metadata
dict
text
stringlengths
60
3.49M
{ "source": "josephtl/stanCode-projects", "score": 4 }
#### File: stanCode-projects/my_photoshop/blur.py ```python from simpleimage import SimpleImage def blur(img): """ :param img:(SimpleImage), an emoji image. :return: A blurred emoji image. """ blank = SimpleImage.blank(img.width, img.height) for y in range(img.height): for x in range(img.width): pixel_blank = blank.get_pixel(x, y) # upper left corner if x == 0 and y == 0: pixel_img_lower = img.get_pixel(x, y + 1) pixel_img_right = img.get_pixel(x + 1, y) pixel_blank.red = (pixel_img_lower.red + pixel_img_right.red)/2 pixel_blank.green = (pixel_img_lower.green + pixel_img_right.green)/2 pixel_blank.blue = (pixel_img_lower.blue + pixel_img_right.blue)/2 # upper right corner elif x == img.width-1 and y == 0: pixel_img_lower = img.get_pixel(x, y + 1) pixel_img_left = img.get_pixel(x-1, y) pixel_blank.red = (pixel_img_lower.red + pixel_img_left.red) / 2 pixel_blank.green = (pixel_img_lower.green + pixel_img_left.green) / 2 pixel_blank.blue = (pixel_img_lower.blue + pixel_img_left.blue) / 2 # lower left corner elif x == 0 and y == img.height-1: pixel_img_upper = img.get_pixel(x, y - 1) pixel_img_right = img.get_pixel(x + 1, y) pixel_blank.red = (pixel_img_upper.red + pixel_img_right.red) / 2 pixel_blank.green = (pixel_img_upper.green + pixel_img_right.green) / 2 pixel_blank.blue = (pixel_img_upper.blue + pixel_img_right.blue) /2 # lower right corner elif x == img.width-1 and y == img.height-1: pixel_img_upper = img.get_pixel(x, y - 1) pixel_img_left = img.get_pixel(x - 1, y) pixel_blank.red = (pixel_img_upper.red + pixel_img_left.red) / 2 pixel_blank.green = (pixel_img_upper.green + pixel_img_left.green) / 2 pixel_blank.blue = (pixel_img_upper.blue + pixel_img_left.blue) / 2 # left border elif x == 0 and 0 < y < img.height-1: pixel_img_upper = img.get_pixel(x, y - 1) pixel_img_lower = img.get_pixel(x, y + 1) pixel_img_right = img.get_pixel(x + 1, y) pixel_blank.red = (pixel_img_upper.red + pixel_img_lower.red + pixel_img_right.red)/3 pixel_blank.green = (pixel_img_upper.green + pixel_img_lower.green + pixel_img_right.green)/3 pixel_blank.blue = (pixel_img_upper.blue + pixel_img_lower.blue + pixel_img_right.blue)/3 # upper border elif 0 < x < img.width-1 and (y == 0): pixel_img_lower = img.get_pixel(x, y + 1) pixel_img_left = img.get_pixel(x-1, y) pixel_img_right = img.get_pixel(x + 1, y) pixel_blank.red = (pixel_img_left.red + pixel_img_lower.red + pixel_img_right.red) / 3 pixel_blank.green = (pixel_img_left.green + pixel_img_lower.green + pixel_img_right.green) / 3 pixel_blank.blue = (pixel_img_left.blue + pixel_img_lower.blue + pixel_img_right.blue) / 3 # lower border elif 0 < x < img.width-1 and y == img.height-1: pixel_img_upper = img.get_pixel(x, y - 1) pixel_img_left = img.get_pixel(x - 1, y) pixel_img_right = img.get_pixel(x + 1, y) pixel_blank.red = (pixel_img_left.red + pixel_img_upper.red + pixel_img_right.red) / 3 pixel_blank.green = (pixel_img_left.green + pixel_img_upper.green + pixel_img_right.green) / 3 pixel_blank.blue = (pixel_img_left.blue + pixel_img_upper.blue + pixel_img_right.blue) / 3 # right border elif x == img.width-1 and 0 < y < img.height-1: pixel_img_upper = img.get_pixel(x, y - 1) pixel_img_left = img.get_pixel(x - 1, y) pixel_img_lower = img.get_pixel(x, y + 1) pixel_blank.red = (pixel_img_left.red + pixel_img_upper.red + pixel_img_lower.red) / 3 pixel_blank.green = (pixel_img_left.green + pixel_img_upper.green + pixel_img_lower.green) / 3 pixel_blank.blue = (pixel_img_left.blue + pixel_img_lower.blue + pixel_img_lower.blue) / 3 # middle part else: pixel_img_upper = img.get_pixel(x, y - 1) pixel_img_lower = img.get_pixel(x, y + 1) pixel_img_left = img.get_pixel(x - 1, y) pixel_img_right = img.get_pixel(x + 1, y) pixel_img_upper_left = img.get_pixel(x-1, y-1) pixel_img_upper_right = img.get_pixel(x+1, y-1) pixel_img_lower_left = img.get_pixel(x-1, y+1) pixel_img_lower_right = img.get_pixel(x+1, y+1) pixel_blank.red = (pixel_img_upper.red + pixel_img_lower.red + pixel_img_left.red + pixel_img_right.red + pixel_img_upper_left.red + pixel_img_lower_left.red + pixel_img_upper_right.red + pixel_img_lower_right.red)/8 pixel_blank.green = (pixel_img_upper.green + pixel_img_lower.green + pixel_img_left.green + pixel_img_right.green + pixel_img_upper_left.green + pixel_img_lower_left.green + pixel_img_upper_right.green + pixel_img_lower_right.green)/8 pixel_blank.blue = (pixel_img_upper.blue + pixel_img_lower.blue + pixel_img_left.blue + pixel_img_right.blue + pixel_img_upper_left.blue + pixel_img_lower_left.blue + pixel_img_upper_right.blue + pixel_img_lower_right.blue)/8 return blank def main(): """ This program could blurred the original image to some extend. """ old_img = SimpleImage("images/smiley-face.png") old_img.show() blurred_img = blur(old_img) for i in range(5): blurred_img = blur(blurred_img) blurred_img.show() if __name__ == '__main__': main() ``` #### File: stanCode-projects/my_photoshop/green_screen.py ```python from simpleimage import SimpleImage def combine(background_img, figure_img): """ :param background_img: (SimpleImage), the background image. :param figure_img: (SimpleImage), an actress stand in front of a green screen :return: (SimpleImage), Combining both images, the background_img will replace all the green part on figure_img. """ for y in range(figure_img.height): for x in range(figure_img.width): background = background_img.get_pixel(x, y) figure = figure_img.get_pixel(x, y) bigger = max(figure.red, figure.blue) if figure.green > bigger * 2: figure.red = background.red figure.green = background.green figure.blue = background.blue return figure_img def main(): """ This program would combine two images, with background image replacing the green part of figure image. """ space_ship = SimpleImage("images/MillenniumFalcon.png") figure = SimpleImage("images/ReyGreenScreen.png") result = combine(space_ship, figure) result.show() if __name__ == '__main__': main() ``` #### File: stanCode-projects/weather_master/weather_master.py ```python EXIT = -100 def main(): """ This is a Temperature information processor, which allows users input their temperature information. At the end, it will show the highest and the lowest temperature. It also calculates the average temperature and the number of cold days, which represent the days under 16 degrees. """ print('stanCode "Weather Master 4.0"!') n = int(input('Next Temperature: (or ' + str(EXIT) + ' to quit)? ')) highest = n lowest = n total = n times = 0 cold = 0 if n == EXIT: print('No temperature were entered.') else: if n < 16: cold = add_cold(cold) while True: n = int(input('Next Temperature: (or ' + str(EXIT) + ' to quit)? ')) times += 1 # putting it here isn't that logical, while it could simplify the coding if n == EXIT: break elif n > highest: highest = n total = sum_temp(total, n) if n < 16: cold = add_cold(cold) elif n < lowest: lowest = n total = sum_temp(total, n) if n < 16: cold = add_cold(cold) else: total = sum_temp(total, n) if n < 16: cold = add_cold(cold) print('Highest temperature: ' + str(highest)) print('Lowest temperature: ' + str(lowest)) print('Average = ' + str(average(total, times))) print(str(cold) + ' cold day(s)') def sum_temp(s, n): """ :param s: int, sum of total value of temperature :param n: int, latest information to add up :return: s + n """ s += n return s def add_cold(c): """ :param c: int, temp < 16 and != -100 :return: c + 1 """ c += 1 return c def average(a, b): """ :param a: int, sum of total value :param b: int, the amount of temp information :return: a / b """ avg = a / b return avg # ###### DO NOT EDIT CODE BELOW THIS LINE ###### if __name__ == "__main__": main() ```
{ "source": "JosephTLucas/ahrs", "score": 4 }
#### File: ahrs/common/dcm.py ```python from typing import Tuple import numpy as np from .mathfuncs import skew from .orientation import rotation from .orientation import rot_seq # Functions to convert DCM to quaternion representation from .orientation import shepperd from .orientation import hughes from .orientation import chiaverini from .orientation import itzhack from .orientation import sarabandi def _assert_iterables(item, item_name: str = 'iterable'): if not isinstance(item, (list, tuple, np.ndarray)): raise TypeError(f"{item_name} must be given as an array, got {type(item)}") class DCM(np.ndarray): """ Direction Cosine Matrix in SO(3) Class to represent a Direction Cosine Matrix. It is built from a 3-by-3 array, but it can also be built from 3-dimensional vectors representing the roll-pitch-yaw angles, a quaternion, or an axis-angle pair representation. Parameters ---------- array : array-like, default: None Array to build the DCM with. q : array-like, default: None Quaternion to convert to DCM. rpy : array-like, default: None Array with roll->pitch->yaw angles. euler : tuple, default: None Dictionary with a set of angles as a pair of string and array. axang : tuple, default: None Tuple with an array and a float of the axis and the angle representation. Attributes ---------- A : numpy.ndarray Array with the 3-by-3 direction cosine matrix. Examples -------- All DCM are created as an identity matrix, which means no rotation. >>> from ahrs import DCM >>> DCM() DCM([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) A rotation around a single axis can be defined by giving the desired axis and its value, in degrees. >>> DCM(x=10.0) DCM([[ 1. , 0. , 0. ], [ 0. , 0.98480775, -0.17364818], [ 0. , 0.17364818, 0.98480775]]) >>> DCM(y=20.0) DCM([[ 0.93969262, 0. , 0.34202014], [ 0. , 1. , 0. ], [-0.34202014, 0. , 0.93969262]]) >>> DCM(z=30.0) DCM([[ 0.8660254, -0.5 , 0. ], [ 0.5 , 0.8660254, 0. ], [ 0. , 0. , 1. ]]) If we want a rotation conforming the roll-pitch-yaw sequence, we can give the corresponding angles. >>> DCM(rpy=[30.0, 20.0, 10.0]) DCM([[ 0.81379768, -0.44096961, 0.37852231], [ 0.46984631, 0.88256412, 0.01802831], [-0.34202014, 0.16317591, 0.92541658]]) .. note:: Notice the angles are given in reverse order, as it is the way the matrices are multiplied. >>> DCM(z=30.0) @ DCM(y=20.0) @ DCM(x=10.0) DCM([[ 0.81379768, -0.44096961, 0.37852231], [ 0.46984631, 0.88256412, 0.01802831], [-0.34202014, 0.16317591, 0.92541658]]) But also a different sequence can be defined, if given as a tuple with two elements: the order of the axis to rotate about, and the value of the rotation angles (again in reverse order) >>> DCM(euler=('zyz', [40.0, 50.0, 60.0])) DCM([[-0.31046846, -0.74782807, 0.58682409], [ 0.8700019 , 0.02520139, 0.49240388], [-0.38302222, 0.66341395, 0.64278761]]) >>> DCM(z=40.0) @ DCM(y=50.0) @ DCM(z=60.0) DCM([[-0.31046846, -0.74782807, 0.58682409], [ 0.8700019 , 0.02520139, 0.49240388], [-0.38302222, 0.66341395, 0.64278761]]) Another option is to build the rotation matrix from a quaternion: >>> DCM(q=[1., 2., 3., 4.]) DCM([[-0.66666667, 0.13333333, 0.73333333], [ 0.66666667, -0.33333333, 0.66666667], [ 0.33333333, 0.93333333, 0.13333333]]) The quaternions are automatically normalized to make them versors and be used as rotation operators. Finally, we can also build the rotation matrix from an axis-angle representation: >>> DCM(axang=([1., 2., 3.], 60.0)) DCM([[-0.81295491, 0.52330834, 0.25544608], [ 0.03452394, -0.3945807 , 0.91821249], [ 0.58130234, 0.75528436, 0.30270965]]) The axis of rotation is also normalized to be used as part of the rotation operator. """ def __new__(subtype, array: np.ndarray = None, **kwargs): if array is None: array = np.identity(3) if 'q' in kwargs: array = DCM.from_q(DCM, np.array(kwargs.pop('q'))) if any(x.lower() in ['x', 'y', 'z'] for x in kwargs): array = np.identity(3) array = array@rotation('x', kwargs.pop('x', 0.0)) array = array@rotation('y', kwargs.pop('y', 0.0)) array = array@rotation('z', kwargs.pop('z', 0.0)) if 'rpy' in kwargs: angles = kwargs.pop('rpy') _assert_iterables(angles, "Roll-Pitch-Yaw angles") if len(angles) != 3: raise ValueError("roll-pitch-yaw angles must be an array with 3 rotations in degrees.") array = rot_seq('zyx', angles) if 'euler' in kwargs: seq, angs = kwargs.pop('euler') array = rot_seq(seq, angs) if 'axang' in kwargs: ax, ang = kwargs.pop('axang') array = DCM.from_axisangle(DCM, np.array(ax), ang) _assert_iterables(array, "Direction Cosine Matrix") if array.shape[-2:] != (3, 3): raise ValueError(f"Direction Cosine Matrix must have shape (3, 3) or (N, 3, 3), got {array.shape}.") in_SO3 = np.isclose(np.linalg.det(array), 1.0) in_SO3 &= np.allclose([email protected], np.identity(3)) if not in_SO3: raise ValueError("Given attitude is not in SO(3)") # Create the ndarray instance of type DCM. This will call the standard # ndarray constructor, but return an object of type DCM. obj = super(DCM, subtype).__new__(subtype, array.shape, float, array) obj.A = array return obj @property def I(self) -> np.ndarray: """ synonym of property :meth:`inv`. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.I array([[ 0.92541658, 0.16317591, 0.34202014], [-0.31879578, 0.82317294, 0.46984631], [-0.20487413, -0.54383814, 0.81379768]]) Returns ------- np.ndarray Inverse of the DCM. """ return self.A.T @property def inv(self) -> np.ndarray: """ Inverse of the DCM. The direction cosine matrix belongs to the Special Orthogonal group `SO(3) <https://en.wikipedia.org/wiki/SO(3)>`_, where its transpose is equal to its inverse: .. math:: \\mathbf{R}^T\\mathbf{R} = \\mathbf{R}^{-1}\\mathbf{R} = \\mathbf{I}_3 Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.inv array([[ 0.92541658, 0.16317591, 0.34202014], [-0.31879578, 0.82317294, 0.46984631], [-0.20487413, -0.54383814, 0.81379768]]) Returns ------- np.ndarray Inverse of the DCM. """ return self.A.T @property def det(self) -> float: """ Synonym of property :meth:`determinant`. Returns ------- float Determinant of the DCM. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.det 1.0000000000000002 """ return np.linalg.det(self.A) @property def determinant(self) -> float: """ Determinant of the DCM. Given a direction cosine matrix :math:`\\mathbf{R}`, its determinant :math:`|\\mathbf{R}|` is found as: .. math:: |\\mathbf{R}| = \\begin{vmatrix}r_{11} & r_{12} & r_{13} \\\\ r_{21} & r_{22} & r_{23} \\\\ r_{31} & r_{32} & r_{33}\\end{vmatrix}= r_{11}\\begin{vmatrix}r_{22} & r_{23}\\\\r_{32} & r_{33}\\end{vmatrix} - r_{12}\\begin{vmatrix}r_{21} & r_{23}\\\\r_{31} & r_{33}\\end{vmatrix} + r_{13}\\begin{vmatrix}r_{21} & r_{22}\\\\r_{31} & r_{32}\\end{vmatrix} where the determinant of :math:`\\mathbf{B}\\in\\mathbb{R}^{2\\times 2}` is: .. math:: |\\mathbf{B}|=\\begin{vmatrix}b_{11}&b_{12}\\\\b_{21}&b_{22}\\end{vmatrix}=b_{11}b_{22}-b_{12}b_{21} All matrices in SO(3), to which direction cosine matrices belong, have a determinant equal to :math:`+1`. Returns ------- float Determinant of the DCM. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.determinant 1.0000000000000002 """ return np.linalg.det(self.A) @property def fro(self) -> float: """ Synonym of property :meth:`frobenius`. Returns ------- float Frobenius norm of the DCM. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.fro 1.7320508075688774 """ return np.linalg.norm(self.A, 'fro') @property def frobenius(self) -> float: """ Frobenius norm of the DCM. The `Frobenius norm <https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm>`_ of a matrix :math:`\\mathbf{A}` is defined as: .. math:: \\|\\mathbf{A}\\|_F = \\sqrt{\\sum_{i=1}^m\\sum_{j=1}^n|a_{ij}|^2} Returns ------- float Frobenius norm of the DCM. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.frobenius 1.7320508075688774 """ return np.linalg.norm(self.A, 'fro') @property def log(self) -> np.ndarray: """ Logarithm of DCM. The logarithmic map is defined as the inverse of the exponential map. It corresponds to the logarithm given by the Rodrigues rotation formula: .. math:: \\log(\\mathbf{R}) = \\frac{\\theta(\\mathbf{R}-\\mathbf{R}^T)}{2\\sin\\theta} with :math:`\\theta=\\arccos\\Big(\\frac{\\mathrm{tr}(\\mathbf{R}-1)}{2}\\Big)`. Returns ------- log : numpy.ndarray Logarithm of DCM Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.log array([[ 0. , -0.26026043, -0.29531805], [ 0.26026043, 0. , -0.5473806 ], [ 0.29531805, 0.5473806 , 0. ]]) """ angle = np.arccos((self.A.trace()-1)/2) S = self.A-self.A.T # Skew-symmetric matrix logR = angle*S/(2*np.sin(angle)) return logR @property def adjugate(self) -> np.ndarray: """ Return the adjugate of the DCM. The adjugate, a.k.a. *classical adjoint*, of a matrix :math:`\\mathbf{A}` is the transpose of its *cofactor matrix*. For orthogonal matrices, it simplifies to: .. math:: \\mathrm{adj}(\\mathbf{A}) = \\mathrm{det}(\\mathbf{A})\\mathbf{A}^T Returns ------- np.ndarray Adjugate of the DCM. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.adjugate array([[ 0.92541658, 0.16317591, 0.34202014], [-0.31879578, 0.82317294, 0.46984631], [-0.20487413, -0.54383814, 0.81379768]]) """ return np.linalg.det(self.A)*self.A.T @property def adj(self) -> np.ndarray: """ Synonym of property :meth:`adjugate`. Returns ------- np.ndarray Adjugate of the DCM. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.adj array([[ 0.92541658, 0.16317591, 0.34202014], [-0.31879578, 0.82317294, 0.46984631], [-0.20487413, -0.54383814, 0.81379768]]) """ return np.linalg.det(self.A)*self.A.T def to_axisangle(self) -> Tuple[np.ndarray, float]: """ Return axis-angle representation of the DCM. Defining a *rotation matrix* :math:`\\mathbf{R}`: .. math:: \\mathbf{R} = \\begin{bmatrix} r_{11} & r_{12} & r_{13} \\\\ r_{21} & r_{22} & r_{23} \\\\ r_{31} & r_{32} & r_{33} \\end{bmatrix} The axis-angle representation of :math:`\\mathbf{R}` is obtained with: .. math:: \\theta = \\arccos\\Big(\\frac{\\mathrm{tr}(\\mathbf{R})-1}{2}\\Big) for the **rotation angle**, and: .. math:: \\mathbf{k} = \\frac{1}{2\\sin\\theta} \\begin{bmatrix}r_{32} - r_{23} \\\\ r_{13} - r_{31} \\\\ r_{21} - r_{12}\\end{bmatrix} for the **rotation vector**. .. note:: The axis-angle representation is not unique since a rotation of :math:`−\\theta` about :math:`−\\mathbf{k}` is the same as a rotation of :math:`\\theta` about :math:`\\mathbf{k}`. Returns ------- axis : numpy.ndarray Axis of rotation. angle : float Angle of rotation, in radians. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.to_axisangle() (array([ 0.81187135, -0.43801381, 0.38601658]), 0.6742208510527136) """ angle = np.arccos((self.A.trace()-1)/2) axis = np.zeros(3) if angle!=0: S = np.array([self.A[2, 1]-self.A[1, 2], self.A[0, 2]-self.A[2, 0], self.A[1, 0]-self.A[0, 1]]) axis = S/(2*np.sin(angle)) return axis, angle def to_axang(self) -> Tuple[np.ndarray, float]: """ Synonym of method :meth:`to_axisangle`. Returns ------- axis : numpy.ndarray Axis of rotation. angle : float Angle of rotation, in radians. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.to_axang() (array([ 0.81187135, -0.43801381, 0.38601658]), 0.6742208510527136) """ return self.to_axisangle() def from_axisangle(self, axis: np.ndarray, angle: float) -> np.ndarray: """ DCM from axis-angle representation Use Rodrigue's formula to obtain the DCM from the axis-angle representation. .. math:: \\mathbf{R} = \\mathbf{I}_3 - (\\sin\\theta)\\mathbf{K} + (1-\\cos\\theta)\\mathbf{K}^2 where :math:`\\mathbf{R}` is the DCM, which rotates through an **angle** :math:`\\theta` counterclockwise about the **axis** :math:`\\mathbf{k}`, :math:`\\mathbf{I}_3` is the :math:`3\\times 3` identity matrix, and :math:`\\mathbf{K}` is the `skew-symmetric <https://en.wikipedia.org/wiki/Skew-symmetric_matrix>`_ matrix of :math:`\\mathbf{k}`. Parameters ---------- axis : numpy.ndarray Axis of rotation. angle : float Angle of rotation, in radians. Returns ------- R : numpy.ndarray 3-by-3 direction cosine matrix Examples -------- >>> R = DCM() >>> R.view() DCM([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> R.from_axisangle([0.81187135, -0.43801381, 0.38601658], 0.6742208510527136) array([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) """ _assert_iterables(axis) if not isinstance(angle, (int, float)): raise ValueError(f"`angle` must be a float value. Got {type(angle)}") axis /= np.linalg.norm(axis) K = skew(axis) return np.identity(3) + np.sin(angle)*K + (1-np.cos(angle))*K@K def from_axang(self, axis: np.ndarray, angle: float) -> np.ndarray: """ Synonym of method :meth:`from_axisangle`. Parameters ---------- axis : numpy.ndarray Axis of rotation. angle : float Angle of rotation, in radians. Returns ------- R : numpy.ndarray 3-by-3 direction cosine matrix Examples -------- >>> R = DCM() >>> R.view() DCM([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> R.from_axang([0.81187135, -0.43801381, 0.38601658], 0.6742208510527136) array([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) """ return self.from_axisangle(axis, angle) def from_quaternion(self, q: np.ndarray) -> np.ndarray: """ DCM from given quaternion The quaternion :math:`\\mathbf{q}` has the form :math:`\\mathbf{q} = (q_w, q_x, q_y, q_z)`, where :math:`\\mathbf{q}_v = (q_x, q_y, q_z)` is the vector part, and :math:`q_w` is the scalar part. The resulting matrix :math:`\\mathbf{R}` has the form: .. math:: \\mathbf{R}(\\mathbf{q}) = \\begin{bmatrix} 1 - 2(q_y^2 + q_z^2) & 2(q_xq_y - q_wq_z) & 2(q_xq_z + q_wq_y) \\\\ 2(q_xq_y + q_wq_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_yq_z - q_wq_x) \\\\ 2(q_xq_z - q_wq_y) & 2(q_wq_x + q_yq_z) & 1 - 2(q_x^2 + q_y^2) \\end{bmatrix} The identity Quaternion :math:`\\mathbf{q} = \\begin{pmatrix}1 & 0 & 0 & 0\\end{pmatrix}`, produces a :math:`3 \\times 3` Identity matrix :math:`\\mathbf{I}_3`. Parameters ---------- q : numpy.ndarray Quaternion Returns ------- R : numpy.ndarray 3-by-3 direction cosine matrix Examples -------- >>> R = DCM() >>> R.from_quaternion([0.70710678, 0.0, 0.70710678, 0.0]) array([[-2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, -2.22044605e-16]]) Non-normalized quaternions will be normalized and transformed too. >>> R.from_quaternion([1, 0.0, 1, 0.0]) array([[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16]]) A list (or a Numpy array) with N quaternions will return an N-by-3-by-3 array with the corresponding DCMs. .. code-block:: >>> R.from_q([[1, 0.0, 1, 0.0], [1.0, -1.0, 0.0, 1.0], [0.0, 0.0, -1.0, 1.0]]) array([[[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16]], [[ 3.33333333e-01, -6.66666667e-01, -6.66666667e-01], [ 6.66666667e-01, -3.33333333e-01, 6.66666667e-01], [-6.66666667e-01, -6.66666667e-01, 3.33333333e-01]], [[-1.00000000e+00, -0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, -1.00000000e+00, 2.22044605e-16]]]) """ if q is None: return np.identity(3) _assert_iterables(q, "Quaternion") q = np.copy(q) if q.shape[-1] != 4 or q.ndim > 2: raise ValueError(f"Quaternion must be of the form (4,) or (N, 4). Got {q.shape}") if q.ndim > 1: q /= np.linalg.norm(q, axis=1)[:, None] # Normalize R = np.zeros((q.shape[0], 3, 3)) R[:, 0, 0] = 1.0 - 2.0*(q[:, 2]**2 + q[:, 3]**2) R[:, 1, 0] = 2.0*(q[:, 1]*q[:, 2]+q[:, 0]*q[:, 3]) R[:, 2, 0] = 2.0*(q[:, 1]*q[:, 3]-q[:, 0]*q[:, 2]) R[:, 0, 1] = 2.0*(q[:, 1]*q[:, 2]-q[:, 0]*q[:, 3]) R[:, 1, 1] = 1.0 - 2.0*(q[:, 1]**2 + q[:, 3]**2) R[:, 2, 1] = 2.0*(q[:, 0]*q[:, 1]+q[:, 2]*q[:, 3]) R[:, 0, 2] = 2.0*(q[:, 1]*q[:, 3]+q[:, 0]*q[:, 2]) R[:, 1, 2] = 2.0*(q[:, 2]*q[:, 3]-q[:, 0]*q[:, 1]) R[:, 2, 2] = 1.0 - 2.0*(q[:, 1]**2 + q[:, 2]**2) return R q /= np.linalg.norm(q) return np.array([ [1.0-2.0*(q[2]**2+q[3]**2), 2.0*(q[1]*q[2]-q[0]*q[3]), 2.0*(q[1]*q[3]+q[0]*q[2])], [2.0*(q[1]*q[2]+q[0]*q[3]), 1.0-2.0*(q[1]**2+q[3]**2), 2.0*(q[2]*q[3]-q[0]*q[1])], [2.0*(q[1]*q[3]-q[0]*q[2]), 2.0*(q[0]*q[1]+q[2]*q[3]), 1.0-2.0*(q[1]**2+q[2]**2)]]) def from_q(self, q: np.ndarray) -> np.ndarray: """ Synonym of method :meth:`from_quaternion`. Parameters ---------- q : numpy.ndarray Quaternion Returns ------- R : numpy.ndarray 3-by-3 direction cosine matrix Examples -------- >>> R = DCM() >>> R.from_q([0.70710678, 0.0, 0.70710678, 0.0]) array([[-2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, -2.22044605e-16]]) Non-normalized quaternions will be normalized and transformed too. >>> R.from_q([1, 0.0, 1, 0.0]) array([[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16]]) A list (or a Numpy array) with N quaternions will return an N-by-3-by-3 array with the corresponding DCMs. .. code-block:: >>> R.from_q([[1, 0.0, 1, 0.0], [1.0, -1.0, 0.0, 1.0], [0.0, 0.0, -1.0, 1.0]]) array([[[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16]], [[ 3.33333333e-01, -6.66666667e-01, -6.66666667e-01], [ 6.66666667e-01, -3.33333333e-01, 6.66666667e-01], [-6.66666667e-01, -6.66666667e-01, 3.33333333e-01]], [[-1.00000000e+00, -0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, -1.00000000e+00, 2.22044605e-16]]]) """ return self.from_quaternion(q) def to_quaternion(self, method: str='chiaverini', **kw) -> np.ndarray: """ Quaternion from Direction Cosine Matrix. There are five methods available to obtain a quaternion from a Direction Cosine Matrix: * ``'chiaverini'`` as described in [Chiaverini]_. * ``'hughes'`` as described in [Hughes]_. * ``'itzhack'`` as described in [Bar-Itzhack]_ using version ``3`` by default. Possible options are integers ``1``, ``2`` or ``3``. * ``'sarabandi'`` as described in [Sarabandi]_ with a threshold equal to ``0.0`` by default. Possible threshold values are floats between ``-3.0`` and ``3.0``. * ``'shepperd'`` as described in [Shepperd]_. Parameters ---------- method : str, default: ``'chiaverini'`` Method to use. Options are: ``'chiaverini'``, ``'hughes'``, ``'itzhack'``, ``'sarabandi'``, and ``'shepperd'``. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.to_quaternion() # Uses method 'chiaverini' by default array([ 0.94371436, 0.26853582, -0.14487813, 0.12767944]) >>> R.to_quaternion('shepperd') array([ 0.94371436, -0.26853582, 0.14487813, -0.12767944]) >>> R.to_quaternion('hughes') array([ 0.94371436, -0.26853582, 0.14487813, -0.12767944]) >>> R.to_quaternion('itzhack', version=2) array([ 0.94371436, -0.26853582, 0.14487813, -0.12767944]) >>> R.to_quaternion('sarabandi', threshold=0.5) array([0.94371436, 0.26853582, 0.14487813, 0.12767944]) """ q = np.array([1., 0., 0., 0.]) if method.lower() == 'hughes': q = hughes(self.A) if method.lower() == 'chiaverini': q = chiaverini(self.A) if method.lower() == 'shepperd': q = shepperd(self.A) if method.lower() == 'itzhack': q = itzhack(self.A, version=kw.get('version', 3)) if method.lower() == 'sarabandi': q = sarabandi(self.A, eta=kw.get('threshold', 0.0)) return q/np.linalg.norm(q) def to_q(self, method: str='chiaverini', **kw) -> np.ndarray: """ Synonym of method :meth:`to_quaternion`. Parameters ---------- method : str, default: ``'chiaverini'`` Method to use. Options are: ``'chiaverini'``, ``'hughes'``, ``'itzhack'``, ``'sarabandi'``, and ``'shepperd'``. Examples -------- >>> R = DCM(rpy=[10.0, -20.0, 30.0]) >>> R.view() DCM([[ 0.92541658, -0.31879578, -0.20487413], [ 0.16317591, 0.82317294, -0.54383814], [ 0.34202014, 0.46984631, 0.81379768]]) >>> R.to_q() # Uses method 'chiaverini' by default array([ 0.94371436, 0.26853582, -0.14487813, 0.12767944]) >>> R.to_q('shepperd') array([ 0.94371436, -0.26853582, 0.14487813, -0.12767944]) >>> R.to_q('hughes') array([ 0.94371436, -0.26853582, 0.14487813, -0.12767944]) >>> R.to_q('itzhack', version=2) array([ 0.94371436, -0.26853582, 0.14487813, -0.12767944]) >>> R.to_q('sarabandi', threshold=0.5) array([0.94371436, 0.26853582, 0.14487813, 0.12767944]) """ return self.to_quaternion(method=method, **kw) def to_angles(self) -> np.ndarray: """ Synonym of method :meth:`to_rpy`. Returns ------- a : numpy.ndarray roll-pitch-yaw angles """ return self.to_rpy() def to_rpy(self) -> np.ndarray: """ Roll-Pitch-Yaw Angles from DCM A set of Roll-Pitch-Yaw angles may be written according to: .. math:: \\mathbf{a} = \\begin{bmatrix}\\phi \\\\ \\theta \\\\ \\psi\\end{bmatrix} = \\begin{bmatrix}\\mathrm{arctan2}(r_{23}, r_{33}) \\\\ -\\arcsin(r_{13}) \\\\ \\mathrm{arctan2}(r_{12}, r_{11})\\end{bmatrix} Returns ------- a : numpy.ndarray roll-pitch-yaw angles. """ phi = np.arctan2(self.A[1, 2], self.A[2, 2]) # Roll Angle theta = -np.arcsin(self.A[0, 2]) # Pitch Angle psi = np.arctan2(self.A[0, 1], self.A[0, 0]) # Yaw Angle return np.array([phi, theta, psi]) def ode(self, w: np.ndarray) -> np.ndarray: """ Ordinary Differential Equation of the DCM. Parameters ---------- w : numpy.ndarray Instantaneous angular velocity, in rad/s, about X-, Y- and Z-axis. Returns ------- dR/dt : numpy.ndarray Derivative of DCM """ return self.A@skew(w) ``` #### File: ahrs/utils/wmm.py ```python import datetime import pkgutil from io import StringIO from typing import Union, Tuple, Dict # Third-Party Dependencies import numpy as np from ..common.constants import * def geodetic2spherical(lat: float, lon: float, h: float, a: float = EARTH_EQUATOR_RADIUS/1000.0, b: float = EARTH_POLAR_RADIUS/1000.0) -> Tuple[float, float, float]: """ Transform geodetic coordinates into spherical geocentric coordinates The transformation cannot be a simple cylindric to spherical conversion, as we must also consider a planet's ellipsoid form. With the aid of its pre-defined flatness and eccentricity, we can better approximate the values of the conversion. In this function the Earth's major and minor semi-axis are considered. However, we can convert the coordinates of different ellipsoidal bodies, by giving the dimensions of its semi-axes. Notice that the longitude between both systems remains the same. Parameters ---------- lat : float Latitude, in radians, of point in geodetic coordinates lon : float Longitude, in radians, of point in geodetic coordinates h : float Height, in kilometers, of point in geodetic coordinates a : float, default: 6378.137 Major semi-axis, in kilometers. Defaults to Earth's equatorial radius b : float, default: 6356.752314245 Minor semi-axis, in kilometers. Defaults to Earth's polar radius Returns ------- lat_spheric : float Latitude of point in spherical coordinates. lon : float Longitue of point in spherical coordinates. Same as geodetic. r : float Radial distance of point in spherical coordinates. """ # Estimate Spheroid's Flatness and First Eccentricity f = (a-b)/a # Flatness e2 = f*(2.0-f) # First Eccentricity # Transform geodetic coordinates into spherical geocentric coordinates Rc = a/np.sqrt(1.0-e2*np.sin(lat)**2) # Radius of curvature of prime vertical rho = (Rc+h)*np.cos(lat) z = (Rc*(1-e2)+h)*np.sin(lat) r = np.linalg.norm([rho, z]) # Radial distance lat_spheric = np.arcsin(z/r) # Spherical latitude return lat_spheric, lon, r class WMM: """ World Magnetic Model It is mainly used to compute all elements of the World Magnetic Model (WMM) at any given point on Earth. The main magnetic field :math:`B` is a potential field defined, in geocentric spherical coordinates (longitude :math:`\\lambda`, latitude :math:`\\phi '` and radius :math:`r`), as the negative spatial gradient of a scalar potential at a time :math:`t`. This potential can be expanded in terms of spherical harmonics: .. math:: V(\\lambda, \\phi', r, t) = a\\sum_{n=1}^{N}\\Big(\\frac{a}{r}\\Big)^{n+1}\\sum_{m=0}^{n}f(n, m, \\lambda, t)P_n^m(\\phi') where .. math:: f(n, m, \\lambda, t) = g_n^m(t) \\cos(m\\lambda) + h_n^m(t) \\sin(m\\lambda) and the Schmidt semi-normalized associated Legendre functions :math:`P_n^m(\\phi')` are defined as: .. math:: P_n^m(\\mu) = \\left\\{ \\begin{array}{ll} \\sqrt{2\\frac{(n-m)!}{(n+m)!}}P_{n, m}(\\mu) & \\mathrm{if} \; m > 0 \\\\ P_{n, m}(\\mu) & \\mathrm{if} \; m = 0 \\end{array} \\right. Any object of this class is initialized with the corresponding epoch, determined by the given date. If no date is given, it is assumed for the day of the object's creation. Once the WMM object is created, the estimation of the geomagnetic elements is carried out with a call to the method `magnetic_field` giving the location on Earth at which the magnetic elements will be calculated. This location is given in decimal geodetic coordinates. See examples. Every WMM object is created with a set of coefficients read from a COF file, defined by the desired working date of the model. The latest model available is WMM2020 corresponding to the lustrum 2020-2024. This class can create models with dates between 2015 and 2024. Parameters ---------- date : datetime.date, int or float, default: current day Date of desired magnetic field estimation. latitude : float, default: None Latitude, in decimal degrees, in geodetic coordinates. longitude : float, default: None Longitude, in decimal degrees, in geodetic coordinates. height : float, default: 0.0 Mean Sea Level Height, in kilometers. Attributes ---------- date : datetime.date, default: datetime.date.today() Desired date to estimate date_dec : float Desired date to estimate as decimal epoch : float Initial time of model in decimal years model : str WMM Model identificator modeldate : str Release date of WMM Model wmm_filename : str COF File used to build Model degree : int Degree of model latitude : float Latitude, in decimal degrees, in geodetic coordinates longitude : float Longitude in decimal degrees, in geodetic coordinates height : float, default: 0.0 Mean Sea Level Height in kilometers X : float, default: None Northerly intensity, in nT Y : float, default: None Easterly intensity, in nT Z : float, default: None Vertical intensity, in nT H : float, default: None Horizontal intensity, in nT F : float, default: None Total intensity, in nT I : float, default: None Inclination angle (dip), in degrees D : float, default: None Declination angle, in degrees GV : float, default: None Grivation, in degrees Examples -------- The magnetic field can be computed at the creation of the WMM object by passing the main parameters to its constructor: >>> wmm = ahrs.utils.WMM(datetime.date(2017, 5, 12), latitude=10.0, longitude=-20.0, height=10.5) >>> wmm.magnetic_elements {'X': 30499.640469609083, 'Y': -5230.267158472566, 'Z': -1716.633311360368, 'H': 30944.850352270452, 'F': 30992.427998627096, 'I': -3.1751692563622993, 'D': -9.73078560629778, 'GV': -9.73078560629778} """ def __init__(self, date: Union[datetime.date, int, float] = None, latitude: float = None, longitude: float = None, height: float = 0.0) -> None: self.reset_coefficients(date) self.__dict__.update(dict.fromkeys(['X', 'Y', 'Z', 'H', 'F', 'I', 'D', 'GV'])) self.latitude = latitude self.longitude = longitude self.height = height if all([self.latitude, self.longitude]): self.magnetic_field(self.latitude, self.longitude, self.height, date=self.date) def reset_coefficients(self, date: Union[datetime.date, int, float] = None) -> None: """ Reset Gauss coefficients to given date. Given the date, the corresponding coefficients are updated. Basic properties (epoch, release date, and model id) are read and updated in the current instance. The two coefficient tables (arrays) are also updated, where the attribute `c` contains the Gaussian coefficients, while the attribute `cd` contains the secular Gaussian coefficients. The lenght of the Gaussian coefficient array determines the degree :math:`n` of the model. This property updates the value of attribute ``degree``. Parameters ---------- date : datetime.date, int or float, default: current day Date of desired magnetic field estimation. """ self.reset_date(date) self.__dict__.update(self.get_properties(self.wmm_filename)) self.load_coefficients(self.wmm_filename) def load_coefficients(self, cof_file: str) -> None: """ Load model coefficients from COF file. The model coefficients, also referred to as Gauss coefficients, are listed in a COF file. These coefficients can be used to compute values of the fields elements and their annual rates of change at any location near the surface of the Earth. The COF file has 6 columns: * ``n`` is the degree. * ``m`` is the order. * ``g`` are time-dependent Gauss coefficients of degree ``n`` and order ``m``. * ``h`` are time-dependent Gauss coefficients of degree ``n`` and order ``m``. * ``gd`` are secular variations of coefficient ``g``. * ``hd`` are secular variations of coefficient ``h``. which constitute the *model* of the field. The first-order time derivatives are called *secular terms*. The units are ``nT`` for the main field, and ``nT/year`` for the secular variation. The Gauss coefficients are defined for a time :math:`t` as: .. math:: \\begin{eqnarray} g_n^m(t) & = & g_n^m(t_0) + (t-t_0) \\dot{g}_n^m(t_0) \\\\ h_n^m(t) & = & h_n^m(t_0) + (t-t_0) \\dot{h}_n^m(t_0) \\end{eqnarray} where time is given in decimal years and :math:`t_0` corresponds to the epoch read from the corresponding COF file. Parameters ---------- cof_file : str Path to COF file with the coefficients of the WMM """ file_data = pkgutil.get_data(__name__, cof_file).decode() data = np.genfromtxt(StringIO(file_data), comments="999999", skip_header=1) self.degree = int(max(data[:, 0])) self.c = np.zeros((self.degree+1, self.degree+1)) self.cd = np.zeros((self.degree+1, self.degree+1)) for row in data: n, m = row[:2].astype(int) self.c[m, n] = row[2] # g_n^m self.cd[m, n] = row[4] # g_n^m secular if m != 0: self.c[n, m-1] = row[3] # h_n^m self.cd[n, m-1] = row[5] # h_n^m secular def get_properties(self, cof_file: str) -> Dict[str, Union[str, float]]: """ Return dictionary of WMM properties from COF file. Three properties are read and returned in a dictionary: * ``epoch`` is the initial time :math:`t_0` as a `float`. * ``model`` is a string of model used for the required lustrum. * ``modeldate`` is the release date of used magnetic model. Parameters ---------- cof_file : str Path to COF file with the coefficients of the WMM Returns ------- properties : dictionary Dictionary with the three WMM properties. Examples -------- >>> wmm = ahrs.WMM() >>> wmm.get_properties('my_coefficients.COF') {'model': 'WMM-2020', 'modeldate': '12/10/2019', 'epoch': 2020.0} """ if not cof_file.endswith(".COF"): raise TypeError("File must have extension 'COF'") first_line = pkgutil.get_data(__name__, cof_file).decode().split('\n')[0] v = first_line.strip().split() properties = dict(zip(["model", "modeldate"], v[1:])) properties.update({"epoch": float(v[0])}) return properties def reset_date(self, date: Union[datetime.date, int, float]) -> None: """ Set date to use with the model. The WMM requires a date. This date can be given as an instance of `datetime.date` or as a decimalized date of the format ``YYYY.d``. If None is given it sets the date to the present day. In addition, the corresponding COF file is also set. Please note that only coefficents from year 2015 and later are provided with this module. Parameters ---------- date : datetime.date, int or float, default: current day Date of desired magnetic field estimation. """ if date is None: self.date = datetime.date.today() self.date_dec = self.date.year + self.date.timetuple().tm_yday/365.0 elif isinstance(date, (int, float)): self.date_dec = float(date) self.date = datetime.date.fromordinal(round(datetime.date(int(date), 1, 1).toordinal() + (self.date_dec-int(self.date_dec))*365)) elif isinstance(date, datetime.date): self.date = date self.date_dec = self.date.year + self.date.timetuple().tm_yday/365.0 else: raise TypeError("Date must be an instance of datetime.date or a decimalized year.") if self.date.year < 2015: raise ValueError("No available coefficients for dates before 2015.") self.wmm_filename = 'WMM2015/WMM.COF' if self.date_dec < 2020.0 else 'WMM2020/WMM.COF' def denormalize_coefficients(self, latitude: float) -> None: """Recursively estimate associated Legendre polynomials and derivatives done in a recursive way as described by <NAME> in [Wertz]_ for an efficient computation. Given the Gaussian coefficients, it is possible to estimate the magnetic field at any latitude on Earth for a certain date. First, it is assumed that :math:`P_n^m(x)` are the Schmidt semi-normalized functions. A normalization is made so that the relative strength of terms of same degree :math:`n` but order :math:`m` are used by comparing their respective Gauss coefficients. For :math:`m=0` they are called *Legendre Polynomials* and can be computed recursively with: .. math:: P_n(x) = \\frac{2n-1}{n} x P_{n-1}(x) - \\frac{n-1}{n}P_{n-2}(x) For :math:`m>0` they are known as *associated Legendre functions* of degree :math:`n` and order :math:`m` and reduced to: .. math:: P_{nm}(x) = (1-t^2)^{m/2} \\frac{d^m P_n(x)}{dt^m} expressing the associated Legendre functions in terms of the Legendre polynomials of same degree :math:`n`. A more general formula to estimate both polynomial and associated functions is given by: .. math:: P_{nm}(x) = 2^{-n}(1-x^2)^{m/2} \\sum_{k=0}^{K}(-1)^k\\frac{(2n-2k)!}{k!(n-k)!(n-m-2k)!}x^{n-m-2k} where :math:`K` is either :math:`(n-m)/2` or :math:`(n-m-1)/2`, whichever is an integer. For a computational improvement, the terms are calculated recursively. We have to denormalize the coefficients from Schmidt to Gauss. The Gauss functions :math:`P^{n, m}` are related to Schmidt functions :math:`P_n^m` as: .. math:: P_n^m = S_{n, m}P^{n, m} where the factors :math:`S_{n, m}` are combined with Gaussian coefficients to accelerate the computation, because they are independent of the geographic location. Thus, we denormalize the coefficients with: .. math:: \\begin{array}{ll} g^{n,m} & = S_{n,m} g_n^m \\\\ h^{n,m} & = S_{n,m} h_n^m \\end{array} The recursion for :math:`S_{n, m}` is: .. math:: \\begin{array}{rlr} S_{0,0} & = 1 & \\\\ S_{n,0} & = S_{n-1, 0} \\frac{2n-1}{n} & n\\geq 1 \\\\ S_{n,m} & = S_{n-1, m}\\sqrt{\\frac{(n-m+1)(\\delta _m^1+1)}{n+m}} & m\\geq 1 \\end{array} where the Kronecker delta :math:`\\delta_j^i` is: .. math:: \\delta_j^i = \\left\\{ \\begin{array}{ll} 1 & \\: i = j \\\\ 0 & \\: \\mathrm{otherwise} \\end{array} \\right. Similarly, :math:`P^{n, m}(x)` can be recursively obtained: .. math:: \\begin{array}{ll} P^{0,0} & = 1 \\\\ P^{n,n} & = \\sin (x) P^{n-1, n-1} \\\\ P^{n,m} & = \\cos (x) P^{n-1, m} - K^{n, m} P^{n-2, m} \\end{array} where: .. math:: K^{n, m} = \\left\\{ \\begin{array}{ll} \\frac{(n-1)^2-m^2}{(2n-1)(2n-3)} & \\: n>1 \\\\ 0 & \\: n=1 \\end{array} \\right. Likewise, the gradient :math:`\\frac{dP^{n, m}}{dx}` is estimated as: .. math:: \\begin{array}{llr} \\frac{dP^{0, 0}}{dx} & = 1 & \\\\ \\frac{dP^{n, n}}{dx} & = \\sin (x) \\frac{dP^{n-1, n-1}}{dx} + \\cos (x) P^{n-1, n-1} & n\\geq 1 \\\\ \\frac{dP^{n, m}}{dx} & = \\cos (x) \\frac{dP^{n-1, m}}{dx} - \\sin (x) P^{n-1, m} - K^{n, m} \\frac{dP^{n-2, m}}{dx} & \\end{array} Parameters ---------- latitude : float Latitude in spherical geocentric coordinates """ cos_lat = np.cos(latitude) # cos(phi') sin_lat = np.sin(latitude) # sin(phi') S = np.identity(self.degree+1) # Scale factors self.k = np.zeros((self.degree+1, self.degree+1)) self.P = np.identity(self.degree+2) self.dP = np.zeros((self.degree+2, self.degree+1)) for n in range(1, self.degree+1): S[0, n] = S[0, n-1] * (2*n-1)/n delta = 1 # Kronecker delta for m in range(n+1): self.k[m, n] = ((n-1)**2 - m**2) / ((2*n-1)*(2*n-3)) if m > 0: S[m, n] = S[m-1, n] * np.sqrt((n-m+1)*(delta+1)/(n+m)) self.c[n, m-1] *= S[m, n] self.cd[n, m-1] *= S[m, n] delta = 0 if n == m: self.P[m, n] = cos_lat*self.P[m-1, n-1] self.dP[m, n] = cos_lat*self.dP[m-1, n-1] + sin_lat*self.P[m-1, n-1] else: self.P[m, n] = sin_lat*self.P[m, n-1] - self.k[m, n]*self.P[m, n-2] self.dP[m, n] = sin_lat*self.dP[m, n-1] - cos_lat*self.P[m, n-1] - self.k[m, n]*self.dP[m, n-2] self.c[m, n] *= S[m, n] self.cd[m, n] *= S[m, n] def magnetic_field(self, latitude: float, longitude: float, height: float = 0.0, date: Union[datetime.date, int, float] = datetime.date.today()) -> None: """ Calculate the geomagnetic field elements for a location on Earth. The code includes comments with references to equation numbers corresponding to the ones in the official report. Having the coefficients :math:`g^{n, m}` and :math:`h^{n, m}`, we extrapolate them for the desired time :math:`t` as: .. math:: \\begin{array}{ll} g_n^m(t) & = g_n^m(t_0) + \\Delta_t \\dot{g}_n^m (t_0) \\\\ h_n^m(t) & = h_n^m(t_0) + \\Delta_t \\dot{h}_n^m (t_0) \\end{array} where :math:`\\Delta_t = t-t_0` is the difference between the time :math:`t` and the reference epoch model :math:`t_0` (``2020.0`` for the newest version.) The vector components of the main magnetic field :math:`B` are then calculated with: .. math:: \\begin{array}{ll} X' & = -\\sum_{n=1}^N\\Big(\\frac{a}{r}\\Big)^{n+2} \\sum_{m=0}^n\\big(g_n^m(t) \\cos(m\\lambda)+h_n^m(t)\\sin(m\\lambda)\\big) \\frac{dP_n^m(\\sin \\phi ')}{d\\phi '} \\\\ Y' & = \\frac{1}{\\cos\\phi '}\\sum_{n=1}^N\\Big(\\frac{a}{r}\\Big)^{n+2} \\sum_{m=0}^n m\\big(g_n^m(t) \\sin(m\\lambda)-h_n^m(t)\\cos(m\\lambda)\\big)P_n^m(\\sin \\phi ') \\\\ Z' & = -\\sum_{n=1}^N(n+1)\\Big(\\frac{a}{r}\\Big)^{n+2} \\sum_{m=0}^n\\big(g_n^m(t) \\cos(m\\lambda)+h_n^m(t)\\sin(m\\lambda)\\big)P_n^m(\\sin \\phi ') \\end{array} Finally, the geomagnetic vector components are rotated into ellipsoidal reference frame. .. math:: \\begin{array}{ll} X & = X'\\cos(\\phi ' - \\phi) - Z' \\sin(\\phi ' - \\phi) \\\\ Y & = Y' \\\\ Z & = X'\\sin(\\phi ' - \\phi) + Z' \\cos(\\phi ' - \\phi) \\end{array} These components are used to compute the rest of the magnetic elements: .. math:: \\begin{array}{ll} H & = \\sqrt{X^2 + Y^2} \\\\ F & = \\sqrt{H^2 + Z^2} \\\\ I & = \\arctan(\\frac{Z}{H}) \\\\ D & = \\arctan(\\frac{Y}{X}) \\end{array} .. note:: The use of ``arctan2`` yields a more precise result than ``arctan``, because it estimates the angle exploring all quadrants. For polar regions, where the declination changes drastically, the WMM defines two different grivations (one for each pole) defined as: .. math:: GV = \\left\\{ \\begin{array}{ll} D-\\lambda & \\: \\phi > 55 ° \\\\ D+\\lambda & \\: \\phi < -55 ° \\end{array} \\right. Parameters ---------- latitude : float Latitude, in decimal degrees, in geodetic coordinates longitude : float Longitude in decimal degrees, in geodetic coordinates height : float, default: 0.0 Mean Sea Level Height in kilometers date : datetime.date, int or float, default: datetime.date.today() Desired date to estimate """ if date is not None: self.reset_coefficients(date) self.latitude = latitude self.longitude = longitude self.height = height latitude *= DEG2RAD longitude *= DEG2RAD # Transform geodetic coordinates into spherical geocentric coordinates lat_prime, _, r = geodetic2spherical(latitude, longitude, self.height) # Compute cos(m*phi') and sin(m*phi') for all m values self.sp = np.zeros(self.degree+1) # sin(m*phi') self.cp = np.ones(self.degree+2) # cos(m*phi') self.sp[1] = np.sin(longitude) self.cp[1] = np.cos(longitude) for m in range(2, self.degree+1): self.sp[m] = self.sp[1]*self.cp[m-1] + self.cp[1]*self.sp[m-1] self.cp[m] = self.cp[1]*self.cp[m-1] - self.sp[1]*self.sp[m-1] dt = round(self.date_dec, 1) - self.epoch # t - t_0 self.gh = np.zeros((self.degree+2, self.degree+1)) self.denormalize_coefficients(lat_prime) cos_lat = np.cos(lat_prime) # cos(phi') sin_lat = np.sin(lat_prime) # sin(phi') Zp = Xp = Yp = Bp = 0.0 a = EARTH_MEAN_RADIUS/1000.0 # Mean earth radius in km ar = a/r # Spherical Harmonics (eq. 4) for n in range(1, self.degree+1): #### !! According to report it must be equal to defined degree (12 not 13) arn2 = ar**(n+2) x_p = y_p = z_p = 0.0 for m in range(n+1): #### !! According to report it must be equal to n self.gh[m, n] = self.c[m, n] + dt*self.cd[m, n] # g_n^m (eq. 9) # Terms of spherical harmonic expansions gchs = self.gh[m, n]*self.cp[m] # g(t)cos(ml) gshc = self.gh[m, n]*self.sp[m] # g(t)sin(ml) if m > 0: self.gh[n, m-1] = self.c[n, m-1] + dt*self.cd[n, m-1] # h_n^m (eq. 9) gchs += self.gh[n, m-1]*self.sp[m] # g(t)cos(ml) + h(t)sin(ml) gshc -= self.gh[n, m-1]*self.cp[m] # g(t)sin(ml) - h(t)cos(ml) x_p += gchs * self.dP[m, n] y_p += m * gshc * self.P[m, n] z_p += gchs * self.P[m, n] # SPECIAL CASE: NORTH/SOUTH GEOGRAPHIC POLES if (cos_lat == 0.0 and m == 1): Bp += arn2 * gshc if n > 1: Bp *= sin_lat - self.k[m, n] Xp += arn2 * x_p # (eq. 10) #### !! According to report must be a substraction. Must re-check this Yp += arn2 * y_p # (eq. 11) Zp -= (n+1) * arn2 * z_p # (eq. 12) Yp = Bp if cos_lat == 0.0 else Yp/cos_lat # Transform magnetic vector components to geodetic coordinates (eq. 17) self.X = Xp*np.cos(lat_prime-latitude) - Zp*np.sin(lat_prime-latitude) self.Y = Yp self.Z = Xp*np.sin(lat_prime-latitude) + Zp*np.cos(lat_prime-latitude) # Total Intensity, Inclination and Declination (eq. 19) self.H = np.linalg.norm([self.X, self.Y]) # sqrt(X^2+Y^2) self.F = np.linalg.norm([self.H, self.Z]) # sqrt(H^2+Z^2) self.I = RAD2DEG*np.arctan2(self.Z, self.H) self.D = RAD2DEG*np.arctan2(self.Y, self.X) # Grivation (eq. 1) self.GV = self.D.copy() if self.latitude > 55.0: self.GV -= self.longitude if self.latitude < -55.0: self.GV += self.longitude @property def magnetic_elements(self) -> Dict[str, float]: """Main geomagnetic elements in a dictionary ======= ============================================= Element Definition ======= ============================================= X Northerly intensity Y Easterly intensity Z Vertical intensity (Positive downwards) H Horizontal intensity F Total intensity I Inclination angle (a.k.a. dip angle) D Declination angle (a.k.a. magnetic variation) GV Grivation ======= ============================================= Example ------- >>> wmm = WMM(datetime.date(2017, 5, 12), latitude=10.0, longitude=-20.0, height=10.5) >>> wmm.magnetic_elements {'X': 30499.640469609083, 'Y': -5230.267158472566, 'Z': -1716.633311360368, 'H': 30944.850352270452, 'F': 30992.427998627096, 'I': -3.1751692563622993, 'D': -9.73078560629778, 'GV': -9.73078560629778} """ return {k: self.__dict__[k] for k in ['X', 'Y', 'Z', 'H', 'F', 'I', 'D', 'GV']} ```
{ "source": "joseph-tobin/mqtt-panel", "score": 2 }
#### File: mqtt_panel/web/fullscreen.py ```python from mqtt_panel.web.component import Component class FullScreen(Component): def __init__(self): super(FullScreen, self).__init__(4) def _body(self, fh): self._write_render(fh, '''\ <div id="fullscreen" class="d-none"></div> ''') ``` #### File: web/widget/button.py ```python import logging from mqtt_panel.web.widget.widget import Widget class Button(Widget): widget_type = 'button' def __init__(self, *args, **kwargs): super(Button, self).__init__(*args, **kwargs) def open(self): pass def on_widget(self, blob): logging.debug("{%s} Rx widget: %s", self.id, blob) payload = self._c['payload'] self._mqtt.publish(self._c['publish'], payload, retain=self._c.get('retain', False), qos=self._c.get('qos', 1)) self._updated_now() self._update_clients() return True def _blob(self): return { } def _html(self, fh): icon = self._c.get('icon', 'touch_app') color = self._c.get('color', 'white') text = self._c['text'] confirm = self._c.get('confirm', None) if color: color = ' style="color:%s"' % color if confirm: confirm = f' data-confirm="{confirm}"' self._write_render(fh, '''\ <div class="value"{confirm}> <span class="material-icons"{color}>{icon}</span> <span{color}>{text}</span> </div> ''', locals(), indent=4) Widget.register(Button) ``` #### File: web/widget/light.py ```python import logging from mqtt_panel.web.widget.widget import Widget class Light(Widget): widget_type = 'light' def __init__(self, *args, **kwargs): super(Light, self).__init__(*args, **kwargs) # self._value = self._c['values'][0].get('payload') self._payload_map = {} for blob in self._c['values']: self._payload_map[blob['payload']] = blob def open(self): self._mqtt.subscribe(self._c['subscribe'], self._on_mqtt) def _on_mqtt(self, payload, timestamp): logging.debug("Light [%s] on_mqtt: %s", self.id, payload) try: value = self._payload_map[payload]['payload'] except KeyError as ex: logging.warning('Unexpected MQTT value: %s', payload) value = None self.set_value(value) def _blob(self): return { 'value': self.value } def _html(self, fh): self._write_render(fh, '''\ <div class="value"> ''', indent=4) for blob in self._c['values']: value = blob.get('payload') display = '' if self.value != value: display = ' d-none' text = blob.get('text', 'text') icon = blob.get('icon', Default.icon(text)) color = blob.get('color', Default.color(text)) self._write_render(fh, '''\ <div class="value-item value-{value}{display}"> <span class="material-icons" style="color:{color};">{icon}</span> <span style="color:{color};">{text}</span> </div> ''', locals(), indent=4) display = '' if self.value is not None: display = ' d-none' self._write_render(fh, '''\ <div class="value-item value-null{display}"> <span class="material-icons">do_not_disturb</span> <span>unknown</span> </div> </div> ''', locals(), indent=4) class Default(object): _map = { ('on', 'true'): ('emoji_objects', 'yellow'), ('off', 'false'): ('emoji_objects','black'), None: ('help_center', None) } @classmethod def _lookup(cls, key): key = key.lower() for keys in cls._map.keys(): if keys and key in keys: return cls._map[keys] return cls._map[None] @classmethod def icon(cls, key): return cls._lookup(key)[0] @classmethod def color(cls, key): return cls._lookup(key)[1] Widget.register(Light) ``` #### File: web/widget/text.py ```python from mqtt_panel.web.widget.widget import Widget class Text(Widget): widget_type = 'text' def __init__(self, *args, **kwargs): super(Text, self).__init__(*args, **kwargs) def open(self): self._mqtt.subscribe(self._c['subscribe'], self._on_mqtt) def _on_mqtt(self, payload, timestamp): self.set_value(payload) def _blob(self): return { 'text': self.value or '', } def _html(self, fh): color = self._c.get('color', None) if color: color = ' style="color:%s"' % color self._write_render(fh, '''\ <div class="text"{color}></div> ''', locals(), indent=4) Widget.register(Text) ``` #### File: mqtt_panel/web/wslink.py ```python from mqtt_panel.web.component import Component class WSLink(Component): def __init__(self): super(WSLink, self).__init__(4) ```
{ "source": "josepht/pricer", "score": 3 }
#### File: josepht/pricer/pricer.py ```python import argparse import json import requests API_ENDPOINT = ( "https://query1.finance.yahoo.com/v7/finance/quote" "?lang=en-US&region=US&corsDomain=finance.yahoo.com" ) # Colors RED = '\033[31m' GREEN = '\033[32m' BOLD = '\033[1m' ENDC = '\033[0m' DEFAULT_SHARES_FILE = 'shares.json' def color_value(value, color='', percent=False, width=10, precision=4, field_width=10, string=False, bold=False): cs = ce = '' type_str = 'f' if string: type_str = 's' if string: value_str = value else: if percent: value_str = '{{:.{}{}}}'.format(precision, type_str).format(value) else: value_str = '{{:{}.{}{}}}'.format(width, precision, type_str).format(value) if color == 'red': cs = RED ce = ENDC elif color == 'green': cs = GREEN ce = ENDC if bold: cs = '{}{}'.format(cs, BOLD) ce = ENDC value_str_fmt = '{{:>{}s}}'.format(field_width) if percent: value_str = value_str_fmt.format( '({}%)'.format(value_str)) value_str = value_str_fmt.format(value_str) # add color codes last otherwise they count towards the string length if cs: value_str = '{}{}{}'.format(cs, value_str, ce) return value_str def get_alert_report(symbol, price, share_data, verbose=False, agg=False): report = "" symbol_data = share_data alert = symbol_data.get('alert', {}) alert_price_above = alert.get('price_above') alert_price_below = alert.get('price_below') alert_price = (alert_price_above is not None or alert_price_below is not None) hidden = alert.get('hide', False) if hidden or not alert_price: return report if alert and alert_price and not hidden: alert_price = '' symbol_color = '' direction = '' if alert_price_above is not None and price > alert_price_above: direction = '^' symbol_color = 'green' alert_price = alert_price_above if alert_price_below is not None and price < alert_price_below: direction = 'v' symbol_color = 'green' alert_price = alert_price_below if direction == '': return report kwargs = {} if agg: kwargs['bold'] = True report = "{} {}".format( color_value(direction, color=symbol_color, string=True, field_width=1, **kwargs), color_value(alert_price, color=symbol_color, precision=2, width=6, field_width=6, **kwargs ), ) return report def get_owned_report(symbol, price, share_data, verbose=False, agg=False, hold=False, until=None, total_shares=None, avg_price=None): sum_line = None symbol_data = share_data cost = symbol_data.get('cost') shares = symbol_data.get('shares') if total_shares is not None and total_shares > 0: if avg_price is not None: avg_price = ( (shares * cost + total_shares * avg_price) / (total_shares + shares) ) else: avg_price = cost total_shares = 0 total_shares += shares hold_str = ' ' if hold: hold_str = 'H' if until is not None: hold_str = '{} {}'.format(hold_str, until) kwargs = {} if agg: kwargs['bold'] = True sum_kwargs = {'bold': True} if cost is None or shares is None or shares == 0.0: # Fake out the column width for alerts if verbose: owned = ' '*67 else: owned = ' '*57 else: symbol_change = price - cost sum_symbol_change = price - avg_price symbol_color = '' sum_symbol_color = '' if symbol_change < 0.0: symbol_color = 'red' elif symbol_change > 0.0: symbol_color = 'green' if sum_symbol_change < 0.0: sum_symbol_color = 'red' elif sum_symbol_change > 0.0: sum_symbol_color = 'green' symbol_change_percent = symbol_change / cost * 100 sum_symbol_change_percent = sum_symbol_change / avg_price * 100 if verbose: owned = "{} {} {} {} {} {}".format( color_value(cost, color=symbol_color, **kwargs), color_value(symbol_change, color=symbol_color, **kwargs), color_value(symbol_change_percent, color=symbol_color, precision=2, field_width=10, percent=True, **kwargs), color_value(shares, color=symbol_color, precision=0, width=6, **kwargs), color_value(shares * symbol_change, field_width=11, color=symbol_color, **kwargs), color_value(hold_str, field_width=12, string=True, color=symbol_color, **kwargs), ) sum_line = "{} {} {} {} {} {}".format( color_value(cost, color=sum_symbol_color, bold=True), color_value(symbol_change, color=sum_symbol_color, bold=True), color_value(sum_symbol_change_percent, color=sum_symbol_color, precision=2, field_width=10, percent=True, bold=True), color_value(total_shares, color=sum_symbol_color, precision=0, width=6, bold=True), color_value(total_shares * sum_symbol_change, field_width=11, color=sum_symbol_color, bold=True), color_value(hold_str, field_width=12, string=True, color=sum_symbol_color, bold=True), ) else: owned = "{} {} {} {} {}".format( color_value(cost, color=symbol_color, **kwargs), color_value(symbol_change_percent, color=symbol_color, precision=2, field_width=10, percent=True, **kwargs), color_value(shares, color=symbol_color, precision=0, width=6, **kwargs), color_value(shares * symbol_change, field_width=11, color=symbol_color, **kwargs), color_value(hold_str, field_width=12, string=True, color=symbol_color, **kwargs), ) sum_line = "{} {} {} {} {}".format( color_value(avg_price, color=sum_symbol_color, bold=True), color_value(sum_symbol_change_percent, color=sum_symbol_color, precision=2, field_width=10, percent=True, bold=True), color_value(total_shares, color=sum_symbol_color, precision=0, width=6, bold=True), color_value(total_shares * sum_symbol_change, field_width=11, color=sum_symbol_color, bold=True), color_value(hold_str, field_width=12, string=True, color=sum_symbol_color, bold=True), ) return owned, total_shares, avg_price, sum_line def get_price_data(market_state, symbol_data): market_state_str = '*' if market_state != 'REGULAR' else ' ' price = change = percent = None if market_state == 'PRE': price = symbol_data.get('preMarketPrice') change = symbol_data.get('preMarketChange') percent = symbol_data.get('preMarketChangePercent') market_state_str = '*' # if there is no pre-market data get any post market data if price is None: price, change, percent, market_state_str = get_price_data( 'POST', symbol_data) elif market_state == 'POST': price = symbol_data.get('postMarketPrice') change = symbol_data.get('postMarketChange') percent = symbol_data.get('postMarketChangePercent') market_state_str = '*' # If there isn't any post-market data use the regular data. if ( price is None or change is None or percent is None or change == 0.0 ): price = float(symbol_data.get('regularMarketPrice')) change = float(symbol_data.get('regularMarketChange')) percent = float(symbol_data.get('regularMarketChangePercent')) market_state_str = ' ' price = float(price) change = float(change) percent = float(percent) return price, change, percent, market_state_str def get_market_data(data, symbol): for item in data: if item.get('symbol') == symbol: return item return None def get_current_price(symbols=None, shares_file=DEFAULT_SHARES_FILE, verbose=False): share_data = get_share_data(shares_file) if symbols is None: symbols = list(set(x['name'] for x in share_data)) string_fields = [ 'symbol', 'marketState', 'regularMarketPrice', ] float_fields = [ 'regularMarketChange', 'regularMarketChangePercent', 'preMarketPrice', 'preMarketChange', 'preMarketChangePercent', 'postMarketPrice', 'postMarketChange', 'postMarketChangePercent', ] fields = string_fields + float_fields result = requests.get(API_ENDPOINT, params={ 'symbols': ','.join(symbols), 'fields': ','.join(fields), }) if result.status_code == 200: data = result.json() response = data.get('quoteResponse') if response is not None: data = response data_result = data.get('result') data_error = data.get('error') if data_error is not None: print("data_error: {}".format(data_error)) if data_result is not None: data = data_result symbols_seen = [] last_symbol = None last_symbol_count = 0 sum_line = None for item in share_data: symbol = item['name'] hide = item.get('hide', False) agg = item.get('agg', False) hold = item.get('hold', False) until = item.get('until') if until is not None: hold = True if hide: continue market_data = get_market_data(data, symbol) market_state = market_data.get('marketState') price = float(market_data.get('regularMarketPrice')) change = float(market_data.get('regularMarketChange')) percent = float(market_data.get('regularMarketChangePercent')) price, change, percent, market_state_str = get_price_data( market_state, market_data) color = '' if change < 0: color = 'red' elif change > 0.0: color = 'green' change = color_value(change, color=color, width=9) percent = color_value(percent, color=color, precision=2, field_width=10, percent=True) price_str = color_value(price, bold=True) line = "{:>5s} {} {} {} {:>1s}".format( symbol, price_str, change, percent, market_state_str) if symbol in symbols_seen and last_symbol == symbol: line = "{:>40s}".format("") else: symbols_seen.append(symbol) if symbol == last_symbol: last_symbol_count += 1 else: total_shares = None avg_price = None if sum_line is not None and last_symbol_count > 0: sum_line = "{} {}".format("{:>40s}".format(""), sum_line) print(sum_line) last_symbol_count = 0 sum_line = None last_symbol = symbol # Add user's owned shares info owned, total_shares, avg_price, sum_line = get_owned_report( symbol, price, item, verbose=verbose, agg=agg, hold=hold, until=until, total_shares=total_shares, avg_price=avg_price ) alert = get_alert_report(symbol, price, item, verbose=verbose, agg=agg) if owned: line = "{} {}".format(line, owned) if alert: line = "{} {}".format(line, alert) print(line) def query_one(args): get_current_price(symbols=[args.symbol], shares_file=args.shares_file, verbose=args.verbose) def query_all(args): get_current_price(shares_file=args.shares_file, verbose=args.verbose) def check(args): """Check the return for selling a non-held stock based on the given cost, number of shares, and sell price.""" diff = args.shares * (args.sell_price - args.buy_price) print(diff) def check_sell(args): """Check the return for selling a given stock at a given price based on current holdings.""" share_data = get_share_data(args.shares_file) ret = None for item in share_data: symbol = item.get('symbol') if symbol is not None: symbol = symbol.lower() if symbol is not None and symbol == args.symbol.lower(): cost = item.get('cost', 0.0) shares = item.get('shares', 0.0) ret = shares * (args.price - cost) break if ret is not None: print(ret) def parse_args(): """Parse commandline options and sub-commands.""" parser = argparse.ArgumentParser() parser.add_argument('--shares-file', '-s', default=DEFAULT_SHARES_FILE, help='JSON data file with shares owned data') parser.add_argument('--verbose', '-v', action='store_true', default=False, help='Show more data') parser.set_defaults(func=query_all) subparsers = parser.add_subparsers(help='sub-commands') parser_check = subparsers.add_parser( 'check', help='Check return on a transaction') parser_check.add_argument('buy_price', type=float, help='Buy price for stock',) parser_check.add_argument('sell_price', type=float, help='Sell price for stock',) parser_check.add_argument('shares', type=float, help='Number of shares of the stock',) parser_check.set_defaults(func=check) parser_check_stock = subparsers.add_parser( 'check_sell', help='Check sell scenario for a specific stock') parser_check_stock.add_argument('symbol', help='Stock symbol') parser_check_stock.add_argument('price', type=float, help='Sell price') parser_check_stock.set_defaults(func=check_sell) parser_query_one = subparsers.add_parser( 'query_one', help='Query one symbol') parser_query_one.add_argument('symbol', help='Stock symbol') parser_query_one.set_defaults(func=query_one) parser_query_all = subparsers.add_parser( 'query_all', help='Query all symbols') parser_query_all.set_defaults(func=query_all) return parser.parse_args() def get_share_data(filename): """Get the share information for the user.""" data = [] with open(filename) as fp: data = json.load(fp) return data def main(): """The main method.""" args = parse_args() args.func(args) if __name__ == '__main__': main() ```
{ "source": "Joseph-tsai415/Msc-All-Terrain-Robot", "score": 3 }
#### File: Guidance_system/guidance_sys/calibrate.py ```python import numpy as np import cv2, os from cv2 import aruco class calibrate(): """ The class called Calibrate is initialised with constants appropriate for the given target Calibration """ # if __name__ == '__main__': def __init__(self): #%matplotlib nbagg self.aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250) self.board = aruco.CharucoBoard_create(7, 5, 1, .8, self.aruco_dict) #import image dir_path=os.path.dirname(os.path.realpath(__file__)) datadir = os.path.join(dir_path,"./photo/") images = np.array([datadir + f for f in os.listdir(datadir) if f.endswith(".png") ]) order = np.argsort([int(p.split(".")[-2].split("_")[-1]) for p in images]) images = images[order] print(images) #image calibration allCorners,allIds,imsize=self.read_chessboards(images) self.ret, self.mtx, self.dist, self.rvecs, self.tvecs = self.calibrate_camera(allCorners,allIds,imsize) def get(self): ''' Return the fix camera matrix ''' return self.ret, self.mtx, self.dist, self.rvecs, self.tvecs def read_chessboards(self,images): """ Charuco base pose estimation. """ print("POSE ESTIMATION STARTS:") allCorners = [] allIds = [] decimator = 0 # SUB PIXEL CORNER DETECTION CRITERION criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.00001) for im in images: print("=> Processing image {0}".format(im)) frame = cv2.imread(im) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) corners, ids, rejectedImgPoints = cv2.aruco.detectMarkers(gray, self.aruco_dict) if len(corners)>0: # SUB PIXEL DETECTION for corner in corners: cv2.cornerSubPix(gray, corner, winSize = (3,3), zeroZone = (-1,-1), criteria = criteria) res2 = cv2.aruco.interpolateCornersCharuco(corners,ids,gray,self.board) if res2[1] is not None and res2[2] is not None and len(res2[1])>3 and decimator%1==0: allCorners.append(res2[1]) allIds.append(res2[2]) decimator+=1 imsize = gray.shape return allCorners,allIds,imsize def calibrate_camera(self,allCorners,allIds,imsize): """ Calibrates the camera using the dected corners. """ print("CAMERA CALIBRATION") cameraMatrixInit = np.array([[ 1000., 0., imsize[0]/2.], [ 0., 1000., imsize[1]/2.], [ 0., 0., 1.]]) distCoeffsInit = np.zeros((5,1)) flags = (cv2.CALIB_USE_INTRINSIC_GUESS + cv2.CALIB_RATIONAL_MODEL + cv2.CALIB_FIX_ASPECT_RATIO) #flags = (cv2.CALIB_RATIONAL_MODEL) (ret, camera_matrix, distortion_coefficients0, rotation_vectors, translation_vectors, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors) = cv2.aruco.calibrateCameraCharucoExtended( charucoCorners=allCorners, charucoIds=allIds, board=self.board, imageSize=imsize, cameraMatrix=cameraMatrixInit, distCoeffs=distCoeffsInit, flags=flags, criteria=(cv2.TERM_CRITERIA_EPS & cv2.TERM_CRITERIA_COUNT, 10000, 1e-9)) return ret, camera_matrix, distortion_coefficients0, rotation_vectors, translation_vectors if __name__ == '__main__': calbrate = calibrate() ret, mtx, dist, rvecs, tvecs = calbrate.get() ``` #### File: Guidance_system/guidance_sys/pid.py ```python import time # This section of code was written by <NAME> in 2015. # Copyright (C) 2015 Ivmech Mechatronics Ltd. <<EMAIL>> # IvPID is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # IvPID is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. or https://github.com/ivmech/ivPID #title :pid.py #description :python pid controller #author :<NAME>, modified by Ping-Chun @2020 #date :20151218 #version :0.1 #notes : #python_version :2.7 #dependencies : matplotlib, numpy, scipy # The code is modified by <NAME> in 2020. #============================================================================== class PID: """ PID Controller """ def __init__(self, P=0.2, I=0.0, D=0.0, current_time=None): self.Kp = P self.Ki = I self.Kd = D self.sample_time = 0.00 self.current_time = current_time if current_time is not None else time.time() self.last_time = self.current_time self.SetPoint = 0.0 self.clear() def clear(self): """Clears PID computations and coefficients""" self.PTerm = 0.0 self.ITerm = 0.0 self.DTerm = 0.0 self.last_error = 0.0 # Windup Guard self.int_error = 0.0 self.windup_guard = 20.0 self.output = 0.0 def update(self, feedback_value, current_time=None): """Calculates PID value for given reference feedback .. math:: u(t) = K_p e(t) + K_i \int_{0}^{t} e(t)dt + K_d {de}/{dt} .. figure:: images/pid_1.png :align: center Test PID with Kp=1.2, Ki=1, Kd=0.001 (test_pid.py) """ error = self.SetPoint - feedback_value self.current_time = current_time if current_time is not None else time.time() delta_time = self.current_time - self.last_time delta_error = error - self.last_error if (delta_time >= self.sample_time): self.PTerm = self.Kp * error self.ITerm += error * delta_time if (self.ITerm < -self.windup_guard): self.ITerm = -self.windup_guard elif (self.ITerm > self.windup_guard): self.ITerm = self.windup_guard self.DTerm = 0.0 if delta_time > 0: self.DTerm = delta_error / delta_time # Remember last time and last error for next calculation self.last_time = self.current_time self.last_error = error self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm) def setKp(self, proportional_gain): """Determines how aggressively the PID reacts to the current error with setting Proportional Gain""" self.Kp = proportional_gain def setKi(self, integral_gain): """Determines how aggressively the PID reacts to the current error with setting Integral Gain""" self.Ki = integral_gain def setKd(self, derivative_gain): """Determines how aggressively the PID reacts to the current error with setting Derivative Gain""" self.Kd = derivative_gain def setWindup(self, windup): """Integral windup, also known as integrator windup or reset windup, refers to the situation in a PID feedback controller where a large change in setpoint occurs (say a positive change) and the integral terms accumulates a significant error during the rise (windup), thus overshooting and continuing to increase as this accumulated error is unwound (offset by errors in the other direction). The specific problem is the excess overshooting. """ self.windup_guard = windup def setSampleTime(self, sample_time): """PID that should be updated at a regular interval. Based on a pre-determined sampe time, the PID decides if it should compute or return immediately. """ self.sample_time = sample_time ``` #### File: src/Guidance_system/main.py ```python import guidance_sys import numpy as np import cv2, os from cv2 import aruco import matplotlib.pyplot as plt import matplotlib as mpl import pandas as pd from picamera.array import PiRGBArray from picamera import PiCamera import time import serial ternimal_UART= False try: os.system("sudo chmod a+rw /dev/serial0") ser = serial.Serial('/dev/serial0', 9600, timeout=1) ser.flush() print("open the Serial0") ternimal_UART =True except: print("Can't open Serial dev pls add bash command: sudo chmod a+rw /dev/serial0") import RPi.GPIO as GPIO from time import sleep io_pin=[17,27,22,5,23,24,25,6] GPIO.setmode(GPIO.BCM) for pin in io_pin: GPIO.setup(pin, GPIO.OUT) w = 640 h = 480 frame_rate = 32 def open_UART_port(): try: os.system("sudo chmod a+rw /dev/serial0") ser = serial.Serial('/dev/serial0', 9600, timeout=1) ser.flush() print("open the Serial0") ternimal_UART =True except: print("Can't open Serial dev pls add bash command: sudo chmod a+rw /dev/serial0") if __name__ == '__main__': #calbrate = guidance_sys.calibrate() #ret, mtx, dist, rvecs, tvecs = calbrate.get() open_UART_port() #initail raspberry pi camera p_camera = guidance_sys.camera(w=w,h=h,framerate=frame_rate) image_process = guidance_sys.process() print("Start") #for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_0port=True): for frame in p_camera.video_stream(): start= time.time() time_used = time.time() image_process.update(frame) #image_process.draw() for io,pin in zip(image_process.IO_Mapping(),io_pin): GPIO.output(pin,int(io)) time_used=time.time() -start image_process.string_out = f"Time use: {round(time_used,3)}\n\n" #image_process.string_out = f"{round(time_used,4)}" image_process.sendmessage() if ternimal_UART: ser.write(image_process.sendmessage()) else: image_process.sendmessage() try: os.system("sudo chmod a+rw /dev/serial0") ser = serial.Serial('/dev/serial0', 9600, timeout=1) ser.flush() print("open the Serial0") ternimal_UART =True except: print("Can't open Serial dev pls add bash command: sudo chmod a+rw /dev/serial0") print(image_process.terminal_UART) #cv2.imshow("Frame", image) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # clear the stream in preparation for the next frame p_camera.rawCapture.truncate(0) ```
{ "source": "JosephVC/Python_PDF_OCR", "score": 3 }
#### File: Python_PDF_OCR/tests/test_ocr.py ```python from pathlib import Path import pytest from alterpdf import pdf_to_image # test cases for altering pdfs # test whether the pdf_to_image module actually works def test_pdf_to_image(): pdf_to_image.convert('-p', '../sample_pdfs/meetingminutes.pdf') # run something through pdf_to_image and check if it's there assert Path('../output_images/output1.jpg').is_file def test_ocr_image_exists(): pass def image_made_to_pdf(): pass ```
{ "source": "josephverron/sonar-extractor", "score": 3 }
#### File: sonar-extractor/authentication/__init__.py ```python import os from getpass import getpass, getuser from typing import Tuple def export_auth(login_file, login, password): with open(login_file, "w") as file: file.write(login + "\n") file.write(password + "\n") def import_auth(login_file): with open(login_file, "r") as file: login, password, *_ = file.readlines() return login.strip(), password.strip() def ask_auth(): default_login = getuser() login = input("Please input your login [default:{}] : ".format(default_login)) or default_login password = getpass("Please input your password : ") return login, password def persist_auth(key: str, login_password: Tuple[str, str]): login_file = os.path.expanduser("~/{}.auth.txt".format(key)) if login_password: login, password = <PASSWORD> export_auth(login_file, login, password) return login, password elif os.path.isfile(login_file): return import_auth(login_file) else: login, password = ask_auth() export_auth(login_file, login, password) return login, password ```
{ "source": "joseph-v/SIM", "score": 2 }
#### File: api/v1/masking_views.py ```python from delfin import db from delfin.api import api_utils from delfin.api.common import wsgi from delfin.api.views import masking_views class MaskingViewController(wsgi.Controller): def __init__(self): super(MaskingViewController, self).__init__() self.search_options = ['name', 'id', 'storage_id', 'native_storage_host_group_id', 'native_storage_port_group_id', 'native_storage_volume_group_id', 'native_storage_host_id', 'native_volume_id', 'native_masking_view_id'] def _get_masking_view_search_options(self): """Return masking view search options allowed .""" return self.search_options def show(self, req, id): ctxt = req.environ['delfin.context'] query_params = {"storage_id": id} query_params.update(req.GET) # Update options other than filters sort_keys, sort_dirs = api_utils.get_sort_params(query_params) marker, limit, offset = api_utils.get_pagination_params(query_params) # Strip out options except supported search options api_utils.remove_invalid_options( ctxt, query_params, self._get_masking_view_search_options()) masking_view_lists = db.masking_views_get_all(ctxt, marker, limit, sort_keys, sort_dirs, query_params, offset) return masking_views.build_masking_views(masking_view_lists) def create_resource(): return wsgi.Resource(MaskingViewController()) ``` #### File: hpe/hpe_3par/hpe_3parstor.py ```python import six from oslo_log import log from delfin import context from delfin.common import constants from delfin.drivers import driver from delfin.drivers.hpe.hpe_3par import alert_handler, consts from delfin.drivers.hpe.hpe_3par import component_handler from delfin.drivers.hpe.hpe_3par import rest_handler from delfin.drivers.hpe.hpe_3par import ssh_handler from delfin.drivers.utils.rest_client import RestClient LOG = log.getLogger(__name__) # Hpe3parStor Driver class Hpe3parStorDriver(driver.StorageDriver): """Hpe3parStorDriver implement Hpe 3par Stor driver, """ def __init__(self, **kwargs): super().__init__(**kwargs) self.rest_client = RestClient(**kwargs) self.rest_client.verify = kwargs.get('verify', False) self.rest_handler = rest_handler.RestHandler(self.rest_client) self.rest_handler.login() self.ssh_handler = ssh_handler.SSHHandler(**kwargs) self.version = self.ssh_handler.login(context) self.comhandler = component_handler.ComponentHandler( rest_handler=self.rest_handler, ssh_handler=self.ssh_handler) self.alert_handler = alert_handler.AlertHandler( rest_handler=self.rest_handler, ssh_handler=self.ssh_handler) def reset_connection(self, context, **kwargs): try: self.rest_handler.logout() except Exception as e: LOG.warning('logout failed when resetting connection, ' 'reason is %s' % six.text_type(e)) self.rest_client.verify = kwargs.get('verify', False) self.rest_handler.login() def close_connection(self): self.rest_handler.logout() def get_storage(self, context): return self.comhandler.get_storage(context) def list_storage_pools(self, context): self.comhandler.set_storage_id(self.storage_id) return self.comhandler.list_storage_pools(context) def list_volumes(self, context): self.comhandler.set_storage_id(self.storage_id) return self.comhandler.list_volumes(context) def list_controllers(self, context): return self.comhandler.list_controllers(self.storage_id) def list_ports(self, context): return self.comhandler.list_ports(self.storage_id) def list_disks(self, context): return self.comhandler.list_disks(self.storage_id) def list_alerts(self, context, query_para=None): return self.alert_handler.list_alerts(context, query_para) def add_trap_config(self, context, trap_config): pass def remove_trap_config(self, context, trap_config): pass @staticmethod def parse_alert(context, alert): return alert_handler.AlertHandler().parse_alert(context, alert) def clear_alert(self, context, alert): return self.alert_handler.clear_alert(context, alert) def list_storage_host_initiators(self, context): return self.comhandler.list_storage_host_initiators(self.storage_id) def list_storage_hosts(self, context): return self.comhandler.list_storage_hosts(self.storage_id) def collect_perf_metrics(self, context, storage_id, resource_metrics, start_time, end_time): return self.comhandler.collect_perf_metrics(storage_id, resource_metrics, start_time, end_time) @staticmethod def get_capabilities(context, filters=None): """Get capability of supported driver""" return { 'is_historic': True, 'resource_metrics': { constants.ResourceType.STORAGE_POOL: consts.POOL_CAP, constants.ResourceType.VOLUME: consts.VOLUME_CAP, constants.ResourceType.PORT: consts.PORT_CAP, constants.ResourceType.DISK: consts.DISK_CAP } } def get_latest_perf_timestamp(self, context): return self.comhandler.get_latest_perf_timestamp() def list_storage_host_groups(self, context): return self.comhandler.list_storage_host_groups(self.storage_id) def list_port_groups(self, context): return self.comhandler.list_port_groups(self.storage_id) def list_volume_groups(self, context): return self.comhandler.list_volume_groups(self.storage_id) def list_masking_views(self, context): return self.comhandler.list_masking_views(self.storage_id) ``` #### File: pure/flasharray/rest_handler.py ```python import six from oslo_log import log as logging from delfin import exception, cryptor from delfin.drivers.pure.flasharray import consts from delfin.drivers.utils.rest_client import RestClient LOG = logging.getLogger(__name__) class RestHandler(RestClient): REST_STORAGE_URL = '/api/1.17/array?space=true' REST_ARRAY_URL = '/api/1.17/array' REST_VOLUME_URL = '/api/1.17/volume?space=true&limit=500&token=' \ 'aWQgPSA5ODA1Mg==' REST_VOLUME_TOKEN_URL = '/api/1.17/volume?space=true&limit=20&token=' REST_PORT_URL = '/api/1.17/port' REST_NETWORK_URL = '/api/1.17/network' REST_DISK_URL = '/api/1.17/drive' REST_HARDWARE_URL = '/api/1.17/hardware' REST_CONTROLLERS_URL = '/api/1.17/array?controllers=true' REST_ALERTS_URL = '/api/1.17/message?flagged=true&open=true' REST_AUTH_URL = '/api/1.17/auth/apitoken' REST_SESSION_URL = '/api/1.17/auth/session' REST_HOST_URL = '/api/1.17/host' REST_HOST_PERSONALITY_URL = '/api/1.17/host?personality=true' REST_HOST_CONNECT_URL = '/api/1.17/host?connect=true' REST_HGROUP_CONNECT_URL = '/api/1.17/hgroup?connect=true' REST_HGROUP_URL = '/api/1.17/hgroup' REST_VOLUME_GROUP_URL = '/api/1.17/vgroup' def __init__(self, **kwargs): super(RestHandler, self).__init__(**kwargs) def login(self): try: data = {'username': self.rest_username, 'password': <PASSWORD>( self.rest_password)} self.init_http_head() token_res = self.do_call(RestHandler.REST_AUTH_URL, data, method='POST') if token_res.json().get('msg') == consts.LOGIN_PASSWORD_ERR: LOG.error("Login error, Obtaining the token is abnormal. " "status_code:%s, URL: %s", token_res.status_code, RestHandler.REST_AUTH_URL) raise exception.InvalidUsernameOrPassword( 'Obtaining the token is abnormal') if token_res.status_code != consts.SUCCESS_STATUS_CODE or not \ token_res.json().get('api_token'): LOG.error("Login error, Obtaining the token is abnormal. " "status_code:%s, URL: %s", token_res.status_code, RestHandler.REST_AUTH_URL) raise exception.StorageBackendException( 'Obtaining the token is abnormal') session_res = self.do_call(RestHandler.REST_SESSION_URL, token_res.json(), method='POST') if session_res.status_code != consts.SUCCESS_STATUS_CODE or not \ session_res.json().get('username'): LOG.error("Login error, Obtaining the session is abnormal." "status_code:%s, URL: %s", session_res.status_code, RestHandler.REST_SESSION_URL) raise exception.StorageBackendException( 'Obtaining the session is abnormal.') except Exception as e: LOG.error("Login error: %s", six.text_type(e)) raise e finally: data = None token_res = None def logout(self): res = self.do_call(RestHandler.REST_SESSION_URL, None, method='DELETE') if res.status_code != consts.SUCCESS_STATUS_CODE\ or not res.json().get('username'): LOG.error("Logout error, Deleting a Token Exception." "status_code:%s, URL: %s", res.status_code, RestHandler.REST_SESSION_URL) raise exception.StorageBackendException(res.text) def rest_call(self, url, data=None, method='GET'): result_json = None res = self.do_call(url, data, method) if res.status_code == consts.SUCCESS_STATUS_CODE: result_json = res.json() elif res.status_code == consts.PERMISSION_DENIED_STATUS_CODE: self.login() the_second_time_res = self.do_call(url, data, method) if the_second_time_res.status_code == consts.SUCCESS_STATUS_CODE: result_json = the_second_time_res.json() return result_json def get_volumes(self, url=REST_VOLUME_URL, data=None, volume_list=None, count=consts.DEFAULT_COUNT_GET_VOLUMES_INFO): if volume_list is None: volume_list = [] res = self.do_call(url, data, 'GET') if res.status_code == consts.SUCCESS_STATUS_CODE: result_json = res.json() volume_list.extend(result_json) next_token = res.headers.get(consts.CUSTOM_TOKEN) if next_token: url = '%s%s' % (RestHandler.REST_VOLUME_TOKEN_URL, next_token) self.get_volumes(url, data, volume_list) elif res.status_code == consts.PERMISSION_DENIED_STATUS_CODE: self.login() if count < consts.RE_LOGIN_TIMES: count = count + consts.CONSTANT_ONE self.get_volumes(url, data, volume_list, count) return volume_list ``` #### File: vnx/vnx_block/test_vnx_block.py ```python import sys import time from unittest import TestCase, mock from delfin.drivers.dell_emc.vnx.vnx_block import consts from delfin.drivers.dell_emc.vnx.vnx_block.alert_handler import AlertHandler from delfin.drivers.utils.tools import Tools sys.modules['delfin.cryptor'] = mock.Mock() from delfin import context from delfin.drivers.dell_emc.vnx.vnx_block.navi_handler import NaviHandler from delfin.drivers.dell_emc.vnx.vnx_block.navicli_client import NaviClient from delfin.drivers.dell_emc.vnx.vnx_block.vnx_block import VnxBlockStorDriver ACCESS_INFO = { "storage_id": "12345", "vendor": "dell_emc", "model": "vnx_block", "cli": { "host": "172.16.58.3", "port": 22, "username": "user", "password": "<PASSWORD>=" } } AGENT_INFOS = """ Agent Rev: 7.33.1 (0.38) Name: K10 Desc: Revision: 05.33.000.5.038 Model: VNX5400 Serial No: CETV00000001 """ DOMAIN_INFOS = """ Node: APM00011111111 IP Address: 172.16.31.10 (Master) Name: CX300I_33_55 Port: 80 Secure Port: 443 IP Address: 172.16.17.32 Name: CX300I_33_44 Port: 80 Secure Port: 443 """ DISK_INFOS = """ Bus 0 Enclosure 0 Disk 0 State: Enabled Capacity: 54969 """ POOL_INFOS = """ Pool Name: Pool 1 Pool ID: 1 Description: State: Offline Status: Storage Pool requires recovery. service provider(0x712d8518) User Capacity (GBs): 8583.732 Consumed Capacity (GBs): 8479.780 Available Capacity (GBs): 103.953 Total Subscribed Capacity (GBs): 8479.780 """ RAID_INFOS = """ RaidGroup ID: 0 RaidGroup State: Valid_luns Raw Capacity (Blocks): 1688426496 Logical Capacity (Blocks): 1688420352 Free Capacity (Blocks,non-contiguous): 522260480 """ LUN_INFOS = """ LOGICAL UNIT NUMBER 239 Name: sun_data_VNX_2 User Capacity (GBs): 9.000 Consumed Capacity (GBs): 1.753 Pool Name: Migration_pool Current State: Ready Status: OK(0x0) Is Thin LUN: Yes Is Compressed: No """ GET_ALL_LUN_INFOS = """ LOGICAL UNIT NUMBER 186 Name LN_10G_01 RAIDGroup ID: 1 State: Bound LUN Capacity(Megabytes): 10240 Is Thin LUN: YES """ CER_INFOS = """ ----------------------------- Subject:CN=TrustedRoot,C=US,ST=MA,L=Hopkinton,EMAIL=<EMAIL>,OU=CSP,O=RSA Issuer:1.1.1.1 Serial#: 00d8280b0c863f6d4e Valid From: 20090407135111Z Valid To: 20190405135111Z ----------------------------- Subject:CN=TrustedRoot,C=US,ST=MA,L=Hopkinton,EMAIL=<EMAIL>,OU=CSP,O=RSA Issuer:172.16.58.3 Serial#: 00d8280b0c863f6d4e Valid From: 20090407135111Z Valid To: 20190405135111Z """ DISK_DATAS = """ Bus 0 Enclosure 0 Disk 0 Vendor Id: HITACHI Product Id: HUC10906 CLAR600 Product Revision: C430 Type: 193: RAID5 129: RAID5 146: RAID5 151: RAID5 State: Enabled Hot Spare: N/A Serial Number: KSJEX35J Capacity: 549691 Raid Group ID: 0 Drive Type: SAS Current Speed: 6Gbps """ SP_DATAS = """ SP A Cabinet: DPE9 Signature For The SP: 3600485 Signature For The Peer SP: 3600424 Revision Number For The SP: 05.33.000.5.038 Serial Number For The SP: CF2Z7134700101 Memory Size For The SP: 16384 SP SCSI ID if Available: 0 SP B Cabinet: DPE9 Signature For The SP: 3600424 Signature For The Peer SP: 3600485 Revision Number For The SP: 05.33.000.5.038 Serial Number For The SP: CF2Z7134700040 Memory Size For The SP: 16384 SP SCSI ID if Available: 0 """ RESUME_DATAS = """ Storage Processor A CPU Module EMC Serial Number: CF2Z7134700101 Assembly Name: JFSP 1.8GHZ 4C CPU GEN3 Storage Processor B CPU Module EMC Serial Number: CF2Z7134700040 Assembly Name: JFSP 1.8GHZ 4C CPU GEN3 """ PORT_DATAS = """ Information about each SPPORT: SP Name: SP A SP Port ID: 6 SP UID: 50:06:01:60:88:60:24:1E:50:06:01:66:08:60:24:1E Link Status: Up Port Status: Online Switch Present: YES Switch UID: 10:00:C4:F5:7C:20:05:80:20:0E:C4:F5:7C:20:05:80 SP Source ID: 1773056 ALPA Value: 0 Speed Value : 8Gbps Auto Negotiable : YES Available Speeds: 2Gbps 4Gbps 8Gbps Auto Requested Value: Auto MAC Address: Not Applicable SFP State: Online Reads: 510068560 Writes: 331050079 Blocks Read: 1504646456 Blocks Written: 236376118 Queue Full/Busy: 12246 I/O Module Slot: 3 Physical Port ID: 0 """ BUS_PORT_DATAS = """ Bus 0 Current Speed: 6Gbps. Available Speeds: 3Gbps. 6Gbps. SPA SFP State: N/A SPB SFP State: N/A I/O Module Slot: Base Module Physical Port ID: 0 Port Combination In Use: No SPA Connector State: None SPB Connector State: None """ BUS_PORT_STATE_DATAS = """ Information about each I/O module(s) on SPA: SP ID: A I/O Module Slot: Base Module I/O Module Type: SAS I/O Module State: Present I/O Module Substate: Good I/O Module Power state: On I/O Carrier: No Information about each port on this I/O module: Physical Port ID: 0 Port State: Enabled Physical Port ID: 1 Port State: Missing Information about each I/O module(s) on SPB: SP ID: B I/O Module Slot: Base Module I/O Module Type: SAS I/O Module State: Present I/O Module Substate: Good I/O Module Power state: On I/O Carrier: No Information about each port on this I/O module: Physical Port ID: 0 Port State: Enabled Physical Port ID: 1 Port State: Missing """ ISCSI_PORT_DATAS = """ SP: A Port ID: 4 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.a4 iSCSI Alias: 0877.a4 IP Address: 172.20.1.140 Subnet Mask: 255.255.255.0 Gateway Address: 172.20.1.1 Initiator Authentication: Not Available SP: A Port ID: 5 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.a5 iSCSI Alias: 0877.a5 SP: A Port ID: 6 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.a6 iSCSI Alias: 0877.a6 IP Address: 172.20.2.140 Subnet Mask: 255.255.255.0 Gateway Address: 172.20.2.1 Initiator Authentication: Not Available SP: A Port ID: 7 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.a7 iSCSI Alias: 0877.a7 SP: B Port ID: 4 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.b4 iSCSI Alias: 0877.b4 IP Address: 172.20.1.141 Subnet Mask: 255.255.255.0 Gateway Address: 172.20.1.1 Initiator Authentication: Not Available SP: B Port ID: 5 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.b5 iSCSI Alias: 0877.b5 SP: B Port ID: 6 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.b6 iSCSI Alias: 0877.b6 IP Address: 172.20.2.141 Subnet Mask: 255.255.255.0 Gateway Address: 172.20.2.1 Initiator Authentication: Not Available SP: B Port ID: 7 Port WWN: iqn.1992-04.com.emc:cx.apm00093300877.b7 iSCSI Alias: 0877.b7 SP: B Port ID: 9 Port WWN: fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:50:06:01:69:3B:24:13:0D iSCSI Alias: N/A IP Address: N/A Subnet Mask: N/A Gateway Address: N/A Initiator Authentication: N/A SP: A Port ID: 8 Port WWN: fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:50:06:01:60:3B:24:13:0D iSCSI Alias: N/A IP Address: N/A Subnet Mask: N/A Gateway Address: N/A Initiator Authentication: N/A SP: A Port ID: 9 Port WWN: fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:50:06:01:61:3B:24:13:0D iSCSI Alias: N/A IP Address: N/A Subnet Mask: N/A Gateway Address: N/A Initiator Authentication: N/A SP: B Port ID: 8 Port WWN: 50:06:01:60:BB:20:13:0D:50:06:01:68:3B:24:13:0D iSCSI Alias: N/A IP Address: N/A Subnet Mask: N/A Gateway Address: N/A Initiator Authentication: N/A """ IO_PORT_CONFIG_DATAS = """ SP ID : A I/O Module Slot : 3 I/O Module Type : Fibre Channel I/O Module State : Present SP ID : A I/O Module Slot : Base Module I/O Module Type : SAS SP ID : B I/O Module Slot : Base Module I/O Module Type : SAS """ VIEW_DATAS = """ Storage Group Name: AIX_PowerHA_node2 Storage Group UID: fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b:90:2B:00:60:16:63 HBA/SP Pairs: HBA UID SP Name SPPort ------- ------- ------ fdf8:f53e:61e4::18:10:00:00:00:C9:76:5E:79 SP A 6 Host name: AIX_21 fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b:10:00:00:00:C9:75:80:4C SP B 3 Host name: AIX_21 HLU/ALU Pairs: HLU Number ALU Number ---------- ---------- 1 335 Shareable: YES """ HBA_DATAS = """ Information about each HBA: HBA UID: fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:10:00:00:00:C9:9B:57:79 Server Name: aix_ma Server IP Address: 172.16.17.32 HBA Model Description: HBA Vendor Description: HBA Device Driver Name: N/A Information about each port of this HBA: SP Name: SP A SP Port ID: 6 HBA Devicename: N/A Trusted: NO Logged In: NO Defined: YES Initiator Type: 3 StorageGroup Name: None """ AGENT_RESULT = { 'agent_rev': '7.33.1 (0.38)', 'name': 'K10', 'desc': '', 'revision': '05.33.000.5.038', 'model': 'VNX5400', 'serial_no': 'CETV00000001' } STORAGE_RESULT = { 'name': 'APM00011111111', 'vendor': 'DELL EMC', 'model': 'VNX5400', 'status': 'normal', 'serial_number': 'CETV00000001', 'firmware_version': '05.33.000.5.038', 'total_capacity': 10081183274631, 'raw_capacity': 57639174144, 'used_capacity': 9702168298782, 'free_capacity': 379016049590 } DOMAIN_RESULT = [ { 'node': 'APM00011111111', 'ip_address': '172.16.31.10', 'master': 'True', 'name': 'CX300I_33_55', 'port': '80', 'secure_port': '443' }] POOLS_RESULT = [ { 'name': 'Pool 1', 'storage_id': '12345', 'native_storage_pool_id': '1', 'description': '', 'status': 'offline', 'storage_type': 'block', 'total_capacity': 9216712054407, 'subscribed_capacity': 9105094444318, 'used_capacity': 9105094444318, 'free_capacity': 111618683830 }] RAID_RESULT = [ { 'raidgroup_id': '0', 'raidgroup_state': 'Valid_luns', 'raw_capacity_blocks': '1688426496', 'logical_capacity_blocks': '1688420352', 'free_capacity_blocks,non-contiguous': '522260480' }] ALL_LUN_RESULT = [ { 'logical_unit_number': '186', 'name': 'LN_10G_01', 'raidgroup_id': '1', 'state': 'Bound', 'lun_capacitymegabytes': '10240', 'is_thin_lun': 'YES' }] POOLS_ANALYSE_RESULT = [{ 'pool_name': 'Pool 1', 'pool_id': '1', 'description': '', 'state': 'Offline', 'status': 'Storage Pool requires recovery. service provider(0x712d8518)', 'user_capacity_gbs': '8583.732', 'consumed_capacity_gbs': '8479.780', 'available_capacity_gbs': '103.953', 'total_subscribed_capacity_gbs': '8479.780' }] VOLUMES_RESULT = [ { 'name': 'sun_data_VNX_2', 'storage_id': '12345', 'status': 'normal', 'native_volume_id': '239', 'native_storage_pool_id': '', 'type': 'thin', 'total_capacity': 9663676416, 'used_capacity': 1882269417, 'free_capacity': 7781406998, 'compressed': False, 'wwn': None }] ALERTS_RESULT = [ { 'alert_id': '0x76cc', 'alert_name': 'Navisphere Agent, version 7.33', 'severity': 'Critical', 'category': 'Fault', 'type': 'EquipmentAlarm', 'occur_time': 1585114217000, 'description': 'Navisphere Agent, version 7.33', 'resource_type': 'Storage', 'match_key': '<KEY>' }] ALERT_RESULT = { 'alert_id': '0x761f', 'alert_name': 'Unisphere can no longer manage', 'severity': 'Critical', 'category': 'Fault', 'type': 'EquipmentAlarm', 'occur_time': 1614310456716, 'description': 'Unisphere can no longer manage', 'resource_type': 'Storage', 'match_key': '8e97fe0af779d78bad8f2de52e15c65c' } DISK_RESULT = [ { 'name': 'Bus 0 Enclosure 0 Disk 0', 'storage_id': '12345', 'native_disk_id': 'Bus0Enclosure0Disk0', 'serial_number': 'KSJEX35J', 'manufacturer': 'HITACHI', 'model': 'HUC10906 CLAR600', 'firmware': 'C430', 'speed': None, 'capacity': 576392790016, 'status': 'normal', 'physical_type': 'sas', 'logical_type': 'unknown', 'health_score': None, 'native_disk_group_id': None, 'location': 'Bus 0 Enclosure 0 Disk 0' }] SP_RESULT = [ { 'name': 'SP A', 'storage_id': '12345', 'native_controller_id': '3600485', 'status': 'normal', 'location': None, 'soft_version': '05.33.000.5.038', 'cpu_info': 'JFSP 1.8GHZ 4C CPU GEN3', 'memory_size': '17179869184' }, { 'name': 'SP B', 'storage_id': '12345', 'native_controller_id': '3600424', 'status': None, 'location': None, 'soft_version': '05.33.000.5.038', 'cpu_info': 'JFSP 1.8GHZ 4C CPU GEN3', 'memory_size': '16777216' }] PORT_RESULT = [ { 'name': 'A-6', 'storage_id': '12345', 'native_port_id': 'A-6', 'location': 'Slot A3,Port 0', 'connection_status': 'connected', 'health_status': 'normal', 'type': 'fc', 'logical_type': None, 'speed': 8000000000, 'max_speed': 8000000000, 'native_parent_id': None, 'wwn': '50:06:01:60:88:60:24:1E:50:06:01:66:08:60:24:1E', 'mac_address': None, 'ipv4': '172.20.2.140', 'ipv4_mask': '255.255.255.0', 'ipv6': None, 'ipv6_mask': None }] VIEW_RESULT = [ { 'native_masking_view_id': 'fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b:90:2B:00:' '60:16:63_AIX_21_335', 'name': 'AIX_PowerHA_node2', 'storage_id': '12345', 'native_storage_host_id': 'AIX_21', 'native_volume_id': '335' }] INITIATOR_RESULT = [ { 'name': 'fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:10:00:00:00:C9:9B:57:79', 'storage_id': '12345', 'native_storage_host_initiator_id': '20:00:00:00:C9:9B:57:79:10:' '00:00:00:C9:9B:57:79', 'wwn': 'fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:10:00:00:00:C9:9B:57:79', 'type': 'fc', 'status': 'online', 'native_storage_host_id': 'aix_ma' }] HOST_RESULT = [ { 'name': 'aix_ma', 'storage_id': '12345', 'native_storage_host_id': 'aix_ma', 'os_type': 'Unknown', 'status': 'normal', 'ip_address': '172.16.17.32' }] def create_driver(): NaviHandler.login = mock.Mock(return_value={"05.33.000.5.038_test"}) return VnxBlockStorDriver(**ACCESS_INFO) class TestVnxBlocktorageDriver(TestCase): driver = create_driver() def test_init(self): NaviHandler.login = mock.Mock(return_value="05.33.000.5.038_test") vnx = VnxBlockStorDriver(**ACCESS_INFO) self.assertEqual(vnx.version, "05.33.000.5.038_test") def test_get_storage(self): NaviClient.exec = mock.Mock( side_effect=[DOMAIN_INFOS, AGENT_INFOS, DISK_INFOS, POOL_INFOS, RAID_INFOS]) storage = self.driver.get_storage(context) self.assertDictEqual(storage, STORAGE_RESULT) def test_get_pools(self): NaviClient.exec = mock.Mock(side_effect=[POOL_INFOS, RAID_INFOS]) pools = self.driver.list_storage_pools(context) self.assertDictEqual(pools[0], POOLS_RESULT[0]) def test_get_volumes(self): NaviClient.exec = mock.Mock( side_effect=[LUN_INFOS, POOL_INFOS, GET_ALL_LUN_INFOS]) volumes = self.driver.list_volumes(context) self.assertDictEqual(volumes[0], VOLUMES_RESULT[0]) def test_get_alerts(self): with self.assertRaises(Exception) as exc: self.driver.list_alerts(context, None) self.assertIn('Driver API list_alerts() is not Implemented', str(exc.exception)) def test_parse_alert(self): alert = { '1.3.6.1.6.3.1.1.4.1.0': '1.3.6.1.4.1.1981.0.6', '1.3.6.1.4.1.1981.1.4.3': 'A-CETV00000001', '1.3.6.1.4.1.1981.1.4.4': 'K10', '1.3.6.1.4.1.1981.1.4.5': '761f', '1.3.6.1.4.1.1981.1.4.6': 'Unisphere can no longer manage', '1.3.6.1.4.1.1981.1.4.7': 'VNX5400' } alert = self.driver.parse_alert(context, alert) ALERT_RESULT['occur_time'] = alert['occur_time'] self.assertDictEqual(alert, ALERT_RESULT) def test_cli_res_to_dict(self): navi_handler = NaviHandler(**ACCESS_INFO) agent_re = navi_handler.cli_res_to_dict(AGENT_INFOS) self.assertDictEqual(agent_re, AGENT_RESULT) def test_cli_res_to_list(self): navi_handler = NaviHandler(**ACCESS_INFO) re_list = navi_handler.cli_res_to_list(POOL_INFOS) self.assertDictEqual(re_list[0], POOLS_ANALYSE_RESULT[0]) def test_cli_domain_to_dict(self): navi_handler = NaviHandler(**ACCESS_INFO) re_list = navi_handler.cli_domain_to_dict(DOMAIN_INFOS) self.assertDictEqual(re_list[0], DOMAIN_RESULT[0]) def test_cli_lun_to_list(self): navi_handler = NaviHandler(**ACCESS_INFO) re_list = navi_handler.cli_lun_to_list(GET_ALL_LUN_INFOS) self.assertDictEqual(re_list[0], ALL_LUN_RESULT[0]) @mock.patch.object(NaviClient, 'exec') def test_init_cli(self, mock_exec): mock_exec.return_value = 'test' navi_handler = NaviHandler(**ACCESS_INFO) re = navi_handler.navi_exe('abc') self.assertEqual(re, 'test') self.assertEqual(mock_exec.call_count, 1) @mock.patch.object(NaviClient, 'exec') def test_remove_cer(self, mock_exec): navi_handler = NaviHandler(**ACCESS_INFO) navi_handler.remove_cer() self.assertEqual(mock_exec.call_count, 1) def test_err_cli_res_to_dict(self): with self.assertRaises(Exception) as exc: navi_handler = NaviHandler(**ACCESS_INFO) navi_handler.cli_res_to_dict({}) self.assertIn('arrange resource info error', str(exc.exception)) def test_err_cli_res_to_list(self): with self.assertRaises(Exception) as exc: navi_handler = NaviHandler(**ACCESS_INFO) navi_handler.cli_res_to_list({}) self.assertIn('cli resource to list error', str(exc.exception)) @mock.patch.object(time, 'mktime') def test_time_str_to_timestamp(self, mock_mktime): tools = Tools() time_str = '03/26/2021 14:25:36' mock_mktime.return_value = 1616739936 re = tools.time_str_to_timestamp(time_str, consts.TIME_PATTERN) self.assertEqual(1616739936000, re) @mock.patch.object(time, 'strftime') def test_timestamp_to_time_str(self, mock_strftime): tools = Tools() mock_strftime.return_value = '03/26/2021 14:25:36' timestamp = 1616739936000 re = tools.timestamp_to_time_str(timestamp, consts.TIME_PATTERN) self.assertEqual('03/26/2021 14:25:36', re) def test_cli_exec(self): with self.assertRaises(Exception) as exc: command_str = 'abc' NaviClient.exec(command_str) self.assertIn('Component naviseccli could not be found', str(exc.exception)) def test_analyse_cer(self): re_map = { '1.1.1.1': { 'subject': 'CN=TrustedRoot,C=US,ST=MA,L=Hopkinton,' 'EMAIL=<EMAIL>,OU=CSP,O=RSA', 'issuer': '1.1.1.1', 'serial#': '00d8280b0c863f6d4e', 'valid_from': '20090407135111Z', 'valid_to': '20190405135111Z' } } navi_handler = NaviHandler(**ACCESS_INFO) cer_map = navi_handler.analyse_cer(CER_INFOS, host_ip='1.1.1.1') self.assertDictEqual(cer_map, re_map) def test_analyse_cer_exception(self): with self.assertRaises(Exception) as exc: navi_handler = NaviHandler(**ACCESS_INFO) navi_handler.analyse_cer(CER_INFOS) self.assertIn('arrange cer info error', str(exc.exception)) def test_get_resources_info_exception(self): with self.assertRaises(Exception) as exc: NaviClient.exec = mock.Mock(side_effect=[LUN_INFOS]) navi_handler = NaviHandler(**ACCESS_INFO) navi_handler.get_resources_info('abc', None) self.assertIn('object is not callable', str(exc.exception)) def test_parse_alert_exception(self): with self.assertRaises(Exception) as exc: AlertHandler.parse_alert(None) self.assertIn('The results are invalid', str(exc.exception)) def test_clear_alert(self): self.driver.clear_alert(None, None) def test_remove_trap_config(self): self.driver.remove_trap_config(None, None) def test_get_disks(self): NaviClient.exec = mock.Mock(return_value=DISK_DATAS) disks = self.driver.list_disks(context) self.assertDictEqual(disks[0], DISK_RESULT[0]) def test_get_controllers(self): NaviClient.exec = mock.Mock(side_effect=[SP_DATAS, RESUME_DATAS]) controllers = self.driver.list_controllers(context) self.assertDictEqual(controllers[0], SP_RESULT[0]) def test_get_ports(self): NaviClient.exec = mock.Mock( side_effect=[IO_PORT_CONFIG_DATAS, ISCSI_PORT_DATAS, PORT_DATAS, BUS_PORT_DATAS, BUS_PORT_STATE_DATAS]) ports = self.driver.list_ports(context) self.assertDictEqual(ports[0], PORT_RESULT[0]) def test_get_masking_views(self): NaviClient.exec = mock.Mock(side_effect=[VIEW_DATAS]) views = self.driver.list_masking_views(context) self.assertDictEqual(views[0], VIEW_RESULT[0]) def test_get_initiators(self): NaviClient.exec = mock.Mock(side_effect=[HBA_DATAS, IO_PORT_CONFIG_DATAS, ISCSI_PORT_DATAS, PORT_DATAS, BUS_PORT_DATAS, BUS_PORT_STATE_DATAS]) initiators = self.driver.list_storage_host_initiators(context) self.assertDictEqual(initiators[0], INITIATOR_RESULT[0]) def test_get_hosts(self): NaviClient.exec = mock.Mock(side_effect=[HBA_DATAS]) hosts = self.driver.list_storage_hosts(context) self.assertDictEqual(hosts[0], HOST_RESULT[0]) ``` #### File: hpe/hpe_3par/test_hpe_3parstor.py ```python import sys from unittest import TestCase, mock import paramiko from delfin.common import constants sys.modules['delfin.cryptor'] = mock.Mock() from delfin import exception from delfin import context from delfin.drivers.hpe.hpe_3par.hpe_3parstor import Hpe3parStorDriver from delfin.drivers.hpe.hpe_3par.alert_handler import AlertHandler from delfin.drivers.hpe.hpe_3par.rest_handler import RestHandler from delfin.drivers.hpe.hpe_3par.ssh_handler import SSHHandler from delfin.drivers.utils.rest_client import RestClient from delfin.drivers.utils.ssh_client import SSHPool from requests import Session class Request: def __init__(self): self.environ = {'delfin.context': context.RequestContext()} pass ACCESS_INFO = { "storage_id": "12345", "vendor": "hpe", "model": "3par", "rest": { "host": "10.0.0.1", "port": 8443, "username": "user", "password": "<PASSWORD>=" }, "ssh": { "host": "192.168.3.11", "port": 22, "username": "user", "password": "<PASSWORD>=" } } NODE_DATAS = """ Control Data Cache Node --Name--- -State-- Master IC SLED LED Mem(MB) Mem(MB) Available(%) 0 1307327-0 Degraded Yes Yes unknown AmberBlnk 4096 6144 0 1 1307327-1 Degraded No Yes unknown AmberBlnk 4096 6144 0 """ NODE_CPU_DATAS = """ ----------------------------CPUs---------------------------- Node CPU -Manufacturer- -Serial- CPUSpeed(MHz) BusSpeed(MHz) 0 0 GenuineIntel -- 2327 1334.57 0 1 GenuineIntel -- 2327 1334.57 0 2 GenuineIntel -- 2327 1334.57 0 3 GenuineIntel -- 2327 1334.57 1 0 GenuineIntel -- 2327 1332.19 1 1 GenuineIntel -- 2327 1332.19 1 2 GenuineIntel -- 2327 1332.19 1 3 GenuineIntel -- 2327 1332.19 """ NODE_VERSION = """ Node: 0 -------- System serial: 1000183 BIOS version: 4.8.34 OS version: 192.168.3.11 Reset reason: Unknown Node: 1 -------- BIOS version: 4.8.34 OS version: 192.168.3.11 Reset reason: Unknown """ DISK_DATAS = """ ---Size(MB)--- ----Ports---- Id CagePos Type RPM State Total Free A B Cap(GB) 0 0:14:0 FC 15 degraded 571904 83968 0:2:2* ----- 600 1 0:1:0 FC 15 degraded 571904 62720 0:2:2* ----- 600 ----------------------------------------------------------------- 16 total 9150464 912896 """ DISK_I_DATAS = """ Id CagePos State Node_WWN MFR Model Serial FW_Rev Protocol MediaType AdminTime 0 0:14:0 degraded WWN11 MFR111 Model11 Serial111 FW_Rev111 Pl MT1 600 1 0:1:0 degraded WWN22 MFR2222 Model22 Serial222 FW_Rev222 P2 MT2 600 """ PORT_DATAS = """ N:S:P Mode State -Node_WWN- -Port_WWN/HW_Addr- Type Protocol Label Ptner FState 0:0:1 target ready 2FF70002AC001C9F 20010002AC001C9F host FC - 1:0:1 none 0:0:2 target loss_sync 2FF70002AC001C9F 20020002AC001C9F free FC - - - 0:2:2 target loss_sync 2FF70002AC001C9F 20020002AC001C9F free FC - - - 0:6:1 target loss_sync 2FF70002AC001C9F 20020002AC001C9F free FC - - - -------------------------------------------------------------------------- 18 """ PORT_I_DATAS = """ N:S:P Brand Model Rev Firmware Serial HWType 0:0:1 LSI 9205-8e 01 17.11.00.00 SP12430085 SAS 0:0:2 LSI 9205-8e 01 17.11.00.00 SP12430085 FC 0:1:1 QLOGIC QLE2672 02 8.1.1 RFE1228G50820 FC 0:1:2 QLOGIC QLE2672 02 8.1.1 RFE1228G50820 FC 0:2:1 QLOGIC QLE8242 58 4.15.2 PCGLTX0RC1G3PX CNA """ PORT_PER_DATAS = """ N:S:P Connmode ConnType CfgRate MaxRate Class2 UniqNodeWwn VCN Il TMWO SSAN 0:0:1 disk point 6Gbps 6Gbps n/a n/a n/a enabled n/a n/a 0:0:2 disk point 6Gbps 6Gbps n/a n/a n/a enabled n/a n/a 0:1:1 host point auto 16Gbps disabled disabled disabled enabled disabled n/a 0:1:2 host point auto 16Gbps disabled disabled disabled enabled disabled n/a """ PORT_ISCSI_DATAS = """ N:S:P State IPAddr Netmask/PrefixLen Gateway TPGT MTU Rate iAddr iPort ST VLAN 0:2:1 ready fc00:db20:35b:7399::5 64 :: 21 1500 10Gbps :: 3205 21 Y 0:2:2 ready 10.99.1.3 255.255.255.0 0.0.0.0 22 1500 10Gbps 0.0.0.0 3205 22 Y """ PORT_RCIP_DATAS = """ N:S:P State ---HwAddr--- IPAddr Netmask Gateway MTU Rate Duplex AutoNeg 0:6:1 loss_sync 0002AC684AAD 10.11.35.10 255.255.0.0 10.11.0.1 900 n/a n/a n/a 1:6:1 offline 0002AC6A3A0F - - - - n/a n/a n/a ----------------------------------------------------------------------------- 2 """ PORT_C_DATAS = """ N:S:P Mode Device Pos Config Topology Rate Cls Mode_change 0:0:1 target RedHat_196 0 valid fabric 8Gbps 3 allowed RedHat_196 0 valid fabric 8Gbps 3 allowe 0:0:2 target Dorado5000V3_F1 0 valid fabric 8Gbps 3 allowed Dorado5000V3_F1 0 valid fabric 8Gbps 3 allowed -------------------------------------------------------------------------- 108 """ POOL_DATAS = ret = { "total": 12, "members": [ { "id": 0, "uuid": "aa43f218-d3dd-4626-948f-8a160b0eac1d", "name": "Lcltest333", "numFPVVs": 21, "numTPVVs": 25, "UsrUsage": { "totalMiB": 1381504, "rawTotalMiB": 1842004, "usedMiB": 1376128, "rawUsedMiB": 712703 }, "SAUsage": { "totalMiB": 140800, "rawTotalMiB": 422400, "usedMiB": 5120, "rawUsedMiB": 15360 }, "SDUsage": { "totalMiB": 388736, "rawTotalMiB": 518315, "usedMiB": 0, "rawUsedMiB": 0 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 4, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 1, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "cpg_Migration1", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 2, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "cpg_Oracle", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 3, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "cpg_filesystem", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 4, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "cpg_test", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 5, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "fs_cpg", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 6, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "ljn2", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 7, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "ljn4_xiuGai", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 8, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "ljn_330", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 9, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "xulin_cpg1", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 10, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "zyz", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 11, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "22", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] } ] } POOL_METRICS_DATAS = { "sampleTime": "2020-03-01T03:50:00+08:00", "sampleTimeSec": 1583005800, "total": 2, "members": [ { "name": "22", "IO": { "read": 0, "write": 0, "total": 10 }, "KBytes": { "read": 0, "write": 0, "total": 0 }, "serviceTimeMS": { "read": 0, "write": 0, "total": 0 }, "IOSizeKB": { "read": 0, "write": 0, "total": 0 }, "queueLength": 0, "busyPct": 0 }, { "name": "Lcltest333", "IO": { "read": 0, "write": 0, "total": 20 }, "KBytes": { "read": 0, "write": 0, "total": 0 }, "serviceTimeMS": { "read": 0, "write": 0, "total": 0 }, "IOSizeKB": { "read": 0, "write": 0, "total": 0 }, "queueLength": 0, "busyPct": 0 } ] } PORT_METRICS_DATAS = """ Time: 2021-07-14 14:10:00 CST (1626243000) ----IO/s----- ---KBytes/s---- ----Svct ms----- -IOSz KBytes- PORT_N PORT_S PORT_P Rd Wr Tot Rd Wr Tot Rd Wr Tot Rd Wr Tot QLen AvgBusy% 0 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0 0.0 0 1 1 0.0 14.3 14.3 0.0 86.4 86.4 0.00 11.52 11.52 0.0 6.1 6.1 1 11.9 ---------------------------------------------------------------------------- 2 7.6 31.4 39.0 0.6 192.0 192.6 0.00 12.34 9.93 0.1 6.2 5.0 1 3.0 """ DISK_METRICS_DATAS = """ Time: 2021-07-14 15:35:00 CST (1626248100) ----IO/s----- ---KBytes/s---- ----Svct ms----- -IOSz KBytes- PDID Rd Wr Tot Rd Wr Tot Rd Wr Tot Rd Wr Tot QLen AvgBusy% 0 0.0 0.5 0.5 0.0 4.9 4.9 0.00 3.04 3.04 0.0 10.0 10.0 0 0.1 1 0.0 1.6 1.6 0.0 10.2 10.2 0.00 0.89 0.89 0.0 6.3 6.3 0 0.1 ------------------------------------------------------------------------------- 2 0.0 31.4 31.4 0.0 191.4 191.4 0.00 11.98 11.98 0.0 6.2 6.2 0 1.5 """ VOLUME_METRICS_DATAS = """ Time: 2021-07-14 14:10:00 CST (1626243000) ----IO/s----- ---KBytes/s---- ----Svct ms----- -IOSz KBytes- VVID VV_NAME Rd Wr Tot Rd Wr Tot Rd Wr Tot Rd Wr Tot QLen AvgBusy% 0 srdata 0.0 1.0 2.0 3.0 11.0 22.0 33.00 111.00 222.00 333.0 0.0 0.0 0 0.0 1 admin 0.0 14.3 14.3 0.0 86.4 86.4 0.00 11.52 11.52 0.0 6.1 6.1 1 11.9 ---------------------------------------------------------------------------- 2 7.6 31.4 39.0 0.6 192.0 192.6 0.00 12.34 9.93 0.1 6.2 5.0 1 3.0 """ HOST_GROUP_DATAS = """ Id Name Members Comment 194 HostSet_VMware Host_ESXi6.5_125 -- 229 HostSet_Suse11_Oracle Host_Suse11_172.16.17.32 -- 257 HostGroup_ESX6.0 ESX6.0_192.168.127.12 -- ESX6.0_172.16.58.3 264 HostSet_Win2016_WSFC RH2288V5_Win2016_node2 -- RH2288V5_Win2016_node1 266 HostSet_Win2012_WSFC RH2285_Win2012_wsfc1 -- Rh2285_Win2012_wsfc2 268 HostSet_AIX Host_AIX_172.16.58.3 -- 270 HostSet_Suse11 Host_Suse11_172.16.31.10 -- 274 Suse11sp4_150 litng138.150 -- ----------------------------------------------------------- 32 total 28 """ HOST_ID_DATAS = """ Id Name Persona -WWN/iSCSI_Name- Port IP_addr 175 Host_ESXi6.5_125 Generic 2408244427906812 --- n/a 54 Doradov3_lm Generic 2418244427906812 --- n/a 57 AIX_wenbin AIX-legacy 10000000C9E74BCC --- n/a 65 SKY-ESXI60 Generic 2100001B321BE0FF --- n/a 65 SKY-ESXI60 Generic 2101001B323BE0FF --- n/a 67 zouming Generic 2012E4A8B6B0A1CC --- n/a 67 zouming Generic 2002E4A8B6B0A1CC --- n/a 68 powerpath Generic 21000024FF36D406 --- n/a 68 powerpath Generic 21000024FF36D407 --- n/a 69 power_v3 Generic 20809CE37435D845 --- n/a 69 power_v3 Generic 20909CE37435D845 --- n/a 89 vplex_meta_important Generic 5000144280292012 0:1:2 n/a 89 vplex_meta_important Generic 5000144280292010 0:1:2 n/a 89 vplex_meta_important Generic 5000144290292012 1:1:2 n/a 89 vplex_meta_important Generic 500014429029E910 1:1:2 n/a 89 vplex_meta_important Generic 500014429029E912 1:1:2 n/a 89 vplex_meta_important Generic 500014428029E912 1:1:2 n/a 89 vplex_meta_important Generic 500014428029E910 1:1:2 n/a 89 vplex_meta_important Generic 5000144290292010 1:1:2 n/a 89 vplex_meta_important Generic 5000144290292012 0:1:2 n/a 89 vplex_meta_important Generic 5000144290292010 0:1:2 n/a 89 vplex_meta_important Generic 500014429029E912 0:1:2 n/a 89 vplex_meta_important Generic 500014429029E910 0:1:2 n/a 89 vplex_meta_important Generic 5000144280292012 1:1:2 n/a 89 vplex_meta_important Generic 5000144280292010 1:1:2 n/a 89 vplex_meta_important Generic 500014428029E912 0:1:2 n/a 89 vplex_meta_important Generic 500014428029E910 0:1:2 n/a 91 Dorado5000_51.45 Generic 200080D4A58EA53A --- n/a 91 Dorado5000_51.45 Generic 201080D4A58EA53A --- n/a 98 AIX6.1_LN AIX-legacy 10000000C9781C57 --- n/a 98 AIX6.1_LN AIX-legacy 10000000C9781853 --- n/a 115 huhuihost Generic 2100000E1E1A9B30 --- n/a 121 Dorado5000V3_F3 Generic 201880D4A58EA53A --- n/a 160 host002 Generic 21000024FF41DCF8 --- n/a -- -- -- 21000024FF41DCF7 1:0:2 n/a -- -- -- 21000024FF41DCF6 1:0:2 n/a -- -- -- 21000024FF0CC6CA 0:1:2 n/a -- -- -- 21000024FF0CC6CA 1:1:2 n/a -- -- -- 21000024FF0CBF47 0:1:2 n/a -- -- -- 21000024FF0CBF47 1:1:2 n/a """ VOLUME_GROUP_DATAS = """ Id Name Members Comment 91 wcj_2 wcj_2.0 -- wcj_2.1 wcj_2.2 wcj_2.3 110 HP-Esxi-LUNSet -- -- 124 zhangjun -- -- 126 wcj_1 wcj_1.1 -- 127 wcj_3 wcj_3.0 -- wcj_3.1 128 IBM_SVC -- -- 129 zyz_3parF200_ zyz_3parF200.0 -- zyz_3parF200.1 zyz_3parF200.2 zyz_3parF200.3 130 zyz zyz_2 -- 131 tx -- -- 132 tx9 -- -- 133 wcj_hp_1 -- -- 136 AIX_YG_WYK_LUN AIX_YG_WYK_LUN.0 -- AIX_YG_WYK_LUN.1 AIX_YG_WYK_LUN.2 AIX_YG_WYK_LUN.3 140 st11 -- -- 146 Solaris_lun_group Solaris_LUN1_13G -- solaris_LUN_2_33G 147 wcj_vplex wcj_vplex.0 -- ----------------------------------------------------------- 32 total 28 """ VOLUME_ID_DATAS = """ Id Name Prov Type CopyOf BsId Rd -Detailed_State- Adm Snp Usr VSize 4836 wcj_2.0 tpvv base --- 4836 RW normal 256 512 512 5120 4798 zyz_2 tpvv base --- 4836 RW normal 256 512 512 5120 4797 wcj_3.1 tpvv base --- 4836 RW normal 256 512 512 5120 666 yytest_vv_001 tpvv base --- 4836 RW normal 256 512 512 5120 ------------------------------------------------------------------------ 409 total 51072 158720 3279488 18186240 """ HOST_DATAS = [ { "total": 38, "members": [ { "id": 54, "name": "Doradov3_lm", "descriptors": { "location": "U9-3-B17R_B7", "IPAddr": "192.168.127.12", "os": "ESXI6.0", "model": "RH2288H V3" }, "FCPaths": [ { "wwn": "2408244427906812", "hostSpeed": 0 }, { "wwn": "2418244427906812", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 57, "name": "AIX_wenbin", "FCPaths": [ { "wwn": "10000000C9E74BCC", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 5, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 65, "name": "SKY-ESXI60", "descriptors": { "location": "U9-3-B17R_B7", "IPAddr": "192.168.127.12", "os": "ESXI6.0", "model": "RH2288H V3" }, "FCPaths": [ { "wwn": "2100001B321BE0FF", "hostSpeed": 0 }, { "wwn": "2101001B323BE0FF", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 67, "name": "zouming", "FCPaths": [ { "wwn": "2012E4A8B6B0A1CC", "hostSpeed": 0 }, { "wwn": "2002E4A8B6B0A1CC", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 68, "name": "powerpath", "FCPaths": [ { "wwn": "21000024FF36D406", "hostSpeed": 0 }, { "wwn": "21000024FF36D407", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 69, "name": "power_v3", "FCPaths": [ { "wwn": "20809CE37435D845", "hostSpeed": 0 }, { "wwn": "20909CE37435D845", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 89, "name": "vplex_meta_important", "FCPaths": [ { "wwn": "5000144280292012", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144280292010", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144290292012", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014429029E910", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014429029E912", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014428029E912", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014428029E910", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144290292010", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144290292012", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144290292010", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014429029E912", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014429029E910", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144280292012", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "5000144280292010", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014428029E912", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "500014428029E910", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 91, "name": "Dorado5000_51.45", "FCPaths": [ { "wwn": "200080D4A58EA53A", "hostSpeed": 0 }, { "wwn": "201080D4A58EA53A", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 98, "name": "AIX6.1_LN", "descriptors": { "os": "AIX" }, "FCPaths": [ { "wwn": "10000000C9781C57", "hostSpeed": 0 }, { "wwn": "10000000C9781853", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 5, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 115, "name": "huhuihost", "descriptors": { "os": "SuSE" }, "FCPaths": [ { "wwn": "2100000E1E1A9B30", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 121, "name": "Dorado5000V3_F3", "descriptors": { "os": "Red Hat Enterprise Linux" }, "FCPaths": [ { "wwn": "201880D4A58EA53A", "hostSpeed": 0 }, { "wwn": "200380D4A58EA53A", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 122, "name": "DYP_RHEL", "descriptors": { "IPAddr": "172.16.31.10", "os": "Red Hat Enterprise Linux" }, "FCPaths": [ { "wwn": "10000090FA76D446", "hostSpeed": 0 }, { "wwn": "10000090FA76D447", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 123, "name": "DYP_Dorado6000", "FCPaths": [ { "wwn": "2618346AC212FB94", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 124, "name": "tool_rhel6.8", "FCPaths": [ { "wwn": "21000024FF543687", "hostSpeed": 0 }, { "wwn": "21000024FF543686", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 125, "name": "OceanStor6800", "FCPaths": [ { "wwn": "2430E0979656725A", "hostSpeed": 0 }, { "wwn": "2208E0979656725A", "hostSpeed": 0 }, { "wwn": "2218E0979656725A", "hostSpeed": 0 }, { "wwn": "2428E0979656725A", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 126, "name": "fyc_test", "FCPaths": [ { "wwn": "21000024FF41DE7E", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 127, "name": "huhui", "descriptors": { "os": "SuSE" }, "FCPaths": [ { "wwn": "500601610864241E", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 132, "name": "ESX172.16.58.3", "descriptors": { "os": "ESX 4.x/5.x" }, "FCPaths": [ { "wwn": "21000024FF2F3266", "hostSpeed": 0 }, { "wwn": "21000024FF2F3267", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 8, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 133, "name": "ESX89PT_suse_172.16.31.10", "descriptors": { "os": "SuSE" }, "FCPaths": [ { "wwn": "21000024FF36F1ED", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 134, "name": "SVC", "descriptors": { "os": "Exanet" }, "FCPaths": [ { "wwn": "500507680110EF7C", "hostSpeed": 0 }, { "wwn": "500507680120EF7C", "hostSpeed": 0 }, { "wwn": "500507680120EF3E", "hostSpeed": 0 }, { "wwn": "500507680110EF3E", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 3, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 135, "name": "NSS_172.16.31.10", "descriptors": { "os": "Red Hat Enterprise Linux" }, "FCPaths": [ { "wwn": "21000024FF0DC381", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 137, "name": "D185_172.16.31.10", "descriptors": { "os": "Red Hat Enterprise Linux" }, "FCPaths": [ { "wwn": "29A11603042D0306", "hostSpeed": 0 }, { "wwn": "28D01603042D0306", "hostSpeed": 0 }, { "wwn": "2903010203040509", "hostSpeed": 0 }, { "wwn": "2802010203040509", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 139, "name": "Dorado3000V6", "FCPaths": [ { "wwn": "2019CC64A68314D3", "hostSpeed": 0 }, { "wwn": "2009CC64A68314D3", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 141, "name": "172.16.31.10T2", "FCPaths": [ { "wwn": "10000090FA50C4DF", "hostSpeed": 0 }, { "wwn": "10000090FA50C4DE", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 142, "name": "172.16.31.10T1", "FCPaths": [], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 144, "name": "C61_51.10.58.190", "descriptors": { "os": "Red Hat Enterprise Linux" }, "FCPaths": [ { "wwn": "2210112224901223", "hostSpeed": 0 }, { "wwn": "2200112224901223", "hostSpeed": 0 }, { "wwn": "2230112224901223", "hostSpeed": 0 }, { "wwn": "2220112224901223", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 145, "name": "172.16.31.10", "FCPaths": [ { "wwn": "21000024FF754606", "hostSpeed": 0 }, { "wwn": "21000024FF1A99E1", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 146, "name": "ZTY_win2012", "descriptors": { "os": "Windows 2012" }, "FCPaths": [ { "wwn": "21000024FF40272B", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "21000024FF40272A", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 2, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 147, "name": "DoradoV6_183", "FCPaths": [ { "wwn": "240B121314151617", "hostSpeed": 0 }, { "wwn": "2409121314151617", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 148, "name": "rhev_125", "descriptors": { "os": "Windows 2012" }, "FCPaths": [ { "wwn": "21000024FF4BC1B7", "hostSpeed": 0 }, { "wwn": "21000024FF4BC1B6", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 2, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 150, "name": "windows2012_68", "descriptors": { "os": "Windows 2012" }, "FCPaths": [ { "wwn": "2101001B32B0667A", "hostSpeed": 0 }, { "wwn": "2100001B3290667A", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 2, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 151, "name": "Dorado5000V6_80", "FCPaths": [ { "wwn": "2001183D5E0F5131", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "2011183D5E0F5131", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 152, "name": "windows2012_60", "descriptors": { "os": "Windows 2012" }, "FCPaths": [ { "wwn": "21000024FF53B4BC", "hostSpeed": 0 }, { "wwn": "21000024FF53B4BD", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 2, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 153, "name": "aix_192.168.3.11", "descriptors": { "os": "AIX" }, "FCPaths": [ { "wwn": "10000000C975804C", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "10000000C9765E79", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 5, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 154, "name": "Dorado5500_V6_109", "descriptors": { "IPAddr": "192.168.127.12", "os": "Windows 2012" }, "FCPaths": [ { "wwn": "221818022D189653", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "220818022D189653", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 2, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 155, "name": "aix134.205", "descriptors": { "IPAddr": "192.168.127.12", "os": "AIX" }, "FCPaths": [ { "wwn": "20000000C9781C81", "hostSpeed": 0 }, { "wwn": "10000000C9781C0C", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 5, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "id": 158, "name": "hsv6", "FCPaths": [ { "wwn": "28130A2B304438A8", "hostSpeed": 0 }, { "wwn": "28120A2B304438A8", "hostSpeed": 0 }, { "wwn": "28F20A2B304438A8", "hostSpeed": 0 }, { "wwn": "28F30A2B304438A8", "hostSpeed": 0 } ], "iSCSIPaths": [], "persona": 1, "initiatorChapEnabled": False, "targetChapEnabled": False }, { "FCPaths": [ { "wwn": "21000024FF41DCF7", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "21000024FF41DCF6", "portPos": { "node": 1, "slot": 0, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "21000024FF0CC6CA", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "21000024FF0CC6CA", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "21000024FF0CBF47", "portPos": { "node": 0, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 }, { "wwn": "21000024FF0CBF47", "portPos": { "node": 1, "slot": 1, "cardPort": 2 }, "hostSpeed": 0 } ], "iSCSIPaths": [], "initiatorChapEnabled": False, "targetChapEnabled": False } ] } ] VIEW_DATAS = """ Lun VVName HostName -Host_WWN/iSCSI_Name- Port Type 2 yytest_vv_001 host002 ---------------- 0:2:1 host 0 set:vvset001 set:hostset111 ---------------- 1:2:1 host set -------------------------------------------------------------------- 2 total """ CONTROLLER_RESULT = [ { 'name': '1307327-0', 'storage_id': '12345', 'native_controller_id': '0', 'status': 'degraded', 'location': None, 'soft_version': '3.2.2.204', 'cpu_info': '4 * 2327 MHz', 'memory_size': '10737418240' }] DISK_RESULT = [ { 'name': '0:14:0', 'storage_id': '12345', 'native_disk_id': '0', 'serial_number': 'Serial111', 'manufacturer': 'MFR111', 'model': 'Model11', 'firmware': 'FW_Rev111', 'speed': 15000, 'capacity': 599684808704, 'status': 'degraded', 'physical_type': 'fc', 'logical_type': None, 'health_score': None, 'native_disk_group_id': None, 'location': '0:14:0' }] PORT_RESULT = [ { 'name': '0:0:1', 'storage_id': '12345', 'native_port_id': '0:0:1', 'location': '0:0:1', 'connection_status': 'connected', 'health_status': 'normal', 'type': 'sas', 'logical_type': None, 'speed': 8000000000, 'max_speed': 6000000000, 'native_parent_id': None, 'wwn': '20010002AC001C9F', 'mac_address': None, 'ipv4': None, 'ipv4_mask': None, 'ipv6': None, 'ipv6_mask': None }] METRICS_RESULT = [ constants.metric_struct(name='iops', labels={ 'storage_id': '12345', 'resource_type': 'storagePool', 'resource_id': '11', 'type': 'RAW', 'unit': 'IOPS'}, values={1583005800000: 10} ), constants.metric_struct(name='iops', labels={ 'storage_id': '12345', 'resource_type': 'volume', 'resource_id': '0', 'type': 'RAW', 'unit': 'IOPS'}, values={1626243000000: 2.0} ), constants.metric_struct(name='iops', labels={ 'storage_id': '12345', 'resource_type': 'port', 'resource_id': '0:0:1', 'type': 'RAW', 'unit': 'IOPS' }, values={1626243000000: 0.0} ), constants.metric_struct(name='iops', labels={ 'storage_id': '12345', 'resource_type': 'disk', 'resource_id': '0', 'type': 'RAW', 'unit': 'IOPS' }, values={1626248100000: 0.5} ), ] HOST_GROUP_RESULT = [ { 'name': 'HostSet_VMware', 'description': '', 'storage_id': '12345', 'native_storage_host_group_id': '194' }] VOLUME_GROUP_RESULT = [ { 'name': 'wcj_2', 'description': '', 'storage_id': '12345', 'native_volume_group_id': '91' }] PORT_GROUP_RESULT = [ { 'name': 'port_group_0:2:1', 'description': 'port_group_0:2:1', 'storage_id': '12345', 'native_port_group_id': 'port_group_0:2:1' }] HOST_RESULT = [ { 'name': 'Doradov3_lm', 'description': None, 'storage_id': '12345', 'native_storage_host_id': 54, 'os_type': 'VMware ESX', 'status': 'normal', 'ip_address': '192.168.127.12' }] INITIATOR_RESULT = [ { 'name': '2408244427906812', 'storage_id': '12345', 'native_storage_host_initiator_id': '2408244427906812', 'wwn': '2408244427906812', 'type': 'fc', 'status': 'online', 'native_storage_host_id': '175' }] VIEW_RESULT = [ { 'native_masking_view_id': '2_0:2:1_host002_yytest_vv_001', 'name': '2', 'storage_id': '12345', 'native_port_group_id': 'port_group_0:2:1', 'native_volume_id': '666', 'native_storage_host_id': '160' }] def create_driver(): kwargs = ACCESS_INFO SSHHandler.login = mock.Mock( return_value={"result": "success", "reason": "null"}) m = mock.MagicMock(status_code=201) with mock.patch.object(Session, 'post', return_value=m): m.raise_for_status.return_value = 201 m.json.return_value = { 'key': 'deviceid123ABC456' } return Hpe3parStorDriver(**kwargs) class TestHpe3parStorageDriver(TestCase): def test_a_init(self): kwargs = ACCESS_INFO SSHHandler.login = mock.Mock( return_value={""}) RestHandler.login = mock.Mock( return_value={""}) Hpe3parStorDriver(**kwargs) def test_b_initrest(self): m = mock.MagicMock() with mock.patch.object(Session, 'post', return_value=m): m.raise_for_status.return_value = 201 m.json.return_value = { 'key': '1&2F28CA9FC1EA0B8EAB80E9D8FD' } kwargs = ACCESS_INFO rc = RestClient(**kwargs) RestHandler(rc) def test_d_get_storage(self): driver = create_driver() expected = { 'name': 'hp3parf200', 'vendor': 'HPE', 'model': 'InServ F200', 'status': 'abnormal', 'serial_number': '1307327', 'firmware_version': '3.1.2.484', 'location': None, 'total_capacity': 7793486594048, 'raw_capacity': 9594956939264, 'used_capacity': 6087847706624, 'free_capacity': 1705638887424 } ret = { "id": 7327, "name": "hp3parf200", "systemVersion": "3.1.2.484", "IPv4Addr": "172.16.17.32", "model": "InServ F200", "serialNumber": "1307327", "totalNodes": 2, "masterNode": 0, "onlineNodes": [ 0, 1 ], "clusterNodes": [ 0, 1 ], "chunkletSizeMiB": 256, "totalCapacityMiB": 9150464, "allocatedCapacityMiB": 5805824, "freeCapacityMiB": 1626624, "failedCapacityMiB": 1718016, "timeZone": "Asia/Shanghai" } RestHandler.get_capacity = mock.Mock( return_value={ "allCapacity": { "totalMiB": 9150464, "allocated": { "system": { "totalSystemMiB": 1232384, "internalMiB": 303104, "spareMiB": 929280, "spareUsedMiB": 307456, "spareUnusedMiB": 621824 } } } } ) health_state = 'PDs that are degraded' SSHHandler.get_health_state = mock.Mock(return_value=health_state) m = mock.MagicMock(status_code=200) with mock.patch.object(RestHandler, 'call', return_value=m): m.raise_for_status.return_value = 200 m.json.return_value = ret storage = driver.get_storage(context) self.assertDictEqual(storage, expected) def test_e_list_storage_pools(self): driver = create_driver() expected = [ { 'name': 'test', 'storage_id': '12345', 'native_storage_pool_id': '0', 'description': 'Hpe 3par CPG:test', 'status': 'normal', 'storage_type': 'block', 'total_capacity': 2003870679040, 'subscribed_capacity': 2917892358144, 'used_capacity': 1448343502848, 'free_capacity': 555527176192 }, { 'name': 'cxd', 'storage_id': '12345', 'native_storage_pool_id': '1', 'description': 'Hpe 3par CPG:cxd', 'status': 'normal', 'storage_type': 'block', 'total_capacity': 1744025157632, 'subscribed_capacity': 2200095948800, 'used_capacity': 1696512081920, 'free_capacity': 47513075712 } ] ret = [ { "total": 2, "members": [ { "id": 0, "uuid": "aa43f218-d3dd-4626-948f-8a160b0eac1d", "name": "test", "numFPVVs": 21, "numTPVVs": 25, "UsrUsage": { "totalMiB": 1381504, "rawTotalMiB": 1842004, "usedMiB": 1376128, "rawUsedMiB": 712703 }, "SAUsage": { "totalMiB": 140800, "rawTotalMiB": 422400, "usedMiB": 5120, "rawUsedMiB": 15360 }, "SDUsage": { "totalMiB": 388736, "rawTotalMiB": 518315, "usedMiB": 0, "rawUsedMiB": 0 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 4, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] }, { "id": 1, "uuid": "c392910e-7648-4972-b594-47dd3d28f3ec", "name": "cxd", "numFPVVs": 14, "numTPVVs": 319, "UsrUsage": { "totalMiB": 1418752, "rawTotalMiB": 1702500, "usedMiB": 1417984, "rawUsedMiB": 568934 }, "SAUsage": { "totalMiB": 56832, "rawTotalMiB": 170496, "usedMiB": 42752, "rawUsedMiB": 128256 }, "SDUsage": { "totalMiB": 187648, "rawTotalMiB": 225179, "usedMiB": 157184, "rawUsedMiB": 188620 }, "SAGrowth": { "incrementMiB": 8192, "LDLayout": { "HA": 3, "diskPatterns": [ { "diskType": 1 } ] } }, "SDGrowth": { "incrementMiB": 32768, "LDLayout": { "RAIDType": 3, "HA": 3, "setSize": 6, "chunkletPosPref": 1, "diskPatterns": [ { "diskType": 1 } ] } }, "state": 1, "failedStates": [], "degradedStates": [], "additionalStates": [] } ] } ] with mock.patch.object(RestHandler, 'get_resinfo_call', side_effect=ret): pools = driver.list_storage_pools(context) self.assertDictEqual(pools[0], expected[0]) self.assertDictEqual(pools[1], expected[1]) with mock.patch.object(RestHandler, 'get_all_pools', side_effect=exception.DelfinException): with self.assertRaises(Exception) as exc: driver.list_storage_pools(context) self.assertIn('An unknown exception occurred', str(exc.exception)) def test_f_list_volumes(self): driver = create_driver() expected = [{ 'name': 'admin', 'storage_id': '12345', 'description': None, 'status': 'normal', 'native_volume_id': '0', 'native_storage_pool_id': '', 'wwn': '50002AC000001C9F', 'type': 'thick', 'total_capacity': 10737418240, 'used_capacity': 10737418240, 'free_capacity': 0, 'compressed': True, 'deduplicated': True }] ret = [{ "members": [{ "id": 0, "name": "admin", "provisioningType": 1, "copyType": 1, "baseId": 0, "readOnly": False, "state": 1, "userSpace": { "reservedMiB": 10240, "rawReservedMiB": 20480, "usedMiB": 10240, "freeMiB": 0 }, "sizeMiB": 10240, "wwn": "50002AC000001C9F" }] }] pool_ret = { "members": [{ "id": 0, "uuid": "aa43f218-d3dd-4626-948f-8a160b0eac1d", "name": "test" }] } RestHandler.get_all_pools = mock.Mock(return_value=pool_ret) with mock.patch.object(RestHandler, 'get_resinfo_call', side_effect=ret): volumes = driver.list_volumes(context) self.assertDictEqual(volumes[0], expected[0]) def test_h_parse_alert(self): """ Success flow with all necessary parameters""" driver = create_driver() alert = { 'sysUpTime': '1399844806', 'snmpTrapOID': 'alertNotify', '1.3.6.1.4.1.12925.1.7.1.5.1': 'test_trap', '1.3.6.1.4.1.12925.1.7.1.6.1': 'This is a test trap', 'nodeID': '0', '1.3.6.1.4.1.12925.1.7.1.2.1': '6', '1.3.6.1.4.1.12925.1.7.1.3.1': 'test time', '1.3.6.1.4.1.12925.1.7.1.7.1': '89', '1.3.6.1.4.1.12925.1.7.1.8.1': '2555934', '1.3.6.1.4.1.12925.1.7.1.9.1': '5', 'serialNumber': '1307327', 'transport_address': '172.16.17.32', 'storage_id': '1c094309-70f2-4da3-ac47-e87cc1492ad5' } expected_alert_model = { 'alert_id': '0x027001e', 'alert_name': 'CPG growth non admin limit', 'severity': 'NotSpecified', 'category': 'Recovery', 'type': 'EquipmentAlarm', 'sequence_number': '89', 'description': 'This is a test trap', 'resource_type': 'Storage', 'location': 'test_trap', 'occur_time': '', 'clear_category': 'Automatic' } context = {} alert_model = driver.parse_alert(context, alert) # Verify that all other fields are matching self.assertDictEqual(expected_alert_model, alert_model) def test_list_alert(self): """ Success flow with all necessary parameters""" driver = create_driver() alert = """ Id : 1 State : New MessageCode : 0x2200de Time : 2015-07-17 20:14:29 PDT Severity : Degraded Type : Component state change Message : Node 0, Power Supply 1, Battery 0 Degraded Component: 172.16.17.32 """ expected_alert = [{ 'alert_id': '0x2200de', 'alert_name': 'Component state change', 'severity': 'Warning', 'category': 'Fault', 'type': 'EquipmentAlarm', 'sequence_number': '1', 'occur_time': 1437135269000, 'description': 'Node 0, Power Supply 1, Battery 0 Degraded', 'resource_type': 'Storage', 'location': '172.16.17.32' }] SSHHandler.get_all_alerts = mock.Mock(return_value=alert) alert_list = driver.list_alerts(context, None) expected_alert[0]['occur_time'] = alert_list[0]['occur_time'] self.assertDictEqual(alert_list[0], expected_alert[0]) @mock.patch.object(AlertHandler, 'clear_alert') def test_clear_alert(self, mock_clear_alert): driver = create_driver() alert_id = '230584300921369' driver.clear_alert(context, alert_id) self.assertEqual(mock_clear_alert.call_count, 1) def test_get_controllers(self): driver = create_driver() SSHPool.get = mock.Mock(return_value={paramiko.SSHClient()}) SSHPool.do_exec = mock.Mock( side_effect=[NODE_DATAS, NODE_CPU_DATAS, NODE_VERSION]) controllers = driver.list_controllers(context) self.assertDictEqual(controllers[0], CONTROLLER_RESULT[0]) def test_get_disks(self): driver = create_driver() SSHPool.do_exec = mock.Mock(side_effect=[DISK_DATAS, DISK_I_DATAS]) disks = driver.list_disks(context) self.assertDictEqual(disks[0], DISK_RESULT[0]) def test_get_ports(self): driver = create_driver() SSHPool.do_exec = mock.Mock( side_effect=[PORT_DATAS, PORT_I_DATAS, PORT_PER_DATAS, PORT_ISCSI_DATAS, PORT_RCIP_DATAS, PORT_C_DATAS, PORT_RCIP_DATAS, PORT_RCIP_DATAS]) ports = driver.list_ports(context) self.assertDictEqual(ports[0], PORT_RESULT[0]) @mock.patch.object(RestHandler, 'get_pool_metrics') @mock.patch.object(SSHPool, 'do_exec') def test_get_perf_metrics(self, mock_exec, mock_pool): driver = create_driver() resource_metrics = { 'storagePool': [ 'iops', 'readIops', 'writeIops', 'throughput', 'readThroughput', 'writeThroughput', 'responseTime' ], 'volume': [ 'iops', 'readIops', 'writeIops', 'throughput', 'readThroughput', 'writeThroughput', 'responseTime', 'ioSize', 'readIoSize', 'writeIoSize', ], 'port': [ 'iops', 'readIops', 'writeIops', 'throughput', 'readThroughput', 'writeThroughput', 'responseTime' ], 'disk': [ 'iops', 'readIops', 'writeIops', 'throughput', 'readThroughput', 'writeThroughput', 'responseTime' ], 'filesystem': [ 'iops', 'readIops', 'writeIops', 'throughput', 'readThroughput', 'writeThroughput', 'readResponseTime', 'writeResponseTime', 'readIoSize', 'writeIoSize' ] } start_time = 1628472280000 end_time = 1628472900000 RestHandler.get_all_pools = mock.Mock(return_value=POOL_DATAS) mock_pool.return_value = POOL_METRICS_DATAS mock_exec.side_effect = [VOLUME_METRICS_DATAS, PORT_METRICS_DATAS, DISK_METRICS_DATAS] metrics = driver.collect_perf_metrics(context, '12345', resource_metrics, start_time, end_time) self.assertEqual(metrics[0], METRICS_RESULT[0]) self.assertEqual(metrics[14], METRICS_RESULT[1]) self.assertEqual(metrics[34], METRICS_RESULT[2]) self.assertEqual(metrics[48], METRICS_RESULT[3]) def test_get_capabilities(self): driver = create_driver() cap = driver.get_capabilities(context) self.assertIsNotNone(cap.get('resource_metrics')) self.assertIsNotNone(cap.get('resource_metrics').get('storagePool')) self.assertIsNotNone(cap.get('resource_metrics').get('volume')) self.assertIsNotNone(cap.get('resource_metrics').get('port')) self.assertIsNotNone(cap.get('resource_metrics').get('disk')) def test_get_storage_host_groups(self): driver = create_driver() SSHPool.do_exec = mock.Mock(side_effect=[HOST_GROUP_DATAS, HOST_ID_DATAS]) host_groups = driver.list_storage_host_groups(context) self.assertDictEqual(host_groups.get('storage_host_groups')[0], HOST_GROUP_RESULT[0]) def test_get_volume_groups(self): driver = create_driver() SSHPool.do_exec = mock.Mock(side_effect=[VOLUME_GROUP_DATAS, VOLUME_ID_DATAS]) volume_groups = driver.list_volume_groups(context) self.assertDictEqual(volume_groups.get('volume_groups')[0], VOLUME_GROUP_RESULT[0]) def test_storage_hosts(self): driver = create_driver() with mock.patch.object(RestHandler, 'get_resinfo_call', side_effect=HOST_DATAS): storage_hosts = driver.list_storage_hosts(context) self.assertDictEqual(storage_hosts[0], HOST_RESULT[0]) def test_get_storage_host_initiators(self): driver = create_driver() SSHPool.do_exec = mock.Mock(side_effect=[HOST_ID_DATAS]) initiators = driver.list_storage_host_initiators(context) self.assertDictEqual(initiators[0], INITIATOR_RESULT[0]) def test_get_masking_views(self): driver = create_driver() SSHPool.do_exec = mock.Mock( side_effect=[VIEW_DATAS, HOST_ID_DATAS, HOST_GROUP_DATAS, VOLUME_ID_DATAS, VOLUME_GROUP_DATAS]) views = driver.list_masking_views(context) self.assertDictEqual(views[0], VIEW_RESULT[0]) def test_get_port_groups(self): driver = create_driver() SSHPool.do_exec = mock.Mock(side_effect=[VIEW_DATAS]) port_groups = driver.list_port_groups(context) self.assertDictEqual(port_groups.get('port_groups')[0], PORT_GROUP_RESULT[0]) ``` #### File: netapp/netapp_ontap/test_netapp.py ```python from unittest import TestCase, mock import paramiko from delfin.tests.unit.drivers.netapp.netapp_ontap import test_constans from delfin import context from delfin.drivers.netapp.dataontap.netapp_handler import NetAppHandler from delfin.drivers.netapp.dataontap.cluster_mode import NetAppCmodeDriver from delfin.drivers.utils.ssh_client import SSHPool class Request: def __init__(self): self.environ = {'delfin.context': context.RequestContext()} pass class TestNetAppCmodeDriver(TestCase): SSHPool.get = mock.Mock( return_value={paramiko.SSHClient()}) NetAppHandler.login = mock.Mock() NetAppHandler.do_rest_call = mock.Mock() netapp_client = NetAppCmodeDriver(**test_constans.ACCESS_INFO) def test_reset_connection(self): kwargs = test_constans.ACCESS_INFO NetAppHandler.login = mock.Mock() netapp_client = NetAppCmodeDriver(**kwargs) netapp_client.reset_connection(context, **kwargs) netapp_client.netapp_handler.do_rest_call = mock.Mock() self.assertEqual(netapp_client.netapp_handler.ssh_pool.ssh_host, "192.168.159.130") self.assertEqual(netapp_client.netapp_handler.ssh_pool.ssh_port, 22) def test_get_storage(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.SYSTEM_INFO, test_constans.VERSION, test_constans.SYSTEM_STATUS, test_constans.CONTROLLER_INFO, test_constans.CONTROLLER_IP_INFO, test_constans.DISKS_INFO, test_constans.PHYSICAL_INFO, test_constans.ERROR_DISK_INFO, test_constans.POOLS_INFO, test_constans.AGGREGATE_DETAIL_INFO]) data = self.netapp_client.get_storage(context) self.assertEqual(data['vendor'], 'NetApp') def test_list_storage_pools(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.POOLS_INFO, test_constans.AGGREGATE_DETAIL_INFO]) data = self.netapp_client.list_storage_pools(context) self.assertEqual(data[0]['name'], 'aggr0') def test_list_volumes(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.LUN_INFO, test_constans.FS_INFO, test_constans.THIN_FS_INFO, test_constans.POOLS_INFO, test_constans.AGGREGATE_DETAIL_INFO]) data = self.netapp_client.list_volumes(context) self.assertEqual(data[0]['name'], 'lun_0') def test_list_alerts(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.ALERT_INFO]) data = self.netapp_client.list_alerts(context) self.assertEqual(data[0]['alert_name'], 'DualPathToDiskShelf_Alert') def test_clear_alters(self): alert = {'alert_id': '123'} SSHPool.do_exec = mock.Mock() self.netapp_client.clear_alert(context, alert) def test_parse_alert(self): data = self.netapp_client.parse_alert(context, test_constans.TRAP_MAP) self.assertEqual(data['alert_name'], 'DisabledInuseSASPort_Alert') def test_list_controllers(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.CONTROLLER_INFO, test_constans.CONTROLLER_IP_INFO]) data = self.netapp_client.list_controllers(context) self.assertEqual(data[0]['name'], 'cl-01') def test_list_ports(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.FC_PORT_INFO, test_constans.PORTS_INFO]) data = self.netapp_client.list_ports(context) self.assertEqual(data[0]['name'], 'cl-01:0a') def test_list_disks(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.DISKS_INFO, test_constans.PHYSICAL_INFO, test_constans.ERROR_DISK_INFO]) data = self.netapp_client.list_disks(context) self.assertEqual(data[0]['name'], 'NET-1.1') def test_list_qtrees(self): SSHPool.do_exec = mock.Mock(side_effect=[ test_constans.QTREES_INFO, test_constans.FS_INFO]) data = self.netapp_client.list_qtrees(context) self.assertEqual(data[0]['security_mode'], 'ntfs') def test_list_shares(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.QTREES_INFO, test_constans.FS_INFO, test_constans.SHARES_AGREEMENT_INFO, test_constans.SHARE_VSERVER_INFO, test_constans.SHARES_INFO, test_constans.NFS_SHARE_INFO]) data = self.netapp_client.list_shares(context) self.assertEqual(data[0]['name'], 'admin$') def test_list_filesystems(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.FS_INFO, test_constans.THIN_FS_INFO, test_constans.POOLS_INFO, test_constans.AGGREGATE_DETAIL_INFO]) data = self.netapp_client.list_filesystems(context) self.assertEqual(data[0]['name'], 'vol0') def test_list_quotas(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.QUOTAS_INFO]) data = self.netapp_client.list_quotas(context) self.assertEqual(data[0]['file_soft_limit'], 1000) def test_ge_alert_sources(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.CLUSTER_IPS_INFO, test_constans.CONTROLLER_INFO, test_constans.CONTROLLER_IP_INFO]) data = self.netapp_client.get_alert_sources(context) self.assertEqual(data[0]['host'], '172.16.31.10') def test_get_storage_performance(self): SSHPool.do_exec = mock.Mock( side_effect=[ # storage test_constans.SYSTEM_INFO, # pool test_constans.AGGREGATE_DETAIL_INFO, # volume test_constans.LUN_INFO, ]) self.netapp_client.netapp_handler.do_rest_call = mock.Mock( side_effect=[ # storage test_constans.CLUSTER_PER_INFO, # pool test_constans.POOL_PER_INFO, test_constans.POOL_PER_INFO, test_constans.POOL_PER_INFO, # volume test_constans.LUN_PER_INFO, # port test_constans.PORT_REST_INFO, test_constans.FC_PER_INFO, test_constans.PORT_REST_INFO, test_constans.ETH_PER_INFO, # fs test_constans.FS_REST_INFO, test_constans.FS_PER_INFO, ]) data = self.netapp_client.collect_perf_metrics( context, test_constans.ACCESS_INFO['storage_id'], test_constans.RESOURCE_METRICS, start_time=str(1435214300000), end_time=str(1495315500000)) self.assertEqual(data[0][2][1485343200000], 1000) def test_get_capabilities_is_None(self): data = self.netapp_client.get_capabilities(context, None) self.assertEqual(data[9.8]['resource_metrics']['storage'] ['throughput']['unit'], 'MB/s') def test_get_capabilities(self): data = self.netapp_client.\ get_capabilities(context, {'firmware_version': 'NetApp Release 9.8R15'}) self.assertEqual(data['resource_metrics']['storage'] ['throughput']['unit'], 'MB/s') def test_list_storage_host_initiators(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.ISCSI_INITIATOR_INFO, test_constans.FC_INITIATOR_INFO, test_constans.HOSTS_INFO]) data = self.netapp_client.list_storage_host_initiators(context) self.assertEqual(data[0]['name'], 'fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b') def test_list_port_groups(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.PORT_SET_INFO, test_constans.LIF_INFO]) data = self.netapp_client.list_port_groups(context) self.assertEqual(data['port_groups'][0]['name'], 'portgroup') def test_list_storage_hosts(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.HOSTS_INFO]) data = self.netapp_client.list_storage_hosts(context) self.assertEqual(data[0]['name'], 'fcstart1') def test_list_masking_views(self): SSHPool.do_exec = mock.Mock( side_effect=[test_constans.LUN_MAPPING_INFO, test_constans.MAPPING_LUN_INFO, test_constans.HOSTS_INFO]) data = self.netapp_client.list_masking_views(context) self.assertEqual(data[0]['name'], 'fcstart1_lun_1') def test_get_latest_perf_timestamp(self): self.netapp_client.netapp_handler.do_rest_call = mock.Mock( side_effect=[test_constans.CLUSTER_PER_INFO]) data = self.netapp_client.get_latest_perf_timestamp(context) self.assertEqual(data, 1485343200000) ```
{ "source": "JosephVSN/cmus-scrobbler", "score": 2 }
#### File: cmus-scrobbler/cmus_scrobbler/config.py ```python import os import json import lastfm CONFIG_DIR = os.path.join(os.path.expanduser("~"), ".config", "cmus-scrobbler") CONFIG_JSON = os.path.join(CONFIG_DIR, "cmus_scrobbler_config.json") def _setup_config() -> bool: """Creates the API config directory and file""" try: os.mkdir(CONFIG_DIR) except (IOError, PermissionError) as e: print(f"DEBUG: Failed to create config directory due to '{e}'") return False try: with open (CONFIG_JSON, "w") as cfg_f: json.dump({"api_key": "", "secret_key": "", "session_key": "", "api_token": ""}, cfg_f) except (IOError, PermissionError) as e: print(f"DEBUG: Failed to create config file due to '{e}'") return False return True def read_config() -> dict: """Wrapper for opening CONFIG_JSON and returning it as a dictionary""" try: with open (CONFIG_JSON) as cfg: cfg_json = json.load(cfg) except (json.decoder.JSONDecodeError, PermissionError, IOError) as e: print(f"DEBUG: Refusing to read config, encountered '{e}'") return None return cfg_json def update_config(api_key: str = None, secret_key: str = None, session_key: str = None, api_token: str = None) -> bool: """Updates the values in the API config file""" if not os.path.exists(CONFIG_JSON): if not _setup_config(): print("DEBUG: Refusing to update config, file/directory do not exist and were unable to be created") return False if not (cfg_json := read_config()): return False if api_key: cfg_json["api_key"] = api_key if secret_key: cfg_json["secret_key"] = secret_key if session_key: cfg_json["session_key"] = session_key if api_token: cfg_json["api_token"] = api_token try: with open(CONFIG_JSON, 'w') as cfg: json.dump(cfg_json, cfg) except PermissionError as e: print(f"DEBUG: Refusing to update config, encountered '{e}'") return False return True ```
{ "source": "JosephVSN/maze-gen", "score": 4 }
#### File: JosephVSN/maze-gen/Solver.py ```python import copy # Constants WALL_V = "|" WALL_H = "-" STEP = "O" PATH = "X" class Solver: maze = [] path = [] maze_exit = [] def __init__(self, maze, maze_exit): self.maze = maze self.maze_exit = maze_exit def solve(self, cur_step, steps_taken): paths = 0 # Check if finished if self.is_solved(cur_step): steps_taken.append(cur_step) self.path = steps_taken return True else: # Count paths paths = self.count_paths(cur_step) # Dead end if paths == 0: return None # Single Path elif paths == 1: next_steps = copy.deepcopy(steps_taken) next_steps.append(cur_step) # North if self.maze[cur_step[0]-1][cur_step[1]] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): new_move = self.solve([cur_step[0]-1, cur_step[1]], next_steps) if new_move is not None: return new_move # East elif self.maze[cur_step[0]][cur_step[1]+1] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): new_move = self.solve([cur_step[0], cur_step[1]+1], next_steps) if new_move is not None: return new_move # West elif self.maze[cur_step[0]][cur_step[1]-1] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): new_move = self.solve([cur_step[0], cur_step[1]-1], next_steps) if new_move is not None: return new_move # South elif self.maze[cur_step[0]+1][cur_step[1]] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): new_move = self.solve([cur_step[0]+1, cur_step[1]], next_steps) if new_move is not None: return new_move else: return None # Multiple Paths elif paths > 1: # North if self.maze[cur_step[0]-1][cur_step[1]] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): next_steps = copy.deepcopy(steps_taken) next_steps.append(cur_step) new_move = self.solve([cur_step[0]-1, cur_step[1]], next_steps) if new_move is not None: return new_move # East if self.maze[cur_step[0]][cur_step[1]+1] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): next_steps = copy.deepcopy(steps_taken) next_steps.append(cur_step) new_move = self.solve([cur_step[0], cur_step[1]+1], next_steps) if new_move is not None: return new_move # West if self.maze[cur_step[0]][cur_step[1]-1] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): next_steps = copy.deepcopy(steps_taken) next_steps.append(cur_step) new_move = self.solve([cur_step[0], cur_step[1]-1], next_steps) if new_move is not None: return new_move # South if self.maze[cur_step[0]+1][cur_step[1]] == STEP and not self.traveled_to([cur_step[0],cur_step[1]], steps_taken): next_steps = copy.deepcopy(steps_taken) next_steps.append(cur_step) new_move = self.solve([cur_step[0]+1, cur_step[1]], next_steps) if new_move is not None: return new_move else: return None def count_paths(self, cur_step): path_count = 0 # North if self.maze[cur_step[0]-1][cur_step[1]] == STEP: path_count += 1 # East if self.maze[cur_step[0]][cur_step[1]+1] == STEP: path_count += 1 # South if self.maze[cur_step[0]+1][cur_step[1]] == STEP: path_count += 1 # West if self.maze[cur_step[0]][cur_step[1]-1] == STEP: path_count += 1 return path_count def traveled_to(self, cur_step, steps_taken): if len(steps_taken) != 0: if cur_step in steps_taken: return True return False def is_solved(self, cur_step): if cur_step[0] == self.maze_exit[0] and cur_step[1] == self.maze_exit[1]: return True return False ```
{ "source": "Joseph-Wairimu/news-API", "score": 3 }
#### File: news-API/app/request.py ```python import urllib.request,json from .models import News , Articles # News = news.News # Getting api key api_key = None # Getting the movie base url base_url = None def configure_request(app): global api_key,base_url api_key = app.config['NEWS_API_KEY'] base_url = app.config['NEWS_API_BASE_URL'] def get_news(): ''' Function that gets the json response to our url request ''' get_news_url = base_url.format(api_key) with urllib.request.urlopen(get_news_url) as url: get_news_data = url.read() get_news_response = json.loads(get_news_data) news_results = None if get_news_response['sources']: news_results_list = get_news_response['sources'] news_results = process_results(news_results_list) return news_results def process_results(news_list): ''' Function that processes the movie result and transform them to a list of Objects Args: movie_list: A list of dictionaries that contain movie details Returns : movie_results: A list of movie objects ''' news_results = [] for news_item in news_list: id = news_item.get('id') name = news_item.get('name') description = news_item.get('description') url = news_item.get('url') urlToImage = news_item.get('urlToImage') language= news_item.get('language') country = news_item.get('country') category = news_item.get('category') if url: news_object = News(id,name,description,url, urlToImage ,language,country,category) news_results.append(news_object) return news_results def get_new(id): get_new_details_url = base_url.format(id,api_key) with urllib.request.urlopen(get_new_details_url) as url: new_details_data = url.read() new_details_response = json.loads( new_details_data) new_object = None if new_details_response: id = new_details_response.get('id') name = new_details_response.get('name') description = new_details_response.get('description') url = new_details_response.get('url') urlToImage = new_details_response.get('urlToImage') language= new_details_response.get('language') country = new_details_response.get('country') category = new_details_response.get('category') new_object = News(id,name,description,url,urlToImage,language,country,category) return new_object def get_article(id): article_source_url = 'https://newsapi.org/v2/top-headlines?sources={}&apiKey=<KEY>'.format(id) # print(article_source_url) with urllib.request.urlopen(article_source_url) as url: article_source_data = url.read() article_source_response = json.loads(article_source_data) article_source_results = None if article_source_response['articles']: article_source_list = article_source_response['articles'] article_source_results = process_articles_results(article_source_list) return article_source_results def process_articles_results(articles_list): ''' function that processes the json files of articles from the api key ''' article_results = [] for article in articles_list: author = article.get('author') description = article.get('description') url = article.get('url') urlToImage = article.get('urlToImage') publishedAt = article.get('publishedAt') title = article.get ('title') content= article.get('content') if url: article_objects = Articles(author,title,description,url,urlToImage,publishedAt,content) article_results.append(article_objects) return article_results def get_category(category): article_source_url = 'https://newsapi.org/v2/top-headlines?category={}&apiKey=<KEY>'.format(category) # print(article_source_url) with urllib.request.urlopen(article_source_url) as url: article_source_data = url.read() article_source_response = json.loads(article_source_data) article_source_results = None if article_source_response['articles']: article_source_list = article_source_response['articles'] article_source_results = process_articles_results(article_source_list) return article_source_results def process_category_results(articles_list): ''' function that processes the json files of articles from the api key ''' article_results = [] for article in articles_list: author = article.get('author') description = article.get('description') url = article.get('url') urlToImage = article.get('urlToImage') publishedAt = article.get('publishedAt') title = article.get ('title') content= article.get('content') if url: article_objects = Articles(author,title,description,url,urlToImage,publishedAt,content) article_results.append(article_objects) return article_results ```
{ "source": "Joseph-Waldron/StructureFold2", "score": 3 }
#### File: Joseph-Waldron/StructureFold2/react_heat_correct.py ```python from sf2libs.structure_io import read_react, write_react import argparse import sys #Functions def sum_react(react_dict): '''Sum of all the reactivities''' return sum([sum(filter(lambda x: isinstance(x, float), v)) for v in react_dict.values()]) def apply_correction(react_dict,correction): '''Applies a correction''' atarashii = {} for k, v in react_dict.items(): atarashii[k] = [x*correction if x!= 'NA' else 'NA' for x in v] return atarashii #Main Function def main(): parser = argparse.ArgumentParser(description='Corrects two <.react>s for differential temperature') parser.add_argument('lower',type=str,help='lower temp <.react> file') parser.add_argument('higher',type=str,help='higher temp <.react> file') parser.add_argument('-suffix',type=str,default='corrected',help='[default = corrected] Suffix for out files') args = parser.parse_args() #Sum all reactivities cold_react,hot_react = map(read_react,[args.lower,args.higher]) cold_sum,hot_sum = map(sum_react,[cold_react,hot_react]) if not cold_react.keys() == hot_react.keys(): print 'Warning! Non-parallel transcript sets between reacts! Quitting...' sys.exit() #Calculate Corrections heat_correction = (hot_sum+cold_sum)/(2*hot_sum) cold_correction = (hot_sum+cold_sum)/(2*cold_sum) print 'Higher Temp values to be downscaled by factor: {}'.format(heat_correction) print 'Lower Temp values to be upscaled by factor: {}'.format(cold_correction) #Apply corrections new_hot = apply_correction(hot_react,heat_correction) new_cold = apply_correction(cold_react,cold_correction) #Write Out write_react(new_cold,args.lower.replace('.react','_'+args.suffix+'.react')) write_react(new_hot,args.higher.replace('.react','_'+args.suffix+'.react')) if __name__ == '__main__': main() ```
{ "source": "JosephWardDotTech/helium", "score": 3 }
#### File: _impl/util/html.py ```python from html.parser import HTMLParser import re def strip_tags(html): s = TagStripper() s.feed(html) return s.get_data() class TagStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.reset() self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) def get_easily_readable_snippet(html): html = normalize_whitespace(html) try: inner_start = html.index('>') + 1 inner_end = html.rindex('<', inner_start) except ValueError: return html opening_tag = html[:inner_start] closing_tag = html[inner_end:] inner = html[inner_start:inner_end] if '<' in inner or len(inner) > 60: return '%s...%s' % (opening_tag, closing_tag) else: return html def normalize_whitespace(html): result = html.strip() # Remove multiple spaces: result = re.sub(r'\s+', ' ', result) # Remove spaces after opening or before closing tags: result = result.replace('> ', '>').replace(' <', '<') return result ``` #### File: tests/api/test_click.py ```python from helium import click, Config from helium._impl.util.lang import TemporaryAttrValue from tests.api import BrowserAT class ClickTest(BrowserAT): def get_page(self): return 'test_click.html' def test_click(self): click("Click me!") self.assertEqual('Success!', self.read_result_from_browser()) def test_click_non_existent_element(self): with TemporaryAttrValue(Config, 'implicit_wait_secs', 1): with self.assertRaises(LookupError): click("Non-existent") ``` #### File: tests/api/test_kill_service_at_exit.py ```python from psutil import NoSuchProcess import psutil class KillServiceAtExitAT: def test_kill_service_at_exit(self): self.start_browser_in_sub_process() self.assertEqual([], self.get_new_running_services()) def start_browser_in_sub_process(self): raise NotImplementedError() def get_new_running_services(self): return [s for s in self.get_running_services() if s not in self.running_services_before] def setUp(self): self.running_services_before = self.get_running_services() self.running_browsers_before = self.get_running_browsers() def tearDown(self): for service in self.get_new_running_services(): try: service.terminate() except NoSuchProcess: # Process terminated already. pass for browser in self.get_new_running_browsers(): try: browser.terminate() except NoSuchProcess: # Process terminated already. pass def get_new_running_browsers(self): return [s for s in self.get_running_browsers() if s not in self.running_browsers_before] def get_running_services(self): return self._get_running_processes(self.get_service_process_names()) def get_running_browsers(self): return self._get_running_processes([self.get_browser_process_name()]) def _get_running_processes(self, image_names): result = [] for p in psutil.process_iter(): if p.name in image_names: result.append(p) return result def get_service_process_names(self): raise NotImplementedError() def get_browser_process_name(self): raise NotImplementedError() def start_browser(self): raise NotImplementedError() ``` #### File: tests/api/test_no_driver.py ```python from helium import * from helium._impl import APIImpl from unittest import TestCase class NoDriverTest(TestCase): def test_go_to_requires_driver(self): self._check_requires_driver(lambda: go_to('google.com')) def test_write_requires_driver(self): self._check_requires_driver(lambda: write('foo')) def test_press_requires_driver(self): self._check_requires_driver(lambda: press(ENTER)) def test_click_requires_driver(self): self._check_requires_driver(lambda: click("Sign in")) def test_doubleclick_requires_driver(self): self._check_requires_driver(lambda: doubleclick("Sign in")) def test_drag_requires_driver(self): self._check_requires_driver(lambda: drag("Drag me", to="Drop here")) def test_find_all_requires_driver(self): self._check_requires_driver(lambda: find_all(Button())) def test_scroll_down_requires_driver(self): self._check_requires_driver(lambda: scroll_down()) def test_scroll_up_requires_driver(self): self._check_requires_driver(lambda: scroll_up()) def test_scroll_right_requires_driver(self): self._check_requires_driver(lambda: scroll_right()) def test_scroll_left_requires_driver(self): self._check_requires_driver(lambda: scroll_left()) def test_hover_requires_driver(self): self._check_requires_driver(lambda: hover("Hi there!")) def test_rightclick_requires_driver(self): self._check_requires_driver(lambda: rightclick("Hi there!")) def test_select_requires_driver(self): self._check_requires_driver(lambda: select("Language", "English")) def test_drag_file_requires_driver(self): self._check_requires_driver( lambda: drag_file(r'C:\test.txt', to="Here") ) def test_attach_file_requires_driver(self): self._check_requires_driver(lambda: attach_file(r'C:\test.txt')) def test_refresh_requires_driver(self): self._check_requires_driver(lambda: refresh()) def test_wait_until_requires_driver(self): self._check_requires_driver(lambda: wait_until(lambda: True)) def test_switch_to_requires_driver(self): self._check_requires_driver(lambda: switch_to('Popup')) def test_kill_browser_requires_driver(self): self._check_requires_driver(lambda: switch_to('Popup')) def test_highlight_requires_driver(self): self._check_requires_driver(lambda: switch_to('Popup')) def test_s_requires_driver(self): self._check_requires_driver(lambda: S('#home')) def test_text_requires_driver(self): self._check_requires_driver(lambda: Text('Home')) def test_link_requires_driver(self): self._check_requires_driver(lambda: Link('Home')) def test_list_item_requires_driver(self): self._check_requires_driver(lambda: ListItem('Home')) def test_button_requires_driver(self): self._check_requires_driver(lambda: Button('Home')) def test_image_requires_driver(self): self._check_requires_driver(lambda: Image('Logo')) def test_text_field_requires_driver(self): self._check_requires_driver(lambda: TextField('File name')) def test_combo_box_requires_driver(self): self._check_requires_driver(lambda: ComboBox('Language')) def test_check_box_requires_driver(self): self._check_requires_driver(lambda: CheckBox('True?')) def test_radio_button_requires_driver(self): self._check_requires_driver(lambda: RadioButton('Option A')) def test_window_requires_driver(self): self._check_requires_driver(lambda: Window('Main')) def test_alert_requires_driver(self): self._check_requires_driver(lambda: Alert()) def _check_requires_driver(self, function): with self.assertRaises(RuntimeError) as cm: function() self.assertEqual(APIImpl.DRIVER_REQUIRED_MESSAGE, cm.exception.args[0]) ``` #### File: tests/api/test_text_impl.py ```python from helium._impl import TextImpl from helium._impl.selenium_wrappers import WebDriverWrapper from tests.api import BrowserAT class TextImplTest(BrowserAT): def get_page(self): return 'test_text_impl.html' def test_empty_search_text_xpath(self): xpath = TextImpl(WebDriverWrapper(self.driver))._get_search_text_xpath() text_elements = self.driver.find_elements_by_xpath(xpath) texts = [w.get_attribute('innerHTML') for w in text_elements] self.assertEqual( ["A paragraph", "A paragraph inside a div", "Another paragraph inside the div"], sorted(texts) ) ``` #### File: tests/api/test_window.py ```python from helium import Window, click, go_to, get_driver, wait_until from tests.api.util import get_data_file_url from tests.api import BrowserAT class WindowTest(BrowserAT): def get_page(self): return 'test_window/test_window.html' def test_window_exists(self): self.assertTrue(Window('test_window').exists()) def test_window_not_exists(self): self.assertFalse(Window('non-existent').exists()) def test_no_arg_window_exists(self): self.assertTrue(Window().exists()) def test_handle(self): self.assertTrue(Window('test_window').handle) def test_title(self): self.assertEqual('test_window', Window('test_window').title) class MultipleWindowTest(WindowTest): """ The purpose of this Test is to run the same tests as WindowTest, but with an additional pop up window open. """ @classmethod def setUpClass(cls): super().setUpClass() go_to(get_data_file_url('test_window/test_window.html')) click("Click here to open a popup.") wait_until(Window('test_window - popup').exists) def test_popup_window_exists(self): self.assertTrue(Window('test_window - popup').exists()) def setUp(self): # Don't let super go_to(...): pass @classmethod def tearDownClass(cls): popup_window_handle = Window("test_window - popup").handle main_window_handle = Window("test_window").handle get_driver().switch_to.window(popup_window_handle) get_driver().close() get_driver().switch_to.window(main_window_handle) super().tearDownClass() ``` #### File: tests/api/test_write.py ```python from helium import write, TextField from tests.api import BrowserAT class WriteTest(BrowserAT): def get_page(self): return 'test_write.html' def test_write(self): write("Hello World!") self.assertEqual( "Hello World!", TextField('Autofocus text field').value ) def test_write_into(self): write("Hi there!", into='Normal text field') self.assertEqual("Hi there!", TextField('Normal text field').value) def test_write_into_text_field_to_right_of(self): write("Hi there!", into=(TextField(to_right_of='Normal text field'))) self.assertEqual("Hi there!", TextField('Normal text field').value) ```
{ "source": "JosephWardDotTech/SeleniumBase", "score": 3 }
#### File: SeleniumBase/examples/ip_cow_test.py ```python import time from seleniumbase import BaseCase class MyTestClass(BaseCase): def test_ip_cow(self): self.open('https://www.ipcow.com/') ip_data = self.get_text("div.box") print("\n\n*** IP and Browser Data: ***") print(ip_data) print("\nThe browser will close automatically in 7 seconds...") time.sleep(7) ``` #### File: SeleniumBase/examples/test_download_files.py ```python import math from seleniumbase import BaseCase class DownloadTests(BaseCase): def test_download_files(self): self.open("https://pypi.org/project/seleniumbase/#files") pkg_header = self.get_text("h1.package-header__name").strip() pkg_name = pkg_header.replace(" ", "-") whl_file = pkg_name + "-py2.py3-none-any.whl" tar_gz_file = pkg_name + ".tar.gz" # Click the links to download the files into: "./downloaded_files/" # (If using Safari, IE, or Chromium Guest Mode: download directly.) # (The default Downloads Folder can't be changed when using those.) whl_selector = 'div#files a[href$="%s"]' % whl_file tar_selector = 'div#files a[href$="%s"]' % tar_gz_file if self.browser == "safari" or self.browser == "ie" or ( self.is_chromium() and self.guest_mode and not self.headless): whl_href = self.get_attribute(whl_selector, "href") tar_href = self.get_attribute(tar_selector, "href") self.download_file(whl_href) self.download_file(tar_href) else: self.click(whl_selector) self.click(tar_selector) # Verify that the downloaded files appear in the [Downloads Folder] # (This only guarantees that the exact file name is in the folder.) # (This does not guarantee that the downloaded files are complete.) # (Later, we'll check that the files were downloaded successfully.) self.assert_downloaded_file(whl_file) self.assert_downloaded_file(tar_gz_file) self.sleep(1) # Add more time to make sure downloads have completed # Get the actual size of the downloaded files (in bytes) whl_path = self.get_path_of_downloaded_file(whl_file) with open(whl_path, 'rb') as f: whl_file_bytes = len(f.read()) print("\n%s | Download = %s bytes." % (whl_file, whl_file_bytes)) tar_gz_path = self.get_path_of_downloaded_file(tar_gz_file) with open(tar_gz_path, 'rb') as f: tar_gz_file_bytes = len(f.read()) print("%s | Download = %s bytes." % (tar_gz_file, tar_gz_file_bytes)) # Check to make sure the downloaded files are not empty or too small self.assert_true(whl_file_bytes > 5000) self.assert_true(tar_gz_file_bytes > 5000) # Get file sizes in kB to compare actual values with displayed values whl_file_kb = whl_file_bytes / 1000.0 whl_line = self.get_text("tbody tr:nth-of-type(1) th") whl_displayed_kb = float(whl_line.split("(")[1].split(" ")[0]) tar_gz_file_kb = tar_gz_file_bytes / 1000.0 tar_gz_line = self.get_text("tbody tr:nth-of-type(2) th") tar_gz_displayed_kb = float(tar_gz_line.split("(")[1].split(" ")[0]) # Verify downloaded files are the correct size (account for rounding) self.assert_true(abs( math.floor(whl_file_kb) - math.floor(whl_displayed_kb)) < 2) self.assert_true(abs( math.floor(tar_gz_file_kb) - math.floor(tar_gz_displayed_kb)) < 2) ```
{ "source": "josephwccheng/basketball_game_video_analytics", "score": 3 }
#### File: josephwccheng/basketball_game_video_analytics/main.py ```python from dotenv import load_dotenv import os import logging import youtube_extractor import json def setup_tokens(): expected_env_vars = [ 'YOUTUBE_DOWNLOAD', 'VIDEO_PATH' ] # Refresh environment variables since load_dotenv doesn't override them if already set for env_var in expected_env_vars: if os.getenv(env_var) is not None: del os.environ[env_var] logging.info('Refreshed environment variable: {}'.format(env_var)) # Load environment variables saved in .env file load_dotenv() for env_var in expected_env_vars: if os.getenv(env_var) is None: raise ValueError( '.env file is missing or {} has not been defined in the .env file'.format( env_var) ) # Step 1. Downloading Videos (Only Required once per video) def download_videos(): with open('games.json') as json_file: data = json.load(json_file) ytExtractor = youtube_extractor.YoutubeExtractor() ytExtractor.download(data[0]['url']) def main(): setup_tokens() # Step 1: Download videos only if the youtube download environment variable is true if os.getenv('YOUTUBE_DOWNLOAD').lower() == "true": download_videos() else: print("skipping video download") # Step 2: Read the video from the .data folder video_lists = os.listdir(os.getenv('VIDEO_PATH')) if len(video_lists) < 0: print("no videos in .data folder") else: print(f"first video is: {video_lists[0]}") main() ```
{ "source": "josephwhite13/netmiko", "score": 3 }
#### File: netmiko/ericsson/ericsson_ipos.py ```python import re from netmiko.base_connection import BaseConnection class EricssonIposSSH(BaseConnection): def check_enable_mode(self, check_string="#"): """ Check if in enable mode. Return boolean. """ return super().check_enable_mode(check_string=check_string) def enable(self, cmd="enable 15", pattern="ssword", re_flags=re.IGNORECASE): """Enter enable mode.""" return super().enable(cmd=cmd, pattern=pattern, re_flags=re_flags) def disable_paging(self, command="terminal length 0", delay_factor=1): """Disable paging default to a Cisco CLI method. :param command: Device command to disable pagination of output :type command: str :param delay_factor: See __init__: global_delay_factor :type delay_factor: int """ return super().disable_paging(command=command, delay_factor=delay_factor) def set_terminal_width(self, command="terminal width 512", delay_factor=1): """CLI terminals try to automatically adjust the line based on the width of the terminal. This causes the output to get distorted when accessed programmatically. Set terminal width to 511 which works on a broad set of devices. :param command: Command string to send to the device :type command: str :param delay_factor: See __init__: global_delay_factor :type delay_factor: int """ return super().set_terminal_width(command=command, delay_factor=delay_factor) def send_config_set(self, config_commands=None, exit_config_mode=False, **kwargs): """Ericsson IPOS requires you not exit from configuration mode.""" return super().send_config_set( config_commands=config_commands, exit_config_mode=exit_config_mode, **kwargs ) def exit_enable_mode(self, exit_command="disable"): """ Exits enable (privileged exec) mode. """ return super().exit_enable_mode(exit_command=exit_command) def check_config_mode(self, check_string=")#", pattern=""): """ Checks if the device is in configuration mode or not. """ return super().check_config_mode(check_string=check_string, pattern=pattern) def config_mode(self, config_command="configure", pattern=""): """ Enter into configuration mode on remote device. """ if not pattern: pattern = re.escape(self.base_prompt[:16]) return super().config_mode(config_command=config_command, pattern=pattern) def exit_config_mode(self, exit_config="end", pattern="#"): """ Exit from configuration mode. Ercisson output : end Commit configuration changes and return to exec mode """ return super().exit_config_mode(exit_config=exit_config, pattern=pattern) def save_config(self, cmd="save config", confirm=True, confirm_response="yes"): """Saves configuration""" if confirm: output = self.send_command_timing( command_string=cmd, strip_prompt=False, strip_command=False ) if confirm_response: output += self.send_command_timing( confirm_response, strip_prompt=False, strip_command=False ) else: output += self.send_command_timing( self.RETURN, strip_prompt=False, strip_command=False ) else: output = self.send_command( command_string=cmd, strip_prompt=False, strip_command=False ) return output def commit(self, confirm=False, confirm_delay=None, comment="", delay_factor=1): """ Commit the candidate configuration. Commit the entered configuration. Raise an error and return the failure if the commit fails. Automatically enters configuration mode """ delay_factor = self.select_delay_factor(delay_factor) if confirm_delay and not confirm: raise ValueError( "Invalid arguments supplied to commit method both confirm and check" ) command_string = "commit" commit_marker = "Transaction committed" if confirm: if confirm_delay: command_string = f"commit confirmed {confirm_delay}" else: command_string = "commit confirmed" commit_marker = "Commit confirmed ,it will be rolled back within" if comment: if '"' in comment: raise ValueError("Invalid comment contains double quote") comment = f'"{comment}"' command_string += f" comment {comment}" output = self.config_mode() output += self.send_command_expect( command_string, strip_prompt=False, strip_command=False, delay_factor=delay_factor, ) if commit_marker not in output: raise ValueError(f"Commit failed with the following errors:\n\n{output}") self.exit_config_mode() return output ``` #### File: netmiko/extreme/extreme_slx_ssh.py ```python import time from netmiko.cisco_base_connection import CiscoSSHConnection class ExtremeSlxSSH(CiscoSSHConnection): """Support for Extreme SLX.""" def enable(self, *args, **kwargs): """No enable mode on Extreme SLX.""" pass def exit_enable_mode(self, *args, **kwargs): """No enable mode on Extreme Slx.""" pass def special_login_handler(self, delay_factor=1): """Adding a delay after login.""" delay_factor = self.select_delay_factor(delay_factor) self.write_channel(self.RETURN) time.sleep(1 * delay_factor) def save_config( self, cmd="copy running-config startup-config", confirm=True, confirm_response="y", ): """Save Config for Extreme SLX.""" return super().save_config( cmd=cmd, confirm=confirm, confirm_response=confirm_response ) ``` #### File: netmiko/extreme/extreme_wing_ssh.py ```python import time from netmiko.cisco_base_connection import CiscoSSHConnection class ExtremeWingSSH(CiscoSSHConnection): """Extreme WiNG support.""" def session_preparation(self): """Disable paging and set Max term width""" self._test_channel_read(pattern=r">|#") self.set_base_prompt() self.set_terminal_width(command="terminal width 512", pattern="terminal") self.disable_paging(command="no page") time.sleep(0.3 * self.global_delay_factor) self.clear_buffer() ``` #### File: netmiko/f5/f5_tmsh_ssh.py ```python import time from netmiko.base_connection import BaseConnection class F5TmshSSH(BaseConnection): def session_preparation(self): """Prepare the session after the connection has been established.""" self._test_channel_read() self.set_base_prompt() self.tmsh_mode() self.set_base_prompt() self._config_mode = False cmd = 'run /util bash -c "stty cols 255"' self.set_terminal_width(command=cmd, pattern="run") self.disable_paging( command="modify cli preference pager disabled display-threshold 0" ) self.clear_buffer() def tmsh_mode(self, delay_factor=1): """tmsh command is equivalent to config command on F5.""" delay_factor = self.select_delay_factor(delay_factor) self.clear_buffer() command = f"{self.RETURN}tmsh{self.RETURN}" self.write_channel(command) time.sleep(1 * delay_factor) self.clear_buffer() return None def check_config_mode(self, check_string="", pattern=""): """Checks if the device is in configuration mode or not.""" return True def config_mode(self, config_command=""): """No config mode for F5 devices.""" return "" def exit_config_mode(self, exit_config=""): """No config mode for F5 devices.""" return "" ``` #### File: netmiko/netmiko/scp_handler.py ```python import re import os import hashlib import scp import platform class SCPConn(object): """ Establish a secure copy channel to the remote network device. Must close the SCP connection to get the file to write to the remote filesystem """ def __init__(self, ssh_conn, socket_timeout=10.0, progress=None, progress4=None): self.ssh_ctl_chan = ssh_conn self.socket_timeout = socket_timeout self.progress = progress self.progress4 = progress4 self.establish_scp_conn() def establish_scp_conn(self): """Establish the secure copy connection.""" ssh_connect_params = self.ssh_ctl_chan._connect_params_dict() self.scp_conn = self.ssh_ctl_chan._build_ssh_client() self.scp_conn.connect(**ssh_connect_params) self.scp_client = scp.SCPClient( self.scp_conn.get_transport(), socket_timeout=self.socket_timeout, progress=self.progress, progress4=self.progress4, ) def scp_transfer_file(self, source_file, dest_file): """Put file using SCP (for backwards compatibility).""" self.scp_client.put(source_file, dest_file) def scp_get_file(self, source_file, dest_file): """Get file using SCP.""" platform = self.ssh_ctl_chan.device_type if "cisco_ios" in platform or "cisco_xe" in platform: try: self.scp_client.get(source_file, dest_file) except EOFError: pass else: self.scp_client.get(source_file, dest_file) def scp_put_file(self, source_file, dest_file): """Put file using SCP.""" self.scp_client.put(source_file, dest_file) def close(self): """Close the SCP connection.""" self.scp_conn.close() class BaseFileTransfer(object): """Class to manage SCP file transfer and associated SSH control channel.""" def __init__( self, ssh_conn, source_file, dest_file, file_system=None, direction="put", socket_timeout=10.0, progress=None, progress4=None, hash_supported=True, ): self.ssh_ctl_chan = ssh_conn self.source_file = source_file self.dest_file = dest_file self.direction = direction self.socket_timeout = socket_timeout self.progress = progress self.progress4 = progress4 auto_flag = ( "cisco_ios" in ssh_conn.device_type or "cisco_xe" in ssh_conn.device_type or "cisco_xr" in ssh_conn.device_type ) if not file_system: if auto_flag: self.file_system = self.ssh_ctl_chan._autodetect_fs() else: raise ValueError("Destination file system not specified") else: self.file_system = file_system if direction == "put": self.source_md5 = self.file_md5(source_file) if hash_supported else None self.file_size = os.stat(source_file).st_size elif direction == "get": self.source_md5 = ( self.remote_md5(remote_file=source_file) if hash_supported else None ) self.file_size = self.remote_file_size(remote_file=source_file) else: raise ValueError("Invalid direction specified") def __enter__(self): """Context manager setup""" self.establish_scp_conn() return self def __exit__(self, exc_type, exc_value, traceback): """Context manager cleanup.""" self.close_scp_chan() def establish_scp_conn(self): """Establish SCP connection.""" self.scp_conn = SCPConn( self.ssh_ctl_chan, socket_timeout=self.socket_timeout, progress=self.progress, progress4=self.progress4, ) def close_scp_chan(self): """Close the SCP connection to the remote network device.""" self.scp_conn.close() self.scp_conn = None def remote_space_available(self, search_pattern=r"(\d+) \w+ free"): """Return space available on remote device.""" remote_cmd = f"dir {self.file_system}" remote_output = self.ssh_ctl_chan.send_command_expect(remote_cmd) match = re.search(search_pattern, remote_output) if "kbytes" in match.group(0) or "Kbytes" in match.group(0): return int(match.group(1)) * 1000 return int(match.group(1)) def _remote_space_available_unix(self, search_pattern=""): """Return space available on *nix system (BSD/Linux).""" self.ssh_ctl_chan._enter_shell() remote_cmd = f"/bin/df -k {self.file_system}" remote_output = self.ssh_ctl_chan.send_command( remote_cmd, expect_string=r"[\$#]" ) # Try to ensure parsing is correct: # Filesystem 1K-blocks Used Avail Capacity Mounted on # /dev/bo0s3f 1264808 16376 1147248 1% /cf/var remote_output = remote_output.strip() output_lines = remote_output.splitlines() # First line is the header; second is the actual file system info header_line = output_lines[0] filesystem_line = output_lines[1] if "Filesystem" not in header_line or "Avail" not in header_line.split()[3]: # Filesystem 1K-blocks Used Avail Capacity Mounted on msg = "Parsing error, unexpected output from {}:\n{}".format( remote_cmd, remote_output ) raise ValueError(msg) space_available = filesystem_line.split()[3] if not re.search(r"^\d+$", space_available): msg = "Parsing error, unexpected output from {}:\n{}".format( remote_cmd, remote_output ) raise ValueError(msg) self.ssh_ctl_chan._return_cli() return int(space_available) * 1024 def local_space_available(self): """Return space available on local filesystem.""" if platform.system() == "Windows": import ctypes free_bytes = ctypes.c_ulonglong(0) ctypes.windll.kernel32.GetDiskFreeSpaceExW( ctypes.c_wchar_p("."), None, None, ctypes.pointer(free_bytes) ) return free_bytes.value else: destination_stats = os.statvfs(".") return destination_stats.f_bsize * destination_stats.f_bavail def verify_space_available(self, search_pattern=r"(\d+) \w+ free"): """Verify sufficient space is available on destination file system (return boolean).""" if self.direction == "put": space_avail = self.remote_space_available(search_pattern=search_pattern) elif self.direction == "get": space_avail = self.local_space_available() if space_avail > self.file_size: return True return False def check_file_exists(self, remote_cmd=""): """Check if the dest_file already exists on the file system (return boolean).""" if self.direction == "put": if not remote_cmd: remote_cmd = f"dir {self.file_system}/{self.dest_file}" remote_out = self.ssh_ctl_chan.send_command_expect(remote_cmd) search_string = r"Directory of .*{0}".format(self.dest_file) if ( "Error opening" in remote_out or "No such file or directory" in remote_out or "Path does not exist" in remote_out ): return False elif re.search(search_string, remote_out, flags=re.DOTALL): return True else: raise ValueError("Unexpected output from check_file_exists") elif self.direction == "get": return os.path.exists(self.dest_file) def _check_file_exists_unix(self, remote_cmd=""): """Check if the dest_file already exists on the file system (return boolean).""" if self.direction == "put": self.ssh_ctl_chan._enter_shell() remote_cmd = f"ls {self.file_system}" remote_out = self.ssh_ctl_chan.send_command( remote_cmd, expect_string=r"[\$#]" ) self.ssh_ctl_chan._return_cli() return self.dest_file in remote_out elif self.direction == "get": return os.path.exists(self.dest_file) def remote_file_size(self, remote_cmd="", remote_file=None): """Get the file size of the remote file.""" if remote_file is None: if self.direction == "put": remote_file = self.dest_file elif self.direction == "get": remote_file = self.source_file if not remote_cmd: remote_cmd = f"dir {self.file_system}/{remote_file}" remote_out = self.ssh_ctl_chan.send_command(remote_cmd) # Strip out "Directory of flash:/filename line remote_out = re.split(r"Directory of .*", remote_out) remote_out = "".join(remote_out) # Match line containing file name escape_file_name = re.escape(remote_file) pattern = r".*({}).*".format(escape_file_name) match = re.search(pattern, remote_out) if match: line = match.group(0) # Format will be 26 -rw- 6738 Jul 30 2016 19:49:50 -07:00 filename file_size = line.split()[2] else: raise IOError("Unable to parse 'dir' output in remote_file_size method") if "Error opening" in remote_out or "No such file or directory" in remote_out: raise IOError("Unable to find file on remote system") else: return int(file_size) def _remote_file_size_unix(self, remote_cmd="", remote_file=None): """Get the file size of the remote file.""" if remote_file is None: if self.direction == "put": remote_file = self.dest_file elif self.direction == "get": remote_file = self.source_file remote_file = f"{self.file_system}/{remote_file}" if not remote_cmd: remote_cmd = f"ls -l {remote_file}" self.ssh_ctl_chan._enter_shell() remote_out = self.ssh_ctl_chan.send_command(remote_cmd, expect_string=r"[\$#]") self.ssh_ctl_chan._return_cli() if "No such file or directory" in remote_out: raise IOError("Unable to find file on remote system") escape_file_name = re.escape(remote_file) pattern = r"^.* ({}).*$".format(escape_file_name) match = re.search(pattern, remote_out, flags=re.M) if match: # Format: -rw-r--r-- 1 pyclass wheel 12 Nov 5 19:07 /var/tmp/test3.txt line = match.group(0) file_size = line.split()[4] return int(file_size) raise ValueError( "Search pattern not found for remote file size during SCP transfer." ) def file_md5(self, file_name, add_newline=False): """Compute MD5 hash of file. add_newline is needed to support Cisco IOS MD5 calculation which expects the newline in the string Args: file_name: name of file to get md5 digest of add_newline: add newline to end of file contents or not """ file_hash = hashlib.md5() with open(file_name, "rb") as f: while True: file_contents = f.read(512) if not file_contents: if add_newline: file_contents + b"\n" break file_hash.update(file_contents) return file_hash.hexdigest() @staticmethod def process_md5(md5_output, pattern=r"=\s+(\S+)"): """ Process the string to retrieve the MD5 hash Output from Cisco IOS (ASA is similar) .MD5 of flash:file_name Done! verify /md5 (flash:file_name) = 410db2a7015eaa42b1fe71f1bf3d59a2 """ match = re.search(pattern, md5_output) if match: return match.group(1) else: raise ValueError(f"Invalid output from MD5 command: {md5_output}") def compare_md5(self): """Compare md5 of file on network device to md5 of local file.""" if self.direction == "put": remote_md5 = self.remote_md5() return self.source_md5 == remote_md5 elif self.direction == "get": local_md5 = self.file_md5(self.dest_file) return self.source_md5 == local_md5 def remote_md5(self, base_cmd="verify /md5", remote_file=None): """Calculate remote MD5 and returns the hash. This command can be CPU intensive on the remote device. """ if remote_file is None: if self.direction == "put": remote_file = self.dest_file elif self.direction == "get": remote_file = self.source_file remote_md5_cmd = f"{base_cmd} {self.file_system}/{remote_file}" dest_md5 = self.ssh_ctl_chan.send_command(remote_md5_cmd, max_loops=1500) dest_md5 = self.process_md5(dest_md5) return dest_md5 def transfer_file(self): """SCP transfer file.""" if self.direction == "put": self.put_file() elif self.direction == "get": self.get_file() def get_file(self): """SCP copy the file from the remote device to local system.""" source_file = f"{self.file_system}/{self.source_file}" self.scp_conn.scp_get_file(source_file, self.dest_file) self.scp_conn.close() def put_file(self): """SCP copy the file from the local system to the remote device.""" destination = f"{self.file_system}/{self.dest_file}" self.scp_conn.scp_transfer_file(self.source_file, destination) # Must close the SCP connection to get the file written (flush) self.scp_conn.close() def verify_file(self): """Verify the file has been transferred correctly.""" return self.compare_md5() def enable_scp(self, cmd=None): """ Enable SCP on remote device. Defaults to Cisco IOS command """ if cmd is None: cmd = ["ip scp server enable"] elif not hasattr(cmd, "__iter__"): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd) def disable_scp(self, cmd=None): """ Disable SCP on remote device. Defaults to Cisco IOS command """ if cmd is None: cmd = ["no ip scp server enable"] elif not hasattr(cmd, "__iter__"): cmd = [cmd] self.ssh_ctl_chan.send_config_set(cmd) ``` #### File: netmiko/tests/test_cisco_ios_serial.py ```python from netmiko import ConnectHandler import serial def main(): """ This will run an command via serial on an cisco ios switch and so serial cable must be attached to the device """ serialhandle = { "device_type": "cisco_ios_serial", "port": "USB Serial", # can be COM<number> or any line you can get from # serial.tools.list_ports.comports() "username": "<username>", "password": "<password>", "secret": "<secret>", "serial_settings": { # this are the default values "baudrate": 9600, "bytesize": serial.EIGHTBITS, "parity": serial.PARITY_NONE, "stopbits": serial.STOPBITS_ONE, }, } net_connect = ConnectHandler(**serialhandle) net_connect.enable() output = net_connect.send_command("show run") net_connect.disconnect() print(output) if __name__ == "__main__": main() ```
{ "source": "josephwhittington/make_json_from_images", "score": 4 }
#### File: josephwhittington/make_json_from_images/make_json.py ```python import os import json from sys import argv def main(argv): parsed_args = parse_args(argv) file_name_prop = parsed_args['first'] extentions_to_check = ['.jpg', '.jpeg', '.png'] dir_path = os.path.dirname(os.path.realpath(__file__)) json_obj = [] for file_name in os.listdir(dir_path): if any(ext in file_name for ext in extentions_to_check): working_obj = {file_name_prop: file_name} if parsed_args['additional']: for arg in parsed_args['additional']: working_obj[arg] = "" json_obj.append(working_obj) make_json(json_obj, parsed_args['out']) # saves the output to a json file def make_json(obj, out): f = open(out, 'w+') f.write(json.dumps(obj)) f.close() # parses the arguments into usable blocks def parse_args(args): flags = ['--first', '--additional', '--output'] configs = { 'first': '', 'out': '', 'additional': [] } # loop through the arguments and look for flags for arg in args: if any(flag in arg for flag in flags): if '--first' in arg: configs['first'] = arg[arg.index('=')+1:] elif '--output' in arg: configs['out'] = arg[arg.index('=')+1:] + '.json' elif '--additional' in arg: additional_args = arg[arg.index('=')+1:].split(',') configs['additional'] = additional_args return configs # Standard convention that allows the code to be run only when invoked or if the file is running as a program rather than an import if __name__ == '__main__': main(argv) ```
{ "source": "josephwillard/hy", "score": 2 }
#### File: hy/hy/importer.py ```python from __future__ import absolute_import import sys import os import ast import inspect import pkgutil import re import io import types import tempfile import importlib import __future__ from functools import partial from hy.errors import HyTypeError from hy.compiler import hy_compile from hy.lex import tokenize, LexException from hy.models import HyExpression, HySymbol from hy._compat import string_types, PY3 hy_ast_compile_flags = (__future__.CO_FUTURE_DIVISION | __future__.CO_FUTURE_PRINT_FUNCTION) def ast_compile(ast, filename, mode): """Compile AST. Parameters ---------- ast : instance of `ast.AST` filename : str Filename used for run-time error messages mode: str `compile` mode parameter Returns ------- out : instance of `types.CodeType` """ return compile(ast, filename, mode, hy_ast_compile_flags) def hy_parse(source): """Parse a Hy source string. Parameters ---------- source: string Source code to parse. Returns ------- out : instance of `types.CodeType` """ source = re.sub(r'\A#!.*', '', source) return HyExpression([HySymbol("do")] + tokenize(source + "\n")) def hy_eval(hytree, namespace=None, module_name=None, ast_callback=None): """Evaluates a quoted expression and returns the value. The optional second and third arguments specify the dictionary of globals to use and the module name. The globals dictionary defaults to ``(local)`` and the module name defaults to the name of the current module. Examples -------- => (eval '(print "Hello World")) "Hello World" If you want to evaluate a string, use ``read-str`` to convert it to a form first: => (eval (read-str "(+ 1 1)")) 2 Parameters ---------- hytree: a Hy expression tree Source code to parse. namespace: dict, optional Namespace in which to evaluate the Hy tree. Defaults to the calling frame. module_name: str, optional Name of the module to which the Hy tree is assigned. Defaults to the calling frame's module, if any, and '__eval__' otherwise. ast_callback: callable, optional A callback that is passed the Hy compiled tree and resulting expression object, in that order, after compilation but before evaluation. Returns ------- out : Result of evaluating the Hy compiled tree. """ if namespace is None: frame = inspect.stack()[1][0] namespace = inspect.getargvalues(frame).locals if module_name is None: m = inspect.getmodule(inspect.stack()[1][0]) module_name = '__eval__' if m is None else m.__name__ if not isinstance(module_name, string_types): raise TypeError("Module name must be a string") _ast, expr = hy_compile(hytree, module_name, get_expr=True) # Spoof the positions in the generated ast... for node in ast.walk(_ast): node.lineno = 1 node.col_offset = 1 for node in ast.walk(expr): node.lineno = 1 node.col_offset = 1 if ast_callback: ast_callback(_ast, expr) if not isinstance(namespace, dict): raise TypeError("Globals must be a dictionary") # Two-step eval: eval() the body of the exec call eval(ast_compile(_ast, "<eval_body>", "exec"), namespace) # Then eval the expression context and return that return eval(ast_compile(expr, "<eval>", "eval"), namespace) def cache_from_source(source_path): """Get the cached bytecode file name for a given source file name. This function's name is set to mirror Python 3.x's `importlib.util.cache_from_source`, which is also used when available. Parameters ---------- source_path : str Path of the source file Returns ------- out : str Path of the corresponding bytecode file that may--or may not--actually exist. """ if PY3: return importlib.util.cache_from_source(source_path) else: # If source_path has a file extension, replace it with ".pyc". # Otherwise, just append ".pyc". d, f = os.path.split(source_path) return os.path.join(d, re.sub(r"(?:\.[^.]+)?\Z", ".pyc", f)) def _hy_code_from_file(filename, loader_type=None): """Use PEP-302 loader to produce code for a given Hy source file.""" full_fname = os.path.abspath(filename) fname_path, fname_file = os.path.split(full_fname) modname = os.path.splitext(fname_file)[0] sys.path.insert(0, fname_path) try: if loader_type is None: loader = pkgutil.get_loader(modname) else: loader = loader_type(modname, full_fname) code = loader.get_code(modname) finally: sys.path.pop(0) return code def _get_code_from_file(run_name, fname=None, hy_src_check=lambda x: x.endswith('.hy')): """A patch of `runpy._get_code_from_file` that will also run and cache Hy code. """ if fname is None and run_name is not None: fname = run_name # Check for bytecode first. (This is what the `runpy` version does!) with open(fname, "rb") as f: code = pkgutil.read_code(f) if code is None: if hy_src_check(fname): code = _hy_code_from_file(fname, loader_type=HyLoader) else: # Try normal source with open(fname, "rb") as f: # This code differs from `runpy`'s only in that we # force decoding into UTF-8. source = f.read().decode('utf-8') code = compile(source, fname, 'exec') return (code, fname) if PY3 else code if PY3: importlib.machinery.SOURCE_SUFFIXES.insert(0, '.hy') _py_source_to_code = importlib.machinery.SourceFileLoader.source_to_code def _could_be_hy_src(filename): return (os.path.isfile(filename) and (filename.endswith('.hy') or not any(filename.endswith(ext) for ext in importlib.machinery.SOURCE_SUFFIXES[1:]))) def _hy_source_to_code(self, data, path, _optimize=-1): if _could_be_hy_src(path): source = data.decode("utf-8") try: hy_tree = hy_parse(source) data = hy_compile(hy_tree, self.name) except (HyTypeError, LexException) as e: if e.source is None: e.source = source e.filename = path raise return _py_source_to_code(self, data, path, _optimize=_optimize) importlib.machinery.SourceFileLoader.source_to_code = _hy_source_to_code # This is actually needed; otherwise, pre-created finders assigned to the # current dir (i.e. `''`) in `sys.path` will not catch absolute imports of # directory-local modules! sys.path_importer_cache.clear() # Do this one just in case? importlib.invalidate_caches() # XXX: These and the 2.7 counterparts below aren't truly cross-compliant. # They're useful for testing, though. HyImporter = importlib.machinery.FileFinder HyLoader = importlib.machinery.SourceFileLoader else: import imp import py_compile import marshal import struct import traceback from pkgutil import ImpImporter, ImpLoader def _could_be_hy_src(filename): return (filename.endswith('.hy') or (os.path.isfile(filename) and not any(filename.endswith(s[0]) for s in imp.get_suffixes()))) class HyLoader(ImpLoader, object): def __init__(self, fullname, filename, fileobj=None, etc=None): """This constructor is designed for some compatibility with SourceFileLoader.""" if etc is None and filename is not None: if _could_be_hy_src(filename): etc = ('.hy', 'U', imp.PY_SOURCE) if fileobj is None: fileobj = io.open(filename, 'rU', encoding='utf-8') super(HyLoader, self).__init__(fullname, fileobj, filename, etc) def exec_module(self, module, fullname=None): fullname = self._fix_name(fullname) code = self.get_code(fullname) eval(code, module.__dict__) def load_module(self, fullname=None): """Same as `pkgutil.ImpLoader`, with an extra check for Hy source""" fullname = self._fix_name(fullname) ext_type = self.etc[0] mod_type = self.etc[2] mod = None pkg_path = os.path.join(self.filename, '__init__.hy') if ext_type == '.hy' or ( mod_type == imp.PKG_DIRECTORY and os.path.isfile(pkg_path)): was_in_sys = fullname in sys.modules if was_in_sys: mod = sys.modules[fullname] else: mod = sys.modules.setdefault( fullname, imp.new_module(fullname)) # TODO: Should we set these only when not in `sys.modules`? if mod_type == imp.PKG_DIRECTORY: mod.__file__ = pkg_path mod.__path__ = [self.filename] mod.__package__ = fullname else: # mod.__path__ = self.filename mod.__file__ = self.get_filename(fullname) mod.__package__ = '.'.join(fullname.split('.')[:-1]) mod.__name__ = fullname try: self.exec_module(mod, fullname=fullname) except Exception: # Follow Python 2.7 logic and only remove a new, bad # module; otherwise, leave the old--and presumably # good--module in there. if not was_in_sys: del sys.modules[fullname] raise if mod is None: self._reopen() try: mod = imp.load_module(fullname, self.file, self.filename, self.etc) finally: if self.file: self.file.close() mod.__loader__ = self return mod def _reopen(self): """Same as `pkgutil.ImpLoader`, with an extra check for Hy source""" if self.file and self.file.closed: ext_type = self.etc[0] if ext_type == '.hy': self.file = io.open(self.filename, 'rU', encoding='utf-8') else: super(HyLoader, self)._reopen() def byte_compile_hy(self, fullname=None): fullname = self._fix_name(fullname) if fullname is None: fullname = self.fullname try: hy_source = self.get_source(fullname) hy_tree = hy_parse(hy_source) hy_ast = hy_compile(hy_tree, fullname) code = compile(hy_ast, self.filename, 'exec', hy_ast_compile_flags) except (HyTypeError, LexException) as e: if e.source is None: e.source = hy_source e.filename = self.filename raise if not sys.dont_write_bytecode: try: hyc_compile(code) except IOError: pass return code def get_code(self, fullname=None): """Same as `pkgutil.ImpLoader`, with an extra check for Hy source""" fullname = self._fix_name(fullname) ext_type = self.etc[0] if ext_type == '.hy': # Looks like we have to manually check for--and update-- # the bytecode. t_py = long(os.stat(self.filename).st_mtime) pyc_file = cache_from_source(self.filename) if os.path.isfile(pyc_file): t_pyc = long(os.stat(pyc_file).st_mtime) if t_pyc is not None and t_pyc >= t_py: with open(pyc_file, 'rb') as f: if f.read(4) == imp.get_magic(): t = struct.unpack('<I', f.read(4))[0] if t == t_py: self.code = marshal.load(f) if self.code is None: # There's no existing bytecode, or bytecode timestamp # is older than the source file's. self.code = self.byte_compile_hy(fullname) if self.code is None: super(HyLoader, self).get_code(fullname=fullname) return self.code def _get_delegate(self): return HyImporter(self.filename).find_module('__init__') class HyImporter(ImpImporter, object): def __init__(self, path=None): # We need to be strict about the types of files this importer will # handle. To start, if the path is not the current directory in # (represented by '' in `sys.path`), then it must be a supported # file type or a directory. If it isn't, this importer is not # suitable: throw an exception. if path == '' or os.path.isdir(path) or ( os.path.isfile(path) and path.endswith('.hy')): self.path = path else: raise ImportError('Invalid path: {}'.format(path)) def find_loader(self, fullname): return self.find_module(fullname, path=None) def find_module(self, fullname, path=None): subname = fullname.split(".")[-1] if subname != fullname and self.path is None: return None if self.path is None: path = None else: path = [os.path.realpath(self.path)] fileobj, file_path, etc = None, None, None # The following are excerpts from the later pure Python # implementations of the `imp` module (e.g. in Python 3.6). if path is None: path = sys.path for entry in path: if (os.path.isfile(entry) and subname == '__main__' and entry.endswith('.hy')): file_path = entry fileobj = io.open(file_path, 'rU', encoding='utf-8') etc = ('.hy', 'U', imp.PY_SOURCE) break else: file_path = os.path.join(entry, subname) path_init = os.path.join(file_path, '__init__.hy') if os.path.isfile(path_init): fileobj = None etc = ('', '', imp.PKG_DIRECTORY) break file_path = file_path + '.hy' if os.path.isfile(file_path): fileobj = io.open(file_path, 'rU', encoding='utf-8') etc = ('.hy', 'U', imp.PY_SOURCE) break else: try: fileobj, file_path, etc = imp.find_module(subname, path) except (ImportError, IOError): return None return HyLoader(fullname, file_path, fileobj, etc) sys.path_hooks.append(HyImporter) sys.path_importer_cache.clear() _py_compile_compile = py_compile.compile def hyc_compile(file_or_code, cfile=None, dfile=None, doraise=False): """Write a Hy file, or code object, to pyc. This is a patched version of Python 2.7's `py_compile.compile`. Also, it tries its best to write the bytecode file atomically. Parameters ---------- file_or_code : str or instance of `types.CodeType` A filename for a Hy or Python source file or its corresponding code object. cfile : str, optional The filename to use for the bytecode file. If `None`, use the standard bytecode filename determined by `cache_from_source`. dfile : str, optional The filename to use for compile-time errors. doraise : bool, default False If `True` raise compilation exceptions; otherwise, ignore them. Returns ------- out : str The resulting bytecode file name. Python 3.x returns this, but Python 2.7 doesn't; this function does for convenience. """ if isinstance(file_or_code, types.CodeType): codeobject = file_or_code filename = codeobject.co_filename else: filename = file_or_code with open(filename, 'rb') as f: source_str = f.read().decode('utf-8') try: flags = None if _could_be_hy_src(filename): hy_tree = hy_parse(source_str) source = hy_compile(hy_tree, '<hyc_compile>') flags = hy_ast_compile_flags codeobject = compile(source, dfile or filename, 'exec', flags) except Exception as err: if isinstance(err, (HyTypeError, LexException)) and err.source is None: err.source = source_str err.filename = filename py_exc = py_compile.PyCompileError(err.__class__, err, dfile or filename) if doraise: raise py_exc else: traceback.print_exc() return timestamp = long(os.stat(filename).st_mtime) if cfile is None: cfile = cache_from_source(filename) f = tempfile.NamedTemporaryFile('wb', dir=os.path.split(cfile)[0], delete=False) try: f.write('\0\0\0\0') f.write(struct.pack('<I', timestamp)) f.write(marshal.dumps(codeobject)) f.flush() f.seek(0, 0) f.write(imp.get_magic()) # Make sure it's written to disk. f.flush() os.fsync(f.fileno()) f.close() # Rename won't replace an existing dest on Windows. if os.name == 'nt' and os.path.isfile(cfile): os.unlink(cfile) os.rename(f.name, cfile) except OSError: try: os.unlink(f.name) except OSError: pass return cfile py_compile.compile = hyc_compile # We create a separate version of runpy, "runhy", that prefers Hy source over # Python. runhy = importlib.import_module('runpy') runhy._get_code_from_file = partial(_get_code_from_file, hy_src_check=_could_be_hy_src) del sys.modules['runpy'] runpy = importlib.import_module('runpy') _runpy_get_code_from_file = runpy._get_code_from_file runpy._get_code_from_file = _get_code_from_file ```
{ "source": "josephwillard/logpy", "score": 3 }
#### File: logpy/tests/test_cons.py ```python from functools import reduce from itertools import chain, cycle from collections import Iterable, OrderedDict from kanren.cons import cons, ConsPair, car, cdr, is_cons, is_null def assert_all_equal(*tests): def _equal(x, y): assert x, y return y reduce(_equal, tests) def test_cons(): assert_all_equal(cons('a', None), cons('a', []), ['a']) assert cons('a', ()) == ('a',) assert cons('a', []) == ['a'] assert cons(None, 'a').car is None assert cons(None, 'a').cdr == 'a' assert cons((), 'a') == ConsPair((), 'a') assert cons([], 'a') == ConsPair([], 'a') assert cons('a', None) == ['a'] assert cons('a', ['b', 'c']) == ['a', 'b', 'c'] assert cons('a', ('b', 'c')) == ('a', 'b', 'c') assert type(cons(('a', 1), {'b': 2})) == ConsPair assert cons(('a', 1), OrderedDict({'b': 2})) == OrderedDict([('a', 1), ('b', 2)]) assert cons(['a', 'b'], 'c') == ConsPair(['a', 'b'], 'c') assert cons(('a', 'b'), 'c') == ConsPair(('a', 'b'), 'c') assert cons(['a', 'b'], ['c', 'd']) == [['a', 'b'], 'c', 'd'] assert cons(('a', 'b'), ['c', 'd']) == [('a', 'b'), 'c', 'd'] assert cons(['a', 'b'], ('c', 'd')) == (['a', 'b'], 'c', 'd') assert type(cons(1, iter([3, 4]))) == chain assert list(cons([1, 2], iter([3, 4]))) == [[1, 2], 3, 4] assert list(cons(1, iter([2, 3]))) == [1, 2, 3] assert cons('a', cons('b', 'c')) == cons(['a', 'b'], 'c') assert cons(cons('a', 'b'), cons('c', 'd')) == cons([cons('a', 'b'), 'c'], 'd') def test_car_cdr(): assert car(cons('a', 'b')) == 'a' z = car(cons(iter([]), 1)) expected = iter([]) assert type(z) == type(expected) assert list(z) == list(expected) z = cdr(cons(1, iter([]))) expected = iter([]) assert isinstance(z, Iterable) assert list(z) == list(expected) assert car(iter([1])) == 1 assert list(cdr(iter([1]))) == [] assert list(cons(car(iter([1])), cdr(iter([1])))) == [1] assert list(cdr(iter([1, 2, 3]))) == [2, 3] assert car(cons(['a', 'b'], 'a')) == ['a', 'b'] assert car(cons(('a', 'b'), 'a')) == ('a', 'b') assert cdr(cons('a', 'b')) == 'b' assert cdr(cons('a', ())) == () assert cdr(cons('a', [])) == [] assert cdr(cons('a', ('b',))) == ('b',) assert cdr(cons('a', ['b'])) == ['b'] assert car(OrderedDict([(1, 2), (3, 4)])) == (1, 2) assert cdr(OrderedDict([(1, 2), (3, 4)])) == [(3, 4)] assert cdr(OrderedDict({(1): 2})) == [] def test_is_cons(): assert is_cons(cons(1, 'hi')) assert is_cons((1, 2)) assert is_cons([1, 2]) assert is_cons(OrderedDict({(1): 2})) assert is_cons(iter([1])) assert not is_cons({}) assert not is_cons(set()) assert not is_cons(set([1, 2])) assert not is_cons('hi') assert not is_cons('hi') assert not is_cons(1) assert not is_cons(iter([])) assert not is_cons(OrderedDict({})) assert not is_cons(()) assert not is_cons([]) def test_is_null(): assert is_null(None) assert is_null([]) assert is_null(tuple()) assert is_null(OrderedDict()) assert is_null(iter([])) assert not is_null(object) assert not is_null([1]) assert not is_null((1,)) assert not is_null(OrderedDict([(1, 2)])) assert not is_null(iter([1])) assert not is_null(cycle([5])) ```
{ "source": "josephwillard/symbolic-pymc", "score": 2 }
#### File: relations/theano/distributions.py ```python from unification import var from etuples import etuple from kanren import conde, eq from kanren.facts import fact, Relation from . import constant_neq from .. import concat from ...theano.meta import mt derived_dist = Relation("derived_dist") stable_dist = Relation("stable_dist") generalized_gamma_dist = Relation("generalized_gamma_dist") uniform_mt = mt.UniformRV(var(), var(), size=var(), rng=var(), name=var()) normal_mt = mt.NormalRV(var(), var(), size=var(), rng=var(), name=var()) cauchy_mt = mt.CauchyRV(var(), var(), size=var(), rng=var(), name=var()) halfcauchy_mt = mt.HalfCauchyRV(var(), var(), size=var(), rng=var(), name=var()) gamma_mt = mt.GammaRV(var(), var(), size=var(), rng=var(), name=var()) exponential_mt = mt.ExponentialRV(var(), size=var(), rng=var(), name=var()) # TODO: Add constraints for different variations of this. Also, consider a # check for exact equality of the two dists, or simply normalize/canonicalize # the graph first. fact( derived_dist, mt.true_div( mt.NormalRV(0.0, 1.0, size=var("_ratio_norm_size"), rng=var("_ratio_norm_rng"), name=var()), mt.NormalRV(0.0, 1.0, size=var("_ratio_norm_size"), rng=var(), name=var()), ), mt.CauchyRV(0.0, 1.0, size=var("_ratio_norm_size"), rng=var("_ratio_norm_rng")), ) # TODO: # fact(stable_dist, # normal_mt, ('StableRV', # 2., 0., # normal_mt.owner.inputs[1], # normal_mt.owner.inputs[1])) # fact(stable_dist, # cauchy_mt, ('StableRV', # 1., 0., # cauchy_mt.owner.inputs[1], # cauchy_mt.owner.inputs[1])) # TODO: Weibull, Gamma, Exponential, Half-normal # fact(generalized_gamma_dist, # None, # None) def scale_loc_transform(in_expr, out_expr): """Create relations for lifting and sinking scale and location parameters of distributions. I.e. f(a + b*x) -> a + b * f(x) For example, `in_expr`: f(a + b*x) == `out_expr`: a + b * f(x). TODO: Match larger distribution families and perform transforms from there. XXX: PyMC3 rescaling issue (?) doesn't allow us to take the more general approach, which involves separate scale and location rewrites. """ # Scale and location transform expression "pattern" for a Normal term. normal_mt = mt.NormalRV(var(), var(), size=var(), rng=var(), name=var()) n_name_lv = normal_mt.name n_mean_lv, n_sd_lv, n_size_lv, n_rng_lv = normal_mt.owner.inputs offset_name_mt = var() rct_norm_offset_mt = etuple( mt.add, n_mean_lv, etuple( mt.mul, n_sd_lv, mt.NormalRV(0.0, 1.0, size=n_size_lv, rng=n_rng_lv, name=offset_name_mt), ), ) # Scale and location transform expression "pattern" for a Cauchy term. cauchy_mt = mt.CauchyRV(var(), var(), size=var(), rng=var(), name=var()) c_name_lv = cauchy_mt.name c_mean_lv, c_beta_lv, c_size_lv, c_rng_lv = cauchy_mt.owner.inputs rct_cauchy_offset_mt = etuple( mt.add, c_mean_lv, etuple( mt.mul, c_beta_lv, mt.CauchyRV(0.0, 1.0, size=c_size_lv, rng=c_rng_lv, name=offset_name_mt), ), ) # TODO: # uniform_mt = mt.UniformRV(var(), var(), size=var(), rng=var(), name=var()) # u_name_lv = uniform_mt.name # u_a_lv, u_b_lv, u_size_lv, u_rng_lv = uniform_mt.owner.inputs # rct_uniform_scale_mt = etuple( # mt.mul, # u_b_lv, # mt.UniformRV(0.0, 1.0, size=u_size_lv, rng=u_rng_lv, name=offset_name_mt), # ) # rct_uniform_loc_mt = etuple(mt.add, u_c_lv, # mt.UniformRV(u_a_lv, u_b_lv, # size=u_size_lv, # rng=u_rng_lv, # name=offset_name_mt)) rels = conde( [ eq(in_expr, normal_mt), constant_neq(n_sd_lv, 1), constant_neq(n_mean_lv, 0), eq(out_expr, rct_norm_offset_mt), concat(n_name_lv, "_offset", offset_name_mt), ], [ eq(in_expr, cauchy_mt), constant_neq(c_beta_lv, 1), # TODO: Add a positivity constraint for the scale. constant_neq(c_mean_lv, 0), eq(out_expr, rct_cauchy_offset_mt), concat(c_name_lv, "_offset", offset_name_mt), ], # TODO: # [eq(in_expr, uniform_mt), # lall( # constant_eq(u_a_lv, 0), # eq(out_expr, rct_uniform_scale_mt), # concat(u_name_lv, "_scale", offset_name_mt), # )], ) return rels ``` #### File: symbolic_pymc/tensorflow/meta.py ```python import types import inspect import tensorflow as tf import tensorflow_probability as tfp from inspect import Parameter, Signature from collections import OrderedDict from collections.abc import Sequence from functools import partial from cachetools import cachedmethod, Cache from unification import Var, var, isvar from google.protobuf.message import Message from tensorflow.python.framework import ( tensor_util, op_def_registry, op_def_library, tensor_shape, ops, ) from tensorflow.core.framework.op_def_pb2 import OpDef from tensorflow.core.framework.node_def_pb2 import NodeDef from tensorflow_probability import distributions as tfd from ..meta import ( MetaSymbol, MetaSymbolType, MetaOp, MetaVariable, MetaReificationError, meta_reify_iter, _metatize, metatize, ) from .. import meta from ..utils import HashableNDArray tf_metatize_cache = Cache(50) class MetaOpDefLibrary(object): """A singleton-like object that holds correspondences between TF Python API functions and the `OpDef`s they construct. It provides a map of `OpDef` names (lower-cased) to the Python API functions in `tensorflow.raw_ops`, as well as `inspect.Signature` objects for said functions so that default values and lists of arguments (keywords included) can be more easily used. """ lower_op_name_to_raw = { op_name.lower(): op_name for op_name in dir(tf.raw_ops) if callable(getattr(tf.raw_ops, op_name)) } opdef_signatures = {} def __init__(self): # # We need this in order to construct "Const" tensors directly, since # the "value" attr in a meta `NodeDef` is just a NumPy array and not # the `TensorProto` expected by `raw_ops.Const`. # def mt_const(value, dtype, name=None): return tf.raw_ops.Const( value=tensor_util.make_tensor_proto(value), dtype=dtype, name=name ) opdef = op_def_registry.get("Const") self.opdef_signatures[opdef.name] = self.make_opdef_sig(opdef, mt_const) @classmethod def get_op_info(cls, opdef): """Return the TF Python API function signature for a given `OpDef`. Parameter --------- opdef: str or `OpDef` object (meta or base) """ if isinstance(opdef, str): opdef_name = opdef opdef = op_def_registry.get(opdef_name) else: opdef_name = opdef.name opdef_sig = cls.opdef_signatures.get(opdef_name, None) if opdef_sig is None and opdef is not None: opdef_func = getattr(tf.raw_ops, opdef.name, None) opdef_sig = cls.make_opdef_sig(opdef, opdef_func) cls.opdef_signatures[opdef.name] = opdef_sig return opdef_sig @classmethod def make_opdef_sig(cls, opdef, opdef_py_func=None): """Create a `Signature` object for an `OpDef`. Annotations are include so that one can partially verify arguments. """ if opdef_py_func: # # We assume we're dealing with a function from `tf.raw_ops`. # Those functions have only the necessary `input_arg`s and `attr` # inputs as arguments. # opdef_func_sig = Signature.from_callable(opdef_py_func) params = opdef_func_sig.parameters else: # # We're crafting an `Operation` at a low-level via `apply_op` # (like the functions in `tf.raw_ops` do) # input_args = OrderedDict([(a.name, a.type or a.type_attr) for a in opdef.input_arg]) attrs = OrderedDict([(a.name, a) for a in opdef.attr]) params = OrderedDict() opdef_py_func = partial(op_def_library.apply_op, opdef.name) for i_name, i_type in input_args.items(): p = Parameter(i_name, Parameter.POSITIONAL_OR_KEYWORD, annotation=i_type) params[i_name] = p # These are the ambiguities we're attempting to overcome # with the `tf.raw_ops` functions above. for a_name, a_value in attrs.items(): # TODO: Check if a_value.type == "type": # This is a type value that will most likely be inferred # from/by the inputs. # TODO: We could check for an `allowed_values` attribute. continue default_value = Parameter.empty # if a_value.HasField('default_value'): # # TODO: Check `a_value.type` and extract Python value. # default_value = a_value.default_value p = Parameter( a_name, Parameter.POSITIONAL_OR_KEYWORD, default=default_value, annotation=a_value.type, ) params[a_name] = p # Always assume that a name can be specified. if "name" not in params: params["name"] = Parameter("name", Parameter.POSITIONAL_OR_KEYWORD, default=None) opdef_sig = Signature( params.values(), return_annotation=[(o.name, o.type_attr) for o in opdef.output_arg] ) return opdef_sig, opdef_py_func op_def_lib = MetaOpDefLibrary() def _metatize_tf_object(obj): try: tf_obj = tf.convert_to_tensor(obj) except (TypeError, ValueError): raise ValueError(f"Error converting {obj} to a TensorFlow tensor.") return _metatize(tf_obj) def load_dispatcher(): """Set/override dispatcher to default to TF objects.""" from tensorflow.python.ops.gen_linalg_ops import _SvdOutput def _metatize_tf_svd(obj): """Turn a TensorFlow `Svd` object/tuple into a standard tuple.""" return meta._metatize(tuple(obj)) meta._metatize.add((_SvdOutput,), _metatize_tf_svd) def _metatize_tf_eager(obj): """Catch eager tensor metatize issues early.""" raise AttributeError( f"TensorFlow Operation not available; " "try recreating the object with eager-mode disabled" " (e.g. within `tensorflow.python.eager.context.graph_mode`)" ) meta._metatize.add((ops.EagerTensor,), _metatize_tf_eager) meta._metatize.add((object,), _metatize_tf_object) meta._metatize.add((HashableNDArray,), _metatize_tf_object) for new_cls in TFlowMetaSymbol.base_subclasses(): meta._metatize.add((new_cls.base,), new_cls._metatize) meta._metatize.add((TFlowMetaOpDef.base,), TFlowMetaOpDef._metatize) # Apply TF-specific `kanren` settings from ..relations import tensorflow return meta._metatize class TFlowMetaSymbol(MetaSymbol): __slots__ = () @classmethod def _metatize(cls, obj): res = super()._metatize(obj) res.validate_objs() return res def validate_objs(self): # If there is no base object associated with the inputs, then we can't # trust a base object associated with this object (e.g. for the case in # which metatize altered a property in an input). try: rands = self.rands except NotImplementedError: return for prop in rands: if isinstance(prop, MetaSymbol) and prop.obj is None: self.reset() break class OpDefFactoryType(MetaSymbolType): __opdefs__ = {} def __call__(cls, obj=None): if obj is not None: obj_hash = obj.name # obj.SerializeToString() opdef = cls.__opdefs__.get(obj_hash, None) else: obj_hash = None opdef = None if opdef is None: opdef = super().__call__(obj=obj) if obj is not None: cls.__opdefs__[obj_hash] = opdef return opdef class TFlowMetaOpDef(TFlowMetaSymbol, metaclass=OpDefFactoryType): """A meta `OpDef`. This is like an `Op` node in Theano. Some useful info/links: - https://stackoverflow.com/questions/41147734/looking-for-source-code-of-from-gen-nn-ops-in-tensorflow/41149557#41149557 - A better way to view an `OpDef`: >>> from google.protobuf import json_format >>> print(json_format.MessageToJson(opdef)) - If you want to use an `OpDef` to construct a node, see `op_def_library.apply_op`. """ base = OpDef __slots__ = ("_attr",) def __init__(self, obj=None): super().__init__(obj=obj) self._attr = {o.name: o for o in obj.attr} @property def attr(self): return self._attr def __str__(self): return f"{self.__class__.__name__}({self.obj.name})" def _repr_pretty_(self, p, cycle): if cycle: p.text(f"{self.__class__.__name__}(...)") else: with p.group(2, f"{self.__class__.__name__}(", ")"): p.breakable(sep="") p.text(self.obj.name) def __eq__(self, other): if self is other: return True if not (type(self) == type(other)): return False assert self.base == other.base return self.obj.name == other.obj.name def __hash__(self): return hash((self.base, self.obj.name)) def reify(self): return self.obj class TFlowMetaNodeDef(TFlowMetaSymbol): """A meta `NodeDef`. NOTE: We're ignoring `node_def.input`; it's just an unnecessary hassle. """ base = NodeDef __slots__ = ["op", "name", "attr", "_frozen_attr"] @classmethod def _metatize(cls, obj): res = super()._metatize(obj) if obj.op != "Const" and "node_attrs" in meta._lvar_defaults_enabled: res.attr = var() if "names" in meta._lvar_defaults_enabled: res.name = var() return res @classmethod def _protobuf_convert(cls, k, v): """Convert a small subset of protobuf objects. FYI: This would cover a lot at once (but not any meta object conversions): from google.protobuf.json_format import MessageToDict MessageToDict(obj, use_integers_for_enums=True) """ if k == "shape": return metatize(tensor_shape.as_shape(v.shape)) elif k == "dtype": return tf.as_dtype(v.type).name elif k == "T": return tf.as_dtype(v.type).name elif k == "value": return tensor_util.MakeNdarray(v.tensor).view(HashableNDArray) else: # Consider only the narrow case where a single object is converted # (e.g. a Python builtin type under `v.b`, `v.f`, etc.) v = tuple(v for k, v in v.ListFields()) if len(v) == 1: return v[0] else: raise TypeError(f"Could not convert {k}") def __init__(self, op, name, attr, obj=None): super().__init__(obj=obj) self.op = metatize(op) assert name is not None self.name = name if isvar(name) else str(name) if not isvar(attr): opdef_sig, _ = op_def_lib.get_op_info(self.op) _attr = dict() for k, v in attr.items(): if isinstance(v, Message): try: v = self._protobuf_convert(k, v) except TypeError: v = var() _attr[k] = v self.attr = _attr else: self.attr = attr @property def frozen_attr(self): if getattr(self, "_frozen_attr", None) is not None: return self._frozen_attr if isvar(self.attr): self._frozen_attr = self.attr else: self._frozen_attr = frozenset(self.attr.items()) return self._frozen_attr def __eq__(self, other): if self is other: return True if not (type(self) == type(other)): return False if ( self.op == other.op and self.name == other.name and self.frozen_attr == other.frozen_attr ): return True return False def __hash__(self): return hash((hash(self.op), hash(self.name), hash(self.frozen_attr))) class TFlowMetaOp(TFlowMetaSymbol): """A meta `Operation`. This is like an `Apply` node in Theano. TODO: This whole thing should probably be a "NodeDef" class? """ base = tf.Operation __slots__ = ["op_def", "node_def", "inputs", "_name", "_type", "_outputs", "_default_output"] @classmethod def _metatize(cls, obj): """Reformat inputs to match the OpDef.""" new_input = ops._reconstruct_sequence_inputs(obj.op_def, obj.inputs, obj.node_def.attr) new_args = [ getattr(obj, s) if s != "inputs" else new_input for s in getattr(cls, "__props__", []) ] res = cls(*new_args, obj=obj) res.validate_objs() return res def __init__(self, op_def, node_def, inputs, outputs=None, obj=None): """Create a TensorFlow meta `Operation`. The real signature of `tf.Operation.__init__` includes the graph object, so we can't really the signature directly. This is part of the reason why we have `TFlowMetaOpFactory.__call__` and `TFlowMetaTensor.operator` + `TFlowMetaTensor.inputs` that do not directly use `__all_props__`/`TFlowMetaTensor.rands` and construct the objects directly. """ super().__init__(obj=obj) if isinstance(op_def, str): op_def = op_def_registry.get(op_def) self.op_def = metatize(op_def) self.node_def = metatize(node_def) if isvar(inputs): self.inputs = inputs else: # Inputs are supposed to be immutable, so we're able to convert # lists to tuples. def _convert_inputs(arg, nested): if nested and isinstance(arg, list): arg = tuple(metatize(i) for i in arg) else: arg = metatize(arg) return arg if not isvar(self.op_def): self.inputs = tuple( _convert_inputs(i, hasattr(info, "number_attr")) for i, info in zip(inputs, self.op_def.obj.input_arg) ) else: self.inputs = tuple(_convert_inputs(i, False) for i in inputs) if outputs is not None: if isvar(outputs): self._outputs = outputs else: self._outputs = tuple(metatize(o) for o in outputs) @property def type(self): if getattr(self, "_type", None) is not None: return self._type if isvar(self.op_def): self._type = var() else: self._type = self.op_def.obj.name return self._type @property def name(self): if getattr(self, "_name", None) is not None: return self._name if isvar(self.node_def): self._name = var() else: self._name = self.node_def.name return self._name @property def outputs(self): """Compute outputs for this meta `Operation`.""" if getattr(self, "_outputs", None) is not None: return self._outputs if isvar(self.op_def): self._outputs = var() else: if isvar(self.node_def) or not isinstance(getattr(self.node_def, "attr", None), dict): node_attr = {} else: node_attr = self.node_def.attr operator = TFlowMetaOperator(self.op_def, self.node_def) if isvar(self.inputs): inputs = (None,) * len(operator._apply_func_sig.parameters) apply_defaults = False else: inputs = self.inputs apply_defaults = True apply_arguments = operator.input_args( *inputs, apply_defaults=apply_defaults, **node_attr ) # TODO: The above could probably be simplified into a # NodeDef-from-input-args function. out_types_mt = operator.output_meta_types(inputs=apply_arguments) mt_outs = tuple( o_type(self, i, o_dtype) for i, (o_type, o_dtype) in enumerate(out_types_mt) ) self._outputs = mt_outs return self._outputs @property def default_output(self): """Return the default output for this `Operation`. TODO: It might be worth considering a direct approach, and not one that requires the generation of all meta outputs. """ if getattr(self, "_default_output", None): return self._default_output mt_outs = self.outputs if isinstance(mt_outs, Sequence) and len(mt_outs) == 1: out_var = mt_outs[0] else: out_var = mt_outs self._default_output = out_var return self._default_output def reify(self): if self.obj and not isinstance(self.obj, Var): return self.obj if isvar(self.inputs): return self op_inputs, op_inputs_unreified = meta_reify_iter(self.inputs) node_attr = getattr(self.node_def, "attr", None) if node_attr is None or isvar(node_attr): return self operator = TFlowMetaOperator(self.op_def, self.node_def) op_attrs, op_attrs_unreified = meta_reify_iter( # Only use NodeDef attrs that appear in the OpDef's call signature. # Other NodeDef attrs, like dtype and shape, can be computed. {k: v for k, v in node_attr.items() if k in operator._apply_func_sig.parameters} ) if not (op_inputs_unreified or op_attrs_unreified or isvar(self.name)): # # An operation with this name might already exist in the graph # try: existing_op = ops.get_default_graph().get_operation_by_name(self.name) except KeyError: # # There is no such `Operation`, so we attempt to create it # apply_arguments = operator.input_args(*op_inputs, name=self.name, **op_attrs) tf_out = operator._apply_func(**apply_arguments) op_tf = tf_out.op else: # # An `Operation` with this name exists, let's make sure it's # equivalent to this meta `Operation` # if self != mt(existing_op): raise MetaReificationError( f"An Operation with the name {self.name}" " already exists in the graph and is not" " equal to this meta object." ) op_tf = existing_op assert op_tf is not None self._obj = op_tf return self.obj return self class TFlowMetaTensor(TFlowMetaSymbol, MetaVariable): base = tf.Tensor __slots__ = ("op", "value_index", "dtype", "_shape", "_name", "_operator") @classmethod @cachedmethod(lambda cls: tf_metatize_cache) def _metatize(cls, obj): """Cache Tensors specifically.""" return super()._metatize(obj) def __init__(self, op, value_index, dtype, obj=None): self.op = metatize(op) # TODO: Sync this value with `op.node_def.attr['dtype']` and/or # `op.node_def.attr['T']`? self.dtype = dtype self.value_index = value_index super().__init__(obj=obj) @property def shape(self): if getattr(self, "_shape", None): return self._shape if self.obj is not None and not isinstance(self.obj, Var): self._shape = metatize(self.obj.shape) else: self._shape = TFlowMetaTensorShape(var()) return self._shape @property def name(self): if getattr(self, "_name", None): return self._name if isinstance(getattr(self.op, "name", None), str) and not isvar(self.value_index): name = f"{self.op.name}:{self.value_index}" else: name = var() if self.obj is not None and not isinstance(self.obj, Var): assert name == self.obj.name self._name = name return self._name @property def base_operator(self): if getattr(self, "_operator", None): return self._operator if isvar(self.op) or (not isvar(self.op.inputs) and len(self.op.inputs) == 0): raise NotImplementedError(f"{self} does not have a base_operator.") self._operator = TFlowMetaOperator(self.op.op_def, self.op.node_def) return self._operator @property def base_arguments(self): # TODO: In keeping with our desire to return logic variables in cases # where params aren't given/inferred, we could return something like # `cons(var(), var())` here (although that wouldn't be necessarily # imply that the result is a proper list/tuple). if isvar(self.op) or (not isvar(self.op.inputs) and len(self.op.inputs) == 0): raise NotImplementedError(f"{self} does not have base arguments.") return self.op.inputs def reify(self): if self.obj is not None and not isinstance(self.obj, Var): return self.obj if (not self.op) or isvar(self.op): op_res = super().reify() return op_res tf_op = self.op.reify() if not MetaSymbol.is_meta(tf_op): if not MetaSymbol.is_meta(self.value_index): tf_res = tf_op.outputs[self.value_index] elif len(tf_op.outputs) == 1: tf_res = tf_op.outputs[0] else: # TODO: Anything else we should/can do here? return self self._obj = tf_res return tf_res return self def __truediv__(self, y): # TODO: TF performs some dtype logic (using `dtype.base_dtype`) and casting here. return mt.realdiv(self, y, name="truediv") def __rtruediv__(self, x): # TODO: TF performs some dtype logic (using `dtype.base_dtype`) and casting here. return mt.realdiv(x, self, name="truediv") def __add__(self, y): # TODO: If `self.dtype == tf.dtypes.string`, use `mt.add` return mt.addv2(self, y, name="add") def __radd__(self, x): # TODO: If `x.dtype == tf.dtypes.string`, use `mt.add` return mt.addv2(x, self, name="add") def __sub__(self, y): return mt.sub(self, y, name="sub") def __rsub__(self, x): return mt.sub(x, self, name="sub") def __mul__(self, y): return mt.mul(self, y, name="mul") def __rmul__(self, x): return mt.mul(x, self, name="mul") def __abs__(self): return mt.abs(self, name="Abs") def __pow__(self, y): return mt.pow(self, y, name="pow") def __neg__(self): return mt.neg(self, name="Neg") class TFlowMetaTensorShape(TFlowMetaSymbol): base = tf.TensorShape __slots__ = ("dims", "_rank") def __init__(self, dims, obj=None): super().__init__(obj=obj) self.dims = dims if self.dims is not None and not isvar(self.dims): # TODO: Just like the comment in `TFlowMetaTensor.inputs`, # `self.dims` should be something like `cons(var(), ...)` and not a # straight logic variable. self.dims = tuple(tensor_shape.as_dimension(d).value for d in self.dims) @property def rank(self): if getattr(self, "_rank", None): return self._rank if self.dims is not None and not isvar(self.dims): rank = len(self.dims) else: # TODO: How do we represent/tie in len(var())? rank = var() self._rank = rank return self._rank @property def ndims(self): return self.rank def as_list(self): if self.dims is not None and not isvar(self.dims): return list(self.dims) else: return self.dims def __hash__(self): return hash((self.base, self.dims)) class TFlowMetaOperator(TFlowMetaSymbol, MetaOp): """A class that implements the notion of an operator on top of TensorFlow's OpDef and NodeDef objects. With this abstraction, we can better model operators by distinguishing parameterized operators and their respective parameter values from the operator's inputs, which may have similar properties across the entire family of operators (i.e. across all parameter values). For example, addition is commutative in its arguments, so modeling addition as an operator parameterized on dtypes and/or names, we may want to preserve the distinction of the operators inputs and its parameterized values so that we can implement commutativity exclusively on the non-dtype/name inputs. """ base = None __slots__ = ("op_def", "node_def", "_apply_func_sig", "_apply_func") @classmethod def get_metaopdef(cls, name): """Obtain a MetaOpDef for a given string name. This is more flexible because it ignores things like string case (when the non-`raw_ops` name differs from the TF user-level API). """ raw_op_name = op_def_lib.lower_op_name_to_raw.get(name.lower(), name) op_def = op_def_registry.get(raw_op_name) if op_def is not None: return TFlowMetaOpDef(obj=op_def) def __init__(self, op_def, node_def=None, obj=None): assert obj is None super().__init__(None) self.op_def = op_def if isinstance(self.op_def, str): self.op_def = self.get_metaopdef(self.op_def) if self.op_def is None: raise ValueError(f"Could not find an OpDef for {op_def}") if isvar(self.op_def): self._apply_func_sig, self._apply_func = None, None else: self._apply_func_sig, self._apply_func = op_def_lib.get_op_info(self.op_def.obj) self.node_def = node_def def reify(self): return self def output_meta_types(self, inputs=None): """Return a list of tuples containing object types and corresponding dtypes for the outputs of this OpDef. This work is done in https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/op_def_library.py#L337. Would be very nice if the dtype inference and/or `NodeDef` generation was abstracted-out from that function. """ if isvar(self.op_def): return None type_map = {k: None for k, v in self.op_def.attr.items() if v.type == "type"} input_type_map = {i.name: i.type_attr for i in self.op_def.obj.input_arg} if inputs: # Infer/verify types from inputs for i_name, i_value in inputs.items(): type_name = input_type_map.get(i_name, None) if type_name is None: continue i_dtype = getattr(i_value, "dtype", None) dtype = type_map[type_name] if i_dtype is not None and not isvar(i_dtype): if dtype is None or isvar(dtype): # The input dtype is more informative, so use it. type_map[type_name] = i_dtype else: # They're both informative and should be the same assert dtype == i_dtype def infer_output_types(o): """Get dtypes for specific outputs using known dtype info and API inputs.""" # Get the explicit type from a `NodeDef` attribute. type_name = o.type_attr # Existing dtype value dtype = type_map[type_name] # New value _dtype = None # The information could be in the `NodeDef` if isinstance(getattr(self.node_def, "attr", None), dict): _dtype = self.node_def.attr.get(type_name) # It could also be in the inputs (i.e. when called via the API # route) # TODO: If it's in the inputs, we should just create the # corresponding `NodeDef`. if inputs and type_name in inputs: _dtype = inputs.get(type_name) if _dtype is None: _dtype = var() if not isvar(_dtype): try: _dtype = tf.dtypes.as_dtype(_dtype).base_dtype except TypeError: _dtype = var() # Make sure dtypes derived from `NodeDef` info and API inputs are # consistent. if dtype is None or isvar(dtype): # Newly inferred dtype is at least as informative as the # current one dtype = _dtype type_map[type_name] = dtype elif _dtype is None or isvar(_dtype): # Newly inferred dtype is less informative pass else: assert dtype == _dtype return (TFlowMetaTensor, dtype) # TODO: We could update missing dtype information in input meta # types and `NodeDef`s. # TODO: We also have permissible dtype information from objects in the # array `self.obj.attr` under the field `allowed_values`. return tuple(infer_output_types(o) for o in self.op_def.obj.output_arg) def input_args(self, *args, apply_defaults=True, **kwargs): """Make args and kwargs conform to an OpDef's "apply function" arguments. In order to do this, we effectively need to map `OpDef` and `NodeDef` values to `tf.raw_ops.*` function arguments (i.e. the reverse of what `op_def_library._apply_op_helper` does). Returns an `OrderedDict`. """ kwargs = OrderedDict( (k, v) for k, v in kwargs.items() # Filter out the optional keyword arguments so they we only pass # expected arguments to the `OpDef`'s apply function. if k in self._apply_func_sig.parameters ) op_args = self._apply_func_sig.bind_partial(*args, **kwargs) if apply_defaults: op_args.apply_defaults() return op_args.arguments def __api_call__(self, *args, **kwargs): """Create the meta object(s) using the TF Python API's operator functions. Each meta `OpDef` is associated with a TF Python function (`self._apply_func`) that is used to construct its `Operation`s. See `TFlowMetaTensor.operator` and `TFlowMetaTensor.operator`. """ apply_arguments = self.input_args(*args, **kwargs) if not meta._auto_reification_disabled: op_args, op_args_unreified = meta_reify_iter(apply_arguments) else: op_args, op_args_unreified = apply_arguments, True if not op_args_unreified: res_var = None # name = op_args.get("name", None) # # if name is not None: # # # # An operation with this name might already exist in the graph # # # # from tensorflow.python.framework import ops # # try: # this_op = ops.get_default_graph().get_operation_by_name(name) # except KeyError: # pass # else: # # TODO: Make sure the existing `Operation` matches our arguments # assert this_op.type == self.op_def.obj.name # # this_op = mt(this_op) # op_inputs, op_node_def = self.op_args_to_operation_inputs(op_args) # assert op_inputs == this_op.inputs # assert op_node_def == this_op.node_def # res_var = this_op.default_output if res_var is None: # # We create the `Operation` in the graph # tf_out = self._apply_func(**op_args) # Ensure that the original meta objects will be available # for use in the `metatize` that follows tf_metatize_cache.update( { k: v for k, v in zip(op_args.values(), apply_arguments.values()) if isinstance(k, tf.Tensor) } ) res_var = metatize(tf_out) if "names" in meta._lvar_defaults_enabled: # This should also reset the NodeDef's `obj` res_var.op.node_def.name = var() res_var.op.reset() res_var.reset() if "node_attrs" in meta._lvar_defaults_enabled: # This should also reset the NodeDef's `obj` res_var.op.node_def.attr = var() res_var.op.reset() res_var.reset() else: # # If we're here, we have to create the meta objects manually. # op_input_args, node_def = self.op_args_to_operation_inputs(apply_arguments) op_mt = TFlowMetaOp(self.op_def, node_def, op_input_args) res_var = op_mt.default_output return res_var def op_args_to_operation_inputs(self, apply_arguments): """Map an `OpDef`'s "apply function" arguments to `Operation` inputs and a meta `NodeDef`.""" if isvar(self.op_def): return None op_def_tf = self.op_def.obj op_inputs = tuple( apply_arguments.get(i.name) for i in op_def_tf.input_arg if i.name in apply_arguments ) # TODO: Include inferred attr values (e.g. dtypes). if "node_attrs" not in meta._lvar_defaults_enabled: node_attr = {a.name: apply_arguments.get(a.name, a) for a in op_def_tf.attr} else: node_attr = var() if "names" not in meta._lvar_defaults_enabled: op_name = apply_arguments.get("name", op_def_tf.name) or op_def_tf.name else: op_name = var() node_def = TFlowMetaNodeDef(op_def_tf.name, op_name, node_attr) return op_inputs, node_def def __call__(self, *inputs, **kwargs): if self.node_def is not None: op = TFlowMetaOp(self.op_def, self.node_def, inputs) res = op.default_output if isvar(res): return op.outputs else: return res else: return self.__api_call__(*inputs, **kwargs) class TFlowMetaAccessor(object): """An accessor object that simplifies the use of meta objects. Instances of this class can be used to implicitly convert TensorFlow functions and objects into meta objects. """ namespaces = [tf, tf.raw_ops, tfp, tfd] def __init__(self, namespace=None): if namespace is None: from symbolic_pymc.tensorflow import meta # pylint: disable=import-self self.namespaces += [meta] else: self.namespaces = [namespace] def __call__(self, x): return metatize(x) def __getattr__(self, obj): ns_obj = next((getattr(ns, obj) for ns in self.namespaces if hasattr(ns, obj)), None) if ns_obj is None: # Try caller's namespace frame = inspect.currentframe() f_back = frame.f_back if f_back: ns_obj = f_back.f_locals.get(obj, None) if ns_obj is None: ns_obj = f_back.f_globals.get(obj) if isinstance(ns_obj, types.ModuleType): # It's a sub-module, so let's create another # `TheanoMetaAccessor` and check within there. meta_obj = TFlowMetaAccessor(namespace=ns_obj) else: # Check for a an OpDef first meta_obj = TFlowMetaOperator.get_metaopdef(obj) if meta_obj is not None: # We assume that the user requested an `Operation` # constructor/helper. Return the meta `OpDef`, because # it implements a constructor/helper-like `__call__`. if meta_obj is not None: meta_obj = TFlowMetaOperator(meta_obj, None) # elif isinstance(ns_obj, (types.FunctionType, partial)): # # It's a function, so let's provide a wrapper that converts # # to-and-from theano and meta objects. # @wraps(ns_obj) # def meta_obj(*args, **kwargs): # args = [o.reify() if hasattr(o, "reify") else o for o in args] # res = ns_obj(*args, **kwargs) # return metatize(res) else: # Hopefully, it's convertible to a meta object... meta_obj = metatize(ns_obj) # Finally, we store the result as a meta namespace attribute, or raise # an exception. if isinstance( meta_obj, (MetaSymbol, MetaSymbolType, TFlowMetaOperator, types.FunctionType) ): setattr(self, obj, meta_obj) return getattr(self, obj) elif isinstance(meta_obj, TFlowMetaAccessor): setattr(self, obj, meta_obj) return meta_obj else: raise AttributeError(f"Meta object for {obj} not found.") mt = TFlowMetaAccessor() load_dispatcher() ``` #### File: symbolic_pymc/theano/dispatch.py ```python import theano.tensor as tt from collections.abc import Mapping from kanren.term import term, operator, arguments from unification.core import _reify, _unify, reify from cons.core import _car, _cdr from etuples import etuplize from etuples.core import ExpressionTuple from .meta import TheanoMetaSymbol from ..meta import metatize from ..dispatch import unify_MetaSymbol tt_class_abstractions = tuple(c.base for c in TheanoMetaSymbol.base_subclasses()) _unify.add( (TheanoMetaSymbol, tt_class_abstractions, Mapping), lambda u, v, s: unify_MetaSymbol(u, metatize(v), s), ) _unify.add( (tt_class_abstractions, TheanoMetaSymbol, Mapping), lambda u, v, s: unify_MetaSymbol(metatize(u), v, s), ) _unify.add( (tt_class_abstractions, tt_class_abstractions, Mapping), lambda u, v, s: unify_MetaSymbol(metatize(u), metatize(v), s), ) def _reify_TheanoClasses(o, s): meta_obj = metatize(o) return reify(meta_obj, s) _reify.add((tt_class_abstractions, Mapping), _reify_TheanoClasses) operator.add((tt.Variable,), lambda x: operator(metatize(x))) _car.add((tt.Variable,), lambda x: operator(metatize(x))) arguments.add((tt.Variable,), lambda x: arguments(metatize(x))) _cdr.add((tt.Variable,), lambda x: arguments(metatize(x))) term.add((tt.Op, ExpressionTuple), lambda op, args: term(metatize(op), args)) etuplize.add(tt_class_abstractions, lambda x, shallow=False: etuplize(metatize(x), shallow)) __all__ = [] ``` #### File: symbolic_pymc/theano/opt.py ```python import types import theano import theano.tensor as tt from functools import wraps from theano.gof.opt import LocalOptimizer from unification import var, variables from kanren import run from etuples.core import ExpressionTuple from .meta import MetaSymbol def eval_and_reify_meta(x): """Get Theano objects from combinations of `etuple`s and meta objects.""" res = x # Create base objects from the resulting meta object if isinstance(res, ExpressionTuple): res = res.eval_obj if isinstance(res, MetaSymbol): res = res.reify() if MetaSymbol.is_meta(res): raise ValueError("Kanren results not fully reifiable: {}".format(res)) return res class FunctionGraph(theano.gof.fg.FunctionGraph): """A version of `FunctionGraph` that knows not to merge non-deterministic `Op`s. TODO: Add a check to `MergeFeature.process_node` and submit a PR to Theano. """ def __init__( self, inputs, outputs, features=None, clone=True, memo=None, update_mapping=None, copy_inputs=True, copy_orphans=None, ): if clone: if copy_orphans is None: copy_orphans = copy_inputs self.memo = theano.gof.graph.clone_get_equiv( inputs, outputs, copy_inputs, copy_orphans, memo ) inputs = [self.memo[i] for i in inputs] outputs = [self.memo[o] for o in outputs] super().__init__(inputs, outputs, features=features, clone=False, update_mapping=None) def attach_feature(self, feature): if isinstance(feature, theano.gof.opt.MergeFeature): _process_node = feature.process_node @wraps(feature.process_node) def _f(self, fgraph, node): if getattr(node.op, "nondeterministic", False): return return _process_node(fgraph, node) feature.process_node = types.MethodType(_f, feature) return super().attach_feature(feature) def replace(self, r, new_r, reason=None, verbose=None, remove_dup_inputs=True): """See `theano.gof.fg.FunctionGraph.replace`. The original `FunctionGraph.replace` will not replace the actual input list. This one will. """ super().replace(r, new_r, reason=reason, verbose=verbose) if r in self.inputs: # TODO: Is there a reason to do this in-place instead? # Is anyone supposed to hold a reference to the original inputs # list? # Remove duplicate inputs, if any. if remove_dup_inputs and new_r in self.inputs: self.inputs.remove(new_r) assert r not in self.variables new_inputs = [new_r if i == r else i for i in self.inputs] self.inputs = new_inputs # TODO: Inputs-changed callback? assert r not in self.inputs def clone_get_equiv(self, *args, **kwargs): fg, var_map = super().clone_get_equiv(*args, **kwargs) fg.__class__ = self.__class__ return fg, var_map class KanrenRelationSub(LocalOptimizer): """A local optimizer that uses miniKanren goals to match and replace terms in a Theano `FunctionGraph`. TODO: Only uses *one* miniKanren `run` result (chosen by a configurable filter function). We might want an option to produce multiple graphs, but I imagine that would involve an entirely different optimizer type. """ reentrant = True def __init__( self, kanren_relation, relation_lvars=None, results_filter=lambda x: next(x, None), node_filter=lambda x: False, ): """Create a `KanrenRelationSub`. Parameters ---------- kanren_relation: kanren.Relation or goal The miniKanren relation store or goal to use. Custom goals should take an input and output argument, respectively. relation_lvars: Iterable A collection of terms to be considered logic variables by miniKanren (i.e. Theano terms used as "unknowns" in `kanren_relation`). results_filter: function A function that returns a single result from a stream of miniKanren results. The default function returns the first result. node_filter: function A function taking a single node as an argument that returns `True` when the node should be skipped. """ self.kanren_relation = kanren_relation self.relation_lvars = relation_lvars or [] self.results_filter = results_filter self.node_filter = node_filter super().__init__() def adjust_outputs(self, node, new_node, old_node=None): """Make adjustments for multiple outputs. This handles (some) nodes with multiple outputs by returning a list with the appropriate length and containing the new node (at the correct index if `default_output` is available and correct, or 0--and it happens to be the correct one). TODO: We should be able to get the correct index from the something like `node.outputs.index(old_node)`, but we don't exactly have `old_node` unless the miniKanren results give it to us. """ res = list(node.outputs) try: new_node_idx = res.index(old_node) except ValueError: # Guesstimate it new_node_idx = getattr(node.op, "default_output", 0) or 0 res[new_node_idx] = new_node return res def transform(self, node): if not isinstance(node, tt.Apply): return False if self.node_filter(node): return False try: input_expr = node.default_output() except AttributeError: input_expr = node.outputs with variables(*self.relation_lvars): q = var() kanren_results = run(None, q, self.kanren_relation(input_expr, q)) chosen_res = self.results_filter(kanren_results) if chosen_res: if isinstance(chosen_res, ExpressionTuple): chosen_res = eval_and_reify_meta(chosen_res) if isinstance(chosen_res, dict): chosen_res = list(chosen_res.items()) if isinstance(chosen_res, list): # We got a dictionary of replacements new_node = {eval_and_reify_meta(k): eval_and_reify_meta(v) for k, v in chosen_res} assert all(k in node.fgraph.variables for k in new_node.keys()) elif isinstance(chosen_res, tt.Variable): # Attempt to automatically format the output for multi-output # `Apply` nodes. new_node = self.adjust_outputs(node, eval_and_reify_meta(chosen_res)) else: raise ValueError( "Unsupported FunctionGraph replacement variable type: {chosen_res}" ) return new_node else: return False ``` #### File: tests/tensorflow/conftest.py ```python import pytest @pytest.fixture(autouse=True) def setup_module(): import symbolic_pymc.meta from symbolic_pymc.meta import base_metatize import symbolic_pymc.tensorflow.meta as tm _metatize = tm.load_dispatcher() symbolic_pymc.meta._metatize = _metatize # Let's make sure we have a clean graph slate from tensorflow.compat.v1 import reset_default_graph reset_default_graph() yield symbolic_pymc.meta._metatize = base_metatize ``` #### File: tests/tensorflow/__init__.py ```python from functools import wraps from tensorflow.python.eager.context import graph_mode def run_in_graph_mode(f): @wraps(f) def _f(*args, **kwargs): with graph_mode(): return f() return _f ``` #### File: tests/tensorflow/test_graph.py ```python import numpy as np import tensorflow as tf from symbolic_pymc.tensorflow.graph import normalize_tf_graph from tests.tensorflow import run_in_graph_mode @run_in_graph_mode def test_normalize(): tf.config.optimizer.set_experimental_options( { "shape_optimizations": True, "arithmetic_optimzation": True, "function_optimization": True, "min_graph_nodes": 0, } ) with tf.Graph().as_default() as norm_graph: a_tf = tf.compat.v1.placeholder("float") const_log_tf = 0.5 * np.log(2.0 * np.pi) + tf.math.log(a_tf) normal_const_log_tf = normalize_tf_graph(const_log_tf) # Grappler appears to put log ops before const assert normal_const_log_tf.op.inputs[0].op.type == "Log" assert normal_const_log_tf.op.inputs[1].op.type == "Const" ``` #### File: symbolic-pymc/tests/test_utils.py ```python import numpy as np from unification import var from symbolic_pymc.meta import MetaSymbol, MetaOp from symbolic_pymc.utils import meta_diff, eq_lvar, HashableNDArray class SomeOp(object): def __repr__(self): return "<SomeOp>" class SomeType(object): def __init__(self, field1, field2): self.field1 = field1 self.field2 = field2 def __repr__(self): return f"SomeType({self.field1}, {self.field2})" def __str__(self): return f"SomeType<{self.field1}, {self.field2}>" class SomeMetaSymbol(MetaSymbol): __slots__ = ("field1", "field2", "_blah") base = SomeType def __init__(self, obj=None): super().__init__(obj) self.field1 = 1 self.field2 = 2 self._blah = "a" class SomeMetaOp(MetaOp): __slots__ = () base = SomeOp def output_meta_types(self): return [SomeMetaSymbol] def __call__(self, *args, **kwargs): return SomeMetaSymbol(*args, **kwargs) class SomeOtherMetaSymbol(MetaSymbol): __slots__ = ("field1", "field2") base = SomeType def __init__(self, field1, field2, obj=None): super().__init__(obj) self.field1 = field1 self.field2 = field2 class SomeOtherOp(object): def __repr__(self): return "<SomeOp>" class SomeOtherMetaOp(SomeMetaOp): base = SomeOtherOp def test_parts_unequal(): s0 = SomeMetaSymbol() s1 = SomeOtherMetaSymbol(1, 2) res = meta_diff(s0, s1) assert res.reason == "types" assert res.path(s0) is s0 assert res.objects == (s0, s1) res = meta_diff(s0, s1, cmp_types=False) assert res is None s2 = SomeOtherMetaSymbol(1, 3) res = meta_diff(s0, s2, cmp_types=False) assert res.path(s2) == 3 assert res.path(s1) == 2 assert res.reason == "ne_fn" assert res.objects == (2, 3) res = meta_diff(SomeMetaOp(), SomeMetaOp()) assert res is None op1 = SomeMetaOp() op2 = SomeOtherMetaOp() res = meta_diff(op1, op2, cmp_types=False) assert res.path(op1) is op1 assert res.reason == "bases" assert res.objects == (op1.base, op2.base) a = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) b = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 5)]) res = meta_diff(a, b) assert res.path(a) == 4 assert res.path(b) == 5 assert res.reason == "ne_fn" assert res.objects == (4, 5) a = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) b = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) res = meta_diff(a, b) assert res is None a = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4), 5]) b = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) res = meta_diff(a, b) assert res is not None assert res.reason == "seq len" a = SomeOtherMetaSymbol(1, ["a", "b"]) b = SomeOtherMetaSymbol(1, 2) res = meta_diff(a, b, cmp_types=False) assert res is not None assert res.reason == "ne_fn" a = SomeOtherMetaSymbol(1, ["a", "b"]) b = SomeOtherMetaSymbol(1, "ab") res = meta_diff(a, b, cmp_types=False) assert res is not None a = SomeOtherMetaSymbol(1, {"a": 1, "b": 2}) b = SomeOtherMetaSymbol(1, {"b": 2, "a": 1}) res = meta_diff(a, b) assert res is None a = SomeOtherMetaSymbol(1, {"a": 1, "b": 2}) b = SomeOtherMetaSymbol(1, {"b": 3, "a": 1}) res = meta_diff(a, b) assert res.reason == "ne_fn" assert res.objects == (2, 3) assert res.path(a) == 2 assert res.path(b) == 3 a = SomeOtherMetaSymbol(1, {"a": 1, "b": 2}) b = SomeOtherMetaSymbol(1, {"a": 1, "c": 2}) res = meta_diff(a, b) assert res.reason == "map keys" assert res.path(a) == {"a": 1, "b": 2} assert res.objects == ([("a", 1), ("b", 2)], [("a", 1), ("c", 2)]) def test_eq_lvar(): a = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) b = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) assert eq_lvar(a, b) is True a = SomeOtherMetaSymbol(1, [2, SomeOtherMetaSymbol(3, 4)]) b = SomeOtherMetaSymbol(1, [2, var()]) assert eq_lvar(a, b) is False a = SomeOtherMetaSymbol(1, [2, var()]) b = SomeOtherMetaSymbol(1, [2, var()]) assert eq_lvar(a, b) is True a = SomeOtherMetaSymbol(1, [2, {"a": var()}]) b = SomeOtherMetaSymbol(1, [2, {"a": var()}]) assert eq_lvar(a, b) is True a = SomeOtherMetaSymbol(1, [3, var()]) b = SomeOtherMetaSymbol(1, [2, var()]) assert eq_lvar(a, b) is False def test_HashableNDArray(): a = np.r_[[1, 2], 3] a_h = a.view(HashableNDArray) b = np.r_[[1, 2], 3] b_h = b.view(HashableNDArray) assert hash(a_h) == hash(b_h) assert a_h == b_h assert not a_h != b_h c = np.r_[[1, 2], 4] c_h = c.view(HashableNDArray) assert hash(a_h) != hash(c_h) assert a_h != c_h ``` #### File: tests/theano/conftest.py ```python import pytest @pytest.fixture(autouse=True) def setup_module(): import symbolic_pymc.meta from symbolic_pymc.meta import base_metatize import symbolic_pymc.theano.meta as tm _metatize = tm.load_dispatcher() symbolic_pymc.meta._metatize = _metatize yield symbolic_pymc.meta._metatize = base_metatize ``` #### File: tests/theano/test_relations.py ```python import pytest import numpy as np import theano import theano.tensor as tt from functools import partial from unification import var from etuples import etuple, etuplize from kanren import run, eq from kanren.core import lall from kanren.graph import reduceo, walko, applyo from symbolic_pymc.theano.meta import mt from symbolic_pymc.theano.opt import eval_and_reify_meta from symbolic_pymc.theano.random_variables import observed, NormalRV, HalfCauchyRV, MvNormalRV from symbolic_pymc.relations.theano import non_obs_walko from symbolic_pymc.relations.theano.conjugates import conjugate from symbolic_pymc.relations.theano.distributions import scale_loc_transform, constant_neq from symbolic_pymc.relations.theano.linalg import normal_normal_regression, normal_qr_transform def test_constant_neq(): q_lv = var() res = run(0, q_lv, eq(q_lv, mt(1)), constant_neq(q_lv, np.array(1.0))) assert not res # TODO: If `constant_neq` was a true constraint, this would work. # res = run(0, q_lv, constant_neq(q_lv, np.array(1.0)), eq(q_lv, mt(1))) # assert not res # TODO: If `constant_neq` was a true constraint, this would work. # res = run(0, q_lv, constant_neq(q_lv, np.array(1.0)), eq(q_lv, mt(2))) # assert res == (mt(2),) res = run(0, q_lv, eq(q_lv, mt(2)), constant_neq(q_lv, np.array(1.0))) assert res == (mt(2),) def test_scale_loc_transform(): tt.config.compute_test_value = "ignore" rand_state = theano.shared(np.random.RandomState()) mu_a = NormalRV(0.0, 100 ** 2, name="mu_a", rng=rand_state) sigma_a = HalfCauchyRV(5, name="sigma_a", rng=rand_state) mu_b = NormalRV(0.0, 100 ** 2, name="mu_b", rng=rand_state) sigma_b = HalfCauchyRV(5, name="sigma_b", rng=rand_state) county_idx = np.r_[1, 1, 2, 3] # We want the following for a, b: # N(m, S) -> m + N(0, 1) * S a = NormalRV(mu_a, sigma_a, size=(len(county_idx),), name="a", rng=rand_state) b = NormalRV(mu_b, sigma_b, size=(len(county_idx),), name="b", rng=rand_state) radon_est = a[county_idx] + b[county_idx] * 7 eps = HalfCauchyRV(5, name="eps", rng=rand_state) radon_like = NormalRV(radon_est, eps, name="radon_like", rng=rand_state) radon_like_rv = observed(tt.as_tensor_variable(np.r_[1.0, 2.0, 3.0, 4.0]), radon_like) q_lv = var() (expr_graph,) = run( 1, q_lv, non_obs_walko(partial(reduceo, scale_loc_transform), radon_like_rv, q_lv) ) radon_like_rv_opt = expr_graph.reify() assert radon_like_rv_opt.owner.op == observed radon_like_opt = radon_like_rv_opt.owner.inputs[1] radon_est_opt = radon_like_opt.owner.inputs[0] # These should now be `tt.add(mu_*, ...)` outputs. a_opt = radon_est_opt.owner.inputs[0].owner.inputs[0] b_opt = radon_est_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0] # Make sure NormalRV gets replaced with an addition assert a_opt.owner.op == tt.add assert b_opt.owner.op == tt.add # Make sure the first term in the addition is the old NormalRV mean mu_a_opt = a_opt.owner.inputs[0].owner.inputs[0] assert "mu_a" == mu_a_opt.name == mu_a.name mu_b_opt = b_opt.owner.inputs[0].owner.inputs[0] assert "mu_b" == mu_b_opt.name == mu_b.name # Make sure the second term in the addition is the standard NormalRV times # the old std. dev. assert a_opt.owner.inputs[1].owner.op == tt.mul assert b_opt.owner.inputs[1].owner.op == tt.mul sigma_a_opt = a_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0] assert sigma_a_opt.owner.op == sigma_a.owner.op sigma_b_opt = b_opt.owner.inputs[1].owner.inputs[0].owner.inputs[0] assert sigma_b_opt.owner.op == sigma_b.owner.op a_std_norm_opt = a_opt.owner.inputs[1].owner.inputs[1] assert a_std_norm_opt.owner.op == NormalRV assert a_std_norm_opt.owner.inputs[0].data == 0.0 assert a_std_norm_opt.owner.inputs[1].data == 1.0 b_std_norm_opt = b_opt.owner.inputs[1].owner.inputs[1] assert b_std_norm_opt.owner.op == NormalRV assert b_std_norm_opt.owner.inputs[0].data == 0.0 assert b_std_norm_opt.owner.inputs[1].data == 1.0 def test_mvnormal_conjugate(): """Test that we can produce the closed-form distribution for the conjugate multivariate normal-regression with normal-prior model. """ # import symbolic_pymc.theano.meta as tm # # tm.load_dispatcher() tt.config.cxx = "" tt.config.compute_test_value = "ignore" a_tt = tt.vector("a") R_tt = tt.matrix("R") F_t_tt = tt.matrix("F") V_tt = tt.matrix("V") a_tt.tag.test_value = np.r_[1.0, 0.0] R_tt.tag.test_value = np.diag([10.0, 10.0]) F_t_tt.tag.test_value = np.c_[-2.0, 1.0] V_tt.tag.test_value = np.diag([0.5]) beta_rv = MvNormalRV(a_tt, R_tt, name="\\beta") E_y_rv = F_t_tt.dot(beta_rv) Y_rv = MvNormalRV(E_y_rv, V_tt, name="Y") y_tt = tt.as_tensor_variable(np.r_[-3.0]) y_tt.name = "y" Y_obs = observed(y_tt, Y_rv) q_lv = var() (expr_graph,) = run(1, q_lv, walko(conjugate, Y_obs, q_lv)) fgraph_opt = expr_graph.eval_obj fgraph_opt_tt = fgraph_opt.reify() # Check that the SSE has decreased from prior to posterior. # TODO: Use a better test. beta_prior_mean_val = a_tt.tag.test_value F_val = F_t_tt.tag.test_value beta_post_mean_val = fgraph_opt_tt.owner.inputs[0].tag.test_value priorp_err = np.square(y_tt.data - F_val.dot(beta_prior_mean_val)).sum() postp_err = np.square(y_tt.data - F_val.dot(beta_post_mean_val)).sum() # First, make sure the prior and posterior means are simply not equal. with pytest.raises(AssertionError): np.testing.assert_array_equal(priorp_err, postp_err) # Now, make sure there's a decrease (relative to the observed point). np.testing.assert_array_less(postp_err, priorp_err) @pytest.mark.xfail(strict=True) def test_normal_normal_regression(): tt.config.compute_test_value = "ignore" theano.config.cxx = "" np.random.seed(9283) N = 10 M = 3 a_tt = tt.vector("a") R_tt = tt.vector("R") X_tt = tt.matrix("X") V_tt = tt.vector("V") a_tt.tag.test_value = np.random.normal(size=M) R_tt.tag.test_value = np.abs(np.random.normal(size=M)) X = np.random.normal(10, 1, size=N) X = np.c_[np.ones(10), X, X * X] X_tt.tag.test_value = X V_tt.tag.test_value = np.ones(N) beta_rv = NormalRV(a_tt, R_tt, name="\\beta") E_y_rv = X_tt.dot(beta_rv) E_y_rv.name = "E_y" Y_rv = NormalRV(E_y_rv, V_tt, name="Y") y_tt = tt.as_tensor_variable(Y_rv.tag.test_value) y_tt.name = "y" y_obs_rv = observed(y_tt, Y_rv) y_obs_rv.name = "y_obs" # # Use the relation with identify/match `Y`, `X` and `beta`. # y_args_tail_lv, b_args_tail_lv = var(), var() beta_lv = var() y_args_lv, y_lv, Y_lv, X_lv = var(), var(), var(), var() (res,) = run( 1, (beta_lv, y_args_tail_lv, b_args_tail_lv), applyo(mt.observed, y_args_lv, y_obs_rv), eq(y_args_lv, (y_lv, Y_lv)), normal_normal_regression(Y_lv, X_lv, beta_lv, y_args_tail_lv, b_args_tail_lv), ) # TODO FIXME: This would work if non-op parameters (e.g. names) were covered by # `operator`/`car`. See `TheanoMetaOperator`. assert res[0].eval_obj.obj == beta_rv assert res[0] == etuplize(beta_rv) assert res[1] == etuplize(Y_rv)[2:] assert res[2] == etuplize(beta_rv)[1:] # # Use the relation with to produce `Y` from given `X` and `beta`. # X_new_mt = mt(tt.eye(N, M)) beta_new_mt = mt(NormalRV(0, 1, size=M)) Y_args_cdr_mt = etuplize(Y_rv)[2:] Y_lv = var() (res,) = run(1, Y_lv, normal_normal_regression(Y_lv, X_new_mt, beta_new_mt, Y_args_cdr_mt)) Y_out_mt = res.eval_obj Y_new_mt = etuple(mt.NormalRV, mt.dot(X_new_mt, beta_new_mt)) + Y_args_cdr_mt Y_new_mt = Y_new_mt.eval_obj assert Y_out_mt == Y_new_mt @pytest.mark.xfail(strict=True) def test_normal_qr_transform(): np.random.seed(9283) N = 10 M = 3 X_tt = tt.matrix("X") X = np.random.normal(10, 1, size=N) X = np.c_[np.ones(10), X, X * X] X_tt.tag.test_value = X V_tt = tt.vector("V") V_tt.tag.test_value = np.ones(N) a_tt = tt.vector("a") R_tt = tt.vector("R") a_tt.tag.test_value = np.random.normal(size=M) R_tt.tag.test_value = np.abs(np.random.normal(size=M)) beta_rv = NormalRV(a_tt, R_tt, name="\\beta") E_y_rv = X_tt.dot(beta_rv) E_y_rv.name = "E_y" Y_rv = NormalRV(E_y_rv, V_tt, name="Y") y_tt = tt.as_tensor_variable(Y_rv.tag.test_value) y_tt.name = "y" y_obs_rv = observed(y_tt, Y_rv) y_obs_rv.name = "y_obs" (res,) = run(1, var("q"), normal_qr_transform(y_obs_rv, var("q"))) new_node = {eval_and_reify_meta(k): eval_and_reify_meta(v) for k, v in res} # Make sure the old-to-new `beta` conversion is correct. t_Q, t_R = np.linalg.qr(X) Coef_new_value = np.linalg.inv(t_R) np.testing.assert_array_almost_equal( Coef_new_value, new_node[beta_rv].owner.inputs[0].tag.test_value ) # Make sure the new `beta_tilde` has the right standard normal distribution # parameters. beta_tilde_node = new_node[beta_rv].owner.inputs[1] np.testing.assert_array_almost_equal( np.r_[0.0, 0.0, 0.0], beta_tilde_node.owner.inputs[0].tag.test_value ) np.testing.assert_array_almost_equal( np.r_[1.0, 1.0, 1.0], beta_tilde_node.owner.inputs[1].tag.test_value ) Y_new = new_node[y_obs_rv].owner.inputs[1] assert Y_new.owner.inputs[0].owner.inputs[1] == beta_tilde_node np.testing.assert_array_almost_equal(t_Q, Y_new.owner.inputs[0].owner.inputs[0].tag.test_value) def test_basic_scan_transform(): def f_pow2(x_tm1): return 2 * x_tm1 state = theano.tensor.scalar("state") n_steps = theano.tensor.iscalar("nsteps") output, updates = theano.scan( f_pow2, [], state, [], n_steps=n_steps, truncate_gradient=-1, go_backwards=False ) assert np.array_equal(output.eval({state: 1.0, n_steps: 4}), np.r_[2.0, 4.0, 8.0, 16.0]) def mul_trans(in_expr, out_expr): """Equate `2 * x` with `5 * x` in a Theano `scan`. I.e. from left-to-right, replace `2 * x[t-1]` with `5 * x[t-1]`. """ arg_lv = var() inputs_lv, info_lv = var(), var() in_scan_lv = mt.Scan(inputs_lv, [mt.mul(2, arg_lv)], info_lv) out_scan_lv = mt.Scan(inputs_lv, [mt.mul(5, arg_lv)], info_lv) return lall(eq(in_expr, in_scan_lv), eq(out_expr, out_scan_lv)) q_lv = var() (output_mt,) = run(1, q_lv, walko(partial(reduceo, mul_trans), output, q_lv)) output_new = output_mt.eval_obj.reify() assert output_new != output assert np.array_equal(output_new.eval({state: 1.0, n_steps: 4}), np.r_[5.0, 25.0, 125.0, 625.0]) ``` #### File: tests/theano/test_rv.py ```python import numpy as np import theano.tensor as tt from pytest import importorskip from symbolic_pymc.theano.random_variables import NormalRV, MvNormalRV, PolyaGammaRV def rv_numpy_tester(rv, *params, size=None): """Test for correspondence between `RandomVariable` and NumPy shape and broadcast dimensions. """ tt.config.compute_test_value = "ignore" test_rv = rv(*params, size=size) param_vals = [tt.gof.op.get_test_value(p) for p in params] size_val = None if size is None else tt.gof.op.get_test_value(size) test_val = getattr(np.random, rv.name)(*param_vals, size=size_val) test_shp = np.shape(test_val) # This might be a little too harsh, since purely symbolic `tensor.vector` # inputs have no broadcastable information, yet, they can take # broadcastable values. # E.g. # x_tt = tt.vector('x') # # non-symbolic value is broadcastable! # x_tt.tag.test_value = np.array([5]) # # non-symbolic value is not broadcastable. # x_tt.tag.test_value = np.array([5, 4]) # # In the end, there's really no clear way to determine this without full # evaluation of a symbolic node, and that mostly defeats the purpose. # Unfortunately, this is what PyMC3 resorts to when constructing its # `TensorType`s (and shapes). test_bcast = [s == 1 for s in test_shp] np.testing.assert_array_equal(test_rv.type.broadcastable, test_bcast) eval_args = { p: v for p, v in zip(params, param_vals) if isinstance(p, tt.Variable) and not isinstance(p, tt.Constant) } np.testing.assert_array_equal(test_rv.shape.eval(eval_args), test_shp) np.testing.assert_array_equal(np.shape(test_rv.eval(eval_args)), test_shp) def test_normalrv(): rv_numpy_tester(NormalRV, 0.0, 1.0) rv_numpy_tester(NormalRV, 0.0, 1.0, size=[3]) # Broadcast sd over independent means... rv_numpy_tester(NormalRV, [0.0, 1.0, 2.0], 1.0) rv_numpy_tester(NormalRV, [0.0, 1.0, 2.0], 1.0, size=[3, 3]) rv_numpy_tester(NormalRV, [0], [1], size=[1]) rv_numpy_tester(NormalRV, tt.as_tensor_variable([0]), [1], size=[1]) rv_numpy_tester(NormalRV, tt.as_tensor_variable([0]), [1], size=tt.as_tensor_variable([1])) def test_mvnormalrv(): rv_numpy_tester(MvNormalRV, [0], np.diag([1])) rv_numpy_tester(MvNormalRV, [0], np.diag([1]), size=[1]) rv_numpy_tester(MvNormalRV, [0], np.diag([1]), size=[4]) rv_numpy_tester(MvNormalRV, [0], np.diag([1]), size=[4, 1]) rv_numpy_tester(MvNormalRV, [0], np.diag([1]), size=[4, 1, 1]) rv_numpy_tester(MvNormalRV, [0], np.diag([1]), size=[1, 5, 8]) rv_numpy_tester(MvNormalRV, [0, 1, 2], np.diag([1, 1, 1])) # Broadcast cov matrix across independent means? # Looks like NumPy doesn't support that (and it's probably better off for # it). # rv_numpy_tester(MvNormalRV, [[0, 1, 2], [4, 5, 6]], np.diag([1, 1, 1])) def test_polyagammarv(): _ = importorskip("pypolyagamma") # Sampled values should be scalars pg_rv = PolyaGammaRV(1.1, -10.5) assert pg_rv.eval().shape == () pg_rv = PolyaGammaRV(1.1, -10.5, size=[1]) assert pg_rv.eval().shape == (1,) pg_rv = PolyaGammaRV(1.1, -10.5, size=[2, 3]) bcast_smpl = pg_rv.eval() assert bcast_smpl.shape == (2, 3) # Make sure they're not all equal assert np.all(np.abs(np.diff(bcast_smpl.flat)) > 0.0) pg_rv = PolyaGammaRV(np.r_[1.1, 3], -10.5) bcast_smpl = pg_rv.eval() assert bcast_smpl.shape == (2,) assert np.all(np.abs(np.diff(bcast_smpl.flat)) > 0.0) pg_rv = PolyaGammaRV(np.r_[1.1, 3], -10.5, size=(2, 3)) bcast_smpl = pg_rv.eval() assert bcast_smpl.shape == (2, 2, 3) assert np.all(np.abs(np.diff(bcast_smpl.flat)) > 0.0) ```
{ "source": "josephwinston/AutobahnCpp", "score": 2 }
#### File: AutobahnCpp/test/serialize.py ```python import sys import binascii import msgpack import struct from autobahn.wamp.serializer import MsgPackSerializer from autobahn.wamp import message from autobahn.wamp import role serializer = MsgPackSerializer() serializer._serializer.ENABLE_V5 = False def send(msg): bytes, _ = serializer.serialize(msg) l = struct.pack("!I", len(bytes)) sys.stdout.write(l) sys.stdout.write(bytes) msgs = [] ## HELLO ## roles = [ role.RolePublisherFeatures(), role.RoleSubscriberFeatures(), role.RoleCallerFeatures(), role.RoleCalleeFeatures() ] msgs.append(message.Hello("foobar", roles)) ## CHALLENGE ## msgs.append(message.Challenge("cookie")) ## HEARTBEAT ## msgs.append(message.Heartbeat(3, 7, "throw me away")) for msg in msgs: send(msg) ```
{ "source": "josephwinston/cudarray", "score": 2 }
#### File: cudarray/examples/benchmark_conv.py ```python import time import numpy as np import theano import theano.tensor as T from theano.sandbox.cuda.basic_ops import gpu_from_host, host_from_gpu from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs from pylearn2.sandbox.cuda_convnet.weight_acts import WeightActs from pylearn2.sandbox.cuda_convnet.img_acts import ImageActs import cudarray as ca def avg_running_time(fun): n_iter = 20 start_time = time.time() for _ in range(n_iter): fun() duration = time.time() - start_time return duration / float(n_iter) def allclose(a, b): atol = 1e-3 rtol = 1e-3 return np.allclose(a, b, atol=atol, rtol=rtol) def benchmark(n_imgs, n_channels, img_shape, n_filters, filter_shape, pad): print('\nn_imgs: %i, n_channels: %i, img_shape: (%i, %i), ' % ((n_imgs, n_channels) + img_shape) + 'n_filters: %i, filter_shape: (%i, %i), pad: %i' % ((n_filters,) + filter_shape + (pad,))) # Setup arrays padding = (pad, pad) strides = (1, 1) img_h, img_w = img_shape filter_h, filter_w = filter_shape convout_h = img_h + 2*pad - filter_h + 1 convout_w = img_w + 2*pad - filter_w + 1 imgs_bc01_shape = (n_imgs, n_channels, img_h, img_w) filters_bc01_shape = (n_filters, n_channels, filter_h, filter_w) imgs_bc01 = np.random.randn(n_imgs, n_channels, img_h, img_w) imgs_c01b = np.transpose(imgs_bc01, (1, 2, 3, 0)) filters_fc01 = np.random.randn(n_filters, n_channels, filter_h, filter_w) filters_c01f = np.transpose(filters_fc01, (1, 2, 3, 0)) convout_bc01 = np.random.randn(n_imgs, n_filters, convout_h, convout_w) convout_c01b = np.transpose(convout_bc01, (1, 2, 3, 0)) imgs_bc01_t = theano.shared(imgs_bc01.astype(theano.config.floatX)) imgs_c01b_t = theano.shared(imgs_c01b.astype(theano.config.floatX)) filters_fc01_t = theano.shared(filters_fc01.astype(theano.config.floatX)) filters_c01f_t = theano.shared(filters_c01f.astype(theano.config.floatX)) convout_bc01_t = theano.shared(convout_bc01.astype(theano.config.floatX)) convout_c01b_t = theano.shared(convout_c01b.astype(theano.config.floatX)) imgs_bc01_ca = ca.array(imgs_bc01) filters_fc01_ca = ca.array(filters_fc01) convout_bc01_ca = ca.array(convout_bc01) # Forward propagation print('fprop') convout_cc_op = FilterActs(stride=1, partial_sum=4, pad=pad) convout_cc_expr = convout_cc_op(imgs_c01b_t, filters_c01f_t) convout_cc_fun = theano.function([], convout_cc_expr) convout_cc = convout_cc_fun() convout_cc = np.transpose(convout_cc, (3, 0, 1, 2)) def convout_ca_fun(): convout = ca.nnet.conv_bc01(imgs_bc01_ca, filters_fc01_ca, padding, strides) return convout convout_ca = np.array(convout_ca_fun()) print(' correct: ' + str(allclose(convout_ca, convout_cc))) duration_cc = avg_running_time(convout_cc_fun) duration_ca = avg_running_time(convout_ca_fun) print(' avg. duration: cuda_convnet: %.4f ca: %.4f' % (duration_cc, duration_ca)) print(' speedup: %.2f' % (duration_cc/duration_ca)) del convout_cc_op del convout_cc_expr del convout_cc_fun # Back propagation, imgs print('bprop_imgs') dimgs_cc_op = ImageActs(stride=1, partial_sum=1, pad=pad) dimgs_cc_expr = dimgs_cc_op(convout_c01b_t, filters_c01f_t) dimgs_cc_fun = theano.function([], dimgs_cc_expr) dimgs_cc = dimgs_cc_fun() dimgs_cc = np.transpose(dimgs_cc, (3, 0, 1, 2)) def dimgs_ca_fun(): return ca.nnet.conv_bc01_bprop_imgs(filters_fc01_ca, convout_bc01_ca, img_shape, padding, strides) dimgs_ca = np.array(dimgs_ca_fun()) print(' correct: ' + str(allclose(dimgs_ca, dimgs_cc))) duration_cc = avg_running_time(dimgs_cc_fun) duration_ca = avg_running_time(dimgs_ca_fun) print(' avg. duration: cuda_convnet: %.4f ca: %.4f' % (duration_cc, duration_ca)) print(' speedup: %.2f' % (duration_cc/duration_ca)) del dimgs_cc_op del dimgs_cc_expr del dimgs_cc_fun # Back propagation, filters dfilters_cc_op = WeightActs(stride=1, partial_sum=1, pad=pad) dfilters_cc_expr = dfilters_cc_op(imgs_c01b_t, convout_c01b_t, T.as_tensor_variable(filter_shape)) dfilters_cc_fun = theano.function([], dfilters_cc_expr) dfilters_cc = dfilters_cc_fun()[0] dfilters_cc = np.transpose(dfilters_cc, (3, 0, 1, 2)) def dfilters_ca_fun(): return ca.nnet.conv_bc01_bprop_filters(imgs_bc01_ca, convout_bc01_ca, filter_shape, padding, strides) dfilters_ca = np.array(dfilters_ca_fun()) print('bprop_filters') print(' correct: ' + str(allclose(dfilters_ca, dfilters_cc))) duration_cc = avg_running_time(dfilters_cc_fun) duration_ca = avg_running_time(dfilters_ca_fun) print(' avg. duration: cuda_convnet: %.4f ca: %.4f' % (duration_cc, duration_ca)) print(' speedup: %.2f' % (duration_cc/duration_ca)) def run(): np.random.seed(1) # Configurations are given in the form # (n_imgs, n_channels, img_shape, n_filters, filter_shape, padding) configurations = [ # From the original paper # http://arxiv.org/abs/1312.5851 (128, 3, (32, 32), 96, (11, 11), 0), (128, 96, (32, 32), 256, (7, 7), 0), (128, 256, (16, 16), 384, (5, 5), 0), (128, 384, (16, 16), 384, (5, 5), 0), (128, 384, (16, 16), 384, (3, 3), 0), # From <NAME> # http://benanne.github.io/2014/05/12/fft-convolutions-in-theano.html (64, 3, (96, 96), 128, (16, 16), 0), (64, 128, (32, 32), 64, (8, 8), 0), (128, 32, (54, 54), 64, (6, 6), 0), (128, 128, (16, 16), 128, (8, 8), 0), (128, 1024, (32, 32), 128, (4, 4), 0), # Exotic shapes and padding (5, 3, (5, 5), 16, (3, 3), 1), (64, 32, (32, 32), 32, (5, 5), 2), (64, 1, (17, 19), 32, (7, 7), 4), (64, 3, (9, 16), 32, (7, 7), 4), # Typical CNN layers for CIFAR-10 (128, 3, (32, 32), 64, (5, 5), 2), (128, 64, (16, 16), 64, (5, 5), 2), (128, 64, (8, 8), 64, (5, 5), 2), ] for conf in configurations: benchmark(*conf) if __name__ == '__main__': run() ```
{ "source": "josephwinston/gitfs", "score": 3 }
#### File: utils/decorators/while_not.py ```python import time import threading from functools import wraps class while_not(object): def __init__(self, event, wait=0.2): self.event = event self.wait = wait def __call__(self, f): @wraps(f) def decorated(obj, *args, **kwargs): if not self.event: raise ValueError("Except that %s to not be None %s" % obj.__class__.__name__) if not isinstance(self.event, threading._Event): raise TypeError("%s should be of type threading.Event" % self.event) while self.event.is_set(): time.sleep(self.wait) return f(obj, *args, **kwargs) return decorated ``` #### File: gitfs/views/commit.py ```python import os from errno import ENOENT from pygit2 import GIT_FILEMODE_TREE, GIT_FILEMODE_BLOB,\ GIT_FILEMODE_BLOB_EXECUTABLE, GIT_FILEMODE_LINK from fuse import FuseOSError from gitfs.utils import split_path_into_components from gitfs.cache import lru_cache from .read_only import ReadOnlyView VALID_FILE_MODES = [GIT_FILEMODE_BLOB, GIT_FILEMODE_BLOB_EXECUTABLE, GIT_FILEMODE_LINK, GIT_FILEMODE_TREE] class CommitView(ReadOnlyView): def __init__(self, *args, **kwargs): super(CommitView, self).__init__(*args, **kwargs) try: self.commit = self.repo.revparse_single(self.commit_sha1) except KeyError: raise FuseOSError(ENOENT) def _validate_commit_path(self, tree, path_components): """ Checks if a particular path is valid in the context of the commit which is being browsed. :param tree: a commit tree or a pygit2 tree :param path_components: the components of the path to be checked as a list (e.g.: ['totally', 'random', 'path']) :type path_components: list :returns: True if the path is valid, False otherwise """ is_valid = False for entry in tree: valid_mode = (entry.name == path_components[0] and entry.filemode in VALID_FILE_MODES) if valid_mode and len(path_components) == 1: return True elif valid_mode and len(path_components) > 1: is_valid = self._validate_commit_path(self.repo[entry.id], path_components[1:]) if is_valid: return is_valid return is_valid def read(self, path, size, offset, fh): data = self.repo.get_blob_data(self.commit.tree, path) return data[offset:offset + size] def readlink(self, path): obj_name = os.path.split(path)[1] return self.repo.get_blob_data(self.commit.tree, obj_name) def getattr(self, path, fh=None): ''' Returns a dictionary with keys identical to the stat C structure of stat(2). st_atime, st_mtime and st_ctime should be floats. NOTE: There is an incombatibility between Linux and Mac OS X concerning st_nlink of directories. Mac OS X counts all files inside the directory, while Linux counts only the subdirectories. ''' if not path: return attrs = super(CommitView, self).getattr(path, fh) attrs.update({ 'st_ctime': self.commit.commit_time, 'st_mtime': self.commit.commit_time, }) stats = self.repo.get_git_object_default_stats(self.commit.tree, path) if stats is None: raise FuseOSError(ENOENT) attrs.update(stats) return attrs def access(self, path, mode): if hasattr(self, "relative_path") and self.relative_path != '/': path_elems = split_path_into_components(self.relative_path) is_valid_path = self._validate_commit_path(self.commit.tree, path_elems) if not is_valid_path: raise FuseOSError(ENOENT) return 0 def readdir(self, path, fh): dir_tree = self.commit.tree # If the relative_path is not empty, fetch the git tree corresponding # to the directory that we are in. tree_name = os.path.split(path)[1] if tree_name: dir_tree = self.repo.get_git_object(self.commit.tree, path) dir_entries = ['.', '..'] + [entry.name for entry in dir_tree] for entry in dir_entries: yield entry ``` #### File: tests/integrations/base.py ```python from datetime import datetime import os import subprocess class Sh: def __init__(self, cwd=None): self.command = "" self.cwd = cwd def __getattr__(self, item): self.command += item + " " return self def __call__(self, *args, **kwargs): command = self.command + " ".join(args) self.command = "" return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, cwd=self.cwd).stdout.read() class pull: def __init__(self, sh): self.sh = sh def __enter__(self): self.sh.git.pull("origin", "master") def __exit__(self, exc_type, exc_val, exc_tb): pass class BaseTest(object): def setup(self): self.mount_path = "%s" % os.environ["MOUNT_PATH"] self.repo_name = os.environ["REPO_NAME"] self.repo_path = os.environ["REPO_PATH"] self.current_path = "%s/current" % self.mount_path self.sh = Sh(os.environ["REMOTE"]) self.last_commit_hash = self.commit_hash() @property def today(self): now = datetime.now() return now.strftime("%Y-%m-%d") def commit_hash(self, index=0): return self.sh.git.log("--pretty=%H").splitlines()[index] def commit_message(self, index=0): return self.sh.git.log("--pretty=%B").splitlines()[index] def get_commits_by_date(self, date=None): if date is None: date = self.today lines = self.sh.git.log("--before", '"%s 23:59:59"' % date, "--after", '"%s 00:00:00"' % date, '--pretty="%ai %H"').splitlines() lines = map(lambda line: line.split(), lines) return map(lambda tokens: "%s-%s" % (tokens[1].replace(":", "-"), tokens[3][:10]), lines) def get_commit_dates(self): return list(set(self.sh.git.log("--pretty=%ad", "--date=short"). splitlines())) def assert_commit_message(self, message): assert message == self.commit_message() def assert_new_commit(self, steps=1): current_index = 0 while self.commit_hash(current_index) != self.last_commit_hash: current_index += 1 self.last_commit_hash = self.commit_hash(0) assert current_index == steps def assert_file_content(self, file_path, content): with open(self.repo_path + "/" + file_path) as f: assert f.read() == content ``` #### File: tests/workers/test_sync.py ```python from Queue import Empty import pygit2 import pytest from mock import MagicMock, patch from gitfs.worker.sync import SyncWorker class TestSyncWorker(object): def test_work(self): mocked_queue = MagicMock() mocked_idle = MagicMock(side_effect=ValueError) mocked_queue.get.side_effect = Empty() worker = SyncWorker("name", "email", "name", "email", strategy="strategy", commit_queue=mocked_queue) worker.on_idle = mocked_idle worker.timeout = 1 worker.min_idle_times = 1 with pytest.raises(ValueError): worker.work() mocked_queue.get.assert_called_once_with(timeout=1, block=True) assert mocked_idle.call_count == 1 def test_on_idle_with_commits_and_merges(self): mocked_sync = MagicMock() mocked_syncing = MagicMock() mocked_commit = MagicMock() mocked_syncing.is_set.return_value = False with patch.multiple("gitfs.worker.sync", syncing=mocked_syncing, writers=MagicMock(value=0)): worker = SyncWorker("name", "email", "name", "email", strategy="strategy") worker.commits = "commits" worker.commit = mocked_commit worker.sync = mocked_sync commits = worker.on_idle() mocked_commit.assert_called_once_with("commits") assert mocked_syncing.set.call_count == 1 assert mocked_sync.call_count == 1 assert commits is None def test_merge(self): mocked_strategy = MagicMock() mocked_repo = MagicMock() upstream = "origin" branch = "master" worker = SyncWorker("name", "email", "name", "email", strategy=mocked_strategy, repository=mocked_repo, upstream=upstream, branch=branch) worker.merge() mocked_strategy.assert_called_once_with(branch, branch, upstream) assert mocked_repo.commits.update.call_count == 1 def test_sync(self): upstream = "origin" branch = "master" mocked_repo = MagicMock() mocked_merge = MagicMock() mocked_sync_done = MagicMock() mocked_syncing = MagicMock() mocked_push_successful = MagicMock() mocked_fetch = MagicMock() mocked_strategy = MagicMock() mocked_repo.behind = True mocked_push_successful.set.side_effect = ValueError with patch.multiple('gitfs.worker.sync', sync_done=mocked_sync_done, syncing=mocked_syncing, push_successful=mocked_push_successful, fetch=mocked_fetch): worker = SyncWorker("name", "email", "name", "email", repository=mocked_repo, strategy=mocked_strategy, upstream=upstream, branch=branch) worker.merge = mocked_merge worker.sync() assert mocked_syncing.clear.call_count == 1 assert mocked_push_successful.clear.call_count == 1 assert mocked_sync_done.clear.call_count == 1 assert mocked_sync_done.set.call_count == 1 assert mocked_fetch.set.call_count == 1 assert mocked_push_successful.set.call_count == 1 assert mocked_repo.behind is False mocked_repo.push.assert_called_once_with(upstream, branch) def test_commit_with_just_one_job(self): mocked_repo = MagicMock() message = 'just a simple message' jobs = [{'params': {'message': message}}] author = ("name", "email") worker = SyncWorker(author[0], author[1], author[0], author[1], strategy="strategy", repository=mocked_repo) worker.commit(jobs) mocked_repo.commit.assert_called_once_with(message, author, author) assert mocked_repo.commits.update.call_count == 1 strategy = pygit2.GIT_CHECKOUT_FORCE mocked_repo.checkout_head.assert_called_once_with(strategy=strategy) def test_commit_with_more_than_one_job(self): mocked_repo = MagicMock() message = 'just a simple message' jobs = [{'params': {'message': message, 'add': ['path1', 'path2'], 'remove': []}}, {'params': {'message': message, 'remove': ['path2'], 'add': []}}] author = ("name", "email") worker = SyncWorker(author[0], author[1], author[0], author[1], strategy="strategy", repository=mocked_repo) worker.commit(jobs) asserted_message = "Update 2 items" mocked_repo.commit.assert_called_once_with(asserted_message, author, author) assert mocked_repo.commits.update.call_count == 1 strategy = pygit2.GIT_CHECKOUT_FORCE mocked_repo.checkout_head.assert_called_once_with(strategy=strategy) def test_switch_to_idle_mode(self): mocked_queue = MagicMock() mocked_idle = MagicMock(side_effect=ValueError) mocked_idle_event = MagicMock() mocked_queue.get.side_effect = Empty() with patch.multiple('gitfs.worker.sync', idle=mocked_idle_event): worker = SyncWorker("name", "email", "name", "email", strategy="strategy", commit_queue=mocked_queue) worker.on_idle = mocked_idle worker.timeout = 1 worker.min_idle_times = -1 with pytest.raises(ValueError): worker.work() mocked_queue.get.assert_called_once_with(timeout=1, block=True) assert mocked_idle_event.set.call_count == 1 assert mocked_idle.call_count == 1 ```
{ "source": "josephwkim/schedulize", "score": 4 }
#### File: josephwkim/schedulize/audit_parser.py ```python import numpy as np import re import pandas as pd def audit_info(fpath, fullPath=False,string=False): courses_dict = {'Course Number': [], 'Grade': []} if fullPath == False and string == False: text_lines = open("data\\audits\\"+fpath, "r").read().splitlines() elif string == True: text_lines = fpath.splitlines() else: text_lines = open(fpath, "r").read().splitlines() past_courses = np.zeros((64, 2), dtype='int') grades_dict = {"A": 4, "B": 3, "C": 2, "D": 1, "R": 0} i = 0 for line in text_lines: # Parse for all the course numbers xx-xxx course_numbers = re.findall("\d\d\-\d\d\d", line) if course_numbers != []: # Course Number past_courses[i, 0] = int(course_numbers[0][0:2]) * 1000 + int( course_numbers[0][3:6]) # Course Grade (A=4, B=3, C=2, D=1, R=0, else=-1) grade = line[52:53] try: grade_num = grades_dict[grade] except: grade_num = -1 past_courses[i, 1] = grade_num # Print all past course numbers and their respective grades #print("Course:", past_courses[i, 0], "Grade:", past_courses[i, 1]) courses_dict['Course Number'].append(past_courses[i, 0]) courses_dict['Grade'].append(past_courses[i, 1]) i = i + 1 audit = pd.DataFrame(courses_dict) return audit def getGPA(audit): grades = audit["Grade"] total = 0 num = 0 for grade in grades: if grade > -1: total += grade num += 1 if num == 0: gpa = 3 else: gpa = total / num return gpa ``` #### File: josephwkim/schedulize/collaborative_filtering.py ```python import numpy as np import pandas as pd import os from audit_parser import audit_info train_data = dict() train_data["Audit"] = [] train_data["Schedule"] = [] X_audits = dict() X_schedules = dict() X_audits_grades = dict() auditPath = "data/audits/" schedulePath = "data/schedules/" def loadAudits(path): print("Loading Audits...") def pullAudit(path): if (os.path.isdir(path) == False): if path[-3:] == "txt": print(path) audit = audit_info(path, fullPath=True) train_data["Audit"].append(audit) else: for fileName in os.listdir(path): pullAudit(path + "/" + fileName) pullAudit(path) print("Done!") print() def inputData(auditList, scheList): individual = 0 def inputAudits(auditList): nonlocal individual for i in range(len(auditList)): df = auditList[i] courseNumbers = df["Course Number"] courseGrades = df["Grade"] X_audits[individual] = [] X_audits_grades[individual] = [] for j in range(len(courseNumbers)): if courseGrades[j] >= 0: str_course_num = str(courseNumbers[j]) if len(str_course_num) == 4: str_course_num = "0" + str_course_num X_audits[individual].append(str_course_num) X_audits_grades[individual].append((str_course_num, str(courseGrades[j]))) individual += 1 inputAudits(auditList) def buildRecommender(): print("Building Recommender System...") print() loadAudits(auditPath) inputData(train_data["Audit"], train_data["Schedule"]) X_data = [] X_courses = [] X_grades = [] for key, values in X_audits_grades.items(): X_data.append(values) for course_grade in X_data: course, grade = zip(*course_grade) X_courses.append(course) X_grades.append(grade) X_courses = np.array(X_courses) X_grades = np.array(X_grades) allClasses = [] for student in X_courses: for courses in student: allClasses.append(courses) allClasses = list(set(allClasses)) n, m = X_courses.shape[0], len(allClasses) # Num Users, Num Classes dfR = pd.DataFrame(0, index=np.arange(len(X_courses)), columns=allClasses) for row in range(n): takenClasses = X_courses[row] for col in dfR: courseNum = str(col) if courseNum in takenClasses: dfR.loc[dfR.index[row], col] = 1 dfY = pd.DataFrame(0, index=np.arange(len(X_courses)), columns=allClasses) for row in range(n): takenClasses, earnedGrades = X_courses[row], X_grades[row] for col in dfY: courseNum = str(col) if courseNum in takenClasses: index = list(takenClasses).index(courseNum) dfY.loc[dfY.index[row], col] = int(earnedGrades[index]) features = 20 Y = np.array(dfY).T # Matrix with Grades X = np.random.rand(m, features) Theta = np.random.rand(n, features) R = np.array(dfR).T # Binary Matrix denoting Classes Taken """ print("n Students:", n) print("m Classes:", m) print("Y:", Y.shape) print("R:", R.shape) print("X:", X.shape) print("Theta:", Theta.shape) print() """ """ # sci-kit learn's non-negative matrix factorization doesn't seem to work very well on this from sklearn.decomposition import NMF Y[Y < 0] = 0 # take care of lower bound model = NMF(n_components=features, init='random', random_state=0) X = model.fit_transform(Y) Theta = model.components_.T """ # SKIPPED REGULARIZATION - ADD LATER def costFunction(X, Y, Theta, R): M = np.power((np.dot(X, Theta.T)) - Y, 2) J = (1/2) * np.sum(np.multiply(R, M)) return J def gradientFunction(X, Y, Theta, R): grad_all = ((np.dot(X, Theta.T)) - Y) grad_R = np.multiply(R, grad_all) X_grad = np.zeros(X.shape) Theta_grad = np.zeros(Theta.shape) for k in range(X.shape[1]): X_grad[:, k] = np.dot(grad_R, Theta[:, k]) for l in range(Theta.shape[1]): Theta_grad[:, l] = np.dot(grad_R.T, X[:, l]) return X_grad, Theta_grad print("Optimizing via Gradient Descent...") iterations = 250 learning_rate = 0.01 for i in range(iterations): cost = costFunction(X, Y, Theta, R) X_grad, Theta_grad = gradientFunction(X, Y, Theta, R) X -= learning_rate * X_grad Theta -= learning_rate * Theta_grad if (i + 1) == iterations: print("Iteration", i + 1) print("Cost:", cost) print("Done!") print() return X, Theta, allClasses def makePrediction(model, user): X, Theta = model p = np.dot(X, Theta.T) predictions = p[:, user] return sorted(predictions, reverse=True) # List Predictions & Compile Departmental Scores def compileDepartScores(courses, pList): departDict = dict() departCounter = dict() for h in range(len(courses)): course = courses[h] depart = str(course)[0:2] if depart not in departDict: departDict[depart] = [] departCounter[depart] = [] for i in range(len(pList)): course, prediction = courses[i], pList[i] # print("Predicted Rating for", course, "is", prediction) depart = str(course)[0:2] departDict[depart].append(prediction) departCounter[depart].append(1) for key, values in departDict.items(): departDict[key] = np.sum(values) / len(values) # return [(k, departDict[k]) for k in sorted(departDict, key=departDict.get, reverse=True)] return departDict ```
{ "source": "josephw-ml/model-analysis", "score": 2 }
#### File: fairness/post_export_metrics/fairness_indicators.py ```python from typing import Any, Dict, List, Optional, Tuple import tensorflow as tf from tensorflow_model_analysis import types from tensorflow_model_analysis.post_export_metrics import metric_keys from tensorflow_model_analysis.post_export_metrics import post_export_metrics from tensorflow_model_analysis.proto import metrics_for_slice_pb2 as metrics_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer # pylint: disable=protected-access @post_export_metrics._export('fairness_indicators') class _FairnessIndicators(post_export_metrics._ConfusionMatrixBasedMetric): """Metrics that can be used to evaluate the following fairness metrics. * Demographic Parity or Equality of Outcomes. For each slice measure the Positive* Rate, or the percentage of all examples receiving positive scores. * Equality of Opportunity Equality of Opportunity attempts to match the True Positive* rate (aka recall) of different data slices. * Equality of Odds In addition to looking at Equality of Opportunity, looks at equalizing the False Positive* rates of slices as well. The choice to focus on these metrics as a starting point is based primarily on the paper Equality of Opportunity in Supervised Learning and the excellent visualization created as a companion to the paper. https://arxiv.org/abs/1610.02413 http://research.google.com/bigpicture/attacking-discrimination-in-ml/ * Note that these fairness formulations assume that a positive prediction is associated with a positive outcome for the user--in certain contexts such as abuse, positive predictions translate to non-opportunity. You may want to use the provided negative rates for comparison instead. """ _thresholds = ... # type: List[float] _example_weight_key = ... # type: str _labels_key = ... # type: str _metric_tag = None # type: str # We could use the same keys as the ConfusionMatrix metrics, but with the way # that post_export_metrics are currently implemented, if both # post_export_metrics were specified we would pop the matrices/thresholds in # the first call, and have issues with the second. thresholds_key = metric_keys.FAIRNESS_CONFUSION_MATRIX_THESHOLDS matrices_key = metric_keys.FAIRNESS_CONFUSION_MATRIX_MATRICES def __init__(self, thresholds: Optional[List[float]] = None, example_weight_key: Optional[str] = None, target_prediction_keys: Optional[List[str]] = None, labels_key: Optional[str] = None, metric_tag: Optional[str] = None, tensor_index: Optional[int] = None) -> None: if not thresholds: thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] # Determine the number of threshold digits to display as part of the metric # key. We want lower numbers for readability, but allow differentiation # between close thresholds. self._key_digits = 2 for t in thresholds: if len(str(t)) - 2 > self._key_digits: self._key_digits = len(str(t)) - 2 super().__init__( thresholds, example_weight_key, target_prediction_keys, labels_key, metric_tag, tensor_index=tensor_index) def get_metric_ops( self, features_dict: types.TensorTypeMaybeDict, predictions_dict: types.TensorTypeMaybeDict, labels_dict: types.TensorTypeMaybeDict ) -> Dict[str, Tuple[types.TensorType, types.TensorType]]: values, update_ops = self.confusion_matrix_metric_ops( features_dict, predictions_dict, labels_dict) # True positive rate is computed by confusion_matrix_metric_ops as 'recall'. # pytype: disable=unsupported-operands values['tnr'] = tf.math.divide_no_nan(values['tn'], values['tn'] + values['fp']) values['fpr'] = tf.math.divide_no_nan(values['fp'], values['fp'] + values['tn']) values['positive_rate'] = tf.math.divide_no_nan( values['tp'] + values['fp'], values['tp'] + values['fp'] + values['tn'] + values['fn']) values['fnr'] = tf.math.divide_no_nan(values['fn'], values['fn'] + values['tp']) values['negative_rate'] = tf.math.divide_no_nan( values['tn'] + values['fn'], values['tp'] + values['fp'] + values['tn'] + values['fn']) values['false_discovery_rate'] = tf.math.divide_no_nan( values['fp'], values['fp'] + values['tp']) values['false_omission_rate'] = tf.math.divide_no_nan( values['fn'], values['fn'] + values['tn']) # pytype: enable=unsupported-operands update_op = tf.group(update_ops['fn'], update_ops['tn'], update_ops['fp'], update_ops['tp']) value_op = tf.transpose( a=tf.stack([ values['fn'], values['tn'], values['fp'], values['tp'], values['precision'], values['recall'] ])) output_dict = { self._metric_key(self.matrices_key): (value_op, update_op), self._metric_key(self.thresholds_key): (tf.identity(self._thresholds), tf.no_op()), } for i, threshold in enumerate(self._thresholds): output_dict[self._metric_key( metric_keys.base_key( 'positive_rate@%.*f' % (self._key_digits, threshold)))] = (values['positive_rate'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'true_positive_rate@%.*f' % (self._key_digits, threshold)))] = (values['recall'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'false_positive_rate@%.*f' % (self._key_digits, threshold)))] = (values['fpr'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'negative_rate@%.*f' % (self._key_digits, threshold)))] = (values['negative_rate'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'true_negative_rate@%.*f' % (self._key_digits, threshold)))] = (values['tnr'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'false_negative_rate@%.*f' % (self._key_digits, threshold)))] = (values['fnr'][i], update_op) output_dict[self._metric_key( metric_keys.base_key('false_discovery_rate@%.*f' % (self._key_digits, threshold)))] = ( values['false_discovery_rate'][i], update_op) output_dict[self._metric_key( metric_keys.base_key('false_omission_rate@%.*f' % (self._key_digits, threshold)))] = ( values['false_omission_rate'][i], update_op) return output_dict # pytype: disable=bad-return-type def populate_stats_and_pop( self, unused_slice_key: slicer.SliceKeyType, combine_metrics: Dict[str, Any], output_metrics: Dict[str, metrics_pb2.MetricValue]) -> None: matrices = combine_metrics.pop(self._metric_key(self.matrices_key)) thresholds = combine_metrics.pop(self._metric_key(self.thresholds_key)) # We assume that thresholds are already sorted. if len(matrices) != len(thresholds): raise ValueError( 'matrices should have the same length as thresholds, but lengths ' 'were: matrices: %d, thresholds: %d' % (len(matrices), len(thresholds))) for threshold, raw_matrix in zip(thresholds, matrices): # Adds confusion matrix table as well as ratios used for fairness metrics. if isinstance(threshold, types.ValueWithTDistribution): threshold = threshold.unsampled_value output_matrix = post_export_metrics._create_confusion_matrix_proto( raw_matrix, threshold) (output_metrics[self._metric_key(metric_keys.FAIRNESS_CONFUSION_MATRIX)] .confusion_matrix_at_thresholds.matrices.add().CopyFrom(output_matrix)) # If the fairness_indicator in enabled, the slicing inside the tfx evaluator # config will also be added into this metrics as a subgroup key. # However, handling the subgroup metrics with slices is still TBD. @post_export_metrics._export('fairness_auc') class _FairnessAuc(post_export_metrics._PostExportMetric): """Metric that computes bounded AUC for predictions in [0, 1]. This metrics calculates the subgroup auc, the background positive subgroup negative auc and background negative subgroup positive auc. For more explanation about the concepts of these auc metrics, please refer to paper [Measuring and Mitigating Unintended Bias in Text Classification](https://ai.google/research/pubs/pub46743) """ _target_prediction_keys = ... # type: List[str] _labels_key = ... # type: str _metric_tag = None # type: str _tensor_index = ... # type: int def __init__(self, subgroup_key: str, example_weight_key: Optional[str] = None, num_buckets: int = post_export_metrics._DEFAULT_NUM_BUCKETS, target_prediction_keys: Optional[List[str]] = None, labels_key: Optional[str] = None, metric_tag: Optional[str] = None, tensor_index: Optional[int] = None) -> None: """Create a metric that computes fairness auc. Predictions should be one of: (a) a single float in [0, 1] (b) a dict containing the LOGISTIC key (c) a dict containing the PREDICTIONS key, where the prediction is in [0, 1] Label should be a single float that is either exactly 0 or exactly 1 (soft labels, i.e. labels between 0 and 1 are *not* supported). Args: subgroup_key: The key inside the feature column to indicate where this example belongs to the subgroup or not. The expected mapping tensor of this key should contain an integer/float value that's either 1 or 0. example_weight_key: The key of the example weight column in the features dict. If None, all predictions are given a weight of 1.0. num_buckets: The number of buckets used for the curve. (num_buckets + 1) is used as the num_thresholds in tf.metrics.auc(). target_prediction_keys: If provided, the prediction keys to look for in order. labels_key: If provided, a custom label key. metric_tag: If provided, a custom metric tag. Only necessary to disambiguate instances of the same metric on different predictions. tensor_index: Optional index to specify class predictions to calculate metrics on in the case of multi-class models. """ self._subgroup_key = subgroup_key self._example_weight_key = example_weight_key self._curve = 'ROC' self._num_buckets = num_buckets self._metric_name = metric_keys.FAIRNESS_AUC self._subgroup_auc_metric = self._metric_key(self._metric_name + '/subgroup_auc/' + self._subgroup_key) self._bpsn_auc_metric = self._metric_key( f'{self._metric_name}/bpsn_auc/{self._subgroup_key}') self._bnsp_auc_metric = self._metric_key(self._metric_name + '/bnsp_auc/' + self._subgroup_key) super().__init__( target_prediction_keys=target_prediction_keys, labels_key=labels_key, metric_tag=metric_tag, tensor_index=tensor_index) def check_compatibility(self, features_dict: types.TensorTypeMaybeDict, predictions_dict: types.TensorTypeMaybeDict, labels_dict: types.TensorTypeMaybeDict) -> None: post_export_metrics._check_feature_present(features_dict, self._example_weight_key) post_export_metrics._check_feature_present(features_dict, self._subgroup_key) self._get_labels_and_predictions(predictions_dict, labels_dict) def get_metric_ops( self, features_dict: types.TensorTypeMaybeDict, predictions_dict: types.TensorTypeMaybeDict, labels_dict: types.TensorTypeMaybeDict ) -> Dict[str, Tuple[types.TensorType, types.TensorType]]: # Note that we have to squeeze predictions, labels, weights so they are all # N element vectors (otherwise some of them might be N x 1 tensors, and # multiplying a N element vector with a N x 1 tensor uses matrix # multiplication rather than element-wise multiplication). predictions, labels = self._get_labels_and_predictions( predictions_dict, labels_dict) predictions = post_export_metrics._flatten_to_one_dim( tf.cast(predictions, tf.float64)) labels = post_export_metrics._flatten_to_one_dim( tf.cast(labels, tf.float64)) weights = tf.ones_like(predictions) subgroup = post_export_metrics._flatten_to_one_dim( tf.cast(features_dict[self._subgroup_key], tf.bool)) if self._example_weight_key: weights = post_export_metrics._flatten_to_one_dim( tf.cast(features_dict[self._example_weight_key], tf.float64)) predictions, labels, weights = ( post_export_metrics ._create_predictions_labels_weights_for_fractional_labels( predictions, labels, weights)) # To let subgroup tensor match the size with prediction, labels and weights # above. subgroup = tf.concat([subgroup, subgroup], axis=0) labels_bool = tf.cast(labels, tf.bool) pos_subgroup = tf.math.logical_and(labels_bool, subgroup) neg_subgroup = tf.math.logical_and( tf.math.logical_not(labels_bool), subgroup) pos_background = tf.math.logical_and(labels_bool, tf.math.logical_not(subgroup)) neg_background = tf.math.logical_and( tf.math.logical_not(labels_bool), tf.math.logical_not(subgroup)) bnsp = tf.math.logical_or(pos_subgroup, neg_background) bpsn = tf.math.logical_or(neg_subgroup, pos_background) ops_dict = {} # Add subgroup auc. ops_dict.update( post_export_metrics._build_auc_metrics_ops( self._subgroup_auc_metric, labels, predictions, tf.multiply(weights, tf.cast(subgroup, tf.float64)), self._num_buckets + 1, self._curve)) # Add backgroup positive subgroup negative auc. ops_dict.update( post_export_metrics._build_auc_metrics_ops( self._bpsn_auc_metric, labels, predictions, tf.multiply(weights, tf.cast(bpsn, tf.float64)), self._num_buckets + 1, self._curve)) # Add backgroup negative subgroup positive auc. ops_dict.update( post_export_metrics._build_auc_metrics_ops( self._bnsp_auc_metric, labels, predictions, tf.multiply(weights, tf.cast(bnsp, tf.float64)), self._num_buckets + 1, self._curve)) return ops_dict def populate_stats_and_pop( self, slice_key: slicer.SliceKeyType, combine_metrics: Dict[str, Any], output_metrics: Dict[str, metrics_pb2.MetricValue]) -> None: for metrics_key in (self._subgroup_auc_metric, self._bpsn_auc_metric, self._bnsp_auc_metric): if slice_key: combine_metrics.pop(metric_keys.lower_bound_key(metrics_key)) combine_metrics.pop(metric_keys.upper_bound_key(metrics_key)) combine_metrics.pop(metrics_key) else: post_export_metrics._populate_to_auc_bounded_value_and_pop( combine_metrics, output_metrics, metrics_key) # pylint: enable=protected-access ``` #### File: tensorflow_model_analysis/eval_saved_model/encoding.py ```python import tensorflow as tf from tensorflow_model_analysis import types from google.protobuf import any_pb2 from tensorflow.core.protobuf import meta_graph_pb2 # Names for the various collections TFMA_VERSION_COLLECTION = 'evaluation_only/metadata/tfma_version' METRICS_COLLECTION = 'evaluation_only/metrics' PREDICTIONS_COLLECTION = 'evaluation_only/predictions' INPUT_EXAMPLE_COLLECTION = 'evaluation_only/label_graph/input_example' LABELS_COLLECTION = 'evaluation_only/label_graph/labels' FEATURES_COLLECTION = 'evaluation_only/label_graph/features' EXAMPLE_REF_COLLECTION = 'evaluation_only/label_graph/example_ref' # Suffixes for the collection names KEY_SUFFIX = 'key' NODE_SUFFIX = 'node' VALUE_OP_SUFFIX = 'value_op' UPDATE_OP_SUFFIX = 'update_op' # Encoding prefixes for keys _TUPLE_KEY_PREFIX = b'$Tuple$' _BYTES_KEY_PREFIX = b'$Bytes$' def with_suffix(name: str, suffix: str) -> str: return '%s/%s' % (name, suffix) # pytype: disable=bad-return-type def encode_key(key: types.FPLKeyType) -> bytes: """Encode a dictionary key as a string. For encoding dictionary keys in the prediction, label and feature dictionaries. We assume that they are either Tuples of bytes, or bytes. Implementation details: Strings are encoded as $Bytes$<String> Tuples of strings are encoded as: $Tuple$<len(tuple)>$len(tuple[0])$...$len(tuple[n])$tuple[0]$...$tuple[n] e.g. ('apple', 'banana', 'cherry') gets encoded as $Tuple$3$5$6$6$apple$banana$cherry Args: key: Dictionary key to encode. Returns: Encoded dictionary key. Raises: TypeError: Dictionary key is not either a Tuple of bytes/unicode, or bytes/unicode. """ if isinstance(key, tuple): if not all(isinstance(elem, (bytes, str)) for elem in key): raise TypeError('if key is tuple, all elements should be strings. ' 'key was: %s' % key) utf8_keys = [tf.compat.as_bytes(elem) for elem in key] length_strs = [tf.compat.as_bytes('%d' % len(key)) for key in utf8_keys] return (_TUPLE_KEY_PREFIX + tf.compat.as_bytes('%d' % len(length_strs)) + b'$' + b'$'.join(length_strs) + b'$' + b'$'.join(utf8_keys)) elif isinstance(key, (bytes, str)): return b'$Bytes$' + tf.compat.as_bytes(key) else: raise TypeError('key has unrecognised type: type: %s, value %s' % (type(key), key)) def decode_key(encoded_key: bytes) -> types.FPLKeyType: """Decode an encoded dictionary key encoded with encode_key. Args: encoded_key: Dictionary key, encoded with encode_key. Returns: Decoded dictionary key. Raises: ValueError: We couldn't decode the encoded key. """ if encoded_key.startswith(_TUPLE_KEY_PREFIX): parts = encoded_key[len(_TUPLE_KEY_PREFIX):].split(b'$', 1) if len(parts) != 2: raise ValueError('invalid encoding: %s' % encoded_key) elem_count = int(parts[0]) parts = parts[1].split(b'$', elem_count) if len(parts) != elem_count + 1: raise ValueError('invalid encoding: %s' % encoded_key) lengths = map(int, parts[:elem_count]) parts = parts[elem_count] elems = [] for length in lengths: elems.append(parts[:length].decode('utf8')) parts = parts[length + 1:] # Add one for the $ delimiter return tuple(elems) elif encoded_key.startswith(_BYTES_KEY_PREFIX): return encoded_key[len(_BYTES_KEY_PREFIX):].decode('utf8') else: raise ValueError('invalid encoding: %s' % encoded_key) def encode_tensor_node(node: types.TensorType) -> any_pb2.Any: """Encode a "reference" to a Tensor/SparseTensor as a TensorInfo in an Any. We put the Tensor / SparseTensor in a TensorInfo, which we then wrap in an Any so that it can be added to the CollectionDef. Args: node: Tensor node. Returns: Any proto wrapping a TensorInfo. """ any_buf = any_pb2.Any() tensor_info = tf.compat.v1.saved_model.utils.build_tensor_info(node) any_buf.Pack(tensor_info) return any_buf def decode_tensor_node(graph: tf.Graph, encoded_tensor_node: any_pb2.Any) -> types.TensorType: """Decode an encoded Tensor node encoded with encode_tensor_node. Decodes the encoded Tensor "reference", and returns the node in the given graph corresponding to that Tensor. Args: graph: Graph the Tensor encoded_tensor_node: Encoded Tensor. Returns: Decoded Tensor. """ tensor_info = meta_graph_pb2.TensorInfo() encoded_tensor_node.Unpack(tensor_info) return tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info( tensor_info, graph) ``` #### File: eval_saved_model/example_trainers/fake_sequence_to_prediction.py ```python import tensorflow as tf from tensorflow_model_analysis.eval_saved_model import export from tensorflow_model_analysis.eval_saved_model import util def simple_fake_sequence_to_prediction(export_path, eval_export_path): """Trains and exports a fake_sequence_to_prediction model.""" input_feature_spec = { 'values_t1': tf.io.VarLenFeature(dtype=tf.float32), 'values_t2': tf.io.VarLenFeature(dtype=tf.float32), 'values_t3': tf.io.VarLenFeature(dtype=tf.float32) } label_feature_spec = dict(input_feature_spec) label_feature_spec['label'] = tf.io.FixedLenFeature([1], dtype=tf.float32) def _make_embedding_and_sparse_values(features): """Make "embedding" and "sparse_values" features.""" embedding_dim = 3 sparse_dims = 3 sparse_timesteps = 3 # Create a three-dimensional "embedding" based on the value of the feature # The embedding is simply [1, 1, 1] * feature_value # (or [0, 0, 0] if the feature is missing). batch_size = tf.cast( tf.shape(input=features['values_t1'])[0], dtype=tf.int64) ones = tf.ones(shape=[embedding_dim]) dense_t1 = tf.sparse.to_dense(features['values_t1']) dense_t2 = tf.sparse.to_dense(features['values_t2']) dense_t3 = tf.sparse.to_dense(features['values_t3']) embedding_t1 = ones * dense_t1 embedding_t2 = ones * dense_t2 embedding_t3 = ones * dense_t3 embeddings = tf.stack([embedding_t1, embedding_t2, embedding_t3], axis=1) features['embedding'] = embeddings del features['values_t1'] del features['values_t2'] del features['values_t3'] # Make the "sparse_values" feature. sparse_values = tf.squeeze( tf.concat([ dense_t1, dense_t1**2, dense_t1**3, dense_t2, dense_t2**2, dense_t2 **3, dense_t3, dense_t3**2, dense_t3**3 ], axis=0)) sparse_total_elems = batch_size * sparse_dims * sparse_timesteps seq = tf.range(0, sparse_total_elems, dtype=tf.int64) batch_num = seq % batch_size timestep = tf.compat.v1.div(seq, batch_size * sparse_dims) offset = tf.compat.v1.div(seq, batch_size) % sparse_dims sparse_indices = tf.stack([batch_num, timestep, offset], axis=1) features['sparse_values'] = tf.SparseTensor( indices=sparse_indices, values=sparse_values, dense_shape=[batch_size, sparse_timesteps, sparse_dims]) def model_fn(features, labels, mode, config): """Model function for custom estimator.""" del config dense_values = tf.sparse.to_dense( features['sparse_values'], validate_indices=False) a = tf.Variable(1.0, dtype=tf.float32, name='a') b = tf.Variable(2.0, dtype=tf.float32, name='b') c = tf.Variable(3.0, dtype=tf.float32, name='c') d = tf.Variable(4.0, dtype=tf.float32, name='d') e = tf.Variable(5.0, dtype=tf.float32, name='e') f = tf.Variable(6.0, dtype=tf.float32, name='f') predictions = ( a * tf.reduce_sum(input_tensor=features['embedding'][:, 0, :], axis=1) + b * tf.reduce_sum(input_tensor=features['embedding'][:, 1, :], axis=1) + c * tf.reduce_sum(input_tensor=features['embedding'][:, 2, :], axis=1) + d * tf.reduce_sum(input_tensor=dense_values[:, 0, :], axis=1) + e * tf.reduce_sum(input_tensor=dense_values[:, 1, :], axis=1) + f * tf.reduce_sum(input_tensor=dense_values[:, 2, :], axis=1)) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={'score': predictions}, export_outputs={ 'score': tf.estimator.export.RegressionOutput(predictions) }) loss = tf.compat.v1.losses.mean_squared_error( labels, tf.expand_dims(predictions, axis=-1)) optimizer = tf.compat.v1.train.GradientDescentOptimizer( learning_rate=0.0001) train_op = optimizer.minimize( loss=loss, global_step=tf.compat.v1.train.get_global_step()) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metric_ops={ 'mean_squared_error': tf.compat.v1.metrics.mean_squared_error( labels, tf.expand_dims(predictions, axis=-1)), 'mean_prediction': tf.compat.v1.metrics.mean(predictions), }, predictions=predictions) def train_input_fn(): """Train input function.""" def make_example_with_label(values_t1=None, values_t2=None, values_t3=None): """Make example with label.""" effective_t1 = 0.0 effective_t2 = 0.0 effective_t3 = 0.0 args = {} if values_t1 is not None: args['values_t1'] = float(values_t1) effective_t1 = values_t1 if values_t2 is not None: args['values_t2'] = float(values_t2) effective_t2 = values_t2 if values_t3 is not None: args['values_t3'] = float(values_t3) effective_t3 = values_t3 label = (3 * effective_t1 + 6 * effective_t2 + 9 * effective_t3 + 4 * (effective_t1 + effective_t1**2 + effective_t1**3) + 5 * (effective_t2 + effective_t2**2 + effective_t2**3) + 6 * (effective_t3 + effective_t3**2 + effective_t3**3)) args['label'] = float(label) return util.make_example(**args) examples = [ make_example_with_label(values_t1=1.0), make_example_with_label(values_t2=1.0), make_example_with_label(values_t3=1.0), make_example_with_label(values_t1=2.0, values_t2=3.0), make_example_with_label(values_t1=5.0, values_t3=7.0), make_example_with_label(values_t2=11.0, values_t3=13.0), make_example_with_label(values_t1=2.0, values_t2=3.0, values_t3=5.0), ] serialized_examples = [x.SerializeToString() for x in examples] features = tf.io.parse_example( serialized=serialized_examples, features=label_feature_spec) _make_embedding_and_sparse_values(features) label = features.pop('label') return features, label def serving_input_receiver_fn(): """Serving input receiver function.""" serialized_tf_example = tf.compat.v1.placeholder( dtype=tf.string, shape=[None], name='input_example_tensor') receiver_tensors = {'examples': serialized_tf_example} features = tf.io.parse_example( serialized=serialized_tf_example, features=input_feature_spec) _make_embedding_and_sparse_values(features) return tf.estimator.export.ServingInputReceiver(features, receiver_tensors) def eval_input_receiver_fn(): """Eval input receiver function.""" serialized_tf_example = tf.compat.v1.placeholder( dtype=tf.string, shape=[None], name='input_example_tensor') receiver_tensors = {'examples': serialized_tf_example} features = tf.io.parse_example( serialized=serialized_tf_example, features=label_feature_spec) _make_embedding_and_sparse_values(features) return export.EvalInputReceiver( features=features, receiver_tensors=receiver_tensors, labels=features['label']) estimator = tf.estimator.Estimator(model_fn=model_fn) estimator.train(input_fn=train_input_fn, steps=10) export_dir = None eval_export_dir = None if export_path: export_dir = estimator.export_saved_model( export_dir_base=export_path, serving_input_receiver_fn=serving_input_receiver_fn) if eval_export_path: eval_export_dir = export.export_eval_savedmodel( estimator=estimator, export_dir_base=eval_export_path, eval_input_receiver_fn=eval_input_receiver_fn) return export_dir, eval_export_dir ``` #### File: eval_saved_model/example_trainers/fixed_prediction_classifier_identity_label.py ```python import tensorflow as tf from tensorflow_model_analysis.eval_saved_model import export from tensorflow_model_analysis.eval_saved_model.example_trainers import fixed_prediction_classifier from tensorflow_model_analysis.eval_saved_model.example_trainers import util def simple_fixed_prediction_classifier_identity_label(export_path, eval_export_path): """Exports a simple fixed prediction classifier.""" estimator = tf.estimator.Estimator( model_fn=fixed_prediction_classifier.model_fn) estimator.train(input_fn=fixed_prediction_classifier.train_input_fn, steps=1) serving_input_receiver_fn = ( tf.estimator.export.build_parsing_serving_input_receiver_fn( feature_spec={ 'classes': tf.io.VarLenFeature(dtype=tf.string), 'scores': tf.io.VarLenFeature(dtype=tf.float32) })) eval_input_receiver_fn = export.build_parsing_eval_input_receiver_fn( feature_spec={ 'classes': tf.io.VarLenFeature(dtype=tf.string), 'scores': tf.io.VarLenFeature(dtype=tf.float32), 'label': tf.io.FixedLenFeature([1], dtype=tf.int64), 'language': tf.io.FixedLenFeature([1], dtype=tf.string), 'age': tf.io.FixedLenFeature([1], dtype=tf.float32), }, label_key='label') return util.export_model_and_eval_model( estimator=estimator, serving_input_receiver_fn=serving_input_receiver_fn, eval_input_receiver_fn=eval_input_receiver_fn, export_path=export_path, eval_export_path=eval_export_path) ``` #### File: eval_saved_model/example_trainers/fixed_prediction_estimator_extra_fields.py ```python import tensorflow as tf from tensorflow_model_analysis.eval_saved_model import export from tensorflow_model_analysis.eval_saved_model.example_trainers import util from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.estimator.canned import prediction_keys def simple_fixed_prediction_estimator_extra_fields(export_path, eval_export_path, include_metrics=True): """Exports a simple fixed prediction estimator that parses extra fields.""" def model_fn(features, labels, mode, config): """Model function for custom estimator.""" del config predictions = features['prediction'] predictions_dict = { prediction_keys.PredictionKeys.PREDICTIONS: predictions, } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions_dict, export_outputs={ tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.RegressionOutput(predictions) }) loss = tf.compat.v1.losses.mean_squared_error(predictions, labels) train_op = tf.compat.v1.assign_add(tf.compat.v1.train.get_global_step(), 1) eval_metric_ops = {} if include_metrics: eval_metric_ops[ metric_keys.MetricKeys.LOSS_MEAN] = tf.compat.v1.metrics.mean(loss) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, predictions=predictions_dict, eval_metric_ops=eval_metric_ops) def train_input_fn(): """Train input function.""" return { 'prediction': tf.constant([[1.0], [2.0], [3.0], [4.0]]), }, tf.constant([[1.0], [2.0], [3.0], [4.0]]), feature_spec = {'prediction': tf.io.FixedLenFeature([1], dtype=tf.float32)} eval_feature_spec = { 'prediction': tf.io.FixedLenFeature([1], dtype=tf.float32), 'label': tf.io.FixedLenFeature([1], dtype=tf.float32), 'fixed_float': tf.io.FixedLenFeature([1], dtype=tf.float32, default_value=0.0), 'fixed_string': tf.io.FixedLenFeature([1], dtype=tf.string, default_value=''), 'fixed_int': tf.io.FixedLenFeature([1], dtype=tf.int64, default_value=0), 'var_float': tf.io.VarLenFeature(dtype=tf.float32), 'var_string': tf.io.VarLenFeature(dtype=tf.string), 'var_int': tf.io.VarLenFeature(dtype=tf.int64), } estimator = tf.estimator.Estimator(model_fn=model_fn) estimator.train(input_fn=train_input_fn, steps=1) return util.export_model_and_eval_model( estimator=estimator, serving_input_receiver_fn=( tf.estimator.export.build_parsing_serving_input_receiver_fn( feature_spec)), eval_input_receiver_fn=export.build_parsing_eval_input_receiver_fn( eval_feature_spec, label_key='label'), export_path=export_path, eval_export_path=eval_export_path) ``` #### File: tensorflow_model_analysis/evaluators/legacy_poisson_bootstrap.py ```python from typing import Any, Dict, Iterable, Iterator, List, Optional, Tuple, Type, Union import apache_beam as beam import numpy as np from tensorflow_model_analysis import types from tensorflow_model_analysis.slicer import slicer_lib as slicer from google.protobuf import message DEFAULT_NUM_BOOTSTRAP_SAMPLES = 20 # TFMA v1 uses Text for its keys while TFMA v2 uses MetricKey _MetricsDict = Dict[Any, Any] @beam.ptransform_fn @beam.typehints.with_input_types(Tuple[slicer.SliceKeyType, types.Extracts]) @beam.typehints.with_output_types(Tuple[slicer.SliceKeyType, _MetricsDict]) def ComputeWithConfidenceIntervals( # pylint: disable=invalid-name sliced_extracts: beam.pvalue.PCollection, compute_per_slice_metrics_cls: Type[beam.PTransform], num_bootstrap_samples: Optional[int] = DEFAULT_NUM_BOOTSTRAP_SAMPLES, random_seed_for_testing: Optional[int] = None, **kwargs) -> beam.pvalue.PCollection: """PTransform for computing metrics using T-Distribution values. Args: sliced_extracts: Incoming PCollection consisting of slice key and extracts. compute_per_slice_metrics_cls: PTransform class that takes a PCollection of (slice key, extracts) as input and returns (slice key, dict of metrics) as output. The class will be instantiated multiple times to compute metrics both with and without sampling. The class will be initialized using kwargs 'compute_with_sampling' and 'random_seed_for_testing' along with any kwargs passed in **kwargs. num_bootstrap_samples: Number of replicas to use in calculating uncertainty using bootstrapping. If 1 is provided (default), aggregate metrics will be calculated with no uncertainty. If num_bootstrap_samples is > 0, multiple samples of each slice will be calculated using the Poisson bootstrap method. To calculate standard errors, num_bootstrap_samples should be 20 or more in order to provide useful data. More is better, but you pay a performance cost. random_seed_for_testing: Seed to use for unit testing, because nondeterministic tests stink. Each partition will use this value + i. **kwargs: Additional args to pass to compute_per_slice_metrics_cls init. Returns: PCollection of (slice key, dict of metrics) """ if not num_bootstrap_samples: num_bootstrap_samples = 1 # TODO(ckuhn): Cap the number of bootstrap samples at 20. if num_bootstrap_samples < 1: raise ValueError('num_bootstrap_samples should be > 0, got %d' % num_bootstrap_samples) output_results = ( sliced_extracts | 'ComputeUnsampledMetrics' >> compute_per_slice_metrics_cls( compute_with_sampling=False, random_seed_for_testing=None, **kwargs)) if num_bootstrap_samples > 1: multicombine = [] for i in range(num_bootstrap_samples): seed = (None if random_seed_for_testing is None else random_seed_for_testing + i) multicombine.append( sliced_extracts | 'ComputeSampledMetrics%d' % i >> compute_per_slice_metrics_cls( compute_with_sampling=True, random_seed_for_testing=seed, **kwargs)) output_results = ( multicombine | 'FlattenBootstrapPartitions' >> beam.Flatten() | 'GroupBySlice' >> beam.GroupByKey() | 'MergeBootstrap' >> beam.ParDo(_MergeBootstrap(), beam.pvalue.AsDict(output_results))) return output_results class _MergeBootstrap(beam.DoFn): """Merge the bootstrap values and fit a T-distribution to get confidence.""" def process( self, element: Tuple[slicer.SliceKeyType, Iterable[_MetricsDict]], unsampled_results: Dict[slicer.SliceKeyType, _MetricsDict] ) -> Iterator[Tuple[slicer.SliceKeyType, _MetricsDict]]: """Merge the bootstrap values. Args: element: The element is the tuple that contains slice key and a list of the metrics dict. It's the output of the GroupByKey step. All the metrics that under the same slice key are generated by poisson-bootstrap. unsampled_results: The unsampled_results is passed in as a side input. It's a tuple that contains the slice key and the metrics dict from a run of the slice with no sampling (ie, all examples in the set are represented exactly once.) This should be identical to the values obtained without sampling. Yields: A tuple of slice key and the metrics dict which contains the unsampled value, as well as parameters about t distribution. If the metric is a proto only the unsampled value will be returned. Raises: ValueError if the key of metrics inside element does not equal to the key of metrics in unsampled_results. """ slice_key, metrics = element # metrics should be a list of dicts, but the dataflow runner has a quirk # that requires specific casting. metrics = list(metrics) if len(metrics) == 1: yield slice_key, metrics[0] return # Group the same metrics into one list. metrics_dict = {} for metric in metrics: for metrics_name in metric: if metrics_name not in metrics_dict: metrics_dict[metrics_name] = [] metrics_dict[metrics_name].append(metric[metrics_name]) unsampled_metrics_dict = unsampled_results.get(slice_key, {}) # The key set of the two metrics dicts must be identical. if set(metrics_dict.keys()) != set(unsampled_metrics_dict.keys()): raise ValueError('Keys of two metrics do not match: sampled_metrics: %s. ' 'unsampled_metrics: %s' % (metrics_dict.keys(), unsampled_metrics_dict.keys())) metrics_with_confidence = {} for metrics_name in metrics_dict: # If metric is a proto, return as is. unsampled_value = unsampled_metrics_dict[metrics_name] if isinstance(unsampled_value, message.Message): metrics_with_confidence[metrics_name] = unsampled_value else: metrics_with_confidence[metrics_name] = _calculate_t_distribution( metrics_dict[metrics_name], unsampled_value) yield slice_key, metrics_with_confidence def _calculate_t_distribution( # pylint: disable=invalid-name sampling_data_list: List[Union[int, float, np.ndarray]], unsampled_data: Union[int, float, np.ndarray]): """Calculate the confidence interval of the data. Args: sampling_data_list: A list of number or np.ndarray. unsampled_data: Individual number or np.ndarray. The format of the unsampled_data should match the format of the element inside sampling_data_list. Returns: Confidence Interval value stored inside types.ValueWithTDistribution. """ if isinstance(sampling_data_list[0], (np.ndarray, list)): merged_data = sampling_data_list[0][:] if isinstance(sampling_data_list[0], np.ndarray): merged_data = merged_data.astype(object) for index in range(len(merged_data)): merged_data[index] = _calculate_t_distribution( [data[index] for data in sampling_data_list], unsampled_data[index]) return merged_data else: # Data has to be numeric. That means throw out nan values. sampling_data_list = [ data for data in sampling_data_list if not np.isnan(data) ] if n_samples := len(sampling_data_list): sample_mean = np.mean(sampling_data_list) sample_std = np.std(sampling_data_list, ddof=1) return types.ValueWithTDistribution(sample_mean, sample_std, n_samples - 1, unsampled_data) else: return types.ValueWithTDistribution( float('nan'), float('nan'), -1, float('nan')) ``` #### File: tensorflow_model_analysis/metrics/sample_metrics.py ```python from typing import Any, List, Optional, Text, Tuple import apache_beam as beam import numpy as np from tensorflow_model_analysis.metrics import metric_types from tensorflow_model_analysis.utils import beam_util from tensorflow_model_analysis.utils import util FIXED_SIZE_SAMPLE_NAME = 'fixed_size_sample' # This corresponds to the comments in apache_beam/transforms/combiners.py _HeapType = Tuple[bool, List[Any]] class FixedSizeSample(metric_types.Metric): """Computes a fixed-size sample per slice.""" def __init__(self, sampled_key: Text, size: int, name: Text = FIXED_SIZE_SAMPLE_NAME, random_seed: Optional[int] = None): """Initializes a FixedSizeSample metric. Args: sampled_key: The key whose values should be sampled size: The number of samples to collect (per slice) name: Metric name. random_seed: The random_seed to be used for intializing the per worker np.random.RandomGenerator in the CombineFn setup. Note that when more than one worker is used, setting this is not sufficient to guarantee determinism. """ super().__init__( _fixed_size_sample, sampled_key=sampled_key, size=size, name=name, random_seed=random_seed) metric_types.register_metric(FixedSizeSample) def _fixed_size_sample( sampled_key: Text, size: int, name: Text, random_seed: Optional[int], model_names: Optional[List[Text]] = None, output_names: Optional[List[Text]] = None, sub_keys: Optional[List[metric_types.SubKey]] = None, example_weighted: bool = False) -> metric_types.MetricComputations: """Returns metrics computations for FixedSizeSample metrcs.""" keys = [] for model_name in model_names or ['']: for output_name in output_names or ['']: keys.extend(metric_types.MetricKey( name, model_name=model_name, output_name=output_name, sub_key=sub_key, example_weighted=example_weighted) for sub_key in sub_keys or [None]) return [ metric_types.MetricComputation( keys=keys, preprocessor=metric_types.FeaturePreprocessor( feature_keys=[sampled_key]), combiner=_FixedSizeSampleCombineFn( metric_keys=keys, sampled_key=sampled_key, size=size, example_weighted=example_weighted, random_seed=random_seed)) ] class _FixedSizeSampleCombineFn(beam_util.DelegatingCombineFn): """A fixed size sample combiner which samples values of a specified key. This CombineFn is similar to beam.combiners.SampleCombineFn except it makes use of the numpy random generator which means that it accepts a seed for use with deterministic testing. """ def __init__(self, metric_keys: List[metric_types.MetricKey], sampled_key: Text, size: int, example_weighted: bool, random_seed: Optional[int]): self._metric_keys = metric_keys self._sampled_key = sampled_key self._example_weighted = example_weighted self._random_seed = random_seed # We delegate to the TopCombineFn rather than subclass because the use of a # TopCombineFn is an implementation detail. super().__init__(combine_fn=beam.combiners.TopCombineFn(n=size)) def setup(self): self._random_generator = np.random.default_rng(self._random_seed) def add_input(self, heap: _HeapType, element: metric_types.StandardMetricInputs) -> _HeapType: # TODO(b/206546545): add support for sampling derived features sampled_value = util.get_by_keys(element.features, [self._sampled_key]) random_tag = self._random_generator.random() if self._example_weighted: # For details, see Weighted Random Sampling over Data Streams: # https://arxiv.org/abs/1012.0256 weight = element.example_weight random_tag = random_tag**(1 / weight) return super().add_input(heap, (random_tag, sampled_value)) def extract_output(self, heap: _HeapType) -> metric_types.MetricsDict: # drop random numbers used for sampling sampled_values = np.array([v for _, v in super().extract_output(heap)]) return {k: sampled_values for k in self._metric_keys} ```
{ "source": "josephworks/PythonWS", "score": 3 }
#### File: josephworks/PythonWS/deepdream.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import numpy as np import matplotlib as mpl from IPython.display import clear_output from matplotlib import pyplot as plt # from tensorflow.keras.preprocessing import image # url = 'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg' url = 'https://raw.githubusercontent.com/josephworks/files/master/CLARKE_THOMAS.png' # Download an image and read it into a NumPy array. def download(url, target_size=None): name = url.split('/')[-1] image_path = tf.keras.utils.get_file(name, origin=url) img = tf.keras.preprocessing.image.load_img(image_path, target_size=target_size) return img # Normalize an image def deprocess(img): img = 255 * (img + 1.0) / 2.0 return tf.cast(img, tf.uint8) # Display an image def show(img): plt.figure(figsize=(12, 12)) plt.grid(False) plt.axis('off') plt.imshow(img) plt.show() # Downsizing the image makes it easier to work with. base_model = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet') original_img = download(url, target_size=[225, 375]) original_img = np.array(original_img) show(original_img) # Maximize the activations of these layers names = ['mixed3', 'mixed5'] layers = [base_model.get_layer(name).output for name in names] # Create the feature extraction model dream_model = tf.keras.Model(inputs=base_model.input, outputs=layers) def calc_loss(img, model): # Pass forward the image through the model to retrieve the activations. # Converts the image into a batch of size 1. img_batch = tf.expand_dims(img, axis=0) layer_activations = model(img_batch) losses = [] for act in layer_activations: loss = tf.math.reduce_mean(act) losses.append(loss) return tf.reduce_sum(losses) @tf.function def deepdream(model, img, step_size): with tf.GradientTape() as tape: # This needs gradients relative to `img` # `GradientTape` only watches `tf.Variable`s by default tape.watch(img) loss = calc_loss(img, model) # Calculate the gradient of the loss with respect to the pixels of the input image. gradients = tape.gradient(loss, img) # Normalize the gradients. gradients /= tf.math.reduce_std(gradients) + 1e-8 # In gradient ascent, the "loss" is maximized so that the input image increasingly "excites" the layers. # You can update the image by directly adding the gradients (because they're the same shape!) img = img + gradients * step_size img = tf.clip_by_value(img, -1, 1) return loss, img def run_deep_dream_simple(model, img, steps=100, step_size=0.01): # Convert from uint8 to the range expected by the model. img = tf.keras.applications.inception_v3.preprocess_input(img) for step in range(steps): loss, img = deepdream(model, img, step_size) if step % 100 == 0: clear_output(wait=True) show(deprocess(img)) print("Step {}, loss {}".format(step, loss)) result = deprocess(img) clear_output(wait=True) show(result) return result dream_img = run_deep_dream_simple(model=dream_model, img=original_img, steps=800, step_size=0.001) OCTAVE_SCALE = 1.3 img = tf.constant(np.array(original_img)) base_shape = tf.cast(tf.shape(img)[:-1], tf.float32) for n in range(3): new_shape = tf.cast(base_shape * (OCTAVE_SCALE ** n), tf.int32) img = tf.image.resize(img, new_shape).numpy() img = run_deep_dream_simple(model=dream_model, img=img, steps=200, step_size=0.001) clear_output(wait=True) show(img) def random_roll(img, maxroll): # Randomly shift the image to avoid tiled boundaries. shift = tf.random.uniform(shape=[2], minval=-maxroll, maxval=maxroll, dtype=tf.int32) shift_down, shift_right = shift[0], shift[1] img_rolled = tf.roll(tf.roll(img, shift_right, axis=1), shift_down, axis=0) return shift_down, shift_right, img_rolled shift_down, shift_right, img_rolled = random_roll(np.array(original_img), 512) show(img_rolled) @tf.function def get_tiled_gradients(model, img, tile_size=512): shift_down, shift_right, img_rolled = random_roll(img, tile_size) # Initialize the image gradients to zero. gradients = tf.zeros_like(img_rolled) for x in tf.range(0, img_rolled.shape[0], tile_size): for y in tf.range(0, img_rolled.shape[1], tile_size): # Calculate the gradients for this tile. with tf.GradientTape() as tape: # This needs gradients relative to `img_rolled`. # `GradientTape` only watches `tf.Variable`s by default. tape.watch(img_rolled) # Extract a tile out of the image. img_tile = img_rolled[x:x + tile_size, y:y + tile_size] loss = calc_loss(img_tile, model) # Update the image gradients for this tile. gradients = gradients + tape.gradient(loss, img_rolled) # Undo the random shift applied to the image and its gradients. gradients = tf.roll(tf.roll(gradients, -shift_right, axis=1), -shift_down, axis=0) # Normalize the gradients. gradients /= tf.math.reduce_std(gradients) + 1e-8 return gradients def run_deep_dream_with_octaves(model, img, steps_per_octave=100, step_size=0.01, num_octaves=3, octave_scale=1.3): img = tf.keras.preprocessing.image.img_to_array(img) img = tf.keras.applications.inception_v3.preprocess_input(img) for octave in range(num_octaves): # Scale the image based on the octave if octave > 0: new_size = tf.cast(tf.convert_to_tensor(img.shape[:2]), tf.float32) * octave_scale img = tf.image.resize(img, tf.cast(new_size, tf.int32)) for step in range(steps_per_octave): gradients = get_tiled_gradients(model, img) img = img + gradients * step_size img = tf.clip_by_value(img, -1, 1) if step % 10 == 0: clear_output(wait=True) show(deprocess(img)) print("Octave {}, Step {}".format(octave, step)) clear_output(wait=True) result = deprocess(img) show(result) return result dream_img = run_deep_dream_with_octaves(model=dream_model, img=original_img, step_size=0.01) clear_output() show(original_img) show(dream_img) ```
{ "source": "joseph-wortmann/lambda-setuptools", "score": 2 }
#### File: src/lambda_setuptools/ldist.py ```python import errno import os import re import shutil import zipfile from distutils import log from distutils.errors import ( DistutilsInternalError, DistutilsOptionError, DistutilsSetupError, ) from lambda_pkg_resources import LAMBDA_EXCLUDES, DistInstaller, ExcludesWorkingSet from pkg_resources import WorkingSet, parse_requirements from setuptools import Command def validate_lambda_function(dist, attr, value): if not re.compile(r"^([a-zA-Z0-9_]+\.)*[a-zA-Z0-9_]+:[a-zA-Z0-9_]+$").match(value): raise DistutilsSetupError( f"{attr} must be in the form of 'my_package.some_module:some_function'" ) def add_lambda_module_to_py_modules(dist, attr, value): py_modules = getattr(dist, "py_modules", None) if not py_modules: py_modules = [] py_modules.append(value) setattr(dist, "py_modules", py_modules) def validate_lambda_package(dist, attr, value): if not os.path.exists(value) or not os.path.isdir(value): raise DistutilsSetupError( "lambda_package either doesn't exist or is not a directory" ) if os.path.exists(os.path.join(value, "__init__.py")): raise DistutilsSetupError(f"{attr} {value} cannot contain an __init__.py") class LDist(Command): description = "build a AWS Lambda compatible distribution" user_options = [ ( "exclude-lambda-packages=", None, "Excludes the packages that are provided by the AWS Lambda execution environment", ), ( "include-version=", None, "Include the version number on the lambda distribution name", ), ("build-layer=", None, "Build a layer instead of a function distribution"), ( "layer-dir=", None, 'The directory to place the layer into. Defaults to "python" if not provided', ), ] def initialize_options(self): """Set default values for options.""" # Each user option must be listed here with their default value. setattr(self, "exclude_lambda_packages", None) setattr(self, "include_version", None) setattr(self, "build_layer", None) setattr(self, "layer_dir", None) def finalize_options(self): exclude_lambda_packages = getattr(self, "exclude_lambda_packages") if ( exclude_lambda_packages is None or exclude_lambda_packages == "" or exclude_lambda_packages == "True" or exclude_lambda_packages == "true" or exclude_lambda_packages == "Yes" or exclude_lambda_packages == "yes" ): setattr(self, "exclude_lambda_packages", True) elif ( exclude_lambda_packages == "False" or exclude_lambda_packages == "false" or exclude_lambda_packages == "No" or exclude_lambda_packages == "no" ): setattr(self, "exclude_lambda_packages", False) else: raise DistutilsOptionError( "exclude-lambda-packages must be True, true, Yes, yes, False, false, No, no or absent" ) include_version = getattr(self, "include_version") if ( include_version is None or include_version == "" or include_version == "True" or include_version == "true" or include_version == "Yes" or include_version == "yes" ): setattr(self, "include_version", True) elif ( include_version == "False" or include_version == "false" or include_version == "No" or include_version == "no" ): setattr(self, "include_version", False) else: raise DistutilsOptionError( "include-version must be True, true, Yes, yes, False, false, No, no or absent" ) build_layer = getattr(self, "build_layer") if ( build_layer == "True" or build_layer == "true" or build_layer == "Yes" or build_layer == "yes" ): setattr(self, "build_layer", True) elif ( build_layer is None or build_layer == "" or build_layer == "False" or build_layer == "false" or build_layer == "No" or build_layer == "no" ): setattr(self, "build_layer", False) else: raise DistutilsOptionError( "build-layer must be True, true, Yes, yes, False, false, No, no or absent" ) layer_dir = getattr(self, "layer_dir") if layer_dir is None: setattr(self, "layer_dir", "python") def run(self): # We must create a distribution to install first # This is a short-cut to working with the actual build # directory, or to using the 'install' command, which # will generally only install a zipped egg self.run_command("bdist_wheel") bdist_wheel_command = self.get_finalized_command("bdist_wheel") setattr(self, "_dist_dir", bdist_wheel_command.dist_dir) # Install the package built by bdist_wheel # (or bdist, or bdist_wheel, depending on how the user called setup.py impl_tag, abi_tag, plat_tag = bdist_wheel_command.get_tag() self._install_dist_package( os.path.join( bdist_wheel_command.dist_dir, f"{bdist_wheel_command.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}.whl", ) ) # Use zero (if none specified) or more of the lambda_function, lambda_module or # lambda_package attributes to create the lambda entry point function if not getattr(self, "build_layer"): self._create_lambda_entry_point() # Now build the lambda package self._build_lambda_package() def _build_lambda_package(self): dist_name = ( f"{self.distribution.get_name()}-{self.distribution.get_version()}.zip" if getattr(self, "include_version") else f"{self.distribution.get_name()}.zip" ) dist_path = os.path.join(self._dist_dir, dist_name) if os.path.exists(dist_path): os.remove(dist_path) log.info(f"creating {dist_path}") with zipfile.ZipFile(dist_path, "w", zipfile.ZIP_DEFLATED) as zf: abs_src = os.path.abspath(self._lambda_build_dir) for root, _, files in os.walk(self._lambda_build_dir): for filename in files: absname = os.path.abspath(os.path.join(root, filename)) arcname = absname[len(abs_src) + 1 :] log.debug(f"zipping {os.path.join(root, filename)} as {arcname}") zf.write(absname, arcname) # Set the resulting distribution file path for downstream command use setattr(self, "dist_name", dist_name) setattr(self, "dist_path", dist_path) def _create_lambda_entry_point(self): self._create_lambda_function() self._copy_lambda_package() def _create_lambda_function(self): lambda_function = getattr(self.distribution, "lambda_function", None) if not lambda_function: return components = lambda_function.split(":") module = components[0] function = components[1] function_lines = [ f"import {module}\n", "\n", "\n", f"handler = {module}.{function}\n", ] package_name = self.distribution.get_name().replace("-", "_").replace(".", "_") function_path = os.path.join( self._lambda_build_dir, f"{package_name}_function.py" ) log.info(f"creating {function_path}") with open(function_path, "w") as py: py.writelines(function_lines) def _copy_lambda_package(self): lambda_package = getattr(self.distribution, "lambda_package", None) if not lambda_package: return for filename in os.listdir(lambda_package): filepath = os.path.join(lambda_package, filename) if os.path.isdir(filepath): log.debug(f"{filepath} is a directory, skipping lambda copy") continue log.info(f"copying {filepath} to {self._lambda_build_dir}") shutil.copy(filepath, self._lambda_build_dir) def _install_dist_package(self, wheel_path): # Get the name of the package that we just built package_name = self.distribution.get_name() # Get the dist directory that bdist_wheel put the package in # Create the lambda build dir self._lambda_build_dir = os.path.join("build", "ldist-" + package_name) build_dir = self._lambda_build_dir if getattr(self, "build_layer"): build_dir = os.path.join(build_dir, getattr(self, "layer_dir")) try: if os.path.exists(self._lambda_build_dir): shutil.rmtree(self._lambda_build_dir) log.info(f"creating {self._lambda_build_dir}") os.makedirs(build_dir) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(self._lambda_build_dir): pass else: raise DistutilsInternalError( f"{self._lambda_build_dir} already exists and is not a directory" ) log.info( f"installing package {package_name} from {self._dist_dir} into {build_dir}" ) # Extract our wheel into our build dir with zipfile.ZipFile(wheel_path, "r") as zf: zf.extractall(build_dir) # Create the working set to get all recursive dependencies, EXCEPT for the libraries included # with the lambda environment working_set = ( ExcludesWorkingSet(entries=[build_dir], excludes=LAMBDA_EXCLUDES) if getattr(self, "exclude_lambda_packages") else WorkingSet(entries=[build_dir]) ) dist_installer = DistInstaller(build_dir) working_set.resolve( parse_requirements(package_name), installer=dist_installer.fetch_dist, replace_conflicting=True, ) ```
{ "source": "joseph-x-li/py-alphabet-texter", "score": 3 }
#### File: py-alphabet-texter/alphabet_texter/alphabet_texter.py ```python import tkinter as tk from alphabet_lib import alphabet_display, alphabet_graph, alphabet_utils import random # for string shuffling class AlphabetTexter(tk.Frame): MASTER_FONT = "Menlo" KEY_DICT = { "(A-Z)": "<KEY>", "(Z-A)": "<KEY>", "(A-Z), With Spaces": "a b c d e f g h i j k l m n o p q r s t u v w x y z", "(Z-A), With Spaces": "z y x w v u t s r q p o n m l k j i h g f e d c b a", "Random": None, } KEY_OPTIONS = [ "(A-Z)", "(Z-A)", "(A-Z), With Spaces", "(Z-A), With Spaces", "Random", ] def __init__(self, parent, *args, **kwargs): tk.Frame.__init__( self, parent, *args, highlightthickness=1, highlightbackground="black", **kwargs, ) self._parent = parent self.au = alphabet_utils.AlphabetUtils(key=self.KEY_DICT["(A-Z)"]) self.make_internals(self) self.grid_columnconfigure(0, weight=1) self.grid_rowconfigure(1, weight=1) def make_internals(self, parent_frame): self.title = tk.Label( parent_frame, text="Alphabet Texter", font=(self.MASTER_FONT, 24), relief="ridge", ) self.title.grid(row=0, column=0, sticky="news", ipady=5, ipadx=5) self.graph = alphabet_graph.AlphabetGraph( parent_frame, dpi=100, key=self.KEY_DICT["(A-Z)"], interval=150, ) self.graph.grid(row=1, column=0, sticky="news") self.display = alphabet_display.AlphabetDisplay( parent_frame, key=self.KEY_DICT["(A-Z)"] ) self.display.grid(row=2, column=0, sticky="ns", ipadx=5, ipady=5) self.input_var = tk.StringVar() self.input_var.trace("w", self.on_keystroke) self.text_entry = tk.Entry( parent_frame, textvariable=self.input_var, font=self.MASTER_FONT, width=26 ) self.text_entry.grid(row=3, column=0, sticky="ns") self.text_entry.focus() self.util_frame = tk.Frame(parent_frame) self.util_frame.grid(row=4, column=0, sticky="news") for i in range(3): self.util_frame.grid_columnconfigure(i, weight=1) self.previous_time_label = tk.Label( self.util_frame, text=f"Recent Time: -", font=self.MASTER_FONT ) self.previous_time_label.grid(row=0, column=0, sticky="nws") self.best_time_label = tk.Label( self.util_frame, text=f"Best Time: -", font=self.MASTER_FONT ) self.best_time_label.grid(row=0, column=1, sticky="nws") self.key_selection = tk.StringVar() self.key_selection.set(self.KEY_OPTIONS[0]) self.key_menu = tk.OptionMenu( self.util_frame, self.key_selection, *self.KEY_OPTIONS, command=self.on_set_key, ) self.key_menu.grid(row=0, column=2, sticky="ns") self.reset_button = tk.Button( self.util_frame, text="Reset", font=self.MASTER_FONT, command=self.on_reset, ) self.reset_button.grid(row=0, column=3, sticky="news") def on_keystroke(self, *args): inp = self.input_var.get() correct, letter_states, time_array = self.au.tell(inp) self.display.set_colors(letter_states, len(inp)) time_array = [(round(t, 5) if t >= 0.0 else 0.0) for t in time_array] self.graph.set_times(time_array) if correct: self.text_entry.config(state="disabled") self._set_time_display() def _set_time_display(self): recent_time, best_time = self.au.get_scores() self.previous_time_label.config(text=f"Recent Time: {recent_time}") self.best_time_label.config(text=f"Best Time: {best_time}") def on_reset(self): self.au.reset() self.text_entry.config(state="normal") self.text_entry.delete(0, "end") self.display.reset() self.graph.reset() def on_set_key(self, event): new_key = self.KEY_DICT[self.key_selection.get()] if new_key is None: new_key = list(self.KEY_DICT["(A-Z)"]) random.shuffle(new_key) new_key = "".join(new_key) # destroy and rebuild the graph self.graph.destroy() self.graph = alphabet_graph.AlphabetGraph( self, dpi=100, key=new_key, interval=150, ) self.graph.grid(row=1, column=0, sticky="news") # Set backend time calculations self.au.set_key(new_key) self.au.reset_scores() # Set text display self.display.set_key(new_key) self.input_var = tk.StringVar() self.input_var.trace("w", self.on_keystroke) self.text_entry.destroy() self.text_entry = tk.Entry( self, textvariable=self.input_var, font=self.MASTER_FONT, width=len(new_key), ) self.text_entry.grid(row=3, column=0, sticky="ns") self.text_entry.focus() # Set display numbers self.on_reset() self._set_time_display() def main(): root = tk.Tk() root.title("py-alphabet-texter") at = AlphabetTexter(root).pack(side="top", fill="both", expand=True) root.mainloop() if __name__ == "__main__": main() ```
{ "source": "joseph-x-li/pystreaming", "score": 3 }
#### File: video/testimages/imageloader.py ```python from PIL import Image import os TEST_S = 0 TEST_M = 1 TEST_L = 2 IMAG_S = 3 IMAG_M = 4 IMAG_L = 5 lookup = [ "640x480_c.png", "1280x720_c.png", "1920x1080_c.png", "640x480_i.png", "1280x720_i.png", "1920x1080_i.png", ] def loadimage(enum): """Load a test image or a test card. Args: enum (int): One of pystreaming.TEST_S pystreaming.TEST_M pystreaming.TEST_L pystreaming.IMAG_S pystreaming.IMAG_M pystreaming.IMAG_L Raises: IndexError: Raised when received enum is not defined. Returns: PIL.Image: Image requested. """ try: truepath = os.path.join( os.path.dirname(os.path.realpath(__file__)), lookup[enum] ) return Image.open(truepath) except IndexError: raise IndexError(f"Unrecognized image option: {enum}") ``` #### File: pystreaming/tests/test_datstructures.py ```python from pystreaming.listlib.circularlist import CircularList, Empty from pystreaming.listlib.circulardict import CircularOrderedDict def testcircularlist(): try: cl = CircularList(0) assert False except ValueError: pass cl = CircularList(1) assert len(cl) == 0 assert not cl.full() assert cl.__repr__() == "[None] front: 0 back: 0" cl.push(1) assert len(cl) == 1 cl.push(2) assert len(cl) == 1 cl.push(3) assert cl.full() assert len(cl) == 1 assert cl.__repr__() == "[3] front: 0 back: 0" assert cl.pop() == 3 assert not cl.full() cl = CircularList(5) assert cl.__repr__() == "[None, None, None, None, None] front: 0 back: 0" cl.push(0) cl.push(1) cl.push(2) cl.push(3) assert cl.__repr__() == "[0, 1, 2, 3, None] front: 0 back: 4" assert len(cl) == 4 cl.push(4) cl.push(5) cl.push(6) assert cl.__repr__() == "[5, 6, 2, 3, 4] front: 2 back: 2" assert len(cl) == 5 assert cl.pop() == 2 assert cl.__repr__() == "[5, 6, 2, 3, 4] front: 3 back: 2" assert len(cl) == 4 assert cl.pop() == 3 assert cl.pop() == 4 assert cl[0] == 5 try: print(cl[2]) assert False except IndexError: pass cl[1] = 7 try: cl[2] = 8 assert False except IndexError: pass assert cl.pop() == 5 assert cl.pop() == 7 try: cl.pop() assert False except Empty: pass def testcirculardict(): try: cd = CircularOrderedDict(0) assert False except ValueError: pass cd = CircularOrderedDict(5) cd.insert_end(1, 1) cd.insert_end(2, 2) cd.insert_end(3, 3) cd.insert_end(4, 4) assert len(cd) == 4 cd.insert_end(5, 5) assert len(cd) == 5 cd.insert_end(6, 6) assert len(cd) == 5 for k, i in zip(cd.keys(), range(2, 7)): assert k == i cd.insert_end(3, 100) cd[2] = -100 assert cd[2] == -100 try: cd[7] = 7 assert False except KeyError: pass assert cd.__repr__() == "OrderedDict([(2, -100), (4, 4), (5, 5), (6, 6), (3, 100)])" cd.delete(2) assert len(cd) == 4 assert cd.pop_front() == (4, 4) assert len(cd) == 3 assert cd.pop_front() == (5, 5) assert len(cd) == 2 assert cd.pop_front() == (6, 6) assert len(cd) == 1 assert cd.pop_front() == (3, 100) assert len(cd) == 0 ```
{ "source": "josephxsxn/alchemists_notepad", "score": 3 }
#### File: alchemists_notepad/Object/Alchemical.py ```python from Object.AlchemicalColor import AlchemicalColor from Object.AlchemicalSign import AlchemicalSign from Object.AlchemicalSize import AlchemicalSize class Alchemical: def __init__(self, color, sign, size): self.color = color self.sign = sign self.size = size def get_color(self): return self.color def get_sign(self): return self.sign def get_size(self): return self.size ``` #### File: alchemists_notepad/Object/AlchemicalTriplet.py ```python from Object.Alchemical import Alchemical class AlchemicalTriplet(): def __init__(self, alchemical_list): self.alchemicals = alchemical_list def get_alchemicals(self): return self.alchemicals ``` #### File: alchemists_notepad/Routine/AlchemicalCombinations.py ```python from Object.Alchemical import Alchemical from Object.AlchemicalTriplet import AlchemicalTriplet from Object.AlchemicalColor import AlchemicalColor from Object.AlchemicalSign import AlchemicalSign from Object.AlchemicalSize import AlchemicalSize from Object.PotionColor import PotionColor from Object.PotionSign import PotionSign class AlchemicalCombinations: #Takes a Potion, and Dictonary of IngredientProperties #Returns dic of simple potion only reduction of AlchemicalTriplets for Ingredients used def reduce_potion_alchemicals(self, potion, ingredients_prop_dic): potion_ingredients = potion.get_ingredients() potion_color = potion.get_color() potion_sign = potion.get_sign() #create all simple conbinations based only off #potion results for AlchemicalTriplets #if not exist in dic then create all new Triplets ingredient_options_list = {} if potion_color is not PotionColor.NEUTRAL and potion_sign is not PotionSign.NEUTRAL: for ingredient in potion_ingredients: #print(ingredients_prop_dic.keys()) if ingredient in ingredients_prop_dic: #print('IngredientMatched => ' + str(ingredient)) ingredient_options_list[ingredient]=self.potion_only_filter(ingredients_prop_dic[ingredient].get_alchemical_options(), potion_color, potion_sign) else: #print('IngredientNOTMatched => ' + str(ingredient)) ingredient_options_list[ingredient]=self.potion_only_filter(self.inital_alchemical_options(), potion_color, potion_sign) else: #If it exits return itself for ingredient in potion_ingredients: #SELF if ingredient in ingredients_prop_dic: print('SELF => ' + str(ingredient)) print('Options =>' + str(len(ingredients_prop_dic[ingredient].get_alchemical_options()))) ingredient_options_list[ingredient] = ingredients_prop_dic[ingredient].get_alchemical_options() #ALL else: print('ALL => ' + str(ingredient)) ingredient_options_list[ingredient] = self.inital_alchemical_options() return ingredient_options_list #Filters list of AlchemicalTriplets to acceptalbe Triplets by Input Color & Sign def potion_only_filter(self, triplet_list, color, sign): filtered_alchemical_triplets = [] for triplet in triplet_list: for alchem in triplet.get_alchemicals(): #print('ALCHEM COLOR => ' + str(alchem.get_color().value) + ' ' + str(color.value) + ' SIGN => ' + str(alchem.get_sign().value) + ' ' + str(sign.value)) #if alchem.get_color().value == color.value and alchem.get_sign().value == sign.value: if alchem.get_color() == color and alchem.get_sign() == sign: #print('MATCHED') filtered_alchemical_triplets.append(triplet) return filtered_alchemical_triplets #Generates all possible AlchemicalTriplets for given Sign and Color of Potion #This is used when a Ingredient doesn't exist in our Dictonary yet def inital_alchemical_options(self): inital_ingredient_triplets = [] #RED Alchemical - OUTTER Alchemical in For Loop for red_sign in AlchemicalSign: #Inital RESET for all Alchemicals after collection red_alchemical = None blue_alchemical = None green_alchemical = None for red_size in AlchemicalSize: red_alchemical = Alchemical(AlchemicalColor.RED, red_sign, red_size) #BLUE Alchemical - MIDDLE Alchemical in For Loop for blue_sign in AlchemicalSign: for blue_size in AlchemicalSize: blue_alchemical = Alchemical(AlchemicalColor.BLUE, blue_sign, blue_size) #Green Alchemical - INNER Alchemical in For Loop #This is were we collect the Alchemicals into a Triplet for green_sign in AlchemicalSign: for green_size in AlchemicalSize: green_alchemical = Alchemical(AlchemicalColor.GREEN, green_sign, green_size) inital_ingredient_triplets.append(AlchemicalTriplet([red_alchemical, blue_alchemical, green_alchemical])) return inital_ingredient_triplets ```
{ "source": "josephxsxn/diceroller", "score": 3 }
#### File: josephxsxn/diceroller/diceroll.py ```python import random import optparse from urllib.parse import urlparse from http.server import BaseHTTPRequestHandler, HTTPServer import time #PARSE CLI or use Defaults def build_parser(): parser = optparse.OptionParser(usage='Roll Some Dice!') parser.add_option("-s", "--sides", dest="sides", help="Number of sides on the dice rolled - 6, 10, 20?", type=int, default=10) parser.add_option("-n","--num",dest="num", help="Number of dice to roll.", type=int, default=1) parser.add_option("-a","--again",dest="again", help="Reroll any dice equal to or above this number", type=int, default=10) parser.add_option("-+","--above",dest="above", help="Count all dice rolls equal to or above this number", type=int,default=8) parser.add_option("-w","--web",dest="web", help="setup rest server on given port", type=int, default=0) (options, args) = parser.parse_args() return options def roll_die(sides): return random.randint(1, sides) def roll_multipledice(num, sides): raw_dice = [] for _ in range(num): raw_dice.append(roll_die(sides)) return raw_dice def roll_multipledicemultipletimes(num, sides, again): master_rawdice = [] again_dice = [] still = True while still: if again_dice != []: num = len(again_dice) raw_dice=roll_multipledice(num, sides) master_rawdice.extend(raw_dice) again_dice=list(filter(lambda x: x >= again, raw_dice)) if again_dice == []: still = False return master_rawdice def score_dice(dicerolls, above): winners = [] for dice in dicerolls: if dice >= above: winners.append(dice) return winners def parse_queryargs(path): options = {} query = (path).split("&") for arg in query: quarg=arg.split("=") if len(quarg) == 2: options[quarg[0]] = int(quarg[1]) return options class DiceHandler(BaseHTTPRequestHandler): def do_HEAD(s): s.send_response(200) s.send_header("Content-type", "text/plain") s.end_headers() def do_GET(s): s.send_response(200) s.send_header("Content-type", "text/plain") s.end_headers() options = parse_queryargs((urlparse(s.path)[4])) if len(options) == 4: raw_rolls = roll_multipledicemultipletimes(int(options['num']), options['sides'], options['again']) winning_rolls = score_dice(raw_rolls, options['above']) s.wfile.write(bytes(str(raw_rolls)+"\n", "utf-8")) s.wfile.write(bytes(str(winning_rolls), "utf-8")) elif len(options) == 3: raw_rolls = roll_multipledicemultipletimes(int(options['num']), options['sides'], options['again']) s.wfile.write(bytes(str(raw_rolls)+"\n", "utf-8")) else: s.wfile.write(bytes("missing arguments please provide num, sides, again, and optionally above","utf-8")) def run_webservice(port): httpd = HTTPServer(("0.0.0.0", port), DiceHandler) print (time.asctime(), "Server Starts - %s:%s" % ("0.0.0.0", port)) try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() print (time.asctime(), "Server Stops - %s:%s" % ("0.0.0.0", port)) if __name__ == "__main__": options = build_parser() print ('running with ' + str(options)) if options.web == 0: t2 = roll_multipledicemultipletimes(options.num, options.sides, options.again) print ('Rolled ==> ' + str(t2)) t2 = score_dice(t2, options.above) print ('Success Rolls => ' + str(t2)) else: print('running as webserver') run_webservice(options.web) ```
{ "source": "josephyaconelli/crazyflie_ros-pwm-control", "score": 3 }
#### File: crazyflie_mpc/src/lossfnc_pnngaussian.py ```python import torch import numpy as np class PNNLoss_Gaussian(torch.nn.Module): ''' Here is a brief aside on why we want and will use this loss. Essentially, we will incorporate this loss function to include a probablistic nature to the dynamics learning nueral nets. The output of the Probablistic Nueral Net (PNN) or Bayesian Neural Net (BNN) will be both a mean for each trained variable and an associated variance. This loss function will take the mean (u), variance (sig), AND the true trained value (s) to compare against the mean. Stacked variances form Cov matrix loss_gaussian = sum_{data} (u - s)^T Cov^-1 (u-s) + log Det(Cov) Need to add code like this to the implementation: To bound the variance output for a probabilistic network to be between the upper and lower bounds found during training the network on the training data, we used the following code with automatic differentiation: logvar = max_logvar - tf.nn.softplus(max_logvar - logvar) logvar = min_logvar + tf.nn.softplus(logvar - min_logvar) var = tf.exp(logvar) with a small regularization penalty on term on max_logvar so that it does not grow beyond the training distribution’s maximum output variance, and on the negative of min_logvar so that it does not drop below the training distribution’s minimum output variance. ''' def __init__(self): super(PNNLoss_Gaussian,self).__init__() def forward(self, output, target): ''' output is a vector of length 2d mean is a vector of length d, which is the first set of outputs of the PNN var is a vector of variances for each of the respective means target is a vector of the target values for each of the mean ''' d2 = output.size()[1] d = torch.tensor(d2/2, dtype=torch.int32) mean = output[:,:d] logvar = output[:,d:] var = torch.exp(logvar) b_s = mean.size()[0] # batch size eps = 1e-9 # Add to variance to avoid 1/0 A = mean - target.expand_as(mean) B = torch.div(mean - target.expand_as(mean), var.add(eps)) loss = sum(torch.bmm(A.view(b_s, 1, -1), B.view(b_s, -1, 1)).reshape(-1,1)+torch.log(torch.abs(torch.prod(var.add(eps),1)).reshape(-1,1))) return loss ''' https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py def mse_loss(input, target, size_average=True, reduce=True): """mse_loss(input, target, size_average=True, reduce=True) -> Tensor Measures the element-wise mean squared error. See :class:`~torch.nn.MSELoss` for details. """ return _pointwise_loss(lambda a, b: (a - b) ** 2, torch._C._nn.mse_loss, input, target, size_average, reduce) ''' ```
{ "source": "josephyaconelli/VAEs-in-Economics", "score": 2 }
#### File: VAEs-in-Economics/Notebooks/vaes_net.py ```python import tensorflow.keras as keras keras.__version__ from tensorflow.keras import layers from tensorflow.keras import regularizers from tensorflow.keras import backend as K from tensorflow.keras.models import Model from tensorflow import set_random_seed from numpy.random import seed import numpy as np import pandas as pd def make_vae( full_data, plot_types_args = {}, img_shape = (389+1, ), latent_dim = 1, dense_width = 1024, l2_penalty=0.0, l1_penalty=0.0, encoder_dropout_rate=0.5, decoder_dropout_rate=0.5, entanglement_penalty = 2, hidden_n = 2, lr_factor = 0.9, lr_patience = 30): class PlotEpoch(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if epoch % 100 == 0: plot_types(encoder = self.model.encoder, decoder = self.model.decoder, data = self.model.full_data, **plot_types_args) plot_epoch = PlotEpoch() callback_list = [ keras.callbacks.ReduceLROnPlateau( monitor = 'val_loss', factor = lr_factor, patience = lr_patience, verbose =1 #true ), plot_epoch ] input_img = keras.Input(shape=img_shape) # The last input indicate to the network whether this is validation is_validation = input_img[:,-1] input_data = input_img[:,:-1] input_data = layers.GaussianNoise(0.03*(1-K.mean(is_validation)))(input_data) x = layers.Dense(dense_width, activation=layers.PReLU(alpha_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty)), \ kernel_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty))(input_data) x = layers.Dropout(encoder_dropout_rate)(x) for i in range(hidden_n): x = layers.Dense(dense_width, activation=layers.PReLU(alpha_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty)), kernel_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty))(x) x = layers.Dropout(encoder_dropout_rate)(x) z_mean = layers.Dense(latent_dim)(x) z_log_var = layers.Dense(latent_dim)(x) # Reduce sampling variance to near zero on validation (idea credit: <NAME>) is_validation_change = is_validation*100 z_log_var = keras.layers.Subtract()([z_log_var, is_validation_change]) def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=1.) return z_mean + K.exp(z_log_var) * epsilon class CustomVariationalLayer(keras.layers.Layer): def vae_loss(self, x, z_decoded): is_validation = x[:,-1] input_data = x[:,:-1] x = K.flatten(input_data) z_decoded = K.flatten(z_decoded) xent_loss = keras.metrics.mse(x, z_decoded) kl_loss = -5e-4 * K.mean( 1 + z_log_var - K.square(z_mean) - entanglement_penalty*K.exp(z_log_var), axis=-1) # Penalize for variance, but only in training return K.mean(xent_loss + (1-is_validation)*kl_loss) def call(self, inputs): x = inputs[0] z_decoded = inputs[1] loss = self.vae_loss(x, z_decoded) self.add_loss(loss, inputs=inputs) # We don't use this output. return x z = layers.Lambda(sampling)([z_mean, z_log_var]) encoder = Model(input_img,z_mean) # Maybe better if Model(input_data,z_mean) # This is the input where we will feed `z`. decoder_input = layers.Input(K.int_shape(z)[1:]) print(decoder_input.shape) x = layers.Dense(dense_width, activation=layers.PReLU(alpha_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty)), kernel_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty))(decoder_input) x = layers.Dropout(decoder_dropout_rate)(x) for i in range(hidden_n): x = layers.Dense(dense_width, activation=layers.PReLU(alpha_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty)), kernel_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty))(x) x = layers.Dropout(decoder_dropout_rate)(x) x = layers.Dense(img_shape[0]-1, kernel_regularizer=regularizers.l1_l2( l1=l1_penalty,l2=l2_penalty))(x) # This is our decoder model. decoder = Model(decoder_input, x) # We then apply it to `z` to recover the decoded `z`. z_decoded = decoder(z) # We call our custom layer on the input and the decoded output, # to obtain the score. Note that the objective is computed by # this special final layer. y = CustomVariationalLayer()([input_img, z_decoded]) vae = Model(input_img, y) vae.compile(optimizer='adam', loss=None) vae.encoder = encoder vae.decoder = decoder vae.full_data = full_data vae.callback_list = callback_list return vae import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler import seaborn as sns sns.set() sns.set_style("darkgrid") def plot_types(encoder, decoder, data, n_type = 60, each_hight = 20, approx_width=400, frac_width =0.55, n_activity = 90, lowest_percentile= 1, highest_percentile = 99, figsize=(10, 37), cmap='viridis', n_xlabels=13, spacing = -0.005, hist_size=0.08, scaler=True): # definitions for the axes left, width = 0.05, frac_width bottom, height = 0.025, 0.65 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom + height + spacing, width, hist_size] rect_colorbar = [left+width+0.1, bottom + height + spacing +0.01, width, 0.02] # start with a rectangular Figure plt.figure(figsize=figsize) ax_scatter = plt.axes(rect_scatter) ax_scatter.tick_params(direction='in', top=True, right=True) ax_histx = plt.axes(rect_histx) ax_histx.tick_params(direction='in', labelbottom=False) ax_colorbar = plt.axes(rect_colorbar) ax_colorbar.tick_params(direction='in', labelbottom=False, labelleft=False) each_width = np.int(np.ceil(approx_width/n_type)) figure = np.zeros((each_hight*n_activity,n_type*each_width)) # Linearly spaced coordinates on the unit square were transformed # through the inverse CDF (ppf) of the Gaussian # to produce values of the latent variables z, # since the prior of the latent space is Gaussian # We need to add a column of ones to indicate validation test_examples = data.shape[0] flag_1 = np.ones((test_examples,1),dtype=data.values.dtype) data_mat = np.concatenate((data.values,flag_1),axis=-1) encoded_data=encoder.predict(data_mat) lowest=np.percentile(encoded_data, lowest_percentile) highest=np.percentile(encoded_data, highest_percentile) grid_x = np.linspace(lowest, highest, n_type) for i, xi in enumerate(grid_x): z_sample = np.array([[xi]]) x_decoded = decoder.predict(z_sample) figure[0:n_activity*each_hight,i*each_width : (i + 1)*each_width] = \ np.repeat(x_decoded[0,0:n_activity],each_hight).reshape(n_activity*each_hight,1) if scaler: figure=np.transpose(figure) scaler = MinMaxScaler() figure=scaler.fit_transform(figure) figure=np.transpose(figure) im = ax_scatter.imshow(figure, cmap=cmap) plt.colorbar(im, ax= ax_colorbar, orientation='horizontal', fraction=1) # prec = pd.DataFrame(np.percentile(df,[50, 75, 95, 99],axis=0)) # ax_scatter.text(1.02*n_type*each_width, # 0.8*each_hight -each_hight, '50% 75% 95% 99%', fontsize=14) for i in range(n_activity): ax_scatter.text(1.02*n_type*each_width, 0.8*each_hight+i*each_hight, # '{:5.1f} {:5.1f} {:5.1f} {:5.1f} '.format(prec.iloc[0,i]/60, # prec.iloc[1,i]/60, # prec.iloc[2,i]/60, # prec.iloc[3,i]/60) + data.columns[i], fontsize=14) bins=np.append(grid_x-(grid_x[1]-grid_x[0])/2, grid_x[n_type-1]+(grid_x[1]-grid_x[0])/2) ax_scatter.set_xticks( np.linspace(0,n_type*each_width,n_xlabels)) ax_scatter.set_xticklabels(np.round(np.linspace(bins[0], bins[n_type], n_xlabels), decimals=2)) ax_scatter.set_yticks([]) ax_histx.set_xticks( np.linspace(bins[0], bins[n_type], n_xlabels)) sns.distplot(encoded_data,ax=ax_histx,bins=bins,kde=False, rug=False).set_xlim(bins[0],bins[n_type]) #ax_histx.set_xticklabels(np.round(np.linspace(bins[0], bins[n_type], n_xlabels), # decimals=2)) plt.savefig('type_plot.png') plt.show() def encode_plot2d( encoder, decoder, data, x_col = 'Work__main_job', y_col = 'Physical_care_for_hh_children', lowest_percentile=1, highest_percentile = 99, n=70, step=10): test_examples = data.shape[0] flag_1 = np.ones((test_examples,1),dtype=data.values.dtype) data_mat = np.concatenate((data.values,flag_1),axis=-1) encoded_data=encoder.predict(data_mat) lowest=np.percentile(encoded_data, lowest_percentile) highest=np.percentile(encoded_data, highest_percentile) grid_x = np.linspace(lowest, highest, n) filtered=pd.DataFrame((decoder.predict(grid_x))) scaler = MinMaxScaler() filtered=pd.DataFrame(scaler.fit_transform(filtered)) filtered.columns = data.columns sns.kdeplot(data[x_col], data[y_col], cmap="Blues", shade=True, bw=.2, cut=0.1, legend=True) sns.lineplot(x = filtered[x_col], y=filtered[y_col], linewidth=1.5, color= '#8E3179', sort=False) for i in range(0,n,step): plt.text(filtered[x_col][i]+0.01, filtered[y_col][i]+0.01, np.round(grid_x[i],1), horizontalalignment='left', size='small', color='black') plt.savefig(x_col+'_'+y_col+'.png') plt.show() ```
{ "source": "josephyancey/ha-wyzebulb", "score": 2 }
#### File: wyzeapi/tests/test.py ```python from .secrets import * from ..wyzeapi.wyzeapi_exceptions import * from ..wyzeapi.wyzeapi import WyzeApi def TestAccessTokenError(): print("Test: TestAccessTokenError") wyze = WyzeApi(username, password, no_save=True) bulbs = wyze.list_bulbs() # Kill access token wyze._access_token = "Killed" try: wyze.list_bulbs() assert(True) except WyzeApiError: print("SUCCESS") return print("ERROR") def TestBadPassword(): print("Test: TestBadPassword") try: wyze = WyzeApi(username, "BadPassword", no_save=True) except WyzeApiError: print("SUCCESS") return print("ERROR") def TestTurnOffBulbs(): print("Test: TestTurnOffBulbs") wyze = WyzeApi(username, password, no_save=True) bulbs = wyze.list_bulbs() for bulb in bulbs: bulb.turn_off() print("SUCCESS") def TestTurnOnBulbs(): print("Test: TestTurnOnBulbs") wyze = WyzeApi(username, password, no_save=True) bulbs = wyze.list_bulbs() for bulb in bulbs: bulb.turn_on() print("SUCCESS") def TestTurnOffSwitches(): print("Test: TestTurnOffSwitches") wyze = WyzeApi(username, password, no_save=True) switches = wyze.list_switches() for switch in switches: switch.turn_off() print("SUCCESS") def TestTurnOnSwitches(): print("Test: TestTurnOnSwitches") wyze = WyzeApi(username, password, no_save=True) switches = wyze.list_switches() for switch in switches: switch.turn_on() print("SUCCESS") if __name__ == '__main__': TestAccessTokenError() TestBadPassword() TestTurnOnBulbs() TestTurnOffBulbs() TestTurnOnSwitches() TestTurnOffSwitches() ``` #### File: wyzeapi/wyzeapi/wyzeapi_config.py ```python from configparser import ConfigParser def parseConfig(): config = ConfigParser() config.read('wyzeconfig.ini') try: access_token = config.get('auth', 'access_token') device_id = config.get('auth', 'device_id') return (device_id, access_token) except: return (None, None) def updateConfig(device_id, access_token): config = ConfigParser() config.read('wyzeconfig.ini') config.add_section('auth') config.set('auth', 'access_token', str(access_token)) config.set('auth', 'device_id', str(device_id)) with open('wyzeconfig.ini', 'w') as f: config.write(f) ```
{ "source": "josephyhu/Basketball-Team-Stats-Tool", "score": 4 }
#### File: josephyhu/Basketball-Team-Stats-Tool/app.py ```python import constants import random import copy # Removed the global ALL, replaced with local all_numbers. def main_menu(): select_option = True while select_option: print("Main Menu:\n") print("1. Display Stats\n2. Quit\n") option = input("Select an option: ") print("\n") try: if option.isdigit(): option = int(option) if option != 1 and option != 2: raise ValueError("Please enter 1 or 2.") else: raise ValueError("Please enter 1 or 2.") except ValueError as err: print("Invalid input.") print("({})\n".format(err)) continue else: return option def teams_menu(): select_team = True while select_team: print("Teams Menu:\n") print("0. Main Menu") for index in range(len(teams)): print("{}. {}".format(index + 1, teams[index])) option = input("\nSelect an option: ") print("\n") try: if option.isdigit(): option = int(option) if option != 0 and option != 1 and option != 2 and option != 3: raise ValueError("Please enter 0, 1, 2, or 3.") else: raise ValueError("Please enter 0, 1, 2, or 3.") except ValueError as err: print("Invalid input.") print("({})\n".format(err)) continue else: return option def add_players(): # Made a copy of all_numbers. all = copy.deepcopy(all_numbers) num_players = 0 team = [] nums = set() while len(nums) < 6: nums.add(random.choice(all)) for num in nums: team.append(players[num]["name"]) num_players += 1 all.remove(num) return num_players, team def continue_or_quit(): continue_or_quit = input("\nEnter c to continue or q to quit. ") print("\n") while continue_or_quit.lower() != 'c' and continue_or_quit.lower() != 'q': print("Invalid input.") continue_or_quit = input("Enter c to continue or q to quit. ") print("\n") return continue_or_quit.lower() def convert_heights(): heights = [] converted_heights = [] for player in players: heights.append(player["height"].split()) for index in range(len(heights)): converted_heights.append(int(heights[index][0])) for index in range(len(players)): players[index]["height"] = converted_heights[index] def convert_experiences(): experienced = [] converted_experienced = [] for player in players: experienced.append(player["experience"]) for index in range(len(experienced)): if experienced[index] == "YES": experienced[index] = True else: experienced[index] = False converted_experienced.append(experienced[index]) for index in range(len(players)): players[index]["experience"] = converted_experienced[index] def stats(): num_players, team = add_players() print("Total players: {}\n".format(num_players)) print("Players: {}\n".format(", ".join(team))) def members_available(): # Made a copy of all_numbers all = copy.deepcopy(all_numbers) if len(all) == 0: all = list(range(0, 18)) if __name__ == "__main__": all_numbers = list(range(0, 18)) # Made copies of constants.TEAMS and constants.PLAYERS teams = copy.deepcopy(constants.TEAMS) players = copy.deepcopy(constants.PLAYERS) # Called the functions that converts heights and experiences respectively. # Not sure what else to do with them for meets expectations grade though. convert_heights() convert_experiences() print("Basketball Team Stats Tool\n\n") team_selected = False while True: option = main_menu() if option == 1: while not team_selected: select_team = teams_menu() if select_team == 0: break elif select_team == 1: print("Team: {}\n".format(teams[0])) members_available() stats() if continue_or_quit() == 'c': continue else: break elif select_team == 2: print("Team: {}\n".format(teams[1])) members_available() stats() if continue_or_quit() == 'c': continue else: break elif select_team == 3: print("Team: {}\n".format(teams[2])) members_available() stats() if continue_or_quit() == 'c': continue else: break elif option == 2: break ```
{ "source": "JosepHyv/omegaup-cli", "score": 3 }
#### File: omegaup-cli/omegaup/user.py ```python from .utils import * from . import models class User: endpoint = ENTRYPOINT + "/api/user" def __init__(self, target_session): self.session = target_session # Log into account. def login(self, username_or_email, password): login_data = get_dict("api-user-login") login_data["password"] = password login_data["usernameOrEmail"] = username_or_email return self.session.post(url = self.endpoint + "/login", params = login_data) #addGroup = "https://omegaup.com/api/user/addGroup/" #associateIdentity = "https://omegaup.com/api/user/associateIdentity/" #changePassword = "https://omegaup.com/api/user/changePassword/" #coderOfTheMonth = "https://omegaup.com/api/user/coderOfTheMonth/" #coderOfTheMonthList = "https://omegaup.com/api/user/coderOfTheMonthList/" #contestStats = "https://omegaup.com/api/user/contestStats/" # ## Interesting stuff #create = "https://omegaup.com/api/user/create/" #generateOmiUsers = "https://omegaup.com/api/user/generateOmiUsers/" # #listAssociatedIdentities = "https://omegaup.com/api/user/listAssociatedIdentities/" #listUnsolvedProblems = "https://omegaup.com/api/user/listUnsolvedProblems/" #login = "https://omegaup.com/api/user/login/" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" #login = "https://omegaup.com" ```
{ "source": "joseph-zabaleta/data-structures-and-algorithms", "score": 4 }
#### File: challenges/breadth_first/breadth_first.py ```python from collections import deque class Vertex: def __init__(self, value): self.value = value self.next = None def __str__(self): return self.value class Edge: def __init__(self, vertex, weight=1): self.vertex = vertex self.weight = weight class Queue: def __init__(self): self.storage = deque() def enqueue(self, value): """Takes any value as an argument and adds a new node with that value to the back of the queue with an O(1) Time Performance.""" self.storage.appendleft(value) def dequeue(self): """Takes no arguments, remove the node from the front of the queue, and returns the node's value.""" return self.storage.pop() def peek(self): """Takes no arguments and returns the value of the node located in the front of the queue, without removing it from the queue.""" return self.storage[-1] def is_empty(self): """Takes no arguments and returns a boolean indicating whether or not the queue is empty.""" return len(self.storage) == 0 class Graph: def __init__(self): self.graph = {} def add_node(self, value): """ Takes in a value to create a new node/vertex for the graph. Returns the added node. """ node = Vertex(value) self.graph[node] = [] return node def add_edge(self, vertex1, vertex2, weight=1): """ Takes in two nodes to be linked together with an edge. Third parameter is the ability to add a weight to the edge. """ if vertex1 not in self.graph: raise KeyError('Vertex1 is not in the graph') if vertex2 not in self.graph: raise KeyError('Vertex2 is not in the graph') edge = Edge(vertex2, weight) self.graph[vertex1].append(edge) def get_nodes(self): """ Returns all vertices/nodes within the graph as a collection """ return self.graph.keys() def get_neighbors(self, vertex): """ Takes in a vertex/node and returns a collection of edges connected to the given vertex/node as well as the weight of the connection. """ collection = [] connections = self.graph.get(vertex, []) for neighbor in connections: holder = {} holder[neighbor] = neighbor.weight collection.append(holder) return collection def size(self): """ Returns the total number of vertices/nodes in the graph """ return len(self.graph) if len(self.graph) > 0 else None def breadth_first(self, vertex): """ Takes in a node/vertex and performs a breadth first traversal of the graph. This will return a collection of the nodes/vertices within the graph from a breadth first traversal perspective of the given node/vertex. """ nodes = [] holder = set() breadth = Queue() holder.add(vertex.value) breadth.enqueue(vertex) while not breadth.is_empty(): front = breadth.dequeue() nodes.append(front.value) for child in self.graph[front]: if child.vertex.value not in holder: holder.add(child.vertex.value) breadth.enqueue(child.vertex) return nodes ``` #### File: challenges/fizz_buzz_tree/fizz_buzz_tree.py ```python from collections import deque class Node: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right class BinaryTree: def __init__(self): self.root = None def add(self, value): """ This is the default add method that will add nodes to a tree with Breadth First logic """ new_node = Node(value) breadth = Queue() breadth.enqueue(self.root) if not self.root: self.root = new_node return while not breadth.is_empty(): front = breadth.dequeue() if not front.left: front.left = new_node return elif not front.right: front.right = new_node return if front.left: breadth.enqueue(front.left) if front.right: breadth.enqueue(front.right) def pre_order(self): """This is a Depth First traversal method. It prioritizes printing the `root` first, then looks to print `left` if left is not `None`, and lastly looks `right`.""" collection = [] def walk(root): if not root: return # <<< root >>> collection.append(root.value) # <<< left walk(root.left) # right >>> walk(root.right) # end walk(self.root) return collection def in_order(self): """This is a Depth First traversal method. It prioritizes printing the `left` first, then prints the `root`, and lastly looks to print `right`.""" collection = [] def walk(root): if not root: return # <<< left if root.left == None and root.right == None: collection.append(root.value) return else: walk(root.left) # <<< root >>> collection.append(root.value) # right >>> if root.left == None and root.right == None: collection.append(root.value) return else: walk(root.right) # Invoke walk(self.root) return collection def post_order(self): """This is a Depth First traversal method. It prioritizes print the `left` first, then looks to print the `right` and lastly prints the `root`.""" collection = [] def walk(root): if not root: return # <<< left if root.left == None and root.right == None: collection.append(root.value) return else: walk(root.left) # right >>> if root.left == None and root.right == None: collection.append(root.value) return else: walk(root.right) # <<< root >>> collection.append(root.value) # Invoke walk(self.root) return collection def breadth_first(self): """ This is a Breadth first traversal method that iterates through the tree by going through each level of the tree node by node. """ collection = [] breadth = Queue() breadth.enqueue(self.root) while not breadth.is_empty(): front = breadth.dequeue() collection.append(front.value) if front.left: breadth.enqueue(front.left) if front.right: breadth.enqueue(front.right) return collection class Queue: def __init__(self): self.storage = deque() def enqueue(self, value): """Takes any value as an argument and adds a new node with that value to the back of the queue with an O(1) Time Performance.""" self.storage.appendleft(value) def dequeue(self): """Takes no arguments, remove the node from the front of the queue, and returns the node's value.""" return self.storage.pop() def peek(self): """Takes no arguments and returns the value of the node located in the front of the queue, without removing it from the queue.""" return self.storage[-1] def is_empty(self): """Takes no arguments and returns a boolean indicating whether or not the queue is empty.""" return len(self.storage) == 0 def fizz_buzz_tree(tree): """Takes in a tree as a single argument. Changes values throughout the tree based on Fizzbuzz logic, and returns a new tree in the same order and structure. """ collection = tree.breadth_first() new_collection = [] for i in collection: if i % 3 == 0 and i % 5 == 0: i = 'FizzBuzz' new_collection.append(i) elif i % 3 == 0: i = 'Fizz' new_collection.append(i) elif i % 5 == 0: i = 'Buzz' new_collection.append(i) else: i = str(i) new_collection.append(i) new_tree = BinaryTree() for i in new_collection: new_tree.add(i) return new_tree ``` #### File: challenges/insertion_sort/insertion_sort.py ```python def insertion_sort(list1): for i in range(1, len(list1)): j = i - 1 temp = list1[i] while j >= 0 and temp < list1[j]: list1[j + 1] = list1[j] j = j - 1 list1[j + 1] = temp return list1 ``` #### File: challenges/multi_bracket_validation/multi_bracket_validation.py ```python def multi_bracket_validation(string): """Takes in a string argument and returns a boolean representing whether or not the brackets within the string are balanced. """ brackets = [] open_brackets = [] bracket_dict = { ")" : "(", "]" : "[", "}" : "{" } if string.count('{') == string.count('}') and string.count('(') == string.count(')') and string.count('[') == string.count(']'): for char in string: if char in ['(', ')', '[', ']', '{', '}']: brackets.append(char) if len(brackets) == 0: return True if brackets[0] in [')', '}', ']']: return False for bracket in brackets: if bracket in ['(', '[', '{']: open_brackets.append(bracket) elif open_brackets: if bracket_dict[bracket] == open_brackets[len(open_brackets)-1]: open_brackets.pop() else: return False else: return False else: return False return True ``` #### File: challenges/tree_intersection/tree_intersection.py ```python from collections import deque class Node: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right class Queue: def __init__(self): self.storage = deque() def enqueue(self, value): """Takes any value as an argument and adds a new node with that value to the back of the queue with an O(1) Time Performance.""" self.storage.appendleft(value) def dequeue(self): """Takes no arguments, remove the node from the front of the queue, and returns the node's value.""" return self.storage.pop() def peek(self): """Takes no arguments and returns the value of the node located in the front of the queue, without removing it from the queue.""" return self.storage[-1] def is_empty(self): """Takes no arguments and returns a boolean indicating whether or not the queue is empty.""" return len(self.storage) == 0 def tree_intersection(root1, root2): """Takes two binary tree roots and will return a list of intersecting values, or nodes that share the same value at the same position in the tree. """ output = [] collection1 = [] collection2 = [] tree1 = Queue() tree1.enqueue(root1.root) while not tree1.is_empty(): front = tree1.dequeue() collection1.append(front.value) if front.left: tree1.enqueue(front.left) if front.right: tree1.enqueue(front.right) tree2 = Queue() tree2.enqueue(root2.root) while not tree2.is_empty(): front = tree2.dequeue() collection2.append(front.value) if front.left: tree2.enqueue(front.left) if front.right: tree2.enqueue(front.right) if len(collection1) > len(collection2): for i in range(len(collection2)): if collection1[i] == collection2[i]: output.append(collection1[i]) else: for i in range(len(collection1)): if collection1[i] == collection2[i]: output.append(collection1[i]) return output ``` #### File: data_structures/hashtable/hashtable.py ```python class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def add(self, data): node = Node(data) if not self.head: self.head = node else: current = self.head while current.next: current = current.next current.next = node def display(self): collection = [] current = self.head while current: collection.append(current.data[0]) current = current.next return collection class Hashmap: """ This class is used to implement a hashmap It has four available methods: Add, Get, Contains, Hash """ def __init__(self, size): self.size = size self.map = [None] * self.size def add(self, key, value): """Add is reponsible for adding data to the hashmap datas structure """ hashed_key = self.hash(key) if not self.map[hashed_key]: self.map[hashed_key] = LinkedList() self.map[hashed_key].add([key, value]) def get(self, key): """Get is responsible for taking in a key argument and returning the value for that key in the hashmap """ index = self.hash(key) if self.map[index]: ll = self.map[index] while ll.head: if ll.head.data[0] == key: return ll.head.data[1] else: ll.head = ll.head.next else: return None def contains(self, key): """Contains is reponsible for returning a bool for wether or not the provided key is within the data structure """ index = self.hash(key) if self.map[index]: collection = self.map[index].display() if key in collection: return True else: pass return False def hash(self, key): """ Hash is responsible for splitting they key, converting to ascii values, adding them together, multiply it by any prime number, then modulous by the size of the hashmap to return a valid index value within the hashmap to store that key. """ total = 0 for char in key: total += ord(char) total *= 19 hashed_key = total % self.size return hashed_key ``` #### File: tests/challenges/--test_fifo_animal_shelter.py ```python import pytest from dsa.challenges.fifo_animal_shelter.fifo_animal_shelter import ( Node, Dog, Cat, AnimalShelter, PseudoQueue ) def test_AnimalShelter_enqueue_something(): shelter = AnimalShelter() shelter.enqueue('something') actual = shelter.peek() expected = 'something' assert actual == expected def test_AnimalShelter_enqueue_Dog(): shelter = AnimalShelter() oliver = Dog('Oliver') shelter.enqueue(oliver) actual = shelter.peek() expected = oliver assert actual == expected def test_AnimalShelter_enqueue_Cat(): shelter = AnimalShelter() cheeto = Cat('Cheeto') oliver = Dog('Oliver') shelter.enqueue(cheeto) shelter.enqueue(oliver) actual = shelter.peek() expected = cheeto assert actual == expected def test_AnimalShelter_dequeue_no_pref(): shelter = AnimalShelter() cheeto = Cat('Cheeto') oliver = Dog('Oliver') shelter.enqueue(cheeto) shelter.enqueue(oliver) actual = shelter.dequeue() expected = None assert actual == expected def test_AnimalShelter_dequeue_pref_not_catOrDog(): shelter = AnimalShelter() cheeto = Cat('Cheeto') oliver = Dog('Oliver') shelter.enqueue(cheeto) shelter.enqueue(oliver) actual = shelter.dequeue('bird') expected = None assert actual == expected def test_AnimalShelter_dequeue_pref_dog(): shelter = AnimalShelter() cheeto = Cat('Cheeto') oliver = Dog('Oliver') shelter.enqueue(cheeto) shelter.enqueue(oliver) actual = shelter.dequeue('dog') expected = 'cat' assert actual == expected def test_PseudoQueue_enqueue_cat(): shelter = PseudoQueue() cheeto = Cat('Cheeto') oliver = Dog('Oliver') shelter.enqueue(cheeto) shelter.enqueue(oliver) actual = shelter.storage1.peek().kind expected = 'dog' ======= Dog, Cat, Bird, AnimalShelter ) def test_AnimalShelter_enqueue_Dog(): shelter = AnimalShelter() oliver = Dog('Oliver') shelter.enqueue(oliver) actual = str(shelter) expected = '[dog: Oliver] <- None' assert actual == expected def test_AnimalShelter_enqueue_Dog_Cat(): shelter = AnimalShelter() oliver = Dog('Oliver') cheeto = Cat('Cheeto') shelter.enqueue(oliver) shelter.enqueue(cheeto) actual = str(shelter) expected = '[dog: Oliver] <- [cat: Cheeto] <- None' assert actual == expected def test_AnimalShelter_enqueue_Exception(): with pytest.raises(Exception): shelter = AnimalShelter() cookie = Bird('Cookie') actual = shelter.enqueue(cookie) expected = 'We can only accept a cat or a dog.' assert actual == expected def test_AnimalShelter_dequeue_dog_first(): shelter = AnimalShelter() oliver = Dog('Oliver') cheeto = Cat('Cheeto') shelter.enqueue(oliver) shelter.enqueue(cheeto) actual = shelter.dequeque('dog') expected = 'Oliver' assert actual == expected def test_AnimalShelter_dequeue_cat_first(): shelter = AnimalShelter() oliver = Dog('Oliver') cheeto = Cat('Cheeto') shelter.enqueue(cheeto) shelter.enqueue(oliver) actual = shelter.dequeque('cat') expected = 'Cheeto' assert actual == expected def test_AnimalShelter_dequeue_dog_not_first(): shelter = AnimalShelter() oliver = Dog('Oliver') cheeto = Cat('Cheeto') sneakers = Cat('Sneakers') shelter.enqueue(cheeto) shelter.enqueue(sneakers) shelter.enqueue(oliver) actual = shelter.dequeque('dog') expected = 'Oliver' assert actual == expected def test_AnimalShelter_dequeue_cat_not_first(): shelter = AnimalShelter() oliver = Dog('Oliver') poncho = Dog('Poncho') cheeto = Cat('Cheeto') shelter.enqueue(oliver) shelter.enqueue(poncho) shelter.enqueue(cheeto) actual = shelter.dequeque('cat') expected = 'Cheeto' assert actual == expected def test_AnimalShelter_dequeue_alternating(): shelter = AnimalShelter() oliver = Dog('Oliver') cheeto = Cat('Cheeto') poncho = Dog('Poncho') sneakers = Cat('Sneakers') peso = Dog('Peso') shelter.enqueue(oliver) shelter.enqueue(poncho) shelter.enqueue(cheeto) shelter.enqueue(sneakers) shelter.enqueue(peso) actual = shelter.dequeque('cat') expected = 'Cheeto' assert actual == expected ``` #### File: tests/challenges/--test_ll_merge.py ```python import pytest from dsa.challenges.ll_merge.ll_merge import LinkedList, Node, merge_list def test_LinkedList_instance(): assert LinkedList() def test_LinkedList_str(): ll = LinkedList() ll.insert("a") ll.insert("b") actual = str(ll) expected = "{ b } -> { a } -> NULL" assert actual == expected def test_LinkedList_repr(): ll = LinkedList() actual = repr(ll) expect = "LinkedList: None" assert actual == expect def test_LinkedList_head(): ll = LinkedList() actual = ll.head expected = None assert actual == expected def test_LinkedList_insert(): ll = LinkedList() ll.insert("a") ll.insert("b") assert ll.head.value == "b" assert ll.head.next.value == "a" def test_LinkedList_insert_before(ll_list): ll_list.insertBefore("a", "d") actual = str(ll_list) expected = "{ c } -> { b } -> { d } -> { a } -> NULL" assert actual == expected def test_LinkedList_insert_before_false(ll_list): with pytest.raises(ValueError): ll_list.insertAfter("f", "d") def test_LinkedList_insert_after(ll_list): ll_list.insertAfter("b", "d") actual = str(ll_list) expected = "{ c } -> { b } -> { d } -> { a } -> NULL" assert actual == expected def test_LinkedList_insert_Exception(ll_list): with pytest.raises(ValueError): ll_list.insertAfter("f", "d") def test_LinkedList_includes_true(ll_list): actual = ll_list.includes("c") expected = True assert actual == expected def test_LinkedList_includes_false(ll_list): actual = ll_list.includes("d") expected = False assert actual == expected def test_LinkedList_append(ll_list): ll_list.append("d") actual = str(ll_list) expected = "{ c } -> { b } -> { a } -> { d } -> NULL" assert actual == expected def test_LinkedList_kth_from_end_0(): ll = LinkedList() ll.insert(2) ll.insert(8) ll.insert(3) ll.insert(1) actual = ll.kth_from_end(0) expected = 2 assert actual == expected def test_LinkedList_kth_from_end_2(): ll = LinkedList() ll.insert(2) ll.insert(8) ll.insert(3) ll.insert(1) actual = ll.kth_from_end(2) expected = 3 assert actual == expected def test_LinkedList_kth_from_end_same_length(): ll = LinkedList() ll.insert(2) ll.insert(8) actual = ll.kth_from_end(2) expected = 8 assert actual == expected def test_LinkedList_kth_from_end_IndexError_Exception(): ll = LinkedList() ll.insert(2) ll.insert(8) ll.insert(3) ll.insert(1) with pytest.raises(IndexError): ll.kth_from_end(6) def test_LinkedList_kth_from_end_ValueError_Exception(): ll = LinkedList() ll.insert(2) ll.insert(8) ll.insert(3) ll.insert(1) with pytest.raises(ValueError): ll.kth_from_end(-6) def test_node_exception(): with pytest.raises(TypeError): Node("Test", "This must be a node not a string") def test_merge_list_list1_none(): list1 = LinkedList() list2 = LinkedList() list2.insert("c") list2.insert("b") list2.insert("a") actual = str(merge_list(list1, list2)) expected = "{ a } -> { b } -> { c } -> NULL" assert actual == expected def test_merge_list_list2_none(): list1 = LinkedList() list2 = LinkedList() list1.insert("c") list1.insert("b") list1.insert("a") actual = str(merge_list(list1, list2)) expected = "{ a } -> { b } -> { c } -> NULL" assert actual == expected def test_merge_list_equal_lists(): list1 = LinkedList() list2 = LinkedList() list1.insert("e") list1.insert("c") list1.insert("a") list2.insert("f") list2.insert("d") list2.insert("b") actual = str(merge_list(list1, list2)) expected = "{ a } -> { b } -> { c } -> { d } -> { e } -> { f } -> NULL" assert actual == expected def test_merge_list_list1_shorter(): list1 = LinkedList() list2 = LinkedList() list1.insert("3") list1.insert("1") list2.insert("4") list2.insert("9") list2.insert("5") actual = str(merge_list(list1, list2)) expected = "{ 1 } -> { 5 } -> { 3 } -> { 9 } -> { 4 } -> NULL" assert actual == expected def test_merge_list_list1_longer(): list1 = LinkedList() list2 = LinkedList() list1.insert("3") list1.insert("1") list1.insert("4") list2.insert("9") list2.insert("5") actual = str(merge_list(list1, list2)) expected = "{ 4 } -> { 5 } -> { 1 } -> { 9 } -> { 3 } -> NULL" assert actual == expected @pytest.fixture def ll_list(): """Sets up a linked list instance along with adds a few nodes for testing""" ll = LinkedList() ll.insert("a") ll.insert("b") ll.insert("c") return ll @pytest.fixture def ll_list_merge(): """Sets up two linked list instances along with some nodes for testing""" list1 = LinkedList() list1.insert("c") list1.insert("b") list1.insert("a") ``` #### File: tests/challenges/--test_repeated_word.py ```python import pytest from dsa.challenges.repeated_word.repeated_word import word_most_often, repeated_word @pytest.mark.parametrize( "test_input,expected", [ ("Once upon a time, there was a brave princess who...", "a"), ("It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way – in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only...", "it"), ("It was a queer, sultry summer, the summer they electrocuted the Rosenbergs, and I didn’t know what I was doing in New York...", "summer"), ], ) def test_all(test_input, expected): actual = repeated_word(test_input) assert actual == expected def test_random_string_one(): string = 'Something that is random about this assignment is that this string is crazy!' actual = repeated_word(string) expected = 'is' assert actual == expected def test_rnadom_string_two(): string = "Random something going on here what is random about this" actual = repeated_word(string) expected = 'random' assert actual == expected ```
{ "source": "joseph-zabaleta/i-dont-know", "score": 4 }
#### File: i-dont-know/src/history.py ```python import json from datetime import date def get_full_info(): """ This method return a array with 3 elements, each element is a list, where possition 0 is the title of the list: array in position 0: Number of orders by user array in position 1: List of orders by food category array in position 2: These are all the orders realizaded """ list_return = [] list_users = [] # internal working list list_orders = [] #i nternal working list list_users_return = [] # this is the returning array, in list_return, at position 0. Number of orders by user list_orders_return = [] # this is the returning array, list_return, at position 1. List of orders by food category list_history_return = [] # this is the returning array, list_return, at position 2. These are all the orders realizaded order_history = get_history() if not order_history : return list_return for order in order_history["orders"]: list_users.append(order["user"]) list_orders.append(order["order"]) unique_users_names = get_unique_list_values(list_users) unique_food_names = get_unique_list_values(list_orders) # Filling list_users_return tupple_users = (list_users) # create tupples to use count method list_users_return.append('Number of orders by user') for user in unique_users_names: list_users_return.append(user + " has ordered " + str(tupple_users.count(user)) + " times.") # Filling list_orders_return list_orders_return.append("Orders by food category") tupple_orders = (list_orders) # create tupples to use count method for food in unique_food_names: list_orders_return.append(food + " has been ordered " + str(tupple_orders.count(food)) + " times.") # Filling list_history_return list_history_return = get_history_list(True) list_history_return.insert(0, "History of all the orders") list_return.append(list_users_return) list_return.append(list_orders_return) list_return.append(list_history_return) return list_return def get_unique_list_values(list_to_review): """Helper function, takes in a list as a single argument and returns a unique list. """ unique_list = [] # traverse for all elements for item in list_to_review: # check if exists in unique_list or not if item not in unique_list: unique_list.append(item) return unique_list def get_users(): """ This function returns a list with the names of the users who have placed orders. """ list_users = [] order_history = get_history() if not order_history : return list_users for order in order_history["orders"]: list_users.append(order["user"]) return get_unique_list_values(list_users) def display_orders_by_user(): """ Function which displays the numbers of orders by users, and the number of times a specific food have been ordered. """ list_users = [] list_orders = [] order_history = get_history() if not order_history : print('There are not orders saved yet....') return for order in order_history["orders"]: list_users.append(order["user"]) list_orders.append(order["order"]) unique_users_names = get_unique_list_values(list_users) unique_food_names = get_unique_list_values(list_orders) # create tupples to use count method tupple_users = (list_users) print("Number of order by user... \n") for user in unique_users_names: print(" " + user + " has ordered " + str(tupple_users.count(user)) + " times.") # create tupples to use count method tupple_orders = (list_orders) print("\n\n") print("Number of orders by type... \n") for food in unique_food_names: print(" " + food + " has been ordered " + str(tupple_orders.count(food)) + " times.") def display_orders_history(): order_list = get_history_list(True) if len(order_list) == 0: print('There are not orders saved yet....') return print("\n\n") print('These are the orders so far...\n\n') for order in order_list: print(order) def get_history_list(reversed = None): """ This method returns all the orders in a list, where each order is in one position on the array. And returns in in the indicated order """ try: order_list = [] with open('./assets/orders_history.txt') as json_file: history = json.load(json_file) for order in history["orders"]: order_info = "On " + order['date'] + ", " + order['user'] + " ordered " + order['order'] order_list.append(order_info) if reversed : order_list.reverse() return order_list except: return [] def get_history(): """ Returns all the ordering information in json style """ try: with open('./assets/orders_history.txt') as json_file: history = json.load(json_file) return history except: return None def add_order_to_history(user, food, order_date = None): if not order_date : order_date = date.today() order_history = get_history() if not order_history: order_history = {} order_history["orders"] = [] order_history["orders"].append({ "user" : user, "date" : str(order_date), "order" : food }) else: order_history["orders"].append({ "user" : user, "date" : str(order_date), "order" : food }) with open('./assets/orders_history.txt', 'w') as outfile: json.dump(order_history, outfile) def load_dummy_data(): add_order_to_history('Skyler', 'Indian','2020-03-29') add_order_to_history('JB', 'Tai','2020-04-15') add_order_to_history('JB', 'Pizza','2020-04-15') add_order_to_history('Ahmad', 'Mexican','2020-04-18') add_order_to_history('Skyler', 'Italian','2020-05-03') add_order_to_history('JB', 'Hamburguers','2020-05-14') add_order_to_history('Aliya', 'Car<NAME>','2020-05-19') add_order_to_history('Skyler', 'Sushi','2020-05-22') add_order_to_history('JB', 'Pizza','2020-05-24') add_order_to_history('Ahmad', 'Tacos','2020-05-29') add_order_to_history('JB', 'Tacos','2020-06-02') add_order_to_history('Skyler', 'Hamburguers','2020-06-07') add_order_to_history('Ahmad', 'Sushi','2020-06-09') def load_test_info(): """ Cleans all the ordering information in json file orders_history. """ try: with open('./assets/orders_history.txt', 'w') as outfile: pass load_dummy_data() except: return None ```
{ "source": "JosephZheng1998/CNN-Emotion-Detection", "score": 2 }
#### File: CNN-Emotion-Detection/ensembles/train_cnn.py ```python import numpy as np from PIL import Image import torch import torchvision from torchvision import transforms import torchvision.models as models from torchvision.datasets import ImageFolder import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, random_split from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix import seaborn as sns import time import pandas as pd import matplotlib.pyplot as plt import splitfolders from training import train_model, training_plot def preprocessing(): batch_size = 64 train_transform = transforms.Compose([transforms.Resize(224), transforms.RandomRotation(45), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) val_transform = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) train_dataset = ImageFolder(root='train/', transform=train_transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True) dev_dataset = ImageFolder(root='val_test/val/', transform=val_transform) dev_loader = DataLoader(dev_dataset, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True) test_dataset = ImageFolder(root='val_test/test/', transform=val_transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True) print('train dataset: {} images {} classes'.format(len(train_dataset), len(train_dataset.classes))) print('dev dataset: {} images {} classes'.format(len(dev_dataset), len(dev_dataset.classes))) print('test dataset: {} images {} classes'.format(len(test_dataset), len(test_dataset.classes))) return train_loader, dev_loader, test_loader if __name__ == '__main__': # run only once to set up validation and test folders splitfolders.ratio('test', output='val_test', seed=1337, ratio=(0, 0.5, 0.5), group_prefix=None) # check for GPU cuda = torch.cuda.is_available() device = torch.device('cuda' if cuda else 'cpu') print(device) train_loader, dev_loader, test_loader = preprocessing() num_epochs = 30 num_classes = len(train_dataset.classes) lr = 1e-2 weight_decay = 5e-4 momentum = 0.9 start_epoch = 0 train_losses = [] train_accuracy = [] valid_losses = [] valid_accuracy = [] test_losses = [] test_accuracy = [] empty_cache = True # change this to train other SOTA CNNs model_name = 'DenseNet121' model = models.densenet121(pretrained=True) model.classifier = nn.Linear(1024, num_classes) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay, momentum=momentum) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=1, verbose=True) scaler = torch.cuda.amp.GradScaler() if os.path.exists('{}.model'.format(model_name)): print('Found pretrained model!') saved_model = torch.load('{}.model'.format(model_name)) start_epoch = saved_model['train_epochs'] model.load_state_dict(saved_model['model']) criterion.load_state_dict(saved_model['criterion']) optimizer.load_state_dict(saved_model['optimizer']) scheduler.load_state_dict(saved_model['scheduler']) scaler.load_state_dict(saved_model['scaler']) train_losses = saved_model['train_losses'] train_accuracy = saved_model['train_accuracy'] valid_losses = saved_model['valid_losses'] valid_accuracy = saved_model['valid_accuracy'] test_losses = saved_model['test_losses'] test_accuracy = saved_model['test_accuracy'] print('Training', model_name) train_losses, train_accuracy, valid_losses, valid_accuracy, test_losses, test_accuracy = train_model(model, model_name, train_loader, dev_loader, test_loader, optimizer, criterion, scheduler, scaler, device, start_epoch, num_epochs, train_losses, train_accuracy, valid_losses, valid_accuracy, test_losses, test_accuracy, empty_cache) training_plot(train_losses, valid_losses, test_losses, 'Loss') training_plot(train_accuracy, valid_accuracy, test_accuracy, 'Accuracy') ```
{ "source": "joseph-zhong/dilation-tensorflow", "score": 2 }
#### File: joseph-zhong/dilation-tensorflow/utils.py ```python import os import cv2 import numpy as np from datasets import CONFIG #import numba # this function is the same as the one in the original repository # basically it performs upsampling for datasets having zoom > 1 # @numba.jit(nopython=True) def interp_map(prob, zoom, width, height): channels = prob.shape[2] zoom_prob = np.zeros((height, width, channels), dtype=np.float32) for c in range(channels): for h in range(height): for w in range(width): r0 = h // zoom r1 = r0 + 1 c0 = w // zoom c1 = c0 + 1 rt = float(h) / zoom - r0 ct = float(w) / zoom - c0 v0 = rt * prob[r1, c0, c] + (1 - rt) * prob[r0, c0, c] v1 = rt * prob[r1, c1, c] + (1 - rt) * prob[r0, c1, c] zoom_prob[h, w, c] = (1 - ct) * v0 + ct * v1 return zoom_prob # predict function, mostly reported as it was in the original repo def predict(image, input_tensor, model, ds, sess, test=False): import pdb image = image.astype(np.float32) - CONFIG[ds]['mean_pixel'] conv_margin = CONFIG[ds]['conv_margin'] input_dims = (1,) + CONFIG[ds]['input_shape'] batch_size, input_height, input_width, num_channels = input_dims model_in = np.zeros(input_dims, dtype=np.float32) image_size = image.shape output_height = input_height - 2 * conv_margin output_width = input_width - 2 * conv_margin image = cv2.copyMakeBorder(image, conv_margin, conv_margin, conv_margin, conv_margin, cv2.BORDER_REFLECT_101) # import matplotlib.pyplot as plt # plt.imshow(image) # plt.show() # np.save('/home/josephz/ws/git/ml/framework/scripts/outs/tf_add_const', image) # exit() num_tiles_h = image_size[0] // output_height + (1 if image_size[0] % output_height else 0) num_tiles_w = image_size[1] // output_width + (1 if image_size[1] % output_width else 0) row_prediction = [] for h in range(num_tiles_h): col_prediction = [] for w in range(num_tiles_w): offset = [output_height * h, output_width * w] tile = image[offset[0]:offset[0] + input_height, offset[1]:offset[1] + input_width, :] margin = [0, input_height - tile.shape[0], 0, input_width - tile.shape[1]] tile = cv2.copyMakeBorder(tile, margin[0], margin[1], margin[2], margin[3], cv2.BORDER_REFLECT_101) model_in[0] = tile prob = sess.run(model, feed_dict={input_tensor: tile[None, ...]})[0] # assert prob.shape == (1024, 1024, 19) col_prediction.append(prob) col_prediction = np.concatenate(col_prediction, axis=1) # previously axis=2 row_prediction.append(col_prediction) import pdb # pdb.set_trace() prob = np.concatenate(row_prediction, axis=0) if test: return prob else: assert prob.shape[:-1] == image_size[:-1] if CONFIG[ds]['zoom'] > 1: prob = interp_map(prob, CONFIG[ds]['zoom'], image_size[1], image_size[0]) prediction = np.argmax(prob, axis=2) color_image = CONFIG[ds]['palette'][prediction.ravel()].reshape(image_size) return color_image # predict function, no tiles def predict_no_tiles(image, input_tensor, model, ds, sess, test=False): image = image.astype(np.float32) - CONFIG[ds]['mean_pixel'] if not os.path.isfile('/home/josephz/ws/git/ml/framework/scripts/dilation/outs/tf/add_const.npy'): np.save('/home/josephz/ws/git/ml/framework/scripts/dilation/outs/tf/add_const', image) conv_margin = CONFIG[ds]['conv_margin'] # input_dims = (1,) + CONFIG[ds]['input_shape'] # batch_size, input_height, input_width, num_channels = input_dims # model_in = np.zeros(input_dims, dtype=np.float32) image_size = image.shape image = cv2.copyMakeBorder(image, conv_margin, conv_margin, conv_margin, conv_margin, cv2.BORDER_REFLECT_101) prob = sess.run(model, feed_dict={input_tensor: image[None, ...]})[0] if test: return prob else: import pdb pdb.set_trace() assert prob.shape[:-1] == image_size[:-1] if CONFIG[ds]['zoom'] > 1: prob = interp_map(prob, CONFIG[ds]['zoom'], image_size[1], image_size[0]) prediction = np.argmax(prob, axis=2) color_image = CONFIG[ds]['palette'][prediction.ravel()].reshape(image_size) outp = '/home/josephz/ws/git/ml/framework/scripts/dilation/outs/tf/semseg.png' if not os.path.isfile(outp): import imageio imageio.imwrite(outp, color_image) import matplotlib.pyplot as plt plt.imshow(color_image) plt.show() return color_image ```
{ "source": "joseph-zhong/LipReading", "score": 2 }
#### File: models/face/prnet.py ```python import os import numpy as np import tensorflow as tf import tensorflow.contrib.layers as tcl from tensorflow.contrib.framework import arg_scope from skimage.io import imread, imsave from skimage.transform import estimate_transform, warp import src.utils.utility as _util class PRN: ''' Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network Args: is_dlib(bool, optional): If true, dlib is used for detecting faces. prefix(str, optional): If run at another folder, the absolute path is needed to load the data. ''' def __init__(self, is_dlib=False): # resolution of input and output image size. self.resolution_inp = 256 self.resolution_op = 256 # ---- load detectors if is_dlib: import dlib detector_path = _util.getRelWeightsPath('dlib', 'mmod_human_face_detector.dat') self.face_detector = dlib.cnn_face_detection_model_v1(detector_path) # ---- load PRN self.pos_predictor = PosPrediction(self.resolution_inp, self.resolution_op) prn_path = _util.getRelWeightsPath('prnet', 'net/256_256_resfcn256_weight') assert os.path.isfile(prn_path + '.data-00000-of-00001'), "please download PRN trained model first." self.pos_predictor.restore(prn_path) # uv file: 2 x 68 self.uv_kpt_ind = np.loadtxt(_util.getRelWeightsPath('prnet', 'uv', 'uv_kpt_ind.txt')).astype(np.int32) # get kpt: get valid vertices in the pos map self.face_ind = np.loadtxt(_util.getRelWeightsPath('prnet', 'uv', 'face_ind.txt')).astype(np.int32) # ntri x 3. self.triangles = np.loadtxt(_util.getRelWeightsPath('prnet', 'uv', 'triangles.txt')).astype(np.int32) self.uv_coords = self.generate_uv_coords() # Cache Position map. self.pos = None def generate_uv_coords(self): resolution = self.resolution_op uv_coords = np.meshgrid(range(resolution), range(resolution)) uv_coords = np.transpose(np.array(uv_coords), [1, 2, 0]) uv_coords = np.reshape(uv_coords, [resolution ** 2, -1]) uv_coords = uv_coords[self.face_ind, :] uv_coords = np.hstack((uv_coords[:, :2], np.zeros([uv_coords.shape[0], 1]))) return uv_coords def dlib_detect(self, image): return self.face_detector(image, 1) def net_forward(self, image): ''' The core of out method: regress the position map of a given image. Args: image: (256,256,3) array. value range: 0~1 Returns: pos: the 3D position map. (256, 256, 3) array. ''' return self.pos_predictor.predict(image) def process(self, input, image_info=None): ''' process image with crop operation. Args: input: (h,w,3) array or str(image path). image value range:1~255. image_info(optional): the bounding box information of faces. if None, will use dlib to detect face. Returns: pos: the 3D position map. (256, 256, 3). ''' if isinstance(input, str): try: image = imread(input) except IOError: print("error opening file: ", input) return None else: image = input if image.ndim < 3: image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) if image_info is not None: # REVIEW josephz: Deprecated behavior, accepting landmarks to infer tight bbox. # if np.max(image_info.shape) > 4: # key points to get bounding box # kpt = image_info # if kpt.shape[0] > 3: # kpt = kpt.T # left = np.min(kpt[0, :]) # right = np.max(kpt[0, :]) # top = np.min(kpt[1, :]) # bottom = np.max(kpt[1, :]) # else: # bounding box bbox = image_info left = bbox[0] right = bbox[1] top = bbox[2] bottom = bbox[3] old_size = (right - left + bottom - top) / 2 center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) size = int(old_size * 1.6) else: detected_faces = self.dlib_detect(image) if len(detected_faces) == 0: print('warning: no detected face') return None d = detected_faces[ 0].rect ## only use the first detected face (assume that each input image only contains one face) left = d.left() right = d.right() top = d.top() bottom = d.bottom() old_size = (right - left + bottom - top) / 2 center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0 + old_size * 0.14]) size = int(old_size * 1.58) # crop image src_pts = np.array([[center[0] - size / 2, center[1] - size / 2], [center[0] - size / 2, center[1] + size / 2], [center[0] + size / 2, center[1] - size / 2]]) DST_PTS = np.array([[0, 0], [0, self.resolution_inp - 1], [self.resolution_inp - 1, 0]]) tform = estimate_transform('similarity', src_pts, DST_PTS) image = image / 255. cropped_image = warp(image, tform.inverse, output_shape=(self.resolution_inp, self.resolution_inp)) # run our net # st = time() cropped_pos = self.net_forward(cropped_image) # print 'net time:', time() - st # restore cropped_vertices = np.reshape(cropped_pos, [-1, 3]).T z = cropped_vertices[2, :].copy() / tform.params[0, 0] cropped_vertices[2, :] = 1 vertices = np.dot(np.linalg.inv(tform.params), cropped_vertices) vertices = np.vstack((vertices[:2, :], z)) pos = np.reshape(vertices.T, [self.resolution_op, self.resolution_op, 3]) # Cache position map. self.pos = pos return pos, image def get_landmarks(self, pos): ''' Args: pos: the 3D position map. shape = (256, 256, 3). Returns: kpt: 68 3D landmarks. shape = (68, 3). ''' kpt = pos[self.uv_kpt_ind[1, :], self.uv_kpt_ind[0, :], :] return kpt def get_vertices(self, pos): ''' Args: pos: the 3D position map. shape = (256, 256, 3). Returns: vertices: the vertices(point cloud). shape = (num of points, 3). n is about 40K here. ''' all_vertices = np.reshape(pos, [self.resolution_op ** 2, -1]) vertices = all_vertices[self.face_ind, :] return vertices def get_colors_from_texture(self, texture): ''' Args: texture: the texture map. shape = (256, 256, 3). Returns: colors: the corresponding colors of vertices. shape = (num of points, 3). n is 45128 here. ''' all_colors = np.reshape(texture, [self.resolution_op ** 2, -1]) colors = all_colors[self.face_ind, :] return colors def get_colors(self, image, vertices): ''' Args: pos: the 3D position map. shape = (256, 256, 3). Returns: colors: the corresponding colors of vertices. shape = (num of points, 3). n is 45128 here. ''' [h, w, _] = image.shape vertices[:, 0] = np.minimum(np.maximum(vertices[:, 0], 0), w - 1) # x vertices[:, 1] = np.minimum(np.maximum(vertices[:, 1], 0), h - 1) # y ind = np.round(vertices).astype(np.int32) colors = image[ind[:, 1], ind[:, 0], :] # n x 3 return colors def resBlock(x, num_outputs, kernel_size=4, stride=1, activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm, scope=None): assert num_outputs % 2 == 0 # num_outputs must be divided by channel_factor(2 here) with tf.variable_scope(scope, 'resBlock'): shortcut = x if stride != 1 or x.get_shape()[3] != num_outputs: shortcut = tcl.conv2d(shortcut, num_outputs, kernel_size=1, stride=stride, activation_fn=None, normalizer_fn=None, scope='shortcut') x = tcl.conv2d(x, num_outputs / 2, kernel_size=1, stride=1, padding='SAME') x = tcl.conv2d(x, num_outputs / 2, kernel_size=kernel_size, stride=stride, padding='SAME') x = tcl.conv2d(x, num_outputs, kernel_size=1, stride=1, activation_fn=None, padding='SAME', normalizer_fn=None) x += shortcut x = normalizer_fn(x) x = activation_fn(x) return x class resfcn256(object): def __init__(self, resolution_inp=256, resolution_op=256, channel=3, name='resfcn256'): self.name = name self.channel = channel self.resolution_inp = resolution_inp self.resolution_op = resolution_op def __call__(self, x, is_training=True): with tf.variable_scope(self.name) as scope: with arg_scope([tcl.batch_norm], is_training=is_training, scale=True): with arg_scope([tcl.conv2d, tcl.conv2d_transpose], activation_fn=tf.nn.relu, normalizer_fn=tcl.batch_norm, biases_initializer=None, padding='SAME', weights_regularizer=tcl.l2_regularizer(0.0002)): size = 16 # x: s x s x 3 se = tcl.conv2d(x, num_outputs=size, kernel_size=4, stride=1) # 256 x 256 x 16 se = resBlock(se, num_outputs=size * 2, kernel_size=4, stride=2) # 128 x 128 x 32 se = resBlock(se, num_outputs=size * 2, kernel_size=4, stride=1) # 128 x 128 x 32 se = resBlock(se, num_outputs=size * 4, kernel_size=4, stride=2) # 64 x 64 x 64 se = resBlock(se, num_outputs=size * 4, kernel_size=4, stride=1) # 64 x 64 x 64 se = resBlock(se, num_outputs=size * 8, kernel_size=4, stride=2) # 32 x 32 x 128 se = resBlock(se, num_outputs=size * 8, kernel_size=4, stride=1) # 32 x 32 x 128 se = resBlock(se, num_outputs=size * 16, kernel_size=4, stride=2) # 16 x 16 x 256 se = resBlock(se, num_outputs=size * 16, kernel_size=4, stride=1) # 16 x 16 x 256 se = resBlock(se, num_outputs=size * 32, kernel_size=4, stride=2) # 8 x 8 x 512 se = resBlock(se, num_outputs=size * 32, kernel_size=4, stride=1) # 8 x 8 x 512 pd = tcl.conv2d_transpose(se, size * 32, 4, stride=1) # 8 x 8 x 512 pd = tcl.conv2d_transpose(pd, size * 16, 4, stride=2) # 16 x 16 x 256 pd = tcl.conv2d_transpose(pd, size * 16, 4, stride=1) # 16 x 16 x 256 pd = tcl.conv2d_transpose(pd, size * 16, 4, stride=1) # 16 x 16 x 256 pd = tcl.conv2d_transpose(pd, size * 8, 4, stride=2) # 32 x 32 x 128 pd = tcl.conv2d_transpose(pd, size * 8, 4, stride=1) # 32 x 32 x 128 pd = tcl.conv2d_transpose(pd, size * 8, 4, stride=1) # 32 x 32 x 128 pd = tcl.conv2d_transpose(pd, size * 4, 4, stride=2) # 64 x 64 x 64 pd = tcl.conv2d_transpose(pd, size * 4, 4, stride=1) # 64 x 64 x 64 pd = tcl.conv2d_transpose(pd, size * 4, 4, stride=1) # 64 x 64 x 64 pd = tcl.conv2d_transpose(pd, size * 2, 4, stride=2) # 128 x 128 x 32 pd = tcl.conv2d_transpose(pd, size * 2, 4, stride=1) # 128 x 128 x 32 pd = tcl.conv2d_transpose(pd, size, 4, stride=2) # 256 x 256 x 16 pd = tcl.conv2d_transpose(pd, size, 4, stride=1) # 256 x 256 x 16 pd = tcl.conv2d_transpose(pd, 3, 4, stride=1) # 256 x 256 x 3 pd = tcl.conv2d_transpose(pd, 3, 4, stride=1) # 256 x 256 x 3 pos = tcl.conv2d_transpose(pd, 3, 4, stride=1, activation_fn=tf.nn.sigmoid) # , padding='SAME', weights_initializer=tf.random_normal_initializer( # 0, 0.02)) return pos @property def vars(self): return [var for var in tf.global_variables() if self.name in var.name] class PosPrediction(): def __init__(self, resolution_inp=256, resolution_op=256): # -- hyper settings self.resolution_inp = resolution_inp self.resolution_op = resolution_op self.MaxPos = resolution_inp * 1.1 # network type self.network = resfcn256(self.resolution_inp, self.resolution_op) # net forward self.x = tf.placeholder(tf.float32, shape=[None, self.resolution_inp, self.resolution_inp, 3]) self.x_op = self.network(self.x, is_training=False) self.sess = tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) def restore(self, model_path): tf.train.Saver(self.network.vars).restore(self.sess, model_path) def predict(self, image): pos = self.sess.run(self.x_op, feed_dict={self.x: image[np.newaxis, :, :, :]}) pos = np.squeeze(pos) return pos * self.MaxPos def predict_batch(self, images): pos = self.sess.run(self.x_op, feed_dict={self.x: images}) return pos * self.MaxPos ``` #### File: src/scripts/generate_labels.py ```python import glob import json import os import sys import tqdm as _tqdm import src.utils.utility as _util import src.utils.cmd_line as _cmd from src.utils.data.caption import extract_captions, prune_and_filter_captions _logger = _util.getLogger("CMD Line") def _getSharedLogger(verbosity=_util.DEFAULT_VERBOSITY): global _logger if _logger is None: _logger = _util.getLogger(os.path.basename(__file__).split('.')[0], verbosity=verbosity) return _logger def _gen_from_dataset(dataset_path, cap_ext): assert os.path.isdir(dataset_path) raise NotImplementedError def _gen_from_raw(raw_path, cap_ext): assert os.path.isdir(raw_path) chars = set() for video in _tqdm.tqdm(glob.glob(os.path.join(raw_path, '*' + cap_ext))): captions = extract_captions(video) captions = prune_and_filter_captions(captions) for caption in captions.values(): chars.update(caption) return sorted(chars) def generate_labels(data, output="labels.json", cap_ext=".vtt", use_raw=True): """ Generates an ordered list of labels, unique characters used in video captions, from the specified data. :param data: Either dataset or raw data name. :param output: File in data directory to which the labels should be written, or - for stdout. :param cap_ext: File extension for subtitle files. :param use_raw: True to use raw, else uses dataset. """ data_path = _util.getRelRawPath(data) if use_raw else _util.getRelDatasetsPath(generate_labels) if use_raw: labels = _gen_from_raw(data_path, cap_ext) else: labels = _gen_from_dataset(data_path, cap_ext) if output == "-": json.dump(labels, sys.stdout) else: with open(os.path.join(data_path, output), "w") as out: json.dump(labels, out) def main(): global _logger args = _cmd.parseArgsForClassOrScript(generate_labels) varsArgs = vars(args) verbosity = varsArgs.pop('verbosity', _util.DEFAULT_VERBOSITY) _getSharedLogger(verbosity=verbosity).info("Passed arguments: '{}'".format(varsArgs)) generate_labels(**varsArgs) if __name__ == '__main__': main() ``` #### File: src/scripts/train.py ```python import os import time import numpy as np import torch import torch.utils.data as _data import tensorboardX import src.data.data_loader as _data_loader import src.models.lipreader.better_model as _better_model import src.train.train_better_model as _train import src.utils.cmd_line as _cmd import src.utils.utility as _util import src.models.lipreader.analysis as _analysis _logger = None def _getSharedLogger(verbosity=_util.DEFAULT_VERBOSITY): global _logger if _logger is None: _logger = _util.getLogger(os.path.basename(__file__).split('.')[0], verbosity=verbosity) return _logger def _get_datasets(dataset_name, train_split, sentence_dataset, threshold=0.8, labels='labels.json', rand=None, refresh=False, include_test=True): # REVIEW josephz: If we can load from pickles, we should not even do this split. We could have a helper factory thingy? # Load dataset video IDs and shuffle predictably. train_ids, val_ids, test_ids = _data_loader.split_dataset(dataset_name, train_split=train_split, rand=rand) train_dataset = _data_loader.FrameCaptionDataset(dataset_name, 'train', train_ids, labels=labels, threshold=threshold, sentence_dataset=sentence_dataset, refresh=refresh) val_dataset = _data_loader.FrameCaptionDataset(dataset_name, 'val', val_ids, labels=labels, threshold=threshold, sentence_dataset=sentence_dataset, refresh=refresh) if include_test: test_dataset = _data_loader.FrameCaptionDataset(dataset_name, 'test', test_ids, labels=labels, threshold=threshold, sentence_dataset=sentence_dataset, refresh=refresh) print() print("Dataset Information:") print("\tTrain Dataset Size:", len(train_dataset)) print("\tVal Dataset Size:", len(val_dataset)) if include_test: print("\tTest Dataset Size:", len(test_dataset)) print() return (train_dataset, val_dataset, test_dataset) if include_test else (train_dataset, val_dataset) def _init_models( char2idx, num_layers, frame_dim, hidden_size, char_dim, enable_ctc, rnn_type, attention_type, attn_hidden_size, bidirectional, rnn_dropout, device ): encoder = _better_model.VideoEncoder(frame_dim, hidden_size, rnn_type=rnn_type, num_layers=num_layers, bidirectional=bidirectional, rnn_dropout=rnn_dropout, enable_ctc=enable_ctc, vocab_size=len(char2idx), char2idx=char2idx, device=device).to(device) decoding_step = _better_model.CharDecodingStep(encoder, char_dim=char_dim, vocab_size=len(char2idx), char2idx=char2idx, rnn_dropout=rnn_dropout, attention_type=attention_type, attn_hidden_size=attn_hidden_size, device=device).to(device) return encoder, decoding_step def restore(net, save_file): """Restores the weights from a saved file This does more than the simple Pytorch restore. It checks that the names of variables match, and if they don't doesn't throw a fit. It is similar to how Caffe acts. This is especially useful if you decide to change your network architecture but don't want to retrain from scratch. Args: net(torch.nn.Module): The net to restore save_file(str): The file path """ net_state_dict = net.state_dict() restore_state_dict = torch.load(save_file) restored_var_names = set() print('\tRestoring:') for var_name in restore_state_dict.keys(): if var_name in net_state_dict: var_size = net_state_dict[var_name].size() restore_size = restore_state_dict[var_name].size() if var_size != restore_size: print('\t\tShape mismatch for var', var_name, 'expected', var_size, 'got', restore_size) else: if isinstance(net_state_dict[var_name], torch.nn.Parameter): # backwards compatibility for serialized parameters net_state_dict[var_name] = restore_state_dict[var_name].data try: net_state_dict[var_name].copy_(restore_state_dict[var_name]) print(str(var_name) + ' -> \t' + str(var_size) + ' = ' + str(int(np.prod(var_size) * 4 / 10**6)) + 'MB') restored_var_names.add(var_name) except Exception as ex: print('\t\tWhile copying the parameter named {}, whose dimensions in the model are' ' {} and whose dimensions in the checkpoint are {}, ...'.format( var_name, var_size, restore_size)) raise ex ignored_var_names = sorted(list(set(restore_state_dict.keys()) - restored_var_names)) unset_var_names = sorted(list(set(net_state_dict.keys()) - restored_var_names)) if len(ignored_var_names) == 0: print('\t\tRestored all variables') else: print('\t\tDid not restore:\n\t' + '\n\t'.join(ignored_var_names)) if len(unset_var_names) == 0: print('\t\tNo new variables') else: print('\t\tInitialized but did not modify:\n\t' + '\n\t'.join(unset_var_names)) print('\tRestored %s' % save_file) def train( data="StephenColbert/medium_no_vtx1", labels="labels.json", sentence_dataset=False, occlussion_threshold=0.8, train_split=0.8, num_workers=1, refresh=False, patience=10, batch_size=4, learning_rate=1e-4, annealings=2, enable_ctc=False, grad_norm=50, tr_epochs=50, max_tfr=0.9, min_tfr=0.0, num_layers=1, frame_dim=68*3, hidden_size=700, char_dim=300, rnn_type='LSTM', attention_type='1_layer_nn', attn_hidden_size=-1, bidirectional=False, rnn_dropout=0.0, seed=123456, cuda=False, ): """ Runs the primary training loop. :param data: :param labels: :param sentence_dataset: :param occlussion_threshold: :param train_split: :param num_workers: :param patience: :param batch_size: :param learning_rate: :param annealings: Number of times to anneal learning rate before training is finished. :param enable_ctc: :param max_tfr: :param grad_norm: :param num_layers: :param frame_dim: :param hidden_size: :param char_dim: :param rnn_type: :param attention_type: :param attn_hidden_size: :param bidirectional: :param rnn_dropout: :param seed: :param cuda: """ # Setup seed. torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) rand = np.random.RandomState(seed=seed) # Setup device. # REVIEW josephz: Is there a clean way to use multiple or different GPUs? device = torch.device('cuda') if cuda else torch.device('cpu') print("Device: ", device) # Init Data. print("Initializing dataset '{}'".format(data)) train_dataset, val_dataset, test_dataset = _get_datasets(data, train_split, sentence_dataset, threshold=occlussion_threshold, labels=labels, rand=rand, refresh=refresh, include_test=True) train_loader = _data.DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=_data_loader._collate_fn) val_loader = _data.DataLoader(val_dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=_data_loader._collate_fn) test_loader = _data.DataLoader(test_dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=_data_loader._collate_fn) # Init Models. print("Initializing model") encoder, decoding_step = _init_models(train_dataset.char2idx, num_layers, frame_dim, hidden_size, char_dim, enable_ctc, rnn_type, attention_type, attn_hidden_size, bidirectional, rnn_dropout, device) # Initialize Logging. weights_dir = _util.getRelWeightsPath(data, use_existing=False) tensorboard_writer = tensorboardX.SummaryWriter(weights_dir) _getSharedLogger().info("Writing Tensorboard logs to '%s'", weights_dir) print() print("Try visualizing by running the following:") print(f"\ttensorboard --logdir='{weights_dir}'") print("Then open the following URL in your local browser. " "\n\tIf you're running on a remote machine see `README_TENSORBOARD.md` for help...") # REVIEW josephz: Multi-input support doesn't seem ready yet: https://github.com/lanpa/tensorboardX/issues/256 # tensorboard_writer.add_graph(encoder, # torch.autograd.Variable( # torch.tensor([torch.zeros(batch_size, 100, 68, 3), torch.zeros(batch_size,)))) # tensorboard_writer.add_graph(decoding_step, # torch.autograd.Variable( # torch.tensor(torch.zeros(batch_size,), torch.zeros(num_layers, batch_size, hidden_size), torch.zeros(batch_size,), torch.zeros(batch_size, 100, # hidden_size)))) # Train. val_cers = [] train_decoder_losses = [] train_ctc_losses = [] best_val_cer = 1.0 best_val_cer_idx = -1 # Initial evaluation print("Initial evaluation...") decoder_loss, val_correct, val_count = _train.eval(encoder, decoding_step, val_loader, device, train_dataset.char2idx) val_cer = (val_count - val_correct).float() / val_count print("\tCER: ", str(val_cer)) encoder_path = os.path.join(weights_dir, "best_encoder.pth") decoder_path = os.path.join(weights_dir, "best_decoder.pth") num_epochs = 0 num_annealings = 0 print("Beginning training loop") ts = time.time() while val_cer < best_val_cer or num_annealings < annealings: print("Epoch {}:".format(num_epochs + 1)) if num_epochs - best_val_cer_idx > patience: # If the model does not improve after our set 'patience' number of epochs, we will reduce the learning rate. num_annealings += 1 learning_rate /= 5 print(f'\tAnnealing to {learning_rate}') restore(encoder, encoder_path) restore(decoding_step, decoder_path) # Must set best val CER to here, or else this will also trigger next loop # if val CER does not go down. best_val_cer_idx = num_epochs # Apply linear teacher-forcing ratio decay. curr_tfr = max(min_tfr, max_tfr - num_epochs / tr_epochs) assert 0.0 <= curr_tfr <= 1.0 print(f'\tCurrent Teacher Forcing Ratio: {curr_tfr}') avg_decoder_loss, avg_ctc_loss = _train.train(encoder, decoding_step, train_loader, opt=torch.optim.Adam(list(encoder.parameters()) + list(decoding_step.parameters()), lr=learning_rate), device=device, char2idx=train_dataset.char2idx, teacher_forcing_ratio=curr_tfr, grad_norm=grad_norm) print(f'\tAVG Decoder Loss: {avg_decoder_loss}') print(f'\tAVG CTC Loss: {avg_ctc_loss}') tensorboard_writer.add_scalar(os.path.join(data, 'avg decoder loss'), avg_decoder_loss, global_step=num_epochs) tensorboard_writer.add_scalar(os.path.join(data, 'avg CTC loss'), avg_ctc_loss, global_step=num_epochs) decoder_loss, val_correct, val_count = _train.eval(encoder, decoding_step, val_loader, device, train_dataset.char2idx) _, train_correct, train_count = _train.eval(encoder, decoding_step, train_loader, device, train_dataset.char2idx) val_cer = (val_count - val_correct).float() / val_count train_cer = (train_count - train_correct).float() / train_count encoder.save_best_model(val_cer, encoder_path) decoding_step.save_best_model(val_cer, decoder_path) print(f'\tTrain CER: {train_cer}') print(f'\tVal CER: {val_cer}') # ANALYSIS encoder.eval() decoding_step.eval() with torch.no_grad(): # CER _, test_correct, test_count = _train.eval(encoder, decoding_step, test_loader, device, train_dataset.char2idx) test_cer = (test_count - test_correct).float() / test_count print(f'\tTest CER: {train_cer}') # Sample teacher forcing output print('Some teacher-forcing outputs:') _analysis.print_samples(encoder, decoding_step, test_loader, device, train_dataset.char2idx, max_=10) # confusion matrix print('drawing confusion matrix:') try: _analysis.get_confusion_matrix(encoder, decoding_step, test_loader, device, test_dataset.char2idx, num_epochs) except: print('oops something wrong happened in drawing confusion matrix') # inference print('Some student-forcing outputs with beam search:') for frames, frame_lens, chars, char_lens in test_loader: frames, frame_lens, chars, char_lens = frames[:2], frame_lens[:2], chars[:2], char_lens[:2] frames, frame_lens, chars, char_lens = frames.to(device), frame_lens.to(device), chars.to(device), char_lens.to(device) pred, gt = _analysis.inference(encoder, decoding_step, frames, frame_lens, chars, char_lens, device, test_dataset.char2idx, beam_width=10, max_label_len=100) for gt_, pred_ in zip(gt, pred): print(f'GTL\t: {gt_}') print(f'Pred\t: {pred_}') break tensorboard_writer.add_scalars(os.path.join(data, 'CER'), {"Train": train_cer, "Val": val_cer}, global_step=num_epochs) tensorboard_writer.add_scalar(os.path.join(data, 'learning rate'), learning_rate, global_step=num_epochs) val_cers.append(val_cer) train_decoder_losses.append(avg_decoder_loss) train_ctc_losses.append(avg_ctc_loss) if val_cer < best_val_cer: best_val_cer = val_cer best_val_cer_idx = num_epochs num_epochs += 1 te = time.time() total_time = te - ts print() print("Training complete: Took '{}' seconds, or '{}' per epoch".format(total_time, total_time / num_epochs)) print("Training Statistics") print("\tBest Val CER: '{}'".format(np.min(val_cers))) print("\tBest Decoder Loss: '{}'".format(np.min(train_decoder_losses))) print("\tBest CTC Loss: '{}'".format(np.min(train_ctc_losses))) print() def main(): global _logger args = _cmd.parseArgsForClassOrScript(train) varsArgs = vars(args) verbosity = varsArgs.pop('verbosity', _util.DEFAULT_VERBOSITY) _getSharedLogger(verbosity=verbosity).info("Passed arguments: '{}'".format(varsArgs)) train(**varsArgs) if __name__ == '__main__': main() ``` #### File: utils/data/caption.py ```python import os import re import collections import unicodedata import pycaption import src.utils.time as _time import src.utils.utility as _util _patterns = ( r"\(.*\)", r"<[^>]*>", r"\[.*\]", r"\{.*\}", r"stephen:", r">>", ) _conditions = ( lambda x: len(x.split()) <= 2, # lambda x: len(x) <= 8, ) def _getSharedLogger(): return _util.getLogger(os.path.basename(__file__).split('.')[0]) def extract_captions(cap_fname, lang='en-US'): """ Reads a list of captions and returns an ordered dictionary of {(start_time, end_time) -> "caption"} with time in units of seconds. :param cap_fname: VTT subtitle file to read from. Produces Caption sets with text, and times in microseconds. """ assert os.path.isfile(cap_fname) _getSharedLogger().info("Reading captions from '%s'", cap_fname) reader = pycaption.WebVTTReader() res = collections.OrderedDict() with open(cap_fname) as fin: captions_raw = fin.read() assert reader.detect(captions_raw), "Malformed file: '{}'".format(cap_fname) caption_set = reader.read(captions_raw) assert not caption_set.is_empty(), "Empty VTT file: '{}'".format(cap_fname) # REVIEW josephz: We'll need to check what other possibilities there are. assert lang in caption_set.get_languages() captions = caption_set.get_captions(lang=lang) assert len(captions) > 0 _getSharedLogger().info("Detected '%s' captions...", len(captions)) for c in captions: cap_raw = c.get_text() start = _time.micros_to_sec(c.start) end = _time.micros_to_sec(c.end) res[(start, end)] = cap_raw.strip() assert len(res) == len(captions) return res def prune_and_filter_captions(captions, patterns=None, conditions=None, union=True): """ Cleans a dictionary of time-sequenced captions based on regex patterns to prune invalid tokens within captions, as well as filtering conditions to delete captions entirely. i.e. The following regex patterns will match on any characters encapsulated in opening and closing parentheses. ``` patterns = [ r"\(.*\)", ] ``` Furthermore, when any of the following conditions match the caption, it will be deleted. ``` filter = [ lambda x: len(x.split()) <= 2, lambda x: len(x) <= 8, ] ``` :param captions: Dictionary of captions to prune and filter. :param patterns: Regex patterns to prune caption tokens. Should be lowercase only. :param conditions: Boolean conditions to filter captions. """ if conditions is None: conditions = _conditions if patterns is None: patterns = _patterns regex = re.compile("|".join(patterns)) # Remove matched patterns within captions. for k, cap_raw in captions.items(): cap_raw = regex.sub('', cap_raw).strip() cap_raw = cap_raw.replace('\n', ' ') cap_raw = cap_raw.lower() cap_raw = unicodedata.normalize(u'NFKD', cap_raw).encode('ascii', 'ignore').decode('utf8') captions[k] = cap_raw # Filter captions based on caption condition filters. fn = any if union else all res = collections.OrderedDict( (k, cap) for k, cap in captions.items() if not fn(cond(cap) for cond in conditions)) return res ``` #### File: utils/data/video.py ```python import os import imageio import collections import numpy as np class VideoReader: def __init__(self, vid_path, start=0, seq_len=1, fps=29.97): """ The VideoReader serves a generator of frame-sequences as needed. To increase performance, sequential frame access is enforced, and frames are cached into a buffer to allow for quicker repeated and sequential accesses within the allocated buffer. TODO: Buffer implementation. Could be implemented by taking a cache_size param for max(caption_size) and keeping track lo/hi indices for when to update. See `_updateCache` for draft. Note memory usage may grow significantly with high-resolution video or large cache sizes, calculated by the following formula: ``` bytes = seq_len * height * width * channels ``` A 1080p (1920x1080) video with sequence length of 30, or approximately 1 second of 30fps footage equates to: ``` 30 * 1080 * 1920 * 3 bytes ~ 186MB ``` :param vid_path: Path of the video to read from. :param start: The starting frame index to begin reading from. :param seq_len: The length of the sequence of frames to serve. """ assert os.path.isfile(vid_path) reader = imageio.get_reader(vid_path) vid_len = reader.get_length() # State. self.lo = start self._reader = reader self.cache = collections.deque(maxlen=seq_len) self.buf = np.empty(shape=(seq_len,), dtype=np.ndarray) # For convenience. self._seq_len = seq_len self._vid_len = vid_len self._fps = fps def get_frame_idx(self, seconds): return int(seconds * self._fps) def getNumFrames(self): return self._vid_len def genFrames(self, lo, hi): # assert isinstance(self.buf, np.ndarray) and self.buf.ndim == 1 and len(self.buf) == self._seq_len # assert isinstance(self.cache, collections.deque) and self.cache.maxlen == len(self.cache) == self._seq_len # self._updateCache(lo, hi) # Populate ndarray vector with cache. # REVIEW josephz: Can this be improved with a buffer? assert self.lo <= lo <= hi self.lo = lo return [self._reader.get_data(x) for x in range(lo, min(hi, self.getNumFrames()))] # for x in range(lo, hi): # yield self._reader.get_data(x) def _updateCache(self, lo, hi): raise NotImplementedError # assert isinstance(self.cache, collections.deque) and self.cache.maxlen == self._seq_len # assert self.lo <= lo < hi < self._vid_len # # # The subsequent sequence may jump ahead. If so, we only wish to load the minimum number of # # frames to catch-up since our previous sequence. # assert lo + len(self.cache) <= hi + self._seq_len # cacheRange = range(max(lo + len(self.cache), hi), hi + self._seq_len) # self.cache.extend(self._reader.get_data(x) for x in cacheRange) ```
{ "source": "joseph-zhong/VideoSummarization", "score": 2 }
#### File: src/scripts/eval.py ```python import os import matplotlib import seaborn as sns import torch from torch import nn from tqdm import tqdm sns.set() matplotlib.use('Agg') import src.utils.utility as _util import src.utils.cmd_line as _cmd import src.data.msrvtt as _data import src.model.models as _models import src.train.train_test_utils as _train from extern.coco_caption.pycocotools.coco import COCO from src.data.caption import vocab _logger = _util.get_logger(__file__) def evaluate(raw: str, dataset: str, mode: str, weights_path: str, batch_size: int = 64, use_cuda: bool = False) -> None: dataset_dir = _util.get_dataset_by_name(dataset, mode) raw_dir = _util.get_raw_dataset_by_name(raw, mode) model, run, args, weights_path = _util.get_params_by_weights_path(weights_path) a_feature_size = int(args["a_feature_size"]) projected_size = int(args["projected_size"]) mid_size = int(args["mid_size"]) hidden_size = int(args["hidden_size"]) max_frames = int(args["max_frames"]) max_words = int(args["max_words"]) banet = _models.BANet(a_feature_size, projected_size, mid_size, hidden_size, max_frames, max_words, use_cuda=use_cuda) pretrained_path = os.path.join(weights_path, "weights.pth") weights = torch.load(pretrained_path) banet.load_state_dict(weights) if use_cuda: banet.cuda() print("Computing metrics...") eval_loader = _data.get_eval_dataloader(dataset, mode, batch_size=batch_size) test_reference_txt_path = os.path.join(dataset_dir, 'reference.json') test_prediction_txt_path = os.path.join(dataset_dir, 'prediction.txt') reference = COCO(test_reference_txt_path) _train.eval_step(eval_loader, banet, test_prediction_txt_path, reference, use_cuda=use_cuda) # Must switch to a new loder which provides captions. eval_loader = _data.get_dataloader(dataset, mode, batch_size=batch_size) for i, (videos, captions, cap_lens, video_ids) in tqdm(enumerate(eval_loader, start=1), total=len(eval_loader)): if use_cuda: videos = videos.cuda() video_encoded = banet.encoder(videos) tokens = banet.decoder.sample(video_encoded) # vid_paths = [os.path.join(raw_dir, "{}.mp4".format(video_id)) for video_id in video_ids] for j in range(len(tokens)): # vid = imageio.get_reader(vid_paths[j]).iter_data() print('[vid_id={}]'.format(video_ids[j])) print("gt :", vocab().decode(captions[j])) print("pred:", vocab().decode(tokens.data[j].squeeze())) print() # First few frames are black sometimes # next(vid) # next(vid) # next(vid) # next(vid) # plt.imshow(next(vid)) def main(): global _logger args = _cmd.parseArgsForClassOrScript(evaluate) varsArgs = vars(args) verbosity = varsArgs.pop('verbosity', _util.DEFAULT_VERBOSITY) _logger.info("Passed arguments: '{}'".format(varsArgs)) evaluate(**varsArgs) if __name__ == '__main__': main() ``` #### File: src/scripts/train.py ```python import os import pickle import shutil import inspect import torch import numpy as np import tensorboard_logger as _tb_logger import tqdm import src.data.msrvtt as _data import src.model.models as _models import src.train.train_test_utils as _train import src.utils.utility as _util import src.utils.cmd_line as _cmd from src.data.caption import Vocabulary, Token, vocab from extern.coco_caption.pycocotools.coco import COCO _logger = _util.get_logger(__file__) def train( # General training hyperparameters. dataset: str, num_epochs: int=100, batch_size: int=128, # Learning rate schedulers. learning_rate: float=3e-4, ss_factor: int=24, min_ss: float=0.6, # Representation hyperparameters. projected_size: int=500, hidden_size: int=1024, # Hidden size of the recurrent cells. mid_size: int=128, # Dimension of the boundary detection layer. # REVIEW josephz: Remove this? # frame_shape: tuple=(3, 224, 224), # Video frame shape. a_feature_size: int=2048, # Appearance model feature-dimension size. # REVIEW josephz: Remove this? # m_feature_size=4096, # Motion model feature-dimension size. # Maximum-size hyperparameters. # frame_sample_rate: int=10, # Sample rate of video frames. max_frames: int=30, # Maximum length of the video-frame sequence. max_words: int=30, # Maximum length of the caption-word sequence. # Misc hyperparameters. ckpt_freq: int=3, use_cuda: bool=False, use_ckpt: bool=False, use_argmax: bool=False, seed: int=0, ): """ Args: dataset (str): Dataset to train on. num_epochs (int): Number of epochs to train for. batch_size (int): Batch size to train with. learning_rate (float): Learning rate. ss_factor (int): Scheduled Sampling factor, to compute a teacher-forcing ratio. min_ss (float): Minimum teacher-forcing ratio. projected_size (int): Projection size for the Encoder-Decoder model. hidden_size (int): Hidden state size for the recurrent network in the encoder. mid_size (int): Hidden state size for the Boundary Detector network in the encoder. a_feature_size: Input feature size for the Encoder network. max_frames (int): Maximum length of the video-frame sequence. max_words (int): Maximum length of the caption-word sequence. ckpt_freq (int): Frequency to compute evaluation metrics and save checkpoint. use_cuda (bool): Flag whether to use CUDA devices. use_ckpt (bool): Flag on whether to load checkpoint if possible. use_argmax (bool): Flag on whether to use greedy or multinomial sampling during decoding. seed (int): Random seed. Effects: We will have several outputs: - Checkpoints (model weights) - Logs (tensorboard logs) """ # Set seeds. torch.random.manual_seed(seed) np.random.seed(seed) # Prepare output paths. # REVIEW josephz: This is unbelievably hacky, but we want an easy way to allow the user to set and track # hyperparameters using the cmd_line interface? This should probably be abstracted in utility.py. hparams = locals() params = {arg_name: hparams[arg_name] for arg_name in inspect.signature(train).parameters.keys()} ckpt_path = _util.get_weights_path_by_param(reuse=False, **params) print("Saving checkpoints to '{ckpt_path}', you may visualize in tensorboard with the following: \n\n\t`tensorboard --logdir={ckpt_path}`\n".format( ckpt_path=ckpt_path)) # Setup logging paths. log_path = os.path.join(ckpt_path, 'logs') _util.mkdir(log_path) _tb_logger.configure(log_path, flush_secs=10) # REVIEW josephz: Todo, clean this up. banet_pth_path_fmt = os.path.join(ckpt_path, '{:04d}_{:04d}.pth') best_banet_pth_path = os.path.join(ckpt_path, 'weights.pth') optimizer_pth_path = os.path.join(ckpt_path, 'optimizer.pth') best_optimizer_pth_path = os.path.join(ckpt_path, 'best_optimizer.pth') # Load Vocabulary. vocab_size = len(vocab()) # Load Reference for COCO. # val_dir = _util.get_dataset_by_name(dataset, mode='val') # val_reference_txt_path = os.path.join(val_dir, 'reference.json') # val_prediction_txt_path = os.path.join(val_dir, 'prediction.txt') # reference = COCO(val_reference_txt_path) eval_mode = 'val' eval_dir = _util.get_dataset_by_name(dataset, mode=eval_mode) test_reference_txt_path = os.path.join(eval_dir, 'reference.json') test_prediction_txt_path = os.path.join(eval_dir, 'prediction.txt') reference = COCO(test_reference_txt_path) print("Evaluating on '{}'".format(eval_dir)) # Initialize the model. banet = _models.BANet( a_feature_size, projected_size, mid_size, hidden_size, max_frames, max_words, use_cuda=use_cuda) # Load model weights if possible. if use_ckpt: pretrained_path = os.path.join(_util.get_raw_dataset_by_name('MSRVTT'), 'pretrained_weights.pth') weights = torch.load(pretrained_path) # REVIEW josephz: Figure out how to do the decoder weights partially: # https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/6 del weights['decoder.word_embed.weight'] del weights['decoder.word_restore.bias'] del weights['decoder.word_restore.weight'] banet.load_state_dict(weights, strict=False) if use_cuda: banet.cuda() # Initialize loss and optimizer. criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(banet.parameters(), lr=learning_rate) if os.path.exists(optimizer_pth_path) and use_ckpt: optimizer.load_state_dict(torch.load(optimizer_pth_path)) # Initialize Dataloaders. train_loader = _data.get_train_dataloader(dataset, batch_size=batch_size) eval_loader = _data.get_eval_dataloader(dataset, eval_mode, batch_size=batch_size) num_train_steps = len(train_loader) num_eval_steps = len(eval_loader) # Begin Training Loop. print("Training Configuration:") print("\tLearning Rate: '{0:.4f}'".format(learning_rate)) print("\tScheduled Sampling:") print("\t\tMax Teacher Forcing Rate: '{0:.4f}'".format(min_ss)) print("\t\tScheduled Factor: '{0:.4f}'".format(ss_factor)) print("\tBatch Size: '{}'".format(batch_size)) print("\tEpochs: '{}'".format(num_epochs)) print("\tDataset: '{}'".format(dataset)) print("\tCheckpoint Path: '{}'".format(ckpt_path)) best_meteor = 0 loss_count = 0 for epoch in range(num_epochs): epsilon = max(min_ss, ss_factor / (ss_factor + np.exp(epoch / ss_factor))) print('epoch:%d\tepsilon:%.8f' % (epoch, epsilon)) _tb_logger.log_value('epsilon', epsilon, epoch) for i, (videos, captions, cap_lens, video_ids) in tqdm.tqdm(enumerate(train_loader, start=1), total=num_train_steps): if use_cuda: videos = videos.cuda() targets = captions.cuda() else: targets = captions # Zero the gradients and run the encoder-decoder model. optimizer.zero_grad() outputs, video_encoded = banet(videos, targets, teacher_forcing_ratio=epsilon, use_argmax=use_argmax) # NOTE: Usually the last batch is less than the selected batch_size, so we dynamically # compute the correct batch_size to use here, rather than throwing away the last # training batch. bsz = len(targets) # Un-pad and flatten the outputs and labels. outputs = torch.cat([outputs[j][:cap_lens[j]] for j in range(bsz)], dim=0) targets = torch.cat([targets[j][:cap_lens[j]] for j in range(bsz)], dim=0) outputs = outputs.view(-1, vocab_size) targets = targets.view(-1) # Compute loss for back-propagation. # assert all(targets > 0) and all(outputs > 0) loss = criterion(outputs, targets) loss_val = loss.item() _tb_logger.log_value('loss', loss_val, epoch * num_train_steps + i) loss_count += loss_val # REVIEW josephz: Is there grad_norm? loss.backward() optimizer.step() eval_steps = 25 if i % eval_steps == 0 or bsz < batch_size: loss_count /= eval_steps if bsz == batch_size else i % eval_steps perplexity = np.exp(loss_count) print('Epoch [%d/%d]:\n\tStep [%d/%d]\n\tLoss: %.4f\n\tPerplexity: %5.4f' % (epoch, num_epochs, i, num_train_steps, loss_count, perplexity)) _tb_logger.log_value('perplexity', perplexity, epoch * num_train_steps + i) loss_count = 0 tokens = banet.decoder.sample(video_encoded) for j in range(5): we = vocab().decode(tokens.data[j].squeeze()) gt = vocab().decode(captions[j].squeeze()) print('\t\t[vid_id={}]'.format(video_ids[j])) print('\t\t\tWE: %s\n\t\t\tGT: %s' % (we, gt)) # Finally, compute evaluation metrics and save the best models. if epoch % ckpt_freq == 0: # Save epoch checkpoint. banet_pth_path = banet_pth_path_fmt.format(epoch, num_epochs) print("Saving checkpoints to '{}'".format(banet_pth_path)) torch.save(banet.state_dict(), banet_pth_path) torch.save(optimizer.state_dict(), optimizer_pth_path) # Compute evaluation. banet.eval() print("Computing Metrics:...") metrics = _train.eval_step(eval_loader, banet, test_prediction_txt_path, reference, use_cuda=use_cuda) for k, v in metrics.items(): _tb_logger.log_value(k, v, epoch) if k == 'METEOR' and v > best_meteor: # Save the best model based on the METEOR metric. # For reference, see https://www.cs.cmu.edu/~alavie/papers/BanerjeeLavie2005-final.pdf print("Saving best checkpoint of metric: '{}'".format(best_meteor)) shutil.copy2(banet_pth_path, best_banet_pth_path) shutil.copy2(optimizer_pth_path, best_optimizer_pth_path) best_meteor = v banet.train() def main(): global _logger args = _cmd.parseArgsForClassOrScript(train) varsArgs = vars(args) verbosity = varsArgs.pop('verbosity', _util.DEFAULT_VERBOSITY) _logger.info("Passed arguments: '{}'".format(varsArgs)) train(**varsArgs) if __name__ == '__main__': main() ```
{ "source": "josephzxy/py-vsys", "score": 3 }
#### File: py-vsys/py_vsys/chain.py ```python from __future__ import annotations import enum from typing import Dict, Any, TYPE_CHECKING, List # https://stackoverflow.com/a/39757388 if TYPE_CHECKING: from py_vsys import api class ChainID(enum.Enum): """ ChainID is the enum class for chain ID. """ MAIN_NET = "M" TEST_NET = "T" class Chain: """ Chain is the class for the narrowly-defined chain. It contains handy methods for querying chain-related data(e.g. height, last block, etc). """ def __init__(self, node_api: api.NodeAPI, chain_id: ChainID = ChainID.TEST_NET): """ Args: node_api (api.NodeAPI): The NodeAPI object the chain uses. chain_id (ChainID, optional): The chain's ID. Defaults to ChainID.TEST_NET. """ self._api = node_api self._chain_id = chain_id @property def api(self) -> api.NodeAPI: """ api returns the NodeAPI object that the chain uses. Returns: api.NodeAPI: The NodeAPI object that the chain uses. """ return self._api @property def chain_id(self) -> ChainID: """ chain_id returns the ID of the chain. Returns: ChainID: ID of the chain. """ return self._chain_id @property async def height(self) -> int: """ height queries & returns the height of the chain. Returns: int: The height of the chain. """ resp = await self.api.blocks.get_height() return resp["height"] @property async def last_block(self) -> Dict[str, Any]: """ last_block queries & returns the last_block of the chain. Returns: Dict[str, Any]: The last block data of the chain. """ return await self.api.blocks.get_last() async def get_block_at(self, height: int) -> Dict[str, Any]: """ get_block_at gets the block at the given height. Args: height (int): The height of the block. Returns: Dict[str, Any]: The block. """ return await self.api.blocks.get_block_at(height) async def get_blocks_within( self, start_height: int, end_height: int ) -> List[Dict[str, Any]]: """ get_blocks_within gets blocks fall in the given range. NOTE that the max length of the range is 100. Args: start_height (int): The start height. end_height (int): The end height. Returns: List[Dict[str, Any]]: The blocks. """ return await self.api.blocks.get_blocks_within(start_height, end_height) ``` #### File: py_vsys/contract/lock_ctrt.py ```python from __future__ import annotations from typing import TYPE_CHECKING, Dict, Any, Optional from loguru import logger # https://stackoverflow.com/a/39757388 if TYPE_CHECKING: from py_vsys import chain as ch from py_vsys import account as acnt from py_vsys import data_entry as de from py_vsys import tx_req as tx from py_vsys import model as md from py_vsys.contract import tok_ctrt_factory as tcf from . import CtrtMeta, Ctrt, BaseTokCtrt class LockCtrt(Ctrt): """ LockCtrt is the class for VSYS Lock contract. """ CTRT_META = CtrtMeta.from_b58_str( "<KEY>" ) class FuncIdx(Ctrt.FuncIdx): """ FuncIdx is the enum class for function indexes of a contract. """ LOCK = 0 class StateVar(Ctrt.StateVar): """ StateVar is the enum class for state variables of a contract. """ MAKER = 0 TOKEN_ID = 1 class StateMapIdx(Ctrt.StateMapIdx): """ StateMapIdx is the enum class for state map indexes. """ CONTRACT_BALANCE = 0 CONTRACT_LOCK_TIME = 1 class DBKey(Ctrt.DBKey): """ DBKey is the class for DB key of a contract used to query data. """ @classmethod def for_maker(cls) -> LockCtrt.DBKey: """ for_maker returns the LockCtrt.DBKey object for querying the maker. Returns: LockCtrt.DBKey: The LockCtrt.DBKey object. """ b = LockCtrt.StateVar.MAKER.serialize() return cls(b) @classmethod def for_token_id(cls) -> LockCtrt.DBKey: """ for_token_id returns the LockCtrt.DBKey object for querying the token_id. Returns: LockCtrt.DBKey: The LockCtrt.DBKey object. """ b = LockCtrt.StateVar.TOKEN_ID.serialize() return cls(b) @classmethod def for_contract_balance(cls, addr: str) -> LockCtrt.DBKey: """ for_contract_balance returns the LockCtrt.DBKey object for querying the contract balance. Args: addr (str): The account address. Returns: LockCtrt.DBKey: The LockCtrt.DBKey object. """ b = LockCtrt.StateMap( idx=LockCtrt.StateMapIdx.CONTRACT_BALANCE, data_entry=de.Addr(md.Addr(addr)), ).serialize() return cls(b) @classmethod def for_contract_lock_time(cls, addr: str) -> LockCtrt.DBKey: """ for_contract_lock_time returns the LockCtrt.DBKey object for querying the contract lock time. Args: addr (str): The account address. Returns: LockCtrt.DBKey: The LockCtrt.DBKey object. """ b = LockCtrt.StateMap( idx=LockCtrt.StateMapIdx.CONTRACT_LOCK_TIME, data_entry=de.Addr(md.Addr(addr)), ).serialize() return cls(b) def __init__(self, ctrt_id: str, chain: ch.Chain) -> None: """ Args: ctrt_id (str): The id of the contract. chain (ch.Chain): The object of the chain where the contract is on. """ super().__init__(ctrt_id, chain) self._tok_id: Optional[md.TokenID] = None self._tok_ctrt: Optional[BaseTokCtrt] = None @classmethod async def register( cls, by: acnt.Account, tok_id: str, ctrt_description: str = "", fee: int = md.RegCtrtFee.DEFAULT, ) -> LockCtrt: """ register registers a Lock Contract Args: by (acnt.Account): The action taker. tok_id (str): The id of the token to lock. ctrt_description (str, optional): The description of the contract. Defaults to "". fee (int, optional): The fee to pay for this action. Defaults to md.RegCtrtFee.DEFAULT. Returns: LockCtrt: The LockCtrt object of the registered Lock contract. """ data = await by._register_contract( tx.RegCtrtTxReq( data_stack=de.DataStack( de.TokenID(md.TokenID(tok_id)), ), ctrt_meta=cls.CTRT_META, timestamp=md.VSYSTimestamp.now(), description=md.Str(ctrt_description), fee=md.RegCtrtFee(fee), ) ) logger.debug(data) return cls( data["contractId"], chain=by.chain, ) @property async def maker(self) -> md.Addr: """ maker queries & returns the maker of the contract. Returns: md.Addr: The address of the maker of the contract. """ raw_val = await self._query_db_key(self.DBKey.for_maker()) return md.Addr(raw_val) @property async def tok_id(self) -> md.TokenID: """ tok_id queries & returns the token_id of the contract. Returns: md.TokenID: The token_id of the contract. """ if not self._tok_id: raw_val = await self._query_db_key(self.DBKey.for_token_id()) self._tok_id = md.TokenID(raw_val) return self._tok_id @property async def tok_ctrt(self) -> BaseTokCtrt: """ tok_ctrt returns the token contract instance for the token used in the contract. Returns: BaseTokCtrt: The token contract instance. """ if not self._tok_ctrt: tok_id = await self.tok_id self._tok_ctrt = await tcf.from_tok_id(tok_id, self.chain) return self._tok_ctrt @property async def unit(self) -> int: """ unit returns the unit of the token specified in this contract. Returns: int: The token unit. """ tc = await self.tok_ctrt return await tc.unit async def get_ctrt_bal(self, addr: str) -> md.Token: """ get_ctrt_bal queries & returns the balance of the token within this contract belonging to the user address. Args: addr (str): The account address. Returns: md.Token: The balance of the token. """ raw_val = await self._query_db_key(self.DBKey.for_contract_balance(addr)) unit = await self.unit return md.Token(data=raw_val, unit=unit) async def get_ctrt_lock_time(self, addr: str) -> md.VSYSTimestamp: """ get_ctrt_lock_time queries & returns the lock time of the token locked in this contract belonging to the user address. Args: addr (str): The account address. Returns: md.VSYSTimestamp: The lock time of the token in Unix timestamp. """ raw_val = await self._query_db_key(self.DBKey.for_contract_lock_time(addr)) return md.VSYSTimestamp(raw_val) async def lock( self, by: acnt.Account, expire_at: int, attachment: str = "", fee: int = md.ExecCtrtFee.DEFAULT, ) -> Dict[str, Any]: """ lock locks the user's deposited tokens in the contract until the given timestamp. Args: by (acnt.Account): The action taker. expire_at (int): Unix timestamp. When the lock will expire. Returns: Dict[str, Any]: The response returned by the Node API """ data = await by._execute_contract( tx.ExecCtrtFuncTxReq( ctrt_id=self._ctrt_id, func_id=self.FuncIdx.LOCK, data_stack=de.DataStack( de.Timestamp(md.VSYSTimestamp.from_unix_ts(expire_at)), ), timestamp=md.VSYSTimestamp.now(), attachment=md.Str(attachment), fee=md.ExecCtrtFee(fee), ) ) logger.debug(data) return data ``` #### File: py-vsys/py_vsys/model.py ```python from __future__ import annotations import abc import time from typing import Any, NamedTuple, Union import base58 from py_vsys import chain as ch from py_vsys import words as wd from py_vsys.utils.crypto import hashes as hs class Model(abc.ABC): """ Model is the base class for data models that provides self-validation methods and other handy methods(e.g. converts bytes to base58 string). NOTE that the validate() method is deliberately called within the constructor so as to avoid accidental malformed data as much as possible. """ def __init__(self, data: Any) -> None: """ Args: data (Any): The data to contain. """ self.data = data self.validate() @abc.abstractmethod def validate(self) -> None: """ validate validates the containing data. """ def __str__(self) -> str: """ E.g. Str('hello') """ cls_name = self.__class__.__name__ return f"{cls_name}({self.data})" __repr__ = __str__ def __eq__(self, other: Model) -> bool: return self.__class__ == other.__class__ and self.data == other.data class Bytes(Model): """ Bytes is the data model for bytes. """ def __init__(self, data: bytes = b"") -> None: """ Args: data (bytes, optional): The data to contain. Defaults to b"". """ self.data = data self.validate() @property def b58_str(self) -> str: """ b58_str returns the base58 string representation of the containing data. Returns: str: The base58 string representation. """ return base58.b58encode(self.data).decode("latin-1") def validate(self) -> None: cls_name = self.__class__.__name__ if not isinstance(self.data, bytes): raise TypeError(f"Data in {cls_name} must be bytes") @classmethod def from_b58_str(cls, s: str) -> Bytes: """ from_b58_str creates a Bytes object from the given base58-encoded string. Args: s (str): the input base58 string. Returns: Bytes: the Bytes instance. """ return cls(base58.b58decode(s)) @classmethod def from_str(cls, s: str) -> Bytes: """ from_str creates a Bytes object from the given string. Args: s (str): the input string. Returns: Bytes: the Bytes instance. """ return cls(s.encode("latin-1")) class Str(Model): """ Str is the data model for string. """ def __init__(self, data: str = "") -> None: """ Args: data (str, optional): The data to contain. Defaults to "". """ self.data = data self.validate() @classmethod def from_bytes(cls, b: bytes) -> Str: """ from_bytes parses the given bytes and creates a Str. Args: b (bytes): The bytes to parse. Returns: Str: The Str instance. """ return cls(b.decode("latin-1")) @property def bytes(self) -> bytes: """ bytes returns the bytes representation of the containing data. Returns: bytes: The bytes representation. """ return self.data.encode("latin-1") @property def b58_str(self) -> str: """ b58_str returns the base58 string representation of the containing data. Returns: str: The base58 string representation. """ return base58.b58encode(self.data).decode("latin-1") def validate(self) -> None: cls_name = self.__class__.__name__ if not isinstance(self.data, str): raise TypeError(f"Data in {cls_name} must be a str") class Seed(Str): WORD_CNT = 15 def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ words = self.data.split(" ") if len(words) != self.WORD_CNT: raise ValueError( f"Data in {cls_name} must consist exactly {self.WORD_CNT} words" ) for w in words: if not w in wd.WORDS_SET: raise ValueError(f"Data in {cls_name} contains invalid words") class B58Str(Str): """ B58Str is the data model for base58 string. """ @classmethod def from_bytes(cls, b: bytes) -> B58Str: """ from_bytes parses the given bytes and creates a B58Str. Args: b (bytes): The bytes to parse. Returns: B58Str: The B58Str instance. """ return cls(base58.b58encode(b).decode("latin-1")) @property def bytes(self) -> bytes: """ bytes returns the bytes representation of the containing data. Returns: bytes: The bytes representation. """ return base58.b58decode(self.data) def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ try: self.bytes except ValueError: raise ValueError(f"Data in {cls_name} must be base58-decodable") class FixedSizeB58Str(B58Str): """ FixedSizeB58Str is the data model for fixed-size base58 string. """ BYTES_LEN = 0 def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ if not len(self.bytes) == self.BYTES_LEN: raise ValueError( f"Data in {cls_name} must be exactly {self.BYTES_LEN} bytes after base58 decode" ) class Addr(FixedSizeB58Str): """ Addr is the data model for an address. """ VER = 5 VER_BYTES_LEN = 1 CHAIN_ID_BYTES_LEN = 1 PUB_KEY_HASH_BYTES_LEN = 20 CHECKSUM_BYTES_LEN = 4 BYTES_LEN = ( VER_BYTES_LEN + CHAIN_ID_BYTES_LEN + PUB_KEY_HASH_BYTES_LEN + CHECKSUM_BYTES_LEN ) @property def version(self) -> int: """ version returns the version of the address. Returns: int: The version. """ return self.bytes[0] @property def chain_id(self) -> str: """ chain_id returns the chain ID of the address. Returns: str: The chain ID. """ return chr(self.bytes[1]) @property def pub_key_hash(self) -> bytes: """ pub_key_hash returns the hash of the public key of the address. Returns: bytes: The hash. """ prev_len = self.VER_BYTES_LEN + self.CHAIN_ID_BYTES_LEN b = self.bytes[prev_len:] return b[: self.PUB_KEY_HASH_BYTES_LEN] @property def checksum(self) -> bytes: """ checksum returns the checksum of the address. Returns: bytes: The checksum. """ return self.bytes[-self.CHECKSUM_BYTES_LEN :] def must_on(self, chain: ch.Chain): """ must_on asserts that the address must be on the given chain. Args: chain (ch.Chain): The chain object. Raises: ValueError: If the address is not on the given chain. """ if self.chain_id != chain.chain_id.value: raise ValueError( f"Addr is not on the chain. The Addr has chain_id '{self.chain_id}' while the chain expects '{chain.chain_id.value}'" ) def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ if self.version != self.VER: raise ValueError(f"Data in {cls_name} has invalid address version") chain_id_valid = any([self.chain_id == c.value for c in ch.ChainID]) if not chain_id_valid: raise ValueError(f"Data in {cls_name} has invalid chain_id") def ke_bla_hash(b: bytes) -> bytes: return hs.keccak256_hash(hs.blake2b_hash(b)) cl = self.CHECKSUM_BYTES_LEN if self.checksum != ke_bla_hash(self.bytes[:-cl])[:cl]: raise ValueError(f"Data in {cls_name} has invalid checksum") @classmethod def from_bytes_md(cls, b: Bytes) -> Addr: """ from_bytes_md contructs an Addr object from the given Bytes object. Args: b (Bytes): The given Bytes object. Returns: Addr: The Addr object. """ return cls(b.b58_str) class CtrtID(FixedSizeB58Str): """ CtrtID is the data model for contract ID. """ BYTES_LEN = 26 class TokenID(FixedSizeB58Str): """ TokenID is the data model for token ID. """ BYTES_LEN = 30 MAINNET_VSYS_TOK_ID = "TWatCreEv7ayv6iAfLgke6ppVV33kDjFqSJn8yicf" TESTNET_VSYS_TOK_ID = "TWuKDNU1SAheHR99s1MbGZLPh1KophEmKk1eeU3mW" @property def is_vsys_tok(self) -> bool: return self.is_testnet_vsys_tok or self.is_mainnet_vsys_tok @property def is_mainnet_vsys_tok(self) -> bool: return self.data == self.MAINNET_VSYS_TOK_ID @property def is_testnet_vsys_tok(self) -> bool: return self.data == self.TESTNET_VSYS_TOK_ID class TXID(FixedSizeB58Str): """ TXID is the data model for transaction ID. """ BYTES_LEN = 32 class PubKey(FixedSizeB58Str): """ PubKey is the data model for public key. """ BYTES_LEN = 32 class PriKey(FixedSizeB58Str): """ PriKey is the data model for private key. """ BYTES_LEN = 32 class Int(Model): """ Int is the data model for an integer. """ def __init__(self, data: int = 0) -> None: """ Args: data (int, optional): The data to contain. Defaults to 0. """ self.data = data self.validate() def validate(self) -> None: cls_name = self.__class__.__name__ if not isinstance(self.data, int): raise TypeError(f"Data in {cls_name} must be an int") class NonNegativeInt(Int): """ NonNegativeInt is the data model for a non-negative integer. """ def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ if not self.data >= 0: raise ValueError(f"Data in {cls_name} must be non negative") class TokenIdx(NonNegativeInt): """ TokenIdx is the data model for token index. """ pass class Nonce(NonNegativeInt): """ Nonce is the data model for nonce (used with seed for an account). """ pass class VSYSTimestamp(NonNegativeInt): """ VSYSTimestamp is the data model for the timestamp used in VSYS. """ SCALE = 1_000_000_000 @classmethod def from_unix_ts(cls, ux_ts: Union[int, float]) -> VSYSTimestamp: """ from_unix_ts creates a new VSYSTimestamp from the given UNIX timestamp at seconds. Args: ux_ts (Union[int, float]): The UNIX timestamp. Raises: TypeError: If the type of the given UNIX timestamp is neither int nor float. ValueError: If the given UNIX timestamp is not positive. Returns: VSYSTimestamp: The VSYSTimestamp. """ if not (isinstance(ux_ts, int) or isinstance(ux_ts, float)): raise TypeError("ux_ts must be an int or float") return cls(int(ux_ts * cls.SCALE)) @classmethod def now(cls) -> VSYSTimestamp: """ now creates a new VSYSTimestamp for current time. Returns: VSYSTimestamp: The VSYSTimestamp. """ return cls(int(time.time() * cls.SCALE)) @property def unix_ts(self) -> float: return self.data / self.SCALE def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ if not (self.data == 0 or self.data >= self.SCALE): raise ValueError( f"Data in {cls_name} must be either be 0 or equal or greater than {self.SCALE}" ) class Token(NonNegativeInt): """ Token is the data model for tokens. """ def __init__(self, data: int = 0, unit: int = 0) -> None: """ Args: data (int, optional): The data to contain. Defaults to 0. unit (int, optional): The unit of the token. Defaults to 0. """ super().__init__(data) self.unit = unit @classmethod def one(cls) -> Token: """ one creates a new Token where the amount is equal to ONE. Returns: Token: The Token. """ return cls.for_amount(1) @property def amount(self) -> float: """ amount returns the amount of Token the Token object represents. Returns: float: The amount of Token. """ return self.data / self.unit @classmethod def for_amount(cls, amount: Union[int, float], unit: int) -> Token: """ for_amount creates a new Token where the amount is equal to the given amount. Args: amount (Union[int, float]): The amount. Returns: Token: The Token. """ data = amount * unit if int(data) < data: raise ValueError( f"Invalid amount for {cls.__name__}: {amount}. The minimal valid amount granularity is {1 / unit}" ) return cls(int(data), unit) class VSYS(NonNegativeInt): """ VSYS is the data model for VSYS(the native token on VSYS blockchain). """ UNIT = 1_00_000_000 @property def amount(self) -> float: """ amount returns the amount of VSYS coins the VSYS object represents. Returns: float: The amount of VSYS coins. """ return self.data / self.UNIT @classmethod def for_amount(cls, amount: Union[int, float]) -> VSYS: """ for_amount creates a new VSYS where the amount is equal to the given amount. Args: amount (Union[int, float]): The amount. Returns: VSYS: The VSYS. """ data = amount * cls.UNIT if int(data) < data: raise ValueError( f"Invalid amount for {cls.__name__}: {amount}. The minimal valid amount granularity is {1 / cls.UNIT}" ) return cls(int(data)) def __mul__(self, factor: Union[int, float]) -> VSYS: """ __mul__ defines the behaviour of the '*' operator. E.g. v1 = VSYS.for_amount(1) v20 = v1 * 20 v2 = v20 * 0.1 Args: factor (Union[int, float]): The factor to multiply. Returns: VSYS: The result of the multiplication. """ return self.__class__(int(self.data * factor)) class Fee(VSYS): """ Fee is the data model for transaction fee. """ DEFAULT = int(VSYS.UNIT * 0.1) def __init__(self, data: int = 0) -> None: """ Args: data (int, optional): The data to contain. Defaults to VSYS.UNIT * 0.1. """ if data == 0: data = self.DEFAULT super().__init__(data) def validate(self) -> None: super().validate() cls_name = self.__class__.__name__ if not self.data >= self.DEFAULT: raise ValueError( f"Data in {cls_name} must be equal or greater than {self.DEFAULT}" ) class PaymentFee(Fee): """ PaymentFee is the data model for the fee of a transaction where the type is Payment. """ pass class LeasingFee(Fee): """ LeasingFee is the data model for the fee of a transaction where the type is Leasing. """ pass class LeasingCancelFee(Fee): """ LeasingCancelFee is the data model for the fee of a transaction where the type is Leasing Cancel. """ pass class RegCtrtFee(Fee): """ RegCtrtFee is the data model for the fee of a transaction where the type is Register Contract. """ DEFAULT = VSYS.UNIT * 100 class ExecCtrtFee(Fee): """ ExecCtrtFee is the data model for the fee of a transaction where the type is Execute Contract. """ DEFAULT = int(VSYS.UNIT * 0.3) class ContendSlotsFee(Fee): """ ContendSlotsFee is the data model for the fee of a transaction where the type is Contend Slots. """ DEFAULT = VSYS.UNIT * 50_000 class DBPutFee(Fee): """ DBPutFee is the data model for the fee of a transaction where the type is DB Put. """ DEFAULT = VSYS.UNIT class Bool(Model): """ Bool is the data model for a boolean value. """ def __init__(self, data: bool = False) -> None: """ Args: data (bool, optional): The data to contain. Defaults to False. """ self.data = data self.validate() def validate(self) -> None: cls_name = self.__class__.__name__ if not isinstance(self.data, bool): raise TypeError(f"Data in {cls_name} must be a bool") class KeyPair(NamedTuple): """ KeyPair is the data model for a key pair(public / private keys). """ pub: PubKey pri: PriKey ``` #### File: test/func_test/test_api.py ```python import aiohttp import pytest import py_vsys as pv class TestAPIGrp: """ TestAPIGrp tests pv.APIGrp """ class MockAPIGrp(pv.APIGrp): """ MockAPIGrp is the test subclass of pv.APIGrp """ PREFIX = "TEST" async def test_make_url(self, host: str) -> None: """ test_make_url tests pv.APIGrp._make_url Args: host (str): The node api host. """ sess = aiohttp.ClientSession(base_url=host) obj = self.MockAPIGrp(sess) edpt = "EDPT" assert obj._make_url(edpt) == self.MockAPIGrp.PREFIX + edpt async def test_get(self, host: str) -> None: """ test_get tests pv.APIGrp._get Args: host (str): The node api host. """ self.MockAPIGrp.PREFIX = "/blocks" sess = aiohttp.ClientSession(base_url=host) edpt = "/height" resp = await self.MockAPIGrp(sess)._get(edpt) assert resp["height"] > 0 async def test_post(self, host: str) -> None: """ test_post tests pv.APIGrp._post Args: host (str): The node api host. """ self.MockAPIGrp.PREFIX = "/utils" sess = aiohttp.ClientSession(base_url=host) edpt = "/hash/fast" raw = "hello" resp = await self.MockAPIGrp(sess)._post(edpt, raw) assert resp["hash"] == "4PNCZERNLKAqwSYHhZpb7B4GE34eiYDPXGgeNKWNNaBp" ``` #### File: func_test/test_ctrt/test_lock_ctrt.py ```python import asyncio import time import pytest import py_vsys as pv from test.func_test import conftest as cft class TestLockCtrt: """ TestLockCtrt is the collection of functional tests of Lock contract. """ TOK_MAX = 100 TOK_UNIT = 1 @pytest.fixture async def new_tok_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_tok_ctrt is the fixture that registers a new token contract without split instance. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The token contract instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, self.TOK_MAX, self.TOK_UNIT) await cft.wait_for_block() await tc.issue(acnt0, self.TOK_MAX) await cft.wait_for_block() return tc @pytest.fixture async def new_ctrt( self, acnt0: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit ) -> pv.LockCtrt: """ new_ctrt is the fixture that registers a new Lock contract. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.LockCtrt: The LockCtrt instance. """ tc = new_tok_ctrt lc = await pv.LockCtrt.register(acnt0, tc.tok_id.data) await cft.wait_for_block() return lc async def test_register( self, acnt0: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit, new_ctrt: pv.LockCtrt, ) -> pv.LockCtrt: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. new_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new Token contract. new_ctrt (pv.LockCtrt): The fixture that registers a new Lock contract. Returns: pv.LockCtrt: The LockCtrt instance. """ tc = new_tok_ctrt lc = new_ctrt assert (await lc.maker).data == acnt0.addr.data assert (await lc.tok_id) == tc.tok_id assert (await lc.get_ctrt_bal(acnt0.addr.data)).amount == 0 assert (await lc.get_ctrt_lock_time(acnt0.addr.data)).unix_ts == 0 return lc async def test_lock( self, acnt0: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit, new_ctrt: pv.LockCtrt, ): """ test_lock tests the method lock. Args: acnt0 (pv.Account): The account of nonce 0. new_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new Token contract. new_ctrt (pv.LockCtrt): The fixture that registers a new Lock contract. """ tc = new_tok_ctrt lc = new_ctrt api = acnt0.api resp = await tc.deposit(acnt0, lc.ctrt_id.data, self.TOK_MAX) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await lc.get_ctrt_bal(acnt0.addr.data)).amount == self.TOK_MAX later = int(time.time()) + cft.AVG_BLOCK_DELAY * 3 resp = await lc.lock(acnt0, later) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await lc.get_ctrt_lock_time(acnt0.addr.data)).unix_ts == later # withdraw before the expiration will fail resp = await tc.withdraw(acnt0, lc.ctrt_id.data, self.TOK_MAX) await cft.wait_for_block() await cft.assert_tx_status(api, resp["id"], "Failed") assert (await lc.get_ctrt_bal(acnt0.addr.data)).amount == self.TOK_MAX await asyncio.sleep(later - int(time.time()) + cft.AVG_BLOCK_DELAY) # withdraw after the expiration will succeed resp = await tc.withdraw(acnt0, lc.ctrt_id.data, self.TOK_MAX) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await lc.get_ctrt_bal(acnt0.addr.data)).amount == 0 @pytest.mark.whole async def test_as_whole( self, acnt0: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit, new_ctrt: pv.LockCtrt, ): """ test_as_whole tests methods of LockCtrt as a whole so as to reduce resource consumption. Args: acnt0 (pv.Account): The account of nonce 0. new_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new Token contract. new_ctrt (pv.LockCtrt): The fixture that registers a new Lock contract. """ tc = new_tok_ctrt lc = new_ctrt lc = await self.test_register(acnt0, tc, lc) await self.test_lock(acnt0, tc, lc) ``` #### File: func_test/test_ctrt/test_nft_ctrt.py ```python import abc import pytest import py_vsys as pv from test.func_test import conftest as cft class TestNFTCtrt: """ TestNFTCtrt is the collection of functional tests of NFT contract. """ @pytest.fixture async def new_ctrt(self, acnt0: pv.Account) -> pv.NFTCtrt: """ new_ctrt is the fixture that registers a new NFT contract. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.NFTCtrt: The NFTCtrt instance. """ nc = await pv.NFTCtrt.register(acnt0) await cft.wait_for_block() return nc @pytest.fixture async def new_ctrt_with_tok( self, new_ctrt: pv.NFTCtrt, acnt0: pv.Account ) -> pv.NFTCtrt: """ new_ctrt_with_tok is the fixture that registers a new NFT contract and issues an NFT token right after it. Args: new_ctrt (pv.NFTCtrt): The fixture that registers a new NFT contract. acnt0 (pv.Account): The account of nonce 0. Returns: pv.NFTCtrt: The NFTCtrt instance. """ nc = new_ctrt await nc.issue(acnt0) await cft.wait_for_block() return nc @pytest.fixture async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.NFTCtrt, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.NFTCtrt): The fixture that registers a new NFT contract and issues an NFT token right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ nc = new_ctrt_with_tok tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) ac = await pv.AtomicSwapCtrt.register(acnt0, tok_id.data) await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tok_id return ac async def test_register(self, acnt0: pv.Account) -> pv.NFTCtrt: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.NFTCtrt: The registered NFTCtrt. """ nc = await pv.NFTCtrt.register(acnt0) await cft.wait_for_block() assert (await nc.issuer) == acnt0.addr assert (await nc.maker) == acnt0.addr return nc async def test_issue(self, new_ctrt: pv.NFTCtrt, acnt0: pv.Account): """ test_issue tests the method issue. Args: new_ctrt (pv.NFTCtrt): The fixture that registers a new NFT contract. acnt0 (pv.Account): The account of nonce 0. """ nc = new_ctrt api = nc.chain.api resp = await nc.issue(acnt0) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal == 1 async def test_send( self, new_ctrt_with_tok: pv.NFTCtrt, acnt0: pv.Account, acnt1: pv.Account ): """ test_send tests the method send Args: new_ctrt_with_tok (pv.NFTCtrt): The fixture that registers a new NFT contract and issues an NFT token right after it. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ nc = new_ctrt_with_tok api = nc.chain.api tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal_acnt0 == 1 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tok_id.data) assert tok_bal_acnt1 == 0 resp = await nc.send(acnt0, acnt1.addr.data, 0) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal_acnt0 == 0 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tok_id.data) assert tok_bal_acnt1 == 1 async def test_transfer( self, new_ctrt_with_tok: pv.NFTCtrt, acnt0: pv.Account, acnt1: pv.Account ): """ test_transfer tests the method transfer. Args: new_ctrt_with_tok (pv.NFTCtrt): The fixture that registers a new NFT contract and issues an NFT token right after it. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ nc = new_ctrt_with_tok api = nc.chain.api tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal_acnt0 == 1 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tok_id.data) assert tok_bal_acnt1 == 0 resp = await nc.transfer(acnt0, acnt0.addr.data, acnt1.addr.data, 0) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal_acnt0 == 0 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tok_id.data) assert tok_bal_acnt1 == 1 async def test_deposit_withdraw( self, new_ctrt_with_tok: pv.NFTCtrt, new_atomic_swap_ctrt: pv.AtomicSwapCtrt, acnt0: pv.Account, ): """ test_deposit_withdraw tests the method deposit & withdraw. Args: new_ctrt_with_tok (pv.NFTCtrt): The fixture that registers a new NFT contract and issues an NFT token right after it. new_atomic_swap_ctrt (pv.AtomicSwapCtrt): The fixture that registers a new atomic swap contract. acnt0 (pv.Account): The account of nonce 0. """ nc = new_ctrt_with_tok api = nc.chain.api tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) ac = new_atomic_swap_ctrt tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal == 1 resp = await nc.deposit(acnt0, ac.ctrt_id.data, 0) await cft.wait_for_block() tx_info = await api.tx.get_info(resp["id"]) assert tx_info["status"] == "Success" tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal == 0 deposited_tok_bal = await ac.get_ctrt_bal(acnt0.addr.data) assert deposited_tok_bal.amount == 1 await nc.withdraw(acnt0, ac.ctrt_id.data, 0) await cft.wait_for_block() tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tok_id.data) assert tok_bal == 1 deposited_tok_bal = await ac.get_ctrt_bal(acnt0.addr.data) assert deposited_tok_bal.amount == 0 async def test_supersede( self, new_ctrt: pv.NFTCtrt, acnt0: pv.Account, acnt1: pv.Account ): """ test_supersede tests the method supersede. Args: new_ctrt (pv.NFTCtrt): The fixture that registers a new NFT contract. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ nc = new_ctrt api = nc.chain.api assert (await nc.issuer) == acnt0.addr resp = await nc.supersede(acnt0, acnt1.addr.data) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await nc.issuer) == acnt1.addr @pytest.mark.whole async def test_as_whole( self, new_ctrt_with_tok: pv.NFTCtrt, new_atomic_swap_ctrt: pv.AtomicSwapCtrt, acnt0: pv.Account, acnt1: pv.Account, ): """ test_as_whole tests methods of NFTCtrt as a whole so as to reduce resource consumption. Args: new_ctrt_with_tok (pv.NFTCtrt): The fixture that registers a new NFT contract and issues an NFT token right after it. new_atomic_swap_ctrt (pv.AtomicSwapCtrt): The fixture that registers a new atomic swap contract. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ nc = await self.test_register(acnt0) await self.test_issue(nc, acnt0) nc = new_ctrt_with_tok ac = new_atomic_swap_ctrt await self.test_send(nc, acnt0, acnt1) await self.test_transfer(nc, acnt1, acnt0) await self.test_deposit_withdraw(nc, ac, acnt0) await self.test_supersede(nc, acnt0, acnt1) class _TestNFTCtrtV2Base(TestNFTCtrt): """ _TestNFTCtrtV2Base is the collection of general functional tests of NFT contract V2. """ @pytest.fixture @abc.abstractmethod async def new_ctrt(self, acnt0: pv.Account, acnt1: pv.Account) -> pv.NFTCtrtV2Base: """ new_ctrt is the fixture that registers a new NFT contract V2 instance. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. Returns: pv.NFTCtrtV2Base: The pv.NFTCtrtV2Base instance. """ @pytest.fixture @abc.abstractmethod async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.NFTCtrtV2Blacklist, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.NFTCtrtV2Base): The fixture that registers a new NFT contract and issues an NFT token right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ @pytest.fixture def arbitrary_ctrt_id(self) -> str: """ arbitrary_ctrt_id is the fixture that returns an arbitrary contract ID Returns: str: The contract ID. """ return "CF5Zkj2Ycx72WrBnjrcNHvJRVwsbNX1tjgT" async def test_supersede( self, new_ctrt: pv.NFTCtrtV2Whitelist, acnt0: pv.Account, acnt1: pv.Account ): """ test_supersede tests the method supersede. Args: new_ctrt (pv.NFTCtrtV2Whitelist): The fixture that registers a new NFT contract V2 with whitelist. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ nc = new_ctrt api = nc.chain.api assert (await nc.issuer) == acnt0.addr assert (await nc.regulator) == acnt0.addr resp = await nc.supersede(acnt0, acnt1.addr.data, acnt1.addr.data) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await nc.issuer) == acnt1.addr assert (await nc.regulator) == acnt1.addr async def test_update_list_user( self, new_ctrt: pv.NFTCtrtV2Whitelist, acnt0: pv.Account, acnt1: pv.Account ): """ test_update_list_user tests the method update_list_user. Args: new_ctrt (pv.NFTCtrtV2Whitelist): The fixture that registers a new NFT contract V2 with whitelist. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ nc = new_ctrt api = nc.chain.api in_list = await nc.is_user_in_list(acnt1.addr.data) assert in_list == False resp = await nc.update_list_user( by=acnt0, addr=acnt1.addr.data, val=True, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await nc.is_user_in_list(acnt1.addr.data) assert in_list == True resp = await nc.update_list_user( by=acnt0, addr=acnt1.addr.data, val=False, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await nc.is_user_in_list(acnt1.addr.data) assert in_list == False async def test_update_list_ctrt( self, new_ctrt: pv.NFTCtrtV2Whitelist, acnt0: pv.Account, arbitrary_ctrt_id: str ): """ test_update_list_ctrt tests the method update_list_ctrt. Args: new_ctrt (pv.NFTCtrtV2Whitelist): The fixture that registers a new NFT contract V2 with whitelist. acnt0 (pv.Account): The account of nonce 0. arbitrary_ctrt_id (str): An arbitrary contract ID """ nc = new_ctrt api = nc.chain.api target_ctrt_id = arbitrary_ctrt_id in_list = await nc.is_ctrt_in_list(target_ctrt_id) assert in_list == False resp = await nc.update_list_ctrt( by=acnt0, addr=target_ctrt_id, val=True, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await nc.is_ctrt_in_list(target_ctrt_id) assert in_list == True resp = await nc.update_list_ctrt( by=acnt0, addr=target_ctrt_id, val=False, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await nc.is_ctrt_in_list(target_ctrt_id) assert in_list == False async def test_register(self, acnt0: pv.Account) -> pv.NFTCtrtV2Whitelist: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.NFTCtrtV2Whitelist: The registered NFTCtrtV2Whitelist """ nc: pv.NFTCtrtV2Whitelist = await pv.NFTCtrtV2Whitelist.register(acnt0) await cft.wait_for_block() assert (await nc.issuer) == acnt0.addr assert (await nc.maker) == acnt0.addr assert (await nc.regulator) == acnt0.addr return nc @pytest.mark.whole async def test_as_whole( self, new_ctrt_with_tok: pv.NFTCtrtV2Whitelist, new_atomic_swap_ctrt: pv.AtomicSwapCtrt, acnt0: pv.Account, acnt1: pv.Account, arbitrary_ctrt_id: str, ): """ test_as_whole tests method of NFTCtrtV2Whitelist as a whole so as to reduce resource consumption. Args: new_ctrt_with_tok (pv.NFTCtrtV2Whitelist): The fixture that registers a new NFT contract and issues an NFT token right after it. new_atomic_swap_ctrt (pv.AtomicSwapCtrt): The fixture that registers a new atomic swap contract. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. arbitrary_ctrt_id (str): An arbitrary contract ID """ nc = await self.test_register(acnt0) await self.test_update_list_user(nc, acnt0, acnt1) await self.test_update_list_ctrt(nc, acnt0, arbitrary_ctrt_id) await self.test_issue(nc, acnt0) nc = new_ctrt_with_tok ac = new_atomic_swap_ctrt await self.test_send(nc, acnt0, acnt1) await self.test_transfer(nc, acnt1, acnt0) await self.test_deposit_withdraw(nc, ac, acnt0) await self.test_supersede(nc, acnt0, acnt1) class TestNFTCtrtV2Whitelist(_TestNFTCtrtV2Base): """ TestNFTCtrtV2Whitelist is the collection of functional tests of NFT contract V2 with whitelist. """ @pytest.fixture async def new_ctrt( self, acnt0: pv.Account, acnt1: pv.Account ) -> pv.NFTCtrtV2Whitelist: """ new_ctrt is the fixture that registers a new NFT contract V2 with whitelist. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. Returns: pv.NFTCtrtV2Whitelist: The NFTCtrtV2Whitelist instance. """ nc = await pv.NFTCtrtV2Whitelist.register(acnt0) await cft.wait_for_block() await nc.update_list_user(acnt0, acnt0.addr.data, True) await nc.update_list_user(acnt0, acnt1.addr.data, True) return nc @pytest.fixture async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.NFTCtrtV2Whitelist, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.NFTCtrtV2Whitelist): The fixture that registers a new NFT contract and issues an NFT token right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ nc = new_ctrt_with_tok api = nc.chain.api tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) ac = await pv.AtomicSwapCtrt.register(acnt0, tok_id.data) await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tok_id resp = await nc.update_list_ctrt(acnt0, ac.ctrt_id.data, True) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) return ac class TestNFTCtrtV2Blacklist(_TestNFTCtrtV2Base): """ TestNFTCtrtV2Blacklist is the collection of functional tests of NFT contract V2 with blacklist. """ @pytest.fixture async def new_ctrt(self, acnt0: pv.Account) -> pv.NFTCtrtV2Blacklist: """ new_ctrt is the fixture that registers a new NFT contract V2 with blacklist. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. Returns: pv.NFTCtrtV2Blacklist: The NFTCtrtV2Blacklist instance. """ nc = await pv.NFTCtrtV2Blacklist.register(acnt0) await cft.wait_for_block() return nc @pytest.fixture async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.NFTCtrtV2Blacklist, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.NFTCtrtV2Blacklist): The fixture that registers a new NFT contract and issues an NFT token right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ nc = new_ctrt_with_tok tok_id = pv.Ctrt.get_tok_id(nc.ctrt_id, pv.TokenIdx(0)) ac = await pv.AtomicSwapCtrt.register(acnt0, tok_id.data) await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tok_id return ac ``` #### File: func_test/test_ctrt/test_pay_chan_ctrt.py ```python import asyncio import time from typing import Tuple import pytest import py_vsys as pv from test.func_test import conftest as cft class TestPayChanCtrt: """ TestPayChanCtrt is the collection of functional tests of Payment Channel Contract. """ TOK_MAX = 100 TOK_UNIT = 1 INIT_LOAD = TOK_MAX // 2 @pytest.fixture async def new_tok_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_tok_ctrt is the fixture that registers a new token contract without split instance. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The token contract instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, self.TOK_MAX, self.TOK_UNIT) await cft.wait_for_block() await tc.issue(acnt0, self.TOK_MAX) await cft.wait_for_block() return tc @pytest.fixture async def new_ctrt( self, acnt0: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit ) -> pv.PayChanCtrt: """ new_ctrt is the fixture that registers a new Payment Channel contract. Args: acnt0 (pv.Account): The account of nonce 0. new_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new Token contract. Returns: pv.PayChanCtrt: The PayChanCtrt instance. """ tc = new_tok_ctrt api = acnt0.api pc = await pv.PayChanCtrt.register(acnt0, tc.tok_id.data) await cft.wait_for_block() resp = await tc.deposit(acnt0, pc.ctrt_id.data, self.TOK_MAX) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) return pc @pytest.fixture async def new_ctrt_with_chan( self, acnt0: pv.Account, acnt1: pv.Account, new_ctrt: pv.PayChanCtrt, ) -> Tuple[pv.PayChanCtrt, str]: """ new_ctrt_with_chan is the fixture that registers a new Payment Channel contract and creates a channel. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. new_ctrt (pv.PayChanCtrt): The fixture that registers a new Payment Channel contract. Returns: Tuple[pv.PayChanCtrt, str]: The PayChanCtrt instance & channel id """ pc = new_ctrt load_amount = self.INIT_LOAD later = int(time.time()) + 60 * 10 resp = await pc.create_and_load( by=acnt0, recipient=acnt1.addr.data, amount=load_amount, expire_at=later, ) await cft.wait_for_block() chan_id = resp["id"] return pc, chan_id async def test_register( self, acnt0: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit, new_ctrt: pv.PayChanCtrt, ) -> pv.PayChanCtrt: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. new_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new Token contract. new_ctrt (pv.PayChanCtrt): The fixture that registers a new Payment Channel contract. Returns: pv.PayChanCtrt: The PayChanCtrt instance. """ tc = new_tok_ctrt pc = new_ctrt assert (await pc.maker) == acnt0.addr assert (await pc.tok_id) == tc.tok_id ctrt_bal = await pc.get_ctrt_bal(acnt0.addr.data) assert ctrt_bal.amount == self.TOK_MAX return pc async def test_create_and_load( self, acnt0: pv.Account, acnt1: pv.Account, new_ctrt: pv.PayChanCtrt, ) -> str: """ test_create_and_load tests the method create_and_load. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. new_ctrt (pv.PayChanCtrt): The fixture that registers a new Payment Channel contract. Returns: str: The channel ID. """ pc = new_ctrt api = acnt0.api load_amount = self.INIT_LOAD later = int(time.time()) + 60 * 10 resp = await pc.create_and_load( by=acnt0, recipient=acnt1.addr.data, amount=load_amount, expire_at=later, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) chan_id = resp["id"] chan_creator = await pc.get_chan_creator(chan_id) assert chan_creator == acnt0.addr chan_creator_pub_key = await pc.get_chan_creator_pub_key(chan_id) assert chan_creator_pub_key == acnt0.key_pair.pub chan_accum_load = await pc.get_chan_accum_load(chan_id) assert chan_accum_load.amount == load_amount chan_accum_pay = await pc.get_chan_accum_pay(chan_id) assert chan_accum_pay.amount == 0 chan_exp_time = await pc.get_chan_exp_time(chan_id) assert chan_exp_time.unix_ts == later chan_status = await pc.get_chan_status(chan_id) assert chan_status is True return chan_id async def test_extend_exp_time( self, acnt0: pv.Account, new_ctrt_with_chan: Tuple[pv.PayChanCtrt, str], ) -> None: """ test_extend_exp_time tests the method extend_exp_time. Args: acnt0 (pv.Account): The account of nonce 0. new_ctrt_with_chan (Tuple[pv.PayChanCtrt, str]): The fixture that registers a new Payment Channel contract and creates a new channel. """ pc, chan_id = new_ctrt_with_chan api = acnt0.api chan_exp_time_old = await pc.get_chan_exp_time(chan_id) new_later = chan_exp_time_old.unix_ts + 300 resp = await pc.extend_exp_time( by=acnt0, chan_id=chan_id, expire_at=new_later, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) chan_exp_time = await pc.get_chan_exp_time(chan_id) assert chan_exp_time.unix_ts == new_later async def test_load( self, acnt0: pv.Account, new_ctrt_with_chan: Tuple[pv.PayChanCtrt, str], ) -> None: """ test_load tests the method load. Args: acnt0 (pv.Account): The account of nonce 0. new_ctrt_with_chan (Tuple[pv.PayChanCtrt, str]): The fixture that registers a new Payment Channel contract and creates a new channel. """ pc, chan_id = new_ctrt_with_chan api = acnt0.api chan_load_old = await pc.get_chan_accum_load(chan_id) assert chan_load_old.amount == self.INIT_LOAD more_load = self.INIT_LOAD // 2 resp = await pc.load(acnt0, chan_id, more_load) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) chan_load = await pc.get_chan_accum_load(chan_id) assert chan_load.amount == self.INIT_LOAD + more_load async def test_abort( self, acnt0: pv.Account, new_ctrt_with_chan: Tuple[pv.PayChanCtrt, str], ) -> None: """ test_abort tests the method abort. Args: acnt0 (pv.Account): The account of nonce 0. new_ctrt_with_chan (Tuple[pv.PayChanCtrt, str]): The fixture that registers a new Payment Channel contract and creates a new channel. """ pc, chan_id = new_ctrt_with_chan api = acnt0.api chan_status = await pc.get_chan_status(chan_id) assert chan_status is True resp = await pc.abort(acnt0, chan_id) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) chan_status = await pc.get_chan_status(chan_id) assert chan_status is False async def test_unload( self, acnt0: pv.Account, acnt1: pv.Account, new_ctrt: pv.PayChanCtrt, ) -> None: """ test_unload tests the method unload. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. new_ctrt (pv.PayChanCtrt): The fixture that registers a new Payment Channel contract. """ pc = new_ctrt api = acnt0.api load_amount = self.TOK_MAX // 10 later = int(time.time()) + cft.AVG_BLOCK_DELAY * 2 # create a channel resp = await pc.create_and_load( by=acnt0, recipient=acnt1.addr.data, amount=load_amount, expire_at=later, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) chan_id = resp["id"] bal_old = await pc.get_ctrt_bal(acnt0.addr.data) # wait until the channel expires await asyncio.sleep(cft.AVG_BLOCK_DELAY * 2) resp = await pc.unload(acnt0, chan_id) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) bal = await pc.get_ctrt_bal(acnt0.addr.data) assert bal.amount == bal_old.amount + load_amount async def test_offchain_pay_and_collect_payment( self, acnt0: pv.Account, acnt1: pv.Account, new_ctrt_with_chan: Tuple[pv.PayChanCtrt, str], ) -> None: """ test_offchain_pay_and_collect_payment tests the method - offchain_pay - collect_payment. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. new_ctrt_with_chan (Tuple[pv.PayChanCtrt, str]): The fixture that registers a new Payment Channel contract and creates a new channel. """ pc, chan_id = new_ctrt_with_chan api = acnt0.api sig = await pc.offchain_pay( key_pair=acnt0.key_pair, chan_id=chan_id, amount=self.INIT_LOAD, ) resp = await pc.collect_payment( by=acnt1, chan_id=chan_id, amount=self.INIT_LOAD, signature=sig, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) accum_pay = await pc.get_chan_accum_pay(chan_id) assert accum_pay.amount == self.INIT_LOAD acnt1_bal = await pc.get_ctrt_bal(acnt1.addr.data) assert acnt1_bal.amount == self.INIT_LOAD @pytest.mark.whole async def test_as_whole( self, acnt0: pv.Account, acnt1: pv.Account, new_tok_ctrt: pv.TokCtrtWithoutSplit, new_ctrt: pv.PayChanCtrt, ) -> None: """ test_as_whole tests methods of PayChanCtrt as a whole so as to reduce resource consumption. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. new_tok_ctrt (pv.TokCtrtWithoutSplit): The token contract instance. new_ctrt (pv.PayChanCtrt): The fixture that registers a new Payment Channel contract. """ tc = new_tok_ctrt pc = new_ctrt await self.test_register(acnt0, tc, pc) chan_id = await self.test_create_and_load(acnt0, acnt1, pc) pc_with_chan = (pc, chan_id) await self.test_extend_exp_time(acnt0, pc_with_chan) await self.test_load(acnt0, pc_with_chan) await self.test_offchain_pay_and_collect_payment(acnt0, acnt1, pc_with_chan) await self.test_abort(acnt0, pc_with_chan) await self.test_unload(acnt0, acnt1, pc) ``` #### File: func_test/test_ctrt/test_tok_ctrt.py ```python import pytest import py_vsys as pv from test.func_test import conftest as cft class TestTokCtrtWithoutSplit: """ TestTokCtrtWithoutSplit is the collection of functional tests of Token contract without split. """ @pytest.fixture async def new_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_ctrt is the fixture that registers a new token contract. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplit: the TokCtrtWithoutSplit instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, 50, 1) await cft.wait_for_block() return tc @pytest.fixture async def new_ctrt_with_tok( self, new_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account ) -> pv.TokCtrtWithoutSplit: """ new_ctrt_with_tok is the fixture that registers a new TokenWithoutSplit contract and issues tokens right after it. Args: new_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new TokenWithoutSplit contract. acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The TokCtrtWithoutSplit instance. """ tc = new_ctrt await tc.issue(acnt0, 50) await cft.wait_for_block() return tc @pytest.fixture async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplit, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract and issues tokens right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ tc = new_ctrt_with_tok ac = await pv.AtomicSwapCtrt.register(acnt0, tc.tok_id.data) await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tc.tok_id return ac async def test_register(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The TokCtrtWithoutSplit instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, 50, 1) await cft.wait_for_block() assert (await tc.issuer) == acnt0.addr assert (await tc.maker) == acnt0.addr return tc async def test_issue(self, new_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account): """ test_issue tests the method issue. Args: new_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract without split. acnt0 (pv.Account): The account of nonce 0. """ tc = new_ctrt api = tc.chain.api resp = await tc.issue(acnt0, 50) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal == 50 async def test_send( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplit, acnt0: pv.Account, acnt1: pv.Account, ): """ test_send tests the method send Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract and issues tokens right after it. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ tc = new_ctrt_with_tok api = tc.chain.api tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal_acnt0 == 50 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tc.tok_id.data) assert tok_bal_acnt1 == 0 resp = await tc.send(acnt0, acnt1.addr.data, 50) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal_acnt0 == 0 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tc.tok_id.data) assert tok_bal_acnt1 == 50 async def test_transfer( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplit, acnt0: pv.Account, acnt1: pv.Account, ): """ test_transfer tests the method transfer. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract and issues tokens right after it. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ tc = new_ctrt_with_tok api = tc.chain.api tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal_acnt0 == 50 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tc.tok_id.data) assert tok_bal_acnt1 == 0 resp = await tc.transfer(acnt0, acnt0.addr.data, acnt1.addr.data, 50) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal_acnt0 == 0 tok_bal_acnt1 = await cft.get_tok_bal(api, acnt1.addr.data, tc.tok_id.data) assert tok_bal_acnt1 == 50 async def test_deposit_and_withdraw( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplit, new_atomic_swap_ctrt: pv.AtomicSwapCtrt, acnt0: pv.Account, ): """ test_deposit_and_withdraw tests the method deposit & withdraw. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract and issues tokens right after it. new_atomic_swap_ctrt (pv.AtomicSwapCtrt): The fixture that registers a new atomic swap contract. acnt0 (pv.Account): The account of nonce 0. """ tc = new_ctrt_with_tok api = tc.chain.api ac = new_atomic_swap_ctrt await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tc.tok_id tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal == 50 resp = await tc.deposit(acnt0, ac.ctrt_id.data, 10) await cft.wait_for_block() tx_info = await api.tx.get_info(resp["id"]) assert tx_info["status"] == "Success" tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal == 40 deposited_tok_bal = await ac.get_ctrt_bal(acnt0.addr.data) assert deposited_tok_bal.amount == 10 # withdraw await tc.withdraw(acnt0, ac.ctrt_id.data, 10) await cft.wait_for_block() tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal == 50 deposited_tok_bal = await ac.get_ctrt_bal(acnt0.addr.data) assert deposited_tok_bal.amount == 0 async def test_destroy( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplit, acnt0: pv.Account ): """ test_destroy tests the method destroy. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract and issues tokens right after it. """ tc = new_ctrt_with_tok api = tc.chain.api tok_bal = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal == 50 resp = await tc.destroy(acnt0, 10) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) tok_bal_acnt0 = await cft.get_tok_bal(api, acnt0.addr.data, tc.tok_id.data) assert tok_bal_acnt0 == 40 async def test_supersede( self, new_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account, acnt1: pv.Account ): """ test_supersede tests the method supersede. Args: new_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ tc = new_ctrt api = tc.chain.api assert (await tc.issuer) == acnt0.addr resp = await tc.supersede(acnt0, acnt1.addr.data) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await tc.issuer) == acnt1.addr @pytest.mark.whole async def test_as_whole( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplit, new_atomic_swap_ctrt: pv.AtomicSwapCtrt, acnt0: pv.Account, acnt1: pv.Account, ): """ test_as_whole tests methods of TokenWithSplitCtrt as a whole so as to reduce resource consumption. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract and issues tokens right after it. new_atomic_swap_ctrt (pv.AtomicSwapCtrt): The fixture that registers a new atomic swap contract. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ tc = await self.test_register(acnt0) await self.test_issue(tc, acnt0) tc = new_ctrt_with_tok ac = new_atomic_swap_ctrt await self.test_send(tc, acnt0, acnt1) await self.test_transfer(tc, acnt1, acnt0) await self.test_deposit_and_withdraw(tc, ac, acnt0) await self.test_destroy(tc, acnt0) await self.test_supersede(tc, acnt0, acnt1) class TestTokCtrtWithSplit(TestTokCtrtWithoutSplit): """ TestTokCtrtWithSplit is the collection of functional tests of Token contract with split. """ @pytest.fixture async def new_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithSplit: """ new_ctrt is the fixture that registers a new token contract with split. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplit: the TokCtrtWithSplit instance. """ tc = await pv.TokCtrtWithSplit.register(acnt0, 50, 1) await cft.wait_for_block() return tc async def test_split(self, new_ctrt: pv.TokCtrtWithSplit, acnt0: pv.Account): """ test_split tests the method split. Args: new_ctrt (pv.TokCtrtWithSplit): The fixture that registers a new token contract. acnt0 (pv.Account): The account of nonce 0. """ tc = new_ctrt api = tc.chain.api resp = await tc.split(acnt0, 12) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) new_unit = await api.ctrt.get_tok_info(tc.tok_id.data) assert 12 == new_unit["unity"] class TestTokCtrtWithoutSplitV2Whitelist(TestTokCtrtWithoutSplit): """ TestTokWithoutSplitV2Whitelist is the collection of functional tests of Token contract with white list. """ @pytest.fixture async def new_ctrt( self, acnt0: pv.Account, acnt1: pv.Account ) -> pv.TokCtrtWithoutSplitV2Whitelist: """ new_ctrt is the fixture that registers a new token contract with white list. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplitV2Whitelist: the TokCtrtWithoutSplitV2Whitelist instance. """ tc = await pv.TokCtrtWithoutSplitV2Whitelist.register(acnt0, 50, 1) await cft.wait_for_block() await tc.update_list_user(acnt0, acnt0.addr.data, True) await tc.update_list_user(acnt0, acnt1.addr.data, True) return tc @pytest.fixture def arbitrary_ctrt_id(self) -> str: """ arbitrary_ctrt_id is the fixture that returns an arbitrary contract ID Returns: str: The contract ID. """ return "CEzFs69VesVBHTefZVVCAddcbMzMQAjchCX" @pytest.fixture async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplitV2Whitelist, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplitV2Whitelist): The fixture that registers a new token contract and issues a token right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ tc = new_ctrt_with_tok api = tc.chain.api ac = await pv.AtomicSwapCtrt.register(acnt0, tc.tok_id.data) await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tc.tok_id resp = await tc.update_list_ctrt(acnt0, ac.ctrt_id.data, True) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) return ac async def test_supersede( self, new_ctrt: pv.TokCtrtWithoutSplitV2Whitelist, acnt0: pv.Account, acnt1: pv.Account, ): """ test_supersede tests the method supersede. Args: new_ctrt (pv.TokCtrtWithoutSplitV2Whitelist): The fixture that registers a new token contract V2 with whitelist. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ tc = new_ctrt api = tc.chain.api assert (await tc.issuer) == acnt0.addr assert (await tc.regulator) == acnt0.addr resp = await tc.supersede(acnt0, acnt1.addr.data, acnt1.addr.data) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) assert (await tc.issuer) == acnt1.addr assert (await tc.regulator) == acnt1.addr async def test_update_list_user( self, new_ctrt: pv.TokCtrtWithoutSplitV2Whitelist, acnt0: pv.Account, acnt1: pv.Account, ): """ test_update_list_user tests the method update_list_user. Args: new_ctrt (pv.TokCtrtWithoutSplitV2Whitelist): The fixture that registers a new token contract V2 with whitelist. acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. """ tc = new_ctrt api = tc.chain.api in_list = await tc.is_user_in_list(acnt1.addr.data) assert in_list == False resp = await tc.update_list_user( by=acnt0, addr=acnt1.addr.data, val=True, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await tc.is_user_in_list(acnt1.addr.data) assert in_list == True resp = await tc.update_list_user( by=acnt0, addr=acnt1.addr.data, val=False, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await tc.is_user_in_list(acnt1.addr.data) assert in_list == False async def test_update_list_ctrt( self, new_ctrt: pv.TokCtrtWithoutSplitV2Whitelist, acnt0: pv.Account, arbitrary_ctrt_id: str, ): """ test_update_list_ctrt tests the method update_list_ctrt. Args: new_ctrt (pv.TokCtrtWithoutSplitV2Whitelist): The fixture that registers a new token contract V2 with whitelist. acnt0 (pv.Account): The account of nonce 0. arbitrary_ctrt_id (str): An arbitrary contract ID """ tc = new_ctrt api = tc.chain.api target_ctrt_id = arbitrary_ctrt_id in_list = await tc.is_ctrt_in_list(target_ctrt_id) assert in_list == False resp = await tc.update_list_ctrt( by=acnt0, addr=target_ctrt_id, val=True, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await tc.is_ctrt_in_list(target_ctrt_id) assert in_list == True resp = await tc.update_list_ctrt( by=acnt0, addr=target_ctrt_id, val=False, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) in_list = await tc.is_ctrt_in_list(target_ctrt_id) assert in_list == False async def test_register( self, acnt0: pv.Account ) -> pv.TokCtrtWithoutSplitV2Whitelist: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplitV2Whitelist: The registered TokCtrtWithoutSplitV2Whitelist """ tc = await pv.TokCtrtWithoutSplitV2Whitelist.register(acnt0, 50, 1) await cft.wait_for_block() assert (await tc.issuer) == acnt0.addr assert (await tc.maker) == acnt0.addr assert (await tc.regulator) == acnt0.addr return tc class TestTokCtrtWithoutSplitV2Blacklist(TestTokCtrtWithoutSplitV2Whitelist): """ TestTokWithoutSplitV2Blacklist is the collection of functional tests of token contract V2 with blacklist. """ @pytest.fixture async def new_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplitV2Blacklist: """ new_ctrt is the fixture that registers a new token contract V2 with blacklist. Args: acnt0 (pv.Account): The account of nonce 0. acnt1 (pv.Account): The account of nonce 1. Returns: pv.TokCtrtWithoutSplitV2Blacklist: The TokCtrtWithoutSplitV2Blacklist instance. """ tc = await pv.TokCtrtWithoutSplitV2Blacklist.register(acnt0, 50, 1) await cft.wait_for_block() return tc @pytest.fixture async def new_atomic_swap_ctrt( self, new_ctrt_with_tok: pv.TokCtrtWithoutSplitV2Blacklist, acnt0: pv.Account, ) -> pv.AtomicSwapCtrt: """ new_atomic_swap_ctrt is the fixture that registers a new atomic swap contract. Args: new_ctrt_with_tok (pv.TokCtrtWithoutSplitV2Blacklist): The fixture that registers a new token contract and issues tokens right after it. acnt0 (pv.Account): The account of nonce 0. Returns: pv.AtomicSwapCtrt: The AtomicSwapCtrt instance. """ tc = new_ctrt_with_tok ac = await pv.AtomicSwapCtrt.register(acnt0, tc.tok_id.data) await cft.wait_for_block() assert (await ac.maker) == acnt0.addr assert (await ac.tok_id) == tc.tok_id return ac ``` #### File: func_test/test_ctrt/test_v_option_ctrt.py ```python import pytest import time import asyncio import py_vsys as pv from test.func_test import conftest as cft class TestVOptionCtrt: """ TestVOptionCtrt is the collection of functional tests of V Option contract. """ MAX_ISSUE_AMOUNT = 1000 MINT_AMOUNT = 200 UNLOCK_AMOUNT = 100 EXEC_TIME_DELTA = 50 EXEC_DDL_DELTA = 95 @pytest.fixture async def new_base_tok_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_base_tok_ctrt is the fixture that registers a new base token contract. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplit: the TokCtrtWithoutSplit instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, 1000, 1) await cft.wait_for_block() return tc @pytest.fixture async def new_target_tok_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_target_tok_ctrt is the fixture that registers a new target token contract. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplit: the TokCtrtWithoutSplit instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, 1000, 1) await cft.wait_for_block() return tc @pytest.fixture async def new_option_tok_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_option_tok_ctrt is the fixture that registers a new option token contract. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplit: the TokCtrtWithoutSplit instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, 1000, 1) await cft.wait_for_block() return tc @pytest.fixture async def new_proof_tok_ctrt(self, acnt0: pv.Account) -> pv.TokCtrtWithoutSplit: """ new_proof_tok_ctrt is the fixture that registers a new proof token contract. Args: acnt0 (pv.Account): the account of nonce 0. Returns: pv.TokCtrtWithoutSplit: the TokCtrtWithoutSplit instance. """ tc = await pv.TokCtrtWithoutSplit.register(acnt0, 1000, 1) await cft.wait_for_block() return tc @pytest.fixture async def new_base_tok_ctrt_with_tok( self, new_base_tok_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account ) -> pv.TokCtrtWithoutSplit: """ new_base_tok_ctrt_with_tok is the fixture that registers a new TokenWithoutSplit contract and issues base tokens right after it. Args: new_base_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new TokenWithoutSplit contract. acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The TokCtrtWithoutSplit instance. """ tc = new_base_tok_ctrt await tc.issue(acnt0, 1000) await cft.wait_for_block() return tc @pytest.fixture async def new_target_tok_ctrt_with_tok( self, new_target_tok_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account ) -> pv.TokCtrtWithoutSplit: """ new_target_tok_ctrt_with_tok is the fixture that registers a new TokenWithoutSplit contract and issues target tokens right after it. Args: new_target_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new TokenWithoutSplit contract. acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The TokCtrtWithoutSplit instance. """ tc = new_target_tok_ctrt await tc.issue(acnt0, 1000) await cft.wait_for_block() return tc @pytest.fixture async def new_option_tok_ctrt_with_tok( self, new_option_tok_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account ) -> pv.TokCtrtWithoutSplit: """ new_option_tok_ctrt_with_tok is the fixture that registers a new TokenWithoutSplit contract and issues option tokens right after it. Args: new_option_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new TokenWithoutSplit contract. acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The TokCtrtWithoutSplit instance. """ tc = new_option_tok_ctrt await tc.issue(acnt0, 1000) await cft.wait_for_block() return tc @pytest.fixture async def new_proof_tok_ctrt_with_tok( self, new_proof_tok_ctrt: pv.TokCtrtWithoutSplit, acnt0: pv.Account ) -> pv.TokCtrtWithoutSplit: """ new_proof_tok_ctrt_with_tok is the fixture that registers a new TokenWithoutSplit contract and issues proof tokens right after it. Args: new_proof_tok_ctrt (pv.TokCtrtWithoutSplit): The fixture that registers a new TokenWithoutSplit contract. acnt0 (pv.Account): The account of nonce 0. Returns: pv.TokCtrtWithoutSplit: The TokCtrtWithoutSplit instance. """ tc = new_proof_tok_ctrt await tc.issue(acnt0, 1000) await cft.wait_for_block() return tc @pytest.fixture async def new_v_option_ctrt( self, acnt0: pv.Account, new_base_tok_ctrt_with_tok: pv.TokCtrtWithoutSplit, new_target_tok_ctrt_with_tok: pv.TokCtrtWithoutSplit, new_option_tok_ctrt_with_tok: pv.TokCtrtWithoutSplit, new_proof_tok_ctrt_with_tok: pv.TokCtrtWithoutSplit, ) -> pv.VStableSwapCtrt: """ new_v_option_ctrt is the fixture that registers a new V Option contract. Args: acnt0 (pv.Account): The account of nonce 0. new_base_tok_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract without split and issues base tokens right after it. new_target_tok_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract without split and issues target tokens right after it. new_option_tok_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract without split and issues option tokens right after it. new_proof_tok_ctrt_with_tok (pv.TokCtrtWithoutSplit): The fixture that registers a new token contract without split and issues proof tokens right after it. Returns: pv.VStableSwapCtrt: The VStableSwapCtrt instance. """ base_tc = new_base_tok_ctrt_with_tok target_tc = new_target_tok_ctrt_with_tok option_tc = new_option_tok_ctrt_with_tok proof_tc = new_proof_tok_ctrt_with_tok base_tok_id = pv.Ctrt.get_tok_id(base_tc.ctrt_id, pv.TokenIdx(0)) target_tok_id = pv.Ctrt.get_tok_id(target_tc.ctrt_id, pv.TokenIdx(0)) option_tok_id = pv.Ctrt.get_tok_id(option_tc.ctrt_id, pv.TokenIdx(0)) proof_tok_id = pv.Ctrt.get_tok_id(proof_tc.ctrt_id, pv.TokenIdx(0)) oc = await pv.VOptionCtrt.register( acnt0, base_tok_id.data, target_tok_id.data, option_tok_id.data, proof_tok_id.data, int(time.time() + self.EXEC_TIME_DELTA), int(time.time() + self.EXEC_DDL_DELTA), ) await cft.wait_for_block() await asyncio.gather( base_tc.deposit(acnt0, oc.ctrt_id.data, 1000), target_tc.deposit(acnt0, oc.ctrt_id.data, 1000), option_tc.deposit(acnt0, oc.ctrt_id.data, 1000), proof_tc.deposit(acnt0, oc.ctrt_id.data, 1000), ) await cft.wait_for_block() return oc @pytest.fixture async def new_v_option_ctrt_activated( self, acnt0: pv.Account, new_v_option_ctrt: pv.VOptionCtrt, ) -> pv.VOptionCtrt: """ new_v_option_ctrt_activated is the fixture that registers a new V Option contract and activate it. Args: acnt0 (pv.Account): The account of nonce 0. new_v_option_ctrt (pv.VOptionCtrt): The fixture that registers a new V Option contract. Returns: pv.VOptionCtrt: The VOptionCtrt instance. """ oc = new_v_option_ctrt api = acnt0.api resp = await oc.activate( by=acnt0, max_issue_num=self.MAX_ISSUE_AMOUNT, price=10, price_unit=1, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) return oc @pytest.fixture async def new_v_option_ctrt_activated_and_minted( self, acnt0: pv.Account, new_v_option_ctrt_activated: pv.VOptionCtrt, ) -> pv.VOptionCtrt: """ new_v_option_ctrt_activated_and_minted is the fixture that - registers a new V Option contract. - activate it - mint option tokens Args: acnt0 (pv.Account): The account of nonce 0. new_v_option_ctrt_activated (pv.VOptionCtrt): The fixture that registers a new V Option contract & activates it. Returns: pv.VOptionCtrt: The VOptionCtrt instance. """ oc = new_v_option_ctrt_activated api = acnt0.api resp = await oc.mint( by=acnt0, amount=self.MINT_AMOUNT, ) await cft.wait_for_block() await cft.assert_tx_success(api, resp["id"]) return oc async def test_register( self, acnt0: pv.Account, new_v_option_ctrt: pv.VOptionCtrt, ) -> pv.VOptionCtrt: """ test_register tests the method register. Args: acnt0 (pv.Account): The account of nonce 0. new_v_option_ctrt (pv.VOptionCtrt): The fixture that registers a new V Option contract. Returns: pv.VOptionCtrt: The VOptionCtrt instance. """ oc = new_v_option_ctrt assert (await oc.maker) == acnt0.addr return oc async def test_activate(self, new_v_option_ctrt_activated: pv.VOptionCtrt) -> None: """ test_activate tests the method activate. Args: new_v_option_ctrt_activated (pv.VOptionCtrt): The fixture that registers a new V Option contract and activates it. """ oc = new_v_option_ctrt_activated assert (await oc.max_issue_num).data == self.MAX_ISSUE_AMOUNT async def test_mint( self, acnt0: pv.Account, new_v_option_ctrt_activated_and_minted: pv.VOptionCtrt ) -> None: """ test_mint tests the method mint. Args: acnt0 (pv.Account): The account of nonce 0. new_v_option_ctrt_activated_and_minted (pv.VOptionCtrt): The fixture that registers a new V Option contract, activates it, and mints option tokens. """ oc = new_v_option_ctrt_activated_and_minted assert (await oc.get_target_tok_bal(acnt0.addr.data)).data == ( self.MAX_ISSUE_AMOUNT - self.MINT_AMOUNT ) async def test_unlock( self, acnt0: pv.Account, new_v_option_ctrt_activated_and_minted: pv.VOptionCtrt ) -> None: """ test_unlock tests the method unlock. Args: acnt0 (pv.Account): The account of nonce 0. new_v_option_ctrt_activated_and_minted (pv.VOptionCtrt): The fixture that registers a new V Option contract activated and minted. """ oc = new_v_option_ctrt_activated_and_minted api = acnt0.api resp = await oc.unlock(by=acnt0, amount=self.UNLOCK_AMOUNT) await cft.wait_for_block() unlock_tx_id = resp["id"] await cft.assert_tx_success(api, unlock_tx_id) assert ( await oc.get_target_tok_bal(acnt0.addr.data) ).data == self.MAX_ISSUE_AMOUNT - self.MINT_AMOUNT + self.UNLOCK_AMOUNT async def test_execute_and_collect( self, acnt0: pv.Account, new_v_option_ctrt_activated_and_minted: pv.VOptionCtrt ) -> None: """ test_execute_and_collect tests the method execute and collect. Args: new_v_option_ctrt_activated_and_minted (pv.VOptionCtrt): The fixture that registers a new V Option contract activated and minted. """ oc = new_v_option_ctrt_activated_and_minted api = acnt0.api exec_amount = 10 target_tok_bal_init = await oc.get_target_tok_bal(acnt0.addr.data) await asyncio.sleep(cft.AVG_BLOCK_DELAY * 6) exe_tx = await oc.execute(acnt0, exec_amount) await cft.wait_for_block() exe_tx_id = exe_tx["id"] await cft.assert_tx_success(api, exe_tx_id) target_tok_bal_exec = await oc.get_target_tok_bal(acnt0.addr.data) assert (target_tok_bal_exec.data - target_tok_bal_init.data) == exec_amount await asyncio.sleep(cft.AVG_BLOCK_DELAY * 5) col_tx = await oc.collect(acnt0, 10) await cft.wait_for_block() col_tx_id = col_tx["id"] await cft.assert_tx_success(api, col_tx_id) target_tok_bal_col = await oc.get_target_tok_bal(acnt0.addr.data) assert (target_tok_bal_col.data - target_tok_bal_exec.data) == 9 @pytest.mark.whole async def test_as_whole( self, acnt0: pv.Account, new_v_option_ctrt_activated_and_minted: pv.VOptionCtrt, ) -> None: """ test_as_whole tests methods of VOptionVtrt as a whole so as to reduce resource consumption. Args: acnt0 (pv.Account): The account of nonce 0. new_v_option_ctrt_activated_and_minted (pv.VOptionCtrt): The fixture that registers a new V Option contract, activates it, and mints. """ oc = new_v_option_ctrt_activated_and_minted await self.test_register(acnt0, oc) await self.test_activate(oc) await self.test_mint(acnt0, oc) await self.test_unlock(acnt0, oc) await self.test_execute_and_collect(acnt0, oc) ```
{ "source": "josepic99/mesas", "score": 3 }
#### File: Flockers/flockers/boid.py ```python import numpy as np from mesa import Agent class Boid(Agent): ''' A Boid-style flocker agent. The agent follows three behaviors to flock: - Cohesion: steering towards neighboring agents. - Separation: avoiding getting too close to any other agent. - Alignment: try to fly in the same direction as the neighbors. Boids have a vision that defines the radius in which they look for their neighbors to flock with. Their speed (a scalar) and heading (a unit vector) define their movement. Separation is their desired minimum distance from any other Boid. ''' def __init__(self, unique_id, model, pos, speed=5, heading=None, vision=5, separation=1): ''' Create a new Boid flocker agent. Args: unique_id: Unique agent identifyer. pos: Starting position speed: Distance to move per step. heading: numpy vector for the Boid's direction of movement. vision: Radius to look around for nearby Boids. separation: Minimum distance to maintain from other Boids. ''' super().__init__(unique_id, model) self.pos = pos self.speed = speed if heading is not None: self.heading = heading else: self.heading = np.random.random(2) self.heading /= np.linalg.norm(self.heading) self.vision = vision self.separation = separation def cohere(self, neighbors): ''' Return the vector toward the center of mass of the local neighbors. ''' center = np.array([0.0, 0.0]) for neighbor in neighbors: center += np.array(neighbor.pos) return center / len(neighbors) def separate(self, neighbors): ''' Return a vector away from any neighbors closer than separation dist. ''' my_pos = np.array(self.pos) sep_vector = np.array([0, 0]) for neighbor in neighbors: their_pos = np.array(neighbor.pos) dist = np.linalg.norm(my_pos - their_pos) if dist < self.separation: sep_vector -= np.int64(their_pos - my_pos) return sep_vector def match_heading(self, neighbors): ''' Return a vector of the neighbors' average heading. ''' mean_heading = np.array([0, 0]) for neighbor in neighbors: mean_heading += np.int64(neighbor.heading) return mean_heading / len(neighbors) def step(self): ''' Get the Boid's neighbors, compute the new vector, and move accordingly. ''' neighbors = self.model.space.get_neighbors(self.pos, self.vision, False) if len(neighbors) > 0: cohere_vector = self.cohere(neighbors) separate_vector = self.separate(neighbors) match_heading_vector = self.match_heading(neighbors) self.heading += (cohere_vector + separate_vector + match_heading_vector) self.heading /= np.linalg.norm(self.heading) new_pos = np.array(self.pos) + self.heading * self.speed new_x, new_y = new_pos self.model.space.move_agent(self, (new_x, new_y)) ```
{ "source": "josepilco7501/TECSUP-DAE-2021-2", "score": 2 }
#### File: lab02/encuesta/views.py ```python from django.shortcuts import render # Create your views here. def index(request): context = { 'titulo':"Formulario", } return render(request, 'encuesta/formulario.html',context) def enviar(request): context = { 'titulo' : "Respuesta", 'nombre' : request.POST['nombre'], 'clave' : request.POST['password'], 'educacion' : request.POST['educacion'], 'nacionalidad' : request.POST['nacionalidad'], 'idiomas' : request.POST.getlist('idiomas'), 'correo' : request.POST['email'], 'website' : request.POST['sitioweb'], } return render(request, 'encuesta/respuesta.html',context) ``` #### File: lab02/operaciones/views.py ```python from django.shortcuts import render from django.http import HttpResponse # Create your views here. def calculadora(request): context = { 'titulo' : "Ingrese los numeros", } return render(request,'operaciones/formulario.html',context) def resultado(request): a=request.POST['numeroa'] b=request.POST['numerob'] if request.POST['operacion'] == 'suma': resultado= int(a)+int(b) if request.POST['operacion'] == 'resta': resultado= int(a)-int(b) if request.POST['operacion'] == 'multiplicacion': resultado= int(a)*int(b) context = { 'operacion' : request.POST['operacion'], 'numeroa' : request.POST['numeroa'], 'numerob' : request.POST['numerob'], 'titulo' : "Resultado de la operación", 'resultado' :resultado } return render(request,'operaciones/resultados.html',context) def datosCilindro(request): context = { 'titulo' : "CÁLCULO DEL VOLUMEN DE UN CILINDRO " } return render(request,'operaciones/formCilindro.html',context) def resultVolumen(request): diametro=request.POST['diametro'] altura=request.POST['altura'] radio=float(diametro)/2 volumen=(3.1416*(radio)**2)*float(altura) context = { 'titulo' : 'VOLUMEN DEL CILINDRO', 'volumen' : volumen } return render(request,'operaciones/resultVolumen.html',context) ```
{ "source": "JosepLeder/CLKRobovat", "score": 2 }
#### File: policies/cnn_grasp_policy/CornellDataset.py ```python import os import glob import torch import numpy as np from torch.utils.data import Dataset from torchvision.transforms import ToTensor from robovat.utils.grasp_rect import GraspRectangle, rectangles2image from imageio import imread def normalize(img): minimg = np.min(img) maximg = np.max(img) return (img - minimg) * 2 / (maximg - minimg) - 1 class CornellDataset(Dataset): def __init__(self, data_path='/home/josep/e/orange/cornell/') -> None: graspf = glob.glob(os.path.join(data_path, '*', 'pcd*cpos.txt')) depthf = [f.replace('cpos.txt', 'd.tiff') for f in graspf] self.grs = [] self.depth = [] self.output_shape = [424, 512] for g, d in zip(graspf, depthf): grasp_rects = GraspRectangle.load_from_cornell_file(g, self.output_shape) self.grs.append(grasp_rects) depth = np.array(imread(d)) depth = depth[:self.output_shape[0], :self.output_shape[1]] new_shape = (1, depth.shape[0], depth.shape[1]) self.depth.append(depth.reshape(new_shape)) def __len__(self): return len(self.depth) def __getitem__(self, idx): return torch.tensor(normalize(self.depth[idx]), dtype=torch.float32), \ rectangles2image(self.grs[idx], self.depth[idx].shape) ``` #### File: robovat/policies/grasp_policy.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import numpy as np from robovat.policies import image_grasp_sampler from robovat.policies import policy from robovat.utils.yaml_config import YamlConfig class AntipodalGrasp4DofPolicy(policy.Policy): """Antipodal grasp 4-DoF policy.""" def __init__(self, env, config=None): """Initialize. Args: env: Environment. config: Policy configuration. """ super(AntipodalGrasp4DofPolicy, self).__init__(env, config) config = self.config self._sampler = image_grasp_sampler.AntipodalDepthImageGraspSampler( friction_coef=config.SAMPLER.FRICTION_COEF, depth_grad_thresh=config.SAMPLER.DEPTH_GRAD_THRESH, depth_grad_gaussian_sigma=config.SAMPLER.DEPTH_GRAD_GAUSSIAN_SIGMA, downsample_rate=config.SAMPLER.DOWNSAMPLE_RATE, max_rejection_samples=config.SAMPLER.MAX_REJECTION_SAMPLES, crop=config.SAMPLER.CROP, min_dist_from_boundary=config.SAMPLER.MIN_DIST_FROM_BOUNDARY, min_grasp_dist=config.SAMPLER.MIN_GRASP_DIST, angle_dist_weight=config.SAMPLER.ANGLE_DIST_WEIGHT, depth_samples_per_grasp=config.SAMPLER.DEPTH_SAMPLES_PER_GRASP, min_depth_offset=config.SAMPLER.MIN_DEPTH_OFFSET, max_depth_offset=config.SAMPLER.MAX_DEPTH_OFFSET, depth_sample_window_height=( config.SAMPLER.DEPTH_SAMPLE_WINDOW_HEIGHT), depth_sample_window_width=( config.SAMPLER.DEPTH_SAMPLE_WINDOW_WIDTH), gripper_width=config.GRIPPER_WIDTH) @property def default_config(self): """Load the default configuration file.""" config_path = os.path.join('configs', 'policies', 'antipodal_grasp_4dof_policy.yaml') assert os.path.exists(config_path), ( 'Default configuration file %s does not exist' % (config_path) ) return YamlConfig(config_path).as_easydict() def _action(self, observation): """Implementation of action. Args: observation: The observation of the current step. Returns: action: The action of the current step. """ depth = observation['depth'] intrinsics = observation['intrinsics'] grasps = self._sampler.sample(depth, intrinsics, 1) return np.squeeze(grasps, axis=0) # TODO: initial grasp policy class GraspSegPolicy(policy.Policy): """grasp 4-DoF policy from segmentation mask.""" def __init__(self, env, config=None): """Initialize. Args: env: Environment. config: Policy configuration. """ super(GraspSegPolicy, self).__init__(env, config) self.config = config self.env = env self.sampler = image_grasp_sampler.SegmentationGraspSampler(gripper_width=0.04) @property def default_config(self): """Load the default configuration file.""" config_path = os.path.join('configs', 'policies', 'antipodal_grasp_4dof_policy.yaml') assert os.path.exists(config_path), ( 'Default configuration file %s does not exist' % (config_path) ) return YamlConfig(config_path).as_easydict() def _action(self, observation): """Implementation of action. Args: observation: The observation of the current step. Returns: action: The action of the current step. """ rgb = observation['rgb'] depth = observation['depth'] camera = self.env.camera() grasps = self.sampler.sample(rgb, depth, camera, 1) print("="*50) print(grasps) print("="*50) return np.squeeze(grasps, axis=0) ``` #### File: robovat/reward_fns/repeat_graspable_reward.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from robovat.reward_fns import reward_fn from robovat.utils.logging import logger class RepeatGraspReward(reward_fn.RewardFn): """Reward function of the environments.""" def __init__(self, name, end_effector_name, graspable_names, terminate_after_grasp=True, streaming_length=1000): """Initialize. Args: name: Name of the reward. end_effector_name: Name of the end effector. graspable_names: Names of the graspable objects. terminate_after_grasp: The episode will be terminated after a grasp attemp if True. streaming_length: The streaming length for keeping the history. """ self.name = name self.end_effector_name = end_effector_name self.graspable_names = graspable_names self.terminate_after_grasp = terminate_after_grasp self.streaming_length = streaming_length self.env = None self.end_effector = None self.graspables = None self.history = [] def on_episode_start(self): """Called at the start of each episode.""" self.end_effector = self.env.simulator.bodies[self.end_effector_name] self.graspables = [self.env.simulator.bodies[name] for name in self.graspable_names] def get_reward(self): """Returns the reward value of the current step. Returns: success: The success signal. terminate_after_grasp: The termination signal. """ termination = (self.env._num_steps >= self.env.config.RESET.MAX_ACTIONS_PER_EPS) or \ (len(self.env.graspables) <= self.env.config.SIM.GRASPABLE.NUM // 2) success = self.env.success self._update_history(success) success_rate = np.mean(self.history or [-1]) logger.debug('Grasp Success: %r, Success Rate %.3f', success, success_rate) return success, termination def _update_history(self, success): """Update the reward history. Args: The success signal. """ self.history.append(success) if len(self.history) > self.streaming_length: self.history = self.history[-self.streaming_length:] ``` #### File: CLKRobovat/tools/run_env.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import os import random import socket import uuid from builtins import input import numpy as np import h5py import _init_paths # NOQA from robovat import envs from robovat import policies from robovat.io import hdf5_utils from robovat.io.episode_generation import generate_episodes from robovat.simulation.simulator import Simulator from robovat.utils import time_utils from robovat.utils.logging import logger from robovat.utils.yaml_config import YamlConfig def parse_args(): """ Parse arguments. Returns: args: The parsed arguments. """ parser = argparse.ArgumentParser() parser.add_argument('--env', dest='env', type=str, help='The environment.', required=True) parser.add_argument('--policy', dest='policy', type=str, help='The policy.', default=None) parser.add_argument('--env_config', dest='env_config', type=str, help='The configuration file for the environment.', default=None) parser.add_argument('--policy_config', dest='policy_config', type=str, help='The configuration file for the policy.', default=None) parser.add_argument('--config_bindings', dest='config_bindings', type=str, help='The configuration bindings.', default=None) parser.add_argument('--use_simulator', dest='use_simulator', type=int, help='Run experiments in the simulation is it is True.', default=1) parser.add_argument( '--assets', dest='assets_dir', type=str, help='The assets directory.', default='./assets') parser.add_argument( '--output', dest='output_dir', type=str, help='The output directory to save the episode history.', default=None) parser.add_argument( '--num_steps', dest='num_steps', type=int, help='Maximum number of time steps for each episode.', default=None) parser.add_argument( '--num_episodes', dest='num_episodes', type=int, help='Maximum number of episodes.', default=None) parser.add_argument( '--num_episodes_per_file', dest='num_episodes_per_file', type=int, help='The maximum number of episodes saved in each file.', default=1000) parser.add_argument( '--debug', dest='debug', type=int, help='True for debugging, False otherwise.', default=0) parser.add_argument( '--worker_id', dest='worker_id', type=int, help='The worker ID for running multiple simulations in parallel.', default=0) parser.add_argument( '--seed', dest='seed', type=int, help='None for random; any fixed integers for deterministic.', default=None) parser.add_argument( '--pause', dest='pause', type=bool, help='Whether to pause between episodes.', default=False) parser.add_argument( '--timeout', dest='timeout', type=float, help='Seconds of timeout for an episode.', default=120) args = parser.parse_args() return args def parse_config_files_and_bindings(args): if args.env_config is None: env_config = None else: env_config = YamlConfig(args.env_config).as_easydict() if args.policy_config is None: policy_config = None else: policy_config = YamlConfig(args.policy_config).as_easydict() if args.config_bindings is not None: parsed_bindings = ast.literal_eval(args.config_bindings) logger.info('Config Bindings: %r', parsed_bindings) env_config.update(parsed_bindings) policy_config.update(parsed_bindings) return env_config, policy_config def main(): args = parse_args() # Configuration. env_config, policy_config = parse_config_files_and_bindings(args) # Set the random seed. if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) # Simulator. if args.use_simulator: simulator = Simulator(worker_id=args.worker_id, use_visualizer=bool(args.debug), assets_dir=args.assets_dir) else: simulator = None # Environment. env_class = getattr(envs, args.env) env = env_class(simulator=simulator, config=env_config, debug=args.debug) # Policy. policy_class = getattr(policies, args.policy) policy = policy_class(env=env, config=policy_config) # Output directory. if args.output_dir is not None: hostname = socket.gethostname() hostname = hostname.split('.')[0] output_dir = os.path.abspath(args.output_dir) output_dir = os.path.join(output_dir, hostname, '%02d' % (args.key)) if not os.path.isdir(output_dir): logger.info('Making output directory %s...', output_dir) os.makedirs(output_dir) # Generate and write episodes. logger.info('Start running...') # env.reset() num_episodes_this_file = 0 for episode_index, episode in generate_episodes( env, policy, num_steps=args.num_steps, num_episodes=args.num_episodes, timeout=args.timeout, debug=args.debug): if args.output_dir: # Create a file for saving the episode data. if num_episodes_this_file == 0: timestamp = time_utils.get_timestamp_as_string() filename = 'episodes_%s.hdf5' % (timestamp) output_path = os.path.join(output_dir, filename) logger.info('Created a new file %s...', output_path) # Append the episode to the file. logger.info('Saving episode %d to file %s (%d / %d)...', episode_index, output_path, num_episodes_this_file, args.num_episodes_per_file) with h5py.File(output_path, 'a') as fout: name = str(uuid.uuid4()) group = fout.create_group(name) hdf5_utils.write_data_to_hdf5(group, episode) num_episodes_this_file += 1 num_episodes_this_file %= args.num_episodes_per_file if args.pause: input('Press [Enter] to start a new episode.') if __name__ == '__main__': main() ```
{ "source": "JosepLeder/Lekai-Reinforcement-Learning-Notes", "score": 3 }
#### File: code/agent/DDQN.py ```python import gym import math import random import numpy as np import matplotlib import matplotlib.pyplot as plt from collections import namedtuple, deque from itertools import count from gym.wrappers.monitoring.video_recorder import VideoRecorder import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F # set up matplotlib is_ipython = 'inline' in matplotlib.get_backend() if is_ipython: from IPython import display plt.ion() # set up device device = torch.device("cpu") # define transition Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) steps_cnt = 0 episode_durations = [] evaluate_performance = [] # Create a queue to store tranitions and use it for experience replay class ReplayMemory(object): def __init__(self, capacity): self.capacity = capacity self.memory = deque(maxlen=capacity) self.position = 0 def push(self, *args): self.memory.append(Transition(*args)) def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) class DQN(nn.Module): # use simple MLP network as Q-Function def __init__(self, inputs, outputs): super(DQN, self).__init__() self.l1 = nn.Linear(inputs, inputs * 24) self.l2 = nn.Linear(inputs * 24, inputs * 24) self.head = nn.Linear(inputs * 24, outputs) def forward(self, x): x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) return self.head(x.view(x.size(0), -1)) class Agent(object): def __init__(self, hp, env_name='CartPole-v1'): # set up environment self.env = gym.make(env_name) self.env_name = env_name # Get number of actions from gym action and state space random_state = self.env.reset() self.n_states = random_state.size self.n_actions = self.env.action_space.n # Create network to represent Q-Function self.current_net = DQN(self.n_states, self.n_actions).to(device) self.target_net = DQN(self.n_states, self.n_actions).to(device) self.target_net.load_state_dict(self.current_net.state_dict()) self.target_net.eval() self.optimizer = optim.Adam(self.current_net.parameters()) self.memory = ReplayMemory(hp.MEM_REPLAY_SIZE) self.steps_cnt = 0 class HyperParameters(object): def __init__(self, params): self.MEM_REPLAY_SIZE = params['MEM_REPLAY_SIZE'] self.BATCH_SIZE = params['BATCH_SIZE'] self.GAMMA = params['GAMMA'] self.EPS_START = params['EPS_START'] self.EPS_END = params['EPS_END'] self.EPS_DECAY = params['EPS_DECAY'] self.EVALUATE_FREQUENCY = params['EVALUATE_FREQUENCY'] self.ALTER_TARGET_UPDATE_RATE = params['ALTER_TARGET_UPDATE_RATE'] self.MAX_EPISODES = params['MAX_EPISODES'] def state2tensor(state): return torch.tensor(state, dtype=torch.float).unsqueeze(0).to(device) # Using epsilon greedy policy to select an action def select_action(state, agent, hp): global steps_cnt sample = random.random() eps_threshold = hp.EPS_END + (hp.EPS_START - hp.EPS_END) * \ math.exp(-1. * steps_cnt / hp.EPS_DECAY) steps_cnt += 1 if sample > eps_threshold: with torch.no_grad(): # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the larger expected reward. return agent.current_net(state).max(1)[1].view(1, 1) else: return torch.tensor([[random.randrange(agent.n_actions)]], device=device, dtype=torch.long) # Select the action with most rewards def select_best_action(state, agent): with torch.no_grad(): return agent.current_net(state).max(1)[1].view(1, 1) def plot_durations(scores_to_win, hp): plt.figure(2) plt.clf() durations_t = torch.tensor(episode_durations, dtype=torch.float) scores_to_win = torch.tensor([scores_to_win] * len(episode_durations)) plt.title('Training...') plt.xlabel('Episode') plt.ylabel('Duration') plt.plot(durations_t.numpy(), label="Explore Reward") plt.plot([x * hp.EVALUATE_FREQUENCY for x in range(0, len(evaluate_performance))], evaluate_performance, label="Optimal Score") plt.plot(scores_to_win.numpy(), label="Target Score") # Compute and plot current 10 episodes averages if len(durations_t) >= 10: means = durations_t.unfold(0, 10, 1).mean(1).view(-1) means = torch.cat((durations_t[0:9], means)) plt.plot(means.numpy(), label="Average Explore Reward") plt.legend() plt.pause(0.001) # pause a bit so that plots are updated if is_ipython: display.clear_output(wait=True) display.display(plt.gcf()) def optimize_model(agent, hp): if len(agent.memory) < hp.BATCH_SIZE: return transitions = agent.memory.sample(hp.BATCH_SIZE) # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for # detailed explanation). This converts batch-array of Transitions # to Transition of batch-arrays. batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.bool) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken. These are the actions which would've been taken # for each batch state according to current_net state_action_values = agent.current_net(state_batch).gather(1, action_batch) # Compute argmax(a{t+1})[Q(s_{t+1}, a_{t+1})] for all next states. # Expected values of actions for non_final_next_states are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. next_state_values = torch.zeros(hp.BATCH_SIZE, device=device) next_state_values[non_final_mask] = agent.target_net(non_final_next_states).max(1)[0].detach() # Compute the expected Q values expected_state_action_values = (next_state_values * hp.GAMMA) + reward_batch # Compute MSE loss loss = F.mse_loss(state_action_values, expected_state_action_values.unsqueeze(1)) # Optimize the model agent.optimizer.zero_grad() loss.backward() # clip the gradient to avoid gradient gradient explosion for param in agent.current_net.parameters(): param.grad.data.clamp_(-1, 1) agent.optimizer.step() def evaluate_model(agent, scores_to_win): durations = [] for i_episode in range(1): # Initialize the environment and state state = agent.env.reset() state = state2tensor(state) total_reward = 0 for t in count(): # Select the action with the most rewards action = select_best_action(state, agent=agent) next_state, reward, done, _ = agent.env.step(action.item()) total_reward += reward if done: next_state = None else: next_state = state2tensor(next_state) state = next_state if done or t + 1 >= 2000: durations.append(total_reward) break mean = np.mean(durations) evaluate_performance.append(mean) if mean > scores_to_win: print("Solved! Mean scores: {}".format(mean)) return True else: print("Unsolved! Mean scores: {}".format(mean)) return False def get_scores_to_win(agent): try: scores_to_win = agent.env.unwrapped.reward_threshold except AttributeError: try: scores_to_win = agent.env.spec.reward_threshold except AttributeError: scores_to_win = agent.env.unwrapped.spec.reward_threshold return scores_to_win if scores_to_win is not None else -10 def get_reward(agent, state, next_state, reward, done, total_reward): if agent.env_name in ['CartPole-v0', 'CartPole-v1', 'Acrobot-v1']: return reward elif agent.env_name == 'MountainCar-v0': if done: return 210 + total_reward else: return abs(next_state[0] - state[0])[0] else: return 0 def save_video(agent, video_path): num_episodes = 0 # video_recorder = None video_recorder = VideoRecorder( agent.env, video_path, enabled=video_path is not None) state = agent.env.reset() state = state2tensor(state) for t in count(): agent.env.unwrapped.render() video_recorder.capture_frame() action = select_best_action(state=state, agent=agent) next_state, rew, done, info = agent.env.step(action.item()) next_state = state2tensor(next_state) state = next_state if done: # save video of first episode print("Saved video.") video_recorder.close() video_recorder.enabled = False break def train_model(params, env='CartPole-v1'): hp = HyperParameters(params) agent = Agent(hp, env_name=env) keys = agent.current_net.state_dict().keys() scores_to_win = get_scores_to_win(agent=agent) for i_episode in range(hp.MAX_EPISODES): # Initialize the environment and state state = agent.env.reset() state = state2tensor(state) total_reward = 0 for t in count(): # Select and perform an action action = select_action(state, agent, hp) next_state, reward, done, _ = agent.env.step(action.item()) reward = get_reward(agent, state, next_state, reward, done, -t) total_reward += reward reward = torch.tensor([reward], device=device) if done: next_state = None else: next_state = state2tensor(next_state) # Store the transition in memory agent.memory.push(state, action, next_state, reward) # Move to the next state state = next_state # Perform one step of the optimization (on the target network) optimize_model(agent=agent, hp=hp) # Update the target network using alternative target network method # phi = tau * phi + (1 - tau) * phi_updated target_state = agent.target_net.state_dict() policy_state = agent.current_net.state_dict() for key in keys: target_state[key] = hp.ALTER_TARGET_UPDATE_RATE * target_state[key] + \ (1 - hp.ALTER_TARGET_UPDATE_RATE) * policy_state[key] agent.target_net.load_state_dict(target_state) if done: episode_durations.append(total_reward) plot_durations(scores_to_win, hp=hp) break if i_episode % hp.EVALUATE_FREQUENCY == 0 and evaluate_model(agent=agent, scores_to_win=scores_to_win): print("Train finished after {} episodes!".format(i_episode + 1)) break plot_durations(scores_to_win, hp=hp) save_video(agent=agent, video_path="video/" + "DDQN_" + env + ".mp4") agent.env.render() agent.env.close() plt.ioff() plt.show() if __name__ == '__main__': train_model({'MEM_REPLAY_SIZE': 150000, 'BATCH_SIZE': 128, 'GAMMA': 0.999, 'EPS_START': 0.9, 'EPS_END': 0.08, 'EPS_DECAY': 200, 'EVALUATE_FREQUENCY': 20, 'ALTER_TARGET_UPDATE_RATE': 0.995, 'MAX_EPISODES': 1000}) ``` #### File: Lekai-Reinforcement-Learning-Notes/code/distributions.py ```python import torch import torch.nn as nn from utils import init class DiagGaussianDistribution(nn.Module): def __init__(self, num_inputs, num_outputs): super(DiagGaussianDistribution, self).__init__() init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0)) self.fc_mean = init_(nn.Linear(num_inputs, num_outputs)) self._bias = nn.Parameter(torch.zeros(num_outputs).unsqueeze(1)) def forward(self, x): action_mean = self.fc_mean(x) # An ugly hack for my KFAC implementation. zeros = torch.zeros(action_mean.size()) if zeros.dim() == 2: bias = self._bias.t().view(1, -1) else: bias = self._bias.t().view(1, -1, 1, 1) action_logstd = zeros + bias return FixedNormal(action_mean, action_logstd.exp()) # Normal class FixedNormal(torch.distributions.Normal): def log_probs(self, actions): return super().log_prob(actions).sum(-1, keepdim=True) def entrop(self): return super.entropy().sum(-1) def mode(self): return self.mean ```
{ "source": "JosepLeder/RL-Graph-Matching", "score": 3 }
#### File: agent/nets/GraphConvNet.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch_scatter import scatter_mean from torch.nn import Linear, ReLU from torch_geometric.nn import GraphConv class GraphConvNet(nn.Module): def __init__(self, n_feat, n_hid, n_out): super(GraphConvNet).__init__() self.conv1 = GraphConv(n_feat, n_hid) self.conv2 = GraphConv(n_hid, n_hid * 2) self.conv3 = GraphConv(n_hid * 2, n_out) def forward(self, data): data.x = F.elu(self.conv1(data.x, data.edge_index)) data.x = F.elu(self.conv2(data.x, data.edge_index)) data.x = F.elu(self.conv3(data.x, data.edge_index)) x_1 = scatter_mean(data.x, data.batch, dim=0) x = x_1 return x class DoubleGraphConvNet(nn.Module): def __init__(self, graph, subgraph, point): super(DoubleGraphConvNet).__init__() self.graph_conv = GraphConvNet(graph.n_feat, graph.n_feat * 2, graph.n_feat * 3) self.subgraph_conv = GraphConvNet(subgraph.n_feat, subgraph.n_feat * 2, subgraph.n_feat * 3) self.l1 = Linear(graph.n_feat * 3 + subgraph.n_feat * 3 + point, 600) self.l2 = Linear(600, 256) self.l3 = Linear(256, graph.n_feat) def forward(self, graph, subgraph, point): x1 = self.graph_conv(graph) x2 = self.subgraph_conv(subgraph) x = torch.cat([x1, x2, point]) x = ReLU(self.l1(x)) x = ReLU(self.l2(x)) x = self.l3(x) return x ```
{ "source": "josepmartorell/File-Duplicate-Detector", "score": 3 }
#### File: josepmartorell/File-Duplicate-Detector/FileManager.py ```python import os import hashlib import utils from os import strerror class Main: def __init__(self, extension): self.extension = extension self.count = 0 self.my_dict = {} self.the_file = () self.hash = '' if self.extension != "": self.hash = ' sha256' else: self.hash = ' md5' def detect(self): try: # walk through de directories searching for extension's files for (dirname, dirs, files) in os.walk('../../Downloads/'): print('hashing files in', ''.join(dirname).strip('./'), 'dir ...\n') utils.progress() print("\t") for filename in files: the_file = os.path.join(dirname, filename) if self.extension == '': h = hashlib.md5() else: h = hashlib.sha256() with open(the_file, 'rb') as afile: buf = afile.read() h.update(buf) thehash = h.hexdigest() # in case of duplication files it fills the tuple of # the dictionary or if not is the case simply a value if filename.endswith(self.extension): if thehash in self.my_dict: self.my_dict[thehash] += (the_file,) else: self.my_dict[thehash] = (the_file,) check = utils.is_empty(self.my_dict) if check is not True: # print hashes and values for key in self.my_dict.keys(): snap = ' '.join(self.my_dict[key]).lstrip('./Downloads') print('File: ', snap) print('Hash: ', key, self.hash) else: print('there are no files with the ' + utils.ext + ' extension') except IOError as e: print("I/O error occurred: ", strerror(e.errno)) if __name__ == '__main__': obj = Main(utils.ext) obj.detect() utils.unzip() utils.remove() ```
{ "source": "josepmartorell/ScratchPad", "score": 3 }
#### File: ScratchPad/flaskproject/views.py ```python from datetime import datetime from flaskproject import app from flask import (request, render_template, url_for, redirect) from flaskproject.models import Note from flaskproject.forms import NoteForm from flaskproject import db @app.route('/') @app.route('/home') def entry_point(): """Renders the home page.""" notes = Note.query.filter_by(is_deleted=False).all() return render_template( 'index.html', title='Note List', year=datetime.now().year, notes=notes, ) @app.route('/new-note', methods=['GET', 'POST']) def create_note(): if request.method == 'POST': form = NoteForm(request.form) if form.validate(): note = Note(form.subject.data, form.detail.data) db.session.add(note) db.session.commit() return redirect(url_for('entry_point')) else: form = NoteForm() return render_template( 'create_note.html', title='Create New Note', year=datetime.now().year, form=form ) @app.route('/note/<int:id>/detail/') def note_detail(id): note = Note.query.get(id) return render_template( 'note_detail.html', title='Note Detail', year=datetime.now().year, note =note ) @app.route('/note/<int:id>/edit/', methods=['GET', 'POST']) def edit_note(id): if request.method == 'POST': note = Note.query.get(id) form = NoteForm(request.form) if form.validate(): note.edit(form.subject.data, form.detail.data) db.session.commit() return redirect(url_for('entry_point')) else: note = Note.query.get(id) form = NoteForm() form.subject.data = note.subject form.detail.data = note.detail return render_template( 'edit_note.html', title='Edit Note', year=datetime.now().year, form=form, note_id=note.id, ) @app.route('/note/<int:id>/delete/') def delete_note(id): note = Note.query.get(id) note.delete() db.session.commit() return redirect(url_for('entry_point')) ```
{ "source": "josepmartorell/Selenium_Beautifulsoup4", "score": 2 }
#### File: Selenium_Beautifulsoup4/solole/main.py ```python import json import time import operator from time import sleep from email import encoders from bs4 import BeautifulSoup from selenium import webdriver # todo: -> Check driver version periodically # check = input("\nPress enter to check Selenium driver version...") # os.system('python -c "import selenium; print(selenium.__version__)"') # As you are using Selenium 3.8.0 you have to use GeckoDriver mandatory. But again as you are using Firefox v46.0 you # have to set the capability marionette to False through DesiredCapabilities() as follows REF: # https://stackoverflow.com/questions/47782650/selenium-common-exceptions-sessionnotcreatedexception-message-unable-to-find-a/47785513 # from selenium.webdriver.common.desired_capabilities import DesiredCapabilities # cap = DesiredCapabilities().FIREFOX # cap["marionette"] = False from selenium.common.exceptions import TimeoutException, NoSuchElementException from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.by import By from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.mime.text import MIMEText from openpyxl.styles import PatternFill, Border, Side, Font from openpyxl.styles import Alignment, Protection from openpyxl import load_workbook from openpyxl import Workbook from os import remove import target as t import data as d import datetime import requests import smtplib import shutil import ssl import os class App: def __init__(self, keys='../../../Documents/keys.json', target_city='new york', depart_m='2', depart_w='3', depart_d='1', return_m='2', return_w='3', return_d='7', cell_city='New York', cell_cc='US', path='../../../Booking'): # Change this to your Target details and desired booking path self.keys = keys self.target_city = target_city self.depart_m = depart_m self.depart_w = depart_w self.depart_d = depart_d self.return_m = return_m self.return_w = return_w self.return_d = return_d self.cell_city = cell_city self.cell_cc = cell_cc self.path = path # self.driver = webdriver.Firefox(capabilities=cap, executable_path='/usr/local/bin/geckodriver') # Change # this to your FirefoxDriver path. todo: the expresion "executable_path=' was missed in the original version # uncapable of locating the driver!!!! self.driver = webdriver.Firefox( executable_path='/usr/local/bin/geckodriver') # Change this to your FirefoxDriver path. self.error = False self.timeout = 30 self.main_url = 'https://b2b.solole.es' self.all_positions = [] self.all_hotels = [] self.all_addresses = [] self.all_prices = [] self.euro_symbol = '€' self.display = [] self.cheap = [] self.index = "" self.data = {} self.shift = 1 self.fork = 0 self.switch = 1 self.position = 0 self.driver.get(self.main_url) self.log_in() if self.error is False: self.search_target_profile() if self.error is False: self.scroll_down() if self.error is False: if not os.path.exists(path): os.mkdir(path) self.file_manager() if self.switch != 1: sleep(10) self.driver.close() def log_in(self, ): try: with open(self.keys, 'r') as a: keys_dict = json.loads(a.read()) self.driver.implicitly_wait(10) print('\nLogging in with username and password ...') user_name_input = self.driver.find_element_by_xpath('//input[@placeholder="<NAME>"]') user_name_input.send_keys(keys_dict['username'][2]) sleep(1) password_input = self.driver.find_element_by_xpath('//input[@placeholder="<PASSWORD>aseña"]') password_input.send_keys(keys_dict['password'][2]) sleep(1) password_input.submit() sleep(1) a.close() # self.close_settings_window_if_there() except Exception as e: print('Some exception occurred while trying to find username or password field\n', e) self.error = True def search_target_profile(self): try: print("Manipulating search engine ...") search_bar = self.driver.find_element_by_xpath('//*[@id="hotelzonePred"]') search_bar.send_keys(self.target_city) # target_profile_url = self.main_url + '/' + self.target_city + '/' # self.driver.get(target_profile_url) sleep(1) # todo: accessing a drop-down menu item directly with xpath # element = self.driver.find_element_by_xpath('//iboosy-hotelzone/div[2]/div/button[2]/div') # element.click() # todo: accessing a drop-down menu item by position within the list # https://selenium-python.readthedocs.io/navigating.html#interacting-with-the-page all_options = self.driver.find_elements_by_class_name('dropdown-item') all_options[0].click() sleep(1) self.driver.find_element_by_css_selector( 'div.w-50:nth-child(1) > div:nth-child(2) > div:nth-child(1)').click() # todo: Within <div class = "ngb-dp-week ..."> the seven days of that week are stored each in a <div # class = "ngb-dp-day ...">. Secondary click on the inspector on the day that interests you and copy the # css selector, which you will use to click on in the calendar picker self.driver.find_element_by_css_selector('div.ngb-dp-month:nth-child( ' + self.depart_m + ' ) > ' 'ngb-datepicker-month-view:nth-child(1) > div:nth-child( ' + self.depart_w + ' ) > ' 'div:nth-child( ' + self.depart_d + ' )').click() self.driver.find_element_by_css_selector('div.ngb-dp-month:nth-child( ' + self.return_m + ' ) > ' 'ngb-datepicker-month-view:nth-child(1) > div:nth-child( ' + self.return_w + ' ) > ' 'div:nth-child( ' + self.return_d + ' )').click() user_name_input = self.driver.find_element_by_xpath('//*[@id="nationalityPred"]') user_name_input.clear() user_name_input.send_keys('España') sleep(1) # todo: accessing a drop-down menu item directly with xpath element = self.driver.find_element_by_xpath( '//div[3]/iboosy-nationalities/div/div/ngb-typeahead-window/button/div/span[2]') element.click() login_button = self.driver.find_element_by_xpath('//*[@id="searchbtn"]') # instead of submit it works with click print('Loading page ...') login_button.click() sleep(1) except Exception as e: self.error = True print('Could not find search bar\n', e) def scroll_down(self): self.driver.implicitly_wait(20) try: # self.driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') # fixme: scroll # todo REF: https://stackoverflow.com/questions/48006078/how-to-scroll-down-in-python-selenium-step-by-step # FIXME 1: two ways to scroll down, # 1) go down to the bottom of the page at once. # self.driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') # fixme: scroll # FIXME 2: # 2) Descend from item to item to the bottom of the page. # in this example and item is the text of the button "See options": read_mores = self.driver.find_elements_by_xpath('//div[text()="Precio desde"]') screen = 0 for read_more in read_mores: if screen == 4: print('Scrolling page ...') self.driver.execute_script("arguments[0].scrollIntoView();", read_more) screen += 1 # read_more.click() try: soup = BeautifulSoup(self.driver.page_source, 'lxml') # todo: bs4 hotel_list = soup.find_all('div', {'class': 'row result-option'}) # fixme: name mechanism: for i, hotel in enumerate(hotel_list): self.all_positions.append(i + 1) hotel_name = hotel.find('span', {'_ngcontent-c18': ""}).getText() hotel_name = ' '.join(hotel_name.split()) # print("%d - %s" % (i + 1, hotel_name)) self.all_hotels.append(hotel_name) except IOError as e: print("I/O error occurred: ", os.strerror(e.errno)) print("Error loading the hotels ") pass try: soup = BeautifulSoup(self.driver.page_source, 'lxml') # todo: bs4 address_list = soup.find_all('div', {'class': 'address'}) # fixme: address mechanism: for i, address in enumerate(address_list): hotel_address = address.find('span', {'_ngcontent-c18': ""}).getText() hotel_address = ' '.join(hotel_address.split()) self.all_addresses.append(hotel_address) print("Scraping page ...") except IOError as e: print("I/O error occurred: ", os.strerror(e.errno)) print("Error loading addresses ") pass try: soup = BeautifulSoup(self.driver.page_source, 'lxml') # todo: bs4 price_list = soup.find_all('div', {'class': 'text-main-light prices'}) # fixme: price mechanism: for i, price in enumerate(price_list): hotel_price = price.find('span', {'_ngcontent-c18': ""}).getText().replace('€', '') hotel_price = ' '.join(hotel_price.split()) if len(hotel_price) == 5: hotel_price = " " + hotel_price if len(hotel_price) == 6: hotel_price = " " + hotel_price if len(hotel_price) == 7: hotel_price = " " + hotel_price if len(hotel_price) == 8: hotel_price = "" + hotel_price self.all_prices.append(hotel_price) except IOError as e: print("I/O error occurred: ", os.strerror(e.errno)) print("Error loading prices ") pass print("\n\tSnapshoot:\n") # display list list = zip(self.all_prices, self.all_hotels, self.all_addresses) for i, (j, k, v) in enumerate(list): if len(j) == 5: j = " " + j if len(j) == 6: j = " " + j if len(j) == 7: j = " " + j if len(j) == 8: j = "" + j if i < 9: print(" %d - %s %s %s %s %s" % (i + 1, j, self.euro_symbol, k, " - ", v)) else: print("%d - %s %s %s %s %s" % (i + 1, j, self.euro_symbol, k, " - ", v)) print("\n\tRanking:\n") # float cast new_prices = [] for element in self.all_prices: rank = float(element) new_prices.append(rank) # final list display_list = zip(self.all_positions, self.all_hotels, new_prices, self.all_addresses) ranking = sorted(display_list, key=operator.itemgetter(2)) for j, k, v, w in ranking: if v < 100.00: print(" ", "{0:.2f}".format(v), k) if 99.00 < v < 1000.00: print(" ", "{0:.2f}".format(v), k) if 999.00 < v < 10000.00: print(" ", "{0:.2f}".format(v), k) if v > 9999.00: print("", "{0:.2f}".format(v), k) self.display = display_list self.data = ranking self.cheap = ranking[0] print('\nCheapest reservations: ', self.cheap[1], self.cheap[2], self.euro_symbol) for i, collation in enumerate(display_list): if collation[1] == self.cheap[1]: self.position = i print('Pointing to the target button ', self.position + 1, ' ...') # FIXME WARNING!!!! next line does not work with position -1 or just position! see it why... # Coincidentally, the first is the cheapest, that is, index 1, the variable self.index starts with 0, # therefore we must add 1. If we subtracted -1 or we did not add anything, it was out of range, # and the spider did not I found the address. self.index = str(self.position + 1) if self.error is False: self.target_button(self.index) except NoSuchElementException: print('Some error occurred while trying to scroll down') self.error = True def target_button(self, index): if index != '1': target_button = self.driver.find_element_by_xpath( '//div[ ' + index + ' ]/div/div[1]/div[2]/div[2]/div[1]/div[2]/span') self.driver.execute_script("arguments[0].scrollIntoView();", target_button) # target_button.click() else: target_button = self.driver.find_element_by_xpath( '//ng-component/div/div[1]/iboosy-navigation-bar/nav/div[2]/div[1]/a/div') self.driver.execute_script("arguments[0].scrollIntoView();", target_button) # target_button.click() def file_manager(self, ): f = open("trip_code.txt", "w+") f.write("LM30") f.close() bookings_folder_path = os.path.join(self.path, 'bookings') if not os.path.exists(bookings_folder_path): os.mkdir(bookings_folder_path) if self.error is False: self.write_bookings_to_excel_file(bookings_folder_path, self.shift) # if self.error is False: # self.read_bookings_from_excel_file(self.path + '/bookings/bookings.xlsx') return self.shift def read_code(self): global trip_code f = open("trip_code.txt", "r") if f.mode == 'r': trip_code = f.read() return trip_code def write_code(self, input_code): f = open("trip_code.txt", "w") f.write(input_code) f.close() pass def set_stylesheet(self, sheet, shift): # snap style sheet: if shift == 0: # set title header: header = ('Price', 'Retail', 'Profit', 'No', 'Hotel', 'Address') sheet.cell(row=1, column=1).value = header[0] sheet.cell(row=1, column=2).value = header[1] sheet.cell(row=1, column=3).value = header[2] sheet.cell(row=1, column=4).value = header[3] sheet.cell(row=1, column=5).value = header[4] sheet.cell(row=1, column=6).value = header[5] # set column width: sheet.column_dimensions['A'].width = 9 sheet.column_dimensions['B'].width = 9 sheet.column_dimensions['C'].width = 9 sheet.column_dimensions['D'].width = 4 sheet.column_dimensions['E'].width = 60 sheet.column_dimensions['F'].width = 50 # fixme: set number format: (only works in white sheets) sheet.column_dimensions['A'].number_format = '#,##0.00' sheet.column_dimensions['B'].number_format = '#,##0.00' sheet.column_dimensions['C'].number_format = '#,##0.00' # set bar title style: for col_range in range(1, 7): cell_title = sheet.cell(1, col_range) cell_title.fill = PatternFill( start_color="00c0c0c0", end_color="00c0c0c0", fill_type="solid") cell_title = sheet.cell(1, col_range) cell_title.font = Font(bold=True, size=11) bd = Side(style='thick', color="000000") cell_title.border = Border(left=bd, top=bd, right=bd, bottom=bd) # unwrap curtain for raw_range in range(len(self.all_positions)): for col_range in range(1, 7): # fixme REF: https://stackoverrun.com/es/q/3321778 # run number format with styles! # _cell = ws.cell('A1') # _cell.number_format = '0.00E+00' _cell = sheet.cell(raw_range + 2, 1) _cell.number_format = '#,##0.00' _cell = sheet.cell(raw_range + 2, 2) _cell.number_format = '#,##0.00' _cell = sheet.cell(raw_range + 2, 3) _cell.number_format = '#,##0.00' cell_title = sheet.cell(raw_range + 2, col_range) cell_title.fill = PatternFill( start_color="00eaeaea", end_color="00eaeaea", fill_type="solid") cell_title = sheet.cell(raw_range + 2, col_range) cell_title.font = Font(bold=True, size=11) bd = Side(style='thin', color="000000") cell_title.border = Border(left=bd, top=bd, right=bd, bottom=bd) # turbo style sheet: else: # time frame: sheet.merge_cells('A1:I1') time_frame = sheet['A1'] time_frame.fill = PatternFill( start_color="00FF0000", end_color="00FF0000", fill_type="solid") time_frame.font = Font(bold=True, size=11) bd = Side(style='thick', color="000000") time_frame.border = Border(left=bd, top=bd, right=bd, bottom=bd) # timestamp time_label = 'Snapshoot: %s Time Frame: %s%s/2020 - %s%s/2020' \ % (time.ctime(), t.dep + "/", t.start_month, t.ret + "/", t.end_month) sheet.cell(row=1, column=1).value = time_label # set title header: header = ('Code', 'Price', 'Retail', 'Profit', 'CC', 'City', 'No', 'Hotel', 'Address') sheet.cell(row=2, column=1).value = header[0] sheet.cell(row=2, column=2).value = header[1] sheet.cell(row=2, column=3).value = header[2] sheet.cell(row=2, column=4).value = header[3] sheet.cell(row=2, column=5).value = header[4] sheet.cell(row=2, column=6).value = header[5] sheet.cell(row=2, column=7).value = header[6] sheet.cell(row=2, column=8).value = header[7] sheet.cell(row=2, column=9).value = header[8] # set number format: # fixme: set number format: (only for in white sheets) sheet.column_dimensions['B'].number_format = '#,##0.00' sheet.column_dimensions['C'].number_format = '#,##0.00' sheet.column_dimensions['D'].number_format = '#,##0.00' # set column width: sheet.column_dimensions['A'].width = 6 sheet.column_dimensions['B'].width = 9 sheet.column_dimensions['C'].width = 9 sheet.column_dimensions['D'].width = 9 sheet.column_dimensions['E'].width = 4 sheet.column_dimensions['F'].width = 16 sheet.column_dimensions['G'].width = 4 sheet.column_dimensions['H'].width = 60 sheet.column_dimensions['I'].width = 50 # set bar title style: for col_range in range(1, 10): cell_title = sheet.cell(2, col_range) cell_title.fill = PatternFill( start_color="00c0c0c0", end_color="00c0c0c0", fill_type="solid") cell_title = sheet.cell(2, col_range) cell_title.font = Font(bold=True, size=11) bd = Side(style='thick', color="000000") cell_title.border = Border(left=bd, top=bd, right=bd, bottom=bd) # unwrap curtain for raw_range in range(len(self.all_positions)): for col_range in range(1, 10): _cell = sheet.cell(raw_range + 3, 2) _cell.number_format = '#,##0.00' _cell = sheet.cell(raw_range + 3, 3) _cell.number_format = '#,##0.00' _cell = sheet.cell(raw_range + 3, 4) _cell.number_format = '#,##0.00' cell_title = sheet.cell(raw_range + 3, col_range) cell_title.fill = PatternFill( start_color="00eaeaea", end_color="00eaeaea", fill_type="solid") cell_title = sheet.cell(raw_range + 3, col_range) cell_title.font = Font(bold=True, size=11) bd = Side(style='thin', color="000000") cell_title.border = Border(left=bd, top=bd, right=bd, bottom=bd) def write_bookings_to_excel_file(self, booking_path, shift): filepath = os.path.join(booking_path, 'bookings.xlsx') print('Writing to excel ...') # if os.path.exists(filepath) and self.fork != 1: # remove(filepath) # self.fork = 1 if not os.path.exists(filepath): workbook = Workbook() workbook.save(filepath) workbook.create_sheet("Spapshoot", 0) workbook.create_sheet("Display", 1) else: workbook = load_workbook(filepath) # fixme: delete the default sheet: if "Sheet" in workbook.sheetnames: std = workbook["Sheet"] workbook.remove(std) sheet = workbook.active self.set_stylesheet(sheet, self.shift) if shift != 1: # write snap sheet c = '1.374' i = 2 for row in self.data: cell_reference = sheet.cell(row=i, column=1) cell_reference.value = row[2] sheet['B{}'.format(i)] = '=PRODUCT(A{},{}'.format(i, c) sheet['C{}'.format(i)] = '=SUM(B{},-A{}'.format(i, i) cell_reference = sheet.cell(row=i, column=4) cell_reference.value = row[0] cell_reference = sheet.cell(row=i, column=5) cell_reference.value = row[1] cell_reference = sheet.cell(row=i, column=6) cell_reference.value = row[3] i += 1 else: # write turbo sheet c = '1.374' i = 3 for row in self.data: cell_reference = sheet.cell(row=i, column=1) update_code = t.code_builder(self.read_code()) self.write_code(update_code) cell_reference.value = update_code cell_reference = sheet.cell(row=i, column=2) cell_reference.value = row[2] # REF: # https://stackoverflow.com/questions/51044736/openpyxl-iterate-through-rows-and-apply-formula # fixme CODE: # for row_num in range(2, max_row_num): # sheet['E{}'.format(row_num)] = '=CLEAN(D{})'.format(row_num) sheet['C{}'.format(i)] = '=PRODUCT(B{},{}'.format(i, c) sheet['D{}'.format(i)] = '=SUM(C{},-B{}'.format(i, i) cell_reference = sheet.cell(row=i, column=5) cell_reference.value = self.cell_cc cell_reference = sheet.cell(row=i, column=6) cell_reference.value = self.cell_city cell_reference = sheet.cell(row=i, column=7) cell_reference.value = row[0] cell_reference = sheet.cell(row=i, column=8) cell_reference.value = row[1] cell_reference = sheet.cell(row=i, column=9) cell_reference.value = row[3] i += 1 workbook.active = 1 display_sheet = workbook.active # select target row # target = 1 # while sheet.cell(row=target, column=1).value is not None: # target += 1 c = '1.374' target = 3 while display_sheet.cell(row=target, column=6).value is not None: target += 1 booking = self.data[0] cell_reference = display_sheet.cell(row=target, column=1) update_code = t.code_builder(self.read_code()) self.write_code(update_code) cell_reference.value = update_code cell_reference = display_sheet.cell(row=target, column=2) cell_reference.value = booking[2] display_sheet['C{}'.format(target)] = '=PRODUCT(B{},{}'.format(target, c) display_sheet['D{}'.format(target)] = '=SUM(C{},-B{}'.format(target, target) cell_reference = display_sheet.cell(row=target, column=5) cell_reference.value = self.cell_cc cell_reference = display_sheet.cell(row=target, column=6) cell_reference.value = self.cell_city cell_reference = display_sheet.cell(row=target, column=7) cell_reference.value = booking[0] cell_reference = display_sheet.cell(row=target, column=8) cell_reference.value = booking[1] cell_reference = display_sheet.cell(row=target, column=9) cell_reference.value = booking[3] # switch sheet workbook.active = 0 sheet = workbook.active self.set_stylesheet(sheet, 1) self.set_stylesheet(display_sheet, 1) workbook.save(filepath) # save file if switch != 1: spreadsheet = '//home/jmartorell/Booking/bookings/bookings.xlsx' self.send_attachment(spreadsheet) def send_attachment(self, file): with open(self.keys, 'r') as a: keys_dict = json.loads(a.read()) subject = "An email with attachment from Python" body = "This is an email with attachment sent from Python" sender_email = keys_dict['mailAddress'][0] receiver_email = keys_dict['mailAddress'][1] # password = input("Type your password and press enter:") password = keys_dict['mailPassword'][0] a.close() # Create a multipart message and set headers message = MIMEMultipart() message["From"] = sender_email message["To"] = receiver_email message["Subject"] = subject message["Bcc"] = receiver_email # Recommended for mass emails # Add body to email message.attach(MIMEText(body, "plain")) filename = file # In same directory as script # Open PDF file in binary mode with open(filename, "rb") as attachment: # Add file as application/octet-stream # Email client can usually download this automatically as attachment part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) # Encode file in ASCII characters to send by email encoders.encode_base64(part) # Add header as key/value pair to attachment part part.add_header( "Content-Disposition", f"attachment; filename= {filename}", ) # Add attachment to message and convert message to string message.attach(part) text = message.as_string() # Log in to server using secure context and send email context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email, text) print('Sending email ...') if __name__ == '__main__': switch = t.switch if switch != 0: x = 0 while x < 25: app = App(depart_m=t.depart_month, depart_w=t.depart_week, depart_d=t.depart_day, return_m=t.return_month, return_w=t.return_week, return_d=t.return_day, target_city=d.tour_en[x][0], cell_city=d.tour_en[x][0], cell_cc=d.tour_en[x][1] ) x += 1 else: app = App(depart_m=t.depart_month, depart_w=t.depart_week, depart_d=t.depart_day, return_m=t.return_month, return_w=t.return_week, return_d=t.return_day, ) ```
{ "source": "josepmartorell/Tkinter_GUI-Templates", "score": 4 }
#### File: Tkinter_GUI-Templates/templates/template3.py ```python import tkinter def center(tk): w = 300 h = 100 sw = tk.winfo_screenwidth() sh = tk.winfo_screenheight() x = (sw - w) / 2 y = (sh - h) / 2 tk.geometry('%dx%d+%d+%d' % (w, h, x, y)) root = tkinter.Tk() root.resizable(width=False, height=False) name = tkinter.StringVar() tkinter.Entry(root, textvariable=name, width=30).grid(row=0, column=1) tkinter.Label(root, text='Name').grid(row=0, column=0) surname = tkinter.StringVar() tkinter.Entry(root, textvariable=surname, width=30).grid(row=1, column=1) tkinter.Label(root, text='Surname').grid(row=1, column=0) cell_phone = tkinter.StringVar() tkinter.Entry(root, textvariable=cell_phone, width=30).grid(row=2, column=1) tkinter.Label(root, text='Cell phone').grid(row=2, column=0) contacts = {} def save(): nam = name.get() sur = surname.get() cell = cell_phone.get() contacts[cell] = [nam, sur] return contacts button1 = tkinter.Button(root, text='Save', command=save).grid(row=4, column=0, columnspan=2, sticky='ew') button1_lambda = tkinter.Button\ (root, text='Save', command=lambda: print(save())).grid(row=4, column=0, columnspan=2, sticky='ew') center(root) root.mainloop() ``` #### File: Tkinter_GUI-Templates/templates/template8.py ```python import tkinter as tk from tkinter import ttk class Application(ttk.Frame): def __init__(self, main_window): super().__init__(main_window) if __name__ == '__main__': main_window.title("Position elements in Tcl/Tk") # create notebook self.notebook = ttk.Notebook(self) # create content notebook self.tab1_label = ttk.Label(self.notebook, text="Write description for the tab 1") # self.tab1_image = tk.PhotoImage(file="images.png") self.tab2_label = ttk.Label(self.notebook, text="Write description for the tab 2") self.tab3_label = ttk.Label(self.notebook, text="Write description for the tab 3") self.tab4_label = ttk.Label(self.notebook, text="Write description for the tab 4") # add them to the notebook self.notebook.add(self.tab1_label, text="Tab_one", padding=20) # self.notebook.add(self.tab1_label, text="Tab_one", image=self.tab1_image, compound=tk.LEFT, padding=20) self.notebook.add(self.tab2_label, text="Tab_two ", padding=20) self.notebook.add(self.tab3_label, text="Tab_three ", padding=20) self.notebook.add(self.tab4_label, text="Tab_four", padding=20) self.notebook.pack(padx=10, pady=10) self.pack() root = tk.Tk() root.resizable(width=False, height=False) app = Application(root) root.mainloop() ```
{ "source": "josepmartorell/Troubleshoot-webScraping-Miniblog", "score": 3 }
#### File: app/auth/models.py ```python from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash from app import db class User(db.Model, UserMixin): __tablename__ = 'blog_user' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80), nullable=False) email = db.Column(db.String(256), unique=True, nullable=False) password = db.Column(db.String(128), nullable=False) is_admin = db.Column(db.Boolean, default=False) def __init__(self, name, email): self.name = name self.email = email def __repr__(self): return f'<User {self.email}>' def set_password(self, password): self.password = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password, password) def save(self): if not self.id: db.session.add(self) db.session.commit() def delete(self): db.session.delete(self) db.session.commit() @staticmethod def get_by_id(id): return User.query.get(id) @staticmethod def get_by_email(email): return User.query.filter_by(email=email).first() @staticmethod def get_all(): return User.query.all() ``` #### File: app/public/routes.py ```python import logging from flask import abort, render_template, redirect, url_for, request, current_app, send_file, flash from flask_login import current_user from app.models import Post, Comment from . import public_bp from .forms import CommentForm, ContactForm from flask_mail import Mail, Message from .. import mail logger = logging.getLogger(__name__) @public_bp.route("/") def index(): logger.info('Displaying blog posts') page = int(request.args.get('page', 1)) per_page = current_app.config['ITEMS_PER_PAGE'] post_pagination = Post.all_paginated(page, per_page) return render_template("public/index.html", post_pagination=post_pagination) @public_bp.route("/spiderweb") def spiderweb(): return render_template("spiderweb.html") @public_bp.route("/patch") def patch(): logger.info('Displaying blog posts') posts = Post.get_all() return render_template("public/deployment.html", posts=posts) @public_bp.route("/documentation") def documentation(): return render_template("documentation.html") @public_bp.route('/about', methods=['GET', 'POST']) def about(): form = ContactForm() if request.method == 'POST': return 'Form posted.' elif request.method == 'GET': return render_template('public/contact.html', form=form) @public_bp.route("/p/<string:slug>/", methods=['GET', 'POST']) def show_post(slug): logger.info('Showing a post') logger.debug(f'Slug: {slug}') post = Post.get_by_slug(slug) if not post: logger.info(f'Post {slug} does not exist') abort(404) form = CommentForm() if current_user.is_authenticated and form.validate_on_submit(): content = form.content.data comment = Comment(content=content, user_id=current_user.id, user_name=current_user.name, post_id=post.id) comment.save() return redirect(url_for('public.show_post', slug=post.title_slug)) return render_template("public/post_view.html", post=post, form=form) @public_bp.route("/patch/p/<string:slug>/", methods=['GET', 'POST']) def show_patch(slug): logger.info('Showing a post') logger.debug(f'Slug: {slug}') post = Post.get_by_slug(slug) if not post: logger.info(f'Post {slug} does not exist') abort(404) form = CommentForm() if current_user.is_authenticated and form.validate_on_submit(): content = form.content.data comment = Comment(content=content, user_id=current_user.id, user_name=current_user.name, post_id=post.id) comment.save() return redirect(url_for('public.show_patch', slug=post.title_slug)) return render_template("public/patch_view.html", post=post, form=form) @public_bp.route("/error") def show_error(): res = 1 / 0 posts = Post.get_all() return render_template("public/index.html", posts=posts) @public_bp.route('/robots.txt') def send_robots_txt(): return send_file(current_app.config['BASE_DIR'] + '/robots.txt') @public_bp.route('/sitemap.xml') def send_sitemap_xml(): return send_file(current_app.config['BASE_DIR'] + '/sitemap.xml') @public_bp.route('/feed') def send_feed_rss(): return send_file(current_app.config['BASE_DIR'] + '/feed.rss') @public_bp.route('/contact', methods=['POST', 'GET']) def contact(): form = ContactForm() if form.validate_on_submit(): print('-------------------------') print(request.form['name']) print(request.form['email']) print(request.form['subject']) print(request.form['message']) print('-------------------------') send_message(request.form) return redirect('/success') return render_template('public/contact.html', form=form) @public_bp.route('/success') def success(): return render_template('about.html') def send_message(message): print(message.get('name')) msg = Message(message.get('subject'), sender=message.get('email'), recipients=['<EMAIL>'], body=message.get('message') ) mail.send(msg) ``` #### File: josepmartorell/Troubleshoot-webScraping-Miniblog/entrypoint.py ```python import os from flask import send_from_directory from app import create_app settings_module = os.getenv('APP_SETTINGS_MODULE') app = create_app(settings_module) @app.route('/media/posts/#') def media_posts(filename): dir_path = os.path.join( app.config['MEDIA_DIR'], app.config['POSTS_IMAGES_DIR']) return send_from_directory(dir_path, filename) ```
{ "source": "josepmdc/TelegramMoviesBot", "score": 3 }
#### File: TelegramMoviesBot/src/telegram_bot.py ```python import requests from movie_scraper import MovieScraper from config import TELEGRAM_SEND_MESSAGE_URL class TelegramBot: def __init__(self): self.chat_id = None self.text = None self.first_name = None self.username = None self.outgoing_message_text = None self.incoming_message_text = None def parse_webhook_data(self, data): message = data['message'] self.chat_id = message['chat']['id'] self.incoming_message_text = message['text'].lower() self.first_name = message['from']['first_name'] def action(self): success = None if self.incoming_message_text == '/hello': self.outgoing_message_text = "Hello {}!".format(self.first_name) success = self.send_message() if self.incoming_message_text == '/rad': self.outgoing_message_text = '🤙' success = self.send_message() else: self.outgoing_message_text = "We are looking for your movie..." self.send_message() try: self.outgoing_message_text = "\n\n".join(MovieScraper.get_movie(self.incoming_message_text)) success = self.send_message() except TypeError: self.outgoing_message_text = "We couldn't find your movie 😕" success = self.send_message() return success def send_message(self): res = requests.get(TELEGRAM_SEND_MESSAGE_URL.format(self.chat_id, self.outgoing_message_text)) return True if res.status_code == 200 else False @staticmethod def init_webhook(url): return requests.get(url) ```
{ "source": "JosepOrenga/Discover", "score": 4 }
#### File: discover/features/build_features.py ```python import pandas as pd def read_csv(path=str, sep=';'): """ Leer un archivo csv y los transforma a un dataframe :param path: dirección del archivo csv :param sep: separador del archvio :return: dataframe """ # Leemos el archivo con la funcioón read_csv() df = pd.read_csv(path, sep=sep) return df def merge_df(df1, df2, how, on=None): """ Combina dos datframes :param df1: primer dataframe :param df2: segundo dataframe :param how: tipo de combinación :param on: columna a combinar :return: datafre combinado """ # Combinamos con la función merge() de pandas df = pd.merge(df1, df2, how=how, on=[on]) return df def denormalized_df(path1=str, path2=str, path3=str, sep=';', how=str, on1=None, on2=None): """ Desnormaliza 3 dataframes en uno :param path1: ruta del primer dataframe :param path2: ruta del segundo dataframe :param path3: ruta del tercer dataframe :param sep: delimitador de los archivos csv :param how: tipo de combinación :param on1: columna de combinación primer merge :param on2: columna de combinación segundo merge :return: dataframe desnormalizado """ # Leemos los csv con nuestro método df1 = read_csv(path1, sep=sep) df2 = read_csv(path2, sep=sep) df3 = read_csv(path3, sep=sep) # Combinamos los dataframes tracks y albums tracks_albums = merge_df(df1, df2, how, on1) # Renombremos la columna por la que combinar tracks_albums = tracks_albums.rename(columns={'artist_id_x': 'artist_id'}) # Combinamos los dataframes trakcs_albums con artist result = merge_df(tracks_albums, df3, how, on2) # Renombremos las columnas a nombres más comprensibles result = result.rename(columns={'name': 'artist_name', 'name_x': 'track_name', 'name_y': 'album_name', 'popularity': 'artist_popularity', 'popularity_x': 'track_popularity', 'popularity_y': 'album_popularity'}) return result ``` #### File: Discover/test/test.py ```python import sys import os from os.path import dirname, abspath d = dirname(dirname(abspath(__file__))) sys.path.append(d) import unittest from discover.data.make_dataset import * from discover.features.build_features import * from discover.preprocessing.data_prepocessing import * from discover.visualization.visualize import * from discover.optimization.optimization import * from discover.analysis.data_analysis import * from discover.API.request import * if __name__ == "__main__": # Test para las funciones de data_analysis class TestDataAnalysis(unittest.TestCase): @classmethod def setUpClass(cls): # Importamos nuestros data cls._df = fill_null_by_mean( capital_letter(denormalized_df('../data/tracks_norm.csv', '../data/albums_norm.csv', '../data/artists_norm.csv', ';', 'inner', 'album_id', 'artist_id'), 'artist_name'), 'track_popularity') def test_nulls_column(self): # Comprobamos que se sustituyen todos los nulos self.assertEqual(nulls_of_column(self._df, 'track_popularity'), 0) def test_max_mean_min(self): # Comprobamos que los valores se calculan correctamente maximum, mean, minimum = max_mean_min(self._df, "artist_name", "Adele", "liveness") self.assertEqual(maximum, 0.978) self.assertEqual(mean, 0.2326340909090909) self.assertEqual(minimum, 0.0473) def test_mean_feature_album(self): # Comprobamos que el valor se calcula correctamente self.assertEqual(mean_feature_album(self._df, "artist_name", "Extremoduro", "album_name", "energy")["Agila"], 0.9075714285714286) def test_number_of_columns(self): # Comprobamos que el valor se calcula correctamente self.assertEqual(number_of_columns(self._df), 33) def test_number_of_rows(self): # Comprobamos que el valor se calcula correctamente self.assertEqual(number_of_rows(self._df), 35574) def test_tracks_of_epoch(self): # Comprobamos que el valor se calcula correctamente self.assertEqual(tracks_of_epoch(self._df, "release_year", 1990, 1999), 4638) def test_tracks_max_popularity_of_epoch(self): # Comprobamos que el valor se calcula correctamente self.assertEqual( tracks_max_popularity_of_epoch(self._df, "track_name", "release_year", "track_popularity", 2000, 2021), "Beggin'") self.assertNotEqual( tracks_max_popularity_of_epoch(self._df, "track_name", "release_year", "track_popularity", 2000, 2021), "Airbag - Remastered") def test_tracks_of_artist(self): # Comprobamos que el valor se calcula correctamente self.assertEqual(tracks_of_artist(self._df, "artist_name", "The Killers"), 206) self.assertNotEqual(tracks_of_artist(self._df, "artist_name", "The Killers"), 123) self.assertNotEqual(tracks_of_artist(self._df, "artist_name", "The Killers"), 'e') def test_word_in_track(self): # Comprobamos que el valor se cambia correctamente self.assertEqual(word_in_track(self._df, 'track_name', 'The'), 5193) def test_every_decade(self): # Comprobamos que el valor se calcula correctamente self.assertIn('<NAME>', every_decade(self._df, "artist_name", "release_year")) self.assertIn('<NAME>', every_decade(self._df, "artist_name", "release_year")) self.assertNotIn('AC/DC', every_decade(self._df, "artist_name", "release_year")) class TestDataVisualization(unittest.TestCase): @classmethod def setUpClass(cls): # Importamos nuestros data cls._df = fill_null_by_mean( capital_letter(denormalized_df('../data/tracks_norm.csv', '../data/albums_norm.csv', '../data/artists_norm.csv', ';', 'inner', 'album_id', 'artist_id'), 'artist_name'), 'track_popularity') def test_density_histogram(self): # Sabemos que la suma de altura de todas las barras debe ser uno self.assertEqual(round(density_histogram(self._df, 'artist_name', '<NAME>', 'acousticness', 90), 2), 1) def test_density_hist_two_singers(self): # Como tenemos a dos cantantes la suma de la altura de sus barras debe ser 2 self.assertEqual(round(density_hist_two_singers(self._df, 'artist_name', 'Adele', 'Extremoduro', 'energy', 90), 2), 2) def test_cosinus_similarity(self): cs = plot_cosinus_similarity(self._df, ['artist_name', 'danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature'], ['Metallica', 'Extremoduro', 'AC/DC', '<NAME>'], 'artist_name') self.assertLessEqual(cs.all(), 1) # Comprobamos de que se trara de una matriz simétrica self.assertTrue(cs.all(), cs.T.all()) # Comprbamos que es una matriz 4x4 con el número de artístas introducidos self.assertEqual(cs.shape, (4, 4)) # Comprbamos que la diagonal principal son 1 self.assertTrue(np.around(np.diag(cs), 2).all(), 1) def test_euclidean_similarity(self): es = plot_euclidean_similarity(self._df, ['artist_name', 'danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature'], ['Metallica', 'Extremoduro', 'AC/DC', '<NAME>'], 'artist_name') # Todos los elemtos de la matriz deben de ser cero o menor self.assertLessEqual(es.all(), 1) # Comprobamos de que se trara de una matriz simétrica self.assertTrue(es.all(), es.T.all()) # Comprobamos que es una matriz 4x4 con el número de artístas introducidos self.assertEqual(es.shape, (4, 4)) # Comprobamos que la diagonal principal son 1 self.assertTrue(np.around(np.diag(es), 2).all(), 1) def test_barplot_albums(self): self.assertIn('A Head Full of Dreams', barplot_albums(self._df, 'artist_name', 'Coldplay', 'album_name', 'danceability', 90)) self.assertTrue(15, len(barplot_albums(self._df, 'artist_name', 'Coldplay', 'album_name', 'danceability', 90))) class TestOptimization(unittest.TestCase): def test_pandas_method(self): # Comprobamos que selecciona a todos los artistas self.assertEqual(len(get_column_pandas('../data/artists_norm.csv', 'name')), 68) # Comprobamos que contiene los nombre de los artistas self.assertIn('Radiohead', get_column_pandas('../data/artists_norm.csv', 'name')) def test_readcsv_method(self): # Comprobamos que selecciona a todos los artistas self.assertEqual(len(get_column_read('../data/artists_norm.csv', 'name')), 68) # Comprobamos que contiene los nombre de los artistas self.assertIn('Radiohead', get_column_read('../data/artists_norm.csv', 'name')) def test_compare_methods(self): pandas_time, read_time = compare_methods('../data/artists_norm.csv', 'artist_id') # Comprobsmos que nuesrto méstodo es más rápido self.assertLess(read_time, pandas_time) class TestMakeDataset(unittest.TestCase): def test_unzip_file(self): # Comprobamos que los archivos se descomprimen, # Para ello comprobamos que el directorio donde se descomprimen # tiene más de un archivo, el zip inicial self.assertGreater(unzip_file('../data/data.zip', '../data'), 1) class TestAPI(unittest.TestCase): def setUp(self): # Cargamos los datos # En ese caso no empleamos setUpclass, ya que altener solamente una función # no repetimos código self.df = api_audio(['Radiohead', '<NAME>', 'Måneskin']) def test_from_df_to_csv(self): # Comprobamos que el archivos se ha creado self.assertTrue(from_df_to_csv(self.df, 'artists_audiodb.csv')) suite_tracks = unittest.TestSuite() suite_tracks.addTest(unittest.makeSuite(TestDataAnalysis)) suite_tracks.addTest(unittest.makeSuite(TestDataVisualization)) suite_tracks.addTest(unittest.makeSuite(TestOptimization)) suite_tracks.addTest(unittest.makeSuite(TestMakeDataset)) suite_tracks.addTest(unittest.makeSuite(TestAPI)) unittest.TextTestRunner(verbosity=2).run(suite_tracks) ```
{ "source": "joseppi/AugmentedReality", "score": 3 }
#### File: ClassExercices/Numpy Exercice 2/solutions.py ```python import cv2 import numpy as np def ex1(): print('Ex1 - Open an image maintaining its original color format' 'and print its internal data type, its shape, its number of' 'dimensions, and show it') img = cv2.imread('Ellie.jpg', cv2.IMREAD_ANYCOLOR) print('The shape of the image is {}'.format(img.shape)) print('The num of dimensions of the image is {}'.format(len(img.shape))) print('The internal type of the image is {}'.format(img.dtype)) cv2.imshow('ellie', img) cv2.waitKey(0) def ex2(): print('Ex2 - Open an image maintaining its original color format' 'cast it to floats, convert it to range [0, 1] and show it') img = cv2.imread('img/sonic.jpg', cv2.IMREAD_ANYCOLOR) img = np.float64(img) / 255.0 cv2.imshow('Image', np.uint8(img * 255.0)) cv2.waitKey(0) def ex3(): print('Ex3 - Create a binary image (0s and 1s) from an image file and show it') img = cv2.imread('img/sonic.jpg', cv2.IMREAD_GRAYSCALE) threshold = 125 img = np.float64(img > threshold) cv2.imshow('Image', np.uint8(img * 255)) cv2.waitKey(0) def ex4(): print('Ex4 - Open an image and apply a vignetting effect on its borders') img = cv2.imread('img/sonic.jpg', cv2.IMREAD_ANYCOLOR) img = np.float64(img) height, width, _ = img.shape centeri = height / 2 centerj = width / 2 radius = np.sqrt(width*width + height*height) / 2.0 for i in range(0, height): for j in range(0, width): dist = np.sqrt((centeri - i)**2 + (centerj - j)**2) vignetting_factor = 1.0 - (dist / radius)**2 img[i, j] *= vignetting_factor cv2.imshow('Image', np.uint8(img)) cv2.waitKey(0) def ex5(): print("Ex5 - Open an image and invert its colors") img = cv2.imread('img/sonic.jpg', cv2.IMREAD_ANYCOLOR) img[:] = 255 - img cv2.imshow('Image', img) cv2.waitKey(0) def ex6(): print("Ex6 - Open an image and tint it 50% with blue") img = cv2.imread('img/sonic.jpg', cv2.IMREAD_ANYCOLOR) img = np.float64(img) blue = np.array([255.0, 0.0, 0.0]).reshape((1, 1, 3)) img = 0.5 * img + 0.5 * blue cv2.imshow('Image', np.uint8(img)) cv2.waitKey(0) pass def ex7(): print("Ex7 - Open an image and increase the contrast by applying the" "following formula on its pixels: col = (col - min) / (max - min)," "where min=50 and max=200. Clamp values so they are in the range [0,1]" ", and rescale them to range [0,255] before showing it.") img = cv2.imread('img/sonic.jpg', cv2.IMREAD_ANYCOLOR) img = np.float64(img) min = 50 max = 200 img = (img - min) / (max - min) img = np.clip(img, 0.0, 1.0) cv2.imshow('Image', np.uint8(img * 255.0)) cv2.waitKey(0) pass def execute(): ex1() # ex2() # ex3() # ex4() # ex5() # ex6() # ex7() pass ```
{ "source": "joseppinilla/dimod", "score": 2 }
#### File: reference/composites/scalecomposite.py ```python try: import collections.abc as abc except ImportError: import collections as abc from numbers import Number import numpy as np from dimod.binary_quadratic_model import BinaryQuadraticModel from dimod.core.composite import ComposedSampler __all__ = 'ScaleComposite', class ScaleComposite(ComposedSampler): """Composite to scale variables of a problem Scales the variables of a bqm and modifies linear and quadratic terms accordingly. Args: sampler (:obj:`dimod.Sampler`): A dimod sampler Examples: This example uses :class:`.ScaleComposite` to instantiate a composed sampler that submits a simple Ising problem to a sampler. The composed sampler scales linear, quadratic biases and offset as indicated by options. >>> h = {'a': -4.0, 'b': -4.0} >>> J = {('a', 'b'): 3.2} >>> sampler = dimod.ScaleComposite(dimod.ExactSolver()) >>> response = sampler.sample_ising(h, J, scalar=0.5, ... ignored_interactions=[('a','b')]) """ def __init__(self, child_sampler): self._children = [child_sampler] @property def children(self): return self._children @property def parameters(self): param = self.child.parameters.copy() param.update({'scalar': [], 'bias_range': [], 'quadratic_range': [], 'ignored_variables': [], 'ignored_interactions': [], 'ignore_offset': []}) return param @property def properties(self): return {'child_properties': self.child.properties.copy()} def sample(self, bqm, scalar=None, bias_range=1, quadratic_range=None, ignored_variables=None, ignored_interactions=None, ignore_offset=False, **parameters): """ Scale and sample from the provided binary quadratic model. if scalar is not given, problem is scaled based on bias and quadratic ranges. See :meth:`.BinaryQuadraticModel.scale` and :meth:`.BinaryQuadraticModel.normalize` Args: bqm (:obj:`dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. scalar (number): Value by which to scale the energy range of the binary quadratic model. bias_range (number/pair): Value/range by which to normalize the all the biases, or if `quadratic_range` is provided, just the linear biases. quadratic_range (number/pair): Value/range by which to normalize the quadratic biases. ignored_variables (iterable, optional): Biases associated with these variables are not scaled. ignored_interactions (iterable[tuple], optional): As an iterable of 2-tuples. Biases associated with these interactions are not scaled. ignore_offset (bool, default=False): If True, the offset is not scaled. **parameters: Parameters for the sampling method, specified by the child sampler. Returns: :obj:`dimod.SampleSet` """ ignored_variables, ignored_interactions = _check_params( ignored_variables, ignored_interactions) child = self.child bqm_copy = _scaled_bqm(bqm, scalar, bias_range, quadratic_range, ignored_variables, ignored_interactions, ignore_offset) response = child.sample(bqm_copy, **parameters) return _scale_back_response(bqm, response, bqm_copy.info['scalar'], ignored_variables, ignored_interactions, ignore_offset) def sample_ising(self, h, J, offset=0, scalar=None, bias_range=1, quadratic_range=None, ignored_variables=None, ignored_interactions=None, ignore_offset=False, **parameters): """ Scale and sample from the problem provided by h, J, offset if scalar is not given, problem is scaled based on bias and quadratic ranges. Args: h (dict): linear biases J (dict): quadratic or higher order biases offset (float, optional): constant energy offset scalar (number): Value by which to scale the energy range of the binary quadratic model. bias_range (number/pair): Value/range by which to normalize the all the biases, or if `quadratic_range` is provided, just the linear biases. quadratic_range (number/pair): Value/range by which to normalize the quadratic biases. ignored_variables (iterable, optional): Biases associated with these variables are not scaled. ignored_interactions (iterable[tuple], optional): As an iterable of 2-tuples. Biases associated with these interactions are not scaled. ignore_offset (bool, default=False): If True, the offset is not scaled. **parameters: Parameters for the sampling method, specified by the child sampler. Returns: :obj:`dimod.SampleSet` """ if any(len(inter) > 2 for inter in J): # handle HUBO import warnings msg = ("Support for higher order Ising models in ScaleComposite is " "deprecated and will be removed in dimod 0.9.0. Please use " "PolyScaleComposite.sample_hising instead.") warnings.warn(msg, DeprecationWarning) from dimod.reference.composites.higherordercomposites import PolyScaleComposite from dimod.higherorder.polynomial import BinaryPolynomial poly = BinaryPolynomial.from_hising(h, J, offset=offset) ignored_terms = set() if ignored_variables is not None: ignored_terms.update(frozenset(v) for v in ignored_variables) if ignored_interactions is not None: ignored_terms.update(frozenset(inter) for inter in ignored_interactions) if ignore_offset: ignored_terms.add(frozenset()) return PolyScaleComposite(self.child).sample_poly(poly, scalar=scalar, bias_range=bias_range, poly_range=quadratic_range, ignored_terms=ignored_terms, **parameters) bqm = BinaryQuadraticModel.from_ising(h, J, offset=offset) return self.sample(bqm, scalar=scalar, bias_range=bias_range, quadratic_range=quadratic_range, ignored_variables=ignored_variables, ignored_interactions=ignored_interactions, ignore_offset=ignore_offset, **parameters) def _scale_back_response(bqm, response, scalar, ignored_interactions, ignored_variables, ignore_offset): """Helper function to scale back the response of sample method""" if len(ignored_interactions) + len( ignored_variables) + ignore_offset == 0: response.record.energy = np.divide(response.record.energy, scalar) else: response.record.energy = bqm.energies((response.record.sample, response.variables)) return response def _check_params(ignored_variables, ignored_interactions): """Helper for sample methods""" if ignored_variables is None: ignored_variables = set() elif not isinstance(ignored_variables, abc.Container): ignored_variables = set(ignored_variables) if ignored_interactions is None: ignored_interactions = set() elif not isinstance(ignored_interactions, abc.Container): ignored_interactions = set(ignored_interactions) return ignored_variables, ignored_interactions def _calc_norm_coeff(h, J, bias_range, quadratic_range, ignored_variables, ignored_interactions): """Helper function to calculate normalization coefficient""" if ignored_variables is None or ignored_interactions is None: raise ValueError('ignored interactions or variables cannot be None') def parse_range(r): if isinstance(r, Number): return -abs(r), abs(r) return r def min_and_max(iterable): if not iterable: return 0, 0 return min(iterable), max(iterable) if quadratic_range is None: linear_range, quadratic_range = bias_range, bias_range else: linear_range = bias_range lin_range, quad_range = map(parse_range, (linear_range, quadratic_range)) lin_min, lin_max = min_and_max([v for k, v in h.items() if k not in ignored_variables]) quad_min, quad_max = min_and_max([v for k, v in J.items() if not check_isin(k, ignored_interactions)]) inv_scalar = max(lin_min / lin_range[0], lin_max / lin_range[1], quad_min / quad_range[0], quad_max / quad_range[1]) if inv_scalar != 0: return 1. / inv_scalar else: return 1. def _scaled_bqm(bqm, scalar, bias_range, quadratic_range, ignored_variables, ignored_interactions, ignore_offset): """Helper function of sample for scaling""" bqm_copy = bqm.copy() if scalar is None: scalar = _calc_norm_coeff(bqm_copy.linear, bqm_copy.quadratic, bias_range, quadratic_range, ignored_variables, ignored_interactions) bqm_copy.scale(scalar, ignored_variables=ignored_variables, ignored_interactions=ignored_interactions, ignore_offset=ignore_offset) bqm_copy.info.update({'scalar': scalar}) return bqm_copy def check_isin(key, key_list): return sum(set(key) == set(key_tmp) for key_tmp in key_list) ``` #### File: reference/samplers/random_sampler.py ```python from random import choice from dimod.core.sampler import Sampler from dimod.sampleset import SampleSet __all__ = ['RandomSampler'] class RandomSampler(Sampler): """A sampler that gives random samples for testing.""" properties = None parameters = None """dict: Keyword arguments accepted by the sampling methods. Contents are exactly `{'num_reads': []}` """ def __init__(self): self.parameters = {'num_reads': []} self.properties = {} def sample(self, bqm, num_reads=10): """Give random samples for a binary quadratic model. Variable assignments are chosen by coin flip. Args: bqm (:obj:`.BinaryQuadraticModel`): Binary quadratic model to be sampled from. num_reads (int, optional, default=10): Number of reads. Returns: :obj:`.SampleSet` """ values = tuple(bqm.vartype.value) def _itersample(): for __ in range(num_reads): sample = {v: choice(values) for v in bqm.linear} energy = bqm.energy(sample) yield sample, energy samples, energies = zip(*_itersample()) return SampleSet.from_samples(samples, bqm.vartype, energies) ``` #### File: dimod/tests/test_fixedvariablecomposite.py ```python import unittest import dimod.testing as dtest from dimod.vartypes import Vartype import dimod from dimod import BinaryQuadraticModel from dimod import FixedVariableComposite, ExactSolver, RoofDualityComposite from dimod import SampleSet try: from dimod import fix_variables except ImportError: cpp = False else: cpp = True class TestFixedVariableComposite(unittest.TestCase): def test_instantiation_smoketest(self): sampler = FixedVariableComposite(ExactSolver()) dtest.assert_sampler_api(sampler) def test_sample(self): bqm = BinaryQuadraticModel(linear={1: -1.3, 4: -0.5}, quadratic={(1, 4): -0.6}, offset=0, vartype=Vartype.SPIN) fixed_variables = {1: -1} sampler = FixedVariableComposite(ExactSolver()) response = sampler.sample(bqm, fixed_variables=fixed_variables) self.assertEqual(response.first.sample, {4: -1, 1: -1}) self.assertAlmostEqual(response.first.energy, 1.2) def test_empty_bqm(self): bqm = BinaryQuadraticModel(linear={1: -1.3, 4: -0.5}, quadratic={(1, 4): -0.6}, offset=0, vartype=Vartype.SPIN) fixed_variables = {1: -1, 4: -1} sampler = FixedVariableComposite(ExactSolver()) response = sampler.sample(bqm, fixed_variables=fixed_variables) self.assertIsInstance(response, SampleSet) def test_empty_fix(self): linear = {1: -1.3, 4: -0.5} quadratic = {(1, 4): -0.6} sampler = FixedVariableComposite(ExactSolver()) response = sampler.sample_ising(linear, quadratic) self.assertIsInstance(response, SampleSet) self.assertEqual(response.first.sample, {4: 1, 1: 1}) self.assertAlmostEqual(response.first.energy, -2.4) class TestRoofDualityComposite(unittest.TestCase): @unittest.skipIf(cpp, "cpp extensions built") def test_nocpp_error(self): with self.assertRaises(ImportError): RoofDualityComposite(dimod.ExactSolver()).sample_ising({}, {}) @unittest.skipUnless(cpp, "no cpp extensions built") def test_construction(self): sampler = RoofDualityComposite(dimod.ExactSolver()) dtest.assert_sampler_api(sampler) @unittest.skipUnless(cpp, "no cpp extensions built") def test_3path(self): sampler = RoofDualityComposite(dimod.ExactSolver()) sampleset = sampler.sample_ising({'a': 10}, {'ab': -1, 'bc': 1}) # all should be fixed, so should just see one self.assertEqual(len(sampleset), 1) self.assertEqual(set(sampleset.variables), set('abc')) @unittest.skipUnless(cpp, "no cpp extensions built") def test_triangle(self): sampler = RoofDualityComposite(dimod.ExactSolver()) bqm = dimod.BinaryQuadraticModel.from_ising({}, {'ab': -1, 'bc': -1, 'ac': -1}) # two equally good solutions sampleset = sampler.sample(bqm) self.assertEqual(set(sampleset.variables), set('abc')) dimod.testing.assert_response_energies(sampleset, bqm) @unittest.skipUnless(cpp, "no cpp extensions built") def test_triangle_sampling_mode_off(self): sampler = RoofDualityComposite(dimod.ExactSolver()) bqm = dimod.BinaryQuadraticModel.from_ising({}, {'ab': -1, 'bc': -1, 'ac': -1}) # two equally good solutions, but with sampling mode off it will pick one sampleset = sampler.sample(bqm, sampling_mode=False) self.assertEqual(set(sampleset.variables), set('abc')) self.assertEqual(len(sampleset), 1) # all should be fixed dimod.testing.assert_response_energies(sampleset, bqm) ``` #### File: dimod/tests/test_higherordercomposite.py ```python import numpy as np import unittest import dimod.testing as dtest from dimod import HigherOrderComposite, ExactSolver class TestFixedVariableComposite(unittest.TestCase): def test_sample(self): linear = {0: -0.5, 1: -0.3, 2: -0.8} quadratic = {(0, 1, 2): -1.7} sampler = HigherOrderComposite(ExactSolver()) response = sampler.sample_ising(linear, quadratic, penalty_strength=10, keep_penalty_variables=False, discard_unsatisfied=False) self.assertEqual(response.first.sample, {0: 1, 1: 1, 2: 1}) self.assertAlmostEqual(response.first.energy, -3.3) self.assertFalse(np.prod(response.record.penalty_satisfaction)) def test_discard(self): linear = {0: -0.5, 1: -0.3, 2: -0.8} quadratic = {(0, 1, 2): -1.7} sampler = HigherOrderComposite(ExactSolver()) response = sampler.sample_ising(linear, quadratic, penalty_strength=10, discard_unsatisfied=True) self.assertEqual(response.first.sample, {0: 1, 1: 1, 2: 1}) self.assertAlmostEqual(response.first.energy, -3.3) self.assertTrue(np.prod(response.record.penalty_satisfaction)) def test_penalty_variables(self): linear = {0: -0.5, 1: -0.3, 2: -0.8} quadratic = {(0, 1, 2): -1.7} sampler = HigherOrderComposite(ExactSolver()) response = sampler.sample_ising(linear, quadratic, penalty_strength=10, keep_penalty_variables=True, discard_unsatisfied=True) self.assertEqual(len(response.first.sample), 5) self.assertAlmostEqual(response.first.energy, -3.3) self.assertTrue(response.first.penalty_satisfaction) def test_already_qubo(self): linear = {0: -0.5, 1: -0.3} quadratic = {(0, 1): -1.7} sampler = HigherOrderComposite(ExactSolver()) response = sampler.sample_ising(linear, quadratic, keep_penalty_variables=True, discard_unsatisfied=False) self.assertEqual(response.first.sample, {0: 1, 1: 1}) self.assertAlmostEqual(response.first.energy, -2.5) self.assertTrue(response.first.penalty_satisfaction) def test_already_qubo_2(self): linear = {0: -0.5, 1: -0.3} quadratic = {(0, 1): -1.7} sampler = HigherOrderComposite(ExactSolver()) response = sampler.sample_ising(linear, quadratic, penalty_strength=10, keep_penalty_variables=True, discard_unsatisfied=True) self.assertEqual(response.first.sample, {0: 1, 1: 1}) self.assertAlmostEqual(response.first.energy, -2.5) self.assertTrue(response.first.penalty_satisfaction) ``` #### File: dimod/tests/test_testing.py ```python import unittest import dimod class Test_assert_almost_equal_bqm(unittest.TestCase): def test_empty(self): bqm0 = dimod.BinaryQuadraticModel.empty(dimod.SPIN) bqm1 = dimod.BinaryQuadraticModel.empty(dimod.SPIN) dimod.testing.assert_bqm_almost_equal(bqm0, bqm1) def test_self_empty(self): bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN) dimod.testing.assert_bqm_almost_equal(bqm, bqm) def test_unlike_variables(self): bqm0 = dimod.BinaryQuadraticModel.from_ising({'a': -1}, {}) bqm1 = dimod.BinaryQuadraticModel.from_ising({'b': -1}, {}) with self.assertRaises(AssertionError): dimod.testing.assert_bqm_almost_equal(bqm0, bqm1) def test_unlike_offset(self): bqm0 = dimod.BinaryQuadraticModel.from_ising({'a': -1}, {}, 1.1) bqm1 = dimod.BinaryQuadraticModel.from_ising({'a': -1}, {}, 1.2) with self.assertRaises(AssertionError): dimod.testing.assert_bqm_almost_equal(bqm0, bqm1) dimod.testing.assert_bqm_almost_equal(bqm0, bqm1, places=0) def test_unlike_linear(self): bqm0 = dimod.BinaryQuadraticModel.from_ising({'a': -1}, {}) bqm1 = dimod.BinaryQuadraticModel.from_ising({'a': -1.1}, {}) with self.assertRaises(AssertionError): dimod.testing.assert_bqm_almost_equal(bqm0, bqm1) dimod.testing.assert_bqm_almost_equal(bqm0, bqm1, places=0) def test_unlike_interactions(self): bqm0 = dimod.BinaryQuadraticModel.from_ising({}, {'ab': -1}) bqm1 = dimod.BinaryQuadraticModel.from_ising({}, {'ab': -1.1}) with self.assertRaises(AssertionError): dimod.testing.assert_bqm_almost_equal(bqm0, bqm1) dimod.testing.assert_bqm_almost_equal(bqm0, bqm1, places=0) def test_ignore_zero_interactions(self): h = {'a': 0, 'b': 0, 'c': 0, 'd': 0} J0 = {'ab': 0, 'bc': -1} J1 = {'cb': -1, 'cd': 0} bqm0 = dimod.BinaryQuadraticModel.from_ising(h, J0) bqm1 = dimod.BinaryQuadraticModel.from_ising(h, J1) with self.assertRaises(AssertionError): dimod.testing.assert_bqm_almost_equal(bqm0, bqm1) dimod.testing.assert_bqm_almost_equal(bqm0, bqm1, ignore_zero_interactions=True) with self.assertRaises(AssertionError): dimod.testing.assert_bqm_almost_equal(bqm1, bqm0) dimod.testing.assert_bqm_almost_equal(bqm1, bqm0, ignore_zero_interactions=True) ```
{ "source": "joseppinilla/dwave-system", "score": 2 }
#### File: dwave/embedding/transforms.py ```python from __future__ import division import itertools import numpy as np import dimod from six import iteritems, itervalues from dwave.embedding.chain_breaks import majority_vote, broken_chains from dwave.embedding.exceptions import MissingEdgeError, MissingChainError, InvalidNodeError from dwave.embedding.utils import chain_to_quadratic __all__ = ['embed_bqm', 'embed_ising', 'embed_qubo', 'unembed_sampleset', ] def embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=1.0, smear_vartype=None): """Embed a binary quadratic model onto a target graph. Args: source_bqm (:obj:`.BinaryQuadraticModel`): Binary quadratic model to embed. embedding (dict): Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...}, where s is a source-model variable and t is a target-model variable. target_adjacency (dict/:class:`networkx.Graph`): Adjacency of the target graph as a dict of form {t: Nt, ...}, where t is a variable in the target graph and Nt is its set of neighbours. chain_strength (float, optional): Magnitude of the quadratic bias (in SPIN-space) applied between variables to create chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`. smear_vartype (:class:`.Vartype`, optional, default=None): When a single variable is embedded, it's linear bias is 'smeared' evenly over the chain. This parameter determines whether the variable is smeared in SPIN or BINARY space. By default the embedding is done according to the given source_bqm. Returns: :obj:`.BinaryQuadraticModel`: Target binary quadratic model. Examples: This example embeds a fully connected :math:`K_3` graph onto a square target graph. Embedding is accomplished by an edge contraction operation on the target graph: target-nodes 2 and 3 are chained to represent source-node c. >>> import dimod >>> import networkx as nx >>> # Binary quadratic model for a triangular source graph >>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}) >>> # Target graph is a graph >>> target = nx.cycle_graph(4) >>> # Embedding from source to target graphs >>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}} >>> # Embed the BQM >>> target_bqm = dimod.embed_bqm(bqm, embedding, target) >>> target_bqm.quadratic[(0, 1)] == bqm.quadratic[('a', 'b')] True >>> target_bqm.quadratic # doctest: +SKIP {(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0} This example embeds a fully connected :math:`K_3` graph onto the target graph of a dimod reference structured sampler, `StructureComposite`, using the dimod reference `ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3 are chained to represent source-node c. >>> import dimod >>> # Binary quadratic model for a triangular source graph >>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}) >>> # Structured dimod sampler with a structure defined by a square graph >>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)]) >>> # Embedding from source to target graph >>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}} >>> # Embed the BQM >>> target_bqm = dimod.embed_bqm(bqm, embedding, sampler.adjacency) >>> # Sample >>> samples = sampler.sample(target_bqm) >>> samples.record.sample # doctest: +SKIP array([[-1, -1, -1, -1], [ 1, -1, -1, -1], [ 1, 1, -1, -1], [-1, 1, -1, -1], [-1, 1, 1, -1], >>> # Snipped above samples for brevity """ if smear_vartype is dimod.SPIN and source_bqm.vartype is dimod.BINARY: return embed_bqm(source_bqm.spin, embedding, target_adjacency, chain_strength=chain_strength, smear_vartype=None).binary elif smear_vartype is dimod.BINARY and source_bqm.vartype is dimod.SPIN: return embed_bqm(source_bqm.binary, embedding, target_adjacency, chain_strength=chain_strength, smear_vartype=None).spin # create a new empty binary quadratic model with the same class as source_bqm target_bqm = source_bqm.empty(source_bqm.vartype) # add the offset target_bqm.add_offset(source_bqm.offset) # start with the linear biases, spreading the source bias equally over the target variables in # the chain for v, bias in iteritems(source_bqm.linear): if v in embedding: chain = embedding[v] else: raise MissingChainError(v) if any(u not in target_adjacency for u in chain): raise InvalidNodeError(v, next(u not in target_adjacency for u in chain)) b = bias / len(chain) target_bqm.add_variables_from({u: b for u in chain}) # next up the quadratic biases, spread the quadratic biases evenly over the available # interactions for (u, v), bias in iteritems(source_bqm.quadratic): available_interactions = {(s, t) for s in embedding[u] for t in embedding[v] if s in target_adjacency[t]} if not available_interactions: raise MissingEdgeError(u, v) b = bias / len(available_interactions) target_bqm.add_interactions_from((u, v, b) for u, v in available_interactions) for chain in itervalues(embedding): # in the case where the chain has length 1, there are no chain quadratic biases, but we # none-the-less want the chain variables to appear in the target_bqm if len(chain) == 1: v, = chain target_bqm.add_variable(v, 0.0) continue quadratic_chain_biases = chain_to_quadratic(chain, target_adjacency, chain_strength) target_bqm.add_interactions_from(quadratic_chain_biases, vartype=dimod.SPIN) # these are spin # add the energy for satisfied chains to the offset energy_diff = -sum(itervalues(quadratic_chain_biases)) target_bqm.add_offset(energy_diff) return target_bqm def embed_ising(source_h, source_J, embedding, target_adjacency, chain_strength=1.0): """Embed an Ising problem onto a target graph. Args: source_h (dict[variable, bias]/list[bias]): Linear biases of the Ising problem. If a list, the list's indices are used as variable labels. source_J (dict[(variable, variable), bias]): Quadratic biases of the Ising problem. embedding (dict): Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...}, where s is a source-model variable and t is a target-model variable. target_adjacency (dict/:class:`networkx.Graph`): Adjacency of the target graph as a dict of form {t: Nt, ...}, where t is a target-graph variable and Nt is its set of neighbours. chain_strength (float, optional): Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note that the energy penalty of chain breaks is 2 * `chain_strength`. Returns: tuple: A 2-tuple: dict[variable, bias]: Linear biases of the target Ising problem. dict[(variable, variable), bias]: Quadratic biases of the target Ising problem. Examples: This example embeds a fully connected :math:`K_3` graph onto a square target graph. Embedding is accomplished by an edge contraction operation on the target graph: target-nodes 2 and 3 are chained to represent source-node c. >>> import dimod >>> import networkx as nx >>> # Ising problem for a triangular source graph >>> h = {} >>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1} >>> # Target graph is a square graph >>> target = nx.cycle_graph(4) >>> # Embedding from source to target graph >>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}} >>> # Embed the Ising problem >>> target_h, target_J = dimod.embed_ising(h, J, embedding, target) >>> target_J[(0, 1)] == J[('a', 'b')] True >>> target_J # doctest: +SKIP {(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0} This example embeds a fully connected :math:`K_3` graph onto the target graph of a dimod reference structured sampler, `StructureComposite`, using the dimod reference `ExactSolver` sampler with a square graph specified. Target-nodes 2 and 3 are chained to represent source-node c. >>> import dimod >>> # Ising problem for a triangular source graph >>> h = {} >>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1} >>> # Structured dimod sampler with a structure defined by a square graph >>> sampler = dimod.StructureComposite(dimod.ExactSolver(), [0, 1, 2, 3], [(0, 1), (1, 2), (2, 3), (0, 3)]) >>> # Embedding from source to target graph >>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}} >>> # Embed the Ising problem >>> target_h, target_J = dimod.embed_ising(h, J, embedding, sampler.adjacency) >>> # Sample >>> samples = sampler.sample_ising(target_h, target_J) >>> for sample in samples.samples(n=3, sorted_by='energy'): # doctest: +SKIP ... print(sample) ... {0: 1, 1: -1, 2: -1, 3: -1} {0: 1, 1: 1, 2: -1, 3: -1} {0: -1, 1: 1, 2: -1, 3: -1} """ source_bqm = dimod.BinaryQuadraticModel.from_ising(source_h, source_J) target_bqm = embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=chain_strength) target_h, target_J, __ = target_bqm.to_ising() return target_h, target_J def embed_qubo(source_Q, embedding, target_adjacency, chain_strength=1.0): """Embed a QUBO onto a target graph. Args: source_Q (dict[(variable, variable), bias]): Coefficients of a quadratic unconstrained binary optimization (QUBO) model. embedding (dict): Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...}, where s is a source-model variable and t is a target-model variable. target_adjacency (dict/:class:`networkx.Graph`): Adjacency of the target graph as a dict of form {t: Nt, ...}, where t is a target-graph variable and Nt is its set of neighbours. chain_strength (float, optional): Magnitude of the quadratic bias (in SPIN-space) applied between variables to form a chain. Note that the energy penalty of chain breaks is 2 * `chain_strength`. Returns: dict[(variable, variable), bias]: Quadratic biases of the target QUBO. Examples: This example embeds a square source graph onto fully connected :math:`K_5` graph. Embedding is accomplished by an edge deletion operation on the target graph: target-node 0 is not used. >>> import dimod >>> import networkx as nx >>> # QUBO problem for a square graph >>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0, ... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0} >>> # Target graph is a fully connected k5 graph >>> K_5 = nx.complete_graph(5) >>> 0 in K_5 True >>> # Embedding from source to target graph >>> embedding = {1: {4}, 2: {3}, 3: {1}, 4: {2}} >>> # Embed the QUBO >>> target_Q = dimod.embed_qubo(Q, embedding, K_5) >>> (0, 0) in target_Q False >>> target_Q # doctest: +SKIP {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 4): 4.0, (3, 1): 4.0, (3, 3): -4.0, (4, 3): 4.0, (4, 4): -4.0} This example embeds a square graph onto the target graph of a dimod reference structured sampler, `StructureComposite`, using the dimod reference `ExactSolver` sampler with a fully connected :math:`K_5` graph specified. >>> import dimod >>> import networkx as nx >>> # QUBO problem for a square graph >>> Q = {(1, 1): -4.0, (1, 2): 4.0, (2, 2): -4.0, (2, 3): 4.0, ... (3, 3): -4.0, (3, 4): 4.0, (4, 1): 4.0, (4, 4): -4.0} >>> # Structured dimod sampler with a structure defined by a K5 graph >>> sampler = dimod.StructureComposite(dimod.ExactSolver(), list(K_5.nodes), list(K_5.edges)) >>> sampler.adjacency # doctest: +SKIP {0: {1, 2, 3, 4}, 1: {0, 2, 3, 4}, 2: {0, 1, 3, 4}, 3: {0, 1, 2, 4}, 4: {0, 1, 2, 3}} >>> # Embedding from source to target graph >>> embedding = {0: [4], 1: [3], 2: [1], 3: [2], 4: [0]} >>> # Embed the QUBO >>> target_Q = dimod.embed_qubo(Q, embedding, sampler.adjacency) >>> # Sample >>> samples = sampler.sample_qubo(target_Q) >>> for datum in samples.data(): # doctest: +SKIP ... print(datum) ... Sample(sample={1: 0, 2: 1, 3: 1, 4: 0}, energy=-8.0) Sample(sample={1: 1, 2: 0, 3: 0, 4: 1}, energy=-8.0) Sample(sample={1: 1, 2: 0, 3: 0, 4: 0}, energy=-4.0) Sample(sample={1: 1, 2: 1, 3: 0, 4: 0}, energy=-4.0) Sample(sample={1: 0, 2: 1, 3: 0, 4: 0}, energy=-4.0) Sample(sample={1: 1, 2: 1, 3: 1, 4: 0}, energy=-4.0) >>> # Snipped above samples for brevity """ source_bqm = dimod.BinaryQuadraticModel.from_qubo(source_Q) target_bqm = embed_bqm(source_bqm, embedding, target_adjacency, chain_strength=chain_strength) target_Q, __ = target_bqm.to_qubo() return target_Q def unembed_sampleset(target_sampleset, embedding, source_bqm, chain_break_method=None, chain_break_fraction=False): """Unembed the samples set. Construct a sample set for the source binary quadratic model (BQM) by unembedding the given samples from the target BQM. Args: target_sampleset (:obj:`dimod.SampleSet`): SampleSet from the target BQM. embedding (dict): Mapping from source graph to target graph as a dict of form {s: {t, ...}, ...}, where s is a source variable and t is a target variable. source_bqm (:obj:`dimod.BinaryQuadraticModel`): Source binary quadratic model. chain_break_method (function, optional): Method used to resolve chain breaks. See :mod:`dwave.embedding.chain_breaks`. chain_break_fraction (bool, optional, default=False): If True, a 'chain_break_fraction' field is added to the unembedded samples which report what fraction of the chains were broken before unembedding. Returns: :obj:`.SampleSet`: Examples: >>> import dimod ... >>> # say we have a bqm on a triangle and an embedding >>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1} >>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J) >>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]} ... >>> # and some samples from the embedding >>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken {0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken >>> energies = [-3, 1] >>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies) ... >>> # unembed >>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm) >>> samples.record.sample # doctest: +SKIP array([[-1, -1, -1], [ 1, 1, 1]], dtype=int8) """ if chain_break_method is None: chain_break_method = majority_vote variables = list(source_bqm) try: chains = [embedding[v] for v in variables] except KeyError: raise ValueError("given bqm does not match the embedding") chain_idxs = [[target_sampleset.variables.index[v] for v in chain] for chain in chains] record = target_sampleset.record unembedded, idxs = chain_break_method(record.sample, chain_idxs) # dev note: this is a bug in dimod that empty unembedded is not handled, # in the future this try-except can be removed try: energies = source_bqm.energies((unembedded, variables)) except ValueError: datatypes = [('sample', np.dtype(np.int8), (len(variables),)), ('energy', np.float)] datatypes.extend((name, record[name].dtype, record[name].shape[1:]) for name in record.dtype.names if name not in {'sample', 'energy'}) if chain_break_fraction: datatypes.append(('chain_break_fraction', np.float64)) # there are no samples so everything is empty data = np.rec.array(np.empty(0, dtype=datatypes)) return dimod.SampleSet(data, variables, target_sampleset.info.copy(), target_sampleset.vartype) reserved = {'sample', 'energy'} vectors = {name: record[name][idxs] for name in record.dtype.names if name not in reserved} if chain_break_fraction: vectors['chain_break_fraction'] = broken_chains(record.sample, chain_idxs).mean(axis=1)[idxs] return dimod.SampleSet.from_samples((unembedded, variables), target_sampleset.vartype, energy=energies, info=target_sampleset.info.copy(), **vectors) ``` #### File: dwave-system/tests/test_embedding_chain_breaks.py ```python import unittest import numpy as np import dimod import dwave.embedding class TestBrokenChains(unittest.TestCase): def test_broken_chains_typical(self): S = np.array([[-1, 1, -1, 1], [1, 1, -1, -1], [-1, 1, -1, -1]]) chains = [[0, 1], [2, 3]] broken = dwave.embedding.broken_chains(S, chains) np.testing.assert_array_equal([[1, 1], [0, 0], [1, 0]], broken) def test_broken_chains_chains_length_0(self): S = np.array([[-1, 1, -1, 1], [1, 1, -1, -1], [-1, 1, -1, -1]]) chains = [[0, 1], [], [2, 3]] broken = dwave.embedding.broken_chains(S, chains) np.testing.assert_array_equal([[1, 0, 1], [0, 0, 0], [1, 0, 0]], broken) def test_broken_chains_single_sample(self): S = [-1, 1, 1, 1] chains = [[0, 1], [2, 3]] with self.assertRaises(ValueError): dwave.embedding.broken_chains(S, chains) def test_matrix(self): samples_matrix = np.array([[-1, +1, -1, +1], [+1, +1, +1, +1], [-1, -1, +1, -1], [-1, -1, +1, +1]], dtype='int8') chain_list = [(0, 1), (2, 3)] broken = dwave.embedding.broken_chains(samples_matrix, chain_list) class TestDiscard(unittest.TestCase): def test_discard_no_breaks_all_ones_identity_embedding(self): samples_matrix = np.array(np.ones((100, 50)), dtype='int8') chain_list = [[idx] for idx in range(50)] new_matrix, idxs = dwave.embedding.discard(samples_matrix, chain_list) np.testing.assert_equal(new_matrix, samples_matrix) def test_discard_no_breaks_all_ones_one_var_embedding(self): samples_matrix = np.array(np.ones((100, 50)), dtype='int8') chain_list = [[idx for idx in range(50)]] new_matrix, idxs = dwave.embedding.discard(samples_matrix, chain_list) self.assertEqual(new_matrix.shape, (100, 1)) def test_discard_typical(self): samples_matrix = np.array([[-1, +1, -1, +1], [+1, +1, +1, +1], [-1, -1, +1, -1], [-1, -1, +1, +1]], dtype='int8') chain_list = [(0, 1), (2, 3)] new_matrix, idxs = dwave.embedding.discard(samples_matrix, chain_list) np.testing.assert_equal(new_matrix, [[+1, +1], [-1, +1]]) def test_mixed_chain_types(self): chains = [(0, 1), [2, 3], {4, 5}] samples = [[1, 1, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1]] unembedded, idx = dwave.embedding.discard(samples, chains) np.testing.assert_array_equal(unembedded, [[1, 1, 1]]) np.testing.assert_array_equal(idx, [0]) class TestMajorityVote(unittest.TestCase): def test_typical_spin(self): S = np.array([[-1, +1, -1, +1], [+1, +1, -1, +1], [-1, +1, -1, -1]]) chains = [[0, 1, 2], [3]] samples, idx = dwave.embedding.majority_vote(S, chains) np.testing.assert_equal(samples, [[-1, +1], [+1, +1], [-1, -1]]) def test_typical_binary(self): S = np.array([[0, 1, 0, 1], [1, 1, 0, 1], [0, 1, 0, 0]]) chains = [[0, 1, 2], [3]] samples, idx = dwave.embedding.majority_vote(S, chains) np.testing.assert_equal(samples, [[0, 1], [1, 1], [0, 0]]) def test_four_chains(self): S = [[-1, -1, -1, -1], [+1, -1, -1, -1], [+1, +1, -1, -1], [-1, +1, -1, -1], [-1, +1, +1, -1], [+1, +1, +1, -1], [+1, -1, +1, -1], [-1, -1, +1, -1], [-1, -1, +1, +1], [+1, -1, +1, +1], [+1, +1, +1, +1], [-1, +1, +1, +1], [-1, +1, -1, +1], [+1, +1, -1, +1], [+1, -1, -1, +1], [-1, -1, -1, +1]] chains = [[0], [1], [2, 3]] samples, idx = dwave.embedding.majority_vote(S, chains) self.assertEqual(samples.shape, (16, 3)) self.assertEqual(set().union(*samples), {-1, 1}) # should be spin-valued class TestMinimizeEnergy(unittest.TestCase): def test_minimize_energy(self): embedding = {0: (0, 5), 1: (1, 6), 2: (2, 7), 3: (3, 8), 4: (4, 10)} h = [] j = {(0, 1): -1, (0, 2): 2, (0, 3): 2, (0, 4): -1, (2, 1): -1, (1, 3): 2, (3, 1): -1, (1, 4): -1, (2, 3): 1, (4, 2): -1, (2, 4): -1, (3, 4): 1} bqm = dimod.BinaryQuadraticModel.from_ising(h, j) solutions = [ [-1, -1, -1, -1, -1, -1, +1, +1, +1, 3, +1], [+1, +1, +1, +1, +1, -1, +1, -1, -1, 3, -1], [+1, +1, -1, +1, -1, -1, -1, -1, -1, 3, -1] ] expected = [ [-1, -1, +1, +1, -1], [+1, +1, +1, -1, +1], [-1, -1, -1, +1, -1] ] cbm = dwave.embedding.MinimizeEnergy(bqm, embedding) unembedded, idx = cbm(solutions, [embedding[v] for v in range(5)]) np.testing.assert_array_equal(expected, unembedded) def test_minimize_energy_non_clique(self): embedding = {0: (0, 5), 1: (1, 6), 2: (2, 7), 3: (3, 8), 4: (4, 10)} h = [] j = {(0, 1): -1, (0, 2): 2, (0, 3): 2, (0, 4): -1, (1, 3): 2, (3, 1): -1, (1, 4): -1, (2, 3): 1, (4, 2): -1, (2, 4): -1, (3, 4): 1} bqm = dimod.BinaryQuadraticModel.from_ising(h, j) solutions = [ [-1, -1, -1, -1, -1, -1, +1, +1, +1, 3, +1], [+1, +1, +1, +1, +1, -1, +1, -1, -1, 3, -1], [+1, +1, -1, +1, -1, -1, -1, -1, -1, 3, -1] ] expected = [ [-1, -1, +1, +1, -1], [+1, +1, +1, -1, +1], [-1, -1, -1, +1, -1] ] cbm = dwave.embedding.MinimizeEnergy(bqm, embedding) unembedded, idx = cbm(solutions, [embedding[v] for v in range(5)]) np.testing.assert_array_equal(expected, unembedded) def test_minimize_energy_easy(self): chains = ({0, 1}, [2], (4, 5, 6)) embedding = {v: chain for v, chain in enumerate(chains)} h = [-1, 0, 0] j = {} bqm = dimod.BinaryQuadraticModel.from_ising(h, j) solutions = [ [-1, -1, +1, 3, -1, -1, -1], [-1, +1, -1, 3, +1, +1, +1] ] expected = [ [-1, +1, -1], [+1, -1, +1] ] cbm = dwave.embedding.MinimizeEnergy(bqm, embedding) unembedded, idx = cbm(solutions, chains) np.testing.assert_array_equal(expected, unembedded) def test_empty_matrix(self): chains = [] bqm = dimod.BinaryQuadraticModel.empty(dimod.BINARY) solutions = [[]] embedding = {} cbm = dwave.embedding.MinimizeEnergy(bqm, embedding) unembedded, idx = cbm(solutions, chains) np.testing.assert_array_equal([[]], unembedded) np.testing.assert_array_equal(idx, [0]) def test_empty_chains(self): embedding = {} h = [] j = {(0, 1): -1, (0, 2): 2, (0, 3): 2, (0, 4): -1, (2, 1): -1, (1, 3): 2, (3, 1): -1, (1, 4): -1, (2, 3): 1, (4, 2): -1, (2, 4): -1, (3, 4): 1} bqm = dimod.BinaryQuadraticModel.from_ising(h, j) solutions = [ [-1, -1, -1, -1, -1, -1, +1, +1, +1, 3, +1], [+1, +1, +1, +1, +1, -1, +1, -1, -1, 3, -1], [+1, +1, -1, +1, -1, -1, -1, -1, -1, 3, -1] ] expected = [ [-1, -1, +1, +1, -1], [+1, +1, +1, -1, +1], [-1, -1, -1, +1, -1] ] cbm = dwave.embedding.MinimizeEnergy(bqm, embedding) unembedded, idx = cbm(solutions, []) np.testing.assert_array_equal(unembedded, [[], [], []]) ``` #### File: dwave-system/tests/test_polycutoffcomposite.py ```python import unittest import dimod from dwave.system import PolyCutOffComposite class CutoffChecker(dimod.PolySampler): def __init__(self, child_sampler, expected_poly): self.child = child_sampler self.poly = expected_poly def sample_poly(self, poly, **parameters): assert self.poly == poly, '{} != {}'.format(self.poly, poly) return self.child.sample_poly(poly, **parameters) def parameters(self): return self.child.parameters() def properties(self): return self.child.properties() class TestConstruction(unittest.TestCase): def test_instantiation_smoketest(self): sampler = PolyCutOffComposite(dimod.HigherOrderComposite(dimod.ExactSolver()), 0) self.assertTrue(hasattr(sampler, 'sample_poly')) self.assertTrue(hasattr(sampler, 'sample_hising')) self.assertTrue(hasattr(sampler, 'sample_hubo')) def test_wrap_bqm(self): with self.assertRaises(TypeError): PolyCutOffComposite(dimod.ExactSolver(), -1) class TestSampleHising(unittest.TestCase): def setUp(self): self.child = dimod.HigherOrderComposite(dimod.ExactSolver()) def test_empty(self): h = {} J = {} cutoff = 1 expected = dimod.BinaryPolynomial({}, dimod.SPIN) checker = CutoffChecker(self.child, expected) samples = PolyCutOffComposite(checker, cutoff).sample_hising(h, J) self.assertEqual(samples.record.sample.shape[1], 0) # no variables def test_linear(self): # they are all isolated h = {'a': -1, 'b': .5} J = {} cutoff = 1 # we cannot check in this case because all variables are isolated # this results in exactly one variable being sent to ExactSolver and # we don't know which one it will be, so we just check the correctness # of the output samples = PolyCutOffComposite(self.child, cutoff).sample_hising(h, J) poly = dimod.BinaryPolynomial.from_hising(h, J) for sample, energy in samples.data(['sample', 'energy']): self.assertAlmostEqual(energy, poly.energy(sample)) def test_4_path_isolated_tail(self): h = {} J = {'ab': -1, 'bc': -.5, 'cd': -.5, 'de': -.5} cutoff = .75 expected = dimod.BinaryPolynomial({'ab': -1}, dimod.SPIN) checker = CutoffChecker(self.child, expected) samples = PolyCutOffComposite(checker, cutoff).sample_hising(h, J) poly = dimod.BinaryPolynomial.from_hising(h, J) for sample, energy in samples.data(['sample', 'energy']): self.assertAlmostEqual(energy, poly.energy(sample)) def test_triangle(self): h = {'a': -1} J = {'abde': -1, 'bc': -.5, 'ca': -.5} cutoff = .75 expected = dimod.BinaryPolynomial({'a': -1, 'abde': -1}, dimod.SPIN) checker = CutoffChecker(self.child, expected) samples = PolyCutOffComposite(checker, cutoff).sample_hising(h, J) poly = dimod.BinaryPolynomial.from_hising(h, J) for sample, energy in samples.data(['sample', 'energy']): self.assertAlmostEqual(energy, poly.energy(sample)) # 'c' was isolated, should be 1 when restored with the ground state self.assertEqual(samples.first.sample['c'], 1) ```
{ "source": "joseppinilla/embedding-methods", "score": 2 }
#### File: embera/architectures/generators.py ```python import os import tarfile import requests import dwave.system import networkx as nx import dwave_networkx as dnx __all__ = ['graph_from_solver','dwave_online', 'rainier_graph', 'vesuvius_graph', 'dw2x_graph', 'dw2000q_graph', 'p6_graph', 'p16_graph', 'h20k_graph', ] """ ========================== D-Wave Solver Solutions ===================== """ def graph_from_solver(solver, **kwargs): """ D-Wave architecture graph from Dimod Structured Solver """ chip_id = solver.properties['chip_id'] sampler = dwave.system.DWaveSampler(solver=chip_id) target_graph = sampler.to_networkx_graph() target_graph.graph['chip_id'] = chip_id return target_graph def dwave_online(squeeze=True, **kwargs): """ Architecture graphs from D-Wave devices `online`""" import dwave.cloud with dwave.cloud.Client.from_config(**kwargs) as client: solvers = client.get_solvers() graphs = [graph_from_solver(s) for s in solvers if s.properties.get('topology')] if squeeze: return graphs[0] if len(graphs)==1 else graphs else: return graphs def dwave_collection(name=None): """ Architecture graphs from current and legacy D-Wave devices |name | nodes | edges | | ------------------- |:--------:| ------:| |Advantage_system1.1 | 5436 | 37440 | |DW_2000Q_6 | 2041 | 5974 | |DW_2000Q_5 | 2030 | 5909 | |DW_2000Q_2_1 | 2038 | 5955 | |DW_2000Q_QuAIL | 2031 | 5919 | |DW_2X_LANL | 1141 | 3298 | Returns list of NetworkX graphs with parameters: >>> G.graph = {'columns': <int>, 'data': bool, 'family': <string>, 'labels': <string>, 'name': <string>, 'rows': <int>, 'tile': <int>} """ graph_list = [] path = "./collection.tar.gz" url = "http://www.ece.ubc.ca/~jpinilla/resources/embera/architectures/dwave/collection.tar.gz" # Download if not os.path.isfile(path): print(f"-> Downloading D-Wave architecture collection to {path}") with open(path, 'wb') as f: response = requests.get(url) f.write(response.content) # Unzip, untar, unpickle with tarfile.open(path) as contents: for member in contents.getmembers(): f = contents.extractfile(member) G = nx.read_gpickle(f) graph_list.append(G) if name is None: return graph_list else: try: return next(g for g in graph_list if g.name==name) except: raise KeyError("Architecture graph name not found in collection") """ =========================== D-Wave Architectures ======================= """ def rainier_graph(**kwargs): """ D-Wave One 'Rainier' Quantum Annealer graph https://en.wikipedia.org/wiki/D-Wave_Systems """ target_graph = dnx.generators.chimera_graph(4, 4, 4, **kwargs) target_graph.graph['chip_id'] = 'Rainier' return target_graph def vesuvius_graph(**kwargs): """ D-Wave Two 'Vesuvius' Quantum Annealer graph https://en.wikipedia.org/wiki/D-Wave_Systems """ target_graph = dnx.generators.chimera_graph(8, 8, 4, **kwargs) target_graph.graph['chip_id'] = 'Vesuvius' return target_graph def dw2x_graph(**kwargs): """ D-Wave 2X Quantum Annealer graph https://en.wikipedia.org/wiki/D-Wave_Systems """ target_graph = dnx.generators.chimera_graph(12, 12, 4, **kwargs) target_graph.graph['chip_id'] = 'DW_2X' return target_graph def dw2000q_graph(**kwargs): """ D-Wave 2000Q Quantum Annealer graph https://en.wikipedia.org/wiki/D-Wave_Systems """ target_graph = dnx.generators.chimera_graph(16, 16, 4, **kwargs) target_graph.graph['chip_id'] = 'DW_2000Q' return target_graph def p6_graph(**kwargs): """ Pegasus 6 graph https://www.dwavesys.com/sites/default/files/mwj_dwave_qubits2018.pdf """ target_graph = dnx.generators.pegasus_graph(6, **kwargs) target_graph.graph['chip_id'] = 'P6' return target_graph def p16_graph(**kwargs): """ Pegasus 16 graph https://www.dwavesys.com/sites/default/files/mwj_dwave_qubits2018.pdf """ target_graph = dnx.generators.pegasus_graph(16, **kwargs) target_graph.graph['chip_id'] = 'P16' return target_graph """ ============================== Miscellaneous =========================== """ def h20k_graph(data=True, coordinates=False): """ HITACHI 20k-Spin CMOS digital annealer graph. https://ieeexplore.ieee.org/document/7350099/ """ n, m, t = 128, 80, 2 target_graph = nx.grid_graph(dim=[t, m, n]) target_graph.name = 'hitachi_graph(128,80,2)' target_graph.graph['chip_id'] = 'HITACHI 20k' construction = (("family", "hitachi"), ("rows", 5), ("columns", 4), ("data", data), ("labels", "coordinate" if coordinates else "int")) target_graph.graph.update(construction) if coordinates: if data: for t_node in target_graph: (z_coord, y_coord, x_coord) = t_node linear = x_coord + n*(y_coord + m*z_coord) target_graph.nodes[t_node]['linear_index'] = linear else: coordinate_labels = {(x, y, z):x+n*(y+m*z) for (x, y, z) in target_graph} if data: for t_node in target_graph: target_graph.nodes[t_node]['grid_index'] = t_node target_graph = nx.relabel_nodes(target_graph, coordinate_labels) return target_graph ``` #### File: embera/composites/layout_aware.py ```python import dimod import minorminer from embera import disperse from embera.preprocess import diffusion_placer from embera.architectures.generators import dw2000q_graph from dwave.embedding.transforms import embed_bqm, unembed_sampleset from dimod.binary_quadratic_model import BinaryQuadraticModel class LayoutAwareEmbeddingComposite(dimod.ComposedSampler): def __init__(self, child_sampler, layout = None, embedding_method=minorminer, candidates_method=diffusion_placer, architecture_method=dw2000q_graph, embedding_parameters={}, candidates_parameters={} ): if not isinstance(child_sampler, dimod.Structured): raise dimod.InvalidComposition("LayoutAwareEmbeddingComposite should only be applied to a Structured sampler") self._children = [child_sampler] self._layout = layout self._embedding = None self._embedding_method = embedding_method self._candidates_method = candidates_method self._architecture_method = architecture_method self._embedding_parameters = embedding_parameters self._candidates_parameters = candidates_parameters @property def children(self): """list: Children property inherited from :class:`dimod.Composite` class. For an instantiated composed sampler, contains the single wrapped structured sampler. .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config """ return self._children @property def parameters(self): """dict[str, list]: Parameters in the form of a dict. For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler. .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config """ # does not add or remove any parameters param = self.child.parameters.copy() param['chain_strength'] = [] param['force_embed'] = [] #TODO: Find a way to display embedding_method.find_embedding parameters return param @property def properties(self): """dict: Properties in the form of a dict. For an instantiated composed sampler, contains one key :code:`'child_properties'` that has a copy of the child sampler's properties. .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config """ properties = {'child_properties': self.child.properties.copy()} properties['embedding_method'] = self._embedding_method.__name__ return properties def get_ising_embedding(self, h, J, **parameters): """Retrieve or create a minor-embedding from Ising model """ bqm = BinaryQuadraticModel.from_ising(h,J) embedding = self.get_embedding(bqm, **parameters) return embedding def get_qubo_embedding(self, Q, **parameters): """Retrieve or create a minor-embedding from QUBO """ bqm = BinaryQuadraticModel.from_qubo(Q) embedding = self.get_embedding(bqm, **parameters) return embedding def set_embedding(self, embedding): """Write to the embedding parameter. Useful if embedding is taken from a file or independent method. Args: embedding (dict): Dictionary that maps labels in S_edgelist to lists of labels in the graph of the structured sampler. """ self._embedding = embedding def get_embedding(self, bqm=None, target_edgelist=None, force_embed=False, embedding_parameters={}, candidates_parameters={}): """Retrieve or create a minor-embedding from BinaryQuadraticModel Args: bqm (:obj:`dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. target_edgelist (list, optional, default=<Child Structure>): An iterable of label pairs representing the edges in the target graph. force_embed (bool, optional, default=False): If the sampler has an embedding return it. Otherwise, embed problem. **parameters: Parameters for the embedding method. Returns: embedding (dict): Dictionary that maps labels in S_edgelist to lists of labels in the graph of the structured sampler. """ child = self.child layout = self._layout embedding_method = self._embedding_method candidates_method = self._candidates_method architecture_method = self._architecture_method self._embedding_parameters = embedding_parameters self._candidates_parameters = embedding_parameters # add self-loops to edgelist to handle singleton variables source_edgelist = list(bqm.quadratic) + [(v, v) for v in bqm.linear] if target_edgelist is None: _, target_edgelist, _ = child.structure if force_embed or not self._embedding: Tg = architecture_method(edge_list=target_edgelist) candidates = candidates_method.find_candidates(source_edgelist, Tg, layout=layout, **candidates_parameters) embedding = embedding_method.find_embedding(source_edgelist, target_edgelist, initial_chains = candidates, **embedding_parameters) self._candidates = candidates self._embedding = embedding if bqm and not self._embedding: raise ValueError("no embedding found") return self._embedding def get_child_response(self): return self._child_response def sample(self, bqm, chain_strength=1.0, force_embed=False, chain_break_fraction=True, **parameters): """Sample from the provided binary quadratic model. Args: bqm (:obj:`dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. chain_strength (float, optional, default=1.0): Magnitude of the quadratic bias (in SPIN-space) applied between variables to create chains. Note that the energy penalty of chain breaks is 2 * `chain_strength`. force_embed (bool, optional, default=False): If the sampler has an embedding return it. Otherwise, embed problem. chain_break_fraction (bool, optional, default=True): If True, a ‘chain_break_fraction’ field is added to the unembedded response which report what fraction of the chains were broken before unembedding. **parameters: Parameters for the sampling method, specified by the child sampler. Returns: :class:`dimod.Response` """ # use the given embedding method with the given parameters embedding_parameters = self._embedding_parameters candidates_parameters = self._candidates_parameters # solve the problem on the child system child = self.child # apply the embedding to the given problem to map it to the child sampler __, target_edgelist, target_adjacency = child.structure # get the embedding embedding = self.get_embedding(bqm, target_edgelist=target_edgelist, force_embed=force_embed, candidates_parameters=candidates_parameters, embedding_parameters=embedding_parameters) if bqm and not embedding: raise ValueError("no embedding found") bqm_embedded = embed_bqm(bqm, embedding, target_adjacency, chain_strength=chain_strength) response = child.sample(bqm_embedded, **parameters) # Store embedded response self._child_response = response return unembed_sampleset(response, embedding, source_bqm=bqm, chain_break_fraction=chain_break_fraction) ``` #### File: embedding-methods/embera/dense.py ```python import warnings __all__ = ["find_embedding"] DEFAULT_CHIMERA = {'family': 'chimera', 'rows': 12, 'columns': 12, 'tile': 4} def find_embedding(S, T, graph_dict=DEFAULT_CHIMERA, **params): """ find_embedding(S, T, T_dict, **params) Heuristically attempt to find a minor-embedding of a graph, representing an Ising/QUBO, into a target graph. Args: S: an iterable of label pairs representing the edges in the source graph T: an iterable of label pairs representing the edges in the Chimera graph graph_dict: a dictionary of Chimera graph construction parameters (default: C12 Vesuvius graph) **params (optional): see RouterOptions_ Returns: embedding: a dict that maps labels in S to lists of labels in T """ warnings.warn('Work in Progress.') embedding = {} return embedding ``` #### File: embera/utilities/random.py ```python import numpy as np from random import sample from random import seed as _py_seed from numpy.random import choice, shuffle from numpy.random import multinomial, normal, uniform from numpy.random import seed as _np_seed __all__ = ["choice","sample","seed","shuffle", "prob_vector","bimodal","categorical"] """ Probability functions and distributions useful in embedding and testing Ising models. """ def seed(a): _py_seed(a) _np_seed(a) def prob_vector(N): vec = [normal(0, 1) for i in range(N)] mag = sum(x**2 for x in vec) ** .5 return [(x/mag)**2 for x in vec] def bimodal(N, loc1=-1.0,scale1=.25,size1=None, loc2=+1.0,scale2=.25,size2=None): if size1 is None: size1=N//2 if size2 is None: size2=N-size1 samples1 = normal(loc1,scale1,size1) samples2 = normal(loc2,scale2,size2) samples = np.concatenate([samples1,samples2]) shuffle(samples) return samples def categorical(N, vals): bins = multinomial(n=N, pvals=prob_vector(len(vals))) samples = np.array([vals[i] for i,b in enumerate(bins) for _ in range(b)]) shuffle(samples) return samples ``` #### File: embedding-methods/tests/test_checkerboard_transform.py ```python import dimod import unittest import dimod.testing as dit from embera import CheckerboardTransformComposite from dwave.system import FixedEmbeddingComposite try: import dwave_networkx as dnx _dnx = True except ImportError: _dnx = False class TestCheckerboardTransformComposite(unittest.TestCase): @unittest.skipUnless(_dnx, "No dwave_networkx package") def test_instantiation(self): C = dnx.chimera_graph(2, 2, 4) for factory in [dimod.ExactSolver, dimod.RandomSampler, dimod.SimulatedAnnealingSampler]: structsampler = dimod.StructureComposite(factory(), nodelist=C.nodes(), edgelist=C.edges()) sampler = CheckerboardTransformComposite(structsampler, C) dit.assert_sampler_api(sampler) dit.assert_composite_api(sampler) @unittest.skipUnless(_dnx, "No dwave_networkx package") def test_transforms_exact(self): C = dnx.chimera_graph(2, 2, 2) nodelist = list(C.nodes()) edgelist = list(C.edges()) structsampler = dimod.StructureComposite(dimod.ExactSolver(), nodelist=nodelist, edgelist=edgelist) sampler = CheckerboardTransformComposite(structsampler, C, aggregate=True) h = {v:0.1 for v in nodelist} J = {edge:-1.0 for edge in edgelist} response = sampler.sample_ising(h,J) # All 4 gauges must return same samples for datum in response.data(): self.assertEqual(datum.num_occurrences, 4) dit.assert_response_energies(response, dimod.BinaryQuadraticModel.from_ising(h,J)) @unittest.skipUnless(_dnx, "No dwave_networkx package") def test_transform_embedded(self): C = dnx.chimera_graph(1) nodelist = list(C.nodes()) edgelist = list(C.edges()) structsampler = dimod.StructureComposite(dimod.ExactSolver(), nodelist=nodelist, edgelist=edgelist) gauges_sampler = CheckerboardTransformComposite(structsampler, C, aggregate=True) sampler = FixedEmbeddingComposite(gauges_sampler, {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]}) h = {'a': .5, 'c': 0} J = {('a', 'c'): -1} response = sampler.sample_ising(h,J) # All 4 gauges must return same samples for datum in response.data(): self.assertEqual(datum.num_occurrences, 4) dit.assert_response_energies(response, dimod.BinaryQuadraticModel.from_ising(h,J)) @unittest.skipUnless(_dnx, "No dwave_networkx package") def test_chimera(self): C = dnx.chimera_graph(4) nodelist = list(C.nodes()) edgelist = list(C.edges()) structsampler = dimod.StructureComposite(dimod.RandomSampler(), nodelist=nodelist, edgelist=edgelist) Q = {(v,v):0.1 for v in nodelist} Q.update( {edge:-1.0 for edge in edgelist} ) sampler = CheckerboardTransformComposite(structsampler, C) response = sampler.sample_qubo(Q, num_reads=1000) dit.assert_response_energies(response, dimod.BinaryQuadraticModel.from_qubo(Q)) ``` #### File: embedding-methods/tests/test_embedding.py ```python import unittest import minorminer import dimod.testing as dtest from embera.architectures import generators from embera.composites.embedding import EmbeddingComposite from dimod.reference.samplers.random_sampler import RandomSampler from dimod.reference.composites.structure import StructureComposite class TestEmbeddingComposite(unittest.TestCase): def test_instantiate_pegasus(self): # Use the provided architectures target_graph = generators.p6_graph() # Use any sampler and make structured (i.e. Simulated Annealing, Exact) or use structured sampler if available (i.e. D-Wave machine) structsampler = StructureComposite(RandomSampler(), target_graph.nodes, target_graph.edges) sampler = EmbeddingComposite(structsampler, minorminer) dtest.assert_sampler_api(sampler) def test_instantiate_chimera(self): # Use the provided architectures target_graph = generators.dw2x_graph() # Use any sampler and make structured (i.e. Simulated Annealing, Exact) or use structured sampler if available (i.e. D-Wave machine) structsampler = StructureComposite(RandomSampler(), target_graph.nodes, target_graph.edges) sampler = EmbeddingComposite(structsampler, minorminer) dtest.assert_sampler_api(sampler) ```
{ "source": "joseppinilla/pytorchviz", "score": 2 }
#### File: pytorchviz/torchviz/dot.py ```python from collections import namedtuple from distutils.version import LooseVersion from graphviz import Digraph import torch from torch.autograd import Variable import warnings Node = namedtuple('Node', ('name', 'inputs', 'attr', 'op')) # Saved attrs for grad_fn (incl. saved variables) begin with `._saved_*` SAVED_PREFIX = "_saved_" def get_fn_name(fn, show_attrs, max_attr_chars): name = str(type(fn).__name__) if not show_attrs: return name attrs = dict() for attr in dir(fn): if not attr.startswith(SAVED_PREFIX): continue val = getattr(fn, attr) attr = attr[len(SAVED_PREFIX):] if torch.is_tensor(val): attrs[attr] = "[saved tensor]" elif isinstance(val, tuple) and any(torch.is_tensor(t) for t in val): attrs[attr] = "[saved tensors]" else: attrs[attr] = str(val) if not attrs: return name max_attr_chars = max(max_attr_chars, 3) col1width = max(len(k) for k in attrs.keys()) col2width = min(max(len(str(v)) for v in attrs.values()), max_attr_chars) sep = "-" * max(col1width + col2width + 2, len(name)) attrstr = '%-' + str(col1width) + 's: %' + str(col2width)+ 's' truncate = lambda s: s[:col2width - 3] + "..." if len(s) > col2width else s params = '\n'.join(attrstr % (k, truncate(str(v))) for (k, v) in attrs.items()) return name + '\n' + sep + '\n' + params def make_dot(var, params=None, show_attrs=False, show_saved=False, max_attr_chars=50): """ Produces Graphviz representation of PyTorch autograd graph. If a node represents a backward function, it is gray. Otherwise, the node represents a tensor and is either blue, orange, or green: - Blue: reachable leaf tensors that requires grad (tensors whose `.grad` fields will be populated during `.backward()`) - Orange: saved tensors of custom autograd functions as well as those saved by built-in backward nodes - Green: tensor passed in as outputs - Dark green: if any output is a view, we represent its base tensor with a dark green node. Args: var: output tensor params: dict of (name, tensor) to add names to node that requires grad show_attrs: whether to display non-tensor attributes of backward nodes (Requires PyTorch version >= 1.9) show_saved: whether to display saved tensor nodes that are not by custom autograd functions. Saved tensor nodes for custom functions, if present, are always displayed. (Requires PyTorch version >= 1.9) max_attr_chars: if show_attrs is `True`, sets max number of characters to display for any given attribute. """ if LooseVersion(torch.__version__) < LooseVersion("1.9") and \ (show_attrs or show_saved): warnings.warn( "make_dot: showing grad_fn attributes and saved variables" " requires PyTorch version >= 1.9. (This does NOT apply to" " saved tensors saved by custom autograd functions.)") if params is not None: assert all(isinstance(p, Variable) for p in params.values()) param_map = {id(v): k for k, v in params.items()} else: param_map = {} node_attr = dict(style='filled', shape='box', align='left', fontsize='10', ranksep='0.1', height='0.2', fontname='monospace') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '(' + (', ').join(['%d' % v for v in size]) + ')' def get_var_name(var, name=None): if not name: name = param_map[id(var)] if id(var) in param_map else '' return '%s\n %s' % (name, size_to_str(var.size())) def add_nodes(fn): assert not torch.is_tensor(fn) if fn in seen: return seen.add(fn) if show_saved: for attr in dir(fn): if not attr.startswith(SAVED_PREFIX): continue val = getattr(fn, attr) seen.add(val) attr = attr[len(SAVED_PREFIX):] if torch.is_tensor(val): dot.edge(str(id(fn)), str(id(val)), dir="none") dot.node(str(id(val)), get_var_name(val, attr), fillcolor='orange') if isinstance(val, tuple): for i, t in enumerate(val): if torch.is_tensor(t): name = attr + '[%s]' % str(i) dot.edge(str(id(fn)), str(id(t)), dir="none") dot.node(str(id(t)), get_var_name(t, name), fillcolor='orange') if hasattr(fn, 'variable'): # if grad_accumulator, add the node for `.variable` var = fn.variable seen.add(var) dot.node(str(id(var)), get_var_name(var), fillcolor='lightblue') dot.edge(str(id(var)), str(id(fn))) # add the node for this grad_fn dot.node(str(id(fn)), get_fn_name(fn, show_attrs, max_attr_chars)) # recurse if hasattr(fn, 'next_functions'): for u in fn.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(fn))) add_nodes(u[0]) # note: this used to show .saved_tensors in pytorch0.2, but stopped # working* as it was moved to ATen and Variable-Tensor merged # also note that this still works for custom autograd functions if hasattr(fn, 'saved_tensors'): for t in fn.saved_tensors: dot.edge(str(id(t)), str(id(fn))) dot.node(str(id(t)), get_var_name(t), fillcolor='orange') def add_base_tensor(var, color='darkolivegreen1'): if var in seen: return seen.add(var) dot.node(str(id(var)), get_var_name(var), fillcolor=color) if (var.grad_fn): add_nodes(var.grad_fn) dot.edge(str(id(var.grad_fn)), str(id(var))) if var._is_view(): add_base_tensor(var._base, color='darkolivegreen3') dot.edge(str(id(var._base)), str(id(var)), style="dotted") # handle multiple outputs if isinstance(var, tuple): for v in var: add_base_tensor(v) else: add_base_tensor(var) resize_graph(dot) return dot # For traces def replace(name, scope): return '/'.join([scope[name], name]) def parse(graph): scope = {} for n in graph.nodes(): inputs = [i.uniqueName() for i in n.inputs()] for i in range(1, len(inputs)): scope[inputs[i]] = n.scopeName() uname = next(n.outputs()).uniqueName() assert n.scopeName() != '', '{} has empty scope name'.format(n) scope[uname] = n.scopeName() scope['0'] = 'input' nodes = [] for n in graph.nodes(): attrs = {k: n[k] for k in n.attributeNames()} attrs = str(attrs).replace("'", ' ') inputs = [replace(i.uniqueName(), scope) for i in n.inputs()] uname = next(n.outputs()).uniqueName() nodes.append(Node(**{'name': replace(uname, scope), 'op': n.kind(), 'inputs': inputs, 'attr': attrs})) for n in graph.inputs(): uname = n.uniqueName() if uname not in scope.keys(): scope[uname] = 'unused' nodes.append(Node(**{'name': replace(uname, scope), 'op': 'Parameter', 'inputs': [], 'attr': str(n.type())})) return nodes def make_dot_from_trace(trace): """ Produces graphs of torch.jit.trace outputs Example: >>> trace, = torch.jit.trace(model, args=(x,)) >>> dot = make_dot_from_trace(trace) """ # from tensorboardX if LooseVersion(torch.__version__) >= LooseVersion("0.4.1"): torch.onnx._optimize_trace(trace, torch._C._onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) elif LooseVersion(torch.__version__) >= LooseVersion("0.4"): torch.onnx._optimize_trace(trace, False) else: torch.onnx._optimize_trace(trace) graph = trace.graph() list_of_nodes = parse(graph) node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) for node in list_of_nodes: dot.node(node.name, label=node.name.replace('/', '\n')) if node.inputs: for inp in node.inputs: dot.edge(inp, node.name) resize_graph(dot) return dot def resize_graph(dot, size_per_element=0.15, min_size=12): """Resize the graph according to how much content it contains. Modify the graph in place. """ # Get the approximate number of nodes and edges num_rows = len(dot.body) content_size = num_rows * size_per_element size = max(min_size, content_size) size_str = str(size) + "," + str(size) dot.graph_attr.update(size=size_str) ```
{ "source": "joseppinilla/qca-tools", "score": 2 }
#### File: qca-tools/examples/exact_sample.py ```python import os import pickle import itertools import networkx as nx import matplotlib.pyplot as plt from embedding_methods.utilities.graph_mmio import read_networkx from embedding_methods.utilities.graph_mmio import write_networkx from qca_tools.qca_network import QCANetworkX from dimod.reference.samplers.exact_solver import ExactSolver from dimod.reference.samplers.simulated_annealing import SimulatedAnnealingSampler bench_dir = './benchmarks/' #solver = 'dwave' #solver = 'exact' solver = 'sa' def sample(mm_name, dir): Sg = read_networkx(mm_name,mm_dir=dir) pos = Sg.graph['pos'] plt.figure(1) plt.clf() nx.draw(Sg, pos=pos, with_labels=True, node_shape='s') plt.gca().invert_yaxis() plt.savefig(dir + 'problem.png') h = {} J = {} for u,v,data in Sg.edges(data=True): if u==v: h[u] = data['weight'] else: J[(u,v)] = data['weight'] if solver=='sa': sampler = SimulatedAnnealingSampler() elif solver=='exact': sampler = ExactSolver() elif solver=='dwave': #TODO: EmbeddingComposite sampler = DWaveSampler() if solver=='exact': response = sampler.sample_ising(h,J) else: response = sampler.sample_ising(h,J,num_reads=1) with open(dir + 'problem.pkl','wb') as fp: pickle.dump(Sg, fp) with open(dir + 'response.pkl','wb') as fp: pickle.dump(response, fp) # energies = [datum.energy for datum in response.data()] # plt.figure(2) # _ = plt.hist(energies, bins=100) # plt.savefig('response.png') datum = next(response.data()) sample = datum.sample plt.figure(3) plt.clf() nx.draw(Sg, pos=pos, labels=sample, with_labels=True, node_shape='s') _ = nx.draw_networkx_edge_labels(Sg,pos=pos,edge_labels=J) plt.gca().invert_yaxis() plt.savefig(dir + 'ground_state.png') if __name__ == "__main__": EXHAUSTIVE = False benchmarks = [] benchmarks.append('NOT_FT') benchmarks.append('MAJ5_A') benchmarks.append('MAJ5_B') benchmarks.append('MUX') benchmarks.append('COPLANARX') # Vector inputs vectors = { 'NOT_FT': [{'A':-1}], 'MAJ5_A': [{'A':-1, 'B':1, 'C':1, 'D':-1, 'E':1}], 'MAJ5_B': [{'A':-1, 'B':1, 'C':1, 'D':-1, 'E':1}], 'MUX': [{'S':-1,'A':1,'B':-1}], 'COPLANARX': [{'A':-1,'X':1}] } for name in benchmarks: if EXHAUSTIVE: vector0 = vectors[name][0] vector_size = len(vector0) inputs = list(vector0.keys()) combs = itertools.product([-1,1], repeat=vector_size) pols = [ dict(zip(inputs,comb)) for comb in combs ] else: pols = vectors[name] # run for i, pol in enumerate(pols): dir = bench_dir + name + solver + str(i) + '/' if not os.path.exists(dir): os.makedirs(dir) G = QCANetworkX(bench_dir+name+'.qca', pols=pol) G.draw_qca() comments = "Source: %s\nPolarizations: %s" % (name, pol) write_networkx(G, pos=G.pos, mtx_name=name, mm_dir=dir, comment=comments) sample(name, dir) ``` #### File: qca_tools/composite/qca_sampler.py ```python import dimod from os.path import isfile from qca_tools.qca_network import QCANetwork R_MAX = 2.1 class QCAComposite(dimod.ComposedSampler): def __init__(self, child_sampler, qca_filename, pols={}, use_ancilla=True, r_max=R_MAX): if not isfile(qca_filename): raise ValueError("QCA input file not found") self._qca_filename = qca_filename self._use_ancilla = use_ancilla self._children = [child_sampler] self._QCA = QCANetwork(qca_filename,r_max=r_max) @property def children(self): """list: Children property inherited from :class:`dimod.Composite` class. For an instantiated composed sampler, contains the single wrapped structured sampler. .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config """ return self._children @property def parameters(self): """dict[str, list]: Parameters in the form of a dict. For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler. .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config """ # does not add or remove any parameters param = self.child.parameters.copy() return param @property def properties(self): """dict: Properties in the form of a dict. For an instantiated composed sampler, contains one key :code:`'child_properties'` that has a copy of the child sampler's properties. .. _configuration: http://dwave-cloud-client.readthedocs.io/en/latest/#module-dwave.cloud.config """ properties = {'child_properties': self.child.properties.copy()} properties['qca_filename'] = self._qca_filename properties['use_ancilla'] = self._use_ancilla return properties def get_outputs(self): outputs = self.outputs def get_qca_network(self): return self._QCA def sample(self, **parameters): child = self.child QCA = self._QCA response = child.sample(QCA) return response ```
{ "source": "josepquintana/HackUPC-2019", "score": 3 }
#### File: HackUPC-2019/src/LoadData.py ```python import pandas as pd import numpy as np from pathlib import Path from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split class AccidentsData: def __init__(self): filename = Path('../data/accidents.csv') if not filename.exists(): print('\nERROR: Missing dataset file: accidents.csv\n') quit() accidents = pd.read_csv(filename) # Eliminar columnes que preeliminarment es consideren irrellevants accidents = accidents.drop(columns=['police_force', 'local_authority_district', 'local_authority_highway', 'lsoa_of_accident_location', 'location_easting_osgr', 'location_northing_osgr']) # One hot encoding accidents = pd.get_dummies(accidents, columns=['1st_road_class', 'junction_detail', 'junction_control', '2nd_road_class', 'pedestrian_crossing-human_control', 'pedestrian_crossing-physical_facilities', 'light_conditions', 'road_surface_conditions', 'special_conditions_at_site', 'carriageway_hazards']) # Eliminar columnes associades a condició de les one hot que són desconegudes cols_acaben_menysu = [] for colname in accidents.columns: if colname[-3:] == '_-1': cols_acaben_menysu.append(colname) accidents = accidents.drop(columns=cols_acaben_menysu) numeritza = {'urban_or_rural_area': {'Urban': 1, 'Rural': 0} } accidents.replace(numeritza, inplace=True) # Si no hi ha condició excepcional, irrellevant accidents = accidents.drop(columns=['special' '_conditions_at_site_None', 'carriageway_hazards_None', '1st_road_class_Unclassified', '2nd_road_class_Unclassified']) # Convertir hh:mm:00 a minuts desde mitjanit accidents['time'] = accidents['time'].apply(lambda s: int(s[:-4]) * 60 + int(s[-2:])) # Convertir aaaa:mm:dd a minuts desde mitjanit accidents['date'] = accidents['date'].apply(lambda s: int(s[7:9]) + int(s[-2:-1]) * 30.44) # Substituïr -10s per avg de la columna accidents['2nd_road_number'].replace(-1, np.nan, inplace=True) accidents['2nd_road_number'].fillna(accidents['2nd_road_number'].mean(), inplace=True) # Normalitzat de les columnes que els cal tobenorm = ['longitude', 'latitude', 'number_of_vehicles', 'number_of_casualties', 'date', 'time', '1st_road_number', 'road_type', 'speed_limit', '2nd_road_number', 'weather_conditions'] norm = MinMaxScaler() accidents[tobenorm] = norm.fit_transform(accidents[tobenorm]) #self.features = accidents.drop('target', axis=1) self.Xtrain, self.Xtest, self.ytrain, self.ytest = train_test_split(accidents.drop('target', axis=1), accidents['target'], train_size=.7) def get_Xtrain(self): return self.Xtrain def get_Xtest(self): return self.Xtest def get_ytrain(self): return self.ytrain def get_ytest(self): return self.ytest class VehiclesData: def __init__(self): filename = Path('../data/vehicles.csv') if not filename.exists(): print('\nERROR: Missing dataset file: vehicles.csv\n') quit() vehicles = pd.read_csv(filename) vehicles = vehicles.drop(columns=['Vehicle_IMD_Decile']) vehicles = pd.get_dummies(vehicles, columns=['Vehicle_Type', 'Towing_and_Articulation', 'Vehicle_Manoeuvre', 'Vehicle_Location-Restricted_Lane', 'Junction_Location', 'Skidding_and_Overturning', 'Hit_Object_in_Carriageway', 'Vehicle_Leaving_Carriageway', 'Hit_Object_off_Carriageway', '1st_Point_of_Impact', 'Journey_Purpose_of_Driver', 'Propulsion_Code', 'Driver_IMD_Decile', 'Driver_Home_Area_Type']) cols_acabenmenysu = [] for colname in vehicles.columns: if colname[-3:] == '_-1' or colname[-5:] == '_-1.0': cols_acabenmenysu.append(colname) vehicles = vehicles.drop(columns=cols_acabenmenysu) vehicles = vehicles.drop(vehicles[vehicles.Age_of_Driver < 15].index) vehicles['Engine_Capacity_(CC)'].replace(-1, np.nan, inplace=True) vehicles['Engine_Capacity_(CC)'].replace('-1', np.nan, inplace=True) vehicles['Engine_Capacity_(CC)'].fillna(vehicles['Engine_Capacity_(CC)'].mean(), inplace=True) vehicles['Age_of_Driver'].replace(-1, np.nan, inplace=True) vehicles['Age_of_Driver'].replace('-1', np.nan, inplace=True) vehicles['Age_of_Driver'].fillna(vehicles['Age_of_Driver'].mean(), inplace=True) vehicles['Age_of_Vehicle'].replace(-1, np.nan, inplace=True) vehicles['Age_of_Vehicle'].fillna(vehicles['Age_of_Vehicle'].mean(), inplace=True) vehicles['Was_Vehicle_Left_Hand_Drive?'].replace(-1, np.nan, inplace=True) vehicles['Was_Vehicle_Left_Hand_Drive?'].replace('-1', np.nan, inplace=True) vehicles['Sex_of_Driver'].replace(-1, np.nan, inplace=True) vehicles['Sex_of_Driver'].replace('-1', np.nan, inplace=True) vehicles['Sex_of_Driver'].replace('Not known', np.nan, inplace=True) dicvehicles = {'Sex_of_Driver': {'Male': 1.0, 'Female': 0.0}, 'Was_Vehicle_Left_Hand_Drive?': {'Yes': 1.0, 'No': 0.0} } vehicles.replace(dicvehicles, inplace=True) vehicles['Was_Vehicle_Left_Hand_Drive?'].fillna(vehicles['Was_Vehicle_Left_Hand_Drive?'].mean(), inplace=True) vehicles['Sex_of_Driver'].fillna(vehicles['Sex_of_Driver'].mean(), inplace=True) tobenorm = ['Age_of_Driver', 'Engine_Capacity_(CC)', 'Age_of_Vehicle'] norm = MinMaxScaler() vehicles[tobenorm] = norm.fit_transform(vehicles[tobenorm]) self.valors = vehicles def get_valors(self): return self.valors class MergedData: def __init__(self, accidents, vehicles): acctarg_train = pd.concat([accidents.get_Xtrain(), accidents.get_ytrain()], axis=1) acctarg_test = pd.concat([accidents.get_Xtest(), accidents.get_ytest()], axis=1) merged_train = pd.merge(acctarg_train, vehicles.get_valors(), on='accident_id') merged_test = pd.merge(acctarg_test, vehicles.get_valors(), on='accident_id') self.target_train = merged_train['target'] self.target_test = merged_test['target'] self.merged_train = merged_train.drop('target', axis=1) self.merged_test = merged_test.drop('target', axis=1) def get_merged_train(self): return self.merged_train def get_target_train(self): return self.target_train def get_merged_test(self): return self.merged_test def get_target_test(self): return self.target_test ``` #### File: HackUPC-2019/src/Main.py ```python import os import LoadData as ld import Training as tr import numpy as np import pandas as pd from sklearn.metrics import f1_score def main(): #os.chdir('../') # Set working directory print("\nStarting program.\n") print("Loading data...\n") accidents_data = ld.AccidentsData() vehicles_data = ld.VehiclesData() merged_data = ld.MergedData(accidents_data, vehicles_data) X_test = merged_data.get_merged_test() y_test = merged_data.get_target_test() X_train = merged_data.get_merged_train() y_train = merged_data.get_target_train() print("Available Models:\n") print("1. K-nearest Neighbors") print("2. Stochastic Gradient Descent Classifier") print("3. Decision Tree Classifier") print("4. Random Forest Classifier") print("5. C-Support Vector Classification") print("6. Logistic Regression") print("7. Multi-Layer Perceptron Classifier") print("\n") mode = input("Choose Training Model: ") print('\nTraining model...\n') training = tr.Training(X_train, y_train) if mode == "1": training.knnTraining() elif mode == "2": training.sgdClassifierTraining() elif mode == "3": training.decisionTreeTraining() elif mode == "4": training.supportVectorMachinesTraining() elif mode == "5": training.supportVectorMachinesTraining() elif mode == "6": training.logisticRegressionTraining() elif mode == "7": training.mlpTraining() else: print("Bye!") quit() print('Calculating prediction...') y_pred = training.model.predict(X_test.drop('accident_id', axis=1)) print('F1 score = ', f1_score(y_test,y_pred)) main() ```
{ "source": "josepquintana/tum-ucc-ml", "score": 3 }
#### File: tum-ucc-ml/src/preprocessing.py ```python import pandas as pd import os.path import html import spacy import time from string import punctuation from langdetect import detect from google.cloud import translate_v2 as translate # data TICKETS = pd.read_csv(f'./data/tickets/tickets.csv') STATUS_LOG = pd.read_csv(f'./data/tickets/status_log.csv') # google translate setup CREDENTIALS_PATH = './translation-credentials.json' CLIENT = ( translate.Client.from_service_account_json(CREDENTIALS_PATH) if os.path.exists(CREDENTIALS_PATH) else None ) # spacy setup NLP = spacy.load('de_core_news_md') def preprocess(force=False, test=False, translate=False): """Preprocess ticket data into a pandas dataframe ready for futher work.""" s = './data/messages.parquet' if force or test or not os.path.exists(s): messages = TICKETS[[ 'ID', 'Bearbeiter', 'Angelegt Am', 'Kategorie ID', ]].dropna() messages = messages.rename(columns={ 'ID': 'id', 'Bearbeiter': 'operator', 'Angelegt Am': 'timestamp', 'Kategorie ID': 'category', }) if test: messages = messages[:100] ops = messages.groupby('operator')['operator'].agg(['count']) ops = ops.reset_index().sort_values('count', ascending=False) ops = list(ops['operator'][:-10]) messages = messages[messages['operator'].apply(lambda x: x in ops)] messages['category'] = messages['category'].apply(lambda x: x.strip()) messages = messages[messages['category'].str.len() > 0] messages['timestamp'] = pd.to_datetime( messages['timestamp'], infer_datetime_format=True, utc=True, ) # messages['year'] = messages['timestamp'].apply(lambda x: x.year) messages['text'] = messages['id'].apply( lambda x: get_first_message(fetch_ticket(x)), ) messages = messages.dropna() messages['text'] = messages['text'].apply(lambda x: clean(x)) messages['language'] = messages['text'].apply( lambda x: detect_language(x), ) messages['translated-text'] = messages.apply( lambda row: ( row['text'] if not translate or row['language'] == 'de' else translate_to_german(row['text']) ), axis=1, ) ''' messages['text'] = messages['text'].apply( lambda x: ' '.join(extract_keywords(x)), ) ''' messages = messages.reset_index(drop=True) messages.to_parquet(s) return messages return pd.read_parquet(s) def fetch_ticket(identifier): """Return data of ticket with given identifier as pandas dataframe.""" try: return pd.read_csv(f'./data/tickets/{identifier}.csv') except: return None def get_first_message(ticket_data): """Get first real message in ticket conversations. Sometimes there are weird first messages contained in the ticket CSVs, that start with SY-SYSID. """ if ticket_data is None: return None starts = ['SY-DBSYS', 'SY-SYSID'] for index, row in ticket_data.iterrows(): if not any([row['Text'].startswith(start) for start in starts]): # filter out test messages like `2000000151`: "Es brennt" if ( len(row['Text']) < 100 or row['Nachrichtentyp'].strip() != 'Beschreibung' ): return None return row['Text'] def clean(text): """Clean text of any weird characters.""" words = text.replace('\n', ' ').split() out = [] for word in words: word = word.strip('/-_<>&') if word: out.append(word) return ' '.join(out) def detect_language(text): """Detect the language of the given text.""" return detect(text) def translate_to_german(text): """Translate text from any language to german via Google Translate API.""" assert CLIENT, 'no Google Translate credentials provided' time.sleep(0.2) # rate limiting s = CLIENT.translate(text, target_language='de')['translatedText'] return html.unescape(s) def extract_keywords(text): """Extract and clean most important words in the text.""" tag = ['PROPN', 'ADJ', 'NOUN', 'VERB', 'ADV', 'NUM'] doc = NLP(text.lower()) result = [] for token in doc: if(token.text in NLP.Defaults.stop_words or token.text in punctuation): continue if(token.pos_ in tag): result.append(token.lemma_) return result ```
{ "source": "joseprsm/gutenberg", "score": 3 }
#### File: gutenberg/app/routes.py ```python from typing import List, Any, Dict import openai from fastapi import APIRouter, Depends from sqlalchemy.orm import Session from gutenberg.app.db import get_db from gutenberg.app import models from gutenberg.app import schemas router = APIRouter() @router.post('/') def predict(prompt: schemas.Prompt, db: Session = Depends(get_db)): db_prompt = models.Prompt( item_name=prompt.item_name, item_description=prompt.item_description, target_audience=prompt.target_audience, platform=prompt.platform ) db.add(db_prompt) db.commit() db.refresh(db_prompt) predictions: List[Dict[str, Any]] = openai.Completion.create( engine="text-davinci-001", prompt=generate_prompt( prompt.item_name, prompt.item_description, prompt.platform, prompt.target_audience), temperature=0.6, n=5, max_tokens=1000 ).choices for pred in predictions: pred_text = pred['text'] db_pred = models.Prediction(prompt_id=db_prompt.id, text=pred_text) db.add(db_pred) db.commit() db.refresh(db_pred) return { 'choices': [ pred['text'] for pred in predictions ]} @router.get('/') def get_predictions(db: Session = Depends(get_db), skip: int = 0, limit: int = 20): return db.query(models.Prediction).offset(skip).limit(limit).all() def generate_prompt(name, description, platform, target_audience): return f""" Write an ad for the following product to run on {platform} aimed at {target_audience}: Product: {name}. {description}. """ ``` #### File: gutenberg/models/recommender.py ```python from typing import List import tensorflow as tf import tensorflow_recommenders as tfrs from gutenberg.models.text import TextModel from gutenberg.models.query import QueryModel class Recommender(tfrs.Model): def __init__(self, nb_users: int, prediction_layer_sizes: List[int] = None, rating_layer_sizes: List[int] = None, rating_activation_fn: str = 'relu'): super().__init__() self._nb_users = nb_users self._rating_activation_fn = rating_activation_fn self._rating_layer_sizes = rating_layer_sizes or [128, 64, 32] self._prediction_layer_sizes = prediction_layer_sizes or [256, 128, 64] self.query_model = QueryModel(nb_users) self.prediction_model = TextModel(layer_sizes=self._prediction_layer_sizes) self.rating_model = tf.keras.Sequential([ tf.keras.layers.Dense(num_units, activation=rating_activation_fn) for num_units in self._rating_layer_sizes ]) self.rating_model.add(tf.keras.layers.Dense(1)) def compute_loss(self, inputs, training: bool = False) -> tf.Tensor: ratings = inputs.pop('rating') query_embeddings, candidate_embeddings, rating_predictions = self(inputs) rating_loss = self.rating_task(labels=ratings, predictions=rating_predictions) retrieval_loss = self.retrieval_task(query_embeddings, candidate_embeddings) return self.rating_weight * rating_loss + self.retrieval_weight * retrieval_loss def call(self, inputs, *_): query_embeddings = self.query_model(inputs) # (None, 64) candidate_embeddings = self.prediction_model(inputs['prediction']) # (None, 64) x = tf.concat([query_embeddings, candidate_embeddings], axis=1) # (None, 128) rating_predictions = self.rating_model(x) # (None, 1) return query_embeddings, candidate_embeddings, rating_predictions def get_config(self): return { 'nb_users': self._nb_users, 'rating_layer_sizes': self._rating_layer_sizes, 'rating_activation_fn': self._rating_activation_fn, } ``` #### File: gutenberg/models/user.py ```python import tensorflow as tf class UserModel(tf.keras.Model): def __init__(self, input_dim: int, embedding_dim: int = 32, **kwargs): super().__init__(**kwargs) self._input_dim = input_dim self._embedding_dim = embedding_dim self.hashing_layer = tf.keras.layers.Hashing(input_dim) self.embedding_layer = tf.keras.layers.Embedding(input_dim, embedding_dim) def call(self, inputs, *_): x = self.hashing_layer(inputs) # (None, 1) x = self.embedding_layer(x) # (None, 32) return x def get_config(self): return { 'input_dim': self._input_dim, 'embedding_dim': self._embedding_dim } ```
{ "source": "joseprsm/rexify", "score": 2 }
#### File: rexify/models/candidate.py ```python from typing import Dict, Any, List import tensorflow as tf from rexify.models.tower import Tower class CandidateModel(Tower): def __init__( self, schema: Dict[str, str], params: Dict[str, Dict[str, Any]], layer_sizes: List[int], activation: str = "relu", ): super(CandidateModel, self).__init__( schema=schema, params=params, layer_sizes=layer_sizes, activation=activation ) def call_feature_models(self, inputs: Dict[str, tf.Tensor]) -> List[tf.Tensor]: return [ model(inputs[feature_name]) for feature_name, model in self.feature_models.items() ] ``` #### File: rexify/models/candidate_test.py ```python import tensorflow as tf class CandidateTestCase(tf.test.TestCase): def test_something(self): self.assertEqual(True, True) # add assertion here if __name__ == "__main__": tf.test.main() ``` #### File: rexify/models/recommender_test.py ```python import tensorflow as tf from rexify.models.recommender import Recommender from rexify.features.sequence import slide_transform from tests.utils import get_sample_params, get_sample_schema, load_mock_events class RecommenderTest(tf.test.TestCase): def setUp(self): super(RecommenderTest, self).setUp() self._recommender_args = { "schema": get_sample_schema(), "params": get_sample_params(), "layer_sizes": [64, 32], "activation": "relu", } self.model = Recommender(**self._recommender_args) def testCall(self): events = load_mock_events() inputs = slide_transform(events, self._recommender_args["schema"]) inputs = list(inputs.batch(1).take(1))[0] query_embeddings, candidate_embeddings = self.model(inputs) self.assertIsInstance(query_embeddings, tf.Tensor) self.assertIsInstance(candidate_embeddings, tf.Tensor) self.assertEqual(query_embeddings.shape, tf.TensorShape([1, 32])) self.assertEqual(candidate_embeddings.shape, tf.TensorShape([1, 32])) # query_embedding_1 = self.model.query_model(tf.constant([[1]])) # self.assertTrue((tf.reduce_sum(tf.cast( # query_embeddings == query_embedding_1, # tf.int32)) == 32).numpy()) def testComputeLoss(self): events = load_mock_events() mock_data = slide_transform(events, self._recommender_args["schema"]) loss = self.model.compute_loss(list(mock_data.batch(1).take(1))[0]) self.assertIsInstance(loss, tf.Tensor) self.assertEqual(loss.shape, tf.TensorShape([])) def testConfig(self): self.assertIsInstance(self.model.get_config(), dict) if __name__ == "__main__": tf.test.main() ``` #### File: rexify/pipeline/train.py ```python from typing import Text, List import os import tensorflow as tf from tensorflow_metadata.proto.v0 import schema_pb2 from tensorflow_transform.tf_metadata import schema_utils from tfx import v1 as tfx from tfx_bsl.public import tfxio from rexify.models import Recommender BATCH_SIZE = os.environ.get("BATCH_SIZE", 512) FEATURE_KEYS = ["userId", "itemId"] FEATURE_SPEC = { feature: tf.io.FixedLenFeature(shape=(1,), dtype=tf.int64) for feature in FEATURE_KEYS } def _input_fn( file_pattern: List[Text], data_accessor: tfx.components.DataAccessor, schema: schema_pb2.Schema, batch_size: int = 512, ) -> tf.data.Dataset: # todo: dataset factory not working properly return data_accessor.tf_dataset_factory( file_pattern, tfxio.TensorFlowDatasetOptions(batch_size=batch_size), schema ).repeat() def run_fn(fn_args: tfx.components.FnArgs): layer_sizes = [64, 32] activation = "leaky_relu" schema = schema_utils.schema_from_feature_spec(FEATURE_SPEC) training_data: tf.data.Dataset = _input_fn( file_pattern=fn_args.train_files, data_accessor=fn_args.data_accessor, schema=schema, batch_size=512, ) nb_users = 10_000 # len(training_data.map(lambda x: x['userId']).apply(tf.data.experimental.unique)) nb_items = 10_000 # len(training_data.map(lambda x: x['itemId']).apply(tf.data.experimental.unique)) query_params = { "schema": {"userId": "categorical"}, "layer_sizes": layer_sizes, "activation": activation, "params": {"userId": {"input_dim": nb_items, "embedding_dim": 16}}, } candidate_params = { "schema": {"itemId": "categorical"}, "layer_sizes": layer_sizes, "activation": activation, "params": {"itemId": {"input_dim": nb_users, "embedding_dim": 32}}, } model: Recommender = Recommender( query_params=query_params, candidate_params=candidate_params, layer_sizes=layer_sizes, activation=activation, ) model.compile(optimizer=tf.keras.optimizers.Adam(0.2)) model.fit(training_data, steps_per_epoch=fn_args.train_steps) model.save(fn_args.serving_model_dir, save_format="tf") ``` #### File: rexify/tests/test_pipeline.py ```python import os # from tfx.orchestration.local.local_dag_runner import LocalDagRunner from tfx.orchestration.pipeline import Pipeline from rexify import pipeline PIPELINE_NAME = "rexify_test" PIPELINE_ROOT = os.path.join("pipelines", PIPELINE_NAME) METADATA_PATH = os.path.join("metadata", PIPELINE_NAME, "metadata.db") SERVING_MODEL_DIR = os.path.join("serving_model", PIPELINE_NAME) ppl = pipeline.build( pipeline_name=PIPELINE_NAME, pipeline_root=PIPELINE_ROOT, data_root="data/events", items_root="data/items", run_fn="rexify.train.run_fn", schema={"userId": "", "itemId": ""}, serving_model_dir=SERVING_MODEL_DIR, metadata_path=METADATA_PATH, ) def test_pipeline_components(): assert isinstance(ppl, Pipeline) assert len(ppl.components) > 0 ```
{ "source": "joseprupi/quantragrpc", "score": 2 }
#### File: python/quantra/FloatingRateBond.py ```python import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class FloatingRateBond(object): __slots__ = ['_tab'] @classmethod def GetRootAs(cls, buf, offset=0): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = FloatingRateBond() x.Init(buf, n + offset) return x @classmethod def GetRootAsFloatingRateBond(cls, buf, offset=0): """This method is deprecated. Please switch to GetRootAs.""" return cls.GetRootAs(buf, offset) # FloatingRateBond def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # FloatingRateBond def SettlementDays(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 # FloatingRateBond def FaceAmount(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float64Flags, o + self._tab.Pos) return 0.0 # FloatingRateBond def Schedule(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) if o != 0: x = self._tab.Indirect(o + self._tab.Pos) from quantra.Schedule import Schedule obj = Schedule() obj.Init(self._tab.Bytes, x) return obj return None # FloatingRateBond def Index(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) if o != 0: x = self._tab.Indirect(o + self._tab.Pos) from quantra.Index import Index obj = Index() obj.Init(self._tab.Bytes, x) return obj return None # FloatingRateBond def AccrualDayCounter(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # FloatingRateBond def PaymentConvention(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # FloatingRateBond def FixingDays(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 # FloatingRateBond def Spread(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float64Flags, o + self._tab.Pos) return 0.0 # FloatingRateBond def InArrears(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(20)) if o != 0: return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) return False # FloatingRateBond def Redemption(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float64Flags, o + self._tab.Pos) return 0.0 # FloatingRateBond def IssueDate(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(24)) if o != 0: return self._tab.String(o + self._tab.Pos) return None def Start(builder): builder.StartObject(11) def FloatingRateBondStart(builder): """This method is deprecated. Please switch to Start.""" return Start(builder) def AddSettlementDays(builder, settlementDays): builder.PrependInt32Slot(0, settlementDays, 0) def FloatingRateBondAddSettlementDays(builder, settlementDays): """This method is deprecated. Please switch to AddSettlementDays.""" return AddSettlementDays(builder, settlementDays) def AddFaceAmount(builder, faceAmount): builder.PrependFloat64Slot(1, faceAmount, 0.0) def FloatingRateBondAddFaceAmount(builder, faceAmount): """This method is deprecated. Please switch to AddFaceAmount.""" return AddFaceAmount(builder, faceAmount) def AddSchedule(builder, schedule): builder.PrependUOffsetTRelativeSlot(2, flatbuffers.number_types.UOffsetTFlags.py_type(schedule), 0) def FloatingRateBondAddSchedule(builder, schedule): """This method is deprecated. Please switch to AddSchedule.""" return AddSchedule(builder, schedule) def AddIndex(builder, index): builder.PrependUOffsetTRelativeSlot(3, flatbuffers.number_types.UOffsetTFlags.py_type(index), 0) def FloatingRateBondAddIndex(builder, index): """This method is deprecated. Please switch to AddIndex.""" return AddIndex(builder, index) def AddAccrualDayCounter(builder, accrualDayCounter): builder.PrependInt8Slot(4, accrualDayCounter, 0) def FloatingRateBondAddAccrualDayCounter(builder, accrualDayCounter): """This method is deprecated. Please switch to AddAccrualDayCounter.""" return AddAccrualDayCounter(builder, accrualDayCounter) def AddPaymentConvention(builder, paymentConvention): builder.PrependInt8Slot(5, paymentConvention, 0) def FloatingRateBondAddPaymentConvention(builder, paymentConvention): """This method is deprecated. Please switch to AddPaymentConvention.""" return AddPaymentConvention(builder, paymentConvention) def AddFixingDays(builder, fixingDays): builder.PrependInt32Slot(6, fixingDays, 0) def FloatingRateBondAddFixingDays(builder, fixingDays): """This method is deprecated. Please switch to AddFixingDays.""" return AddFixingDays(builder, fixingDays) def AddSpread(builder, spread): builder.PrependFloat64Slot(7, spread, 0.0) def FloatingRateBondAddSpread(builder, spread): """This method is deprecated. Please switch to AddSpread.""" return AddSpread(builder, spread) def AddInArrears(builder, inArrears): builder.PrependBoolSlot(8, inArrears, 0) def FloatingRateBondAddInArrears(builder, inArrears): """This method is deprecated. Please switch to AddInArrears.""" return AddInArrears(builder, inArrears) def AddRedemption(builder, redemption): builder.PrependFloat64Slot(9, redemption, 0.0) def FloatingRateBondAddRedemption(builder, redemption): """This method is deprecated. Please switch to AddRedemption.""" return AddRedemption(builder, redemption) def AddIssueDate(builder, issueDate): builder.PrependUOffsetTRelativeSlot(10, flatbuffers.number_types.UOffsetTFlags.py_type(issueDate), 0) def FloatingRateBondAddIssueDate(builder, issueDate): """This method is deprecated. Please switch to AddIssueDate.""" return AddIssueDate(builder, issueDate) def End(builder): return builder.EndObject() def FloatingRateBondEnd(builder): """This method is deprecated. Please switch to End.""" return End(builder) ``` #### File: python/quantra/Schedule.py ```python import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class Schedule(object): __slots__ = ['_tab'] @classmethod def GetRootAs(cls, buf, offset=0): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = Schedule() x.Init(buf, n + offset) return x @classmethod def GetRootAsSchedule(cls, buf, offset=0): """This method is deprecated. Please switch to GetRootAs.""" return cls.GetRootAs(buf, offset) # Schedule def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # Schedule def Calendar(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # Schedule def EffectiveDate(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.String(o + self._tab.Pos) return None # Schedule def TerminationDate(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) if o != 0: return self._tab.String(o + self._tab.Pos) return None # Schedule def Frequency(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # Schedule def Convention(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # Schedule def TerminationDateConvention(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # Schedule def DateGenerationRule(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # Schedule def EndOfMonth(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18)) if o != 0: return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) return False def Start(builder): builder.StartObject(8) def ScheduleStart(builder): """This method is deprecated. Please switch to Start.""" return Start(builder) def AddCalendar(builder, calendar): builder.PrependInt8Slot(0, calendar, 0) def ScheduleAddCalendar(builder, calendar): """This method is deprecated. Please switch to AddCalendar.""" return AddCalendar(builder, calendar) def AddEffectiveDate(builder, effectiveDate): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(effectiveDate), 0) def ScheduleAddEffectiveDate(builder, effectiveDate): """This method is deprecated. Please switch to AddEffectiveDate.""" return AddEffectiveDate(builder, effectiveDate) def AddTerminationDate(builder, terminationDate): builder.PrependUOffsetTRelativeSlot(2, flatbuffers.number_types.UOffsetTFlags.py_type(terminationDate), 0) def ScheduleAddTerminationDate(builder, terminationDate): """This method is deprecated. Please switch to AddTerminationDate.""" return AddTerminationDate(builder, terminationDate) def AddFrequency(builder, frequency): builder.PrependInt8Slot(3, frequency, 0) def ScheduleAddFrequency(builder, frequency): """This method is deprecated. Please switch to AddFrequency.""" return AddFrequency(builder, frequency) def AddConvention(builder, convention): builder.PrependInt8Slot(4, convention, 0) def ScheduleAddConvention(builder, convention): """This method is deprecated. Please switch to AddConvention.""" return AddConvention(builder, convention) def AddTerminationDateConvention(builder, terminationDateConvention): builder.PrependInt8Slot(5, terminationDateConvention, 0) def ScheduleAddTerminationDateConvention(builder, terminationDateConvention): """This method is deprecated. Please switch to AddTerminationDateConvention.""" return AddTerminationDateConvention(builder, terminationDateConvention) def AddDateGenerationRule(builder, dateGenerationRule): builder.PrependInt8Slot(6, dateGenerationRule, 0) def ScheduleAddDateGenerationRule(builder, dateGenerationRule): """This method is deprecated. Please switch to AddDateGenerationRule.""" return AddDateGenerationRule(builder, dateGenerationRule) def AddEndOfMonth(builder, endOfMonth): builder.PrependBoolSlot(7, endOfMonth, 0) def ScheduleAddEndOfMonth(builder, endOfMonth): """This method is deprecated. Please switch to AddEndOfMonth.""" return AddEndOfMonth(builder, endOfMonth) def End(builder): return builder.EndObject() def ScheduleEnd(builder): """This method is deprecated. Please switch to End.""" return End(builder) ``` #### File: python/quantra/SwapHelper.py ```python import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class SwapHelper(object): __slots__ = ['_tab'] @classmethod def GetRootAs(cls, buf, offset=0): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = SwapHelper() x.Init(buf, n + offset) return x @classmethod def GetRootAsSwapHelper(cls, buf, offset=0): """This method is deprecated. Please switch to GetRootAs.""" return cls.GetRootAs(buf, offset) # SwapHelper def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # SwapHelper def Rate(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float64Flags, o + self._tab.Pos) return 0.0 # SwapHelper def TenorTimeUnit(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # SwapHelper def TenorNumber(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 # SwapHelper def Calendar(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # SwapHelper def SwFixedLegFrequency(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # SwapHelper def SwFixedLegConvention(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # SwapHelper def SwFixedLegDayCounter(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # SwapHelper def SwFloatingLegIndex(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # SwapHelper def Spread(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(20)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float64Flags, o + self._tab.Pos) return 0.0 # SwapHelper def FwdStartDays(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 def Start(builder): builder.StartObject(10) def SwapHelperStart(builder): """This method is deprecated. Please switch to Start.""" return Start(builder) def AddRate(builder, rate): builder.PrependFloat64Slot(0, rate, 0.0) def SwapHelperAddRate(builder, rate): """This method is deprecated. Please switch to AddRate.""" return AddRate(builder, rate) def AddTenorTimeUnit(builder, tenorTimeUnit): builder.PrependInt8Slot(1, tenorTimeUnit, 0) def SwapHelperAddTenorTimeUnit(builder, tenorTimeUnit): """This method is deprecated. Please switch to AddTenorTimeUnit.""" return AddTenorTimeUnit(builder, tenorTimeUnit) def AddTenorNumber(builder, tenorNumber): builder.PrependInt32Slot(2, tenorNumber, 0) def SwapHelperAddTenorNumber(builder, tenorNumber): """This method is deprecated. Please switch to AddTenorNumber.""" return AddTenorNumber(builder, tenorNumber) def AddCalendar(builder, calendar): builder.PrependInt8Slot(3, calendar, 0) def SwapHelperAddCalendar(builder, calendar): """This method is deprecated. Please switch to AddCalendar.""" return AddCalendar(builder, calendar) def AddSwFixedLegFrequency(builder, swFixedLegFrequency): builder.PrependInt8Slot(4, swFixedLegFrequency, 0) def SwapHelperAddSwFixedLegFrequency(builder, swFixedLegFrequency): """This method is deprecated. Please switch to AddSwFixedLegFrequency.""" return AddSwFixedLegFrequency(builder, swFixedLegFrequency) def AddSwFixedLegConvention(builder, swFixedLegConvention): builder.PrependInt8Slot(5, swFixedLegConvention, 0) def SwapHelperAddSwFixedLegConvention(builder, swFixedLegConvention): """This method is deprecated. Please switch to AddSwFixedLegConvention.""" return AddSwFixedLegConvention(builder, swFixedLegConvention) def AddSwFixedLegDayCounter(builder, swFixedLegDayCounter): builder.PrependInt8Slot(6, swFixedLegDayCounter, 0) def SwapHelperAddSwFixedLegDayCounter(builder, swFixedLegDayCounter): """This method is deprecated. Please switch to AddSwFixedLegDayCounter.""" return AddSwFixedLegDayCounter(builder, swFixedLegDayCounter) def AddSwFloatingLegIndex(builder, swFloatingLegIndex): builder.PrependInt8Slot(7, swFloatingLegIndex, 0) def SwapHelperAddSwFloatingLegIndex(builder, swFloatingLegIndex): """This method is deprecated. Please switch to AddSwFloatingLegIndex.""" return AddSwFloatingLegIndex(builder, swFloatingLegIndex) def AddSpread(builder, spread): builder.PrependFloat64Slot(8, spread, 0.0) def SwapHelperAddSpread(builder, spread): """This method is deprecated. Please switch to AddSpread.""" return AddSpread(builder, spread) def AddFwdStartDays(builder, fwdStartDays): builder.PrependInt32Slot(9, fwdStartDays, 0) def SwapHelperAddFwdStartDays(builder, fwdStartDays): """This method is deprecated. Please switch to AddFwdStartDays.""" return AddFwdStartDays(builder, fwdStartDays) def End(builder): return builder.EndObject() def SwapHelperEnd(builder): """This method is deprecated. Please switch to End.""" return End(builder) ```
{ "source": "JosepSampe/blackeagle", "score": 2 }
#### File: gateways/docker/function.py ```python from swift.common.wsgi import make_subrequest from zion.common.utils import set_object_metadata, get_object_metadata, make_swift_request import tarfile import os TIMEOUT_HEADER = "X-Object-Meta-Function-Timeout" MEMORY_HEADER = "X-Object-Meta-Function-Memory" MAIN_HEADER = "X-Object-Meta-Function-Main" class Function: """ Function main class. """ def __init__(self, conf, app, req, account, logger, function_obj_name): self.conf = conf self.app = app self.req = req self.account = account self.logger = logger self.function_obj_name = function_obj_name self.function_name = function_obj_name.replace('.tar.gz', '') self.functions_container = self.conf['functions_container'] self.disaggregated_compute = self.conf['disaggregated_compute'] self.scope = self.account[5:18] # Dirs self.main_dir = self.conf["main_dir"] self.functions_dir = self.conf["functions_dir"] self.cache_dir = self.conf["cache_dir"] self.log_dir = self.conf["log_dir"] self.bin_dir = self.conf["bin_dir"] self._preparate_dirs() self._load_function() self.logger.info('Function - Function instance created') def _preparate_dirs(self): """ Makes the required directories for managing the function. """ self.logger.info('Function - Preparing function directories') functions_path = os.path.join(self.main_dir, self.functions_dir) scope_path = os.path.join(functions_path, self.scope) self.cache_path = os.path.join(scope_path, self.cache_dir) self.log_path = os.path.join(scope_path, self.log_dir) self.bin_path = os.path.join(scope_path, self.bin_dir) if not os.path.exists(self.cache_path): os.makedirs(self.cache_path) if not os.path.exists(self.log_path): os.makedirs(self.log_path) def _load_function(self): """ Loads the function. """ self.logger.info('Function - Loading function: '+self.function_obj_name) self.cached_function_obj = os.path.join(self.cache_path, self.function_obj_name) self.function_bin_path = os.path.join(self.bin_path, self.function_name) if not self._is_function_in_cache(): self._update_local_cache_from_swift() self._extract_function() self._load_function_execution_information() def _is_function_in_cache(self): """ Checks whether the function is in cache. :returns : whether the object is available in cache. """ in_cache = False if os.path.isfile(self.cached_function_obj): self.logger.info('Function - ' + self.function_obj_name + ' found in cache.') in_cache = True else: self.logger.info('Function - ' + self.function_obj_name + ' not found in cache.') in_cache = False return in_cache def _update_local_cache_from_swift(self): """ Updates the local cache of functions. """ self.logger.info('Function - Updating local cache from swift') if self.disaggregated_compute: new_env = dict(self.req.environ) swift_path = os.path.join('/', 'v1', self.account, self.functions_container, self.function_obj_name) sub_req = make_subrequest(new_env, 'GET', swift_path, swift_source='function_middleware') resp = sub_req.get_response(self.app) else: resp = make_swift_request('GET', self.account, self.functions_container, self.function_obj_name) if resp.status_int != 200: self.logger.info('Function - It is not possible to update the local cache') raise FileNotFoundError with open(self.cached_function_obj, 'wb') as fn: fn.write(resp.body) self.logger.info('Function - Local cache updated: '+self.cached_function_obj) self.function_metadata = resp.headers set_object_metadata(self.cached_function_obj, resp.headers) def _extract_function(self): """ Untars the function to the bin directory. """ self.logger.info('Extracting .tar.gz function files') tar = tarfile.open(self.cached_function_obj, "r:gz") tar.extractall(path=self.function_bin_path) tar.close() def _load_function_execution_information(self): """ Loads the memory needed and the timeout of the function. """ self.logger.info('Function - Loading function information') function_metadata = get_object_metadata(self.cached_function_obj) self.logger.info('Function - Metadata: ' + str(function_metadata)) if MEMORY_HEADER not in function_metadata or TIMEOUT_HEADER not in \ function_metadata or MAIN_HEADER not in function_metadata: raise ValueError("Error Getting Function memory and timeout values") else: self.memory = int(function_metadata[MEMORY_HEADER]) self.timeout = int(function_metadata[TIMEOUT_HEADER]) self.main_class = function_metadata[MAIN_HEADER] def open_log(self): """ Opens the log file where the function will log. """ f_log_path = os.path.join(self.log_path, self.function_name) if not os.path.exists(f_log_path): os.makedirs(f_log_path) f_log_file = os.path.join(f_log_path, self.function_name+'.log') self.logger_file = open(f_log_file, 'a') def get_timeout(self): return self.timeout def get_main_class(self): return self.main_class def get_memory(self): return self.memory def get_logfd(self): return self.logger_file.fileno() def get_name(self): return self.function_name def get_obj_name(self): return self.function_obj_name def get_bin_path(self): return self.function_bin_path def close_log(self): """ Closes the log file. """ self.logger_file.close() ``` #### File: zion/handlers/compute.py ```python from zion.handlers import BaseHandler from zion.handlers.base import NotFunctionRequest from swift.common.utils import public import time class ComputeHandler(BaseHandler): def __init__(self, request, conf, app, logger, redis): super(ComputeHandler, self).__init__( request, conf, app, logger, redis) def _parse_vaco(self): return self.req.split_path(3, 4, rest_with_last=True) def _get_functions(self): return eval(self.req.headers.pop('functions_data')) def is_valid_request(self): return 'functions_data' in self.req.headers def handle_request(self): if hasattr(self, self.method) and self.is_valid_request(): try: handler = getattr(self, self.method) getattr(handler, 'publicly_accessible') except AttributeError: raise NotFunctionRequest() return handler() else: raise NotFunctionRequest() @public def GET(self): """ GET handler on Compute node """ functions_data = self._get_functions() self.response = self.req.get_response(self.app) # self.response = Response(body="Test", headers=self.req.headers) t0 = time.time() self.apply_function_onget(functions_data) self.logger.info('------> TOAL ZION TIME: %0.6fs' % ((time.time()-t0))) return self.response @public def PUT(self): """ PUT handler on Compute node """ functions_data = self._get_functions() return self.apply_function_onput(functions_data) ```
{ "source": "JosepSampe/swift-linking-middleware", "score": 2 }
#### File: JosepSampe/swift-linking-middleware/softlink.py ```python import os from swift.common.utils import get_logger from swift.common.utils import register_swift_info from swift.common.wsgi import make_subrequest from swift.common.swob import Request, Response class SoftLinkMiddleware(object): def __init__(self, app, conf): self.app = app self.conf = conf self.logger = get_logger(self.conf, log_route='softlink') self.register_info() def register_info(self): register_swift_info('softlink') @property def is_object_link(self): return 'X-Link-To' in self.request.headers def verify_access(self, cont, obj): """ Verifies access to the specified object in swift :param cont: swift container name :param obj: swift object name :return response: Object response """ path = os.path.join('/', self.api_version, self.account, cont, obj) self.logger.debug('Verifying access to %s' % path) new_env = dict(self.req.environ) if 'HTTP_TRANSFER_ENCODING' in new_env.keys(): del new_env['HTTP_TRANSFER_ENCODING'] auth_token = self.req.headers.get('X-Auth-Token') sub_req = make_subrequest(new_env, 'HEAD', path, headers={'X-Auth-Token': auth_token}, swift_source='softlink_middleware') return sub_req.get_response(self.app) def create_link(self, link_path, dest_path, heads): """ Creates a link to a actual object :param link_path: swift path of the link :param dest_path: swift path of the object to link :param heads: original object headers """ self.logger.debug('Creating a link from %s to %s' % (link_path, dest_path)) new_env = dict(self.request.environ) if 'HTTP_TRANSFER_ENCODING' in new_env.keys(): del new_env['HTTP_TRANSFER_ENCODING'] if 'HTTP_X_COPY_FROM' in new_env.keys(): del new_env['HTTP_X_COPY_FROM'] auth_token = self.request.headers.get('X-Auth-Token') link_path = os.path.join('/', self.api_version, self.account, link_path) sub_req = make_subrequest( new_env, 'PUT', link_path, headers={'X-Auth-Token': auth_token, 'Content-Length': 0, 'Content-Type': 'link', 'Original-Content-Length': heads["Content-Length"], 'X-Object-Sysmeta-Link-To': dest_path}, swift_source='softlink_middleware') resp = sub_req.get_response(self.app) return resp def get_linked_object(self, dest_obj): """ Makes a subrequest to the provided container/object :param dest_obj: container/object :return: swift.common.swob.Response Instance """ dest_path = os.path.join('/', self.api_version, self.account, dest_obj) new_env = dict(self.req.environ) sub_req = make_subrequest(new_env, 'GET', dest_path, headers=self.req.headers, swift_source='softlink_middleware') return sub_req.get_response(self.app) def process_object_link(self): """ Moves an object to the destination path and leaves a soft link in the original path. """ link_path = os.path.join(self.container, self.obj) dest_path = self.req.headers['X-Link-To'] if link_path != dest_path: resp = self.verify_access(self.container, self.obj) if resp.is_success: headers = resp.headers if "X-Object-Sysmeta-Link-To" not in resp.headers \ and resp.headers['Content-Type'] != 'link': self.req.method = 'COPY' self.req.headers['Destination'] = dest_path response = self.req.get_response(self.app) if response.is_success: response = self.create_link(self, link_path, dest_path, headers) else: msg = ("Error: The main object does not exists in Swift.\n") response = Response(body=msg, headers={'etag': ''}, request=self.req) else: msg = ("Error: Link path and destination path " "cannot be the same.\n") response = Response(body=msg, headers={'etag': ''}, request=self.req) return response def __call__(self, env, start_response): self.req = Request(env) if self.req.method == 'GET': resp = self.app(env, start_response) if "X-Object-Sysmeta-Link-To" in resp.headers: dest_obj = resp.headers["X-Object-Sysmeta-Link-To"] return self.get_linked_object(dest_obj) if self.req.method == 'POST': if self.is_object_link: resp = self.process_object_link() return resp(env, start_response) else: # Pass on to downstream WSGI component return self.app(env, start_response) def filter_factory(global_conf, **local_conf): conf = global_conf.copy() conf.update(local_conf) def softlink_filter(app): return SoftLinkMiddleware(app, conf) return softlink_filter ```
{ "source": "JosepSampe/triggerflow", "score": 3 }
#### File: trigger-api/api/workspaces.py ```python import re from triggerflow.service.storage import TriggerStorage def create_workspace(trigger_storage: TriggerStorage, workspace: str, global_context: dict, event_source: dict): if trigger_storage.workspace_exists(workspace=workspace): return {'error': 'Workspace {} already exists'.format(workspace), 'err_code': 2}, 400 # Workspace name can only contain alphanumeric, hyphens or underscore characters if not re.fullmatch(r"^[a-zA-Z0-9._-]*$", workspace): return {'error': 'Illegal workspace name', 'err_code': 3}, 400 if {'name', 'class', 'parameters'} != set(event_source): return {'error': 'Invalid event source', 'err_code': 4}, 400 trigger_storage.create_workspace(workspace, {event_source['name']: event_source}, global_context) return {'message': 'Created workspace {}'.format(workspace)}, 200 def get_workspace(trigger_storage: TriggerStorage, workspace: str): triggers = trigger_storage.get(workspace=workspace, document_id='triggers') triggerIDs = [trigger["id"] for trigger in triggers] event_sources = trigger_storage.get(workspace=workspace, document_id='event_sources') event_source_names = [event_source['name'] for event_source in event_sources] global_context = trigger_storage.get(workspace=workspace, document_id='global_context') return {'triggers': triggerIDs, 'event_sources': event_source_names, 'global_context': global_context}, 200 def delete_workspace(trigger_storage: TriggerStorage, workspace: str): trigger_storage.delete_workspace(workspace=workspace) return {'message': 'Workspace {} deleted'.format(workspace)}, 200 ``` #### File: triggerflow/dags/dagrun.py ```python import pickle import json from uuid import uuid4 from datetime import datetime from platform import node from enum import Enum from ..cache import TriggerflowCache from ..client import ( TriggerflowClient, TriggerflowCachedClient, DefaultActions, DefaultConditions ) from triggerflow import CloudEvent class DAGRun: class State(Enum): EMPTY = 'EMPTY' INITIALIZED = 'INITIALIZED' DEPLOYED = 'DEPLOYED' RUNNING = 'RUNNING' FINISHED = 'FINISHED' ERROR = 'ERROR' def __init__(self): self.uuid = None self.dagrun_id = None self.start_time = None self.dag_id = None self.dag = None self.state = DAGRun.State.EMPTY @classmethod def from_dag_def(cls, dag_def: 'DAG'): dagrun = cls() dagrun.uuid = str(uuid4()) dagrun.dagrun_id = '-'.join([dag_def.dag_id, dagrun.uuid[24:]]) dagrun.start_time = datetime.utcnow().isoformat() dagrun.dag_id = dag_def.dag_id dagrun.dag = dag_def dagrun.state = DAGRun.State.INITIALIZED dagrun.__save_cache() return dagrun @classmethod def load_run(cls, dagrun_id: str): dagrun = cls() try: with TriggerflowCache(path='dag-runs', file_name=dagrun_id + '.json', method='r') as dagrun_file: metadata = json.loads(dagrun_file.read()) with TriggerflowCache(path='dag-runs', file_name=dagrun_id + '.pickle', method='rb') as dag_file: dagrun.dag = pickle.load(dag_file) except FileNotFoundError: raise Exception('Dag run not found in cache') dagrun.uuid = metadata['uuid'] dagrun.dagrun_id = metadata['dagrun_id'] dagrun.start_time = metadata['start_time'] dagrun.dag_id = metadata['dag_id'] dagrun.state = DAGRun.State[metadata['state']] return dagrun def run(self, silent=False): if self.state == DAGRun.State.RUNNING: raise Exception('DAG already running') self.__create_triggers() self.__trigger(silent) self.__save_cache() return self def result(self, task=None): tf = TriggerflowClient() tf.target_workspace(self.dagrun_id) if task is None: return tf.get_trigger('__end__')['context']['result'] else: if task in self.dag.tasks_dict: task_op = self.dag.tasks_dict[task] results = [] for downstream in task_op.downstream_relatives: trg = tf.get_trigger(downstream.task_id) results.append(trg['result']) def __save_cache(self): with TriggerflowCache(path='dag-runs', file_name=self.dagrun_id + '.json', method='w') as dagrun_file: metadata = { 'uuid': self.uuid, 'dagrun_id': self.dagrun_id, 'start_time': self.start_time, 'dag_id': self.dag_id, 'state': self.state.name } dagrun_file.write(json.dumps(metadata, indent=4)) with TriggerflowCache(path='dag-runs', file_name=self.dagrun_id + '.pickle', method='wb') as dag_file: pickle.dump(self.dag, dag_file) def __trigger(self, silent=False): event_source = list(self.dag.event_sources.values()).pop() uuid = uuid4() init_cloudevent = ( CloudEvent() .SetSubject('__init__') .SetEventType('event.triggerflow.init') .SetEventID(uuid.hex) .SetSource(f'urn:{node()}:{str(uuid)}') ) event_source.set_stream(self.dagrun_id) event_source.publish_cloudevent(init_cloudevent) self.state = DAGRun.State.RUNNING if not silent: print('DAG Run ID: {}'.format(self.dagrun_id)) return self def __create_triggers(self): tf = TriggerflowCachedClient() # Create unique workspace for this specific dag run and its event sources event_sources = list(self.dag.event_sources.values()) # Set current DAGRun ID as topic/queue name for the event sources [event_source.set_stream(self.dagrun_id) for event_source in event_sources] tf.create_workspace(workspace_name=self.dagrun_id, event_source=event_sources.pop(), global_context={}) for event_source in event_sources: tf.add_event_source(event_source) for task in self.dag.tasks: context = {'subject': task.task_id, 'dependencies': {}, 'operator': task.get_trigger_meta(), 'result': []} # If this task does not have upstream relatives, then it will be executed when the sentinel event __init__ # is produced, else, it will be executed every time one of its upstream relatives produces its term. event if not task.upstream_relatives: condition = DefaultConditions.TRUE # Initial task do not have dependencies activation_event = CloudEvent().SetSubject('__init__').SetEventType('event.triggerflow.init') act_events = [activation_event] else: condition = DefaultConditions.DAG_TASK_JOIN act_events = [] for upstream_relative in task.upstream_relatives: context['dependencies'][upstream_relative.task_id] = {'join': -1, 'counter': 0} activation_event = ( CloudEvent() .SetSubject(upstream_relative.task_id) .SetEventType('event.triggerflow.termination.success') ) act_events.append(activation_event) # Add a trigger that handles this task execution: It will be fired every time one of its upstream # relatives sends its termination event, but it is executed only when all dependencies are fulfilled tf.add_trigger(event=act_events, action=DefaultActions[task.trigger_action_name], condition=condition, context=context, trigger_id=task.task_id, transient=False) # Join final tasks (those that do not have downstream relatives) context = {'subject': '__end__', 'dependencies': {final_task.task_id: {'join': -1, 'counter': 0} for final_task in self.dag.final_tasks}, 'result': []} activation_events = [(CloudEvent() .SetSubject(final_task.task_id) .SetEventType('event.triggerflow.termination.success')) for final_task in self.dag.final_tasks] tf.add_trigger(event=activation_events, action=DefaultActions.TERMINATE, condition=DefaultConditions.DAG_TASK_JOIN, context=context, trigger_id='__end__', transient=False) # Add error handling trigger: All tasks that produce a failure event type will fire this trigger # activation_event = v1.Event().SetSubject('*').SetEventType('event.triggerflow.termination.failure') # tf.add_trigger(event=activation_event, # action=DefaultActions.DAG_TASK_FAILURE_HANDLER, # condition=DefaultConditions.TRUE, # context={}, # context_parser='DAGS', # trigger_id='__error_handler__', # transient=False) # # # Add retry handler trigger: We will use this trigger to manually fire it to retry any failed task # activation_event = v1.Event().SetSubject('__retry__').SetEventType('event.triggerflow.termination.failure') # tf.add_trigger(event=activation_event, # action=DefaultActions.DAG_TASK_RETRY_HANDLER, # condition=DefaultConditions.TRUE, # context={}, # context_parser='DAGS', # trigger_id='__retry_handler__', # transient=False) tf.commit_cached_triggers() self.state = DAGRun.State.DEPLOYED ``` #### File: triggerflow/triggerflow/statemachine.py ```python import boto3 import logging import json from arnparse import arnparse from uuid import uuid4 from enum import Enum from platform import node from collections import defaultdict from triggerflow import TriggerflowCachedClient, CloudEvent from triggerflow.config import get_config from triggerflow.eventsources.model import EventSource from triggerflow.eventsources.sqs import SQSEventSource from triggerflow.functions import ConditionActionModel, DefaultActions log = logging.getLogger('triggerflow') log.setLevel(logging.DEBUG) class AwsAsfConditions(ConditionActionModel, Enum): AWS_ASF_JOIN_STATEMACHINE = {'name': 'AWS_ASF_JOIN_STATEMACHINE'} AWS_ASF_CONDITION = {'name': 'AWS_ASF_CONDITION'} class AwsAsfActions(ConditionActionModel, Enum): AWS_ASF_PASS = {'name': 'AWS_ASF_PASS'} AWS_ASF_TASK = {'name': 'AWS_ASF_TASK'} AWS_ASF_MAP = {'name': 'AWS_ASF_MAP'} AWS_ASF_END_STATEMACHINE = {'name': 'AWS_ASF_END_STATEMACHINE'} class StateMachine: def __init__(self): self.state_machine = None self.run_id = None self.event_source = None self.config = get_config() self.credentials = self.config['statemachines']['aws'] self.lambda_client = boto3.client('lambda', aws_access_key_id=self.credentials['access_key_id'], aws_secret_access_key=self.credentials['secret_access_key'], region_name=self.credentials['region']) @classmethod def json(cls, file_path: str, event_source: EventSource = None): sm = cls() with open(file_path, 'r') as json_file: sm_json = json.loads(json_file.read()) sm.state_machine = sm_json sm.event_source = event_source sm.__deploy_state_machine() return sm @classmethod def string(cls, state_machine_json: str, event_source: EventSource = None): sm = cls() sm_json = json.loads(state_machine_json) sm.state_machine = sm_json sm.event_source = event_source sm.__deploy_state_machine() return sm def __deploy_state_machine(self): uuid = str(uuid4()) self.run_id = 'sm-' + uuid[24:] # self.run_id = 'sm-test' if self.event_source is None: # Create the SQS queue where the termination events will be sent self.event_source = SQSEventSource(name=self.run_id + '_' + 'SQSEventSource', access_key_id=self.credentials['access_key_id'], secret_access_key=self.credentials['secret_access_key'], region=self.credentials['region'], queue=self.run_id) queue_arn = self.__create_sqs_queue() lambdas_updated = {} else: self.event_source.set_stream(self.run_id) self.event_source.name = self.run_id queue_arn, lambdas_updated = None, None triggerflow_client = TriggerflowCachedClient() global_context = {'aws_credentials': self.credentials} if not isinstance(self.event_source, SQSEventSource): global_context['event_source'] = self.event_source.get_json_eventsource() triggerflow_client.create_workspace(workspace_name=self.run_id, event_source=self.event_source, global_context=global_context) state_machine_count = 0 ################################### def state_machine(states, trigger_event): nonlocal state_machine_count, queue_arn, lambdas_updated state_machine_id = 'StateMachine{}'.format(state_machine_count) state_machine_count += 1 upstream_relatives = defaultdict(list) final_states = [] choices = {} for state_name, state in states['States'].items(): if 'End' in state and state['End']: final_states.append(state_name) elif 'Next' in state: upstream_relatives[state['Next']].append(state_name) elif state['Type'] == 'Choice': for choice in state['Choices']: upstream_relatives[choice['Next']].append(state_name) upstream_relatives[states['StartAt']].extend(trigger_event) for state_name, state in states['States'].items(): context = {'Subject': state_name, 'State': state.copy()} if state_name in choices: context['Condition'] = choices[state_name].copy() if state['Type'] == 'Pass' or state['Type'] == 'Task': subjects = upstream_relatives[state_name] activation_events = [CloudEvent().SetEventType('lambda.success').SetSubject(sub) for sub in subjects] action = AwsAsfActions.AWS_ASF_TASK if state['Type'] == 'Task' else AwsAsfActions.AWS_ASF_PASS if state['Type'] == 'Task' and isinstance(self.event_source, SQSEventSource) and \ state['Resource'] not in lambdas_updated: self.__add_destination_to_lambda(state['Resource'], queue_arn) lambdas_updated[state['Resource']] = True triggerflow_client.add_trigger(event=activation_events, condition=AwsAsfConditions.AWS_ASF_CONDITION, action=action, context=context, trigger_id=state_name, transient=False) elif state['Type'] == 'Choice': choices = {} for choice in state['Choices']: upstream_relatives[choice['Next']] = upstream_relatives[state_name] choices[choice['Next']] = choice.copy() elif state['Type'] == 'Parallel': sub_state_machines = [] for branch in state['Branches']: sub_sm_id = state_machine(branch, upstream_relatives[state_name]) sub_state_machines.append(sub_sm_id) context['join_multiple'] = len(state['Branches']) del context['State'] act_events = [CloudEvent().SetEventType('lambda.success').SetSubject(sub_sm) for sub_sm in sub_state_machines] triggerflow_client.add_trigger(event=act_events, condition=AwsAsfConditions.AWS_ASF_JOIN_STATEMACHINE, action=AwsAsfActions.AWS_ASF_PASS, context=context, trigger_id=state_name, transient=False) elif state['Type'] == 'Wait': raise NotImplementedError() elif state['Type'] == 'Map': iterator = state_machine(state['Iterator'], [state_name]) context['join_state_machine'] = iterator del context['State']['Iterator'] subjects = upstream_relatives[state_name] activation_events = [CloudEvent().SetEventType('lambda.success').SetSubject(sub) for sub in subjects] triggerflow_client.add_trigger(event=activation_events, condition=AwsAsfConditions.AWS_ASF_CONDITION, action=AwsAsfActions.AWS_ASF_MAP, context=context, trigger_id=state_name, transient=False) if 'Next' in state: upstream_relatives[state['Next']].remove(state_name) upstream_relatives[state['Next']].append(iterator) if 'End' in state: final_states.remove(state_name) final_states.append(iterator) elif state['Type'] == 'Succeed': raise NotImplementedError() elif state['Type'] == 'Fail': raise NotImplementedError() activation_events = [CloudEvent().SetEventType('lambda.success').SetSubject(sub) for sub in final_states] triggerflow_client.add_trigger(activation_events, condition=AwsAsfConditions.AWS_ASF_JOIN_STATEMACHINE, action=AwsAsfActions.AWS_ASF_END_STATEMACHINE, context={'Subject': state_machine_id}, trigger_id=state_machine_id, transient=False) return state_machine_id ################################### main_state_machine = state_machine(self.state_machine, ['__init__']) final_trigger = {'id': main_state_machine, 'action': DefaultActions.TERMINATE.value} triggerflow_client.update_trigger(final_trigger) triggerflow_client.commit_cached_triggers() return self.run_id def trigger(self, execution_input: dict = None): log.info("Trigger State Machine Execution: {}".format(self.run_id)) if execution_input is None: execution_input = {} uuid = uuid4() init_cloudevent = (CloudEvent() .SetSubject('__init__') .SetEventType('lambda.success') .SetEventID(uuid.hex) .SetSource(f'urn:{node()}:{str(uuid)}')) if execution_input is not None: init_cloudevent.SetData(execution_input) init_cloudevent.SetContentType('application/json') self.event_source.publish_cloudevent(init_cloudevent) log.info("Ok") def __create_sqs_queue(self): credentials = self.config['statemachines']['aws'] sqs_client = boto3.client('sqs', aws_access_key_id=credentials['access_key_id'], aws_secret_access_key=credentials['secret_access_key'], region_name=credentials['region']) response = sqs_client.create_queue(QueueName=self.run_id) if 'QueueUrl' in response: queue_url = response['QueueUrl'] log.debug('Queue URL: {}'.format(queue_url)) else: raise Exception(response) response = sqs_client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=['QueueArn']) if 'Attributes' in response and 'QueueArn' in response['Attributes']: queue_arn = response['Attributes']['QueueArn'] log.debug('Queue ARN: {}'.format(queue_arn)) else: raise Exception('Could not retrieve Queue ARN from {}'.format(queue_url)) return queue_arn def __add_destination_to_lambda(self, lambda_arn, source_arn): arn = arnparse(lambda_arn) if 'lambda' != arn.service: raise Exception(('Resource of type {} is not currently supported, ' 'as it cannot produce termination events').format(arn.service)) log.debug('Updating Lambda Destination for {}'.format(lambda_arn)) self.lambda_client.put_function_event_invoke_config( DestinationConfig={'OnSuccess': {'Destination': source_arn}}, FunctionName=lambda_arn) def trigger_statemachine(run_id: str, execution_input: dict = None, event_source: EventSource = None): log.info("Trigger State Machine Execution: {}".format(run_id)) if execution_input is None: execution_input = {} uuid = uuid4() init_cloudevent = (CloudEvent() .SetSubject('__init__') .SetEventType('lambda.success') .SetEventID(uuid.hex) .SetSource(f'urn:{node()}:{str(uuid)}')) if execution_input is not None: init_cloudevent.SetData(execution_input) init_cloudevent.SetContentType('application/json') if event_source is None: credentials = get_config()['statemachines']['aws'] event_source = SQSEventSource(name=run_id + '_' + 'SQSEventSource', access_key_id=credentials['access_key_id'], secret_access_key=credentials['secret_access_key'], region=credentials['region'], queue=run_id) event_source.set_stream(run_id) event_source.publish_cloudevent(init_cloudevent) log.info("Ok") ```
{ "source": "JosepSampe/vertigo", "score": 2 }
#### File: swift/vertigo_middleware/handler.py ```python from swift.common.swob import HTTPInternalServerError, HTTPException, wsgify from swift.common.utils import get_logger, register_swift_info from ConfigParser import RawConfigParser from vertigo_middleware.handlers import VertigoProxyHandler from vertigo_middleware.handlers import VertigoObjectHandler from vertigo_middleware.handlers.base import NotVertigoRequest from storlets.gateway.loader import load_gateway import redis class VertigoHandlerMiddleware(object): def __init__(self, app, conf, vertigo_conf): self.app = app self.exec_server = vertigo_conf.get('execution_server') self.logger = get_logger(conf, log_route='vertigo_handler') self.vertigo_conf = vertigo_conf self.handler_class = self._get_handler(self.exec_server) def _get_handler(self, exec_server): """ Generate Handler class based on execution_server parameter :param exec_server: Where this storlet_middleware is running. This should value shoud be 'proxy' or 'object' :raise ValueError: If exec_server is invalid """ if exec_server == 'proxy': return VertigoProxyHandler elif exec_server == 'object': return VertigoObjectHandler else: raise ValueError( 'configuration error: execution_server must be either proxy' ' or object but is %s' % exec_server) @wsgify def __call__(self, req): try: request_handler = self.handler_class( req, self.vertigo_conf, self.app, self.logger) self.logger.debug('vertigo_handler %s call in %s with %s/%s/%s' % (req.method, self.exec_server, request_handler.account, request_handler.container, request_handler.obj)) except HTTPException: raise except NotVertigoRequest: return req.get_response(self.app) try: return request_handler.handle_request() except HTTPException: self.logger.exception('Vertigo execution failed') raise except Exception: self.logger.exception('Vertigo execution failed') raise HTTPInternalServerError(body='Vertigo execution failed') def filter_factory(global_conf, **local_conf): """Standard filter factory to use the middleware with paste.deploy""" register_swift_info('vertigo') conf = global_conf.copy() conf.update(local_conf) vertigo_conf = dict() vertigo_conf['devices'] = conf.get('devices', '/srv/node') vertigo_conf['execution_server'] = conf.get('execution_server') vertigo_conf['mc_timeout'] = conf.get('mc_timeout', 5) vertigo_conf['mc_pipe'] = conf.get('mc_pipe', 'vertigo_pipe') # vertigo_conf['api_pipe'] = conf.get('mc_pipe', 'api_pipe') vertigo_conf['metadata_visibility'] = conf.get('metadata_visibility', True) vertigo_conf['mc_dir'] = conf.get('mc_dir', '/home/docker_device/vertigo/scopes') vertigo_conf['cache_dir'] = conf.get('cache_dir', '/home/docker_device/cache/scopes') vertigo_conf['mc_container'] = conf.get('mc_container', 'microcontroller') vertigo_conf['mc_dependency'] = conf.get('mc_dependency', 'dependency') ''' Load storlet parameters ''' configParser = RawConfigParser() configParser.read(conf.get('__file__')) storlet_parameters = configParser.items('filter:storlet_handler') for key, val in storlet_parameters: vertigo_conf[key] = val """ Load Storlets Gateway configuration """ configParser = RawConfigParser() configParser.read(vertigo_conf['storlet_gateway_conf']) additional_items = configParser.items("DEFAULT") for key, val in additional_items: vertigo_conf[key] = val """ Load Storlets Gateway class """ module_name = vertigo_conf.get('storlet_gateway_module', 'stub') gateway_class = load_gateway(module_name) vertigo_conf['storlets_gateway_module'] = gateway_class """ Register Lua script to retrieve policies in a single redis call """ vertigo_conf['redis_host'] = conf.get('redis_host', 'controller') vertigo_conf['redis_port'] = int(conf.get('redis_port', 6379)) vertigo_conf['redis_db'] = int(conf.get('redis_db', 0)) if vertigo_conf['execution_server'] == 'proxy': r = redis.StrictRedis(vertigo_conf['redis_host'], vertigo_conf['redis_port'], vertigo_conf['redis_db']) lua = """ local t = {} if redis.call('EXISTS', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2]..':'..ARGV[3])==1 then t = redis.call('HGETALL', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2]..':'..ARGV[3]) elseif redis.call('EXISTS', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2])==1 then t = redis.call('HGETALL', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2]) end return t""" lua_sha = r.script_load(lua) vertigo_conf['LUA_get_mc_sha'] = lua_sha def swift_vertigo(app): return VertigoHandlerMiddleware(app, global_conf, vertigo_conf) return swift_vertigo ``` #### File: vertigo_middleware/handlers/obj.py ```python from swift.common.swob import HTTPMethodNotAllowed, Response from swift.common.utils import public from vertigo_middleware.handlers import VertigoBaseHandler class VertigoObjectHandler(VertigoBaseHandler): def __init__(self, request, conf, app, logger): super(VertigoObjectHandler, self).__init__( request, conf, app, logger) def _parse_vaco(self): _, _, acc, cont, obj = self.request.split_path( 5, 5, rest_with_last=True) return ('v1', acc, cont, obj) def handle_request(self): if hasattr(self, self.request.method) and self.is_valid_request: try: handler = getattr(self, self.request.method) getattr(handler, 'publicly_accessible') except AttributeError: return HTTPMethodNotAllowed(request=self.request) return handler() else: return self.request.get_response(self.app) # return HTTPMethodNotAllowed(request=self.request) def _process_mc_data(self, response, mc_data): """ Processes the data returned from the micro-controller """ if mc_data['command'] == 'CONTINUE': return response elif mc_data['command'] == 'STORLET': slist = mc_data['list'] self.logger.info('Going to execute Storlets: ' + str(slist)) return self.apply_storlet_on_get(response, slist) elif mc_data['command'] == 'CANCEL': msg = mc_data['message'] return Response(body=msg + '\n', headers={'etag': ''}, request=self.request) @public def GET(self): """ GET handler on Object """ response = self.request.get_response(self.app) # start = time.time() if self.obj.endswith('/'): # is a pseudo-folder mc_list = None else: mc_list = self.get_microcontroller_list_object(response.headers, self.method) if mc_list: self.logger.info('Vertigo - There are micro-controllers' + ' to execute: ' + str(mc_list)) self._setup_docker_gateway(response) mc_data = self.mc_docker_gateway.execute_microcontrollers(mc_list) response = self._process_mc_data(response, mc_data) else: self.logger.info('Vertigo - No micro-controllers to execute') # end = time.time() - start # f = open("/tmp/vertigo/vertigo_get_overhead.log", 'a') # f.write(str(int(round(end * 1000)))+'\n') # f.close() return response ``` #### File: vertigo/Utils/deploy_storlet.py ```python from swiftclient import client as c def enable_account_for_storlets(url, token): headers = dict() headers['X-Account-Meta-storlet-enabled'] = 'True' c.post_account(url, token, headers) def put_storlet_object(url, token, storlet_path, storlet_name, main_class, dependency=''): metadata = {'X-Object-Meta-Storlet-Language': 'Java', 'X-Object-Meta-Storlet-Interface-Version': '1.0', 'X-Object-Meta-Storlet-Dependency': dependency, 'X-Object-Meta-Storlet-Object-Metadata': 'no', 'X-Object-Meta-Storlet-Main': main_class} f = open('%s/%s' % (storlet_path, storlet_name), 'r') content_length = None response = dict() c.put_object(url, token, 'storlet', storlet_name, f, content_length, None, None, "application/octet-stream", metadata, None, None, None, response) f.close() status = response.get('status') assert (status == 200 or status == 201) def put_storlet_dependency(url, token, local_path_to_dep, dep_name): metadata = {'X-Object-Meta-Storlet-Dependency-Version': '1'} f = open('%s/%s' % (local_path_to_dep, dep_name), 'r') content_length = None response = dict() c.put_object(url, token, 'dependency', dep_name, f, content_length, None, None, "application/octet-stream", metadata, None, None, None, response) f.close() status = response.get('status') assert (status == 200 or status == 201) keystone_ip = '10.30.220.98' keystone_url = 'http://{}:5000/v3'.format(keystone_ip) ACCOUNT = 'vertigo' USER_NAME = 'vertigo' PASSWORD = '<PASSWORD>' url, token = c.get_auth(keystone_url, ACCOUNT + ":"+USER_NAME, PASSWORD, auth_version="3") # print url, token """ ------------------- Deploy Storlets to Swift Cluster ----------------- """ path = '../StorletSamples' # No-operation Storlet put_storlet_object(url, token, path+'/Storlet_Noop/bin', 'noop-1.0.jar', 'com.urv.storlet.noop.NoopStorlet') # Compression Storlet put_storlet_object(url, token, path+'/Storlet_Compress/bin', 'compress-1.0.jar', 'com.urv.storlet.compress.CompressStorlet') # Encryption Storlet put_storlet_object(url, token, path+'/Storlet_Crypto/bin', 'crypto-1.0.jar', 'com.urv.storlet.crypto.AESEncryptionStorlet') # UbuntuOne Trace Storlet (SQL Filter) put_storlet_object(url, token, path+'/Storlet_UOneTrace/bin', 'UOneTrace-1.0.jar', 'com.urv.storlet.uonetrace.UOneTraceStorlet') # Adaptative bandwith Storlet put_storlet_object(url, token, path+'/Storlet_Adaptative/bin', 'adaptative-1.0.jar', 'com.urv.storlet.adaptative.AdaptativeStorlet') # Adult dataset (csv) Storlet put_storlet_object(url, token, path+'/Storlet_Adult/bin', 'adult-1.0.jar', 'com.urv.storlet.adult.AdultStorlet') # Grep Storlet put_storlet_object(url, token, path+'/Storlet_Grep/bin', 'grep-1.0.jar', 'com.urv.storlet.grep.GrepStorlet', 'commons-compress-1.6.jar,grep4j-1.8.7.jar') put_storlet_dependency(url, token, path+'/Storlet_Grep/lib', 'commons-compress-1.6.jar') put_storlet_dependency(url, token, path+'/Storlet_Grep/lib', 'grep4j-1.8.7.jar') # HTML parser Storlet put_storlet_object(url, token, path+'/Storlet_ScanHtml/bin', 'ScanHtml-1.0.jar', 'com.urv.storlet.scanhtml.ScanHtml', 'commons-compress-1.6.jar,jsoup-1.8.3.jar') put_storlet_dependency(url, token, path+'/Storlet_ScanHtml/lib', 'jsoup-1.8.3.jar') # Blurfaces Storlet put_storlet_object(url, token, path+'/Storlet_BlurFaces/bin', 'blurfaces-1.0.jar', 'com.ibm.storlet.blurfaces.BlurFacesStorlet', 'commons-compress-1.2.jar,blur_faces_all.tar.gz') put_storlet_dependency(url, token, path+'/Storlet_BlurFaces/lib', 'commons-compress-1.6.jar') put_storlet_dependency(url, token, path+'/Storlet_BlurFaces/lib', 'blur_faces_all.tar.gz') # Watermark Storlet put_storlet_object(url, token, path+'/Storlet_Watermark/bin', 'watermark-1.0.jar', 'com.urv.storlet.watermark.WatermarkStorlet', 'commons-compress-1.2.jar,commons-io-1.3.2.jar,ffmpeg') put_storlet_dependency(url, token, path+'/Storlet_Watermark/lib', 'commons-io-1.3.2.jar') put_storlet_dependency(url, token, path+'/Storlet_Watermark/lib', 'ffmpeg') # Transcoder Storlet put_storlet_object(url, token, path+'/Storlet_Transcoder/bin', 'transcoder-1.0.jar', 'com.urv.storlet.transcoder.TranscoderStorlet', 'fontbox-1.8.4.jar,jempbox-1.8.4.jar,pdfbox-app-1.8.4.jar') put_storlet_dependency(url, token, path+'/Storlet_Transcoder/lib', 'fontbox-1.8.4.jar') put_storlet_dependency(url, token, path+'/Storlet_Transcoder/lib', 'jempbox-1.8.4.jar') put_storlet_dependency(url, token, path+'/Storlet_Transcoder/lib', 'pdfbox-app-1.8.4.jar') print('Done!') ```
{ "source": "joser1945/cmr-metadata-review", "score": 3 }
#### File: cmr-metadata-review/lib/CSVDIF.py ```python class DIFOutputCSV(): def __init__(self,checkerRules,wrap): self.checkerRules = checkerRules self.wrap = wrap def checkAll(self, metadata): result = ",,," try: result += self.checkerRules.check_Entry_Title(metadata) + ',' except: result += 'np' + ',' result += ",,,," try: result += self.wrap(metadata,self.checkerRules.check_Dataset_Citation_Dataset_Release_Date,'Dataset_Citation.Dataset_Release_Date') + ',' except: result += 'np' + ',' result += ",,,,,," try: result += self.wrap(metadata,self.checkerRules.check_Dataset_Citation_Persistent_Identifier_Type,'Dataset_Citation.Persistent_Identifier.Type') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Dataset_Citation_Persistent_Identifier_Identifier,'Dataset_Citation.Persistent_Identifier.Identifier') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Dataset_Citation_Online_Resource,'Dataset_Citation.Online_Resource') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Personnel_Role_item,'Personnel.Role') + ',' except: result += 'np' + ',' result += ",,,,,,,," try: result += self.wrap(metadata, self.checkerRules.check_Personnel_Contact_Person_Email_item, 'Personnel.Contact_Person.Email') except: result += 'np' result += ',' try: result += self.wrap(metadata, self.checkerRules.check_Personnel_Contact_Person_phone_item, 'Personnel.Contact_Person.Phone.Number') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Personnel_Contact_Person_Phone_Type_item,'Personnel.Contact_Person.Phone.Type') + ',' except: result += 'np' + ',' result += ",,,,,," try: result += self.wrap(metadata,self.checkerRules.check_Personnel_Contact_Group_Email_item,'Personnel.Contact_Group.Email') + "," except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Personnel_Contact_Group_Phone_item,'Personnel.Contact_Group.Phone.Number') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Personnel_Contact_Group_Phone_Type_item,'Personnel.Contact_Group.Phone.Type') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.science_Keywords_item_Category,'Science_Keywords.Category') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_science_Keywords_item_topic,'Science_Keywords.Topic') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_science_Keywords_item_Term,'Science_Keywords.Term') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_science_Keywords_item_Variable_1,'Science_Keywords.Variable_Level_1') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_science_Keywords_item_Variable_2,'Science_Keywords.Variable_Level_2') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata, self.checkerRules.check_science_Keywords_item_Variable_3,'Science_Keywords.Variable_Level_3') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_ISO_Topic_Category,'ISO_Topic_Category') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata, self.checkerRules.check_Platform_item_Type, 'Platform.Type') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Platform_item_Short_Name,'Platform.Short_Name') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Platform_item_Long_Name,'Platform.Long_Name') + ',' except: result += 'np' + ',' result += ",,,,," try: result += self.wrap(metadata,self.checkerRules.check_Platform_item_Instrument_item_shortname,'Platform.Instrument.Short_Name') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Platform_item_Instrument_item_longname,'Platform.Instrument.Long_Name') + ',' except: result += 'np' + ',' result += ",,,,,,,," try: result += self.wrap(metadata,self.checkerRules.check_Platform_item_Instrument_sensor_shortname,'Platform.Instrument') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Platform_item_Instrument_sensor_longname,'Platform.Instrument') + ',' except: result += 'np' + ',' result += ",,,,,,,,,,," try: result += self.wrap(metadata,self.checkerRules.check_Temporal_Coverage_item_Begin_Date_Time,'Temporal_Coverage.Range_DateTime.Beginning_Date_Time') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Temporal_Coverage_item_end_Date_Time,'Temporal_Coverage.Range_DateTime.Ending_Date_Time') + ',' except: result += 'np' + ',' result += ',,,,,,,,,,,,,,,,,' try: result += self.wrap(metadata,self.checkerRules.check_dataset_progress,'Dataset_Progress') +',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_Spatial_Coverage_Granule_Spatial_Representation,'Spatial_Coverage.Granule_Spatial_Representation') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_Spatial_Coverage_Geometry_Coordinate_System,'Spatial_Coverage.Geometry.Coordinate_System') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Spatial_Coverage_Geometry_Bounding_Rectangle_Southernmost_Latitude,'Spatial_Coverage.Geometry.Bounding_Rectangle') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Spatial_Coverage_Geometry_Bounding_Rectangle_Northernmost_Latitude,'Spatial_Coverage.Geometry.Bounding_Rectangle') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Spatial_Coverage_Geometry_Bounding_Rectangle_Westernmost_Longitude,'Spatial_Coverage.Geometry.Bounding_Rectangle') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Spatial_Coverage_Geometry_Bounding_Rectangle_Easternmost_Longitude,'Spatial_Coverage.Geometry.Bounding_Rectangle') + ',' except: result += 'np' + ',' result += ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' try: result += self.wrap(metadata,self.checkerRules.check_Location_Location_Category,'Location.Location_Category') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Location_Location_Type,'Location.Location_Type') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Location_Subregion1,'Location.Location_Subregion1') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Location_Subregion2,'Location.Location_Subregion2') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata, self.checkerRules.check_Location_Subregion3, 'Location.Location_Subregion3') + ',' except: result += 'np' + ',' result += ',,,' try: result += self.wrap(metadata,self.checkerRules.check_Horizontal_Resolution_Range,'Data_Resolution.Horizontal_Resolution_Range') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_Vertical_Resolution_Range,'Data_Resolution.Vertical_Resolution_Range') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_Temporal_Resolution_Range,'Data_Resolution.Temporal_Resolution_Range') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Project_Short_Name,'Project.Short_Name') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Project_Long_Name,'Project.Long_Name') + ',' except: result += 'np' + ',' result += ',,,' try: result += self.wrap(metadata,self.checkerRules.check_Quality,'Quality') + ',' except: result += 'np' + ',' result += ',,' try: result += self.wrap(metadata,self.checkerRules.check_Dataset_Language,'Dataset_Language') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_Organization_Organization_Type,'Organization.Organization_Type') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Organization_Name_Short_Name,'Organization.Organization_Name.Short_Name') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Organization_Name_Long_Name,'Organization.Organization_Name.Long_Name') + ',' except: result += 'np' + ',' result += ',,,,,,,,,,,,,,,' try: result += self.wrap(metadata,self.checkerRules.check_Organization_Personnel_Contact_Person_Phone_Type,'Organization.Personnel.Contact_Person.Phone.Type') + ',' except: result += 'np' + ',' result += ',,,,,,,,' try: result += self.wrap(metadata, self.checkerRules.check_Organization_Personnel_Contact_Person_Phone_Type,'Organization.Personnel.Contact_Group.Phone.Type') + ',' except: result += 'np' + ',' result += ',,' try: result += self.wrap(metadata,self.checkerRules.check_Distribution_Distribution_Format,'Distribution.Distribution_Format') + ',' except: result += 'np' + ',' result += ',,' try: result += self.wrap(metadata,self.checkerRules.check_Multimedia_Sample_URL,'Multimedia_Sample.URL') + ',' except: result += 'np' + ',' result += ',,,,,,,,,,,,,,,,,,,,' try: result += self.wrap(metadata,self.checkerRules.check_summary_abstract,'Summary.Abstract') + ',' except: result += 'np' + ',' result += ',' try: temp = self.wrap(metadata,self.checkerRules.check_Related_URL_item_Content_Type,'Related_URL.URL_Content_Type.Type') result += self.checkerRules.check_Related_URL_Content_Type(temp) + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Related_URL_Content_Type_SubType,'Related_URL.URL_Content_Type.Subtype') + ',' except: result += 'np' + ',' result += ',,,' try: temp = self.wrap(metadata,self.checkerRules.check_Related_URL_Description_Item,'Related_URL.Description') result += self.checkerRules.check_Related_URL_Description(temp) + ',' except: result += 'np' + ',' try: temp = self.wrap(metadata,self.checkerRules.check_Related_URL_Mime_Type,'Related_URL') result += self.checkerRules.convertMimeType(temp) + ',' except: result += 'np' + ',' result += ',,,,,,,,,,,,,,' try: result += self.wrap(metadata,self.checkerRules.check_Product_Level_ID,'Product_Level_Id') + ',' except: result += 'np' + ',' result += ',' try: result += self.wrap(metadata,self.checkerRules.check_Collection_Data_Type,'Collection_Data_Type') + ',' except: result += 'np' + ',' result += ',,,,' try: result += self.wrap(metadata,self.checkerRules.check_Metadata_Dates_Creation,'Metadata_Dates.Metadata_Creation') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Metadata_last_revision,'Metadata_Dates.Metadata_Last_Revision') + ',' except: result += 'np' + ',' result += ',,' try: result += self.wrap(metadata, self.checkerRules.check_Metadata_data_creation,'Metadata_Dates.Data_Creation') + ',' except: result += 'np' + ',' try: result += self.wrap(metadata,self.checkerRules.check_Metadata_data_latest_revision,'Metadata_Dates.Data_Last_Revision') + ',' except: result += 'np' + ',' return result ```
{ "source": "JoseRafaelCarmona/informacion_inicio_python", "score": 3 }
#### File: JoseRafaelCarmona/informacion_inicio_python/inicio.py ```python import ip_publica as publica from subprocess import Popen, PIPE, STDOUT import os #prueba con los colores# from colorama import Fore, init, Back, Style BIENVENIDA = ''' ______ _ _ _ (____ \(_) (_) | | ____) )_ ____ ____ _ _ ____ ____ _ _ | | ___ | __ (| |/ _ ) _ \ | | / _ ) _ \| |/ || |/ _ \ | |__) ) ( (/ /| | | \ V ( (/ /| | | | ( (_| | |_| | |______/|_|\____)_| |_|\_/ \____)_| |_|_|\____|\___/ ''' def comando(orden): eventStatus = Popen(orden, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT) outputStatus = eventStatus.communicate() return outputStatus[0].decode('utf-8') def salida_datos(ip_publica,ip_privada): print(Fore.GREEN+'Tu direccion ip publica>> '+ Fore.WHITE+'%s'%ip_publica) print(Fore.GREEN+'Tu direccion ip privada>> '+ Fore.WHITE+'%s'%ip_privada) if __name__ == "__main__": print(BIENVENIDA) ## primero vemos lo de la informacion principal antes de que comiences a usar una terminal print('obteniendo tus direcciones ip') print(Fore.YELLOW+'Buscando..') ip_privada = comando('ip add | egrep -o "[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\/24"') salida_datos(publica.obtener_ip_publica(), ip_privada) ``` #### File: JoseRafaelCarmona/informacion_inicio_python/ip_publica.py ```python import requests from bs4 import BeautifulSoup def obtener_ip_publica(): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.163 Safari/537.36' } url = 'https://www.cual-es-mi-ip.net/' contenido_pagina = requests.get(url, headers) soup = BeautifulSoup(contenido_pagina.text, 'html.parser') return str(soup.find("span", {"class": "big-text font-arial"}).getText()) ```
{ "source": "joseram97/CMPUT291Mini_Project", "score": 3 }
#### File: joseram97/CMPUT291Mini_Project/dataConn.py ```python import sqlite3 from datetime import datetime import os #this is the data class that will hold all of the information for the # mini-project #The following is all code from the lab that I did for getting the data # from the tables connection = None cursor = None def connect(path): global connection, cursor if not os.path.isfile(path): raise Exception("Invalid path") connection = sqlite3.connect(path) connection.row_factory = sqlite3.Row cursor = connection.cursor() cursor.execute(' PRAGMA foreign_keys=ON; ') connection.commit() return def offer_ride(date,driver,seats,price,desc,src,dst,cno,enroute): ##Needed for spec 1 rno = get_max_ride_id()[0] + 1 offer_ride= ''' INSERT INTO rides(rno, price, rdate, seats, lugDesc, src, dst, driver, cno) VALUES (:rno,:price,:date,:seats,:desc,:src,:dst,:driver,:cno); ''' cursor.execute(offer_ride,{"rno":rno,"price":price,"date":date,"seats":seats,"desc":desc,"src":src,"dst":dst,"driver":driver,"cno":cno}); connection.commit() return rno def check_login(email,password): query = ''' SELECT * FROM members WHERE email=:email AND pwd=:pass ''' cursor.execute(query,{"email":email,"pass":password}) connection.commit() return cursor.fetchone() def register(email,name,phone,password): register= ''' INSERT INTO members(email, name, phone, pwd) VALUES (:email,:name,:phone,:pwd) ''' cursor.execute(register,{"email":email,"name":name,"phone":phone,"pwd":password}) connection.commit() return def check_email(email): q = ''' SELECT * FROM members WHERE email=:email; ''' cursor.execute(q,{"email":email}) connection.commit() return cursor.fetchone() #Returns all locations by lCode def get_locations_by_location_code(lCode): get_locations = ''' SELECT * FROM locations WHERE lcode = :lcode; ''' cursor.execute(get_locations,{"lcode":lCode}); connection.commit() return cursor.fetchone() def add_enroute(lcode,rno): add_enroute = ''' INSERT INTO enroute(rno,lcode) VALUES (:rno,:lcode); ''' cursor.execute(add_enroute,{"rno":rno,"lcode":lcode}); connection.commit() return #Returns all locations by keyword **Used if lCode is not found** def get_locations_by_keyword(keyword): keyword = '%'+keyword+'%' get_locations = ''' SELECT * FROM locations WHERE city LIKE :keyword UNION SELECT * FROM locations WHERE prov LIKE :keyword UNION SELECT * FROM locations WHERE address LIKE :keyword; ''' cursor.execute(get_locations,{"keyword":keyword}); connection.commit() return cursor.fetchall() ##NOTE: Incomplete def search_for_rides(listKeys): # listKeys is a list of all of the location keywords keys = [""]*3 i = 0 for keyword in listKeys: keys[i] = keyword i = i + 1 key1 = '%'+keys[0]+'%' key2 = '%'+keys[1]+'%' key3 = '%'+keys[2]+'%' ride_search = ''' SELECT DISTINCT r.* FROM rides r, enroute e, locations l WHERE (r.rno = e.rno AND e.lcode = l.lcode OR r.src = l.lcode OR r.dst = l.lcode) AND (l.city LIKE :key1 OR l.prov LIKE :key1 OR l.address LIKE :key1 OR l.lcode = :key1) INTERSECT SELECT DISTINCT r.* FROM rides r, enroute e, locations l WHERE (r.rno = e.rno AND e.lcode = l.lcode OR r.src = l.lcode OR r.dst = l.lcode) AND (l.city LIKE :key2 OR l.prov LIKE :key2 OR l.address LIKE :key2 OR l.lcode = :key2) INTERSECT SELECT DISTINCT r.* FROM rides r, enroute e, locations l WHERE (r.rno = e.rno AND e.lcode = l.lcode OR r.src = l.lcode OR r.dst = l.lcode) AND (l.city LIKE :key3 OR l.prov LIKE :key3 OR l.address LIKE :key3 OR l.lcode = :key3); ''' cursor.execute(ride_search,{"key1":key1,"key2":key2,"key3":key3}); connection.commit() return cursor.fetchall() def post_ride_request(date, pLoc, dLoc, amount, rid, email): #Needed for Spec 4 post_ride = ''' INSERT INTO requests(rid, email, rdate, pickup, dropoff, amount) VALUES (:rid,:email,:date,:pLoc,:dLoc,:amount); ''' cursor.execute(post_ride,{"rid":rid,"email":email,"date":date,"pLoc":pLoc,"dLoc":dLoc,"amount":amount}); connection.commit() return def get_ride_requests_by_email(email): #Needed for Spec 5 get_rides = ''' SELECT * FROM requests WHERE email = :email; ''' cursor.execute(get_rides,{"email":email}); connection.commit() return cursor.fetchall() def delete_ride_request_by_id(rid): #Needed for Spec 5 delete_rides = ''' DELETE FROM requests WHERE rid = :rid; ''' cursor.execute(delete_rides,{"rid":rid}); connection.commit() return def get_requests_by_location(lCode): lCodeP = '%'+lCode+'%' get_req = ''' SELECT DISTINCT * FROM requests r WHERE r.pickup = :lcode UNION SELECT DISTINCT * FROM requests r WHERE r.pickup IN (SELECT lcode FROM locations WHERE city LIKE :lcodeP); ''' cursor.execute(get_req,{"lcode":lCode,"lcodeP":lCodeP}); connection.commit() return cursor.fetchall() def get_bookings_by_driver(driverEmail): ##Needed for Spec #3 get_bookings = ''' SELECT b.* FROM bookings b, rides r WHERE r.driver = :driverEmail AND r.rno=b.rno; ''' cursor.execute(get_bookings,{"driverEmail":driverEmail}); connection.commit() return cursor.fetchall() def remove_booking_by_id(bno,email,sender,rno): ##Needed for Spec #3 delete_booking = ''' DELETE FROM bookings WHERE bno = :bno; ''' cursor.execute(delete_booking,{"bno":bno}); connection.commit() send_message_to_member(email,sender,"Your booking has been cancelled",rno) return def get_rides_with_available_seats_by_member(driver): ##Needed for Spec #3 ##Gets all FUTURE rides that the person is offering with how many seats remaining get_rides = ''' SELECT r.rno,(r.seats-IFNULL(SUM(b.seats),0)) FROM rides r LEFT OUTER JOIN bookings b ON r.rno=b.rno WHERE r.driver=:driver AND r.rdate > date('now') GROUP BY b.rno ''' cursor.execute(get_rides,{"driver":driver}); connection.commit() return cursor.fetchall() def check_ride_ownership(email,rno): get_owner = ''' SELECT * FROM rides r WHERE driver=:email AND rno = :rno ''' cursor.execute(get_owner,{"email":email,"rno":rno}); connection.commit() return cursor.fetchone() def book_member_for_ride(rno,email,seatsBooked,cost,src,dst): ##Needed for Spec #3 bno = get_max_booking_id()[0]+1 book_member = ''' INSERT INTO bookings(bno,email,rno,cost,seats,pickup,dropoff) VALUES (:bno,:email,:rno,:cost,:seats,:src,:dst) ''' cursor.execute(book_member,{"bno":bno,"email":email,"rno":rno,"cost":cost,"seats":seatsBooked,"src":src,"dst":dst}); connection.commit() return def book_member_for_ride_by_driver(rno,email,seatsBooked,cost,src,dst,driver): ##Needed for Spec #3 bno = get_max_booking_id()[0]+1 book_member = ''' INSERT INTO bookings(bno,email,rno,cost,seats,pickup,dropoff) VALUES (:bno,:email,:rno,:cost,:seats,:src,:dst) ''' cursor.execute(book_member,{"bno":bno,"email":email,"rno":rno,"cost":cost,"seats":seatsBooked,"src":src,"dst":dst}); connection.commit() send_message_to_member(email,driver,"You have been booked for ride number: {0}".format(rno),rno) return def send_message_to_member(email, sender, content, rno): ##Needed for Spec #3 msgTimestamp = datetime.now(); seen = 'N' send_message = ''' INSERT INTO inbox(email, msgTimestamp, sender, content, rno, seen) VALUES (:email,:msgTimestamp,:sender,:content,:rno,:seen); ''' cursor.execute(send_message,{"email":email,"msgTimestamp":msgTimestamp,"sender":sender,"content":content,"rno":rno,"seen":seen}); connection.commit() return def set_messages_to_seen(email): set_seen = ''' UPDATE inbox SET seen='Y' WHERE email=:email; ''' cursor.execute(set_seen,{"email":email}); connection.commit() return def get_unseen_messages_by_email(email): get_unseen = ''' SELECT * FROM inbox WHERE email=:email AND seen = 'N'; ''' cursor.execute(get_unseen,{"email":email}); connection.commit() return cursor.fetchall() def get_car_by_cno(cno): get_car = ''' SELECT * FROM cars WHERE cno=:cno; ''' cursor.execute(get_car,{"cno":cno}) connection.commit() return cursor.fetchone() def get_car_by_driver_cno(cno,driver): get_car = ''' SELECT * FROM cars WHERE cno=:cno AND owner=:driver; ''' cursor.execute(get_car,{"cno":cno,"driver":driver}) connection.commit() return cursor.fetchone() def get_car_by_driver(driver): get_car = ''' SELECT * FROM cars WHERE owner=:driver; ''' cursor.execute(get_car,{"driver":driver}) connection.commit() return cursor.fetchone() def get_max_ride_id(): get_max = ''' SELECT MAX(rno) FROM rides r; ''' cursor.execute(get_max) connection.commit() return cursor.fetchone() def get_max_request_id(): get_max = ''' SELECT MAX(rid) FROM requests r; ''' cursor.execute(get_max) connection.commit() return cursor.fetchone() def get_max_booking_id(): get_max = ''' SELECT MAX(bno) FROM bookings b; ''' cursor.execute(get_max) connection.commit() return cursor.fetchone() ```
{ "source": "joseramoncajide/gtm-datalayer_audit-appengine", "score": 2 }
#### File: joseramoncajide/gtm-datalayer_audit-appengine/main.py ```python import datetime import json import logging import os from pprint import pformat import jinja2 import webapp2 import time from google.appengine.api import app_identity from google.appengine.ext import vendor vendor.add('lib') from googleapiclient import discovery from oauth2client.client import GoogleCredentials from google.cloud import storage from flask import Flask app = Flask(__name__) compute = discovery.build('compute', 'v1', credentials=GoogleCredentials.get_application_default()) def create_bucket(bucket_name): """Creates a new bucket.""" storage_client = storage.Client() bucket = storage_client.create_bucket(bucket_name) print('Bucket {} created'.format(bucket.name)) CONFIG = { # In DRY_RUN mode, deletes are only logged. Set this to False after you've # double-checked the status page and you're ready to enable the deletes. 'DRY_RUN': False, # Be careful, this application could delete all instances in this project. # Your project id can be found on the overview tab of the Google APIs # Console: https://code.google.com/apis/console/ 'GCE_PROJECT_ID': app_identity.get_application_id(), # Instances created with these tags will never be deleted. 'SAFE_TAGS': ['production', 'safetag'], # Instances are deleted after they have been running for TIMEOUT minutes. 'TIMEOUT': 60 * 8, # in minutes, defaulting to 8 hours 'GC_PROJECT': 'gtm-datalayer-audit', 'GC_ZONE': 'europe-west1-b', 'GC_NAME': 'gtm-datalayer-audit', 'CUSTOMER_NAME': 'conforama', 'AUDIT_COMMAND': 'allPT', 'CLOUD_STORAGE_BUCKET': 'gtm-datalayer-app-conforama', 'APP_REPOSITORY_NAME': 'gtm-datalayer-app' } CONFIG['SAFE_TAGS'] = [t.lower() for t in CONFIG['SAFE_TAGS']] # Obtain App Engine AppAssertion credentials and authorize HTTP connection. # https://developers.google.com/appengine/docs/python/appidentity/overview # Build object for the 'v1' version of the GCE API. # https://developers.google.com/compute/docs/reference/v1beta13/ jinja_environment = jinja2.Environment( loader=jinja2.FileSystemLoader('templates')) # [START list_instances] def list_instances(compute, project, zone): result = compute.instances().list(project=project, zone=zone).execute() return result['items'] # [END list_instances] # [START create_instance] @app.route('/vm/create') def create_vm(): # Get the latest Debian Jessie image. image_response = compute.images().getFromFamily( project='ubuntu-os-cloud', family='ubuntu-1604-lts').execute() source_disk_image = image_response['selfLink'] # Configure the machine machine_type = "zones/%s/machineTypes/n1-standard-4" % CONFIG['GC_ZONE'] startup_script = open( os.path.join( os.path.dirname(__file__), 'installscript.sh'), 'r').read() config = { 'name': CONFIG['GC_NAME'], 'machineType': machine_type, # Specify the boot disk and the image to use as a source. 'disks': [ { 'boot': True, 'autoDelete': True, 'initializeParams': { 'sourceImage': source_disk_image, } } ], # Specify a network interface with NAT to access the public # internet. 'networkInterfaces': [{ 'network': 'global/networks/default', 'accessConfigs': [ {'type': 'ONE_TO_ONE_NAT', 'name': 'External NAT'} ] }], # Allow the instance to access cloud storage, logging and source repos. 'serviceAccounts': [{ 'email': 'default', 'scopes': [ 'https://www.googleapis.com/auth/devstorage.read_write', 'https://www.googleapis.com/auth/logging.write', 'https://www.googleapis.com/auth/devstorage.full_control', 'https://www.googleapis.com/auth/compute', 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/source.full_control' ] }], # Metadata is readable from the instance and allows you to # pass configuration from deployment scripts to instances. 'metadata': { 'items': [{ # Startup script is automatically executed by the # instance upon startup. 'key': 'startup-script', 'value': startup_script }, { 'key': 'audit_command', 'value': CONFIG['AUDIT_COMMAND'] }, { 'key': 'customer_name', 'value': CONFIG['CUSTOMER_NAME'] }, { 'key': 'bucket', 'value': CONFIG['CLOUD_STORAGE_BUCKET'] }, { 'key': 'source_repo', 'value': CONFIG['APP_REPOSITORY_NAME'] }] } } create_bucket(CONFIG['CLOUD_STORAGE_BUCKET']) result = compute.instances().insert( project=CONFIG['GC_PROJECT'], zone=CONFIG['GC_ZONE'], body=config).execute() logging.debug(result) return json.dumps(result, indent=4) # [END create_instance] # operation = create_instance(compute, project, zone, instance_name, bucket) # wait_for_operation(compute, project, zone, operation['name']) # [START wait_for_operation] def wait_for_operation(compute, project, zone, operation): print('Waiting for operation to finish...') while True: result = compute.zoneOperations().get( project=project, zone=zone, operation=operation).execute() if result['status'] == 'DONE': print("done.") if 'error' in result: raise Exception(result['error']) return result time.sleep(1) # [END wait_for_operation] @app.route('/vm/start') def start_vm(): # credentials = AppAssertionCredentials(scope='https://www.googleapis.com/auth/compute') # http = credentials.authorize(httplib2.Http(memcache)) # compute = discovery.build('compute', 'v1', http=http) # compute = discovery.build('compute','v1', credentials=GoogleCredentials.get_application_default()) # Start the VM! result = compute.instances().start(instance='instance-1', zone='europe-west1-b', project='gtm-datalayer-audit').execute() logging.debug(result) return json.dumps(result, indent=4) @app.route('/vm/stop') def stop_vm(): # credentials = AppAssertionCredentials(scope='https://www.googleapis.com/auth/compute') # http = credentials.authorize(httplib2.Http(memcache)) # compute = discovery.build('compute', 'v1', http=http) # compute = discovery.build('compute','v1', credentials=GoogleCredentials.get_application_default()) # Start the VM! result = compute.instances().stop(instance='instance-1', zone='europe-west1-b', project='gtm-datalayer-audit').execute() logging.debug(result) return json.dumps(result, indent=4) @app.errorhandler(404) def page_not_found(e): """Return a custom 404 error.""" return 'Sorry, Nothing at this URL.', 404 @app.errorhandler(500) def application_error(e): """Return a custom 500 error.""" return 'Sorry, unexpected error: {}'.format(e), 500 if __name__ == '__main__': app.run(debug=True) # SAMPLE_NAME = 'Instance timeout helper' # def start_instance(): # """logs all expired instances, calls delete API when not DRY_RUN""" # instances = list_instances() # # for instance in instances: # name = instance['name'] # zone = instance['zone'].split('/')[-1] # if CONFIG['DRY_RUN']: # logging.info("DRY_RUN, not deleted: %s", name) # else: # logging.info("START: %s", name) # request = compute.instances().start( # project=CONFIG['GCE_PROJECT_ID'], # instance=name, # zone=zone) # response = request.execute() # logging.info(response) # # # def annotate_instances(instances): # """loops through the instances and adds exclusion, age and timeout""" # for inst in instances: # # set _excluded # excluded = False # tags = inst.get('tags', {}).get('items', []) # inst['_tags'] = tags # # for tag in tags: # if tag.lower() in CONFIG['SAFE_TAGS']: # excluded = True # break # inst['_excluded'] = excluded # # # set _age_minutes and _timeout_expired # # _timeout_expired is never True for _excluded inst # creation = parse_iso8601tz(inst['creationTimestamp']) # now = datetime.datetime.now() # delta = now - creation # age_minutes = (delta.days * 24 * 60) + (delta.seconds / 60) # inst['_age_minutes'] = age_minutes # # >= comparison because seconds are truncated above. # if not inst['_excluded'] and age_minutes >= CONFIG['TIMEOUT']: # inst['_timeout_expired'] = True # else: # inst['_timeout_expired'] = False # # # def list_instances(): # """returns a list of dictionaries containing GCE instance data""" # request = compute.instances().aggregatedList(project=CONFIG['GCE_PROJECT_ID']) # response = request.execute() # zones = response.get('items', {}) # instances = [] # for zone in zones.values(): # for instance in zone.get('instances', []): # instances.append(instance) # annotate_instances(instances) # return instances # # # class MainHandler(webapp2.RequestHandler): # """index handler, displays app configuration and instance data""" # def get(self): # instances = list_instances() # # data = {} # data['config'] = CONFIG # data['title'] = SAMPLE_NAME # data['instances'] = instances # data['raw_instances'] = json.dumps(instances, indent=4, sort_keys=True) # # template = jinja_environment.get_template('index.html') # self.response.out.write(template.render(data)) # # # def delete_expired_instances(): # """logs all expired instances, calls delete API when not DRY_RUN""" # instances = list_instances() # # # filter instances, keep only expired instances # instances = [i for i in instances if i['_timeout_expired']] # # logging.info('delete cron: %s instance%s to delete', # len(instances), '' if len(instances) == 1 else 's') # # for instance in instances: # name = instance['name'] # zone = instance['zone'].split('/')[-1] # if CONFIG['DRY_RUN']: # logging.info("DRY_RUN, not deleted: %s", name) # else: # logging.info("DELETE: %s", name) # request = compute.instances().delete( # project=CONFIG['GCE_PROJECT_ID'], # instance=name, # zone=zone) # response = request.execute() # logging.info(response) # # class StartHandler(webapp2.RequestHandler): # """delete handler - HTTP endpoint for the GAE cron job""" # def get(self): # start_instance() # # class DeleteHandler(webapp2.RequestHandler): # """delete handler - HTTP endpoint for the GAE cron job""" # def get(self): # delete_expired_instances() # # # app = webapp2.WSGIApplication([ # ('/cron/start', StartHandler), # ('/cron/delete', DeleteHandler), # ('/', MainHandler), # ], debug=True) # # # # ------------------------------------------------ # # helpers # def parse_iso8601tz(date_string): # """return a datetime object for a string in ISO 8601 format. # # This function parses strings in exactly this format: # '2012-12-26T13:31:47.823-08:00' # # Sadly, datetime.strptime's %z format is unavailable on many platforms, # so we can't use a single strptime() call. # """ # # dt = datetime.datetime.strptime(date_string[:-6], # '%Y-%m-%dT%H:%M:%S.%f') # # # parse the timezone offset separately # delta = datetime.timedelta(minutes=int(date_string[-2:]), # hours=int(date_string[-5:-3])) # if date_string[-6] == '-': # # add the delta to return to UTC time # dt = dt + delta # else: # dt = dt - delta # return dt ```
{ "source": "joseramonc/dotfiles", "score": 2 }
#### File: dotfiles/sublime.symlink/erb_command.py ```python import sublime, sublime_plugin import re ERB_BLOCKS = [['<%=', '%>'], ['<%', '%>'], ['<%#', '%>']] ERB_REGEX = '<%(=?|-?|#?)\s{2}(-?)%>' # matches opening bracket that is not followed by the closing one ERB_OPENER_REGEX = '<%[\=\-\#]?(?!.*%>)' # matches the closing bracket. I couldn't figure out a way to exclude preceeding # opening bracket, since Python only support fixed-width negative lookbehind ERB_CLOSER_REGEX = '-?%>' class ErbCommand(sublime_plugin.TextCommand): def run(self, edit): if len(self.view.sel()) < 1: return # storing all new cursor positions to ensure they stay where they were before the changes new_selections = [] # looping through each selection for region in self.view.sel(): # searching for an opening bracket and closing bracket opener, closer = self.find_surrounding_blocks(region) if (opener is not None) and (closer is not None): # if brackets found - replacing them with the next ones. Result is a new cursor position. new_selections.append(self.replace_erb_block(edit, opener, closer, region)) else: # if the brackets were't found - inserting new ones. Result is a new cursor position. new_selections.append(self.insert_erb_block(edit, region)) # clearing current selections self.view.sel().clear() # looping through the modified selections and adding them for selection in new_selections: self.view.sel().add(selection) def find_surrounding_blocks(self, region): opener = None closer = None # grabbing the whole line containing_line = self.view.line(region) # one region to the left of the selection and one to the right left_region = sublime.Region(containing_line.begin(), region.begin()) right_region = sublime.Region(containing_line.end(), region.end()) # searching in the left region for an opening bracket found_openers = list(re.finditer(ERB_OPENER_REGEX, self.view.substr(left_region))) if len(found_openers) > 0: # if found, creating a region for it, using the last match - the rightmost bracket found opener = sublime.Region(left_region.begin() + found_openers[-1].start(), left_region.begin() + found_openers[-1].end()) # searching for a closing brcket in the right region found_closers = list(re.finditer(ERB_CLOSER_REGEX, self.view.substr(right_region))) if len(found_closers) > 0: # if found, creating a new region, using the first match - the leftmost bracket found closer = sublime.Region(right_region.begin() + found_closers[0].start(), right_region.begin() + found_closers[0].end()) return opener, closer def insert_erb_block(self, edit, region): # inserting the first block in the list default_block = ERB_BLOCKS[0] # inserting in reverse order because line length might change self.view.insert(edit, region.end(), " %s" % default_block[1]) inserted_before = self.view.insert(edit, region.begin(), "%s " % default_block[0]) # returning a region, shifted by the number of inserted characters before the cursor return sublime.Region(region.begin() + inserted_before, region.end() + inserted_before) def replace_erb_block(self, edit, opener, closer, region): # getting the next block in the list next_block = self.get_next_erb_block(self.view.substr(opener), self.view.substr(closer)) # calculating by how many characters the selection will change changed_before = len(next_block[0]) - len(self.view.substr(opener)) # replacing in reverse order because line length might change self.view.replace(edit, closer, next_block[1]) self.view.replace(edit, opener, next_block[0]) # returning a region, shifted by the number of difference of characters changed return sublime.Region(region.begin() + changed_before, region.end() + changed_before) def get_next_erb_block(self, opening_bracket, closing_bracket): for i, block in enumerate(ERB_BLOCKS): if [opening_bracket, closing_bracket] == block: # if outside of scope - returning the first block if i + 1 >= len(ERB_BLOCKS): return ERB_BLOCKS[0] else: return ERB_BLOCKS[i + 1] # in case we haven't found the block in the list, returning the first one return ERB_BLOCKS[0] ```
{ "source": "jose-raul-barreras/AppSecPipeline-Specification", "score": 2 }
#### File: tools/appspider/PyAppSpider.py ```python import json import requests import requests.exceptions import requests.packages.urllib3 from xml.etree import cElementTree as ET #from . import __version__ as version class PyAppSpider(object): """An API wrapper for AppSpider Enterprise. https://appspider.help.rapid7.com/docs/rest-api-overview """ token = None success = False loginCode = 0 clients = None def __init__(self, host, api_version='v1', verify_ssl=True, timeout=60, proxies=None, user_agent=None, cert=None, debug=False): """Initialize a AppSpider Enterprise API instance. :param host: The URL for the AppSpider Enterprise server. (e.g., http://localhost:8000/AppSpider Enterprise/) :param api_key: The API key generated on the AppSpider Enterprise API key page. :param user: The user associated with the API key. :param api_version: API version to call, the default is v1. :param verify_ssl: Specify if API requests will verify the host's SSL certificate, defaults to true. :param timeout: HTTP timeout in seconds, default is 30. :param proxies: Proxy for API requests. :param user_agent: HTTP user agent string, default is "AppSpider Enterprise_api/[version]". :param cert: You can also specify a local cert to use as client side certificate, as a single file (containing the private key and the certificate) or as a tuple of both file's path :param debug: Prints requests and responses, useful for debugging. """ version = "0.2" self.host = host + 'AppSpiderEnterprise/rest/' + api_version + '/' self.api_version = api_version self.verify_ssl = verify_ssl self.proxies = proxies self.timeout = timeout if not user_agent: self.user_agent = 'pyAppSpider_api/v' + version else: self.user_agent = user_agent self.cert = cert self.debug = debug # Prints request and response information. token = None if not self.verify_ssl: requests.packages.urllib3.disable_warnings() # Disabling SSL warning messages if verification is disabled. def authenticate(self, name, password, clientId=None): """Returns the AppSpider authentication token and/or client associated with the login. If the account is multi-client then AppSpider returns the list of clients associated with the account. :param name: Userid of the appspider user :param name: Password of the appspider user :param name: ClientID in AppSpider """ params = {} if clientId: params['clientId'] = clientId params['name'] = name params['password'] = password response = self._request('POST', 'Authentication/Login', data=params) if response.success: self.success = response.data["IsSuccess"] if self.success: self.token = response.data["Token"] self.loginCode = 1 #Authenticated elif response.data["Reason"] == "Invalid clientId": self.clients = response.data["Clients"] self.loginCode = 2 #Authenticated but need to select a client id else: #Connection error or bad login self.success = False return response ###### Helper Functions ###### def get_client_name(self, clientId): """Retrieves the client name from a client id :param clientId: Client ID (guid) """ config = self.get_config(clientId) return config.json()["Config"]["Name"] def get_scan_status_text(self, statusId): """Retrieves the client name from a client id :param clientId: Status ID (int) """ statusTxt = "Unknown Code: " + str(statusId) if statusId == 32: statusTxt = "Completed" elif statusId == 72: statusTxt = "Failed" elif statusId == 80: statusTxt = "Paused" elif statusId == 82: statusTxt = "Running" elif statusId == 119: statusTxt = "Vuln Load Failed" elif statusId == 122: statusTxt = "Stopping" return statusTxt def edit_scan_config_xml(self, xml_file, seed_urls, scope_constraints, custom_headers): """Adds xml elements for scanning url and includes :param xml_file: Scanner config xml file :param seed_urls: seed_url :param scope_constraints: scope_constraints """ tree = ET.parse(xml_file) xmlRoot = tree.getroot() xml_node = xmlRoot.findall("CrawlConfig/SeedUrlList") for elem in xmlRoot.iterfind('CrawlConfig/SeedUrlList'): for seed_url in seed_urls: seedUrl = ET.Element("SeedUrl") elem.append(seedUrl) value = ET.Element("Value") value.text = seed_url['url'] seedUrl.append(value) for elem in xmlRoot.iterfind('CrawlConfig/ScopeConstraintList'): for scope_constraint in scope_constraints: scope_constraintXML = ET.Element("ScopeConstraint") elem.append(scope_constraintXML) #URL url = ET.Element("URL") url.text = scope_constraint['url'] scope_constraintXML.append(url) #Method method = ET.Element("Method") if 'method' in scope_constraint: method.text = scope_constraint['method'] else: method.text = "All" scope_constraintXML.append(method) #MatchCriteria match_criteria = ET.Element("MatchCriteria") if "match_criteria" in scope_constraint: match_criteria.text = scope_constraint["match_criteria"] else: match_criteria.text = "Wildcard" scope_constraintXML.append(match_criteria) #Exclusion include = ET.Element("Exclusion") if "include" in scope_constraint: include.text = scope_constraint["include"] else: include.text = "Include" scope_constraintXML.append(include) http_param = ET.Element("HttpParameterList") scope_constraintXML.append(http_param) #Add a customer header, like an API token for elem in xmlRoot.iterfind('HTTPHeadersConfig/CustomHeadersList'): for custom_header in custom_headers: customHeaders = ET.Element("CustomHeaders") elem.append(customHeaders) value = ET.Element("Value") value.text = custom_header["custom_header"] customHeaders.append(value) return ET.tostring(xmlRoot, method="xml") #Saves a file from string def save_file(self, data, filename): success = None #If the API can't find the file it returns a json object if "IsSuccess" in data: success = False else: file = open(filename,"wb") file.write(data) file.close success = True return success ###### Scan API ####### ###### Scan Management ###### def get_scans(self): """Retrieves the list of scans. """ return self._request('GET', "Scan/GetScans") def run_scan(self, configId=None, configName=None): """Starts a scan. At least one parameter should be provided to start a scan :param configId: Scan config ID (guid) :param configName: Scan config name """ params = {} if configId: params['configId'] = configId if configName: params['configName'] = configName return self._request('POST', "Scan/RunScan/", data=params) def cancel_scan(self, scanId): """Cancels "Starting" or "Waiting for Cloud" scan :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('POST', "/Scan/CancelScan", data=params) def pause_scan(self, scanId): """Pauses a running scan :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('POST', "/Scan/PauseScan", data=params) def pause_all_scans(self): """Pauses all running scans """ return self._request('POST', "/Scan/PauseAllScans") def resume_scan(self, scanId): """Resumes a scan :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('POST', "/Scan/ResumeScan", data=params) def resume_all_scans(self): """Resumes all scans """ return self._request('POST', "/Scan/ResumeAllScans") def stop_scan(self, scanId): """Stops a running scan :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('POST', "/Scan/StopScan", data=params) def stop_all_scans(self): """Stops all scans """ return self._request('POST', "/Scan/StopAllScans") def get_scan_status(self, scanId): """Retrieves the scan status represented by a string :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('GET', "Scan/GetScanStatus", params) def is_scan_active(self, scanId): """Checks to see if the specified scan is active :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('GET', "Scan/IsScanActive", params) def is_scan_finished(self, scanId): """Checks to see if the specified scan is finished :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('GET', "Scan/IsScanFinished", params) def scan_has_report(self, scanId): """Checks to see if the specified scan has a report :param scanId: Scan ID (guid) """ params = {} params['scanId'] = scanId return self._request('GET', "Scan/HasReport", params) ###### Finding API ####### def get_vulnerabilities(self): """Retrieves the list of vulnerabilities filtered by the specified parameters. """ return self._request('GET', "Finding/GetVulnerabilities") ###### Scan Engine Operations ####### def admin_get_engines(self): """Retrieves the list of scan engines. """ return self._request('GET', "Engine/GetEngines") def admin_save_engine(self, url, virtualName, login, password, id=None, notes=None, doNotUpdate=None): """Creates or updates scan engine :param id: if id not provided new engine will be created. if id provided engine update performed. :param url: Scan engine URL. URL scheme should be {scheme}://{domain}/{path}/default.asmx :param virtualName: Scan engine name :param login: Scan engine username :param notes: Notes :param doNotUpdate: Do not update engine property """ params = {} params['url'] = url params['virtualName'] = virtualName params['login'] = login params['password'] = password if id: params['id'] = id if notes: params['notes'] = notes if doNotUpdate: params['doNotUpdate'] = doNotUpdate return self._request('POST', "Engine/SaveEngine", params) def admin_delete_engine(self, ids): """Scan engine IDs :param ids: Scan Engine ID (guid) """ params['ids'] = ids return self._request('POST', "Engine/DeleteEngine", params) ###### Scan Engine Operations ####### def admin_get_all_engine_groups(self): """Retrieves the list of scan engine groups. Note that System Administrator credentials are required to work with scan engines """ return self._request('GET', "EngineGroup/GetAllEngineGroups") def admin_get_engine_groups_for_client(self): """Retrieves the list of scan engine groups for a client. Note that System Administrator credentials are required to work with scan engines """ return self._request('GET', "EngineGroup/GetEngineGroupsForClient") def admin_save_engine_group(self, name, description=None, monitoring=None, id=None): """Creates or updates a scan engine group :param id: If id not provided a new engine group will be created. If an id is provided then an engine group update is performed. :param name: Scan engine group name. Name should be unique :param description: Scan engine group description :param monitoring: Scan engine group is monitoring """ params = {} params['name'] = name if id: params['id'] = id if description: params['description'] = description if monitoring: params['monitoring'] = monitoring return self._request('POST', "EngineGroup/SaveEngineGroup", data=params) def admin_delete_engine_group(self, ids): """Deletes a scan engine group :param ids: Scan engine group IDs (guid) """ params = {} params['ids'] = ids return self._request('POST', "EngineGroup/DeleteEngineGroup", data=params) def admin_add_engine_to_group(self, groupId, engineId): """Adds a scan engine to a scan engine group :param groupId: Scan engine group ID :param engineId: Scan engine ID """ params = {} params['groupId'] = groupId params['engineId'] = engineId return self._request('POST', "EngineGroup/AddEngineToGroup", data=params) def admin_delete_engine_from_group(self, groupId, engineId): """Deletes scan engine from scan engine group :param groupId: Scan engine group ID :param engineId: Scan engine ID """ params = {} params['groupId'] = groupId params['engineId'] = engineId return self._request('POST', "EngineGroup/DeleteEngineFromGroup", data=params) ###### Report Management ####### def import_standard_report(self, reportData, scanId=None, configId=None): """Creates a new scan in the scan history or updates the report for the specified scan :param scanId: Update scan report if scanId provided and create new scan details if not :param reportData: Report file :param configId: Config id uploaded report attached to """ params = {} params['reportData'] = reportData if scanId: params['scanId'] = scanId if configId: params['configId'] = configId return self._request('POST', "Report/ImportStandardReport", data=params) def import_checkmarx_report(self, scanId, file): """Creates a new scan in the scan history or updates the report for the specified scan :param scanId: Scan ID :param file: Checkmarx report XML file """ params = {} params['scanId'] = scanId params['file'] = file return self._request('POST', "Report/ImportCheckmarxReport", data=params) def get_vulnerabilities_summary(self, scanId): """Gets VulnerabilitiesSummary.xml for the scan. Only scans in "Completed" and "Stopped" states may have a report :param scanId: Scan ID """ params = {} params['scanId'] = scanId return self._request('GET', "Report/GetVulnerabilitiesSummaryXml", params) def get_report_zip(self, scanId): """Gets ReportAllFiles.zip for the scan. Only scans in "Completed" and "Stopped" states may have reports :param scanId: Scan ID """ params = {} params['scanId'] = scanId return self._request('GET', "Report/GetReportZip", params) def get_crawled_links(self, scanId): """Gets CrawledLinks.xml for the scan. Only scans in "Completed" and "Stopped" states may have a report :param scanId: Scan ID """ params = {} params['scanId'] = scanId return self._request('GET', "Report/GetCrawledLinksXml", params) ###### Scan Configuration Operations ####### def save_config(self, xml, name, engineGroupId, clientId, id=None, defendEnabled=False, monitoring=False, monitoringDelay=0, monitoringTriggerScan=False, isApproveRequired=False, seed_url=False, constraint_url=False, seed_urls=False, scope_constraints=False, custom_headers=False): """Creates a new scan configuration :param id: If id not provided new config will be created. If id provided config update performed. :param xml: Scan config xml file. Config name should be unique in the client. :param defendEnabled: AppSpider Defend enabled :param monitoring: Monitoring scanning enabled :param monitoringDelay: Delay between monitoring scans in hours. Possible values are 1 (hour), 24 (day), 168 (week), 720 (month) :param monitoringTriggerScan: Monitoring scan triggers attack scan if changes found :param name: Config name :param engineGroupId: Engine group id for scan config :param isApproveRequired: Approve required property """ params = {} #Required Parameters params['Name'] = name params['EngineGroupId'] = engineGroupId params['ClientId'] = clientId #Not required parameters params['Id'] = id params['DefendEnabled'] = defendEnabled params['Monitoring'] = monitoring params['MonitoringDelay'] = monitoringDelay params['MonitoringTriggerScan'] = monitoringTriggerScan params['IsApproveRequired'] = isApproveRequired #XML Scan Config Parameters params['Xml'] = self.edit_scan_config_xml(xml, seed_urls, scope_constraints, custom_headers) return self._request('POST', "Config/SaveConfig", files={'Config': (None,json.dumps(params))}) def get_configs(self): """Retrieves all scan configs for the client """ return self._request('GET', "Config/GetConfigs") def get_config(self, id): """Retrieves scan config for the client :param id: Scan config ID """ params = {} params['id'] = id return self._request('GET', "Config/GetConfig", params) def get_attachment(self, configId, fileName, fileType): """Retrieves auxiliary files (such as macro, traffic recording, etc), referenced in the scan configuration :param configId: Scan config ID :param fileName: Name of requested file :param fileType: File type. Values are: "Authentication", "Certificate", "Crawling", "Selenium", "Traffic", "Wsdl """ params = {} params['configId'] = configId params['fileName'] = fileName params['fileType'] = fileType return self._request('POST', "Config/GetAttachment", data=params) ###### Blackout Operations Operations ####### def get_blackouts(self): """Retrieves the blackout list for the client """ return self._request('GET', "Blackout/GetBlackouts") def save_blackout(self, name, startTime, targetHost, id=None, stopTime=None, isRecurring=None, recurrence=None): """Creates or updates a blackout window :param name: Blackout name. Name should be unique in the client :param startTime: Date and time the blackout starts :param targetHost: Name of host for the blackout :param id: Blackout id. Update blackout if id provided and create new blackout if not provided :param stopTime: Date and time the blackout ends :param isRecurring: Marks the blackout as a reoccurring event :param recurrence: Sets the recurrence frequency. See the section "Recurrences Explained" for more detail. """ params = {} params['name'] = name params['startTime'] = startTime params['targetHost'] = targetHost if id: params['id'] = id if stopTime: params['stopTime'] = id if isRecurring: params['isRecurring'] = id if recurrence: params['recurrence'] = id return self._request('POST', "Blackout/SaveBlackout", data=params) def delete_blackouts(self, blackoutIds): """Removes a blackout window :param blackoutIds: Scan config ID """ params = {} params['blackoutIds'] = blackoutIds return self._request('POST', "Blackout/DeleteBlackouts", data=params) # Utility @staticmethod def _build_list_params(param_name, key, values): """Builds a list of POST parameters from a list or single value.""" params = {} if hasattr(values, '__iter__'): index = 0 for value in values: params[str(param_name) + '[' + str(index) + '].' + str(key)] = str(value) index += 1 else: params[str(param_name) + '[0].' + str(key)] = str(values) return params def _request(self, method, url, params=None, data=None, files=None): """Common handler for all HTTP requests.""" if not params: params = {} if data: data = json.dumps(data) headers = { 'User-Agent': self.user_agent, 'Authorization': 'Basic ' + str(self.token) } if not files: headers['Accept'] = 'application/json' headers['Content-Type'] = 'application/json' if self.proxies: proxies=self.proxies else: proxies = {} try: if self.debug: print(method + ' ' + url) print(params) response = requests.request(method=method, url=self.host + url, params=params, data=data, files=files, headers=headers, timeout=self.timeout, verify=self.verify_ssl, cert=self.cert, proxies=proxies) if self.debug: print(response.status_code) print(response.text) try: if response.status_code == 201: #Created new object data = response.json() return AppSpiderResponse(message="Upload complete", data=data, success=True) elif response.status_code == 204: #Object updates return AppSpiderResponse(message="Object updated.", success=True) elif response.status_code == 404: #Object not created return AppSpiderResponse(message="Object id does not exist.", success=False) elif 'content-disposition' in response.headers: data = response.content return AppSpiderResponse(message="Success", data=data, success=True, response_code=response.status_code) else: data = response.json() return AppSpiderResponse(message="Success", data=data, success=True, response_code=response.status_code) except ValueError as e: return AppSpiderResponse(message='JSON response could not be decoded. Detailed error: ' + str(e), success=False) except requests.exceptions.SSLError as e: return AppSpiderResponse(message='An SSL error occurred. Detailed error: ' + str(e), success=False) except requests.exceptions.ConnectionError as e: return AppSpiderResponse(message=str(e) + 'A connection error occurred. Detailed error: ' + str(e), success=False) except requests.exceptions.Timeout as e: return AppSpiderResponse(message='The request timed out after ' + str(self.timeout) + ' seconds.', success=False) except requests.exceptions.RequestException as e: return AppSpiderResponse(message='There was an error while handling the request. Detailed error: ' + str(e), success=False) class AppSpiderResponse(object): """ Container for all AppSpider Enterprise API responses, even errors. """ def __init__(self, message, success, data=None, response_code=-1): self.message = message self.data = data self.success = success self.response_code = response_code def __str__(self): if self.data: return str(self.data) else: return self.message def binary(self): return self.data def json(self): return self.data def id(self): if self.response_code == 400: #Bad Request raise ValueError('Object not created:' + json.dumps(self.data, sort_keys=True, indent=4, separators=(',', ': '))) return int(self.data) def count(self): return self.data["TotalCount"] def is_success(self): data = None try: data = self.data["IsSuccess"] except: data = self.data return data def error(self): errorMessage = self.message if self.data is not None: if "ErrorMessage" in self.data: self.data["ErrorMessage"] return errorMessage def data_json(self, pretty=False): """Returns the data as a valid JSON string.""" if pretty: return json.dumps(self.data, sort_keys=True, indent=4, separators=(',', ': ')) else: return json.dumps(self.data) ``` #### File: tools/checkmarx/PyCheckmarx.py ```python from suds.client import Client from suds.sudsobject import asdict from suds.cache import NoCache import base64 import re import json import time from zipfile import ZipFile import os import uuid import ssl class PyCheckmarx(object): # Internal Variables for the Class DEBUG = False configPath = "config/" errorLog = [] ttlReport = 900 timeWaitReport = 60 ssl._create_default_https_context = ssl._create_unverified_context # # Init Function # def __init__(self, username, password, url): # Get Configuration self.getConfig(username, password, url) # Open Connection With Checkmarx self.Initclient = self.openConnection() # Get the Service URL self.serviceUrl = self.getServiceUrl(self.Initclient) # Get the Session Id and Client Object (self.sessionId, self.client) = self.getSessionId(self.Initclient,self.serviceUrl) return None ########################################## # # Functions Related to Opening session with Checkmarx # ########################################## # # Get Configuration # def getConfig(self, username, password, url): self.USERNAME = username self.PASSWORD = password self.URL = str(url + "Cxwebinterface/CxWsResolver.asmx?wsdl") self.cxURL = str(url) self.APITYPE = 1 self.baseProject = None # # Open Connection # def openConnection(self): try: #proxy_settings = dict(http='http://localhost:8081') #tmpClient = Client(self.URL, timeout=1200, proxy=proxy_settings) tmpClient = Client(self.URL, timeout=1200) if self.DEBUG: print dir(tmpClient) return tmpClient except Exception as e: raise Exception("Unable to establish connection with WSDL [%s]: %s " % (self.URL, e.message)) # # Get Service URL # def getServiceUrl(self, client): try: CxClient = client.factory.create('CxClientType') responseDiscovery = client.service.GetWebServiceUrl(CxClient.Jenkins,self.APITYPE) if responseDiscovery.IsSuccesfull: serviceUrl = responseDiscovery.ServiceURL print "Checkmarx Service URL: " + serviceUrl else: raise Exception("Error establishing connection > %s" % cxSDK.ErrorMessage) if self.DEBUG: print "Response Discovery Object:", dir(responseDiscovery) print "Service Url:", serviceUrl return serviceUrl except Exception as e: raise Exception("Unable to get Service URL: %s" % e.message) # # Login in Checkmarx and retrive the Session ID # def getSessionId(self,client, serviceUrl): try: #proxy_settings = dict(http='http://localhost:8081') #clientSDK = Client(serviceUrl + "?wsdl", cache=NoCache(), timeout=1200, proxy=proxy_settings) clientSDK = Client(serviceUrl + "?wsdl", timeout=1200, cache=NoCache()) CxLogin = clientSDK.factory.create("Credentials") CxLogin.User = self.USERNAME CxLogin.Pass = <PASSWORD> cxSDK = clientSDK.service.Login(CxLogin,1033) if not cxSDK.IsSuccesfull: raise Exception("Unable to Login > %s" % cxSDK.ErrorMessage) if self.DEBUG: print "Service Object:", dir(client) print "Login Object:", dir(cxSDK) print "Session ID:", cxSDK.SessionId return (cxSDK.SessionId, clientSDK) except Exception as e: raise Exception("Unable to get SessionId from [%s] : %s" % (serviceUrl,e.message)) ########################################## # # Functions Related to the functionality of the WSDL # ########################################## # # Create a scan job # def scanProject(self, ProjectName, ServerName, SSHFilePath, PresetID=0, GITBranch="master"): #Project Settings ProjectSettings = self.client.factory.create("ProjectSettings") ProjectSettings.ProjectName = ProjectName ProjectSettings.PresetID = PresetID ProjectSettings.projectID = 0 ProjectSettings.ScanConfigurationID = 1 ProjectSettings.IsPublic = "false" del ProjectSettings.OpenSourceAnalysisOrigin #Client Scan Arguements CliScanArgs = self.client.factory.create("CliScanArgs") CliScanArgs.IsPrivateScan = "false" CliScanArgs.IsIncremental = "false" CliScanArgs.IgnoreScanWithUnchangedCode = "true" del CliScanArgs.ClientOrigin #Scan Settings SourceCodeSettings = self.client.factory.create("SourceCodeSettings") SourceCodeSettings.SourceOrigin = "SourceControl" SourceCodeSettings.SourceControlSetting.Port = "0" SourceCodeSettings.SourceControlSetting.UseSSL = "false" SourceCodeSettings.SourceControlSetting.UseSSH = "true" SourceCodeSettings.SourceControlSetting.ServerName = ServerName SourceCodeSettings.SourceControlSetting.Repository = "GIT" SourceCodeSettings.SourceControlSetting.Protocol = "SSH" SourceCodeSettings.SourceControlSetting.GITBranch = GITBranch SourceCodeSettings.SourceControlSetting.SSHPublicKey = "EmptyStab" #Load the ssh key file = open(SSHFilePath, "r") SourceCodeSettings.SourceControlSetting.SSHPrivateKey = file.read() #Remove "extra" unecessary elements del SourceCodeSettings.SourceControlSetting.PerforceBrowsingMode del SourceCodeSettings.SourceControlSetting.GitLsViewType #Set the client scanning arguments CliScanArgs.PrjSettings = ProjectSettings CliScanArgs.SrcCodeSettings = SourceCodeSettings tmp = self.client.service.Scan(self.sessionId, CliScanArgs) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) return tmp def get_directory(self, directory): file_paths = [] for root, directories, files in os.walk(directory): for filename in files: filepath = os.path.join(root, filename) file_paths.append(filepath) return file_paths def scanExistingProject(self, ProjectId, directory, incremental=True): config = self.client.service.GetProjectConfiguration(self.sessionId, ProjectId) localCodeContainer = self.client.factory.create("LocalCodeContainer") tempZip = "/tmp/" + str(uuid.uuid4()) + ".zip" file_paths = self.get_directory(directory) print "Zipping" with ZipFile(tempZip,'w') as zip: for file in file_paths: if ".git" not in file: filename, file_extension = os.path.splitext(file) try: #Skip image files and static stuff if file_extension != ".a" and file_extension != ".framework" and file_extension != ".png" and file_extension != ".jpg" and file_extension != ".gif" and file_extension != ".ttf" and file_extension != ".bin" and file_extension != ".exe" and file_extension != ".so" and file_extension != ".jar" and file_extension != ".pdf": zip.write(file) except: print "File skipped: " + file srcCode = open(tempZip, 'rb') srcCodeInput = srcCode.read() localCodeContainer.ZippedFile = base64.encodestring(srcCodeInput) localCodeContainer.FileName = str(uuid.uuid4()) + ".zip" os.remove(tempZip) if incremental: RunScanAndAddToProject = self.client.factory.create("RunIncrementalScan") RunScanAndAddToProject.visibleToUtherUsers = True RunScanAndAddToProject.isPublicScan = True tmp = self.client.service.RunIncrementalScan(self.sessionId, config.ProjectConfig.ProjectSettings,localCodeContainer,RunScanAndAddToProject.visibleToUtherUsers, RunScanAndAddToProject.isPublicScan) else: RunScanAndAddToProject = self.client.factory.create("RunScanAndAddToProject") RunScanAndAddToProject.visibleToUtherUsers = True RunScanAndAddToProject.isPublicScan = True tmp = self.client.service.RunScanAndAddToProject(self.sessionId, config.ProjectConfig.ProjectSettings,localCodeContainer,RunScanAndAddToProject.visibleToUtherUsers, RunScanAndAddToProject.isPublicScan) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) return tmp.RunId def getStatusOfSingleScan(self, RunId): ScanId = None Message = None inc = 0 while inc < self.ttlReport: inc += 1 try: status = self.client.service.GetStatusOfSingleScan(self.sessionId, RunId) if status.CurrentStatus == "Finished": ScanId = status.ScanId Message = "Success" break elif status.CurrentStatus == "Failed" or status.CurrentStatus == "Unknown": if "full scan should be submitted" in status.StageMessage: Message = "FullScan" else: Message = "Unkown" break except Exception as e: print e print "Waiting for Checkmarx to complete." time.sleep(self.timeWaitReport) if self.DEBUG: print dir(status) return ScanId, Message # # Get Suppressed Issues # def getXMLReport(self, scanID, fileName): CxWSReportType = self.client.factory.create("CxWSReportType") CxReportRequest = self.client.factory.create("CxWSReportRequest") CxReportRequest.ScanID = scanID CxReportRequest.Type = CxWSReportType.XML createReportResponse = self.client.service.CreateScanReport(self.sessionId, CxReportRequest) if createReportResponse.IsSuccesfull: if self.DEBUG: print createReportResponse print "Success. Creating Get Scan Report Status" inc = 0 while inc < self.ttlReport: inc += 1 reportStatusResponse = self.client.service.GetScanReportStatus(self.sessionId, createReportResponse.ID) if reportStatusResponse.IsSuccesfull and reportStatusResponse.IsReady: break if self.DEBUG: print "fail" time.sleep(self.timeWaitReport) if self.DEBUG: print "Sucess. Creating Get Scan Report" responseScanResults = self.client.service.GetScanReport(self.sessionId, createReportResponse.ID ) if responseScanResults.IsSuccesfull and responseScanResults.ScanResults: XMLData = base64.b64decode(responseScanResults.ScanResults) fileObj = open(fileName,"w+") fileObj.write(XMLData) fileObj.close() # # Get data from the Projects # def getProjectScannedDisplayData(self, filterOn=False): tmp = self.client.service.GetProjectScannedDisplayData(self.sessionId) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) if not filterOn: return self.convertToJson(tmp) else: return tmp.ProjectScannedList[0] # # Get Project Display Data # def getProjectsDisplayData(self, filterOn=False): tmp = self.client.service.GetProjectsDisplayData(self.sessionId) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) if not filterOn: return self.convertToJson(tmp) else: return tmp.projectList[0] # # Get Scan Info For All Projects # def getScanInfoForAllProjects(self, filterOn=False): tmp = self.client.service.GetScansDisplayDataForAllProjects(self.sessionId) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) if not filterOn: return self.convertToJson(tmp) else: return tmp # # Get Preset List # def getPresetList(self): tmp = self.client.service.GetPresetList(self.sessionId) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) return self.convertToJson(tmp) # # Get Configuration List # def getConfigurationList(self): tmp = self.client.service.GetConfigurationSetList(self.sessionId) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) return self.convertToJson(tmp) # # Get Associated Groups List # def getAssociatedGroups(self): tmp = self.client.service.GetAssociatedGroupsList(self.sessionId) if not tmp.IsSuccesfull: raise Exception("Unable to get data from the server.") if self.DEBUG: print dir(tmp) return self.convertToJson(tmp) # # Filter For [getProjectScannedDisplayData] # def filterProjectScannedDisplayData(self, projectID): tmpProjects = self.getProjectScannedDisplayData(True) for project in tmpProjects: if project.ProjectID == projectID: return self.convertToJson(project) raise Exception("Could not find ProjectID: %s " % projectID) # # Filter for [getProjectsDisplayData] # def filterProjectsDisplayData(self,projectID): tmpProjects = self.getProjectsDisplayData(True) for project in tmpProjects: if project.projectID == projectID: return self.convertToJson(project) raise Exception("Could not find ProjectID: %s " % projectID) # # Filter for [getScanInfoForAllProjects] # def filterScanInfoForAllProjects(self,projectID): tmpProjects = self.getScanInfoForAllProjects(True).ScanList[0] for project in tmpProjects: if project.ProjectId == projectID: return self.convertToJson(project) raise Exception("Could not find ProjectID: %s " % projectID) # # Get Suppressed Issues # def getSupressedIssues(self, scanID): CxWSReportType = self.client.factory.create("CxWSReportType") CxReportRequest = self.client.factory.create("CxWSReportRequest") CxReportRequest.ScanID = scanID CxReportRequest.Type = CxWSReportType.XML createReportResponse = self.client.service.CreateScanReport(self.sessionId, CxReportRequest) print createReportResponse if createReportResponse.IsSuccesfull: if self.DEBUG: print createReportResponse print "Success. Creating Get Scan Report Status" inc = 0 while inc < self.ttlReport: inc += 1 reportStatusResponse = self.client.service.GetScanReportStatus(self.sessionId, createReportResponse.ID) if reportStatusResponse.IsSuccesfull and reportStatusResponse.IsReady: break if self.DEBUG: print "fail" time.sleep(self.timeWaitReport) if self.DEBUG: print "Sucess. Creating Get Scan Report" responseScanResults = self.client.service.GetScanReport(self.sessionId, createReportResponse.ID ) if responseScanResults.IsSuccesfull and responseScanResults.ScanResults: XMLData = base64.b64decode(responseScanResults.ScanResults) print XMLData issues = re.findall('FalsePositive="([a-zA-Z]+)" Severity="([a-zA-Z]+)"', XMLData) if self.DEBUG: print responseScanResults print issues mediumSupressIssues = 0 lowSupressIssues = 0 highSupressIssues = 0 otherSupressIssues = 0 for a,b in issues: if a == "True": if b == "Medium": mediumSupressIssues += 1 elif b == "High": highSupressIssues += 1 elif b == "Low": lowSupressIssues += 1 else: otherSupressIssues += 1 if self.DEBUG: print highSupressIssues print mediumSupressIssues print lowSupressIssues return {"highSupressIssues": highSupressIssues, "mediumSupressIssues": mediumSupressIssues, "lowSupressIssues": lowSupressIssues} else: raise Exception("Unable to Get Report") else: raise Exception("Unable to get Supressed") # # Convert Suds object into serializable format. # def recursive_asdict(self,d): out = {} for k, v in asdict(d).iteritems(): if hasattr(v, '__keylist__'): out[k] = self.recursive_asdict(v) elif isinstance(v, list): out[k] = [] for item in v: if hasattr(item, '__keylist__'): out[k].append(self.recursive_asdict(item)) else: out[k].append(item) else: out[k] = v return out # # Return Subs Object into Serializable format Handler # def convertToJson(self, data): try: tmp = self.recursive_asdict(data) return json.dumps(tmp) except Exception as e: raise Exception("Unable to convert to JSON: %s" % e.message) ```
{ "source": "jose-raul-barreras/letscode", "score": 4 }
#### File: jose-raul-barreras/letscode/matrixElementsSum.py ```python def matrixElementsSum(matrix): """ https://codefights.com/arcade/intro/level-2/xskq4ZxLyqQMCLshr After becoming famous, CodeBots decided to move to a new building and live together. The building is represented by a rectangular matrix of rooms, each cell containing an integer - the price of the room. Some rooms are free (their cost is 0), but that's probably because they are haunted, so all the bots are afraid of them. That is why any room that is free or is located anywhere below a free room in the same column is not considered suitable for the bots. Help the bots calculate the total price of all the rooms that are suitable for them. Example matrix = [[0, 1, 1, 2], [0, 5, 0, 0], [2, 0, 3, 3]] the output should be matrixElementsSum(matrix) = 9. Here's the rooms matrix with unsuitable rooms marked with 'x': [[x, 1, 1, 2], [x, 5, x, x], [x, x, x, x]] Thus, the answer is 1 + 5 + 1 + 2 = 9. >>> matrix = [[0, 1, 1, 2], [0, 5, 0, 0], [2, 0, 3, 3]] >>> matrixElementsSum(matrix) 9 >>> matrix = [[1,1,1,0], [0,5,0,1], [2,1,3,10]] >>> matrixElementsSum(matrix) 9 >>> matrix = [[1,1,1], [2,2,2], [3,3,3]] >>> matrixElementsSum(matrix) 18 >>> matrix = [[0]] >>> matrixElementsSum(matrix) 0 """ count = 0 fact = [1 for i in range(len(matrix[0]))] for i in range(len(matrix)): for j in range(len(matrix[i])): if matrix[i][j] == 0: fact[j] = 0 count += matrix[i][j]*fact[j] return count if __name__ == "__main__": import doctest doctest.testmod() ```
{ "source": "joseraulgallardo97/spyre", "score": 3 }
#### File: spyre/examples/simple_app_example.py ```python from spyre import server class SimpleApp(server.App): title = "Simple App" inputs = [{ "type": "text", "key": "words", "label": "write words here", "value": "hello world", "action_id": "simple_html_output" }] outputs = [{ "type": "html", "id": "simple_html_output" }] def getHTML(self, params): words = params["words"] return "Here's what you wrote in the textbox: <b>%s</b>" % words app = SimpleApp() app.launch() ``` #### File: tutorial/quickstart/connections.py ```python from spyre import server import matplotlib.image as mpimg class InputExample(server.Launch): title = "Connections" inputs = [{ "input_type": 'radiobuttons', "options": [ {"label": "Simple App", "value": 1, "checked": True}, {"label": "Multiple Outputs", "value": 2}, {"label": "Inputs with actions 1", "value": 3}, {"label": "Inputs with actions 2", "value": 4}, ], "variable_name": 'slide_selector', "action_id": "image_output", }] controls = [{ "control_type": "hidden", "control_id": "button1", "label": "Button", }] outputs = [{ "output_type": "image", "output_id": "image_output", "control_id": "button1", "on_page_load": True, }] def getImage(self, params): slide_selector = int(params['slide_selector']) absolute_path = '' if slide_selector == 2: img = mpimg.imread(absolute_path + 'slide2.png') elif slide_selector == 3: img = mpimg.imread(absolute_path + 'slide3.png') elif slide_selector == 4: img = mpimg.imread(absolute_path + 'slide4.png') else: img = mpimg.imread(absolute_path + 'slide1.png') return img def noOutput(self, input_params): pass app = InputExample() app.launch(port=9096) ```
{ "source": "joserc87/project-euler", "score": 4 }
#### File: project-euler/031/main.py ```python def posibilidades (tiposMonedas, cantidad, under=200): if cantidad==0: return 1 elif cantidad==1: return 1 numPosibilidades=0 for m in tiposMonedas: if m <= cantidad and m <= under: numPosibilidades+=posibilidades (tiposMonedas, cantidad-m, m) return numPosibilidades numPosibilidades=posibilidades ([200, 100, 50, 20, 10, 5, 2, 1], 200) print numPosibilidades ``` #### File: project-euler/033/main.py ```python import math """ \brief Calcula tantos primos como se indique y los guarda en un vector \param primos Un vector de primos \param hasta El mayor número que queremos comprobar si es primo. Si hasta es primo, se añadirá al vector """ def calcularPrimos (primos, hasta): cambia=False i=0L if len(primos)==0: primos.append (2L) cambia=True i=3L else: i=primos [-1]+2L while i<=hasta: esPrimo=True raiz=math.sqrt(i)//1 for iter in primos: if iter > raiz: break; elif i%iter==0: esPrimo=False if esPrimo: primos.append (i) cambia=True i+=2 return cambia #################################################################################################### """ \brief Calcula los divisores primos de un número. Hace uso de calcularPrimos \param n El número base \param primos Una lista de primos, posiblemente incompleta """ def divisoresPrimos (n, primos): divisores=[] cambia=True while cambia and n!=1: for iter in primos: if n==1: break while n%iter==0: divisores.append (iter) n/=iter cambia=calcularPrimos (primos, n) return divisores #################################################################################################### """ \brief Calcula los divisores primos de un número. Hace uso de calcularPrimos \param n El número base \param primos Una lista de primos, posiblemente incompleta """ def descomposicion (n, primos): divisores=[] cambia=True while cambia and n!=1: for iter in primos: if n==1: break numNs=0; while n%iter==0: numNs+=1 n/=iter if numNs>0: divisores.append ((iter,numNs)) cambia=calcularPrimos (primos, n*2) return divisores #################################################################################################### """ \brief Indica si dos números son iguales (listas) """ def iguales (listaA, listaB): sonIguales=True if len (listaA) != len (listaB): sonIguales=False else: for a in listaA: if not a in listaB: sonIguales=False break; return sonIguales #################################################################################################### """ \brief Eleva un número a una potencia """ def elevar (lis, e): nuevaLista=[] for l in lis: tup=(l[0],l[1]*e) nuevaLista.append (tup); return nuevaLista #################################################################################################### def findMaxCommDiv (num, den): "reducir la fracción:" divisores = range(num, 1, -1) for divisor in divisores: if num%divisor==0 and den%divisor==0: return divisor; return 1; #################################################################################################### """ \brief Comprueba que dos numeros comparten al menos un dígito común \param a El primer número, entre 10 y 98 \param b El segundo número, entre a+1 y 99 """ def isCurious (a, b): a1 = a//10 a2 = a%10 b1 = b//10 b2 = b%10 return (a2 != 0 or b2 != 0) and ((a1 == b1 and (1.0*b2*a)/b == a2) or \ (a1 == b2 and (1.0*b1*a)/b == a2) or \ (a2 == b1 and (1.0*b2*a)/b == a1) or \ (a2 == b2 and (1.0*b1*a)/b == a1)); prodNumerador = 1 prodDenominador = 1 numeradores = range (11, 99) for numerador in numeradores: denominadores = range (numerador+1, 100) for denominador in denominadores: if (isCurious(numerador, denominador)): print 'La fraccion ' + repr(numerador) + '/' + repr(denominador) + ' es curiosa' prodNumerador *= numerador prodDenominador *= denominador divisor = findMaxCommDiv(prodNumerador, prodDenominador) prodNumerador /= divisor prodDenominador /= divisor; "reducir la fracción:" print 'La solucion es ' + repr(prodDenominador) ``` #### File: joserc87/project-euler/037.py ```python from util import PrimeFactory def find_truncable_primes(n): """ The numbers will start with [2, 3, 5, 7] and end with [3, 7] (if it ended in 2 or 5 it would be multilpe of 2 or 5). We can build backwards: - primes that end in [3, 7]: [13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97] - primes that start with [2, 3, 5, 7]: [23, 29, 31, 37, 53, 59, 71, 73, 79] - s would be [23, 37, 53, 73] - primes that end in [13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97]: [233] """ s = [] prime_factory = PrimeFactory() r = [7, 3] # Right, endings l = [2, 3, 5, 7] # Left, starters n = 2 while True: prime_factory._calc_primes(10**n) r = [p for p in prime_factory.primes if (p % 10**(n-1)) in r and p < 10**n and p >= 10**(n-1)] l = [p for p in prime_factory.primes if (p // 10) in l and p < 10**n and p >= 10**(n-1)] v = [x for x in r if x in l] s += v if l == [] or r == []: break # We are told that there are 11 primes if len(s) == 11: break n += 1 return s def solve(n): return sum(find_truncable_primes(n)) if __name__ == "__main__": print(solve(1000000)) ``` #### File: joserc87/project-euler/039.py ```python def possible_right_triangles(max_perimeter): """ Returns the possible triangles for each perimeter (list of list of tuples) """ triangles = [[] for _ in range(max_perimeter+1)] squares = [i*i for i in range(max_perimeter//2 + 1)] # Find the triangles (where b>=a) for b, b2 in enumerate(squares): for a, a2 in enumerate(squares): if a > b: break if a*b != 0: c2 = a2 + b2 if c2 in squares: c = squares.index(c2) perimeter = a + b + c if perimeter <= max_perimeter: triangles[perimeter] += [(a, b, c)] return triangles def perimeter_with_more_triangles(max_perimeter): triangles = possible_right_triangles(max_perimeter) lens = [len(l) for l in triangles] return lens.index(max(lens)) if __name__ == '__main__': triangles = possible_right_triangles(1000) print(perimeter_with_more_triangles(1000)) ``` #### File: joserc87/project-euler/045.py ```python class GeometryHelper(object): """ Helper class to calculate triangle, pentagonal or hexagonal numbers. We can use the brackets operator (TPH[X]) as well as the contains operator (X in TPH). """ def __init__(self): # Helper[0] == 0 to make our lifes easier, as the numbers start from 1 self.numbers = [0] def formulae(self, n): """Returns the n-th number (n>=1)""" return 0 def _build(self, last): next_item = len(self.numbers) self.numbers += [self.formulae(n) for n in range(next_item, last+1)] def _build_until_number(self, last_p): next_item = len(self.numbers) while self.numbers[-1] < last_p: self.numbers.append(self.formulae(next_item)) next_item += 1 def __contains__(self, p): self._build_until_number(p) return p in self.numbers def __getitem__(self, n): if n >= len(self.numbers): self._build(n) return self.numbers[n] class TriangleHelper(GeometryHelper): def formulae(self, n): """Returns the n-th triangle number (n>1)""" return (n*(n+1))//2 class PentagonalHelper(GeometryHelper): def formulae(self, n): """Returns the n-th triangle number (n>1)""" return (n*(3*n-1))//2 class HexagonalHelper(GeometryHelper): def formulae(self, n): """Returns the n-th triangle number (n>1)""" return n*(2*n-1) # Test T = TriangleHelper() P = PentagonalHelper() H = HexagonalHelper() assert [T[i] for i in range(1, 6)] == [1, 3, 6, 10, 15] assert [P[i] for i in range(1, 6)] == [1, 5, 12, 22, 35] assert [H[i] for i in range(1, 6)] == [1, 6, 15, 28, 45] assert 15 in T assert 16 not in T assert 35 in P assert 36 not in P assert 45 in H assert 46 not in H def main(): # Simply iterate over the triangle numbers and check if the result number is # also a pentagonal and hexagonal number # We already know that T[285] = P[165] = H[143] = 40755: assert T[285] == P[165] == H[143] == 40755 assert 40755 in T assert 40755 in P assert 40755 in H # So we can start from 286 n = 286 while True: t = T[n] if t in P and t in H: return t n += 1 if __name__ == '__main__': print(main()) ``` #### File: joserc87/project-euler/046.py ```python from util import PrimeFactory primes = PrimeFactory() # Array with the squares, for efficiency squares = [0] def get_squares_until(n): i = len(squares) while squares[-1] < n: squares.append(i*i) i += 1 return [s for s in squares if s < n] def find_goldbach(n): '''Finds the prime p and the square s so that n == p + 2*s''' for square in get_squares_until(n): p = (n - square*2) if p in primes: return (p, square) # Goldbach conjeture is false! return None def main(): n = 9 while True: if n not in primes: if find_goldbach(n) is None: return n n += 2 if __name__ == '__main__': print(main()) ``` #### File: joserc87/project-euler/047.py ```python from collections import deque from util import PrimeFactory def distinctive_factors(factors): for i, factors1 in enumerate(factors): for factors2 in [f for j, f in enumerate(factors) if j > i]: for f in factors1: if f in factors2: return False return True def find_n_cons_nums(n): """Finds the first n consecutive numbers that have n disctintive prime factors""" primes = PrimeFactory() # First number that can be decomposed is 4 i = 4 factors = deque([primes.get_prime_factors(f) for f in range(i, i+n)]) while sum([0 if len(f) == n else 1 for f in factors]) != 0 or \ not distinctive_factors(factors): factors.rotate() i += 1 factors[-1] = primes.get_prime_factors(i + n - 1) return i def main(): assert find_n_cons_nums(2) == 14 assert find_n_cons_nums(3) == 644 print(find_n_cons_nums(4)) if __name__ == '__main__': main() ``` #### File: project-euler/test/primes_test.py ```python import unittest from util import PrimeFactory class TestPrimeFactory(unittest.TestCase): def test_calc_primes(self): sut = PrimeFactory() sut._calc_primes(20) self.assertEqual(sut.last_number_checked, 21) self.assertEqual(sut.primes, [2, 3, 5, 7, 11, 13, 17, 19]) def test_is_prime(self): primes = PrimeFactory() self.assertTrue(primes.is_prime(2)) self.assertTrue(primes.is_prime(3)) self.assertTrue(primes.is_prime(5)) self.assertTrue(primes.is_prime(7)) self.assertTrue(primes.is_prime(11)) self.assertTrue(primes.is_prime(13)) self.assertTrue(primes.is_prime(17)) def test_contains(self): primes = PrimeFactory() self.assertTrue(2 in primes) self.assertTrue(3 in primes) self.assertTrue(5 in primes) self.assertTrue(7 in primes) self.assertTrue(11 in primes) self.assertTrue(13 in primes) self.assertTrue(17 in primes) def test_get_prime_factors(self): primes = PrimeFactory() self.assertEquals([(2, 2), (7, 1), (23, 1)], primes.get_prime_factors(644)) self.assertEquals([(3, 1), (5, 1), (43, 1)], primes.get_prime_factors(645)) self.assertEquals([(2, 1), (17, 1), (19, 1)], primes.get_prime_factors(646)) if __name__ == '__main__': unittest.main() ``` #### File: project-euler/test/util_test.py ```python import unittest from util import get_digits, get_int_from_digits, is_palindromic, get_rotations class TestDigitMethods(unittest.TestCase): def test_get_digits(self): self.assertEqual( get_digits(1232, 10), [1, 2, 3, 2]) self.assertEqual( get_digits(0b10010101, 2), [1, 0, 0, 1, 0, 1, 0, 1]) def test_get_int_from_digits(self): self.assertEqual( get_int_from_digits([4, 5, 3, 9, 0]), 45390) self.assertEqual( get_int_from_digits([1, 0, 1, 1, 1, 0, 0], 2), 0b1011100) def test_is_palidromic(self): self.assertTrue(is_palindromic(1234321, 10)) self.assertTrue(is_palindromic(123321, 10)) self.assertTrue(is_palindromic(0b101101101, 2)) self.assertTrue(is_palindromic(0b10111101, 2)) def test_get_rotations(self): self.assertEqual( get_rotations(1234), [1234, 4123, 3412, 2341]) self.assertEqual( get_rotations(0b10110011, 2), [0b10110011, 0b11011001, 0b11101100, 0b01110110, 0b00111011, 0b10011101, 0b11001110, 0b01100111]) if __name__ == '__main__': unittest.main() ```
{ "source": "josercruz01/jchat", "score": 3 }
#### File: josercruz01/jchat/jchat.py ```python import json import os from peewee import * db = SqliteDatabase(os.environ.get('JCHAT_DATABASE') or "test.db") # Constants MSG_TYPE_SITE = "status" MSG_TYPE_MESSAGE = "message" STATUS_TYPE_ONLINE = "online" STATUS_TYPE_OFFLINE = "offline" # Base Database Model. class BaseModel(Model): class Meta: database = db # Represents a message. class Message(BaseModel): message_id = CharField(unique=True) content = TextField() last_updated = IntegerField() # Represents a cache of all messages sent. class MessageCache(BaseModel): message_id = CharField(unique=True) last_updated = IntegerField() # Represents a site. class Site(BaseModel): site_id = CharField(unique=True) messages = IntegerField(default=0) emails = IntegerField(default=0) last_updated = IntegerField(default=0) # Represents an operator. class Operator(BaseModel): operator_id = CharField() status = CharField() site = ForeignKeyField(Site, related_name='operators') last_updated = IntegerField(default=0) # Represents a visitor. class Visitor(BaseModel): visitor_id = CharField() site = ForeignKeyField(Site, related_name='visitors') # Returns true if at least one operator is online for the site. def is_online(site): online = (Operator.select().where( (Operator.site == site.id) & (Operator.status == STATUS_TYPE_ONLINE) ).count()) return online > 0 # Return the total visitors connected to the site. def total_visitors(site): total = (Visitor.select().where( Visitor.site == site.id ).count()) return total # Return the total operators connected to the site. def total_operators(site): total = (Operator.select().where( Operator.site == site.id ).count()) return total # Returns an operator associated with the operator id. def get_operator(site, operator_id): operator = Operator.get((Operator.site == site.id) & (Operator.operator_id == operator_id)) return operator def site_str(site, operators, visitors): return "%s,messages=%s,emails=%s,operators=%s,visitors=%s" % ( site.site_id, site.messages, site.emails, operators,# site.num_operators, visitors,#site.num_visitors, ) def all_sites(): sites = Site.select() for site in sites: operators = site.operators.count() visitors = site.visitors.count() yield site_str(site, operators, visitors) # Represents the state of the current chat. # # Attributes: # sites: A list of all sites attached to this chat instance. class JChat(object): def __init__(self): db.connect() self.sites = {} def print_all(self): for site in all_sites(): print site # Pre-processes a message. Saves it in the database to make it # queryable and to sort based on timestamp. def pre_process(self, message, text): message_id = message["id"] timestamp = message["timestamp"] try: db_message = Message.get( (Message.message_id == message_id) & (Message.last_updated == timestamp)) return except DoesNotExist: db_message = Message.create(message_id=message_id, last_updated=timestamp, content=text) db_message.save() # Processes a message. Depending on the type it either sends # the message to the site if the site is online or sends # an email otherwise. def process(self, event_message): message = json.loads(event_message.content) message_id = message["id"] timestamp = message["timestamp"] try: db_message = MessageCache.get(MessageCache.message_id == message_id) return except DoesNotExist: db_message = MessageCache.create(message_id=message_id, last_updated=timestamp) db_message.save() message_type = message["type"] if message_type == MSG_TYPE_SITE: self._process_status(message) elif message_type == MSG_TYPE_MESSAGE: self._process_message(message) else: raise ValueError("Message type '%s' is not valid." % (message_type,)) # Returns or creates a site. def _get_or_create_site(self, site_id): try: return Site.get(Site.site_id == site_id) except DoesNotExist: site = Site.create(site_id=site_id, messages=0, emails=0) return site # Sends a message to the site if the site is online or sends an email # to the site othersise. def _process_message(self, message): site = self._get_or_create_site(message["site_id"]) site.last_updated = message["timestamp"] if is_online(site): site.messages += 1 else: site.emails +=1 site.save() # Create visitor if not exists. visitor_id = message["from"] try: visitor = Visitor.get( (Visitor.visitor_id == visitor_id) & (Visitor.site == site.id) ) except DoesNotExist: visitor = Visitor.create(site=site.id, visitor_id=visitor_id) visitor.save() # Marks a site as online/offline based on the message data. def _process_status(self, message): timestamp = message["timestamp"] site = self._get_or_create_site(message["site_id"]) site.last_updated = timestamp site.save() # Create operator. operator_id = message["from"] status = message["data"]["status"] operator = None try: operator = Operator.get( (Operator.site == site.id) & (Operator.operator_id == operator_id) ) operator.status = status except DoesNotExist: operator = Operator.create(operator_id=operator_id, site=site.id, status=status) operator.last_updated = timestamp operator.save() def get_site(self, site_id): site = Site.get(Site.site_id == site_id) return site def total_sites(self): return Site.select().count() # Parses an input file containing a list of JSON files that # represent a message from either a site coming online or a client # sending a chat message to a site. # Method assumes input file has correct JSON on each line and throws # an exception if this condition is not met. # # Raises: # ValueError: If the input file has not correct JSON messages. def parse(filename): chat = JChat() with open(filename) as f: line_number = 0 for message in f: line_number += 1 json_message = None try: json_message = json.loads(message) except ValueError, e: raise ValueError("Error parsing file '%s' on line %s. Text '%s' is " " not valid JSON" % (filename, line_number, message), e) chat.pre_process(json_message, message) messages = Message.select().order_by(Message.last_updated) for message in messages: json_message = json.loads(message.content) chat.process(message) return chat ``` #### File: josercruz01/jchat/migrate_database.py ```python import jchat import os TABLES = [jchat.Site, jchat.Visitor, jchat.Operator, jchat.Message, jchat.MessageCache] def cleanup(): for table in TABLES: table.drop_table(fail_silently=True) def migrate(): jchat.db.connect() jchat.db.create_tables(TABLES) if __name__ == "__main__": cleanup() migrate() ```
{ "source": "joserebelo/youtube-dl-server", "score": 2 }
#### File: joserebelo/youtube-dl-server/youtube-dl-server.py ```python from __future__ import unicode_literals import json import os from collections import ChainMap from itertools import chain from operator import itemgetter from queue import Queue from bottle import route, run, Bottle, request, static_file, template from threading import Thread from pathlib import Path from ydl_server.logdb import JobsDB, Job, Actions, JobType from ydl_server import jobshandler, ydlhandler from ydl_server.config import app_defaults app = Bottle() @app.route(['/', '/index']) def front_index(): return template('./ydl_server/templates/index.html', ydl_version=ydlhandler.get_ydl_version()) @app.route('/logs') def front_logs(): return template('./ydl_server/templates/logs.html', ydl_version=ydlhandler.get_ydl_version()) @app.route('/finished') def front_finished(): return template('./ydl_server/templates/finished.html', ydl_version=ydlhandler.get_ydl_version()) @app.route('/api/finished') def api_list_finished(): root_dir = Path(app_vars['YDL_OUTPUT_TEMPLATE']).parent matches = root_dir.glob('*') files = [{'name': f1.name, 'modified': f1.stat().st_mtime * 1000, 'children': sorted([{ 'name': f2.name, 'modified': f2.stat().st_mtime * 1000 } for f2 in f1.iterdir() if not f2.name.startswith('.')] if f1.is_dir() else [], key=itemgetter('modified'), reverse=True) } for f1 in matches if not f1.name.startswith('.')] files = sorted(files, key=itemgetter('modified'), reverse=True) return { "success": True, "files": files } @app.route('/api/finished/:filename#.*#') def api_serve_finished_file(filename): root_dir = Path(app_vars['YDL_OUTPUT_TEMPLATE']).parent return static_file(filename, root=root_dir) @app.route('/static/:filename#.*#') def server_static(filename): return static_file(filename, root='./ydl_server/static') @app.route('/api/downloads/stats', method='GET') def api_queue_size(): db = JobsDB(readonly=True) jobs = db.get_all() return { "success": True, "stats": { "queue": ydlhandler.queue.qsize(), "pending": len([job for job in jobs if job['status'] == "Pending"]), "running": len([job for job in jobs if job['status'] == "Running"]), "completed": len([job for job in jobs if job['status'] == "Completed"]), "failed": len([job for job in jobs if job['status'] == "Failed"]) } } @app.route('/api/downloads', method='GET') def api_logs(): db = JobsDB(readonly=True) return json.dumps(db.get_all()) @app.route('/api/downloads', method='DELETE') def api_logs_purge(): jobshandler.put((Actions.PURGE_LOGS, None)) return {"success": True} @app.route('/api/downloads', method='POST') def api_queue_download(): url = request.forms.get("url") options = {'format': request.forms.get("format")} if not url: return {"success": False, "error": "'url' query parameter omitted"} job = Job(url, Job.PENDING, "", JobType.YDL_DOWNLOAD, request.forms.get("format"), url) jobshandler.put((Actions.INSERT, job)) print("Added url " + url + " to the download queue") return {"success": True, "url": url, "options": options} @app.route('/api/metadata', method='POST') def api_metadata_fetch(): url = request.forms.get("url") return ydlhandler.fetch_metadata(url) @app.route("/api/youtube-dl/update", method="GET") def ydl_update(): job = Job("Youtube-dl Update", Job.PENDING, "", JobType.YDL_UPDATE, None, None) jobshandler.put((Actions.INSERT, job)) return {"success": True} JobsDB.check_db_latest() JobsDB.init_db() ydlhandler.start() print("Started download thread") jobshandler.start(ydlhandler.queue) print("Started jobs manager thread") print("Updating youtube-dl to the newest version") job = Job("Youtube-dl Update", Job.PENDING, "", JobType.YDL_UPDATE, None, None) jobshandler.put((Actions.INSERT, job)) ydlhandler.resume_pending() app_vars = ChainMap(os.environ, app_defaults) app.run(host=app_vars['YDL_SERVER_HOST'], port=app_vars['YDL_SERVER_PORT'], debug=app_vars['YDL_DEBUG']) ydlhandler.finish() jobshandler.finish() ydlhandler.join() jobshandler.join() ```
{ "source": "jose/RepairThemAll", "score": 2 }
#### File: script/core/Benchmark.py ```python import json import subprocess class Benchmark(object): """Benchmark""" def __init__(self, name): self.name = name pass def _get_project_info(self, bug): try: return bug.maven_info except AttributeError: pass cmd = """cd %s; mvn com.github.tdurieux:project-config-maven-plugin:1.0-SNAPSHOT:info -q; """ % (bug.working_directory) info = json.loads(subprocess.check_output(cmd, shell=True)) bug.maven_info = info return info def checkout(self, bug, working_directory): pass def compile(self, bug, working_directory): pass def run_test(self, bug, working_directory): pass def classpath(self, bug): pass def compliance_level(self, bug): pass def source_folders(self, bug): pass def test_folders(self, bug): pass def __str__(self): return self.name ``` #### File: script/core/RepairTool.py ```python import os import json import time import random import shutil import datetime from config import WORKING_DIRECTORY, REPAIR_ROOT from config import DATA_PATH from config import REPAIR_TOOL_FOLDER LOCK_FILE = "LOCK_BUGS_INIT" def is_lock(): return os.path.exists(os.path.join(REPAIR_ROOT, LOCK_FILE)) def wait_lock(): while is_lock(): secs = random.randrange(2, 8) time.sleep(secs) def lock(): f = open(os.path.join(REPAIR_ROOT, LOCK_FILE), "w+") f.close() pass def unlock(): path = os.path.join(REPAIR_ROOT, LOCK_FILE) if os.path.exists(path): os.remove(path) class RepairTool(object): def __init__(self, name, config_name): self.data = None self.main = None self.jar = None self.name = name self.config_name = config_name self.repair_begin = None self.parseData() self.seed = 0 pass def parseData(self): path = os.path.join(DATA_PATH, 'repair_tools', self.config_name + '.json') if os.path.exists(path): with open(path) as data_file: self.data = json.load(data_file) self.main = self.data["main"] self.jar = os.path.join(REPAIR_TOOL_FOLDER, self.data["jar"]) def init_bug(self, bug, bug_path): if os.path.exists(bug_path): shutil.rmtree(bug_path) try: wait_lock() lock() bug.checkout(bug_path) finally: unlock() bug.compile() self.repair_begin = datetime.datetime.now().__str__() # bug.run_test() def get_info(self, bug, bug_path): pass def repair(self, bug): bug_path = os.path.join(WORKING_DIRECTORY, "%s_%s" % (bug.project, bug.bug_id)) self.init_bug(bug, bug_path) self.get_info(bug, bug_path) pass def __str__(self): return self.name ``` #### File: core/repair_tools/Nopol.py ```python import os import shutil import json import subprocess import datetime from config import JAVA8_HOME from config import JAVA_ARGS from config import OUTPUT_PATH from config import WORKING_DIRECTORY from config import Z3_PATH from core.RepairTool import RepairTool from core.runner.RepairTask import RepairTask from core.utils import add_repair_tool class Nopol(RepairTool): """Nopol""" def __init__(self, name="Nopol", mode="repair", oracle="angelic", statement_type="pre_then_cond", seed=7, synthesis="smt"): super(Nopol, self).__init__(name, "nopol") self.solver = self.data["solver"] self.synthesis = synthesis self.flocal = "gzoltar" self.mode = mode self.oracle = oracle self.statement_type = statement_type self.seed = seed def repair(self, repair_task): """" :type repair_task: RepairTask """ bug = repair_task.bug bug_path = os.path.join(WORKING_DIRECTORY, "%s_%s_%s_%s" % (self.name, bug.benchmark.name, bug.project, bug.bug_id)) repair_task.working_directory = bug_path self.init_bug(bug, bug_path) try: classpath = ":".join(bug.bin_folders() + bug.test_bin_folders()) if classpath != ":": classpath += ":" classpath += bug.classpath() classpath += ":" + self.jar cmd = """cd %s; export JAVA_TOOL_OPTIONS="-Dfile.encoding=UTF8 -Duser.language=en-US -Duser.country=US -Duser.language=en"; TZ="America/New_York"; export TZ; export PATH="%s:$PATH"; export JAVA_HOME="%s"; time java %s -cp %s:%s/../lib/tools.jar %s \\ --mode %s \\ --type %s \\ --oracle %s \\ --synthesis %s \\ --flocal %s \\ --json \\ --solver %s \\ --solver-path %s \\ --complianceLevel %s \\ --source %s \\ --classpath "%s"; echo "\\n\\nNode: `hostname`\\n"; echo "\\n\\nDate: `date`\\n"; """ % (bug_path, JAVA8_HOME, JAVA8_HOME, JAVA_ARGS, self.jar, JAVA8_HOME, self.main, self.mode, self.statement_type, self.oracle, self.synthesis, self.flocal, self.solver, os.path.join(Z3_PATH, "z3"), str(bug.compliance_level()), ":".join(bug.source_folders()), classpath) log_path = os.path.join(repair_task.log_dir(), "repair.log") if not os.path.exists(os.path.dirname(log_path)): os.makedirs(os.path.dirname(log_path)) log = file(log_path, 'w') log.write(cmd) log.flush() subprocess.call(cmd, shell=True, stdout=log, stderr=subprocess.STDOUT) with open(log_path) as data_file: return data_file.read() finally: path_results = os.path.join(bug_path, "output.json") if os.path.exists(path_results): repair_task.status = "FINISHED" shutil.copy(path_results, os.path.join(repair_task.log_dir(), "detailed-result.json")) with open(path_results) as fd: repair_task.results = json.load(fd) result = { "repair_begin": self.repair_begin, "repair_end": datetime.datetime.now().__str__(), 'patches': [] } if 'patch' in repair_task.results: result['patches'] = repair_task.results["patch"] with open(os.path.join(repair_task.log_dir(), "result.json"), "w") as fd2: json.dump(result, fd2, indent=2) if len(result['patches']) > 0: repair_task.status = "PATCHED" else: repair_task.status = "ERROR" cmd = "rm -rf %s;" % (bug_path) #subprocess.call(cmd, shell=True) pass def init(args): return Nopol(seed=args.seed, statement_type=args.statement_type) def init_dynamoth(args): return Nopol(name="DynaMoth", seed=args.seed, statement_type=args.statement_type, synthesis="dynamoth") def nopol_args(parser): parser.add_argument("--statement-type", "-t", help="The targeted statement", default="pre_then_cond", choices=("condition", "precondition", "pre_then_cond")) parser.add_argument('--version', action='version', version='Astor 7ba58a78d') parser.add_argument("--seed", "-s", help="The random seed", default=7, type=int) pass parser = add_repair_tool("Nopol", init, 'Repair the bug with Nopol') nopol_args(parser) parser = add_repair_tool("DynaMoth", init_dynamoth, 'Repair the bug with DynaMoth') nopol_args(parser) ``` #### File: script/core/Support.py ```python def getGridTime(timeout, overhead = 0.33): ''' computes the timeout of the grid based on the timeout (from the tool) received as parameter. Moreover it adds an overhead with is a percentage of the original timeout''' timetool = int(timeout) timetooloverhead = timetool + (timetool * overhead) hr_st = str(int(timetooloverhead // 60)) minutes = int(timetooloverhead % 60) mt_st = str(minutes) if minutes >=10 else ("0" + str(minutes)) timestring = hr_st + ":" + mt_st return timestring ``` #### File: RepairThemAll/script/RepairThemAll.py ```python import subprocess import argparse import sys import os from config import REPAIR_ROOT parser = argparse.ArgumentParser(prog="RepairThemAll", description='RepairThemAll interface') def run(): program = None if sys.argv[1] == "repair": program = "repair.py" elif sys.argv[1] == "info": program = "info.py" elif sys.argv[1] == "checkout": program = "checkout.py" subprocess.call("python %s %s" % (os.path.join(REPAIR_ROOT, "script", program), program), shell=True) if __name__ == "__main__": run() ```
{ "source": "josericardojr/BinG", "score": 3 }
#### File: BinG/Prolog/PrologConsult.py ```python from Prolog.PrologFactData import * from Prolog.PrologRuleData import * class PrologConsult: def __init__(self): self.fact_data = PrologFactData() self.rule_data = PrologRuleData() def set_fact(self, f, vertexs): for v in vertexs: if f.check_fact(vertexs[v]): self.fact_data.setup_fact(f.fact_name, vertexs[v].ID, f.get_value(vertexs[v])) def set_rule(self, r): self.rule_data.setup_rule(r) ``` #### File: BinG/Prolog/PrologFact.py ```python class PrologFact: def __init__(self, fact): self.fact = fact def get_fact(self): return self.fact ``` #### File: BinG/Schema/SchemaRule.py ```python from xml.etree import ElementTree from xml.etree import ElementTree class SchemaRule: def __init__(self, rules): self.rule_name = rules.attrib['name'] rule_inputs = rules.find('inputs') r = rules.find('return') self.return_var = r.attrib['name'] inputs = [] for inp in rule_inputs: for att in inp.attrib: inputs.append(inp.attrib[att]) self.inputs = inputs rule_facts = rules.find('facts') facts = {} for f in rule_facts: facts[f.attrib['name']] = [] for inp in f: facts[f.attrib['name']].append(inp.attrib['name']) find = False for f1 in facts: for f2 in facts[f1]: if self.return_var == f2: find = True if not find: SchemaRule.error_feedback(self.rule_name + ' do not have any fact\'s input named: ' + self.return_var) self.facts = facts def get_return_var(self): return self.return_var @staticmethod def error_feedback(s): print('<>' * 3) print('ERROR: ' + s) ``` #### File: BinG/XML_Data/Vertex.py ```python from xml.etree import ElementTree class Vertex: def __init__(self, me): self.me = me self.ID = me.find('ID').text ```
{ "source": "josericardojr/MorphWing", "score": 4 }
#### File: Python/Reader/Attributes.py ```python class Attributes: def __init__(self, name, value): self.vname = name self.vvalue = value def name(self): return self.vname def value(self): return self.vvalue def myprint(self): print('{0}: {1}'.format(self.name, self.value)) ```
{ "source": "JoseRivas1998/Minecraft-Pi-Games", "score": 3 }
#### File: JoseRivas1998/Minecraft-Pi-Games/findTheDiamond.py ```python from mcpi.minecraft import Minecraft from mcpi import block import math, random # Euclidean distance between points (x1, y1, z1) and (x2, y2, z2) def distance(x1, y1, z1, x2, y2, z2): dx = x2 - x1 dy = y2 - y1 dz = z2 - z1 return math.sqrt((dx ** 2) + (dy ** 2) + (dz ** 2)) # Returns a random x, y, z point beteen (x0, y0, z0) and (x1, y1, z1) inclusive def getRandPoint(x0, y0, z0, x1, y1, z1): x = random.randint(x0, x1) y = random.randint(y0, y1) z = random.randint(z0, z1) return x, y, z # Finds x, y, z location of a non air block within a range def getNonAir(mc, x0, y0, z0, x1, y1, z1): x, y, z = 0, 0, 0 isAir = True while(isAir): x, y, z = getRandPoint(x0, y0, z0, x1, y1, z1) blkid = mc.getBlockWithData(x, y, z).id isAir = blkid == block.AIR.id return x, y, z # Creates diamond block at random location, returns the coordiantes of the block def createDiamond(mc, ppos): playerHeight = mc.getHeight(ppos.x, ppos.z) ymin = playerHeight - 5 ymax = playerHeight + 5 xmin = -124 xmax = 124 zmin = -124 zmax = 124 x, y, z = getNonAir(mc, xmin, ymin, zmin, xmax, ymax, zmax) mc.setBlock(x, y, z, block.DIAMOND_BLOCK.id) return x, y, z # Main game function def playGame(mc): mc.postToChat("Right click on blocks to find the diamond block!") mc.postToChat("Placing diamond block...") ppos = mc.player.getTilePos() dx, dy, dz = createDiamond(mc, ppos) print(dx, dy, dz) found = False prevDist = -1 mc.postToChat("Go!") while(not found): for hit in mc.events.pollBlockHits(): # Get hit position hx, hy, hz = hit.pos.x, hit.pos.y, hit.pos.z if(hx == dx and hy == dy and hz == dz): mc.postToChat("You found it!") found = True else: # Get the distance between the block hit and the diamond dist = distance(dx, dy, dz, hx, hy, hz) if(prevDist == -1): # If no distance has been calculated mc.postToChat("Keep looking and you find the block") else: if(dist > prevDist): mc.postToChat("Getting colder!") else: mc.postToChat("Getting warmer!") # copy distance to previous distance prevDist = dist mc = Minecraft.create() playGame(mc) ```
{ "source": "JoseRoberts87/project-deap", "score": 2 }
#### File: project-deap/test/test_file_handler.py ```python import pandas as pd from deap import file_reader as fr def test_get_extension(): result = fr.get_extension('some.csv') assert result == 'csv' def test_get_extension_fail(): result = fr.get_extension('some') assert result == None def test_file_extensions_blob(): result = fr.file_extentions() assert result.get('blob') def test_file_extensions_matrix(): result = fr.file_extentions() assert result.get('matrix') def test_file_extensions_fail(): result = fr.file_extentions() assert result.get('some') == None def test_ext_handler(): result = fr.ext_handler('json') assert result == pd.read_json ```
{ "source": "joseroma/bulo-blocker", "score": 3 }
#### File: joseroma/bulo-blocker/telegram-bot.py ```python from __future__ import print_function import traceback import telebot import time import pprint as pp import gspread from oauth2client.service_account import ServiceAccountCredentials import pandas as pd from telebot import types import ast import time import telebot bot_token = '<PASSWORD>' bot = telebot.TeleBot(token=bot_token) scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] opciones = {"/bulo": "Enviar Bulo", "/info": "Información", "/ayuda": "Ayuda!", "/fastbulo": "¿Mas rápido...?"} fuentes = {"/1": "WhatsApp familiar", "/2": "Lista de difusion", "/3": "Telegram", "/4": "Otras redes sociales"} crossIcon = u"\u274C" print("Servidor iniciado!") def makeKeyboard(stringList): markup = types.InlineKeyboardMarkup() for key, value in stringList.items(): markup.add(types.InlineKeyboardButton(text=value, callback_data="['value', '" + value + "', '" + key + "']")) return markup @bot.message_handler(commands=['hola', 'start']) def send_welcome(message): bot.reply_to(message, '¡Hola! \nTe damos la bienvenida al Buloblocker de Greenpeace España. Utilizando este bot, ya estás luchando contra la desinformación. \n¡Felicidades! ') bot.send_message(chat_id=message.chat.id, text="....", reply_markup=makeKeyboard(opciones), parse_mode='HTML') @bot.message_handler(commands=['info']) def send_info(message): bot.reply_to(message, "La desinformación, es decir, la información falsa se expande, de manera intencionada, por nuestros móviles, redes sociales o conversaciones. Estos mensajes 'hackean' nuestros cerebros y nuestras democracias, porque generan premisas falsas, contaminan el debate y polarizan nuestra sociedad. El histórico negacionismo sobre el cambio climático, la acusación de intereses ocultos en los grupos ecologistas y otras tantas historias más forman parte de esta estrategia de desinformación que pretende mentir sobre el impacto del actual modelo económico sobre el planeta. " "\nQueremos parar esa 'desinformación verde'. Desde Greenpeace os pedimos que nos ayudéis a buscar los bulos que circulan y que compartáis los desmentidos. \nMás información: https://es.greenpeace.org/es/noticias/buloblocker/") @bot.message_handler(commands=['ayuda']) def send_help(message): bot.reply_to(message, "" "Por si estas un poco perdido, te recordamos como hablar a BuloBlocker!\n" "Saluda con un /hola \n" "En caso de querer recordar los comandos vuelve a usar /ayuda \n" "Infórmate sobre esta iniciativa con /info\n" "Mandanos un Bulo siguiendo los pasos de /bulo\n" "Echale un ojo a la guía sobre como enviar bulos de forma rápida /fastbulo ") @bot.message_handler(commands=['fastbulo']) def send_fast_bulo(message): bot.reply_to(message, "Si tienes pensado hablarme a menudo, esto te interesa:\n" "Puedes saltarte muchos pasos a la hora de enviar un enlac, y que me puedas mandar contenido dudoso mucho mas rápido. \n" "De hecho, puedes saltarte el saludo (/hola), incluso decirme que vas a mandar un enlace (/bulo) y simplemente mandármela. " "Adelante, manda el enlace, ¡ya verás que rápido! \n") @bot.message_handler(commands=['bulo']) def start_bulo(message): bot.reply_to(message, "Adelante!, envía por el chat el enlace" ) @bot.message_handler(commands=['test']) def handle_command_adminwindow(message): bot.send_message(chat_id=message.chat.id, text="Here are the values of stringList", reply_markup=makeKeyboard(opciones), parse_mode='HTML') @bot.callback_query_handler(func=lambda call: True) def handle_query(call): opciones = { "/bulo": "Enviar Bulo", "/info": "Información", "/ayuda": "Ayuda!", "/fastbulo": "¿Mas rápido...?"} if call.data.startswith("['value'"): valueFromCallBack = ast.literal_eval(call.data)[1] keyFromCallBack = ast.literal_eval(call.data)[2] #bot.answer_callback_query(callback_query_id=call.id, show_alert=True, text="You Clicked " + valueFromCallBack + " and key is " + keyFromCallBack) if keyFromCallBack.startswith("/bulo"): start_bulo(call.message) if keyFromCallBack.startswith("/info"): send_info(call.message) if keyFromCallBack.startswith("/ayuda"): send_help(call.message) if keyFromCallBack.startswith("/fastbulo"): send_fast_bulo(call.message) if call.data.startswith("['value'") and ast.literal_eval(call.data)[1] in ["WhatsApp familiar", "Lista de difusion", "Telegram", "Otras redes sociales"]: valueFromCallBack = ast.literal_eval(call.data)[1] credentials = ServiceAccountCredentials.from_json_keyfile_name('BuloBlocker-451d2c1b42d2.json', scope) gc = gspread.authorize(credentials) wks = gc.open('Respuestas Formulario Muckrakers').worksheet("bulos recibidos del bot") df = pd.DataFrame(wks.get_all_records()) print(df) try: lista_var_temp = [call.message.chat.first_name +" "+ call.message.chat.last_name, call.message.chat.id, call.message.text, "Sin especificar", "Sin especificar", valueFromCallBack, "Sin especificar", "Sin especificar", time.strftime("%d/%m/%y") + " " + time.strftime("%H:%M:%S")] except: try: lista_var_temp = [call.message.chat.first_name , call.message.chat.id, call.message.text, "Sin especificar", "Sin especificar", valueFromCallBack, "Sin especificar", "Sin especificar", time.strftime("%d/%m/%y") + " " + time.strftime("%H:%M:%S")] except: lista_var_temp = ["Sin especificar" + " " + "Sin especificar", call.message.chat.id, call.message.text, "Sin especificar", "Sin especificar", valueFromCallBack, "Sin especificar", "Sin especificar", time.strftime("%d/%m/%y") + " " + time.strftime("%H:%M:%S")] wks.append_row(lista_var_temp) print(call.message) bot.send_message(call.message.chat.id, "Gracias por enviarnos esta desinformación o contenido dudoso. \n" "Nuestro personal de campañas, lo estudiará para realizar la verificación. " "Puedes consultar nuestra biblioteca de desmentidos o Greenchecking. http://greenpeace.es/biblioteca-desmentidos " "\n\nDifúndela y ayúdanos a parar la desinformación") @bot.message_handler(func=lambda msg: msg.text is not None and '://' in msg.text) def send_bulo(message): """ # PRIMERO VAMOS A REVISAR credentials = ServiceAccountCredentials.from_json_keyfile_name('BuloBlocker-451d2c1b42d2.json', scope) gc = gspread.authorize(credentials) wks = gc.open('Respuestas Formulario Muckrakers').worksheet("bulos desmentidos") df = pd.DataFrame(wks.get_all_records()) if any(df['enlace del contenido'].isin([message.text])): desmentido_rows = df[df['enlace del contenido'].isin([message.text])] desmentido = list(desmentido_rows["enlace del desmentido"])[0] #Comentar que este enlace ya lo recibimos y que nos diga como lo ha recibido bot.send_message(message.chat.id, "En enlace proporcionado contiene desinformación que ya ha sido desmentida en nuestro Greenchecking\n" "Revisa nuestro desmentido en: \n"+ desmentido + "\n\nNo te olvides de indicarnos cómo recibiste el enlace\n") bot.send_message(chat_id=message.chat.id, text= message.text, reply_markup=makeKeyboard(fuentes), parse_mode='HTML') else: """ bot.send_message(message.chat.id, "¿Quieres ayudarnos?\n\n¿Cómo recibiste el enlace?\n") bot.send_message(chat_id=message.chat.id, text=message.text, reply_markup=makeKeyboard(fuentes), parse_mode='HTML') # Comprobamos si hemos el fact check de esta noticia #if any(message.text in string for string in df['ENLACE A LA PLATAFORMA DONDE ESTÁ PUBLICADA LA NOTICIA']): # bot.reply_to(message, "Gracias por tu colaboración este ya lo tenemos") # print("Gracias por tu colaboración este ya lo tenemos") def telegram_polling(): try: bot.polling()#none_stop=True, timeout=60) except: traceback_error_string=traceback.format_exc() with open("Error.Log", "a") as myfile: myfile.write("\r\n\r\n" + time.strftime("%c")+"\r\n<<ERROR polling>>\r\n" + traceback_error_string + "\r\n<<ERROR polling>>") bot.stop_polling() #time.sleep(10) telegram_polling() telegram_polling() ```
{ "source": "JoseRoman/IndicoIo-python", "score": 3 }
#### File: indicoio/images/features.py ```python import json import requests import numpy as np from indicoio import JSON_HEADERS base_url = lambda c: "http://api.indico.io/%s" % c def facial_features(face): data_dict = json.dumps({"face": face}) response = requests.post(base_url("facialfeatures"), data=data_dict, headers=JSON_HEADERS) response_dict = json.loads(response.content) return response_dict['response'] ``` #### File: indicoio/images/fer.py ```python import json import requests import numpy as np from indicoio import JSON_HEADERS base_url = "http://api.indico.io/fer" def fer(face): data_dict = json.dumps({"face": face}) response = requests.post(base_url, data=data_dict, headers=JSON_HEADERS) return json.loads(response.content) ``` #### File: indicoio/utils/__init__.py ```python import inspect import numpy as np class TypeCheck(object): """ Decorator that performs a typecheck on the input to a function """ def __init__(self, accepted_structures, arg_name): """ When initialized, include list of accepted datatypes and the arg_name to enforce the check on. Can totally be daisy-chained. """ self.accepted_structures = accepted_structures self.is_accepted = lambda x: type(x) in accepted_structures self.arg_name = arg_name def __call__(self, fn): def check_args(*args, **kwargs): arg_dict = dict(zip(inspect.getargspec(fn).args, args)) full_args = dict(arg_dict.items() + kwargs.items()) if not self.is_accepted(full_args[self.arg_name]): raise DataStructureException( fn, full_args[self.arg_name], self.accepted_structures ) return fn(*args, **kwargs) return check_args class DataStructureException(Exception): """ If a non-accepted datastructure is passed, throws an exception """ def __init__(self, callback, passed_structure, accepted_structures): self.callback = callback.__name__ self.structure = str(type(passed_structure)) self.accepted = [str(structure) for structure in accepted_structures] def __str__(self): return """ function %s does not accept %s, accepted types are: %s """ % (self.callback, self.structure, str(self.accepted)) @TypeCheck((list, dict, np.ndarray), 'array') def normalize(array, distribution=1, norm_range=(0, 1), **kwargs): """ First arg is an array, whether that's in the form of a numpy array, a list, or a dictionary that contains the data in its values. Second arg is the desired distribution which would be applied before normalization. Supports linear, exponential, logarithmic and raising to whatever power specified (in which case you just put a number) Third arg is the range across which you want the data normalized """ # Handling dictionary array input # Note: lists and numpy arrays behave the same in this program dict_array = isinstance(array, dict) if dict_array: keys = array.keys() array = np.array(array.values()).astype('float') else: # Decorator errors if this isn't a list or a numpy array array = np.array(array).astype('float') # Handling various distributions if type(distribution) in [float, int]: array = np.power(array, distribution) else: array = getattr(np, distribution)(array, **kwargs) # Prep for normalization x_max, x_min = (np.max(array), np.min(array)) def norm(element,x_min,x_max): base_span = (element - x_min)*(norm_range[-1] - norm_range[0]) return norm_range[0] + base_span / (x_max - x_min) norm_array = np.vectorize(norm)(array, x_min, x_max) if dict_array: return dict(zip(keys, norm_array)) return norm_array ``` #### File: IndicoIo-python/tests/test_run.py ```python import unittest import numpy as np from indicoio import political, sentiment, fer, facial_features, language class FullAPIRun(unittest.TestCase): def test_political(self): political_set = set(['Libertarian', 'Liberal', 'Conservative', 'Green']) test_string = "Guns don't kill people, people kill people." response = political(test_string) self.assertTrue(isinstance(response, dict)) self.assertEqual(political_set, set(response.keys())) def test_posneg(self): posneg_set = set(['Sentiment']) test_string = "Worst song ever." response = sentiment(test_string) self.assertTrue(isinstance(response, dict)) self.assertEqual(posneg_set, set(response.keys())) def test_good_fer(self): fer_set = set(['Angry', 'Sad', 'Neutral', 'Surprise', 'Fear', 'Happy']) test_face = np.linspace(0,50,48*48).reshape(48,48).tolist() response = fer(test_face) self.assertTrue(isinstance(response, dict)) self.assertEqual(fer_set, set(response.keys())) def test_bad_fer(self): fer_set = set(['Angry', 'Sad', 'Neutral', 'Surprise', 'Fear', 'Happy']) test_face = np.linspace(0,50,56*56).reshape(56,56).tolist() response = fer(test_face) self.assertTrue(isinstance(response, dict)) self.assertEqual(fer_set, set(response.keys())) def test_good_facial_features(self): test_face = np.linspace(0,50,48*48).reshape(48,48).tolist() response = facial_features(test_face) self.assertTrue(isinstance(response, list)) self.assertEqual(len(response), 48) def test_language(self): language_set = set([ 'English', 'Spanish', 'Tagalog', 'Esperanto', 'French', 'Chinese', 'French', 'Bulgarian', 'Latin', 'Slovak', 'Hebrew', 'Russian', 'German', 'Japanese', 'Korean', 'Portuguese', 'Italian', 'Polish', 'Turkish', 'Dutch', 'Arabic', 'Persian (Farsi)', 'Czech', 'Swedish', 'Indonesian', 'Vietnamese', 'Romanian', 'Greek', 'Danish', 'Hungarian', 'Thai', 'Finnish', 'Norwegian', 'Lithuanian' ]) language_dict = language('clearly an english sentence') self.assertEqual(language_set, set(language_dict.keys())) if __name__ == "__main__": unittest.main() ```
{ "source": "joseroma/python-api-rest", "score": 3 }
#### File: joseroma/python-api-rest/app.py ```python from flask import Flask, jsonify, abort, request, make_response import mysql.connector app = Flask(__name__) # Queries query = ("SELECT * FROM ACTOR;") query1 = ("SELECT p.oid_pelicula, p.titulo,p.fecha_lanzamiento,p.genero, a.oid_ACTOR, a.nombre, a.apellido FROM ACTOR a, PELICULA_has_ACTOR m, PELICULA p WHERE p.oid_pelicula = m.PELICULA_oid_pelicula AND a.oid_ACTOR = m.ACTOR_oid_ACTOR;") query2 = ("SELECT * FROM DIRECTOR;") query3 = ("SELECT p.oid_pelicula, p.titulo,p.fecha_lanzamiento,p.genero, a.oid_director, a.name FROM DIRECTOR a, PELICULA_has_DIRECTOR m, PELICULA p WHERE p.oid_pelicula = m.PELICULA_oid_pelicula AND a.oid_director = m.DIRECTOR_oid_director;") query4 = ("SELECT * FROM PELICULA;") # Conections cnx = mysql.connector.connect(user='root', password='password',host='127.0.0.1',database='filmAffinity3') cnx1 = mysql.connector.connect(user='root', password='password',host='127.0.0.1', database='filmAffinity3') cnx2 = mysql.connector.connect(user='root', password='password',host='127.0.0.1', database='filmAffinity3') cnx3 = mysql.connector.connect(user='root', password='password',host='127.0.0.1', database='filmAffinity3') cnx4 = mysql.connector.connect(user='root', password='password',host='127.0.0.1', database='filmAffinity3') # Get list from connection cursor = cnx.cursor() cursor.execute(query) cursor1 = cnx1.cursor() cursor1.execute(query1) cursor2 = cnx2.cursor() cursor2.execute(query2) cursor3 = cnx3.cursor() cursor3.execute(query3) cursor4 = cnx4.cursor() cursor4.execute(query4) actors = [] actors_pelicula = [] directors = [] directors_movies = [] movies_ = [] movies_directors = [] for res in cursor: actors.append({ "id":res[0], "name":res[1], "lastname":res[2], "birth_date":res[3] }) for res in cursor1: actors_pelicula.append({ "id_film": res[0], "title_film": res[1], "date_film": res[2], "genre_film": res[3], "id_actor": res[4], "name_actor": res[5], "lastname_actor": res[6] }) for res in cursor2: directors.append({ "id": res[0], "name": res[1] }) for res in cursor3: directors_movies.append({ "id_film": res[0], "title_film": res[1], "date_film": res[2], "genre_film": res[3], "id_director": res[4], "name_director": res[5] }) for res in cursor4: movies_.append({ "id": res[0], "title": res[1], "year": res[3], "genre": res[4] }) #Close cursors and connections cursor.close() cnx.close() cursor1.close() cnx1.close() cursor2.close() cnx2.close() cursor3.close() cnx3.close() cursor4.close() cnx4.close() @app.route('/') def hello_world(): return 'Welcome to the REST-API !' ############## #GET METHODS ############## #----------- # ACTORS #----------- @app.route('/api/actors', methods=['GET']) def get_actors(): name = request.args.get('name') if name: actor = [actor for actor in actors if actor['name'] == name] return jsonify({"Actors": actor}) else: return jsonify({"Actors": actors}) @app.route('/api/actors/<int:id>', methods=['GET']) def get_actors_(id): actor = [actor for actor in actors if actor['id'] == id] return jsonify({"Actor": actor[0]}) @app.route('/api/actors/<int:id>/movies', methods=['GET']) def get_actors_movies(id): pel= [pel for pel in actors_pelicula if pel['id_actor'] == id] return jsonify({"MoviesOfActor": pel}) @app.route('/api/actors/<int:id>/movies/<int:id2>', methods=['GET']) def get_actors_movies_specific(id,id2): pel = [pel for pel in actors_pelicula if pel['id_film'] == id2] if pel: pelo = [pelo for pelo in pel if pelo['id_actor'] == id] if pelo: res = jsonify({"MoviesOfActor": pelo}) else: res = jsonify({"Ese actor no ha participado en esa pelicula": pel}) else: res = jsonify({"Esa pelicula no existe": pel}) return res #----------- # DIRECTORS #----------- @app.route('/api/directors', methods=['GET']) def get_directors(): name =request.args.get('name') #http://localhost:5000/api/directors?name=Poland if name: director = [director for director in directors if director['name'] == name] return jsonify({"Directors": director}) #http://localhost:5000/api/directors else: return jsonify({"Directors": directors}) @app.route('/api/directors/<int:id>', methods=['GET']) def get_directors_id(id): director = [director for director in directors if director['id'] == id] return jsonify({"Director": director}) @app.route('/api/directors/<int:id>/movies', methods=['GET']) def get_director_movies(id): dir = [dir for dir in directors_movies if dir['id_director'] == id] return jsonify({"MoviesOfActor": dir}) @app.route('/api/directors/<int:id>/movies/<int:id2>', methods=['GET']) def get_directors_movies_specific(id, id2): dir = [dir for dir in directors_movies if dir['id_film'] == id2] if dir: diro = [diro for diro in dir if diro['id_director'] == id] if diro: res = jsonify({"MoviesOfActor": diro}) else: res = jsonify({"Ese director no ha participado en esa pelicula": dir}) else: res = jsonify({"Esa pelicula no existe": dir}) return res #----------- # MOVIES #----------- @app.route('/api/movies', methods=['GET']) def get_movies(): title =request.args.get('title') genre = request.args.get('genre') year = request.args.get('year') #http://localhost:5000/api/wizards?house=Gryffindor if genre: mov = [mov for mov in movies_ if mov['genre'] == genre] return jsonify({"Movies": mov}) elif(title): mov = [mov for mov in movies_ if mov['title'] == title] return jsonify({"Movies": mov}) elif(year): mov = [mov for mov in movies_ if mov['year'] == year] return jsonify({"Movies": mov}) elif(genre and title and year): mov = [mov for mov in movies_ if mov['genre'] == genre and mov['year'] == year and mov['title'] == title ] return jsonify({"Movies": mov}) #http://localhost:5000/api/wizards else: return jsonify({"Movies": movies_}) @app.route('/api/movies/<int:id>', methods=['GET']) def get_movies_id(id): mov = [mov for mov in movies_ if mov['id'] == id] return jsonify({"Director": mov}) @app.route('/api/movies/<int:id>/director', methods=['GET']) def get_director_of_movies(id): dir = [dir for dir in directors_movies if dir['id_film'] == id] return jsonify({"MoviesOfActor": dir}) @app.route('/api/movies/<int:id>/actors', methods=['GET']) def get_actors_of_movies(id): act = [act for act in actors_pelicula if act['id_film'] == id] return jsonify({"MoviesOfActor": act}) @app.route('/api/movies/<int:id>/actors/<int:id2>', methods=['GET']) def get_actors__of_movies_specific(id, id2): act = [act for act in actors_pelicula if act['id_actor'] == id2] if act: act_val = [act_val for act_val in act if act_val['id_film'] == id] if act_val: res = jsonify({"MoviesOfActor": act_val}) else: res = jsonify({"Ese actor no ha participado en ninguna de estas pelis": act}) else: res = jsonify({"Ese actor no existe": "prueba otro mejor"}) return res ############## #POST METHODS ############## @app.route('/api/actors', methods=['POST']) def create_actor(): if not request.json or not 'name' in request.json: abort(400) actor = { 'id': request.json['id'], 'name': request.json['name'], 'lastname': request.json['lastname'] } actors.append(actor) return jsonify({'actor': actors}) @app.route('/api/movies', methods=['POST']) def create_movie(): if not request.json or not 'title' in request.json or not 'genre' in request.json or not 'year' in request.json: abort(400) movie = { 'id': request.json['id'], 'title': request.json['title'], 'year': request.json['year'], 'genre': request.json['genre'] } movies_.append(movie) return jsonify({'actor': movies_}) @app.route('/api/directors', methods=['POST']) def create_director(): if not request.json or not 'name' in request.json: abort(400) director = { 'id': request.json['id'], 'name': request.json['name'] } directors.append(director) return jsonify({'directors': directors}) ###################### #PUT METHODS (UPDATE) ###################### @app.route('/api/actors/<int:id>', methods=['PUT']) def update_actor(id): act = [act for act in actors if act['id'] == id] if len(act) == 0: abort(404) actors[0]['name'] = request.json.get('name', act[0]['name']) actors[0]['lastname'] = request.json.get('lastname', act[0]['lastname']) return jsonify({'Actor': actors[0]}) @app.route('/api/directors/<int:id>', methods=['PUT']) def update_director(id): act = [act for act in directors if act['id'] == id] if len(act) == 0: abort(404) directors[0]['name'] = request.json.get('name', act[0]['name']) return jsonify({'Director modified ': directors[0]}) @app.route('/api/movies/<int:id>', methods=['PUT']) def update_movie(id): act = [act for act in movies_ if act['id'] == id] if len(act) == 0: abort(404) movies_[0]['title'] = request.json.get('title', act[0]['title']) movies_[0]['year'] = request.json.get('year', act[0]['year']) movies_[0]['genre'] = request.json.get('genre', act[0]['genre']) return jsonify({'Movie modified ': movies_[0]}) ################# #DELETE METHODS ################# @app.route('/api/actors/<int:id>', methods=['DELETE']) def delete_actor(id): actor = [actor for actor in actors if actor['id'] == id] if len(actor) == 0: abort(404) actors.remove(actor[0]) return jsonify({'deleted': True}) @app.route('/api/directors/<int:id>', methods=['DELETE']) def delete_actor(id): director = [director for director in directors if director['id'] == id] if len(director) == 0: abort(404) directors.remove(director[0]) return jsonify({'deleted': True}) @app.route('/api/movies/<int:id>', methods=['DELETE']) def delete_actor(id): movie = [movie for movie in movies_ if movie['id'] == id] if len(movie) == 0: abort(404) movies_.remove(movie[0]) return jsonify({'deleted': True}) @app.errorhandler(404) def not_found(error): return make_response(jsonify({'error': 'Not found'}), 404) if __name__ == '__main__': app.run() #localhost:5000 ```
{ "source": "joseronierison/github_integration", "score": 2 }
#### File: github_integration/github_integration/celery.py ```python from __future__ import absolute_import import logging import os from django.apps import apps from celery import Celery from github_integration import utils from github_integration.models import Commit, Repository from users.models import User logger = logging.getLogger(__name__) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "github_integration.settings.local") app = Celery('github_integration_tasks') app.config_from_object('django.conf:settings', namespace='CELERY') app.autodiscover_tasks(lambda: [n.name for n in apps.get_app_configs()]) @app.task def setup_repo(user_id, repo_name, repo_full_name): logger.info("[repo:%s,user_id:%d] Setting up repo.", repo_name, user_id) user = User.objects.get(id=user_id) repo = utils.github_client(user).get_user().get_repo(repo_name) commits = repo.get_commits().reversed return [save_commit.apply([repo_full_name, utils.build_commit_body(commit)]) for commit in commits] @app.task def save_commit(repo_full_name, commit): logger.info("[repo_full_name:%s,commit_sha:%s] Adding new commit.", repo_full_name, commit['sha']) repository = Repository.objects.get(full_name=repo_full_name) return Commit.objects.create( repository=repository, sha=commit['sha'], message=commit['message'], author=commit['author'], url=commit['url'], ) ``` #### File: github_integration/github_integration/utils.py ```python from github import Github def github_client(user): github = user.social_auth.get(provider='github') token = github.extra_data['access_token'] return Github(token) def build_commit_body(commit): return { 'sha': commit.sha, 'message': commit.commit.message, 'author': commit.author.name, 'url': commit.html_url, } def build_repo_body(repo): return { 'name': repo.name, 'description': repo.description, 'full_name': repo.full_name, 'url': repo.html_url, 'created_at': repo.created_at, } ```
{ "source": "JoserraLP/SpotifyDownloader", "score": 3 }
#### File: SpotifyDownloader/music_playlist_manager/user.py ```python from spotipy.oauth2 import SpotifyClientCredentials from spotipy.client import Spotify from music_playlist_manager.secrets import SPOTIPY_CLIENT_SECRET, SPOTIPY_CLIENT_ID from music_playlist_manager.constants import DEFAULT_USERNAME, YOUTUBE_PLAYLISTS from pytube import Playlist class SpotifyUser: """ Spotify user class """ def __init__(self, username: str = DEFAULT_USERNAME): """ SpotifyUser initializer. Connect to Spotify API. :param username: Spotify username. Default to 'joserralp' :type username: str """ # Store username self._username = username # Auth with Spotipy auth_manager = SpotifyClientCredentials(client_id=SPOTIPY_CLIENT_ID, client_secret=SPOTIPY_CLIENT_SECRET) # Create Spotify instance self._sp = Spotify(auth_manager=auth_manager) def get_current_playlists(self): """ Get playlists from the current Spotify user. :return: list with playlist info """ # Initialize playlists list playlists = list() # Retrieve user playlists user_playlists = self._sp.user_playlists(self._username) # Iterate over the playlists for user_playlist in user_playlists['items']: playlist_tracks = [] # Get playlist tracks tracks_info = self._sp.playlist(user_playlist['id'], fields=('tracks',))['tracks'] # Iterate over the tracks in order to store its artists, name, release date and duration for _, item in enumerate(tracks_info['items']): # Get current track track = item['track'] # Append data playlist_tracks.append({ 'artists': [artist['name'] for artist in track['artists']], 'name': track['name'], 'release_date': track['album']['release_date'], 'duration': track['duration_ms'] / 1000 }) # Store the playlist info such as the name, url and its tracks playlists.append({ 'url': user_playlist['external_urls']['spotify'], 'name': user_playlist['name'], 'tracks': playlist_tracks }) return playlists class YoutubeUser: """ Youtube user class """ def __init__(self): """ YoutubeUser initializer. Retrieve the playlists """ self._playlists = list() def get_current_playlist(self): """ Get playlists from the current Youtube user. :return: list with playlist info """ youtube_playlists = YOUTUBE_PLAYLISTS for name, url in youtube_playlists.items(): playlist = Playlist(url) playlist_tracks = list() for track in playlist.videos: artists, track_name = track.title.split('-', 1) playlist_tracks.append({ 'artists': artists, 'name': track_name }) self._playlists.append({ 'url': url, 'name': name, 'tracks': playlist_tracks, 'playlist': playlist }) return self._playlists ```
{ "source": "JoseRubin09/EscapemetProyect", "score": 3 }
#### File: JoseRubin09/EscapemetProyect/api.py ```python import requests import time import datetime from frases import gg, gratz def api_call(): url = "https://api-escapamet.vercel.app/" response = requests.request("GET", url) return response.json() def try_again(): continuar = 1 while continuar == 1: opcion = input('Deseas volver a intentarlo. Escribe (si) o (no):\n>>').lower() while not ("".join(opcion.split(" "))).isalpha(): opcion = input("Ingreso invalido, ingrese si o no: \n>>").lower() if opcion == 'si': return 1 elif opcion == 'no': return 0 else: print('Ingrese una opcion valida') continuar = 1 def to_be_continue(): time.sleep(3) def buen_continue(): sigue_partida = input(''' Para continuar la partida: presione (C) >> ''').lower() while sigue_partida != 'c': sigue_partida = input(''' Coloque la letra (C):>> ''').lower() if sigue_partida == 'c': pass def primer_discurso(new_game): show_time = new_game.mostrar_tiempo() primera_narra = (f''' Hoy 5 de marzo de 2021, la Universidad sigue en cuarentena(esto no es novedad), lo que sí es novedad es que se robaron un Disco Duro de la Universidad del cuarto de redes que tiene toda la información de SAP de estudiantes, pagos y asignaturas. Necesitamos que nos ayudes a recuperar el disco, para eso tienes: {show_time} minutos antes de que el servidor se caiga y no se pueda hacer más nada.''') print(primera_narra) def segundo_discurso(new_game): show_avatar = new_game.mostrar_avatar() segunda_narra = (f''' Bienvenido {show_avatar}, gracias por tu disposición a ayudarnos a resolver este inconveniente, te encuentras actualmente ubicado en la biblioteca, revisa el menú de opciones para ver qué acciones puedes realizar. Recuerda que el tiempo corre más rápido que un trimestre en este reto.''') print(segunda_narra) def end_game(new_game): show_avatar = new_game.mostrar_avatar() show_time = new_game.mostrar_tiempo() ultima_narra = (f''' ¡Felicidades! Has logrado evitar una catástrofe en la Unimet, entonces lograste todos los objetivos {show_avatar} tenias {show_time} minutos y lo lograste en tal tiempo increible tu record quedara para la historia vuelve a jugar en otra dificultad para mejorarlo!''') print(ultima_narra) def se_acabo(new_game, instanteInicial): print(gg) instanteFinal = datetime.datetime.now().minute tiempo = instanteFinal - instanteInicial # Devuelve un objeto timedelta # segundos = tiempo.seconds minutos = tiempo # print(tiempo) # print(segundos) # print(minutos) new_game.agrego_tiempo(minutos) add = (new_game.guardar_record()+"\n") with open("Database.txt","a+") as db: datos = db.write(add) print("Estos son tus records en minutos: ") end_game(new_game) print(new_game.mostrar_terminado()) time.sleep(3) def ganador(new_game, instanteInicial): instanteFinal = datetime.datetime.now().minute tiempo = instanteFinal - instanteInicial # Devuelve un objeto timedelta # segundos = tiempo.seconds minutos = tiempo # print(tiempo) # print(segundos) # print(minutos) new_game.agrego_tiempo(str(minutos)) print(gratz) print(f"Lo lograste en {tiempo} minutos felicidades!") add = (new_game.guardar_record()+"\n") with open("Database.txt","a+") as db: datos = db.write(add) print("Estos son tus records en minutos: ") print(new_game.mostrar_terminado()) time.sleep(10) ``` #### File: JoseRubin09/EscapemetProyect/main.py ```python from api import * from closeup_dibujos import * from cuartos import Cuartos import datetime from dibujos_cuartos import * from frases import * from instrucciones import * from jugador import Jugador from objetos import Objetos from partida import Partida from games_all import * import time def records(): print(record) print('Elige una de estas opciones') opciones = input(''' 1. Top 5 ''') if opciones == '1': print('Top 5: ') with open("Database.txt") as db: datos = db.readlines() # print(datos) cantidad = 0 for i,x in enumerate(datos): leaderboard = x[:-1].split(',') datos[i] = leaderboard for j in leaderboard[5:]: cantidad = cantidad + 1 # print(cantidad) # print(datos) y = 0 while y < cantidad: # print(scores) for i,usuario in enumerate(datos): scores = usuario[5:] if i == 0: maximo = 0 top = 30 for score in scores: if int(score) < top: top = int(score) maximo = i y = y + 1 # print(maximo) # print(top) usuarios = datos[maximo] # tiempos = usuarios[5:] usuarios.remove(str(top)) # print(usuarios) print(f"--------{y}-------\nUsername:{usuarios[0]}\nTiempo:{top}") if y == 5: break buen_continue() def partida_nueva(): print(nueva) opcion = input(''' Eliga la dificultad de su partida: 1. Facil 2. Media 3. Dificil 4. Menu\n >> ''') while (not opcion.isnumeric()) or (int(opcion) < 1) or (int(opcion) > 4): opcion = input("Ingreso invalido, ingrese una opcion valida: ") if opcion == '1': print(easy) dificultad = 'Facil' vidas = float(5) pistas = 5 tiempo = 30 elif opcion == '2': print(medio) dificultad = 'Media' vidas = float(3) pistas = 3 tiempo = 20 elif opcion == '3': print(hard) dificultad = 'Dificil' vidas = float(1) pistas = 2 tiempo = 10 elif opcion == '4': print('Adios') menu_juego() else: return 0 try: with open("Database.txt","a+") as db: datos = db.readlines() except FileNotFoundError: pass username = input('Username: ') attempt = 0 no_existe = 0 for i,dato in enumerate(datos): user = dato[:-1].split(",") # aquí, con el "dato[:-1]" tomo toda la información de la línea sin el salto de línea. Con .split(",") separo el string cada vez que haya una coma y almaceno los strings resultantes en la variable persona (que será una lista) # print(user) sigue_pregunta = 1 while sigue_pregunta == 1: if username == user[0]: print(user[i]) old_password = input(f'Bienvenido {username} introduce tu contrasena: ') if old_password == user[1]: print('Welcome back suerte esta vez') time.sleep(2) dificultad = dificultad vidas = vidas pistas = pistas tiempo = tiempo username = user[0] contrasena = old_password edad = user[2] avatar = user[3] inventario = '' tiempo_partidas = '' new_game = Jugador(dificultad, vidas, pistas, tiempo, username, contrasena, edad, avatar, inventario, tiempo_partidas) # print(nuevo_jugador.mostrar()) no_existe = 1 sigue_pregunta = 0 return new_game elif attempt == 2: print('Lo siento vuelve a crear la partida') time.sleep(3) menu_juego() elif attempt < 2: print(f'Wrong! De verdad eres {username}?') attempt = attempt + 1 time.sleep(2) sigue_pregunta = 1 else: sigue_pregunta = 0 if no_existe == 0: while True: try: contrasena = input('Contrasena: ') edad = int(input('Edad: ')) break except: print('Ingresaste un dato invalido') avatar = input('''Elige el Avatar de tu jugador: 1. Scharifker 2. <NAME> 3. Pelusa 4. Gandhi 5. Ghost 6. Richtofen 7. <NAME>.jr\n >>''') while (not opcion.isnumeric()) or (int(opcion) < 1) or (int(opcion) > 7): opcion = input("Ingreso invalido, ingrese una opcion valida: ") if avatar == '1': avatar = 'Sharifker' elif avatar == '2': avatar = '<NAME>' elif avatar == '3': avatar = 'Pelusa' elif avatar == '4': avatar = 'Gandhi' elif avatar == '5': avatar = 'Ghost' elif avatar == '6': avatar = 'Richtofen' elif avatar == '7': avatar = '<NAME>.jr' #agrego al inventario objetos que no tengo hecho los juegos de una vez para probar el juego inventario = '' tiempo_partidas = '' new_game = Jugador(dificultad, vidas, pistas, tiempo, username, contrasena, edad, avatar, inventario, tiempo_partidas) # print(nuevo_jugador.mostrar()) return new_game def comienza_partida(new_game): print(new_game.mostrar()) primer_discurso(new_game) print(ready) time.sleep(3) segundo_discurso(new_game) time.sleep(3) # x posicion en donde se encuentra el jugador x = 1 #funcion para llamar la api api = api_call() continuar = 1 #tiempo en el que comienza el jugador instanteInicial = datetime.datetime.now().minute #conteo de cuartos lab = 0 biblio = 0 plaza = 0 pasillo = 0 servers = 0 #Variables para verificar si ganaron o no ciertos juegos boolean_count = 0 pizarra_count = 0 math_count = 0 cripto_count = 0 random_count = 0 while continuar == 1: #Comienza a correr el tiempo instanteFinal = datetime.datetime.now().minute end = instanteFinal - instanteInicial if end == new_game.ded_time(): se_acabo(new_game,instanteInicial) print('Se te acabo el tiempo lo siento....................') time.sleep(5) menu_juego() dic = api[x] name = dic.get('name') cosas = dic.get('objects') room = Cuartos(name) print(dibujos_rooms[x]) print(room.mostrar()) print('Puedes ver el Menu apretando la letra (M)') movimiento = input('Hacia donde te diriges?\n>> ') if movimiento.lower() == 'w': center_obj = cosas[0] name = center_obj.get('name') position = center_obj.get('position') objeto_center = Objetos(name,position) print(objeto_center.mostrar()) center_game = center_obj.get('game') name_game = center_game.get('name') # juego = Juegos(name_game) # print(juego.mostrar()) if x == 2: print('NOOOOO, pisaste el saman perdiste una vida cuidado!!') new_game.quito_vida(1) if new_game.game_over() == True: se_acabo(new_game,instanteInicial) menu_juego() if center_game.get('message_requirement') != None: print(f'Bienvenido a ',center_game.get('name'),center_game.get('message_requirement')) time.sleep(3) valido_premio = new_game.check_inventario(center_game.get('award')) valido_requirement = new_game.check_inventario(center_game.get('requirement')) # print(valido_requirement) if valido_premio == True: print(dibujos_closeup[x][0]) print('Ya pasaste por aqui y ganaste, tienes en tu INVENTARIO -->',center_game.get('award')) time.sleep(2) elif valido_requirement == True or center_game.get('requirement') == False or x == 0 or x == 2: print(dibujos_closeup[x][0]) if x == 0: #SOUP HARD if pizarra_count == 0: logrado = sopa_letras(name_game,center_game,new_game, instanteInicial) if logrado == 1: pizarra_count == 1 else: print('Buu') x = 0 elif pizarra_count == 1: print('No puedes volver a jugar, ya ganaste este juego tienes talento') time.sleep(2) x = 0 elif x == 1: #AHORCADO HARD ahorcado(name_game, center_game, new_game, instanteInicial) pass elif x == 2: list_awards = center_game.get('requirement') # print(list_awards) first_award = list_awards[0] # print(first_award) second_award = list_awards[1] print(second_award) valido_1 = new_game.check_inventario(first_award) valido_2 = new_game.check_inventario(second_award) if valido_1 == True and valido_2 == True: #Solve logic solve_logic(name_game,center_game,new_game, instanteInicial) pass else: print('No puedes entrar a jugar el juego del saman pero ya te quite 1 vida r.i.p') time.sleep(2) elif x == 3: #LOGICA BOOLEANA if boolean_count == 0: logrado = logic_bool(name_game,center_game,new_game, instanteInicial) if logrado == 1: boolean_count = 1 print('Adelante tu puedes') time.sleep(2) x = 0 elif logrado == 0: print('Lo siento tienes que completar el juego para pasar') time.sleep(2) pass elif boolean_count == 1: print('Adelante ya habias destruido el candado y completado el juego') time.sleep(2) x = 0 else: pass elif valido_requirement == False and x != 4: print(f'Lo siento no puedes pasar, necesitas -->', center_game.get('requirement')) buen_continue() if x == 4: list_awards = center_game.get('requirement') first_award = list_awards[0] second_award = list_awards[1] valido_1 = new_game.check_inventario(first_award) valido_2 = new_game.check_inventario(second_award) if valido_1 == True and valido_2 == True: refranes(new_game, instanteInicial) else: print('Todavia te falta algo, sigue buscando buena suerte') time.sleep(2) pass elif movimiento.lower() == 'a': left_obj = cosas[1] name = left_obj.get('name') position = left_obj.get('position') objeto_izq = Objetos(name,position) left_game = left_obj.get('game') name_game = left_game.get('name') print(objeto_izq.mostrar()) if left_game.get('message_requirement') != None: print(f'Bienvenido a ',left_game.get('name'),left_game.get('message_requirement')) time.sleep(3) valido_requirement = new_game.check_inventario(left_game.get('requirement')) valido_premio = new_game.check_inventario(left_game.get('award')) if valido_premio == True: print(dibujos_closeup[x][1]) print('Ya pasaste por aqui y ganaste, tienes en tu INVENTARIO -->',left_game.get('award')) buen_continue() pass elif valido_requirement == True or left_game.get('requirement') == False: print(dibujos_closeup[x][1]) if x == 0: python_game(name_game,left_game,new_game, instanteInicial) pass elif x == 1: #preguntas matematica if math_count == 0: logrado = preguntas_mate(name_game,left_game,new_game, instanteInicial) if logrado == 1: math_count = 1 else: print('Aprende a derivar vale') time.sleep(2) x = 1 else: print('No te dejare volver a derivar que sufrimiento chao') time.sleep(2) elif x == 2: #QUIZZIS millonario(name_game,left_game,new_game, instanteInicial) pass elif x == 4: #Palabras mezcladas p_mezcladas(name_game,left_game,new_game, instanteInicial) pass else: print(f'Lo siento no puedes pasar, necesitas -->', left_game.get('requirement')) buen_continue() elif movimiento.lower() == 'd': right_obj = cosas[2] name = right_obj.get('name') position = right_obj.get('position') objeto_right = Objetos(name,position) right_game = right_obj.get('game') name_game = right_game.get('name') print(objeto_right.mostrar()) if right_game.get('message_requirement') != None: print(f'Bienvenido a ',right_game.get('name'),right_game.get('message_requirement')) time.sleep(3) valido_requirement = new_game.check_inventario(right_game.get('requirement')) valido_premio = new_game.check_inventario(right_game.get('award')) if valido_premio == True: print(dibujos_closeup[x][2]) print('Ya pasaste por aqui y ganaste, ya obtuviste -->',right_game.get('award')) time.sleep(5) pass elif valido_requirement == True or right_game.get('requirement') == False: print(dibujos_closeup[x][2]) if x == 0: contra = input('Contraseña: ') while not ("".join(contra.split(" "))).isalpha(): contra = input("Ingreso invalido, ingrese el contra :\n >> ") if contra == 'escapandoando': adivinanzas(name_game,right_game,new_game, instanteInicial) pass else: print('Contraseña invalida, fuera de aqui') time.sleep(2) pass elif x == 1: #Criptograma if cripto_count == 0: logrado = criptograma(name_game, right_game,new_game, instanteInicial) if logrado == 1: cripto_count = 1 else: print('Codigo Cesar, no es tan hard buscalo en google') time.sleep(2) else: print('Ya pasaste por aqui revisa tu inventario dude') time.sleep(2) elif x == 2: #MEmoria con EMOJIS should be easy memoria(name_game, right_game,new_game, instanteInicial) pass elif x == 4: #RAndom number generator if random_count == 0: logrado = random_number(name_game, right_game,new_game, instanteInicial) if logrado == 1: random_count = 1 else: print('Este juego es muy dificil confirmo') elif random_count == 1: print('Para que vas a volver a entrar aqui alo') time.sleep(2) else: print(f'Lo siento no puedes pasar, necesitas -->', right_game.get('requirement')) time.sleep(3) elif movimiento == ' ': if x == 0: lab = lab + 1 x = 4 elif x == 1: biblio = biblio + 1 x = 3 elif x == 2: plaza = plaza + 1 x = 1 elif x == 3: pasillo = pasillo + 1 if boolean_count == 1: # print('Felicidades por desbloquear un nuevo cuarto atento con lo que obtienes aqui!') x = 0 else: print('Lo siento tienes que completar el juego para pasar') time.sleep(3) x = 3 elif x == 4: servers = servers + 1 print('Pa onde vas tu? ') time.sleep(2) x = 4 elif movimiento.lower() == 's': if x == 0: lab = lab + 1 x = 3 elif x == 1: biblio = biblio + 1 x = 2 elif x == 2: plaza = plaza + 1 print('Pa onde vas tu? ') buen_continue() x = 2 elif x == 3: pasillo = pasillo + 1 x = 1 elif x == 4: x = 0 servers = servers + 1 elif movimiento.lower() == 'm': print(new_game.mostrar()) print(f''' <------- (S) Te devuelves de cuarto (S) <------- -------> (SPACE) Avanzas al siguiente cuarto (SPACE) -------> Para los objetos: (W) Centro (W) (A) Izquierda (A) (D) Derecha (D) (I) Para ver tu inventario (I) Acuerdate que puedes usar la palabra (pista) en algunos juegos!\n''') sigue_partida = input(''' Este es el menu lee cuidadosamente y para salirte del juego utiliza la letra (N) para seguir en el juego (Y)''') while not ("".join(sigue_partida.split(" "))).isalpha(): sigue_partida = input("Ingreso invalido:\n >> ") if sigue_partida == 'y': pass elif sigue_partida == 'n': menu_juego() elif movimiento.lower()== 'i': new_game.veo_inventario() else: ('No te moviste pa ningun lado') time.sleep(3) continuar = 1 def menu_juego(): while True: opcion = input(""" Elige una opcion: 1. Nueva Partida 2. Instrucciones 3. Records 4. Para salir \n >> """) while (not opcion.isnumeric()) or (int(opcion) < 1): opcion = input("Ingreso invalido, ingrese una opcion valida: ") if opcion == '1': new_game = partida_nueva() comienza_partida(new_game) elif opcion == '2': instrucciones() elif opcion == '3': records() elif opcion == '4': break else: print('Opcion invalida') def main(): print(bienvenido) menu_juego() if __name__ == '__main__': main() ``` #### File: JoseRubin09/EscapemetProyect/partida.py ```python class Partida: ''' vidas: float numero que con un metodo le quitare o agregare vidas pistas: int que le quitare a medida que usa las pistas tiempo: str idk ''' def __init__(self, dificultad, vidas, pistas, tiempo): self.dificultad = dificultad self.vidas = vidas self.pistas = pistas self.tiempo = tiempo def mostrar(self): return(f"Vidas: {self.vidas}\nPistas: {self.pistas}\nTiempo: {self.tiempo}\n") def mostrar_tiempo(self): return(f'{self.tiempo}') def quito_vida(self,num): self.vidas = self.vidas - num return(f'{self.vidas}') def game_over(self): if self.vidas <= 0: return True def quito_pista(self,num): self.pistas = int(self.pistas) - num if self.pistas == 0: ('Lo siento no te quedan mas pistas suerte jeje') return False else: print(f'Perdiste una pista te quedan: {self.pistas} en todo el juego') return True def agrego_vida(self,num): self.vidas = self.vidas + num def ded_time(self): return (self.tiempo) ```
{ "source": "JoseSalamancaCoy/RM_DATA", "score": 2 }
#### File: makesens/tratamiento/tratamiento.py ```python import pandas as pd import numpy as np import os from pandas.io.json import json_normalize import json from datetime import datetime, timedelta from scipy.ndimage import gaussian_filter1d from sklearn.model_selection import train_test_split from sklearn.datasets import load_boston from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression import statsmodels.formula.api as sfm from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error, r2_score #from sklearn.externals import joblib from sklearn.preprocessing import LabelEncoder from numpy.core.umath_tests import inner1d ################################### load data ################################### def loaddata_racimo(name,station,window,resample = '1T'): """ Parameters: * name --> name of the file to load * station --> number associated with the station * window --> window width for smoothing * resample --> resampling Retunr: * DataFrame """ data=pd.read_csv(name,delimiter=',') data=data.drop(data[data.id_parametro =='alert'].index) data.valor=pd.to_numeric(data.valor) pivot_data=pd.pivot_table(data,index='fecha_hora_med', columns='id_parametro', values='valor').reset_index().set_index("fecha_hora_med") #keep really needed cols and important variables ("pm10_a","pm25_a","t","p","h") cols_keep=["pm10","pm10_a","pm25","pm25_a","t","p","h"] pivot_data=pivot_data[cols_keep] pivot_data.index = pd.DatetimeIndex(pivot_data.index) - pd.Timedelta(hours = 5) pivot_data = pivot_data.resample(resample).mean() pivot_data.index = pivot_data.index.strftime('%Y-%m-%d %H:%M:%S') for i in pivot_data.columns: pivot_data[i]=rolling(pivot_data[i],window) return pivot_data def loaddata_amb(name,format): """ Parameters: * name --> name of the file to load Retunr: * DataFrame """ if format == 'csv': data_AMB = pd.read_csv(name, header= 0) if format == 'xlsx': data_AMB = pd.read_excel(name, header= 0) data_AMB.columns = list(data_AMB.iloc[1]) data_AMB.index = list(data_AMB["Date&Time"]) data_AMB = data_AMB[3:-8] #removi la fila 1 (la de las unidades) data_AMB.index = pd.DatetimeIndex(data_AMB.index,dayfirst = True) data_AMB.index = data_AMB.index.astype(str) data_AMB = data_AMB.drop(['Date&Time'], axis=1) for i in data_AMB.columns: data_AMB=clean_nan(data_AMB,i) return data_AMB def loaddata_davis(name): Davis = pd.read_csv(name, sep=" ", header=None) Davis.columns = ["{}_{}".format(Davis.iloc[0][i], Davis.iloc[1][i]).replace("nan_","") for i in Davis.columns] Davis = Davis.drop(index=[0,1]) _Time=[] for i in Davis["Time"]: if(len(i) == 4): _Time.append("0"+i) else: _Time.append(i) Davis["Date_Time"] = Davis["Date"] +"_" + _Time #String Date Time Davis["Date_Time"] = [datetime.strptime(i, "%d/%m/%y_%H:%M") + timedelta(days=33,hours=1+5,minutes=14) for i in Davis["Date_Time"]] #Lista de DateTime y correccion de tiempo Davis.drop(columns = ["Date", "Time"], inplace=True) #Elimina Columnas originales de Date y Time Davis.index = Davis["Date_Time"] Davis.drop(columns = ["Date_Time"], inplace = True) keys_floats = list(Davis.columns[0:6].values) + list(Davis.columns[7:9]) + list(Davis.columns[10:-1].values) Davis[keys_floats] = Davis[keys_floats].astype("float") return Davis def loaddata_eva(name): data = pd.read_csv(name, sep=',') data = data[['timestamp', 'sensor', 'pm10', 'pm2.5', 'pm1', 'noise', 'illuminance', 'irradiance', 'temperature', 'humidity', 'presure']] data["timestamp"] = data["timestamp"].astype("datetime64") dat2 = data.drop(data[data.sensor != 2.0 ].index) dat1 = data.drop(data[data.sensor == 2.0 ].index) dat2.drop(columns = [ 'noise', 'illuminance', 'irradiance', 'temperature', 'humidity', 'presure'], inplace = True) result1 = pd.DataFrame(index=data['timestamp']) result2 = pd.DataFrame(index=data['timestamp']) for i in dat1.columns[2:]: var1 = Get_var(dat1,i) result1 = pd.merge(result1,var1,left_index=True,right_index=True) for i in dat2.columns[2:]: var2 = Get_var(dat2,i) result2 = pd.merge(result2,var2,left_index=True,right_index=True) result1.columns = ['pm10_2', 'pm2.5_2', 'pm1_2', 'noise', 'illuminance', 'irradiance', 'temperature', 'humidity', 'presure'] result2.columns = ['pm10_n', 'pm2.5_n', 'pm1_n'] result = pd.DataFrame() result = pd.merge(result1,result2,left_index=True,right_index=True) result =result.reindex(columns = ['pm10_2', 'pm2.5_2', 'pm1_2','pm10_n', 'pm2.5_n', 'pm1_n', 'noise', 'illuminance', 'irradiance', 'temperature', 'humidity', 'presure']) result = result.resample('1T').mean() result = result.drop_duplicates() return result ########################################################################################################### def json_to_csv_eva(name): contenido = os.listdir(name) index = [] result = pd.DataFrame() for i in range(0,len(contenido)): f =open(name + str(contenido[i])) json_file = json.load(f) a = pd.json_normalize(json_file['data']) col = [] if 'sensor' in a.columns: for j in range(0,len(a['data_type'])): col.append(a['data_type'][j] + '_' + str(a['sensor'][j])) data =pd.DataFrame(columns =col) data.loc[0] = list(a['value']) index.append(json_file['timestamp']) else: continue if i == 0: result = data else: result = pd.concat([result,data],axis= 0) result.index = index return result ########################################################################################################## def Get_var(Data,name_variable): variable = json_normalize( [json.loads(i) for i in Data[name_variable].dropna()] ) variable["Date_Time"] = list(Data[["timestamp",name_variable]].dropna()["timestamp"]) variable.index= variable['Date_Time'] return variable['value'] def rolling(y,n): #Rolling data to smooth values rolling = y.rolling(window = n , center = True , min_periods = 1) return rolling.median() def clean_nan(data,var): b = np.array(data[var]) b = np.where(b == 'NoData',np.nan,b) b = np.where(b == '---',np.nan,b) data[var] = list(b) return data def cutdata(datas:list,start_date,end_date): result = [] for i in datas: mask = (i.index >= start_date) & (i.index <= end_date) i=i[mask] result.append(i) return result def renamecol(datas:list,station:list): result = [] for i in range(0,len(datas)): result.append(datas[i].rename(columns = {'pm10':'pm10_'+ str(station[i]),'pm10_a':'pm10_a'+str(station[i]), 'pm25':'pm25_'+str(station[i]), 'pm25_a':'pm25_a'+str(station[i]),'t': 't_'+str(station[i]), 'p': 'p_'+str(station[i]), 'h': 'h_'+str(station[i])})) return result def Merge(datas:list): result = pd.DataFrame() for i in range(0,len(datas)-1): if i == 0: result = pd.merge(datas[i],datas[i+1],left_index=True,right_index=True) else: result = pd.merge(result,datas[i+1],left_index=True,right_index=True) result = result.dropna() return result ###################################################################################################################### def LinearModel(variables,porcentage): """ Parameters: - Variables:list --> - Porcentage:float --> Returns: - RMSE:float --> mean square error - coefficients:list --> - Intercept:float --> """ Y = variables[0] X = pd.DataFrame({str(i):variables[i] for i in range(1,len(variables))}) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = porcentage, random_state=9) lin_reg_mod = LinearRegression() lin_reg_mod.fit(X_train, y_train) pred = lin_reg_mod.predict(X_test) test_set_rmse = (np.sqrt(mean_squared_error(y_test, pred))) coef = lin_reg_mod.coef_ intercept = lin_reg_mod.intercept_ Yc = sum([variables[i] * coef[i-1] for i in range(1,len(variables))] ) + intercept return lin_reg_mod.coef_, lin_reg_mod.intercept_ , Yc #return Yc def RamdonForest(variables,porcentage): """ Parameters: - Variables:list --> - Porcentage:float --> Returns: - MAE:float --> mean absolute error - RMSE:float --> mean square error - Accuracy:float --> """ Y = variables[0] X = pd.DataFrame({str(i):variables[i] for i in range(1,len(variables))}) train_features,test_features,train_labels,test_labels=train_test_split(X,Y,test_size=porcentage,random_state=0) rf=RandomForestRegressor(n_estimators=800,random_state=0) rf.fit(train_features,train_labels) predictions=rf.predict(test_features) errors=abs(predictions-test_labels) mape=100*abs(errors/test_labels) rmse=np.sqrt(np.mean(errors**2)) accuracy=100-np.mean(mape) mae = np.mean(errors) #return mae,rmse, accuracy, rf.predict(X) return pd.Series(rf.predict(X),variables[0].index) ```
{ "source": "josesalasdev/apisrun", "score": 2 }
#### File: api/engines/mongo.py ```python from api import configs import motor.motor_asyncio class MongoEngine(object): """Mongo client""" _instance = None def __new__(cls): if MongoEngine._instance is None: client = motor.motor_asyncio.AsyncIOMotorClient(configs.ENGINE_URI) MongoEngine._instance = client[configs.ENGINE_DB_NAME] return MongoEngine._instance db = MongoEngine() ```
{ "source": "josesalasdev/apisrun-cli", "score": 2 }
#### File: apisrun-cli/apisrun/main.py ```python import click from apisrun.resources.up import up as command_up from apisrun.resources.list import list as command_list from apisrun.resources.down import down as command_down __version__ = "0.0.3" @click.group() @click.version_option(__version__) @click.pass_context def cli(ctx): """CLI group""" pass cli.add_command(command_up) cli.add_command(command_list) cli.add_command(command_down) ``` #### File: apisrun/utils/commons.py ```python import yaml import os import socket from contextlib import closing def validate_path_file(path_file) -> bool: """Validate th path of a file.""" if os.path.exists(path_file) and os.path.isfile(path_file): if os.access(path_file, os.R_OK): return True return False def load_yaml(path_file: str): """Transform a yml to dict""" yaml_file = open(path_file, "r") return yaml.load(yaml_file, yaml.Loader) def validate_errors_apisrun_yml(data) -> bool: """Validate apisrun data yml.""" if len(data) < 1 and type(data) is not dict: return True error = False # TODO: Refactor for _, endpoints in data.items(): if type(endpoints) is not list or len(endpoints) < 1: error = True for v in endpoints: if type(v) is not dict or len(v) < 3: error = True return error def singleton(class_): """Singleton""" instances = {} def getinstance(*args, **kwargs): if class_ not in instances: instances[class_] = class_(*args, **kwargs) return instances[class_] return getinstance def has_open_port(host, port): """Validate if the host port is open.""" with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: if sock.connect_ex((host, port)) == 0: return False return True ```
{ "source": "josesalasdev/apisrun", "score": 2 }
#### File: apisrun/tests/conftest.py ```python from unittest.mock import MagicMock class AsyncMock(MagicMock): async def __call__(self, *args, **kwargs): return super().__call__(self, *args, **kwargs) ``` #### File: tests/test_validators/test_base.py ```python import pytest from fastapi import HTTPException from api.validators.base import ValidatorMixin from tests.conftest import AsyncMock @pytest.mark.asyncio async def test_validator_mixin_in_node_method_with_model_already_exists(mocker): mock_repo = mocker.patch( "api.repositories.repository.count", new_callable=AsyncMock ) mock_repo.side_effect = [1, 0] v = ValidatorMixin() with pytest.raises(HTTPException): await v.node("users", "/users") @pytest.mark.asyncio async def test_validator_mixin_in_node_method_with_path_already_exists(mocker): mock_repo = mocker.patch( "api.repositories.repository.count", new_callable=AsyncMock ) mock_repo.side_effect = [1, 1] v = ValidatorMixin() with pytest.raises(HTTPException): await v.node("users", "/users") @pytest.mark.asyncio async def test_validator_mixin_in_node_method_with_validation_ok(mocker): mock_repo = mocker.patch( "api.repositories.repository.count", new_callable=AsyncMock ) mock_repo.side_effect = [0, 0] v = ValidatorMixin() expect = await v.node("users", "/users") assert expect is None ```
{ "source": "JoseSalgado1024/anonimizar_columnas", "score": 3 }
#### File: anonimizar_columnas/helpers/helpers.py ```python import json import os import time import random import socket import hashlib try: lib = __import__('pandas') globals()['pd'] = lib except ImportError: pandas_import_error_msg = \ ''' Este script utiliza la libreria de Python Pandas. Por favor ejecuta: $ sudo -H pip install pandas o si se esta utilizando un VirtualEnv: (py_venv) $ pip install pandas. ''' print (pandas_import_error_msg) exit(1) SAMPLE_CONF = 'config.sample.json' SAMPLE_DATA = 'data.sample.csv' TEXT_TYPE = (str, unicode) LOCAL = os.path.dirname(os.path.abspath(__file__))[:-len('/helpers')] def clean_str(_somestr): allowed_chars = 'abcdef01234567890' cleaned_str = '' for c in _somestr: if c in allowed_chars: cleaned_str += c return cleaned_str def hash_cache(_origin, _hash): cache_file = 'conversion_ids.keys' if isinstance(_origin, tuple): _origin = _origin[0] try: lines = open(cache_file, 'r').readlines() cache_lines = {} for line in lines: try: k = line.split(':')[0] v = line.split(':')[1] cache_lines.update({k: v}) except Exception as e: print ('Err Msg: \"{}\".'.format(e)) except IOError: cache_lines = {} if _origin in cache_lines.keys(): # do something return clean_str(cache_lines[_origin]) else: # Do other thing! cache_lines.update({_origin: _hash}) with open(cache_file, 'w') as cache: for k, v in cache_lines.items(): cache.write('{}:{}\n'.format(k, clean_str(v))) def resolve_kwargs(_conf, _kwargs): """ Función de renderizado de KWARGS Args: - defaults: - _kwargs: Return: - Dict. """ if not isinstance(_conf, dict) or not isinstance(_kwargs, dict): raise TypeError('Argumentos no validos.') _tmp_configs = {} for k, v in _conf.items(): if k in _kwargs.keys() and isinstance(_kwargs.get(k), v.__class__): if isinstance(v, dict): _tmp_configs.update({k: resolve_kwargs(v, _kwargs.get(k))}) else: _tmp_configs.update({k: _kwargs[k]}) else: _tmp_configs.update({k: v}) return _tmp_configs def load_config(config_path=SAMPLE_CONF): """ :param config_path: :return: """ if not isinstance(config_path, TEXT_TYPE): print ('config_path debe ser una instancia de STR o UNICODE.') return None if config_path == SAMPLE_CONF: # Load Sample config_full_path = os.path.join(LOCAL, 'samples', config_path) else: # Load Custom Config config_full_path = config_path try: return json.load(open(config_full_path, 'rb')) except ValueError: print ('No es posible decodificar la configuracion: {}, no JSON parseable.'.format(config_path)) return None except IOError: print ('No es posible localizar la configuracion: {}.'.format(config_path)) return None def anonymize_cols(_pddf=None, columns=None): """ Convierte en un Hash los valores del las columnas descriptas en columns :param _pddf: :return: """ if not isinstance(_pddf, pd.DataFrame): print ('_pddf debe ser una instancia de Pandas.DataFrame') return None if not isinstance(columns, list): print ('columns debe ser una instancia de LIST.') return None headers_count = len(columns) for col in columns: try: _pddf[col] = _pddf[col].apply(lambda x: generate_unique_id(x)) headers_count -= 1 except Exception as e: print (e) print ('Fallo el procesamiento de la columna:\"{}\", err: NOT-FOUND.'.format(col)) if headers_count > 0: print ('No fue posible procesar todas las columnas') return _pddf def load_input(_input_filename=None): """ Carga y valida el input CSV. :param _input_filename: Return: - Pandas.DataFrame: Carga exitosa. - None: Fallo la cara del recurso. """ if _input_filename == SAMPLE_DATA: # Load Sample _input_filename = os.path.join(LOCAL, 'samples', _input_filename) # Validar path de entrada: if not os.path.exists(_input_filename): print ('No es posible localizar el archivo: {}.'.format(os.path.basename(_input_filename))) with open(_input_filename, 'rb') as tmp_f: tmp_lines = tmp_f.readlines() if len(tmp_lines) > 0: csv_headers = tmp_lines[0].replace('\n', '').replace(' ', '').split(',') try: return pd.read_csv(_input_filename, skipinitialspace=True, usecols=csv_headers) except: pass def generate_unique_id(*args): """ source: StackOverFlow. """ t = long(time.time() * 1000) r = long(random.random() * 100000000000000000) try: a = socket.gethostbyname(socket.gethostname()) except Exception as e: print (e) a = random.random() * 100000000000000000 _uid = str(t) + ' ' + str(r) + ' ' + str(a) + ' ' + str(args) _uid = hashlib.md5(_uid).hexdigest() cached_hash = hash_cache(args, _uid) if cached_hash: return cached_hash else: return _uid def is_a_valid_conf(_conf=None): """ Valida una configuracion. Args: - _conf: - description: configuracion provista que debe ser validada. - type: Dict. Return: - bool: - True: La config es valida. - False: No es valida la conf. """ if not isinstance(_conf, dict): print ('_conf debe ser una instancia de DICT.') return False required = \ { 'key': 'columns', 'type': list, 'content': TEXT_TYPE } # exists required.key? if not required['key'] in _conf.keys(): print ('{} es requerida!'.format(required['key'])) return False if not isinstance(_conf[required['key']], required['type']): print ('{} debe contener {}'.format(required['key'], required['type'])) return False if False in [isinstance(e, required['content']) for e in _conf['columns']]: print ('_conf[\'columns\'] debe ser una {} de {}'.format(required['type'], required['content'])) return False return True def write_csv(df, output_fn=None): """ Escribe un OUTPUT a un archhivo de tipo CSV. Args: - df: Pandas.DataFrame. - Data procesada. - output_fn: str o unicode - Nombre que recibira el archivo CSV de salida. Return: - Str: Nombre del Archivo de salida. """ if not output_fn: output_fn = '{}.csv'.format(generate_unique_id('abc')[0:15]) for column in df.columns: for idx in df[column].index: x = df.get_value(idx, column) try: x = unicode(x.encode('utf-8', 'ignore'), errors='ignore') if type(x) == unicode else unicode(str(x), errors='ignore') df.set_value(idx, column, x) except Exception as e: print ('encoding error: {0} {1}'.format(idx, column)) print ('Err Msg: \"{}\".'.format(e)) df.set_value(idx, column, '') continue try: df.to_csv(output_fn, index=False) return output_fn except Exception as e: print ('Ocurrio un fallo al intentar grabar el archivo {}'.format(output_fn)) print ('Err Msg: \"{}\".'.format(e)) ```
{ "source": "JoseSalgado1024/b42fly", "score": 2 }
#### File: uav_data/api/serializers.py ```python from rest_framework.serializers import * from .models import * class ExtraFieldSerializer(ModelSerializer): class Meta: model = ExtraField fields = ('key', 'value', ) class PolicySerializer(ModelSerializer): class Meta: model = Policy fields = '__all__' class PolicyListSerializer(PolicySerializer): def to_representation(self, instance): return \ { 'identifier': instance.identifier, 'name': instance.name, 'web_url': '/api/v1/policy/%s' % instance.identifier, } class GeometryCollectionSerializer(ModelSerializer): class Meta: model = GeometryCollection fields = '__all__' def to_representation(self, instance): points = PointFeatureLCSerializer(PointFeature.objects.filter(geometry_collection=instance.identifier), many=True) areas = AreaFeatureSerializerLC(AreaFeature.objects.filter(geometry_collection=instance.identifier), many=True) extras = ExtraFieldSerializer(ExtraField.objects.filter(geometry_collection=instance.identifier), many=True) response = ModelSerializer.to_representation(self, instance) response.update({ 'extras': extras.data, 'points': points.data, 'areas': areas.data }) return response class GeometryCollectionListSerializer(GeometryCollectionSerializer): def to_representation(self, instance): return \ { 'identifier': instance.identifier, 'name': instance.name, 'web_url': '/api/v1/collection/%s' % instance.identifier } class PointFeatureSerializer(ModelSerializer): class Meta: model = PointFeature fields = '__all__' def to_representation(self, instance): response = ModelSerializer.to_representation(self, instance) response.update({'policy': PolicyListSerializer(instance.policy).data, 'geometry_collection': GeometryCollectionListSerializer(instance.geometry_collection).data}) return response class PointFeatureLCSerializer(PointFeatureSerializer): def to_representation(self, instance): return \ { 'identifier': instance.identifier, 'name': instance.name, 'web_url': '/api/v1/point/%s' % instance.identifier, } class AreaFeatureSerializerRUD(ModelSerializer): class Meta: model = AreaFeature fields = '__all__' class AreaFeatureSerializerLC(AreaFeatureSerializerRUD): def to_representation(self, instance): return \ { 'identifier': instance.identifier, 'name': instance.name, 'web_url': '/api/v1/area/%s' % instance.identifier, } ```
{ "source": "JoseSalgado1024/in_downloader", "score": 2 }
#### File: in_downloader/include/commands.py ```python import click @click.group() def in_downloader(): pass @click.command() def initdb(): click.echo('Initialized the database') import requests r = requests.get('') r.text r.headers @click.command() def dropdb(): click.echo('Dropped the database') ``` #### File: in_downloader/include/toolbox.image.py ```python from helpers import resolve_kwargs, guid from os import path, makedirs import cv2 import numpy as np def split_image(): pass def crop_image(image, **kwargs): defaults = resolve_kwargs({"enable": True, "destination_folder": "cropped_images", "fn_mark": "cropped", "crop_x0": 0, "crop_x1": 0, "crop_y0": 0, "crop_y1": 0}, kwargs) if isinstance(image, list): return filter(None, [crop_image(i, kwargs) for i in image]) img = get_image(image) if img: img_x, img_y, img_channels = img.shape if img_x >= img_y: x_start = int((img_x - img_y) / 2) x_end = x_start + img_y y_start = 0 y_end = img_y else: y_start = int((img_y - img_x) / 2) y_end = y_start + img_x x_start = 0 x_end = img_x img = img[x_start:x_end, y_start:y_end] if defaults['enable']: crop_dest_folder = defaults.get('destination_folder') crop_fn = '{fn}{fn_mark}.{f}'.format( fn=defaults.get('fn', guid()), fn_mark=defaults.get('fn_mark'), f=defaults.get('format', 'png').lower() ) if not path.exists(crop_dest_folder): makedirs(crop_dest_folder) crp_img_filename = path.join(crop_dest_folder, crop_fn) try: cv2.imwrite(crp_img_filename, img) return crp_img_filename except Exception as e: print e def get_image(image): """ Normalizar entra de imagenes. Args: - image: Return: - image.np.ndarray """ if isinstance(image, np.ndarray): print 'Loading from np.array.' return image elif isinstance(image, (str, unicode)): print 'Loading from file.' if not path.exists(): print 'No existe {}.'.format(image) return None try: return cv2.imread(image) except: print 'Fallo carga de imagen {}.'.format(image) return None elif isinstance(image, list): print 'Loading from list.' return filter(None, [get_image(img) for img in image]) else: return None def resize_image(_image_fn, **kwargs): if not isinstance(_image_fn, (str, unicode)): print 'Fallo: \'_image_fn\' debe ser una instancia de unicode o str. {}'.format(_image_fn) defaults = resolve_kwargs({"enable": False, "resize_x": 50, "resize_y": 50, "square_image": True, "destination_folder": "resided_images", "fn_mark": "resided"}, kwargs) respose = { 'status': False, 'msg': ['No ejecutado.'], 'input_img': _image_fn, 'output_img': '' } if not isinstance(_image_fn, (str, unicode)): return respose if not path.exists(_image_fn): respose.update({'msg': ['No existe la imagen {}.'.format(_image_fn)]}) print 'Croppenado: \'{}\'.'.format(_image_fn) try: img = cv2.imread(_image_fn) except Exception as load_image_error: respose.update({'msg': ['Fallo la carga de la imagen{}, error: {}.'.format(_image_fn, load_image_error)]}) return respose if defaults['square_image']: img_x, img_y, img_channels = img.shape if img_x >= img_y: x_start = int((img_x - img_y) / 2) x_end = x_start + img_y y_start = 0 y_end = img_y else: y_start = int((img_y - img_x) / 2) y_end = y_start + img_x x_start = 0 x_end = img_x img = img[x_start:x_end, y_start:y_end] if defaults['enable']: crop_dest_folder = defaults.get('destination_folder') crop_img_format = _image_fn.split('.')[len(_image_fn.split('.')) - 1] crop_fn = '{fn}{fn_mark}.{f}'.format( fn=_image_fn[:-len(crop_img_format) - 1], fn_mark=defaults['fn_mark'], f=crop_img_format ) if not path.exists(crop_dest_folder): makedirs(crop_dest_folder) crp_img_filename = path.join(crop_dest_folder, crop_fn) respose.update({'image_cropped': { 'path': crp_img_filename, 'fn': crop_fn }, 'msg': ['Imagen {} re-encuadrada a {}x{}'.format(crop_fn, x_end, y_end)]}) _tmp_img = cv2.imwrite(crp_img_filename, img) else: _tmp_img = img cv2.imwrite('resize/image.png', cv2.resize(_tmp_img, (defaults['resize_w'], defaults['resize_h']))) respose.update({'msg': ['Realizado con exito.'], 'output_img': 'resize/image.png'}) return respose print get_image(['str']) ```
{ "source": "JoseSalgado1024/otto", "score": 4 }
#### File: JoseSalgado1024/otto/main.py ```python from itertools import combinations from random import randint import argparse import math import sys # Basics NUMBERS_DICTIONARY = '0123456789' SPECIAL_CHARS_DICTIONARY = '.+-*/\\|°¬!"#$&/()=?¡¨*[]{}´+,.;:-_<>@' WHITE_SPACE = ' ' CHARS_DICTIONARY = 'abcdefghijklmnñopqrstuvwxyz' DEFAULT_KEYS_AMOUNT = 10 DEFAULT_KEYS_LENGTH = 16 def binomial_coefficient(n: int, k: int) -> int: """Calculate Binomial coefficient""" n_fac = math.factorial(n) k_fac = math.factorial(k) n_minus_k_fac = math.factorial(n - k) return round(n_fac/(k_fac*n_minus_k_fac)) def _default_dictionary(use_uppercase=True, use_numbers=True, use_special_chars=True, use_whitespaces=''): """ Build a dictionary by default. Args: - use_uppercase: Include upper cases in dictionary. - Type: bool - Default: True. - use_numbers: Include numbers in default dictionary - Type: bool - Default: True. - use_special_chars: Include specials characters in default dictionary. - Type: bool - Default: True. """ _dict = CHARS_DICTIONARY _dict += CHARS_DICTIONARY.upper() if use_uppercase else '' _dict += NUMBERS_DICTIONARY if use_numbers else '' _dict += WHITE_SPACE if use_whitespaces else '' _dict += SPECIAL_CHARS_DICTIONARY if use_special_chars else '' return _dict def generate_by_random(**kwargs): """Generates keys randomly""" _dictionary_ = kwargs.get('dictionary') if any(x is None for x in [_dictionary_, kwargs.get('length'), kwargs.get('amount')]): raise KeyError('Random Dict generator: missing required argument.') generated_keys = [] for i in range(kwargs.get('amount')): while True: nk = '' while len(nk) < kwargs.get('length'): nk += _dictionary_[randint(0, len(_dictionary_)-1)] if nk not in generated_keys: generated_keys.append(nk) sys.stdout.write(f'{nk}\n') break def generate_by_combinations(**kwargs): """Generates Keys using itertools.combinations.""" _dictionary_ = kwargs.get('dictionary') if any(x is None for x in [_dictionary_, kwargs.get('length'), kwargs.get('amount')]): raise KeyError('Combination Dict generator: missing required argument.') for idx, key in enumerate(combinations(_dictionary_, kwargs.get('length'))): if idx > kwargs.get('amount'): break sys.stdout.write(''.join(list(key)) + '\n') RECORD_GENERATION_METHODS = { 'combinations': generate_by_combinations, 'randomize': generate_by_random } def prepare_chars_dictionary(_dictionary_, **kwargs): """ Convert a str to list char. Args: - char_dict: str(strict) Return: - char list. """ if not isinstance(_dictionary_, str) or len(_dictionary_) == 0 or _dictionary_ == 'undefined': # Build default dict _dictionary_ = _default_dictionary(use_numbers=kwargs.get('use_numbers', True), use_uppercase=kwargs.get('use_uppercase', True), use_special_chars=kwargs.get('use_special_chars', False), use_whitespaces=kwargs.get('use_whitespaces', False)) else: if kwargs.get('use_uppercase') is True: _dictionary_ += _dictionary_.upper() return [x for x in _dictionary_] if __name__ == '__main__': """Main""" parser = argparse.ArgumentParser(description="Char dictionary generator", allow_abbrev=True) # KeyGen Ags setup parser.add_argument('--dictionary', '-d', help='Dictionary elements.', default='undefined', type=str) parser.add_argument('--amount', '-a', help='Amount of keys.', default=DEFAULT_KEYS_AMOUNT, type=str) parser.add_argument('--length', '-l', help='Keys length', default=DEFAULT_KEYS_LENGTH, type=int) parser.add_argument('--uppercase', '-u', help='Use upper case', action='store_true') parser.add_argument('--numbers', '-n', help='Add numbers to dictionary.', action='store_true') parser.add_argument('--symbols', '-s', help='Add special chars to dictionary.', action='store_true') parser.add_argument('--whitespace', '-w', help='Add White spaces to dictionary.', action='store_true') parser.add_argument('--randomize', '-r', action='store_true', default=False, help='Generation method, if -r or --randomize is present' 'random generation selected else, permutations method selected.') arguments = parser.parse_args() # Get Args _dictionary = arguments.dictionary _uppercase = arguments.uppercase _numbers = arguments.numbers _amount = int(arguments.amount) _length = int(arguments.length) _special = arguments.symbols _space = arguments.whitespace # Prepare Chars Dictionary dictionary = prepare_chars_dictionary(_dictionary_=_dictionary, use_uppercase=_uppercase, use_numbers=_numbers, use_special_chars=_special, use_whitespaces=_space) method = 'randomize' if arguments.randomize else 'combinations' try: if int(_amount) > binomial_coefficient(len(dictionary), _length): raise IndexError(f'With provided dictionary it is impossible generate {_amount} keys.') RECORD_GENERATION_METHODS[method](dictionary=dictionary, length=_length, amount=_amount) except MemoryError: print('You do not have enough memory for do this table.') except ValueError: print(f'Record length({_length}) can\'t be greater than dictionary length({len(dictionary)}).') ```