metadata
dict
text
stringlengths
60
3.49M
{ "source": "joshanderson-kw/SMQTK", "score": 3 }
#### File: algorithms/rank_relevancy/_interface.py ```python import abc from typing import Hashable, Sequence, Tuple from numpy import ndarray from smqtk.algorithms import SmqtkAlgorithm class RankRelevancy (SmqtkAlgorithm): """ Algorithm that can rank a given pool of descriptors based on positively and negatively adjudicated descriptors. """ @abc.abstractmethod def rank( self, pos: Sequence[ndarray], neg: Sequence[ndarray], pool: Sequence[ndarray], ) -> Sequence[float]: """ Assign a relevancy score to each input descriptor in `pool` based on the positively and negatively adjudicated descriptors in `pos` and `neg` respectively. :param pos: Sequence of positively adjudicated descriptor vectors. :param neg: Sequence of negatively adjudicated descriptor vectors. :param pool: A sequence of descriptor vectors that we want to rank by topical relevancy relative to the given positive and negative examples. :return: An ordered sequence of float values denoting the relevancy of `pool` elements """ class RankRelevancyWithFeedback (SmqtkAlgorithm): """ Similar to the :class:`RankRelevancy` algorithm but with the added feature of also returning a sequence of elements from which feedback would be "most useful". What "most useful" means may be flexible but generally refers to the goal of reducing the amount of adjudications required in order to separate true-positive examples from true-negative examples in provided pools via the assigned relevancy scores. E.g. other elements may be adjudicated in some quantity to achieve some level of relevant sample separation, but if the feedback requests are instead adjudicated, less elements may need to be adjudicated to achieve and equivalent level of separation. Feedback requests ought to be returned in a form that is meaningful for the user to be able to properly convey the proper information to the adjudicating agent to actually perform adjudications. Additionally, we want to be able to request feedback from elements that may not be present in the given pool of descriptors. Towards that end, this algorithm should be given a sequence of UIDs for the given pool of descriptors. This allows the implementation to potentially coordinate with an outside source of descriptor references such that the returned feedback requests may be interpreted uniformly. """ @abc.abstractmethod def _rank_with_feedback( self, pos: Sequence[ndarray], neg: Sequence[ndarray], pool: Sequence[ndarray], pool_uids: Sequence[Hashable], ) -> Tuple[Sequence[float], Sequence[Hashable]]: """ Implement :meth:`rank_with_feedback`. `pool` and `pool_uids` have already been checked to be of equal length. .. seealso:: :meth:`rank_with_feedback`'s doc-string for the meanings of the parameters and their return values """ def rank_with_feedback( self, pos: Sequence[ndarray], neg: Sequence[ndarray], pool: Sequence[ndarray], pool_uids: Sequence[Hashable], ) -> Tuple[Sequence[float], Sequence[Hashable]]: """ Assign a relevancy score to each input descriptor in `pool` based on the positively and negatively adjudicated descriptors in `pos` and `neg` respectively, additionally returning a sequence of UIDs of those descriptors for which adjudication feedback would be "most useful". :param pos: Sequence of positively adjudicated descriptor vectors. :param neg: Sequence of negatively adjudicated descriptor vectors. :param pool: A sequence of descriptor vectors that we want to rank by topical relevancy relative to the given positive and negative examples. :param pool_uids: A sequence of hashable UID values, parallel in association with descriptors in `pool`. :return: Ordered sequence of float values denoting relevancy of `pool` elements, as well as a sequence of ``Hashable`` values referencing in-pool or out-of-pool descriptors we recommend for adjudication feedback. In the latter sequence, descriptors are ordered by usefulness, most to least. :raises ValueError: `pool` and `pool_uids` are of different length .. seealso:: :py:class:`RankRelevancyWithFeedback` class doc-string for discussion on "most useful" meaning. """ if len(pool) != len(pool_uids): raise ValueError('pool and pool_uids must be equally long but ' f'have length {len(pool)} and {len(pool_uids)}, ' 'respectively') return self._rank_with_feedback(pos, neg, pool, pool_uids) ``` #### File: algorithms/rank_relevancy/wrap_classifier.py ```python from typing import Sequence import numpy as np from smqtk.algorithms import SupervisedClassifier from smqtk.representation import DescriptorElement from smqtk.representation.descriptor_element.local_elements import ( DescriptorMemoryElement, ) from smqtk.utils.configuration import ( from_config_dict, make_default_config, cls_conf_to_config_dict, ) from . import RankRelevancy class RankRelevancyWithSupervisedClassifier(RankRelevancy): """ Relevancy ranking that utilizes a usable supervised classifier for on-the-fly training and inference. # Classifier "cloning" The input supervised classifier instance to the constructor is not directly used, but its type and configuration are recorded in order to create a new instance in ``rank`` to train and classify the index. The caveat here is that any non-configuration reflected, runtime modifications to the input classifier will not be reflected by the classifier used in ``rank``. Using a copy of the input classifier allows the ``rank`` method to be used in parallel without blocking other calls to ``rank``. :param smqtk.algorithms.SupervisedClassifier classifier_inst: Supervised classifier instance to base the ephemeral ranking classifier on. The type and configuration of this classifier is used to create a clone at rank time. The input classifier instance is not modified. """ def __init__(self, classifier_inst): super().__init__() self._classifier_type = type(classifier_inst) self._classifier_config = classifier_inst.get_config() @classmethod def get_default_config(cls): c = super().get_default_config() c['classifier_inst'] = \ make_default_config(SupervisedClassifier.get_impls()) return c @classmethod def from_config(cls, config_dict, merge_default=True): config_dict = dict(config_dict) # shallow copy to write to input dict config_dict['classifier_inst'] = \ from_config_dict(config_dict.get('classifier_inst', {}), SupervisedClassifier.get_impls()) return super().from_config( config_dict, merge_default=merge_default, ) def get_config(self): return { 'classifier_inst': cls_conf_to_config_dict(self._classifier_type, self._classifier_config), } def rank( self, pos: Sequence[np.ndarray], neg: Sequence[np.ndarray], pool: Sequence[np.ndarray], ) -> Sequence[float]: if len(pool) == 0: return [] # Train supervised classifier with positive/negative examples. label_pos = 'pos' label_neg = 'neg' i = 0 def create_de(v: np.ndarray) -> DescriptorElement: nonlocal i # Hopefully type_str doesn't matter de = DescriptorMemoryElement('', i) de.set_vector(v) i += 1 return de classifier = self._classifier_type.from_config(self._classifier_config) classifier.train({ label_pos: map(create_de, pos), label_neg: map(create_de, neg), }) # Report ``label_pos`` class probabilities as rank score. scores = classifier.classify_arrays(pool) return [c_map.get(label_pos, 0.0) for c_map in scores] ``` #### File: smqtk/bin/createFileIngest.py ```python import glob import logging import os.path as osp from smqtk.representation import DataSet from smqtk.representation.data_element.file_element import DataFileElement from smqtk.utils import cli from smqtk.utils.configuration import ( from_config_dict, make_default_config, ) def default_config(): return { "data_set": make_default_config(DataSet.get_impls()) } def cli_parser(): parser = cli.basic_cli_parser(__doc__) parser.add_argument("input_files", metavar='GLOB', nargs='*') return parser def main(): parser = cli_parser() args = parser.parse_args() config = cli.utility_main_helper(default_config, args) log = logging.getLogger(__name__) log.debug("Script arguments:\n%s" % args) def iter_input_elements(): for f in args.input_files: f = osp.expanduser(f) if osp.isfile(f): yield DataFileElement(f) else: log.debug("Expanding glob: %s" % f) for g in glob.glob(f): yield DataFileElement(g) log.info("Adding elements to data set") ds = from_config_dict(config['data_set'], DataSet.get_impls()) ds.add_data(*iter_input_elements()) if __name__ == '__main__': main() ``` #### File: representation/descriptor_set/__init__.py ```python import abc from smqtk.representation import SmqtkRepresentation, DescriptorElement from smqtk.utils.plugin import Pluggable class DescriptorSet (SmqtkRepresentation, Pluggable): """ Index of descriptors, keyed and query-able by descriptor UUID. Note that these indexes do not use the descriptor type strings. Thus, if a set of descriptors has multiple elements with the same UUID, but different type strings, they will bash each other in these indexes. In such a case, when dealing with descriptors for different generators, it is advisable to use multiple indices. """ def __delitem__(self, uuid): self.remove_descriptor(uuid) def __getitem__(self, uuid): return self.get_descriptor(uuid) def __iter__(self): return self.iterdescriptors() def __len__(self): return self.count() def __contains__(self, item): if isinstance(item, DescriptorElement): # Testing for UUID inclusion since element hash based on UUID # value. return self.has_descriptor(item.uuid()) return False def get_many_vectors(self, uuids): """ Get underlying vectors of descriptors associated with given uuids. :param uuids: Iterable of descriptor UUIDs to query for. :type uuids: collections.abc.Iterable[collections.abc.Hashable] :raises: KeyError: When there is not a descriptor in this set for one or more input UIDs. :return: List of vectors for descriptors associated with given uuid values. :rtype: list[numpy.ndarray | None] """ return DescriptorElement.get_many_vectors( self.get_many_descriptors(uuids) ) @abc.abstractmethod def count(self): """ :return: Number of descriptor elements stored in this index. :rtype: int """ @abc.abstractmethod def clear(self): """ Clear this descriptor index's entries. """ @abc.abstractmethod def has_descriptor(self, uuid): """ Check if a DescriptorElement with the given UUID exists in this index. :param uuid: UUID to query for :type uuid: collections.abc.Hashable :return: True if a DescriptorElement with the given UUID exists in this index, or False if not. :rtype: bool """ @abc.abstractmethod def add_descriptor(self, descriptor): """ Add a descriptor to this index. Adding the same descriptor multiple times should not add multiple copies of the descriptor in the index (based on UUID). Added descriptors overwrite indexed descriptors based on UUID. :param descriptor: Descriptor to index. :type descriptor: smqtk.representation.DescriptorElement """ @abc.abstractmethod def add_many_descriptors(self, descriptors): """ Add multiple descriptors at one time. Adding the same descriptor multiple times should not add multiple copies of the descriptor in the index (based on UUID). Added descriptors overwrite indexed descriptors based on UUID. :param descriptors: Iterable of descriptor instances to add to this index. :type descriptors: collections.abc.Iterable[smqtk.representation.DescriptorElement] """ @abc.abstractmethod def get_descriptor(self, uuid): """ Get the descriptor in this index that is associated with the given UUID. :param uuid: UUID of the DescriptorElement to get. :type uuid: collections.abc.Hashable :raises KeyError: The given UUID doesn't associate to a DescriptorElement in this index. :return: DescriptorElement associated with the queried UUID. :rtype: smqtk.representation.DescriptorElement """ @abc.abstractmethod def get_many_descriptors(self, uuids): """ Get an iterator over descriptors associated to given descriptor UUIDs. :param uuids: Iterable of descriptor UUIDs to query for. :type uuids: collections.abc.Iterable[collections.abc.Hashable] :raises KeyError: A given UUID doesn't associate with a DescriptorElement in this index. :return: Iterator of descriptors associated to given uuid values. :rtype: collections.abc.Iterable[smqtk.representation.DescriptorElement] """ @abc.abstractmethod def remove_descriptor(self, uuid): """ Remove a descriptor from this index by the given UUID. :param uuid: UUID of the DescriptorElement to remove. :type uuid: collections.abc.Hashable :raises KeyError: The given UUID doesn't associate to a DescriptorElement in this index. """ @abc.abstractmethod def remove_many_descriptors(self, uuids): """ Remove descriptors associated to given descriptor UUIDs from this index. :param uuids: Iterable of descriptor UUIDs to remove. :type uuids: collections.abc.Iterable[collections.abc.Hashable] :raises KeyError: A given UUID doesn't associate with a DescriptorElement in this index. """ @abc.abstractmethod def iterkeys(self): """ Return an iterator over indexed descriptor keys, which are their UUIDs. :rtype: collections.abc.Iterator[collections.abc.Hashable] """ @abc.abstractmethod def iterdescriptors(self): """ Return an iterator over indexed descriptor element instances. :rtype: collections.abc.Iterator[smqtk.representation.DescriptorElement] """ @abc.abstractmethod def iteritems(self): """ Return an iterator over indexed descriptor key and instance pairs. :rtype: collections.abc.Iterator[(collections.abc.Hashable, smqtk.representation.DescriptorElement)] """ def keys(self): """ alias for iterkeys """ return self.iterkeys() def items(self): """ alias for iteritems """ return self.iteritems() ``` #### File: smqtk/utils/bits.py ```python import math import numpy # noinspection PyUnresolvedReferences from six.moves import range from .combinatorics import ncr def next_perm(v: int) -> int: """ Compute the lexicographically next bit permutation Generates next permutation with a given amount of set bits, given the previous lexicographical value. Taken from http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation """ t = (v | (v - 1)) + 1 w = t | ((((t & -t) // (v & -v)) >> 1) - 1) return w def iter_perms(length, n): """ Return an iterator over bit combinations of length ``l`` with ``n`` set bits. :raises StopIteration: If ``n`` <= 0 or normal completion. :param length: Total bit length to work with. The ``n`` in nCr problem. :type length: int :param n: Number of bits to be set in permutations. The ``r`` in nCr problem. :type n: int :return: List of bit vector permutations of the value ``(1<<n)-1`` over ``l`` bits. :rtype: typing.Generator[int] """ if n <= 0: raise StopIteration() n = min(length, n) s = (1 << n) - 1 yield s for _ in range(ncr(length, n) - 1): s = next_perm(s) yield s def neighbor_codes(b, c, d): """ Iterate through integers of bit length ``b``, where ``b`` is the number of bits, that are ``d`` hamming distance away from query code ``c``. This will yield a number of elements equal to ``nCr(b, d)``. We expect ``d`` to be the integer hamming distance, e.g. h(001101, 100101) == 2, not 0.333. :param b: integer bit length :param b: int :param c: Query small-code integer :type c: int :param d: Integer hamming distance :type d: int """ if not d: yield c else: for fltr in iter_perms(b, d): yield c ^ fltr def bit_vector_to_int_large(v): """ Transform a numpy vector representing a sequence of binary bits [0 | >0] into an integer representation. This function is the special form that can handle very large integers (>64bit). :param v: 1D Vector of bits :type v: numpy.ndarray :return: Integer equivalent :rtype: int """ c = 0 for b in v: c = (c << 1) + int(b) return c def int_to_bit_vector_large(integer, bits=0): """ Transform integer into a bit vector, optionally of a specific length. This function is the special form that can handle very large integers (>64bit). :raises ValueError: If ``bits`` specified is smaller than the required bits to represent the given ``integer`` value. :param integer: integer to convert :type integer: int :param bits: Optional fixed number of bits that should be represented by the vector. :type bits: Optional specification of the size of returned vector. :return: Bit vector as numpy array (big endian). :rtype: numpy.ndarray[bool] """ # Can't use math version because floating-point precision runs out after # about 2^48 # -2 to remove length of '0b' string prefix size = len(bin(integer)) - 2 if bits and (bits - size) < 0: raise ValueError("%d bits too small to represent integer value %d." % (bits, integer)) # Converting integer to array v = numpy.zeros(bits or size, numpy.bool_) for i in range(0, size): v[-(i+1)] = integer & 1 integer >>= 1 return v def popcount(v: int) -> int: """ Count the number of bits set (number of 1-bits, not 0-bits). Pure python popcount algorithm adapted implementation at https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel. Maximum known stable value that can be passed through this method: 2**256 - 2. See the ``popcount.v_max`` function property. :param v: Integer to count the set bits of. Must be a 32-bit integer or less. :return: Number of set bits in the given integer ``v``. """ # TODO: C implementation of this # since this version, being in python, isn't faster than counting 1's # in result of ``bin`` function. # Cannot take the log of 0. if not v: return 0 # T is the number of bits used to represent v to the nearest power of 2 ceil, log = math.ceil, math.log tp = max(8, int(2**ceil(log(v.bit_length()) / log(2)))) t = 2**tp-1 b = tp // 8 # bit-length constrained h55 = t//3 h33 = t//15*3 h0f = t//255*15 h01 = t//255 # noinspection PyAugmentAssignment v = v - ((v >> 1) & h55) v = (v & h33) + ((v >> 2) & h33) v = (v + (v >> 4)) & h0f # Need the extra ``& t`` after the multiplication in order to simulate bit # truncation as if v were only a tp-bit integer # Magic 8 represents bits ina byte return ((v * h01) & t) >> ((b-1) * 8) # Maximum known stable value that can be passed as ``v``. POPCOUNT_VMAX = (2**256) - 2 ``` #### File: smqtk/utils/feature_memory.py ```python import logging import multiprocessing import numpy as np from smqtk.utils import ReadWriteLock from smqtk.utils import SimpleTimer from smqtk.utils.distance_kernel import DistanceKernel class FeatureMemory (object): """ Class for encapsulating and managing feature and kernel matrices for different feature types """ @classmethod def construct_from_files(cls, id_vector_file, bg_flags_file, feature_mat_file, kernel_mat_file, rw_lock=None): """ Initialize FeatureMemory object from file sources. :param id_vector_file: File containing the numpy.savetxt(...) output of clip ID values in the order in which they associate to the rows of the kernel matrix. :type id_vector_file: str :param feature_mat_file: File containing the kernel matrix as saved by numpy.save(...) (saved as an ndarray, converted to matrix on load). :type feature_mat_file: str :param kernel_mat_file: File containing the kernel matrix as saved by numpy.save(...) (saved as an ndarray, converted to matrix on load). :type kernel_mat_file: str :param bg_flags_file: Optional file containing output of numpy.savetxt(...) where each index maps a row index of the kernel to whether or not the associated clip ID should be considered a background video or not. :type bg_flags_file: str :param rw_lock: Optional ReadWriteLock for this instance to use. If not provided, we will create our own. :type rw_lock: None or ReadWriteLock :return: Symmetric FeatureMemory constructed with the data provided in the provided files. :rtype: FeatureMemory """ clip_ids = np.array(np.load(id_vector_file)) bg_flags = np.array(np.load(bg_flags_file)) # noinspection PyCallingNonCallable feature_mat = np.matrix(np.load(feature_mat_file)) # noinspection PyCallingNonCallable kernel_mat = np.matrix(np.load(kernel_mat_file)) bg_clips = set([clip_ids[i] for i, f in enumerate(bg_flags) if f]) return FeatureMemory(clip_ids, bg_clips, feature_mat, kernel_mat, rw_lock=rw_lock) @property def _log(self): return logging.getLogger('.'.join([self.__module__, self.__class__.__name__])) def __init__(self, id_vector, bg_clip_ids, feature_mat, kernel_mat, rw_lock=None): """ Initialize this FeatureMemory object This class must be used with numpy ndarray and matrix classes for shared memory purposes. NOTE: Arrays and matrices given here must own their data! This is currently required in order to resize them later when updating with new feature vectors. A ValueError will be thrown if an given array/matrix does not own its data. TODO: Allow kernel matrix to be optional, causing it to be built from the provided feature matrix (not a recommended action). :param id_vector: (numpy) Array of clip IDs. This is used as the map from an index position to the clip ID its associated with in the kernel and distance kernel matrices. :type id_vector: ndarray of int :param bg_clip_ids: Set of clip IDs that are to be treated as background clip IDs. :type bg_clip_ids: set[int] :param feature_mat: (numpy) Matrix of features for clip IDs. Features should be stored vertically, i.e. Each row is a feature for a particular clip ID (id_vector being the index-to-clipID map). :type feature_mat: matrix of double :param kernel_mat: (numpy) Matrix detailing the distances between feature vectors. This must be a square, symmetric matrix. :type kernel_mat: matrix of double :param rw_lock: Optional ReadWriteLock for this instance to use. If not provided, we will create our own. :type rw_lock: None or ReadWriteLock """ # assert isinstance(id_vector, (ndarray, ArrayProxy)), \ # "ID vector not given as a numpy.ndarray!" assert isinstance(bg_clip_ids, (set, frozenset)), \ "Background ID vector not a numpy.ndarray!" # assert isinstance(feature_mat, (matrix, MatrixProxy)), \ # "Kernel matrix not a numpy.matrix!" # assert isinstance(kernel_mat, (matrix, MatrixProxy)), \ # "Distance kernel not a numpy.matrix!" # noinspection PyUnresolvedReferences # -> base IS a member of the matrix class... if id_vector.base is not None: raise ValueError("Given ``id_vector`` does not own its data! It " "will not be transformable later.") elif feature_mat.base is not None: raise ValueError("Given ``feature_mat`` does not own its data! It " "will not be transformable later.") elif kernel_mat.base is not None: raise ValueError("Given ``kernel_mat`` does not own its data! It " "will not be transformable later.") # The kernel should be square and should be the same size as the feature # matrix's number or rows (unique stored clip features). if not (kernel_mat.shape[0] == kernel_mat.shape[1] == feature_mat.shape[0]): raise ValueError("The distance kernel matrix provided is either " "misshapen or conflicts with the dimensions of " "the provided feature matrix. (kernel matrix " "shape: %s, num feature vectors: %d" % (kernel_mat.shape, feature_mat.shape[0])) self._log.debug("Lock given: %s", rw_lock) if rw_lock: assert isinstance(rw_lock, ReadWriteLock), \ "Not given a value ReadWriteLock instance!" self._rw_lock = rw_lock else: self._log.debug("Falling back on bad lock given (given: %s)", type(rw_lock)) self._rw_lock = ReadWriteLock() self._id_vector = id_vector self._bg_clip_ids = set(bg_clip_ids) self._feature_mat = feature_mat self._kernel_mat = kernel_mat # Helper structure mapping clipIDs to their row index self._cid2idx_map = dict((cid, idx) for idx, cid in enumerate(self._id_vector)) @staticmethod def _histogram_intersection_distance(a, b): """ Calculates distance between two vectors using histogram intersection. Non-branching version of the histogram intersection algorithm. :param a: A vector in array form. :type a: ndarray :param b: A vector in array form. :type b: ndarray :return: Histogram Intersection (HI) distance scalar :rtype: double """ # noinspection PyUnresolvedReferences return (a + b - np.abs(a - b)).sum() * 0.5 def get_ids(self): """ NOTE: NOT THREAD SAFE. Use the returned structure only in conjunction with this object's lock when in a parallel environment to prevent possible memory corruption. :return: Ordered vector of clip IDs along the row-edge of this object's feature matrix and along both edges of the kernel matrix. :rtype: numpy.core.multiarray.ndarray """ return self._id_vector def get_bg_ids(self): """ NOTE: NOT THREAD SAFE. Use the returned structure only in conjunction with this object's lock when in a parallel environment to prevent possible memory corruption. :return: Ordered vector of clip IDs that we are treating as background clips. :rtype: ndarray """ return frozenset(self._bg_clip_ids) def get_feature_matrix(self): """ NOTE: NOT THREAD SAFE. Use the returned structure only in conjunction with this object's lock when in a parallel environment to prevent possible memory corruption. :return: Matrix recording feature vectors for a feature type. See the id vector for row-wise index-to-clipID association. :rtype: numpy.matrixlib.defmatrix.matrix """ return self._feature_mat def get_kernel_matrix(self): """ NOTE: NOT THREAD SAFE. Use the returned structure only in conjunction with this object's lock when in a parallel environment to prevent possible memory corruption. :return: Symmetric matrix detailing the distances between any two clip ID features. Distances are computed via histogram intersection. :rtype: matrix """ return self._kernel_mat def get_lock(self): """ :return: a reference to this object's read/write lock. :rtype: ReadWriteLock """ return self._rw_lock def get_distance_kernel(self): """ DistanceKernel object constructed from this feature's current state. :return: This feature distance kernel. :rtype: DistanceKernel """ with self._rw_lock.read_lock(): return DistanceKernel(self._id_vector, self._id_vector, self._kernel_mat, self._bg_clip_ids, self._rw_lock) def get_feature(self, *clip_id_or_ids): """ Return the a matrix where each row is the feature vector for one or more clip IDs. The given list of clip IDs given acts as the index-to-clipID map for the returned matrix's rows. If repeat clip IDs are provided in the input, there will be repeat feature vectors in the returned matrix. Raises ValueError if the given clip ID is not represented in the current matrix. :param clip_id_or_ids: One or more integer clip IDs to retrieve the feature vectors for. :type clip_id_or_ids: tuple of int :return: NxM matrix, where N is the number of clip IDs requested and M is the length of a feature vector for this vector. :rtype: np.matrix """ assert all(isinstance(e, int) for e in clip_id_or_ids), \ "Not given an integer or a valid iterable over integers!" with self._rw_lock.read_lock(): # rows = num of IDs given, cols = width of feature matrix with SimpleTimer("Allocating return matrix", self._log.debug): # noinspection PyUnresolvedReferences # -> matrix class DOES have ``dtype`` property... ret_mat = np.ndarray((len(clip_id_or_ids), self._feature_mat.shape[1]), self._feature_mat.dtype) for i, cid in enumerate(clip_id_or_ids): feature_idx = self._cid2idx_map[cid] ret_mat[i, :] = self._feature_mat[feature_idx, :] return ret_mat # noinspection PyUnresolvedReferences,PyCallingNonCallable def update(self, clip_id, feature_vec=None, is_background=False, timeout=None): """ Update this feature with a feature vector associated with a clip ID. If clip ID is already in the feature matrix, we replace the current vector with the given one. Either way, the distance kernel is updated with either a new row/column, or updating relevant slots in the existing distance kernel. :raise ValueError: if the given feature vector is not compatible with our feature vector. :raise RuntimeError: If a timeout is given and the underlying write lock doesn't acquire in that amount of time. :param clip_id: The ID of the clip the given ``feature_vec`` represents. :type clip_id: int :param feature_vec: Feature vector associated to the given clip ID. :type feature_vec: ndarray :param is_background: Flag declaring that this clip ID represents a background feature. :type is_background: bool :param timeout: Timeout seconds for the underlying write lock to acquire before a RuntimeError is thrown. :type timeout: None or int or float """ with self._rw_lock.write_lock(timeout): clip_id = int(clip_id) if feature_vec is not None and \ not (feature_vec.ndim == 1 and len(feature_vec) == self._feature_mat.shape[1]): raise ValueError("Given feature vector not compatible " "(dimensionality or length does not match)") # Update the given feature vector and kernel distances if self._cid2idx_map.get(clip_id, None) is not None: # In all cases, update the background status of the clip if is_background: self._bg_clip_ids.add(clip_id) else: self._bg_clip_ids.discard(clip_id) # If we were given a new feature vector, update entries if feature_vec is not None: idx = self._cid2idx_map[clip_id] self._feature_mat[idx] = feature_vec new_dist = np.mat(tuple( self._histogram_intersection_distance(feature_vec, fv) for fv in self._feature_mat )) self._kernel_mat[idx, :] = new_dist self._kernel_mat[:, idx] = new_dist # Given a new feature to add. else: if feature_vec is None: raise ValueError("Update given a new clip ID, but no " "feature vector provided.") # Update internal feature matrix with added vector self._cid2idx_map[clip_id] = self._id_vector.size self._id_vector.resize((self._id_vector.size + 1,), refcheck=False) self._id_vector[-1] = clip_id if is_background: self._bg_clip_ids.add(clip_id) # noinspection PyUnresolvedReferences if self._feature_mat.base is not None: raise RuntimeError("Feature matrix does not own its data") # Since we're only adding a new row, this resize does not affect # the positioning of the existing data. # noinspection PyUnresolvedReferences self._feature_mat.resize((self._feature_mat.shape[0] + 1, self._feature_mat.shape[1]), refcheck=False ) self._feature_mat[-1, :] = feature_vec # Need to add a new row AND column to the distance kernel. if self._kernel_mat.base is not None: raise RuntimeError("kernel matrix does not own its data") assert self._kernel_mat.shape[0] == self._kernel_mat.shape[1], \ "kernel matrix is not symmetric for some reason???" # noinspection PyPep8Naming # -> because I like ``N`` better... N = self._kernel_mat.shape[0] kernel_copy = np.matrix(self._kernel_mat) self._kernel_mat.resize((N+1, N+1), refcheck=False) self._kernel_mat[:N, :N] = kernel_copy del kernel_copy # Computing new feature distance (histogram intersection). Only # need to compute this once because of HI being being # commutative and the kernel matrix being symmetric. dist_vec = np.mat(tuple( self._histogram_intersection_distance(feature_vec, fv) for fv in self._feature_mat )) self._kernel_mat[-1, :] = dist_vec self._kernel_mat[:, -1] = dist_vec.T class FeatureMemoryMap (object): """ Map different feature types to their own FeatureMemory object """ # Basically a pass-through for all the functions in FeatureMemory, but with # and additional heading parameter of feature type. def __init__(self): self._map_lock = multiprocessing.RLock() #: :type: dict[str, FeatureMemory] self._feature2memory = {} def get_feature_types(self): """ Get available feature types in this map. :return: Tuple of string names of all features initialize in this map :rtype: tuple of str """ with self._map_lock: return list(self._feature2memory.keys()) def initialize(self, feature_type, id_vector, bg_clip_ids_vector, feature_mat, kernel_mat, rw_lock=None): """ Initialize a feature type within this map :raise KeyError: When the given feature_type is already present in the map (requires a removal first). :raise ValueError: When there is an issue with one or more of the provided input data elements. :param feature_type: The name assigned to the feature type :param id_vector: Numpy array mapping indices to a clip ID. :param bg_clip_ids_vector: Numpy array of integers detailing the clip IDs that are to be considered background. :param feature_mat: Numpy matrix of all clip feature vectors. This should be an order 'C' matrix with features stacked vertically. The ``id_vector`` maps row indices to the clip ID the feature represents. :param kernel_mat: Pre-computed distance kernel :param rw_lock: Optional read-write lock to manually use with underlying feature memory construct. Otherwise we create our own. """ with self._map_lock: # KeyError on repeat feature_type key, require removal first if feature_type in self._feature2memory: raise KeyError("Key '%s' already present in our mapping. " "Please remove first before initializing." % feature_type) self._feature2memory[feature_type] = \ FeatureMemory(id_vector, bg_clip_ids_vector, feature_mat, kernel_mat, rw_lock) def initialize_from_files(self, feature_type, id_vector_file, bg_flags_file, feature_mat_file, kernel_mat_file, rw_lock=None): """ Initialize a feature type within this map from file resources. Files pointed to must be of the following formats: - id_vector_file: File resulting from a numpy.savetxt() of a one-dimensional array, mapping index position with an integer clip ID. This should correlate to the clip IDs of the row-major features stored in feature_mat_file. - bg_flags_file: File resulting from a numpy.savetxt() of a one-dimensional array, mapping index position with whether that clip should be treated as a background video or not. This should corrolate with features in the same way as the id_id_vector_file. - feature_mat_file: File resulting from a numpy.save() of an ndarray. This will be loaded in as a matrix. This should be the initial NxD feature matrix for this feature type. - kernel_mat_file: File resulting from a numpy.save() of an ndarray. This will be loaded in as a matrix. This should be the computed NxN distance kernel for this feature type. :param feature_type: The name assigned to the feature type. :type id_vector_file: str :type bg_flags_file: str :type feature_mat_file: str :type kernel_mat_file: str :param rw_lock: Optionally specified ReadWriteLock instance to use with the underlying FeatureMemory and DistanceKernel objects associated with this feature type (not recommended) :type rw_lock: ReadWriteLock """ with self._map_lock: # even though this happens in the initialize() call we make here, # we would like to short circuit before loading data if we can. if feature_type in self._feature2memory: raise KeyError("Key '%s' already present in our mapping. " "Please remove first before initializing.") self._feature2memory[feature_type] = \ FeatureMemory.construct_from_files(id_vector_file, bg_flags_file, feature_mat_file, kernel_mat_file, rw_lock) def remove(self, feature_type): """ Removes a feature type from our map, releasing its contents. :raise KeyError: If the given feature type does not currently map to anything. :param feature_type: The feature type to get the memory object of. :type feature_type: str """ with self._map_lock: del self._feature2memory[feature_type] def get_feature_memory(self, feature_type): """ Get the underlying FeatureMemory object for a feature type. :raise KeyError: If the given feature type does not currently map to anything. :param feature_type: The feature type to get the memory object of. :type feature_type: str :return: FeatureMemory object associated to the given feature type. :rtype: FeatureMemory """ with self._map_lock: return self._feature2memory[feature_type] def get_distance_kernel(self, feature_type): """ Get the DistanceKernel for a feature type. :raise KeyError: If the given feature type does not currently map to anything. :param feature_type: The feature type to get the memory object of. :type feature_type: str """ with self._map_lock: return self._feature2memory[feature_type]\ .get_distance_kernel() def get_feature(self, feature_type, *clip_id_or_ids): """ With respect to the given feature types, return a matrix where each row is the feature vector for one or more clip IDs. The given clip IDs acts as the index-to-clipID map for the returned matrix's rows. If repeat clip IDs are provided in the input, there will be repeat feature vectors in the returned matrix. :raise ValueError: If the given clip ID is not represented in the feature matrix. :param feature_type: Feature type to access: :type feature_type: str :param clip_id_or_ids: One or more integer clip IDs to retrieve the feature vectors for. :type clip_id_or_ids: int :return: NxM matrix, where N is the number of clip IDs requested and M is the length of a feature vector for this vector. :rtype: np.matrix """ with self._map_lock: return self._feature2memory[feature_type]\ .get_feature(*clip_id_or_ids) def update(self, feature_type, clip_id, feature_vector, is_background=False, timeout=None): with self._map_lock: return self._feature2memory[feature_type]\ .update(clip_id, feature_vector, is_background, timeout) ``` #### File: machine_run_scripts/hbase_gpu_machine/transfer_file_descriptors_to_psql.py ```python import cPickle import logging import multiprocessing import os import re from smqtk.representation import DescriptorElementFactory from smqtk.representation.descriptor_element.local_elements import DescriptorFileElement from smqtk.representation.descriptor_element.postgres import PostgresDescriptorElement from smqtk.utils import cli from smqtk.utils import file ROOT_DIR = "/data/kitware/smqtk/image_cache_cnn_compute/descriptors" file_element_config = { 'save_dir': ROOT_DIR, 'subdir_split': 10, } psql_element_config = { 'db_name': 'smqtk', 'db_host': 'localhost', 'db_port': 6432, # PgBouncer port 'db_user': 'smqtk', 'db_pass': '<PASSWORD>', } file_element_factory = DescriptorElementFactory( DescriptorFileElement, file_element_config, ) psql_element_factory = DescriptorElementFactory( PostgresDescriptorElement, psql_element_config, ) fname_re = re.compile(r'(\w+)\.(\w+)\.vector\.npy') def transfer_vector(type_str, uuid_str): pd = psql_element_factory(type_str, uuid_str) if not pd.has_vector(): fd = file_element_factory(type_str, uuid_str) # removing the "-0" artifacts pd.set_vector( fd.vector() + 0 ) def proc_transfer(in_queue): running = True while running: packet = in_queue.get() if packet: type_str, uuid_str = packet transfer_vector(type_str, uuid_str) else: running = False def main(): cli.initialize_logging(logging.getLogger(), logging.DEBUG) log = logging.getLogger(__name__) # For each file in descriptor vector file tree, load from file # [type, uuid, vector] and insert into PSQL element. log.info("Setting up parallel environment") in_queue = multiprocessing.Queue() workers = [] for i in xrange(multiprocessing.cpu_count()): p = multiprocessing.Process( target=proc_transfer, args=(in_queue,) ) workers.append(p) p.start() try: log.info("Loading filename list") with open("descriptor_file_names.5.3mil.pickle") as f: fname_list = cPickle.load(f) log.info("Running through filename list") for n in fname_list: m = fname_re.match(n) assert m type_str = m.group(1) uuid_str = m.group(2) #print type_str, uuid_str #break in_queue.put( (type_str, uuid_str) ) log.info("Sending worker terminal packets") for w in workers: in_queue.put(None) except: log.info("Terminating workers") for w in workers: w.terminate() finally: log.info("Waiting for workers to complete") for w in workers: w.join() log.info("Workers joined") if __name__ == '__main__': main() ``` #### File: algorithms/descriptor_generator/test_colordescriptor.py ```python import unittest import unittest.mock as mock import pytest from smqtk.algorithms.descriptor_generator import DescriptorGenerator from smqtk.algorithms.descriptor_generator.colordescriptor.colordescriptor \ import ColorDescriptor_Image_csift # arbitrary leaf class from smqtk.utils.configuration import configuration_test_helper @pytest.mark.skipif(not ColorDescriptor_Image_csift.is_usable(), reason="ColorDescriptor generator is not currently usable") class TestColorDescriptor (unittest.TestCase): def test_impl_findable(self): self.assertIn(ColorDescriptor_Image_csift.__name__, DescriptorGenerator.get_impls()) @mock.patch('smqtk.algorithms.descriptor_generator' '.colordescriptor.colordescriptor.safe_create_dir') def test_configuration(self, _mock_scd): i = ColorDescriptor_Image_csift( model_directory='test model dir', work_directory='test work dir', model_gen_descriptor_limit=123764, kmeans_k=42, flann_distance_metric='hik', flann_target_precision=0.92, flann_sample_fraction=0.71, flann_autotune=True, random_seed=7, use_spatial_pyramid=True, parallel=3, ) for inst in configuration_test_helper(i): assert inst._model_dir == 'test model dir' assert inst._work_dir == 'test work dir' assert inst._model_gen_descriptor_limit == 123764 assert inst._kmeans_k == 42 assert inst._flann_distance_metric == 'hik' assert inst._flann_target_precision == 0.92 assert inst._flann_sample_fraction == 0.71 assert inst._flann_autotune is True assert inst._rand_seed == 7 assert inst._use_sp is True assert inst.parallel == 3 ``` #### File: algorithms/relevancy_index/test_RI_abstract.py ```python from __future__ import division, print_function import unittest import unittest.mock as mock from smqtk.algorithms.relevancy_index import RelevancyIndex class DummyRI (RelevancyIndex): @classmethod def is_usable(cls): return True def rank(self, pos, neg): pass def get_config(self): pass def count(self): return 0 def build_index(self, descriptors): pass class TestSimilarityIndexAbstract (unittest.TestCase): def test_count(self): index = DummyRI() self.assertEqual(index.count(), 0) self.assertEqual(index.count(), len(index)) # Pretend that there were things in there. Len should pass it though index.count = mock.Mock() index.count.return_value = 5 self.assertEqual(len(index), 5) ``` #### File: tests/representation/test_DetectionElementFactory.py ```python import unittest.mock as mock from smqtk.representation import DetectionElement from smqtk.representation.detection_element_factory \ import DetectionElementFactory def test_get_default_config(): """ Test that get_default_config method does not error and returns a dictionary with a ``type`` key. """ c = DetectionElementFactory.get_default_config() assert isinstance(c, dict) assert 'type' in c @mock.patch.object(DetectionElementFactory, '__init__') @mock.patch.object(DetectionElementFactory, 'get_default_config') @mock.patch.object(DetectionElement, 'get_impls') def test_from_config_no_merge(m_de_get_impls, m_def_get_default_config, m_def_init): """ Test that ``from_config`` appropriately constructs a factory instance without merging a default configuration. """ # Because __init__ needs to return None m_def_init.return_value = None # Mock available implementations of DetectionElement T1 = mock.MagicMock(spec=DetectionElement) T1.__name__ = 'T1' T1.__module__ = __name__ T2 = mock.MagicMock(spec=DetectionElement) T2.__name__ = 'T2' T2.__module__ = __name__ expected_impls_set = {T1, T2} m_de_get_impls.return_value = expected_impls_set # Mock default configuration return from class method. expected_default_conf = { 'type': None, f'{__name__}.T1': {'z': 'z'}, f'{__name__}.T2': {'y': 'y'}, } m_def_get_default_config.return_value = expected_default_conf # Test configuration we are passing to ``from_config``. test_config = {'type': f'{__name__}.T2', f'{__name__}.T2': {'a': 1, 'b': 'c'}} # Because we are not merging default config, we expect only the contents # of the passed config to reach the factory constructor. expected_type = T2 expected_conf = {'a': 1, 'b': 'c'} DetectionElementFactory.from_config(test_config, merge_default=False) m_def_get_default_config.assert_not_called() m_de_get_impls.assert_called_once() m_def_init.assert_called_once_with(expected_type, expected_conf) @mock.patch.object(DetectionElementFactory, '__init__') @mock.patch.object(DetectionElementFactory, 'get_default_config') @mock.patch.object(DetectionElement, 'get_impls') def test_from_config_with_merge(m_de_get_impls, m_def_get_default_config, m_def_init): """ Test that ``from_config`` appropriately constructs a factory instance after merging the default configuration. """ # Because __init__ needs to return None m_def_init.return_value = None # Mock available implementations of DetectionElement # - Overriding class location to be "local" for testing. T1 = mock.MagicMock(spec=DetectionElement) T1.__name__ = 'T1' T1.__module__ = __name__ T2 = mock.MagicMock(spec=DetectionElement) T2.__name__ = 'T2' T2.__module__ = __name__ expected_impls_set = {T1, T2} m_de_get_impls.return_value = expected_impls_set # Mock default configuration return from class method. expected_default_conf = { 'type': None, f'{__name__}.T1': {'z': 'z'}, f'{__name__}.T2': {'y': 'y'}, } m_def_get_default_config.return_value = expected_default_conf # Partial configuration to pass to ``from_config``. test_config = {'type': f'{__name__}.T2', f'{__name__}.T2': {'a': 1, 'b': 'c'}} # Expected construction values. Note that conf has default component(s) # merged into it. expected_type = T2 expected_conf = {'a': 1, 'b': 'c', 'y': 'y'} DetectionElementFactory.from_config(test_config, merge_default=True) m_def_get_default_config.assert_called_once() m_de_get_impls.assert_called_once() m_def_init.assert_called_once_with(expected_type, expected_conf) def test_get_config(): """ Test that ``get_config`` returns the appropriate configuration dictionary. """ test_type = mock.MagicMock(spec=DetectionElement) test_type.__name__ = 'T1' test_type.__module__ = __name__ test_conf = {'a': 1, 'b': 'c'} expected_config = { "type": f"{__name__}.T1", f"{__name__}.T1": {'a': 1, 'b': 'c'} } # noinspection PyTypeChecker factory = DetectionElementFactory(test_type, test_conf) assert factory.get_config() == expected_config def test_new_detection_function(): """ Test that the given type and config at construction time is used to create a new instance via known ``Configurable`` interface methods. """ elem_type = mock.MagicMock(spec=DetectionElement) # store expected function return that should be returned from # ``new_detection`` call. expected_from_config_return = elem_type.from_config.return_value elem_config = {'a': 1, 'b': 'c'} expected_uuid = 'some uuid' # noinspection PyTypeChecker test_factory = DetectionElementFactory(elem_type, elem_config) assert test_factory.new_detection(expected_uuid) == \ expected_from_config_return elem_type.from_config.assert_called_once_with(elem_config, expected_uuid) def test_new_detection_call_hook(): """ Same as ``test_new_detection_function`` but invoking through __call__ hook. """ elem_type = mock.MagicMock(spec=DetectionElement) # store expected function return that should be returned from # ``new_detection`` call. expected_from_config_return = elem_type.from_config.return_value elem_config = {'a': 1, 'b': 'c'} expected_uuid = 'some uuid' # noinspection PyTypeChecker test_factory = DetectionElementFactory(elem_type, elem_config) # Point of distinction: use of __call__ # noinspection PyArgumentList assert test_factory(expected_uuid) == expected_from_config_return elem_type.from_config.assert_called_once_with(elem_config, expected_uuid) ``` #### File: utils/file_utils/test_safe_create_dir.py ```python import errno import unittest.mock as mock import os import unittest from smqtk.utils.file import safe_create_dir class TestSafeCreateDir (unittest.TestCase): @mock.patch('smqtk.utils.file.os.makedirs') def test_noExists(self, mock_os_makedirs): dir_path = "/some/directory/somewhere" p = safe_create_dir(dir_path) self.assertTrue(mock_os_makedirs.called) self.assertEqual(p, dir_path) @mock.patch('smqtk.utils.file.os.path.exists') @mock.patch('smqtk.utils.file.os.makedirs') def test_existError_alreadyExists(self, mock_os_makedirs, mock_osp_exists): mock_os_makedirs.side_effect = OSError(errno.EEXIST, "Existing directory") mock_osp_exists.return_value = True dir_path = '/existing/dir' p = safe_create_dir(dir_path) self.assertTrue(mock_os_makedirs.called) self.assertTrue(mock_osp_exists.called) mock_osp_exists.assert_called_once_with(dir_path) self.assertEqual(p, dir_path) @mock.patch('smqtk.utils.file.os.path.exists') @mock.patch('smqtk.utils.file.os.makedirs') def test_existError_noExist(self, mock_os_makedirs, mock_osp_exists): mock_os_makedirs.side_effect = OSError(errno.EEXIST, "Existing directory") mock_osp_exists.return_value = False dir_path = '/some/dir' self.assertRaises(OSError, safe_create_dir, dir_path) mock_os_makedirs.assert_called_once_with(dir_path) mock_osp_exists.assert_called_once_with(dir_path) @mock.patch('smqtk.utils.file.os.path.exists') @mock.patch('smqtk.utils.file.os.makedirs') def test_otherOsError(self, mock_os_makedirs, mock_osp_exists): mock_os_makedirs.side_effect = OSError(errno.EACCES, "Permission Denied") dir_path = '/some/dir' self.assertRaises(OSError, safe_create_dir, dir_path) mock_os_makedirs.assert_called_once_with(dir_path) self.assertFalse(mock_osp_exists.called) @mock.patch('smqtk.utils.file.os.makedirs') def test_otherException(self, mock_os_makedirs): mock_os_makedirs.side_effect = RuntimeError("Some other exception") dir_path = 'something' self.assertRaises(RuntimeError, safe_create_dir, dir_path) mock_os_makedirs.assert_called_once_with(os.path.abspath(dir_path)) ```
{ "source": "joshand/merakicli", "score": 2 }
#### File: joshand/merakicli/cli_command_exec.py ```python from meraki_sdk.meraki_sdk_client import MerakiSdkClient from meraki_sdk.exceptions.api_exception import APIException from operator import itemgetter import copy from _config import * import json client = MerakiSdkClient(apikey) def show_enabled(e_stat): if e_stat is True: return "Yes" else: return "No" def xstr(s): return '' if s is None else str(s) def format_data(srcdata): odata = "" widths = [max(map(len, col)) for col in zip(*srcdata)] for row in srcdata: odata += " ".join((val.ljust(width) for val, width in zip(row, widths))) + "\n" return odata def resolve_arg(arg, datalist): dodebug = False if dodebug: print(datalist) retval = None for x in datalist: # print(x) for y in x: if y and y.lower() == arg.lower(): retval = x break if retval: break # if not retval: # for x in datalist: # # print(x) # for y in x: # # attempt to match "int3" type interfaces # temp = re.findall(r'\d+', str(y)) # reslist = list(map(int, temp)) # if dodebug: print("match1=", arg, reslist, y) # if isinstance(reslist, list) and len(reslist) >= 1: # if dodebug: print("match1.1=", reslist) # # res = str("".join(reslist)) # res = "".join("{0}".format(n) for n in reslist) # if dodebug: print("match1.2=") # argtext = arg.lower().replace(res, "") # if dodebug: print("match1.3=") # # see if the text part starts the argument # if dodebug: print("match2=", arg, argtext, y) # if arg.lower().find(argtext) == 0: # argrest = arg.lower().replace(str(argtext.lower()), "") # if dodebug: print("match3=", arg, argrest, res, y) # if str(argrest).strip() == res.strip(): # if dodebug: print("match4=", arg, argrest, res, y) # retval = x # break # # if retval: # break if retval is None: if isinstance(arg, int) and arg < len(datalist): retval = datalist[arg] return retval def exec_quit(data, clitext, contextchain): return "", [] def get_org_raw(): try: srcdata = client.organizations.get_organizations() except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" newlist = sorted(srcdata, key=itemgetter('name')) outdata = [["#", "Organization ID", "Organization Name"]] ocount = 0 for org in newlist: ocount += 1 outdata.append([str(ocount), str(org["id"]), org["name"]]) return outdata def get_net_raw(orgid): try: srcdata = client.networks.get_organization_networks({"organization_id": orgid}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" outdata = [["#", "Network ID", "Network Type", "Network Name"]] if srcdata == {}: pass else: newlist = sorted(srcdata, key=itemgetter('name')) ocount = 0 for org in newlist: ocount += 1 outdata.append([str(ocount), str(org["id"]), "/".join(org["productTypes"]), org["name"]]) return outdata def get_dev_raw(netid): try: srcdata = client.devices.get_network_devices(netid) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" outdata = [["#", "Serial #", "Model", "MAC Address", "WAN 1", "WAN 2", "LAN", "Name"]] if not srcdata: devlist = outdata else: newlist = sorted(srcdata, key=itemgetter('model')) ocount = 0 for dev in newlist: ocount += 1 outdata.append([str(ocount), dev["serial"], dev["model"], dev["mac"], xstr(dev.get("wan1Ip")), xstr(dev.get("wan2Ip")), xstr(dev.get("lanIp")), xstr(dev.get("name"))]) return outdata def decode_model(dev_model): if dev_model.find("MS") >= 0: return "switch" elif dev_model.find("MR") >= 0: return "wireless" elif dev_model.find("MX") >= 0: return "appliance" return "unknown" def get_int_raw(dev_data, orgid, netid, devid): outdata = None devtype = decode_model(dev_data[2]) if devtype == "wireless": outdata = [["#", "Interface", "IP-Assignment", "Name", "Enabled?", "Auth", "Band"]] try: int_data = client.ssids.get_network_ssids(netid) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" for d in int_data: outdata.append([str(d["number"]), "SSID" + str(d["number"]), d["ipAssignmentMode"], d["name"], show_enabled(d["enabled"]), d["authMode"], d["bandSelection"]]) elif devtype == "switch": outdata = [["#", "Interface", "Name", "Enabled?", "Type", "VLAN", "Voice VLAN"]] try: int_data = client.switch_ports.get_device_switch_ports(devid) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" for d in int_data: pname = d["name"] if pname is None: pname = "" pvoicevlan = d["voiceVlan"] if pvoicevlan is None: pvoicevlan = "" outdata.append([str(d["number"]), "Ethernet" + str(d["number"]), pname, show_enabled(d.get("enabled", "")), d.get("type", ""), str(d.get("vlan", "")), str(pvoicevlan)]) #print(outdata) elif devtype == "appliance": outdata = [["#", "Interface", "Enabled?", "Type", "Native", "Allowed", "DropUntag"]] int_data = client.management_interface_settings.get_network_device_management_interface_settings({"network_id": netid, "serial": devid}) for d in int_data: if d.lower().find("wan") >= 0: isenabled = True vlanid = int_data[d]["vlan"] if vlanid is None: vlanid = 1 outdata.append([str(d.lower().replace("wan", "")), d.upper(), str(isenabled), "access", str(vlanid), "N/A", "False"]) int_data = client.mx_vlan_ports.get_network_appliance_ports(netid) if int_data[0] == 'VLANs are not enabled for this network': pass else: for d in int_data: outdata.append([str(d["number"]), "LAN" + str(d["number"]), str(d["enabled"]), d["type"], str(d.get("vlan", "N/A")), str(d.get("allowedVlans", "N/A")), str(d.get("dropUntaggedTraffic", "N/A"))]) intlist = outdata return intlist def clear_none(instr): if instr is None: return "" else: return str(instr) def parse_json_struct(scope, json, interface=None): ro_fields = { "organization": ["id", "url"], "network": ["id", "organizationId"], "device": ["networkId", "model", "mac"] } c = copy.deepcopy(json) outstr = "" if interface is not None: outstr += scope + " " + str(interface) + "\n" if "number" in c: c.pop("number", None) else: if "name" in c: outstr += scope + " " + str(c["name"]) + "\n" c.pop("name", None) if "id" in c: outstr += " ! id " + str(c["id"]) + "\n" c.pop("id", None) if "productTypes" in c: c.pop("type", None) pt = c["productTypes"] c.pop("productTypes", None) c["type"] = " ".join(pt) for k in c: if scope in ro_fields and k in ro_fields[scope]: outstr += " ! " + str(k) + " " + clear_none(c[k]) + "\n" else: outstr += " " + str(k) + " " + clear_none(c[k]) + "\n" return outstr def get_config_data(scope, elemid, context_chain): if scope == "root": return "Unable to show configuration of the root level. You must access an organization first." elif scope == "organization": try: data = client.organizations.get_organization(elemid) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return parse_json_struct(scope, data) elif scope == "network": try: data = client.networks.get_network(elemid) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return parse_json_struct(scope, data) elif scope == "device": try: data = client.devices.get_network_device({"network_id": context_chain[len(context_chain)-3]["selected"], "serial": elemid}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return parse_json_struct(scope, data) elif scope == "interface": netid = context_chain[len(context_chain) - 4]["selected"] devid = context_chain[len(context_chain) - 3]["selected"] intname = context_chain[len(context_chain) - 2]["selected"] if "Ethernet" in intname: intnum = intname.replace("Ethernet", "") try: data = client.switch_ports.get_device_switch_port({"serial": devid, "number": intnum}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return parse_json_struct(scope, data, interface=intname) elif "SSID" in intname: intnum = intname.replace("SSID", "") try: data = client.ssids.get_network_ssid({"network_id": netid, "number": intnum}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return parse_json_struct(scope, data, interface=intname) elif "LAN" in intname or "WAN" in intname: data = None if "LAN" in intname: intnum = str(intname.replace("LAN", "")) itype = "LAN" else: intnum = str(intname.replace("WAN", "")) itype = "WAN" try: if itype == "WAN": tempdata = client.management_interface_settings.get_network_device_management_interface_settings({"network_id": netid, "serial": devid}) for d in tempdata: if intname.lower() in d.lower(): data = tempdata[d] break else: data = client.mx_vlan_ports.get_network_appliance_port({"network_id": netid, "appliance_port_id": intnum}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return parse_json_struct(scope, data, interface=intname) else: return "Unable to show configuration for scope " + scope def exec_show_parse(data, clitext, contextchain): # sample data: # [{'command': 'organizations', 'help': 'show list of organizations'}, '', [], 'exec_show_parse', 'root'] curscope = data["context"] curcmd = data["command"]["command"] list_line = clitext.split(" ")[1:] if curscope == "root" and curcmd == "organizations": outdata = get_org_raw() contextchain[len(contextchain)-1]["elements"] = outdata return format_data(outdata), contextchain elif curscope == "organization" and curcmd == "networks": outdata = get_net_raw(contextchain[len(contextchain)-2]["selected"]) return format_data(outdata), contextchain elif curscope == "network" and curcmd == "devices": outdata = get_dev_raw(contextchain[len(contextchain)-2]["selected"]) return format_data(outdata), contextchain elif curscope == "device" and curcmd == "interfaces": prevdev = contextchain[len(contextchain)-2]["selected"] r = resolve_arg(prevdev, contextchain[len(contextchain)-2]["elements"]) outdata = get_int_raw(r, contextchain[len(contextchain)-4]["selected"], contextchain[len(contextchain)-3]["selected"], contextchain[len(contextchain)-2]["selected"]) return format_data(outdata), contextchain elif data["remains"] in "configuration": return get_config_data(curscope, contextchain[len(contextchain)-2]["selected"], contextchain), contextchain elif len(list_line) == 2 and list_line[0] in "debug" and list_line[1] in "context": return str(json.dumps(contextchain)), contextchain elif clitext.find("?") >= 0: return None, contextchain else: return "Unknown argument: " + clitext, contextchain def exec_context_org(data, clitext, contextchain): line = data["remains"] if contextchain[len(contextchain)-1]["elements"] is None: e = get_org_raw() contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(line, e) else: r = resolve_arg(line, contextchain[len(contextchain)-1]["elements"]) if not r: orgname = str(line).strip() print("Unable to locate an Organization with the identifier '" + orgname + "'. Creating one...") try: data = client.organizations.create_organization(orgname) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "", contextchain e = get_org_raw() contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(orgname, e) contextchain[len(contextchain) - 1]["selected_data"] = r contextchain[len(contextchain) - 1]["selected"] = r[1] temp_context_desc = "Org-" + r[2] + "#" temp_context = "organization" contextchain.append({"prompt": temp_context_desc, "contextname": temp_context, "elements": None, "selected": None, "selected_data": None}) return "", contextchain def exec_context_net(data, clitext, contextchain): line = data["remains"] if contextchain[len(contextchain)-1]["elements"] is None: e = get_net_raw(contextchain[len(contextchain)-2]["selected"]) contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(line, e) else: r = resolve_arg(line, contextchain[len(contextchain)-1]["elements"]) if not r: netname = str(line).strip() print("Unable to locate a Network with the identifier '" + str(line) + "'. Creating one...") try: data = client.networks.create_organization_network({"organization_id": contextchain[len(context_chain)-2]["selected"], "create_organization_network": {"name": netname, "type": default_net_type, "tags": "", "time_zone": default_time_zone}}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "", contextchain e = get_net_raw(contextchain[len(context_chain)-2]["selected"]) contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(netname, e) contextchain[len(contextchain) - 1]["selected_data"] = r contextchain[len(contextchain) - 1]["selected"] = r[1] temp_context_desc = contextchain[len(contextchain)-1]["prompt"][:-1] + "/Net-" + r[3] + "#" temp_context = "network" contextchain.append({"prompt": temp_context_desc, "contextname": temp_context, "elements": None, "selected": None, "selected_data": None}) return "", contextchain def exec_context_dev(data, clitext, contextchain): line = data["remains"] if contextchain[len(contextchain)-1]["elements"] is None: e = get_dev_raw(contextchain[len(contextchain)-2]["selected"]) contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(line, e) else: r = resolve_arg(line, contextchain[len(contextchain)-1]["elements"]) if not r: return "Unable to locate a Device with the identifier '" + str(line) + "'. To claim a new Device, use the command 'network claim <device-serial-number>'.", contextchain contextchain[len(contextchain) - 1]["selected_data"] = r contextchain[len(contextchain) - 1]["selected"] = r[1] temp_context_desc = contextchain[len(contextchain)-1]["prompt"][:-1] + "/Dev-" + r[1] + "#" temp_context = "device" contextchain.append({"prompt": temp_context_desc, "contextname": temp_context, "elements": None, "selected": None, "selected_data": None}) return "", contextchain def exec_context_int(data, clitext, contextchain): line = data["remains"] if contextchain[len(contextchain)-1]["elements"] is None: prevdev = contextchain[len(contextchain)-2]["selected"] r = resolve_arg(prevdev, contextchain[len(contextchain)-2]["elements"]) e = get_int_raw(r, contextchain[len(contextchain)-4]["selected"], contextchain[len(contextchain)-3]["selected"], contextchain[len(contextchain)-2]["selected"]) contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(line, e) else: r = resolve_arg(line, contextchain[len(contextchain)-1]["elements"]) if not r: return "Unable to locate an Interface with the identifier '" + str(line) + "'.", contextchain contextchain[len(contextchain) - 1]["selected_data"] = r contextchain[len(contextchain) - 1]["selected"] = r[1] temp_context_desc = contextchain[len(contextchain)-1]["prompt"][:-1] + "/Int-" + r[1] + "#" temp_context = "interface" contextchain.append({"prompt": temp_context_desc, "contextname": temp_context, "elements": None, "selected": None, "selected_data": None}) return "", contextchain def exec_up_context(data, clitext, contextchain): outcx = contextchain[:-1] outcx[len(outcx)-1]["selected"] = None outcx[len(outcx)-1]["selected_data"] = None return "", outcx def exec_root_context(data, clitext, contextchain): outcx = contextchain[0] outcx["selected"] = None outcx["selected_data"] = None return "", [outcx] def exec_handle_disable(data, clitext, contextchain): handle_port_toggle(data["remains"], contextchain, False) return "", contextchain def exec_handle_no(data, clitext, contextchain): line = data["remains"] list_line = line.split(" ") curscope = contextchain[len(contextchain)-1]["contextname"] if curscope == "interface" and line in "shutdown": handle_port_toggle(list_line, contextchain, True) elif curscope == "root" and list_line[0] in "organization": print("Unable to delete Organization: No API Coverage.") elif curscope == "organization" and list_line[0] in "network": if contextchain[len(contextchain)-1]["elements"] is None: e = get_net_raw(contextchain[len(contextchain) - 2]["selected"]) contextchain[len(contextchain)-1]["elements"] = e r = resolve_arg(line, e) else: r = resolve_arg(line, contextchain[len(contextchain)-1]["elements"]) try: data = client.networks.delete_network(r[1]) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return "", contextchain def handle_port_toggle(list_line, context_chain, port_enabled): prevnet = context_chain[len(context_chain) - 4]["selected"] prevdev = context_chain[len(context_chain) - 3]["selected"] prevint = context_chain[len(context_chain) - 2]["selected"] if "Ethernet" in prevint: intnum = str(prevint.replace("Ethernet", "")) try: data = client.switch_ports.update_device_switch_port({"serial": prevdev, "number": intnum, "update_device_switch_port": {"enabled": port_enabled}}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" elif "SSID" in prevint: intnum = str(prevint.replace("SSID", "")) try: data = client.ssids.update_network_ssid({"network_id": prevnet, "number": intnum, "update_network_ssid": {"enabled": port_enabled}}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" elif "LAN" in prevint or "WAN" in prevint: if "LAN" in prevint: intnum = str(prevint.replace("LAN", "")) itype = "LAN" else: intnum = str(prevint.replace("WAN", "")) itype = "WAN" try: if itype == "WAN": upd_port = "wan" + intnum if port_enabled: wan_state = "enabled" else: wan_state = "disabled" data = client.management_interface_settings.update_network_device_management_interface_settings({"network_id": prevnet, "serial": prevdev, "update_network_device_management_interface_settings": {upd_port: {"wanEnabled": wan_state}}}) print("wan toggle", j) else: data = client.mx_vlan_ports.update_network_appliance_port({"network_id": prevnet, "appliance_port_id": intnum, "update_network_appliance_port": {"enabled": port_enabled}}) except APIException as e: print(f'Error {e.response_code} with error message {e.context.response.raw_body}') return "" return "" else: # print(prevdev, prevint) pass return None def switch_context(data, clitext, contextchain): list_line = clitext.split(" ")[1:] out_chain = [] orgid = None netid = None devid = None seldevdata = None intnum = None curcontext = "root" line = " ".join(list_line) ctxlist = line.split("/") for ctx in ctxlist: ctxname = "-".join(ctx.split("-")[1:]).strip() typectx = ctx.replace(ctxname, "").replace("-", "") if typectx.lower() == "org": orgdata = get_org_raw() r = resolve_arg(ctxname, orgdata) if r: orgid = str(r[1]) out_chain.append({"prompt": "#", "contextname": curcontext, "elements": orgdata, "selected": orgid, "selected_data": r}) curcontext = "organization" out_chain.append({"prompt": "Org-" + out_chain[len(out_chain)-1]["selected_data"][2] + "#", "contextname": curcontext, "elements": None, "selected": None, "selected_data": None}) elif typectx.lower() == "net" and orgid is not None: netdata = get_net_raw(orgid) r = resolve_arg(ctxname, netdata) if r: netid = str(r[1]) out_chain[len(out_chain)-1]["elements"] = netdata out_chain[len(out_chain)-1]["selected"] = netid out_chain[len(out_chain)-1]["selected_data"] = r curcontext = "network" out_chain.append({"prompt": out_chain[len(out_chain)-1]["prompt"][:-1] + "/Net-" + out_chain[len(out_chain)-1]["selected_data"][3] + "#", "contextname": curcontext, "elements": None, "selected": None, "selected_data": None}) elif typectx.lower() == "dev" and netid is not None: devdata = get_dev_raw(netid) r = resolve_arg(ctxname, devdata) if r: devid = str(r[1]) # print(ctx, ctxname, netid, devdata, devid) out_chain[len(out_chain)-1]["elements"] = devdata out_chain[len(out_chain)-1]["selected"] = devid out_chain[len(out_chain)-1]["selected_data"] = r curcontext = "device" out_chain.append({"prompt": out_chain[len(out_chain)-1]["prompt"][:-1] + "/Dev-" + out_chain[len(out_chain)-1]["selected_data"][1] + "#", "contextname": curcontext, "elements": None, "selected": None, "selected_data": None}) elif typectx.lower() == "int" and devid is not None: intdata = get_int_raw(out_chain[len(out_chain)-2]["selected_data"], orgid, netid, devid) r = resolve_arg(ctxname, intdata) if r: intnum = str(r[1]) out_chain[len(out_chain)-1]["elements"] = intdata out_chain[len(out_chain)-1]["selected"] = intnum out_chain[len(out_chain)-1]["selected_data"] = r curcontext = "interface" out_chain.append({"prompt": out_chain[len(out_chain)-1]["prompt"][:-1] + "/Int-" + out_chain[len(out_chain)-1]["selected_data"][1] + "#", "contextname": curcontext, "elements": None, "selected": None, "selected_data": None}) return "", out_chain ```
{ "source": "joshand/meraki-integration-tools", "score": 2 }
#### File: meraki-integration-tools/scripts/tunnel_client.py ```python from flask import Flask, request, redirect, session, url_for, render_template, jsonify import sys import paramiko import subprocess from apscheduler.schedulers.background import BackgroundScheduler import atexit import json import requests import os import signal import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) app = Flask(__name__) # Enable the job scheduler to run for expired lab sessions cron = BackgroundScheduler() # Explicitly kick off the background thread cron.start() # Shutdown your cron thread if the web process is stopped atexit.register(lambda: cron.shutdown(wait=False)) ssh = paramiko.SSHClient() app_version = "0.0.1" sver = sys.version_info app_name = "Python" + str(sver[0]) + "." + str(sver[1]) + ":tunnel_client.py" myuuid = "74886f7a-8247-4cc5-9e46-9cebf3fec1e4" gateway = "demo.sigraki.com" controller = "http://" + gateway internal_port = "8000" HTTP_METHODS = ['GET', 'HEAD', 'POST', 'PUT', 'DELETE', 'CONNECT', 'OPTIONS', 'TRACE', 'PATCH'] pproxy_pid = 0 def job_function(portnum): global pproxy_pid cmd = "pproxy -l tunnel+in://" + gateway + ":" + str(portnum) + " -r tunnel://127.0.0.1:" + internal_port print(cmd) p = subprocess.Popen(cmd.split(" ")) pproxy_pid = p.pid return p def start_tunnel(portnum): job = cron.add_job(job_function, args=[str(portnum)]) return job def health_check(): global pproxy_pid req = requests.get(controller + "/api/v0/tunnels/" + myuuid + "/health") rjson = req.json() print("health check=", str(rjson)) if rjson.get("status") != "ok": if pproxy_pid != 0: os.kill(pproxy_pid, signal.SIGTERM) # or signal.SIGKILL cron.remove_all_jobs() do_register() # handled incoming requests over tunnel @app.route('/health', methods=HTTP_METHODS) def health(): return jsonify({"status": "ok"}) # handled incoming requests over tunnel @app.route('/', methods=HTTP_METHODS) def default_route(): injson = request.get_json(force=True) # url = injson.get("url", "") # headers = injson.get("headers", {}) # method = injson.get("method", "") # auth = injson.get("auth", "") # auth_un = injson.get("auth_username", "") # auth_pw = injson.get("auth_password", "") # https_verify = injson.get("https_verify", "") # body = injson.get("body", "") access_method = request.headers.get("X-Local-Access-Method", "api") if access_method == "api": url = request.headers.get("X-Local-URL") headers = json.loads(request.headers.get("X-Local-Headers", "{}")) insecure = request.headers.get("X-Local-Allow-Insecure", "false").lower() if insecure == "true": https_verify = False else: https_verify = True no_body = request.headers.get("X-Empty-Body", "false").lower() auth = request.headers.get("X-Local-Auth-Basic", None) method = request.method if method.upper() == "GET" or method.upper() == "DELETE" or no_body == "true": body = None else: body = request.get_data() if not url: return "You must specifiy at a minimum the X-Local-URL with the local URL to call." if auth: auth_un, auth_pw = auth.split(":") print("doing request with basic auth") try: if body: r = requests.request(method, url, headers=headers, auth=(auth_un, auth_pw), verify=https_verify, timeout=5, body=body) else: r = requests.request(method, url, headers=headers, auth=(auth_un, auth_pw), verify=https_verify, timeout=5) resp = str(r.content.decode("UTF-8")) except Exception as e: resp = "error:" + str(e) else: print("doing request with no auth") try: if body: r = requests.request(method, url, headers=headers, verify=https_verify, timeout=5, body=body) else: r = requests.request(method, url, headers=headers, verify=https_verify, timeout=5) resp = str(r.content.decode("UTF-8")) except: resp = "error" elif access_method == "ssh": out_data = {} ip = request.headers.get("X-Local-IP", None) port = int(request.headers.get("X-Local-Port", "22")) auth = request.headers.get("X-Local-Auth-Basic", None) auth_un, auth_pw = auth.split(":") cmd = json.loads(request.headers.get("X-Local-Command", "[]")) ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(ip, port, auth_un, auth_pw) stdin, stdout, stderr = ssh.exec_command(cmd, timeout=30) out_data[cmd] = stdout.readlines() resp = out_data ssh.close() else: resp = "" return resp def do_register(): reg_url = controller + "/api/v0/tunnels/" + myuuid + "/register" data = {"app": app_name, "ver": app_version} r = requests.post(reg_url, json=data) # print(r.content.decode("utf-8")) rj = r.json() if "portnum" in rj: start_tunnel(rj["portnum"]) return True else: return False def run(): if do_register(): job = cron.add_job(health_check, 'interval', seconds=60) app.run(host="0.0.0.0", port=8000, debug=False) else: print("Error; no port returned") ```
{ "source": "josharenberg/materialize", "score": 2 }
#### File: ci/test/build.py ```python import boto3 import os from pathlib import Path import humanize from materialize import errors from materialize import cargo from materialize import ci_util from materialize import deb from materialize import git from materialize import mzbuild from materialize import spawn from ..deploy.deploy_util import apt_materialized_path, APT_BUCKET def main() -> None: repo = mzbuild.Repository(Path(".")) workspace = cargo.Workspace(repo.root) # Acquire all the mzbuild images in the repository, while pushing any # images that we build to Docker Hub, where they will be accessible to # other build agents. print("--- Acquiring mzbuild images") commit_tag = f'unstable-{git.rev_parse("HEAD")}' deps = repo.resolve_dependencies(image for image in repo if image.publish) deps.acquire() deps.push() deps.push_tagged(commit_tag) print("--- Staging Debian package") if os.environ["BUILDKITE_BRANCH"] == "main": stage_deb(repo, "materialized-unstable", deb.unstable_version(workspace)) elif os.environ["BUILDKITE_TAG"]: version = workspace.crates["materialized"].version assert ( f"v{version}" == os.environ["BUILDKITE_TAG"] ), f'materialized version {version} does not match tag {os.environ["BUILDKITE_TAG"]}' stage_deb(repo, "materialized", str(version)) elif os.environ["BUILDKITE_BRANCH"] == "master": raise errors.MzError(f"Tried to build branch master {git.rev_parse('HEAD')}") else: print("Not on main branch or tag; skipping") def stage_deb(repo: mzbuild.Repository, package: str, version: str) -> None: """Stage a Debian package on S3. Note that this function does not cause anything to become public; a step to publish the files and add them to the apt packages index will be run during the deploy job. """ print(f"Staging deb {package} {version}") # Extract the materialized binary from the Docker image. This avoids # an expensive rebuild if we're using a cached image. ci_util.acquire_materialized( repo, repo.rd.xcargo_target_dir() / "release" / "materialized" ) # Build the Debian package. deb_path = repo.rd.xcargo_target_dir() / "debian" / f"materialized-{version}.deb" spawn.runv( [ repo.rd.xcargo(), "deb", f"--variant={package}", "--no-build", "--no-strip", "--deb-version", version, "-p", "materialized", "-o", deb_path, ], cwd=repo.root, ) deb_size = deb_path.stat().st_size # Stage the package on S3 boto3.client("s3").upload_file( str(deb_path), APT_BUCKET, apt_materialized_path(version), ) if __name__ == "__main__": main() ```
{ "source": "josharian/Theano", "score": 2 }
#### File: sandbox/cuda/blas.py ```python from theano import Op, Type, Apply, Variable, Constant from theano import tensor, scalar import StringIO, os import cuda_ndarray.cuda_ndarray as cuda from theano.sandbox.cuda.type import CudaNdarrayType class GpuDot22(Op): def __str__(self): return 'GpuDot22' def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) def make_node(self, x, y): if x.type.ndim != 2: raise TypeError(x) if y.type.ndim != 2: raise TypeError(y) otype = CudaNdarrayType( (x.type.broadcastable[0], y.type.broadcastable[1])) return Apply(self, [x,y], [otype()]) def c_code_cache_version(self): return (1,1) def c_code(self, node, nodename, inputs, outputs, sub): x, y = inputs z, = outputs fail = sub['fail'] return """ if (%(x)s->nd != 2) { PyErr_Format(PyExc_TypeError, "rank(x)==%%i must be 2", %(x)s->nd); %(fail)s; } if (%(y)s->nd != 2) { PyErr_Format(PyExc_TypeError, "rank(y)==%%i must be 2", %(y)s->nd); %(fail)s; } if ((NULL == %(z)s) || (CudaNdarray_HOST_DIMS(%(z)s)[0] != CudaNdarray_HOST_DIMS(%(x)s)[0]) || (CudaNdarray_HOST_DIMS(%(z)s)[1] != CudaNdarray_HOST_DIMS(%(y)s)[1])) { //if (%(z)s) Py_DECREF(%(z)s); Py_XDECREF(%(z)s); npy_intp dims[2]; dims[0] = CudaNdarray_HOST_DIMS(%(x)s)[0]; dims[1] = CudaNdarray_HOST_DIMS(%(y)s)[1]; %(z)s = (CudaNdarray*)CudaNdarray_New(); if ((NULL == %(z)s) || CudaNdarray_alloc_contiguous(%(z)s, 2, dims)) { if (%(z)s) { Py_DECREF(%(z)s); %(z)s = NULL; } %(fail)s; } } if (CudaNdarray_gemm(1.0f, %(x)s, %(y)s, 0.0f, %(z)s)) { if (%(z)s) { Py_DECREF(%(z)s); %(z)s = NULL; } %(fail)s; } """ % locals() gpu_dot22 = GpuDot22() class GpuDot22Scalar(Op): def __str__(self): return 'GpuDot22Scalar' def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) def make_node(self, x, y, a): if x.type.ndim != 2: raise TypeError(x) if y.type.ndim != 2: raise TypeError(y) if not tensor.blas._as_scalar(a): raise TypeError(a) otype = CudaNdarrayType( (x.type.broadcastable[0], y.type.broadcastable[1])) return Apply(self, [x,y,a], [otype()]) def c_code_cache_version(self): return (1,1) def c_code(self, node, name, inputs, outputs, sub): x, y, a = inputs z, = outputs fail = sub['fail'] return """ #define REAL float float %(name)s_a = (%(a)s->descr->type_num == PyArray_FLOAT) ? (REAL)(((float*)%(a)s->data)[0]) : (REAL)(((double*)%(a)s->data)[0]); #undef REAL if (%(x)s->nd != 2) { PyErr_Format(PyExc_TypeError, "rank(x)==%%i must be 2", %(x)s->nd); %(fail)s; } if (%(y)s->nd != 2) { PyErr_Format(PyExc_TypeError, "rank(y)==%%i must be 2", %(y)s->nd); %(fail)s; } if ((NULL == %(z)s) || (CudaNdarray_HOST_DIMS(%(z)s)[0] != CudaNdarray_HOST_DIMS(%(x)s)[0]) || (CudaNdarray_HOST_DIMS(%(z)s)[1] != CudaNdarray_HOST_DIMS(%(y)s)[1])) { //if (%(z)s) Py_DECREF(%(z)s); Py_XDECREF(%(z)s); npy_intp dims[2]; dims[0] = CudaNdarray_HOST_DIMS(%(x)s)[0]; dims[1] = CudaNdarray_HOST_DIMS(%(y)s)[1]; %(z)s = (CudaNdarray*)CudaNdarray_New(); if ((NULL == %(z)s) || CudaNdarray_alloc_contiguous(%(z)s, 2, dims)) { if (%(z)s) { Py_DECREF(%(z)s); %(z)s = NULL; } %(fail)s; } } if (CudaNdarray_gemm(%(name)s_a, %(x)s, %(y)s, 0.0f, %(z)s)) { if (%(z)s) { Py_DECREF(%(z)s); %(z)s = NULL; } %(fail)s; } """ % locals() gpu_dot22scalar = GpuDot22Scalar() class GpuGemm(Op): """ implement the gemm on the gpu. """ def __init__(self, inplace): self.__setstate__({'inplace':inplace}) def __str__(self): if self.inplace: return 'GpuGemm{inplace}' else: return 'GpuGemm{no_inplace}' def __eq__(self, other): return (type(self) == type(other)\ and self.inplace == other.inplace) def __hash__(self): return hash(type(self)) ^ hash(self.inplace) def __setstate__(self, dct): inplace = dct.get('inplace', True) if inplace: self.destroy_map = {0: [0]} self.inplace = inplace def __getstate__(self): return dict(inplace=self.inplace) def make_node(self, z, a, x, y, b): # the more complicated error checking performed by tensor.gemm is assumed to already # have been done return Apply(self, [z, a, x, y, b], [z.type()]) def c_code_cache_version(self): return (3,) def c_code(self, node, name, inputs, outputs, sub): #z_out = alpha * dot(x,y) + beta * z_in #inplace version, set set z_out = z_in #not inplace version, we copy z_in to z_out. z_in, a, x, y, b = inputs z_out, = outputs fail = sub['fail'] sio = StringIO.StringIO() print >> sio, """ #define REAL float float %(name)s_a = (%(a)s->descr->type_num == PyArray_FLOAT) ? (REAL)(((float*)%(a)s->data)[0]) : (REAL)(((double*)%(a)s->data)[0]); float %(name)s_b = (%(b)s->descr->type_num == PyArray_FLOAT) ? (REAL)(((float*)%(b)s->data)[0]) : (REAL)(((double*)%(b)s->data)[0]); #undef REAL """ if self.inplace: print >> sio, """ Py_XDECREF(%(z_out)s); %(z_out)s = %(z_in)s; Py_INCREF(%(z_out)s); """ else: print >> sio, """ if (!%(z_out)s || (%(z_out)s->nd != 2) || (CudaNdarray_HOST_DIMS(%(z_out)s)[0] != CudaNdarray_HOST_DIMS(%(z_in)s)[0]) || (CudaNdarray_HOST_DIMS(%(z_out)s)[1] != CudaNdarray_HOST_DIMS(%(z_in)s)[1]) ) { Py_XDECREF(%(z_out)s); %(z_out)s = (CudaNdarray*)CudaNdarray_Copy(%(z_in)s); if (!%(z_out)s) { %(fail)s; } } else { if (CudaNdarray_CopyFromCudaNdarray(%(z_out)s, %(z_in)s)) { %(fail)s; } } """ print >> sio, """ if (CudaNdarray_gemm(%(name)s_a, %(x)s, %(y)s, %(name)s_b, %(z_out)s)) { %(fail)s; } """ return sio.getvalue() % locals() gpu_gemm_no_inplace = GpuGemm(inplace=False) gpu_gemm_inplace = GpuGemm(inplace=True) class GpuOuter(Op): def make_node(self, x, y): # we suppose type checking has been done, but make sure. assert (x.type.ndim == 1 and y.type.ndim == 1 and x.type.dtype == 'float32' and y.type.dtype == 'float32') bz = [x.type.broadcastable[0], y.type.broadcastable[0]] outputs = [CudaNdarrayType(dtype='float32', broadcastable=bz)()] return Apply(self, [x, y], outputs) def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) def c_code_cache_version(self): return (4,) def c_code(self, node, name, inputs, outputs, sub): # A = x * y' x, y = inputs A, = outputs fail = sub['fail'] return """ CudaNdarray *%(name)sx = NULL, *%(name)sy = NULL; int %(name)sres; if (CudaNdarray_HOST_STRIDES(%(x)s)[0] < 0) { %(name)sx = (CudaNdarray *)CudaNdarray_Copy(%(x)s); if (!%(name)sx) { %(fail)s; } } else { %(name)sx = %(x)s; Py_INCREF(%(name)sx); } if (CudaNdarray_HOST_STRIDES(%(y)s)[0] < 0) { %(name)sy = (CudaNdarray *)CudaNdarray_Copy(%(y)s); if (!%(name)sy) { Py_DECREF(%(name)sx); %(fail)s; } } else { %(name)sy = %(y)s; Py_INCREF(%(name)sy); } if (!(%(A)s && CudaNdarray_HOST_DIMS(%(A)s)[0] == CudaNdarray_HOST_DIMS(%(x)s)[0] && CudaNdarray_HOST_DIMS(%(A)s)[1] == CudaNdarray_HOST_DIMS(%(y)s)[0] && CudaNdarray_is_c_contiguous(%(A)s))) { Py_XDECREF(%(A)s); int dims[2]; dims[0] = CudaNdarray_HOST_DIMS(%(x)s)[0]; dims[1] = CudaNdarray_HOST_DIMS(%(y)s)[0]; %(A)s = (CudaNdarray *)CudaNdarray_ZEROS(2, dims); if (!%(A)s) { Py_DECREF(%(name)sy); Py_DECREF(%(name)sx); %(fail)s; } } else { // sger accumulates into A. We need to zero it first. int total_size = (sizeof(real) * CudaNdarray_HOST_DIMS(%(A)s)[0] * CudaNdarray_HOST_DIMS(%(A)s)[1]); if (cudaSuccess != cudaMemset(%(A)s->devdata, 0, total_size)) { PyErr_Format(PyExc_MemoryError, "GpuOuter: Error memsetting %%d bytes of device memory.", total_size); Py_DECREF(%(name)sy); Py_DECREF(%(name)sx); %(fail)s; } } %(name)sres = CudaNdarray_sger(1.0, %(name)sx, %(name)sy, %(A)s); Py_DECREF(%(name)sy); Py_DECREF(%(name)sx); if (%(name)sres) { %(fail)s; } """%dict(x=x,y=y,A=A,fail=fail,name=name) gpu_outer = GpuOuter() ## # Not really a BLAS operation, but whatever. # class GpuConv(Op): @staticmethod def logical_output_shape_2d(imshp, kshp, mode): if mode == 'valid': return imshp[0] - kshp[0] + 1, imshp[1] - kshp[1] + 1 if mode == 'full': return imshp[0] + kshp[0] - 1, imshp[1] + kshp[1] - 1 raise ValueError(mode) def __init__(self, border_mode, subsample=(1,1), logical_img_hw=None, logical_kern_hw=None, logical_kern_align_top=True, version=-1, verbose=0, kshp=None, imshp=None): """ :param version: each version of c_code implement many kernel for the convolution. By default we try to guess the best one. You can force one version with this parameter. This parameter is used by the tests. :param verbose: for value of 1,2 and 3. Print more information during the execution of the convolution. Mostly used for optimization or debugging. :param kshp: The size of the kernel. If provided, can genera faster code. If the GpuConv op is automatically inserted, we take its value automatically from the Conv op. :param imshp: The size of the image. Not used for code generation but allow to select an experimental new version in another repo. """ self.border_mode = border_mode self.subsample = subsample if logical_img_hw is not None: h,w = logical_img_hw #TODO: reconsider this... since shapes are not given in constructor, # maybe a multiplier + offset is a more appropriate way of passing this logical # grid logical_img_hw = tuple(logical_img_hw) self.logical_img_hw = logical_img_hw if logical_kern_hw is not None: h,w = logical_kern_hw #TODO: reconsider this... since shapes are not given in constructor, # maybe a multiplier + offset is a more appropriate way of passing this logical # grid logical_kern_hw = tuple(logical_kern_hw) self.logical_kern_hw = logical_kern_hw self.logical_kern_align_top = logical_kern_align_top self.version=version self.verbose=verbose self.kshp = kshp self.imshp = imshp def __eq__(self, other): return type(self) == type(other) \ and self.border_mode == other.border_mode \ and self.subsample == other.subsample \ and self.logical_img_hw == other.logical_img_hw \ and self.logical_kern_hw == other.logical_kern_hw \ and self.logical_kern_align_top == other.logical_kern_align_top \ and self.version == other.version \ and self.verbose == other.verbose \ and self.kshp == other.kshp\ and self.imshp == other.imshp def __setstate__(self, d): self.__dict__.update(d) if not hasattr(self,"imshp"): self.imshp = None def __hash__(self): # don't use hash(self.version) as hash(-1)==-2 and hash(-2)==-2 in python! return hash(type(self)) \ ^ hash(self.border_mode) \ ^ hash(self.subsample) \ ^ hash(self.logical_img_hw) \ ^ hash(self.logical_kern_hw) \ ^ hash(self.logical_kern_align_top) \ ^ self.version \ ^ hash(self.verbose) \ ^ hash(self.kshp)\ ^ hash(self.imshp) def __str__(self): return '%s{%s, %s, %s, %s, %s, %s, %s}' %(self.__class__.__name__, self.border_mode, str(self.subsample), str(self.logical_img_hw), str(self.logical_kern_hw), str(self.logical_kern_align_top), str(self.imshp), str(self.kshp)) def make_node(self, img, kern): if img.type.ndim != 4: raise TypeError('img must be 4D tensor') if kern.type.ndim != 4: raise TypeError('kern must be 4D tensor') broadcastable = [img.type.broadcastable[0], kern.type.broadcastable[0], False, False] return Apply(self, [img, kern], [CudaNdarrayType(broadcastable)()]) def c_compile_args(self): nb = 0 if self.kshp is not None: nb = self.kshp[1] return ['-DTHEANO_KERN_WID='+str(nb)]#,'-g','-G'] def c_headers(self): return ['cuda_ndarray.cuh','<stdio.h>'] def c_code_cache_version(self): return (0, 16) # raise this whenever modifying any of the support_code_files def c_support_code_apply(self, node, nodename): # REMEMBER TO RAISE c_code_cache_version when changing any of these files return open(os.path.join(os.path.split(__file__)[0],'conv_kernel.cu')).read()+\ open(os.path.join(os.path.split(__file__)[0],'conv_full_kernel.cu')).read()+\ open(os.path.join(os.path.split(__file__)[0],'conv.cu')).read() def c_code(self, node, nodename, inp, out_, sub): img, kern = inp out, = out_ dx = self.subsample[0] dy = self.subsample[1] border_mode = self.border_mode version = self.version verbose = self.verbose sub = sub.copy() sub.update(locals()) return """ //Mandatory args const char *mode_str = "%(border_mode)s"; //Optional args int version = %(version)s; int verbose = %(verbose)s; int dx = %(dx)s; int dy = %(dy)s; int mode; if (strcmp(mode_str, "full") == 0) { mode = ConvMode_FULL; } else if (strcmp(mode_str, "valid") == 0) { mode = ConvMode_VALID; } else { PyErr_SetString(PyExc_ValueError, "mode must be one of 'full' or 'valid'"); return NULL; } CudaNdarray * out2 = (CudaNdarray *)CudaNdarray_Conv(%(img)s, %(kern)s, %(out)s, mode, dx, dy, version, verbose); Py_XDECREF(%(out)s); %(out)s = out2; """%sub class GpuDownsampleFactorMax(Op): def __init__(self, ds, ignore_border=False): self.ds = tuple(ds) self.ignore_border = ignore_border def __eq__(self, other): return type(self) == type(other) and self.ds == other.ds and self.ignore_border == other.ignore_border def __hash__(self): return hash(type(self)) ^ hash(self.ds) ^ hash(self.ignore_border) def __str__(self): return '%s{%s,%s}' % (self.__class__.__name__, self.ds, self.ignore_border) def make_node(self, x): if not isinstance(x.type, CudaNdarrayType): raise TypeError() if not x.type.ndim == 4: raise TypeError() return Apply(self, [x], [x.type()]) #def perform(self, node, input_storage, output_storage): #raise NotImplementedError('only C is implemented') def c_code_cache_version(self): return (3) def c_code(self, node, nodename, inp, out, sub): x, = inp z, = out fail = sub['fail'] ds0, ds1 = self.ds ignore_border = int(self.ignore_border) return """ int dims[4], xdim2, xdim3; if (%(x)s->nd != 4) { PyErr_SetString(PyExc_ValueError, "rank error"); %(fail)s; } xdim2 = CudaNdarray_HOST_DIMS(%(x)s)[2]; xdim3 = CudaNdarray_HOST_DIMS(%(x)s)[3]; dims[0] = CudaNdarray_HOST_DIMS(%(x)s)[0]; dims[1] = CudaNdarray_HOST_DIMS(%(x)s)[1]; dims[2] = xdim2 / %(ds0)s; dims[3] = xdim3 / %(ds1)s; if (! %(ignore_border)s) { dims[2] += (xdim2%%(%(ds0)s)?1:0); dims[3] += (xdim3%%(%(ds1)s)?1:0); } if(dims[3]>512){ PyErr_Format(PyExc_ValueError, "GpuDownsampleFactorMax: last dimention size of %%d is bigger then 512. This case is not implemented.", dims[3]); %(fail)s; } if ((NULL == %(z)s) || (CudaNdarray_HOST_DIMS(%(z)s)[0] != dims[0]) || (CudaNdarray_HOST_DIMS(%(z)s)[1] != dims[1]) || (CudaNdarray_HOST_DIMS(%(z)s)[2] != dims[2]) || (CudaNdarray_HOST_DIMS(%(z)s)[3] != dims[3])) { Py_XDECREF(%(z)s); %(z)s = (CudaNdarray*)CudaNdarray_New(); if ((NULL == %(z)s) || CudaNdarray_alloc_contiguous(%(z)s, 4, dims)) { Py_XDECREF(%(z)s); %(z)s = NULL; PyErr_SetString(PyExc_ValueError, "Was not able to allocate output!"); %(fail)s; } } { dim3 grid(dims[0] * dims[1], dims[2]); //dim3 block(std::min(dims[3], 512)); //TODO: implement this by supporting more //outputs than threads dim3 block(dims[3]); if ((grid.x*grid.y) && dims[3]) kMaxPool_%(nodename)s<%(ds0)s, %(ds1)s> <<<grid, block, xdim3*sizeof(float)>>>( dims[0], dims[1], dims[2], dims[3], xdim2, xdim3, CudaNdarray_DEV_DATA(%(x)s), CudaNdarray_HOST_STRIDES(%(x)s)[0], CudaNdarray_HOST_STRIDES(%(x)s)[1], CudaNdarray_HOST_STRIDES(%(x)s)[2], CudaNdarray_HOST_STRIDES(%(x)s)[3], CudaNdarray_DEV_DATA(%(z)s)); CNDA_THREAD_SYNC; cudaError_t err = cudaGetLastError(); if( cudaSuccess != err) { PyErr_Format(PyExc_RuntimeError, "Cuda error: %%s: %%s. (grid: %%i x %%i; block: %%i x %%i x %%i)\\n", "kMaxPool_%(nodename)s", cudaGetErrorString(err), grid.x, grid.y, block.x, block.y, block.z); %(fail)s; } } """ % locals() def c_support_code_apply(self, node, nodename): ignore_border = int(self.ignore_border) return """ template<int pf2, int pf3> __global__ void kMaxPool_%(nodename)s( int D0, int D1, int D2, int D3, int xD2, int xD3, const float * x, int xS0, int xS1, int xS2, int xS3, float *z) { float cur_max, cur_x; int i0 = blockIdx.x %% D0; int i1 = blockIdx.x / D0; int i2 = blockIdx.y; extern __shared__ float xbuf[]; //size [xD3] for (int r2 = 0; (r2 < pf2) && (%(ignore_border)s || (r2 + i2*pf2 < xD2)); ++r2) { __syncthreads(); // load the current row of the image into shared memory for (int j = threadIdx.x; j < xD3; j += blockDim.x) { xbuf[j] = x[i0*xS0 + i1*xS1 + (i2*pf2+r2)*xS2 + j*xS3]; } __syncthreads(); // initialize our max if this is the first row we're loading cur_max = (r2 == 0) ? xbuf[threadIdx.x*pf3] : cur_max; // do a mini-reduction over the pf3 relevant elements in the current row if (%(ignore_border)s) { for (int k = 0; k < pf3; ++k) { cur_x = xbuf[threadIdx.x*pf3+k]; cur_max = (cur_x > cur_max) ? cur_x : cur_max; } } else { for (int k = 0; k < pf3; ++k) { if (threadIdx.x*pf3 + k < xD3) { cur_x = xbuf[threadIdx.x*pf3+k]; cur_max = (cur_x > cur_max) ? cur_x : cur_max; } } } } //store the result to global memory z[i0 * D1*D2*D3 + i1*D2*D3 + i2*D3 + threadIdx.x] = cur_max; } """ % locals() class GpuDownsampleFactorMaxGrad(Op): def __init__(self, ds, ignore_border): self.ds = tuple(ds) self.ignore_border = ignore_border def __eq__(self, other): return type(self) == type(other) and self.ds == other.ds and self.ignore_border == other.ignore_border def __hash__(self): return hash(type(self)) ^ hash(self.ds) ^ hash(self.ignore_border) def __str__(self): return '%s{%s,%s}' % (self.__class__.__name__, self.ds, self.ignore_border) def make_node(self, x, z, gz): return Apply(self, [x, z, gz], [x.type()]) def c_code_cache_version(self): #return () return (5,) def c_code(self, node, nodename, inp, out, sub): x, z, gz = inp gx, = out fail = sub['fail'] ds0, ds1 = self.ds ignore_border = int(self.ignore_border) return """ if (%(x)s->nd != 4 || %(z)s->nd != 4 || %(gz)s->nd != 4) { PyErr_SetString(PyExc_ValueError, "rank error"); %(fail)s; } if ((NULL == %(gx)s) || (CudaNdarray_HOST_DIMS(%(gx)s)[0] != CudaNdarray_HOST_DIMS(%(x)s)[0]) || (CudaNdarray_HOST_DIMS(%(gx)s)[1] != CudaNdarray_HOST_DIMS(%(x)s)[1]) || (CudaNdarray_HOST_DIMS(%(gx)s)[2] != CudaNdarray_HOST_DIMS(%(x)s)[2]) || (CudaNdarray_HOST_DIMS(%(gx)s)[3] != CudaNdarray_HOST_DIMS(%(x)s)[3])) { Py_XDECREF(%(gx)s); %(gx)s = (CudaNdarray*)CudaNdarray_New(); if ((NULL == %(gx)s) || CudaNdarray_alloc_contiguous(%(gx)s, 4, CudaNdarray_HOST_DIMS(%(x)s))) { Py_XDECREF(%(gx)s); %(gx)s = NULL; %(fail)s; } } { //TODO: supporting more output columns than threads // make sure we cover every x row when ignore border isset and there's a border present to be ignored int needs_extra_z_col = %(ignore_border)s && (CudaNdarray_HOST_DIMS(%(x)s)[2] %% %(ds0)s); dim3 grid(CudaNdarray_HOST_DIMS(%(z)s)[0],CudaNdarray_HOST_DIMS(%(z)s)[2] + (needs_extra_z_col ? 1 : 0)); dim3 block(std::min(CudaNdarray_HOST_DIMS(%(x)s)[3], 512)); kDownsampleMaxGrad_%(nodename)s<%(ds0)s, %(ds1)s> <<<grid, block>>>( CudaNdarray_HOST_DIMS(%(z)s)[0], CudaNdarray_HOST_DIMS(%(z)s)[1], CudaNdarray_HOST_DIMS(%(z)s)[2], CudaNdarray_HOST_DIMS(%(z)s)[3], CudaNdarray_HOST_DIMS(%(x)s)[2], CudaNdarray_HOST_DIMS(%(x)s)[3], CudaNdarray_DEV_DATA(%(x)s), CudaNdarray_HOST_STRIDES(%(x)s)[0], CudaNdarray_HOST_STRIDES(%(x)s)[1], CudaNdarray_HOST_STRIDES(%(x)s)[2], CudaNdarray_HOST_STRIDES(%(x)s)[3], CudaNdarray_DEV_DATA(%(z)s), CudaNdarray_HOST_STRIDES(%(z)s)[0], CudaNdarray_HOST_STRIDES(%(z)s)[1], CudaNdarray_HOST_STRIDES(%(z)s)[2], CudaNdarray_HOST_STRIDES(%(z)s)[3], CudaNdarray_DEV_DATA(%(gz)s), CudaNdarray_HOST_STRIDES(%(gz)s)[0], CudaNdarray_HOST_STRIDES(%(gz)s)[1], CudaNdarray_HOST_STRIDES(%(gz)s)[2], CudaNdarray_HOST_STRIDES(%(gz)s)[3], CudaNdarray_DEV_DATA(%(gx)s)); CNDA_THREAD_SYNC; cudaError_t err = cudaGetLastError(); if( cudaSuccess != err) { PyErr_Format(PyExc_RuntimeError, "Cuda error: %%s: %%s. (grid: %%i x %%i; block: %%i x %%i x %%i)\\n", "kDownsampleMaxGrad_%(nodename)s", cudaGetErrorString(err), grid.x, grid.y, block.x, block.y, block.z); %(fail)s; } } """ % locals() def c_support_code_apply(self, node, nodename): # This code considers every position in the output z, andthen computes the gradient for the # input pixels that were downsampled to that z-position. It does so by running along every # z row (sometimes plus one, to make sure every gx row gets totally filled), and by # running along every x col. This code is not sensitive to the ignore_border flag along # the row dimension (since it runs for every position in the output z), but it is sensitive # along the col dimension. ignore_border = int(self.ignore_border) return """ template<int ds0, int ds1> // ds0 is the downsampling factor in rows, ds1 in columns __global__ void kDownsampleMaxGrad_%(nodename)s( int D0, int D1, int D2, int D3, int xD2, int xD3, const float * x, int xS0, int xS1, int xS2, int xS3, const float * z, int zS0, int zS1, int zS2, int zS3, const float * gz, int gzS0, int gzS1, int gzS2, int gzS3, float *gx) { // D0: number of image rows // D1: number of image cols // D2: number of z rows // D3: number of z cols // xD2: number of x rows // xD3: number of x cols // various .S. variables are strides float cur_max, cur_x, my_z, my_gz; int i0 = blockIdx.x; // image row int i1 = 0; // image col int i2 = blockIdx.y; // row wrt z and/or gz, ranges from 0 to D2 - 1 OR D2 (as needed to cover all x rows) int x_col = threadIdx.x; // col wrt x, ranges from 0 to xD3 - 1 int z_col = x_col/ds1; // z_col corresponding to this x_col //TODO: raise occupancy. Use threadIdx.y to run several iterations of this i1 loop //in parallel for (i1 = 0; i1 < D1; ++i1) // loop over images (same for z and x) { for(int col_iter = 0; col_iter * blockDim.x <= xD3 ; col_iter++){ //The if inside is to don't do the division if we need only 1 col_iter if(blockDim.x != xD3) { x_col = threadIdx.x + col_iter * blockDim.x; z_col = x_col/ds1; } if (%(ignore_border)s && x_col >= ds1 * D3) { // This happens only if x_col was ignored (via ignore_border) // TODO: if ignore_border is False, this is impossible and we don't even // need to generate this code. my_gz = 0.0f; //any fp number suffices for my_z, so we don't even need to set it to //anything in particular. } else { // this is effectively: // my_gz = gz[image_row][image_col][z_row][z_col] // my_z = z[image_row][image_col][z_row][z_col] my_gz = gz[i0 * gzS0 + i1 * gzS1 + i2 * gzS2 + z_col*gzS3]; my_z = z[i0 * zS0 + i1 * zS1 + i2 * zS2 + z_col* zS3]; } if(x_col<xD3){ for (int x_row = i2*ds0; (x_row < i2*ds0+ds0) && (x_row < xD2); ++x_row) { // this is effectively: // gx[image_row][image_col][x_row][x_col] // = (my_z == x[image_row][image_col][x_row][x_col]) ? my_gz : 0.0f; gx[i0 * D1*xD2*xD3 + i1*xD2*xD3 + x_row*xD3 + x_col] = (my_z == x[i0*xS0 + i1*xS1 + x_row*xS2 + x_col*xS3]) ? my_gz : 0.0f; } //gx[i0 * D1*xD2*xD3 + i1*xD2*xD3 + x_row*xD3 + x_col] = -999; } } } } """ % locals() ```
{ "source": "josharnoldjosh/Image-Caption-Joint-Embedding", "score": 3 }
#### File: josharnoldjosh/Image-Caption-Joint-Embedding/evaluate.py ```python import numpy import torch def image_to_text(captions, images, npts=None, verbose=False): """ Images->Text (Image Annotation) Images: (5N, K) matrix of images Captions: (5N, K) matrix of captions """ if npts == None: npts = images.size()[0] / 5 npts = int(npts) ranks = numpy.zeros(npts) for index in range(npts): # Get query image im = images[5 * index].unsqueeze(0) # Compute scores d = torch.mm(im, captions.t()) d_sorted, inds = torch.sort(d, descending=True) inds = inds.data.squeeze(0).cpu().numpy() # Score rank = 1e20 # find the highest ranking for i in range(5*index, 5*index + 5, 1): tmp = numpy.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank # Compute metrics r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks) medr = numpy.floor(numpy.median(ranks)) + 1 if verbose: print(" * Image to text scores: R@1: %.1f, R@5: %.1f, R@10: %.1f, Medr: %.1f" % (r1, r5, r10, medr)) return r1+r5+r10, (r1, r5, r10, medr) def text_to_image(captions, images, npts=None, verbose=False): if npts == None: npts = images.size()[0] / 5 npts = int(npts) ims = torch.cat([images[i].unsqueeze(0) for i in range(0, len(images), 5)]) ranks = numpy.zeros(5 * npts) for index in range(npts): # Get query captions queries = captions[5*index : 5*index + 5] # Compute scores d = torch.mm(queries, ims.t()) for i in range(d.size()[0]): d_sorted, inds = torch.sort(d[i], descending=True) inds = inds.data.squeeze(0).cpu().numpy() ranks[5 * index + i] = numpy.where(inds == index)[0][0] # Compute metrics r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks) medr = numpy.floor(numpy.median(ranks)) + 1 if verbose: print(" * Text to image scores: R@1: %.1f, R@5: %.1f, R@10: %.1f, Medr: %.1f" % (r1, r5, r10, medr)) return r1+r5+r10, (r1, r5, r10, medr) ```
{ "source": "josharnoldjosh/image_feature_extractor", "score": 3 }
#### File: josharnoldjosh/image_feature_extractor/extract.py ```python from keras.preprocessing import image from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input import os from glob import glob import numpy as np import pickle from PIL import Image import h5py def LoadImages(): print("Loading image files...") image_list = [] for filename in glob('images/*.jpg'): print(filename) image_list.append(filename) return image_list def ExtractImageFeature(img_path): img = image.load_img(img_path, target_size=(224, 224)) img_data = image.img_to_array(img) img_data = np.expand_dims(img_data, axis=0) img_data = preprocess_input(img_data) vgg16_feature = model.predict(img_data) return np.array(vgg16_feature).flatten() extracted_image_features = [] model = VGG16(weights='imagenet', include_top=False) i = 0 images = LoadImages() for path in images: i += 1 feature = ExtractImageFeature(path) data = (path, feature) extracted_image_features.append(data) print(i, "out of", len(images)) import hickle hickle.dump(extracted_image_features, 'output.hkl', mode='w', compression='gzip') print("Script done!") ```
{ "source": "josharnoldjosh/leetcode", "score": 4 }
#### File: josharnoldjosh/leetcode/Invert Binary Tree.py ```python class Solution(object): def invertTree(self, root): """ :type root: TreeNode :rtype: TreeNode """ if not root: return None r, l = self.invertTree(root.right), self.invertTree(root.left) root.right = l root.left = r return root ```
{ "source": "josharnoldjosh/ParlAI", "score": 2 }
#### File: parlai/core/logs.py ```python import os class TensorboardLogger(object): """Log objects to tensorboard.""" _shared_state = {} @staticmethod def add_cmdline_args(argparser): """Add tensorboard CLI args.""" logger = argparser.add_argument_group('Tensorboard Arguments') logger.add_argument( '-tblog', '--tensorboard-log', type='bool', default=False, help="Tensorboard logging of metrics, default is %(default)s", hidden=True, ) logger.add_argument( '-tbtag', '--tensorboard-tag', type=str, default=None, help='Specify all opt keys which you want to be presented in in TB name', hidden=True, ) logger.add_argument( '-tbmetrics', '--tensorboard-metrics', type=str, default=None, help='Specify metrics which you want to track, it will be extracted ' 'from report dict.', hidden=True, ) logger.add_argument( '-tbcomment', '--tensorboard-comment', type=str, default='', hidden=True, help='Add any line here to distinguish your TB event file, optional', ) def __init__(self, opt): self.__dict__ = self._shared_state try: from tensorboardX import SummaryWriter except ImportError: raise ImportError('Please `pip install tensorboardX` for logs with TB.') if opt['tensorboard_tag'] is None: tensorboard_tag = opt['starttime'] else: tensorboard_tag = opt['starttime'] + '__'.join( [i + '-' + str(opt[i]) for i in opt['tensorboard_tag'].split(',')] ) if opt['tensorboard_comment']: tensorboard_tag += '__' + opt['tensorboard_comment'] tbpath = os.path.join(os.path.dirname(opt['model_file']), 'tensorboard') print('[ Saving tensorboard logs here: {} ]'.format(tbpath)) if not os.path.exists(tbpath): os.makedirs(tbpath) self.writer = SummaryWriter(logdir='{}/{}'.format(tbpath, tensorboard_tag)) if opt['tensorboard_metrics'] is None: self.tbmetrics = ['ppl', 'loss'] else: self.tbmetrics = opt['tensorboard_metrics'].split(',') def add_metrics(self, setting, step, report): """ Add all metrics from tensorboard_metrics opt key. :param setting: whatever setting is used, train valid or test, it will be just the title of the graph :param step: num of parleys (x axis in graph), in train - parleys, in valid - wall time :param report: from TrainingLoop :return: """ for met in self.tbmetrics: if met in report.keys(): self.writer.add_scalar( "{}/{}".format(setting, met), report[met], global_step=step ) def add_scalar(self, name, y, step=None): """ Add a scalar. :param str name: the title of the graph, use / to group like "train/loss/ce" or so :param y: value :param step: x axis step """ self.writer.add_scalar(name, y, step) def add_histogram(self, name, vector, step=None): """Add a histogram.""" self.writer.add_histogram(name, vector, step) def add_text(self, name, text, step=None): """Add text.""" self.writer.add_text(name, text, step) ```
{ "source": "josharnoldjosh/Simple-Joint-Embedding-Pytorch", "score": 3 }
#### File: josharnoldjosh/Simple-Joint-Embedding-Pytorch/time_dist.py ```python from settings import config import torch import torch.nn as nn import torch.nn.init class TimeDistributed(nn.Module): """ Time Distributed Wrapper Layer similar to keras Apply a module across each time step """ def __init__(self, module, batch_first=False): super(TimeDistributed, self).__init__() self.module = module self.batch_first = batch_first def forward(self, x): if len(x.size()) <= 2: return self.module(x) # Squash samples and timesteps into a single axis x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size) y = self.module(x_reshape) # We have to reshape Y if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size) else: y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size) return y class SentenceEmbedding(nn.Module): def __init__(self): super(SentenceEmbedding, self).__init__() self.time_distributed = TimeDistributed(module = nn.Linear(config['sentence_embedding_size'], config["linear_hidden"]), batch_first = True) self.rnn = nn.LSTM(config["linear_hidden"], config['lstm_hidden_size'], config["lstm_depth"], batch_first = True) self.encoder = nn.Linear(config['lstm_hidden_size'], config["joint_embedding_latent_space_dimension"]) if torch.cuda.is_available(): self.time_distributed.cuda() self.rnn.cuda() self.encoder.cuda() self.init_model_weights() def init_model_weights(self): """ Here we reproduce Keras default initialization weights to initialize Embeddings/LSTM weights """ ih = (param.data for name, param in self.named_parameters() if 'weight_ih' in name) hh = (param.data for name, param in self.named_parameters() if 'weight_hh' in name) b = (param.data for name, param in self.named_parameters() if 'bias' in name) for t in ih: nn.init.xavier_uniform_(t) for t in hh: nn.init.orthogonal_(t) for t in b: nn.init.constant_(t, 0) def forward(self, qa_pairs): qa_pairs = qa_pairs.float() qa_pairs_emb = self.time_distributed(qa_pairs) _, (h_qa_t, _) = self.rnn(qa_pairs_emb) qa_hist_state = h_qa_t[-1] diag_state = self.encoder(qa_hist_state) out = self.l2norm(diag_state) return out def l2norm(self, X): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt() X = torch.div(X, norm) return X ```
{ "source": "josharnoldjosh/visdom-plot", "score": 3 }
#### File: josharnoldjosh/visdom-plot/visual.py ```python import visdom import subprocess import torch from data import Epoch from sklearn.metrics import confusion_matrix import numpy as np import calc LINE_TYPE = "window_type_line" CM_TYPE = "window_confusion_matrix" class Plot: """ Use the follow methods to initialize a plot: - line (for line plot) - cm (for confusion matrix plot) Use the follow method to update data sources (note, this does not display changes) - update Use the follow method to visually display new results: - plot """ def __init__(self, model_name="Model"): self.vis = visdom.Visdom() # must run python -m visdom.server self.model_name = model_name self.plots = {} return def clear(self): self.vis.close() def line(self, plot_name, xlabel, ylabel, legend_ext): window = self.vis.line( Y=torch.zeros((1)).cpu(), X=torch.zeros((1)).cpu(), opts=dict(xlabel=xlabel,ylabel=ylabel,title=self.model_name+' '+plot_name, legend=['Train '+legend_ext, 'Validation '+legend_ext, 'Test '+legend_ext])) self.plots[plot_name] = {"type":LINE_TYPE, "window":window, "idx":0, "train":[], "val":[], "test":[], "legend_ext":legend_ext} def cm(self, plot_name): window = self.vis.heatmap( X=[[0, 0], [0, 0]], opts=dict( columnnames=['Positive', 'Negative'], rownames=['True', 'False'], colormap='Electric', title=self.model_name+' '+plot_name )) self.plots[plot_name] = {"type":CM_TYPE, "window":window, "data":[]} def update(self, plot_name, data=[], train=0, val=0, test=0): """ Appends data to the plot. """ if self.plots[plot_name]["type"] == LINE_TYPE: if train != 0: self.plots[plot_name]["train"] += [train] if val != 0: self.plots[plot_name]["val"] += [val] if test != 0: self.plots[plot_name]["test"] += [test] if self.plots[plot_name]["type"] == CM_TYPE: self.plots[plot_name]["data"].append(data) def plot_line_update(self, plot, key): window = plot["window"] x = plot["idx"] train_y = calc.average_array(plot["train"]) if train_y != 0: self.vis.line(X=torch.ones((1,1)).cpu()*x, Y=torch.Tensor([train_y]).unsqueeze(0).cpu(), win=window, update='append', name='Train '+plot["legend_ext"]) val_y = calc.average_array(plot["val"]) if val_y != 0: self.vis.line(X=torch.ones((1,1)).cpu()*x, Y=torch.Tensor([val_y]).unsqueeze(0).cpu(), win=window, update='append', name='Val '+plot["legend_ext"]) test_y = calc.average_array(plot["test"]) if test_y != 0: self.vis.line(X=torch.ones((1,1)).cpu()*x, Y=torch.Tensor([test_y]).unsqueeze(0).cpu(), win=window, update='append', name='Test '+plot["legend_ext"]) plot["idx"] = x+1 plot["train"] = [] plot["val"] = [] plot["test"] = [] self.plots[key] = plot return def plot_cm_update(self, plot, key): window = plot["window"] (tp, tn, fp, fn) = calc.average_arrays(plot["data"]) window = self.vis.heatmap(win=window, X=[[tp, fn], [fp, tn]], opts=dict( columnnames=['Positive', 'Negative'], rownames=['True', 'False'], colormap='Electric', title=self.model_name+' '+key, update="replace", name=self.model_name+' '+key )) def plot(self): """ Updates the plot data. """ for key in self.plots.keys(): plot = self.plots[key] if plot["type"] == LINE_TYPE: self.plot_line_update(plot, key) if plot["type"] == CM_TYPE: self.plot_cm_update(plot, key) return ```
{ "source": "josharsh/Submitty", "score": 2 }
#### File: tests/e2e/test_accessibility.py ```python from .base_testcase import BaseTestCase import json import os import tempfile import subprocess from .test_office_hours_queue import enableQueue class TestAccessibility(BaseTestCase): """ Test cases revolving around the logging in functionality of the site """ def __init__(self, testname): super().__init__(testname, log_in=False) # This should contain a url for every type of page on the webiste # please replace the semester and course with '/courses/{}/{}' # So '/courses/s20/sample/users' becomes '/courses/{}/{}/users' urls = [ '/home', '/home/courses/new', '/courses/{}/{}', '/courses/{}/{}/gradeable/future_no_tas_homework/update?nav_tab=0', '/courses/{}/{}/autograding_config?g_id=future_no_tas_homework', '/courses/{}/{}/gradeable/future_no_tas_lab/grading?view=all', '/courses/{}/{}/gradeable/future_no_tas_test/grading?view=all', '/courses/{}/{}/gradeable/open_homework/grading/status', '/courses/{}/{}/gradeable/open_homework/bulk_stats', '/courses/{}/{}/gradeable/open_homework/grading/details?view=all', '/courses/{}/{}/gradeable/open_homework', '/courses/{}/{}/gradeable/open_team_homework/team', '/courses/{}/{}/gradeable/grades_released_homework_autota', '/courses/{}/{}/notifications', '/courses/{}/{}/notifications/settings', '/courses/{}/{}/gradeable', '/courses/{}/{}/config', '/courses/{}/{}/theme', '/courses/{}/{}/office_hours_queue', '/courses/{}/{}/course_materials', '/courses/{}/{}/forum', '/courses/{}/{}/forum/threads/new', '/courses/{}/{}/forum/categories', '/courses/{}/{}/forum/stats', '/courses/{}/{}/users', '/courses/{}/{}/graders', '/courses/{}/{}/sections', '/courses/{}/{}/student_photos', '/courses/{}/{}/late_days', '/courses/{}/{}/extensions', '/courses/{}/{}/grade_override', '/courses/{}/{}/plagiarism', '/courses/{}/{}/plagiarism/configuration/new', '/courses/{}/{}/reports', '/courses/{}/{}/late_table', '/courses/{}/{}/grades', '/courses/{}/{}/polls', '/courses/{}/{}/polls/newPoll', ] urls_formatted = [] baseline_path = '' def test_w3_validator(self): # Uncomment this to generate a new baseline for all pages on the website # Then run 'python3 -m unittest e2e.test_accessibility' from inside the tests folder # self.genBaseline() self.validatePages() # Any code that should be run before checking for accessibility def setUp(self): super().setUp() self.baseline_path = f'{os.path.dirname(os.path.realpath(__file__))}/accessibility_baseline.json' self.urls_formatted = [url.format(self.semester, 'sample') for url in self.urls] # Enables the office hours queue enableQueue(self) def validatePages(self): self.log_out() self.log_in(user_id='instructor') self.click_class('sample') with open(self.baseline_path, encoding="utf8") as f: baseline = json.load(f) self.maxDiff = None for url_index, url in enumerate(self.urls_formatted): with self.subTest(url=url): foundErrors = [] foundErrorMessages = [] self.get(url=url) with tempfile.NamedTemporaryFile(mode='w+', suffix='.html') as tmp: tmp.write("<!DOCTYPE html>\n") tmp.write(self.driver.page_source) error_json = subprocess.check_output(["java", "-jar", "/usr/bin/vnu.jar", "--exit-zero-always", "--format", "json", tmp.name], stderr=subprocess.STDOUT) for error in json.loads(error_json)['messages']: # For some reason the test fails to detect this even though when you actually look at the rendered # pages this error is not there. So therefore the test is set to just ignore this error. skip_messages = [ "Start tag seen without seeding a doctype first", "Possible misuse of “aria-label”", "The “date” input type is not supported in all browsers." ] skip_error = False for skip_msg in skip_messages: if error['message'].startswith(skip_msg): skip_error = True break if skip_error: continue if error['message'] not in baseline[self.urls[url_index]] and error['message'] not in foundErrorMessages: foundErrorMessages.append(error['message']) clean_error = { "error": error['message'].replace('\u201c', "'").replace('\u201d', "'").strip(), "html extract": error['extract'].strip(), "type": error['type'].strip() } foundErrors.append(clean_error) msg = f"\n{json.dumps(foundErrors, indent=4, sort_keys=True)}\nMore info can be found by using the w3 html validator. You can read more about it on submitty.org:\nhttps://validator.w3.org/#validate_by_input\nhttps://submitty.org/developer/interface_design_style_guide/web_accessibility#html-css-and-javascript" self.assertFalse(foundErrors != [], msg=msg) def genBaseline(self): self.log_out() self.log_in(user_id='instructor') self.click_class('sample') baseline = {} for url_index, url in enumerate(self.urls_formatted): self.get(url=url) with tempfile.NamedTemporaryFile(mode='w+', suffix='.html') as tmp: tmp.write("<!DOCTYPE html>\n") tmp.write(self.driver.page_source) error_json = subprocess.check_output(["java", "-jar", "/usr/bin/vnu.jar", "--exit-zero-always", "--format", "json", tmp.name], stderr=subprocess.STDOUT) baseline[self.urls[url_index]] = [] for error in json.loads(error_json)['messages']: # For some reason the test fails to detect this even though when you actually look at the rendered # pages this error is not there. So therefore the test is set to just ignore this error. if error['message'].startswith("Start tag seen without seeing a doctype first"): continue if error['message'].startswith("Possible misuse of “aria-label”"): continue if error['message'] not in baseline[self.urls[url_index]]: baseline[self.urls[url_index]].append(error['message']) with open(self.baseline_path, 'w') as file: json.dump(baseline, file, ensure_ascii=False, indent=4) ```
{ "source": "joshas/ExplorerProperties", "score": 2 }
#### File: ExplorerProperties/explorer_properties/__init__.py ```python from fman import DirectoryPaneCommand import ctypes SEE_MASK_NOCLOSEPROCESS = 0x00000040 SEE_MASK_INVOKEIDLIST = 0x0000000C class SHELLEXECUTEINFO(ctypes.Structure): _fields_ = ( ("cbSize", ctypes.wintypes.DWORD), ("fMask", ctypes.c_ulong), ("hwnd", ctypes.wintypes.HANDLE), ("lpVerb", ctypes.c_wchar_p), ("lpFile", ctypes.c_wchar_p), ("lpParameters", ctypes.c_char_p), ("lpDirectory", ctypes.c_char_p), ("nShow", ctypes.c_int), ("hInstApp", ctypes.wintypes.HINSTANCE), ("lpIDList", ctypes.c_void_p), ("lpClass", ctypes.c_char_p), ("hKeyClass", ctypes.wintypes.HKEY), ("dwHotKey", ctypes.wintypes.DWORD), ("hIconOrMonitor", ctypes.wintypes.HANDLE), ("hProcess", ctypes.wintypes.HANDLE), ) class DisplayExplorerProperties(DirectoryPaneCommand): def __call__(self): file_name = self.pane.get_file_under_cursor() if not file_name: return shell_execute_ex = ctypes.windll.shell32.ShellExecuteExW shell_execute_ex.restype = ctypes.wintypes.BOOL sei = SHELLEXECUTEINFO() sei.cbSize = ctypes.sizeof(sei) sei.fMask = SEE_MASK_NOCLOSEPROCESS | SEE_MASK_INVOKEIDLIST sei.lpVerb = "properties" sei.lpFile = file_name sei.nShow = 1 shell_execute_ex(ctypes.byref(sei)) ```
{ "source": "joshasgard/Disaster-Response-App", "score": 3 }
#### File: Disaster-Response-App/app/run.py ```python import json import pandas as pd import joblib # Import natural language took kits from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from nltk.corpus import stopwords # Other imports from flask import Flask from flask import render_template, request, jsonify import plotly from plotly.graph_objs import Bar, Scatter from sqlalchemy import create_engine app = Flask(__name__) def tokenize(text): """Function converts raw messages into tokens, cleans the tokens and removes stopwords. Args: text(str): raw message data to be classified. Returns: clean_tokens(list): cleaned list of tokens(words). """ # convert each text input into tokens tokens = word_tokenize(text) # initialize lemmatizer for converting tokens to root lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) # remove stopwords clean_tokens = [x for x in clean_tokens if x not in stopwords.words('english')] return clean_tokens # load data engine = create_engine('sqlite:///../data/DisasterResponse.db') df = pd.read_sql_table('DisasterResponse', engine) metrics = pd.read_csv("../data/model_metrics.csv") # load model model = joblib.load("../models/classifier.pkl") # index webpage displays cool visuals and receives user input text for model @app.route('/') @app.route('/index') def index(): # Figure 1: data showing Number of Negative-Positive class per category - top 5 genre_per_category = df.iloc[:,3:].groupby('genre').sum().T top_category = genre_per_category.sum(axis=1).sort_values(ascending=False).reset_index() top_category.columns = ['categories', 'true_proportion -1'] top_category['false_proportion -0'] = df.shape[0] - top_category['true_proportion -1'] top_category['categories'] = top_category['categories'].apply(lambda x: str(x).replace('_', ' ')) top_classes = top_category.head(5) # Figure 2: a scatter plot of performance metrics for all categories # Figure 3: data visuals genre_counts = df.groupby('genre').count()['message'] genre_names = list(genre_counts.index) # Create visuals graphs = [ { 'data': [ Bar( name = 'Positive', y=top_classes['categories'], x=top_classes['true_proportion -1'], orientation = 'h', marker=dict( color='rgba(246, 78, 139, 0.6)', line=dict(color='rgba(246, 78, 139, 1.0)', width=3)) ), Bar( name = 'Negative', y=top_classes['categories'], x=top_classes['false_proportion -0'], orientation = 'h', marker=dict( color='rgba(58, 71, 80, 0.6)', line=dict(color='rgba(58, 71, 80, 1.0)', width=3) ) ) ], 'layout':{ 'barmode' : 'stack', 'title': 'Number of Negative-Positive class per category (top 5)', "xaxis": { 'title': 'Number of messages' }, "yaxis": { 'title': 'Categories', 'title_standoff' : 40, 'tickangle' : 45 }, } }, { 'data':[ Scatter( name = 'Precision', x = metrics['Target Category'], y = metrics['PRECISION'], mode = 'lines' ), Scatter( name = 'Recall', x = metrics['Target Category'], y = metrics['RECALL'], mode = 'lines' ), Scatter( name = 'F1 Score', x = metrics['Target Category'], y = metrics['F1'], mode = 'lines' ) ], 'layout':{ 'title': 'AdaBoost Model Performance Metrics', "xaxis":{ 'title': 'Categories', 'title_standoff': 100, 'tickangle': 45 }, "yaxis":{ 'title': "" } } }, { 'data': [ Bar( x=genre_names, y=genre_counts, marker=dict( color='rgba(174, 132, 255, 0.99)', line=dict(color='rgba(174, 132, 255, 0.99)', width=3)) ) ], 'layout': { 'title': 'Distribution of Message Genres', 'yaxis': { 'title': "Count" }, 'xaxis': { 'title': "Genre" }, 'template': "seaborn" } }, ] # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) # render web page with plotly graphs return render_template('master.html', ids=ids, graphJSON=graphJSON) # web page that handles user query and displays model results @app.route('/go') def go(): # save user input in query query = request.args.get('query', '') # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) # This will render the go.html Please see that file. return render_template( 'go.html', query=query, classification_result=classification_results) # web page displays training data visualizations in greater detail @app.route('/databoard') def databoard(): # Group data by message genres genre_per_category = df.iloc[:,3:].groupby('genre').sum().T # Figure 1: Message count in each class per genre - Filters for categories with greater than # 10% (0.1) true values. class_per_genre = genre_per_category[genre_per_category.sum(axis=1)/df.shape[0]>0.1].reset_index() class_per_genre.columns = ['categories', 'direct', 'news', 'social'] # Figure 2: A scatter plot of performance metrics for all categories # Figure 3: Data showing Number of Negative-Positive class per category - top 5 top_category = genre_per_category.sum(axis=1).sort_values(ascending=False).reset_index() top_category.columns = ['categories', 'true_proportion -1'] top_category['false_proportion -0'] = df.shape[0] - top_category['true_proportion -1'] top_category['categories'] = top_category['categories'].apply(lambda x: str(x).replace('_', ' ')) top_classes = top_category.head(5) # Figure 4: Data visuals genre_counts = df.groupby('genre').count()['message'] genre_names = list(genre_counts.index) # Create visuals graphs = [ { 'data': [ Bar( name = 'direct', x=class_per_genre['categories'], y=class_per_genre['direct'], marker=dict( color='rgba(246, 78, 139, 0.6)', line=dict(color='rgba(246, 78, 139, 1.0)', width=3)) ), Bar( name = 'news', x=class_per_genre['categories'], y=class_per_genre['news'], marker=dict( color='rgba(58, 71, 80, 0.6)', line=dict(color='rgba(58, 71, 80, 1.0)', width=3)) ), Bar( name = 'social', x=class_per_genre['categories'], y=class_per_genre['social'], marker=dict( color='rgba(174, 132, 255, 0.99)', line=dict(color='rgba(0,153,153,0.2)', width=3) ) ) ], 'layout':{ #'barmode' : 'stack', 'title': 'Message count per class per genre', "yaxis": { 'title': 'Number of messages' }, "xaxis": { 'title': 'Categories', 'title_standoff' : 40, 'tickangle' : 45 }, } }, { 'data':[ Scatter( name = 'Precision', x = metrics['Target Category'], y = metrics['PRECISION'], mode = 'lines' ), Scatter( name = 'Recall', x = metrics['Target Category'], y = metrics['RECALL'], mode = 'lines' ), Scatter( name = 'F1 Score', x = metrics['Target Category'], y = metrics['F1'], mode = 'lines' ) ], 'layout':{ 'title': 'AdaBoost Model Performance Metrics', "xaxis":{ 'title': 'Categories', 'title_standoff': 100, 'tickangle': 45 }, "yaxis":{ 'title': "" } } }, { 'data': [ Bar( name = 'Positive', y=top_classes['categories'], x=top_classes['true_proportion -1'], orientation = 'h', marker=dict( color='rgba(246, 78, 139, 0.6)', line=dict(color='rgba(246, 78, 139, 1.0)', width=3)) ), Bar( name = 'Negative', y=top_classes['categories'], x=top_classes['false_proportion -0'], orientation = 'h', marker=dict( color='rgba(58, 71, 80, 0.6)', line=dict(color='rgba(58, 71, 80, 1.0)', width=3)) ) ], 'layout':{ 'barmode' : 'stack', 'title': 'Number of Negative-Positive class per category (top 5)', "xaxis": { 'title': 'Number of messages' }, "yaxis": { 'title': 'Categories', 'title_standoff' : 40, 'tickangle' : 45 }, # 'template': "seaborn" } }, { 'data': [ Bar( x=genre_names, y=genre_counts, marker=dict( color='rgba(174, 132, 255, 0.99)', line=dict(color='rgba(174, 132, 255, 0.99)', width=3)) ) ], 'layout': { 'title': 'Distribution of Message Genres', 'yaxis': { 'title': "Count" }, 'xaxis': { 'title': "Genre" }, 'template': "seaborn" } }, ] # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) return render_template('databoard.html', ids=ids, graphJSON=graphJSON ) def main(): app.run(host='0.0.0.0', port=3001, debug=True) if __name__ == '__main__': main() ```
{ "source": "joshasgard/Diversity_RepresentationInTech", "score": 4 }
#### File: joshasgard/Diversity_RepresentationInTech/Diversity_RepresentationInTech.py ```python import pandas as pd from collections import defaultdict import numpy as np def total_count(df, col1, col2, look_for): ''' INPUT: df - the pandas dataframe you want to search col1 - the column name you want to look through col2 - the column you want to count values from look_for - a list of strings you want to search for in each row of df[col] OUTPUT: new_df - a dataframe of each look_for with the count of how often it shows up ''' new_df = defaultdict(int) #loop through list of ed types for val in look_for: #loop through rows for idx in range(df.shape[0]): #if the ed type is in the row add 1 if val in df[col1][idx]: new_df[val] += int(df[col2][idx]) new_df = pd.DataFrame(pd.Series(new_df)).reset_index() new_df.columns = [col1, col2] new_df.sort_values('count', ascending=False, inplace=True) return new_df def clean_race(race_item): possible_race = ['White or of European descent', 'South Asian', 'Hispanic or Latino/Latina', 'East Asian', 'Middle Eastern','Native American, Pacific Islander, or Indigenous Australian', 'I prefer not to say','Black or of African descent','I don\'t know'] ''' INPUT race_item - line item of the dataframe column OUTPUT val - cleaned and streamlined data ''' race_item = str(race_item) for val in possible_race: if val in race_item: return val else: pass ```
{ "source": "joshas/PackFiles", "score": 3 }
#### File: PackFiles/pack_files/async_tar.py ```python import os import tarfile import threading class AsyncTar(threading.Thread): def __init__(self, selected_files, archive_path, mode, callback): threading.Thread.__init__(self) self.selected_files = selected_files self.archive_path = archive_path self.mode = mode self.callback = callback def run(self): tar = tarfile.open(self.archive_path, self.mode) for file in self.selected_files: tar.add(file, os.path.basename(file)) tar.close() self.callback() ```
{ "source": "joshatron/DasherAssistant", "score": 3 }
#### File: DasherAssistant/assistant/Dash.py ```python from assistant.Delivery import Delivery from datetime import datetime """ Contains data for a single dash. Fields included are: start: timestamp of when it began end: timestamp of when it ended region: the region the dash was worked in total: total pay for the dash additional: additional pay for the dash deliveries: array of deliveries made in the dash """ class Dash: def __init__(self, start, end, region, total, additional, deliveries): self.start = start self.end = end self.region = region self.total = total self.additional = additional self.deliveries = deliveries def __init__(self, start, end, region, total, additional): self.start = start self.end = end self.region = region self.total = total self.additional = additional self.deliveries = [] def addDelivery(self, restaurant, pay): self.deliveries.append(Delivery(restaurant, pay)) def print(self): print("start: " + self.start.strftime("%m/%d/%y %H:%M")) print("end: " + self.end.strftime("%m/%d/%y %H:%M")) print("region: " + self.region) print("total pay: " + "${:,.2f}".format(self.total / 100.)) print("additional pay: " + "${:,.2f}".format(self.additional / 100.)) print("deliveries:") length = 0 for d in self.deliveries: if(len(d.restaurant) > length): length = len(d.restaurant) for d in self.deliveries: print(("{:" + str(length + 2) + "}").format(d.restaurant) + "${:,.2f}".format(d.pay / 100.)) ``` #### File: DasherAssistant/assistant/Import.py ```python import json import readline from datetime import datetime from assistant.Dash import Dash from assistant.Dashes import Dashes from assistant.Completer import Completer ''' Imports dash data from a json file ''' def importJSON(file): jsonString = open(file).read() data = json.loads(jsonString) dashes = Dashes() for dash in data: d = Dash(datetime.strptime(dash["start"], "%m/%d/%y %H:%M"), datetime.strptime(dash["end"], "%m/%d/%y %H:%M"), dash["region"], dash["total"], dash["additional"]) for delivery in dash["deliveries"]: d.addDelivery(delivery["restaurant"], delivery["pay"]) dashes.addDash(d) return dashes ''' Imports dash data from user input ''' def importManual(restaurants, regions): regionComp = Completer(regions) restaurantComp = Completer(restaurants) readline.parse_and_bind("tab: complete") readline.set_completer_delims('') start = 0 while True: startStr = input("What is the start date and time (MM/DD/YY HH:MM)? ") try: start = datetime.strptime(startStr, "%m/%d/%y %H:%M") break; except: print("Invalid date. Please use specified format") end = 0 while True: endStr = input("What is the end date and time (HH:MM or MM/DD/YY HH:MM)? ") try: end = datetime.strptime(str(start.month) + "/" + str(start.day) + "/" + str(start.year) + " " + endStr, "%m/%d/%Y %H:%M") break except: try: end = datetime.strptime(endStr, "%m/%d/%y %H:%M") break except: print("Invalid date. Please use specified format") readline.set_completer(regionComp.complete) region = input("What is the region? ") readline.set_completer(None) total = 0 while True: totalStr = input("What was the total pay? $") try: total = int(float(totalStr) * 100) break except: print("Invalid input. Please enter a valid number") additional = 0 while True: additionalStr = input("What was the additional pay? $") try: additional = int(float(additionalStr) * 100) break except: print("Invalid input. Please enter a valid number") d = Dash(start, end, region, total, additional) print("Type the restaurant name and pay for each delivery.") print("Leave the restaurant blank to exit.") while True: readline.set_completer(restaurantComp.complete) restaurant = input("What was the restaurant name? ") readline.set_completer(None) if(restaurant != ""): pay = 0 while True: payStr = input("What was the pay? $") try: pay = int(float(payStr) * 100) break except: print("Invalid input. Please enter a valid number") d.addDelivery(restaurant, pay) else: break return d ```
{ "source": "joshatron/WiiRemote", "score": 3 }
#### File: WiiRemote/remote/StateExecutor.py ```python from pyautogui import press, hotkey class StateExecutor: def buttonAPress(self): press(' ') def buttonBPress(self): press('esc') def button1Press(self): hotkey('ctrl', 'alt', 'up') def button2Press(self): hotkey('ctrl', 'alt', 'down') def buttonPlusPress(self): press('volumeup') def buttonMinusPress(self): press('volumedown') def buttonHomePress(self): hotkey('ctrl', 'alt', 'up') hotkey('ctrl', 'alt', 'up') hotkey('ctrl', 'alt', 'up') hotkey('ctrl', 'alt', 'up') hotkey('ctrl', 'alt', 'up') hotkey('ctrl', 'alt', 'up') def buttonUpPress(self): press('up') def buttonDownPress(self): press('down') def buttonLeftPress(self): press('left') def buttonRightPress(self): press('right') ```
{ "source": "joshavenue/data_science", "score": 4 }
#### File: joshavenue/data_science/class_3.py ```python class Dataset: def __init__(self, data): self.data = data def print_data(self, num_rows): print(self.data[:num_rows]) nfl_dataset = Dataset(nfl_data) nfl_dataset.print_data(5) ```
{ "source": "joshavenue/hardcore_challenge", "score": 4 }
#### File: joshavenue/hardcore_challenge/number_game_v0.1.py ```python import random def play_game(): try: x = int(input('Enter your lower number : ')) y = int(input('Enter your upper number : ')) limit = int(input('How many times a player can guess? : ')) except ValueError: print('Error within inputs.') else: pass random_number = random.randint(x,y) guess_time = [] while len(guess_time) < limit: try: guess = int(input('Enter your guess : ')) except ValueError: print('{} is not a number'.format(guess)) else: if guess == random_number: print('CORRECT! The number is indeed {}!'.format(random_number)) break else: print('Try again!') guess_time.append(guess) else: print('GG. It was {}'.format(random_number)) try_again = input('Do you wish to try again? Y/N : ') if try_again.lower() == 'y': play_game() elif try_again.lower() == 'n': print('GG.') else: print('Not sure that was a yes or not.') play_game() ```
{ "source": "joshavenue/object-oriented-python-note", "score": 3 }
#### File: joshavenue/object-oriented-python-note/class_2.1.py ```python def praise(self): return "You inspire me, {}".format(self.name) def reassurance(self): return "Chin up, {}. You'll get it next time!".format(self.name) def feedback(self, grade): if grade > 50: return self.praise() else: return self.reassurance() ```
{ "source": "joshavenue/ongoing_challenge", "score": 4 }
#### File: joshavenue/ongoing_challenge/test.py ```python from datetime import datetime day_now = datetime.now() print('Let\'s recruit people by age') print('Today is {} / {} / {}'.format(day_now.day,day_now.month,day_now.year)) i = 0; num_data = [1,2,3,4,5,6,7,8,9,0] alphabet = ['abcdefghijklmnopqrdtuvwxyz'] boolean_yes = ['y'] boolean_no = ['n'] name = [] age = [] def get_help(): print('Type \'END\' when you are done.') print('Type \'ERASE\' when you want to choose again.') print('Type \'HELP\' when you need help.') print('Type \'SHOW\' when you need to check your list.') print('Type \'EXIT\' to stop the program.') def clean_up_name(): del name[:] def clean_up_age(): del age[:] def erase_All(): del name[:] del age[:] def show_list_END(): print('You have recruited {} people today.'.format(len(name))) for names in name and ages in age : print(names, ' - ',ages) def show_list(): for names in name and ages in age : print(names, ' - ',ages) def warning(): if name[len(name)] in num_data: print('Number is not allow in naming') else: pass while True: print('You have {} new recruits.'.format(len(name))) new_name = input('NAME : ') new_age = input('AGE :') if new_name.lower() == 'DONE'.lower() or new_age.lower() == 'DONE'.lower(): break elif new_name.lower() == 'CLEAN'.lower() or new_age.lower == 'CLEAN': erase_All() continue elif new_name.lower() == "HELP".lower() or new_age.lower() == 'HELP'.lower(): get_help() continue elif new_name.lower() == 'EXIT'.lower(): raise SystemExit elif new_name.lower() == 'SHOW'.lower() or new_age.lower() == 'SHOW'.lower(): show_list() continue else: name.append(new_name) age.append(new_age) show_list_END() ```
{ "source": "joshavenue/python_notebook", "score": 3 }
#### File: joshavenue/python_notebook/global.py ```python count = 0 # A global count variable def remember(): global count count += 1 # Count this invocation print(str(count)) remember() remember() remember() remember() remember() ``` #### File: joshavenue/python_notebook/make_upper_case.py ```python def sillycase(string): half = round(len(string)/2) // Find the half index return string[:half].lower() + string[half:].upper() // If you only want certain letters to be upper case // ``` #### File: python_notebook/notebook2/lambda_1.py ```python def polynomial(x): return x**2 + 5*x + 4 print(polynomial(-4)) #lambda print((lambda x: x**2 + 5*x + 4) (-4)) print((lambda y: y*2 + 5) (5)) def linear(y): return y*2 + 5 print(linear(5)) ``` #### File: python_notebook/notebook2/map_lambda.py ```python def fiveex(x): return x**x nums = [1,2,3,5,7,11,13,17] results = list(map(fiveex,nums)) print(results) ## The function map takes a function and an ## iterable as arguments, and returns a new iterable ## with the function applied to each argument. result = list(map(lambda x:x**x,nums)) print(result) ## Works for lambda style as well ``` #### File: joshavenue/python_notebook/*variable.py ```python def num(*nums): // One * takes in any number of single data type, in this case : Int sum = 0 for x in nums: sum += x return sum sum(22,33,44,55,66) // You can type as many numbers as you wish def whatever(**kwargs): // Double ** take more than just a type of data, in this case, there is Str and Int print(first_name) print(last_name) print(age) whatever('first_name': 'John', 'last_name': 'Lee', 'age': 22) // Create a dictionary ``` #### File: joshavenue/python_notebook/yield_next.py ```python def gen(): yield 3 # Like return but one by one yield 'wow' yield -1 yield 1.2 x = gen() print(next(x)) # Use next() function to go one by one print(next(x)) print(next(x)) print(next(x)) ``` #### File: joshavenue/python_notebook/zip_method.py ```python def combo(a, b): return list(zip(a, b)) ```
{ "source": "joshavenue/TIL-python", "score": 4 }
#### File: joshavenue/TIL-python/def_try_except.py ```python def add(x, y): // Define a function with 2 argument // try: // Try to run codeblock if it can be converted from Int to Float a = float(x) b = float(y) total = a + b // Add them together // except ValueError: // If it is not a number, it will tells the system to return nothing // return None else: return total // If the try statement works and input is an integer, it will return the total // ``` #### File: joshavenue/TIL-python/if_A_in_loop_continue.py ```python def loopy(items): # Code goes here for item in items: if item[0] == "a": continue else: print(item) ``` #### File: joshavenue/TIL-python/random_letter_1.py ```python import random def random_item(x): random_index = random.randint(0, len(x) -1) random_item = x[random_index] return random_item x = 'hello everyone' print(random_item(x)) ```
{ "source": "Josh-Ay/tic-tac-toe", "score": 4 }
#### File: Josh-Ay/tic-tac-toe/main.py ```python from random import choice from brain import Brain from board import Board from clear import clear def start_game(): print("===========================TIC-TAC-TOE GAME====================================") brain, board = Brain(), Board() brain.display_instructions() brain.display_board(board.explanatory_board) valid_input = False user_marker, computer_marker, winner = "", "", None while not valid_input: user_answer = input("\nX or O? 😈: ") if user_answer.upper() == "X": valid_input, user_marker, computer_marker = True, "X", "O" elif user_answer.upper() == "O": valid_input, user_marker, computer_marker = True, "O", "X" else: print("Invalid input. Please enter 'x' or 'o'.") def play(): nonlocal winner accept_input = True user_placement = 0 while accept_input: try: if len(brain.available_options) != 0: user_placement = int(input("Where would you like to play? ")) else: accept_input = False except ValueError: print("Please enter a number") else: if user_placement < 0: print("Please enter a positive number") elif user_placement == 0: print("Please enter a value greater than 0") elif user_placement > 9: print("Please enter a number between 1 and 9") else: if len(brain.available_options) != 0: if brain.check_available_options(user_placement): board.place_marker_in_board(user_placement - 1, user_marker) brain.remove_option_from_board(user_placement) if len(brain.available_options) != 0: computer_placement = choice(brain.available_options) board.place_marker_in_board(computer_placement - 1, computer_marker) brain.remove_option_from_board(computer_placement) clear(), brain.display_board(board.starting_board) if brain.check_for_3_in_a_row(board.starting_board)[0]: accept_input = False winner = brain.check_for_3_in_a_row(board.starting_board)[1] else: print("Sorry, that spot is already taken.") else: accept_input = False play(), brain.display_winner(user_marker, winner) play_again = input("Would you like to play again? (y/n): ") if play_again.upper() == "Y": clear(), start_game() else: print("\nThank you for playing! ") start_game() ```
{ "source": "joshbaptiste/media_cache_cluster", "score": 3 }
#### File: joshbaptiste/media_cache_cluster/mcc.py ```python import os import configparser import psutil import scanner def parseConfig(configFile): """ Parses config file """ options = [] config = configparser.ConfigParser() config.read(configFile) if config.has_section('global'): sections = config.sections() log.info("Loading Sections:") for section in sections: value = config.get(section) log.info("Found Section: {} = {}".format(section, val)) options.add(section, value) else: raise configparser.NoSectionError return options def checkDiskUsage(path): try: du = psutil.disk_usage(path) return du except OSError: log.error("Unable to check disk usage of: " + path) def checkSymLinks(config): """ Scans Local directory which contain symlinks """ log.info("Scanning directory {} for symlinks") scandir = scanner.Scanner() for file in scandir.scanDirectory(config.LOCAL_DIR): stats = os.path.stat(file, follow_symlink=False): ```
{ "source": "joshbarrass/go-bench-graph", "score": 3 }
#### File: joshbarrass/go-bench-graph/graph.py ```python import sys import re import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec ## create regex for getting data data_regex = re.compile(r"""(\d+)\s*([\d\.]+) ns\/op$""") ALLOWED_NAME_CHARS = "\w\d_" ALLOWED_DIGIT_CHARS = "\d" def format_regex(general_regex): """Takes a general regular expression and formats it into the three required expressions. These are returned in the order: specific_regex, label_regex, graph_regex arg general_regex should contain three format tags: {N} : This should be placed where the value of N can be found {label} : This should be placed where the line label can be found {graph} : (optional) This should be placed where the graph name can be found. If ommitted, the name "default" will be used. """ disable_graph = False if "{graph}" not in general_regex: disable_graph = True general_regex += "{graph}" specific_regex = re.compile(general_regex.format(N="(["+ALLOWED_DIGIT_CHARS+"]+)", label="["+ALLOWED_NAME_CHARS+"]+", graph=("["+ALLOWED_NAME_CHARS+"]+") if not disable_graph else "")) label_regex = re.compile(general_regex.format(N="["+ALLOWED_DIGIT_CHARS+"]+", label="(["+ALLOWED_NAME_CHARS+"]+)", graph=("["+ALLOWED_NAME_CHARS+"]+") if not disable_graph else "")) graph_regex = re.compile(general_regex.format(N="["+ALLOWED_DIGIT_CHARS+"]+", label="["+ALLOWED_NAME_CHARS+"]+", graph=("(["+ALLOWED_NAME_CHARS+"]+)"))) if not disable_graph else None return specific_regex, label_regex, graph_regex if __name__ == "__main__": from docopt import docopt args = docopt(__doc__) # print(args) regex = args["<regex>"] specific_regex, label_regex, graph_regex = format_regex(regex) if args["--output-file"] is not None: output_file = args["--output-file"] else: output_file = "graph.png" show_only = args["--show-only"] ## data["graph"]["label"] = np.array data = {} ## read data from stdin (so tests can be piped in) for line in sys.stdin: ## identify the data match = data_regex.search(line) if match is None: print("Ignoring non-matching line:", line) continue groups = match.groups() to_add = [float(d) for d in list(groups)] ## identify the N value match = specific_regex.search(line) if match is None: print("Ignoring non-matching line:", line) continue groups = match.groups() N = float(groups[0]) to_add = [N]+to_add ## identify the label match = label_regex.search(line) if match is None: print("Ignoring non-matching line:", line) continue groups = match.groups() label = groups[0].replace("_", " ") ## identify the graph name if graph_regex is not None: match = graph_regex.search(line) if match is None: print("Ignoring non-matching line:", line) continue groups = match.groups() graph = groups[0].replace("_", " ") else: graph = "" ## add to the data set if graph not in data: data[graph] = {} if label not in data[graph]: data[graph][label] = [] data[graph][label].append(to_add) ## make into numpy arrays for key in data.keys(): for k, val in data[key].items(): data[key][k] = np.array(val) ## data has structure [n, iterations, time (ns)] ################### # generate a plot # ################### fig = plt.figure(figsize=(12*len(data), 12)) ## construct a gridspec for this data gs = gridspec.GridSpec(1,len(data)) ## do the graphs in graph name order graph_names = sorted([k for k in data.keys()], key=lambda x:x.lower()) for g in range(len(data)): ## Add next plot ax = fig.add_subplot(gs[g]) graph_name = graph_names[g] ## Iterate through all the data for this graph for key in data[graph_name].keys(): ax.plot(data[graph_name][key][:,0], data[graph_name][key][:,2], "o-", label=key) ax.legend() ax.set_title(graph_name) ax.set_xlabel("N") ax.set_ylabel("Time Taken, $ns$") ax.set_xscale("log") if show_only: plt.show() else: plt.savefig(output_file) ```
{ "source": "joshbarrass/hptools", "score": 3 }
#### File: joshbarrass/hptools/anims.py ```python import numpy as np from scipy.spatial.transform import Rotation as Rot from model import Vertex, Normal, Model class Animation(object): def __init__(self, frames, groups): self.groups = groups self.frames = frames class Frame(object): def __init__(self, index, subframes): self.index = index self.subframes = subframes self.groups = len(subframes) def apply_to_model(self, model): """\ Produces a new model with the rotation and translation applied to the correct vertex groups. """ verts = model.verts norms = model.norms # transform all verts and norms newverts = [] newnorms = [] for i in range(len(verts)): group = verts[i].group sf = self.subframes[group] rot_matrix = sf.rot.as_dcm() v_rotated = verts[i].r.dot(rot_matrix) v_rotated += sf.trans newvert = Vertex(v_rotated[0], v_rotated[1], v_rotated[2], group) n_rotated = norms[i].r.dot(rot_matrix) newnorm = Normal(n_rotated[0], n_rotated[1], n_rotated[2], group) newverts.append(newvert) newnorms.append(newnorm) return Model(newverts, newnorms, model.faces[:], model.groups) class Subframe(object): def __init__(self, group, rot, trans): self.group = group # redundant but good to store self.rot = rot self.trans = np.array(trans, dtype=np.float64) class NewSubframe(Subframe): def __init__(self, group, quat, trans, index): """\ Represents a subframe for a new style animation. Takes the rotation quaternion and translation vector in tuple or list format and converts them to rot objects. """ # rearrange the quaternion to [x,y,z,w] w, x, y, z = quat quat_fixed = np.array([x, y, z, w]) # construct a scipy rotation object rot = Rot.from_quat(quat_fixed) super().__init__(group, rot, trans) self.index = index class OldSubframe(Subframe): def __init__(self, group, matrix, trans): """\ Represents a subframe for an old style animation. Takes the rotation matrix and translation vector in tuple or list format and converts them to rot objects. """ # construct a scipy rotation object rot = Rot.from_matrix(quat) super().__init__(group, rot, trans) ``` #### File: joshbarrass/hptools/img.py ```python import struct import os from typing import List, Tuple, Union, Optional import numpy as np from PIL import Image # sizes in bytes FULLSCREEN_SIZE = 262144 STORY_SIZE = 123392 TEXT_SIZE = 72192 # dimensions FULLSCREEN_DIM = (512, 256) STORY_DIM = (512, 240) TEXT_DIM = (448, 160) def linear_to_image_array(pixels:List[List[int]], size:Tuple[int,int]) -> np.ndarray: """\ Converts a linear array ( shape=(width*height, channels) ) into an array usable by PIL ( shape=(height, width, channels) ).""" a = np.array(pixels, dtype=np.uint8) split = np.split(pixels, [i*size[0] for i in range(1,size[1])]) return np.array(split, dtype=np.uint8) def bit_selector(number:int, start:int, end:int, normalise:bool=False) -> Union[int, float]: """\ Select bits between start and end. Bit 0 is the least significant bit.""" val = (number>>start)&((2**(end-start+1))-1) if normalise: return val/((2**(end-start+1))-1) return val def read_IMG(fp:str, filesize:Optional[int]=None) -> bytes: """\ Reads in the IMG file at fp, returning the contents as a bytes-type. If filesize is non-None, a ValueError will be raised if the size in bytes of the file does not match the value in filesize.""" if filesize is not None: if os.path.getsize(fp) != filesize: raise ValueError("filesize does not match") with open(fp, "rb") as f: data = f.read() return data def convert_IMG(data:bytes, size:Tuple[int,int], alpha:bool=False) -> Image.Image: """\ Convert a .IMG file into a PIL Image. The contents of the .IMG file should be supplied as the bytes-type parameter 'data'. These files should be 15-bit colour, with the first bit from left to right being the discarded bit. This bit does change across the image, so it probably has some purpose, but at the moment I don't know what it's for. As far as I know, there is no metadata. Image dimensions will need to be determined manually. The first byte from right to left is red, then green, then blue. Set alpha=True if you want to use the discard bit as an alpha mask.""" # read in the image file ## with open(fp, "rb") as f: ## data = f.read() # convert the data into a linear array of pixel values pixels = [] # type: List[List[int]] for i in range(0,len(data),2): # select two bytes at a time number = struct.unpack("H", data[i:i+2])[0] r = int(round(bit_selector(number, 0, 4, True)*255)) g = int(round(bit_selector(number, 5, 9, True)*255)) b = int(round(bit_selector(number, 10, 14, True)*255)) pixel = [r,g,b] if alpha: pixel.append(int(bit_selector(number, 14, 15)*255)) pixels.append(pixel) a = linear_to_image_array(pixels, size) img_type = "RGBA" if alpha else "RGB" return Image.fromarray(a, img_type) def convert_palette_IMG(data:bytes, size:Tuple[int,int], second_palette:bool=False) -> Image.Image: """\ Convert a .IMG file that utilises a palette into a PIL Image. The first 512 bytes are 15-bit colours (the palette). After that, every value is an 8-bit value that maps to the palette. TODO: Second palette specifies whether the image has a second palette available at the end of the file. This is used in things like the sky images, as an "animation" palette for the lightning strike. Enabling this will use the second palette instead of the primary palette.""" # read in the palette palette = [] # type: List[int] for i in range(0, 512, 2): number = struct.unpack("H", data[i:i+2])[0] r = int(round(bit_selector(number, 0, 4, True)*255)) g = int(round(bit_selector(number, 5, 9, True)*255)) b = int(round(bit_selector(number, 10, 14, True)*255)) colour = [r,g,b] palette += colour # the palette has to be flat, i.e. [r,g,b,r,g,b...] # read in the pixels pixels = [] for i in range(512, len(data), 1): number = struct.unpack("B", data[i:i+1])[0] pixels.append(number) a = linear_to_image_array(pixels, size) img_type = "P" im = Image.fromarray(a, img_type) im.putpalette(palette) return im def convert_fullscreen(fp:str, alpha:bool=False) -> Image.Image: """\ Converts an image that should occupy the whole screen. These have a file size of 262144 bytes and dimensions of 512x256. """ return convert_IMG(read_IMG(fp, FULLSCREEN_SIZE), FULLSCREEN_DIM, alpha) def convert_LOAD(fp:str, alpha:bool=False) -> Image.Image: """\ Converts a loading screen image (LOADxx.IMG). This is an alias for convert_fullscreen. """ return convert_fullscreen(fp, alpha) def convert_STORY(fp:str) -> Image.Image: """\ Converts a story image (STORYxxx.IMG). """ return convert_palette_IMG(read_IMG(fp, STORY_SIZE), STORY_DIM) def convert_TEXT(fp:str) -> Image.Image: """\ Converts a title text image (XX_TEXT.IMG). """ return convert_palette_IMG(read_IMG(fp, TEXT_SIZE), TEXT_DIM) def convert_to_IMG(im:Image.Image, fp:str): """\ Converts a PIL image into a non-palette IMG file. """ # convert the IMG to RGB im = im.convert("RGB") # convert to numpy array a = np.array(im) # scale each channel to 5-bit scaled = np.round((a/255)*31).astype(np.uint8) # convert to raw bytes and write to file raw_data = b"" for y in range(scaled.shape[0]): for x in range(scaled.shape[1]): n = scaled[y,x,2] n = n << 5 n += scaled[y,x,1] n = n << 5 n += scaled[y,x,0] raw_data += struct.pack("H", n) with open(fp, "wb") as f: f.write(raw_data) def convert_to_palette_IMG(im:Image.Image, fp:str): """\ Converts a PIL image into a palette IMG file. """ # convert the IMG to a palette im = im.convert("P", palette=Image.ADAPTIVE, colors=255) palette_bytes = im.getpalette() palette = [(palette_bytes[i], palette_bytes[i+1], palette_bytes[i+2]) for i in range(0, len(palette_bytes), 3)] HP_palette = palette[::-1] # write the palette to the raw_data raw_data = b"" for colour in HP_palette: n = int(round((colour[2]/255)*31)) n = n << 5 n += int(round((colour[1]/255)*31)) n = n << 5 n += int(round((colour[0]/255)*31)) raw_data += struct.pack("H", n) assert len(raw_data) == 512 # write the image to the raw_data pix = im.load() for y in range(im.size[1]): for x in range(im.size[0]): raw_data += struct.pack("B", HP_palette.index(palette[pix[x,y]])) with open(fp, "wb") as f: f.write(raw_data) ```
{ "source": "joshbarrass/IFailedTheClassTest", "score": 3 }
#### File: joshbarrass/IFailedTheClassTest/CelledImage.py ```python from typing import Tuple, Union from PIL import Image class CelledImage: def __init__( self, fp: Union[str, Image.Image], cells: Tuple[int, int] ): if isinstance(fp, str): im = Image.open(fp) self.im = im.copy() im.close() elif isinstance(fp, Image.Image): self.im = fp.copy() else: raise TypeError self.cells = cells size = self.im.size self.w = int(round(size[0] / cells[0])) self.h = int(round(size[1] / cells[1])) def _get_box(self, x, y): if x >= self.cells[0]: raise IndexError("index out of range") while x < 0: x += self.cells[0] if y >= self.cells[1]: raise IndexError("index out of range") while y < 0: y += self.cells[1] u = self.w * x u_prime = min(self.im.size[0] - 1, u + self.w) v = self.h * y v_prime = min(self.im.size[1] - 1, v + self.h) return (u, v, u_prime, v_prime) def __getitem__(self, xy: Tuple[int, int]): assert len(xy) == 2 x, y = xy box = self._get_box(x, y) return self.im.crop(box) def __setitem__(self, xy: Tuple[int, int], cell: Image.Image): assert len(xy) == 2 x, y = xy box = self._get_box(x, y) sx = box[2] - box[0] sy = box[3] - box[1] self.im.paste(cell.resize((sx, sy), Image.ANTIALIAS), box) def show(self, title=None, command=None): self.im.show(title=title, command=command) def save(self, fp, format=None, **params): self.im.save(fp=fp, format=format, **params) def open( fp: Union[str, Image.Image], cells: Tuple[int, int] ) -> CelledImage: """Open an in-memory copy of an image, closing the original""" return CelledImage(fp, cells) def new(mode, size, cells, color=0): newim = Image.new(mode, size, color) return CelledImage(newim, cells) ``` #### File: joshbarrass/IFailedTheClassTest/rearranger.py ```python import copy import os import random import tempfile import zipfile import CelledImage from mutations import MUTATIONS PATTERN_FILE = "pattern.txt" IMAGE_NAME = "image" class NotEnoughLettersError(Exception): pass class Rearranger: """Class for handling the automated rearranging of letters in an image.""" def __init__(self, fp, pattern=None): self.im = None self.pattern = None _, ext = os.path.splitext(fp) if ext.lower() in [".zip", ".fuck"]: # "custom" format that packages everything in one self.load_zip(fp) else: if pattern is None: raise ValueError( "Can only use 'None' pattern if file contains a pattern" ) self.load_other(fp, pattern) def load_zip(self, fp): """Load an image and pattern from a zip file""" with tempfile.TemporaryDirectory() as tmpdir: with zipfile.ZipFile(fp, "r") as z: files = z.namelist() if not PATTERN_FILE in files: raise TypeError("file is missing pattern") image_ext = None for f in files: n, x = os.path.splitext(f) if n == IMAGE_NAME: image_ext = x break if image_ext is None: raise TypeError("file is missing image") extracted_pattern = z.extract(PATTERN_FILE, tmpdir) extracted_image = z.extract( IMAGE_NAME + image_ext, tmpdir ) with open(extracted_pattern) as f: self.pattern = f.read() self.im = CelledImage.open( extracted_image, self.pattern_size ) self.process_pattern() def load_other(self, fp, pattern): """Load and store an image and pattern separately.""" self.pattern = pattern self.im = CelledImage.open(fp, self.pattern_size) self.process_pattern() @property def pattern_size(self): lines = self.pattern.splitlines() return (max([len(line) for line in lines]), len(lines)) def process_pattern(self): """Turn the pattern into a letter dictionary. Stored as self.patterndict""" # ensure lines are all the same length lines = pad_lines(self.pattern) self.patterndict = {} for y in range(len(lines)): for x in range(len(lines[0])): char = lines[y][x] if char not in self.patterndict: self.patterndict[char] = [] self.patterndict[char].append((x, y)) def save_pattern(self, fp, image_ext=".png"): """Save an image together with it's pattern in a zip file""" name, ext = os.path.splitext(fp) if ext == "": ext = ".fuck" with tempfile.TemporaryDirectory() as tmpdir: self.im.save(os.path.join(tmpdir, IMAGE_NAME + image_ext)) with open(os.path.join(tmpdir, PATTERN_FILE), "w") as f: f.write(self.pattern) with zipfile.ZipFile(name + ext, "w") as z: z.write( os.path.join(tmpdir, IMAGE_NAME + image_ext), IMAGE_NAME + image_ext ) z.write( os.path.join(tmpdir, PATTERN_FILE), PATTERN_FILE ) def rearrange( self, target, allow_mutations=True, allow_S_to_Z=False, allow_duplicates=False, space=None, unlimited_spaces=True ): """Rearrange the letters into the desired pattern. If allow_mutations is True, letters can be mutated to form missing letters. If allow_S_to_Z is True, the letter S can be mutated into a Z and vice versa. If allow_duplicates is True, letters can be reused. Implies unlimited_spaces. If space is set to a coordinate (x,y), this coordinate will be used for all spaces. Implies unlimited_spaces. If unlimited_spaces is True, an unlimited number of spaces can be used. """ if isinstance(space, tuple): unlimited_spaces = True else: space = None if allow_duplicates: unlimited_spaces = True patterndict = copy.deepcopy(self.patterndict) lines = pad_lines(target) cells = (len(lines[0]), len(lines)) newim = CelledImage.new( self.im.im.mode, (self.im.w * cells[0], self.im.h * cells[1]), cells ) for y in range(len(lines)): for x in range(len(lines[0])): char = lines[y][x] mutator = None # make sure the character is available if char not in patterndict or len( patterndict[char] ) == 0: # check if the opposite case is available if char.swapcase() in patterndict and len( patterndict[char.swapcase()] ) > 0: char = char.swapcase() else: char, mutator = self.mutate_letter( char, patterndict, allow_S_to_Z=allow_S_to_Z, ) if mutator is None: raise NotEnoughLettersError( "No {} remaining.".format(repr(char)) ) if char == " " and space is not None: index = space else: index = random.choice(patterndict[char]) if (char == " " and not unlimited_spaces ) or (char != " " and not allow_duplicates): patterndict[char].remove(index) newcell = self.im[index[0], index[1]] if mutator is not None: newcell = mutator(newcell) newim[x, y] = newcell return newim def mutate_letter( self, target, patterndict, allow_S_to_Z=False, _first=True ): """If a letter is unavailable, attempt to produce it through a mutation If a mutation can be done, will return the character and a mutation function. If no mutation is available, will return (target, None). Mutation functions will take an image in and return a new image. """ if target not in MUTATIONS: if target.swapcase() in MUTATIONS: target = target.swapcase() else: return (target, None) for required in MUTATIONS[target].keys(): if (required == "S" or required == "s") and ( target == "Z" or target == "z" ) and not allow_S_to_Z: continue if required in patterndict and len( patterndict[required] ) > 0: return (required, MUTATIONS[target][required]) if _first: return self.mutate_letter( target.swapcase(), patterndict, allow_S_to_Z=allow_S_to_Z, _first=False ) return (target, None) def pad_lines(string): lines = string.splitlines() required_length = max([len(line) for line in lines]) for i, line in enumerate(lines): while len(lines[i]) < required_length: lines[i] += " " return lines ```
{ "source": "joshbarrass/projection", "score": 3 }
#### File: joshbarrass/projection/screen.py ```python import math try: import numpy as np have_numpy = True except ImportError: have_numpy = False class Screen(object): def __init__(self, size, fov, centre=(0,0)): self.size = size self.centre = centre self.set_fov(fov) def set_fov(self, fov): self.fov = fov self.fov_rad = math.radians(fov) width = self.size[0] self.z = width/(2*math.tan(self.fov_rad/2)) def transform_coords(self, coords, add=True): """coord can be numpy array or any other iterable containing 3D coordinates z coordinate is fairly meaningless after projecting as it should always equal Screen.z. If z == 0 after projecting, then the original z coordinate was behind the screen.""" isarray = isinstance(coords, np.ndarray) if isarray: if len(coords.shape) != 2 or coords.shape[1] != 3: raise TypeError("coords must contain 3D coordinates") else: if len(coords[0]) != 3: raise TypeError("coords must contain 3D coordiantes") if isarray: cc = [self.centre[0], self.centre[1], 0] # centre correction zeros = np.zeros(coords.shape) coords = coords.astype("float64") if add: coords[:,2] += self.z mask = coords[:,2]>0 trans = coords[mask] zeros[mask] = (trans-cc)*(self.z/trans[:,2])[:,None]+cc return zeros # else: for i in range(len(coords)): if add: coords[i][2] += self.z if coords[i][2] <= 0: coords[i] = [inf, inf, inf] return [((c[0]-self.centre[0])*(self.z/c[2])+self.centre[0], (c[1]-self.centre[1])*(self.z/c[2])+self.centre[1], self.z) if c[2] > 0 else (0,0,0) for c in coords] ```
{ "source": "joshbarrass/spyctrum", "score": 2 }
#### File: spyctrum/audio/fixes.py ```python def fix_RIFF_chunk_sizes(data): """Need to manually fix RIFF chunk size when using output piped from ffmpeg. See https://github.com/kkroening/ffmpeg-python/issues/118 """ riff_chunk_size = len(data) - 8 quotient = riff_chunk_size binarray = list() for _ in range(4): quotient, remainder = divmod(quotient, 256) # every 8 bits binarray.append(remainder) riff = data[:4] + bytes(binarray) + data[8:] return riff ``` #### File: spyctrum/audio/object.py ```python import os import numpy as np from scipy.io import wavfile from spyctrum.audio.reading import memread, tempread from spyctrum.audio.fourier import get_chunk, ALIGN_CENTRAL READ_MEMORY = 0 READ_TEMPFILE = 1 class Audio(object): def __init__(self, fp, method=READ_MEMORY): """wrapper for audio data to simplify storing and tracking # Args: - fp: string, path to audio file - method: int, either READ_MEMORY or READ_TEMPFILE. Specifies how the file will be read. """ self.fp = os.path.abspath(os.path.expanduser(fp)) if os.path.splitext(self.fp)[1].lower() == "wav": # don't need ffmpeg to read .wav, just use scipy directly self.rate, self.data = wavfile.read(self.fp) elif method == READ_MEMORY: self.rate, self.data = memread(self.fp) elif method == READ_TEMPFILE: self.rate, self.data = tempread(self.fp) else: raise ValueError("'method' should be either READ_MEMORY or READ_TEMPFILE") # TODO: currently the fourier output is complex, but the input # signal is real. Need to remove the complex part and the negative # frequencies def fourierChunk(self, timestamp, chunk_size, alignment=ALIGN_CENTRAL, mono=True): """Uses audio.fourier.get_chunk to get a chunk from the audio data and perform the Fourier transform of it. ## Args: - timestamp: float, time from the start of the audio, in seconds, to the point of about which you wish to sample - chunk_size: int, number of samples to include in the chunk - alignment: int, how to align the chunk to the timestamp. Default: ALIGN_CENTRAL - mono: bool, whether to make the data mono before performing the FFT ## Returns - freqdata: array, the FFT of the chunk of data. The negative frequencies will be removed, but the coefficients will still be complex. For an array corresponding to the frequencies in this array, use Audio.fourierFreq """ chunk = get_chunk(self.data, timestamp, self.rate, chunk_size, alignment) # add without averaging/normalising to avoid decreasing # amplitude of signal # # see https://stackoverflow.com/questions/23504901/convert-16-bit-stereo-sound-to-16-bit-mono-sound#comment36048770_23505029 if mono: chunk = np.sum(chunk, axis=1) fftdata = np.fft.fft(chunk, axis=0) # remove negative frequencies since audio is a solely real # signal N = len(fftdata) posfftdata = fftdata[0:int((N + 1) / 2)] return posfftdata def fourierFreq(self, chunk_size): """Returns the frequency array for a given chunk size. The negative frequencies will be removed. ## Args: - chunk_size: int, number of samples in your chunk ## Returns: - f: array, contains the frequencies in the FFT """ A = np.fft.fftfreq(chunk_size, 1.0 / self.rate) N = len(A) return A[0:int((N + 1) / 2)] ``` #### File: spyctrum/test/test_ffmpeg.py ```python import unittest import subprocess import spyctrum.audio.ffmpeg class FFMPEGTests(unittest.TestCase): def test_call_normal(self): p = spyctrum.audio.ffmpeg.call(["-h"]) self.assertTrue(isinstance(p, subprocess.Popen)) def test_call_err(self): with self.assertRaises(TypeError): spyctrum.audio.ffmpeg.call("test") ```
{ "source": "JoshBarr/python-mammoth", "score": 3 }
#### File: python-mammoth/mammoth/document_matchers.py ```python import collections def paragraph(style_name=None, numbering=None): return ParagraphMatcher(style_name, numbering) ParagraphMatcher = collections.namedtuple("ParagraphMatcher", ["style_name", "numbering"]) ParagraphMatcher.element_type = "paragraph" def run(style_name=None): return RunMatcher(style_name) RunMatcher = collections.namedtuple("RunMatcher", ["style_name"]) RunMatcher.element_type = "run" ``` #### File: python-mammoth/mammoth/__init__.py ```python from .results import Result from . import docx, conversion, options def convert_to_html(fileobj, transform_document=None, **kwargs): if transform_document is None: transform_document = lambda x: x return docx.read(fileobj).map(transform_document).bind(lambda document: conversion.convert_document_element_to_html( document, **options.read_options(kwargs) ) ) ``` #### File: mammoth/style_reader/html_path_reader.py ```python from parsimonious.grammar import Grammar from .. import html_paths def read_html_path(string): path_node = _grammar.parse(string) return read_html_path_node(path_node) def read_html_path_node(path_node): elements = [ _read_element_node(child) for child in _repeated_children_with_separator(path_node, has_whitespace=True) ] return html_paths.path(elements) def _read_element_node(node): tag_names = _read_tag_names_node(node.children[0]) class_names = _read_class_names_node(node.children[1]) fresh = _read_fresh_node(node.children[2]) return html_paths.element(tag_names, class_names=class_names, fresh=fresh) def _read_tag_names_node(node): return [ child.text for child in _repeated_children_with_separator(node, has_whitespace=False) ] def _read_class_names_node(class_names_node): return [ _read_class_name_node(node) for node in class_names_node.children ] def _read_class_name_node(node): return node.children[1].text def _read_fresh_node(node): return len(node.children) > 0 def _repeated_children_with_separator(node, has_whitespace): yield node.children[0] if has_whitespace: sequence_node_index = 3 else: sequence_node_index = 1 sequence_node = node.children[1] for child in sequence_node.children: yield child.children[sequence_node_index] grammar_text = r""" html_path = element (whitespace* ">" whitespace* element)* element = tag_names class_name* fresh? tag_names = identifier ("|" identifier)* class_name = "." identifier fresh = ":fresh" identifier = ~"[A-Z0-9]*"i whitespace = ~"\s"* """ _grammar = Grammar(grammar_text) ``` #### File: tests/docx/document_xml_tests.py ```python import io from nose.tools import istest, assert_equal import funk from mammoth import documents, results from mammoth.docx.xmlparser import element as xml_element, text as xml_text from mammoth.docx.document_xml import read_document_xml_element from mammoth.docx.numbering_xml import Numbering from mammoth.docx.relationships_xml import Relationships, Relationship @istest class ReadXmlElementTests(object): @istest def text_from_text_element_is_read(self): element = _text_element("Hello!") assert_equal(documents.Text("Hello!"), _read_and_get_document_xml_element(element)) @istest def can_read_text_within_run(self): element = _run_element_with_text("Hello!") assert_equal( documents.run([documents.Text("Hello!")]), _read_and_get_document_xml_element(element) ) @istest def can_read_text_within_paragraph(self): element = _paragraph_element_with_text("Hello!") assert_equal( documents.paragraph([documents.run([documents.Text("Hello!")])]), _read_and_get_document_xml_element(element) ) @istest def can_read_text_within_document(self): element = _document_element_with_text("Hello!") assert_equal( documents.Document([documents.paragraph([documents.run([documents.Text("Hello!")])])]), _read_and_get_document_xml_element(element) ) @istest def paragraph_has_no_style_if_it_has_no_properties(self): element = xml_element("w:p") assert_equal(None, _read_and_get_document_xml_element(element).style_name) @istest def paragraph_has_style_name_read_from_paragraph_properties_if_present(self): style_xml = xml_element("w:pStyle", {"w:val": "Heading1"}) properties_xml = xml_element("w:pPr", {}, [style_xml]) paragraph_xml = xml_element("w:p", {}, [properties_xml]) paragraph = _read_and_get_document_xml_element(paragraph_xml) assert_equal("Heading1", paragraph.style_name) @istest def paragraph_has_no_numbering_if_it_has_no_numbering_properties(self): element = xml_element("w:p") assert_equal(None, _read_and_get_document_xml_element(element).numbering) @istest def paragraph_has_numbering_properties_from_paragraph_properties_if_present(self): numbering_properties_xml = xml_element("w:numPr", {}, [ xml_element("w:ilvl", {"w:val": "1"}), xml_element("w:numId", {"w:val": "42"}), ]) properties_xml = xml_element("w:pPr", {}, [numbering_properties_xml]) paragraph_xml = xml_element("w:p", {}, [properties_xml]) numbering = Numbering({"42": {"1": documents.numbering_level("1", True)}}) paragraph = _read_and_get_document_xml_element(paragraph_xml, numbering=numbering) assert_equal("1", paragraph.numbering.level_index) assert_equal(True, paragraph.numbering.is_ordered) @istest def run_has_no_style_if_it_has_no_properties(self): element = xml_element("w:r") assert_equal(None, _read_and_get_document_xml_element(element).style_name) @istest def run_has_style_name_read_from_run_properties_if_present(self): style_xml = xml_element("w:rStyle", {"w:val": "Emphasis"}) run = self._read_run_with_properties([style_xml]) assert_equal("Emphasis", run.style_name) @istest def run_is_not_bold_if_bold_element_is_not_present(self): run = self._read_run_with_properties([]) assert_equal(False, run.is_bold) @istest def run_is_bold_if_bold_element_is_present(self): run = self._read_run_with_properties([xml_element("w:b")]) assert_equal(True, run.is_bold) @istest def run_is_not_italic_if_italic_element_is_not_present(self): run = self._read_run_with_properties([]) assert_equal(False, run.is_italic) @istest def run_is_italic_if_italic_element_is_present(self): run = self._read_run_with_properties([xml_element("w:i")]) assert_equal(True, run.is_italic) def _read_run_with_properties(self, properties): properties_xml = xml_element("w:rPr", {}, properties) run_xml = xml_element("w:r", {}, [properties_xml]) return _read_and_get_document_xml_element(run_xml) @istest def can_read_tab_element(self): element = xml_element("w:tab") tab = _read_and_get_document_xml_element(element) assert_equal(documents.tab(), tab) @istest def children_of_w_ins_are_converted_normally(self): element = xml_element("w:p", {}, [ xml_element("w:ins", {}, [ xml_element("w:r") ]) ]) assert_equal( documents.paragraph([documents.run([])]), _read_and_get_document_xml_element(element) ) @istest def children_of_w_smart_tag_are_converted_normally(self): element = xml_element("w:p", {}, [ xml_element("w:smartTag", {}, [ xml_element("w:r") ]) ]) assert_equal( documents.paragraph([documents.run([])]), _read_and_get_document_xml_element(element) ) @istest def hyperlink_is_read_if_it_has_a_relationship_id(self): relationships = Relationships({ "r42": Relationship(target="http://example.com") }) run_element = xml_element("w:r") element = xml_element("w:hyperlink", {"r:id": "r42"}, [run_element]) assert_equal( documents.hyperlink("http://example.com", [documents.run([])]), _read_and_get_document_xml_element(element, relationships=relationships) ) @istest def hyperlink_is_ignored_if_it_does_not_have_a_relationship_id(self): run_element = xml_element("w:r") element = xml_element("w:hyperlink", {}, [run_element]) assert_equal( [documents.run([])], _read_and_get_document_xml_element(element) ) @istest @funk.with_context def can_read_inline_pictures(self, context): drawing_element = _create_inline_image( relationship_id="rId5", description="It's a hat", ) image_bytes = b"Not an image at all!" relationships = Relationships({ "rId5": Relationship(target="media/hat.png") }) docx_file = context.mock() funk.allows(docx_file).open("word/media/hat.png").returns(io.BytesIO(image_bytes)) content_types = context.mock() funk.allows(content_types).find_content_type("word/media/hat.png").returns("image/png") image = _read_and_get_document_xml_element( drawing_element, content_types=content_types, relationships=relationships, docx_file=docx_file, )[0] assert_equal(documents.Image, type(image)) assert_equal("It's a hat", image.alt_text) assert_equal("image/png", image.content_type) with image.open() as image_file: assert_equal(image_bytes, image_file.read()) @istest @funk.with_context def can_read_anchored_pictures(self, context): drawing_element = _create_anchored_image( relationship_id="rId5", description="It's a hat", ) image_bytes = b"Not an image at all!" relationships = Relationships({ "rId5": Relationship(target="media/hat.png") }) docx_file = context.mock() funk.allows(docx_file).open("word/media/hat.png").returns(io.BytesIO(image_bytes)) content_types = context.mock() funk.allows(content_types).find_content_type("word/media/hat.png").returns("image/png") image = _read_and_get_document_xml_element( drawing_element, content_types=content_types, relationships=relationships, docx_file=docx_file, )[0] assert_equal(documents.Image, type(image)) assert_equal("It's a hat", image.alt_text) assert_equal("image/png", image.content_type) with image.open() as image_file: assert_equal(image_bytes, image_file.read()) @istest def ignored_elements_are_ignored_without_message(self): element = xml_element("w:bookmarkStart") result = read_document_xml_element(element) assert_equal(None, result.value) assert_equal([], result.messages) @istest def unrecognised_elements_emit_warning(self): element = xml_element("w:huh", {}, []) result = read_document_xml_element(element) expected_warning = results.warning("An unrecognised element was ignored: w:huh") assert_equal([expected_warning], result.messages) @istest def unrecognised_elements_are_ignored(self): element = xml_element("w:huh", {}, []) assert_equal(None, read_document_xml_element(element).value) @istest def unrecognised_children_are_ignored(self): element = xml_element("w:r", {}, [_text_element("Hello!"), xml_element("w:huh", {}, [])]) assert_equal( documents.run([documents.Text("Hello!")]), read_document_xml_element(element).value ) def _read_and_get_document_xml_element(*args, **kwargs): result = read_document_xml_element(*args, **kwargs) assert_equal([], result.messages) return result.value def _document_element_with_text(text): return xml_element("w:document", {}, [ xml_element("w:body", {}, [_paragraph_element_with_text(text)]) ]) def _paragraph_element_with_text(text): return xml_element("w:p", {}, [_run_element_with_text(text)]) def _run_element_with_text(text): return xml_element("w:r", {}, [_text_element(text)]) def _text_element(value): return xml_element("w:t", {}, [xml_text(value)]) def _create_inline_image(description, relationship_id): return xml_element("w:drawing", {}, [ xml_element("wp:inline", {}, _create_image_elements(description, relationship_id)) ]) def _create_anchored_image(description, relationship_id): return xml_element("w:drawing", {}, [ xml_element("wp:anchor", {}, _create_image_elements(description, relationship_id)) ]) def _create_image_elements(description, relationship_id): return [ xml_element("wp:docPr", {"descr": description}), xml_element("a:graphic", {}, [ xml_element("a:graphicData", {}, [ xml_element("pic:pic", {}, [ xml_element("pic:blipFill", {}, [ xml_element("a:blip", {"r:embed": relationship_id}) ]) ]) ]) ]) ] ```
{ "source": "joshbaskaran/xzceb-flask_eng_fr", "score": 3 }
#### File: machinetranslation/tests/test.py ```python import unittest from translator import english_to_french, french_to_english class TestTranslator(unittest.TestCase): def test_english_to_french_null(self): self.assertNotEqual(english_to_french(''), None) def test_english_to_french_equal(self): self.assertEqual(english_to_french('Hello'), 'Bonjour') def test_french_to_english_null(self): self.assertNotEqual(french_to_english(''), None) def test_french_to_english_equal(self): self.assertEqual(french_to_english('Bonjour'), 'Hello') if __name__ == '__main__': unittest.main() ``` #### File: final_project/machinetranslation/translator.py ```python import os from ibm_watson import LanguageTranslatorV3 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator from dotenv import load_dotenv load_dotenv() apikey = os.environ['apikey'] url = os.environ['url'] authenticator = IAMAuthenticator(apikey) language_translator = LanguageTranslatorV3( version='2021-08-16', authenticator=authenticator ) language_translator.set_service_url(url) def english_to_french(english_text): """ Translate text from English to French """ if english_text == '': return '' translation = language_translator.translate( text = english_text, model_id='en-fr').get_result() return translation.get('translations')[0].get('translation') def french_to_english(french_text): """ Translate text from French to English """ if french_text == '': return '' translation = language_translator.translate( text = french_text, model_id = 'fr-en').get_result() return translation.get('translations')[0].get('translation') ```
{ "source": "joshbatchelor/cartridge-stats", "score": 2 }
#### File: cartridge-stats/templatetags/cartridge_charts.py ```python from __future__ import unicode_literals import datetime from django.db import connection from django.db.models import Sum, Count from django.utils.timezone import localtime, now from datetime import timedelta from mezzanine import template from mezzanine.conf import settings from cartridge.shop.models import Order, OrderItem register = template.Library() @register.inclusion_tag("admin/includes/sales_today.html", takes_context=True) def sales_today(context): """ Admin dashboard tag for cartridge to show daily sales totals. Excluding tax and shipping. """ today_min = localtime(now()).replace(hour=0, minute=0, second=0, microsecond=0) today_max = localtime(now()).replace(hour=23, minute=59, second=59, microsecond=59) output = Order.objects.filter(time__range=(today_min, today_max),status__in=settings.SHOP_ORDER_STATUS_COMPLETE).aggregate(Sum('item_total')) context["daily_total"] = output context["daily_date"] = today_min return context @register.inclusion_tag("admin/includes/sales_yesterday.html", takes_context=True) def sales_yesterday(context): """ Admin dashboard tag for cartridge to show daily sales totals. Excluding tax and shipping. """ yesterday_min = localtime(now() + timedelta(days=-1)).replace(hour=0, minute=0, second=0, microsecond=0) yesterday_max = localtime(now() + timedelta(days=-1)).replace(hour=23, minute=59, second=59, microsecond=59) output = Order.objects.filter(time__range=(yesterday_min, yesterday_max),status__in=settings.SHOP_ORDER_STATUS_COMPLETE).aggregate(Sum('item_total')) context["yesterday_total"] = output context["yesterday_date"] = yesterday_min return context @register.inclusion_tag("admin/includes/sales_past_7_days.html", takes_context=True) def sales_past_7_days(context): """ Admin dashboard tag for cartridge to show daily sales totals. Excluding tax and shipping. """ week_min = localtime(now() + timedelta(days=-7)).replace(hour=0, minute=0, second=0, microsecond=0) week_max = localtime(now()).replace(hour=23, minute=59, second=59, microsecond=59) output = Order.objects.filter(time__range=(week_min, week_max),status__in=settings.SHOP_ORDER_STATUS_COMPLETE).aggregate(Sum('item_total')) context["week_total"] = output context["week_min"] = week_min context["week_max"] = week_max return context @register.inclusion_tag("admin/includes/sales_current_month.html", takes_context=True) def sales_current_month(context): """ Admin dashboard tag for cartridge to show daily sales totals. Excluding tax and shipping. """ today = localtime(now()) output = Order.objects.filter(time__month=today.month,status__in=settings.SHOP_ORDER_STATUS_COMPLETE).aggregate(Sum('item_total')) context["month_total"] = output context["today"] = today return context @register.inclusion_tag("admin/includes/sales_item_popularity.html", takes_context=True) def popular_items(context): items = OrderItem.objects.values('sku','description').filter(order__status__in=settings.SHOP_ORDER_STATUS_COMPLETE).annotate(sku_count=Count('sku')).order_by('-sku_count') context["popular_items"] = items return context @register.inclusion_tag("admin/includes/sales_item_popularity_today.html", takes_context=True) def popular_items_today(context): today_min = localtime(now()).replace(hour=0, minute=0, second=0, microsecond=0) today_max = localtime(now()).replace(hour=23, minute=59, second=59, microsecond=59) items = OrderItem.objects.values('sku','description').filter(order__time__range=(today_min, today_max),order__status__in=settings.SHOP_ORDER_STATUS_COMPLETE).annotate(sku_count=Count('sku')).order_by('-sku_count') context["popular_items"] = items return context @register.inclusion_tag("admin/includes/sales_by_month.html", takes_context=True) def sales_by_month(context): month_min = localtime(now() + timedelta(days=-365)).replace(hour=0, minute=0, second=0, microsecond=0) truncate_date = connection.ops.date_trunc_sql('month', 'time') qs = Order.objects.extra({'month':truncate_date}).filter(status__in=[2,4],time__gte=month_min) reports = qs.values('month').annotate(Sum('item_total'),\ Count('pk')).order_by('month') context["sales_by_months"] = reports return context ```
{ "source": "JoshBBOXX/py-smsframework", "score": 3 }
#### File: smsframework/data/OutgoingMessage.py ```python from .OutgoingMessageOptions import OutgoingMessageOptions from ..lib import digits_only class OutgoingMessage(object): """ Outgoing Message: Mobile Terminated (MT) Represents a message that's being sent or was sent to the provider """ #: Routing values routing_values = None #: Unique message id, populated by the provider on send msgid = None #: Provider-dependent message info dict, populated by the provider on send meta = None def __init__(self, dst, body, src=None, provider=None): """ Create a message for sending :type dst: str | None :param dst: Destination phone number. Non-digit chars are cut off :type body: str | unicode :param body: Message :type src: str | None :param src: Source phone number. Non-digit chars are cut off :type provider: str | None :param provider: Provider name to use for sending. If not specified explicitly, the message will be routed using the routing values: see :meth:`OutgoingMessage.route` """ self.src = src self.dst = digits_only(dst) self.body = body self.provider = provider #: Sending options for the Gateway self.provider_options = OutgoingMessageOptions() #: Provider-dependent sending parameters self.provider_params = {} def options(self, **kwargs): """ Specify sending options for the Gateway. See: :class:`OutgoingMessageOptions` :param allow_reply: Replies allowed? :param status_report: Request a status report from the network? :param expires: Message validity period, minutes :param senderId: Sender ID to replace the number :param escalate: Is a high-pri message? These are delivered faster and costier. :rtype: OutgoingMessage """ self.provider_options.__dict__.update(kwargs) return self def params(self, **params): """ Specify provider-specific sending parameters :rtype: OutgoingMessage """ self.provider_params = params return self def route(self, *args): """ Specify arbitrary routing values. These are used by the Gateway's routing function to decide on which provider to use for the message (if no provider was explicitly specified), If no routing values are provided at all - the default route is used. :rtype: OutgoingMessage """ self.routing_values = args return self def __repr__(self): return '{cls}({dst!r}, {body!r}, src={src!r}, provider={provider!r}, msgid={msgid!r})'.format( cls=self.__class__.__name__, dst=self.dst, body=self.body, src=self.src, provider=self.provider, msgid=self.msgid ) ``` #### File: py-smsframework/smsframework/IProvider.py ```python from abc import abstractmethod class IProvider(object): """ SmsFramework provider interface Implements methods to interact with the :class:`smsframework.Gateway` """ def __init__(self, gateway, name, **config): """ Initialize the provider :type gateway: Gateway :param gateway: Parent Gateway :type name: str :param name: Provider name. Used to uniquely identify the provider :param config: Provider-dependent configuration """ self.gateway = gateway self.name = name def send(self, message): """ Send a message Providers are required to: * Populate `message.msgid` and `message.meta` on completion * Expect that `message.src` can be empty * Support both ASCII and Unicode messages * Use `message.params` for provider-dependent configuration * Raise exceptions from `exc.py` for errors :type message: data.OutgoingMessage :param message: The message to send :rtype: OutgoingMessage :returns: The sent message with populated fields :raises MessageSendError: sending errors """ raise NotImplementedError('Provider.send not implemented') def make_receiver_blueprint(self): """ Get a Blueprint for the HTTP receiver :rtype: flask.Blueprint :returns: configured Flask Blueprint receiver :raises NotImplementedError: Provider does not support message reception """ raise NotImplementedError('Provider does not support message reception') #region Receiver callbacks def _receive_message(self, message): """ Incoming message callback Calls Gateway.onReceive event hook Providers are required to: * Cast phone numbers to digits-only * Support both ASCII and Unicode messages * Populate `message.msgid` and `message.meta` fields * If this method fails with an exception, the provider is required to respond with an error to the service :type message: IncomingMessage :param message: The received message :rtype: IncomingMessage """ # Populate fields message.provider = self.name # Fire the event hook self.gateway.onReceive(message) # Finish return message def _receive_status(self, status): """ Incoming status callback Calls Gateway.onStatus event hook Providers are required to: * Cast phone numbers to digits-only * Use proper MessageStatus subclasses * Populate `status.msgid` and `status.meta` fields * If this method fails with an exception, the provider is required to respond with an error to the service :type status: MessageStatus :param status: The received status :rtype: MessageStatus """ # Populate fields status.provider = self.name # Fire the event hook self.gateway.onStatus(status) # Finish return status #endregion ``` #### File: smsframework/lib/__init__.py ```python import re def digits_only(num): """ Remove all non-digit characters from the phone number :type num: str :param num: Phone number :rtype: str """ return re.sub(r'[^\d]+', '', num) ``` #### File: smsframework/providers/log.py ```python import logging from .null import NullProvider class LogProvider(NullProvider): """ Log Provider Logs the outgoing messages to a python logger provided as the config option. Configuration: target logger Sending: does nothing, increments message.msgid, prints the message to the log Receipt: Not implemented Status: Not implemented """ def __init__(self, gateway, name, logger=None): """ Configure provider :type logger: logging.Logger | None :param logger: The logger to use. Default logger is used if nothing provided """ super(LogProvider, self).__init__(gateway, name) self.logger = logger or logging.getLogger(__name__) def send(self, message): # Log self.logger.info('Sent SMS to {message.dst}: {message.body}'.format(message=message)) # Finish return super(LogProvider, self).send(message) ``` #### File: py-smsframework/tests/log_test.py ```python import unittest from testfixtures import LogCapture from smsframework import Gateway from smsframework.providers import LogProvider from smsframework import OutgoingMessage class LoopbackProviderTest(unittest.TestCase): """ Test LoopbackProvider """ def setUp(self): self.gw = Gateway() # Providers self.gw.add_provider('main', LogProvider) def test_basic_send(self): with LogCapture() as l: msg = self.gw.send(OutgoingMessage('+1234', 'body')) l.check( ('smsframework.providers.log', 'INFO', 'Sent SMS to {}: {}'.format(msg.dst, msg.body)), ) ```
{ "source": "JoshBClemons/gesture_recognition", "score": 3 }
#### File: gesture_recognition/gesture_recognition/auth.py ```python import pdb from flask import g, jsonify, session from flask_httpauth import HTTPBasicAuth, HTTPTokenAuth from . import db from .models import User # Authentication objects for username/password auth, token auth, and a token optional auth that is used for open endpoints. basic_auth = HTTPBasicAuth() token_auth = HTTPTokenAuth('Bearer') @basic_auth.verify_password def verify_password(username, password): """Password verification callback Args: username (str): Client user name password (str): Client password Returns: (boolean): True if successful password verification. False otherwise or if blank credentials entered. """ if not username or not password or username == "''" or password == "''": return False user = User.query.filter_by(username=username).first() # if not a user, create the user if user is None: user_dict = {'username': username, 'password': password} user = User.create(user_dict) elif not user.verify_password(password): return False else: user.new_login() # mark user as online user.ping() db.session.add(user) db.session.commit() g.current_user = user return True @basic_auth.error_handler def password_error(): """Return a 401 error to the client Returns: (Response): Serialized error message """ return (jsonify({'error': 'authentication required'}), 401,{'WWW-Authenticate': 'Bearer realm="Authentication Required"'}) @token_auth.verify_token def verify_token(token, add_to_session=False): """Token verification callback Args: token (str): Client token add_to_session (boolean): Determines whether to store client information in session Returns: (boolean): True if successful token verification. False if user does not exist """ if add_to_session: # clear the session in case auth fails if 'username' in session: del session['username'] user = User.query.filter_by(token=token).first() if user is None: return False # mark the user as online user.ping() db.session.add(user) db.session.commit() g.current_user = user # store username in client session if add_to_session: session['username'] = user.username return True @token_auth.error_handler def token_error(): """Return a 401 error to the client Returns: (Response): Serialized error message """ return (jsonify({'error': 'authentication required'}), 401, {'WWW-Authenticate': 'Bearer realm="Authentication Required"'}) ``` #### File: gesture_recognition/gesture_recognition/featurizer.py ```python from os.path import join import numpy as np import cv2 import pdb import os import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator # background parameters history = 0 bgSubThreshold = 50 learningRate = 0 # applying learning rate partially solves problem of poor background detection def set_background(frame): """Save user background image Args: frame (array): Raw image streamed from client Returns: bgModel (cv2 Background Subtractor): cv2 object containing the client's background image """ bgModel = cv2.createBackgroundSubtractorMOG2(history, bgSubThreshold) return bgModel def remove_background(frame, bgModel): """Subtract user background image from new image Args: frame (array): Raw image streamed from client bgModel (cv2 Background Subtractor): cv2 object containing the client's background image Returns: res (array): Array of original image with background removed """ global learningRate fgmask = bgModel.apply(frame, learningRate=learningRate) kernel = np.ones((3, 3), np.uint8) fgmask = cv2.erode(fgmask, kernel, iterations=1) res = cv2.bitwise_and(frame, frame, mask=fgmask) return res def process(frame, bgModel): """Process user image by removing background and converting resultant to binary image Args: frame (array): Raw image streamed from client bgModel (cv2 Background Subtractor): cv2 object containing the client's background image Returns: frame_processed (array): Array of processed image with shape (144, 256, 3) frame_prediction (array): Array of processed image with shape (1, 144, 256, 3), which is necessary for prediction algorithm """ # subtract background if background object has been saved. Otherwise, just resize image if bgModel != 0: frame_nobg = remove_background(frame, bgModel) # resize image frame_nobg = cv2.resize(frame_nobg, dsize=(256,144), interpolation=cv2.INTER_LINEAR) # turn non-black pixels white frame_processed = np.zeros(frame_nobg.shape, dtype=np.uint8) frame_processed[frame_nobg>0] = 255 else: frame_processed = cv2.resize(frame, dsize=(256,144), interpolation=cv2.INTER_LINEAR) # convert the image into binary image to reduce file size frame_processed = cv2.cvtColor(frame_processed, cv2.COLOR_BGR2GRAY) # Expand dimensions since the model expects images to have shape: [1, 144, 256, 3] frame_prediction = frame_processed.astype(np.float) frame_prediction = np.stack((frame_prediction,)*3, axis=-1) frame_prediction /= 255 frame_prediction = np.expand_dims(frame_prediction, axis=0) return [frame_processed, frame_prediction] def rotate(frame, df_row, df_feats): """Generate rotated versions of image. Args: frame (array): Array representing original image df_row (Pandas series): Row from frames dataframe. Series contains information about frame df_feats (list): List containing strings "instance," "user_id," and "root_dir," which are keys for df_row] Returns: rotate_dict (dict): Dictionary with keys "flipped," "mirrored," and "mirrored_flipped." Dictionary values for each key contain respective rotated image path (str) and frame (array) """ instance = df_row[df_feats[0]] user_id = int(df_row[df_feats[1]]) root_dir = df_row[df_feats[2]] rotated_dir = os.path.join(root_dir, 'rotated') rotated_dir = os.path.join(rotated_dir, str(user_id)) file_type = '.jpg' # flip image about x-axis frame_flipped = tf.image.rot90(frame) frame_flipped = tf.image.rot90(frame_flipped) frame_flipped = np.array(frame_flipped) frame_flipped = cv2.cvtColor(frame_flipped, cv2.COLOR_BGR2GRAY) flipped_path = os.path.join(rotated_dir, instance + '_flipped' + file_type) datagen = ImageDataGenerator(horizontal_flip=True) frame_ext = frame.reshape((1,) + frame.shape) for frame_mirrored in datagen.flow(frame_ext, batch_size=1): # mirror image about y-axis frame_mirrored = frame_mirrored.reshape((144,256,3)) # flip and mirror image frame_mirrored_flipped = tf.image.rot90(frame_mirrored) frame_mirrored_flipped = tf.image.rot90(frame_mirrored_flipped) frame_mirrored_flipped = np.array(frame_mirrored_flipped) frame_mirrored_flipped = cv2.cvtColor(frame_mirrored_flipped, cv2.COLOR_BGR2GRAY) mirrored_flipped_path = os.path.join(rotated_dir, instance + '_mirrored_flipped' + file_type) frame_mirrored = cv2.cvtColor(frame_mirrored, cv2.COLOR_BGR2GRAY) mirrored_path = os.path.join(rotated_dir, instance + '_mirrored' + file_type) break # break to avoid generating multiple copies of mirrored images # package results in dictionary rotate_dict = {} rotate_dict['flipped'] = {} rotate_dict['flipped']['path'] = flipped_path rotate_dict['flipped']['frame'] = frame_flipped rotate_dict['mirrored'] = {} rotate_dict['mirrored']['path'] = mirrored_path rotate_dict['mirrored']['frame'] = frame_mirrored rotate_dict['mirrored_flipped'] = {} rotate_dict['mirrored_flipped']['path'] = mirrored_flipped_path rotate_dict['mirrored_flipped']['frame'] = frame_mirrored_flipped return rotate_dict ``` #### File: JoshBClemons/gesture_recognition/manage.py ```python import pdb import os import subprocess import sys import eventlet eventlet.monkey_patch() from config import Config from flask_script import Manager, Command, Server as _Server, Option from gesture_recognition import create_app, db, socketio from offline import reset_tables import shutil manager = Manager(create_app) def grab_and_save_model(): """Grab highest ranking model and corresponding gestures map from database and save them locally.""" import psycopg2 import psycopg2.extras import json conn = psycopg2.connect(host=Config.DB_HOST, database=Config.DB_NAME, user=Config.DB_USER, password=Config.DB_PASS) cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) table = 'model_scores' query = f"SELECT model_name FROM {table} WHERE rank = 1;" cur.execute(query) conn.commit() model_name = cur.fetchone()[0] table = 'models' query = f"SELECT model, gestures_map FROM {table} WHERE model_name = '{model_name}'" cur.execute(query) conn.commit() data = cur.fetchone() model = data[0] gestures_map = data[1] cur.close() # save model and gestures map locally write_model = open(Config.MODEL_PATH, 'wb') write_model.write(model) write_model.close() with open(Config.GESTURES_MAP_PATH, 'w') as fp: json.dump(gestures_map, fp) @manager.command def create_db(drop_first=False): """Creates application database tables Args: drop_first (bool): Boolean that indicates whether to drop all database tables and directories before creating them """ # if drop_first is True, delete database tables first if drop_first: db.drop_all() db.create_all() print(f'[INFO] Created database tables.') @manager.command def reset_dirs(): """Reset image and figure directories""" image_dir = Config.IMAGE_DIRECTORY fig_dir = Config.FIGURE_DIRECTORY # delete directories if os.path.isdir(image_dir): shutil.rmtree(image_dir) if os.path.isdir(fig_dir): shutil.rmtree(fig_dir) # create directories os.mkdir(image_dir) orig_dir = os.path.join(image_dir, 'original') processed_dir = os.path.join(image_dir, 'processed') os.mkdir(orig_dir) os.mkdir(processed_dir) os.mkdir(fig_dir) print(f'[INFO] Created image and figure directories.') @manager.command def reset_offline(): """Reset database tables used for model storage and generation and analysis.""" reset_tables.reset_tables() @manager.command def model_orchestrator(): """Run model orchestrator to generate new model.""" from offline import orchestrator orchestrator.orchestrator() @manager.command def test(): """Run unit tests.""" import os tests = os.system('python app_tests.py') sys.exit(tests) class Server(_Server): help = description = 'Runs the Socket.IO web server' def get_options(self): options = ( Option('-h', '--host', dest='host', default='0.0.0.0'), Option('-p', '--port', dest='port', type=int, default=self.port), # or self.port Option('-o', '--online', action='store_true', dest='online', help='run application in SSL context', default=False), Option('-ro', '--reset-online', action='store_true', dest='reset_online', help='reset application database tables and directories before running server', default=False), Option('-rof', '--reset-offline', action='store_true', dest='reset_offline', help='reset offline database tables before running server', default=False), ) return options def __call__(self, app, host, port, online, reset_online, reset_offline): """Creates all application database tables, image directories, and figure directories and starts server Args: app (Flask application): Flask application host (str): IP address that hosts Flask application port (int): Port Flask application binds to online (boolean): Boolean that indicates whether to run application with secure connection reset_online (boolean): Boolean that indicates whether to reset application data tables and directories before starting server reset_offline (boolean): Boolean that indicates whether to reset database tables before starting server """ # reset database tables and directories if reset_online: with app.app_context(): create_db(reset_online) print('[INFO] Starting server.') # run server with or without secure connection. Online instances must be ran with secure connection if online: basedir = os.path.abspath(os.path.dirname(__file__)) certfile = os.path.join(basedir, 'cert.pem') keyfile = os.path.join(basedir, 'key.pem') socketio.run( app, host=host, port=443, keyfile=keyfile, certfile=certfile, use_reloader=False, ) else: socketio.run( app, host=host, port=port, use_reloader=False, ) manager.add_command("start", Server()) class CeleryWorker(Command): """Starts the celery worker.""" name = 'celery' capture_all_args = True def run(self, argv): # create figure and image directories reset_dirs() ret = subprocess.call( ['celery', '--app=gesture_recognition.celery', 'worker'] + argv) sys.exit(ret) manager.add_command("celery", CeleryWorker()) if __name__ == '__main__': if sys.argv[1] == 'test': # ensure that Flask-Script uses the testing configuration os.environ['FLACK_CONFIG'] = 'testing' elif "-rof" in sys.argv: # reset offline database tables. kind of hacky implementation. reset_tables.reset_tables() if "celery" not in sys.argv: # pull best model from database and save locally grab_and_save_model() manager.run() ``` #### File: gesture_recognition/offline/reset_tables.py ```python from config import Config import psycopg2 from psycopg2.extras import Json, DictCursor import pdb import os import datetime def reset_tables(): """Reset offline tables. This is necessary when first running application.""" # select all high-scoring predictions. These will be used to train new models. conn = psycopg2.connect(host=Config.DB_HOST, database=Config.DB_NAME, user=Config.DB_USER, password=Config.DB_PASS) cur = conn.cursor(cursor_factory=DictCursor) # create table for confident predictions table = 'conf_preds' query = f'DROP TABLE IF EXISTS {table};' cur.execute(query) conn.commit() query = f'CREATE TABLE {table}(instance text PRIMARY KEY NOT NULL, gesture text, processed_path text, flipped_path text, mirrored_path text, mirrored_flipped_path text);' cur.execute(query) conn.commit() print(f'[INFO] Created table {table}') # create table for newly trained models table = 'models' query = f'DROP TABLE IF EXISTS {table};' cur.execute(query) conn.commit() query = f'CREATE TABLE {table}(model_name text PRIMARY KEY NOT NULL, training_date date, gestures_map jsonb, model bytea, model_path text);' cur.execute(query) conn.commit() print(f'[INFO] Created table {table}') # create table mapping training data instances with models table = 'model_train_data_map' query = f'DROP TABLE IF EXISTS {table};' cur.execute(query) conn.commit() query = f'CREATE TABLE {table}(instance text PRIMARY KEY NOT NULL, model_0 integer)' cur.execute(query) conn.commit() print(f'[INFO] Created table {table}') # create table for model scores table = 'model_scores' query = f'DROP TABLE IF EXISTS {table};' cur.execute(query) conn.commit() # load original model to model_scores table is not empty when application attempts to get table from it from . import load_orig_model load_orig_model.load_orig_model() # close db connection cur.close() ```
{ "source": "joshbduncan/quotr", "score": 2 }
#### File: quotrapp/api/routes.py ```python from flask import Blueprint, jsonify from sqlalchemy import func from quotrapp.models import Quote api_bp = Blueprint('api_bp', __name__) @api_bp.route('/api/quote') def index(): quote = Quote.query.order_by(func.random()).first() return jsonify({'Quote': quote.content, 'Author': quote.author.name}) ```
{ "source": "joshbduncan/swatcher", "score": 2 }
#### File: examples/flask_app/routes.py ```python import json import os import secrets import swatcher from flask import ( abort, current_app, flash, redirect, render_template, request, send_file, session, url_for, ) from . import app from .forms import UploadImage, ResampleImage from io import BytesIO from PIL import Image def reset_session_vars(): """ resets all image flask session variables """ session.pop("id", None) session.pop("filename", None) session.pop("image_path", None) session.pop("colors", None) session.pop("palette", None) session["max_colors"] = 8 session["sensitivity"] = 75 def prepare_pil_image(image: object) -> object: """ Temporarily save a PIL Image object so it can be sent to the client :param `image`: PIL Image object :returns: temporary file object """ img_io = BytesIO() image.save(img_io, "PNG") img_io.seek(0) return img_io @app.route("/", methods=["GET", "POST"]) def index(): # setup forms objects upload_form = UploadImage() resample_form = ResampleImage() if request.method == "GET": reset_session_vars() return render_template("upload.html", upload_form=upload_form) # if upload_form was submitted if upload_form.upload.data: if upload_form.validate_on_submit(): # reset all session vars for new upload reset_session_vars() # grab the user uploaded image submitted_img = upload_form.image.data # generate a random id for this image random_hex = secrets.token_hex(8) # _, f_ext = os.path.splitext(submitted_img.filename) filename = random_hex + ".jpg" # process the uploaded image image = swatcher.Swatcher(submitted_img) # save it locally in static folder filepath = os.path.join(current_app.root_path, "static/images", filename) image.processed_image.save(filepath, "JPEG", quality=100, subsampling=0) image_path = url_for("static", filename="images/" + filename) # reduce sampled colors to using defaults image.max_colors = session.get("max_colors") image.sensitivity = session.get("sensitivity") colors = image.palette # setup each sampled color as a dict for use in jinja template # including the RGB values, Hex code, and CMYK values colors = swatcher.color.colors_2_dicts(colors) # set session values session["id"] = random_hex session["filename"] = filename session["image_path"] = image_path session["colors"] = json.dumps(image._colors) session["palette"] = json.dumps(colors) return render_template( "colors.html", resample_form=resample_form, colors=colors, ) else: # if validation error start over reset_session_vars() flash("Please upload image files only!", "danger") return render_template("upload.html", upload_form=upload_form) # if resample_form was submitted instead elif resample_form.resample.data: if resample_form.validate_on_submit(): # get update sampling values from user and save them max_colors = int(resample_form.colors.data) sensitivity = int(resample_form.sensitivity.data) # get stored image colors and resample them using new settings colors = json.loads(session.get("colors")) colors = swatcher.palette.sample( colors=colors, max_colors=max_colors, sensitivity=sensitivity ) # setup each sampled color as a dict for use in jinja template # including the RGB values, Hex code, and CMYK values colors = swatcher.color.colors_2_dicts(colors) # update session values session["max_colors"] = max_colors session["sensitivity"] = sensitivity session["palette"] = json.dumps(colors) return render_template( "colors.html", resample_form=resample_form, colors=colors, ) # if session has expired then start over from scratch if "id" not in session: reset_session_vars() flash("Sorry, your session has expired! Reupload.", "warning") return render_template("upload.html", upload_form=upload_form) # if any validation errors start over reset_session_vars() flash("Whoops, something went wrong! Reupload to try again.", "warning") return render_template("upload.html", upload_form=upload_form) @app.route("/palette") def palette(): if "id" in session: # grab session information id = session.get("id") colors = [tuple(color["rgb"]) for color in json.loads(session.get("palette"))] # create adobe ase swatch file file = swatcher.export.write_ase_file(colors) # return the file as a download return send_file(file, download_name=f"SWATCHER-{id}.ase", as_attachment=True) else: abort(410) @app.route("/image") def image(): if "id" in session: # grab session information id = session.get("id") # get all RGB vales from the sampled colors colors = [tuple(color["rgb"]) for color in json.loads(session.get("palette"))] # create swatch palette image file = swatcher.palette.draw_swatches(colors) # create a temporary file and return it to the user as a download return send_file( prepare_pil_image(file), mimetype="image/jpeg", download_name=f"SWATCHER-{id}.png", as_attachment=True, ) else: abort(410) ``` #### File: swatcher/swatcher/color.py ```python from collections import Counter from math import sqrt def normalize_rgb_values(color: tuple) -> tuple: """ Clean-up any slight color differences in PIL sampling. :param color: a tuple of RGB color values eg. (255, 255, 255) :returns: a tuple of RGB color values """ return tuple([0 if val <= 3 else 255 if val >= 253 else val for val in color]) def rgb_2_luma(color: tuple) -> int: """ Calculate the "brightness" of a color. ...and, yes I know this is a debated subject but this way works for just fine my purposes. :param color: a tuple of RGB color values eg. (255, 255, 255) :returns: luminance "brightness" value """ r, g, b = color[0] / 255, color[1] / 255, color[2] / 255 l = 0.33 * r + 0.5 * g + 0.16 * b return round(l, 2) def sort_by_brightness(colors: list) -> list: """ Sort of list of RGB colors values by their brightness. :param color: tuple of RGB values for color eg. (255, 255, 255) :returns: list of color value dictionaries """ l = {color: rgb_2_luma(color) for color in colors} return sorted(l, key=l.get, reverse=True) def rgb_2_hex(color: tuple) -> str: """ Convert RGB color vales to Hex code (eg. #ffffff). :param color: tuple of RGB values for color eg. (255, 255, 255) :returns: color Hex code """ r, g, b = color return f"#{r:02x}{g:02x}{b:02x}" def rgb_2_cmyk(color: tuple) -> tuple: """ Convert RGB color vales to CMYK color values. :param color: tuple of RGB values for color eg. (255, 255, 255) :returns: CMYK values eg. (C, M, Y, K) """ # if RGB color is black return CMYK black if color == (0, 0, 0): return (0, 0, 0, 100) # convert the RGB values r, g, b = color k = 1 - max((r, g, b)) / 255 c = int(((1 - (r / 255) - k) / (1 - k)) * 100) m = int(((1 - (g / 255) - k) / (1 - k)) * 100) y = int(((1 - (b / 255) - k) / (1 - k)) * 100) return (c, m, y, int(k * 100)) def color_2_dict(color: tuple) -> dict: """ Convert tuple of RGB color vales to HEX and CMYK then combine into a dictionary in the following format. {"rgb": (0, 0, 0), "hex": "#000000", "cmyk": (0, 0, 0, 100)} :param color: tuple of RGB values for color eg. (255, 255, 255) :returns: RGB, HEX and CMYK values """ rgb = color return {"rgb": rgb, "hex": rgb_2_hex(color), "cmyk": rgb_2_cmyk(color)} def colors_2_dicts(colors: list) -> list: """ Convert a list of RGB color vales to a list of dicts with RGB, HEX, and CMYK values. :param color: tuple of RGB values for color eg. (255, 255, 255) :returns: list of color value dictionaries """ return [color_2_dict(color) for color in colors] def color_distance(color1: tuple, color2: tuple) -> int: """ Calculate the Euclidean distance between two colors. https://en.wikipedia.org/wiki/Color_difference :param color1: tuple of RGB color values eg. (255, 255, 255) :param color2: tuple of RGB color values :returns: Euclidean distance of two colors """ r1, g1, b1 = color1 r2, g2, b2 = color2 return int(sqrt(((r2 - r1) ** 2) + ((g2 - g1) ** 2) + ((b2 - b1) ** 2))) def get_colors(image: object) -> list: """ Sample all pixels from an image and sort their RGB values by most common :param image: PIL Image object :returns: list of RGB tuples (255, 255, 255) """ colors = Counter([pixel for pixel in image.getdata()]) return [color for (color, _) in colors.most_common()] ``` #### File: swatcher/swatcher/image.py ```python from collections import Counter from PIL import Image, ImageChops from .color import normalize_rgb_values def trim_excess(image: object) -> object: """ Trim excess background pixels from around an image. :param image: PIL Image object :returns: PIL Image object """ w, h = image.size # get RGB value for each corner of image corners = [ normalize_rgb_values(image.getpixel((0, 0))), normalize_rgb_values(image.getpixel((w - 1, 0))), normalize_rgb_values(image.getpixel((0, h - 1))), normalize_rgb_values(image.getpixel((w - 1, h - 1))), ] # count how many times each value is present color_count = Counter([pixel for pixel in corners]).most_common() # if multiple corners have the same pixel count don't trim if len(color_count) > 1 and color_count[0][1] == color_count[1][1]: return image else: # set the comparison pixel to the most common value bg_pixel = color_count[0][0] # compare the original image to the excess pixels comp = Image.new("RGB", image.size, bg_pixel) diff = ImageChops.difference(image, comp) bbox = diff.getbbox() # crop the difference return image.crop(bbox) def process_image(image: object, max_size: int = 500) -> object: """ Process the image for best color sampling results. :param image: PIL Image object :param max_size: maximum size of the image for color sampling :returns: PIL Image object """ image = image.convert("RGBA") # check to make sure image has pixels w, h = image.size if w == 0 or h == 0: raise ValueError("The provided image has no pixels.") # composite the image on a white background just in case it has transparency bg = Image.new("RGBA", image.size, (255, 255, 255)) comp = Image.alpha_composite(bg, image) # convert composite image to RGB since we only need the RGB color values comp = comp.convert("RGB") # crop the image if extra surrounding background pixels are found comp = trim_excess(comp) # reduce the image down to `max_size` to speed up processing if comp.width > max_size or comp.height > max_size: comp.thumbnail((max_size, max_size), resample=0) return comp ``` #### File: swatcher/tests/test_image.py ```python import pytest from PIL import Image, ImageDraw, ImageFilter from swatcher import image def test_01(): # one centered pixel img = Image.new("RGB", (1000, 1000), (255, 255, 255)) d = ImageDraw.Draw(img) d.point((500, 500), (0, 0, 0)) trimmed = image.trim_excess(img) assert trimmed.size == (1, 1) def test_02(): # two inset pizels (top-left, bottom-right) img = Image.new("RGB", (1000, 1000), (255, 255, 255)) d = ImageDraw.Draw(img) d.point(((10, 10), (990, 990)), (0, 0, 0)) trimmed = image.trim_excess(img) assert trimmed.size == (981, 981) def test_03(): # transparent circle centered img = Image.new("RGBA", (1000, 1000)) d = ImageDraw.Draw(img) d.ellipse((400, 400, 600, 600), (255, 128, 0)) trimmed = image.process_image(img) assert trimmed.size == (201, 201) def test_04(): # transparent image two objects over 500 px img = Image.new("RGBA", (1000, 1000)) d = ImageDraw.Draw(img) d.ellipse((100, 100, 200, 200), (0, 0, 0)) d.ellipse((500, 500, 700, 700), (255, 128, 0)) trimmed = image.process_image(img) assert trimmed.size == (500, 500) def test_05(): # aliased pixels on solid background canvas_w, canvas_h = 1000, 800 shape_w, shape_h = 600, 286 img = Image.new("RGB", (canvas_w, canvas_h), (255, 255, 255)) d = ImageDraw.Draw(img) p1 = ((canvas_w // 2) - (shape_w // 2), (canvas_h // 2) - (shape_h // 2)) p2 = (p1[0] + shape_w, p1[1] + shape_h) d.ellipse(xy=(p1, p2), fill=(255, 0, 255)) for _ in range(10): img = img.filter(ImageFilter.BLUR) aliased = image.process_image(img) assert aliased.size == (500, 250) def test_06(): # aliased pixels on transparent background canvas_w, canvas_h = 1000, 800 shape_w, shape_h = 600, 286 img = Image.new("RGBA", (canvas_w, canvas_h), (0, 0, 0, 0)) d = ImageDraw.Draw(img) p1 = ((canvas_w // 2) - (shape_w // 2), (canvas_h // 2) - (shape_h // 2)) p2 = (p1[0] + shape_w, p1[1] + shape_h) d.ellipse(xy=(p1, p2), fill=(255, 0, 255)) for _ in range(10): img = img.filter(ImageFilter.BLUR) aliased = image.process_image(img) assert aliased.size == (500, 250) def test_07(): # image has no pixels with pytest.raises(ValueError): img = Image.new(size=(2, 0), mode="RGBA") img = image.process_image(img) def test_08(): # small image img = Image.new(size=(50, 50), mode="RGBA") img = image.process_image(img) assert img.size == (50, 50) ``` #### File: swatcher/tests/test_sampling.py ```python from PIL import Image, ImageDraw from swatcher import color, palette def test_01(): # sampled_colors from control image img = Image.new("RGB", (3, 1), (255, 255, 255)) d = ImageDraw.Draw(img) d.point((0, 0), (255, 0, 0)) d.point((1, 0), (0, 255, 0)) d.point((2, 0), (0, 0, 255)) image_colors = color.get_colors(img) sampled_colors = palette.sample(image_colors) assert sampled_colors == [(255, 0, 0), (0, 255, 0), (0, 0, 255)] def test_02(): # sampled_colors from control image img = Image.new("RGB", (3, 1), (255, 255, 255)) d = ImageDraw.Draw(img) d.point((0, 0), (0, 0, 255)) d.point((1, 0), (0, 255, 0)) d.point((2, 0), (255, 0, 0)) image_colors = color.get_colors(img) sampled_colors = palette.sample(image_colors) assert sampled_colors == [(0, 0, 255), (0, 255, 0), (255, 0, 0)] def test_03(): # sampled_colors from control image img = Image.new("RGB", (4, 1), (255, 255, 255)) d = ImageDraw.Draw(img) d.point(((0, 0), (1, 0)), (255, 0, 0)) d.point((2, 0), (0, 255, 0)) d.point((3, 0), (0, 0, 255)) image_colors = color.get_colors(img) sampled_colors = palette.sample(image_colors) assert sampled_colors == [(255, 0, 0), (0, 255, 0), (0, 0, 255)] def test_04(): # sampled_colors from control image img = Image.new("RGB", (4, 1), (255, 255, 255)) d = ImageDraw.Draw(img) d.point((0, 0), (255, 0, 0)) d.point(((1, 0), (2, 0)), (0, 255, 0)) d.point((3, 0), (0, 0, 255)) image_colors = color.get_colors(img) sampled_colors = palette.sample(image_colors) assert sampled_colors == [(0, 255, 0), (255, 0, 0), (0, 0, 255)] def test_05(): # sampled_colors from control image img = Image.new("RGB", (4, 1), (255, 255, 255)) d = ImageDraw.Draw(img) d.point((0, 0), (255, 0, 0)) d.point((1, 0), (0, 255, 0)) d.point(((2, 0), (3, 0)), (0, 0, 255)) image_colors = color.get_colors(img) sampled_colors = palette.sample(image_colors) assert sampled_colors == [(0, 0, 255), (255, 0, 0), (0, 255, 0)] def test_06(): # sampled_colors from control image img = Image.new("RGB", (4, 4), (255, 255, 255)) d = ImageDraw.Draw(img) d.point(((0, 0), (1, 0), (0, 1), (1, 1)), (255, 0, 0)) d.point(((2, 0), (3, 0), (2, 1), (3, 1)), (0, 255, 0)) d.point(((0, 2), (1, 2), (0, 3), (1, 3)), (0, 0, 255)) image_colors = color.get_colors(img) sampled_colors = palette.sample(image_colors) assert sampled_colors == [ (255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 255), ] def test_07(): # sample function on sample list assert palette.sample([(0, 0, 0), (128, 128, 128)]) == [ (0, 0, 0), (128, 128, 128), ] def test_08(): # sample function on sample list with increased sensitivity assert palette.sample([(0, 0, 0), (128, 128, 128)], sensitivity=250) == [(0, 0, 0)] def test_09(): # sample function on sample list with reduced max_colors colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)] assert palette.sample(colors, max_colors=3) == [ (255, 0, 0), (0, 255, 0), (0, 0, 255), ] ```
{ "source": "joshbduncan/word-search-generator", "score": 3 }
#### File: word-search-generator/tests/test_cli.py ```python import os import pathlib import tempfile TEMP_DIR = tempfile.TemporaryDirectory() def test_entrypoint(): exit_status = os.system("word-search --help") assert exit_status == 0 def test_no_words_provided(): exit_status = os.system("word-search") assert os.WEXITSTATUS(exit_status) == 1 def test_just_words(): exit_status = os.system("word-search some test words") assert exit_status == 0 def test_stdin(): exit_status = os.system("echo computer robot soda | word-search") assert os.WEXITSTATUS(exit_status) == 0 def test_export_pdf(): temp_path = TEMP_DIR.name + "/test.pdf" exit_status = os.system(f"word-search some test words -e pdf -o {temp_path}") assert exit_status == 0 and pathlib.Path(temp_path).exists() def test_export_csv(): temp_path = TEMP_DIR.name + "/test.csv" exit_status = os.system(f"word-search some test words -e csv -o {temp_path}") assert exit_status == 0 and pathlib.Path(temp_path).exists() def test_invalid_export_location(): exit_status = os.system("word-search some test words -e csv -o ~/RANDOMTESTLOC") assert os.WEXITSTATUS(exit_status) == 1 ```
{ "source": "joshbelot/GettingStarted", "score": 4 }
#### File: GettingStarted/my_pkg/trial.py ```python def square(x): """Finds the square of the input. Args: x (float): The number to be squared. Returns: x2 (float): The squared number. """ return x**2 def factorial(n): """Factorial calculates the factorial of the provided integer. Args: n (int): The value that the factorial will be computed from. Returns: fact (int): The factorial of n. Raises: ValueError: If n is not an integer. """ if not isinstance(n,int): if int(n) == n: n = int(n) else: raise ValueError("The input to factorial must be an integer.") if n <= 0: fact = 1 else: fact = n for i in range(1,n): fact = i*fact return fact ```
{ "source": "joshbenjamin3/Static_BFP_CNN", "score": 3 }
#### File: Static_BFP_CNN/benchmark/r3d.py ```python import math import torch.nn as nn from torch.nn.modules.utils import _triple from lib import BFPActivation from lib import BFPFullyConnet import torch import torch.nn as nn ######### Orig Model Define ############# class SpatioTemporalConv(nn.Module): r"""Applies a factored 3D convolution over an input signal composed of several input planes with distinct spatial and time axes, by performing a 2D convolution over the spatial axes to an intermediate subspace, followed by a 1D convolution over the time axis to produce the final output. Args: in_channels (int): Number of channels in the input tensor out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to the sides of the input during their respective convolutions. Default: 0 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=False): super(SpatioTemporalConv, self).__init__() # if ints are entered, convert them to iterables, 1 -> [1, 1, 1] kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) self.temporal_spatial_conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) #self.bn = nn.BatchNorm3d(out_channels) #self.relu = nn.ReLU() def forward(self, x): x = self.temporal_spatial_conv(x) #x = self.bn(self.temporal_spatial_conv(x)) #x = self.relu(x) return x class SpatioTemporalResBlock(nn.Module): r"""Single block for the ResNet network. Uses SpatioTemporalConv in the standard ResNet block layout (conv->batchnorm->ReLU->conv->batchnorm->sum->ReLU) Args: in_channels (int): Number of channels in the input tensor. out_channels (int): Number of channels in the output produced by the block. kernel_size (int or tuple): Size of the convolving kernels. downsample (bool, optional): If ``True``, the output size is to be smaller than the input. Default: ``False`` """ def __init__(self, in_channels, out_channels, kernel_size, downsample=False): super(SpatioTemporalResBlock, self).__init__() # If downsample == True, the first conv of the layer has stride = 2 # to halve the residual output size, and the input x is passed # through a seperate 1x1x1 conv with stride = 2 to also halve it. # no pooling layers are used inside ResNet self.downsample = downsample # to allow for SAME padding padding = kernel_size // 2 if self.downsample: # downsample with stride =2 the input x self.downsampleconv = SpatioTemporalConv(in_channels, out_channels, 1, stride=2) self.downsamplebn = nn.BatchNorm3d(out_channels) # downsample with stride = 2when producing the residual self.conv1 = SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding, stride=2) else: self.conv1 = SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding) self.bn1 = nn.BatchNorm3d(out_channels) self.relu1 = nn.ReLU() # standard conv->batchnorm->ReLU self.conv2 = SpatioTemporalConv(out_channels, out_channels, kernel_size, padding=padding) self.bn2 = nn.BatchNorm3d(out_channels) self.outrelu = nn.ReLU() def forward(self, x): res = self.relu1(self.bn1(self.conv1(x))) res = self.bn2(self.conv2(res)) if self.downsample: x = self.downsamplebn(self.downsampleconv(x)) return self.outrelu(x + res) class SpatioTemporalResLayer(nn.Module): r"""Forms a single layer of the ResNet network, with a number of repeating blocks of same output size stacked on top of each other Args: in_channels (int): Number of channels in the input tensor. out_channels (int): Number of channels in the output produced by the layer. kernel_size (int or tuple): Size of the convolving kernels. layer_size (int): Number of blocks to be stacked to form the layer block_type (Module, optional): Type of block that is to be used to form the layer. Default: SpatioTemporalResBlock. downsample (bool, optional): If ``True``, the first block in layer will implement downsampling. Default: ``False`` """ def __init__(self, in_channels, out_channels, kernel_size, layer_size, block_type=SpatioTemporalResBlock, downsample=False): super(SpatioTemporalResLayer, self).__init__() # implement the first block self.block1 = block_type(in_channels, out_channels, kernel_size, downsample) # prepare module list to hold all (layer_size - 1) blocks self.blocks = nn.ModuleList([]) for i in range(layer_size - 1): # all these blocks are identical, and have downsample = False by default self.blocks += [block_type(out_channels, out_channels, kernel_size)] def forward(self, x): x = self.block1(x) for block in self.blocks: x = block(x) return x class R3DNet(nn.Module): r"""Forms the overall ResNet feature extractor by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch. Args: layer_sizes (tuple): An iterable containing the number of blocks in each layer block_type (Module, optional): Type of block that is to be used to form the layers. Default: SpatioTemporalResBlock. """ def __init__(self, layer_sizes, block_type=SpatioTemporalResBlock): super(R3DNet, self).__init__() # first conv, with stride 1x2x2 and kernel size 3x7x7 self.conv1 = SpatioTemporalConv(3, 64, [3, 7, 7], stride=[1, 2, 2], padding=[1, 3, 3]) self.bn1 = nn.BatchNorm3d(64) self.relu1 = nn.ReLU() # output of conv2 is same size as of conv1, no downsampling needed. kernel_size 3x3x3 self.conv2 = SpatioTemporalResLayer(64, 64, 3, layer_sizes[0], block_type=block_type) # each of the final three layers doubles num_channels, while performing downsampling # inside the first block self.conv3 = SpatioTemporalResLayer(64, 128, 3, layer_sizes[1], block_type=block_type, downsample=True) self.conv4 = SpatioTemporalResLayer(128, 256, 3, layer_sizes[2], block_type=block_type, downsample=True) self.conv5 = SpatioTemporalResLayer(256, 512, 3, layer_sizes[3], block_type=block_type, downsample=True) # global average pooling of the output self.pool = nn.AdaptiveAvgPool3d(1) def forward(self, x): x = self.relu1(self.bn1(self.conv1(x))) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) x = self.pool(x) return x.view(-1, 512) class r3d(nn.Module): r"""Forms a complete ResNet classifier producing vectors of size num_classes, by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch, and passing them through a Linear layer. Args: num_classes(int): Number of classes in the data layer_sizes (tuple): An iterable containing the number of blocks in each layer block_type (Module, optional): Type of block that is to be used to form the layers. Default: SpatioTemporalResBlock. """ def __init__(self, num_classes, block_type=SpatioTemporalResBlock, pretrained=False): super(r3d, self).__init__() self.res3d = R3DNet(layer_sizes, block_type) self.linear = nn.Linear(512, num_classes) self.__init_weight() if pretrained: self.__load_pretrained_weights() def forward(self, x): x = self.res3d(x) logits = self.linear(x) return logits def __load_pretrained_weights(self): p_dict = torch.load("/mnt/ccnas2/bdp/hf17/TCAD_3DCNNs/R3D-ucf101_epoch-99.pth.tar") print ("Loading from pretrained models") self.load_state_dict(p_dict['state_dict']) #for name in self.state_dict(): # print (name) #s_dict = self.state_dict() def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() ############################################ ######### BFP Model Define ############# ############################################ class BFP_SpatioTemporalConv(nn.Module): r"""Applies a factored 3D convolution over an input signal composed of several input planes with distinct spatial and time axes, by performing a 2D convolution over the spatial axes to an intermediate subspace, followed by a 1D convolution over the time axis to produce the final output. Args: in_channels (int): Number of channels in the input tensor out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to the sides of the input during their respective convolutions. Default: 0 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): # bias needs to be True for BFP module super(BFP_SpatioTemporalConv, self).__init__() # if ints are entered, convert them to iterables, 1 -> [1, 1, 1] kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) # self.exp_bit = exp_bit # self.mantisa_bit = mantisa_bit # self.opt_exp_act_list = opt_exp_act_list self.temporal_spatial_conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) #self.bn = nn.BatchNorm3d(out_channels) # self.relu = nn.ReLU() def forward(self, x): #x = self.bn(self.temporal_spatial_conv(x)) x = self.temporal_spatial_conv(x) # x = BFPActivation.transform_activation_offline(x, self.exp_bit, self.mantisa_bit, # self.opt_exp_act_list, is_3d=True) # x = self.relu(x) return x class BFP_SpatioTemporalResBlock(nn.Module): r"""Single block for the ResNet network. Uses SpatioTemporalConv in the standard ResNet block layout (conv->batchnorm->ReLU->conv->batchnorm->sum->ReLU) Args: in_channels (int): Number of channels in the input tensor. out_channels (int): Number of channels in the output produced by the block. kernel_size (int or tuple): Size of the convolving kernels. downsample (bool, optional): If ``True``, the output size is to be smaller than the input. Default: ``False`` """ def __init__(self, in_channels, out_channels, kernel_size, downsample=False, exp_bit=4, mantisa_bit=8, opt_exp_act_list=None): super(BFP_SpatioTemporalResBlock, self).__init__() # If downsample == True, the first conv of the layer has stride = 2 # to halve the residual output size, and the input x is passed # through a seperate 1x1x1 conv with stride = 2 to also halve it. # no pooling layers are used inside ResNet self.downsample = downsample self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list # to allow for SAME padding padding = kernel_size // 2 if self.downsample: # downsample with stride =2 the input x self.downsampleconv = BFP_SpatioTemporalConv(in_channels, out_channels, 1, stride=2) #self.downsamplebn = nn.BatchNorm3d(out_channels) # downsample with stride = 2when producing the residual self.conv1 = BFP_SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding, stride=2) else: self.conv1 = BFP_SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding) #self.bn1 = nn.BatchNorm3d(out_channels) self.relu1 = nn.ReLU() # standard conv->batchnorm->ReLU self.conv2 = BFP_SpatioTemporalConv(out_channels, out_channels, kernel_size, padding=padding) #exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[]) #self.bn2 = nn.BatchNorm3d(out_channels) self.outrelu = nn.ReLU() def forward(self, x): res = self.conv1(x) res = BFPActivation.transform_activation_online(res, self.exp_bit, self.mantisa_bit, -1, is_3d=True) res = self.relu1(res) res = self.conv2(res) res = BFPActivation.transform_activation_online(res, self.exp_bit, self.mantisa_bit, -1, is_3d=True) if self.downsample: x = self.downsampleconv(x) #x = self.downsamplebn(self.downsampleconv(x)) x = BFPActivation.transform_activation_online(x, self.exp_bit, self.mantisa_bit, -1, is_3d=True) return self.outrelu(x + res) class BFP_SpatioTemporalResLayer(nn.Module): r"""Forms a single layer of the ResNet network, with a number of repeating blocks of same output size stacked on top of each other Args: in_channels (int): Number of channels in the input tensor. out_channels (int): Number of channels in the output produced by the layer. kernel_size (int or tuple): Size of the convolving kernels. layer_size (int): Number of blocks to be stacked to form the layer block_type (Module, optional): Type of block that is to be used to form the layer. Default: SpatioTemporalResBlock. downsample (bool, optional): If ``True``, the first block in layer will implement downsampling. Default: ``False`` """ def __init__(self, in_channels, out_channels, kernel_size, layer_size, block_type=BFP_SpatioTemporalResBlock, downsample=False, exp_bit=4, mantisa_bit=8, opt_exp_act_list=None): super(BFP_SpatioTemporalResLayer, self).__init__() self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list # implement the first block self.block1 = block_type(in_channels, out_channels, kernel_size, downsample, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[0:2]) # prepare module list to hold all (layer_size - 1) blocks self.blocks = nn.ModuleList([]) cur_indx = 2 for i in range(layer_size - 1): # all these blocks are identical, and have downsample = False by default self.blocks += [block_type(out_channels, out_channels, kernel_size, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[cur_indx:cur_indx+2])] cur_indx +=2 def forward(self, x): x = self.block1(x) for block in self.blocks: x = block(x) return x class BFP_R3DNet(nn.Module): r"""Forms the overall ResNet feature extractor by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch. Args: layer_sizes (tuple): An iterable containing the number of blocks in each layer block_type (Module, optional): Type of block that is to be used to form the layers. Default: SpatioTemporalResBlock. """ def __init__(self, layer_sizes, block_type=BFP_SpatioTemporalResBlock, exp_bit=4, mantisa_bit=8, opt_exp_act_list=None): super(BFP_R3DNet, self).__init__() self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list print ("******The length of exp list:", len(self.opt_exp_act_list)) # first conv, with stride 1x2x2 and kernel size 3x7x7 self.conv1 = BFP_SpatioTemporalConv(3, 64, [3, 7, 7], stride=[1, 2, 2], padding=[1, 3, 3]) self.relu1 = nn.ReLU() cur_indx = 2 next_indx = cur_indx + layer_sizes[0] * 2 # output of conv2 is same size as of conv1, no downsampling needed. kernel_size 3x3x3 self.conv2 = BFP_SpatioTemporalResLayer(64, 64, 3, layer_sizes[0], block_type=block_type, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[cur_indx:next_indx]) cur_indx = next_indx next_indx += layer_sizes[1] * 2 # each of the final three layers doubles num_channels, while performing downsampling # inside the first block self.conv3 = BFP_SpatioTemporalResLayer(64, 128, 3, layer_sizes[1], block_type=block_type, downsample=True, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[cur_indx:next_indx]) cur_indx = next_indx next_indx += layer_sizes[2] * 2 self.conv4 = BFP_SpatioTemporalResLayer(128, 256, 3, layer_sizes[2], block_type=block_type, downsample=True, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[cur_indx:next_indx]) cur_indx = next_indx next_indx += layer_sizes[3] * 2 self.conv5 = BFP_SpatioTemporalResLayer(256, 512, 3, layer_sizes[3], block_type=block_type, downsample=True, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list[cur_indx:next_indx]) # global average pooling of the output self.pool = nn.AdaptiveAvgPool3d(1) def forward(self, x): x = BFPActivation.transform_activation_online(x, self.exp_bit, self.mantisa_bit, -1, is_3d=True) x = self.relu1(self.conv1(x)) x = BFPActivation.transform_activation_online(x, self.exp_bit, self.mantisa_bit, -1, is_3d=True) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) x = self.pool(x) return x.view(-1, 512) class r3d_18_bfp(nn.Module): r"""Forms a complete ResNet classifier producing vectors of size num_classes, by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch, and passing them through a Linear layer. Args: num_classes(int): Number of classes in the data layer_sizes (tuple): An iterable containing the number of blocks in each layer block_type (Module, optional): Type of block that is to be used to form the layers. Default: SpatioTemporalResBlock. """ def __init__(self, num_classes, layer_sizes=[2, 2, 2, 2], block_type=BFP_SpatioTemporalResBlock, pretrained=False, exp_bit=4, mantisa_bit=8, opt_exp_act_list=None): super(r3d_bfp, self).__init__() self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list self.res3d = BFP_R3DNet(layer_sizes, block_type, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list) self.linear = nn.Linear(512, num_classes) self.__init_weight() if pretrained: self.__load_pretrained_weights() #for name in self.state_dict(): # print (name) def forward(self, x): x = self.res3d(x) logits = self.linear(x) logits = BFPFullyConnet.transform_fc_online(logits, self.exp_bit, self.mantisa_bit, -1) return logits def __load_pretrained_weights(self): s_dict = self.state_dict() for name in s_dict: print(name) print(s_dict[name].size()) def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() class r3d_34_bfp(nn.Module): r"""Forms a complete ResNet classifier producing vectors of size num_classes, by initializng 5 layers, with the number of blocks in each layer set by layer_sizes, and by performing a global average pool at the end producing a 512-dimensional vector for each element in the batch, and passing them through a Linear layer. Args: num_classes(int): Number of classes in the data layer_sizes (tuple): An iterable containing the number of blocks in each layer block_type (Module, optional): Type of block that is to be used to form the layers. Default: SpatioTemporalResBlock. """ def __init__(self, num_classes, layer_sizes=[3, 4, 6, 3], block_type=BFP_SpatioTemporalResBlock, pretrained=False, exp_bit=4, mantisa_bit=8, opt_exp_act_list=None): super(r3d_34_bfp, self).__init__() self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list self.res3d = BFP_R3DNet(layer_sizes, block_type, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list) self.linear = nn.Linear(512, num_classes) self.__init_weight() if pretrained: self.__load_pretrained_weights() #for name in self.state_dict(): # print (name) def forward(self, x): x = self.res3d(x) logits = self.linear(x) logits = BFPFullyConnet.transform_fc_online(logits, self.exp_bit, self.mantisa_bit, -1) return logits def __load_pretrained_weights(self): s_dict = self.state_dict() for name in s_dict: print(name) print(s_dict[name].size()) def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() def get_1x_lr_params(model): """ This generator returns all the parameters for the conv layer of the net. """ b = [model.res3d] for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_10x_lr_params(model): """ This generator returns all the parameters for the fc layer of the net. """ b = [model.linear] for j in range(len(b)): for k in b[j].parameters(): if k.requires_grad: yield k if __name__ == "__main__": import torch inputs = torch.rand(1, 3, 16, 112, 112) net = r3d(101, (2, 2, 2, 2), pretrained=True) outputs = net.forward(inputs) print(outputs.size()) ``` #### File: Static_BFP_CNN/lib/BFPFullyConnet.py ```python import sys, os sys.path.append(os.path.dirname(os.path.abspath(__file__))) from Utils import bfp_quantize, to_exponent_mantissa_width import math import time # PyTorch import torch def transform_fc_online(tensor, exponent, mantissa, chnl_group): # Offline means the shared exponent is fixed # it is deternmined during the pre-inference # Quantize the activation tensor along channel dimension # Here we require the input tensor has the shape: [batch, channel] # opt_exp_list: the shared exponent list for offline quantization shp = tensor.shape #print ("shape1:", shp[1], " opt_exp_list:", len(opt_exp_list)) if (chnl_group == -1): chnl_group = shp[1] number_of_blocks = math.ceil(shp[1]/chnl_group) if shp[1] % chnl_group == 0: # shp[1] is divisible by block size # Therefore just one tensor will be created tensor = bfp_quantize(tensor, exponent, mantissa, quant_dim=len(tensor.shape)-1) else: raise ValueError("Channel is not divisible by channel group while bfp quantizeing the FC") return tensor def transform_fc_offline(tensor, exponent, mantissa, opt_exp_list): # Offline means the shared exponent is fixed # it is deternmined during the pre-inference # Quantize the activation tensor along channel dimension # Here we require the input tensor has the shape: [batch, channel] # opt_exp_list: the shared exponent list for offline quantization shp = tensor.shape #print ("shape1:", shp[1], " opt_exp_list:", len(opt_exp_list)) number_of_blocks = len(opt_exp_list) block_size = (int)(shp[1]/len(opt_exp_list)) opt_exp_list = torch.Tensor(opt_exp_list).cuda() #print ("shp:", shp) #print ("opt_exp_list:", len(opt_exp_list)) if shp[1] % block_size == 0: # shp[1] is divisible by block size # Therefore just one tensor will be created tensor = torch.reshape(tensor, (shp[0], number_of_blocks, block_size)) opt_exp_list = opt_exp_list.unsqueeze(0) ##### Need Unit test tensor = to_exponent_mantissa_width(tensor, opt_exp_list, mantissa, quant_dim=len(tensor.shape)-1) tensor = torch.reshape(tensor, shp) else: raise ValueError("Channel is not divisible by channel group while bfp quantizeing the FC") return tensor ``` #### File: Static_BFP_CNN/lib/BFPWeight.py ```python import sys, os sys.path.append(os.path.dirname(os.path.abspath(__file__))) import math import time # PyTorch import torch from Utils import bfp_quantize def transform_weight(tensor, exponent, mantissa, filter_group): # Quantize the weight tensor along filter dimension # Here we require the weight has the shape: [filter, channel, k, k] # filter_group : Inditate the number of filters in one group, where one group shared the same exponenet shp = tensor.shape number_of_blocks = math.ceil(shp[0]/filter_group) if shp[0] % filter_group == 0: # shp[1] is divisible by block size # Therefore just one tensor will be created tensor = torch.reshape(tensor, (number_of_blocks, filter_group*shp[1]*shp[2]*shp[3])) tensor = bfp_quantize(tensor, exponent, mantissa, quant_dim=len(tensor.shape)-1) tensor = torch.reshape(tensor, (shp[0], shp[1], shp[2], shp[3])) return tensor else: # shp[0] is not divisible by channel group # Therefore two tensors will be created input('Filter is not divisible by filter group') if number_of_blocks == 1: # This means that the depth is less than the block size, so just one tensor will be created tensor = torch.reshape(tensor, (1, shp[0]*shp[1]*shp[2]*shp[3])) tensor = bfp_quantize(tensor, exponent, mantissa, quant_dim=len(tensor.shape)-1) tensor = torch.reshape(tensor, (shp[0], shp[1], shp[2], shp[3])) return tensor else: # Separate two part, tensor1 contain (number_of_blocks-1), tensor2 contain the rest first_filter = ((number_of_blocks-1)*filter_group) tensor1 = tensor[0 : first_filter, :, :, :] t1_shp = tensor1.shape tensor2 = tensor[first_filter : shp[0], :, :, :] t2_shp = tensor2.shape # Perform quantization tensor1 = torch.reshape(tensor1, (number_of_blocks-1, filter_group*shp[1]*shp[2]*shp[3])) tensor2 = torch.reshape(tensor2, (1, (shp[0]-first_first_filter)*shp[1]*shp[2]*shp[3])) tensor1 = bfp_quantize(tensor1, exponent, mantissa, quant_dim=len(tensor.shape)-1) tensor2 = bfp_quantize(tensor2, exponent, mantissa, quant_dim=len(tensor.shape)-1) # Reshape and put back to original tensor tensor1 = torch.reshape(tensor1, t1_shp) tensor2 = torch.reshape(tensor2, t2_shp) tensor[0 : first_filter, :, :, :] = tensor1 tensor[first_filter : shp[0], :, :, :] = tensor2 return tensor return tensor ``` #### File: Static_BFP_CNN/models/model_factory_3d.py ```python from models import c3d from models import r3d from models import res3dnet from lib.BFPConvertor import BFPConvertor_3D from benchmark import c3d as br_c3d from benchmark import r3d as br_r3d models_map = { "c3d" : c3d.c3d, "lq_c3d" : c3d.c3d_lq, "c3d_bfp" : c3d.c3d_bfp, "br_c3d_bfp" : br_c3d.c3d_bfp, "r3d_18" : r3d.r3d_18, "r3d_18_bfp" : r3d.r3d_18_bfp, "br_r3d_18_bfp" : br_r3d.r3d_18_bfp, "r3d_34" : r3d.r3d_34, "r3d_34_bfp" : r3d.r3d_34_bfp, "br_r3d_34_bfp" : br_r3d.r3d_34_bfp } def get_network(model_name, pretrained=True, bfp=False, group=1, mantisa_bit=8, exp_bit=8, opt_exp_act_list=None, is_online=False, exp_act='kl'): if (bfp): bfp_model_name = model_name + "_bfp" if is_online: bfp_model_name = "br_" + bfp_model_name assert opt_exp_act_list != None, "When construct the bfp model, the opt_exp_act should be Non-empty" golden_model = models_map[model_name](101, pretrained=True) c3d_converter = BFPConvertor_3D(mantisa_bit, exp_bit) bfp_model = models_map[bfp_model_name](num_classes=101, pretrained=True, exp_bit=exp_bit, mantisa_bit=mantisa_bit, opt_exp_act_list=opt_exp_act_list) conv_isbias = True if ("c3d" in model_name) else False bfp_model, weight_exp_list = c3d_converter(golden_model, bfp_model, group, conv_isbias=conv_isbias, is_kl=True, exp_act=exp_act) return bfp_model, weight_exp_list else: return models_map[model_name](num_classes=101, pretrained=True), None ``` #### File: Static_BFP_CNN/models/resnet.py ```python import sys, os sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../') import numpy as np # Internal from lib.BFPConvertor import BFPConvertor from lib import BFPActivation from lib import BFPFullyConnet # PyTorch import torch import torch.nn as nn import torchvision def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=True, dilation=dilation) #enable bias for fused BN def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=True) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, exp_bit=8, mantisa_bit=8, start_exp_ind=0, opt_exp_act_list=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride=stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list self.start_exp_ind = start_exp_ind def forward(self, x): residual = x out = self.conv1(x) #out = self.bn1(out) # disble bn for fused BN out = BFPActivation.transform_activation_offline(out, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind]) out = self.relu(out) out = self.conv2(out) #out = self.bn2(out) out = BFPActivation.transform_activation_offline(out, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind+1]) if self.downsample is not None: residual = self.downsample(x) residual = BFPActivation.transform_activation_offline(residual, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind+2]) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, exp_bit=8, mantisa_bit=8, start_exp_ind=0, opt_exp_act_list=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2= conv3x3(planes,planes,stride=stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes*self.expansion) self.bn3 = nn.BatchNorm2d(planes*self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list self.start_exp_ind = start_exp_ind def forward(self, x): residual = x out = self.conv1(x) #out = self.bn1(out) out = BFPActivation.transform_activation_offline(out, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind]) out = self.relu(out) out = self.conv2(out) #out = self.bn2(out) out = BFPActivation.transform_activation_offline(out, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind+1]) out = self.relu(out) out = self.conv3(out) #out = self.bn3(out) out = BFPActivation.transform_activation_offline(out, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind+2]) if self.downsample is not None: # Get a max of two list #max_exp_act_list = np.maximum.reduce([self.opt_exp_act_list[self.start_exp_ind+2], self.opt_exp_act_list[self.start_exp_ind+3]]).tolist() residual = self.downsample(x) # bfp quantize both tensor for shortcut using the max exponent list # since they have the same exp list, no need for realignment residual = BFPActivation.transform_activation_offline(residual, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind+3]) #out = BFPActivation.transform_activation_offline(out, self.exp_bit, self.mantisa_bit, max_exp_act_list) else: # bfp quantize both tensor for shortcut using the third exponent list residual = BFPActivation.transform_activation_offline(residual, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[self.start_exp_ind+2]) out+=residual out = self.relu(out) return out class BlockResNet(nn.Module): def __init__(self, block, layers,num_classes = 1000, exp_bit=8, mantisa_bit=8, opt_exp_act_list=None): self.inplanes = 64 super(BlockResNet, self).__init__() self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=True) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.exp_bit = exp_bit self.mantisa_bit = mantisa_bit self.opt_exp_act_list = opt_exp_act_list self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list, start_exp_ind=2) self.layer2 = self._make_layer(block, 128, layers[1],stride=2, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list, start_exp_ind=2 + (layers[0]*3+1)) self.layer3 = self._make_layer(block, 256, layers[2],stride=2, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list, start_exp_ind=2 + (layers[0]*3+1) + (layers[1]*3+1)) self.layer4 = self._make_layer(block, 512, layers[3],stride=2, exp_bit=self.exp_bit, mantisa_bit=self.mantisa_bit, opt_exp_act_list=self.opt_exp_act_list, start_exp_ind=2 + (layers[0]*3+1) + (layers[1]*3+1) + (layers[2]*3+1)) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512*block.expansion, num_classes) #print ("fc exponent:", self.opt_exp_act_list[-1]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') #nn.init.constant_(m.alpha, 1) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1, exp_bit=8, mantisa_bit=8, opt_exp_act_list=None, start_exp_ind=0): downsample = None if stride!=1 or self.inplanes !=planes*block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), # Fused BN #nn.BatchNorm2d(planes*block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, exp_bit=exp_bit, mantisa_bit=mantisa_bit, opt_exp_act_list=opt_exp_act_list, start_exp_ind=start_exp_ind)) start_exp_ind = start_exp_ind + 3 + (int)(downsample != None) self.inplanes = planes*block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, exp_bit=exp_bit, mantisa_bit=mantisa_bit, opt_exp_act_list=opt_exp_act_list, start_exp_ind=start_exp_ind)) start_exp_ind = start_exp_ind + 3 return nn.Sequential(*layers) def forward(self, x): x = BFPActivation.transform_activation_offline(x, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[0]) x = self.conv1(x) #x = self.bn1(x) #Fused BN x = BFPActivation.transform_activation_offline(x, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[1]) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) x = BFPFullyConnet.transform_fc_offline(x, self.exp_bit, self.mantisa_bit, self.opt_exp_act_list[-1]) return x # bfp indicate if insert bfp quantization during inference def resnet101(pretrained=False, bit_nmb=8, num_classes=1000, bfp=False, mantisa_bit=8, exp_bit=8, opt_exp_act_list=None): """Constructs a ResNet101 model """ if (bfp): block_model = BlockResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, mantisa_bit=mantisa_bit, exp_bit=exp_bit, opt_exp_act_list=opt_exp_act_list) if pretrained==True: golden_model = torchvision.models.resnet101(pretrained=True) resnet_converter = BFPConvertor(mantisa_bit, exp_bit) block_model = resnet_converter(golden_model, block_model) else: if pretrained==True: model = torchvision.models.resnet101(pretrained=True) else: model = torchvision.models.resnet101() block_model = model return block_model def resnet50(pretrained=False, num_classes=1000, bfp=False, group=1, mantisa_bit=8, exp_bit=8, opt_exp_act_list=None): """ Constructs a ResNet50 model """ weight_exp_list = [] if (bfp): #print ("Shape of exp list:", np.shape(opt_exp_act_list)) #print (opt_exp_act_list[0]) block_model = BlockResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, mantisa_bit=mantisa_bit, exp_bit=exp_bit, opt_exp_act_list=opt_exp_act_list) if pretrained==True: golden_model = torchvision.models.resnet50(pretrained=True) resnet_converter = BFPConvertor(mantisa_bit, exp_bit) block_model, weight_exp_list = resnet_converter(golden_model, block_model, group, is_kl=False) else: if pretrained==True: model = torchvision.models.resnet50(pretrained=True) else: model = torchvision.models.resnet50() block_model = model #block_model = torch.nn.DataParallel(block_model).cuda() return block_model, weight_exp_list def resnet34(pretrained=False, bit_nmb=8, num_classes=1000, bfp=False, mantisa_bit=8, exp_bit=8, opt_exp_act_list=None): """ Constructs a ResNet34 model """ if (bfp): print ("Shape of exp list:", np.shape(opt_exp_act_list)) block_model = BlockResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, mantisa_bit=mantisa_bit, exp_bit=exp_bit, opt_exp_act_list=opt_exp_act_list) if pretrained==True: golden_model = torchvision.models.resnet34(pretrained=True) resnet_converter = BFPConvertor(mantisa_bit, exp_bit) block_model = resnet_converter(golden_model, block_model) else: if pretrained==True: model = torchvision.models.resnet34(pretrained=True) else: model = torchvision.models.resnet34() block_model = model return block_model if __name__ == "__main__": import os import time os.environ["CUDA_VISIBLE_DEVICES"] = '1' with torch.no_grad(): net, _ = resnet50() dev = "gpu" if dev == "cpu": inputs = torch.rand(1, 3, 224, 224) net.cpu() test_iter = 100 else: inputs = torch.rand(1, 3, 224, 224).cuda() net.cuda() test_iter = 10000 net.eval() start = time.time() for i in range(test_iter): outputs = net.forward(inputs) end = time.time() avg_time = ((end-start) * 1000) / test_iter print(avg_time, " ms") ``` #### File: Static_BFP_CNN/tests/utils_tests.py ```python import unittest from lib import Utils import torch import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) class Test_Utils(unittest.TestCase): def test_smooth_hist(self): test_tensor = torch.Tensor([[1, 2, 3, 4]]) test_hist = torch.histc(test_tensor, bins=5, min=0, max=4) #print("test_hist:", test_hist) test_hist = Utils.smooth_hist(test_hist, eps=0.5) golden_hist = torch.Tensor([0.5, 0.875, 0.875, 0.875, 0.875]) is_equal = torch.equal(test_hist, golden_hist) self.assertEqual(is_equal, True) def test_find_exp_KL(self): test_tensor = torch.Tensor([0, 1, 1, 3, 3, 3, 5, 5]) #test_tensor = torch.arange(25) #test_tensor = torch.reshape(test_tensor, (1, 5, 5)) test_tensor = test_tensor.float() test_exp = Utils.find_exp_KL(test_tensor, 8, 8, num_bins=6) golden_exp = torch.Tensor([5]) print(test_exp) is_equal = torch.equal(test_exp, golden_exp) self.assertEqual(is_equal, True) if __name__ == '__main__': unittest.main() ``` #### File: Static_BFP_CNN/tools/linear_quant_3d.py ```python from models import model_factory_3d from lib import Stat_Collector from lib import Utils from models import inceptionv4 from lib.dataset import VideoDataset #from models import bfp_modules # The Basic Library import argparse import os import logging import numpy as np import sys import copy import math import time logger = logging.getLogger() logger.setLevel(logging.INFO) # Other Required Library import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from tensorboardX import SummaryWriter import pretrainedmodels from torch.utils.data import DataLoader import random random.seed(666) torch.manual_seed(666) np.random.seed(666) writer = SummaryWriter("./tensorboard/statistics") modules_map = { "Linear" : nn.Linear, "BatchNorm3d" : nn.BatchNorm3d, "Conv3d" : nn.Conv3d } # Perform the Block Floting Quantization(BFP) on given model def bfp_quant(model_name, dataset_dir, num_classes, gpus, mantisa_bit, exp_bit, batch_size=1, num_bins=8001, eps=0.0001, num_workers=2, num_examples=10, std=None, mean=None, resize=256, crop=224, exp_act=None, bfp_act_chnl=1, bfp_weight_chnl=1, bfp_quant=1, target_module_list=None, act_bins_factor=3, fc_bins_factor=4, is_online=0): # Setting up gpu environment os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpus) # Setting up dataload for evaluation valdir = os.path.join(dataset_dir, 'val') normalize = transforms.Normalize(mean=mean, std=std) train_dataloader = DataLoader(VideoDataset(dataset='ucf101', split='train',clip_len=16, model_name=model_name), batch_size=batch_size, shuffle=True, num_workers=4) val_dataloader = DataLoader(VideoDataset(dataset='ucf101', split='val', clip_len=16, model_name=model_name), batch_size=num_examples, num_workers=4) test_dataloader = DataLoader(VideoDataset(dataset='ucf101', split='test', clip_len=16, model_name=model_name), batch_size=batch_size, num_workers=4) # # for collect intermediate data use # collect_loader = torch.utils.data.DataLoader( # datasets.ImageFolder(valdir, transforms.Compose([ # transforms.Resize(resize), # transforms.CenterCrop(crop), # transforms.ToTensor(), # normalize, # ])), # batch_size=num_examples, shuffle=False, # num_workers=num_workers, pin_memory=True) # # for validate the bfp model use # val_loader = torch.utils.data.DataLoader( # datasets.ImageFolder(valdir, transforms.Compose([ # transforms.Resize(resize), # transforms.CenterCrop(crop), # transforms.ToTensor(), # normalize, # ])), # batch_size=batch_size, shuffle=False, # num_workers=num_workers, pin_memory=True) exp_act_list = None lq_model, weight_exp_list = model_factory_3d.get_network(model_name, pretrained=True, bfp=(bfp_quant==1), group=bfp_weight_chnl, mantisa_bit=mantisa_bit, exp_bit=exp_bit, opt_exp_act_list=exp_act_list, is_online=is_online, exp_act=exp_act) lq_model.eval() lq_model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') lq_model.fuse_model() lq_model_prepared = torch.quantization.prepare_qat(lq_model) #torch.cuda.empty_cache() inpt_fp32 = torch.randn(1, 3, 16, 112, 112) lq_model_prepared(inpt_fp32) lq_model_8bit = torch.quantization.convert(lq_model_prepared) logging.info("Evaluating linear-quant model....") correct = 0 total = 0 lq_model_8bit.cuda() lq_model_8bit.eval() with torch.no_grad(): for i_batch, (images, lables) in enumerate(test_dataloader): images = images.cuda() outputs = lq_model_8bit(images) #outputs = model(images) probs = nn.Softmax(dim=1)(outputs) _, predicted = torch.max(probs, 1) predicted = predicted.cpu() total += lables.size(0) correct += (predicted == lables).sum().item() logging.info("Current images: %d" % (total)) #if (total > 2000): # break logging.info("Total: %d, Accuracy: %f " % (total, float(correct / total))) logging.info("Floating conv weight and fc(act and weight), act bins_factor is %d,fc bins_factor is %d, exp_opt for act is %s, act group is %d"%(act_bins_factor, fc_bins_factor, exp_act, bfp_act_chnl)) writer.close() if __name__ == '__main__': # Let's allow the user to pass the filename as an argument parser = argparse.ArgumentParser() parser.add_argument("--model_name", default="resnet34", type=str, required=True, help="Select the model for bfp quant now only support one of {resnet34,resnet50,resnet101,inceptionv4, mobilenetv2}") parser.add_argument("--dataset_dir", default="/dataset/", type=str, required=True, help="Dataset to evaluate the bfp_quantied model. Pls use absolute path point to the dataset") parser.add_argument("--mantisa_bit", default=8, required=True, type=int, help="The bitwidth of mantissa in block floating point representation") parser.add_argument("--exp_bit", default=8, required=True, type=int, help="The bitwidth of mantissa in block floating point representation") parser.add_argument("--batch_size", default=1, type=int, help="Batch size on each gpu when evaluation of bfp_quantied model") parser.add_argument("--num_bins", default=8001, type=int, help="Used to construct the histogram/distribution for intermidate results") parser.add_argument("--eps", default=0.0001, type=float, help="Used to smooth the histogram/distribution") parser.add_argument("--num_workers", default=2, type=int, help="Number of workers in data loader when evaluation of bfp_quantied model") parser.add_argument("--num_examples", default=10, type=int, help="Number of examples to collect internal outputs for bfp quant") parser.add_argument("--num_classes", default=1000, type=int, required=True, help="The number of classes when evaluation of bfp_quantied model") parser.add_argument("--gpus", default="0,1", type=str, required=True, help="GPUs id, separated by comma withougt space, for example: 0,1,2") parser.add_argument("--std", default="0.229,0.224,0.225", type=str, help="std values for image preprocessing") parser.add_argument("--mean", default="0.485,0.456,0.406", type=str, help="mean values for image preprocessing") parser.add_argument("--resize", default=256, type=int, help="The size of resized image, resize shoule be lager than crop") parser.add_argument("--crop", default=224, type=int, help="The size of cropped image, crop should be less than resize") parser.add_argument("--exp_act", default="kl", type=str, help="The way to determine the exponents in activation, suppor {max, kl}") parser.add_argument("--bfp_act_chnl", default=1, type=int, help="Number of channels per block in activation, -1 means whole") parser.add_argument("--bfp_weight_chnl", default=1, type=int, help="Number of channels per block in weight, -1 means whole") parser.add_argument("--bfp_quant", default=1, type=int, help="1 indicate using bfp model, 0 indicate using floating-point model") parser.add_argument("--hooks", default="Conv2d,Linear", type=str, help="The name of hooked nn modules, one of{BatchNorm2d,Linear,Conv2d}") parser.add_argument("--act_bins_factor", default=3, type=int, help="The bins_factor for constructing act histogram") parser.add_argument("--fc_bins_factor", default=3, type=int, help="The bins_factor for constructing act histogram") parser.add_argument("--is_online", default=0, type=int, help="Use online BFP quantization for benchmark") args = parser.parse_args() # Split the argument gpus = args.gpus.split(",") gpus_num = len(gpus) logging.info("totally {} gpus are using".format(gpus_num)) # String to float std_str = args.std.split(",") std = [] for std_v in std_str: std.append((float)(std_v)) mean_str = args.mean.split(",") mean = [] for mean_v in mean_str: mean.append((float)(mean_v)) target_module_list = [] hooks_str = args.hooks.split(",") for hook in hooks_str: target_module_list.append(modules_map[hook]) bfp_quant(model_name = args.model_name, dataset_dir = args.dataset_dir, num_classes = args.num_classes, gpus = gpus, mantisa_bit = args.mantisa_bit, exp_bit = args.exp_bit, num_bins = args.num_bins, eps = args.eps, batch_size = args.batch_size, num_workers = args.num_workers, num_examples = args.num_examples, std=std, mean=mean, resize=args.resize, crop=args.crop, exp_act=args.exp_act, bfp_act_chnl=args.bfp_act_chnl, bfp_weight_chnl=args.bfp_weight_chnl, bfp_quant=args.bfp_quant, target_module_list=target_module_list, act_bins_factor=args.act_bins_factor, fc_bins_factor=args.fc_bins_factor, is_online=args.is_online) ```
{ "source": "joshbenner/ansible-role-certbot", "score": 2 }
#### File: default/tests/test_default.py ```python import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('clients') def test_certbot_installed(host): file = host.file('/opt/certbot/certbot-auto') assert file.exists assert file.is_file assert file.user == 'root' assert file.mode == 0o755 def test_wrapper_installed(host): assert host.file('/usr/local/sbin/certbot').exists def test_cron_configured(host): file = host.file('/etc/cron.d/ansible-certbot') assert file.exists assert file.is_file assert 'certbot-auto' in file.content_string def test_cert_issued(host): file = host.file('/etc/certbot/live/mycert/cert.pem') assert file.exists def test_wildcard_issued(host): file = host.file('/etc/certbot/live/wildcard/cert.pem') assert file.exists ```
{ "source": "joshbenner/ansible-role-uchiwa", "score": 2 }
#### File: default/tests/test_default.py ```python import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_uchiwa_installed(host): assert host.package('uchiwa').is_installed def test_uchiwa_service(host): uchiwa = host.service('uchiwa') assert uchiwa.is_enabled assert uchiwa.is_running def test_uchiwa_listening(host): assert host.socket('tcp://0.0.0.0:3000').is_listening def test_uchiwa_config(host): config = host.file('/etc/sensu/uchiwa.json') assert config.exists assert config.is_file assert config.user == 'uchiwa' assert config.group == 'uchiwa' assert config.mode == 0o600 assert config.contains('"name": "Site 1"') ```
{ "source": "joshbenner/docker-ansible", "score": 2 }
#### File: default/tests/test_docker_ce.py ```python import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('docker-ce') def test_docker_engine_installed(host): assert host.package('docker-ce').is_installed def test_docker_engine_version(host): assert host.package('docker-ce').version.startswith('18.06') ```
{ "source": "joshbenner/imbi", "score": 2 }
#### File: imbi/endpoints/authentication_tokens.py ```python import re import uuid import ulid from tornado import web from . import base class RequestHandler(base.ValidatingRequestHandler): ENDPOINT = 'authentication-tokens' CREATE_SQL = re.sub(r'\s+', ' ', """ INSERT INTO v1.authentication_tokens (token, "name", username) VALUES (%(token)s, %(name)s, %(username)s) RETURNING username, token, "name", created_at, expires_at, last_used_at """) DELETE_SQL = re.sub(r'\s+', ' ', """ DELETE FROM v1.authentication_tokens WHERE username = %(username)s AND token = %(token)s""") GET_SQL = re.sub(r'\s+', ' ', """ SELECT token, "name", username, created_at, expires_at, last_used_at FROM v1.authentication_tokens WHERE username = %(username)s ORDER BY created_at""") async def delete(self, token): result = await self.postgres_execute(self.DELETE_SQL, { 'token': token, 'username': self.current_user.username }, 'delete-authentication-token') if not result.row_count: raise web.HTTPError(404, reason='Item not found') self.set_status(204, reason='Item Deleted') async def get(self): result = await self.postgres_execute( self.GET_SQL, {'username': self.current_user.username}, 'get-authentication-tokens') self.send_response(result.rows) async def post(self): values = self.get_request_body() values.update({ 'token': uuid.UUID(ulid.ULID().hex), 'username': self.current_user.username }) result = await self.postgres_execute( self.CREATE_SQL, values, 'create-authentication-token') self.send_response(result.row) ``` #### File: imbi/endpoints/base.py ```python import asyncio import datetime import logging import typing import uuid from email import utils import jsonpatch import problemdetails import sprockets_postgres as postgres from openapi_core.deserializing.exceptions import DeserializeError from openapi_core.schema.media_types.exceptions import InvalidContentType from openapi_core.templating.paths.exceptions import \ OperationNotFound, PathNotFound from openapi_core.unmarshalling.schemas.exceptions import ValidateError from openapi_core.validation.exceptions import InvalidSecurity from sprockets.http import mixins from sprockets.mixins import mediatype from tornado import httputil, web from imbi import session, user, version LOGGER = logging.getLogger(__name__) def require_permission(permission): """Decorator function for requiring a permission string for an endpoint :param str permission: The permission string to require :raises: problemdetails.Problem """ def _require_permission(f): def wrapped(self, *args, **kwargs): """Inner-wrapping of the decorator that performs the logic""" if not self._current_user or \ not self._current_user.has_permission(permission): if self._respond_with_html: return self.render( 'index.html', javascript_url=self.application.settings.get( 'javascript_url')) LOGGER.info('%r does not have the "%s" permission', self._current_user, permission) raise problemdetails.Problem( status_code=403, title='Unauthorized') return f(self, *args, **kwargs) return wrapped return _require_permission class RequestHandler(postgres.RequestHandlerMixin, mixins.ErrorLogger, problemdetails.ErrorWriter, mediatype.ContentMixin, web.RequestHandler): """Base RequestHandler class used for recipients and subscribers.""" APPLICATION_JSON = 'application/json' TEXT_HTML = 'text/html' NAME = 'Base' ITEM_NAME = '' def __init__(self, application, request: httputil.HTTPServerRequest, **kwargs): super().__init__(application, request, **kwargs) self.logger = logging.getLogger(f'imbi.endpoints.{self.NAME}') self.session: typing.Optional[session.Session] = None self._current_user: typing.Optional[user.User] = None self._links = {} async def prepare(self) -> None: """Prepare the request handler for the request. If the application is not ready return a ``503`` error. Checks for a session cookie and if present, loads the session into the current user and authenticates it. If authentication fails, the current user and cookie is cleared. """ if self.application.settings.get('javascript_url'): self.set_header('Access-Control-Allow-Origin', '*') if not self.application.ready_to_serve: return self.send_error(503, reason='Application not ready') self.session = session.Session(self) await self.session.initialize() self._current_user = await self.get_current_user() future = super().prepare() if asyncio.isfuture(future): await future def on_finish(self) -> None: """Invoked after a request has completed""" super().on_finish() metric_id = '{}.{}'.format(self.NAME, self.request.method) self.application.loop.add_callback( self.application.stats.incr, 'response.{}.{}'.format(metric_id, self.get_status())) self.application.loop.add_callback( self.application.stats.add_duration, 'request.{}.{}'.format(metric_id, self.get_status()), self.request.request_time()) def compute_etag(self) -> None: """Override Tornado's built-in ETag generation""" return None async def get_current_user(self) -> typing.Optional[user.User]: """Used by the system to manage authentication behaviors""" if self.session and self.session.user: return self.session.user token = self.request.headers.get('Private-Token', None) if token: current_user = user.User(self.application, token=token) if await current_user.authenticate(): return current_user def get_template_namespace(self) -> dict: """Returns a dictionary to be used as the default template namespace. The results of this method will be combined with additional defaults in the :mod:`tornado.template` module and keyword arguments to :meth:`~tornado.web.RequestHandler.render` or :meth:`~tornado.web.RequestHandler.render_string`. """ namespace = super(RequestHandler, self).get_template_namespace() namespace.update({'version': version}) return namespace def send_response(self, value: typing.Union[dict, list]) -> None: """Send the response to the client""" if 'self' not in self._links: self._add_self_link(self.request.path) self._add_link_header() if hasattr(self, 'TTL') and \ not self.request.headers.get('Pragma') == 'no-cache': self._add_response_caching_headers(self.TTL) super().send_response(value) def set_default_headers(self) -> None: """Override the default headers, setting the Server response header""" super().set_default_headers() self.set_header('Server', self.settings['server_header']) def write_error(self, status_code, **kwargs): if self._respond_with_html: return self.render( 'error.html', javascript_url=self.application.settings.get('javascript_url'), status_code=status_code, **kwargs) super().write_error(status_code, **kwargs) def _add_last_modified_header(self, value: datetime.datetime) -> None: """Add a RFC-822 formatted timestamp for the Last-Modified HTTP response header. """ if not value: return self.set_header('Last-Modified', self._rfc822_date(value)) def _add_link_header(self) -> None: """Takes the accumulated links and creates a link header value""" links = [] for rel, path in self._links.items(): links.append('<{}://{}{}>; rel="{}"'.format( self.request.protocol, self.request.host, path, rel)) if links: self.add_header('Link', ','.join(links)) def _add_self_link(self, path: str) -> None: """Adds the self Link response header""" self._links['self'] = path def _add_response_caching_headers(self, ttl: int) -> None: """Adds the cache response headers for the object being returned.""" self.add_header('Cache-Control', 'public, max-age={}'.format(ttl)) def _on_postgres_timing(self, metric_name: str, duration: float) -> None: """Invoked by sprockets-postgres after each query""" self.application.loop.add_callback( self.application.stats.add_duration, 'postgres.{}'.format(metric_name), duration) @property def _respond_with_html(self) -> bool: """Returns True if the current response should respond with HTML""" return self.get_response_content_type().startswith(self.TEXT_HTML) @staticmethod def _rfc822_date(value: datetime.datetime) -> str: """Return an RFC-822 formatted timestamp for the given value""" return utils.format_datetime(value) class AuthenticatedRequestHandler(RequestHandler): """RequestHandler base class for authenticated requests""" async def prepare(self) -> None: await super().prepare() if not self._current_user: if self._respond_with_html: return await self.render( 'index.html', javascript_url=self.application.settings.get( 'javascript_url')) self.set_status(401) await self.finish() class ValidatingRequestHandler(AuthenticatedRequestHandler): """Validates the request against the OpenAPI spec""" async def prepare(self) -> None: await super().prepare() try: self.application.validate_request(self.request) except DeserializeError as err: self.logger.warning('Request failed to deserialize: %s', err) raise problemdetails.Problem( status_code=400, title='Bad Request', detail=str(err)) except InvalidSecurity as err: self.logger.debug('Invalid OpenAPI spec security: %s', err) raise problemdetails.Problem( status_code=500, title='OpenAPI security error', detail=str(err)) except OperationNotFound as err: raise problemdetails.Problem( status_code=405, title='Method Not Allowed', detail=str(err)) except InvalidContentType as err: raise problemdetails.Problem( status_code=415, title='Unsupported Media Type', detail=str(err)) except PathNotFound as err: self.logger.error('OpenAPI Spec Error: %s', err) raise problemdetails.Problem( status_code=500, title='OpenAPI Spec Error', detail=str(err)) except ValidateError as err: self.logger.warning('Request failed to validate: %s', err) raise problemdetails.Problem( status_code=400, title='Bad Request', detail='The request did not validate', errors=[str(e).split('\n')[0] for e in err.schema_errors]) class CRUDRequestHandler(ValidatingRequestHandler): """CRUD request handler to reduce large amounts of duplicated code""" NAME = 'default' DEFAULTS = {} ID_KEY: typing.Union[str, list] = 'id' IS_COLLECTION = False FIELDS = None GET_NAME = None # Used to create link headers for POST requests TTL = 300 DELETE_SQL: typing.Optional[str] = None GET_SQL: typing.Optional[str] = None PATCH_SQL: typing.Optional[str] = None POST_SQL: typing.Optional[str] = None async def delete(self, *args, **kwargs): if self.DELETE_SQL is None: self.logger.debug('DELETE_SQL not defined') raise problemdetails.Problem( status_code=405, title='Not Implemented') await self._delete(kwargs) async def get(self, *args, **kwargs): if self.GET_SQL is None: self.logger.debug('GET_SQL not defined') raise problemdetails.Problem( status_code=405, title='Not Implemented') if self._respond_with_html: return self.render( 'index.html', javascript_url=self.application.settings.get('javascript_url')) await self._get(kwargs) async def patch(self, *args, **kwargs): if self.PATCH_SQL is None: self.logger.debug('PATCH_SQL not defined') raise problemdetails.Problem( status_code=405, title='Not Implemented') await self._patch(kwargs) async def post(self, *args, **kwargs): if self.POST_SQL is None: self.logger.debug('POST_SQL not defined') raise problemdetails.Problem( status_code=405, title='Not Implemented') await self._post(kwargs) def send_response(self, value: typing.Union[dict, list]) -> None: """Send the response to the client""" if isinstance(value, list): return super().send_response(value) if not (self.request.method == 'GET' and self.IS_COLLECTION): self._add_last_modified_header( value.get('last_modified_at', value.get('created_at'))) for key in {'created_at', 'last_modified_at'}: if key in value: del value[key] if self.ID_KEY: if isinstance(self.ID_KEY, list): args = [str(value[k]) for k in self.ID_KEY] else: args = [str(value[self.ID_KEY])] try: self._add_self_link( self.reverse_url(self.ITEM_NAME or self.NAME, *args)) except (AssertionError, KeyError): self.logger.debug('Failed to reverse URL for %s %r', self.NAME, args) self._add_link_header() super().send_response(value) async def _delete(self, kwargs): result = await self.postgres_execute( self.DELETE_SQL, self._get_query_kwargs(kwargs), 'delete-{}'.format(self.NAME)) if not result.row_count: raise problemdetails.Problem( status_code=404, title='Item not found') self.set_status(204, reason='Item Deleted') async def _get(self, kwargs): result = await self.postgres_execute( self.GET_SQL, self._get_query_kwargs(kwargs), 'get-{}'.format(self.NAME)) if not result.row_count or not result.row: raise problemdetails.Problem( status_code=404, title='Item not found') for key, value in result.row.items(): if isinstance(value, uuid.UUID): result.row[key] = str(value) self.send_response(result.row) def _get_query_kwargs(self, kwargs) -> dict: if isinstance(self.ID_KEY, list): return {k: kwargs[k] for k in self.ID_KEY} return {self.ID_KEY: kwargs[self.ID_KEY]} async def _patch(self, kwargs): patch_value = self.get_request_body() result = await self.postgres_execute( self.GET_SQL, self._get_query_kwargs(kwargs), 'get-{}'.format(self.NAME)) if not result.row_count: raise problemdetails.Problem( status_code=404, title='Item not found') original = dict(result.row) for key in {'created_at', 'created_by', 'last_modified_at', 'last_modified_by'}: del original[key] for key, value in original.items(): if isinstance(value, uuid.UUID): original[key] = str(value) # Apply the patch to the current value patch = jsonpatch.JsonPatch(patch_value) updated = patch.apply(original) # Bail early if there are no changes if not {k: original[k] for k in original if k in updated and original[k] != updated[k]}: self._add_self_link(self.request.path) self._add_link_header() return self.set_status(304) if isinstance(self.ID_KEY, list): for key in self.ID_KEY: updated['current_{}'.format(key)] = kwargs[key] else: updated['current_{}'.format(self.ID_KEY)] = kwargs[self.ID_KEY] updated['username'] = self._current_user.username result = await self.postgres_execute( self.PATCH_SQL, updated, 'patch-{}'.format(self.NAME)) if not result.row_count: raise problemdetails.Problem( status_code=500, title='Failed to update record') # Send the new record as a response await self._get(self._get_query_kwargs(updated)) async def _post(self, kwargs) -> None: values = self.get_request_body() # Handle compound keys for child object CRUD if isinstance(self.ID_KEY, list): for key in self.ID_KEY: if key not in values and key in kwargs: values[key] = kwargs[key] elif self.ID_KEY not in values and self.ID_KEY in kwargs: values[self.ID_KEY] = kwargs[self.ID_KEY] # Set defaults of None for all fields in insert for name in self.FIELDS: if name not in values: values[name] = self.DEFAULTS.get(name) values['username'] = self._current_user.username result = await self.postgres_execute( self.POST_SQL, values, 'post-{}'.format(self.NAME)) if not result.row_count: self.logger.debug('No rows returned') raise problemdetails.Problem( status_code=500, title='Failed to create record') # Return the record as if it were a GET await self._get(self._get_query_kwargs(result.row)) class CollectionRequestHandler(CRUDRequestHandler): DEFAULTS = {} ID_KEY: typing.Union[str, list] = 'id' IS_COLLECTION: True FIELDS = None GET_NAME = None # Used to create link headers for POST requests COLLECTION_SQL = """SELECT * FROM pg_tables WHERE schemaname = 'v1';""" TTL = 300 async def get(self, *args, **kwargs): result = await self.postgres_execute( self.COLLECTION_SQL, kwargs, metric_name='get-{}'.format(self.NAME)) self.send_response(result.rows) class AdminCRUDRequestHandler(CRUDRequestHandler): @require_permission('admin') async def delete(self, *args, **kwargs): await super().delete(*args, **kwargs) @require_permission('admin') async def get(self, *args, **kwargs): await super().get(*args, **kwargs) @require_permission('admin') async def patch(self, *args, **kwargs): await super().patch(*args, **kwargs) @require_permission('admin') async def post(self, *args, **kwargs): await super().post(*args, **kwargs) ``` #### File: imbi/endpoints/metrics.py ```python import datetime import isodate from sprockets.mixins import mediatype from tornado import web class RequestHandler(mediatype.ContentMixin, web.RequestHandler): """Returns internal metrics""" ENDPOINT = 'metrics' async def get(self): """Tornado RequestHandler GET request endpoint for reporting status""" prune = self.get_argument('flush', 'false') == 'true' self.send_response({ 'counters': await self.application.stats.counters(prune), 'durations': await self.application.stats.durations(prune), 'postgres': await self.application.postgres_status(), 'uptime': isodate.duration_isoformat( datetime.datetime.now(datetime.timezone.utc) - self.application.started_at)}) def set_default_headers(self) -> None: """Override the default headers, setting the Server response header""" super().set_default_headers() self.set_header('Server', self.settings['server_header']) ``` #### File: imbi/endpoints/permissions.py ```python from . import base class RequestHandler(base.AuthenticatedRequestHandler): NAME = 'permissions' @base.require_permission('admin') async def get(self): self.send_response(list(self.settings['permissions'])) ``` #### File: imbi/endpoints/ui.py ```python from imbi.endpoints import base class IndexRequestHandler(base.RequestHandler): ENDPOINT = 'ui-index' def get(self, *args, **kwargs): if self.request.path == '/': return self.redirect('/ui/') self.render( 'index.html', javascript_url=self.application.settings.get('javascript_url')) class LoginRequestHandler(base.RequestHandler): ENDPOINT = 'ui-login' async def post(self, *args, **kwargs): body = self.get_request_body() if not await self.session.authenticate( body.get('username'), body.get('password')): self.logger.debug('Session failed to authenticate') self.set_status(401) self.send_response({'message': 'Authentication Failure'}) return await self.session.save() self.set_status(200) self.send_response(self.session.user.as_dict()) class LogoutRequestHandler(base.RequestHandler): ENDPOINT = 'ui-logout' async def get(self, *args, **kwargs): await self.session.clear() self.send_response({'loggedOut': True}) class GroupsRequestHandler(base.CRUDRequestHandler): ENDPOINT = 'ui-groups' GET_SQL = 'SELECT name FROM v1.groups ORDER BY name ASC;' TTL = 300 class UserRequestHandler(base.AuthenticatedRequestHandler): ENDPOINT = 'ui-user' def get(self, *args, **kwargs): user = self.current_user.as_dict() del user['password'] self.send_response(user) ``` #### File: tests/endpoints/test_status.py ```python from tests import base class AsyncHTTPTestCase(base.TestCase): def test_status_ok(self): response = self.fetch('/status', headers=self.headers) self.assertEqual(response.code, 200) self.validate_response(response) def test_status_error(self): self._app._ready_to_serve = False response = self.fetch('/status', headers=self.headers) self.assertEqual(response.code, 503) self.validate_response(response) ```
{ "source": "joshbenner/pytagonist", "score": 2 }
#### File: joshbenner/pytagonist/setup.py ```python import os from setuptools import setup from setuptools.command.sdist import sdist from setuptools.command.develop import develop from distutils.command.build import build from distutils import log from subprocess import call SETUP_PATH = os.path.dirname(os.path.abspath(__file__)) DRAFTER_PATH = os.path.join(SETUP_PATH, 'drafter') def build_drafter(): log.info('Building drafter') code = call(['make', 'drafter'], cwd=DRAFTER_PATH) if code != 0: raise RuntimeError('Cannot build drafter library') class Build(build): """ Custom builder that runs drafter Makefile instead of build_clib. This is to avoid having to reproduce all the build configurations of drafter (and its dependencies). """ def run(self): build_drafter() build.run(self) class Develop(develop): """ Custom develop-mode builder that runs Makefile. """ def run(self): build_drafter() develop.run(self) class SourceDistribution(sdist): """ Custom source distribution prep that makes sure we don't mistakenly include build output in the source distribution. While MANIFEST.in can do this, keeping the MANIFEST.in up-to-date is much more difficult than just asking the dependencies to clean themselves first. """ def run(self): log.info('Cleaning drafter') code = call(['make', 'distclean'], cwd=DRAFTER_PATH) if code != 0: raise RuntimeError('Cannot clean drafter library') sdist.run(self) setup( name='pytagonist', setup_requires=['setuptools_scm', 'cffi>=1.0.0,<2.0.0'], use_scm_version=True, cmdclass={ 'build': Build, 'develop': Develop, 'sdist': SourceDistribution }, py_modules=['pytagonist'], url='https://github.com/joshbenner/pytagonist', license='MIT', author='<NAME>', author_email='<EMAIL>', description='Wrapper for Drafter library, a C parser for APIBlueprint.', install_requires=[ 'cffi>=1.0.0,<2.0.0' ], cffi_modules=[ './build_drafter.py:ffibuilder' ], extras_require={ 'test': ['pytest'] }, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Topic :: Documentation', 'Topic :: Text Processing :: Markup' ] ) ```
{ "source": "joshbenner/python-refract", "score": 2 }
#### File: python-refract/tests/test_member.py ```python import pytest from refract import MemberElement, Namespace def test_member_native_value(): me = MemberElement(('foo', 'bar'), namespace=Namespace()) assert me.native_value == {'key': 'foo', 'value': 'bar'} def test_member_bad_set_content(): with pytest.raises(ValueError): MemberElement(('foo',)) def test_member_direct_from_refract(): with pytest.raises(NotImplementedError): MemberElement.from_refract({}, Namespace()) ``` #### File: python-refract/tests/test_namespace.py ```python import pytest from refract.namespace import Namespace, ElementClassNotFound from refract.elements import * def test_namespace_default(): n = Namespace() assert len(n.element_classes) > 0 assert isinstance(n.element(1), NumberElement) def test_namespace_register(): n = Namespace() class FooElement(Element): element = 'foo' n.register_element_class(FooElement) assert n.element_classes['foo'] == FooElement def test_namespace_register_rename(): n = Namespace() class FooElement(Element): element = 'foo' n.register_element_class(FooElement, name='bar') assert n.element_classes['bar'] == FooElement assert 'foo' not in n.element_classes def test_namespace_detect(): n = Namespace() class Foo(object): pass class FooElement(Element): element = 'foo' n.register_element_class(FooElement) n.add_detection(lambda v: isinstance(v, Foo), FooElement) assert n.detected_element_class(Foo()) == FooElement def test_namespace_detect_prepend(): n = Namespace() class FooElement(Element): element = 'foo' n.add_detection(lambda v: v is None, FooElement, prepend=True) assert n.detected_element_class(None) == FooElement def test_namespace_unregister(): n = Namespace() n.unregister_element_class('null') assert 'null' not in n.element_classes def test_namespace_element_not_detected(): n = Namespace(no_defaults=True) with pytest.raises(ElementClassNotFound): n.detected_element_class('foo') ``` #### File: python-refract/tests/test_string.py ```python import pytest from refract import StringElement def test_string_element_name(): assert StringElement().element == 'string' def test_string_default_value(): assert StringElement().native_value == '' def test_string_require_type(): with pytest.raises(ValueError): StringElement(5) def test_string_length(): assert StringElement('foo').length == 3 ```
{ "source": "joshbenner/sensu-ansible-role", "score": 2 }
#### File: default/tests/test_default.py ```python import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_packages(host): package = host.package('sensu') assert package.is_installed assert '1.7.0' in package.version def test_dir_ownership(host): assert host.file('/opt/sensu').group == 'sensu' def test_main_config(host): f = host.file('/etc/sensu/config.json') assert f.exists assert f.is_file assert f.user == 'sensu' assert f.group == 'sensu' assert f.mode == 0o600 assert f.contains('rabbitmq') assert f.contains('check-cpu.rb') assert f.contains('"foo": "bar"') assert f.contains('example_subscription') assert f.contains('"zip": "zap"') assert not f.contains('subscription_to_be_overridden') def test_server_running(host): server = host.service('sensu-server') assert server.is_running assert server.is_enabled def test_api_running(host): api = host.service('sensu-api') assert api.is_running assert api.is_enabled def test_client_running(host): client = host.service('sensu-client') assert client.is_running assert client.is_enabled def test_api_listening(host): assert host.socket('tcp://0.0.0.0:4567').is_listening def test_plugin_installed(host): assert host.file('/opt/sensu/embedded/bin/check-memory.rb').exists # Tests extension install/enable def test_snmp_listening(host): assert host.socket('udp://0.0.0.0:1062').is_listening ```
{ "source": "joshberry911/terraplanfeed", "score": 3 }
#### File: terraplanfeed/terraplanfeed/stdout.py ```python import logging import sys logger = logging.getLogger(__name__) ACTION_SYMBOLS = { "no-op": "👍", "create": "✨", "read": "📖", "update": "📝", "replace": "🚧", "delete": "🛑", } ACTION_TEXT = { "no-op": ".", "create": "+", "read": "r", "update": "U", "replace": "R", "delete": "X", } HEADER_CHANGES = """ **Terraform Plan changes summary:** =================================== """ HEADER_DRIFT = """ **Terraform Plan drift summary:** =================================== """ FOOTER = """ """ def getAction(actions, textonly): """ Get action Args: actions(list): list of actions textonly(bool): disable emoji Returns: action symbol """ logger.debug("get action") lookup = ACTION_TEXT if textonly else ACTION_SYMBOLS if "create" in actions and len(actions) > 1: return lookup["replace"] else: return lookup[actions[0]] def parseChanges(changes, textonly, drift): """ Parse changes. Args: changes(list): list of resources dict textonly(bool): disable emoji Returns: Multiline string with summary of changes """ content = "" logger.debug("parsing changes...") for c in changes: action = getAction(c["actions"], textonly) message = "({action}): {name} ({address})".format( action=action, name=c["name"], address=c["address"] ) content += message + "\n" return content def write(content, drift): """ Writes summary of changes to stdout. Args: content(str): multiline string drift(bool): flag denoting drift mode """ logger.debug("write to stdout") if drift: print(HEADER_DRIFT) else: print(HEADER_CHANGES) print(content) print(FOOTER) def detexit(content): """ Exit with detailed exit codes Args: content(str): multiline string """ logger.debug("exit") if content != "No changes": sys.exit(2) else: sys.exit(0) def generate_stdout(changes, textonly=False, drift=False, detailed_exitcode=False): """ Entrypoint for stdout output driver. Args: changes(list): list of resources dict textonly(bool): disable emoji drift(bool): enable drift mode detailed_exitcode(bool): enable detailed exit codes """ logger.debug("stdout entrypoint") if not changes: content = "No changes" else: content = parseChanges(changes, textonly, drift) write(content, drift) if detailed_exitcode: detexit(content) ```
{ "source": "joshbickett/makememe_ai", "score": 3 }
#### File: generator/nlp/gpt.py ```python import requests, json with open("/etc/make_meme/config.json") as config_file: config = json.load(config_file) class GPT: @staticmethod def completion_request(prompt, user_id): d_url = "https://api.openai.com/v1/engines/davinci/completions" payload = { "prompt": prompt, "stop": "###", "temperature": 0.7, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, "best_of": 1, "max_tokens": 50, "user": f"user_id", } headers = { "Content-Type": "application/json", "Authorization": f'Bearer {config["OPEN_AI_KEY"]}', } response = requests.post(d_url, data=json.dumps(payload), headers=headers) response = response.json() return response @staticmethod def search_request(documents, query, user_id): d_url = "https://api.openai.com/v1/engines/babbage/search" payload = { "documents": documents, "query": query, "user": f"user_id", } headers = { "Content-Type": "application/json", "Authorization": f'Bearer {config["OPEN_AI_KEY"]}', } response = requests.post(d_url, data=json.dumps(payload), headers=headers) response = response.json() return response def content_filter(prompt, user_id): wrapped_prompt = "<|endoftext|>" + prompt + "\n--\nLabel:" # print(f'wrapped_prompt: {wrapped_prompt}') d_url = "https://api.openai.com/v1/engines/content-filter-alpha-c4/completions" payload = { "prompt": wrapped_prompt, "temperature": 0, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, "best_of": 1, "max_tokens": 1, "logprobs": 10, "user": f"user_id", } headers = { "Content-Type": "application/json", "Authorization": f'Bearer {config["OPEN_AI_KEY"]}', } response = requests.post(d_url, data=json.dumps(payload), headers=headers) response = response.json() return response ``` #### File: prompts/types/accurate_depiction.py ```python from makememe.generator.prompts.prompt import Prompt import datetime from PIL import Image from makememe.generator.design.image_manager import Image_Manager class Accurate_Depiction(Prompt): name = "Accurate_Depiction" description = "accurate depiction" def __init__(self): self.instruction = """ ### Message:They told me I am too interested in crypto currencies and they couldn't be more right Meme:{"depiction":"You are too interested in crypto currencies"} ### Message:I had a fortune cookie tell me I code too much and It is so correct. Meme:{"depiction":"You code too much"} ### Message:You want to hear an accurate depiction. I am not running enough. Meme:{"depiction":"You are not running enough"} ### Message:They don't go outside enough. They need to get some sunlight. It's the truth Meme:{"depiction":"They need to go outside more"} ### Message:Humans making memes ok, AI making memes awesome. Meme:{"depiction":"You want AI making memes"} ### Message:Make a meme with strong and weak doggo comparing two types of pots Meme:{"depiction":"strong and weak doggo comparing two types of pots"} ### Message:Too much coffee Meme:{"depiction":"You drink too much coffee"} ### """ def create(self, meme_text): with Image.open(f"makememe/static/meme_pics/{self.name.lower()}.jpg").convert( "RGBA" ) as base: overlay_image = Image_Manager.add_text( base=base, text=meme_text["depiction"], position=(275, 760), font_size=30, wrapped_width=25, rotate_degrees=350, ) watermark = Image_Manager.add_text( base=base, text="makememe.ai", position=(10, 1150), font_size=20 ) base = Image.alpha_composite(base, watermark) out = Image.alpha_composite(base, overlay_image) if out.mode in ("RGBA", "P"): out = out.convert("RGB") date = datetime.datetime.now() image_name = f"{date}.jpg" file_location = f"makememe/static/creations/{image_name}" out.save(file_location) return image_name ``` #### File: prompts/types/waiting.py ```python from makememe.generator.prompts.prompt import Prompt import datetime from PIL import Image from makememe.generator.design.image_manager import Image_Manager class Waiting(Prompt): name = "Waiting" description = "waiting" def __init__(self): self.instruction = """ ### Message:I've been waiting for SpaceX to launch the starship for ever Meme:{"subject": "SpaceX Startship"} ### Message:I can't wait for makememe.ai to launch, but it's taking a little while Meme:{"subject": "makememe.ai"} ### Message:Drakes new album is going to be fire. Why do I have to wait Meme:{"subject": "Drakes new album"} ### Message:I want to create an NFT, but opensea.com is taking a while to load Meme:{"subject": "opensea.com"} ### """ def create(self, meme_text): with Image.open(f"makememe/static/meme_pics/{self.name.lower()}.jpg").convert( "RGBA" ) as base: overlay_image = Image_Manager.add_text( base=base, text=meme_text["subject"], position=(600, 950), font_size=40, wrapped_width=20, ) watermark = Image_Manager.add_text( base=base, text="makememe.ai", position=(30, 1100), font_size=20 ) base = Image.alpha_composite(base, watermark) out = Image.alpha_composite(base, overlay_image) if out.mode in ("RGBA", "P"): out = out.convert("RGB") # User.objects.filter() date = datetime.datetime.now() image_name = f"{date}.jpg" file_location = f"makememe/static/creations/{image_name}" out.save(file_location) return image_name ``` #### File: makememe_ai/makememe/models.py ```python from datetime import datetime from makememe import db, login_manager from flask_login import UserMixin @login_manager.user_loader def load_user(user_id): return Users.query.get(int(user_id)) class Users(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, nullable=False) email = db.Column(db.String(120), unique=True, nullable=False) image_file = db.Column(db.String(20), nullable=False, default="default.jpg") password = db.Column(db.String(60), nullable=False) is_beta = db.Column(db.Boolean, default=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) posts = db.relationship("Post", backref="author", lazy=True) memes = db.relationship("Meme", backref="creator", lazy=True) feedback = db.relationship("Feedback", backref="author", lazy=True) def __repr__(self): return f"User('{self.username}', '{self.email}', '{self.image_file}')" class Post(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100), nullable=False) date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) content = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) def __repr__(self): return f"Post('{self.title}', '{self.date_posted}')" class Meme(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(200), nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) text_input = db.Column(db.Text, nullable=False) nlp_output = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) def __repr__(self): return f"Meme('{self.title}', '{self.date_created}')" class Feedback(db.Model): id = db.Column(db.Integer, primary_key=True) description = db.Column(db.String(1000), nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) user_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) def __repr__(self): return f"Feedback('{self.description}', '{self.date_created}')" ```
{ "source": "joshbj360/Softwork", "score": 2 }
#### File: apps/business/models.py ```python from django.contrib.auth import get_user_model from django.contrib.contenttypes.fields import GenericForeignKey, GenericRelation from django.contrib.contenttypes.models import ContentType from django.db import models from django.db.models.fields import NullBooleanField from django.utils.text import format_lazy from django.utils.translation import gettext_lazy as _ from softwork.apps.authme.models import User class ServiceTag(models.Model): tag = models.SlugField() content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE) object_id = models.PositiveIntegerField() content_object = GenericForeignKey('content_type', 'object_id') def __str__(self): return self.tag class Service(models.Model): # One cannot delete the business profile except the Business owner is deleted service_name = models.CharField(max_length=255) price = models.PositiveIntegerField(_("Price starting at:"), default=0) price_negotiable = models.BooleanField(_("Price is Negotiable?"), default=False) years_of_experience = models.IntegerField(_("Select you years of experience on the job")) tags = GenericRelation(ServiceTag) business_services = GenericRelation( 'BusinessService', 'service_object_id', 'service_content_type_id', related_query_name='services', ) def __str__(self): return self.service_name class BusinessAddress(models.Model): country = models.CharField(max_length=255, blank=True, null=True) state = models.CharField(max_length=255, blank=True, null=True) LGA = models.CharField(max_length=255, blank=True, null=True) postal_code = models.IntegerField(blank=True, null=True) street_name = models.CharField(max_length=255, blank=True, null=True) building_number = models.IntegerField(blank=True, null=True) address = models.TextField(_("Full Address")) business_gps_coordinates = models.FloatField(_("Find the exact business location")) business_is_verified = models.BooleanField(default=False) def get_full_address(self): return "No. {0} {1} {2} {3} State".format(self.building_number, self.street, self.LGA, self.state) class BusinessProfile(BusinessAddress): owner = models.OneToOneField( get_user_model(), primary_key=True, on_delete=models.CASCADE, ) business_name = models.CharField(max_length=255, ) business_motto = models.CharField(max_length=255) business_description = models.TextField(blank=True, null=True) business_logo = models.ImageField(blank=True, null=True) business_header_image = models.ImageField(blank=True, null=True) business_industry_tags = models.CharField(max_length=255, blank=True, null=True) class Meta: ordering = ['business_name'] def __str__(self): return self.business_name def add_business_service(self, service) -> 'BusinessService': service_content_type = ContentType.objects.get_for_model(service) return BusinessService.objects.create( business=self, service_content_type=service_content_type, service_object_id=service.pk, ) class BusinessService(models.Model): business = models.ForeignKey( BusinessProfile, verbose_name=_("Name of Business"), on_delete=models.CASCADE, related_name='services', ) service_object_id = models.IntegerField() service_content_type = models.ForeignKey( ContentType, on_delete=models.PROTECT, ) service = GenericForeignKey( 'service_content_type', 'service_object_id', ) def __str__(self): return self.service.service_name ```
{ "source": "JoshBlake/libfreenect", "score": 2 }
#### File: c/python/demo_cv_depth_show.py ```python from freenect import * import cv import numpy as np cv.NamedWindow('Depth') def display(dev, data, timestamp): data -= np.min(data.ravel()) data *= 65536 / np.max(data.ravel()) image = cv.CreateImageHeader((data.shape[1], data.shape[0]), cv.IPL_DEPTH_16U, 1) cv.SetData(image, data.tostring(), data.dtype.itemsize * data.shape[1]) cv.ShowImage('Depth', image) cv.WaitKey(5) runloop(depth=depth_cb_np_factory(display)) ```
{ "source": "joshblum/chronology", "score": 2 }
#### File: analytics_tools/aggregates/analysis.py ```python from pykronos.common.event_tools import get_property from pykronos.client import TIMESTAMP_FIELD from pykronos.common.time import kronos_time_to_epoch_time def aggregate_stream(events, aggregator_class, field, bucket_width): current_bucket, aggregator = None, None emitted = False for event in events: timestamp = kronos_time_to_epoch_time(event[TIMESTAMP_FIELD]) bucket = timestamp - (timestamp % bucket_width) if bucket != current_bucket: if current_bucket is not None: yield current_bucket, aggregator.aggregate() emitted = True current_bucket = bucket aggregator = aggregator_class() emitted = False aggregator.update(get_property(event, field)) if not emitted and current_bucket and aggregator: yield current_bucket, aggregator.aggregate() ``` #### File: analytics_tools/funnels/analysis.py ```python import logging from datetime import timedelta from pykronos.common.event_tools import get_property from pykronos.client import TIMESTAMP_FIELD from pykronos.common.time import datetime_to_kronos_time from pykronos.common.time import timedelta_to_kronos_time from pykronos.common.time import EPOCH log = logging.getLogger(__name__) EARLIEST_TIME = datetime_to_kronos_time(EPOCH) class FilterCache(object): def __init__(self, a_filter): self._filter = a_filter self._filter_results = {} def _caching_filter(self, key): if self._filter: result = self._filter_results.get(key, None) if result is None: result = self._filter(key) self._filter_results[key] = result return result else: return True def get(self, key): return EARLIEST_TIME if self._caching_filter(key) else None class IdentityDict(object): def __getitem__(self, key): return key def get(self, key): return key class FunnelStep(object): """ Data structure for funnel step properties. """ def __init__(self, stream_name, event_filter=None, user_field='userId', output_fields=None, invert=False): """ :param stream_name: Kronos stream name :param event_filter: a function that returns True/False depending on whether an event on the stream should be considered (for segmentation, for instance). If the event filter is None, all events will be accepted. :param user_field: name of the field in an event that returns the user identifier. Defaults to 'userId'. :param output_fields: fields in event to output. :param invert: boolean. If true, include all users from the previous step that do NOT appear in the current event stream or are not filtered by `event_filter`. Example: If the stream_name is 'clicked_tab' and the event_filter is all Essential accounts, if invert is True, users counted in this step of the funnel are those from the previous step that are not in 'clicked_tab' stream or are not Essential accounts. The first funnel step can not have invert=True. If invert=True, an exception is raised. """ self.stream_name = stream_name self.event_filter = event_filter self.user_field = user_field self.output_fields = output_fields self.invert = invert class FunnelOutput(object): """ Data structure for storing the output of the funnel. """ def __init__(self): self.step_output = [] def add(self, step): self.step_output.append(step) def stream_sizes(self): """ Returns size of each funnel step in a list. """ return [len(s['user_action']) for s in self.step_output] def user_ids(self): """ Returns list of user ids at each funnel in a list. """ return [s['user_action'].keys() for s in self.step_output] def stream_data(self): """ Returns output data of each funnel step in a list. Each list element is a dictionary with user id as the key. The value for each key is a dictionary with the requested output properties for that funnel step as the keys, the values of the properties as the values. """ return [s['stream_data'] for s in self.step_output] def _stream_earliest_action(client, stream, start, end, fuzzy_time, last_user_action, user_id_mappings): """ Find users who advance to this step of the funnel. :returns: dictionary with user_action and stream_data. user_action is a dictionary of user ids and time of last action. This is for determining if events in subsequent streams occur after the current stream. stream_data is a dictionary of user ids and dictionary of output properties as specified in stream.output_fields. """ events = client.get(stream.stream_name, start, end) user_action = {} stream_data = {} for idx, event in enumerate(events): if idx % 10000 == 0: log.debug('...processed', idx, 'events') if stream.event_filter and not stream.event_filter(event): continue try: user = user_id_mappings[stream.user_field].get(event[stream.user_field]) except: log.error('Unable to get field %s on %s from %s', stream.user_field, stream.stream_name, event) last_time = last_user_action.get(user) event_time = event[TIMESTAMP_FIELD] # If we've seen an action from this user in the last stream, and # if they performed an action on the current stream (fuzzily) # after their last action, update their current user action time. if (user is not None and last_time is not None and ((last_time - fuzzy_time) < event_time)): user_action[user] = min(user_action.get(user, event_time), event_time) if stream.output_fields and not stream.invert: event_fields = {} for field in stream.output_fields: try: event_fields[field] = get_property(event, field) except KeyError: log.warn('Field %s does not appear in stream %s', field, stream.stream_name) stream_data[user] = event_fields # If stream results should be inverted, include all users that are NOT in # user_action, and use their timestamp from the previous step as the timestamp # of the current step. We can not use the timestamp for this stream, since they # may not have an event in this stream. if stream.invert: inverted_user_action = {} for user, timestamp in last_user_action.iteritems(): if user not in user_action: inverted_user_action[user] = timestamp return {'user_action': inverted_user_action, 'stream_data': {}} else: return {'user_action': user_action, 'stream_data': stream_data} def _load_user_id_mappings(mappings, user_id_mappers, user_ids): for mapping, getter in user_id_mappers.iteritems(): log.debug('...loading mapping for %s', mapping) the_dict = mappings[mapping] = {} for user_id in user_ids: new_id = getter(user_id) if new_id: the_dict[new_id] = user_id def _sanity_check_args(streams, user_id_mappers): assert len(streams) > 1 # Must have more than one stream for funnel analysis. assert streams[0].invert == False # Can't handle invert=True in first stream. for stream in streams: if stream.invert: # If invert is true, can not specify output fields. assert not stream.output_fields first_stream_user_id = streams[0].user_field required_mappings = ({stream.user_field for stream in streams} - {first_stream_user_id}) # Filter down mappings to only the ones we'll need to execute here. user_id_mappers = {required: user_id_mappers[required] for required in required_mappings} return streams, user_id_mappers def funnel_analyze(client, streams, start, end, end_first_funnel_step, user_id_mappers, user_filter, fuzzy_time=timedelta(minutes=5)): """ `streams`: a list of FunnelStep objects, each representing a step in the funnel. The funnel is composed from these objects. `start`/`end`: the start and end datetimes to analyze. `end_first_funnel_step`: the end time of the first funnel step. You sometimes want this to be earlier than the rest of the other steps so you can study how a cohort takes certain actions down the line. `user_id_mappers`: a dictionary of the form {user_id_field: user_id_mapping_function}. A user_id_field entry should exist for any user_id fieldname of `streams` subsequent to the first stream in the funnel. For example, if `streams` is: [(s1, f1, 'userId'), (s2, f2, 'userId'), (s3, f3, 'username')], then user_id_mappings should be: {'username': function_from_userId_to_username(userId)} `user_filter`: a function that returns True/False depending on whether an event from a user should be considered (for segmentation, for instance). If user_filter is None, all users will be accepted. `fuzzy_time`: a timedelta representing the time that two events in subsequent streams can be out-of-order with one-another. """ assert end >= end_first_funnel_step streams, user_id_mappers = _sanity_check_args(streams, user_id_mappers) last_user_action = FilterCache(user_filter) fuzzy_time = timedelta_to_kronos_time(fuzzy_time) funnel_output = FunnelOutput() user_id_mappings = {} for idx, stream in enumerate(streams): log.debug('Processing stream', stream.stream_name) step_end = end if idx == 0: user_id_mappings[stream.user_field] = IdentityDict() step_end = end_first_funnel_step output = _stream_earliest_action( client, stream, start, step_end, fuzzy_time, last_user_action, user_id_mappings) funnel_output.add(output) last_user_action = output['user_action'] # For the first stream in the funnel, load the mappings to other # user_id formats we'll find in subsequent streams. if idx == 0: log.debug('Loading user_id mappings') _load_user_id_mappings(user_id_mappings, user_id_mappers, last_user_action) return funnel_output ``` #### File: analytics_tools/scripts/stream_comparator.py ```python import argparse import hashlib import itertools import json import logging import random import sys from dateutil.parser import parse from pykronos import KronosClient from pykronos import ID_FIELD from pykronos import TIMESTAMP_FIELD from pykronos.common.time import epoch_time_to_kronos_time from pykronos.common.time import datetime_to_kronos_time log = logging.getLogger(__name__) def get_next(events): try: return events.next() except StopIteration: return None def push_back(event, iterator): return itertools.chain([event], iterator) def main(args): client1 = KronosClient(args.kronos_url1, namespace=args.namespace1) client2 = KronosClient(args.kronos_url2, namespace=args.namespace2) if args.streams_file: streams = map(lambda s: (s, s), # Use same stream name for both. filter(lambda s: len(s), open(args.streams_file).read().split('\n'))) else: streams = [(args.stream1, args.stream2)] for stream1_name, stream2_name in streams: if args.num_samples: samples = [] for _ in xrange(args.num_samples): start = random.randint(args.start, args.end - args.sample_interval) samples.append((start, start + args.sample_interval)) else: samples = [(args.start, args.end)] total_stream1 = 0 extra_stream1 = 0 total_stream2 = 0 extra_stream2 = 0 for start, end in samples: stream1 = client1.get(stream1_name, start, end) stream2 = client2.get(stream2_name, start, end) # Sorting of events with the same timestamp may vary across backends, # hence we can't do a simple loop comparison. We need to aggregate all # events with the same timestamp from both streams and then compare the # two sets. stream1_hashes = set() stream2_hashes = set() current_timestamp = None while True: event1 = get_next(stream1) event2 = get_next(stream2) # Are both streams exhausted? if not (event1 or event2): break # Pick the smaller timestamp from the two events. min_timestamp = min(event1.get(TIMESTAMP_FIELD, sys.maxint), event2.get(TIMESTAMP_FIELD, sys.maxint)) if current_timestamp is None: current_timestamp = min_timestamp # If min_timestamp is greater than current_timestamp, then aggregate # stats for current_timestamp and roll over. if min_timestamp > current_timestamp: total_stream1 += len(stream1_hashes) total_stream2 += len(stream2_hashes) extra_stream1 += len(stream1_hashes - stream2_hashes) extra_stream2 += len(stream2_hashes - stream1_hashes) stream1_hashes.clear() stream2_hashes.clear() current_timestamp = min_timestamp if event1: assert event1[TIMESTAMP_FIELD] >= current_timestamp if event1[TIMESTAMP_FIELD] == current_timestamp: del event1[ID_FIELD] stream1_hashes.add( hashlib.sha224(json.dumps(event1, sort_keys=True)).hexdigest()) else: stream1 = push_back(event1, stream1) if event2: assert event2[TIMESTAMP_FIELD] >= current_timestamp if event2[TIMESTAMP_FIELD] == current_timestamp: del event2[ID_FIELD] stream2_hashes.add( hashlib.sha224(json.dumps(event2, sort_keys=True)).hexdigest()) else: stream2 = push_back(event2, stream2) print 'Diff: [%s/%s], [%s/%s]' % (args.namespace1, stream1_name, args.namespace2, stream2_name) print '< total: %d' % total_stream1 print '> total: %d' % total_stream2 print '< extra: %d' % extra_stream1 print '> extra: %d' % extra_stream2 print def process_args(): parser = argparse.ArgumentParser() parser.add_argument( '--kronos-url1', required=True, help='The first Kronos server to retrieve data from') parser.add_argument( '--kronos-url2', required=True, help='The second Kronos server to retrieve data from') parser.add_argument( '--namespace1', help='The namespace to read from the first Kronos server (optional)') parser.add_argument( '--namespace2', help='The namespace to read from the second Kronos server (optional)') parser.add_argument( '--stream1', help='The stream to read from the first Kronos server') parser.add_argument( '--stream2', help='The stream to read from the second Kronos server') parser.add_argument( '--streams-file', help='The name of the file with a stream name per line to copy') parser.add_argument( '--start', required=True, help='When to start retreiving? (format: 2003-09-25T10:49:41.5-03:00)') parser.add_argument( '--end', required=True, help='When to end retreiving? (format: 2003-09-25T10:49:41.5-03:00)') group = parser.add_argument_group(title='sampling arguments', description=('Only compare samples of ' 'events.')) group.add_argument('--num-samples', type=int, help=('Number of samples to compare?')) group.add_argument('--sample-interval', type=int, default=3600, help=('Interval of the sample (in seconds). Defaults to ' '1 hour (3600) (optional)')) args = parser.parse_args() if not bool(args.streams_file) ^ bool(args.stream1 and args.stream2): print 'Please specify either `stream-file` or both `stream1 and stream2`.' sys.exit(1) args.start = datetime_to_kronos_time(parse(args.start)) args.end = datetime_to_kronos_time(parse(args.end)) args.sample_interval = epoch_time_to_kronos_time(args.sample_interval) return args if __name__ == '__main__': main(process_args()) ``` #### File: common/src/event_tools.py ```python def get_property(event, name): """ Gets a property from `event` using a dot-notation name `name`. It's preferable that dots are not used in key names but this function tries to do the right thing by trying all combinations of property names. It prefers property names with dots over nested dicts. For example if the dict looks like: { 'a': { 'b': 1 }, 'a.b': 2 } then this function will return 2 if `name` is 'a.b' rather than 1. """ if isinstance(name, list): parts = name else: parts = name.split('.') for i in xrange(len(parts), 0, -1): name = '.'.join(parts[:i]) if name not in event: continue value = event[name] if i == len(parts): return value elif isinstance(value, dict): return get_property(value, parts[i:]) raise KeyError else: raise KeyError return parts ``` #### File: common/src/runner.py ```python from __future__ import absolute_import import os import subprocess import sys import time import urllib2 def _http_probe_wait(url, sleep_time=0.05, num_probes=50): for i in xrange(num_probes): try: urllib2.urlopen(url) return True except urllib2.URLError: time.sleep(sleep_time) return False class ProcessRunnerError(Exception): pass class ProcessRunner(object): def __init__(self, args, cwd=None, verbose=False): ''' Runs a shell command in a separate process. `args` - list of args that represent the shell command. `cwd` - working directory to execute the shell command from. ''' self.args = args if cwd and not os.path.isabs(cwd): cwd = os.path.join(os.getcwd(), cwd) self.cwd = cwd self.verbose = verbose self._sub_proc = None def start(self): if self._sub_proc: raise ProcessRunnerError('Process already running!') if self.verbose: stdout = sys.stdout stderr = sys.stderr else: stdout = stderr = open(os.devnull, 'w') self._sub_proc = subprocess.Popen(self.args, stdout=stdout, stderr=stderr, cwd=self.cwd) self.wait() def wait(self): pass def stop(self): if not self._sub_proc: raise ProcessRunnerError('Process not running!') self._sub_proc.terminate() self._sub_proc.wait() def restart(self): if self._sub_proc: self.stop() self.start() class KronosRunner(ProcessRunner): def __init__(self, kronos_dir, config=None, port='9191', **kwargs): self.port = port args = ['python', 'runserver.py', '--port', port, '--debug'] if config: args.extend(['--config', config]) super(KronosRunner, self).__init__(args, cwd=kronos_dir, **kwargs) def wait(self): if not _http_probe_wait('http://localhost:%s/1.0/index' % self.port): raise ProcessRunnerError('Failed to start KronosRunner.') class MetisRunner(ProcessRunner): def __init__(self, metis_dir, config=None, port='9192', **kwargs): self.port = port args = ['python', 'runserver.py', '--port', port, '--debug'] if config: args.extend(['--config', config]) super(MetisRunner, self).__init__(args, cwd=metis_dir, **kwargs) def wait(self): if not _http_probe_wait('http://localhost:%s/1.0/index' % self.port): raise ProcessRunnerError('Failed to start MetisRunner.') ``` #### File: jia/jia/decorators.py ```python import json import sys import traceback from functools import wraps from flask import Response from jia import errors from jia.errors import PyCodeError def json_endpoint(function): @wraps(function) def wrapper(*args, **kwargs): # Will let abort() exceptions bubble up. try: try: # Don't call flask's `jsonify` because it sometimes # pretty-prints output, calling indent=2 when dumping json. # This causes certain datatypes (e.g., `numpy.int64`) to be # implicitly converted when they shouldn't be. response = Response(json.dumps(function(*args, **kwargs)), status=200, mimetype='application/json') return response except PyCodeError: raise except: _, exception, tb = sys.exc_info() raise PyCodeError(exception, traceback.format_tb(tb)) except errors.JiaError as e: return e.to_response() return wrapper ``` #### File: jia/jia/utils.py ```python import smtplib from email.mime.text import MIMEText from flask import current_app def get_seconds(value, scale): """Convert time scale dict to seconds Given a dictionary with keys for scale and value, convert value into seconds based on scale. """ scales = { 'seconds': lambda x: x, 'minutes': lambda x: x * 60, 'hours': lambda x: x * 60 * 60, 'days': lambda x: x * 60 * 60 * 24, 'weeks': lambda x: x * 60 * 60 * 24 * 7, 'months': lambda x: x * 60 * 60 * 24 * 30, 'years': lambda x: x * 60 * 60 * 24 * 365, } return scales[scale](value) def send_mail(recipients, subject, message, from_addr=None): if not from_addr: from_addr = current_app.config['SYSTEM_EMAIL'] msg = MIMEText(message) msg['Subject'] = subject msg['From'] = from_addr msg['To'] = ','.join(recipients) s = smtplib.SMTP('localhost') s.sendmail(from_addr, recipients, msg.as_string()) s.quit() ``` #### File: jia/scheduler/scheduler.py ```python from __future__ import absolute_import import atexit import datetime import gevent import gipc import traceback import sys from heapq import heappush, heappop, heapify from jia.errors import PyCodeError from jia.utils import send_mail from scheduler import get_app from scheduler.common.concurrent import GIPCExecutor from scheduler.models import Task class Scheduler(object): """Inteval based code execution scheduler""" def __init__(self): """Initialize the queue and spawn the main loop thread Upon initialization, tasks stored in the database are immediately scheduled. _task_queue is a priority queue ordered using Python's heapq functionality. Elements in _task_queue are tuples of the form (datetime, task) where datetime is the scheduled run time and task is a dictionary as defined in the above docstring for the Scheduler class. For concurrency safety reasons, never write to _task_queue outside the _loop() thread. """ self._task_queue = [] # Never write to this outside the _loop thread self._pending_cancels = set() self._executor = GIPCExecutor() # Load previously scheduled tasks from database now = datetime.datetime.now() with get_app().app_context(): saved_schedule = Task.query.filter_by(active=True) for task in saved_schedule: new_task = { 'id': task.id, 'interval': task.interval, 'code': task.code } # Writing directly to the _task_queue is safe since we haven't started # the _loop yet self._task_queue.append((now, new_task)) # Make _task_queue a priority queue heapify(self._task_queue) # Spawn main loop and save writer for future communication (read, write) = gipc.pipe() self._main_thread = gevent.spawn(self._loop, read) self._schedule_pipe = write atexit.register(self._interrupt) def schedule(self, task): """Pass schedule request to the main loop Tasks should be dictionaries with the following attributes: task = { 'id': 'a93de0f3', 'code': ..., # string of Python code 'interval': 600, # in seconds } An interval of 0 indicates the task should only be run once. """ self._schedule_pipe.put(('schedule', task)) def cancel(self, task_id): """Pass cancel request to the main loop""" self._schedule_pipe.put(('cancel', task_id)) def _schedule(self, task, next_run=None): if not next_run: next_run = datetime.datetime.now() heappush(self._task_queue, (next_run, task)) def _cancel(self, task_id): self._pending_cancels.add(task_id) def _interrupt(self): self._main_thread.kill() #TODO(derek): kill child threads def _loop(self, reader): """Main execution loop of the scheduler. The loop runs every second. Between iterations, the loop listens for schedule or cancel requests coming from Flask via over the gipc pipe (reader) and modifies the queue accordingly. When a task completes, it is rescheduled """ results = set() while True: now = datetime.datetime.now() if self._task_queue and self._task_queue[0][0] <= now: task = heappop(self._task_queue)[1] if task['id'] not in self._pending_cancels: result = self._executor.submit(_execute, task) results.add(result) else: self._pending_cancels.remove(task['id']) else: # Check for new tasks coming from HTTP with gevent.Timeout(0.5, False) as t: message = reader.get(timeout=t) if message[0] == 'schedule': self._schedule(message[1], next_run=now) elif message[0] == 'cancel': self._cancel(message[1]) # Reschedule completed tasks if not results: gevent.sleep(0.5) continue ready = self._executor.wait(results, num=1, timeout=0.5) for result in ready: results.remove(result) if result.value: task = result.value interval = int(task['interval']) if interval: run_at = now + datetime.timedelta(seconds=int(task['interval'])) self._schedule(task, next_run=run_at) else: err_msg = result.exception sys.stderr.write("ERROR: %s" % err_msg) email_msg = 'Task %s failed at %s\n\n%s' % ( task['id'], datetime.datetime.now(), err_msg ) send_mail(get_app().config['SCHEDULER_FAILURE_EMAILS'], 'Scheduler Failure', email_msg) def _execute(task): """A wrapper around exec This exists outside the Scheduler class because it is pickled after it is sent to the executor. """ print "[%s] -- %s -- START" % (datetime.datetime.now(), task['id']) try: with get_app().app_context(): exec task['code'] in {}, {} print "[%s] -- %s -- COMPLETE" % (datetime.datetime.now(), task['id']) except Exception as e: if isinstance(e, PyCodeError): err_msg = "%s: %s\n%s" % (e.data['name'], e.data['message'], ''.join(e.data['traceback'])) else: err_msg = traceback.format_exc() sys.stderr.write(err_msg) sys.stderr.write("[%s] -- %s -- FAIL\n" % (datetime.datetime.now(), task['id'])) email_msg = 'Task %s failed at %s\n\n%s' % (task['id'], datetime.datetime.now(), err_msg) send_mail(get_app().config['SCHEDULER_FAILURE_EMAILS'], 'Scheduler Failure', email_msg) finally: return task ``` #### File: kronos/core/marshal.py ```python import json as _json import sys import ujson class json(object): # ujson has superior decoding performance and produces the same output as # json.loads would. We use it in pykronos to speed up event parsing, use it # here to speed up request body parsing. loads = staticmethod(lambda s: ujson.loads(s, precise_float=True)) dumps = staticmethod(_json.dumps) def get_marshaler(name): # This is convenient because to support other marshaling libraries, we mostly # will just have to add an import statement for them at the top. This is # because most Python marshaling libraries support the loads/dumps calls. # For example if we want to support msgpack, all we need to do is add an # `import msgpack` statement at the top and then call # `set_marshaler('msgpack') below. return globals()[name] def set_marshaler(name): marshaler = get_marshaler(name) setattr(sys.modules[__name__], 'loads', marshaler.loads) setattr(sys.modules[__name__], 'dumps', marshaler.dumps) set_marshaler('json') ``` #### File: kronos/utils/math.py ```python def round_down(value, base): """ Round `value` down to the nearest multiple of `base`. Expects `value` and `base` to be non-negative. """ return int(value - (value % base)) ``` #### File: kronos/utils/streams.py ```python import time from kronos.common.json_schema import get_schema_type from kronos.common.json_schema import NullType from kronos.common.time import epoch_time_to_kronos_time from kronos.conf.constants import ResultOrder from kronos.core import marshal from kronos.storage.router import router def infer_schema(namespace, stream): now = epoch_time_to_kronos_time(time.time()) backend, configuration = router.backend_to_retrieve(namespace, stream) events = backend.retrieve(namespace, stream, 0, now, None, configuration, order=ResultOrder.DESCENDING, limit=100) schema_type = NullType() for event in events: schema_type = schema_type.combine(get_schema_type(marshal.loads(event))) schema = schema_type.to_dict() schema['$schema'] = 'http://json-schema.org/draft-04/schema' return schema ``` #### File: chronology/kronos/runserver.py ```python import datetime import gevent.monkey; gevent.monkey.patch_all() import gevent.pywsgi import imp import logging; logging.basicConfig() import werkzeug.serving from argparse import ArgumentParser from kronos.conf import settings from kronos.conf.constants import ServingMode def log_info(port): return """ %(date)s Starting kronos server at http://0.0.0.0:%(port)s/ Quit the server with CONTROL-C.""" % { 'date': datetime.datetime.now().strftime("%B %d, %Y - %H:%M:%S"), 'port': port, } if __name__ == '__main__': parser = ArgumentParser(description='Kronos HTTP server.') parser.add_argument('--debug', action='store_true', help='Debug mode?') parser.add_argument('--reload', action='store_true', help='Auto-reload?') parser.add_argument('--port', action='store', default='8150', help='port to listen for incoming requests') parser.add_argument('--serving-mode', choices=[ServingMode.ALL, ServingMode.COLLECTOR, ServingMode.READONLY], help='which serving mode to run in') parser.add_argument('--config', action='store', help='path of config file to use') parser.add_argument('--profile', action='store_true', help='Profile each request using cProfile?') args = parser.parse_args() settings.clear() if args.config: # If a config file path is given, import that as the `settings` module. settings.update(imp.load_source('kronos.conf.run_settings', args.config)) else: # Otherwise use default settings. This is to ensure we never try to read # the settings for the configured kronos service when using this runner # script. from kronos.conf import default_settings settings.update(default_settings) # Override the `debug` in the settings module and `debug` for # `args`. settings.debug = args.debug or settings.debug settings.serving_mode = args.serving_mode or settings.serving_mode settings.profile = args.profile or settings.profile # Only load the application after we've overwritten settings.serving_mode, or # else the endpoint access control logic will kick in too early. from kronos.app import application print log_info(args.port) if args.reload: def reload(): print 'Reloading kronosd...' gevent.pywsgi.WSGIServer(('0.0.0.0', int(args.port)), application).serve_forever() werkzeug.serving.run_with_reloader(reload) else: gevent.pywsgi.WSGIServer(('0.0.0.0', int(args.port)), application).serve_forever() ``` #### File: kronos/tests/server.py ```python import unittest from werkzeug.test import Client from werkzeug.wrappers import BaseResponse from kronos.app import application from kronos.conf.constants import SUCCESS_FIELD from kronos.core import marshal VERSION = 1.0 BASE_PATH = '/%s' % VERSION EVENT_BASE_PATH = '%s/events' % BASE_PATH class KronosServerTestCase(unittest.TestCase): """ Wrapper `TestCase` class which be used by all server tests because it provides a clean API to Kronos and performs all necessary clean up logic. """ def setUp(self): self.http_client = Client(application, BaseResponse) self.get_path = '%s/get' % EVENT_BASE_PATH self.put_path = '%s/put' % EVENT_BASE_PATH self.delete_path = '%s/delete' % EVENT_BASE_PATH self.index_path = '%s/index' % BASE_PATH self.streams_path = '%s/streams' % BASE_PATH self.infer_schema_path = '%s/streams/infer_schema' % BASE_PATH def index(self): response = self.http_client.get(path=self.index_path) self.assertEqual(response.status_code, 200) return marshal.loads(response.data) def put(self, stream_or_mapping, events=None, namespace=None): data = {} if isinstance(stream_or_mapping, dict): data['events'] = stream_or_mapping else: self.assertTrue(events is not None) data['events'] = {stream_or_mapping: events} if namespace is not None: data['namespace'] = namespace response = self.http_client.post(path=self.put_path, data=marshal.dumps(data), buffered=True) self.assertEqual(response.status_code, 200) response = marshal.loads(response.data) self.assertTrue(response[SUCCESS_FIELD]) return response def get(self, stream, start_time, end_time, start_id=None, limit=None, order=None, namespace=None): data = {'stream': stream, 'end_time': end_time} if start_id: data['start_id'] = start_id else: data['start_time'] = start_time if limit is not None: data['limit'] = limit if order is not None: data['order'] = order if namespace is not None: data['namespace'] = namespace response = self.http_client.post(path=self.get_path, data=marshal.dumps(data), buffered=True) self.assertEqual(response.status_code, 200) return map(marshal.loads, response.data.splitlines()) def delete(self, stream, start_time, end_time, start_id=None, namespace=None): data = {'stream': stream, 'end_time': end_time} if start_id: data['start_id'] = start_id else: data['start_time'] = start_time if namespace is not None: data['namespace'] = namespace response = self.http_client.post(path=self.delete_path, data=marshal.dumps(data), buffered=True) self.assertEqual(response.status_code, 200) response = marshal.loads(response.data) self.assertTrue(response[SUCCESS_FIELD]) return response def get_streams(self, namespace=None): data = {} if namespace is not None: data['namespace'] = namespace response = self.http_client.post(self.streams_path, data=marshal.dumps(data), buffered=True) self.assertEqual(response.status_code, 200) return response.data.splitlines() def infer_schema(self, stream, namespace=None): response = self.http_client.post( self.infer_schema_path, data=marshal.dumps({'stream': stream, 'namespace': namespace}), buffered=True) self.assertEqual(response.status_code, 200) return marshal.loads(response.data) ``` #### File: core/execute/base.py ```python from metis.core.execute.registry import DataSourceAdapterRegistry from metis.core.query.operator import DataAccess from metis.core.query.operator import Aggregate from metis.core.query.operator import Filter from metis.core.query.operator import Join from metis.core.query.operator import Limit from metis.core.query.operator import OrderBy from metis.core.query.operator import Project # XXX: Whenever adding a new `Operator` or a subclass of `ExecutableNode`, # please add a method for to the `Executor` class below and create a dispatch # case inside `Executor.execute`. class Executor(object): """ The Executor interface. ALL methods must be copied over (and implemented) to an Executor implementation, including the first method below which sets up the dynamic dispatcher. """ def execute(self, node): if isinstance(node, DataAccess): return self.execute_data_access(node) if isinstance(node, Aggregate): return self.execute_aggregate(node) if isinstance(node, Filter): return self.execute_filter(node) if isinstance(node, Join): return self.execute_join(node) if isinstance(node, Limit): return self.execute_limit(node) if isinstance(node, OrderBy): return self.execute_order_by(node) if isinstance(node, Project): return self.execute_project(node) raise NotImplemented def finalize(self, result): return result def execute_data_access(self, node): registry = DataSourceAdapterRegistry() adapter = registry.get(type(self), type(node))() return adapter.execute(node, self) def execute_aggregate(self, node): raise NotImplemented def execute_filter(self, node): raise NotImplemented def execute_join(self, node): raise NotImplemented def execute_limit(self, node): raise NotImplemented def execute_order_by(self, node): raise NotImplemented def execute_project(self, node): raise NotImplemented ``` #### File: core/query/adapter.py ```python class DataSourceAdapter(object): @classmethod def executor_source_pair(self): raise NotImplemented def execute(self, node, executor): raise NotImplemented ``` #### File: metis/metis/__init__.py ```python from gevent import monkey; monkey.patch_all() import os VERSION = (0, 1, 'alpha') def get_version(version=None): version = version or VERSION assert(len(version) == 3) return '%s.%s %s' % version # The file path will have `metis.zip` in it if its being run on Spark workers. # In that case we don't want to run the following initialization code because # it can (and does) break things. if 'metis.zip' in str(__file__): app = None else: from flask import Flask METIS_PATH = os.path.realpath(os.path.dirname(__file__)) app = Flask(__name__) app.config.from_pyfile('%s/conf/default_settings.py' % METIS_PATH) app.config['PATH'] = METIS_PATH import metis.views # noqa ``` #### File: tests/utils/test_compute_cache.py ```python import functools import unittest from collections import defaultdict from datetime import datetime from datetime import timedelta from mock import patch from pykronos import KronosClient from pykronos.client import TIMESTAMP_FIELD from pykronos.utils.cache import QueryCache from pykronos.common.time import datetime_to_kronos_time from pykronos.common.time import timedelta_to_kronos_time class QueryCacheTest(unittest.TestCase): def setUp(self): self.client = KronosClient('http://localhost:9191/', blocking=False, sleep_block=0.2) self.total_events = 500 self.computed_namespace = 'computed' self.increment = timedelta(minutes=1) self.start_time = datetime(2014, 6, 4, 22) self.bucket_width = timedelta(minutes=20) def compute_cache_test(function): """A wrapper that sets up a stream with test data. The stream takes the name of the function being run, and contains `self.total_events` events. The events are each one `self.increment` apart. """ @functools.wraps(function) def wrapper(self): self.stream = 'ComputeCacheTest_%s' % (function.__name__) for i in xrange(self.total_events): self.client.put({ self.stream: [{TIMESTAMP_FIELD: self.start_time + (self.increment * i), 'a': i % 5, 'b': i}]}) self.client.flush() function(self) return wrapper def filter_and_sum(self, start_time, end_time): """Bin `self.stream` into buckets, returning the sum of `b` when `a` == 2. For all events between `start_time` and `end_time`, create an event for every 20-minute interval of events that contains the sum of `b` when `a`==2. """ events = self.client.get(self.stream, start_time, end_time) counts = defaultdict(int) grouping_minutes = timedelta_to_kronos_time(self.bucket_width) for event in events: if event['a'] == 2: counts[event['@time'] - (event['@time'] % grouping_minutes)] += event['b'] for group_time in sorted(counts.iterkeys()): yield {'@time': group_time, 'b_sum': counts[group_time]} def verify_results(self, result_func, cache, expected_results, expected_computations): with patch.object(cache, '_compute_bucket', wraps=cache._compute_bucket) as mock_method: results = result_func() self.assertEqual(mock_method.call_count, expected_computations) self.assertEqual(len(results), expected_results) result_time = self.start_time for idx, result in enumerate(results): self.assertEqual(result[TIMESTAMP_FIELD], datetime_to_kronos_time(result_time)) self.assertEqual( result['b_sum'], sum([2, 7, 12, 17] + [idx * 4 * (self.bucket_width.total_seconds() / 60)])) result_time += self.bucket_width def test_cache_exceptions(self): # Bucket width shouldn't be more granular than 1 second. def bad_bucket_width(): return QueryCache(self.client, self.filter_and_sum, self.bucket_width + timedelta(milliseconds=1), self.computed_namespace) self.assertRaises(ValueError, bad_bucket_width) # start_time and end_time should align to bucket_width boundaries. cache = QueryCache(self.client, self.filter_and_sum, self.bucket_width, self.computed_namespace) start_time = self.start_time - (self.bucket_width * 3) end_time = self.start_time + (self.total_events * self.increment) + ( self.bucket_width * 3) def bad_start_boundary(): return list( cache.retrieve_interval(start_time + timedelta(minutes=1), end_time)) self.assertRaises(ValueError, bad_start_boundary) @compute_cache_test def test_cache_layer(self): cache = QueryCache(self.client, self.filter_and_sum, self.bucket_width, self.computed_namespace) start_time = self.start_time - (self.bucket_width * 3) end_time = self.start_time + (self.total_events * self.increment) + ( self.bucket_width * 3) untrusted_time = self.start_time + ( timedelta(minutes=(self.total_events / 2) - 25)) # Verify all results were computed correctly. self.verify_results(lambda: list( cache.compute_and_cache_missing_buckets(start_time, end_time, untrusted_time)), cache, 25, 31) # Verify only trusted results are cached. self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 11, 0) # Running the same operations twice should result in the same # results as before. self.verify_results( lambda: list(cache.compute_and_cache_missing_buckets(start_time, end_time, untrusted_time)), cache, 25, 17) self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 11, 0) # Expanding the time range without caching should also result in the same # results self.verify_results( lambda: list(cache.retrieve_interval(start_time - self.bucket_width, end_time + self.bucket_width)), cache, 11, 0) # But specifying compute_missing should get all results for the timerange self.verify_results( lambda: list(cache.retrieve_interval(start_time - self.bucket_width, end_time + self.bucket_width, compute_missing=True)), cache, 25, 19) # Overlapping time queries should result in the same # results as before, and benefit from the cache. self.verify_results( lambda: list(cache.compute_and_cache_missing_buckets(start_time - self.bucket_width, end_time + self.bucket_width, untrusted_time)), cache, 25, 19) self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 11, 0) # Increasing the trusted time should increase the cached results. untrusted_time = untrusted_time + timedelta(minutes=40) self.verify_results( lambda: list(cache.compute_and_cache_missing_buckets(start_time, end_time, untrusted_time)), cache, 25, 17) self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 13, 0) # Decreasing trusted time shouldn't remove results. untrusted_time = untrusted_time - timedelta(minutes=40) self.verify_results( lambda: list(cache.compute_and_cache_missing_buckets(start_time, end_time, untrusted_time)), cache, 25, 15) self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 13, 0) # If there are two cached entries, that cached time should no # longer be returned. results = list(cache.retrieve_interval(start_time, end_time)) duplicate_result = dict(results[10]) duplicate_result['b_sum'] = 0 self.client.put({cache._scratch_stream: [duplicate_result]}, namespace=cache._scratch_namespace) self.client.flush() safe_results = list(cache.retrieve_interval(start_time, end_time)) self.assertEqual(results[:10] + results[11:], safe_results) # Rerunning the cache/computation should re-cache the corrupted # element. self.verify_results( lambda: list(cache.compute_and_cache_missing_buckets(start_time, end_time, untrusted_time)), cache, 25, 16) self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 13, 0) # Forcing computation should generate the same result set. self.verify_results( lambda: list(cache.compute_and_cache_missing_buckets( start_time, end_time, untrusted_time, force_recompute=True)), cache, 25, 31) self.verify_results( lambda: list(cache.retrieve_interval(start_time, end_time)), cache, 13, 0) ```
{ "source": "joshblum/eeg-toolkit", "score": 2 }
#### File: joshblum/eeg-toolkit/fabfile.py ```python from fabric.api import env, cd, run PROJ_NAME = 'eeg-toolkit' def env(): env.user = 'ubuntu' env.hosts = ['172.16.31.10', '192.168.3.11'] env.key_filename = '~/.ssh/id_rsa.pub' env.server_path = '~/%s' % PROJ_NAME env.python_path = '~/.virtualenvs/%s' % PROJ_NAME return def prod_deploy(): with cd(env.server_path): run('git pull --rebase origin master') run('make docker-run') ``` #### File: toolkit/experiments/get_file_sizes.py ```python import glob import os import json import pprint from collections import defaultdict DATADIR = '/home/ubuntu/eeg-data/eeg-data' FILE_PATTERNS = { 'TileDBBackend': 'tiledb_workspace/*-tiledb', 'HDF5Backend': '.h5', 'BinaryBackend': '.bin', } DUMP_FILE = '%s-file-sizes.json' def get_file_size(path): # http://stackoverflow.com/questions/1392413/calculating-a-directory-size-using-python if os.path.isdir(path): total_size = 0 for dirpath, dirnames, filenames in os.walk(path): for f in filenames: fp = os.path.join(dirpath, f) total_size += os.path.getsize(fp) else: total_size = os.path.getsize(path) return total_size def get_file_sizes(backend_name): file_ext = FILE_PATTERNS[backend_name] filenames = glob.glob('%s/*%s' % (DATADIR, file_ext)) results = {} for filename in filenames: if 'cached' in filename: continue key = os.path.basename(filename).replace(file_ext, '').split('-') if len(key) < 2: continue else: key = key[1] # 005-xgb-backend_name file_size = get_file_size(filename) results[key] = file_size return results def store_file_sizes(backend_name, file_sizes): with open(DUMP_FILE % backend_name, 'w') as f: f.write(json.dumps(file_sizes)) def extract_file_sizes(backend_name): try: with open(DUMP_FILE % backend_name) as f: return json.loads(f.read()) except IOError: return {} def extract_all(): return { backend_name: extract_file_sizes(backend_name) for backend_name in FILE_PATTERNS } if __name__ == '__main__': import sys if len(sys.argv) == 2: backend_name = sys.argv[1] file_sizes = get_file_sizes(backend_name) store_file_sizes(backend_name, file_sizes) pprint.pprint(file_sizes) elif len(sys.argv) == 1: pprint.pprint(extract_all()) else: print 'usage: python get_file_sizes.py [BinaryBackend|HDF5Backend|TileDBBackend]' ``` #### File: webapp/webapp/server.py ```python from flask import Flask from flask import jsonify from flask import render_template from flask import request import os import csv import simplejson as json import regression app = Flask(__name__) PROFILE_FILENAME = 'profile-dump-{0}.csv' # TODO: All of these should live in flask config. # Are we running an experiment? EXPERIMENT = False TARGET_LATENCY = 3500 # Regressor tags have 3 parts: 1) which data dump to look at; 2) which profile # statistic to train on; 3) the value that the model should predict (always # latency for us). # TODO: change to named tuple... DEFAULT_REGRESSOR_TAG = ('chrome-ubuntu', 'bandwidth', 'latency') REGRESSORS = regression.save_and_load_regressors(*DEFAULT_REGRESSOR_TAG) @app.errorhandler(404) def page_not_found(error): return render_template('404.html'), 404 @app.errorhandler(500) def server_error(error): return render_template('500.html'), 500 @app.route('/cluster-viewer') def cluster_viewer(): return render_template('cluster-viewer.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/spec-viewer') @app.route('/') def index(): # TODO(joshblum): put stuff behind a login? return render_template('spec-viewer.html') def dump_profiles(profile_dumps): # Figure out what label to give this experiment. next_experiment_num = 0 for filename in os.listdir(os.getcwd()): split_filename = filename.split('-') if PROFILE_FILENAME.split('-')[:2] == split_filename[:2]: try: experiment_num = int(split_filename[2].split('.')[0]) except: continue if experiment_num >= next_experiment_num: next_experiment_num = experiment_num + 1 next_experiment_num = str(next_experiment_num).zfill(3) profile_filename = PROFILE_FILENAME.format(next_experiment_num) # Sort the rows by increasing extent. profile_dumps.sort(key=lambda profile: profile.get('extent', 1)) with open(profile_filename, 'w') as csvfile: for profile in profile_dumps: if 'extent' not in profile: profile['extent'] = 1 # Column order is: extent, then all others alphabetically. fieldnames = profile_dumps[0].keys() fieldnames.remove('extent') fieldnames.sort() fieldnames = ['extent'] + fieldnames writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for profile in profile_dumps: # Set default value of -1 for any missing fields. for fieldname in fieldnames: if fieldname not in profile: profile[fieldname] = -1 writer.writerow(profile) @app.route('/dump-visgoth', methods=['POST']) def dump_visgoth(): success = True message = '' try: profile_dumps = json.loads(request.form['profileDumps']) profile_dumps = profile_dumps.values() if len(profile_dumps) > 0: dump_profiles(profile_dumps) except Exception as e: success = False message = e.message return jsonify({ 'success': success, 'message': message, }) @app.route('/visgoth/get_extent', methods=['POST']) def get_extent(): success = True try: data = request.get_json() except: return jsonify({ 'success': False, }) # If we're running an experiment, the client will request the extent. # Otherwise, use the models to predict a best extnet. if EXPERIMENT: extent = data['client_profile'].get('extent', 1) else: x_key = DEFAULT_REGRESSOR_TAG[1] x_value = data['client_profile'].get(x_key) # The client profile features needed weren't included. if x_value is None: return jsonify({ 'success': False, }) extent = regression.predict_extent(REGRESSORS, TARGET_LATENCY, x_value) return jsonify({ 'success': success, 'extent': extent, }) if __name__ == '__main__': app.debug = True # enable auto reload app.run(host='0.0.0.0') ```
{ "source": "joshblum/keybase-reminder-bot", "score": 2 }
#### File: joshblum/keybase-reminder-bot/keybase.py ```python import json, subprocess, sys, time from subprocess import PIPE from user import User class Message(object): ''' Example message json: { u'msg': { u'unread': True, u'sent_at': 1522813326, u'sent_at_ms': 1522813326658, u'content': {u'text': {u'body': u'Hi'}, u'type': u'text'}, u'prev': [{u'hash': u'DEZRY/2G+NYYgB34g1X9ocuFqfBBDIfEHvT+qOwotqE=', u'id': 1}], u'id': 2, u'channel': { u'members_type': u'impteamnative', u'topic_type': u'chat', u'name': u'jessk,reminderbot', u'public': False }, u'bot_info': { u'bot_uid': 'f1f49e2da3db6392b47dc913b4e85519', u'bot_username': 'reminderbot' }, u'sender': { u'username': u'jessk', u'device_name': u'phone', u'uid': u'653ba091fa61606e5a3c8fb2086b3419', u'device_id': u'c4aec52a455b551af3b042c46537fc18' } } } ''' def __init__(self, conv_id, json, db): self.text = json["msg"]["content"]["text"]["body"] self.author = json["msg"]["sender"]["username"] self.conv_id = conv_id self.channel_json = json["msg"]["channel"] self.bot_username = json["msg"].get("bot_info", {}).get("bot_username") self.json = json self.db = db @classmethod def inject(cls, text, author, conv_id, channel, db): return Message(conv_id, {"msg": { "content": {"text": {"body": text}}, "sender": {"username": author}, "channel": { "name": channel, "members_type": "impteamnative"}}}, db) def user(self): return User.lookup(self.author, self.db) def is_private_channel(self): # `jessk,reminderbot` or `jessk` with reminderbot as a bot or # restricted bot member return self.channel_json["members_type"] != "team" and self.channel_json["name"].count(',') <= 1 def call(method, params=None, retries=0): # method: string, params: dict # return: dict #print "keybase call " + method #print "will call keybase " + method if params is None: params = {} query = {"method": method, "params": params} proc = subprocess.Popen(['keybase','chat','api'], stdin=PIPE, stdout=PIPE) proc.stdin.write(json.dumps(query) + "\n") proc.stdin.close() response = proc.stdout.readline() try: j = json.loads(response) except Exception as e: if retries < 3: print "Unable to parse json from:", response time.sleep(1) return call(method, params, retries+1) else: raise e if "error" in j: print "Problem with query:", query raise Exception(j["error"]["message"]) return j["result"] def send(conv_id, text): call("send", {"options": {"conversation_id": conv_id, "message": {"body": text}}}) return True, None def debug_crash(message, config): debug(message, config) if config.autosend_logs: try: subprocess.check_call(['keybase', 'log', 'send', '--feedback', 'reminderbot crash', '--no-confirm']) except subprocess.CalledProcessError: print >> sys.stderr, "Error during call to `keybase log send`" def debug(message, config): if config.debug_team and config.debug_topic: call("send", {"options": {"channel": { "name": config.debug_team, "members_type": "team", "topic_name": config.debug_topic}, "message": {"body": message}}}) else: print >> sys.stderr, "[DEBUG]", message def _status(): proc = subprocess.Popen(['keybase','status', '-j'], stdout=PIPE) out, err = proc.communicate() return json.loads(out) def setup(config): status = _status() logged_in = status["Username"] if not status["LoggedIn"]: try: subprocess.check_call(['keybase', 'login', config.username]) except subprocess.CalledProcessError: print >> sys.stderr, "FATAL: Error during call to `keybase login " \ + config.username + "`" sys.exit(1) elif not logged_in == config.username: print >> sys.stderr, "FATAL: Logged in to Keybase as wrong user." print >> sys.stderr, "Logged in as "+logged_in+" but expected "+config.username+". " print >> sys.stderr, "Run `keybase logout` to log them out." sys.exit(1) # Disable typing notifications try: subprocess.check_call(['keybase', 'chat', 'notification-settings', '--disable-typing']) except subprocess.CalledProcessError as e: print >> sys.stderr, "Error during disabling typing notifications", e.message if config.debug_team and config.debug_topic: try: call("read", {"options": {"channel": { "name": config.debug_team, "members_type": "team", "topic_name": config.debug_topic}}}) except Exception as e: print >> sys.stderr, "Can't read from the debug channel:" print >> sys.stderr, e.message sys.exit(1) def advertise_commands(): remind_me_extended = """Set a reminder at a specific time. Examples: ``` !remind me [when] to [what] !remind me to [what] [when]```""" delete_extended = """Examples: ``` !delete the reminder to [what] !delete the [when] reminder !delete reminder #2```""" tz_extended = """Set your timezone to [tz]. This changes when any upcoming reminders will happen. Examples: ``` !timezone GMT !timezone US/Pacific```""" call("advertisecommands", {"options": { "alias": "Reminder Bot", "advertisements": [{ "type": "public", "commands": [ { "name": "help", "description": "See help with available commands.", }, { "name": "remind me", "description": "Set a reminder.", "extended_description": { "title": "*!remind me*", "desktop_body": remind_me_extended, "mobile_body": remind_me_extended, } }, { "name": "list", "description": "Show upcoming reminders.", }, { "name": "delete", "description": "Delete a reminder.", "extended_description": { "title": "*!delete*", "desktop_body": delete_extended, "mobile_body": delete_extended, } }, { "name": "timezone", "description": "Set your timezone.", "extended_description": { "title": "*!timezone*", "desktop_body": tz_extended, "mobile_body": tz_extended, } }, { "name": "source", "description": "Learn about my beginnings.", }, ], }], } }) def clear_command_advertisements(): call("clearcommands") ```
{ "source": "joshblum/netflix-rate", "score": 2 }
#### File: joshblum/netflix-rate/app.py ```python from flask import render_template from flask import request from flask import jsonify from flask.ext.assets import Environment, Bundle from flask.ext.sqlalchemy import SQLAlchemy from flask_gzip import Gzip from flask_cors import cross_origin from sqlalchemy.exc import IntegrityError from datetime import datetime from datetime import timedelta import flask import requests import os EMAIL_URL = 'http://u-mail.herokuapp.com/send?to=<EMAIL>&payload=%s' USER_COUNT = 10000 # send an email every 10k users DATE_FMT = '%Y-%m-%d %H:%M:%S.%f' app = flask.Flask(__name__) app.config.from_object(os.environ['APP_SETTINGS']) gzip = Gzip(app) db = SQLAlchemy(app) assets = Environment(app) js = Bundle('js/libs/jquery-1.8.2.min.js', 'js/libs/carousel.js', 'js/libs/es5-shim.min.js', 'js/home.js', output='js/netflix-rate.min.js') css = Bundle('css/libs/reset.css', 'css/libs/bootstrap.css', 'css/libs/bootstrap-responsive.css', 'css/base.css', output='css/netflix-rate.min.css') assets.register('js_all', js) assets.register('css_all', css) @app.after_request def after_request(response): response.direct_passthrough = False return response @app.route('/') def index(): return render_template('home.html', title='downloads') @app.errorhandler(404) def page_not_found(error): return render_template('404.html', title=404), 404 @app.errorhandler(500) def page_not_found(error): return render_template('500.html', title=500), 500 @app.route('/track', methods=['POST']) @app.route('/count', methods=['POST']) @cross_origin() def track(): uuid = request.form.get('uuid') ip_addr = request.remote_addr src = request.form.get('src') success = False user = None errors = '' if all([uuid, ip_addr, src]): try: user = User(uuid, ip_addr, src) db.session.add(user) db.session.commit() success = True except IntegrityError: try: db.session.rollback() user = _update_user_timestamp(uuid) success = True except Exception as e: errors = str(e) user = None if user is not None: _send_mail() _clear_old_users() user = user.to_dict() return jsonify(**{ 'success': success, 'user': user, 'errors': errors, }) def _update_user_timestamp(uuid): """ Update the timestamp when we last saw the user """ user = User.query.filter(User.uuid == uuid).first() user.created_at = datetime.utcnow() db.session.add(user) db.session.commit() return user def _send_mail(): user_count = User.query.count() if user_count > 0 and not user_count % USER_COUNT: payload = '%d unique users.' % user_count requests.get(EMAIL_URL % payload) def _clear_old_users(weeks=4): """ Delete any users that have not be undated in the past given weeks """ current_time = datetime.utcnow() four_weeks_ago = current_time - timedelta(weeks=weeks) User.query.filter(User.created_at < four_weeks_ago).delete() class User(db.Model): id = db.Column(db.Integer, primary_key=True) uuid = db.Column(db.String(60), unique=True) created_at = db.Column(db.DateTime, index=True) ip_addr = db.Column(db.String(40)) src = db.Column(db.String(10)) def __init__(self, uuid, ip_addr, src, created_at=None): self.uuid = uuid self.ip_addr = ip_addr self.src = src # chrome or firefox if created_at is None: self.created_at = datetime.utcnow() else: try: self.created_at = datetime.strptime(created_at, DATE_FMT) except ValueError as e: print e self.created_at = datetime.utcnow() def __repr__(self): return str(self.__dict__) def to_dict(self): return { 'uuid': self.uuid, 'ip_addr': self.ip_addr, 'src': self.src, 'created_at': str(self.created_at) } if __name__ == '__main__': host = '0.0.0.0' port = int(os.environ.get('PORT', 7070)) app.run(host=host, port=port) ```
{ "source": "joshbode/black", "score": 3 }
#### File: tests/data/python37.py ```python def f(): return (i*2 async for i in arange(42)) def g(): return (something_long * something_long async for something_long in async_generator(with_an_argument)) async def func(): if test: out_batched = [ i async for i in aitertools._async_map( self.async_inc, arange(8), batch_size=3 ) ] # output #!/usr/bin/env python3.7 def f(): return (i * 2 async for i in arange(42)) def g(): return ( something_long * something_long async for something_long in async_generator(with_an_argument) ) async def func(): if test: out_batched = [ i async for i in aitertools._async_map( self.async_inc, arange(8), batch_size=3 ) ] ```
{ "source": "joshbode/jupyter-slack-notify", "score": 3 }
#### File: jupyter-slack-notify/jupyter_slack/jupyter_slack.py ```python import os import requests import time from IPython.core import magic_arguments from IPython.core.magics import ExecutionMagics from IPython.core.magic import cell_magic, magics_class def notify_self(message): slack_token = os.environ["SLACK_TOKEN"] slack_id = os.environ["SLACK_ID"] parameters = { "token": slack_token, "channel": "@" + slack_id, "text": message } r = requests.post("https://slack.com/api/chat.postMessage", params=parameters) return r.text def construct_time_mess(elapsed): day = elapsed // (24 * 3600) elapsed = elapsed % (24 * 3600) hour = elapsed // 3600 elapsed %= 3600 minutes = elapsed // 60 elapsed %= 60 seconds = round(elapsed, 1) time_mess = "" if day > 0: time_mess += " {} days".format(day) if hour > 0: time_mess += " {} hours ".format(hour) if minutes > 0: time_mess += " {} minutes".format(minutes) if seconds > 0: time_mess += " {} seconds".format(seconds) return time_mess @magics_class class MessengerMagics(ExecutionMagics): def __init__(self, shell): super().__init__(shell) @cell_magic @magic_arguments.magic_arguments() @magic_arguments.argument("message", type=str) @magic_arguments.argument("--time", "-t", action="store_true") def notify(self, line="", cell=None): args = magic_arguments.parse_argstring(self.notify, line) mess = args.message.replace("\"", "") start = time.time() try: self.shell.ex(cell) if args.time: elapsed = time.time() - start time_mess = construct_time_mess(elapsed) mess += " in" + time_mess notify_self("Finished {}".format(mess)) except BaseException as e: notify_self("Error while {}: {}".format(mess, e.__repr__())) raise e ```
{ "source": "joshbode/larger", "score": 3 }
#### File: larger/tests/test_lazy.py ```python from larger import larger @larger def f(x, y=lambda x: x + 1, z=lambda y: y ** 2): """test function""" return x, y, z def test_lazy_basic(): """Test lazy invocation with only required arguments.""" assert f(1) == (1, 2, 4) def test_lazy_with_all_args(): """Test invocation with all arguments specified.""" assert f(1, 3, 5) == (1, 3, 5) ```
{ "source": "joshbode/python-on-whales", "score": 2 }
#### File: components/service/cli_wrapper.py ```python from __future__ import annotations from datetime import datetime, timedelta from typing import Any, Dict, List, Optional, Union, overload import python_on_whales.components.task.cli_wrapper from python_on_whales.client_config import ( ClientConfig, DockerCLICaller, ReloadableObjectFromJson, ) from python_on_whales.components.container.cli_wrapper import to_seconds from python_on_whales.components.service.models import ( ServiceEndpoint, ServiceInspectResult, ServiceSpec, ServiceUpdateStatus, ServiceVersion, ) from python_on_whales.exceptions import NoSuchService from python_on_whales.utils import ( ValidPath, format_dict_for_cli, format_time_arg, run, stream_stdout_and_stderr, to_list, ) class Service(ReloadableObjectFromJson): def __init__( self, client_config: ClientConfig, reference: str, is_immutable_id=False ): super().__init__(client_config, "id", reference, is_immutable_id) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.remove() def _fetch_inspect_result_json(self, reference): return run(self.docker_cmd + ["service", "inspect", reference]) def _parse_json_object(self, json_object: Dict[str, Any]) -> ServiceInspectResult: return ServiceInspectResult.parse_obj(json_object) def _get_inspect_result(self) -> ServiceInspectResult: """Only there to allow tools to know the return type""" return super()._get_inspect_result() @property def id(self) -> str: return self._get_immutable_id() @property def version(self) -> ServiceVersion: return self._get_inspect_result().version @property def created_at(self) -> datetime: return self._get_inspect_result().created_at @property def updated_at(self) -> datetime: return self._get_inspect_result().updated_at @property def spec(self) -> ServiceSpec: return self._get_inspect_result().spec @property def previous_spec(self) -> Optional[ServiceSpec]: return self._get_inspect_result().previous_spec @property def endpoint(self) -> ServiceEndpoint: return self._get_inspect_result().endpoint @property def update_status(self) -> Optional[ServiceUpdateStatus]: return self._get_inspect_result().update_status def ps(self) -> List[python_on_whales.components.task.cli_wrapper.Task]: """Returns the list of tasks of this service.""" return ServiceCLI(self.client_config).ps(self) def remove(self) -> None: """Removes this service It's also possible to use a service as a context manager. By using a context manager, you ensures that the service will be removed even if an exception occurs. ```python from python_on_whales import docker docker.swarm.init() with docker.service.create("ubuntu", ["sleep", "infinity"]) as my_service: print("I'm doing things with the service here") print(my_service.update_status) print("I'm out of the context manager, the service has been removed.") ``` """ ServiceCLI(self.client_config).remove(self) def scale(self, new_scale: int, detach: bool = False) -> None: """Change the scale of a service. See the [`docker.service.scale`](../sub-commands/service.md#scale) command for information about the arguments. """ ServiceCLI(self.client_config).scale({self: new_scale}, detach=detach) def update( self, detach: bool = False, force: bool = False, image: Optional[str] = None, with_registry_authentication: bool = False, ): """Updates a service See the [`docker.service.update`](../sub-commands/service.md#update) command for information about the arguments. """ ServiceCLI(self.client_config).update( self, detach, force, image, with_registry_authentication ) def exists(self) -> bool: """Returns `True` if the service is still present in the swarm, `False` if the service has been removed. """ return ServiceCLI(self.client_config).exists(self.id) ValidService = Union[str, Service] class ServiceCLI(DockerCLICaller): def create( self, image: str, command: Union[str, List[str], None], cap_add: List[str] = [], cap_drop: List[str] = [], constraints: List[str] = [], detach: bool = False, dns: List[str] = [], dns_options: List[str] = [], dns_search: List[str] = [], endpoint_mode: Optional[str] = None, entrypoint: Optional[str] = None, envs: Dict[str, str] = {}, env_files: Union[ValidPath, List[ValidPath]] = [], generic_resources: List[str] = [], groups: List[str] = [], healthcheck: bool = True, health_cmd: Optional[str] = None, health_interval: Union[None, int, timedelta] = None, health_retries: Optional[int] = None, health_start_period: Union[None, int, timedelta] = None, health_timeout: Union[None, int, timedelta] = None, hosts: Dict[str, str] = {}, hostname: Optional[str] = None, init: bool = False, isolation: Optional[str] = None, labels: Dict[str, str] = {}, limit_cpu: Optional[float] = None, limit_memory: Optional[str] = None, limit_pids: Optional[int] = None, log_driver: Optional[str] = None, ): """Creates a Docker swarm service. Consider using 'docker stack deploy' instead as it's idempotent and easier to read for complex applications. docker stack deploy is basically docker compose for swarm clusters. # Arguments: image: The image to use as the base for the service. command: The command to execute in the container(s). """ full_cmd = self.docker_cmd + ["service", "create", "--quiet"] full_cmd.add_args_list("--cap-add", cap_add) full_cmd.add_args_list("--cap-drop", cap_drop) full_cmd.add_args_list("--constraint", constraints) full_cmd.add_flag("--detach", detach) full_cmd.add_args_list("--dns", dns) full_cmd.add_args_list("--dns-option", dns_options) full_cmd.add_args_list("--dns-search", dns_search) full_cmd.add_simple_arg("--endpoint-mode", endpoint_mode) full_cmd.add_simple_arg("--entrypoint", entrypoint) full_cmd.add_args_list("--env", format_dict_for_cli(envs)) full_cmd.add_args_list("--env-file", env_files) full_cmd.add_args_list("--generic-resource", generic_resources) full_cmd.add_args_list("--group", groups) full_cmd.add_flag("--no-healthcheck", not healthcheck) full_cmd.add_simple_arg("--health-cmd", health_cmd) full_cmd.add_simple_arg("--health-interval", to_seconds(health_interval)) full_cmd.add_simple_arg("--health-retries", health_retries) full_cmd.add_simple_arg( "--health-start-period", to_seconds(health_start_period) ) full_cmd.add_simple_arg("--health-timeout", to_seconds(health_timeout)) for key, value in hosts: full_cmd += ["--host", f"{key}:{value}"] full_cmd.add_simple_arg("--hostname", hostname) full_cmd.add_flag("--init", init) full_cmd.add_simple_arg("--isolation", isolation) full_cmd.add_args_list("--label", format_dict_for_cli(labels)) full_cmd.add_simple_arg("--limit-cpu", limit_cpu) full_cmd.add_simple_arg("--limit-memory", limit_memory) full_cmd.add_simple_arg("--limit-pids", limit_pids) full_cmd.add_simple_arg("--log-driver", log_driver) full_cmd.append(image) if command is not None: for string in to_list(command): full_cmd.append(string) service_id = run(full_cmd) return Service(self.client_config, service_id, is_immutable_id=True) @overload def inspect(self, x: str) -> Service: pass @overload def inspect(self, x: List[str]) -> List[Service]: ... def inspect(self, x: Union[str, List[str]]) -> Union[Service, List[Service]]: """Returns one or a list of `python_on_whales.Service` object(s). # Raises `python_on_whales.exceptions.NoSuchService` if one of the services doesn't exists. """ if isinstance(x, str): return Service(self.client_config, x) else: return [Service(self.client_config, a) for a in x] def exists(self, x: str) -> bool: """Verify that a service exists. It's just calling `docker.service.inspect(...)` and verifies that it doesn't throw a `python_on_whales.exceptions.NoSuchService`. # Returns A `bool` """ try: self.inspect(x) except NoSuchService: return False else: return True def logs( self, service: ValidService, details: bool = False, since: Union[None, datetime, timedelta] = None, tail: Optional[int] = None, timestamps: bool = False, follow: bool = False, raw: bool = False, task_ids: bool = True, resolve: bool = True, truncate: bool = True, stream: bool = False, ): """Returns the logs of a service as a string or an iterator. # Arguments service: The service to get the logs of details: Show extra details provided to logs since: Use a datetime or timedelta to specify the lower date limit for the logs. tail: Number of lines to show from the end of the logs (default all) timestamps: Put timestamps next to lines. follow: If `False` (the default), the logs returned are the logs up to the time of the function call. If `True`, the logs of the container up to the time the service is stopped (removed) are displayed. Which is why you must use the `stream` option if you use the `follow` option. Without `stream`, only a `str` will be returned, possibly much later in the future (maybe never if the service is never removed). So this option is not possible (You'll get an error if you use follow and not stream). With `stream`, you'll be able to read the logs in real time and stop whenever you need. stream: Similar to the `stream` argument of `docker.run()`. This function will then returns and iterator that will yield a tuple `(source, content)` with `source` being `"stderr"` or `"stdout"`. `content` is the content of the line as bytes. Take a look at [the user guide](https://gabrieldemarmiesse.github.io/python-on-whales/user_guide/docker_run/#stream-the-output) to have an example of the output. # Returns `str` if `stream=False` (the default), `Iterable[Tuple[str, bytes]]` if `stream=True`. # Raises `python_on_whales.exceptions.NoSuchService` if the service does not exists. """ # first we verify that the service exists and raise an exception if not. self.inspect(str(service)) full_cmd = self.docker_cmd + ["service", "logs"] full_cmd.add_flag("--details", details) full_cmd.add_simple_arg("--since", format_time_arg(since)) full_cmd.add_simple_arg("--tail", tail) full_cmd.add_flag("--timestamps", timestamps) full_cmd.add_flag("--follow", follow) full_cmd.add_flag("--raw", raw) full_cmd.add_flag("--no-task-ids", not task_ids) full_cmd.add_flag("--no-resolve", not resolve) full_cmd.add_flag("--no-trunc", not truncate) full_cmd.append(service) iterator = stream_stdout_and_stderr(full_cmd) if stream: return iterator else: return "".join(x[1].decode() for x in iterator) def list(self) -> List[Service]: """Returns the list of services # Returns A `List[python_on_whales.Services]` """ full_cmd = self.docker_cmd + ["service", "list", "--quiet"] ids_truncated = run(full_cmd).splitlines() # the ids are truncated because there is no single docker command that allows us to get them # untruncated. We must run an inspect command to get all untruncated ids. if ids_truncated == []: return [] full_cmd = ( self.docker_cmd + ["service", "inspect"] + ids_truncated + ["--format", "{{.ID}}"] ) ids_not_truncated = run(full_cmd).splitlines() return [ Service(self.client_config, x, is_immutable_id=True) for x in ids_not_truncated ] def ps( self, x: Union[ValidService, List[ValidService]] ) -> List[python_on_whales.components.task.cli_wrapper.Task]: """Returns the list of swarm tasks associated with this service. You can pass multiple services at once at this function. ```python from python_on_whales import docker tasks = docker.service.ps("my-service-name") print(tasks[0].desired_state) # running ``` # Arguments x: One or more services (can be id, name or `python_on_whales.Service` object.) # Returns `List[python_on_whales.Task]` # Raises `python_on_whales.exceptions.NoSuchService` if one of the services doesn't exists. """ full_cmd = ( self.docker_cmd + ["service", "ps", "--quiet", "--no-trunc"] + to_list(x) ) ids = run(full_cmd).splitlines() return [ python_on_whales.components.task.cli_wrapper.Task( self.client_config, id_, is_immutable_id=True ) for id_ in ids ] def remove(self, services: Union[ValidService, List[ValidService]]) -> None: """Removes a service # Arguments services: One or a list of services to remove. # Raises `python_on_whales.exceptions.NoSuchService` if one of the services doesn't exists. """ full_cmd = self.docker_cmd + ["service", "remove"] for service in to_list(services): full_cmd.append(service) run(full_cmd) def rollback(self): """Not yet implemented""" raise NotImplementedError def scale(self, new_scales: Dict[ValidService, int], detach: bool = False) -> None: """Scale one or more services. # Arguments new_scales: Mapping between services and the desired scales. For example you can provide `new_scale={"service1": 4, "service2": 8}` detach: If True, does not wait for the services to converge and return immediately. # Raises `python_on_whales.exceptions.NoSuchService` if one of the services doesn't exists. """ # verify that the services exists self.inspect(list(new_scales.keys())) full_cmd = self.docker_cmd + ["service", "scale"] full_cmd.add_flag("--detach", detach) for service, new_scale in new_scales.items(): full_cmd.append(f"{str(service)}={new_scale}") run(full_cmd, capture_stderr=False, capture_stdout=False) def update( self, service: ValidService, detach: bool = False, force: bool = False, image: Optional[str] = None, with_registry_authentication: bool = False, ): """Update a service More options coming soon # Arguments service: The service to update detach: Exit immediately instead of waiting for the service to converge force: Force update even if no changes require it image: Service image tag with_registry_authentication: Send registry authentication details to swarm agents # Raises `python_on_whales.exceptions.NoSuchService` if the service doesn't exists. """ full_cmd = self.docker_cmd + ["service", "update"] full_cmd.add_flag("--force", force) full_cmd.add_simple_arg("--image", image) full_cmd.add_flag("--with-registry-auth", with_registry_authentication) full_cmd.add_flag("--detach", detach) full_cmd.append(service) run(full_cmd, capture_stdout=False) ``` #### File: python-on-whales/python_on_whales/download_binaries.py ```python import platform import shutil import tempfile import warnings from pathlib import Path import requests from tqdm import tqdm DOCKER_VERSION = "20.10.5" BUILDX_VERSION = "0.5.1" CACHE_DIR = Path.home() / ".cache" / "python-on-whales" TEMPLATE_CLI = ( "https://download.docker.com/{os}/static/stable/{arch}/docker-{version}.tgz" ) WINDOWS_CLI_URL = "https://github.com/StefanScherer/docker-cli-builder/releases/download/{version}/docker.exe" def get_docker_binary_path_in_cache(): return CACHE_DIR / "docker-cli" / DOCKER_VERSION / "docker" def get_docker_cli_url(): user_os = get_user_os() if user_os == "windows": return WINDOWS_CLI_URL.format(version=DOCKER_VERSION) arch = get_arch_for_docker_cli_url() return TEMPLATE_CLI.format(os=user_os, arch=arch, version=DOCKER_VERSION) def download_docker_cli(): file_to_download = get_docker_cli_url() extension = file_to_download.split(".")[-1] with tempfile.TemporaryDirectory() as tmp_dir: tmp_dir = Path(tmp_dir) downloaded_file_path = tmp_dir / f"docker.{extension}" download_from_url(file_to_download, downloaded_file_path) docker_binary_path = get_docker_binary_path_in_cache() docker_binary_path.parent.mkdir(exist_ok=True, parents=True) if extension == "tgz": extract_dir = tmp_dir / "extracted" shutil.unpack_archive(str(downloaded_file_path), str(extract_dir)) shutil.move(extract_dir / "docker" / "docker", docker_binary_path) elif extension == "exe": shutil.move(downloaded_file_path, docker_binary_path) warnings.warn( f"The docker client binary file {DOCKER_VERSION} was downloaded and put " f"in `{docker_binary_path.absolute()}`. \n" f"You can feel free to remove it if you wish, Python on whales will download " f"it again if needed." ) def download_from_url(url, dst): try: _download_from_url(url, dst) except Exception as e: raise ConnectionError(f"Error while downloading {url}") from e def _download_from_url(url, dst): # Streaming, so we can iterate over the response. response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get("content-length", 0)) block_size = 1024 progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) with open(dst, "wb") as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: raise ConnectionError( f"Total size should be {total_size_in_bytes}, downloaded {progress_bar.n}" ) def get_user_os(): user_os = platform.system() if user_os == "Linux": return "linux" elif user_os == "Darwin": return "mac" elif user_os == "Windows": return "windows" else: raise NotImplementedError( f"Unknown OS: {user_os}, cannot determine which Docker CLI binary file to " f"download. \n" f"Please open an issue at \n" f"https://github.com/gabrieldemarmiesse/python-on-whales/issues \n" f"and in the meantime, install Docker manually to make python-on-whales " f"work." ) def get_arch_for_docker_cli_url(): arch = platform.architecture()[0] # I don't know the exact list of possible architectures, # so if a user reports a NotImplementedError, we can easily add # his/her platform here. arch_mapping = { "NotImplementedError": "aarch64", "NotImplementedError2": "armel", "NotImplementedError3": "armhf", "NotImplementedError4": "ppc64le", "NotImplementedError5": "s390x", "64bit": "x86_64", } try: return arch_mapping[arch] except KeyError: raise NotImplementedError( f"The architecture detected on your system is `{arch}`, the list of " f"available architectures is {list(arch_mapping.values())}. \n" f"Please open an issue at \n" f"https://github.com/gabrieldemarmiesse/python-on-whales/issues " f"and make sure to copy past this error message. \n" f"In the meantime, install Docker manually on your system." ) ```
{ "source": "joshbohde/functional_python", "score": 3 }
#### File: joshbohde/functional_python/combinators.py ```python from functools import wraps from itertools import takewhile class Combinators(object): def __init__(self, value): self._value = value def K(self, f, *args, **kwargs): """The Kestrel combinator, invokes a method, and returns the original value""" if callable(f): f(self._value, *args, **kwargs) else: getattr(self._value, f)(*args, **kwargs) return self._value def T(self, function, *args, **kwargs): """The Thrush combinator, makes a function call look like a method""" return function(self._value, *args, **kwargs) def R(self, function, *args, **kwargs): """The Robin combinator, like the thrust, except appends to the end of the argument list""" return function(*(args + (self._value,)), **kwargs) def chain(self): return ChainedCombinators(self._value) class ChainedCombinators(object): def __init__(self, value): self._value = value def K(self, f, *args, **kwargs): """The Kestrel combinator, invokes a method, and returns the original value""" if callable(f): f(self._value, *args, **kwargs) else: getattr(self._value, f)(*args, **kwargs) return self def T(self, function, *args, **kwargs): """The Thrush combinator, makes a function call look like a method""" return self.__class__(function(self._value, *args, **kwargs)) def R(self, function, *args, **kwargs): """The Robin combinator, like the thrust, except appends to the end of the argument list.""" return self.__class__(function(*(args + (self._value,)), **kwargs)) def value(self): return self._value def bw(value): return Combinators(value) def fluent_combinator_style(xs): return bw(xs).chain()\ .R(takewhile, lambda x: x < 7)\ .R(filter, lambda x: x < 2)\ .R(map, lambda x: 4 * x)\ .value() assert fluent_combinator_style(range(10)) == [0, 4] ``` #### File: joshbohde/functional_python/pipes.py ```python def imperative_style(xs): results = [] for x in xs: if x >= 7: break if x < 2: result = 4 * x results.append(result) return results # Let's add a sanity check, since we're going # to refactor this version assert imperative_style(range(10)) == [0, 4] # Whenever I see code like the above `imperative_style`, # I mentally file it as point of possible complexity and bugs, # especially as requirements change and more logic # is tacked on. # As a comparison, let's look at a simple functional version # First, we're going to need `takewhile` from itertools, # which will allow us to build something like the `break` statement from itertools import takewhile # And now the functions definition, utilized two # builtins, `map` and `filter`, as well as `takewhile` # to break the problem down into logically independent parts # notice that the conditional in the `takewhile` is inverted def functional_style(xs): return map(lambda x: 4 * x, filter(lambda x: x < 2, takewhile(lambda x: x < 7, xs))) assert functional_style(range(10)) == [0, 4] # There are less moving parts here, # but it seems too much like a Christmas tree for me. # Can we make it flatter? # For this, we're going to need more tools for working with # functions. First is compose, which let's us feed the result # of one function as the argument of another. # I'm always surprised that Python doesn't have this builtin. # In more functional languages this is a basic feature, with # Haskell making it one character (`.`) def compose_two(g, f): """Function composition for two functions, e.g. compose_two(f, g)(x) == f(g(x))""" return lambda *args, **kwargs: g(f(*args, **kwargs)) assert compose_two(lambda x: x * 2, lambda y: y + 4)(1) == 10 def compose(*funcs): """Compose an arbitrary number of functions left-to-right passed as args""" return reduce(compose_two, funcs) # With compose, we need one more function, `partial`, # which can be used to provice only some of a function's # arguments from functools import partial composition_style = compose( partial(map, lambda x: 4 * x), partial(filter, lambda x: x < 2), partial(takewhile, lambda x: x < 7)) assert composition_style(range(10)) == [0, 4] # There's a quite a bit of boilerplate # in this definition. # Can we abstract out a reusable pattern? from itertools import starmap def composed_partials(*partial_funcs): return compose(*starmap(partial, partial_funcs)) composed_partials_style = composed_partials( (map, lambda x: 4 * x), (filter, lambda x: x < 2), (takewhile, lambda x: x < 7)) assert composed_partials_style(range(10)) == [0, 4] # This is less noisy, but it's a bit difficult to # read the logic in reverse order. Can we change that? def pipe(*partial_funcs): return composed_partials(*reversed(partial_funcs)) pipe_style = pipe( (takewhile, lambda x: x < 7), (filter, lambda x: x < 2), (map, lambda x: 4 * x)) assert pipe_style(range(10)) == [0, 4] # This definition is more dataflow oriented, much # like using pipes in a shell, or Clojure's `->` macro. # Looking at the definition for composed_partials and pipe, # they follow a similar structure. # Can we extract that out? def transform_args(func, transformer): return lambda *args: func(*transformer(args)) composed_partials = transform_args(compose, partial(starmap, partial)) composed_partials_style = composed_partials( (map, lambda x: 4 * x), (filter, lambda x: x < 2), (takewhile, lambda x: x < 7)) assert composed_partials_style(range(10)) == [0, 4] pipe = transform_args(composed_partials, reversed) pipe_style = pipe( (takewhile, lambda x: x < 7), (filter, lambda x: x < 2), (map, lambda x: 4 * x)) assert pipe_style(range(10)) == [0, 4] ```
{ "source": "joshbohde/redash", "score": 2 }
#### File: tests/tasks/test_refresh_queries.py ```python from mock import patch, call, ANY from tests import BaseTestCase from redash.tasks.queries.maintenance import refresh_queries from redash.models import Query ENQUEUE_QUERY = "redash.tasks.queries.maintenance.enqueue_query" class TestRefreshQuery(BaseTestCase): def test_enqueues_outdated_queries_for_sqlquery(self): """ refresh_queries() launches an execution task for each query returned from Query.outdated_queries(). """ query1 = self.factory.create_query(options={"apply_auto_limit": True}) query2 = self.factory.create_query( query_text="select 42;", data_source=self.factory.create_data_source(), options={"apply_auto_limit": True} ) oq = staticmethod(lambda: [query1, query2]) with patch(ENQUEUE_QUERY) as add_job_mock, patch.object( Query, "outdated_queries", oq ): refresh_queries() self.assertEqual(add_job_mock.call_count, 2) add_job_mock.assert_has_calls( [ call( query1.query_text + " LIMIT 1000", query1.data_source, query1.user_id, scheduled_query=query1, metadata=ANY, ), call( "select 42 LIMIT 1000", query2.data_source, query2.user_id, scheduled_query=query2, metadata=ANY, ), ], any_order=True, ) def test_enqueues_outdated_queries_for_non_sqlquery(self): """ refresh_queries() launches an execution task for each query returned from Query.outdated_queries(). """ ds = self.factory.create_data_source( group=self.factory.org.default_group, type="prometheus" ) query1 = self.factory.create_query(data_source=ds, options={"apply_auto_limit": True}) query2 = self.factory.create_query( query_text="select 42;", data_source=ds, options={"apply_auto_limit": True} ) oq = staticmethod(lambda: [query1, query2]) with patch(ENQUEUE_QUERY) as add_job_mock, patch.object( Query, "outdated_queries", oq ): refresh_queries() self.assertEqual(add_job_mock.call_count, 2) add_job_mock.assert_has_calls( [ call( query1.query_text, query1.data_source, query1.user_id, scheduled_query=query1, metadata=ANY, ), call( query2.query_text, query2.data_source, query2.user_id, scheduled_query=query2, metadata=ANY, ), ], any_order=True, ) def test_doesnt_enqueue_outdated_queries_for_paused_data_source_for_sqlquery(self): """ refresh_queries() does not launch execution tasks for queries whose data source is paused. """ query = self.factory.create_query(options={"apply_auto_limit": True}) oq = staticmethod(lambda: [query]) query.data_source.pause() with patch.object(Query, "outdated_queries", oq): with patch(ENQUEUE_QUERY) as add_job_mock: refresh_queries() add_job_mock.assert_not_called() query.data_source.resume() with patch(ENQUEUE_QUERY) as add_job_mock: refresh_queries() add_job_mock.assert_called_with( query.query_text + " LIMIT 1000", query.data_source, query.user_id, scheduled_query=query, metadata=ANY, ) def test_doesnt_enqueue_outdated_queries_for_paused_data_source_for_non_sqlquery(self): """ refresh_queries() does not launch execution tasks for queries whose data source is paused. """ ds = self.factory.create_data_source( group=self.factory.org.default_group, type="prometheus" ) query = self.factory.create_query(data_source=ds, options={"apply_auto_limit": True}) oq = staticmethod(lambda: [query]) query.data_source.pause() with patch.object(Query, "outdated_queries", oq): with patch(ENQUEUE_QUERY) as add_job_mock: refresh_queries() add_job_mock.assert_not_called() query.data_source.resume() with patch(ENQUEUE_QUERY) as add_job_mock: refresh_queries() add_job_mock.assert_called_with( query.query_text, query.data_source, query.user_id, scheduled_query=query, metadata=ANY, ) def test_enqueues_parameterized_queries_for_sqlquery(self): """ Scheduled queries with parameters use saved values. """ query = self.factory.create_query( query_text="select {{n}}", options={ "parameters": [ { "global": False, "type": "text", "name": "n", "value": "42", "title": "n", } ], "apply_auto_limit": True }, ) oq = staticmethod(lambda: [query]) with patch(ENQUEUE_QUERY) as add_job_mock, patch.object( Query, "outdated_queries", oq ): refresh_queries() add_job_mock.assert_called_with( "select 42 LIMIT 1000", query.data_source, query.user_id, scheduled_query=query, metadata=ANY, ) def test_enqueues_parameterized_queries_for_non_sqlquery(self): """ Scheduled queries with parameters use saved values. """ ds = self.factory.create_data_source( group=self.factory.org.default_group, type="prometheus" ) query = self.factory.create_query( query_text="select {{n}}", options={ "parameters": [ { "global": False, "type": "text", "name": "n", "value": "42", "title": "n", } ], "apply_auto_limit": True }, data_source=ds, ) oq = staticmethod(lambda: [query]) with patch(ENQUEUE_QUERY) as add_job_mock, patch.object( Query, "outdated_queries", oq ): refresh_queries() add_job_mock.assert_called_with( "select 42", query.data_source, query.user_id, scheduled_query=query, metadata=ANY, ) def test_doesnt_enqueue_parameterized_queries_with_invalid_parameters(self): """ Scheduled queries with invalid parameters are skipped. """ query = self.factory.create_query( query_text="select {{n}}", options={ "parameters": [ { "global": False, "type": "text", "name": "n", "value": 42, # <-- should be text! "title": "n", } ], "apply_auto_limit": True }, ) oq = staticmethod(lambda: [query]) with patch(ENQUEUE_QUERY) as add_job_mock, patch.object( Query, "outdated_queries", oq ): refresh_queries() add_job_mock.assert_not_called() def test_doesnt_enqueue_parameterized_queries_with_dropdown_queries_that_are_detached_from_data_source( self ): """ Scheduled queries with a dropdown parameter which points to a query that is detached from its data source are skipped. """ query = self.factory.create_query( query_text="select {{n}}", options={ "parameters": [ { "global": False, "type": "query", "name": "n", "queryId": 100, "title": "n", } ], "apply_auto_limit": True }, ) dropdown_query = self.factory.create_query(id=100, data_source=None) oq = staticmethod(lambda: [query]) with patch(ENQUEUE_QUERY) as add_job_mock, patch.object( Query, "outdated_queries", oq ): refresh_queries() add_job_mock.assert_not_called() ``` #### File: tests/tasks/test_worker.py ```python from mock import patch, call from rq import Connection from rq.job import JobStatus from redash.tasks import Worker from tests import BaseTestCase from redash import rq_redis_connection from redash.tasks.worker import Queue from redash.tasks.queries.execution import ( enqueue_query, ) from redash.worker import job, default_queues @patch("statsd.StatsClient.incr") class TestWorkerMetrics(BaseTestCase): def tearDown(self): with Connection(rq_redis_connection): for queue_name in default_queues: Queue(queue_name).empty() def test_worker_records_success_metrics(self, incr): query = self.factory.create_query() with Connection(rq_redis_connection): enqueue_query( query.query_text, query.data_source, query.user_id, False, None, {"Username": "Patrick", "Query ID": query.id}, ) Worker(["queries"]).work(max_jobs=1) calls = [ call("rq.jobs.running.queries"), call("rq.jobs.started.queries"), call("rq.jobs.running.queries", -1, 1), call("rq.jobs.finished.queries") ] incr.assert_has_calls(calls) @patch("rq.Worker.execute_job") def test_worker_records_failure_metrics(self, _, incr): """ Force superclass execute_job to do nothing and set status to JobStatus.Failed to simulate query failure """ query = self.factory.create_query() with Connection(rq_redis_connection): job = enqueue_query( query.query_text, query.data_source, query.user_id, False, None, {"Username": "Patrick", "Query ID": query.id}, ) job.set_status(JobStatus.FAILED) Worker(["queries"]).work(max_jobs=1) calls = [ call("rq.jobs.running.queries"), call("rq.jobs.started.queries"), call("rq.jobs.running.queries", -1, 1), call("rq.jobs.failed.queries") ] incr.assert_has_calls(calls) @patch("statsd.StatsClient.incr") class TestQueueMetrics(BaseTestCase): def tearDown(self): with Connection(rq_redis_connection): for queue_name in default_queues: Queue(queue_name).empty() def test_enqueue_query_records_created_metric(self, incr): query = self.factory.create_query() with Connection(rq_redis_connection): enqueue_query( query.query_text, query.data_source, query.user_id, False, None, {"Username": "Patrick", "Query ID": query.id}, ) incr.assert_called_with("rq.jobs.created.queries") def test_job_delay_records_created_metric(self, incr): @job("default", timeout=300) def foo(): pass foo.delay() incr.assert_called_with("rq.jobs.created.default") ```
{ "source": "joshbradshaw11/python-sshtail", "score": 3 }
#### File: python-sshtail/sshtail/tailers.py ```python import os import time import paramiko class SSHTailer(object): """ Class to handle the tailing of a single file via SSH. """ def __init__(self, host, remote_filename, private_key=None, verbose=False): if '@' in host: self.username, self.host = tuple(host.split('@')) else: self.username, self.host = None, host self.remote_filename = remote_filename self.private_key = private_key self.client = None self.sftp_client = None self.remote_file_size = None self.line_terminators = ['\r', '\n', '\r\n'] self.line_terminators_joined = '\r\n' self.verbose = verbose def connect(self): if self.verbose: print('Connecting to %s...' % self.host) # connect to the host self.client = paramiko.SSHClient() self.client.load_system_host_keys() self.client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) if self.private_key: self.client.connect(self.host, username=self.username, pkey=self.private_key) else: self.client.connect(self.host, username=self.username) if self.verbose: print('Opening remote file %s...' % self.remote_filename) # open a connection to the remote file via SFTP self.sftp_client = self.client.open_sftp() def tail(self): # make sure there's a connection if not self.sftp_client: self.connect() fstat = self.sftp_client.stat(self.remote_filename) # check if we have the file size if self.remote_file_size is not None: # if the file's grown if self.remote_file_size < fstat.st_size: for line in self.get_new_lines(): yield line self.remote_file_size = fstat.st_size def get_new_lines(self): """ Opens the file and reads any new data from it. """ remote_file = self.sftp_client.open(self.remote_filename, 'r') # seek to the latest read point in the file remote_file.seek(self.remote_file_size, 0) # read any new lines from the file line = remote_file.readline() while line: yield line.strip(self.line_terminators_joined) line = remote_file.readline() remote_file.close() def disconnect(self): if self.sftp_client: if self.verbose: print("Closing SFTP connection...") self.sftp_client.close() self.sftp_client = None if self.client: if self.verbose: print("Closing SSH connection...") self.client.close() self.client = None class SSHMultiTailer(object): """ Class to handle tailing of multiple files. """ def __init__(self, host_files, poll_interval=2.0, private_key=None, verbose=False): """ host_files is a dictionary whose keys must correspond to unique remote hosts to which this machine has access (ideally via SSH key). The values of the host_files dictionary must be arrays of file names that must be tailed. """ self.host_files = host_files self.poll_interval = poll_interval self.private_key = private_key self.tailers = {} self.verbose = verbose def connect(self): """ Connects to all of the host machines. """ if self.verbose: print "Connecting to multiple hosts..." for host, files in self.host_files.iteritems(): self.tailers[host] = {} for f in files: self.tailers[host][f] = SSHTailer(host, f, private_key=self.private_key, verbose=self.verbose) def tail(self, report_sleep=False): """ Tails all of the requested files across all of the hosts. """ # make sure we're connected if not self.tailers: self.connect() try: # assuming this script is to run until someone kills it (Ctrl+C) while 1: lines_read = 0 for host, tailers in self.tailers.iteritems(): for filename, tailer in tailers.iteritems(): # read as much data as we can from the file for line in tailer.tail(): yield host, filename, line lines_read += 1 if not lines_read: if report_sleep: yield None, None, None self.sleep() finally: self.disconnect() def sleep(self): time.sleep(self.poll_interval) def disconnect(self): """ Disconnects all active connections. """ for host, tailers in self.tailers.iteritems(): for filename, tailer in tailers.iteritems(): tailer.disconnect() self.tailers = {} if self.verbose: print "Disconnected from hosts." ```
{ "source": "JoshBradshaw/pressure-peak-detect", "score": 3 }
#### File: JoshBradshaw/pressure-peak-detect/pressure_peak_detect.py ```python from __future__ import division import collections import numpy as np import matplotlib.pyplot as plt import math from scipy.signal import butter, filtfilt import warnings """ Algorithm adapted from: An Open-source Algorithm to Detect Onset of Arterial Blood Pressure Pulses by: <NAME>, <NAME>, <NAME>, <NAME> """ ### USER TUNABLE FILTER SETTINGS # Hz !!! MUST BE SET CORRECTLY FOR TIME OUTPUT TO BE ACCURATE # otherwise setting it approximately will be sufficient for sample rates >50Hz SAMPLING_RATE = 561 MAX_EXPECTED_HR = 320 # BPM -- used to set the refractory period LOWPASS_FILTER_CUTTOFF_FREQUENCY = 16 # Hz # effective filtering will be 2x this order, because the filter is applied twice # see http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.signal.filtfilt.html LOWPASS_FILTER_ORDER = 1 ### USER TUNABLE WAVEFORM TRANSFORM SETTINGS # this value is used to determine the SSF window length. This paramater is not # very sensitive and does not typically require adjustment PULSE_RISE_TIME = 0.06 # seconds # 128 ms window recommended by Zong et. Al for Adult BP. It is sometimes # necessary to shorten this window length when dealing with very fast heartrates SSF_WINDOW_LENGTH = int(math.floor(SAMPLING_RATE * PULSE_RISE_TIME)) ### USER TUNABLE PEAK THRESHOLDING SETTINGS # BPM -- used to calculate the refractory period # you must use a much higher value is the subject has arrythmia or skip-beats REFRACTORY_PERIOD = int(math.floor((60 / MAX_EXPECTED_HR) * SAMPLING_RATE)) # the peak threshold is initialized as ~2-4 times the mean SSF signal value, # then dyanamically updated as peaks are detected INITIAL_PEAK_THRESHOLD = 2 # arbitrary coefficient -- should be 1-5 # to avoid false positive detections of peaks, only detect a peaks # that exceed this fraction of the magnitude of the last 5 detected peaks PEAK_THRESHOLD_FRACTION = 0.6 # 0-1 # number of peaks to average the peak threshold value over. A higher number # will decrease the risk of false positive detections, but increase the chance # of false negative (misses) detections in the event of a sudden baseline change PEAK_BUFFER_LEN = 3 # number of peaks # the stability of the rolling point peak detection algorithm is improved # marginally if a larger rolling point spacing is used. ROLLING_POINT_SPACING = 4 # samples # seek up to 1 second back to find the start of the pressure peak MAXIMUM_TROUGH_SEEK_SAMPLES = SAMPLING_RATE DEBUG = True # plot the algorithm output def butter_lowpass(highcut, fs, order=5): """generates the filter coefficients for a butterworth lowpass filter, see: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.butter.html """ nyq = 0.5 * fs # nyquist rate in Hz high = highcut / nyq b, a = butter(order, high, btype='lowpass') return b, a def butter_lowpass_filter(data, highcut, fs, order=5): """ applies the butterworth lowpass filter in the conventional time-forward manner note that this filtering method will result in a positive phase (time) delay on the output, which may need to be accounted for in the R_WAVE_DELAY setting """ b, a = butter_lowpass(highcut, fs, order=order) # using filtfilt makes this a zero phase filter y = filtfilt(b, a, data) return y def ssf(x0, x1): """slope sum function""" if x1 > x0: return x1 - x0 else: return 0 def windowed_slope_sum_function(fitered_bp_vector, window_length): """see the mathematical description of this algorithm in: An Open-source Algorithm to Detect Onset of Arterial Blood Pressure Pulses """ # this could be replaced with simple pointer manipulation, but this is easier # init with a monotonically increasing function window_ring_buffer = collections.deque(np.zeros(window_length), maxlen=window_length) ssf_vector = [] window_ssf = 0 for ii, bp_sample in enumerate(fitered_bp_vector): window_ssf -= ssf(window_ring_buffer[0], window_ring_buffer[1]) window_ssf += ssf(window_ring_buffer[-1], bp_sample) window_ring_buffer.append(bp_sample) if ii > window_length: ssf_vector.append(window_ssf) else: ssf_vector.append(0) return ssf_vector class PeakThreshold(object): """ the peak threshold value is simply a rolling average of the the preceding peak values. """ def __init__(self, ssf_vector, sampling_rate): # takes the mean of the SSF waveform # assumes that the SSF waveform is very bottom heavy ie. mean << max initial_threshold = INITIAL_PEAK_THRESHOLD * np.mean(ssf_vector) init_peak_buffer = [initial_threshold for _ in xrange(PEAK_BUFFER_LEN)] self.threshold_sum = PEAK_BUFFER_LEN * initial_threshold self.peak_buffer = collections.deque(init_peak_buffer, maxlen=PEAK_BUFFER_LEN) def get_threshold(self): return (self.threshold_sum / PEAK_BUFFER_LEN) * PEAK_THRESHOLD_FRACTION def update(self, new_peak_value): self.threshold_sum -= self.peak_buffer[0] self.peak_buffer.append(new_peak_value) self.threshold_sum += new_peak_value return self.get_threshold() def estimate_all_pressure_peak_locations(bp_vector, sampling_rate, backtrack_to_pulse_onset=False, output_type='sample_idx'): """returns a list of the R wave locations, in samples output_types: sample_idx -- a list of the bp_vector sample indexes which correspond to R-wave locations time -- the times of the R wave locations in seconds, relative to the start of bp_vector """ detected_locations = [] lp_filtered_vector = butter_lowpass_filter(bp_vector, LOWPASS_FILTER_CUTTOFF_FREQUENCY, sampling_rate, order=LOWPASS_FILTER_ORDER) ssf_transformed_vector = windowed_slope_sum_function(lp_filtered_vector, SSF_WINDOW_LENGTH) peak_thresholder = PeakThreshold(ssf_transformed_vector, sampling_rate) p_threshold = peak_thresholder.get_threshold() rolling_point_buffer = collections.deque(np.zeros(ROLLING_POINT_SPACING), maxlen=ROLLING_POINT_SPACING) r_period_count = REFRACTORY_PERIOD rising_edge = False # peak detection state machine for sample_num, bp_val in enumerate(ssf_transformed_vector): lrp = rolling_point_buffer[0] # left rolling point rrp = bp_val # right rolling point if rising_edge and lrp > rrp: r_period_count = 0 peak_thresholder.update(lrp) p_threshold = peak_thresholder.get_threshold() rising_edge = False if backtrack_to_pulse_onset: detection_sample_num = find_onset_of_trough(lp_filtered_vector, sample_num, ssf_transformed_vector, p_threshold, sampling_rate) else: detection_sample_num = sample_num - ROLLING_POINT_SPACING # detection_sample_num is None if find_onset_of_trough backtracking fails if detection_sample_num is not None: detected_locations.append(detection_sample_num) elif not rising_edge and r_period_count > REFRACTORY_PERIOD and rrp > lrp and lrp > p_threshold: rising_edge = True else: pass # state unchanged during this step r_period_count += 1 rolling_point_buffer.append(bp_val) # edge case where the recording ends on a rising edge, but cuts off before the peak if backtrack_to_pulse_onset and rising_edge: find_onset_of_trough(lp_filtered_vector, sample_num, ssf_transformed_vector, p_threshold, sampling_rate) if DEBUG: # display the intermediate filtered and SSF waveforms, for testing x = np.linspace(0, len(bp_vector), len(bp_vector)) plt.figure(1) plt.plot(x, bp_vector) x = np.arange(0, len(bp_vector)) plt.plot(x, lp_filtered_vector) plt.plot(x[:len(ssf_transformed_vector)], ssf_transformed_vector) bp_min = min(bp_vector) bp_max = max(bp_vector) detections_x = [] detections_y = [] for sample_num in detected_locations: detections_x.append(sample_num) detections_y.append(bp_vector[sample_num]) plt.title("BP, FILTERED BP, SSF TRANSFORMED BP, AND DETECTIONS") plt.ylabel("Voltage, or mmHg, or whatever BP was measured in") plt.xlabel("Samples") plt.plot(detections_x, detections_y, 'ro') if output_type=='sample_idx': return detected_locations elif output_type=='time': return np.array(detected_locations) / sampling_rate else: error_msg = "output_type: '{}' is invalid".format(output_type) raise ValueError(error_msg) def find_onset_of_trough(lp_filtered_vector, pressure_peak_sample_num, ssf_vector, ssf_threshold, sampling_rate): """ given the location of a pressure peak, searches backwards along the rising edge to find the rightmost edge of the trough between peaks """ trough_onset_locations = [] backwards_seek_range = reversed(xrange(pressure_peak_sample_num-MAXIMUM_TROUGH_SEEK_SAMPLES, pressure_peak_sample_num)) rolling_point_buffer = collections.deque(np.zeros(ROLLING_POINT_SPACING), maxlen=ROLLING_POINT_SPACING) rising_edge = False for ii in backwards_seek_range: if ii < 0: msg = "Unable to locate the beginning of the first pressure peak, algorithm reached start of recording" warnings.warn(msg) return None rrp = rolling_point_buffer[0] # left rolling point lrp = lp_filtered_vector[ii] # right rolling point rolling_point_buffer.append(lrp) if rising_edge and lrp > rrp: pressure_peak_location = ii + ROLLING_POINT_SPACING trough_onset_locations.append(ii) return pressure_peak_location elif not rising_edge and lrp < rrp and ssf_vector[ii] < ssf_threshold: rising_edge = True else: pass msg = "Unable to find the start of the pressure peak at time: '{}'".format(pressure_peak_sample_num / sampling_rate) warnings.warn(msg) return None # TUNING / TEST METHODS def filter_frequency_response_tester(): """convenience method from http://stackoverflow.com/a/12233959/2754647 plots the frequency responses of a scipy filter """ from scipy.signal import freqz # Sample rate and desired cutoff frequencies (in Hz). fs = 250 highcut = 16 # Plot the frequency response for a few different orders. plt.figure(2) plt.clf() for order in [3, 6, 9]: b, a = butter_lowpass(highcut, fs, order=order) w, h = freqz(b, a, worN=2000) plt.plot((fs * 0.5 / np.pi) * w, abs(h), label="order = %d" % order) plt.plot([0, 0.5 * fs], [np.sqrt(0.5), np.sqrt(0.5)], '--', label='sqrt(0.5)') plt.xlabel('Frequency (Hz)') plt.ylabel('Gain') plt.grid(True) plt.legend(loc='best') plt.show() def test(): signal = [] skip_num = 1 #sometimes there is an abrupt jump at the first sample us_trace = np.load("trace_IMG_20160510_1_12_anon.dcm.npy") signal = us_trace[0][1][skip_num:] signal_time = us_trace[0][0][skip_num:] print "sampling rate is 1 sample per %f seconds = %f samples per second" % (signal_time[1] - signal_time[0], 1/(signal_time[1] - signal_time[0])) if False: plt.figure(1) plt.clf() plt.plot(signal_time, signal) L = estimate_all_pressure_peak_locations(signal, SAMPLING_RATE, True, 'time') print "R-wave time points = %s" % L plt.show() if __name__ == '__main__': test() ```
{ "source": "joshbressers/blockchain-elasticsearch", "score": 2 }
#### File: blockchain-elasticsearch/python/esbtc.py ```python from elasticsearch import Elasticsearch from elasticsearch.exceptions import NotFoundError from elasticsearch.exceptions import ConnectionTimeout from elasticsearch.exceptions import TransportError import elasticsearch import elasticsearch.helpers from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException import os class ElasticsearchBTC: "Class for querying the Elasticsearch BTC instance" def __init__(self, url=None): if url is None: self.url = os.environ['ESURL'] else: self.url = url self.es = Elasticsearch([self.url], http_compress = True, timeout=60) self.size = None def get_transactions_indices(self): return self.es.indices.get('btc-transactions-*').keys() def get_block(self, block=None, height=None): result = {} if block: result = self.es.search(index="btc-blocks-*", body={"query": { "match": { "_id": block }}}) elif height: result = self.es.search(index="btc-blocks-*", body={"query": { "match": { "height": height }}}) # We're just going to assume neither of these can return # multiple things if len(result['hits']['hits']) == 0: return None else: return result['hits']['hits'][0]['_source'] def get_transactions(self, tx): unsorted = {} # Use batches of 20 for batch_range in range(0, len(tx), 20): result = self.es.search(index="btc-transactions-*", body={"size": 50, "query": { "terms": { "txid": tx[batch_range:batch_range+20] } } } ) if len(result['hits']['hits']) == 0: return None # Collect the results for i in result['hits']['hits']: unsorted[i['_source']['txid']] = i['_source'] # Return the results in the right order output = [] for i in tx: if i in unsorted: output.append(unsorted[i]) else: pass # Sometimes crazy things happen #import pdb; pdb.set_trace() return output def get_transaction(self, tx): result = self.es.search(index="btc-transactions-*", body={"query": { "match": { "txid": tx }}}) # We're just going to assume neither of these can return # multiple things if len(result['hits']['hits']) == 0: return None else: return result['hits']['hits'][0]['_source'] def get_block_transactions(self, block): result = self.es.search(index="btc-transactions-*", body={"query": { "match": { "block": block }}}) txs = [] for i in result['hits']['hits']: txs.append(i['_source']) return txs def get_block_transactions_number(self, block): result = self.es.search(index="btc-transactions-*", body={"query": { "match": { "block": block }}}) return result['hits']['total'] def get_nonstandard_transactions(self): query = { "_source": ["hash", "vout.scriptPubKey.hex", "vout.scriptPubKey.type"], "query" : { "match": { "vout.scriptPubKey.type": "nonstandard" } } } return elasticsearch.helpers.scan(self.es, index="btc-transactions-*", query=query, scroll='1m') def count_nulldata_transactions(self, index): result = self.es.count(index=index, body={ "query": { "term": { "vout.scriptPubKey.type": "nulldata" } } } ) return result def get_nulldata_transactions(self, index): # This is a mess. Apologies if you're looking at this query = { "_source": ["hash", "height", "txid", "vin.txid", "vout.scriptPubKey.asm", "vout.scriptPubKey.type", "vout.n" ], "query" : { "bool": { "must": [ {"term": { "vout.scriptPubKey.type": "nulldata" }} ] } } } return elasticsearch.helpers.scan(self.es, index=index, query=query, scroll='5m') def get_opreturn_data(self, bottom = None, top = None): query = { "_source": ["tx", "height", "n", "txid", "vin.txid", ], "query" : { "match_all" : {} } } if bottom is not None and top is not None: query['query'] = {"range" : { "height" : { "gte" : bottom, "lte" : top}}} return elasticsearch.helpers.scan(self.es, index="btc-opreturn", query=query, size=100, scroll='1m') def get_opreturn_tx(self, tx): result = self.es.search(index="btc-opreturn", body={"query": { "match": { "txid": { "query": tx }}}}) # We're just going to assume neither of these can return # multiple things if len(result['hits']['hits']) == 0: return None else: return result['hits']['hits'] def set_opreturn_tx_parent(self, tx): my_id = tx['_id'] data = tx['_source'] data['is_parent'] = True self.es.update(id=my_id, index="btc-opreturn", doc_type='doc', body={'doc' :data}, request_timeout=10) def add_opreturn_tx_child(self, parent_txid, child_txid): tx = self.get_opreturn_tx(parent_txid) if tx is None: return None my_id = tx[0]['_id'] data = tx[0]['_source'] if 'children' in data and child_txid not in data['children']: data['children'].append(child_txid) else: data['children'] = [child_txid] self.es.update(id=my_id, index="btc-opreturn", doc_type='doc', body={'doc' :data}, request_timeout=10) def update_opreturns(self, the_iter): errors = [] for ok, item in elasticsearch.helpers.streaming_bulk(self.es, the_iter, max_retries=2): if not ok: errors.append(item) return errors def add_opreturn(self, data): my_id = "%s-%s" % (data['tx'], data['n']) #self.es.update(id=my_id, index="btc-opreturn", doc_type='doc', body={'doc' :data, 'doc_as_upsert': True}, request_timeout=30) self.es.update(id=my_id, index="btc-opreturn", body={'doc' :data, 'doc_as_upsert': True}, request_timeout=30) def add_block(self, block, force_add=False): "Add a block. Do nothing if the block already exists" read_index = "btc-blocks-*" the_index = "btc-blocks" exists = False try: #self.es.get(index=the_index, doc_type="doc", id=block['hash']) self.es.get(index=read_index, id=block['hash']) exists = True except NotFoundError: # We need to add this block exists = False if exists is False or force_add is True: #self.es.update(id=block['hash'], index=the_index, doc_type='doc', body={'doc' :block, 'doc_as_upsert': True}, request_timeout=30) self.es.update(id=block['hash'], index=the_index, body={'doc' :block, 'doc_as_upsert': True}, request_timeout=30) def add_transaction(self, tx): "Add a transaction. Do nothing if the block already exists" the_index = "btc-transactions" try: #self.es.get(index=the_index, doc_type="doc", id=tx['hash']) self.es.get(index=the_index, id=tx['hash']) # It exists if this returns, let's skip it except NotFoundError: # We need to add this transaction #self.es.update(id=tx['hash'], index=the_index, doc_type='doc', body={'doc' :tx, 'doc_as_upsert': True}, request_timeout=30) self.es.update(id=tx['hash'], index=the_index, body={'doc' :tx, 'doc_as_upsert': True}, request_timeout=30) def add_price(self, date, price): "Add the price for a given timestamp" price_data = { 'time': date, 'price': price } #self.es.update(id=date, index="btc-price-date", doc_type='_doc', body={'doc' :price_data, 'doc_as_upsert': True}, request_timeout=30) self.es.update(id=date, index="btc-price-date", body={'doc' :price_data, 'doc_as_upsert': True}, request_timeout=30) def add_opreturn_files(self, data): errors = [] for ok, item in elasticsearch.helpers.streaming_bulk(self.es, data, max_retries=2): if not ok: errors.append(item) return errors def get_max_block(self): "Get the largest block in the system" if self.size is None: query = {'sort': [{'height': 'desc'}], 'size': 1, 'query': {'match_all': {}}, '_source': ['height']} res = self.es.search(index="btc-blocks-*", body=query) self.size = res['hits']['hits'][0]['_source']['height'] return self.size def add_bulk_tx(self, data_iterable): "Do some sort of bulk thing with an iterable" errors = [] for ok, item in elasticsearch.helpers.streaming_bulk(self.es, data_iterable, max_retries=2): if not ok: errors.append(item) return errors class DaemonBTC: def __init__(self, url, timeout=90): self.rpc = AuthServiceProxy(url, timeout=timeout) def get_block(self, i): block = self.rpc.getblockhash(i) block_data = self.rpc.getblock(block) block_data['transactions'] = len(block_data['tx']) # Elasticsearch struggles with these as integers #block_data['chainwork_int'] = int(block_data['chainwork'], 16) block_data['difficulty'] = int(block_data['difficulty']) del(block_data['tx']) # Figure out how many coins moved value = 0 txs = self.get_block_transactions(i) # This is the data we need for value # txs[0]['vout'][0]['value'] for tx in txs: for vout in tx['vout']: if vout['scriptPubKey']['type'] == 'nonstandard': pass else: value = value + vout['value'] block_data['value'] = value return block_data def get_transaction(self, tx): rtx = self.rpc.getrawtransaction(tx) dtx = self.rpc.decoderawtransaction(rtx) return dtx def get_transactions(self, txs): rtx = self.rpc.batch_([["getrawtransaction", t] for t in txs]) dtx = self.rpc.batch_([["decoderawtransaction", t] for t in rtx]) return dtx def get_block_transactions(self, block): # The genesis block is special if block == 0: return [] blockhash = self.rpc.getblockhash(block) block_data = self.rpc.getblock(blockhash) transactions = [] rtx = self.rpc.batch_([["getrawtransaction", t] for t in block_data['tx']]) dtx = self.rpc.batch_([["decoderawtransaction", t] for t in rtx]) for tx in dtx: tx['height'] = block_data['height'] tx['block'] = block_data['hash'] tx['time'] = block_data['time'] # We can't use this data, let's get rid of it for i in tx['vin']: if 'scriptSig' in i: del(i['scriptSig']) for i in tx['vout']: if 'hex' in i['scriptPubKey']: del(i['scriptPubKey']['hex']) if 'asm' in i['scriptPubKey']: del(i['scriptPubKey']['asm']) transactions.append(tx) return transactions def get_block_transactions_bulk(self, block): "Return an iterable object for bulk transactions" transactions = self.get_block_transactions(block) tx = Transactions() for i in transactions: tx.add_transaction(i) return tx def get_blocks_bulk(self, blocks): rbh = self.rpc.batch_([["getblockhash", t] for t in blocks]) dbh = self.rpc.batch_([["get_block", t] for t in rbh]) output = [] for block_data in dbh: block_data['transactions'] = len(block_data['tx']) block_data['chainwork_int'] = int(block_data['chainwork'], 16) del(block_data['tx']) output.append(block_data) return output def get_max_block(self): return self.rpc.getblockcount() class Transactions: def __init__(self): self.transactions = [] self.current = -1 def add_transaction(self, tx): temp = { #'_type': 'doc', '_op_type': 'update', '_index': "btc-transactions", '_id': tx['hash'], 'doc_as_upsert': True, 'doc': tx } self.transactions.append(temp) def __next__(self): "handle a call to next()" self.current = self.current + 1 if self.current >= len(self.transactions): raise StopIteration return self.transactions[self.current] def __iter__(self): "Just return ourself" return self def __len__(self): return len(self.transactions) class OP_RETURN: def __init__(self, es): self.transactions = [] self.current = -1 self.es_handle = es def add_transaction(self, tx): temp = { '_type': 'doc', '_op_type': 'update', '_index': "btc-opreturn", '_id': "%s-%s" % (tx['tx'], tx['n']), 'doc_as_upsert': True, 'doc': tx } self.transactions.append(temp) if len(self.transactions) > 200: try: self.es_handle.add_bulk_tx(self) except TransportError: import pdb; pdb.set_trace self.transactions = [] self.current = -1 def __next__(self): "handle a call to next()" self.current = self.current + 1 if self.current >= len(self.transactions): raise StopIteration return self.transactions[self.current] def __iter__(self): "Just return ourself" return self def __len__(self): return len(self.transactions) ```
{ "source": "joshbressers/covid19-es", "score": 3 }
#### File: covid19-es/covid19es/eshelper.py ```python import os import json import elasticsearch import elasticsearch.helpers from elasticsearch import Elasticsearch class ES: def __init__(self, idx='covid19-country'): if 'ESURL' not in os.environ: es_url = "http://localhost:9200" else: es_url = os.environ['ESURL'] es = Elasticsearch([es_url]) # Delete the index if it exists if es.indices.exists(idx) is True: es.indices.delete(index=idx, ignore=[400, 404]) # We have to create it and add a mapping fh = open('mapping.json') mapping = json.load(fh) es.indices.create(idx, body=mapping) fh.close() self.es = es def add(self, data): for ok, item in elasticsearch.helpers.streaming_bulk(self.es, data, max_retries=2): if not ok: print("ERROR:") print(item) ```
{ "source": "joshbressers/dwf-chain", "score": 3 }
#### File: dwf-chain/tests/test_DB.py ```python import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import unittest import vuln_chain import time import tempfile class TestDB(unittest.TestCase): def setUp(self): the_time = time.time() self.the_block = vuln_chain.Block('id', 0, None) self.second_block = self.the_block.add_next('id2', the_time, data = "Secret data2") self.third_block = self.second_block.add_next('id3', the_time, data = "Secret data3") self.tempdir = tempfile.TemporaryDirectory() def tearDown(self): self.tempdir.cleanup() def test_lookup_id(self): tempdb = os.path.join(self.tempdir.name, 'test_db') # Open DB the_db = vuln_chain.DB(tempdb) # Write blocks the_db.add_chain(self.the_block) # Close the DB the_db.close() # Open the DB the_db = vuln_chain.DB(tempdb) # Read in a block a_block = the_db.load_by_id(self.the_block.get_id()) self.assertEqual(a_block, self.the_block) a_block = the_db.load_by_id(self.second_block.get_id()) self.assertEqual(a_block, self.second_block) a_block = the_db.load_by_id(self.third_block.get_id()) self.assertEqual(a_block, self.third_block) def test_write_block(self): tempdb = os.path.join(self.tempdir.name, 'test_db') # Open DB the_db = vuln_chain.DB(tempdb) # Write blocks the_db.add_block(self.the_block) # Close the DB the_db.close() # Open the DB the_db = vuln_chain.DB(tempdb) # Read in a block a_block = the_db.load_by_id(self.the_block.get_id()) self.assertEqual(a_block, self.the_block) with self.assertRaises(Exception) as context: a_block = the_db.load_by_id(self.second_block.get_id()) def test_lookup_hash(self): tempdb = os.path.join(self.tempdir.name, 'test_db') # Open DB the_db = vuln_chain.DB(tempdb) # Write blocks the_db.add_chain(self.the_block) # Close the DB the_db.close() # Open the DB the_db = vuln_chain.DB(tempdb) # Read in a block a_block = the_db.load_by_hash(self.the_block.get_hash()) self.assertEqual(a_block, self.the_block) def test_child(self): tempdb = os.path.join(self.tempdir.name, 'test_db') # Open DB the_db = vuln_chain.DB(tempdb) # Write chain the_db.add_chain(self.the_block) # add some children child1 = vuln_chain.Block('child1', 0, None, parent = self.the_block) child2 = vuln_chain.Block('child2', 0, None, parent = self.the_block) child3 = vuln_chain.Block('child3', 0, None, parent = self.the_block) the_db.add_block(child1) the_db.add_block(child2) the_db.add_block(child3) # Close the DB the_db.close() # Open the DB the_db = vuln_chain.DB(tempdb) # Read in a block child_blocks = the_db.load_by_parent(self.the_block.get_hash()) print(child_blocks) self.assertTrue(child1 in child_blocks) self.assertTrue(child2 in child_blocks) self.assertTrue(child3 in child_blocks) if __name__ == '__main__': unittest.main() ```
{ "source": "joshbressers/dwf-request", "score": 3 }
#### File: dwf-bot/DWF/DWFIssue.py ```python import requests import os import json import re class Issue: def __init__(self, details): self.raw_data = details self.lines = details['body'].splitlines() self.comments_url = details['comments_url'] self.events_url = details['events_url'] self.url = details['url'] self.title = details['title'] self.id = details['number']; self.creator = details['user']['login'] self.creator_id = details['user']['id'] self.auth = (os.environ['GH_USERNAME'], os.environ['GH_TOKEN']) def get_dwf_id(self): # We are going to only trust the comment from <username> for this # ID. It's the most trustworthy ID comments = self.get_comments() comments.reverse() for i in comments: if i['user']['login'] == os.environ['GH_USERNAME']: if i['body'].startswith('This issue has been assigned'): match = re.search('((CVE|CAN)-\d{4}-\d+)', i['body']) dwf_id = match.groups()[0] return dwf_id return None def get_events(self): events = [] page = 0 while(True): params = { 'per_page': 100, 'page': page } resp = requests.get(self.events_url, auth=self.auth, params=params) resp.raise_for_status() if len(resp.json()) == 0: break else: page = page + 1 events.extend(resp.json()) return events def get_comments(self): comments = [] page = 0 while(True): params = { 'per_page': 100, 'page': page } resp = requests.get(self.comments_url, auth=self.auth, params=params) resp.raise_for_status() if len(resp.json()) == 0: break else: page = page + 1 comments.extend(resp.json()) return comments def who_approved(self): events = self.get_events() # We should reverse the list as we want to figure out who gave the last approval events.reverse() for i in events: # I'm pretty sure we need better logic here if i['event'] == 'labeled' and i['label']['name'] == 'approved': approver = i['actor']['login'] approver_id = i['actor']['id'] return "%s:%s" % (approver, approver_id) def get_reporter(self): data = self.get_dwf_json() the_reporter = "%s:%s" % (data['reporter'], data['reporter_id']) return the_reporter def get_dwf_json(self): dwf_json = "" found_json = False for l in self.lines: if l == "--- DWF JSON ---": found_json = not found_json elif found_json is True: dwf_json = dwf_json + l dwf_data = json.loads(dwf_json) return dwf_data def add_comment(self, comment): body = { "body": comment } headers = { "accept": "application/json" } resp = requests.post(self.comments_url, json=body, auth=self.auth, headers=headers) resp.raise_for_status() def can_to_dwf(self): can_id = self.get_dwf_id() # Make sure the ID starts with CAN if not can_id.startswith('CAN-'): return None # Get the path to the file year = can_id.split('-')[1] id_str = can_id.split('-')[2] dwf_id = "CVE-%s-%s" % (year, id_str) self.title = self.title.replace(can_id, dwf_id) body = { "title": self.title, "state": "closed" } headers = { "accept": "application/json" } resp = requests.post(self.url, json=body, auth=self.auth, headers=headers) resp.raise_for_status() def assign_dwf(self, dwf_id, approved_user = False): # Add a comment to the issue self.add_comment("This issue has been assigned %s" % dwf_id) # Modify the title and labels body = { "title": "[%s] %s" % (dwf_id, self.title), "labels": ["assigned"] } headers = { "accept": "application/json" } if approved_user: body["state"] = "closed" else: # CAN IDs get the candidate label body["labels"] = ["assigned", "candidate"] resp = requests.post(self.url, json=body, auth=self.auth, headers=headers) resp.raise_for_status() ```
{ "source": "joshbressers/salto", "score": 2 }
#### File: joshbressers/salto/parse-log.py ```python import os import sys import json import socket import glob import boto3 import time from s3logparse import s3logparse import elasticsearch import elasticsearch.helpers from elasticsearch import Elasticsearch import threading, queue s3_q = queue.Queue(maxsize=10000) es_q = queue.Queue(maxsize=3000) def s3_worker(): session = boto3.session.Session() s3 = session.resource('s3', aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'], aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'], aws_session_token=os.environ['AWS_SESSION_TOKEN'], ) bucket = 'toolbox-data.anchore.io-logs' while True: key = <KEY>() obj = s3.Object(bucket, key) body = obj.get()['Body'].read() line = body.decode('utf-8') lines = line.split("\n") if lines[-1] == '': lines = lines[0:-1] print(key) count = 0 for line in s3logparse.parse_log_lines(lines): count = count + 1 data = {} data['id'] = obj.key + "-" + str(count) data['bucket'] = line.bucket data['timestamp'] = line.timestamp.isoformat() data['remote_ip'] = line.remote_ip #try: # data['dns'] = socket.gethostbyaddr(line.remote_ip)[0] #except: # pass data['operation'] = line.operation data['s3_key'] = line.s3_key data['request_uri'] = line.request_uri if line.request_uri is not None: uri = line.request_uri.split(' ') if len(uri) > 2: data['request_verb'] = uri[0] data['request_uri'] = uri[1] data['request_ver'] = uri[2] data['status_code'] = line.status_code data['error_code'] = line.error_code data['bytes_sent'] = line.bytes_sent data['user_agent'] = line.user_agent data['total_time'] = line.total_time data['turn_around_time'] = line.turn_around_time data['referrer'] = line.referrer data['version_id'] = line.version_id aws_bulk = { "_op_type": "update", "_index": "aws", "_id": data['id'], "doc_as_upsert": True, "pipeline": "aws", "doc": data } es_q.put(aws_bulk) s3_q.task_done() def es_worker(): if 'ESURL' not in os.environ: es_url = "http://localhost:9200" else: es_url = os.environ['ESURL'] es = Elasticsearch([es_url]) # First let's see if the index exists if es.indices.exists(index='aws') is False: # We have to create it and add a mapping fh = open('mapping.json') mapping = json.load(fh) es.indices.create(index='aws', body=mapping) bulk_data = [] last_run = False while True: obj = es_q.get() if obj == "Done": last_run = True else: bulk_data.append(obj) if last_run or len(bulk_data) >= 2000: for ok, item in elasticsearch.helpers.streaming_bulk(es, bulk_data, max_retries=2): if not ok: print("ERROR:") print(item) bulk_data = [] es_q.task_done() #path = sys.argv[1] #for file in glob.glob(os.path.join(path, "*")): # with open(file) as fh: threading.Thread(target=es_worker, daemon=True).start() for i in range(0, 20): threading.Thread(target=s3_worker, daemon=True).start() session = boto3.Session( aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'], aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'], aws_session_token=os.environ['AWS_SESSION_TOKEN'] ) s3 = session.resource('s3') bucket = s3.Bucket('toolbox-data.anchore.io-logs') skip = 'access_logs/%s' % sys.argv[1] #for obj in bucket.objects.all(): for obj in bucket.objects.filter(Prefix=skip): s3_q.put(obj.key) while not s3_q.empty(): time.sleep(1) es_q.put("Done") while not es_q.empty(): time.sleep(1) ```
{ "source": "joshbressers/sbom-analysis", "score": 2 }
#### File: joshbressers/sbom-analysis/load-vulns.py ```python import docker import json import uuid import os import glob import tempfile from esbulkstream import Documents def main(): cwd = os.getcwd() es = Documents('vulns', mapping='') docker_client = docker.from_env() # Pull down a new GrypeDB grype_env = [ "GRYPE_DB_CACHE_DIR=/grype_cache", "GRYPE_DB_AUTO_UPDATE=false" ] temp_dir = tempfile.TemporaryDirectory() grype_db_location = temp_dir.name output = docker_client.containers.run("anchore/grype", "db update" ,volumes=[f"{grype_db_location}:/grype_cache"], environment=grype_env) the_files = glob.glob(f"{cwd}/SBOMs/*.json") for sbom_file in the_files: # Get just the container name sbom_name = os.path.split(sbom_file)[-1] c = sbom_name[:-5] print(c) output = docker_client.containers.run("anchore/grype", \ "-o json sbom:/SBOMs/%s" % sbom_name, volumes=[f"{cwd}/SBOMs:/SBOMs", f"{grype_db_location}:/grype_cache"], environment=grype_env) json_data = json.loads(output) for p in json_data['matches']: the_doc = {} the_doc['vuln_id'] = p['vulnerability']['id'] the_doc['severity'] = p['vulnerability']['severity'] the_doc['fix'] = p['vulnerability']['fix'] the_doc['package'] = p['artifact']['name'] the_doc['version'] = p['artifact']['version'] the_doc['type'] = p['artifact']['type'] the_doc['container'] = c the_doc['related'] = p['relatedVulnerabilities'] es.add(the_doc, uuid.uuid4()) # We have to clean up the temporary directory, the DB is owned by root output = docker_client.containers.run("alpine", "rm -rf /grype_cache/3" ,volumes=[f"{grype_db_location}:/grype_cache"]) temp_dir.cleanup() es.done() if __name__ == "__main__": main() ```
{ "source": "joshbressers/wifilogger", "score": 4 }
#### File: wifilogger/raspberrypi-files/shutdown-button.py ```python import RPi.GPIO as GPIO import time import os presses = 0 press_time = 0 # Use the Broadcom SOC Pin numbers # Setup the Pin with Internal pullups enabled and PIN in reading mode. GPIO.setmode(GPIO.BCM) GPIO.setup(18, GPIO.IN, pull_up_down = GPIO.PUD_UP) # Our function on what to do when the button is pressed def Shutdown(channel): global presses global press_time print "Button" # We're going to look for 3 fast presses to shut things down if (time.time() - press_time > 3): presses = 0 press_time = time.time() presses = presses + 1 if presses >= 5: if (time.time() - press_time) < 3: print "5" #os.system("sudo shutdown -h now") # Add our function to execute when the button pressed event happens GPIO.add_event_detect(18, GPIO.FALLING, callback = Shutdown, bouncetime = 500) # Now wait! while 1: time.sleep(1) ```
{ "source": "joshbriegal/gacf", "score": 3 }
#### File: gacf/gacf/gacf.py ```python from .datastructure import DataStructure from .correlator import CorrelationIterator, Correlator SELECTION_FUNCTIONS = { "fast": Correlator.fastSelectionFunctionIdx, "natural": Correlator.naturalSelectionFunctionIdx, } WEIGHT_FUNCTIONS = { "gaussian": Correlator.getGaussianWeights, "fractional": Correlator.getFractionWeights, } GACF_LOG_MESSAGE = ( " ###### ### ###### ######## \n" "## ## ## ## ## ## ## \n" "## ## ## ## ## \n" "## #### ## ## ## ###### \n" "## ## ######### ## ## \n" "## ## ## ## ## ## ## \n" " ###### ## ## ###### ## \n" "------------------------------\n" "Number of Data Points: {no_data}\n" "Number of Lag Timesteps: {no_lag_points}\n" "Lag Resolution: {lag_resolution}\n" "------------------------------\n" ) class GACF: """Compute the Generalised Autocorrelation Function (G-ACF)""" def __init__(self, timeseries=None, values=None, errors=None, filename=None): if filename: self.data = DataStructure(filename) else: if errors is None: self.data = DataStructure(timeseries, values) else: self.data = DataStructure(timeseries, values, errors) @staticmethod def set_up_correlation( corr, min_lag=None, max_lag=None, lag_resolution=None, alpha=None ): """ No return type. Applies non-default values to correlator """ if max_lag is not None: corr.max_lag = max_lag if min_lag is not None: corr.min_lag = min_lag if lag_resolution is not None: corr.lag_resolution = lag_resolution if alpha is not None: corr.alpha = alpha @staticmethod def find_correlation( corr, selection_function="natural", weight_function="fractional" ): """If user specifies a different weight or selection function this method is invoked. Will be considerably slower than the C++ implementation. Args: corr (Correlator): Correlator object to iterate over selection_function (str, optional): Selection Function. Defaults to "natural". weight_function (str, optional): Weight Function. Defaults to "fractional". """ def lag_generator(min_lag, max_lag, lag_resolution): k = min_lag is_positive = False while k <= max_lag: if k == 0: is_positive = True if k > 0 and not is_positive: is_positive = True yield 0 yield k k += lag_resolution for i, k in enumerate( lag_generator(corr.min_lag, corr.max_lag, corr.lag_resolution) ): col_it = CorrelationIterator(k, corr.N_datasets) SELECTION_FUNCTIONS[selection_function](corr, col_it) corr.deltaT(col_it) WEIGHT_FUNCTIONS[weight_function](corr, col_it) corr.findCorrelation(col_it) corr.addCorrelationData(col_it, i) corr.cleanCorrelationData(i + 1) def autocorrelation( self, min_lag=None, max_lag=None, lag_resolution=None, alpha=None, selection_function="natural", weight_function="fractional", return_correlator=False, ): """Compute G-ACF Using a fixed set up of natural selection function and linear weight function will be faster than the python implementation in general. It is reccomended to leave selection_function and weight_function as default for speed. Args: min_lag (float, optional): min lag in units of time. Defaults to None. max_lag (float, optional): max lag in units of time. Defaults to None. lag_resolution (float, optional): lag resolution in units of time. Defaults to None. alpha (float, optional): weight function characteristic length scale, default is t.median_time. Defaults to None. selection_function (str, optional): 'fast' or 'natural' - see paper for more details. Defaults to "natural". weight_function: (str, optional) 'gaussian' or 'fractional' see paper for more details. Defaults to "fractional". return_correlator (bool, optional): return correlator object. Defaults to False. Returns: Tuple: (lag_timeseries, correlations, [Optional: correlator]) """ corr = Correlator(self.data) self.set_up_correlation(corr, min_lag, max_lag, lag_resolution, alpha) if selection_function == "natural" and weight_function == "fractional": # fast c++ method corr.calculateStandardCorrelation() else: # slow python method with user specified function self.find_correlation(corr, selection_function, weight_function) if return_correlator: return ( corr.lag_timeseries(), corr.correlations() if len(corr.correlations()) > 1.0 else corr.correlations()[0], corr, ) else: return ( corr.lag_timeseries(), corr.correlations() if len(corr.correlations()) > 1.0 else corr.correlations()[0], ) ```
{ "source": "joshbriegal/roto", "score": 2 }
#### File: roto/methods/gacf.py ```python from typing import Optional, Tuple import numpy as np from astropy.convolution import Gaussian1DKernel, convolve from gacf import GACF from matplotlib.axes import Axes from scipy.stats import median_abs_deviation from roto.methods.fft import FFTPeriodFinder from roto.methods.periodfinder import PeriodFinder, PeriodResult class GACFPeriodFinder(PeriodFinder): """Generalised Autocorrelation Function (G-ACF) method to find periods. Conforms to PeriodFinder interface. """ def __init__( self, timeseries: np.ndarray, flux: np.ndarray, flux_errors: Optional[np.ndarray] = None, min_ratio_of_maximum_peak_size: float = 0.2, samples_per_peak: int = 3, time_units: str = "days", flux_units: str = "relative flux units", ): """ Args: timeseries (np.ndarray): array like time series. flux (np.ndarray): array like flux values flux_errors (Optional[np.ndarray], optional): array like errors on flux values. Defaults to None. """ super().__init__( timeseries, flux, flux_errors, min_ratio_of_maximum_peak_size, samples_per_peak, time_units, flux_units, ) self._gacf = GACF(self.timeseries, self.flux, self.flux_errors) self.lag_timeseries = None self.correlations = None def calculate_periodogram(self, **kwargs) -> None: """A "periodogram" does not exist for an ACF Returns: None """ return None def calculate_autocorrelation(self, **kwargs) -> Tuple[np.ndarray, np.ndarray]: """Calculate G-ACF of data. It is recommended to leave selection_function and weight_function as default for speed. Args: min_lag (float, optional): min lag in time_units. Defaults to None. max_lag (float, optional): max lag in time_units. Defaults to None. lag_resolution (float, optional): lag resolution in time_units. Defaults to None. alpha (float, optional): weight function characteristic length scale, default is t.median_time. Defaults to None. selection_function (str, optional): 'fast' or 'natural' - see paper for more details. Defaults to "natural". weight_function: (str, optional) 'gaussian' or 'fractional' see paper for more details. Defaults to "fractional". Returns: Tuple[np.ndarray, np.ndarray]: G-ACF lag timeseries and correlations """ min_lag = kwargs.get("min_lag", 0) max_lag = kwargs.get("max_lag", None) lag_resolution = kwargs.get("lag_resolution", None) selection_function = kwargs.get("selection_function", "natural") weight_function = kwargs.get("weight_function", "fractional") alpha = kwargs.get("alpha", None) lag_timeseries, correlations = self._gacf.autocorrelation( min_lag=min_lag, max_lag=max_lag, lag_resolution=lag_resolution, selection_function=selection_function, weight_function=weight_function, alpha=alpha, ) return np.array(lag_timeseries), np.array(correlations) def __call__(self, gacf_method="fft", **kwargs) -> PeriodResult: """Overrides parent call method to allow 2-stage period extraction. Args: method (str, optional): Method used to get final period values. Defaults to "fft". - "fft" will use an FFT on the G-ACF - "peaks" will find peaks within the G-ACF itself. Returns: PeriodResult: [description] """ self.lag_timeseries, self.correlations = self.calculate_autocorrelation( **kwargs ) if gacf_method == "fft": fft = FFTPeriodFinder(self.lag_timeseries, self.correlations) fft_period = fft(**kwargs) return PeriodResult( period=fft_period.period, neg_error=fft_period.neg_error, pos_error=fft_period.pos_error, method=self.__class__.__name__, ) elif gacf_method == "peaks": return self.find_acf_peaks(self.lag_timeseries, self.correlations) def find_acf_peaks( self, lag_timeseries: np.ndarray, correlation: np.ndarray ) -> PeriodResult: """Method taken from McQuillan 2013: Convolve ACF with Gaussian Kernel Identify peaks in ACF Select peak associated with mean rotation period Evaluate uncertainty on error Args: lag_timeseries (np.ndarray): Lag time series. Must be positive side only. correlation (np.ndarray): Correlations Returns: PeriodResult: [description] """ gaussian_fwhm = lag_timeseries[18] - lag_timeseries[0] gauss_kernel = Gaussian1DKernel( gaussian_fwhm, x_size=(np.ceil(gaussian_fwhm * (57 / 18)) // 2 * 2 + 1) ) smoothed_correlations = convolve(correlation, gauss_kernel) acf_peak_indexes = self.calculate_peak_indexes( smoothed_correlations, sort=False ) # Remove zero point as not a real peak acf_peak_indexes = np.delete(acf_peak_indexes, 0) if len(acf_peak_indexes) <= 1: # just one peak, use width of Gaussian as stdev # find left min: central_index = acf_peak_indexes[0] left_idx = acf_peak_indexes[0] value = smoothed_correlations[left_idx] while value > 0.5 * smoothed_correlations[central_index]: try: value = smoothed_correlations[left_idx] left_idx -= 1 except IndexError: left_idx = None break # find right min: right_idx = acf_peak_indexes[0] value = smoothed_correlations[right_idx] while value > 0.5 * smoothed_correlations[central_index]: try: value = smoothed_correlations[right_idx] right_idx += 1 except IndexError: right_idx = None break sigma_p = 0 if left_idx and right_idx: sigma_p = lag_timeseries[right_idx] - lag_timeseries[left_idx] return PeriodResult( period=lag_timeseries[acf_peak_indexes[0]], neg_error=sigma_p, pos_error=sigma_p, method=self.__class__.__name__, ) peak_lags = lag_timeseries[acf_peak_indexes] local_heights = np.zeros(len(acf_peak_indexes)) for i, peak_idx in enumerate(acf_peak_indexes): # find left min: left_idx = peak_idx diff = smoothed_correlations[left_idx] - smoothed_correlations[left_idx - 1] while diff > 0: try: diff = ( smoothed_correlations[left_idx] - smoothed_correlations[left_idx - 1] ) left_idx -= 1 except IndexError: left_idx = None break if left_idx: left_height = correlation[peak_idx] - correlation[left_idx] # find right min: right_idx = peak_idx diff = ( smoothed_correlations[right_idx] - smoothed_correlations[right_idx + 1] ) while diff > 0: try: diff = ( smoothed_correlations[right_idx] - smoothed_correlations[right_idx + 1] ) right_idx += 1 except IndexError: right_idx = None break if right_idx: right_height = correlation[peak_idx] - correlation[right_idx] if left_height and right_height: local_heights[i] = (left_height + right_height) / 2 elif right_height: local_heights[i] = right_height elif left_height: local_heights[i] = left_height else: local_heights[i] = np.nan first_lag = peak_lags[0] second_lag = peak_lags[1] p_start = 0 if not (2 * first_lag * 0.8) <= second_lag <= (2 * first_lag * 1.2): if local_heights[1] > local_heights[0]: p_start = 1 valid_peaks = [peak_lags[p_start]] valid_peak_indexes = [p_start] gap = 0 peak_number = 2 for i in range(1, len(peak_lags)): if (i + p_start) >= len(peak_lags): break if len(valid_peaks) >= 10: break if i + p_start - 1 >= 0: gap = peak_lags[i + p_start] - peak_lags[i + p_start - 1] gap_ratio = gap / peak_lags[p_start] if ( (peak_lags[p_start] * 0.8 * peak_number) <= peak_lags[i + p_start] <= (peak_lags[p_start] * 1.2 * peak_number) ): if gap_ratio > 0.3: valid_peaks.append(peak_lags[i + p_start] / peak_number) valid_peak_indexes.append(i + p_start) peak_number += 1 # use median / MAD estimate from multiple peaks. mad = median_abs_deviation(valid_peaks) sigma_p = 1.483 * mad / np.sqrt(len(valid_peaks) - 1) med_p = np.median(valid_peaks) return PeriodResult( period=med_p, neg_error=sigma_p, pos_error=sigma_p, method=self.__class__.__name__, ) def plot( self, ax: Axes, period: PeriodResult, colour: Optional[str] = "orange" ) -> Axes: """Given a figure and an axis plot the interesting output of the object. Args: ax (Axes): Matplotlib axis period (PeriodResult): Outputted period to plot around """ if (self.lag_timeseries is None) or (self.correlations is None): self() ax.scatter(self.lag_timeseries, self.correlations, s=1, color="k") ax.axvline(period.period, color=colour, lw=1) ax.axvspan( period.period - period.neg_error, period.period + period.pos_error, color=colour, alpha=0.5, ) ax.set_xlim([0, min(5 * period.period, self.lag_timeseries[-1])]) ax.set_xlabel(f"Lag time / {self.time_units}") ax.set_ylabel("G-ACF Power") ax.set_title("G-ACF") return ax ``` #### File: roto/methods/lombscargle.py ```python import logging from typing import Optional import numpy as np import progressbar from astropy.timeseries import LombScargle from matplotlib.axes import Axes from roto.methods.periodfinder import PeriodFinder, Periodogram, PeriodResult logger = logging.getLogger(__name__) class LombScarglePeriodFinder(PeriodFinder): """LombScargle method to find periods. Conforms to PeriodFinder interface. """ def __init__( self, timeseries: np.ndarray, flux: np.ndarray, flux_errors: Optional[np.ndarray] = None, min_ratio_of_maximum_peak_size: float = 0.2, samples_per_peak: int = 3, time_units: str = "days", flux_units: str = "relative flux units", fit_mean: Optional[bool] = True, center_data: Optional[bool] = True, nterms: Optional[bool] = 1, normalization: Optional[bool] = "standard", sliding: Optional[bool] = True, ): """ Args: timeseries (np.ndarray): array like time series. flux (np.ndarray): array like flux values flux_errors (Optional[np.ndarray], optional): array like errors on flux values. Defaults to None. fit_mean (Optional[bool]): if True, include a constant offset as part of the model at each frequency. This can lead to more accurate results, especially in the case of incomplete phase coverage. center_data (Optional[bool]): if True, pre-center the data by subtracting the weighted mean of the input data. This is especially important if fit_mean = False. nterms (Optional[bool]): number of terms to use in the Fourier fit. {‘standard’, ‘model’, ‘log’, ‘psd’}, normalization (Optional[bool]): Normalization to use for the periodogram. sliding (Optional[bool]): Use a sliding window to generate an error on the period. """ super().__init__( timeseries, flux, flux_errors, min_ratio_of_maximum_peak_size, samples_per_peak, time_units, flux_units, ) self._lombscargle = LombScargle( self.timeseries, self.flux, dy=self.flux_errors, fit_mean=fit_mean, center_data=center_data, nterms=nterms, normalization=normalization, ) self.sliding = sliding if self.sliding: self.ls_kwargs = { "fit_mean": fit_mean, "center_data": center_data, "nterms": nterms, "normalization": normalization, } def __call__(self, **kwargs) -> PeriodResult: """Call the PeriodFinder object to return a PeriodResult object. If sliding, will run first run the standard period finder to find a period, and then generate a set of PeriodResults using a sliding window over periods. Returns: PeriodResult: PeriodResult contains period, error and method information. """ period_result = super().__call__(**kwargs) if not self.sliding: return period_result return self._sliding_ls_periodogram(period_result, **kwargs) def _sliding_ls_periodogram( self, period_result_estimate: PeriodResult, n_periods: int = 5, sliding_aggregation: str = "median", max_sliding_windows: int = 100, **autopower_kwargs, ) -> PeriodResult: """Generate a set of PeriodResults using a sliding window over n_periods. Args: period_result_estimate (PeriodResult): First estimate period result n_periods (int, optional): Number of complete periods to consider in each window. Defaults to 5. sliding_aggregation (str, optional): How to aggregate the outputted periods. Defaults to "median". One of ["mean", "median"]. max_sliding_windows (int, optional): Max number of sliding windows to consider. Defaults to 100. If period is too short, will cap the number of windows at this value. Raises: ValueError: If incorrect method given. Returns: PeriodResult: Single PeriodResult with errors calculated using spread across window calculations. """ methods = ["mean", "median"] if sliding_aggregation not in methods: raise ValueError( f"method must be on of {methods}, not {sliding_aggregation}" ) period_estimate = period_result_estimate.period periods = [] epoch = self.timeseries.min() time_tolerance = np.diff( self.timeseries ).min() # allow a small tolerance when calculating last window number_of_windows = ( int( ( (self.timeseries.max() + time_tolerance) - (period_estimate * n_periods) - epoch ) / period_estimate ) + 1 ) if number_of_windows < 3: logger.warning( "Sliding window too large to generate good estimate, returning regular lombscargle" ) return period_result_estimate if number_of_windows > max_sliding_windows: logger.warning( "Attempting to calculate too many sliding windows, reducing to %d" % max_sliding_windows ) number_of_windows = max_sliding_windows n_periods = ((self.timeseries.max() - epoch) / period_estimate) - ( number_of_windows - 1 ) count = 0 with progressbar.ProgressBar( max_value=number_of_windows, widgets=[ "Sliding LombScargle Window: ", progressbar.Counter(), " windows (", progressbar.Timer(), ")", ], ) as bar: while epoch <= (self.timeseries.max() + time_tolerance) - ( period_estimate * n_periods ): idxs = np.logical_and( self.timeseries >= epoch, self.timeseries < epoch + (period_estimate * n_periods), ) if len(self.timeseries[idxs]) == 0: logger.debug("Empty slice %d, continuing" % count) epoch += period_estimate count += 1 bar.update(count) continue ls_periodfinder = LombScarglePeriodFinder( self.timeseries[idxs], self.flux[idxs], self.flux_errors[idxs] if self.flux_errors is not None else None, **self.ls_kwargs, sliding=False, ) period_result = ls_periodfinder(**autopower_kwargs) if period_result is not None: periods.append(period_result.period) epoch += period_estimate count += 1 bar.update(count) logger.info("Calculated %d periods from sliding windows" % len(periods)) logger.debug(periods) try: if sliding_aggregation == "median": percentiles = np.percentile(periods, [10, 50, 90]) ave_period = percentiles[1] std_period = percentiles[2] - percentiles[0] elif sliding_aggregation == "mean": ave_period = np.nanmean(periods) std_period = np.nanstd(periods) except (IndexError, ValueError) as err: logger.error( "Unable to calculate %s, returning initial guess" % sliding_aggregation ) logger.error(err, exc_info=True) return period_result_estimate return PeriodResult( ave_period, std_period, std_period, method=self.__class__.__name__ ) def calculate_periodogram(self, **kwargs) -> Periodogram: """Calculate LS Periodogram of data Args: method (str, optional): [description]. Defaults to "auto". method_kwds ([type], optional): [description]. Defaults to None. normalization ([type], optional): [description]. Defaults to None. samples_per_peak (int, optional): [description]. Defaults to 5. nyquist_factor (int, optional): [description]. Defaults to 5. minimum_frequency ([type], optional): [description]. Defaults to None. maximum_frequency ([type], optional): [description]. Defaults to None. Returns: Tuple[np.ndarray, np.ndarray]: The frequency and Lomb-Scargle power """ method = kwargs.get("method", "auto") method_kwds = kwargs.get("method_kwds", None) normalization = kwargs.get("normalization", None) samples_per_peak = kwargs.get("samples_per_peak", 5) nyquist_factor = kwargs.get("nyquist_factor", 5) minimum_frequency = kwargs.get("minimum_frequency", None) maximum_frequency = kwargs.get("maximum_frequency", None) if maximum_frequency is None: # set max frequency to nyquist limit to prevent small spurious periods. min_timestamp_diff = np.min(np.diff(self.timeseries)) maximum_frequency = 1.0 / (nyquist_factor * min_timestamp_diff) return Periodogram( *self._lombscargle.autopower( method=method, method_kwds=method_kwds, normalization=normalization, samples_per_peak=samples_per_peak, nyquist_factor=nyquist_factor, minimum_frequency=minimum_frequency, maximum_frequency=maximum_frequency, ) ) def plot( self, ax: Axes, period: PeriodResult, colour: Optional[str] = "orange" ) -> Axes: """Given a figure and an axis plot the interesting output of the object. Args: ax ([type]): Matplotlib axis period (PeriodResult): Outputted period to plot around """ ax = self.plot_periodogram(ax, period, colour=colour) ax.set_title("Lomb Scargle Periodogram") return ax ``` #### File: roto/plotting/plotting_tools.py ```python from math import floor, log10 from typing import Optional import numpy as np from matplotlib.figure import Axes, Figure from matplotlib.ticker import Formatter, ScalarFormatter from scipy.stats import binned_statistic def split_phase(phase, data, timeseries=None, buff=0.9, nperiods=1): """ returns list of lists of data & phases for complete periods :param phase: (requires sorted phased timeseries) :param data: :param timeseries: :param nperiods: :param buff: require this much phase coverage in first and last segments """ phases = [] datas = [] timeseriess = [] if timeseries is not None else None idx_changes = np.where(np.diff(phase) < 0)[0][::nperiods] if len(idx_changes) > 0: use_first = True if (phase[0] < 1.0 - buff) else False use_last = True if (phase[-1] > buff) else False if use_first: phases.append(phase[: idx_changes[0]]) datas.append(data[: idx_changes[0]]) if timeseriess is not None: timeseriess.append(timeseries[: idx_changes[0]]) for i, idx in enumerate(idx_changes[:-1]): phases.append(phase[idx + 1 : idx_changes[i + 1]]) datas.append(data[idx + 1 : idx_changes[i + 1]]) if timeseriess is not None: timeseriess.append(timeseries[idx + 1 : idx_changes[i + 1]]) if use_last or np.any(np.diff(phase[idx_changes[-1] + 1 :]) < 0): phases.append(phase[idx_changes[-1] :]) datas.append(data[idx_changes[-1] :]) if timeseriess is not None: timeseriess.append(timeseries[idx_changes[-1] :]) if timeseriess is not None: return phases, datas, timeseriess else: return phases, datas return [phase], [data] def calculate_phase(timeseries, period, epoch): """ Phase fold time series on period and epoch """ return np.mod(np.array(timeseries) - epoch, period) / period def rescale_phase(phase, max_phase=0.2): """ Shift phase points if greater than max_phase to negative """ return [p - 1 if p > 1 - max_phase else p for p in phase] def append_to_phase(phase, data, amt=0.05): """ Add additional data outside of phase 0-1. """ indexes_before = [i for i, p in enumerate(phase) if p > 1 - amt] indexes_after = [i for i, p in enumerate(phase) if p < amt] phase_before = [phase[i] - 1 for i in indexes_before] data_before = [data[i] for i in indexes_before] phase_after = [phase[i] + 1 for i in indexes_after] data_after = [data[i] for i in indexes_after] return ( np.concatenate((phase_before, phase, phase_after)), np.concatenate((data_before, data, data_after)), ) def bin_phase_curve(phase, data, statistic="median", bins=20): """ Bin phase curve. """ bin_medians, bin_edges, _ = binned_statistic( phase, data, statistic=statistic, bins=bins ) bin_width = bin_edges[1] - bin_edges[0] bin_centers = bin_edges[1:] - bin_width / 2 return bin_centers, bin_medians def create_axis_with_formatter( fig: Figure, gridspec_position, formatter: Optional[Formatter] = None, **kwargs ) -> Axes: """Create subplot figure and apply formatter to x/y axis. Args: fig (Figure): Matplotlib Figure gridspec_position (gridspec slice): gridspec slice / position. formatter (Optional[Formatter], optional): Matplotlib Ticker Formatter. Returns: Axes: [description] """ if not formatter: formatter = ScalarFormatter() formatter.set_scientific(False) ax = fig.add_subplot(gridspec_position, **kwargs) ax.xaxis.set_major_formatter(formatter) ax.yaxis.set_major_formatter(formatter) return ax def rel_flux_to_ppt( flux_arr: np.ndarray, normalise: bool = False, normalisation_value: float = 1.0, center_around: float = 0.0, ) -> np.ndarray: """Convert an array in relative flux into ppt Args: flux_arr (np.ndarray): [description] normalise (bool, optional): [description]. Defaults to False. normalisation_value (float, optional): [description]. Defaults to 1.0. center_around (float, optional): [description]. Defaults to 0.0. Returns: np.ndarray: [description] """ if not normalise: return flux_arr * 1.0e3 else: return (flux_arr / normalisation_value - center_around) * 1.0e3 def ppt_to_rel_flux( flux_arr: np.ndarray, normalise: bool = False, normalisation_value: float = 1.0, center_around: float = 0.0, ) -> np.ndarray: """Convert an array in ppt into relative flux Args: flux_arr (np.ndarray): [description] normalise (bool, optional): [description]. Defaults to False. normalisation_value (float, optional): [description]. Defaults to 1.0. center_around (float, optional): [description]. Defaults to 0.0. Returns: np.ndarray: [description] """ if not normalise: return flux_arr / 1.0e3 else: return (flux_arr / 1.0e3 + center_around) * normalisation_value def round_sig(x, sig=2, return_dp=False): """Round a number to a number of significant digits. Args: x: number sig (int, optional): Number of significant figures. Defaults to 2. return_dp (bool, optional): If true also return dp (argument to round function). Defaults to False. Returns: [type]: Rounded number to sig sig figs. """ dp = sig - int(floor(log10(abs(x)))) - 1 if return_dp: return round(x, dp), dp else: return round(x, dp) ``` #### File: src/roto/roto.py ```python import logging from itertools import cycle from typing import Dict, List, Optional, Tuple, Union import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.axes import Axes from matplotlib.figure import Figure from matplotlib.ticker import ScalarFormatter from scipy.stats import gaussian_kde, median_abs_deviation from roto.methods.fft import FFTPeriodFinder from roto.methods.gacf import GACFPeriodFinder from roto.methods.gaussianprocess import GPPeriodFinder from roto.methods.lombscargle import LombScarglePeriodFinder from roto.methods.periodfinder import PeriodResult from roto.plotting.plotting_tools import ( calculate_phase, create_axis_with_formatter, round_sig, split_phase, ) DEFAULT_COLOUR_CYCLE = cycle(plt.rcParams["axes.prop_cycle"].by_key()["color"]) logger = logging.getLogger(__name__) class RoTo: METHODS = { "lombscargle": LombScarglePeriodFinder, "fft": FFTPeriodFinder, "gacf": GACFPeriodFinder, "gp": GPPeriodFinder, # keep at end of dictionary to allow seed period generation from other methods. } METHOD_NAMES = { "lombscargle": "Lomb-Scargle", "fft": "Fast Fourier Transform", "gacf": "G-ACF", "gp": "Gaussian Process Regression", } PLOTTING_COLOURS = {method: next(DEFAULT_COLOUR_CYCLE) for method in METHODS} def __init__( self, timeseries: np.ndarray, flux: np.ndarray, flux_errors: Optional[np.ndarray] = None, methods_parameters: Optional[dict] = None, name: str = "Unnamed RoTo Object", time_units: str = "days", flux_units: str = "relative flux units", ): self.name = name self.timeseries = timeseries self.flux = flux self.flux_errors = flux_errors timeseries_diffs = np.diff(self.timeseries) self.regular_sampling = (timeseries_diffs.max() - timeseries_diffs.min()) < 1e-5 self.time_units = time_units if self.time_units != "days": logger.warning( "GP prior scaled to expect timeseries data in days. Check prior or convert units." ) self.flux_units = flux_units if self.flux_units != "relative flux units": logger.warning( "GP prior scaled to expect flux data in relative flux units. Check prior or convert units." ) self.methods = self._parse_constructor_parameters(methods_parameters) self.periods = {} def _parse_constructor_parameters( self, methods_parameters: Optional[dict] = None, ) -> dict: if methods_parameters is None: return { name: method( self.timeseries, self.flux, self.flux_errors, time_units=self.time_units, flux_units=self.flux_units, ) for name, method in self.METHODS.items() if (name != "fft") or (self.regular_sampling) } methods = {} if list(methods_parameters.keys()) == ["gp"]: # if just a GP, use a lomb scargle also to seed GP period. methods_parameters = {"lombscargle": {}, **methods_parameters} for method, kwargs in methods_parameters.items(): methods[method] = self.METHODS[method]( self.timeseries, self.flux, self.flux_errors, time_units=self.time_units, flux_units=self.flux_units, **kwargs, ) return methods def __call__(self, **kwargs): for name, method in self.methods.items(): if name == "gp": if "gp_seed_period" not in kwargs: average_period = np.median( [ period_result.period for period_result in self.periods.values() ] ) kwargs["gp_seed_period"] = average_period try: self.periods[name] = method(**kwargs) except Exception as e: logger.error("Unable to run method %s" % name) logger.error(e, exc_info=True) continue def periods_to_table(self) -> pd.DataFrame: """Convert roto.periods into a DataFrame for display. Returns: pd.DataFrame: Dataframe with all outputted periods """ columns = {"period": [], "neg_error": [], "pos_error": [], "method": []} if not self.periods: return pd.DataFrame() for period_result in self.periods.values(): columns["period"].append(period_result.period) columns["neg_error"].append(period_result.neg_error) columns["pos_error"].append(period_result.pos_error) columns["method"].append(period_result.method) period_df = pd.DataFrame.from_dict(columns) return period_df def __str__(self): return self.periods_to_table().to_string(index=False) def best_period( self, method: str = "mean", include: Optional[List] = None, exclude: Optional[List] = None, ) -> PeriodResult: """Calculate best period based on methods already run. If called before running the period finding methods, will return None. Args: method (str, optional): method should be one of 'mean', 'median' or a period finding method. Defaults to "mean". include (Optional[List], optional): Method outputs to include. Defaults to []. exclude (Optional[List], optional): Method outputs to exclude. Defaults to []. Raises: ValueError: If method specified incorrect. Returns: PeriodResult: CombinedPeriodResult. """ if not self.periods: return None periods_to_use = self.periods.values() try: if include: include_classes = [ self.METHODS[method_to_include].__name__ for method_to_include in include ] periods_to_use = [ period_result for period_result in periods_to_use if period_result.method in include_classes ] if exclude: exclude_classes = [ self.METHODS[method_to_exclude].__name__ for method_to_exclude in exclude ] periods_to_use = [ period_result for period_result in periods_to_use if period_result.method not in exclude_classes ] if not periods_to_use: raise ValueError( "Provided incompatible list of include / exclude values. No best period calculated. \n include: {include} \n exclude: {exclude}" ) except KeyError: raise ValueError( f"Unable to parse include / exclude values given. \n include: {include} \n exclude: {exclude}" ) if method == "mean": mean = np.mean([p.period for p in periods_to_use]) std = np.std([p.period for p in periods_to_use]) / np.sqrt( len(periods_to_use) ) return PeriodResult( period=mean, neg_error=std, pos_error=std, method="CombinedPeriodResult" ) elif method == "median": median = np.median([p.period for p in periods_to_use]) std = ( 1.4826 * median_abs_deviation([p.period for p in periods_to_use]) / np.sqrt(len(periods_to_use)) ) return PeriodResult( period=median, neg_error=std, pos_error=std, method="CombinedPeriodResult", ) elif method in self.periods: return self.periods[method] raise ValueError( f"Parameter 'method' must be one of ['mean', 'median'] or {list(self.METHODS.keys())}]. Did you specify a period extraction method not run?" ) def plot( self, savefig: bool = False, filename: Optional[str] = None, include: Optional[List] = None, exclude: Optional[List] = None, plot_gp: bool = True, show: bool = True, summary: bool = False, scientific: bool = False, return_fig_ax: bool = False, ) -> Union[None, Tuple[Figure, Dict]]: """Generate summary plot of RoTo object run. Args: savefig (bool, optional): Save figure to pdf. Defaults to False. filename (Optional[str], optional): Name of pdf. Defaults to None. include (Optional[List], optional): Methods to include. Defaults to None (all methods). exclude (Optional[List], optional): Methods to exclude. Defaults to None (no methods). plot_gp (bool, optional): Plot Gaussian Process prediction & residuals. Defaults to True. show (bool, optional): Show interactive plot. Defaults to True. summary (bool, optional): Just plot summary, no methods. Defaults to False. scientific (bool, optional): Scientific formatting of numbers vs linear scale. Defaults to False. return_fig_ax (bool, optional): Return figure and axis tuples for further processing. Defaults to False. Returns: Union[None, Tuple(Figure, Dict)]: None or a tuple (matplotlib figure, dictionary of matplotlib axes) """ if savefig and not filename: filename = f"{self.name}.pdf" if (not include) or (not self.periods): include = list(self.periods.keys()) plot_gp = plot_gp and ("gp" in self.periods) fig, ax_dict = self._setup_figure( include=include, exclude=exclude, summary=summary, scientific=scientific, plot_gp=plot_gp, ) epoch = self.timeseries.min() self.plot_data(ax_dict["data"]) self.plot_periods(ax_dict["distributions"]) self.plot_phase_folded_data( ax_dict["phase_fold"], self.best_period().period, epoch=epoch ) if not summary: for method_name, method in self.methods.items(): try: if method_name == "gp": if plot_gp: ax_dict["data"].get_xaxis().set_visible(False) method.plot_gp_predictions( ax_dict["data"], colour=self.PLOTTING_COLOURS[method_name], ) method.plot_gp_residuals( ax_dict["residuals"], colour=self.PLOTTING_COLOURS[method_name], ) ax_dict["residuals"].set_xlim(ax_dict["data"].get_xlim()) method.plot( ax_dict[method_name]["method"], self.periods[method_name], colour=self.PLOTTING_COLOURS[method_name], ) self.plot_phase_folded_data( ax_dict[method_name]["phase_fold"], self.periods[method_name].period, epoch=epoch, ) except KeyError as err: logger.warning(f"Not plotting method {method} as no results found") continue if savefig: fig.savefig(filename, bbox_inches="tight", pad_inches=0.25) if show: plt.show() if return_fig_ax: return fig, ax_dict def plot_summary( self, savefig: bool = False, filename: Optional[str] = None, plot_gp: bool = True, show: bool = True, ): """Helper function to create just summary plots, same as calling self.plot(summary=True) Args: savefig (bool, optional): Save figure to pdf. Defaults to False. filename (Optional[str], optional): Name of pdf. Defaults to None. plot_gp (bool, optional): Plot Gaussian Process prediction & residuals. Defaults to True. show (bool, optional): Show interactive plot. Defaults to True. """ self.plot( savefig=savefig, filename=filename, plot_gp=plot_gp, show=show, summary=True ) def plot_periods(self, ax: Axes) -> Axes: """Plot figure comparing outputted periods and errors. Args: ax (Axes): Matplotlib axis Returns: Axes: Matplotlib axis """ for name, period in self.periods.items(): if period.period_distribution is not None: # plot as distribution density = gaussian_kde(period.period_distribution) pmin = max(0, period.period - 5 * period.neg_error) pmax = period.period + 5 * period.pos_error xs = np.linspace(pmin, pmax, 100) kde_plot = density(xs) kde_plot *= 1.0 / kde_plot.max() ax.plot(xs, kde_plot, color=self.PLOTTING_COLOURS[name]) ax.axvline( period.period, label=self.METHOD_NAMES[name], color=self.PLOTTING_COLOURS[name], ) ax.axvspan( period.period - period.neg_error, period.period + period.pos_error, color=self.PLOTTING_COLOURS[name], alpha=0.2, ) # plot best period as a single point with error bars best_period = self.best_period() ax.errorbar( best_period.period, 0.5, xerr=[[best_period.neg_error], [best_period.pos_error]], ms=10, marker="s", c="k", capsize=10, ) ax.set_xlim( [ best_period.period - 5 * best_period.neg_error, best_period.period + 5 * best_period.pos_error, ] ) ax.set_ylim([0, 1]) ax.get_yaxis().set_visible(False) ax.set_xlabel("Period") two_sided_error = np.average([best_period.neg_error, best_period.pos_error]) error_rounded, error_precision = round_sig(two_sided_error, 2, return_dp=True) ax.set_title( f"Adopted Period: {round(best_period.period, error_precision)} ± {error_rounded} {self.time_units}" ) ax.legend() return ax def plot_gp_diagnostics( self, show: bool = True, savefig: bool = False, filename: str = "", fileext: str = "pdf", ): """Plot Gaussian Process diagnostic outputs figures. Args: show (bool, optional): Show interactive plot. Defaults to True. savefig (bool, optional): Save figure to pdf. Defaults to False. filename (Optional[str], optional): Name of pdf. Defaults to None. fileext (str, optional): File extension to save figure. Defaults to "pdf". Raises: RuntimeError: If no GP found. """ if "gp" not in self.methods: raise RuntimeError("Cannot plot GP diagnostics, no GP method found.") if savefig and not filename: filename = f"{self.name}.pdf" try: self.methods["gp"].plot_trace( show=show, savefig=savefig, filename=filename, fileext=fileext ) except RuntimeError as trace_err: logger.error("Unable to plot trace") logger.error(trace_err, exc_info=True) try: self.methods["gp"].plot_distributions( show=show, savefig=savefig, filename=filename, fileext=fileext ) except (RuntimeError, ValueError) as dist_err: logger.error("Unable to plot GP distributions") logger.error(dist_err, exc_info=True) def plot_data(self, ax: Axes) -> Axes: """Scatter plot of input data. Args: ax (Axes): Matplotlib axis Returns: Axes: Matplotlib axis """ if "gp" in self.methods: mask = self.methods["gp"].mask else: mask = np.ones(len(self.timeseries), dtype=bool) ax.errorbar( self.timeseries[mask], self.flux[mask], self.flux_errors[mask], markersize=2, errorevery=1, linestyle="none", marker="o", color="k", ecolor="gray", alpha=0.7, capsize=0, elinewidth=1, mec="none", ) ax.errorbar( self.timeseries[~mask], self.flux[~mask], self.flux_errors[~mask], markersize=2, errorevery=1, linestyle="none", marker="o", color="k", ecolor="gray", alpha=0.3, capsize=0, elinewidth=1, mec="none", ) ax.set_xlabel(f"Time / {self.time_units}") ax.set_ylabel(f"Flux / {self.flux_units}") ymin = np.min(self.flux - self.flux_errors) ymax = np.max(self.flux + self.flux_errors) yextent = ymax - ymin ax.set_ylim([ymin - (yextent * 0.01), ymax + (yextent * 0.01)]) return ax def plot_phase_folded_data(self, ax: Axes, period: float, epoch: float = 0) -> Axes: """Plot data phase folded on period and epoch. Colour scale incremented for each period. Args: ax (Axes): Matplotlib axis period (float): Period on which to phase fold. epoch (float, optional): Epoch on which to phase fold. Defaults to 0. Returns: Axes: Matplotlib axis """ phased_timeseries = calculate_phase(self.timeseries, period, epoch) split_phases, split_flux = split_phase(phased_timeseries, self.flux) colours = iter(cm.viridis(np.r_[0 : 1 : len(split_phases) * 1j])) for phase, flux in zip(split_phases, split_flux): ax.scatter(phase, flux, color=next(colours), s=1) ax.set_title(f"Period: {period:.4f} {self.time_units}") ax.set_xlim([0, 1]) ax.set_xlabel("Phase") ax.set_ylabel(f"Flux / {self.flux_units}") return ax def _setup_figure( self, include: Optional[List] = [], exclude: Optional[List] = [], summary: bool = False, scientific: bool = False, plot_gp: bool = False, ): unit_grid_width = 5 unit_grid_height = 1 data_plot_size = (2, 3) # in units of grid width, height residuals_plot_size = (2, 1) distributions_plot_size = (1, 3) phase_fold_plot_size = (1, 3) method_plot_size = (1, 3) spacer_plot_size = (2, 1) if summary: # just plot summary stats, no method plots. methods = {} else: methods = {name: method for name, method in self.methods.items()} if include: methods = { name: method for name, method in methods.items() if name in include } if exclude: methods = { name: method for name, method in methods.items() if name not in exclude } n_grid_units_width = 2 n_grid_units_height = ( data_plot_size[1] + (residuals_plot_size[1] * int(plot_gp)) + distributions_plot_size[1] + method_plot_size[1] * len(methods) + spacer_plot_size[1] * (1 + len(methods)) ) figsize = ( unit_grid_width * n_grid_units_width, unit_grid_height * n_grid_units_height, ) fig = plt.figure(figsize=figsize) gridspec = fig.add_gridspec(n_grid_units_height, n_grid_units_width) plt.subplots_adjust(hspace=0.0, wspace=0.2) axes = {} formatter = ScalarFormatter() formatter.set_scientific(scientific) height = 0 axes["data"] = create_axis_with_formatter( fig, gridspec[height : height + data_plot_size[1], :], formatter ) height += data_plot_size[1] if plot_gp: axes["residuals"] = create_axis_with_formatter( fig, gridspec[height : height + residuals_plot_size[1], :], formatter, sharex=axes["data"], ) height += residuals_plot_size[1] height += spacer_plot_size[1] axes["distributions"] = create_axis_with_formatter( fig, gridspec[height : height + distributions_plot_size[1], 0], formatter ) axes["phase_fold"] = create_axis_with_formatter( fig, gridspec[height : height + phase_fold_plot_size[1], 1], formatter ) height += phase_fold_plot_size[1] height += spacer_plot_size[1] for method in methods: axes[method] = { "method": create_axis_with_formatter( fig, gridspec[height : height + method_plot_size[1], 0], formatter ), "phase_fold": create_axis_with_formatter( fig, gridspec[height : height + method_plot_size[1], 1], formatter ), } height += method_plot_size[1] height += spacer_plot_size[1] axes["data"].set_title(self.name) return fig, axes ``` #### File: roto/test/test_roto.py ```python import sys with open("/tmp/python-sys-path.txt", "w") as outfile: outfile.write(str(sys.path)) from unittest import mock import pytest from roto.methods.periodfinder import PeriodFinder, PeriodResult from roto.roto import RoTo inverse_methods_dictionary = {method: name for name, method in RoTo.METHODS.items()} @pytest.mark.parametrize( "method_parameters", [ None, {"lombscargle": {"normalization": True, "fit_mean": False}}, {"gacf": {}}, {"fft": {}}, ], ) def test_create_roto(method_parameters, timeseries, flux, flux_errors): roto = RoTo(timeseries, flux, flux_errors, method_parameters) for name, method in roto.methods.items(): assert isinstance(method, PeriodFinder) assert name in roto.METHODS.keys() if method_parameters: assert inverse_methods_dictionary[method.__class__] in method_parameters def test_create_roto_only_gp(timeseries, flux, flux_errors): method_parameters = {"gp": {}} roto = RoTo(timeseries, flux, flux_errors, method_parameters) for name, method in roto.methods.items(): assert isinstance(method, PeriodFinder) assert name in roto.METHODS.keys() assert list(roto.methods.keys()) == ["lombscargle", "gp"] @mock.patch("roto.roto.LombScarglePeriodFinder", autospec=True) @mock.patch("roto.roto.FFTPeriodFinder", autospec=True) @mock.patch("roto.roto.GACFPeriodFinder", autospec=True) @mock.patch("roto.roto.GPPeriodFinder", autospec=True) def test_call(mock_gp, mock_gacf, mock_fft, mock_ls, timeseries, flux, flux_errors): mock_gacf_object = mock.Mock(return_value=PeriodResult(1)) mock_fft_object = mock.Mock(return_value=PeriodResult(420)) mock_ls_object = mock.Mock(return_value=PeriodResult(69)) mock_gp_object = mock.Mock(return_value=PeriodResult(1)) mock_broken_function = mock.MagicMock(side_effect=RuntimeError("this is broken")) mock_gacf.return_value = mock_gacf_object mock_fft.return_value = mock_fft_object mock_ls.return_value = mock_ls_object mock_gp.return_value = mock_gp_object mock_broken = mock.MagicMock() mock_broken.return_value = mock_broken_function with mock.patch.dict( RoTo.METHODS, { "lombscargle": mock_ls, "fft": mock_fft, "gacf": mock_gacf, "gp": mock_gp, "broken": mock_broken, }, ) as patched_dict: roto = RoTo(timeseries, flux, flux_errors) kwargs = {"some": "random", "keywords": True, "gp_seed_period": 7} roto(**kwargs) print(roto) mock_gacf_object.assert_called_once_with(**kwargs) mock_fft_object.assert_called_once_with(**kwargs) mock_ls_object.assert_called_once_with(**kwargs) mock_gp_object.assert_called_once_with(**kwargs) mock_broken_function.assert_called_once_with(**kwargs) # check no extra calls have been made. # note this may fail if we allow multiple periods per method. assert len(roto.periods) == len(roto.METHODS) - 1 @pytest.mark.parametrize( "method, period, error, outputted_method", [ ("mean", 3.0, 0.6324555320336759, "CombinedPeriodResult"), ("median", 3.0, 0.6630388766882376, "CombinedPeriodResult"), ("lombscargle", 1.0, 0.0, "LombScarglePeriodFinder"), ], ) def test_best_period( method, period, error, outputted_method, timeseries, flux, flux_errors ): roto = RoTo(timeseries, flux, flux_errors) roto.periods = { "lombscargle": PeriodResult(1.0, 0.0, 0.0, "LombScarglePeriodFinder"), "fft": PeriodResult(3.0, 0.0, 0.0, "FFTPeriodFinder"), "fft2": PeriodResult(2.0, 0.0, 0.0, "FFTPeriodFinder"), "gacf": PeriodResult(4.0, 0.0, 0.0, "GACFPeriodFinder"), "gp": PeriodResult(5.0, 0.0, 0.0, "GPPeriodFinder"), } best_period = roto.best_period(method) assert best_period == PeriodResult(period, error, error, outputted_method) @mock.patch("roto.roto.np.mean", autospec=True, return_value=69) @mock.patch("roto.roto.np.std", autospec=True, return_value=2) @mock.patch("roto.roto.np.sqrt", autospec=True, return_value=1) @pytest.mark.parametrize( "include, periods", [ ([], [1.0, 3.0, 4.0, 5.0]), (["lombscargle"], [1.0]), (["gp", "gacf"], [4.0, 5.0]), ], ) def test_best_period_include( mock_sqrt, mock_std, mock_mean, include, periods, timeseries, flux, flux_errors ): roto = RoTo(timeseries, flux, flux_errors) roto.periods = { "lombscargle": PeriodResult(1.0, 0.0, 0.0, "LombScarglePeriodFinder"), "fft": PeriodResult(3.0, 0.0, 0.0, "FFTPeriodFinder"), "gacf": PeriodResult(4.0, 0.0, 0.0, "GACFPeriodFinder"), "gp": PeriodResult(5.0, 0.0, 0.0, "GPPeriodFinder"), } best_period = roto.best_period("mean", include=include) mock_mean.assert_called_once_with(periods) mock_std.assert_called_once_with(periods) mock_sqrt.assert_called_once_with(len(periods)) assert best_period == PeriodResult(69, 2, 2, "CombinedPeriodResult") def test_best_period_include_wrong_type(timeseries, flux, flux_errors): roto = RoTo(timeseries, flux, flux_errors) roto.periods = { "lombscargle": PeriodResult(1.0, 0.0, 0.0, "LombScarglePeriodFinder"), } with pytest.raises(ValueError) as err: roto.best_period("mean", include=["non_existent_method"]) @mock.patch("roto.roto.np.mean", autospec=True, return_value=69) @mock.patch("roto.roto.np.std", autospec=True, return_value=2) @mock.patch("roto.roto.np.sqrt", autospec=True, return_value=1) @pytest.mark.parametrize( "exclude, periods", [ ([], [1.0, 3.0, 4.0, 5.0]), (["lombscargle"], [3.0, 4.0, 5.0]), (["gp", "gacf"], [1.0, 3.0]), ], ) def test_best_period_exclude( mock_sqrt, mock_std, mock_mean, exclude, periods, timeseries, flux, flux_errors ): roto = RoTo(timeseries, flux, flux_errors) roto.periods = { "lombscargle": PeriodResult(1.0, 0.0, 0.0, "LombScarglePeriodFinder"), "fft": PeriodResult(3.0, 0.0, 0.0, "FFTPeriodFinder"), "gacf": PeriodResult(4.0, 0.0, 0.0, "GACFPeriodFinder"), "gp": PeriodResult(5.0, 0.0, 0.0, "GPPeriodFinder"), } best_period = roto.best_period("mean", exclude=exclude) mock_mean.assert_called_once_with(periods) mock_std.assert_called_once_with(periods) mock_sqrt.assert_called_once_with(len(periods)) assert best_period == PeriodResult(69, 2, 2, "CombinedPeriodResult") def test_best_period_exclude_wrong_type(timeseries, flux, flux_errors): roto = RoTo(timeseries, flux, flux_errors) roto.periods = { "lombscargle": PeriodResult(1.0, 0.0, 0.0, "LombScarglePeriodFinder"), } with pytest.raises(ValueError) as err: roto.best_period("mean", exclude=["non_existent_method"]) def test_best_period_include_exclude_incompatible(timeseries, flux, flux_errors): roto = RoTo(timeseries, flux, flux_errors) roto.periods = { "lombscargle": PeriodResult(1.0, 0.0, 0.0, "LombScarglePeriodFinder"), } with pytest.raises(ValueError) as err: roto.best_period("mean", exclude=["lombscargle"], include=["lombscargle"]) ```
{ "source": "joshbrooks/django-chartjs", "score": 2 }
#### File: demo/demoproject/views.py ```python from itertools import islice from random import randint, shuffle from django.views.generic import TemplateView from chartjs.colors import COLORS, next_color from chartjs.util import date_range, value_or_null from chartjs.views.lines import BaseLineChartView, BaseLineOptionsChartView from demoproject.models import Meter class ColorsView(TemplateView): template_name = "colors.html" def get_context_data(self, **kwargs): data = super(ColorsView, self).get_context_data(**kwargs) data["colors"] = islice(next_color(), 0, 50) return data class ChartMixin(object): def get_providers(self): """Return names of datasets.""" return ["Central", "Eastside", "Westside"] def get_labels(self): """Return 7 labels.""" return ["January", "February", "March", "April", "May", "June", "July"] def get_data(self): """Return 3 random dataset to plot.""" def data(): """Return 7 randint between 0 and 100.""" return [randint(0, 100) for x in range(7)] return [data() for x in range(3)] def get_colors(self): """Return a new shuffle list of color so we change the color each time.""" colors = COLORS[:] shuffle(colors) return next_color(colors) class LineChartJSONView(ChartMixin, BaseLineChartView): pass class DiscontinuousDatesChartJSONView(ChartMixin, BaseLineChartView): start_date = "2019-05-26" end_date = "2019-06-04" def get_providers(self): return ["Water", "Gas"] def get_labels(self): return [dt for dt in date_range(self.start_date, self.end_date)] def get_data(self): result = [] water = Meter.objects.filter(name="water") data = [item for item in value_or_null(self.start_date, self.end_date, water, "date", "reading")] result.append(data) gas = Meter.objects.filter(name="gas") data = [item for item in value_or_null(self.start_date, self.end_date, gas, "date", "reading")] result.append(data) return result class LineChartWithOptionsJSONView(ChartMixin, BaseLineOptionsChartView): def get_options(self): options = { "title": {"display": True, "text": "Custom Chart Title"}, "elements": {"point": {"pointStyle": "rectRounded", "radius": 10}}, "responsive": False, } return options # Pre-configured views. colors = ColorsView.as_view() line_chart = TemplateView.as_view(template_name="line_chart.html") line_chart_json = LineChartJSONView.as_view() discontinuous_dates_chart_json = DiscontinuousDatesChartJSONView.as_view() line_chart_with_options = LineChartWithOptionsJSONView.as_view() ```
{ "source": "joshbrooks/pgosm-flex", "score": 2 }
#### File: pgosm-flex/docker/pgosm_flex.py ```python import configparser import logging import os from pathlib import Path import sys import subprocess import click import osm2pgsql_recommendation as rec import db, geofabrik, helpers BASE_PATH_DEFAULT = '/app' """Default path for pgosm-flex project for Docker. """ @click.command() # Required and most common options first @click.option('--ram', required=True, type=float, help='Amount of RAM in GB available on the machine running this process. Used to determine appropriate osm2pgsql command via osm2pgsql-tuner recommendation engine.') @click.option('--region', required=False, help='Region name matching the filename for data sourced from Geofabrik. e.g. north-america/us. Optional when --input-file is specified, otherwise required.') @click.option('--subregion', required=False, help='Sub-region name matching the filename for data sourced from Geofabrik. e.g. district-of-columbia') # Remainder of options in alphabetical order @click.option('--basepath', required=False, default=BASE_PATH_DEFAULT, help='Debugging option. Used when testing locally and not within Docker') @click.option('--data-only', default=False, is_flag=True, help="When set, skips running Sqitch and importing QGIS Styles.") @click.option('--debug', is_flag=True, help='Enables additional log output') @click.option('--input-file', required=False, default=None, help='Set explicit filepath to input osm.pbf file. Overrides default file handling, archiving, and MD5 checksum.') @click.option('--layerset', required=True, default='default', help='Layerset to load. Defines name of included layerset unless --layerset-path is defined.') @click.option('--layerset-path', required=False, help='Custom path to load layerset INI from. Custom paths should be mounted to Docker via docker run -v ...') @click.option('--language', default=None, envvar="PGOSM_LANGUAGE", help="Set default language in loaded OpenStreetMap data when available. e.g. 'en' or 'kn'.") @click.option('--pgosm-date', required=False, default=helpers.get_today(), envvar="PGOSM_DATE", help="Date of the data in YYYY-MM-DD format. If today (default), automatically downloads when files not found locally. Set to historic date to load locally archived PBF/MD5 file, will fail if both files do not exist.") @click.option('--schema-name', required=False, default='osm', help="Change the final schema name, defaults to 'osm'.") @click.option('--skip-dump', default=False, is_flag=True, help='Skips the final pg_dump at the end. Useful for local testing when not loading into more permanent instance.') @click.option('--skip-nested', default=False, is_flag=True, help='When set, skips calculating nested admin polygons. Can be time consuming on large regions.') @click.option('--srid', required=False, default=helpers.DEFAULT_SRID, envvar="PGOSM_SRID", help="SRID for data loaded by osm2pgsql to PostGIS. Defaults to 3857") def run_pgosm_flex(ram, region, subregion, basepath, data_only, debug, input_file, layerset, layerset_path, language, pgosm_date, schema_name, skip_dump, skip_nested, srid): """Run PgOSM Flex within Docker to automate osm2pgsql flex processing. """ paths = get_paths(base_path=basepath) setup_logger(debug) logger = logging.getLogger('pgosm-flex') logger.info('PgOSM Flex starting...') validate_region_inputs(region, subregion, input_file) # Ensure always a region name if region is None and input_file: region = input_file helpers.set_env_vars(region, subregion, srid, language, pgosm_date, layerset, layerset_path) if input_file is None: geofabrik.prepare_data(region=region, subregion=subregion, pgosm_date=pgosm_date, out_path=paths['out_path']) pbf_filename = geofabrik.get_region_filename(region, subregion) osm2pgsql_command = rec.osm2pgsql_recommendation(ram=ram, pbf_filename=pbf_filename, out_path=paths['out_path']) else: osm2pgsql_command = rec.osm2pgsql_recommendation(ram=ram, pbf_filename=input_file, out_path=paths['out_path']) db.wait_for_postgres() db.prepare_pgosm_db(data_only=data_only, db_path=paths['db_path']) flex_path = paths['flex_path'] run_osm2pgsql(osm2pgsql_command=osm2pgsql_command, flex_path=flex_path) if not skip_nested: # Auto-set skip_nested when place layer not imported skip_nested = check_layerset_places(layerset_path, layerset, flex_path) run_post_processing(flex_path=flex_path, skip_nested=skip_nested) if input_file is None: geofabrik.remove_latest_files(region, subregion, paths) export_filename = get_export_filename(region, subregion, layerset, pgosm_date, input_file) export_path = get_export_full_path(paths['out_path'], export_filename) if schema_name != 'osm': db.rename_schema(schema_name) if skip_dump: logger.info('Skipping pg_dump') else: db.run_pg_dump(export_path=export_path, data_only=data_only, schema_name=schema_name) logger.info('PgOSM Flex complete!') def validate_region_inputs(region, subregion, input_file): """Ensures the combination of region, subregion and input_file is valid. No return, raises error when invalid. Parameters ----------------------- region : str subregion : str input_file : str """ if region is None and input_file is None: raise ValueError('Either --region or --input-file must be provided') if region is None and subregion is not None: raise ValueError('Cannot use --subregion without --region') if region is not None: if '/' in region and subregion is None: err_msg = 'Region provided appears to include subregion. ' err_msg += 'The portion after the final "/" in the Geofabrik URL ' err_msg += 'should be the --subregion.' raise ValueError(err_msg) def setup_logger(debug): """Prepares logging. Parameters ------------------------------ debug : bool Enables debug mode when True. INFO when False. """ if debug: log_level = logging.DEBUG else: log_level = logging.INFO log_format = '%(asctime)s:%(levelname)s:%(name)s:%(module)s:%(message)s' logging.basicConfig(stream=sys.stdout, level=log_level, filemode='w', format=log_format) # Reduce verbosity of urllib3 logging logging.getLogger('urllib3').setLevel(logging.INFO) logger = logging.getLogger('pgosm-flex') logger.debug('Logger configured') def get_paths(base_path): """Returns dictionary of various paths used. Ensures `out_path` exists. Parameters ------------------- base_path : str Returns ------------------- paths : dict """ db_path = os.path.join(base_path, 'db') out_path = os.path.join(base_path, 'output') flex_path = os.path.join(base_path, 'flex-config') paths = {'base_path': base_path, 'db_path': db_path, 'out_path': out_path, 'flex_path': flex_path} Path(out_path).mkdir(parents=True, exist_ok=True) return paths def get_export_filename(region, subregion, layerset, pgosm_date, input_file): """Returns the .sql filename to use for pg_dump. Parameters ---------------------- region : str subregion : str layerset : str pgosm_date : str input_file : str Returns ---------------------- filename : str """ # region is always set internally, even with --input-file and no --region region = region.replace('/', '-') if subregion: subregion = subregion.replace('/', '-') if input_file: # Assumes .osm.pbf base_name = input_file[:-8] filename = f'{base_name}-{layerset}-{pgosm_date}.sql' elif subregion is None: filename = f'{region}-{layerset}-{pgosm_date}.sql' else: filename = f'{region}-{subregion}-{layerset}-{pgosm_date}.sql' return filename def get_export_full_path(out_path, export_filename): """If `export_filename` is an absolute path, `out_path` is not considered. Parameters ----------------- out_path : str export_filename : str Returns ----------------- export_path : str """ if os.path.isabs(export_filename): export_path = export_filename else: export_path = os.path.join(out_path, export_filename) return export_path def run_osm2pgsql(osm2pgsql_command, flex_path): """Runs the provided osm2pgsql command. Parameters ---------------------- osm2pgsql_command : str flex_path : str """ logger = logging.getLogger('pgosm-flex') logger.info('Running osm2pgsql') output = subprocess.run(osm2pgsql_command.split(), text=True, cwd=flex_path, check=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) logger.info(f'osm2pgsql output: \n {output.stdout}\nEND PgOSM Flex output') if output.returncode != 0: err_msg = f'Failed to run osm2pgsql. Return code: {output.returncode}' logger.error(err_msg) sys.exit(f'{err_msg} - Check the log output for details.') logger.info('osm2pgsql completed.') def check_layerset_places(layerset_path, layerset, flex_path): """If `place` layer is not included `skip_nested` should be true. Parameters ------------------------ layerset_path : str layerset : str flex_path : str Returns ------------------------ skip_nested : boolean """ logger = logging.getLogger('pgosm-flex') if layerset_path is None: layerset_path = os.path.join(flex_path, 'layerset') logger.info(f'Using default layerset path {layerset_path}') ini_file = os.path.join(layerset_path, f'{layerset}.ini') config = configparser.ConfigParser() config.read(ini_file) try: place = config['layerset']['place'] except KeyError: logger.debug('Place layer not defined, setting skip_nested') return True if place: logger.debug('Place layer is defined as true. Not setting skip_nested') return False logger.debug('Place set to false, setting skip_nested') return True def run_post_processing(flex_path, skip_nested): """Runs steps following osm2pgsql import. Post-processing SQL scripts and (optionally) calculate nested admin polgyons Parameters ---------------------- flex_path : str skip_nested : bool """ db.pgosm_after_import(flex_path) logger = logging.getLogger('pgosm-flex') if skip_nested: logger.info('Skipping calculating nested polygons') else: logger.info('Calculating nested polygons') db.pgosm_nested_admin_polygons(flex_path) if __name__ == "__main__": logging.getLogger('pgosm-flex').info('Running PgOSM Flex!') run_pgosm_flex() ```
{ "source": "JoshBroomberg/MovieGenrePrediction", "score": 3 }
#### File: predict/api/api_svc.py ```python import pickle from src.features.utils import remove_punctuation with open('models/count_vectorizer.pkl','rb') as f: count_vectorizer=pickle.load(f) with open('models/classifier_svc.pkl','rb') as f: classif_svc=pickle.load(f) with open('data/processed/genre_id_to_name_dict.pkl','rb') as f: Genre_ID_to_name=pickle.load(f) with open('models/tfidf_transformer.pkl','rb') as f: tfidf_transformer=pickle.load(f) genre_list=sorted(list(Genre_ID_to_name.keys())) def svc_predict(input_string): cleaned_string = remove_punctuation(input_string) vectorized_doc = count_vectorizer.transform([cleaned_string]) tfidf_doc = tfidf_transformer.transform(vectorized_doc) pred_array = classif_svc.predict(tfidf_doc) # pred_prob = classif_svc.predict_proba(tfidf_doc) # trained with probability=False to save time, so not available pred_genres = [] for i, score in enumerate(pred_array[0]): if score!=0: genre=Genre_ID_to_name[genre_list[i]] pred_genres.append(genre) return pred_genres #, pred_prob # print(svc_predict("The boy with long stripped pants jumped over many walls to get to the computer.")) ``` #### File: src/scoring/scoring_utils.py ```python def precision_recall(gt,preds): TP=0 FP=0 FN=0 for t in gt: if t in preds: TP+=1 else: FN+=1 for p in preds: if p not in gt: FP+=1 if TP+FP==0: precision=0 else: precision=TP/float(TP+FP) if TP+FN==0: recall=0 else: recall=TP/float(TP+FN) return precision,recall def generate_predictions(Genre_ID_to_name, X_test, preds): genre_list=sorted(list(Genre_ID_to_name.keys())) predictions=[] for i in range(X_test.shape[0]): pred_genres=[] movie_label_scores=preds[i] for j in range(len(genre_list)): #print j if movie_label_scores[j]!=0: genre=Genre_ID_to_name[genre_list[j]] pred_genres.append(genre) predictions.append(pred_genres) return predictions def precsc_recs(test_movies, movies_with_overviews, Genre_ID_to_name, predictions): precs=[] recs=[] for i in range(len(test_movies)): if i%1==0: pos=test_movies[i] test_movie=movies_with_overviews[pos] gtids=test_movie['genre_ids'] gt=[] for g in gtids: g_name=Genre_ID_to_name[g] gt.append(g_name) # print predictions[i],movies_with_overviews[i]['title'],gt a,b=precision_recall(gt,predictions[i]) precs.append(a) recs.append(b) return precs, recs ```
{ "source": "joshbrunty/SMStoCSV", "score": 4 }
#### File: joshbrunty/SMStoCSV/SMSCSV.py ```python import sqlite3 import csv def extract_db(): sql_query = """ SELECT message.ROWID as 'ID', chat.ROWID as 'Chat ID', chat.chat_identifier as 'Chat Handle', message.date as 'Date', message.text as 'Message Content', message.is_from_me as 'From Account Owner' FROM message LEFT JOIN chat ON message.handle_id = chat.ROWID ORDER BY message.date ASC """ conn = sqlite3.connect('sms.db') c = conn.cursor() with open('sms.db extraction.csv', mode = 'w', newline = '', encoding = 'utf-8') as csv_file: # Write the header row fieldnames = ['ID', 'Chat ID', 'Chat Handle', 'Date', 'Message Content', 'From Account Owner'] writer = csv.DictWriter(csv_file, fieldnames = fieldnames) writer.writeheader() for message_id, chat_id, chat_handle, message_date, message_text, message_from_account in c.execute(sql_query): # Construct our data parsed_message = { 'ID': message_id, 'Chat ID': chat_id, 'Chat Handle': chat_handle, 'Date': message_date, 'Message Content': message_text, 'From Account Owner': message_from_account, } # Write our data to the file. writer.writerow(parsed_message) def main(): extract_db() if __name__ == '__main__': main() ```
{ "source": "joshburnett/canaveral", "score": 2 }
#### File: canaveral/canaveral/main.py ```python from __future__ import annotations import sys from pathlib import Path from PySide6 import QtCore, QtGui from PySide6.QtWidgets import (QApplication, QMainWindow, QLabel, QDialog, QMenu, QSystemTrayIcon) from PySide6.QtCore import Qt from PySide6.QtCore import QAbstractNativeEventFilter, QAbstractEventDispatcher import win32api import win32gui from loguru import logger from appdirs import AppDirs # Try different ways of importing, so we can run this as an application installed via pip/pipx, # and also just from the source directory. try: from canaveral.qtkeybind import keybinder from canaveral.basemodels import SearchPathEntry, Catalog, QuerySet from canaveral.qtmodels import LaunchListModel from canaveral.widgets import CharLineEdit, CharListWidget except ImportError: from .qtkeybind import keybinder from .basemodels import SearchPathEntry, Catalog, QuerySet from .qtmodels import LaunchListModel from .widgets import CharLineEdit, CharListWidget class WinEventFilter(QAbstractNativeEventFilter): def __init__(self, keybinder): self.keybinder = keybinder super().__init__() def nativeEventFilter(self, eventType, message): ret = self.keybinder.handler(eventType, message) return ret, 0 # Helper object for defining locations for config & log files DIRS = AppDirs('Canaveral', appauthor='') sys.path.append(DIRS.user_data_dir) # so we can load the paths file class CanaveralWindow(QMainWindow): def __init__(self): super().__init__() self.dragging = False self.drag_start_point = None try: from paths import search_path_entries logger.debug('Loaded search path entries from paths.py.') except ImportError: logger.debug('No paths.py present, creating from paths-example.py.') import shutil shutil.copy(Path(__file__).parent / 'paths-example.py', Path(DIRS.user_data_dir) / 'paths.py') from paths import search_path_entries self.search_path_entries = search_path_entries self.catalog = Catalog(self.search_path_entries, launch_data_file=Path(DIRS.user_data_dir) / 'launch_data.txt') self.query_set = QuerySet(catalog=self.catalog) # self.query_set.create_query('doc') self.model = LaunchListModel(catalog=self.catalog, query_set=self.query_set, max_launch_list_entries=10) self.setup() self.setup_sys_tray_icon() self.launch_list_view.setModel(self.model) self.update_launch_list_size() self.line_input.textEdited.connect(self.update_query) self.item_refresh_timer = QtCore.QTimer(self) self.item_refresh_timer.setInterval(5*60*1000) # 5 minutes self.item_refresh_timer.timeout.connect(self.catalog.refresh_items_list) self.item_refresh_timer.start() self.show_main_window_and_focus() def setup_sys_tray_icon(self): self.tray = QSystemTrayIcon() if self.tray.isSystemTrayAvailable(): icon = QtGui.QIcon(str(Path(__file__).parent / 'resources/rocket_with_shadow_blue.png')) menu = QMenu() setting_action = menu.addAction('Settings...') setting_action.triggered.connect(self.setting) exit_action = menu.addAction('Exit') exit_action.triggered.connect(sys.exit) self.tray.setIcon(icon) self.tray.setContextMenu(menu) self.tray.show() self.tray.setToolTip('Canaveral') self.setWindowFlag(QtCore.Qt.Tool) self.line_input.setFocusPolicy(QtCore.Qt.StrongFocus) self.setFocusPolicy(QtCore.Qt.StrongFocus) else: self.tray = None def setting(self): self.dialog = QDialog() self.dialog.setWindowTitle("Settings Dialog") self.dialog.show() def setup(self): self.setWindowFlags(Qt.FramelessWindowHint) self.setAttribute(Qt.WA_TranslucentBackground) self.setAttribute(Qt.WA_AlwaysShowToolTips) self.setAttribute(Qt.WA_InputMethodEnabled) # self.setFocusPolicy(Qt.ClickFocus) self.background = QLabel(parent=self) bg_pixmap = QtGui.QPixmap(str(Path(__file__).parent / 'resources/light_background_2x.png')) bg_pixmap.setDevicePixelRatio(2) # bg_pixmap = QtGui.QPixmap(':/styles/frame') self.background_size_scaled = bg_pixmap.size() / bg_pixmap.devicePixelRatio() self.background.setPixmap(bg_pixmap) self.background.resize(self.background_size_scaled) self.background.move(0, 0) self.resize(self.background_size_scaled) self.search_icon = QLabel(parent=self) search_pixmap = QtGui.QPixmap(str(Path(__file__).parent / 'resources/search_icon.png')) search_pixmap.setDevicePixelRatio(2) # bg_pixmap = QtGui.QPixmap(':/styles/frame') self.search_icon.setPixmap(search_pixmap) self.search_icon.resize(search_pixmap.size() / search_pixmap.devicePixelRatio()) self.search_icon.move(550, 12) self.line_input = CharLineEdit(parent=self) self.line_input.setObjectName('input') self.line_input.resize(530, 30) self.line_input.move(12, 15) # self.line_input.setAutoFillBackground(True) self.line_input.setFont(QtGui.QFont('Franklin Gothic', 24)) self.line_input.setStyleSheet('qproperty-frame: false;' 'background-color: rgba(0, 0, 0, 0);') self.output_icon = QLabel(parent=self) self.output_icon.setObjectName('outputIcon') self.output = QLabel(parent=self) self.output.setObjectName('output') self.output.setAlignment(Qt.AlignHCenter) self.launch_list_view = CharListWidget(parent=self) self.launch_list_view.setAutoFillBackground(True) self.launch_list_view.setIconSize(QtCore.QSize(32, 32)) self.launch_list_view.setObjectName('alternatives') def update_launch_list_size(self): x_margin = 40 y_margin = 0 width = self.width() - 2*x_margin x = x_margin y = self.background_size_scaled.height() - y_margin num_items_in_results = self.model.num_results() if num_items_in_results > 0: index = self.launch_list_view.model().index(0, 0) item_height = self.launch_list_view.model().data(index, Qt.SizeHintRole) num_display_items = min(self.model.max_launch_list_entries, num_items_in_results) # I guess we need 4px total for the top & bottom border? height = num_display_items * item_height.height() + \ (num_display_items-1)*self.launch_list_view.spacing() + 4 self.launch_list_view.setGeometry(x, y, width, height) self.resize(self.width(), self.background_size_scaled.height()-y_margin+height) self.launch_list_view.show() else: self.hide_launch_list() self.resize(self.width(), self.background_size_scaled.height()) def update_query(self, query_text): self.model.set_query(query_text) self.update_launch_list_size() def hide_main_window(self): self.launch_list_view.hide() self.hide() def show_main_window_and_focus(self): frame_geometry = self.frameGeometry() monitor_center = self.screen().availableGeometry().center() frame_geometry.moveCenter(monitor_center) self.move(frame_geometry.topLeft()) self.show() # self.setFocus() self.line_input.setFocus() self.line_input.selectAll() win32gui.SetForegroundWindow(self.winId()) def show_launch_list(self): self.launch_list_view.show() self.launch_list_view.setFocus() def hide_launch_list(self): self.launch_list_view.setCurrentIndex(self.launch_list_view.model().index(-1, 0)) self.launch_list_view.repaint() self.launch_list_view.hide() self.line_input.setFocus() def mousePressEvent(self, event: QtGui.QMouseEvent) -> None: if event.buttons() == Qt.LeftButton: self.dragging = True self.drag_start_point = event.position() self.activateWindow() self.line_input.setFocus() def mouseMoveEvent(self, event: QtGui.QMouseEvent) -> None: if event.buttons() == Qt.LeftButton and self.dragging: p = event.globalPosition() - self.drag_start_point self.move(round(p.x()), round(p.y())) self.line_input.setFocus() self.launch_list_view.move(round(p.x()), round(p.y())) def mouseReleaseEvent(self, event: QtGui.QMouseEvent) -> None: self.dragging = False self.line_input.setFocus() def keyPressEvent(self, event: QtGui.QKeyEvent) -> None: key = event.key() # logger.debug(f'Key pressed: {event.key()}') if key == Qt.Key_Escape: if self.launch_list_view.isVisible(): self.hide_launch_list() else: # QApplication.instance().quit() self.hide_main_window() elif key in (Qt.Key_Enter, Qt.Key_Return): logger.debug('Return/Enter key') if self.launch_list_view.currentIndex().row() == -1: self.launch_list_view.setCurrentIndex(self.launch_list_view.model().index(0, 0)) item = self.model.data(self.launch_list_view.currentIndex(), role=Qt.UserRole) self.hide_main_window() # http://timgolden.me.uk/pywin32-docs/win32api__ShellExecute_meth.html # win32api.ShellExecute(hwnd, op, file, params, dir, bShow) logger.debug(f'Executing: {item.full_path}') win32api.ShellExecute(0, None, str(item.full_path), '', '', 1) self.catalog.update_launch_data(query_string=self.line_input.text(), launch_choice=item.full_path) elif key in (Qt.Key_Down, Qt.Key_Up, Qt.Key_PageDown, Qt.Key_PageUp): if self.launch_list_view.isVisible(): logger.debug(f'spot 1: self.launch_list_view.isActiveWindow(): ' f'{self.launch_list_view.isActiveWindow()}') logger.debug(f'self.launch_list_view.hasFocus(): {self.launch_list_view.hasFocus()}') if not self.launch_list_view.hasFocus(): if self.launch_list_view.currentIndex().row() < 0 < self.model.num_results(): logger.debug('spot 2') self.launch_list_view.setFocus() self.launch_list_view.setCurrentIndex(self.launch_list_view.model().index(0, 0)) else: logger.debug('spot 3') self.launch_list_view.setFocus() QApplication.sendEvent(self.launch_list_view, event) elif self.launch_list_view.currentIndex().row() == 0 and key == Qt.Key_Up: logger.debug('spot 1.5') self.line_input.setFocus() elif key in (Qt.Key_Down, Qt.Key_PageDown) and 0 < self.model.num_results(): logger.debug('spot 4') self.launch_list_view.setCurrentIndex(self.launch_list_view.model().index(0, 0)) self.show_launch_list() elif self.launch_list_view.hasFocus(): self.launch_list_view.setCurrentIndex(self.launch_list_view.model().index(-1, 0)) self.line_input.setFocus() self.line_input.keyPressEvent(event) def changeEvent(self, event): if event.type() == QtCore.QEvent.ActivationChange and not self.isActiveWindow(): self.hide_main_window() super().changeEvent(event) def closeEvent(self, event): logger.info('closeEvent') keybinder.unregister_hotkey(self.winId(), "Ctrl+Alt+Space") event.accept() sys.exit() def run(): if Path(sys.executable).stem == 'pythonw': Path(DIRS.user_log_dir).mkdir(parents=True, exist_ok=True) sys.stdout = open(Path(DIRS.user_log_dir) / 'canaveral.log', 'w') logger.remove() logger.add(sys.stdout) logger.debug('Starting.') app = QApplication([]) app.setFont(QtGui.QFont('Franklin Gothic')) app.setAttribute(Qt.AA_EnableHighDpiScaling) app.setQuitOnLastWindowClosed(False) main_window = CanaveralWindow() # Install a native event filter to receive events from the OS keybinder.init() keybinder.register_hotkey(main_window.winId(), "Ctrl+Alt+Space", main_window.show_main_window_and_focus) win_event_filter = WinEventFilter(keybinder) event_dispatcher = QAbstractEventDispatcher.instance() event_dispatcher.installNativeEventFilter(win_event_filter) app.exec() sys.stdout.close() sys.exit() if __name__ == '__main__': run() ```
{ "source": "joshburnett/msteamsnotifiers", "score": 2 }
#### File: joshburnett/msteamsnotifiers/setup.py ```python import re from setuptools import setup with open('README.md') as readme: long_description = readme.read() def get_version(filename='msteamsnotifiers.py'): """ Extract version information stored as a tuple in source code """ version = '' with open(filename, 'r') as fp: for line in fp: m = re.search("__version__ = '(.*)'", line) if m is not None: version = m.group(1) break return version # What packages are required for this module to be executed? REQUIRED = [ 'pymsteams', 'friendly_traceback', ] setup( name="msteamsnotifiers", version=get_version(), py_modules=["msteamsnotifiers"], install_requires=REQUIRED, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], # metadata for upload to PyPI author="<NAME>", author_email="<EMAIL>", description="Decorators for automatically notifying an MS Teams channel of events", long_description=long_description, long_description_content_type="text/markdown", license="MIT", keywords="Microsoft Teams msteams channel notify message post", url="https://github.com/joshburnett/msteamsnotifiers", ) ```
{ "source": "joshcai/shengji", "score": 4 }
#### File: shengji/shengji/cards.py ```python import json import random class Card(object): """Representation of a single card.""" C = 'clubs' D = 'diamonds' H = 'hearts' S = 'spades' T = 'trump' SUITS = (C, D, H, S) NUM = { 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight', 9: 'nine', 10: 'ten', 11: 'jack', 12: 'queen', 13: 'king', 14: 'ace', 15: 'trump number', 16: 'trump number trump suit', 17: 'small joker', 18: 'big joker' } def __str__(self): """Returns string representation.""" a = self.NUM[self.actual_num] + " " + self.actual_suit if self.num != self.actual_num or self.suit != self.actual_suit: a +=" (" + self.NUM[self.num] + " " + self.suit + ")" return a def __init__(self, num, suit): self.num = num # used to compare order of cards self.suit = suit # same as actual_suit unless trump self.actual_num = num # actual card number self.actual_suit = suit # actual card suit def smallerThan(self, suit, other_card): """Returns whether other_card is greater. Args: suit: String, suit of the current trick other_card: Card, other card to compare to Returns: Boolean, True if other_card is greater """ if suit == self.T or self.suit == other_card.suit: return other_card.num > self.num if self.suit == self.T and other_card.suit != self.T: return False if self.suit != self.T and other_card.suit == self.T: return True if self.suit == suit and other_card.suit != suit: return False if self.suit != suit and other_card.suit == suit: return True raise Exception('Could not compare cards') def trumpify(self, suit, num): """Convert card to trump if it matches trump suit or trump num. Args: suit: String, trump suit num: Integer, trump number """ if self.suit == suit: # trump suit self.suit = self.T if self.num == num: # trump suit, trump num self.num = 16 elif self.num == num: # trump num, not trump suit self.suit = self.T self.num = 15 def objRepr(self): """Return dictionary of attributes for converting to JSON.""" temp_card = { 'suit': self.suit, 'num': self.num, 'actual_suit': self.actual_suit, 'actual_num': self.actual_num } return temp_card def convertToJson(self): """Returns card in JSON form.""" return json.dumps(self.objRepr(), separators=(',', ':')) class Deck(object): def __str__(self): return str(self.cards) def __init__(self, decks=2): cards = [Card(x,y) for x in range(2, 15) for y in Card.SUITS] cards.append(Card(17, Card.T)) # small joker cards.append(Card(18, Card.T)) # big joker self.cards = int(decks) * cards self.size = decks * 54 self.current = 0 # used when dealing cards def shuffle(self): """Shuffle cards, reset position to 0 for dealing.""" random.shuffle(self.cards) self.current = 0 def getNextCard(self): """Gets next card in the deck, return None if no more left.""" if self.current < self.size: self.current += 1 return self.cards[self.current-1] return None class Cards(object): def __str__(self): return str([str(x) for x in self.cards]) def __init__(self): self.cards = [] def __getitem__(self, index): return self.cards[index] def append(self, card): self.cards.append(card) def convertToJson(self): """Returns entire array in JSON form.""" temp_cards = [card.objRepr() for card in self.cards] return json.dumps(temp_cards, separators=(',', ':')) def points(self): """Counts number of points in the cards.""" p = 0 for card in self.cards: if card.actual_num == 5: p += 5 elif card.actual_num == 10 or card.actual_num == 13: # ten or kings p += 10 return p def __contains__(self, key): """Checks to see if a card is in these cards. Args: key: tuple holding num, suit, and number of times to check (default 1) """ if len(key) == 3: num, suit, times = key elif len(key) == 2: num, suit = key times = 1 else: raise Exception('Wrong number of arguments in tuple') count = 0 for card in self.cards: if card.suit == suit and card.num == num: count += 1 if count == times: return True return False class Hand(Cards): def __init__(self): super(Hand, self).__init__() def removeCard(self, position): """Removes and returns card at a certain position. Args: position: Integer, position of the card to be removed. """ return self.cards.pop(position) def empty(self): """Returns True if hand is empty.""" return len(self.cards) == 0 def trumpify(self, suit, num): """Trumpify all cards in the hand. Args: suit: String, trump suit num: Integer, trump num """ for card in self.cards: card.trumpify(suit, num) def sort(self): """Sort cards by suit first, then by number. Note: should be called after hand has been trumpified. """ self.cards = sorted(self.cards, key=lambda x: (x.suit, x.num)) def containsSuit(self, suit): """Check if hand has any cards left of a certain suit. Args: suit: String, suit to check """ for card in self.cards: if card.suit == suit: return True return False class Trick(Cards): @property def suit(self): """Suit of the trick (equal to the suit of the first card in the trick).""" return self.cards[0].suit def __init__(self): super(Trick, self).__init__() def biggest(self): """Returns position of the biggest card in the trick.""" biggestCard = self.cards[0] biggestPosition = 0 for i, card in enumerate(self.cards[1:]): if biggestCard.smallerThan(self.suit, card): biggestCard = card biggestPosition = i + 1 return biggestPosition ``` #### File: shengji/shengji/players.py ```python from shengji import cards class Player(object): def __init__(self, name="Default", ws=None): self.name = name self.ws = ws # WebSockets connection self.hand = cards.Hand() def sendMessage(self, message): """Send message to specific player. Args: message: String, message to send """ self.ws.write_message(message) def fromClient(self): """Returns toro queue with client messages. To get next message, use .get() """ return self.ws.clientMessages class Players(object): def __init__(self): self.players = [] def __len__(self): return len(self.players) def __getitem__(self, index): return self.players[index] def __iter__(self): self.a = 0 return self def __next__(self): if self.a >= len(self.players): raise StopIteration result = self.players[self.a] self.a += 1 return result def add(self, name, ws): self.players.append(Player(name, ws)) # TODO: removePlayer function def sendMessage(self, message): """Sends message to all players. Args: message: String, message to send. """ for player in self.players: player.sendMessage(message) ``` #### File: shengji/test/test_cards.py ```python import unittest from shengji import cards class TestCards(unittest.TestCase): def testContainsCard(self): c = cards.Cards() c.append(cards.Card(4, 'hearts')) c.append(cards.Card(8, 'hearts')) c.append(cards.Card(8, 'spades')) self.assertTrue((4, 'hearts') in c) self.assertTrue((8, 'hearts') in c) self.assertTrue((8, 'spades') in c) self.assertFalse((8, 'diamonds') in c) self.assertFalse((5, 'clubs') in c) def testContainsCardMultiple(self): c = cards.Cards() c.append(cards.Card(4, 'hearts')) c.append(cards.Card(4, 'hearts')) self.assertTrue((4, 'hearts') in c) self.assertTrue((4, 'hearts', 1) in c) self.assertTrue((4, 'hearts', 2) in c) self.assertFalse((4, 'hearts', 3) in c) self.assertFalse((4, 'hearts', 4) in c) def testContainsCardRaiseException(self): with self.assertRaises(Exception): c = cards.Cards() c.append(cards.Card(4, 'hearts')) c.append(cards.Card(4, 'hearts')) (4) in c def testPoints(self): c = cards.Cards() c.append(cards.Card(5, 'hearts')) c.append(cards.Card(10, 'hearts')) c.append(cards.Card(13, 'spades')) c.append(cards.Card(7, 'spades')) self.assertEqual(25, c.points()) if __name__ == '__main__': unittest.main() ```
{ "source": "joshcai/utdcs", "score": 2 }
#### File: processing/migrations/0001_initial.py ```python import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Post' db.create_table(u'processing_post', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=120)), ('content', self.gf('django.db.models.fields.TextField')()), ('author', self.gf('django.db.models.fields.CharField')(max_length=120)), ('date', self.gf('django.db.models.fields.DateTimeField')()), ('date_str', self.gf('django.db.models.fields.CharField')(max_length=120)), ('deleted', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal(u'processing', ['Post']) def backwards(self, orm): # Deleting model 'Post' db.delete_table(u'processing_post') models = { u'processing.post': { 'Meta': {'object_name': 'Post'}, 'author': ('django.db.models.fields.CharField', [], {'max_length': '120'}), 'content': ('django.db.models.fields.TextField', [], {}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'date_str': ('django.db.models.fields.CharField', [], {'max_length': '120'}), 'deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '120'}) } } complete_apps = ['processing'] ```
{ "source": "joshcalcino/plonk", "score": 2 }
#### File: plonk/analysis/extra.py ```python from functools import partial from .._logging import logger from . import profiles def extra_profiles(profile, num_separate_dust: int = 0, num_mixture_dust: int = 0): """Make extra profiles available. Parameters ---------- profile The profile object to add extra profiles to. num_separate_dust The number of "separate sets of particles" dust species. num_mixture_dust The number of "mixture" dust species. """ num_dust_species = num_mixture_dust + num_separate_dust for prof, ndims in profiles.appropriate_ndim.items(): if profile.ndim in ndims: if prof not in profiles.dust_profiles: profile._profile_functions[prof] = getattr(profiles, prof) else: if profiles.dust_profiles[prof] == 'both': for idx in range(num_dust_species): profile._profile_functions[f'{prof}_{idx+1:03}'] = partial( getattr(profiles, prof), idx ) elif profiles.dust_profiles[prof] == 'mixture': for idx in range(num_mixture_dust): profile._profile_functions[f'{prof}_{idx+1:03}'] = partial( getattr(profiles, prof), idx ) elif profiles.dust_profiles[prof] == 'mixture (gas)': if num_mixture_dust > 0: profile._profile_functions[prof] = getattr(profiles, prof) else: logger.debug(f'{prof} - cannot add profile') ``` #### File: plonk/analysis/filters.py ```python from .._units import Quantity from .._units import units as plonk_units from ..snap.snap import SnapLike, SubSnap from .particles import radius_cylindrical, radius_spherical CENTER = (0, 0, 0) * plonk_units.au def box( snap: SnapLike, xwidth: Quantity, ywidth: Quantity, zwidth: Quantity, center: Quantity = CENTER, ) -> SubSnap: """Particles within a box. Parameters ---------- snap The Snap object. xwidth The x-width of the box. ywidth The y-width of the box. zwidth The z-width of the box. center : optional The center of the box as a Quantity like (x, y, z) * au. Default is (0, 0, 0). Returns ------- SubSnap The SubSnap with particles in the box. """ dx, dy, dz = xwidth / 2, ywidth / 2, zwidth / 2 mask = ( (snap['position_x'] > center[0] - dx) & (snap['position_x'] < center[0] + dx) & (snap['position_y'] > center[1] - dy) & (snap['position_y'] < center[1] + dy) & (snap['position_z'] > center[2] - dz) & (snap['position_z'] < center[2] + dz) ) return snap[mask] def cylinder( snap: SnapLike, radius: Quantity, height: Quantity, center: Quantity = CENTER ) -> SubSnap: """Particles within a cylinder. Parameters ---------- snap The Snap object. radius The radius of the cylinder. height The height of the cylinder. center : optional The center of the cylinder as a Quantity like (x, y, z) * au. Default is (0, 0, 0). Returns ------- SubSnap The SubSnap with particles in the cylinder. """ dh = height / 2 R = radius_cylindrical(snap=snap, origin=center) mask = ( (R < radius) & (snap['position_z'] < center[2] + dh) & (snap['position_z'] > center[2] - dh) ) return snap[mask] def annulus( snap: SnapLike, radius_min: Quantity, radius_max: Quantity, height: Quantity, center: Quantity = CENTER, ) -> SubSnap: """Particles within an annulus. Parameters ---------- snap The Snap object. radius_min The inner radius of the annulus. radius_max The outer radius of the annulus. height The height of the annulus. center : optional The center of the annulus as a Quantity like (x, y, z) * au. Default is (0, 0, 0). Returns ------- SubSnap The SubSnap with particles in the annulus. """ dh = height / 2 R = radius_cylindrical(snap=snap, origin=center) mask = ( (R > radius_min) & (R < radius_max) & (snap['position_z'] < center[2] + dh) & (snap['position_z'] > center[2] - dh) ) return snap[mask] def sphere(snap: SnapLike, radius: Quantity, center: Quantity = CENTER) -> SubSnap: """Particles within a sphere. Parameters ---------- snap The Snap object. radius The radius of the sphere. center : optional The center of the sphere as a Quantity like (x, y, z) * au. Default is (0, 0, 0). Returns ------- SubSnap The SubSnap with particles in the sphere. """ R = radius_spherical(snap=snap, origin=center) mask = R < radius return snap[mask] def shell( snap: SnapLike, radius_min: Quantity, radius_max: Quantity, center: Quantity = CENTER, ) -> SubSnap: """Particles within a spherical shell. Parameters ---------- snap The Snap object. radius_min The inner radius of the shell. radius_max The outer radius of the shell. center : optional The center of the shell as a Quantity like (x, y, z) * au. Default is (0, 0, 0). Returns ------- SubSnap The SubSnap with particles in the shell. """ R = radius_spherical(snap=snap, origin=center) mask = (R > radius_min) & (R < radius_max) return snap[mask] ``` #### File: plonk/plonk/_logging.py ```python import logging import platform # Logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) console_handler = logging.StreamHandler() file_handler = logging.FileHandler('.plonk.log') console_handler.setLevel(logging.INFO) file_handler.setLevel(logging.DEBUG) console_format = logging.Formatter('%(levelname)s - %(funcName)s - %(message)s') file_format = logging.Formatter( '%(asctime)s - %(levelname)s - %(funcName)s - %(message)s' ) console_handler.setFormatter(console_format) file_handler.setFormatter(file_format) logger.addHandler(console_handler) logger.addHandler(file_handler) def get_os_info(): """Get the operating system version for logging.""" system = platform.system() if system == 'Darwin': system = 'macOS' release = platform.release() return f'{system} version: {release}' def logger_init(__version__): """Log versions and platform.""" logger.debug(f'Plonk v{__version__} on Python {platform.python_version()}') logger.debug(f'{get_os_info()}, {platform.machine()}') ``` #### File: plonk/simulation/simulation.py ```python from __future__ import annotations import warnings from copy import copy from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, List, Union import numpy as np from pandas import DataFrame from .._logging import logger from .._units import Quantity from ..snap import load_snap from ..visualize.simulation import visualize_sim from .time_series import load_time_series, time_series_units if TYPE_CHECKING: from ..snap.snap import Snap _properties_vary_per_snap = ('time',) _data_sources = ('Phantom',) class Simulation: """Smoothed particle hydrodynamics simulation object. This class aggregates snapshot files, global quantity and sink time series data. Snapshot files contain a complete snapshot of the simulation at a particular time. Other files contain time series of global quantities on particles such as energy and momentum, and time series data for sink particles. Examples -------- Reading simulation data into a Simulation object. >>> sim = plonk.load_simulation('prefix', path_to_directory) Accessing the snapshots. >>> sim.snaps Accessing the properties. >>> sim.properties Accessing the global quantity and sink time series data. >>> sim.time_series['global'] >>> sim.time_series['sinks'] """ def __init__(self): self.data_source: str self.prefix: str self.paths: Dict[str, Any] self._snaps: List[Snap] = None self._properties: Dict[str, Any] = None self._code_units: Dict[str, Any] = None self._time_series: Dict[str, Union[DataFrame, List[DataFrame]]] = None self._snap_file_extension = '' self._len = -1 def load_simulation( self, prefix: str, directory: Union[str, Path] = None, data_source: str = 'Phantom', ) -> Simulation: """Load Simulation. Parameters ---------- prefix Simulation prefix, e.g. 'disc', if files are named like disc_00000.h5, disc01.ev, discSink0001N01.ev, etc. directory : optional Directory containing simulation snapshot files and auxiliary files. Default is None. data_source : optional The SPH code used to produce the simulation data. Default is 'Phantom'. """ if data_source not in _data_sources: raise ValueError(f'Data source not available: try {_data_sources}') self.data_source = data_source if directory is None: directory = '.' logger.debug(f'Loading {data_source} simulation: {prefix} at {directory}') self.prefix = prefix self.paths = { 'directory': Path(directory).expanduser().resolve(), } if not list(self.paths['directory'].glob(self.prefix + '*')): raise FileNotFoundError(f'No files with prefix: {prefix}') self._snap_file_extension = self._get_snap_file_extension() self.paths['snaps'] = self._get_snap_files() self.paths['time_series_global'] = self._get_global_ts_files() self.paths['time_series_sinks'] = self._get_sink_ts_files() #print(self.paths['snaps'], self.paths['time_series_global'], self.paths['time_series_sinks']) return self @property def snaps(self) -> List[Snap]: """List of Snap objects associated with the simulation.""" if self._snaps is None: self._generate_snap_objects() return self._snaps @property def properties(self) -> Dict[str, Any]: """Properties associated with the simulation.""" if self._properties is None: self._generate_properties() return self._properties @property def code_units(self) -> Dict[str, Any]: """Units associated with the simulation.""" if self._code_units is None: self._generate_units() return self._code_units @property def time_series(self) -> DataFrame: """Time series data.""" if self._time_series is None: self._generate_time_series() return self._time_series def to_array(self, quantity: str, indices: List[int] = None) -> Quantity: """Generate an array of a quantity over all snapshots. Warning: this can be very memory intensive and slow. Parameters ---------- quantity The quantity as a string, e.g. 'position'. indices You can select a subset of particles by indices corresponding to snap['id']. Returns ------- An array with units. Examples -------- Get the position of every particle during the whole simulation. >>> pos = sim.to_array(quantity='position') >>> pos.shape (31, 1100000, 3) """ q = list() arr: Quantity = self.snaps[0][quantity] units = arr.units for snap in self.snaps: if indices is None: array: Quantity = snap[quantity] else: array = snap[quantity][indices] q.append(array.magnitude) q *= units return q def _generate_snap_objects(self): """Generate Snap objects.""" snaps = list() fail = 0 for snap in self.paths['snaps']: try: snaps.append(load_snap(snap)) except (OSError, RuntimeError): fail += 1 if fail > 0: logger.warning(f'Cannot read {fail} snap(s)') self._snaps = snaps def _generate_properties(self): """Generate sim.properties from snap.properties.""" prop = copy(self.snaps[0].properties) for key in _properties_vary_per_snap: prop[key] = list() for snap in self.snaps: for key, val in snap.properties.items(): if isinstance(prop[key], list): prop[key].append(val) else: if np.any(prop[key] != val): prop[key] = '__inconsistent__' for key, val in prop.items(): if isinstance(val, list): if isinstance(val[0], Quantity): prop[key] = np.array([v.m for v in val]) * val[0].u else: prop[key] = np.array(val) self._properties = prop def _generate_units(self): """Generate sim.code_units from snap.code_units.""" u = copy(self.snaps[0].code_units) for snap in self.snaps: for key, val in snap.code_units.items(): if u[key] != val: u[key] = '__inconsistent__' self._code_units = u def _generate_time_series(self): """Generate time series data.""" self._time_series = dict() if self.paths['time_series_global']: self._time_series['global'] = load_time_series( self.paths['time_series_global'] ) if self.paths['time_series_sinks']: self._time_series['sinks'] = [ load_time_series(files) for files in self.paths['time_series_sinks'] ] def _get_global_ts_files(self, glob: str = None) -> List[Path]: """Get global time series files.""" if glob is None: # Phantom ev file name format glob = self.prefix + '[0-9][0-9].ev' return sorted(list(self.paths['directory'].glob(glob))) def _get_sink_ts_files(self, glob: str = None) -> List[List[Path]]: """Get sink time series files.""" if glob is None: # Phantom ev file name format glob = self.prefix + 'Sink[0-9][0-9][0-9][0-9]N[0-9][0-9].ev' n = len(self.prefix) + len('Sink') n_sinks = len(np.unique({p.name[n : n + 4] for p in self.paths['directory'].glob(glob)})) sinks = list() for idx in range(1, n_sinks + 1): sinks.append( sorted( self.paths['directory'].glob( self.prefix + f'Sink{idx:04}N[0-9][0-9].ev' ) ) ) print(sinks) return sinks def set_units_on_time_series(self, config: Union[str, Path] = None): """Set physical units on time series data. Parameters ---------- config : optional The path to a Plonk config.toml file. """ units = time_series_units(sim=self, data_source=self.data_source, config=config) if 'global' in self.time_series: _apply_units_to_dataframe(self.time_series['global'], units) if 'sinks' in self.time_series: for ts in self.time_series['sinks']: _apply_units_to_dataframe(ts, units) return self def unset_units_on_time_series(self, config: Union[str, Path] = None): """Un-set physical units on time series data. Parameters ---------- config : optional The path to a Plonk config.toml file. """ units = time_series_units(sim=self, data_source=self.data_source, config=config) if 'global' in self.time_series: _un_apply_units_to_dataframe(self.time_series['global'], units) if 'sinks' in self.time_series: for ts in self.time_series['sinks']: _un_apply_units_to_dataframe(ts, units) return self def _get_snap_files(self, glob: str = None) -> List[Path]: """Get snapshot files.""" if glob is None: # Phantom snapshot file name format glob = ( self.prefix + '_[0-9][0-9][0-9][0-9][0-9].' + self._snap_file_extension ) return sorted(list(self.paths['directory'].glob(glob))) def _get_snap_file_extension(self, glob: str = None): """Snapshot file extension. Determine snap file type from extension assuming file names follow a glob pattern. """ if glob is None: # Phantom HDF5 snapshot file name format glob = self.prefix + '_[0-9][0-9][0-9][0-9][0-9].h5' file_types = {f.suffix for f in self.paths['directory'].glob(glob)} if len(file_types) > 1: raise ValueError( 'Cannot determine simulation snapshot file type: ' f'is it one of {file_types}?' ) if len(file_types) == 0: raise ValueError( 'Cannot determine snapshot file type: ' 'no files named like prefix_xxxxx.ext' ) file_ext = file_types.pop()[1:] if file_ext not in ('h5',): raise ValueError('File extension not available; must be ".h5"') return file_ext def __len__(self): """Length as number of snaps.""" if self._len == -1: self._len = len(self.snaps) return self._len def __repr__(self): """Dunder repr method.""" return self.__str__() def __str__(self): """Dunder str method.""" return ( f'<plonk.Simulation: "{self.prefix}", ' f'directory="{self.paths["directory"].name}">' ) visualize = visualize_sim def load_sim( prefix: str, directory: Union[str, Path] = None, data_source: str = 'Phantom', ) -> Simulation: """Load Simulation. Parameters ---------- prefix Simulation prefix, e.g. 'disc', if files are named like disc_00000.h5, disc01.ev, discSink0001N01.ev, etc. directory : optional Directory containing simulation snapshot files and auxiliary files. Default is None. data_source : optional The SPH code used to produce the simulation data. Default is 'Phantom'. """ msg = ( 'load_sim is deprecated and will be removed in v0.7.4, ' 'please use load_simulation instead' ) logger.warning(msg) warnings.warn(msg, DeprecationWarning) return load_simulation(prefix=prefix, directory=directory, data_source=data_source) def load_simulation( prefix: str, directory: Union[str, Path] = None, data_source: str = 'Phantom', ) -> Simulation: """Load Simulation. Parameters ---------- prefix Simulation prefix, e.g. 'disc', if files are named like disc_00000.h5, disc01.ev, discSink0001N01.ev, etc. directory : optional Directory containing simulation snapshot files and auxiliary files. Default is None. data_source : optional The SPH code used to produce the simulation data. Default is 'Phantom'. """ return ( Simulation() .load_simulation(prefix=prefix, directory=directory, data_source=data_source) .set_units_on_time_series() ) def _apply_units_to_dataframe(dataframe, units): keys = list() for key, val in units.items(): if key in dataframe: keys.append(key) dataframe[key] = (dataframe[key].to_numpy() * units[key]).magnitude mapper = {key: f'{key} [{units[key].units:~}]' for key in keys} dataframe.rename(columns=mapper, inplace=True) return dataframe def _un_apply_units_to_dataframe(dataframe, units): keys = list() for key, val in units.items(): key_unit = f'{key} [{units[key].units:~}]' if key_unit in dataframe: keys.append(key) dataframe[key_unit] = ( dataframe[key_unit].to_numpy() / units[key] ).magnitude mapper = {f'{key} [{units[key].units:~}]': key for key in keys} dataframe.rename(columns=mapper, inplace=True) return dataframe ``` #### File: plonk/utils/snap.py ```python from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, List, Union from .._config import read_config from .._units import units as plonk_units if TYPE_CHECKING: from ..snap.snap import SnapLike def gravitational_constant_in_code_units(snap: SnapLike) -> float: """Gravitational constant in code units. Parameters ---------- snap The Snap object. Returns ------- float The gravitational constant in code units. """ G = plonk_units.newtonian_constant_of_gravitation G_units = ( snap.code_units['length'] ** 3 / snap.code_units['mass'] / snap.code_units['time'] ** 2 ) G = (G / G_units).to_base_units().magnitude return G def add_aliases(snap: SnapLike, filename: Union[str, Path] = None): """Add array aliases to a Snap. Parameters ---------- snap The Snap object. config : optional The path to a Plonk config.toml file. If None, use the default file. """ conf = read_config(filename=filename) for key, val in conf['arrays']['aliases'].items(): snap.add_alias(key, val) def dust_array_names( name: str, num_dust_species: int, add_gas: bool = False ) -> List[str]: """List dust array names. Parameters ---------- name The base array name, e.g. "dust_density" or "stopping_time". num_dust_species The number of dust species. add_gas If True add the gas version of the dust name. Returns ------- List A list of array names with appropriate suffixes. Examples -------- Get the dust density strings. >>> dust_name_list('dust_density', 5) ['dust_density_001', 'dust_density_002', 'dust_density_003', 'dust_density_004', 'dust_density_005'] Get the dust density strings with gas. >>> dust_name_list(name='dust_density', num_dust_species=5, add_gas=True) ['gas_density', 'dust_density_001', 'dust_density_002', 'dust_density_003', 'dust_density_004', 'dust_density_005'] """ names = list() if add_gas: names.append(f'{name.replace("dust", "gas")}') names += [f'{name}_{n+1:03}' for n in range(num_dust_species)] return names def vector_array_names(name: str, add_mag: bool = False) -> List[str]: """List vector array names. Parameters ---------- name The base array name, e.g. "angular_momentum". add_mag If True add the magnitude of the array. Returns ------- List A list of array names with appropriate suffixes. Examples -------- Get the angular momentum strings. >>> vector_name_list('angular_momentum') ['angular_momentum_x', 'angular_momentum_y', 'angular_momentum_z'] Get the angular momentum strings with magnitude. >>> vector_name_list(name='angular_momentum', add_mag=True) ['angular_momentum_x', 'angular_momentum_y', 'angular_momentum_z', 'angular_momentum_mag'] """ names = [f'{name}_{x}' for x in ['x', 'y', 'z']] if add_mag: names.append(f'{name}_mag') return names ``` #### File: plonk/tests/test_animation.py ```python from pathlib import Path import plonk from plonk import visualize DIR_PATH = Path(__file__).parent / 'data/phantom' PREFIX = 'dustseparate' def test_animate(): """Test animate.""" sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH) snaps = [sim.snaps[0], sim.snaps[0], sim.snaps[0]] filename = Path('animation.mp4') plonk.animate( filename=filename, snaps=snaps, quantity='density', units={'position': 'au', 'density': 'g/cm^3'}, adaptive_colorbar=False, num_pixels=(32, 32), ) filename.unlink() def test_animation_images(): """Test animation of images.""" sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH) snaps = [sim.snaps[0], sim.snaps[0], sim.snaps[0]] filename = Path('animation.mp4') visualize.animation_images( filename=filename, snaps=snaps, quantity='density', units={'position': 'au', 'density': 'g/cm^3'}, adaptive_colorbar=False, num_pixels=(32, 32), ) filename.unlink() def test_animation_profiles(): """Test animation of profiles.""" sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH) snaps = [sim.snaps[0], sim.snaps[0], sim.snaps[0]] profiles = [plonk.load_profile(snap) for snap in snaps] filename = Path('animation.mp4') visualize.animation_profiles( filename=filename, profiles=profiles, x='radius', y='surface_density', units={'position': 'au', 'surface_density': 'g/cm^2'}, ) filename.unlink() def test_animation_particles(): """Test animation of particle plots.""" sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH) snaps = [sim.snaps[0], sim.snaps[0], sim.snaps[0]] filename = Path('animation.mp4') visualize.animation_particles( filename=filename, snaps=snaps, x='x', y='density', units={'position': 'au', 'density': 'g/cm^3'}, adaptive_limits=False, ) filename.unlink() ``` #### File: plonk/tests/test_interpolation.py ```python import numpy as np from plonk.visualize.interpolation import scalar_interpolation, vector_interpolation from .data.interpolation_arrays import ( scalar_projection, scalar_slice, vector_projection, vector_slice, ) N = 10 XX = np.ones(N) YY = np.ones(N) ZZ = np.ones(N) HH = np.ones(N) WW = np.ones(N) MM = np.ones(N) S_DATA = np.ones(N) X_DATA = np.ones(N) Y_DATA = np.ones(N) EXTENT = (0, 1, 0, 1) PIX = (10, 10) ZSLICE = 0.5 HFACT = 1.0 def test_scalar_interpolation_projection(): """Test projection interpolation.""" im = scalar_interpolation( quantity=S_DATA, x_coordinate=XX, y_coordinate=YY, extent=EXTENT, smoothing_length=HH, particle_mass=MM, hfact=HFACT, num_pixels=PIX, ) np.testing.assert_allclose(im, scalar_projection, rtol=1e-5) def test_scalar_interpolation_slice(): """Test cross section interpolation.""" im = scalar_interpolation( quantity=S_DATA, x_coordinate=XX, y_coordinate=YY, dist_from_slice=ZZ * ZSLICE, extent=EXTENT, smoothing_length=HH, particle_mass=MM, hfact=HFACT, num_pixels=PIX, ) np.testing.assert_allclose(im, scalar_slice, rtol=1e-5) def test_vector_interpolation_projection(): """Test projection interpolation.""" vec = vector_interpolation( quantity_x=X_DATA, quantity_y=Y_DATA, x_coordinate=XX, y_coordinate=YY, extent=EXTENT, smoothing_length=HH, particle_mass=MM, hfact=HFACT, num_pixels=PIX, ) np.testing.assert_allclose(vec, vector_projection, rtol=1e-5) def test_vector_interpolation_slice(): """Test cross section interpolation.""" vec = vector_interpolation( quantity_x=X_DATA, quantity_y=Y_DATA, x_coordinate=XX, y_coordinate=YY, dist_from_slice=ZZ * ZSLICE, extent=EXTENT, smoothing_length=HH, particle_mass=MM, hfact=HFACT, num_pixels=PIX, ) np.testing.assert_allclose(vec, vector_slice, rtol=1e-5) ``` #### File: plonk/tests/test_snap.py ```python from pathlib import Path import numpy as np import pytest from scipy.spatial.transform import Rotation import plonk from .data.phantom import adiabatic, dustmixture, dustseparate, mhd SNAPTYPES = [adiabatic, dustmixture, dustseparate, mhd] DIR = Path(__file__).parent / 'data/phantom' RTOL = 1e-6 @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_load_phantom_snap(snaptype): """Testing reading Phantom HDF5 snapshots.""" # Read from Path filename = DIR / snaptype.filename snap = plonk.load_snap(filename) snap.close_file() # Read from str snap = plonk.load_snap(str(filename)) snap.close_file() # Not exists with pytest.raises(FileNotFoundError): plonk.load_snap('does_not_exist.h5') @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_get_item(snaptype): """Testing getting items from Snap.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) position = snap['position'] assert position.shape == snaptype.position_shape subsnap = snap['gas'] assert type(subsnap) == plonk.snap.snap.SubSnap subsnap = snap[:10] assert type(subsnap) == plonk.snap.snap.SubSnap assert len(subsnap) == 10 subsnap = snap[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]] assert type(subsnap) == plonk.snap.snap.SubSnap assert len(subsnap) == 10 subsnap = snap[(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)] assert type(subsnap) == plonk.snap.snap.SubSnap assert len(subsnap) == 10 snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_read_particle_arrays_from_phantom(snaptype): """Testing reading Phantom HDF5 snapshot particle arrays.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_read_properties_from_phantom(snaptype): """Testing reading Phantom HDF5 snapshot properties.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) for key, value in snaptype.properties.items(): if isinstance(snap.properties[key], plonk.units.Quantity): snap_value = snap.properties[key].magnitude numpy_array = True elif isinstance(snap.properties[key], str): snap_value = snap.properties[key] numpy_array = False else: snap_value = snap.properties[key] numpy_array = True if numpy_array: np.testing.assert_allclose(snap_value, value, rtol=RTOL) else: assert snap_value == value snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_available_loaded_arrays(snaptype): """Testing seeing available/loaded arrays on Snap.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) assert snap.available_arrays() == snaptype.available_arrays for arr in [ 'position_x', 'position_y', 'position_z', 'position_mag', 'h', 'angular_momentum', ]: snap[arr] assert snap.loaded_arrays() == snaptype.loaded_arrays snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_array_code_unit(snaptype): """Testing getting array code unit.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) position_unit = snaptype.length_unit * plonk.units('meter') assert snap.array_code_unit('position') == position_unit for arr in ['position', 'position_x', 'x']: snap.array_code_unit(arr) with pytest.raises(ValueError): snap.array_code_unit('does_not_exist') snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_rotate_snap(snaptype): """Testing rotating Snap.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) snap['position'] snap['radius_cylindrical'] if snap.num_sinks > 0: snap.sinks['position'] snap.rotate(axis=(1, 2, 3), angle=np.pi) snap.rotate(axis=(1, 2, 3), angle=-np.pi) _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) snap.rotate(axis=(1, 2, 3), angle=np.pi) snap.reset() _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) rot = np.array([1, 2, 3]) rot = rot / np.linalg.norm(rot) rot *= 2 * np.pi rotation = Rotation.from_rotvec(rot) snap.rotate(rotation=rotation) _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_translate_snap(snaptype): """Testing translating Snap.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) unit = f"{snap.code_units['length'].m} {snap.code_units['length'].u}" snap['position'] if snap.num_sinks > 0: snap.sinks['position'] snap.translate(translation=(100, 200, 300), unit=unit) snap.translate(translation=(-100, -200, -300), unit=unit) _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) snap.translate(translation=(100, 200, 300), unit=unit) snap.reset() _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) with pytest.raises(ValueError): snap.translate(translation=(100, 200, 300)) with pytest.raises(ValueError): snap.translate(translation=(100, 200)) snap.translate(translation=(100, 200, 300) * plonk.units(unit), unit=unit) snap.translate(translation=(-100, -200, -300) * plonk.units(unit), unit=unit) _check_arrays( snap, snaptype.array_name_map, snaptype.mean_array_values, snaptype.std_array_values, ) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_write_to_dataframe(snaptype): """Testing writing Snap to DataFrame.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) columns = ['position', 'density', 'smoothing_length'] snap.to_dataframe(columns=columns) columns = ['position', 'density', 'smoothing_length'] snap.to_dataframe(columns=columns, units=['au', 'g/cm^3', 'au']) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_subsnap(snaptype): """Testing getting SubSnap.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) gas = snap['gas'] assert len(gas) == snaptype.len_gas subsnap = snap[0:100] assert len(subsnap) == 100 subsnap = snap[[0, 1, 2]] assert len(subsnap) == 3 subsnap = snap[(0, 1, 2)] assert len(subsnap) == 3 subsnap = snap[0] assert len(subsnap) == 1 snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_sinks(snaptype): """Testing getting sink particles.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) if snap.num_sinks > 0: sinks = snap.sinks assert snap.num_sinks == snaptype.num_sinks assert len(sinks) == snaptype.num_sinks snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_set_array(snaptype): """Testing setting array on particles.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) particle_array = np.arange(len(snap)) * plonk.units('dimensionless') snap['array'] = particle_array np.testing.assert_allclose(snap['array'].m, particle_array.m, rtol=RTOL) sink_array = np.arange(len(snap.sinks)) * plonk.units('dimensionless') snap.sinks['array'] = sink_array np.testing.assert_allclose(snap.sinks['array'].m, sink_array.m, rtol=RTOL) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_bulk_load(snaptype): """Testing bulk loading arrays.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) snap.bulk_load() snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_read_write_extra(snaptype): """Testing read write extra arrays.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) _filename = Path('tmp.h5') arr = np.arange(len(snap)) * plonk.units('dimensionless') snap['my_array'] = arr snap.write_extra_arrays(arrays=['my_array'], filename=_filename) snap = None snap = plonk.load_snap(filename) snap.read_extra_arrays(filename=_filename) np.testing.assert_allclose(snap['my_array'], arr, rtol=RTOL) _filename.unlink() snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_plot_as_methods(snaptype): """Testing plot methods.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) snap.image('density', num_pixels=(16, 16)) snap.plot() if snap.num_sinks > 0: sinks = snap.sinks sinks.plot() subsnap = snap['gas'] subsnap.image('density', num_pixels=(16, 16)) subsnap.plot() snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_context(snaptype): """Testing cache context manager.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) snap.cache_arrays = True with snap.context(cache=False): assert snap.loaded_arrays() == [] with snap.context(cache=True): snap.image('density', num_pixels=(16, 16)) assert snap.loaded_arrays() == [ 'density', 'mass', 'position', 'smoothing_length', ] assert snap.loaded_arrays() == [] assert snap.loaded_arrays() == [] snap.close_file() def _check_arrays(snap, array_name_map, mean_array_values, std_array_values): for array in mean_array_values.keys(): np.testing.assert_allclose( snap.array_in_code_units(array_name_map[array]).mean(), mean_array_values[array], rtol=RTOL, ) for array in std_array_values.keys(): np.testing.assert_allclose( snap.array_in_code_units(array_name_map[array]).std(), std_array_values[array], rtol=RTOL, ) ``` #### File: plonk/tests/test_visualization.py ```python from pathlib import Path import pytest import plonk from plonk.utils import visualize from .data.phantom import adiabatic, dustmixture, dustseparate, mhd SNAPTYPES = [adiabatic, dustmixture, dustseparate, mhd] DIR = Path(__file__).parent / 'data/phantom' AU = plonk.units('au') @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_plot(snaptype): """Test particle plot.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) plonk.plot(snap=snap) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_plot_with_kwargs(snaptype): """Test particle plot with kwargs.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) plonk.plot( snap=snap, x='x', y='y', c='density', units={'position': 'au', 'density': 'g/cm^3', 'projection': 'cm'}, ) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_image_projection(snaptype): """Test image projection.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) plonk.image(snap=snap, quantity='density', num_pixels=(32, 32)) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_image_projection_with_kwargs(snaptype): """Test image projection with kwargs.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) plonk.image( snap=snap, quantity='density', x='x', y='y', units={'position': 'au', 'density': 'g/cm^3', 'projection': 'cm'}, extent=(-150, 150, -150, 150) * AU, norm='linear', cmap='gist_heat', num_pixels=(32, 32), ) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_image_on_snap(snaptype): """Test image projection as method on Snap.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) snap.image(quantity='density', num_pixels=(32, 32)) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_image_slice(snaptype): """Test image slice.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) plonk.image(snap=snap, quantity='density', interp='slice', num_pixels=(32, 32)) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_image_slice_with_kwargs(snaptype): """Test image slice with kwargs.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) plonk.image( snap=snap, quantity='density', interp='slice', x='x', y='y', units={'position': 'au', 'density': 'g/cm^3', 'projection': 'cm'}, extent=(-150, 150, -150, 150) * AU, norm='linear', cmap='gist_heat', num_pixels=(32, 32), ) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_plot_smoothing_length(snaptype): """Test plot smoothing length as circle.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) visualize.plot_smoothing_length(snap=snap, indices=[0, 1]) snap.close_file() @pytest.mark.parametrize('snaptype', SNAPTYPES) def test_get_extent(snaptype): """Test getting extent from percentile.""" filename = DIR / snaptype.filename snap = plonk.load_snap(filename) visualize.get_extent_from_percentile(snap=snap, x='x', y='y') snap.close_file() ```
{ "source": "joshcalcino/pymcfost", "score": 3 }
#### File: pymcfost/pymcfost/wake.py ```python import numpy as np import matplotlib.pyplot as plt from .utils import rotate_coords,rotate_to_obs_plane def get_wake_cartesian(rp,phip,npts,rmin,rmax,HonR,q): ''' planet wake formula from Rafikov (2002) ''' rplot = np.linspace(rmin,rmax,npts) rr = rplot/rp phi = phip + np.sign(rmax-rmin)*(1./HonR)*((rr**(q-0.5))/(q-0.5) \ - (rr**(q+1.))/(q+1.) \ - 3./((2.*q-1.)*(q+1.))) xx = rplot*np.cos(phi) yy = rplot*np.sin(phi) return xx,yy def plot_wake(xy_obs,inc,PA,HonR,q,color="black"): ''' plot planet wake and rotate to the observational viewpoint ''' inc = np.deg2rad(inc) PA = np.deg2rad(PA) # we give planet location in the observational plane # bad attempt to provide the location in the rotated plane # by a simple linear scaling (does not get the angle correct) x_scale, y_scale, dum = rotate_coords(xy_obs[0],xy_obs[1],0.,inc,PA) x_p = xy_obs[0]*(xy_obs[0]/x_scale) y_p = xy_obs[1]*(xy_obs[1]/y_scale) # planet location in the unrotated plane rp = np.sqrt(x_p**2 + y_p**2) phip = np.arctan2(y_p,x_p) print("rp = ",rp," phi planet = ",phip*180./np.pi) # radial range over which to plot the wake rmin = 1.e-3 rmax = 3.*rp npts = 1000 # outer wake xx,yy = get_wake_cartesian(rp,phip,npts,rp,rmax,HonR,q) xp,yp = rotate_to_obs_plane(xx,yy,inc,PA) plt.plot(xx,yy,color=color) # inner wake xx,yy = get_wake_cartesian(rp,phip,npts,rp,rmin,HonR,q) xp,yp = rotate_to_obs_plane(xx,yy,inc,PA) plt.plot(xx,yy,color=color) ```
{ "source": "joshcamas/screen-lapse", "score": 4 }
#### File: screen-lapse/fluid/fluid_progressive_light.py ```python import tkinter as tk from tkinter import ttk as ttk import fluid.fluid_light as ui class Progress(ui.Frame): """ Wrapper for the progressive system. Anything you want to progress goes in here. """ def __init__(self,parent): ui.Frame.__init__(self, parent) #This will not change. This tells the system the top level parent self.toplevel = BaseLevel(parent) #add this top level to the parent self.toplevel.grid(row=0,column=0) self.padding = {"x":5,"y":5} self.sticky = "" #This is the progressive level. This will change, depending if a level #has been started or stopped self.currlevel = self.toplevel self.currlevel.start(self) def _startcurrentlevel(self,newlevel): self.currlevel.add(self,newlevel) self.currlevel = newlevel self.currlevel.start(self) def _stopcurrentlevel(self): if(self.currlevel != self.toplevel): self.currlevel.stop(self) self.currlevel = self.currlevel.parentLevel def _add(self,widget): self.currlevel.add(self,widget) return(widget) def _gridwidget(self,widget,x,y): widget.grid(row=y,column=x,padx=self.padding["x"],pady=self.padding["y"],sticky=self.sticky) def setpadding(self,x=0,y=0): self.padding["x"] = x self.padding["y"] = y def setsticky(self,sticky): self.sticky = sticky #============[ Widgets ]============# #Adds a ui.Button def addbutton(self,label): button = ui.Button(self.currlevel,label) self._add(button) return(button) #Adds a ui.Label def addlabel(self,label,bold=False): label = ui.Label(self.currlevel,label,bold) self._add(label) return(label) #Adds a ui.OutputBox def addoutput(self,label,value,vertical=False): horioutput = ui.OutputBox(self.currlevel,label,value,vertical) self._add(horioutput) return(horioutput) #Adds a ui.InputBox def addinputbox(self,label,default="",width=10): horioutput = ui.InputBox(self.currlevel,label,default,width) self._add(horioutput) return(horioutput) #Adds a ui.OutputBox def addcheckbox(self,label,value): checkbox = ui.CheckBox(self.currlevel,label,value) self._add(checkbox) return(checkbox) #Adds a ui.OutputBox def addscale(self,label,start,end): scale = ui.Scale(self.currlevel,label,start,end) self._add(scale) return(scale) def adddropdown(self,label,options=None): dd = ui.DropDown(self.currlevel,label,options) self._add(dd) return(dd) #Adds a custom ui widget element. #Use this for ui Graphs and other things def addcustom(self,customclass,*args, **kwargs): if(isinstance(customclass,ui.Frame)): custom = customclass(self.currlevel,*args, **kwargs) else: custom = customclass(self.currlevel.frame,*args, **kwargs) self._add(custom) return(custom) #============[ Levels ]============# #Start Horizontal List def starthorizontal(self): newlevel = HorizontalList(self.currlevel) self._startcurrentlevel(newlevel) return(newlevel) #Stop Horizontal List def stophorizontal(self): self._stopcurrentlevel() #Start Vertical List def startvertical(self): newlevel = VerticalList(self.currlevel) self._startcurrentlevel(newlevel) return(newlevel) #Stop Vertical List def stopvertical(self): self._stopcurrentlevel() #Start a Tab List (And create the first tab, optionally) def starttabs(self,tabname): newlevel = TabList(self.currlevel) self._startcurrentlevel(newlevel) if(tabname != None): newlevel.newtab(tabname,self) #Stop a Tab List def stoptabs(self): self._stopcurrentlevel() #Start a new Tab in a Tab List def newtab(self,tabname): self.currlevel.newtab(tabname,self) class ProgressLevel(ui.Frame): """ Base wrapper for levels. They can be "started" and "stopped", and anything added to the progressive application afterwards will be added to this level. (Including other levels) """ def __init__(self,parent): ui.Frame.__init__(self,parent) self.parentLevel = parent def setParentLevel(self,level): self.parentLevel = level def start(self,progress): pass def add(self,progress,widget): pass def stop(self,progress): pass class BaseLevel(ProgressLevel): """ The level each `Progress` system starts at. By default, everything will be added in a horizontal manner """ def start(self,progress): self.currentx = 0 def add(self,progress,widget): progress._gridwidget(widget,self.currentx,0) self.currentx+=1 class HorizontalList(ProgressLevel): def start(self,progress): self.currentx = 0 def add(self,progress,widget): progress._gridwidget(widget,self.currentx,0) self.currentx+=1 class VerticalList(ProgressLevel): def start(self,progress): self.currenty = 0 def add(self,progress,widget): progress._gridwidget(widget,0,self.currenty) self.currenty+=1 class TabList(ProgressLevel): """ The level each `Progress` system starts at. By default, everything will be added in a horizontal manner """ def start(self,progress,text=None): self.tabs = ttk.Notebook(progress.currlevel.frame) self.tabs.grid(row=0,column=0,padx=5,pady=5,sticky=tk.NW) def newtab(self,text,progress): tab = Tab(self.parent) self.tabs.add(tab.frame, text=text) progress.currlevel = tab tab.start(progress) tab.setParentLevel(self.parentLevel) tab.tabOwner = self self.currentframe = tab def add(self,progress,widget): progress._gridwidget(widget,0,0) #progress._gridwidget(widget,self.currentx,0) #self.currentx+=1 class Tab(VerticalList): def newtab(self,text,progress): self.tabOwner.newtab(text,progress) ```
{ "source": "joshcarp/CodeCamp", "score": 3 }
#### File: CodeCamp/unit-test/test_verifier.py ```python def func(x): return x + 1 def test_answer(): assert func(3) == 4 def test_answer2(): assert func(4) > 6 ```
{ "source": "Joshcarp/go-slides", "score": 3 }
#### File: go-slides/pingserver/compare.py ```python import csv import os import pandas import matplotlib.pyplot as plt responsetime_filename = "responsetime.csv" address = "localhost" request_range = [1000, 20000, 1000] def testport(address, port, numRequests): temp_filename = "temp.csv" timeout = 2000 command = f"ab -n {numRequests} -c {numRequests} -s {timeout} -q -r -e {temp_filename} {address}:{port}/ping" print(command) os.system(command) file = open(temp_filename) os.remove(temp_filename) return file def read_file(file): reader = pandas.read_csv(file) time_list = [reader.loc[i]["Time in ms"] for i in range(0, 101, 1)] return time_list def compare(responsetime_filename, address, request_range): file = open(responsetime_filename, "w+") c = csv.writer(file) header = ["numRequests"] + ["go_"+ str(i) for i in range(0, 101, 1)] + ["java_"+ str(i) for i in range(0, 101, 1)] c.writerow (header) for numRequests in range(request_range[0], request_range[1], request_range[2]): f = testport(address, 9090, numRequests) go_list = read_file(f) f = testport(address, 8080, numRequests) java_list = read_file(f) c.writerow([numRequests] + go_list + java_list) file.close() def generate_graph(responsetime_filename, request_range): data = pandas.read_csv(responsetime_filename) plt.figure(figsize=(10,6)) plt.plot(data.numRequests.tolist(), data.java_50.div(1000).tolist(), "o", label = "Java Median", color='#ff9721') plt.plot(data.numRequests.tolist(), data.java_95.div(1000).tolist(), "^", label = "Java 95th percentile", color='#ff9721') plt.plot(data.numRequests.tolist(), data.go_50.div(1000).tolist(), "o", label = "Go Median", color = '#4f92ff') plt.plot(data.numRequests.tolist(), data.go_95.div(1000).tolist(), "^", label = "Go 95th percentile", color = '#4f92ff') plt.title('Java vs Go server response time') plt.xlabel('Number of concurrent requests') plt.ylabel('Time taken (s)') plt.legend() plt.xticks(ticks = [x for x in range(request_range[0], request_range[1], request_range[2]*2)]) plt.savefig(os.path.abspath('..')+"/content/_img/JavaVsGoLoadTest.png", dpi=300, bbox_inches='tight', figsize=(50,25)) if not os.path.isfile(responsetime_filename): compare(responsetime_filename, address, request_range) generate_graph(responsetime_filename, request_range) ```
{ "source": "joshcarty/dgl", "score": 2 }
#### File: benchmarks/model_speed/bench_gat.py ```python import time import dgl from dgl.nn.pytorch import GATConv import torch import torch.nn as nn import torch.nn.functional as F from .. import utils class GAT(nn.Module): def __init__(self, num_layers, in_dim, num_hidden, num_classes, heads, activation, feat_drop, attn_drop, negative_slope, residual): super(GAT, self).__init__() self.num_layers = num_layers self.gat_layers = nn.ModuleList() self.activation = activation # input projection (no residual) self.gat_layers.append(GATConv( in_dim, num_hidden, heads[0], feat_drop, attn_drop, negative_slope, False, self.activation)) # hidden layers for l in range(1, num_layers): # due to multi-head, the in_dim = num_hidden * num_heads self.gat_layers.append(GATConv( num_hidden * heads[l-1], num_hidden, heads[l], feat_drop, attn_drop, negative_slope, residual, self.activation)) # output projection self.gat_layers.append(GATConv( num_hidden * heads[-2], num_classes, heads[-1], feat_drop, attn_drop, negative_slope, residual, None)) def forward(self, g, inputs): h = inputs for l in range(self.num_layers): h = self.gat_layers[l](g, h).flatten(1) # output projection logits = self.gat_layers[-1](g, h).mean(1) return logits @utils.benchmark('time') @utils.parametrize('data', ['cora', 'pubmed']) def track_time(data): data = utils.process_data(data) device = utils.get_bench_device() num_epochs = 200 g = data[0].to(device) features = g.ndata['feat'] labels = g.ndata['label'] train_mask = g.ndata['train_mask'] val_mask = g.ndata['val_mask'] test_mask = g.ndata['test_mask'] in_feats = features.shape[1] n_classes = data.num_labels g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) # create model model = GAT(1, in_feats, 8, n_classes, [8, 1], F.elu, 0.6, 0.6, 0.2, False) loss_fcn = torch.nn.CrossEntropyLoss() model = model.to(device) model.train() # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4) # dry run for epoch in range(10): logits = model(g, features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() # timing t0 = time.time() for epoch in range(num_epochs): logits = model(g, features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() t1 = time.time() return (t1 - t0) / num_epochs ``` #### File: pytorch/graphsage/utils.py ```python import torch.multiprocessing as mp from _thread import start_new_thread from functools import wraps import traceback def thread_wrapped_func(func): """ Wraps a process entry point to make it work with OpenMP. """ @wraps(func) def decorated_function(*args, **kwargs): queue = mp.Queue() def _queue_result(): exception, trace, res = None, None, None try: res = func(*args, **kwargs) except Exception as e: exception = e trace = traceback.format_exc() queue.put((res, exception, trace)) start_new_thread(_queue_result, ()) result, exception, trace = queue.get() if exception is None: return result else: assert isinstance(exception, Exception) raise exception.__class__(trace) return decorated_function ``` #### File: tests/compute/test_traversal.py ```python import random import sys import time import unittest import dgl import networkx as nx import numpy as np import scipy.sparse as sp import backend as F import itertools from utils import parametrize_dtype np.random.seed(42) def toset(x): # F.zerocopy_to_numpy may return a int return set(F.zerocopy_to_numpy(x).tolist()) @parametrize_dtype def test_bfs(idtype, n=100): def _bfs_nx(g_nx, src): edges = nx.bfs_edges(g_nx, src) layers_nx = [set([src])] edges_nx = [] frontier = set() edge_frontier = set() for u, v in edges: if u in layers_nx[-1]: frontier.add(v) edge_frontier.add(g.edge_ids(int(u), int(v))) else: layers_nx.append(frontier) edges_nx.append(edge_frontier) frontier = set([v]) edge_frontier = set([g.edge_ids(u, v)]) # avoids empty successors if len(frontier) > 0 and len(edge_frontier) > 0: layers_nx.append(frontier) edges_nx.append(edge_frontier) return layers_nx, edges_nx a = sp.random(n, n, 3 / n, data_rvs=lambda n: np.ones(n)) g = dgl.from_scipy(a).astype(idtype) g_nx = g.to_networkx() src = random.choice(range(n)) layers_nx, _ = _bfs_nx(g_nx, src) layers_dgl = dgl.bfs_nodes_generator(g, src) assert len(layers_dgl) == len(layers_nx) assert all(toset(x) == y for x, y in zip(layers_dgl, layers_nx)) g_nx = nx.random_tree(n, seed=42) g = dgl.from_networkx(g_nx).astype(idtype) src = 0 _, edges_nx = _bfs_nx(g_nx, src) edges_dgl = dgl.bfs_edges_generator(g, src) assert len(edges_dgl) == len(edges_nx) assert all(toset(x) == y for x, y in zip(edges_dgl, edges_nx)) @parametrize_dtype def test_topological_nodes(idtype, n=100): a = sp.random(n, n, 3 / n, data_rvs=lambda n: np.ones(n)) b = sp.tril(a, -1).tocoo() g = dgl.from_scipy(b).astype(idtype) layers_dgl = dgl.topological_nodes_generator(g) adjmat = g.adjacency_matrix(transpose=False) def tensor_topo_traverse(): n = g.number_of_nodes() mask = F.copy_to(F.ones((n, 1)), F.cpu()) degree = F.spmm(adjmat, mask) while F.reduce_sum(mask) != 0.: v = F.astype((degree == 0.), F.float32) v = v * mask mask = mask - v frontier = F.copy_to(F.nonzero_1d(F.squeeze(v, 1)), F.cpu()) yield frontier degree -= F.spmm(adjmat, v) layers_spmv = list(tensor_topo_traverse()) assert len(layers_dgl) == len(layers_spmv) assert all(toset(x) == toset(y) for x, y in zip(layers_dgl, layers_spmv)) DFS_LABEL_NAMES = ['forward', 'reverse', 'nontree'] @parametrize_dtype def test_dfs_labeled_edges(idtype, example=False): dgl_g = dgl.DGLGraph().astype(idtype) dgl_g.add_nodes(6) dgl_g.add_edges([0, 1, 0, 3, 3], [1, 2, 2, 4, 5]) dgl_edges, dgl_labels = dgl.dfs_labeled_edges_generator( dgl_g, [0, 3], has_reverse_edge=True, has_nontree_edge=True) dgl_edges = [toset(t) for t in dgl_edges] dgl_labels = [toset(t) for t in dgl_labels] g1_solutions = [ # edges labels [[0, 1, 1, 0, 2], [0, 0, 1, 1, 2]], [[2, 2, 0, 1, 0], [0, 1, 0, 2, 1]], ] g2_solutions = [ # edges labels [[3, 3, 4, 4], [0, 1, 0, 1]], [[4, 4, 3, 3], [0, 1, 0, 1]], ] def combine_frontiers(sol): es, ls = zip(*sol) es = [set(i for i in t if i is not None) for t in itertools.zip_longest(*es)] ls = [set(i for i in t if i is not None) for t in itertools.zip_longest(*ls)] return es, ls for sol_set in itertools.product(g1_solutions, g2_solutions): es, ls = combine_frontiers(sol_set) if es == dgl_edges and ls == dgl_labels: break else: assert False if __name__ == '__main__': test_bfs(idtype='int32') test_topological_nodes(idtype='int32') test_dfs_labeled_edges(idtype='int32') ``` #### File: tests/compute/utils.py ```python import pytest import backend as F if F._default_context_str == 'cpu': parametrize_dtype = pytest.mark.parametrize("idtype", [F.int32, F.int64]) else: # only test int32 on GPU because many graph operators are not supported for int64. parametrize_dtype = pytest.mark.parametrize("idtype", [F.int32, F.int64]) def check_fail(fn, *args, **kwargs): try: fn(*args, **kwargs) return False except: return True ``` #### File: tests/distributed/test_partition.py ```python import dgl import sys import os import numpy as np from scipy import sparse as spsp from numpy.testing import assert_array_equal from dgl.heterograph_index import create_unitgraph_from_coo from dgl.distributed import partition_graph, load_partition from dgl import function as fn import backend as F import unittest import pickle import random def create_random_graph(n): arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64) return dgl.from_scipy(arr) def check_partition(g, part_method, reshuffle): g.ndata['labels'] = F.arange(0, g.number_of_nodes()) g.ndata['feats'] = F.tensor(np.random.randn(g.number_of_nodes(), 10), F.float32) g.edata['feats'] = F.tensor(np.random.randn(g.number_of_edges(), 10), F.float32) g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h')) g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh')) num_parts = 4 num_hops = 2 partition_graph(g, 'test', num_parts, '/tmp/partition', num_hops=num_hops, part_method=part_method, reshuffle=reshuffle) part_sizes = [] for i in range(num_parts): part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/partition/test.json', i) # Check the metadata assert gpb._num_nodes() == g.number_of_nodes() assert gpb._num_edges() == g.number_of_edges() assert gpb.num_partitions() == num_parts gpb_meta = gpb.metadata() assert len(gpb_meta) == num_parts assert len(gpb.partid2nids(i)) == gpb_meta[i]['num_nodes'] assert len(gpb.partid2eids(i)) == gpb_meta[i]['num_edges'] part_sizes.append((gpb_meta[i]['num_nodes'], gpb_meta[i]['num_edges'])) local_nid = gpb.nid2localnid(F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node']), i) assert F.dtype(local_nid) in (F.int64, F.int32) assert np.all(F.asnumpy(local_nid) == np.arange(0, len(local_nid))) local_eid = gpb.eid2localeid(F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge']), i) assert F.dtype(local_eid) in (F.int64, F.int32) assert np.all(F.asnumpy(local_eid) == np.arange(0, len(local_eid))) # Check the node map. local_nodes = F.boolean_mask(part_g.ndata[dgl.NID], part_g.ndata['inner_node']) llocal_nodes = F.nonzero_1d(part_g.ndata['inner_node']) local_nodes1 = gpb.partid2nids(i) assert F.dtype(local_nodes1) in (F.int32, F.int64) assert np.all(np.sort(F.asnumpy(local_nodes)) == np.sort(F.asnumpy(local_nodes1))) # Check the edge map. local_edges = F.boolean_mask(part_g.edata[dgl.EID], part_g.edata['inner_edge']) local_edges1 = gpb.partid2eids(i) assert F.dtype(local_edges1) in (F.int32, F.int64) assert np.all(np.sort(F.asnumpy(local_edges)) == np.sort(F.asnumpy(local_edges1))) if reshuffle: part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata['orig_id']) part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata['orig_id']) # when we read node data from the original global graph, we should use orig_id. local_nodes = F.boolean_mask(part_g.ndata['orig_id'], part_g.ndata['inner_node']) local_edges = F.boolean_mask(part_g.edata['orig_id'], part_g.edata['inner_edge']) else: part_g.ndata['feats'] = F.gather_row(g.ndata['feats'], part_g.ndata[dgl.NID]) part_g.edata['feats'] = F.gather_row(g.edata['feats'], part_g.edata[dgl.NID]) part_g.update_all(fn.copy_src('feats', 'msg'), fn.sum('msg', 'h')) part_g.update_all(fn.copy_edge('feats', 'msg'), fn.sum('msg', 'eh')) assert F.allclose(F.gather_row(g.ndata['h'], local_nodes), F.gather_row(part_g.ndata['h'], llocal_nodes)) assert F.allclose(F.gather_row(g.ndata['eh'], local_nodes), F.gather_row(part_g.ndata['eh'], llocal_nodes)) for name in ['labels', 'feats']: assert name in node_feats assert node_feats[name].shape[0] == len(local_nodes) assert np.all(F.asnumpy(g.ndata[name])[F.asnumpy(local_nodes)] == F.asnumpy(node_feats[name])) for name in ['feats']: assert name in edge_feats assert edge_feats[name].shape[0] == len(local_edges) assert np.all(F.asnumpy(g.edata[name])[F.asnumpy(local_edges)] == F.asnumpy(edge_feats[name])) if reshuffle: node_map = [] edge_map = [] for i, (num_nodes, num_edges) in enumerate(part_sizes): node_map.append(np.ones(num_nodes) * i) edge_map.append(np.ones(num_edges) * i) node_map = np.concatenate(node_map) edge_map = np.concatenate(edge_map) nid2pid = gpb.nid2partid(F.arange(0, len(node_map))) assert F.dtype(nid2pid) in (F.int32, F.int64) assert np.all(F.asnumpy(nid2pid) == node_map) eid2pid = gpb.eid2partid(F.arange(0, len(edge_map))) assert F.dtype(eid2pid) in (F.int32, F.int64) assert np.all(F.asnumpy(eid2pid) == edge_map) @unittest.skipIf(os.name == 'nt', reason='Do not support windows yet') def test_partition(): g = create_random_graph(10000) check_partition(g, 'metis', True) check_partition(g, 'metis', False) check_partition(g, 'random', True) check_partition(g, 'random', False) @unittest.skipIf(os.name == 'nt', reason='Do not support windows yet') def test_hetero_partition(): g = create_random_graph(10000) check_partition(g, 'metis', True) check_partition(g, 'metis', False) check_partition(g, 'random', True) check_partition(g, 'random', False) if __name__ == '__main__': os.makedirs('/tmp/partition', exist_ok=True) test_partition() test_hetero_partition() ```
{ "source": "joshcarty/ra-resale", "score": 3 }
#### File: ra-resale/alerts/__init__.py ```python import datetime import re import lxml.etree import requests EVENT_ID_PATTERN = re.compile(r"https?:\/\/(?:www\.)?ra.co\/events\/(\d+)") USER_AGENT = ( "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36" ) def make_request(url): headers = {'User-Agent': USER_AGENT} return requests.get(url, timeout=10, headers=headers) def extract_event_id(url): return EVENT_ID_PATTERN.search(url)[1] def extract_title(dom): return dom.xpath('//h1//text()')[0] def extract_date(dom): extracted = dom.xpath("//span[text() = 'Date']/../..//a//text()") extracted = extracted[0].strip() extracted = extracted.rsplit(', ', maxsplit=1)[-1] return datetime.datetime.strptime(extracted, '%d %b %Y').date() def extract_tickets(dom): tickets = dom.xpath("//li[@id='ticket-types']/ul/li") for ticket in tickets: yield { 'title': extract_ticket_title(ticket), 'price': extract_price(ticket), 'available': extract_availability(ticket) } def extract_ticket_title(element): path = [ './/div[@class="pr8"]/text()', './/div[@class="type-title"]/text()' ] return element.xpath('|'.join(path))[0] def extract_price(element): return element.xpath('.//div[@class="type-price"]/text()')[0] def extract_availability(element): mapping = {'closed': False, 'onsale but': True} availability = element.xpath('./@class')[0] return mapping.get(availability, False) def is_resale_active(tickets): return not any(ticket['available'] for ticket in tickets) def parse_tickets(html): try: dom = lxml.etree.HTML(html) tickets = list(extract_tickets(dom)) except IndexError: raise ExtractionError() return tickets def parse_event(html): try: dom = lxml.etree.HTML(html) title = extract_title(dom) date = extract_date(dom) except IndexError: raise ExtractionError() return { 'title': title, 'date': date } def get_tickets(url): event_id = extract_event_id(url) ticket_url = f"https://ra.co/widget/event/{event_id}/embedtickets" html = make_request(ticket_url) return parse_tickets(html.text) def get_event(url): html = make_request(url) return parse_event(html.text) def get_page(url): event = get_event(url) tickets = get_tickets(url) event['tickets'] = tickets event['resale_active'] = is_resale_active(tickets) return event class ExtractionError(Exception): pass class ResaleInactiveError(ExtractionError): pass class EventExpiredError(ExtractionError): pass ```
{ "source": "joshcarty/tfgnn-ogb", "score": 3 }
#### File: tfgnn-ogb/tfgnn_ogb/data.py ```python import random from dataclasses import dataclass from typing import Any, Generator, Iterator, List, Sequence, Set, Tuple import networkx as nx import numpy as np import tensorflow as tf import tensorflow_gnn as tfgnn from ogb.nodeproppred import NodePropPredDataset from tqdm import tqdm def ogb_as_networkx_graph(name: str) -> nx.Graph: """ Load an Open Graph Benchmark dataset as a NetworkX graph. """ dataset = NodePropPredDataset(name) splits = dataset.get_idx_split() ogb_graph, labels = dataset[0] num_nodes = ogb_graph["num_nodes"] ogb_features = ogb_graph["node_feat"] ogb_edgelist = ogb_graph["edge_index"] ogb_node_indices = np.arange(num_nodes) num_classes = labels.max() + 1 graph = nx.from_edgelist(ogb_edgelist.T) data = zip(ogb_node_indices, ogb_features, labels) features = { node: {"features": features, "label": label} for node, features, label in data } nx.set_node_attributes(graph, values=features) return graph, splits, num_classes @dataclass class NodeSampler: graph: nx.Graph neighbour_samples: Tuple[int, ...] = (10, 2) @property def num_neighbourhoods(self) -> int: return len(self.neighbour_samples) def sample(self, seed_node: int) -> nx.Graph: sampled_nodes = {seed_node} to_sample = sampled_nodes.copy() for num_neighbours in self.neighbour_samples: for node in to_sample: neighbourhood_nodes = self.gather_neighbourhood( node, exclude_nodes=sampled_nodes ) if not neighbourhood_nodes: continue sampled_neighbourhood_nodes = self.sample_neighbourhood( neighbourhood_nodes, num_neighbours ) sampled_nodes.update(sampled_neighbourhood_nodes) to_sample = sampled_neighbourhood_nodes.copy() return self.graph.subgraph(sampled_nodes) def gather_neighbourhood( self, node: int, exclude_nodes: Set[int] ) -> Set[int]: neighbourhood_nodes = set(self.graph.neighbors(node)) neighbourhood_nodes = self.exclude_already_sampled_nodes( neighbourhood_nodes, exclude_nodes ) return neighbourhood_nodes @staticmethod def exclude_already_sampled_nodes( neighbourhood_nodes: Set[int], sampled_nodes: Set[int] ) -> set[int]: return neighbourhood_nodes - sampled_nodes @staticmethod def sample_neighbourhood(nodes: Set[int], num_neighbours: int) -> Set[int]: return set(random.choices(list(nodes), k=num_neighbours)) def _prepare_data_for_node_classification( graph: nx.Graph, seed_node: int ) -> List[Tuple[Any, Any]]: """ Position seed node as the first node in the data. TensorFlow GNN has a convention whereby the node to be classified, the "seed node", is positioned first in the component. This is for use with layers such as `tfgnn.keras.layers.ReadoutFirstNode` which extracts the first node from a component. """ seed_data = graph.nodes(data=True)[seed_node] data = [(seed_data["features"], seed_data["label"])] data += [ (data["features"], data["label"]) for node, data in graph.nodes(data=True) if node != seed_node ] return data def generate_graph_samples( graph: nx.Graph, seed_nodes: Sequence[int], sampler: NodeSampler ) -> Iterator[tfgnn.GraphTensor]: """ Lazily samples subgraphs from a NetworkX graph and converts them to GraphTensors. In practice, this would be a preprocessing step that builds the subgraphs using a Apache Beam, constructs the GraphTensors and serialises them as tf.Examples. """ for seed_node in seed_nodes: subgraph = sampler.sample(seed_node) subgraph = nx.convert_node_labels_to_integers( subgraph, label_attribute="graph_index" ) subgraph_seed_node = next( node for node, data in subgraph.nodes(data=True) if data["graph_index"] == seed_node ) num_edges = subgraph.number_of_edges() edge_list = np.asarray(subgraph.edges) edges = tfgnn.EdgeSet.from_fields( sizes=[num_edges], adjacency=tfgnn.Adjacency.from_indices( source=("paper", edge_list[:, 0]), target=("paper", edge_list[:, 1]), ), ) data = _prepare_data_for_node_classification( subgraph, subgraph_seed_node ) features, labels = zip(*data) num_nodes = subgraph.number_of_nodes() nodes = tfgnn.NodeSet.from_fields( features={ "hidden_state": np.asarray(features), "label": np.asarray(labels), }, sizes=[num_nodes], ) context = tfgnn.Context.from_fields(features=None) graph_tensor = tfgnn.GraphTensor.from_pieces( edge_sets={"cites": edges}, node_sets={"paper": nodes}, context=context, ) yield graph_tensor def merge_graph_batches(graph: tfgnn.GraphTensor) -> tfgnn.GraphTensor: """TensorFlow GNN expects batches of graphs to be a single component.""" return graph.merge_batch_to_components() def load_dataset_from_graph( graph: nx.Graph, split: Sequence[int], sampler: NodeSampler, batch_size: int, graph_type_spec: tfgnn.GraphTensorSpec, ) -> tf.data.Dataset: """ Load a TensorFlow Dataset sampled as ego subgraphs from a NetworkX graph. Only suitable for small graphs or very low neighbourhood sizes. Since the Dataset is small, we can cache the data in memory. For larger neighbourhood sizes, it's preferable to write examples to disk using `main` and loading with `load_dataset_from_examples`. """ def generator() -> Generator[tfgnn.GraphTensor, None, None]: """tf.data.Dataset expects a Callable that returns a Generator.""" samples = generate_graph_samples(graph, split, sampler=sampler) yield from samples dataset = tf.data.Dataset.from_generator( generator, output_signature=graph_type_spec ) return ( dataset.cache() .repeat() .batch(batch_size, drop_remainder=True) .map(merge_graph_batches) .prefetch(tf.data.AUTOTUNE) ) def load_dataset_from_examples( path: str, batch_size: int, type_spec: tfgnn.GraphTensorSpec ) -> tf.data.TFRecordDataset: return ( tf.data.TFRecordDataset(path) .batch(batch_size, drop_remainder=True) .map(lambda example: tfgnn.parse_example(type_spec, example)) .repeat() .map(merge_graph_batches) .prefetch(tf.data.AUTOTUNE) ) def write_graph_tensors_to_examples( graph_generator: Iterator[tfgnn.GraphTensor], path: str ) -> None: # TODO: Shard over multiple files. with tf.io.TFRecordWriter(path) as writer: for graph in graph_generator: example = tfgnn.write_example(graph) writer.write(example.SerializeToString()) def main() -> None: dataset = "ogbn-arxiv" neighbour_samples = (10, 2) graph, splits, _ = ogb_as_networkx_graph(dataset) train_split, val_split = splits["train"], splits["valid"] sampler = NodeSampler(graph, neighbour_samples) for split_name, split in (("train", train_split), ("val", val_split)): generator = generate_graph_samples(graph, split, sampler) filename = f"{split_name}_hop_{'-'.join(map(str, neighbour_samples))}.tfrecords" write_graph_tensors_to_examples( graph_generator=tqdm(generator, total=len(split)), path=f"data/{dataset}/{split_name}/{filename}", ) if __name__ == "__main__": main() ```
{ "source": "joshch1630/movie_data_platform", "score": 2 }
#### File: src/aws_lambda/imdb_data_injection_lambda.py ```python import os import gzip import logging import boto3 import wget logger = logging.getLogger() logger.setLevel(logging.INFO) S3_BUCKET_NAME = "movie-data-platform.mpd" TEMP_PATH = "/tmp/" IMDB_PATH = "imdb/" RAW_ZONE_PATH = "raw_zone/" IMDB_URL_PREFIX = "https://datasets.imdbws.com/" IMDB_FILE_NAME_LIST = [ "name.basics.tsv.gz", "title.akas.tsv.gz", "title.basics.tsv.gz", "title.crew.tsv.gz", "title.episode.tsv.gz", "title.principals.tsv.gz", "title.ratings.tsv.gz" ] def lambda_handler(event, context): logger.info("===== Start IMDB data injection =====") for imdb_file_name in IMDB_FILE_NAME_LIST: zip_file_path = get_file_from_imdb(imdb_file_name) file_content = unzip_file(zip_file_path) save_file_into_s3(file_content, imdb_file_name) os.remove(zip_file_path) file_content = None start_glue_workflow() logger.info("===== End IMDB data injection =====") return { "statusCode": 200, "headers": { "Content-Type": "application/json" } } def get_file_from_imdb(imdb_file_name): logger.info("Start get_file_from_imdb") remote_url = IMDB_URL_PREFIX + imdb_file_name zip_file_path = TEMP_PATH + imdb_file_name logger.info('zip_file: {}'.format(zip_file_path)) wget.download(remote_url, zip_file_path) logger.info('File info: {}'.format(os.stat(zip_file_path))) return zip_file_path def unzip_file(zip_file_path): logger.info("Start unzip_file") with gzip.open(zip_file_path, 'r') as f: file_content = f.read() return file_content def save_file_into_s3(file_content, file_name): logger.info("Start save_file_into_s3") unzip_file_name = file_name.replace(".gz", "") logger.info('unzip_file: {}'.format(unzip_file_name)) s3_raw_path = RAW_ZONE_PATH + IMDB_PATH + unzip_file_name s3 = boto3.resource("s3") s3.Bucket(S3_BUCKET_NAME).put_object(Key=s3_raw_path, Body=file_content) def start_glue_workflow(): logger.info("Start start_glue_workflow") glue = boto3.client("glue") glue.start_workflow_run( Name = "imdb_data_cleansing_glue_workflow" ) ``` #### File: src/aws_lambda/movie_lens_data_injection_lambda.py ```python import os import zipfile import logging import boto3 import wget logger = logging.getLogger() logger.setLevel(logging.INFO) S3_BUCKET_NAME = "movie-data-platform.mpd" TEMP_PATH = "/tmp/" MOVIE_LENS_PATH = "movie_lens/" RAW_ZONE_PATH = "raw_zone/" MOVIE_LENS_URL_PREFIX = "https://files.grouplens.org/datasets/movielens/" MOVIE_LENS_FILE_NAME = "ml-25m.zip" MOVIE_LENS_DIR_NAME = "ml-25m/" def lambda_handler(event, context): logger.info("===== Start MovieLens data injection =====") zip_file_path = get_file_from_movie_lens(MOVIE_LENS_URL_PREFIX + MOVIE_LENS_FILE_NAME, MOVIE_LENS_FILE_NAME) unzip_file_and_save_into_s3(zip_file_path) start_glue_workflow() logger.info("===== End MovieLens data injection =====") return { "statusCode": 200, "headers": { "Content-Type": "application/json" } } def get_file_from_movie_lens(remote_url, file_name): logger.info("Start get_file_from_movie_lens") zip_file_path = TEMP_PATH + file_name logger.info('zip_file_path: {}'.format(zip_file_path)) unzip_file_name = file_name.replace(".zip", "") logger.info('unzip_file: {}'.format(unzip_file_name)) wget.download(remote_url, zip_file_path) logger.info('File info: {}'.format(os.stat(zip_file_path))) return zip_file_path def unzip_file_and_save_into_s3(zip_file_path): logger.info("Start unzip_file_and_save_into_s3") s3 = boto3.resource("s3") z = zipfile.ZipFile(zip_file_path) logger.info('file name list: {}'.format(", ".join(str(file_name) for file_name in z.namelist()))) for file_name in z.namelist(): s3_raw_path = RAW_ZONE_PATH + MOVIE_LENS_PATH + file_name.replace(MOVIE_LENS_DIR_NAME, "") logger.info('s3_raw_path: {}'.format(s3_raw_path)) s3.Bucket(S3_BUCKET_NAME).put_object(Key=s3_raw_path, Body=z.open(file_name)) def start_glue_workflow(): logger.info("Start start_glue_workflow") glue = boto3.client("glue") glue.start_workflow_run( Name = "movie_lens_data_cleansing_glue_workflow" ) ```
{ "source": "joshchang1112/gcnn-survey-paper", "score": 2 }
#### File: joshchang1112/gcnn-survey-paper/best_model.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags import numpy as np import scipy.stats as stats import tensorflow as tf flags.DEFINE_string('dir', '/tmp/launch', 'path were models are saved.') flags.DEFINE_string('target', 'node_acc', 'target metric to use.') flags.DEFINE_string('datasets', 'cora', 'datasets to use.') flags.DEFINE_string('drop_prop', '0-10-20-30-40-50-60-70-80-90', 'proportion of edges dropped') flags.DEFINE_string('save_file', 'best_params', 'name of files to same the' 'results.') flags.DEFINE_string('models', 'Gcn', 'name of model directories to parse.') FLAGS = flags.FLAGS def get_val_test_acc(data): """Parses log file to retrieve test and val accuracy.""" data = [x.split() for x in data if len(x.split()) > 1] val_acc_idx = data[-4].index('val_{}'.format(FLAGS.target)) test_acc_idx = data[-3].index('test_{}'.format(FLAGS.target)) val_acc = data[-4][val_acc_idx + 2] test_acc = data[-3][test_acc_idx + 2] return float(val_acc) * 100, float(test_acc) * 100 def main(_): log_file = tf.gfile.Open(os.path.join(FLAGS.dir, FLAGS.save_file), 'w') for dataset in FLAGS.datasets.split('-'): for prop in FLAGS.drop_prop.split('-'): dir_path = os.path.join(FLAGS.dir, dataset, prop) if tf.gfile.IsDirectory(dir_path): print(dir_path) for model_name in tf.gfile.ListDirectory(dir_path): if model_name in FLAGS.models.split('-'): model_dir = os.path.join(dir_path, model_name) train_log_files = [ filename for filename in tf.gfile.ListDirectory(model_dir) if 'log' in filename ] eval_stats = {} for filename in train_log_files: data = tf.gfile.Open(os.path.join(model_dir, filename)).readlines() nb_lines = len(data) if nb_lines > 0: if 'Training done' in data[-1]: val_acc, test_acc = get_val_test_acc(data) params = '-'.join(filename.split('-')[:-1]) if params in eval_stats: eval_stats[params]['val'].append(val_acc) eval_stats[params]['test'].append(test_acc) else: eval_stats[params] = {'val': [val_acc], 'test': [test_acc]} best_val_metric = -1 best_params = None for params in eval_stats: val_metric = np.mean(eval_stats[params]['val']) if val_metric > best_val_metric: best_val_metric = val_metric best_params = params # print(eval_stats) log_file.write('\n' + model_dir + '\n') log_file.write('Best params: {}\n'.format(best_params)) log_file.write('val_{}: {} +- {}\n'.format( FLAGS.target, round(np.mean(eval_stats[best_params]['val']), 2), round(stats.sem(eval_stats[best_params]['val']), 2))) log_file.write('test_{}: {} +- {}\n'.format( FLAGS.target, round( np.mean(eval_stats[best_params]['test']), 2), round(stats.sem(eval_stats[best_params]['test']), 2))) if __name__ == '__main__': app.run(main) ``` #### File: gcnn-survey-paper/models/edge_models.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from models.base_models import EdgeModel import tensorflow as tf from utils.model_utils import compute_adj from utils.model_utils import gat_module from utils.model_utils import gcn_module from utils.model_utils import mlp_module class Gae(EdgeModel): """Graph Auto-Encoder (GAE) (Kipf & al) for link prediction. arXiv link: https://arxiv.org/abs/1611.07308 """ def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for GAE model.""" sparse = self.sparse_features in_dim = self.input_dim with tf.variable_scope('edge-model'): h0 = gcn_module(node_features, adj_matrix, self.n_hidden, self.p_drop, is_training, in_dim, sparse) adj_matrix_pred = compute_adj(h0, self.att_mechanism, self.p_drop, is_training) self.adj_matrix_pred = tf.nn.sigmoid(adj_matrix_pred) return adj_matrix_pred class Egat(EdgeModel): """Edge-GAT for link prediction.""" def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for GAE model.""" sparse = self.sparse_features in_dim = self.input_dim with tf.variable_scope('edge-model'): h0 = gat_module( node_features, adj_matrix, self.n_hidden, self.n_att, self.p_drop, is_training, in_dim, sparse, average_last=True) adj_matrix_pred = compute_adj(h0, self.att_mechanism, self.p_drop, is_training) self.adj_matrix_pred = tf.nn.sigmoid(adj_matrix_pred) return adj_matrix_pred class Vgae(EdgeModel): """Variational Graph Auto-Encoder (VGAE) (Kipf & al) for link prediction. arXiv link: https://arxiv.org/abs/1611.07308 """ def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for GAE model.""" sparse = self.sparse_features in_dim = self.input_dim with tf.variable_scope('edge-model'): h0 = gcn_module(node_features, adj_matrix, self.n_hidden[:-1], self.p_drop, is_training, in_dim, sparse) # N x F with tf.variable_scope('mean'): z_mean = gcn_module(h0, adj_matrix, self.n_hidden[-1:], self.p_drop, is_training, self.n_hidden[-2], False) self.z_mean = z_mean with tf.variable_scope('std'): # N x F z_log_std = gcn_module(h0, adj_matrix, self.n_hidden[-1:], self.p_drop, is_training, self.n_hidden[-2], False) self.z_log_std = z_log_std # add noise during training noise = tf.random_normal([self.nb_nodes, self.n_hidden[-1] ]) * tf.exp(z_log_std) z = tf.cond(is_training, lambda: tf.add(z_mean, noise), lambda: z_mean) # N x N adj_matrix_pred = compute_adj(z, self.att_mechanism, self.p_drop, is_training) self.adj_matrix_pred = tf.nn.sigmoid(adj_matrix_pred) return adj_matrix_pred def _compute_edge_loss(self, adj_pred, adj_train): """Overrides _compute_edge_loss to add Variational Inference objective.""" log_lik = super(Vgae, self)._compute_edge_loss(adj_pred, adj_train) norm = self.nb_nodes**2 / float((self.nb_nodes**2 - self.nb_edges) * 2) kl_mat = 0.5 * tf.reduce_sum( 1 + 2 * self.z_log_std - tf.square(self.z_mean) - tf.square( tf.exp(self.z_log_std)), 1) kl = tf.reduce_mean(kl_mat) / self.nb_nodes edge_loss = norm * log_lik - kl return edge_loss class Emlp(EdgeModel): """Simple baseline for link prediction. Creates a tensorflow graph to train and evaluate EMLP on graph data. """ def compute_inference(self, node_features, _, is_training): """Forward step for GAE model.""" sparse = self.sparse_features in_dim = self.input_dim with tf.variable_scope('edge-model'): h0 = mlp_module( node_features, self.n_hidden, self.p_drop, is_training, in_dim, sparse, use_bias=False) adj_matrix_pred = compute_adj(h0, self.att_mechanism, self.p_drop, is_training) self.adj_matrix_pred = tf.nn.sigmoid(adj_matrix_pred) return adj_matrix_pred ``` #### File: gcnn-survey-paper/models/node_edge_models.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from models.base_models import NodeEdgeModel from models.edge_models import Gae from models.node_models import Gat from models.node_models import Gcn import tensorflow as tf from utils.model_utils import compute_adj from utils.model_utils import gat_module from utils.model_utils import gcn_module from utils.model_utils import get_sp_topk from utils.model_utils import mask_edges class GaeGat(NodeEdgeModel): """GAE for link prediction and GAT for node classification.""" def __init__(self, config): """Initializes EGCNGAT model.""" super(GaeGat, self).__init__(config) self.edge_model = Gae(config) self.node_model = Gat(config) def compute_inference(self, node_features_in, sp_adj_matrix, is_training): adj_matrix_pred = self.edge_model.compute_inference( node_features_in, sp_adj_matrix, is_training) self.adj_matrix_pred = adj_matrix_pred adj_mask = get_sp_topk(adj_matrix_pred, sp_adj_matrix, self.nb_nodes, self.topk) self.adj_mask = adj_mask # masked_adj_matrix_pred = tf.multiply(adj_mask, # tf.nn.sigmoid(adj_matrix_pred)) masked_adj_matrix_pred = mask_edges(tf.nn.sigmoid(adj_matrix_pred), adj_mask) sp_adj_pred = tf.contrib.layers.dense_to_sparse(masked_adj_matrix_pred) logits = self.node_model.compute_inference(node_features_in, sp_adj_pred, is_training) return logits, adj_matrix_pred class GaeGcn(NodeEdgeModel): """GAE for link prediction and GCN for node classification.""" def __init__(self, config): """Initializes EGCNGCN model.""" super(GaeGcn, self).__init__(config) self.edge_model = Gae(config) self.node_model = Gcn(config) def compute_inference(self, node_features_in, sp_adj_matrix, is_training): adj_matrix_pred = self.edge_model.compute_inference( node_features_in, sp_adj_matrix, is_training) self.adj_matrix_pred = adj_matrix_pred adj_mask = get_sp_topk(adj_matrix_pred, sp_adj_matrix, self.nb_nodes, self.topk) sp_adj_pred = tf.contrib.layers.dense_to_sparse( tf.multiply(adj_mask, tf.nn.leaky_relu(adj_matrix_pred))) sp_adj_pred = tf.sparse_softmax(sp_adj_pred) logits = self.node_model.compute_inference(node_features_in, sp_adj_pred, is_training) return logits, adj_matrix_pred ############################ EXPERIMENTAL MODELS ############################# class GatGraphite(NodeEdgeModel): """Gae for link prediction and GCN for node classification.""" def compute_inference(self, node_features_in, sp_adj_matrix, is_training): with tf.variable_scope('edge-model'): z_latent = gat_module( node_features_in, sp_adj_matrix, self.n_hidden_edge, self.n_att_edge, self.p_drop_edge, is_training, self.input_dim, self.sparse_features, average_last=False) adj_matrix_pred = compute_adj(z_latent, self.att_mechanism, self.p_drop_edge, is_training) self.adj_matrix_pred = adj_matrix_pred with tf.variable_scope('node-model'): concat = True if concat: z_latent = tf.sparse_concat( axis=1, sp_inputs=[ tf.contrib.layers.dense_to_sparse(z_latent), node_features_in ], ) sparse_features = True input_dim = self.n_hidden_edge[-1] * self.n_att_edge[ -1] + self.input_dim else: sparse_features = False input_dim = self.n_hidden_edge[-1] * self.n_att_edge[-1] logits = gat_module( z_latent, sp_adj_matrix, self.n_hidden_node, self.n_att_node, self.p_drop_node, is_training, input_dim, sparse_features=sparse_features, average_last=False) return logits, adj_matrix_pred class GaeGatConcat(NodeEdgeModel): """EGCN for link prediction and GCN for node classification.""" def __init__(self, config): """Initializes EGCN_GAT model.""" super(GaeGatConcat, self).__init__(config) self.edge_model = Gae(config) self.node_model = Gat(config) def compute_inference(self, node_features_in, sp_adj_matrix, is_training): with tf.variable_scope('edge-model'): z_latent = gcn_module(node_features_in, sp_adj_matrix, self.n_hidden_edge, self.p_drop_edge, is_training, self.input_dim, self.sparse_features) adj_matrix_pred = compute_adj(z_latent, self.att_mechanism, self.p_drop_edge, is_training) self.adj_matrix_pred = adj_matrix_pred with tf.variable_scope('node-model'): z_latent = tf.sparse_concat( axis=1, sp_inputs=[ tf.contrib.layers.dense_to_sparse(z_latent), node_features_in ]) sparse_features = True input_dim = self.n_hidden_edge[-1] + self.input_dim sp_adj_train = tf.SparseTensor( indices=sp_adj_matrix.indices, values=tf.ones_like(sp_adj_matrix.values), dense_shape=sp_adj_matrix.dense_shape) logits = gat_module( z_latent, sp_adj_train, self.n_hidden_node, self.n_att_node, self.p_drop_node, is_training, input_dim, sparse_features=sparse_features, average_last=True) return logits, adj_matrix_pred class GaeGcnConcat(NodeEdgeModel): """EGCN for link prediction and GCN for node classification.""" def compute_inference(self, node_features_in, sp_adj_matrix, is_training): with tf.variable_scope('edge-model'): z_latent = gcn_module(node_features_in, sp_adj_matrix, self.n_hidden_edge, self.p_drop_edge, is_training, self.input_dim, self.sparse_features) adj_matrix_pred = compute_adj(z_latent, self.att_mechanism, self.p_drop_edge, is_training) self.adj_matrix_pred = adj_matrix_pred with tf.variable_scope('node-model'): z_latent = tf.sparse_concat( axis=1, sp_inputs=[ tf.contrib.layers.dense_to_sparse(z_latent), node_features_in ]) sparse_features = True input_dim = self.n_hidden_edge[-1] + self.input_dim logits = gcn_module( z_latent, sp_adj_matrix, self.n_hidden_node, self.p_drop_node, is_training, input_dim, sparse_features=sparse_features) return logits, adj_matrix_pred class Gcat(NodeEdgeModel): """1 iteration Graph Convolution Attention Model.""" def __init__(self, config): """Initializes GCAT model.""" super(Gcat, self).__init__(config) self.edge_model = Gae(config) self.node_model = Gcn(config) def compute_inference(self, node_features_in, sp_adj_matrix, is_training): """Forward pass for GAT model.""" adj_matrix_pred = self.edge_model.compute_inference( node_features_in, sp_adj_matrix, is_training) sp_adj_mask = tf.SparseTensor( indices=sp_adj_matrix.indices, values=tf.ones_like(sp_adj_matrix.values), dense_shape=sp_adj_matrix.dense_shape) sp_adj_att = sp_adj_mask * adj_matrix_pred sp_adj_att = tf.SparseTensor( indices=sp_adj_att.indices, values=tf.nn.leaky_relu(sp_adj_att.values), dense_shape=sp_adj_att.dense_shape) sp_adj_att = tf.sparse_softmax(sp_adj_att) logits = self.node_model.compute_inference(node_features_in, sp_adj_att, is_training) return logits, adj_matrix_pred ``` #### File: gcnn-survey-paper/models/node_models.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from models.base_models import NodeModel import tensorflow as tf from utils.model_utils import cheby_module from utils.model_utils import compute_adj from utils.model_utils import gat_module from utils.model_utils import gcn_module from utils.model_utils import gcn_pool_layer from utils.model_utils import mlp_module from utils.model_utils import sp_gat_layer from utils.model_utils import sp_gcn_layer class Gat(NodeModel): """Graph Attention (GAT) Model (Velickovic & al). arXiv link: https://arxiv.org/abs/1710.10903 """ def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for GAT model.""" sparse = self.sparse_features in_dim = self.input_dim average_last = True with tf.variable_scope('node-model'): logits = gat_module(node_features, adj_matrix, self.n_hidden, self.n_att, self.p_drop, is_training, in_dim, sparse, average_last) return logits class Gcn(NodeModel): """Graph convolution network (Kipf & al). arXiv link: https://arxiv.org/abs/1609.02907 """ def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for graph convolution model.""" with tf.variable_scope('node-model'): logits = gcn_module(node_features, adj_matrix, self.n_hidden, self.p_drop, is_training, self.input_dim, self.sparse_features) return logits class Mlp(NodeModel): """Multi-layer perceptron model.""" def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for graph convolution model.""" with tf.variable_scope('node-model'): logits = mlp_module(node_features, self.n_hidden, self.p_drop, is_training, self.input_dim, self.sparse_features, use_bias=True) return logits class SemiEmb(NodeModel): """Deep Learning via Semi-Supervised Embedding (Weston & al). paper: http://icml2008.cs.helsinki.fi/papers/340.pdf """ def __init__(self, config): super(SemiEmb, self).__init__(config) self.semi_emb_k = config.semi_emb_k def compute_inference(self, node_features, adj_matrix, is_training): with tf.variable_scope('node-model'): hidden_repr = mlp_module(node_features, self.n_hidden, self.p_drop, is_training, self.input_dim, self.sparse_features, use_bias=True, return_hidden=True) logits = hidden_repr[-1] hidden_repr_reg = hidden_repr[self.semi_emb_k] l2_scores = compute_adj(hidden_repr_reg, self.att_mechanism, self.p_drop, is_training=False) self.l2_scores = tf.gather_nd(l2_scores, adj_matrix.indices) return logits def _compute_node_loss(self, logits, labels): supervised_loss = super(SemiEmb, self)._compute_node_loss(logits, labels) # supervised_loss = tf.nn.softmax_cross_entropy_with_logits( # labels=labels, logits=logits) # supervised_loss = tf.reduce_sum(supervised_loss) / self.nb_nodes reg_loss = tf.reduce_mean(self.l2_scores) return supervised_loss + self.edge_reg * reg_loss class Cheby(NodeModel): """Chebyshev polynomials for Spectral Graph Convolutions (Defferrard & al). arXiv link: https://arxiv.org/abs/1606.09375 """ def __init__(self, config): super(Cheby, self).__init__(config) self.cheby_k_loc = config.cheby_k_loc def compute_inference(self, node_features, normalized_laplacian, is_training): with tf.variable_scope('node-model'): dense_normalized_laplacian = tf.sparse_to_dense( sparse_indices=normalized_laplacian.indices, output_shape=normalized_laplacian.dense_shape, sparse_values=normalized_laplacian.values) cheby_polynomials = [tf.eye(self.nb_nodes), dense_normalized_laplacian] self.cheby = cheby_polynomials for _ in range(2, self.cheby_k_loc+1): cheby_polynomials.append(2 * tf.sparse_tensor_dense_matmul( normalized_laplacian, cheby_polynomials[-1]) - cheby_polynomials[-2] ) logits = cheby_module(node_features, cheby_polynomials, self.n_hidden, self.p_drop, is_training, self.input_dim, self.sparse_features) return logits ############################ EXPERIMENTAL MODELS ############################# class Hgat(NodeModel): """Hierarchical Graph Attention (GAT) Model.""" def compute_inference(self, node_features, adj_matrix, is_training): """Forward step for GAT model.""" in_dim = self.input_dim att = [] for j in range(4): with tf.variable_scope('gat-layer1-att{}'.format(j)): att.append( sp_gat_layer(node_features, adj_matrix, in_dim, 8, self.p_drop, is_training, True)) hidden_2 = [] hidden_2.append(tf.nn.elu(tf.concat(att[:2], axis=-1))) hidden_2.append(tf.nn.elu(tf.concat(att[2:], axis=-1))) att = [] for j in range(2): with tf.variable_scope('gat-layer2-att{}'.format(j)): att.append( sp_gat_layer(hidden_2[j], adj_matrix, 16, 7, self.p_drop, is_training, False)) return tf.add_n(att) / 2. class Pgcn(NodeModel): """Pooling Graph Convolution Network.""" def compute_inference(self, node_features, adj_matrix, is_training): adj_matrix_dense = tf.sparse_to_dense( sparse_indices=adj_matrix.indices, output_shape=adj_matrix.dense_shape, sparse_values=adj_matrix.values, validate_indices=False) adj_matrix_dense = tf.cast(tf.greater(adj_matrix_dense, 0), tf.float32) adj_matrix_dense = tf.expand_dims(adj_matrix_dense, -1) # N x N x 1 in_dim = self.input_dim sparse = self.sparse_features for i, out_dim in enumerate(self.n_hidden[:-1]): if i > 0: sparse = False with tf.variable_scope('gcn-pool-{}'.format(i)): node_features = gcn_pool_layer( node_features, adj_matrix_dense, in_dim=in_dim, out_dim=out_dim, sparse=sparse, is_training=is_training, p_drop=self.p_drop) node_features = tf.reshape(node_features, (-1, out_dim)) node_features = tf.contrib.layers.bias_add(node_features) node_features = tf.nn.elu(node_features) in_dim = out_dim with tf.variable_scope('gcn-layer-last'): logits = sp_gcn_layer(node_features, adj_matrix, in_dim, self.n_hidden[-1], self.p_drop, is_training, False) return logits ```
{ "source": "joshchang/autoencirt", "score": 2 }
#### File: autoencirt/scripts/rwas_test.py ```python import math from copy import copy, deepcopy import numpy as np import pandas as pd from autoencirt.irt import GRModel from autoencirt.data.rwa import item_text, get_data import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions tfd = tfp.distributions tfb = tfp.bijectors def main(): data, num_people = get_data(reorient=False) item_names = [f"Q{j}" for j in range(1, 23)] grm = GRModel( data=data.shuffle(buffer_size=200), item_keys=item_names, num_people=num_people, dim=2, xi_scale=1e-4, eta_scale=1e-4, weight_exponent=1., response_cardinality=10, ) # ds = next(iter(data.batch(121))) # p = grm.surrogate_distribution.sample(13) # grm.log_likelihood(**p, responses=ds) # grm.unormalized_log_prob(**p, data=ds) losses = grm.calibrate_advi( num_epochs=5, rel_tol=1e-4, learning_rate=.01, clip_value=4., data_batches=10 ) print( grm.calibrated_expectations['discriminations'][0, ..., 0] ) grm.calibrate_mcmc( num_steps=1000, burnin=500) print( grm.calibrated_expectations['discriminations'][0, ..., 0] ) if __name__ == "__main__": main() ```
{ "source": "joshchea/geo-utils", "score": 2 }
#### File: geo-utils/scripts/compute_gcd.py ```python from math import * def computeGCD(lat1,lon1,lat2,lon2): #computes great circle distance from lat/lon '''lat1/lon1 = lat/lon of first pt lat2/lon2 = lat/lon of second pt ''' degRad = pi/180 lat1 = degRad*lat1 lon1 = degRad*lon1 lat2 = degRad*lat2 lon2 = degRad*lon2 dellambda = lon2-lon1 Numerator = sqrt((cos(lat2)*sin(dellambda))**2 + (cos(lat1)*sin(lat2)- sin(lat1)*cos(lat2)*cos(dellambda))**2) Denominator = sin(lat1)*sin(lat2) + cos(lat1)*cos(lat2)*cos(dellambda) delSigma = atan2(Numerator,Denominator) return 3963.19059*delSigma ```
{ "source": "joshchea/python-tdm", "score": 2 }
#### File: python-tdm/scripts/CalcLogitChoice.py ```python import numpy import time import math #from memory_profiler import profile def CalcMultinomialChoice(Utils, getLogSumAccess = 0): '''Utils = Dictionary of utility matrices for each mode ex. Utils = {'auto':mat1, 'transit':mat2, 'bike':mat3, 'walk':mat4} getLogSumAccess (optional, accessibility log sum) 0=no, <>0=yes ''' Probs = {} eU = {} eU_total = numpy.zeros(Utils[Utils.keys()[0]].shape) for key in Utils.keys(): eU[key] = numpy.exp(Utils[key]) eU_total+=eU[key] if getLogSumAccess <> 0: lnSumAccess = numpy.log(eU_total) eU_total[eU_total == 0] = 0.0001 for key in eU.keys(): Probs[key] = eU[key]/eU_total del eU, eU_total, Utils if getLogSumAccess == 0: return Probs else: return Probs, lnSumAccess def CalcPivotPoint(Utils, Po): ''' Utils = Updated delta utility matrices in a dictionary i.e delta of Uk (k = mode) ex. Utils = {'auto':mat1, 'transit':mat2, 'bike':mat3, 'walk':mat4} Po = Base probabilities in a dictionary ex. Po = {'auto':mat1, 'transit':mat2, 'bike':mat3, 'walk':mat4} ''' Probs = {} PeU = {} PeU_total = numpy.zeros(Utils[Utils.keys()[0]].shape) for key in Utils.keys(): PeU[key] = Po[key]*numpy.exp(Utils[key]) PeU_total+=PeU[key] PeU_total[PeU_total == 0] = 0.0001 for key in PeU.keys(): Probs[key] = PeU[key]/PeU_total del PeU, PeU_total, Utils return Probs #@profile def CalcNestedChoice(TreeDefn, MatRefs, numZn, getLogSumAccess = 0): ''' #TreeDefn = {(0,'ROOT'):[1.0,['AU', 'TR', 'AC']], # (1,'AU'):[0.992,['CD', 'CP']], # (1,'TR'):[0.992,['TB', 'TP']], # (1,'AC'):[0.992,['BK', 'WK']]} # #Key-> (Level ID, Level Code): Values-> (LogSum Parameter enters as: 1/lambda, SubLevel IDs) # ROOT should always be ID = 0 and Code = 'ROOT' # ROOT # / | \ # / | \ # / | \ # AU TR AC(logsum parameter) # /\ /\ /\ # CD CP TB TP BK WK # #MatRefs = {'ROOT': 1.0, 'AU':0, 'TR':0, 'AC':0, # 'CD':Ucd), 'CP':Ucp), # 'TB':Utb), 'TP':Utp), # 'BK':Ubk), 'WK':Uwk)} Stores utilities in dict of matrices, base level utilities are pre-specified!! # #numZn = number of zones # #getLogSumAccess (optional, accessibility log sum) 0=no, <>0=yes ''' #ProbMats = {'ROOT': 1.0, 'AU':0, 'TR':0, 'AC':0, 'CD':0, 'CP':0, 'TB':0, 'TP':0, 'BK':0, 'WK':0} #Stores probabilities at each level #TripMat = GetMatrixRaw(Visum, tripmatno) #--> Input trip distribution matrix #numZn = Visum.Net.Zones.Count ProbMats = dict(zip(MatRefs.keys(), numpy.zeros(len(MatRefs.keys())))) ProbMats['ROOT'] = 1.0 #Utility calculator going up... #print 'Getting logsums and utilities...' for key in sorted(TreeDefn.keys(), reverse= True): #print key, TreeDefn[key] sumExp = numpy.zeros((numZn,numZn)) sublevelmat_codes = TreeDefn[key][1] #produces --> ex. ['WB', 'WX', 'DX'] for code in sublevelmat_codes: #print ([code, TreeDefn[key][0]]) MatRefs[code] = MatRefs[code]/TreeDefn[key][0] #---> scale the utility sumExp+=numpy.exp(MatRefs[code]) lnSum = sumExp.copy() #Maybe there is a better way of doing the next 4 steps in 1 shot lnSum[sumExp == 0] = 0.000000001 lnSum = numpy.log(lnSum) lnSum[sumExp == 0] = -999 MatRefs[key[1]] = TreeDefn[key][0]*lnSum #---> Get ln sum of sublevel #Probability going down... #print 'Getting probabilities...' for key in sorted(TreeDefn.keys()): #print key, TreeDefn[key] eU_total = numpy.zeros((numZn,numZn)) sublevelmat_codes = TreeDefn[key][1] #1st set--> ROOT : AU, TR for code in sublevelmat_codes: #print ([code, TreeDefn[key][0]]) eU_total+=numpy.exp(MatRefs[code]) eU_total[eU_total == 0] = 0.0001 #Avoid divide by 0 error ## for code in sublevelmat_codes: ## ProbMats[code] = ProbMats[key[1]]*numpy.exp(MatRefs[code])/eU_total nSublevels = len(sublevelmat_codes) cumProb = 0 for i in xrange(nSublevels - 1): code = sublevelmat_codes[i] temp = numpy.exp(MatRefs[code])/eU_total ProbMats[code] = ProbMats[key[1]]*temp cumProb+=temp code = sublevelmat_codes[i+1] ProbMats[code] = ProbMats[key[1]]*(1.0-cumProb) if getLogSumAccess == 0: return ProbMats else: return ProbMats, MatRefs['ROOT'] def CalcNestedChoiceFlat(TreeDefn, MatRefs, vecLen, getLogSumAccess = 0): ''' #TreeDefn = {(0,'ROOT'):[1.0,['AU', 'TR', 'AC']], # (1,'AU'):[0.992,['CD', 'CP']], # (1,'TR'):[0.992,['TB', 'TP']], # (1,'AC'):[0.992,['BK', 'WK']]} # #Key-> (Level ID, Level Code): Values-> (LogSum Parameter enters as: 1/lambda, SubLevel IDs) # ROOT should always be ID = 0 and Code = 'ROOT' # ROOT # / | \ # / | \ # / | \ # AU TR AC(logsum parameter) # /\ /\ /\ # CD CP TB TP BK WK # #MatRefs = {'ROOT': 1.0, 'AU':0, 'TR':0, 'AC':0, # 'CD':Ucd), 'CP':Ucp), # 'TB':Utb), 'TP':Utp), # 'BK':Ubk), 'WK':Uwk)} Stores utilities in dict of vectors, base level utilities are pre-specified!! # #vecLen = number of od pairs being evaluated # #getLogSumAccess (optional, accessibility log sum) 0=no, <>0=yes ''' #ProbMats = {'ROOT': 1.0, 'AU':0, 'TR':0, 'AC':0, 'CD':0, 'CP':0, 'TB':0, 'TP':0, 'BK':0, 'WK':0} #Stores probabilities at each level #TripMat = GetMatrixRaw(Visum, tripmatno) #--> Input trip distribution matrix #numZn = Visum.Net.Zones.Count ProbMats = dict(zip(MatRefs.keys(), numpy.zeros(len(MatRefs.keys())))) ProbMats['ROOT'] = 1.0 #Utility calculator going up... #print 'Getting logsums and utilities...' for key in sorted(TreeDefn.keys(), reverse= True): #print key, TreeDefn[key] sumExp = numpy.zeros(vecLen) sublevelmat_codes = TreeDefn[key][1] #produces --> ex. ['WB', 'WX', 'DX'] for code in sublevelmat_codes: #print ([code, TreeDefn[key][0]]) MatRefs[code] = MatRefs[code]/TreeDefn[key][0] #---> scale the utility sumExp+=numpy.exp(MatRefs[code]) lnSum = sumExp.copy() #Maybe there is a better way of doing the next 4 steps in 1 shot lnSum[sumExp == 0] = 0.000000001 lnSum = numpy.log(lnSum) lnSum[sumExp == 0] = -999 MatRefs[key[1]] = TreeDefn[key][0]*lnSum #---> Get ln sum of sublevel #Probability going down... #print 'Getting probabilities...' for key in sorted(TreeDefn.keys()): #print key, TreeDefn[key] eU_total = numpy.zeros(vecLen) sublevelmat_codes = TreeDefn[key][1] #1st set--> ROOT : AU, TR for code in sublevelmat_codes: #print ([code, TreeDefn[key][0]]) eU_total+=numpy.exp(MatRefs[code]) eU_total[eU_total == 0] = 0.0001 #Avoid divide by 0 error ## for code in sublevelmat_codes: ## ProbMats[code] = ProbMats[key[1]]*numpy.exp(MatRefs[code])/eU_total nSublevels = len(sublevelmat_codes) cumProb = 0 for i in xrange(nSublevels - 1): code = sublevelmat_codes[i] temp = numpy.exp(MatRefs[code])/eU_total ProbMats[code] = ProbMats[key[1]]*temp cumProb+=temp code = sublevelmat_codes[i+1] ProbMats[code] = ProbMats[key[1]]*(1.0-cumProb) if getLogSumAccess == 0: return ProbMats else: return ProbMats, MatRefs['ROOT'] #some generic utilities for reading and writing numpy arrays to disk.. def GetMatrix(fn, numZn): return numpy.fromfile(fn).reshape((numZn, numZn)) def GetMatrixFlat(fn): return numpy.fromfile(fn) def PushMatrix(fn, mat): mat.tofile(fn) ## DEMO----> ##def runNested(): ## PMats = CalcNestedChoice(TreeDefn, MatRefs, numZn) ## for key in PMats.keys(): ## if key <> 'ROOT': ## mat = PMats[key] ## print key, mat.sum(), mat[3398, 3397] ## PushMatrix(fn+str(key)+".np", mat) ## del PMats ## ###@profile ##def runMultiNomial(): ## Utils = {'da':da, 'wb':wb, 'wx':wx} ## PMats = CalcMultinomialChoice(Utils) ## del PMats ## ## ##start = time.time() ##print 'Calculating nested choice...' ##numZn = 3399 ##fn = r"C:\DevResearch\Visum_Utils\Test Matrices\\" ##da = GetMatrix(fn+"801.np", numZn) ##wb = GetMatrix(fn+"803.np", numZn) ##wx = GetMatrix(fn+"802.np", numZn) ## ##TreeDefn = {(0,'ROOT'):[1.0,['AU', 'TR']], (1,'TR'):[0.75,['WB', 'WX']]} ##MatRefs = {'ROOT': 1.0, 'AU':da , 'TR':0, 'WB':wb, 'WX':wx} #Stores utilities, base level utilities are pre-specified ###Utils = {'da':da, 'wb':wb, 'wx':wx} ###ProbMats = {'ROOT': 1.0, 'AU':0, 'TR':0, 'WB':0, 'WX':0} #Stores probabilities at each level ##print 'Matrices loaded and calculation initialized...' ###PMats = CalcMultinomialChoice(Utils) ##runNested() ##print 'Calculation completed.' ##print 'Time taken(secs): ', time.time()-start ``` #### File: python-tdm/scripts/MatEstimateGradient.py ```python import numpy as np import scipy.sparse import VisumPy.helpers as VPH import csv import time #Least squares matrix estimation with gradient method - Chetan Joshi, <NAME> #------------User input -----------------------------------------------------------------# matno = 41 # seed mat and also where result is stored countAttrID = "AddVal1" wtAttrID = "AddVal2" wtOD = 42 flowmatfile = r"C:\Projects\KA_Work\LSODME\FlowMatrix.mtx" #----------------------------------------------------------------------------------------# #Matrix estimation function: takes flow prportion matrix, OD seed, Count and returns adjusted matrix: <NAME>, updated by <NAME> def EstimateMatrix(FlowProp, FlowPropT, OD_Flows, Ca, Wt, iter=25): Va = FlowPropT.dot(OD_Flows) Visum.WriteToTrace('Length of Va' + str(len(Va))) Visum.WriteToTrace('Length of Ca' + str(len(Ca))) Z = sum((Va-Ca)**2) Visum.WriteToTrace('Starting Z =' + str(Z)) #print 'Starting Z =', Z for i in range(1, iter): t1 = time.time() Grad = FlowProp.dot((Va - Ca)*Wt) Va_prime = FlowPropT.dot(-OD_Flows * Grad) lambda_opt = sum((Ca - Va)*Va_prime)/sum(Va_prime*Va_prime) if Grad.max()> 0: lambda_opt = min(lambda_opt, 1/Grad.max()) OD_Flows = OD_Flows*(1 - lambda_opt*Grad) #variant - 1.1 OD_Flows[OD_Flows<0]=0 #remove very small -0.0 values from matrix if any... Va = FlowPropT.dot(OD_Flows) Z = sum((Va-Ca)**2) t2 = time.time() if Z < 1: break; else: Visum.WriteToTrace(str(i) + ': Z =' + str(Z), True) Visum.WriteToTrace('Final Z =' + str(Z), True) return OD_Flows def readFlowMat(nODs, nLinks, filename): t1 = time.time() with open(filename, "rb") as f: reader = csv.reader(f, delimiter='\t') for i in xrange(0, 12): reader.next() i = [] j = [] data = [] for row in reader: #each row = CountIndex \t ODIndex \t proportion if row[0] == "": continue if row[0].startswith("*"): continue if row[0].startswith("0"): continue i.append(long(row[1])-1) j.append(long(row[0])-1) data.append(float(row[2])) ix = j[-1] + 1 z = max(i) for k in xrange(len(Sparse_OD)): # j-> link i.append(long(k)) #index of od pair j.append(long(ix))#index of link data.append(1.0) ix+=1 FlowProp = scipy.sparse.csr_matrix((data, (i,j)), shape=(len(Sparse_OD), nLinks+nODs), dtype='d') #Visum.WriteToTrace([[k, z, i[-1],j[-1]], [len(i), len(j)]]) t2 = time.time() Visum.WriteToTrace("read flow mat: " + str(t2-t1) , True) return FlowProp #-------------------------------------------------------------------------------------------------------- Ca = np.array(VPH.GetMulti(Visum.Net.Links, countAttrID, True)) Wt = np.array(VPH.GetMulti(Visum.Net.Links, wtAttrID, True)) AssignedOD = VPH.GetMatrixRaw(Visum, matno).flatten() #Get the flattened seed matrix WeightOD = VPH.GetMatrixRaw(Visum, wtOD).flatten() #Get the flattened weight matrix SparseWeightOD = WeightOD.compress(AssignedOD > 0).copy() Sparse_OD = AssignedOD.compress(AssignedOD > 0).copy() #Get only cells > 0 to reduce array size nLinks = Visum.Net.Links.CountActive # Get the number of active links based on filter - will be extended to turns if turns are used #OD_constraint_block = numpy.identity(len(Sparse_OD)) Ca = np.append(Ca, Sparse_OD) #Extend the count array to include delta with the existing OD matrix on the least squares formulation #Wt = np.append(Wt, np.ones(len(Sparse_OD))) #Extend the weight array for weight matrix using default of 1.0, should be changed to Wt = np.append(Wt, SparseWeightOD) #Extend the weight array for weight matrix using default of 1.0, weight matrix values should be varied for testing FlowProp = readFlowMat(len(Sparse_OD), nLinks, flowmatfile) FlowPropT = scipy.sparse.csc_matrix(FlowProp.T) Visum.WriteToTrace(FlowPropT.shape) Visum.WriteToTrace(FlowProp.shape) NewODFlows = EstimateMatrix(FlowProp, FlowPropT, Sparse_OD, Ca, Wt, iter=25) #Set back result to Visum... AssignedOD[AssignedOD>0] = NewODFlows nZones = Visum.Net.Zones.Count VPH.SetMatrixRaw(Visum, matno, AssignedOD.reshape((nZones,nZones))) Visum.WriteToTrace("results stored" , True) del FlowProp del FlowPropT ```
{ "source": "JoshChima/Ichimoku", "score": 3 }
#### File: JoshChima/Ichimoku/Methods.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import plotly #import plotly.plotly as py import plotly.graph_objs as go import os from plotly.offline import init_notebook_mode, plot, iplot import plotly def MetaTraderDataConverter(file): df=pd.read_csv(file, parse_dates=[['Date','Time']], sep='\t') df['Date'] = df['Date_Time'] df.set_index(df.Date, drop=True, inplace=True) df = df[['Open', 'High', 'Low','Close']] return df def Ichimoku(dataframe): d = dataframe nine_period_high = d['High'].rolling(window= 9).max() nine_period_low = d['Low'].rolling(window= 9).min() d['tenkan_sen'] = (nine_period_high + nine_period_low) /2 # Kijun-sen (Base Line): (26-period high + 26-period low)/2)) period26_high = d['High'].rolling(window=26).max() period26_low = d['Low'].rolling(window=26).min() d['kijun_sen'] = (period26_high + period26_low) / 2 # Senkou Span A (Leading Span A): (Conversion Line + Base Line)/2)) d['senkou_span_a'] = ((d['tenkan_sen'] + d['kijun_sen']) / 2).shift(26) # Senkou Span B (Leading Span B): (52-period high + 52-period low)/2)) period52_high = d['High'].rolling(window=52).max() period52_low = d['Low'].rolling(window=52).min() d['senkou_span_b'] = ((period52_high + period52_low) / 2).shift(52) # The most current closing price plotted 26 time periods behind (optional) d['chikou_span'] = d['Close'].shift(-26) d['pct_change'] = (d['Close']-d['Close'].shift(1))/d['Close'].shift(1)*100 return d def Ichimoku_plot(d): # Set colours for up and down candles INCREASING_COLOR = 'green' DECREASING_COLOR = 'red' # create list to hold dictionary with data for our first series to plot # (which is the candlestick element itself) data1 = [ dict( type = 'candlestick', open = d.Open, high = d.High, low = d.Low, close = d.Close, x = d.index, yaxis = 'y2', name = 'F', increasing = dict( line = dict( color = INCREASING_COLOR ) ), decreasing = dict( line = dict( color = DECREASING_COLOR ) ), ) ] # Create empty dictionary for later use to hold settings and layout options layout=dict() # create our main chart "Figure" object which consists of data to plot and layout settings fig = dict( data=data1, layout=layout ) # Assign various seeting and choices - background colour, range selector etc fig['layout']['plot_bgcolor'] = 'grey' fig['layout']['xaxis'] = dict( rangeselector = dict( visible = True ) ) fig['layout']['yaxis'] = dict( domain = [0, 0.2], showticklabels = False ) fig['layout']['yaxis2'] = dict( domain = [0.2, 0.8] ) fig['layout']['legend'] = dict( orientation = 'h', y=0.9, x=0.3, yanchor='bottom' ) fig['layout']['margin'] = dict( t=40, b=40, r=40, l=40 ) # Populate the "rangeselector" object with necessary settings rangeselector=dict( visible = True, x = 0, y = 0.9, bgcolor = 'rgba(150, 200, 250, 0.4)', font = dict( size = 13 ), buttons=list([ dict(count=1, label='reset', step='all'), dict(count=1, label='1yr', step='year', stepmode='backward'), dict(count=3, label='3 mo', step='month', stepmode='backward'), dict(count=1, label='1 mo', step='month', stepmode='backward'), dict(step='all') ])) fig['layout']['xaxis']['rangeselector'] = rangeselector # Append the Ichimoku elements to the plot fig['data'].append( dict( x=d['tenkan_sen'].index, y=d['tenkan_sen'], type='scatter', mode='lines', line = dict( width = 1 ), marker = dict( color = '#e7e14f' ), yaxis = 'y2', name='tenkan_sen' ) ) fig['data'].append( dict( x=d['kijun_sen'].index, y=d['kijun_sen'], type='scatter', mode='lines', line = dict( width = 1 ), marker = dict( color = '#20A4F3' ), yaxis = 'y2', name='kijun_sen' ) ) fig['data'].append( dict( x=d['senkou_span_a'].index, y=d['senkou_span_a'], type='scatter', mode='lines', line = dict( width = 1 ), marker = dict( color = '#228B22' ), yaxis = 'y2', name='senkou_span_a' ) ) fig['data'].append( dict( x=d['senkou_span_b'].index, y=d['senkou_span_b'], type='scatter', mode='lines', line = dict( width = 1 ),fill='tonexty', marker = dict( color = '#FF3342' ), yaxis = 'y2', name='senkou_span_b' ) ) fig['data'].append( dict( x=d['chikou_span'].index, y=d['chikou_span'], type='scatter', mode='lines', line = dict( width = 1 ), marker = dict( color = '#D105F5' ), yaxis = 'y2', name='chikou_span' ) ) # Set colour list for candlesticks colors = [] for i in range(len(d.Close)): if i != 0: if d.Close[i] > d.Close[i-1]: colors.append(INCREASING_COLOR) else: colors.append(DECREASING_COLOR) else: colors.append(DECREASING_COLOR) if not os.path.exists("images"): os.mkdir("images") dload = os.path.expanduser('./images') html_file = 'candlestick-ichimoku.html' fname = 'candlestick-ichimoku' iplot(fig, filename="candlestick-ichimoku") return d #fig.show(renderer="png") def u_d(num): if num < 0: return -1 else: return 1 def NeoCandle(OHLC): df = OHLC df['Change'] = df['Close']-df['Close'].shift(1) df['U_D'] = df['Change'].apply(u_d) df['DHL'] = (df['High'] - df['Low']) df['DOC'] = abs(df['Open'] - df['Close']) / (df['High'] - df['Low']) #percentage of space taken in DHL by DOC df_OC = df[['Open','Close']] # df_OC['Mid'] = df_OC.median(axis=1) df_OC['Max'] = df_OC.max(axis=1) # df['PODD'] = df_OC['Mid'] df['PODD'] = ((df_OC['Max'] - (abs(df['Open'] - df['Close'])/2)) - df['Low']) / (df['High'] - df['Low']) #for i in range(df.shape[0]): # df['PODD'].iloc[i] = (df_OC['Mid'].iloc[i] / df_OC['Max'].iloc[i] - 0.999) * 1000 return df def PODD(OPEN, HIGH, LOW, CLOSE): Max = max([OPEN, CLOSE]) DOChalf = abs(OPEN - CLOSE) / 2 DHLmini = HIGH - LOW print((Max - DOChalf - LOW) / DHLmini) #PODD(102.748, 102.839, 102.688, 102.791) ``` #### File: JoshChima/Ichimoku/script1.py ```python import pandas as pd from pandas_datareader import data, wb import matplotlib as mpl from mpl_finance import candlestick_ohlc import matplotlib.dates as dates, time import datetime import matplotlib.pyplot as plt import matplotlib.dates as mdates import quandl quandl.ApiConfig.api_key = "<KEY>" d=pd.read_csv("USD_JPY_2017_to_2018.csv") #reverse dataframe d = d.iloc[::-1] #calculate close price d["Close"] = d.shift(-1)["Open"] #set date as index d.set_index(d.Date, drop=True, inplace=True) #print(d.head()) #print(d.shape) #print(d.iloc[:5]) def df_slices(dataframe): sliced_frames = [] for shift in range(60,dataframe.shape[0]): df_slice = dataframe.iloc[:shift] sliced_frames.append(df_slice) return sliced_frames def Ichimoku(dataframe): d = dataframe nine_period_high = d['High'].rolling(window= 9).max() nine_period_low = d['Low'].rolling(window= 9).min() d['tenkan_sen'] = (nine_period_high + nine_period_low) /2 # Kijun-sen (Base Line): (26-period high + 26-period low)/2)) period26_high = d['High'].rolling(window=26).max() period26_low = d['Low'].rolling(window=26).min() d['kijun_sen'] = (period26_high + period26_low) / 2 # Senkou Span A (Leading Span A): (Conversion Line + Base Line)/2)) d['senkou_span_a'] = ((d['tenkan_sen'] + d['kijun_sen']) / 2).shift(26) # Senkou Span B (Leading Span B): (52-period high + 52-period low)/2)) period52_high = d['High'].rolling(window=52).max() period52_low = d['Low'].rolling(window=52).min() d['senkou_span_b'] = ((period52_high + period52_low) / 2).shift(52) # The most current closing price plotted 26 time periods behind (optional) d['chikou_span'] = d['Close'].shift(-26) return d sf = df_slices(d) #print(Ichimoku(sf[300])) print(Ichimoku(d)) #for s in range(len(sf)): # print("#%s"%(s)) # print("Start: ",sf[s].iloc[0]) # print("End: ",sf[s].iloc[sf[s].__len__()-1]) #print("###########") ```
{ "source": "JoshChima/ScratchDQN", "score": 2 }
#### File: JoshChima/ScratchDQN/agent.py ```python import gym import numpy as np import pandas as pd import wandb import time import cv2 import random import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt from dataclasses import dataclass from typing import Any from collections import deque from models import Model, ConvModel import wandb import argh import sys def img_display(img): cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows() class FrameStackingAndResizingEnv: def __init__(self, env, w, h, num_stack=4): self.env = env self.n = num_stack self.w = w self.h = h self.buffer = np.zeros((num_stack, h, w), 'uint8') self.frame = None def _preprocess_frame(self, fram): image = cv2.resize(fram, (self.w, self.h)) image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return image def step(self, action): im, reward, done, info = self.env.step(action) self.frame = im.copy() im = self._preprocess_frame(im) # 0,1,2 -> 1,2,3 self.buffer[1:self.n, :, :] = self.buffer[0:self.n-1, :, :] self.buffer[0, :, :] = im return self.buffer.copy(), reward, done, info def render(self, mode): if mode == 'rgb_array': return self.frame return super(FrameStackingAndResizingEnv, self).render(mode) @property def observation_space(self): return np.zeros((self.n, self.h, self.w)) @property def action_space(self): return self.env.action_space def reset(self): im = self.env.reset() self.frame = im.copy() im = self._preprocess_frame(im) self.buffer = np.stack([im]*self.n, 0) return self.buffer.copy() # def render(self, mode): # self.env.render(mode) @dataclass class SARS: state: Any action: int reward: float done: bool next_state: Any # class DQNAgent: # def __init__(self, model): # self.model = model # def get_actions(self, observations): # # obs shape is (N, 4) # # N is batch size # q_vals = self.model(observations) # # q_vals shape (N, 2) # # .max(-1) the last axis # return q_vals.max(-1)[1] class ReplayBuffer(): def __init__(self, buffer_size=100000): self.buffer_size = buffer_size # could possibly improve by making it a dque or a database # self.buffer = deque(maxlen=buffer_size) # even better... self.buffer = [None]*buffer_size self.idx = 0 def insert(self, sars): # self.buffer.append(sars) # self.buffer = self.buffer[-self.buffer_size:] self.buffer[self.idx % self.buffer_size] = sars self.idx += 1 def sample(self, num_samples): # assert num_samples <= len(self.buffer) assert num_samples <= min(self.idx, self.buffer_size) if self.idx < self.buffer_size: return random.sample(self.buffer[:self.idx], num_samples) return random.sample(self.buffer, num_samples) def update_tgt_model(m, tgt): tgt.load_state_dict(m.state_dict()) def train_step(model, state_transitions, tgt, num_actions, gamma, device): cur_states = torch.stack(([torch.Tensor(s.state) for s in state_transitions])).to(device) rewards = torch.stack(([torch.Tensor([s.reward]) for s in state_transitions])).to(device) mask = torch.stack(([torch.Tensor([0]) if s.done else torch.Tensor( [1]) for s in state_transitions])).to(device) next_states = torch.stack( ([torch.Tensor(s.next_state) for s in state_transitions])).to(device) actions = [s.action for s in state_transitions] with torch.no_grad(): qvals_next = tgt(next_states).max(-1)[0] # (N, num_actions) model.opt.zero_grad() qvals = model(cur_states) # (N, num_actions) one_hot_actions = F.one_hot( torch.LongTensor(actions), num_actions).to(device) ## MSE Loss ## # loss = (((rewards + mask[:, 0] * (qvals_next*gamma) - # torch.sum(qvals*one_hot_actions, -1))**2)).mean().to(device) ## Huber Loss ## loss_fn = nn.SmoothL1Loss() loss = loss_fn(torch.sum(qvals*one_hot_actions, -1), rewards.squeeze() + mask[:, 0] * (qvals_next*gamma)) loss.backward() model.opt.step() return loss def run_test_episode(model, env, device, max_steps=1000): frames = [] obs = env.reset() frames.append(env.frame) idx = 0 done = False reward = 0 while not done and idx < max_steps: #TODO make it do non conv actions too action = model(torch.Tensor(obs).unsqueeze(0).to(device)).max(-1)[-1].item() obs, r, done, _ = env.step(action) reward += r frames.append(env.frame) return reward, np.stack(frames, 0) hyperparameter_defaults = dict( run_name=str(random.getrandbits(128)), env_name='CartPole-v0', max_reward=500, max_steps=5_000_000, memory_size=100_000, min_rb_size=10000, sample_size=2500, env_steps_before_train=100, tgt_model_update=5000, reward_scaler=100.0, eps_min=0.01, eps_decay=0.999999, gamma=0.99, learning_rate=0.0001 ) ### Used to solve Cartpole ### def dqnmain(project_name, do_boltzman_exploration=False, test=False, chkpt=None, hypeparams=hyperparameter_defaults, steps=1000, device='cuda'): image_arr = [] if (not test): wdbrun = wandb.init( project=project_name, config=hypeparams, name=hypeparams['run_name'], reinit=True, monitor_gym=False) # run.save("*.pth") config = wdbrun.config max_reward = config.max_reward max_steps = config.max_steps memory_size = config.memory_size min_rb_size = config.min_rb_size sample_size = config.sample_size env_steps_before_train = config.env_steps_before_train tgt_model_update = config.tgt_model_update reward_scaler = config.reward_scaler eps_min = config.eps_min eps_decay = config.eps_decay gamma = config.gamma learning_rate = config.learning_rate else: max_reward = hypeparams['max_reward'] max_steps = steps memory_size = hypeparams['memory_size'] min_rb_size = hypeparams['min_rb_size'] sample_size = hypeparams['sample_size'] env_steps_before_train = hypeparams['env_steps_before_train'] tgt_model_update = hypeparams['tgt_model_update'] reward_scaler = hypeparams['reward_scaler'] eps_min = hypeparams['eps_min'] eps_decay = hypeparams['eps_decay'] gamma = hypeparams['gamma'] learning_rate = hypeparams['learning_rate'] env = gym.make(hypeparams['env_name']) if hypeparams['env_name'] == 'Breakout-v0': #TODO env = FrameStackingAndResizingEnv(env, 84, 84, 4) # change stack size here env._max_episode_steps = 4000 test_env = gym.make(hypeparams['env_name']) if hypeparams['env_name'] == 'Breakout-v0': #TODO test_env = FrameStackingAndResizingEnv(test_env, 84, 84, 4) # change stack size here test_env._max_episode_steps = 4000 last_observation = env.reset() if hypeparams['env_name'] == 'Breakout-v0': m = ConvModel(env.observation_space.shape, env.action_space.n, learning_rate).to(device) else: m = Model(env.observation_space.shape, env.action_space.n, learning_rate).to(device) if chkpt is not None: m.load_state_dict(torch.load(chkpt)) if hypeparams['env_name'] == 'Breakout-v0': tgt = ConvModel(env.observation_space.shape, env.action_space.n).to( device) else: tgt = Model(env.observation_space.shape, env.action_space.n).to( device) # target model, gets update fewer times update_tgt_model(m, tgt) rb = ReplayBuffer(memory_size) steps_since_train = 0 epochs_since_tgt = 0 step_num = -1 * min_rb_size i = 0 episode_rewards = [] rolling_reward = 0 solved = False try: while (not solved) and step_num < max_steps: if test: screen = env.render('rgb_array') image_arr.append(screen) eps = 0 else: eps = eps_decay**(step_num) if do_boltzman_exploration: if hypeparams['env_name'] == 'Breakout-v0': logits = m(torch.Tensor(last_observation).unsqueeze(0).to(device))[0] action = torch.distributions.Categorical(logits=logits).sample().item() else: logits = m(torch.Tensor(last_observation).to(device))[0] action = torch.distributions.Categorical(logits=logits).sample().item() else: if random.random() < eps: action = env.action_space.sample() else: if hypeparams['env_name'] == 'Breakout-v0': action = m(torch.Tensor(last_observation).unsqueeze(0).to(device)).max(-1)[-1].item() else: action = m(torch.Tensor(last_observation).to(device)).max(-1)[-1].item() observation, reward, done, info = env.step(action) rolling_reward += reward reward = reward/reward_scaler rb.insert(SARS(last_observation, action, reward, done, observation)) last_observation = observation if done: episode_rewards.append(rolling_reward) if test: print(rolling_reward) rolling_reward = 0 observation = env.reset() steps_since_train += 1 i += 1 step_num += 1 if (not test) and rb.idx > min_rb_size and steps_since_train > env_steps_before_train: loss = train_step(m, rb.sample(sample_size), tgt, env.action_space.n, gamma, device) ave_reward = np.mean(episode_rewards) wdbrun.log({'loss': loss.detach().cpu().item( ), 'epsilon': eps, 'avg_reward': ave_reward}, step=step_num) if ave_reward >= max_reward: solved = True episode_rewards = [] epochs_since_tgt += 1 # print(step_num, loss.detach().item()) if epochs_since_tgt > tgt_model_update: # print('updating target model') update_tgt_model(m, tgt) rew, frames = run_test_episode(m, test_env, device) # frames.shape == (T, H, W, C) # wandb.log({'test_reward': rew, 'test_video': wandb.Video(frames.transpose(0, 3, 1, 2), str(rew), fps=25, format='mp4')}) wandb.log({'test_reward': rew}) epochs_since_tgt = 0 torch.save( tgt.state_dict(), f"{wandb.run.dir}/{hypeparams['run_name']}_{step_num}.pth") steps_since_train = 0 if ave_reward >= max_reward: solved = True wandb.join() env.close() except KeyboardInterrupt: sys.exit() if __name__ == "__main__": hyperset = dict( run_name=str(random.getrandbits(128)), env_name='Breakout-v0', max_reward=500, max_steps=2_000_000, memory_size=50_000, min_rb_size=20000, sample_size=128, env_steps_before_train=16, tgt_model_update=500, reward_scaler=1, eps_min=0.05, eps_decay=0.999999, gamma=0.99, learning_rate=0.0001 ) # # argh.dispatch_command(dqnmain) # # # dqnmain() # env = gym.make("Breakout-v0") # env = FrameStackingAndResizingEnv(env, 480, 640) # # # print(env.observation_space.shape) # # # print(env.action_space) # im = env.reset() # idx = 0 # ims = [] # print(im.shape) # # for i in range(im.shape[-1]): # # ims.append(im[:,:,i]) # # # cv2.imwrite(f"/tmp/{i}.jpg", im[:,:,i]) # # img_display(np.hstack(ims)) # env.step(1) # for _ in range(10): # idx += 1 # im, _, _, _ = env.step(random.randint(0, 3)) # for i in range(im.shape[-1]): # ims.append(im[:, :, i]) # img_display(np.hstack(ims)) # ims = [] if __name__ == '__main__': dqnmain('Breakout-Tutorial', do_boltzman_exploration=False, hypeparams=hyperset) ```
{ "source": "joshclimacell/rules_python", "score": 2 }
#### File: rules_python/rules_python/whl.py ```python import argparse import json import os import re import shutil import textwrap import zipfile import pkg_resources # pylint: disable=R0914 def main(): args = _parse_args() dependency_list = [] whl_dependency_list = [] extra_list = [] whl_extra_list = [] whl_paths = args.whl_paths if args.whl is not None: whl_paths = whl_paths + [args.whl] # Extract the files into the current directory. for wheel_path in args.whl_paths: wheel = Wheel(wheel_path) wheel.expand(args.directory) copied_whl_path = os.path.join(args.directory, os.path.basename(wheel_path)) shutil.copy(wheel_path, copied_whl_path) if args.track_deps: for dependency in wheel.dependencies(): dependency_list.append('requirement("{}")'.format(dependency)) whl_dependency_list.append( 'pypi_whl_requirement("{}")'.format(dependency)) for extra in args.extras: extra_list.append(_make_extra(extra, wheel)) whl_extra_list.append(_make_whl_extra(extra, wheel)) # Generate BUILD file. dependency_join_str = ',\n ' extras_join_str = '\n\n' dependencies = dependency_join_str.join(dependency_list) whl_dependencies = dependency_join_str.join(whl_dependency_list) extras = extras_join_str.join(extra_list) whl_extras = extras_join_str.join(whl_extra_list) build_file_content = _make_build_file_content( requirements_bzl=args.requirements, dependencies=dependencies, whl_dependencies=whl_dependencies, extras=extras, whl_extras=whl_extras) with open(os.path.join(args.directory, 'BUILD'), 'w') as file_obj: file_obj.write(build_file_content) class Wheel(object): def __init__(self, path): self._path = path def path(self): return self._path def basename(self): return os.path.basename(self.path()) def distribution(self): # See https://www.python.org/dev/peps/pep-0427/#file-name-convention parts = self.basename().split('-') return parts[0] def version(self): # See https://www.python.org/dev/peps/pep-0427/#file-name-convention parts = self.basename().split('-') return parts[1] def repository_name(self): # Returns the canonical name of the Bazel repository for this package. canonical = 'pypi__{}_{}'.format(self.distribution(), self.version()) # Escape any illegal characters with underscore. return re.sub('[-.]', '_', canonical) def _dist_info(self): # Return the name of the dist-info directory within the .whl file. # e.g. google_cloud-0.27.0-py2.py3-none-any.whl -> # google_cloud-0.27.0.dist-info return '{}-{}.dist-info'.format(self.distribution(), self.version()) def metadata(self): # Extract the structured data from metadata.json in the WHL's dist-info # directory. with zipfile.ZipFile(self.path(), 'r') as whl: # first check for metadata.json try: with whl.open( self._dist_info() + '/metadata.json') as file_obj: return json.loads(file_obj.read().decode("utf-8")) except KeyError: pass # fall back to METADATA file (https://www.python.org/dev/peps/pep-0427/) with whl.open(self._dist_info() + '/METADATA') as file_obj: return self._parse_metadata(file_obj.read().decode("utf-8")) def name(self): return self.metadata().get('name') def dependencies(self, extra=None): """Access the dependencies of this Wheel. Args: extra: if specified, include the additional dependencies of the named "extra". Yields: the names of requirements from the metadata.json """ # TODO(mattmoor): Is there a schema to follow for this? run_requires = self.metadata().get('run_requires', []) for requirement in run_requires: if requirement.get('extra') != extra: # Match the requirements for the extra we're looking for. continue marker = requirement.get('environment') if marker and not pkg_resources.evaluate_marker(marker): # The current environment does not match the provided PEP 508 marker, # so ignore this requirement. continue requires = requirement.get('requires', []) for entry in requires: # Strip off any trailing versioning data. parts = re.split('[ ><=()]', entry) yield parts[0] def extras(self): return self.metadata().get('extras', []) def expand(self, directory): with zipfile.ZipFile(self.path(), 'r') as whl: whl.extractall(directory) # _parse_metadata parses METADATA files according to https://www.python.org/dev/peps/pep-0314/ def _parse_metadata(self, content): # TODO: handle fields other than just name name_pattern = re.compile('Name: (.*)') return {'name': name_pattern.search(content).group(1)} def _parse_args(): parser = argparse.ArgumentParser( description='Unpack a .whl file as a py_library.') parser.add_argument( '--whl_paths', action='append', default=[], help=('The .whl files we are expanding.')) parser.add_argument( '--whl', action='store', default=None, help='Deprecated; use --whl_paths') parser.add_argument('--track_deps', action='store', type=bool) parser.add_argument( '--requirements', action='store', default=None, help='The pip_import from which to draw dependencies.') parser.add_argument( '--directory', action='store', default='.', help='The directory into which to expand things.') parser.add_argument( '--extras', action='append', help='The set of extras for which to generate library targets.') return parser.parse_args() _EXTRA_TEMPLATE = textwrap.dedent("""\ py_library( name = "{extra}", deps = [ ":pkg",{deps} ], ) """) _WHL_EXTRA_TEMPLATE = textwrap.dedent("""\ filegroup( name = "{extra}_whl", srcs = [ ":whl",{deps} ], ) """) def _make_extra(extra, wheel): return _EXTRA_TEMPLATE.format( extra=extra, deps=','.join( ['requirement("%s")' % dep for dep in wheel.dependencies(extra)]), ) def _make_whl_extra(extra, wheel): _WHL_EXTRA_TEMPLATE.format( extra=extra, deps=','.join([ 'pypi_whl_requirement("%s")' % dep for dep in wheel.dependencies(extra) ]), ) def _make_build_file_content(requirements_bzl, dependencies, whl_dependencies, extras, whl_extras): if requirements_bzl: template = ( 'load("{requirements_bzl}", "requirement", "pypi_whl_requirement")' ) load_requirements_statement = template.format( requirements_bzl=requirements_bzl) else: load_requirements_statement = '' return textwrap.dedent("""\ package(default_visibility = ["//visibility:public"]) {load_requirements_statement} py_library( name = "pkg", srcs = glob(["**/*.py"]), data = glob(["**/*"], exclude=["**/*.py", "**/* *", "BUILD", "WORKSPACE", "**/*.whl"]), # This makes this directory a top-level in the python import # search path for anything that depends on this. imports = ["."], deps = [{dependencies}], ) filegroup( name = "whl", srcs = glob(["**/*.whl"]) + [{whl_dependencies}], ) {extras} {whl_extras} """).format( requirements_bzl=requirements_bzl, dependencies=dependencies, whl_dependencies=whl_dependencies, extras=extras, whl_extras=whl_extras, load_requirements_statement=load_requirements_statement) if __name__ == '__main__': main() ```
{ "source": "joshcoales/Dailys-API", "score": 2 }
#### File: blueprints/views/chores_board.py ```python import math from datetime import date import flask import isodate from blueprints.views.base_view import View from colour_scale import ColourScale from models.chores import Chore class ChoresBoardJsonView(View): def get_path(self): return "/chores_board.json" def call(self, **kwargs): today = date.today() chores_static = self.data_source.get_entries_for_stat_on_date("chores", "static")[0] chores_data = self.data_source.get_entries_for_stat_over_range("chores", "earliest", "latest") chores = [Chore(x) for x in chores_static['data']['chores']] for chore_date in chores_data: for chore in chores: chore.parse_date_entry(chore_date) # Sort chores into categories categorised_chores = dict() for chore in chores: if chore.category not in categorised_chores: categorised_chores[chore.category] = [] categorised_chores[chore.category].append(chore) # Get layout info layout = chores_static['data']['layout'] # Return json return flask.jsonify({ "today": isodate.date_isoformat(today), "chores": {k: [x.to_json() for x in v] for k, v in categorised_chores.items()}, "layout": layout }) class ChoresBoardView(ChoresBoardJsonView): def get_path(self): return "/chores_board/" def call(self, **kwargs): board_name = kwargs.get("board_name") chores_board = super().call(**kwargs).get_json() today = isodate.parse_date(chores_board['today']) categorised_chores = {k: [Chore.from_complete_json(x) for x in v] for k, v in chores_board['chores'].items()} layout = chores_board['layout'] # Filter out unselected boards for column in layout["columns"]: if column.get("board_name") != board_name: for category in column["categories"]: del categorised_chores[category] # Calculate overdue and neglected chores overdue_chores = [] neglected_chores = [] for chore_list in categorised_chores.values(): for chore in chore_list: if chore.recommended_period is not None: if chore.is_overdue(): overdue_chores.append(chore) else: neglected_chores.append(chore) # Sort overdue and neglected chores lists overdue_chores.sort(key=lambda x: x.days_overdue(), reverse=True) neglected_chores.sort(key=lambda x: x.days_since_done() or math.inf, reverse=True) # Colour scales for non-recommended-period chores start_colouring = today - isodate.parse_duration("P2M") end_colouring = today - isodate.parse_duration("P1W") colour_scale = ColourScale( start_colouring, end_colouring, ColourScale.RED, ColourScale.WHITE ) # Render return flask.render_template( "chores_board.html", today=today, board_name=board_name, categorised_chores=categorised_chores, layout=layout, overdue_chores=overdue_chores, neglected_chores=neglected_chores, colour_scale=colour_scale, ) class ChoresBoardSpecificView(ChoresBoardView): def get_path(self): return "/chores_board/<board_name>/" def call(self, **kwargs): return super().call(**kwargs) ``` #### File: Dailys-API/models/dream_night.py ```python from collections import defaultdict from typing import Dict, List import flask from data_source import DailysData from models.models import Data class Dream: def __init__(self, data): self.data = data self.text = data["text"] self.disorientation = data.get("disorientation") self.lewdness = data.get("lewdness") self.false_facts = data.get("false_facts") self.famous_people = data.get("famous_people") self.known_people = data.get("known_people") self.tags = data.get("tags") class DreamNight(Data): def __init__(self, json_data): super().__init__(json_data) self.dreams = [Dream(x) for x in json_data["data"]["dreams"]] def dream_preview(self, length=50): if len(self.dreams) == 0: return "" first_dream = self.dreams[0] if len(first_dream.text) < 50: return first_dream.text return first_dream.text[:length] + "..." @property def dream_count(self): return len(self.dreams) @property def total_dreams_length(self): return sum(len(dream.text) for dream in self.dreams) @property def max_disorientation(self): dream_values = [dream.disorientation for dream in self.dreams] if list(filter(None, dream_values)): return max(filter(None, dream_values)) return "-" @property def max_lewdness(self): dream_values = [dream.lewdness for dream in self.dreams] if list(filter(None, dream_values)): return max(filter(None, dream_values)) return "-" @property def all_false_facts(self): false_fact_dreams = [dream for dream in self.dreams if dream.false_facts is not None] if len(false_fact_dreams) == 0: return None return [fact for dream in false_fact_dreams for fact in dream.false_facts] @property def all_famous_people(self): famous_people_dreams = [dream for dream in self.dreams if dream.famous_people is not None] if len(famous_people_dreams) == 0: return None return [person for dream in famous_people_dreams for person in dream.famous_people] @property def all_known_people(self): known_people_dreams = [dream for dream in self.dreams if dream.known_people is not None] if len(known_people_dreams) == 0: return None return [person for dream in known_people_dreams for person in dream.known_people] @property def all_tags(self): tag_dreams = [dream for dream in self.dreams if dream.tags is not None] if len(tag_dreams) == 0: return None return [tag for dream in tag_dreams for tag in dream.tags] def suggest_enrichments(self) -> Dict[str, List[str]]: suggestions = defaultdict(lambda: []) for dream_idx in range(len(self.dreams)): dream_data = self.dreams[dream_idx].data sub_target = f"$.data.dreams[{dream_idx}]" if "disorientation" not in dream_data: suggestions["could add disorientation rating"].append(sub_target) if "lewdness" not in dream_data: suggestions["could add lewdness rating"].append(sub_target) if "false_facts" not in dream_data: suggestions["could list false facts"].append(sub_target) if "famous_people" not in dream_data: suggestions["could tag famous people."].append(sub_target) if "known_people" not in dream_data: suggestions["could tag known people."].append(sub_target) if "tags" not in dream_data: suggestions["could add tags."].append(sub_target) if not suggestions: return {} return suggestions def enriched_data(self, form_data) -> DailysData: raw_data = self.raw_data["data"] for dream_idx in range(len(self.dreams)): if f"disorientation-{dream_idx}" in form_data: disorientation = int(form_data[f"disorientation-{dream_idx}"]) raw_data["dreams"][dream_idx]["disorientation"] = disorientation if f"lewdness-{dream_idx}" in form_data: lewdness = int(form_data[f"lewdness-{dream_idx}"]) raw_data["dreams"][dream_idx]["lewdness"] = lewdness if f"false_facts-{dream_idx}" in form_data: false_facts = [fact.strip() for fact in form_data[f"false_facts-{dream_idx}"].split("|") if fact != ""] raw_data["dreams"][dream_idx]["false_facts"] = false_facts if f"famous_people-{dream_idx}" in form_data: famous_people = [person.strip() for person in form_data[f"famous_people-{dream_idx}"].split("|") if person != ""] raw_data["dreams"][dream_idx]["famous_people"] = famous_people if f"known_people-{dream_idx}" in form_data: known_people = [person.strip() for person in form_data[f"known_people-{dream_idx}"].split("|") if person != ""] raw_data["dreams"][dream_idx]["known_people"] = known_people if f"tags-{dream_idx}" in form_data: tags = [tag.strip() for tag in form_data[f"tags-{dream_idx}"].split("|") if tag != ""] raw_data["dreams"][dream_idx]["tags"] = tags return raw_data def enrichment_form(self, data_source): # Get lists of tags and stuff all_entries = data_source.get_entries_for_stat_over_range("dreams", "earliest", "latest") tags = set() known_people = set() famous_people = set() for entry in all_entries: for dream in entry["data"]["dreams"]: tags.update(dream.get("tags", [])) known_people.update(dream.get("known_people", [])) famous_people.update(dream.get("famous_people", [])) return flask.render_template( "enrichment_forms/dreams.html", dream_night=self, entry=self.raw_data, tags=sorted(tags), known_people=sorted(known_people), famous_people=sorted(famous_people) ) ```
{ "source": "joshcoales/Hallo", "score": 2 }
#### File: Hallo/hallo/events.py ```python import enum import logging from abc import ABCMeta from datetime import datetime from typing import List, Dict, Any, Union, Optional, TYPE_CHECKING, Type, Tuple if TYPE_CHECKING: from hallo.hallo import Hallo from telegram import Update, Message from hallo.destination import Destination, User, Channel from hallo.server import Server KEY_SERVER_NAME = "server_name" KEY_CHANNEL_ADDR = "channel_addr" KEY_USER_ADDR = "user_addr" KEY_MENU_BUTTONS = "menu_buttons" KEY_FORMATTING = "formatting" KEY_PHOTO_ID = "photo_id" FLAG_MENU_UNCHANGED = object() def server_from_json(hallo_obj: 'Hallo', data: Dict) -> 'Server': return hallo_obj.get_server_by_name(data[KEY_SERVER_NAME]) def channel_from_json(server: 'Server', data: Dict) -> Optional['Channel']: if data[KEY_CHANNEL_ADDR]: return server.get_channel_by_address(data[KEY_CHANNEL_ADDR]) return None def user_from_json(server: 'Server', data: Dict) -> Optional['User']: if data[KEY_USER_ADDR]: return server.get_user_by_address(data[KEY_USER_ADDR]) return None def menu_buttons_from_json(data: Dict) -> Optional[List[List['MenuButton']]]: if KEY_MENU_BUTTONS not in data: return None return [ [ MenuButton.from_json(button) for button in row ] for row in data[KEY_MENU_BUTTONS] ] def event_from_json(hallo_obj: 'Hallo', data: Dict) -> 'ChannelUserTextEvent': server = server_from_json(hallo_obj, data) channel = channel_from_json(server, data) user = user_from_json(server, data) if KEY_FORMATTING not in data: return ChannelUserTextEvent( server, channel, user, data["text"], data["inbound"] ) return message_from_json(hallo_obj, data) def message_from_json(hallo_obj: 'Hallo', data: Dict) -> 'EventMessage': server = server_from_json(hallo_obj, data) channel = channel_from_json(server, data) user = user_from_json(server, data) text = data["text"] inbound = data["inbound"] menu_buttons = menu_buttons_from_json(data) formatting = EventMessage.Formatting[data[KEY_FORMATTING]] if KEY_PHOTO_ID in data: msg = EventMessageWithPhoto( server, channel, user, text, data[KEY_PHOTO_ID], inbound, menu_buttons=menu_buttons ) else: msg = EventMessage( server, channel, user, text, inbound, menu_buttons=menu_buttons ) msg.formatting = formatting msg._message_id = data.get("message_id") return msg class RawData(metaclass=ABCMeta): pass class RawDataIRC(RawData): def __init__(self, line: str) -> None: """ :param line: Line of text direct from the IRC server """ self.line = line class RawDataTelegram(RawData): def __init__(self, update_obj: 'Update') -> None: """ :param update_obj: Update object from telegram server """ self.update_obj = update_obj class RawDataTelegramOutbound(RawData): def __init__(self, sent_msg_object: 'Message') -> None: """ :param sent_msg_object: Sent message object returned when sending message on telegram :type sent_msg_object: ?? """ self.sent_msg_object = sent_msg_object class Event(metaclass=ABCMeta): def __init__(self, inbound: bool = True) -> None: self.is_inbound = inbound self.send_time = datetime.now() def get_send_time(self) -> datetime: return self.send_time def get_log_line(self) -> Optional[str]: """ :rtype: Optional[str] """ return None def _get_log_extras(self) -> List[Dict[str, Any]]: return [] def log(self) -> None: if self.get_log_line() is None: return chat_logger = logging.getLogger("chat") for extra in self._get_log_extras(): chat_logger.info(self.get_log_line(), extra=extra) def get_print_line(self) -> Optional[str]: return None class EventSecond(Event): pass class EventMinute(Event): pass class EventHour(Event): pass class EventDay(Event): def get_print_line(self) -> str: return "Day changed: {}".format(self.send_time.strftime("%Y-%m-%d")) class ServerEvent(Event, metaclass=ABCMeta): def __init__(self, server: 'Server', inbound: bool = True): Event.__init__(self, inbound=inbound) self.server = server self.raw_data = None @property def server_name(self) -> str: return self.server.name def with_raw_data(self, raw_data: RawData): self.raw_data = raw_data return self def get_send_time(self) -> datetime: if isinstance(self.raw_data, RawDataTelegram): return self.raw_data.update_obj.message.date return super().get_send_time() def _get_log_extras(self) -> List[Dict[str, Any]]: return [ { "server": self.server } ] def get_print_line(self) -> str: return "[{}] {}".format(self.server.name, self.get_log_line()) class EventPing(ServerEvent): def __init__(self, server: 'Server', ping_number: str, inbound: bool = True): ServerEvent.__init__(self, server, inbound=inbound) self.ping_number = ping_number def get_pong(self) -> 'EventPing': return EventPing(self.server, self.ping_number, inbound=False) def get_print_line(self) -> str: return "[{}] {}".format(self.server.name, "PING" if self.is_inbound else "PONG") class UserEvent(ServerEvent, metaclass=ABCMeta): def __init__(self, server: 'Server', user: 'User', inbound: bool = True): ServerEvent.__init__(self, server, inbound=inbound) self.user = user @property def user_addr(self) -> Optional[str]: return self.user.address if self.user else None def _get_log_extras(self) -> List[Dict[str, Any]]: channel_list = ( self.user.get_channel_list() if self.is_inbound else self.server.channel_list ) return [ { "server": self.server, "destination": channel } for channel in channel_list ] class EventQuit(UserEvent): def __init__(self, server: 'Server', user: 'User', message: str, inbound: bool = True): """ :param user: User who quit the server, or none if outbound """ UserEvent.__init__(self, server, user, inbound=inbound) self.quit_message = message def get_log_line(self) -> str: output = "{} has quit.".format( self.user.name if self.is_inbound else self.server.get_nick() ) if self.quit_message is not None and self.quit_message.strip() != "": output += " ({})".format(self.quit_message) return output class EventNameChange(UserEvent): def __init__(self, server: 'Server', user: 'User', old_name: str, new_name: str, inbound: bool = True) -> None: """ :param user: User object who has changed their name, or None if outbound """ UserEvent.__init__(self, server, user, inbound=inbound) self.old_name = old_name self.new_name = new_name def get_log_line(self) -> str: output = "Nick change: {} -> {}".format(self.old_name, self.new_name) return output class ChannelEvent(ServerEvent, metaclass=ABCMeta): def __init__(self, server: 'Server', channel: 'Channel', inbound: bool = True) -> None: ServerEvent.__init__(self, server, inbound=inbound) self.channel = channel @property def channel_addr(self): return self.channel.address if self.channel else None def _get_log_extras(self) -> List[Dict[str, Any]]: return [ { "server": self.server, "destination": self.channel } ] class ChannelUserEvent(ChannelEvent, UserEvent, metaclass=ABCMeta): def __init__(self, server: 'Server', channel: 'Channel', user: 'User', inbound: bool = True) -> None: ChannelEvent.__init__(self, server, channel, inbound=inbound) UserEvent.__init__(self, server, user, inbound=inbound) def _get_log_extras(self) -> List[Dict[str, Any]]: return [ { "server": self.server, "destination": self.destination } ] @property def destination(self) -> 'Destination': return self.user if self.channel is None else self.channel @property def destination_addr(self) -> str: return self.destination.address class EventJoin(ChannelUserEvent): def __init__( self, server: 'Server', channel: 'Channel', user: 'User', password: Optional[str] = None, inbound: bool = True ): """ :param user: User who joined the channel, or None if outbound """ ChannelUserEvent.__init__(self, server, channel, user, inbound=inbound) self.password = password def get_log_line(self) -> str: output = "{} joined {}".format( self.user.name if self.is_inbound else self.server.get_nick(), self.channel.name, ) return output class EventLeave(ChannelUserEvent): def __init__( self, server: 'Server', channel: 'Channel', user: 'User', message: Optional[str], inbound: bool = True ) -> None: """ :param user: User who left the channel, or None if outbound """ ChannelUserEvent.__init__(self, server, channel, user, inbound=inbound) self.leave_message = message def get_log_line(self) -> str: output = "{} left {}".format( self.user.name if self.is_inbound else self.server.get_nick(), self.channel.name, ) if self.leave_message is not None and self.leave_message.strip() != "": output += " ({})".format(self.leave_message) return output class EventKick(ChannelUserEvent): def __init__( self, server: 'Server', channel: 'Channel', kicking_user: Optional['User'], kicked_user: 'User', kick_message: Optional[str], inbound: bool = True ) -> None: """ :type server: server.Server :type channel: destination.Channel :param kicking_user: User which sent the kick event, or None if outbound :type kicking_user: destination.User | None :type kicked_user: destination.User :type kick_message: str | None :type inbound: bool """ ChannelUserEvent.__init__(self, server, channel, kicking_user, inbound=inbound) self.kicked_user = kicked_user """ :type : Destination.User""" self.kick_message = kick_message """:type : str | None""" def get_log_line(self) -> str: output = "{} was kicked from {} by {}".format( self.kicked_user.name, self.channel.name, self.user if self.is_inbound else self.server.get_nick(), ) if self.kick_message is not None and self.kick_message.strip() != "": output += " ({})".format(self.kick_message) return output class EventInvite(ChannelUserEvent): def __init__( self, server: 'Server', channel: 'Channel', inviting_user: 'User', invited_user: 'User', inbound: bool = True ) -> None: """ :param inviting_user: User which is doing the inviting, or None if outbound """ ChannelUserEvent.__init__(self, server, channel, inviting_user, inbound=inbound) self.invited_user = invited_user def get_log_line(self) -> str: output = "{} was invited to {} by {}".format( self.invited_user.name, self.channel.name, self.user.name if self.is_inbound else self.server.get_nick(), ) return output class EventMode(ChannelUserEvent): def __init__( self, server: 'Server', channel: 'Channel', user: 'User', mode_changes: str, inbound: bool = True ) -> None: ChannelUserEvent.__init__(self, server, channel, user, inbound=inbound) self.mode_changes = ( mode_changes # TODO: maybe have flags, arguments/users as separate? ) def get_log_line(self) -> str: channel_name = self.channel.name if self.channel is not None else "??" output = "{} set {} on {}".format( self.user.name if self.user is not None else self.server.get_nick(), self.mode_changes, channel_name, ) return output class ChannelUserTextEvent(ChannelUserEvent, metaclass=ABCMeta): def __init__( self, server: 'Server', channel: Optional['Channel'], user: 'User', text: str, inbound: bool = True ) -> None: ChannelUserEvent.__init__(self, server, channel, user, inbound=inbound) self.text = text or "" def create_response( self, text: str, event_class: Optional[Type['ChannelUserTextEvent']] = None ) -> 'ChannelUserTextEvent': if event_class is None: event_class = self.__class__ resp = event_class(self.server, self.channel, self.user, text, inbound=False) return resp def reply(self, event: 'ChannelUserTextEvent') -> None: """ Shorthand for server.reply(event, event) """ self.server.reply(self, event) def to_json(self) -> Dict: return { KEY_SERVER_NAME: self.server_name, KEY_CHANNEL_ADDR: self.channel_addr, KEY_USER_ADDR: self.user_addr, "text": self.text, "inbound": self.is_inbound } class MenuButton: def __init__(self, text: str, data: str) -> None: self.text = text self.data = data def to_json(self) -> Dict[str, str]: return { "text": self.text, "data": self.data } @classmethod def from_json(cls, data: Dict) -> 'MenuButton': return MenuButton( data["text"], data["data"] ) class EventMessage(ChannelUserTextEvent): # Flags, can be passed as a list to function dispatcher, and will change how it operates. FLAG_HIDE_ERRORS = ( "hide_errors" # Hide all errors that result from running the function. ) class Formatting(enum.Enum): PLAIN = 1 MARKDOWN = 2 HTML = 3 def __init__( self, server: 'Server', channel: Optional['Channel'], user: 'User', text: str, inbound: bool = True, *, menu_buttons: List[List['MenuButton']] = None ) -> None: """ :param user: User who sent the event, or None for outbound to channel """ ChannelUserTextEvent.__init__( self, server, channel, user, text, inbound=inbound ) self.command_name = None self.command_args = None self.is_prefixed, self.command_text = self.check_prefix() self.formatting = EventMessage.Formatting.PLAIN self.menu_buttons = menu_buttons self._message_id = None @property def message_id(self) -> Optional[int]: if isinstance(self.raw_data, RawDataTelegram): return self.raw_data.update_obj.message.message_id if isinstance(self.raw_data, RawDataTelegramOutbound): return self.raw_data.sent_msg_object.message_id return self._message_id @property def has_keyboard(self) -> bool: return bool(self.menu_buttons) @property def has_photo(self) -> bool: return False def check_prefix(self) -> Tuple[Union[bool, str], Optional[str]]: """ Checks whether prefix was given, and if so, parses it out of command text. :return: Returns whether prefix is given, and command text """ if self.channel is None: return True, self.text acting_prefix = self.channel.get_prefix() if acting_prefix is False: acting_prefix = self.server.get_nick().lower() # Check if directly addressed if any(self.text.lower().startswith(acting_prefix + x) for x in [":", ","]): return True, self.text[len(acting_prefix) + 1:] elif self.text.lower().startswith(acting_prefix): return EventMessage.FLAG_HIDE_ERRORS, self.text[len(acting_prefix):] else: return False, None elif self.text.lower().startswith(acting_prefix): return True, self.text[len(acting_prefix):] else: return False, None def split_command_text(self, command_name: str, command_args: str): self.command_name = command_name self.command_args = command_args def get_log_line(self) -> str: output = "<{}> {}".format( self.user.name if self.is_inbound else self.server.get_nick(), self.text ) return output def create_response( self, text: str, event_class: Optional['EventMessage'] = None, menu_buttons: Optional[List[List[MenuButton]]] = None ) -> 'EventMessage': if event_class is None: event_class = self.__class__ resp = event_class(self.server, self.channel, self.user, text, inbound=False, menu_buttons=menu_buttons) return resp def create_edit( self, text: Optional[str] = None, menu_buttons: Optional[List[List[MenuButton]]] = FLAG_MENU_UNCHANGED ) -> 'EventMessage': if text is None: text = self.text if menu_buttons == FLAG_MENU_UNCHANGED: menu_buttons = self.menu_buttons edit = self.__class__(self.server, self.channel, self.user, text, inbound=False, menu_buttons=menu_buttons) edit._message_id = self.message_id return edit def to_json(self) -> Dict: data = super().to_json() data[KEY_FORMATTING] = self.formatting.name data["message_id"] = self.message_id if self.menu_buttons: data["menu_buttons"] = [ [ button.to_json() for button in row ] for row in self.menu_buttons ] return data class EventNotice(ChannelUserTextEvent): def get_log_line(self) -> str: output = "Notice from {}: {}".format( self.user.name if self.is_inbound else self.server.get_nick(), self.text ) return output class EventCTCP(ChannelUserTextEvent): def get_log_line(self) -> str: ctcp_command = self.text.split()[0] ctcp_arguments = " ".join(self.text.split()[1:]) user_name = self.user.name if self.is_inbound else self.server.get_nick() if ctcp_command.lower() == "action": output = "**{} {}**".format(user_name, ctcp_arguments) else: output = "<{} (CTCP)> {}".format(user_name, self.text) return output class EventMessageWithPhoto(EventMessage): def __init__( self, server: 'Server', channel: Optional['Channel'], user: 'User', text: str, photo_id: Union[str, List[str]], inbound: bool = True, *, menu_buttons: List[List[MenuButton]] = None ) -> None: """ :type server: server.Server :type channel: destination.Channel | None :param user: User who sent the event, or None for outbound to channel :type user: destination.User | None :type text: str :type photo_id: Union[str, List[str]] """ super().__init__(server, channel, user, text, inbound=inbound, menu_buttons=menu_buttons) self.photo_id = photo_id def create_edit( self, text: Optional[str] = None, menu_buttons: Optional[List[List[MenuButton]]] = FLAG_MENU_UNCHANGED ) -> 'EventMessage': if text is None: text = self.text if menu_buttons == FLAG_MENU_UNCHANGED: menu_buttons = self.menu_buttons edit = self.__class__( self.server, self.channel, self.user, text, self.photo_id, inbound=False, menu_buttons=menu_buttons ) edit._message_id = self.message_id return edit def has_photo(self) -> bool: return True def to_json(self) -> Dict: data = super().to_json() data[KEY_PHOTO_ID] = self.photo_id return data class EventMenuCallback(ChannelUserEvent): def __init__( self, server: 'Server', channel: 'Channel', user: 'User', message_id: int, callback_data: str ) -> None: super().__init__(server, channel, user) self.message_id = message_id self.callback_data = callback_data ``` #### File: Hallo/hallo/function.py ```python from abc import ABC, abstractmethod from typing import Set, Type, Optional from hallo.events import ( EventSecond, EventMinute, EventHour, EventDay, EventPing, EventMessage, EventJoin, EventLeave, EventQuit, EventNameChange, EventKick, EventInvite, EventNotice, EventMode, EventCTCP, Event, ServerEvent, ) class Function(ABC): """ Generic function object. All functions inherit from this. """ # Static constants EVENT_SECOND = EventSecond # Event which happens every second EVENT_MINUTE = EventMinute # Event which happens every minute EVENT_HOUR = EventHour # Event which happens every hour EVENT_DAY = EventDay # Event which happens every day EVENT_PING = EventPing # Event constant signifying a server ping has been received EVENT_MESSAGE = EventMessage # Event constant signifying a standard message EVENT_JOIN = EventJoin # Event constant signifying someone joined a channel EVENT_LEAVE = EventLeave # Event constant signifying someone left a channel EVENT_QUIT = EventQuit # Event constant signifying someone disconnected EVENT_CHNAME = ( EventNameChange # Event constant signifying someone changed their name ) EVENT_KICK = EventKick # Event constant signifying someone was forcibly removed from the channel EVENT_INVITE = ( EventInvite # Event constant signifying someone has invited hallo to a channel ) EVENT_NOTICE = ( EventNotice # Event constant signifying a notice was received. (IRC only?) ) EVENT_MODE = ( EventMode # Event constant signifying a channel mode change. (IRC only?) ) EVENT_CTCP = ( EventCTCP # Event constant signifying a CTCP message received (IRC only) ) # EVENT_NUMERIC = "numeric" # Event constant signifying a numeric message from a server (IRC only) # EVENT_RAW = "raw" # Event constant signifying raw data received from server which doesn't fit the above def __init__(self): self.help_name = None # Name for use in help listing self.names: Set[str] = set() # Set of names which can be used to address the function self.help_docs = ( None # Help documentation, if it's just a single line, can be set here ) @abstractmethod def run(self, event: EventMessage) -> EventMessage: """Runs the function when it is called directly :param event: Event which function wants running on, for which, this should be true: (is_prefixed is not false and command_args is not None) """ raise NotImplementedError @staticmethod def is_persistent() -> bool: """Returns boolean representing whether this function is supposed to be persistent or not""" return False @staticmethod def load_function() -> 'Function': """Loads the function, persistent functions only.""" return Function() def save_function(self) -> None: """Saves the function, persistent functions only.""" return None def get_passive_events(self) -> Set[Type[Event]]: """Returns a list of events which this function may want to respond to in a passive way""" return set() def passive_run(self, event: Event, hallo_obj) -> Optional[ServerEvent]: """Replies to an event not directly addressed to the bot. :param event: Event which has called the function :param hallo_obj: Hallo object which fired the event. """ pass def get_help_name(self) -> str: """Returns the name to be printed for help documentation""" if self.help_name is None: raise NotImplementedError return self.help_name def get_help_docs(self) -> str: """ Returns the help documentation, specific to given arguments, if supplied """ if self.help_docs is None: raise NotImplementedError return self.help_docs def get_names(self) -> Set[str]: """Returns the list of names for directly addressing the function""" self.names.add(self.help_name) return self.names ``` #### File: hallo/inc/commons.py ```python import inspect import datetime import logging import re import json import random from datetime import timedelta from typing import List, Optional, Dict, TypeVar, Union, Callable, Generic, Type import requests from publicsuffixlist import PublicSuffixList logger = logging.getLogger(__name__) T = TypeVar('T') S = TypeVar('S') class Commons(object): """ Class of commons methods, useful anywhere, but all static. """ @staticmethod def chunk_string_dot(string: str, length: int) -> List[str]: if len(string) <= length: return [string] else: list_of_strings = [string[: length - 3] + "..."] rest_of_string = string[length - 3:] while len(rest_of_string) > length - 3: list_of_strings += ["..." + rest_of_string[: length - 6] + "..."] rest_of_string = rest_of_string[length - 6:] list_of_strings += ["..." + rest_of_string] return list_of_strings @staticmethod def read_file_to_list(filename: str) -> List[str]: with open(filename, "r") as f: file_list = [] raw_line = f.readline() while raw_line != "": file_list.append(raw_line.replace("\n", "")) raw_line = f.readline() return file_list @staticmethod def get_domain_name(url: str) -> str: """ Gets the domain name of a URL, removing the TLD :param url: URL to find domain of """ # Sanitise the URL, removing protocol and directories url = url.split("://")[-1] url = url.split("/")[0] url = url.split(":")[0] # Get the public suffix public_suffix = PublicSuffixList() url_tld = public_suffix.publicsuffix(url) # Else return the last part before the TLD return url[: -len(url_tld) - 1].split(".")[-1] @staticmethod def string_to_bool(string: str) -> Optional[bool]: """ Converts a string to a boolean. :param string: String to convert to boolean """ string = string.lower() if string in ["1", "true", "t", "yes", "y", "on", "enabled", "enable"]: return True if string in ["0", "false", "f", "no", "n", "off", "disabled", "disable"]: return False return None @staticmethod def is_string_null(string: str) -> bool: """ Checks if a string could mean null. :param string: String to check for meaning null """ string = string.lower() if string in [ "0", "false", "off", "disabled", "disable", "", "nul", "null", "none", "nil", ]: return True return False @staticmethod def ordinal(number: int) -> str: """ Returns the ordinal of a number :param number: Number to get ordinal string for :type: number: int """ if number % 10 == 1 and number % 100 != 11: return "{}st".format(number) elif number % 10 == 2 and number % 100 != 12: return "{}nd".format(number) elif number % 10 == 3 and number % 100 != 13: return "{}rd".format(number) else: return "{}th".format(number) @staticmethod def format_unix_time(time_stamp: float) -> str: """ Returns a string, formatted datetime from a timestamp :param time_stamp: unix timestamp """ return datetime.datetime.utcfromtimestamp(time_stamp).strftime( "%Y-%m-%d %H:%M:%S" ) @staticmethod def create_headers_dict(headers: List[List[str]]) -> Dict[str, str]: """ Creates a headers dictionary, for requests, and adds user agent :param headers: List of HTTP headers to add to request """ if headers is None: headers = [] headers_dict = {"User-Agent": "Hallo IRCBot <EMAIL>"} for header in headers: headers_dict[header[0]] = header[1] return headers_dict @staticmethod def load_url_string(url: str, headers: List[List[str]] = None) -> str: """ Takes a url to an xml resource, pulls it and returns a dictionary. :param url: URL to download :param headers: List of HTTP headers to add to request """ headers_dict = Commons.create_headers_dict(headers) resp = requests.get(url, headers=headers_dict) return resp.text @staticmethod def load_url_json(url: str, headers: List[List[str]] = None, json_fix: bool = False) -> Dict: """ Takes a url to a json resource, pulls it and returns a dictionary. :param url: URL of json to download :param headers: List of HTTP headers to add to request :param json_fix: Whether to "fix" the JSON being returned for parse errors """ if headers is None: headers = [] code = Commons.load_url_string(url, headers) if json_fix: code = re.sub(",+", ",", code) code = code.replace("[,", "[").replace(",]", "]") try: output_dict = json.loads(code) except Exception as e: logger.error("Failed to parse received JSON: %s", code, exc_info=e) raise e return output_dict @staticmethod def put_json_to_url(url: str, data: Dict, headers: List[List[str]] = None) -> None: """ Converts data to JSON and PUT it to the specified URL :param url: URL to send PUT request to :param data: data to send, as JSON :param headers: List of HTTP headers to add to the request """ headers_dict = Commons.create_headers_dict(headers) requests.put(url, headers=headers_dict, json=data) @staticmethod def check_numbers(message: str) -> bool: """ Checks that an argument is purely numbers :param message: String to check for pure number-ness """ message = message.lower().replace(" ", "") if message.count(".") > 1: return False if message.replace(".", "").isdigit(): return True return False @staticmethod def check_calculation(message: str) -> bool: """ Checks that an argument is purely numbers and calculation characters :param message: String to be checked to see if it's a calculation """ message = message.strip().lower() valid_chars = [str(x) for x in range(10)] valid_chars += [".", ")", "^", "*", "x", "/", "%", "+", "-", "pi", "e", " "] valid_chars += [ "acos(", "asin(", "atan(", "cos(", "sin(", "tan(", "sqrt(", "log(", ] valid_chars += [ "acosh(", "asinh(", "atanh(", "cosh(", "sinh(", "tanh(", "gamma(", "(", ] for char in valid_chars: message = message.replace(char, "") if message == "": return True else: return False @staticmethod def is_float_string(float_string: str) -> bool: """ Checks whether a string is a valid float :param float_string: String to check for validity in float conversion """ try: float(float_string) return True except ValueError: return False @classmethod def is_int_string(cls, int_string: str) -> bool: try: int(int_string) return True except ValueError: return False @staticmethod def get_digits_from_start_or_end(string: str) -> Optional[str]: """ Gets the longest string of digits from the start or end of a string, or None :param string: String to find sequence of digits from """ start_digits = [ string[:x] for x in range(1, len(string) + 1) if Commons.is_float_string(string[:x]) ] if len(start_digits) != 0: return start_digits[-1] end_digits = [ string[x:] for x in range(len(string)) if Commons.is_float_string(string[x:]) ] if len(end_digits) != 0: return end_digits[0] return None @staticmethod def get_calc_from_start_or_end(string: str) -> Optional[str]: """ Gets the longest calculation of digits from the start or end of a string, or None :param string: String to find calculation from """ start_digits = [ string[:x] for x in range(1, len(string) + 1) if Commons.check_calculation(string[:x]) ] if len(start_digits) != 0: return start_digits[-1] end_digits = [ string[x:] for x in range(len(string)) if Commons.check_calculation(string[x:]) ] if len(end_digits) != 0: return end_digits[0] return None @staticmethod def list_greater(list_one: List[float], list_two: List[float]) -> Optional[bool]: """ Checks whether listOne is "greater" than listTwo. Checks if an earlier element of listOne is greater than the equally placed element in listTwo :param list_one: List of elements, for checking against listTwo :param list_two: List of elements, to check against listOne """ if len(list_one) != len(list_two): raise ValueError("Lists must be the same length.") for index in range(len(list_one)): if list_one[index] == list_two[index]: continue if list_one[index] > list_two[index]: return True return False return None @staticmethod def get_random_int(min_int: int, max_int: int, count: int = 1) -> List[int]: """ Returns a list of random integers in a given range :param min_int: Minimum integer to return :param max_int: Maximum integer to return :param count: Number of random integers to return """ # If there's no range, just return a list. if min_int == max_int: return [min_int] * count output_list = [] for _ in range(count): output_list.append(random.randint(min_int, max_int)) return output_list @staticmethod def get_random_choice(choice_list: List[T], count: int = 1) -> List[T]: """ Replacement for random.choice :param choice_list: List of choices to choose from :param count: Number of choices to pick """ rand_int = Commons.get_random_int(0, len(choice_list) - 1, count) output_list = [] for x in range(count): output_list.append(choice_list[rand_int[x]]) return output_list @staticmethod def upper(data: str) -> str: """ Converts a string to upper case, except for the URL """ # Find any URLs, convert line to uppercase, then convert URLs back to original urls = re.findall( "http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*(),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+", data, ) data = data.upper() for url in urls: data = data.replace(url.upper(), url) return data @staticmethod def find_parameter(param_name: str, line: str) -> Optional[str]: """ Finds a parameter value in a line, if the format parameter=value exists in the line """ param_value = None param_regex = re.compile( r"(^|\s){}=([^\s]+)(\s|$)".format(param_name), re.IGNORECASE ) param_search = param_regex.search(line) if param_search is not None: param_value = param_search.group(2) return param_value @staticmethod def find_any_parameter(param_list: List[str], line: str) -> Union[str, bool]: """ Finds one of any parameter in a line. """ for param_name in param_list: find = Commons.find_parameter(param_name, line) if find is not None: return find return False @staticmethod def html_escape(string: str) -> str: """ Escapes a string to ensure it can be used in html without issues """ return string.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;") class CachedObject(Generic[S]): def __init__(self, setter: Callable[[], S], cache_expiry: Optional[timedelta] = None) -> None: """ :type setter: Callable :type cache_expiry: timedelta """ self.setter: Callable[[], S] = setter self.cache_expiry: timedelta = ( cache_expiry if cache_expiry is not None else timedelta(minutes=5) ) self.cache_time: Optional[datetime.datetime] = None self.value: Optional[S] = None def get(self) -> S: if ( self.cache_time is None or (self.cache_time + self.cache_expiry) < datetime.datetime.now() ): self.value = self.setter() self.cache_time = datetime.datetime.now() return self.value def inherits_from(child: Type, parent_name: str) -> bool: if inspect.isclass(child): if parent_name in [c.__name__ for c in inspect.getmro(child)[1:]]: return True return False ``` #### File: modules/channel_control/invite.py ```python from hallo.events import EventInvite from hallo.function import Function import hallo.modules.channel_control.channel_control from hallo.server import Server class Invite(Function): """ IRC only, invites users to a given channel. """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "invite" # Names which can be used to address the function self.names = {"invite"} # Help documentation, if it's just a single line, can be set here self.help_docs = "Invite someone to a channel" def run(self, event): # Get server object server_obj = event.server # If server isn't IRC type, we can't invite people if server_obj.type != Server.TYPE_IRC: return event.create_response( "Error, this function is only available for IRC servers." ) # If 0 arguments, ask for clarification line_split = event.command_args.split() if len(line_split) == 0: return event.create_response( "Error, please specify a user to invite and/or a channel to invite to." ) # If 1 argument, see if it's a channel or a user. if len(line_split) == 1: # If message was sent in private message, it's referring to a channel if event.channel is None: channel = server_obj.get_channel_by_name(event.command_args) if channel is None: return event.create_response( "Error, {} is not known on {}.".format( event.command_args, server_obj.name ) ) return event.create_response(self.send_invite(channel, event.user)) # See if it's a channel that hallo is in test_channel = server_obj.get_channel_by_name(event.command_args) if test_channel is not None and test_channel.in_channel: return event.create_response(self.send_invite(test_channel, event.user)) # Argument must be a user? target_user = server_obj.get_user_by_name(event.command_args) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format( event.command_args, server_obj.name ) ) return event.create_response(self.send_invite(event.channel, target_user)) # If 2 arguments, try with first argument as channel target_channel = server_obj.get_channel_by_name(line_split[0]) if target_channel is not None and target_channel.in_channel: target_user = server_obj.get_user_by_name(line_split[1]) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format( line_split[1], server_obj.name ) ) return event.create_response(self.send_invite(target_channel, target_user)) # 2 args, try with second argument as channel target_user = server_obj.get_user_by_name(line_split[0]) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format(line_split[0], server_obj.name) ) target_channel = server_obj.get_channel_by_name(line_split[1]) if target_channel is None: return event.create_response( "Error, {} is not known on {}.".format(line_split[1], server_obj.name) ) return event.create_response(self.send_invite(target_channel, target_user)) def send_invite(self, channel, user): """ Sends an invite to a specified user to join a given channel. :param channel: Channel to invite target to :type channel: destination.Channel :param user: User to invite to channel :type user: destination.User :return: Response to send to requester :rtype: str """ # Check if in channel if not channel.in_channel: return "Error, I'm not in that channel." # Check if user is in channel if user in channel.get_user_list(): return "Error, {} is already in {}".format(user.name, channel.name) # Check if hallo has op in channel if not hallo.modules.channel_control.channel_control.hallo_has_op(channel): return "Error, I don't have power to invite users in {}.".format( channel.name ) # Send invite invite_evt = EventInvite(channel.server, channel, None, user, inbound=False) channel.server.send(invite_evt) return "Invite sent." ``` #### File: modules/channel_control/kick.py ```python from hallo.events import EventKick from hallo.function import Function import hallo.modules.channel_control.channel_control from hallo.server import Server class Kick(Function): """ Kicks a specified user from a specified channel. IRC Only. """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "kick" # Names which can be used to address the function self.names = {"kick"} # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Kick given user in given channel, or current channel if no channel given." ) def run(self, event): # Get server object server_obj = event.server # If server isn't IRC type, we can't invite people if server_obj.type != Server.TYPE_IRC: return event.create_response( "Error, this function is only available for IRC servers." ) # If 0 arguments, ask for clarification line_split = event.command_args.split() if len(line_split) == 0: return event.create_response( "Error, please specify a user to kick and/or a channel to kick from." ) # If 1 argument, see if it's a channel or a user. if len(line_split) == 1: # If message was sent in private message, it's referring to a channel if event.channel is None: channel = server_obj.get_channel_by_name(event.command_args) if channel is None: return event.create_response( "Error, {} is not known on {}.".format( event.command_args, server_obj.name ) ) return event.create_response(self.send_kick(channel, event.user)) # See if it's a channel that hallo is in test_channel = server_obj.get_channel_by_name(event.command_args) if test_channel is not None and test_channel.in_channel: return event.create_response(self.send_kick(test_channel, event.user)) # Argument must be a user? target_user = server_obj.get_user_by_name(event.command_args) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format( event.command_args, server_obj.name ) ) return event.create_response(self.send_kick(event.channel, target_user)) if len(line_split) == 2: # If message was in private message, it's either channel and user, user and channel or channel and message if event.channel is None: target_channel = server_obj.get_channel_by_name(line_split[0]) if target_channel is not None: if target_channel.in_channel: target_user = server_obj.get_user_by_name(line_split[1]) if ( target_user is not None and target_channel.is_user_in_channel(target_user) ): return event.create_response( self.send_kick(target_channel, target_user) ) return event.create_response( self.send_kick(target_channel, event.user, line_split[1]) ) return event.create_response("Error, I am not in that channel.") target_user = server_obj.get_user_by_name(line_split[0]) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format( line_split[0], server_obj.name ) ) target_channel = server_obj.get_channel_by_name(line_split[1]) if target_channel is None: return event.create_response( "Error, {} is not known on {}.".format( line_split[1], server_obj.name ) ) return event.create_response( self.send_kick(target_channel, target_user) ) # If 2 arguments, try with first argument as channel target_channel = server_obj.get_channel_by_name(line_split[0]) if target_channel is not None and target_channel.in_channel: target_user = server_obj.get_user_by_name(line_split[1]) if target_user is not None and target_channel.is_user_in_channel( target_user ): return event.create_response( self.send_kick(target_channel, target_user) ) return event.create_response( self.send_kick(target_channel, event.user, line_split[1]) ) # 2 args, try with second argument as channel target_user = server_obj.get_user_by_name(line_split[0]) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format( line_split[0], server_obj.name ) ) target_channel = server_obj.get_channel_by_name(line_split[1]) if target_channel is not None and target_channel.in_channel: return event.create_response( self.send_kick(target_channel, target_user) ) return event.create_response( self.send_kick(event.channel, target_user, line_split[1]) ) # If message was in private message, it's either channel, user and message or user, channel and message or # channel and message if event.channel is None: target_channel = server_obj.get_channel_by_name(line_split[0]) if target_channel is not None: if target_channel.in_channel: target_user = server_obj.get_user_by_name(line_split[1]) if target_user is not None and target_channel.is_user_in_channel( target_user ): return event.create_response( self.send_kick( target_channel, target_user, " ".join(line_split[2:]) ) ) return event.create_response( self.send_kick( target_channel, event.user, " ".join(line_split[1:]) ) ) return event.create_response("Error, I am not in that channel.") target_user = server_obj.get_user_by_name(line_split[0]) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format( line_split[0], server_obj.name ) ) target_channel = server_obj.get_channel_by_name(line_split[1]) if target_channel is None: return event.create_response( "Error, {} is not known on {}.".format( line_split[1], server_obj.name ) ) return event.create_response( self.send_kick(target_channel, target_user, " ".join(line_split[2:])) ) # If more than 2 arguments, determine which of the first 2 is channel/user, the rest is a message. target_channel = server_obj.get_channel_by_name(line_split[0]) if target_channel is not None and target_channel.in_channel: target_user = server_obj.get_user_by_name(line_split[1]) if target_user is not None and target_channel.is_user_in_channel( target_user ): return event.create_response( self.send_kick( target_channel, target_user, " ".join(line_split[2:]) ) ) return event.create_response( self.send_kick(target_channel, event.user, " ".join(line_split[1:])) ) # 2 args, try with second argument as channel target_user = server_obj.get_user_by_name(line_split[0]) if target_user is None: return event.create_response( "Error, {} is not known on {}.".format(line_split[0], server_obj.name) ) target_channel = server_obj.get_channel_by_name(line_split[1]) if target_channel is not None and target_channel.in_channel: return event.create_response( self.send_kick(target_channel, target_user, " ".join(line_split[2:])) ) return event.create_response( self.send_kick(event.channel, target_user, " ".join(line_split[1:])) ) def send_kick(self, channel, user, message=""): """ Sends an invite to a specified user to join a given channel. :param channel: Channel to invite target to :type channel: destination.Channel :param user: User to invite to channel :type user: destination.User :param message: Kick message to send :type message: str :return: Response to send to requester :rtype: str """ # Check if in channel if not channel.in_channel: return "Error, I'm not in that channel." # Check if user is in channel if user not in channel.get_user_list(): return "Error, {} is not in {}.".format(user.name, channel.name) # Check if hallo has op in channel if not hallo.modules.channel_control.channel_control.hallo_has_op(channel): return "Error, I don't have power to kick users from {}.".format( channel.name ) # Send invite kick_evt = EventKick( channel.server, channel, None, user, message, inbound=False ) channel.server.send(kick_evt) return "Kicked {} from {}.".format(user.name, channel.name) ``` #### File: modules/convert/convert_unit_remove_name.py ```python from hallo.function import Function from hallo.inc.input_parser import InputParser class ConvertUnitRemoveName(Function): """ Removes a name or abbreviation from a unit, unless it's the last name. """ NAMES_UNIT = ["unit", "u"] NAMES_TYPE = ["type", "t"] NAMES_DEL = ["delete name", "remove name", "del", "delete", "remove"] def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "convert unit remove name" # Names which can be used to address the Function self.names = { "convert unit remove name", "convert unit delete name", "convert unit remove abbreviation", "convert unit delete abbreviation", "convert unit remove abbr", "convert unit delete abbr", "convert remove unit name", "convert delete unit name", "convert remove unit abbreviation", "convert delete unit abbreviation", "convert remove unit abbr", "convert delete unit abbr", } # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Removes a name or abbreviation from a unit, unless it's the last name." ) def run(self, event): # Load repo, clean line function_dispatcher = event.server.hallo.function_dispatcher convert_function = function_dispatcher.get_function_by_name("convert") convert_function_obj = function_dispatcher.get_function_object( convert_function ) # type: Convert repo = convert_function_obj.convert_repo # Parse input parsed = InputParser(event.command_args) # Check if unit is defined unit_name = parsed.get_arg_by_names(self.NAMES_UNIT) # Check if type is defined type_obj = None type_name = parsed.get_arg_by_names(self.NAMES_TYPE) if type_name is not None: type_obj = repo.get_type_by_name(type_name) if type_obj is None: return event.create_response("Invalid type specified.") # Check if delete name is specified del_name = parsed.get_arg_by_names(self.NAMES_DEL) if del_name is None: del_name = parsed.remaining_text # Check if description is sufficient to narrow it to 1 and only 1 unit unit_list = ( repo.get_full_unit_list() if type_obj is None else type_obj.get_full_unit_list() ) user_unit_options = [] for unit_obj in unit_list: # if unit name is defined and not a valid name for the unit, skip it. if unit_name is not None and not unit_obj.has_name(unit_name): continue # If input_name is not a valid name for the unit, skip it. if not unit_obj.has_name(del_name): continue # Otherwise it's the one, add it to the list user_unit_options.append(unit_obj) # Check if that narrowed it down correctly. if len(user_unit_options) == 0: return event.create_response( "There are no units matching that description." ) if len(user_unit_options) >= 2: return event.create_response("It is ambiguous which unit you refer to.") # Check this unit has other names. user_unit = user_unit_options[0] if len(user_unit.name_list) == 1: return event.create_response( "This unit only has 1 name, you cannot remove its last name." ) # Remove name user_unit.remove_name(del_name) # Save repo repo.save_json() # Output return event.create_response( 'Removed name "{}" from "{}" unit.'.format(del_name, user_unit.name_list[0]) ) ``` #### File: modules/convert/update_currencies.py ```python import logging import time from xml.dom import minidom from hallo.events import EventHour from hallo.function import Function from hallo.inc.commons import Commons logger = logging.getLogger(__name__) class UpdateCurrencies(Function): """ Updates all currencies in the ConvertRepo """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "update currencies" # Names which can be used to address the Function self.names = { "update currencies", "convert update currencies", "currency update", "update currency", "currencies update", } # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Update currency conversion figures, using data from the money converter, the European " "central bank, forex and preev." ) def run(self, event): # Get convert repo function_dispatcher = event.server.hallo.function_dispatcher convert_function = function_dispatcher.get_function_by_name("convert") convert_function_obj = function_dispatcher.get_function_object( convert_function ) # type: Convert repo = convert_function_obj.convert_repo # Update all sources output_lines = self.update_all(repo) # Return output return event.create_response("\n".join(output_lines)) def get_passive_events(self): return {EventHour} def passive_run(self, event, hallo_obj): # Get convert repo function_dispatcher = hallo_obj.function_dispatcher convert_function = function_dispatcher.get_function_by_name("convert") convert_function_obj = function_dispatcher.get_function_object( convert_function ) # type: Convert repo = convert_function_obj.convert_repo # Update all sources output_lines = self.update_all(repo) for line in output_lines: logger.info(line) return None def update_all(self, repo): output_lines = [] # Update with the European Bank try: output_lines.append( self.update_from_european_bank_data(repo) or "Updated currency data from the European Central Bank." ) except Exception as e: output_lines.append( "Failed to update European Central Bank data. {}".format(e) ) # Update with Forex try: output_lines.append( self.update_from_forex_data(repo) or "Updated currency data from Forex." ) except Exception as e: output_lines.append("Failed to update Forex data. {}".format(e)) # Update with Preev try: output_lines.append( self.update_from_cryptonator_data(repo) or "Updated currency data from Cryptonator." ) except Exception as e: output_lines.append("Failed to update Cryptonator data. {}".format(e)) # Save repo repo.save_json() return output_lines def update_from_european_bank_data(self, repo): """ Updates the value of conversion currency units using The European Bank data. :type repo: ConvertRepo """ # Get currency ConvertType currency_type = repo.get_type_by_name("currency") # Pull xml data from european bank website url = "https://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml" xml_string = Commons.load_url_string(url) # Parse data doc = minidom.parseString(xml_string) root = doc.getElementsByTagName("gesmes:Envelope")[0] cube_one_elem = root.getElementsByTagName("Cube")[0] cube_two_elem = cube_one_elem.getElementsByTagName("Cube")[0] for cube_three_elem in cube_two_elem.getElementsByTagName("Cube"): # Get currency code from currency Attribute currency_code = cube_three_elem.getAttributeNode("currency").nodeValue # Get value from rate attribute and get reciprocal. currency_value = 1 / float( cube_three_elem.getAttributeNode("rate").nodeValue ) # Get currency unit currency_unit = currency_type.get_unit_by_name(currency_code) # If unrecognised currency, SKIP if currency_unit is None: continue # Set Value currency_unit.update_value(currency_value) def update_from_forex_data(self, repo): """ Updates the value of conversion currency units using Forex data. :type repo: ConvertRepo """ # Get currency ConvertType currency_type = repo.get_type_by_name("currency") # Pull xml data from forex website url = "https://rates.fxcm.com/RatesXML3" xml_string = Commons.load_url_string(url) # Parse data doc = minidom.parseString(xml_string) rates_elem = doc.getElementsByTagName("Rates")[0] for rate_elem in rates_elem.getElementsByTagName("Rate"): # Get data from element symbol_data = rate_elem.getElementsByTagName("Symbol")[0].firstChild.data if not symbol_data.startswith("EUR"): continue bid_data = float(rate_elem.getElementsByTagName("Bid")[0].firstChild.data) ask_data = float(rate_elem.getElementsByTagName("Ask")[0].firstChild.data) # Get currency code and value from data currency_code = symbol_data[3:] currency_value = 1 / (0.5 * (bid_data + ask_data)) # Get currency unit currency_unit = currency_type.get_unit_by_name(currency_code) # If unrecognised code, skip if currency_unit is None: continue # Set Value currency_unit.update_value(currency_value) def update_from_cryptonator_data(self, repo): """ Updates the value of conversion cryptocurrencies using cryptonator data. :type repo: ConvertRepo """ # Get currency ConvertType currency_type = repo.get_type_by_name("currency") # Pull json data from preev website, combine into 1 dict currency_codes = ["LTC", "BTC", "BCH", "DOGE", "XMR", "ETH", "ETC", "DASH"] for code in currency_codes: # Get data try: data = Commons.load_url_json( "https://api.cryptonator.com/api/ticker/{}-eur".format(code) ) except Exception as e: # If it fails, because it failed to parse the JSON, give it another go # Cryptonator API returns HTML sometimes. I don't know why. if "Expecting value:" in str(e): time.sleep(5) data = Commons.load_url_json( "https://api.cryptonator.com/api/ticker/{}-eur".format(code) ) else: raise e # Get the ConvertUnit object for the currency reference currency_unit = currency_type.get_unit_by_name(code) if currency_unit is None: continue # Update the value currency_unit.update_value(data["ticker"]["price"]) ``` #### File: modules/dailys/dailys.py ```python import hallo.modules.dailys.dailys_field_factory from hallo.events import EventMessage from hallo.function import Function import hallo.modules.dailys.dailys_field import hallo.modules.dailys.dailys_repo class Dailys(Function): def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "dailys" # Names which can be used to address the function self.names = {"dailys"} # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Core dailys method, does all the dailys processing passively." " Doesn't do anything (currently) when called actively." ) self.dailys_repo = None """ :type : DailysRepo | None""" def get_dailys_repo(self, hallo_obj): if self.dailys_repo is None: self.dailys_repo = hallo.modules.dailys.dailys_repo.DailysRepo.load_json(hallo_obj) return self.dailys_repo @staticmethod def is_persistent(): return True @staticmethod def load_function(): """Loads the function, persistent functions only.""" return Dailys() def save_function(self): """Saves the function, persistent functions only.""" if self.dailys_repo is not None: self.dailys_repo.save_json() def get_passive_events(self): """Returns a list of events which this function may want to respond to in a passive way""" return set( [ event for field in hallo.modules.dailys.dailys_field_factory.DailysFieldFactory.fields for event in field.passive_events() ] ) def run(self, event): if event.text.strip().lower() in ["reload", "redeploy", "refresh"]: self.dailys_repo.save_json() self.dailys_repo = None self.get_dailys_repo(event.server.hallo) return event.reply(event.create_response("Dailys repository reloaded.")) return event.reply(event.create_response("Dailys system does not understand this command.")) def passive_run(self, event, hallo_obj): repo = self.get_dailys_repo(hallo_obj) spreadsheets = repo.spreadsheets if isinstance(event, EventMessage): msg_spreadsheet = repo.get_by_location(event) if msg_spreadsheet is None: return spreadsheets = [msg_spreadsheet] for spreadsheet in spreadsheets: for field in spreadsheet.fields_list: if event.__class__ in field.passive_events(): try: field.passive_trigger(event) except Exception as e: hallo.modules.dailys.dailys_field.logger.error("Dailys failure: ", exc_info=e) ``` #### File: modules/dailys/field_sleep.py ```python from datetime import timedelta from hallo.events import EventMessage import hallo.modules.dailys.dailys_field class DailysSleepField(hallo.modules.dailys.dailys_field.DailysField): # Does sleep and wake times, sleep notes, dream logs, shower? type_name = "sleep" WAKE_WORDS = ["morning", "wake", "woke"] SLEEP_WORDS = ["goodnight", "sleep", "nini", "night"] json_key_wake_time = "wake_time" json_key_sleep_time = "sleep_time" json_key_interruptions = "interruptions" @staticmethod def create_from_input(event, spreadsheet): return DailysSleepField(spreadsheet) @staticmethod def passive_events(): return [EventMessage] def passive_trigger(self, evt): """ :type evt: EventMessage :rtype: None """ input_clean = evt.text.strip().lower() now = evt.get_send_time() time_str = now.isoformat() sleep_date = evt.get_send_time().date() current_data = self.load_data(sleep_date) if current_data is None: current_data = dict() yesterday_date = sleep_date - timedelta(1) yesterday_data = self.load_data(yesterday_date) if yesterday_data is None: yesterday_data = dict() # If user is waking up if input_clean in DailysSleepField.WAKE_WORDS: # If today's data is blank, write in yesterday's sleep data if len(current_data) == 0: current_data = yesterday_data sleep_date = yesterday_date # If you already woke in this data, why are you waking again? if self.json_key_wake_time in current_data: self.message_channel("Didn't you already wake up?") return # If not, add a wake time to sleep data else: current_data[self.json_key_wake_time] = time_str self.save_data(current_data, sleep_date) self.message_channel("Good morning!") return # If user is going to sleep if input_clean in DailysSleepField.SLEEP_WORDS: # If it's before 4pm, it's probably yesterday's sleep. if now.hour <= 16: current_data = yesterday_data sleep_date = yesterday_date # Did they already go to sleep? if self.json_key_sleep_time in current_data: # Did they already wake? If not, they're updating their sleep time. if self.json_key_wake_time not in current_data: current_data[self.json_key_sleep_time] = time_str self.save_data(current_data, sleep_date) self.message_channel("Good night again!") return # Move the last wake time to interruptions interruption = dict() interruption[self.json_key_wake_time] = current_data.pop( self.json_key_wake_time ) interruption[self.json_key_sleep_time] = time_str if self.json_key_interruptions not in current_data: current_data[self.json_key_interruptions] = [] current_data[self.json_key_interruptions].append(interruption) self.save_data(current_data, sleep_date) self.message_channel("Oh, going back to sleep? Sleep well!") return # Otherwise they're headed to sleep else: current_data[self.json_key_sleep_time] = time_str self.save_data(current_data, sleep_date) self.message_channel("Goodnight!") return def to_json(self): json_obj = dict() json_obj["type_name"] = self.type_name return json_obj @staticmethod def from_json(json_obj, spreadsheet): return DailysSleepField(spreadsheet) ``` #### File: modules/furry/e621.py ```python from hallo.function import Function from hallo.inc.commons import Commons class E621(Function): """ Returns a random image from e621 """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "e621" # Names which can be used to address the function self.names = {"e621"} # Help documentation, if it's just a single line, can be set here self.help_docs = "Returns a random e621 result using the search you specify. Format: e621 <tags>" def run(self, event): search_result = self.get_random_link_result(event.command_args) if search_result is None: return event.create_response("No results.") else: link = "https://e621.net/posts/{}".format(search_result["id"]) if search_result["post"]["rating"] == "e": rating = "(Explicit)" elif search_result["post"]["rating"] == "q": rating = "(Questionable)" elif search_result["post"]["rating"] == "s": rating = "(Safe)" else: rating = "(Unknown)" line_response = event.command_args.strip() return event.create_response( 'e621 search for "{}" returned: {} {}'.format( line_response, link, rating ) ) def get_random_link_result(self, search): """Gets a random link from the e621 api.""" line_clean = search.replace(" ", "%20") url = "https://e621.net/posts.json?tags=order:random%20score:%3E0%20{}%20&limit=1".format( line_clean ) return_list = Commons.load_url_json(url) if len(return_list["posts"]) == 0: return None else: result = return_list["posts"][0] return result ``` #### File: modules/furry/random_porn.py ```python from hallo.function import Function class RandomPorn(Function): """ Returns a random explicit image from e621 """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "random porn" # Names which can be used to address the function self.names = {"random porn", "randomporn"} # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Returns a random explicit e621 result using the search you specify. " "Format: random porn <tags>" ) def run(self, event): line_unclean = "{} -rating:s".format(event.command_args.strip()) function_dispatcher = event.server.hallo.function_dispatcher e621_class = function_dispatcher.get_function_by_name("e621") e621_obj = function_dispatcher.get_function_object(e621_class) # type: E621 search_result = e621_obj.get_random_link_result(line_unclean) if search_result is None: return event.create_response("No results.") else: link = "https://e621.net/posts/{}".format(search_result["id"]) if search_result["post"]["rating"] == "e": rating = "(Explicit)" elif search_result["post"]["rating"] == "q": rating = "(Questionable)" elif search_result["post"]["rating"] == "s": rating = "(Safe)" else: rating = "(Unknown)" line_response = event.command_args.strip() return event.create_response( 'e621 search for "{}" returned: {} {}'.format( line_response, link, rating ) ) ``` #### File: modules/random/chosen_one.py ```python from hallo.function import Function from hallo.inc.commons import Commons class ChosenOne(Function): """ Selects a random user from a channel """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "chosen one" # Names which can be used to address the function self.names = {"chosen one", "chosenone", "random user"} # Help documentation, if it's just a single line, can be set here self.help_docs = "Specifies who the chosen one is. Format: chosen one" def run(self, event): # If this command is run in privmsg, it won't work if event.channel is None: return event.create_response("This function can only be used in a channel") # Get the user list user_set = event.channel.get_user_list() # Get list of users' names names_list = [user_obj.name for user_obj in user_set] rand_name = Commons.get_random_choice(names_list)[0] return event.create_response( "It should be obvious by now that {} is the chosen one.".format(rand_name) ) ``` #### File: modules/random/ouija.py ```python from hallo.function import Function from hallo.inc.commons import Commons class Ouija(Function): """ Ouija board function. "Ouija board" is copyright Hasbro. """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "ouija" # Names which can be used to address the function self.names = { "ouija", "ouija board", "random words", "message from the other side", } # Help documentation, if it's just a single line, can be set here self.help_docs = "Ouija board function. Format: ouija <message>" def run(self, event): word_list = Commons.read_file_to_list("store/ouija_wordlist.txt") num_words = Commons.get_random_int(1, 3)[0] rand_words = Commons.get_random_choice(word_list, num_words) output_string = "I'm getting a message from the other side... {}.".format( " ".join(rand_words) ) return event.create_response(output_string) ``` #### File: modules/subscriptions/source_e621_tagging.py ```python from typing import List, Optional, Dict, TYPE_CHECKING from yippi import Post, Rating, YippiClient import hallo.modules.subscriptions.common_e6_key import hallo.modules.subscriptions.source_e621 import hallo.modules.subscriptions.stream_source import hallo.modules.subscriptions.subscription_exception from hallo.destination import Channel, User, Destination from hallo.events import EventMessage, EventMessageWithPhoto, EventMenuCallback, MenuButton from hallo.inc.input_parser import InputParser from hallo.inc.menus import Menu from hallo.server import Server if TYPE_CHECKING: from hallo.hallo import Hallo import hallo.modules.subscriptions.subscription_check import hallo.modules.subscriptions.subscription_repo def buttons_for_submission(tag_results: Dict[str, bool], page: int = 1) -> List[List[MenuButton]]: columns = 2 rows = 6 per_page = columns * rows tag_names = sorted(tag_results.keys()) pages = ((len(tag_results) - 1) // per_page) + 1 tag_names_on_page = tag_names[(page - 1) * per_page: page * per_page] buttons = [] button_row = [] for tag_name in tag_names_on_page: button_emoji = "\u2714" if tag_results[tag_name] else "\u274C" button_row.append(MenuButton(f"{button_emoji} {tag_name}", f"tag:{tag_name}")) if len(button_row) >= columns: buttons.append(button_row) button_row = [] if button_row: buttons.append(button_row) # Bottom row bottom_row = [] if page > 1: bottom_row.append(MenuButton("\u23EE️Back", f"page:{page-1}")) bottom_row.append(MenuButton("\U0001F504Refresh", "refresh")) bottom_row.append(MenuButton("\U0001F4BESubmit", "submit")) if page < pages: bottom_row.append(MenuButton("\u23EDNext", f"page:{page+1}")) buttons.append(bottom_row) return buttons def text_for_post(item: 'Post', *, prefix: str = None, suffix: str = None) -> str: link = f"https://e621.net/posts/{item.id}" # Create rating string rating_dict = {Rating.EXPLICIT: "(Explicit)", Rating.QUESTIONABLE: "(Questionable)", Rating.SAFE: "(Safe)"} rating = rating_dict.get(item.rating, "(Unknown)") # Construct output output = f'{link} {rating}.' if prefix is not None: output = prefix + "\n" + output if suffix is not None: output += "\n" + suffix return output class E621TaggingMenu(Menu): type = "e621_tagging" def __init__( self, msg: 'EventMessage', user: 'User', e6_client: YippiClient, post_id: int, search: str, tag_results: Dict[str, bool], page: int = 1 ) -> None: super().__init__(msg) self.user = user self.e6_client = e6_client self.post_id = post_id self.search = search self.tag_results = tag_results self.page = page self.clicked = False def text_for_post(self, item: 'Post', suffix: str = None) -> str: prefix = f'Update on "{self.search}" tagging e621 search.' return text_for_post(item, prefix=prefix, suffix=suffix) def handle_callback(self, event: 'EventMenuCallback') -> None: if self.clicked: return self.clicked = True if event.callback_data.startswith("page:"): self.page = int(event.callback_data.split(":")[1]) return self.update_tag_menu() if event.callback_data.startswith("tag:"): tag = event.callback_data.split(":", 1)[1] self.tag_results[tag] = not self.tag_results[tag] return self.update_tag_menu() if event.callback_data == "refresh": post = self.e6_client.post(self.post_id) post_tags = [tag for tag_list in post.tags.values() for tag in tag_list] old_tag_results = self.tag_results self.tag_results = {tag: tag in post_tags for tag in self.tag_results.keys()} if old_tag_results != self.tag_results: return self.update_tag_menu() else: self.clicked = False return if event.callback_data == "submit": post = self.e6_client.post(self.post_id) negative_tags = set(tag for tag in self.tag_results.keys() if self.tag_results[tag] is False) positive_tags = set(tag for tag in self.tag_results.keys() if self.tag_results[tag] is True) current_tags = set(tag for tag_list in post.tags.values() for tag in tag_list) new_tags = positive_tags - current_tags del_tags = negative_tags.intersection(current_tags) menu_buttons = [ [MenuButton("Save", "save")], [MenuButton("Cancel", "cancel")] ] if not new_tags and not del_tags: text = self.text_for_post(post, "This will not make any changes, are you sure?") return self.update(text, menu_buttons) suffix = ["This will make these changes"] if new_tags: suffix.append("Add tags: " + ", ".join(new_tags)) if del_tags: suffix.append("Remove tags: " + ", ".join(del_tags)) text = self.text_for_post(post, "\n".join(suffix)) return self.update(text, menu_buttons) if event.callback_data == "cancel": post = self.e6_client.post(self.post_id) text = self.text_for_post(post) menu_buttons = buttons_for_submission(self.tag_results, self.page) return self.update(text, menu_buttons) if event.callback_data == "save": post = self.e6_client.post(self.post_id) negative_tags = set(tag for tag in self.tag_results.keys() if self.tag_results[tag] is False) positive_tags = set(tag for tag in self.tag_results.keys() if self.tag_results[tag] is True) current_tags = set(tag for tag_list in post.tags.values() for tag in tag_list) new_tags = positive_tags - current_tags del_tags = negative_tags.intersection(current_tags) text = self.text_for_post(post) if not new_tags and not del_tags: return self.update(text, None) new_tag_dict = { tag_key: [tag for tag in tag_list if tag not in negative_tags] for tag_key, tag_list in post.tags.items() } new_tag_dict["general"].extend(positive_tags) post.tags = new_tag_dict has_notes = post._original_data["has_notes"] post.update(has_notes=has_notes, reason="Tag change via Hallo bot") return self.update(text, None) def update_tag_menu(self) -> None: buttons = buttons_for_submission(self.tag_results, self.page) self.update(None, buttons) def update(self, text: Optional[str], menu_buttons: Optional[List[List[MenuButton]]]) -> None: new_event = self.msg.create_edit(text=text, menu_buttons=menu_buttons) self.msg.server.edit(self.msg, new_event) self.msg = new_event self.clicked = False @classmethod def from_json(cls, hallo_obj: 'Hallo', msg: 'EventMessage', data: Dict) -> 'Menu': server = hallo_obj.get_server_by_name(msg.server_name) user = server.get_user_by_address(data["user_addr"]) if user is None: raise hallo.modules.subscriptions.subscription_exception.SubscriptionException( "Could not find user matching address `{}`".format(data["user_addr"]) ) function_dispatcher = hallo_obj.function_dispatcher sub_check_class = function_dispatcher.get_function_by_name("check subscription") sub_check_obj: hallo.modules.subscriptions.subscription_check.SubscriptionCheck = function_dispatcher.get_function_object( sub_check_class ) sub_repo = sub_check_obj.get_sub_repo(hallo_obj) e6_keys = sub_repo.get_common_config_by_type(hallo.modules.subscriptions.common_e6_key.E6KeysCommon) e6_client = e6_keys.get_client_by_user(user) return cls( msg, user, e6_client, data["post_id"], data["search"], data["tag_results"], data["page"] ) def to_json(self) -> Dict: return { "user_addr": self.user.address, "post_id": self.post_id, "search": self.search, "tag_results": self.tag_results, "page": self.page } class E621TaggingSource(hallo.modules.subscriptions.source_e621.E621Source): type_name = "e621_tagging" type_names: List[str] = ["e621 tagging", "e621 tagging search", "tagging e621"] def __init__( self, search: str, e6_client: YippiClient, sub_repo: 'hallo.modules.subscriptions.subscription_repo.SubscriptionRepo', owner: User, tags: List[str], last_keys: Optional[List[hallo.modules.subscriptions.stream_source.Key]] = None ): super().__init__(search, e6_client, owner, last_keys) self.sub_repo = sub_repo self.owner = owner self.tags: List[str] = tags @classmethod def from_input(cls, argument: str, user: User, sub_repo) -> 'E621TaggingSource': parsed = InputParser(argument) tags_arg = parsed.get_arg_by_names( ["tags", "watched_tags", "to_tag", "watched tags", "to tag", "watch"] ) search_arg = parsed.get_arg_by_names( [ "search", "query", "search_query", "search query", "subscription", "sub", "search_term", "search term", ] ) if tags_arg is not None: tags = tags_arg.split() if search_arg is not None: search = search_arg else: search = parsed.remaining_text else: if search_arg is not None: search = search_arg tags = parsed.remaining_text.split() else: raise hallo.modules.subscriptions.subscription_exception.SubscriptionException( 'You need to specify a search term with search="search term" and ' 'tags to watch with tags="tags to watch"' ) e6_keys = sub_repo.get_common_config_by_type(hallo.modules.subscriptions.common_e6_key.E6KeysCommon) # Make sure you're not using the default user here e6_client = e6_keys.get_client_by_user(user, allow_default=False) return cls(search, e6_client, sub_repo, user, tags) @property def title(self) -> str: return f'search for "{self.search}" to apply tags {self.tags}' def item_text_prefix(self) -> str: return f'Update on "{self.search}" tagging e621 search.' def item_to_event( self, server: Server, channel: Optional[Channel], user: Optional[User], item: Post ) -> EventMessage: # Check tags post_tags = [tag for tag_list in item.tags.values() for tag in tag_list] tag_results = {tag: tag in post_tags for tag in self.tags} # Construct output output = text_for_post(item, prefix=self.item_text_prefix()) image_url = item.file["url"] menu_buttons = buttons_for_submission(tag_results) if item.file["ext"] in ["swf", "webm"] or image_url is None: msg = EventMessage(server, channel, user, output, inbound=False, menu_buttons=menu_buttons) else: msg = EventMessageWithPhoto( server, channel, user, output, image_url, inbound=False, menu_buttons=menu_buttons ) menu = E621TaggingMenu(msg, self.owner, self.e6_client, item.id, self.search, tag_results) self.sub_repo.menu_cache.add_menu(menu) return msg @classmethod def from_json(cls, json_data: Dict, destination: Destination, sub_repo) -> 'E621TaggingSource': user_addr = json_data["e621_user_address"] user = destination.server.get_user_by_address(user_addr) e6_client = hallo.modules.subscriptions.source_e621.e6_client_from_input(user, sub_repo) return E621TaggingSource( json_data["search"], e6_client, sub_repo, user, json_data["tags"], json_data["last_keys"] ) def to_json(self) -> Dict: return { "type": self.type_name, "last_keys": self.last_keys, "search": self.search, "tags": self.tags, "e621_user_address": self.owner.address } ``` #### File: modules/subscriptions/source_fa_notif_comments.py ```python from typing import Dict, Optional, List from urllib.error import HTTPError from hallo.destination import Destination, User, Channel from hallo.events import EventMessage import hallo.modules.subscriptions.source_fa_favs import hallo.modules.subscriptions.stream_source import hallo.modules.subscriptions.common_fa_key import hallo.modules.subscriptions.source from hallo.server import Server class FASubmissionCommentSource( hallo.modules.subscriptions.stream_source.StreamSource[ hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentSubmission ] ): type_name = "fa_submission_comments" type_names = ["fa submission comments"] def __init__( self, fa_key: hallo.modules.subscriptions.common_fa_key.FAKey, last_keys: Optional[List[hallo.modules.subscriptions.stream_source.Key]] = None ): super().__init__(last_keys) self.fa_key = fa_key def current_state( self ) -> List[hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentSubmission]: notif_page = self.fa_key.get_fa_reader().get_notification_page() return notif_page.submission_comments def item_to_key( self, item: hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentSubmission ) -> hallo.modules.subscriptions.stream_source.Key: return item.comment_id def item_to_event( self, server: Server, channel: Optional[Channel], user: Optional[User], item: hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentSubmission ) -> EventMessage: fa_reader = self.fa_key.get_fa_reader() response_str = "in response to your comment " if item.comment_on else "" owner_str = "your" if item.submission_yours else "their" try: submission_page = fa_reader.get_submission_page(item.submission_id) comment = submission_page.comments_section.get_comment_by_id( item.comment_id ) return EventMessage( server, channel, user, "You have a submission comment notification. " f'{item.name} has made a new comment {response_str}on {owner_str} submission ' f'"{item.submission_name}" {item.submission_link} : \n\n{comment.text}', inbound=False ) except HTTPError: return EventMessage( server, channel, user, "You have a submission comment notification. " f'{item.name} has made a new comment {response_str}on {owner_str} submission ' f'"{item.submission_name}" {item.submission_link} : but I can\'t find the comment.', inbound=False ) def matches_name(self, name_clean: str) -> bool: return name_clean in [s.lower().strip() for s in self.type_names + ["submission comments"]] @property def title(self) -> str: return f"FA submission comments for {self.fa_key.user.name}" @classmethod def from_input(cls, argument: str, user: User, sub_repo) -> 'FASubmissionCommentSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_input(user, sub_repo) return FASubmissionCommentSource(fa_key) @classmethod def from_json(cls, json_data: Dict, destination: Destination, sub_repo) -> 'FASubmissionCommentSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_json( json_data["fa_key_user_address"], destination.server, sub_repo ) return FASubmissionCommentSource(fa_key, json_data["last_keys"]) def to_json(self) -> Dict: return { "type": self.type_name, "fa_key_user_address": self.fa_key.user.address, "last_keys": self.last_keys } class FAJournalCommentSource( hallo.modules.subscriptions.stream_source.StreamSource[ hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentJournal ] ): type_name = "fa_journal_comments" type_names = ["fa journal comments"] def __init__( self, fa_key: hallo.modules.subscriptions.common_fa_key.FAKey, last_keys: Optional[List[hallo.modules.subscriptions.stream_source.Key]] = None ): super().__init__(last_keys) self.fa_key = fa_key def current_state( self ) -> List[hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentJournal]: notif_page = self.fa_key.get_fa_reader().get_notification_page() return notif_page.journal_comments def item_to_key( self, item: hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentJournal ) -> hallo.modules.subscriptions.stream_source.Key: return item.comment_id def item_to_event( self, server: Server, channel: Optional[Channel], user: Optional[User], item: hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationCommentJournal ) -> EventMessage: fa_reader = self.fa_key.get_fa_reader() response_str = "in response to your comment " if item.comment_on else "" owner_str = "your" if item.journal_yours else "their" try: journal_page = fa_reader.get_journal_page(item.journal_id) comment = journal_page.comments_section.get_comment_by_id( item.comment_id ) return EventMessage( server, channel, user, f"You have a journal comment notification. {item.name} has made a new comment " f"{response_str}on {owner_str} journal " f'"{item.journal_name}" {item.journal_link} : \n\n{comment.text}', inbound=False ) except HTTPError: return EventMessage( server, channel, user, f"You have a journal comment notification. {item.name} has made a new comment " f"{response_str}on {owner_str} journal " f'"{item.journal_name}" {item.journal_link} but I can\'t find the comment.', inbound=False ) def matches_name(self, name_clean: str) -> bool: return name_clean in [s.lower().strip() for s in self.type_names + ["journal comments"]] @property def title(self) -> str: return f"FA journal comments for {self.fa_key.user.name}" @classmethod def from_input(cls, argument: str, user: User, sub_repo) -> 'FAJournalCommentSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_input(user, sub_repo) return FAJournalCommentSource(fa_key) @classmethod def from_json(cls, json_data: Dict, destination: Destination, sub_repo) -> 'FAJournalCommentSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_json( json_data["fa_key_user_address"], destination.server, sub_repo ) return FAJournalCommentSource(fa_key, json_data["last_keys"]) def to_json(self) -> Dict: return { "type": self.type_name, "fa_key_user_address": self.fa_key.user.address, "last_keys": self.last_keys } class FAShoutSource( hallo.modules.subscriptions.stream_source.StreamSource[ hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationShout ] ): type_name = "fa_shouts" type_names = ["fa shouts"] def __init__( self, fa_key: hallo.modules.subscriptions.common_fa_key.FAKey, last_keys: Optional[List[hallo.modules.subscriptions.stream_source.Key]] = None ): super().__init__(last_keys) self.fa_key = fa_key def current_state(self) -> List[hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationShout]: notif_page = self.fa_key.get_fa_reader().get_notification_page() return notif_page.shouts def item_to_key( self, item: hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationShout ) -> hallo.modules.subscriptions.stream_source.Key: return item.shout_id def item_to_event( self, server: Server, channel: Optional[Channel], user: Optional[User], item: hallo.modules.subscriptions.common_fa_key.FAKey.FAReader.FANotificationShout ) -> EventMessage: fa_reader = self.fa_key.get_fa_reader() try: user_page_shouts = fa_reader.get_user_page(item.page_username).shouts shout = [ shout for shout in user_page_shouts if shout.shout_id == item.shout_id ] return EventMessage( server, channel, user, f"You have a new shout, from {item.name} ( http://furaffinity.net/user/{item.username}/ ) " f"has left a shout saying: \n\n{shout[0].text}", inbound=False ) except HTTPError: return EventMessage( server, channel, user, f"You have a new shout, from {item.name} ( http://furaffinity.net/user/{item.username}/ ) " "has left a shout but I can't find it on your user page: \n" f"https://furaffinity.net/user/{item.page_username}/", inbound=False ) def matches_name(self, name_clean: str) -> bool: return name_clean in [s.lower().strip() for s in self.type_names + ["shouts"]] @property def title(self) -> str: return f"FA shouts for {self.fa_key.user.name}" @classmethod def from_input(cls, argument: str, user: User, sub_repo) -> 'FAShoutSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_input(user, sub_repo) return FAShoutSource(fa_key) @classmethod def from_json(cls, json_data: Dict, destination: Destination, sub_repo) -> 'FAShoutSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_json( json_data["fa_key_user_address"], destination.server, sub_repo ) return FAShoutSource(fa_key, json_data["last_keys"]) def to_json(self) -> Dict: return { "type": self.type_name, "fa_key_user_address": self.fa_key.user.address, "last_keys": self.last_keys } class FACommentNotificationsSource(hallo.modules.subscriptions.source.Source[Dict, Dict]): type_name: str = "fa_notif_comments" type_names: List[str] = [ "{}{}{}".format(fa, comments, notifications) for fa in ["fa ", "furaffinity "] for comments in ["comments", "comment", "shouts", "shout"] for notifications in ["", " notifications"] ] def __init__( self, fa_key: hallo.modules.subscriptions.common_fa_key.FAKey, submission_source: FASubmissionCommentSource, journal_source: FAJournalCommentSource, shout_source: FAShoutSource, ): super().__init__() self.fa_key = fa_key self.submission_source = submission_source self.journal_source = journal_source self.shout_source = shout_source def matches_name(self, name_clean: str) -> bool: return name_clean in [s.lower().strip() for s in self.type_names + ["comments"]] @property def title(self) -> str: return f"FA comments for {self.fa_key.user.name}" @classmethod def from_input(cls, argument: str, user: User, sub_repo) -> 'FACommentNotificationsSource': fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_input(user, sub_repo) submission_source = FASubmissionCommentSource(fa_key) journal_source = FAJournalCommentSource(fa_key) shout_source = FAShoutSource(fa_key) return FACommentNotificationsSource(fa_key, submission_source, journal_source, shout_source) def current_state(self) -> Dict: return { "submissions": self.submission_source.current_state(), "journals": self.journal_source.current_state(), "shouts": self.shout_source.current_state() } def state_change(self, state: Dict) -> Optional[Dict]: submission_update = self.submission_source.state_change(state["submissions"]) journal_update = self.journal_source.state_change(state["journals"]) shout_update = self.shout_source.state_change(state["shouts"]) if not submission_update and not journal_update and not shout_update: return None return { "submissions": submission_update, "journals": journal_update, "shouts": shout_update } def save_state(self, state: Dict) -> None: self.submission_source.save_state(state["submissions"]) self.journal_source.save_state(state["journals"]) self.shout_source.save_state(state["shouts"]) def events( self, server: Server, channel: Optional[Channel], user: Optional[User], update: Dict ) -> List[EventMessage]: return ( self.submission_source.events(server, channel, user, update["submissions"]) + self.journal_source.events(server, channel, user, update["journals"]) + self.shout_source.events(server, channel, user, update["shouts"]) ) @classmethod def from_json(cls, json_data: Dict, destination: Destination, sub_repo) -> 'FACommentNotificationsSource': user_addr = json_data["fa_key_user_address"] fa_key = hallo.modules.subscriptions.source_fa_favs.fa_key_from_json( user_addr, destination.server, sub_repo ) submission_source = FASubmissionCommentSource.from_json(json_data["submissions"], destination, sub_repo) journal_source = FAJournalCommentSource.from_json(json_data["journals"], destination, sub_repo) shout_source = FAShoutSource.from_json(json_data["shouts"], destination, sub_repo) return FACommentNotificationsSource(fa_key, submission_source, journal_source, shout_source) def to_json(self) -> Dict: json_data = { "type": self.type_name, "fa_key_user_address": self.fa_key.user.address, "submissions": self.submission_source.to_json(), "journals": self.journal_source.to_json(), "shouts": self.shout_source.to_json() } return json_data ``` #### File: modules/subscriptions/subscription_factory.py ```python from typing import List, Type, Dict, TYPE_CHECKING import hallo.modules.subscriptions.subscription_exception from hallo.destination import Destination import hallo.modules.subscriptions.common_fa_key import hallo.modules.subscriptions.subscription_common import hallo.modules.subscriptions.subscription import hallo.modules.subscriptions.source_reddit import hallo.modules.subscriptions.source_fa_watchers import hallo.modules.subscriptions.source_fa_favs import hallo.modules.subscriptions.source_fa_notif_comments import hallo.modules.subscriptions.source_fa_notif_favs import hallo.modules.subscriptions.source_fa_notes import hallo.modules.subscriptions.source_e621_tagging import hallo.modules.subscriptions.source_e621_backlog import hallo.modules.subscriptions.source_e621 import hallo.modules.subscriptions.source_rss import hallo.modules.subscriptions.source_twitter import hallo.modules.subscriptions.source if TYPE_CHECKING: from hallo.hallo import Hallo class SubscriptionFactory: sub_sources: List[Type['hallo.modules.new_subscriptions.source.Source']] = [ hallo.modules.subscriptions.source_e621.E621Source, hallo.modules.subscriptions.source_e621_tagging.E621TaggingSource, hallo.modules.subscriptions.source_e621_backlog.E621BacklogTaggingSource, hallo.modules.subscriptions.source_fa_favs.FAFavsSource, hallo.modules.subscriptions.source_fa_notes.FANotesSource, hallo.modules.subscriptions.source_fa_notif_comments.FACommentNotificationsSource, hallo.modules.subscriptions.source_fa_notif_favs.FAFavNotificationsSource, hallo.modules.subscriptions.source_fa_watchers.FAWatchersSource, hallo.modules.subscriptions.source_fa_watchers.FAUserWatchersSource, hallo.modules.subscriptions.source_reddit.RedditSource, hallo.modules.subscriptions.source_rss.RssSource, ] common_classes: List[Type[hallo.modules.subscriptions.subscription_common.SubscriptionCommon]] = [ hallo.modules.subscriptions.common_fa_key.FAKeysCommon ] @staticmethod def get_source_names() -> List[str]: return [ name for sub_class in SubscriptionFactory.sub_sources for name in sub_class.type_names ] @staticmethod def get_source_class_by_name(name: str) -> Type[hallo.modules.subscriptions.source.Source]: classes = [ sub_class for sub_class in SubscriptionFactory.sub_sources if name in sub_class.type_names ] if len(classes) != 1: raise hallo.modules.subscriptions.subscription_exception.SubscriptionException( "Failed to find a subscription type matching the name {}".format(name) ) return classes[0] @staticmethod def source_from_json( json_data: Dict, destination: Destination, sub_repo ) -> 'hallo.modules.new_subscriptions.source.Source': name = json_data["type"] classes = [ sub_class for sub_class in SubscriptionFactory.sub_sources if name == sub_class.type_name ] if len(classes) != 1: raise hallo.modules.subscriptions.subscription_exception.SubscriptionException( f"Failed to find a subscription source type matching the name {name}" ) return classes[0].from_json(json_data, destination, sub_repo) @staticmethod def common_from_json( common_json: Dict, hallo_obj: 'Hallo' ) -> hallo.modules.subscriptions.subscription_common.SubscriptionCommon: common_type_name = common_json["common_type"] for common_class in SubscriptionFactory.common_classes: if common_class.type_name == common_type_name: return common_class.from_json(common_json, hallo_obj) raise hallo.modules.subscriptions.subscription_exception.SubscriptionException( f"Could not load common configuration of type {common_type_name}" ) ``` #### File: hallo/modules/user_data.py ```python import re from abc import ABCMeta from typing import Dict, TypeVar, Type, Optional, List from hallo.destination import User from hallo.function import Function class UserDataException(Exception): pass class UserDatum(metaclass=ABCMeta): type_name = "" names = [] @staticmethod def create_from_input(event): raise NotImplementedError() def get_name(self, event): raise NotImplementedError() def to_json(self): """ :rtype: dict """ raise NotImplementedError() @staticmethod def from_json(json_dict): """ :type json_dict: dict """ raise NotImplementedError() T = TypeVar("T", bound=UserDatum) class UserDataParser: def __init__(self): pass def get_data_by_user(self, user: User) -> Dict[str, 'UserDatum']: user_data_dict = user.extra_data_dict user_data = dict() for key in user_data_dict: user_data[key] = UserDataFactory.from_dict(key, user_data_dict[key]) return user_data def get_data_by_user_and_type(self, user: User, data_class: Type[T]) -> Optional[T]: type_name = data_class.type_name user_data_dict = user.extra_data_dict if type_name in user_data_dict: return UserDataFactory.from_dict(type_name, user_data_dict[type_name]) return None def set_user_data(self, user: User, data: 'UserDatum'): user.extra_data_dict[data.type_name] = data.to_json() user.server.hallo.save_json() def remove_data_by_user_and_type(self, user: User, data_class: Type[T]): type_name = data_class.type_name if type_name in user.extra_data_dict: del user.extra_data_dict['type_name'] class FAKeyData(UserDatum): type_name = "fa_key" names = [ "furaffinity key", "fa key", "fa cookies", "furaffinity cookies", "fa", "furaffinity", ] def __init__(self, cookie_a, cookie_b): self.cookie_a = cookie_a self.cookie_b = cookie_b @staticmethod def create_from_input(event): input_clean = event.command_args.strip().lower().replace(";", " ").split() if len(input_clean) != 2: raise UserDataException( "Input must include cookie a and cookie b, in the format a=value;b=value" ) if input_clean[0].startswith("b="): input_clean = list(reversed(input_clean)) cookie_a = input_clean[0][2:] cookie_b = input_clean[1][2:] new_data = FAKeyData(cookie_a, cookie_b) return new_data def get_name(self, event): return event.user.name + " FA login" def to_json(self): json_obj = dict() json_obj["cookie_a"] = self.cookie_a json_obj["cookie_b"] = self.cookie_b return json_obj @staticmethod def from_json(json_dict): cookie_a = json_dict["cookie_a"] cookie_b = json_dict["cookie_b"] return FAKeyData(cookie_a, cookie_b) class E6KeyData(UserDatum): type_name = "e6_key" names = [ "e621 key", "e6 key", "e6 api key", "e621 api key", "e6", "e621", ] def __init__(self, username: str, api_key: str): self.username = username self.api_key = api_key @staticmethod def create_from_input(event): input_clean = event.command_args.strip().split() if len(input_clean) != 2: raise UserDataException( "Input must include username,then apikey, separated by a space" ) new_data = E6KeyData(input_clean[0], input_clean[1]) return new_data def get_name(self, event): return event.user.name + " E621 api key" def to_json(self): json_obj = dict() json_obj["username"] = self.username json_obj["api_key"] = self.api_key return json_obj @staticmethod def from_json(json_dict): return E6KeyData( json_dict["username"], json_dict["api_key"] ) class WeatherLocationData(UserDatum): type_name = "weather_location" names = ["weather location"] TYPE_CITY = "city" TYPE_COORDS = "coords" TYPE_ZIP = "zip" def __init__(self, location: 'Location'): self.location = location self.country_code = None """ :type : str""" @staticmethod def create_from_input(event): input_line = event.command_args # Check if zip code is given if re.match(r"^\d{5}(?:[-\s]\d{4})?$", input_line): return WeatherLocationData(WeatherLocationData.ZipLocation(input_line)) # Check if coordinates are given coord_match = re.match(r"^(-?\d+(\.\d+)?)[ ,]*(-?\d+(\.\d+)?)$", input_line) if coord_match: new_lat = coord_match.group(1) new_long = coord_match.group(3) return WeatherLocationData( WeatherLocationData.CoordLocation(new_lat, new_long) ) # Otherwise, assume it's a city new_city = input_line return WeatherLocationData(WeatherLocationData.CityLocation(new_city)) def get_name(self, event): return event.user.name + " weather location" def to_json(self): return self.location.to_json() @staticmethod def from_json(json_dict): if json_dict["type"] == WeatherLocationData.TYPE_CITY: return WeatherLocationData( WeatherLocationData.CityLocation.from_json(json_dict) ) if json_dict["type"] == WeatherLocationData.TYPE_COORDS: return WeatherLocationData( WeatherLocationData.CoordLocation.from_json(json_dict) ) if json_dict["type"] == WeatherLocationData.TYPE_ZIP: return WeatherLocationData( WeatherLocationData.ZipLocation.from_json(json_dict) ) raise UserDataException("Unrecognised weather location type.") class Location(metaclass=ABCMeta): def to_json(self): raise NotImplementedError() @staticmethod def from_json(json_obj): raise NotImplementedError() class CityLocation(Location): def __init__(self, city): self.city = city def to_json(self): return {"type": WeatherLocationData.TYPE_CITY, "city": self.city} @staticmethod def from_json(json_obj): return WeatherLocationData.CityLocation(json_obj["city"]) class ZipLocation(Location): def __init__(self, zip_code): self.zip_code = zip_code def to_json(self): return {"type": WeatherLocationData.TYPE_ZIP, "zip_code": self.zip_code} @staticmethod def from_json(json_obj): return WeatherLocationData.ZipLocation(json_obj["zip_code"]) class CoordLocation(Location): def __init__(self, latitude, longitude): self.latitude = latitude self.longitude = longitude def to_json(self): return { "type": WeatherLocationData.TYPE_COORDS, "latitude": self.latitude, "longitude": self.longitude, } @staticmethod def from_json(json_obj): return WeatherLocationData.CoordLocation( json_obj["coord_x"], json_obj["coord_y"] ) class UserDataFactory: data_classes = [FAKeyData, E6KeyData] @staticmethod def get_data_type_names() -> List[str]: return [ name for common_class in UserDataFactory.data_classes for name in common_class.names ] @staticmethod def get_data_class_by_name(name: str) -> Type[UserDatum]: classes = [ data_class for data_class in UserDataFactory.data_classes if name in data_class.names ] if len(classes) != 1: raise UserDataException( "Failed to find a common configuration type matching the name {}".format( name ) ) return classes[0] @staticmethod def from_dict(type_name, data_dict): for data_class in UserDataFactory.data_classes: if data_class.type_name == type_name: return data_class.from_json(data_dict) raise UserDataException("Could not load user data of type {}".format(type_name)) class UserDataSetup(Function): """ Sets up a user's common configuration in the subscription repository """ def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "setup user data" # Names which can be used to address the function name_templates = { "setup {} user data", "setup user data {}", "setup user data for {}", "{} user data setup", } self.names = set( [ template.format(name) for name in UserDataFactory.get_data_type_names() for template in name_templates ] ) # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Sets up user data which other functions may require. " "Format: setup user data <type> <parameters>" ) self.user_data_parser = UserDataParser() """ :type : UserDataParser""" def run(self, event): # Construct type name data_type_name = " ".join( [ w for w in event.command_name.lower().split() if w not in ["setup", "user", "data", "for"] ] ).strip() # Get class from type name data_class = UserDataFactory.get_data_class_by_name( data_type_name ) if data_class is None: return event.create_response( "Could not find a user data type called {}. " "Available types are: {}".format( data_type_name, ", ".join( [ data_class.names[0] for data_class in UserDataFactory.data_classes ] ), ) ) # Create user data object data_obj = data_class.create_from_input(event) # Save user data self.user_data_parser.set_user_data(event.user, data_obj) # Send response return event.create_response( "Set up a new user data for {}".format(data_obj.get_name(event)) ) class UserDataTeardown(Function): """ Tears down a user's user data of a given type """ tear_down_words = ["tear down", "teardown", "remove"] def __init__(self): """ Constructor """ super().__init__() # Name for use in help listing self.help_name = "tear down user data" # Names which can be used to address the function name_templates = { "{1} {0} user data", "{1} user data {0}", "{1} user data for {0}", "{0} user data {1}", } self.names = set( [ template.format(name, tearDown) for name in UserDataFactory.get_data_type_names() for template in name_templates for tearDown in self.tear_down_words ] ) # Help documentation, if it's just a single line, can be set here self.help_docs = ( "Removes user data of a specified type. " "Format: tear down user data <type> <parameters>" ) def run(self, event): # Construct type name data_type_name = " ".join( [ w for w in event.command_name.split() if w not in ["user", "data", "for", "teardown", "tear", "down"] ] ).strip() # Get class from type name data_class = UserDataFactory.get_data_class_by_name(data_type_name) # Get a user data parser user_data_parser = UserDataParser() # Remove user data common_obj = user_data_parser.get_data_by_user_and_type(event.user, data_class) user_data_parser.remove_data_by_user_and_type(event.user, data_class) # Send response return event.create_response( "Removed user data for {}".format(common_obj.get_name(event)) ) ``` #### File: test/inc/test_input_parser.py ```python from hallo.inc.input_parser import InputParser def test_no_args(): p = InputParser("blah blah") assert p.remaining_text == "blah blah" assert len(p.args_dict) == 0 def test_multiple_simple_args(): p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3") assert p.remaining_text == "blah blah" assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" assert p.args_dict["arg3"] == "val3" def test_quoted_args_quoted_values(): p = InputParser("yo 'base unit'=\"hello world\"") assert p.remaining_text == "yo" assert p.args_dict["base unit"] == "hello world" def test_quoted_args_unquoted_values(): p = InputParser("yo 'base unit'=hello world") assert p.remaining_text == "yo world" assert p.args_dict["base unit"] == "hello" def test_unquoted_args_quoted_values(): p = InputParser('yo base unit="hello world"') assert p.remaining_text == "yo base" assert p.args_dict["unit"] == "hello world" def test_unquoted_args_unquoted_values(): p = InputParser("yo base unit=hello world") assert p.remaining_text == "yo base world" assert p.args_dict["unit"] == "hello" def test_mismatched_quotes(): p = InputParser('yo \'base unit"="hello world"') assert p.remaining_text == "yo 'base" assert p.args_dict['unit"'] == "hello world" p = InputParser("yo 'base unit'=\"hello's world\"") assert p.remaining_text == "yo" assert p.args_dict["base unit"] == "hello's world" def test_all_types(): p = InputParser( "yo 'base unit'=\"hello world\" arg1='value 1' 'arg 2'=val2 arg3=val3" ) assert p.remaining_text == "yo" assert p.args_dict["base unit"] == "hello world" assert p.args_dict["arg1"] == "value 1" assert p.args_dict["arg 2"] == "val2" assert p.args_dict["arg3"] == "val3" def test_remaining_text_start_and_end(): p = InputParser("blah blah arg1=val1 arg2=val2 hey") assert p.remaining_text == "blah blah hey" assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" def test_unstripped_input(): p = InputParser(" blah blah ") assert p.remaining_text == "blah blah" def test_get_arg_by_names(): p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3") assert p.remaining_text == "blah blah" assert p.get_arg_by_names(["arg2"]) == "val2" assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" assert p.args_dict["arg3"] == "val3" def test_get_arg_by_names_no_match(): p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3") assert p.remaining_text == "blah blah" assert p.get_arg_by_names(["arg4"]) is None assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" assert p.args_dict["arg3"] == "val3" def test_get_arg_by_names_one_match(): p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3") assert p.remaining_text == "blah blah" assert p.get_arg_by_names(["arg4", "arg5", "arg3"]) == "val3" assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" assert p.args_dict["arg3"] == "val3" def test_get_arg_by_names_first_match(): p = InputParser("blah blah arg1=val1 arg2=val2 arg3=val3") assert p.remaining_text == "blah blah" assert p.get_arg_by_names(["arg1", "arg2"]) == "val1" assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" assert p.args_dict["arg3"] == "val3" def test_parse_string_no_numbers(): p = InputParser("blah bloo blee") assert p.remaining_text == "blah bloo blee" assert len(p.args_dict) == 0 assert len(p.string_words) == 3 assert len(p.number_words) == 0 assert p.string_words == ["blah", "bloo", "blee"] def test_parse_string_all_numbers(): p = InputParser("5 421 8916 34.5 -3") assert p.remaining_text == "5 421 8916 34.5 -3" assert len(p.args_dict) == 0 assert len(p.string_words) == 0 assert len(p.number_words) == 5 assert p.number_words == [5, 421, 8916, 34.5, -3] def test_parse_string_mix_of_numbers_and_args(): p = InputParser("blah blah arg1=val1 arg2=val2 5") assert p.remaining_text == "blah blah 5" assert p.args_dict["arg1"] == "val1" assert p.args_dict["arg2"] == "val2" assert p.string_words == ["blah", "blah"] assert p.number_words == [5] ``` #### File: modules/channel_control/test_de_operator.py ```python from hallo.events import EventMessage, EventMode from hallo.server import Server from hallo.test.server_mock import ServerMock def test_deop_not_irc(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = "NOT_IRC" test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") chan1.add_user(user1) chan1.add_user( serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) ) try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "deop")) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "only available for irc" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_0_privmsg(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1", "test_user1") chan1.add_user(user1) chan1.add_user( serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) ) try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, None, user1, "deop")) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "in a private message" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_0_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1", "test_user1") chan1.add_user(user1) chan1.add_user( serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) ) try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "deop")) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_0_not_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1", "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "deop")) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "doesn't have op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_0(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1", "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = True chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "deop")) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan1 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert "-o " + user1.name in data[0].mode_changes assert "status taken" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1priv_channel_not_known(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "deop other_channel") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "other_channel is not known" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1priv_not_in_channel(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "deop test_chan2") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "not in that channel" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1priv_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "deop test_chan1") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "test_user1 is not in test_chan1" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1priv_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "deop test_chan1") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1priv_not_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "deop test_chan1") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "doesn't have op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1priv(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = True chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "deop test_chan1") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan1 assert data[1].user == user1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert "-o " + user1.name in data[0].mode_changes assert "status taken" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_chan_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user2) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = False chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user1 is not in test_chan2" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_chan_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user1) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user1 = chan2.get_membership_by_user(user1) chan2_user1.is_op = False chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_chan_not_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user1) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user1 = chan2.get_membership_by_user(user1) chan2_user1.is_op = False chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "doesn't have op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_chan(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user1) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user1 = chan2.get_membership_by_user(user1) chan2_user1.is_op = True chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan2 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert "-o " + user1.name in data[0].mode_changes assert "status taken" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_user_not_here(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user2 is not in test_chan1" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_user_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = False chan1.add_user(user2) chan1_user2 = chan1.get_membership_by_user(user2) chan1_user2.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_user_not_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan1.add_user(user2) chan1_user2 = chan1.get_membership_by_user(user2) chan1_user2.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "doesn't have op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_1_user(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan1.add_user(user2) chan1_user2 = chan1.get_membership_by_user(user2) chan1_user2.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan1 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert "-o " + user2.name in data[0].mode_changes assert "status taken" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_chan_user_not_known(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2 test_user3") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not known" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_chan_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") serv1.get_user_by_address("test_user3".lower(), "test_user3") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2 test_user3") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not in test_chan2" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_chan_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2 test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_chan_not_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2 test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "doesn't have op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_chan(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = True chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_chan2 test_user2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan2 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert "-o " + user2.name in data[0].mode_changes assert "status taken" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_user_not_in_channel(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = False user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "i'm not in that channel" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_user_user_not_known(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user3 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not known" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_user_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") serv1.get_user_by_address("test_user3".lower(), "test_user3") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user3 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not in test_chan2" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_user_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_user_not_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "doesn't have op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_deop_2_user(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = True chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "deop test_user2 test_chan2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan2 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert "-o " + user2.name in data[0].mode_changes assert "status taken" in data[1].text.lower() finally: test_hallo.remove_server(serv1) ``` #### File: modules/channel_control/test_operator.py ```python from hallo.events import EventMessage, EventMode from hallo.server import Server from hallo.test.server_mock import ServerMock def test_op_not_irc(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = "NOT_IRC" test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") chan1.add_user(user1) chan1.add_user( serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) ) try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "op")) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "only available for irc" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_0_privmsg(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") chan1.add_user(user1) chan1.add_user( serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) ) try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, None, user1, "op")) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "in a private message" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_0_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") chan1.add_user(user1) chan1.add_user( serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) ) try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "op")) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_0_is_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = True chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "op")) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "already has op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_0(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch(EventMessage(serv1, chan1, user1, "op")) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan1 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert data[0].mode_changes == "+o {}".format(user1.address) assert "status given" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1priv_not_known(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "op other_channel") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "other_channel is not known" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1priv_not_in_channel(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") serv1.get_channel_by_address("other_channel", "other_channel") user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "op other_channel") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "not in that channel" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1priv_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "op test_chan1") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "test_user1 is not in test_chan1" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1priv_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "op test_chan1") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1priv_is_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = True chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "op test_chan1") ) data = serv1.get_send_data(1, user1, EventMessage) assert "error" in data[0].text.lower() assert "already has op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1priv(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, None, user1, "op test_chan1") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan1 assert data[1].user == user1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert data[0].mode_changes == "+o {}".format(user1.address) assert "status given" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_chan_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user2) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = False chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user1 is not in test_chan2" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_chan_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user1) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user1 = chan2.get_membership_by_user(user1) chan2_user1.is_op = False chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_chan_is_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user1) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user1 = chan2.get_membership_by_user(user1) chan2_user1.is_op = True chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "already has op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_chan(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1.add_user(user_hallo) chan2.add_user(user1) chan2.add_user(user_hallo) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2_user1 = chan2.get_membership_by_user(user1) chan2_user1.is_op = False chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan2 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert data[0].mode_changes == "+o {}".format(user1.address) assert "status given" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_user_not_here(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user2 is not in test_chan1" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_user_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = False chan1.add_user(user2) chan1_user2 = chan1.get_membership_by_user(user2) chan1_user2.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_user_is_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan1.add_user(user2) chan1_user2 = chan1.get_membership_by_user(user2) chan1_user2.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "already has op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_1_user(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan1.add_user(user2) chan1_user2 = chan1.get_membership_by_user(user2) chan1_user2.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan1 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert data[0].mode_changes == "+o {}".format(user2.address) assert "status given" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_chan_user_not_known(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2 test_user3") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not known" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_chan_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") serv1.get_user_by_address("test_user3", "test_user3") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2 test_user3") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not in test_chan2" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_chan_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2 test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_chan_is_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = True chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2 test_user2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "already has op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_chan(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_chan2 test_user2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan2 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert data[0].mode_changes == "+o {}".format(user2.address) assert "status given" in data[1].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_user_not_in_channel(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = False user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "i'm not in that channel" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_user_user_not_known(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user3 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not known" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_user_user_not_there(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") serv1.get_user_by_address("test_user3", "test_user3") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user3 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "test_user3 is not in test_chan2" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_user_no_power(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user1 = chan2.get_membership_by_user(user2) chan2_user1.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = False try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "don't have power" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_user_is_op(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = True chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2 test_chan2") ) data = serv1.get_send_data(1, chan1, EventMessage) assert "error" in data[0].text.lower() assert "already has op" in data[0].text.lower() finally: test_hallo.remove_server(serv1) def test_op_2_user(hallo_getter): test_hallo = hallo_getter({"channel_control"}) serv1 = ServerMock(test_hallo) serv1.name = "test_serv1" serv1.type = Server.TYPE_IRC test_hallo.add_server(serv1) chan1 = serv1.get_channel_by_address("test_chan1".lower(), "test_chan1") chan1.in_channel = True chan2 = serv1.get_channel_by_address("test_chan2".lower(), "test_chan2") chan2.in_channel = True user1 = serv1.get_user_by_address("test_user1".lower(), "test_user1") user2 = serv1.get_user_by_address("test_user2".lower(), "test_user2") user_hallo = serv1.get_user_by_address(serv1.get_nick().lower(), serv1.get_nick()) chan1.add_user(user1) chan1_user1 = chan1.get_membership_by_user(user1) chan1_user1.is_op = False chan1.add_user(user_hallo) chan1_hallo = chan1.get_membership_by_user(user_hallo) chan1_hallo.is_op = True chan2.add_user(user2) chan2_user2 = chan2.get_membership_by_user(user2) chan2_user2.is_op = False chan2.add_user(user_hallo) chan2_hallo = chan2.get_membership_by_user(user_hallo) chan2_hallo.is_op = True try: test_hallo.function_dispatcher.dispatch( EventMessage(serv1, chan1, user1, "op test_user2 test_chan2") ) data = serv1.get_send_data(2) assert "error" not in data[1].text.lower() assert data[0].channel == chan2 assert data[1].channel == chan1 assert data[0].__class__ == EventMode assert data[1].__class__ == EventMessage assert data[0].mode_changes == "+o {}".format(user2.address) assert "status given" in data[1].text.lower() finally: test_hallo.remove_server(serv1) ``` #### File: modules/convert/test_base.py ```python from threading import Thread import gc from hallo.function_dispatcher import FunctionDispatcher from hallo.hallo import Hallo import unittest from hallo.test.server_mock import ServerMock import time class TestBase(unittest.TestCase): def setUp(self): # Create a Hallo self.hallo = Hallo() # Only the required modules, only 1 (mock) server # Todo: specify modules by test? self.function_dispatcher = FunctionDispatcher( {"convert", "random", "server_control", "subscriptions"}, self.hallo ) self.hallo.function_dispatcher = self.function_dispatcher self.server = ServerMock(self.hallo) self.server.name = "mock-server" self.hallo.add_server(self.server) # Start hallo thread self.hallo_thread = Thread(target=self.hallo.start,) self.hallo_thread.start() # Create test users and channel, and configure them self.hallo_user = self.server.get_user_by_address( self.server.get_nick().lower(), self.server.get_nick() ) self.test_user = self.server.get_user_by_address("test", "test") self.test_user.online = True self.test_chan = self.server.get_channel_by_address("#test", "#test") self.test_chan.in_channel = True self.test_chan.add_user(self.hallo_user) self.test_chan.add_user(self.test_user) # Wait until hallo is open count = 0 while not self.hallo.open: time.sleep(0.01) count += 1 assert count < 1000, "Hallo took too long to start." if count > 1000: break # Clear any data in the server self.server.get_send_data() def tearDown(self): self.hallo.close() self.hallo_thread.join() @classmethod def tearDownClass(cls): del cls gc.collect() ``` #### File: dailys/fields/test_dailys_mood_field.py ```python from datetime import time, date, datetime, timedelta import pytest import hallo.modules.dailys.dailys_field from hallo.events import EventMessage, RawDataTelegram, EventMinute from hallo.modules.dailys.field_mood import DailysMoodField, MoodTime from hallo.test.modules.dailys.dailys_spreadsheet_mock import DailysSpreadsheetMock class Obj: pass def get_telegram_time(date_time_val): fake_telegram_obj = Obj() fake_telegram_obj.message = Obj() fake_telegram_obj.message.date = date_time_val fake_telegram_obj.message.reply_to_message = None return fake_telegram_obj def get_telegram_time_reply(date_time_val, message_id): fake_telegram_obj = Obj() fake_telegram_obj.message = Obj() fake_telegram_obj.message.date = date_time_val fake_telegram_obj.message.reply_to_message = Obj() fake_telegram_obj.message.reply_to_message.message_id = message_id return fake_telegram_obj def test_create_from_input(hallo_getter, requests_mock): dailys_times = ["WakeUpTime", "12:00:00", "SleepTime"] dailys_moods = ["happiness", "anger", "tiredness", "boisterousness"] # Setup stuff command_name = "setup dailys field" command_args = "mood" test_hallo = hallo_getter({"dailys"}) evt = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "{} {}".format(command_name, command_args), ) evt.split_command_text(command_name, command_args) spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) requests_mock.get( "{}/stats/mood/static/".format(spreadsheet.dailys_url), json=[ { "date": "static", "source": "Mock test data", "stat_name": "mood", "data": { "moods": dailys_moods, "times": dailys_times } } ] ) # Try and create dailys field field = DailysMoodField.create_from_input(evt, spreadsheet) assert field.spreadsheet == spreadsheet assert isinstance(field.times, list) assert len(field.times) == 3 assert MoodTime(MoodTime.WAKE) in field.times assert MoodTime(MoodTime.SLEEP) in field.times assert MoodTime(time(12, 0, 0)) in field.times assert isinstance(field.moods, list) assert len(field.moods) == 4 assert field.moods == dailys_moods def test_create_from_input__no_static_data(hallo_getter, requests_mock): # Setup stuff command_name = "setup dailys field" command_args = "mood" test_hallo = hallo_getter({"dailys"}) evt = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "{} {}".format(command_name, command_args), ) evt.split_command_text(command_name, command_args) spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) requests_mock.get( "{}/stats/mood/static/".format(spreadsheet.dailys_url), json=[] ) # Try and create dailys field with pytest.raises(hallo.modules.dailys.dailys_field.DailysException) as e: DailysMoodField.create_from_input(evt, spreadsheet) assert "mood field static data has not been set up on dailys system" in str(e.value).lower() def test_trigger_morning_query(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_wake = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "morning") field.passive_trigger(evt_wake) # Check mood query is sent notif_dict = spreadsheet.saved_data["mood"][evt_wake.get_send_time().date()] assert MoodTime.WAKE in notif_dict assert "message_id" in notif_dict[MoodTime.WAKE] # Check query is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "how are you feeling" in data_wake[0].text.lower() assert MoodTime.WAKE in data_wake[0].text assert all([mood in data_wake[0].text for mood in moods]) def test_trigger_sleep_query(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup moods = ["Happiness", "Anger", "Tiredness"] evt_sleep = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "night") saved_data = dict() saved_data[MoodTime.WAKE] = dict() saved_data[MoodTime.WAKE]["message_id"] = 1232 saved_data[str(time(14, 0, 0))] = dict() saved_data[str(time(14, 0, 0))]["message_id"] = 1234 for mood in moods: saved_data[MoodTime.WAKE][mood] = 3 saved_data[str(time(14, 0, 0))][mood] = 2 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {evt_sleep.get_send_time().date(): saved_data}}, ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0)), MoodTime(MoodTime.SLEEP)] field = DailysMoodField(spreadsheet, times, moods) # Send message field.passive_trigger(evt_sleep) # Check mood query is sent notif_dict = spreadsheet.saved_data["mood"][evt_sleep.get_send_time().date()] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] # Check query is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "how are you feeling" in data_wake[0].text.lower() assert MoodTime.SLEEP in data_wake[0].text assert all([mood in data_wake[0].text for mood in moods]) def test_trigger_morning_no_query_if_not_in_times(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {}} ) # Setup field times = [MoodTime(time(14, 0)), MoodTime(MoodTime.SLEEP)] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_wake = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "morning") field.passive_trigger(evt_wake) # Check mood query is not sent or added to saved data assert evt_wake.get_send_time().date() not in spreadsheet.saved_data["mood"] test_hallo.test_server.get_send_data(0) def test_trigger_sleep_no_query_if_not_in_times(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0))] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_sleep = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "night") field.passive_trigger(evt_sleep) # Check mood query is not sent or added to saved data assert evt_sleep.get_send_time().date() not in spreadsheet.saved_data["mood"] test_hallo.test_server.get_send_data(0) def test_trigger_sleep_no_query_if_already_given(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup moods = ["Happiness", "Anger", "Tiredness"] evt_sleep1 = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "night") saved_data = dict() saved_data[MoodTime.WAKE] = dict() saved_data[MoodTime.WAKE]["message_id"] = 1232 saved_data[str(time(14, 0, 0))] = dict() saved_data[str(time(14, 0, 0))]["message_id"] = 1234 for mood in moods: saved_data[MoodTime.WAKE][mood] = 3 saved_data[str(time(14, 0, 0))][mood] = 2 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {evt_sleep1.get_send_time().date(): saved_data}}, ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0)), MoodTime(MoodTime.SLEEP)] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_sleep1 = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "night") field.passive_trigger(evt_sleep1) # Check mood query is sent notif_dict = spreadsheet.saved_data["mood"][evt_sleep1.get_send_time().date()] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] # Check query is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "how are you feeling" in data_wake[0].text.lower() assert MoodTime.SLEEP in data_wake[0].text assert all([mood in data_wake[0].text for mood in moods]) # Set message ID to something msg_id = "test_message_id" notif_dict[MoodTime.SLEEP]["message_id"] = msg_id spreadsheet.saved_data["mood"][evt_sleep1.get_send_time().date()] = notif_dict # Send second sleep query evt_sleep2 = EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "night") field.passive_trigger(evt_sleep2) # Check no mood query is sent notif_dict = spreadsheet.saved_data["mood"][evt_sleep1.get_send_time().date()] assert notif_dict[MoodTime.SLEEP]["message_id"] == msg_id test_hallo.test_server.get_send_data(0) def test_trigger_sleep_after_midnight(hallo_getter): test_hallo = hallo_getter({"dailys"}) mood_date = date(2019, 1, 15) sleep_time = datetime(2019, 1, 16, 0, 34, 15) times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0)), MoodTime(MoodTime.SLEEP)] moods = ["Happiness", "Anger", "Tiredness"] # Setup saved_data = dict() saved_data[MoodTime.WAKE] = dict() saved_data[MoodTime.WAKE]["message_id"] = 1232 saved_data[str(time(14, 0, 0))] = dict() saved_data[str(time(14, 0, 0))]["message_id"] = 1234 for mood in moods: saved_data[MoodTime.WAKE][mood] = 3 saved_data[str(time(14, 0, 0))][mood] = 2 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: saved_data}} ) # Setup field field = DailysMoodField(spreadsheet, times, moods) # Send message evt_sleep = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "night" ).with_raw_data(RawDataTelegram(get_telegram_time(sleep_time))) field.passive_trigger(evt_sleep) # Check mood query is sent for previous day notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] # Check query is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "how are you feeling" in data_wake[0].text.lower() assert MoodTime.SLEEP in data_wake[0].text assert all([mood in data_wake[0].text for mood in moods]) def test_trigger_time_exactly_once(hallo_getter): test_hallo = hallo_getter({"dailys"}) mood_date = date(2019, 1, 18) # Setup spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0)), MoodTime(MoodTime.SLEEP)] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Prepare events evt1 = EventMinute() evt1.send_time = datetime(2019, 1, 18, 13, 59, 11) evt2 = EventMinute() evt2.send_time = datetime(2019, 1, 18, 14, 0, 11) evt3 = EventMinute() evt3.send_time = datetime(2019, 1, 18, 14, 1, 11) # Send time before trigger time field.passive_trigger(evt1) # Check mood data not updated and query not sent assert mood_date not in spreadsheet.saved_data["mood"] test_hallo.test_server.get_send_data(0) # Send time after trigger time field.passive_trigger(evt2) # Check mood query is sent notif_dict = spreadsheet.saved_data["mood"][mood_date] assert str(time(14, 0, 0)) in notif_dict assert "message_id" in notif_dict[str(time(14, 0, 0))] # Check query is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "how are you feeling" in data_wake[0].text.lower() assert str(time(14, 0, 0)) in data_wake[0].text assert all([mood in data_wake[0].text for mood in moods]) # Set message ID to something msg_id = "test_message_id" notif_dict[str(time(14, 0, 0))]["message_id"] = msg_id spreadsheet.saved_data["mood"][mood_date] = notif_dict # Send another time after trigger time field.passive_trigger(evt3) # Check mood data not updated and query not sent notif_dict = spreadsheet.saved_data["mood"][mood_date] assert notif_dict[str(time(14, 0, 0))]["message_id"] == msg_id test_hallo.test_server.get_send_data(0) def test_process_reply_to_query(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(8, 13, 6)) msg_id = 41212 mood_data = dict() mood_data[MoodTime.WAKE] = dict() mood_data[MoodTime.WAKE]["message_id"] = msg_id spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: mood_data}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "413" ).with_raw_data( RawDataTelegram(get_telegram_time_reply(mood_datetime, msg_id)) ) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert "message_id" in notif_dict[MoodTime.WAKE] assert notif_dict[MoodTime.WAKE]["message_id"] == msg_id assert notif_dict[MoodTime.WAKE]["Happiness"] == 4 assert notif_dict[MoodTime.WAKE]["Anger"] == 1 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 # Check response is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_wake[0].text.lower() assert MoodTime.WAKE in data_wake[0].text assert mood_date.isoformat() in data_wake[0].text assert "413" in data_wake[0].text def test_process_most_recent_query(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(8, 13, 6)) msg_id = 41212 mood_data = dict() mood_data[MoodTime.WAKE] = dict() mood_data[MoodTime.WAKE]["message_id"] = msg_id spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: mood_data}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert "message_id" in notif_dict[MoodTime.WAKE] assert notif_dict[MoodTime.WAKE]["message_id"] == msg_id assert notif_dict[MoodTime.WAKE]["Happiness"] == 4 assert notif_dict[MoodTime.WAKE]["Anger"] == 1 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 # Check response is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_wake[0].text.lower() assert MoodTime.WAKE in data_wake[0].text assert mood_date.isoformat() in data_wake[0].text assert "413" in data_wake[0].text def test_process_most_recent_sleep_query_after_midnight(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) sleep_datetime = datetime.combine(mood_date, time(23, 55, 56)) mood_datetime = datetime.combine(mood_date + timedelta(days=1), time(0, 3, 2)) msg_id = 41212 mood_data = dict() spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: mood_data}} ) # Setup field times = [MoodTime(MoodTime.SLEEP)] moods = ["Happiness", "Anger", "Tiredness"] field = DailysMoodField(spreadsheet, times, moods) # Send sleep message, check response evt_sleep = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "sleep" ).with_raw_data(RawDataTelegram(get_telegram_time(sleep_datetime))) field.passive_trigger(evt_sleep) notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] notif_dict[MoodTime.SLEEP]["message_id"] = msg_id spreadsheet.saved_data["mood"][mood_date] = notif_dict test_hallo.test_server.get_send_data() # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] assert notif_dict[MoodTime.SLEEP]["message_id"] == msg_id assert notif_dict[MoodTime.SLEEP]["Happiness"] == 4 assert notif_dict[MoodTime.SLEEP]["Anger"] == 1 assert notif_dict[MoodTime.SLEEP]["Tiredness"] == 3 # Check response is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_wake[0].text.lower() assert MoodTime.SLEEP in data_wake[0].text assert mood_date.isoformat() in data_wake[0].text assert "413" in data_wake[0].text def test_process_no_mood_query(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(13, 13, 6)) moods = ["Happiness", "Anger", "Tiredness"] msg_id = 41212 mood_data = dict() mood_data[MoodTime.WAKE] = dict() mood_data[MoodTime.WAKE]["message_id"] = msg_id for mood in moods: mood_data[MoodTime.WAKE][mood] = 3 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: mood_data}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is not logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert notif_dict[MoodTime.WAKE]["message_id"] == msg_id assert notif_dict[MoodTime.WAKE]["Happiness"] == 3 assert notif_dict[MoodTime.WAKE]["Anger"] == 3 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 assert str(time(14, 0, 0)) not in notif_dict # Check error response is given data_err = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "is this a mood measurement, because i can't find a mood query" in data_err[0].text.lower() def test_process_time_specified(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(13, 13, 6)) moods = ["Happiness", "Anger", "Tiredness"] msg_id = 41212 mood_data = dict() mood_data[MoodTime.WAKE] = dict() mood_data[MoodTime.WAKE]["message_id"] = msg_id for mood in moods: mood_data[MoodTime.WAKE][mood] = 3 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: mood_data}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "HAT 1400 413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert notif_dict[MoodTime.WAKE]["message_id"] == msg_id assert notif_dict[MoodTime.WAKE]["Happiness"] == 3 assert notif_dict[MoodTime.WAKE]["Anger"] == 3 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 assert str(time(14, 0, 0)) in notif_dict assert "message_id" not in notif_dict[str(time(14, 0, 0))] assert notif_dict[str(time(14, 0, 0))]["Happiness"] == 4 assert notif_dict[str(time(14, 0, 0))]["Anger"] == 1 assert notif_dict[str(time(14, 0, 0))]["Tiredness"] == 3 # Check response is given data_1400 = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_1400[0].text.lower() assert str(time(14, 0, 0)) in data_1400[0].text assert mood_date.isoformat() in data_1400[0].text assert "413" in data_1400[0].text def test_process_wake_specified(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(13, 13, 6)) moods = ["Happiness", "Anger", "Tiredness"] spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "HAT wake 413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert "message_id" not in notif_dict[MoodTime.WAKE] assert notif_dict[MoodTime.WAKE]["Happiness"] == 4 assert notif_dict[MoodTime.WAKE]["Anger"] == 1 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 # Check response is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_wake[0].text.lower() assert MoodTime.WAKE in data_wake[0].text assert mood_date.isoformat() in data_wake[0].text assert "413" in data_wake[0].text def test_process_sleep_specified(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(13, 13, 6)) moods = ["Happiness", "Anger", "Tiredness"] spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0)), MoodTime(MoodTime.SLEEP)] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "HAT sleep 413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.SLEEP in notif_dict assert "message_id" not in notif_dict[MoodTime.SLEEP] assert notif_dict[MoodTime.SLEEP]["Happiness"] == 4 assert notif_dict[MoodTime.SLEEP]["Anger"] == 1 assert notif_dict[MoodTime.SLEEP]["Tiredness"] == 3 # Check response is given data_sleep = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_sleep[0].text.lower() assert MoodTime.SLEEP in data_sleep[0].text assert mood_date.isoformat() in data_sleep[0].text assert "413" in data_sleep[0].text def test_no_trigger_after_processed(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(13, 13, 6)) moods = ["Happiness", "Anger", "Tiredness"] msg_id = 41212 mood_data = dict() mood_data[MoodTime.WAKE] = dict() mood_data[MoodTime.WAKE]["message_id"] = msg_id for mood in moods: mood_data[MoodTime.WAKE][mood] = 3 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: mood_data}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "HAT 1400 413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert notif_dict[MoodTime.WAKE]["message_id"] == msg_id assert notif_dict[MoodTime.WAKE]["Happiness"] == 3 assert notif_dict[MoodTime.WAKE]["Anger"] == 3 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 assert str(time(14, 0, 0)) in notif_dict assert "message_id" not in notif_dict[str(time(14, 0, 0))] assert notif_dict[str(time(14, 0, 0))]["Happiness"] == 4 assert notif_dict[str(time(14, 0, 0))]["Anger"] == 1 assert notif_dict[str(time(14, 0, 0))]["Tiredness"] == 3 # Check response is given data_1400 = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_1400[0].text.lower() assert str(time(14, 0, 0)) in data_1400[0].text assert mood_date.isoformat() in data_1400[0].text assert "413" in data_1400[0].text # Check that when the time happens, a query isn't sent evt_time = EventMinute() evt_time.send_time = datetime.combine(mood_date, time(14, 3, 10)) field.passive_trigger(evt_time) # Check data isn't added notif_dict = spreadsheet.saved_data["mood"][mood_date] assert str(time(14, 0, 0)) in notif_dict assert "message_id" not in notif_dict[str(time(14, 0, 0))] assert notif_dict[str(time(14, 0, 0))]["Happiness"] == 4 assert notif_dict[str(time(14, 0, 0))]["Anger"] == 1 assert notif_dict[str(time(14, 0, 0))]["Tiredness"] == 3 # Check query isn't sent test_hallo.test_server.get_send_data(0) def test_no_trigger_wake_after_processed(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) mood_datetime = datetime.combine(mood_date, time(13, 13, 6)) wake_datetime = datetime.combine(mood_date, time(13, 15, 7)) moods = ["Happiness", "Anger", "Tiredness"] spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0))] field = DailysMoodField(spreadsheet, times, moods) # Send message evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "HAT wake 413" ).with_raw_data(RawDataTelegram(get_telegram_time(mood_datetime))) field.passive_trigger(evt_mood) # Check mood response is logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert "message_id" not in notif_dict[MoodTime.WAKE] assert notif_dict[MoodTime.WAKE]["Happiness"] == 4 assert notif_dict[MoodTime.WAKE]["Anger"] == 1 assert notif_dict[MoodTime.WAKE]["Tiredness"] == 3 # Check response is given data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_wake[0].text.lower() assert MoodTime.WAKE in data_wake[0].text assert mood_date.isoformat() in data_wake[0].text assert "413" in data_wake[0].text # Send wake message, ensure no response evt_wake = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "morning" ).with_raw_data(RawDataTelegram(get_telegram_time(wake_datetime))) field.passive_trigger(evt_wake) # Check query isn't logged notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.WAKE in notif_dict assert "message_id" not in notif_dict[MoodTime.WAKE] # Check response wasn't given test_hallo.test_server.get_send_data(0) def test_no_trigger_sleep_after_processed_sleep_and_midnight(hallo_getter): test_hallo = hallo_getter({"dailys"}) # Setup mood_date = date(2019, 1, 18) sleep_datetime = datetime.combine(mood_date, time(23, 13, 6)) mood_datetime = datetime.combine(mood_date, time(23, 15, 7)) sleep2_datetime = datetime.combine( mood_date + timedelta(days=1), time(0, 3, 15) ) msg_id = 123123 moods = ["Happiness", "Anger", "Tiredness"] saved_data = dict() saved_data[MoodTime.WAKE] = dict() saved_data[MoodTime.WAKE]["message_id"] = 1232 saved_data[str(time(14, 0, 0))] = dict() saved_data[str(time(14, 0, 0))]["message_id"] = 1234 for mood in moods: saved_data[MoodTime.WAKE][mood] = 3 saved_data[str(time(14, 0, 0))][mood] = 2 spreadsheet = DailysSpreadsheetMock( test_hallo.test_user, test_hallo.test_chan, saved_data={"mood": {mood_date: saved_data}} ) # Setup field times = [MoodTime(MoodTime.WAKE), MoodTime(time(14, 0, 0)), MoodTime(MoodTime.SLEEP)] field = DailysMoodField(spreadsheet, times, moods) # Send sleep query evt_sleep1 = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "sleep" ).with_raw_data(RawDataTelegram(get_telegram_time(sleep_datetime))) field.passive_trigger(evt_sleep1) # Check mood query is given and stuff notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] notif_dict[MoodTime.SLEEP]["message_id"] = msg_id spreadsheet.saved_data["mood"][mood_date] = notif_dict data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "how are you feeling" in data_wake[0].text.lower() assert MoodTime.SLEEP in data_wake[0].text assert all([mood in data_wake[0].text for mood in moods]) # Then mood response evt_mood = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "413" ).with_raw_data( RawDataTelegram(get_telegram_time_reply(mood_datetime, msg_id)) ) field.passive_trigger(evt_mood) # Check mood is recorded and response given notif_dict = spreadsheet.saved_data["mood"][mood_date] assert MoodTime.SLEEP in notif_dict assert "message_id" in notif_dict[MoodTime.SLEEP] assert notif_dict[MoodTime.SLEEP]["message_id"] == msg_id assert notif_dict[MoodTime.SLEEP]["Happiness"] == 4 assert notif_dict[MoodTime.SLEEP]["Anger"] == 1 assert notif_dict[MoodTime.SLEEP]["Tiredness"] == 3 data_wake = test_hallo.test_server.get_send_data(1, test_hallo.test_chan, EventMessage) assert "added" in data_wake[0].text.lower() assert MoodTime.SLEEP in data_wake[0].text assert mood_date.isoformat() in data_wake[0].text assert "413" in data_wake[0].text # Then midnight # Another sleep query evt_sleep1 = EventMessage( test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "sleep" ).with_raw_data(RawDataTelegram(get_telegram_time(sleep2_datetime))) field.passive_trigger(evt_sleep1) # Check there's no response test_hallo.test_server.get_send_data(0) ``` #### File: modules/dailys/test_all_field_types.py ```python import importlib import inspect import os from datetime import time import pytest from hallo.events import EventMessage from hallo.inc.commons import inherits_from from hallo.modules.dailys.dailys_field_factory import DailysFieldFactory from hallo.modules.dailys.field_dream import DailysDreamField from hallo.modules.dailys.field_duolingo import DailysDuolingoField from hallo.modules.dailys.field_fa import DailysFAField from hallo.modules.dailys.field_mood import DailysMoodField, MoodTime from hallo.modules.dailys.field_sleep import DailysSleepField from hallo.modules.dailys.field_question import QuestionsField, Question, RepeatingInterval from hallo.test.modules.dailys.dailys_spreadsheet_mock import DailysSpreadsheetMock def get_field_objects(test_user, test_chan): spreadsheet = DailysSpreadsheetMock(test_user, test_chan) field_obs = list() field_obs.append( DailysDuolingoField(spreadsheet, "cabinet", os.getenv("test_duo_password")) ) field_obs.append( DailysMoodField( spreadsheet, [MoodTime(MoodTime.SLEEP), MoodTime(time(14, 00)), MoodTime(time(22, 00))], ["Happiness", "Anger", "Sleepiness"], ) ) field_obs.append(DailysFAField(spreadsheet)) field_obs.append(DailysSleepField(spreadsheet)) field_obs.append(DailysDreamField(spreadsheet)) field_obs.append(QuestionsField( spreadsheet, [Question( "test_question", "Is this question a test?", RepeatingInterval("R/2021-05-03T21:00:00/P1D") )] )) return field_obs def test_field_type_name_doesnt_overlap(): """ Test that field classes don't have type_name values which overlap each other """ all_type_names = [] for field_class in DailysFieldFactory.fields: assert field_class.type_name not in all_type_names all_type_names.append(field_class.type_name) def test_field_classes_added_to_factory(hallo_getter): """ Test tht all field classes which are implemented are added to DailysFieldFactory """ test_hallo = hallo_getter({"dailys"}) module_obj = importlib.import_module("hallo.modules.dailys") # Loop through module, searching for DailysField subclasses. for function_tuple in inspect.getmembers(module_obj, inspect.isclass): function_class = function_tuple[1] # Only look at subclasses of DailysField if not inherits_from(function_class, "DailysField"): continue # Only look at implemented classes. spreadsheet = DailysSpreadsheetMock(test_hallo.test_user, test_hallo.test_chan) # noinspection PyBroadException try: function_class.create_from_input( EventMessage(test_hallo.test_server, test_hallo.test_chan, test_hallo.test_user, "hello"), spreadsheet, ) except NotImplementedError: continue except Exception: pass # Check it's in DailysFieldFactory assert function_class.__name__ in [ sub_class.__name__ for sub_class in DailysFieldFactory.fields ] @pytest.mark.parametrize( "field_class", DailysFieldFactory.fields ) def test_all_field_classes_in_field_objs(field_class, hallo_getter): """ Tests that all field classes have an object in the get_field_objects method here. """ test_hallo = hallo_getter({"dailys"}) assert field_class in [ field_obj.__class__ for field_obj in get_field_objects(test_hallo.test_user, test_hallo.test_chan) ] @pytest.mark.parametrize( "field_class", DailysFieldFactory.fields ) def test_sub_class_has_type_name(field_class): """ Test that the type_name value has been set for each field class, and that it is lower case """ assert len(field_class.type_name) != 0 assert field_class.type_name == field_class.type_name.lower() @pytest.mark.parametrize("field_object", get_field_objects(None, None)) def test_to_json_contains_field_type(field_object): """ Test that to_json() for each field type remembers to set field_type in the json dict """ json_obj = field_object.to_json() assert "type_name" in json_obj ``` #### File: modules/hallo_control/test_active_threads.py ```python from threading import Thread import time from hallo.events import EventMessage def test_threads_simple(hallo_getter): test_hallo = hallo_getter({"hallo_control"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "active threads") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert "i have" in data[0].text.lower() assert "active threads" in data[0].text.lower() def test_threads_increase(hallo_getter): test_hallo = hallo_getter({"hallo_control"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "active threads") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) first_threads = int( data[0].text.lower().split("active")[0].split("have")[1].strip() ) # Launch 10 threads for _ in range(10): Thread(target=time.sleep, args=(10,)).start() # Run function again test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "active threads") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) second_threads = int( data[0].text.lower().split("active")[0].split("have")[1].strip() ) assert second_threads > first_threads, "Thread count should have increased" ``` #### File: modules/math/test_average.py ```python from hallo.events import EventMessage def test_avg_simple(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "average 2 4") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert float(data[0].text.split()[-1][:-1]) == 3, "average of 2 and 4 should be 3" def test_avg_same(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "average 2 2 2 2 2") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( float(data[0].text.split()[-1][:-1]) == 2 ), "average of the same number should be the same number" def test_avg_many(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage( test_hallo.test_server, None, test_hallo.test_user, "average 2 7 4 6 32 4 1 17 12 12 100" ) ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( data[0].text.split()[-1][:-1][:6] == "17.909" ), "average of many numbers calculated incorrectly" def test_avg_floats(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "average 2.4 3.2 6.6 1.2") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( round(float(data[0].text.split()[-1][:-1]), 2) == 3.35 ), "average of floats incorrect" def test_avg_negative(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "average -5 5 -10 10 -14 -16 13 17") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( float(data[0].text.split()[-1][:-1]) == 0 ), "average including negatives was incorrect" def test_avg_fail(hallo_getter): test_hallo = hallo_getter({"math"}) # Test that words fail test_hallo.function_dispatcher.dispatch( EventMessage( test_hallo.test_server, None, test_hallo.test_user, "average -5 5 hello 10 -14 -16 13 17" ) ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert "error" in data[0].text.lower(), "average of words should throw error" # Test that invalid numbers fail test_hallo.function_dispatcher.dispatch( EventMessage( test_hallo.test_server, None, test_hallo.test_user, "average -5 5 -10 10.0.0 -14 -16 13 17" ) ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert "error" in data[0].text.lower(), "Invalid numbers did not return error" ``` #### File: modules/math/test_change_options.py ```python from hallo.events import EventMessage def test_change_options_simple(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "change options 5") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert "[5]" in data[0].text, "Option missing from results." assert "[2,2,1]" in data[0].text, "Option missing from results." assert "[2,1,1,1]" in data[0].text, "Option missing from results." assert "[1,1,1,1,1]" in data[0].text, "Option missing from results." def test_change_options_over_limit(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "change options 21") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( "error" in data[0].text.lower() ), "Change options size limit has not been enforced." def test_change_options_negative(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "change options -5") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( "error" in data[0].text.lower() ), "Change options should fail with negative input." def test_change_options_float(hallo_getter): test_hallo = hallo_getter({"math"}) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "change option 2.3") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert ( "error" in data[0].text.lower() ), "Change options should fail with non-integer input." ``` #### File: modules/random/mock_chooser.py ```python class MockChooser: def __init__(self): self.choice = 0 self.last_choices = None self.last_count = None def choose(self, choices, count=1): self.last_choices = choices self.last_count = count return [choices[self.choice]] * count ``` #### File: modules/random/test_eight_ball.py ```python from hallo.events import EventMessage from hallo.modules.random.eight_ball import EightBall def test_eightball(hallo_getter): test_hallo = hallo_getter({"random"}) all_responses = ( EightBall.RESPONSES_YES_TOTALLY + EightBall.RESPONSES_YES_PROBABLY + EightBall.RESPONSES_MAYBE + EightBall.RESPONSES_NO ) test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "eight ball") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert data[0].text.lower() in [ "{}.".format(x.lower()) for x in all_responses ], "Response isn't valid." def test_eightball_with_message(hallo_getter): test_hallo = hallo_getter({"random"}) all_responses = ( EightBall.RESPONSES_YES_TOTALLY + EightBall.RESPONSES_YES_PROBABLY + EightBall.RESPONSES_MAYBE + EightBall.RESPONSES_NO ) test_hallo.function_dispatcher.dispatch( EventMessage( test_hallo.test_server, None, test_hallo.test_user, "magic eightball will this test pass?", ) ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert data[0].text.lower() in [ "{}.".format(x.lower()) for x in all_responses ], "Response isn't valid." def test_all_responses(mock_chooser, hallo_getter): test_hallo = hallo_getter({"random"}) all_responses = ( EightBall.RESPONSES_YES_TOTALLY + EightBall.RESPONSES_YES_PROBABLY + EightBall.RESPONSES_MAYBE + EightBall.RESPONSES_NO ) responses = [] for x in range(len(all_responses)): # Set RNG mock_chooser.choice = x # Shake magic eight ball test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "magic8-ball") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) responses.append(data[0].text.lower()[:-1]) assert data[0].text.lower() in [ "{}.".format(x.lower()) for x in all_responses ], "Response isn't valid." # Check all responses given assert len(responses) == len( all_responses ), "Not the same number of responses as possible responses" assert set(responses) == set( [x.lower() for x in all_responses] ), "Not all responses are given" ``` #### File: modules/random/test_night_vale_proverb.py ```python from hallo.events import EventMessage from hallo.modules.random.night_vale_proverb import NightValeProverb def test_proverb(mock_chooser, hallo_getter): test_hallo = hallo_getter({"random"}) # Get proverb list n = NightValeProverb() proverb_list = n.proverb_list response_list = [] # Check all proverbs are given for x in range(len(proverb_list)): # Set RNG mock_chooser.choice = x # Check function test_hallo.function_dispatcher.dispatch( EventMessage(test_hallo.test_server, None, test_hallo.test_user, "nightvale proverb") ) data = test_hallo.test_server.get_send_data(1, test_hallo.test_user, EventMessage) assert data[0].text in proverb_list, "Proverb isn't from list" response_list.append(data[0].text) assert len(response_list) == len( proverb_list ), "Not all proverbs options given?" assert set(response_list) == set(proverb_list), "Proverb options didn't match" ``` #### File: modules/subscriptions/test_source_e621.py ```python import pytest from yippi import YippiClient from hallo.events import EventMessage, EventMessageWithPhoto from hallo.modules.subscriptions.source_e621 import E621Source from hallo.modules.subscriptions.subscription_repo import SubscriptionRepo def test_init(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("cabinet", e6_client, test_hallo.test_user) keys = [ "search", "last_keys" ] for key in keys: assert key in rf.__dict__, "Key is missing from E621Sub object: " + key def test_matches_name(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("Cabinet ", e6_client, test_hallo.test_user) assert rf.matches_name("cabinet") def test_title(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("cabinet", e6_client, test_hallo.test_user) assert "\"cabinet\"" in rf.title def test_from_input(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) sub_repo = SubscriptionRepo(test_hallo) rf = E621Source.from_input("cabinet", test_hallo.test_user, sub_repo) assert rf.search == "cabinet" @pytest.mark.external_integration def test_current_state(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("cabinet", e6_client, test_hallo.test_user) state = rf.current_state() assert isinstance(state, list) assert len(state) > 0 last_id = None for post in state: # Check tag is in tags assert "cabinet" in [x for v in post.tags.values() for x in v] # Check id is decreasing if last_id is None: last_id = post.id continue assert last_id > post.id last_id = post.id @pytest.mark.external_integration def test_item_to_key(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("cabinet", e6_client, test_hallo.test_user) item = e6_client.post(1092773) assert rf.item_to_key(item) == 1092773 @pytest.mark.external_integration def test_item_to_event(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("chital", e6_client, test_hallo.test_user) item = e6_client.post(1092773) event = rf.item_to_event(test_hallo.test_server, test_hallo.test_chan, None, item) assert isinstance(event, EventMessageWithPhoto) assert event.photo_id == "https://static1.e621.net/data/02/7e/027e18f9db1fd4906d98b987b202066e.png" assert event.server == test_hallo.test_server assert event.channel == test_hallo.test_chan assert event.user is None assert "\"chital\"" in event.text assert "1092773" in event.text assert "Safe" in event.text @pytest.mark.external_integration def test_item_to_event__no_embed(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") rf = E621Source("acrobatics", e6_client, test_hallo.test_user) item = e6_client.post(257069) event = rf.item_to_event(test_hallo.test_server, test_hallo.test_chan, None, item) assert isinstance(event, EventMessage) assert not isinstance(event, EventMessageWithPhoto) assert event.server == test_hallo.test_server assert event.channel == test_hallo.test_chan assert event.user is None assert "\"acrobatics\"" in event.text assert "257069" in event.text assert "Safe" in event.text def test_json(hallo_getter): test_hallo = hallo_getter({"subscriptions"}) e6_client = YippiClient("hallo_test", "0.1.0", "dr-spangle") sub_repo = SubscriptionRepo(test_hallo) test_e621_search = "cabinet" # Create example source rf = E621Source(test_e621_search, e6_client, test_hallo.test_user) rf.last_keys = [1234, 2345, 3456] # Save to json and load up new E621Sub rf_json = rf.to_json() assert "type" in rf_json assert "last_keys" in rf_json assert "search" in rf_json assert rf_json["type"] == E621Source.type_name rf2 = E621Source.from_json(rf_json, test_hallo.test_chan, sub_repo) assert rf2.search == test_e621_search assert rf2.last_keys == rf.last_keys assert rf2.owner == rf.owner ```
{ "source": "joshcoales/pyparsing", "score": 3 }
#### File: pyparsing/tests/test_diagram.py ```python import unittest from examples.jsonParser import jsonObject from examples.simpleBool import boolExpr from examples.simpleSQL import simpleSQL from examples.mozillaCalendarParser import calendars from pyparsing.diagram import to_railroad, railroad_to_html from pyparsing import Or import tempfile import os class TestRailroadDiagrams(unittest.TestCase): def railroad_debug(self) -> bool: """ Returns True if we're in debug mode """ return os.environ.get("RAILROAD_DEBUG", False) def get_temp(self): """ Returns an appropriate temporary file for writing a railroad diagram """ return tempfile.NamedTemporaryFile( delete=not self.railroad_debug(), mode="w", encoding="utf-8", suffix=".html" ) def test_bool_expr(self): with self.get_temp() as temp: railroad = to_railroad(boolExpr) assert len(railroad) == 3 temp.write(railroad_to_html(railroad)) if self.railroad_debug(): print("bool expr:" + temp.name) def test_json(self): with self.get_temp() as temp: railroad = to_railroad(jsonObject) assert len(railroad) == 4 temp.write(railroad_to_html(railroad)) if self.railroad_debug(): print("json: " + temp.name) def test_sql(self): with self.get_temp() as temp: railroad = to_railroad(simpleSQL) assert len(railroad) == 7 temp.write(railroad_to_html(railroad)) if self.railroad_debug(): print("sql: " + temp.name) def test_calendars(self): with self.get_temp() as temp: railroad = to_railroad(calendars) temp.write(railroad_to_html(railroad)) if self.railroad_debug(): print("calendar: " + temp.name) def test_none_name(self): grammar = Or(["foo", "bar"]) railroad = to_railroad(grammar) assert len(railroad) == 1 assert railroad[0].name is not None ``` #### File: pyparsing/tests/test_unit.py ```python import contextlib import datetime import sys from io import StringIO from unittest import TestCase import pyparsing as pp from examples.jsonParser import jsonObject from pyparsing import ParseException from pyparsing import ParserElement from tests.json_parser_tests import test1, test2, test3, test4, test5 import platform ppc = pp.pyparsing_common ppt = pp.pyparsing_test # see which Python implementation we are running python_impl = platform.python_implementation() CPYTHON_ENV = python_impl == "CPython" IRON_PYTHON_ENV = python_impl == "IronPython" JYTHON_ENV = python_impl == "Jython" PYPY_ENV = python_impl == "PyPy" # simple utility for flattening nested lists def flatten(L): if type(L) is not list: return [L] if L == []: return L return flatten(L[0]) + flatten(L[1:]) class resetting: def __init__(self, *args): ob = args[0] attrnames = args[1:] self.ob = ob self.save_attrs = attrnames self.save_values = [getattr(ob, attrname) for attrname in attrnames] def __enter__(self): pass def __exit__(self, *args): for attr, value in zip(self.save_attrs, self.save_values): setattr(self.ob, attr, value) class Test1_PyparsingTestInit(TestCase): def runTest(self): from pyparsing import ( __version__ as pyparsingVersion, __versionTime__ as pyparsingVersionTime, ) print( "Beginning test of pyparsing, version", pyparsingVersion, pyparsingVersionTime, ) print("Python version", sys.version) class Test2_WithoutPackrat(ppt.TestParseResultsAsserts, TestCase): suite_context = None save_suite_context = None def setUp(self): self.suite_context.restore() @contextlib.contextmanager def assertRaises(self, expected_exception_type, msg=None): """ Simple wrapper to print out the exceptions raised after assertRaises """ try: with super().assertRaises(expected_exception_type, msg=msg) as ar: yield finally: if getattr(ar, "exception", None) is not None: print( "Raised expected exception: {}: {}".format( type(ar.exception).__name__, str(ar.exception) ) ) else: print( "Expected {} exception not raised".format( expected_exception_type.__name__ ) ) return ar def test000_assert_packrat_status(self): print("Packrat enabled:", ParserElement._packratEnabled) self.assertFalse(ParserElement._packratEnabled, "packrat enabled") def testScanStringWithOverlap(self): parser = pp.Word(pp.alphas, exact=3) without_overlaps = sum(t for t, s, e in parser.scanString("ABCDEFGHI")).asList() self.assertEqual( ["ABC", "DEF", "GHI"], without_overlaps, msg="scanString without overlaps failed", ) with_overlaps = sum( t for t, s, e in parser.scanString("ABCDEFGHI", overlap=True) ).asList() self.assertEqual( ["ABC", "BCD", "CDE", "DEF", "EFG", "FGH", "GHI"], with_overlaps, msg="scanString with overlaps failed", ) def testTransformString(self): make_int_with_commas = ppc.integer().addParseAction( lambda t: "{:,}".format(t[0]) ) lower_case_words = pp.Word(pp.alphas.lower(), asKeyword=True) + pp.Optional( pp.White() ) nested_list = pp.nestedExpr().addParseAction(pp.ParseResults.asList) transformer = make_int_with_commas | nested_list | lower_case_words.suppress() in_string = ( "I wish to buy 12345 shares of Acme Industries (as a gift to my (ex)wife)" ) print(in_string) out_string = transformer.transformString(in_string) print(out_string) self.assertEqual( "I 12,345 Acme Industries asagifttomyexwife", out_string, msg="failure in transformString", ) def testUpdateDefaultWhitespace(self): prev_default_whitespace_chars = pp.ParserElement.DEFAULT_WHITE_CHARS try: pp.dblQuotedString.copyDefaultWhiteChars = False pp.ParserElement.setDefaultWhitespaceChars(" \t") self.assertEqual( set(" \t"), set(pp.sglQuotedString.whiteChars), "setDefaultWhitespaceChars did not update sglQuotedString", ) self.assertEqual( set(prev_default_whitespace_chars), set(pp.dblQuotedString.whiteChars), "setDefaultWhitespaceChars updated dblQuotedString but should not", ) finally: pp.dblQuotedString.copyDefaultWhiteChars = True pp.ParserElement.setDefaultWhitespaceChars(prev_default_whitespace_chars) self.assertEqual( set(prev_default_whitespace_chars), set(pp.dblQuotedString.whiteChars), "setDefaultWhitespaceChars updated dblQuotedString", ) with ppt.reset_pyparsing_context(): pp.ParserElement.setDefaultWhitespaceChars(" \t") self.assertNotEqual( set(prev_default_whitespace_chars), set(pp.dblQuotedString.whiteChars), "setDefaultWhitespaceChars updated dblQuotedString but should not", ) EOL = pp.LineEnd().suppress().setName("EOL") # Identifiers is a string + optional $ identifier = pp.Combine(pp.Word(pp.alphas) + pp.Optional("$")) # Literals (number or double quoted string) literal = ppc.number | pp.dblQuotedString expression = literal | identifier # expression.setName("expression").setDebug() # ppc.number.setDebug() # ppc.integer.setDebug() line_number = ppc.integer # Keywords PRINT = pp.CaselessKeyword("print") print_stmt = PRINT - pp.ZeroOrMore(expression | ";") statement = print_stmt code_line = pp.Group(line_number + statement + EOL) program = pp.ZeroOrMore(code_line) test = """\ 10 print 123; 20 print 234; 567; 30 print 890 """ parsed_program = program.parseString(test) print(parsed_program.dump()) self.assertEqual( 3, len(parsed_program), "failed to apply new whitespace chars to existing builtins", ) def testUpdateDefaultWhitespace2(self): with ppt.reset_pyparsing_context(): expr_tests = [ (pp.dblQuotedString, '"abc"'), (pp.sglQuotedString, "'def'"), (ppc.integer, "123"), (ppc.number, "4.56"), (ppc.identifier, "a_bc"), ] NL = pp.LineEnd() for expr, test_str in expr_tests: parser = pp.Group(expr[1, ...] + pp.Optional(NL))[1, ...] test_string = "\n".join([test_str] * 3) result = parser.parseString(test_string, parseAll=True) print(result.dump()) self.assertEqual(1, len(result), "failed {!r}".format(test_string)) pp.ParserElement.setDefaultWhitespaceChars(" \t") for expr, test_str in expr_tests: parser = pp.Group(expr[1, ...] + pp.Optional(NL))[1, ...] test_string = "\n".join([test_str] * 3) result = parser.parseString(test_string, parseAll=True) print(result.dump()) self.assertEqual(3, len(result), "failed {!r}".format(test_string)) pp.ParserElement.setDefaultWhitespaceChars(" \n\t") for expr, test_str in expr_tests: parser = pp.Group(expr[1, ...] + pp.Optional(NL))[1, ...] test_string = "\n".join([test_str] * 3) result = parser.parseString(test_string, parseAll=True) print(result.dump()) self.assertEqual(1, len(result), "failed {!r}".format(test_string)) def testParseFourFn(self): import examples.fourFn as fourFn import math def test(s, ans): fourFn.exprStack[:] = [] results = fourFn.BNF().parseString(s) try: resultValue = fourFn.evaluate_stack(fourFn.exprStack) except Exception: self.assertIsNone(ans, "exception raised for expression {!r}".format(s)) else: self.assertEqual( ans, resultValue, "failed to evaluate {}, got {:f}".format(s, resultValue), ) print(s, "->", resultValue) test("9", 9) test("-9", -9) test("--9", 9) test("-E", -math.e) test("9 + 3 + 6", 9 + 3 + 6) test("9 + 3 / 11", 9 + 3.0 / 11) test("(9 + 3)", (9 + 3)) test("(9+3) / 11", (9 + 3.0) / 11) test("9 - 12 - 6", 9 - 12 - 6) test("9 - (12 - 6)", 9 - (12 - 6)) test("2*3.14159", 2 * 3.14159) test("3.1415926535*3.1415926535 / 10", 3.1415926535 * 3.1415926535 / 10) test("PI * PI / 10", math.pi * math.pi / 10) test("PI*PI/10", math.pi * math.pi / 10) test("PI^2", math.pi ** 2) test("round(PI^2)", round(math.pi ** 2)) test("6.02E23 * 8.048", 6.02e23 * 8.048) test("e / 3", math.e / 3) test("sin(PI/2)", math.sin(math.pi / 2)) test("10+sin(PI/4)^2", 10 + math.sin(math.pi / 4) ** 2) test("trunc(E)", int(math.e)) test("trunc(-E)", int(-math.e)) test("round(E)", round(math.e)) test("round(-E)", round(-math.e)) test("E^PI", math.e ** math.pi) test("exp(0)", 1) test("exp(1)", math.e) test("2^3^2", 2 ** 3 ** 2) test("(2^3)^2", (2 ** 3) ** 2) test("2^3+2", 2 ** 3 + 2) test("2^3+5", 2 ** 3 + 5) test("2^9", 2 ** 9) test("sgn(-2)", -1) test("sgn(0)", 0) test("sgn(0.1)", 1) test("foo(0.1)", None) test("round(E, 3)", round(math.e, 3)) test("round(PI^2, 3)", round(math.pi ** 2, 3)) test("sgn(cos(PI/4))", 1) test("sgn(cos(PI/2))", 0) test("sgn(cos(PI*3/4))", -1) test("+(sgn(cos(PI/4)))", 1) test("-(sgn(cos(PI/4)))", -1) def testParseSQL(self): import examples.simpleSQL as simpleSQL def test(s, num_expected_toks, expected_errloc=-1): try: sqlToks = flatten(simpleSQL.simpleSQL.parseString(s).asList()) print(s, sqlToks, len(sqlToks)) self.assertEqual( num_expected_toks, len(sqlToks), "invalid parsed tokens, expected {}, found {} ({})".format( num_expected_toks, len(sqlToks), sqlToks ), ) except ParseException as e: if expected_errloc >= 0: self.assertEqual( expected_errloc, e.loc, "expected error at {}, found at {}".format( expected_errloc, e.loc ), ) test("SELECT * from XYZZY, ABC", 6) test("select * from SYS.XYZZY", 5) test("Select A from Sys.dual", 5) test("Select A,B,C from Sys.dual", 7) test("Select A, B, C from Sys.dual", 7) test("Select A, B, C from Sys.dual, Table2 ", 8) test("Xelect A, B, C from Sys.dual", 0, 0) test("Select A, B, C frox Sys.dual", 0, 15) test("Select", 0, 6) test("Select &&& frox Sys.dual", 0, 7) test("Select A from Sys.dual where a in ('RED','GREEN','BLUE')", 12) test( "Select A from Sys.dual where a in ('RED','GREEN','BLUE') and b in (10,20,30)", 20, ) test( "Select A,b from table1,table2 where table1.id eq table2.id -- test out comparison operators", 10, ) def testParseConfigFile(self): from examples import configParse def test(fnam, num_expected_toks, resCheckList): print("Parsing", fnam, "...", end=" ") with open(fnam) as infile: iniFileLines = "\n".join(infile.read().splitlines()) iniData = configParse.inifile_BNF().parseString(iniFileLines) print(len(flatten(iniData.asList()))) print(list(iniData.keys())) self.assertEqual( num_expected_toks, len(flatten(iniData.asList())), "file %s not parsed correctly" % fnam, ) for chkkey, chkexpect in resCheckList: var = iniData for attr in chkkey.split("."): var = getattr(var, attr) print(chkkey, var, chkexpect) self.assertEqual( chkexpect, var, "ParseConfigFileTest: failed to parse ini {!r} as expected {!r}, found {}".format( chkkey, chkexpect, var ), ) print("OK") test( "tests/karthik.ini", 23, [("users.K", "8"), ("users.mod_scheme", "'QPSK'"), ("users.Na", "K+2")], ) test( "examples/Setup.ini", 125, [ ("Startup.audioinf", "M3i"), ("Languages.key1", "0x0003"), ("test.foo", "bar"), ], ) def testParseJSONData(self): expected = [ [ [ "glossary", [ ["title", "example glossary"], [ "GlossDiv", [ ["title", "S"], [ "GlossList", [ [ ["ID", "SGML"], ["SortAs", "SGML"], [ "GlossTerm", "Standard Generalized Markup Language", ], ["Acronym", "SGML"], ["LargestPrimeLessThan100", 97], ["AvogadroNumber", 6.02e23], ["EvenPrimesGreaterThan2", None], ["PrimesLessThan10", [2, 3, 5, 7]], ["WMDsFound", False], ["IraqAlQaedaConnections", None], ["Abbrev", "ISO 8879:1986"], [ "GlossDef", "A meta-markup language, used to create markup languages such as " "DocBook.", ], ["GlossSeeAlso", ["GML", "XML", "markup"]], ["EmptyDict", []], ["EmptyList", [[]]], ] ], ], ], ], ], ] ], [ [ "menu", [ ["id", "file"], ["value", "File:"], [ "popup", [ [ "menuitem", [ [ ["value", "New"], ["onclick", "CreateNewDoc()"], ], [["value", "Open"], ["onclick", "OpenDoc()"]], [["value", "Close"], ["onclick", "CloseDoc()"]], ], ] ], ], ], ] ], [ [ "widget", [ ["debug", "on"], [ "window", [ ["title", "Sample Konfabulator Widget"], ["name", "main_window"], ["width", 500], ["height", 500], ], ], [ "image", [ ["src", "Images/Sun.png"], ["name", "sun1"], ["hOffset", 250], ["vOffset", 250], ["alignment", "center"], ], ], [ "text", [ ["data", "Click Here"], ["size", 36], ["style", "bold"], ["name", "text1"], ["hOffset", 250], ["vOffset", 100], ["alignment", "center"], [ "onMouseUp", "sun1.opacity = (sun1.opacity / 100) * 90;", ], ], ], ], ] ], [ [ "web-app", [ [ "servlet", [ [ ["servlet-name", "cofaxCDS"], ["servlet-class", "org.cofax.cds.CDSServlet"], [ "init-param", [ [ "configGlossary:installationAt", "Philadelphia, PA", ], [ "configGlossary:adminEmail", "<EMAIL>", ], ["configGlossary:poweredBy", "Cofax"], [ "configGlossary:poweredByIcon", "/images/cofax.gif", ], [ "configGlossary:staticPath", "/content/static", ], [ "templateProcessorClass", "org.cofax.WysiwygTemplate", ], [ "templateLoaderClass", "org.cofax.FilesTemplateLoader", ], ["templatePath", "templates"], ["templateOverridePath", ""], ["defaultListTemplate", "listTemplate.htm"], [ "defaultFileTemplate", "articleTemplate.htm", ], ["useJSP", False], ["jspListTemplate", "listTemplate.jsp"], ["jspFileTemplate", "articleTemplate.jsp"], ["cachePackageTagsTrack", 200], ["cachePackageTagsStore", 200], ["cachePackageTagsRefresh", 60], ["cacheTemplatesTrack", 100], ["cacheTemplatesStore", 50], ["cacheTemplatesRefresh", 15], ["cachePagesTrack", 200], ["cachePagesStore", 100], ["cachePagesRefresh", 10], ["cachePagesDirtyRead", 10], [ "searchEngineListTemplate", "forSearchEnginesList.htm", ], [ "searchEngineFileTemplate", "forSearchEngines.htm", ], [ "searchEngineRobotsDb", "WEB-INF/robots.db", ], ["useDataStore", True], [ "dataStoreClass", "org.cofax.SqlDataStore", ], [ "redirectionClass", "org.cofax.SqlRedirection", ], ["dataStoreName", "cofax"], [ "dataStoreDriver", "com.microsoft.jdbc.sqlserver.SQLServerDriver", ], [ "dataStoreUrl", "jdbc:microsoft:sqlserver://LOCALHOST:1433;DatabaseName=goon", ], ["dataStoreUser", "sa"], ["dataStorePassword", "<PASSWORD>"], [ "dataStoreTestQuery", "SET NOCOUNT ON;select test='test';", ], [ "dataStoreLogFile", "/usr/local/tomcat/logs/datastore.log", ], ["dataStoreInitConns", 10], ["dataStoreMaxConns", 100], ["dataStoreConnUsageLimit", 100], ["dataStoreLogLevel", "debug"], ["maxUrlLength", 500], ], ], ], [ ["servlet-name", "cofaxEmail"], ["servlet-class", "org.cofax.cds.EmailServlet"], [ "init-param", [ ["mailHost", "mail1"], ["mailHostOverride", "mail2"], ], ], ], [ ["servlet-name", "cofaxAdmin"], ["servlet-class", "org.cofax.cds.AdminServlet"], ], [ ["servlet-name", "fileServlet"], ["servlet-class", "org.cofax.cds.FileServlet"], ], [ ["servlet-name", "cofaxTools"], [ "servlet-class", "org.cofax.cms.CofaxToolsServlet", ], [ "init-param", [ ["templatePath", "toolstemplates/"], ["log", 1], [ "logLocation", "/usr/local/tomcat/logs/CofaxTools.log", ], ["logMaxSize", ""], ["dataLog", 1], [ "dataLogLocation", "/usr/local/tomcat/logs/dataLog.log", ], ["dataLogMaxSize", ""], [ "removePageCache", "/content/admin/remove?cache=pages&id=", ], [ "removeTemplateCache", "/content/admin/remove?cache=templates&id=", ], [ "fileTransferFolder", "/usr/local/tomcat/webapps/content/fileTransferFolder", ], ["lookInContext", 1], ["adminGroupID", 4], ["betaServer", True], ], ], ], ], ], [ "servlet-mapping", [ ["cofaxCDS", "/"], ["cofaxEmail", "/cofaxutil/aemail/*"], ["cofaxAdmin", "/admin/*"], ["fileServlet", "/static/*"], ["cofaxTools", "/tools/*"], ], ], [ "taglib", [ ["taglib-uri", "cofax.tld"], ["taglib-location", "/WEB-INF/tlds/cofax.tld"], ], ], ], ] ], [ [ "menu", [ ["header", "SVG Viewer"], [ "items", [ [["id", "Open"]], [["id", "OpenNew"], ["label", "Open New"]], None, [["id", "ZoomIn"], ["label", "Zoom In"]], [["id", "ZoomOut"], ["label", "Zoom Out"]], [["id", "OriginalView"], ["label", "Original View"]], None, [["id", "Quality"]], [["id", "Pause"]], [["id", "Mute"]], None, [["id", "Find"], ["label", "Find..."]], [["id", "FindAgain"], ["label", "Find Again"]], [["id", "Copy"]], [["id", "CopyAgain"], ["label", "Copy Again"]], [["id", "CopySVG"], ["label", "Copy SVG"]], [["id", "ViewSVG"], ["label", "View SVG"]], [["id", "ViewSource"], ["label", "View Source"]], [["id", "SaveAs"], ["label", "Save As"]], None, [["id", "Help"]], [ ["id", "About"], ["label", "About Adobe CVG Viewer..."], ], ], ], ], ] ], ] for t, exp in zip((test1, test2, test3, test4, test5), expected): self.assertParseAndCheckList(jsonObject, t, exp, verbose=True) def testParseCommaSeparatedValues(self): testData = [ "a,b,c,100.2,,3", "d, e, j k , m ", "'Hello, World', f, g , , 5.1,x", "<NAME>, 123 Main St., Cleveland, Ohio", "<NAME>, 456 St. James St., Los Angeles , California ", "", ] testVals = [ [(3, "100.2"), (4, ""), (5, "3")], [(2, "j k"), (3, "m")], [(0, "'Hello, World'"), (2, "g"), (3, "")], [(0, "<NAME>"), (1, "123 Main St."), (2, "Cleveland"), (3, "Ohio")], [ (0, "<NAME>"), (1, "456 St. James St."), (2, "Los Angeles"), (3, "California"), ], ] for line, tests in zip(testData, testVals): print("Parsing: %r ->" % line, end=" ") results = ppc.comma_separated_list.parseString(line) print(results) for t in tests: if not (len(results) > t[0] and results[t[0]] == t[1]): print("$$$", results.dump()) print("$$$", results[0]) self.assertTrue( len(results) > t[0] and results[t[0]] == t[1], "failed on %s, item %d s/b '%s', got '%s'" % (line, t[0], t[1], str(results.asList())), ) def testParseEBNF(self): from examples import ebnf print("Constructing EBNF parser with pyparsing...") grammar = """ syntax = (syntax_rule), {(syntax_rule)}; syntax_rule = meta_identifier, '=', definitions_list, ';'; definitions_list = single_definition, {'|', single_definition}; single_definition = syntactic_term, {',', syntactic_term}; syntactic_term = syntactic_factor,['-', syntactic_factor]; syntactic_factor = [integer, '*'], syntactic_primary; syntactic_primary = optional_sequence | repeated_sequence | grouped_sequence | meta_identifier | terminal_string; optional_sequence = '[', definitions_list, ']'; repeated_sequence = '{', definitions_list, '}'; grouped_sequence = '(', definitions_list, ')'; (* terminal_string = "'", character - "'", {character - "'"}, "'" | '"', character - '"', {character - '"'}, '"'; meta_identifier = letter, {letter | digit}; integer = digit, {digit}; *) """ table = {} table["terminal_string"] = pp.quotedString table["meta_identifier"] = pp.Word(pp.alphas + "_", pp.alphas + "_" + pp.nums) table["integer"] = pp.Word(pp.nums) print("Parsing EBNF grammar with EBNF parser...") parsers = ebnf.parse(grammar, table) ebnf_parser = parsers["syntax"] print("-", "\n- ".join(parsers.keys())) self.assertEqual( 13, len(list(parsers.keys())), "failed to construct syntax grammar" ) print("Parsing EBNF grammar with generated EBNF parser...") parsed_chars = ebnf_parser.parseString(grammar) parsed_char_len = len(parsed_chars) print("],\n".join(str(parsed_chars.asList()).split("],"))) self.assertEqual( 98, len(flatten(parsed_chars.asList())), "failed to tokenize grammar correctly", ) def testParseIDL(self): from examples import idlParse def test(strng, numToks, expectedErrloc=0): print(strng) try: bnf = idlParse.CORBA_IDL_BNF() tokens = bnf.parseString(strng) print("tokens = ") tokens.pprint() tokens = flatten(tokens.asList()) print(len(tokens)) self.assertEqual( numToks, len(tokens), "error matching IDL string, {} -> {}".format(strng, str(tokens)), ) except ParseException as err: print(err.line) print(" " * (err.column - 1) + "^") print(err) self.assertEqual( 0, numToks, "unexpected ParseException while parsing {}, {}".format( strng, str(err) ), ) self.assertEqual( expectedErrloc, err.loc, "expected ParseException at %d, found exception at %d" % (expectedErrloc, err.loc), ) test( """ /* * a block comment * */ typedef string[10] tenStrings; typedef sequence<string> stringSeq; typedef sequence< sequence<string> > stringSeqSeq; interface QoSAdmin { stringSeq method1(in string arg1, inout long arg2); stringSeqSeq method2(in string arg1, inout long arg2, inout long arg3); string method3(); }; """, 59, ) test( """ /* * a block comment * */ typedef string[10] tenStrings; typedef /** ** *** **** * * a block comment * */ sequence<string> /*comment inside an And */ stringSeq; /* */ /**/ /***/ /****/ typedef sequence< sequence<string> > stringSeqSeq; interface QoSAdmin { stringSeq method1(in string arg1, inout long arg2); stringSeqSeq method2(in string arg1, inout long arg2, inout long arg3); string method3(); }; """, 59, ) test( r""" const string test="Test String\n"; const long a = 0; const long b = -100; const float c = 3.14159; const long d = 0x007f7f7f; exception TestException { string msg; sequence<string> dataStrings; }; interface TestInterface { void method1(in string arg1, inout long arg2); }; """, 60, ) test( """ module Test1 { exception TestException { string msg; ]; interface TestInterface { void method1(in string arg1, inout long arg2) raises (TestException); }; }; """, 0, 56, ) test( """ module Test1 { exception TestException { string msg; }; }; """, 13, ) def testParseVerilog(self): pass def testScanString(self): from pyparsing import Word, Combine, Suppress, CharsNotIn, nums, StringEnd testdata = """ <table border="0" cellpadding="3" cellspacing="3" frame="" width="90%"> <tr align="left" valign="top"> <td><b>Name</b></td> <td><b>IP Address</b></td> <td><b>Location</b></td> </tr> <tr align="left" valign="top" bgcolor="#c7efce"> <td>time-a.nist.gov</td> <td>172.16.58.3</td> <td>NIST, Gaithersburg, Maryland</td> </tr> <tr align="left" valign="top"> <td>time-b.nist.gov</td> <td>192.168.127.12</td> <td>NIST, Gaithersburg, Maryland</td> </tr> <tr align="left" valign="top" bgcolor="#c7efce"> <td>time-a.timefreq.bldrdoc.gov</td> <td>192.168.3.11</td> <td>NIST, Boulder, Colorado</td> </tr> <tr align="left" valign="top"> <td>time-b.timefreq.bldrdoc.gov</td> <td>172.16.58.3</td> <td>NIST, Boulder, Colorado</td> </tr> <tr align="left" valign="top" bgcolor="#c7efce"> <td>time-c.timefreq.bldrdoc.gov</td> <td>172.16.17.32</td> <td>NIST, Boulder, Colorado</td> </tr> </table> """ integer = Word(nums) ipAddress = Combine(integer + "." + integer + "." + integer + "." + integer) tdStart = Suppress("<td>") tdEnd = Suppress("</td>") timeServerPattern = ( tdStart + ipAddress("ipAddr") + tdEnd + tdStart + CharsNotIn("<")("loc") + tdEnd ) servers = [ srvr.ipAddr for srvr, startloc, endloc in timeServerPattern.scanString(testdata) ] print(servers) self.assertEqual( [ "172.16.58.3", "192.168.127.12", "192.168.3.11", "172.16.58.3", "172.16.17.32", ], servers, "failed scanString()", ) # test for stringEnd detection in scanString foundStringEnds = [r for r in StringEnd().scanString("xyzzy")] print(foundStringEnds) self.assertTrue(foundStringEnds, "Failed to find StringEnd in scanString") def testQuotedStrings(self): from pyparsing import ( sglQuotedString, dblQuotedString, quotedString, QuotedString, ) testData = """ 'a valid single quoted string' 'an invalid single quoted string because it spans lines' "a valid double quoted string" "an invalid double quoted string because it spans lines" """ print(testData) sglStrings = [ (t[0], b, e) for (t, b, e) in sglQuotedString.scanString(testData) ] print(sglStrings) self.assertTrue( len(sglStrings) == 1 and (sglStrings[0][1] == 17 and sglStrings[0][2] == 47), "single quoted string failure", ) dblStrings = [ (t[0], b, e) for (t, b, e) in dblQuotedString.scanString(testData) ] print(dblStrings) self.assertTrue( len(dblStrings) == 1 and (dblStrings[0][1] == 154 and dblStrings[0][2] == 184), "double quoted string failure", ) allStrings = [(t[0], b, e) for (t, b, e) in quotedString.scanString(testData)] print(allStrings) self.assertTrue( len(allStrings) == 2 and (allStrings[0][1] == 17 and allStrings[0][2] == 47) and (allStrings[1][1] == 154 and allStrings[1][2] == 184), "quoted string failure", ) escapedQuoteTest = r""" 'This string has an escaped (\') quote character' "This string has an escaped (\") quote character" """ sglStrings = [ (t[0], b, e) for (t, b, e) in sglQuotedString.scanString(escapedQuoteTest) ] print(sglStrings) self.assertTrue( len(sglStrings) == 1 and (sglStrings[0][1] == 17 and sglStrings[0][2] == 66), "single quoted string escaped quote failure (%s)" % str(sglStrings[0]), ) dblStrings = [ (t[0], b, e) for (t, b, e) in dblQuotedString.scanString(escapedQuoteTest) ] print(dblStrings) self.assertTrue( len(dblStrings) == 1 and (dblStrings[0][1] == 83 and dblStrings[0][2] == 132), "double quoted string escaped quote failure (%s)" % str(dblStrings[0]), ) allStrings = [ (t[0], b, e) for (t, b, e) in quotedString.scanString(escapedQuoteTest) ] print(allStrings) self.assertTrue( len(allStrings) == 2 and ( allStrings[0][1] == 17 and allStrings[0][2] == 66 and allStrings[1][1] == 83 and allStrings[1][2] == 132 ), "quoted string escaped quote failure (%s)" % ([str(s[0]) for s in allStrings]), ) dblQuoteTest = r""" 'This string has an doubled ('') quote character' "This string has an doubled ("") quote character" """ sglStrings = [ (t[0], b, e) for (t, b, e) in sglQuotedString.scanString(dblQuoteTest) ] print(sglStrings) self.assertTrue( len(sglStrings) == 1 and (sglStrings[0][1] == 17 and sglStrings[0][2] == 66), "single quoted string escaped quote failure (%s)" % str(sglStrings[0]), ) dblStrings = [ (t[0], b, e) for (t, b, e) in dblQuotedString.scanString(dblQuoteTest) ] print(dblStrings) self.assertTrue( len(dblStrings) == 1 and (dblStrings[0][1] == 83 and dblStrings[0][2] == 132), "double quoted string escaped quote failure (%s)" % str(dblStrings[0]), ) allStrings = [ (t[0], b, e) for (t, b, e) in quotedString.scanString(dblQuoteTest) ] print(allStrings) self.assertTrue( len(allStrings) == 2 and ( allStrings[0][1] == 17 and allStrings[0][2] == 66 and allStrings[1][1] == 83 and allStrings[1][2] == 132 ), "quoted string escaped quote failure (%s)" % ([str(s[0]) for s in allStrings]), ) print( "testing catastrophic RE backtracking in implementation of dblQuotedString" ) for expr, test_string in [ (dblQuotedString, '"' + "\\xff" * 500), (sglQuotedString, "'" + "\\xff" * 500), (quotedString, '"' + "\\xff" * 500), (quotedString, "'" + "\\xff" * 500), (QuotedString('"'), '"' + "\\xff" * 500), (QuotedString("'"), "'" + "\\xff" * 500), ]: expr.parseString(test_string + test_string[0]) try: expr.parseString(test_string) except Exception: continue # test invalid endQuoteChar with self.assertRaises( SyntaxError, msg="issue raising error for invalid endQuoteChar" ): expr = pp.QuotedString('"', endQuoteChar=" ") def testCaselessOneOf(self): caseless1 = pp.oneOf("d a b c aA B A C", caseless=True) caseless1str = str(caseless1) print(caseless1str) caseless2 = pp.oneOf("d a b c Aa B A C", caseless=True) caseless2str = str(caseless2) print(caseless2str) self.assertEqual( caseless1str.upper(), caseless2str.upper(), "oneOf not handling caseless option properly", ) self.assertNotEqual( caseless1str, caseless2str, "Caseless option properly sorted" ) res = caseless1[...].parseString("AAaaAaaA") print(res) self.assertEqual(4, len(res), "caseless1 oneOf failed") self.assertEqual( "aA" * 4, "".join(res), "caseless1 CaselessLiteral return failed" ) res = caseless2[...].parseString("AAaaAaaA") print(res) self.assertEqual(4, len(res), "caseless2 oneOf failed") self.assertEqual( "Aa" * 4, "".join(res), "caseless1 CaselessLiteral return failed" ) def testCommentParser(self): print("verify processing of C and HTML comments") testdata = """ /* */ /** **/ /**/ /***/ /****/ /* /*/ /** /*/ /*** /*/ /* ablsjdflj */ """ foundLines = [ pp.lineno(s, testdata) for t, s, e in pp.cStyleComment.scanString(testdata) ] self.assertEqual( list(range(11))[2:], foundLines, "only found C comments on lines " + str(foundLines), ) testdata = """ <!-- --> <!--- ---> <!----> <!-----> <!------> <!-- /--> <!--- /--> <!---- /--> <!---- /- -> <!---- / -- > <!-- ablsjdflj --> """ foundLines = [ pp.lineno(s, testdata) for t, s, e in pp.htmlComment.scanString(testdata) ] self.assertEqual( list(range(11))[2:], foundLines, "only found HTML comments on lines " + str(foundLines), ) # test C++ single line comments that have line terminated with '\' (should continue comment to following line) testSource = r""" // comment1 // comment2 \ still comment 2 // comment 3 """ self.assertEqual( 41, len(pp.cppStyleComment.searchString(testSource)[1][0]), r"failed to match single-line comment with '\' at EOL", ) def testParseExpressionResults(self): from pyparsing import Word, alphas, OneOrMore, Optional, Group a = Word("a", alphas).setName("A") b = Word("b", alphas).setName("B") c = Word("c", alphas).setName("C") ab = (a + b).setName("AB") abc = (ab + c).setName("ABC") word = Word(alphas).setName("word") words = Group(OneOrMore(~a + word)).setName("words") phrase = ( words("Head") + Group(a + Optional(b + Optional(c)))("ABC") + words("Tail") ) results = phrase.parseString("xavier yeti alpha beta charlie will beaver") print(results, results.Head, results.ABC, results.Tail) for key, ln in [("Head", 2), ("ABC", 3), ("Tail", 2)]: self.assertEqual( ln, len(results[key]), "expected %d elements in %s, found %s" % (ln, key, str(results[key])), ) def testParseKeyword(self): kw = pp.Keyword("if") lit = pp.Literal("if") def test(s, litShouldPass, kwShouldPass): print("Test", s) print("Match Literal", end=" ") try: print(lit.parseString(s)) except Exception: print("failed") if litShouldPass: self.fail("Literal failed to match %s, should have" % s) else: if not litShouldPass: self.fail("Literal matched %s, should not have" % s) print("Match Keyword", end=" ") try: print(kw.parseString(s)) except Exception: print("failed") if kwShouldPass: self.fail("Keyword failed to match %s, should have" % s) else: if not kwShouldPass: self.fail("Keyword matched %s, should not have" % s) test("ifOnlyIfOnly", True, False) test("if(OnlyIfOnly)", True, True) test("if (OnlyIf Only)", True, True) kw = pp.Keyword("if", caseless=True) test("IFOnlyIfOnly", False, False) test("If(OnlyIfOnly)", False, True) test("iF (OnlyIf Only)", False, True) with self.assertWarns( SyntaxWarning, msg="failed to warn empty string passed to Keyword" ): kw = pp.Keyword("") def testParseExpressionResultsAccumulate(self): from pyparsing import Word, delimitedList, Combine, alphas, nums num = Word(nums).setName("num")("base10*") hexnum = Combine("0x" + Word(nums)).setName("hexnum")("hex*") name = Word(alphas).setName("word")("word*") list_of_num = delimitedList(hexnum | num | name, ",") tokens = list_of_num.parseString("1, 0x2, 3, 0x4, aaa") print(tokens.dump()) self.assertParseResultsEquals( tokens, expected_list=["1", "0x2", "3", "0x4", "aaa"], expected_dict={ "base10": ["1", "3"], "hex": ["0x2", "0x4"], "word": ["aaa"], }, ) from pyparsing import ( Literal, Word, nums, Group, Dict, alphas, quotedString, oneOf, delimitedList, removeQuotes, alphanums, ) lbrack = Literal("(").suppress() rbrack = Literal(")").suppress() integer = Word(nums).setName("int") variable = Word(alphas, max=1).setName("variable") relation_body_item = ( variable | integer | quotedString.copy().setParseAction(removeQuotes) ) relation_name = Word(alphas + "_", alphanums + "_") relation_body = lbrack + Group(delimitedList(relation_body_item)) + rbrack Goal = Dict(Group(relation_name + relation_body)) Comparison_Predicate = Group(variable + oneOf("< >") + integer)("pred*") Query = Goal("head") + ":-" + delimitedList(Goal | Comparison_Predicate) test = """Q(x,y,z):-Bloo(x,"Mitsis",y),Foo(y,z,1243),y>28,x<12,x>3""" queryRes = Query.parseString(test) print(queryRes.dump()) self.assertParseResultsEquals( queryRes.pred, expected_list=[["y", ">", "28"], ["x", "<", "12"], ["x", ">", "3"]], msg="Incorrect list for attribute pred, %s" % str(queryRes.pred.asList()), ) def testReStringRange(self): testCases = ( (r"[A-Z]"), (r"[A-A]"), (r"[A-Za-z]"), (r"[A-z]"), (r"[\ -\~]"), (r"[\0x20-0]"), (r"[\0x21-\0x7E]"), (r"[\0xa1-\0xfe]"), (r"[\040-0]"), (r"[A-Za-z0-9]"), (r"[A-Za-z0-9_]"), (r"[A-Za-z0-9_$]"), (r"[A-Za-z0-9_$\-]"), (r"[^0-9\\]"), (r"[a-zA-Z]"), (r"[/\^~]"), (r"[=\+\-!]"), (r"[A-]"), (r"[-A]"), (r"[\x21]"), (r"[а-яА-ЯёЁA-Z$_\041α-ω]"), ) expectedResults = ( "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "A", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz", " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~", " !\"#$%&'()*+,-./0", "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~", "¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþ", " !\"#$%&'()*+,-./0", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_$", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_$-", "0123456789\\", "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ", "/^~", "=+-!", "A-", "-A", "!", "абвгдежзийклмнопрстуфхцчшщъыьэюяАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯёЁABCDEFGHIJKLMNOPQRSTUVWXYZ$_!αβγδεζηθικλμνξοπρςστυφχψω", ) for test in zip(testCases, expectedResults): t, exp = test res = pp.srange(t) # print(t, "->", res) self.assertEqual( exp, res, "srange error, srange({!r})->'{!r}', expected '{!r}'".format( t, res, exp ), ) def testSkipToParserTests(self): from pyparsing import Literal, SkipTo, cStyleComment thingToFind = Literal("working") testExpr = ( SkipTo(Literal(";"), include=True, ignore=cStyleComment) + thingToFind ) def test_parse(someText): print(testExpr.parseString(someText)) # This first test works, as the SkipTo expression is immediately following the ignore expression (cStyleComment) test_parse("some text /* comment with ; in */; working") # This second test previously failed, as there is text following the ignore expression, and before the SkipTo expression. test_parse("some text /* comment with ; in */some other stuff; working") # tests for optional failOn argument testExpr = ( SkipTo(Literal(";"), include=True, ignore=cStyleComment, failOn="other") + thingToFind ) test_parse("some text /* comment with ; in */; working") with self.assertRaisesParseException(): test_parse("some text /* comment with ; in */some other stuff; working") # test that we correctly create named results text = "prefixDATAsuffix" data = Literal("DATA") suffix = Literal("suffix") expr = SkipTo(data + suffix)("prefix") + data + suffix result = expr.parseString(text) self.assertTrue( isinstance(result.prefix, str), "SkipTo created with wrong saveAsList attribute", ) from pyparsing import Literal, And, Word, alphas, nums alpha_word = (~Literal("end") + Word(alphas, asKeyword=True)).setName("alpha") num_word = Word(nums, asKeyword=True).setName("int") def test(expr, test_string, expected_list, expected_dict): if (expected_list, expected_dict) == (None, None): with self.assertRaises( Exception, msg="{} failed to parse {!r}".format(expr, test_string) ): expr.parseString(test_string) else: result = expr.parseString(test_string) self.assertParseResultsEquals( result, expected_list=expected_list, expected_dict=expected_dict ) # ellipses for SkipTo e = ... + Literal("end") test(e, "start 123 end", ["start 123 ", "end"], {"_skipped": ["start 123 "]}) e = Literal("start") + ... + Literal("end") test(e, "start 123 end", ["start", "123 ", "end"], {"_skipped": ["123 "]}) e = Literal("start") + ... test(e, "start 123 end", None, None) e = And(["start", ..., "end"]) test(e, "start 123 end", ["start", "123 ", "end"], {"_skipped": ["123 "]}) e = And([..., "end"]) test(e, "start 123 end", ["start 123 ", "end"], {"_skipped": ["start 123 "]}) e = "start" + (num_word | ...) + "end" test(e, "start 456 end", ["start", "456", "end"], {}) test( e, "start 123 456 end", ["start", "123", "456 ", "end"], {"_skipped": ["456 "]}, ) test(e, "start end", ["start", "", "end"], {"_skipped": ["missing <int>"]}) # e = define_expr('"start" + (num_word | ...)("inner") + "end"') # test(e, "start 456 end", ['start', '456', 'end'], {'inner': '456'}) e = "start" + (alpha_word[...] & num_word[...] | ...) + "end" test(e, "start 456 red end", ["start", "456", "red", "end"], {}) test(e, "start red 456 end", ["start", "red", "456", "end"], {}) test( e, "start 456 red + end", ["start", "456", "red", "+ ", "end"], {"_skipped": ["+ "]}, ) test(e, "start red end", ["start", "red", "end"], {}) test(e, "start 456 end", ["start", "456", "end"], {}) test(e, "start end", ["start", "end"], {}) test(e, "start 456 + end", ["start", "456", "+ ", "end"], {"_skipped": ["+ "]}) e = "start" + (alpha_word[1, ...] & num_word[1, ...] | ...) + "end" test(e, "start 456 red end", ["start", "456", "red", "end"], {}) test(e, "start red 456 end", ["start", "red", "456", "end"], {}) test( e, "start 456 red + end", ["start", "456", "red", "+ ", "end"], {"_skipped": ["+ "]}, ) test(e, "start red end", ["start", "red ", "end"], {"_skipped": ["red "]}) test(e, "start 456 end", ["start", "456 ", "end"], {"_skipped": ["456 "]}) test( e, "start end", ["start", "", "end"], {"_skipped": ["missing <{{alpha}... & {int}...}>"]}, ) test(e, "start 456 + end", ["start", "456 + ", "end"], {"_skipped": ["456 + "]}) e = "start" + (alpha_word | ...) + (num_word | ...) + "end" test(e, "start red 456 end", ["start", "red", "456", "end"], {}) test( e, "start red end", ["start", "red", "", "end"], {"_skipped": ["missing <int>"]}, ) test( e, "start end", ["start", "", "", "end"], {"_skipped": ["missing <alpha>", "missing <int>"]}, ) e = Literal("start") + ... + "+" + ... + "end" test( e, "start red + 456 end", ["start", "red ", "+", "456 ", "end"], {"_skipped": ["red ", "456 "]}, ) def testEllipsisRepetion(self): import re word = pp.Word(pp.alphas).setName("word") num = pp.Word(pp.nums).setName("num") exprs = [ word[...] + num, word[0, ...] + num, word[1, ...] + num, word[2, ...] + num, word[..., 3] + num, word[2] + num, ] expected_res = [ r"([abcd]+ )*\d+", r"([abcd]+ )*\d+", r"([abcd]+ )+\d+", r"([abcd]+ ){2,}\d+", r"([abcd]+ ){0,3}\d+", r"([abcd]+ ){2}\d+", ] tests = ["aa bb cc dd 123", "bb cc dd 123", "cc dd 123", "dd 123", "123"] all_success = True for expr, expected_re in zip(exprs, expected_res): successful_tests = [t for t in tests if re.match(expected_re, t)] failure_tests = [t for t in tests if not re.match(expected_re, t)] success1, _ = expr.runTests(successful_tests) success2, _ = expr.runTests(failure_tests, failureTests=True) all_success = all_success and success1 and success2 if not all_success: print("Failed expression:", expr) break self.assertTrue(all_success, "failed getItem_ellipsis test") def testEllipsisRepetionWithResultsNames(self): label = pp.Word(pp.alphas) val = ppc.integer() parser = label("label") + pp.ZeroOrMore(val)("values") _, results = parser.runTests( """ a 1 b 1 2 3 c """ ) expected = [ (["a", 1], {"label": "a", "values": [1]}), (["b", 1, 2, 3], {"label": "b", "values": [1, 2, 3]}), (["c"], {"label": "c", "values": []}), ] for obs, exp in zip(results, expected): test, result = obs exp_list, exp_dict = exp self.assertParseResultsEquals( result, expected_list=exp_list, expected_dict=exp_dict ) parser = label("label") + val[...]("values") _, results = parser.runTests( """ a 1 b 1 2 3 c """ ) expected = [ (["a", 1], {"label": "a", "values": [1]}), (["b", 1, 2, 3], {"label": "b", "values": [1, 2, 3]}), (["c"], {"label": "c", "values": []}), ] for obs, exp in zip(results, expected): test, result = obs exp_list, exp_dict = exp self.assertParseResultsEquals( result, expected_list=exp_list, expected_dict=exp_dict ) pt = pp.Group(val("x") + pp.Suppress(",") + val("y")) parser = label("label") + pt[...]("points") _, results = parser.runTests( """ a 1,1 b 1,1 2,2 3,3 c """ ) expected = [ (["a", [1, 1]], {"label": "a", "points": [{"x": 1, "y": 1}]}), ( ["b", [1, 1], [2, 2], [3, 3]], { "label": "b", "points": [{"x": 1, "y": 1}, {"x": 2, "y": 2}, {"x": 3, "y": 3}], }, ), (["c"], {"label": "c", "points": []}), ] for obs, exp in zip(results, expected): test, result = obs exp_list, exp_dict = exp self.assertParseResultsEquals( result, expected_list=exp_list, expected_dict=exp_dict ) def testCustomQuotes(self): from pyparsing import QuotedString testString = r""" sdlfjs :sdf\:jls::djf: sl:kfsjf sdlfjs -sdf\:jls::--djf: sl-kfsjf sdlfjs -sdf\:::jls::--djf: sl:::-kfsjf sdlfjs ^sdf\:jls^^--djf^ sl-kfsjf sdlfjs ^^^==sdf\:j=lz::--djf: sl=^^=kfsjf sdlfjs ==sdf\:j=ls::--djf: sl==kfsjf^^^ """ colonQuotes = QuotedString(":", "\\", "::") dashQuotes = QuotedString("-", "\\", "--") hatQuotes = QuotedString("^", "\\") hatQuotes1 = QuotedString("^", "\\", "^^") dblEqQuotes = QuotedString("==", "\\") def test(quoteExpr, expected): print(quoteExpr.pattern) print(quoteExpr.searchString(testString)) print(quoteExpr.searchString(testString)[0][0]) print(expected) self.assertEqual( expected, quoteExpr.searchString(testString)[0][0], "failed to match {}, expected '{}', got '{}'".format( quoteExpr, expected, quoteExpr.searchString(testString)[0] ), ) print() test(colonQuotes, r"sdf:jls:djf") test(dashQuotes, r"sdf:jls::-djf: sl") test(hatQuotes, r"sdf:jls") test(hatQuotes1, r"sdf:jls^--djf") test(dblEqQuotes, r"sdf:j=ls::--djf: sl") test(QuotedString(":::"), "jls::--djf: sl") test(QuotedString("==", endQuoteChar="--"), r"sdf\:j=lz::") test( QuotedString("^^^", multiline=True), r"""==sdf\:j=lz::--djf: sl=^^=kfsjf sdlfjs ==sdf\:j=ls::--djf: sl==kfsjf""", ) with self.assertRaises(SyntaxError): QuotedString("", "\\") def testRepeater(self): from pyparsing import ( matchPreviousLiteral, matchPreviousExpr, Word, nums, ParserElement, ) if ParserElement._packratEnabled: print("skipping this test, not compatible with packratting") return first = Word("abcdef").setName("word1") bridge = Word(nums).setName("number") second = matchPreviousLiteral(first).setName("repeat(word1Literal)") seq = first + bridge + second tests = [ ("abc12abc", True), ("abc12aabc", False), ("abc12cba", True), ("abc12bca", True), ] for tst, expected in tests: found = False for tokens, start, end in seq.scanString(tst): f, b, s = tokens print(f, b, s) found = True if not found: print("No literal match in", tst) self.assertEqual( expected, found, "Failed repeater for test: {}, matching {}".format(tst, str(seq)), ) print() # retest using matchPreviousExpr instead of matchPreviousLiteral second = matchPreviousExpr(first).setName("repeat(word1expr)") seq = first + bridge + second tests = [("abc12abc", True), ("abc12cba", False), ("abc12abcdef", False)] for tst, expected in tests: found = False for tokens, start, end in seq.scanString(tst): print(tokens) found = True if not found: print("No expression match in", tst) self.assertEqual( expected, found, "Failed repeater for test: {}, matching {}".format(tst, str(seq)), ) print() first = Word("abcdef").setName("word1") bridge = Word(nums).setName("number") second = matchPreviousExpr(first).setName("repeat(word1)") seq = first + bridge + second csFirst = seq.setName("word-num-word") csSecond = matchPreviousExpr(csFirst) compoundSeq = csFirst + ":" + csSecond compoundSeq.streamline() print(compoundSeq) tests = [ ("abc12abc:abc12abc", True), ("abc12cba:abc12abc", False), ("abc12abc:abc12abcdef", False), ] for tst, expected in tests: found = False for tokens, start, end in compoundSeq.scanString(tst): print("match:", tokens) found = True break if not found: print("No expression match in", tst) self.assertEqual( expected, found, "Failed repeater for test: {}, matching {}".format(tst, str(seq)), ) print() eFirst = Word(nums) eSecond = matchPreviousExpr(eFirst) eSeq = eFirst + ":" + eSecond tests = [("1:1A", True), ("1:10", False)] for tst, expected in tests: found = False for tokens, start, end in eSeq.scanString(tst): print(tokens) found = True if not found: print("No match in", tst) self.assertEqual( expected, found, "Failed repeater for test: {}, matching {}".format(tst, str(seq)), ) def testRepeater2(self): """test matchPreviousLiteral with empty repeater""" if ParserElement._packratEnabled: print("skipping this test, not compatible with packratting") return first = pp.Optional(pp.Word("abcdef").setName("words1")) bridge = pp.Word(pp.nums).setName("number") second = pp.matchPreviousLiteral(first).setName("repeat(word1Literal)") seq = first + bridge + second tst = "12" expected = ["12"] result = seq.parseString(tst) print(result.dump()) self.assertParseResultsEquals(result, expected_list=expected) def testRepeater3(self): """test matchPreviousLiteral with multiple repeater tokens""" if ParserElement._packratEnabled: print("skipping this test, not compatible with packratting") return first = pp.Word("a") + pp.Word("d") bridge = pp.Word(pp.nums).setName("number") second = pp.matchPreviousLiteral(first) # ("second") seq = first + bridge + second tst = "aaaddd12aaaddd" expected = ["aaa", "ddd", "12", "aaa", "ddd"] result = seq.parseString(tst) print(result.dump()) self.assertParseResultsEquals(result, expected_list=expected) def testRepeater4(self): """test matchPreviousExpr with multiple repeater tokens""" if ParserElement._packratEnabled: print("skipping this test, not compatible with packratting") return first = pp.Group(pp.Word(pp.alphas) + pp.Word(pp.alphas)) bridge = pp.Word(pp.nums) # no matching is used - this is just here for a sanity check # second = pp.Group(pp.Word(pp.alphas) + pp.Word(pp.alphas))("second") # second = pp.Group(pp.Word(pp.alphas) + pp.Word(pp.alphas)).setResultsName("second") # ISSUE: when matchPreviousExpr returns multiple tokens the matching tokens are nested an extra level deep. # This behavior is not seen with a single return token (see testRepeater5 directly below.) second = pp.matchPreviousExpr(first) expr = first + bridge.suppress() + second tst = "aaa ddd 12 aaa ddd" expected = [["aaa", "ddd"], ["aaa", "ddd"]] result = expr.parseString(tst) print(result.dump()) self.assertParseResultsEquals(result, expected_list=expected) def testRepeater5(self): """a simplified testRepeater4 to examine matchPreviousExpr with a single repeater token""" if ParserElement._packratEnabled: print("skipping this test, not compatible with packratting") return first = pp.Word(pp.alphas) bridge = pp.Word(pp.nums) second = pp.matchPreviousExpr(first) expr = first + bridge.suppress() + second tst = "aaa 12 aaa" expected = tst.replace("12", "").split() result = expr.parseString(tst) print(result.dump()) self.assertParseResultsEquals(result, expected_list=expected) def testRecursiveCombine(self): from pyparsing import Forward, Word, alphas, nums, Optional, Combine testInput = "myc(114)r(11)dd" stream = Forward() stream <<= Optional(Word(alphas)) + Optional("(" + Word(nums) + ")" + stream) expected = ["".join(stream.parseString(testInput))] print(expected) stream = Forward() stream << Combine( Optional(Word(alphas)) + Optional("(" + Word(nums) + ")" + stream) ) testVal = stream.parseString(testInput) print(testVal) self.assertParseResultsEquals(testVal, expected_list=expected) def testInfixNotationBasicArithEval(self): from pyparsing import Word, nums, alphas, Literal, oneOf, infixNotation, opAssoc import ast integer = Word(nums).setParseAction(lambda t: int(t[0])) variable = Word(alphas, exact=1) operand = integer | variable expop = Literal("^") signop = oneOf("+ -") multop = oneOf("* /") plusop = oneOf("+ -") factop = Literal("!") expr = infixNotation( operand, [ (factop, 1, opAssoc.LEFT), (expop, 2, opAssoc.RIGHT), (signop, 1, opAssoc.RIGHT), (multop, 2, opAssoc.LEFT), (plusop, 2, opAssoc.LEFT), ], ) test = [ "9 + 2 + 3", "9 + 2 * 3", "(9 + 2) * 3", "(9 + -2) * 3", "(9 + --2) * 3", "(9 + -2) * 3^2^2", "(9! + -2) * 3^2^2", "M*X + B", "M*(X + B)", "1+2*-3^4*5+-+-6", "3!!", ] expected = """[[9, '+', 2, '+', 3]] [[9, '+', [2, '*', 3]]] [[[9, '+', 2], '*', 3]] [[[9, '+', ['-', 2]], '*', 3]] [[[9, '+', ['-', ['-', 2]]], '*', 3]] [[[9, '+', ['-', 2]], '*', [3, '^', [2, '^', 2]]]] [[[[9, '!'], '+', ['-', 2]], '*', [3, '^', [2, '^', 2]]]] [[['M', '*', 'X'], '+', 'B']] [['M', '*', ['X', '+', 'B']]] [[1, '+', [2, '*', ['-', [3, '^', 4]], '*', 5], '+', ['-', ['+', ['-', 6]]]]] [[3, '!', '!']]""".split( "\n" ) expected = [ast.literal_eval(x.strip()) for x in expected] for test_str, exp_list in zip(test, expected): self.assertParseAndCheckList(expr, test_str, exp_list, verbose=True) def testInfixNotationEvalBoolExprUsingAstClasses(self): from pyparsing import infixNotation, Word, alphas, oneOf, opAssoc boolVars = {"True": True, "False": False} class BoolOperand: reprsymbol = "" def __init__(self, t): self.args = t[0][0::2] def __str__(self): sep = " %s " % self.reprsymbol return "(" + sep.join(map(str, self.args)) + ")" class BoolAnd(BoolOperand): reprsymbol = "&" def __bool__(self): for a in self.args: if isinstance(a, str): v = boolVars[a] else: v = bool(a) if not v: return False return True class BoolOr(BoolOperand): reprsymbol = "|" def __bool__(self): for a in self.args: if isinstance(a, str): v = boolVars[a] else: v = bool(a) if v: return True return False class BoolNot(BoolOperand): def __init__(self, t): self.arg = t[0][1] def __str__(self): return "~" + str(self.arg) def __bool__(self): if isinstance(self.arg, str): v = boolVars[self.arg] else: v = bool(self.arg) return not v boolOperand = Word(alphas, max=1) | oneOf("True False") boolExpr = infixNotation( boolOperand, [ ("not", 1, opAssoc.RIGHT, BoolNot), ("and", 2, opAssoc.LEFT, BoolAnd), ("or", 2, opAssoc.LEFT, BoolOr), ], ) test = [ "p and not q", "not not p", "not(p and q)", "q or not p and r", "q or not p or not r", "q or not (p and r)", "p or q or r", "p or q or r and False", "(p or q or r) and False", ] boolVars["p"] = True boolVars["q"] = False boolVars["r"] = True print("p =", boolVars["p"]) print("q =", boolVars["q"]) print("r =", boolVars["r"]) print() for t in test: res = boolExpr.parseString(t) print(t, "\n", res[0], "=", bool(res[0]), "\n") expected = eval(t, {}, boolVars) self.assertEqual( expected, bool(res[0]), "failed boolean eval test {}".format(t) ) def testInfixNotationMinimalParseActionCalls(self): from pyparsing import infixNotation, Word, alphas, oneOf, opAssoc, nums, Literal global count count = 0 def evaluate_int(t): global count value = int(t[0]) print("evaluate_int", value) count += 1 return value integer = Word(nums).setParseAction(evaluate_int) variable = Word(alphas, exact=1) operand = integer | variable expop = Literal("^") signop = oneOf("+ -") multop = oneOf("* /") plusop = oneOf("+ -") factop = Literal("!") expr = infixNotation( operand, [ ("!", 1, opAssoc.LEFT), ("^", 2, opAssoc.LEFT), (signop, 1, opAssoc.RIGHT), (multop, 2, opAssoc.LEFT), (plusop, 2, opAssoc.LEFT), ], ) test = ["9"] for t in test: count = 0 print("%r => %s (count=%d)" % (t, expr.parseString(t), count)) self.assertEqual(1, count, "count evaluated too many times!") def testInfixNotationWithParseActions(self): word = pp.Word(pp.alphas) def supLiteral(s): """Returns the suppressed literal s""" return pp.Literal(s).suppress() def booleanExpr(atom): ops = [ (supLiteral("!"), 1, pp.opAssoc.RIGHT, lambda s, l, t: ["!", t[0][0]]), (pp.oneOf("= !="), 2, pp.opAssoc.LEFT), (supLiteral("&"), 2, pp.opAssoc.LEFT, lambda s, l, t: ["&", t[0]]), (supLiteral("|"), 2, pp.opAssoc.LEFT, lambda s, l, t: ["|", t[0]]), ] return pp.infixNotation(atom, ops) f = booleanExpr(word) + pp.StringEnd() tests = [ ("bar = foo", [["bar", "=", "foo"]]), ( "bar = foo & baz = fee", ["&", [["bar", "=", "foo"], ["baz", "=", "fee"]]], ), ] for test, expected in tests: print(test) results = f.parseString(test) print(results) self.assertParseResultsEquals(results, expected_list=expected) print() def testInfixNotationGrammarTest5(self): expop = pp.Literal("**") signop = pp.oneOf("+ -") multop = pp.oneOf("* /") plusop = pp.oneOf("+ -") class ExprNode: def __init__(self, tokens): self.tokens = tokens[0] def eval(self): return None class NumberNode(ExprNode): def eval(self): return self.tokens class SignOp(ExprNode): def eval(self): mult = {"+": 1, "-": -1}[self.tokens[0]] return mult * self.tokens[1].eval() class BinOp(ExprNode): def eval(self): ret = self.tokens[0].eval() for op, operand in zip(self.tokens[1::2], self.tokens[2::2]): ret = self.opn_map[op](ret, operand.eval()) return ret class ExpOp(BinOp): opn_map = {"**": lambda a, b: b ** a} class MultOp(BinOp): import operator opn_map = {"*": operator.mul, "/": operator.truediv} class AddOp(BinOp): import operator opn_map = {"+": operator.add, "-": operator.sub} operand = ppc.number().setParseAction(NumberNode) expr = pp.infixNotation( operand, [ (expop, 2, pp.opAssoc.LEFT, (lambda pr: [pr[0][::-1]], ExpOp)), (signop, 1, pp.opAssoc.RIGHT, SignOp), (multop, 2, pp.opAssoc.LEFT, MultOp), (plusop, 2, pp.opAssoc.LEFT, AddOp), ], ) tests = """\ 2+7 2**3 2**3**2 3**9 3**3**2 """ for t in tests.splitlines(): t = t.strip() if not t: continue parsed = expr.parseString(t) eval_value = parsed[0].eval() self.assertEqual( eval(t), eval_value, "Error evaluating {!r}, expected {!r}, got {!r}".format( t, eval(t), eval_value ), ) def testInfixNotationExceptions(self): num = pp.Word(pp.nums) # arity 3 with None opExpr - should raise ValueError with self.assertRaises(ValueError): expr = pp.infixNotation(num, [(None, 3, pp.opAssoc.LEFT),]) # arity 3 with invalid tuple - should raise ValueError with self.assertRaises(ValueError): expr = pp.infixNotation(num, [(("+", "-", "*"), 3, pp.opAssoc.LEFT)]) # left arity > 3 - should raise ValueError with self.assertRaises(ValueError): expr = pp.infixNotation(num, [("*", 4, pp.opAssoc.LEFT)]) # right arity > 3 - should raise ValueError with self.assertRaises(ValueError): expr = pp.infixNotation(num, [("*", 4, pp.opAssoc.RIGHT)]) # assoc not from opAssoc - should raise ValueError with self.assertRaises(ValueError): expr = pp.infixNotation(num, [("*", 2, "LEFT")]) def testInfixNotationWithNonOperators(self): # left arity 2 with None expr # right arity 2 with None expr num = pp.Word(pp.nums).addParseAction(pp.tokenMap(int)) ident = ppc.identifier() for assoc in (pp.opAssoc.LEFT, pp.opAssoc.RIGHT): expr = pp.infixNotation( num | ident, [(None, 2, assoc), ("+", 2, pp.opAssoc.LEFT)] ) self.assertParseAndCheckList(expr, "3x+2", [[[3, "x"], "+", 2]]) def testInfixNotationTernaryOperator(self): # left arity 3 # right arity 3 num = pp.Word(pp.nums).addParseAction(pp.tokenMap(int)) for assoc in (pp.opAssoc.LEFT, pp.opAssoc.RIGHT): expr = pp.infixNotation( num, [("+", 2, pp.opAssoc.LEFT), (("?", ":"), 3, assoc),] ) self.assertParseAndCheckList( expr, "3 + 2? 12: 13", [[[3, "+", 2], "?", 12, ":", 13]] ) def testParseResultsPickle(self): import pickle # test 1 body = pp.makeHTMLTags("BODY")[0] result = body.parseString("<BODY BGCOLOR='#00FFBB' FGCOLOR=black>") print(result.dump()) for protocol in range(pickle.HIGHEST_PROTOCOL + 1): print("Test pickle dump protocol", protocol) try: pickleString = pickle.dumps(result, protocol) except Exception as e: print("dumps exception:", e) newresult = pp.ParseResults() else: newresult = pickle.loads(pickleString) print(newresult.dump()) self.assertEqual( result.dump(), newresult.dump(), "Error pickling ParseResults object (protocol=%d)" % protocol, ) def testParseResultsPickle2(self): import pickle word = pp.Word(pp.alphas + "'.") salutation = pp.OneOrMore(word) comma = pp.Literal(",") greetee = pp.OneOrMore(word) endpunc = pp.oneOf("! ?") greeting = ( salutation("greeting") + pp.Suppress(comma) + greetee("greetee") + endpunc("punc*")[1, ...] ) string = "Good morning, <NAME>!" result = greeting.parseString(string) self.assertParseResultsEquals( result, ["Good", "morning", "Miss", "Crabtree", "!"], { "greeting": ["Good", "morning"], "greetee": ["Miss", "Crabtree"], "punc": ["!"], }, ) print(result.dump()) for protocol in range(pickle.HIGHEST_PROTOCOL + 1): print("Test pickle dump protocol", protocol) try: pickleString = pickle.dumps(result, protocol) except Exception as e: print("dumps exception:", e) newresult = pp.ParseResults() else: newresult = pickle.loads(pickleString) print(newresult.dump()) self.assertEqual( newresult.dump(), result.dump(), "failed to pickle/unpickle ParseResults: expected {!r}, got {!r}".format( result, newresult ), ) def testParseResultsPickle3(self): import pickle # result with aslist=False res_not_as_list = pp.Word("ABC").parseString("BABBAB") # result with aslist=True res_as_list = pp.Group(pp.Word("ABC")).parseString("BABBAB") # result with modal=True res_modal = pp.Word("ABC")("name").parseString("BABBAB") # self.assertTrue(res_modal._modal) # result with modal=False res_not_modal = pp.Word("ABC")("name*").parseString("BABBAB") # self.assertFalse(res_not_modal._modal) for result in (res_as_list, res_not_as_list, res_modal, res_not_modal): for protocol in range(pickle.HIGHEST_PROTOCOL + 1): print("Test pickle dump protocol", protocol) try: pickleString = pickle.dumps(result, protocol) except Exception as e: print("dumps exception:", e) newresult = pp.ParseResults() else: newresult = pickle.loads(pickleString) print(newresult.dump()) self.assertEqual( newresult.dump(), result.dump(), "failed to pickle/unpickle ParseResults: expected {!r}, got {!r}".format( result, newresult ), ) def testParseResultsInsertWithResultsNames(self): test_string = "1 2 3 dice rolled first try" wd = pp.Word(pp.alphas) num = ppc.number expr = ( pp.Group(num[1, ...])("nums") + wd("label") + pp.Group(wd[...])("additional") ) result = expr.parseString(test_string) print("Pre-insert") print(result.dump()) result.insert(1, sum(result.nums)) print("\nPost-insert") print(result.dump()) self.assertParseResultsEquals( result, expected_list=[[1, 2, 3], 6, "dice", ["rolled", "first", "try"]], expected_dict={ "additional": ["rolled", "first", "try"], "label": "dice", "nums": [1, 2, 3], }, ) def testParseResultsStringListUsingCombine(self): test_string = "1 2 3 dice rolled first try" wd = pp.Word(pp.alphas) num = ppc.number expr = pp.Combine( pp.Group(num[1, ...])("nums") + wd("label") + pp.Group(wd[...])("additional"), joinString="/", adjacent=False, ) self.assertEqual("123/dice/rolledfirsttry", expr.parseString(test_string)[0]) def testMatchOnlyAtCol(self): """successfully use matchOnlyAtCol helper function""" expr = pp.Word(pp.nums) expr.setParseAction(pp.matchOnlyAtCol(5)) largerExpr = pp.ZeroOrMore(pp.Word("A")) + expr + pp.ZeroOrMore(pp.Word("A")) res = largerExpr.parseString("A A 3 A") print(res.dump()) def testMatchOnlyAtColErr(self): """raise a ParseException in matchOnlyAtCol with incorrect col""" expr = pp.Word(pp.nums) expr.setParseAction(pp.matchOnlyAtCol(1)) largerExpr = pp.ZeroOrMore(pp.Word("A")) + expr + pp.ZeroOrMore(pp.Word("A")) with self.assertRaisesParseException(): largerExpr.parseString("A A 3 A") def testParseResultsWithNamedTuple(self): from pyparsing import Literal, replaceWith expr = Literal("A")("Achar") expr.setParseAction(replaceWith(tuple(["A", "Z"]))) res = expr.parseString("A") print(repr(res)) print(res.Achar) self.assertParseResultsEquals( res, expected_dict={"Achar": ("A", "Z")}, msg="Failed accessing named results containing a tuple, " "got {!r}".format(res.Achar), ) def testParserElementAddOperatorWithOtherTypes(self): """test the overridden "+" operator with other data types""" # ParserElement + str expr = pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") + "suf" result = expr.parseString("spam eggs suf") print(result) expected_l = ["spam", "eggs", "suf"] self.assertParseResultsEquals( result, expected_l, msg="issue with ParserElement + str", ) # str + ParserElement expr = "pre" + pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") result = expr.parseString("pre spam eggs") print(result) expected_l = ["pre", "spam", "eggs"] self.assertParseResultsEquals( result, expected_l, msg="issue with str + ParserElement", ) # ParserElement + int with self.assertWarns(SyntaxWarning, msg="failed to warn ParserElement + int"): expr = pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") + 12 self.assertEqual(expr, None) # int + ParserElement with self.assertWarns(SyntaxWarning, msg="failed to warn int + ParserElement"): expr = 12 + pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") self.assertEqual(expr, None) def testParserElementSubOperatorWithOtherTypes(self): """test the overridden "-" operator with other data types""" # ParserElement - str expr = pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") - "suf" result = expr.parseString("spam eggs suf") print(result) expected = ["spam", "eggs", "suf"] self.assertParseResultsEquals( result, expected, msg="issue with ParserElement - str" ) # str - ParserElement expr = "pre" - pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") result = expr.parseString("pre spam eggs") print(result) expected = ["pre", "spam", "eggs"] self.assertParseResultsEquals( result, expected, msg="issue with str - ParserElement" ) # ParserElement - int with self.assertWarns(SyntaxWarning, msg="failed to warn ParserElement - int"): expr = pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") - 12 self.assertEqual(expr, None) # int - ParserElement with self.assertWarns(SyntaxWarning, msg="failed to warn int - ParserElement"): expr = 12 - pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") self.assertEqual(expr, None) def testParserElementMulOperatorWithTuples(self): """test ParserElement "*" with various tuples""" # ParserElement * (0, 0) with self.assertRaises( ValueError, msg="ParserElement * (0,0) should raise error" ): expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second*") * (0, 0) # ParserElement * (None, n) expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second*") * (None, 3) results1 = expr.parseString("spam") print(results1.dump()) expected = ["spam"] self.assertParseResultsEquals( results1, expected, msg="issue with ParserElement * w/ optional matches" ) results2 = expr.parseString("spam 12 23 34") print(results2.dump()) expected = ["spam", "12", "23", "34"] self.assertParseResultsEquals( results2, expected, msg="issue with ParserElement * w/ optional matches" ) # ParserElement * (1, 1) expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second*") * (1, 1) results = expr.parseString("spam 45") print(results.dump()) expected = ["spam", "45"] self.assertParseResultsEquals( results, expected, msg="issue with ParserElement * (1, 1)" ) # ParserElement * (1, 1+n) expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second*") * (1, 3) results1 = expr.parseString("spam 100") print(results1.dump()) expected = ["spam", "100"] self.assertParseResultsEquals( results1, expected, msg="issue with ParserElement * (1, 1+n)" ) results2 = expr.parseString("spam 100 200 300") print(results2.dump()) expected = ["spam", "100", "200", "300"] self.assertParseResultsEquals( results2, expected, msg="issue with ParserElement * (1, 1+n)" ) # ParserElement * (lesser, greater) expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second*") * (2, 3) results1 = expr.parseString("spam 1 2") print(results1.dump()) expected = ["spam", "1", "2"] self.assertParseResultsEquals( results1, expected, msg="issue with ParserElement * (lesser, greater)" ) results2 = expr.parseString("spam 1 2 3") print(results2.dump()) expected = ["spam", "1", "2", "3"] self.assertParseResultsEquals( results2, expected, msg="issue with ParserElement * (lesser, greater)" ) # ParserElement * (greater, lesser) with self.assertRaises( ValueError, msg="ParserElement * (greater, lesser) should raise error" ): expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second") * (3, 2) # ParserElement * (str, str) with self.assertRaises( TypeError, msg="ParserElement * (str, str) should raise error" ): expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second") * ("2", "3") def testParserElementMulOperatorWithOtherTypes(self): """test the overridden "*" operator with other data types""" # ParserElement * str with self.assertRaises(TypeError, msg="ParserElement * str should raise error"): expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second") * "3" # str * ParserElement with self.assertRaises(TypeError, msg="str * ParserElement should raise error"): expr = pp.Word(pp.alphas)("first") + "3" * pp.Word(pp.nums)("second") # ParserElement * int expr = pp.Word(pp.alphas)("first") + pp.Word(pp.nums)("second*") * 2 results = expr.parseString("spam 11 22") print(results.dump()) expected = ["spam", "11", "22"] self.assertParseResultsEquals( results, expected, msg="issue with ParserElement * int" ) # int * ParserElement expr = pp.Word(pp.alphas)("first") + 2 * pp.Word(pp.nums)("second*") results = expr.parseString("spam 111 222") print(results.dump()) expected = ["spam", "111", "222"] self.assertParseResultsEquals( results, expected, msg="issue with int * ParserElement" ) def testParserElementMatchFirstOperatorWithOtherTypes(self): """test the overridden "|" operator with other data types""" # ParserElement | int with self.assertWarns(SyntaxWarning, msg="failed to warn ParserElement | int"): expr = pp.Word(pp.alphas)("first") + (pp.Word(pp.alphas)("second") | 12) self.assertEqual(expr, None) # int | ParserElement with self.assertWarns(SyntaxWarning, msg="failed to warn int | ParserElement"): expr = pp.Word(pp.alphas)("first") + (12 | pp.Word(pp.alphas)("second")) self.assertEqual(expr, None) def testParserElementMatchLongestWithOtherTypes(self): """test the overridden "^" operator with other data types""" # ParserElement ^ str expr = pp.Word(pp.alphas)("first") + (pp.Word(pp.nums)("second") ^ "eggs") result = expr.parseString("spam eggs") print(result) expected = ["spam", "eggs"] self.assertParseResultsEquals( result, expected, msg="issue with ParserElement ^ str" ) # str ^ ParserElement expr = ("pre" ^ pp.Word("pr")("first")) + pp.Word(pp.alphas)("second") result = expr.parseString("pre eggs") print(result) expected = ["pre", "eggs"] self.assertParseResultsEquals( result, expected, msg="issue with str ^ ParserElement", ) # ParserElement ^ int with self.assertWarns(SyntaxWarning, msg="failed to warn ParserElement ^ int"): expr = pp.Word(pp.alphas)("first") + (pp.Word(pp.alphas)("second") ^ 54) self.assertEqual(expr, None) # int ^ ParserElement with self.assertWarns(SyntaxWarning, msg="failed to warn int ^ ParserElement"): expr = pp.Word(pp.alphas)("first") + (65 ^ pp.Word(pp.alphas)("second")) self.assertEqual(expr, None) def testParserElementEachOperatorWithOtherTypes(self): """test the overridden "&" operator with other data types""" # ParserElement & str expr = pp.Word(pp.alphas)("first") + (pp.Word(pp.alphas)("second") & "and") with self.assertRaisesParseException(msg="issue with ParserElement & str"): result = expr.parseString("spam and eggs") # str & ParserElement expr = pp.Word(pp.alphas)("first") + ("and" & pp.Word(pp.alphas)("second")) result = expr.parseString("spam and eggs") print(result.dump()) expected_l = ["spam", "and", "eggs"] expected_d = {"first": "spam", "second": "eggs"} self.assertParseResultsEquals( result, expected_list=expected_l, expected_dict=expected_d, msg="issue with str & ParserElement", ) # ParserElement & int with self.assertWarns(SyntaxWarning, msg="failed to warn ParserElement & int"): expr = pp.Word(pp.alphas)("first") + (pp.Word(pp.alphas) & 78) self.assertEqual(expr, None) # int & ParserElement with self.assertWarns(SyntaxWarning, msg="failed to warn int & ParserElement"): expr = pp.Word(pp.alphas)("first") + (89 & pp.Word(pp.alphas)) self.assertEqual(expr, None) def testParserElementPassedThreeArgsToMultiplierShorthand(self): """test the ParserElement form expr[m,n,o]""" with self.assertWarns( UserWarning, msg="failed to warn three index arguments to expr[m, n, o]" ): expr = pp.Word(pp.alphas)[2, 3, 4] result = expr.parseString("spam eggs grail") print(result) expected = ["spam", "eggs", "grail"] self.assertParseResultsEquals(result, expected) result2 = expr.parseString("spam eggs holy grail") print(result2) expected2 = ["spam", "eggs", "holy"] self.assertParseResultsEquals(result2, expected2) def testParserElementPassedStrToMultiplierShorthand(self): """test the ParserElement form expr[str]""" with self.assertRaises( TypeError, msg="failed to raise expected error using string multiplier" ): expr2 = pp.Word(pp.alphas)["2"] def testParseResultsNewEdgeCases(self): """test less common paths of ParseResults.__new__()""" # create new ParseResults w/ None result1 = pp.ParseResults(None) print(result1.dump()) self.assertParseResultsEquals( result1, [], msg="ParseResults(None) should return empty ParseResults" ) # create new ParseResults w/ integer name result2 = pp.ParseResults(name=12) print(result2.dump()) self.assertEqual( "12", result2.getName(), "ParseResults int name should be accepted and converted to str", ) # create new ParseResults w/ generator type gen = (a for a in range(1, 6)) result3 = pp.ParseResults(gen) print(result3.dump()) expected3 = [1, 2, 3, 4, 5] self.assertParseResultsEquals( result3, expected3, msg="issue initializing ParseResults w/ gen type" ) def testParseResultsReversed(self): """test simple case of reversed(ParseResults)""" tst = "1 2 3 4 5" expr = pp.OneOrMore(pp.Word(pp.nums)) result = expr.parseString(tst) reversed_list = [ii for ii in reversed(result)] print(reversed_list) expected = ["5", "4", "3", "2", "1"] self.assertEqual( expected, reversed_list, msg="issue calling reversed(ParseResults)" ) def testParseResultsValues(self): """test simple case of ParseResults.values()""" expr = pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") result = expr.parseString("spam eggs") values_set = set(result.values()) print(values_set) expected = {"spam", "eggs"} self.assertEqual( expected, values_set, msg="issue calling ParseResults.values()" ) def testParseResultsAppend(self): """test simple case of ParseResults.append()""" # use a parse action to compute the sum of the parsed integers, and add it to the end def append_sum(tokens): tokens.append(sum(map(int, tokens))) expr = pp.OneOrMore(pp.Word(pp.nums)).addParseAction(append_sum) result = expr.parseString("0 123 321") expected = ["0", "123", "321", 444] print(result.dump()) self.assertParseResultsEquals( result, expected, msg="issue with ParseResults.append()" ) def testParseResultsClear(self): """test simple case of ParseResults.clear()""" tst = "spam eggs" expr = pp.Word(pp.alphas)("first") + pp.Word(pp.alphas)("second") result = expr.parseString(tst) print(result.dump()) self.assertParseResultsEquals( result, ["spam", "eggs"], msg="issue with ParseResults before clear()" ) result.clear() print(result.dump()) self.assertParseResultsEquals( result, expected_list=[], expected_dict={}, msg="issue with ParseResults.clear()", ) def testParseResultsExtendWithString(self): """test ParseResults.extend() with input of type str""" # use a parse action to append the reverse of the matched strings to make a palindrome def make_palindrome(tokens): tokens.extend(reversed([t[::-1] for t in tokens])) tst = "abc def ghi" expr = pp.OneOrMore(pp.Word(pp.alphas)) result = expr.addParseAction(make_palindrome).parseString(tst) print(result.dump()) expected = ["abc", "def", "ghi", "ihg", "fed", "cba"] self.assertParseResultsEquals( result, expected, msg="issue with ParseResults.extend(str)" ) def testParseResultsExtendWithParseResults(self): """test ParseResults.extend() with input of type ParseResults""" expr = pp.OneOrMore(pp.Word(pp.alphas)) result1 = expr.parseString("spam eggs") result2 = expr.parseString("foo bar") result1.extend(result2) print(result1.dump()) expected = ["spam", "eggs", "foo", "bar"] self.assertParseResultsEquals( result1, expected, msg="issue with ParseResults.extend(ParseResults)" ) def testParseResultsFromDict(self): """test helper classmethod ParseResults.from_dict()""" dict = { "first": "123", "second": 456, "third": {"threeStr": "789", "threeInt": 789}, } name = "trios" result = pp.ParseResults.from_dict(dict, name=name) print(result.dump()) expected = {name: dict} self.assertParseResultsEquals( result, expected_dict=expected, msg="issue creating ParseResults.from _dict()", ) def testParseResultsDir(self): """test dir(ParseResults)""" dict = {"first": "123", "second": "456", "third": "789"} name = "trios" result = pp.ParseResults.from_dict(dict, name=name) dir_result = dir(result) print(dir_result) self.assertIn( name, dir_result, msg="name value wasn't returned by dir(ParseResults)" ) self.assertIn( "asList", dir_result, msg="asList was not returned by dir(ParseResults)" ) def testParseResultsInsert(self): """test ParseResults.insert() with named tokens""" from random import randint result = pp.Word(pp.alphas)[...].parseString("A B C D E F G H I J") compare_list = result.asList() print(result) print(compare_list) for s in "abcdefghij": index = randint(-5, 5) result.insert(index, s) compare_list.insert(index, s) print(result) print(compare_list) self.assertParseResultsEquals( result, compare_list, msg="issue with ParseResults.insert()" ) def testIgnoreString(self): """test ParserElement.ignore() passed a string arg""" tst = "I like totally like love pickles" expr = pp.Word(pp.alphas)[...].ignore("like") result = expr.parseString(tst) print(result) expected = ["I", "totally", "love", "pickles"] self.assertParseResultsEquals(result, expected, msg="issue with ignore(string)") def testParseHTMLTags(self): test = """ <BODY> <BODY BGCOLOR="#00FFCC"> <BODY BGCOLOR="#00FFAA"/> <BODY BGCOLOR='#00FFBB' FGCOLOR=black> <BODY/> </BODY> """ results = [ ("startBody", False, "", ""), ("startBody", False, "#00FFCC", ""), ("startBody", True, "#00FFAA", ""), ("startBody", False, "#00FFBB", "black"), ("startBody", True, "", ""), ("endBody", False, "", ""), ] bodyStart, bodyEnd = pp.makeHTMLTags("BODY") resIter = iter(results) for t, s, e in (bodyStart | bodyEnd).scanString(test): print(test[s:e], "->", t) (expectedType, expectedEmpty, expectedBG, expectedFG) = next(resIter) print(t.dump()) if "startBody" in t: self.assertEqual( expectedEmpty, bool(t.empty), "expected {} token, got {}".format( expectedEmpty and "empty" or "not empty", t.empty and "empty" or "not empty", ), ) self.assertEqual( expectedBG, t.bgcolor, "failed to match BGCOLOR, expected {}, got {}".format( expectedBG, t.bgcolor ), ) self.assertEqual( expectedFG, t.fgcolor, "failed to match FGCOLOR, expected {}, got {}".format( expectedFG, t.bgcolor ), ) elif "endBody" in t: print("end tag") pass else: print("BAD!!!") def testSetParseActionUncallableErr(self): """raise a TypeError in setParseAction() by adding uncallable arg""" expr = pp.Literal("A")("Achar") uncallable = 12 with self.assertRaises(TypeError): expr.setParseAction(uncallable) res = expr.parseString("A") print(res.dump()) def testMulWithNegativeNumber(self): """raise a ValueError in __mul__ by multiplying a negative number""" with self.assertRaises(ValueError): pp.Literal("A")("Achar") * (-1) def testMulWithEllipsis(self): """multiply an expression with Ellipsis as ``expr * ...`` to match ZeroOrMore""" expr = pp.Literal("A")("Achar") * ... res = expr.parseString("A") self.assertEqual(["A"], res.asList(), "expected expr * ... to match ZeroOrMore") print(res.dump()) def testUpcaseDowncaseUnicode(self): from pyparsing import pyparsing_unicode as ppu import sys a = "\u00bfC\u00f3mo esta usted?" if not JYTHON_ENV: ualphas = ppu.alphas else: ualphas = "".join( chr(i) for i in list(range(0xD800)) + list(range(0xE000, sys.maxunicode)) if chr(i).isalpha() ) uword = pp.Word(ualphas).setParseAction(ppc.upcaseTokens) print = lambda *args: None print(uword.searchString(a)) uword = pp.Word(ualphas).setParseAction(ppc.downcaseTokens) print(uword.searchString(a)) kw = pp.Keyword("mykey", caseless=True).setParseAction(ppc.upcaseTokens)( "rname" ) ret = kw.parseString("mykey") print(ret.rname) self.assertEqual( "MYKEY", ret.rname, "failed to upcase with named result (pyparsing_common)" ) kw = pp.Keyword("MYKEY", caseless=True).setParseAction(ppc.downcaseTokens)( "rname" ) ret = kw.parseString("mykey") print(ret.rname) self.assertEqual("mykey", ret.rname, "failed to upcase with named result") if not IRON_PYTHON_ENV: # test html data html = "<TR class=maintxt bgColor=#ffffff> \ <TD vAlign=top>Производитель, модель</TD> \ <TD vAlign=top><STRONG>BenQ-Siemens CF61</STRONG></TD> \ " # .decode('utf-8') # 'Manufacturer, model text_manuf = "Производитель, модель" manufacturer = pp.Literal(text_manuf) td_start, td_end = pp.makeHTMLTags("td") manuf_body = ( td_start.suppress() + manufacturer + pp.SkipTo(td_end)("cells*") + td_end.suppress() ) def testParseUsingRegex(self): import re signedInt = pp.Regex(r"[-+][0-9]+") unsignedInt = pp.Regex(r"[0-9]+") simpleString = pp.Regex(r'("[^\"]*")|(\'[^\']*\')') namedGrouping = pp.Regex(r'("(?P<content>[^\"]*)")') compiledRE = pp.Regex(re.compile(r"[A-Z]+")) def testMatch(expression, instring, shouldPass, expectedString=None): if shouldPass: try: result = expression.parseString(instring) print( "{} correctly matched {}".format( repr(expression), repr(instring) ) ) if expectedString != result[0]: print("\tbut failed to match the pattern as expected:") print( "\tproduced %s instead of %s" % (repr(result[0]), repr(expectedString)) ) return True except pp.ParseException: print( "%s incorrectly failed to match %s" % (repr(expression), repr(instring)) ) else: try: result = expression.parseString(instring) print( "{} incorrectly matched {}".format( repr(expression), repr(instring) ) ) print("\tproduced %s as a result" % repr(result[0])) except pp.ParseException: print( "%s correctly failed to match %s" % (repr(expression), repr(instring)) ) return True return False # These should fail self.assertTrue( testMatch(signedInt, "1234 foo", False), "Re: (1) passed, expected fail" ) self.assertTrue( testMatch(signedInt, " +foo", False), "Re: (2) passed, expected fail" ) self.assertTrue( testMatch(unsignedInt, "abc", False), "Re: (3) passed, expected fail" ) self.assertTrue( testMatch(unsignedInt, "+123 foo", False), "Re: (4) passed, expected fail" ) self.assertTrue( testMatch(simpleString, "foo", False), "Re: (5) passed, expected fail" ) self.assertTrue( testMatch(simpleString, "\"foo bar'", False), "Re: (6) passed, expected fail", ) self.assertTrue( testMatch(simpleString, "'foo bar\"", False), "Re: (7) passed, expected fail", ) # These should pass self.assertTrue( testMatch(signedInt, " +123", True, "+123"), "Re: (8) failed, expected pass", ) self.assertTrue( testMatch(signedInt, "+123", True, "+123"), "Re: (9) failed, expected pass" ) self.assertTrue( testMatch(signedInt, "+123 foo", True, "+123"), "Re: (10) failed, expected pass", ) self.assertTrue( testMatch(signedInt, "-0 foo", True, "-0"), "Re: (11) failed, expected pass" ) self.assertTrue( testMatch(unsignedInt, "123 foo", True, "123"), "Re: (12) failed, expected pass", ) self.assertTrue( testMatch(unsignedInt, "0 foo", True, "0"), "Re: (13) failed, expected pass" ) self.assertTrue( testMatch(simpleString, '"foo"', True, '"foo"'), "Re: (14) failed, expected pass", ) self.assertTrue( testMatch(simpleString, "'foo bar' baz", True, "'foo bar'"), "Re: (15) failed, expected pass", ) self.assertTrue( testMatch(compiledRE, "blah", False), "Re: (16) passed, expected fail" ) self.assertTrue( testMatch(compiledRE, "BLAH", True, "BLAH"), "Re: (17) failed, expected pass", ) self.assertTrue( testMatch(namedGrouping, '"foo bar" baz', True, '"foo bar"'), "Re: (16) failed, expected pass", ) ret = namedGrouping.parseString('"zork" blah') print(ret) print(list(ret.items())) print(ret.content) self.assertEqual("zork", ret.content, "named group lookup failed") self.assertEqual( simpleString.parseString('"zork" blah')[0], ret[0], "Regex not properly returning ParseResults for named vs. unnamed groups", ) try: print("lets try an invalid RE") invRe = pp.Regex("(\"[^\"]*\")|('[^']*'") except Exception as e: print("successfully rejected an invalid RE:", end=" ") print(e) else: self.fail("failed to reject invalid RE") with self.assertWarns( SyntaxWarning, msg="failed to warn empty string passed to Regex" ): invRe = pp.Regex("") def testRegexAsType(self): test_str = "sldkjfj 123 456 lsdfkj" print("return as list of match groups") expr = pp.Regex(r"\w+ (\d+) (\d+) (\w+)", asGroupList=True) expected_group_list = [tuple(test_str.split()[1:])] result = expr.parseString(test_str) print(result.dump()) print(expected_group_list) self.assertParseResultsEquals( result, expected_list=expected_group_list, msg="incorrect group list returned by Regex)", ) print("return as re.match instance") expr = pp.Regex( r"\w+ (?P<num1>\d+) (?P<num2>\d+) (?P<last_word>\w+)", asMatch=True ) result = expr.parseString(test_str) print(result.dump()) print(result[0].groups()) print(expected_group_list) self.assertEqual( {"num1": "123", "num2": "456", "last_word": "lsdfkj"}, result[0].groupdict(), "invalid group dict from Regex(asMatch=True)", ) self.assertEqual( expected_group_list[0], result[0].groups(), "incorrect group list returned by Regex(asMatch)", ) def testRegexSub(self): print("test sub with string") expr = pp.Regex(r"<title>").sub("'<NAME>'") result = expr.transformString("This is the title: <title>") print(result) self.assertEqual( "This is the title: '<NAME>'", result, "incorrect Regex.sub result with simple string", ) print("test sub with re string") expr = pp.Regex(r"([Hh]\d):\s*(.*)").sub(r"<\1>\2</\1>") result = expr.transformString( "h1: This is the main heading\nh2: This is the sub-heading" ) print(result) self.assertEqual( "<h1>This is the main heading</h1>\n<h2>This is the sub-heading</h2>", result, "incorrect Regex.sub result with re string", ) print("test sub with re string (Regex returns re.match)") expr = pp.Regex(r"([Hh]\d):\s*(.*)", asMatch=True).sub(r"<\1>\2</\1>") result = expr.transformString( "h1: This is the main heading\nh2: This is the sub-heading" ) print(result) self.assertEqual( "<h1>This is the main heading</h1>\n<h2>This is the sub-heading</h2>", result, "incorrect Regex.sub result with re string", ) print("test sub with callable that return str") expr = pp.Regex(r"<(.*?)>").sub(lambda m: m.group(1).upper()) result = expr.transformString("I want this in upcase: <what? what?>") print(result) self.assertEqual( "I want this in upcase: WHAT? WHAT?", result, "incorrect Regex.sub result with callable", ) with self.assertRaises(SyntaxError): pp.Regex(r"<(.*?)>", asMatch=True).sub(lambda m: m.group(1).upper()) with self.assertRaises(SyntaxError): pp.Regex(r"<(.*?)>", asGroupList=True).sub(lambda m: m.group(1).upper()) with self.assertRaises(SyntaxError): pp.Regex(r"<(.*?)>", asGroupList=True).sub("") def testRegexInvalidType(self): """test Regex of an invalid type""" with self.assertRaisesParseException( TypeError, msg="issue with Regex of type int" ): expr = pp.Regex(12) def testPrecededBy(self): num = pp.Word(pp.nums).setParseAction(lambda t: int(t[0])) interesting_num = pp.PrecededBy(pp.Char("abc")("prefix*")) + num semi_interesting_num = pp.PrecededBy("_") + num crazy_num = pp.PrecededBy(pp.Word("^", "$%^")("prefix*"), 10) + num boring_num = ~pp.PrecededBy(pp.Char("abc_$%^" + pp.nums)) + num very_boring_num = pp.PrecededBy(pp.WordStart()) + num finicky_num = pp.PrecededBy(pp.Word("^", "$%^"), retreat=3) + num s = "c384 b8324 _9293874 _293 404 $%^$^%$2939" print(s) for expr, expected_list, expected_dict in [ (interesting_num, [384, 8324], {"prefix": ["c", "b"]}), (semi_interesting_num, [9293874, 293], {}), (boring_num, [404], {}), (crazy_num, [2939], {"prefix": ["^%$"]}), (finicky_num, [2939], {}), (very_boring_num, [404], {}), ]: # print(expr.searchString(s)) result = sum(expr.searchString(s)) print(result.dump()) self.assertParseResultsEquals(result, expected_list, expected_dict) # infinite loop test - from Issue #127 string_test = "notworking" # negs = pp.Or(['not', 'un'])('negs') negs_pb = pp.PrecededBy("not", retreat=100)("negs_lb") # negs_pb = pp.PrecededBy(negs, retreat=100)('negs_lb') pattern = (negs_pb + pp.Literal("working"))("main") results = pattern.searchString(string_test) try: print(results.dump()) except RecursionError: self.fail("got maximum excursion limit exception") else: print("got maximum excursion limit exception") def testCountedArray(self): from pyparsing import Word, nums, OneOrMore, Group, countedArray testString = "2 5 7 6 0 1 2 3 4 5 0 3 5 4 3" integer = Word(nums).setParseAction(lambda t: int(t[0])) countedField = countedArray(integer) r = OneOrMore(Group(countedField)).parseString(testString) print(testString) print(r) self.assertParseResultsEquals( r, expected_list=[[5, 7], [0, 1, 2, 3, 4, 5], [], [5, 4, 3]] ) # addresses bug raised by <NAME> def testCountedArrayTest2(self): from pyparsing import Word, nums, OneOrMore, Group, countedArray testString = "2 5 7 6 0 1 2 3 4 5 0 3 5 4 3" integer = Word(nums).setParseAction(lambda t: int(t[0])) countedField = countedArray(integer) dummy = Word("A") r = OneOrMore(Group(dummy ^ countedField)).parseString(testString) print(testString) print(r) self.assertParseResultsEquals( r, expected_list=[[5, 7], [0, 1, 2, 3, 4, 5], [], [5, 4, 3]] ) def testCountedArrayTest3(self): from pyparsing import Word, nums, OneOrMore, Group, countedArray, alphas int_chars = "_" + alphas array_counter = Word(int_chars).setParseAction(lambda t: int_chars.index(t[0])) # 123456789012345678901234567890 testString = "B 5 7 F 0 1 2 3 4 5 _ C 5 4 3" integer = Word(nums).setParseAction(lambda t: int(t[0])) countedField = countedArray(integer, intExpr=array_counter) r = OneOrMore(Group(countedField)).parseString(testString) print(testString) print(r) self.assertParseResultsEquals( r, expected_list=[[5, 7], [0, 1, 2, 3, 4, 5], [], [5, 4, 3]] ) def testCountedArrayTest4(self): import pyparsing as pp ppc = pp.pyparsing_common # array counter contains several fields - first field *must* be the number of # items in the array # - number of elements # - type of elements # - source of elements counter_with_metadata = ( ppc.integer("count") + ppc.identifier("type") + ppc.identifier("source") ) countedField = pp.countedArray( pp.Word(pp.alphanums), intExpr=counter_with_metadata ) testString = ( "5 string input item1 item2 item3 item4 item5 0 int user 2 int file 3 8" ) r = pp.Group(countedField("items"))[...].parseString(testString, parseAll=True) print(testString) print(r.dump()) print("type = {!r}".format(r.type)) print("source = {!r}".format(r.source)) self.assertParseResultsEquals( r, expected_list=[ ["item1", "item2", "item3", "item4", "item5"], [], ["3", "8"], ], ) self.assertParseResultsEquals( r[0], expected_dict={ "count": 5, "source": "input", "type": "string", "items": ["item1", "item2", "item3", "item4", "item5"], }, ) # parse with additional fields between the count and the actual list items count_with_metadata = ppc.integer + pp.Word(pp.alphas)("type") typed_array = pp.countedArray( pp.Word(pp.alphanums), intExpr=count_with_metadata )("items") result = typed_array.parseString("3 bool True True False") print(result.dump()) self.assertParseResultsEquals( result, expected_list=["True", "True", "False"], expected_dict={"type": "bool", "items": ["True", "True", "False"]}, ) def testLineStart(self): pass_tests = [ """\ AAA BBB """, """\ AAA... BBB """, ] fail_tests = [ """\ AAA... ...BBB """, """\ AAA BBB """, ] # cleanup test strings pass_tests = [ "\n".join(s.lstrip() for s in t.splitlines()).replace(".", " ") for t in pass_tests ] fail_tests = [ "\n".join(s.lstrip() for s in t.splitlines()).replace(".", " ") for t in fail_tests ] test_patt = pp.Word("A") - pp.LineStart() + pp.Word("B") print(test_patt.streamline()) success = test_patt.runTests(pass_tests)[0] self.assertTrue(success, "failed LineStart passing tests (1)") success = test_patt.runTests(fail_tests, failureTests=True)[0] self.assertTrue(success, "failed LineStart failure mode tests (1)") with ppt.reset_pyparsing_context(): print(r"no \n in default whitespace chars") pp.ParserElement.setDefaultWhitespaceChars(" ") test_patt = pp.Word("A") - pp.LineStart() + pp.Word("B") print(test_patt.streamline()) # should fail the pass tests too, since \n is no longer valid whitespace and we aren't parsing for it success = test_patt.runTests(pass_tests, failureTests=True)[0] self.assertTrue(success, "failed LineStart passing tests (2)") success = test_patt.runTests(fail_tests, failureTests=True)[0] self.assertTrue(success, "failed LineStart failure mode tests (2)") test_patt = ( pp.Word("A") - pp.LineEnd().suppress() + pp.LineStart() + pp.Word("B") + pp.LineEnd().suppress() ) print(test_patt.streamline()) success = test_patt.runTests(pass_tests)[0] self.assertTrue(success, "failed LineStart passing tests (3)") success = test_patt.runTests(fail_tests, failureTests=True)[0] self.assertTrue(success, "failed LineStart failure mode tests (3)") test = """\ AAA 1 AAA 2 AAA B AAA """ from textwrap import dedent test = dedent(test) print(test) for t, s, e in (pp.LineStart() + "AAA").scanString(test): print(s, e, pp.lineno(s, test), pp.line(s, test), ord(test[s])) print() self.assertEqual( "A", test[s], "failed LineStart with insignificant newlines" ) with ppt.reset_pyparsing_context(): pp.ParserElement.setDefaultWhitespaceChars(" ") for t, s, e in (pp.LineStart() + "AAA").scanString(test): print(s, e, pp.lineno(s, test), pp.line(s, test), ord(test[s])) print() self.assertEqual( "A", test[s], "failed LineStart with insignificant newlines" ) def testLineAndStringEnd(self): NLs = pp.OneOrMore(pp.lineEnd) bnf1 = pp.delimitedList(pp.Word(pp.alphanums).leaveWhitespace(), NLs) bnf2 = pp.Word(pp.alphanums) + pp.stringEnd bnf3 = pp.Word(pp.alphanums) + pp.SkipTo(pp.stringEnd) tests = [ ("testA\ntestB\ntestC\n", ["testA", "testB", "testC"]), ("testD\ntestE\ntestF", ["testD", "testE", "testF"]), ("a", ["a"]), ] for test, expected in tests: res1 = bnf1.parseString(test) print(res1, "=?", expected) self.assertParseResultsEquals( res1, expected_list=expected, msg="Failed lineEnd/stringEnd test (1): " + repr(test) + " -> " + str(res1), ) res2 = bnf2.searchString(test)[0] print(res2, "=?", expected[-1:]) self.assertParseResultsEquals( res2, expected_list=expected[-1:], msg="Failed lineEnd/stringEnd test (2): " + repr(test) + " -> " + str(res2), ) res3 = bnf3.parseString(test) first = res3[0] rest = res3[1] # ~ print res3.dump() print(repr(rest), "=?", repr(test[len(first) + 1 :])) self.assertEqual( rest, test[len(first) + 1 :], "Failed lineEnd/stringEnd test (3): " + repr(test) + " -> " + str(res3.asList()), ) print() from pyparsing import Regex import re k = Regex(r"a+", flags=re.S + re.M) k = k.parseWithTabs() k = k.leaveWhitespace() tests = [ (r"aaa", ["aaa"]), (r"\naaa", None), (r"a\naa", None), (r"aaa\n", None), ] for i, (src, expected) in enumerate(tests): print(i, repr(src).replace("\\\\", "\\"), end=" ") if expected is None: with self.assertRaisesParseException(): k.parseString(src, parseAll=True) else: res = k.parseString(src, parseAll=True) self.assertParseResultsEquals( res, expected, msg="Failed on parseAll=True test %d" % i ) def testVariableParseActionArgs(self): pa3 = lambda s, l, t: t pa2 = lambda l, t: t pa1 = lambda t: t pa0 = lambda: None class Callable3: def __call__(self, s, l, t): return t class Callable2: def __call__(self, l, t): return t class Callable1: def __call__(self, t): return t class Callable0: def __call__(self): return class CallableS3: @staticmethod def __call__(s, l, t): return t class CallableS2: @staticmethod def __call__(l, t): return t class CallableS1: @staticmethod def __call__(t): return t class CallableS0: @staticmethod def __call__(): return class CallableC3: @classmethod def __call__(cls, s, l, t): return t class CallableC2: @classmethod def __call__(cls, l, t): return t class CallableC1: @classmethod def __call__(cls, t): return t class CallableC0: @classmethod def __call__(cls): return class parseActionHolder: @staticmethod def pa3(s, l, t): return t @staticmethod def pa2(l, t): return t @staticmethod def pa1(t): return t @staticmethod def pa0(): return def paArgs(*args): print(args) return args[2] class ClassAsPA0: def __init__(self): pass def __str__(self): return "A" class ClassAsPA1: def __init__(self, t): print("making a ClassAsPA1") self.t = t def __str__(self): return self.t[0] class ClassAsPA2: def __init__(self, l, t): self.t = t def __str__(self): return self.t[0] class ClassAsPA3: def __init__(self, s, l, t): self.t = t def __str__(self): return self.t[0] class ClassAsPAStarNew(tuple): def __new__(cls, *args): print("make a ClassAsPAStarNew", args) return tuple.__new__(cls, *args[2].asList()) def __str__(self): return "".join(self) from pyparsing import Literal, OneOrMore A = Literal("A").setParseAction(pa0) B = Literal("B").setParseAction(pa1) C = Literal("C").setParseAction(pa2) D = Literal("D").setParseAction(pa3) E = Literal("E").setParseAction(Callable0()) F = Literal("F").setParseAction(Callable1()) G = Literal("G").setParseAction(Callable2()) H = Literal("H").setParseAction(Callable3()) I = Literal("I").setParseAction(CallableS0()) J = Literal("J").setParseAction(CallableS1()) K = Literal("K").setParseAction(CallableS2()) L = Literal("L").setParseAction(CallableS3()) M = Literal("M").setParseAction(CallableC0()) N = Literal("N").setParseAction(CallableC1()) O = Literal("O").setParseAction(CallableC2()) P = Literal("P").setParseAction(CallableC3()) Q = Literal("Q").setParseAction(paArgs) R = Literal("R").setParseAction(parseActionHolder.pa3) S = Literal("S").setParseAction(parseActionHolder.pa2) T = Literal("T").setParseAction(parseActionHolder.pa1) U = Literal("U").setParseAction(parseActionHolder.pa0) V = Literal("V") gg = OneOrMore( A | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | U | V | B | T ) testString = "VUTSRQPONMLKJIHGFEDCBA" res = gg.parseString(testString) print(res) self.assertParseResultsEquals( res, expected_list=list(testString), msg="Failed to parse using variable length parse actions", ) A = Literal("A").setParseAction(ClassAsPA0) B = Literal("B").setParseAction(ClassAsPA1) C = Literal("C").setParseAction(ClassAsPA2) D = Literal("D").setParseAction(ClassAsPA3) E = Literal("E").setParseAction(ClassAsPAStarNew) gg = OneOrMore( A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V ) testString = "VUTSRQPONMLKJIHGFEDCBA" res = gg.parseString(testString) print(list(map(str, res))) self.assertEqual( list(testString), list(map(str, res)), "Failed to parse using variable length parse actions " "using class constructors as parse actions", ) def testSingleArgException(self): testMessage = "just one arg" try: raise pp.ParseFatalException(testMessage) except pp.ParseBaseException as pbe: print("Received expected exception:", pbe) raisedMsg = pbe.msg self.assertEqual( testMessage, raisedMsg, "Failed to get correct exception message" ) def testOriginalTextFor(self): def rfn(t): return "%s:%d" % (t.src, len("".join(t))) makeHTMLStartTag = lambda tag: pp.originalTextFor( pp.makeHTMLTags(tag)[0], asString=False ) # use the lambda, Luke start = makeHTMLStartTag("IMG") # don't replace our fancy parse action with rfn, # append rfn to the list of parse actions start.addParseAction(rfn) text = """_<img src="images/cal.png" alt="cal image" width="16" height="15">_""" s = start.transformString(text) print(s) self.assertTrue( s.startswith("_images/cal.png:"), "failed to preserve input s properly" ) self.assertTrue( s.endswith("77_"), "failed to return full original text properly" ) tag_fields = makeHTMLStartTag("IMG").searchString(text)[0] print(sorted(tag_fields.keys())) self.assertEqual( ["alt", "empty", "height", "src", "startImg", "tag", "width"], sorted(tag_fields.keys()), "failed to preserve results names in originalTextFor", ) def testPackratParsingCacheCopy(self): integer = pp.Word(pp.nums).setName("integer") id = pp.Word(pp.alphas + "_", pp.alphanums + "_") simpleType = pp.Literal("int") arrayType = simpleType + ("[" + pp.delimitedList(integer) + "]")[...] varType = arrayType | simpleType varDec = varType + pp.delimitedList(id + pp.Optional("=" + integer)) + ";" codeBlock = pp.Literal("{}") funcDef = ( pp.Optional(varType | "void") + id + "(" + (pp.delimitedList(varType + id) | "void" | pp.empty) + ")" + codeBlock ) program = varDec | funcDef input = "int f(){}" self.assertParseAndCheckList( program, input, ["int", "f", "(", ")", "{}"], msg="Error in packrat parsing", verbose=True, ) def testPackratParsingCacheCopyTest2(self): DO, AA = list(map(pp.Keyword, "DO AA".split())) LPAR, RPAR = list(map(pp.Suppress, "()")) identifier = ~AA + pp.Word("Z") function_name = identifier.copy() # ~ function_name = ~AA + Word("Z") #identifier.copy() expr = pp.Forward().setName("expr") expr <<= pp.Group( function_name + LPAR + pp.Optional(pp.delimitedList(expr)) + RPAR ).setName("functionCall") | identifier.setName( "ident" ) # .setDebug()#.setBreak() stmt = DO + pp.Group(pp.delimitedList(identifier + ".*" | expr)) result = stmt.parseString("DO Z") print(result.asList()) self.assertEqual( 1, len(result[1]), "packrat parsing is duplicating And term exprs" ) def testParseResultsDel(self): from pyparsing import OneOrMore, Word, alphas, nums grammar = OneOrMore(Word(nums))("ints") + OneOrMore(Word(alphas))("words") res = grammar.parseString("123 456 ABC DEF") print(res.dump()) origInts = res.ints.asList() origWords = res.words.asList() del res[1] del res["words"] print(res.dump()) self.assertEqual("ABC", res[1], "failed to delete 0'th element correctly") self.assertEqual( origInts, res.ints.asList(), "updated named attributes, should have updated list only", ) self.assertEqual("", res.words, "failed to update named attribute correctly") self.assertEqual( "DEF", res[-1], "updated list, should have updated named attributes only" ) def testWithAttributeParseAction(self): """ This unit test checks withAttribute in these ways: * Argument forms as keywords and tuples * Selecting matching tags by attribute * Case-insensitive attribute matching * Correctly matching tags having the attribute, and rejecting tags not having the attribute (Unit test written by voigts as part of the Google Highly Open Participation Contest) """ from pyparsing import makeHTMLTags, Word, withAttribute, withClass, nums data = """ <a>1</a> <a b="x">2</a> <a B="x">3</a> <a b="X">4</a> <a b="y">5</a> <a class="boo">8</ a> """ tagStart, tagEnd = makeHTMLTags("a") expr = tagStart + Word(nums)("value") + tagEnd expected = ( [ ["a", ["b", "x"], False, "2", "</a>"], ["a", ["b", "x"], False, "3", "</a>"], ], [ ["a", ["b", "x"], False, "2", "</a>"], ["a", ["b", "x"], False, "3", "</a>"], ], [["a", ["class", "boo"], False, "8", "</a>"]], ) for attrib, exp in zip( [ withAttribute(b="x"), # withAttribute(B="x"), withAttribute(("b", "x")), # withAttribute(("B", "x")), withClass("boo"), ], expected, ): tagStart.setParseAction(attrib) result = expr.searchString(data) print(result.dump()) self.assertParseResultsEquals( result, expected_list=exp, msg="Failed test, expected {}, got {}".format( expected, result.asList() ), ) def testNestedExpressions(self): """ This unit test checks nestedExpr in these ways: - use of default arguments - use of non-default arguments (such as a pyparsing-defined comment expression in place of quotedString) - use of a custom content expression - use of a pyparsing expression for opener and closer is *OPTIONAL* - use of input data containing nesting delimiters - correct grouping of parsed tokens according to nesting of opening and closing delimiters in the input string (Unit test written by christoph... as part of the Google Highly Open Participation Contest) """ from pyparsing import nestedExpr, Literal, Regex, restOfLine, quotedString # All defaults. Straight out of the example script. Also, qualifies for # the bonus: note the fact that (Z | (E^F) & D) is not parsed :-). # Tests for bug fixed in 1.4.10 print("Test defaults:") teststring = "((ax + by)*C) (Z | (E^F) & D)" expr = nestedExpr() expected = [[["ax", "+", "by"], "*C"]] result = expr.parseString(teststring) print(result.dump()) self.assertParseResultsEquals( result, expected_list=expected, msg="Defaults didn't work. That's a bad sign. Expected: {}, got: {}".format( expected, result ), ) # Going through non-defaults, one by one; trying to think of anything # odd that might not be properly handled. # Change opener print("\nNon-default opener") teststring = "[[ ax + by)*C)" expected = [[["ax", "+", "by"], "*C"]] expr = nestedExpr("[") self.assertParseAndCheckList( expr, teststring, expected, "Non-default opener didn't work. Expected: {}, got: {}".format( expected, result ), verbose=True, ) # Change closer print("\nNon-default closer") teststring = "((ax + by]*C]" expected = [[["ax", "+", "by"], "*C"]] expr = nestedExpr(closer="]") self.assertParseAndCheckList( expr, teststring, expected, "Non-default closer didn't work. Expected: {}, got: {}".format( expected, result ), verbose=True, ) # #Multicharacter opener, closer # opener = "bar" # closer = "baz" print("\nLiteral expressions for opener and closer") opener, closer = list(map(Literal, "bar baz".split())) expr = nestedExpr(opener, closer, content=Regex(r"([^b ]|b(?!a)|ba(?![rz]))+")) teststring = "barbar ax + bybaz*Cbaz" expected = [[["ax", "+", "by"], "*C"]] self.assertParseAndCheckList( expr, teststring, expected, "Multicharacter opener and closer didn't work. Expected: {}, got: {}".format( expected, result ), verbose=True, ) # Lisp-ish comments print("\nUse ignore expression (1)") comment = Regex(r";;.*") teststring = """ (let ((greeting "Hello, world!")) ;;(foo bar (display greeting)) """ expected = [ [ "let", [["greeting", '"Hello,', 'world!"']], ";;(foo bar", ["display", "greeting"], ] ] expr = nestedExpr(ignoreExpr=comment) self.assertParseAndCheckList( expr, teststring, expected, 'Lisp-ish comments (";; <...> $") didn\'t work. Expected: {}, got: {}'.format( expected, result ), verbose=True, ) # Lisp-ish comments, using a standard bit of pyparsing, and an Or. print("\nUse ignore expression (2)") comment = ";;" + restOfLine teststring = """ (let ((greeting "Hello, )world!")) ;;(foo bar (display greeting)) """ expected = [ [ "let", [["greeting", '"Hello, )world!"']], ";;", "(foo bar", ["display", "greeting"], ] ] expr = nestedExpr(ignoreExpr=(comment ^ quotedString)) self.assertParseAndCheckList( expr, teststring, expected, 'Lisp-ish comments (";; <...> $") and quoted strings didn\'t work. Expected: {}, got: {}'.format( expected, result ), verbose=True, ) def testNestedExpressions2(self): """test nestedExpr with conditions that explore other paths identical opener and closer opener and/or closer of type other than string or iterable multi-character opener and/or closer single character opener and closer with ignoreExpr=None multi-character opener and/or closer with ignoreExpr=None """ name = pp.Word(pp.alphanums + "_") # identical opener and closer with self.assertRaises( ValueError, msg="matching opener and closer should raise error" ): expr = name + pp.nestedExpr(opener="{", closer="{") # opener and/or closer of type other than string or iterable with self.assertRaises( ValueError, msg="opener and closer as ints should raise error" ): expr = name + pp.nestedExpr(opener=12, closer=18) # multi-character opener and/or closer tstMulti = "aName {{ outer {{ 'inner with opener {{ and closer }} in quoted string' }} }}" expr = name + pp.nestedExpr(opener="{{", closer="}}") result = expr.parseString(tstMulti) expected = [ "aName", ["outer", ["'inner with opener {{ and closer }} in quoted string'"]], ] print(result.dump()) self.assertParseResultsEquals( result, expected, msg="issue with multi-character opener and closer" ) # single character opener and closer with ignoreExpr=None tst = ( "aName { outer { 'inner with opener { and closer } in quoted string' }} }}" ) expr = name + pp.nestedExpr(opener="{", closer="}", ignoreExpr=None) singleCharResult = expr.parseString(tst) print(singleCharResult.dump()) # multi-character opener and/or closer with ignoreExpr=None expr = name + pp.nestedExpr(opener="{{", closer="}}", ignoreExpr=None) multiCharResult = expr.parseString(tstMulti) print(multiCharResult.dump()) self.assertParseResultsEquals( singleCharResult, multiCharResult.asList(), msg="using different openers and closers shouldn't affect resulting ParseResults", ) def testWordExclude(self): allButPunc = pp.Word(pp.printables, excludeChars=".,:;-_!?") test = "Hello, Mr. Ed, it's Wilbur!" result = allButPunc.searchString(test).asList() print(result) self.assertEqual( [["Hello"], ["Mr"], ["Ed"], ["it's"], ["Wilbur"]], result, "failed WordExcludeTest", ) def testWordMinOfZero(self): """test a Word with min=0""" with self.assertRaises(ValueError, msg="expected min 0 to error"): expr = pp.Word(pp.nums, min=0, max=10) def testCharAsKeyword(self): """test a Char with asKeyword=True""" grade = pp.OneOrMore(pp.Char("ABCDF", asKeyword=True)) # all single char words result = grade.parseString("B B C A D") print(result) expected = ["B", "B", "C", "A", "D"] self.assertParseResultsEquals( result, expected, msg="issue with Char asKeyword=True" ) # NOT all single char words test2 = "B BB C A D" result2 = grade.parseString(test2) print(result2) expected2 = ["B"] self.assertParseResultsEquals( result2, expected2, msg="issue with Char asKeyword=True parsing 2 chars" ) def testCharsNotIn(self): """test CharsNotIn initialized with various arguments""" vowels = "AEIOU" tst = "bcdfghjklmnpqrstvwxyz" # default args consonants = pp.CharsNotIn(vowels) result = consonants.parseString(tst) print(result) self.assertParseResultsEquals( result, [tst], msg="issue with CharsNotIn w/ default args" ) # min = 0 with self.assertRaises(ValueError, msg="issue with CharsNotIn w/ min=0"): consonants = pp.CharsNotIn(vowels, min=0) # max > 0 consonants = pp.CharsNotIn(vowels, max=5) result = consonants.parseString(tst) print(result) self.assertParseResultsEquals( result, [tst[:5]], msg="issue with CharsNotIn w max > 0" ) # exact > 0 consonants = pp.CharsNotIn(vowels, exact=10) result = consonants.parseString(tst[:10]) print(result) self.assertParseResultsEquals( result, [tst[:10]], msg="issue with CharsNotIn w/ exact > 0" ) # min > length consonants = pp.CharsNotIn(vowels, min=25) with self.assertRaisesParseException(msg="issue with CharsNotIn min > tokens"): result = consonants.parseString(tst) def testParseAll(self): from pyparsing import Word, cppStyleComment testExpr = Word("A") tests = [ ("AAAAA", False, True), ("AAAAA", True, True), ("AAABB", False, True), ("AAABB", True, False), ] for s, parseAllFlag, shouldSucceed in tests: try: print( "'{}' parseAll={} (shouldSucceed={})".format( s, parseAllFlag, shouldSucceed ) ) testExpr.parseString(s, parseAll=parseAllFlag) self.assertTrue( shouldSucceed, "successfully parsed when should have failed" ) except ParseException as pe: print(pe.explain()) self.assertFalse( shouldSucceed, "failed to parse when should have succeeded" ) # add test for trailing comments testExpr.ignore(cppStyleComment) tests = [ ("AAAAA //blah", False, True), ("AAAAA //blah", True, True), ("AAABB //blah", False, True), ("AAABB //blah", True, False), ] for s, parseAllFlag, shouldSucceed in tests: try: print( "'{}' parseAll={} (shouldSucceed={})".format( s, parseAllFlag, shouldSucceed ) ) testExpr.parseString(s, parseAll=parseAllFlag) self.assertTrue( shouldSucceed, "successfully parsed when should have failed" ) except ParseException as pe: print(pe.explain()) self.assertFalse( shouldSucceed, "failed to parse when should have succeeded" ) # add test with very long expression string # testExpr = pp.MatchFirst([pp.Literal(c) for c in pp.printables if c != 'B'])[1, ...] anything_but_an_f = pp.OneOrMore( pp.MatchFirst([pp.Literal(c) for c in pp.printables if c != "f"]) ) testExpr = pp.Word("012") + anything_but_an_f tests = [ ("00aab", False, True), ("00aab", True, True), ("00aaf", False, True), ("00aaf", True, False), ] for s, parseAllFlag, shouldSucceed in tests: try: print( "'{}' parseAll={} (shouldSucceed={})".format( s, parseAllFlag, shouldSucceed ) ) testExpr.parseString(s, parseAll=parseAllFlag) self.assertTrue( shouldSucceed, "successfully parsed when should have failed" ) except ParseException as pe: print(pe.explain()) self.assertFalse( shouldSucceed, "failed to parse when should have succeeded" ) def testGreedyQuotedStrings(self): from pyparsing import ( QuotedString, sglQuotedString, dblQuotedString, quotedString, delimitedList, ) src = """\ "string1", "strin""g2" 'string1', 'string2' ^string1^, ^string2^ <string1>, <string2>""" testExprs = ( sglQuotedString, dblQuotedString, quotedString, QuotedString('"', escQuote='""'), QuotedString("'", escQuote="''"), QuotedString("^"), QuotedString("<", endQuoteChar=">"), ) for expr in testExprs: strs = delimitedList(expr).searchString(src) print(strs) self.assertTrue( bool(strs), "no matches found for test expression '%s'" % expr ) for lst in strs: self.assertEqual( 2, len(lst), "invalid match found for test expression '%s'" % expr ) from pyparsing import alphas, nums, Word src = """'ms1',1,0,'2009-12-22','2009-12-22 10:41:22') ON DUPLICATE KEY UPDATE sent_count = sent_count + 1, mtime = '2009-12-22 10:41:22';""" tok_sql_quoted_value = QuotedString( "'", "\\", "''", True, False ) ^ QuotedString('"', "\\", '""', True, False) tok_sql_computed_value = Word(nums) tok_sql_identifier = Word(alphas) val = tok_sql_quoted_value | tok_sql_computed_value | tok_sql_identifier vals = delimitedList(val) print(vals.parseString(src)) self.assertEqual( 5, len(vals.parseString(src)), "error in greedy quote escaping" ) def testWordBoundaryExpressions(self): from pyparsing import WordEnd, WordStart, oneOf ws = WordStart() we = WordEnd() vowel = oneOf(list("AEIOUY")) consonant = oneOf(list("BCDFGHJKLMNPQRSTVWXZ")) leadingVowel = ws + vowel trailingVowel = vowel + we leadingConsonant = ws + consonant trailingConsonant = consonant + we internalVowel = ~ws + vowel + ~we bnf = leadingVowel | trailingVowel tests = """\ ABC DEF GHI JKL MNO PQR STU VWX YZ """.splitlines() tests.append("\n".join(tests)) expectedResult = [ [["D", "G"], ["A"], ["C", "F"], ["I"], ["E"], ["A", "I"]], [["J", "M", "P"], [], ["L", "R"], ["O"], [], ["O"]], [["S", "V"], ["Y"], ["X", "Z"], ["U"], [], ["U", "Y"]], [ ["D", "G", "J", "M", "P", "S", "V"], ["A", "Y"], ["C", "F", "L", "R", "X", "Z"], ["I", "O", "U"], ["E"], ["A", "I", "O", "U", "Y"], ], ] for t, expected in zip(tests, expectedResult): print(t) results = [ flatten(e.searchString(t).asList()) for e in [ leadingConsonant, leadingVowel, trailingConsonant, trailingVowel, internalVowel, bnf, ] ] print(results) print() self.assertEqual( expected, results, "Failed WordBoundaryTest, expected {}, got {}".format( expected, results ), ) def testRequiredEach(self): from pyparsing import Keyword parser = Keyword("bam") & Keyword("boo") try: res1 = parser.parseString("bam boo") print(res1.asList()) res2 = parser.parseString("boo bam") print(res2.asList()) except ParseException: failed = True else: failed = False self.assertFalse(failed, "invalid logic in Each") self.assertEqual( set(res1), set(res2), "Failed RequiredEachTest, expected " + str(res1.asList()) + " and " + str(res2.asList()) + "to contain same words in any order", ) def testOptionalEachTest1(self): from pyparsing import Optional, Keyword for the_input in [ "Tal Weiss Major", "Tal Major", "Weiss Major", "Major", "Major Tal", "Major Weiss", "Major Tal Weiss", ]: print(the_input) parser1 = (Optional("Tal") + Optional("Weiss")) & Keyword("Major") parser2 = Optional(Optional("Tal") + Optional("Weiss")) & Keyword("Major") p1res = parser1.parseString(the_input) p2res = parser2.parseString(the_input) self.assertEqual( p1res.asList(), p2res.asList(), "Each failed to match with nested Optionals, " + str(p1res.asList()) + " should match " + str(p2res.asList()), ) def testOptionalEachTest2(self): from pyparsing import Word, alphanums, OneOrMore, Group, Regex, Optional word = Word(alphanums + "_").setName("word") with_stmt = "with" + OneOrMore(Group(word("key") + "=" + word("value")))( "overrides" ) using_stmt = "using" + Regex("id-[0-9a-f]{8}")("id") modifiers = Optional(with_stmt("with_stmt")) & Optional( using_stmt("using_stmt") ) self.assertEqual("with foo=bar bing=baz using id-deadbeef", modifiers) self.assertNotEqual( "with foo=bar bing=baz using id-deadbeef using id-feedfeed", modifiers ) def testOptionalEachTest3(self): from pyparsing import Literal, Suppress foo = Literal("foo") bar = Literal("bar") openBrace = Suppress(Literal("{")) closeBrace = Suppress(Literal("}")) exp = openBrace + (foo[1, ...]("foo") & bar[...]("bar")) + closeBrace tests = """\ {foo} {bar foo bar foo bar foo} """.splitlines() for test in tests: test = test.strip() if not test: continue self.assertParseAndCheckList( exp, test, test.strip("{}").split(), "failed to parse Each expression {!r}".format(test), verbose=True, ) with self.assertRaisesParseException(): exp.parseString("{bar}") def testOptionalEachTest4(self): from pyparsing import Group expr = (~ppc.iso8601_date + ppc.integer("id")) & ( Group(ppc.iso8601_date)("date*")[...] ) expr.runTests( """ 1999-12-31 100 2001-01-01 42 """ ) def testEachWithParseFatalException(self): option_expr = pp.Keyword("options") - "(" + ppc.integer + ")" step_expr1 = pp.Keyword("step") - "(" + ppc.integer + ")" step_expr2 = pp.Keyword("step") - "(" + ppc.integer + "Z" + ")" step_expr = step_expr1 ^ step_expr2 parser = option_expr & step_expr[...] tests = [ ( "options(100) step(A)", "Expected integer, found 'A' (at char 18), (line:1, col:19)", ), ( "step(A) options(100)", "Expected integer, found 'A' (at char 5), (line:1, col:6)", ), ( "options(100) step(100A)", """Expected 'Z', found 'A' (at char 21), (line:1, col:22)""", ), ( "options(100) step(22) step(100ZA)", """Expected ')', found 'A' (at char 31), (line:1, col:32)""", ), ] test_lookup = dict(tests) success, output = parser.runTests((t[0] for t in tests), failureTests=True) for test_str, result in output: self.assertEqual( test_lookup[test_str], str(result), "incorrect exception raised for test string {!r}".format(test_str), ) def testSumParseResults(self): samplestr1 = "garbage;DOB 10-10-2010;more garbage\nID PARI12345678;more garbage" samplestr2 = "garbage;ID PARI12345678;more garbage\nDOB 10-10-2010;more garbage" samplestr3 = "garbage;DOB 10-10-2010" samplestr4 = "garbage;ID PARI12345678;more garbage- I am cool" res1 = "ID:PARI12345678 DOB:10-10-2010 INFO:" res2 = "ID:PARI12345678 DOB:10-10-2010 INFO:" res3 = "ID: DOB:10-10-2010 INFO:" res4 = "ID:PARI12345678 DOB: INFO: I am cool" from pyparsing import Regex, Word, alphanums, restOfLine dob_ref = "DOB" + Regex(r"\d{2}-\d{2}-\d{4}")("dob") id_ref = "ID" + Word(alphanums, exact=12)("id") info_ref = "-" + restOfLine("info") person_data = dob_ref | id_ref | info_ref tests = (samplestr1, samplestr2, samplestr3, samplestr4) results = (res1, res2, res3, res4) for test, expected in zip(tests, results): person = sum(person_data.searchString(test)) result = "ID:{} DOB:{} INFO:{}".format(person.id, person.dob, person.info) print(test) print(expected) print(result) for pd in person_data.searchString(test): print(pd.dump()) print() self.assertEqual( expected, result, "Failed to parse '{}' correctly, \nexpected '{}', got '{}'".format( test, expected, result ), ) def testMarkInputLine(self): samplestr1 = "DOB 100-10-2010;more garbage\nID PARI12345678;more garbage" from pyparsing import Regex dob_ref = "DOB" + Regex(r"\d{2}-\d{2}-\d{4}")("dob") try: res = dob_ref.parseString(samplestr1) except ParseException as pe: outstr = pe.markInputline() print(outstr) self.assertEqual( "DOB >!<100-10-2010;more garbage", outstr, "did not properly create marked input line", ) else: self.fail("test construction failed - should have raised an exception") def testLocatedExpr(self): # 012345678901234567890123456789012345678901234567890 samplestr1 = "DOB 10-10-2010;more garbage;ID PARI12345678 ;more garbage" from pyparsing import Word, alphanums, locatedExpr id_ref = locatedExpr("ID" + Word(alphanums, exact=12)("id")) res = id_ref.searchString(samplestr1)[0][0] print(res.dump()) self.assertEqual( "ID PARI12345678", samplestr1[res.locn_start : res.locn_end], "incorrect location calculation", ) def testPop(self): from pyparsing import Word, alphas, nums source = "AAA 123 456 789 234" patt = Word(alphas)("name") + Word(nums) * (1,) result = patt.parseString(source) tests = [ (0, "AAA", ["123", "456", "789", "234"]), (None, "234", ["123", "456", "789"]), ("name", "AAA", ["123", "456", "789"]), (-1, "789", ["123", "456"]), ] for test in tests: idx, val, remaining = test if idx is not None: ret = result.pop(idx) else: ret = result.pop() print("EXP:", val, remaining) print("GOT:", ret, result.asList()) print(ret, result.asList()) self.assertEqual( val, ret, "wrong value returned, got {!r}, expected {!r}".format(ret, val), ) self.assertEqual( remaining, result.asList(), "list is in wrong state after pop, got {!r}, expected {!r}".format( result.asList(), remaining ), ) print() prevlist = result.asList() ret = result.pop("name", default="noname") print(ret) print(result.asList()) self.assertEqual( "noname", ret, "default value not successfully returned, got {!r}, expected {!r}".format( ret, "noname" ), ) self.assertEqual( prevlist, result.asList(), "list is in wrong state after pop, got {!r}, expected {!r}".format( result.asList(), remaining ), ) def testPopKwargsErr(self): """raise a TypeError in pop by adding invalid named args""" source = "AAA 123 456 789 234" patt = pp.Word(pp.alphas)("name") + pp.Word(pp.nums) * (1,) result = patt.parseString(source) print(result.dump()) with self.assertRaises(TypeError): result.pop(notDefault="foo") def testAddCondition(self): from pyparsing import Word, nums, Suppress, ParseFatalException numParser = Word(nums) numParser.addParseAction(lambda s, l, t: int(t[0])) numParser.addCondition(lambda s, l, t: t[0] % 2) numParser.addCondition(lambda s, l, t: t[0] >= 7) result = numParser.searchString("1 2 3 4 5 6 7 8 9 10") print(result.asList()) self.assertEqual( [[7], [9]], result.asList(), "failed to properly process conditions" ) numParser = Word(nums) numParser.addParseAction(lambda s, l, t: int(t[0])) rangeParser = numParser("from_") + Suppress("-") + numParser("to") result = rangeParser.searchString("1-4 2-4 4-3 5 6 7 8 9 10") print(result.asList()) self.assertEqual( [[1, 4], [2, 4], [4, 3]], result.asList(), "failed to properly process conditions", ) rangeParser.addCondition( lambda t: t.to > t.from_, message="from must be <= to", fatal=False ) result = rangeParser.searchString("1-4 2-4 4-3 5 6 7 8 9 10") print(result.asList()) self.assertEqual( [[1, 4], [2, 4]], result.asList(), "failed to properly process conditions" ) rangeParser = numParser("from_") + Suppress("-") + numParser("to") rangeParser.addCondition( lambda t: t.to > t.from_, message="from must be <= to", fatal=True ) try: result = rangeParser.searchString("1-4 2-4 4-3 5 6 7 8 9 10") self.fail("failed to interrupt parsing on fatal condition failure") except ParseFatalException: print("detected fatal condition") def testPatientOr(self): # Two expressions and a input string which could - syntactically - be matched against # both expressions. The "Literal" expression is considered invalid though, so this PE # should always detect the "Word" expression. def validate(token): if token[0] == "def": raise pp.ParseException("signalling invalid token") return token a = pp.Word("de").setName("Word") # .setDebug() b = pp.Literal("def").setName("Literal").setParseAction(validate) # .setDebug() c = pp.Literal("d").setName("d") # .setDebug() # The "Literal" expressions's ParseAction is not executed directly after syntactically # detecting the "Literal" Expression but only after the Or-decision has been made # (which is too late)... try: result = (a ^ b ^ c).parseString("def") self.assertEqual( ["de"], result.asList(), "failed to select longest match, chose %s" % result, ) except ParseException: failed = True else: failed = False if failed: self.fail( "invalid logic in Or, fails on longest match with exception in parse action" ) # from issue #93 word = pp.Word(pp.alphas).setName("word") word_1 = ( pp.Word(pp.alphas).setName("word_1").addCondition(lambda t: len(t[0]) == 1) ) a = word + (word_1 + word ^ word) b = word * 3 c = a ^ b c.streamline() print(c) test_string = "foo bar temp" result = c.parseString(test_string) print(test_string, "->", result.asList()) self.assertEqual( test_string.split(), result.asList(), "failed to match longest choice" ) def testEachWithOptionalWithResultsName(self): from pyparsing import Optional result = (Optional("foo")("one") & Optional("bar")("two")).parseString( "bar foo" ) print(result.dump()) self.assertEqual(sorted(["one", "two"]), sorted(result.keys())) def testUnicodeExpression(self): from pyparsing import Literal, ParseException z = "a" | Literal("\u1111") z.streamline() try: z.parseString("b") except ParseException as pe: self.assertEqual( r"""Expected {'a' | 'ᄑ'}""", pe.msg, "Invalid error message raised, got %r" % pe.msg, ) def testSetName(self): a = pp.oneOf("a b c") b = pp.oneOf("d e f") arith_expr = pp.infixNotation( pp.Word(pp.nums), [ (pp.oneOf("* /"), 2, pp.opAssoc.LEFT), (pp.oneOf("+ -"), 2, pp.opAssoc.LEFT), ], ) arith_expr2 = pp.infixNotation( pp.Word(pp.nums), [(("?", ":"), 3, pp.opAssoc.LEFT)] ) recursive = pp.Forward() recursive <<= a + (b + recursive)[...] tests = [ a, b, (a | b), arith_expr, arith_expr.expr, arith_expr2, arith_expr2.expr, recursive, pp.delimitedList(pp.Word(pp.nums).setName("int")), pp.countedArray(pp.Word(pp.nums).setName("int")), pp.nestedExpr(), pp.makeHTMLTags("Z"), (pp.anyOpenTag, pp.anyCloseTag), pp.commonHTMLEntity, pp.commonHTMLEntity.setParseAction(pp.replaceHTMLEntity).transformString( "lsdjkf &lt;lsdjkf&gt;&amp;&apos;&quot;&xyzzy;" ), ] expected = map( str.strip, """\ a | b | c d | e | f {a | b | c | d | e | f} Forward: + | - term + | - term Forward: ?: term ?: term Forward: {a | b | c [{d | e | f : ...}]...} int [, int]... (len) int... nested () expression (<Z>, </Z>) (<any tag>, </any tag>) common HTML entity lsdjkf <lsdjkf>&'"&xyzzy;""".splitlines(), ) for t, e in zip(tests, expected): tname = str(t) print(tname) self.assertEqual( e, tname, "expression name mismatch, expected {} got {}".format(e, tname), ) def testTrimArityExceptionMasking(self): from pyparsing import Word invalid_message = "<lambda>() missing 1 required positional argument: 't'" try: Word("a").setParseAction(lambda t: t[0] + 1).parseString("aaa") except Exception as e: exc_msg = str(e) self.assertNotEqual( exc_msg, invalid_message, "failed to catch TypeError thrown in _trim_arity", ) def testTrimArityExceptionMaskingTest2(self): # construct deep call tree def A(): import traceback traceback.print_stack(limit=2) from pyparsing import Word invalid_message = "<lambda>() missing 1 required positional argument: 't'" try: Word("a").setParseAction(lambda t: t[0] + 1).parseString("aaa") except Exception as e: exc_msg = str(e) self.assertNotEqual( exc_msg, invalid_message, "failed to catch TypeError thrown in _trim_arity", ) def B(): A() def C(): B() def D(): C() def E(): D() def F(): E() def G(): F() def H(): G() def J(): H() def K(): J() K() def testClearParseActions(self): realnum = ppc.real() self.assertEqual( 3.14159, realnum.parseString("3.14159")[0], "failed basic real number parsing", ) # clear parse action that converts to float realnum.setParseAction(None) self.assertEqual( "3.14159", realnum.parseString("3.14159")[0], "failed clearing parse action" ) # add a new parse action that tests if a '.' is prsent realnum.addParseAction(lambda t: "." in t[0]) self.assertEqual( True, realnum.parseString("3.14159")[0], "failed setting new parse action after clearing parse action", ) def testOneOrMoreStop(self): test = "BEGIN aaa bbb ccc END" BEGIN, END = map(pp.Keyword, "BEGIN,END".split(",")) body_word = pp.Word(pp.alphas).setName("word") for ender in (END, "END", pp.CaselessKeyword("END")): expr = BEGIN + pp.OneOrMore(body_word, stopOn=ender) + END self.assertEqual( expr, test, "Did not successfully stop on ending expression %r" % ender ) expr = BEGIN + body_word[...].stopOn(ender) + END self.assertEqual( expr, test, "Did not successfully stop on ending expression %r" % ender ) number = pp.Word(pp.nums + ",.()").setName("number with optional commas") parser = pp.OneOrMore(pp.Word(pp.alphanums + "-/."), stopOn=number)( "id" ).setParseAction(" ".join) + number("data") self.assertParseAndCheckList( parser, " XXX Y/123 1,234.567890", ["XXX Y/123", "1,234.567890"], "Did not successfully stop on ending expression %r" % number, verbose=True, ) def testZeroOrMoreStop(self): from pyparsing import Word, ZeroOrMore, alphas, Keyword, CaselessKeyword test = "BEGIN END" BEGIN, END = map(Keyword, "BEGIN,END".split(",")) body_word = Word(alphas).setName("word") for ender in (END, "END", CaselessKeyword("END")): expr = BEGIN + ZeroOrMore(body_word, stopOn=ender) + END self.assertEqual( expr, test, "Did not successfully stop on ending expression %r" % ender ) expr = BEGIN + body_word[0, ...].stopOn(ender) + END self.assertEqual( expr, test, "Did not successfully stop on ending expression %r" % ender ) def testNestedAsDict(self): equals = pp.Literal("=").suppress() lbracket = pp.Literal("[").suppress() rbracket = pp.Literal("]").suppress() lbrace = pp.Literal("{").suppress() rbrace = pp.Literal("}").suppress() value_dict = pp.Forward() value_list = pp.Forward() value_string = pp.Word(pp.alphanums + "@. ") value = value_list ^ value_dict ^ value_string values = pp.Group(pp.delimitedList(value, ",")) # ~ values = delimitedList(value, ",").setParseAction(lambda toks: [toks.asList()]) value_list <<= lbracket + values + rbracket identifier = pp.Word(pp.alphanums + "_.") assignment = pp.Group(identifier + equals + pp.Optional(value)) assignments = pp.Dict(pp.delimitedList(assignment, ";")) value_dict <<= lbrace + assignments + rbrace response = assignments rsp = ( "username=goat; errors={username=[already taken, too short]}; empty_field=" ) result_dict = response.parseString(rsp).asDict() print(result_dict) self.assertEqual( "goat", result_dict["username"], "failed to process string in ParseResults correctly", ) self.assertEqual( ["already taken", "too short"], result_dict["errors"]["username"], "failed to process nested ParseResults correctly", ) def testTraceParseActionDecorator(self): from pyparsing import traceParseAction, Word, nums @traceParseAction def convert_to_int(t): return int(t[0]) class Z: def __call__(self, other): return other[0] * 1000 integer = Word(nums).addParseAction(convert_to_int) integer.addParseAction(traceParseAction(lambda t: t[0] * 10)) integer.addParseAction(traceParseAction(Z())) integer.parseString("132") def testRunTests(self): from pyparsing import Word, nums, delimitedList integer = Word(nums).setParseAction(lambda t: int(t[0])) intrange = integer("start") + "-" + integer("end") intrange.addCondition( lambda t: t.end > t.start, message="invalid range, start must be <= end", fatal=True, ) intrange.addParseAction(lambda t: list(range(t.start, t.end + 1))) indices = delimitedList(intrange | integer) indices.addParseAction(lambda t: sorted(set(t))) tests = """\ # normal data 1-3,2-4,6,8-10,16 # lone integer 11""" results = indices.runTests(tests, printResults=False)[1] expectedResults = [[1, 2, 3, 4, 6, 8, 9, 10, 16], [11]] for res, expected in zip(results, expectedResults): print(res[1].asList()) print(expected) self.assertEqual(expected, res[1].asList(), "failed test: " + str(expected)) tests = """\ # invalid range 1-2, 3-1, 4-6, 7, 12 """ success = indices.runTests(tests, printResults=False, failureTests=True)[0] self.assertTrue(success, "failed to raise exception on improper range test") def testRunTestsPostParse(self): integer = ppc.integer fraction = integer("numerator") + "/" + integer("denominator") accum = [] def eval_fraction(test, result): accum.append((test, result.asList())) return "eval: {}".format(result.numerator / result.denominator) success = fraction.runTests( """\ 1/2 1/0 """, postParse=eval_fraction, )[0] print(success) self.assertTrue(success, "failed to parse fractions in RunTestsPostParse") expected_accum = [("1/2", [1, "/", 2]), ("1/0", [1, "/", 0])] self.assertEqual( expected_accum, accum, "failed to call postParse method during runTests" ) def testConvertToDateErr(self): """raise a ParseException in convertToDate with incompatible date str""" expr = pp.Word(pp.alphanums + "-") expr.addParseAction(ppc.convertToDate()) with self.assertRaisesParseException(): expr.parseString("1997-07-error") def testConvertToDatetimeErr(self): """raise a ParseException in convertToDatetime with incompatible datetime str""" expr = pp.Word(pp.alphanums + "-") expr.addParseAction(ppc.convertToDatetime()) with self.assertRaisesParseException(): expr.parseString("1997-07-error") def testCommonExpressions(self): import ast success = ppc.mac_address.runTests( """ AA:BB:CC:DD:EE:FF AA.BB.CC.DD.EE.FF AA-BB-CC-DD-EE-FF """ )[0] self.assertTrue(success, "error in parsing valid MAC address") success = ppc.mac_address.runTests( """ # mixed delimiters AA.BB:CC:DD:EE:FF """, failureTests=True, )[0] self.assertTrue(success, "error in detecting invalid mac address") success = ppc.ipv4_address.runTests( """ 0.0.0.0 1.1.1.1 127.0.0.1 172.16.58.3 255.255.255.255 """ )[0] self.assertTrue(success, "error in parsing valid IPv4 address") success = ppc.ipv4_address.runTests( """ # out of range value 256.255.255.255 """, failureTests=True, )[0] self.assertTrue(success, "error in detecting invalid IPv4 address") success = ppc.ipv6_address.runTests( """ 2001:0db8:85a3:0000:0000:8a2e:0370:7334 fc00:e968:6179::de52:7100:4567:2468:1236:2444:2106 fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:200C:417A fc00:e968:6179::de52:7100:1 # loopback address ::1 # the null address :: # ipv4 compatibility form fc00:db20:35b:7399::5:192.168.0.1 """ )[0] self.assertTrue(success, "error in parsing valid IPv6 address") success = ppc.ipv6_address.runTests( """ # too few values 1080:0:0:0:8:800:200C # too many ::'s, only 1 allowed fc00:e968:6179::de52:7100:fc00:db20:35b:7399::5:2106 """, failureTests=True, )[0] self.assertTrue(success, "error in detecting invalid IPv6 address") success = ppc.number.runTests( """ 100 -100 +100 3.14159 6.02e23 1e-12 """ )[0] self.assertTrue(success, "error in parsing valid numerics") success = ppc.sci_real.runTests( """ 1e12 -1e12 3.14159 6.02e23 """ )[0] self.assertTrue(success, "error in parsing valid scientific notation reals") # any int or real number, returned as float success = ppc.fnumber.runTests( """ 100 -100 +100 3.14159 6.02e23 1e-12 """ )[0] self.assertTrue(success, "error in parsing valid numerics") success, results = ppc.iso8601_date.runTests( """ 1997 1997-07 1997-07-16 """ ) self.assertTrue(success, "error in parsing valid iso8601_date") expected = [("1997", None, None), ("1997", "07", None), ("1997", "07", "16")] for r, exp in zip(results, expected): self.assertEqual( exp, (r[1].year, r[1].month, r[1].day), "failed to parse date into fields", ) success, results = ( ppc.iso8601_date() .addParseAction(ppc.convertToDate()) .runTests( """ 1997-07-16 """ ) ) self.assertTrue( success, "error in parsing valid iso8601_date with parse action" ) self.assertEqual( datetime.date(1997, 7, 16), results[0][1][0], "error in parsing valid iso8601_date with parse action - incorrect value", ) success, results = ppc.iso8601_datetime.runTests( """ 1997-07-16T19:20+01:00 1997-07-16T19:20:30+01:00 1997-07-16T19:20:30.45Z 1997-07-16 19:20:30.45 """ ) self.assertTrue(success, "error in parsing valid iso8601_datetime") success, results = ( ppc.iso8601_datetime() .addParseAction(ppc.convertToDatetime()) .runTests( """ 1997-07-16T19:20:30.45 """ ) ) self.assertTrue(success, "error in parsing valid iso8601_datetime") self.assertEqual( datetime.datetime(1997, 7, 16, 19, 20, 30, 450000), results[0][1][0], "error in parsing valid iso8601_datetime - incorrect value", ) success = ppc.uuid.runTests( """ 123e4567-e89b-12d3-a456-426655440000 """ )[0] self.assertTrue(success, "failed to parse valid uuid") success = ppc.fraction.runTests( """ 1/2 -15/16 -3/-4 """ )[0] self.assertTrue(success, "failed to parse valid fraction") success = ppc.mixed_integer.runTests( """ 1/2 -15/16 -3/-4 1 1/2 2 -15/16 0 -3/-4 12 """ )[0] self.assertTrue(success, "failed to parse valid mixed integer") success, results = ppc.number.runTests( """ 100 -3 1.732 -3.14159 6.02e23""" ) self.assertTrue(success, "failed to parse numerics") for test, result in results: expected = ast.literal_eval(test) self.assertEqual( expected, result[0], "numeric parse failed (wrong value) ({} should be {})".format( result[0], expected ), ) self.assertEqual( type(expected), type(result[0]), "numeric parse failed (wrong type) ({} should be {})".format( type(result[0]), type(expected) ), ) def testNumericExpressions(self): # disable parse actions that do type conversion so we don't accidentally trigger # conversion exceptions when what we want to check is the parsing expression real = ppc.real().setParseAction(None) sci_real = ppc.sci_real().setParseAction(None) signed_integer = ppc.signed_integer().setParseAction(None) from itertools import product def make_tests(): leading_sign = ["+", "-", ""] leading_digit = ["0", ""] dot = [".", ""] decimal_digit = ["1", ""] e = ["e", "E", ""] e_sign = ["+", "-", ""] e_int = ["22", ""] stray = ["9", ".", ""] seen = set() seen.add("") for parts in product( leading_sign, stray, leading_digit, dot, decimal_digit, stray, e, e_sign, e_int, stray, ): parts_str = "".join(parts).strip() if parts_str in seen: continue seen.add(parts_str) yield parts_str print(len(seen) - 1, "tests produced") # collect tests into valid/invalid sets, depending on whether they evaluate to valid Python floats or ints valid_ints = set() valid_reals = set() valid_sci_reals = set() invalid_ints = set() invalid_reals = set() invalid_sci_reals = set() # check which strings parse as valid floats or ints, and store in related valid or invalid test sets for test_str in make_tests(): if "." in test_str or "e" in test_str.lower(): try: float(test_str) except ValueError: invalid_sci_reals.add(test_str) if "e" not in test_str.lower(): invalid_reals.add(test_str) else: valid_sci_reals.add(test_str) if "e" not in test_str.lower(): valid_reals.add(test_str) try: int(test_str) except ValueError: invalid_ints.add(test_str) else: valid_ints.add(test_str) # now try all the test sets against their respective expressions all_pass = True suppress_results = {"printResults": False} for expr, tests, is_fail, fn in zip( [real, sci_real, signed_integer] * 2, [ valid_reals, valid_sci_reals, valid_ints, invalid_reals, invalid_sci_reals, invalid_ints, ], [False, False, False, True, True, True], [float, float, int] * 2, ): # # success, test_results = expr.runTests(sorted(tests, key=len), failureTests=is_fail, **suppress_results) # filter_result_fn = (lambda r: isinstance(r, Exception), # lambda r: not isinstance(r, Exception))[is_fail] # print(expr, ('FAIL', 'PASS')[success], "{}valid tests ({})".format(len(tests), # 'in' if is_fail else '')) # if not success: # all_pass = False # for test_string, result in test_results: # if filter_result_fn(result): # try: # test_value = fn(test_string) # except ValueError as ve: # test_value = str(ve) # print("{!r}: {} {} {}".format(test_string, result, # expr.matches(test_string, parseAll=True), test_value)) success = True for t in tests: if expr.matches(t, parseAll=True): if is_fail: print(t, "should fail but did not") success = False else: if not is_fail: print(t, "should not fail but did") success = False print( expr, ("FAIL", "PASS")[success], "{}valid tests ({})".format("in" if is_fail else "", len(tests)), ) all_pass = all_pass and success self.assertTrue(all_pass, "failed one or more numeric tests") def testTokenMap(self): from pyparsing import tokenMap, Word, hexnums, OneOrMore parser = OneOrMore(Word(hexnums)).setParseAction(tokenMap(int, 16)) success, report = parser.runTests( """ 00 11 22 aa FF 0a 0d 1a """ ) self.assertRunTestResults( (success, report), [([0, 17, 34, 170, 255, 10, 13, 26], "tokenMap parse action failed")], msg="failed to parse hex integers", ) def testParseFile(self): from pyparsing import OneOrMore s = """ 123 456 789 """ input_file = StringIO(s) integer = ppc.integer results = OneOrMore(integer).parseFile(input_file) print(results) results = OneOrMore(integer).parseFile("tests/parsefiletest_input_file.txt") print(results) def testHTMLStripper(self): sample = """ <html> Here is some sample <i>HTML</i> text. </html> """ read_everything = pp.originalTextFor(pp.OneOrMore(pp.Word(pp.printables))) read_everything.addParseAction(ppc.stripHTMLTags) result = read_everything.parseString(sample) self.assertEqual("Here is some sample HTML text.", result[0].strip()) def testExprSplitter(self): from pyparsing import Literal, quotedString, pythonStyleComment, Empty expr = Literal(";") + Empty() expr.ignore(quotedString) expr.ignore(pythonStyleComment) sample = """ def main(): this_semi_does_nothing(); neither_does_this_but_there_are_spaces_afterward(); a = "a;b"; return a # this is a comment; it has a semicolon! def b(): if False: z=1000;b("; in quotes"); c=200;return z return ';' class Foo(object): def bar(self): '''a docstring; with a semicolon''' a = 10; b = 11; c = 12 # this comment; has several; semicolons if self.spam: x = 12; return x # so; does; this; one x = 15;;; y += x; return y def baz(self): return self.bar """ expected = [ [" this_semi_does_nothing()", ""], [" neither_does_this_but_there_are_spaces_afterward()", ""], [ ' a = "a;b"', "return a # this is a comment; it has a semicolon!", ], [" z=1000", 'b("; in quotes")', "c=200", "return z"], [" return ';'"], [" '''a docstring; with a semicolon'''"], [" a = 10", "b = 11", "c = 12"], [" # this comment; has several; semicolons"], [" x = 12", "return x # so; does; this; one"], [" x = 15", "", "", "y += x", "return y"], ] exp_iter = iter(expected) for line in filter(lambda ll: ";" in ll, sample.splitlines()): print(str(list(expr.split(line))) + ",") self.assertEqual( next(exp_iter), list(expr.split(line)), "invalid split on expression" ) print() expected = [ [" this_semi_does_nothing()", ";", ""], [" neither_does_this_but_there_are_spaces_afterward()", ";", ""], [ ' a = "a;b"', ";", "return a # this is a comment; it has a semicolon!", ], [ " z=1000", ";", 'b("; in quotes")', ";", "c=200", ";", "return z", ], [" return ';'"], [" '''a docstring; with a semicolon'''"], [" a = 10", ";", "b = 11", ";", "c = 12"], [" # this comment; has several; semicolons"], [" x = 12", ";", "return x # so; does; this; one"], [ " x = 15", ";", "", ";", "", ";", "y += x", ";", "return y", ], ] exp_iter = iter(expected) for line in filter(lambda ll: ";" in ll, sample.splitlines()): print(str(list(expr.split(line, includeSeparators=True))) + ",") self.assertEqual( next(exp_iter), list(expr.split(line, includeSeparators=True)), "invalid split on expression", ) print() expected = [ [" this_semi_does_nothing()", ""], [" neither_does_this_but_there_are_spaces_afterward()", ""], [ ' a = "a;b"', "return a # this is a comment; it has a semicolon!", ], [" z=1000", 'b("; in quotes"); c=200;return z'], [" a = 10", "b = 11; c = 12"], [" x = 12", "return x # so; does; this; one"], [" x = 15", ";; y += x; return y"], ] exp_iter = iter(expected) for line in sample.splitlines(): pieces = list(expr.split(line, maxsplit=1)) print(str(pieces) + ",") if len(pieces) == 2: exp = next(exp_iter) self.assertEqual( exp, pieces, "invalid split on expression with maxSplits=1" ) elif len(pieces) == 1: self.assertEqual( 0, len(expr.searchString(line)), "invalid split with maxSplits=1 when expr not present", ) else: print("\n>>> " + line) self.fail("invalid split on expression with maxSplits=1, corner case") def testParseFatalException(self): from pyparsing import Word, nums, ParseFatalException with self.assertRaisesParseException( exc_type=ParseFatalException, msg="failed to raise ErrorStop exception" ): expr = "ZZZ" - Word(nums) expr.parseString("ZZZ bad") # WAS: # success = False # try: # expr = "ZZZ" - Word(nums) # expr.parseString("ZZZ bad") # except ParseFatalException as pfe: # print('ParseFatalException raised correctly') # success = True # except Exception as e: # print(type(e)) # print(e) # # self.assertTrue(success, "bad handling of syntax error") def testInlineLiteralsUsing(self): wd = pp.Word(pp.alphas) pp.ParserElement.inlineLiteralsUsing(pp.Suppress) result = (wd + "," + wd + pp.oneOf("! . ?")).parseString("Hello, World!") self.assertEqual(3, len(result), "inlineLiteralsUsing(Suppress) failed!") pp.ParserElement.inlineLiteralsUsing(pp.Literal) result = (wd + "," + wd + pp.oneOf("! . ?")).parseString("Hello, World!") self.assertEqual(4, len(result), "inlineLiteralsUsing(Literal) failed!") pp.ParserElement.inlineLiteralsUsing(pp.CaselessKeyword) self.assertParseAndCheckList( "SELECT" + wd + "FROM" + wd, "select color from colors", expected_list=["SELECT", "color", "FROM", "colors"], msg="inlineLiteralsUsing(CaselessKeyword) failed!", verbose=True, ) pp.ParserElement.inlineLiteralsUsing(pp.CaselessLiteral) self.assertParseAndCheckList( "SELECT" + wd + "FROM" + wd, "select color from colors", expected_list=["SELECT", "color", "FROM", "colors"], msg="inlineLiteralsUsing(CaselessLiteral) failed!", verbose=True, ) integer = pp.Word(pp.nums) pp.ParserElement.inlineLiteralsUsing(pp.Literal) date_str = integer("year") + "/" + integer("month") + "/" + integer("day") self.assertParseAndCheckList( date_str, "1999/12/31", expected_list=["1999", "/", "12", "/", "31"], msg="inlineLiteralsUsing(example 1) failed!", verbose=True, ) # change to Suppress pp.ParserElement.inlineLiteralsUsing(pp.Suppress) date_str = integer("year") + "/" + integer("month") + "/" + integer("day") self.assertParseAndCheckList( date_str, "1999/12/31", expected_list=["1999", "12", "31"], msg="inlineLiteralsUsing(example 2) failed!", verbose=True, ) def testCloseMatch(self): searchseq = pp.CloseMatch("ATCATCGAATGGA", 2) _, results = searchseq.runTests( """ ATCATCGAATGGA XTCATCGAATGGX ATCATCGAAXGGA ATCAXXGAATGGA ATCAXXGAATGXA ATCAXXGAATGG """ ) expected = ([], [0, 12], [9], [4, 5], None, None) for r, exp in zip(results, expected): if exp is not None: self.assertEqual( exp, r[1].mismatches, "fail CloseMatch between {!r} and {!r}".format( searchseq.match_string, r[0] ), ) print( r[0], "exc: %s" % r[1] if exp is None and isinstance(r[1], Exception) else ("no match", "match")[r[1].mismatches == exp], ) def testDefaultKeywordChars(self): with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): pp.Keyword("start").parseString("start1000") try: pp.Keyword("start", identChars=pp.alphas).parseString("start1000") except pp.ParseException: self.fail("failed to match keyword using updated keyword chars") with ppt.reset_pyparsing_context(): pp.Keyword.setDefaultKeywordChars(pp.alphas) try: pp.Keyword("start").parseString("start1000") except pp.ParseException: self.fail("failed to match keyword using updated keyword chars") with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): pp.CaselessKeyword("START").parseString("start1000") try: pp.CaselessKeyword("START", identChars=pp.alphas).parseString("start1000") except pp.ParseException: self.fail("failed to match keyword using updated keyword chars") with ppt.reset_pyparsing_context(): pp.Keyword.setDefaultKeywordChars(pp.alphas) try: pp.CaselessKeyword("START").parseString("start1000") except pp.ParseException: self.assertTrue( False, "failed to match keyword using updated keyword chars" ) def testLiteralVsKeyword(self): integer = ppc.integer literal_expr = integer + pp.Literal("start") + integer keyword_expr = integer + pp.Keyword("start") + integer caseless_keyword_expr = integer + pp.CaselessKeyword("START") + integer word_keyword_expr = ( integer + pp.Word(pp.alphas, asKeyword=True).setName("word") + integer ) print() test_string = "1 start 2" print(test_string) print(literal_expr, literal_expr.parseString(test_string, parseAll=True)) print(keyword_expr, keyword_expr.parseString(test_string, parseAll=True)) print( caseless_keyword_expr, caseless_keyword_expr.parseString(test_string, parseAll=True), ) print( word_keyword_expr, word_keyword_expr.parseString(test_string, parseAll=True) ) print() test_string = "3 start4" print(test_string) print(literal_expr, literal_expr.parseString(test_string, parseAll=True)) with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): print(keyword_expr.parseString(test_string, parseAll=True)) with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): print(caseless_keyword_expr.parseString(test_string, parseAll=True)) with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): print(word_keyword_expr.parseString(test_string, parseAll=True)) print() test_string = "5start 6" print(test_string) print(literal_expr.parseString(test_string, parseAll=True)) with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): print(keyword_expr.parseString(test_string, parseAll=True)) with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): print(caseless_keyword_expr.parseString(test_string, parseAll=True)) with self.assertRaisesParseException( msg="failed to fail matching keyword using updated keyword chars" ): print(word_keyword_expr.parseString(test_string, parseAll=True)) def testCol(self): test = "*\n* \n* ALF\n*\n" initials = [c for i, c in enumerate(test) if pp.col(i, test) == 1] print(initials) self.assertTrue( len(initials) == 4 and all(c == "*" for c in initials), "fail col test" ) def testLiteralException(self): for cls in ( pp.Literal, pp.CaselessLiteral, pp.Keyword, pp.CaselessKeyword, pp.Word, pp.Regex, ): expr = cls("xyz") # .setName('{}_expr'.format(cls.__name__.lower())) try: expr.parseString(" ") except Exception as e: print(cls.__name__, str(e)) self.assertTrue( isinstance(e, pp.ParseBaseException), "class {} raised wrong exception type {}".format( cls.__name__, type(e).__name__ ), ) def testParseActionException(self): import traceback number = pp.Word(pp.nums) def number_action(): raise IndexError # this is the important line! number.setParseAction(number_action) symbol = pp.Word("abcd", max=1) expr = number | symbol try: expr.parseString("1 + 2") except Exception as e: print_traceback = True try: self.assertTrue( hasattr(e, "__cause__"), "no __cause__ attribute in the raised exception", ) self.assertTrue( e.__cause__ is not None, "__cause__ not propagated to outer exception", ) self.assertEqual( IndexError, type(e.__cause__), "__cause__ references wrong exception", ) print_traceback = False finally: if print_traceback: traceback.print_exc() else: self.fail("Expected ParseException not raised") # tests Issue #22 def testParseActionNesting(self): vals = pp.OneOrMore(ppc.integer)("int_values") def add_total(tokens): tokens["total"] = sum(tokens) return tokens vals.addParseAction(add_total) results = vals.parseString("244 23 13 2343") print(results.dump()) self.assertParseResultsEquals( results, expected_dict={"int_values": [244, 23, 13, 2343], "total": 2623}, msg="noop parse action changed ParseResults structure", ) name = pp.Word(pp.alphas)("name") score = pp.Word(pp.nums + ".")("score") nameScore = pp.Group(name + score) line1 = nameScore("Rider") result1 = line1.parseString("Mauney 46.5") print("### before parse action is added ###") print("result1.dump():\n" + result1.dump() + "\n") before_pa_dict = result1.asDict() line1.setParseAction(lambda t: t) result1 = line1.parseString("Mauney 46.5") after_pa_dict = result1.asDict() print("### after parse action was added ###") print("result1.dump():\n" + result1.dump() + "\n") self.assertEqual( before_pa_dict, after_pa_dict, "noop parse action changed ParseResults structure", ) def testParseResultsNameBelowUngroupedName(self): rule_num = pp.Regex("[0-9]+")("LIT_NUM*") list_num = pp.Group( pp.Literal("[")("START_LIST") + pp.delimitedList(rule_num)("LIST_VALUES") + pp.Literal("]")("END_LIST") )("LIST") test_string = "[ 1,2,3,4,5,6 ]" list_num.runTests(test_string) U = list_num.parseString(test_string) self.assertTrue( "LIT_NUM" not in U.LIST.LIST_VALUES, "results name retained as sub in ungrouped named result", ) def testParseResultsNamesInGroupWithDict(self): key = ppc.identifier() value = ppc.integer() lat = ppc.real() long = ppc.real() EQ = pp.Suppress("=") data = ( lat("lat") + long("long") + pp.Dict(pp.OneOrMore(pp.Group(key + EQ + value))) ) site = pp.QuotedString('"')("name") + pp.Group(data)("data") test_string = '"Golden Gate Bridge" 37.819722 -122.478611 height=746 span=4200' site.runTests(test_string) a, aEnd = pp.makeHTMLTags("a") attrs = a.parseString("<a href='blah'>") print(attrs.dump()) self.assertParseResultsEquals( attrs, expected_dict={ "startA": {"href": "blah", "tag": "a", "empty": False}, "href": "blah", "tag": "a", "empty": False, }, ) def testMakeXMLTags(self): """test helper function makeXMLTags in simple use case""" body, bodyEnd = pp.makeXMLTags("body") tst = "<body>Hello</body>" expr = body + pp.Word(pp.alphas)("contents") + bodyEnd result = expr.parseString(tst) print(result.dump()) self.assertParseResultsEquals( result, ["body", False, "Hello", "</body>"], msg="issue using makeXMLTags" ) def testFollowedBy(self): expr = pp.Word(pp.alphas)("item") + pp.FollowedBy(ppc.integer("qty")) result = expr.parseString("balloon 99", parseAll=False) print(result.dump()) self.assertTrue("qty" in result, "failed to capture results name in FollowedBy") self.assertEqual( {"item": "balloon", "qty": 99}, result.asDict(), "invalid results name structure from FollowedBy", ) def testSetBreak(self): """ Test behavior of ParserElement.setBreak(), to invoke the debugger before parsing that element is attempted. Temporarily monkeypatches pdb.set_trace. """ was_called = False def mock_set_trace(): nonlocal was_called was_called = True wd = pp.Word(pp.alphas) wd.setBreak() print("Before parsing with setBreak:", was_called) import pdb with ppt.reset_pyparsing_context(): pdb.set_trace = mock_set_trace wd.parseString("ABC") print("After parsing with setBreak:", was_called) self.assertTrue(was_called, "set_trace wasn't called by setBreak") def testUnicodeTests(self): ppu = pp.pyparsing_unicode # verify proper merging of ranges by addition kanji_printables = ppu.Japanese.Kanji.printables katakana_printables = ppu.Japanese.Katakana.printables hiragana_printables = ppu.Japanese.Hiragana.printables japanese_printables = ppu.Japanese.printables self.assertEqual( set(kanji_printables + katakana_printables + hiragana_printables), set(japanese_printables), "failed to construct ranges by merging Japanese types", ) # verify proper merging of ranges using multiple inheritance cjk_printables = ppu.CJK.printables self.assertEqual( len(set(cjk_printables)), len(cjk_printables), "CJK contains duplicate characters - all should be unique", ) chinese_printables = ppu.Chinese.printables korean_printables = ppu.Korean.printables print( len(set(chinese_printables + korean_printables + japanese_printables)), len(cjk_printables), ) self.assertEqual( len(set(chinese_printables + korean_printables + japanese_printables)), len(cjk_printables), "failed to construct ranges by merging Chinese, Japanese and Korean", ) alphas = ppu.Greek.alphas greet = pp.Word(alphas) + "," + pp.Word(alphas) + "!" # input string hello = "Καλημέρα, κόσμε!" result = greet.parseString(hello) print(result) self.assertParseResultsEquals( result, expected_list=["Καλημέρα", ",", "κόσμε", "!"], msg="Failed to parse Greek 'Hello, World!' using " "pyparsing_unicode.Greek.alphas", ) # define a custom unicode range using multiple inheritance class Turkish_set(ppu.Latin1, ppu.LatinA): pass self.assertEqual( set(ppu.Latin1.printables + ppu.LatinA.printables), set(Turkish_set.printables), "failed to construct ranges by merging Latin1 and LatinA (printables)", ) self.assertEqual( set(ppu.Latin1.alphas + ppu.LatinA.alphas), set(Turkish_set.alphas), "failed to construct ranges by merging Latin1 and LatinA (alphas)", ) self.assertEqual( set(ppu.Latin1.nums + ppu.LatinA.nums), set(Turkish_set.nums), "failed to construct ranges by merging Latin1 and LatinA (nums)", ) key = pp.Word(Turkish_set.alphas) value = ppc.integer | pp.Word(Turkish_set.alphas, Turkish_set.alphanums) EQ = pp.Suppress("=") key_value = key + EQ + value sample = """\ şehir=İzmir ülke=Türkiye nüfus=4279677""" result = pp.Dict(pp.OneOrMore(pp.Group(key_value))).parseString(sample) print(result.dump()) self.assertParseResultsEquals( result, expected_dict={"şehir": "İzmir", "ülke": "Türkiye", "nüfus": 4279677}, msg="Failed to parse Turkish key-value pairs", ) # Make sure example in indentedBlock docstring actually works! def testIndentedBlockExample(self): from textwrap import dedent data = dedent( """ def A(z): A1 B = 100 G = A2 A2 A3 B def BB(a,b,c): BB1 def BBA(): bba1 bba2 bba3 C D def spam(x,y): def eggs(z): pass """ ) indentStack = [1] stmt = pp.Forward() identifier = pp.Word(pp.alphas, pp.alphanums) funcDecl = ( "def" + identifier + pp.Group("(" + pp.Optional(pp.delimitedList(identifier)) + ")") + ":" ) func_body = pp.indentedBlock(stmt, indentStack) funcDef = pp.Group(funcDecl + func_body) rvalue = pp.Forward() funcCall = pp.Group( identifier + "(" + pp.Optional(pp.delimitedList(rvalue)) + ")" ) rvalue << (funcCall | identifier | pp.Word(pp.nums)) assignment = pp.Group(identifier + "=" + rvalue) stmt <<= funcDef | assignment | identifier module_body = pp.OneOrMore(stmt) self.assertParseAndCheckList( module_body, data, [ [ "def", "A", ["(", "z", ")"], ":", [["A1"], [["B", "=", "100"]], [["G", "=", "A2"]], ["A2"], ["A3"]], ], "B", [ "def", "BB", ["(", "a", "b", "c", ")"], ":", [ ["BB1"], [ [ "def", "BBA", ["(", ")"], ":", [["bba1"], ["bba2"], ["bba3"]], ] ], ], ], "C", "D", [ "def", "spam", ["(", "x", "y", ")"], ":", [[["def", "eggs", ["(", "z", ")"], ":", [["pass"]]]]], ], ], "Failed indentedBlock example", verbose=True, ) def testIndentedBlock(self): # parse pseudo-yaml indented text import textwrap EQ = pp.Suppress("=") stack = [1] key = ppc.identifier value = pp.Forward() key_value = key + EQ + value compound_value = pp.Dict(pp.ungroup(pp.indentedBlock(key_value, stack))) value <<= ppc.integer | pp.QuotedString("'") | compound_value parser = pp.Dict(pp.OneOrMore(pp.Group(key_value))) text = """ a = 100 b = 101 c = c1 = 200 c2 = c21 = 999 c3 = 'A horse, a horse, my kingdom for a horse' d = 505 """ text = textwrap.dedent(text) print(text) result = parser.parseString(text) print(result.dump()) self.assertEqual(100, result.a, "invalid indented block result") self.assertEqual(200, result.c.c1, "invalid indented block result") self.assertEqual(999, result.c.c2.c21, "invalid indented block result") # exercise indentedBlock with example posted in issue #87 def testIndentedBlockTest2(self): from textwrap import dedent indent_stack = [1] key = pp.Word(pp.alphas, pp.alphanums) + pp.Suppress(":") stmt = pp.Forward() suite = pp.indentedBlock(stmt, indent_stack) body = key + suite pattern = ( pp.Word(pp.alphas) + pp.Suppress("(") + pp.Word(pp.alphas) + pp.Suppress(")") ) stmt <<= pattern def key_parse_action(toks): print("Parsing '%s'..." % toks[0]) key.setParseAction(key_parse_action) header = pp.Suppress("[") + pp.Literal("test") + pp.Suppress("]") content = header - pp.OneOrMore(pp.indentedBlock(body, indent_stack, False)) contents = pp.Forward() suites = pp.indentedBlock(content, indent_stack) extra = pp.Literal("extra") + pp.Suppress(":") - suites contents <<= content | extra parser = pp.OneOrMore(contents) sample = dedent( """ extra: [test] one0: two (three) four0: five (seven) extra: [test] one1: two (three) four1: five (seven) """ ) success, _ = parser.runTests([sample]) self.assertTrue(success, "Failed indentedBlock test for issue #87") sample2 = dedent( """ extra: [test] one: two (three) four: five (seven) extra: [test] one: two (three) four: five (seven) [test] one: two (three) four: five (seven) [test] eight: nine (ten) eleven: twelve (thirteen) fourteen: fifteen (sixteen) seventeen: eighteen (nineteen) """ ) del indent_stack[1:] success, _ = parser.runTests([sample2]) self.assertTrue(success, "Failed indentedBlock multi-block test for issue #87") def testIndentedBlockScan(self): def get_parser(): """ A valid statement is the word "block:", followed by an indent, followed by the letter A only, or another block """ stack = [1] block = pp.Forward() body = pp.indentedBlock( pp.Literal("A") ^ block, indentStack=stack, indent=True ) block <<= pp.Literal("block:") + body return block from textwrap import dedent # This input string is a perfect match for the parser, so a single match is found p1 = get_parser() r1 = list( p1.scanString( dedent( """\ block: A """ ) ) ) self.assertEqual(1, len(r1)) # This input string is a perfect match for the parser, except for the letter B instead of A, so this will fail (and should) p2 = get_parser() r2 = list( p2.scanString( dedent( """\ block: B """ ) ) ) self.assertEqual(0, len(r2)) # This input string contains both string A and string B, and it finds one match (as it should) p3 = get_parser() r3 = list( p3.scanString( dedent( """\ block: A block: B """ ) ) ) self.assertEqual(1, len(r3)) # This input string contains both string A and string B, but in a different order. p4 = get_parser() r4 = list( p4.scanString( dedent( """\ block: B block: A """ ) ) ) self.assertEqual(1, len(r4)) # This is the same as case 3, but with nesting p5 = get_parser() r5 = list( p5.scanString( dedent( """\ block: block: A block: block: B """ ) ) ) self.assertEqual(1, len(r5)) # This is the same as case 4, but with nesting p6 = get_parser() r6 = list( p6.scanString( dedent( """\ block: block: B block: block: A """ ) ) ) self.assertEqual(1, len(r6)) def testInvalidDiagSetting(self): with self.assertRaises( ValueError, msg="failed to raise exception when setting non-existent __diag__", ): pp.__diag__.enable("xyzzy") with self.assertWarns( UserWarning, msg="failed to warn disabling 'collect_all_And_tokens" ): pp.__compat__.disable("collect_all_And_tokens") def testParseResultsWithNameMatchFirst(self): expr_a = pp.Literal("not") + pp.Literal("the") + pp.Literal("bird") expr_b = pp.Literal("the") + pp.Literal("bird") expr = (expr_a | expr_b)("rexp") success, report = expr.runTests( """\ not the bird the bird """ ) results = [rpt[1] for rpt in report] self.assertParseResultsEquals( results[0], ["not", "the", "bird"], {"rexp": ["not", "the", "bird"]} ) self.assertParseResultsEquals( results[1], ["the", "bird"], {"rexp": ["the", "bird"]} ) # test compatibility mode, no longer restoring pre-2.3.1 behavior with ppt.reset_pyparsing_context(): pp.__compat__.collect_all_And_tokens = False pp.__diag__.enable("warn_multiple_tokens_in_named_alternation") expr_a = pp.Literal("not") + pp.Literal("the") + pp.Literal("bird") expr_b = pp.Literal("the") + pp.Literal("bird") with self.assertWarns( UserWarning, msg="failed to warn of And within alternation" ): expr = (expr_a | expr_b)("rexp") success, report = expr.runTests( """ not the bird the bird """ ) results = [rpt[1] for rpt in report] self.assertParseResultsEquals( results[0], ["not", "the", "bird"], {"rexp": ["not", "the", "bird"]} ) self.assertParseResultsEquals( results[1], ["the", "bird"], {"rexp": ["the", "bird"]} ) def testParseResultsWithNameOr(self): expr_a = pp.Literal("not") + pp.Literal("the") + pp.Literal("bird") expr_b = pp.Literal("the") + pp.Literal("bird") expr = (expr_a ^ expr_b)("rexp") expr.runTests( """\ not the bird the bird """ ) result = expr.parseString("not the bird") self.assertParseResultsEquals( result, ["not", "the", "bird"], {"rexp": ["not", "the", "bird"]} ) result = expr.parseString("the bird") self.assertParseResultsEquals( result, ["the", "bird"], {"rexp": ["the", "bird"]} ) expr = (expr_a | expr_b)("rexp") expr.runTests( """\ not the bird the bird """ ) result = expr.parseString("not the bird") self.assertParseResultsEquals( result, ["not", "the", "bird"], {"rexp": ["not", "the", "bird"]} ) result = expr.parseString("the bird") self.assertParseResultsEquals( result, ["the", "bird"], {"rexp": ["the", "bird"]} ) # test compatibility mode, no longer restoring pre-2.3.1 behavior with ppt.reset_pyparsing_context(): pp.__compat__.collect_all_And_tokens = False pp.__diag__.enable("warn_multiple_tokens_in_named_alternation") expr_a = pp.Literal("not") + pp.Literal("the") + pp.Literal("bird") expr_b = pp.Literal("the") + pp.Literal("bird") with self.assertWarns( UserWarning, msg="failed to warn of And within alternation" ): expr = (expr_a ^ expr_b)("rexp") expr.runTests( """\ not the bird the bird """ ) self.assertEqual( "not the bird".split(), list(expr.parseString("not the bird")["rexp"]) ) self.assertEqual( "the bird".split(), list(expr.parseString("the bird")["rexp"]) ) def testEmptyDictDoesNotRaiseException(self): key = pp.Word(pp.alphas) value = pp.Word(pp.nums) EQ = pp.Suppress("=") key_value_dict = pp.dictOf(key, EQ + value) print( key_value_dict.parseString( """\ a = 10 b = 20 """ ).dump() ) try: print(key_value_dict.parseString("").dump()) except pp.ParseException as pe: print(pp.ParseException.explain(pe)) else: self.fail("failed to raise exception when matching empty string") def testExplainException(self): expr = pp.Word(pp.nums).setName("int") + pp.Word(pp.alphas).setName("word") try: expr.parseString("123 355") except pp.ParseException as pe: print(pe.explain(depth=0)) expr = pp.Word(pp.nums).setName("int") - pp.Word(pp.alphas).setName("word") try: expr.parseString("123 355 (test using ErrorStop)") except pp.ParseSyntaxException as pe: print(pe.explain()) integer = pp.Word(pp.nums).setName("int").addParseAction(lambda t: int(t[0])) expr = integer + integer def divide_args(t): integer.parseString("A") return t[0] / t[1] expr.addParseAction(divide_args) pp.ParserElement.enablePackrat() print() try: expr.parseString("123 0") except pp.ParseException as pe: print(pe.explain()) except Exception as exc: print(pp.ParseBaseException.explain_exception(exc)) raise def testCaselessKeywordVsKeywordCaseless(self): frule = pp.Keyword("t", caseless=True) + pp.Keyword("yes", caseless=True) crule = pp.CaselessKeyword("t") + pp.CaselessKeyword("yes") flist = frule.searchString("not yes").asList() print(flist) clist = crule.searchString("not yes").asList() print(clist) self.assertEqual( flist, clist, "CaselessKeyword not working the same as Keyword(caseless=True)", ) def testOneOfKeywords(self): literal_expr = pp.oneOf("a b c") success, _ = literal_expr[...].runTests( """ # literal oneOf tests a b c a a a abc """ ) self.assertTrue(success, "failed literal oneOf matching") keyword_expr = pp.oneOf("a b c", asKeyword=True) success, _ = keyword_expr[...].runTests( """ # keyword oneOf tests a b c a a a """ ) self.assertTrue(success, "failed keyword oneOf matching") success, _ = keyword_expr[...].runTests( """ # keyword oneOf failure tests abc """, failureTests=True, ) self.assertTrue(success, "failed keyword oneOf failure tests") def testWarnUngroupedNamedTokens(self): """ - warn_ungrouped_named_tokens_in_collection - flag to enable warnings when a results name is defined on a containing expression with ungrouped subexpressions that also have results names (default=True) """ with ppt.reset_pyparsing_context(): pp.__diag__.enable("warn_ungrouped_named_tokens_in_collection") COMMA = pp.Suppress(",").setName("comma") coord = ppc.integer("x") + COMMA + ppc.integer("y") # this should emit a warning with self.assertWarns( UserWarning, msg="failed to warn with named repetition of" " ungrouped named expressions", ): path = coord[...].setResultsName("path") def testWarnNameSetOnEmptyForward(self): """ - warn_name_set_on_empty_Forward - flag to enable warnings whan a Forward is defined with a results name, but has no contents defined (default=False) """ with ppt.reset_pyparsing_context(): pp.__diag__.enable("warn_name_set_on_empty_Forward") base = pp.Forward() with self.assertWarns( UserWarning, msg="failed to warn when naming an empty Forward expression", ): base("x") def testWarnParsingEmptyForward(self): """ - warn_on_parse_using_empty_Forward - flag to enable warnings whan a Forward has no contents defined (default=False) """ with ppt.reset_pyparsing_context(): pp.__diag__.enable("warn_on_parse_using_empty_Forward") base = pp.Forward() with self.assertWarns( UserWarning, msg="failed to warn when naming an empty Forward expression", ): try: print(base.parseString("x")) except ParseException as pe: pass def testWarnIncorrectAssignmentToForward(self): """ - warn_on_parse_using_empty_Forward - flag to enable warnings whan a Forward has no contents defined (default=False) """ if PYPY_ENV: print("warn_on_assignment_to_Forward not supported on PyPy") return with ppt.reset_pyparsing_context(): pp.__diag__.enable("warn_on_assignment_to_Forward") def a_method(): base = pp.Forward() base = pp.Word(pp.alphas)[...] | "(" + base + ")" with self.assertWarns( SyntaxWarning, msg="failed to warn when using '=' to assign expression to a Forward", ): a_method() def testWarnOnMultipleStringArgsToOneOf(self): """ - warn_on_multiple_string_args_to_oneof - flag to enable warnings whan oneOf is incorrectly called with multiple str arguments (default=True) """ with ppt.reset_pyparsing_context(): pp.__diag__.enable("warn_on_multiple_string_args_to_oneof") with self.assertWarns( UserWarning, msg="failed to warn when incorrectly calling oneOf(string, string)", ): a = pp.oneOf("A", "B") def testEnableDebugOnNamedExpressions(self): """ - enable_debug_on_named_expressions - flag to auto-enable debug on all subsequent calls to ParserElement.setName() (default=False) """ import textwrap with ppt.reset_pyparsing_context(): test_stdout = StringIO() with resetting(sys, "stdout", "stderr"): sys.stdout = test_stdout sys.stderr = test_stdout pp.__diag__.enable("enable_debug_on_named_expressions") integer = pp.Word(pp.nums).setName("integer") integer[...].parseString("1 2 3") expected_debug_output = textwrap.dedent( """\ Match integer at loc 0(1,1) Matched integer -> ['1'] Match integer at loc 1(1,2) Matched integer -> ['2'] Match integer at loc 3(1,4) Matched integer -> ['3'] Match integer at loc 5(1,6) Exception raised:Expected integer, found end of text (at char 5), (line:1, col:6) """ ) output = test_stdout.getvalue() print(output) self.assertEqual( expected_debug_output, output, "failed to auto-enable debug on named expressions " "using enable_debug_on_named_expressions", ) def testEnableDebugOnExpressionWithParseAction(self): import textwrap test_stdout = StringIO() with resetting(sys, "stdout", "stderr"): sys.stdout = test_stdout sys.stderr = test_stdout parser = (ppc.integer().setDebug() | pp.Word(pp.alphanums).setDebug())[...] parser.setDebug() parser.parseString("123 A100") # now turn off debug - should only get output for components, not overall parser print() parser.setDebug(False) parser.parseString("123 A100") expected_debug_output = textwrap.dedent( """\ Match [{integer | W:(0-9A-Za-z)}]... at loc 0(1,1) Match integer at loc 0(1,1) Matched integer -> [123] Match integer at loc 3(1,4) Exception raised:Expected integer, found 'A' (at char 4), (line:1, col:5) Match W:(0-9A-Za-z) at loc 3(1,4) Matched W:(0-9A-Za-z) -> ['A100'] Match integer at loc 8(1,9) Exception raised:Expected integer, found end of text (at char 8), (line:1, col:9) Match W:(0-9A-Za-z) at loc 8(1,9) Exception raised:Expected W:(0-9A-Za-z), found end of text (at char 8), (line:1, col:9) Matched [{integer | W:(0-9A-Za-z)}]... -> [123, 'A100'] Match integer at loc 0(1,1) Matched integer -> [123] Match integer at loc 3(1,4) Exception raised:Expected integer, found 'A' (at char 4), (line:1, col:5) Match W:(0-9A-Za-z) at loc 3(1,4) Matched W:(0-9A-Za-z) -> ['A100'] Match integer at loc 8(1,9) Exception raised:Expected integer, found end of text (at char 8), (line:1, col:9) Match W:(0-9A-Za-z) at loc 8(1,9) Exception raised:Expected W:(0-9A-Za-z), found end of text (at char 8), (line:1, col:9) """ ) output = test_stdout.getvalue() print(output) self.assertEqual( expected_debug_output, output, "invalid debug output when using parse action", ) def testUndesirableButCommonPractices(self): # While these are valid constructs, and they are not encouraged # there is apparently a lot of code out there using these # coding styles. # # Even though they are not encouraged, we shouldn't break them. # Create an And using a list of expressions instead of using '+' operator expr = pp.And([pp.Word("abc"), pp.Word("123")]) expr.runTests( """ aaa 333 b 1 ababab 32123 """ ) # Passing a single expression to a ParseExpression, when it really wants a sequence expr = pp.Or(pp.Or(ppc.integer)) expr.runTests( """ 123 456 abc """ ) def testEnableWarnDiags(self): import pprint def filtered_vars(var_dict): dunders = [nm for nm in var_dict if nm.startswith("__")] return { k: v for k, v in var_dict.items() if isinstance(v, bool) and k not in dunders } pprint.pprint(filtered_vars(vars(pp.__diag__)), width=30) warn_names = pp.__diag__._warning_names other_names = pp.__diag__._debug_names # make sure they are off by default for diag_name in warn_names: self.assertFalse( getattr(pp.__diag__, diag_name), "__diag__.{} not set to True".format(diag_name), ) with ppt.reset_pyparsing_context(): # enable all warn_* diag_names pp.__diag__.enable_all_warnings() pprint.pprint(filtered_vars(vars(pp.__diag__)), width=30) # make sure they are on after being enabled for diag_name in warn_names: self.assertTrue( getattr(pp.__diag__, diag_name), "__diag__.{} not set to True".format(diag_name), ) # non-warn diag_names must be enabled individually for diag_name in other_names: self.assertFalse( getattr(pp.__diag__, diag_name), "__diag__.{} not set to True".format(diag_name), ) # make sure they are off after AutoReset for diag_name in warn_names: self.assertFalse( getattr(pp.__diag__, diag_name), "__diag__.{} not set to True".format(diag_name), ) def testWordInternalReRanges(self): import random import re self.assertEqual( "[!-~]+", pp.Word(pp.printables).reString, "failed to generate correct internal re", ) self.assertEqual( "[0-9A-Za-z]+", pp.Word(pp.alphanums).reString, "failed to generate correct internal re", ) self.assertEqual( "[!-~¡-ÿ]+", pp.Word(pp.pyparsing_unicode.Latin1.printables).reString, "failed to generate correct internal re", ) self.assertEqual( "[À-ÖØ-öø-ÿ]+", pp.Word(pp.alphas8bit).reString, "failed to generate correct internal re", ) esc_chars = r"\^-][" esc_chars2 = r"*+.?" for esc_char in esc_chars + esc_chars2: # test escape char as first character in range next_char = chr(ord(esc_char) + 1) prev_char = chr(ord(esc_char) - 1) esc_word = pp.Word(esc_char + next_char) expected = r"[{}{}-{}{}]+".format( "\\" if esc_char in esc_chars else "", esc_char, "\\" if next_char in esc_chars else "", next_char, ) print( "Testing escape char: {} -> {} re: '{}')".format( esc_char, esc_word, esc_word.reString ) ) self.assertEqual( expected, esc_word.reString, "failed to generate correct internal re" ) test_string = "".join( random.choice([esc_char, next_char]) for __ in range(16) ) print( "Match '{}' -> {}".format( test_string, test_string == esc_word.parseString(test_string)[0] ) ) self.assertEqual( test_string, esc_word.parseString(test_string)[0], "Word using escaped range char failed to parse", ) # test escape char as last character in range esc_word = pp.Word(prev_char + esc_char) expected = r"[{}{}-{}{}]+".format( "\\" if prev_char in esc_chars else "", prev_char, "\\" if esc_char in esc_chars else "", esc_char, ) print( "Testing escape char: {} -> {} re: '{}')".format( esc_char, esc_word, esc_word.reString ) ) self.assertEqual( expected, esc_word.reString, "failed to generate correct internal re" ) test_string = "".join( random.choice([esc_char, prev_char]) for __ in range(16) ) print( "Match '{}' -> {}".format( test_string, test_string == esc_word.parseString(test_string)[0] ) ) self.assertEqual( test_string, esc_word.parseString(test_string)[0], "Word using escaped range char failed to parse", ) # test escape char as first character in range next_char = chr(ord(esc_char) + 1) prev_char = chr(ord(esc_char) - 1) esc_word = pp.Word(esc_char + next_char) expected = r"[{}{}-{}{}]+".format( "\\" if esc_char in esc_chars else "", esc_char, "\\" if next_char in esc_chars else "", next_char, ) print( "Testing escape char: {} -> {} re: '{}')".format( esc_char, esc_word, esc_word.reString ) ) self.assertEqual( expected, esc_word.reString, "failed to generate correct internal re" ) test_string = "".join( random.choice([esc_char, next_char]) for __ in range(16) ) print( "Match '{}' -> {}".format( test_string, test_string == esc_word.parseString(test_string)[0] ) ) self.assertEqual( test_string, esc_word.parseString(test_string)[0], "Word using escaped range char failed to parse", ) # test escape char as only character in range esc_word = pp.Word(esc_char + esc_char, pp.alphas.upper()) expected = r"[{}{}][A-Z]*".format( "\\" if esc_char in esc_chars else "", esc_char ) print( "Testing escape char: {} -> {} re: '{}')".format( esc_char, esc_word, esc_word.reString ) ) self.assertEqual( expected, esc_word.reString, "failed to generate correct internal re" ) test_string = esc_char + "".join( random.choice(pp.alphas.upper()) for __ in range(16) ) print( "Match '{}' -> {}".format( test_string, test_string == esc_word.parseString(test_string)[0] ) ) self.assertEqual( test_string, esc_word.parseString(test_string)[0], "Word using escaped range char failed to parse", ) # test escape char as only character esc_word = pp.Word(esc_char, pp.alphas.upper()) expected = r"{}[A-Z]*".format(re.escape(esc_char)) print( "Testing escape char: {} -> {} re: '{}')".format( esc_char, esc_word, esc_word.reString ) ) self.assertEqual( expected, esc_word.reString, "failed to generate correct internal re" ) test_string = esc_char + "".join( random.choice(pp.alphas.upper()) for __ in range(16) ) print( "Match '{}' -> {}".format( test_string, test_string == esc_word.parseString(test_string)[0] ) ) self.assertEqual( test_string, esc_word.parseString(test_string)[0], "Word using escaped range char failed to parse", ) print() def testChainedTernaryOperator(self): TERNARY_INFIX = pp.infixNotation( ppc.integer, [(("?", ":"), 3, pp.opAssoc.LEFT)] ) self.assertParseAndCheckList( TERNARY_INFIX, "1?1:0?1:0", [[1, "?", 1, ":", 0, "?", 1, ":", 0]] ) TERNARY_INFIX = pp.infixNotation( ppc.integer, [(("?", ":"), 3, pp.opAssoc.RIGHT)] ) self.assertParseAndCheckList( TERNARY_INFIX, "1?1:0?1:0", [[1, "?", 1, ":", [0, "?", 1, ":", 0]]] ) def testOneOfWithDuplicateSymbols(self): # test making oneOf with duplicate symbols print("verify oneOf handles duplicate symbols") try: test1 = pp.oneOf("a b c d a") except RuntimeError: self.fail( "still have infinite loop in oneOf with duplicate symbols (string input)" ) print("verify oneOf handles generator input") try: test1 = pp.oneOf(c for c in "a b c d a" if not c.isspace()) except RuntimeError: self.fail( "still have infinite loop in oneOf with duplicate symbols (generator input)" ) print("verify oneOf handles list input") try: test1 = pp.oneOf("a b c d a".split()) except RuntimeError: self.fail( "still have infinite loop in oneOf with duplicate symbols (list input)" ) print("verify oneOf handles set input") try: test1 = pp.oneOf(set("a b c d a")) except RuntimeError: self.fail( "still have infinite loop in oneOf with duplicate symbols (set input)" ) def testOneOfWithEmptyList(self): """test oneOf helper function with an empty list as input""" tst = [] result = pp.oneOf(tst) expected = True found = isinstance(result, pp.NoMatch) self.assertEqual(expected, found) def testOneOfWithUnexpectedInput(self): """test oneOf with an input that isn't a string or iterable""" with self.assertWarns( SyntaxWarning, msg="failed to warn use of integer for oneOf" ): expr = pp.oneOf(6) def testMatchFirstIteratesOverAllChoices(self): # test MatchFirst bugfix print("verify MatchFirst iterates properly") results = pp.quotedString.parseString("'this is a single quoted string'") self.assertTrue( len(results) > 0, "MatchFirst error - not iterating over all choices" ) def testStreamlineOfSubexpressions(self): # verify streamline of subexpressions print("verify proper streamline logic") compound = pp.Literal("A") + "B" + "C" + "D" self.assertEqual(2, len(compound.exprs), "bad test setup") print(compound) compound.streamline() print(compound) self.assertEqual(4, len(compound.exprs), "streamline not working") def testOptionalWithResultsNameAndNoMatch(self): # test for Optional with results name and no match print("verify Optional's do not cause match failure if have results name") testGrammar = pp.Literal("A") + pp.Optional("B")("gotB") + pp.Literal("C") try: testGrammar.parseString("ABC") testGrammar.parseString("AC") except pp.ParseException as pe: print(pe.pstr, "->", pe) self.fail("error in Optional matching of string %s" % pe.pstr) def testReturnOfFurthestException(self): # test return of furthest exception testGrammar = ( pp.Literal("A") | (pp.Optional("B") + pp.Literal("C")) | pp.Literal("D") ) try: testGrammar.parseString("BC") testGrammar.parseString("BD") except pp.ParseException as pe: print(pe.pstr, "->", pe) self.assertEqual("BD", pe.pstr, "wrong test string failed to parse") self.assertEqual( 1, pe.loc, "error in Optional matching, pe.loc=" + str(pe.loc) ) def testValidateCorrectlyDetectsInvalidLeftRecursion(self): # test validate print("verify behavior of validate()") if IRON_PYTHON_ENV: print("disable this test under IronPython") return def testValidation(grmr, gnam, isValid): try: grmr.streamline() grmr.validate() self.assertTrue(isValid, "validate() accepted invalid grammar " + gnam) except pp.RecursiveGrammarException as rge: print(grmr) print(rge) self.assertFalse(isValid, "validate() rejected valid grammar " + gnam) fwd = pp.Forward() g1 = pp.OneOrMore((pp.Literal("A") + "B" + "C") | fwd) g2 = ("C" + g1)[...] fwd <<= pp.Group(g2) testValidation(fwd, "fwd", isValid=True) fwd2 = pp.Forward() fwd2 <<= pp.Group("A" | fwd2) testValidation(fwd2, "fwd2", isValid=False) fwd3 = pp.Forward() fwd3 <<= pp.Optional("A") + fwd3 testValidation(fwd3, "fwd3", isValid=False) def testGetNameBehavior(self): # test getName print("verify behavior of getName()") aaa = pp.Group(pp.Word("a")("A")) bbb = pp.Group(pp.Word("b")("B")) ccc = pp.Group(":" + pp.Word("c")("C")) g1 = "XXX" + (aaa | bbb | ccc)[...] teststring = "XXX b bb a bbb bbbb aa bbbbb :c bbbbbb aaa" names = [] print(g1.parseString(teststring).dump()) for t in g1.parseString(teststring): print(t, repr(t)) try: names.append(t[0].getName()) except Exception: try: names.append(t.getName()) except Exception: names.append(None) print(teststring) print(names) self.assertEqual( [None, "B", "B", "A", "B", "B", "A", "B", None, "B", "A"], names, "failure in getting names for tokens", ) from pyparsing import Keyword, Word, alphas, OneOrMore IF, AND, BUT = map(Keyword, "if and but".split()) ident = ~(IF | AND | BUT) + Word(alphas)("non-key") scanner = OneOrMore(IF | AND | BUT | ident) def getNameTester(s, l, t): print(t, t.getName()) ident.addParseAction(getNameTester) scanner.parseString("lsjd sldkjf IF Saslkj AND lsdjf") # test ParseResults.get() method print("verify behavior of ParseResults.get()") # use sum() to merge separate groups into single ParseResults res = sum(g1.parseString(teststring)[1:]) print(res.dump()) print(res.get("A", "A not found")) print(res.get("D", "!D")) self.assertEqual( "aaa", res.get("A", "A not found"), "get on existing key failed" ) self.assertEqual("!D", res.get("D", "!D"), "get on missing key failed") def testOptionalBeyondEndOfString(self): print("verify handling of Optional's beyond the end of string") testGrammar = "A" + pp.Optional("B") + pp.Optional("C") + pp.Optional("D") testGrammar.parseString("A") testGrammar.parseString("AB") def testCreateLiteralWithEmptyString(self): # test creating Literal with empty string print('verify non-fatal usage of Literal("")') with self.assertWarns( SyntaxWarning, msg="failed to warn use of empty string for Literal" ): e = pp.Literal("") try: e.parseString("SLJFD") except Exception as e: self.fail("Failed to handle empty Literal") def testLineMethodSpecialCaseAtStart(self): # test line() behavior when starting at 0 and the opening line is an \n print("verify correct line() behavior when first line is empty string") self.assertEqual( "", pp.line(0, "\nabc\ndef\n"), "Error in line() with empty first line in text", ) txt = "\nabc\ndef\n" results = [pp.line(i, txt) for i in range(len(txt))] self.assertEqual( ["", "abc", "abc", "abc", "abc", "def", "def", "def", "def"], results, "Error in line() with empty first line in text", ) txt = "abc\ndef\n" results = [pp.line(i, txt) for i in range(len(txt))] self.assertEqual( ["abc", "abc", "abc", "abc", "def", "def", "def", "def"], results, "Error in line() with non-empty first line in text", ) def testRepeatedTokensWhenPackratting(self): # test bugfix with repeated tokens when packrat parsing enabled print("verify behavior with repeated tokens when packrat parsing is enabled") a = pp.Literal("a") b = pp.Literal("b") c = pp.Literal("c") abb = a + b + b abc = a + b + c aba = a + b + a grammar = abb | abc | aba self.assertEqual( "aba", "".join(grammar.parseString("aba")), "Packrat ABA failure!" ) def testSetResultsNameWithOneOrMoreAndZeroOrMore(self): print("verify behavior of setResultsName with OneOrMore and ZeroOrMore") stmt = pp.Keyword("test") print(stmt[...]("tests").parseString("test test").tests) print(stmt[1, ...]("tests").parseString("test test").tests) print(pp.Optional(stmt[1, ...]("tests")).parseString("test test").tests) print(pp.Optional(stmt[1, ...])("tests").parseString("test test").tests) print( pp.Optional(pp.delimitedList(stmt))("tests").parseString("test,test").tests ) self.assertEqual( 2, len(stmt[...]("tests").parseString("test test").tests), "ZeroOrMore failure with setResultsName", ) self.assertEqual( 2, len(stmt[1, ...]("tests").parseString("test test").tests), "OneOrMore failure with setResultsName", ) self.assertEqual( 2, len(pp.Optional(stmt[1, ...]("tests")).parseString("test test").tests), "OneOrMore failure with setResultsName", ) self.assertEqual( 2, len( pp.Optional(pp.delimitedList(stmt))("tests") .parseString("test,test") .tests ), "delimitedList failure with setResultsName", ) self.assertEqual( 2, len((stmt * 2)("tests").parseString("test test").tests), "multiplied(1) failure with setResultsName", ) self.assertEqual( 2, len(stmt[..., 2]("tests").parseString("test test").tests), "multiplied(2) failure with setResultsName", ) self.assertEqual( 2, len(stmt[1, ...]("tests").parseString("test test").tests), "multiplied(3) failure with setResultsName", ) self.assertEqual( 2, len(stmt[2, ...]("tests").parseString("test test").tests), "multiplied(3) failure with setResultsName", ) def testParseResultsReprWithResultsNames(self): word = pp.Word(pp.printables)("word") res = word[...].parseString("test blub") print(repr(res)) print(res["word"]) print(res.asDict()) self.assertEqual( "(['test', 'blub'], {'word': 'blub'})", repr(res), "incorrect repr for ParseResults with listAllMatches=False", ) word = pp.Word(pp.printables)("word*") res = word[...].parseString("test blub") print(repr(res)) print(res["word"]) print(res.asDict()) self.assertEqual( "(['test', 'blub'], {'word': ['test', 'blub']})", repr(res), "incorrect repr for ParseResults with listAllMatches=True", ) def testWarnUsingLshiftForward(self): import warnings print( "verify that using '<<' operator with a Forward raises a warning if there is a dangling '|' operator" ) fwd = pp.Forward() print("unsafe << and |, but diag not enabled, should not warn") fwd << pp.Word("a") | pp.Word("b") pp.__diag__.enable("warn_on_match_first_with_lshift_operator") with self.assertWarns( SyntaxWarning, msg="failed to warn of using << and | operators" ): fwd = pp.Forward() print("unsafe << and |, should warn") fwd << pp.Word("a") | pp.Word("b") with self.assertWarns( SyntaxWarning, msg="failed to warn of using << and | operators (within lambda)", ): fwd = pp.Forward() print("unsafe << and |, should warn") fwd_fn = lambda expr1, expr2: fwd << expr1 | expr2 fwd_fn(pp.Word("a"), pp.Word("b")) fwd = pp.Forward() print("safe <<= and |, should not warn") fwd <<= pp.Word("a") | pp.Word("b") c = fwd | pp.Word("c") print("safe << and (|), should not warn") with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") fwd = pp.Forward() fwd << (pp.Word("a") | pp.Word("b")) try: c = fwd | pp.Word("c") except Exception as e: self.fail("raised warning when it should not have") def testParseExpressionsWithRegex(self): from itertools import product match_empty_regex = pp.Regex(r"[a-z]*") match_nonempty_regex = pp.Regex(r"[a-z]+") parser_classes = pp.ParseExpression.__subclasses__() test_string = "abc def" expected = ["abc"] for expr, cls in product( (match_nonempty_regex, match_empty_regex), parser_classes ): print(expr, cls) parser = cls([expr]) parsed_result = parser.parseString(test_string) print(parsed_result.dump()) self.assertParseResultsEquals(parsed_result, expected) for expr, cls in product( (match_nonempty_regex, match_empty_regex), (pp.MatchFirst, pp.Or) ): parser = cls([expr, expr]) print(parser) parsed_result = parser.parseString(test_string) print(parsed_result.dump()) self.assertParseResultsEquals(parsed_result, expected) def testAssertParseAndCheckDict(self): """test assertParseAndCheckDict in test framework""" expr = pp.Word(pp.alphas)("item") + pp.Word(pp.nums)("qty") self.assertParseAndCheckDict( expr, "balloon 25", {"item": "balloon", "qty": "25"} ) exprWithInt = pp.Word(pp.alphas)("item") + ppc.integer("qty") self.assertParseAndCheckDict( exprWithInt, "rucksack 49", {"item": "rucksack", "qty": 49} ) def testOnlyOnce(self): """test class OnlyOnce and its reset method""" # use a parse action to compute the sum of the parsed integers, # and add it to the end def append_sum(tokens): tokens.append(sum(map(int, tokens))) pa = pp.OnlyOnce(append_sum) expr = pp.OneOrMore(pp.Word(pp.nums)).addParseAction(pa) result = expr.parseString("0 123 321") print(result.dump()) expected = ["0", "123", "321", 444] self.assertParseResultsEquals( result, expected, msg="issue with OnlyOnce first call" ) with self.assertRaisesParseException( msg="failed to raise exception calling OnlyOnce more than once" ): result2 = expr.parseString("1 2 3 4 5") pa.reset() result = expr.parseString("100 200 300") print(result.dump()) expected = ["100", "200", "300", 600] self.assertParseResultsEquals( result, expected, msg="issue with OnlyOnce after reset" ) def testGoToColumn(self): """tests for GoToColumn class""" dateExpr = pp.Regex(r"\d\d(\.\d\d){2}")("date") numExpr = ppc.number("num") sample = """\ date Not Important value NotImportant2 11.11.13 | useless . useless,21 useless 2 | 14.21 | asmdakldm 21.12.12 | fmpaosmfpoamsp 4 | 41 | ajfa9si90""".splitlines() # Column number finds match patt = dateExpr + pp.GoToColumn(70).ignore("|") + numExpr + pp.restOfLine infile = iter(sample) next(infile) expecteds = [["11.11.13", 14.21], ["21.12.12", 41]] for line, expected in zip(infile, expecteds): result = patt.parseString(line) print(result) self.assertEqual( expected, [result.date, result.num], msg="issue with GoToColumn" ) # Column number does NOT match patt = dateExpr("date") + pp.GoToColumn(30) + numExpr + pp.restOfLine infile = iter(sample) next(infile) for line in infile: with self.assertRaisesParseException( msg="issue with GoToColumn not finding match" ): result = patt.parseString(line) def testExceptionExplainVariations(self): class Modifier: def modify_upper(self, tokens): tokens[:] = map(str.upper, tokens) modder = Modifier() # force an exception in the attached parse action # integer has a parse action to convert to an int; # this parse action should fail with a TypeError, since # str.upper expects a str argument, not an int grammar = ppc.integer().addParseAction(modder.modify_upper) self_testcase_name = "tests.test_unit." + type(self).__name__ try: grammar.parseString("1000") except Exception as e: # extract the exception explanation explain_str = ParseException.explain_exception(e) print(explain_str) explain_str_lines = explain_str.splitlines() expected = [ self_testcase_name, "pyparsing.core._WordRegex - integer", "tests.test_unit.Modifier", "pyparsing.results.ParseResults", ] # verify the list of names shown in the explain "stack" self.assertEqual( expected, explain_str_lines[-len(expected) :], msg="invalid explain str", ) # check type of raised exception matches explain output # (actual exception text varies by Python version, and even # by how the exception is raised, so we can only check the # type name) exception_line = explain_str_lines[-(len(expected) + 1)] self.assertTrue( exception_line.startswith("TypeError:"), msg="unexpected exception line ({!r})".format(exception_line), ) def testMiscellaneousExceptionBits(self): pp.ParserElement.verbose_stacktrace = True self_testcase_name = "tests.test_unit." + type(self).__name__ # force a parsing exception - match an integer against "ABC" try: pp.Word(pp.nums).parseString("ABC") except pp.ParseException as pe: with self.assertRaises(AttributeError): print(pe.nonexistent_attribute) expected_str = "Expected W:(0-9), found 'A' (at char 0), (line:1, col:1)" self.assertEqual(expected_str, str(pe), "invalid ParseException str") self.assertEqual(expected_str, repr(pe), "invalid ParseException repr") expected_dir = [ "args", "col", "explain", "explain_exception", "line", "lineno", "markInputline", "with_traceback", ] observed_dir = [attr for attr in dir(pe) if not attr.startswith("_")] print(observed_dir) self.assertEqual(expected_dir, observed_dir, "invalid dir(ParseException)") self.assertEqual( ">!<ABC", pe.markInputline(), "invalid default mark input line" ) self.assertEqual( "ABC", pe.markInputline(""), "invalid mark input line with '' marker" ) # test explain using depth=None, 0, 1 depth_none_explain_str = pe.explain(depth=None) depth_0_explain_str = pe.explain(depth=0) depth_1_explain_str = pe.explain(depth=1) print(depth_none_explain_str) expr_name = "pyparsing.core._WordRegex - W:(0-9)" for expected_function in [ self_testcase_name, expr_name, ]: self.assertTrue( expected_function in depth_none_explain_str, "{!r} not found in ParseException.explain()".format( expected_function ), ) self.assertFalse( expected_function in depth_0_explain_str, "{!r} found in ParseException.explain(depth=0)".format( expected_function ), ) self.assertTrue( expr_name in depth_1_explain_str, "{!r} not found in ParseException.explain()".format(expected_function), ) self.assertFalse( self_testcase_name in depth_1_explain_str, "{!r} not found in ParseException.explain()".format(expected_function), ) class Test3_EnablePackratParsing(TestCase): def runTest(self): Test2_WithoutPackrat.suite_context.restore() ParserElement.enablePackrat() # SAVE A NEW SUITE CONTEXT Test2_WithoutPackrat.suite_context = ppt.reset_pyparsing_context().save() class Test4_WithPackrat(Test2_WithoutPackrat): """ rerun Test2 tests, now that packrat is enabled """ def test000_assert_packrat_status(self): print("Packrat enabled:", ParserElement._packratEnabled) print( "Packrat cache:", type(ParserElement.packrat_cache).__name__, getattr(ParserElement.packrat_cache, "size", "- no size attribute -"), ) self.assertTrue(ParserElement._packratEnabled, "packrat not enabled") self.assertEqual( "_FifoCache", type(ParserElement.packrat_cache).__name__, msg="incorrect cache type", ) class Test5_EnableBoundedPackratParsing(TestCase): def runTest(self): Test2_WithoutPackrat.suite_context = Test2_WithoutPackrat.save_suite_context Test2_WithoutPackrat.suite_context.restore() ParserElement.enablePackrat(cache_size_limit=16) # SAVE A NEW SUITE CONTEXT Test2_WithoutPackrat.suite_context = ppt.reset_pyparsing_context().save() class Test6_WithBoundedPackrat(Test2_WithoutPackrat): """ rerun Test2 tests, now with bounded packrat cache """ def test000_assert_packrat_status(self): print("Packrat enabled:", ParserElement._packratEnabled) print( "Packrat cache:", type(ParserElement.packrat_cache).__name__, getattr(ParserElement.packrat_cache, "size", "- no size attribute -"), ) self.assertTrue(ParserElement._packratEnabled, "packrat not enabled") self.assertEqual( "_FifoCache", type(ParserElement.packrat_cache).__name__, msg="incorrect cache type", ) class Test7_EnableUnboundedPackratParsing(TestCase): def runTest(self): Test2_WithoutPackrat.suite_context = Test2_WithoutPackrat.save_suite_context Test2_WithoutPackrat.suite_context.restore() ParserElement.enablePackrat(cache_size_limit=None) # SAVE A NEW SUITE CONTEXT Test2_WithoutPackrat.suite_context = ppt.reset_pyparsing_context().save() class Test8_WithUnboundedPackrat(Test2_WithoutPackrat): """ rerun Test2 tests, now with unbounded packrat cache """ def test000_assert_packrat_status(self): print("Packrat enabled:", ParserElement._packratEnabled) print( "Packrat cache:", type(ParserElement.packrat_cache).__name__, getattr(ParserElement.packrat_cache, "size", "- no size attribute -"), ) self.assertTrue(ParserElement._packratEnabled, "packrat not enabled") self.assertEqual( "_UnboundedCache", type(ParserElement.packrat_cache).__name__, msg="incorrect cache type", ) # force clear of packrat parsing flags before saving contexts pp.ParserElement._packratEnabled = False pp.ParserElement._parse = pp.ParserElement._parseNoCache Test2_WithoutPackrat.suite_context = ppt.reset_pyparsing_context().save() Test2_WithoutPackrat.save_suite_context = ppt.reset_pyparsing_context().save() ```