert=config[SwitchSchema.CONF_INVERT], ) ) self._unique_id = f"{self._device.switch.group_address}" @property def is_on(self) -> bool: """Return true if device is on.""" return bool(self._device.state) async def async_turn_on(self, **kwargs: Any) -> None: """Turn the device on.""" await self._device.set_on() async def async_turn_off(self, **kwargs: Any) -> None: """Turn the device off.""" await self._device.set_off() ``` #### File: components/risco/__init__.py ```python import asyncio from datetime import timedelta import logging from pyrisco import CannotConnectError, OperationError, RiscoAPI, UnauthorizedError from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CONF_PASSWORD, CONF_PIN, CONF_SCAN_INTERVAL, CONF_USERNAME, ) from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.storage import Store from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from .const import DATA_COORDINATOR, DEFAULT_SCAN_INTERVAL, DOMAIN, EVENTS_COORDINATOR PLATFORMS = ["alarm_control_panel", "binary_sensor", "sensor"] UNDO_UPDATE_LISTENER = "undo_update_listener" LAST_EVENT_STORAGE_VERSION = 1 LAST_EVENT_TIMESTAMP_KEY = "last_event_timestamp" _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Risco from a config entry.""" data = entry.data risco = RiscoAPI(data[CONF_USERNAME], data[CONF_PASSWORD], data[CONF_PIN]) try: await risco.login(async_get_clientsession(hass)) except CannotConnectError as error: raise ConfigEntryNotReady() from error except UnauthorizedError: _LOGGER.exception("Failed to login to Risco cloud") return False scan_interval = entry.options.get(CONF_SCAN_INTERVAL, DEFAULT_SCAN_INTERVAL) coordinator = RiscoDataUpdateCoordinator(hass, risco, scan_interval) await coordinator.async_config_entry_first_refresh() events_coordinator = RiscoEventsDataUpdateCoordinator( hass, risco, entry.entry_id, 60 ) undo_listener = entry.add_update_listener(_update_listener) hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = { DATA_COORDINATOR: coordinator, UNDO_UPDATE_LISTENER: undo_listener, EVENTS_COORDINATOR: events_coordinator, } async def start_platforms(): await asyncio.gather( *[ hass.config_entries.async_forward_entry_setup(entry, platform) for platform in PLATFORMS ] ) await events_coordinator.async_refresh() hass.async_create_task(start_platforms()) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN][entry.entry_id][UNDO_UPDATE_LISTENER]() hass.data[DOMAIN].pop(entry.entry_id) return unload_ok async def _update_listener(hass: HomeAssistant, entry: ConfigEntry): """Handle options update.""" await hass.config_entries.async_reload(entry.entry_id) class RiscoDataUpdateCoordinator(DataUpdateCoordinator): """Class to manage fetching risco data.""" def __init__(self, hass, risco, scan_interval): """Initialize global risco data updater.""" self.risco = risco interval = timedelta(seconds=scan_interval) super().__init__( hass, _LOGGER, name=DOMAIN, update_interval=interval, ) async def _async_update_data(self): """Fetch data from risco.""" try: return await self.risco.get_state() except (CannotConnectError, UnauthorizedError, OperationError) as error: raise UpdateFailed(error) from error class RiscoEventsDataUpdateCoordinator(DataUpdateCoordinator): """Class to manage fetching risco data.""" def __init__(self, hass, risco, eid, scan_interval): """Initialize global risco data updater.""" self.risco = risco self._store = Store( hass, LAST_EVENT_STORAGE_VERSION, f"risco_{eid}_last_event_timestamp" ) interval = timedelta(seconds=scan_interval) super().__init__( hass, _LOGGER, name=f"{DOMAIN}_events", update_interval=interval, ) async def _async_update_data(self): """Fetch data from risco.""" last_store = await self._store.async_load() or {} last_timestamp = last_store.get( LAST_EVENT_TIMESTAMP_KEY, "2020-01-01T00:00:00Z" ) try: events = await self.risco.get_events(last_timestamp, 10) except (CannotConnectError, UnauthorizedError, OperationError) as error: raise UpdateFailed(error) from error if len(events) > 0: await self._store.async_save({LAST_EVENT_TIMESTAMP_KEY: events[0].time}) return events ``` #### File: components/smarttub/entity.py ```python import logging import smarttub from homeassistant.helpers.update_coordinator import ( CoordinatorEntity, DataUpdateCoordinator, ) from .const import DOMAIN from .helpers import get_spa_name _LOGGER = logging.getLogger(__name__) class SmartTubEntity(CoordinatorEntity): """Base class for SmartTub entities.""" def __init__( self, coordinator: DataUpdateCoordinator, spa: smarttub.Spa, entity_name ): """Initialize the entity. Given a spa id and a short name for the entity, we provide basic device info, name, unique id, etc. for all derived entities. """ super().__init__(coordinator) self.spa = spa self._entity_name = entity_name @property def unique_id(self) -> str: """Return a unique id for the entity.""" return f"{self.spa.id}-{self._entity_name}" @property def device_info(self) -> str: """Return device info.""" return { "identifiers": {(DOMAIN, self.spa.id)}, "manufacturer": self.spa.brand, "model": self.spa.model, } @property def name(self) -> str: """Return the name of the entity.""" spa_name = get_spa_name(self.spa) return f"{spa_name} {self._entity_name}" @property def spa_status(self) -> smarttub.SpaState: """Retrieve the result of Spa.get_status().""" return self.coordinator.data[self.spa.id].get("status") class SmartTubSensorBase(SmartTubEntity): """Base class for SmartTub sensors.""" def __init__(self, coordinator, spa, sensor_name, attr_name): """Initialize the entity.""" super().__init__(coordinator, spa, sensor_name) self._attr_name = attr_name @property def _state(self): """Retrieve the underlying state from the spa.""" return getattr(self.spa_status, self._attr_name) ``` #### File: components/synology_dsm/sensor.py ```python from __future__ import annotations from datetime import timedelta from homeassistant.components.sensor import SensorEntity from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CONF_DISKS, DATA_MEGABYTES, DATA_RATE_KILOBYTES_PER_SECOND, DATA_TERABYTES, PRECISION_TENTHS, TEMP_CELSIUS, ) from homeassistant.core import HomeAssistant from homeassistant.helpers.temperature import display_temp from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from homeassistant.util.dt import utcnow from . import SynoApi, SynologyDSMBaseEntity, SynologyDSMDeviceEntity from .const import ( CONF_VOLUMES, COORDINATOR_CENTRAL, DOMAIN, ENTITY_UNIT_LOAD, INFORMATION_SENSORS, STORAGE_DISK_SENSORS, STORAGE_VOL_SENSORS, SYNO_API, TEMP_SENSORS_KEYS, UTILISATION_SENSORS, ) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities ) -> None: """Set up the Synology NAS Sensor.""" data = hass.data[DOMAIN][entry.unique_id] api = data[SYNO_API] coordinator = data[COORDINATOR_CENTRAL] entities = [ SynoDSMUtilSensor( api, sensor_type, UTILISATION_SENSORS[sensor_type], coordinator ) for sensor_type in UTILISATION_SENSORS ] # Handle all volumes if api.storage.volumes_ids: for volume in entry.data.get(CONF_VOLUMES, api.storage.volumes_ids): entities += [ SynoDSMStorageSensor( api, sensor_type, STORAGE_VOL_SENSORS[sensor_type], coordinator, volume, ) for sensor_type in STORAGE_VOL_SENSORS ] # Handle all disks if api.storage.disks_ids: for disk in entry.data.get(CONF_DISKS, api.storage.disks_ids): entities += [ SynoDSMStorageSensor( api, sensor_type, STORAGE_DISK_SENSORS[sensor_type], coordinator, disk, ) for sensor_type in STORAGE_DISK_SENSORS ] entities += [ SynoDSMInfoSensor( api, sensor_type, INFORMATION_SENSORS[sensor_type], coordinator ) for sensor_type in INFORMATION_SENSORS ] async_add_entities(entities) class SynoDSMSensor(SynologyDSMBaseEntity): """Mixin for sensor specific attributes.""" @property def unit_of_measurement(self) -> str: """Return the unit the value is expressed in.""" if self.entity_type in TEMP_SENSORS_KEYS: return self.hass.config.units.temperature_unit return self._unit class SynoDSMUtilSensor(SynoDSMSensor, SensorEntity): """Representation a Synology Utilisation sensor.""" @property def state(self): """Return the state.""" attr = getattr(self._api.utilisation, self.entity_type) if callable(attr): attr = attr() if attr is None: return None # Data (RAM) if self._unit == DATA_MEGABYTES: return round(attr / 1024.0 ** 2, 1) # Network if self._unit == DATA_RATE_KILOBYTES_PER_SECOND: return round(attr / 1024.0, 1) # CPU load average if self._unit == ENTITY_UNIT_LOAD: return round(attr / 100, 2) return attr @property def available(self) -> bool: """Return True if entity is available.""" return bool(self._api.utilisation) class SynoDSMStorageSensor(SynologyDSMDeviceEntity, SynoDSMSensor, SensorEntity): """Representation a Synology Storage sensor.""" @property def state(self): """Return the state.""" attr = getattr(self._api.storage, self.entity_type)(self._device_id) if attr is None: return None # Data (disk space) if self._unit == DATA_TERABYTES: return round(attr / 1024.0 ** 4, 2) # Temperature if self.entity_type in TEMP_SENSORS_KEYS: return display_temp(self.hass, attr, TEMP_CELSIUS, PRECISION_TENTHS) return attr class SynoDSMInfoSensor(SynoDSMSensor, SensorEntity): """Representation a Synology information sensor.""" def __init__( self, api: SynoApi, entity_type: str, entity_info: dict[str, str], coordinator: DataUpdateCoordinator, ): """Initialize the Synology SynoDSMInfoSensor entity.""" super().__init__(api, entity_type, entity_info, coordinator) self._previous_uptime = None self._last_boot = None @property def state(self): """Return the state.""" attr = getattr(self._api.information, self.entity_type) if attr is None: return None # Temperature if self.entity_type in TEMP_SENSORS_KEYS: return display_temp(self.hass, attr, TEMP_CELSIUS, PRECISION_TENTHS) if self.entity_type == "uptime": # reboot happened or entity creation if self._previous_uptime is None or self._previous_uptime > attr: last_boot = utcnow() - timedelta(seconds=attr) self._last_boot = last_boot.replace(microsecond=0).isoformat() self._previous_uptime = attr return self._last_boot return attr ``` #### File: components/waze_travel_time/__init__.py ```python from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant PLATFORMS = ["sensor"] async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry) -> bool: """Load the saved entities.""" hass.config_entries.async_setup_platforms(config_entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, config_entry: ConfigEntry) -> bool: """Unload a config entry.""" return await hass.config_entries.async_unload_platforms(config_entry, PLATFORMS) ``` #### File: components/wemo/__init__.py ```python import asyncio import logging import pywemo import voluptuous as vol from homeassistant import config_entries from homeassistant.components.binary_sensor import DOMAIN as BINARY_SENSOR_DOMAIN from homeassistant.components.fan import DOMAIN as FAN_DOMAIN from homeassistant.components.light import DOMAIN as LIGHT_DOMAIN from homeassistant.components.switch import DOMAIN as SWITCH_DOMAIN from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_DISCOVERY, EVENT_HOMEASSISTANT_STOP from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.event import async_call_later from .const import DOMAIN # Mapping from Wemo model_name to domain. WEMO_MODEL_DISPATCH = { "Bridge": LIGHT_DOMAIN, "CoffeeMaker": SWITCH_DOMAIN, "Dimmer": LIGHT_DOMAIN, "Humidifier": FAN_DOMAIN, "Insight": SWITCH_DOMAIN, "LightSwitch": SWITCH_DOMAIN, "Maker": SWITCH_DOMAIN, "Motion": BINARY_SENSOR_DOMAIN, "OutdoorPlug": SWITCH_DOMAIN, "Sensor": BINARY_SENSOR_DOMAIN, "Socket": SWITCH_DOMAIN, } _LOGGER = logging.getLogger(__name__) def coerce_host_port(value): """Validate that provided value is either just host or host:port. Returns (host, None) or (host, port) respectively. """ host, _, port = value.partition(":") if not host: raise vol.Invalid("host cannot be empty") if port: port = cv.port(port) else: port = None return host, port CONF_STATIC = "static" DEFAULT_DISCOVERY = True CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Optional(CONF_STATIC, default=[]): vol.Schema( [vol.All(cv.string, coerce_host_port)] ), vol.Optional(CONF_DISCOVERY, default=DEFAULT_DISCOVERY): cv.boolean, } ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): """Set up for WeMo devices.""" hass.data[DOMAIN] = { "config": config.get(DOMAIN, {}), "registry": None, "pending": {}, } if DOMAIN in config: hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT} ) ) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up a wemo config entry.""" config = hass.data[DOMAIN].pop("config") # Keep track of WeMo device subscriptions for push updates registry = hass.data[DOMAIN]["registry"] = pywemo.SubscriptionRegistry() await hass.async_add_executor_job(registry.start) wemo_dispatcher = WemoDispatcher(entry) wemo_discovery = WemoDiscovery(hass, wemo_dispatcher) async def async_stop_wemo(event): """Shutdown Wemo subscriptions and subscription thread on exit.""" _LOGGER.debug("Shutting down WeMo event subscriptions") await hass.async_add_executor_job(registry.stop) wemo_discovery.async_stop_discovery() entry.async_on_unload( hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, async_stop_wemo) ) static_conf = config.get(CONF_STATIC, []) if static_conf: _LOGGER.debug("Adding statically configured WeMo devices") for device in await asyncio.gather( *[ hass.async_add_executor_job(validate_static_config, host, port) for host, port in static_conf ] ): if device: wemo_dispatcher.async_add_unique_device(hass, device) if config.get(CONF_DISCOVERY, DEFAULT_DISCOVERY): await wemo_discovery.async_discover_and_schedule() return True class WemoDispatcher: """Dispatch WeMo devices to the correct platform.""" def __init__(self, config_entry: ConfigEntry): """Initialize the WemoDispatcher.""" self._config_entry = config_entry self._added_serial_numbers = set() self._loaded_components = set() @callback def async_add_unique_device( self, hass: HomeAssistant, device: pywemo.WeMoDevice ) -> None: """Add a WeMo device to hass if it has not already been added.""" if device.serialnumber in self._added_serial_numbers: return component = WEMO_MODEL_DISPATCH.get(device.model_name, SWITCH_DOMAIN) # Three cases: # - First time we see component, we need to load it and initialize the backlog # - Component is being loaded, add to backlog # - Component is loaded, backlog is gone, dispatch discovery if component not in self._loaded_components: hass.data[DOMAIN]["pending"][component] = [device] self._loaded_components.add(component) hass.async_create_task( hass.config_entries.async_forward_entry_setup( self._config_entry, component ) ) elif component in hass.data[DOMAIN]["pending"]: hass.data[DOMAIN]["pending"][component].append(device) else: async_dispatcher_send( hass, f"{DOMAIN}.{component}", device, ) self._added_serial_numbers.add(device.serialnumber) class WemoDiscovery: """Use SSDP to discover WeMo devices.""" ADDITIONAL_SECONDS_BETWEEN_SCANS = 10 MAX_SECONDS_BETWEEN_SCANS = 300 def __init__(self, hass: HomeAssistant, wemo_dispatcher: WemoDispatcher) -> None: """Initialize the WemoDiscovery.""" self._hass = hass self._wemo_dispatcher = wemo_dispatcher self._stop = None self._scan_delay = 0 async def async_discover_and_schedule(self, *_) -> None: """Periodically scan the network looking for WeMo devices.""" _LOGGER.debug("Scanning network for WeMo devices") try: for device in await self._hass.async_add_executor_job( pywemo.discover_devices ): self._wemo_dispatcher.async_add_unique_device(self._hass, device) finally: # Run discovery more frequently after hass has just started. self._scan_delay = min( self._scan_delay + self.ADDITIONAL_SECONDS_BETWEEN_SCANS, self.MAX_SECONDS_BETWEEN_SCANS, ) self._stop = async_call_later( self._hass, self._scan_delay, self.async_discover_and_schedule, ) @callback def async_stop_discovery(self) -> None: """Stop the periodic background scanning.""" if self._stop: self._stop() self._stop = None def validate_static_config(host, port): """Handle a static config.""" url = pywemo.setup_url_for_address(host, port) if not url: _LOGGER.error( "Unable to get description url for WeMo at: %s", f"{host}:{port}" if port else host, ) return None try: device = pywemo.discovery.device_from_description(url) except ( pywemo.exceptions.ActionException, pywemo.exceptions.HTTPException, ) as err: _LOGGER.error("Unable to access WeMo at %s (%s)", url, err) return None return device ``` #### File: components/wilight/__init__.py ```python from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.entity import Entity from .parent_device import WiLightParent DOMAIN = "wilight" # List the platforms that you want to support. PLATFORMS = ["cover", "fan", "light"] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up a wilight config entry.""" parent = WiLightParent(hass, entry) if not await parent.async_setup(): raise ConfigEntryNotReady hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = parent # Set up all platforms for this device/entry. hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload WiLight config entry.""" # Unload entities for this entry/device. unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) # Cleanup parent = hass.data[DOMAIN][entry.entry_id] await parent.async_reset() del hass.data[DOMAIN][entry.entry_id] return unload_ok class WiLightDevice(Entity): """Representation of a WiLight device. Contains the common logic for WiLight entities. """ def __init__(self, api_device, index, item_name): """Initialize the device.""" # WiLight specific attributes for every component type self._device_id = api_device.device_id self._sw_version = api_device.swversion self._client = api_device.client self._model = api_device.model self._name = item_name self._index = index self._unique_id = f"{self._device_id}_{self._index}" self._status = {} @property def should_poll(self): """No polling needed.""" return False @property def name(self): """Return a name for this WiLight item.""" return self._name @property def unique_id(self): """Return the unique ID for this WiLight item.""" return self._unique_id @property def device_info(self): """Return the device info.""" return { "name": self._name, "identifiers": {(DOMAIN, self._unique_id)}, "model": self._model, "manufacturer": "WiLight", "sw_version": self._sw_version, "via_device": (DOMAIN, self._device_id), } @property def available(self): """Return True if entity is available.""" return bool(self._client.is_connected) @callback def handle_event_callback(self, states): """Propagate changes through ha.""" self._status = states self.async_write_ha_state() async def async_update(self): """Synchronize state with api_device.""" await self._client.status(self._index) async def async_added_to_hass(self): """Register update callback.""" self._client.register_status_callback(self.handle_event_callback, self._index) await self._client.status(self._index) ``` #### File: components/philips_js/test_config_flow.py ```python from unittest.mock import ANY, patch from haphilipsjs import PairingFailure from pytest import fixture from homeassistant import config_entries from homeassistant.components.philips_js.const import DOMAIN from . import ( MOCK_CONFIG, MOCK_CONFIG_PAIRED, MOCK_IMPORT, MOCK_PASSWORD, MOCK_SYSTEM_UNPAIRED, MOCK_USERINPUT, MOCK_USERNAME, ) @fixture(autouse=True) def mock_setup_entry(): """Disable component setup.""" with patch( "homeassistant.components.philips_js.async_setup_entry", return_value=True ) as mock_setup_entry: yield mock_setup_entry @fixture async def mock_tv_pairable(mock_tv): """Return a mock tv that is pariable.""" mock_tv.system = MOCK_SYSTEM_UNPAIRED mock_tv.pairing_type = "digest_auth_pairing" mock_tv.api_version = 6 mock_tv.api_version_detected = 6 mock_tv.secured_transport = True mock_tv.pairRequest.return_value = {} mock_tv.pairGrant.return_value = MOCK_USERNAME, MOCK_PASSWORD return mock_tv async def test_import(hass, mock_setup_entry): """Test we get an item on import.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT, ) assert result["type"] == "create_entry" assert result["title"] == "Philips TV (1234567890)" assert result["data"] == MOCK_CONFIG assert len(mock_setup_entry.mock_calls) == 1 async def test_import_exist(hass, mock_config_entry): """Test we get an item on import.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=MOCK_IMPORT, ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_form(hass, mock_setup_entry): """Test we get the form.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} result2 = await hass.config_entries.flow.async_configure( result["flow_id"], MOCK_USERINPUT, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "Philips TV (1234567890)" assert result2["data"] == MOCK_CONFIG assert len(mock_setup_entry.mock_calls) == 1 async def test_form_cannot_connect(hass, mock_tv): """Test we handle cannot connect error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) mock_tv.system = None result = await hass.config_entries.flow.async_configure( result["flow_id"], MOCK_USERINPUT ) assert result["type"] == "form" assert result["errors"] == {"base": "cannot_connect"} async def test_form_unexpected_error(hass, mock_tv): """Test we handle unexpected exceptions.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) mock_tv.getSystem.side_effect = Exception("Unexpected exception") result = await hass.config_entries.flow.async_configure( result["flow_id"], MOCK_USERINPUT ) assert result["type"] == "form" assert result["errors"] == {"base": "unknown"} async def test_pairing(hass, mock_tv_pairable, mock_setup_entry): """Test we get the form.""" mock_tv = mock_tv_pairable result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], MOCK_USERINPUT, ) assert result["type"] == "form" assert result["errors"] == {} mock_tv.setTransport.assert_called_with(True) mock_tv.pairRequest.assert_called() result = await hass.config_entries.flow.async_configure( result["flow_id"], {"pin": "1234"} ) assert result == { "flow_id": ANY, "type": "create_entry", "description": None, "description_placeholders": None, "handler": "philips_js", "result": ANY, "title": "55PUS7181/12 (ABCDEFGHIJKLF)", "data": MOCK_CONFIG_PAIRED, "version": 1, } await hass.async_block_till_done() assert len(mock_setup_entry.mock_calls) == 1 async def test_pair_request_failed(hass, mock_tv_pairable, mock_setup_entry): """Test we get the form.""" mock_tv = mock_tv_pairable mock_tv.pairRequest.side_effect = PairingFailure({}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], MOCK_USERINPUT, ) assert result == { "flow_id": ANY, "description_placeholders": {"error_id": None}, "handler": "philips_js", "reason": "pairing_failure", "type": "abort", } async def test_pair_grant_failed(hass, mock_tv_pairable, mock_setup_entry): """Test we get the form.""" mock_tv = mock_tv_pairable result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], MOCK_USERINPUT, ) assert result["type"] == "form" assert result["errors"] == {} mock_tv.setTransport.assert_called_with(True) mock_tv.pairRequest.assert_called() # Test with invalid pin mock_tv.pairGrant.side_effect = PairingFailure({"error_id": "INVALID_PIN"}) result = await hass.config_entries.flow.async_configure( result["flow_id"], {"pin": "1234"} ) assert result["type"] == "form" assert result["errors"] == {"pin": "invalid_pin"} # Test with unexpected failure mock_tv.pairGrant.side_effect = PairingFailure({}) result = await hass.config_entries.flow.async_configure( result["flow_id"], {"pin": "1234"} ) assert result == { "flow_id": ANY, "description_placeholders": {"error_id": None}, "handler": "philips_js", "reason": "pairing_failure", "type": "abort", } ``` #### File: components/pvpc_hourly_pricing/test_config_flow.py ```python from datetime import datetime from unittest.mock import patch from pytz import timezone from homeassistant import config_entries, data_entry_flow from homeassistant.components.pvpc_hourly_pricing import ATTR_TARIFF, DOMAIN from homeassistant.const import CONF_NAME from homeassistant.helpers import entity_registry as er from .conftest import check_valid_state from tests.common import date_util from tests.test_util.aiohttp import AiohttpClientMocker async def test_config_flow( hass, legacy_patchable_time, pvpc_aioclient_mock: AiohttpClientMocker ): """ Test config flow for pvpc_hourly_pricing. - Create a new entry with tariff "normal" - Check state and attributes - Check abort when trying to config another with same tariff - Check removal and add again to check state restoration """ hass.config.time_zone = timezone("Europe/Madrid") mock_data = {"return_time": datetime(2019, 10, 26, 14, 0, tzinfo=date_util.UTC)} def mock_now(): return mock_data["return_time"] with patch("homeassistant.util.dt.utcnow", new=mock_now): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_NAME: "test", ATTR_TARIFF: "normal"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY await hass.async_block_till_done() state = hass.states.get("sensor.test") check_valid_state(state, tariff="normal") assert pvpc_aioclient_mock.call_count == 1 # Check abort when configuring another with same tariff result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_NAME: "test", ATTR_TARIFF: "normal"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert pvpc_aioclient_mock.call_count == 1 # Check removal registry = er.async_get(hass) registry_entity = registry.async_get("sensor.test") assert await hass.config_entries.async_remove(registry_entity.config_entry_id) # and add it again with UI result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_NAME: "test", ATTR_TARIFF: "normal"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY await hass.async_block_till_done() state = hass.states.get("sensor.test") check_valid_state(state, tariff="normal") assert pvpc_aioclient_mock.call_count == 2 ``` #### File: components/recorder/conftest.py ```python from __future__ import annotations from collections.abc import AsyncGenerator from typing import Awaitable, Callable, cast import pytest from homeassistant.components.recorder import Recorder from homeassistant.components.recorder.const import DATA_INSTANCE from homeassistant.core import HomeAssistant from homeassistant.helpers.typing import ConfigType from .common import async_recorder_block_till_done from tests.common import ( async_init_recorder_component, get_test_home_assistant, init_recorder_component, ) SetupRecorderInstanceT = Callable[..., Awaitable[Recorder]] @pytest.fixture def hass_recorder(): """Home Assistant fixture with in-memory recorder.""" hass = get_test_home_assistant() def setup_recorder(config=None): """Set up with params.""" init_recorder_component(hass, config) hass.start() hass.block_till_done() hass.data[DATA_INSTANCE].block_till_done() return hass yield setup_recorder hass.stop() @pytest.fixture async def async_setup_recorder_instance() -> AsyncGenerator[ SetupRecorderInstanceT, None ]: """Yield callable to setup recorder instance.""" async def async_setup_recorder( hass: HomeAssistant, config: ConfigType | None = None ) -> Recorder: """Setup and return recorder instance.""" # noqa: D401 await async_init_recorder_component(hass, config) await hass.async_block_till_done() instance = cast(Recorder, hass.data[DATA_INSTANCE]) await async_recorder_block_till_done(hass, instance) assert isinstance(instance, Recorder) return instance yield async_setup_recorder ``` #### File: components/zeroconf/test_init.py ```python from unittest.mock import patch from zeroconf import ( BadTypeInNameException, Error as ZeroconfError, InterfaceChoice, IPVersion, ServiceInfo, ServiceStateChange, ) from homeassistant.components import zeroconf from homeassistant.components.zeroconf import CONF_DEFAULT_INTERFACE, CONF_IPV6 from homeassistant.const import ( EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STARTED, EVENT_HOMEASSISTANT_STOP, ) from homeassistant.generated import zeroconf as zc_gen from homeassistant.setup import async_setup_component NON_UTF8_VALUE = b"ABCDEF\x8a" NON_ASCII_KEY = b"non-ascii-key\x8a" PROPERTIES = { b"macaddress": b"ABCDEF012345", b"non-utf8-value": NON_UTF8_VALUE, NON_ASCII_KEY: None, } HOMEKIT_STATUS_UNPAIRED = b"1" HOMEKIT_STATUS_PAIRED = b"0" _ROUTE_NO_LOOPBACK = ( { "attrs": [ ("RTA_TABLE", 254), ("RTA_DST", "192.168.127.12"), ("RTA_OIF", 4), ("RTA_PREFSRC", "192.168.1.5"), ], }, ) _ROUTE_LOOPBACK = ( { "attrs": [ ("RTA_TABLE", 254), ("RTA_DST", "192.168.127.12"), ("RTA_OIF", 4), ("RTA_PREFSRC", "127.0.0.1"), ], }, ) def service_update_mock(zeroconf, services, handlers, *, limit_service=None): """Call service update handler.""" for service in services: if limit_service is not None and service != limit_service: continue handlers[0](zeroconf, service, f"_name.{service}", ServiceStateChange.Added) def get_service_info_mock(service_type, name): """Return service info for get_service_info.""" return ServiceInfo( service_type, name, addresses=[b"\n\x00\x00\x14"], port=80, weight=0, priority=0, server="name.local.", properties=PROPERTIES, ) def get_service_info_mock_without_an_address(service_type, name): """Return service info for get_service_info without any addresses.""" return ServiceInfo( service_type, name, addresses=[], port=80, weight=0, priority=0, server="name.local.", properties=PROPERTIES, ) def get_homekit_info_mock(model, pairing_status): """Return homekit info for get_service_info for an homekit device.""" def mock_homekit_info(service_type, name): return ServiceInfo( service_type, name, addresses=[b"\n\x00\x00\x14"], port=80, weight=0, priority=0, server="name.local.", properties={b"md": model.encode(), b"sf": pairing_status}, ) return mock_homekit_info def get_zeroconf_info_mock(macaddress): """Return info for get_service_info for an zeroconf device.""" def mock_zc_info(service_type, name): return ServiceInfo( service_type, name, addresses=[b"\n\x00\x00\x14"], port=80, weight=0, priority=0, server="name.local.", properties={b"macaddress": macaddress.encode()}, ) return mock_zc_info def get_zeroconf_info_mock_manufacturer(manufacturer): """Return info for get_service_info for an zeroconf device.""" def mock_zc_info(service_type, name): return ServiceInfo( service_type, name, addresses=[b"\n\x00\x00\x14"], port=80, weight=0, priority=0, server="name.local.", properties={b"manufacturer": manufacturer.encode()}, ) return mock_zc_info async def test_setup(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" with patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 expected_flow_calls = 0 for matching_components in zc_gen.ZEROCONF.values(): domains = set() for component in matching_components: if len(component) == 1: domains.add(component["domain"]) expected_flow_calls += len(domains) assert len(mock_config_flow.mock_calls) == expected_flow_calls # Test instance is set. assert "zeroconf" in hass.data assert await hass.components.zeroconf.async_get_instance() is mock_zeroconf async def test_setup_with_overly_long_url_and_name(hass, mock_zeroconf, caplog): """Test we still setup with long urls and names.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ), patch( "homeassistant.components.zeroconf.get_url", return_value="https://this.url.is.way.too.long/very/deep/path/that/will/make/us/go/over/the/maximum/string/length/and/would/cause/zeroconf/to/fail/to/startup/because/the/key/and/value/can/only/be/255/bytes/and/this/string/is/a/bit/longer/than/the/maximum/length/that/we/allow/for/a/value", ), patch.object( hass.config, "location_name", "\u00dcBER \u00dcber German Umlaut long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string long string", ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_START) await hass.async_block_till_done() assert "https://this.url.is.way.too.long" in caplog.text assert "German Umlaut" in caplog.text async def test_setup_with_default_interface(hass, mock_zeroconf): """Test default interface config.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component( hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {CONF_DEFAULT_INTERFACE: True}} ) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with(interface_choice=InterfaceChoice.Default) async def test_setup_without_default_interface(hass, mock_zeroconf): """Test without default interface config.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component( hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {CONF_DEFAULT_INTERFACE: False}} ) assert mock_zeroconf.called_with() async def test_setup_without_ipv6(hass, mock_zeroconf): """Test without ipv6.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component( hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {CONF_IPV6: False}} ) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with(ip_version=IPVersion.V4Only) async def test_setup_with_ipv6(hass, mock_zeroconf): """Test without ipv6.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component( hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {CONF_IPV6: True}} ) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with() async def test_setup_with_ipv6_default(hass, mock_zeroconf): """Test without ipv6 as default.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with() async def test_service_with_invalid_name(hass, mock_zeroconf, caplog): """Test we do not crash on service with an invalid name.""" with patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = BadTypeInNameException assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert "Failed to get info for device" in caplog.text async def test_zeroconf_match_macaddress(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" def http_only_service_update_mock(zeroconf, services, handlers): """Call service update handler.""" handlers[0]( zeroconf, "_http._tcp.local.", "Shelly108._http._tcp.local.", ServiceStateChange.Added, ) with patch.dict( zc_gen.ZEROCONF, { "_http._tcp.local.": [ {"domain": "shelly", "name": "shelly*", "macaddress": "FFAADD*"} ] }, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=http_only_service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_zeroconf_info_mock( "FFAADDCC11DD" ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "shelly" async def test_zeroconf_match_manufacturer(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" def http_only_service_update_mock(zeroconf, services, handlers): """Call service update handler.""" handlers[0]( zeroconf, "_airplay._tcp.local.", "s1000._airplay._tcp.local.", ServiceStateChange.Added, ) with patch.dict( zc_gen.ZEROCONF, {"_airplay._tcp.local.": [{"domain": "samsungtv", "manufacturer": "samsung*"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=http_only_service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = ( get_zeroconf_info_mock_manufacturer("Samsung Electronics") ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "samsungtv" async def test_zeroconf_no_match(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" def http_only_service_update_mock(zeroconf, services, handlers): """Call service update handler.""" handlers[0]( zeroconf, "_http._tcp.local.", "somethingelse._http._tcp.local.", ServiceStateChange.Added, ) with patch.dict( zc_gen.ZEROCONF, {"_http._tcp.local.": [{"domain": "shelly", "name": "shelly*"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=http_only_service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_zeroconf_info_mock( "FFAADDCC11DD" ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 0 async def test_zeroconf_no_match_manufacturer(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" def http_only_service_update_mock(zeroconf, services, handlers): """Call service update handler.""" handlers[0]( zeroconf, "_airplay._tcp.local.", "s1000._airplay._tcp.local.", ServiceStateChange.Added, ) with patch.dict( zc_gen.ZEROCONF, {"_airplay._tcp.local.": [{"domain": "samsungtv", "manufacturer": "samsung*"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=http_only_service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = ( get_zeroconf_info_mock_manufacturer("Not Samsung Electronics") ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 0 async def test_homekit_match_partial_space(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" with patch.dict( zc_gen.ZEROCONF, {"_hap._tcp.local.": [{"domain": "homekit_controller"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=lambda *args, **kwargs: service_update_mock( *args, **kwargs, limit_service="_hap._tcp.local." ), ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_homekit_info_mock( "LIFX bulb", HOMEKIT_STATUS_UNPAIRED ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "lifx" async def test_homekit_match_partial_dash(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" with patch.dict( zc_gen.ZEROCONF, {"_hap._udp.local.": [{"domain": "homekit_controller"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=lambda *args, **kwargs: service_update_mock( *args, **kwargs, limit_service="_hap._udp.local." ), ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_homekit_info_mock( "Rachio-fa46ba", HOMEKIT_STATUS_UNPAIRED ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "rachio" async def test_homekit_match_full(hass, mock_zeroconf): """Test configured options for a device are loaded via config entry.""" with patch.dict( zc_gen.ZEROCONF, {"_hap._udp.local.": [{"domain": "homekit_controller"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=lambda *args, **kwargs: service_update_mock( *args, **kwargs, limit_service="_hap._udp.local." ), ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_homekit_info_mock( "BSB002", HOMEKIT_STATUS_UNPAIRED ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "hue" async def test_homekit_already_paired(hass, mock_zeroconf): """Test that an already paired device is sent to homekit_controller.""" with patch.dict( zc_gen.ZEROCONF, {"_hap._tcp.local.": [{"domain": "homekit_controller"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=lambda *args, **kwargs: service_update_mock( *args, **kwargs, limit_service="_hap._tcp.local." ), ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_homekit_info_mock( "tado", HOMEKIT_STATUS_PAIRED ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 2 assert mock_config_flow.mock_calls[0][1][0] == "tado" assert mock_config_flow.mock_calls[1][1][0] == "homekit_controller" async def test_homekit_invalid_paring_status(hass, mock_zeroconf): """Test that missing paring data is not sent to homekit_controller.""" with patch.dict( zc_gen.ZEROCONF, {"_hap._tcp.local.": [{"domain": "homekit_controller"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=lambda *args, **kwargs: service_update_mock( *args, **kwargs, limit_service="_hap._tcp.local." ), ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_homekit_info_mock( "tado", b"invalid" ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "tado" async def test_homekit_not_paired(hass, mock_zeroconf): """Test that an not paired device is sent to homekit_controller.""" with patch.dict( zc_gen.ZEROCONF, {"_hap._tcp.local.": [{"domain": "homekit_controller"}]}, clear=True, ), patch.object( hass.config_entries.flow, "async_init" ) as mock_config_flow, patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ) as mock_service_browser: mock_zeroconf.get_service_info.side_effect = get_homekit_info_mock( "this_will_not_match_any_integration", HOMEKIT_STATUS_UNPAIRED ) assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_service_browser.mock_calls) == 1 assert len(mock_config_flow.mock_calls) == 1 assert mock_config_flow.mock_calls[0][1][0] == "homekit_controller" async def test_info_from_service_non_utf8(hass): """Test info_from_service handles non UTF-8 property keys and values correctly.""" service_type = "_test._tcp.local." info = zeroconf.info_from_service( get_service_info_mock(service_type, f"test.{service_type}") ) raw_info = info["properties"].pop("_raw", False) assert raw_info assert len(raw_info) == len(PROPERTIES) - 1 assert NON_ASCII_KEY not in raw_info assert len(info["properties"]) <= len(raw_info) assert "non-utf8-value" not in info["properties"] assert raw_info["non-utf8-value"] is NON_UTF8_VALUE async def test_info_from_service_with_addresses(hass): """Test info_from_service does not throw when there are no addresses.""" service_type = "_test._tcp.local." info = zeroconf.info_from_service( get_service_info_mock_without_an_address(service_type, f"test.{service_type}") ) assert info is None async def test_get_instance(hass, mock_zeroconf): """Test we get an instance.""" assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) assert await hass.components.zeroconf.async_get_instance() is mock_zeroconf hass.bus.async_fire(EVENT_HOMEASSISTANT_STOP) await hass.async_block_till_done() assert len(mock_zeroconf.ha_close.mock_calls) == 1 async def test_removed_ignored(hass, mock_zeroconf): """Test we remove it when a zeroconf entry is removed.""" mock_zeroconf.get_service_info.side_effect = ZeroconfError def service_update_mock(zeroconf, services, handlers): """Call service update handler.""" handlers[0]( zeroconf, "_service.added", "name._service.added", ServiceStateChange.Added ) handlers[0]( zeroconf, "_service.updated", "name._service.updated", ServiceStateChange.Updated, ) handlers[0]( zeroconf, "_service.removed", "name._service.removed", ServiceStateChange.Removed, ) with patch.object(zeroconf, "HaServiceBrowser", side_effect=service_update_mock): assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_zeroconf.get_service_info.mock_calls) == 2 assert mock_zeroconf.get_service_info.mock_calls[0][1][0] == "_service.added" assert mock_zeroconf.get_service_info.mock_calls[1][1][0] == "_service.updated" async def test_async_detect_interfaces_setting_non_loopback_route(hass, mock_zeroconf): """Test without default interface config and the route returns a non-loopback address.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ), patch( "homeassistant.components.zeroconf.IPRoute.route", return_value=_ROUTE_NO_LOOPBACK, ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with(interface_choice=InterfaceChoice.Default) async def test_async_detect_interfaces_setting_loopback_route(hass, mock_zeroconf): """Test without default interface config and the route returns a loopback address.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ), patch( "homeassistant.components.zeroconf.IPRoute.route", return_value=_ROUTE_LOOPBACK ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with(interface_choice=InterfaceChoice.All) async def test_async_detect_interfaces_setting_empty_route(hass, mock_zeroconf): """Test without default interface config and the route returns nothing.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ), patch("homeassistant.components.zeroconf.IPRoute.route", return_value=[]): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with(interface_choice=InterfaceChoice.All) async def test_async_detect_interfaces_setting_exception(hass, mock_zeroconf): """Test without default interface config and the route throws an exception.""" with patch.object(hass.config_entries.flow, "async_init"), patch.object( zeroconf, "HaServiceBrowser", side_effect=service_update_mock ), patch( "homeassistant.components.zeroconf.IPRoute.route", side_effect=AttributeError ): mock_zeroconf.get_service_info.side_effect = get_service_info_mock assert await async_setup_component(hass, zeroconf.DOMAIN, {zeroconf.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert mock_zeroconf.called_with(interface_choice=InterfaceChoice.All) ```
{ "source": "JonasJF360/Calculadora_com_tkinter", "score": 3 }
#### File: JonasJF360/Calculadora_com_tkinter/calculadora.py ```python from tkinter import * # cores co1 = '#feffff' # (white) - Branco co2 = '#e26165' # (red) - Vermelho co2_s = '#fa8f92' # red co3 = '#757f7f' # (grey) - Cinza co3_s = '#bebebe' # grey co4 = '#3ea5e0' # (blue) - Azul co4_s = '#71c8fa' # blue co5 = '#3cd878' # (green) - Verde co5_s = '#75faa8' # green fundo = '#3b3b3b' # (black grey) - Cinza escuro # para armazenar todas as expressões que serão avaliadas todos_valores = '' ################# Funções #################### def pegar_valor(event): global todos_valores todos_valores = todos_valores + str(event) valor_texto.set(todos_valores) def calcular(): global todos_valores resultado = eval(todos_valores) resultado = str(int(resultado)) if resultado - \ int(resultado) == 0 else str(round(resultado, 4)) valor_texto.set(resultado) todos_valores = resultado def limpar(): global todos_valores valor_texto.set('0') todos_valores = '' # para entrada de valor único root = Tk() icone = PhotoImage(file='img/icon.png') root.iconphoto(0, icone) root.title('Calculadora') root.geometry('265x365') root.resizable(0, 0) root.configure(bg=fundo) valor_texto = StringVar() valor_texto.set('0') ################# Label #################### app_tela = Label(root, textvariable=valor_texto, relief='flat', bd=0, anchor=E, font=('Ivy 16 bold'), background='#b9ce98', foreground='#3b3b3b', padx=8) app_tela.pack(ipady=15, fill='both') ################# Buttongs #################### b_1 = Button(root, text='C', height=2, bg=co2, highlightbackground=co2_s, activebackground=co2_s, command=limpar, fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_1.place(x=0, y=61, width=131) b_2 = Button(root, text='%', width=3, height=2, bg=co4, highlightbackground=co4_s, activebackground=co4_s, command=lambda: pegar_valor('%'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_2.place(x=134, y=61) b_3 = Button(root, text='/', width=3, height=2, bg=co4, highlightbackground=co4_s, activebackground=co4_s, command=lambda: pegar_valor('/'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_3.place(x=201, y=61) b_4 = Button(root, text='7', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('7'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_4.place(x=0, y=122) b_5 = Button(root, text='8', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('8'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_5.place(x=67, y=122) b_6 = Button(root, text='9', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('9'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_6.place(x=134, y=122) b_7 = Button(root, text='*', width=3, height=2, bg=co4, highlightbackground=co4_s, activebackground=co4_s, command=lambda: pegar_valor('*'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_7.place(x=201, y=122) b_8 = Button(root, text='4', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('4'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_8.place(x=0, y=183) b_9 = Button(root, text='5', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('5'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_9.place(x=67, y=183) b_10 = Button(root, text='6', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('6'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_10.place(x=134, y=183) b_11 = Button(root, text='-', width=3, height=2, bg=co4, highlightbackground=co4_s, activebackground=co4_s, command=lambda: pegar_valor('-'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_11.place(x=201, y=183) b_12 = Button(root, text='1', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('1'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_12.place(x=0, y=244) b_13 = Button(root, text='2', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('2'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_13.place(x=67, y=244) b_14 = Button(root, text='3', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('3'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_14.place(x=134, y=244) b_15 = Button(root, text='+', width=3, height=2, bg=co4, highlightbackground=co4_s, activebackground=co4_s, command=lambda: pegar_valor('+'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_15.place(x=201, y=244) b_16 = Button(root, text='0', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('0'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_16.place(x=0, y=305) b_17 = Button(root, text='.', width=3, height=2, bg=co3, highlightbackground=co3_s, activebackground=co3_s, command=lambda: pegar_valor('.'), fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_17.place(x=67, y=305) b_18 = Button(root, text='=', height=2, bg=co5, highlightbackground=co5_s, activebackground=co5_s, command=calcular, fg=co1, activeforeground=co1, font=('Ivy 13 bold'), relief=RAISED, overrelief=RIDGE) b_18.place(x=134, y=305, width=131) root.mainloop() ```
{ "source": "JonasJF360/Curso_Tkinter", "score": 4 }
#### File: Aulas/colocando_em_pratica/messagebox.py ```python from tkinter import * from tkinter import messagebox # https://pythonguides.com/category/python-tutorials/python-tkinter/ janela = Tk() janela.title('Messagebox') janela.geometry('300x200') janela.config(bg='#5FB691') def msg1(): messagebox.showinfo('information', 'Hi! You got a prompt.') messagebox.showerror('error', 'Something went wrong!') messagebox.showwarning('warning', 'accept T&C') messagebox.askquestion('Ask Question', 'Do you want to continue?') messagebox.askokcancel('Ok Cancel', 'Are You sure?') messagebox.askyesno('Yes|No', 'Do you want to proceed?') messagebox.askretrycancel('retry', 'Failed! want to try again?') Button(janela, text='Click Me', command=msg1).pack(pady=50) janela.mainloop() ``` #### File: Aulas/colocando_em_pratica/treinando_checkbox.py ```python from tkinter import * # Funções e lista de dados paises = [ 'Afeganistão', 'Albania', 'Algeria', 'Andorra', 'Angola', 'Australia', 'Bolivia', 'Brasil', 'Canada', 'China', 'Clile', 'Congo', 'Mexico', 'Islandia', 'Israel', 'Estados Unidos', 'Zimbabwe', 'Ucrânia', 'Belgica', 'Eslovaqui', 'Peru', 'Onduras' ] def deletar(): texto = list(lista.curselection()) decremento = 0 for i in texto: lista.delete(i - decremento, i - decremento) decremento += 1 # cores fundo = '#2d3b58' fonte = '#ffffff' selec_listbox = '#798aac' cor_linha1 = '#97aacf' fundo_listbox = '#a8bfee' # GUI root = Tk() root.config(bg=fundo) root.title('Apagando da lista') largura = 500 altura = 400 posx = (root.winfo_screenwidth() - largura) / 2 posy = (root.winfo_screenheight() - altura) / 2 - 15 root.geometry('%dx%d+%d+%d' % (largura, altura, posx, posy)) root.resizable(0, 0) # 0 = False | 1 = True # Widgets show = Label(root, text='Selecione um ou mais países', bg=fundo, fg=fonte, font=('Verdana', 14)) show.pack(pady=5, padx=10) lista = Listbox(root, selectmode='multiple', bg=fundo_listbox, highlightbackground='#42506b', selectbackground=selec_listbox) lista.pack(padx=10, expand=YES, fill='both') for i, item in enumerate(paises): num = i + 1 num = '0' + str(num) if num < 10 else num lista.insert(END, f' {num} - {item}') lista.itemconfig(i, bg=cor_linha1) Button(root, text='Apagar', font='Verdana 10 bold', activebackground='#42506b', highlightbackground='#42506b', bg=fundo, activeforeground=fonte, fg=fonte, command=deletar ).pack(pady=5) root.mainloop() ```
{ "source": "jonasjonker/gadod", "score": 3 }
#### File: gadod/apps/some_parser.py ```python from pyspark.sql import SparkSession import pyspark.sql.functions as F def setGlobalSparkSession(appName): global spark spark = SparkSession.builder.appName(appName).getOrCreate() def readDataFrameFromText(file): return spark.read.text(file) def verwerkDataFrame(df): return df.withColumn("value", F.upper(F.col("value"))) ``` #### File: gadod/test/test_apps.py ```python from pyspark.sql import Row import pyspark.sql.types as T import pytest import apps.some_parser as parser @pytest.fixture def sdf(tmp_path): parser.setGlobalSparkSession("HelloWorld") file = tmp_path / "helloworld.txt" file.write_text("hello, world!") df = parser.readDataFrameFromText(str(file)) return parser.verwerkDataFrame(df) def test_some_parser_output(sdf): assert sdf.collect() == [Row(**{ "value": "HELLO, WORLD!" })] def test_some_parser_schema(sdf): assert sdf.schema == T.StructType([ T.StructField("value", T.StringType(), True), ]) ```
{ "source": "jonasjucker/spack-c2sm", "score": 2 }
#### File: packages/cosmo-grib-api-definitions/package.py ```python from spack import * class CosmoGribApiDefinitions(Package): """To simplify the usage of the GRIB 2 format within the COSMO Consortium, a COSMO GRIB 2 Policy has been defined. One element of this policy is to define a unified GRIB API system for the COSMO community, which is compatible with all COSMO software. This unified system is split into two parts, the vendor distribution of the GRIB API, available from ECMWF or from the repository libgrib-api-vendor, and the modified samples and definitions used by the COSMO consortium, available in the current repository.""" # FIXME: Add a proper url for your package's homepage here. homepage = "https://github.com/elsagermann/libgrib-api-cosmo-resources.git" url = "<EMAIL>:elsagermann/libgrib-api-cosmo-resources.git" git = '<EMAIL>:elsagermann/libgrib-api-cosmo-resources.git' maintainers = ['elsagermann'] version('172.16.58.3', commit='<PASSWORD>') depends_on('[email protected]', when='@1.20.0.2') def setup_run_environment(self, env): grib_definition_path = self.spec[ 'cosmo-grib-api-definitions'].prefix + '/cosmoDefinitions/definition s/:' + self.spec[ 'cosmo-grib-api'].prefix + '/share/grib_api/definitions/' env.prepend_path('GRIB_DEFINITION_PATH', grib_definition_path) grib_samples_path = self.spec[ 'cosmo-grib-api-definitions'].prefix + '/cosmoDefinitions/samples/' env.prepend_path('GRIB_SAMPLES_PATH', grib_samples_path) def setup_dependent_build_environment(self, env, dependent_spec): self.setup_run_environment(env) def install(self, spec, prefix): mkdir(prefix.cosmoDefinitions) mkdir(prefix.cosmoDefinitions + '/definitions') mkdir(prefix.cosmoDefinitions + '/samples') install_tree('definitions', prefix.cosmoDefinitions + '/definitions') install_tree('samples', prefix.cosmoDefinitions + '/samples') ```
{ "source": "jonasjucker/wildlife-telegram", "score": 3 }
#### File: jonasjucker/wildlife-telegram/image_processing.py ```python import os import math import sys import logging from PIL import Image from natsort import natsorted def images_from_folder(folder): images = natsorted([os.path.join(folder,images) for images in os.listdir(folder) if 'jpg' in images]) # we want most recent images first images.reverse() return images def load_images(image_names): return [Image.open(name) for name in image_names] def dimensions_of_total_image(images): total_nr = len(images) logging.debug(f'Compute ratios for {total_nr} sub-images') sizes = {} sizes['x'] = math.ceil(math.sqrt(total_nr)) sizes['y'] = math.ceil(math.sqrt(total_nr)) orig_size = images[0].size shrink_size = (int(orig_size[0]/sizes['x']), int(orig_size[1]/sizes['y'])) sizes['total'] = orig_size sizes['image'] = shrink_size return sizes def compose_image(images, sizes): total_image = Image.new('RGB',sizes['total'], (250,250,250)) location = (0,0) col = 0 for image in images: small_image = image.resize(sizes['image']) if col < sizes['x']: logging.debug(f'Place sub-image at location:{location}') total_image.paste(small_image,location) location = (location[0] + sizes['image'][0], location[1]) col += 1 else: location = (0, location[1] + sizes['image'][1]) logging.debug(f'Place sub-image at location:{location}') total_image.paste(small_image,location) location = (sizes['image'][0], location[1] ) col = 1 return total_image def split_into_chunks(image_names,chunksize): return [image_names[i:i+chunksize] for i in range(0,len(image_names),chunksize)] def collective_image(source,destination,chunksize,identifier=None): logging.info(f'Create collective image with {chunksize} sub-images') image_chunks = split_into_chunks(images_from_folder(source), chunksize) names = [] count = 0 for chunk in image_chunks: if identifier: names.append(os.path.join(destination,f'{identifier}_composite_{count}.jpg')) else: names.append(os.path.join(destination,f'composite_{count}.jpg')) images = load_images(chunk) dims = dimensions_of_total_image(images) image = compose_image(images,dims) image.save(names[-1]) count+=1 return names if __name__ == '__main__' : from events import EventHandler logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG, ) logger = logging.getLogger(__name__) event = EventHandler('photos','videos','test') event_names = event.list('p',ignore=['.gitkeep','test']) print(event_names) _ = collective_image('photos/2022-05-23_08','composites',25,identifier='y') ``` #### File: jonasjucker/wildlife-telegram/location.py ```python import time from datetime import date,datetime from astral import LocationInfo from astral.sun import sun class CamLocation: def __init__(self,lat,lon,info,country,timezone): self.info = LocationInfo(info, country, timezone, lat, lon) def is_night(self): s = sun(self.info.observer, date=date.today(),tzinfo=self.info.timezone) sunrise = s["sunrise"].timestamp() sunset = s["sunset"].timestamp() time_now = datetime.now().timestamp() if time_now > sunrise and time_now < sunset: return False else: return True ``` #### File: jonasjucker/wildlife-telegram/main.py ```python import RPi.GPIO as GPIO import logging import argparse import time import sys import os from sensors import Pir from cam import WildCam from bot import WildBot from location import CamLocation from events import EventHandler from image_processing import collective_image def bot_launch(bot_token,retry=3, wait=1): for i in range(retry): try: bot = WildBot(bot_token) except Exception as e: logging.warning(f'Bot cannot connect: {e}') logging.info(f'Retry again in {wait} seconds') bot = WildBot(bot_token, offline=True) time.sleep(wait) else: break return bot def shutdown(cam,bot,pir): cam.close() pir.deactivate() bot_shutdown(bot) logging.info('Shutdown') sys.exit(0) def bot_shutdown(bot): if bot.is_offline_for_failover: logging.info('Shutdown-failover-bot') else: bot.stop() logging.info('Shutdown-bot') def main(): # Enable logging logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO, ) logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() parser.add_argument('--bot_token', \ dest='bot_token', \ type=str, \ help='unique token of bot (KEEP PRIVATE!)') args = parser.parse_args() GPIO.setmode(GPIO.BCM) pir = Pir() pir.activate() cam = WildCam() event = EventHandler('photos','videos','test') bot = bot_launch(args.bot_token, retry=10, wait=5) spot = CamLocation(47.3,8.5,"Somewhere in the forest", "Switzerland", "Europe/Zurich") snooze = 5 logging.info('Enter infinite loop') while True: logging.debug('loop iteration') # normal mode if bot.is_sensible_to_motion: pir.wait_for_movement() if bot.is_sensible_to_motion: photos = cam.shot(nr_of_shots=2,pause=10,night_mode=spot.is_night(),name_generator=event.new_record_name) #video = cam.record(10,night_mode=True, new_record_name,name_generator=event.new_record_name)) if not bot.already_down: logging.info('Skip boradcast for now') # bot.broadcast(photos,[]) # summary of all photo-events if bot.user_wants_event_summary: bot.user_wants_event_summary = False event_names = event.list('p',ignore=['.gitkeep','test']) counter = 0 photos = [] for name in event_names: photos = collective_image(name,'composites',25,identifier=counter) counter += 1 bot.broadcast(photos,[],message=f'Event: {event.strip(name)}') # test mode if bot.user_wants_test: bot.user_wants_test = False photos,videos = cam.test(event.new_test_record_name) bot.broadcast(photos,videos) # shutdown if bot.user_wants_shutdown: shutdown(cam,bot,pir) # bot-shutdown if bot.user_wants_bot_shutdown and not bot.already_down: bot_shutdown(bot) bot_already_down = True # reconnect bot if bot.has_no_connection: bot_shutdown(bot) bot = bot_launch(args.bot_token,retry=5, wait=3) logging.info(f'snooze {snooze}s ...') time.sleep(snooze) if __name__ == '__main__': main() ```
{ "source": "jonasjungaker/VectorsAlgebra", "score": 4 }
#### File: VectorsAlgebra/Algebra/vector.py ```python class vector: def __init__(self, *vals): self.x = list(vals) for val in vals: float(val) self.dimension = len(self.x) def __getitem__(self, key): return self.x[key] def __setitem__(self, key, value): self.x[key] = value return self def __add__(self, other): if type(other) == type(int): # This also needs to support floating point types for i in range(self.dimension): self[i] += other return self self._checkDimension(other) newx = [] for i in range(self.dimension): newx.append(self[i] + other[i]) return vector(*newx) def __eq__(self, other): if self.dimension != other.dimension: return False for i in range(self.dimension): if self[i] != other[i]: return False return True def __mul__(self, other): if type(other) == type(int): x = [] for i in range(self.dimension): x.append(self[i] * other) return vector(*x) self._checkDimension(other) value = 0 for i in range(self.dimension): value += self[i] * other[i] return value def __rmul__(self, other): return self * other def __matmul__(self, other): if self.dimension != other.dimension != 3: raise TypeError("Vector dimensions must be 3") v = vector(0, 0, 0) v[0] = (self[1] * other[2]) - (self[2] * other[1]) v[1] = (self[2] * other[0]) - (self[0] * other[2]) v[2] = (self[0] * other[1]) - (self[1] * other[0]) return v def __sub__(self, other): return self + ( - other) def __neg__(self): v = [] for i in range(self): v.append( - self[i]) return vector(*v) def __abs__(self): value = self.magnitude() return value**0.5 def _checkDimension(self, other): if self.dimension != other.dimension: raise TypeError("Vector dimensions must agree") def magnitude(self): # Returns the value of the sum of all values of the vector squared powerMagnitude = 0 for a in self.x: powerMagnitude += a*a return powerMagnitude ```
{ "source": "jonaskaempf/bpftools", "score": 2 }
#### File: src/bpftools/defs.py ```python import re def parse_defs(scope, defines): ''' Parse CPP #defines of the basic form '#define [a-zA-Z0-9_] <some replacement><newline>' ''' p_define = re.compile('^[\t ]*#[\t ]*define[\t ]+([a-zA-Z0-9_]+)[\t ]+(.*)$') p_comment = re.compile(r'/\*([^*]+|\*+[^/])*(\*+/)?') p_cpp_comment = re.compile('//.*') # remove comments defines = p_comment.sub(' ', defines) # remove continuation lines defines = defines.replace('\\\n', ' ') local_scope = dict(scope) defs = {} for ln in defines.splitlines(): m = p_define.match(ln) if m: defs[m.group(1)] = eval(m.group(2), globals(), local_scope) local_scope[m.group(1)] = defs[m.group(1)] return defs generic = { '__X32_SYSCALL_BIT': 0x40000000, } generic.update(parse_defs(generic, ''' #define EM_NONE 0 #define EM_M32 1 #define EM_SPARC 2 #define EM_386 3 #define EM_68K 4 #define EM_88K 5 #define EM_486 6 /* Perhaps disused */ #define EM_860 7 #define EM_MIPS 8 /* MIPS R3000 (officially, big-endian only) */ #define EM_MIPS_RS3_LE 10 /* MIPS R3000 little-endian */ #define EM_MIPS_RS4_BE 10 /* MIPS R4000 big-endian */ #define EM_PARISC 15 /* HPPA */ #define EM_SPARC32PLUS 18 /* Sun's "v8plus" */ #define EM_PPC 20 /* PowerPC */ #define EM_PPC64 21 /* PowerPC64 */ #define EM_SPU 23 /* Cell BE SPU */ #define EM_ARM 40 /* ARM 32 bit */ #define EM_SH 42 /* SuperH */ #define EM_SPARCV9 43 /* SPARC v9 64-bit */ #define EM_H8_300 46 /* Renesas H8/300 */ #define EM_IA_64 50 /* HP/Intel IA-64 */ #define EM_X86_64 62 /* AMD x86-64 */ #define EM_S390 22 /* IBM S/390 */ #define EM_CRIS 76 /* Axis Communications 32-bit embedded processor */ #define EM_V850 87 /* NEC v850 */ #define EM_M32R 88 /* Renesas M32R */ #define EM_MN10300 89 /* Panasonic/MEI MN10300, AM33 */ #define EM_OPENRISC 92 /* OpenRISC 32-bit embedded processor */ #define EM_BLACKFIN 106 /* ADI Blackfin Processor */ #define EM_ALTERA_NIOS2 113 /* Altera Nios II soft-core processor */ #define EM_TI_C6000 140 /* TI C6X DSPs */ #define EM_AARCH64 183 /* ARM 64 bit */ #define EM_TILEPRO 188 /* Tilera TILEPro */ #define EM_MICROBLAZE 189 /* Xilinx MicroBlaze */ #define EM_TILEGX 191 /* Tilera TILE-Gx */ #define EM_FRV 0x5441 /* Fujitsu FR-V */ #define EM_AVR32 0x18ad /* Atmel AVR32 */ /* * This is an interim value that we will use until the committee comes * up with a final number. */ #define EM_ALPHA 0x9026 /* Bogus old v850 magic number, used by old tools. */ #define EM_CYGNUS_V850 0x9080 /* Bogus old m32r magic number, used by old tools. */ #define EM_CYGNUS_M32R 0x9041 /* This is the old interim value for S/390 architecture */ #define EM_S390_OLD 0xA390 /* Also Panasonic/MEI MN10300, AM33 */ #define EM_CYGNUS_MN10300 0xbeef #define __AUDIT_ARCH_CONVENTION_MASK 0x30000000 #define __AUDIT_ARCH_CONVENTION_MIPS64_N32 0x20000000 #define __AUDIT_ARCH_64BIT 0x80000000 #define __AUDIT_ARCH_LE 0x40000000 #define AUDIT_ARCH_AARCH64 (EM_AARCH64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_ALPHA (EM_ALPHA|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_ARM (EM_ARM|__AUDIT_ARCH_LE) #define AUDIT_ARCH_ARMEB (EM_ARM) #define AUDIT_ARCH_CRIS (EM_CRIS|__AUDIT_ARCH_LE) #define AUDIT_ARCH_FRV (EM_FRV) #define AUDIT_ARCH_I386 (EM_386|__AUDIT_ARCH_LE) #define AUDIT_ARCH_IA64 (EM_IA_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_M32R (EM_M32R) #define AUDIT_ARCH_M68K (EM_68K) #define AUDIT_ARCH_MICROBLAZE (EM_MICROBLAZE) #define AUDIT_ARCH_MIPS (EM_MIPS) #define AUDIT_ARCH_MIPSEL (EM_MIPS|__AUDIT_ARCH_LE) #define AUDIT_ARCH_MIPS64 (EM_MIPS|__AUDIT_ARCH_64BIT) #define AUDIT_ARCH_MIPS64N32 (EM_MIPS|__AUDIT_ARCH_64BIT|\ __AUDIT_ARCH_CONVENTION_MIPS64_N32) #define AUDIT_ARCH_MIPSEL64 (EM_MIPS|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_MIPSEL64N32 (EM_MIPS|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE|__AUDIT_ARCH_CONVENTION_MIPS64_N32) #define AUDIT_ARCH_OPENRISC (EM_OPENRISC) #define AUDIT_ARCH_PARISC (EM_PARISC) #define AUDIT_ARCH_PARISC64 (EM_PARISC|__AUDIT_ARCH_64BIT) #define AUDIT_ARCH_PPC (EM_PPC) #define AUDIT_ARCH_PPC64 (EM_PPC64|__AUDIT_ARCH_64BIT) #define AUDIT_ARCH_PPC64LE (EM_PPC64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_S390 (EM_S390) #define AUDIT_ARCH_S390X (EM_S390|__AUDIT_ARCH_64BIT) #define AUDIT_ARCH_SH (EM_SH) #define AUDIT_ARCH_SHEL (EM_SH|__AUDIT_ARCH_LE) #define AUDIT_ARCH_SH64 (EM_SH|__AUDIT_ARCH_64BIT) #define AUDIT_ARCH_SHEL64 (EM_SH|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_SPARC (EM_SPARC) #define AUDIT_ARCH_SPARC64 (EM_SPARCV9|__AUDIT_ARCH_64BIT) #define AUDIT_ARCH_TILEGX (EM_TILEGX|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) #define AUDIT_ARCH_TILEGX32 (EM_TILEGX|__AUDIT_ARCH_LE) #define AUDIT_ARCH_TILEPRO (EM_TILEPRO|__AUDIT_ARCH_LE) #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) ''')) arch_x86_64 = parse_defs(generic, ''' #define __NR_read 0 #define __NR_write 1 #define __NR_open 2 #define __NR_close 3 #define __NR_stat 4 #define __NR_fstat 5 #define __NR_lstat 6 #define __NR_poll 7 #define __NR_lseek 8 #define __NR_mmap 9 #define __NR_mprotect 10 #define __NR_munmap 11 #define __NR_brk 12 #define __NR_rt_sigaction 13 #define __NR_rt_sigprocmask 14 #define __NR_rt_sigreturn 15 #define __NR_ioctl 16 #define __NR_pread64 17 #define __NR_pwrite64 18 #define __NR_readv 19 #define __NR_writev 20 #define __NR_access 21 #define __NR_pipe 22 #define __NR_select 23 #define __NR_sched_yield 24 #define __NR_mremap 25 #define __NR_msync 26 #define __NR_mincore 27 #define __NR_madvise 28 #define __NR_shmget 29 #define __NR_shmat 30 #define __NR_shmctl 31 #define __NR_dup 32 #define __NR_dup2 33 #define __NR_pause 34 #define __NR_nanosleep 35 #define __NR_getitimer 36 #define __NR_alarm 37 #define __NR_setitimer 38 #define __NR_getpid 39 #define __NR_sendfile 40 #define __NR_socket 41 #define __NR_connect 42 #define __NR_accept 43 #define __NR_sendto 44 #define __NR_recvfrom 45 #define __NR_sendmsg 46 #define __NR_recvmsg 47 #define __NR_shutdown 48 #define __NR_bind 49 #define __NR_listen 50 #define __NR_getsockname 51 #define __NR_getpeername 52 #define __NR_socketpair 53 #define __NR_setsockopt 54 #define __NR_getsockopt 55 #define __NR_clone 56 #define __NR_fork 57 #define __NR_vfork 58 #define __NR_execve 59 #define __NR_exit 60 #define __NR_wait4 61 #define __NR_kill 62 #define __NR_uname 63 #define __NR_semget 64 #define __NR_semop 65 #define __NR_semctl 66 #define __NR_shmdt 67 #define __NR_msgget 68 #define __NR_msgsnd 69 #define __NR_msgrcv 70 #define __NR_msgctl 71 #define __NR_fcntl 72 #define __NR_flock 73 #define __NR_fsync 74 #define __NR_fdatasync 75 #define __NR_truncate 76 #define __NR_ftruncate 77 #define __NR_getdents 78 #define __NR_getcwd 79 #define __NR_chdir 80 #define __NR_fchdir 81 #define __NR_rename 82 #define __NR_mkdir 83 #define __NR_rmdir 84 #define __NR_creat 85 #define __NR_link 86 #define __NR_unlink 87 #define __NR_symlink 88 #define __NR_readlink 89 #define __NR_chmod 90 #define __NR_fchmod 91 #define __NR_chown 92 #define __NR_fchown 93 #define __NR_lchown 94 #define __NR_umask 95 #define __NR_gettimeofday 96 #define __NR_getrlimit 97 #define __NR_getrusage 98 #define __NR_sysinfo 99 #define __NR_times 100 #define __NR_ptrace 101 #define __NR_getuid 102 #define __NR_syslog 103 #define __NR_getgid 104 #define __NR_setuid 105 #define __NR_setgid 106 #define __NR_geteuid 107 #define __NR_getegid 108 #define __NR_setpgid 109 #define __NR_getppid 110 #define __NR_getpgrp 111 #define __NR_setsid 112 #define __NR_setreuid 113 #define __NR_setregid 114 #define __NR_getgroups 115 #define __NR_setgroups 116 #define __NR_setresuid 117 #define __NR_getresuid 118 #define __NR_setresgid 119 #define __NR_getresgid 120 #define __NR_getpgid 121 #define __NR_setfsuid 122 #define __NR_setfsgid 123 #define __NR_getsid 124 #define __NR_capget 125 #define __NR_capset 126 #define __NR_rt_sigpending 127 #define __NR_rt_sigtimedwait 128 #define __NR_rt_sigqueueinfo 129 #define __NR_rt_sigsuspend 130 #define __NR_sigaltstack 131 #define __NR_utime 132 #define __NR_mknod 133 #define __NR_uselib 134 #define __NR_personality 135 #define __NR_ustat 136 #define __NR_statfs 137 #define __NR_fstatfs 138 #define __NR_sysfs 139 #define __NR_getpriority 140 #define __NR_setpriority 141 #define __NR_sched_setparam 142 #define __NR_sched_getparam 143 #define __NR_sched_setscheduler 144 #define __NR_sched_getscheduler 145 #define __NR_sched_get_priority_max 146 #define __NR_sched_get_priority_min 147 #define __NR_sched_rr_get_interval 148 #define __NR_mlock 149 #define __NR_munlock 150 #define __NR_mlockall 151 #define __NR_munlockall 152 #define __NR_vhangup 153 #define __NR_modify_ldt 154 #define __NR_pivot_root 155 #define __NR__sysctl 156 #define __NR_prctl 157 #define __NR_arch_prctl 158 #define __NR_adjtimex 159 #define __NR_setrlimit 160 #define __NR_chroot 161 #define __NR_sync 162 #define __NR_acct 163 #define __NR_settimeofday 164 #define __NR_mount 165 #define __NR_umount2 166 #define __NR_swapon 167 #define __NR_swapoff 168 #define __NR_reboot 169 #define __NR_sethostname 170 #define __NR_setdomainname 171 #define __NR_iopl 172 #define __NR_ioperm 173 #define __NR_create_module 174 #define __NR_init_module 175 #define __NR_delete_module 176 #define __NR_get_kernel_syms 177 #define __NR_query_module 178 #define __NR_quotactl 179 #define __NR_nfsservctl 180 #define __NR_getpmsg 181 #define __NR_putpmsg 182 #define __NR_afs_syscall 183 #define __NR_tuxcall 184 #define __NR_security 185 #define __NR_gettid 186 #define __NR_readahead 187 #define __NR_setxattr 188 #define __NR_lsetxattr 189 #define __NR_fsetxattr 190 #define __NR_getxattr 191 #define __NR_lgetxattr 192 #define __NR_fgetxattr 193 #define __NR_listxattr 194 #define __NR_llistxattr 195 #define __NR_flistxattr 196 #define __NR_removexattr 197 #define __NR_lremovexattr 198 #define __NR_fremovexattr 199 #define __NR_tkill 200 #define __NR_time 201 #define __NR_futex 202 #define __NR_sched_setaffinity 203 #define __NR_sched_getaffinity 204 #define __NR_set_thread_area 205 #define __NR_io_setup 206 #define __NR_io_destroy 207 #define __NR_io_getevents 208 #define __NR_io_submit 209 #define __NR_io_cancel 210 #define __NR_get_thread_area 211 #define __NR_lookup_dcookie 212 #define __NR_epoll_create 213 #define __NR_epoll_ctl_old 214 #define __NR_epoll_wait_old 215 #define __NR_remap_file_pages 216 #define __NR_getdents64 217 #define __NR_set_tid_address 218 #define __NR_restart_syscall 219 #define __NR_semtimedop 220 #define __NR_fadvise64 221 #define __NR_timer_create 222 #define __NR_timer_settime 223 #define __NR_timer_gettime 224 #define __NR_timer_getoverrun 225 #define __NR_timer_delete 226 #define __NR_clock_settime 227 #define __NR_clock_gettime 228 #define __NR_clock_getres 229 #define __NR_clock_nanosleep 230 #define __NR_exit_group 231 #define __NR_epoll_wait 232 #define __NR_epoll_ctl 233 #define __NR_tgkill 234 #define __NR_utimes 235 #define __NR_vserver 236 #define __NR_mbind 237 #define __NR_set_mempolicy 238 #define __NR_get_mempolicy 239 #define __NR_mq_open 240 #define __NR_mq_unlink 241 #define __NR_mq_timedsend 242 #define __NR_mq_timedreceive 243 #define __NR_mq_notify 244 #define __NR_mq_getsetattr 245 #define __NR_kexec_load 246 #define __NR_waitid 247 #define __NR_add_key 248 #define __NR_request_key 249 #define __NR_keyctl 250 #define __NR_ioprio_set 251 #define __NR_ioprio_get 252 #define __NR_inotify_init 253 #define __NR_inotify_add_watch 254 #define __NR_inotify_rm_watch 255 #define __NR_migrate_pages 256 #define __NR_openat 257 #define __NR_mkdirat 258 #define __NR_mknodat 259 #define __NR_fchownat 260 #define __NR_futimesat 261 #define __NR_newfstatat 262 #define __NR_unlinkat 263 #define __NR_renameat 264 #define __NR_linkat 265 #define __NR_symlinkat 266 #define __NR_readlinkat 267 #define __NR_fchmodat 268 #define __NR_faccessat 269 #define __NR_pselect6 270 #define __NR_ppoll 271 #define __NR_unshare 272 #define __NR_set_robust_list 273 #define __NR_get_robust_list 274 #define __NR_splice 275 #define __NR_tee 276 #define __NR_sync_file_range 277 #define __NR_vmsplice 278 #define __NR_move_pages 279 #define __NR_utimensat 280 #define __NR_epoll_pwait 281 #define __NR_signalfd 282 #define __NR_timerfd_create 283 #define __NR_eventfd 284 #define __NR_fallocate 285 #define __NR_timerfd_settime 286 #define __NR_timerfd_gettime 287 #define __NR_accept4 288 #define __NR_signalfd4 289 #define __NR_eventfd2 290 #define __NR_epoll_create1 291 #define __NR_dup3 292 #define __NR_pipe2 293 #define __NR_inotify_init1 294 #define __NR_preadv 295 #define __NR_pwritev 296 #define __NR_rt_tgsigqueueinfo 297 #define __NR_perf_event_open 298 #define __NR_recvmmsg 299 #define __NR_fanotify_init 300 #define __NR_fanotify_mark 301 #define __NR_prlimit64 302 #define __NR_name_to_handle_at 303 #define __NR_open_by_handle_at 304 #define __NR_clock_adjtime 305 #define __NR_syncfs 306 #define __NR_sendmmsg 307 #define __NR_setns 308 #define __NR_getcpu 309 #define __NR_process_vm_readv 310 #define __NR_process_vm_writev 311 #define __NR_kcmp 312 #define __NR_finit_module 313 #define __NR_sched_setattr 314 #define __NR_sched_getattr 315 #define __NR_renameat2 316 #define __NR_seccomp 317 #define __NR_getrandom 318 #define __NR_memfd_create 319 #define __NR_kexec_file_load 320 #define __NR_bpf 321 #define __NR_execveat 322 #define __NR_userfaultfd 323 #define __NR_membarrier 324 #define __NR_mlock2 325 ''') arch_i386 = parse_defs(generic, ''' #define __NR_restart_syscall 0 #define __NR_exit 1 #define __NR_fork 2 #define __NR_read 3 #define __NR_write 4 #define __NR_open 5 #define __NR_close 6 #define __NR_waitpid 7 #define __NR_creat 8 #define __NR_link 9 #define __NR_unlink 10 #define __NR_execve 11 #define __NR_chdir 12 #define __NR_time 13 #define __NR_mknod 14 #define __NR_chmod 15 #define __NR_lchown 16 #define __NR_break 17 #define __NR_oldstat 18 #define __NR_lseek 19 #define __NR_getpid 20 #define __NR_mount 21 #define __NR_umount 22 #define __NR_setuid 23 #define __NR_getuid 24 #define __NR_stime 25 #define __NR_ptrace 26 #define __NR_alarm 27 #define __NR_oldfstat 28 #define __NR_pause 29 #define __NR_utime 30 #define __NR_stty 31 #define __NR_gtty 32 #define __NR_access 33 #define __NR_nice 34 #define __NR_ftime 35 #define __NR_sync 36 #define __NR_kill 37 #define __NR_rename 38 #define __NR_mkdir 39 #define __NR_rmdir 40 #define __NR_dup 41 #define __NR_pipe 42 #define __NR_times 43 #define __NR_prof 44 #define __NR_brk 45 #define __NR_setgid 46 #define __NR_getgid 47 #define __NR_signal 48 #define __NR_geteuid 49 #define __NR_getegid 50 #define __NR_acct 51 #define __NR_umount2 52 #define __NR_lock 53 #define __NR_ioctl 54 #define __NR_fcntl 55 #define __NR_mpx 56 #define __NR_setpgid 57 #define __NR_ulimit 58 #define __NR_oldolduname 59 #define __NR_umask 60 #define __NR_chroot 61 #define __NR_ustat 62 #define __NR_dup2 63 #define __NR_getppid 64 #define __NR_getpgrp 65 #define __NR_setsid 66 #define __NR_sigaction 67 #define __NR_sgetmask 68 #define __NR_ssetmask 69 #define __NR_setreuid 70 #define __NR_setregid 71 #define __NR_sigsuspend 72 #define __NR_sigpending 73 #define __NR_sethostname 74 #define __NR_setrlimit 75 #define __NR_getrlimit 76 #define __NR_getrusage 77 #define __NR_gettimeofday 78 #define __NR_settimeofday 79 #define __NR_getgroups 80 #define __NR_setgroups 81 #define __NR_select 82 #define __NR_symlink 83 #define __NR_oldlstat 84 #define __NR_readlink 85 #define __NR_uselib 86 #define __NR_swapon 87 #define __NR_reboot 88 #define __NR_readdir 89 #define __NR_mmap 90 #define __NR_munmap 91 #define __NR_truncate 92 #define __NR_ftruncate 93 #define __NR_fchmod 94 #define __NR_fchown 95 #define __NR_getpriority 96 #define __NR_setpriority 97 #define __NR_profil 98 #define __NR_statfs 99 #define __NR_fstatfs 100 #define __NR_ioperm 101 #define __NR_socketcall 102 #define __NR_syslog 103 #define __NR_setitimer 104 #define __NR_getitimer 105 #define __NR_stat 106 #define __NR_lstat 107 #define __NR_fstat 108 #define __NR_olduname 109 #define __NR_iopl 110 #define __NR_vhangup 111 #define __NR_idle 112 #define __NR_vm86old 113 #define __NR_wait4 114 #define __NR_swapoff 115 #define __NR_sysinfo 116 #define __NR_ipc 117 #define __NR_fsync 118 #define __NR_sigreturn 119 #define __NR_clone 120 #define __NR_setdomainname 121 #define __NR_uname 122 #define __NR_modify_ldt 123 #define __NR_adjtimex 124 #define __NR_mprotect 125 #define __NR_sigprocmask 126 #define __NR_create_module 127 #define __NR_init_module 128 #define __NR_delete_module 129 #define __NR_get_kernel_syms 130 #define __NR_quotactl 131 #define __NR_getpgid 132 #define __NR_fchdir 133 #define __NR_bdflush 134 #define __NR_sysfs 135 #define __NR_personality 136 #define __NR_afs_syscall 137 #define __NR_setfsuid 138 #define __NR_setfsgid 139 #define __NR__llseek 140 #define __NR_getdents 141 #define __NR__newselect 142 #define __NR_flock 143 #define __NR_msync 144 #define __NR_readv 145 #define __NR_writev 146 #define __NR_getsid 147 #define __NR_fdatasync 148 #define __NR__sysctl 149 #define __NR_mlock 150 #define __NR_munlock 151 #define __NR_mlockall 152 #define __NR_munlockall 153 #define __NR_sched_setparam 154 #define __NR_sched_getparam 155 #define __NR_sched_setscheduler 156 #define __NR_sched_getscheduler 157 #define __NR_sched_yield 158 #define __NR_sched_get_priority_max 159 #define __NR_sched_get_priority_min 160 #define __NR_sched_rr_get_interval 161 #define __NR_nanosleep 162 #define __NR_mremap 163 #define __NR_setresuid 164 #define __NR_getresuid 165 #define __NR_vm86 166 #define __NR_query_module 167 #define __NR_poll 168 #define __NR_nfsservctl 169 #define __NR_setresgid 170 #define __NR_getresgid 171 #define __NR_prctl 172 #define __NR_rt_sigreturn 173 #define __NR_rt_sigaction 174 #define __NR_rt_sigprocmask 175 #define __NR_rt_sigpending 176 #define __NR_rt_sigtimedwait 177 #define __NR_rt_sigqueueinfo 178 #define __NR_rt_sigsuspend 179 #define __NR_pread64 180 #define __NR_pwrite64 181 #define __NR_chown 182 #define __NR_getcwd 183 #define __NR_capget 184 #define __NR_capset 185 #define __NR_sigaltstack 186 #define __NR_sendfile 187 #define __NR_getpmsg 188 #define __NR_putpmsg 189 #define __NR_vfork 190 #define __NR_ugetrlimit 191 #define __NR_mmap2 192 #define __NR_truncate64 193 #define __NR_ftruncate64 194 #define __NR_stat64 195 #define __NR_lstat64 196 #define __NR_fstat64 197 #define __NR_lchown32 198 #define __NR_getuid32 199 #define __NR_getgid32 200 #define __NR_geteuid32 201 #define __NR_getegid32 202 #define __NR_setreuid32 203 #define __NR_setregid32 204 #define __NR_getgroups32 205 #define __NR_setgroups32 206 #define __NR_fchown32 207 #define __NR_setresuid32 208 #define __NR_getresuid32 209 #define __NR_setresgid32 210 #define __NR_getresgid32 211 #define __NR_chown32 212 #define __NR_setuid32 213 #define __NR_setgid32 214 #define __NR_setfsuid32 215 #define __NR_setfsgid32 216 #define __NR_pivot_root 217 #define __NR_mincore 218 #define __NR_madvise 219 #define __NR_getdents64 220 #define __NR_fcntl64 221 #define __NR_gettid 224 #define __NR_readahead 225 #define __NR_setxattr 226 #define __NR_lsetxattr 227 #define __NR_fsetxattr 228 #define __NR_getxattr 229 #define __NR_lgetxattr 230 #define __NR_fgetxattr 231 #define __NR_listxattr 232 #define __NR_llistxattr 233 #define __NR_flistxattr 234 #define __NR_removexattr 235 #define __NR_lremovexattr 236 #define __NR_fremovexattr 237 #define __NR_tkill 238 #define __NR_sendfile64 239 #define __NR_futex 240 #define __NR_sched_setaffinity 241 #define __NR_sched_getaffinity 242 #define __NR_set_thread_area 243 #define __NR_get_thread_area 244 #define __NR_io_setup 245 #define __NR_io_destroy 246 #define __NR_io_getevents 247 #define __NR_io_submit 248 #define __NR_io_cancel 249 #define __NR_fadvise64 250 #define __NR_exit_group 252 #define __NR_lookup_dcookie 253 #define __NR_epoll_create 254 #define __NR_epoll_ctl 255 #define __NR_epoll_wait 256 #define __NR_remap_file_pages 257 #define __NR_set_tid_address 258 #define __NR_timer_create 259 #define __NR_timer_settime 260 #define __NR_timer_gettime 261 #define __NR_timer_getoverrun 262 #define __NR_timer_delete 263 #define __NR_clock_settime 264 #define __NR_clock_gettime 265 #define __NR_clock_getres 266 #define __NR_clock_nanosleep 267 #define __NR_statfs64 268 #define __NR_fstatfs64 269 #define __NR_tgkill 270 #define __NR_utimes 271 #define __NR_fadvise64_64 272 #define __NR_vserver 273 #define __NR_mbind 274 #define __NR_get_mempolicy 275 #define __NR_set_mempolicy 276 #define __NR_mq_open 277 #define __NR_mq_unlink 278 #define __NR_mq_timedsend 279 #define __NR_mq_timedreceive 280 #define __NR_mq_notify 281 #define __NR_mq_getsetattr 282 #define __NR_kexec_load 283 #define __NR_waitid 284 #define __NR_add_key 286 #define __NR_request_key 287 #define __NR_keyctl 288 #define __NR_ioprio_set 289 #define __NR_ioprio_get 290 #define __NR_inotify_init 291 #define __NR_inotify_add_watch 292 #define __NR_inotify_rm_watch 293 #define __NR_migrate_pages 294 #define __NR_openat 295 #define __NR_mkdirat 296 #define __NR_mknodat 297 #define __NR_fchownat 298 #define __NR_futimesat 299 #define __NR_fstatat64 300 #define __NR_unlinkat 301 #define __NR_renameat 302 #define __NR_linkat 303 #define __NR_symlinkat 304 #define __NR_readlinkat 305 #define __NR_fchmodat 306 #define __NR_faccessat 307 #define __NR_pselect6 308 #define __NR_ppoll 309 #define __NR_unshare 310 #define __NR_set_robust_list 311 #define __NR_get_robust_list 312 #define __NR_splice 313 #define __NR_sync_file_range 314 #define __NR_tee 315 #define __NR_vmsplice 316 #define __NR_move_pages 317 #define __NR_getcpu 318 #define __NR_epoll_pwait 319 #define __NR_utimensat 320 #define __NR_signalfd 321 #define __NR_timerfd_create 322 #define __NR_eventfd 323 #define __NR_fallocate 324 #define __NR_timerfd_settime 325 #define __NR_timerfd_gettime 326 #define __NR_signalfd4 327 #define __NR_eventfd2 328 #define __NR_epoll_create1 329 #define __NR_dup3 330 #define __NR_pipe2 331 #define __NR_inotify_init1 332 #define __NR_preadv 333 #define __NR_pwritev 334 #define __NR_rt_tgsigqueueinfo 335 #define __NR_perf_event_open 336 #define __NR_recvmmsg 337 #define __NR_fanotify_init 338 #define __NR_fanotify_mark 339 #define __NR_prlimit64 340 #define __NR_name_to_handle_at 341 #define __NR_open_by_handle_at 342 #define __NR_clock_adjtime 343 #define __NR_syncfs 344 #define __NR_sendmmsg 345 #define __NR_setns 346 #define __NR_process_vm_readv 347 #define __NR_process_vm_writev 348 #define __NR_kcmp 349 #define __NR_finit_module 350 #define __NR_sched_setattr 351 #define __NR_sched_getattr 352 #define __NR_renameat2 353 #define __NR_seccomp 354 #define __NR_getrandom 355 #define __NR_memfd_create 356 #define __NR_bpf 357 #define __NR_execveat 358 #define __NR_socket 359 #define __NR_socketpair 360 #define __NR_bind 361 #define __NR_connect 362 #define __NR_listen 363 #define __NR_accept4 364 #define __NR_getsockopt 365 #define __NR_setsockopt 366 #define __NR_getsockname 367 #define __NR_getpeername 368 #define __NR_sendto 369 #define __NR_sendmsg 370 #define __NR_recvfrom 371 #define __NR_recvmsg 372 #define __NR_shutdown 373 #define __NR_userfaultfd 374 #define __NR_membarrier 375 #define __NR_mlock2 376 ''') arch_x32 = parse_defs(generic, ''' #define __NR_read (__X32_SYSCALL_BIT + 0) #define __NR_write (__X32_SYSCALL_BIT + 1) #define __NR_open (__X32_SYSCALL_BIT + 2) #define __NR_close (__X32_SYSCALL_BIT + 3) #define __NR_stat (__X32_SYSCALL_BIT + 4) #define __NR_fstat (__X32_SYSCALL_BIT + 5) #define __NR_lstat (__X32_SYSCALL_BIT + 6) #define __NR_poll (__X32_SYSCALL_BIT + 7) #define __NR_lseek (__X32_SYSCALL_BIT + 8) #define __NR_mmap (__X32_SYSCALL_BIT + 9) #define __NR_mprotect (__X32_SYSCALL_BIT + 10) #define __NR_munmap (__X32_SYSCALL_BIT + 11) #define __NR_brk (__X32_SYSCALL_BIT + 12) #define __NR_rt_sigprocmask (__X32_SYSCALL_BIT + 14) #define __NR_pread64 (__X32_SYSCALL_BIT + 17) #define __NR_pwrite64 (__X32_SYSCALL_BIT + 18) #define __NR_access (__X32_SYSCALL_BIT + 21) #define __NR_pipe (__X32_SYSCALL_BIT + 22) #define __NR_select (__X32_SYSCALL_BIT + 23) #define __NR_sched_yield (__X32_SYSCALL_BIT + 24) #define __NR_mremap (__X32_SYSCALL_BIT + 25) #define __NR_msync (__X32_SYSCALL_BIT + 26) #define __NR_mincore (__X32_SYSCALL_BIT + 27) #define __NR_madvise (__X32_SYSCALL_BIT + 28) #define __NR_shmget (__X32_SYSCALL_BIT + 29) #define __NR_shmat (__X32_SYSCALL_BIT + 30) #define __NR_shmctl (__X32_SYSCALL_BIT + 31) #define __NR_dup (__X32_SYSCALL_BIT + 32) #define __NR_dup2 (__X32_SYSCALL_BIT + 33) #define __NR_pause (__X32_SYSCALL_BIT + 34) #define __NR_nanosleep (__X32_SYSCALL_BIT + 35) #define __NR_getitimer (__X32_SYSCALL_BIT + 36) #define __NR_alarm (__X32_SYSCALL_BIT + 37) #define __NR_setitimer (__X32_SYSCALL_BIT + 38) #define __NR_getpid (__X32_SYSCALL_BIT + 39) #define __NR_sendfile (__X32_SYSCALL_BIT + 40) #define __NR_socket (__X32_SYSCALL_BIT + 41) #define __NR_connect (__X32_SYSCALL_BIT + 42) #define __NR_accept (__X32_SYSCALL_BIT + 43) #define __NR_sendto (__X32_SYSCALL_BIT + 44) #define __NR_shutdown (__X32_SYSCALL_BIT + 48) #define __NR_bind (__X32_SYSCALL_BIT + 49) #define __NR_listen (__X32_SYSCALL_BIT + 50) #define __NR_getsockname (__X32_SYSCALL_BIT + 51) #define __NR_getpeername (__X32_SYSCALL_BIT + 52) #define __NR_socketpair (__X32_SYSCALL_BIT + 53) #define __NR_clone (__X32_SYSCALL_BIT + 56) #define __NR_fork (__X32_SYSCALL_BIT + 57) #define __NR_vfork (__X32_SYSCALL_BIT + 58) #define __NR_exit (__X32_SYSCALL_BIT + 60) #define __NR_wait4 (__X32_SYSCALL_BIT + 61) #define __NR_kill (__X32_SYSCALL_BIT + 62) #define __NR_uname (__X32_SYSCALL_BIT + 63) #define __NR_semget (__X32_SYSCALL_BIT + 64) #define __NR_semop (__X32_SYSCALL_BIT + 65) #define __NR_semctl (__X32_SYSCALL_BIT + 66) #define __NR_shmdt (__X32_SYSCALL_BIT + 67) #define __NR_msgget (__X32_SYSCALL_BIT + 68) #define __NR_msgsnd (__X32_SYSCALL_BIT + 69) #define __NR_msgrcv (__X32_SYSCALL_BIT + 70) #define __NR_msgctl (__X32_SYSCALL_BIT + 71) #define __NR_fcntl (__X32_SYSCALL_BIT + 72) #define __NR_flock (__X32_SYSCALL_BIT + 73) #define __NR_fsync (__X32_SYSCALL_BIT + 74) #define __NR_fdatasync (__X32_SYSCALL_BIT + 75) #define __NR_truncate (__X32_SYSCALL_BIT + 76) #define __NR_ftruncate (__X32_SYSCALL_BIT + 77) #define __NR_getdents (__X32_SYSCALL_BIT + 78) #define __NR_getcwd (__X32_SYSCALL_BIT + 79) #define __NR_chdir (__X32_SYSCALL_BIT + 80) #define __NR_fchdir (__X32_SYSCALL_BIT + 81) #define __NR_rename (__X32_SYSCALL_BIT + 82) #define __NR_mkdir (__X32_SYSCALL_BIT + 83) #define __NR_rmdir (__X32_SYSCALL_BIT + 84) #define __NR_creat (__X32_SYSCALL_BIT + 85) #define __NR_link (__X32_SYSCALL_BIT + 86) #define __NR_unlink (__X32_SYSCALL_BIT + 87) #define __NR_symlink (__X32_SYSCALL_BIT + 88) #define __NR_readlink (__X32_SYSCALL_BIT + 89) #define __NR_chmod (__X32_SYSCALL_BIT + 90) #define __NR_fchmod (__X32_SYSCALL_BIT + 91) #define __NR_chown (__X32_SYSCALL_BIT + 92) #define __NR_fchown (__X32_SYSCALL_BIT + 93) #define __NR_lchown (__X32_SYSCALL_BIT + 94) #define __NR_umask (__X32_SYSCALL_BIT + 95) #define __NR_gettimeofday (__X32_SYSCALL_BIT + 96) #define __NR_getrlimit (__X32_SYSCALL_BIT + 97) #define __NR_getrusage (__X32_SYSCALL_BIT + 98) #define __NR_sysinfo (__X32_SYSCALL_BIT + 99) #define __NR_times (__X32_SYSCALL_BIT + 100) #define __NR_getuid (__X32_SYSCALL_BIT + 102) #define __NR_syslog (__X32_SYSCALL_BIT + 103) #define __NR_getgid (__X32_SYSCALL_BIT + 104) #define __NR_setuid (__X32_SYSCALL_BIT + 105) #define __NR_setgid (__X32_SYSCALL_BIT + 106) #define __NR_geteuid (__X32_SYSCALL_BIT + 107) #define __NR_getegid (__X32_SYSCALL_BIT + 108) #define __NR_setpgid (__X32_SYSCALL_BIT + 109) #define __NR_getppid (__X32_SYSCALL_BIT + 110) #define __NR_getpgrp (__X32_SYSCALL_BIT + 111) #define __NR_setsid (__X32_SYSCALL_BIT + 112) #define __NR_setreuid (__X32_SYSCALL_BIT + 113) #define __NR_setregid (__X32_SYSCALL_BIT + 114) #define __NR_getgroups (__X32_SYSCALL_BIT + 115) #define __NR_setgroups (__X32_SYSCALL_BIT + 116) #define __NR_setresuid (__X32_SYSCALL_BIT + 117) #define __NR_getresuid (__X32_SYSCALL_BIT + 118) #define __NR_setresgid (__X32_SYSCALL_BIT + 119) #define __NR_getresgid (__X32_SYSCALL_BIT + 120) #define __NR_getpgid (__X32_SYSCALL_BIT + 121) #define __NR_setfsuid (__X32_SYSCALL_BIT + 122) #define __NR_setfsgid (__X32_SYSCALL_BIT + 123) #define __NR_getsid (__X32_SYSCALL_BIT + 124) #define __NR_capget (__X32_SYSCALL_BIT + 125) #define __NR_capset (__X32_SYSCALL_BIT + 126) #define __NR_rt_sigsuspend (__X32_SYSCALL_BIT + 130) #define __NR_utime (__X32_SYSCALL_BIT + 132) #define __NR_mknod (__X32_SYSCALL_BIT + 133) #define __NR_personality (__X32_SYSCALL_BIT + 135) #define __NR_ustat (__X32_SYSCALL_BIT + 136) #define __NR_statfs (__X32_SYSCALL_BIT + 137) #define __NR_fstatfs (__X32_SYSCALL_BIT + 138) #define __NR_sysfs (__X32_SYSCALL_BIT + 139) #define __NR_getpriority (__X32_SYSCALL_BIT + 140) #define __NR_setpriority (__X32_SYSCALL_BIT + 141) #define __NR_sched_setparam (__X32_SYSCALL_BIT + 142) #define __NR_sched_getparam (__X32_SYSCALL_BIT + 143) #define __NR_sched_setscheduler (__X32_SYSCALL_BIT + 144) #define __NR_sched_getscheduler (__X32_SYSCALL_BIT + 145) #define __NR_sched_get_priority_max (__X32_SYSCALL_BIT + 146) #define __NR_sched_get_priority_min (__X32_SYSCALL_BIT + 147) #define __NR_sched_rr_get_interval (__X32_SYSCALL_BIT + 148) #define __NR_mlock (__X32_SYSCALL_BIT + 149) #define __NR_munlock (__X32_SYSCALL_BIT + 150) #define __NR_mlockall (__X32_SYSCALL_BIT + 151) #define __NR_munlockall (__X32_SYSCALL_BIT + 152) #define __NR_vhangup (__X32_SYSCALL_BIT + 153) #define __NR_modify_ldt (__X32_SYSCALL_BIT + 154) #define __NR_pivot_root (__X32_SYSCALL_BIT + 155) #define __NR_prctl (__X32_SYSCALL_BIT + 157) #define __NR_arch_prctl (__X32_SYSCALL_BIT + 158) #define __NR_adjtimex (__X32_SYSCALL_BIT + 159) #define __NR_setrlimit (__X32_SYSCALL_BIT + 160) #define __NR_chroot (__X32_SYSCALL_BIT + 161) #define __NR_sync (__X32_SYSCALL_BIT + 162) #define __NR_acct (__X32_SYSCALL_BIT + 163) #define __NR_settimeofday (__X32_SYSCALL_BIT + 164) #define __NR_mount (__X32_SYSCALL_BIT + 165) #define __NR_umount2 (__X32_SYSCALL_BIT + 166) #define __NR_swapon (__X32_SYSCALL_BIT + 167) #define __NR_swapoff (__X32_SYSCALL_BIT + 168) #define __NR_reboot (__X32_SYSCALL_BIT + 169) #define __NR_sethostname (__X32_SYSCALL_BIT + 170) #define __NR_setdomainname (__X32_SYSCALL_BIT + 171) #define __NR_iopl (__X32_SYSCALL_BIT + 172) #define __NR_ioperm (__X32_SYSCALL_BIT + 173) #define __NR_init_module (__X32_SYSCALL_BIT + 175) #define __NR_delete_module (__X32_SYSCALL_BIT + 176) #define __NR_quotactl (__X32_SYSCALL_BIT + 179) #define __NR_getpmsg (__X32_SYSCALL_BIT + 181) #define __NR_putpmsg (__X32_SYSCALL_BIT + 182) #define __NR_afs_syscall (__X32_SYSCALL_BIT + 183) #define __NR_tuxcall (__X32_SYSCALL_BIT + 184) #define __NR_security (__X32_SYSCALL_BIT + 185) #define __NR_gettid (__X32_SYSCALL_BIT + 186) #define __NR_readahead (__X32_SYSCALL_BIT + 187) #define __NR_setxattr (__X32_SYSCALL_BIT + 188) #define __NR_lsetxattr (__X32_SYSCALL_BIT + 189) #define __NR_fsetxattr (__X32_SYSCALL_BIT + 190) #define __NR_getxattr (__X32_SYSCALL_BIT + 191) #define __NR_lgetxattr (__X32_SYSCALL_BIT + 192) #define __NR_fgetxattr (__X32_SYSCALL_BIT + 193) #define __NR_listxattr (__X32_SYSCALL_BIT + 194) #define __NR_llistxattr (__X32_SYSCALL_BIT + 195) #define __NR_flistxattr (__X32_SYSCALL_BIT + 196) #define __NR_removexattr (__X32_SYSCALL_BIT + 197) #define __NR_lremovexattr (__X32_SYSCALL_BIT + 198) #define __NR_fremovexattr (__X32_SYSCALL_BIT + 199) #define __NR_tkill (__X32_SYSCALL_BIT + 200) #define __NR_time (__X32_SYSCALL_BIT + 201) #define __NR_futex (__X32_SYSCALL_BIT + 202) #define __NR_sched_setaffinity (__X32_SYSCALL_BIT + 203) #define __NR_sched_getaffinity (__X32_SYSCALL_BIT + 204) #define __NR_io_destroy (__X32_SYSCALL_BIT + 207) #define __NR_io_getevents (__X32_SYSCALL_BIT + 208) #define __NR_io_cancel (__X32_SYSCALL_BIT + 210) #define __NR_lookup_dcookie (__X32_SYSCALL_BIT + 212) #define __NR_epoll_create (__X32_SYSCALL_BIT + 213) #define __NR_remap_file_pages (__X32_SYSCALL_BIT + 216) #define __NR_getdents64 (__X32_SYSCALL_BIT + 217) #define __NR_set_tid_address (__X32_SYSCALL_BIT + 218) #define __NR_restart_syscall (__X32_SYSCALL_BIT + 219) #define __NR_semtimedop (__X32_SYSCALL_BIT + 220) #define __NR_fadvise64 (__X32_SYSCALL_BIT + 221) #define __NR_timer_settime (__X32_SYSCALL_BIT + 223) #define __NR_timer_gettime (__X32_SYSCALL_BIT + 224) #define __NR_timer_getoverrun (__X32_SYSCALL_BIT + 225) #define __NR_timer_delete (__X32_SYSCALL_BIT + 226) #define __NR_clock_settime (__X32_SYSCALL_BIT + 227) #define __NR_clock_gettime (__X32_SYSCALL_BIT + 228) #define __NR_clock_getres (__X32_SYSCALL_BIT + 229) #define __NR_clock_nanosleep (__X32_SYSCALL_BIT + 230) #define __NR_exit_group (__X32_SYSCALL_BIT + 231) #define __NR_epoll_wait (__X32_SYSCALL_BIT + 232) #define __NR_epoll_ctl (__X32_SYSCALL_BIT + 233) #define __NR_tgkill (__X32_SYSCALL_BIT + 234) #define __NR_utimes (__X32_SYSCALL_BIT + 235) #define __NR_mbind (__X32_SYSCALL_BIT + 237) #define __NR_set_mempolicy (__X32_SYSCALL_BIT + 238) #define __NR_get_mempolicy (__X32_SYSCALL_BIT + 239) #define __NR_mq_open (__X32_SYSCALL_BIT + 240) #define __NR_mq_unlink (__X32_SYSCALL_BIT + 241) #define __NR_mq_timedsend (__X32_SYSCALL_BIT + 242) #define __NR_mq_timedreceive (__X32_SYSCALL_BIT + 243) #define __NR_mq_getsetattr (__X32_SYSCALL_BIT + 245) #define __NR_add_key (__X32_SYSCALL_BIT + 248) #define __NR_request_key (__X32_SYSCALL_BIT + 249) #define __NR_keyctl (__X32_SYSCALL_BIT + 250) #define __NR_ioprio_set (__X32_SYSCALL_BIT + 251) #define __NR_ioprio_get (__X32_SYSCALL_BIT + 252) #define __NR_inotify_init (__X32_SYSCALL_BIT + 253) #define __NR_inotify_add_watch (__X32_SYSCALL_BIT + 254) #define __NR_inotify_rm_watch (__X32_SYSCALL_BIT + 255) #define __NR_migrate_pages (__X32_SYSCALL_BIT + 256) #define __NR_openat (__X32_SYSCALL_BIT + 257) #define __NR_mkdirat (__X32_SYSCALL_BIT + 258) #define __NR_mknodat (__X32_SYSCALL_BIT + 259) #define __NR_fchownat (__X32_SYSCALL_BIT + 260) #define __NR_futimesat (__X32_SYSCALL_BIT + 261) #define __NR_newfstatat (__X32_SYSCALL_BIT + 262) #define __NR_unlinkat (__X32_SYSCALL_BIT + 263) #define __NR_renameat (__X32_SYSCALL_BIT + 264) #define __NR_linkat (__X32_SYSCALL_BIT + 265) #define __NR_symlinkat (__X32_SYSCALL_BIT + 266) #define __NR_readlinkat (__X32_SYSCALL_BIT + 267) #define __NR_fchmodat (__X32_SYSCALL_BIT + 268) #define __NR_faccessat (__X32_SYSCALL_BIT + 269) #define __NR_pselect6 (__X32_SYSCALL_BIT + 270) #define __NR_ppoll (__X32_SYSCALL_BIT + 271) #define __NR_unshare (__X32_SYSCALL_BIT + 272) #define __NR_splice (__X32_SYSCALL_BIT + 275) #define __NR_tee (__X32_SYSCALL_BIT + 276) #define __NR_sync_file_range (__X32_SYSCALL_BIT + 277) #define __NR_utimensat (__X32_SYSCALL_BIT + 280) #define __NR_epoll_pwait (__X32_SYSCALL_BIT + 281) #define __NR_signalfd (__X32_SYSCALL_BIT + 282) #define __NR_timerfd_create (__X32_SYSCALL_BIT + 283) #define __NR_eventfd (__X32_SYSCALL_BIT + 284) #define __NR_fallocate (__X32_SYSCALL_BIT + 285) #define __NR_timerfd_settime (__X32_SYSCALL_BIT + 286) #define __NR_timerfd_gettime (__X32_SYSCALL_BIT + 287) #define __NR_accept4 (__X32_SYSCALL_BIT + 288) #define __NR_signalfd4 (__X32_SYSCALL_BIT + 289) #define __NR_eventfd2 (__X32_SYSCALL_BIT + 290) #define __NR_epoll_create1 (__X32_SYSCALL_BIT + 291) #define __NR_dup3 (__X32_SYSCALL_BIT + 292) #define __NR_pipe2 (__X32_SYSCALL_BIT + 293) #define __NR_inotify_init1 (__X32_SYSCALL_BIT + 294) #define __NR_perf_event_open (__X32_SYSCALL_BIT + 298) #define __NR_fanotify_init (__X32_SYSCALL_BIT + 300) #define __NR_fanotify_mark (__X32_SYSCALL_BIT + 301) #define __NR_prlimit64 (__X32_SYSCALL_BIT + 302) #define __NR_name_to_handle_at (__X32_SYSCALL_BIT + 303) #define __NR_open_by_handle_at (__X32_SYSCALL_BIT + 304) #define __NR_clock_adjtime (__X32_SYSCALL_BIT + 305) #define __NR_syncfs (__X32_SYSCALL_BIT + 306) #define __NR_setns (__X32_SYSCALL_BIT + 308) #define __NR_getcpu (__X32_SYSCALL_BIT + 309) #define __NR_kcmp (__X32_SYSCALL_BIT + 312) #define __NR_finit_module (__X32_SYSCALL_BIT + 313) #define __NR_sched_setattr (__X32_SYSCALL_BIT + 314) #define __NR_sched_getattr (__X32_SYSCALL_BIT + 315) #define __NR_renameat2 (__X32_SYSCALL_BIT + 316) #define __NR_seccomp (__X32_SYSCALL_BIT + 317) #define __NR_getrandom (__X32_SYSCALL_BIT + 318) #define __NR_memfd_create (__X32_SYSCALL_BIT + 319) #define __NR_kexec_file_load (__X32_SYSCALL_BIT + 320) #define __NR_bpf (__X32_SYSCALL_BIT + 321) #define __NR_userfaultfd (__X32_SYSCALL_BIT + 323) #define __NR_membarrier (__X32_SYSCALL_BIT + 324) #define __NR_mlock2 (__X32_SYSCALL_BIT + 325) #define __NR_rt_sigaction (__X32_SYSCALL_BIT + 512) #define __NR_rt_sigreturn (__X32_SYSCALL_BIT + 513) #define __NR_ioctl (__X32_SYSCALL_BIT + 514) #define __NR_readv (__X32_SYSCALL_BIT + 515) #define __NR_writev (__X32_SYSCALL_BIT + 516) #define __NR_recvfrom (__X32_SYSCALL_BIT + 517) #define __NR_sendmsg (__X32_SYSCALL_BIT + 518) #define __NR_recvmsg (__X32_SYSCALL_BIT + 519) #define __NR_execve (__X32_SYSCALL_BIT + 520) #define __NR_ptrace (__X32_SYSCALL_BIT + 521) #define __NR_rt_sigpending (__X32_SYSCALL_BIT + 522) #define __NR_rt_sigtimedwait (__X32_SYSCALL_BIT + 523) #define __NR_rt_sigqueueinfo (__X32_SYSCALL_BIT + 524) #define __NR_sigaltstack (__X32_SYSCALL_BIT + 525) #define __NR_timer_create (__X32_SYSCALL_BIT + 526) #define __NR_mq_notify (__X32_SYSCALL_BIT + 527) #define __NR_kexec_load (__X32_SYSCALL_BIT + 528) #define __NR_waitid (__X32_SYSCALL_BIT + 529) #define __NR_set_robust_list (__X32_SYSCALL_BIT + 530) #define __NR_get_robust_list (__X32_SYSCALL_BIT + 531) #define __NR_vmsplice (__X32_SYSCALL_BIT + 532) #define __NR_move_pages (__X32_SYSCALL_BIT + 533) #define __NR_preadv (__X32_SYSCALL_BIT + 534) #define __NR_pwritev (__X32_SYSCALL_BIT + 535) #define __NR_rt_tgsigqueueinfo (__X32_SYSCALL_BIT + 536) #define __NR_recvmmsg (__X32_SYSCALL_BIT + 537) #define __NR_sendmmsg (__X32_SYSCALL_BIT + 538) #define __NR_process_vm_readv (__X32_SYSCALL_BIT + 539) #define __NR_process_vm_writev (__X32_SYSCALL_BIT + 540) #define __NR_setsockopt (__X32_SYSCALL_BIT + 541) #define __NR_getsockopt (__X32_SYSCALL_BIT + 542) #define __NR_io_setup (__X32_SYSCALL_BIT + 543) #define __NR_io_submit (__X32_SYSCALL_BIT + 544) #define __NR_execveat (__X32_SYSCALL_BIT + 545) ''') ```
{ "source": "jonaskaz/Line-Robot", "score": 3 }
#### File: Line-Robot/python/plot.py ```python from os import read import serial from serial import Serial import matplotlib.pyplot as plt import numpy as np import time import pandas as pd import seaborn as sns # set up serial communication, comment this out if not connected to arduino # ser = serial.Serial('COM6',9600) # ser.close() # ser.open() def read_ser_data(): ''' Reads data from serial and parses each line into the following format: [IR1_val, IR2_val, IR3_val, LW_speed, RW_speed] ''' ser_data = ser.readline().decode() parsed_ser_data = [float(x) for x in ser_data.split()] if len(parsed_ser_data) == 5: return parsed_ser_data else: return 0 def collect_data(): ''' Collects data of run ''' with open("plot_data.csv", 'w') as fd: fd.write("index,IR1,IR2,IR3,LW_speed,RW_speed\n") # collect data collect = True # TODO: control this with a button later # t_end = time.time() + collection_time index = 0 # while collect and (time.time() < t_end): while collect: # wait for a bit time.sleep(0.001) # fetch new serial data ser_data = read_ser_data() print(ser_data) if ser_data == 0: collect = False break # append to csv with open("plot_data.csv", 'a') as fd: fd.write(f"{index}, {ser_data[0]},{ser_data[1]},{ser_data[2]},{ser_data[3]},{ser_data[4]}\n") index += 1 def plot_existing_data(): ''' Create heatmap from existing data. ''' df = pd.read_csv('plot_data2 copy.csv',header=0) index = df['index'].tolist() IR1 = df['IR1'].tolist() IR2 = df['IR2'].tolist() IR3 = df['IR3'].tolist() LW_speed = df['LW_speed'].tolist() RW_speed = df['RW_speed'].tolist() # plot lines plt.plot(index, smooth(IR1), label = "IR_left") plt.plot(index, IR2, label = "IR_right") plt.plot(index, IR3, label = "IR_middle") plt.plot(index, LW_speed, label = "LW_speed") plt.plot(index, RW_speed, label = "RW_speed") plt.legend() plt.show() if __name__ == "__main__": # collect_data() plot_existing_data() ```
{ "source": "jonaskaz/Noodle-API", "score": 3 }
#### File: Noodle-API/noodle/main.py ```python from threading import current_thread from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from .config import GAME_MODE, ORDER_MODE from pydantic import BaseModel from typing import Optional import queue class Payload(BaseModel): mode: int flavor: str toppings: Optional[list] = [] app = FastAPI() origins = [ "http://localhost:3000", "localhost:3000", "http://cup-noodle-app.herokuapp.com", "https://cup-noodle-app.herokuapp.com", "cup-noodle-app.herokuapp.com", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) orders = queue.Queue() @app.get("/", tags=["root"]) async def read_root() -> dict: return {"message": "Welcome"} @app.get("/order", tags=["orders"]) async def get_order() -> dict: if orders.empty(): current_order = {} else: current_order = orders.get() return current_order @app.post("/order", tags=["orders"]) async def post_order(order: Payload) -> dict: orders.put(order) return { "data": { "Order successfully posted." } } ``` #### File: Noodle-API/tests/test_routes.py ```python def test_post_order(client, order_payload): res = client.post("/order", json = order_payload) assert res.status_code == 200 def test_post_game(client, game_payload): res = client.post("/order", json = game_payload) assert res.status_code == 200 def test_get_order(client): res1 = client.get("/order") assert res1.json()["mode"] == 0 assert res1.json()["toppings"] == ["onions", "spice"] res2 = client.get("/order") assert res2.json()["mode"] == 1 res3 = client.get("/order") assert res3.json() == {} ```
{ "source": "JonasKemmer/AliasFinder", "score": 3 }
#### File: AliasFinder/aliasfinder/af_calc.py ```python import numpy as np from scipy.signal import find_peaks import aliasfinder.af_utils as af_utils def get_phase_info(gls_obj, power_threshold=None, sim=False, frequency_array=None): """ Get information on the phase of all peaks above a given power threshold. Parameters ---------- gls_obj : object A GLS object from Zechmeisters gls.py. power_threshold : float, optional The power threshold (ZK) above which the peaks should be analyzed. Default is 0.5. sim : boolean, optional If the commited gls object is a simulated one or not. Default is False, if it is set to true the frequency array must be given too. frequency_array : array, optional If a simulated periodogram is commited, this array must contain the frequencies of the peaks in the GLS of the observed data. Returns ------- array An array containing the freqencies, powers and phases of all analyzed peaks. """ if sim: indexes = np.searchsorted(gls_obj.freq, frequency_array) else: indexes, _ = find_peaks(gls_obj.p, height=power_threshold) phases = np.zeros(len(indexes)) freqs = np.zeros(len(indexes)) powers = np.zeros(len(indexes)) for i in range(len(indexes)): k = indexes[i] pmax = gls_obj.p[k] # Best parameters fbest = gls_obj.freq[k] ph = np.arctan2(gls_obj._a[k], gls_obj._b[k]) / (2. * np.pi) phases[i] = ph freqs[i] = fbest powers[i] = pmax return [freqs, powers, phases] def sim_any_sinmode(gls_obj, in_freq, times): """ Simulate a sinusoidal signal with a given frequency and amplitude. Parameters ---------- gls_obj : object A GLS object from Zechmeisters gls.py. in_freq : float Frequency of the sinus which is calculated. times : array Time array for which the amplitude of the signal is calculated. Returns ------- array Array of the amplitudes of the simulated sinusoidal at the input times. """ k = np.where(np.round(gls_obj.freq, 5) == in_freq)[0] if len(k) > 1: k = k[0] amp = np.sqrt(gls_obj._a[k]**2 + gls_obj._b[k]**2) ph = np.arctan2(gls_obj._a[k], gls_obj._b[k]) / (2. * np.pi) T0 = times.min() - ph / in_freq offset = gls_obj._off[k] + gls_obj._Y return amp * np.sin(2 * np.pi * in_freq * (times - T0)) + offset def sample_gls(times, gls_obs, freq, jitter, rvs_err, fbeg, fend, object_name, peaks_data, search_phase_range): """The function to calculate a simulated GLS periodogram. Parameters ---------- times : array The times of observation of the observed RVs. gls_obj : object A GLS object from Zechmeisters gls.py from the observed RVs. freq : float The frequency for which the GLS should be simulated. jitter : float The jitter which is added to the simulated data. rvs_err : array The errors of the measured RVs. They are adopted as the errors of the simulated RVs fbeg : float, optional Start frequency of the GLS periodogram. fend : float, optional End frequency of the GLS periodogram. object_name : str, optional Name of the object from which the RV data originate. peaks_data : array The array that contains the information about the peaks measured in the observed RVs. The frequencies are used to get information about these peaks in the simulated GLS search_phase_range : float The range around the peaks in the observed data for which peaks in the simulated GLS are searched for. Returns ------- arrays Returns the powers at the corresponding frequencies of the simulated GLS as well as the phases of the peaks in the simulated GLS. """ np.random.seed() rvs_sim = np.ones(np.shape(times)) \ + sim_any_sinmode(gls_obs, freq, times) \ + np.random.normal(0, np.sqrt(jitter**2), times.size) ls_sim = af_utils.get_gls(times, rvs_sim, rvs_err, fbeg, fend, object_name, freq_array=gls_obs.freq) dummy_freq_array = np.zeros(np.size(peaks_data[0])) # search for phases of max power using a certian frequency # range and the prior of data peaks for j in range(0, np.size(peaks_data[0])): index_frequencies = np.where( np.logical_and( ls_sim.freq >= peaks_data[0][j] - search_phase_range, ls_sim.freq <= peaks_data[0][j] + search_phase_range)) index_maxfreqs = max(np.arange(len(ls_sim.p[index_frequencies])), key=ls_sim.p[index_frequencies].__getitem__) index_maxfreq = np.argwhere( ls_sim.freq == ls_sim.freq[index_frequencies][index_maxfreqs])[0] dummy_freq_array[j] = ls_sim.freq[index_maxfreq] peaks_sim = get_phase_info(ls_sim, frequency_array=dummy_freq_array, sim=True) return ls_sim.power, ls_sim.freq, (peaks_sim[2] % 1) * 2. * np.pi def get_metric(gls_obs=None, gls_sim_powers=None): """ The function to calculate the likelihood. Parameters ---------- gls_obs : object, optional The GLS of the observed data. gls_sim_powers : array, optional The array which contains the power information from the simulated GLS. """ freq = gls_obs.freq[:] data_powers = gls_obs.power[:] sim_powers = np.median(gls_sim_powers, axis=0) sigma_powers = np.std(gls_sim_powers, axis=0) #Li=np.exp(-(data_powers-sim_powers)**2/sigma_powers**2,dtype=np.float128) #chisq=(data_powers-sim_powers)**2/sigma_powers**2 squarediff = (data_powers - sim_powers)**2 L = np.sum(squarediff) return L ```
{ "source": "JonasKemmer/exostriker", "score": 2 }
#### File: exostriker/lib/act.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Activity(object): def setupUi(self, Activity): Activity.setObjectName("Activity") Activity.resize(906, 717) font = QtGui.QFont() font.setPointSize(9) Activity.setFont(font) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("../../../../../.designer/backup/33_striker.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) Activity.setWindowIcon(icon) Activity.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedKingdom)) self.gridLayout_2 = QtWidgets.QGridLayout(Activity) self.gridLayout_2.setObjectName("gridLayout_2") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setHorizontalSpacing(4) self.gridLayout.setVerticalSpacing(2) self.gridLayout.setObjectName("gridLayout") self.label_low_freq = QtWidgets.QLabel(Activity) self.label_low_freq.setObjectName("label_low_freq") self.gridLayout.addWidget(self.label_low_freq, 2, 5, 1, 1) self.regres_wl = QtWidgets.QDoubleSpinBox(Activity) self.regres_wl.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.regres_wl.setFont(font) self.regres_wl.setMinimum(0.1) self.regres_wl.setMaximum(2.0) self.regres_wl.setSingleStep(0.1) self.regres_wl.setProperty("value", 0.5) self.regres_wl.setObjectName("regres_wl") self.gridLayout.addWidget(self.regres_wl, 8, 3, 1, 1) self.regres_bt = QtWidgets.QDoubleSpinBox(Activity) self.regres_bt.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.regres_bt.setFont(font) self.regres_bt.setMaximum(1.0) self.regres_bt.setSingleStep(0.1) self.regres_bt.setProperty("value", 0.5) self.regres_bt.setObjectName("regres_bt") self.gridLayout.addWidget(self.regres_bt, 8, 4, 1, 1) self.radio_Splines = QtWidgets.QRadioButton(Activity) self.radio_Splines.setEnabled(True) font = QtGui.QFont() font.setPointSize(9) self.radio_Splines.setFont(font) self.radio_Splines.setObjectName("radio_Splines") self.buttonGroup_trendOptions = QtWidgets.QButtonGroup(Activity) self.buttonGroup_trendOptions.setObjectName("buttonGroup_trendOptions") self.buttonGroup_trendOptions.addButton(self.radio_Splines) self.gridLayout.addWidget(self.radio_Splines, 5, 0, 1, 2) self.spline_bt = QtWidgets.QDoubleSpinBox(Activity) self.spline_bt.setEnabled(True) self.spline_bt.setMinimumSize(QtCore.QSize(100, 0)) font = QtGui.QFont() font.setPointSize(9) self.spline_bt.setFont(font) self.spline_bt.setMaximum(20000000.0) self.spline_bt.setSingleStep(0.1) self.spline_bt.setProperty("value", 5.0) self.spline_bt.setObjectName("spline_bt") self.gridLayout.addWidget(self.spline_bt, 5, 4, 1, 1) self.radio_Regressions = QtWidgets.QRadioButton(Activity) self.radio_Regressions.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.radio_Regressions.setFont(font) self.radio_Regressions.setObjectName("radio_Regressions") self.buttonGroup_trendOptions.addButton(self.radio_Regressions) self.gridLayout.addWidget(self.radio_Regressions, 8, 0, 1, 2) self.label_wl = QtWidgets.QLabel(Activity) font = QtGui.QFont() font.setPointSize(9) self.label_wl.setFont(font) self.label_wl.setObjectName("label_wl") self.gridLayout.addWidget(self.label_wl, 2, 3, 1, 1) self.reset_data = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.reset_data.setFont(font) self.reset_data.setObjectName("reset_data") self.gridLayout.addWidget(self.reset_data, 2, 8, 1, 1) self.comboBox_poly = QtWidgets.QComboBox(Activity) self.comboBox_poly.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.comboBox_poly.setFont(font) self.comboBox_poly.setObjectName("comboBox_poly") self.gridLayout.addWidget(self.comboBox_poly, 6, 2, 1, 1) self.flatten_data = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.flatten_data.setFont(font) self.flatten_data.setChecked(True) self.flatten_data.setObjectName("flatten_data") self.buttonGroup_plot2 = QtWidgets.QButtonGroup(Activity) self.buttonGroup_plot2.setObjectName("buttonGroup_plot2") self.buttonGroup_plot2.addButton(self.flatten_data) self.gridLayout.addWidget(self.flatten_data, 3, 10, 1, 1) self.poly_bt = QtWidgets.QDoubleSpinBox(Activity) self.poly_bt.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.poly_bt.setFont(font) self.poly_bt.setMaximum(1.0) self.poly_bt.setSingleStep(0.1) self.poly_bt.setProperty("value", 0.5) self.poly_bt.setObjectName("poly_bt") self.gridLayout.addWidget(self.poly_bt, 6, 4, 1, 1) spacerItem = QtWidgets.QSpacerItem(13, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem, 3, 5, 1, 1) self.print_stat = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.print_stat.setFont(font) self.print_stat.setObjectName("print_stat") self.gridLayout.addWidget(self.print_stat, 2, 7, 1, 1) self.line_2 = QtWidgets.QFrame(Activity) self.line_2.setFrameShape(QtWidgets.QFrame.VLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.gridLayout.addWidget(self.line_2, 2, 6, 8, 1) self.saveProduct = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.saveProduct.setFont(font) self.saveProduct.setObjectName("saveProduct") self.gridLayout.addWidget(self.saveProduct, 8, 10, 1, 1) self.radio_GPs = QtWidgets.QRadioButton(Activity) self.radio_GPs.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.radio_GPs.setFont(font) self.radio_GPs.setObjectName("radio_GPs") self.buttonGroup_trendOptions.addButton(self.radio_GPs) self.gridLayout.addWidget(self.radio_GPs, 9, 0, 1, 2) self.GLS_of_data = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.GLS_of_data.setFont(font) self.GLS_of_data.setObjectName("GLS_of_data") self.buttonGroup_plot2.addButton(self.GLS_of_data) self.gridLayout.addWidget(self.GLS_of_data, 4, 10, 1, 1) self.GP_period = QtWidgets.QDoubleSpinBox(Activity) self.GP_period.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.GP_period.setFont(font) self.GP_period.setObjectName("GP_period") self.gridLayout.addWidget(self.GP_period, 9, 4, 1, 1) self.checkBox_GP_robust = QtWidgets.QCheckBox(Activity) self.checkBox_GP_robust.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.checkBox_GP_robust.setFont(font) self.checkBox_GP_robust.setObjectName("checkBox_GP_robust") self.gridLayout.addWidget(self.checkBox_GP_robust, 9, 5, 1, 1) self.spline_wl = QtWidgets.QDoubleSpinBox(Activity) self.spline_wl.setEnabled(True) font = QtGui.QFont() font.setPointSize(9) self.spline_wl.setFont(font) self.spline_wl.setMinimum(0.1) self.spline_wl.setMaximum(2000000.0) self.spline_wl.setSingleStep(0.1) self.spline_wl.setProperty("value", 180.0) self.spline_wl.setObjectName("spline_wl") self.gridLayout.addWidget(self.spline_wl, 5, 3, 1, 1) self.click_to_reject = QtWidgets.QCheckBox(Activity) font = QtGui.QFont() font.setPointSize(9) self.click_to_reject.setFont(font) self.click_to_reject.setObjectName("click_to_reject") self.gridLayout.addWidget(self.click_to_reject, 3, 7, 1, 2) self.readme_button = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.readme_button.setFont(font) self.readme_button.setObjectName("readme_button") self.gridLayout.addWidget(self.readme_button, 9, 10, 1, 1) self.radio_remove_mean = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.radio_remove_mean.setFont(font) self.radio_remove_mean.setChecked(False) self.radio_remove_mean.setObjectName("radio_remove_mean") self.buttonGroup_trendOptions.addButton(self.radio_remove_mean) self.gridLayout.addWidget(self.radio_remove_mean, 3, 1, 1, 1) self.comboBox_splines = QtWidgets.QComboBox(Activity) self.comboBox_splines.setEnabled(True) font = QtGui.QFont() font.setPointSize(9) self.comboBox_splines.setFont(font) self.comboBox_splines.setObjectName("comboBox_splines") self.gridLayout.addWidget(self.comboBox_splines, 5, 2, 1, 1) self.comboBox_GP = QtWidgets.QComboBox(Activity) self.comboBox_GP.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.comboBox_GP.setFont(font) self.comboBox_GP.setObjectName("comboBox_GP") self.gridLayout.addWidget(self.comboBox_GP, 9, 2, 1, 1) self.kernel_size = QtWidgets.QDoubleSpinBox(Activity) self.kernel_size.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.kernel_size.setFont(font) self.kernel_size.setDecimals(1) self.kernel_size.setMaximum(100.0) self.kernel_size.setSingleStep(0.1) self.kernel_size.setProperty("value", 5.0) self.kernel_size.setObjectName("kernel_size") self.gridLayout.addWidget(self.kernel_size, 9, 3, 1, 1) self.try_button = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.try_button.setFont(font) self.try_button.setObjectName("try_button") self.gridLayout.addWidget(self.try_button, 2, 10, 1, 1) self.GLS_of_detr_data = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.GLS_of_detr_data.setFont(font) self.GLS_of_detr_data.setObjectName("GLS_of_detr_data") self.buttonGroup_plot2.addButton(self.GLS_of_detr_data) self.gridLayout.addWidget(self.GLS_of_detr_data, 5, 10, 1, 1) self.comboBox_regs = QtWidgets.QComboBox(Activity) self.comboBox_regs.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.comboBox_regs.setFont(font) self.comboBox_regs.setObjectName("comboBox_regs") self.gridLayout.addWidget(self.comboBox_regs, 8, 2, 1, 1) self.GLS_of_model = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.GLS_of_model.setFont(font) self.GLS_of_model.setObjectName("GLS_of_model") self.buttonGroup_plot2.addButton(self.GLS_of_model) self.gridLayout.addWidget(self.GLS_of_model, 6, 10, 1, 1) self.comboBox_sliders = QtWidgets.QComboBox(Activity) font = QtGui.QFont() font.setPointSize(9) self.comboBox_sliders.setFont(font) self.comboBox_sliders.setObjectName("comboBox_sliders") self.gridLayout.addWidget(self.comboBox_sliders, 4, 2, 1, 1) self.poly_wl = QtWidgets.QDoubleSpinBox(Activity) self.poly_wl.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.poly_wl.setFont(font) self.poly_wl.setMinimum(0.1) self.poly_wl.setMaximum(2.0) self.poly_wl.setSingleStep(0.1) self.poly_wl.setProperty("value", 0.5) self.poly_wl.setObjectName("poly_wl") self.gridLayout.addWidget(self.poly_wl, 6, 3, 1, 1) self.line = QtWidgets.QFrame(Activity) self.line.setFrameShape(QtWidgets.QFrame.VLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.gridLayout.addWidget(self.line, 2, 9, 9, 1) self.label_method = QtWidgets.QLabel(Activity) font = QtGui.QFont() font.setPointSize(9) self.label_method.setFont(font) self.label_method.setObjectName("label_method") self.gridLayout.addWidget(self.label_method, 2, 2, 1, 1) self.label_high_freq = QtWidgets.QLabel(Activity) font = QtGui.QFont() font.setPointSize(9) self.label_high_freq.setFont(font) self.label_high_freq.setObjectName("label_high_freq") self.gridLayout.addWidget(self.label_high_freq, 2, 4, 1, 1) self.radio_remove_median = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.radio_remove_median.setFont(font) self.radio_remove_median.setChecked(True) self.radio_remove_median.setObjectName("radio_remove_median") self.buttonGroup_trendOptions.addButton(self.radio_remove_median) self.gridLayout.addWidget(self.radio_remove_median, 3, 0, 1, 1) self.radio_Polynomials = QtWidgets.QRadioButton(Activity) self.radio_Polynomials.setEnabled(False) font = QtGui.QFont() font.setPointSize(9) self.radio_Polynomials.setFont(font) self.radio_Polynomials.setObjectName("radio_Polynomials") self.buttonGroup_trendOptions.addButton(self.radio_Polynomials) self.gridLayout.addWidget(self.radio_Polynomials, 6, 0, 1, 2) self.filter_order = QtWidgets.QDoubleSpinBox(Activity) self.filter_order.setMinimumSize(QtCore.QSize(100, 0)) font = QtGui.QFont() font.setPointSize(9) self.filter_order.setFont(font) self.filter_order.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedKingdom)) self.filter_order.setDecimals(0) self.filter_order.setMinimum(1.0) self.filter_order.setMaximum(30.0) self.filter_order.setSingleStep(1.0) self.filter_order.setProperty("value", 3.0) self.filter_order.setObjectName("filter_order") self.gridLayout.addWidget(self.filter_order, 4, 3, 1, 1) self.radio_timeW = QtWidgets.QRadioButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.radio_timeW.setFont(font) self.radio_timeW.setObjectName("radio_timeW") self.buttonGroup_trendOptions.addButton(self.radio_timeW) self.gridLayout.addWidget(self.radio_timeW, 4, 0, 1, 2) self.plot = PlotWidget(Activity) self.plot.setMouseTracking(True) self.plot.setObjectName("plot") self.gridLayout.addWidget(self.plot, 0, 0, 1, 11) self.plot_2 = PlotWidget(Activity) self.plot_2.setMouseTracking(True) self.plot_2.setObjectName("plot_2") self.gridLayout.addWidget(self.plot_2, 1, 0, 1, 11) self.label = QtWidgets.QLabel(Activity) font = QtGui.QFont() font.setPointSize(9) self.label.setFont(font) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 2, 0, 1, 2) self.filter_high_freq = QtWidgets.QDoubleSpinBox(Activity) self.filter_high_freq.setMinimumSize(QtCore.QSize(100, 0)) font = QtGui.QFont() font.setPointSize(9) self.filter_high_freq.setFont(font) self.filter_high_freq.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedKingdom)) self.filter_high_freq.setDecimals(3) self.filter_high_freq.setMinimum(1.0) self.filter_high_freq.setMaximum(999999.0) self.filter_high_freq.setSingleStep(1.0) self.filter_high_freq.setProperty("value", 1.0) self.filter_high_freq.setObjectName("filter_high_freq") self.gridLayout.addWidget(self.filter_high_freq, 4, 4, 1, 1) self.filter_low_freq = QtWidgets.QDoubleSpinBox(Activity) self.filter_low_freq.setMinimumSize(QtCore.QSize(100, 0)) font = QtGui.QFont() font.setPointSize(9) self.filter_low_freq.setFont(font) self.filter_low_freq.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedKingdom)) self.filter_low_freq.setDecimals(3) self.filter_low_freq.setMinimum(1.0) self.filter_low_freq.setMaximum(999999.0) self.filter_low_freq.setSingleStep(1.0) self.filter_low_freq.setProperty("value", 365.0) self.filter_low_freq.setObjectName("filter_low_freq") self.gridLayout.addWidget(self.filter_low_freq, 4, 5, 1, 1) self.add_epoch = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.add_epoch.setFont(font) self.add_epoch.setObjectName("add_epoch") self.gridLayout.addWidget(self.add_epoch, 8, 7, 1, 1) self.extra_BJD = QtWidgets.QDoubleSpinBox(Activity) self.extra_BJD.setMaximumSize(QtCore.QSize(100, 16777215)) font = QtGui.QFont() font.setPointSize(9) self.extra_BJD.setFont(font) self.extra_BJD.setDecimals(3) self.extra_BJD.setMinimum(-9999999.0) self.extra_BJD.setMaximum(9999999.0) self.extra_BJD.setProperty("value", 2457000.0) self.extra_BJD.setObjectName("extra_BJD") self.gridLayout.addWidget(self.extra_BJD, 8, 8, 1, 1) self.bin_data = QtWidgets.QDoubleSpinBox(Activity) self.bin_data.setEnabled(True) font = QtGui.QFont() font.setPointSize(9) self.bin_data.setFont(font) self.bin_data.setSuffix("") self.bin_data.setDecimals(6) self.bin_data.setMinimum(1e-05) self.bin_data.setSingleStep(0.001) self.bin_data.setProperty("value", 0.01) self.bin_data.setObjectName("bin_data") self.gridLayout.addWidget(self.bin_data, 6, 8, 1, 1) self.button_bin_data = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.button_bin_data.setFont(font) self.button_bin_data.setObjectName("button_bin_data") self.gridLayout.addWidget(self.button_bin_data, 6, 7, 1, 1) self.act_sigma_clip = QtWidgets.QDoubleSpinBox(Activity) self.act_sigma_clip.setEnabled(True) font = QtGui.QFont() font.setPointSize(9) self.act_sigma_clip.setFont(font) self.act_sigma_clip.setDecimals(4) self.act_sigma_clip.setMinimum(0.5) self.act_sigma_clip.setMaximum(30.0) self.act_sigma_clip.setSingleStep(0.5) self.act_sigma_clip.setProperty("value", 10.0) self.act_sigma_clip.setObjectName("act_sigma_clip") self.gridLayout.addWidget(self.act_sigma_clip, 5, 8, 1, 1) self.button_sigma_clip = QtWidgets.QPushButton(Activity) font = QtGui.QFont() font.setPointSize(9) self.button_sigma_clip.setFont(font) self.button_sigma_clip.setObjectName("button_sigma_clip") self.gridLayout.addWidget(self.button_sigma_clip, 5, 7, 1, 1) self.gridLayout_2.addLayout(self.gridLayout, 0, 0, 1, 1) self.retranslateUi(Activity) QtCore.QMetaObject.connectSlotsByName(Activity) def retranslateUi(self, Activity): _translate = QtCore.QCoreApplication.translate Activity.setWindowTitle(_translate("Activity", "Activity")) self.label_low_freq.setText(_translate("Activity", "low freq ")) self.radio_Splines.setText(_translate("Activity", "Splines")) self.radio_Regressions.setText(_translate("Activity", "Regressions")) self.label_wl.setText(_translate("Activity", "Window length")) self.reset_data.setText(_translate("Activity", "Reset")) self.flatten_data.setText(_translate("Activity", "detrended data")) self.print_stat.setText(_translate("Activity", "Print stat")) self.saveProduct.setText(_translate("Activity", "Save modif. data")) self.radio_GPs.setText(_translate("Activity", "Gaussian Processes")) self.GLS_of_data.setText(_translate("Activity", "GLS of input data")) self.checkBox_GP_robust.setText(_translate("Activity", "robust")) self.click_to_reject.setText(_translate("Activity", "remove outliers")) self.readme_button.setText(_translate("Activity", "READ ME")) self.radio_remove_mean.setText(_translate("Activity", "Mean")) self.try_button.setText(_translate("Activity", "Try!")) self.GLS_of_detr_data.setText(_translate("Activity", "GLS of modif. data")) self.GLS_of_model.setText(_translate("Activity", "GLS of model")) self.label_method.setText(_translate("Activity", "Method")) self.label_high_freq.setText(_translate("Activity", "high freq")) self.radio_remove_median.setText(_translate("Activity", "Median")) self.radio_Polynomials.setText(_translate("Activity", "Polynomials")) self.radio_timeW.setText(_translate("Activity", "Filter")) self.label.setText(_translate("Activity", "Subtract")) self.add_epoch.setText(_translate("Activity", "Add/Remove BJD")) self.button_bin_data.setText(_translate("Activity", "Bin data [d]")) self.button_sigma_clip.setText(_translate("Activity", "sigma clip")) from pyqtgraph import PlotWidget if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Activity = QtWidgets.QWidget() ui = Ui_Activity() ui.setupUi(Activity) Activity.show() sys.exit(app.exec_()) ``` #### File: exostriker/lib/TESS_pdc_window.py ```python import sys #,os from PyQt5 import QtWidgets,QtGui class pdc(QtWidgets.QDialog): def __init__(self, parent = None): # super(show_symbols, self).__init__(parent) super(pdc, self).__init__() self.layout = QtWidgets.QVBoxLayout(self) self.title = 'This is a test window' # self.setFixedSize(550, 800) # self.widget = QtWidgets.QWidget(self) # self.widget.setLayout(QtWidgets.QGridLayout()) # self.widget.layout().addWidget(self.text) #self.layout=QtWidgets.QGridLayout() # layout for the central widget self.widget=QtGui.QWidget(self) # central widget # self.widget.setLayout(layout) self.init_buttons() def init_buttons(self): self.radio_group=QtGui.QButtonGroup(self.widget) # Number group self.button1 = QtWidgets.QRadioButton('SAP FLUX', self) self.button2 = QtWidgets.QRadioButton('PDCSAP FLUX"', self) self.radio_group.addButton(self.button1) self.radio_group.addButton(self.button2) self.radio_group.setId(self.button1,1) self.radio_group.setId(self.button2,2) self.layout.addWidget(self.button1) self.layout.addWidget(self.button2) self.cancel_button = QtGui.QPushButton('Accept', self) self.layout.addWidget(self.cancel_button) self.button1.setChecked(True) self.cancel_button.clicked.connect(self.close) #self.Ok_button.clicked.connect(self.get_radio) def return_but_N(self): # Return list of values. It need map with str (self.lineedit.text() will return QString) return self.radio_group.checkedId() # static method to create the dialog and return button pressed @staticmethod def get_radio(parent = None): dialog = pdc(parent) result = dialog.exec_() rad_but = dialog.return_but_N() return (rad_but) if __name__ == '__main__': # app = QtWidgets.QApplication(sys.argv) #w = show_symbols() # w.show() #sys.exit(app.exec_()) app = QtGui.QApplication([]) but = pdc.DateDialog.get_radio() # print("{} {} {}".format(date, time, ok)) app.exec_() ```