metadata
dict
text
stringlengths
60
3.49M
{ "source": "jonasstraub/essensfindung", "score": 3 }
#### File: db/crud/user.py ```python from typing import Union from sqlalchemy.orm import Session from db.base import Person from schemes import scheme_user from tools.hashing import Hasher def create_user(db: Session, person: scheme_user.UserCreate) -> Person: """Create / Add Person to the Database with hashed password Args: db (Session): Session to the DB person (scheme_user.UserCreate): The person to create Returns: Person: Return the created person """ db_person = Person(email=person.email, hashed_password=Hasher.get_password_hash(person.password)) db.add(db_person) db.commit() db.refresh(db_person) return db_person def get_user_by_mail(db: Session, email: str) -> Union[Person, None]: """Get the person from the Databse if one found Args: db (Session): Session to the DB email (str): eMail to filter Returns: Person | None """ return db.query(Person).filter(Person.email == email).first() def update_user(db: Session, current_user: scheme_user.UserBase, new_user: scheme_user.UserCreate) -> Person: """Update the User in the Database. You can change the Mail or Password Args: db (Session): Session to the DB current_user (scheme_user.UserBase): User to Update new_user (scheme_user.UserCreate): Contains the updated values for the User Returns: Person: Return the new DB values """ db_new_user = Person(email=new_user.email, hashed_password=Hasher.get_password_hash(new_user.password)) db.query(Person).filter(Person.email == current_user.email).update( {Person.email: db_new_user.email, Person.hashed_password: db_new_user.hashed_password} ) db.commit() return db_new_user def delete_user(db: Session, user: scheme_user.UserBase) -> int: """Remove the Person with the given email Args: db (Session): Session to the DB email (str): Mail from the Person to search Returns: int: Number of effekted rows """ rows = db.query(Person).filter(Person.email == user.email).delete() db.commit() return rows ``` #### File: essensfindung/tests/test_db.py ```python import pytest from sqlalchemy import create_engine from sqlalchemy import exc from sqlalchemy.orm import sessionmaker from db.base import Base from db.crud.bewertung import create_bewertung from db.crud.bewertung import delete_bewertung from db.crud.bewertung import get_all_user_bewertungen from db.crud.bewertung import get_bewertung_from_user_to_rest from db.crud.bewertung import update_bewertung from db.crud.restaurant import create_restaurant from db.crud.restaurant import delete_restaurant from db.crud.restaurant import get_all_restaurants from db.crud.restaurant import get_restaurant_by_id from db.crud.user import create_user from db.crud.user import delete_user from db.crud.user import get_user_by_mail from db.crud.user import update_user from schemes import scheme_rest from schemes import scheme_user from tools.hashing import Hasher SQLALCHEMY_DATABASE_URL = "sqlite:///./tests/test_db.db" engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}) # Use connect_args parameter only with sqlite SessionTesting = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base.metadata.create_all(bind=engine) @pytest.mark.filterwarnings("ignore") @pytest.fixture(scope="function") def db_session(): connection = engine.connect() transaction = connection.begin() session = SessionTesting(bind=connection) yield session # use the session in tests. session.close() transaction.rollback() connection.close() def test_restaurant(db_session: SessionTesting): # Add two Restaurants # add the first restaurant rest_add = scheme_rest.RestaurantBase(place_id="1234") rest_return = create_restaurant(db_session, rest_add) assert rest_add == scheme_rest.RestaurantBase(**rest_return.__dict__) # add the second restaurant rest_add_2 = scheme_rest.RestaurantBase(place_id="567") rest_return = create_restaurant(db_session, rest_add_2) assert rest_add_2 == scheme_rest.RestaurantBase(**rest_return.__dict__) # Get one Restaurant rest_return = get_restaurant_by_id(db_session, rest_add.place_id) assert rest_add == scheme_rest.RestaurantBase(**rest_return.__dict__) # Get all Restaurants rests_return = get_all_restaurants(db_session) rests_return_schemes = [scheme_rest.RestaurantBase(**rest.__dict__) for rest in rests_return] assert rests_return_schemes == [rest_add, rest_add_2] # Delete that Restaurant affected_rows = delete_restaurant(db_session, rest_add) assert affected_rows == 1 assert get_restaurant_by_id(db_session, rest_add.place_id) is None # Check if you cant add the same restaurant twice with pytest.raises(exc.SQLAlchemyError): create_restaurant(db_session, rest_add_2) def test_user(db_session: SessionTesting): # Add two users # ...first user user_add = scheme_user.UserCreate(email="<EMAIL>", password="<PASSWORD>") user_ret = create_user(db_session, user_add) assert user_add.email == user_ret.email assert Hasher.verify_password(user_add.password, user_ret.hashed_password) # ..second user user_add_2 = scheme_user.UserCreate(email="<EMAIL>", password="<PASSWORD>") user_ret = create_user(db_session, user_add_2) assert user_add_2.email == user_ret.email assert Hasher.verify_password(user_add_2.password, user_ret.hashed_password) # Update User password user_add.password = "<PASSWORD>" user_ret = update_user(db_session, user_add, user_add) assert user_add.email == user_ret.email assert Hasher.verify_password(user_add.password, user_ret.hashed_password) # Update User email tmp_user = user_add.copy() user_add.email = "<EMAIL>" user_ret = update_user(db_session, tmp_user, user_add) assert user_add.email == user_ret.email assert Hasher.verify_password(user_add.password, user_ret.hashed_password) # Get one User user_ret = get_user_by_mail(db_session, user_add.email) assert user_add.email == user_ret.email assert Hasher.verify_password(user_add.password, user_ret.hashed_password) # Delete one User assert 1 == delete_user(db_session, user_add_2) # Chek if only one user with the same email can be added with pytest.raises(exc.SQLAlchemyError): create_user(db_session, user_add) def test_bewertung(db_session: SessionTesting): fake_user = scheme_user.UserBase(email="<EMAIL>") fake_rest = scheme_rest.RestaurantBase(place_id="000000") user_add_1 = scheme_user.UserCreate(email="<EMAIL>", password="<PASSWORD>") user_add_2 = scheme_user.UserCreate(email="<EMAIL>", password="<PASSWORD>") rest_add_1 = scheme_rest.RestaurantBase(place_id="1234") rest_add_2 = scheme_rest.RestaurantBase(place_id="5678") # Add user create_user(db_session, user_add_1) create_user(db_session, user_add_2) # Add restaurant create_restaurant(db_session, rest_add_1) create_restaurant(db_session, rest_add_2) # Add assessment to user1 and rest1 assessment_add_1_1 = scheme_rest.RestBewertungCreate( comment="This is a comment", rating=1.5, person=user_add_1, restaurant=rest_add_1 ) assessment_ret = create_bewertung(db_session, assessment_add_1_1) assert assessment_ret.kommentar == assessment_add_1_1.comment assert assessment_ret.rating == assessment_add_1_1.rating assert assessment_ret.zeitstempel is not None # Add assessment to user1 and rest2 assessment_add_1_2 = scheme_rest.RestBewertungCreate( comment="This is a comment for rest 2", rating=2.5, person=user_add_1, restaurant=rest_add_2 ) assessment_ret = create_bewertung(db_session, assessment_add_1_2) assert assessment_ret.kommentar == assessment_add_1_2.comment assert assessment_ret.rating == assessment_add_1_2.rating assert assessment_ret.zeitstempel is not None # Add assessment to user2 and rest2 assessment_add_2_2 = scheme_rest.RestBewertungCreate( comment="This is a comment 2", rating=3.5, person=user_add_2, restaurant=rest_add_2 ) assessment_ret = create_bewertung(db_session, assessment_add_2_2) assert assessment_ret.kommentar == assessment_add_2_2.comment assert assessment_ret.rating == assessment_add_2_2.rating assert assessment_ret.zeitstempel is not None # Get all assessments assessments_ret = get_all_user_bewertungen(db_session, user_add_1) assert len(assessments_ret) == 2 assessments_ret = get_all_user_bewertungen(db_session, user_add_2) assert len(assessments_ret) == 1 # Get one assessment from one user to one rest assessment_ret = get_bewertung_from_user_to_rest(db_session, user_add_1, rest_add_1) assert assessment_ret.kommentar == assessment_add_1_1.comment assert assessment_ret.rating == assessment_add_1_1.rating assert assessment_ret.zeitstempel is not None # Update assessment updated_1_1 = assessment_add_1_1.copy() updated_1_1.comment = "UPDATED" updated_1_1.rating = 0 assessment_ret = update_bewertung(db_session, assessment_add_1_1, updated_1_1) assert assessment_ret.kommentar == updated_1_1.comment assert assessment_ret.rating == updated_1_1.rating assert assessment_ret.person_email == updated_1_1.person.email assert assessment_ret.place_id == updated_1_1.restaurant.place_id # Try to get assessments that does not exist assessment_ret = get_all_user_bewertungen(db_session, fake_user) assert assessment_ret is None assessment_ret = get_bewertung_from_user_to_rest(db_session, fake_user, rest_add_1) assert assessment_ret is None assessment_ret = get_bewertung_from_user_to_rest(db_session, user_add_1, fake_rest) assert assessment_ret is None # Try to add assessments with invalid user and restaurant with pytest.raises(exc.SQLAlchemyError): assessment_ret = create_bewertung( db_session, scheme_rest.RestBewertungCreate(comment="none", rating=0, person=fake_user, restaurant=rest_add_1), ) with pytest.raises(exc.SQLAlchemyError): assessment_ret = create_bewertung( db_session, scheme_rest.RestBewertungCreate( comment="none", rating=0, person=scheme_user.UserBase(email=user_add_1.email), restaurant=fake_rest ), ) # Delete Assessments assert 1 == delete_bewertung(db_session, user_add_1, rest_add_1) assert get_bewertung_from_user_to_rest(db_session, user_add_1, rest_add_1) is None assert 0 == delete_bewertung(db_session, user_add_1, rest_add_1) assert 0 == delete_bewertung(db_session, fake_user, rest_add_2) assert 0 == delete_bewertung(db_session, user_add_1, fake_rest) # Test if only one comment for the same restaurant an user are possible with pytest.raises(exc.IntegrityError): create_bewertung(db_session, assessment_add_2_2) ``` #### File: essensfindung/tests/test_gapi.py ```python import json from typing import List import httpx import pytest from pytest_httpx import HTTPXMock from pytest_mock import MockerFixture from schemes import Cuisine from schemes.scheme_rest import Restaurant from tools import gapi @pytest.fixture def fake_nearby_search() -> dict: with open("tests/example_nearby_search.json", "r", encoding="utf8") as file: return json.load(file) @pytest.fixture def fake_nearby_search_restaurants(fake_nearby_search: str) -> List[Restaurant]: return [Restaurant(**value) for value in fake_nearby_search.get("results")] @pytest.fixture def fake_place_details() -> dict: with open("tests/example_place_details.json", "r", encoding="utf8") as file: return json.load(file) @pytest.fixture def fake_restaurants() -> List[Restaurant]: with open("tests/example_restaurants.json", "r", encoding="utf8") as file: fake_restaurants = json.load(file) return [Restaurant(**value) for value in fake_restaurants] @pytest.mark.parametrize("status_code", [100, 200, 300, 400]) def test_nearby_search( mocker: MockerFixture, httpx_mock: HTTPXMock, status_code: int, fake_nearby_search: dict, fake_nearby_search_restaurants: List[Restaurant], ): # Fake Datas params: dict = { "keyword": Cuisine.DOENER.value, "location": "42,42", "opennow": True, "radius": "42", "type": "restaurant", "language": "de", } # Mock httpx responses httpx_mock.add_response(status_code=status_code, json=fake_nearby_search) # Mock other functions mocker.patch("configuration.config.Setting.GOOGLE_API_KEY", "42") if status_code != 200: with pytest.raises(httpx.HTTPStatusError): gapi.nearby_search(params) else: restaurants = gapi.nearby_search(params) assert fake_nearby_search_restaurants == restaurants def test_place_details( httpx_mock: HTTPXMock, fake_place_details: dict, fake_restaurants: List[Restaurant], fake_nearby_search_restaurants: List[Restaurant], mocker: MockerFixture, ): # Mock httpx responses for fake_place_detail in fake_place_details: url = f"https://maps.googleapis.com/maps/api/place/details/json?key=42&place_id={fake_place_detail['result']['place_id']}" httpx_mock.add_response(status_code=200, json=fake_place_detail, url=url) # Mock other functions mocker.patch("configuration.config.Setting.GOOGLE_API_KEY", "42") restaurants = gapi.place_details(fake_nearby_search_restaurants) assert fake_restaurants == restaurants ``` #### File: essensfindung/views/restaurant.py ```python import enum from schemes import scheme_rest import fastapi from starlette.requests import Request from starlette.templating import Jinja2Templates templates = Jinja2Templates("templates") router = fastapi.APIRouter() @router.get("/findrestaurant") async def findrestaurant(request: Request, rest_name: str, costs : float, cuisine : str): #api.Search_restaurant(...) restaurant = scheme_rest.Restaurant(place_id="PlaceID", name=rest_name, geometry=scheme_rest.Geometry(location=scheme_rest.LocationRest(lat="47.7007", lng="9.562", adr=cuisine)), maps_url="https://maps.google.com/?cid=10544281732087259755", rating=4.0, own_rating=costs, phone_number="07541", homepage="http://www.alpha-fn.de/") return templates.TemplateResponse("restaurant/restaurant_result.html", {"request": request, "restaurant": restaurant}) ```
{ "source": "jonasstr/kita", "score": 2 }
#### File: kita/kit_dl/assistant.py ```python import getpass import os from colorama import Fore, Style from colorama import init import click import kit_dl.misc.utils as utils class Assistant: def __init__(self, yaml, dao): # Initialize colorama. init() self.yaml = yaml self.dao = dao def echo(self, text, is_prompt=False): """Forwards the given text to click.echo() and optionally applies a different style to the text.""" color = Fore.CYAN if is_prompt else Style.RESET_ALL if is_prompt: text = "> " + text click.echo(color + text) def prompt(self, text): """Forwards the given text to click.echo() and adds cyan color and a '>' symbol to the start of the string. """ return click.prompt(Fore.CYAN + "> " + text) def confirm(self, text, default=False): suffix = " (Y/n) [y]: " if default else " (y/N) [n]: " return click.confirm( Fore.CYAN + "> " + text, default=default, show_default=False, prompt_suffix=suffix ) def setup_user(self): """Starts the setup assistant for setting up the user.yml file. Saves the login credentials of the user and the root path for downloading assignments. """ from tkinter import filedialog # user.yml already exists. if os.path.isfile(self.dao.user_yml_path): if not self.confirm("Kita is already set up. Overwrite existing config?"): return False self.echo( "\nWelcome to the kit-dl setup utility.\n\nPlease enter values for the following " "settings (just press Enter to\naccept a default value, if one is given in brackets).\n" ) data = {} data["user_name"] = self.prompt("Enter your correct ilias user name").strip() data["password"] = self.select_password() self.echo( "\nChoose a location for saving your assignments. If you already\n" "downloaded assignments manually please choose your KIT folder\nfor auto-detection." ) self.echo("Select the root path for your assignments from the dialog window:", is_prompt=True) root_path = os.path.abspath(filedialog.askdirectory()) data["destination"] = {} data["destination"]["root_path"] = root_path # Set default rename format. data["destination"]["rename_format"] = "Blatt$$" self.dao.create_user(data) self.echo("Saved root folder '{}'.".format(utils.reformat(root_path))) return True def select_password(self): password = getpass.getpass("> Enter your ilias password: ").strip() while getpass.getpass("> Please confirm the password: ").strip() != password: self.echo("The passwords do not match." + Fore.CYAN) password = getpass.getpass("> Enter your ilias password: ").strip() return password def setup_config(self): """Starts the setup assistant for setting up the config.yml file.""" self.dao.load_config() if not self.is_user_setup(): return False root_path = self.dao.user_data["destination"]["root_path"] assignment_folders = self.detected_assignment_folders(root_path) added_courses = [] if assignment_folders: added_courses = self.show_kit_folder_detected_dialog(assignment_folders, root_path) self.show_confirm_all_courses_dialog( (course for course in self.dao.config_data), added_courses, root_path ) return True def is_user_setup(self): if os.path.isfile(self.dao.user_yml_path): self.dao.load_user() root_path = self.dao.user_data["destination"]["root_path"] if not os.path.isdir(root_path): self.echo( "\nKit-dl has not been configured correctly (root_path not found).\n" "Use 'kit-dl setup --user' instead." ) return False return True def show_kit_folder_detected_dialog(self, assignment_folders, root_path): """Asks the user to confirm the download locations for the given courses.""" self.echo("\nPossible KIT folder detected:") added_courses = [] for selection in assignment_folders: full_path = os.path.join(root_path, selection["folder_name"]) message = utils.reformat( "Save {} assignments to '{}'?".format(selection["course_key"].upper(), full_path) ) if self.confirm(message, default=True): added_courses.append(selection["course_key"]) self.dao.config_data[selection["course_key"]]["path"] = selection["folder_name"] self.dao.dump_config() return added_courses def show_confirm_all_courses_dialog(self, assignment_folders, added_courses, root_path): if not added_courses: download_dir = self.create_download_folder(assignment_folders, root_path) click.echo("Assignments will be saved to '{}'".format(download_dir)) return self.update_selected_courses(added_courses) from tkinter import filedialog while self.choice and not self.confirm( "Are these all courses: {}?".format(self.selected), default=True ): course_key = self.show_select_folder_manually_dialog(self.choice, "Which courses are missing?") selected_path = filedialog.askdirectory() self.show_assignments_save_location_dialog(course_key, selected_path) added_courses.append(course_key.lower()) self.update_selected_courses(added_courses) def update_selected_courses(self, added_courses): self.selected = ", ".join(course.upper() for course in added_courses) self.choice = ", ".join(key.upper() for key in self.dao.config_data.keys() if key not in added_courses) def show_assignments_save_location_dialog(self, course_key, selected_path): self.echo( "{} assignments will be saved to '{}'.".format(course_key.upper(), utils.reformat(selected_path)) ) self.dao.config_data[course_key]["path"] = selected_path self.dao.dump_config() def show_select_folder_manually_dialog(self, choice, prompt_msg): """Shows the setup dialog for adding the location of additional assignments.""" course_key = self.prompt("{} Choose from {}".format(prompt_msg, choice)) while not course_key.lower() in self.dao.config_data.keys(): self.echo("Error: invalid input") course_key = self.prompt("{} Choose from {}".format(prompt_msg, choice)) self.echo("Choose a location for saving your {} courses:".format(course_key.upper()), is_prompt=True) return course_key def create_download_folder(self, course_keys, root_path): """ :param course_keys: :param root_path: """ download_dir = os.path.join(root_path, "Downloads") os.makedirs(download_dir, exist_ok=True) for key in course_keys: if key in self.dao.config_data: new_key = self.dao.config_data[key]["name"].replace("/", "-").replace("\\", "-") course_dir = os.path.join(download_dir, new_key) os.makedirs(course_dir, exist_ok=True) self.dao.config_data[key]["path"] = course_dir self.dao.dump_config() return download_dir def detected_assignment_folders(self, root_path): course_folders = next(os.walk(root_path))[1] assignment_folders = [] for folder_name in course_folders: sub_folders = next(os.walk(os.path.join(root_path, folder_name)))[1] result = self.search_for_assignments_folder(folder_name, sub_folders) if result: assignment_folders.append(result) return assignment_folders def search_for_assignments_folder(self, folder_name, sub_folders): """Searches for a possible folder containing the assignments based on the folder name.""" for course_key in self.dao.config_data: # Folder has been found. if course_key == folder_name.lower() or self.are_similar( folder_name, course_key, self.dao.config_data[course_key]["name"] ): sub_folder_name = self.found_assignments_sub_folder(folder_name, sub_folders) return ( {"course_key": course_key, "folder_name": sub_folder_name} if sub_folder_name else {"course_key": course_key, "folder_name": folder_name} ) def found_assignments_sub_folder(self, course_folder_name, sub_folders): for sub_folder in sub_folders: name_list = ["assignments", "blätter", "übungen", "übungsblätter"] # Check whether the name of the sub-folder is either one of the above names. if any(x in sub_folder.lower() for x in name_list): return os.path.join(course_folder_name, sub_folder) def are_similar(self, folder_name, course_key, course_name): """Checks whether a given folder name is similar to the full name of a config.yml course or is equal to the course key (e.g. la).""" if ( folder_name.lower() == course_key or folder_name.startswith(course_name) or course_name.startswith(folder_name) ): return True course_suffixes = {"I": 1, "II": 2, "III": 3} for suffix in course_suffixes: if folder_name.endswith(suffix) or course_name.endswith(suffix): return ( folder_name.replace(suffix, str(course_suffixes[suffix])) == course_name or course_name.replace(suffix, str(course_suffixes[suffix])) == folder_name ) ``` #### File: kit_dl/misc/utils.py ```python def reformat(value): chars = {"Ä": "Ae", "Ö": "Oe", "Ü": "Ue", "ä": "ae", "ö": "oe", "ü": "ue", "\\": "/"} for char in chars: value = value.replace(char, chars[char]) return value ``` #### File: kita/tests/test_logger.py ```python import unittest.mock as mock from selenium.common.exceptions import TimeoutException from kit_dl.misc.logger import ProgressLogger, SilentProgressLogger from tests.base import BaseUnitTest class TestLogger(BaseUnitTest): @mock.patch("builtins.print") def test_silent_logger_single_update(self, mock_print): with SilentProgressLogger("LA") as logger: logger.update(1) self.assert_print_once_called_running("Updating LA: 1..", mock_print) @mock.patch("builtins.print") def test_silent_logger_multiple_updates(self, mock_print): with SilentProgressLogger("LA") as logger: logger.update(1) logger.update(2) self.assert_print_called_running("Updating LA: 1, 2..", mock_print) @mock.patch("builtins.print") def test_silent_logger_done(self, mock_print): with SilentProgressLogger("LA") as logger: logger.update(1) self.assert_print_called_done("\rUpdating LA: 1, done.", mock_print) @mock.patch("builtins.print") def test_silent_logger_exception_during_second_update_should_be_handled(self, mock_print): try: with SilentProgressLogger("LA") as logger: logger.update(1) logger.update(2) raise TimeoutException("indicating assignment 2 could not be found.") except TimeoutException: self.assert_print_called_done("\rUpdating LA: 1, done.", mock_print) @mock.patch("builtins.print") def test_silent_logger_exception_during_first_update_should_print_up_to_date(self, mock_print): try: with SilentProgressLogger("LA") as logger: logger.update(1) raise TimeoutException("indicating assignments are already up to date.") except TimeoutException: self.assert_print_called_done("\rUpdating LA: already up to date.", mock_print) @mock.patch("builtins.print") def test_progress_logger_single_update(self, mock_print): with ProgressLogger("LA", "Blatt$$") as logger: logger.update(1) self.assert_print_once_called_running("Downloading 'Blatt01' from LA", mock_print) @mock.patch("builtins.print") def test_progress_logger_multiple_updates(self, mock_print): with ProgressLogger("LA", "Blatt$$") as logger: logger.update(1) self.assert_print_called_running("Downloading 'Blatt01' from LA", mock_print) logger.update(2) self.assert_print_called_running("Downloading 'Blatt02' from LA", mock_print) @mock.patch("builtins.print") def test_progress_logger_done(self, mock_print): with ProgressLogger("LA", "Blatt$$") as logger: logger.update(1) logger.update(2) self.assert_print_called_done(", done.", mock_print) ```
{ "source": "JonasSuni/geopack", "score": 2 }
#### File: geopack/geopack/t04.py ```python import numpy as np # t04 is identical to t01 except for several factors. def t04(parmod,ps,x,y,z): """ A data-based model of the external (i.e., without earth's contribution) part of the magnetospheric magnetic field, calibrated by (1) solar wind pressure pdyn (nanopascals), (2) dst (nanotesla), (3) byimf, (4) bzimf (nanotesla) (5-10) indices w1 - w6, calculated as time integrals from the beginning of a storm see the reference (3) below, for a detailed definition of those variables :param parmod: The elements are explained above. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. Computed as a sum of contributions from principal field sources. Assembled: March 25, 2004; Updated: August 2 & 31, December 27, 2004. A bug eliminated March 14, 2005 (might cause compilation problems with some fortran compilers) Attention: The model is based on data taken sunward from x=-15Re, and hence becomes invalid at larger tailward distances !!! * REFERENCES: (1) <NAME>, A new data-based model of the near magnetosphere magnetic field: 1. Mathematical structure. 2. Parameterization and fitting to observations. JGR v. 107(A8), 1176/1179, doi:10.1029/2001JA000219/220, 2002. (2) <NAME>, <NAME>, <NAME>, Storm-time distortion of the inner magnetosphere: How severe can it get ? JGR v. 108(A5), 1209, doi:10.1029/2002JA009808, 2003. (3) <NAME> and <NAME>, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., v. 110 (A3), A03208, doi: 10.1029/2004JA010798, 2005. """ a = np.array([ 1.00000,5.44118,0.891995,9.09684,0.00000,-7.18972,12.2700, -4.89408,0.00000,0.870536,1.36081,0.00000,0.688650,0.602330, 0.00000,0.316346,1.22728,-0.363620E-01,-0.405821,0.452536, 0.755831,0.215662,0.152759,5.96235,23.2036,11.2994,69.9596, 0.989596,-0.132131E-01,0.985681,0.344212E-01,1.02389,0.207867, 1.51220,0.682715E-01,1.84714,1.76977,1.37690,0.696350,0.343280, 3.28846,111.293,5.82287,4.39664,0.383403,0.648176,0.318752E-01, 0.581168,1.15070,0.843004,0.394732,0.846509,0.916555,0.550920, 0.180725,0.898772,0.387365,2.26596,1.29123,0.436819,1.28211, 1.33199,.405553,1.6229,.699074,1.26131,2.42297,.537116,.619441]) iopgen,ioptt,iopb,iopr = [0.]*4 pdyn=parmod[0] dst_ast=parmod[1]*0.8-13*np.sqrt(pdyn) bximf,byimf,bzimf=[0.,parmod[2],parmod[3]] w1,w2,w3,w4,w5,w6 = parmod[4:10] pss,xx,yy,zz = [ps,x,y,z] return extern(iopgen,ioptt,iopb,iopr,a,69,pdyn,dst_ast,bximf,byimf,bzimf, w1,w2,w3,w4,w5,w6,pss,xx,yy,zz) def extern(iopgen,iopt,iopb,iopr,a,ntot,pdyn,dst,bximf,byimf,bzimf,w1,w2,w3,w4,w5,w6,ps,x,y,z): """ :param iopgen: general option flag: iopgen=0 - calculate total field iopgen=1 - dipole shielding only iopgen=2 - tail field only iopgen=3 - birkeland field only iopgen=4 - ring current field only iopgen=5 - interconnection field only :param iopt: tail field flag: iopt=0 - both modes iopt=1 - mode 1 only iopt=2 - mode 2 only :param iopb: birkeland field flag: iopb=0 - all 4 terms iopb=1 - region 1, modes 1 and 2 iopb=2 - region 2, modes 1 and 2 :param iopr: ring current flag: iopr=0 - both src and prc iopr=1 - src only iopr=2 - prc only """ # common /tail/ dxshift1,dxshift2,d,deltady ! the common blocks forward nonlinear parameters # common /birkpar/ xkappa1,xkappa2 # common /rcpar/ sc_sy,sc_as,phi # common /g/ g # common /rh0/ rh0 global dxshift1, dxshift2, d, deltady global xkappa1, xkappa2 global sc_sy, sc_pr, phi global g global rh0 a0_a,a0_s0,a0_x0 = [34.586,1.1960,3.4397] # Shue et al. parameters dsig = 0.005 rh0,rh2 = [8.0,-5.2] xappa = (pdyn/2.)**a[22] # overall scaling parameter rh0 = 7.5 # tail hinging distance g = 35.0 # tail warping parameter xappa3=xappa**3 xx=x*xappa yy=y*xappa zz=z*xappa sps=np.sin(ps) x0=a0_x0/xappa am=a0_a/xappa s0=a0_s0 # Calculate "imf" components outside the magnetopause layer (hence begin with "o") # They are needed only if the point (x,y,z) is within the transition magnetopause layer or outside the magnetosphere: factimf=a[19] oimfx=0. oimfy=byimf*factimf oimfz=bzimf*factimf r=np.sqrt(x**2+y**2+z**2) xss=x zss=z # begin iterative search of unwarped coords (to find sigma) dd = 1. while dd > 1e-6: xsold=xss zsold=zss rh=rh0+rh2*(zss/r)**2 sinpsas=sps/(1+(r/rh)**3)**0.33333333 cospsas=np.sqrt(1-sinpsas**2) zss=x*sinpsas+z*cospsas xss=x*cospsas-z*sinpsas dd=np.abs(xss-xsold)+np.abs(zss-zsold) rho2=y**2+zss**2 asq=am**2 xmxm=am+xss-x0 if xmxm < 0: xmxm = 0 # the boundary is a cylinder tailward of x=x0-am axx0=xmxm**2 aro=asq+rho2 sigma=np.sqrt((aro+axx0+np.sqrt((aro+axx0)**2-4.*asq*axx0))/(2.*asq)) # Now, there are three possible cases: # (1) inside the magnetosphere # (2) in the boundary layer # (3) outside the magnetosphere and b.layer # First of all, consider the cases (1) and (2): if sigma < (s0+dsig): # cases (1) or (2); calculate the model field (with the potential "penetrated" interconnection field): bxcf,bycf,bzcf = [0.]*3 if iopgen <= 1: cfx,cfy,cfz = shlcar3x3(xx,yy,zz,ps) # dipole shielding field bxcf=cfx*xappa3 bycf=cfy*xappa3 bzcf=cfz*xappa3 bxt1,byt1,bzt1,bxt2,byt2,bzt2 = [0.]*6 if (iopgen == 0) | (iopgen == 2): dstt = -20. if dst < dstt: dstt = dst znam = np.abs(dstt)**0.37 dxshift1=a[23]-a[24]/znam dxshift2=a[25]-a[26]/znam d=a[35]*np.exp(-w1/a[36])+a[68] deltady=4.7 bxt1,byt1,bzt1,bxt2,byt2,bzt2 = deformed(iopt,ps,xx,yy,zz) bxr11,byr11,bzr11, bxr12,byr12,bzr12, bxr21,byr21,bzr21, bxr22,byr22,bzr22 = [0.]*12 if (iopgen == 0) | (iopgen == 3): znam = np.abs(dst) if dst >= -20: znam = 20. xkappa1=a[31]*(znam/20)**a[32] xkappa2=a[33]*(znam/20)**a[34] # Birkeland field (two modes for r1 and two modes for r2) bxr11,byr11,bzr11, bxr12,byr12,bzr12, bxr21,byr21,bzr21, bxr22,byr22,bzr22 = \ birk_tot(iopb,ps,xx,yy,zz) bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc = [0.]*6 if (iopgen == 0) | (iopgen == 4): phi=a[37] znam=np.abs(dst) if dst >= -20: znam = 20 sc_sy=a[27]*(20/znam)**a[28]*xappa sc_pr=a[29]*(20/znam)**a[30]*xappa # shielded ring current (src and prc) bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc = full_rc(iopr,ps,xx,yy,zz) hximf,hyimf,hzimf = [0.]*3 if (iopgen == 0) | (iopgen == 5): # These are components of the penetrated field per unit of the penetration coefficient. # In other words, these are derivatives of the penetration field components with respect # to the penetration coefficient. We assume that only the transverse component of the # field penetrates inside. hximf,hyimf,hzimf = [0.,byimf,bzimf] # Now, add up all the components: dlp1=(pdyn/2)**a[20] dlp2=(pdyn/2)**a[21] tamp1=a[1]+a[2]*dlp1+a[3]*a[38]*w1/np.sqrt(w1**2+a[38]**2)+a[4]*dst tamp2=a[5]+a[6]*dlp2+a[7]*a[39]*w2/np.sqrt(w2**2+a[39]**2)+a[8]*dst a_src=a[9] +a[10]*a[40]*w3/np.sqrt(w3**2+a[40]**2)+a[11]*dst a_prc=a[12]+a[13]*a[41]*w4/np.sqrt(w4**2+a[41]**2)+a[14]*dst a_r11=a[15]+a[16]*a[42]*w5/np.sqrt(w5**2+a[42]**2) a_r21=a[17]+a[18]*a[43]*w6/np.sqrt(w6**2+a[43]**2) bbx=a[0]*bxcf + tamp1*bxt1+tamp2*bxt2 + a_src*bxsrc+a_prc*bxprc + a_r11*bxr11+a_r21*bxr21 + a[19]*hximf bby=a[0]*bycf + tamp1*byt1+tamp2*byt2 + a_src*bysrc+a_prc*byprc + a_r11*byr11+a_r21*byr21 + a[19]*hyimf bbz=a[0]*bzcf + tamp1*bzt1+tamp2*bzt2 + a_src*bzsrc+a_prc*bzprc + a_r11*bzr11+a_r21*bzr21 + a[19]*hzimf # And we have the total external field. # Now, let us check whether we have the case (1). if yes - we are done: if sigma < (s0-dsig): # (x,y,z) is inside the magnetosphere bx,by,bz = [bbx,bby,bbz] else: # this is the most complex case: we are inside the interpolation region fint=0.5*(1.-(sigma-s0)/dsig) fext=0.5*(1.+(sigma-s0)/dsig) qx,qy,qz = dipole(ps,x,y,z) bx=(bbx+qx)*fint+oimfx*fext -qx by=(bby+qy)*fint+oimfy*fext -qy bz=(bbz+qz)*fint+oimfz*fext -qz # The cases (1) and (2) are exhausted; the only remaining possibility is now the case (3): else: qx,qy,qz = dipole(ps,x,y,z) bx=oimfx-qx by=oimfy-qy bz=oimfz-qz return bx,by,bz def shlcar3x3(x,y,z, ps): """ This subroutine returns the shielding field for the earth's dipole, represented by 2x3x3=18 "cartesian" harmonics, tilted with respect to the z=0 plane (nb#4, p.74) :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :param ps: geo-dipole tilt angle in radius. :return: bx,by,bz. Field components in GSM system, in nT. """ # The 36 coefficients enter in pairs in the amplitudes of the "cartesian" harmonics (A(1)-A(36). # The 14 nonlinear parameters (A(37)-A(50) are the scales Pi,Ri,Qi,and Si entering the arguments of exponents, sines, and cosines in each of the # 18 "cartesian" harmonics plus two tilt angles for the cartesian harmonics (one for the psi=0 mode and another for the psi=90 mode) a = np.array([ -901.2327248,895.8011176,817.6208321,-845.5880889,-83.73539535, 86.58542841,336.8781402,-329.3619944,-311.2947120,308.6011161, 31.94469304,-31.30824526,125.8739681,-372.3384278,-235.4720434, 286.7594095,21.86305585,-27.42344605,-150.4874688,2.669338538, 1.395023949,-.5540427503,-56.85224007,3.681827033,-43.48705106, 5.103131905,1.073551279,-.6673083508,12.21404266,4.177465543, 5.799964188,-.3977802319,-1.044652977,.5703560010,3.536082962, -3.222069852,9.620648151,6.082014949,27.75216226,12.44199571, 5.122226936,6.982039615,20.12149582,6.150973118,4.663639687, 15.73319647,2.303504968,5.840511214,.8385953499E-01,.3477844929]) p1,p2,p3, r1,r2,r3, q1,q2,q3, s1,s2,s3 = a[36:48] t1,t2 = a[48:50] cps=np.cos(ps) sps=np.sin(ps) s2ps=2*cps # modified here (sin(2*ps) instead of sin(3*ps)) st1=np.sin(ps*t1) ct1=np.cos(ps*t1) st2=np.sin(ps*t2) ct2=np.cos(ps*t2) x1=x*ct1-z*st1 z1=x*st1+z*ct1 x2=x*ct2-z*st2 z2=x*st2+z*ct2 # make the terms in the 1st sum ("perpendicular" symmetry): # i=1: sqpr= np.sqrt(1/p1**2+1/r1**2) cyp = np.cos(y/p1) syp = np.sin(y/p1) czr = np.cos(z1/r1) szr = np.sin(z1/r1) expr= np.exp(sqpr*x1) fx1 =-sqpr*expr*cyp*szr hy1 = expr/p1*syp*szr fz1 =-expr*cyp/r1*czr hx1 = fx1*ct1+fz1*st1 hz1 =-fx1*st1+fz1*ct1 sqpr= np.sqrt(1/p1**2+1/r2**2) cyp = np.cos(y/p1) syp = np.sin(y/p1) czr = np.cos(z1/r2) szr = np.sin(z1/r2) expr= np.exp(sqpr*x1) fx2 =-sqpr*expr*cyp*szr hy2 = expr/p1*syp*szr fz2 =-expr*cyp/r2*czr hx2 = fx2*ct1+fz2*st1 hz2 =-fx2*st1+fz2*ct1 sqpr= np.sqrt(1/p1**2+1/r3**2) cyp = np.cos(y/p1) syp = np.sin(y/p1) czr = np.cos(z1/r3) szr = np.sin(z1/r3) expr= np.exp(sqpr*x1) fx3 =-expr*cyp*(sqpr*z1*czr+szr/r3*(x1+1/sqpr)) hy3 = expr/p1*syp*(z1*czr+x1/r3*szr/sqpr) fz3 =-expr*cyp*(czr*(1+x1/r3**2/sqpr)-z1/r3*szr) hx3 = fx3*ct1+fz3*st1 hz3 =-fx3*st1+fz3*ct1 # i=2: sqpr= np.sqrt(1/p2**2+1/r1**2) cyp = np.cos(y/p2) syp = np.sin(y/p2) czr = np.cos(z1/r1) szr = np.sin(z1/r1) expr= np.exp(sqpr*x1) fx4 =-sqpr*expr*cyp*szr hy4 = expr/p2*syp*szr fz4 =-expr*cyp/r1*czr hx4 = fx4*ct1+fz4*st1 hz4 =-fx4*st1+fz4*ct1 sqpr= np.sqrt(1/p2**2+1/r2**2) cyp = np.cos(y/p2) syp = np.sin(y/p2) czr = np.cos(z1/r2) szr = np.sin(z1/r2) expr= np.exp(sqpr*x1) fx5 =-sqpr*expr*cyp*szr hy5 = expr/p2*syp*szr fz5 =-expr*cyp/r2*czr hx5 = fx5*ct1+fz5*st1 hz5 =-fx5*st1+fz5*ct1 sqpr= np.sqrt(1/p2**2+1/r3**2) cyp = np.cos(y/p2) syp = np.sin(y/p2) czr = np.cos(z1/r3) szr = np.sin(z1/r3) expr= np.exp(sqpr*x1) fx6 =-expr*cyp*(sqpr*z1*czr+szr/r3*(x1+1/sqpr)) hy6 = expr/p2*syp*(z1*czr+x1/r3*szr/sqpr) fz6 =-expr*cyp*(czr*(1+x1/r3**2/sqpr)-z1/r3*szr) hx6 = fx6*ct1+fz6*st1 hz6 =-fx6*st1+fz6*ct1 # i=3: sqpr= np.sqrt(1/p3**2+1/r1**2) cyp = np.cos(y/p3) syp = np.sin(y/p3) czr = np.cos(z1/r1) szr = np.sin(z1/r1) expr= np.exp(sqpr*x1) fx7 =-sqpr*expr*cyp*szr hy7 = expr/p3*syp*szr fz7 =-expr*cyp/r1*czr hx7 = fx7*ct1+fz7*st1 hz7 =-fx7*st1+fz7*ct1 sqpr= np.sqrt(1/p3**2+1/r2**2) cyp = np.cos(y/p3) syp = np.sin(y/p3) czr = np.cos(z1/r2) szr = np.sin(z1/r2) expr= np.exp(sqpr*x1) fx8 =-sqpr*expr*cyp*szr hy8 = expr/p3*syp*szr fz8 =-expr*cyp/r2*czr hx8 = fx8*ct1+fz8*st1 hz8 =-fx8*st1+fz8*ct1 sqpr= np.sqrt(1/p3**2+1/r3**2) cyp = np.cos(y/p3) syp = np.sin(y/p3) czr = np.cos(z1/r3) szr = np.sin(z1/r3) expr= np.exp(sqpr*x1) fx9 =-expr*cyp*(sqpr*z1*czr+szr/r3*(x1+1/sqpr)) hy9 = expr/p3*syp*(z1*czr+x1/r3*szr/sqpr) fz9 =-expr*cyp*(czr*(1+x1/r3**2/sqpr)-z1/r3*szr) hx9 = fx9*ct1+fz9*st1 hz9 =-fx9*st1+fz9*ct1 a1=a[0]+a[1]*cps a2=a[2]+a[3]*cps a3=a[4]+a[5]*cps a4=a[6]+a[7]*cps a5=a[8]+a[9]*cps a6=a[10]+a[11]*cps a7=a[12]+a[13]*cps a8=a[14]+a[15]*cps a9=a[16]+a[17]*cps bx=a1*hx1+a2*hx2+a3*hx3+a4*hx4+a5*hx5+a6*hx6+a7*hx7+a8*hx8+a9*hx9 by=a1*hy1+a2*hy2+a3*hy3+a4*hy4+a5*hy5+a6*hy6+a7*hy7+a8*hy8+a9*hy9 bz=a1*hz1+a2*hz2+a3*hz3+a4*hz4+a5*hz5+a6*hz6+a7*hz7+a8*hz8+a9*hz9 # make the terms in the 2nd sum ("parallel" symmetry): # i=1 sqqs= np.sqrt(1/q1**2+1/s1**2) cyq = np.cos(y/q1) syq = np.sin(y/q1) czs = np.cos(z2/s1) szs = np.sin(z2/s1) exqs= np.exp(sqqs*x2) fx1 =-sqqs*exqs*cyq*czs *sps hy1 = exqs/q1*syq*czs *sps fz1 = exqs*cyq/s1*szs *sps hx1 = fx1*ct2+fz1*st2 hz1 =-fx1*st2+fz1*ct2 sqqs= np.sqrt(1/q1**2+1/s2**2) cyq = np.cos(y/q1) syq = np.sin(y/q1) czs = np.cos(z2/s2) szs = np.sin(z2/s2) exqs= np.exp(sqqs*x2) fx2 =-sqqs*exqs*cyq*czs *sps hy2 = exqs/q1*syq*czs *sps fz2 = exqs*cyq/s2*szs *sps hx2 = fx2*ct2+fz2*st2 hz2 =-fx2*st2+fz2*ct2 sqqs= np.sqrt(1/q1**2+1/s3**2) cyq = np.cos(y/q1) syq = np.sin(y/q1) czs = np.cos(z2/s3) szs = np.sin(z2/s3) exqs= np.exp(sqqs*x2) fx3 =-sqqs*exqs*cyq*czs *sps hy3 = exqs/q1*syq*czs *sps fz3 = exqs*cyq/s3*szs *sps hx3 = fx3*ct2+fz3*st2 hz3 =-fx3*st2+fz3*ct2 # i=2: sqqs= np.sqrt(1/q2**2+1/s1**2) cyq = np.cos(y/q2) syq = np.sin(y/q2) czs = np.cos(z2/s1) szs = np.sin(z2/s1) exqs= np.exp(sqqs*x2) fx4 =-sqqs*exqs*cyq*czs *sps hy4 = exqs/q2*syq*czs *sps fz4 = exqs*cyq/s1*szs *sps hx4 = fx4*ct2+fz4*st2 hz4 =-fx4*st2+fz4*ct2 sqqs= np.sqrt(1/q2**2+1/s2**2) cyq = np.cos(y/q2) syq = np.sin(y/q2) czs = np.cos(z2/s2) szs = np.sin(z2/s2) exqs= np.exp(sqqs*x2) fx5 =-sqqs*exqs*cyq*czs *sps hy5 = exqs/q2*syq*czs *sps fz5 = exqs*cyq/s2*szs *sps hx5 = fx5*ct2+fz5*st2 hz5 =-fx5*st2+fz5*ct2 sqqs= np.sqrt(1/q2**2+1/s3**2) cyq = np.cos(y/q2) syq = np.sin(y/q2) czs = np.cos(z2/s3) szs = np.sin(z2/s3) exqs= np.exp(sqqs*x2) fx6 =-sqqs*exqs*cyq*czs *sps hy6 = exqs/q2*syq*czs *sps fz6 = exqs*cyq/s3*szs *sps hx6 = fx6*ct2+fz6*st2 hz6 =-fx6*st2+fz6*ct2 # i=3: sqqs= np.sqrt(1/q3**2+1/s1**2) cyq = np.cos(y/q3) syq = np.sin(y/q3) czs = np.cos(z2/s1) szs = np.sin(z2/s1) exqs= np.exp(sqqs*x2) fx7 =-sqqs*exqs*cyq*czs *sps hy7 = exqs/q3*syq*czs *sps fz7 = exqs*cyq/s1*szs *sps hx7 = fx7*ct2+fz7*st2 hz7 =-fx7*st2+fz7*ct2 sqqs= np.sqrt(1/q3**2+1/s2**2) cyq = np.cos(y/q3) syq = np.sin(y/q3) czs = np.cos(z2/s2) szs = np.sin(z2/s2) exqs= np.exp(sqqs*x2) fx8 =-sqqs*exqs*cyq*czs *sps hy8 = exqs/q3*syq*czs *sps fz8 = exqs*cyq/s2*szs *sps hx8 = fx8*ct2+fz8*st2 hz8 =-fx8*st2+fz8*ct2 sqqs= np.sqrt(1/q3**2+1/s3**2) cyq = np.cos(y/q3) syq = np.sin(y/q3) czs = np.cos(z2/s3) szs = np.sin(z2/s3) exqs= np.exp(sqqs*x2) fx9 =-sqqs*exqs*cyq*czs *sps hy9 = exqs/q3*syq*czs *sps fz9 = exqs*cyq/s3*szs *sps hx9 = fx9*ct2+fz9*st2 hz9 =-fx9*st2+fz9*ct2 a1=a[18]+a[19]*s2ps a2=a[20]+a[21]*s2ps a3=a[22]+a[23]*s2ps a4=a[24]+a[25]*s2ps a5=a[26]+a[27]*s2ps a6=a[28]+a[29]*s2ps a7=a[30]+a[31]*s2ps a8=a[32]+a[33]*s2ps a9=a[34]+a[35]*s2ps bx=bx+a1*hx1+a2*hx2+a3*hx3+a4*hx4+a5*hx5+a6*hx6+a7*hx7+a8*hx8+a9*hx9 by=by+a1*hy1+a2*hy2+a3*hy3+a4*hy4+a5*hy5+a6*hy6+a7*hy7+a8*hy8+a9*hy9 bz=bz+a1*hz1+a2*hz2+a3*hz3+a4*hz4+a5*hz5+a6*hz6+a7*hz7+a8*hz8+a9*hz9 return bx, by, bz def deformed(iopt, ps, x,y,z): """ Calculates gsm components of two unit-amplitude tail field modes, taking into account both effects of dipole tilt: warping in y-z (done by the subroutine warped) and bending in x-z (done by this subroutine) :param iopt: tail field mode flag: iopt=0 - the two tail modes are added up; iopt=1 - mode 1 only; iopt=2 - mode 2 only :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # rh0,rh1,rh2, and ieps control the tilt-related deformation of the tail field # common /rh0/ rh0 global rh0 rh2,ieps = [-5.2,3] sps = np.sin(ps) r2 = x**2+y**2+z**2 r = np.sqrt(r2) zr = z/r rh = rh0+rh2*zr**2 drhdr = -zr/r*2*rh2*zr drhdz = 2*rh2*zr/r rrh = r/rh f = 1/(1+rrh**ieps)**(1/ieps) dfdr = -rrh**(ieps-1)*f**(ieps+1)/rh dfdrh = -rrh*dfdr spsas = sps*f cpsas = np.sqrt(1-spsas**2) xas = x*cpsas-z*spsas zas = x*spsas+z*cpsas facps = sps/cpsas*(dfdr+dfdrh*drhdr)/r psasx = facps*x psasy = facps*y psasz = facps*z+sps/cpsas*dfdrh*drhdz dxasdx = cpsas-zas*psasx dxasdy =-zas*psasy dxasdz =-spsas-zas*psasz dzasdx = spsas+xas*psasx dzasdy = xas*psasy dzasdz = cpsas+xas*psasz fac1 = dxasdz*dzasdy-dxasdy*dzasdz fac2 = dxasdx*dzasdz-dxasdz*dzasdx fac3 = dzasdx*dxasdy-dxasdx*dzasdy # deform: bxas1,byas1,bzas1, bxas2,byas2,bzas2 = warped(iopt,ps,xas,y,zas) bx1=bxas1*dzasdz-bzas1*dxasdz +byas1*fac1 by1=byas1*fac2 bz1=bzas1*dxasdx-bxas1*dzasdx +byas1*fac3 bx2=bxas2*dzasdz-bzas2*dxasdz +byas2*fac1 by2=byas2*fac2 bz2=bzas2*dxasdx-bxas2*dzasdx +byas2*fac3 return bx1,by1,bz1, bx2,by2,bz2 def warped(iopt, ps, x,y,z): """ Calculates GSM components of the warped field for two tail unit modes. The warping deformation is imposed on the unwarped field, computed by the subroutine "unwarped". The warping parameter g was obtained by least squares fitting to the entire dataset. :param iopt: tail field mode flag: iopt=0 - the two tail modes are added up; iopt=1 - mode 1 only; iopt=2 - mode 2 only :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # common /g/ g global g dgdx,xl,dxldx = [0.,20,0] sps=np.sin(ps) rho2=y**2+z**2 rho=np.sqrt(rho2) if (y == 0) & (z == 0): phi=0. cphi=1. sphi=0. else: phi=np.arctan2(z,y) cphi=y/rho sphi=z/rho rr4l4=rho/(rho2**2+xl**4) f=phi+g*rho2*rr4l4*cphi*sps dfdphi=1-g*rho2*rr4l4*sphi*sps dfdrho=g*rr4l4**2*(3*xl**4-rho2**2)*cphi*sps dfdx=rr4l4*cphi*sps*(dgdx*rho2-g*rho*rr4l4*4*xl**3*dxldx) cf=np.cos(f) sf=np.sin(f) yas=rho*cf zas=rho*sf bx_as1,by_as1,bz_as1, bx_as2,by_as2,bz_as2 = unwarped(iopt,x,yas,zas) brho_as = by_as1*cf+bz_as1*sf # deform the 1st mode bphi_as = -by_as1*sf+bz_as1*cf brho_s = brho_as*dfdphi bphi_s = bphi_as-rho*(bx_as1*dfdx+brho_as*dfdrho) bx1 = bx_as1*dfdphi by1 = brho_s*cphi-bphi_s*sphi bz1 = brho_s*sphi+bphi_s*cphi # done brho_as = by_as2*cf+bz_as2*sf # deform the 2nd mode bphi_as = -by_as2*sf+bz_as2*cf brho_s = brho_as*dfdphi bphi_s = bphi_as-rho*(bx_as2*dfdx+brho_as*dfdrho) bx2 = bx_as2*dfdphi by2 = brho_s*cphi-bphi_s*sphi bz2 = brho_s*sphi+bphi_s*cphi # done return bx1,by1,bz1, bx2,by2,bz2 def unwarped(iopt, x,y,z): """ Calculates GSM components of the shielded field of two tail modes with unit amplitudes, without any warping or bending. Nonlinear parameters of the modes are forwarded here via a common block /tail/. :param iopt: tail field mode flag: iopt=0 - the two tail modes are added up; iopt=1 - mode 1 only; iopt=2 - mode 2 only :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # common /tail/ dxshift1,dxshift2,d,deltady global dxshift1, dxshift2, d, deltady deltadx1,alpha1,xshift1 = [1.,1.1,6] deltadx2,alpha2,xshift2 = [0.,.25,4] a1 = np.array([ -25.45869857,57.35899080,317.5501869,-2.626756717,-93.38053698, -199.6467926,-858.8129729,34.09192395,845.4214929,-29.07463068, 47.10678547,-128.9797943,-781.7512093,6.165038619,167.8905046, 492.0680410,1654.724031,-46.77337920,-1635.922669,40.86186772, -.1349775602,-.9661991179e-01,-.1662302354,.002810467517,.2487355077, .1025565237,-14.41750229,-.8185333989,11.07693629,.7569503173, -9.655264745,112.2446542,777.5948964,-5.745008536,-83.03921993, -490.2278695,-1155.004209,39.08023320,1172.780574,-39.44349797, -14.07211198,-40.41201127,-313.2277343,2.203920979,8.232835341, 197.7065115,391.2733948,-18.57424451,-437.2779053,23.04976898, 11.75673963,13.60497313,4.691927060,18.20923547,27.59044809, 6.677425469,1.398283308,2.839005878,31.24817706,24.53577264]) a2 = np.array([ -287187.1962,4970.499233,410490.1952,-1347.839052,-386370.3240, 3317.983750,-143462.3895,5706.513767,171176.2904,250.8882750, -506570.8891,5733.592632,397975.5842,9771.762168,-941834.2436, 7990.975260,54313.10318,447.5388060,528046.3449,12751.04453, -21920.98301,-21.05075617,31971.07875,3012.641612,-301822.9103, -3601.107387,1797.577552,-6.315855803,142578.8406,13161.93640, 804184.8410,-14168.99698,-851926.6360,-1890.885671,972475.6869, -8571.862853,26432.49197,-2554.752298,-482308.3431,-4391.473324, 105155.9160,-1134.622050,-74353.53091,-5382.670711,695055.0788, -916.3365144,-12111.06667,67.20923358,-367200.9285,-21414.14421, 14.75567902,20.75638190,59.78601609,16.86431444,32.58482365, 23.69472951,17.24977936,13.64902647,68.40989058,11.67828167]) xm1,xm2 = [-12.,-12] bx1,by1,bz1, bx2,by2,bz2 = [0.]*6 if iopt < 2: # iopt = 0 or 1 xsc1 = (x-xshift1-dxshift1)*alpha1-xm1*(alpha1-1) ysc1 = y*alpha1 zsc1 = z*alpha1 d0sc1 = d*alpha1 # here we use a single value d0 of the thickness for both modes fx1,fy1,fz1 = taildisk(d0sc1,deltadx1,deltady,xsc1,ysc1,zsc1) hx1,hy1,hz1 = shlcar5x5(a1,x,y,z,dxshift1) bx1=fx1+hx1 by1=fy1+hy1 bz1=fz1+hz1 if iopt != 1: # iop = 0 or 2 xsc2 = (x-xshift2-dxshift2)*alpha2-xm2*(alpha2-1) ysc2 = y*alpha2 zsc2 = z*alpha2 d0sc2 = d*alpha2 # here we use a single value d0 of the thickness for both modes fx2,fy2,fz2 = taildisk(d0sc2,deltadx2,deltady,xsc2,ysc2,zsc2) hx2,hy2,hz2 = shlcar5x5(a2,x,y,z,dxshift2) bx2=fx2+hx2 by2=fy2+hy2 bz2=fz2+hz2 return bx1,by1,bz1, bx2,by2,bz2 def taildisk(d0,deltadx,deltady, x,y,z): """ This subroutine computes the components of the tail current field, similar to that described by Tsyganenko and peredo (1994). The difference is that now we use spacewarping, as described in our paper on modeling Birkeland currents (Tsyganenko and stern, 1996) instead of shearing it in the spirit of the T89 tail model. :param d0: :param deltadx: :param deltady: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ f = np.array([-71.09346626,-1014.308601,-1272.939359,-3224.935936,-44546.86232]) b = np.array([10.90101242,12.68393898,13.51791954,14.86775017,15.12306404]) c = np.array([.7954069972,.6716601849,1.174866319,2.565249920,10.01986790]) rho=np.sqrt(x**2+y**2) drhodx=x/rho drhody=y/rho dex=np.exp(x/7) d=d0+deltady*(y/20)**2+deltadx*dex # The last term (introduced 10/11/2000) makes the sheet thicken sunward, to avoid problems in the subsolar region dddy=deltady*y*0.005 dddx=deltadx/7*dex dzeta=np.sqrt(z**2+d**2) # this is the same simple way to spread out the sheet, as that used in t89 ddzetadx=d*dddx/dzeta ddzetady=d*dddy/dzeta ddzetadz=z/dzeta dbx,dby,dbz = [0.0,0,0] for i in range(5): bi=b[i] ci=c[i] s1=np.sqrt((rho+bi)**2+(dzeta+ci)**2) s2=np.sqrt((rho-bi)**2+(dzeta+ci)**2) ds1drho=(rho+bi)/s1 ds2drho=(rho-bi)/s2 ds1ddz=(dzeta+ci)/s1 ds2ddz=(dzeta+ci)/s2 ds1dx=ds1drho*drhodx+ds1ddz*ddzetadx ds1dy=ds1drho*drhody+ds1ddz*ddzetady ds1dz= ds1ddz*ddzetadz ds2dx=ds2drho*drhodx+ds2ddz*ddzetadx ds2dy=ds2drho*drhody+ds2ddz*ddzetady ds2dz= ds2ddz*ddzetadz s1ts2=s1*s2 s1ps2=s1+s2 s1ps2sq=s1ps2**2 fac1=np.sqrt(s1ps2sq-(2*bi)**2) asas=fac1/(s1ts2*s1ps2sq) dasds1=(1/(fac1*s2)-asas/s1ps2*(s2*s2+s1*(3*s1+4*s2)))/(s1*s1ps2) dasds2=(1/(fac1*s1)-asas/s1ps2*(s1*s1+s2*(3*s2+4*s1)))/(s2*s1ps2) dasdx=dasds1*ds1dx+dasds2*ds2dx dasdy=dasds1*ds1dy+dasds2*ds2dy dasdz=dasds1*ds1dz+dasds2*ds2dz dbx=dbx-f[i]*x*dasdz dby=dby-f[i]*y*dasdz dbz=dbz+f[i]*(2*asas+x*dasdx+y*dasdy) return dbx, dby, dbz def shlcar5x5(a,x,y,z,dshift): """ This code returns the shielding field represented by 5x5=25 "cartesian" harmonics :param a: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :param dshift: :return: """ # The nlin coefficients are the amplitudes of the "cartesian" harmonics (a(1)-a(nlin). # The nnp nonlinear parameters (a(nlin+1)-a(ntot) are the scales pi and ri entering the arguments of exponents, sines, # and cosines in each of the nlin "cartesian" harmonics dhx,dhy,dhz = [0.]*3 l=0 for i in range(5): rp=1/a[50+i] cypi=np.cos(y*rp) sypi=np.sin(y*rp) for k in range(5): rr=1/a[55+k] szrk=np.sin(z*rr) czrk=np.cos(z*rr) sqpr=np.sqrt(rp**2+rr**2) epr= np.exp(x*sqpr) dbx=-sqpr*epr*cypi*szrk dby= rp*epr*sypi*szrk dbz=-rr*epr*cypi*czrk coef=a[l]+a[l+1]*dshift l += 2 dhx=dhx+coef*dbx dhy=dhy+coef*dby dhz=dhz+coef*dbz return dhx,dhy,dhz def birk_tot(iopb, ps, x,y,z): """ :param iopb: birkeland field mode flag: iopb=0 - all components; iopb=1 - region 1, modes 1 & 2; iopb=2 - region 2, modes 1 & 2 :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx11,by11,bz11, bx12,by12,bz12, bx21,by21,bz21, bx22,by22,bz22. """ # common /birkpar/ xkappa1,xkappa2 ! input parameters, specified from s/r extall # common /dphi_b_rho0/ dphi,b,rho_0,xkappa ! parameters, controlling the day-night asymmetry of f.a.c. global xkappa1, xkappa2 global dphi, b, rho_0, xkappa sh11 = np.array([ 46488.84663,-15541.95244,-23210.09824,-32625.03856,-109894.4551, -71415.32808,58168.94612,55564.87578,-22890.60626,-6056.763968, 5091.368100,239.7001538,-13899.49253,4648.016991,6971.310672, 9699.351891,32633.34599,21028.48811,-17395.96190,-16461.11037, 7447.621471,2528.844345,-1934.094784,-588.3108359,-32588.88216, 10894.11453,16238.25044,22925.60557,77251.11274,50375.97787, -40763.78048,-39088.60660,15546.53559,3559.617561,-3187.730438, 309.1487975,88.22153914,-243.0721938,-63.63543051,191.1109142, 69.94451996,-187.9539415,-49.89923833,104.0902848,-120.2459738, 253.5572433,89.25456949,-205.6516252,-44.93654156,124.7026309, 32.53005523,-98.85321751,-36.51904756,98.88241690,24.88493459, -55.04058524,61.14493565,-128.4224895,-45.35023460,105.0548704, -43.66748755,119.3284161,31.38442798,-92.87946767,-33.52716686, 89.98992001,25.87341323,-48.86305045,59.69362881,-126.5353789, -44.39474251,101.5196856,59.41537992,41.18892281,80.86101200, 3.066809418,7.893523804,30.56212082,10.36861082,8.222335945, 19.97575641,2.050148531,4.992657093,2.300564232,.2256245602,-.05841594319]) sh12 = np.array([ 210260.4816,-1443587.401,-1468919.281,281939.2993,-1131124.839, 729331.7943,2573541.307,304616.7457,468887.5847,181554.7517, -1300722.650,-257012.8601,645888.8041,-2048126.412,-2529093.041, 571093.7972,-2115508.353,1122035.951,4489168.802,75234.22743, 823905.6909,147926.6121,-2276322.876,-155528.5992,-858076.2979, 3474422.388,3986279.931,-834613.9747,3250625.781,-1818680.377, -7040468.986,-414359.6073,-1295117.666,-346320.6487,3565527.409, 430091.9496,-.1565573462,7.377619826,.4115646037,-6.146078880, 3.808028815,-.5232034932,1.454841807,-12.32274869,-4.466974237, -2.941184626,-.6172620658,12.64613490,1.494922012,-21.35489898, -1.652256960,16.81799898,-1.404079922,-24.09369677,-10.99900839, 45.94237820,2.248579894,31.91234041,7.575026816,-45.80833339, -1.507664976,14.60016998,1.348516288,-11.05980247,-5.402866968, 31.69094514,12.28261196,-37.55354174,4.155626879,-33.70159657, -8.437907434,36.22672602,145.0262164,70.73187036,85.51110098, 21.47490989,24.34554406,31.34405345,4.655207476,5.747889264, 7.802304187,1.844169801,4.867254550,2.941393119,.1379899178,.06607020029]) sh21 = np.array([ 162294.6224,503885.1125,-27057.67122,-531450.1339,84747.05678, -237142.1712,84133.61490,259530.0402,69196.05160,-189093.5264, -19278.55134,195724.5034,-263082.6367,-818899.6923,43061.10073, 863506.6932,-139707.9428,389984.8850,-135167.5555,-426286.9206, -109504.0387,295258.3531,30415.07087,-305502.9405,100785.3400, 315010.9567,-15999.50673,-332052.2548,54964.34639,-152808.3750, 51024.67566,166720.0603,40389.67945,-106257.7272,-11126.14442, 109876.2047,2.978695024,558.6019011,2.685592939,-338.0004730, -81.99724090,-444.1102659,89.44617716,212.0849592,-32.58562625, -982.7336105,-35.10860935,567.8931751,-1.917212423,-260.2023543, -1.023821735,157.5533477,23.00200055,232.0603673,-36.79100036, -111.9110936,18.05429984,447.0481000,15.10187415,-258.7297813, -1.032340149,-298.6402478,-1.676201415,180.5856487,64.52313024, 209.0160857,-53.85574010,-98.52164290,14.35891214,536.7666279, 20.09318806,-309.7349530,58.54144539,67.45226850,97.92374406, 4.752449760,10.46824379,32.91856110,12.05124381,9.962933904, 15.91258637,1.804233877,6.578149088,2.515223491,.1930034238,-.02261109942]) sh22 = np.array([ -131287.8986,-631927.6885,-318797.4173,616785.8782,-50027.36189, 863099.9833,47680.20240,-1053367.944,-501120.3811,-174400.9476, 222328.6873,333551.7374,-389338.7841,-1995527.467,-982971.3024, 1960434.268,297239.7137,2676525.168,-147113.4775,-3358059.979, -2106979.191,-462827.1322,1017607.960,1039018.475,520266.9296, 2627427.473,1301981.763,-2577171.706,-238071.9956,-3539781.111, 94628.16420,4411304.724,2598205.733,637504.9351,-1234794.298, -1372562.403,-2.646186796,-31.10055575,2.295799273,19.20203279, 30.01931202,-302.1028550,-14.78310655,162.1561899,.4943938056, 176.8089129,-.2444921680,-100.6148929,9.172262228,137.4303440, -8.451613443,-84.20684224,-167.3354083,1321.830393,76.89928813, -705.7586223,18.28186732,-770.1665162,-9.084224422,436.3368157, -6.374255638,-107.2730177,6.080451222,65.53843753,143.2872994, -1028.009017,-64.22739330,547.8536586,-20.58928632,597.3893669, 10.17964133,-337.7800252,159.3532209,76.34445954,84.74398828, 12.76722651,27.63870691,32.69873634,5.145153451,6.310949163, 6.996159733,1.971629939,4.436299219,2.904964304,.1486276863,.06859991529]) xkappa=xkappa1 # forwarded in birk_1n2 x_sc=xkappa1-1.1 # forwarded in birk_shl bx11,by11,bz11, bx12,by12,bz12, bx21,by21,bz21, bx22,by22,bz22 = [0]*12 if (iopb == 0) | (iopb == 1): fx11,fy11,fz11 = birk_1n2(1,1,ps,x,y,z) # region 1, mode 1 hx11,hy11,hz11 = birk_shl(sh11,ps,x_sc,x,y,z) bx11=fx11+hx11 by11=fy11+hy11 bz11=fz11+hz11 fx12,fy12,fz12 = birk_1n2(1,2,ps,x,y,z) # region 1, mode 2 hx12,hy12,hz12 = birk_shl(sh12,ps,x_sc,x,y,z) bx12=fx12+hx12 by12=fy12+hy12 bz12=fz12+hz12 xkappa=xkappa2 # forwarded in birk_1n2 x_sc=xkappa2-1.0 # forwarded in birk_shl if (iopb == 0) | (iopb == 2): fx21,fy21,fz21 = birk_1n2(2,1,ps,x,y,z) # region 2, mode 1 hx21,hy21,hz21 = birk_shl(sh21,ps,x_sc,x,y,z) bx21=fx21+hx21 by21=fy21+hy21 bz21=fz21+hz21 fx22,fy22,fz22 = birk_1n2(2,2,ps,x,y,z) # region 2, mode 2 hx22,hy22,hz22 = birk_shl(sh22,ps,x_sc,x,y,z) bx22=fx22+hx22 by22=fy22+hy22 bz22=fz22+hz22 return bx11,by11,bz11, bx12,by12,bz12, bx21,by21,bz21, bx22,by22,bz22 def birk_1n2(numb,mode,ps,x,y,z): # NB# 6, p.60 """ Calculates components of region 1/2 field in spherical coords. Derived from the s/r dipdef2c (which does the same job, but input/output there was in spherical coords, while here we use cartesian ones) :param numb: numb=1 (2) for region 1 (2) currents :param mode: mode=1 yields simple sinusoidal mlt variation, with maximum current at dawn/dusk meridian while mode=2 yields the second harmonic. :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # common /dphi_b_rho0/ dphi,b,rho_0,xkappa ! these parameters control day-night asymmetry of f.a.c., as follows: # (1) dphi: half-difference (in radians) between day and night latitude of fac oval at ionospheric altitude; typical value: 0.06 # (2) b: an asymmetry factor at high-altitudes; for b=0, the only asymmetry is that from dphi; typical values: 0.35-0.70 # (3) rho_0: a fixed parameter, defining the distance rho, at which the latitude shift gradually saturates and stops increasing; its value was assumed fixed, equal to 7.0. # (4) xkappa: an overall scaling factor, which can be used for changing the size of the f.a.c. oval global dtheta, m, dphi, b, rho_0, xkappa # parameters of the tilt-dependent deformation of the untilted F.A.C. field beta = 0.9 rh = 10. eps = 3. b=0.5 rho_0=7.0 a11 = np.array([ .1618068350, -.1797957553, 2.999642482, -.9322708978, -.6811059760, .2099057262, -8.358815746, -14.86033550, .3838362986, -16.30945494, 4.537022847, 2.685836007, 27.97833029, 6.330871059, 1.876532361, 18.95619213, .9651528100, .4217195118, -.08957770020, -1.823555887, .7457045438, -.5785916524, -1.010200918, .01112389357, .09572927448, -.3599292276, 8.713700514, .9763932955, 3.834602998, 2.492118385, .7113544659]) a12 = np.array([ .7058026940, -.2845938535, 5.715471266, -2.472820880, -.7738802408, .3478293930, -11.37653694, -38.64768867, .6932927651, -212.4017288, 4.944204937, 3.071270411, 33.05882281, 7.387533799, 2.366769108, 79.22572682, .6154290178, .5592050551, -.1796585105, -1.654932210, .7309108776, -.4926292779, -1.130266095, -.009613974555, .1484586169, -.2215347198, 7.883592948, .02768251655, 2.950280953, 1.212634762, .5567714182]) a21 = np.array([ .1278764024, -.2320034273, 1.805623266, -32.37241440, -.9931490648, .3175085630, -2.492465814, -16.21600096, .2695393416, -6.752691265, 3.971794901, 14.54477563, 41.10158386, 7.912889730, 1.258297372, 9.583547721, 1.014141963, .5104134759, -.1790430468, -1.756358428, .7561986717, -.6775248254, -.04014016420, .01446794851, .1200521731, -.2203584559, 4.508963850, .8221623576, 1.779933730, 1.102649543, .8867880020]) a22 = np.array([ .4036015198, -.3302974212, 2.827730930, -45.44405830, -1.611103927, .4927112073, -.003258457559, -49.59014949, .3796217108, -233.7884098, 4.312666980, 18.05051709, 28.95320323, 11.09948019, .7471649558, 67.10246193, .5667096597, .6468519751, -.1560665317, -1.460805289, .7719653528, -.6658988668, .2515179349E-05, .02426021891, .1195003324, -.2625739255, 4.377172556, .2421190547, 2.503482679, 1.071587299, .7247997430]) m=mode if numb == 1: dphi=0.055 dtheta=0.06 elif numb == 2: dphi=0.030 dtheta=0.09 else: raise ValueError xsc=x*xkappa ysc=y*xkappa zsc=z*xkappa rho=np.sqrt(xsc**2+zsc**2) rsc=np.sqrt(xsc**2+ysc**2+zsc**2) # scaled rho2=rho_0**2 if (xsc == 0) & (zsc == 0): phi=0. else: phi=np.arctan2(-zsc,xsc) # from cartesian to cylindrical (rho,phi,y) sphic=np.sin(phi) cphic=np.cos(phi) # "c" means "cylindrical", to distinguish from spherical phi brack=dphi+b*rho2/(rho2+1)*(rho**2-1)/(rho2+rho**2) r1rh=(rsc-1)/rh psias=beta*ps/(1+r1rh**eps)**(1/eps) phis=phi-brack*np.sin(phi) -psias dphisphi=1-brack*np.cos(phi) dphisrho=-2*b*rho2*rho/(rho2+rho**2)**2*np.sin(phi) \ +beta*ps*r1rh**(eps-1)*rho/(rh*rsc*(1+r1rh**eps)**(1/eps+1)) dphisdy= beta*ps*r1rh**(eps-1)*ysc/(rh*rsc*(1+r1rh**eps)**(1/eps+1)) sphics=np.sin(phis) cphics=np.cos(phis) xs= rho*cphics zs=-rho*sphics if numb ==1: if mode == 1: [bxs,byas,bzs] = twocones(a11,xs,ysc,zs) elif mode == 2: [bxs,byas,bzs] = twocones(a12,xs,ysc,zs) else: raise ValueError else: if mode == 1: [bxs,byas,bzs] = twocones(a21,xs,ysc,zs) elif mode == 2: [bxs,byas,bzs] = twocones(a22,xs,ysc,zs) else: raise ValueError brhoas = bxs*cphics-bzs*sphics bphias = -bxs*sphics-bzs*cphics brho_s=brhoas*dphisphi *xkappa # scaling bphi_s=(bphias-rho*(byas*dphisdy+brhoas*dphisrho)) *xkappa by_s=byas*dphisphi *xkappa bx=brho_s*cphic-bphi_s*sphic by=by_s bz=-brho_s*sphic-bphi_s*cphic return bx,by,bz def twocones (a,x,y,z): """ Adds fields from two cones (northern and southern), with a proper symmetry of the current and field, corresponding to the region 1 Birkeland currents. (NB #6, p.58). :param a: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ bxn,byn,bzn = one_cone(a,x, y, z) bxs,bys,bzs = one_cone(a,x,-y,-z) bx=bxn-bxs by=byn+bys bz=bzn+bzs return bx,by,bz def one_cone(a,x,y,z): """ Returns field components for a deformed conical current system, fitted to a Biosavart field. Here only the northern cone is taken into account. :param a: dimension a(31) :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # common /dtheta/ dtheta # common /modenum/ m global dtheta, m # just for numerical differentiation dr = 1e-6 dt = 1e-6 theta0=a[30] rho2=x**2+y**2 rho=np.sqrt(rho2) r=np.sqrt(rho2+z**2) theta=np.arctan2(rho,z) phi=np.arctan2(y,x) # make the deformation of coordinates: rs=r_s(a,r,theta) thetas=theta_s(a,r,theta) phis=phi # calculate field components at the new position (asterisked): btast,bfast = fialcos(rs,thetas,phis,m,theta0,dtheta) # mode #m # now transform b{r,t,f}_ast by the deformation tensor: # first of all, find the derivatives: drsdr=(r_s(a,r+dr,theta)-r_s(a,r-dr,theta))/(2*dr) drsdt=(r_s(a,r,theta+dt)-r_s(a,r,theta-dt))/(2*dt) dtsdr=(theta_s(a,r+dr,theta)-theta_s(a,r-dr,theta))/(2*dr) dtsdt=(theta_s(a,r,theta+dt)-theta_s(a,r,theta-dt))/(2*dt) stsst=np.sin(thetas)/np.sin(theta) rsr=rs/r br =-rsr/r*stsst*btast*drsdt # NB#6, p.43 brast does not enter here btheta = rsr*stsst*btast*drsdr # (it is identically zero in our case) bphi = rsr*bfast*(drsdr*dtsdt-drsdt*dtsdr) s=rho/r c=z/r sf=y/rho cf=x/rho be=br*s+btheta*c bx=a[0]*(be*cf-bphi*sf) by=a[0]*(be*sf+bphi*cf) bz=a[0]*(br*c-btheta*s) return bx,by,bz def r_s(a,r,theta): # dimension a(31) return r+a[1]/r+a[2]*r/np.sqrt(r**2+a[10]**2)+a[3]*r/(r**2+a[11]**2) \ +(a[4]+a[5]/r+a[6]*r/np.sqrt(r**2+a[12]**2)+a[7]*r/(r**2+a[13]**2))*np.cos(theta) \ +(a[8]*r/np.sqrt(r**2+a[14]**2)+a[9]*r/(r**2+a[15]**2)**2)*np.cos(2*theta) def theta_s(a,r,theta): # dimension a(31) return theta+(a[16]+a[17]/r+a[18]/r**2+a[19]*r/np.sqrt(r**2+a[26]**2))*np.sin(theta) \ +(a[20]+a[21]*r/np.sqrt(r**2+a[27]**2)+a[22]*r/(r**2+a[28]**2))*np.sin(2*theta) \ +(a[23]+a[24]/r+a[25]*r/(r**2+a[29]**2))*np.sin(3*theta) def fialcos(r,theta,phi,n,theta0,dt): """ Conical model of Birkeland current field; based on the old s/r fialco (of 1990-91) NB of 1985-86-88, note of March 5, but here both input and output are in spherical CDS. :param r: :param theta: :param phi: :param n: :param theta0: :param dt: :return: btheta,bphi. """ # btn, and bpn are the arrays of btheta and bphi (btn(i), bpn(i) correspond to i-th mode). # only first n mode amplitudes are computed (n<=10). # theta0 is the angular half-width of the cone, dt is the angular h.-w. of the current layer # note: br=0 (because only radial currents are present in this model) # dimension btn(10),bpn(10),ccos(10),ssin(10) btn = np.empty(10) bpn = np.empty(10) ccos = np.empty(10) ssin = np.empty(10) sinte=np.sin(theta) ro=r*sinte coste=np.cos(theta) sinfi=np.sin(phi) cosfi=np.cos(phi) tg=sinte/(1+coste) # tan(theta/2) ctg=sinte/(1-coste) # cot(theta/2) tetanp=theta0+dt tetanm=theta0-dt if theta >= tetanm: tgp=np.tan(tetanp*0.5) tgm=np.tan(tetanm*0.5) tgm2=tgm*tgm tgp2=tgp*tgp [cosm1, sinm1] = [1.,0] tm = 1 [tgm2m,tgp2m] = [1.,1] for m in range(1,n+1): tm=tm*tg ccos[m-1]=cosm1*cosfi-sinm1*sinfi ssin[m-1]=sinm1*cosfi+cosm1*sinfi cosm1=ccos[m-1] sinm1=ssin[m-1] if theta < tetanm: t=tm dtt=0.5*m*tm*(tg+ctg) dtt0=0 elif theta < tetanp: tgm2m=tgm2m*tgm2 fc=1/(tgp-tgm) fc1=1/(2*m+1) tgm2m1=tgm2m*tgm tg21=1+tg*tg t=fc*(tm*(tgp-tg)+fc1*(tm*tg-tgm2m1/tm)) dtt=0.5*m*fc*tg21*(tm/tg*(tgp-tg)-fc1*(tm-tgm2m1/(tm*tg))) dtt0=0.5*fc*((tgp+tgm)*(tm*tg-fc1*(tm*tg-tgm2m1/tm))+tm*(1-tgp*tgm)-(1+tgm2)*tgm2m/tm) else: tgp2m=tgp2m*tgp2 tgm2m=tgm2m*tgm2 fc=1/(tgp-tgm) fc1=1/(2*m+1) t=fc*fc1*(tgp2m*tgp-tgm2m*tgm)/tm dtt=-t*m*0.5*(tg+ctg) btn[m-1]=m*t*ccos[m-1]/ro bpn[m-1]=-dtt*ssin[m-1]/r btheta=btn[n-1] *800. bphi =bpn[n-1] *800. return btheta, bphi def birk_shl(a,ps,x_sc, x,y,z): """ B due to the Birkeland current shield. :param a: coefficient. :param ps: geo-dipole tilt angle in radius. :param x_sc: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ cps=np.cos(ps) sps=np.sin(ps) s3ps=2*cps pst1=ps*a[84] pst2=ps*a[85] st1=np.sin(pst1) ct1=np.cos(pst1) st2=np.sin(pst2) ct2=np.cos(pst2) x1=x*ct1-z*st1 z1=x*st1+z*ct1 x2=x*ct2-z*st2 z2=x*st2+z*ct2 l=0 [bx,by,bz] = [0,0,0] for m in range(1,3): # m=1 is for the 1st sum ("perp." symmetry) and m=2 is for the second sum ("parall." symmetry) for i in range(1,4): p = a[71 + i] q = a[77 + i] cypi = np.cos(y/p) cyqi = np.cos(y/q) sypi = np.sin(y/p) syqi = np.sin(y/q) for k in range(1,4): r=a[74+k] s=a[80+k] szrk=np.sin(z1/r) czsk=np.cos(z2/s) czrk=np.cos(z1/r) szsk=np.sin(z2/s) sqpr=np.sqrt(1/p**2+1/r**2) sqqs=np.sqrt(1/q**2+1/s**2) epr=np.exp(x1*sqpr) eqs=np.exp(x2*sqqs) for n in range(1,3): # n=1 is for the first part of each coefficient and n=2 is for the second one for nn in range(1,3): # nn = 1,2 further splits the coefficients into 2 parts, to take into account the scale factor dependence if m == 1: fx = -sqpr*epr*cypi*szrk fy = epr*sypi*szrk/p fz = -epr*cypi*czrk/r if n == 1: if nn == 1: [hx,hy,hz] = [fx,fy,fz] else: [hx,hy,hz] = [fx*x_sc, fy*x_sc, fz*x_sc] else: if nn == 1: [hx,hy,hz] = [fx*cps, fy*cps, fz*cps] else: [hx,hy,hz] = [fx*cps*x_sc, fy*cps*x_sc, fz*cps*x_sc] else: # m == 2 fx = -sps*sqqs*eqs*cyqi*czsk fy = sps/q*eqs*syqi*czsk fz = sps/s*eqs*cyqi*szsk if n == 1: if nn == 1: [hx,hy,hz] = [fx,fy,fz] else: [hx,hy,hz] = [fx*x_sc, fy*x_sc, fz*x_sc] else: if nn == 1: [hx,hy,hz] = [fx*s3ps,fy*s3ps,fz*s3ps] else: [hx,hy,hz] = [fx*s3ps*x_sc, fy*s3ps*x_sc, fz*s3ps*x_sc] l=l+1 if m == 1: hxr = hx*ct1+hz*st1 hzr = -hx*st1+hz*ct1 else: hxr = hx*ct2+hz*st2 hzr = -hx*st2+hz*ct2 bx = bx+hxr*a[l-1] by = by+hy *a[l-1] bz = bz+hzr*a[l-1] return bx,by,bz def full_rc(iopr,ps,x,y,z): """ Calculates GSM field components of the symmetric (src) and partial (prc) components of the ring current :param iopr: a ring current calculation flag (for least-squares fitting only): iopr=0 - both src and prc fields are calculated; opr=1 - src only; opr=2 - prc only :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # src provides a depression of -28 nt at earth # prc corresponds to the pressure difference of 2 npa between midnight and noon ring current particle pressure and yields a depression of -17 nt at x=-6re # sc_sy and sc_pr are scaling factors for the symmetric and partial components: values larger than 1 result in spatially larger currents # phi is the rotation angle in radians of the partial ring current (measured from midnight toward dusk) # common /rcpar/ sc_sy,sc_pr,phi global sc_sy, sc_pr, phi # corrected values(as of may 2006) c_sy = np.array([ # sy short for symmetric -957.2534900,-817.5450246,583.2991249,758.8568270, 13.17029064,68.94173502,-15.29764089,-53.43151590,27.34311724, 149.5252826,-11.00696044,-179.7031814,953.0914774,817.2340042, -581.0791366,-757.5387665,-13.10602697,-68.58155678,15.22447386, 53.15535633,-27.07982637,-149.1413391,10.91433279,179.3251739, -6.028703251,1.303196101,-1.345909343,-1.138296330,-0.06642634348, -0.3795246458,.07487833559,.2891156371,-.5506314391,-.4443105812, 0.2273682152,0.01086886655,-9.130025352,1.118684840,1.110838825, .1219761512,-.06263009645,-.1896093743,.03434321042,.01523060688, -.4913171541,-.2264814165,-.04791374574,.1981955976,-68.32678140, -48.72036263,14.03247808,16.56233733,2.369921099,6.200577111, -1.415841250,-0.8184867835,-3.401307527,-8.490692287,3.217860767, -9.037752107,66.09298105,48.23198578,-13.67277141,-16.27028909, -2.309299411,-6.016572391,1.381468849,0.7935312553,3.436934845, 8.260038635,-3.136213782,8.833214943,8.041075485,8.024818618, 35.54861873,12.55415215,1.738167799,3.721685353,23.06768025, 6.871230562,6.806229878,21.35990364,1.687412298,3.500885177, 0.3498952546,0.6595919814 ]) c_pr = np.array([ # pr short for partial -64820.58481, -63965.62048, 66267.93413, 135049.7504, -36.56316878, 124.6614669, 56.75637955, -87.56841077, 5848.631425, 4981.097722, -6233.712207, -10986.40188, 68716.52057, 65682.69473, -69673.32198, -138829.3568, 43.45817708, -117.9565488, -62.14836263, 79.83651604, -6211.451069, -5151.633113, 6544.481271, 11353.03491, 23.72352603, -256.4846331, 25.77629189, 145.2377187, -4.472639098, -3.554312754, 2.936973114, 2.682302576, 2.728979958, 26.43396781, -9.312348296, -29.65427726, -247.5855336, -206.9111326, 74.25277664, 106.4069993, 15.45391072, 16.35943569, -5.965177750, -6.079451700, 115.6748385, -35.27377307, -32.28763497, -32.53122151, 93.74409310, 84.25677504, -29.23010465, -43.79485175, -6.434679514, -6.620247951, 2.443524317, 2.266538956, -43.82903825, 6.904117876, 12.24289401, 17.62014361, 152.3078796, 124.5505289, -44.58690290, -63.02382410, -8.999368955, -9.693774119, 3.510930306, 3.770949738, -77.96705716, 22.07730961, 20.46491655, 18.67728847, 9.451290614, 9.313661792, 644.7620970, 418.2515954, 7.183754387, 35.62128817, 19.43180682, 39.57218411, 15.69384715, 7.123215241, 2.300635346, 21.90881131, -.01775839370, .3996346710]) hxsrc,hysrc,hzsrc, hxprc,hyprc,hzprc = src_prc(iopr, sc_sy,sc_pr, phi, ps, x,y,z) x_sc=sc_sy-1 fsx,fsy,fsz = [0.]*3 if (iopr == 0) | (iopr == 1): fsx,fsy,fsz = rc_shield(c_sy,ps,x_sc, x,y,z) x_sc=sc_pr-1 fpx,fpy,fpz = [0.]*3 if (iopr == 0) | (iopr == 2): fpx,fpy,fpz = rc_shield(c_pr,ps,x_sc, x,y,z) bxsrc=hxsrc+fsx bysrc=hysrc+fsy bzsrc=hzsrc+fsz bxprc=hxprc+fpx byprc=hyprc+fpy bzprc=hzprc+fpz return bxsrc,bysrc,bzsrc,bxprc,byprc,bzprc def src_prc(iopr,sc_sy,sc_pr,phi,ps, x,y,z): """ Returns field components from a model ring current, including its symmetric part and a partial ring current, closed via birkeland currents. based on results, described in a paper "modeling the inner magnetosphere: asymmetric ring current and region 2 birkeland currents revisited" (jgr, dec.2000). :param iopr: a ring current calculation flag (for least-squares fitting only): iopr=0 - both src and prc fields are calculated; opr=1 - src only; opr=2 - prc only :param sc_sy, sc_pr: scale factors for the above components; taking sc<1 or sc>1 makes the currents shrink or expand, respectively. :param phi: the rotation angle (radians) of the partial ring current (measured from midnight toward dusk) :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc. Field components in GSM system, in nT. For the symmetric part and partial ring current. """ # 1. transform to tilted coordinates (i.e., sm coordinates): cps=np.cos(ps) sps=np.sin(ps) xt=x*cps-z*sps zt=z*cps+x*sps # 2. scale the coordinates for the symmetric and partial rc components: xts=xt/sc_sy # symmetric yts=y /sc_sy zts=zt/sc_sy xta=xt/sc_pr # partial yta=y /sc_pr zta=zt/sc_pr # 3. calculate components of the total field in the tilted (solar-magnetic) coordinate system: # only for least squares fitting: bxs,bys,bzs = [0.]*3 bxa_s,bya_s,bza_s = [0.]*3 bxa_qr,bya_qr,bza_q = [0.]*3 # 3a. symmetric field: if iopr <= 1: bxs,bys,bzs = rc_symm(xts,yts,zts) if (iopr == 0) | (iopr == 2): bxa_s,bya_s,bza_s = prc_symm(xta,yta,zta) # 3b. rotate the scaled sm coordinates by phi around zsm axis and calculate quadrupole prc field in those coords: cp=np.cos(phi) sp=np.sin(phi) xr=xta*cp-yta*sp yr=xta*sp+yta*cp if (iopr == 0) | (iopr == 2): bxa_qr,bya_qr,bza_q = prc_quad(xr,yr,zta) # 3c.transform the quadrupole field components back to the sm coords: bxa_q= bxa_qr*cp+bya_qr*sp bya_q=-bxa_qr*sp+bya_qr*cp # 3d. find the total field of prc (symm.+quadr.) in the sm coords: bxp=bxa_s+bxa_q byp=bya_s+bya_q bzp=bza_s+bza_q # 4. transform the fields of both parts of the ring current back to the gsm system: bxsrc=bxs*cps+bzs*sps # symmetric rc bysrc=bys bzsrc=bzs*cps-bxs*sps bxprc=bxp*cps+bzp*sps # partial rc byprc=byp bzprc=bzp*cps-bxp*sps return bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc def rc_symm(x,y,z): """ Calculates the field components from a model ring current, due to its symmetric part. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # ds=sin(theta) at the boundary of the linearity region; dc=sqrt(1-ds**2); drd=1/(2*d) ds = 1e-2 dc = 0.99994999875 d = 1e-4 drd = 5e3 rho2=x**2+y**2 r2=rho2+z**2 r=np.sqrt(r2) rp=r+d rm=r-d sint=np.sqrt(rho2)/r cost=z/r # too close to the z-axis; using a linear approximation a_phi~sint to avoid the singularity problem if sint < ds: a=ap(r,ds,dc)/ds dardr=(rp*ap(rp,ds,dc)-rm*ap(rm,ds,dc))*drd fxy=z*(2*a-dardr)/(r*r2) bx=fxy*x by=fxy*y bz=(2*a*cost**2+dardr*sint**2)/r else: theta=np.arctan2(sint,cost) tp=theta+d tm=theta-d sintp=np.sin(tp) sintm=np.sin(tm) costp=np.cos(tp) costm=np.cos(tm) br=(sintp*ap(r,sintp,costp)-sintm*ap(r,sintm,costm))/(r*sint)*drd bt=(rm*ap(rm,sint,cost)-rp*ap(rp,sint,cost))/r*drd fxy=(br+bt*cost/sint)/r bx=fxy*x by=fxy*y bz=br*cost-bt*sint return bx, by, bz def ap(r,sint,cost): """ Calculates azimuthal component of the vector potential of the symmetric part of the model ring current. :param r: :param sint: :param cost: :return: """ # Updated 04/20/06 (nb#9, p.37) a1,a2,rrc1,dd1,rrc2,dd2,p1,r1,dr1,dla1,p2,r2,dr2,dla2,p3,r3,dr3 = [ -456.5289941,375.9055332,4.274684950,2.439528329,3.367557287, 3.146382545,-0.2291904607,3.746064740,1.508802177,0.5873525737, 0.1556236119,4.993638842,3.324180497,0.4368407663,0.1855957207, 2.969226745,2.243367377] # indicates whether we are too close to the axis of symmetry, where the inversion of dipolar coordinates becomes inaccurate prox = False sint1=sint cost1=cost # too close to z-axis; use linear interpolation between sint=0 & sint=0.01 if (sint1 < 1.e-2): sint1=1.e-2 cost1=0.99994999875 prox=True alpha=sint1**2/r # r,theta -> alpha,gamma gamma=cost1/r**2 arg1=-((r-r1)/dr1)**2-(cost1/dla1)**2 arg2=-((r-r2)/dr2)**2-(cost1/dla2)**2 arg3=-((r-r3)/dr3)**2 if arg1 < -500: # to prevent "floating underflow" crashes dexp1=0. else: dexp1=np.exp(arg1) if arg2 < -500: # to prevent "floating underflow" crashes dexp2=0. else: dexp2=np.exp(arg2) if arg3 < -500: # to prevent "floating underflow" crashes dexp3=0. else: dexp3=np.exp(arg3) # alpha -> alpha_s (deformed) alpha_s=alpha*(1+p1*dexp1+p2*dexp2+p3*dexp3) gamma_s=gamma gammas2=gamma_s**2 # alpha_s,gamma_s -> rs,sints,costs alsqh=alpha_s**2/2 f=64/27*gammas2+alsqh**2 q=(np.sqrt(f)+alsqh)**(1/3) c=q-4*gammas2**(1/3)/(3*q) if c < 0: c=0 g=np.sqrt(c**2+4*gammas2**(1/3)) rs=4/((np.sqrt(2*g-c)+np.sqrt(c))*(g+c)) costs=gamma_s*rs**2 sints=np.sqrt(1-costs**2) rhos=rs*sints rhos2=rhos**2 zs=rs*costs # TODO looks like this part is repetative. p=(rrc1+rhos)**2+zs**2+dd1**2 xk2=4*rrc1*rhos/p xk=np.sqrt(xk2) xkrho12=xk*np.sqrt(rhos) # see nb#4, p.3 xk2s = 1-xk2 dl = np.log(1/xk2s) elk = 1.38629436112 + xk2s*(0.09666344259+xk2s*(0.03590092383+xk2s*(0.03742563713+xk2s*0.01451196212))) \ + dl*(0.5+xk2s*(0.12498593597+xk2s*(0.06880248576+xk2s*(0.03328355346+xk2s*0.00441787012)))) ele = 1+xk2s*(0.44325141463+xk2s*(0.0626060122+xk2s*(0.04757383546+xk2s*0.01736506451))) \ + dl*xk2s*(0.2499836831+xk2s*(0.09200180037+xk2s*(0.04069697526+xk2s*0.00526449639))) aphi1=((1-xk2*0.5)*elk-ele)/xkrho12 p=(rrc2+rhos)**2+zs**2+dd2**2 xk2=4*rrc2*rhos/p xk=np.sqrt(xk2) xkrho12=xk*np.sqrt(rhos) # see nb#4, p.3 xk2s = 1-xk2 dl = np.log(1/xk2s) elk = 1.38629436112 + xk2s*(0.09666344259+xk2s*(0.03590092383+xk2s*(0.03742563713+xk2s*0.01451196212))) \ + dl*(0.5+xk2s*(0.12498593597+xk2s*(0.06880248576+xk2s*(0.03328355346+xk2s*0.00441787012)))) ele = 1+xk2s*(0.44325141463+xk2s*(0.0626060122+xk2s*(0.04757383546+xk2s*0.01736506451))) \ + dl*xk2s*(0.2499836831+xk2s*(0.09200180037+xk2s*(0.04069697526+xk2s*0.00526449639))) aphi2=((1-xk2*0.5)*elk-ele)/xkrho12 ap=a1*aphi1+a2*aphi2 if prox: ap=ap*sint/sint1 # linear interpolation, if too close to the z-axis return ap def prc_symm(x,y,z): """ Calculates the field components from a model ring current, due to a partial ring current. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # ds=sin(theta) at the boundary of the linearity region; dc=sqrt(1-ds**2); drd=1/(2*d) ds = 1e-2 dc = 0.99994999875 d = 1e-4 drd = 5e3 rho2=x**2+y**2 r2=rho2+z**2 r=np.sqrt(r2) rp=r+d rm=r-d sint=np.sqrt(rho2)/r cost=z/r # too close to the z-axis; using a linear approximation a_phi~sint to avoid the singularity problem if sint < ds: a=apprc(r,ds,dc)/ds dardr=(rp*apprc(rp,ds,dc)-rm*apprc(rm,ds,dc))*drd fxy=z*(2*a-dardr)/(r*r2) bx=fxy*x by=fxy*y bz=(2*a*cost**2+dardr*sint**2)/r else: theta=np.arctan2(sint,cost) tp=theta+d tm=theta-d sintp=np.sin(tp) sintm=np.sin(tm) costp=np.cos(tp) costm=np.cos(tm) br=(sintp*apprc(r,sintp,costp)-sintm*apprc(r,sintm,costm))/(r*sint)*drd bt=(rm*apprc(rm,sint,cost)-rp*apprc(rp,sint,cost))/r*drd fxy=(br+bt*cost/sint)/r bx=fxy*x by=fxy*y bz=br*cost-bt*sint return bx, by, bz def apprc(r,sint,cost): """ Calculates azimuthal component of the vector potential of the symmetric part of the model partial ring current. :param r: :param sint: :param cost: :return: """ a1,a2,rrc1,dd1,rrc2,dd2,p1,alpha1,dal1,beta1,dg1,p2,alpha2,dal2,beta2,dg2,beta3,p3, \ alpha3,dal3,beta4,dg3,beta5,q0,q1,alpha4,dal4,dg4,q2,alpha5,dal5,dg5,beta6,beta7 = [ -80.11202281,12.58246758,6.560486035,1.930711037,3.827208119, .7789990504,.3058309043,.1817139853,.1257532909,3.422509402, .04742939676,-4.800458958,-.02845643596,.2188114228,2.545944574, .00813272793,.35868244,103.1601001,-.00764731187,.1046487459, 2.958863546,.01172314188,.4382872938,.01134908150,14.51339943, .2647095287,.07091230197,.01512963586,6.861329631,.1677400816, .04433648846,.05553741389,.7665599464,.7277854652] prox=False sint1=sint cost1=cost # too close to z-axis; use linear interpolation between sint=0 & sint=0.01 if (sint1 < 1.e-2): sint1=1.e-2 cost1=0.99994999875 prox=True alpha=sint1**2/r # r,theta -> alpha,gamma gamma=cost1/r**2 arg1=-(gamma/dg1)**2 arg2=-((alpha-alpha4)/dal4)**2-(gamma/dg4)**2 if arg1 < -500: # to prevent "floating underflow" crashes dexp1=0. else: dexp1=np.exp(arg1) if arg2 < -500: # to prevent "floating underflow" crashes dexp2=0. else: dexp2=np.exp(arg2) # alpha -> alpha_s (deformed) alpha_s = alpha*(1 + p1/(1+((alpha-alpha1)/dal1)**2)**beta1*dexp1 + p2*(alpha-alpha2)/(1+((alpha-alpha2)/dal2)**2)**beta2/(1+(gamma/dg2)**2)**beta3 + p3*(alpha-alpha3)**2/(1.+((alpha-alpha3)/dal3)**2)**beta4/(1+(gamma/dg3)**2)**beta5) # gamma -> gamma_s (deformed) gamma_s = gamma*(1 + q0 + q1*(alpha-alpha4)*dexp2 + q2*(alpha-alpha5)/(1+((alpha-alpha5)/dal5)**2)**beta6/(1+(gamma/dg5)**2)**beta7) gammas2 = gamma_s**2 # alpha_s,gamma_s -> rs,sints,costs alsqh=alpha_s**2/2. f=64./27.*gammas2+alsqh**2 q=(np.sqrt(f)+alsqh)**(1/3) c=q-4.*gammas2**(1/3)/(3.*q) if c < 0: c=0 g=np.sqrt(c**2+4*gammas2**(1/3)) rs=4./((np.sqrt(2*g-c)+np.sqrt(c))*(g+c)) costs=gamma_s*rs**2 sints=np.sqrt(1-costs**2) rhos=rs*sints rhos2=rhos**2 zs=rs*costs # TODO looks like this part is repetative. p=(rrc1+rhos)**2+zs**2+dd1**2 xk2=4*rrc1*rhos/p xk=np.sqrt(xk2) xkrho12=xk*np.sqrt(rhos) # see nb#4, p.3 xk2s = 1-xk2 dl = np.log(1/xk2s) elk = 1.38629436112 + xk2s*(0.09666344259+xk2s*(0.03590092383+xk2s*(0.03742563713+xk2s*0.01451196212))) \ + dl*(0.5+xk2s*(0.12498593597+xk2s*(0.06880248576+xk2s*(0.03328355346+xk2s*0.00441787012)))) ele = 1 + xk2s*(0.44325141463+xk2s*(0.0626060122+xk2s*(0.04757383546+xk2s*0.01736506451))) \ + dl*xk2s*(0.2499836831+xk2s*(0.09200180037+xk2s*(0.04069697526+xk2s*0.00526449639))) aphi1=((1-xk2*0.5)*elk-ele)/xkrho12 p=(rrc2+rhos)**2+zs**2+dd2**2 xk2=4*rrc2*rhos/p xk=np.sqrt(xk2) xkrho12=xk*np.sqrt(rhos) # see nb#4, p.3 xk2s = 1-xk2 dl = np.log(1/xk2s) elk = 1.38629436112 + xk2s*(0.09666344259+xk2s*(0.03590092383+xk2s*(0.03742563713+xk2s*0.01451196212))) \ + dl*(0.5+xk2s*(0.12498593597+xk2s*(0.06880248576+xk2s*(0.03328355346+xk2s*0.00441787012)))) ele = 1 + xk2s*(0.44325141463+xk2s*(0.0626060122+xk2s*(0.04757383546+xk2s*0.01736506451))) \ + dl*xk2s*(0.2499836831+xk2s*(0.09200180037+xk2s*(0.04069697526+xk2s*0.00526449639))) aphi2=((1-xk2*0.5)*elk-ele)/xkrho12 apprc=a1*aphi1+a2*aphi2 if prox: apprc=apprc*sint/sint1 # linear interpolation, if too close to the z-axis return apprc def prc_quad(x,y,z): """ Calculates components of the field from the "quadrupole" component of the partial ring current. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ d = 1e-4 dd = 2e-4 ds = 1e-2 dc = 0.99994999875 rho2=x**2+y**2 r=np.sqrt(rho2+z**2) rho=np.sqrt(rho2) sint=rho/r cost=z/r rp=r+d rm=r-d if sint > ds: cphi=x/rho sphi=y/rho br=br_prc_q(r,sint,cost) bt=bt_prc_q(r,sint,cost) dbrr=(br_prc_q(rp,sint,cost)-br_prc_q(rm,sint,cost))/dd theta=np.arctan2(sint,cost) tp=theta+d tm=theta-d sintp=np.sin(tp) costp=np.cos(tp) sintm=np.sin(tm) costm=np.cos(tm) dbtt=(bt_prc_q(r,sintp,costp)-bt_prc_q(r,sintm,costm))/dd bx=sint*(br+(br+r*dbrr+dbtt)*sphi**2)+cost*bt by=-sint*sphi*cphi*(br+r*dbrr+dbtt) bz=(br*cost-bt*sint)*cphi else: st=ds ct=dc if z < 0: ct=-dc theta=np.arctan2(st,ct) tp=theta+d tm=theta-d sintp=np.sin(tp) costp=np.cos(tp) sintm=np.sin(tm) costm=np.cos(tm) br=br_prc_q(r,st,ct) bt=bt_prc_q(r,st,ct) dbrr=(br_prc_q(rp,st,ct)-br_prc_q(rm,st,ct))/dd dbtt=(bt_prc_q(r,sintp,costp)-bt_prc_q(r,sintm,costm))/dd fcxy=r*dbrr+dbtt bx=(br*(x**2+2.*y**2)+fcxy*y**2)/(r*st)**2+bt*cost by=-(br+fcxy)*x*y/(r*st)**2 bz=(br*cost/st-bt)*x/r return bx,by,bz def br_prc_q(r,sint,cost): """ Calculates the radial component of the "quadrupole" part of the model partial ring current. :param r: :param sint: :param cost: :return: """ a1 = -21.2666329 a2 = 32.24527521 a3 = -6.062894078 a4 = 7.515660734 a5 = 233.7341288 a6 = -227.1195714 a7 = 8.483233889 a8 = 16.80642754 a9 = -24.63534184 a10 = 9.067120578 a11 = -1.052686913 a12 = -12.08384538 a13 = 18.61969572 a14 = -12.71686069 a15 = 47017.35679 a16 = -50646.71204 a17 = 7746.058231 a18 = 1.531069371 xk1 = 2.318824273 al1 = 0.1417519429 dal1 = 0.6388013110e-02 b1 = 5.303934488 be1 = 4.213397467 xk2 = 0.7955534018 al2 = 0.1401142771 dal2 = 0.2306094179e-01 b2 = 3.462235072 be2 = 2.568743010 xk3 = 3.477425908 xk4 = 1.922155110 al3 = 0.1485233485 dal3 = 0.2319676273e-01 b3 = 7.830223587 be3 = 8.492933868 al4 = 0.1295221828 dal4 = 0.01753008801 dg1 = 0.01125504083 al5 = 0.1811846095 dal5 = 0.04841237481 dg2 = 0.01981805097 c1 = 6.557801891 c2 = 6.348576071 c3 = 5.744436687 al6 = 0.2265212965 dal6 = 0.1301957209 drm = 0.5654023158 sint2=sint**2 cost2=cost**2 sc=sint*cost alpha=sint2/r gamma=cost/r**2 f,fa,fs = ffs(alpha,al1,dal1) d1=sc*f**xk1/((r/b1)**be1+1.) d2=d1*cost2 f,fa,fs = ffs(alpha,al2,dal2) d3=sc*fs**xk2/((r/b2)**be2+1.) d4=d3*cost2 f,fa,fs = ffs(alpha,al3,dal3) d5=sc*(alpha**xk3)*(fs**xk4)/((r/b3)**be3+1.) d6=d5*cost2 arga=((alpha-al4)/dal4)**2+1. argg=1.+(gamma/dg1)**2 d7=sc/arga/argg d8=d7/arga d9=d8/arga d10=d9/arga arga=((alpha-al5)/dal5)**2+1. argg=1.+(gamma/dg2)**2 d11=sc/arga/argg d12=d11/arga d13=d12/arga d14=d13/arga d15=sc/(r**4+c1**4) d16=sc/(r**4+c2**4)*cost2 d17=sc/(r**4+c3**4)*cost2**2 f,fa,fs = ffs(alpha,al6,dal6) d18=sc*fs/(1.+((r-1.2)/drm)**2) br_prc_q=a1*d1+a2*d2+a3*d3+a4*d4+a5*d5+a6*d6+a7*d7+a8*d8+a9*d9+ \ a10*d10+a11*d11+a12*d12+a13*d13+a14*d14+a15*d15+a16*d16+a17*d17+a18*d18 return br_prc_q def bt_prc_q(r,sint,cost): """ Calculates the theta component of the "quadrupole" part of the model partial ring current. :param r: :param sint: :param cost: :return: """ # all linear parameters here were multiplied by 0.1, so that they correspond to p_0=1 npa, # rather than the original value of 10 npa assumed in the biot-savart integral. a1 = 12.74640393 a2 = -7.516393516 a3 = -5.476233865 a4 = 3.212704645 a5 = -59.10926169 a6 = 46.62198189 a7 = -.01644280062 a8 = 0.1234229112 a9 = -.08579198697 a10 = 0.01321366966 a11 = 0.8970494003 a12 = 9.136186247 a13 = -38.19301215 a14 = 21.73775846 a15 = -410.0783424 a16 = -69.90832690 a17 = -848.8543440 xk1 = 1.243288286 al1 = 0.2071721360 dal1 = 0.05030555417 b1 = 7.471332374 be1 = 3.180533613 xk2 = 1.376743507 al2 = 0.1568504222 dal2 = 0.02092910682 be2 = 1.985148197 xk3 = 0.3157139940 xk4 = 1.056309517 al3 = 0.1701395257 dal3 = 0.1019870070 b3 = 6.293740981 be3 = 5.671824276 al4 = 0.1280772299 dal4 = 0.02189060799 dg1 = 0.01040696080 al5 = 0.1648265607 dal5 = 0.04701592613 dg2 = 0.01526400086 c1 = 12.88384229 c2 = 3.361775101 c3 = 23.44173897 sint2=sint**2 cost2=cost**2 sc=sint*cost alpha=sint2/r gamma=cost/r**2 f,fa,fs = ffs(alpha,al1,dal1) d1=f**xk1/((r/b1)**be1+1.) d2=d1*cost2 f,fa,fs = ffs(alpha,al2,dal2) d3=fa**xk2/r**be2 d4=d3*cost2 f,fa,fs = ffs(alpha,al3,dal3) d5=fs**xk3*alpha**xk4/((r/b3)**be3+1.) d6=d5*cost2 f,fa,fs = ffs(gamma,0.,dg1) fcc=(1.+((alpha-al4)/dal4)**2) d7 =1./fcc*fs d8 =d7/fcc d9 =d8/fcc d10=d9/fcc arg=1.+((alpha-al5)/dal5)**2 d11=1./arg/(1.+(gamma/dg2)**2) d12=d11/arg d13=d12/arg d14=d13/arg d15=1./(r**4+c1**2) d16=cost2/(r**4+c2**2) d17=cost2**2/(r**4+c3**2) bt_prc_q = a1*d1+a2*d2+a3*d3+a4*d4+a5*d5+a6*d6+a7*d7+a8*d8+a9*d9+ \ a10*d10+a11*d11+a12*d12+a13*d13+a14*d14+a15*d15+a16*d16+a17*d17 return bt_prc_q def ffs(a, a0, da): sq1 = np.sqrt((a + a0) ** 2 + da ** 2) sq2 = np.sqrt((a - a0) ** 2 + da ** 2) fa = 2. / (sq1 + sq2) f = fa * a fs = 0.5 * (sq1 + sq2) / (sq1 * sq2) * (1.-f * f) return f, fa, fs def rc_shield(a,ps,x_sc,x,y,z): """ B due to the ring current shield. :param a: coefficient. :param ps: geo-dipole tilt angle in radius. :param x_sc: scaling factors. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ fac_sc = (x_sc+1)**3 cps = np.cos(ps) sps = np.sin(ps) s3ps=2*cps pst1=ps*a[84] pst2=ps*a[85] st1=np.sin(pst1) ct1=np.cos(pst1) st2=np.sin(pst2) ct2=np.cos(pst2) x1=x*ct1-z*st1 z1=x*st1+z*ct1 x2=x*ct2-z*st2 z2=x*st2+z*ct2 l=0 [bx,by,bz] = [0.]*3 for m in range(2): # m=1 is for the 1st sum ("perp." symmetry) and m=2 is for the second sum ("parall." symmetry) for i in range(3): p=a[72+i] q=a[78+i] cypi=np.cos(y/p) cyqi=np.cos(y/q) sypi=np.sin(y/p) syqi=np.sin(y/q) for k in range(3): r=a[75+k] s=a[81+k] szrk=np.sin(z1/r) czsk=np.cos(z2/s) czrk=np.cos(z1/r) szsk=np.sin(z2/s) sqpr=np.sqrt(1/p**2+1/r**2) sqqs=np.sqrt(1/q**2+1/s**2) epr=np.exp(x1*sqpr) eqs=np.exp(x2*sqqs) for n in range(2): # n=1 is for the first part of each coefficient and n=2 is for the second one for nn in range(2): # nn = 1,2 further splits the coefficients into 2 parts, to take into account the scale factor dependence if m == 0: fx = -sqpr*epr*cypi*szrk*fac_sc fy = epr*sypi*szrk/p *fac_sc fz = -epr*cypi*czrk/r *fac_sc if n == 0: if nn == 0: [hx,hy,hz] = [fx,fy,fz] else: [hx,hy,hz] = [fx*x_sc, fy*x_sc, fz*x_sc] else: if nn == 0: [hx,hy,hz] = [fx*cps, fy*cps, fz*cps] else: [hx,hy,hz] = [fx*cps*x_sc, fy*cps*x_sc, fz*cps*x_sc] else: # m == 2 fx = -sps*sqqs*eqs*cyqi*czsk*fac_sc fy = sps/q*eqs*syqi*czsk *fac_sc fz = sps/s*eqs*cyqi*szsk *fac_sc if n == 0: if nn == 0: [hx,hy,hz] = [fx,fy,fz] else: [hx,hy,hz] = [fx*x_sc,fy*x_sc,fz*x_sc] else: if nn == 0: [hx,hy,hz] = [fx*s3ps,fy*s3ps,fz*s3ps] else: [hx,hy,hz] = [fx*s3ps*x_sc, fy*s3ps*x_sc, fz*s3ps*x_sc] if m == 0: hxr = hx*ct1+hz*st1 hzr = -hx*st1+hz*ct1 else: hxr = hx*ct2+hz*st2 hzr = -hx*st2+hz*ct2 bx = bx+hxr*a[l] by = by+hy *a[l] bz = bz+hzr*a[l] l=l+1 return bx, by, bz def dipole(ps, x,y,z): """ Calculates GSM components of a geo-dipole field with the dipole moment corresponding to the epoch of 2000. :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ sps = np.sin(ps) cps = np.cos(ps) p = x**2 u = z**2 v = 3*z*x t = y**2 q = 30115./np.sqrt(p+t+u)**5 bx = q*((t+u-2*p)*sps-v*cps) by = -3*y*q*(x*sps+z*cps) bz = q*((p+t-2*u)*cps-v*sps) return bx,by,bz ```
{ "source": "jonasteuwen/manet-old", "score": 3 }
#### File: manet-old/examples/create_lmdb_set.py ```python import lmdb import os from tqdm import tqdm import simplejson as json import numpy as np from manet.utils import read_dcm_series, write_list def write_kv_to_lmdb(db, key, value): """ Write (key, value) to db. """ success = False while not success: txn = db.begin(write=True) try: txn.put(key, value) txn.commit() success = True except lmdb.MapFullError: txn.abort() # double the map_size curr_limit = db.info()['map_size'] new_limit = curr_limit * 2 tqdm.write('MapFullError: Doubling LMDB map size to {}MB.'.format(new_limit)) db.set_mapsize(new_limit) def write_data_to_lmdb(db, key, image, metadata): """Write image data to db.""" write_kv_to_lmdb(db, key, np.ascontiguousarray(image).tobytes()) meta_key = key + '_metadata' ser_meta = json.dumps(metadata) write_kv_to_lmdb(db, meta_key, ser_meta) def build_db(path, db_name, image_folders, generate_keys=False): """Build LMDB with images.""" db = lmdb.open(os.path.join(path, db_name), map_async=True, max_dbs=0) if generate_keys: keys_filename = os.path.join(path, db_name + '_keys.lst') write_list( [], keys_filename, header=['LMDB keys for db {}'.format(db_name)]) for key, folder in tqdm(image_folders): try: data, metadata = read_dcm_series(folder) # If dataset is written to LMDB, # we do not need the filenames anymore. metadata.pop('filenames', None) series_ids = metadata.pop('series_ids', None) if series_ids: metadata['series_id'] = series_ids[0] metadata['dtype'] = '{}'.format(data.dtype) write_data_to_lmdb(db, key, data, metadata) if generate_keys: write_list([key], keys_filename, append=True) except Exception as e: tqdm.write('{} failed: {}'.format(path, e)) ``` #### File: manet-old/examples/save_image.py ```python import matplotlib matplotlib.use('Agg') import click from manet.utils import read_dcm, read_image from manet.feature.peak import peak_local_max from manet.transform.mask import resize, bounding_box from manet.plotting.imshow import plot_2d @click.command() @click.argument('image', type=click.Path(exists=True)) @click.option('--mask', default=None, help='Location mask dcm', type=click.Path(exists=True)) @click.option('--overlay', default=None, help='Location to overlay map', type=click.Path(exists=True)) @click.option('--output', default='output.png', help='Image to write to') @click.option('--height', default=16, help='height of the image in inches') @click.option('--dpi', default=None, help='dpi of the output image') @click.option('--linewidth', default=2, help='linewidth of the contours.') @click.option('--bbox/--no-bbox', default=False, help='Plot bounding box') @click.option('--contour/--no-contour', default=True, help='Do not plot contour.') @click.option('--threshold', default=0.5, help='Threshold for the overlay') @click.option('--alpha', default=0., help='alpha of the overlay.') @click.option('--local-maxima/--no-local-maxima', default=False, help='add local maximal to the plot') def write_image(image, mask, overlay, output, height, dpi, linewidth, bbox, contour, threshold, alpha, local_maxima): """Write image to disk, given input dcm. Possible to add contours and bounding boxes. """ image, _ = read_dcm(image, window_leveling=True) if mask: mask_arr, _ = read_dcm(mask, window_leveling=False) if image.shape != mask_arr.shape: mask_arr = resize(mask_arr, image.shape) if bbox: bboxes = bounding_box(mask_arr) bboxes = [x for x, _ in bboxes] else: bboxes = None if not contour: # If we do not want to show the contour, we set it to None. mask_arr = None if overlay: overlay, _ = read_image(overlay, force_2d=True) min_distance = 37 if local_maxima else False plot_2d(image, height=height, mask=mask_arr, bboxes=bboxes, overlay=overlay, overlay_cmap='jet', overlay_alpha=alpha, overlay_contour_color='b', overlay_threshold=threshold, overlay_local_max_min_distance=min_distance, save_as=output, dpi=dpi, linewidth=linewidth) print('Output written to {}.'.format(output)) if __name__ == '__main__': write_image() ``` #### File: manet/lmdb/dataset.py ```python import os import copy import lmdb import numpy as np import simplejson as json from manet.utils import write_list, read_list class LmdbDb(object): def __init__(self, path, db_name): """Load an LMDB database, containing a dataset. The dataset should be structured as image_id: binary representing the contiguous block. If image_id is available we also need image_id_metadata which is a json parseble dictionary. This dictionary should contains the key 'shape' representing the shape and 'dtype'. If the keys file is available, the file is loaded, otherwise generated. Parameters ---------- path : str Path to folder with LMDB db. db_name : str Name of the database. """ lmdb_path = os.path.join(path, db_name) lmdb_keys_path = os.path.join(path, db_name + '_keys.lst') self.lmdb_path = lmdb_path self.env = lmdb.open(lmdb_path, max_readers=None, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.length = txn.stat()['entries'] // 2 if os.path.isfile(lmdb_keys_path): self._keys = read_list(lmdb_keys_path) else: # The keys file does not exist, we will generate one, but this can take a while. with self.env.begin(write=False) as txn: keys = [key for key, _ in txn.cursor() if '_metadata' not in key] write_list(keys, lmdb_keys_path, header=['LMDB keys for db {}'.format(db_name)]) self._keys = keys def __delitem__(self, key): idx = self._keys.index[key] self._keys.pop(idx, None) def copy(self): return copy.deepcopy(self) def has_key(self, key): return key in self._keys def keys(self): return self._keys def __getitem__(self, key): with self.env.begin(buffers=True, write=False) as txn: if key not in self._keys: raise KeyError(key) buf = txn.get(key) meta_buf = txn.get(key + '_metadata') metadata = json.loads(str(meta_buf)) dtype = metadata['dtype'] shape = metadata['shape'] data = np.ndarray(shape, dtype, buffer=buf) out = {} out['data'] = data out['metadata'] = metadata return out def __len__(self): return self.length def __repr__(self): return self.__class__.__name__ + ' (' + self.lmdb_path + ')' ``` #### File: manet/transform/rescale_transform.py ```python import numpy as np from manet._shared.utils import assert_nD from skimage import __version__ from distutils.version import LooseVersion from skimage.transform import rescale SKIMAGE_VERSION = '0.14dev' def random_rescale_2d(arr, zoom_perc): """Rescale an array in 2D. Parameters ---------- arr : ndarray array to rescale zoom_percentage : float number between 0 and 1 to denote the percentage to scale Returns ------- Randomly rescaled array of zoom_perc% and the selected zoom. """ assert_nD(arr, 2) if zoom_perc < 0 or zoom_perc > 1: raise ValueError('zoom percentage should be in [0, 1]') zoom_range = 1 + zoom_perc if LooseVersion(__version__) < SKIMAGE_VERSION: raise RuntimeError('scikit-image >= %s needed for rescaling.' % SKIMAGE_VERSION) # scale to [2 - range, range] zoom = 2 - zoom_range + 2*(zoom_range - 1)*np.random.rand() arr = rescale(arr, zoom, anti_aliasing=True if zoom < 1 else False, mode='constant', multichannel=False) return arr, zoom ``` #### File: manet/utils/patch_utils.py ```python from __future__ import division import numpy as np from manet.utils import prob_round, read_dcm from manet.utils import cast_numpy from manet.utils.bbox_utils import _split_bbox, _combine_bbox from manet.utils.mask_utils import random_mask_idx, bounding_box def extract_patch(image, bbox, pad_value=0): """Extract bbox from images, coordinates can be negative. Parameters ---------- image : ndarray nD array bbox : list or tuple bbox of the form (coordinates, size), for instance (4, 4, 2, 1) is a patch starting at row 4, col 4 with height 2 and width 1. pad_value : number if bounding box would be out of the image, this is value the patch will be padded with. Returns ------- ndarray """ # Coordinates, size bbox_coords, bbox_size = _split_bbox(bbox) # Offsets l_offset = -bbox_coords.copy() l_offset[l_offset < 0] = 0 r_offset = (bbox_coords + bbox_size) - np.array(image.shape) r_offset[r_offset < 0] = 0 region_idx = [slice(i, j) for i, j in zip(bbox_coords + l_offset, bbox_coords + bbox_size - r_offset)] out = image[region_idx] if np.all(l_offset == 0) and np.all(r_offset == 0): return out # If we have a positive offset, we need to pad the patch. patch = pad_value*np.ones(bbox_size, dtype=image.dtype) patch_idx = [slice(i, j) for i, j in zip(l_offset, bbox_size + l_offset - r_offset)] patch[patch_idx] = out return patch def rebuild_bbox(bbox, new_size): """Given a bounding box and a requested size return the new bounding box around the center of the old. If the coordinate would be non-integer, the value is randomly rounded up or down. Parameters ---------- bbox : tuple, list or ndarray new_size : tuple or list Returns ------- New bounding box. """ new_size = cast_numpy(new_size) bbox_coords, bbox_size = _split_bbox(bbox) bbox_center = bbox_coords - bbox_size / 2. new_bbox_coords = prob_round(bbox_center - new_size / 2.) new_bbox = _combine_bbox(new_bbox_coords, new_size) return new_bbox def sym_bbox_from_bbox(point, bbox): """Given a a bounding box and a point, the smallest box containing the bounding box around that point is returned.""" bbox_coords, bbox_size = _split_bbox(bbox) # Compute the maximal distance between the center of mass and the bbox. max_dist = np.max([ (point - bbox_coords).max(), (bbox_coords + bbox_size - point).max() ]) new_size = (2*max_dist + 1)*np.ones(bbox_size, dtype=int) new_bbox_coords = point - max_dist*np.ones(bbox_size, dtype=int) new_bbox = _combine_bbox(new_bbox_coords, new_size) return new_bbox def sym_bbox_from_point(point, bbox_size): """Given a size and a point, the symmetric bounding box around that point is returned. If there is ambiguity due to floats, the result is randomly rounded.""" bbox_size = cast_numpy(bbox_size) point = cast_numpy(point) bbox_coords = prob_round(point - bbox_size / 2.) bbox = _combine_bbox(bbox_coords, bbox_size) return bbox def sample_from_mask(mask, avoid, num_tries=100): """A random index is sampled for a mask in the non-zero values. As a first try, num_tries iterations randomly select a point and if found, proceeds. This is more efficient than finding all possible non-zero values which is O(n x m). If this fails within num_tries iterators, we look through all non-positive indices. Otherwise, we look through all possible indexes. Parameters ---------- mask : str or ndarray Path to file containing mask or ndarray. Returns ------- An index sampled within the mask. """ if isinstance(mask, basestring): mask, _ = read_dcm(mask, window_leveling=False, dtype=int) bbox = bounding_box(mask) mask = extract_patch(mask, bbox) i = 0 rand_idx = None while i < num_tries: # We sample up to a part of the edge rand_idx = tuple( [np.random.randint(x, y) for x, y in zip(avoid, mask.shape - avoid)]) if mask[rand_idx] != 0: break i += 1 # If that didn't work, we unfortunately have to do a full search. # Here we do not try to avoid the edge. if not rand_idx: rand_idx = random_mask_idx(mask) bbox_coords, _ = _split_bbox(bbox) rand_idx = cast_numpy(bbox_coords) idx = tuple(rand_idx + bbox_coords) return idx ```
{ "source": "JonasTFab/Master", "score": 2 }
#### File: Master/iris/visualise_SJI_data.py ```python import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button from matplotlib.contour import QuadContourSet from astropy.io import fits #from astropy.wcs import WCS import numpy as np """ Program to visualise any of the four fits image files. """ print("Enter index of wavelength to plot:") print("0 --> 1330") print("1 --> 1400") print("2 --> 2796") print("3 --> 2832") print("Auto enter 2...") arg = 2#int(input("Enter: ")) path = "/mn/stornext/d10/HDC2/iris/data/level2/2013/10/09/20131009_232607_3820012146/" file_1330 = "iris_l2_20131009_232607_3820012146_SJI_1330_t000.fits" file_1440 = "iris_l2_20131009_232607_3820012146_SJI_1400_t000.fits" file_2796 = "iris_l2_20131009_232607_3820012146_SJI_2796_t000.fits" file_2832 = "iris_l2_20131009_232607_3820012146_SJI_2832_t000.fits" file = [file_1330,file_1440,file_2796,file_2832] #try: data = fits.open(path+file[arg]) #except: # assert False, "Error occured! Need to insert valid argument! [0,1,2,3]" image_data = data[0].data data.close() # neglect extreme values non_zero = np.where(image_data>0) vmax = 3*np.mean(image_data[non_zero]) # locate jets init_percentile = 90 data_p = np.percentile(image_data[non_zero], init_percentile) jets = np.zeros(image_data.shape) jets_loc = np.where(image_data>data_p) jets[jets_loc] = 1 # idx = 10 fig = plt.figure() axes = plt.axes([0.1, 0.2, 0.8, 0.65]) # define sliders: # image slider slider_im = Slider( plt.axes([0.15, 0.05, 0.7, 0.05]), label="frame #", valmin=0, valmax=image_data.shape[0]-1, valinit=idx, valfmt="%i") # percentile slider slider_p = Slider( plt.axes([0.40, 0.9, 0.45, 0.05]), label="Percentile", valmin=0, valmax=100, valinit=init_percentile, valfmt="%i") plt.axes(axes) im = plt.imshow(image_data[idx,:,:], vmin=0, vmax=vmax, cmap="gray") plt.gca().invert_yaxis() # fix y-axis plt.colorbar() # what happens when toggle contour lines def toggle_contour(X): global im_jets try: for coll in im_jets.collections: plt.gca().collections.remove(coll) except: im_jets = plt.contour(jets[idx,:,:]) fig.canvas.draw_idle() # what happens using image slider def update_im(X): global idx, im_jets idx = int(X) im.set_data(image_data[idx,:,:]) try: for coll in im_jets.collections: coll.remove() im_jets = plt.contour(jets[idx,:,:]) except: pass fig.canvas.draw_idle() # what happen using percentile slider def update_percentile(X): global jets, im_jets try: for coll in im_jets.collections: coll.remove() data_p = np.percentile(image_data[non_zero], int(X)) jets_loc = np.where(image_data>data_p) jets[:,:,:] = 0 jets[jets_loc] = 1 im_jets = plt.contour(jets[idx,:,:]) except: pass fig.canvas.draw_idle() slider_im.on_changed(update_im) slider_p.on_changed(update_percentile) button_toggle = Button(plt.axes([0.05, 0.9, 0.2, 0.05]), "Toggle contour") plt.axes(axes) button_toggle.on_clicked(toggle_contour) plt.show() del image_data ``` #### File: Master/iris/webscraping.py ```python import requests """ A webscraping tool that looks for information from a URL based on the keyword argument 'get_info_of'. Currently only tested on https://iris.lmsal.com/iris2/iris2_chapter02_01.html#inversion-of-iris-mg-ii-h-k-lines-with-iris2 because of its relevance. Definitely not the most elegant approach, but works fine for now. """ def request_info(URL, get_info_of): """ URL is URL. get_info_of is a list of parameters to extract info from """ # convert page to utf-8 text format page = requests.get(URL) page.encoding = page.apparent_encoding text = page.text out_info = [] predef = '<li><p><code class="docutils literal notranslate"><span class="pre">' for param in get_info_of: # locate the keyword from the URL page if param=="model": idx_i = text.find(predef+param+"<") elif param=="mask_extra2": param = "mask_extra" idx_i = text.find(predef+param) idx_i += text[idx_i+1:].find(predef+param)+1 else: idx_i = text.find(predef+param) #param_text = text[idx_i+len(predef):idx_i+len(predef)+1500] param_text = text[idx_i+len(predef):idx_i+len(predef)+1500] if param=="qc_flag": idx_f = param_text.find("</p></li>\n</ul>") else: idx_f = param_text.find("</p></li>") param_text = param_text[:idx_f] # lots of removals param_text = param_text.replace('%s</span></code>: '%param, "") param_text = param_text.replace('<code class="docutils literal notranslate"><span class="pre">', "") param_text = param_text.replace('</span></code>', "") param_text = param_text.replace('\n', " ") param_text = param_text.replace('<span class="math notranslate nohighlight">\(', "") param_text = param_text.replace('\)</span>', "") param_text = param_text.replace('<a class="reference external" href=', "") param_text = param_text.replace('<code class="xref std std-numref docutils literal notranslate"><span class="pre">', "") param_text = param_text.replace('</span> <span', "") param_text = param_text.replace('class="pre">', "") param_text = param_text.replace('<a class="reference internal" href="#inversion-of-a-large-raster-file-a-region-of-interest-or-a-masked-area"><span class="std std-numref">S', "") param_text = param_text.replace('</span></a>', "") param_text = param_text.replace("</p> <ul> <li><p>", " ") param_text = param_text.replace("</p></li> <li><p>", ", ") param_text = param_text.replace("\\", "") param_text = param_text.replace("\\", "") out_info.append(param_text) return out_info if __name__ == '__main__': """ URL = "https://iris.lmsal.com/iris2/iris2_chapter02_01.html#inversion-of-iris-mg-ii-h-k-lines-with-iris2" get_info = ["qc_flag"] info = request_info(URL, get_info) """ #print(info) ``` #### File: run/output/study_rh_output.py ```python from helita.sim import rh15d import matplotlib.pyplot as plt import numpy as np import os import warnings # ignore tedious warnings warnings.filterwarnings("ignore") ############################################################## def load_rh_data(folder, print_attributes=False): # reset IPython kernel try: # works only if in IPython kernel from IPython import get_ipython get_ipython().magic("reset -sf") except: pass # defines variables that should be global global DATA, WAVELENGTH, WAVELENGTH_INDEX, WAVELENGTH_SELECTED #global DATA = rh15d.Rh15dout(folder) WAVELENGTH = DATA.files[4].wavelength #wl_idx = data.files[4].wavelength_indices WAVELENGTH_INDEX = np.where((WAVELENGTH.values>279.401921894) & (WAVELENGTH.values<280.501526399))[0] WAVELENGTH_SELECTED = WAVELENGTH[WAVELENGTH_INDEX] # print attributes from RH code if print_attributes==True: for i, file in enumerate(DATA.files): print("\n\n--------------------------\n\n") print("data.files[index]: ", i) print(file) ############################################################## # get all output folders within current folder def get_output_folders(): folders = os.walk(".") output_folders = [] for path in folders: if not "wrong" in path[0] and all(x in path[0] for x in ["x","y","dx","dy"]): output_folders.append(path[0].replace("./", "")) return output_folders ############################################################## # plots intensity from RH code def plot_intensity(): nx = DATA.files[4].nx ny = DATA.files[4].ny colx,coly = np.random.randint(nx), np.random.randint(ny) """for i in np.linspace(0,nx-1,nx).astype("int"): for j in np.linspace(0,ny-1,nx).astype("int"): I = DATA.files[4].intensity[i, j, WAVELENGTH_INDEX] plt.plot(WAVELENGTH_SELECTED, I/I[0], color="black", alpha=0.01) """ mean_I = np.mean(DATA.files[4].intensity[:,:,WAVELENGTH_INDEX], axis=(0,1)) plt.plot(WAVELENGTH_SELECTED, mean_I, ".-") plt.xlabel("Wavelength (nm)") plt.ylabel(r"Intensity $(I/I_0)$") plt.grid() plt.show() ############################################################## def kmean_model(data=False, k_create_model=False, test_model=False, test_profiles=False, wavelength=False): #if not data: # assert False, "Did not input data!" if I_data.ndim != 2: assert False, "Wrong dimension on input data! Must be two-dimensianal." # if 'test_model' is not defined, train a model instead if not test_model: from rh_kmean import create_kmean_from_data kmean = create_kmean_from_data(data, k_value=k_create_model) # test a trained model else: from rh_kmean import test_kmean_model test_kmean_model(test_model, test_profiles=test_profiles, wavelength=wavelength, k_nearest=False) ############################################################## def get_intensity_from_all_folders(plot_converge_box=False): folders = get_output_folders() colx = [] # x coordinate of converged columns coly = [] # y coordinate of converged columns colx_nc = [] # x columns that did not converge coly_nc = [] # y columns that did not converge I = [] # intensities #folders.pop(3) # as the folder is currently empty #folders.pop(1) #folders.append(".") for f in folders: print(f) # goes through all folders that is # output from rh code for f_i, folder in enumerate(folders): load_rh_data(folder=folder, print_attributes=False) nx = DATA.files[4].nx # number of columns in x ny = DATA.files[4].ny # number of columns in y xnum = DATA.files[3].xnum.values # column index x from model ynum = DATA.files[3].ynum.values # column index y from model # making sure that same columns are # not added multiple times if f_i != 0: for i in range(nx): for j in range(ny): add_col = True # if column is already added, do not add again for k in range(len(colx)): if xnum[i] == colx[k] and ynum[j] == coly[k]: add_col = False break if add_col and ~np.isnan(DATA.files[4].intensity[i,j,:].values).any(): colx.append(xnum[i]) coly.append(ynum[j]) I.append(DATA.files[4].intensity[i, j, WAVELENGTH_INDEX].values) elif add_col: colx_nc.append(xnum[i]) coly_nc.append(ynum[j]) # if first output folder, add all columns else: for i in range(nx): for j in range(ny): if ~np.isnan(DATA.files[4].intensity[i,j,:].values).any(): colx.append(xnum[i]) coly.append(ynum[j]) I.append(DATA.files[4].intensity[i, j, WAVELENGTH_INDEX].values) else: colx_nc.append(xnum[i]) coly_nc.append(ynum[j]) # remove elemnts from col(x/y)_nc that later # has converged (from other folders/runs) pop = [] for i in range(len(colx_nc)): for j in range(len(colx)): if colx_nc[i] == colx[j] and coly_nc[i] == coly[j]: pop.append(i) #colx_nc.pop(i) #coly_nc.pop(i) # must pop aftewards, else remove wrong index pop.reverse() for i in pop: colx_nc.pop(i) coly_nc.pop(i) # plot columns that have and have not # converged in model if plot_converge_box: plt.close() fig,ax = plt.subplots() ax.set_title("Converged synthetic spectra of model: %.2f %%" % (100*len(colx)/1024**2)) ax.plot([0,1024,1024,0,0], [0,0,1024,1024,0], "--", color="black", label="Model box", lw=0.5) ax.scatter(colx, coly, marker="s", label="Converged columns", s=20, color="green") ax.scatter(colx_nc, coly_nc, marker="s", label="Non-converged columns", s=20, color="red") ax.legend() ax.grid() fig.show() # return intensities, converged columns # and non-converged columns return np.array(I), np.array([colx,coly]), np.array([colx_nc,coly_nc]) ############################################################## get_intensity_from_all_folders(plot_converge_box=True) #get_output_folders() #output_folder = "x0-1024_y0-1024_dxdy25-25" #load_rh_data(folder=output_folder, print_attributes=False) #plot_intensity() #I_data = DATA.files[4].intensity[:,:,WAVELENGTH_INDEX].values #I_data = I_data[~np.isnan(I_data).any(axis=2)] """k = 5 kmean_model(data=I_data, k_create_model=k) kmean_model(test_model="KMEAN_MODELS/1641_%i"%k, test_profiles=I_data, wavelength=WAVELENGTH_SELECTED)""" # ```
{ "source": "jonastheis/das", "score": 2 }
#### File: das/client/app.py ```python import math, argparse from common.game import Game from client.network.transport import ClientTransport from common.constants import TRANSPORT, USERS, DIRECTIONS, init_logger, MSG_TYPE from common.command import MoveCommand, HealCommand, AttackCommand from common.visualizer import Visualizer import threading, random, time import json import logging logger = logging.getLogger("sys." + __name__.split(".")[-1]) gameLogger = logging.getLogger("game." + __name__.split(".")[-1]) class ClientApp(): def __init__(self, servers): self.game = Game() self.transport_layer = ClientTransport(self.game, servers) id, map = self.transport_layer.setup_client() self.id = id # replace json objects with user object self.game.from_serialized_map(map) logger.info("Setup data -> id: {0}".format(id)) self.transport_layer.id = id self.transport_layer.listen() self.my_user = next(filter(lambda el: el.id == self.id, self.game.users)) def generate_commands(self, iterations, malicious): """ Run _generate_commands in a new thread """ threading.Thread(target=self._generate_commands, args=(iterations, malicious)).start() def _generate_commands(self, iterations, malicious): """ Generate simulation commands :param iterations: Number of iterations :return: None """ logger.debug("Generating commands for {} iterations".format(iterations)) for i in range(iterations): if not malicious: new_command = self.simulate_player() else: new_command = self.simulate_malicious_player() # If there is no dragon and no one with hp<50%, no commands will be generated. In that case do nothing if new_command: self.game.commands.append(new_command) def simulate_player(self): """ Simulate the actions of the self player based on game spec :return: Command Object """ ######## Option 1: heal a close-by player heal_candidates = self.get_users_in_range(self.my_user.pos, 5, USERS.PLAYER) for user in heal_candidates: if user.id != self.my_user.id: if user.hp < user.MAX_HP/2: return HealCommand(self.id, user.id) ######## Option 2: Attack a close dragon if available attack_candidates = self.get_users_in_range(self.my_user.pos, 2, USERS.DRAGON) if len(attack_candidates): target = attack_candidates[0] return AttackCommand(self.id, target.id) ######## Option 3: Move toward the closest dragon dragons = list(filter(lambda _user: _user.type == USERS.DRAGON, self.game.users)) if len(dragons): # sort dragons by distance # NOTE: we assume that the distance of the closest dragon is more than 2. # Because otherwise we would have returned with an attack command dragons.sort(key=lambda dragon: math.fabs(dragon.pos[0]-self.my_user.pos[0]) + math.fabs(dragon.pos[1]-self.my_user.pos[1])) # Move options: Move vertically toward that dragon or Horizontally # If they are in the same row/col we know what to do move_target = dragons[0] value = None move_direction = None if self.my_user.pos[0] == move_target.pos[0]: move_direction = DIRECTIONS.H elif self.my_user.pos[1] == move_target.pos[1]: move_direction = DIRECTIONS.V else: # If not, we choose randomly move_direction = random.choice([DIRECTIONS.H, DIRECTIONS.V]) if move_direction == DIRECTIONS.H: value = 1 if move_target.pos[1] > self.my_user.pos[1] else -1 else: value = 1 if move_target.pos[0] > self.my_user.pos[0] else -1 if value and move_direction: return MoveCommand(self.id, value, move_direction) logger.warning("Failed to find a simulation for player. Random walk it is...") return MoveCommand(self.id, random.choice([1, -1]), random.choice([DIRECTIONS.H, DIRECTIONS.V])) def simulate_malicious_player(self): """ Simulate the actions of a malicious player :return: Command Object """ ######## Option 1: attack a close-by player attack_candidates = self.get_users_in_range(self.my_user.pos, 1, USERS.PLAYER) for user in attack_candidates: if user.id != self.my_user.id: return AttackCommand(self.id, user.id) ######## Option 2: Heal a close by dragon attack_candidates = self.get_users_in_range(self.my_user.pos, 2, USERS.DRAGON) if len(attack_candidates): target = attack_candidates[0] return HealCommand(self.id, target.id) ######## Option 3: Move toward the closest dragon dragons = list(filter(lambda _user: _user.type == USERS.DRAGON, self.game.users)) if len(dragons): # sort dragons by distance # NOTE: we assume that the distance of the closest dragon is more than 2. # Because otherwise we would have returned with an attack command dragons.sort(key=lambda dragon: math.fabs(dragon.pos[0]-self.my_user.pos[0]) + math.fabs(dragon.pos[1]-self.my_user.pos[1])) # Move options: Move vertically toward that dragon or Horizontally # If they are in the same row/col we know what to do move_target = dragons[0] value = None move_direction = None if self.my_user.pos[0] == move_target.pos[0]: move_direction = DIRECTIONS.H elif self.my_user.pos[1] == move_target.pos[1]: move_direction = DIRECTIONS.V else: # If not, we choose randomly move_direction = random.choice([DIRECTIONS.H, DIRECTIONS.V]) if move_direction == DIRECTIONS.H: value = 10 if move_target.pos[1] > self.my_user.pos[1] else -10 else: value = 10 if move_target.pos[0] > self.my_user.pos[0] else -10 if value and move_direction: return MoveCommand(self.id, value, move_direction) logger.warning("Failed to find a simulation for player. Random walk it is...") return MoveCommand(self.id, random.choice([10, -10]), random.choice([DIRECTIONS.H, DIRECTIONS.V])) def get_users_in_range(self, point, limit, type=-1): """ Utility function for simulation. Return a list of all users (player and dragons) in a range if type is specified, only users from that type will be returned :param limit: distance limit :param point: the root point of the distance ":type: type of players to return :return: User[] """ users = [] for user in self.game.users: if (math.fabs(point[0] - user.pos[0])) + (math.fabs(point[1] - user.pos[1])) <= limit: if type == -1: users.append(user) else: if user.type == type: users.append(user) return users def run(self, commands_per_second, malicious): """ :param commands_per_second: number of commands per second run _run in a new thread """ threading.Thread(target=self._run, args=(commands_per_second, malicious)).start() def _run(self, command_per_second, malicious): while self.game.up: time.sleep(1/command_per_second) # Generate one or max two new commands that will be appended to the end of the list self._generate_commands(1, malicious) if len(self.game.commands): command_to_apply = self.game.commands.pop(0) self.transport_layer.send_data(command_to_apply.to_json(), MSG_TYPE.COMMAND) if __name__ == "__main__": """ Arguments to the command line: --vis to enable/disable the visualizer --log-prefix to choose the file name of the log --config to pass list of possibly available game servers CRITICAL 50 ERROR 40 WARNING 30 INFO 20 DEBUG 10 NOTSET 0 """ parser = argparse.ArgumentParser(description="DAS Client app") parser.add_argument("--vis", action="store_true") parser.add_argument("--log-prefix", dest="prefix", default="DEFAULT") parser.add_argument("--config", nargs="?", dest="config", required=False, default='./test/das_config.json') parser.add_argument("--game-log", dest="gameLog", action="store_false", default=True) parser.add_argument("--malicious", action="store_true", default=False) parser.add_argument("--log-level", dest="logLevel", default="20") args = parser.parse_args() args.logLevel = int(args.logLevel) # get available server config = json.load((open(args.config))) servers = [] for server in config['servers']: servers.append((server.split(':')[0], int(server.split(':')[1]))) init_logger("log/client_{}.log".format(args.prefix), args.gameLog, args.logLevel) client = ClientApp(servers) client.run(.5, args.malicious) # start visualization if args.vis: visualizer = Visualizer(client.game, client.id) visualizer.visualize() ``` #### File: das/common/command.py ```python import json, math, time from common.constants import * from common.user import User import logging logger = logging.getLogger("sys." + __name__.split(".")[-1]) gLogger = logging.getLogger("game." + __name__.split(".")[-1]) class Command(object): """ The common pattern for each command's apply is as follows: They should all return Boolean values indicating if sth went wrong or not Each command will optionally override to_json_broadcast Note that the generic to_json should NEVER be overriden becasue it is used in the client side to send the message to the server TODO: currently, only Join, Leave and Move have this patters """ def __init__(self, client_id, timestamp): self.type = type(self).__name__ self.timestamp = timestamp self.client_id = client_id def apply(self, game): gLogger.info("Applying commands {}".format(self.__str__())) def to_json(self): """ Generic method for converting an object to json :return: """ return json.dumps(self.__dict__) def to_json_broadcast(self): """ To be used when sending a command from the server to all other clients. """ return self.to_json() @classmethod def from_json(cls, json_str): json_data = json.loads(json_str) if json_data['type'] == 'MoveCommand': command_obj = MoveCommand( json_data['client_id'], json_data['value'], json_data['direction'], json_data['timestamp']) elif json_data['type'] == 'NewPlayerCommand': command_obj = NewPlayerCommand( json_data['client_id'], json_data['timestamp'], json_data['player_dict']) elif json_data['type'] == 'PlayerLeaveCommand': command_obj = PlayerLeaveCommand( json_data['client_id'], json_data['is_killed'], json_data['timestamp']) elif json_data['type'] == 'AttackCommand': command_obj = AttackCommand( json_data['client_id'], json_data['target_id'], json_data['timestamp']) elif json_data['type'] == 'HealCommand': command_obj = HealCommand( json_data['client_id'], json_data['target_id'], json_data['timestamp']) else: gLogger.error("Error:: Unrecognized command received. skipping...") return command_obj def __str__(self): return '%s(%s)' % ( type(self).__name__, ', '.join('%s=%s' % item for item in vars(self).items()) ) def __repr__(self): return self.__str__() def get_user_by_id(self, game, id): """ Utility func return a user based on its id will search the entire map and compare values with the given id """ for i in range(game.row): for j in range(game.col): if game.map[i][j] != 0 and game.map[i][j].id == id : return game.map[i][j] return 0 def get_distance(self, pos, sop): """ Utility func """ return math.fabs(pos[0] - sop[0]) + math.fabs(pos[1] - sop[1]) class NewPlayerCommand(Command): def __init__(self, client_id, timestamp=0, player_dict=None): Command.__init__(self, client_id, timestamp) self.initial_state = "" self.player_dict = player_dict def apply(self, game): Command.apply(self, game) new_user = User(USERS.PLAYER, self.client_id) if game.is_server: game.add_user(new_user) self.player_dict = new_user.to_json() self.initial_state = game.serialize() else: for (key, val) in self.player_dict.items(): setattr(new_user, key, val) game.add_user(new_user, new_user.pos[0], new_user.pos[1]) gLogger.info("Command {} successfully executed".format(self.__str__())) return True def to_json_broadcast(self): dict = self.__dict__.copy() del dict["initial_state"] return json.dumps(dict) class PlayerLeaveCommand(Command): def __init__(self, client_id, is_killed=False, timestamp=0): Command.__init__(self, client_id, timestamp) self.is_killed = is_killed def apply(self, game): Command.apply(self, game) game.remove_user_by_id(self.client_id) gLogger.info("Command {} successfully executed".format(self.__str__())) return True class MoveCommand(Command): def __init__(self, client_id, value, direction, timestamp=0): Command.__init__(self, client_id, timestamp) self.value = value self.direction = direction def apply(self, game): Command.apply(self, game) _user = self.get_user_by_id(game, self.client_id) if _user == 0: gLogger.error("Command {} failed. No Player Found".format(self.__str__())) return False # Dragons cannot move if _user.type == USERS.DRAGON: gLogger.error("Command {} failed. Dragons cannot move".format(self.__str__())) return False _row, _col = _user.pos target_row = _row target_col = _col # make sure only 1 step if abs(self.value) != 1: gLogger.error("Command {} failed. Invalid step count".format(self.__str__())) return False if self.direction == DIRECTIONS.V: target_row += self.value elif self.direction == DIRECTIONS.H: target_col += self.value # Check if target is in boundaries of the map if target_row >= game.row or target_col >= game.col or target_row < 0 or target_col < 0: gLogger.error("Command {} failed. Position [{}, {}] out of scope of game".format(self.__str__(), target_row, target_col)) return False # Check if target pos is full if game.map[target_row][target_col] != 0: gLogger.error("Command {} failed. Position [{}, {}] already full".format(self.__str__(), target_row, target_col)) return False # update game map game.map[_row][_col] = 0 game.map[target_row][target_col] = _user # update user position _user.pos = [target_row, target_col] gLogger.info("Command {} successfully executed".format(self.__str__())) return True def __str__(self): return Command.__str__(self) + "[value {} direction {}]".format(self.value, self.direction) class AttackCommand(Command): def __init__(self, client_id, target_id, timestamp=0): Command.__init__(self, client_id, timestamp) self.target_id = target_id self.user_id = client_id def apply(self, game, response_queue=None): Command.apply(self, game) attacker = self.get_user_by_id(game, self.user_id) target = self.get_user_by_id(game, self.target_id) if attacker == 0: gLogger.error("Command {} failed. Attacker not found".format(self.__str__())) return False if attacker.type != USERS.PLAYER: gLogger.error("Commnd {} failed. Dragons can't attack autonomously".format(self.__str__())) return False if target == 0: gLogger.error("Command {} failed. Target not found".format(self.__str__())) return False if target.type != USERS.DRAGON: gLogger.error("Command {} failed. Can't attack users".format(self.__str__())) return False attacker_row, attacker_col = attacker.pos target_row, target_col = target.pos distance = self.get_distance([attacker_row, attacker_col], [target_row, target_col]) if distance > 2: gLogger.error("Command {} failed. Attack distance bigger than 2".format(self.__str__())) return False target.hp -= attacker.ap attacker.hp -= target.ap if target.hp <= 0: game.remove_user_by_id(self.target_id) if attacker.hp <= 0: game.remove_user_by_id(self.client_id) if game.is_server: response_queue.put(PlayerLeaveCommand(self.client_id, True, timestamp=time.time())) gLogger.info("Command {} successfully executed".format(self.__str__())) return True class HealCommand(Command): def __init__(self, client_id, target_id, timestamp=0): Command.__init__(self, client_id, timestamp) self.target_id = target_id def apply(self, game): Command.apply(self, game) healer = self.get_user_by_id(game, self.client_id) target = self.get_user_by_id(game, self.target_id) if healer == 0: gLogger.error("Command {} failed. Healer not found".format(self.__str__())) return False if healer.type != USERS.PLAYER: gLogger.error("Commnd {} failed. Dragons can't heal".format(self.__str__())) return False if target == 0: gLogger.error("Command {} failed. Target not found".format(self.__str__())) return False if target.type != USERS.PLAYER: gLogger.error("Command {} failed. Can't heal a dragon".format(self.__str__())) return False if self.client_id == self.target_id: gLogger.error("Command {} failed. Can't heal yourself".format(self.__str__())) return False healer_row, healer_col = healer.pos target_row, target_col = target.pos distance = self.get_distance([healer_row, healer_col], [target_row, target_col]) if distance > 5: gLogger.error("Command {} failed. Heal distance bigger than 5".format(self.__str__())) return False heal_amount = healer.ap target.hp += heal_amount if target.hp > target.MAX_HP: target.hp = target.MAX_HP gLogger.info("Command {} successfully executed".format(self.__str__())) return True ``` #### File: das/common/constants.py ```python import logging import os class ACTIONS: MOVE = 'move' HEAL = 'heal' ATTACK = 'attack' class DIRECTIONS: H = 'h' V = 'v' class TRANSPORT: host = '0.0.0.0' port = 8000 UDP_DELAY_PER_PLAYER = .001 class USERS: PLAYER = 'p' DRAGON = 'd' class GLOBAL : MAX_LOG_LENGTH = -1 class MSG_TYPE: COMMAND = 'cmd' INIT = 'init' EXIT = 'exit' BCAST = 'bc' HBEAT = 'hb' INIT_REQ = 'init_req' INIT_RES = 'init_res' PING = 'ping' LOG = 'log_req' class HEARTBEAT: INIT = 30 INC = 10 class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' game_file = None def add_coloring_to_emit_ansi(fn): # add methods we need to the class def new(*args): levelno = args[1].levelno if(levelno>=50): color = '\x1b[31m' # red elif(levelno>=40): color = '\x1b[31m' # red elif(levelno>=30): color = '\x1b[33m' # yellow elif(levelno >= 20): color = '\x1b[32m' # green elif(levelno>=10): color = '\x1b[94m' # pink else: color = '\x1b[0m' # normal args[1].levelname = color + args[1].levelname + '\x1b[0m' # normal args[1].name = '.'.join([bcolors.BOLD + args[1].name.split(".")[0] + bcolors.ENDC] + args[1].name.split(".")[1:]) #print "after" return fn(*args) return new def init_logger(file, separate_game_log=True, log_lvl=10): global game_file # Two base logger types sysLogger = logging.getLogger("sys") gameLogger = logging.getLogger("game") logging.StreamHandler.emit = add_coloring_to_emit_ansi(logging.StreamHandler.emit) #If log directory doesn't exist creates it dirname = os.path.dirname(file) if not os.path.exists(dirname): os.makedirs(dirname) # clear contents from previous run open(file, 'w').close() fileHandler = logging.FileHandler(file) formatter = logging.Formatter(bcolors.HEADER + '%(asctime)s' + bcolors.ENDC + ' ' + bcolors.UNDERLINE + '%(name)s' + bcolors.ENDC + ' ' + bcolors.BOLD + ' %(levelname)s' + bcolors.ENDC + ' :: %(message)s') fileHandler.setFormatter(formatter) sysLogger.addHandler(fileHandler) sysLogger.setLevel(log_lvl) sysLogger.addHandler(fileHandler) gameLogger.setLevel(log_lvl) if separate_game_log: game_file = file.split(".")[0] + "_game.log" open(game_file, 'w').close() gameFileHandler = logging.FileHandler(game_file) gameFileHandler.setFormatter(formatter) gameLogger.addHandler(gameFileHandler) else: gameLogger.addHandler(fileHandler) sysLogger.info("System Logger initialized") sysLogger.info("Game Logger initialized") def get_game_log(): with open(game_file) as gf: logs = gf.read() return logs def set_game_log(log): with open(game_file, 'w') as gf: logging.getLogger("sys").info("Previous game logs written to {}".format(game_file)) gf.write(log) ``` #### File: das/common/network_util.py ```python import struct import json SIZE_BYTES = 4 STRUCT_IDENTIFIER = ">I" # big-endian unsigned short (2 bytes) def pack(data): """ Wraps a message which is to be sent via a TCP socket according to the protocol: big-endian 2bytes message length + message in bytes :param data: the data to be sent :return: the prepared message as a byte string """ data_bytes = data.encode('utf8') size = struct.pack(STRUCT_IDENTIFIER, len(data_bytes)) return b"".join([size, data_bytes]) def read_message(socket): """ Receives a message from a TCP socket of various length. The first to bytes in big-endian order signal the size of the current message to receive. :param socket: the socket to receive from :return: the full received message as a utf8 string """ # read 2 bytes to determine size of message size_data = read_bytes_from_socket(socket, SIZE_BYTES) # get message size from struct message_size = struct.unpack(STRUCT_IDENTIFIER, size_data)[0] # read actual message data = read_bytes_from_socket(socket, message_size) return data.decode('utf8') def read_bytes_from_socket(socket, size): """ Reads #size bytes from the socket :param socket: the socket to receive from :param size: the amount of bytes to read :return: """ total_len = 0 total_data = [] recv_size = size # read #size bytes from socket while total_len < size: try: # note: socket.recv can return before receiving full size sock_data = socket.recv(recv_size) except: raise TCPConnectionError("Socket Closed") # if empty -> connection is closing if not sock_data: raise TCPConnectionError("Connection error while reading data.") else: total_data.append(sock_data) # calculate total_len from all chunks in total_data total_len = sum([len(i) for i in total_data]) # adjust receive size to not receive too much data (e.g. from the next message) recv_size = size - total_len return b"".join(total_data) def send_udp_message(socket, address, type, data=None): """ Sens a UDP message via the socket to the given address with type and data set in JSON. :param socket: the socket to send the message :param address: the address to send the message to :param type: the message type :param data: the message data :return: """ if data: data = json.dumps({"type": type, "payload": data}) else: data = json.dumps({"type": type}) socket.sendto(data.encode('utf-8'), address) def read_udp_message(socket): """ Reads a UDP message from the socket and unpacks it. :param socket: the socket to receive from :return: json decoded message and address (host, port) as a tuple """ data, address = socket.recvfrom(4096) data = data.decode('utf-8') return json.loads(data), address class TCPConnectionError(Exception): def __init__(self, msg="Error with the connection"): super(TCPConnectionError, self).__init__(msg) ``` #### File: server/core/engine.py ```python import multiprocessing import time import queue import threading from common import game from common.command import AttackCommand from common.user import User from common.visualizer import Visualizer import logging logger = logging.getLogger("sys." + __name__.split(".")[-1]) class Engine(multiprocessing.Process): """ Runs as a separate process to execute the game logic based on inputs (commands) of clients. Once launched it remains running. """ def __init__(self, request_queue, response_queue, meta_request_queue, meta_response_queue, initial_users, vis=False): multiprocessing.Process.__init__(self) self.request_queue = request_queue self.response_queue = response_queue self.meta_request_queue = meta_request_queue self.meta_response_queue = meta_response_queue self.game = game.Game() self.game.is_server = True self.vis = vis for user in initial_users: self.game.add_user(User(user['type']), user['r'], user['c']) self.T = 500 logger.info("Engine successfully started.") def run(self): """ Overloaded function provided by multiprocessing.Process. Called upon start(). """ # start meta_request thread self.process_meta_requests() # visualizer needs to run in main thread if self.vis: threading.Thread(target=self._run).start() # start visualization visualizer = Visualizer(self.game) visualizer.visualize() else: self._run() def _run(self): while True: self.process_commands() # periodically process commands time_ms = int(round(time.time() * 1000)) time_sync = int(time_ms/self.T) * self.T + self.T time.sleep((time_sync - time_ms) / 1000) def get_all_requests(self): """ Gets all events in a burst manner from the queue. :return: list of all the events sorted by timestamp """ current_tick = time.time() all_commands = [] exec_commands = [] while True: try: all_commands.append(self.request_queue.get_nowait()) except queue.Empty: break # sort list by timestamp threshold = self.T / 2000 for command in all_commands: if current_tick - command.timestamp < threshold : logger.debug("Putting back {}".format(command)) self.request_queue.put(command) else: exec_commands.append(command) exec_commands.sort(key=lambda command: (command.timestamp, command.client_id)) return exec_commands def process_commands(self): """ Processes all currently available command/events. """ commands = self.get_all_requests() if len(commands): logger.debug("Interval reached. Processing {} commands".format(len(commands))) while len(commands): command = commands.pop(0) if type(command) is AttackCommand: status = command.apply(self.game, self.response_queue) else: status = command.apply(self.game) # only send to clients if successful if status: self.response_queue.put(command) else: logger.debug("Interval reached. No command to process") def process_meta_requests(self): """ Starts the meta_request thread. """ threading.Thread(target=self._process_meta_requests).start() def _process_meta_requests(self): """ Waits (blocking) for requests from the server process and handles them. """ while True: req = self.meta_request_queue.get() if req['type'] == "get_map": self.meta_response_queue.put(self.game.serialize()) ``` #### File: server/network/base_connection.py ```python import json import threading import select from common.network_util import read_message, pack, TCPConnectionError from common.constants import GLOBAL import logging logger = logging.getLogger("sys." + __name__.split(".")[-1]) class BaseConnection(object): """ A wrapper for a TCP socket. Runs in separate thread and listens for input of the socket. """ def __init__(self, socket, address, id): self.socket = socket self.address = address self.id = id self.up = True self.inputs = [self.socket] self.mythread = threading.Thread(target=self._handle) self.mythread.start() def __str__(self): return "Connection@{}:{}".format(self.address[0], self.address[1]) def _handle(self): """ Listens via blocking select for inputs from the socket. Runs in a separate thread. """ while self.up: # This is important because we might client he socket while it is waiting in select # For now a continue is enough and in the next loop self.up is False try: read_sockets, write_sockets, error_sockets = select.select(self.inputs, [], self.inputs) except: logger.error("Error while checking connection sockets") continue for sock in read_sockets: # read_packet raises exception if there is no data -> client is disconnecting try: data = read_message(sock) logger.debug("{} :: Received [{}]".format(self.__str__(), data[:GLOBAL.MAX_LOG_LENGTH])) # if there is data pass it to the game engine self.on_message(data) except TCPConnectionError: self.shutdown() # shutdown connection if there is an error for sock in error_sockets: self.shutdown() def on_message(self, data): """ Called whenever a message received on the :param data: :return: """ pass def shutdown(self): """ Shuts down the socket, makes sure that the thread can die. """ logger.warning("Shutting down [{}]".format(self.__str__())) self.up = False self.socket.close() def send(self, data, type=None): """ Sends the data via the socket. :param data: the data to be sent """ if not type is None: data = json.dumps({'type': type, 'payload': data}) logger.debug("{} :: sending message [{}]".format(self.__str__(), data[:GLOBAL.MAX_LOG_LENGTH])) self.socket.sendall(pack(data)) ``` #### File: server/network/client_connection.py ```python import json import time from .base_connection import BaseConnection from common import command from common.network_util import pack from common.constants import MSG_TYPE, GLOBAL, TRANSPORT import logging logger = logging.getLogger("sys." + __name__.split(".")[-1]) class ClientConnection(BaseConnection): """ A wrapper for a TCP socket. Runs in separate thread and listens for input of the socket. """ def __init__(self, connection, address, id, server): self.server = server BaseConnection.__init__(self, connection, address, id) def __str__(self): return "Client@" + BaseConnection.__str__(self).split("@")[1] def on_message(self, data): json_data = json.loads(data) if json_data['type'] == MSG_TYPE.COMMAND: command_obj = command.Command.from_json(json_data['payload']) # set time of command to synchronised server time command_obj.timestamp = time.time() self.server.request_command(command_obj) elif json_data['type'] == MSG_TYPE.INIT: id = json_data['payload'] if id == '': # send new player command to game engine self.server.request_command(command.NewPlayerCommand(self.id, timestamp=time.time())) # setup_client will be called in ClientServer dispatch method, once client is placed on map else: # player is rejoining old_id = self.id self.id = id # send init message to client self.setup_client() # only now add client to connections so that it starts receiving updates self.server.add_connection(self, old_id, self.id) else: logger.warning("Received an unknown message type [{}]".format(data)) def setup_client(self, initial_map=None): """ Sends the init message to the client with id and the initial map. :param initial_map: if not provided will be retrieved from the engine """ if initial_map is None: self.server.meta_request_queue.put({"type": "get_map"}) # if we start using the meta queue for other purposes we need to properly process it initial_map = self.server.meta_response_queue.get() data = json.dumps({ 'type': MSG_TYPE.INIT, 'id': self.id, 'initial_map': initial_map }) logger.debug("{} :: sending init message [{}]".format(self.__str__(), data[:GLOBAL.MAX_LOG_LENGTH])) self.socket.sendall(pack(data)) def shutdown(self, b_cast=True): """ Shuts down the socket, makes sure that the thread can die and notifies the server about the ending connection. """ BaseConnection.shutdown(self) self.server.remove_connection(self.id) # need to notify engine about the connection loss with the client -> so he can be removed from the field if b_cast: self.server.request_command(command.PlayerLeaveCommand(self.id, is_killed=False, timestamp=time.time())) def shutdown_killed(self): """ Shuts down the socket, makes sure that the thread can die. """ BaseConnection.shutdown(self) self.server.remove_connection(self.id) ``` #### File: server/network/p2p_connection.py ```python import json from .base_connection import BaseConnection from common import command from common.constants import MSG_TYPE, HEARTBEAT, get_game_log, set_game_log import logging logger = logging.getLogger("sys." + __name__.split(".")[-1]) class P2PConnection(BaseConnection): def __init__(self, socket, address, id, server): self.server = server self.heartbeat = HEARTBEAT.INIT self.peer_connections = 0 BaseConnection.__init__(self, socket, address, id) def __str__(self): return "Peer@" + BaseConnection.__str__(self).split("@")[1] + " [hb:{}]".format(self.heartbeat) def on_message(self, data): json_data = json.loads(data) if json_data['type'] == MSG_TYPE.HBEAT: self.heartbeat += HEARTBEAT.INC self.peer_connections = int(json_data['payload']['num_connections']) elif json_data['type'] == MSG_TYPE.BCAST: # Put the message in the queue command_obj = command.Command.from_json(json_data['command']) self.server.request_queue.put(command_obj) elif json_data['type'] == MSG_TYPE.INIT_REQ: self.server.meta_request_queue.put({"type": "get_map"}) # if we start using the meta queue for other purposes we need to properly process it initial_map = self.server.meta_response_queue.get() # send initial map and pending commands so that the new server will be at the same state self.send(json.dumps({ 'type': MSG_TYPE.INIT_RES, 'initial_map': initial_map, 'log': get_game_log(), 'pending_commands': self.server.get_current_commands() })) elif json_data['type'] == MSG_TYPE.INIT_RES: self.server.init_queue.put(json_data['initial_map']) set_game_log(json_data['log']) for command_json in json_data['pending_commands']: self.server.request_queue.put_nowait(command.Command.from_json(command_json)) else: logger.warning("Unrecognized message received from peer [{}]".format(data)) ``` #### File: das/test/console_control.py ```python import subprocess import sys import os import psutil import time servers = {} clients = {} fileDir = os.path.dirname(os.path.realpath('__file__')) sys.path.append(fileDir) def extract_id(text): id = -1 try: id = int(text.split(' ')[1]) except: print('No id/no provided. please try again.') return id class Server(object): @staticmethod def handle(text): if text.startswith('server.init'): no = extract_id(text) for i in range(1, no+1): if i == 1: Server.start(i, master_node=True) else: Server.start(i) time.sleep(0.3) elif text == 'server.status': Server.status() elif text == 'server.killall': Server.kill_all() elif text.startswith('server.kill'): Server.kill(extract_id(text)) elif text.startswith('server.start'): Server.start(extract_id(text)) else: print('Unknown command, type help to see all available commands.') @staticmethod def status(): for id, server in servers.items(): if server is None: status = 'killed' client_connections = 0 p2p_connections = 0 else: status = 'running' # 1 UDP socket, 2 TCP server sockets #### and x.laddr.port == id*1000+10 active_connections = list(filter(lambda x: x.status == 'ESTABLISHED', server.connections())) client_connections = len(list(filter(lambda x: x.laddr.port == id*10000, active_connections))) p2p_connections = len(active_connections) - client_connections print('Server {}: {}\tp2p: {}, clients: {}'.format(id, status, p2p_connections, client_connections)) @staticmethod def kill(id): if id == -1: return if id in servers: server = servers[id] if server is None: return for child in server.children(): child.kill() server.kill() servers[id] = None @staticmethod def kill_all(): for server_id in servers: Server.kill(server_id) @staticmethod def start(id, master_node=False): if id == -1: return port = id * 10000 arguments = ['python', '-m', 'server.app', '--config', 'test/das_config.json', '--log-prefix', str(id), '--port', str(port)] if master_node: arguments.extend(['--users', 'test/das_hell.json']) print("Starting Server {} with {}".format(id, arguments)) proc = subprocess.Popen(arguments) servers[id] = psutil.Process(proc.pid) class Client(object): @staticmethod def handle(text): if text == 'client.status': Client.status() elif text == 'client.killall': Client.kill_all() elif text.startswith('client.init'): Client.create(extract_id(text)) elif text.startswith('client.kill'): Client.kill(extract_id(text)) elif text.startswith('client.start'): Client.start(extract_id(text)) else: print('Unknown command, type help to see all available commands.') @staticmethod def create(count): for i in range(1, count+1): Client.start(i) time.sleep(0.5) @staticmethod def status(): for id, client in clients.items(): if client is None: status = 'killed' connected_to = 0 else: try: status = client.as_dict()['status'] connected_to = list(filter(lambda x: x.status == 'ESTABLISHED', client.connections()))[0].raddr.port connected_to = int(connected_to / 10000) except Exception as e: connected_to = 0 status = 'killed' clients[id] = None print('Client {}: {}\tserver: {}'.format(id, status, connected_to)) @staticmethod def kill(id): if id == -1: return if id in clients: client = clients[id] if client is None: return try: client.kill() except: pass clients[id] = None @staticmethod def kill_all(): for client_id in clients: Client.kill(client_id) @staticmethod def start(id): if id == -1: return arguments = ['python', '-m', 'client.app', '--config', 'test/das_config.json', '--log-prefix', str(id)] print("Starting Client {} with {}".format(id, arguments)) proc = subprocess.Popen(arguments) clients[id] = psutil.Process(proc.pid) if __name__ == '__main__': while True: text = input('>> ') if text == 'help': print(""" server.status - prints up/down status of servers and currently active connections/connected clients server.init {no} - creates {no} servers, the first with map 'test/das_hell.json' server.start {id} - starts server with {id} server.kill {id} - kills server with {id} server.killall - kills all servers client.status - prints up/down status of clients and to which server they are connected client.init {no} - creates {no} clients client.start {id} - starts client with {id} client.kill {id} - kills client with {id} client.killall - kills all clients help - shows this help exit - quits the console helper """) elif text == 'exit': Client.kill_all() Server.kill_all() break elif text.startswith('server'): Server.handle(text) elif text.startswith('client'): Client.handle(text) else: print('Unknown command, type help to see all available commands.') ``` #### File: das/test/simulation.py ```python import argparse import emulation.GTAEventsReader import time import os import subprocess import sys from threading import Thread from threading import Lock from decimal import Decimal from common.constants import init_logger import logging SLAVE_NODE_SERVER_NAME_PREFIX = "slave_" MASTER_NODE_SERVER_NAME = "master_node" MASTER_SERVER = " 0" SIMULATION_SERVERS_WARMUP_TIME = 3 logger = logging.getLogger("sys." + __name__.split(".")[-1]) LOCATION_CLIENT_APP_WINDOWS = '..\\client\\app.py' LOCATION_CLIENT_APP_LINUX = '../client/app.py' LOCATION_SERVER_APP_WINDOWS = '..\\server\\app.py' LOCATION_SERVER_APP_LINUX = '../server/app.py' # This method adds a client to the simulation. # Input: lock: lock object for concurrency control, # event_details: the details related to the connection of the client to the simulation. # adjTimestamp: an adjustment on the timestamp to discount the time that took for the event to be triggered. # Output: none. def addClient(lock, event_details, clientApp, adjTimestamp): # If the delayed time is longer than the timestamp in which the event should be trigger, the sleep is skiped and # the event is triggered automatically. if event_details.timeStamp - Decimal(adjTimestamp) > 0: time.sleep(event_details.timeStamp - Decimal(adjTimestamp)) # command line to start the client application: python ../client/app.py --log-prefix player_id proc = subprocess.Popen([sys.executable, "-m", "client.app", '--log-prefix', event_details.playerId, '--config','./test/das_config.json']) logger.debug("This is the playerId: " + event_details.playerId + " and this is the PID:" + str(proc.pid)) with lock: playersAndProcesses[event_details.playerId] = proc.pid logger.info("Player: " + event_details.playerId + " joining the game.") return # This method removes a client to the simulation. # Input: lock: lock object for concurrency control, # event_details: the details related to the connection of the client to the simulation. # adjTimestamp: an adjustment on the timestamp to discount the time that took for the event to be triggered. # isWindows: if the current execution is on Windows. # Output: none. def removeClient(lock, event_details, isWindows, adjTimestamp): with lock: numberOfPlayers = len(playersAndProcesses) if numberOfPlayers > 0: if event_details.timeStamp - Decimal(adjTimestamp) > 0: time.sleep(event_details.timeStamp - Decimal(adjTimestamp)) if not isWindows: commandLine = "kill -9 " + str(playersAndProcesses[event_details.playerId]) else: #Killing the process using a Windows command commandLine = "taskkill /f /pid " + str(playersAndProcesses[event_details.playerId]) # Executing the command to kill the respective process. os.system(commandLine) with lock: playersAndProcesses[event_details.playerId] = None numberOfPlayers = len(playersAndProcesses) logger.info("Player: " + event_details.playerId + " leaving the game.") else: logger.info("This player currently doesn't have an active session, so no Logout action will be performed.") return if numberOfPlayers == 0: logger.info("This was the last player to leave the game, end of simulation.") def triggerJoinLeaveEvents(listOfEventsToTrigger, lock, clientApp, delayBetweenEvents): listOfThreads = [] adjustmentTimestamp = 0 for event in listOfEventsToTrigger: if event.eventType == emulation.GTAEventsReader.PLAYER_LOGIN: thread = Thread(target=addClient, args=(lock, event, clientApp, adjustmentTimestamp,)) thread.start() listOfThreads.append(thread) else: if event.eventType == emulation.GTAEventsReader.PLAYER_LOGOUT: thread = Thread(target=removeClient, args=(lock, event, runningWindows, adjustmentTimestamp,)) thread.start() listOfThreads.append(thread) #Assuming that the time between events is respected also for Login/logout time.sleep(delayBetweenEvents) adjustmentTimestamp += delayBetweenEvents # Waits for all threads to finish for single_thread in listOfThreads: single_thread.join() def addServer(event_details, serverApp, configFile, serverName, target_port, is_master): time.sleep(event_details.timeStamp) # Starting the server # command line to start the base server: python ../server/app.py --log-prefix player_id if is_master: proc = subprocess.Popen([sys.executable, "-m", "server.app" ,'--users', 'test/das_map.json' , '--config', configFile, '--log-prefix', serverName, '--port', str(target_port)]) else: proc = subprocess.Popen([sys.executable, "-m", "server.app" , '--config', configFile, '--log-prefix', serverName, '--port', str(target_port)]) if proc.pid > 0: logger.info("Server" + serverName + "successfully added. Process Id: " + str(proc.pid)) serverProcesses[serverName] = proc.pid else: logger.error("Error while loading the base server. Simulation will be aborted.") return if MASTER_NODE_SERVER_NAME == serverName: time.sleep(SIMULATION_SERVERS_WARMUP_TIME) def triggerServerEvents(serverApp, configFile, base_port, port_offset, numSlaveServers, listOfServerEvents): # The list of server events precedes the parameter numSlaveServers if (listOfServerEvents is not None): for event in listOfServerEvents: if event.eventType == emulation.GTAEventsReader.SERVER_ADD: if event.playerId == MASTER_SERVER: thread = Thread(target=addServer, args=(event, serverApp,configFile,MASTER_NODE_SERVER_NAME, base_port, True)) else: slave_port = base_port + port_offset * int(event.playerId) thread = Thread(target=addServer, args=(event, serverApp, configFile, SLAVE_NODE_SERVER_NAME_PREFIX + str(event.playerId).strip(), str(slave_port), False)) thread.start() else: if event.eventType == emulation.GTAEventsReader.SERVER_REMOVE: if event.playerId == MASTER_SERVER: thread = Thread(target=killServer, args=(event, MASTER_NODE_SERVER_NAME,)) else: thread = Thread(target=killServer, args=(event, SLAVE_NODE_SERVER_NAME_PREFIX + str(event.playerId).strip(),)) thread.start() # if event.eventType == emulation.GTAEventsReader.SERVER_ADD: # # if event.playerId == MASTER_SERVER: # addServer(event, serverApp, configFile, MASTER_NODE_SERVER_NAME, base_port) # else: # slave_port = base_port + port_offset * int(event.playerId) # addServer(event, serverApp, configFile, SLAVE_NODE_SERVER_NAME_PREFIX + str(event.playerId).strip(), str(slave_port)) # else: # if event.eventType == emulation.GTAEventsReader.SERVER_REMOVE: # if event.playerId == MASTER_SERVER: # killServer(event, MASTER_NODE_SERVER_NAME) # else: # killServer(event, SLAVE_NODE_SERVER_NAME_PREFIX + str(event.playerId).strip()) # else: # logger.error("Server Event for" + event.playerId + " not identified") else: if(numSlaveServers is not None): # Starting the base server # command line to start the base server: python ../server/app.py --log-prefix player_id proc = subprocess.Popen([sys.executable, serverApp, '--config', configFile, '--log-prefix', 'master_node', '--port', str(base_port)]) if proc.pid > 0: logger.info("Base Server successfully added. Process Id: " + str(proc.pid)) serverProcesses.append(proc.pid) else: logger.error("Error while loading the base server. Simulation will be aborted.") return time.sleep(SIMULATION_SERVERS_WARMUP_TIME) # Initializing the slave servers for simulation i = 1 while i <= numSlaveServers: slave_port = base_port + port_offset*i proc = subprocess.Popen([sys.executable, serverApp, '--config', configFile, '--log-prefix', 'slave_' + str(i), '--config', str(slave_port)]) if proc.pid > 0: logger.info("Slave Server " + str(i) + " successfully added. Process Id:" + str(proc.pid)) serverProcesses.append(proc.pid) else: logger.error("Error while loading slave server " + str(i) + ".") i += 1 time.sleep(SIMULATION_SERVERS_WARMUP_TIME) else: logger.error("The number of slave servers or a list of server events was not provided, " "so no servers will be added to the simulation.") return # This kills the process for a given serverName used for the simulation. # input: isWindows: if the current execution is on Windows. # input: serverName # Output: none. def killServer(event_details, serverName): time.sleep(event_details.timeStamp) if serverProcesses[serverName] is not None: if not runningWindows: commandLine = "kill -9 " + str(serverProcesses[serverName]) else: #Killing the process using a Windows command commandLine = "taskkill /f /pid " + str(serverProcesses[serverName]) logger.info("Removing the server process:" + str(serverProcesses[serverName])) # Executing the command to kill the respective process. os.system(commandLine) serverProcesses[serverName] = None return # This kills the processes used for the simulation. # isWindows: if the current execution is on Windows. # Output: none. def killServers(): with serverLock: numberOfProcesses = len(serverProcesses) if numberOfProcesses > 0: for serverProcess in serverProcesses: if not runningWindows: commandLine = "kill -9 " + str(serverProcess) else: #Killing the process using a Windows command commandLine = "taskkill /f /pid " + str(serverProcess) logger.info("Removing the server process:" + str(serverProcess)) # Executing the command to kill the respective process. os.system(commandLine) return if __name__ == "__main__": parser = argparse.ArgumentParser(description="Simulation") # Parameters related to the simulation parser.add_argument("--elap-time", dest="simulationElapsedTimeInSeconds", default=30) parser.add_argument("--delayBetweenEvents", dest="timeBetweenEvents", default=0.5) parser.add_argument("--gta-file", dest="gtaFilename", default='WoWSession_Node_Player_Fixed_Dynamic_reduced.zip') # Parameters related to the servers used in the simulation parser.add_argument("--base-port", dest="basePort", default=7000) parser.add_argument("--port-offset", dest="portOffset",default=1000) parser.add_argument("--num-slave-servers", dest="numSlaveServers", default=0) parser.add_argument("--server-event-file", dest="serverEventFilename") parser.add_argument("--server-config", dest="serverConfig", default="./test/das_config.json") # Example of parameters to invoke main --elap-time 15 --delayBetweenEvents 1 --gta-file WoWSession_Node_Player_Fixed_Dynamic_reduced.zip --server-event-file Server_Connectons_Disconnections.zip args = parser.parse_args() init_logger("log/simulation_{}.log".format(time.time())) # Assigning the parameters received in the command line to the variables which will be used for the simulation simulationElapsedTimeInSeconds = int(args.simulationElapsedTimeInSeconds) timeBetweenEvents = float(args.timeBetweenEvents) gtaFilename = args.gtaFilename base_port = int(args.basePort) port_offset = int(args.portOffset) numSlaveServers = int(args.numSlaveServers) serverEventFilename = args.serverEventFilename configurationFile = args.serverConfig # This list will contain pairs of players and the associated process. global playersAndProcesses playersAndProcesses = {} # List of processes related to the servers used in the simulation (master + slaves) global serverProcesses serverProcesses = {} # This lock is used to implement concurrency control on the list of players and processes which will be shared # accros multiple threads. lock = Lock() serverLock = Lock() runningWindows = False if os.name == 'nt': runningWindows = True fileDir = os.path.dirname(os.path.realpath('__file__')) # Depending on the OS in which the simulation is running the way in which the client and server are invoked is # different. if not runningWindows: clientAppLocation = os.path.join(fileDir, LOCATION_CLIENT_APP_LINUX) serverAppLocation = os.path.join(fileDir, LOCATION_SERVER_APP_LINUX) else: # Windows file structure clientAppLocation = os.path.join(fileDir, LOCATION_CLIENT_APP_WINDOWS) serverAppLocation = os.path.join(fileDir, LOCATION_SERVER_APP_WINDOWS) # List of events still considering the timestamps read from the GTA file listOfEvents = emulation.GTAEventsReader.LoadEventsFromFile(gtaFilename, emulation.GTAEventsReader.MODE_PLAYERS) # Normalize the timeStamps of the Login/Logout events using the given simulation's elapsed time. listOfNormalizedPlayerEvents = emulation.GTAEventsReader.NormalizeEvents(listOfEvents, simulationElapsedTimeInSeconds) logger.info("Total number of Login/Logout events: " + str(len(listOfNormalizedPlayerEvents))) # List of server events listOfEvents = None listOfEvents = emulation.GTAEventsReader.LoadEventsFromFile(serverEventFilename, emulation.GTAEventsReader.MODE_SERVERS) if listOfEvents is not None: # Normalize the timeStamps of the server events using the given simulation's elapsed time. listOfNormalizedServerEvents = emulation.GTAEventsReader.NormalizeEvents(listOfEvents, simulationElapsedTimeInSeconds) logger.info("Total number of server events: " + str(len(listOfNormalizedServerEvents))) logger.info("Starting the simulation.") logger.info("Initializing servers.") triggerServerEvents(serverAppLocation, configurationFile, base_port, port_offset, numSlaveServers, listOfNormalizedServerEvents) logger.info("Triggering events.") triggerJoinLeaveEvents(listOfNormalizedPlayerEvents, lock, clientAppLocation, timeBetweenEvents) if listOfEvents is None: logger.info("List of server events not used - killing the processes related to the servers.") killServers(runningWindows) print("This is the end of the simulation.") ```
{ "source": "jonastheis/healthor", "score": 2 }
#### File: healthor/plot/utils.py ```python import pandas as pd import numpy as np import subprocess import os import glob import time import datetime OMNETPP_BASE_DIRECTORY = os.path.abspath('../simulation/') OMNETPP_RESULTS_DIRECTORY = os.path.join(OMNETPP_BASE_DIRECTORY, 'results') def compile_simulation(): print('Compiling...') ret = subprocess.run([ 'make', ], cwd=OMNETPP_BASE_DIRECTORY, capture_output=True) if ret.returncode != 0: print(ret) exit(1) print('Compiling... done.') def run_simulation(config_name): compile_simulation() start = time.time() print(format_time(time.time()), '| Simulation run %s...' % config_name) ret = subprocess.run([ './simulation', # 'omnetpp.ini', # '-n', 'basic.ned', '-u', 'Cmdenv', '-c', config_name, ], cwd=OMNETPP_BASE_DIRECTORY, capture_output=True) if ret.returncode != 0: print(ret) exit(1) end = time.time() duration = end - start print(format_time(time.time()), '| %s duration |' % str(datetime.timedelta(seconds=duration)), 'Simulation run %s... done.' % config_name) def export_to_csv(config_name): ret = subprocess.run([ 'scavetool', 'x', '%s-#0.vec' % config_name, '%s-#0.sca' % config_name, '-o', '%s.csv' % config_name, ], cwd=OMNETPP_RESULTS_DIRECTORY, capture_output=True) if ret.returncode != 0: print(ret) exit(1) def parse_if_number(s): try: return float(s) except: return True if s=="true" else False if s=="false" else s if s else None def parse_ndarray(s): return np.fromstring(s, sep=' ') if s else None def parse_omnetpp_csv(config_name): path = os.path.join(OMNETPP_RESULTS_DIRECTORY, '%s.csv' % config_name) return pd.read_csv(path, converters={ 'value': parse_if_number, 'attrvalue': parse_if_number, 'binedges': parse_ndarray, 'binvalues': parse_ndarray, 'vectime': parse_ndarray, 'vecvalue': parse_ndarray, }) def glob_csv_files(config_name, type): path = os.path.join(OMNETPP_RESULTS_DIRECTORY, '%s-%s_*.csv' % (config_name, type)) return sorted(glob.glob(path)) def save_simulation_state(path): ret = subprocess.run([ 'tar', '-czvf', os.path.join(path, 'simulation.tar.gz'), OMNETPP_BASE_DIRECTORY, ], capture_output=True) if ret.returncode != 0: print(ret) exit(1) def save_to_csv(df, path, name): df.to_csv(os.path.join(path, name + '.csv')) def format_time(t): return time.strftime('%Y-%m-%d %H:%M:%S GMT', time.gmtime(t)) ```
{ "source": "JonasThorsell/AoC", "score": 3 }
#### File: 2020/13/aoc2013b.py ```python import sys from functools import reduce # Chinese Remainder Theorem: # https://fangya.medium.com/chinese-remainder-theorem-with-python-a483de81fbb8 def chinese_remainder(n, a): sum = 0 prod = reduce(lambda a, b: a*b, n) for n_i, a_i in zip(n, a): p = prod // n_i sum += a_i * mul_inv(p, n_i) * p return sum % prod def mul_inv(a, b): b0 = b x0, x1 = 0, 1 if b == 1: return 1 while a > 1: q = a // b a, b = b, a%b x0, x1 = x1 - q * x0, x0 if x1 < 0: x1 += b0 return x1 t = int(sys.stdin.readline()) b = sys.stdin.readline().split(',') n = [] a = [] for i in range(len(b)): if not b[i] == 'x': n.append(int(b[i])) a.append(-i) print(chinese_remainder(n, a)) ``` #### File: 2020/16/aoc2016b.py ```python import sys import re import functools def chktf(tf, tfr): for r in tfr: if (r[1] <= tf <= r[2] or r[3] <= tf <= r[4]): return True return False def matchtfl(tfl, r): for f in tfl: if not (r[1] <= f <= r[2] or r[3] <= f <= r[4]): return False return True p = re.compile(r'^([a-z ]+): (\d+)-(\d+) or (\d+)-(\d+)') tfr=[] for l in sys.stdin: if not l.strip(): break tfr.append([int(x) if x.isdigit() else x for x in p.match(l).groups()]) sys.stdin.readline() mt = [int(x) for x in sys.stdin.readline().split(',')] sys.stdin.readline() sys.stdin.readline() nt = [] for l in sys.stdin: nt.append([int(x) for x in l.split(',')]) nvt = [t for t in nt if sum([chktf(f, tfr) for f in t]) == len(t)] gbf = [] for i in range(len(nvt[0])): gbf.append([t[i] for t in nvt]) vr = [[] for i in range(len(gbf))] for r in tfr: for i, f in enumerate(gbf): if matchtfl(f, r): vr[i].append(r[0]) om = [x[0] for x in vr if len(x) == 1] while (len(om) < len(tfr)): for m in om: for f in vr: if len(f) > 1 and m in f: f.remove(m) om = [x[0] for x in vr if len(x) == 1] print(functools.reduce(lambda a,b : a*b, [x[1] for x in zip(om,mt) if x[0][:9] == 'departure'])) ``` #### File: 2020/22/aoc2022b.py ```python import sys d=[[],[]] for p in range(2): sys.stdin.readline() for l in sys.stdin: if not l.strip(): break d[p].append(int(l)) def score(d): return sum([(i+1)*c for i,c in enumerate(d[::-1])]) def rc(d0, d1, g): h = {} while len(d0) and len(d1): w = 0 if str((d0, d1)) in h: return (0, score(d0)) h[str((d0, d1))] = True c0 = d0.pop(0) c1 = d1.pop(0) if len(d0) >= c0 and len(d1) >= c1: w, _ = rc(d0[:c0].copy(), d1[:c1].copy(), g + 1) else: w = 0 if c0 > c1 else 1 if w == 0: d0.append(c0) d0.append(c1) else: d1.append(c1) d1.append(c0) return (0, score(d0)) if w == 0 else (1, score(d1)) w, s = rc(d[0], d[1], 1) print(f'W {w+1} score: {s}') ``` #### File: 2020/25/aoc2025a.py ```python import sys def cls(pk, sn=7): ls = 0 v = 1 while not v == pk: ls += 1 v = (v * sn) % 20201227 return ls def cek(ls, sn): v = 1 for i in range(ls): v = (v * sn) % 20201227 return v card_pk = int(sys.stdin.readline()) door_pk = int(sys.stdin.readline()) card_ls = cls(card_pk) door_ls = cls(door_pk) print(f'card pk: {card_pk} ls: {card_ls}') print(f'door pk: {door_pk} ls: {door_ls}') print(cek(card_ls, door_pk)) print(cek(door_ls, card_pk)) ``` #### File: 2020/4/aoc2004b.py ```python import sys import re pl=[{}] for l in sys.stdin: if l.strip(): pl[-1].update({kv.split(':')[0]: kv.split(':')[1] for kv in l.split()}) else: pl.append({}) def chkp(p): fl = ('byr', 'iyr', 'eyr', 'hgt', 'hcl', 'ecl', 'pid') ecl = ('amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth') if not all(f in p for f in fl): return False if (not p['byr'].isdigit() or int(p['byr']) < 1920 or int(p['byr']) > 2002): return False if (not p['iyr'].isdigit() or int(p['iyr']) < 2010 or int(p['iyr']) > 2020): return False if (not p['eyr'].isdigit() or int(p['eyr']) < 2020 or int(p['eyr']) > 2030): return False hgtu = p['hgt'][-2:] hgtv = p['hgt'][:-2] if (not hgtu in ['cm', 'in'] or not hgtv.isdigit()): return False if (hgtu == 'cm' and (int(hgtv) < 150 or int(hgtv) > 193)): return False if (hgtu == 'in' and (int(hgtv) < 59 or int(hgtv) > 76)): return False if (not re.search("^#[0-9a-f]{6}$", p['hcl'])): return False if (not p['ecl'] in ecl): return False if (not p['pid'].isdigit() or len(p['pid']) != 9): return False return True vpl = list(filter(chkp, pl)) print(len(vpl)) ``` #### File: 2021/16/aoc2116a.py ```python import sys gversum = 0 def decode(s, npkg=-1): global gversum i = 0 while len(s) - i >= 6 and npkg != 0: version = int(s[i:i+3],2) gversum += version typeid = int(s[i+3:i+6],2) i += 6 if npkg > 0: npkg -= 1 #print(version, typeid) if typeid == 4: # literal value literals = '' literal = 0 group = 1 while group: group = int(s[i]) i += 1 literals += s[i:i+4] i+=4 literal = int(literals,2) print(version, typeid, literal) else: # operator lengthtype = int(s[i]) i += 1 if lengthtype == 0: # total length in bits sublength = int(s[i:i+15],2) print(version, typeid, lengthtype, sublength) i+=15 decode(s[i:i+sublength]) i+=sublength else: subpkg = int(s[i:i+11],2) print(version, typeid, lengthtype, subpkg) i+=11 i+=decode(s[i:], subpkg) return i for l in sys.stdin: bits ='' gversum = 0 for c in l.strip(): bits += '{:04b}'.format(int(c,16)) print(l.strip()) print(bits) decode(bits,1) print(gversum) i=0 ``` #### File: 2021/5/aoc2105a.py ```python import sys import re import numpy as np def line(c,x1,y1,x2,y2): for x in range(min(x1,x2),max(x1,x2)+1): for y in range(min(y1,y2),max(y1,y2)+1): c[x,y] = c[x,y]+1 p = re.compile('(\d+),(\d+) -> (\d+),(\d+)') ln = [] for l in sys.stdin: m = [int(x) for x in p.search(l).groups()] if m[0] == m[2] or m[1] == m[3]: ln.append(m) ln = np.array(ln) m = ln.max(axis=0) xm = max(m[0],m[2]) ym = max(m[1],m[3]) c = np.zeros((xm+1,ym+1), dtype=np.uint) for l in ln: line(c,l[0],l[1],l[2],l[3]) print(c.T) print(np.sum(c >= 2)) ```
{ "source": "JonasToth/depth-conversions", "score": 2 }
#### File: scripts/analysis/transformation_step.py ```python import argparse import configparser import glob import logging as log from os.path import abspath, basename, dirname, join, exists from pathlib import Path import subprocess import sys __l = log.getLogger(__file__) __cmd_prefix = [''] __cmds = { 'filter': 'depth_filter', 'converter': 'depth2x', 'extractor': 'feature_extractor', 'plotter': 'keypoint_plotter', 'distribution': 'feature_performance', 'matching': 'feature_performance', 'recognition': 'feature_performance', } def arguments(): parser = argparse.ArgumentParser( description='Run the transformation from depth image to feature image') parser.add_argument('-c', '--config', help='Path to configuration file that describes the' ' pipeline') parser.add_argument('--command-prefix', help='Define a prefix that is prepended to every' ' command. This can be used to run the commands' ' with \'docker run\'', default='') parser.add_argument('--force', help='Force execution of the transformation, even' ' if the files already exist.', action='store_true') return parser.parse_args() def command_invocer(invocation, config_args, source_info): filtered = [s for s in invocation if len(s) > 0] __l.debug('Final invocation: %s' % filtered) __l.info('Running the following command:') __l.info(' '.join(filtered)) return_code = subprocess.run(filtered, shell=False, stdin=None, stdout=sys.stdout, stderr=sys.stderr) if return_code.returncode < 0: __l.error("Command got terminated by signal %d" % -return_code.returncode) __l.error("Invocation:\n%s" % '\n'.join(filtered)) elif return_code.returncode > 0: __l.warning("Command terminated with error code!") __l.warning("Invocation:\n%s" % '\n'.join(filtered)) # Because filtering is a way to create a new base-dataset, a configuration # file must be written for the new dataset. new_cfg = configparser.ConfigParser() new_cfg['data'] = source_info new_cfg['data']['pattern'] = basename(config_args['target']) new_cfg.write(open(join(dirname(config_args['target']), config_args.get('config', 'dataset.config')), 'w')) def path_adjustment(dictionary, keys, path): """ Iterates :param: keys in the :param: dictionary and replaces each value with the 'abspath(join(path, dictionary[key]))'. """ for key in keys: if key not in dictionary: continue dictionary[key] = abspath(join(dirname(path), dictionary[key])) def run_filter(config_args, source_info): __l.debug('Filter command: %s' % config_args['filter']) __l.debug('Filter arguments: %s' % config_args['arguments']) invocation = __cmd_prefix invocation.append(__cmds['filter']) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--output', config_args['target']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.append(config_args['filter']) invocation.extend(config_args['arguments'].split(' ')) command_invocer(invocation, config_args, source_info) def run_converter(config_args, source_info): __l.debug('Converter type: %s' % config_args['type']) invocation = __cmd_prefix invocation.append(__cmds['converter']) invocation.extend(['--calibration', source_info['intrinsic']]) invocation.extend(['--model', source_info['model']]) invocation.extend(['--type', source_info['type']]) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.append(config_args['type']) if config_args['type'] == 'bearing': add_args = config_args.get('arguments', '').split(' ') assert len(add_args) == 1, "Too many argument for bearing angle" invocation.extend(add_args) invocation.append(config_args['target']) else: invocation.extend(['--output', config_args['target']]) invocation.extend(config_args.get('arguments', '').split(' ')) command_invocer(invocation, config_args, source_info) def run_extraction(config_args, source_info): __l.debug('Detector: %s' % config_args['detector']) __l.debug('Descriptor: %s' % config_args['descriptor']) invocation = __cmd_prefix invocation.append(__cmds['extractor']) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--output', config_args['target']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.append('detector') det_args = config_args.get('detector_filter', '').split(' ') invocation.extend(det_args) invocation.append(config_args['detector']) add_args = config_args.get('detector_args', '').split(' ') invocation.extend(add_args) invocation.extend(['descriptor', config_args['descriptor']]) add_args = config_args.get('descriptor_args', '').split(' ') invocation.extend(add_args) command_invocer(invocation, config_args, source_info) def run_plotting(config_args, source_info): invocation = __cmd_prefix invocation.append(__cmds['plotter']) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--output', config_args['target']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.extend(['--color', config_args.get('color', 'all')]) command_invocer(invocation, config_args, source_info) def run_distribution(config_args, source_info): invocation = __cmd_prefix invocation.append(__cmds['distribution']) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--output', config_args['target']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.append('keypoint-distribution') invocation.extend(['--image-width', config_args['width']]) invocation.extend(['--image-height', config_args['height']]) invocation.extend(['--response-histo', config_args['response']]) invocation.extend(['--size-histo', config_args['size']]) invocation.extend(['--kp-distance-histo', config_args['kp_distance']]) invocation.extend(['--kp-distribution-histo', config_args['kp_distribution']]) command_invocer(invocation, config_args, source_info) def run_matching(config_args, source_info): invocation = __cmd_prefix invocation.append(__cmds['distribution']) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--output', config_args['target']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.append('matching') invocation.extend(['--distance-norm', config_args['norm']]) invocation.extend(['--match-output', config_args['match_output']]) invocation.extend(['--original-images', config_args['original_images']]) invocation.extend(['--matched-distance-histo', config_args['match_distances']]) command_invocer(invocation, config_args, source_info) def run_recognition(config_args, source_info): invocation = __cmd_prefix invocation.append(__cmds['recognition']) invocation.extend(['--input', source_info['pattern']]) invocation.extend(['--output', config_args['target']]) invocation.extend(['--start', source_info['start']]) invocation.extend(['--end', source_info['end']]) invocation.append('recognition-performance') invocation.extend(['--depth-image', config_args['depth_images']]) invocation.extend(['--pose-file', source_info['pose']]) invocation.extend(['--intrinsic', source_info['intrinsic']]) if 'mask' in source_info: invocation.extend(['--mask', source_info['mask']]) invocation.extend(['--match-norm', config_args['norm']]) invocation.extend(['--keypoint-distance-threshold', config_args['distance_threshold']]) if 'backprojection' in config_args: invocation.extend(['--backprojection', config_args['backprojection']]) invocation.extend(['--orig-images', config_args['original_images']]) if 'true_positive_strength' in config_args: invocation.extend(['--true-positive-strength', config_args['true_positive_strength']]) if 'false_negative_strength' in config_args: invocation.extend(['--false-negative-strength', config_args['false_negative_strength']]) if 'false_positive_strength' in config_args: invocation.extend(['--false-positive-strength', config_args['false_positive_strength']]) invocation.extend(['--backprojection-selected-histo', config_args['backprojection_selected_histo']]) invocation.extend(['--relevant-elements-histo', config_args['relevant_elements_histo']]) invocation.extend(['--true-positive-histo', config_args['true_positive_histo']]) invocation.extend(['--false-positive-histo', config_args['false_positive_histo']]) invocation.extend(['--true-positive-distance-histo', config_args['true_positive_distance_histo']]) invocation.extend(['--false-positive-distance-histo', config_args['false_positive_distance_histo']]) command_invocer(invocation, config_args, source_info) def create_video(config_args): __l.debug('Creating video \'%s\'' % config_args['output']) # Adjusted from # https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg ffmpeg_call = ['ffmpeg', '-r', config_args['rate'], '-i', config_args['source'], '-c:v', 'libx264', '-y', # overwrite the output-file automatically '-vf', 'fps=25', '-pix_fmt', 'yuv420p', config_args['output']] return_code = subprocess.run(ffmpeg_call, shell=False, stdin=None, stdout=sys.stdout, stderr=sys.stderr) return_code.check_returncode() def main(): args = arguments() global __cmd_prefix __cmd_prefix = args.command_prefix.split(' ') __l.debug('Command prefix: %s' % __cmd_prefix) if not exists(args.config): __l.error('Configuration path \'%s\' does not exist!' % args.config) sys.exit(1) toplevel_cfg = configparser.ConfigParser() __l.debug('Reading configuration from file: %s' % args.config) toplevel_cfg.read(args.config, encoding='utf-8') # Substitute paths in the configurations with absolute paths. path_adjustment(toplevel_cfg['data'], ['target', 'test_glob', 'source'], args.config) __l.debug('Source Data configuration expected here: %s' % toplevel_cfg['data']['source']) if not exists(toplevel_cfg['data']['source']): __l.error('Configuration path \'%s\' does not exist!' % toplevel_cfg['data']['source']) sys.exit(1) source_data_cfg = configparser.ConfigParser() source_data_cfg.read(toplevel_cfg['data']['source'], encoding='utf-8') # Substitute paths in source-configuration as well. path_adjustment(source_data_cfg['data'], ['pattern', 'pose', 'mask', 'intrinsic'], toplevel_cfg['data']['source']) # Create directories for the output, if they do not exist. dirs_to_output = dirname(toplevel_cfg['data']['target']) Path(dirs_to_output).mkdir(parents=True, exist_ok=True) if not args.force: n_elements = 0 provided_count = int(toplevel_cfg['data'].get('expected_elements', -1)) if provided_count != -1: n_elements = provided_count else: # Check if any work has to be done, if yes, do it. # Otherwise just return. start_idx = source_data_cfg.getint('data', 'start') end_idx = source_data_cfg.getint('data', 'end') # Counting is inclusive in the processing tools. n_elements = end_idx - start_idx + 1 __l.debug('Expect %d elements' % n_elements) globbed = glob.glob(toplevel_cfg['data']['test_glob']) __l.debug('Glob detects %d elements' % len(globbed)) if len(globbed) == n_elements: __l.info('Detected that the output files already exist.' ' Skipping processing of %s!' % args.config) return if len(globbed) > n_elements: __l.error('Test expression resulted in more files then the' ' original dataset has. Check you configuration!' ' No processing!') return if 'filter' in toplevel_cfg: toplevel_cfg['filter']['target'] = toplevel_cfg['data']['target'] run_filter(toplevel_cfg['filter'], source_data_cfg['data']) elif 'converter' in toplevel_cfg: toplevel_cfg['converter']['target'] = toplevel_cfg['data']['target'] run_converter(toplevel_cfg['converter'], source_data_cfg['data']) elif 'extract' in toplevel_cfg: toplevel_cfg['extract']['target'] = toplevel_cfg['data']['target'] run_extraction(toplevel_cfg['extract'], source_data_cfg['data']) elif 'plot' in toplevel_cfg: toplevel_cfg['plot']['target'] = toplevel_cfg['data']['target'] run_plotting(toplevel_cfg['plot'], source_data_cfg['data']) elif 'distribution' in toplevel_cfg: toplevel_cfg['distribution']['target'] = toplevel_cfg['data']['target'] path_adjustment(toplevel_cfg['distribution'], ['response', 'size', 'kp_distance', 'kp_distribution'], args.config) run_distribution(toplevel_cfg['distribution'], source_data_cfg['data']) elif 'matching' in toplevel_cfg: toplevel_cfg['matching']['target'] = toplevel_cfg['data']['target'] path_adjustment(toplevel_cfg['matching'], ['match_output', 'original_images', 'match_distances'], args.config) run_matching(toplevel_cfg['matching'], source_data_cfg['data']) elif 'recognition' in toplevel_cfg: toplevel_cfg['recognition']['target'] = toplevel_cfg['data']['target'] path_adjustment(toplevel_cfg['recognition'], ['depth_images', 'backprojection', 'original_images', 'backprojection_selected_histo', 'relevant_elements_histo', 'true_positive_histo', 'false_positive_histo', 'true_positive_distance_histo', 'false_positive_distance_histo'], args.config) depth_image_cfg = configparser.ConfigParser() depth_image_cfg.read(toplevel_cfg['recognition']['depth_images'], encoding='utf-8') toplevel_cfg['recognition']['depth_images'] = \ join(dirname(toplevel_cfg['recognition']['depth_images']), depth_image_cfg['data']['pattern']) run_recognition(toplevel_cfg['recognition'], source_data_cfg['data']) # Creating a video from the frames helps with visualization. if 'video' in toplevel_cfg: # Replacing '%' with '%%' to mask interpolation of the ConfigParser. # ffmpeg uses '%' as placeholder for indices in filenames # (printf-syntax). toplevel_cfg['video']['source'] = \ toplevel_cfg['video']['source'].replace('%', '%%%%') path_adjustment(toplevel_cfg['video'], ['output', 'source'], args.config) create_video(toplevel_cfg['video']) if __name__ == '__main__': log.basicConfig(format='%(asctime)s, %(levelname)s: %(message)s', level=log.WARN) main() ```
{ "source": "JonasTrampe/hucon", "score": 3 }
#### File: python_lib/hucon/PCA9685.py ```python import time from OmegaExpansion import onionI2C # Set of all addresses which are successfully initialized. _INITIALIZED_DRIVER = set() class PCA9685(object): """ Class to to handle multiple initialization from the PCA9685 at the same time. This class will setup the PCA9685 once the first 'init' function is called. After that, the setup routine will not called any more. """ _address = None _i2c = None _MODE1 = 0x00 _MODE2 = 0x01 _PRESCALE = 0xFE _LED0_ON_L = 0x06 _ALL_LED_ON_L = 0xFA def __init__(self, address): """ Initialize the module and the PCS9685 driver if this is not initialized at the moment. """ global _INITIALIZED_DRIVER self._address = address self._i2c = onionI2C.OnionI2C() # Initialize the PCA9685 for the first time. if self._address not in _INITIALIZED_DRIVER: self._setup() _INITIALIZED_DRIVER.add(self._address) def _setup(self): """ Set the PCA into a working state. """ self.set_all_channel(0) # Set default Mode2 register self._i2c.writeByte(self._address, self._MODE2, 0x04) # Set sleep on. self._i2c.writeByte(self._address, self._MODE1, 0x11) # Set a frequency of 50 Hz # pre-scale = round(25Mhz/(4096*50Hz))-1 = 121 self._i2c.writeByte(self._address, self._PRESCALE, 121) # Release sleep. self._i2c.writeByte(self._address, self._MODE1, 0x01) time.sleep(0.005) # Reset device. self._i2c.writeByte(self._address, self._MODE1, 0x81) def set_channel(self, channel, value): """ Write the specific channel """ if channel not in range(16): raise Exception('The channel must be in range from 0 to 15!') if value not in range(4096): raise Exception('The value must be in range from 0 to 4095!') register_address = self._LED0_ON_L + channel * 4 # Set the on always to 0 and the off value will set the duration of the on state. self._i2c.writeByte(self._address, register_address + 0, 0) self._i2c.writeByte(self._address, register_address + 1, 0) self._i2c.writeByte(self._address, register_address + 2, value & 0xFF) self._i2c.writeByte(self._address, register_address + 3, value >> 8) def set_all_channel(self, value): """ Write to all channels with the write ALL_LED register. """ if value not in range(4096): raise Exception('The value must be in range from 0 to 4095!') # Set the on always to 0 and the off value will set the duration of the on state. self._i2c.writeByte(self._address, self._ALL_LED_ON_L + 0, 0) self._i2c.writeByte(self._address, self._ALL_LED_ON_L + 1, 0) self._i2c.writeByte(self._address, self._ALL_LED_ON_L + 2, value & 0xFF) self._i2c.writeByte(self._address, self._ALL_LED_ON_L + 3, value >> 8) if __name__ == '__main__': pwm = PCA9685(0x4A) for cha in range(16): print('Channel %d\n' % cha) pwm.set_channel(cha, 255) time.sleep(1) pwm.set_all_channel(0) ```
{ "source": "JonasTriki/masters-thesis-ml", "score": 3 }
#### File: masters-thesis-ml/code/approx_nn.py ```python from os import makedirs from typing import Optional, Tuple, Union import annoy import numpy as np import scann from tqdm import tqdm from typing_extensions import Literal rng_seed = 399 np.random.seed(rng_seed) class ApproxNN: """ Approximate nearest neighbour class; using either ScaNN method [1] or Annoy index [2]. References ---------- .. [1] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2020). Accelerating Large-Scale Inference with Anisotropic Vector Quantization. In International Conference on Machine Learning. .. [2] <NAME>. (2018). Annoy: Approximate Nearest Neighbors in C++/Python. Url: https://github.com/spotify/annoy. """ def __init__(self, ann_alg: Literal["scann", "annoy"] = "scann") -> None: """ Initializes the approximate nearest neighbour class. Parameters ---------- ann_alg : str, "scann" or "annoy" Approximate nearest neighbour algorithm/method (defaults to "scann"). """ self._ann_alg = ann_alg self._ann_index: Optional[ Union[scann.scann_ops_pybind.ScannSearcher, annoy.AnnoyIndex] ] = None def build( self, data: np.ndarray, distance_measure: Optional[str] = None, scann_num_leaves_scaling: float = 2.5, scann_default_num_neighbours: int = 100, annoy_n_trees: int = 250, verbose: int = 1, ) -> None: """ Builds the approximate nearest neighbour (ANN) index. Parameters ---------- data : np.ndarray Data to build the ANN index on. distance_measure : str, optional Name of the distance measure (or metric). If ann_alg is set to "scann", then choose from ["dot_product", "squared_l2"]. Otherwise, choose one of the metrics from https://github.com/spotify/annoy. Defaults to "dot_product" if ann_alg is set to "scann" and "euclidean" otherwise. scann_num_leaves_scaling : float, optional Scaling to use when computing the number of leaves for building ScaNN (defaults to 2.5). Only has an effect if ann_alg is set to "scann". scann_default_num_neighbours : int, optional Default number of neighbours to use for building ScaNN (defaults to 1). Only has an effect if ann_alg is set to "scann". annoy_n_trees : int, optional Number of trees to use for building Annoy index (defaults to 250). Only has an effect if ann_alg is set to "annoy". verbose : int, optional Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose). Defaults to 1 (verbose). """ n, d = data.shape if verbose == 1: print(f"Building ANN index using {self._ann_alg}...") if self._ann_alg == "scann": if distance_measure is None: distance_measure = "dot_product" # Compute number of leaves to use when building ScaNN scann_num_leaves_order_of_magnitude = int(np.log10(np.sqrt(n))) scann_num_leaves_num = 10 ** scann_num_leaves_order_of_magnitude scann_num_leaves_scaled = int( scann_num_leaves_scaling * scann_num_leaves_num ) # Create and build index self._ann_index = ( scann.scann_ops_pybind.builder( db=data, num_neighbors=scann_default_num_neighbours, distance_measure=distance_measure, ) .tree( num_leaves=scann_num_leaves_scaled, num_leaves_to_search=int(scann_num_leaves_scaled / 10), training_sample_size=250000, # TODO: How to select this number? ) .score_ah( dimensions_per_block=2, anisotropic_quantization_threshold=0.2 ) .reorder( reordering_num_neighbors=250 ) # TODO: How to select this number? .build() ) elif self._ann_alg == "annoy": if distance_measure is None: distance_measure = "euclidean" # Add data to index and build it self._ann_index = annoy.AnnoyIndex(f=d, metric=distance_measure) self._ann_index.set_seed(rng_seed) if verbose == 1: print("Adding items to index...") for i in tqdm(range(n)): self._ann_index.add_item(i, data[i]) if verbose == 1: print("Building index...") self._ann_index.build(n_trees=annoy_n_trees, n_jobs=-1) if verbose == 1: print("Done!") def save(self, output_path: str) -> None: """ Saves the approximate nearest neighbour instance to disk. Parameters ---------- output_path : str Output path (directory if ann_alg is "scann", filepath otherwise). """ if self._ann_alg == "scann": makedirs(output_path, exist_ok=True) self._ann_index.serialize(output_path) elif self._ann_alg == "annoy": self._ann_index.save(output_path) def load( self, ann_path: str, annoy_data_dimensionality: Optional[int] = None, annoy_mertic: Optional[str] = None, annoy_prefault: bool = False, ) -> None: """ Loads an approximate nearest neighbour (ANN) instance from disk. Parameters ---------- ann_path : str Path of saved ANN instance (directory if ann_alg is "scann", filepath otherwise). annoy_data_dimensionality : int, optional Dimensionality of data (required if ann_alg is set to "annoy"). annoy_mertic : str, optional Distance metric (required if ann_alg is set to "annoy"). annoy_prefault : bool, optional Whether or not to enable the `prefault` option when loading Annoy index (defaults to False). """ if self._ann_alg == "scann": self._ann_index = scann.scann_ops_pybind.load_searcher(ann_path) elif self._ann_alg == "annoy": self._ann_index = annoy.AnnoyIndex( f=annoy_data_dimensionality, metric=annoy_mertic ) self._ann_index.load(fn=ann_path, prefault=annoy_prefault) def search( self, query_vector: np.ndarray, k_neighbours: int, excluded_neighbour_indices: list = [], scann_pre_reorder_num_neighbors: Optional[int] = None, scann_leaves_to_search: Optional[int] = None, return_distances: bool = False, ) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray]: """ Searches for the nearest neighbour of given query vector using approximate nearest neighbour instance. Parameters ---------- query_vector : np.ndarray Vector to query. k_neighbours : int Number of neighbours to find. excluded_neighbour_indices : list, optional List of neighbour indices to exclude (defaults to []). scann_pre_reorder_num_neighbors : int, optional `pre_reorder_num_neighbors` argument sent to ScaNNs search method (defaults to None). scann_leaves_to_search : int, optional `scann_leaves_to_search` argument sent to ScaNNs search method (defaults to None). return_distances : bool, optional Whether or not to return distances, in addition to neighbour indices (defaults to False). Returns ------- neighbours : np.ndarray Nearest neighbouring indices. distances : np.ndarray, optional Distances to nearest neighbouring data points. (Only returned if return_distances is set to True). """ num_excluded_indices = len(excluded_neighbour_indices) k_neighbours_search = k_neighbours + num_excluded_indices if self._ann_alg == "scann": neighbours, distances = self._ann_index.search( q=query_vector, final_num_neighbors=k_neighbours_search, pre_reorder_num_neighbors=scann_pre_reorder_num_neighbors, leaves_to_search=scann_leaves_to_search, ) elif self._ann_alg == "annoy": annoy_result = self._ann_index.get_nns_by_vector( vector=query_vector, n=k_neighbours_search, include_distances=return_distances, ) if return_distances: neighbours, distances = annoy_result distances = np.array(distances) else: neighbours = annoy_result neighbours = np.array(neighbours) if num_excluded_indices > 0: accepted_indices_filter = np.array( [idx not in excluded_neighbour_indices for idx in neighbours] ) neighbours = neighbours[accepted_indices_filter][:k_neighbours] if return_distances: distances = distances[accepted_indices_filter][:k_neighbours] if return_distances: return neighbours, distances else: return neighbours def get_distance(self, i: int, j: int) -> float: """ Gets distance between items i and j. Parameters ---------- i : int Index of first item. j : int Index of second item. Returns ------- i_j_dist : float Distance between items i and j. """ if self._ann_alg == "annoy": return self._ann_index.get_distance(i, j) else: raise ValueError( "get_distance() method is only available if ANN algorithm is set to 'annoy'." ) ``` #### File: masters-thesis-ml/code/text_preprocessing_utils.py ```python import re from string import digits from typing import Dict, List, Match import nltk from nltk import word_tokenize from nltk.corpus import stopwords from num2words import num2words from contractions_utils import contractions_dict # Download NLTK files nltk.download("punkt") # Convert keys to lowercase contractions_dict_lower: Dict[str, str] = { key.lower(): val for key, val in contractions_dict.items() } def remove_urls(text: str) -> str: """ Remove URLs from a text. Parameters ---------- text : str Text to remove URLs from. Returns ------- new_text : str New text without URLs. """ url_regex = r"(?:(?:http|ftp)s?:\/\/|www\.)[\n\S]+" return re.sub(url_regex, "", text) def remove_stopwords(words: list, language: str) -> list: """ Removes stop words from list of tokenized words. Parameters ---------- words : list List of tokenized words. language : str Language of words Returns ------- new_words : list List of words without stop words. """ new_words = [] for word in words: if word not in stopwords.words(language): new_words.append(word) return new_words def replace_contractions(text: str) -> str: """ Replace contractions in string of text. Parameters ---------- text : str Text to replace contractions from. Example replacements: - isn't --> is not - don't --> do not - I'll --> I will Returns ------- new_text : str New text without contractions. """ def replace_contraction_matches(contraction_match: Match) -> str: """ Replaces contraction matches (used as argument to re.sub). Parameters ---------- contraction_match : re.Match Contraction regex match. Returns ------- match_result : str Fixed string (mapping from contraction match). """ match = contraction_match.group(0).lower() return contractions_dict_lower.get(match) # Create regex for matching contraction keys contractions_keys_re = "|".join(contractions_dict.keys()) contractions_re = re.compile( f"({contractions_keys_re})", flags=re.IGNORECASE | re.DOTALL, ) # Replace all contraction occurrences. new_text = contractions_re.sub(replace_contraction_matches, text) return new_text def to_lowercase(words: list) -> list: """ Convert all characters to lowercase from list of tokenized words. Parameters ---------- words : list List of tokenized words. Returns ------- new_words : list List of words in lowercase. """ new_words = [] for word in words: new_word = word.lower() new_words.append(new_word) return new_words def remove_punctuation(words: list) -> list: """ Remove punctuation from list of tokenized words. Parameters ---------- words : list List of tokenized words. Returns ------- new_words : list List of new words without punctuations. """ new_words = [] for word in words: new_word = re.sub(r"[^\w\s]|_", " ", word) # Splitting new word on punctuation # and adding them separately # e.g. out-of-the-box --> out, of, the, box for new_word in new_word.split(): new_words.append(new_word) return new_words def remove_digits(words: list) -> list: """ Removes digits from list of tokenized words. Parameters ---------- words : list List of tokenized words. Returns ------- new_words : list List of words without digits. """ new_words = [] remove_digits_trans = str.maketrans("", "", digits) for word in words: new_word = word.translate(remove_digits_trans) new_words.append(new_word) return new_words def replace_numbers(words: list, lang: str, ordinal: bool = False) -> list: """ Replaces (ordinal) numbers with its textual representation. Parameters ---------- words : list List of words. lang: str Language of words (stripped) ordinal : bool, optional Whether or not to use ordinal textual representation. Returns ------- new_words : list List of new words with textual representation of numbers. """ new_words = [] for word in words: if ordinal: re_results = re.findall(r"(\d+)(?:st|nd|rd|th)", word) else: re_results = re.findall(r"\d+", word) if len(re_results) > 0: number = int(re_results[0]) number_words = num2words(number, lang=lang, ordinal=ordinal) # Remove commas number_words = number_words.replace(",", "") # Splitting number word on space # and adding them separately # e.g. one hundred and sixteenth # --> one, hundred, and, sixteenth for new_word in number_words.split(): new_words.append(new_word) else: new_words.append(word) return new_words def replace_all_numbers(words: list, language: str) -> list: """ Replaces normal and ordinal numbers with its textual representation. Parameters ---------- words : list List of words. language : str Language of words Returns ------- new_words : list List of new words with textual representation of numbers. """ # Add exception for Danish if language == "danish": lang = "dk" elif language == "swedish": lang = "sv" else: lang = language[:2] # Extract first two characters (e.g. english --> en) words = replace_numbers(words, lang, ordinal=True) words = replace_numbers(words, lang) return words def text_to_words( text: str, should_replace_contractions: bool = True, language: str = "english" ) -> List[str]: """ Converts text into a list of words. Removes URLs and replaces contractions from the original text, before tokenizing into words. Parameters ---------- text : str Text to process. should_replace_contractions: bool Whether or not to replace contractions (defaults to True). language : str Language (defaults to "english"). Returns ------- words : list List of words from the original text. """ # text = remove_urls(text) if should_replace_contractions and language == "english": text = replace_contractions(text) # Tokenize text (convert into words) words = word_tokenize(text, language) return words def preprocess_words( words: List[str], language: str = "english", should_remove_digits: bool = False, should_replace_numbers: bool = True, should_remove_stopwords: bool = False, ) -> list: """ Preprocesses list of words using a series of techniques: - Converts to lower-case - Removes punctuation - Replaces numbers with textual representation Parameters ---------- words : list of str List of words to preprocess. language : str Language (defaults to "english") should_remove_digits : bool Whether or not to remove digits from text (defaults to False). should_replace_numbers : bool Whether or not to replace numbers with textual representation (defaults to True). Has no effect if should_remove_digits is set to True. should_remove_stopwords : bool Whether or not to remove stop words (defaults to False). Returns ------- words : list of str Preprocessed list of words. """ # Apply a series of techniques to the words words = to_lowercase(words) words = remove_punctuation(words) if should_remove_digits: words = remove_digits(words) elif should_replace_numbers: words = replace_all_numbers(words, language) if should_remove_stopwords: words = remove_stopwords(words, language) return words def preprocess_text( text: str, language: str = "english", should_replace_contractions: bool = True, should_remove_digits: bool = False, should_replace_numbers: bool = True, should_remove_stopwords: bool = False, ) -> List[str]: """ Preprocesses text using a series of techniques: - Removes URLs - Replaces contractions - Tokenizes text - Removes non-ASCII - Converts to lower-case - Removes punctuation - Replaces numbers with textual representation - Removes stop words Parameters ---------- text : str Text to preprocess. language : str Language (defaults to "english") should_replace_contractions : bool Whether or not to replace contractions (defaults to True). should_remove_digits : bool Whether or not to remove digits from text (defaults to False). should_replace_numbers : bool Whether or not to replace numbers with textual representation (defaults to True). Has no effect if should_remove_digits is set to True. should_remove_stopwords : bool Whether or not to remove stop words (defaults to False). Returns ------- words : list of str Preprocessed text split into a list of words. """ # Convert to list of words words = text_to_words( text=text, language=language, should_replace_contractions=should_replace_contractions, ) # Process words words = preprocess_words( words=words, language=language, should_remove_digits=should_remove_digits, should_replace_numbers=should_replace_numbers, should_remove_stopwords=should_remove_stopwords, ) return words ``` #### File: code/topological_data_analysis/topological_polysemy_pipeline.py ```python import argparse import sys from os import makedirs from os.path import isfile, join from typing import Optional import joblib import numpy as np import pandas as pd from matplotlib import pyplot as plt from nltk.corpus import wordnet as wn from scipy.stats import pearsonr from sklearn.metrics.pairwise import euclidean_distances from tqdm import tqdm sys.path.append("..") from approx_nn import ApproxNN # noqa: E402 from topological_data_analysis.topological_polysemy import ( # noqa: E402 tps_multiple, tps_point_cloud, ) from word_embeddings.word2vec import load_model_training_output # noqa: E402 def parse_args() -> argparse.Namespace: """ Parses arguments sent to the python script. Returns ------- parsed_args : argparse.Namespace Parsed arguments """ parser = argparse.ArgumentParser() parser.add_argument( "--semeval_word_senses_filepath", type=str, default="", help="Filepath of the SemEval-2010 task 14 word senses", ) parser.add_argument( "--word2vec_semeval_model_dir", type=str, default="", help="Directory of the SemEval-2010 task 14 word2vec model", ) parser.add_argument( "--word2vec_enwiki_model_dir", type=str, default="", help="Directory of the enwiki word2vec model", ) parser.add_argument( "--word2vec_google_news_model_dir", type=str, default="", help="Directory of the Google News 3M word2vec model", ) parser.add_argument( "--glove_model_dir", type=str, default="", help="Directory of the GloVe model", ) parser.add_argument( "--fasttext_model_dir", type=str, default="", help="Directory of the fastText model", ) parser.add_argument( "--fasttext_tps_model_dir", type=str, default="", help="Directory of the TPS fastText model", ) parser.add_argument( "--tps_neighbourhood_sizes", nargs="+", help="Neighbourhood sizes to use when computing TPS (e.g. 50, 60)", ) parser.add_argument( "--num_top_k_words_frequencies", type=int, help="Number of top words to use when computing TPS scores vs. word frequencies", ) parser.add_argument( "--cyclo_octane_data_filepath", type=str, default="", help="Filepath of the cyclo-octane dataset", ) parser.add_argument( "--henneberg_data_filepath", type=str, default="", help="Filepath of the Henneberg dataset", ) parser.add_argument( "--custom_point_cloud_neighbourhood_size", type=int, help="Neighbourhood size to use when computing TPS for custom point clouds", ) parser.add_argument( "--output_dir", type=str, default="", help="Output directory to save results", ) return parser.parse_args() def tps_word_embeddings_correlation_plot( tps_scores: np.ndarray, y_values: np.ndarray, y_label: str, tps_vs_y_correlation: float, output_plot_filepath: str, neighbourhood_size: int, ) -> None: """ Saves a correlation plot between TPS scores and some y values. Parameters ---------- tps_scores : np.ndarray TPS scores. y_values : np.ndarray Y-values to plot against TPS scores. y_label : str Y-axis label. tps_vs_y_correlation : float Correlation between TPS scores and y values. output_plot_filepath : str Output plot filepath. neighbourhood_size : int Neighbourhood size used to compute TPS scores (appended to output filepath). """ # Plot TPS scores to GS fig, ax = plt.subplots(figsize=(10, 5)) scatter_h = ax.scatter(x=tps_scores, y=y_values) if len(tps_scores) > 1000: scatter_h.set_rasterized(True) ax.set_xlabel(f"TPS_{neighbourhood_size}") ax.set_ylabel(y_label) ax.set_title(f"Correlation: {tps_vs_y_correlation:.5f}") plt.tight_layout() plt.savefig( output_plot_filepath, backend="pgf", ) plt.close(fig) def tps_word_embeddings( word_embeddings_name: str, neighbourhood_sizes: list, semeval_target_words: np.ndarray, semeval_target_words_gs_clusters: np.ndarray, word_embeddings_normalized: np.ndarray, word_to_int: dict, word_vocabulary: list, num_top_k_words_frequencies: int, output_dir: str, word_counts: Optional[list] = None, ann_instance: ApproxNN = None, ) -> None: """ Computes TPS for word embeddings and saves correlation plots. Parameters ---------- word_embeddings_name : str Name of the word embeddings. neighbourhood_sizes : list Neighbourhood sizes to compute TPS scores of. semeval_target_words : np.ndarray SemEval-2010 task 14 target words. semeval_target_words_gs_clusters : np.ndarray SemEval-2010 task 14 GS clusters. word_embeddings_normalized : np.ndarray Normalized word embeddings. word_to_int : dict Dictionary for mapping a word to its integer representation. word_vocabulary : list List of words/word ints to use for the vocabulary. num_top_k_words_frequencies : list Number of top words to use when computing TPS scores vs. word frequencies. output_dir : str Output directory. word_counts : list List containing word counts ann_instance : ApproxNN ApproxNN instance to use for computing TPS scores. """ # Ensure output directory exists output_dir_plots = join(output_dir, word_embeddings_name) makedirs(output_dir_plots, exist_ok=True) # Only use the SemEval-2010 task 14 words in vocabulary semeval_target_words_in_vocab_filter = [ i for i, word in enumerate(semeval_target_words) if word in word_to_int ] semeval_target_words_in_vocab = semeval_target_words[ semeval_target_words_in_vocab_filter ] semeval_target_words_gs_clusters_in_vocab = semeval_target_words_gs_clusters[ semeval_target_words_in_vocab_filter ] tps_vs_gs_key = "TPS_n vs. GS" tps_vs_synsets_key = "TPS_n vs. synsets" tps_vs_frequency_key = "TPS_n vs. frequency" result_dict: dict = { "n": neighbourhood_sizes, tps_vs_gs_key: [], tps_vs_synsets_key: [], } has_word_counts = word_counts is not None if has_word_counts: result_dict[tps_vs_frequency_key] = [] for neighbourhood_size in neighbourhood_sizes: print(f"-- Neighbourhood size: {neighbourhood_size} --") # -- Compute TPS scores and correlation vs GS words -- output_plot_filepath = join( output_dir_plots, f"tps_{neighbourhood_size}_vs_gs.pdf", ) output_tps_filepath = join( output_dir_plots, f"tps_{neighbourhood_size}_vs_gs.npy", ) if not isfile(output_plot_filepath): print("Computing TPS scores for GS words") tps_scores_semeval = tps_multiple( target_words=semeval_target_words_in_vocab, word_to_int=word_to_int, neighbourhood_size=neighbourhood_size, word_embeddings_normalized=word_embeddings_normalized, ann_instance=ann_instance, n_jobs=-1, progressbar_enabled=True, ) # Compute correlation vs GS word meanings tps_score_vs_gs_correlation, _ = pearsonr( x=tps_scores_semeval, y=semeval_target_words_gs_clusters_in_vocab ) result_dict[tps_vs_gs_key].append(tps_score_vs_gs_correlation) # Save plot of TPS scores vs. GS tps_word_embeddings_correlation_plot( tps_scores=tps_scores_semeval, y_values=semeval_target_words_gs_clusters_in_vocab, y_label="Clusters in GS", tps_vs_y_correlation=tps_score_vs_gs_correlation, output_plot_filepath=output_plot_filepath, neighbourhood_size=neighbourhood_size, ) # Save TPS scores to file np.save(output_tps_filepath, tps_scores_semeval) # -- Compute TPS scores and correlation vs Wordnet synsets words -- output_plot_filepath = join( output_dir_plots, f"tps_{neighbourhood_size}_vs_synsets.pdf", ) output_tps_filepath = join( output_dir_plots, f"tps_{neighbourhood_size}_vs_synsets.npy", ) if not isfile(output_plot_filepath): # Find words in vocabulary that have synsets in Wordnet tps_scores_wordnet_synsets = [] wordnet_synsets_words_in_vocab = [] wordnet_synsets_words_in_vocab_meanings = [] print("Computing TPS scores for words in vocabulary with Wordnet synsets") for word in tqdm(word_vocabulary): num_synsets_word = len(wn.synsets(word)) if num_synsets_word > 0: wordnet_synsets_words_in_vocab.append(word) wordnet_synsets_words_in_vocab_meanings.append(num_synsets_word) wordnet_synsets_words_in_vocab = np.array(wordnet_synsets_words_in_vocab) tps_scores_wordnet_synsets = tps_multiple( target_words=wordnet_synsets_words_in_vocab, word_to_int=word_to_int, neighbourhood_size=neighbourhood_size, word_embeddings_normalized=word_embeddings_normalized, ann_instance=ann_instance, n_jobs=-1, progressbar_enabled=True, ) # Compute correlation vs Wordnet synsets tps_score_vs_wordnet_synsets_correlation, _ = pearsonr( x=tps_scores_wordnet_synsets, y=wordnet_synsets_words_in_vocab_meanings ) result_dict[tps_vs_synsets_key].append( tps_score_vs_wordnet_synsets_correlation ) # Save plot of TPS scores vs. Wordnet synsets tps_word_embeddings_correlation_plot( tps_scores=tps_scores_wordnet_synsets, y_values=wordnet_synsets_words_in_vocab_meanings, y_label="Synsets in WordNet", tps_vs_y_correlation=tps_score_vs_wordnet_synsets_correlation, output_plot_filepath=output_plot_filepath, neighbourhood_size=neighbourhood_size, ) # Save TPS scores to file np.save(output_tps_filepath, tps_scores_wordnet_synsets) # -- Compute TPS scores and correlation vs Wordnet synsets words -- output_plot_filepath = join( output_dir_plots, f"tps_{neighbourhood_size}_vs_frequency.pdf", ) output_tps_filepath = join( output_dir_plots, f"tps_{neighbourhood_size}_vs_frequency.npy", ) if has_word_counts and not isfile(output_plot_filepath): print( f"Computing TPS scores for top {num_top_k_words_frequencies} words vs. word frequencies" ) tps_score_word_frequencies = tps_multiple( target_words=word_vocabulary[:num_top_k_words_frequencies], word_to_int=word_to_int, neighbourhood_size=neighbourhood_size, word_embeddings_normalized=word_embeddings_normalized, ann_instance=ann_instance, n_jobs=-1, progressbar_enabled=True, ) # Compute correlation vs Wordnet synsets tps_score_vs_word_frequency_correlation, _ = pearsonr( x=tps_score_word_frequencies, y=word_counts[:num_top_k_words_frequencies], ) result_dict[tps_vs_frequency_key].append( tps_score_vs_word_frequency_correlation ) # Save plot of TPS scores vs. word frequencies tps_word_embeddings_correlation_plot( tps_scores=tps_score_word_frequencies, y_values=word_counts[:num_top_k_words_frequencies], y_label="Word frequency", tps_vs_y_correlation=tps_score_vs_word_frequency_correlation, output_plot_filepath=output_plot_filepath, neighbourhood_size=neighbourhood_size, ) # Save TPS scores to file np.save(output_tps_filepath, tps_score_word_frequencies) def topological_polysemy_pipeline( semeval_word_senses_filepath: str, word2vec_semeval_model_dir: str, word2vec_enwiki_model_dir: str, word2vec_google_news_model_dir: str, glove_model_dir: str, fasttext_model_dir: str, fasttext_tps_model_dir: str, tps_neighbourhood_sizes: str, num_top_k_words_frequencies: int, cyclo_octane_data_filepath: str, henneberg_data_filepath: str, custom_point_cloud_neighbourhood_size: int, output_dir: str, ) -> None: """ Computes the topological polysemy of various word embeddings and data sets. Saves results in output dir with some additional plots. Parameters ---------- semeval_word_senses_filepath : str Filepath of the SemEval-2010 task 14 word senses word2vec_semeval_model_dir : str Directory of the SemEval-2010 task 14 word2vec model. word2vec_enwiki_model_dir : str Directory of the enwiki word2vec model. word2vec_google_news_model_dir : str Directory of the Google News 3M word2vec model glove_model_dir : str Directory of the GloVe model. fasttext_model_dir : str Directory of the fastText model. fasttext_tps_model_dir : str Directory of the TPS fastText model. tps_neighbourhood_sizes : str Neighbourhood sizes to use when computing TPS (e.g. 50, 60). num_top_k_words_frequencies : int Number of top words to use when computing TPS scores vs. word frequencies. cyclo_octane_data_filepath : str Filepath of the cyclo-octane dataset. henneberg_data_filepath : str Filepath of the Henneberg dataset. custom_point_cloud_neighbourhood_size : int Neighbourhood size to use when computing TPS for custom point clouds. output_dir : str Output directory to save results. """ # Ensure output directory exists makedirs(output_dir, exist_ok=True) # Load SemEval-2010 task 14 word senses semeval_word_senses: dict = joblib.load(semeval_word_senses_filepath) semeval_target_words = np.array(list(semeval_word_senses["all"].keys())) semeval_target_word_gs_clusters = np.array( list(semeval_word_senses["all"].values()) ) # Parse strings into int tps_neighbourhood_sizes = [int(n_size) for n_size in tps_neighbourhood_sizes] # -- Compute TPS for word embeddings (SemEval and enwiki) -- for dataset_name, model_dir in zip( ["semeval_2010_task_14", "enwiki"], [word2vec_semeval_model_dir, word2vec_enwiki_model_dir], ): # Load word embeddings print(f"Loading {dataset_name} word embeddings...") w2v_training_output = load_model_training_output( model_training_output_dir=model_dir, model_name="word2vec", dataset_name=dataset_name, return_normalized_embeddings=True, return_scann_instance=True, ) last_embedding_weights_normalized = w2v_training_output[ "last_embedding_weights_normalized" ] last_embedding_weights_scann_instance = w2v_training_output[ "last_embedding_weights_scann_instance" ] words = w2v_training_output["words"] word_to_int = w2v_training_output["word_to_int"] word_counts = w2v_training_output["word_counts"] print("Done!") print("Computing TPS for word embeddings...") tps_word_embeddings( word_embeddings_name=dataset_name, neighbourhood_sizes=tps_neighbourhood_sizes, semeval_target_words=semeval_target_words, semeval_target_words_gs_clusters=semeval_target_word_gs_clusters, word_embeddings_normalized=last_embedding_weights_normalized, word_to_int=word_to_int, word_vocabulary=words, num_top_k_words_frequencies=num_top_k_words_frequencies, output_dir=output_dir, word_counts=word_counts, ann_instance=last_embedding_weights_scann_instance, ) del last_embedding_weights_scann_instance print("Done!") # -- Compute TPS for external word embeddings -- # Prepare constants external_word_embeddings = [ ( "google_news_3m", "GoogleNews-vectors-negative300", word2vec_google_news_model_dir, ), ( "glove_cc_840b_300d", "glove.840B.300d", glove_model_dir, ), ( "fasttext_cc_300d", "cc.en.300.vec", fasttext_model_dir, ), ( "fasttext_tps_300d", "fastText.TPS.300d", fasttext_tps_model_dir, ), ] # Compute TPS for each external word embeddings for word_embeddings_name, model_name, model_dir in external_word_embeddings: # Prepare filepaths model_normalized_weights_filepath = join( model_dir, f"{model_name}_normalized.npy" ) model_words_filepath = join(model_dir, f"{model_name}_words.txt") model_scann_artifacts_dir = join(model_dir, f"{model_name}_scann_artifacts") # Load data print(f"Loading {model_name} data...") model_weights_normalized = np.load( model_normalized_weights_filepath, mmap_mode="r" ) with open(model_words_filepath, "r") as words_file: model_words = np.array(words_file.read().split("\n")) model_approx_nn = ApproxNN(ann_alg="scann") model_approx_nn.load(ann_path=model_scann_artifacts_dir) print("Done!") print(f"Computing TPS for {model_name} word embeddings...") tps_word_embeddings( word_embeddings_name=word_embeddings_name, neighbourhood_sizes=tps_neighbourhood_sizes, semeval_target_words=semeval_target_words, semeval_target_words_gs_clusters=semeval_target_word_gs_clusters, word_embeddings_normalized=model_weights_normalized, word_to_int={word: i for i, word in enumerate(model_words)}, word_vocabulary=model_words, num_top_k_words_frequencies=num_top_k_words_frequencies, output_dir=output_dir, ann_instance=model_approx_nn, ) del model_approx_nn print("Done!") # -- Compute TPS for custom point clouds -- for point_cloud_name, point_cloud_filepath in zip( ["cyclo_octane", "henneberg"], [cyclo_octane_data_filepath, henneberg_data_filepath], ): # Load and prepare data for TPS point_cloud = pd.read_csv(point_cloud_filepath, header=None).values point_cloud_normalized = point_cloud / np.linalg.norm( point_cloud, axis=1 ).reshape(-1, 1) point_cloud_pairwise_dists = euclidean_distances(point_cloud) # Compute TPS scores num_points = len(point_cloud) tps_scores = np.zeros(num_points) print(f"Computing TPS scores for {point_cloud_name}...") for point_index in tqdm(range(num_points)): tps_score = tps_point_cloud( point_index=point_index, neighbourhood_size=custom_point_cloud_neighbourhood_size, point_cloud_normalized=point_cloud_normalized, point_cloud_pairwise_dists=point_cloud_pairwise_dists, ) tps_scores[point_index] = tps_score # Save result point_cloud_output_dir = join(output_dir, point_cloud_name) makedirs(point_cloud_output_dir, exist_ok=True) np.save( join( point_cloud_output_dir, f"tps_scores_{custom_point_cloud_neighbourhood_size}.npy", ), tps_scores, ) if __name__ == "__main__": args = parse_args() topological_polysemy_pipeline( semeval_word_senses_filepath=args.semeval_word_senses_filepath, word2vec_semeval_model_dir=args.word2vec_semeval_model_dir, word2vec_enwiki_model_dir=args.word2vec_enwiki_model_dir, word2vec_google_news_model_dir=args.word2vec_google_news_model_dir, glove_model_dir=args.glove_model_dir, fasttext_model_dir=args.fasttext_model_dir, fasttext_tps_model_dir=args.fasttext_tps_model_dir, tps_neighbourhood_sizes=args.tps_neighbourhood_sizes, num_top_k_words_frequencies=args.num_top_k_words_frequencies, cyclo_octane_data_filepath=args.cyclo_octane_data_filepath, henneberg_data_filepath=args.henneberg_data_filepath, custom_point_cloud_neighbourhood_size=args.custom_point_cloud_neighbourhood_size, output_dir=args.output_dir, ) ``` #### File: code/topological_data_analysis/tps_spheres_experiment_data.py ```python import argparse import sys from os import makedirs from os.path import isfile, join import numpy as np from tqdm import tqdm rng_seed = 399 np.random.seed(rng_seed) sys.path.append("..") from topological_data_analysis.tda_utils import generate_points_in_spheres # noqa: E402 from topological_data_analysis.topological_polysemy import ( # noqa: E402 tps_multiple_point_cloud, ) def parse_args() -> argparse.Namespace: """ Parses arguments sent to the python script. Returns ------- parsed_args : argparse.Namespace Parsed arguments """ parser = argparse.ArgumentParser() parser.add_argument( "--tps_neighbourhood_size", type=int, default="", help="TPS neighbourhood size", ) parser.add_argument( "--output_dir", type=str, default="", help="Output directory where processed files will be saved to", ) return parser.parse_args() def prepare_spheres_data(noisy_spheres: bool, output_dir: str) -> list: """ Prepares spheres data. Parameters ---------- noisy_spheres : bool Whether or not to create noisy sphere data output_dir : str Output directory where processed files will be saved to. Returns ------- sphere_data_filepaths : list List of sphere data filepaths. """ # Generate sphere data sphere_point_shift = 2 space_dimensionality = 300 sphere_dimensionalities = [2, 3, 4, 5, 10, 20, 50, 300] point_in_each_sphere_gen = 1000000 sphere_sample_num_intervals = 20 sphere_sample_size = 1000 sphere_points_data_filepaths = [] sphere_noisy_str = "_noisy" if noisy_spheres else "" for sphere_dimensionality in sphere_dimensionalities: print(f"Sphere dimensionality: {sphere_dimensionality}") sphere_points_data_filepath = join( output_dir, f"sphere_points_data_{sphere_dimensionality}{sphere_noisy_str}.npy", ) sampled_sphere_points_data_filepath = join( output_dir, f"sampled_sphere_points_data_{sphere_dimensionality}{sphere_noisy_str}.npy", ) sphere_points_data_filepaths.append( ( sphere_dimensionality, sphere_points_data_filepath, sampled_sphere_points_data_filepath, ) ) if isfile(sphere_points_data_filepath) and isfile( sampled_sphere_points_data_filepath ): continue print("Generating points...") sphere_points, sphere_point_labels = generate_points_in_spheres( num_points=point_in_each_sphere_gen, sphere_dimensionality=sphere_dimensionality, space_dimensionality=space_dimensionality, create_intersection_point=True, noisy_spheres=noisy_spheres, random_state=rng_seed, ) sphere_point_shift_arr = np.repeat(sphere_point_shift, space_dimensionality) sphere_points += sphere_point_shift_arr shpere_points_intersection = sphere_point_shift_arr distances_to_intersection_point = np.zeros(sphere_points.shape[0]) print("Computing distances...") for i, sphere_point in enumerate(tqdm(sphere_points)): distances_to_intersection_point[i] = np.linalg.norm( sphere_point - shpere_points_intersection ) distances_to_intersection_point_sorted_indices = np.argsort( distances_to_intersection_point ) # Sample sphere points from intervals, sorted by distance to intersection point sampled_sphere_point_indices = [ distances_to_intersection_point_sorted_indices[0] # <-- Intersection point ] interval_width = (sphere_points.shape[0] - 1) // sphere_sample_num_intervals for i in range(sphere_sample_num_intervals): min_interval_idx = max(i * interval_width, 1) max_interval_idx = (i + 1) * interval_width interval_indices = distances_to_intersection_point_sorted_indices[ np.arange(min_interval_idx, max_interval_idx) ] sampled_indices = np.random.choice( interval_indices, size=sphere_sample_size, replace=False ) sampled_sphere_point_indices.extend(sampled_indices) sampled_sphere_point_indices = np.array(sampled_sphere_point_indices) sphere_points_data = np.column_stack( ( sphere_points, sphere_point_labels, distances_to_intersection_point, ) ) sampled_sphere_points_data = np.column_stack( ( sphere_points[sampled_sphere_point_indices], sphere_point_labels[sampled_sphere_point_indices], distances_to_intersection_point[sampled_sphere_point_indices], sampled_sphere_point_indices, ) ) # Save data print("Saving data...") np.save(sphere_points_data_filepath, sphere_points_data) np.save(sampled_sphere_points_data_filepath, sampled_sphere_points_data) # Free resources del sphere_points_data del sphere_points del sphere_point_labels del distances_to_intersection_point del sampled_sphere_point_indices del sampled_sphere_points_data return sphere_points_data_filepaths def compute_tps_scores( sphere_data_filepaths: list, tps_neighbourhood_size: int, output_dir: str ) -> None: """ Computes TPS scores of sphere data. Parameters ---------- sphere_data_filepaths : list List of sphere dimensionalities and data filepaths. tps_neighbourhood_size : int TPS neighbourhood size. output_dir : str Output directory where processed files will be saved to. """ for ( sphere_dimensionality, sphere_points_filepath, sphere_point_indices_filepath, ) in sphere_data_filepaths: # Check if TPS scores are computed already tps_scores_filepath = join( output_dir, f"sphere_points_data_{sphere_dimensionality}_tps_{tps_neighbourhood_size}_scores.npy", ) if isfile(tps_scores_filepath): continue print(f"Sphere dimensionality: {sphere_dimensionality}") print("Loading data...") sphere_points_data = np.load(sphere_points_filepath) sphere_points = sphere_points_data[:, :-2] sphere_points_normalized = sphere_points / np.linalg.norm( sphere_points, axis=1 ).reshape(-1, 1) sampled_sphere_points_data = np.load(sphere_point_indices_filepath) sampled_sphere_point_indices = sampled_sphere_points_data[:, -1].astype(int) print("Done!") # Compute TPS scores print("Computing TPS...") tps_scores_point_in_spheres = tps_multiple_point_cloud( point_indices=sampled_sphere_point_indices, neighbourhood_size=tps_neighbourhood_size, point_cloud_normalized=sphere_points_normalized, return_persistence_diagram=False, n_jobs=-1, progressbar_enabled=True, ) np.save(tps_scores_filepath, tps_scores_point_in_spheres) # Free resources del sphere_points_data del sampled_sphere_points_data del sampled_sphere_point_indices del sphere_points del sphere_points_normalized del tps_scores_point_in_spheres def tps_spheres_experiment_data_preprocessing( tps_neighbourhood_size: int, output_dir: str ) -> None: """ Preprocesses data for the TPS spheres experiment. Parameters ---------- tps_neighbourhood_size : int TPS neighbourhood size. output_dir : str Output directory where processed files will be saved to. """ for is_noisy in [False, True]: print(f"Noisy: {is_noisy}") noisy_str = "_noisy" if is_noisy else "" experiment_output_dir = join(output_dir, f"tps_spheres_experiment{noisy_str}") makedirs(experiment_output_dir, exist_ok=True) print("Preparing spheres data...") sphere_data_filepaths = prepare_spheres_data(noisy_spheres=is_noisy, output_dir=experiment_output_dir) print("Computing TPS scores...") compute_tps_scores( tps_neighbourhood_size=tps_neighbourhood_size, sphere_data_filepaths=sphere_data_filepaths, output_dir=experiment_output_dir, ) if __name__ == "__main__": args = parse_args() tps_spheres_experiment_data_preprocessing( tps_neighbourhood_size=args.tps_neighbourhood_size, output_dir=args.output_dir ) ``` #### File: code/word_embeddings/eval_utils.py ```python import sys from typing import Dict, List, Optional, Tuple, Union import joblib import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go from fastdist import fastdist from sklearn.base import ClusterMixin, TransformerMixin from sklearn.manifold import TSNE from tqdm.auto import tqdm from umap import UMAP sys.path.append("..") from approx_nn import ApproxNN # noqa: E402 def get_word_vec( target_word: str, word_to_int: Dict[str, int], weights: np.ndarray ) -> np.ndarray: """ Gets the word vector of a word. Parameters ---------- target_word : str Target word to find word vector of. word_to_int : dict of str and int Dictionary mapping from word to its integer representation. weights : np.ndarray Numpy matrix (vocabulary size, embedding dim) containing word vectors. Returns ------- word_vec : np.ndarray Word vector of a word """ return weights[word_to_int[target_word]] def similar_words( weights: np.ndarray, word_to_int: Dict[str, int], words: np.ndarray, ann_instance: ApproxNN = None, top_n: int = 10, positive_words: Optional[List[str]] = None, negative_words: Optional[List[str]] = None, vocab_size: int = -1, return_similarity_score: bool = True, ) -> List[Union[Tuple, str]]: """ Finds the most similar words of a linear combination of positively and negatively contributing words. Parameters ---------- weights : np.ndarray Numpy matrix (vocabulary size, embedding dim) containing word vectors. word_to_int : dict of str and int Dictionary mapping from word to its integer representation. words : np.ndarray Numpy array containing words from the vocabulary. ann_instance : ApproxNN, optional ApproxNN instance, built on word embeddings (defaults to None). top_n : int, optional Number of similar words (defaults to 10). positive_words : list of str, optional List of words contribution positively (defaults to empty list). negative_words : list of str, optional List of words contribution negatively (defaults to empty list). vocab_size : int, optional Vocabulary size to use, e.g., only most common `vocab_size` words to taken into account (defaults to -1 meaning all words). return_similarity_score : bool, optional Whether or not to return the cosine similarity score (`ann_instance` must be set to None to have an effect). Returns ------- If return_similarity_score is True, then pairs : list of tuples of str and int List of `top_n` similar words and their cosine similarities. else: closest_words : list of str List of `top_n` similar words. """ # Default values if positive_words is None: positive_words = [] if negative_words is None: negative_words = [] # Restrict vocabulary if vocab_size > 0: weights = weights[:vocab_size] words = words[:vocab_size] # Create query word vector query_word_vec = np.zeros((weights.shape[1],), dtype=np.float64) query_word_vec += np.array( [get_word_vec(pos_word, word_to_int, weights) for pos_word in positive_words] ).sum(axis=0) query_word_vec -= np.array( [get_word_vec(neg_word, word_to_int, weights) for neg_word in negative_words] ).sum(axis=0) # Create indices list of query words to exclude from search exclude_words_indices = [ word_to_int[word] for word in positive_words + negative_words ] # Find closest words if ann_instance is None: # Use cosine similarity to find similar words cos_sims = fastdist.cosine_vector_to_matrix(query_word_vec, weights) sorted_indices = cos_sims.argsort()[::-1] sorted_indices = [ idx for idx in sorted_indices if idx not in exclude_words_indices ] else: query_word_vec_norm = query_word_vec / np.linalg.norm(query_word_vec) sorted_indices = ann_instance.search( query_vector=query_word_vec_norm, k_neighbours=top_n, excluded_neighbour_indices=exclude_words_indices, ) # Filter top words/similarities top_words = words[sorted_indices][:top_n] # Create word similarity pairs if return_similarity_score and ann_instance is None: top_sims = cos_sims[sorted_indices][:top_n] result = list(zip(top_words, top_sims)) else: result = top_words return result def create_embeddings_of_train_weight_checkpoints( model_weights_filepaths: list, vocab_size: int, embedding_dim: int, clusterer: ClusterMixin, transformer: Union[UMAP, TSNE, TransformerMixin], ) -> Tuple[np.ndarray, np.ndarray]: """ Creates embeddings using a transformer over the course of multiple word2vec training checkpoints. Parameters ---------- model_weights_filepaths : list List filepaths to model weights. vocab_size : int Vocabulary size to use. embedding_dim : int Embedding dimension used in models. clusterer : ClusterMixin Clusterer instance to use when labeling words. Applies clustering to the last set of checkpoints and uses them. transformer : Union[UMAP, TSNE, TransformerMixin] Transformer/dimensionality reduction instance applied to the embeddings. Returns ------- results : tuple of np.ndarray A tuple consisting of the transformed embeddings and its respective clustering labels. """ # Prepare matrix of word embeddings of all time steps num_checkpoints = len(model_weights_filepaths) embeddings = np.zeros((num_checkpoints * vocab_size, embedding_dim)) cluster_labels = np.zeros(vocab_size) for i, model_weights_filepath in enumerate(model_weights_filepaths): # Load weights and restrict to vocabulary weights = np.load(model_weights_filepath, mmap_mode="r") weights = weights[:vocab_size] embeddings[i * vocab_size : (i + 1) * vocab_size] = weights # Use cluster labels from last embedding if i == num_checkpoints - 1: cluster_labels = clusterer.fit_predict(weights) # Create transformed embedding from all checkpoints transformed_embedding = transformer.fit_transform(embeddings) return transformed_embedding, cluster_labels def visualize_embeddings_over_time( transformed_word_embeddings: np.ndarray, cluster_labels: np.ndarray, vocab_size: int, words: np.ndarray, num_words: Optional[int] = None, title: str = "Word embeddings over time", ) -> None: """ Visualizes transformed (e.g. into 2D or 3D) word embeddings over time. Parameters ---------- transformed_word_embeddings : np.ndarray Transformed word embeddings. cluster_labels : np.ndarray Cluster labels of each word in the transformed word embeddings. vocab_size : int Vocabulary size of transformed word embeddings. words : np.ndarray Words in the vocabulary in a numpy array. num_words : int, optional Number of words to visualize (defaults to all words). title : str, optional Title to use for the plot (defaults to "Word embeddings over time"). """ is_3d = transformed_word_embeddings.shape[1] == 3 num_time_steps = int(len(transformed_word_embeddings) / vocab_size) if num_words is None: num_words = vocab_size # Create Pandas DataFrame for Plotly animations word_embeddings_over_time_df_dict: dict = { "time_step": [], "x": [], "y": [], "cluster_label": [], "word": [], } if is_3d: word_embeddings_over_time_df_dict["z"] = [] for time_step in range(1, num_time_steps + 1): weights = transformed_word_embeddings[ (time_step - 1) * vocab_size : time_step * vocab_size ] # Add to df word_embeddings_over_time_df_dict["time_step"].extend( np.repeat(time_step, num_words) ) word_embeddings_over_time_df_dict["x"].extend(weights[:num_words, 0]) word_embeddings_over_time_df_dict["y"].extend(weights[:num_words, 1]) if is_3d: word_embeddings_over_time_df_dict["z"].extend(weights[:num_words, 2]) word_embeddings_over_time_df_dict["cluster_label"].extend( cluster_labels[:num_words] ) word_embeddings_over_time_df_dict["word"].extend(words[:num_words]) # Create df from dict word_embeddings_over_time_df = pd.DataFrame(word_embeddings_over_time_df_dict) # Visualize animation of transformed embeddings over time if is_3d: fig = px.scatter_3d( word_embeddings_over_time_df, x="x", y="y", z="z", range_x=[ transformed_word_embeddings[:num_words, 0].min(), transformed_word_embeddings[:num_words, 0].max(), ], range_y=[ transformed_word_embeddings[:num_words, 1].min(), transformed_word_embeddings[:num_words, 1].max(), ], range_z=[ transformed_word_embeddings[:num_words, 2].min(), transformed_word_embeddings[:num_words, 2].max(), ], animation_frame="time_step", color="cluster_label", hover_name="word", title=title, ) else: fig = px.scatter( word_embeddings_over_time_df, x="x", y="y", range_x=[ transformed_word_embeddings[:num_words, 0].min(), transformed_word_embeddings[:num_words, 0].max(), ], range_y=[ transformed_word_embeddings[:num_words, 1].min(), transformed_word_embeddings[:num_words, 1].max(), ], animation_frame="time_step", color="cluster_label", hover_name="word", title=title, ) fig.update_scenes({"aspectmode": "cube"}) fig.show() def plot_word_relationships_2d( relationship_pairs: List[Tuple[str, str]], transformed_word_embeddings: np.ndarray, word_to_int: dict, title: str = "Plot of relationship pairs", x_label: str = "x1", y_label: str = "x2", ) -> None: """ Plots relationships between words in 2D. Requires that the transformed word embeddings are transformed in 2D space. Parameters ---------- relationship_pairs : list of tuples of str List of tuples of "from" (first entry) and "to" (second entry) words. transformed_word_embeddings : np.ndarray Transformed word embeddings. word_to_int : dict of str and int Dictionary mapping from word to its integer representation. title : str Title to use for the plot. x_label : str Label to use for the x-axis. y_label : str Label to use for the y-axis. """ fig = go.Figure() for (from_word, to_word) in relationship_pairs: from_word_vec = get_word_vec( from_word, word_to_int, transformed_word_embeddings ) to_word_vec = get_word_vec(to_word, word_to_int, transformed_word_embeddings) # Plot points in 2D fig.add_trace( go.Scatter( x=[from_word_vec[0], to_word_vec[0]], y=[from_word_vec[1], to_word_vec[1]], mode="markers+text", text=[from_word, to_word], textposition="bottom center", hovertext=[from_word, to_word], ) ) # Add title, x-label and y-label to plot fig.update_layout(title=title, xaxis_title=x_label, yaxis_title=y_label) # Annotate points with arrows fig.add_annotation( ax=from_word_vec[0], ay=from_word_vec[1], axref="x", ayref="y", x=to_word_vec[0], y=to_word_vec[1], xref="x", yref="y", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, opacity=0.5, ) fig.update_layout(showlegend=False) fig.show() def filter_word_analogy_dataset( analogy_dataset: List[Tuple[str, ...]], word_to_int: dict, vocab_size: int ) -> list: """ Filters a word analogy dataset such that it only contains words from the vocabulary. Parameters ---------- analogy_dataset : list List of word analogies (list of tuple of words) word_to_int : dict Dictionary for mapping a word to its integer representation. vocab_size : int Vocabulary size. Returns ------- analogies_filtered : list Filtered word analogies. """ analogies_filtered = [] for word_analogies in analogy_dataset: # Ensure all words are in vocabulary words_in_vocab = True for word in word_analogies: if word not in word_to_int or word_to_int[word] >= vocab_size: words_in_vocab = False break if words_in_vocab: analogies_filtered.append(word_analogies) return analogies_filtered def load_analogies_test_dataset( analogies_filepath: str, word_to_int: dict, vocab_size: int ) -> dict: """ Loads an analogies test dataset file and filters out out of vocabulary entries. Parameters ---------- analogies_filepath : str Filepath of the analogies test dataset file. word_to_int : dict Dictionary for mapping a word to its integer representation. vocab_size : int Vocabulary size. Returns ------- analogies_dict : dict Dictionary mapping from section name to list of tuples of word analogies from the word vocabulary. """ # Load analogies dict from file analogies_dict_raw = joblib.load(analogies_filepath) # Initialize resulting dictionary analogies_dict: dict = {key: [] for key in analogies_dict_raw.keys()} # Ensure analogies_dict only contain entries that are in the vocabulary. for section_name, analogies_pairs in analogies_dict_raw.items(): analogies_dict[section_name] = filter_word_analogy_dataset( analogies_pairs, word_to_int, vocab_size ) return analogies_dict def evaluate_model_word_analogies( analogies_filepath: str, word_embeddings: np.ndarray, word_to_int: dict, words: np.ndarray, vocab_size: int = -1, ann_instance: ApproxNN = None, top_n: int = 1, verbose: int = 1, ) -> dict: """ Evaluates a word2vec model on a word analogies test dataset. Parameters ---------- analogies_filepath : str Filepath of the analogies test dataset file. word_embeddings : np.ndarray Word embeddings word_to_int : dict mapping from str to int Dictionary for mapping a word to its integer representation words : np.ndarray Numpy array of words from the vocabulary. vocab_size : int, optional Vocabulary size to use (defaults to -1 meaning all words). ann_instance : ApproxNN, optional ApproxNN instance, built on word embeddings (defaults to None). top_n : int, optional Number of words to look at for computing accuracy. If the predicted word is in the `top_n` most similar words, it is flagged as a correct prediction. Defaults to 1. verbose : int, optional Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose). Defaults to 1 (verbose). Returns ------- analogies_accuracies : dict mapping from str to float Dictionary mapping from analogy section to its accuracy (percentage). """ if vocab_size == -1: vocab_size = len(words) # Load analogies word pairs from file analogies = load_analogies_test_dataset(analogies_filepath, word_to_int, vocab_size) # Perform evaluation analogies_accuracies = {} for (section_name, analogies_word_pairs) in analogies.items(): if verbose >= 1: print(f"-- Evaluating {section_name}... --") num_correct = 0 total = len(analogies_word_pairs) for qw_pair in tqdm(analogies_word_pairs): (a_word, b_word, c_word, d_word) = qw_pair d_word_predictions = similar_words( positive_words=[b_word, c_word], negative_words=[a_word], weights=word_embeddings, words=words, word_to_int=word_to_int, ann_instance=ann_instance, vocab_size=vocab_size, top_n=top_n, return_similarity_score=False, ) if d_word in d_word_predictions: num_correct += 1 if total == 0: analogies_accuracies[section_name] = np.nan # => no predictions made print(f"All word analogies in {section_name} missing from vocabulary") else: analogies_accuracies[section_name] = num_correct / total print(f"Accuracy: {(analogies_accuracies[section_name] * 100):.2f}%") # Compute average accuracy over all sections (ignore NaN's) analogies_accuracies["avg"] = np.nanmean(list(analogies_accuracies.values())) return analogies_accuracies ``` #### File: code/word_embeddings/preprocess_eval_test_data.py ```python import argparse import re import sys import tarfile from os import makedirs from os.path import isdir, isfile, join import joblib from tqdm import tqdm sys.path.append("..") from utils import download_from_url, get_cached_download_text_file # noqa: E402 def parse_args() -> argparse.Namespace: """ Parses arguments sent to the python script. Returns ------- parsed_args : argparse.Namespace Parsed arguments """ parser = argparse.ArgumentParser() parser.add_argument( "--raw_data_dir", type=str, default="raw_data", help="Path to the raw data directory (where files will be downloaded to)", ) parser.add_argument( "--output_dir", type=str, default="", help="Output directory to save processed data", ) return parser.parse_args() def parse_questions_X(questions_X_content: str) -> dict: """ Parses a "questions-X.txt" (where X is 'words' or 'phrases') file into a section-separated dictionary for looking up word pairs from each section. Parameters ---------- questions_X_content: str Raw content of the "questions-X.txt" (where X is 'words' or 'phrases') file Returns ------- questions_X: dict Dictionary mapping from section to a list of word pairs """ # Parse questions 'X' pairs for each section questions_X_sections = re.findall(r"(: .+)", questions_X_content) questions_X_delimiters = "|".join(questions_X_sections) # Split questions 'X' content into list questions_X_content_splits = [] for content_split in re.split(questions_X_delimiters, questions_X_content): if len(content_split) == 0: continue content_split_lines = content_split[1 : len(content_split) - 1].split("\n") questions_X_split_content: list = [] for word_line in content_split_lines: # Split string of words into tuple of lower-case words and append to list words = word_line.split() words_tuple = tuple([word.lower() for word in words]) questions_X_split_content.append(words_tuple) questions_X_content_splits.append(questions_X_split_content) # Construct dictionary with question-X entries questions_X = { questions_X_sections[i][2:]: questions_X_content_splits[i] for i in range(len(questions_X_sections)) } return questions_X def preprocess_questions_words(raw_data_dir: str, output_dir: str) -> None: """ Downloads and preprocess test data for evaluating a word2vec model on the Semantic-Syntactic Word Relationship test set (SSWR) from Mikolov et al. (https://arxiv.org/pdf/1301.3781.pdf) Parameters ---------- raw_data_dir : str Path to the raw data directory (where files will be downloaded to). output_dir : str Output directory to save processed data. """ print("Processing questions-words...") # Fetch questions-words.txt from Tensorflow filename = "questions-words.txt" txt_url = f"http://download.tensorflow.org/data/{filename}" questions_words_txt = get_cached_download_text_file(txt_url, raw_data_dir, filename) # Parse the raw content questions_words_dict = parse_questions_X(questions_words_txt) print("Done!") # Save questions-words dict to file dest_filename = "sswr.joblib" questions_words_filepath = join(output_dir, dest_filename) print("Saving to file...") joblib.dump(questions_words_dict, questions_words_filepath) print("Done!") def preprocess_msr(raw_data_dir: str, output_dir: str) -> None: """ Downloads and preprocess test data for evaluating a word2vec model on the Microsoft Research Syntactic Analogies Dataset (MSR) from Mikolov et al. (https://www.aclweb.org/anthology/N13-1090.pdf) Parameters ---------- raw_data_dir : str Path to the raw data directory (where files will be downloaded to). output_dir : str Output directory to save processed data. """ print("Processing MSR...") # Initialize paths dataset_name = "msr" raw_data_url = "https://download.microsoft.com/download/A/B/4/AB4F476B-48A6-47CF-9716-5FF9D0D1F7EA/FeatureAugmentedRNNToolkit-v1.1.tgz" raw_data_zip_filepath = join(raw_data_dir, f"{dataset_name}.tgz") raw_data_extracted_zip_filepath = join(raw_data_dir, dataset_name) output_filepath = join(output_dir, f"{dataset_name}.joblib") # Download raw data if not present if not isfile(raw_data_zip_filepath): print(f"Downloading raw {dataset_name} data...") download_from_url(raw_data_url, raw_data_zip_filepath) print("Done!") # Extract raw data if not present if not isdir(raw_data_extracted_zip_filepath): print("Extracting raw data...") with tarfile.open(raw_data_zip_filepath) as tar_file: tar_file.extractall(raw_data_extracted_zip_filepath) print("Done!") # Read content from extracted zip, process them and combine into one test dataset. with open( join( raw_data_extracted_zip_filepath, "test_set", "word_relationship.questions" ), "r", ) as file: word_relationship_questions = [ line.split(" ") for line in file.read().split("\n") if len(line) > 0 ] with open( join(raw_data_extracted_zip_filepath, "test_set", "word_relationship.answers"), "r", ) as file: word_relationship_answers = [ line.split(" ") for line in file.read().split("\n") if len(line) > 0 ] # Combine lists print("Combining files...") word_relationship_questions_answers: dict = { "adjectives": [], "nouns": [], "verbs": [], } for i in tqdm(range(len(word_relationship_questions))): questions = word_relationship_questions[i] qa_label, answer = word_relationship_answers[i] # Convert from label to category qa_category = None if qa_label.startswith("J"): qa_category = "adjectives" elif qa_label.startswith("N"): qa_category = "nouns" elif qa_label.startswith("V"): qa_category = "verbs" # Append pair to category word_relationship_questions_answers[qa_category].append(questions + [answer]) print("Done!") # Save list of analogies from MSR to file print("Saving to file...") joblib.dump(word_relationship_questions_answers, output_filepath) print("Done!") def preprocess_questions_phrases(raw_data_dir: str, output_dir: str) -> None: """ Downloads and preprocess test data for evaluating a word2vec model on the Phrase Analogy Dataset (PAD) from Mikolov et al. (https://arxiv.org/pdf/1310.4546.pdf). Parameters ---------- raw_data_dir : str Path to the raw data directory (where files will be downloaded to). output_dir : str Output directory to save processed data. """ print("Processing PAD...") # Fetch questions-phrases.txt from Github filename = "questions-phrases.txt" txt_url = f"https://raw.githubusercontent.com/tmikolov/word2vec/20c129af10659f7c50e86e3be406df663beff438/{filename}" questions_phrases_txt = get_cached_download_text_file( txt_url, raw_data_dir, filename ) # Parse the raw content questions_phrases_dict = parse_questions_X(questions_phrases_txt) print("Done!") # Save questions-words dict to file dest_filename = "pad.joblib" questions_phrases_filepath = join(output_dir, dest_filename) print("Saving to file...") joblib.dump(questions_phrases_dict, questions_phrases_filepath) print("Done!") def preprocess_eval_test_data(raw_data_dir: str, output_dir: str) -> None: """ Downloads and preprocess test data for evaluating a word2vec model. Parameters ---------- raw_data_dir : str Path to the raw data directory (where files will be downloaded to). output_dir : str Output directory to save processed data. """ # Ensure data directories exist makedirs(raw_data_dir, exist_ok=True) makedirs(output_dir, exist_ok=True) # Prepare test data sets preprocess_questions_words(raw_data_dir, output_dir) preprocess_msr(raw_data_dir, output_dir) preprocess_questions_phrases(raw_data_dir, output_dir) if __name__ == "__main__": args = parse_args() preprocess_eval_test_data( raw_data_dir=args.raw_data_dir, output_dir=args.output_dir, ) ``` #### File: code/word_embeddings/word2phrase.py ```python from collections import Counter from itertools import chain, tee, zip_longest from os import makedirs from os.path import basename, join from typing import Iterable, Iterator, List, Optional, Union import tensorflow as tf from tqdm import tqdm class Word2phrase: """ Converts words that appear frequently together (i.e. phrases) into single words, e.g. new york times --> new_york_times south africa --> south_africa larry page --> larry_page Python port of Mikolov et al.'s original word2phrase.c code: https://github.com/tmikolov/word2vec/blob/master/word2phrase.c """ def __init__( self, min_word_count: int, threshold: float, threshold_decay: float, phrase_sep: str, ) -> None: """ Initializes the Word2phrase instance. Parameters ---------- min_word_count : int Minimum number of times a word might occur for it to be in the vocabulary. threshold : float Threshold for determining whether a given phrase should be included. threshold_decay : float Value to use for decaying the threshold over time. phrase_sep : str Separator to use when combining phrases. """ self._min_word_count = min_word_count self._threshold = threshold self._threshold_decay = threshold_decay self._phrase_sep = phrase_sep self._word_occurrences_counter: Optional[Counter] = None self._total_unigram_words = 0 @staticmethod def _pairwise_grouping_iter(iterable: Iterable) -> Iterator: """ Groups elements of an iterable with pairwise tuples. Parameters ---------- iterable : Iterable Iterable to apply pairwise grouping to. Returns ------- pairwise_iterable : Iterator Pairwise iterable """ left, right = tee(iterable) try: next(right) except StopIteration: pass return zip_longest(left, right) def _build_word_occurrences( self, filepaths: List[str], num_texts: int, max_vocab_size: int ) -> None: """ Builds the internal vocabulary using text data files. Parameters ---------- filepaths : list of str Filepaths of text data files to build the vocabulary on. num_texts : int Number of texts (or sentences) of the content of `filepath`. max_vocab_size : int Maximum vocabulary size to use (-1 indicates all words in vocabulary). In other words, only the top `max_vocab_size` words will be taken into account when counting word occurrences. """ # Read file content and split into words lines = [] for filepath in filepaths: with tf.io.gfile.GFile(filepath) as f: lines.append(f) lines_iter = chain(*lines) self._total_unigram_words = 0 word_occurrences_counter: Counter = Counter() for line in tqdm( lines_iter, desc="- Building word occurrences", total=num_texts, ): words = line.strip().split() pairwise_words = [ f"{a}{self._phrase_sep}{b}" for a, b in zip(words, words[1:]) ] # Count unigram word occurrences word_occurrences_counter.update(words) self._total_unigram_words += len(words) # Count bigram word occurrences word_occurrences_counter.update(pairwise_words) print(f"Initial vocabulary size: {len(word_occurrences_counter)}") # Only use most common words if max_vocab_size == -1: word_occurrences_counter = word_occurrences_counter.most_common() print("Using all words in vocabulary!") elif 0 <= max_vocab_size < len(word_occurrences_counter): word_occurrences_counter = word_occurrences_counter.most_common( max_vocab_size ) print( f"New vocabulary size after maximization: {len(word_occurrences_counter)}" ) # Exclude words with less than `self._min_word_count` occurrences word_occurrences_counter: dict = { word: word_count for word, word_count in tqdm( word_occurrences_counter, desc="- Filtering word occurrences" ) if word_count >= self._min_word_count } print( f"Final vocabulary size after filtering on minimum word count: {len(word_occurrences_counter)}" ) self._word_occurrences_counter = word_occurrences_counter def fit( self, text_data_filepaths: List[str], dataset_name: str, starting_epoch_nr: int, n_epochs: int, num_texts: int, max_vocab_size: int, output_dir: str, ) -> None: """ Trains/fits the word2phrase instance and saves new text data files where phrases have been replaced with single words. Parameters ---------- text_data_filepaths : list of str Filepaths of text data files to train on. dataset_name : str Name of the dataset we are fitting/training on. starting_epoch_nr : int Epoch number to start the training from. n_epochs : int Number of passes through the text data files; more runs yields longer phrases. num_texts : int Number of texts (or sentences) of the content of `filepaths`. max_vocab_size : int, optional Maximum vocabulary size to use (-1 indicates all words in vocabulary). In other words, only the top `max_vocab_size` words will be taken into account when counting word occurrences. output_dir : str Output directory to save the new text data files. """ end_epoch_nr = n_epochs + starting_epoch_nr - 1 for epoch in range(starting_epoch_nr, end_epoch_nr + 1): print(f"Epoch {epoch}/{end_epoch_nr}") # Create output directory for current epoch current_output_dir = join( output_dir, f"{dataset_name}_phrases", f"epoch_{epoch}" ) makedirs(current_output_dir, exist_ok=True) # Compute threshold threshold = self._threshold * (1 - self._threshold_decay) ** (epoch - 1) # Builds vocabulary using text data files self._build_word_occurrences( filepaths=text_data_filepaths, num_texts=num_texts, max_vocab_size=max_vocab_size, ) # Iterate over all texts/sentences for each text data file. new_filepaths = [ join(current_output_dir, basename(filepath)) for filepath in text_data_filepaths ] print( f"Example input/output: {text_data_filepaths[0]} --> {new_filepaths[0]}" ) progressbar = tqdm( total=num_texts, desc="- Computing scores for each text data file" ) for input_filepath, output_filepath in zip( text_data_filepaths, new_filepaths ): with open(input_filepath, "r") as input_file: with open(output_filepath, "w") as output_file: i = 0 for line in input_file: new_line = [] words = line.strip().split() pairwise_words = self._pairwise_grouping_iter(words) for pair in pairwise_words: left_word, right_word = pair bigram_word = ( f"{left_word}{self._phrase_sep}{right_word}" ) pa = self._word_occurrences_counter.get(left_word) pb = self._word_occurrences_counter.get(right_word) pab = self._word_occurrences_counter.get(bigram_word) all_words_in_vocab = pa and pb and pab # Compute score if all_words_in_vocab: score = ( (pab - self._min_word_count) / pa / pb * self._total_unigram_words ) else: score = 0.0 if score > threshold: try: # Skip next pair of words, since we combined current pair into # a single word. next(pairwise_words) except StopIteration: pass new_line.append(bigram_word) else: new_line.append(left_word) # Write line to output file if i > 0: output_file.write("\n") output_file.write(" ".join(new_line)) progressbar.update(1) i += 1 print() # Change text data filepaths to the newly saved text filepaths text_data_filepaths = new_filepaths.copy() ```
{ "source": "JonasTronco/backend-load-massive", "score": 3 }
#### File: backend-load-massive/data_analysis/file_export.py ```python from constants import BedsFilter, MeasuresFilter def write_to_file(data, filename): """ Writes data on the file with specified name """ try: with open(filename, 'w') as export_file: export_file.write(data) print(f'Wrote the results on {filename}!') except OSError as e: print(f'Could not write {filename}!') print(e) def write_beds_data(general_json, types_json, filter_index): """ Writes the entered beds json into a file named according to the chosen filter """ general_name = BedsFilter(filter_index).name + '_GENERAL' types_name = BedsFilter(filter_index).name + '_TYPES' general_filename = BedsFilter.EXPORT_FILENAME.value.replace("#", general_name) types_filename = BedsFilter.EXPORT_FILENAME.value.replace("#", types_name) write_to_file(general_json, general_filename) write_to_file(types_json, types_filename) def write_measures_data(filter_index, general_json, types_json = None): """ Writes the entered measures json into a file named according to the chosen filter """ general_name = MeasuresFilter(filter_index).name + '_GENERAL' general_filename = MeasuresFilter.EXPORT_FILENAME.value.replace("#", general_name) write_to_file(general_json, general_filename) if (types_json): types_name = MeasuresFilter(filter_index).name + '_MEASURES' types_filename = MeasuresFilter.EXPORT_FILENAME.value.replace("#", types_name) write_to_file(types_json, types_filename) ```
{ "source": "jonastsai/meetate", "score": 2 }
#### File: meetate/greencoffees/admin.py ```python from django.contrib import admin from models import GreenCoffees, Vendors class NotEmptyFilter(admin.SimpleListFilter): title = 'Been Available' # Parameter for the filter that will be used in the URL query. parameter_name = 'qty_now' def lookups(self, request, model_admin): return ( (None, 'Non-Empty'), ('empty', 'Empty'), ('all', 'All'), ) def choices(self, cl): for lookup, title in self.lookup_choices: yield { 'selected': self.value() == lookup, 'query_string': cl.get_query_string({ self.parameter_name: lookup, }, []), 'display': title, } def queryset(self, request, queryset): if self.value() == 'empty': return queryset.filter(qty_now = 0) if self.value() == 'all': return queryset.filter() else: return queryset.filter(qty_now__gt=0) class GreenCoffeesAdmin(admin.ModelAdmin): list_display = ("name", "country", "process", "price", "qty_in", "qty_now", "vendor", "create_at") radio_fields = {"process": admin.VERTICAL} list_per_page = int(20) list_filter = (NotEmptyFilter, 'process', 'vendor') ''' def formfield_for_choice_field(self, db_field, request, **kwargs): if db_field.name == "process": kwargs['choices'] = ( ('0', '100'), ('1', '101'), ('2', '102'), ) return super(GreenCoffeesAdmin, self).formfield_for_choice_field(db_field, request, **kwargs) ''' class VendorsAdmin(admin.ModelAdmin): list_display = ("name",) list_per_page = int(10) # Register your models here. admin.site.register(GreenCoffees, GreenCoffeesAdmin) admin.site.register(Vendors, VendorsAdmin) ``` #### File: meetate/greencoffees/models.py ```python from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User #from roastlogs.models import RoastTimelogs, Roastlogs #from order.models import Orders, Products, SellingItems #from roastlogs.models import * #from orders.models import * class Vendors(models.Model): name = models.CharField(max_length=40) contact = models.CharField(max_length=30, blank=True, null=True) tel = models.CharField(max_length=30, blank=True, null=True) mobile = models.CharField(max_length=30, blank=True, null=True) email = models.CharField(max_length=50, blank=True, null=True) web_page = models.CharField(max_length=100, blank=True, null=True) comment = models.TextField(blank=True, null=True) class Meta: db_table = 'vendors' app_label = 'greencoffees' verbose_name_plural = "Green Coffee Vendor" def __unicode__(self): return u'%s' % (self.name) class GreenCoffees(models.Model): PROCESS_CHOICES = ((0, '水洗'), (1, '日曬'), (2, '蜜處理')) name = models.CharField(max_length=30) country = models.CharField(max_length=30, blank=True, null=True) manor = models.CharField(max_length=30, blank=True, null=True) grade = models.CharField(max_length=10, blank=True, null=True) process = models.IntegerField(choices=PROCESS_CHOICES) price = models.IntegerField() qty_in = models.IntegerField() qty_now = models.IntegerField(blank=True, null=True) defect = models.IntegerField(blank=True, null=True) vendor = models.ForeignKey(Vendors) #seller = models.CharField(max_length=30, blank=True, null=True) official_taste = models.CharField(max_length=100, blank=True, null=True) official_desc = models.TextField(blank=True, null=True) self_taste = models.CharField(max_length=60, blank=True, null=True) create_at = models.DateField(blank=True, null=True) owner = models.ForeignKey(User, blank=True, null=True) class Meta: #managed = False db_table = 'green_coffees' app_label = 'greencoffees' verbose_name_plural = "Green Coffees" def __unicode__(self): return u'%s %s, %s' % (self.country, self.name, self.processStr(self.process)) def processStr(self, index): strs = ['水洗', '日曬', '蜜處理'] return strs[index] ``` #### File: meetate/roastlogs/models.py ```python from __future__ import unicode_literals import os from django.db import models from django.contrib.auth.models import User #from orders.models import Orders, Products, SellingItems from orders.models import * from greencoffees.models import * class RoastTimelogs(models.Model): roastlog = models.ForeignKey('Roastlogs', blank=True, null=True) second = models.IntegerField() bt = models.IntegerField() temp1 = models.IntegerField(blank=True, null=True) power = models.IntegerField(blank=True, null=True) fan_level = models.IntegerField(blank=True, null=True) class Meta: #managed = False db_table = 'roast_timelogs' app_label = 'roastlogs' verbose_name_plural = "Roast Time Logs" class Roastlogs(models.Model): cust_index = models.CharField(max_length=20, blank=True, null=True) #green_coffee = models.ForeignKey(GreenCoffees, blank=True, null=True) comment = models.CharField(max_length=200, blank=True, null=True) taste = models.CharField(max_length=200, blank=True, null=True) score = models.IntegerField(blank=True, null=True) start_time = models.DateTimeField() end_time = models.DateTimeField() start_weight = models.IntegerField(blank=True, null=True) end_weight = models.IntegerField(blank=True, null=True) env_temp = models.IntegerField(blank=True, null=True) env_humi = models.IntegerField(blank=True, null=True) roastor_dev_id = models.CharField(max_length=10, blank=True, null=True) roastor = models.ForeignKey(User, blank=True, null=True) order_of_day = models.IntegerField(blank=True, null=True) category = models.IntegerField(blank=True, null=True) status = models.IntegerField(blank=True, null=True) random_str = models.CharField(max_length=10, blank=True, null=True) time_log_str = models.TextField(blank=True, null=True) class Meta: #managed = False db_table = 'roastlogs' app_label = 'roastlogs' verbose_name_plural = "Roast Logs" def __unicode__(self): return u'%s, %s' % (self.cust_index, self.start_time) def duration(self): if self.start_time != None and self.end_time != None: return self.end_time - self.start_time return 'n/a' def lost_percent(self): if self.start_weight != None and self.end_weight != None: lost = self.start_weight - self.end_weight return '{percent:.1%}'.format(percent=float(lost)/float(self.start_weight)) return 'n/a' def green_coffee(self): try: sale = SellingItems.objects.get(roastlog=self) if sale != None: return sale.product.green_coffee except Exception: return "No such coffee" return "You should not see this" def curve_image_url(self): # TODO We should get the urlbase according to user's property urlbase = os.environ.get("MEETATE_URL_BASE", '') fileName = self.start_time.strftime('%Y%m%d_%H%M%S') + "_" + self.random_str + ".png" return urlbase + fileName def curve_image(self): #return '<img src="http://nviki.qiniudn.com/80909_medium.jpg"/>' return '<img src="%s" height="320" width="480"/>' % (self.curve_image_url()) curve_image.allow_tags = True ```
{ "source": "JonasUJ/cloudstore", "score": 2 }
#### File: api/models/file.py ```python import os from io import BytesIO from mimetypes import guess_type from PIL import Image, UnidentifiedImageError from django.conf import settings from django.contrib.auth.hashers import check_password, make_password from django.core.files import File as CoreFile from django.db import models from django.dispatch import receiver from private_storage.fields import PrivateFileField from shortuuid import uuid class ShareState(models.IntegerChoices): PRIVATE = 0 PUBLIC = 1 PASSWORD_PROTECTED = 2 class Share(models.Model): state = models.IntegerField(choices=ShareState.choices, default=ShareState.PRIVATE) key = models.CharField(max_length=100, blank=True, null=True) def matches(self, key): return check_password(key, self.key) def set_key(self, key): self.key = make_password(key) self.save() return self.key def __str__(self): # pylint: disable=no-member return f'Share(state={ShareState(self.state).name}, file={self.file})' def _get_share() -> Share: return Share.objects.create().pk def get_uuid() -> str: return uuid()[:8] def get_filename(instance, filename) -> str: # pylint: disable=unused-argument return f'{instance.uuid}' def get_thumbnail_filename(instance, filename) -> str: # pylint: disable=unused-argument return f'thumb/{get_filename(instance, filename)}' class NotRequiredPrivateFileField(PrivateFileField): """See https://code.djangoproject.com/ticket/13327""" def _require_file(self): return @property def url(self): if self: return self.storage.url(self.name) return '' class File(models.Model): name = models.CharField(max_length=200) uuid = models.CharField(max_length=8, default=get_uuid, unique=True) created = models.DateTimeField(auto_now_add=True) accessed = models.DateTimeField(auto_now=True) file = PrivateFileField(upload_to=get_filename) size = models.BigIntegerField(default=0) thumb = NotRequiredPrivateFileField(upload_to=get_thumbnail_filename, blank=True, null=True) folder = models.ForeignKey('Folder', related_name='files', on_delete=models.CASCADE) share = models.OneToOneField( Share, related_name='file', on_delete=models.CASCADE, default=_get_share ) owner = models.ForeignKey( settings.AUTH_USER_MODEL, related_name='files', on_delete=models.CASCADE ) def ext(self) -> str: return os.path.splitext(self.name)[1] def clean_name(self) -> str: return os.path.splitext(self.name)[0] def text(self) -> bool: mimetype = guess_type(self.name)[0] if mimetype: mimetype = mimetype.split('/')[0] == 'text' return mimetype def generate_thumbnail(self): ext = self.ext().strip('.').upper() if ext == 'JPG': ext = 'JPEG' if ext in settings.IMAGE_THUMBNAIL_TYPES: try: img = Image.open(self.file.file) img.thumbnail(settings.IMAGE_THUMBNAIL_SIZE) img_bytes = BytesIO() img.save(img_bytes, format=ext) self.thumb.save(self.thumb.name, CoreFile(img_bytes)) # NOTE: Thumbs can currently exceed the quota self.size += self.thumb.file.size self.save() self.owner.quota.use(self.thumb.file.size) except UnidentifiedImageError: pass # We couldn't open the image, probably because it isn't one. def __str__(self): return self.name @receiver(models.signals.post_delete, sender=File) def remove_file(sender, instance: File, **kwargs): # pylint: disable=unused-argument instance.owner.quota.free(instance.size) instance.file.delete(False) instance.thumb.delete(False) ``` #### File: cloudstore/forms/bulma_mixin.py ```python from typing import Dict, Sequence, Union from django.forms import CheckboxInput, Field class BulmaMixin: """ Mixin for handling Bulma classes in a Form """ def update_fields(self): for name, field in self.fields.items(): if self.has_error(name): self.add_classes(field, 'is-danger') if not isinstance(field.widget, CheckboxInput): self.add_classes(field, 'input') else: self.add_classes(field, 'is-checkradio') @staticmethod def add_classes(field: Field, class_string: str) -> None: if not field.widget.attrs.get('class', False): field.widget.attrs['class'] = '' field.widget.attrs['class'] += ' ' + class_string def add_attrs(self, field_names: Union[str, Sequence[str]], attrs: Dict[str, str]): if isinstance(field_names, str): field_names = {field_names} for field in field_names: for name, val in attrs.items(): setattr(self.fields[field], name, val) ``` #### File: cloudstore/forms/set_password.py ```python from django.contrib.auth.forms import SetPasswordForm from django.forms import CharField, PasswordInput from .bulma_mixin import BulmaMixin class CloudstoreSetPasswordForm(BulmaMixin, SetPasswordForm): new_password1 = CharField( label='New password', strip=False, widget=PasswordInput( attrs={'autocomplete': 'new-password', 'class': 'has-background-black-bis'} ), ) new_password2 = CharField( label='Confirm new password', strip=False, widget=PasswordInput( attrs={'autocomplete': 'new-password', 'class': 'has-background-black-bis'} ), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.update_fields() self.add_attrs(('new_password1', 'new_password2'), {'icon_left': 'fa-lock'}) ```
{ "source": "JonasUJ/lectiotime.xyz", "score": 3 }
#### File: lectiotime.xyz/lectioapi/schedule.py ```python from enum import Enum from pprint import pformat from datetime import datetime, timedelta class DayStatus(Enum): BEFORE = 0 DURING = 1 BREAK = 2 AFTER = 3 WEEKEND = 4 class TimePeriod: start = None end = None def duration(self) -> timedelta: return self.end - self.start def startSameDay(self, other) -> bool: return self.start.date() == other.start.date() def isOnDay(self, day) -> bool: return self.start.date() == day def __gt__(self, other): if type(other) is type(self): return self.end > other.end if type(other) is datetime: return self.end > other raise NotImplementedError() def __lt__(self, other): if type(other) is type(self): return self.end < other.end if type(other) is datetime: return self.end < other raise NotImplementedError() class Piece(TimePeriod): def __init__(self, start: datetime, end: datetime, **extra): self.start = start self.end = end self.extra = extra def isAt(self, time: datetime) -> bool: return self.start < time < self.end def json(self): return dict(start=self.start, end=self.end, **self.extra) def __bool__(self): return True def __contains__(self, other): if type(other) is datetime: return self.isAt(other) raise NotImplementedError() def __repr__(self): return f"Piece(start={self.start}, end={self.end}, **{pformat(self.extra)})" def __eq__(self, other): if type(other) is type(self): return self.start == other.start and self.end == other.end raise NotImplementedError() class Schedule(TimePeriod): def __init__(self, name: str, *pieces, offset=timedelta(0)): self.name = name self._pieces = list(pieces) self._pieces.sort() self.offset = offset try: self.start = min(self._pieces).start self.end = max(self._pieces).end except ValueError: self.start = datetime.now() + self.offset self.end = datetime.now() + self.offset def pieceNow(self) -> (DayStatus, Piece): return self.pieceAt(datetime.now() + self.offset) def pieceAt(self, time: datetime) -> (DayStatus, Piece): next_piece = self._pieces[0] for piece in self._pieces: if time in piece: return DayStatus.DURING, piece elif piece.start - time < next_piece.start - time: next_piece = piece return self.schoolStatus(), next_piece def today(self): date = (datetime.now() + self.offset).date() day = list(filter(lambda p: p.isOnDay(date), self._pieces)) day.sort() return day def schoolStatus(self): now = datetime.now() + self.offset today = self.today() if len(today) == 0: return DayStatus.WEEKEND if now < today[0]: return DayStatus.BEFORE if now > today[-1]: return DayStatus.AFTER for piece in today: if now in piece: return DayStatus.DURING return DayStatus.BREAK def json(self): json = { "name": self.name, "schoolstatus": self.schoolStatus().value, "start": self.start, "end": self.end } for i, p in enumerate(self._pieces): json[str(i)] = p.json() return json def jsonToday(self): today = self.today() if len(today) == 0: return { "start": datetime.now() + self.offset, "end": datetime.now() + self.offset, "name": self.name, "schoolstatus": DayStatus.WEEKEND.value } json = { "name": self.name, "schoolstatus": self.schoolStatus().value, "start": today[0].start, "end": today[-1].end } for i, p in enumerate(today): json[str(i)] = p.json() return json def __repr__(self): return f"Schedule(name={self.name}, *{pformat(self._pieces)})" def __getitem__(self, item): for piece in self._pieces: if item == piece: return piece def __setitem__(self, item, value): for i, piece in enumerate(self._pieces): if item == piece: self._pieces[i] = item ```
{ "source": "JonasUJ/Pyllow", "score": 3 }
#### File: Pyllow/test/AST_test.py ```python import unittest from src.AST import AST, TokenStream from src.chardef import CD from src.Error import PyllowSyntaxError from src.Lexer import Lexer, Token from src.Node import (AdditionExpression, AndExpression, AssignStatement, BlockNode, DivisionExpression, EqualExpression, GreaterThanEqualExpression, GreaterThanExpression, IfStatement, LessThanEqualExpression, LessThanExpression, MonoExpression, MultiplicationExpression, NegativeExpression, NotEqualExpression, NotExpression, OrExpression, PositiveExpression, PowerExpression, SubtractionExpression) POSITION = (1, 0, 'test') KWARGS = { 'tokentype': 'num', 'subtype': 'int', 'value': '0', 'identity': 'id', 'position': POSITION } def make_tree(node_and_children): nodeclass, children = node_and_children if isinstance(children, tuple) and children[1]: return nodeclass(children=[make_tree(child) for child in children]) elif isinstance(children, tuple): return nodeclass(children=[make_tree(children)], **KWARGS) return nodeclass(**KWARGS) class ASTTest(unittest.TestCase): def setUp(self): self.tree = AST(()) def tearDown(self): del self.tree def set_stream(self, raw): lexer = Lexer() lexed = lexer.lex(raw) self.tree._stream = TokenStream(lexed) self.tree._stream.next() def test__accept(self): self.set_stream('A B 1 2') self.assertTrue(self.tree._accept('A', attr='value')) self.assertFalse(self.tree._accept('A', attr='value')) self.assertTrue(self.tree._accept('id')) self.assertFalse(self.tree._accept('id')) self.assertTrue(self.tree._accept('id', 'num')) self.assertFalse(self.tree._accept('id', 'num', attr='value')) self.assertTrue(self.tree._accept('B', '2', attr='value')) def test__expect(self): self.set_stream('A B 1 2') self.assertTrue(self.tree._expect('A', attr='value')) with self.assertRaises(PyllowSyntaxError): self.tree._expect('A', attr='value') self.assertTrue(self.tree._expect('id')) with self.assertRaises(PyllowSyntaxError): self.tree._expect('id') self.assertTrue(self.tree._expect('id', 'num')) with self.assertRaises(PyllowSyntaxError): self.tree._expect('id', 'num', attr='value') self.assertTrue(self.tree._expect('B', '2', attr='value')) def test__expression_simpel(self): self.set_stream('1 + 2 - 3') structure = make_tree( (SubtractionExpression, ( (AdditionExpression, ( (MonoExpression, None), (MonoExpression, None) )), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_precedence(self): self.set_stream('1 + 2 * 3') structure = make_tree( (AdditionExpression, ( (MonoExpression, None), (MultiplicationExpression, ( (MonoExpression, None), (MonoExpression, None) )) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_precedence_arg(self): self.set_stream('1 ^ 2 * 3') structure = make_tree( (PowerExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current, precedence=22) self.assertEqual(expr, structure) def test__expression_unary(self): self.set_stream('1 - - 2') structure = make_tree( (SubtractionExpression, ( (MonoExpression, None), (NegativeExpression, (MonoExpression, None)) )) ) expr = self.tree._expression(self.tree._stream.current) from pprint import pprint print('struct') pprint(structure.pprint_list()) print('expr') pprint(expr.pprint_list()) self.assertEqual(expr, structure) def test__expression_singleparen(self): self.set_stream('(1) + (2)') structure = make_tree( (AdditionExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_singleparen_unary(self): self.set_stream('(1) + (-2)') structure = make_tree( (AdditionExpression, ( (MonoExpression, None), (NegativeExpression, (MonoExpression, None)) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_double_and_tripleparen(self): self.set_stream('((1)) + (((2)))') structure = make_tree( (AdditionExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_double_and_tripleparen_unary(self): self.set_stream('(1) + (-2)') structure = make_tree( (AdditionExpression, ( (MonoExpression, None), (NegativeExpression, (MonoExpression, None)) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_paren_precedence(self): self.set_stream('(1 + 2) * 3') structure = make_tree( (MultiplicationExpression, ( (AdditionExpression, ( (MonoExpression, None), (MonoExpression, None) )), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_paren_nesting(self): self.set_stream('(1 + (2 - 3)) * 4') structure = make_tree( (MultiplicationExpression, ( (AdditionExpression, ( (MonoExpression, None), (SubtractionExpression, ( (MonoExpression, None), (MonoExpression, None) )) )), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_paren_operation(self): self.set_stream('(1 - 2) * (3 + 4)') structure = make_tree( (MultiplicationExpression, ( (SubtractionExpression, ( (MonoExpression, None), (MonoExpression, None) )), (AdditionExpression, ( (MonoExpression, None), (MonoExpression, None) )) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_addition(self): self.set_stream('1 + 2') structure = make_tree( (AdditionExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_subtraction(self): self.set_stream('1 - 2') structure = make_tree( (SubtractionExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_multiplication(self): self.set_stream('1 * 2') structure = make_tree( (MultiplicationExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_division(self): self.set_stream('1 / 2') structure = make_tree( (DivisionExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_power(self): self.set_stream('1 ^ 2') structure = make_tree( (PowerExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_EQ(self): self.set_stream('1 == 2') structure = make_tree( (EqualExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_NE(self): self.set_stream('1 != 2') structure = make_tree( (NotEqualExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_AND(self): self.set_stream('1 & 2') structure = make_tree( (AndExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_OR(self): self.set_stream('1 | 2') structure = make_tree( (OrExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_GT(self): self.set_stream('1 > 2') structure = make_tree( (GreaterThanExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_LT(self): self.set_stream('1 < 2') structure = make_tree( (LessThanExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_GE(self): self.set_stream('1 >= 2') structure = make_tree( (GreaterThanEqualExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_LE(self): self.set_stream('1 <= 2') structure = make_tree( (LessThanEqualExpression, ( (MonoExpression, None), (MonoExpression, None) )) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_negative(self): self.set_stream('-1') structure = make_tree( (NegativeExpression, (MonoExpression, None)) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_positive(self): self.set_stream('+1') structure = make_tree( (PositiveExpression, (MonoExpression, None)) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_not(self): self.set_stream('!1') structure = make_tree( (NotExpression, (MonoExpression, None)) ) expr = self.tree._expression(self.tree._stream.current) self.assertEqual(expr, structure) def test__expression_raises_missing(self): self.set_stream('1 +') with self.assertRaises(PyllowSyntaxError): self.tree._expression(self.tree._stream.current) def test__expression_raises_double(self): self.set_stream('1 * * 2') with self.assertRaises(PyllowSyntaxError): self.tree._expression(self.tree._stream.current) def test__expression_raises_empty_paren(self): self.set_stream('1 * () * 2') with self.assertRaises(PyllowSyntaxError): self.tree._expression(self.tree._stream.current) def test__expression_raises_invalid_unary(self): self.set_stream('* 2') with self.assertRaises(PyllowSyntaxError): self.tree._expression(self.tree._stream.current) def test__expression_raises_invalid_token(self): self.set_stream('if + 2') with self.assertRaises(PyllowSyntaxError): self.tree._expression(self.tree._stream.current) def test__assignment(self): self.set_stream('id = expr') structure = make_tree( (AssignStatement, (MonoExpression, None)) ) expr = self.tree._assignment() self.assertEqual(expr, structure) self.assertTrue(expr.id, 'id') def test__assignment_no_id(self): self.set_stream('1') self.assertFalse(self.tree._assignment()) def test__assignment_no_assign(self): self.set_stream('id') self.assertFalse(self.tree._assignment()) def test__assignment_raises_no_expression(self): self.set_stream('id = ') with self.assertRaises(PyllowSyntaxError): self.tree._assignment() def test__assignment_raises_invalid_expression(self): self.set_stream('id = if') with self.assertRaises(PyllowSyntaxError): self.tree._assignment() def test__get_block(self): self.set_stream('{assign1 = 1 assign2 = 2}') structure = make_tree( (BlockNode, ( (AssignStatement, (MonoExpression, None)), (AssignStatement, (MonoExpression, None)) )) ) block = self.tree._get_block() self.assertEqual(block, structure) def test__if(self): self.set_stream('if true {}') self.tree._accept(CD.IF, attr='value') expr = self.tree._if() self.assertFalse(expr.alt) self.assertTrue(expr.condition.value) def test__if_block(self): self.set_stream('if true {test = 0}') self.tree._accept(CD.IF, attr='value') structure = make_tree( (AssignStatement, (MonoExpression, None)) ) expr = self.tree._if() self.assertEqual(expr.block.children[0], structure) def test__if_condition(self): self.set_stream('if 1 == 0 | 1 != 0 {}') self.tree._accept(CD.IF, attr='value') structure = make_tree( (OrExpression, ( (EqualExpression, ( (MonoExpression, None), (MonoExpression, None)) ), (NotEqualExpression, ( (MonoExpression, None), (MonoExpression, None)) ) )) ) expr = self.tree._if() self.assertEqual(expr.condition, structure) def test__if_else(self): self.set_stream('if true {} else {test = 0}') self.tree._accept(CD.IF, attr='value') structure = make_tree( (AssignStatement, (MonoExpression, None)) ) expr = self.tree._if() self.assertEqual(expr.alt.children[0], structure) def test__if_else_if(self): self.set_stream('if true {} else if true {test = 0}') self.tree._accept(CD.IF, attr='value') structure = make_tree( (AssignStatement, (MonoExpression, None)) ) expr = self.tree._if() self.assertEqual(expr.alt.block.children[0], structure) # Missing _statement, _call because their logic is not finished if __name__ == '__main__': unittest.main() ```
{ "source": "JonasUJ/urlshort", "score": 2 }
#### File: urlshort/urlshort/utils.py ```python from django.core.mail import EmailMessage from .models import ShortUrl from .settings import EMAIL_HOST_USER from .link_actions import get_id EMAIL_CONTACT_FORMAT = """ Afsender: {} Afsender email: {} Emne: {} Besked: {}""" ERRORS_API = ( '', 'could not determine action based on passed parameters (are you missing \'key\'?)', 'url with name \'{}\' does not exist', 'url with name \'{}\' already exists', '\'{}\' is not a valid URL', '\'{}\' does not point to a reachable address', '\'{}\' contains illegal characters or is too long', '\'{}\' is not an allowed link', 'wrong key', 'max length of 256 for \'reason\' exceeded', 'cannot edit the link of an unsafe picourl' ) ERRORS_HUMAN = ( '', 'Der skete en ukendt fejl.', 'En picourl med det navn eksistere ikke.', 'En picourl med det navn eksistere allerede.', 'Linket er ikke en valid URL', 'Serveren bag linket svarer ikke', 'Navnet er ikke tilladt', 'Linket er ikke tilladt', 'Forkert nøgle', 'Den maksimale længde af begrundelsen er opnået', 'Linket på en usikker picourl kan ikke ændres' ) def send_contact_email(contact_form): mail = EmailMessage( f'[Picourl/Contact] {contact_form.cleaned_data.get("emne", "ikke angivet")}', EMAIL_CONTACT_FORMAT.format( contact_form.cleaned_data.get("navn", "ikke angivet"), contact_form.cleaned_data.get("email"), contact_form.cleaned_data.get("emne", "ikke angivet"), contact_form.cleaned_data.get("besked")), to=[EMAIL_HOST_USER]) mail.send(False) def urlname_exists(urlname): # pylint: disable=no-member return ShortUrl.objects.filter(pk=get_id(urlname)).exists() ``` #### File: urlshort/urlshort/views.py ```python import json from django.http import JsonResponse from django.shortcuts import render, redirect from django.core.mail import EmailMessage from django.core.exceptions import MultipleObjectsReturned, ObjectDoesNotExist from django.views.decorators.http import require_safe, require_http_methods from django.views.decorators.csrf import csrf_exempt from . import models, utils from .link_actions import get_urlname, is_picourl, get_id, only_allowed_chars from .settings import EMAIL_HOST_USER, EMAIL_ADMIN_USER from .api import responseFromQuery, retrieve, edit, delete from .forms import ContactForm, LookupEditForm @require_http_methods(['GET', 'POST', 'HEAD']) def main(request): return render(request, 'main_page.html') @require_safe def link(request, name): try: if len(name) > 9 or not only_allowed_chars(name): return handler404(request, 'invalid', name=name) # pylint: disable=no-member url = models.ShortUrl.objects.get(pk=get_id(name)) except ObjectDoesNotExist: return handler404(request, 'nourl', name=name) if not url.active.is_active: return render(request, 'deactivated_page.html', {'reason': url.active.reason}) if url.is_safe == models.SafeState.NO: return render(request, 'unsafe_page.html', {'link': url.link}) url.uses += 1 url.save() return redirect(url) @csrf_exempt @require_http_methods(['GET', 'POST', 'DELETE']) def api(request): query = request.GET or request.POST if query: return JsonResponse(responseFromQuery(request, query.dict())) elif request.method in ('POST', 'DELETE') and request.body: try: query = json.loads(request.body) except json.JSONDecodeError: return render(request, 'api_page.html') return JsonResponse(responseFromQuery(request, query)) else: return render(request, 'api_page.html') @require_safe def about(request): return render(request, 'about_page.html') @require_http_methods(['GET', 'POST', 'HEAD']) def lookup(request): urlname = request.GET.get('urlname') if urlname: if is_picourl(urlname): urlname = get_urlname(urlname) data = {} error_msg = '' success = False form = LookupEditForm(request.POST or None, request.FILES or None) if request.method == 'POST': if form.is_valid(): submit = request.POST.get('submit', '') success = True res = {} if submit == 'submit': res = edit(request, { 'urlname': urlname, 'newlink': form.cleaned_data['link'], 'key': form.cleaned_data['nøgle']}) elif submit == 'delete': res = delete(request, { 'urlname': urlname, 'key': form.cleaned_data['nøgle']}) elif submit == 'activate': res = edit(request, { 'urlname': urlname, 'active': 'true', 'reason': '', 'key': form.cleaned_data['nøgle']}) elif submit == 'deactivate': res = edit(request, { 'urlname': urlname, 'active': 'false', 'reason': 'Deaktiveret af ejer', 'key': form.cleaned_data['nøgle']}) else: success = False error_msg = 'Der skete en ukendt fejl.' if success and res.get('error_code', 0) != 0: error_msg = utils.ERRORS_HUMAN[res['error_code']] if urlname: if len(urlname) > 9 or not only_allowed_chars(urlname): return handler404(request, 'invalid', name=urlname) data = retrieve(request, {'urlname': urlname}) if data['error_code'] == 2: return handler404(request, 'nourl', urlname) form = LookupEditForm( request.POST or None, request.FILES or None, initial={ 'link': data['link'], 'antal_besøg': data['uses'], 'oprettet': data['created_at'], 'redigeret': data.get('edited_at', ''), 'deaktiveret_siden': data.get('deactivated_since', '')}) return render(request, 'lookup_page.html', { 'urlname': urlname, 'data': data, 'form': form, 'error': error_msg, 'success': success}) @require_http_methods(['GET', 'POST', 'HEAD']) def contact(request): success = False form = ContactForm(request.POST or None, request.FILES or None) if request.method == 'POST': if form.is_valid(): utils.send_contact_email(form) success = True return render(request, 'contact_page.html', { 'success': success, 'form': form, 'admin': EMAIL_ADMIN_USER}) def handler404(request, exception, name=''): resp = render(request, 'error_page.html', { 'error_code': 404, 'name': name, 'error_msg': 'Picourl ikke fundet' if exception == 'nourl' else 'Siden findes ikke'}) resp.status_code = 404 return resp def handler500(request): resp = render(request, 'error_page.html', { 'error_code': 500, 'error_msg': 'Intern serverfejl'}) resp.status_code = 500 return resp ```
{ "source": "jonasundderwolf/django-cms-helpers", "score": 2 }
#### File: django-cms-helpers/cms_helpers/cms_toolbars.py ```python from cms.extensions.toolbar import ExtensionToolbar from cms.utils import get_language_list from django.utils.encoding import force_text from django.utils.translation import get_language_info class TitleExtensionToolbar(ExtensionToolbar): model = None insert_after = None def get_item_position(self, menu): position = None for items in menu._memo.values(): for item in items: if force_text(getattr(item, 'name', None)) in ( force_text(self.insert_after), '{0}...'.format(self.insert_after) ): position = menu._item_position(item) + 1 break return position def populate(self): current_page_menu = self._setup_extension_toolbar() if not current_page_menu or not self.page: return languages = get_language_list(self.current_site.pk) is_single_lang = len(languages) < 2 position = self.get_item_position(current_page_menu) urls = self.get_title_extension_admin() page = self._get_page() titleset = page.title_set.filter(language__in=languages) if hasattr(self.toolbar, 'edit_mode_active'): not_edit_mode = not self.toolbar.edit_mode_active else: not_edit_mode = not self.toolbar.edit_mode extended_menu = current_page_menu if is_single_lang else ( current_page_menu.get_or_create_menu( key='{0}_menu'.format(self.model._meta.db_table), verbose_name=self.model._meta.verbose_name, position=position, disabled=not_edit_mode)) nodes = [(title_extension, url, title) for ( (title_extension, url), title) in zip(urls, titleset)] for title_extension, url, title in nodes: item_position = position if is_single_lang else None language_str = get_language_info(title.language)['name_translated'] name = '{0}{1}'.format( '' if is_single_lang else (language_str + ' '), self.model._meta.verbose_name) extended_menu.add_modal_item( name, url=url, disabled=not_edit_mode, position=item_position) ``` #### File: resources/cmsapp/models.py ```python from cms.extensions import TitleExtension from cms.extensions.extension_pool import extension_pool from django.db import models try: from cms_helpers.filer_fields import FilerFileField except ImportError: FilerFileField = None @extension_pool.register class ExtensionModel(TitleExtension): name = models.CharField(max_length=255) class Meta: verbose_name = 'Extension' def __str__(self): return self.name if FilerFileField: class FileModel(models.Model): file1 = FilerFileField(null=True) file2 = FilerFileField(blank=True) file3 = FilerFileField() ```
{ "source": "jonasundderwolf/pytest-sentry", "score": 2 }
#### File: jonasundderwolf/pytest-sentry/pytest_sentry.py ```python from __future__ import absolute_import import os import pytest import wrapt import sentry_sdk from sentry_sdk.integrations import Integration from sentry_sdk import Hub, capture_exception from sentry_sdk.scope import add_global_event_processor _ENVVARS_AS_TAGS = frozenset( [ "GITHUB_WORKFLOW", # The name of the workflow. "GITHUB_RUN_ID", # A unique number for each run within a repository. This number does not change if you re-run the workflow run. "GITHUB_RUN_NUMBER", # A unique number for each run of a particular workflow in a repository. This number begins at 1 for the workflow's first run, and increments with each new run. This number does not change if you re-run the workflow run. "GITHUB_ACTION", # The unique identifier (id) of the action. "GITHUB_ACTOR", # The name of the person or app that initiated the workflow. For example, octocat. "GITHUB_REPOSITORY", # The owner and repository name. For example, octocat/Hello-World. "GITHUB_EVENT_NAME", # The name of the webhook event that triggered the workflow. "GITHUB_EVENT_PATH", # The path of the file with the complete webhook event payload. For example, /github/workflow/event.json. "GITHUB_WORKSPACE", # The GitHub workspace directory path. The workspace directory is a copy of your repository if your workflow uses the actions/checkout action. If you don't use the actions/checkout action, the directory will be empty. For example, /home/runner/work/my-repo-name/my-repo-name. "GITHUB_SHA", # The commit SHA that triggered the workflow. For example, ffac537e6cbbf934b08745a378932722df287a53. "GITHUB_REF", # The branch or tag ref that triggered the workflow. For example, refs/heads/feature-branch-1. If neither a branch or tag is available for the event type, the variable will not exist. "GITHUB_HEAD_REF", # Only set for pull request events. The name of the head branch. "GITHUB_BASE_REF", # Only set for pull request events. The name of the base branch. "GITHUB_SERVER_URL", # Returns the URL of the GitHub server. For example: https://github.com. "GITHUB_API_URL", # Returns the API URL. For example: https://api.github.com. ] ) class PytestIntegration(Integration): # Right now this integration type is only a carrier for options, and to # disable the pytest plugin. `setup_once` is unused. identifier = "pytest" def __init__(self, always_report=None): if always_report is None: always_report = os.environ.get( "PYTEST_SENTRY_ALWAYS_REPORT", "" ).lower() in ("1", "true", "yes") self.always_report = always_report @staticmethod def setup_once(): @add_global_event_processor def procesor(event, hint): if Hub.current.get_integration(PytestIntegration) is None: return event for key in _ENVVARS_AS_TAGS: value = os.environ.get(key) if not value: continue event.tags["pytest_environ.{}".format(key)] = value return event class Client(sentry_sdk.Client): def __init__(self, *args, **kwargs): kwargs.setdefault("dsn", os.environ.get("PYTEST_SENTRY_DSN", None)) kwargs.setdefault("traces_sample_rate", 1.0) kwargs.setdefault("_experiments", {}).setdefault( "auto_enabling_integrations", True ) kwargs.setdefault("environment", "test") kwargs.setdefault("integrations", []).append(PytestIntegration()) sentry_sdk.Client.__init__(self, *args, **kwargs) def hookwrapper(itemgetter, **kwargs): """ A version of pytest.hookimpl that sets the current hub to the correct one and skips the hook if the integration is disabled. Assumes the function is a hookwrapper, ie yields once """ @wrapt.decorator def _with_hub(wrapped, instance, args, kwargs): item = itemgetter(*args, **kwargs) hub = _resolve_hub_marker_value(item.get_closest_marker("sentry_client")) if hub.get_integration(PytestIntegration) is None: yield else: with hub: gen = wrapped(*args, **kwargs) while True: try: with hub: chunk = next(gen) y = yield chunk with hub: gen.send(y) except StopIteration: break def inner(f): return pytest.hookimpl(hookwrapper=True, **kwargs)(_with_hub(f)) return inner def pytest_load_initial_conftests(early_config, parser, args): early_config.addinivalue_line( "markers", "sentry_client(client=None): Use this client instance for reporting tests. You can also pass a DSN string directly, or a `Hub` if you need it.", ) @hookwrapper(itemgetter=lambda item: item) def pytest_runtest_protocol(item): with sentry_sdk.push_scope() as scope: scope.add_event_processor(_process_event) yield @hookwrapper(itemgetter=lambda item: item) def pytest_runtest_call(item): op = "pytest.runtest.call" name = item.nodeid # Assumption: Parameters are full of unreadable garbage and the test # timings are going to be comparable. The product can then identify slowest # runs anyway. if name.endswith("]"): params_start = name.rfind("[") if params_start != -1: name = name[:params_start] with sentry_sdk.start_transaction(op=op, name=u"{} {}".format(op, name)): yield @hookwrapper(itemgetter=lambda fixturedef, request: request._pyfuncitem) def pytest_fixture_setup(fixturedef, request): op = "pytest.fixture.setup" with sentry_sdk.start_transaction( op=op, name=u"{} {}".format(op, fixturedef.argname) ): yield @hookwrapper(tryfirst=True, itemgetter=lambda item, call: item) def pytest_runtest_makereport(item, call): sentry_sdk.set_tag("pytest.result", "pending") report = yield sentry_sdk.set_tag("pytest.result", report.get_result().outcome) if call.when == "call": cur_exc_chain = getattr(item, "pytest_sentry_exc_chain", []) if call.excinfo is not None: item.pytest_sentry_exc_chain = cur_exc_chain = cur_exc_chain + [ call.excinfo ] integration = Hub.current.get_integration(PytestIntegration) if (cur_exc_chain and call.excinfo is None) or integration.always_report: for exc_info in cur_exc_chain: capture_exception((exc_info.type, exc_info.value, exc_info.tb)) DEFAULT_HUB = Hub(Client()) def _resolve_hub_marker_value(marker_value): if marker_value is None: marker_value = DEFAULT_HUB else: marker_value = marker_value.args[0] if callable(marker_value): marker_value = marker_value() if marker_value is None: # user explicitly disabled reporting return Hub() if isinstance(marker_value, str): return Hub(Client(marker_value)) if isinstance(marker_value, dict): return Hub(Client(**marker_value)) if isinstance(marker_value, Client): return Hub(marker_value) if isinstance(marker_value, Hub): return marker_value raise RuntimeError( "The `sentry_client` value must be a client, hub or string, not {}".format( repr(type(marker_value)) ) ) @pytest.fixture def sentry_test_hub(request): """ Gives back the current hub. """ item = request.node return _resolve_hub_marker_value(item.get_closest_marker("sentry_client")) def _process_event(event, hint): if "exception" in event: for exception in event["exception"]["values"]: if "stacktrace" in exception: _process_stacktrace(exception["stacktrace"]) if "stacktrace" in event: _process_stacktrace(event["stacktrace"]) return event def _process_stacktrace(stacktrace): for frame in stacktrace["frames"]: frame["in_app"] = not frame["module"].startswith( ("_pytest.", "pytest.", "pluggy.") ) ``` #### File: pytest-sentry/tests/test_tracing.py ```python from __future__ import absolute_import import pytest import sentry_sdk import pytest_sentry transactions = [] class MyTransport(sentry_sdk.Transport): def __init__(self): pass def capture_envelope(self, envelope): transactions.append(envelope.get_transaction_event()) pytestmark = pytest.mark.sentry_client(pytest_sentry.Client(transport=MyTransport())) @pytest.fixture def foo_fixture(): return 42 def test_basic(foo_fixture): assert foo_fixture == 42 @pytest.fixture(scope="session", autouse=True) def assert_report(): yield self_transaction, fixture_transaction, test_transaction = transactions assert self_transaction["type"] == "transaction" assert self_transaction["transaction"] == "pytest.fixture.setup assert_report" assert fixture_transaction["type"] == "transaction" assert fixture_transaction["transaction"] == "pytest.fixture.setup foo_fixture" assert test_transaction["type"] == "transaction" assert ( test_transaction["transaction"] == "pytest.runtest.call tests/test_tracing.py::test_basic" ) ```
{ "source": "jonasvandervennet/sudoku-generator", "score": 3 }
#### File: jonasvandervennet/sudoku-generator/execute.py ```python import os import time from multiprocessing.dummy import Pool as ThreadPool from sudoku.sudokupuzzle import SudokuPuzzle from sudoku.textfiles import puzzle2text, show_errors_in_file def fill_file(runs, filename='boards.txt'): if isinstance(runs, list): runs, filename, index = runs print(f'Started thread {index}') else: index = None for i in range(runs): total_start = time.time() sp = SudokuPuzzle(size=9, verbose=False, _diff=175) total_time = time.time() - total_start # print(f'Size: {sp.size}x{sp.size}; Diff: {sp.difficulty}\ncalc_time: {sp.calculation_time}ms; total_time: {total_time}s') if index is not None: print(f'{i+1} (thread {index}) time: {total_time}s') else: print(f'({i+1})time: {total_time}s') puzzle2text(sp, filename=filename) print('done') def create_pool(amount=10, sudokus=1000, destination='boards.txt'): mapping = [[sudokus, f'.boards{i+1}.txt', i + 1] for i in range(amount)] # Make the Pool of workers pool = ThreadPool(amount) results = pool.imap(fill_file, mapping) # close the pool and wait for the work to finish pool.close() pool.join() print(results) print('Saving results') for i in range(amount): filename = f'.boards{i+1}.txt' with open(filename, 'r') as infile: data = infile.readlines() os.remove(filename) with open(destination, 'a') as outfile: for line in data: outfile.write(line) print('Done creating and saving sudokus') start = time.time() # create_pool(amount=10, sudokus=10, destination='boards.txt') fill_file(10000) print('Verifying created sudokus...') print(show_errors_in_file()) print(f'Completion in {time.time() - start} seconds') ``` #### File: sudoku-generator/sudoku/sudoku.py ```python import numpy as np import random import time from sudoku.node import Node class Sudoku(): def __init__(self, size=9, custom=None, verbose=False, debug=False): # assume size is perfect square (TODO: assert square) # size is defined as the length of one side """ Custom should be a list of lists containing each row of the sudoku. Empty spots should be represented by a 0. """ self.verbose = verbose self.debug = debug self.size = size self._tilesize = int(np.sqrt(size)) initstart = time.time() self.nodes, self._rows, self._cols, self._tiles = self.initnodes() self.connect_nodes() after_init = time.time() - initstart self.print(f'Node initialisation took {after_init}s') if custom is not None: startcustom = time.time() self.fillgrid(custom) self.print(f'Loading custom input took {time.time() - startcustom}s') def get_all_rows(self): return self._rows def get_row(self, row): return self._rows[row] def get_col(self, col): return self._cols[col] def get_tile(self, tile): return self._tiles[tile] def initnodes(self): nodes, rows, cols, tiles = [], [[] for _ in range(self.size)], [[] for _ in range(self.size)], [[] for _ in range(self.size)] for row in range(self.size): for col in range(self.size): node = Node(row, col) nodes.append(node) rows[row].append(node) cols[col].append(node) # Tiles are for example the 3*3 squares in default sudoku tilenr = self.calculate_tile(row, col) tiles[tilenr].append(node) return nodes, rows, cols, tiles def calculate_tile(self, row, col): tilerow = row // self._tilesize tilecol = col // self._tilesize return tilerow * self._tilesize + tilecol def connect_nodes(self): for node in self.nodes: for connected_node in self.get_row(node.row) + self.get_col(node.col) + self.get_tile(self.calculate_tile(node.row, node.col)): node.connected_nodes.add(connected_node) node.connected_nodes -= set([node]) def fillgrid(self, custom): try: for i, row in enumerate(self._rows): for j, node in enumerate(row): if custom[i][j] != 0: node.original = True node.value = custom[i][j] except IndexError: raise IndexError("Custom sudoku layout was not of the right format!") except Exception as e: # Other error, just raise raise e self.print("Custom input submitted and processed:") self.print(self) @property def empty(self): empty = 0 for node in self.nodes: if node.value == 0: empty += 1 self.print(f'{empty} empty values') return empty @property def is_valid(self): for node in self.nodes: if not node.is_valid: return False return True def print(self, msg): if self.verbose: print(msg) def equals(self, other): try: for i, row in enumerate(self._rows): for j, node in enumerate(row): if not node.equals(other.get_row(i)[j]): return False except Exception: return False return True def __eq__(self, other): if not isinstance(other, Sudoku): return False return self.equals(other) def __ne__(self, other): if not isinstance(other, Sudoku): return False return not self.equals(other) def copy(self): """ Returns new sudoku instance with new nodes containing the same values. """ custom_input = [[node.value for node in row] for row in self._rows] self.print('Copying data into new Sudoku.') newSudoku = Sudoku(size=self.size, custom=custom_input, verbose=self.verbose) self.print('Verifying data of new Sudoku.') # Check for original for node in self.nodes: for newnode in newSudoku.nodes: if node.equals(newnode): newnode.original = node.original self.print('Data verified.\n') return newSudoku def get_options(self, node): return list(set([i for i in range(1, self.size + 1)]) - node.get_neighbor_values()) def __str__(self): result = "" for row in self._rows: result += str([node.value for node in row]) + '\n' return result def solve_smart(self, returnBranching=False, test_unique=False): to_solve = self.copy() # This needs to be an object to be easily modified in executeFill unique = {'solved_once': False} # Used in testing uniqueness def gather_best_node(sudoku): """ Searches nodes with least amount of options, selects one randomly """ best_nodes = [] current_min_options = sudoku.size # Gather a list of nodes with the least for node in sudoku.nodes: if not node.value == 0: continue options = sudoku.get_options(node) if len(options) < current_min_options: # New best node found best_nodes = [node] current_min_options = len(options) elif len(options) == current_min_options: best_nodes.append(node) return random.choice(best_nodes) if len(best_nodes) != 0 else None def executeFill(depth=0): if self.debug and depth % 50 == 0 and depth != 0: to_solve.print(f'On rec depth {depth}') to_solve.print(to_solve) node = gather_best_node(to_solve) if node is None: return {'result': True, 'branchfactor': 1} options = to_solve.get_options(node) random.shuffle(options) branch = 1 # for detetermining branch factor (difficulty) for option in options: node.value = option results = executeFill(depth=depth + 1) if results['result']: if test_unique and unique['solved_once']: # not unique, return as a valid response return {'result': True} elif test_unique and not unique['solved_once']: # first solution found, keep searching # while keeping track of solution found unique['solved_once'] = True continue else: if returnBranching: branch = (branch - 1)**2 branch += results['branchfactor'] # keeping summation going return {'result': True, 'branchfactor': branch} branch += 1 # base case node.value = 0 return {'result': False} queue = [node for node in to_solve.nodes if not node.original] if len(queue) == 0: # The sudoku was already completely full, check if valid or not if not to_solve.is_valid: to_solve.print("Given solution is not valid!") to_solve.print(to_solve) return False else: to_solve.print("Success! Given solution was valid!") to_solve.print(to_solve) return True to_solve.print('Trying to fill board...') starttime = time.time() executionResults = executeFill() interval = time.time() - starttime to_solve.calculation_time = interval * 1000 # Calc_time in ms if (not executionResults['result']) or (not to_solve.is_valid): if test_unique and unique['solved_once']: return True to_solve.print("Unable to fill board!") raise Exception("Unable to fill board!") else: # Successfully filled the board! if test_unique: return not unique['solved_once'] branchingFactor = executionResults.get('branchfactor', None) to_solve.print("Filled board!") to_solve.print(f"\nSolution:\n{to_solve}") to_solve.print(f"Solution found in {interval}s") if returnBranching: return to_solve, branchingFactor return to_solve @property def is_unique(self): return self.solve_smart(test_unique=True) def _reset_random_node(self): random.choice(self.nodes).value = 0 return True def make_puzzle(self, diff=500, retry=5): if not self.is_valid: # Self is assumed to be a filled grid raise ValueError('Sudoku should be a filled grid in order to make a puzzle.') puzzle = self.copy() cur_diff = 0 tries = 0 while diff > cur_diff: prev_diff = cur_diff prev_puzzle = puzzle.copy() puzzle._reset_random_node() if not puzzle.is_unique: # Puzzle was not unique anymore: if too many retries, return previous iteration tries += 1 if tries > retry: puzzle.print('Retried too much!') return prev_puzzle, prev_diff else: puzzle, cur_diff = prev_puzzle, prev_diff else: tries = 0 cur_diff = puzzle.estimate_difficulty(iterations=50) # Sometimes difficulty lowers, only take max diff if (cur_diff < prev_diff): puzzle, cur_diff = prev_puzzle, prev_diff return puzzle, cur_diff def _diff_from_branching(self, branching): return branching * 100 + self.empty def estimate_difficulty(self, iterations=20): total = 0 for i in range(iterations): total += self._diff_from_branching(self.solve_smart(returnBranching=True)[1]) return int(total / iterations) ```
{ "source": "jonasvdd/DS-python-data-analysis", "score": 3 }
#### File: notebooks/_solutions/case2_observations_processing18.py ```python def transform_utm_to_wgs(row): """Converts the x and y coordinates Parameters ---------- row : pd.Series Single DataFrame row Returns ------- pd.Series with longitude and latitude """ transformer = Transformer.from_crs("EPSG:32612", "epsg:4326") return pd.Series(transformer.transform(row['xutm'], row['yutm'])) ```
{ "source": "JonasVervloet/RL-Coverage-Planner", "score": 2 }
#### File: RL-Coverage-Planner/deep_rl/trainer.py ```python import numpy as np import matplotlib.pyplot as plt import torch from collections import namedtuple Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward', 'done')) class DeepRLTrainer: NB_EPISODES = 3000 SAVE_EVERY = 500 INFO_EVERY = 50 SOFT_MAX = False DEVICE = 'cpu' def __init__(self, environment, agent, save_path): self.env = environment self.agent = agent self.save_path = save_path self.total_rewards = [] self.avg_rewards = [] self.tiles_visited = [] self.avg_tiles_visited = [] self.nb_steps = [] self.avg_nb_steps = [] self.cc_counter = 0 self.nb_complete_cov = [] self.terrain_diffs = [] self.avg_terrain_diffs = [] def train(self): for i in range(DeepRLTrainer.NB_EPISODES): current_state = torch.tensor(self.env.reset(), dtype=torch.float, device=DeepRLTrainer.DEVICE) done = False info = {} self.agent.update_epsilon(i) while not done: action = self.agent.select_action( current_state, soft_max=DeepRLTrainer.SOFT_MAX ) n_state, reward, done, info = self.env.step(action) action = torch.tensor(action, dtype=torch.int64, device=DeepRLTrainer.DEVICE) n_state = torch.tensor(n_state, dtype=torch.float, device=DeepRLTrainer.DEVICE) reward = torch.tensor(reward, dtype=torch.float, device=DeepRLTrainer.DEVICE) done = torch.tensor(done, dtype=torch.bool, device=DeepRLTrainer.DEVICE) self.agent.observe_transition(Transition( current_state, action, n_state, reward, done ), device=DeepRLTrainer.DEVICE) current_state = n_state if info["full_cc"]: self.cc_counter += 1 print(f"COMPLETE COVERAGE: {self.cc_counter}") self.total_rewards.append(info["total_reward"]) self.nb_steps.append(info["nb_steps"]) self.tiles_visited.append(info["total_covered_tiles"]) self.nb_complete_cov.append(self.cc_counter) self.terrain_diffs.append(info["total_pos_terr_diff"]) avg_start = 0 if i < DeepRLTrainer.SAVE_EVERY else -DeepRLTrainer.SAVE_EVERY self.avg_rewards.append(np.average(self.total_rewards[avg_start:])) self.avg_tiles_visited.append(np.average(self.tiles_visited[avg_start:])) self.avg_nb_steps.append(np.average(self.nb_steps[avg_start:])) self.avg_terrain_diffs.append(np.average(self.terrain_diffs[avg_start:])) episode_nb = i + 1 if episode_nb % DeepRLTrainer.INFO_EVERY == 0: print(f"Episode {episode_nb}") print(f"average total reward: {self.avg_rewards[-1]}") print(f"average nb steps: {self.avg_nb_steps[-1]}") print(f"average nb tiles visited: {self.avg_tiles_visited[-1]}") print(f"average positive terrain diff: {self.avg_terrain_diffs[-1]}") print(f"epsilon: {self.agent.epsilon}") print() if episode_nb % DeepRLTrainer.SAVE_EVERY == 0: x = range(episode_nb) plt.clf() plt.plot(x, self.total_rewards, x, self.avg_rewards) plt.legend(['total rewards', 'average total rewards']) plt.title('Total reward for every episode') plt.savefig(self.save_path + f"rewards.png") np.save(self.save_path + f"rewards.npy", self.total_rewards) np.save(self.save_path + f"avg_rewards.npy", self.avg_rewards) plt.clf() plt.plot(x, self.tiles_visited, x, self.avg_tiles_visited) plt.legend(['nb tiles visited', 'average nb tile visited']) plt.title('Number of tiles visited for every episode') plt.savefig(self.save_path + f"tiles_visited.png") np.save(self.save_path + f"tiles_visited.npy", self.tiles_visited) np.save(self.save_path + f"avg_tiles_visited.npy", self.avg_tiles_visited) plt.clf() plt.plot(x, self.nb_steps, x, self.avg_nb_steps) plt.legend(['nb steps', 'average nb steps']) plt.title('Number of steps for every episode') plt.savefig(self.save_path + f"nb_steps.png") np.save(self.save_path + f"nb_steps.npy", self.nb_steps) np.save(self.save_path + f"avg_nb_steps.npy", self.avg_nb_steps) plt.clf() plt.plot(x, self.nb_complete_cov) plt.legend(['nb complete coverage runs']) plt.title('Nb of complete coverage runs') plt.savefig(self.save_path + f"nb_complete_covs.png") np.save(self.save_path + f"nb_complete_covs.npy", self.nb_complete_cov) plt.clf() plt.plot(x, self.terrain_diffs, x, self.avg_terrain_diffs) plt.legend(['terrain differences', 'average terrain differences']) plt.title('Total terrain differences for every episode') plt.savefig(self.save_path + f"terrain_diffs.png") np.save(self.save_path + f"terrain_diffs.npy", self.terrain_diffs) np.save(self.save_path + f"avg_terrain_diffs.npy", self.avg_terrain_diffs) self.agent.save(self.save_path, episode_nb) ``` #### File: RL-Coverage-Planner/environments/env_representation.py ```python import numpy as np import json from turorials.perlin_noise.obstacle_generation import flood_grid class EnvironmentRepresentation: def __init__(self): self.obstacle_map = None self.terrain_map = None self.start_positions = None self.nb_free_tiles = 0 self.dim = (8, 8) self.extra_spacing = (0, 0) def set_dimension(self, n_dim): self.dim = n_dim def set_extra_spacing(self, n_spacing): self.extra_spacing = n_spacing def get_dimension(self): return self.dim def get_obstacle_map(self, extra_spacing=False): if not extra_spacing: x_tot, y_tot = self.obstacle_map.shape return self.obstacle_map[ self.extra_spacing[0]:x_tot-self.extra_spacing[0], self.extra_spacing[1]:y_tot-self.extra_spacing[1] ] else: return self.obstacle_map def get_terrain_map(self, extra_spacing=False): if not extra_spacing: x_tot, y_tot = self.obstacle_map.shape return self.terrain_map[ self.extra_spacing[0]:x_tot-self.extra_spacing[0], self.extra_spacing[1]:y_tot-self.extra_spacing[1] ] else: return self.terrain_map def has_terrain_info(self): return self.terrain_map is not None def save(self, path, name): json_to_save = {} obstacle_path = f"{path}{name}_obstacle_grid.npy" np.save(obstacle_path, self.obstacle_map) json_to_save['obstacle_grid'] = obstacle_path json_to_save['terrain_grid'] = None if self.terrain_map is not None: terrain_path = f"{path}{name}_terrain_grid.npy" np.save(terrain_path, self.terrain_map) json_to_save['terrain_grid'] = terrain_path json_to_save['start_positions'] = self.start_positions json_to_save['nb_free_tiles'] = self.nb_free_tiles with open(f'{path}{name}.txt', 'w') as output_file: json.dump(json_to_save, output_file) def load(self, path, name): with open(f'{path}{name}.txt') as input_file: input_data = json.load(input_file) obstacle_path = input_data['obstacle_grid'] self.obstacle_map = np.load(obstacle_path) terrain_path = input_data['terrain_grid'] if terrain_path is not None: self.terrain_map = np.load(terrain_path) start_positions_array = np.array(input_data['start_positions']) self.start_positions = [pos for pos in zip(start_positions_array[:, 0], start_positions_array[:, 1])] self.nb_free_tiles = input_data['nb_free_tiles'] class GeneralEnvironmentRepresentation: def __init__(self, n_obstacle_map, nb_free_tiles, stat_positions, n_terrain_map, extra_spacing=0): assert(n_obstacle_map.shape == n_terrain_map.shape) self.extra_spacing = extra_spacing self.obstacle_map = n_obstacle_map self.nb_free_tiles = nb_free_tiles self.start_positions = stat_positions self.terrain_map = n_terrain_map def get_nb_free_tiles(self): return self.nb_free_tiles def get_start_positions(self): return self.start_positions def get_obstacle_map(self, extra_spacing=0): assert(extra_spacing <= self.extra_spacing) offset = self.extra_spacing - extra_spacing x_tot, y_tot = self.obstacle_map.shape return self.obstacle_map[ offset:x_tot - offset, offset:y_tot - offset ] def get_terrain_map(self, extra_spacing=0): assert (extra_spacing <= self.extra_spacing) offset = self.extra_spacing - extra_spacing x_tot, y_tot = self.terrain_map.shape return self.terrain_map[ offset:x_tot-offset, offset:y_tot-offset ] def save(self, path, name): json_to_save = {} obstacle_path = f"{path}{name}_obstacle_grid.npy" np.save(obstacle_path, self.obstacle_map) json_to_save['obstacle_grid'] = obstacle_path terrain_path = f"{path}{name}_terrain_grid.npy" np.save(terrain_path, self.terrain_map) json_to_save['terrain_grid'] = terrain_path json_to_save['start_positions'] = self.start_positions json_to_save['nb_free_tiles'] = self.nb_free_tiles json_to_save['extra_spacing'] = self.extra_spacing with open(f'{path}{name}.txt', 'w') as output_file: json.dump(json_to_save, output_file) def load(self, path, name): with open(f'{path}{name}.txt') as input_file: input_data = json.load(input_file) obstacle_path = input_data['obstacle_grid'] self.obstacle_map = np.load(obstacle_path) terrain_path = input_data['terrain_grid'] self.terrain_map = np.load(terrain_path) start_positions_array = np.array(input_data['start_positions']) self.start_positions = [pos for pos in zip(start_positions_array[:, 0], start_positions_array[:, 1])] self.nb_free_tiles = input_data['nb_free_tiles'] self.extra_spacing = input_data['extra_spacing'] if __name__ == "__main__": save_path = "D:/Documenten/Studie/2020-2021/Masterproef/Reinforcement-Learner-For-Coverage-Path-Planning/data/" name = "test_grid.npy" obstacle_grid = np.load(save_path + name) env_repr = EnvironmentRepresentation() env_repr.obstacle_map = obstacle_grid regions = flood_grid(obstacle_grid) if regions[0][0] == 0: env_repr.start_positions = regions[0][1] env_repr.nb_free_tiles = len(regions[0][1]) + len(regions[0][2]) print(regions[0][1]) if regions[1][0] == 0: env_repr.start_positions = regions[1][1] env_repr.nb_free_tiles = len(regions[1][1]) + len(regions[1][2]) print(regions[1][1]) env_repr.save(save_path, "test_representation") env_repr2 = EnvironmentRepresentation() env_repr2.load(save_path, "test_representation") print(env_repr2.nb_free_tiles) print(env_repr2.start_positions) ``` #### File: JonasVervloet/RL-Coverage-Planner/train.py ```python import sys, getopt import torch.optim as optim import pprint import json from networks.simple_q_network import SimpleDeepQNetworkGenerator from networks.simple_q_network import SimpleDeepQNetworkGenerator2 from deep_rl.deep_q_agent import DeepQAgent from deep_rl.double_dqn_agent import DoubleDeepQAgent from load import load_arguments, default_arguments, initialize_objects from load import GENERATORS, AGENTS, OPTIMIZERS SHORT_OPTIONS = "" LONG_OPTIONS = [ "loadAgent=", "loadArguments=", "disableCuda", "dim=", "hFreq=", "oFreq=", "fillRatio=", "loadEnv=", "agentSize=", "fov=", "turn", "terrain", "movePunish=", "terrainPunish=", "obstaclePunish=", "discoverReward=", "coverageReward=", "maxStepMultiplier=", "gamma=", "networkGen=", "rlAgent=", "epsilonDecay=", "targetUpdate=", "queueLength=", "optim=", "lr=", "nbEpisodes=", "printEvery=", "saveEvery=", "savePath=" ] def main(argv): try: options, args = getopt.getopt(argv, SHORT_OPTIONS, LONG_OPTIONS) except getopt.GetoptError: print("badly formatted command line arguments") arguments = default_arguments() for option, argument in options: if option == "--loadAgent": argument_split = argument.split(",") arguments.update(load_arguments(argument_split[0], "arguments")) arguments["loadPath"] = argument_split[0] arguments["loadEpisode"] = int(argument_split[1]) if option == "--loadArguments": argument_split = argument.split(",") arguments.update(load_arguments(argument_split[0], argument_split[1])) if option == "--disableCuda": arguments["cuda"] = False if option == "--dim": arguments["dim"] = tuple(tuple(map(int, argument.split(",")))) if option == "--hFreq": arguments["hFreq"] = tuple(map(int, argument.split(","))) if option == "--oFreq": arguments["oFreq"] = tuple(map(int, argument.split(","))) if option == "--fillRatio": arguments["fillRatio"] = float(argument) if option == "--loadEnv": arguments["loadEnv"] = tuple(argument.split(",")) if option == "--agentSize": arguments["agentSize"] = int(argument) if option == "--fov": arguments["fov"] = int(argument) if option == "--turn": arguments["turn"] = True if option == "--terrain": arguments["terrain"] = True if option == "--movePunish": arguments["movePunish"] = float(argument) if option == "--terrainPunish": arguments["terrainPunish"] = float(argument) if option == "--obstaclePunish": arguments["obstaclePunish"] = float(argument) if option == "--discoverReward": arguments["discoverReward"] = float(argument) if option == "--coverageReward": arguments["coverageReward"] = float(argument) if option == "--maxStepMultiplier": arguments["maxStepMultiplier"] = int(argument) if option == "--gamma": arguments["gamma"] = float(argument) assert(float(argument) <= 1.0) if option == "--networkGen": if argument in GENERATORS: arguments["networkGen"] = argument else: raise Exception("TRAIN.py: given network generator is not defined...") if option == "--optim": if argument in OPTIMIZERS: arguments["optim"] = argument else: raise Exception("TRAIN.py: given optimizer is not defined...") if option == "--lr": arguments["lr"] = float(argument) if option == "--rlAgent": if argument in AGENTS: arguments["rlAgent"] = argument else: raise Exception("TRAIN.py: given agent is not defined...") if option == "--epsilonDecay": arguments["epsilonDecay"] = int(argument) if option == "--targetUpdate": arguments["targetUpdate"] = int(argument) if option == "--queueLength": arguments["queueLength"] = int(argument) if option == "--nbEpisodes": arguments["nbEpisodes"] = int(argument) if option == "--printEvery": arguments["printEvery"] = int(argument) if option == "--saveEvery": arguments["saveEvery"] = int(argument) if option == "--savePath": arguments["savePath"] = argument env, agent, trainer = initialize_objects(arguments, trainer_required=True) with open(f"{arguments['savePath']}arguments.txt", 'w') as output_file: json.dump(arguments, output_file) print("ARGUMENTS:") pprint.pprint(arguments) trainer.train() if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: turorials/perlin_noise/obstacle_generation.py ```python import matplotlib.pyplot as plt import numpy as np from turorials.perlin_noise.open_simplex import generate_noise_map # DIM = (8, 8) DIM = (16, 16) # DIM = (32, 32) # FILL_RATIO = 0.30 FILL_RATIO = 0.35 # FILL_RATIO = 0.40 BOUNDARY_SIZE = 1 # NB_SMOOTHING = 2 NB_SMOOTHING = 2 # NB_SMOOTHING = 3 SMOOTH_SIZE = 1 RULE_THRESHOLD = 4 NB_GRIDS = 10 def generate_obstacle_grid(): random_grid = np.random.rand(DIM[0], DIM[1]) clipped_grid = np.zeros(DIM) clipped_grid[random_grid < FILL_RATIO] = 1 clipped_grid[:BOUNDARY_SIZE, :] = 1 clipped_grid[:, :BOUNDARY_SIZE] = 1 clipped_grid[-BOUNDARY_SIZE:, :] = 1 clipped_grid[:, -BOUNDARY_SIZE:] = 1 for i in range(NB_SMOOTHING): bound_x_low = BOUNDARY_SIZE bound_y_low = BOUNDARY_SIZE bound_x_high = DIM[0] - BOUNDARY_SIZE bound_y_high = DIM[1] - BOUNDARY_SIZE neighbor_sum = np.zeros((DIM[0] - 2 * BOUNDARY_SIZE, DIM[1] - 2 * BOUNDARY_SIZE)) for delta_x in range(-SMOOTH_SIZE, SMOOTH_SIZE + 1): for delta_y in range(-SMOOTH_SIZE, SMOOTH_SIZE + 1): if delta_x == 0 and delta_y == 0: continue neighbor_sum += clipped_grid[ bound_x_low + delta_x: bound_x_high + delta_x, bound_y_low + delta_y: bound_y_high + delta_y ] clipped_grid_middle = clipped_grid[bound_x_low:bound_x_high, bound_y_low:bound_y_high] clipped_grid_middle[neighbor_sum > RULE_THRESHOLD] = 1 clipped_grid_middle[neighbor_sum < RULE_THRESHOLD] = 0 clipped_grid[bound_x_low:bound_x_high, bound_y_low:bound_y_high] = clipped_grid_middle return clipped_grid def flood_grid(grid): visited_tiles = np.zeros(grid.shape) regions = [] for i in range(grid.shape[0]): for j in range(grid.shape[1]): if visited_tiles[(i, j)] == 1: continue region = flood_tile(grid, visited_tiles, (i, j)) regions.append(region) return regions def flood_tile(grid, visited_tiles, tile): tile_value = grid[tile] middle_tiles = [] border_tiles = [] queue = [] border = grow_queue(grid, visited_tiles, queue, tile, tile_value) if border: border_tiles.append(tile) else: middle_tiles.append(tile) visited_tiles[tile] = 1 while len(queue) != 0: n_tile = queue.pop(0) border = grow_queue(grid, visited_tiles, queue, n_tile, tile_value) if border: border_tiles.append(n_tile) else: middle_tiles.append(n_tile) visited_tiles[n_tile] = 1 return [tile_value, border_tiles, middle_tiles] def grow_queue(grid, visited_tiles, queue, tile, tile_value): border_tile = False for i in range(-1, 2): for j in range(-1, 2): if i == 0 and j == 0: continue n_tile_x = tile[0] + i n_tile_y = tile[1] + j if n_tile_x < 0 or n_tile_y < 0: continue if n_tile_x == grid.shape[0] or n_tile_y == grid.shape[1]: continue if grid[n_tile_x, n_tile_y] == tile_value: if visited_tiles[(n_tile_x, n_tile_y)] == 1: continue if (n_tile_x, n_tile_y) in queue: continue queue.append((n_tile_x, n_tile_y)) else: border_tile = True return border_tile if __name__ == "__main__": for i in range(NB_GRIDS): print(f"GRID NB {i}") grid = generate_obstacle_grid() plt.imshow(grid, cmap="gray") plt.show() regions = flood_grid(grid) print(regions) masked_grid = np.copy(grid) for region in regions: region_value = region[0] middle_tiles = region[2] middle_color = 0.25 if region_value == 0 else 0.75 for tile in middle_tiles: masked_grid[tile] = middle_color fig, axs = plt.subplots(2) axs[0].imshow(grid, cmap='gray') axs[1].imshow(masked_grid, cmap='gray') plt.show() ``` #### File: turorials/perlin_noise/open_simplex.py ```python from opensimplex import OpenSimplex import matplotlib.pyplot as plt import numpy as np MAX_NOISE_SEED = 1024 MAX_OFFSET = 1024.0 def generate_noise_map(dim, res, seed, nb_octaves, persistence=0.5): np.random.seed(seed) noise_generator = OpenSimplex(np.random.randint(0, MAX_NOISE_SEED)) image = np.zeros(dim) for octave_nb in range(nb_octaves): offset = np.random.random((2,)) * MAX_OFFSET octave_res = np.array(res) * (2**octave_nb) amplitude = 1.0 * (persistence ** octave_nb) print(octave_res) print(amplitude) image += amplitude * generate_simple_noise_map(dim, octave_res, offset, noise_generator) return image / np.max(np.abs(image)) def generate_simple_noise_map(dim, res, offset, generator): return np.array([[ generator.noise2d(x + offset[0], y + offset[1]) for x in np.arange(0, res[0], res[0]/dim[0])] for y in np.arange(0, res[1], res[1]/dim[1])] ) if __name__ == "__main__": fig, axs = plt.subplots(2, 2) image1 = generate_noise_map((256, 256), (5, 5), 10, 2, 0.25) axs[0][0].imshow(image1, cmap='gray') image2 = generate_noise_map((256, 256), (5, 5), 10, 2, 0.5) axs[0][1].imshow(image2, cmap='gray') image3 = generate_noise_map((256, 256), (5, 5), 10, 2, 0.75) axs[1][0].imshow(image3, cmap='gray') image4 = generate_noise_map((256, 256), (5, 5), 10, 2, 1.0) axs[1][1].imshow(image4, cmap='gray') plt.show() ``` #### File: turorials/pygame/blob_pygame.py ```python import pygame import numpy as np from turorials.pygame.environment import Environment FPS = 2 NB_TILES = 4 TILE_WIDTH = 100 TILE_BORDER = 3 EXTRA_SPACING = 100 FIELD_OF_VIEW = 1 DIMENSION = NB_TILES * (TILE_WIDTH + TILE_BORDER) + TILE_BORDER + EXTRA_SPACING BORDER_COLOR = "tan" TILE_COLOR = "moon_glow" VISITED_COLOR = "" CURRENT_COLOR = "white" OBSTACLE_COLOR = "coffee_brown" VIEW_COLOR = "magenta" OBSTACLES = np.array([ [0, 0, 0, 0], [0, 1, 0, 1], [0, 0, 0, 1], [1, 0, 0, 0] ]) START_POS = [ (0, 0), (0, 1), (0, 2) ] current_pos = (1, 2) env = Environment(OBSTACLES, START_POS) COLORS = { "white": (255, 255, 255), "black": (0, 0, 0), "maroon4": (139, 28, 98, 255), "magenta": (255,0,230), "forest_green": (0,50,0), "tan": (230,220,170), "coffee_brown": (200,190,140), "moon_glow": (235,245,255) } pygame.init() screen = pygame.display.set_mode((DIMENSION, DIMENSION)) screen.fill(COLORS["white"]) clock = pygame.time.Clock() def draw_tiles(surface, current_pos, visited_tiles, obstacles): offset = EXTRA_SPACING / 2 for i in range(NB_TILES): x = offset + i * (TILE_WIDTH + TILE_BORDER) for j in range(NB_TILES): y = offset + j * (TILE_WIDTH + TILE_BORDER) color = COLORS[TILE_COLOR] if (i, j) == current_pos: color = COLORS[CURRENT_COLOR] elif visited_tiles[i, j] == 1: color = COLORS[VISITED_COLOR] elif obstacles[i, j] == 1: color = COLORS[OBSTACLE_COLOR] tile_square = pygame.Rect(y + TILE_BORDER, x + TILE_BORDER, TILE_WIDTH, TILE_WIDTH) pygame.draw.rect(surface, color, tile_square) def draw_fov(surface, current_pos, fov): fov_x = max(offset + (TILE_WIDTH + TILE_BORDER) * (current_pos[0] - fov), offset) fov_y = max(offset + (TILE_WIDTH + TILE_BORDER) * (current_pos[1] - fov), offset) width = (fov * 2 + 1) * (TILE_WIDTH + TILE_BORDER) + TILE_BORDER height = (fov * 2 + 1) * (TILE_WIDTH + TILE_BORDER) + TILE_BORDER fov_square = pygame.Rect(fov_y, fov_x, width, height) pygame.draw.rect(surface, COLORS[VIEW_COLOR], fov_square) border_square = pygame.Rect(fov_y + TILE_BORDER, fov_x + TILE_BORDER, width - 2*TILE_BORDER, height - 2*TILE_BORDER) pygame.draw.rect(surface, COLORS[BORDER_COLOR], border_square) def draw_state(surface, state): offset = EXTRA_SPACING / 2 width = (TILE_WIDTH + TILE_BORDER) * NB_TILES + TILE_BORDER height = (TILE_WIDTH + TILE_BORDER) * NB_TILES + TILE_BORDER border_square = pygame.Rect(offset, offset, width, height) pygame.draw.rect(screen, COLORS[BORDER_COLOR], border_square) current_pos, visited_tiles, obstacles = state draw_tiles(surface, current_pos, visited_tiles, obstacles) running = True done = False state = env.reset() while running: enter_pressed = False for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN: enter_pressed = True if not done: action = np.random.randint(4) state, _, done = env.step(action) else: print("waiting for enter") if enter_pressed: state = env.reset() done = False draw_state(screen, state) pygame.display.update() clock.tick(FPS) pygame.quit() ``` #### File: turorials/taxi/taxi.py ```python import gym import numpy as np import matplotlib.pyplot as plt NB_EPISODES = 10000 PRINT_EVERY = 1000 ALPHA = 0.1 DISCOUNT = 0.9 EPSILON_START = 0.99 MIN_EPSILON = 0.01 EPSILON_DECAY = 1.0/NB_EPISODES env = gym.make("Taxi-v3") OBS_SPACE = env.observation_space.n ACT_SPACE = env.action_space.n print(OBS_SPACE) print(ACT_SPACE) def select_action(table, s, eps): if np.random.random() > eps: return np.argmax(table[s]) else: return np.random.randint(0, ACT_SPACE) def update_q_value(table, s, a, r, s_n): max_next = np.max(table[s_n]) curr_value = table[s][a] table[s][a] = curr_value + ALPHA * (r + DISCOUNT * max_next - curr_value) return table def decay_epsilon(eps): return max(MIN_EPSILON, eps - EPSILON_DECAY) q_table = np.zeros((OBS_SPACE, ACT_SPACE)) epsilon = EPSILON_START nbs_steps = [] avg_nbs_steps = [] total_rewards = [] avg_total_rewards = [] print(q_table.shape) for episode in range(NB_EPISODES): current_state = env.reset() nb_steps = 0 total_reward = 0 done = False while not done: action = select_action(q_table, current_state, epsilon) new_state, reward, done, _ = env.step(action) nb_steps += 1 total_reward += reward q_table = update_q_value( q_table, current_state, action, reward, new_state ) current_state = new_state nbs_steps.append(nb_steps) avg_nbs_steps.append(np.average(nbs_steps)) total_rewards.append(total_reward) avg_total_rewards.append(np.average(total_rewards)) epsilon = decay_epsilon(epsilon) if episode % PRINT_EVERY == 0: print() print(f"EPISODE {episode}") print(f"average reward {avg_nbs_steps[episode]}") print(f"avg nb steps {avg_total_rewards[episode]}") plt.plot(range(NB_EPISODES), total_rewards) plt.plot(range(NB_EPISODES), avg_total_rewards) plt.show() plt.plot(range(NB_EPISODES), nbs_steps) plt.plot(range(NB_EPISODES), avg_nbs_steps) plt.show() current_state = env.reset() env.render() done = False while not done: action = np.argmax(q_table[current_state]) new_state, reward, done, _ = env.step(action) env.render() print(reward) current_state = new_state ```
{ "source": "JonasVil/dssdata", "score": 3 }
#### File: tools/lines/__init__.py ```python import pandas as pd from ... import SystemClass from ...decorators import tools from ..._formatters import ( __identify_ph_config, __get_mag_vanish, __get_ang_vanish, __remove_nones_from_lists, __check_elements, ) from typing import List @tools def get_infos(distSys: SystemClass, names: List[str]) -> pd.DataFrame: """ Get some relevant infos from lines. Ex: | | name | bus1 | ph_bus1 | bus2 | ph_bus2 | I(A)_bus1_ph_a | I(A)_bus1_ph_b | I(A)_bus1_ph_c | I(A)_bus2_ph_a | I(A)_bus2_ph_b | I(A)_bus2_ph_c | ang_bus1_ph_a | ang_bus1_ph_b | ang_bus1_ph_c | ang_bus2_ph_a | ang_bus2_ph_b | ang_bus2_ph_c | kw_losses | kvar_losses | emergAmps | normAmps | perc_NormAmps | perc_EmergAmps | |----|--------|------|---------|------|---------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------|-------------|-----------|----------|---------------|----------------| | 0 | 650632 | rg60 | abc | 632 | abc | 562.609 | 419.029 | 591.793 | 562.61 | 419.03 | 591.794 | -28.7 | -141.3 | 93.4 | 151.3 | 38.7 | -86.6 | 60.737 | 196.015 | 600.0 | 400.0 | 1.479 | 0.986 | | 1 | 632670 | 632 | abc | 670 | abc | 481.916 | 218.055 | 480.313 | 481.916 | 218.055 | 480.313 | -27.2 | -135.2 | 99.6 | 152.8 | 44.8 | -80.4 | 12.991 | 41.495 | 600.0 | 400.0 | 1.205 | 0.803 | | 2 | 670671 | 670 | abc | 671 | abc | 473.795 | 188.824 | 424.942 | 473.795 | 188.824 | 424.942 | -27.0 | -132.6 | 101.3 | 153.0 | 47.4 | -78.7 | 22.729 | 72.334 | 600.0 | 400.0 | 1.184 | 0.79 | Args: distSys : An instance of [SystemClass][dssdata.SystemClass]. names : Lines names. Returns: Lines infos. """ # noqa __check_elements(names, distSys.dss.Lines.AllNames()) def build_line_dicts(distSys: SystemClass, line_name: str) -> dict: def vanish_line_infos(bus_raw: list, current_raw: list) -> tuple: bus_name = bus_raw[0] phs_raw = list(map(lambda bus: int(bus), bus_raw[1:])) phs_data = phs_raw if phs_raw != [] else [1, 2, 3] phs = __identify_ph_config(phs_data) currents_mag = __get_mag_vanish(phs_data, current_raw) currents_ang = __get_ang_vanish(phs_data, current_raw) return (bus_name, phs, currents_mag, currents_ang) distSys.dss.Lines.Name(line_name) losses = distSys.dss.CktElement.Losses() normalAmps = distSys.dss.CktElement.NormalAmps() emergAmps = distSys.dss.CktElement.EmergAmps() currents_raw = distSys.dss.CktElement.CurrentsMagAng() currents_raw_bus1 = currents_raw[: int(len(currents_raw) / 2)] currents_raw_bus2 = currents_raw[int(len(currents_raw) / 2):] bus_raw = distSys.dss.Lines.Bus1().split(".") (bus_name1, phs1, currents_mag1, currents_ang1) = vanish_line_infos( bus_raw, currents_raw_bus1 ) bus_raw = distSys.dss.Lines.Bus2().split(".") (bus_name2, phs2, currents_mag2, currents_ang2) = vanish_line_infos( bus_raw, currents_raw_bus2 ) currents_mag1_calc = __remove_nones_from_lists(currents_mag1) currents_mag2_calc = __remove_nones_from_lists(currents_mag2) return { "name": line_name, "bus1": bus_name1, "ph_bus1": phs1, "bus2": bus_name2, "ph_bus2": phs2, "I(A)_bus1_ph_a": currents_mag1[0], "I(A)_bus1_ph_b": currents_mag1[1], "I(A)_bus1_ph_c": currents_mag1[2], "I(A)_bus2_ph_a": currents_mag2[0], "I(A)_bus2_ph_b": currents_mag2[1], "I(A)_bus2_ph_c": currents_mag2[2], "ang_bus1_ph_a": currents_ang1[0], "ang_bus1_ph_b": currents_ang1[1], "ang_bus1_ph_c": currents_ang1[2], "ang_bus2_ph_a": currents_ang2[0], "ang_bus2_ph_b": currents_ang2[1], "ang_bus2_ph_c": currents_ang2[2], "kw_losses": losses[0] / 1000, "kvar_losses": losses[1] / 1000, "emergAmps": emergAmps, "normAmps": normalAmps, "perc_NormAmps": max(currents_mag1_calc + currents_mag2_calc) / normalAmps, "perc_EmergAmps": max(currents_mag1_calc + currents_mag2_calc) / emergAmps, } return pd.DataFrame( tuple( map(lambda line_name: build_line_dicts(distSys, line_name), names,) ) ) @tools def get_all_infos(distSys: SystemClass) -> pd.DataFrame: """ Get some relevant infos from all lines. See [get_infos][dssdata.tools.lines.get_infos]. Args: distSys: An instance of [SystemClass][dssdata.SystemClass] Returns: All lines infos """ # noqa line_names = distSys.dss.Lines.AllNames() return get_infos(distSys, line_names) ``` #### File: tools/losses/__init__.py ```python import pandas as pd from ... import SystemClass from ..._formatters import __check_elements def __build_pd_dicts( distSys: SystemClass, element_name: str, element_type: str ) -> dict: distSys.dss.PDElements.Name(str(element_type) + "." + str(element_name)) typ = distSys.dss.CktElement.Name().replace("." + str(element_name), "") losses = distSys.dss.CktElement.Losses() return { "type": typ, "name": element_name, "kw_losses": losses[0] / 1000, "kvar_losses": losses[1] / 1000, } def pd_element_loss( distSys: SystemClass, element_name: str, element_type: str ) -> pd.DataFrame: """ Get PD Element loss. Ex: | | type | name | kw_losses | kvar_losses | |:-:|:-----------:|:----:|:-----------------:|:-----------------:| | 0 | Transformer | xfm1 | 5.552671994055243 | 10.09627035828575 | Args: distSys: An instance of [SystemClass][dssdata.SystemClass] element_name: The name of the desired PD element element_type: The type of the PD element (Line or Transformer) Returns: A DataFrame containing the losses of the desired PD element. """ # noqa __check_elements( list((str(element_type) + "." + str(element_name)).split()), distSys.dss.Circuit.AllElementNames(), ) pd_loss = [] pd_loss.append(__build_pd_dicts(distSys, element_name, element_type)) return pd.DataFrame(pd_loss) def pd_element_loss_list( distSys: SystemClass, element_names: list, element_type: str ) -> pd.DataFrame: """ Get PD Element loss List. Ex: | | type | name | kw_losses | kvar_losses | |:-:|:-----------:|:----:|:-------------------:|:-------------------:| | 0 | Transformer | sub | 0.03228776756674051 | 0.26246840671868993 | | 1 | Transformer | reg1 | 0.12209426402417012 | 0.12385869008488953 | | 2 | Transformer | reg2 | 0.06534502545557916 | 0.06707698704162612 | | 3 | Transformer | reg3 | 0.1350894299906213 | 0.13685391995031387 | | 4 | Transformer | xfm1 | 5.552671994055243 | 10.09627035828575 | Args: distSys: An instance of [SystemClass][dssdata.SystemClass] element_names: A list of names of the desired PD elements element_type: The type of the PD elements (Line or Transformer) Returns: A DataFrame containing the losses of the desired list of PD elements. """ # noqa if element_type == "Line": __check_elements(element_names, distSys.dss.Lines.AllNames()) elif element_type == "Transformer": __check_elements(element_names, distSys.dss.Transformers.AllNames()) return pd.DataFrame( tuple( map( lambda element_name: __build_pd_dicts( distSys, element_name, element_type ), element_names, ) ) ) def get_all_line_losses(distSys: SystemClass) -> pd.DataFrame: """ Get all lines losses. Ex: | | type | name | kw_losses | kvar_losses | |:--:|:----:|:------:|:---------------------:|:----------------------:| | 0 | Line | 650632 | 60.73738438443188 | 196.01456922721653 | | 1 | Line | 632670 | 12.990633124585496 | 41.49451118066639 | | 2 | Line | 670671 | 22.728758590972518 | 72.33414340631373 | | 3 | Line | 671680 | 8.613828479544935e-12 | -0.004169229516017848 | | 4 | Line | 632633 | 0.8244871671261499 | 1.0561418323197722 | | 5 | Line | 632645 | 2.75857850181032 | 2.4159107795492454 | | 6 | Line | 645646 | 0.5274715389783668 | 0.41973513183818434 | | 7 | Line | 692675 | 4.1629544212549225 | 2.419339661740261 | | 8 | Line | 671684 | 0.5794876384501113 | 0.47068061342113654 | | 9 | Line | 684611 | 0.3824044250881998 | 0.38734916932047053 | | 10 | Line | 684652 | 0.7998267312559038 | 0.230879175578375 | | 11 | Line | 671692 | 9.054614813067019e-06 | 4.3655745685100556e-14 | Args: distSys: An instance of [SystemClass][dssdata.SystemClass] Returns: A DataFrame containing all line losses. """ # noqa element_type = "Line" return pd.DataFrame( tuple( map( lambda element_name: __build_pd_dicts( distSys, element_name, element_type ), distSys.dss.Lines.AllNames(), ) ) ) def get_all_transformers_losses(distSys: SystemClass) -> pd.DataFrame: """ Get all transformers losses. Ex: | | type | name | kw_losses | kvar_losses | |:-:|:-----------:|:----:|:-------------------:|:-------------------:| | 0 | Transformer | sub | 0.03228776756674051 | 0.26246840671868993 | | 1 | Transformer | reg1 | 0.12209426402417012 | 0.12385869008488953 | | 2 | Transformer | reg2 | 0.06534502545557916 | 0.06707698704162612 | | 3 | Transformer | reg3 | 0.1350894299906213 | 0.13685391995031387 | | 4 | Transformer | xfm1 | 5.552671994055243 | 10.09627035828575 | Args: distSys: An instance of [SystemClass][dssdata.SystemClass] Returns: A DataFrame containing all transformers losses. """ # noqa element_type = "Transformer" return pd.DataFrame( tuple( map( lambda element_name: __build_pd_dicts( distSys, element_name, element_type ), distSys.dss.Transformers.AllNames(), ) ) ) def get_all_pd_elements_losses(distSys: SystemClass) -> pd.DataFrame: """ Get all PD Elements losses. Ex: | | type | name | kw_losses | kvar_losses | |:--:|:-----------:|:------:|:---------------------:|:----------------------:| | 0 | Transformer | sub | 0.03228776756674051 | 0.26246840671868993 | | 1 | Transformer | reg1 | 0.12209426402417012 | 0.12385869008488953 | | 2 | Transformer | reg2 | 0.06534502545557916 | 0.06707698704162612 | | 3 | Transformer | reg3 | 0.1350894299906213 | 0.13685391995031387 | | 4 | Transformer | xfm1 | 5.552671994055243 | 10.09627035828575 | | 5 | Line | 650632 | 60.73738438443188 | 196.01456922721653 | | 6 | Line | 632670 | 12.990633124585496 | 41.49451118066639 | | 7 | Line | 670671 | 22.728758590972518 | 72.33414340631373 | | 8 | Line | 671680 | 8.613828479544935e-12 | -0.004169229516017848 | | 9 | Line | 632633 | 0.8244871671261499 | 1.0561418323197722 | | 10 | Line | 632645 | 2.75857850181032 | 2.4159107795492454 | | 11 | Line | 645646 | 0.5274715389783668 | 0.41973513183818434 | | 12 | Line | 692675 | 4.1629544212549225 | 2.419339661740261 | | 13 | Line | 671684 | 0.5794876384501113 | 0.47068061342113654 | | 14 | Line | 684611 | 0.3824044250881998 | 0.38734916932047053 | | 15 | Line | 684652 | 0.7998267312559038 | 0.230879175578375 | | 16 | Line | 671692 | 9.054614813067019e-06 | 4.3655745685100556e-14 | Args: distSys: An instance of [SystemClass][dssdata.SystemClass] Returns: A DataFrame containing all PD Elements losses. """ # noqa line_losses = get_all_line_losses(distSys) transformer_losses = get_all_transformers_losses(distSys) return pd.concat([transformer_losses, line_losses]) def get_total_pd_elements_losses(distSys: SystemClass) -> pd.DataFrame: """ Get Total PD Elements losses. Ex: | | name | kw_losses_total | kvar_losses_total | |:-:|:---------------:|:------------------:|:-----------------:| | 0 | all_pd_elements | 112.39948405966965 | 327.9256193105294 | Args: distSys: An instance of [SystemClass][dssdata.SystemClass] Returns: A DataFrame containing the sum of losses of all PD Elements. """ # noqa data_loss = [] data = { "name": "all_pd_elements", "kw_losses_total": sum( get_all_pd_elements_losses(distSys)["kw_losses"] ), "kvar_losses_total": sum( get_all_pd_elements_losses(distSys)["kvar_losses"] ), } data_loss.append(data) return pd.DataFrame(data_loss) ``` #### File: dssdata/test/test_Class.py ```python import unittest from dssdata import SystemClass from .load_datas import load_data_static class Verifica_Class(unittest.TestCase): def setUp(self): self.path_of_system = "test/syste_test_IEEE13bus/IEEE13Nodeckt.dss" self.value_of_kV = [115, 4.16, 0.48] self.value_of_load_mult = 1 self.distSys = SystemClass( path=self.path_of_system, kV=self.value_of_kV, loadmult=self.value_of_load_mult, ) ( self.bus_names, self.line_names, self.reg_names, _, _, _, ) = load_data_static() def test_get_path(self): self.assertTrue(self.distSys.path == self.path_of_system) def test_get_kV(self): self.assertTrue(self.distSys.kV == self.value_of_kV) def test_get_loadmult(self): self.assertTrue(self.distSys.loadmult == self.value_of_load_mult) if __name__ == "__main__": unittest.main() ``` #### File: dssdata/test/test_Losses.py ```python import unittest from dssdata import SystemClass from dssdata.pfmodes import run_static_pf from dssdata.tools import losses from pandas._testing import assert_frame_equal from .load_loss_data import load_loss_data class Verifica_Losses_Tools(unittest.TestCase): def setUp(self): path_of_system = "test/syste_test_IEEE13bus/IEEE13Nodeckt.dss" value_of_kV = [115, 4.16, 0.48] value_of_load_mult = 1 self.distSys = SystemClass( path=path_of_system, kV=value_of_kV, loadmult=value_of_load_mult ) ( self.pd_losses, self.pd_element_loss, self.pd_line_losses, self.pd_trafos_losses, self.pd_total_losses, ) = load_loss_data() def test_pd_element_loss(self): [element_loss] = run_static_pf( self.distSys, tools=[ lambda distSys: losses.pd_element_loss( self.distSys, element_name='xfm1', element_type='Transformer' ) ] ) try: assert_frame_equal( self.pd_element_loss, element_loss, check_dtype=False, ) except AssertionError as err: raise err self.assertTrue(True) def test_pd_list_loss(self): [element_list_loss] = run_static_pf( self.distSys, tools=[ lambda distSys: losses.pd_element_loss_list( self.distSys, distSys.dss.Transformers.AllNames(), element_type='Transformer' ) ] ) try: assert_frame_equal( self.pd_trafos_losses.reset_index(drop=True), element_list_loss.reset_index(drop=True), check_dtype=False, ) except AssertionError as err: raise err self.assertTrue(True) def test_pd_loss(self): [LossDataFrame] = run_static_pf( self.distSys, tools=[ losses.get_all_pd_elements_losses ] ) try: assert_frame_equal( self.pd_losses.reset_index(drop=True), LossDataFrame.reset_index(drop=True), check_dtype=False, ) except AssertionError as err: raise err self.assertTrue(True) def test_line_loss(self): [LinesDataFrame] = run_static_pf( self.distSys, tools=[ losses.get_all_line_losses ] ) try: assert_frame_equal( self.pd_line_losses.reset_index(drop=True), LinesDataFrame.reset_index(drop=True), check_dtype=False, ) except AssertionError as err: raise err self.assertTrue(True) def test_trafo_loss(self): [TrafoDataFrame] = run_static_pf( self.distSys, tools=[ losses.get_all_transformers_losses ] ) try: assert_frame_equal( self.pd_trafos_losses.reset_index(drop=True), TrafoDataFrame.reset_index(drop=True), check_dtype=False, ) except AssertionError as err: raise err self.assertTrue(True) def test_total_loss(self): [TotalDataFrame] = run_static_pf( self.distSys, tools=[ losses.get_total_pd_elements_losses ] ) try: assert_frame_equal( self.pd_total_losses.reset_index(drop=True), TotalDataFrame, check_dtype=False, ) except AssertionError as err: raise err self.assertTrue(True) if __name__ == '__main__': unittest.main() ```
{ "source": "JonasVil/MunozDelgado2014", "score": 3 }
#### File: JonasVil/MunozDelgado2014/Data_138Bus.py ```python import numpy as np import pandas as pd def power_out(k,speed): if k == 1: WG = np.array([[3, 4.0], [4, 20.0], [5, 50.0], [6, 96.0], [7, 156.0], [8, 238.0], [9, 340.0], [10, 466.0], [11, 600.0], [12, 710.0], [13, 790.0], [14, 850.0], [15, 880.0], [16, 905.0], [17, 910.0]] ) elif k == 2: WG = np.array([[2, 3.0], [3, 25.0], [4, 82.0], [5, 174.0], [6, 321.0], [7, 532.0], [8, 815.0], [9, 1180.0], [10, 1580.0], [11, 1810.0], [12, 1980.0], [13, 2050.0]] ) if k == 1 and speed < 3: Pr = 0 elif k == 1 and speed >= 17: Pr = 0.91 elif k == 2 and speed < 2: Pr = 0 elif k == 2 and speed >= 13: Pr = 2.05 else: speed_aux1 = int(speed) speed_aux2 = speed_aux1 + 1 loc_aux1 = np.where(speed_aux1 == WG[:,0])[0].item() loc_aux2 = np.where(speed_aux2 == WG[:,0])[0].item() Pr_aux1 = (speed*WG[loc_aux1,1])/speed_aux1 Pr_aux2 = (speed*WG[loc_aux2,1])/speed_aux2 Pr = ((Pr_aux1+Pr_aux2)/2)/1000 return Pr # ============================================================================= # System Data # ============================================================================= n_bus = 138 #Number of buses n_branches = 151 #Number of branches load_factor = [0.7, 0.83, 1] #EFF = Existing Fixed Feeder #ERF = Existing Replaceable Feeder #NRF = New Replacement Feeder #NAF = New Added Feeder line_data = pd.read_csv("138_line_data.csv") branch = [] for i in range(line_data.shape[0]): s = line_data['From'][i] r = line_data['to'][i] l = np.round(line_data['Lenght'][i],2) tYpe = line_data['Type'][i] branch.append(((s,r), l, tYpe)) load_zone = pd.read_csv("138_load_zone.csv") peak_demand = np.full((load_zone.shape[0],10),0,dtype=float) for i in range(0,load_zone.shape[0]): for j in range(1,10+1): peak_demand[i,j-1] = load_zone[str(j)][i]/1000 #Zones A = 1, B = 2, C = 3 #Buses= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ... 138 node_zone = np.full((1,load_zone.shape[0]),0,dtype=int) for i in range(0,load_zone.shape[0]): if load_zone['Zone'][i] == 'A': node_zone[0,i] = 1 elif load_zone['Zone'][i] == 'B': node_zone[0,i] = 2 elif load_zone['Zone'][i] == 'C': node_zone[0,i] = 3 wind_speed = np.array([#Load Level (m/s) #1 2 3 [8.53, 9.12, 10.04], #Zone A [6.13, 7.26, 7.11], #Zone B [4.13, 5.10, 5.56] #Zone C ]) # ============================================================================= # Sets of Indexes # ============================================================================= B = np.arange(1, len(load_factor)+1, dtype=int) #Set of Load Levels T = np.arange(1, np.shape(peak_demand)[1]+1, dtype=int) #Set of Time Stages L = ["EFF", "ERF", "NRF", "NAF"] #Set of Feeder Types #C = Conventional #W = Wind Generation P = ["C", "W"] #Set of Generator Types #ET = Existing Transformer #NT = New Transformer TR = ["ET", "NT"] #Set of Transformer Types # ============================================================================= # Sets of Alternatives # ============================================================================= K_l = {"EFF": [1], #Sets of available alternatives for feeders "ERF": [1], "NRF": [1, 2], "NAF": [1, 2] } K_p = {"C": [1, 2], #Sets of available alternatives for generators "W": [1, 2] } K_tr = {"ET": [1], #Sets of available alternatives for transformers "NT": [1, 2] } # ============================================================================= # Sets of Branches # ============================================================================= Upsilon_l = {"EFF": [], "ERF": [], "NRF": [], "NAF": [] } for branch_type in L: #Set of branches with feeders of type l for b in branch: if b[2] == branch_type: s = b[0][0] r = b[0][1] Upsilon_l[branch_type].append((s,r)) Upsilon_l["NRF"] = Upsilon_l["ERF"] # ============================================================================= # Sets of Nodes # ============================================================================= Omega_SS = [136, 137, 138] #Sets of nodes connected to node s by substation nodes Omega_SSE = [136, 137] # Fixing eq14 Omega_SSN = [138] # Fixing eq14 Omega_l_s = {"EFF": [[] for i in range(0,n_bus)], #Sets of nodes connected to node s by a feeder of type l "ERF": [[] for i in range(0,n_bus)], "NRF": [[] for i in range(0,n_bus)], "NAF": [[] for i in range(0,n_bus)] } for branch_type in L: for (s,r) in Upsilon_l[branch_type]: Omega_l_s[branch_type][(s,r)[0]-1].append((s,r)[1]) Omega_l_s[branch_type][(s,r)[1]-1].append((s,r)[0]) Omega_LN_t = {1: [indx+1 for indx,value in enumerate(peak_demand[:, 0]) if value > 0], #Sets of nodes connected to node s by load nodes 2: [indx+1 for indx,value in enumerate(peak_demand[:, 1]) if value > 0], 3: [indx+1 for indx,value in enumerate(peak_demand[:, 2]) if value > 0], 4: [indx+1 for indx,value in enumerate(peak_demand[:, 3]) if value > 0], 5: [indx+1 for indx,value in enumerate(peak_demand[:, 4]) if value > 0], 6: [indx+1 for indx,value in enumerate(peak_demand[:, 5]) if value > 0], 7: [indx+1 for indx,value in enumerate(peak_demand[:, 6]) if value > 0], 8: [indx+1 for indx,value in enumerate(peak_demand[:, 7]) if value > 0], 9: [indx+1 for indx,value in enumerate(peak_demand[:, 8]) if value > 0], 10: [indx+1 for indx,value in enumerate(peak_demand[:, 9]) if value > 0], } Omega_N = np.arange(1, n_bus+1, dtype=int) #Sets of nodes connected to node s by system nodes Omega_p = {"C": [10, 28, 38, 53, 64, 94, 108, 117, 126, 133], #Sets of nodes connected to node s by distributed generation "W": [31, 52, 78, 94, 103, 113, 114, 116, 120, 122] } # ============================================================================= # Energy Costs # ============================================================================= #Load Levels # 1 2 3 C_SS_b = [57.7, 70, 85.3] #the costs of the energy supplied by all substations #DG units C_Ep_k = {"C": [47, 45], #Conventional DG "W": [0, 0] #Windy DG } #Cost for unserved energy C_U = 2000 # ============================================================================= # Investment Costs # ============================================================================= C_Il_k = {"NRF": [29870, 39310], #Investment cost coefficients of feeders "NAF": [25030, 34920] } C_INT_k = [500000, 950000] #Investment cost coefficients of new transformers C_Ip_k = {"C": [500000, 490000], #Investment cost coefficients of generators "W": [1850000, 1840000] } C_ISS_s = {136: 100000, #Investment cost coefficients of substations 137: 100000, 138: 150000 } # ============================================================================= # Maintenance Costs # ============================================================================= C_Ml_k = {"EFF": [450], #Maintenance cost coefficients of feeders "ERF": [450], "NRF": [450, 450], "NAF": [450, 450] } C_Mp_k = {"C": [0.05*0.9*500000*1, 0.05*0.9*490000*2], #Maintenance cost coefficients of generators "W": [0.05*0.9*1850000*0.91, 0.05*0.9*1840000*2.05] } C_Mtr_k = {"ET": [2000], #Maintenance cost coefficients of transformers "NT": [1000, 3000] } # ============================================================================= # System's Data # ============================================================================= D__st = peak_demand #Actual nodal peak demand Dtio_stb = np.full((np.shape(Omega_N)[0],np.shape(T)[0],np.shape(B)[0]),0,dtype=float) #fictitious nodal demand for s in range(np.shape(Omega_N)[0]): for t in range(np.shape(T)[0]): for b in range(np.shape(B)[0]): if (s+1 in Omega_p["C"] or s+1 in Omega_p["W"]) and s+1 in Omega_LN_t[t+1]: Dtio_stb[s,t,b] = 1 else: Dtio_stb[s,t,b] = 0 Fup_l_k = {"EFF": [6.28], #Upper limit for actual current flows through (MVA) "ERF": [6.28], "NRF": [9.00, 12.00], "NAF": [6.28, 9.00] } Gup_p_k = {"C": [1.00, 2.00], #Rated capacities of generators "W": [0.91, 2.05] } # Ref: https://wind-turbine.com/download/101655/enercon_produkt_en_06_2015.pdf Gmax_W_sktb = np.full((np.shape(Omega_N)[0],np.shape(K_p["W"])[0],np.shape(T)[0],np.shape(B)[0]),0,dtype=float) #maximum wind power availability. for s in range(np.shape(Omega_N)[0]): #Bus for k in range(np.shape(K_p["W"])[0]): #Option for t in range(np.shape(T)[0]): #Stage for b in range(np.shape(B)[0]): #Load Level zone = node_zone[0,s] speed = wind_speed[zone-1,b] Gmax_W_sktb[s,k,t,b] = power_out(k+1,speed) Gup_tr_k = {"ET": [12], #Upper limit for current injections of transformers. "NT": [7.5, 15] } Vbase = 13.8 #kV V_ = 0.95*Vbase #Lower bound for nodal voltages Vup = 1.05*Vbase #Upper bound for nodal voltages V_SS = 1.05*Vbase #Voltage at the substations l__sr = np.full((np.shape(Omega_N)[0],np.shape(Omega_N)[0]),0,dtype=float) #Feeder length. for b in branch: s, r = b[0] l__sr[s-1,r-1] = b[1] l__sr[r-1,s-1] = b[1] n__DG = np.add.reduce([np.shape(Omega_p[p]) for p in P])[0] #Number of candidate nodes for installation of distributed generation n__T = np.shape(T)[0] #number of time stages pf = 0.9 #System power factor H = Vup - V_ #Ref: DOI: 10.1109/TPWRS.2017.2764331 # ============================================================================= # Assets Data # ============================================================================= i = 7.1/100 #Annual interest rate. IB__t = [5000000, 5000000, 5000000, 5000000, 5000000, 5000000, 5000000, 5000000, 5000000, 5000000] #Investment budget for stage t Eta_l = {"NRF": 25, #Lifetimes of feeders in year "NAF": 25 } Eta_NT = 15 #Lifetime of new transformers Eta_p = {"C": 20, #Lifetime of generators "W": 20 } Eta_SS = 100 #Lifetime of substations RR_l = {"NRF": (i*(1+i)**Eta_l["NRF"])/((1+i)**Eta_l["NRF"] - 1), #Capital recovery rates for investment in feeders "NAF": (i*(1+i)**Eta_l["NAF"])/((1+i)**Eta_l["NAF"] - 1) } RR_NT = (i*(1+i)**Eta_NT)/((1+i)**Eta_NT - 1) #Capital recovery rates for investment in new transformers RR_p = {"C": (i*(1+i)**Eta_p["C"])/((1+i)**Eta_p["C"] - 1), #Capital recovery rates for investment in generators "W": (i*(1+i)**Eta_p["W"])/((1+i)**Eta_p["W"] - 1) } RR_SS = i #Capital recovery rates for investment in substations. Z_l_k = {"EFF": [0.557], #Unitary impedance magnitude of feeders "ERF": [0.557], "NRF": [0.478, 0.423], "NAF": [0.557, 0.478] } Z_tr_k = {"ET": [0.16], #impedance magnitude of transformers "NT": [0.25, 0.13] } Delta__b = [2000, 5760, 1000] #Duration of load level b Mi__b = load_factor #Loading factor of load level b #Vare = 0.25 #Penetration limit for distributed generation. # ============================================================================= # Piecewise Linearization # ============================================================================= n__V = 3 #number of blocks of the piecewise linear energy losses M_l_kV = {"EFF": [[]], #Slope of block V of the piecewise linear energy losses for feeders "ERF": [[]], "NRF": [[], []], "NAF": [[], []] } A_l_kV = {"EFF": [[]], #Width of block V of the piecewise linear energy losses for feeders "ERF": [[]], "NRF": [[], []], "NAF": [[], []] } for l in L: for k in K_l[l]: for V in range(1,n__V+1,1): M_l_kV[l][k-1].append((2*V - 1)*Z_l_k[l][k-1]*Fup_l_k[l][k-1]/(n__V*(Vbase**2))) A_l_kV[l][k-1].append(Fup_l_k[l][k-1]/n__V) M_tr_kV = {"ET": [[]], #Slope of block V of the piecewise linear energy losses for transformers "NT": [[],[]] } A_tr_kV = {"ET": [[]], #Width of block V of the piecewise linear energy losses for transformers "NT": [[],[]] } for tr in TR: for k in K_tr[tr]: for V in range(1,n__V+1,1): M_tr_kV[tr][k-1].append((2*V - 1)*Z_tr_k[tr][k-1]*Gup_tr_k[tr][k-1]/(n__V*(V_SS**2))) A_tr_kV[tr][k-1].append(Gup_tr_k[tr][k-1]/n__V) ```
{ "source": "jonasvj/MLOps", "score": 2 }
#### File: src/models/model.py ```python from torch import nn import torch.nn.functional as F import pytorch_lightning as pl import torchmetrics from torch.optim import Adam def conv_dim(input_height, input_width, kernel_size, stride, padding): new_height = int( (input_height - kernel_size[0] + 2 * padding[0]) / stride[0] + 1) new_width = int( (input_width - kernel_size[1] + 2 * padding[1]) / stride[1] + 1) return (new_height, new_width) class ConvNet(nn.Module): def __init__(self, height=28, width=28, channels=1, classes=10, dropout=0.25): super(ConvNet, self).__init__() self.width = width self.height = height self.channels = channels self.classes = classes self.dropout_rate = dropout self.conv_1 = nn.Conv2d( in_channels=self.channels, out_channels=16, kernel_size=8, stride=1, padding=0, ) self.conv_1_dim = conv_dim( self.height, self.width, self.conv_1.kernel_size, self.conv_1.stride, self.conv_1.padding, ) self.conv_2 = nn.Conv2d( in_channels=16, out_channels=8, kernel_size=4, stride=1, padding=0, ) self.conv_2_dim = conv_dim( self.conv_1_dim[0], self.conv_1_dim[1], self.conv_2.kernel_size, self.conv_2.stride, self.conv_2.padding, ) self.max_pool = nn.MaxPool2d( kernel_size=2, stride=1, padding=0) self.max_pool_dim = conv_dim( self.conv_2_dim[0], self.conv_2_dim[1], (self.max_pool.kernel_size, self.max_pool.kernel_size), (self.max_pool.stride, self.max_pool.stride), (self.max_pool.padding, self.max_pool.padding), ) self.linear = nn.Linear( in_features=self.conv_2.out_channels * self.max_pool_dim[0] * self.max_pool_dim[1], out_features=self.classes, ) self.dropout = nn.Dropout(p=self.dropout_rate) self.embeddings = None def forward(self, x): if x.ndim not in [3, 4]: raise ValueError('Expected input to be a 3D or 4D tensor') x = self.dropout(F.relu(self.conv_1(x))) x = self.dropout(F.relu(self.conv_2(x))) x = self.dropout(self.max_pool(x)) self.embeddings = x.reshape(-1, self.linear.in_features) x = self.linear(self.embeddings) return x @staticmethod def add_model_specific_args(parent_parser): parser = parent_parser.add_argument_group('ConvNet') parser.add_argument('--height', type=int, default=28) parser.add_argument('--width', type=int, default=28) parser.add_argument('--channels', type=int, default=1) parser.add_argument('--classes', type=int, default=10) parser.add_argument('--dropout', type=float, default=0.25) return parent_parser @staticmethod def from_argparse_args(namespace): ns_dict = vars(namespace) args = { 'height': ns_dict.get('height', 28), 'width': ns_dict.get('width', 28), 'channels': ns_dict.get('channels', 1), 'classes': ns_dict.get('classes', 10), 'dropout': ns_dict.get('dropout', 0.25), } return args class ImageClassifier(pl.LightningModule): def __init__(self, model, lr=3e-4): super(ImageClassifier, self).__init__() self.model = model self.lr = lr self.loss_func = nn.CrossEntropyLoss() self.train_acc = torchmetrics.Accuracy() self.val_acc = torchmetrics.Accuracy() self.test_acc = torchmetrics.Accuracy() self.save_hyperparameters() def forward(self, x): # use forward for inference/predictions return self.model(x) def training_step(self, batch, batch_idx): images, targets = batch preds = self.model(images) loss = self.loss_func(preds, targets) return {'loss': loss, 'preds': preds, 'targets': targets} def training_step_end(self, outputs): self.train_acc(F.softmax(outputs['preds'], dim=1), outputs['targets']) self.log_dict( {'train_acc': self.train_acc, 'train_loss': outputs['loss']}, on_step=True, on_epoch=True, prog_bar=True) return outputs def validation_step(self, batch, batch_idx): images, targets = batch preds = self.model(images) loss = self.loss_func(preds, targets) return {'loss': loss, 'preds': preds, 'targets': targets} def validation_step_end(self, outputs): self.val_acc(F.softmax(outputs['preds'], dim=1), outputs['targets']) self.log_dict( {'val_acc': self.val_acc, 'val_loss': outputs['loss']}, on_step=True, on_epoch=True, prog_bar=True) def test_step(self, batch, batch_idx): images, targets = batch preds = self.model(images) loss = self.loss_func(preds, targets) return {'loss': loss, 'preds': preds, 'targets': targets} def test_step_end(self, outputs): self.test_acc(F.softmax(outputs['preds'], dim=1), outputs['targets']) self.log_dict( {'test_acc': self.test_acc, 'test_loss': outputs['loss']}, on_step=False, on_epoch=True, prog_bar=False) def configure_optimizers(self): return Adam(self.parameters(), lr=self.lr) @staticmethod def add_model_specific_args(parent_parser): parser = parent_parser.add_argument_group('ImageClassifier') parser.add_argument('--lr', default=3e-4, type=float) return parent_parser @staticmethod def from_argparse_args(namespace): ns_dict = vars(namespace) args = { 'lr': ns_dict.get('lr', 3e-4), } return args ``` #### File: MLOps/tests/test_training.py ```python import torch import wandb from argparse import Namespace from src.models.train_model import train, evaluate from src.utils import get_data wandb.init(mode='disabled') args_dict = { 'epochs': 2, 'dropout': 0.25, 'lr': 3e-4, 'mb_size': 64, 'data_path': 'data/' } args = Namespace(**args_dict) train_loader, test_loader = get_data(args) class TestTrain: def test_weights(self): model, init_weights = train(args, train_loader, test_steps=2) assert not torch.all(torch.eq(init_weights, model.linear.weight)) def test_evaluate(self): model, init_weights = train(args, train_loader, test_steps=1) accuracy = evaluate(model, test_loader) assert isinstance(accuracy, float) assert 0 <= accuracy and accuracy <= 1 ```
{ "source": "jonasvj/protein-generation", "score": 3 }
#### File: src/models/gru.py ```python import torch import torch.nn as nn class GruNet(nn.Module): """GRU network that accepts a mini batch""" def __init__(self, n_tokens, embedding_size, hidden_size, n_layers, dropout=0.5, bidirectional=False, pad_idx=0): super(GruNet, self).__init__() self.model = "gru" self.n_tokens = n_tokens self.embedding_size = embedding_size self.hidden_size = hidden_size self.n_layers = n_layers self.dropout = dropout self.bidirectional = bidirectional self.pad_idx = pad_idx if self.bidirectional: self.num_directions = 2 else: self.num_directions = 1 self.encoder = nn.Embedding(self.n_tokens, self.embedding_size, padding_idx=self.pad_idx) self.drop = nn.Dropout(self.dropout) self.rnn = nn.GRU(input_size=self.embedding_size, hidden_size=self.hidden_size, num_layers=self.n_layers, dropout=self.dropout, bidirectional=self.bidirectional) self.decoder = nn.Linear(self.hidden_size*self.num_directions, self.n_tokens) def forward(self, input_tensor, input_lengths): """Expects input tensor of shape (batch, max_seq_len)""" # Embed input emb = self.encoder(input_tensor) emb = self.drop(emb) # Reshape from (batch, max_seq_len, emb) to (max_seq_len, batch, emb) emb = emb.permute(1, 0, 2) # RNN emb = nn.utils.rnn.pack_padded_sequence(emb, input_lengths) output, hidden_state = self.rnn(emb) output, _ = nn.utils.rnn.pad_packed_sequence(output) output = self.drop(output) # Get embedding of sequence emb_seq = hidden_state[-1] # Decode decoded = self.decoder(output) # Reshape from (max_seq_len, batch, n_tokens) to # (batch, n_tokens, max_seq_length) decoded = decoded.permute(1,2,0) return {'output': decoded, 'emb_1': emb_seq, 'emb_2': emb_seq} if __name__ == '__main__': models_args = {'n_tokens': 10, 'embedding_size': 5, 'hidden_size': 32, 'n_layers': 2, 'dropout': 0.5, 'bidirectional': False, 'pad_idx': 0} net = GruNet(**models_args) input_ = torch.LongTensor([[1,4,5,1,2],[1,2,3,0,0]]) input_lengths = [5, 3] output = net(input_, input_lengths) ```
{ "source": "jonasvj/TFDE", "score": 3 }
#### File: TFDE/datasets/synthetic.py ```python import datasets import numpy as np class EightGaussians: class Data: def __init__(self, data): self.x = data.astype(np.float32) self.N = self.x.shape[0] def __init__(self): file = datasets.root + 'synthetic/8gaussians.npy' trn, val, tst = load_data_normalised(file) self.trn = self.Data(trn) self.val = self.Data(val) self.tst = self.Data(tst) self.n_dims = self.trn.x.shape[1] class Checkerboard: class Data: def __init__(self, data): self.x = data.astype(np.float32) self.N = self.x.shape[0] def __init__(self): file = datasets.root + 'synthetic/checkerboard.npy' trn, val, tst = load_data_normalised(file) self.trn = self.Data(trn) self.val = self.Data(val) self.tst = self.Data(tst) self.n_dims = self.trn.x.shape[1] class TwoSpirals: class Data: def __init__(self, data): self.x = data.astype(np.float32) self.N = self.x.shape[0] def __init__(self): file = datasets.root + 'synthetic/2spirals.npy' trn, val, tst = load_data_normalised(file) self.trn = self.Data(trn) self.val = self.Data(val) self.tst = self.Data(tst) self.n_dims = self.trn.x.shape[1] def load_data(root_path): rng = np.random.RandomState(seed=42) data = np.load(root_path) rng.shuffle(data) n_train = int((1/3) * data.shape[0]) n_val = int((1/3) * data.shape[0]) data_train = data[0:n_train] data_val = data[n_train:n_train+n_val] data_test = data[n_train+n_val:] return data_train, data_val, data_test def load_data_normalised(root_path): data_train, data_val, data_test = load_data(root_path) mu = data_train.mean(axis=0) s = data_train.std(axis=0) data_train = (data_train - mu) / s data_val = (data_val - mu) / s data_test = (data_test - mu) / s return data_train, data_val, data_test ``` #### File: jonasvj/TFDE/plot_grid.py ```python import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt def tt_params(K, M): return K + 3*M*K**2 def tt_dof(K, M): return (K-1) + M*K*(K-1) + 2*M*K**2 def bic(n, k, nllh_per_sample): log_lh = -1*nllh_per_sample*n return k*np.log(n) - 2*log_lh def aic(n, k, nllh_per_sample): log_lh = -1*nllh_per_sample*n return 2*k - 2*log_lh def n_params(model, K, M): if model == 'TT': return (K-1) + M*K*(K-1) + 2*M*K*K elif model == 'CP': return (K-1) + 2*M*K elif model == 'GMM': return (K-1) + (2*M + M*(M-1)/2)*K sizes = { 'power': {'n_train': 1659917, 'n_val': 184435, 'n_test': 204928, 'M': 6}, 'gas': {'n_train': 852174, 'n_val': 94685, 'n_test': 105206, 'M': 8}, 'hepmass': {'n_train': 315123, 'n_val': 35013, 'n_test': 174987, 'M': 21}, 'miniboone': {'n_train': 29556, 'n_val': 3284, 'n_test': 3648, 'M': 43}, 'bsds300': {'n_train': 1000000, 'n_val': 50000, 'n_test': 250000, 'M': 63}, '8gaussians': {'n_train': 30000, 'n_val': 30000, 'n_test': 30000, 'M': 2}, 'checkerboard': {'n_train': 30000, 'n_val': 30000, 'n_test': 30000, 'M': 2}, '2spirals': {'n_train': 30000, 'n_val': 30000, 'n_test': 30000, 'M': 2} } df = pd.read_csv('results/grid_results.txt', index_col=0) df_gmm = pd.read_csv('results/gmm_results.txt', index_col=0) df = df.append(df_gmm, ignore_index=True) df = df[df.optimal_order == 1] print(df) # Add new columns df['M'] = df.apply(lambda row: sizes[row.dataset]['M'], axis=1) df['dof'] = df.apply(lambda row: n_params(row.model_type, row.K, row.M), axis=1) datasets = ['hepmass', 'miniboone'] subsample_sizes = [1750, 7000, 28000] groups = df.groupby(['dataset', 'subsample_size']) fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(24, 12), sharex='all', sharey='row') for i, (group, frame) in enumerate(groups): row_idx = datasets.index(group[0]) col_idx = subsample_sizes.index(group[1]) model_groups = frame.groupby(['model_type']) for model, model_frame in model_groups: mean = model_frame.groupby('dof').mean() sem = model_frame.groupby('dof').sem() min_ = model_frame.groupby('dof').min() axes[row_idx, col_idx].errorbar( mean.index, mean.nllh_test, yerr=sem.nllh_test, fmt='.:', label=model, alpha=.75, capsize=3, capthick=1) axes[row_idx, col_idx].set_xlabel('Free parameters') axes[row_idx, col_idx].set_ylabel(f'Test NLLH per sample ({group[0]})') axes[row_idx, col_idx].set_title(f'Subsample size: {group[1]}') axes[row_idx, col_idx].legend() fig.savefig('plots/' + 'grid_plot.pdf') plt.close() ```
{ "source": "jonasw234/bookcut", "score": 3 }
#### File: bookcut/bookcut/repositories.py ```python from bs4 import BeautifulSoup as soup import mechanize from bookcut.mirror_checker import pageStatus, main as mirror_checker, CONNECTION_ERROR_MESSAGE import pandas as pd ARCHIV_URL = 'https://export.arxiv.org/find/grp_cs,grp_econ,grp_eess,grp_math,grp_physics,grp_q-bio,grp_q-fin,grp_stat' ARCHIV_BASE = 'https://export.arxiv.org' def arxiv(term): # Searching Arxiv.org and returns a DataFrame with the founded results. status = pageStatus(ARCHIV_URL) if status: br = mechanize.Browser() br.set_handle_robots(False) # ignore robots br.set_handle_refresh(False) # br.addheaders = [('User-agent', 'Firefox')] br.open(ARCHIV_URL) br.select_form(nr=0) input_form = term br.form['query'] = input_form ac = br.submit() html_from_page = ac html_soup = soup(html_from_page, 'html.parser') t = html_soup.findAll('div', {'class': 'list-title mathjax'}) titles = [] for i in t: raw = i.text raw = raw.replace('Title: ', '') raw = raw.replace('\n', "") titles.append(raw) authors = [] auth_soup = html_soup.findAll('div', {'class': 'list-authors'}) for i in auth_soup: raw = i.text raw = raw.replace('Authors:', '') raw = raw.replace('\n', "") authors.append(raw) extensions = [] urls = [] ext = html_soup.findAll('span', {'class': 'list-identifier'}) for i in ext: a = i.findAll('a') link = a[1]['href'] extensions.append(str(a[1].text)) urls.append(ARCHIV_BASE+link) arxiv_df = pd.DataFrame({'Title': titles, 'Author(s)': authors, 'Url': urls, 'Extension': extensions}) return arxiv_df else: print(CONNECTION_ERROR_MESSAGE.format('ArXiv')) return None def libgen_repo(term): # Searching LibGen and returns results DataFrame try: url = mirror_checker() if url is not None: br = mechanize.Browser() br.set_handle_robots(False) # ignore robots br.set_handle_refresh(False) # br.addheaders = [('User-agent', 'Firefox')] br.open(url) br.select_form('libgen') input_form = term br.form['req'] = input_form ac = br.submit() html_from_page = ac html_soup = soup(html_from_page, 'html.parser') table = html_soup.find_all('table')[2] table_data = [] mirrors = [] extensions = [] for i in table: j = 0 try: td = i.find_all('td') for tr in td: # scrape mirror links if j == 9: temp = tr.find('a', href=True) mirrors.append(temp['href']) j = j + 1 row = [tr.text for tr in td] table_data.append(row) extensions.append(row[8]) except: pass # Clean result page for j in table_data: j.pop(0) del j[8:15] headers = ['Author(s)', 'Title', 'Publisher', 'Year', 'Pages', 'Language', 'Size', 'Extension'] tabular = pd.DataFrame(table_data) tabular.columns = headers tabular['Url'] = mirrors return tabular except ValueError: #create emptyDataframe df = pd.DataFrame() return df ``` #### File: jonasw234/bookcut/conftest.py ```python def pytest_addoption(parser): parser.addoption('--web', action='store_true', dest="web", default=False, help="enable tests requiring an internet connection") def pytest_configure(config): if not config.option.web: setattr(config.option, 'markexpr', 'not web') ``` #### File: bookcut/tests/test_bookcut.py ```python import pytest from click.testing import CliRunner from bookcut import __version__ from bookcut.bookcut import entry def test_entry_with_version_option(): cli_output = CliRunner().invoke(entry, ["--version"]) assert cli_output.exit_code == 0 assert cli_output.output == f"commands, version {__version__}\n" ```
{ "source": "jonasw234/systeminfo.py", "score": 2 }
#### File: systeminfo.py/systeminfo/systeminfo.py ```python import os import sys from datetime import datetime, timedelta from docopt import docopt from regipy.exceptions import RegistryKeyNotFoundException from regipy.registry import ConstError, RegistryHive def determine_current_control_set(system_hive: RegistryHive) -> str: """ Determine the current control set. Parameters ---------- system_hive : RegistryHive The system hive to parse Returns ------- str The path to the current control set """ current_control_set = system_hive.get_key("\\Select").get_value("Current") for control_set in system_hive.CONTROL_SETS: if int(control_set[-3:]) == current_control_set: current_control_set = control_set break else: raise ValueError("Error determining current control set.") return current_control_set def parse_system_hive(system_hive: RegistryHive) -> dict: """ Parse system hive and return needed information. Parameters ---------- system_hive : RegistryHive The system hive to parse Returns ------- dict Dictionary with the information for systeminfo """ # Determine current control set current_control_set = determine_current_control_set(system_hive) # Determine current hardware config try: current_hardware_config = system_hive.get_key( "SYSTEM\\HardwareConfig" ).get_value("LastConfig") except RegistryKeyNotFoundException: current_hardware_config = None # Hostname system_hive_dict = { "hostname": system_hive.get_key( f"{current_control_set}\\Services\\Tcpip\\Parameters" ).get_value("Hostname") } # BIOS Version if current_hardware_config: bios_version = system_hive.get_key( f"SYSTEM\\HardwareConfig\\{current_hardware_config}" ).get_value("BIOSVersion") bios_vendor = system_hive.get_key( f"SYSTEM\\HardwareConfig\\{current_hardware_config}" ).get_value("BIOSVendor") bios_release_date = system_hive.get_key( f"SYSTEM\\HardwareConfig\\{current_hardware_config}" ).get_value("BIOSReleaseDate") system_hive_dict[ "bios_version" ] = f"{bios_vendor} {bios_version}, {bios_release_date}" else: system_hive_dict["bios_version"] = "UNKNOWN UNKNOWN, UNKNOWN" # Domain system_hive_dict["domain"] = system_hive.get_key( f"{current_control_set}\\Services\\Tcpip\\Parameters" ).get_value("Domain") system_hive_dict["domain"] = ( system_hive_dict["domain"] if system_hive_dict["domain"] != 0 else "WORKGROUP" ) # Page file locations system_hive_dict["page_file_locations"] = system_hive.get_key( f"{current_control_set}\\Control\\Session Manager\\Memory Management" ).get_value("PagingFiles")[::3] # TODO This could probably be improved if I could find the system drive letter in the registry for idx, page_file_location in enumerate(system_hive_dict["page_file_locations"]): if page_file_location[0] == "?": system_hive_dict["page_file_locations"][idx] = page_file_location.replace( "?", system_hive.get_key( f"{current_control_set}\\Control\\Session Manager\\Memory Management" ).get_value("ExistingPageFiles")[0][4], ) # Page file max size system_hive_dict["page_file_max_sizes"] = system_hive.get_key( f"{current_control_set}\\Control\\Session Manager\\Memory Management" ).get_value("PagingFiles")[2::3] # Boot device system_hive_dict["boot_device"] = system_hive.get_key("SYSTEM\\Setup").get_value( "SystemPartition" ) if current_hardware_config: # System manufacturer system_hive_dict["manufacturer"] = system_hive.get_key( f"SYSTEM\\HardwareConfig\\{current_hardware_config}" ).get_value("SystemManufacturer") # System model system_hive_dict["model"] = system_hive.get_key( f"SYSTEM\\HardwareConfig\\{current_hardware_config}" ).get_value("SystemProductName") else: system_hive_dict["manufacturer"] = "UNKNOWN" system_hive_dict["model"] = "UNKNOWN" # System type system_hive_dict["type"] = ( system_hive.get_key(f"{current_control_set}\\Enum\\ROOT\\ACPI_HAL\\0000") .get_value("DeviceDesc") .split(";")[1] .replace("ACPI ", "") ) # Network adapters # MAC address can optionally be changed with NetworkAddress entry network_adapters = dict() for network_adapter in system_hive.get_key( "".join( [ current_control_set, "\\Control\\Class\\{4d36e972-e325-11ce-bfc1-08002be10318}", ] ) ).iter_subkeys(): if network_adapter.get_value("NetCfgInstanceId"): network_adapters[network_adapter.get_value("NetCfgInstanceId")] = ( network_adapter.get_value("DriverDesc"), network_adapter.get_value("NetworkAddress"), ) interfaces = dict() for interface in system_hive.get_key( "".join([current_control_set, "\\Services\\Tcpip\\Parameters\\Interfaces"]) ).iter_subkeys(): if not network_adapters.get(interface.name.upper()): continue interfaces[interface.name] = { "desc": network_adapters[interface.name.upper()][0], "mac": network_adapters[interface.name.upper()][1], "dhcp_activated": interface.get_value("EnableDHCP") == 1, "dhcp_server": interface.get_value("DhcpServer"), "ip_addresses": [interface.get_value("DhcpIPAddress")] if interface.get_value("DhcpIPAddress") else interface.get_value("IPAddress"), "connection_name": system_hive.get_key( "".join( [ current_control_set, "\\Control\\Network\\{4D36E972-E325-11CE-BFC1-08002BE10318}\\", interface.name.upper(), "\\Connection", ] ) ).get_value("Name"), } if not interfaces[interface.name]["ip_addresses"]: del interfaces[interface.name] system_hive_dict["network_cards"] = interfaces # Processor(s) system_hive_dict["processors"] = system_hive.get_key( f"{current_control_set}\\Control\\Session Manager\\Environment" ).get_value( "PROCESSOR_IDENTIFIER" ) # This is technically not correct, because the real value is in the volatile HKLM\\HARDWARE\\DESCRIPTION\\System\\CentralProcessor subkeys # Windows/System directory lsa_library = system_hive.get_key( f"{current_control_set}\\Services\\Lsa\\Performance" ).get_value( "Library" ) # It’s a bit of a hack, but I can’t find the real key to read system_hive_dict["windows_directory"] = "\\".join(lsa_library.split("\\")[:2]) system_hive_dict["system_directory"] = "\\".join(lsa_library.split("\\")[:3]) # Return results return system_hive_dict def parse_software_hive(software_hive: RegistryHive) -> dict: """ Parse software hive and return needed information. Parameters ---------- software_hive : RegistryHive The software hive to parse Returns ------- dict Dictionary with the information for systeminfo """ # Registered owner software_hive_dict = { "registered_owner": software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("RegisteredOwner") } # OS name software_hive_dict["os_name"] = " ".join( [ "Microsoft", software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("ProductName"), ] ) # OS build type software_hive_dict["os_build_type"] = software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("CurrentType") # Product ID software_hive_dict["product_id"] = software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("ProductId") # Install date software_hive_dict["install_date"] = software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value( "InstallDate" ) # UTC, Needs timezone offset # Hotfixes software_hive_dict["hotfix"] = set( hotfix.get_value("InstallName").split("_for_")[1].split("~")[0] for hotfix in software_hive.get_key( "Software\\Microsoft\\Windows\\CurrentVersion\\Component Based Servicing\\Packages" ).iter_subkeys() if "_for_KB" in hotfix.get_value("InstallName") and hotfix.get_value("CurrentState") == 112 ) # 112 is successfully installed software_hive_dict["hotfix"].update( set( hotfix.get_value("InstallLocation").split("-")[1] for hotfix in software_hive.get_key( "Software\\Microsoft\\Windows\\CurrentVersion\\Component Based Servicing\\Packages" ).iter_subkeys() if "RollupFix" in hotfix.get_value("InstallName") and hotfix.get_value("CurrentState") == 112 ) ) # 112 is successfully installed # OS Version software_hive_dict["os_version"] = " ".join( [ software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("ProductName"), "N/A Build", software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("CurrentBuild"), ] ) # Registered organization software_hive_dict["registered_organization"] = software_hive.get_key( "Software\\Microsoft\\Windows NT\\CurrentVersion" ).get_value("RegisteredOrganization") # Return results return software_hive_dict def parse_timezone_information( system_hive: RegistryHive, software_hive: RegistryHive ) -> dict: """ Parse system and software hives and return needed information. Parameters ---------- system_hive : RegistryHive The system hive to parse software_hive : RegistryHive The software hive to parse Returns ------- dict Dictionary with the information for systeminfo """ # Determine current control set current_control_set = determine_current_control_set(system_hive) # Timezone information timezone_key_name = ( system_hive.get_key(f"{current_control_set}\\Control\\TimeZoneInformation") .get_value("TimeZoneKeyName") .replace(str(b"\x00"), "") ) timezone_key_name = timezone_key_name[ : timezone_key_name.find("Time") + len("Time") ] timezone_information = { "timezone_desc": software_hive.get_key( f"Software\\Microsoft\\Windows NT\\CurrentVersion\\Time Zones\\{timezone_key_name}" ).get_value("Display") } timezone_information["timezone_offset"] = ( timezone_information["timezone_desc"] .replace("-", "+") .split("+")[1] .split(")")[0] ) # Return results return timezone_information def parse_default_hive(default_hive: RegistryHive) -> dict: """ Parse default hive and return needed information. Parameters ---------- default_hive : RegistryHive The default hive to parse Returns ------- dict Dictionary with the information for systeminfo """ default_hive_dict = { "system_locale": ";".join( [ default_hive.get_key( ".DEFAULT\\Control Panel\\International" ).get_value("LocaleName"), default_hive.get_key( ".DEFAULT\\Control Panel\\International" ).get_value("sCountry"), ] ) } # Return results return default_hive_dict def main(): """Find registry hives and invoke parsers.""" # Parse command line arguments args = docopt(__doc__) if not os.path.isdir(args["--mountpoint"]): print(f'Error: {args["--mountpoint"]} is not a directory.') sys.exit(1) # Read registry hives software_hive = None system_hive = None try: # System hive system_hive_full_path = os.path.join( args["--mountpoint"], "Windows", "System32", "config", "SYSTEM" ) if os.path.isfile(os.path.join(args["--mountpoint"], "SYSTEM")): system_hive = RegistryHive(os.path.join(args["--mountpoint"], "SYSTEM")) elif os.path.isfile(system_hive_full_path): system_hive = RegistryHive(system_hive_full_path) else: print( f'Error: Neither {os.path.join(args["--mountpoint"], "SYSTEM")} nor {system_hive_full_path} seem to be correct. Please set the mountpoint directly to the path for the registry hives.' ) sys.exit(1) # Software hive software_hive_full_path = os.path.join( args["--mountpoint"], "Windows", "System32", "config", "SOFTWARE" ) if os.path.isfile(os.path.join(args["--mountpoint"], "SOFTWARE")): software_hive = RegistryHive(os.path.join(args["--mountpoint"], "SOFTWARE")) elif os.path.isfile(software_hive_full_path): software_hive = RegistryHive(software_hive_full_path) else: print( f'Error: Neither {os.path.join(args["--mountpoint"], "SOFTWARE")} nor {software_hive_full_path} seem to be correct. Please set the mountpoint directly to the path for the registry hives.' ) sys.exit(1) # Default hive default_hive = None default_hive_full_path = os.path.join( args["--mountpoint"], "Windows", "System32", "config", "DEFAULT" ) if os.path.isfile(os.path.join(args["--mountpoint"], "DEFAULT")): default_hive = RegistryHive(os.path.join(args["--mountpoint"], "DEFAULT")) elif os.path.isfile( os.path.join( args["--mountpoint"], "Windows", "System32", "config", "DEFAULT" ) ): default_hive = RegistryHive(default_hive_full_path) else: print( f'Warning: Neither {os.path.join(args["--mountpoint"], "DEFAULT")} nor {default_hive_full_path} seem to be correct. System locale will not be correct.' ) except ConstError: print("Invalid registry hives found.") sys.exit(1) # Call parsing methods systeminfo = parse_system_hive(system_hive) systeminfo.update(parse_software_hive(software_hive)) systeminfo.update(parse_timezone_information(system_hive, software_hive)) if default_hive: systeminfo.update(parse_default_hive(default_hive)) # Prepare systeminfo-like output output = f"""Host Name: {systeminfo['hostname'].upper()} OS Name: {systeminfo['os_name']} OS Version: {systeminfo['os_version']} OS Manufacturer: Microsoft Corporation * OS Configuration: Standalone Workstation * OS Build Type: {systeminfo['os_build_type']} Registered Owner: {systeminfo['registered_owner']} Registered Organization: {systeminfo['registered_organization'] if systeminfo['registered_organization'] else ''} Product ID: {systeminfo['product_id']} Original Install Date: {(datetime.fromtimestamp(systeminfo['install_date']) + timedelta(hours=int(systeminfo['timezone_offset'].split(':')[0]), minutes=int(systeminfo['timezone_offset'].split(':')[1]))).strftime('%d-%m-%Y, %H:%M:%S')} System Boot Time: 0-0-0000, 00:00:00 System Manufacturer: {systeminfo['manufacturer']} System Model: {systeminfo['model']} System Type: {systeminfo['type']} Processor(s): 1 Processor(s) Installed. [01]: {systeminfo['processors']} BIOS Version: {systeminfo['bios_version']} Windows Directory: {systeminfo['windows_directory']} System Directory: {systeminfo['system_directory']} Boot Device: {systeminfo['boot_device']} System Locale: {systeminfo.get('system_locale', 'UNKNOWN')} Input Locale: en-us;English (United States) * Time Zone: {systeminfo['timezone_desc']} Total Physical Memory: 0 MB Available Physical Memory: 0 MB virtual Memory: Max Size: {sum([int(size) for size in systeminfo['page_file_max_sizes']]):,}{' + x' if any([size for size in systeminfo['page_file_max_sizes'] if size == '0']) or not systeminfo['page_file_max_sizes'] else ''} MB Vrtual Memory: Available: 0 MB Virtual Memory: In Use: 0 MB Page File Location(s): """ padding = "" for page_file_location in systeminfo["page_file_locations"]: output += f"{padding}{page_file_location}\n" padding = " " output += f"""Domain: {systeminfo['domain']} Logon Server: \\\\UNKNOWN Hotfix(s): {len(systeminfo['hotfix'])} Hotfix(s) Installed. """ for idx, hotfix in enumerate(systeminfo["hotfix"], start=1): output += f" [{str(idx).zfill(2)}]: {hotfix}\n" output += f'Network Card(s): {len(systeminfo["network_cards"])} NIC(s) Installed.' for idx, network_card in enumerate(systeminfo["network_cards"].values(), start=1): output += f""" [{str(idx).zfill(2)}]: {network_card['desc']} Connection Name: {network_card['connection_name']} DHCP Enabled: {'Yes' if network_card['dhcp_activated'] else 'No'} IP address(es)""" for idx2, ip_address in enumerate(network_card["ip_addresses"], start=1): output += f"\n [{str(idx2).zfill(2)}]: {ip_address}" output += """ Hyper-V Requirements: VM Monitor Mode Extensions: UNKOWN Virtualization Enabled In Firmware: UNKOWN Second Level Address Translation: UNKOWN Data Execution Prevention Available: UNKOWN """ print(output) if __name__ == "__main__": main() ```
{ "source": "jonasw234/TAINTalyzing", "score": 3 }
#### File: modules/c/grammar.py ```python from __future__ import annotations import logging from typing import Generator from pyparsing import * from ..abstract_grammar import AbstractGrammar class Grammar(AbstractGrammar): """Grammar definition for C files.""" logger = logging.getLogger('taintalyzing') def __init__(self, file_): """Constructor for a grammar object. Parameters ---------- file_ : InputFile The file to parse """ super().__init__(file_) ParserElement.enablePackrat() # Helpers self.attribute_separator = oneOf('. ->') self.ident = Word(alphas, alphanums + '_') self.ident = Combine(ZeroOrMore(self.ident + self.attribute_separator)('object_name*') + self.ident('ident*')) self.vartype = Suppress(Combine(Optional(oneOf('signed unsigned')) + self.ident + Optional(Word('*')), adjacent=False)) self.array_index = '[' + Word(nums) + ']' self.rvalue = Forward() self.func_call = Forward() self.operators = Suppress(oneOf('|| && | & ^ . -> + - * / % << >> == != < <= > >=')) self.expression = Group(self.rvalue + ZeroOrMore(self.operators + self.rvalue | self.func_call)) self.expression |= Group(self.func_call + ZeroOrMore(self.operators + (self.rvalue | self.func_call))) self.stmt = Forward() # Function calls self.param_list = Optional(delimitedList(self.expression)) self.func_call << self.ident('name') + Suppress('(') + self.param_list('args') + \ Suppress(')') # Control structures -> increase edge count self.control_structures = ((Keyword('case') + self.expression + ':') | (Keyword('default') + ':') | (Keyword('while') + '(' + self.expression + ')') | (Keyword('for') + '(' + Optional(self.expression) + ';' + Optional(self.expression) + ';' + Optional(self.expression) + ')') | (Keyword('goto') + self.ident))('control_structure') # Mutually exclusive combinations: else if-else if, else if-else, else-if, if-else if, if-else, if, # else self.mutually_exclusive_helper_expr = Suppress('(') + self.expression + Suppress(')') self.mutually_exclusive_helper_body = Suppress('{') + ZeroOrMore(self.stmt) + Suppress('}') self.mutually_exclusive_helper_body |= self.stmt self.mutually_exclusive = (Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body))('alternative') self.mutually_exclusive |= (Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else') + self.mutually_exclusive_helper_body))('alternative') self.mutually_exclusive |= (Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body)('alternative') self.mutually_exclusive |= (Keyword('if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body)) self.mutually_exclusive |= (Keyword('if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else') + self.mutually_exclusive_helper_body)) self.mutually_exclusive |= (Keyword('if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body) self.mutually_exclusive |= (Keyword('else') + self.mutually_exclusive_helper_body)('alternative-end') # Function body self.prototype = Forward() self.func_body = Group(OneOrMore(Group(SkipTo(self.stmt | self.control_structures, failOn=self.prototype, include=True)))) # Assignments self.assignment = self.ident('lvalue') + Optional(self.array_index) + \ Suppress(oneOf('= -= += ^= &= |= *= %= /=')) + self.expression('expression') self.assignment |= self.vartype + self.assignment # Return self.return_ = Suppress(Keyword('return')) + self.rvalue('return_value') # Statements self.stmt << (self.func_call('func_call') | self.assignment('assignment') | self.return_('return')) + Suppress(';') self.rvalue << (self.func_call | self.ident + Optional(self.array_index) | Word(nums) | quotedString) # Function definitions self.arg_list = Optional(delimitedList(Group(self.vartype + self.ident('name') + Suppress(ZeroOrMore('[]'))))) self.prototype << self.vartype('type') + self.ident('name') + Suppress('(') + \ self.arg_list('args') + Suppress(')') self.func_def = self.prototype + Suppress('{') + self.func_body('body') + Suppress('}') self.func_def.ignore(cppStyleComment) def get_statement_count(self, start: int, end: int) -> int: """Return the number of statements between `start` and `end`. Statements are all lines that have an actual effect on the program flow, e.g. method calls or loops. Parameters ---------- start : int The start column end : int The end column Returns ------- int The number of statements between `start` and `end`. """ return len(list(self.control_structures.scanString(self.file_contents[start:end]))) + \ len(list(self.mutually_exclusive.scanString(self.file_contents[start:end]))) + \ len(list(self.stmt.scanString(self.file_contents[start:end]))) def get_edge_count(self, start: int, end: int) -> int: """Return the edge count between `start` and `end`. Edges are all statements that can branch into two paths, e.g. loops, conditions etc. Parameters ---------- start : int Start column end : int End column Returns ------- int The edge count between `start` and `end`. """ # Loops have three edges: Going into the loop, skipping the loop and returning from the last # position in the loop to the start of the loop # Mutually exclusive blocks have two edges, entering or not entering them return len(list(self.control_structures.scanString(self.file_contents[start:end]))) * 3 + \ len(list(self.mutually_exclusive.scanString(self.file_contents[start:end]))) * 2 + \ len(list(self.stmt.scanString(self.file_contents[start:end]))) def get_mutually_exclusive_positions(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for all mutually exclusive positions from `start` to `end`. That is return the start and end position for all the statements where a mutually exclusive block begins and where it ends. Parameters ---------- start : int The start column end : int The end column Returns ------- Generator Generator for all mutually exclusive paths from `start` to `end`. """ return self.mutually_exclusive.scanString(self.file_contents[start:end]) def get_method_definitions(self) -> Generator[list, None, None]: """Return a generator for all methods with their bodies. Returns ------- Generator Generator for all function definitions with their bodies """ return self.func_def.scanString(self.file_contents) def get_method_calls(self, start, end) -> Generator[list, None, None]: """Return a generator for all function calls between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all function calls """ return self.func_call.scanString(self.file_contents[start:end]) def get_parameters(self, start: int, end: int) -> dict: """Return a dictionary of all parameters between `start` and `end` with their default value. Parameters ---------- start : int Start column end : int End column Returns ------- dict Dictionary with parameter: default value """ try: args = self.prototype.parseString(self.file_contents[start:end]).get('args', []) parameters = dict() for parameter in args: parameters[parameter['name']] = None # There are no default values in C return parameters except ParseException: Grammar.logger.error('Tried to parse parameters in "{file}", but no match at start ' 'column {start}.', file=self.file_.path, start=start) def get_declarations(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for variable declarations between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all declarations """ declarations = Suppress(self.ident) + self.ident + Suppress(Optional(self.array_index)) + \ Suppress(';') return declarations.scanString(self.file_contents[start:end]) def get_global_variables(self) -> list: """Return a list of all global variables. Returns ------- list List of all global variables """ # First step: Find all the functions func_defs = self.get_method_definitions() func_defs_positions = [(function[1], function[2]) for function in func_defs] # Second step: Globals are by definition outside of functions start = -1 outside_func_defs = [] for position in func_defs_positions: outside_func_defs.append([start + 1, position[0] - 1 if position[0] > 0 else 0]) start = position[1] if start + 1 <= len(self.file_contents): outside_func_defs.append([start + 1, len(self.file_contents)]) # Third step: Find declarations and assignments in these regions globals_ = list() for start, end in outside_func_defs: assignments = list(self.get_assignments(start, end)) assignments = [assignment[0] for assignment in assignments] globals_.extend(assignments) globals_.extend(list(self.get_declarations(start, end))) return globals_ def get_assignments(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for all assignments betweeen `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all assignments """ return self.assignment.scanString(self.file_contents[start:end]) def get_control_structures(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for all control structures between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all control structures """ return self.control_structures.scanString(self.file_contents[start:end]) def get_returns(self, start, end) -> Generator[list, None, None]: """Return a generator for all return values between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all return values """ return self.return_.scanString(self.file_contents[start:end]) ``` #### File: testfiles/parser/python_default_parameters.py ```python class DefaultParameters: def __init__(self, a=5): self.a = a ``` #### File: testfiles/parser/python_detect_classes.py ```python class ClassName: def __init__(self): self.value = 5 class Another_Class_Name(ClassName): def __init__(self): self.value = 7 ``` #### File: testfiles/parser/python_multiple_functions.py ```python def test_function(z: int) -> int: c = z """Multiline comment test.""" print(c) if c * 5: print(z // 4) # Test return 'a' b = 5 def next_function(a, b, c): print(a * b * c) ``` #### File: TAINTalyzing/Projekt/test.py ```python from __future__ import annotations from copy import copy import logging import os import unittest from main import find_files from analysis import Analysis from input_file import InputFile from ruleset import Ruleset from modules.c.grammar import Grammar as CGrammar from modules.php.grammar import Grammar as PHPGrammar from modules.python.grammar import Grammar as PythonGrammar from method import Method from sink import Sink from source import Source def replace_sink_rules(ruleset: Ruleset, new_rules: list): """Replace existing sink rules from a ruleset with `new_rules`. Parameters ---------- ruleset : Ruleset Replace the rules in this ruleset new_rules : dict New rules to replace the old ones. """ ruleset.sinks = [] for rule in new_rules: sink_ = Sink(rule) ruleset.sinks.append(sink_) def replace_source_rules(ruleset: Ruleset, new_rules: list): """Replace existing source rules from a ruleset with `new_rules`. Parameters ---------- ruleset : Ruleset Replace the rules in this ruleset new_rules : dict New rules to replace the old ones. """ ruleset.sources = [] for rule in new_rules: source_ = Source(rule) ruleset.sources.append(source_) class TestMain(unittest.TestCase): """Test cases for main module.""" def test_find_files(self): """Check if all files are found.""" should_find = [os.sep.join(['testfiles', 'main', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'unix.txt']), os.sep.join(['testfiles', 'main', 'exclude-subdirectory', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'exclude-subdirectory', 'excluded-file.txt']), os.sep.join(['testfiles', 'main', 'exclude-subdirectory', 'excluded-dir', 'excluded-subdir-file']), os.sep.join(['testfiles', 'main', 'subdirectory', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'dos.txt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'file.swp']), ] self.assertListEqual(should_find, list(find_files(os.sep.join(['testfiles', 'main'])))) def test_find_files_exclude(self): """Test if single excludes work.""" should_find = [os.sep.join(['testfiles', 'main', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'unix.txt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'dos.txt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'file.swp']), ] self.assertListEqual(should_find, list(find_files(os.sep.join(['testfiles', 'main']), exclude=['exclude-subdirectory']))) def test_find_files_multiple_excludes(self): """Test if multiple excludes work independently from each other.""" should_find = [os.sep.join(['testfiles', 'main', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'unix.txt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'binary-file.odt']), os.sep.join(['testfiles', 'main', 'subdirectory', 'dos.txt']), ] self.assertListEqual(should_find, list(find_files(os.sep.join(['testfiles', 'main']), exclude=['exclude-subdirectory', r'\.swp$']))) def test_find_files_exclude_all(self): """Test if no error is thrown if everything is excluded.""" should_find = [] self.assertListEqual(should_find, list(find_files(os.sep.join(['testfiles', 'main']), exclude=['']))) class TestInputFile(unittest.TestCase): """Test cases for InputFile module.""" def test_read_file_ascii_dos(self): """Check if an ASCII file with DOS line endings can be read.""" input_file = InputFile(os.sep.join(['testfiles', 'main', 'subdirectory', 'dos.txt'])) self.assertEqual('file contents!\n', input_file.read_file()) def test_read_file_ascii_utf8_unix(self): """Check if an ASCII, utf8 encoded file with Unix line endings can be read.""" input_file = InputFile(os.sep.join(['testfiles', 'main', 'unix.txt'])) self.assertEqual('file with unix line endings\n', input_file.read_file()) def test_read_binary_file(self): """Make sure binary files are handled gracefully.""" input_file = InputFile(os.sep.join(['testfiles', 'main', 'binary-file.odt'])) try: input_file.read_file() except: self.fail() def test_extension_detection(self): """Make sure files can be detected based on extension alone.""" input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'empty.cpp'])) input_file.detect_filetype() self.assertEqual(input_file.module, 'cpp') def test_magic_detection(self): """Make sure files can be detected based on the magic number.""" input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'python-magic.py'])) input_file.detect_filetype() self.assertEqual(input_file.module, 'python') def test_multiple_magic_detection(self): """Make sure files can be correctly detected even if multiple magic numbers match.""" # C++ files are detected as C files, so multiple matches, but single match for file extension input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'multiple-magic.cpp'])) input_file.detect_filetype() self.assertEqual(input_file.module, 'cpp') def test_heuristic_detection(self): """Make sure heuristic correctly identifies files based on majority of recognized filetypes in the same directory.""" input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'project-folder', 'include_statement'])) self.assertEqual(input_file.detect_heuristic(), 'c') def test_heuristic_detection_empty(self): """Make sure heuristic detection just returns an empty string when no modules can be identified for any of the files in the same directory. """ input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'unknown-project', 'include_statement'])) self.assertEqual(input_file.detect_heuristic(), '') def test_heuristic_detection_respect_possibilities(self): """Make sure that the heuristic detection respect the list of possible detections from other detection methods. """ input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'project-folder', 'include_statement'])) # Force invalid possibilities to check if heuristic detection overrides it self.assertEqual(input_file.detect_heuristic([('python', ['.py'], 'Python script')]), "") def test_fallback_detection(self): """Make sure fallback detection works if nothing else matches.""" input_file = InputFile(os.sep.join(['testfiles', 'filetype_detection', 'unknown_extension.python']), 'python') input_file.detect_filetype() self.assertEqual(input_file.module, 'python') class TestCGrammar(unittest.TestCase): """Test cases for C grammar file for parsing C files.""" def test_single_instruction(self): """Make sure files with a single instruction in the method body are parsed correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_single_instruction.c'])) grammar = CGrammar(input_file) parsetree = next(grammar.get_method_definitions()) self.assertEqual(parsetree[0]['name']['ident'][0], 'main') self.assertEqual(parsetree[0]['args'][0]['name']['ident'][0], 'argc') self.assertEqual(parsetree[0]['args'][1]['name']['ident'][0], 'argv') self.assertEqual(parsetree[0]['body'][0]['name']['ident'][0], 'printf') def test_multiple_instructions(self): """Make sure multiple instructions in the method body are parsed correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_multiple_instructions.c'])) grammar = CGrammar(input_file) parsetree = next(grammar.get_method_definitions()) for idx, method in enumerate(parsetree[0]['body']): self.assertEqual(method['name']['ident'][0], 'printf' if idx == 0 else 'add') def test_unknown_tokens(self): """Make sure unknown tokens don't confuse the parser.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_unknown_tokens.c'])) grammar = CGrammar(input_file) parsetree = next(grammar.get_method_definitions()) self.assertEqual(parsetree[0]['name']['ident'][0], 'main') self.assertEqual(parsetree[0]['body'][0]['name']['ident'][0], 'printf') self.assertEqual(parsetree[0]['body'][1]['lvalue']['ident'][0], 'i') self.assertEqual(len(parsetree[0]['body'][3]['args']), 3) self.assertEqual(parsetree[0]['body'][3]['name']['ident'][0], 'printf') def test_multiple_functions(self): """Make sure multiple functions are detected correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_multiple_functions.c'])) grammar = CGrammar(input_file) definitions = grammar.get_method_definitions() parsetree_first_function = next(definitions) self.assertEqual(parsetree_first_function[0]['name']['ident'][0], 'add') self.assertEqual(parsetree_first_function[0]['body'][1]['return_value'], 'c') parsetree_second_function = next(definitions) self.assertEqual(parsetree_second_function[0]['body'][1]['name']['ident'][0], 'printf') self.assertEqual(len(parsetree_second_function[0]['body'][1]['args']), 2) def test_identify_returns(self): """Make sure multiple returns are detected correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_multiple_returns.c'])) grammar = CGrammar(input_file) returns = grammar.get_returns(input_file.line_to_column(2), input_file.line_to_column(4)) first_return = next(returns) self.assertEqual(first_return[0]['return_value'], '1') second_return = next(returns) self.assertEqual(second_return[0]['return_value'], '0') def test_assignments(self): """Make sure assignments are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_multiple_functions.c'])) grammar = CGrammar(input_file) assignments = grammar.get_assignments(60, 166) first = next(assignments) self.assertEqual(first[0]['lvalue']['ident'][0], 'a') self.assertEqual(first[0]['expression'][0]['name']['ident'][0], 'add') self.assertEqual(first[0]['expression'][0]['args'][0][0], '2') self.assertEqual(first[0]['expression'][0]['args'][1][0], '3') second = next(assignments) self.assertEqual(second[0]['lvalue']['ident'][0], 'a') self.assertEqual(second[0]['expression'][0][0], '5') def test_follow_variables(self): """Make sure that variables are followed correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_multiple_functions.c'])) grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) method = Method(60, 167, {'ident': ['main']}) dataflow = analysis.follow_variables(method) for variable, flow in dataflow.items(): if variable[1] == 'argc': self.assertListEqual(flow, [[{'ident': ['argc'], 'lvalue': ['argc'], 'expression': [{'name': {'ident': [None]}}]}, 0, 0]]) elif variable[1] == 'argv': self.assertListEqual(flow, [[{'ident': ['argv'], 'lvalue': ['argv'], 'expression': [{'name': {'ident': [None]}}]}, 0, 0]]) elif variable[1] == 'a': self.assertEqual(len(flow), 3) self.assertEqual(flow[1][0]['name']['ident'][0], 'printf') else: self.fail(f'Unknown variable: {variable[1]}') def test_detect_parameters(self): """Make sure parameters and default values are detected correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'c_single_instruction.c'])) grammar = CGrammar(input_file) parameters = grammar.get_parameters(0, 64) for parameter, value in parameters.items(): if parameter['ident'][0] == 'argc': self.assertEqual(value, None) elif parameter['ident'][0] == 'argv': self.assertEqual(value, None) else: self.fail('Unknown parameter.') class TestPHPGrammar(unittest.TestCase): """Test cases for PHP grammar file for parsing PHP files.""" def test_detect_parameters(self): """Make sure parameters and default values are detected correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'php_default_parameters.php'])) grammar = PHPGrammar(input_file) parameters = grammar.get_parameters(6, 94) for parameter, value in parameters.items(): if parameter['ident'][0] == 'typ': self.assertEqual(value, '"Cappuccino"') else: self.fail('Unknown parameter.') def test_multiple_instructions(self): """Make sure multiple instructions in the method body are parsed correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'php_multiple_instructions.php'])) grammar = PHPGrammar(input_file) parsetree = next(grammar.get_method_definitions()) self.assertEqual(parsetree[0]['name']['ident'][0], 'divideNumbers') self.assertEqual(len(parsetree[0]['args']), 2) self.assertEqual(parsetree[0]['args'][1]['name']['ident'][0], 'divisor') self.assertListEqual(parsetree[0]['body'][0]['expression'].asList(), [['$dividend', '$divisor']]) self.assertEqual(parsetree[0]['body'][1]['lvalue']['ident'][0], 'array') def test_find_classes(self): """Make sure classes are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'php_detect_classes.php'])) grammar = PHPGrammar(input_file) self.assertDictEqual(grammar.get_class_definitions(), {'MyClass': 6, 'MyOtherClass': 136}) class TestPythonGrammar(unittest.TestCase): """Test cases for Python grammar file for parsing Python files.""" def test_detect_parameters(self): """Make sure parameters and default values are detected correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'python_default_parameters.py'])) grammar = PythonGrammar(input_file) parameters = grammar.get_parameters(29, 73) for parameter, value in parameters.items(): if parameter['ident'][0] == 'a': self.assertEqual(value, '5') else: self.fail('Unknown parameter') def test_multiple_instructions(self): """Make sure multiple instructions in the method body are parsed correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'python_multiple_functions.py'])) grammar = PythonGrammar(input_file) defs = grammar.get_method_definitions() parsetree_first_function = next(defs) self.assertEqual(parsetree_first_function[0]['name']['ident'][0], 'test_function') self.assertEqual(parsetree_first_function[0]['body'][0][1]['name']['ident'][0], 'print') self.assertEqual(parsetree_first_function[0]['body'][0][3]['return_value'], "'a'") parsetree_second_function = next(defs) self.assertListEqual(parsetree_second_function[0]['body'][0][0]['args'][0][0].asList(), ['a', 'b', 'c']) def test_find_classes(self): """Make sure classes are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'parser', 'python_detect_classes.py'])) grammar = PythonGrammar(input_file) self.assertDictEqual(grammar.get_class_definitions(), {'ClassName': 48, 'Another_Class_Name': 113}) class TestRuleset(unittest.TestCase): """Test cases for rulesets.""" def test_load_sinks(self): """Make sure that sinks are loaded successfully.""" ruleset = Ruleset('c') sinks = ruleset.sinks for sink in sinks: methods = sink.methods for method in methods: if method['Methodname'] == 'strcpy': self.assertListEqual(method['Parameters'], [None, '$TAINT']) self.assertNotEqual(method['Comment'], '') break def test_load_sanitizers(self): """Make sure that sanitizers are loaded successfully.""" ruleset = Ruleset('c') replace_sink_rules( ruleset, [{None: { 'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing purposes ' 'only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing purposes ' 'only.'}]}}]}]}}]) sinks = ruleset.sinks for sink in sinks: methods = sink.methods for method in methods: if method['Methodname'] == 'printf': self.assertEqual(len(method['Sanitizers'][0].methods), 2) self.assertEqual(method['Sanitizers'][0].methods[1]['Methodname'], 'test2') break def test_load_sources(self): """Make sure that sources are loaded successfully.""" ruleset = Ruleset('c') sources = ruleset.sources for source in sources: methods = source.methods for method in methods: if method['Methodname'] == 'scanf': self.assertEqual(len(method['Parameters']), 2) break class TestAnalysis(unittest.TestCase): """Test cases for analyses.""" def test_find_methods(self): """Make sure all methods are recognized correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'format-string.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: if method.method_name['ident'][0] == 'vuln': self.assertEqual(method.start, 20) self.assertEqual(method.end, 67) elif method.method_name['ident'][0] == 'main': self.assertEqual(method.start, 69) self.assertEqual(method.end, 283) else: self.fail('Unknown method found.') def test_find_variable_simple(self): """Make sure that simple variable sources are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'simple-source.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) method = Method(20, 286, {'ident': ['main']}) analysis.follow_variables(method) trail = analysis.find_variable_source(method, None, 'userControlledToo', 202) self.assertEqual(len(trail), 4) self.assertEqual(trail[0][1], 38) self.assertEqual(trail[1][1], 105) self.assertEqual(trail[2][1], 138) self.assertEqual(trail[3][1], 202) def test_find_variable_source(self): """Make sure that variable sources over multiple functions are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'variable-source-multiple-functions.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) method = Method(20, 114, {'ident': ['vuln']}) analysis.follow_variables(method) trail = analysis.find_variable_source(method, None, 'userInputUsed', 93) self.assertEqual(len(trail), 3) self.assertEqual(trail[0][1], 0) self.assertEqual(trail[1][1], 34) self.assertEqual(trail[2][1], 72) def test_find_sources(self): """Make sure that sources are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'format-string.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) sources = analysis.find_sources(Method(69, 283, {'ident': ['main']})) for source_, calls in sources.items(): if source_.object_name is None: self.assertListEqual(source_.methods, [{'Methodname': 'scanf', 'Parameters': [None, '$TAINT'], 'Comment': 'Reads formatted input from stdin'}]) self.assertEqual(calls[0][0]['name']['ident'][0], 'scanf') self.assertEqual(calls[0][1], 105) self.assertEqual(calls[0][2], 132) else: self.fail('Unknown source found.') def test_find_sinks(self): """Make sure that sinks are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'format-string.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) sinks = analysis.find_sinks(Method(20, 67, {'ident': ['vuln']})) for sink_, calls in sinks.items(): if sink_.object_name is None: for method in sink_.methods: if method['Methodname'] == 'printf': self.assertListEqual(method['Parameters'], ['$TAINT']) self.assertEqual(calls[0][0]['name']['ident'][0], 'printf') self.assertEqual(len(calls[0][0]['args']), 1) self.assertEqual(calls[0][1], 30) self.assertEqual(calls[0][2], 43) continue self.fail('Unknown sink found.') def test_find_sanitizers(self): """Make sure that sanitizers are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles' + os.sep + 'analysis' + os.sep + 'sanitizer.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) method = Method(20, 79, {'ident': ['vuln']}) analysis.find_sinks(method) sanitizers = analysis.find_sanitizers(method) for sanitizer_, calls in sanitizers.items(): if sanitizer_.object_name is None: self.assertEqual(calls[0][0]['name']['ident'][0], 'test') self.assertEqual(calls[0][1], 30) self.assertEqual(calls[0][2], 36) def test_find_simple_taints(self): """Make sure taints are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'simple-taint.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) method = Method(20, 286, {'ident': ['main']}) analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) taints = method.taints self.assertEqual(len(taints), 1) for data in taints.values(): self.assertEqual(data[0]['Comment'], 'Format string vulnerability.') self.assertEqual(data[0]['Position'], (205, 230)) def test_find_sanitized_simple_taints(self): """Make sure that sanitized sinks are also identified as taints with a reference to the sanitizer. """ input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'sanitized-taint.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) method = Method(20, 286, {'ident': ['main']}) analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) taints = method.taints self.assertEqual(len(taints), 1) for sinks in taints.values(): self.assertEqual(sinks[0]['Sanitizer'].methods[0]['Methodname'], 'test') def test_follow_sanitizers(self): """Make sure that sanitizers are followed across method calls.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'follow-sanitizer-functions.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) for method in analysis.methods: analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) # Sanitizer should have been added and no unsanitized taints should remain self.assertEqual(len(analysis.methods[1].sanitizers), 1) for method in analysis.methods: if method.method_name['ident'][0] == 'sanitize': self.assertDictEqual(method.taints, {}) else: self.assertEqual(len(method.taints), 1) for sinks in method.taints.values(): for sink in sinks: self.assertNotEqual(sink.get('Sanitizer'), None) self.assertEqual(sink['Sanitizer'].level, 1) def test_follow_sources_parameters(self): """Make sure that methods which have parameters that are used as arguments to sources are added as sources themselves. """ input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'follow-source-functions.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) def test_follow_sources_returns(self): """Make sure that methods which have returns based on sources are added as sources themselves. """ input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'follow-source-functions-return.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) def test_follow_sources_direct_returns(self): """Make sure that methods which have returns based on sources are added as sources themselves. """ input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'follow-source-functions-direct-return.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) def test_follow_taints(self): """Make sure that taints are followed across method calls.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'follow-taint-functions.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) replace_sink_rules( analysis.ruleset, [{None: {'Methods': [{'Methodname': 'printf', 'Parameters': ['$TAINT'], 'Comment': 'Format string vulnerability.', 'Sanitizers': [{None: {'Methods': [{'Methodname': 'test', 'Parameters': [], 'Comment': 'For testing ' 'purposes only.'}, {'Methodname': 'test2', 'Parameters': [None], 'Comment': 'For testing ' 'purposes ' 'only.'}]}}]}]}}]) for method in analysis.methods: analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) def test_follow_taints_classes(self): """Make sure that taints are followed across classes.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'follow-taint-classes.php']), 'php') grammar = PHPGrammar(input_file) analysis = Analysis(grammar, Ruleset('php')) replace_sink_rules(analysis.ruleset, [{None: { 'Methods': [{'Methodname': 'eval', 'Parameters': ['$TAINT'], 'Comment': 'Arbitrary code execution.'}]}}]) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) def test_exclusive_path(self): """Make sure a single exclusive path is recognized.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'exclusive-path.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.find_paths_through(method) self.assertListEqual(analysis.methods[0].paths, [ [(20, 59), (59, 90), (220, 236)], [(20, 59), (90, 135), (220, 236)], [(20, 59), (135, 182), (220, 236)], [(20, 59), (182, 220), (220, 236)]]) def test_exclusive_paths(self): """Make sure exclusive paths are recognized.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'exclusive-paths.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.find_paths_through(method) self.assertListEqual(analysis.methods[0].paths, [ [(20, 59), (59, 89), (89, 126), (126, 164), (206, 252), (252, 283), (386, 403)], [(20, 59), (59, 89), (89, 126), (126, 164), (206, 252), (283, 320), (386, 403)], [(20, 59), (59, 89), (89, 126), (126, 164), (206, 252), (320, 357), (386, 403)], [(20, 59), (59, 89), (89, 126), (126, 164), (206, 252), (357, 386), (386, 403)], [(20, 59), (59, 89), (89, 126), (164, 206), (206, 252), (252, 283), (386, 403)], [(20, 59), (59, 89), (89, 126), (164, 206), (206, 252), (283, 320), (386, 403)], [(20, 59), (59, 89), (89, 126), (164, 206), (206, 252), (320, 357), (386, 403)], [(20, 59), (59, 89), (89, 126), (164, 206), (206, 252), (357, 386), (386, 403)], [(20, 59), (59, 89), (89, 126), (206, 206), (206, 252), (252, 283), (386, 403)], [(20, 59), (59, 89), (89, 126), (206, 206), (206, 252), (283, 320), (386, 403)], [(20, 59), (59, 89), (89, 126), (206, 206), (206, 252), (320, 357), (386, 403)], [(20, 59), (59, 89), (89, 126), (206, 206), (206, 252), (357, 386), (386, 403)], [(20, 59), (89, 89), (89, 126), (126, 164), (206, 252), (252, 283), (386, 403)], [(20, 59), (89, 89), (89, 126), (126, 164), (206, 252), (283, 320), (386, 403)], [(20, 59), (89, 89), (89, 126), (126, 164), (206, 252), (320, 357), (386, 403)], [(20, 59), (89, 89), (89, 126), (126, 164), (206, 252), (357, 386), (386, 403)], [(20, 59), (89, 89), (89, 126), (164, 206), (206, 252), (252, 283), (386, 403)], [(20, 59), (89, 89), (89, 126), (164, 206), (206, 252), (283, 320), (386, 403)], [(20, 59), (89, 89), (89, 126), (164, 206), (206, 252), (320, 357), (386, 403)], [(20, 59), (89, 89), (89, 126), (164, 206), (206, 252), (357, 386), (386, 403)], [(20, 59), (89, 89), (89, 126), (206, 206), (206, 252), (252, 283), (386, 403)], [(20, 59), (89, 89), (89, 126), (206, 206), (206, 252), (283, 320), (386, 403)], [(20, 59), (89, 89), (89, 126), (206, 206), (206, 252), (320, 357), (386, 403)], [(20, 59), (89, 89), (89, 126), (206, 206), (206, 252), (357, 386), (386, 403)]]) def test_mutually_exclusive_taint(self): """Make sure that mutually exclusive blocks are recognized during taint analysis.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'mutually-exclusive-taint.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) all_sources = analysis.find_sources(method) all_sinks = analysis.find_sinks(method) analysis.find_paths_through(method) taints = set() for path in method.paths: method.sources = copy(all_sources) method.sinks = copy(all_sinks) taints.update(analysis.find_taints(method, path)) self.assertEqual(len(taints), 0) def test_calculate_complexity(self): """Make sure that cyclomatic complexity is calculated correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'euclid-complexity.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.calculate_complexity(method) self.assertEqual(analysis.methods[0].complexity, 5) def test_two_sinks(self): """Make sure two sinks of the same type are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'two-sinks.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) sinks = [] for method in analysis.methods: sinks.append(analysis.find_sinks(method)) count = 0 for sink in sinks: for calls in sink.values(): for _ in calls: count += 1 self.assertEqual(count, 2) def test_getenv_sprintf(self): """Make sure that the combination of a returned source and a sink with the third parameter vulnerable on only one path is detected correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'getenv-sprintf.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[0].taints), 1) def test_subcall(self): """Make sure that calls inside expressions are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'subcall.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[0].taints), 1) def test_subsubcall(self): """Make sure that subcalls inside expressions are identified correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'subsubcall.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) def test_subsubcall_two_parameters(self): """Make sure that subcalls inside expressions at different positions are identified correctly. """ input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'subsubcall-two-parameters.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[2].taints), 1) def test_subsubcall_harmless(self): """Make sure that harmless subcalls inside expressions are not identified as taints.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'subsubcall-harmless.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[2].taints), 0) def test_complex_php(self): """Make sure that complex PHP files are analyzed correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'complex.php']), 'php') grammar = PHPGrammar(input_file) analysis = Analysis(grammar, Ruleset('php')) try: for method in analysis.methods: analysis.follow_variables(method) analysis.fix_object_names(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) except: self.fail("Had trouble with at least one of the steps.") def test_global_taint(self): """Make sure globals are recognized correctly.""" input_file = InputFile(os.sep.join(['testfiles', 'analysis', 'global-taint.c']), 'c') grammar = CGrammar(input_file) analysis = Analysis(grammar, Ruleset('c')) for method in analysis.methods: analysis.follow_variables(method) analysis.find_sources(method) analysis.find_sinks(method) analysis.find_sanitizers(method) analysis.find_taints(method) self.assertEqual(len(analysis.methods[1].taints), 1) # We can't know whether global variables have been changed anywhere, so we always have to # interpret them as user controlled self.assertEqual(len(analysis.methods[2].taints), 1) if __name__ == '__main__': logging.getLogger('taintalyzing') logging.basicConfig(level=logging.ERROR) unittest.main() ```
{ "source": "JonasWard/ClayAdventures", "score": 2 }
#### File: clay_bricks/PatternBrickLibrary/base_mesh.py ```python import Rhino.Geometry as rg import vertexClass_v1 as vc class MeshObject: TRI = True def __init__(self, plane, width, height, spacing): self.pln = plane self.w = width self.h = height self.s = spacing self.x = int(width / spacing) self.y = int(height / spacing) self.front_pts = [] self._front_init = False self.back_pts = [] def construct_pts(self): b_pt = self.pln.Origin x_a = self.pln.XAxis y_a = self.pln.YAxis z_a = self.pln.ZAxis for i in range(self.x + 1): for j in range(self.y + 1): self.front_pts.append(b_pt + x_a * (i - .5 * self.x) * self.s + y_a * j * self.s ) for i in range(self.x + 1): for j in range(self.y + 1): self.back_pts.append(b_pt + x_a * (i - .5 * self.x) * self.s + y_a * j * self.s + z_a * self.s ) def add_front_pts(self, pts, inverse = False): if inverse: self.front_pts = self._invert_points(pts) else: self.front_pts = pts self._front_init = True def adjusting_front_pts(self): # adjusting the front points based on their distance to the base plane if self._front_init: distances = [] b_pts = [] for pt in self.front_pts: c_pt = self.pln.ClosestPoint(pt) b_pts.append(c_pt) distances.append(rg.Vector3d.Multiply(rg.Vector3d(pt - c_pt),self.pln.ZAxis)) self.front_pts = [] min_val = min(distances) print(min_val) for i, b_pt in enumerate(b_pts): self.front_pts.append(b_pt + (distances[i] - min_val) * self.pln.ZAxis) else: print("Front has not been set") def construct_layers(self): layer_set = [] m = self.x + 1 n = self.y + 1 for i in range(self.y + 1): y_val = i * self.s local_layer = [] for j in range(self.x + 1): x_val = j * self.s loc_pt = self.front_pts[i + j * n] loc_vertex = vc.Vertex(loc_pt, -self.pln.ZAxis, x_val, y_val) local_layer.append(loc_vertex) layer_set.append(local_layer) return layer_set def _invert_points(self, pt_list): m = self.x + 1 inverse_pt_list = [[] for i in range(m)] for idx, pt in enumerate(pt_list): m_val = idx % m n_val = int ( (idx - m_val) / m ) inverse_pt_list[m_val].append(pt) n_pt_list = [] for pt_set in inverse_pt_list: n_pt_list.extend(pt_set) return n_pt_list def construct_graph(self): cnt = len(self.back_pts) face_list = [] if MeshObject.TRI: for i in range(self.x): id_x_a = i * (self.y + 1) id_x_b = (i + 1) * (self.y + 1) for j in range(self.y): print(id_x_a + j, id_x_a + j + 1, id_x_b + j + 1, id_x_b + j ) face_list.append([id_x_a + j, id_x_a + j + 1, id_x_b + j + 1]) face_list.append([id_x_a + j, id_x_b + j + 1, id_x_b + j]) face_list.append([id_x_b + j + cnt, id_x_b + j + 1 + cnt, id_x_a + j + 1 + cnt, id_x_a + j + cnt]) else: for i in range(self.x): id_x_a = i * (self.y + 1) id_x_b = (i + 1) * (self.y + 1) for j in range(self.y): print(id_x_a + j, id_x_a + j + 1, id_x_b + j + 1, id_x_b + j ) face_list.append([id_x_a + j, id_x_a + j + 1, id_x_b + j + 1, id_x_b + j]) face_list.append([id_x_b + j + cnt, id_x_b + j + 1 + cnt, id_x_a + j + 1 + cnt, id_x_a + j + cnt]) for i in range(self.x): id_x_a = i * (self.y + 1) id_x_b = (i + 1) * (self.y + 1) face_list.append([id_x_a, id_x_b, cnt + id_x_b, cnt + id_x_a]) face_list.append([cnt + id_x_a + self.y, cnt + id_x_b + self.y, id_x_b + self.y, id_x_a + self.y]) for i in range(self.y): face_list.append([cnt + i, cnt + i + 1, i + 1, i]) face_list.append([(self.y + 1) * self.x + i, (self.y + 1) * self.x + i + 1, (self.y + 1) * self.x + cnt + i + 1, (self.y + 1) * self.x + cnt + i]) return face_list def construct_mesh(self): msh = rg.Mesh() if self._front_init: # initializing the points for pt in self.front_pts + self.back_pts: msh.Vertices.Add(pt) for f in self.construct_graph(): if len(f) == 4: msh.Faces.AddFace(f[0], f[1], f[2], f[3]) elif len(f) == 3: msh.Faces.AddFace(f[0], f[1], f[2]) return msh else: print("Front has not been set") return msh ``` #### File: clay_bricks/PatternBrickLibrary/class_pass_testing.py ```python class Pattern(object): def __init__(self, a, b): self.a = a self.b = b def operateOn(self, vertex): vertex.x += self.a vertex.y += self.b class Vertex(object): def __init__(self, x, y): self.x = x self.y = y def __repr__(self): str_set = [ 'this this is a vertex with x value:', str(self.x), 'and y value:', str(self.y), ] return ' '.join(str_set) def applyPattern(self, pattern): pattern.operateOn(self) ver = Vertex(1, 2) pat = Pattern(.1, .2) print(ver) ver.applyPattern(pat) print(ver) ``` #### File: PatternBrickLibrary/clusterFromCurves/vertex.py ```python import Rhino.Geometry as rg import math def signed_vector_angle(a, b): return math.atan2( a.X*b.Y - a.Y*b.X, a.X*b.X + a.Y*b.Y ) def positive_vector_angle(a, b): angle = signed_vector_angle(a, b) if angle > 0: return angle else: return 6.2831853072 + angle class Vertex: MAX_A = 1.8 DIS = 4.0 def __init__(self, location): self.location = rg.Point3d(location) self.neighbours = [] self.vectors = [] self.n_locations = [] @property def count(self): return len(self.neighbours) def add_neighbour(self, other_vertex): self.neighbours.append(other_vertex) def sort_neighbours(self): angles = [n.angle(self) for n in self.neighbours] print(angles) print(self.neighbours) angles, self.neighbours = list(zip(*sorted(zip(angles, self.neighbours) ) ) ) print(angles) print(self.neighbours) def angle(self, other): n_vec = rg.Vector3d(self.location - other.location) return positive_vector_angle(rg.Vector3d.XAxis, n_vec) def construct_dir_vectors(self): if self.count == 0: b_vec = rg.Vector3d(Vertex.DIS, 0, 0) self.interpolate_vectors_end(b_vec) elif self.count == 1: b_vec = rg.Vector3d(self.neighbours[0].location - self.location) self.vectors.append(b_vec * .5) self.interpolate_vectors_end(b_vec) else: for i in range(self.count): v_0 = rg.Vector3d(.5 * (self.neighbours[i].location - self.location) ) v_1 = rg.Vector3d(.5 * (self.neighbours[(i + 1) % self.count].location - self.location) ) self.interpolate_vectors(v_0, v_1) print("vector count : {}".format(len(self.vectors))) def interpolate_vectors(self, v_0, v_1): # initialize the first vectors of the two as a normal vector self.vectors.append(rg.Vector3d(v_0) ) # getting the positive angle angle = positive_vector_angle(v_0, v_1) print(angle) if angle > Vertex.MAX_A: angle_count = math.ceil( angle / Vertex.MAX_A ) angle_delta = angle / angle_count print("angle count : {}".format(angle_count) ) b_vec = rg.Vector3d(v_0) b_vec.Unitize() b_vec = b_vec * Vertex.DIS for i in range(1, int(angle_count), 1): r_matrix = rg.Transform.Rotation(i * angle_delta, self.location) n_vec = rg.Vector3d(b_vec) n_vec.Transform(r_matrix) self.vectors.append(n_vec) print("added a vector") def interpolate_vectors_end(self, b_vec): angle_count = math.ceil( math.pi * 2.0 / Vertex.MAX_A ) angle_delta = math.pi * 2.0 / angle_count loc_v = rg.Vector3d(b_vec) loc_v.Unitize() loc_v = loc_v * Vertex.DIS for i in range(1, int(angle_count), 1): r_matrix = rg.Transform.Rotation(i * angle_delta, self.location) n_vec = rg.Vector3d(loc_v) n_vec.Transform(r_matrix) self.vectors.append(n_vec) def new_location(self): for i in range(len(self.vectors) ): self.n_locations.append(rg.Point3d(self.location + self.vectors[i] + self.vectors[(i + 1) % len(self.vectors) ]) ) def curve_representation(self): return rg.Polyline(self.n_locations + [self.n_locations[0]] ).ToNurbsCurve() def line_representation(self): return [rg.Line(self.location, n_l) for n_l in self.n_locations] ``` #### File: clay_bricks/PatternBrickLibrary/patternGenv2_2_1.py ```python import Rhino.Geometry as rg import math import random from vertexClass import Vertex from copy import deepcopy as dc class PatternMap: DOT_MAP_UV_SHIFT=(0.0,0.0) DOT_MAP_SHIFT=False DOT_MAP_HARD_EASING=False DOT_MAP_RND=False DOT_MAP_RND_SEED=0 Y_SPACING_FACTOR=1.0 def __init__(self, layer_set, set_tuples, periodic = False, other_set = None): # set_tuples = (crv_l, div_l, lay_h) self.pattern_set = layer_set if not(other_set == None): self.add_other_set = True self.other_set = other_set else: self.add_other_set = False self.length, _, self.lay_h = set_tuples self.div_c = len(self.pattern_set[0]) self.lay_c = len(self.pattern_set) self.height = self.lay_c * self.lay_h self.periodic = periodic self.closed = True self.curved = False self.rnd_inout = False self.rnd_cull = False self.rnd_radius = False self.rnd_n_val = False self.dir = 1.0 def build(self): self.surface_set = [] for pattern_layer in self.pattern_set: self.surface_set.extend(pattern_layer) def set_random_inout(self, percentage = .5, direction = 1.0): self.rnd_inout = True self.rnd_inout_percentage = percentage def random_inout(self): if self.rnd_inout_percentage < random.random(): return -1.0 else: return 1.0 def set_random_cull(self, cull_val): self.rnd_cull = True self.rnd_cull_val = cull_val def set_random_radius(self, min_radius, max_radius): self.rnd_radius = True self.r_min, self.r_delta = min_radius, max_radius - min_radius def random_rad(self): return self.r_min + random.random() * self.r_delta def set_random_n_val(self, min_n_val, max_n_val): self.rnd_n_val = True self.n_min, self.n_delta = min_n_val, max_n_val - min_n_val def random_n_val(self): return self.n_min + random.random() * self.n_delta def edgeEasing(self, zero_length, normal_length): ease_delta = normal_length - zero_length for pt in self.surface_set: if pt.x_val < zero_length or pt.x_val > self.length - zero_length: pt.n_scale = 0.0 elif pt.x_val < normal_length: pt.n_scale = abs(pt.x_val - zero_length) / ease_delta elif pt.x_val > self.length - normal_length: pt.n_scale = abs(pt.x_val - (self.length - zero_length)) / ease_delta def sinWarp(self, period, amplitude, phase_shift, direction = True): if self.periodic: print("sin periodicizing") print("updating the period") print("old period: %s" %period) period_count = math.ceil( self.length / ( 2 * math.pi * period ) ) period = self.length / (period_count * 2 * math.pi) print("new period: %s" %period) for pt in self.surface_set: local_phase = pt.y_val / self.lay_h * phase_shift scale_val = math.sin(pt.x_val / period + local_phase) * amplitude pt.warp_pt(scale_val * self.dir) def patternGeneration(self, pattern_set, spacing): if self.periodic: print("pattern periodicizing") print("updating the spacing") print("old spacing: %s" %spacing) scaling_int_val = math.ceil(self.length / spacing) spacing = self.length / scaling_int_val print("new spacing: %s" %spacing) else: spacing = spacing # pattern_map (start, step, count) # only have to consider x distance layer_set = [] layer_count = 0 layer_length_vals = [] for pattern in pattern_set: start, step, count = pattern[0], pattern[1], pattern[2] if count < 1: count = 1 layer_vertexes = [] length_vals = [] x_val = start x_delta = step * spacing while x_val < self.length: layer_vertexes.append(Vertex(x_val = x_val)) length_vals.append(x_val) x_val += x_delta for i in range(count): layer_set.append(layer_vertexes) layer_length_vals.append(length_vals) layer_count += count return layer_set, layer_length_vals, layer_count def curveSplitAtPoints(self, radius, length_vals): pass def specialLayerMap(self, spacing, pattern_set, radius, max_val, direction = True): _, layer_length_vals, layer_count = self.patternGeneration(pattern_set, spacing) def modBasedDotMap(self, x_spacing = 20.0, y_spacing = 20.0, max_val = 10.0, ellipsoid = True, direction = True, layer_shift = 2.0, shift_a = 0.0, shift_b = 0.0, rot_alfa = 0.0): if self.periodic: x_scale_val = 1.0 y_scale_val = 1.0 else: x_scale_val = 1.0 y_scale_val = 1.0 for pt in self.surface_set: # distance = pt.distance_function(x_spacing, y_spacing, layer_shift, rot_alfa, x_scale_val, y_scale_val) distance = pt.distance_function(x_spacing, y_spacing, layer_shift, rot_alfa) # applying shift values if necessary if not(shift_a == 0.0): distance *= shift_a if not(shift_b == 0.0): distance += shift_b # curtaling the distances if distance < 0.0: scale_val = 0.0 elif distance > 1.0: scale_val = max_val else: if ellipsoid: distance = (1 - (1 - distance) ** 2.0) ** .5 scale_val = max_val * distance pt.warp_pt(scale_val * self.dir) def layerMap(self, spacing, pattern_set, radius, max_val, direction = True): # pattern_map (start, step, count) # only have to consider x distance layer_set, _, layer_count = self.patternGeneration(pattern_set, spacing) # subdividing in layers for pt_i, pt in enumerate(self.surface_set): layer_index = (pt_i - pt_i % self.div_c) / self.div_c pattern_layer_index = int(layer_index % layer_count) dots = layer_set[pattern_layer_index] dis_set = [] for dot in dots: dis_set.append(pt.x_distance(dot)) distance = min(dis_set) if distance < radius: scale_val = (1 - (distance / radius) ** 2.0) ** .5 * max_val else: scale_val = 0.0 pt.warp_pt(scale_val * self.dir) def dotGen(self, spacing, y_spacing = None, feature_spacing=0.0): random.seed(PatternMap.DOT_MAP_RND_SEED) count = 0 x_spacing = 2.0 ** .5 * spacing if self.periodic: print("dotGen periodicizing") print("updating the x_spacing") print("old x_spacing: %s" %x_spacing) x_spacing_int = math.ceil(self.length / (x_spacing * 2.0)) x_spacing = (self.length / x_spacing_int) / 2.0 print("new x_spacing: %s" %x_spacing) if y_spacing == None: y_spacing = x_spacing * PatternMap.Y_SPACING_FACTOR dots = [] # setting the start and end conditions of the dot_map if PatternMap.DOT_MAP_SHIFT: # print("shifting the pattern in the code as well") x_shift=PatternMap.DOT_MAP_UV_SHIFT[0] % x_spacing y_shift=PatternMap.DOT_MAP_UV_SHIFT[1] % y_spacing x_start=x_shift if x_shift < .5 * x_spacing else x_shift-x_spacing y_start=y_shift if y_shift < .5 * y_spacing else y_shift-y_spacing else: x_start, y_start = 0.0, 0.0 x_end, y_end=self.length + .5 * x_spacing, self.height + .5 * y_spacing if PatternMap.DOT_MAP_HARD_EASING: while (x_start < feature_spacing): x_start += x_spacing while (x_end > self.length - feature_spacing): x_end -= x_spacing x_val=x_start y_val=y_start while y_val < y_end: if count % 2 == 1: x_val = x_spacing * .5 + x_start else: x_val = x_start while x_val < x_end + .1: loc_vertex = Vertex(x_val = x_val, y_val = y_val) dots.append(loc_vertex) x_val += x_spacing y_val += y_spacing count += 1 if self.rnd_cull: new_dots = [] for dot in dots: if random.random() < self.rnd_cull_val: new_dots.append(dot) dots = new_dots if self.rnd_inout: self.in_out_multi = [self.random_inout() for i in range(len(dots))] if self.rnd_radius: self.radii = [self.random_rad() for i in range(len(dots))] if self.rnd_n_val: self.n_vals = [self.random_n_val() for i in range(len(dots))] return dots def dotMap(self, spacing, radius, max_val, direction = None): dots = self.dotGen(spacing, feature_spacing=radius) for pt in self.surface_set: distance_set = [] for dot in dots: distance = pt.numeric_distance(dot) distance_set.append(distance) distance = min(distance_set) v_i = distance_set.index(distance) if self.rnd_radius: radius = self.radii[v_i] if self.rnd_n_val: max_val = radius * self.n_vals[v_i] distance -= radius if distance < 0: scale_val = abs(distance) / radius * max_val else: scale_val = 0.0 if self.rnd_inout: scale_val *= self.in_out_multi[v_i] pt.warp_pt(scale_val * self.dir) def ellipsoidBumpMap(self, spacing, radius, max_val, direction = None): dots = self.dotGen(spacing, feature_spacing=radius) for pt in self.surface_set: distance_set = [] for dot in dots: distance = pt.numeric_distance(dot) distance_set.append(distance) distance = min(distance_set) v_i = distance_set.index(distance) if self.rnd_radius: radius = self.radii[v_i] if self.rnd_n_val: max_val = radius * self.n_vals[v_i] if distance < radius: scale_val = (1 - (distance / radius) ** 2.0) ** .5 * max_val else: scale_val = 0.0 if self.rnd_inout: scale_val *= self.in_out_multi[v_i] pt.warp_pt(scale_val * self.dir) def getKey(self, item): return item[0] def cylinderMap(self, spacing, height, radius, max_val, radius_bot = None): radius_bot=radius if radius_bot == None else radius_bot radius_delta = radius - radius_bot radius_f = 1.0 - radius_delta / radius dots = self.dotGen(spacing, feature_spacing=max([radius, radius_bot])) for pt in self.surface_set: # get closest dot distance_set = [] for dot in dots: distance = pt.numeric_distance(dot) distance_set.append((distance, dot)) distance = min(distance_set) v_i = distance_set.index(distance) dot = dots[v_i] if self.rnd_radius: radius = self.radii[v_i] radius_bot = radius * radius_f if self.rnd_n_val: max_val = radius * self.n_vals[v_i] # y_distance calculation y_distance = pt.y_val - dot.y_val # x_distance calculation x_distance = abs(pt.x_val - dot.x_val) if abs(y_distance) + .01 < height * .5 : local_radius = radius_bot + radius_delta * (y_distance / height + .5) else: local_radius = -1 if x_distance < local_radius: scale_val = (1 - (x_distance / local_radius) ** 2.0) ** .5 * max_val else: scale_val = 0.0 if self.rnd_inout: scale_val *= self.in_out_multi[v_i] pt.warp_pt(scale_val * self.dir) def makeCurves(self): self.pts_set = [] crv_set = [] for layer_i, layer_set in enumerate(self.pattern_set): pt_set = [vertex.v for vertex in layer_set] if self.add_other_set: pt_set = pt_set + self.other_set[layer_i][1:-1] + [pt_set[0]] if self.periodic: # print("I am giving you a closed polyline") pt_set = pt_set + [pt_set[0]] self.pts_set.append(pt_set) crv = rg.Polyline(pt_set) crv_set.append(crv) self.curved = True return crv_set def makeMesh(self, quad = False): if not(self.curved): self.makeCurves() srf_mesh = rg.Mesh() lay_c = len(self.pts_set) pt_c = len(self.pts_set[0][:-1]) # adding the vertices [srf_mesh.Vertices.Add(pt) for pt in self.pts_set[0][:-1]] for i in range(1, lay_c, 1): y = i - 1 for pt_i, pt in enumerate(self.pts_set[i][:-1]): x = pt_i srf_mesh.Vertices.Add(pt) v_a = y * pt_c + (x - 1)%pt_c v_b = (y + 1) * pt_c + (x - 1)%pt_c v_c = (y + 1) * pt_c + x v_d = y * pt_c + x if quad: srf_mesh.Faces.AddFace(v_a, v_b, v_c, v_d) else: srf_mesh.Faces.AddFace(v_a, v_b, v_d) srf_mesh.Faces.AddFace(v_b, v_c, v_d) # addding the faces return srf_mesh ``` #### File: clay_bricks/PatternBrickLibrary/pinLinkingBis.py ```python import Rhino.Geometry as rg from copy import deepcopy as dc from generalFunctions import * from brickSlicer import Pin from layerFunctions import LineSet def lineInterpolate(pt_0, pt_2, count): delta_pt = (pt_2 - pt_0) / float(count + 1.0) return [pt_0 + delta_pt * i for i in range(1, count + 1, 1)] def linkGen(pt_a, pt_b): distance = pt_a.DistanceTo(pt_b) end_pt = rg.Point3d((pt_b - pt_a) / distance + pt_a) return rg.Line(pt_a, end_pt), end_pt def copyTransformSet(geo_set, trans_matrix): new_set = [] for geo in geo_set: tmp_geo = dc(geo) tmp_geo.Transform(trans_matrix) new_set.append(tmp_geo) return new_set def startEnd(pt, pt_bis, count, alfa): pt_set = [] link_lines = [] if count > 1: alfa_delta = ( 6.2831853072 - 2 * alfa ) / (count - 1) for i in range(count): loc_angle = alfa + alfa_delta * i rot_m = rg.Transform.Rotation(loc_angle, pt) loc_pt = dc(pt_bis) loc_pt.Transform(rot_m) pt_set.append(loc_pt) link_lines.append(rg.Line(pt, loc_pt)) elif count == 0: pass else: # case will consider count == 1 loc_angle = 3.1415927 rot_m = rg.Transform.Rotation(loc_angle, pt) loc_pt = dc(pt_bis) loc_pt.Transform(rot_m) pt_set.append(loc_pt) link_lines.append(rg.Line(pt, loc_pt)) return link_lines, pt_set def start(pt, pt_1, count, alfa = .5): # _, pt_a = linkGen(pt, pt_0) main_link, pt_b = linkGen(pt, pt_1) # main_link = rg.Line(pt, pt_1) link_lines, pt_set = startEnd(pt, pt_b, count, alfa) pt_set = [pt_b] + pt_set return main_link, link_lines, pt_set def end(pt_0, pt, count, alfa = .5): _, pt_a = linkGen(pt, pt_0) # main_link, pt_b = linkGen(pt, pt_1) link_lines, pt_set = startEnd(pt, pt_a, count, alfa) pt_set = [pt_a] + pt_set main_link = None return main_link, link_lines, pt_set def mid(pt_0, pt, pt_1, count, min_alfa = .25): _, pt_a = linkGen(pt, pt_0) main_link, pt_b = linkGen(pt, pt_1) # main_link = rg.Line(pt, pt_1) link_lines, pt_set = midDivide(pt_a, pt, pt_b, items=count, cutoff=min_alfa) pt_set = [pt_a, pt_b] + pt_set return main_link, link_lines, pt_set def midDivide(pt_0, pt, pt_1, items = 1, cutoff = .25): _, pt_0 = linkGen(pt, pt_0) _, pt_1 = linkGen(pt, pt_1) circle = rg.Circle(pt, 1.0).ToNurbsCurve() crvs, _ = layer2ptIntersect(circle, [pt_0, pt_1]) crv_0 = crvs[0] crv_1 = crvs[1] crv_0_l = crv_0.GetLength() crv_1_l = crv_1.GetLength() if crv_0_l < crv_1_l: double_split_crv = crv_1 double_crv_l = crv_1_l single_split_crv = crv_0 else: double_split_crv = crv_0 double_crv_l = crv_0_l single_split_crv = crv_1 if items < 2: double_split_crv.Domain = rg.Interval(0.0, 1.0) pt_2 = double_split_crv.PointAt(.5) line_set = [rg.Line(pt, pt_2)] pt_set = [pt_2] elif items == 2: single_split_crv.Domain = rg.Interval(0,1) pt_2 = single_split_crv.PointAt(.5) double_split_crv.Domain = rg.Interval(0,1) pt_3 = double_split_crv.PointAt(.5) line_set = [rg.Line(pt, pt_2), rg.Line(pt, pt_3)] pt_set = [pt_2, pt_3] else: if double_crv_l < 3.1415927 + cutoff: line_set, pt_set = midDivide(pt_0, pt, pt_1, items = 2) else: double_split_crv.Domain = rg.Interval(0,double_crv_l) single_split_crv.Domain = rg.Interval(0,1.0) pt_2 = single_split_crv.PointAt(.5) pt_3 = double_split_crv.PointAt(.5 * 3.1415927) pt_4 = double_split_crv.PointAt(double_crv_l - .5 * 3.1415927) line_set = [rg.Line(pt, pt_2), rg.Line(pt, pt_3), rg.Line(pt, pt_4)] pt_set = [pt_2, pt_3, pt_4] return line_set, pt_set def longestSegment(pin_point, pin_pt_set, second_one = False): c = rg.Circle(pin_point, 1.0).ToNurbsCurve() crvs, pts = layer2ptIntersect(c, pin_pt_set) crv_lengths = [crv.GetLength() for crv in crvs] crv_lengths, crvs = zip(*sorted(zip(crv_lengths, crvs))) print("this is the list of crv lengths") print(crv_lengths) longest_crv = crvs[-1] second_longest_crv = crvs[-2] longest_crv.Domain = rg.Interval(0, 1.0) longest_mid_pt = longest_crv.PointAt(.5) if second_one: second_longest_crv.Domain = rg.Interval(0, 1.0) second_longest_mid_pt = longest_crv.PointAt(.5) split_lines = [ rg.Line(pin_point, second_longest_mid_pt), rg.Line(pin_point, longest_mid_pt) ] return split_lines else: split_line = rg.Line(pin_point, longest_mid_pt) return split_line def createLinks(pin_pts, connection_count = 2, max_main_line = 100.0, start_end_alfa = .5, mid_alfa = .25): pin_pts = [rg.Point3d(pt.X, pt.Y, 0.0) for pt in pin_pts] main_links, link_lines, pin_pt_sets = [], [], [] split_lines = [] pin_count = len(pin_pts) for pt_i, pt in enumerate(pin_pts): if pt_i == 0: main_link, link_line_set, pt_set = start(pt, pin_pts[pt_i + 1], connection_count, start_end_alfa) main_links.append(main_link) link_lines.extend(link_line_set) pin_pt_sets.append(pt_set) elif pt_i == pin_count - 1: _, link_line_set, pt_set = end(pin_pts[pt_i - 1], pt, connection_count, start_end_alfa) # main_links.append(main_link) link_lines.extend(link_line_set) pin_pt_sets.append(pt_set) else: main_link, link_line_set, pt_set = mid(pin_pts[pt_i - 1], pt, pin_pts[pt_i + 1], connection_count, mid_alfa) main_links.append(main_link) link_lines.extend(link_line_set) pin_pt_sets.append(pt_set) # generating extra line division in case the main lines are too long b_mid_pts = [] mid_links = [] for i in range(pin_count - 1): pt_0 = pin_pts[i] pt_1 = pin_pts[i + 1] distance = pt_0.DistanceTo(pt_1) if distance > max_main_line: _, loc_link_set, _ = start(pt_0, pt_1, 2, alfa = 1.570796) split_count = int(round(distance / max_main_line)) b_pts = lineInterpolate(pt_0, pt_1, split_count) loc_mid_pts = [] if len(b_pts) > 1: # generating mid points between the base points if necessary for i in range(len(b_pts) - 1): loc_mid_pts.append(rg.Point3d( (b_pts[i] + b_pts[i+1]) * .5) ) for b_pt in b_pts: trans_m = rg.Transform.Translation(rg.Vector3d(b_pt - pt_0)) mid_links.extend(copyTransformSet(loc_link_set, trans_m)) b_mid_pts.append(loc_mid_pts) # generating the split lines for i, pin_pt_set in enumerate(pin_pt_sets): split_lines.append(longestSegment(pin_pts[i], pin_pt_set)) return main_links, link_lines, split_lines, pin_pt_sets, mid_links, b_mid_pts def pinMaker(pin_pts, pin_height, bot_rad, top_rad, resolution = 16): return [Pin(pt, pin_height, bot_rad, top_rad, resolution) for pt in pin_pts] def extendTrim(inner_crv, outer_crv, line_set): line_set.trimLines(outer_crv, True) line_set.trimLines(inner_crv, False) def linkClosestPoints(link, pts): extra_pt_set = [] lines = link.createLines() for line in lines: for pt in pts: extra_pt_set.append( line.ClosestPoint(pt, False) ) return extra_pt_set def joinShape(prev_crv, next_crv, line_set, extend_trim = True, crossing = False): if extend_trim: extendTrim(prev_crv, next_crv, line_set) result_crvs_0, _ = layer2ptIntersect(prev_crv, line_set.Start) main_crv = curveToPolyline(longestCurve(result_crvs_0)) result_crvs_1, _ = layer2ptIntersect(next_crv, line_set.End) next_crv = curveToPolyline(longestCurve(result_crvs_1)) main_crv, next_crv = list(main_crv), list(next_crv) if not(crossing): pt_set = main_crv + next_crv else: crossing_distance = 4.0 start0, start1 = main_crv[0], main_crv[-1] end0, end1 = next_crv[-1], next_crv[0] distance0 = start0.DistanceTo(end0) distance1 = start1.DistanceTo(end1) exPt0_0 = crossing_distance exPt0_1 = distance0 - crossing_distance exPt1_0 = crossing_distance exPt1_1 = distance1 - crossing_distance # swapping & reversing set 1 pt0_0 = interpolatePts(start0, end0, exPt0_0) pt0_1 = interpolatePts(start0, end0, exPt0_1) pt1_1 = interpolatePts(start1, end1, exPt1_0) pt1_0 = interpolatePts(start1, end1, exPt1_1) pt_set = main_crv + [pt0_0, pt0_1] + next_crv + [pt1_0, pt1_1] return pt_set + [pt_set[0]] def linkSetGeneration(lines, spacing, amount = 2): link_set = [] for line in lines: loc_line_set = LineSet(line, spacing, amount) loc_line_set.createLines() link_set.append(loc_line_set) return link_set def makeMainShape(pins, main_link_set, height, bottom_shift = None): main_crv = pins[0].createSlice(height).ToPolylineCurve() if not(bottom_shift == None): print("I am offsetting the bottom layer with %s" % bottom_shift) main_crv = offsetCurveSet(main_crv, bottom_shift, "outside", count = 2)[1].ToNurbsCurve() inner_crvs = [dc(main_crv)] mv_m = rg.Transform.Translation(rg.Vector3d(0,0,height)) main_links = [] for i, main_link in enumerate(main_link_set): con_line_set = dc(main_link) con_line_set.Transform(mv_m) next_crv = pins[i + 1].createSlice(height).ToPolylineCurve() if not(bottom_shift == None): print("I am offsetting the bottom layer with %s" % bottom_shift) next_crv = offsetCurveSet(next_crv, bottom_shift, "outside", count = 2)[1].ToNurbsCurve() inner_crvs.append(dc(next_crv)) current_pt_set = joinShape(main_crv, next_crv, con_line_set) main_crv = rg.Polyline(current_pt_set).ToPolylineCurve() main_links.append(con_line_set) return main_crv, current_pt_set, main_links, inner_crvs def addLink(polycrv, side_link, open_end = True, start_pts = False, safety_dis = True, start_dis = (20.0, 15.0)): result_crvs, _ = layer2ptIntersect(polycrv, side_link.Start) pt_set = list(curveToPolyline(longestCurve(result_crvs)).ToArray()) if pt_set[0].DistanceTo(side_link.Start[1]) < .001: # start_pts = list(side_link.Start).reverse() end_pts = list(side_link.End) end_pts.reverse() else: # start_pts = list(side_link.Start) end_pts = list(side_link.End) if open_end: pt_set = [end_pts[1]] + pt_set + [end_pts[0]] elif start_pts: if safety_dis: start_dis = [start_dis[0], start_dis[1], start_dis[1], start_dis[0]] vecs = [ rg.Vector3d(pt_set[-2] - pt_set[-1]), rg.Vector3d(end_pts[0] - pt_set[-1]), rg.Vector3d(end_pts[1] - pt_set[0]), rg.Vector3d(pt_set[1] - pt_set[0]) ] [vec.Unitize() for vec in vecs] vecs = [vec * start_dis[vec_i] for vec_i, vec in enumerate(vecs)] b_pts = [pt_set[-1], pt_set[-1], pt_set[0], pt_set[0]] ex_pts = [rg.Point3d(b_pt + vecs[i]) for i, b_pt in enumerate(b_pts)] ex_pts = ex_pts[:2] + end_pts + ex_pts[2:] print(len(ex_pts)) pt_set = pt_set[1:-1] + ex_pts # + [pt_set[1]] else: pt_set = pt_set[1:-1] + end_pts + [pt_set[1]] else: # pt_set = pt_set + side_link.joinLines(False) + [pt_set[0]] pt_set = pt_set + end_pts + [pt_set[0]] return pt_set def makeSideLinks(main_crv, exterior_crv, link_set, height): mv_m = rg.Transform.Translation(rg.Vector3d(0,0,height)) side_link_set = [] main_crv_pt_set = [] for side_link in link_set: loc_side_link = dc(side_link) loc_side_link.Transform(mv_m) extendTrim(main_crv, exterior_crv, loc_side_link) side_link_set.append(loc_side_link) main_crv_pt_set = addLink(main_crv, loc_side_link, False) main_crv = rg.Polyline(main_crv_pt_set).ToPolylineCurve() return main_crv_pt_set, side_link_set def makeInnerCurve(inner_crvs, main_links, side_links, end_link = None, loc_extra_pts = None, mid_links = None, diamond_settings = (False, False, (15.0, 10.0))): inner_crv_count = len(inner_crvs) main_crv = dc(inner_crvs[0]) # reading in the diamond settings start_mid_pts, safety_dis, start_dis = diamond_settings if inner_crv_count > 1: print("I have to do more!") for i in range(inner_crv_count - 1): current_pt_set = joinShape(main_crv, inner_crvs[i + 1], main_links[i], False, True) main_crv = rg.Polyline(current_pt_set).ToPolylineCurve() if not(loc_extra_pts == None): for pt in loc_extra_pts: _, t_val = main_crv.ClosestPoint(pt) main_crv.ChangeClosedCurveSeam(t_val) for side_link in side_links: print("I am adding a side_link!") pt_set = addLink(main_crv, side_link, open_end = False) main_crv = rg.Polyline(pt_set + [pt_set[0]]).ToPolylineCurve() for mid_link in mid_links: print("I am here?") pt_set = addLink(main_crv, mid_link, open_end = False, start_pts = start_mid_pts, safety_dis = safety_dis, start_dis = start_dis) main_crv = rg.Polyline(pt_set + [pt_set[0]]).ToPolylineCurve() if not(end_link == None): print("I am adding the end_link!") pt_set = addLink(main_crv, end_link, True) main_crv = rg.Polyline(pt_set).ToPolylineCurve() return main_crv # def createLinkChain(pins, height, main_links, link_lines, split_lines, outer_part, ): ``` #### File: PatternBrickLibrary/pure_python_library/pp_distance_functions.py ```python import math class NoneFunction(): def get_val(self, _=None): return 1.0 class SimpleSine(): def __init__(self, period_x=1.0, period_y=None, period_z=None, amplitude = 0.0, warp=None): self.p_x=period_x self.a=amplitude if period_y == None: self.v_attribute="1D" else: self.p_y=period_y self.v_attribute="2D" if not(period_y is None) and not(period_z is None): self.v_attribute="3D" self.p_z=period_z def get_val(self, vertex): if self.v_attribute=="1D": return math.sin(vertex.numeric1D / self.p_x) * self.a elif self.v_attribute=="2D": u, v = vertex.numeric2D.tuples return math.sin(u / self.p_x + v / self.p_y) * self.a elif self.v_attribute=="3D": x, y, z = vertex.numeric3D return math.sin(x / self.p_x + y / self.p_y + z / self.p_z) * self.a ``` #### File: 2.92/bl_ui/space_sequencer.py ```python import sys import typing import bpy_types import bl_ui.space_toolsystem_common import bl_ui.properties_grease_pencil_common import rna_prop_ui class SEQUENCER_HT_header(bpy_types.Header, bpy_types._GenericUI): bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_HT_tool_header(bpy_types.Header, bpy_types._GenericUI): bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_tool_settings(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_add(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' bl_translation_context = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_add_effect(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_add_empty(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_add_transitions(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_change(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_context_menu(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_editor_menus(bpy_types.Menu, bpy_types._GenericUI): bl_idname = None ''' ''' bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_marker(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_navigation(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_preview_zoom(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_proxy(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_range(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_select(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_select_channel(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_select_handle(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_select_linked(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip_effect(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip_image_transform(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip_input(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip_lock_mute(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip_movie(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_strip_transform(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_view(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_MT_view_cache(bpy_types.Menu, bpy_types._GenericUI): bl_label = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_collapsible(self, context, layout): ''' ''' pass def draw_preset(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_menu(self, searchpaths, operator, props_default, prop_filepath, filter_ext, filter_path, display_name, add_operator): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_active_tool( bl_ui.space_toolsystem_common.ToolActivePanelHelper, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_overlay(bpy_types.Panel, bpy_types._GenericUI): bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' bl_ui_units_x = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_preview_overlay(bpy_types.Panel, bpy_types._GenericUI): bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_sequencer_overlay(bpy_types.Panel, bpy_types._GenericUI): bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SequencerButtonsPanel: bl_region_type = None ''' ''' bl_space_type = None ''' ''' def has_sequencer(self, context): ''' ''' pass def poll(self, context): ''' ''' pass class SequencerButtonsPanel_Output: bl_region_type = None ''' ''' bl_space_type = None ''' ''' def has_preview(self, context): ''' ''' pass def poll(self, context): ''' ''' pass class SEQUENCER_PT_adjust_color(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_adjust_comp(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_adjust_crop(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_adjust_sound(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_adjust_transform(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_adjust_video(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_cache_settings(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_custom_props(SequencerButtonsPanel, rna_prop_ui.PropertyPanel, bpy_types.Panel, bpy_types._GenericUI): COMPAT_ENGINES = None ''' ''' bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_order = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_effect(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_effect_text_layout(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_effect_text_style(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_mask(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_modifiers(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_proxy_settings(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_scene(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_sound(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_source(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_strip(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_strip_cache(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_strip_proxy(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_time(SequencerButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header_preset(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_sequencer(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_annotation( SequencerButtonsPanel_Output, bl_ui.properties_grease_pencil_common.AnnotationDataPanel, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def draw_layers(self, context, layout, gpd): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_annotation_onion( SequencerButtonsPanel_Output, bl_ui.properties_grease_pencil_common.AnnotationOnionSkin, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_frame_overlay(SequencerButtonsPanel_Output, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_preview(SequencerButtonsPanel_Output, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_view(SequencerButtonsPanel_Output, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_view_safe_areas(SequencerButtonsPanel_Output, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SEQUENCER_PT_view_safe_areas_center_cut( SequencerButtonsPanel_Output, bpy_types.Panel, bpy_types._GenericUI): bl_category = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_header(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def has_preview(self, context): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass def act_strip(context): ''' ''' pass def draw_color_balance(layout, color_balance): ''' ''' pass def selected_sequences_len(context): ''' ''' pass ``` #### File: bpy/ops/clip.py ```python import sys import typing import bpy.types def add_marker(location: typing.List[float] = (0.0, 0.0)): ''' Place new marker at specified location :param location: Location, Location of marker on frame :type location: typing.List[float] ''' pass def add_marker_at_click(): ''' Place new marker at the desired (clicked) position ''' pass def add_marker_move(CLIP_OT_add_marker=None, TRANSFORM_OT_translate=None): ''' Add new marker and move it on movie :param CLIP_OT_add_marker: Add Marker, Place new marker at specified location :param TRANSFORM_OT_translate: Move, Move selected items ''' pass def add_marker_slide(CLIP_OT_add_marker=None, TRANSFORM_OT_translate=None): ''' Add new marker and slide it with mouse until mouse button release :param CLIP_OT_add_marker: Add Marker, Place new marker at specified location :param TRANSFORM_OT_translate: Move, Move selected items ''' pass def apply_solution_scale(distance: float = 0.0): ''' Apply scale on solution itself to make distance between selected tracks equals to desired :param distance: Distance, Distance between selected tracks :type distance: float ''' pass def bundles_to_mesh(): ''' Create vertex cloud using coordinates of reconstructed tracks :file: startup/bl_operators/clip.py\:299 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$299> _ ''' pass def camera_preset_add(name: str = "", remove_name: bool = False, remove_active: bool = False, use_focal_length: bool = True): ''' Add or remove a Tracking Camera Intrinsics Preset :param name: Name, Name of the preset, used to make the path name :type name: str :param remove_name: remove_name :type remove_name: bool :param remove_active: remove_active :type remove_active: bool :param use_focal_length: Include Focal Length, Include focal length into the preset :type use_focal_length: bool ''' pass def change_frame(frame: int = 0): ''' Interactively change the current frame number :param frame: Frame :type frame: int ''' pass def clean_tracks(frames: int = 0, error: float = 0.0, action: typing.Union[int, str] = 'SELECT'): ''' Clean tracks with high error values or few frames :param frames: Tracked Frames, Effect on tracks which are tracked less than specified amount of frames :type frames: int :param error: Reprojection Error, Effect on tracks which have got larger reprojection error :type error: float :param action: Action, Cleanup action to execute * SELECT Select, Select unclean tracks. * DELETE_TRACK Delete Track, Delete unclean tracks. * DELETE_SEGMENTS Delete Segments, Delete unclean segments of tracks. :type action: typing.Union[int, str] ''' pass def clear_solution(): ''' Clear all calculated data ''' pass def clear_track_path(action: typing.Union[int, str] = 'REMAINED', clear_active: bool = False): ''' Clear tracks after/before current position or clear the whole track :param action: Action, Clear action to execute * UPTO Clear Up To, Clear path up to current frame. * REMAINED Clear Remained, Clear path at remaining frames (after current). * ALL Clear All, Clear the whole path. :type action: typing.Union[int, str] :param clear_active: Clear Active, Clear active track only instead of all selected tracks :type clear_active: bool ''' pass def constraint_to_fcurve(): ''' Create F-Curves for object which will copy object's movement caused by this constraint :file: startup/bl_operators/clip.py\:543 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$543> _ ''' pass def copy_tracks(): ''' Copy selected tracks to clipboard ''' pass def create_plane_track(): ''' Create new plane track out of selected point tracks ''' pass def cursor_set(location: typing.List[float] = (0.0, 0.0)): ''' Set 2D cursor location :param location: Location, Cursor location in normalized clip coordinates :type location: typing.List[float] ''' pass def delete_marker(): ''' Delete marker for current frame from selected tracks ''' pass def delete_proxy(): ''' Delete movie clip proxy files from the hard drive :file: startup/bl_operators/clip.py\:369 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$369> _ ''' pass def delete_track(): ''' Delete selected tracks ''' pass def detect_features(placement: typing.Union[int, str] = 'FRAME', margin: int = 16, threshold: float = 0.5, min_distance: int = 120): ''' Automatically detect features and place markers to track :param placement: Placement, Placement for detected features * FRAME Whole Frame, Place markers across the whole frame. * INSIDE_GPENCIL Inside Annotated Area, Place markers only inside areas outlined with the Annotation tool. * OUTSIDE_GPENCIL Outside Annotated Area, Place markers only outside areas outlined with the Annotation tool. :type placement: typing.Union[int, str] :param margin: Margin, Only features further than margin pixels from the image edges are considered :type margin: int :param threshold: Threshold, Threshold level to consider feature good enough for tracking :type threshold: float :param min_distance: Distance, Minimal distance accepted between two features :type min_distance: int ''' pass def disable_markers(action: typing.Union[int, str] = 'DISABLE'): ''' Disable/enable selected markers :param action: Action, Disable action to execute * DISABLE Disable, Disable selected markers. * ENABLE Enable, Enable selected markers. * TOGGLE Toggle, Toggle disabled flag for selected markers. :type action: typing.Union[int, str] ''' pass def dopesheet_select_channel(location: typing.List[float] = (0.0, 0.0), extend: bool = False): ''' Select movie tracking channel :param location: Location, Mouse location to select channel :type location: typing.List[float] :param extend: Extend, Extend selection rather than clearing the existing selection :type extend: bool ''' pass def dopesheet_view_all(): ''' Reset viewable area to show full keyframe range ''' pass def filter_tracks(track_threshold: float = 5.0): ''' Filter tracks which has weirdly looking spikes in motion curves :param track_threshold: Track Threshold, Filter Threshold to select problematic tracks :type track_threshold: float ''' pass def frame_jump(position: typing.Union[int, str] = 'PATHSTART'): ''' Jump to special frame :param position: Position, Position to jump to * PATHSTART Path Start, Jump to start of current path. * PATHEND Path End, Jump to end of current path. * FAILEDPREV Previous Failed, Jump to previous failed frame. * FAILNEXT Next Failed, Jump to next failed frame. :type position: typing.Union[int, str] ''' pass def graph_center_current_frame(): ''' Scroll view so current frame would be centered ''' pass def graph_delete_curve(): ''' Delete track corresponding to the selected curve ''' pass def graph_delete_knot(): ''' Delete curve knots ''' pass def graph_disable_markers(action: typing.Union[int, str] = 'DISABLE'): ''' Disable/enable selected markers :param action: Action, Disable action to execute * DISABLE Disable, Disable selected markers. * ENABLE Enable, Enable selected markers. * TOGGLE Toggle, Toggle disabled flag for selected markers. :type action: typing.Union[int, str] ''' pass def graph_select(location: typing.List[float] = (0.0, 0.0), extend: bool = False): ''' Select graph curves :param location: Location, Mouse location to select nearest entity :type location: typing.List[float] :param extend: Extend, Extend selection rather than clearing the existing selection :type extend: bool ''' pass def graph_select_all_markers(action: typing.Union[int, str] = 'TOGGLE'): ''' Change selection of all markers of active track :param action: Action, Selection action to execute * TOGGLE Toggle, Toggle selection for all elements. * SELECT Select, Select all elements. * DESELECT Deselect, Deselect all elements. * INVERT Invert, Invert selection of all elements. :type action: typing.Union[int, str] ''' pass def graph_select_box(xmin: int = 0, xmax: int = 0, ymin: int = 0, ymax: int = 0, wait_for_input: bool = True, deselect: bool = False, extend: bool = True): ''' Select curve points using box selection :param xmin: X Min :type xmin: int :param xmax: X Max :type xmax: int :param ymin: Y Min :type ymin: int :param ymax: Y Max :type ymax: int :param wait_for_input: Wait for Input :type wait_for_input: bool :param deselect: Deselect, Deselect rather than select items :type deselect: bool :param extend: Extend, Extend selection instead of deselecting everything first :type extend: bool ''' pass def graph_view_all(): ''' View all curves in editor ''' pass def hide_tracks(unselected: bool = False): ''' Hide selected tracks :param unselected: Unselected, Hide unselected tracks :type unselected: bool ''' pass def hide_tracks_clear(): ''' Clear hide selected tracks ''' pass def join_tracks(): ''' Join selected tracks ''' pass def keyframe_delete(): ''' Delete a keyframe from selected tracks at current frame ''' pass def keyframe_insert(): ''' Insert a keyframe to selected tracks at current frame ''' pass def lock_selection_toggle(): ''' Toggle Lock Selection option of the current clip editor ''' pass def lock_tracks(action: typing.Union[int, str] = 'LOCK'): ''' Lock/unlock selected tracks :param action: Action, Lock action to execute * LOCK Lock, Lock selected tracks. * UNLOCK Unlock, Unlock selected tracks. * TOGGLE Toggle, Toggle locked flag for selected tracks. :type action: typing.Union[int, str] ''' pass def mode_set(mode: typing.Union[int, str] = 'TRACKING'): ''' Set the clip interaction mode :param mode: Mode * TRACKING Tracking, Show tracking and solving tools. * MASK Mask, Show mask editing tools. :type mode: typing.Union[int, str] ''' pass def open(directory: str = "", files: typing. Union[typing.Dict[str, 'bpy.types.OperatorFileListElement'], typing. List['bpy.types.OperatorFileListElement'], 'bpy_prop_collection'] = None, hide_props_region: bool = True, filter_blender: bool = False, filter_backup: bool = False, filter_image: bool = True, filter_movie: bool = True, filter_python: bool = False, filter_font: bool = False, filter_sound: bool = False, filter_text: bool = False, filter_archive: bool = False, filter_btx: bool = False, filter_collada: bool = False, filter_alembic: bool = False, filter_usd: bool = False, filter_volume: bool = False, filter_folder: bool = True, filter_blenlib: bool = False, filemode: int = 9, relative_path: bool = True, show_multiview: bool = False, use_multiview: bool = False, display_type: typing.Union[int, str] = 'DEFAULT', sort_method: typing.Union[int, str] = ''): ''' Load a sequence of frames or a movie file :param directory: Directory, Directory of the file :type directory: str :param files: Files :type files: typing.Union[typing.Dict[str, 'bpy.types.OperatorFileListElement'], typing.List['bpy.types.OperatorFileListElement'], 'bpy_prop_collection'] :param hide_props_region: Hide Operator Properties, Collapse the region displaying the operator settings :type hide_props_region: bool :param filter_blender: Filter .blend files :type filter_blender: bool :param filter_backup: Filter .blend files :type filter_backup: bool :param filter_image: Filter image files :type filter_image: bool :param filter_movie: Filter movie files :type filter_movie: bool :param filter_python: Filter python files :type filter_python: bool :param filter_font: Filter font files :type filter_font: bool :param filter_sound: Filter sound files :type filter_sound: bool :param filter_text: Filter text files :type filter_text: bool :param filter_archive: Filter archive files :type filter_archive: bool :param filter_btx: Filter btx files :type filter_btx: bool :param filter_collada: Filter COLLADA files :type filter_collada: bool :param filter_alembic: Filter Alembic files :type filter_alembic: bool :param filter_usd: Filter USD files :type filter_usd: bool :param filter_volume: Filter OpenVDB volume files :type filter_volume: bool :param filter_folder: Filter folders :type filter_folder: bool :param filter_blenlib: Filter Blender IDs :type filter_blenlib: bool :param filemode: File Browser Mode, The setting for the file browser mode to load a .blend file, a library or a special file :type filemode: int :param relative_path: Relative Path, Select the file relative to the blend file :type relative_path: bool :param show_multiview: Enable Multi-View :type show_multiview: bool :param use_multiview: Use Multi-View :type use_multiview: bool :param display_type: Display Type * DEFAULT Default, Automatically determine display type for files. * LIST_VERTICAL Short List, Display files as short list. * LIST_HORIZONTAL Long List, Display files as a detailed list. * THUMBNAIL Thumbnails, Display files as thumbnails. :type display_type: typing.Union[int, str] :param sort_method: File sorting mode :type sort_method: typing.Union[int, str] ''' pass def paste_tracks(): ''' Paste tracks from clipboard ''' pass def prefetch(): ''' Prefetch frames from disk for faster playback/tracking ''' pass def rebuild_proxy(): ''' Rebuild all selected proxies and timecode indices in the background ''' pass def refine_markers(backwards: bool = False): ''' Refine selected markers positions by running the tracker from track's reference to current frame :param backwards: Backwards, Do backwards tracking :type backwards: bool ''' pass def reload(): ''' Reload clip ''' pass def select(extend: bool = False, deselect_all: bool = False, location: typing.List[float] = (0.0, 0.0)): ''' Select tracking markers :param extend: Extend, Extend selection rather than clearing the existing selection :type extend: bool :param deselect_all: Deselect On Nothing, Deselect all when nothing under the cursor :type deselect_all: bool :param location: Location, Mouse location in normalized coordinates, 0.0 to 1.0 is within the image bounds :type location: typing.List[float] ''' pass def select_all(action: typing.Union[int, str] = 'TOGGLE'): ''' Change selection of all tracking markers :param action: Action, Selection action to execute * TOGGLE Toggle, Toggle selection for all elements. * SELECT Select, Select all elements. * DESELECT Deselect, Deselect all elements. * INVERT Invert, Invert selection of all elements. :type action: typing.Union[int, str] ''' pass def select_box(xmin: int = 0, xmax: int = 0, ymin: int = 0, ymax: int = 0, wait_for_input: bool = True, mode: typing.Union[int, str] = 'SET'): ''' Select markers using box selection :param xmin: X Min :type xmin: int :param xmax: X Max :type xmax: int :param ymin: Y Min :type ymin: int :param ymax: Y Max :type ymax: int :param wait_for_input: Wait for Input :type wait_for_input: bool :param mode: Mode * SET Set, Set a new selection. * ADD Extend, Extend existing selection. * SUB Subtract, Subtract existing selection. :type mode: typing.Union[int, str] ''' pass def select_circle(x: int = 0, y: int = 0, radius: int = 25, wait_for_input: bool = True, mode: typing.Union[int, str] = 'SET'): ''' Select markers using circle selection :param x: X :type x: int :param y: Y :type y: int :param radius: Radius :type radius: int :param wait_for_input: Wait for Input :type wait_for_input: bool :param mode: Mode * SET Set, Set a new selection. * ADD Extend, Extend existing selection. * SUB Subtract, Subtract existing selection. :type mode: typing.Union[int, str] ''' pass def select_grouped(group: typing.Union[int, str] = 'ESTIMATED'): ''' Select all tracks from specified group :param group: Action, Clear action to execute * KEYFRAMED Keyframed Tracks, Select all keyframed tracks. * ESTIMATED Estimated Tracks, Select all estimated tracks. * TRACKED Tracked Tracks, Select all tracked tracks. * LOCKED Locked Tracks, Select all locked tracks. * DISABLED Disabled Tracks, Select all disabled tracks. * COLOR Tracks with Same Color, Select all tracks with same color as active track. * FAILED Failed Tracks, Select all tracks which failed to be reconstructed. :type group: typing.Union[int, str] ''' pass def select_lasso(path: typing.Union[ typing.Dict[str, 'bpy.types.OperatorMousePath'], typing. List['bpy.types.OperatorMousePath'], 'bpy_prop_collection'] = None, mode: typing.Union[int, str] = 'SET'): ''' Select markers using lasso selection :param path: Path :type path: typing.Union[typing.Dict[str, 'bpy.types.OperatorMousePath'], typing.List['bpy.types.OperatorMousePath'], 'bpy_prop_collection'] :param mode: Mode * SET Set, Set a new selection. * ADD Extend, Extend existing selection. * SUB Subtract, Subtract existing selection. :type mode: typing.Union[int, str] ''' pass def set_active_clip(): ''' Undocumented, consider contributing <https://developer.blender.org/T51061> __. :file: startup/bl_operators/clip.py\:228 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$228> _ ''' pass def set_axis(axis: typing.Union[int, str] = 'X'): ''' Set direction of scene axis rotating camera (or its parent if present) and assume selected track lies on real axis, joining it with the origin :param axis: Axis, Axis to use to align bundle along * X X, Align bundle align X axis. * Y Y, Align bundle align Y axis. :type axis: typing.Union[int, str] ''' pass def set_center_principal(): ''' Set optical center to center of footage ''' pass def set_origin(use_median: bool = False): ''' Set active marker as origin by moving camera (or its parent if present) in 3D space :param use_median: Use Median, Set origin to median point of selected bundles :type use_median: bool ''' pass def set_plane(plane: typing.Union[int, str] = 'FLOOR'): ''' Set plane based on 3 selected bundles by moving camera (or its parent if present) in 3D space :param plane: Plane, Plane to be used for orientation * FLOOR Floor, Set floor plane. * WALL Wall, Set wall plane. :type plane: typing.Union[int, str] ''' pass def set_scale(distance: float = 0.0): ''' Set scale of scene by scaling camera (or its parent if present) :param distance: Distance, Distance between selected tracks :type distance: float ''' pass def set_scene_frames(): ''' Set scene's start and end frame to match clip's start frame and length ''' pass def set_solution_scale(distance: float = 0.0): ''' Set object solution scale using distance between two selected tracks :param distance: Distance, Distance between selected tracks :type distance: float ''' pass def set_solver_keyframe(keyframe: typing.Union[int, str] = 'KEYFRAME_A'): ''' Set keyframe used by solver :param keyframe: Keyframe, Keyframe to set :type keyframe: typing.Union[int, str] ''' pass def set_viewport_background(): ''' Set current movie clip as a camera background in 3D Viewport (works only when a 3D Viewport is visible) :file: startup/bl_operators/clip.py\:433 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$433> _ ''' pass def setup_tracking_scene(): ''' Prepare scene for compositing 3D objects into this footage :file: startup/bl_operators/clip.py\:997 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$997> _ ''' pass def slide_marker(offset: typing.List[float] = (0.0, 0.0)): ''' Slide marker areas :param offset: Offset, Offset in floating-point units, 1.0 is the width and height of the image :type offset: typing.List[float] ''' pass def slide_plane_marker(): ''' Slide plane marker areas ''' pass def solve_camera(): ''' Solve camera motion from tracks ''' pass def stabilize_2d_add(): ''' Add selected tracks to 2D translation stabilization ''' pass def stabilize_2d_remove(): ''' Remove selected track from translation stabilization ''' pass def stabilize_2d_rotation_add(): ''' Add selected tracks to 2D rotation stabilization ''' pass def stabilize_2d_rotation_remove(): ''' Remove selected track from rotation stabilization ''' pass def stabilize_2d_rotation_select(): ''' Select tracks which are used for rotation stabilization ''' pass def stabilize_2d_select(): ''' Select tracks which are used for translation stabilization ''' pass def track_color_preset_add(name: str = "", remove_name: bool = False, remove_active: bool = False): ''' Add or remove a Clip Track Color Preset :param name: Name, Name of the preset, used to make the path name :type name: str :param remove_name: remove_name :type remove_name: bool :param remove_active: remove_active :type remove_active: bool ''' pass def track_copy_color(): ''' Copy color to all selected tracks ''' pass def track_markers(backwards: bool = False, sequence: bool = False): ''' Track selected markers :param backwards: Backwards, Do backwards tracking :type backwards: bool :param sequence: Track Sequence, Track marker during image sequence rather than single image :type sequence: bool ''' pass def track_settings_as_default(): ''' Copy tracking settings from active track to default settings :file: startup/bl_operators/clip.py\:1028 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$1028> _ ''' pass def track_settings_to_track(): ''' Copy tracking settings from active track to selected tracks :file: startup/bl_operators/clip.py\:1076 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$1076> _ ''' pass def track_to_empty(): ''' Create an Empty object which will be copying movement of active track :file: startup/bl_operators/clip.py\:275 <https://developer.blender.org/diffusion/B/browse/master/release/scripts/startup/bl_operators/clip.py$275> _ ''' pass def tracking_object_new(): ''' Add new object for tracking ''' pass def tracking_object_remove(): ''' Remove object for tracking ''' pass def tracking_settings_preset_add(name: str = "", remove_name: bool = False, remove_active: bool = False): ''' Add or remove a motion tracking settings preset :param name: Name, Name of the preset, used to make the path name :type name: str :param remove_name: remove_name :type remove_name: bool :param remove_active: remove_active :type remove_active: bool ''' pass def view_all(fit_view: bool = False): ''' View whole image with markers :param fit_view: Fit View, Fit frame to the viewport :type fit_view: bool ''' pass def view_center_cursor(): ''' Center the view so that the cursor is in the middle of the view ''' pass def view_ndof(): ''' Use a 3D mouse device to pan/zoom the view ''' pass def view_pan(offset: typing.List[float] = (0.0, 0.0)): ''' Pan the view :param offset: Offset, Offset in floating-point units, 1.0 is the width and height of the image :type offset: typing.List[float] ''' pass def view_selected(): ''' View all selected elements ''' pass def view_zoom(factor: float = 0.0, use_cursor_init: bool = True): ''' Zoom in/out the view :param factor: Factor, Zoom factor, values higher than 1.0 zoom in, lower values zoom out :type factor: float :param use_cursor_init: Use Mouse Position, Allow the initial mouse position to be used :type use_cursor_init: bool ''' pass def view_zoom_in(location: typing.List[float] = (0.0, 0.0)): ''' Zoom in the view :param location: Location, Cursor location in screen coordinates :type location: typing.List[float] ''' pass def view_zoom_out(location: typing.List[float] = (0.0, 0.0)): ''' Zoom out the view :param location: Location, Cursor location in normalized (0.0 to 1.0) coordinates :type location: typing.List[float] ''' pass def view_zoom_ratio(ratio: float = 0.0): ''' Set the zoom ratio (based on clip size) :param ratio: Ratio, Zoom ratio, 1.0 is 1:1, higher is zoomed in, lower is zoomed out :type ratio: float ''' pass ``` #### File: 2.92/freestyle/types.py ```python import sys import typing import bpy.types import mathutils class AdjacencyIterator: ''' Class hierarchy: Iterator > AdjacencyIterator Class for representing adjacency iterators used in the chaining process. An AdjacencyIterator is created in the increment() and decrement() methods of a ChainingIterator and passed to the traverse() method of the ChainingIterator. ''' is_incoming: bool = None ''' True if the current ViewEdge is coming towards the iteration vertex, and False otherwise. :type: bool ''' object: 'ViewEdge' = None ''' The ViewEdge object currently pointed to by this iterator. :type: 'ViewEdge' ''' def __init__(self): ''' __init__(brother) __init__(vertex, restrict_to_selection=True, restrict_to_unvisited=True) Builds an AdjacencyIterator using the default constructor, copy constructor or the overloaded constructor. :param brother: An AdjacencyIterator object. :type brother: 'AdjacencyIterator' :param vertex: The vertex which is the next crossing. :type vertex: 'ViewVertex' :param restrict_to_selection: Indicates whether to force the chaining to stay within the set of selected ViewEdges or not. :type restrict_to_selection: bool :param restrict_to_unvisited: Indicates whether a ViewEdge that has already been chained must be ignored ot not. :type restrict_to_unvisited: bool ''' pass class BBox: ''' Class for representing a bounding box. ''' def __init__(self): ''' Default constructor. ''' pass class BinaryPredicate0D: ''' Base class for binary predicates working on Interface0D objects. A BinaryPredicate0D is typically an ordering relation between two Interface0D objects. The predicate evaluates a relation between the two Interface0D instances and returns a boolean value (true or false). It is used by invoking the __call__() method. ''' name: str = None ''' The name of the binary 0D predicate. :type: str ''' def __init__(self): ''' Default constructor. ''' pass def __call__(self, inter1: 'Interface0D', inter2: 'Interface0D') -> bool: ''' Must be overload by inherited classes. It evaluates a relation between two Interface0D objects. :param inter1: The first Interface0D object. :type inter1: 'Interface0D' :param inter2: The second Interface0D object. :type inter2: 'Interface0D' :rtype: bool :return: True or false. ''' pass class BinaryPredicate1D: ''' Base class for binary predicates working on Interface1D objects. A BinaryPredicate1D is typically an ordering relation between two Interface1D objects. The predicate evaluates a relation between the two Interface1D instances and returns a boolean value (true or false). It is used by invoking the __call__() method. ''' name: str = None ''' The name of the binary 1D predicate. :type: str ''' def __init__(self): ''' Default constructor. ''' pass def __call__(self, inter1: 'Interface1D', inter2: 'Interface1D') -> bool: ''' Must be overload by inherited classes. It evaluates a relation between two Interface1D objects. :param inter1: The first Interface1D object. :type inter1: 'Interface1D' :param inter2: The second Interface1D object. :type inter2: 'Interface1D' :rtype: bool :return: True or false. ''' pass class Chain: ''' Class hierarchy: Interface1D > Curve > Chain Class to represent a 1D elements issued from the chaining process. A Chain is the last step before the Stroke and is used in the Splitting and Creation processes. ''' def __init__(self): ''' __init__(brother) __init__(id) Builds a Chain using the default constructor, copy constructor or from an Id . :param brother: A Chain object. :type brother: 'Chain' :param id: An Id object. :type id: 'Id' ''' pass def push_viewedge_back(self, viewedge: 'ViewEdge', orientation: bool): ''' Adds a ViewEdge at the end of the Chain. :param viewedge: The ViewEdge that must be added. :type viewedge: 'ViewEdge' :param orientation: The orientation with which the ViewEdge must be processed. :type orientation: bool ''' pass def push_viewedge_front(self, viewedge: 'ViewEdge', orientation: bool): ''' Adds a ViewEdge at the beginning of the Chain. :param viewedge: The ViewEdge that must be added. :type viewedge: 'ViewEdge' :param orientation: The orientation with which the ViewEdge must be processed. :type orientation: bool ''' pass class ChainingIterator: ''' Class hierarchy: Iterator > ViewEdgeIterator > ChainingIterator Base class for chaining iterators. This class is designed to be overloaded in order to describe chaining rules. It makes the description of chaining rules easier. The two main methods that need to overloaded are traverse() and init(). traverse() tells which ViewEdge to follow, among the adjacent ones. If you specify restriction rules (such as "Chain only ViewEdges of the selection"), they will be included in the adjacency iterator (i.e, the adjacent iterator will only stop on "valid" edges). ''' is_incrementing: bool = None ''' True if the current iteration is an incrementation. :type: bool ''' next_vertex: 'ViewVertex' = None ''' The ViewVertex that is the next crossing. :type: 'ViewVertex' ''' object: 'ViewEdge' = None ''' The ViewEdge object currently pointed by this iterator. :type: 'ViewEdge' ''' def __init__(self, restrict_to_selection: bool = True, restrict_to_unvisited: bool = True, begin: 'ViewEdge' = None, orientation: bool = True): ''' __init__(brother) Builds a Chaining Iterator from the first ViewEdge used for iteration and its orientation or by using the copy constructor. :param restrict_to_selection: Indicates whether to force the chaining to stay within the set of selected ViewEdges or not. :type restrict_to_selection: bool :param restrict_to_unvisited: Indicates whether a ViewEdge that has already been chained must be ignored ot not. :type restrict_to_unvisited: bool :param begin: The ViewEdge from which to start the chain. :type begin: 'ViewEdge' :param orientation: The direction to follow to explore the graph. If true, the direction indicated by the first ViewEdge is used. :type orientation: bool :param brother: :type brother: 'ChainingIterator' ''' pass def init(self): ''' Initializes the iterator context. This method is called each time a new chain is started. It can be used to reset some history information that you might want to keep. ''' pass def traverse(self, it: 'AdjacencyIterator') -> 'ViewEdge': ''' This method iterates over the potential next ViewEdges and returns the one that will be followed next. Returns the next ViewEdge to follow or None when the end of the chain is reached. :param it: The iterator over the ViewEdges adjacent to the end vertex of the current ViewEdge. The adjacency iterator reflects the restriction rules by only iterating over the valid ViewEdges. :type it: 'AdjacencyIterator' :rtype: 'ViewEdge' :return: Returns the next ViewEdge to follow, or None if chaining ends. ''' pass class Curve: ''' Class hierarchy: Interface1D > Curve Base class for curves made of CurvePoints. SVertex is the type of the initial curve vertices. A Chain is a specialization of a Curve. ''' is_empty: bool = None ''' True if the Curve doesn't have any Vertex yet. :type: bool ''' segments_size: int = None ''' The number of segments in the polyline constituting the Curve. :type: int ''' def __init__(self): ''' __init__(brother) __init__(id) Builds a FrsCurve using a default constructor, copy constructor or from an Id . :param brother: A Curve object. :type brother: 'bpy.types.Curve' :param id: An Id object. :type id: 'Id' ''' pass def push_vertex_back(self, vertex: typing.Union['CurvePoint', 'SVertex']): ''' Adds a single vertex at the end of the Curve. :param vertex: A vertex object. :type vertex: typing.Union['CurvePoint', 'SVertex'] ''' pass def push_vertex_front(self, vertex: typing.Union['CurvePoint', 'SVertex']): ''' Adds a single vertex at the front of the Curve. :param vertex: A vertex object. :type vertex: typing.Union['CurvePoint', 'SVertex'] ''' pass class CurvePoint: ''' Class hierarchy: Interface0D > CurvePoint Class to represent a point of a curve. A CurvePoint can be any point of a 1D curve (it doesn't have to be a vertex of the curve). Any Interface1D is built upon ViewEdges, themselves built upon FEdges. Therefore, a curve is basically a polyline made of a list of SVertex objects. Thus, a CurvePoint is built by linearly interpolating two SVertex instances. CurvePoint can be used as virtual points while querying 0D information along a curve at a given resolution. ''' fedge: 'FEdge' = None ''' Gets the FEdge for the two SVertices that given CurvePoints consists out of. A shortcut for CurvePoint.first_svertex.get_fedge(CurvePoint.second_svertex). :type: 'FEdge' ''' first_svertex: 'SVertex' = None ''' The first SVertex upon which the CurvePoint is built. :type: 'SVertex' ''' second_svertex: 'SVertex' = None ''' The second SVertex upon which the CurvePoint is built. :type: 'SVertex' ''' t2d: float = None ''' The 2D interpolation parameter. :type: float ''' def __init__(self): ''' __init__(brother) __init__(first_vertex, second_vertex, t2d) __init__(first_point, second_point, t2d) Builds a CurvePoint using the default constructor, copy constructor, or one of the overloaded constructors. The over loaded constructors can either take two SVertex or two CurvePoint objects and an interpolation parameter :param brother: A CurvePoint object. :type brother: 'CurvePoint' :param first_vertex: The first SVertex. :type first_vertex: 'SVertex' :param second_vertex: The second SVertex. :type second_vertex: 'SVertex' :param first_point: The first CurvePoint. :type first_point: 'CurvePoint' :param second_point: The second CurvePoint. :type second_point: 'CurvePoint' :param t2d: A 2D interpolation parameter used to linearly interpolate first_vertex and second_vertex or first_point and second_point. :type t2d: float ''' pass class CurvePointIterator: ''' Class hierarchy: Iterator > CurvePointIterator Class representing an iterator on a curve. Allows an iterating outside initial vertices. A CurvePoint is instantiated and returned through the .object attribute. ''' object: 'CurvePoint' = None ''' The CurvePoint object currently pointed by this iterator. :type: 'CurvePoint' ''' t: float = None ''' The curvilinear abscissa of the current point. :type: float ''' u: float = None ''' The point parameter at the current point in the stroke (0 <= u <= 1). :type: float ''' def __init__(self): ''' __init__(brother) __init__(step=0.0) Builds a CurvePointIterator object using either the default constructor, copy constructor, or the overloaded constructor. :param brother: A CurvePointIterator object. :type brother: 'CurvePointIterator' :param step: A resampling resolution with which the curve is resampled. If zero, no resampling is done (i.e., the iterator iterates over initial vertices). :type step: float ''' pass class FEdge: ''' Class hierarchy: Interface1D > FEdge Base Class for feature edges. This FEdge can represent a silhouette, a crease, a ridge/valley, a border or a suggestive contour. For silhouettes, the FEdge is oriented so that the visible face lies on the left of the edge. For borders, the FEdge is oriented so that the face lies on the left of the edge. An FEdge can represent an initial edge of the mesh or runs across a face of the initial mesh depending on the smoothness or sharpness of the mesh. This class is specialized into a smooth and a sharp version since their properties slightly vary from one to the other. ''' first_svertex: 'SVertex' = None ''' The first SVertex constituting this FEdge. :type: 'SVertex' ''' id: 'Id' = None ''' The Id of this FEdge. :type: 'Id' ''' is_smooth: bool = None ''' True if this FEdge is a smooth FEdge. :type: bool ''' nature: 'Nature' = None ''' The nature of this FEdge. :type: 'Nature' ''' next_fedge: 'FEdge' = None ''' The FEdge following this one in the ViewEdge. The value is None if this FEdge is the last of the ViewEdge. :type: 'FEdge' ''' previous_fedge: 'FEdge' = None ''' The FEdge preceding this one in the ViewEdge. The value is None if this FEdge is the first one of the ViewEdge. :type: 'FEdge' ''' second_svertex: 'SVertex' = None ''' The second SVertex constituting this FEdge. :type: 'SVertex' ''' viewedge: 'ViewEdge' = None ''' The ViewEdge to which this FEdge belongs to. :type: 'ViewEdge' ''' def FEdge(self): ''' FEdge(brother) Builds an FEdge using the default constructor, copy constructor, or between two SVertex objects. :param brother: An FEdge object. :type brother: 'FEdge' :param first_vertex: The first SVertex. :type first_vertex: 'SVertex' :param second_vertex: The second SVertex. :type second_vertex: 'SVertex' ''' pass class FEdgeSharp: ''' Class hierarchy: Interface1D > FEdge > FEdgeSharp Class defining a sharp FEdge. A Sharp FEdge corresponds to an initial edge of the input mesh. It can be a silhouette, a crease or a border. If it is a crease edge, then it is bordered by two faces of the mesh. Face a lies on its right whereas Face b lies on its left. If it is a border edge, then it doesn't have any face on its right, and thus Face a is None. ''' face_mark_left: bool = None ''' The face mark of the face lying on the left of the FEdge. :type: bool ''' face_mark_right: bool = None ''' The face mark of the face lying on the right of the FEdge. If this FEdge is a border, it has no face on the right and thus this property is set to false. :type: bool ''' material_index_left: int = None ''' The index of the material of the face lying on the left of the FEdge. :type: int ''' material_index_right: int = None ''' The index of the material of the face lying on the right of the FEdge. If this FEdge is a border, it has no Face on its right and therefore no material. :type: int ''' material_left: 'bpy.types.Material' = None ''' The material of the face lying on the left of the FEdge. :type: 'bpy.types.Material' ''' material_right: 'bpy.types.Material' = None ''' The material of the face lying on the right of the FEdge. If this FEdge is a border, it has no Face on its right and therefore no material. :type: 'bpy.types.Material' ''' normal_left: 'mathutils.Vector' = None ''' The normal to the face lying on the left of the FEdge. :type: 'mathutils.Vector' ''' normal_right: 'mathutils.Vector' = None ''' The normal to the face lying on the right of the FEdge. If this FEdge is a border, it has no Face on its right and therefore no normal. :type: 'mathutils.Vector' ''' def __init__(self): ''' __init__(brother) __init__(first_vertex, second_vertex) Builds an FEdgeSharp using the default constructor, copy constructor, or between two SVertex objects. :param brother: An FEdgeSharp object. :type brother: 'FEdgeSharp' :param first_vertex: The first SVertex object. :type first_vertex: 'SVertex' :param second_vertex: The second SVertex object. :type second_vertex: 'SVertex' ''' pass class FEdgeSmooth: ''' Class hierarchy: Interface1D > FEdge > FEdgeSmooth Class defining a smooth edge. This kind of edge typically runs across a face of the input mesh. It can be a silhouette, a ridge or valley, a suggestive contour. ''' face_mark: bool = None ''' The face mark of the face that this FEdge is running across. :type: bool ''' material: 'bpy.types.Material' = None ''' The material of the face that this FEdge is running across. :type: 'bpy.types.Material' ''' material_index: int = None ''' The index of the material of the face that this FEdge is running across. :type: int ''' normal: 'mathutils.Vector' = None ''' The normal of the face that this FEdge is running across. :type: 'mathutils.Vector' ''' def __init__(self): ''' __init__(brother) __init__(first_vertex, second_vertex) Builds an FEdgeSmooth using the default constructor, copy constructor, or between two SVertex . :param brother: An FEdgeSmooth object. :type brother: 'FEdgeSmooth' :param first_vertex: The first SVertex object. :type first_vertex: 'SVertex' :param second_vertex: The second SVertex object. :type second_vertex: 'SVertex' ''' pass class Id: ''' Class for representing an object Id. ''' first: int = None ''' The first number constituting the Id. :type: int ''' second: int = None ''' The second number constituting the Id. :type: int ''' def __init__(self, brother: 'Id'): ''' __init__(first=0, second=0) Build the Id from two numbers or another Id using the copy constructor. :param brother: An Id object. :type brother: 'Id' :param first: :type first: int :param second: The second number. :type second: int ''' pass class IntegrationType: ''' Class hierarchy: int > IntegrationType Different integration methods that can be invoked to integrate into a single value the set of values obtained from each 0D element of an 1D element: * IntegrationType.MEAN: The value computed for the 1D element is the mean of the values obtained for the 0D elements. * IntegrationType.MIN: The value computed for the 1D element is the minimum of the values obtained for the 0D elements. * IntegrationType.MAX: The value computed for the 1D element is the maximum of the values obtained for the 0D elements. * IntegrationType.FIRST: The value computed for the 1D element is the first of the values obtained for the 0D elements. * IntegrationType.LAST: The value computed for the 1D element is the last of the values obtained for the 0D elements. ''' pass class Interface0D: ''' Base class for any 0D element. ''' id: 'Id' = None ''' The Id of this 0D element. :type: 'Id' ''' name: str = None ''' The string of the name of this 0D element. :type: str ''' nature: 'Nature' = None ''' The nature of this 0D element. :type: 'Nature' ''' point_2d: 'mathutils.Vector' = None ''' The 2D point of this 0D element. :type: 'mathutils.Vector' ''' point_3d: 'mathutils.Vector' = None ''' The 3D point of this 0D element. :type: 'mathutils.Vector' ''' projected_x: float = None ''' The X coordinate of the projected 3D point of this 0D element. :type: float ''' projected_y: float = None ''' The Y coordinate of the projected 3D point of this 0D element. :type: float ''' projected_z: float = None ''' The Z coordinate of the projected 3D point of this 0D element. :type: float ''' def __init__(self): ''' Default constructor. ''' pass def get_fedge(self, inter: 'Interface0D') -> 'FEdge': ''' Returns the FEdge that lies between this 0D element and the 0D element given as the argument. :param inter: A 0D element. :type inter: 'Interface0D' :rtype: 'FEdge' :return: The FEdge lying between the two 0D elements. ''' pass class Interface0DIterator: ''' Class hierarchy: Iterator > Interface0DIterator Class defining an iterator over Interface0D elements. An instance of this iterator is always obtained from a 1D element. ''' at_last: bool = None ''' True if the iterator points to the last valid element. For its counterpart (pointing to the first valid element), use it.is_begin. :type: bool ''' object: 'Interface0D' = None ''' The 0D object currently pointed to by this iterator. Note that the object may be an instance of an Interface0D subclass. For example if the iterator has been created from the vertices_begin() method of the Stroke class, the .object property refers to a StrokeVertex object. :type: 'Interface0D' ''' t: float = None ''' The curvilinear abscissa of the current point. :type: float ''' u: float = None ''' The point parameter at the current point in the 1D element (0 <= u <= 1). :type: float ''' def __init__(self, brother: 'Interface0DIterator'): ''' __init__(it) Construct a nested Interface0DIterator using either the copy constructor or the constructor that takes an he argument of a Function0D. :param brother: An Interface0DIterator object. :type brother: 'Interface0DIterator' :param it: An iterator object to be nested. :type it: typing.Union['StrokeVertexIterator', 'SVertexIterator', 'CurvePointIterator'] ''' pass class Interface1D: ''' Base class for any 1D element. ''' id: 'Id' = None ''' The Id of this Interface1D. :type: 'Id' ''' length_2d: float = None ''' The 2D length of this Interface1D. :type: float ''' name: str = None ''' The string of the name of the 1D element. :type: str ''' nature: 'Nature' = None ''' The nature of this Interface1D. :type: 'Nature' ''' time_stamp: int = None ''' The time stamp of the 1D element, mainly used for selection. :type: int ''' def __init__(self): ''' Default constructor. ''' pass def points_begin(self, t: float = 0.0) -> 'Interface0DIterator': ''' Returns an iterator over the Interface1D points, pointing to the first point. The difference with vertices_begin() is that here we can iterate over points of the 1D element at a any given sampling. Indeed, for each iteration, a virtual point is created. :param t: A sampling with which we want to iterate over points of this 1D element. :type t: float :rtype: 'Interface0DIterator' :return: An Interface0DIterator pointing to the first point. ''' pass def points_end(self, t: float = 0.0) -> 'Interface0DIterator': ''' Returns an iterator over the Interface1D points, pointing after the last point. The difference with vertices_end() is that here we can iterate over points of the 1D element at a given sampling. Indeed, for each iteration, a virtual point is created. :param t: A sampling with which we want to iterate over points of this 1D element. :type t: float :rtype: 'Interface0DIterator' :return: An Interface0DIterator pointing after the last point. ''' pass def vertices_begin(self) -> 'Interface0DIterator': ''' Returns an iterator over the Interface1D vertices, pointing to the first vertex. :rtype: 'Interface0DIterator' :return: An Interface0DIterator pointing to the first vertex. ''' pass def vertices_end(self) -> 'Interface0DIterator': ''' Returns an iterator over the Interface1D vertices, pointing after the last vertex. :rtype: 'Interface0DIterator' :return: An Interface0DIterator pointing after the last vertex. ''' pass class Iterator: ''' Base class to define iterators. ''' is_begin: bool = None ''' True if the iterator points to the first element. :type: bool ''' is_end: bool = None ''' True if the iterator points to the last element. :type: bool ''' name: str = None ''' The string of the name of this iterator. :type: str ''' def __init__(self): ''' Default constructor. ''' pass def decrement(self): ''' Makes the iterator point the previous element. ''' pass def increment(self): ''' Makes the iterator point the next element. ''' pass class Material: ''' Class defining a material. ''' ambient: 'mathutils.Color' = None ''' RGBA components of the ambient color of the material. :type: 'mathutils.Color' ''' diffuse: 'mathutils.Vector' = None ''' RGBA components of the diffuse color of the material. :type: 'mathutils.Vector' ''' emission: 'mathutils.Color' = None ''' RGBA components of the emissive color of the material. :type: 'mathutils.Color' ''' line: 'mathutils.Vector' = None ''' RGBA components of the line color of the material. :type: 'mathutils.Vector' ''' priority: int = None ''' Line color priority of the material. :type: int ''' shininess: float = None ''' Shininess coefficient of the material. :type: float ''' specular: 'mathutils.Vector' = None ''' RGBA components of the specular color of the material. :type: 'mathutils.Vector' ''' def __init__(self): ''' __init__(brother) __init__(line, diffuse, ambient, specular, emission, shininess, priority) Creates a FrsMaterial using either default constructor, copy constructor, or an overloaded constructor :param brother: A Material object to be used as a copy constructor. :type brother: 'bpy.types.Material' :param line: The line color. :type line: typing.Union[typing.List[float], typing.List['mathutils.Vector']] :param diffuse: The diffuse color. :type diffuse: typing.Union[typing.List[float], typing.List['mathutils.Vector']] :param ambient: The ambient color. :type ambient: typing.Union[typing.List[float], typing.List['mathutils.Vector']] :param specular: The specular color. :type specular: typing.Union[typing.List[float], typing.List['mathutils.Vector']] :param emission: The emissive color. :type emission: typing.Union[typing.List[float], typing.List['mathutils.Vector']] :param shininess: The shininess coefficient. :type shininess: float :param priority: The line color priority. :type priority: int ''' pass class MediumType: ''' Class hierarchy: int > MediumType The different blending modes available to similate the interaction media-medium: * Stroke.DRY_MEDIUM: To simulate a dry medium such as Pencil or Charcoal. * Stroke.HUMID_MEDIUM: To simulate ink painting (color subtraction blending). * Stroke.OPAQUE_MEDIUM: To simulate an opaque medium (oil, spray...). ''' pass class Nature: ''' Class hierarchy: int > Nature Different possible natures of 0D and 1D elements of the ViewMap. Vertex natures: * Nature.POINT: True for any 0D element. * Nature.S_VERTEX: True for SVertex. * Nature.VIEW_VERTEX: True for ViewVertex. * Nature.NON_T_VERTEX: True for NonTVertex. * Nature.T_VERTEX: True for TVertex. * Nature.CUSP: True for CUSP. Edge natures: * Nature.NO_FEATURE: True for non feature edges (always false for 1D elements of the ViewMap). * Nature.SILHOUETTE: True for silhouettes. * Nature.BORDER: True for borders. * Nature.CREASE: True for creases. * Nature.RIDGE: True for ridges. * Nature.VALLEY: True for valleys. * Nature.SUGGESTIVE_CONTOUR: True for suggestive contours. * Nature.MATERIAL_BOUNDARY: True for edges at material boundaries. * Nature.EDGE_MARK: True for edges having user-defined edge marks. ''' pass class Noise: ''' Class to provide Perlin noise functionalities. Undocumented, consider contributing <https://developer.blender.org/T51061> __. Undocumented, consider contributing <https://developer.blender.org/T51061> __. ''' def __init__(self, seed=' -1'): ''' Builds a Noise object. Seed is an optional argument. The seed value is used as a seed for random number generation if it is equal to or greater than zero; otherwise, time is used as a seed. :param seed: Seed for random number generation. :type seed: int ''' pass def smoothNoise1(self, v: float) -> float: ''' Returns a smooth noise value for a 1D element. :param v: One-dimensional sample point. :type v: float :rtype: float :return: A smooth noise value. ''' pass def smoothNoise2(self, v: typing.List['mathutils.Vector']) -> float: ''' Returns a smooth noise value for a 2D element. :param v: Two-dimensional sample point. :type v: typing.List['mathutils.Vector'] :rtype: float :return: A smooth noise value. ''' pass def smoothNoise3(self, v: typing.List['mathutils.Vector']) -> float: ''' Returns a smooth noise value for a 3D element. :param v: Three-dimensional sample point. :type v: typing.List['mathutils.Vector'] :rtype: float :return: A smooth noise value. ''' pass def turbulence1(self, v: float, freq: float, amp: float, oct: int = 4) -> float: ''' Returns a noise value for a 1D element. :param v: One-dimensional sample point. :type v: float :param freq: Noise frequency. :type freq: float :param amp: Amplitude. :type amp: float :param oct: Number of octaves. :type oct: int :rtype: float :return: A noise value. ''' pass def turbulence2(self, v: typing.List['mathutils.Vector'], freq: float, amp: float, oct: int = 4) -> float: ''' Returns a noise value for a 2D element. :param v: Two-dimensional sample point. :type v: typing.List['mathutils.Vector'] :param freq: Noise frequency. :type freq: float :param amp: Amplitude. :type amp: float :param oct: Number of octaves. :type oct: int :rtype: float :return: A noise value. ''' pass def turbulence3(self, v: typing.List['mathutils.Vector'], freq: float, amp: float, oct: int = 4) -> float: ''' Returns a noise value for a 3D element. :param v: Three-dimensional sample point. :type v: typing.List['mathutils.Vector'] :param freq: Noise frequency. :type freq: float :param amp: Amplitude. :type amp: float :param oct: Number of octaves. :type oct: int :rtype: float :return: A noise value. ''' pass class NonTVertex: ''' Class hierarchy: Interface0D > ViewVertex > NonTVertex View vertex for corners, cusps, etc. associated to a single SVertex. Can be associated to 2 or more view edges. ''' svertex: 'SVertex' = None ''' The SVertex on top of which this NonTVertex is built. :type: 'SVertex' ''' def __init__(self): ''' __init__(svertex) Builds a NonTVertex using the default constructor or a SVertex . :param svertex: An SVertex object. :type svertex: 'SVertex' ''' pass class Operators: ''' Class defining the operators used in a style module. There are five types of operators: Selection, chaining, splitting, sorting and creation. All these operators are user controlled through functors, predicates and shaders that are taken as arguments. ''' @staticmethod def bidirectional_chain(it: 'ChainingIterator', pred: 'UnaryPredicate1D'): ''' bidirectional_chain(it) Builds a set of chains from the current set of ViewEdges. Each ViewEdge of the current list potentially starts a new chain. The chaining operator then iterates over the ViewEdges of the ViewMap using the user specified iterator. This operator iterates both using the increment and decrement operators and is therefore bidirectional. This operator works with a ChainingIterator which contains the chaining rules. It is this last one which can be told to chain only edges that belong to the selection or not to process twice a ViewEdge during the chaining. Each time a ViewEdge is added to a chain, its chaining time stamp is incremented. This allows you to keep track of the number of chains to which a ViewEdge belongs to. :param it: The ChainingIterator on the ViewEdges of the ViewMap. It contains the chaining rule. :type it: 'ChainingIterator' :param pred: The predicate on the ViewEdge that expresses the stopping condition. This parameter is optional, you make not want to pass a stopping criterion when the stopping criterion is already contained in the iterator definition. :type pred: 'UnaryPredicate1D' ''' pass @staticmethod def chain(it: 'ViewEdgeIterator', pred: 'UnaryPredicate1D', modifier: 'UnaryFunction1DVoid'): ''' chain(it, pred) Builds a set of chains from the current set of ViewEdges. Each ViewEdge of the current list starts a new chain. The chaining operator then iterates over the ViewEdges of the ViewMap using the user specified iterator. This operator only iterates using the increment operator and is therefore unidirectional. :param it: The iterator on the ViewEdges of the ViewMap. It contains the chaining rule. :type it: 'ViewEdgeIterator' :param pred: The predicate on the ViewEdge that expresses the stopping condition. :type pred: 'UnaryPredicate1D' :param modifier: A function that takes a ViewEdge as argument and that is used to modify the processed ViewEdge state (the timestamp incrementation is a typical illustration of such a modifier). If this argument is not given, the time stamp is automatically managed. :type modifier: 'UnaryFunction1DVoid' ''' pass @staticmethod def create(pred: 'UnaryPredicate1D', shaders: typing.List['StrokeShader']): ''' Creates and shades the strokes from the current set of chains. A predicate can be specified to make a selection pass on the chains. :param pred: The predicate that a chain must verify in order to be transform as a stroke. :type pred: 'UnaryPredicate1D' :param shaders: The list of shaders used to shade the strokes. :type shaders: typing.List['StrokeShader'] ''' pass @staticmethod def get_chain_from_index(i: int) -> 'Chain': ''' Returns the Chain at the index in the current set of Chains. :param i: index (0 <= i < Operators.get_chains_size()). :type i: int :rtype: 'Chain' :return: The Chain object. ''' pass @staticmethod def get_chains_size() -> int: ''' Returns the number of Chains. :rtype: int :return: The number of Chains. ''' pass @staticmethod def get_stroke_from_index(i: int) -> 'Stroke': ''' Returns the Stroke at the index in the current set of Strokes. :param i: index (0 <= i < Operators.get_strokes_size()). :type i: int :rtype: 'Stroke' :return: The Stroke object. ''' pass @staticmethod def get_strokes_size() -> int: ''' Returns the number of Strokes. :rtype: int :return: The number of Strokes. ''' pass @staticmethod def get_view_edges_size() -> int: ''' Returns the number of ViewEdges. :rtype: int :return: The number of ViewEdges. ''' pass @staticmethod def get_viewedge_from_index(i: int) -> 'ViewEdge': ''' Returns the ViewEdge at the index in the current set of ViewEdges. :param i: index (0 <= i < Operators.get_view_edges_size()). :type i: int :rtype: 'ViewEdge' :return: The ViewEdge object. ''' pass @staticmethod def recursive_split(func: 'UnaryFunction0DDouble', pred_1d: 'UnaryPredicate1D', sampling: float = 0.0): ''' recursive_split(func, pred_0d, pred_1d, sampling=0.0) Splits the current set of chains in a recursive way. We process the points of each chain (with a specified sampling) to find the point minimizing a specified function. The chain is split in two at this point and the two new chains are processed in the same way. The recursivity level is controlled through a predicate 1D that expresses a stopping condition on the chain that is about to be processed. The user can also specify a 0D predicate to make a first selection on the points that can potentially be split. A point that doesn't verify the 0D predicate won't be candidate in realizing the min. :param func: The Unary Function evaluated at each point of the chain. The splitting point is the point minimizing this function. :type func: 'UnaryFunction0DDouble' :param pred_0d: The Unary Predicate 0D used to select the candidate points where the split can occur. For example, it is very likely that would rather have your chain splitting around its middle point than around one of its extremities. A 0D predicate working on the curvilinear abscissa allows to add this kind of constraints. :type pred_0d: 'UnaryPredicate0D' :param pred_1d: The Unary Predicate expressing the recursivity stopping condition. This predicate is evaluated for each curve before it actually gets split. If pred_1d(chain) is true, the curve won't be split anymore. :type pred_1d: 'UnaryPredicate1D' :param sampling: The resolution used to sample the chain for the predicates evaluation. (The chain is not actually resampled; a virtual point only progresses along the curve using this resolution.) :type sampling: float ''' pass @staticmethod def reset(delete_strokes: bool = True): ''' Resets the line stylization process to the initial state. The results of stroke creation are accumulated if **delete_strokes** is set to False. :param delete_strokes: Delete the strokes that are currently stored. :type delete_strokes: bool ''' pass @staticmethod def select(pred: 'UnaryPredicate1D'): ''' Selects the ViewEdges of the ViewMap verifying a specified condition. :param pred: The predicate expressing this condition. :type pred: 'UnaryPredicate1D' ''' pass @staticmethod def sequential_split(starting_pred: 'UnaryPredicate0D', stopping_pred: 'UnaryPredicate0D', sampling: float = 0.0): ''' sequential_split(pred, sampling=0.0) Splits each chain of the current set of chains in a sequential way. The points of each chain are processed (with a specified sampling) sequentially. The first point of the initial chain is the first point of one of the resulting chains. The splitting ends when no more chain can start. :param starting_pred: The predicate on a point that expresses the starting condition. Each time this condition is verified, a new chain begins :type starting_pred: 'UnaryPredicate0D' :param stopping_pred: The predicate on a point that expresses the stopping condition. The chain ends as soon as this predicate is verified. :type stopping_pred: 'UnaryPredicate0D' :param pred: The predicate on a point that expresses the splitting condition. Each time the condition is verified, the chain is split into two chains. The resulting set of chains is a partition of the initial chain :type pred: 'UnaryPredicate0D' :param sampling: The resolution used to sample the chain for the predicates evaluation. (The chain is not actually resampled; a virtual point only progresses along the curve using this resolution.) :type sampling: float ''' pass @staticmethod def sort(pred: 'BinaryPredicate1D'): ''' Sorts the current set of chains (or viewedges) according to the comparison predicate given as argument. :param pred: The binary predicate used for the comparison. :type pred: 'BinaryPredicate1D' ''' pass class SShape: ''' Class to define a feature shape. It is the gathering of feature elements from an identified input shape. ''' bbox: 'BBox' = None ''' The bounding box of the SShape. :type: 'BBox' ''' edges: typing.List['FEdge'] = None ''' The list of edges constituting this SShape. :type: typing.List['FEdge'] ''' id: 'Id' = None ''' The Id of this SShape. :type: 'Id' ''' name: str = None ''' The name of the SShape. :type: str ''' vertices: typing.List['SVertex'] = None ''' The list of vertices constituting this SShape. :type: typing.List['SVertex'] ''' def __init__(self): ''' __init__(brother) Creates a SShape class using either a default constructor or copy constructor. :param brother: An SShape object. :type brother: 'SShape' ''' pass def add_edge(self, edge: 'FEdge'): ''' Adds an FEdge to the list of FEdges. :param edge: An FEdge object. :type edge: 'FEdge' ''' pass def add_vertex(self, vertex: 'SVertex'): ''' Adds an SVertex to the list of SVertex of this Shape. The SShape attribute of the SVertex is also set to this SShape. :param vertex: An SVertex object. :type vertex: 'SVertex' ''' pass def compute_bbox(self): ''' Compute the bbox of the SShape. ''' pass class SVertex: ''' Class hierarchy: Interface0D > SVertex Class to define a vertex of the embedding. ''' curvatures: tuple = None ''' Curvature information expressed in the form of a seven-element tuple (K1, e1, K2, e2, Kr, er, dKr), where K1 and K2 are scalar values representing the first (maximum) and second (minimum) principal curvatures at this SVertex, respectively; e1 and e2 are three-dimensional vectors representing the first and second principal directions, i.e. the directions of the normal plane where the curvature takes its maximum and minimum values, respectively; and Kr, er and dKr are the radial curvature, radial direction, and the derivative of the radial curvature at this SVertex, respectively. :type: tuple ''' id: 'Id' = None ''' The Id of this SVertex. :type: 'Id' ''' normals: typing.List['mathutils.Vector'] = None ''' The normals for this Vertex as a list. In a sharp surface, an SVertex has exactly one normal. In a smooth surface, an SVertex can have any number of normals. :type: typing.List['mathutils.Vector'] ''' normals_size: int = None ''' The number of different normals for this SVertex. :type: int ''' point_2d: 'mathutils.Vector' = None ''' The projected 3D coordinates of the SVertex. :type: 'mathutils.Vector' ''' point_3d: 'mathutils.Vector' = None ''' The 3D coordinates of the SVertex. :type: 'mathutils.Vector' ''' viewvertex: 'ViewVertex' = None ''' If this SVertex is also a ViewVertex, this property refers to the ViewVertex, and None otherwise. :type: 'ViewVertex' ''' def __init__(self): ''' __init__(brother) __init__(point_3d, id) Builds a SVertex using the default constructor, copy constructor or the overloaded constructor which builds a SVertex from 3D coordinates and an Id. :param brother: A SVertex object. :type brother: 'SVertex' :param point_3d: A three-dimensional vector. :type point_3d: 'mathutils.Vector' :param id: An Id object. :type id: 'Id' ''' pass def add_fedge(self, fedge: 'FEdge'): ''' Add an FEdge to the list of edges emanating from this SVertex. :param fedge: An FEdge. :type fedge: 'FEdge' ''' pass def add_normal(self, normal: typing.List['mathutils.Vector']): ''' Adds a normal to the SVertex's set of normals. If the same normal is already in the set, nothing changes. :param normal: A three-dimensional vector. :type normal: typing.List['mathutils.Vector'] ''' pass class SVertexIterator: ''' Class hierarchy: Iterator > SVertexIterator Class representing an iterator over SVertex of a ViewEdge . An instance of an SVertexIterator can be obtained from a ViewEdge by calling verticesBegin() or verticesEnd(). ''' object: 'SVertex' = None ''' The SVertex object currently pointed by this iterator. :type: 'SVertex' ''' t: float = None ''' The curvilinear abscissa of the current point. :type: float ''' u: float = None ''' The point parameter at the current point in the 1D element (0 <= u <= 1). :type: float ''' def __init__(self): ''' __init__(brother) __init__(vertex, begin, previous_edge, next_edge, t) Build an SVertexIterator using either the default constructor, copy constructor, or the overloaded constructor that starts iteration from an SVertex object vertex. :param brother: An SVertexIterator object. :type brother: 'SVertexIterator' :param vertex: The SVertex from which the iterator starts iteration. :type vertex: 'SVertex' :param begin: The first SVertex of a ViewEdge. :type begin: 'SVertex' :param previous_edge: The previous FEdge coming to vertex. :type previous_edge: 'FEdge' :param next_edge: The next FEdge going out from vertex. :type next_edge: 'FEdge' :param t: The curvilinear abscissa at vertex. :type t: float ''' pass class Stroke: ''' Class hierarchy: Interface1D > Stroke Class to define a stroke. A stroke is made of a set of 2D vertices ( StrokeVertex ), regularly spaced out. This set of vertices defines the stroke's backbone geometry. Each of these stroke vertices defines the stroke's shape and appearance at this vertex position. ''' id: 'Id' = None ''' The Id of this Stroke. :type: 'Id' ''' length_2d: float = None ''' The 2D length of the Stroke. :type: float ''' medium_type: 'MediumType' = None ''' The MediumType used for this Stroke. :type: 'MediumType' ''' texture_id: int = None ''' The ID of the texture used to simulate th marks system for this Stroke. :type: int ''' tips: bool = None ''' True if this Stroke uses a texture with tips, and false otherwise. :type: bool ''' def Stroke(self): ''' Stroke(brother) Creates a Stroke using the default constructor or copy constructor ''' pass def compute_sampling(self, n: int) -> float: ''' Compute the sampling needed to get N vertices. If the specified number of vertices is less than the actual number of vertices, the actual sampling value is returned. (To remove Vertices, use the RemoveVertex() method of this class.) :param n: The number of stroke vertices we eventually want in our Stroke. :type n: int :rtype: float :return: The sampling that must be used in the Resample(float) method. ''' pass def insert_vertex(self, vertex: 'StrokeVertex', next: 'StrokeVertexIterator'): ''' Inserts the StrokeVertex given as argument into the Stroke before the point specified by next. The length and curvilinear abscissa are updated consequently. :param vertex: The StrokeVertex to insert in the Stroke. :type vertex: 'StrokeVertex' :param next: A StrokeVertexIterator pointing to the StrokeVertex before which vertex must be inserted. :type next: 'StrokeVertexIterator' ''' pass def remove_all_vertices(self): ''' Removes all vertices from the Stroke. ''' pass def remove_vertex(self, vertex: 'StrokeVertex'): ''' Removes the StrokeVertex given as argument from the Stroke. The length and curvilinear abscissa are updated consequently. :param vertex: the StrokeVertex to remove from the Stroke. :type vertex: 'StrokeVertex' ''' pass def resample(self, n: int): ''' resample(sampling) Resamples the stroke so using one of two methods with the goal of creating a stroke with fewer points and the same shape. :param n: Resamples the stroke so that it eventually has N points. That means it is going to add N-vertices_size, where vertices_size is the number of points we already have. If vertices_size >= N, no resampling is done. :type n: int :param sampling: Resamples the stroke with a given sampling value. If the sampling is smaller than the actual sampling value, no resampling is done. :type sampling: float ''' pass def stroke_vertices_begin(self, t: float = 0.0) -> 'StrokeVertexIterator': ''' Returns a StrokeVertexIterator pointing on the first StrokeVertex of the Stroke. One can specify a sampling value to re-sample the Stroke on the fly if needed. :param t: The resampling value with which we want our Stroke to be resampled. If 0 is specified, no resampling is done. :type t: float :rtype: 'StrokeVertexIterator' :return: A StrokeVertexIterator pointing on the first StrokeVertex. ''' pass def stroke_vertices_end(self) -> 'StrokeVertexIterator': ''' Returns a StrokeVertexIterator pointing after the last StrokeVertex of the Stroke. :rtype: 'StrokeVertexIterator' :return: A StrokeVertexIterator pointing after the last StrokeVertex. ''' pass def stroke_vertices_size(self) -> int: ''' Returns the number of StrokeVertex constituting the Stroke. :rtype: int :return: The number of stroke vertices. ''' pass def update_length(self): ''' Updates the 2D length of the Stroke. ''' pass class StrokeAttribute: ''' Class to define a set of attributes associated with a StrokeVertex . The attribute set stores the color, alpha and thickness values for a Stroke Vertex. ''' alpha: float = None ''' Alpha component of the stroke color. :type: float ''' color: 'mathutils.Color' = None ''' RGB components of the stroke color. :type: 'mathutils.Color' ''' thickness: 'mathutils.Vector' = None ''' Right and left components of the stroke thickness. The right (left) component is the thickness on the right (left) of the vertex when following the stroke. :type: 'mathutils.Vector' ''' visible: bool = None ''' The visibility flag. True if the StrokeVertex is visible. :type: bool ''' def __init__(self): ''' __init__(brother) __init__(red, green, blue, alpha, thickness_right, thickness_left) __init__(attribute1, attribute2, t) Creates a StrokeAttribute object using either a default constructor, copy constructor, overloaded constructor, or and interpolation constructor to interpolate between two StrokeAttribute objects. :param brother: A StrokeAttribute object to be used as a copy constructor. :type brother: 'StrokeAttribute' :param red: Red component of a stroke color. :type red: float :param green: Green component of a stroke color. :type green: float :param blue: Blue component of a stroke color. :type blue: float :param alpha: Alpha component of a stroke color. :type alpha: float :param thickness_right: Stroke thickness on the right. :type thickness_right: float :param thickness_left: Stroke thickness on the left. :type thickness_left: float :param attribute1: The first StrokeAttribute object. :type attribute1: 'StrokeAttribute' :param attribute2: The second StrokeAttribute object. :type attribute2: 'StrokeAttribute' :param t: The interpolation parameter (0 <= t <= 1). :type t: float ''' pass def get_attribute_real(self, name: str) -> float: ''' Returns an attribute of float type. :param name: The name of the attribute. :type name: str :rtype: float :return: The attribute value. ''' pass def get_attribute_vec2(self, name: str) -> 'mathutils.Vector': ''' Returns an attribute of two-dimensional vector type. :param name: The name of the attribute. :type name: str :rtype: 'mathutils.Vector' :return: The attribute value. ''' pass def get_attribute_vec3(self, name: str) -> 'mathutils.Vector': ''' Returns an attribute of three-dimensional vector type. :param name: The name of the attribute. :type name: str :rtype: 'mathutils.Vector' :return: The attribute value. ''' pass def has_attribute_real(self, name: str) -> bool: ''' Checks whether the attribute name of float type is available. :param name: The name of the attribute. :type name: str :rtype: bool :return: True if the attribute is available. ''' pass def has_attribute_vec2(self, name: str) -> bool: ''' Checks whether the attribute name of two-dimensional vector type is available. :param name: The name of the attribute. :type name: str :rtype: bool :return: True if the attribute is available. ''' pass def has_attribute_vec3(self, name: str) -> bool: ''' Checks whether the attribute name of three-dimensional vector type is available. :param name: The name of the attribute. :type name: str :rtype: bool :return: True if the attribute is available. ''' pass def set_attribute_real(self, name: str, value: float): ''' Adds a user-defined attribute of float type. If there is no attribute of the given name, it is added. Otherwise, the new value replaces the old one. :param name: The name of the attribute. :type name: str :param value: The attribute value. :type value: float ''' pass def set_attribute_vec2(self, name: str, value: typing.List['mathutils.Vector']): ''' Adds a user-defined attribute of two-dimensional vector type. If there is no attribute of the given name, it is added. Otherwise, the new value replaces the old one. :param name: The name of the attribute. :type name: str :param value: The attribute value. :type value: typing.List['mathutils.Vector'] ''' pass def set_attribute_vec3(self, name: str, value: typing.List['mathutils.Vector']): ''' Adds a user-defined attribute of three-dimensional vector type. If there is no attribute of the given name, it is added. Otherwise, the new value replaces the old one. :param name: The name of the attribute. :type name: str :param value: The attribute value. :type value: typing.List['mathutils.Vector'] ''' pass class StrokeShader: ''' Base class for stroke shaders. Any stroke shader must inherit from this class and overload the shade() method. A StrokeShader is designed to modify stroke attributes such as thickness, color, geometry, texture, blending mode, and so on. The basic way for this operation is to iterate over the stroke vertices of the Stroke and to modify the StrokeAttribute of each vertex. Here is a code example of such an iteration:: it = ioStroke.strokeVerticesBegin() while not it.is_end: att = it.object.attribute ## perform here any attribute modification it.increment() ''' name: str = None ''' The name of the stroke shader. :type: str ''' def __init__(self): ''' Default constructor. ''' pass def shade(self, stroke: 'Stroke'): ''' The shading method. Must be overloaded by inherited classes. :param stroke: A Stroke object. :type stroke: 'Stroke' ''' pass class StrokeVertex: ''' Class hierarchy: Interface0D > CurvePoint > StrokeVertex Class to define a stroke vertex. ''' attribute: 'StrokeAttribute' = None ''' StrokeAttribute for this StrokeVertex. :type: 'StrokeAttribute' ''' curvilinear_abscissa: float = None ''' Curvilinear abscissa of this StrokeVertex in the Stroke. :type: float ''' point: 'mathutils.Vector' = None ''' 2D point coordinates. :type: 'mathutils.Vector' ''' stroke_length: float = None ''' Stroke length (it is only a value retained by the StrokeVertex, and it won't change the real stroke length). :type: float ''' u: float = None ''' Curvilinear abscissa of this StrokeVertex in the Stroke. :type: float ''' def __init__(self): ''' __init__(brother) __init__(first_vertex, second_vertex, t3d) __init__(point) __init__(svertex) __init__(svertex, attribute) Builds a StrokeVertex using the default constructor, copy constructor, from 2 StrokeVertex and an interpolation parameter, from a CurvePoint, from a SVertex, or a SVertex and a StrokeAttribute object. :param brother: A StrokeVertex object. :type brother: 'StrokeVertex' :param first_vertex: The first StrokeVertex. :type first_vertex: 'StrokeVertex' :param second_vertex: The second StrokeVertex. :type second_vertex: 'StrokeVertex' :param t3d: An interpolation parameter. :type t3d: float :param point: A CurvePoint object. :type point: 'CurvePoint' :param svertex: An SVertex object. An SVertex object. :type svertex: 'SVertex' :param svertex: An SVertex object. An SVertex object. :type svertex: 'SVertex' :param attribute: A StrokeAttribute object. :type attribute: 'StrokeAttribute' ''' pass class StrokeVertexIterator: ''' Class hierarchy: Iterator > StrokeVertexIterator Class defining an iterator designed to iterate over the StrokeVertex of a Stroke . An instance of a StrokeVertexIterator can be obtained from a Stroke by calling iter(), stroke_vertices_begin() or stroke_vertices_begin(). It is iterating over the same vertices as an Interface0DIterator . The difference resides in the object access: an Interface0DIterator only allows access to an Interface0D while one might need to access the specialized StrokeVertex type. In this case, one should use a StrokeVertexIterator. To call functions of the UnaryFuntion0D type, a StrokeVertexIterator can be converted to an Interface0DIterator by by calling Interface0DIterator(it). ''' at_last: bool = None ''' True if the iterator points to the last valid element. For its counterpart (pointing to the first valid element), use it.is_begin. :type: bool ''' object: 'StrokeVertex' = None ''' The StrokeVertex object currently pointed to by this iterator. :type: 'StrokeVertex' ''' t: float = None ''' The curvilinear abscissa of the current point. :type: float ''' u: float = None ''' The point parameter at the current point in the stroke (0 <= u <= 1). :type: float ''' def __init__(self): ''' __init__(brother) Creates a StrokeVertexIterator using either the default constructor or the copy constructor. :param brother: A StrokeVertexIterator object. :type brother: 'StrokeVertexIterator' ''' pass def decremented(self) -> 'StrokeVertexIterator': ''' Returns a copy of a decremented StrokeVertexIterator. :rtype: 'StrokeVertexIterator' :return: A StrokeVertexIterator pointing the previous StrokeVertex. ''' pass def incremented(self) -> 'StrokeVertexIterator': ''' Returns a copy of an incremented StrokeVertexIterator. :rtype: 'StrokeVertexIterator' :return: A StrokeVertexIterator pointing the next StrokeVertex. ''' pass def reversed(self) -> 'StrokeVertexIterator': ''' Returns a StrokeVertexIterator that traverses stroke vertices in the reversed order. :rtype: 'StrokeVertexIterator' :return: A StrokeVertexIterator traversing stroke vertices backward. ''' pass class TVertex: ''' Class hierarchy: Interface0D > ViewVertex > TVertex Class to define a T vertex, i.e. an intersection between two edges. It points towards two SVertex and four ViewEdges. Among the ViewEdges, two are front and the other two are back. Basically a front edge hides part of a back edge. So, among the back edges, one is of invisibility N and the other of invisibility N+1. ''' back_svertex: 'SVertex' = None ''' The SVertex that is further away from the viewpoint. :type: 'SVertex' ''' front_svertex: 'SVertex' = None ''' The SVertex that is closer to the viewpoint. :type: 'SVertex' ''' id: 'Id' = None ''' The Id of this TVertex. :type: 'Id' ''' def __init__(self): ''' Default constructor. ''' pass def get_mate(self, viewedge: 'ViewEdge') -> 'ViewEdge': ''' Returns the mate edge of the ViewEdge given as argument. If the ViewEdge is frontEdgeA, frontEdgeB is returned. If the ViewEdge is frontEdgeB, frontEdgeA is returned. Same for back edges. :param viewedge: A ViewEdge object. :type viewedge: 'ViewEdge' :rtype: 'ViewEdge' :return: The mate edge of the given ViewEdge. ''' pass def get_svertex(self, fedge: 'FEdge') -> 'SVertex': ''' Returns the SVertex (among the 2) belonging to the given FEdge. :param fedge: An FEdge object. :type fedge: 'FEdge' :rtype: 'SVertex' :return: The SVertex belonging to the given FEdge. ''' pass class UnaryFunction0D: ''' Base class for Unary Functions (functors) working on Interface0DIterator . A unary function will be used by invoking __call__() on an Interface0DIterator. In Python, several different subclasses of UnaryFunction0D are used depending on the types of functors' return values. For example, you would inherit from a UnaryFunction0DDouble if you wish to define a function that returns a double value. Available UnaryFunction0D subclasses are: * UnaryFunction0DDouble * UnaryFunction0DEdgeNature * UnaryFunction0DFloat * UnaryFunction0DId * UnaryFunction0DMaterial * UnaryFunction0DUnsigned * UnaryFunction0DVec2f * UnaryFunction0DVec3f * UnaryFunction0DVectorViewShape * UnaryFunction0DViewShape ''' name: str = None ''' The name of the unary 0D function. :type: str ''' class UnaryFunction0DDouble: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DDouble Base class for unary functions (functors) that work on Interface0DIterator and return a float value. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DEdgeNature: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DEdgeNature Base class for unary functions (functors) that work on Interface0DIterator and return a Nature object. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DFloat: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DFloat Base class for unary functions (functors) that work on Interface0DIterator and return a float value. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DId: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DId Base class for unary functions (functors) that work on Interface0DIterator and return an Id object. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DMaterial: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DMaterial Base class for unary functions (functors) that work on Interface0DIterator and return a Material object. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DUnsigned: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DUnsigned Base class for unary functions (functors) that work on Interface0DIterator and return an int value. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DVec2f: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DVec2f Base class for unary functions (functors) that work on Interface0DIterator and return a 2D vector. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DVec3f: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DVec3f Base class for unary functions (functors) that work on Interface0DIterator and return a 3D vector. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DVectorViewShape: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DVectorViewShape Base class for unary functions (functors) that work on Interface0DIterator and return a list of ViewShape objects. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction0DViewShape: ''' Class hierarchy: UnaryFunction0D > UnaryFunction0DViewShape Base class for unary functions (functors) that work on Interface0DIterator and return a ViewShape object. ''' def __init__(self): ''' Default constructor. ''' pass class UnaryFunction1D: ''' Base class for Unary Functions (functors) working on Interface1D . A unary function will be used by invoking __call__() on an Interface1D. In Python, several different subclasses of UnaryFunction1D are used depending on the types of functors' return values. For example, you would inherit from a UnaryFunction1DDouble if you wish to define a function that returns a double value. Available UnaryFunction1D subclasses are: * UnaryFunction1DDouble * UnaryFunction1DEdgeNature * UnaryFunction1DFloat * UnaryFunction1DUnsigned * UnaryFunction1DVec2f * UnaryFunction1DVec3f * UnaryFunction1DVectorViewShape * UnaryFunction1DVoid ''' name: str = None ''' The name of the unary 1D function. :type: str ''' class UnaryFunction1DDouble: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DDouble Base class for unary functions (functors) that work on Interface1D and return a float value. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DEdgeNature: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DEdgeNature Base class for unary functions (functors) that work on Interface1D and return a Nature object. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DFloat: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DFloat Base class for unary functions (functors) that work on Interface1D and return a float value. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DUnsigned: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DUnsigned Base class for unary functions (functors) that work on Interface1D and return an int value. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DVec2f: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DVec2f Base class for unary functions (functors) that work on Interface1D and return a 2D vector. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DVec3f: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DVec3f Base class for unary functions (functors) that work on Interface1D and return a 3D vector. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DVectorViewShape: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DVectorViewShape Base class for unary functions (functors) that work on Interface1D and return a list of ViewShape objects. ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using the default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryFunction1DVoid: ''' Class hierarchy: UnaryFunction1D > UnaryFunction1DVoid Base class for unary functions (functors) working on Interface1D . ''' integration_type: 'IntegrationType' = None ''' The integration method. :type: 'IntegrationType' ''' def __init__(self): ''' __init__(integration_type) Builds a unary 1D function using either a default constructor or the integration method given as an argument. :param integration_type: An integration method. :type integration_type: 'IntegrationType' ''' pass class UnaryPredicate0D: ''' Base class for unary predicates that work on Interface0DIterator . A UnaryPredicate0D is a functor that evaluates a condition on an Interface0DIterator and returns true or false depending on whether this condition is satisfied or not. The UnaryPredicate0D is used by invoking its __call__() method. Any inherited class must overload the __call__() method. ''' name: str = None ''' The name of the unary 0D predicate. :type: str ''' def __init__(self): ''' Default constructor. ''' pass def __call__(self, it: 'Interface0DIterator') -> bool: ''' Must be overload by inherited classes. :param it: The Interface0DIterator pointing onto the Interface0D at which we wish to evaluate the predicate. :type it: 'Interface0DIterator' :rtype: bool :return: True if the condition is satisfied, false otherwise. ''' pass class UnaryPredicate1D: ''' Base class for unary predicates that work on Interface1D . A UnaryPredicate1D is a functor that evaluates a condition on a Interface1D and returns true or false depending on whether this condition is satisfied or not. The UnaryPredicate1D is used by invoking its __call__() method. Any inherited class must overload the __call__() method. ''' name: str = None ''' The name of the unary 1D predicate. :type: str ''' def __init__(self): ''' Default constructor. ''' pass def __call__(self, inter: 'Interface1D') -> bool: ''' Must be overload by inherited classes. :param inter: The Interface1D on which we wish to evaluate the predicate. :type inter: 'Interface1D' :rtype: bool :return: True if the condition is satisfied, false otherwise. ''' pass class ViewEdge: ''' Class hierarchy: Interface1D > ViewEdge Class defining a ViewEdge. A ViewEdge in an edge of the image graph. it connects two ViewVertex objects. It is made by connecting a set of FEdges. ''' chaining_time_stamp: int = None ''' The time stamp of this ViewEdge. :type: int ''' first_fedge: 'FEdge' = None ''' The first FEdge that constitutes this ViewEdge. :type: 'FEdge' ''' first_viewvertex: 'ViewVertex' = None ''' The first ViewVertex. :type: 'ViewVertex' ''' id: 'Id' = None ''' The Id of this ViewEdge. :type: 'Id' ''' is_closed: bool = None ''' True if this ViewEdge forms a closed loop. :type: bool ''' last_fedge: 'FEdge' = None ''' The last FEdge that constitutes this ViewEdge. :type: 'FEdge' ''' last_viewvertex: 'ViewVertex' = None ''' The second ViewVertex. :type: 'ViewVertex' ''' nature: 'Nature' = None ''' The nature of this ViewEdge. :type: 'Nature' ''' occludee: 'ViewShape' = None ''' The shape that is occluded by the ViewShape to which this ViewEdge belongs to. If no object is occluded, this property is set to None. :type: 'ViewShape' ''' qi: int = None ''' The quantitative invisibility. :type: int ''' viewshape: 'ViewShape' = None ''' The ViewShape to which this ViewEdge belongs to. :type: 'ViewShape' ''' def __init__(self): ''' __init__(brother) Builds a ViewEdge using the default constructor or the copy constructor. :param brother: A ViewEdge object. :type brother: 'ViewEdge' ''' pass def update_fedges(self): ''' Sets Viewedge to this for all embedded fedges. ''' pass class ViewEdgeIterator: ''' Class hierarchy: Iterator > ViewEdgeIterator Base class for iterators over ViewEdges of the ViewMap Graph. Basically the increment() operator of this class should be able to take the decision of "where" (on which ViewEdge) to go when pointing on a given ViewEdge. ''' begin: 'ViewEdge' = None ''' The first ViewEdge used for the iteration. :type: 'ViewEdge' ''' current_edge: 'ViewEdge' = None ''' The ViewEdge object currently pointed by this iterator. :type: 'ViewEdge' ''' object: 'ViewEdge' = None ''' The ViewEdge object currently pointed by this iterator. :type: 'ViewEdge' ''' orientation: bool = None ''' The orientation of the pointed ViewEdge in the iteration. If true, the iterator looks for the next ViewEdge among those ViewEdges that surround the ending ViewVertex of the "begin" ViewEdge. If false, the iterator searches over the ViewEdges surrounding the ending ViewVertex of the "begin" ViewEdge. :type: bool ''' def __init__(self, begin: 'ViewEdge' = None, orientation: bool = True): ''' __init__(brother) Builds a ViewEdgeIterator from a starting ViewEdge and its orientation or the copy constructor. :param begin: The ViewEdge from where to start the iteration. :type begin: 'ViewEdge' :param orientation: If true, we'll look for the next ViewEdge among the ViewEdges that surround the ending ViewVertex of begin. If false, we'll search over the ViewEdges surrounding the ending ViewVertex of begin. :type orientation: bool :param brother: A ViewEdgeIterator object. :type brother: 'ViewEdgeIterator' ''' pass def change_orientation(self): ''' Changes the current orientation. ''' pass class ViewMap: ''' Class defining the ViewMap. ''' scene_bbox: 'BBox' = None ''' The 3D bounding box of the scene. :type: 'BBox' ''' def __init__(self): ''' Default constructor. ''' pass def get_closest_fedge(self, x: float, y: float) -> 'FEdge': ''' Gets the FEdge nearest to the 2D point specified as arguments. :param x: X coordinate of a 2D point. :type x: float :param y: Y coordinate of a 2D point. :type y: float :rtype: 'FEdge' :return: The FEdge nearest to the specified 2D point. ''' pass def get_closest_viewedge(self, x: float, y: float) -> 'ViewEdge': ''' Gets the ViewEdge nearest to the 2D point specified as arguments. :param x: X coordinate of a 2D point. :type x: float :param y: Y coordinate of a 2D point. :type y: float :rtype: 'ViewEdge' :return: The ViewEdge nearest to the specified 2D point. ''' pass class ViewShape: ''' Class gathering the elements of the ViewMap (i.e., ViewVertex and ViewEdge ) that are issued from the same input shape. ''' edges: typing.List['ViewEdge'] = None ''' The list of ViewEdge objects contained in this ViewShape. :type: typing.List['ViewEdge'] ''' id: 'Id' = None ''' The Id of this ViewShape. :type: 'Id' ''' library_path: typing.Union[str, 'ViewShape'] = None ''' The library path of the ViewShape. :type: typing.Union[str, 'ViewShape'] ''' name: str = None ''' The name of the ViewShape. :type: str ''' sshape: 'SShape' = None ''' The SShape on top of which this ViewShape is built. :type: 'SShape' ''' vertices: typing.List['ViewVertex'] = None ''' The list of ViewVertex objects contained in this ViewShape. :type: typing.List['ViewVertex'] ''' def __init__(self): ''' __init__(brother) __init__(sshape) Builds a ViewShape using the default constructor, copy constructor, or from a SShape . :param brother: A ViewShape object. :type brother: 'ViewShape' :param sshape: An SShape object. :type sshape: 'SShape' ''' pass def add_edge(self, edge: 'ViewEdge'): ''' Adds a ViewEdge to the list of ViewEdge objects. :param edge: A ViewEdge object. :type edge: 'ViewEdge' ''' pass def add_vertex(self, vertex: 'ViewVertex'): ''' Adds a ViewVertex to the list of the ViewVertex objects. :param vertex: A ViewVertex object. :type vertex: 'ViewVertex' ''' pass class ViewVertex: ''' Class hierarchy: Interface0D > ViewVertex Class to define a view vertex. A view vertex is a feature vertex corresponding to a point of the image graph, where the characteristics of an edge (e.g., nature and visibility) might change. A ViewVertex can be of two kinds: A TVertex when it corresponds to the intersection between two ViewEdges or a NonTVertex when it corresponds to a vertex of the initial input mesh (it is the case for vertices such as corners for example). Thus, this class can be specialized into two classes, the TVertex class and the NonTVertex class. ''' nature: 'Nature' = None ''' The nature of this ViewVertex. :type: 'Nature' ''' def edges_begin(self) -> 'orientedViewEdgeIterator': ''' Returns an iterator over the ViewEdges that goes to or comes from this ViewVertex pointing to the first ViewEdge of the list. The orientedViewEdgeIterator allows to iterate in CCW order over these ViewEdges and to get the orientation for each ViewEdge (incoming/outgoing). :rtype: 'orientedViewEdgeIterator' :return: An orientedViewEdgeIterator pointing to the first ViewEdge. ''' pass def edges_end(self) -> 'orientedViewEdgeIterator': ''' Returns an orientedViewEdgeIterator over the ViewEdges around this ViewVertex, pointing after the last ViewEdge. :rtype: 'orientedViewEdgeIterator' :return: An orientedViewEdgeIterator pointing after the last ViewEdge. ''' pass def edges_iterator(self, edge: 'ViewEdge') -> 'orientedViewEdgeIterator': ''' Returns an orientedViewEdgeIterator pointing to the ViewEdge given as argument. :param edge: A ViewEdge object. :type edge: 'ViewEdge' :rtype: 'orientedViewEdgeIterator' :return: An orientedViewEdgeIterator pointing to the given ViewEdge. ''' pass class orientedViewEdgeIterator: ''' Class hierarchy: Iterator > orientedViewEdgeIterator Class representing an iterator over oriented ViewEdges around a ViewVertex . This iterator allows a CCW iteration (in the image plane). An instance of an orientedViewEdgeIterator can only be obtained from a ViewVertex by calling edges_begin() or edges_end(). ''' object: typing.Union[bool, 'ViewEdge'] = None ''' The oriented ViewEdge (i.e., a tuple of the pointed ViewEdge and a boolean value) currently pointed to by this iterator. If the boolean value is true, the ViewEdge is incoming. :type: typing.Union[bool, 'ViewEdge'] ''' def __init__(self): ''' __init__(iBrother) Creates an orientedViewEdgeIterator using either the default constructor or the copy constructor. :param iBrother: An orientedViewEdgeIterator object. :type iBrother: 'orientedViewEdgeIterator' ''' pass ``` #### File: src/blender/simple_add_on.py ```python bl_info = { "name": "Move X Axis", "blender": (2, 80, 0), "category": "Object", } import bpy class ObjectMoveX(bpy.types.Operator): """My Object Moving Script""" # Use this as a tooltip for menu items and buttons. bl_idname = "object.move_x" # Unique identifier for buttons and menu items to reference. bl_label = "Move X by One" # Display name in the interface. bl_options = {'REGISTER', 'UNDO'} # Enable undo for the operator. def execute(self, context): # execute() is called when running the operator. # The original script scene = context.scene for obj in scene.objects: obj.location.x += 1.0 return {'FINISHED'} # Lets Blender know the operator finished successfully. def register(): bpy.utils.register_class(ObjectMoveX) def unregister(): bpy.utils.unregister_class(ObjectMoveX) # This allows you to run the script directly from Blender's Text editor # to test the add-on without having to install it. if __name__ == "__main__": register() ``` #### File: ghPython/clean_code/patterns.py ```python from math import sin, pi, ceil import random import Rhino.Geometry as rg class Pattern(): def apply(self, v): return v class InOut(): def __init__(self, percentage, seed = 0): self.p = percentage random.seed(seed) self.seed_dict = {} def get_direction(self, index): try: self.seed_dict[index] except: self.seed_dict[index] = random.random() < self.p return self.seed_dict[index] class DotMap(): def __init__(self, x_spacing = 10., y_spacing = None, half_spacing = False, b_pt = rg.Point3d.Origin, in_out_class = None, direction = True): self.x_spacing = x_spacing self.y_spacing = y_spacing self.o = b_pt self._h_spacing = half_spacing self.h_spacing_x = x_spacing * .5 self.h_spacing_y = self.y_spacing * .5 self.direction = direction self._random_function = in_out_class print(self._h_spacing) def position_based(self, pt): loc_pt = pt - self.o if self._h_spacing: p_x = loc_pt.X % self.x_spacing p_y = loc_pt.Y % self.y_spacing y_i = int((loc_pt.Y - p_y) / self.y_spacing) if y_i % 2 == 0: p_x += self.h_spacing_x p_x %= self.x_spacing else: p_x = loc_pt.X % self.x_spacing p_y = loc_pt.Y % self.y_spacing y_i = int((loc_pt.Y - p_y) / self.y_spacing) output_pt = rg.Point3d( p_x - self.h_spacing_x, p_y - self.h_spacing_y, 0. ) if not(isinstance(self._random_function, type(None))): x_i = int((loc_pt.X - p_x) / self.x_spacing) seed_val = x_i + y_i * 100 direction = self._random_function.get_direction(seed_val) else: direction = True direction = direction if self.direction else not(direction) if direction: return output_pt, 1. else: return output_pt, -1. class EdgeEasing(): def __init__(self, zero_length, normal_length, total_length): self.min = zero_length self.max = normal_length self.d = self.max - self.min self.h_length = .5 * total_length def scale_val(self, d_x): d_x = self.h_length - abs(d_x - self.h_length) if d_x >= self.max: return 1.0 elif d_x > self.min: return (d_x - self.min) / self.d else: return 0. class SinWave(Pattern): def __init__(self, period, amplitude, dir_angle, b_pt = rg.Point3d.Origin, edge_easing = None): self.p = period * .5 / pi self.a = amplitude self.t_m = rg.Transform.Rotation(dir_angle, rg.Point3d.Origin) self.b_pt = b_pt self.ee = edge_easing print(self.ee) def apply(self, v): tmp_pt = v.vec_version - self.b_pt tmp_pt.Transform(self.t_m) if not(isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(v.vec_version.X) else: amp = self.a scale_val = sin(tmp_pt.X / self.p) * amp return rg.Point3d(v.o + v.n * scale_val) class PyramidPattern(Pattern): def __init__(self, radius, amplitude, y_scale = 1., dot_map = None, edge_easing = None): self.r = radius self.a = amplitude self.y_scale = y_scale self.dot_map = DotMap if isinstance(dot_map, type(None)) else dot_map self.ee = edge_easing print(self.ee) def apply(self, v): loc, direction = self.dot_map.position_based(v.vec_version) l = (loc.X ** 2. + (loc.Y * self.y_scale) ** 2.) ** .5 if not(isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(v.vec_version.X) else: amp = self.a if l > self.r: return v.v else: scale_val = direction * amp * (1. - l/self.r) return rg.Point3d(v.o + v.n * scale_val) class EllipsoidPattern(Pattern): def __init__(self, radius, amplitude, y_scale=1., dot_map=None, edge_easing=None): self.r = radius self.a = amplitude self.y_scale = y_scale self.dot_map = DotMap if isinstance(dot_map, type(None)) else dot_map self.ee = edge_easing print(self.ee) def apply(self, v): loc, direction = self.dot_map.position_based(v.vec_version) l = (loc.X ** 2. + (loc.Y * self.y_scale) ** 2.) ** .5 if not(isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(v.vec_version.X) else: amp = self.a if l > self.r: return v.v else: h = (1 - (l / self.r) ** 2.) ** .5 scale_val = direction * amp * h return rg.Point3d(v.o + v.n * scale_val) class CylinderPattern(Pattern): def __init__(self, radius_a, radius_b, height, amplitude, dot_map=None, edge_easing=None): self.r_a = radius_a self.r_b = radius_b self.r_d = self.r_b - self.r_a self.r_f = self.r_d / self.r_a self.h = height self.a = amplitude self.dot_map = DotMap if isinstance(dot_map, type(None)) else dot_map self.ee = edge_easing print(self.ee) def apply(self, v): loc, direction = self.dot_map.position_based(v.vec_version) if not(isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(v.vec_version.X) else: amp = self.a y_distance = loc.Y x_distance = abs(loc.X) if abs(y_distance) + .01 < self.h * .5: local_radius = self.r_a + self.r_d * (y_distance / self.h + .5) else: local_radius = -1 if x_distance < local_radius: scale_val = (1 - (x_distance / local_radius) ** 2.0) ** .5 * amp * direction return rg.Point3d(v.o + v.n * scale_val) else: return v.v class LayerMap(Pattern): def __init__(self, spacing, pattern_set, length, layer_spacing, radius, amplitude, direction = False, periodic = False, b_pt = rg.Point3d.Origin, edge_easing=None): self.periodic = periodic self.pattern_generation(pattern_set, spacing, length) self.l = length self.l_h = layer_spacing self.r = radius self.a = amplitude if direction else -amplitude self.b_pt = b_pt self.ee = edge_easing def pattern_generation(self, pattern_set, spacing, length): if self.periodic: print("pattern periodicizing") print("updating the spacing") print("old spacing: %s" % spacing) scaling_int_val = ceil(length / spacing) spacing = length / scaling_int_val print("new spacing: %s" % spacing) else: spacing = spacing # pattern_map (start, step, count) # only have to consider x distance layer_length_vals = [] for pattern in pattern_set: start, step, count = pattern[0], pattern[1], pattern[2] if count < 1: count = 1 length_vals = [] x_val = start x_delta = step * spacing while x_val < length: length_vals.append(x_val) x_val += x_delta for i in range(count): layer_length_vals.append(length_vals) self.layer_length_vals = layer_length_vals def apply(self, v): tmp_pt = v.vec_version - self.b_pt d_x = tmp_pt.X % self.l i = int(tmp_pt.Y / self.l_h) x_diss = self.layer_length_vals[ i % len(self.layer_length_vals) ] dis_set = [] for x_d in x_diss: dis_set.append(abs(d_x - x_d)) distance = min(dis_set) if not (isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(d_x) else: amp = self.a if distance < self.r: scale_val = (1 - (distance / self.r) ** 2.0) ** .5 * amp else: scale_val = 0.0 return rg.Point3d(v.o + v.n * scale_val) class AxolotlFlat(Pattern): def __init__(self, sdf, amplitude, direction = False, b_pt = rg.Point3d.Origin, edge_easing=None): self.sdf = sdf self.a = amplitude if direction else -amplitude self.b_pt = b_pt self.ee = edge_easing def apply(self, v): tmp_pt = v.vec_version - self.b_pt if not (isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(v.vec_version.X) else: amp = self.a scale_val = self.sdf.GetDistance(tmp_pt.X, tmp_pt.Y, tmp_pt.Z) * amp return rg.Point3d(v.o + v.n * scale_val) class AxolotlSpatial(Pattern): def __init__(self, sdf, amplitude, direction=False, b_pt=rg.Point3d.Origin, edge_easing=None): self.sdf = sdf self.a = amplitude if direction else -amplitude self.b_pt = b_pt self.ee = edge_easing def apply(self, v): tmp_pt = v.o - self.b_pt if not (isinstance(self.ee, type(None))): amp = self.a * self.ee.scale_val(v.vec_version.X) else: amp = self.a scale_val = self.sdf.GetDistance(tmp_pt.X, tmp_pt.Y, tmp_pt.Z) * amp return rg.Point3d(v.o + v.n * scale_val) ``` #### File: ghPython/clean_code/settings_logger.py ```python class Settings(): def __init__(self): self._print_settings self._pattern_settings self._geometry_settings @property def print_settings(self): return self._print_settings @print_settings.setter def print_settings(self, other): self._print_settings = other @property def pattern_settings(self): return self._pattern_settings @pattern_settings.setter def pattern_settings(self, other): self._pattern_settings = other @property def geometry_settings(self): return self._geometry_settings @geometry_settings.setter def geometry_settings(self, other): self._geometry_settings = other ``` #### File: grasshopper/cups/bottom_line.py ```python import Rhino.Geometry as rg # # the grasshopper input variables: # base_crvs # the curves which make out the bottom of the cup # body_crvs # the curves that make out the rest of the cup # layer_height # float # bottom_spacing # the amount the bottom curves get offseted # changing_height # bool # changing_height_range # tuple # changing_height_periods # float # # detetcting the outer points of the curves # getting the center point def create_geometry(base_crvs, body_crvs, layer_height, bottom_height, changing_height, changing_height_range, changing_height, periods) pt_0_0, pt_0_1 = base_crvs[0].PointAtEnd, base_crvs[0].PointAtStart pt_1_0, pt_1_1 = base_crvs[1].PointAtEnd, base_crvs[1].PointAtStart if pt_0_0.DistanceTo(pt_1_0) < .1 or pt_0_0.DistanceTo(pt_1_1) < .1: c_pt = pt_0_0 else: c_pt = pt_0_1 # offseting curves b_plane = rg.Plane.WorldXY c_style = rg.CurveOffsetCornerStyle.Round for b_crv in base_crvs: a = b_crv.Offset(b_plane, .5 * bottom_spacing, .01, c_style) b = b_crv.Offset(b_plane, - .5 * bottom_spacing, .01, c_style) a_line = rg.Line( a.PointAtEnd, b.PointAtEnd ).ToNurbseCurve() b_line = rg.Line( a.PointAtStart, b.PointAtStart ).ToNurbseCurve() ```
{ "source": "JonasWechsler/DeepLearningLab5", "score": 2 }
#### File: JonasWechsler/DeepLearningLab5/allconv.py ```python from __future__ import print_function import tensorflow as tf from keras.datasets import cifar10 import image from image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dropout, Activation, Conv2D, GlobalAveragePooling2D, merge, BatchNormalization from keras.utils import np_utils from keras.optimizers import SGD from keras import backend as K from keras.models import Model from keras.layers.core import Lambda from keras.callbacks import ModelCheckpoint from lsuv_init import LSUVinit from skimage import data, img_as_float from skimage import exposure from PIL import Image import os import pandas import numpy as np K.set_image_dim_ordering('tf') def load_data(): (X_train, y_train), (X_test, y_test) = cifar10.load_data() n_classes = len(set(y_train.flatten())) Y_train = np_utils.to_categorical(y_train, n_classes) # Convert to one-hot vector Y_test = np_utils.to_categorical(y_test, n_classes) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 #Normalize X_test /= 255 return (X_train, Y_train, X_test, Y_test) def preprocess_dataset(X,Y, settings): if settings.augment_data: datagen = ImageDataGenerator( contrast_stretching=True, adaptive_equalization=False, histogram_equalization=False, #featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # whitening rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) else: datagen = ImageDataGenerator() datagen.fit(X) batches = datagen.flow(X, Y, batch_size=settings.batch_size) return batches, datagen def make_model(settings, X_train=None): model = Sequential() if settings.input_dropout: model.add(Dropout(0.2, input_shape=(32, 32, 3))) model.add(Conv2D(96, (3, 3), padding = 'same')) else: model.add(Conv2D(96, (3, 3), padding = 'same', input_shape=(32, 32, 3))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(96, (3, 3),padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(96, (3, 3), padding='same', strides = (2,2))) model.add(Dropout(0.5)) model.add(Conv2D(192, (3, 3), padding = 'same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(192, (3, 3),padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(192, (3, 3),padding='same', strides = (2,2))) model.add(Dropout(0.5)) model.add(Conv2D(192, (3, 3), padding = 'same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(192, (1, 1),padding='valid')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Conv2D(10, (1, 1), padding='valid')) model.add(GlobalAveragePooling2D()) model.add(Activation('softmax')) sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) sgd = SGD(lr=settings.learning_rates[0], decay=settings.decay, momentum=0.9) if settings.weights_path != None and settings.load_weights and os.path.isfile(settings.weights_path): print("loading weights from checkpoint") model.load_weights(settings.weights_path) if settings.orthonormal_init: model = LSUVinit(model, X_train[:settings.batch_size,:,:,:]) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) return model def run(settings, batches, test_batches, X_train): model = make_model(settings, X_train) checkpoint = ModelCheckpoint(settings.weights_path, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='max') history = {'val_loss': [], 'val_acc': [], 'loss': [], 'acc': []} total_epochs = 0 iter=0 for rate, epochs in zip(settings.learning_rates, settings.epoch_lengths): K.set_value(model.optimizer.lr, rate) history_callback = model.fit_generator(batches, #steps_per_epoch=X_train.shape[0]/batch_size, epochs=epochs, validation_data=test_batches, validation_steps=1, #validation_steps=X_test.shape[0], callbacks=[checkpoint], verbose=2) next_hist = history_callback.history history = {key:history[key] + next_hist[key] for key in history} pandas.DataFrame(history).to_csv("history-{}.csv".format(iter)) iter=iter+1 total_epochs += epochs for key in history: assert(len(history[key]) == total_epochs) return history class Settings: def __init__(self, batch_size=64, epoch_lengths=[100], learning_rates=[0.01], momentum=0.9, weights_path="weights.hdf5", decay=3e-5, input_dropout=False, orthonormal_init=True, augment_data=True): self.batch_size = batch_size self.epoch_lengths = epoch_lengths self.learning_rates = learning_rates self.load_weights=False self.weights_path=weights_path self.decay = decay self.input_dropout = input_dropout self.momentum = momentum self.orthonormal_init = orthonormal_init self.augment_data = augment_data def param_search(settings_list, batches, test_batches, X_train): with open('out.txt', 'a') as f: for settings in settings_list: history = run(settings, batches, test_batches, X_train) pandas.DataFrame(history).to_csv("history-{}-{}.csv".format(settings.decay,settings.learning_rate[0])) loss = np.min(history['loss']) acc = np.max(history['acc']) val_loss = np.min(history['val_loss']) val_acc = np.max(history['val_acc']) line = ','.join(map(str,[lr, decay, loss, acc, val_loss, val_acc])) print(line) f.write(line) f.write('\n') f.flush() def learner(settings, batches, test_batches, X_train): history = run(settings, batches, test_batches, X_train) pandas.DataFrame(history).to_csv("history-{}-{}-{}.csv".format(settings.epoch_lengths[0], settings.learning_rates[0], settings.decay)) #model.save('final_model.h5') def run_our_model(): settings = Settings(batch_size = 32, epoch_lengths = [100], learning_rates = [0.015], decay = 3e-5, input_dropout = False, orthonormal_init = False) X_train, Y_train, X_test, Y_test = load_data() batches, datagen = preprocess_dataset(X_train, Y_train, settings) test_batches = (X_test, Y_test) learner(settings, batches, test_batches, X_train) def run_their_model(): settings = Settings(batch_size = 64, epoch_lengths = [200, 50, 50, 50], learning_rates = [0.05, 0.005, 0.0005, 0.00005], decay = 0.001, input_dropout = True, orthonormal_init = False) X_train, Y_train, X_test, Y_test = load_data() batches, datagen = preprocess_dataset(X_train, Y_train, settings) test_batches = (X_test, Y_test) learner(settings, batches, test_batches, X_train) if __name__ == "__main__": run_our_model() #param_search([3e-5, 3e-5, 3e-5, 3e-5, 3e-5, 3e-5], [0.005, 0.01, 0.015, 0.02, 0.025, 0.03], 20) ```
{ "source": "JonasWechsler/Kerberos", "score": 3 }
#### File: Kerberos/lib/lib.py ```python import random import os.path from fractions import gcd from math import ceil, sqrt from itertools import count from random import getrandbits from random import randint import itertools import sys def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('{}, {} modular inverse does not exist'.format(a, m)) else: return x % m def crt(X, P): z = 0 pi = reduce(lambda a, b: a*b, P) for x_i, p_i in zip(X, P): p = pi / p_i z += x_i*modinv(p, p_i)*p return z%pi ############################################################################# # # # Primality Testing and Generation # # # ############################################################################# def sieve(n): A=[True]*(n+1) A[0] = False A[1] = False for i in xrange(2,int(sqrt(n)+1)): if A[i]: for j in map(lambda x:i*i+i*x,xrange(n)): if j > n: break A[j] = False P=[] C=[] for i in xrange(len(A)): if A[i]: P.append(i) else: C.append(i) return [P,C] sieve_cache = sieve(1000) def sieve_cache_test(n): for i in sieve_cache[0]: if n%i == 0 and n != i: return False return True def fermat_test(n, tests): if n == 2: return True if n == 0 or n == 1 or n % 2 == 0: return False for d in xrange(tests): a = randint(1, n-1) div = gcd(a,n) if div > 1: return False if pow(a,n-1,n) != 1: return False return True def miller_rabin_test(n,k): if n == 1: return False if n == 2: return True if n%2 == 0: return False m = n - 1 t = 0 #Binary search would have better worst case, but I think this will #ultimately be faster bc we check for divisibility via sieve while True: try: q, r = divmod(m, 2) if r == 1: break t+=1 m = q except: print "{} {} {} {} {}".format(q,r,t,m,n) #x = a^d mod n #n-1 = 2^r * d def _possible_prime(a): x = pow(a,m,n) if x == 1 or x == n - 1: return True for i in xrange(t): x = pow(x,2,n) if x == 1: return False if x == n-1: return True return False for i in xrange(k): a = randint(2, n-1) if not _possible_prime(a): return False return True def isPrime(n): a = 100 return sieve_cache_test(n) and fermat_test(n,a) and miller_rabin_test(n,a) def makePrime(bits=128): while True: r = getrandbits(bits) if isPrime(r): return r def primeFactor(n): primes = [2,3] primefacs = [] exp = [] for i in range(5,n): if isPrime(primes, i): primes.append(i) for p in primes: e=0 while (n%p==0): n=n//p e+=1 if e != 0: primefacs.append(p) exp.append(e) return (primefacs, exp) ############################################################################# # # # Discrete Log Solvers # # # ############################################################################# # Baby step giant step algorithm def dl3(g, h, p): m = int(ceil(sqrt(p))) lis = {} for j in xrange(m): idx = pow(g,j,p) if not idx in lis: lis[idx] = j #Really should probably be a hashmap minv = modinv(g, p) inv = pow(minv, m, p) value = h for i in xrange(0, m): if value in lis: return (i * m + lis[value]) % p value = value * inv % p return value def dl2(g, h, p, e, q): ppow = pow(p, e-1, q) lgpow = pow(g, ppow, q) hpow = pow(h, ppow, q) X = dl3(lgpow, hpow, q) for i in range(1, e): gpow = pow(modinv(g, q), X, q) ppow = pow(p, e-i-1, q) hpow = pow(h*gpow, ppow, q) X = X + dl3(lgpow, hpow, q)*pow(p, i, q) return X def discreteLog(g, h, q): N = q - 1 F = primeFactor(N) C = [] P = [] for i in range(0, len(F[0])): p = F[0][i] e = F[1][i] exp = N/pow(p,e,q) g0 = pow(g, exp, q) h0 = pow(h, exp, q) C.append(dl2(g0, h0, p, e, q)) P.append(pow(p, e)) return crt(C, P) ############################################################################# # # # RSA Cracking and Factorization # # # ############################################################################# #pollard p-1 algorithm def factor(n): a = 2 for j in itertools.count(1): if j > n: return -1 a = pow(a, j, n) d = gcd(a-1, n) if 1 < d and d < n: return d #x^e = c mod n def rsa_crack(e,c,n): p = factor(n) q = n//p d = modinv(e, (p-1)*(q-1)) m = pow(c,d,n) return m ############################################################################# # # # Modular Polynomial Arithmetic in Fp[x]/(m) # # # ############################################################################# def div(p1, m, p): result = [0]*len(p1) rest = list(p1) for i in xrange(len(p1)-1, -1, -1): high = len(m)-1 if i-high < 0: break r = rest[i] / m[high] result[i-high] = r%p #l = [0]*len(p1) for j in xrange(len(m)): #l[j+i-high]=r*m[j] rest[j+i-high]-=(r*m[j]) rest[j+i-high]%=p return rest #removes trailing zeros def trim(p): while not p[-1]: p.pop() if len(p) == 0: return p return p def reducer(p1, m, p): result = p1 trim(result) trim(m) if len(result) == 0 or len(m) == 0: return result while len(result) > len(m)-1: result = div(result, m, p) trim(result) return result def mul(p1, p2, m, p): result = [0]*len(p1)*len(p2) for i in xrange(len(p1)): for j in xrange(len(p2)): result[i+j]+=(p1[i]*p2[j]) result[i+j]%=p return reducer(result, m, p) def add(p1, p2, m, p): result = [0]*len(p1) for i in xrange(len(p1)): result[i] += (p1[i] + p2[i]) result[i] %= p print result return reducer(result, m, p) def sub(p1, p2, m, p): result = [] for i in xrange(len(p1)): result += (p1[i] - p2[i])%p return reducer(result, m, p) ############################################################################# # # # Block Chain Encryption, Decryption # # # ############################################################################# # e is a encryption function def encrypt_blockchain(M, e, iv = 5): M = map(int, M) C = [iv] for idx in xrange(len(M)): C.append(e(M[idx] ^ C[idx])) return C # d is a decryption function def decrypt_blockchain(C, d, iv = 5): C = map(int, C) M = [] for idx in xrange(1,len(C)): M.append(d(C[idx]) ^ C[idx-1]) return M ############################################################################# # # # Symmetric Key Encryption # # # ############################################################################# import base64 from Crypto.Cipher import AES from Crypto import Random import hashlib import urllib import os BS = 16 pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS) unpad = lambda s : s[:-ord(s[len(s)-1:])] def one_way_hash(value): #TODO Stop using md5. Need to find a cryptographically secure one-way hah #that outputs 32-byte quantities, or use different symmetric-key encryption #to take in variable-length keys md = hashlib.md5() md.update(str(value)) result = base64.b64encode(md.digest()) return result def encrypt(txt, key): txt = str(txt) key = str(key) key = one_way_hash(key) key = str(key) txt = pad(txt) key = pad(key) iv = os.urandom(16)[0:16] cipher = AES.new(key, AES.MODE_CBC, iv) return base64.b64encode(iv + cipher.encrypt(txt)) def decrypt(enc, key): key = str(key) key = one_way_hash(key) key = str(key) key = pad(key) enc = base64.b64decode(enc) iv = enc[:16] cipher = AES.new(key, AES.MODE_CBC, iv) return unpad(cipher.decrypt(enc[16:])) def encrypt_tuple(txt, key): encr = encrypt(str(txt), key) return encr from ast import literal_eval def decrypt_tuple(txt, key): decr = decrypt(txt, key) return literal_eval(decr) ```
{ "source": "JonasWechsler/NeuralNetsLab3", "score": 3 }
#### File: JonasWechsler/NeuralNetsLab3/energy.py ```python import hopfield import attractors def energy_at_attractors(): W = attractors.get_weights() _, A = attractors.get_attractors() energy = [hopfield.energy(W, x) for x in A] for a, b in zip(energy, A): print(a, b) if __name__ == "__main__": energy_at_attractors() ``` #### File: JonasWechsler/NeuralNetsLab3/pict.py ```python import hopfield import plot import numpy as np def pict_data(): with open("data/pict.dat") as f: data_list = list(map(int, f.read().split(","))) return np.array(data_list).reshape((11, 1024)) def reformat_data(data): return data.reshape((32, 32)) def sequential(): data_array = pict_data() X0 = data_array[:3] W = hopfield.weights(X0) X = [data_array[9], data_array[10]] # for x in X0: # plot.plot_heatmap(reformat_data(x)) # plot.plot_heatmap(reformat_data(hopfield.recall_until_stable(W, x))) for x in X: plot.plot_heatmap(reformat_data(x)) plot.plot_heatmap(reformat_data(hopfield.recall_until_stable(W, x))) res_array = hopfield.recall_sequentially(W, x) for r in res_array: plot.plot_heatmap(reformat_data(np.array(r))) def calculate_error(data, expected): return 100*sum(1 for i, j in zip(data, expected) if i != j)/len(data) def add_noise(data, choices): new_data = list(data) for c in choices: new_data[c] *= -1 return new_data def noise(): data_array = pict_data() X0 = data_array[:3] W = hopfield.weights(X0) for x in X0: error = [] for i in range(0, 101, 10): choices = np.random.choice(len(x), size=int(i*len(x)/100), replace=False) x_noise = add_noise(x, choices) error.append(calculate_error(x, hopfield.recall_until_stable(W, x_noise))) print(error) plot.plot_points(error) def test_capacity(start, end): data_array = pict_data() errors = [] for n in range(start, end, 1): print(n) X0 = data_array[:n] W = hopfield.weights(X0) error = [] for x in X0: choices = np.random.choice(len(x), size=int(20*len(x)/100), replace=False) x_noise = add_noise(x, choices) error.append(calculate_error(x, hopfield.recall_until_stable(W, x_noise))) errors.append(sum(error)/len(error)) print(errors) plot.plot(range(start, end), errors) def test_capacity_random(start, end): data_array = pict_data() errors = [] for n in range(start, end, 1): X0 = list(data_array[:3]) for _ in range(n-3): X0.append(generate_random()) print(len(X0)) W = hopfield.weights(X0) error = [] for x in X0: choices = np.random.choice(len(x), size=int(20*len(x)/100), replace=False) x_noise = add_noise(x, choices) error.append(calculate_error(x, hopfield.recall_until_stable(W, x_noise))) errors.append(sum(error)/len(error)) print(errors) plot.plot(range(start, end), errors) def test_random(N=100, should_add_noise=False, should_remove_self_conn=False): data_array = [generate_random(100) for _ in range(300)] errors = [] for n in range(1, N): print(n) X0 = data_array[:n] if should_remove_self_conn: W = hopfield.weights(X0, True) else: W = hopfield.weights(X0) error = [] for x in X0: x_noise = x if should_add_noise: choices = np.random.choice(len(x), size=int(20*len(x)/100), replace=False) x_noise = add_noise(x, choices) error.append(1 if (x == hopfield.recall_until_stable(W, x_noise)).all() else 0) errors.append(sum(error)) print(errors) plot.plot(range(1, N), errors) def generate_random(N=1024): return np.random.choice([-1, 1], size=N) def generate_random_biased(N=1024, ): return np.random.choice([-1, 1], size=N, p=[1./3, 2./3]) if __name__ == "__main__": #sequential() #noise() #test_capacity(4, 8) #test_capacity_random(4, 20) test_random(25) test_random(25, should_remove_self_conn=True) #test_random(True) ```
{ "source": "JonasWEIG/Desicion-Support-System-for-HE", "score": 3 }
#### File: src/models/apriori.py ```python import pandas as pd #import numpy as np from mlxtend.frequent_patterns import apriori, association_rules import os def add_association_rules(df_layers, df_StudStart, min_support = 0.02, typ = 'bachelor'): df_apri = pd.merge(df_layers, df_StudStart[['MNR_Zweit', 'ECTS_final']], how= 'left', on = 'MNR_Zweit') #df_apri = pd.merge(df_apri, df_clusters[['MNR_Zweit', 'y_predicted']], how = 'left', on = 'MNR_Zweit') df_apri = df_apri[(df_apri.ECTS_final != 0) & (df_apri.modultitel != 'Gesamtkonto') & (df_apri.Modulebene_2 != 55481) & (df_apri.Bereich_1 != 1700) & ((df_apri.Bereich_1 != 1500) | (df_apri.studiengang == 'Sozialökonomik')) & (df_apri.Bereich_1 != 1997)] #d = df_apri[df_apri.studiengang == 'Sozialökonomik'] studiengangs = pd.unique(df_apri.studiengang).tolist() #studiengang = 'Wirtschaftswissenschaften' df_final = pd.DataFrame() for studiengang in studiengangs: # select modules with mnote > 3.4 if typ == 'bachelor': df = df_apri.loc[(df_apri.note_m2 > 3.2) & (df_apri.studiengang == studiengang) & (df_apri.Startsemester > 20131),] else: df = df_apri.loc[(df_apri.note_m2 < 2.1) & (df_apri.studiengang == studiengang) & (df_apri.Startsemester > 20131),] #min_support = 0.02 # one hot encoding modultitel df = pd.concat([df['MNR_Zweit'], pd.get_dummies(df['modultitel'])], axis = 1) # group by mnr_zweit & do apriori and association df = df.groupby(by = ['MNR_Zweit']).max() df_apr = apriori(df, min_support = min_support, use_colnames = True, verbose = 1, max_len = 2) df_ar = association_rules(df_apr, metric = 'confidence', min_threshold = 0.65) # add lists df_ar['associate'] = df_ar.loc[:,'antecedents'].apply(list) df_ar['consequ'] = df_ar['consequents'].apply(list) df_ar['modultitel'] = df_ar['associate'].apply(lambda x: ','.join(map(str, x))) df_ar['problem'] = df_ar['consequ'].apply(lambda x: ','.join(map(str, x))) df = df_layers.loc[(df_layers.note_m2 > 3.2) & (df_layers.studiengang == studiengang) & (df_layers.bestanden == 'PV'), ['MNR_Zweit', 'modultitel', 'note_m2']] test = df.merge(df_ar[['modultitel', 'problem']], on = 'modultitel', how = 'left') test = test.drop_duplicates() df2 = df_layers.loc[(df_layers.studiengang == studiengang) & (df_layers.bestanden == 'PV'), ['MNR_Zweit', 'modultitel', 'note_m2']] test2 = test.merge(df2, on = ['MNR_Zweit', 'modultitel'], how = 'right') test2 = test2.drop_duplicates() mnrs = pd.unique(test2.MNR_Zweit) for mnr in mnrs: titles = pd.unique(test2.loc[test2.MNR_Zweit == mnr, 'problem']) liste = pd.unique(test2.loc[test2.MNR_Zweit == mnr, 'modultitel']) for title in titles: if title not in liste: test2.loc[(test2.MNR_Zweit == mnr) & (test2.problem == title), 'real'] = title df = test2[test2.real.notna()] df = df[['MNR_Zweit', 'modultitel', 'problem']] df = df.merge(df_ar[['problem', 'modultitel', 'lift', 'confidence']], on = ['problem', 'modultitel'], how = 'left') df_final = pd.concat([df, df_final], ignore_index = True, sort = True) if typ == 'bachelor': df_ar.to_csv(os.path.abspath('../../data/processed/apriori_data/df_apriori_ba_' + studiengang + '.csv'), sep=';', decimal=',', encoding = 'utf-8') else: df_ar.to_csv(os.path.abspath('../../data/processed/apriori_data/df_apriori_ma_' + studiengang + '.csv'), sep=';', decimal=',', encoding = 'utf-8') return df_final if __name__ == '__main__': df_layers = pd.read_pickle(os.path.abspath('../../data/interim/bachelor/df_layers.pkl')) df_StudStart = pd.read_pickle(os.path.abspath('../../data/interim/bachelor/df_studstart.pkl')) df_final = add_association_rules(df_layers, df_StudStart) df_final.to_pickle(os.path.abspath('../../data/interim/bachelor/df_apriori.pkl')) df_final.to_csv(os.path.abspath('../../data/processed/bachelor/df_apriori.csv'), sep=';', decimal=',', encoding = 'utf-8') ``` #### File: src/models/compare_models.py ```python import pandas as pd import numpy as np import os import pickle from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score import sys sys.path.append('../features') from build_features import prepare_final_files def naive_bayes(x_train, y_train, x_test, y_test): from sklearn.naive_bayes import GaussianNB modelnb = GaussianNB() modelnb.fit(x_train, y_train) score = modelnb.score(x_test, y_test) y_pred = modelnb.predict(x_test) f1 = f1_score(y_test, y_pred, average = 'binary') print("NB: acurracy: " + str(score) + "; f1 score: " + str(f1)) with open(os.path.abspath('../../models/modelnb_pickle'), 'wb') as file: pickle.dump(modelnb, file) def random_forest(x_train, y_train, x_test, y_test): from sklearn.ensemble import RandomForestClassifier modelrf = RandomForestClassifier(n_estimators = 1000) modelrf.fit(x_train, y_train) score = modelrf.score(x_test, y_test) y_pred = modelrf.predict(x_test) f1 = f1_score(y_test, y_pred, average = 'binary') print("RF: acurracy: " + str(score) + "; f1 score: " + str(f1)) with open(os.path.abspath('../../models/modelrf_pickle'), 'wb') as file: pickle.dump(modelrf, file) def logistic_regression(x_train, y_train, x_test, y_test): from sklearn.linear_model import LogisticRegression logReg = LogisticRegression() logReg.fit(x_train, y_train) score = logReg.score(x_test, y_test) y_pred = logReg.predict(x_test) f1 = f1_score(y_test, y_pred, average = 'binary') print("LR: acurracy: " + str(score) + "; f1 score: " + str(f1)) with open(os.path.abspath('../../models/modellr_pickle'), 'wb') as file: pickle.dump(logReg, file) def support_vector_machine(x_train, y_train, x_test, y_test): from sklearn.svm import SVC modelsvm = SVC(kernel = 'rbf') modelsvm.fit(x_train, y_train) score = modelsvm.score(x_test, y_test) y_pred = modelsvm.predict(x_test) f1 = f1_score(y_test, y_pred, average = 'binary') print("SVM: acurracy: " + str(score) + "; f1 score: " + str(f1)) with open(os.path.abspath('../../models/modelsvm_pickle'), 'wb') as file: pickle.dump(modelsvm, file) def neural_net(x_train, y_train, x_test, y_test): from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam modelann = Sequential([ Dense(units = 32, input_shape=(len(x_test.columns),), activation = 'sigmoid'), Dense(units = 64, activation = 'sigmoid'), Dense(units = 128, activation = 'sigmoid'), Dense(units = 256, activation = 'sigmoid'), Dense(units = 128, activation = 'sigmoid'), Dense(units = 64, activation = 'sigmoid'), Dense(units = 32, activation = 'sigmoid'), Dense(units = 1, activation = 'sigmoid')]) modelann.compile(optimizer = Adam(learning_rate=0.001), loss= 'mean_squared_error', metrics=['accuracy']) modelann.fit(x_train, y_train, batch_size=64, epochs=100, validation_split=0.2, verbose = 0, callbacks=None, validation_data=None, shuffle=True) y_pred = modelann.predict(x_test) y_pred = np.where(y_pred >= 0.5, 1, 0) #y_test, y_pred = set(1, 2, 4), set(2, 8, 1) y = np.asarray(y_test) - y_pred[:,0] score = np.count_nonzero(y == 0)/(y_pred[:,0]).size #from sklearn.metrics import f1_score, accuracy_score, confusion_matrix #cm = confusion_matrix(y_test, y_pred) f1 = f1_score(y_test, y_pred, average = 'binary') print("ANN: acurracy: " + str(score) + "; f1 score: " + str(f1)) with open(os.path.abspath('C:../../models/modelann_pickle'), 'wb') as file: pickle.dump(modelann, file) if __name__ == '__main__': #for master change path from bachelor to master df_StudStart = pd.read_pickle(os.path.abspath('../../data/interim/bachelor/df_studstart_without_prediction.pkl')) df_Path = pd.read_pickle(os.path.abspath('../../data/interim/bachelor/df_path.pkl')) df_demo = pd.read_pickle(os.path.abspath('../../data/interim/bachelor/df_demo.pkl')) for semester in range(1,2): #for master add 'master in function Final = prepare_final_files(semester, df_StudStart, df_Path, df_demo, 'bachelor')[1] x_train, x_test, y_train, y_test = train_test_split(Final.drop(['MNR_Zweit', 'Startsemester', 'studiengang', 'final'], axis = 1), Final.final, test_size = 0.25, random_state = 0) logistic_regression(x_train, y_train, x_test, y_test) random_forest(x_train, y_train, x_test, y_test) naive_bayes(x_train, y_train, x_test, y_test) support_vector_machine(x_train, y_train, x_test, y_test) neural_net(x_train, y_train, x_test, y_test) import numpy as np np.version ```
{ "source": "jonas-weimar/pinkie", "score": 3 }
#### File: pinkie/knn/nearestneighbour.py ```python from scipy.spatial import distance from termcolor import colored import numpy as np # => Nearest Neighbour Classifier class NNClassifier(object): # Initializer / Constructor: def __init__(self): self.id = hash(id(self)) # Hook methods for build in functions: def __str__(self): return "Classifier: " + str(self.id) # Private methods def __information(self, message, start=""): print(colored('{}Information:'.format(start), 'cyan'), message) def __success(self, message, start=""): print(colored('{}Success:'.format(start), 'white'), message) def __closest(self, row): best_dist = distance.euclidean(row, self.x_train[0]) best_index = 0 for i in range(len(self.x_train)): dist = distance.euclidean(row, self.x_train[i]) if dist < best_dist: best_dist = dist best_index = i return self.y_train[best_index] # Public methods def setID(self, id): self.id = id def getID(self): return self.id def fit(self, X_train, Y_train): self.x_train = X_train self.y_train = Y_train def predict(self, X_predict): predictions = [] for row in X_predict: predictions.append(self.__closest(row)) self.__success("Prediction was made") return predictions ``` #### File: pinkie/mlp/activation.py ```python import numpy as np from random import uniform def randlin(x, derivative=False): if derivative: return uniform(0.,1.) return uniform(0.,1.) * x def sigmoid(x, derivative=False): if derivative: return x * (1.0 - x) return 1.0/(1+ np.exp(-x)) def tanh(x, derivative=False): if derivative: return (1-np.power(x,2)) return np.tanh(x) def linear(x, derivative=False, alpha=1): if derivative: return alpha return alpha * x def relu(x, derivative=False, alpha=1): if derivative: x[x<=0] = 0 x[x>0] = alpha return x return np.maximum(0, alpha*x) def leakyrelu(x, derivative=False, alpha=1): if derivative: x[x==0] = 0 x[x<0] = 0.2 x[x>0] = alpha return x x[x==0] = 0 x[x<0] = 0.2 * x x[x>0] = alpha * x return x ```
{ "source": "Jonas-Wennerstrom/Tagger", "score": 3 }
#### File: Tagger/Tagger/taggersql.py ```python from sqlalchemy import insert, select, asc, func, exists from taggermodels import * ##Selection #Selects a subset of File def select_file(session, taglist): """Returns a list of all File entries with entries in Match matching all tags in taglist. Parameters: session: An SQLAlchemy database session. taglist (string list): A list of tag names. Returns: q (SQLAlchemy object): Information on entries in table File with entries in table Match corresponding to entries in table Tag corresponding to all 'tags' in taglist. """ q = session.query(File).join( File.contains).filter( Tag.name.in_(taglist)).group_by( File.title).having( func.count()==len(taglist)).all() return q def get_tags_from_names(session,taglist): """Returns all tag objects with Tag.name in taglist. """ return session.query(Tag).filter(Tag.name.in_(taglist)).all() def get_file(session,title): """Returns file object with File.title == title. """ return session.query(File).filter( File.title == title).scalar() def get_all_file_titles(session): """Returns all file.title fields in session. """ return session.query(File.title).all() def get_all_tag_names(session): """Returns all tag.name fields in session. """ return session.query(Tag.name).all() ##Insertion def insert_file(session, fileinfo, taglist): """Inserts fileinfo into table File in session and entries in table Match for each tag in taglist coupled with the new File entry. Parameters: session: An SQLAlchemy database session. fileinfo (list): Length, Title, Link to be entered into session. taglist (string list): A list of tag names. Returns: True if insertion was successful, else False. Side-effects: Entry in table File created with fileinfo. Entries in table Match created coupling new File entry with each 'tag' in taglist. """ unique = not file_exists(session,fileinfo[1]) if unique: q = get_tags_from_names(session,taglist) new_file = File(length=fileinfo[0], title=fileinfo[1], link=fileinfo[2]) for t in q: new_file.contains.append(t) session.add(new_file) session.commit() return True else: return False def insert_tag (session,taglist): """Inserts each 'tag' in taglist into table Tag in session. Parameters: session: An SQLAlchemy database session. taglist (string list): A list of tag names. Returns: q (list): A sorted list of all tags in taglist which already exist in table Tag. Side-effects: New entries created in table Tag in session for each non-duplicate tag in taglist. """ insert_list = [] skipped_list = [] for new_tag in taglist: if not tag_exists(session,new_tag): insert_list.append(new_tag) else: skipped_list.append(new_tag) session.execute(Tag.__table__.insert(), [{"name": t} for t in insert_list]) session.commit() return sorted(skipped_list) ##Deletion def delete_tag(session,taglist): """Deletes all 'tags' in taglist from session. Parameters: session: An SQLAlchemy database session. taglist (string list): A list of tag names. Side-effects: All entries in table Tag in session with name in taglist deleted. All entries in table Match in session matching tags in taglist deleted. """ for t in taglist: session.query(Tag.name==t).delete() session.commit() def delete_file(session,title): """Deletes File.title == title from session. Parameters: session: An SQLAlchemy database session. title (string): A title to be deleted. Side-effects: Any entry in table File in session with title==title deleted All entries in table Match in session matching File.title deleted. """ session.query(File).filter(File.title == title).delete() session.commit() def cleanup_files(session): """Deletes all entries in table File in session without any entry in table Match. Parameters: session: An SQLAlchemy database session. Side-effects: All entries in table File whose id do not exist in Match.file_id deleted. """ s = session.query(File.id).filter(~File.contains.any()).all() if s: session.execute(File.__table__.delete(), [{"id": t[0]} for t in s]) session.commit() ##Confirm functions #These functions check if data exists in db def file_exists(session,title): """Returns true if a file with title == title exists, else false.""" return session.query(exists().where(File.title == title)).scalar() def tag_exists(session,name): """Returns true if a tag with name == name exists, else false""" return session.query(exists().where(Tag.name == name)).scalar() ```
{ "source": "jonas-werner/piedpiper-syd", "score": 2 }
#### File: jonas-werner/piedpiper-syd/script.py ```python @app.route('/floorplan/') def floorplan(): MIDDLE = """ <h1><u>Floorplan</u></h1> <img src="/static/floorplan.jpg"> <br> """ return TOP + MIDDLE + BOTTOM if __name__ == "__main__": app.run(debug=False,host='0.0.0.0', port=int(os.getenv('PORT', '5000'))) ```
{ "source": "JonasXPX/DeepRoof-MTEK", "score": 3 }
#### File: JonasXPX/DeepRoof-MTEK/image_test.py ```python import cv2 as cv def getContours(img): contours, hierarchy = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAI) image = cv.imread('./images/temp.jpg') # im = cv.equalize(image) resized = cv.resize(image, (900, 600)) shifted = cv.pyrMeanShiftFiltering(resized, 12, 71) gray = cv.cvtColor(shifted, cv.COLOR_BGR2GRAY) imgBlur = cv.GaussianBlur(gray, (7,7), 1) thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)[1] cv.imshow('test', thresh) cv.imshow('test2', resized) cv.imshow('test3', imgBlur) cv.waitKey(0) ```
{ "source": "jonasyip/machineLearningLibrary", "score": 3 }
#### File: jonasyip/machineLearningLibrary/k-MeanClustering.py ```python import random import math def calculateAverageVector(clusterList = []): averageVectorList = [] for i in range(0,len(clusterList[0])): #From first element to last element valuePoint = 0 for j in range(0,len(clusterList)): valuePoint = valuePoint + int(clusterList[j][i]) #print(valuePoint) averagePoint = valuePoint / len(clusterList) averageVectorList.append(averagePoint) #Stores the ordinate in a list [i,j,k,l] #print(averageVectorList) return averageVectorList #Return vector coodinates def produceRandomReferencePoint(numberOfDataPoints): #Returns two random data points referencePointOne = random.randint(0,numberOfDataPoints) referencePointTwo = random.randint(0,numberOfDataPoints) while referencePointOne == referencePointTwo: #Prevents two data point references have the same value referencePointTwo = random.randint(0,numberOfDataPoints) return [referencePointOne,referencePointTwo] def distanceBetweenTwoPoints(coodinate_1 = [], coodinate_2 = []): #This function returns a value length between two points holdValue = 0 for i in range(0,len(coodinate_1)): holdValue = holdValue + ((coodinate_2[i] - coodinate_1[i])**2) print(holdValue) return math.sqrt(holdValue) def compareTwoDistances(distance_1, distance_2,fromReferencePoint): # if (distance_1 > distance_2 and fromReferencePoint): a=1 testData =[[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7],[5,6,7,8]] print(calculateAverageVector(testData)) print(produceRandomReferencePoint(len(testData))) print(distanceBetweenTwoPoints([1,2,3,4],[4,3,2,1])) ``` #### File: jonasyip/machineLearningLibrary/kmean.py ```python import random import math import time def getRandomValue(MaxValue): #Returns two random data points value = random.randint(0,MaxValue) return value def hasClusterChanged(prev, curr): if len(prev) != len(curr): return False for i in range(len(prev)): for j in range(len(prev)): if prev[i][j] != curr[i][j]: return False return True def getEuclideanDistance(point_1,point_2): holdValue = 0 for i in range(len(point_1)): holdValue +=((point_1[i] - point_2[i])**2) return math.sqrt(holdValue) def getAverageVector(points): averageVector = [] for coloumn in range(len(points[0])): averageVectorDem = [] for rows in range(len(points)): averageVectorDem.append(points[rows][coloumn]) averageVector.append(sum(averageVectorDem)/len(points)) return averageVector ''' def getCluster(DataPoints,Reference_Priority,Reference_Compare): Cluster = [] Cluster.append(Reference_Priority) for i in range(len(DataPoints)): if (Reference_Priority != Reference_Compare) and (Reference_Priority != DataPoints[i]) and (Reference_Compare!=DataPoints[i]): if getNuclideanDistance(Reference_Priority,DataPoints[i]) < getNuclideanDistance(Reference_Compare,DataPoints[i]): Cluster.append(DataPoints[i]) ''' def isInCluster(clusterNumber,referencePoints,dataPoint): #Get distance of Reference point 1 to datapoint #get list of distances of all the other points from the data point #if index is num, and reference point num is the smallest distance, return true #print("referencePoints", referencePoints) listOfDistances = [getEuclideanDistance(aPoint,dataPoint) for aPoint in referencePoints] return listOfDistances.index(min(listOfDistances)) == clusterNumber #======================================================================================== def test_isInCluster(): #Returns a cluster #Data = [[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7],[5,6,7,8]] Data = [3,4,5,6] Ref_Points = [[1,2,3,4],[2,3,4,5]] Index = 2 expected_result = True actual_result = isInCluster(Index, Ref_Points, Data) assert expected_result == actual_result expected_result = False Ref_Points = [[2,3,4,5],[1,2,3,4]] actual_result = isInCluster(Index, Ref_Points, Data) assert expected_result == actual_result Ref_Points = [[1,2],[12,13]] Data = [2,3] Index = 1 expected_result = True actual_result = isInCluster(Index, Ref_Points, Data) assert expected_result == actual_result def test_compareTwoDistances(): #Returns true if first distance is greater than second distance Distance_1 = 10 Distance_2 = 3 expected_result = True actual_result = isDistanceGreater(Distance_1,Distance_2) assert expected_result == actual_result def test_getAverageVector(): #Calculates the mean coordiantes, it should return the mean coordinates 2D Cluster = [[1,2],[2,3],[3,4],[4,5],[5,6]] expected_result = [3,4] actual_result = getAverageVector(Cluster) print(actual_result) assert expected_result == actual_result #Calculates the mean coordiantes, it should return the mean coordinates 3D Cluster = [[1,2,3],[2,3,4],[3,4,5],[4,5,6],[5,6,7]] expected_result = [3,4,5] actual_result = getAverageVector(Cluster) print(actual_result) assert expected_result == actual_result def test_getNuclideanDistance(): #using pythagoras, it should return a correct distance in 4D p1 = [8,8,8,8] p2 = [6,6,6,6] expected_result = 4 actual_result = getEuclideanDistance(p1,p2) assert expected_result == actual_result #using pythagoras, it should return a correct distance in 2D p1 = [15,21] p2 = [11,18] expected_result = 5 actual_result = getEuclideanDistance(p1,p2) assert expected_result == actual_result def test_hasClusterChanged(): #if the two cluster length is different, it should return false prev_cluster = [[1,2],[2,1]] curr_cluster = [[3,1]] expected_result = False # expect hasClusterChanged(prev, curr) to False actual_result = hasClusterChanged(prev_cluster, curr_cluster) assert expected_result == actual_result #if the clusters are identical, it should return true prev_cluster = [[1,2],[2,1]] curr_cluster = [[1,2],[2,1]] expected_result = True actual_result = hasClusterChanged(prev_cluster, curr_cluster) assert expected_result == actual_result #if the clusters are identical in length, # if the cluster points are different, it should return false #this is a worst case scenio curr_cluster = [[1,2],[2,2]] expected_result = False actual_result = hasClusterChanged(prev_cluster, curr_cluster) assert expected_result == actual_result #======================================================================================== def kMean(data, k): current_Cluster = [] previous_Cluster = [] referencePoints = [] clusters = [] numberOfClusters = k means = [] for k in range(numberOfClusters): hasTheClusterChanged = True if k >= len(clusters): clusters.append([]) means.append([]) while hasTheClusterChanged: scrambledDataPoints = random.sample(data,len(data)) referencePoints = scrambledDataPoints[0:numberOfClusters] clusterK = [] for j in range(len(data)): if isInCluster(k, referencePoints, data[j]): clusterK.append(data[j]) hasTheClusterChanged = hasClusterChanged(clusterK,clusters[k]) clusters[k] = clusterK means[k] = getAverageVector(clusterK) return means def predict(point , means): categories = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica', 'Iris-bogus', 'five', 'six', 'seven'] distances = [getEuclideanDistance(aPoint,point) for aPoint in means] index = distances.index(min(distances)) return categories[index] if __name__ == '__main__': data = [ [5.1,3.5,1.4,0.2], [4.9,3,1.4,0.2], [4.7,3.2,1.3,0.2], [4.6,3.1,1.5,0.2], [5,3.6,1.4,0.2], [5.4,3.9,1.7,0.4], [4.6,3.4,1.4,0.3], [5,3.4,1.5,0.2], [4.4,2.9,1.4,0.2], [4.9,3.1,1.5,0.1], [5.4,3.7,1.5,0.2], [4.8,3.4,1.6,0.2], [4.8,3,1.4,0.1], [4.3,3,1.1,0.1], [5.8,4,1.2,0.2], [5.7,4.4,1.5,0.4], [5.4,3.9,1.3,0.4], [5.1,3.5,1.4,0.3], [5.7,3.8,1.7,0.3], [5.1,3.8,1.5,0.3], [5.4,3.4,1.7,0.2], [5.1,3.7,1.5,0.4], [4.6,3.6,1,0.2], [5.1,3.3,1.7,0.5], [4.8,3.4,1.9,0.2], [5,3,1.6,0.2], [5,3.4,1.6,0.4], [5.2,3.5,1.5,0.2], [5.2,3.4,1.4,0.2], [4.7,3.2,1.6,0.2], [4.8,3.1,1.6,0.2], [5.4,3.4,1.5,0.4], [5.2,4.1,1.5,0.1], [5.5,4.2,1.4,0.2], [4.9,3.1,1.5,0.1], [5,3.2,1.2,0.2], [5.5,3.5,1.3,0.2], [4.9,3.1,1.5,0.1], [4.4,3,1.3,0.2], [5.1,3.4,1.5,0.2], [5,3.5,1.3,0.3], [4.5,2.3,1.3,0.3], [4.4,3.2,1.3,0.2], [5,3.5,1.6,0.6], [5.1,3.8,1.9,0.4], [4.8,3,1.4,0.3], [5.1,3.8,1.6,0.2], [4.6,3.2,1.4,0.2], [5.3,3.7,1.5,0.2], [5,3.3,1.4,0.2], [7,3.2,4.7,1.4], [6.4,3.2,4.5,1.5], [6.9,3.1,4.9,1.5], [5.5,2.3,4,1.3], [6.5,2.8,4.6,1.5], [5.7,2.8,4.5,1.3], [6.3,3.3,4.7,1.6], [4.9,2.4,3.3,1], [6.6,2.9,4.6,1.3], [5.2,2.7,3.9,1.4], [5,2,3.5,1], [5.9,3,4.2,1.5], [6,2.2,4,1], [6.1,2.9,4.7,1.4], [5.6,2.9,3.6,1.3], [6.7,3.1,4.4,1.4], [5.6,3,4.5,1.5], [5.8,2.7,4.1,1], [6.2,2.2,4.5,1.5], [5.6,2.5,3.9,1.1], [5.9,3.2,4.8,1.8], [6.1,2.8,4,1.3], [6.3,2.5,4.9,1.5], [6.1,2.8,4.7,1.2], [6.4,2.9,4.3,1.3], [6.6,3,4.4,1.4], [6.8,2.8,4.8,1.4], [6.7,3,5,1.7], [6,2.9,4.5,1.5], [5.7,2.6,3.5,1], [5.5,2.4,3.8,1.1], [5.5,2.4,3.7,1], [5.8,2.7,3.9,1.2], [6,2.7,5.1,1.6], [5.4,3,4.5,1.5], [6,3.4,4.5,1.6], [6.7,3.1,4.7,1.5], [6.3,2.3,4.4,1.3], [5.6,3,4.1,1.3], [5.5,2.5,4,1.3], [5.5,2.6,4.4,1.2], [6.1,3,4.6,1.4], [5.8,2.6,4,1.2], [5,2.3,3.3,1], [5.6,2.7,4.2,1.3], [5.7,3,4.2,1.2], [5.7,2.9,4.2,1.3], [6.2,2.9,4.3,1.3], [5.1,2.5,3,1.1], [5.7,2.8,4.1,1.3], [6.3,3.3,6,2.5], [5.8,2.7,5.1,1.9], [7.1,3,5.9,2.1], [6.3,2.9,5.6,1.8], [6.5,3,5.8,2.2], [7.6,3,6.6,2.1], [4.9,2.5,4.5,1.7], [7.3,2.9,6.3,1.8], [6.7,2.5,5.8,1.8], [7.2,3.6,6.1,2.5], [6.5,3.2,5.1,2], [6.4,2.7,5.3,1.9], [6.8,3,5.5,2.1], [5.7,2.5,5,2], [5.8,2.8,5.1,2.4], [6.4,3.2,5.3,2.3], [6.5,3,5.5,1.8], [7.7,3.8,6.7,2.2], [7.7,2.6,6.9,2.3], [6,2.2,5,1.5], [6.9,3.2,5.7,2.3], [5.6,2.8,4.9,2], [7.7,2.8,6.7,2], [6.3,2.7,4.9,1.8], [6.7,3.3,5.7,2.1], [7.2,3.2,6,1.8], [6.2,2.8,4.8,1.8], [6.1,3,4.9,1.8], [6.4,2.8,5.6,2.1], [7.2,3,5.8,1.6], [7.4,2.8,6.1,1.9], [7.9,3.8,6.4,2], [6.4,2.8,5.6,2.2], [6.3,2.8,5.1,1.5], [6.1,2.6,5.6,1.4], [7.7,3,6.1,2.3], [6.3,3.4,5.6,2.4], [6.4,3.1,5.5,1.8], [6,3,4.8,1.8], [6.9,3.1,5.4,2.1], [6.7,3.1,5.6,2.4], [6.9,3.1,5.1,2.3], [5.8,2.7,5.1,1.9], [6.8,3.2,5.9,2.3], [6.7,3.3,5.7,2.5], [6.7,3,5.2,2.3], [6.3,2.5,5,1.9], [6.5,3,5.2,2], [6.2,3.4,5.4,2.3], [5.9,3,5.1,1.8]] timeStart = time.time() means = kMean(data, 7) print("time taken",time.time()-timeStart) print (predict([5.1,3.4,1.5,0.2], means)) print (predict([5.9, 3.0, 5.1, 1.8], means)) print (predict([6.7,3,5.2,2.3], means)) print (predict([3.2, 7.2, 5, 10.1], means)) ```
{ "source": "jonaszchuang/lava-platformer", "score": 3 }
#### File: lava-platformer/game/heart.py ```python import os import pygame class Heart(pygame.sprite.Sprite): def __init__(self, x, y): super().__init__() image_location = os.path.join("assets", "heart.png") self.image = pygame.image.load(image_location).convert_alpha() self.rect = self.image.get_rect() self.image = pygame.transform.scale(self.image, (100, 100)) self.rect.x = x self.rect.y = y ```
{ "source": "jonaszchuang/tic-tac-toe", "score": 4 }
#### File: jonaszchuang/tic-tac-toe/tic-tac-toe.py ```python grid = [ ["_", "_", "_"], ["_", "_", "_"], ["_", "_", "_"] ] print("") p1 = str(input("Player one, what is your name? ")) print("") p2 = str(input("Player two, what is your name? ")) xTurn = True turns = 0 def board(grid): for row in grid: for slot in row: print(f"{slot} ", end = "") print() def quit(spot): if spot == "q": return True else: return False def check(spot): if not isnumb(spot): return False spot = int(spot) if not goodnumb(spot): return False return True def isnumb(spot): if not spot.isnumeric(): print("This is not a valid character, ", end = "") return False else: return True def goodnumb(spot): if spot > 9 or spot < 1: print("This is not a valid number, ", end = "") return False else: return True def taken(coords, grid): row = coords[0] column = coords[1] if grid[row][column] != "_": print("This spot is already taken, ", end = "") return True return False def coordinates(spot): row = int(spot / 3) column = spot if column > 2: column = int(column % 3) return [row, column] def add(coords, grid, player): row = coords[0] column = coords[1] grid[row][column] = player def user(xTurn): if xTurn: return "X" else: return "O" def win(player, grid): if rowWin(player, grid): return True if columnWin(player, grid): return True if diagonalWin(player, grid): return True def rowWin(player, grid): for row in grid: completeRow = True for slot in row: if slot != player: completeRow = False break if completeRow: return True return False def columnWin(player, grid): for column in range(3): completeColumn = True for row in range(3): if grid[row][column] != player: completeColumn = False break if completeColumn: return True return False def diagonalWin(player, grid): if (grid[0][0] == player) and (grid[1][1] == player) and (grid[2][2] == player): return True elif (grid[0][2] == player) and (grid[1][1] == player) and (grid[2][0] == player): return True else: return False while turns < 9: player = user(xTurn) board(grid) spot = input("Chose a position (1-9) or \"q\" to quit: ") if quit(spot): break if not check(spot): print("try again.") print("") continue spot = int(spot) - 1 coords = coordinates(spot) if taken(coords, grid): print("try again.") continue add(coords, grid, player) if win(player, grid): print("") if player == "X": print(f"{p1} won! Thanks for playing!") else: print(f"{p2} won! Thanks for playing!") break turns += 1 if turns == 9: print("This is a tie. :| Play again for a rematch!") xTurn = not xTurn ```
{ "source": "JonasZehn/ntopo", "score": 2 }
#### File: ntopo/ntopo/constraints.py ```python import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from ntopo.utils import get_grid_centers, compute_domain_volume def zero_densities_function(positions): return tf.zeros(tf.stack((tf.shape(positions)[0], 1)), dtype=positions.dtype) def one_densities_function(positions): return tf.ones(tf.stack((tf.shape(positions)[0], 1)), dtype=positions.dtype) class DensityConstraintBase: def apply(self, positions, densities): distances, function_values = self.compute(positions) return tf.where(distances <= 0.0, function_values, densities) def estimate_volume(self, domain): assert len(domain) == 4 # only implemented in 2d for now positions = get_grid_centers(domain, [512, 512], dtype=np.float32) zeros = tf.zeros((positions.shape[0], 1)) ones = tf.ones((positions.shape[0], 1)) distances, function_values = self.compute(positions) bounding_volume = compute_domain_volume(domain) free_volume = bounding_volume * \ tf.math.reduce_mean(tf.where(distances >= 0.0, ones, zeros)) constrained_densities = tf.where(distances < 0.0, function_values, zeros) constraint_volume = bounding_volume * tf.math.reduce_mean(constrained_densities) return free_volume.numpy(), constraint_volume.numpy() def plot(self, domain, n_samples, folder): positions = get_grid_centers(domain, n_samples) distances, function_values = self.compute(positions) distances = np.reshape(distances, (n_samples[1], n_samples[0])) plt.figure() plt.imshow(np.flipud(distances), extent=domain) plt.colorbar() plt.savefig(os.path.join(folder, 'density_constraint_phi.png')) plt.close() function_values = np.reshape(function_values, (n_samples[1], n_samples[0])) plt.figure() plt.imshow(np.flipud(function_values), extent=domain) plt.colorbar() plt.savefig(os.path.join(folder, 'density_constraint_fs.png')) plt.close() def compute(self, positions): raise Exception("compute not overriden") class DensityConstraint(DensityConstraintBase): def __init__(self, sdf, fun): super().__init__() self.sdf = sdf self.fun = fun def compute(self, positions): distances = self.sdf.eval_distance(positions) function_values = self.fun(positions) return distances, function_values def has_constraint(self): return True def plot_boundary(self, *args, **kwargs): self.sdf.plot_boundary(*args, **kwargs) class DensityConstraintNone(DensityConstraintBase): def apply(self, positions, densities): return densities def plot(self, domain, n_samples, folder): pass def has_constraint(self): return False def plot_boundary(self, *args, **kwargs): pass class DensityConstraintAdd(DensityConstraintBase): def __init__(self, constraint_list): super().__init__() self.constraint_list = constraint_list def compute(self, positions): distances, function_values = self.constraint_list[0].compute(positions) for i in range(1, len(self.constraint_list)): phin, fxsn = self.constraint_list[i].compute(positions) cond = phin < 0.0 distances = tf.where(phin < distances, phin, distances) function_values = tf.where(cond, fxsn, function_values) return distances, function_values def has_constraint(self): for constraint_object in self.constraint_list: if constraint_object.has_constraint(): return True return False def plot_boundary(self, *args, **kwargs): for constraint_object in self.constraint_list: constraint_object.plot_boundary(*args, **kwargs) class DisplacementLine: def __init__(self, point_a, point_b): super().__init__() self.point_a = np.reshape(np.array(point_a, dtype=np.float32), (1, 2)) self.point_b = np.reshape(np.array(point_b, dtype=np.float32), (1, 2)) self.ba_sq = np.sum((self.point_b - self.point_a) * (self.point_b - self.point_a)) def eval_distance_square(self, positions): a_to_p = positions - self.point_a ba = self.point_b - self.point_a line_time = tf.clip_by_value(tf.math.reduce_sum( a_to_p*ba, axis=1, keepdims=True)/self.ba_sq, 0.0, 1.0) d = a_to_p - line_time * ba dist_sq = tf.math.reduce_sum(d*d, axis=1, keepdims=True) return dist_sq class DisplacementDisk: def __init__(self, center, radius): super().__init__() self.center = tf.convert_to_tensor(np.reshape( np.array(center, dtype=np.float32), (1, 2)), dtype=tf.float32) self.radius = radius def eval_distance_square(self, positions): center_to_p = positions - self.center dist_sq_from_center = tf.math.reduce_sum(center_to_p*center_to_p, axis=1, keepdims=True) d = tf.math.sqrt(dist_sq_from_center) dist_sq = tf.where(d - self.radius <= 1e-5, tf.zeros_like(d), tf.math.square(d - self.radius)) return dist_sq class DisplacementPoint: def __init__(self, position): super().__init__() self.position = tf.convert_to_tensor(np.reshape( np.array(position, dtype=np.float32), (1, 2)), dtype=tf.float32) def eval_distance_square(self, positions): p_to_positions = positions - self.position dist_sq_from_center = tf.math.reduce_sum(p_to_positions*p_to_positions, axis=1, keepdims=True) return dist_sq_from_center class DisplacementHalfspace: def __init__(self, normal, offset): super().__init__() self.normal = tf.convert_to_tensor(np.reshape( np.array(normal, dtype=np.float32), (2, 1)), dtype=tf.float32) self.offset = offset def eval_distance_square(self, positions): signed_distances = tf.linalg.matmul(positions, self.normal) + self.offset return signed_distances*signed_distances def power_smooth_min_already_sq(d_a, d_b): eps = 1e-4 return (d_a*d_b)/(d_a+d_b + eps) def tree_reduce(d_sq): while len(d_sq) > 1: nd_sq = [] for i in range(0, len(d_sq), 2): if i + 1 < len(d_sq): nd_sq.append(power_smooth_min_already_sq(d_sq[i], d_sq[i+1])) else: nd_sq.append(d_sq[i]) d_sq = nd_sq return d_sq[0] def entity_list_compute_s(positions, domain, entity_list): assert len(positions.shape) == 2 d_sq = [] for entity_i in entity_list: d_sqi = entity_i.eval_distance_square(positions) d_sq.append(d_sqi) d_sq = tree_reduce(d_sq) result = 2.0 / max(domain[1] - domain[0], domain[3] - domain[2]) * tf.math.sqrt(d_sq + 1e-35) return result def get_gradient_norm_function(functor): @tf.function def gradient_norm_function(inputs): with tf.GradientTape(persistent=True) as tape: tape.watch(inputs) T = functor(inputs) dTdxy = tape.gradient(T, inputs) return tf.math.sqrt(tf.math.reduce_sum(tf.square(dTdxy), axis=1, keepdims=True)) return gradient_norm_function def get_second_order_norm_function(functor): @tf.function def norm_function(inputs): with tf.GradientTape(persistent=True) as tape1: tape1.watch(inputs) with tf.GradientTape(persistent=True) as tape: tape.watch(inputs) T = functor(inputs) dTdxy = tape.gradient(T, inputs, unconnected_gradients='zero') dTdx = tf.gather(dTdxy, [0], axis=1) dTdy = tf.gather(dTdxy, [1], axis=1) dTdxdxy = tape1.gradient(dTdx, inputs, unconnected_gradients='zero') dTdydxy = tape1.gradient(dTdy, inputs, unconnected_gradients='zero') return tf.math.sqrt(tf.math.reduce_sum(tf.square(dTdxdxy) + tf.square(dTdydxy), axis=1, keepdims=True)) return norm_function class DisplacementConstraint: def __init__(self, domain, entity_list): self.domain = domain self.entity_list = entity_list def compute_length_factor(self, positions): return entity_list_compute_s(positions, self.domain, self.entity_list) def plot(self, domain, n_samples, folder): positions = get_grid_centers(domain, n_samples, dtype=np.float32) length_factors = self.compute_length_factor(positions) length_factors = np.reshape(length_factors, (n_samples[1], n_samples[0])) plt.figure() plt.imshow(np.flipud(length_factors), extent=domain) plt.colorbar(orientation="horizontal") plt.savefig(os.path.join(folder, 'DisplacementConstraint_s.png')) plt.close() s_function = self.compute_length_factor gradient_norm_function = get_gradient_norm_function(s_function) samples_tf = tf.convert_to_tensor(positions) gradient_norms = gradient_norm_function(samples_tf) image = np.reshape(gradient_norms, (n_samples[1], n_samples[0])) plt.figure() plt.imshow(np.flipud(image), extent=self.domain) plt.colorbar(orientation="horizontal") plt.savefig(os.path.join(folder, 'DisplacementConstraint_s-gradient-norm.png')) plt.close() so_function = get_second_order_norm_function(s_function) samples_tf = tf.convert_to_tensor(positions) so_norms = so_function(samples_tf) image = np.reshape(so_norms, (n_samples[1], n_samples[0])) plt.figure() plt.imshow(np.flipud(image), extent=self.domain) plt.colorbar(orientation="horizontal") plt.savefig(os.path.join( folder, 'DisplacementConstraint_s-so-norm.png')) plt.close() ``` #### File: ntopo/ntopo/filter.py ```python import tensorflow as tf def pad_border(tensor, filter_size): rep = filter_size // 2 tensor = tf.concat([tf.tile(tensor[:, :, 0:1, :], (1, 1, rep, 1)), tensor, tf.tile( tensor[:, :, -1:, :], (1, 1, rep, 1))], axis=2) tensor = tf.concat([tf.tile(tensor[:, 0:1, :, :], (1, rep, 1, 1)), tensor, tf.tile( tensor[:, -1:, :, :], (1, rep, 1, 1))], axis=1) return tensor def pad_border_3d(tensor, filter_size): rep = filter_size // 2 tensor = tf.concat([tf.tile(tensor[:, :, :, 0:1, :], (1, 1, 1, rep, 1)), tensor, tf.tile( tensor[:, :, :, -1:, :], (1, 1, 1, rep, 1))], axis=3) tensor = tf.concat([tf.tile(tensor[:, :, 0:1, :, :], (1, 1, rep, 1, 1)), tensor, tf.tile( tensor[:, :, -1:, :, :], (1, 1, rep, 1, 1))], axis=2) tensor = tf.concat([tf.tile(tensor[:, 0:1, :, :, :], (1, rep, 1, 1, 1)), tensor, tf.tile( tensor[:, -1:, :, :, :], (1, rep, 1, 1, 1))], axis=1) return tensor def pad_positions_constant(sample_positions, filter_size): rep = filter_size // 2 #sample_positions = tf.concat([ tf.tile(sample_positions[:,:, 0:1,:], (1, 1, rep, 1) ), sample_positions, tf.tile(sample_positions[:,:, -1:,:], (1, 1, rep, 1) ) ], axis = 2) c1 = tf.fill(tf.stack([tf.shape(sample_positions)[0], tf.shape( sample_positions)[1], rep, tf.shape(sample_positions)[3]]), -1000.0) sample_positions = tf.concat([c1, sample_positions, c1], axis=2) #sample_positions = tf.concat([ tf.tile(sample_positions[:, 0:1,:,:], (1, rep, 1, 1) ), sample_positions, tf.tile(sample_positions[:, -1:, :, :], (1, rep, 1, 1) ) ], axis = 1) c2 = tf.fill(tf.stack([tf.shape(sample_positions)[0], rep, tf.shape( sample_positions)[2], tf.shape(sample_positions)[3]]), -1000.0) sample_positions = tf.concat([c2, sample_positions, c2], axis=1) return sample_positions def pad_positions_constant_3d(sample_positions, filter_size): rep = filter_size // 2 c1 = tf.fill(tf.stack([tf.shape(sample_positions)[0], tf.shape(sample_positions)[ 1], tf.shape(sample_positions)[2], rep, tf.shape(sample_positions)[4]]), -1000.0) sample_positions = tf.concat([c1, sample_positions, c1], axis=3) c2 = tf.fill(tf.stack([tf.shape(sample_positions)[0], tf.shape(sample_positions)[ 1], rep, tf.shape(sample_positions)[3], tf.shape(sample_positions)[4]]), -1000.0) sample_positions = tf.concat([c2, sample_positions, c2], axis=2) c3 = tf.fill(tf.stack([tf.shape(sample_positions)[0], rep, tf.shape(sample_positions)[ 2], tf.shape(sample_positions)[3], tf.shape(sample_positions)[4]]), -1000.0) sample_positions = tf.concat([c3, sample_positions, c3], axis=1) return sample_positions @tf.function def apply_sensitivity_filter_2d(sample_positions, old_densities, sensitivities, n_samples, domain, radius): dim = 2 gamma = 1e-3 cell_width = (domain[1] - domain[0]) / n_samples[0] grads = sensitivities radius_space = radius * cell_width filter_size = 2*round(radius) + 1 density_patches = tf.reshape( old_densities, [1, n_samples[1], n_samples[0], 1]) density_patches = pad_border(density_patches, filter_size) density_patches = tf.image.extract_patches( density_patches, sizes=[1, filter_size, filter_size, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1], padding='VALID') sensitivity_patches = tf.reshape( sensitivities, [1, n_samples[1], n_samples[0], 1]) sensitivity_patches = pad_border(sensitivity_patches, filter_size) sensitivity_patches = tf.image.extract_patches( sensitivity_patches, sizes=[1, filter_size, filter_size, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1], padding='VALID') sample_positions = tf.reshape( sample_positions, [1, n_samples[1], n_samples[0], dim]) # we pad such that influence is basically 0 sample_patches = pad_positions_constant( sample_positions, filter_size) sample_patches = tf.image.extract_patches( sample_patches, sizes=[1, filter_size, filter_size, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1], padding='VALID') # sample_patches.shape is now [1, rows, cols, filter_size ** 2 * * dim] diff = tf.reshape(sample_patches, [1, n_samples[1], n_samples[0], filter_size * filter_size, dim]) - tf.reshape(sample_positions, [1, n_samples[1], n_samples[0], 1, dim]) # [1, n_samples[1], n_samples[0], filter_size ** 2] dists = tf.math.sqrt(tf.math.reduce_sum(diff*diff, axis=4)) # [1, n_samples[1], n_samples[0], filter_size ** 2] Hei = tf.math.maximum(0.0, radius_space - dists) # [1, n_samples[1], n_samples[0], filter_size ** 2] Heixic = Hei * density_patches * sensitivity_patches sum_Heixic = tf.math.reduce_sum(Heixic, axis=3) sum_Hei = tf.math.reduce_sum(Hei, axis=3) old_densities_r = tf.reshape( old_densities, [1, n_samples[1], n_samples[0]]) assert len(sum_Hei.shape) == len(old_densities_r.shape) div = tf.math.maximum(gamma, old_densities_r) * sum_Hei grads = sum_Heixic / div grads = tf.reshape(grads, (-1, 1)) return grads @tf.function def apply_sensitivity_filter_3d(sample_positions, old_densities, sensitivities, n_samples, domain, radius): dim = 3 gamma = 1e-3 cell_width = (domain[1] - domain[0]) / n_samples[0] radius_space = radius * cell_width filter_size = 2*round(radius) + 1 sample_positions = tf.reshape( sample_positions, [1, n_samples[0], n_samples[1], n_samples[2], dim]) density_patches = tf.reshape( old_densities, [1, n_samples[0], n_samples[1], n_samples[2], 1]) density_patches = pad_border_3d(density_patches, filter_size) density_patches = tf.extract_volume_patches( density_patches, ksizes=[1, filter_size, filter_size, filter_size, 1], strides=[1, 1, 1, 1, 1], padding='VALID') sensitivity_patches = tf.reshape( sensitivities, [1, n_samples[0], n_samples[1], n_samples[2], 1]) sensitivity_patches = pad_border_3d(sensitivity_patches, filter_size) sensitivity_patches = tf.extract_volume_patches( sensitivity_patches, ksizes=[1, filter_size, filter_size, filter_size, 1], strides=[1, 1, 1, 1, 1], padding='VALID') # we pad such that influence is basically 0 sample_patches = pad_positions_constant_3d(sample_positions, filter_size) sample_patches = tf.extract_volume_patches( sample_patches, ksizes=[1, filter_size, filter_size, filter_size, 1], strides=[1, 1, 1, 1, 1], padding='VALID') # sample_patches.shape is now [1, rows, cols, filter_size ** 3 * * dim] diff = tf.reshape(sample_patches, [1, n_samples[0], n_samples[1], n_samples[2], filter_size * filter_size * filter_size, dim]) - tf.reshape(sample_positions, [1, n_samples[0], n_samples[1], n_samples[2], 1, dim]) # [1, n_samples[0], n_samples[1], n_samples[2], filter_size ** 3] dists = tf.math.sqrt(tf.math.reduce_sum(diff*diff, axis=5)) # [1, n_samples[0], n_samples[1], n_samples[2], filter_size ** 3] Hei = tf.math.maximum(0.0, radius_space - dists) # [1, n_samples[0], n_samples[1], n_samples[2], filter_size ** 3] Heixic = Hei * density_patches * sensitivity_patches sum_Heixic = tf.math.reduce_sum(Heixic, axis=4) sum_Hei = tf.math.reduce_sum(Hei, axis=4) old_densities_r = tf.reshape( old_densities, [1, n_samples[0], n_samples[1], n_samples[2]]) assert len(sum_Hei.shape) == len(old_densities_r.shape) div = tf.math.maximum(gamma, old_densities_r) * sum_Hei grads = sum_Heixic / div grads = tf.reshape(grads, (-1, 1)) return grads def apply_sensitivity_filter(sample_positions, old_densities, sensitivities, n_samples, domain, dim, radius): if dim == 2: return apply_sensitivity_filter_2d(sample_positions, old_densities, sensitivities, n_samples, domain, radius) if dim == 3: return apply_sensitivity_filter_3d(sample_positions, old_densities, sensitivities, n_samples, domain, radius) raise Exception('unsupported dim') ``` #### File: ntopo/ntopo/train.py ```python import os import time import numpy as np import tensorflow as tf from tqdm import tqdm from ntopo.monitors import SimulationMonitor from ntopo.physics import compute_elasticity_energies, compute_opt_energy, compute_volume_penalty from ntopo.filter import apply_sensitivity_filter from ntopo.utils import write_to_file, get_sample_generator, get_single_random_q_sample_generator, get_q_sample_generator, stratified_sampling from ntopo.oc import compute_oc_multi_batch from ntopo.render import save_densities_to_file def get_train_disp_step(opt, problem, disp_model, density_model, disp_variables): @tf.function def _train_disp_step(samples): with tf.GradientTape() as tape: tape.watch(disp_variables) internal_energy, force_loss = compute_elasticity_energies( problem, disp_model, density_model, samples, training=True) reg_loss = tf.keras.backend.sum(disp_model.losses) loss = internal_energy + force_loss + reg_loss dLdwx = tape.gradient(loss, disp_variables) opt.apply_gradients(zip(dLdwx, disp_variables)) return loss, internal_energy, force_loss, reg_loss return _train_disp_step def run_simulation(problem, disp_model, train_disp_step, n_sim_iterations, sim_sample_generator, saving=False, save_path='.', save_postfix=''): simulation_monitor = SimulationMonitor(n_sim_iterations) progress_bar = tqdm(simulation_monitor, total=n_sim_iterations) for disp_iter in progress_bar: start_time = time.time() input_samples = next(sim_sample_generator) loss, internal_energy, force_loss, reg_loss = train_disp_step(input_samples) simulation_monitor.monitor(loss) end_time = time.time() loss = loss.numpy().item() internal_energy = internal_energy.numpy().item() duration = end_time - start_time reg_loss = reg_loss.numpy().item() progress_bar.set_description(f'loss {loss:.3e} int. energy {internal_energy:.3e}, dur.: {duration:.3e}, reg loss {reg_loss:.3e}') progress_bar.refresh() if saving: simulation_monitor.save_plot(save_path, '', save_postfix) def get_train_density_step(opt, problem, disp_model, density_model, density_variables, vol_penalty_strength, target_volume_ratio): sample_volume = problem.domain_volume target_volume = problem.free_volume * target_volume_ratio @tf.function def _train_densities_step(sample_positions): with tf.GradientTape() as tape: tape.watch(density_variables) energy, densities = compute_opt_energy( problem, disp_model, density_model, sample_positions) penalty = compute_volume_penalty(densities, sample_volume=sample_volume, vol_penalty_strength=vol_penalty_strength, target_volume=target_volume) reg_loss = tf.keras.backend.sum(density_model.losses) loss = energy + penalty + reg_loss dLdwx = tape.gradient(loss, density_variables) opt.apply_gradients(zip(dLdwx, density_variables)) return loss, penalty, reg_loss return _train_densities_step @tf.function def compute_sensitivities(problem, disp_model, density_model, sample_positions, use_oc, vol_penalty_strength, target_volume_ratio=None): sample_volume = problem.domain_volume target_volume = problem.free_volume * target_volume_ratio with tf.GradientTape() as tape: energy, densities = compute_opt_energy( problem, disp_model, density_model, sample_positions) if use_oc: loss = energy else: penalty = compute_volume_penalty(densities, sample_volume=sample_volume, vol_penalty_strength=vol_penalty_strength, target_volume=target_volume) loss = energy + penalty old_densities = densities grads = tape.gradient(loss, densities) return old_densities, grads @tf.function def compute_target_densities_gradient_descent(old_densities, sensitivities): projected_sensitivities = [tf.math.maximum(0.0, tf.math.minimum( 1.0, old_densities[i] - sensitivities[i])) - old_densities[i] for i in range(len(old_densities))] step_size = 0.05 / tf.math.reduce_mean([tf.math.reduce_mean(tf.math.abs(si)) for si in projected_sensitivities]) return [old_densities[i] - step_size * sensitivities[i] for i in range(len(old_densities))] @tf.function def optimize_densities_mse(opt, density_model, sample_positions, targets, density_variables): with tf.GradientTape() as tape: tape.watch(density_variables) err = density_model(sample_positions, training=True) - targets reg_loss = tf.keras.backend.sum(density_model.losses) reconstruction_loss = tf.reduce_mean(err*err, keepdims=True) loss = reconstruction_loss + reg_loss dLdwrho = tape.gradient(loss, density_variables) opt.apply_gradients(zip(dLdwrho, density_variables)) return loss, reconstruction_loss, reg_loss def save_model_configs(disp_model, density_model, save_path): write_to_file(disp_model.to_json(), os.path.join( save_path, 'disp_model_config.json')) write_to_file(density_model.to_json(), os.path.join( save_path, 'density_model_config.json')) def save_model_weights(disp_model, density_model, save_path, save_postfix): disp_model.save_weights(os.path.join( save_path, 'disp_model' + save_postfix)) density_model.save_weights(os.path.join( save_path, 'density_model' + save_postfix)) def train_non_mmse(problem, disp_model, density_model, opt_disp, opt_density, opt_sample_generator, sim_sample_generator, vol_penalty_strength, target_volume_ratio, save_path, save_interval, n_opt_iterations, n_sim_iterations ): train_disp_step = get_train_disp_step( opt_disp, problem, disp_model, density_model=density_model, disp_variables=disp_model.trainable_variables) train_density_step = get_train_density_step( opt_density, problem, disp_model, density_model=density_model, density_variables=density_model.trainable_variables, vol_penalty_strength=vol_penalty_strength, target_volume_ratio=target_volume_ratio) save_model_configs(disp_model, density_model, save_path) def save_state(save_postfix): save_model_weights(disp_model, density_model, save_path, save_postfix) problem.plot_densities(density_model, save_path, '', save_postfix) iteration = 0 saving = True save_postfix = f'-{iteration:06d}' run_simulation(problem, disp_model, train_disp_step, n_sim_iterations=n_sim_iterations, sim_sample_generator=sim_sample_generator, saving=saving, save_path=save_path, save_postfix=save_postfix) if saving: problem.plot_displacement(disp_model, save_path, '', save_postfix) save_state(save_postfix) for iteration in range(1, n_opt_iterations + 1): print('Optimization iteration ', iteration) saving = (iteration % save_interval == 0) save_postfix = f'-{iteration:06d}' run_simulation(problem, disp_model, train_disp_step, n_sim_iterations=n_sim_iterations, sim_sample_generator=sim_sample_generator, saving=saving, save_path=save_path, save_postfix=save_postfix) if saving: problem.plot_displacement(disp_model, save_path, '', save_postfix) sample_positions = next(opt_sample_generator) train_density_step(sample_positions) if saving: save_state(save_postfix) def train_mmse(problem, disp_model, density_model, opt_disp, opt_density, opt_sample_generator, sim_sample_generator, n_opt_samples, vol_penalty_strength, target_volume_ratio, save_path, filter, filter_radius, use_oc, save_interval, n_opt_iterations, n_sim_iterations, n_opt_batches, oc_config): density_variables = density_model.trainable_variables train_disp_step = get_train_disp_step( opt_disp, problem, disp_model, density_model=density_model, disp_variables=disp_model.trainable_variables) save_model_configs(disp_model, density_model, save_path) def save_state(save_postfix, target_densities=None): save_model_weights(disp_model, density_model, save_path, save_postfix) problem.plot_densities(density_model, save_path, '', save_postfix) if target_densities is not None and problem.dim == 2: save_densities_to_file(np.reshape(target_densities[0], (n_opt_samples[1], n_opt_samples[0])), filename=os.path.join( save_path, 'density' + save_postfix + '-target0.png')) iteration = 0 saving = True save_postfix = f'-{iteration:06d}' run_simulation(problem, disp_model, train_disp_step, n_sim_iterations=n_sim_iterations, sim_sample_generator=sim_sample_generator, saving=True, save_path=save_path, save_postfix=save_postfix) if saving: problem.plot_displacement(disp_model, save_path, '', save_postfix) save_state(save_postfix) for iteration in range(1, n_opt_iterations + 1): print('Optimization iteration ', iteration) saving = (iteration % save_interval == 0) save_postfix = f'-{iteration:06d}' run_simulation(problem, disp_model, train_disp_step, n_sim_iterations=n_sim_iterations, sim_sample_generator=sim_sample_generator, saving=saving, save_path=save_path, save_postfix=save_postfix) if saving: problem.plot_displacement(disp_model, save_path, '', save_postfix) old_densities = [] sensitivities = [] sample_positions = [] for _ in range(n_opt_batches): input_samples = next(opt_sample_generator) old_di, sensitivities_i = compute_sensitivities( problem, disp_model, density_model, input_samples, use_oc, vol_penalty_strength=vol_penalty_strength, target_volume_ratio=target_volume_ratio) if filter == 'sensitivity': sensitivities_i = apply_sensitivity_filter( input_samples, old_di, sensitivities_i, n_samples=n_opt_samples, domain=problem.domain, dim=problem.dim, radius=filter_radius) else: assert filter in ('none', ), 'not supported filter' old_densities.append(old_di) sensitivities.append(sensitivities_i) sample_positions.append(input_samples) if use_oc: target_densities = compute_oc_multi_batch( old_densities=old_densities, sensitivities=sensitivities, sample_volume=problem.domain_volume, target_volume=problem.free_volume * target_volume_ratio, max_move=oc_config['max_move'], damping_parameter=oc_config['damping_parameter']) else: target_densities = compute_target_densities_gradient_descent( old_densities=old_densities, sensitivities=sensitivities) progress_bar = tqdm(range(n_opt_batches)) for i in progress_bar: loss, reconstruction_loss, reg_loss = optimize_densities_mse( opt_density, density_model, sample_positions[i], target_densities[i], density_variables) loss = loss.numpy().item() reconstruction_loss = reconstruction_loss.numpy().item() reg_loss = reg_loss.numpy().item() progress_bar.set_description(f'loss {loss} rec. loss {reconstruction_loss} reg loss {reg_loss}') progress_bar.refresh() if saving: save_state(save_postfix, target_densities) def train_mmse_space(problem, disp_model, density_model, opt_disp, opt_density, n_sim_samples, n_opt_samples, opt_sample_generator, vol_penalty_strength, target_volume_ratio, save_path, filter, filter_radius, use_oc, save_interval, n_opt_iterations, n_sim_iterations, n_opt_batches, n_q_samples, oc_config): density_variables = density_model.trainable_variables train_disp_step = get_train_disp_step( opt_disp, problem, disp_model, density_model=density_model, disp_variables=disp_model.trainable_variables) save_model_configs(disp_model, density_model, save_path) def save_state(save_postfix, target_densities=None): disp_model.save_weights(os.path.join( save_path, 'disp_model' + save_postfix)) density_model.save_weights(os.path.join( save_path, 'density_model' + save_postfix)) problem.plot_densities(density_model, save_path, '', save_postfix) iteration = 0 saving = True save_postfix = f'-{iteration:06d}' sim_sample_generator = get_single_random_q_sample_generator(problem.q_domain, problem.domain, n_sim_samples) run_simulation(problem, disp_model, train_disp_step, n_sim_iterations=2*n_sim_iterations, sim_sample_generator=sim_sample_generator, saving=saving, save_path=save_path, save_postfix=save_postfix) if saving: qs = stratified_sampling(problem.q_domain, n_cells=[ n_q_samples], n_points_per_cell=1, dtype=np.float32).flatten() for q in qs: save_postfix_q = f'-{iteration:06d}-q={q:.6f}' print('q', q) problem.plot_displacement( disp_model, save_path, '', save_postfix_q, q=np.array([[q]])) save_state(save_postfix) for iteration in range(1, n_opt_iterations + 1): print('Optimization iteration ', iteration) saving = (iteration % save_interval == 0) print('saving', saving) target_samples_all_q = [] target_densities_all_q = [] qs = stratified_sampling(problem.q_domain, n_cells=[ n_q_samples], n_points_per_cell=1, dtype=np.float32).flatten() for q in qs: save_postfix_q = f'-{iteration:06d}-q={q:.6f}' if problem.volume_ratio_q_idx != -1: assert problem.volume_ratio_q_idx == 0 target_volume_ratio = q old_densities = [] sensitivities = [] sample_positions_with_q = [] sim_sample_generator = get_q_sample_generator( q, problem.domain, n_samples=n_sim_samples) run_simulation(problem, disp_model, train_disp_step, n_sim_iterations=n_sim_iterations, sim_sample_generator=sim_sample_generator, saving=saving, save_path=save_path, save_postfix=save_postfix_q) if saving: problem.plot_displacement( disp_model, save_path, '', save_postfix_q, q=np.array([[q]])) for _ in range(n_opt_batches): input_samples = next(opt_sample_generator) q_vec = np.ones((np.prod(n_opt_samples), 1), dtype=np.float32) * q input_samples_with_q = np.concatenate( (input_samples, q_vec), axis=1) old_di, sensitivities_i = compute_sensitivities( problem, disp_model, density_model, input_samples_with_q, use_oc, vol_penalty_strength=vol_penalty_strength, target_volume_ratio=target_volume_ratio) if filter == 'sensitivity': sensitivities_i = apply_sensitivity_filter( input_samples, old_di, sensitivities_i, n_samples=n_opt_samples, domain=problem.domain, dim=problem.dim, radius=filter_radius) else: assert filter in ('none', ), 'not supported filter' old_densities.append(old_di) sensitivities.append(sensitivities_i) sample_positions_with_q.append(input_samples_with_q) if use_oc: target_densities = compute_oc_multi_batch( old_densities, sensitivities, sample_volume=problem.domain_volume, target_volume=problem.free_volume * target_volume_ratio, max_move=oc_config['max_move'], damping_parameter=oc_config['damping_parameter']) else: target_densities = compute_target_densities_gradient_descent( old_densities=old_densities, sensitivities=sensitivities) target_samples_all_q.append(sample_positions_with_q) target_densities_all_q.append(target_densities) n_batch = len(target_samples_all_q) * len(target_samples_all_q[0]) n_samples_total = n_batch * np.prod(n_opt_samples) target_samples_all_q = tf.reshape( target_samples_all_q, [n_samples_total, problem.dim + problem.q_dim]) target_densities_all_q = tf.reshape( target_densities_all_q, [n_samples_total, 1]) indices = np.arange(n_samples_total) np.random.shuffle(indices) n_per_batch = n_samples_total // n_batch progress_bar = tqdm(range(n_batch)) for i in progress_bar: batch_samples = tf.gather(target_samples_all_q, tf.constant( indices[i*n_per_batch:(i+1)*n_per_batch]), axis=0) batch_densities = tf.gather(target_densities_all_q, tf.constant( indices[i*n_per_batch:(i+1)*n_per_batch]), axis=0) loss, reconstruction_loss, reg_loss = optimize_densities_mse( opt_density, density_model, batch_samples, batch_densities, density_variables) loss = loss.numpy().item() reconstruction_loss = reconstruction_loss.numpy().item() reg_loss = reg_loss.numpy().item() progress_bar.set_description(f'loss {loss} rec. loss {reconstruction_loss} reg loss {reg_loss}') progress_bar.refresh() if saving: save_postfix = f'-{iteration:06d}' save_state(save_postfix, target_densities) ```
{ "source": "jonaszierer/ARDISS", "score": 3 }
#### File: ARDISS/ardiss/ard_model.py ```python import numpy as np import tensorflow as tf import gpflow from sklearn import preprocessing import gc class GPflowARD(object): # The class regroups the ARD optimization steps def __init__(self, X, Y, window_size, optimizer=gpflow.train.RMSPropOptimizer(0.1, momentum=0.01), maxiter=100, threads=1, scale_X=False, verbose=False): # Initialize the class and raise warnings depending on options chosen self.X = np.copy(X) # The haplotype values, this must be normalized ahead for optimal results if scale_X: # If X was not scaled before, we scale it here if self.X.dtype not in [np.float16, np.float32, np.float64]: self.X = self.X.astype(dtype=np.float16, copy=False) # Need to transform it to float to ensure scaling gc.collect() self.X = preprocessing.scale(self.X, axis=1, copy=False) gc.collect() self.Y = np.copy(Y) # The typed scores self.window_size = window_size # The window size used during optimization, this affects performance self.optimizer = optimizer # The chosen optimizer, RMSProp is set as default self.maxiter = maxiter # The maximum number of iteration of the optimizer at each window self.verbose = verbose self.ards = None self.config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=threads, inter_op_parallelism_threads=threads, allow_soft_placement=True) def optimize_weights(self): ws = self.window_size n_windows = np.int(np.floor(self.X.shape[0] / ws)) r = np.arange(n_windows) i = 0 ards = [] for k in r: if self.verbose: print("Optimization {}/{}".format(i + 1, n_windows)) i += 1 # In order to avoid excessive growth of graph, we save the ARD vectors at every iterations and replace them with tf.Session(graph=tf.Graph(), config=self.config): X_batch = np.array(self.X[ws * k:ws * (k + 1)], dtype=float) # Optimize on non-overlapping windows Y_batch = np.array(self.Y[ws * k:ws * (k + 1)], dtype=float) k = gpflow.kernels.Linear(X_batch.shape[1], ARD=True) m_ard = gpflow.models.GPR(X_batch, Y_batch, k) m_ard.likelihood.variance = 0.1 m_ard.likelihood.trainable = False self.optimizer.minimize(m_ard, maxiter=self.maxiter) ards.append(m_ard.kern.variance.read_value()) self.ards = np.asarray(ards) return self.ards def compute_avg_ard_weights(self): # if weights were not optimized yet: if self.ards is None: self.optimize_weights() return np.mean(self.ards,axis=0) def save_weights_to_file(self, output="ARD_weigts.txt", pop_file=None): # Writes out the weights to a txt file. If a population_file is provided, saves popnames in columns if pop_file is not None: # CAREFUL: this pop_file must not be the same as the one provided to load the data with open(pop_file, "r") as pop: written_lines = [] firstline=pop.readline()[:-1].split() w_l = firstline[0] pops_reported = len(firstline)>1 if pops_reported: w_l += " " + firstline[2] + " " + firstline[1] # Need to account for haplotypes, hence duplicate everytime written_lines.append(w_l) written_lines.append(w_l) for line in pop: cols = line[:-1].split() w_l = cols[0] if pops_reported: w_l += " " + cols[2] + " " + cols[1] written_lines.append(w_l) written_lines.append(w_l) with open(output, "w") as w: for idx,ard in enumerate(self.compute_avg_ard_weights()): w.write(written_lines[idx] + " " + str(ard) + "\n") else: with open(output, "w") as w: for ard in self.compute_avg_ard_weights(): w.write(str(ard) + "\n") def load_ard_weights(weight_file, pop_file=None): # Read the weights from the weight file and check against pop_file with open(weight_file, "r") as f: weights = [] ids = [] for line in f: cols = line[:-1].split() weights.append(float(cols[-1])) if len(cols) > 1: ids.append(cols[0]) if pop_file is not None: with open(pop_file, "r") as f: ref_ids = [] for line in f: ref_ids.append(line[:-1].split()[0]) if 2*len(ref_ids) != len(weights): print("Warning: the number of weights is different than twice the number of reference samples in the population file") if len(ids) != 0: for id in ids: if id not in ref_ids: print("Warning: sample {}is not referenced in the population file".format(id)) return np.asarray(weights) def scale_with_weights(all_haps, typed_index, ard_weights): # Scales the haps so as to directly incorporate the ARD weights and speed up later computations all_haps = np.sqrt(ard_weights)*all_haps gc.collect() all_haps = preprocessing.scale(all_haps, axis=1, copy=False) gc.collect() typed_haps = np.take(all_haps, typed_index, axis=0) return all_haps, typed_haps ```
{ "source": "jonaszierer/genetics-colocalisation", "score": 2 }
#### File: jonaszierer/genetics-colocalisation/2_generate_manifest.py ```python import os import sys # import pandas as pd from pprint import pprint from glob import glob import json from collections import OrderedDict import gzip def main(): # Parse args in_overlap_table = glob('/home/ubuntu/results/coloc/overlap_table/*.json.gz')[0] out_manifest = 'configs/manifest.json.gz' overlap_prop_threshold = 0.01 max_credset_threshold = None # # In path patterns (local) # sumstats = '../genetics-finemapping/example_data/sumstats/{type}_2/{study_id}.parquet' # ld_path = '/Users/em21/Projects/reference_data/uk10k_2019Feb/3_liftover_to_GRCh38/output/{chrom}.ALSPAC_TWINSUK.maf01.beagle.csq.shapeit.20131101' # In path patterns (server) sumstats = '/home/ubuntu/data/sumstats/filtered/significant_window_2mb/{type}/{study_id}.parquet' ld_path = '/home/ubuntu/data/genotypes/ukb_v3_downsampled10k_plink/ukb_v3_chr{chrom}.downsampled10k' # Out path patterns out = "/home/ubuntu/results/coloc/output/left_study={left_study}/left_phenotype={left_phenotype}/left_bio_feature={left_bio_feature}/left_variant={left_variant}/right_study={right_study}/right_phenotype={right_phenotype}/right_bio_feature={right_bio_feature}/right_variant={right_variant}/coloc_res.json.gz" log = "/home/ubuntu/results/coloc/logs/left_study={left_study}/left_phenotype={left_phenotype}/left_bio_feature={left_bio_feature}/left_variant={left_variant}/right_study={right_study}/right_phenotype={right_phenotype}/right_bio_feature={right_bio_feature}/right_variant={right_variant}/log_file.txt" tmpdir = "/home/ubuntu/results/coloc/tmp/left_study={left_study}/left_phenotype={left_phenotype}/left_bio_feature={left_bio_feature}/left_variant={left_variant}/right_study={right_study}/right_phenotype={right_phenotype}/right_bio_feature={right_bio_feature}/right_variant={right_variant}/" plot = "/home/ubuntu/results/coloc/plot/{left_study}_{left_phenotype}_{left_bio_feature}_{left_variant}_{right_study}_{right_phenotype}_{right_bio_feature}_{right_variant}.png" manifest = [] with gzip.open(in_overlap_table, 'r') as in_h: for in_record in in_h: in_record = json.loads(in_record.decode()) out_record = OrderedDict() # Skip if proportion_overlap < prop_threshold if overlap_prop_threshold: max_overlap_prop = max(in_record['left_overlap_prop'], in_record['right_overlap_prop']) if max_overlap_prop < overlap_prop_threshold: continue # Skip if the biggest credible has > max_credset_threshold variants if max_credset_threshold: max_credset_size = max(in_record['left_num_tags'], in_record['right_num_tags']) if max_credset_size > max_credset_threshold: continue # Add information for left/right for side in ['left', 'right']: # Add file information study_type = 'gwas' if in_record['{}_type'.format(side)] == 'gwas' else 'molecular_trait' out_record['{}_sumstats'.format(side)] = sumstats.format( type=study_type, study_id=in_record['{}_study_id'.format(side)]) out_record['{}_ld'.format(side)] = ld_path.format( chrom=in_record['{}_lead_chrom'.format(side)]) # Add study identifiers identifiers = ['study_id', 'type', 'phenotype_id', 'bio_feature', 'lead_chrom', 'lead_pos', 'lead_ref', 'lead_alt'] for i in identifiers: out_record['{}_{}'.format(side, i)] = in_record.get('{}_{}'.format(side, i), None) # Add method (always conditional for now) out_record['method'] = 'conditional' # Add output files left_variant = '_'.join( [str(in_record['left_lead_{}'.format(part)]) for part in ['chrom', 'pos', 'ref', 'alt']] ) right_variant = '_'.join( [str(in_record['right_lead_{}'.format(part)]) for part in ['chrom', 'pos', 'ref', 'alt']] ) out_record['out'] = out.format( left_study=in_record['left_study_id'], left_phenotype=in_record.get('left_phenotype_id', None), left_bio_feature=in_record.get('left_bio_feature', None), left_variant=left_variant, right_study=in_record['right_study_id'], right_phenotype=in_record.get('right_phenotype_id', None), right_bio_feature=in_record.get('right_bio_feature', None), right_variant=right_variant ) out_record['log'] = log.format( left_study=in_record['left_study_id'], left_phenotype=in_record.get('left_phenotype_id', None), left_bio_feature=in_record.get('left_bio_feature', None), left_variant=left_variant, right_study=in_record['right_study_id'], right_phenotype=in_record.get('right_phenotype_id', None), right_bio_feature=in_record.get('right_bio_feature', None), right_variant=right_variant ) out_record['tmpdir'] = tmpdir.format( left_study=in_record['left_study_id'], left_phenotype=in_record.get('left_phenotype_id', None), left_bio_feature=in_record.get('left_bio_feature', None), left_variant=left_variant, right_study=in_record['right_study_id'], right_phenotype=in_record.get('right_phenotype_id', None), right_bio_feature=in_record.get('right_bio_feature', None), right_variant=right_variant ) out_record['plot'] = plot.format( left_study=in_record['left_study_id'], left_phenotype=in_record.get('left_phenotype_id', None), left_bio_feature=in_record.get('left_bio_feature', None), left_variant=left_variant, right_study=in_record['right_study_id'], right_phenotype=in_record.get('right_phenotype_id', None), right_bio_feature=in_record.get('right_bio_feature', None), right_variant=right_variant ) # Make all paths absolute for colname in ['left_sumstats', 'left_ld', 'right_sumstats', 'right_ld', 'out', 'log', 'tmpdir', 'plot']: out_record[colname] = os.path.abspath(out_record[colname]) # Check that all input paths exist for colname in ['left_sumstats', 'left_ld', 'right_sumstats', 'right_ld']: # Get path in_path = out_record[colname] # If plink prefix, add .bed suffix if colname == 'left_ld' or colname == 'right_ld': in_path = in_path + '.bed' # Assert exists assert os.path.exists(in_path), \ "Input file not found ({}): {}".format(colname, in_path) manifest.append(out_record) # Write manifest file os.makedirs(os.path.dirname(out_manifest), exist_ok=True) with gzip.open(out_manifest, 'w') as out_h: for record in manifest: out_h.write((json.dumps(record) + '\n').encode()) return 0 if __name__ == '__main__': main() ```
{ "source": "jonaszierer/genetics-finemapping", "score": 3 }
#### File: genetics-finemapping/utils/concat_parquet.py ```python import argparse import pandas as pd def main(): # Args args = parse_args() # Load dfs = (pd.read_parquet(inf, engine='fastparquet') for inf in args.in_parquets) # Concatenate full_df = pd.concat(dfs, ignore_index=True) # Write full_df.to_parquet( args.out, engine='fastparquet', compression='snappy', row_group_offsets=500000 ) return 0 def parse_args(): ''' Load command line args ''' p = argparse.ArgumentParser() # Add input files p.add_argument('--in_parquets', metavar="<file>", help=("List of parquet files to concatenate"), type=str, nargs='+', required=True) p.add_argument('--out', metavar="<file>", help=("Concatenated parquet file"), type=str, required=True) args = p.parse_args() return args if __name__ == '__main__': main() ```
{ "source": "jonatak/simple-http-monitor", "score": 3 }
#### File: simple-http-monitor/tests/test_parser.py ```python import rfc3339 import pytest from aio.monitoring.parser import ( parse_common, LogLine, ParserCommonException ) def test_simple_log_line(): line = ( '127.0.0.1 - james [15/Dec/2019:00:2:50 +0100]' ' "GET /report HTTP/1.0" 200 12' ) log_line = parse_common(line) assert log_line == LogLine( host='127.0.0.1', rfc931='-', user='james', datetime=rfc3339.parse_datetime('2019-12-15T00:02:50+01:00'), uri='/report', method='GET', protocol='HTTP/1.0', status=200, bytes_received=12 ) def test_incorrect_log_line(): line = ( '127.0.0.1 - james [15/Dec/2019:00:2:50 +0100]' ' "GET /report HTTP/1.0" 200' ) with pytest.raises(ParserCommonException): parse_common(line) ```
{ "source": "jonatan098/cursopython", "score": 4 }
#### File: mundo 3/aula 20/exer100.py ```python from time import sleep from random import randint def sortear(): print('sorteando 5 valores para lista: ', end='') for v in range(0,5): rand = randint(0,100) num.append(rand) print(rand, end=' ', flush=True) sleep(0.5) print('PRONTO!') def somepar(): soma = 0 for v in num: if v % 2 == 0: soma += v print(f'somando os valores pares de {num} temos {soma}') #main cod num = [] sortear() somepar() ```
{ "source": "jonatan1609/AdventOfCode", "score": 4 }
#### File: 2020/day_1/code.py ```python def read_file(path: str = "input") -> str: with open(path) as file: return file.read() def part_1(): numbers = [int(x) for x in read_file().splitlines()] for n1 in numbers: for n2 in numbers: if n1 + n2 == 2020: return print("Solution for part 1 of day 1:", n1 * n2) def part_2(): numbers = [int(x) for x in read_file().splitlines()] for n1 in numbers: for n2 in numbers: for n3 in numbers: if n1 + n2 + n3 == 2020: return print("Solution for part 2 of day 1:", n1 * n2 * n3) part_1() part_2() ``` #### File: 2020/day_3/code.py ```python def read_file(path: str = "input") -> str: with open(path) as file: return file.read() def n_trees(area: list, slope: tuple, n_lines: int) -> int: trees = 0 line = column = 0 for i in range(n_lines): column += slope[0] # three right line += slope[1] # one down if len(area[line]) <= column: area[line] *= column if area[line][column] == "#": trees += 1 if line == n_lines - 1: break return trees def part_1(): area = read_file().splitlines() n_lines = len(area) trees = n_trees(area, (3, 1), n_lines) print("Solution for part 1 of day 3:", trees) def part_2(): area = read_file().splitlines() n_lines = len(area) trees = 1 for slope in ( (1, 1), (3, 1), (5, 1), (7, 1), (1, 2) ): trees *= n_trees(area, slope, n_lines) print("Solution for part 2 of day 3:", trees) part_1() part_2() ``` #### File: 2020/day_4/code.py ```python import re def read_file(path: str = "input") -> str: with open(path) as file: return file.read() def part_1(): fields = {"byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid"} content = read_file().split("\n\n") print("Solution for part 1 of day 4:", sum((set(y.split(":")[0] for y in x.split()) - {"cid"}) == fields for x in content)) def part_2(): rules = { "byr": re.compile(r"(19[2-9][0-9])|(200[0-2])"), "iyr": re.compile(r"20(1[0-9]|20)"), "eyr": re.compile(r"20(2[0-9]|30)"), "hgt": re.compile(r"((1[5-8][0-9])|(19[0-3]))cm|(([56][0-9])|(7[0-6]))in"), "hcl": re.compile(r"#[0-9a-f]{6}"), "ecl": re.compile(r"amb|blu|brn|gry|grn|hzl|oth"), "pid": re.compile(r"[0-9]{9}"), } content = read_file().split("\n\n") valid = 0 for passport in content: passport = dict(x.split(":") for x in passport.split()) if set(passport.keys()) - {"cid"} == set(rules.keys()): for field, value in passport.items(): if field == "cid": continue if not rules[field].fullmatch(value): break else: valid += 1 print("Solution for part 2 of day 4:", valid) part_1() part_2() ```
{ "source": "jonatan1609/JoLang", "score": 3 }
#### File: JoLang/helpers/shell.py ```python import platform import re from jolang.tokenizer import Tokenizer from jolang.preprocessor import preprocess from jolang.parser import Parser from jolang.parser import ast print("JoLang Shell on {}".format(platform.platform())) print("Docs: https://jolang.org") print("Type exit or quit to close the shell") class Evaluate: PATTERN = re.compile(r'(?=[A-Z])') def __init__(self, node: ast.Body = None): self.node = node self.variables = {} self.macros = {} @staticmethod def pascal_case_to_snake_case(string: str): return "_".join(x.lower() for x in Evaluate.PATTERN.split(string) if x) @staticmethod def visit_number(node: ast.Integer): return node.argument def visit_unary_add(self, node: ast.UnaryAdd): return +self._visit(node.argument) def visit_unary_subtract(self, node: ast.UnarySubtract): return -self._visit(node.argument) def visit_unary_logical_not(self, node: ast.UnaryLogicalNot): return not self._visit(node.argument) def visit_unary_tilde(self, node: ast.UnaryTilde): return ~self._visit(node.argument) def visit_name(self, v: ast.Name): var = self.variables.get(v.argument) if not var: raise NameError(f"Variable {v.argument!r} does not exist!") return var def visit_binary_node(self, node: ast.BinaryNode): left, right = self._visit(node.left), self._visit(node.right) if isinstance(node.op, ast.Multiply): return left * right if isinstance(node.op, ast.Divide): return left / right if isinstance(node.op, ast.Add): return left + right if isinstance(node.op, ast.Subtract): return left - right if isinstance(node.op, ast.Modulo): return left % right def visit_assignment(self, node: ast.Assignment): name = node.const.argument content = self._visit(node.content) self.variables[name] = content def _visit(self, node): method = 'visit_' + self.pascal_case_to_snake_case(node.__class__.__name__) method = getattr(self, method, method) if not callable(method): raise NotImplementedError(f"method {method!r} isn't implemented yet!") return method(node) @staticmethod def visit_string(node): return node.argument def visit_call(self, node: ast.Call): func = self._visit(node.const) args = self._visit(node.args) return func(*args) def visit_arguments(self, node: ast.Arguments): return [self._visit(arg) for arg in node.items] def visit(self): if self.node.statements: return self._visit(self.node.statements[0]) return '' evaluator = Evaluate() def main(code: str): stream = Tokenizer(code).tokenize() preprocessor = preprocess(stream, evaluator.macros) parser = Parser(preprocessor) evaluator.node = parser.parse() evaluator.macros.update(parser.macros) return evaluator.visit() or None try: while (command := input('JoLang >>> ')).lower() not in ('quit', 'exit'): res = main(command) if res is not None: print(res) except KeyboardInterrupt: pass ``` #### File: stdlib/builtin_types/Function.py ```python from dataclasses import dataclass, field from .object import Object from .operator import Operator, Attribute @dataclass class Function(Object): def __post_init__(self): Object.__init__(self) self._obj = self.__repr__() name: str parameters: list = field(default_factory=list) body: list = field(default_factory=list) py_bind: ... = None restype: ... = None scope: ... = None method_of: str = "" @Operator("Call", compatible=["Function"]) def call(self, *args): pass def __repr__(self): if self.method_of: return f"<Method {self.name!r} of object {self.method_of!r}>" return f"<Function {self.name!r}>" Attribute.Function = Function ``` #### File: stdlib/builtin_types/Null.py ```python from .object import Object class Null(Object): def __init__(self, *_): super().__init__() self._obj = "null" ``` #### File: stdlib/builtin_types/object.py ```python from .builtin import BuiltinType from .operator import Operator, Attribute from . import empty class Object(BuiltinType): def __init__(self): self.operators = self.__find_operators() self.attributes = self.__find_attributes() self._obj = None def __find_operators(self): return { name: op_.call for op in dir(self) if isinstance(op_ := getattr(self, op), Operator) and not op.startswith("_") for name in op_.f.names } def __find_attributes(self): return {getattr(self, name).op_name: getattr(self, name) for name in dir(self) if isinstance(getattr(self, name, ""), Attribute)} def operate(self, op_name, *args): if not (op := self.available_operator(op_name)): return empty else: return self.__do_operate(op, op_name, *args) def available_operator(self, op_name): if not self.operators: self.operators = self.__find_operators() if op := self.operators.get(op_name): return op def __do_operate(self, op, op_name, *args): return op(op_name, self, *args) def inheritance(self): return [cls.__name__ for cls in self.__class__.mro()] @Operator("GetAttr", compatible=["Object"]) def getattr(self, attr): obj = self.attributes.get(attr._obj, empty) if obj is not empty: obj.init(self) return obj.function return obj def __repr__(self): return str(self._obj) @Operator("Equals", compatible=["Object"]) def equals(self, other): return self._obj == other._obj @Operator("NotEqual", compatible=["Object"]) def not_equal(self, other): return self._obj != other._obj @Operator("UnaryLogicalNot", compatible=["Object"]) def unary_logical_not(self): return not self._obj @Operator("LogicAnd", compatible=["Object"]) def logic_and(self, other): pass @Operator("LogicOr", compatible=["Object"]) def logic_or(self, other): pass ``` #### File: jolang/parser/errors.py ```python import typing class Error: def __init__(self, p, current_tok, next_token): self.current_tok = current_tok self.next_token = next_token if not next_token: self.next_token = p.next_token = current_tok def __call__(self, message: typing.Optional[str]): if message: message += " at " else: message = "" raise SyntaxError(message + f"line {self.current_tok.line} column {self.next_token.col}") ``` #### File: jolang/parser/parser.py ```python import typing from .keywords import keywords from ..tokenizer.tokens import Identifier, Token from ..tokenizer import tokens from . import ast, errors Keyword = Token("KEYWORD") class Parser: comp_op_table = { tokens.IsEqual: ast.Equals, tokens.NotEqual: ast.NotEqual, tokens.LessEqual: ast.LessEqual, tokens.GreatEqual: ast.GreatEqual, tokens.LesserThan: ast.LesserThan, tokens.GreaterThan: ast.GreaterThan } inplace_op_table = { tokens.Equals: ast.Assign, tokens.InplaceAdd: ast.InplaceAdd, tokens.InplaceSubtract: ast.InplaceSubtract, tokens.InplaceModulo: ast.InplaceModulo, tokens.InplaceMultiply: ast.InplaceMultiply, tokens.InplaceDivide: ast.InplaceDivide, tokens.InplaceRightShift: ast.InplaceRightShift, tokens.InplaceLeftShift: ast.InplaceLeftShift, tokens.InplaceBinOr: ast.InplaceBinOr, tokens.InplaceBinAnd: ast.InplaceBinAnd, tokens.InplaceXor: ast.InplaceXor } def __init__(self, stream: typing.Iterable[Token]): self.macros: typing.Dict[typing.Tuple[str, str], typing.List[tokens.Token]] = {} self.tokens_stream = self.cast_identifier_to_keyword(stream) self._current_token: typing.Optional[Token] = None self.next_token: typing.Optional[Token] = None self.advance() @property def current_token(self): return self._current_token or self.next_token @current_token.setter def current_token(self, item): self._current_token = item def advance(self) -> None: self.current_token, self.next_token = self.next_token, next(self.tokens_stream, None) def push_token_back(self): self.tokens_stream = iter([self.current_token, self.next_token] + list(self.tokens_stream)) self.advance() def is_eof(self) -> bool: return not self.next_token def cast_identifier_to_keyword(self, stream: typing.Iterable[Token]) -> typing.Generator[Token, None, None]: for token in stream: if isinstance(token, dict): self.macros = token continue if token.name == Identifier.name and token.content in keywords: yield Keyword.set_content(token.line, token.col, token.content) else: yield token def accept(self, token: Token): if self.next_token and isinstance(self.next_token, token): self.advance() return True return False @property def throw(self): return errors.Error(self, self.current_token, self.next_token) def parse_literal(self): # Literal: Digit | String | Identifier if self.accept(tokens.Integer): # Digit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9' return ast.Integer(self.current_token.line, self.current_token.col, int(self.current_token.content)) elif self.accept(tokens.String): # String: ('"' {char} '"') | ("'" {char} "'") return ast.String(self.current_token.line, self.current_token.col, self.current_token.content) elif self.accept(tokens.Identifier): # Identifier: (LowerCase | UpperCase | '_') {Digit} {Identifier} return ast.Name(self.current_token.line, self.current_token.col, self.current_token.content) elif self.accept(tokens.Float): # Float: {Digit} '.' {Digit} return ast.Float(self.current_token.line, self.current_token.col, float(self.current_token.content)) def parse_atom(self): node = None unary_op = True # Atom: ({'~'|'-'|'+'|'!'} Atom) | '(' [Assignment] ')' | Literal | (Literal '(' [Args] ')') if self.accept(tokens.UnaryTilde): node = ast.UnaryTilde(self.current_token.line, self.current_token.col, self.parse_atom()) elif self.accept(tokens.LogicNot): node = ast.UnaryLogicalNot(self.current_token.line, self.current_token.col, self.parse_atom()) elif self.accept(tokens.Add): node = ast.UnaryAdd(self.current_token.line, self.current_token.col, self.parse_atom()) elif self.accept(tokens.Subtract): node = ast.UnarySubtract(self.current_token.line, self.current_token.col, self.parse_atom()) else: unary_op = False if not unary_op: if literal := self.parse_literal(): node = literal elif self.accept(tokens.LeftParen): if self.accept(tokens.RightParen): node = ast.Node(self.current_token.line, self.current_token.col-2) else: node = self.parse_assignment() if not self.accept(tokens.RightParen): self.throw(f"Parenthesis were not closed") elif self.accept(tokens.LeftBracket): self.push_token_back() node = self.parse_array() while not self.is_eof() and isinstance(self.next_token, (tokens.LeftParen, tokens.LeftBracket, tokens.Dot)): while self.accept(tokens.LeftParen): if self.accept(tokens.RightParen): node = ast.Call(self.current_token.line, self.current_token.col - 1, node, ast.Arguments(self.current_token.line, self.current_token.col, [])) else: line, col = self.current_token.line, self.current_token.col args = self.parse_args() if not self.accept(tokens.RightParen): self.throw(f"Parenthesis were not closed") node = ast.Call(line, col, node, args) while self.accept(tokens.LeftBracket): line, col = self.current_token.line, self.current_token.col self.push_token_back() start, stop, step = self.parse_index() node = ast.Index(line, col, start, stop, step, node) while self.accept(tokens.Dot): line, col = self.current_token.line, self.current_token.col if not self.accept(tokens.Identifier): self.throw("SyntaxError") node = ast.Attribute(line, col, node, ast.Name(self.current_token.line, self.current_token.col, self.current_token.content)) if unary_op and not node.argument: self.current_token.col += 1 self.throw(None) return node def parse_comp_op(self): # CompOp: '==' | '!=' | '<=' | '>=' | '<' | '>' for i, l in ( (tokens.IsEqual, 2), (tokens.NotEqual, 2), (tokens.LessEqual, 2), (tokens.GreatEqual, 2), (tokens.LesserThan, 1), (tokens.GreaterThan, 1), ): if self.accept(i): return self.comp_op_table[i], l def parse_comp(self): # CompExpr: BinaryOrExpr {CompOp BinaryOrExpr} node = self.parse_binary_or() while op := self.parse_comp_op(): node = ast.Compare(self.current_token.line, self.current_token.col, node, op[0](self.current_token.line, self.current_token.col), self.parse_binary_or()) if not node.right or not node.left: self.current_token.col += op[1] self.throw(None) return node def parse_binary_or(self): # BinaryOrExpr: BinaryXorExpr {'||' BinaryXorExpr} node = self.parse_binary_xor() while self.accept(tokens.BinOr): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.Or(self.current_token.line, self.current_token.col), self.parse_binary_xor()) if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_binary_xor(self): # BinaryXorExpr: BinaryAndExpr {'^' BinaryAndExpr} node = self.parse_binary_and() while self.accept(tokens.Xor): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.Xor(self.current_token.line, self.current_token.col), self.parse_binary_and()) if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_binary_and(self): # BinaryAndExpr: ShiftExpr {'&&' ShiftExpr} node = self.parse_shift_expr() while self.accept(tokens.BinAnd): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.And(self.current_token.line, self.current_token.col), self.parse_shift_expr()) if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_shift_expr(self): # ShiftExpr: Expr {('<<' | '>>') Expr} node = self.parse_expr() while not self.is_eof(): if self.accept(tokens.RightShift): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.RightShift(self.current_token.line, self.current_token.col), self.parse_expr()) elif self.accept(tokens.LeftShift): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.RightShift(self.current_token.line, self.current_token.col), self.parse_expr()) else: break if not node.right or not node.left: self.current_token.col += 2 self.throw(None) return node def parse_return(self, *_): # 'return' Assignment return ast.Return(line=self.current_token.line, column=self.current_token.col, argument=self.parse_assignment()) def parse_logical_and(self): # LogicalAndExpr: CompExpr {'||' CompExpr} node = self.parse_comp() while self.accept(tokens.LogicAnd): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.LogicAnd(self.current_token.line, self.current_token.col), self.parse_comp()) if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_logical_or(self): # LogicalOrExpr: LogicalAndExpr {'||' LogicalAndExpr} node = self.parse_logical_and() while self.accept(tokens.LogicOr): node = ast.BinaryNode(self.current_token.line, self.current_token.col, node, ast.LogicOr(self.current_token.line, self.current_token.col), self.parse_logical_and()) if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_args(self): # Args: Atom {',' Atom} args = [self.parse_assignment()] while self.accept(tokens.Comma): args.append(self.parse_assignment()) return ast.Arguments(self.current_token.line, self.current_token.col, args) def parse_term(self): # Term: Atom {'*'|'/'|'%' Atom} node = self.parse_atom() while not self.is_eof(): if self.accept(tokens.Multiply): node = ast.BinaryNode(line=self.current_token.line, column=self.current_token.col,left=node, op=ast.Multiply(self.current_token.line, column=self.current_token.col), right=self.parse_atom()) elif self.accept(tokens.Divide): node = ast.BinaryNode(line=self.current_token.line, column=self.current_token.col, left=node, op=ast.Divide(self.current_token.line, column=self.current_token.col), right=self.parse_atom()) elif self.accept(tokens.Modulo): node = ast.BinaryNode(line=self.current_token.line, column=self.current_token.col,left=node, op=ast.Modulo(self.current_token.line, column=self.current_token.col), right=self.parse_atom()) else: break if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_expr(self): # Expr: Term {'+'|'-' Term} node = self.parse_term() while not self.is_eof(): if self.accept(tokens.Add): node = ast.BinaryNode(self.current_token.line, self.current_token.col, left=node, op=ast.Add(self.current_token.line, self.current_token.col, ), right=self.parse_term()) elif self.accept(tokens.Subtract): node = ast.BinaryNode(self.current_token.line, self.current_token.col, left=node, op=ast.Subtract(self.current_token.line, self.current_token.col, ), right=self.parse_term()) else: break if not node.right or not node.left: self.current_token.col += 1 self.throw(None) return node def parse_assignment(self): # Assignment: {Identifier AssignOp} LogicalOrExpr asses = [] while self.accept(tokens.Identifier): name = ast.Name(self.current_token.line, self.current_token.col, self.current_token.content) for i, l in ( (tokens.Equals, 1), (tokens.InplaceAdd, 2), (tokens.InplaceSubtract, 2), (tokens.InplaceModulo, 2), (tokens.InplaceMultiply, 2), (tokens.InplaceDivide, 2), (tokens.InplaceRightShift, 2), (tokens.InplaceLeftShift, 2), (tokens.InplaceBinOr, 2), (tokens.InplaceBinAnd, 2), (tokens.InplaceXor, 2) ): if self.accept(i): asses.append(self.inplace_op_table[i](self.current_token.line, self.current_token.col)) asses.append(name) break else: if isinstance(self.current_token, tokens.Identifier): self.push_token_back() break if not asses: self.push_token_back() break line = self.current_token.line node = self.parse_logical_or() while asses: if not node: self.current_token.col += l self.throw(None) node = ast.Assignment(line, self.current_token.col, asses.pop(), asses.pop(), node) return node def parse_params(self): # Params: Identifier {',' Identifier} params = ast.Arguments(self.current_token.line, self.current_token.col, []) while self.accept(tokens.Identifier): params.items.append(ast.Name(self.current_token.line, self.current_token.col, argument=self.current_token.content)) if not self.accept(tokens.Comma): break return params def parse_func(self, keywords): for i in ('continue', 'break'): if i in keywords: del keywords[i] # Func: 'func' Identifier '(' [Params] ')' '{' FuncBlock '}' if self.accept(tokens.Identifier): name = ast.Name(self.current_token.line, self.current_token.col, argument=self.current_token.content) params = ast.Arguments(self.current_token.line, self.current_token.col, []) if self.accept(tokens.LeftParen): params = self.parse_params() if not self.accept(tokens.RightParen): self.throw(f"Expected ')', got {self.next_token.name}") if self.accept(tokens.LeftBrace): statements = self.parse_block(keywords={ **keywords, "return": self.parse_return }) if not self.accept(tokens.RightBrace): self.throw(f"Expected '}}', got {self.next_token.name}") else: self.throw(f"Expected '{{', got {self.next_token.name}") else: self.throw(f"Expected '(', got {self.next_token.name}") return ast.Function(self.current_token.line, self.current_token.col, name=name, params=params, body=statements) else: self.throw(f"Expected an identifier, got {self.next_token.name}") def parse_block(self, keywords=None): # Block: {Assignment | Func | IfStmt | WhileLoop | ForLoop | NEWLINE} statements = [] if not keywords: keywords = {} keywords = { "if": self.parse_if_stmt, "func": self.parse_func, "for": self.parse_for_loop, "while": self.parse_while_loop, **keywords } while not self.is_eof(): while self.accept(tokens.Newline): pass if self.accept(Keyword): if f := keywords.get(self.current_token.content): statements.append(f(keywords)) else: self.throw("Did not expect a keyword.") elif assignment := self.parse_assignment(): statements.append(assignment) elif isinstance((self.next_token or self.current_token), tokens.RightBrace): break else: break if (not isinstance(self.current_token, tokens.RightBrace)) and self.next_token and (not isinstance(self.next_token, tokens.RightBrace)) and (not self.accept(tokens.Newline)): if not isinstance(self.current_token, tokens.Newline): self.throw(f"Expected a newline, got {self.next_token}") return statements def parse_if_stmt(self, keywords): # IfStmt: 'if' '(' Assignment ')' '{' Block '}' else_block = None if self.accept(tokens.LeftParen): stmt = self.parse_assignment() if not stmt: self.throw(f"Expected expression") if not self.accept(tokens.RightParen): self.throw(f"Expected ')', got {self.next_token.name}") while self.accept(tokens.Newline): pass if not self.accept(tokens.LeftBrace): self.throw(f"Expected '{{', got {self.next_token.name}") block = self.parse_block(keywords) if not self.accept(tokens.RightBrace): self.throw(f"Expected '}}', got {self.next_token.name}") else: self.throw(f"Expected '(', got {self.next_token.name}") elifs = [] while self.accept(tokens.Newline): pass while not self.is_eof() and self.next_token.content == "elif": # ElifStmt: 'elif' '(' Assignment ')' '{' Block '}' self.advance() elifs.append(self.parse_if_stmt(keywords)) while self.accept(tokens.Newline): pass if not self.is_eof() and self.next_token.content == "else": # ElseStmt: 'else' '{' Block '}' self.advance() if not self.accept(tokens.LeftBrace): self.throw(f"Expected '{{', got {self.next_token.name}") else_block = self.parse_block() if not self.accept(tokens.RightBrace): self.throw(f"Expected '}}', got {self.next_token.name}") return ast.If(self.current_token.line, self.current_token.col, condition=stmt, body=block, elifs=elifs, else_block=else_block) def parse_while_loop(self, keywords): # WhileLoop: 'while' '(' Assignment ')' '{' Block '}' if self.accept(tokens.LeftParen): stmt = self.parse_assignment() if not stmt: self.throw(f"Expected expression") if not self.accept(tokens.RightParen): self.throw(f"Expected ')', got {self.next_token.name}") if not self.accept(tokens.LeftBrace): self.throw(f"Expected '{{', got {self.next_token.name}") block = self.parse_block(keywords={ **keywords, "continue": lambda *_: ast.Continue(line=self.current_token.line, column=self.current_token.col), "break": lambda *_: ast.Break(line=self.current_token.line, column=self.current_token.col) }) if not self.accept(tokens.RightBrace): self.throw(f"Expected '}}', got {self.next_token.name}") else: self.throw(f"Expected '(', got {self.next_token.name}") return ast.While(self.current_token.line, self.current_token.col, stmt, block) def parse_for_loop(self, keywords): # ForLoop: 'for' '(' [Assignment] ';' [Assignment] ';' [Assignment] ')' '{' Block '}' parts = [] if self.accept(tokens.LeftParen): for i in range(2): # three parts in a for loop if self.accept(tokens.Semicolon): parts.append(ast.Node(self.current_token.line, self.current_token.col, )) else: parts.append(self.parse_assignment()) if not self.accept(tokens.Semicolon): self.throw(f"Expected ';', got {self.next_token.name}") parts.append(self.parse_assignment() or ast.Node(self.current_token.line, self.current_token.col)) if not self.accept(tokens.RightParen): self.throw(f"Expected ')', got {self.next_token.name}") if not self.accept(tokens.LeftBrace): self.throw(f"Expected '{{', got {self.next_token.name}") block = self.parse_block(keywords={ **keywords, "continue": lambda *_: ast.Continue(line=self.current_token.line, column=self.current_token.col), "break": lambda *_: ast.Break(line=self.current_token.line, column=self.current_token.col) }) if not self.accept(tokens.RightBrace): self.throw(f"Expected '}}', got {self.next_token.name}") else: self.throw(f"Expected '(', got {self.next_token.name}") return ast.For(self.current_token.line, self.current_token.col, parts, block) def parse_array(self): # Array: '[' Assignment {',' Assignment} ']' if self.accept(tokens.LeftBracket): line = self.current_token.line col = self.current_token.col if self.accept(tokens.RightBracket): return ast.Array(line=line, column=col, items=[]) if isinstance(self.next_token, tokens.Comma): self.throw("Syntax Error") items = [self.parse_assignment()] while self.accept(tokens.Comma): items.append(self.parse_assignment()) if isinstance(self.current_token, tokens.Comma): items.pop() if not self.accept(tokens.RightBracket): self.throw("Syntax Error") return ast.Array(line=line, column=col, items=items) def parse_index(self): # Index = '[' Assignment [':' Assignment [':' Assignment]] ']' start = stop = step = None if self.accept(tokens.LeftBracket): if self.accept(tokens.RightBracket): self.throw("Syntax Error") start = self.parse_assignment() if not start: start = ast.Node(self.current_token.line, self.current_token.col) if not self.accept(tokens.RightBracket): if not self.accept(tokens.Colon): self.throw("Syntax Error") stop = self.parse_assignment() if not stop: stop = ast.Node(self.current_token.line, self.current_token.col) if not self.accept(tokens.RightBracket): if not self.accept(tokens.Colon): self.throw("Syntax Error") step = self.parse_assignment() if not step: step = ast.Node(self.current_token.line, self.current_token.col) if not self.accept(tokens.RightBracket): self.throw("Syntax Error") return start, stop, step def parse(self): body = ast.Body(self.next_token.line, self.next_token.col, []) while not self.is_eof(): node = self.parse_block() if self.next_token and not self.accept(tokens.Newline): self.throw(f"got {self.next_token.name}") body.statements = node return body ``` #### File: JoLang/tests/test_preprocessor.py ```python from unittest import TestCase from jolang.preprocessor import preprocess from jolang.tokenizer import Tokenizer, tokens class TestPreprocessor(TestCase): tests_pass = { "%macro a": [{('IDENTIFIER', 'a'): []}], "%macro a 1": [{('IDENTIFIER', 'a'): [tokens.Integer]}], "%macro a 2 + a": [{('IDENTIFIER', 'a'): [tokens.Integer, tokens.Add, tokens.Identifier]}] } tests_fail = ["%", "%macro 0", "%macro", "%macro", "%macro ~ []"] def test_pass(self): for test, expect in self.tests_pass.items(): p = list(preprocess(Tokenizer(test).tokenize())) self.assertEqual(p[0].keys(), expect[0].keys()) pv, = list(p[0].values()) ev, = list(expect[0].values()) for i in range(len(ev)): self.assertIsInstance(pv[i], ev[i]) def test_fail(self): for test in self.tests_fail: self.assertRaises((AssertionError, SyntaxError), lambda: list(preprocess(Tokenizer(test).tokenize()))) ``` #### File: JoLang/tests/test_tokenizer.py ```python from unittest import TestCase from jolang.tokenizer import Tokenizer, tokens class TestTokenizer(TestCase): tests_pass = { "+": [tokens.Add], "-": [tokens.Subtract], ">>": [tokens.RightShift], ">>=": [tokens.InplaceRightShift], "|": [tokens.BinOr], "||": [tokens.LogicOr], "abc a0 01": [tokens.Identifier, tokens.Identifier, tokens.Integer], "0x222 0o222 2.2": [tokens.Integer, tokens.Integer, tokens.Float], "func a(){return a % 2 - 1 == 2}": [tokens.Identifier, tokens.Identifier, tokens.LeftParen, tokens.RightParen, tokens.LeftBrace, tokens.Identifier, tokens.Identifier, tokens.Modulo, tokens.Integer, tokens.Subtract, tokens.Integer, tokens.IsEqual, tokens.Integer, tokens.RightBrace], "$ abc": [], "a $abc \n a": [tokens.Identifier, tokens.Identifier] } tests_fail = ["0a", "0.a", "0o8", "@"] def test_tokenizer_pass(self): for test, expect in self.tests_pass.items(): t = list(Tokenizer(test).tokenize()) self.assertTrue(len(t) == len(expect), f"Length of tokens isn't {len(expect)}") for i in range(len(expect)): self.assertIsInstance(t[i], expect[i]) def test_tokenizer_fail(self): for test in self.tests_fail: self.assertRaises(SyntaxError, lambda: list(Tokenizer(test).tokenize())) ```
{ "source": "jonatan1609/TrashGuy", "score": 2 }
#### File: TrashGuy/trashguy/__main__.py ```python import sys from .trashguy import TrashGuy def main(trash_items): print(TrashGuy(trash_items)) DEFAULT_INPUT = '\U0001F353\U0001F34A\U0001F345' # 'Temporary' feature to force single character trash items CMD_LINE = tuple([x for x in sys.argv[1:] if x != ' ']) if CMD_LINE: main(CMD_LINE) else: main(DEFAULT_INPUT) ``` #### File: TrashGuy/trashguy/_tgpy_engine.py ```python from typing import Tuple from .lut import _LUT as LUT import math # Defined for 'performance' reasons sqrt = math.sqrt class FrameEngine: def __init__(self, trash_items: Tuple[str, ...], glyph_can: str, glyph_left: str, glyph_right: str, spacer: str): self.trash_items = trash_items self.glyph_can = glyph_can self.glyph_left = glyph_left self.glyph_right = glyph_right self.spacer = spacer # Length of the input items self.t_len = len(trash_items) # Calculating frame group sizes and total animation frame count # Minimum frame group size, i.e. 6 frames long self.min_fg_size = 6 # Maximum frame group size, i.e. the most of amount of frames needed # for throwing away just the last item from beginning to end self.max_fg_size_index = self.min_fg_size + (self.t_len * 2) # Calculate sum of sizes to get the total animation frame count self.total_frame_count = (self.min_fg_size + self.max_fg_size_index) // 2 * self.t_len def convert_linear_index(self, index: int) -> Tuple[int, bool, int]: # Map the given index to variables needed for the specific frame try: # Attempt to look up the index first in the table item_index, group_length = LUT[index] except IndexError: # Alternate method optimized for higher indices # Based on submissions by <NAME> (<EMAIL>) item_index = int(sqrt(10 + index)) - 3 group_length = item_index * 2 + 7 # Median of the frame group size to calculate the apogee of guy # where guy hits the item and turns around # (similar to Math.ceil of the median float result) fg_size_median = group_length // 2 relative_index = index # Integers are immutable # Faster special case for the first frame group if group_length == 7: # Calculate the forward direction with index-to-apogee relation forward = index < fg_size_median # Subsequent frame groups require compensation of previous frame group sums else: # These equations were generated using AI and algorithms all_sum = self.min_fg_size + group_length # The sum of frames from all previous frame groups previous_frames_sum = all_sum // 2 * item_index # The current frame index minus the sum of frames from all previous frame groups # to calculate for our relative position within the current frame group relative_index = index - previous_frames_sum # Calculate the forward direction with relative-index-to-apogee relation forward = relative_index < fg_size_median # Define where the position should be based on forwards or backwards direction if forward: position = relative_index + 2 else: position = group_length - relative_index - 1 # Return the final variables return position, forward, item_index def get_frame(self, index: int) -> str: # input should be sanitized already but for good measure we # make sure index is a positive integer over 0 and under max frame len san_index = int(index) if san_index < 0 or san_index >= self.total_frame_count: raise ValueError('index out of range') position, forward, item_index = self.convert_linear_index(san_index) # Frame Generator # Incrementally removes thrown items from the trash pile trunc_items = self.trash_items[item_index:] # The items which have been removed remainder_items = self.trash_items[:item_index] # Length of the missing items missing_items_len = len(''.join(remainder_items)) # Calculate the padding based on missing items to keep truncated trash # in the same position as things get thrown away # (Only applies to points before reaching the trash can with the item) padding = [self.spacer] * (missing_items_len + 3) # Create a static canvas while each item disappears canvas = [self.glyph_can, *padding, *trunc_items] # The last item's index that was picked to be trashed last_index = len(canvas) - len(trunc_items) # Start sequence, forward motion, going right (> ^_^)> if forward: if position < last_index: # Start from second space after the trash can canvas[position] = self.glyph_right # Snapshot the frames of the animation going right return ''.join(canvas) # End of forward motion, look left with item # Set item position in front of trash guy canvas[position - 1] = canvas[last_index] # Set position of trash guy where item was canvas[position] = self.glyph_left # Snapshot frame looking across at trash can return ''.join(canvas) # Reverse motion, going left <(^_^ <) else: # Going left with item towards trash can if position > 0: canvas[position] = self.glyph_left # Place item in front while not yet at the trash can if canvas[position - 1] != self.glyph_can: canvas[position - 1] = canvas[last_index] # Temporarily remove item from pile while holding it canvas[last_index] = self.spacer else: # If trash can reached, replace spacing of missing item if len(self.spacer) == 1: last_item_len = len(canvas[last_index]) canvas = (canvas[:last_index] + [self.spacer] * last_item_len + canvas[last_index + 1:]) else: # Unknown spacer size, use as directed canvas[last_index] = self.spacer # Snapshot the frames of the animation going left return ''.join(canvas) else: # End of reverse motion, look right for one frame canvas[position + 1] = self.glyph_right # Temporarily remove item from canvas for last frame also if len(self.spacer) == 1: last_item_len = len(canvas[last_index]) canvas = (canvas[:last_index] + [self.spacer] * last_item_len + canvas[last_index + 1:]) else: # Unknown spacer size, use as directed canvas[last_index] = self.spacer # Snapshot the frame looking right return ''.join(canvas) ```
{ "source": "jonatan5524/doodle-classifier", "score": 2 }
#### File: jonatan5524/doodle-classifier/app.py ```python from flask import Flask from flask import render_template from flask_cors import CORS, cross_origin from flask import request from model import Model app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' model = Model() @app.route('/') def index(): """ Index route of the server Returns: Text: The index.html file """ return render_template('index.html') @app.route('/load') @cross_origin() def load(): """ Loads the model from the last checkpoint Returns: Str: Loaded approval """ model.load() return "loaded" @app.route('/capture', methods=['POST']) @cross_origin() def capture(): """ Predict the current drawing of the user Returns: Str: The model prediction """ data = request.stream.read() data = data.decode("utf-8").split(',') return model.predict(data) if __name__ == "__main__": app.run() ```
{ "source": "jonatan5524/ftp-client", "score": 3 }
#### File: jonatan5524/ftp-client/ftpclient.py ```python import ftplib import argparse from ftpshell import ftpShell parser = argparse.ArgumentParser() parser.add_argument('host',help='host name or ip address of the ftp server') parser.add_argument('-p','--port',help='port number to onnect to, defualt port nubmer: 21',default=21,type=int) parser.add_argument('-u','--username',help='username to the ftp server, defualt username: anonymous',default='anonymous') parser.add_argument('--password','--pass',help='password to the ftp server, defualt password: anonymous',default='anonymous') args = parser.parse_args() class ftpClient: def __init__(self, host, port, username, password): self.host = host self.password = password self.username = username self.port = port self.ftp = ftplib.FTP() self.shell = ftpShell(self.ftp) def connect(self): try: print(f'connecting to {self.host} : {self.port}\nusername and password {self.username} : {self.password}') self.ftp.connect(host= self.host, port = self.port) self.ftp.login(user = self.username, passwd = self.password) print('login successful') print(self.ftp.getwelcome()) except ConnectionRefusedError: print('connection to host refused, check if the server is up') except TimeoutError: print('timeout Error check if the ftp server is up') except ftplib.error_perm as err: print(err) def start_shell(self): self.shell.prompt = 'FTP>>' self.shell.cmdloop('Starting prompt...') def close(self): self.ftp.quit() if __name__ == "__main__": client = ftpClient(args.host, args.port, args.username, args.password) client.connect() client.start_shell() ```
{ "source": "jonatan5524/own-git", "score": 2 }
#### File: own-git/ugit/base.py ```python from genericpath import exists import itertools import operator import os import string from typing import Deque, Dict, Iterator, List, Tuple from collections import deque, namedtuple from . import data from . import diff def init(): data.init() data.update_ref("HEAD", data.RefValue( symbolic=True, value=os.path.join("refs", "heads", "master"))) def create_branch(name: str, object_id: str): data.update_ref(os.path.join("refs", "heads", name), data.RefValue(symbolic=False, value=object_id)) def reset(object_id: str): data.update_ref("HEAD", data.RefValue(symbolic=False, value=object_id)) def create_tag(name: str, object_id: str): data.update_ref(os.path.join("refs", "tags", name), data.RefValue(symbolic=False, value=object_id)) def checkout(name: str): object_id = get_object_id(name) commit = get_commit(object_id) read_tree(commit.tree, update_working=True) if is_branch(name): head = data.RefValue( symbolic=True, value=os.path.join("refs", "heads", name)) else: head = data.RefValue(symbolic=False, value=object_id) data.update_ref("HEAD", head, deref=False) def get_branch_name(): head = data.get_ref("HEAD", deref=False) if not head.symbolic: return None head = head.value assert head.startswith(os.path.join("refs", "heads")) return os.path.relpath(head, os.path.join("refs", "heads")) Commit = namedtuple("Commit", ["tree", "parents", "message"]) def iter_branch_names(): for refname, _ in data.iter_refs(os.path.join("refs", "heads")): yield os.path.relpath(refname, os.path.join("refs", "heads")) def is_branch(branch: str) -> bool: return data.get_ref(os.path.join("refs", "heads", branch)).value is not None def get_commit(object_id: str) -> Commit: parents = [] commit = data.get_object(object_id, 'commit').decode() lines = iter(commit.splitlines()) for line in itertools.takewhile(operator.truth, lines): key, value = line.split(' ', 1) if key == 'tree': tree = value elif key == 'parent': parents.append(value) else: assert False, f'Unknown field {key}' message = '\n'.join(lines) return Commit(tree=tree, parents=parents, message=message) def commit(massage: str) -> str: commit = f"tree {write_tree()}\n" head = data.get_ref("HEAD").value if head: commit += f"parent {head}\n" merge_head = data.get_ref("MERGE_HEAD").value if merge_head: commit += f"parent {merge_head}\n" data.delete_ref("MERGE_HEAD", defer=False) commit += "\n" commit += f"{massage}\n" object_id = data.hash_object(commit.encode(), "commit") data.update_ref("HEAD", data.RefValue(symbolic=False, value=object_id)) return object_id def write_tree() -> str: index_as_tree = {} with data.get_index() as index: for path, object_id in index.items(): dirpath, filename = os.path.split(path) current = index_as_tree for direname in dirpath: current = current.setdefault(direname, {}) current[filename] = object_id def write_tree_recursive(tree_dict: Dict[str, str]) -> str: entries = [] for name, value in tree_dict.items(): if type(value) is dict: type_ = 'tree' object_id = write_tree_recursive(value) else: type_ = 'blob' object_id = value entries.append((name, object_id, type_)) tree = ''.join(f'{type_} {object_id} {name}\n' for name, object_id, type_ in sorted(entries)) return data.hash_object(tree.encode(), "tree") return write_tree_recursive(index_as_tree) def is_ignored(path: str) -> bool: return ".ugit" in path.split("/") def read_tree(tree_object_id: str, update_working: bool = False): with data.get_index() as index: index.clear() index.update(get_tree(tree_object_id)) if update_working: _checkout_index(index) def read_tree_merged(tree_base: str, tree_head: str, tree_other: str, update_working: bool = False): with data.get_index() as index: index.clear() index.update(diff.merge_trees( get_tree(tree_base), get_tree(tree_head), get_tree(tree_other) )) if update_working: _checkout_index(index) def _checkout_index(index): _empty_current_directory() for path, object_id in index.items(): os.makedirs(os.path.dirname(os.path.join("./", path)), exist_ok=True) with open(path, "wb") as f: f.write(data.get_object(object_id, "blob")) def get_index_tree(): with data.get_index() as index: return index def _empty_current_directory(): for root, dirnames, filenames in os.walk(".", topdown=False): for filename in filenames: path = os.path.relpath(os.path.join(root, filename)) if is_ignored(path) or not os.path.isfile(path): continue os.remove(path) for dirname in dirnames: path = os.path.relpath(os.path.join(root, dirname)) if is_ignored(path): continue try: os.rmdir(path) except (FileNotFoundError, OSError): pass def get_tree(object_id: str, base_path: str = "") -> Dict[str, str]: result = {} for fmt, object_id, name in _iter_tree_entries(object_id): assert "/" not in name assert name not in ("..", ".") path = base_path + name if fmt == "blob": result[path] = object_id elif fmt == "tree": result.update(get_tree(object_id, f"{path}/")) else: assert False, f"Uknown tree entry {fmt}" return result def get_object_id(name: str) -> str: if name == "@": name = "HEAD" ref_to_try = [ name, os.path.join("refs", name), os.path.join("refs", "tags", name), os.path.join("refs", "heads", name), ] for ref in ref_to_try: if data.get_ref(ref, deref=False).value: return data.get_ref(ref).value is_hex = all(c in string.hexdigits for c in name) if len(name) == 40 and is_hex: return name assert False, f"Unkown name {name}" def _iter_tree_entries(object_id: str) -> Iterator[Tuple[str, str, str]]: if not object_id: return tree = data.get_object(object_id, "tree") for entry in tree.decode().splitlines(): fmt, object_id, name = entry.split(" ", 2) yield fmt, object_id, name def iter_commits_and_parents(object_ids: Deque[str]) -> Iterator[str]: object_ids = deque(object_ids) visited = set() while object_ids: object_id = object_ids.popleft() if not object_id or object_id in visited: continue visited.add(object_id) yield object_id commit = get_commit(object_id) object_ids.extendleft(commit.parents[:1]) object_ids.extend(commit.parents[1:]) def iter_objects_in_commits(object_ids: List[str]) -> Iterator[str]: visited = set() def iter_object_in_tree(object_id: str): visited.add(object_id) yield object_id for type_, object_id, _ in _iter_tree_entries(object_id): if object_id not in visited: if type_ == "tree": yield from iter_object_in_tree(object_id) else: visited.add(object_id) yield object_id for object_id in iter_commits_and_parents(object_ids): yield object_id commit = get_commit(object_id) if commit.tree not in visited: yield from iter_object_in_tree(commit.tree) def get_working_tree() -> Dict[str, str]: result = {} for root, _, filenames in os.walk("."): for filename in filenames: path = os.path.relpath(os.path.join(root, filename)) if is_ignored(path) or not os.path.isfile(path): continue with open(path, "rb") as f: result[path] = data.hash_object(f.read()) return result def merge(other: str): head = data.get_ref("HEAD").value assert head merge_base = get_merge_base(other, head) commit_other = get_commit(other) if merge_base == head: read_tree(commit_other.tree, update_working=True) data.update_ref('HEAD', data.RefValue(symbolic=False, value=other)) print('Fast-forward merge, no need to commit') return data.update_ref("MERGE_HEAD", data.RefValue(symbolic=False, value=other)) commit_base = get_commit(merge_base) commit_head = get_commit(head) read_tree_merged(commit_base.tree, commit_head.tree, commit_other.tree, update_working=True) print("Merged in working tree\nPlease commit") def get_merge_base(object_id: str, second_object_id: str) -> str: parents = set(iter_commits_and_parents({object_id})) for oid in iter_commits_and_parents({second_object_id}): if oid in parents: return oid def is_ancestor_of(commit: str, maybe_ancestor: str) -> bool: return maybe_ancestor in iter_commits_and_parents({commit}) def add(filenames: List[str]): def add_file(filename: str): filename = os.path.relpath(filename) with open(filename, 'rb') as f: object_id = data.hash_object(f.read()) index[filename] = object_id def add_directory(dirname: str): for root, _, filename in os.walk(dirname): for filename in filenames: path = os.path.relpath(os.path.join(root, filename)) if is_ignored(path) or not os.path.isfile(path): continue add_file(path) with data.get_index() as index: for name in filenames: if os.path.isfile(name): add_file(name) elif os.path.isdir(name): add_directory(name) ``` #### File: own-git/ugit/data.py ```python from contextlib import contextmanager import hashlib import json import os import shutil from typing import Iterator, Tuple import zlib from collections import namedtuple GIT_DIR = None @contextmanager def change_git_dir(new_dir): global GIT_DIR old_dir = GIT_DIR GIT_DIR = f'{new_dir}/.ugit' yield GIT_DIR = old_dir def init(): os.makedirs(GIT_DIR) os.makedirs(os.path.join(GIT_DIR, "objects")) def hash_object(raw_file: bytes, fmt: str = "blob") -> str: obj = fmt.encode() + b' ' + str(len(raw_file)).encode() + b'\x00' + raw_file object_id = hashlib.sha1(obj).hexdigest() path = os.path.join(GIT_DIR, "objects", object_id[0:2], object_id[2:]) os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "wb") as f: f.write(zlib.compress(obj)) return object_id def get_object(object_id: str, expected: str = "blob") -> bytes: with open(os.path.join(GIT_DIR, "objects", object_id[0:2], object_id[2:]), "rb") as f: obj = zlib.decompress(f.read()) space_index = obj.find(b' ') fmt = obj[0:space_index].decode("ascii") null_index = obj.find(b'\x00', space_index) size = int(obj[space_index:null_index].decode("ascii")) content = obj[null_index + 1:] assert size == len(content), f"bad length for object: {object_id}" if expected is not None: assert fmt == expected, f"Expected {expected}, got {fmt}" return content RefValue = namedtuple("RefValue", ["symbolic", "value"]) def update_ref(ref: str, refValue: RefValue, deref: bool = True): ref = _get_ref_internal(ref, deref)[0] assert refValue.value if refValue.symbolic: value = f"ref: {refValue.value}" else: value = refValue.value ref_path = os.path.join(GIT_DIR, ref) os.makedirs(os.path.dirname(ref_path), exist_ok=True) with open(ref_path, "w") as f: f.write(value) def get_ref(ref: str, deref=True) -> RefValue: return _get_ref_internal(ref, deref)[1] def _get_ref_internal(ref: str, deref) -> Tuple[str, RefValue]: ref_path = os.path.join(GIT_DIR, ref) value = None if os.path.isfile(ref_path): with open(ref_path, "r") as f: value = f.read().strip() symbolic = bool(value) and value.startswith("ref:") if symbolic: value = value.split(":", 1)[1].strip() if deref: return _get_ref_internal(value, deref) return ref, RefValue(symbolic=symbolic, value=value) def iter_refs(prefix: str = "", deref: bool = True) -> Iterator[Tuple[str, RefValue]]: refs = ["HEAD", "MERGE_HEAD"] for root, _, filenames in os.walk(os.path.join(GIT_DIR, "refs")): root = os.path.relpath(root, GIT_DIR) refs.extend(os.path.join(root, name) for name in filenames) for refname in refs: if not refname.startswith(prefix): continue ref = get_ref(refname, deref=deref) if ref.value: yield refname, ref def delete_ref(ref: str, defer=True): ref = _get_ref_internal(ref, defer)[0] os.remove(os.path.join(GIT_DIR, ref)) def object_exists(object_id: str) -> bool: return os.path.isfile(os.path.join(GIT_DIR, "objects", object_id)) def fetch_object_if_missing(object_id: str, remote_git_dir: str): if object_exists(object_id): return remote_git_dir += "/.ugit" os.makedirs(os.path.join(GIT_DIR, "objects", object_id[:2]), exist_ok=True) shutil.copy(os.path.join(remote_git_dir, "objects", object_id[:2], object_id[2:]), os.path.join(GIT_DIR, "objects", object_id[:2], object_id[2:])) def push_object(object_id: str, remote_git_dir: str): remote_git_dir += "/.ugit" os.makedirs(os.path.join(remote_git_dir, "objects", object_id[:2]), exist_ok=True) shutil.copy(os.path.join(GIT_DIR, "objects", object_id[:2], object_id[2:]), os.path.join(remote_git_dir, "objects", object_id[:2], object_id[2:])) @contextmanager def get_index(): index = {} if os.path.isfile(os.path.join(GIT_DIR, "index")): with open(os.path.join(GIT_DIR, "index")) as f: index = json.load(f) yield index with open(os.path.join(GIT_DIR, "index"), "w") as f: json.dump(index, f) ```
{ "source": "Jonatan966/SODA", "score": 3 }
#### File: Modulos/Criptografia/Scrt_Fence.py ```python import sys sys.path.append('Nucleo/') from Nucleo.smain_Variaveis import * class sMain_Fence: def __railfence_id(self, tam, key): ''' (Railfence, int, int) -> list of int Retorna um lista de inteiros com a posicao da linha que o caracter do texto ira ocupar, variando de 0 ate key - 1. ''' j = 0 inc = 0 idx = [] for i in range(tam): if j == key - 1: inc = -1 elif j == 0: inc = 1 idx.append(j) j += inc return idx def encrypt(self, texto, key): ''' (Railfence, str, int) -> str Retorna o texto plano cifrado na cifra rail fence com a chave key. ''' texto = texto.replace(' ', '') tam = len(texto) idx = self.__railfence_id(tam, key) cifrado = '' for i in range(key): for z in range(tam): if idx[z] == i: cifrado += texto[z] return cifrado.upper() def decrypt(self, texto, key): ''' (Railfence, str, int) -> str Retorna o texto plano para um texto cifrado com a cifra rail fence com a chave key. ''' texto = texto.replace(' ', '') tam = len(texto) idx = self.__railfence_id(tam, key) idx_sorted = sorted(idx) texto_plano = '' for i in range(tam): for j in range(tam): if idx[i] == idx_sorted[j] and idx[i] > -1: texto_plano += texto[j] idx[i] = -1 idx_sorted[j] = -1 return texto_plano.lower() def crt_FENCE(): sMain_Avisos().Welcome('FENCE') while True: option = sMain_Saidas().Prompt('CRIPTOGRAFIA', 'FENCE') if option == 'CIFRAR' or option == '0': txt = sMain_Avisos().Resposta('Digite o texto a ser cifrado', 'STRING') senha = sMain_Avisos().Resposta(f'Digite a senha (SOMENTE NÚMEROS) (Tamanho da senha: {len(txt)})', 'INT') if senha >= len(txt) or senha <= 1: sMain_Avisos().Resposta("ERRO: A senha não pode ser, maior ou igual ao tamanho do texto, igual ou menor que 1") else: sMain_Avisos().Resposta(sMain_Fence().encrypt(txt, senha)) elif option == 'DECIFRAR' or option == '1': txt = sMain_Avisos().Resposta('Digite o texto a ser decifrado', 'STRING') senha = sMain_Avisos().Resposta('Difite a senha (SOMENTE NÚMEROS)', 'INT') if senha >= len(txt) or senha <= 1: sMain_Avisos().Resposta("ERRO: A senha não pode ser, maior ou igual ao tamanho do texto, igual ou menor que 1") else: sMain_Avisos().Resposta(sMain_Fence().decrypt(txt, senha)) elif option == 'SAIR' or option == 'QUIT' or option == 'VOLTAR': break ``` #### File: Modulos/Matematica/Smat_Trigonometria.py ```python import sys from Nucleo import * import math def mat_TRIGONOMETRIA(): sMain_Avisos().Welcome('TRIGONOMETRIA') while True: try: option = sMain_Saidas().Prompt('MATEMATICA', 'TRIGONOMETRIA') if option == 'PROGRESSAO ARITMETICA' or option == 'P.A' or option == '0': n1 = sMain_Avisos().Resposta('Digite o primeiro termo de sua P.A', 'FLOAT') n2 = sMain_Avisos().Resposta('Digite o segundo termo de sua P.A','FLOAT') n3 = sMain_Avisos().Resposta('Digite o termo a ser descoberto', 'FLOAT') sMain_Avisos().Resposta(f'O {n3}º termo de sua PA é:\n\nAn = {n1}+({n3}-1)*{n2-n1} = {n1 + (n3 - 1) * (n2 - n1)}') elif option == 'PROGRESSAO GEOMETRICA' or option == 'P.G' or option == '1': n1 = sMain_Avisos().Resposta('Digite o termo a ser descoberto', 'FLOAT') sMain_Avisos().Resposta(f'O {n1}º termo da PG é:\n({n1}²+{n1})/2 = {(n1**2 + n1)/2}') elif option == 'RAZAO' or option == '2': n1 = sMain_Avisos().Resposta('Digite o primeiro termo de sua sequencia', 'FLOAT') n2 = sMain_Avisos().Resposta('Digite o segundo termo de sua sequencia', 'FLOAT') sMain_Avisos().Resposta(f'A razao de sua sequencia é:\n{n2}-{n1} = {n2-n1}') elif option == 'SOMA DOS TERMOS DE UMA PA' or option == 'S.N' or option == '3': n1 = sMain_Avisos().Resposta('Digite o numero de termos de sua P.A', 'FLOAT') n2 = sMain_Avisos().Resposta('Digite a razao de sua P.A', 'FLOAT') n3 = sMain_Avisos().Resposta('Digite o primeiro termo de sua P.A', 'FLOAT') an = n3 + (n1 - 1)*n2 sMain_Avisos().Resposta(f'O ultimo termo desta P.A equivale a:\n\nAn = {n3} + ({n1} - 1)*{n2}\nAn = {n3 + (n1 - 1)*n2}') sMain_Avisos().Resposta(f'A soma dos termos desta P.A equivale a:\n\nSn = ({n1}({n2} + {an}))/2 = {(n1*(n2 + an))/2}') elif option == 'NUMEROS TRIANGULARES' or option == 'N.T' or option == '4': n1 = sMain_Avisos().Resposta('Digite o termo desejado (n)', 'INT') sMain_Avisos().Resposta(f'O {n1}º termo é: {(n1 * (n1 + 1)) / 2}') elif option == 'DELTA' or option == '5': sMain_Avisos().Resposta('OBS: Caso a formula não tenha um dos termos , digite 0') n1 = sMain_Avisos().Resposta('Digite o termo (a)', 'FLOAT') n2 = sMain_Avisos().Resposta('Digite o termo (b)', 'FLOAT') n3 = sMain_Avisos().Resposta('Digite o termo (c)', 'FLOAT') r = n2 ** 2 - 4 * n1 * n3 if r <= 0: sMain_Avisos().Resposta('Delta igual ou menor que 0') else: sMain_Avisos().Resposta(f'Delta é igual a: {n2}²-4*{n1}*{n3} = {r}') r = math.sqrt(r) r2 = (-(n2) + r) / 2 * (n1) r3 = (-(n2) - r) / 2 * (n1) sMain_Avisos().Resposta(f'+X é igual a: (-{n2}+{r})/2*{n1} = {r2}') sMain_Avisos().Resposta(f'-X é igual a: (-{n2}-{r})/2*{n1} = {r3}') elif option == 'HIPOTENUSA' or option == '6': n1 = sMain_Avisos().Resposta('Digite o valor de um cateto', 'FLOAT') n2 = sMain_Avisos().Resposta('Digite o valor de outro cateto', 'FLOAT') sMain_Avisos().Resposta(f'A hipotenusa é igual a:\nH² = {n1}² + {n2}² = {math.sqrt(n1**2 + n2**2)}²\nH = {n1**2} + {n2**2} = {n1**2 + n2**2}') elif option == 'CATETO' or option == '7': n1 = sMain_Avisos().Resposta('Digite o valor do cateto', 'FLOAT') n2 = sMain_Avisos().Resposta('Digite o valor da HIPOTENUSA', 'FLOAT') sMain_Avisos().Resposta(f'C² + {n1}² = {n2}²\nC² = {n2**2} - {n1**2}\nC² = {n2**2 - n1**2}\nC = {math.sqrt(n2**2 - n1**2)}') elif option == 'VOLTAR' or option == 'SAIR' or option == 'QUIT': break elif option == '': pass else: sMain_Avisos().nFound(option) except ValueError: sMain_Avisos().Erro(0) ``` #### File: SODA/Nucleo/smain_Quimica.py ```python qui_version = 'MODULO QUIMICA v0.0.1' import sys sys.path.append('Nucleo/') sys.path.append('Modulos/Quimica/') from Nucleo.smain_Handler import * def soda_QUIMICA(): sMain_Saidas().Welcome("QUIMICA") while True: q = sMain_Saidas().Prompt("QUIMICA") handler = sMain_Handlers().quiHandler(q) if handler != None: handler() elif q == 'SAIR' or q == 'QUIT' or q == 'VOLTAR': break elif q == '': pass else: sMain_Avisos().nFound(q, qui_version) ``` #### File: Jonatan966/SODA/Smain.py ```python from Nucleo import * print(f'{soda_version}\nDigite INFO para mais informações.\n') def getHandler(name): name = name return globals().get(f"soda_{name}") def Main(): while True: resp = sMain_Saidas().Prompt() handler = getHandler(resp) if handler != None : handler() elif resp == 'SAIR' or resp == 'QUIT': q = input('Deseja mesmo sair? <S/N> ').upper().strip() if q == 'Y' or q == 'YES' or q == 'SIM' or q == 'S': sys.exit() elif q == 'N' or q == 'NAO' or q == 'NO': continue elif resp == '': pass else: sMain_Avisos().nFound(resp) Main() ```
{ "source": "JonatanAntoni/Open-CMSIS-Pack-Spec", "score": 2 }
#### File: Open-CMSIS-Pack-Spec/test/pack_schema_version_history.py ```python import re import subprocess import sys from pathlib import Path from dateutil.parser import parse DIRNAME = Path(__file__).parent.absolute() PATTERN = "::error file={},line={}::{}" rc = 0 def log_error(file, line, message): global rc print(PATTERN.format(file.relative_to(DIRNAME.joinpath("..").resolve()), line, message)) rc = 1 def get_from_cmd(cmd, cwd=Path.cwd()): print("./"+cwd.relative_to(Path.cwd()).as_posix(), "$", " ".join(cmd)) result = subprocess.run(cmd, capture_output=True, cwd=cwd) stdout = result.stdout.decode("utf-8").strip() stderr = result.stderr.decode("utf-8").strip() if stdout: print(">", stdout) if stderr: print(">", stderr) print() return stdout def main(): print("Checking PACK.xsd version information...\n") schema_file = DIRNAME.joinpath('../schema/PACK.xsd').resolve() dxy_file = DIRNAME.joinpath('../doxygen/pack.dxy').resolve() doc_file = DIRNAME.joinpath('../doxygen/src/General.txt').resolve() date_pattern = re.compile('\\$Date:\\s+(\\d+\\. \\w+ \\d{4})') rev_pattern = re.compile('\\$Revision:\\s+(\\d+\\.\\d+\\.\\d+)') version_pattern = re.compile('SchemaVersion=(\\d+\\.\\d+\\.\\d+)') history_pattern = re.compile('(\\d+\\. \\w+ \\d{4}): v(\\d+\\.\\d+\\.\\d+)') property_pattern = re.compile('^\\s*<xs:schema.*version="([^"]+)".*>\\s*$') date = (None, 0) revision = (None, 0) version = (None, 0) history = (None, 0) xsproperty = (None, 0) with(open(schema_file)) as schema: for i, line in enumerate(schema): date = (date_pattern.search(line), i) if not date[0] else date revision = (rev_pattern.search(line), i) if not revision[0] else revision version = (version_pattern.search(line), i) if not version[0] else version history = (history_pattern.search(line), i) if not history[0] else history xsproperty = (property_pattern.search(line), i) if not xsproperty[0] else xsproperty date = (parse(date[0][1]), date[1] + 1) if date[0] else None revision = (revision[0][1], revision[1] + 1) if revision[0] else None version = (version[0][1], version[1] + 1) if version[0] else None history = (parse(history[0][1]), history[0][2], history[1] + 1) if history[0] else None xsproperty = (xsproperty[0][1], xsproperty[1] + 1) if xsproperty[0] else None author_date = parse(get_from_cmd(['git', 'log', '-1', '--pretty=%ad', '--date=format:%Y-%m-%d', schema_file.name], cwd=schema_file.parent)) base_rev = get_from_cmd(['git', 'log', '-1', '--pretty=%P', schema_file.name], cwd=schema_file.parent) head_rev = get_from_cmd(["git", "log", "-1", '--pretty=%H', schema_file.name], cwd=schema_file.parent) blame = get_from_cmd(["git", "blame", f"{base_rev}..{head_rev}", "-l", "-L", f"{revision[1]},{revision[1]}", schema_file.name], cwd=schema_file.parent) blamed_rev = blame.split(' ')[0] dxy_version_pattern = re.compile('PROJECT_NUMBER\s*=\s*"Version (\\d+\\.\\d+\\.\\d+)"') dxy_version = (None, 0) with(open(dxy_file)) as dxy: for i, line in enumerate(dxy): dxy_version = (dxy_version_pattern.search(line), i) if not dxy_version[0] else dxy_version dxy_version = (dxy_version[0][1], dxy_version[1] + 1) if dxy_version[0] else None history_version_pattern = re.compile('<td>(\\d+\\.\\d+\\.\\d+)</td>') history_version = dict() with(open(doc_file)) as doc: accept = False for i, line in enumerate(doc): if line == '<table class="cmtable" summary="Revision History">\n': accept = True if accept: if line == '</table>': break v = history_version_pattern.search(line) if v: history_version[i + 1] = v[1] if not date: log_error(schema_file, 0, "Modification date tag '$Date:' missing!") elif date[0] != author_date: log_error(schema_file, date[1], "Modification date tag not updated, " f"should be {author_date.strftime('%d. %b %Y')}") if not revision: log_error(schema_file, 0, "Latest version tag '$Revision:' missing!") elif head_rev != blamed_rev: log_error(schema_file, revision[1], f"Revision tag not updated, should be incremented!") else: if not version: log_error(schema_file, 0, "Schema version tag 'SchemaVersion' missing!") elif version[0] != revision[0]: log_error(schema_file, version[1], f"Schema version tag not updated, should be {revision[0]}") if not history: log_error(schema_file, 0, "Change history missing!") elif history[1] != revision[0] or history[0] != author_date: log_error(schema_file, history[2], "Change history not updated, should contain " f"{author_date.strftime('%d. %B %Y')}: v{revision[0]}") if not xsproperty: log_error(schema_file, 0, "xs:schema property 'version' missing!") elif xsproperty[0] != revision[0]: log_error(schema_file, xsproperty[1], f"xs:schema property 'version' not updated, should be {revision[0]}") if not dxy_version: log_error(dxy_version, 0, "PROJECT_VERSION missing!") elif dxy_version[0] != revision[0]: log_error(dxy_file, dxy_version[1], f"PROJECT_VERSION not updated, should be {revision[0]}") if revision[0] not in history_version.values(): line = sorted(history_version.keys())[0] log_error(doc_file, line, "Revision History not updated, should contain " f"table row for version {revision[0]}") if __name__ == "__main__": if 'schema/PACK.xsd' in sys.argv \ or 'test/pack_schema_version_history.py' in sys.argv: main() sys.exit(rc) ```
{ "source": "jonatanbarkan/CausalInference", "score": 2 }
#### File: jonatanbarkan/CausalInference/us_data_ncc_run_script.py ```python import argparse import json import os from datetime import datetime from itertools import product import jsbeautifier import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from CausalDiscuveryToolboxClone.Models.NCC import NCC from utils.data_loader import load_split_data from utils.visualization import make_separate_plots def save_json(output_path, model_name, **kwargs): output_path = os.path.join(output_path, model_name + '.json') with open(output_path, "w", encoding="utf8") as f: opts = jsbeautifier.default_options() opts.indent_size = 4 f.write(jsbeautifier.beautify(json.dumps(kwargs), opts)) def get_network(filename='', freeze_encoder=False, num_effect=1, **kwargs): assert num_effect in [1, 2] obj = NCC() if filename: # transfer learning obj.load_model(os.path.join(os.getcwd(), 'Models'), file_path=filename + '.pth', **kwargs) else: obj.get_model(**kwargs) if freeze_encoder: obj.freeze_weights('encoder') if num_effect == 2: obj.anti = False return obj def train(obj, train_data, train_labels, validation_data, validation_labels, epochs=10, learning_rate=1e-4, optimizer='rms', **kwargs): obj.create_loss(learning_rate, optimizer=optimizer) logs = obj.train(train_data, train_labels, validation_data, validation_labels, epochs=epochs, batch_size=16, ) return logs def split_data(dat, lab, train_size=0.8): return train_test_split(dat, lab, train_size=train_size) def create_df(pair_1, pair_2, labels=()): pair_1_x, pair_1_y = np.hstack(pair_1) pair_2_x, pair_2_y = np.hstack(pair_2) aggregated_pair_1 = np.hstack([pair_1_x.reshape(-1, 1), pair_1_y.reshape(-1, 1)]) aggregated_pair_2 = np.hstack([pair_2_x.reshape(-1, 1), pair_2_y.reshape(-1, 1)]) aggregated = np.vstack([aggregated_pair_1, aggregated_pair_2]) df = pd.DataFrame(aggregated, columns=['x', 'y']) df['kind'] = [labels[0]] * aggregated_pair_1.shape[0] + [labels[1]] * aggregated_pair_2.shape[0] return df def save_model(obj, folder_path: str, name: str): obj.save_model(folder_path, file_path=f'{name}.pth') def run_model(FLAGS, **kwargs): # create save path plots_path = os.path.join(os.getcwd(), "Results", FLAGS.save_model_name) model_path = os.path.join(os.getcwd(), "Models") jsons_path = os.path.join(os.getcwd(), "Jsons") split_data_path = os.path.join(os.getcwd(), "SplitData") os.makedirs(plots_path, exist_ok=True) os.makedirs(model_path, exist_ok=True) os.makedirs(jsons_path, exist_ok=True) os.makedirs(split_data_path, exist_ok=True) name = '_'.join([FLAGS.data_file_1, FLAGS.data_file_2]) X_tr, y_tr = load_split_data(split_data_path, name + '_train') X_val, y_val = load_split_data(split_data_path, name + '_val') # load/initialize network network = get_network(FLAGS.loaded_model_name, FLAGS.freeze_encoder, FLAGS.num_effects, n_hiddens=FLAGS.n_hiddens, kernel_size=3, dropout_rate=FLAGS.dropout_rate, additional_num_hidden_layers=FLAGS.additional_num_hidden_layers) # train network network.create_loss(learning_rate=FLAGS.learning_rate, optimizer=FLAGS.optimizer) try: network.train(X_tr, y_tr, X_val, y_val, epochs=FLAGS.epochs, batch_size=FLAGS.batch_size, ) except KeyboardInterrupt: pass logged_values = network.get_log_dict() make_separate_plots(logged_values, plot_path=plots_path, model_name=FLAGS.save_model_name) save_model(network, folder_path=model_path, name=FLAGS.save_model_name) save_json(jsons_path, FLAGS.save_model_name, **vars(FLAGS)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-num_effects', default=1, choices={1, 2}) parser.add_argument('-data_file_1', default='medium_2_causal') parser.add_argument('-data_file_2', default='') # parser.add_argument('-data_file_1', default='medium_3_causal') # parser.add_argument('-data_file_2', default='medium_3_confounded') parser.add_argument('-save_model_name', default='large_experiment_1_model') parser.add_argument('-epochs', default=3, type=int) parser.add_argument('-loaded_model_name', default='') parser.add_argument('-freeze_encoder', default=0, choices={0, 1}) parser.add_argument('-learning_rate', default=1e-4) parser.add_argument('-optimizer', default='rms', choices={'rms', 'adam', 'momentum'}) parser.add_argument('-batch_size', default=16, choices={8, 16, 32, 64}) parser.add_argument('-n_hiddens', default=100, choices={50, 100, 500}) parser.add_argument('-dropout_rate', default=0., choices={0., 0.1, 0.25, 0.3}) parser.add_argument('-additional_num_hidden_layers', default=0, choices={0, 1}) arguments = parser.parse_args() if arguments.num_effects == 1: arguments.data_file_1 = 'large_3_causal' arguments.data_file_2 = '' elif arguments.num_effects == 2: arguments.data_file_1 = 'large_4_causal' arguments.data_file_2 = 'large_4_confounded' run_grid = False save_model_name = arguments.save_model_name if run_grid: learning_rates = [0.01] optimizers = ['rms', 'momentum'] additional_num_hidden_layers = [0, 1] dropout_rates = [0.0, 0.1, 0.25, 0.3] num_hiddens = [50, 100, 500] else: learning_rates = [1e-2] optimizers = ['rms', 'momentum'] additional_num_hidden_layers = [0] dropout_rates = [0.0] num_hiddens = [50, 100, 500] grid = product(num_hiddens, learning_rates, optimizers, additional_num_hidden_layers, dropout_rates) print('lr, opt, add_layers, p, n_hidd:') for n_hidd, lr, opt, add_layers, p in grid: print(lr, opt, add_layers, p, n_hidd) arguments.learning_rate = lr arguments.optimizer = opt arguments.additional_num_hidden_layers = add_layers arguments.dropout_rate = p arguments.n_hiddens = n_hidd arguments.save_model_name = save_model_name + datetime.now().strftime('_%y%m%d_%H%M%S') run_model(arguments) ``` #### File: CausalInference/utils/confounded_pair_generation_ncc.py ```python from CausalDiscuveryToolboxClone.Models.NCC import NCC import networkx as nx import matplotlib.pyplot as plt from cdt.data import load_dataset from sklearn.model_selection import train_test_split from CausalDiscuveryToolboxClone.DataGeneration import functions import scipy from scipy.interpolate import PchipInterpolator, CubicHermiteSpline, UnivariateSpline import numpy as np from scipy.special import expit import os # data, labels = load_dataset('tuebingen') # data, labels = functions.swap_cause_effect(data, labels) def draw_mixture_weights(k_i): mw = np.abs(np.random.standard_normal(k_i)) return mw / np.sum(mw) def draw_mechanism(): pass def draw_cause(k_i, r_i, s_i, m): w = draw_mixture_weights(k_i) mu = np.random.normal(0., r_i) sd = np.abs(np.random.normal(0., s_i)) x = np.dot(w, np.random.normal(loc=mu, scale=sd, size=(k_i, m))) return (x - x.mean()) / x.std() def reduce_support(f, support): def supported(*args): x = args[0] y = f(x) cond = (x > support[1]) | (x < support[0]) y[cond] = 0 return y return supported def create_mechanism(a_knots, b_knots, support): f = PchipInterpolator(a_knots, b_knots) return reduce_support(f, support) def create_noise_mechanism(a_knots, b_knots, support): f = UnivariateSpline(a_knots, b_knots) return reduce_support(f, support) def generate_noiseless_effect(f, cause): effect = f(cause) effect = (effect - effect.mean()) / effect.std() return effect def generate_effect(cause_knots, effect_knots): x_i_knots = np.linspace(*support_i, d[i]) y_i_knots = np.random.normal(0., 1., d[i]) f_i = create_mechanism(x_i_knots, y_i_knots, support_i) if __name__ == '__main__': save = True folder_path = os.path.dirname(os.getcwd()) name = 'non_causal_xy_temp' n = 20 # m = 30 m = np.random.randint(100, 1500, n) r = 5 * np.random.random(n) s = 5 * np.random.random(n) k = np.random.randint(1, 6, n) d = np.random.randint(4, 6, n) v = 5 * np.random.random(n) S = [] L = [] for i in range(n): # m_i = m[i] m_i = m[0] x_i = draw_cause(k[i], r[i], s[i], m_i) sd_i = x_i.std() support_i = [x_i.min() - sd_i, x_i.max() + sd_i] x_i_knots = np.linspace(*support_i, d[i]) y_i_knots = np.random.normal(0., 1., d[i]) f_i = create_mechanism(x_i_knots, y_i_knots, support_i) y_i = generate_noiseless_effect(f_i, x_i) e_i = np.random.normal(0., v[i], m_i) v_x_knots = np.linspace(*support_i, d[i]) v_y_knots = np.random.uniform(0, 5, d[i]) v_spline = create_mechanism(x_i_knots, v_y_knots, support_i) v_i = v_spline(x_i) noise_i = e_i * v_i y_noisy = y_i + noise_i y_noisy = (y_noisy - y_noisy.mean()) / y_noisy.std() # print(np.abs(y_noisy - y_i)) S.append([x_i, y_noisy]) L.append(0) S = np.array(S) L = np.array(L) if save: data_folder_path = os.path.join(folder_path, 'Data') os.makedirs(data_folder_path, exist_ok=True) np.savez_compressed(os.path.join(data_folder_path, name), data=S, labels=L) ``` #### File: CausalInference/utils/visualization.py ```python import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import os sns.set_style("whitegrid") def make_separate_plots(logged_values, plot_path: str, model_name: str): file_path = os.path.join(plot_path, f'{model_name}_accuracy') fig, ax = plt.subplots(dpi=300) plot_titles = list(logged_values.keys()) dict_hierarchy = {(plot_title, plot_type): values for plot_title, train_val_dict in logged_values.items() for plot_type, values in train_val_dict.items()} df_plot = pd.DataFrame(dict_hierarchy) # df_plot.set_index(pd.Index(range(1, df_plot.shape[0] + 1)), inplace=True) for i, plot_title in enumerate(plot_titles): sns.lineplot(data=df_plot[plot_title], ax=ax) ax.set_title(plot_title) ax.set_ylabel('' if plot_title.lower() in ['symmetry'] else r'1-acc') ax.set_ylim(-0.01, 1.01) ax.set_xlabel('Epochs') # plt.tight_layout() plt.savefig(file_path + f'_{plot_title}_accuracy.png') ax.cla() df_plot.to_csv(os.path.join(plot_path, f'{model_name}_accuracy.csv')) def make_plots(logged_values, plot_path: str, model_name: str): file_path = os.path.join(plot_path, f'{model_name}_accuracy.png') fig, ax = plt.subplots(4, sharex=True, dpi=300) ax = ax.flat plot_titles = list(logged_values.keys()) dict_hierarchy = {(plot_title, plot_type): values for plot_title, train_val_dict in logged_values.items() for plot_type, values in train_val_dict.items()} df_plot = pd.DataFrame(dict_hierarchy) # df_plot.set_index(pd.Index(range(1, df_plot.shape[0] + 1)), inplace=True) for i, plot_title in enumerate(plot_titles): sns.lineplot(data=df_plot[plot_title]) # ax[i].set_title(plot_title) ax[i].set_title(plot_title) ax[i].set_ylabel('' if plot_title.lower() in ['symmetry'] else r'1-acc') ax[i].set_ylim(-0.05, 1.05) ax[-1].set_xlabel('Epochs') plt.tight_layout() plt.savefig(file_path) plt.close(fig) df_plot.to_csv(os.path.join(plot_path, f'{model_name}_accuracy.csv')) ```
{ "source": "jonatanbarkan/vision_loop", "score": 3 }
#### File: jonatanbarkan/vision_loop/functions.py ```python from __future__ import division import cv2 import numpy as np import tensorflow as tf def downgrade(image, target_res_width): target_res_width = int(target_res_width) r = target_res_width / image.shape[1] dim = (target_res_width, int(image.shape[0] * r)) resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA) return resized def rotate_image_180(image): # grab the dimensions of the image and calculate the center # of the image (h, w) = image.shape[:2] center = (w / 2, h / 2) # rotate the image by 180 degrees M = cv2.getRotationMatrix2D(center, 180, 1.0) rotated = cv2.warpAffine(image, M, (w, h)) return rotated def vis_conv(v,ix,iy,ch,cy,cx, p = 0) : v = np.reshape(v,(iy,ix,ch)) ix += 2 iy += 2 npad = ((1,1), (1,1), (0,0)) v = np.pad(v, pad_width=npad, mode='constant', constant_values=p) v = np.reshape(v,(iy,ix,cy,cx)) v = np.transpose(v,(2,0,3,1)) #cy,iy,cx,ix v = np.reshape(v,(cy*iy,cx*ix)) return v def regularize(frame): frame = np.divide(frame, [255]) return frame def visualize(W): # scale weights to [0 255] and convert to uint8 (maybe change scaling?) x_min = tf.reduce_min(W) x_max = tf.reduce_max(W) weights_0_to_1 = tf.div(tf.sub(W, x_min), tf.sub(x_max, x_min)) weights_0_to_255_uint8 = tf.image.convert_image_dtype(weights_0_to_1, dtype=tf.uint8) # to tf.image_summary format [batch_size, height, width, channels] weights_transposed = tf.transpose(weights_0_to_255_uint8, [3, 0, 1, 2]) return weights_transposed def weight_variable(shape): # initial = tf.zeros(shape, dtype=tf.float32) # initial = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float32) # initial = tf.zeros(shape, dtype=tf.float32) initial = tf.div(tf.ones(shape, dtype=tf.float32), shape[0]*shape[1]) return tf.Variable(initial, trainable=True) def bias_variable(shape): initial = tf.constant(0.01, shape=shape, dtype=tf.float32) return tf.Variable(initial) def forward_conv2d(x, W, b, stride_size=1, act = tf.nn.relu, name=''): with tf.name_scope('convolution'): conv = tf.nn.conv2d(x, W, strides=[1, stride_size, stride_size, 1], padding='SAME', name=name+'convolution') variable_summaries(conv, 'convolution') with tf.name_scope('preactivate'): preactivate = conv + b variable_summaries(preactivate, 'preactivate') with tf.name_scope('activate'): activate = tf.minimum(tf.maximum(conv, 0),1, name=name+'activation') return activate def variable_summaries(var, name): """Attach a lot of summaries to a Tensor.""" with tf.name_scope(name + '_' + 'summaries'): mean = tf.reduce_mean(var) tf.scalar_summary(name + '_' + 'mean/' + name, mean) with tf.name_scope(name + '_' + 'stddev'): stddev = tf.sqrt(tf.reduce_sum(tf.square(tf.sub(var, mean)))) tf.scalar_summary(name + '_' + 'sttdev/' + name, stddev) tf.scalar_summary(name + '_' + 'max/' + name, tf.reduce_max(var)) tf.scalar_summary(name + '_' + 'min/' + name, tf.reduce_min(var)) tf.histogram_summary(name, var) ```
{ "source": "jonatanblue/dinghy", "score": 2 }
#### File: jonatanblue/dinghy/test_keeper.py ```python import logging import unittest import os import glob import shutil import tarfile import keeper from keeper import Keeper # Enable verbose logs for tests logger = logging.getLogger() logger.level = logging.DEBUG # Get current directory BASE_DIRECTORY = os.getcwd() # Override rundeck service check for unittests def rundeck_is_running(arg): return False Keeper._rundeck_is_running = rundeck_is_running class MockedKeeper(Keeper): def __init__(self, *args): pass class TestKeeper(unittest.TestCase): """Tests for `keeper.py`""" def setUp(self): """Set up defaults for all tests""" self.maxDiff = None def _create_dir(self, path): """Creates directory""" if not os.path.exists(path): os.makedirs(path) def _purge_directory(self, path): """Purges a directory and all its subdirectories WARNING: This will recursively delete the directory and all subdirectories forever. """ shutil.rmtree(path) def _list_files_in_tar(self, path): """Returns list of all file paths inside a tar file""" with tarfile.open(path, 'r:gz') as archive: return archive.getnames() def test_instantiating(self): """Test that Keeper class can be instantiated""" directories = [ "/var/lib/rundeck/data", # database "/var/lib/rundeck/logs", # execution logs (by far biggest) "/var/lib/rundeck/.ssh", # ssh keys "/var/lib/rundeck/var/storage", # key storage files and metadata "/var/rundeck/projects" # project definitions ] Keeper(system_directories=directories) def test_has_overlap(self): """Test that overlap check works""" overlapping_dirs = [ "/tmp/a/b", "/tmp/a" ] keeper = MockedKeeper() self.assertTrue(keeper._has_duplicate_or_overlap(overlapping_dirs)) def test_has_overlap_reverse(self): """Test that overlap check works""" overlapping_dirs = [ "/tmp/a", "/tmp/a/b" ] keeper = MockedKeeper() self.assertTrue(keeper._has_duplicate_or_overlap(overlapping_dirs)) def test_has_duplicate(self): """Test that duplicate check works""" duplicate_dirs = [ "/tmp/a/b", "/tmp/a/b" ] keeper = MockedKeeper() self.assertTrue(keeper._has_duplicate_or_overlap(duplicate_dirs)) def test_valid_path_list(self): """Test that a valid path list is valid according to check""" valid_dirs = [ "/tmp/a/b/c", "/tmp/a/b/d", "/tmp/q", "/var/troll" ] keeper = MockedKeeper() self.assertFalse(keeper._has_duplicate_or_overlap(valid_dirs)) def test_raises_exception_on_relative_paths(self): """Test that relative paths raise an exception""" contains_relative_paths = [ "some/path/here", "some/other/path", "/this/is/valid/though" ] with self.assertRaises(Exception): Keeper(system_directories=contains_relative_paths) def test_raises_exception_on_overlapping_dirs(self): """Test that exception is raised for overlapping dirs Passing overlapping directories should raise an exception. For example /tmp/a/b/c,/tmp/a/b should fail """ # Set bad directories bad_directories = [ "/tmp/keeper_python_unittest_raises/a/b/c", "/tmp/keeper_python_unittest_raises/a/b" ] # Set sails with self.assertRaises(Exception): Keeper(system_directories=bad_directories) def test_raises_exception_on_overlapping_dirs_reversed(self): """Test that exception is raised for overlapping dirs. For example /tmp/a/b,/tmp/a/b/c should fail """ # Set bad directories bad_directories = [ "/tmp/keeper_python_unittest_raises/a/b", "/tmp/keeper_python_unittest_raises/a/b/c" ] # Set sails with self.assertRaises(Exception): Keeper(system_directories=bad_directories) def test_backup(self): """Test creating a backup file from a set of directories""" cwd = os.getcwd() # Set paths file_paths = [ cwd + "/tmp/keeper_test_backup/house/room/file1.txt", cwd + "/tmp/keeper_test_backup/house/room/desk/file2.txt", cwd + "/tmp/keeper_test_backup/house/room/desk/file3.txt", cwd + "/tmp/keeper_test_backup/house/room/desk/drawer/file4", cwd + "/tmp/keeper_test_backup/house/room/locker/file5.txt" ] folder_paths_to_create = [ cwd + "/tmp/keeper_test_backup/house/room/desk/drawer", cwd + "/tmp/keeper_test_backup/house/room/locker" ] directories_to_backup = [ cwd + "/tmp/keeper_test_backup/house/room/desk/drawer", cwd + "/tmp/keeper_test_backup/house/room/locker" ] files_expected_in_tar = [ os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/desk/drawer" ), os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/desk/drawer/file4" ), os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/locker" ), os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/locker/file5.txt" ) ] keeper = Keeper(system_directories=directories_to_backup) # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup test for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup keeper.backup( destination_path=cwd + "/tmp/keeper_test_backup", filename="backup_test.tar.gz" ) # Get list of all file paths inside tar file files_in_tar = self._list_files_in_tar( cwd + "/tmp/keeper_test_backup/backup_test.tar.gz") # tar file can't be empty self.assertNotEqual(len(files_in_tar), 0) # Normpath the paths # NOTE: I don't know why this is necessary files_expected_in_tar = [ os.path.normpath(p) for p in files_expected_in_tar ] files_in_tar = [ os.path.normpath(p) for p in files_in_tar ] # Compare tar file and list of files self.assertEqual(set(files_expected_in_tar), set(files_in_tar)) # Recursively remove all directories and files used in test self._purge_directory(cwd + "/tmp/keeper_test_backup") def test_backup_skips_missing_dir(self): """Test that missing directory is skipped""" cwd = os.getcwd() # Set paths file_paths = [ cwd + "/tmp/keeper_test_backup/house/room/file1.txt", cwd + "/tmp/keeper_test_backup/house/room/desk/file2.txt", cwd + "/tmp/keeper_test_backup/house/room/desk/file3.txt", cwd + "/tmp/keeper_test_backup/house/room/desk/drawer/file4", cwd + "/tmp/keeper_test_backup/house/room/locker/file5.txt" ] folder_paths_to_create = [ cwd + "/tmp/keeper_test_backup/house/room/desk/drawer", cwd + "/tmp/keeper_test_backup/house/room/locker" ] directories_to_backup = [ cwd + "/tmp/keeper_test_backup/house/room/desk/drawer", cwd + "/tmp/keeper_test_backup/house/room/locker", cwd + "/tmp/keeper_test_backup/ghosthouse" # this does not exist ] files_expected_in_tar = [ os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/desk/drawer" ), os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/desk/drawer/file4" ), os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/locker" ), os.path.join( cwd.strip("/"), "tmp/keeper_test_backup/house/room/locker/file5.txt" ) ] keeper = Keeper(system_directories=directories_to_backup) # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup test for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup keeper.backup( destination_path=cwd + "/tmp/keeper_test_backup", filename="backup_test.tar.gz" ) # Get list of all file paths inside tar file files_in_tar = self._list_files_in_tar( cwd + "/tmp/keeper_test_backup/backup_test.tar.gz") # tar file can't be empty self.assertNotEqual(len(files_in_tar), 0) # Normpath the paths # NOTE: I don't know why this is necessary files_expected_in_tar = [ os.path.normpath(p) for p in files_expected_in_tar ] files_in_tar = [ os.path.normpath(p) for p in files_in_tar ] # Compare tar file and list of files self.assertEqual(set(files_expected_in_tar), set(files_in_tar)) # Recursively remove all directories and files used in test self._purge_directory(cwd + "/tmp/keeper_test_backup") def test_restore(self): """Test restoring a set of directories and files from a backup file""" # Set paths cwd = os.getcwd() file_paths = [ cwd + "/tmp/keeper_test_restore/hotel/lobby/file1.txt", cwd + "/tmp/keeper_test_restore/hotel/lobby/desk/file2.txt", cwd + "/tmp/keeper_test_restore/hotel/lobby/desk/file3.txt", cwd + "/tmp/keeper_test_restore/hotel/lobby/desk/drawer/f4", cwd + "/tmp/keeper_test_restore/hotel/lobby/locker/file5.txt" ] folder_paths_to_create = [ cwd + "/tmp/keeper_test_restore/hotel/lobby/desk/drawer/", cwd + "/tmp/keeper_test_restore/hotel/lobby/locker" ] directories_to_backup = [ cwd + "/tmp/keeper_test_restore/hotel/lobby/desk/drawer/", cwd + "/tmp/keeper_test_restore/hotel/lobby/locker/" ] files_expected_in_restore = [ cwd + "/tmp/keeper_test_restore/hotel/lobby/locker/file5.txt", cwd + "/tmp/keeper_test_restore/hotel/lobby/desk/drawer/f4" ] keeper = Keeper(system_directories=directories_to_backup) # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup keeper.backup( destination_path=cwd + "/tmp/keeper_test_restore", filename="restore_test.tar.gz" ) # Purge the source directory self._purge_directory(cwd + "/tmp/keeper_test_restore/hotel") # Restore keeper.restore( cwd + "/tmp/keeper_test_restore/restore_test.tar.gz") # List all directories restored = cwd + "/tmp/keeper_test_restore/hotel" files_found = [] for root, dirs, files in os.walk(restored): for f in files: files_found.append(os.path.join(root, f)) self.assertEqual(set(files_found), set(files_expected_in_restore)) # Clean up test files and directories self._purge_directory(cwd + "/tmp/keeper_test_restore") def test_restore_check_content(self): """Test restoring a file and check contents""" # Set paths cwd = os.getcwd() file_paths = [ cwd + "/tmp/keeper_test_r_check/a/b/file1.txt", cwd + "/tmp/keeper_test_r_check/a/b/c/file2.txt", cwd + "/tmp/keeper_test_r_check/a/b/c/file3.txt", cwd + "/tmp/keeper_test_r_check/a/b/c/e/f4", cwd + "/tmp/keeper_test_r_check/a/b/d/file5.txt" ] folder_paths_to_create = [ cwd + "/tmp/keeper_test_r_check/a/b/c/e/", cwd + "/tmp/keeper_test_r_check/a/b/d" ] directories_to_backup = [ cwd + "/tmp/keeper_test_r_check/a/b/d/" ] file_expected_in_restore = os.path.join( cwd + "/tmp/keeper_test_r_check/a/b/d/file5.txt" ) keeper = Keeper(system_directories=directories_to_backup) # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup keeper.backup( destination_path=cwd + "/tmp/keeper_test_r_check", filename="restore_test.tar.gz" ) # Purge the source directory self._purge_directory(cwd + "/tmp/keeper_test_r_check/a") # Restore keeper.restore( cwd + "/tmp/keeper_test_r_check/restore_test.tar.gz") # Get file contents with open(file_expected_in_restore, 'r') as restored_file: content = restored_file.read() logging.debug("content " + content) self.assertEqual(content, "lorem ipsum\n") # Clean up test files and directories self._purge_directory(cwd + "/tmp/keeper_test_r_check") def test_restore_does_not_overwrite(self): """Test that existing files are not overwritten by restore""" cwd = os.getcwd() base = cwd + "/tmp/keeper_python_unittest_restore_no_overwrite" # Set paths file_paths = [ base + "/hotel/lobby/file1.txt", base + "/hotel/lobby/desk/file2.txt", base + "/hotel/lobby/desk/file3.txt", base + "/hotel/lobby/desk/drawer/f4", base + "/hotel/lobby/locker/file5.txt" ] folder_paths_to_create = [ base + "/hotel/lobby/desk/drawer/", base + "/hotel/lobby/locker" ] directories_to_backup = [ base + "/hotel/lobby/desk/drawer/", base + "/hotel/lobby/locker/" ] files_expected_in_restore = [ base + "/hotel/lobby/desk/drawer/f4", base + "/hotel/lobby/locker/file5.txt" ] keeper = Keeper(system_directories=directories_to_backup) # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup keeper.backup( destination_path=base, filename="restore_test.tar.gz" ) # Write to files again for name in files_expected_in_restore: with open(name, "w") as file_handle: file_handle.write("new version\n") # Restore should raise exception on existing file with self.assertRaises(Exception): keeper.restore(base + "/restore_test.tar.gz") # Get file contents files_content = [] for name in files_expected_in_restore: with open(name, "r") as file_handle: content = file_handle.read() files_content.append(content) self.assertEqual( files_content, [ "new version\n", "new version\n" ] ) # Purge the test directory self._purge_directory(base) def test_backup_file_name_different_for_partial(self): """Test that partial backup file is named correctly If there is a directory override, the file should have "partial" in the name """ # Set paths cwd = os.getcwd() base = cwd + "/tmp/keeper_python_unittest_partial_name" file_paths = [ base + "/a/b/c.txt", base + "/q/r.txt" ] folder_paths_to_create = [ base + "/a/b", base + "/q" ] # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup test for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup args = keeper.parse_args([ '--dirs=' + cwd + '/tmp/keeper_python_unittest_partial_name/a/b', 'backup', '--dest', 'tmp/keeper_python_unittest_partial_name' ]) keeper.main(args) # Get filename archive_filename = glob.glob(base + "/*.tar.gz")[0] self.assertTrue("partial" in archive_filename) # Recursively remove all directories and files used in test self._purge_directory(cwd + "/tmp/keeper_python_unittest_partial_name") def test_restore_subset_directories(self): """Test restoring a subset of directories""" # Set paths cwd = os.getcwd() base = cwd + "/tmp/keeper_python_unittest_restore_subset" file_paths = [ base + "/a/b/file1.txt", base + "/a/b/c/file2.txt", base + "/a/b/c/file3.txt", base + "/a/b/c/e/file4.txt", base + "/a/b/d/file5.txt" ] folder_paths_to_create = [ base + "/a/b/c/e/", base + "/a/b/d" ] files_expected_in_restore = [ base + "/a/b/c/e/file4.txt" ] # Create all directories for path in folder_paths_to_create: self._create_dir(path) # Create all files for backup for path in file_paths: # Create file with open(path, "w") as file_handle: file_handle.write("lorem ipsum\n") # Create backup args = keeper.parse_args([ '--dirs=' + base + '/a/b', 'backup', '--dest', base, '--filename', "test.tar.gz" ]) keeper.main(args) # Purge the source directory self._purge_directory(base + "/a") # Restore args = keeper.parse_args([ '--dirs=' + base + '/a/b/c/e', 'restore', '--file=' + base + '/test.tar.gz' ]) keeper.main(args) # List all directories restored = base + "/a" files_found = [] for root, dirs, files in os.walk(restored): for f in files: files_found.append(os.path.join(root, f)) self.assertEqual(set(files_found), set(files_expected_in_restore)) # Clean up directory self._purge_directory(base) ```
{ "source": "jonatanblue/kubeless-python-vs-go", "score": 3 }
#### File: kubeless-python-vs-go/python/loop.py ```python import flask import datetime as dt def hello(event, context): print(flask) print(dt.datetime.now()) sum = 0 for i in range(0, 1000000): sum += 1 print(sum) print(dt.datetime.now()) return "Hello world!" ```
{ "source": "JonatanGarbuyo/asterisk_doorphone", "score": 3 }
#### File: asterisk_doorphone/asterisk_doorphone/asterisk_ami.py ```python import socket class AsteriskAMI: def __init__(self): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def connect(self, server_ip: str, server_port: int): """Connects with the asterisk AMI""" try: self.socket.connect((server_ip, server_port)) except Exception as error: raise ConnectionError("Couldn't connect to asterisk. Error:", error) def login(self, username: str, password: str): """Login with asterisk AMI """ self.send_command({ "Action": "Login", "Username": username, "Secret": password, "Events": "OFF"}) response = self.receive_response() if 'Response: Success' not in response: raise ConnectionRefusedError(response) print(response) def receive_response(self): """receive the response from asterisk AMI""" response = "" while not response.endswith('\r\n\r\n'): buf = self.socket.recv(1024) if not len(buf) > 0: break response += buf.decode() return response def send_command(self, args: dict): """Sends the command to asterisk AMI""" command = "" for key, value in args.items(): command += key + ": " + value + "\r\n" command += "\r\n" try: self.socket.send(command.encode()) except Exception as error: raise error def originate(self, channel="", exten="", context="", caller_id="", priority="1", timeout="2000", variable=""): """ * @param string $channel Channel name to call * @param string $exten Extension to use (requires 'Context' and 'Priority') * @param string $context Context to use (requires 'Exten' and 'Priority') * @param string $priority Priority to use (requires 'Exten' and 'Context') * @param string $application Application to use * @param string $data Data to use (requires 'Application') * @param integer $timeout How long to wait for call to be answered (in ms) * @param string $callerid Caller ID to be set on the outgoing channel * @param string $variable Channel variable to set (VAR1=value1|VAR2=value2) * @param string $account Account code * @param boolean $async true fast origination * @param string $actionid message matching variable """ params = { "Action": "Originate", "Channel": channel, "Context": context, "Exten": exten, "Priority": priority, "Timeout": timeout, "CallerID": caller_id, "Variable": variable, } print("Calling apartment {extension}".format(extension=exten)) self.send_command(params) response = self.receive_response() return response def sip_peer_status(self, extension: str): self.send_command(dict(Action="SIPpeerstatus", Peer=extension)) response = "" while True: response += self.receive_response() if "Event: SIPpeerstatusComplete" in response: break print(response) return response def extension_state(self, extension: str, context: str): self.send_command(dict(Action="ExtensionState", Exten=extension, Context=context)) response = self.receive_response() return response def disconnect(self): """Closes the connection to Asterisk AMI""" self.socket.close() ```
{ "source": "Jonatanjrss/django-pagseguro2", "score": 3 }
#### File: django-pagseguro2/pagseguro/forms.py ```python from decimal import Decimal from django import forms class PagSeguroItemForm(forms.Form): id = forms.CharField(max_length=100) description = forms.CharField(max_length=100) amount = forms.DecimalField( max_digits=9, max_value=Decimal("9999999.00"), min_value=Decimal("0.01"), decimal_places=2, ) quantity = forms.IntegerField(min_value=1, max_value=999) shipping_cost = forms.DecimalField( max_digits=9, max_value=Decimal("9999999.00"), min_value=Decimal("0.01"), decimal_places=2, required=False, ) weight = forms.IntegerField(min_value=1, max_value=30000, required=False) def clean_amount(self): amount = self.cleaned_data.get("amount") if amount: exponent = abs(amount.as_tuple().exponent) if exponent != 2: raise forms.ValidationError("O amount deve conter duas casas decimais.") return amount def clean_shipping_cost(self): shipping_cost = self.cleaned_data.get("shipping_cost") if shipping_cost: exponent = abs(shipping_cost.as_tuple().exponent) if exponent != 2: raise forms.ValidationError("O shipping_cost deve conter duas casas decimais.") return shipping_cost ``` #### File: pagseguro/tests/test_models.py ```python from django.test import TestCase from django.utils import timezone from pagseguro.models import Checkout, Transaction, TransactionHistory class CheckoutTest(TestCase): def test_create_model(self): checkout = Checkout.objects.create( code='007', date=timezone.now(), success=True ) self.assertEqual( str(checkout), '{0}'.format(checkout.pk) ) class TransactionTest(TestCase): def test_create_model(self): transaction = Transaction.objects.create( code='007', reference='nothing', status='aguardando', date=timezone.now(), last_event_date=timezone.now() ) self.assertEqual( str(transaction), transaction.code ) class TransactionHistoryTest(TestCase): def test_create_model(self): transaction = Transaction.objects.create( code='007', reference='nothing', status='aguardando', date=timezone.now(), last_event_date=timezone.now() ) tx_history = TransactionHistory.objects.create( transaction=transaction, date=timezone.now(), status='aguardando' ) self.assertEqual( str(tx_history), '{0} - {1} - {2}'.format( tx_history.transaction, tx_history.status, tx_history.date ) ) ``` #### File: django-pagseguro2/pagseguro/views.py ```python from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import require_http_methods from pagseguro.api import PagSeguroApi @csrf_exempt @require_http_methods(["POST"]) def receive_notification(request): notification_code = request.POST.get("notificationCode", None) notification_type = request.POST.get("notificationType", None) if notification_code and notification_type == "transaction": pagseguro_api = PagSeguroApi() response = pagseguro_api.get_notification(notification_code) if response.status_code == 200: return HttpResponse("Notificação recebida com sucesso.") return HttpResponse("Notificação inválida.", status=400) ```
{ "source": "jonatanlinden/PR", "score": 4 }
#### File: jonatanlinden/PR/gdb_skiplist_print.py ```python import gdb class SkiplistPrintCommand(gdb.Command): """Iterate and print a list. skip <EXPR> [MAX] Given a list EXPR, iterate though the list nodes' ->next pointers, printing each node iterated. We will iterate thorugh MAX list nodes, to prevent infinite loops with corrupt lists. If MAX is zero, we will iterate the entire list. List nodes types are expected to have a member named "next". List types may be the same as node types, or a separate type with an explicit head node, called "head".""" MAX_ITER = 10 def __init__(self): super(SkiplistPrintCommand, self).__init__("skiplist-print", gdb.COMMAND_DATA, gdb.COMPLETE_SYMBOL) def invoke(self, _args, from_tty): args = gdb.string_to_argv(_args) start_node = args[0] if len(args) > 1: max_iter = int(args[1]) else: max_iter = self.MAX_ITER if len(args) > 2: lvl = int(args[2]) else: lvl = 0 p_node_t = gdb.lookup_type('node_t').pointer() long_t = gdb.lookup_type('long') node = gdb.parse_and_eval(start_node) print node for i in xrange(max_iter): nexts = node['next'] nxt = gdb.Value(nexts[lvl]).cast(long_t) nxt = nxt & ~1 node = gdb.Value(nxt).cast(p_node_t).dereference() nexts = node['next'] print node['k'], node['level'], node['inserting'], k = 0 while k < node['level']: print(nexts[k]), k+=1 print("") SkiplistPrintCommand() ```
{ "source": "jonatanlv/nsga-ii", "score": 3 }
#### File: jonatanlv/nsga-ii/metricas.py ```python import numpy as np import logging #Medidas de diversidad def Lambda(pop1, problema): '''Descrita en 'A fast and elitist multiobjective genetic algorithm: NSGA-II Suponemos que la población está "ordenada" con respecto a los índices''' distancias = [] auxP = None for p1 in pop1: if auxP is None: auxP = p1 continue else: distancias.append(distancia(auxP.evaluado_en(problema), p1.evaluado_en(problema))) auxP = p1 media = np.mean(distancias) #DONE esto está mal, no podemos suponer que los extremos de la población son el primero y el último #logging.warn('Calculando Lambda. Los extremos puede que no sean los correctos') df = minimaDistancia(pop1[0].evaluado_en(problema), [problema.fp['extremos'][0]]) dl = minimaDistancia(pop1[-1].evaluado_en(problema), [problema.fp['extremos'][1]]) return (df + dl + np.sum(np.abs(distancias - media))) / (df + dl + media * len(distancias)) def Spread(pop1, problema): '''Dispersión de la población sin tener en cuenta los puntos extremos''' distancias = [] for p1 in pop1: distancias_a_p1 = [] for p2 in pop1: if not p1 is p2: distancias_a_p1.append(distancia(p1.evaluado_en(problema), p2.evaluado_en(problema))) else: distancias_a_p1.append(float('inf')) distancias.append(np.min(distancias_a_p1)) return np.std(distancias) #Medidas de ajuste def Upsilon(pop1, problema): '''Descrita en 'A fast and elitist multiobjective genetic algorithm: NSGA-II''' distancias = np.array([minimaDistancia(p.evaluado_en(problema), problema.fp['frente']) for p in pop1]) return np.mean(distancias) #Medidas de cobertura def C(pop1, pop2, problema): '''Proporción de soluciones en pop2 que son débilemente domindas por pop1''' cont = 0 for p2 in pop2: for p1 in pop1: if problema.dominado(p1, p2) > 0: cont += 1 break return cont / len(pop2) #Medidas mixtas #Funciones de apoyo def minimaDistancia(p1, conjunto, lp = 2): '''Devuelve al mínima distancia entre el punto y cada elemento de pop2''' minimo = float('inf') for p in conjunto: psd = distancia(p, p1, lp = 2, raiz = False) if psd < minimo: minimo = psd return np.power(minimo, 1 / lp) def distancia(p1, p2, lp = 2, raiz = True): suma = np.sum((p1 - p2) ** lp) if raiz: return float(np.power(suma, 1 / lp)) else: return float(suma) def extremos(pop1): '''Suponemos minimización y lo que buscamos son los extremos''' pass ``` #### File: jonatanlv/nsga-ii/representacion.py ```python import numpy as np from Estadisticas import Estadisticas class Punto(np.ndarray): '''Hereda de np.ndarray, representa una solución En los puntos tenemos la mutación Siempre vamos a considerar el propio punto como el genotipo ''' def __new__(cls, dimensiones, initValue = None, rango = None, \ operadores = None, crowded_distance = None, generacion = 1, dist_fenotipo = None, **kwargs): '''Para heredar de np.ndarray es necesario usar __new__ en lugar de __init__''' obj = np.ndarray.__new__(cls, dimensiones, **kwargs) obj.gen = generacion obj.vals = None obj.rest = None obj.rgo = rango obj.crwd = crowded_distance obj.np = 0 obj.Sp = [] '''Operadores es un diccionario de operadores evolutivos''' if not operadores is None: Punto._mutar = operadores['mutador'] Punto._fenotipo = operadores['fenotipo'] if not dist_fenotipo is None: Punto.dist_fenotipo = dist_fenotipo obj.setPunto(vector = initValue) return obj def setPunto(self, vector = None): if vector is None: self[:] = 0 else: for i in range(len(self)): self[i] = vector[i] def copy(self, **kwargs): '''Devolvemos otro punto copia del actual''' p = Punto(dimensiones = len(self), **kwargs) p.gen = self.gen p.vals = self.vals p.rest = self.rest p.rgo = self.rgo p.crwd = self.crwd p.np = self.np p.Sp = self.Sp[:] p.setPunto(vector = self) return p def fenotipo(self): '''De momento trabajamos con representación real: fenotipo = genotipo''' return self.__class__._fenotipo(self) def rand(self, problema): if problema.parametros.get('tipo_var', 'real') == 'real': self[:] = (problema.lims[:, 1] - problema.lims[:, 0]) * np.random.rand(problema.dims) + problema.lims[:, 0] else: for i in range(problema.dims): self[i] = np.random.choice(problema.lims[i]) def evaluado_en(self, problema): '''Evaluamos el punto con las funciones que nos da el problema''' if self.vals is None: self.vals = problema.evaluador(self) return self.vals def violacion_restricciones(self, problema): '''Calculamos el nivel de violación de las restricciones''' if self.rest is None: self.rest = problema.violacion_restricciones(self) return self.rest def mutar(self, problema): '''Con esta orden le pedimos al punto que se mute''' self.__class__._mutar(self, problema) class Poblacion(list): '''La población será una lista de Puntos que representará a las soluciones En las poblaciones definimos el cruce y la selección''' def __init__(self, size, operadores, generacion = 0, stats = None): self.size = size self.gen = generacion if stats is None: self.stats = Estadisticas('Estadisticas') else: self.stats = stats self.stats.nuevo_Contador('gens') # Generación actual if not operadores is None: self.__class__._selector = operadores['selector'] self.__class__._cruzador = operadores['cruzador'] self.__class__._seleccionador = operadores['seleccionador'] def select_with(self, nomCaracteristica, valor): '''Seleccionamos los puntos con cierta caracteristica''' resultado = [] for p in self: if p.__getattribute__(nomCaracteristica) == valor: resultado.append(p) return resultado def selector(self, problema): '''Seleccionamos para cruce''' return self.__class__._selector(self, problema) def cruzador(self, padre, madre, problema): '''Cruzamos dos puntos''' return self.__class__._cruzador(padre, madre, problema) def seleccionador(self, subpoblacion, problema): '''Seleccionamos de la población y quitamos los que no sirvan''' return self.__class__._seleccionador(self, subpoblacion, problema) def union(self, pop): for p in pop: self.append(p) def borrar(self, conjunto): for p in conjunto: if p in self: self.remove(p) def fast_non_dominated_sort(self, problema): '''Seguimos el algoritmo descrito en "A fast and elitist multiobjective GA: NSGA-II"''' #TODO: Este procedimiento se puede mejorar no teniendo que calcular el rango de toda la población frentes = [[]] for p in self: p.Sp, p.np = [], 0 for q in self: dominio = problema.dominadoC(p, q) if dominio == 1: # p domina a q p.Sp.append(q) elif dominio == -1: # q domina a p p.np += 1 if p.np == 0: p.rgo = 1 frentes[0].append(p) i = 0 while True: siguienteFrente = [] for p in frentes[i]: for q in p.Sp: q.np -= 1 if q.np == 0: q.rgo = i + 2 siguienteFrente.append(q) if siguienteFrente == []: break frentes.append(siguienteFrente[:]) i += 1 def __contains__(self, item): for p in self: if p is item: return True return False def crowding_distance_assignment(I, problema): '''Seguimos el algoritmo descrito en "A fast and elitist multiobjective GA: NSGA-II"''' I.sort(reverse = True, key = lambda x: x[0]) extremos = [I[0], I[-1]] for p in I: p.crwd = 0 for p in extremos: p.crwd = float('inf') #TODO No encuentro la manera de hacer esto con numpy objetivos = [] for p in I: parcial = [p] parcial.extend(p.evaluado_en(problema)) objetivos.append(parcial[:]) # objetivos[i] = [p_i, f1(p_i), f2(p_i), ..., fn(p_i)] for i in range(1, len(problema.objetivos) + 1): objetivos.sort(key=lambda x: x[i]) fmax = max(objetivos, key=lambda x: x[i])[i] fmin = min(objetivos, key=lambda x: x[i])[i] for j in range(1, len(objetivos) - 1): objetivos[j][0].crwd += (objetivos[j+1][i] - objetivos[j-1][i]) / (fmax - fmin) ############################################ # FENOTIPOS # Siempre tienen la misma firma: # def nombre(punto) # Devuelven # el fenotipo que le corresponde al punto ############################################ def real(punto): '''Representación real, fenotipo = genotipo''' return punto def binario(punto): '''Representación binaria''' fenotipo = [] for i in range(len(punto.dist_fenotipo)): li = np.sum(punto.dist_fenotipo[:i]) ui = np.sum(punto.dist_fenotipo[:i + 1]) fenotipo.append(punto[li:ui]) return fenotipo ############################################ # OPERADORES DE MUTACIÓN # Siempre tienen la misma firma: # def nombre(punto, problema) ############################################ def mutador1(punto, problema): '''Mutamos cualquier componente con probabilidad proporcional a la dimensión del espacio y esa componente puede tomar cualquier punto''' p = problema.parametros.get('pm', 1 / problema.dims) mascara = np.random.rand(problema.dims) < p punto[mascara] = (problema.lims[mascara, 1] - problema.lims[mascara, 0]) \ * np.random.rand(mascara.sum()) + problema.lims[mascara, 0] def mutadorb(punto, problema): '''Mutador de estados para variables discretas, se elige una componente y se fuerza a que cambie a alguno de los otros estados''' p = problema.parametros.get('pm', 1 / problema.dims) mascara = np.random.rand(problema.dims) < p for i in range(len(problema.lims)): if not mascara[i]: continue nvalor = np.random.choice(problema.lims[i]) while nvalor == punto[i]: nvalor = np.random.choice(problema.lims[i]) punto[i] = nvalor def mutador_init(punto, problema): '''Escogemos un punto cualquiera del espacio de decisión''' punto.rand(problema) def mutacion_aleatoria(punto, problema): '''Cada componente es variada uniformemente con el rango máximo que se le permita''' copy_lims = problema.lims.copy() copy_lims[:,0] = np.abs(copy_lims[:,0] - punto) copy_lims[:,1] = np.abs(copy_lims[:,1] - punto) deltas = np.min(copy_lims, axis = 1) #máxima variabilidad permitida en cada componente u = np.random.rand(problema.dims) * 2 - 1 # la variación que vamos a hacer en cada componente punto.setPunto(vector = punto + u * deltas) def mutacion_polinomial(punto, problema): '''mutación polinomial''' p = problema.parametros.get('pm', 1 / problema.dims) eta = problema.parametros.get('mp', 2) for i in range(problema.dims): if np.random.rand() >= p: #No mutamos este gen continue u = np.random.rand() if u <= .5: delta = np.power(2 * u, 1 / (eta + 1)) - 1 punto[i] += delta * (punto[i] - problema.lims[i,0]) else: delta = 1 - np.power(2 * (1 - u), 1 / (eta + 1)) punto[i] += delta * (problema.lims[i,1] - punto[i]) ############################################ # GENERADORES DE CRUCES # Siempre tienen la misma firma: # def nombre(seleccionParaCruce, cruzadorBasico) # Devuelve una función con la siguiente firma # def $(poblacion, problema) # que a su vez devolverá: # 2 hijos ############################################ def generar_cruzador(selector, cruzador): def funcion(poblacion, problema): p1 = selector(poblacion, problema) p2 = selector(poblacion, problema) return cruzador(p1, p2, problema) return funcion ############################################ # CRUZADORES BÁSICOS # Siempre tienen la misma firma: # def nombre(padre, madre, problema) # Devuelven: # dos puntos soluciones ############################################ '''Cruces básicos''' def line_recombination(padre, madre, problema): pass def intermediate_recombination(padre, madre, problema): pass def trivial(padre, madre, problema): '''Recombinador trivial: devuelve al padre y la madre''' return padre, madre def blended_crossover(padre, madre, problema): '''blended crossover BLX-alpha''' '''uniform compound recombination''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) alpha = problema.parametros.get('blx', .5) for i in range(problema.dims): alpha = problema.parametros.get('blx', .5) entrar = True while entrar: factor = np.random.rand() * (1 + 2 * alpha) - alpha hijo[i] = (1 - factor) * padre[i] + factor * madre[i] hija[i] = factor * padre[i] + (1 - factor) * madre[i] if problema.lims[i, 0] <= hijo[i] <= problema.lims[i, 1] and\ problema.lims[i, 0] <= hija[i] <= problema.lims[i, 1]: entrar = False else: alpha = alpha / 2 #print('padre {}, madre {}, alpha = {}'.format(str(padre), str(madre), alpha)) return hijo, hija def simulated_binary_crossover2(padre, madre, problema): '''simulated binary crossover''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) n = problema.parametros.get('sbx', 2) for i in range(problema.dims): #Lo hacemos componente a componente para evitar sacar muchos valores y1, y2 = min(padre[i], madre[i]), max(padre[i], madre[i]) yl, yu = problema.lims[i,0], problema.lims[i,1] if np.abs(y2 - y1) > problema.parametros.get('sbx_prec', 10**-6): u = np.random.rand() beta = 1 + 2 * (y1 - yl) / (y2 - y1) alpha = 2 - np.power(beta, -(n + 1)) if u <= 1 / alpha: betaq = np.power(u * alpha, 1 / (n + 1)) else: betaq = np.power(1 / (2 - u * alpha), 1 / (n + 1)) h1 = .5 * ( y1 + y2 - betaq * (y2 - y1)) beta = 1 + 2 * (yu - y2) / (y2 - y1) alpha = 2 - np.power(beta, -(n + 1)) if u <= 1 / alpha: betaq = np.power(u * alpha, 1 / (n + 1)) else: betaq = np.power(1 / (2 - u * alpha), 1 / (n + 1)) h2 = .5 * ( y1 + y2 - betaq * (y2 - y1)) if h1 < yl: h1 = yl elif h1 > yu: h1 = yu if h2 < yl: h2 = yl elif h2 > yu: h2 = yu if np.random.rand() < .5: hijo[i] = h1 hija[i] = h2 else: hijo[i] = h2 hija[i] = h1 return hijo, hija def simulated_binary_crossover(padre, madre, problema): '''simulated binary crossover''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) n = problema.parametros.get('sbx', 2) for i in range(problema.dims): #Lo hacemos componente a componente para evitar sacar muchos valores u = np.random.rand() if u < .5: beta = np.power(2*u, 1/ (n + 1)) else: beta = np.power(1 / (2 - 2 * u), 1 / (n + 1)) hijo[i] = .5 * (padre[i] + madre[i]) + .5 * beta * (padre[i] - madre[i]) hija[i] = .5 * (padre[i] + madre[i]) - .5 * beta * (padre[i] - madre[i]) if hijo[i] < problema.lims[i, 0]: hijo[i] = problema.lims[i, 0] elif hijo[i] > problema.lims[i, 1]: hijo[i] = problema.lims[i, 1] if hija[i] < problema.lims[i, 0]: hija[i] = problema.lims[i, 0] elif hija[i] > problema.lims[i, 1]: hija[i] = problema.lims[i, 1] return hijo, hija def uniform_compound_recombination(padre, madre, problema): '''uniform compound recombination''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) if 'ucr' in problema.parametros: c = problema.parametros['ucr'] else: c = -0.75 sw = None while sw is None or not (problema.en_el_dominio(hijo) and problema.en_el_dominio(hija)): sw = True #factor son los factores por cada componente vs ~ U[-1, 1] vs = np.random.rand(problema.dims) * 2 - 1 factor = vs * np.abs(vs) ** c + .5 hijo.setPunto(vector = factor * padre + (1 - factor) * madre) hija.setPunto(vector = (1 - factor) * padre + factor * madre) return hijo, hija def one_point_crossover(padre, madre, problema): '''one point crossover''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) cut = None while cut is None or not (problema.en_el_dominio(hijo) and problema.en_el_dominio(hija)): cut = np.random.randint(problema.dims) hijo[:cut] = padre[:cut] hijo[cut:] = madre[cut:] hija[cut:] = padre[cut:] hija[:cut] = madre[:cut] return hijo, hija def two_point_crossover(padre, madre, problema): '''two point crossover''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) cut1 = None while cut1 is None or not (problema.en_el_dominio(hijo) and problema.en_el_dominio(hija)): cut1 = np.random.randint(problema.dims - 1) cut2 = np.random.randint(cut1, problema.dims) hijo[:cut1] = padre[:cut1] hijo[cut1:cut2] = madre[cut1:cut2] hijo[cut2:] = padre[cut2:] hija[:cut1] = madre[:cut1] hija[cut1:cut2] = padre[cut1:cut2] hija[cut2:] = madre[cut2:] return hijo, hija def uniform_crossover(padre, madre, problema): '''uniform crossover, naive para representaciones reales''' hijo = Punto(dimensiones = problema.dims, **problema.extras) hija = Punto(dimensiones = problema.dims, **problema.extras) cut = None while cut is None or not (problema.en_el_dominio(hijo) and problema.en_el_dominio(hija)): cut = np.random.rand(problema.dims) cut1 = (cut <= .5) cut2 = (cut > .5) hijo[cut2] = padre[cut2] hijo[cut1] = madre[cut1] hija[cut1] = padre[cut1] hija[cut2] = madre[cut2] return hijo, hija ############################################ # OPERADORES DE SELECCION # Siempre tienen la misma firma: # def nombre(poblacion, subpoblacion, problema) # Devuelve # Un punto de la población ############################################ '''Dada la población seleccionamos los más aptos''' def noneSelect(poblacion, subpoblacion, problema): '''No selecciona, va devolviendo los puntos de subpoblación en orden''' i = 0 while True: yield subpoblacion[i] i = (i + 1) % len(subpoblacion) def ns_tournament_selection_sparsity(poblacion, subpoblacion, problema): '''Non-dominated sorting lexicographic tournament with sparsity''' t = problema.parametros.get('t_size', 2) #Tamaño del torneo p1 = seleccion_uniforme(subpoblacion, problema) best = p1.copy(**problema.extras) for i in range(t-1): p2 = seleccion_uniforme(subpoblacion, problema) if p2.rgo < p1.rgo: best = p2 elif best.rgo == p2.rgo: if p2.crwd > best.crwd: best = p2 return best def ns_tournament_selection_sparsity_constraint(poblacion, subpoblacion, problema): '''Non-dominated sorting lexicographic tournament with sparsity and restrictions''' t = problema.parametros.get('t_size', 2) p1 = seleccion_uniforme(subpoblacion, problema) best = p1.copy(**problema.extras) for i in range(t-1): p2 = seleccion_uniforme(subpoblacion, problema) if best.violacion_restricciones(problema) == p2.violacion_restricciones(problema) == 0: #Si los dos cumplen todas las restricciones el criterio normal if p2.rgo < best.rgo: best = p2 elif best.rgo == p2.rgo: if p2.crwd > best.crwd: best = p2 elif best.violacion_restricciones(problema) == 0: #p1 cumple las restricciones y p2 no continue elif p2.violacion_restricciones(problema) == 0: #p2 cumple las restricciones y p1 no best = p2 else: #ni p1 ni p2 cumplen las restricciones if best.violacion_restricciones(problema) > p2.violacion_restricciones(problema): #mayor violación por parte de p1 best = p2 elif best.violacion_restricciones(problema) == p2.violacion_restricciones(problema): #escogemos al azar if np.random.rand() < .5: best = p2 return best ############################################ # OPERADORES DE SELECCION PARA CRUCE # Siempre tienen la misma firma: # def nombre(poblacion, problema) # Devuelve: # un punto de la población ############################################ '''Dada la población seleccionamos los candidatos a cruzarse''' def seleccion_uniforme(poblacion, problema): return poblacion[np.random.randint(problema.parametros['pop_size'])] def selector(seleccionador): '''Convertimos un seleccionador en un selector''' def f(poblacion, problema): return seleccionador(poblacion, poblacion, problema) return f ```
{ "source": "JonatanMartens/zeebe_python_worker", "score": 3 }
#### File: worker/decorators/log_decorator.py ```python from loguru import logger from pyzeebe import Job, JobStatus def log_decorator(job: Job) -> Job: if job.status == JobStatus.Running: logger.info(f"Received job: {job}") elif job.status == JobStatus.Completed: logger.info(f"Completed job: {job}") elif job.status in [JobStatus.Failed, JobStatus.ErrorThrown]: logger.warning(f"Failed to complete job: {job}") return job ```
{ "source": "jonatanolofsson/amqtt", "score": 2 }
#### File: amqtt/amqtt/utils.py ```python from __future__ import annotations import logging import random import yaml import typing if typing.TYPE_CHECKING: from amqtt.session import Session logger = logging.getLogger(__name__) def format_client_message( session: Session = None, address: str = None, port: int = None ) -> str: if session: return "(client id=%s)" % session.client_id elif address is not None and port is not None: return "(client @=%s:%d)" % (address, port) else: return "(unknown client)" def gen_client_id() -> str: """Generates random client ID""" gen_id = "amqtt/" for i in range(7, 23): gen_id += chr(random.randint(0, 74) + 48) return gen_id def read_yaml_config(config_file: str) -> dict: config = None try: with open(config_file) as stream: config = ( yaml.full_load(stream) if hasattr(yaml, "full_load") else yaml.load(stream) ) except yaml.YAMLError as exc: logger.error("Invalid config_file %s: %r", config_file, exc) return config ```
{ "source": "jonatanolofsson/home-assistant", "score": 2 }
#### File: components/alarm_control_panel/demo.py ```python import homeassistant.components.alarm_control_panel.manual as manual from homeassistant.const import ( STATE_ALARM_ARMED_AWAY, STATE_ALARM_ARMED_HOME, STATE_ALARM_ARMED_NIGHT, STATE_ALARM_ARMED_CUSTOM_BYPASS, STATE_ALARM_TRIGGERED, CONF_PENDING_TIME) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Demo alarm control panel platform.""" add_devices([ manual.ManualAlarm(hass, 'Alarm', '1234', 5, 10, False, { STATE_ALARM_ARMED_AWAY: { CONF_PENDING_TIME: 5 }, STATE_ALARM_ARMED_HOME: { CONF_PENDING_TIME: 5 }, STATE_ALARM_ARMED_NIGHT: { CONF_PENDING_TIME: 5 }, STATE_ALARM_ARMED_CUSTOM_BYPASS: { CONF_PENDING_TIME: 5 }, STATE_ALARM_TRIGGERED: { CONF_PENDING_TIME: 5 }, }), ]) ``` #### File: components/device_tracker/test_unifi_direct.py ```python import os from datetime import timedelta import unittest from unittest import mock from unittest.mock import patch import pytest import voluptuous as vol from homeassistant.setup import setup_component from homeassistant.components import device_tracker from homeassistant.components.device_tracker import ( CONF_CONSIDER_HOME, CONF_TRACK_NEW) from homeassistant.components.device_tracker.unifi_direct import ( DOMAIN, CONF_PORT, PLATFORM_SCHEMA, _response_to_json, get_scanner) from homeassistant.const import (CONF_PLATFORM, CONF_PASSWORD, CONF_USERNAME, CONF_HOST) from tests.common import ( get_test_home_assistant, assert_setup_component, mock_component, load_fixture) class TestComponentsDeviceTrackerUnifiDirect(unittest.TestCase): """Tests for the Unifi direct device tracker platform.""" hass = None scanner_path = 'homeassistant.components.device_tracker.' + \ 'unifi_direct.UnifiDeviceScanner' def setup_method(self, _): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() mock_component(self.hass, 'zone') def teardown_method(self, _): """Stop everything that was started.""" self.hass.stop() try: os.remove(self.hass.config.path(device_tracker.YAML_DEVICES)) except FileNotFoundError: pass @mock.patch(scanner_path, return_value=mock.MagicMock()) def test_get_scanner(self, unifi_mock): \ # pylint: disable=invalid-name """Test creating an Unifi direct scanner with a password.""" conf_dict = { DOMAIN: { CONF_PLATFORM: 'unifi_direct', CONF_HOST: 'fake_host', CONF_USERNAME: 'fake_user', CONF_PASSWORD: '<PASSWORD>', CONF_TRACK_NEW: True, CONF_CONSIDER_HOME: timedelta(seconds=180) } } with assert_setup_component(1, DOMAIN): assert setup_component(self.hass, DOMAIN, conf_dict) conf_dict[DOMAIN][CONF_PORT] = 22 self.assertEqual(unifi_mock.call_args, mock.call(conf_dict[DOMAIN])) @patch('pexpect.pxssh.pxssh') def test_get_device_name(self, mock_ssh): """"Testing MAC matching.""" conf_dict = { DOMAIN: { CONF_PLATFORM: 'unifi_direct', CONF_HOST: 'fake_host', CONF_USERNAME: 'fake_user', CONF_PASSWORD: '<PASSWORD>', CONF_PORT: 22, CONF_TRACK_NEW: True, CONF_CONSIDER_HOME: timedelta(seconds=180) } } mock_ssh.return_value.before = load_fixture('unifi_direct.txt') scanner = get_scanner(self.hass, conf_dict) devices = scanner.scan_devices() self.assertEqual(23, len(devices)) self.assertEqual("iPhone", scanner.get_device_name("98:00:c6:56:34:12")) self.assertEqual("iPhone", scanner.get_device_name("98:00:C6:56:34:12")) @patch('pexpect.pxssh.pxssh.logout') @patch('pexpect.pxssh.pxssh.login') def test_failed_to_log_in(self, mock_login, mock_logout): """"Testing exception at login results in False.""" from pexpect import exceptions conf_dict = { DOMAIN: { CONF_PLATFORM: 'unifi_direct', CONF_HOST: 'fake_host', CONF_USERNAME: 'fake_user', CONF_PASSWORD: '<PASSWORD>', CONF_PORT: 22, CONF_TRACK_NEW: True, CONF_CONSIDER_HOME: timedelta(seconds=180) } } mock_login.side_effect = exceptions.EOF("Test") scanner = get_scanner(self.hass, conf_dict) self.assertFalse(scanner) @patch('pexpect.pxssh.pxssh.logout') @patch('pexpect.pxssh.pxssh.login', autospec=True) @patch('pexpect.pxssh.pxssh.prompt') @patch('pexpect.pxssh.pxssh.sendline') def test_to_get_update(self, mock_sendline, mock_prompt, mock_login, mock_logout): """"Testing exception in get_update matching.""" conf_dict = { DOMAIN: { CONF_PLATFORM: 'unifi_direct', CONF_HOST: 'fake_host', CONF_USERNAME: 'fake_user', CONF_PASSWORD: '<PASSWORD>', CONF_PORT: 22, CONF_TRACK_NEW: True, CONF_CONSIDER_HOME: timedelta(seconds=180) } } scanner = get_scanner(self.hass, conf_dict) # mock_sendline.side_effect = AssertionError("Test") mock_prompt.side_effect = AssertionError("Test") devices = scanner._get_update() # pylint: disable=protected-access self.assertTrue(devices is None) def test_good_reponse_parses(self): """Test that the response form the AP parses to JSON correctly.""" response = _response_to_json(load_fixture('unifi_direct.txt')) self.assertTrue(response != {}) def test_bad_reponse_returns_none(self): """Test that a bad response form the AP parses to JSON correctly.""" self.assertTrue(_response_to_json("{(}") == {}) def test_config_error(): """Test for configuration errors.""" with pytest.raises(vol.Invalid): PLATFORM_SCHEMA({ # no username CONF_PASSWORD: 'password', CONF_PLATFORM: DOMAIN, CONF_HOST: 'myhost', 'port': 123, }) with pytest.raises(vol.Invalid): PLATFORM_SCHEMA({ # no password CONF_USERNAME: 'foo', CONF_PLATFORM: DOMAIN, CONF_HOST: 'myhost', 'port': 123, }) with pytest.raises(vol.Invalid): PLATFORM_SCHEMA({ CONF_PLATFORM: DOMAIN, CONF_USERNAME: 'foo', CONF_PASSWORD: 'password', CONF_HOST: 'myhost', 'port': 'foo', # bad port! }) ```
{ "source": "JonatanRoig/django-online-tetris", "score": 2 }
#### File: django-online-tetris/online_tetris/views.py ```python from django.views.generic import DetailView, ListView, UpdateView, CreateView, TemplateView from .models import Sesion, Castigo from .forms import SesionForm, CastigoForm from django.views.decorators.csrf import csrf_exempt from django.template.loader import render_to_string from django.shortcuts import render from django.template import RequestContext from django.http import HttpResponse import simplejson as json import time import datetime from datetime import timedelta from django.utils import timezone from django.db.models import Q from random import randint @csrf_exempt def index(request): # return HttpResponse('Hello from Python!') if (request.method=='POST') and request.is_ajax(): # Datos que mandamos de vuelta al HTML response_data={} # Recojemos el NICKNAME introducido nickname=request.POST.get('nickname') # Creamos el objeto SESION new_sesion = Sesion(nombre=nickname) new_sesion.save() response_data['user_pk']= new_sesion.pk return HttpResponse(json.dumps(response_data),content_type="application/json") else: return render(request, 'tetris_main.html') @csrf_exempt def get_score(request): # return HttpResponse('Hello from Python!') if (request.method=='POST') and request.is_ajax(): # Recojemos el SCORE introducido score_actual=request.POST.get('score_actual') # Recojemos el USER_PK introducido user_pk=request.POST.get('user_pk') user_pk = int(user_pk) # Obtenemos el objeto SESION correspondiente al usuario sesion = Sesion.objects.get(pk=user_pk) sesion.puntos = score_actual sesion.save() # Datos que mandamos de vuelta al HTML response_data={} # Barrera de tiempo que sirve como tope para decir a partir # de que punto ya no se considera activa la sesion now = timezone.now() time_limit_barrier = now - datetime.timedelta(minutes=5) # Capturamos todos los objetos Sesion existentes en la base de datos all_sesions = Sesion.objects.filter(last_updated__range=(time_limit_barrier,now)).order_by('-puntos') # Renderizamos el marcador de puntuaciones en un string html response_data['html_scores']=render_to_string("marcador.html",{'all_sesions':all_sesions, 'user_pk': user_pk }) response_data['user_velocidad'] = sesion.velocidad return HttpResponse(json.dumps(response_data),content_type="application/json") else: return HttpResponse(json.dumps({"nothing to see":"this isn't happening"}),content_type="application/json") @csrf_exempt def get_castigs(request): if (request.method=='POST') and request.is_ajax(): # Recojemos el USER_PK introducido user_pk=request.POST.get('user_pk') user_pk = int(user_pk) # Obtenemos el objeto SESION correspondiente al usuario sesion = Sesion.objects.get(pk=user_pk) all_castigos = Castigo.objects.filter( Q(emisor=sesion) | Q(receptor=sesion) ).order_by('-created') # Datos que mandamos de vuelta al HTML response_data={} # Renderizamos el marcador de puntuaciones en un string html response_data['html_castigos']=render_to_string("castigos.html",{'all_castigos':all_castigos, 'user_pk': user_pk }) response_data['numero_castigos'] = len(Castigo.objects.filter(receptor=sesion)) return HttpResponse(json.dumps(response_data),content_type="application/json") else: return HttpResponse(json.dumps({"nothing to see":"this isn't happening"}),content_type="application/json") @csrf_exempt def new_castig(request): if (request.method=='POST') and request.is_ajax(): # Recojemos el USER_PK introducido user_pk=request.POST.get('user_pk') user_pk = int(user_pk) # Obtenemos el objeto SESION correspondiente al usuario sesion = Sesion.objects.get(pk=user_pk) # Escollim receptor entre sesion actives en la BD # Capturamos todos los objetos Sesion existentes en la base de datos # Barrera de tiempo que sirve como tope para decir a partir # de que punto ya no se considera activa la sesion now = timezone.now() time_limit_barrier = now - datetime.timedelta(minutes=5) # Capturamos todos los objetos Sesion existentes en la base de datos all_sesions = Sesion.objects.filter(last_updated__range=(time_limit_barrier,now)).order_by('-puntos').exclude(pk=sesion.pk) # Si existe algún otro usuario activo elegimos aleatoriamente a cual le enviamos el castigo if all_sesions: num_sesions = len(all_sesions) receptor_random = randint(0, num_sesions - 1) receptor_random = all_sesions[receptor_random] # Busquem un random de 0 a num_sesions i assignem all_sesions[random] a receptor new_castigo = Castigo(emisor=sesion, receptor=receptor_random) new_castigo.save() # Cambiamos las velocidades del usuario actual y del receptor sesion.reducir_velocidad() sesion.save() receptor_random.augmentar_velocidad() receptor_random.save() # Datos que mandamos de vuelta al HTML response_data={} return HttpResponse(json.dumps(response_data),content_type="application/json") else: return HttpResponse(json.dumps({"nothing to see":"this isn't happening"}),content_type="application/json") class SesionListView(ListView): model = Sesion class SesionCreateView(CreateView): model = Sesion form_class = SesionForm class SesionDetailView(DetailView): model = Sesion class SesionUpdateView(UpdateView): model = Sesion form_class = SesionForm class CastigoListView(ListView): model = Castigo class CastigoCreateView(CreateView): model = Castigo form_class = CastigoForm class CastigoDetailView(DetailView): model = Castigo class CastigoUpdateView(UpdateView): model = Castigo form_class = CastigoForm ```
{ "source": "jonatanskogsfors/fikabot", "score": 2 }
#### File: fikabot/fikabot/run_fikabot.py ```python import os from fikabot import FikaBot def main(): bot_id = os.environ.get("BOT_ID") slack_bot_token = os.environ.get('SLACK_BOT_TOKEN') FikaBot(bot_id, slack_bot_token).do_your_thing() if __name__ == "__main__": main() ```
{ "source": "jonatanvm/HI-VAE", "score": 2 }
#### File: jonatanvm/HI-VAE/VAE_functions.py ```python import csv import numpy as np import tensorflow as tf import loglik_models_missing_normalize def place_holder_types(types_file, batch_size): # Read the types of the data from the files with open(types_file) as f: types_list = [{k: v for k, v in row.items()} for row in csv.DictReader(f, skipinitialspace=True)] # Create placeholders for every data type, with appropriate dimensions batch_data_list = [] for i in range(len(types_list)): batch_data_list.append(tf.placeholder(tf.float32, shape=(batch_size, types_list[i]['dim']))) tf.concat(batch_data_list, axis=1) # Create placeholders for every missing data type, with appropriate dimensions batch_data_list_observed = [] for i in range(len(types_list)): batch_data_list_observed.append(tf.placeholder(tf.float32, shape=(batch_size, types_list[i]['dim']))) tf.concat(batch_data_list_observed, axis=1) # Create placeholders for the missing data indicator variable miss_list = tf.placeholder(tf.int32, shape=(batch_size, len(types_list))) # Placeholder for Gumbel-softmax parameter tau = tf.placeholder(tf.float32, shape=()) tau2 = tf.placeholder(tf.float32, shape=()) return batch_data_list, batch_data_list_observed, miss_list, tau, tau2, types_list def batch_normalization(batch_data_list, types_list, miss_list): normalized_data = [] normalization_parameters = [] for i, d in enumerate(batch_data_list): # Partition the data in missing data (0) and observed data n(1) missing_data, observed_data = tf.dynamic_partition(d, miss_list[:, i], num_partitions=2) condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:, i], num_partitions=2) if types_list[i]['type'] == 'real': # We transform the data to a gaussian with mean 0 and std 1 data_mean, data_var = tf.nn.moments(observed_data, 0) data_var = tf.clip_by_value(data_var, 1e-6, 1e20) # Avoid zero values aux_X = tf.nn.batch_normalization(observed_data, data_mean, data_var, offset=0.0, scale=1.0, variance_epsilon=1e-6) normalized_data.append(tf.dynamic_stitch(condition_indices, [missing_data, aux_X])) normalization_parameters.append([data_mean, data_var]) # When using log-normal elif types_list[i]['type'] == 'pos': # #We transform the log of the data to a gaussian with mean 0 and std 1 observed_data_log = tf.log(1.0 + observed_data) data_mean_log, data_var_log = tf.nn.moments(observed_data_log, 0) data_var_log = tf.clip_by_value(data_var_log, 1e-6, 1e20) # Avoid zero values aux_X = tf.nn.batch_normalization(observed_data_log, data_mean_log, data_var_log, offset=0.0, scale=1.0, variance_epsilon=1e-6) normalized_data.append(tf.dynamic_stitch(condition_indices, [missing_data, aux_X])) normalization_parameters.append([data_mean_log, data_var_log]) elif types_list[i]['type'] == 'count': # Input log of the data aux_X = tf.log(observed_data) normalized_data.append(tf.dynamic_stitch(condition_indices, [missing_data, aux_X])) normalization_parameters.append([0.0, 1.0]) else: # Don't normalize the categorical and ordinal variables normalized_data.append(d) normalization_parameters.append([0.0, 1.0]) # No normalization here return normalized_data, normalization_parameters def s_proposal_multinomial(X, batch_size, s_dim, tau, reuse): # We propose a categorical distribution to create a GMM for the latent space z log_pi = tf.layers.dense(inputs=X, units=s_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'enc_s', reuse=reuse) # Gumbel-softmax trick log_pi_aux = tf.log(tf.clip_by_value(tf.nn.softmax(log_pi), 1e-6, 1)) U = -tf.log(-tf.log(tf.random_uniform([batch_size, s_dim]))) samples_s = tf.nn.softmax((log_pi_aux + U) / tau) return samples_s, log_pi_aux def z_proposal_GMM(X, samples_s, batch_size, z_dim, reuse): # X_in = tf.layers.dense(inputs=X, units=100, activation=tf.nn.tanh, # kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_0_' + 'mean_enc_z', reuse=reuse) # We propose a GMM for z mean_qz = tf.layers.dense(inputs=tf.concat([X, samples_s], 1), units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_enc_z', reuse=reuse) log_var_qz = tf.layers.dense(inputs=tf.concat([X, samples_s], 1), units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'logvar_enc_z', reuse=reuse) # Avoid numerical problems log_var_qz = tf.clip_by_value(log_var_qz, -15.0, 15.0) # Rep-trick eps = tf.random_normal((batch_size, z_dim), 0, 1, dtype=tf.float32) samples_z = mean_qz + tf.multiply(tf.exp(log_var_qz / 2), eps) return samples_z, [mean_qz, log_var_qz] def z_proposal_Normal(X, batch_size, z_dim, reuse): # We propose a GMM for z mean_qz = tf.layers.dense(inputs=X, units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_enc_z', reuse=reuse) log_var_qz = tf.layers.dense(inputs=X, units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'logvar_enc_z', reuse=reuse) # Avoid numerical problems log_var_qz = tf.clip_by_value(log_var_qz, -15.0, 15.0) # Rep-trick eps = tf.random_normal((batch_size, z_dim), 0, 1, dtype=tf.float32) samples_z = mean_qz + tf.multiply(tf.exp(log_var_qz / 2), eps) return samples_z, [mean_qz, log_var_qz] def z_proposal_GMM_factorized(X, samples_s, miss_list, batch_size, z_dim, reuse): mean_qz = [] log_var_qz = [] for i, d in enumerate(X): # Partition the data in missing data (0) and observed data n(1) missing_data, observed_data = tf.dynamic_partition(d, miss_list[:, i], num_partitions=2) missing_s, observed_s = tf.dynamic_partition(samples_s, miss_list[:, i], num_partitions=2) condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:, i], num_partitions=2) # Get the dimensions of the observed data nObs = tf.shape(observed_data)[0] # Mean layer aux_m = tf.layers.dense(inputs=tf.concat([observed_data, observed_s], 1), units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_enc_z' + str(i), reuse=reuse) # Reconstruct means with zeros (so they don't affect the mean_joint) aux_mean_qz = tf.dynamic_stitch(condition_indices, [tf.zeros([batch_size - nObs, z_dim], dtype=tf.float32), aux_m]) # Logvar layers aux_lv = tf.layers.dense(inputs=tf.concat([observed_data, observed_s], 1), units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'logvar_enc_z' + str(i), reuse=reuse) # Set a high value to make the variance in the missing cases negligible aux_log_var_qz = tf.dynamic_stitch(condition_indices, [tf.fill([batch_size - nObs, z_dim], 15.0), aux_lv]) mean_qz.append(aux_mean_qz) log_var_qz.append(aux_log_var_qz) # Input prior log_var_qz.append(tf.zeros([batch_size, z_dim])) mean_qz.append(tf.zeros([batch_size, z_dim])) # Compute full parameters, as a product of Gaussians distribution log_var_qz_joint = -tf.reduce_logsumexp(tf.negative(log_var_qz), 0) mean_qz_joint = tf.multiply(tf.exp(log_var_qz_joint), tf.reduce_sum(tf.multiply(mean_qz, tf.exp(tf.negative(log_var_qz))), 0)) # Avoid numerical problems log_var_qz = tf.clip_by_value(log_var_qz, -15.0, 15.0) # Rep-trick eps = tf.random_normal((batch_size, z_dim), 0, 1, dtype=tf.float32) samples_z = mean_qz_joint + tf.multiply(tf.exp(log_var_qz_joint / 2), eps) return samples_z, [mean_qz_joint, log_var_qz_joint] def z_distribution_GMM(samples_s, z_dim, reuse): # We propose a GMM for z mean_pz = tf.layers.dense(inputs=samples_s, units=z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_dec_z', reuse=reuse) log_var_pz = tf.zeros([tf.shape(samples_s)[0], z_dim]) # Avoid numerical problems log_var_pz = tf.clip_by_value(log_var_pz, -15.0, 15.0) return mean_pz, log_var_pz def y_partition(samples_y, types_list, y_dim_partition): grouped_samples_y = [] # First element must be 0 and the length of the partition vector must be len(types_dict)+1 if len(y_dim_partition) != len(types_list): raise Exception("The length of the partition vector must match the number of variables in the data + 1") # Insert a 0 at the beginning of the cumsum vector partition_vector_cumsum = np.insert(np.cumsum(y_dim_partition), 0, 0) for i in range(len(types_list)): grouped_samples_y.append(samples_y[:, partition_vector_cumsum[i]:partition_vector_cumsum[i + 1]]) return grouped_samples_y def theta_estimation_from_z(samples_z, types_list, miss_list, batch_size, reuse): theta = [] # Independet yd -> Compute p(xd|yd) for i, d in enumerate(types_list): # Partition the data in missing data (0) and observed data (1) missing_y, observed_y = tf.dynamic_partition(samples_z, miss_list[:, i], num_partitions=2) condition_indices = tf.dynamic_partition(tf.range(tf.shape(samples_z)[0]), miss_list[:, i], num_partitions=2) nObs = tf.shape(observed_y)[0] # Different layer models for each type of variable if types_list[i]['type'] == 'real': params = theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'pos': params = theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'count': params = theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'cat': params = theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'ordinal': params = theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) theta.append(params) return theta def theta_estimation_from_y(samples_y, types_list, miss_list, batch_size, reuse): theta = [] # Independet yd -> Compute p(xd|yd) for i, d in enumerate(samples_y): # Partition the data in missing data (0) and observed data (1) missing_y, observed_y = tf.dynamic_partition(d, miss_list[:, i], num_partitions=2) condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:, i], num_partitions=2) nObs = tf.shape(observed_y)[0] # Different layer models for each type of variable if types_list[i]['type'] == 'real': params = theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'pos': params = theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'count': params = theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'cat': params = theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'ordinal': params = theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) theta.append(params) return theta def theta_estimation_from_ys(samples_y, samples_s, types_list, miss_list, batch_size, reuse): theta = [] # Independet yd -> Compute p(xd|yd) for i, d in enumerate(samples_y): # Partition the data in missing data (0) and observed data (1) missing_y, observed_y = tf.dynamic_partition(d, miss_list[:, i], num_partitions=2) missing_s, observed_s = tf.dynamic_partition(samples_s, miss_list[:, i], num_partitions=2) condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:, i], num_partitions=2) nObs = tf.shape(observed_y)[0] # Different layer models for each type of variable if types_list[i]['type'] == 'real': # params = theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) params = theta_real_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'pos': # params = theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) params = theta_pos_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'count': # params = theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) params = theta_count_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'cat': # params = theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) params = theta_cat_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse) elif types_list[i]['type'] == 'ordinal': # params = theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse) params = theta_ordinal_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse) theta.append(params) return theta def theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse): # Mean layer h2_mean = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=True) # Sigma Layer h2_sigma = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=True) return [h2_mean, h2_sigma] def theta_real_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse): # Mean layer h2_mean = observed_data_layer(tf.concat([observed_y, observed_s], 1), tf.concat([missing_y, missing_s], 1), condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=False) # Sigma Layer h2_sigma = observed_data_layer(observed_s, missing_s, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=False) return [h2_mean, h2_sigma] def theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse): # Mean layer h2_mean = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=True) # Sigma Layer h2_sigma = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=True) return [h2_mean, h2_sigma] def theta_pos_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse): # Mean layer h2_mean = observed_data_layer(tf.concat([observed_y, observed_s], 1), tf.concat([missing_y, missing_s], 1), condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=False) # Sigma Layer h2_sigma = observed_data_layer(observed_s, missing_s, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=False) return [h2_mean, h2_sigma] def theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse): # Lambda Layer h2_lambda = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=True) return h2_lambda def theta_count_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse): # Lambda Layer h2_lambda = observed_data_layer(tf.concat([observed_y, observed_s], 1), tf.concat([missing_y, missing_s], 1), condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=False) return h2_lambda def theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse): # Log pi layer, with zeros in the first value to avoid the identificability problem h2_log_pi_partial = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=int(types_list[i]['dim']) - 1, name='layer_h2' + str(i), reuse=reuse, bias=True) h2_log_pi = tf.concat([tf.zeros([batch_size, 1]), h2_log_pi_partial], 1) return h2_log_pi def theta_cat_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse): # Log pi layer, with zeros in the first value to avoid the identificability problem h2_log_pi_partial = observed_data_layer(tf.concat([observed_y, observed_s], 1), tf.concat([missing_y, missing_s], 1), condition_indices, output_dim=int(types_list[i]['dim']) - 1, name='layer_h2' + str(i), reuse=reuse, bias=False) h2_log_pi = tf.concat([tf.zeros([batch_size, 1]), h2_log_pi_partial], 1) return h2_log_pi def theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse): # Theta layer, Dimension of ordinal - 1 h2_theta = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=int(types_list[i]['dim']) - 1, name='layer_h2' + str(i), reuse=reuse, bias=True) # Mean layer, a single value h2_mean = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=1, name='layer_h2_sigma' + str(i), reuse=reuse, bias=True) return [h2_theta, h2_mean] def theta_ordinal_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse): # Theta layer, Dimension of ordinal - 1 h2_theta = observed_data_layer(observed_s, missing_s, condition_indices, output_dim=int(types_list[i]['dim']) - 1, name='layer_h2' + str(i), reuse=reuse, bias=False) # Mean layer, a single value h2_mean = observed_data_layer(tf.concat([observed_y, observed_s], 1), tf.concat([missing_y, missing_s], 1), condition_indices, output_dim=1, name='layer_h2_sigma' + str(i), reuse=reuse, bias=False) return [h2_theta, h2_mean] def observed_data_layer(observed_data, missing_data, condition_indices, output_dim, name, reuse, bias): # Train a layer with the observed data and reuse it for the missing data obs_output = tf.layers.dense(inputs=observed_data, units=output_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name=name, reuse=reuse, trainable=True, use_bias=bias) miss_output = tf.layers.dense(inputs=missing_data, units=output_dim, activation=None, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name=name, reuse=True, trainable=False, use_bias=bias) # Join back the data output = tf.dynamic_stitch(condition_indices, [miss_output, obs_output]) return output def loglik_evaluation(batch_data_list, types_list, miss_list, theta, tau2, normalization_params, reuse): log_p_x = [] log_p_x_missing = [] samples_x = [] params_x = [] # Independet yd -> Compute log(p(xd|yd)) for i, d in enumerate(batch_data_list): # Select the likelihood for the types of variables loglik_function = getattr(loglik_models_missing_normalize, 'loglik_' + types_list[i]['type']) out = loglik_function([d, miss_list[:, i]], types_list[i], theta[i], normalization_params[i], tau2, kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_mean_dec_x' + str(i), reuse=reuse) log_p_x.append(out['log_p_x']) log_p_x_missing.append(out['log_p_x_missing']) # Test-loglik element samples_x.append(out['samples']) params_x.append(out['params']) return log_p_x, log_p_x_missing, samples_x, params_x ```
{ "source": "jonatanvm/nlp-project", "score": 3 }
#### File: nlp-project/notebooks/plotting.py ```python import matplotlib.pyplot as plt import numpy as np from sklearn.manifold import TSNE def TSNE_scatterplot(model, word, neg_word, save=False): close_words = np.array(model.wv.most_similar([word])) neg_words = np.array(model.wv.most_similar(negative=[neg_word])) arrays = np.vstack((model.wv[[word]], model.wv[close_words[:, 0]], model.wv[neg_words[:, 0]])) word_labels = [word] + list(close_words[:, 0]) + list(neg_words[:, 0]) color_list = ['blue'] * len(close_words) + ['green'] * len(neg_words) Y = TSNE(n_components=2, random_state=0, perplexity=15).fit_transform(arrays) x = Y[1:, 0] y = Y[1:, 1] plt.figure(figsize=(11, 4)) plt.scatter(Y[0, 0], Y[0, 1], marker="*", c='blue', s=120) plt.scatter(x, y, c=color_list) plt.grid() annotations = [] for line in range(len(word_labels)): annotations.append(plt.text(Y[line, 0], Y[line, 1], word_labels[line].title())) if save: plt.savefig(f"{str(model)}.png", bbox_inches='tight') ```
{ "source": "jonatanwestholm/garageofcode", "score": 2 }
#### File: garageofcode/other/xkcd730.py ```python import time import numpy as np import networkx as nx #from garageofcode.mip.solver import get_solver from sentian_miami import get_solver def get_xkcd730_graph(): G = nx.DiGraph() edges = [(0, 1), (0, 7), (0, 9), (0, 10), (1, 7), (1, 3), (1, 6), (3, 4), (3, 5), (4, 5), (4, 9), (5, 8), (6, 7), (6, 8), (7, 8), (7, 9), (7, 12), (7, 13), (7, 14), (8, 14), (9, 10), (9, 11), (10, 11), (11, 12), (11, 13), (12, 13), (13, 14) ] G.add_edges_from(edges) return G def get_simple_graph(): G = nx.DiGraph() edges = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), ] G.add_edges_from(edges) return G def get_potentials(G, s, t): # It's not necessary to use a MIP solver for this; # it's just a linear equation system. # But it makes for a simple formulation. solver = get_solver("mono") t0 = time.time() potentials = {node: solver.NumVar(lb=0) for node in G} currents = {e: solver.NumVar() for e in G.edges} # Edge conditions U0, U_1 = 1, 0 total_potential = U0 - U_1 solver.Add(potentials[s] == U0) solver.Add(potentials[t] == U_1) # Kirchoff's law: current is preserved in internal nodes for node in G: in_current = solver.Sum([currents[e] for e in G.in_edges(node)]) out_current = solver.Sum([currents[e] for e in G.out_edges(node)]) if node == s: total_in = out_current - in_current elif node == t: total_out = in_current - out_current else: solver.Add(in_current == out_current) # Ohm's law: delta U = I * R for e in G.edges: i, j = e Ui = potentials[i] Uj = potentials[j] Iij = currents[e] Rij = 1 # ignore resistance parameter for now solver.Add(Ui - Uj == Rij * Iij) t1 = time.time() print("Build time: {0:.3f}".format(t1 - t0)) solver.Solve(time_limit=10, verbose=True) total_current = solver.solution_value(total_in) total_resistance = total_potential / total_current print("Total resistance: {0:.3f}".format(total_resistance)) print("Total current: {0:.3f}".format(total_current)) for node, potential in sorted(potentials.items()): print("{0:d} {1:.3f}".format(node, solver.solution_value(potential))) def main(): np.random.seed(0) G = get_xkcd730_graph() #G = get_simple_graph() get_potentials(G, 0, max(G)) if __name__ == '__main__': main() ```
{ "source": "jonatanwestholm/sugarrush", "score": 3 }
#### File: sugarrush/sugarrush/solver.py ```python from pysat.solvers import Solver from pysat.card import CardEnc, EncType, ITotalizer from pysat.formula import CNF from sugarrush.utils import flatten_simple as flatten from sugarrush.utils import dbg, a_eq_i, is_iter class SugarRush(Solver): """ Quality-of-life wrapper for pysat.solvers.Solver * Does automatic bookkeeping of literals. * When calling constraint builders, new literals are assigned, that do not interfere with existing literals. * New literals can also be created and accessed by :meth:`var`. * After solving, the solution value for a given var, can be obtained by :meth:`solution_value`. * Constraint builders return CNF's, but do not add them automatically to the model. """ def __init__(self, name="glucose4"): super().__init__(name=name) self.var2val = {} self.lits = set([0]) def var(self): """ **Added in SugarRush**\n Return a new unused variable. """ self.lits.add(self._top_id() + 1) return self._top_id() def add(self, c): """ **Added in SugarRush**\n If c is iterable of iterable of ints, then interpret as CNF. If c is iterable of ints (simple list of literals), then interpet as single clause.\n Simple list of literals: .. code-block:: python >>> from sugarrush.solver import SugarRush >>> with SugarRush() as solver: X = [solver.var() for _ in range(6)] solver.add(X) solver.solve() print(solver.solution_values(X)) [1, 0, 0, 0, 0, 0] List of list of literals: .. code-block:: python >>> from sugarrush.solver import SugarRush >>> with SugarRush() as solver: X = [solver.var() for _ in range(6)] solver.add([X]) solver.solve() print(solver.solution_values(X)) [1, 0, 0, 0, 0, 0] Normal CNF: .. code-block:: python >>> from sugarrush.solver import SugarRush >>> with SugarRush() as solver: X = [solver.var() for _ in range(6)] solver.add([X[:3], X[3:]]) solver.solve() print(solver.solution_values(X)) [1, 0, 0, 1, 0, 0] """ for elem in c: try: iter(elem) except TypeError: self._add(c) # c is list of ints break self._add(*c) # c is list of lists of ints break def _add(self, *clauses): for clause in clauses: self._add_clause(clause) def _add_clause(self, clause): self._add_lits(clause) self.add_clause(clause) def _add_lits(self, lits): """ **Added in SugarRush**\n Update the internal set of literals. """ for lit in lits: self.lits.add(abs(lit)) def _add_lits_from(self, cnf): """ **Added in SugarRush**\n Update the internal set of literals from a CNF. """ self._add_lits(flatten(cnf)) def _top_id(self): """ **Added in SugarRush**\n Return the largest valued literal in use by the model. """ return max(self.lits) def _init_var2val(self): """ **Added in SugarRush**\n Initialize a mapping to the solved values. The mapping is such that **var2val[var]** has the same boolean value as :param:`var` in the satisfying assignment. """ for val in self.get_model(): if abs(val) in self.lits: self.var2val[abs(val)] = (val > 0) * 1 # 1-indexed def solve(self, **kwargs): ret = super().solve(**kwargs) self.solver_called = True return ret def solution_value(self, var): """ **Added in SugarRush**\n Get solved value of **var**. Must not be run before successful solve. """ try: _ = self.solver_called except AttributeError: raise TypeError("Solver.solution_value() called before model solved") if (not self.var2val) or self.solver_called: self._init_var2val() self.solver_called = False if var not in self.var2val: return 0 else: return self.var2val[var] def solution_values(self, variables): """ **Added in SugarRush**\n List version of :meth:`solution_value`. """ return [self.solution_value(var) for var in variables] def print_stats(self): """ **Added in SugarRush**\n Print number of variables and number of clauses used by the solver. """ print("Nof variables:", self.nof_vars()) print("Nof clauses:", self.nof_clauses()) def print_values(self): """ **Added in SugarRush**\n Print full mapping from vars to boolean values """ for var, val in sorted(self.var2val.items()): print("{}: {}".format(var, val)) """ Constructs """ def equals(self, lits, bound=1, encoding=EncType.seqcounter): """ **Added in SugarRush**\n Uses :meth:`pysat.card.CardEnc.equals`. Adds automatic bookkeeping of literals. """ cnf = CardEnc.equals(lits=lits, bound=bound, encoding=encoding, top_id=self._top_id()) clauses = cnf.clauses self._add_lits_from(clauses) return clauses def atmost(self, lits, bound=1, encoding=EncType.seqcounter): """ **Added in SugarRush**\n Uses :meth:`pysat.card.CardEnc.atmost`. Adds automatic bookkeeping of literals. """ cnf = CardEnc.atmost(lits=lits, bound=bound, encoding=encoding, top_id=self._top_id()) clauses = cnf.clauses self._add_lits_from(clauses) return clauses #self.add(clauses) #return cnf.clauses def negate(self, clauses): """ **Added in SugarRush**\n Uses :meth:`pysat.formula.CNF.negate`. Adds automatic bookkeeping of literals. """ cnf = CNF(from_clauses=clauses) neg = cnf.negate(topv=self._top_id()) neg_clauses = neg.clauses self._add_lits_from(neg_clauses) #neg_force = [[-auxvar] for auxvar in neg.auxvars] #print(neg_force) #self.add(neg_force) #print(neg.auxvars) #self.add([neg.auxvars]) return neg_clauses def int2binvec(solver, x, N): """ **Added in SugarRush**\n Given an integer, return an N-length binary vector and clauses equal to that integer. """ if is_iter(x): return x, [] else: i = x x = [solver.var() for _ in range(N)] return x, a_eq_i(x, i) def xor(self, x1, x2): """ **Added in SugarRush**\n Returns an indicator t <=> xor(x1, x2), and clauses. Adds automatic bookkeeping of literals. """ t = self.var() clauses = [[-t, x1, x2], [-t, -x1, -x2], [t, x1, -x2], [t, -x1, x2]] return t, clauses def parity(self, X): """ **Added in SugarRush**\n Returns an indicator t, for whether the sum of X is even (t=0) or odd (t=1). Adds automatic bookkeeping of literals. """ if len(X) == 0: raise ValueError("Cannot take parity of zero variables") clauses = [] t = X[0] for x in X[1:]: t, c = self.xor(x, t) clauses.extend(c) return t, clauses def less(self, a, b): return self.less_(a, b, strict=True) def leq(self, a, b): return self.less_(a, b, strict=False) def less_(self, a, b, strict): """ **Added in SugarRush**\n Return indicator and constraints for a less than b. if strict: a < b if not strict: a <= b Adds automatic bookkeeping of literals. """ if is_iter(a): N = len(a) else: N = len(b) # b better be iterable then a, cnfa = self.int2binvec(a, N) b, cnfb = self.int2binvec(b, N) print(cnfa, cnfb) cnf = cnfa + cnfb assert len(a) == len(b) last_iteration = len(a) - 1 ti_1 = None # t(i - 1) for iteration, (ai, bi) in enumerate(zip(a, b)): # The t's indicate that given the current assumptions # about the literals, the constraint is already fulilled. # If ti becomes true anywhere, # then this will propagate to all subsequent clauses, # and pop them. if ti_1 is None: already_smaller = [[-ai], [bi]] else: already_smaller = [[ti_1, -ai], [ti_1, bi]] ti, ti_bind = self.indicator(already_smaller) cnf.extend(ti_bind) if iteration is last_iteration and strict: pass elif iteration is last_iteration and not strict: ti, ti_bind = self.indicator([[ti, -ai, bi]]) cnf.extend(ti_bind) else: cnf.append([ti, -ai, bi]) # ti OR (ai <= bi) == (ti OR !ai OR bi) ti_1 = ti return ti, cnf def plus(self, a, b, z): """ **Added in SugarRush**\n Constrains z = (a + b) % 2**N N == len(a) == len(b) == len(z) for the inputs that are binary vectors, integer inputs are converted to binary vectors. In other words, uintN addition. The leftmost bit is assumed to be the highest bit. """ if is_iter(a): N = len(a) elif is_iter(b): N = len(b) else: N = len(z) a, cnfa = self.int2binvec(a, N) b, cnfb = self.int2binvec(b, N) z, cnfz = self.int2binvec(z, N) assert len(a) == len(b) == len(z) cnf = cnfa + cnfb + cnfz return cnf + self.plus_(a, b, z) def plus_(self, a, b, z): """ **Added in SugarRush**\n Internal method Constrains z = (a + b) % 2**N N == len(a) == len(b) == len(z) In other words, uintN addition. The leftmost bit is assumed to be the highest bit. """ cnf = [] carry = None for ap, bp, zp in zip(a[::-1], b[::-1], z[::-1]): if carry is None: t, t_bind = self.parity([ap, bp]) carry = self.var() cnf.extend([[-carry, ap], [-carry, bp], [carry, -ap, -bp]]) # carry == ap AND bp else: t, t_bind = self.parity([ap, bp, carry]) carry_1 = self.var() cnf.extend([[carry_1, -ap, -bp], [carry_1, -ap, -carry], [carry_1, -bp, -carry], [-carry_1, ap, bp], [-carry_1, ap, carry], [-carry_1, bp, carry]]) # carry_1 == (ap + bp + carry >= 2) carry = carry_1 cnf.extend(t_bind) cnf.extend([[zp, -t], [-zp, t]]) # zp == t return cnf def element(self, v, a, z): cnf = [] try: K = len(a) except TypeError: # the given a is an integer i = a assert i < len(v), "list index out of range" K = 0 while 2**K < len(v): K += 1 a = [self.var() for _ in range(K)] cnf.extend(a_eq_i(a, i)) return cnf + self.element_(v, a, z) def element_(self, v, a, z): """Constrain z = v[a] where a is uintK, z is uintN, v is a vector of at most 2**K uintN """ assert len(v) <= 2**len(a) assert all([len(vi) == len(z) for vi in v]) cnf = [] for i, vi in enumerate(v): a_eq_i_clauses = a_eq_i(a, i) ti, ti_bind = self.indicator(a_eq_i_clauses) cnf.extend(ti_bind) for vij, zj in zip(vi, z): # if ti is true then vij == zj cnf.extend([[-ti, -vij, zj], [-ti, vij, -zj]]) return cnf def indicator(self, cnf): """ **Added in SugarRush**\n Uses Tseytin transformation to create a variable that has the same boolean value as the given CNF. Does automatic bookkeeping of literals. Creates len(cnf) + 1 new variables Return indicator variable, and the equivalence clauses """ indicators = [] clauses = [] for clause in cnf: p, equivalence = self.indicate_disjunction(clause) indicators.append(p) clauses.extend(equivalence) p, equivalence = self.indicate_conjunction(indicators) clauses.extend(equivalence) return p, clauses def indicate_disjunction(self, clause): """ **Added in SugarRush**\n p <=> (c1 OR c2 OR ... OR cn) """ if len(clause) == 1: return clause[0], [] p = self.var() right_imp = [clause + [-p]] # p => (c1 OR c2 OR ... OR cn) left_imp = [[-c, p] for c in clause] # (c1 OR c2 OR ... OR cn) => p equivalence = right_imp + left_imp return p, equivalence def indicate_conjunction(self, clause): """ **Added in SugarRush**\n p <=> (c1 AND c2 AND ... AND cn) """ p = self.var() right_imp = [[-p, c] for c in clause] # p => (c1 AND c2 AND ... AND cn) left_imp = [[-c for c in clause] + [p]] # (c1 AND c2 AND ... AND cn) => p equivalence = right_imp + left_imp return p, equivalence def disjunction(self, cnfs): """ **Added in SugarRush**\n Uses :meth:`indicator` to create a CNF that has the same boolean value as the disjunction of a given set of CNF's. Does automatic bookkeeping of literals. """ inds = [] clauses = [] for cnf in cnfs: p, equiv = self.indicator(cnf) inds.append(p) clauses.extend(equiv) clauses.append(inds) return clauses def itotalizer(self, lits, ubound=None): """ **Added in SugarRush**\n Uses :meth:`pysat.card.ITotalizer`. Adds automatic bookkeeping of literals. """ if ubound is None: ubound = len(lits) itot = ITotalizer(lits, ubound) clauses = itot.cnf.clauses bound_vars = itot.rhs self._add_lits_from(clauses) return clauses, bound_vars def optimize(self, itot, search="linear"): if search == "linear": return self.optimize_linear(itot) elif search == "binary": return self.optimize_binary(itot) else: raise Exception("Unknown search method!") def optimize_linear(self, itot): self.print_stats() ub = len(itot) - 1 if not self.solve(assumptions=[-itot[ub]]): return None ub -= 1 while ub >= 0: print("ub:", ub) if not self.solve(assumptions=[-itot[ub]]): print("returning:", ub + 1) return ub + 1 else: ub -= 1 return 0 def optimize_binary(self, itot, debug=False): """ **Added in SugarRush**\n Uses binary search to find the smallest satisfiable value for the ITotalizer. Assumes that satisfiability is monotonically increasing. """ upper = len(itot) - 1 # smallest known to be feasible lower = 0 # largest known to be infeasible (after initial check) if not self.solve(assumptions=[-itot[upper]]): return None if self.solve(assumptions=[-itot[lower]]): return 0 while True: mid = (upper + lower) // 2 dbg("upper: %d" % upper, debug) dbg("mid: %d" % mid, debug) dbg("lower: %d" % lower, debug) if mid == lower: break satisfiable = self.solve(assumptions=[-itot[mid]]) dbg("satisfiable: %d" % satisfiable, debug) if satisfiable: upper = mid else: lower = mid dbg("", debug) self.solve(assumptions=[-itot[upper]]) return upper ```
{ "source": "jonatas2014/simple_chat_with_Blowfish", "score": 4 }
#### File: jonatas2014/simple_chat_with_Blowfish/criptography.py ```python from Crypto.Cipher import Blowfish DEFAULT_KEY = b"You are worthless but I like you" ENCONDING_FORMAT = 'UTF-8' class BlowfishCriptography: def __init__(self, key): self.cipher = Blowfish.new(key) def __prepare_for_encryption(self, text): """ Ensures the message length is multiple of 8 :param text: The content to be prepared for encryption :type: str :return: The content padded with trailing space characters """ return text.ljust(8 * (len(text) // 8 + 1)) def encrypt(self, plain_text): """ Encrypts the text :param plain_text: The text to be encrypted :type: str :return: Encrypted text using blowfish algorithm """ plain_text = self.__prepare_for_encryption(plain_text) return self.cipher.encrypt(plain_text) def decrypt(self, cipher_text): """ Decrypts the text. Also, decodes the decrypted text to UTF-8 and removes the trailing space characters :param cipher_text: The ciphered text to be decrypted :type: str :return: Decrypted text which was encrypted using Blowfish algorithm """ decrypted_text = self.cipher.decrypt(cipher_text).decode(ENCONDING_FORMAT) decrypted_text = decrypted_text.strip() return decrypted_text if __name__ == '__main__': message = 'Alone on a Saturday night? God, you\'re pathetic' cipher = BlowfishCriptography(DEFAULT_KEY) encrypted_text = cipher.encrypt(message) decrypted_text = cipher.decrypt(encrypted_text) assert message == decrypted_text, 'Message are not equal after apply encrypt and decrypt methods' ```
{ "source": "jonatasbaldin/pygoqrme", "score": 3 }
#### File: pygoqrme/pygoqrme/pygoqrme.py ```python import requests, re, os from urllib.parse import quote class Api(object): """ Main class """ def __init__(self, size='200x200', charset_source='UTF-8', charset_target='UTF-8', ecc='L', color='0-0-0', bgcolor='255-255-255', margin=1, qzone=0, fmt='png'): """ Define common parameters to all QRCode types """ self.size = size self.charset_source = charset_source self.charset_target = charset_target self.ecc = ecc self.color = color self.bgcolor = bgcolor self.margin = margin self.qzone = qzone self.fmt = fmt def text(self, text): """ Creates QRCode with simple text Parameters: data: text to be created """ return self.req(text) def url(self, url): """ Creates QRCode with url Parameters: url: url to be created """ # Django's Validator (modified) url_regex = re.compile( r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4 r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) # test if its url # and if it is, encoded it data_url = re.findall(url_regex, url) if data_url.__len__() != 0: url = quote(url) else: return 'Inavlid URL' return self.req(url) def wifi(self, ssid, security, password): """ Creates QRCode to WiFi connection Parameters: ssid: wifi connection name security: wifi security, WEP or WPA password: wifi password """ data = 'WIFI:S:{};T:{};P:{};;'.format(ssid, security, password) return self.req(data) def geo(self, latitude, longitude, distance): """ Creates QRCode with geolocation Parameters: latitude: specifies latitude longitude: specifies longitude distance: specifies distance to map """ data = 'geo:{},{},{}'.format(latitude, longitude, distance) return self.req(data) def call(self, phone): """ Creates QRCode with a number to call Parameters: phone: number to call """ data = 'tel:{}'.format(phone) return self.req(data) def sms(self, phone, message=''): """ Creates QRCode with message to be sent via sms Parameters: phone: number to send message: sms message to send """ data = 'SMSTO:{}:{}'.format(phone, message) return self.req(data) def mail(self, email, subject, body): """ Creates QRCode to send an email Parameters: email: destination email subject: email subject body: email body """ data = 'mailto:{}?subject={}&body={}'.format(email, subject, body) return self.req(data) def save(self, filename): """ Saves the QRCode to a file Parameters: filename: file to be saved, if it has no extensions, automatically adds it """ # if file has no extension, add extension to it if not os.path.splitext(filename)[-1]: filename = filename + '.' + self.fmt # writes qrcode to file with open(filename, 'bw') as f: f.write(self.qrcode) def req(self, data): """ Makes the requests Parameters: data: data to be sent to goqr.me """ url = 'https://api.qrserver.com/v1/create-qr-code/?data={}&size={}&charset-source={}&charset_target={}&ecc={}&color={}&bgcolor={}&margin={}&qzone={}&format={}'.format( data, self.size, self.charset_source, self.charset_target, self.ecc, self.color, self.bgcolor, self.margin, self.qzone, self.fmt) qr_request = requests.get(url) self.qrcode = qr_request.content return self.qrcode ```
{ "source": "jonatasbaldin/wsquiz", "score": 3 }
#### File: wsquiz/quiz/tests.py ```python import json from channels import Channel, Group from channels.test import ChannelTestCase, WSClient from quiz import models class ChannelTests(ChannelTestCase): def _setup_player(self, name='Player'): return models.Player.objects.create(name=name) def _setup_question(self, text='My Question'): return models.Question.objects.create(text=text) def _setup_choice(self, question, text='My Choice', right_answer=True): return models.Choice.objects.create( question=question, text=text, right_answer=right_answer, ) def _setup_answer(self, question, choice, player): return models.QuestionChoicePlayer.objects.create( question=question, choice=choice, player=player ) def test_top_players(self): player = self._setup_player() question = self._setup_question() choice = self._setup_choice(question=question) Group('top_players').add('test_channel') self._setup_answer( player=player, question=question, choice=choice ) top_players = models.Player.top_players() result = self.get_next_message('test_channel', require=True) result = json.loads(result['text']) self.assertEqual(result[0]['name'], top_players[0].name) self.assertEqual(result[0]['right_answers'], top_players[0].right_answers) self.assertEqual(result[0]['wrong_answers'], top_players[0].wrong_answers) self.assertEqual(result[0]['time_playing'], top_players[0].time_playing) def test_send_answer_no_more_question(self): player = self._setup_player() question = self._setup_question() choice = self._setup_choice(question=question) text = { 'player': player.name, 'question_id': question.id, 'choice_id': choice.id, } client = WSClient() client.send_and_consume('websocket.receive', text=text) result = client.receive() self.assertFalse(result['next_question']) self.assertTrue(result['game_finished']) self.assertTrue(result['last_right_answer'], choice.text) self.assertEqual(result['time_playing'], player.time_playing) def test_send_answer_with_more_question(self): player = self._setup_player() question_one = self._setup_question() question_two = self._setup_question() choice_one = self._setup_choice(question=question_one) choice_two = self._setup_choice(question=question_two) text = { 'player': player.name, 'question_id': question_one.id, 'choice_id': choice_one.id, } client = WSClient() client.send_and_consume('websocket.receive', text=text) result = client.receive() self.assertTrue('question' in result['next_question']) self.assertEqual(result['next_question']['question'], question_two.text) self.assertEqual(result['next_question']['choices'][0]['text'], choice_two.text) self.assertTrue(result['last_right_answer'], choice_one.text) self.assertFalse(result['game_finished']) ```
{ "source": "jonatascastro12/open-brqq", "score": 2 }
#### File: open-brqq/main/models.py ```python from django.db import models # Create your models here. class City(models.Model): name = models.CharField(max_length=255) uf = models.CharField(max_length=2) region = models.CharField(max_length=30, null=True, blank=True) video = models.ForeignKey('main.GloboVideo', on_delete=models.SET_NULL, null=True, blank=True) treated_subtitle_part = models.TextField(null=True, blank=True) content1 = models.TextField(null=True, blank=True) content2 = models.TextField(null=True, blank=True) content3 = models.TextField(null=True, blank=True) def has_treated_subtitle(self): return self.treated_subtitle_part is not None has_treated_subtitle.short_description = 'Has Treated Subtitle?' has_treated_subtitle.boolean = True def has_analysis(self): return self.keywordanalysis_set.count() > 0 has_analysis.short_description = 'Has Analysis?' has_analysis.boolean = True def __str__(self): return str(self.name + '-' + self.uf) class Meta: ordering = ['uf', 'name'] class GloboVideo(models.Model): title = models.CharField(max_length=255) description = models.CharField(max_length=255) globo_id = models.IntegerField(null=True, blank=True) video_info = models.TextField(null=True, blank=True) exhibited_at = models.DateField(null=True, blank=True) subtitle_url = models.CharField(max_length=255) subtitle_content = models.TextField(null=True, blank=True) subtitle_cleaned_content = models.TextField(null=True, blank=True) error_on_clean = models.BooleanField(default=False) def __str__(self): return str(self.globo_id) def has_subtitle(self): return self.subtitle_url != '' has_subtitle.short_description = 'Has Subtitle?' has_subtitle.boolean = True ``` #### File: open-brqq/main/tasks.py ```python from collections import Counter import os from celery import shared_task import json import requests import re from main.models import City, GloboVideo # Imports the Google Cloud client library # @shared_task(bind=True, name='Video crawler') def run_crawler(self): response = requests.get('https://especiais.g1.globo.com/o-brasil-que-eu-quero/2018/videos/js/data.json') data = response.json() i = 0 municipios = data.get('municipios') for mun in municipios: i = i + 1 # self.update_state(state='PROGRESS', # meta={'current': i, 'total': len(municipios)}) city = City.objects.get_or_create(name=mun.get('municipio'), uf=mun.get('estado'))[0] if (mun.get('video')): try: if not city.video: video = GloboVideo.objects.filter(globo_id=mun.get('video')).first() if video: city.video = video city.save() continue response2 = requests.get( 'https://api.globovideos.com/videos/%s/playlist/callback/wmPlayerPlaylistLoaded%s' % ( mun.get('video'), mun.get('video'))) videoInfo = response2.text result = re.search('wmPlayerPlaylistLoaded[0-9]+\((.+)\)\;', videoInfo) videoInfo = result.group(1) videoInfo = json.loads(videoInfo).get('videos')[0] video = GloboVideo.objects.create(title=videoInfo.get('title'), globo_id=videoInfo.get('id'), video_info=json.dumps(videoInfo), description=videoInfo.get('description'), exhibited_at=videoInfo.get('exhibited_at'), ) city.video = video city.save() subtitles = [r for r in videoInfo.get('resources') if r.get('type') == 'subtitle'] if len(subtitles) > 0 and subtitles[0].get('url'): sub_url = subtitles[0].get('url') video.subtitle_url = sub_url response3 = requests.get(sub_url) video.subtitle_content = response3.content.decode('utf8') video.save() except Exception: print('error', mun.get('video')) ```
{ "source": "jonatascs/labdata-tcc", "score": 3 }
#### File: data_scraping/spiders/pkm.py ```python from typing import Any, Callable import scrapy class PkmSpider(scrapy.Spider): name = 'pkm' allowed_domains = ['pokemondb.net'] start_urls = ['http://pokemondb.net/pokedex/bulbasaur'] def parse(self, response): name = response.xpath('//h1/text()').extract_first() number = response.xpath('//*[@class="vitals-table"]//tbody/tr/td/strong/text()').extract_first() pktype = response.xpath('//*[@class="vitals-table"]/tbody/tr/td')[1].xpath('a/text()').extract() pkspecies = response.xpath('//*[@class="vitals-table"]/tbody/tr/td')[2].xpath('text()').extract() pkheight = response.xpath('//*[@class="vitals-table"]/tbody/tr/td')[3].xpath('text()').extract() pkweight = response.xpath('//*[@class="vitals-table"]/tbody/tr/td')[4].xpath('text()').extract() pkabilities = response.xpath('//*[@class="vitals-table"]/tbody/tr/td')[4] \ .xpath('//*[@class="text-muted"]/a/text()').extract() # Base stats pkhp = response.xpath('//*[@class="vitals-table"]')[1].xpath('//*[@class="cell-num"]')[0] \ .xpath('text()').extract() pkattack = response.xpath('//*[@class="vitals-table"]')[1].xpath('//*[@class="cell-num"]')[3] \ .xpath('text()').extract() pkdefense = response.xpath('//*[@class="vitals-table"]')[1].xpath('//*[@class="cell-num"]')[6] \ .xpath('text()').extract() pkspatk = response.xpath('//*[@class="vitals-table"]')[1].xpath('//*[@class="cell-num"]')[9] \ .xpath('text()').extract() pkspdef = response.xpath('//*[@class="vitals-table"]')[1].xpath('//*[@class="cell-num"]')[12] \ .xpath('text()').extract() pkspeed = response.xpath('//*[@class="vitals-table"]')[1].xpath('//*[@class="cell-num"]')[15] \ .xpath('text()').extract() dict_stats = {"hp": pkhp, "Attack": pkattack, "pkdefense": pkdefense, "SpAtk": pkspatk, "pkspdef": pkspdef, "Speed": pkspeed, } # Type defenses nor = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[0].xpath('text()').extract() fir = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[1].xpath('text()').extract() wat = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[2].xpath('text()').extract() ele = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[3].xpath('text()').extract() gra = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[4].xpath('text()').extract() ice = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[5].xpath('text()').extract() fig = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[6].xpath('text()').extract() poi = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[7].xpath('text()').extract() gro = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[8].xpath('text()').extract() fly = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[9].xpath('text()').extract() psy = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[10].xpath('text()').extract() bug = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[11].xpath('text()').extract() roc = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[12].xpath('text()').extract() gho = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[13].xpath('text()').extract() dra = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[14].xpath('text()').extract() dar = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[15].xpath('text()').extract() ste = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[16].xpath('text()').extract() fai = response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[17].xpath('text()').extract() dict_defenses = {"nor": nor, "fir": fir, "wat": wat, "ele": ele, "gra": gra, "ice": ice, "fig": fig, "poi": poi, "gro": gro, "fly": fly, "psy": psy, "bug": bug, "roc": roc, "gho": gho, "dra": dra, "dar": dar, "ste": ste, "fai": fai} # recuperar propriedade title # response.xpath('//*[@class="type-table type-table-pokedex"]/tr/td')[0].xpath('@title').extract() yield { "name": name, "number": number, "type": pktype, "species": pkspecies, "height": pkheight, "weight": pkweight, "abilities": pkabilities, "stats": dict_stats, "defenses": dict_defenses } next_page_url = response.xpath('//*[@class="entity-nav-next"]/@href').extract_first() absolute_next_page_url = response.urljoin(next_page_url) yield scrapy.Request(absolute_next_page_url) ```
{ "source": "JonatasDPorto/QuickDrawFlutterApp", "score": 3 }
#### File: QuickDrawFlutterApp/api/app.py ```python from flask import Flask, request, jsonify from PIL import Image from tensorflow import keras from keras.layers import Input, Dense, Activation, BatchNormalization, Flatten, Conv2D, MaxPool2D, LSTM, Embedding, SimpleRNN, Reshape, Lambda import numpy as np import cv2 from skimage.filters import threshold_otsu from skimage.color import rgb2gray, convert_colorspace, rgb2gray, rgb2gray from skimage import io, filters app = Flask(__name__) model_cnn = keras.models.load_model('./model_cnn.h5') model_rnn = keras.models.load_model('./model_rnn.h5', custom_objects={ "Reshape": Reshape, "Lambda": Lambda, "Flatten": Flatten, "SimpleRNN": SimpleRNN, "Conv2D": Conv2D }) images_labels = ['bee', 'coffee cup', 'guitar', 'hamburger', 'rabbit', 'truck', 'umbrella', 'crab', 'banana', 'airplane'] #flask run -h 192.168.0.118 @app.route("/classificar", methods=["POST"]) def process_image(): print('Realizando classificação...') img = request.files['file'] img.save("img-original.jpg") SIZE = 28 img = cv2.imread("img-original.jpg", 0) img_gray = rgb2gray(img) thresh = threshold_otsu(img_gray) binary_thresh_img = img_gray > thresh io.imsave("img-tratada.png", binary_thresh_img) with Image.open("img-tratada.png") as im: imagem = im.resize((SIZE,SIZE)).convert('L') imagem = np.array(imagem)/255 result_cnn = model_cnn.predict(np.array([imagem]))[0] result_rnn = model_rnn.predict(np.array([imagem]))[0] r = {'cnn': result_cnn.tolist(), 'rnn': result_rnn.tolist()} return jsonify(r) if __name__ == "__main__": app.run(debug=True) ```
{ "source": "JonatasFontele/10-days-of-statistics", "score": 4 }
#### File: JonatasFontele/10-days-of-statistics/day_3_conditional_probability.py ```python from itertools import product from fractions import Fraction from random import choice # Suppose a family has 2 children, one of which is a boy(b). What is the probability that both children are boys(bb)? def calculate_2children_prob(): genders = ["b", "g"] cartesian_product_list = list(product(genders, repeat=2)) event_b = [] event_bb = [] for subset in cartesian_product_list: if "b" in subset: event_b.append(subset) if ('b', 'b') == subset: event_bb.append(subset) return Fraction(len(event_bb), len(event_b)) # event_b = [subset for subset in cartesian_product_list if "b" in subset] # event_bb = [subset for subset in event_b if ('b', 'b') == subset] # Is slightly slower def choose_2children(n_simulations=100000): event_b = 0 event_bb = 0 for _ in range(n_simulations): child1 = choice(["b", "g"]) child2 = choice(["b", "g"]) children = child1 + child2 if "b" in children: event_b += 1 if children == "bb": event_bb += 1 # p(b|bb) = 1 # p(bb|b) = p(b|bb) * p(bb) / p(b) return event_bb/event_b def main(): print(calculate_2children_prob()) print(choose_2children()) print(round(choose_2children()*100, 2), "%") if __name__ == "__main__": main() ```
{ "source": "JonatasFontele/30-Days-of-Code-Challenges", "score": 4 }
#### File: JonatasFontele/30-Days-of-Code-Challenges/day_19_interfaces.py ```python class AdvancedArithmetic(object): def divisorSum(n): raise NotImplementedError class Calculator(AdvancedArithmetic): def divisorSum(self, n): sum = 0 # O(sqrt(n)) instead of brute-force technique O(n) for i in range(1, int(n ** 0.5) + 1): if n % i == 0: # If divisors are equal, print only one if n / i == i: sum += i # Otherwise print both else: sum += i sum += n // i return sum n = int(input()) my_calculator = Calculator() s = my_calculator.divisorSum(n) print("I implemented: " + type(my_calculator).__bases__[0].__name__) print(s) ``` #### File: JonatasFontele/30-Days-of-Code-Challenges/day_3_intro_to_conditional_statements.py ```python def is_weird(n): if n % 2 != 0: print("Weird") elif 2 <= n <= 5 and (n % 2 == 0): print("Not Weird") elif 6 <= n <= 20 and (n % 2 == 0): print("Weird") elif n > 20 and (n % 2 == 0): print("Not Weird") def main(): n = int(input()) if 1 <= n <= 100: is_weird(n) if __name__ == "__main__": main() ``` #### File: JonatasFontele/30-Days-of-Code-Challenges/day_5_loops.py ```python def first_ten_multiples(n): return [print(f"{n} x {multiple} = {n * multiple}") for multiple in range(1, 11)] def main(): n = int(input()) if 2 <= n <= 20: first_ten_multiples(n) if __name__ == "__main__": main() ``` #### File: JonatasFontele/30-Days-of-Code-Challenges/day_8_dictionaries_and_maps.py ```python def query(contacts): queries = 0 name_query = input() # Read unknown number of lines of queries (name) while name_query != "" and queries <= 100000: try: found_number = contacts.get(name_query, "Not found") if found_number != "Not found": print(f"{name_query}={found_number}") else: print(found_number) name_query = input() except EOFError: break def main(): n = int(input()) # Number of entries if 1 <= n <= 100000: # for i in range(n): # name_number = input().split() name number (per line) # contacts[name_number[0]] = name_number[1] {name: number} contacts = dict([input().split() for _ in range(n)]) # Pythonic way query(contacts) if __name__ == "__main__": main() ```
{ "source": "JonatasFontele/Algorithms_Structured-and-OOP-Exercises", "score": 3 }
#### File: JonatasFontele/Algorithms_Structured-and-OOP-Exercises/coin_trial.py ```python from random import random def coin_trial(): heads = sum([1 for _ in range(100) if random() <= 0.5]) return heads def simulate(n): trials = [coin_trial() for _ in range(n)] return sum(trials)/n print(simulate(10)) print(simulate(100)) print(simulate(1000)) print(simulate(1000000)) ``` #### File: JonatasFontele/Algorithms_Structured-and-OOP-Exercises/inverted_pyramid_numbers.py ```python def piramide_invertida(n): lista = [] for i in range(1, n + 1): lista.append(i) while len(lista) >= 1: print(str(lista).strip('[]')) del(lista[-1]) n = int(input()) piramide_invertida(n) ``` #### File: JonatasFontele/Algorithms_Structured-and-OOP-Exercises/multiplication_function.py ```python def sum(a=0, b=0): # たす return a + b def multiply(a=1, b=1): # かける summation = 0 if a < b: for i in range(a): summation = sum(summation, b) return summation else: for i in range(b): summation = sum(summation, a) return summation try: a, b = input("Input two numbers in the same line:").split() a = int(a) b = int(b) except ValueError: a, b = input("You broke the line, please, try again:").split() a = int(a) b = int(b) print(sum(a, b)) print(multiply(a, b)) ``` #### File: JonatasFontele/Algorithms_Structured-and-OOP-Exercises/progress_bars.py ```python from tqdm import tqdm #pip install tqdm import time def complicated_function(): time.sleep(2) #Simulating some complicated processing for i in tqdm(range(100)): complicated_function() ``` #### File: JonatasFontele/Algorithms_Structured-and-OOP-Exercises/shopping_cart_example.py ```python from collections import Counter def main(): prices = {"course": 97.99, "book": 54.99, "wallpaper": 4.99} cart = Counter(course=1, book=3, wallpaper=2) total = 0.0 for product, units in cart.items(): subtotal = units * prices[product] price = prices[product] total) += subtotal print(f"{product:9}: ${price:7.2f} × {units} = ${subtotal:7.2f}") print(total) if __name__ == "__main__": main() ``` #### File: JonatasFontele/Algorithms_Structured-and-OOP-Exercises/timeit_reverse.py ```python import operator from time import time # Precise from timeit import timeit # Here we want to invert digits number = ''.join([str(i) for i in range(100)]) # input("Input a number to invert its order:") # Slightly better for a comparatively short string def slicing_method(number1): return "Printing using string: ", number1[::-1] inicio = time() slicing_method(number) fim = time() print("Duracao time slicing_method: %f" % (fim - inicio)) print("Duracao timeit slicing_method: ", timeit('slicing_method(number)', 'from __main__ import slicing_method, number', number=100)) print() # Elegant but slow def math_method(number2): inverted = 0 exponent = len(number2) number2 = int(number2) while number2 >= 1: inverted += (number2 % 10) * (10 ** (exponent - 1)) exponent -= 1 number2 = number2 // 10 # the floor division // rounds the result down to the nearest whole number return "Printing using elegant math: {}".format(inverted) inicio2 = time() math_method(number) fim2 = time() print("Duracao time math_method: ", (fim2 - inicio2)) print("Duracao timeit math_method: ", timeit('math_method(number)', 'from __main__ import math_method, number', number=100)) print() # Better for a comparatively large list (~10*6) def reversed_method(number3): return f"Printing using string: {reversed(number3)}." inicio3 = time() reversed_method(number) fim3 = time() print(f"Duracao time reversed_method: {fim3 - inicio3}") print("Duracao timeit reversed_method: ", timeit('reversed_method(number)', 'from __main__ import reversed_method, number', number=100)) print() # Here we want to invert a list number_list = [str(i) for i in range(100)] print("Duracao timeit slicing_method em lista: ", timeit('slicing_method(number_list)', 'from __main__ import slicing_method, number_list', number=100)) print("Duracao timeit reversed_method em lista: ", timeit('reversed_method(number_list)', 'from __main__ import reversed_method, number_list', number=100)) # Slightly better for a comparatively short list def reverse_method(number4): return f"Printing using string: {number4.reverse()}." print("Duracao timeit reverse_method em lista: ", timeit('reverse_method(number_list)', 'from __main__ import reverse_method, number_list', number=100)) print() def add(x, y): return x + y def operators_add(x, y): return operator.add(x, y) # Strings a = '1' b = '2' print(timeit('add(a, b)', 'from __main__ import add, a, b')) # 0.16069997000158764 print(timeit('operators_add(a, b)', 'from __main__ import operators_add, a, b')) # Integers a2 = 1 b2 = 2 print(timeit('add(a2, b2)', 'from __main__ import add, a2, b2')) # 0.10841095799696632 print(timeit('operators_add(a2, b2)', 'from __main__ import operators_add, a2, b2')) ```
{ "source": "jonatasleon/cookiecutter-qmd-flask", "score": 2 }
#### File: {{cookiecutter.project_slug}}/tests/test_{{cookiecutter.project_core_dir}}.py ```python from flask import url_for def test_index(client): assert client.get(url_for('site.index')).status_code == 200 def test_admin(client): assert client.get(url_for('admin.index')).status_code == 200 ```
{ "source": "jonatasleon/killer-roms-cli", "score": 3 }
#### File: killer-roms-cli/kr/__init__.py ```python import os import click from tabulate import tabulate from kr.consoles import list_consoles from .download import download, retrieve_file_url from .search import search, verify_console_name def validate_console(ctx, param, value): try: console_code = verify_console_name(value) except KeyError: raise click.BadParameter(f"Console {value} is not available.") return console_code def validate_query(ctx, param, value): return value or ("",) order_by_choices = click.Choice( [ "title", "genre", "rating", "downloads", "size", ] ) def validate_order_by(ctx, param, value): replace_mapper = { "title": "file_name", "size": "file_size", } return replace_mapper.get(value, value) def validate_urls(ctx, param, value): if not value and not click.get_text_stream("stdin").isatty(): return tuple(click.get_text_stream("stdin").read().strip().split("\n")) or ("",) else: return value @click.group() def cli(): pass @cli.command("consoles") def _consoles(): """List available consoles to search and download from.""" click.echo("\n".join(list_consoles())) @cli.command("search") @click.argument("console", callback=validate_console) @click.argument("query", nargs=-1, type=click.UNPROCESSED, callback=validate_query) @click.option( "--quiet", "-q", type=bool, default=False, is_flag=True, help="Only print link output", ) @click.option( "--order-by", "-o", type=order_by_choices, default="downloads", callback=validate_order_by, help="Defines criteria order", ) @click.option( "--asc/--desc", "-a/-d", "ascending", default=False, help="Defines ascending or descending order", ) @click.option( "--page", "-p", type=int, default=1, callback=lambda ctx, param, value: value - 1, help="Page number", show_default=True, ) def _search(console, query, quiet, order_by, ascending, page): """Search roms.""" for q in query: result = search(console, q, order_by=order_by, asc=ascending, page=page) if quiet: output = "\n".join([r["link"] for r in result]) else: output = tabulate(result, headers="keys") click.echo(output) @cli.command("download") @click.argument( "urls", nargs=-1, type=click.UNPROCESSED, required=False, callback=validate_urls ) @click.option("--output_dir", "-d", default=os.path.abspath(".")) def _download(urls, output_dir): """Download roms.""" for url in urls: file_url = retrieve_file_url(url) click.echo(file_url) chunks = download(file_url, output_dir=output_dir) with click.progressbar(length=next(chunks)) as bar: for size in chunks: bar.update(size) ``` #### File: killer-roms-cli/kr/search.py ```python import requests from bs4 import BeautifulSoup from .config import BASE_URL from .consoles import consoles def verify_console_name(console_name): try: console_code = consoles[console_name] except KeyError: raise KeyError(f"Console {console_name} is not available.") return console_code def search(console_code, query, order_by="downloads", asc=False, page=0): order = f"{order_by}${'ASC' if asc else 'DESC'}" response = requests.post( f"{BASE_URL}/ajax.php?m=roms_j", data={ "sort": order, "page": page, "search": query, "rom_concole": console_code, }, ) soup = BeautifulSoup(response.content, "html.parser") table = soup.select("table > tbody tr") result = [parse_row(row) for row in table] return result def parse_row(row): columns = row.select("td") parsed_row = dict( title=columns[0].text.strip("\n"), genre=columns[1].text.strip("\n"), rating=columns[2].text.strip("\n"), downloads=columns[3].text.strip("\n"), size=columns[4].text.strip("\n"), link=f"{BASE_URL}{columns[0].find('a')['href']}", ) return parsed_row ```
{ "source": "jonatasleon/sqlalchemy-mixins", "score": 2 }
#### File: sqlalchemy-mixins/examples/smartquery.py ```python from __future__ import print_function import os import datetime import sqlalchemy as sa from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.hybrid import hybrid_method from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import Query, scoped_session, sessionmaker from sqlalchemy_mixins import SmartQueryMixin, ReprMixin, JOINED, smart_query def log(msg): print('\n{}\n'.format(msg)) #################### setup ###################### Base = declarative_base() # we also use ReprMixin which is optional class BaseModel(Base, SmartQueryMixin, ReprMixin): __abstract__ = True __repr__ = ReprMixin.__repr__ pass class User(BaseModel): __tablename__ = 'user' __repr_attrs__ = ['name'] id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.String) # to smart query relationship, it should be explicitly set, # not to be a backref posts = sa.orm.relationship('Post') comments = sa.orm.relationship('Comment') # below relationship will just return query (without executing) # this query can be customized # see http://docs.sqlalchemy.org/en/latest/orm/collections.html#dynamic-relationship # # we will use this relationship for demonstrating real-life example # of how smart_query() function works (see 3.2.2) comments_ = sa.orm.relationship('Comment', lazy="dynamic") # this will return query class Post(BaseModel): __tablename__ = 'post' id = sa.Column(sa.Integer, primary_key=True) body = sa.Column(sa.String) user_id = sa.Column(sa.Integer, sa.ForeignKey('user.id')) archived = sa.Column(sa.Boolean, default=False) # to smart query relationship, it should be explicitly set, # not to be a backref user = sa.orm.relationship('User') comments = sa.orm.relationship('Comment') @hybrid_property def public(self): return not self.archived @public.expression def public(cls): return ~cls.archived @hybrid_method def is_commented_by_user(cls, user, mapper=None): # in real apps, Comment class can be obtained from relation # to avoid cyclic imports like so: # Comment = cls.comments.property.argument() mapper = mapper or cls # from sqlalchemy import exists # return exists().where((Comment.post_id == mapper.id) & \ # (Comment.user_id == user.id)) return mapper.comments.any(Comment.user_id == user.id) @hybrid_method def is_public(cls, value, mapper=None): # in real apps, Comment class can be obtained from relation # to avoid cyclic imports like so: # Comment = cls.comments.property.argument() mapper = mapper or cls return mapper.public == value class Comment(BaseModel): __tablename__ = 'comment' __repr_attrs__ = ['body'] id = sa.Column(sa.Integer, primary_key=True) body = sa.Column(sa.String) user_id = sa.Column(sa.Integer, sa.ForeignKey('user.id')) post_id = sa.Column(sa.Integer, sa.ForeignKey('post.id')) rating = sa.Column(sa.Integer) created_at = sa.Column(sa.DateTime) # to smart query relationship, it should be explicitly set, # not to be a backref user = sa.orm.relationship('User') post = sa.orm.relationship('Post') #################### setup ORM ###################### db_file = os.path.join(os.path.dirname(__file__), 'test.sqlite') engine = create_engine('sqlite:///{}'.format(db_file), echo=True) Base.metadata.drop_all(engine) Base.metadata.create_all(engine) session = scoped_session(sessionmaker(bind=engine)) BaseModel.set_session(session) #################### setup some data ###################### u1 = User(name='Bill u1') session.add(u1) session.commit() u2 = User(name='<NAME>') session.add(u2) session.commit() u3 = User(name='<NAME>') session.add(u3) session.commit() session.commit() p11 = Post( id=11, body='1234567890123', archived=True, user=u1 ) session.add(p11) session.commit() p12 = Post( id=12, body='1234567890', user=u1 ) session.add(p12) session.commit() p21 = Post( id=21, body='p21', user=u2 ) session.add(p21) session.commit() p22 = Post( id=22, body='p22', user=u2 ) session.add(p22) session.commit() cm11 = Comment( id=11, body='cm11', user=u1, post=p11, rating=1, created_at=datetime.datetime(2014, 1, 1) ) session.add(cm11) session.commit() cm12 = Comment( id=12, body='cm12', user=u2, post=p12, rating=2, created_at=datetime.datetime(2015, 10, 20) ) session.add(cm12) session.commit() cm21 = Comment( id=21, body='cm21', user=u1, post=p21, rating=1, created_at=datetime.datetime(2015, 11, 21) ) session.add(cm21) session.commit() cm22 = Comment( id=22, body='cm22', user=u3, post=p22, rating=3, created_at=datetime.datetime(2016, 11, 20) ) session.add(cm22) session.commit() cm_empty = Comment( id=29, # no body # no user # no post # no rating ) session.add(cm_empty) session.commit() #################### Demo ###################### # ['id', 'body', 'user_id', 'archived', # normal columns # 'user', 'comments', # relations # 'public', # hybrid attributes # 'is_public', 'is_commented_by_user' # hybrid methods # ] log(Post.filterable_attributes) #### 1. Filters #### ##### 1.1 filter by hybrid_property 'public' ##### # low-level filter_expr() log(session.query(Post).filter(*Post.filter_expr(user=u1, public=True)).all()) # high-level SmartQueryMixin.where() method log(Post.where(user=u1, public=True).all()) # you can unpack dict (in real world app you will do this) filters = {'user': u1, 'public': True} log(Post.where(**filters).all()) ##### 1.2 filter by hybrid_method 'is_commented_by_user' ##### # low-level filter_expr() log(session.query(Post).filter( *Post.filter_expr(is_commented_by_user=u1)).all()) # high-level SmartQueryMixin.where() method log(Post.where(is_commented_by_user=u1).all()) ##### 1.3 operators ##### # rating == None log(Comment.where(rating=None).all()) # cm_empty log(Comment.where(rating__isnull=2).all()) # cm_empty # rating == 2 # when no operator, 'exact' operator is assumed log(Comment.where(rating=2).all()) # cm12 # assumed log(Comment.where(rating__exact=2).all()) # cm12 # rating > 2 log(Comment.where(rating__gt=2).all()) # cm22 # rating >= 2 log(Comment.where(rating__ge=2).all()) # cm12, cm22 # rating < 2 log(Comment.where(rating__lt=2).all()) # cm11, cm21 # rating <= 2 log(Comment.where(rating__le=2).all()) # cm11, cm12, cm21 # rating in [1,3] log(Comment.where(rating__in=[1, 3]).all()) # cm11, cm21, cm22 log(Comment.where(rating__in=(1, 3)).all()) # cm11, cm21, cm22 log(Comment.where(rating__in={1, 3}).all()) # cm11, cm21, cm22 # rating between 2 and 3 log(Comment.where(rating__between=[2, 3]).all()) # cm12, cm22 log(Comment.where(rating__between=(2, 3)).all()) # cm12, cm22 # likes log(Comment.where(body__like=u'cm12 to p12').all()) # cm12 log(Comment.where(body__like='%cm12%').all()) # cm12 log(Comment.where(body__ilike='%CM12%').all()) # cm12 log(Comment.where(body__startswith='cm1').all()) # cm11, cm12 log(Comment.where(body__istartswith='CM1').all()) # cm11, cm12 log(Comment.where(body__endswith='to p12').all()) # cm12 log(Comment.where(body__iendswith='TO P12').all()) # cm12 # dates # year log(Comment.where(created_at__year=2014).all()) # cm11 log(Comment.where(created_at__year=2015).all()) # cm12, cm21 # month log(Comment.where(created_at__month=1).all()) # cm11 log(Comment.where(created_at__month=11).all()) # cm21, cm22 # day log(Comment.where(created_at__day=1).all()) # cm11 log(Comment.where(created_at__day=20).all()) # cm12, cm22 # whole date log(Comment.where(created_at__year=2014, created_at__month=1, created_at__day=1).all()) # cm11 ##### 1.4 where() with auto-joined relations ##### # when have no joins, where() is a shortcut for filter_expr log(session.query(Comment).filter( *Comment.filter_expr(rating__gt=2, body__startswith='cm1')).all()) log(Comment.where(rating__gt=2, body__startswith='cm1').all()) # but where() can automatically join relations # users having posts which are commented by user 2 log(User.where(posts___comments___user_id=u2.id).all()) # comments where user name starts with 'Bi' # !! ATTENTION !! # about Comment.post: # although we have Post.comments relationship, # it's important to **add relationship Comment.post** too, # not just use backref !!! log(Comment.where(user___name__startswith='Bi').all()) # non-public posts commented by user 1 log(Post.where(public=False, is_commented_by_user=u1).all()) #### 2. sort #### #### 2.1 simple demo #### ##### 2.1.1 low-level order_expr() # '-rating', 'created_at' means 'ORDER BY rating DESC, created_at ASC' log(session.query(Comment).order_by( *Comment.order_expr('-rating', 'created_at')).all()) ##### 2.1.2 high-level sort() log(Comment.sort('-rating', 'created_at')) # in real world apps, you will keep attrs in list sort_attrs = ['-rating', 'created_at'] log(Comment.sort(*sort_attrs)) ##### 2.1.3 hybrid properties log(session.query(Post).order_by(*Post.order_expr('-public')).all()) log(Post.sort('-public').all()) #### 2.2 sort() with auto-joined relations #### # sort by name of user ASC (user relation will be auto-joined), then by # created_at DESC log(Comment.sort('user___name', '-created_at').all()) # get comments on public posts first, then order by post user name # Post and User tables will be auto-joined log(Comment.sort('-post___public', 'post___user___name').all()) #### 3. smart_query() : combination of where(), sort() and eager load #### schema = { 'post': { 'user': JOINED } } # schema can use class properties too (see EagerLoadMixin): # schema = { # Comment.post: { # Post.user: JOINED # } # } ##### 3.1 high-level smart_query() class method ##### res = Comment.smart_query( filters={ 'post___public': True, 'user__isnull': False }, sort_attrs=['user___name', '-created_at'], schema=schema).all() log(res) # cm12, cm21, cm22 ##### 3.2 more flexible smart_query() function ##### ##### 3.2.1. The same as 3.1 query = Comment.query # could be any query you want res = smart_query(query, filters={ 'post___public': True, 'user__isnull': False }, sort_attrs=['user___name', '-created_at'], schema=schema).all() log(res) # cm12, cm21, cm22 ##### 3.2.2. Real-life example with lazy='dynamic' relationship # let's imagine we want to display some user relations # and flexibly filter, sort and eagerload them # like this http://www.qopy.me/LwfSCu_ETM6At6el8wlbYA # (no sort on screenshot, but you've git the idea) # so we have a user user = session.query(User).first() # and we have initial query for his/her comments # (see User.comments_ relationship) query = user.comments_ # now we just smartly apply all filters, sorts and eagerload. Perfect! res = smart_query(query, filters={ 'post___public': True, 'user__isnull': False }, sort_attrs=['user___name', '-created_at'], schema=schema).all() log(res) # cm21 ##### 3.3 auto eager load in where() and sort() with auto-joined relations #### """ Smart_query does auto-joins for filtering/sorting, so there's a sense to tell sqlalchemy that we alreeady joined that relation So we test that relations are set to be joinedload if they were used in smart_query() """ ##### 3.3.1 where() # comments on public posts where posted user name like ... res = Comment.where(post___public=True, post___user___name__like='Bi%').all() log(res) # no additional query needed: we used 'post' and 'post__user' # relations in smart_query() log(res[0].post) log(res[0].post.user) # we didn't use post___comments in filters, so additional query is needed log(res[0].post.comments) ##### 3.3.2 sort() res = Comment.sort('-post___public', 'post___user___name').all() log(res) # no additional query needed: we used 'post' and 'post__user' # relations in smart_query() log(res[0].post) log(res[0].post.user) # we didn't use post___comments in filters, so additional query is needed log(res[0].post.comments) ```
{ "source": "jonatasleon/tdd-with-python", "score": 2 }
#### File: tdd-with-python/functional_tests/tests.py ```python from django.test import LiveServerTestCase from selenium import webdriver from selenium.webdriver.common.keys import Keys class NewVisitorTest(LiveServerTestCase): def setUp(self): self.browser = webdriver.Firefox() self.browser.implicitly_wait(3) def tearDown(self): self.browser.quit() def check_for_row_in_list_table(self, row_text): table = self.browser.find_element_by_id('id_table_list') rows = table.find_elements_by_tag_name('tr') self.assertIn(row_text, [row.text for row in rows]) def test_can_start_a_list_and_retrieve_it_later(self): # Edith ouviu falar sobre uma nova aplicação legal para to-do lists. # Ela vai checar sua homepage self.browser.get(self.live_server_url) # Ela percebe que o titulo e o header da pagina mencionam To-do lists self.assertIn('To-Do', self.browser.title) header_text = self.browser.find_element_by_tag_name('h1').text self.assertIn('To-Do', header_text) # Ela é convidada a entrar com um to-do item imediatamente inputbox = self.browser.find_element_by_id('id_new_item') self.assertEqual( inputbox.get_attribute('placeholder'), 'Enter a to-do item' ) # Ela digita "Comprar penas de pavão" em um text box (O hobby dela é # amarrar iscas de peixes com mosca) inputbox.send_keys('Buy peacock feathers') # Quando ela digita enter, a página atualiza, agora pagina exibe # "1: Comprar penas de pavão" como um item em uma lista to-do inputbox.send_keys(Keys.ENTER) edith_list_url = self.browser.current_url self.assertRegex(edith_list_url, '/lists/.+') self.check_for_row_in_list_table('1: Buy peacock feathers') # Ainda tem uma caixa de texto convidando-a para adicionar outro item. # Ela entra com "Usar penas para fazer uma mosca" (Edith é metódica) inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Use peacocks to make a fly') inputbox.send_keys(Keys.ENTER) # A página atualiza novamente, agora exibe ambos itens na lista self.check_for_row_in_list_table('2: Use peacocks to make a fly') self.check_for_row_in_list_table('1: Buy peacock feathers') # Agora um novo usuário, Francis, vem para o site # Nós usamos um novo sessão no navegador para ter certeza que nenhuma # # informação de Edith está vindo através de cookies etc # self.browser.quit() self.browser = webdriver.Firefox() # Francis visita a home page. Não há nenhum sinal da lista da Edith self.browser.get(self.live_server_url) page_text = self.browser.find_element_by_tag_name('body').text self.assertNotIn('Buy peacock feathers', page_text) self.assertNotIn('make a fly', page_text) # Francis começa uma nova lista entrando com um novo item. Ele é menos # interessante do que Edith... inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Buy milk') inputbox.send_keys(Keys.ENTER) # Francis recebe sua própria URL francis_list_url = self.browser.current_url self.assertRegex(francis_list_url, '/lists/.+') self.assertNotEqual(francis_list_url, edith_list_url) # De novo, não há nem rastro da list de Edith page_text = self.browser.find_element_by_tag_name('body').text self.assertNotIn('Buy peacock feathers', page_text) self.assertIn('Buy milk', page_text) # Satisfeitos eles voltam a dormir def test_layout_and_styling(self): # Ela vai checar sua homepage self.browser.get(self.live_server_url) self.browser.set_window_size(1024, 768) # Ela nota que a caixa de texto está muito bem centralizada inputbox = self.browser.find_element_by_id('id_new_item') self.assertAlmostEqual( inputbox.location['x'] + inputbox.size['width'] / 2, 512, delta=5 ) ```
{ "source": "jonatasoli/fastapi-design-api-example", "score": 2 }
#### File: order/locust/locust_order_endpoints.py ```python from locust import HttpUser, TaskSet, task from order.schemas.schemas_order import orderModelBase HEADERS = {"Content-Type": "application/json"} class orderModelTask(TaskSet): @task def post(self): _data = () self.client.post("/orders", data=_data.dict(), headers=HEADERS) class stressTest(HttpUser): tasks = [orderModelTask] host = "http://localhost:8888" min_wait = 5000 max_wait = 10000 ``` #### File: order/service/business_rules.py ```python from enum import Enum from fastapi import status, HTTPException from order.adapters.orm_adapter import ordermodel class Order: async def create(self, data): return await ordermodel.create(obj_in=data) async def update(self, id, data): _order = await ordermodel.get(id) if not hasattr(_order, "status")\ or _order.status != OrderStatus.WAITING.value: raise HTTPException( status_code=status.HTTP_409_CONFLICT, detail="Current Status in payment status is not permitted" ) _order.product_name = data.product_name _order.total_amount = data.total_amount return await ordermodel.update(obj_id=id, obj_in=_order) async def cancel(self, id): _order = await ordermodel.get(id) if not hasattr(_order, "status")\ or _order.status != OrderStatus.WAITING.value: raise HTTPException( status_code=status.HTTP_409_CONFLICT, detail="Update payment status is not permitted" ) _order.status = OrderStatus.CANCELLED.value return await ordermodel.update(obj_id=id, obj_in=_order) async def status(self, id): return await ordermodel.get(id) class Payment: async def process(self, id): _order = await ordermodel.get(id) if not hasattr(_order, "status")\ or _order.status != OrderStatus.WAITING.value: raise HTTPException( status_code=status.HTTP_409_CONFLICT, detail="Update payment status is not permitted" ) _order.status = OrderStatus.PAID.value return await ordermodel.update(obj_id=id, obj_in=_order) class Receipt: async def delivery(self, id): _order = await ordermodel.get(id) if not hasattr(_order, "status")\ or _order.status != OrderStatus.READY.value: raise HTTPException( status_code=status.HTTP_409_CONFLICT, detail="Update payment status is not permitted" ) _order.status = OrderStatus.DELIVERY.value return await ordermodel.update(obj_id=id, obj_in=_order) class OrderStatus(Enum): WAITING="Waiting Payment" CANCELLED="Canceled" PAID="Paid" READY="Ready" DELIVERY="Delivery" ```
{ "source": "jonatasoli/fastapi", "score": 3 }
#### File: fastapi/fastapi/cli.py ```python import os import typer import uvicorn from typing import Optional from fastapi import __cliname__, __version__ app = typer.Typer() @app.command() def name(): typer.echo(__cliname__) @app.command() def version(): typer.echo(__version__) @app.command("run", short_help="Run a development server.") def run_command( app: Optional[str] = typer.Argument("main:app"), host: str = typer.Option("0.0.0.0", help="Put specific host"), port: int = typer.Option(8000, help="Put specific port"), level: str = typer.Option("info", help="Put specific level"), reload: bool = typer.Option(True, help="Reload option"), factory: bool = typer.Option(False, help="Factory Mode"), ): uvicorn.run(app, host=host, port=port, log_level=level, reload=reload) @app.command("shell", short_help="Run a shell in the app context.") def shell_command( app: str = typer.Option("main.py", help="Put specific app file"), ): os.system(f"python -i {app}") def main(): app() if __name__ == "__main__": main() ```
{ "source": "jonatasoli/fastapi-order-example", "score": 2 }
#### File: api/adapters/publisher.py ```python from loguru import logger from tenacity import retry, stop_after_delay, wait_random_exponential from config import settings from ext.broker import create_broker_connection @retry( reraise=True, stop=stop_after_delay(settings.BROKER_STOP_DELAY), wait=wait_random_exponential(multiplier=1, max=settings.BROKER_MAX_DELAY), ) async def publish_queue( broker_queue, broker_exchange, body_queue, exchange_type="direct" ): try: connection = await create_broker_connection() channel = await connection.channel() await channel.exchange_declare( exchange=broker_exchange, exchange_type=exchange_type ) _routing_key = broker_queue response = await channel.basic_publish( body=body_queue, routing_key=_routing_key, exchange=broker_exchange, ) await connection.close() return response except Exception as e: logger.error(f"Error in publisher adapter.\n{e}") raise e ``` #### File: api/adapters/user.py ```python from config import settings from order.schemas.schemas_user import userBase from ext.fetcher import fetcher async def get_user(user_id): data = await fetcher( base_url=settings.BASE_URL_USER, method="GET", query=f"users/{user_id}" ) return userBase( user_id=data["id"], firstName=data["firstName"], lastName=data["lastName"], customer_fullname=data["firstName"] + data["lastName"] ) ``` #### File: order/services/services_order.py ```python from datetime import datetime from loguru import logger from config import settings from order.dao import ordermodel from order.schemas.schemas_order import ( orderMessage, orderPayload, orderModelBrokerMessage, orderModelCreate, messageBaseResponse, ) from order.api.adapters.user import get_user from order.api.adapters.product import get_product from order.api.adapters.publisher import publish_queue class OrderService(): async def add_ordermodel(self, ordermodel_data): try: _order_message = await self._pub_message( await ordermodel.create( obj_in=await self._create_model_obj(ordermodel_data) ) ) return _order_message except Exception as e: logger.error(f"Error in add ordermodel {e}") raise e @staticmethod async def _create_model_obj(data): try: _user = await get_user(user_id=data.user_id) _product = await get_product(product_code=data.product_code) if not _user or not _product: raise ValueError(f"User or Product not found.\n User {_user} - Product {_product}") return orderModelCreate( user_id=_user.user_id, product_code=_product.product_code, customer_fullname=_user.customer_fullname, product_name=_product.product_name, total_amount=_product.price ) except Exception as e: logger.error(f"Error in create_model_object {e}") raise e @staticmethod async def _pub_message(message): try: _order_message = orderMessage( order_id=message.id, product_code=message.product_code, customer_fullname=message.customer_fullname, product_name=message.product_name, total_amount=message.total_amount, created_at=message.created_at ) _order_payload = orderPayload(order=_order_message) _order_broker_message = orderModelBrokerMessage( producer="service-order", sent_at=datetime.now(), type="created-order", payload=_order_payload, ) _output = await publish_queue( broker_queue=settings.BROKER_QUEUE_CREATE_ORDER, broker_exchange=settings.BROKER_EXCHANGE_ORDERS, body_queue=_order_broker_message.json().encode("utf-8") ) if not hasattr(_output, "index"): raise Exception("Order not queue") return messageBaseResponse( queue_index=_output.index, order_id=message.id, user_id=message.user_id, product_code=message.product_code, customer_fullname=message.customer_fullname, product_name=message.product_name, total_amount=message.total_amount, created_at=message.created_at, ) except Exception as e: logger.error(f"Error in send message to broker {e}") raise e ``` #### File: order/tests/test_adapter_product.py ```python import pytest from fastapi import status, HTTPException from order.api.adapters.product import get_product from order.schemas.schemas_product import productBase @pytest.mark.container @pytest.mark.asyncio async def test_get_product_success(mocker): response_obj = productBase( product_code="classic-box", product_name="Classic Box", price=9.99 ) response = await get_product(product_code="classic-box") assert response.dict() == response_obj @pytest.mark.container @pytest.mark.asyncio async def test_get_product_not_found(mocker): with pytest.raises(HTTPException) as exc_info: await get_product(product_code="error-box") assert exc_info.value.status_code == status.HTTP_404_NOT_FOUND # assert exc_info.value.detail == "Internal Error\n 404 Client Error: Not Found for url: http://localhost:8081/products/error-box\nFor more information check: https://httpstatuses.com/404" @pytest.mark.container @pytest.mark.asyncio async def test_get_product_request_timeout(mocker): with pytest.raises(HTTPException) as exc_info: await get_product(product_code="family-box") assert exc_info.value.status_code == status.HTTP_408_REQUEST_TIMEOUT @pytest.mark.container @pytest.mark.asyncio async def test_get_product_internal_error(mocker): with pytest.raises(HTTPException) as exc_info: await get_product(product_code="veggie-box") assert exc_info.value.status_code == status.HTTP_500_INTERNAL_SERVER_ERROR ```
{ "source": "jonatasoli/fastapi-simple-test", "score": 2 }
#### File: jonatasoli/fastapi-simple-test/conftest.py ```python import pytest from fastapi.testclient import TestClient from main import app @pytest.fixture def client(): with TestClient(app) as client: yield client ``` #### File: jonatasoli/fastapi-simple-test/test_client.py ```python def test_index(client): response = client.get("/") assert response.json() == dict(message="Hello Qredo") ```
{ "source": "jonatasoli/fastapi-template-cookiecutter", "score": 2 }
#### File: {{cookiecutter.app_slug_snakecase}}/api/endpoints.py ```python from fastapi import APIRouter, status from loguru import logger from {{cookiecutter.app_slug_snakecase}}.schemas.schemas_{{cookiecutter.app_slug_snakecase}} import {{cookiecutter.model_name}}Endpoint from {{cookiecutter.app_slug_snakecase}}.services import services_{{cookiecutter.app_slug_snakecase}} {{cookiecutter.app_slug_snakecase}}_router = APIRouter() @{{cookiecutter.app_slug_snakecase}}_router.post("/add", status_code=status.HTTP_201_CREATED) async def add_{{cookiecutter.model_slug_snakecase}}(*, data: {{cookiecutter.model_name}}Endpoint): try: return await services_{{cookiecutter.app_slug_snakecase}}.add_{{cookiecutter.model_slug_snakecase}}(data) except Exception as e: logger.error(f"Error return endpoint {e}") raise e @{{cookiecutter.app_slug_snakecase}}_router.put("/update/{id}", status_code=status.HTTP_200_OK) async def update_{{cookiecutter.model_slug_snakecase}}(*, id: int, data: {{cookiecutter.model_name}}Endpoint): try: return await services_{{cookiecutter.app_slug_snakecase}}.update_{{cookiecutter.model_slug_snakecase}}(id, data) except Exception as e: logger.error(f"Error return endpoint {e}") raise e @{{cookiecutter.app_slug_snakecase}}_router.get("/get/{id}", status_code=status.HTTP_200_OK) async def get_{{cookiecutter.model_slug_snakecase}}(*, id: int): try: return await services_{{cookiecutter.app_slug_snakecase}}.get_{{cookiecutter.model_slug_snakecase}}(id) except Exception as e: logger.error(f"Error return endpoint {e}") raise e ``` #### File: {{cookiecutter.app_slug_snakecase}}/tests/test_{{cookiecutter.app_slug_snakecase}}_services.py ```python import pytest from unittest import mock from {{cookiecutter.app_slug_snakecase}}.services.services_{{cookiecutter.app_slug_snakecase}} import add_{{cookiecutter.model_slug_snakecase}} from {{cookiecutter.app_slug_snakecase}}.schemas.schemas_{{cookiecutter.app_slug_snakecase}} import {{cookiecutter.model_name}}CreateResponse, {{cookiecutter.model_name}}Endpoint, {{cookiecutter.model_name}}Create response_obj = {{cookiecutter.model_name}}CreateResponse(id=1, name="{{cookiecutter.model_name}} 1", completed=False) @pytest.mark.asyncio @mock.patch("{{cookiecutter.app_slug_snakecase}}.dao.{{cookiecutter.model_slug_snakecase}}.create", return_value=response_obj) async def test_add_{{cookiecutter.model_slug_snakecase}}(mocker): data = {{cookiecutter.model_name}}Endpoint(name="{{cookiecutter.model_name}} 1", completed=False, current_user_id=1) response = await add_{{cookiecutter.model_slug_snakecase}}({{cookiecutter.model_slug_snakecase}}_data=data) assert response == response_obj ```
{ "source": "jonatasoli/reguleque-core", "score": 2 }
#### File: reguleque-core/app/test_integration_service_layer_user.py ```python import pytest from config import settings from loguru import logger from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.session import Session from user.unit_of_work import AbstractUnitOfWork, SqlAlchemyUnitOfWork from user.repository import AbstractRepository, SqlAlchemyRepository from domain import SignUp, User, Role from user.service_layer import Auth from user.orm import get_session @pytest.mark.asyncio async def test_database(apply_migrations): dir(apply_migrations) assert True == True @pytest.mark.db @pytest.mark.asyncio async def test_create_user(apply_migrations, postgres_session): uow = SqlAlchemyUnitOfWork(session_factory=postgres_session) db_user = SignUp( name="<NAME>", email="<EMAIL>", password="<PASSWORD>", ) output = await Auth.signup(uow=uow, user_in=db_user) assert output is not None assert uow.users.get("<EMAIL>") is not None @pytest.mark.skip @pytest.mark.db @pytest.mark.asyncio async def test_check_existent_user(apply_migrations, postgres_session): uow = SqlAlchemyUnitOfWork(session_factory=postgres_session) # db_user = User( # name="<NAME>", # email="<EMAIL>", # password="<PASSWORD>", # ) # await Auth.signup(uow=uow, user_in=db_user) db_user = User( name="<NAME>", email="<EMAIL>", password="<PASSWORD>", ) output = Auth.check_existent_user(uow=uow, email="<EMAIL>") import ipdb; ipdb.set_trace() assert uow.users.get("<EMAIL>") is not None assert output is not None assert db_user == output ``` #### File: app/user/repository.py ```python import abc from sqlalchemy import select, between from user.orm import User, Subscribe, SubscribePlan from user.schemas import SubscribePlanDB, SubscribeDB, UserDB from user.adapters.db_obj_converter import obj_in_to_db_obj class AbstractRepository(abc.ABC): @abc.abstractmethod def add(self, user: User): raise NotImplementedError @abc.abstractmethod def get(self, reference) -> User: raise NotImplementedError class SqlAlchemyRepository(AbstractRepository): def __init__(self, session): self.session = session async def add(self, user): db_user = User( name=user.name, password=<PASSWORD>_<PASSWORD>(), email=user.email, ) return self.session.add(db_user) async def get(self, email): smtm = select(User).where(User.email==email) _result =await self.session.execute(smtm) return _result.scalars().first() async def get_subscribe(self, id): smtm = select(Subscribe).where(Subscribe.id==id) _result =await self.session.execute(smtm) return SubscribeDB.from_orm(_result.scalars().first()) async def get_subscribe_plan(self, id): smtm = select(SubscribePlan).where(SubscribePlan.id==id) _result =await self.session.execute(smtm) return SubscribePlanDB.from_orm(_result.scalars().first()) def list(self): return self.session.query(User).all() ```
{ "source": "jonatasoli/sapu", "score": 2 }
#### File: app/ext/database.py ```python from tortoise import Tortoise from dynaconf import settings async def init(): # Here we connect to a Postgres. # also specify the app name of "models" # which contain models from "app.models" await Tortoise.init( db_url=settings.DATABASE_URL, modules={'models': ['app.models', "aerich.models"]} ) TORTOISE_ORM = { "connections": {"default": settings.DATABASE_URL}, "apps": { "models": { "models": ["models", "aerich.models"], "default_connection": "default", }, }, } ```
{ "source": "jonatasoli/the-eye", "score": 3 }
#### File: events/services/unit_of_work.py ```python from __future__ import annotations import abc from sqlalchemy.orm.session import Session from src.events.adapters import repository, database from src.config import settings class AbstractUnitOfWork(abc.ABC): events: repository.AbstractRepository def __enter__(self) -> AbstractUnitOfWork: return self def __exit__(self, *args): self.rollback() def commit(self): self._commit() @abc.abstractmethod def _commit(self): raise NotImplementedError @abc.abstractmethod def rollback(self): raise NotImplementedError class SqlAlchemyUnitOfWork(AbstractUnitOfWork): def __init__(self, session_factory=database.session_factory()): self.session_factory = session_factory def __enter__(self): self.session = self.session_factory() # type: Session self.events = repository.SqlAlchemyRepository(self.session) return super().__enter__() def __exit__(self, *args): super().__exit__(*args) self.session.close() def _commit(self): self.session.commit() def rollback(self): self.session.rollback() ```
{ "source": "jonatasrenan/mascavo", "score": 3 }
#### File: mascavo/mascavo/parallel.py ```python def tmap(func, args, workers=16): """ Redefinição da função map, multithread, aguarda threads no final e retorna resultado expandido em lista. :param func: função :param args: lista :param workers: número de threads máximo :return: resultado do mapeamento de fn em l expandido em lista """ import concurrent.futures with concurrent.futures.ThreadPoolExecutor(workers) as ex: res = ex.map(func, args) ex.shutdown(wait=True) return list(res) def pmap(func, args, workers=None): """ Redefinição da função map, multiprocessos, aguarda processos no final e retorna resultado expandido em lista. :param func: função :param args: lista :param workers: número de processos máximo :return: resultado do mapeamento de fn em l expandido em lista """ import multiprocessing if not workers: workers = multiprocessing.cpu_count() if workers == 1: return list(map(func, args)) import concurrent.futures with concurrent.futures.ProcessPoolExecutor(workers) as ex: res = ex.map(func, args) ex.shutdown(wait=True) return list(res) ```
{ "source": "Jonatas-Soares-Alves/Exercicios-do-Curso-de-Python", "score": 4 }
#### File: Exercicios-do-Curso-de-Python/MUNDO 3/Aula 20.py ```python def mensagem(msg): print('-'*30) print(f'{msg:^30}') print('-'*30) def soma(a, b): print(f'A = {a} e B = {b}') print(f'A soma A + B = {a+b}\n') def contador(*num): print(f'Recebi os valores {num} e são ao todo {len(num)} números') def dobra(lst): pos = 0 while pos < len(lst): lst[pos] *= 2 pos += 1 mensagem('Olá!') mensagem('Esse é um teste') mensagem('Vamos ver como isso funciona') soma(3, 2) soma(a=5, b=7) soma(b=10, a=4) contador(2, 1, 7) contador(8, 0) contador(4, 4, 7, 6, 2) valores = [6, 3, 9, 1, 0, 2] print('\n', valores) dobra(valores) print('\n', valores) esc = 'O ponto tem de . estar em alguma parte' print(esc) esc = esc.replace('.', ',') print(esc) help(list.insert) ```
{ "source": "Jonatas-Soares-Alves/PDF-Converter-Discord-Bot-in-Python", "score": 3 }
#### File: PDF-Converter-Discord-Bot-in-Python/Bot/PDF_Reader.py ```python import discord from discord.ext import commands import requests import os import fitz client = commands.Bot(command_prefix='.') @client.command(name='up') async def up(ctx, name=''): await ctx.send('Converting...') try: attachment_url = ctx.message.attachments[0].url url = attachment_url r = requests.get(url, allow_redirects=True) open(f'{name}.pdf', 'wb').write(r.content) except: await ctx.send("I'm sorry... Something went wrong saving the PDF file. = (") return try: # Open a PDF file and generate an object images = fitz.open(f'{name}.pdf') for pg in range(images.pageCount): page = images[pg] rotate = int(0) # Each size has a scaling factor of 2, which will give us an image that is quadrupled in resolution. zoom_x = 2.0 zoom_y = 2.0 trans = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate) pm = page.getPixmap(matrix=trans, alpha=False) pm.writePNG(f'{name}{pg + 1}.png') except: await ctx.send("I'm sorry... Something went wrong trying to convert. = (") return for pg in range(images.pageCount): await ctx.send(f'{name} Page {pg+1}') await ctx.send(file=discord.File(f'{name}{pg+1}.png')) os.remove(f'{name}{pg+1}.png') images.close() os.remove(f'{name}.pdf') #========================================================== # Down here is the channel ID and the Bot Token to test it. #V=========================VVV============================V @client.event async def on_ready(): canalgeral = client.get_channel() # <- Put the ID of a channel you want to receive the images here. myEmbed = discord.Embed(title='Hello! = D', description="My job is basically to convert your PDF files to PNG images and send one by one to easy the reading of it's content for the users.", color=0x8000ff) myEmbed.add_field(name='Command:', value='.up "Optional name in quotes" [Uploaded File]', inline=False) await canalgeral.send(embed=myEmbed) # Run the client on the server client.run('token here')# <- Put a Discord Bot Token here. ```
{ "source": "jonatas-valete/sistema-locadora-carros", "score": 3 }
#### File: jonatas-valete/sistema-locadora-carros/main.py ```python from funcoes_carro import * from funcoes import * def load(): try: with open('database.db', 'rb') as file: lista_cliente = pickle.load(file) return lista_cliente except Exception as e: print('Erro ao carregar') print(e) def menu(): print( '################################\n' '1 - Cadastrar Cliente\n' '2 - Ver Clientes Cadastrados\n' '3 - Cadastrar Carros\n' '4 - Ver Carros\n' '5 - Ver Histórico\n' '6 - Deletar Cliente\n' '0 - Desligar Sistema\n' '################################' ) if __name__=="__main__": while True: lista_cliente = load() # variavel tipo lista 'lista_cliente' lista_carro = load_car() menu() #mostra menu opcao = input('Digite uma opção: ') if opcao == '1': nome = input('Digite o nome:') cpf = input('Digite o cpf: ') rg = input('Digite o Rg: ') telefone = input('Insira o telefone: ') endereco = input('Insira o endereço') cad = cadastrar_cliente(nome, cpf, rg, telefone, endereco, lista_cliente) save(lista_cliente) elif opcao == '2': while True: for i in lista_cliente: print(i) print( '1 - ver dados do cliente\n' '2 - Voltar ao menu principal' ) escolha = input('Digite uma opção: ') if escolha == '1': pos = input('Escolha um cliente: ') dados_cliente = ver_cadastro_cliente(int(pos), lista_cliente) print(dados_cliente) break elif escolha == '2': break else: print('Digito inválido tente um digito valido 1 ou 2') elif opcao == '3': carro = input('Insira um modelo: ') portas = input('Insira a quantidade de portas: ') ar_condicionado = input('Insira se há ar condicionado: ') direcao = input('Insira o tipo de direção: ') cor = input('Insira a cor do veiculo: ') ano = input('Insira o ano: ') placa = input('Insira a placa: ') cadastrar_carro(carro, portas, ar_condicionado, direcao, cor, ano, placa, lista_carro) save_car(lista_carro) elif opcao == '4': while True: ver_carros(lista_carro) print( '1 - Ver detalhes do carro\n' '2 - Alugar carro\n' '3 - Voltar ao menu principal\n' ) opcao = input('Escolha uma opção: ') if opcao == '1': ver_detalhes = input('Escolha um carro' ' para ver os detalhes: ') posicao = (int(ver_detalhes)) print(ver_detalhes_carro(lista_carro, posicao)) elif opcao == '2': posicao = input('cliente a alugar: ') cliente = (int(posicao)) carro_a_ser_alugado = input('Digite o carro a ser alugado') carro = (int(carro_a_ser_alugado)) carro_alugado = lista_carro[carro] lista_cliente[cliente].alugar(carro_alugado) rel = relatorio(lista_cliente[cliente], carro_alugado) geradorRelatorio(lista_cliente[cliente], rel) save(lista_cliente) break elif opcao == '3': break else: print('Digito inválido tende um digito valido 1 ou 2') elif opcao == '5': while True: try: ver_clientes_cadastrados(lista_cliente) escolha = input('Escolha o Cliente: ') cliente = lista_cliente[int(escolha)] print(cliente.historico()) break except: print('Cliente inexistente. Tente novamente') elif opcao == '6': escolha_cliente = input('Qual cliente deletar?: ') lista_cliente.pop(int(escolha_cliente)) elif opcao == '0': print('Fechando Sistema...') break else: print('Digito invalido\n Tente novamente.') ```
{ "source": "JonatDenner/discord-crypto-bot", "score": 3 }
#### File: JonatDenner/discord-crypto-bot/bot.py ```python import discord import pandas as pd import requests from discord.ext import commands #gets the bot token and coinranking api key key = open('.login', 'r').read() api = open('.api', 'r').read() intents = discord.Intents.default() #set prefix and other rules, full list of attributes at https://discordpy.readthedocs.io/en/stable/ext/commands/api.html?#bot bot = commands.Bot(command_prefix='$', intents=intents, case_insensitive='true') #opens the coins csv as a pandas dataframe df = pd.read_csv('coins.csv', delimiter=',') #sends the dataframe to a 2*x value list coins = [[row[col] for col in df.columns] for row in df.to_dict('records')] #actions to do when the bot successfully logs in @bot.event async def on_ready(): print('\n------------------------------') print('Logged in as') print(bot.user.name) print(bot.user.id) print('------------------------------') await bot.change_presence(activity=discord.Game(name='$help for a list of available commands.')) #defines one bot command @bot.command() async def v(ctx, crypto:str): '''Display given crypto value\nUsage: .v [crypto symbol], e.g. $v btc\nCase insensitive''' try: crypto = crypto.upper() match = [s for s in coins if crypto == s[1]] if match: #some cryptocurrencies share the same symbol, such as SOL, requiring loops for x in match: r=requests.get("https://api.coinranking.com/v2/coin/" + x[0], headers={"x-access-token":api}) data = r.json() #firs catches unconfirmed coins, second catches dead/inactive ones if not data['data']['coin']['supply']['confirmed']: await ctx.send(data['data']['coin']['name'] + " supply is currently unconfirmed, so there is no price to display.") elif str(data['data']['coin']['price']) == "0": await ctx.send(data['data']['coin']['name'] + " is currently worth zero USD.") else: #displays a certain amount of digits depending on coing value, to avoid having large numbers every time if float(data['data']['coin']['price']) > 10000: output = data['data']['coin']['name'] + ': $' + (data['data']['coin']['price'])[:8] + ' | 24 Hour Change: ' + (data['data']['coin']['change'])[:6] + '%' elif float(data['data']['coin']['price']) > 0.00001: output = data['data']['coin']['name'] + ': $' + (data['data']['coin']['price'])[:10] + ' | 24 Hour Change: ' + (data['data']['coin']['change'])[:6] + '%' else: output = data['data']['coin']['name'] + ': $' + data['data']['coin']['price'] + ' | 24 Hour Change: ' + (data['data']['coin']['change'])[:6] + '%' await ctx.send(output) else: #if the symbol isn't in the csv file it most likely doesn't exist await ctx.send("Crypto doesn't exist.") #for other unknown errors except Exception as err: await ctx.send("An error occurred...") print(err) #start the bot bot.run(key) ```
{ "source": "JonathaCnB/desafio-backend", "score": 2 }
#### File: desafio-backend/questions/models.py ```python from django.db import models class Category(models.Model): name = models.CharField( max_length=255, verbose_name="Nome da categoria", unique=True, ) is_active = models.BooleanField(default=False) class Meta: verbose_name = "Categoria" verbose_name_plural = "Categorias" db_table = "category" def __str__(self) -> str: return self.name class Question(models.Model): question = models.CharField( max_length=255, verbose_name="Pergunta", null=True, ) category = models.ForeignKey( "questions.Category", verbose_name="Categoria", on_delete=models.PROTECT, null=True, ) registered_by = models.ForeignKey( "users.User", verbose_name="<NAME>", on_delete=models.DO_NOTHING, ) first_answer = models.CharField( max_length=255, verbose_name="1ª Resposta", null=True, ) second_answer = models.CharField( max_length=255, verbose_name="2ª Resposta", null=True, ) third_answer = models.CharField( max_length=255, verbose_name="3ª Resposta", null=True, ) CHOICE_CORRECT_ANSWER = ( ("1", "Primeira Resposta"), ("2", "Segunda Resposta"), ("3", "Terceira Resposta"), ) correct_answer = models.CharField( max_length=1, verbose_name="Resposta Correta", choices=CHOICE_CORRECT_ANSWER, null=False, blank=False, ) is_active = models.BooleanField(default=False) class Meta: verbose_name = "Pergunta" verbose_name_plural = "Perguntas" db_table = "question" def __str__(self) -> str: return self.question ``` #### File: desafio-backend/rank/models.py ```python from django.db import models class Rank(models.Model): score = models.PositiveIntegerField( verbose_name="Pontuação", null=True, ) category = models.ForeignKey( "questions.Category", verbose_name="Categoria", on_delete=models.PROTECT, null=True, ) profile = models.ForeignKey( "users.User", verbose_name="Usuário", on_delete=models.DO_NOTHING, ) class Meta: verbose_name = "Rank" verbose_name_plural = "Rank" db_table = "rank" def __str__(self) -> str: return f"{self.profile} - {self.score}" ```