metadata
dict
text
stringlengths
60
3.49M
{ "source": "josephmje/sdcflows", "score": 2 }
#### File: workflows/fit/fieldmap.py ```python r""" Processing phase-difference and *directly measured* :math:`B_0` maps. Theory ~~~~~~ The displacement suffered by every voxel along the phase-encoding (PE) direction can be derived from Eq. (2) of [Hutton2002]_: .. math:: \Delta_\text{PE} (i, j, k) = \gamma \cdot \Delta B_0 (i, j, k) \cdot T_\text{ro}, \label{eq:fieldmap-1}\tag{1} where :math:`\Delta_\text{PE} (i, j, k)` is the *voxel-shift map* (VSM) along the *PE* direction, :math:`\gamma` is the gyromagnetic ratio of the H proton in Hz/T (:math:`\gamma = 42.576 \cdot 10^6 \, \text{Hz} \cdot \text{T}^\text{-1}`), :math:`\Delta B_0 (i, j, k)` is the *fieldmap variation* in T (Tesla), and :math:`T_\text{ro}` is the readout time of one slice of the EPI dataset we want to correct for distortions. Let :math:`V` represent the «*fieldmap in Hz*» (or equivalently, «*voxel-shift-velocity map*» as Hz are equivalent to voxels/s), with :math:`V(i,j,k) = \gamma \cdot \Delta B_0 (i, j, k)`, then, introducing the voxel zoom along the phase-encoding direction, :math:`s_\text{PE}`, we obtain the nonzero component of the associated displacements field :math:`\Delta D_\text{PE} (i, j, k)` that unwarps the target EPI dataset: .. math:: \Delta D_\text{PE} (i, j, k) = V(i, j, k) \cdot T_\text{ro} \cdot s_\text{PE}. \label{eq:fieldmap-2}\tag{2} .. _sdc_direct_b0 : Direct B0 mapping sequences ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some MR schemes such as :abbr:`SEI (spiral-echo imaging)` can directly reconstruct an estimate of *the fieldmap in Hz*, :math:`V(i,j,k)`. These *fieldmaps* are described with more detail `here <https://cni.stanford.edu/wiki/GE_Processing#Fieldmaps>`__. This corresponds to `this section of the BIDS specification <https://bids-specification.readthedocs.io/en/latest/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#case-3-direct-field-mapping>`__. .. _sdc_phasediff : Phase-difference B0 estimation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The fieldmap variation in T, :math:`\Delta B_0 (i, j, k)`, that is necessary to obtain :math:`\Delta_\text{PE} (i, j, k)` in Eq. :math:`\eqref{eq:fieldmap-1}` can be calculated from two subsequient :abbr:`GRE (Gradient-Recalled Echo)` echoes, via eq. (1) of [Hutton2002]_: .. math:: \Delta B_0 (i, j, k) = \frac{\Delta \Theta (i, j, k)}{2\pi \cdot \gamma \, \Delta\text{TE}}, \label{eq:fieldmap-3}\tag{3} where :math:`\Delta \Theta (i, j, k)` is the phase-difference map in radians, and :math:`\Delta\text{TE}` is the elapsed time between the two GRE echoes. For simplicity, the «*voxel-shift-velocity map*» :math:`V(i,j,k)`, which we can introduce in Eq. :math:`\eqref{eq:fieldmap-2}` to directly obtain the displacements field, can be obtained as: .. math:: V(i, j, k) = \frac{\Delta \Theta (i, j, k)}{2\pi \cdot \Delta\text{TE}}. \label{eq:fieldmap-4}\tag{4} This calculation is further complicated by the fact that :math:`\Theta_i` (and therfore, :math:`\Delta \Theta`) are clipped (or *wrapped*) within the range :math:`[0 \dotsb 2\pi )`. It is necessary to find the integer number of offsets that make a region continuously smooth with its neighbors (*phase-unwrapping*, [Jenkinson2003]_). This corresponds to `this section of the BIDS specification <https://bids-specification.readthedocs.io/en/latest/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#two-phase-images-and-two-magnitude-images>`__. Some scanners produce one ``phasediff`` map, where the drift between the two echos has already been calulated (see `the corresponding section of BIDS <https://bids-specification.readthedocs.io/en/latest/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#case-1-phase-difference-map-and-at-least-one-magnitude-image>`__). References ---------- .. [Hutton2002] Hutton et al., Image Distortion Correction in fMRI: A Quantitative Evaluation, NeuroImage 16(1):217-240, 2002. doi:`10.1006/nimg.2001.1054 <https://doi.org/10.1006/nimg.2001.1054>`__. .. [Jenkinson2003] <NAME>. (2003) Fast, automated, N-dimensional phase-unwrapping algorithm. MRM 49(1):193-197. doi:`10.1002/mrm.10354 <https://doi.org/10.1002/mrm.10354>`__. """ from nipype.pipeline import engine as pe from nipype.interfaces import utility as niu from niworkflows.engine.workflows import LiterateWorkflow as Workflow def init_fmap_wf(omp_nthreads=1, debug=False, mode="phasediff", name="fmap_wf"): """ Estimate the fieldmap based on a field-mapping MRI acquisition. Estimates the fieldmap using either one phase-difference map or image and one or more magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)` acquisitions. When we have a sequence that directly measures the fieldmap, we just need to mask it (using the corresponding magnitude image) to remove the noise in the surrounding air region, and ensure that units are Hz. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fit.fieldmap import init_fmap_wf wf = init_fmap_wf(omp_nthreads=6) Parameters ---------- omp_nthreads : :obj:`int` Maximum number of threads an individual process may use. debug : :obj:`bool` Run on debug mode name : :obj:`str` Unique name of this workflow. Inputs ------ magnitude : :obj:`list` of :obj:`str` Path to the corresponding magnitude image for anatomical reference. fieldmap : :obj:`list` of :obj:`tuple`(:obj:`str`, :obj:`dict`) Path to the fieldmap acquisition (``*_fieldmap.nii[.gz]`` of BIDS). Outputs ------- fmap : :obj:`str` Path to the estimated fieldmap. fmap_ref : :obj:`str` Path to a preprocessed magnitude image reference. fmap_coeff : :obj:`str` or :obj:`list` of :obj:`str` The path(s) of the B-Spline coefficients supporting the fieldmap. fmap_mask : :obj:`str` Path to a binary brain mask corresponding to the ``fmap`` and ``fmap_ref`` pair. """ from ...interfaces.bspline import ( BSplineApprox, DEFAULT_LF_ZOOMS_MM, DEFAULT_HF_ZOOMS_MM, DEFAULT_ZOOMS_MM, ) workflow = Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface(fields=["magnitude", "fieldmap"]), name="inputnode" ) outputnode = pe.Node( niu.IdentityInterface(fields=["fmap", "fmap_ref", "fmap_mask", "fmap_coeff"]), name="outputnode", ) magnitude_wf = init_magnitude_wf(omp_nthreads=omp_nthreads) bs_filter = pe.Node(BSplineApprox(), n_procs=omp_nthreads, name="bs_filter") bs_filter.interface._always_run = debug bs_filter.inputs.bs_spacing = ( [DEFAULT_LF_ZOOMS_MM, DEFAULT_HF_ZOOMS_MM] if not debug else [DEFAULT_ZOOMS_MM] ) bs_filter.inputs.extrapolate = not debug # fmt: off workflow.connect([ (inputnode, magnitude_wf, [("magnitude", "inputnode.magnitude")]), (magnitude_wf, bs_filter, [("outputnode.fmap_mask", "in_mask")]), (magnitude_wf, outputnode, [ ("outputnode.fmap_mask", "fmap_mask"), ("outputnode.fmap_ref", "fmap_ref"), ]), (bs_filter, outputnode, [ ("out_extrapolated" if not debug else "out_field", "fmap"), ("out_coeff", "fmap_coeff")]), ]) # fmt: on if mode == "phasediff": workflow.__postdesc__ = """\ A *B<sub>0</sub>* nonuniformity map (or *fieldmap*) was estimated from the phase-drift map(s) measure with two consecutive GRE (gradient-recalled echo) acquisitions. """ phdiff_wf = init_phdiff_wf(omp_nthreads, debug=debug) # fmt: off workflow.connect([ (inputnode, phdiff_wf, [("fieldmap", "inputnode.phase")]), (magnitude_wf, phdiff_wf, [ ("outputnode.fmap_ref", "inputnode.magnitude"), ("outputnode.fmap_mask", "inputnode.mask"), ]), (phdiff_wf, bs_filter, [ ("outputnode.fieldmap", "in_data"), ]), ]) # fmt: on else: from niworkflows.interfaces.images import IntraModalMerge from ...interfaces.fmap import CheckB0Units workflow.__postdesc__ = """\ A *B<sub>0</sub>* nonuniformity map (or *fieldmap*) was directly measured with an MRI scheme designed with that purpose such as SEI (Spiral-Echo Imaging). """ # Merge input fieldmap images (assumes all are given in the same units!) fmapmrg = pe.Node( IntraModalMerge(zero_based_avg=False, hmc=False, to_ras=False), name="fmapmrg", ) units = pe.Node(CheckB0Units(), name="units", run_without_submitting=True) # fmt: off workflow.connect([ (inputnode, units, [(("fieldmap", _get_units), "units")]), (inputnode, fmapmrg, [(("fieldmap", _get_file), "in_files")]), (fmapmrg, units, [("out_avg", "in_file")]), (units, bs_filter, [("out_file", "in_data")]), ]) # fmt: on return workflow def init_magnitude_wf(omp_nthreads, name="magnitude_wf"): """ Prepare the magnitude part of :abbr:`GRE (gradient-recalled echo)` fieldmaps. Average (if not done already) the magnitude part of the :abbr:`GRE (gradient recalled echo)` images, run N4 to correct for B1 field nonuniformity, and skull-strip the preprocessed magnitude. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fit.fieldmap import init_magnitude_wf wf = init_magnitude_wf(omp_nthreads=6) Parameters ---------- omp_nthreads : :obj:`int` Maximum number of threads an individual process may use name : :obj:`str` Name of workflow (default: ``magnitude_wf``) Inputs ------ magnitude : :obj:`os.PathLike` Path to the corresponding magnitude path(s). Outputs ------- fmap_ref : :obj:`os.PathLike` Path to the fieldmap reference calculated in this workflow. fmap_mask : :obj:`os.PathLike` Path to a binary brain mask corresponding to the reference above. """ from nipype.interfaces.ants import N4BiasFieldCorrection from niworkflows.interfaces.masks import BETRPT from niworkflows.interfaces.images import IntraModalMerge workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=["magnitude"]), name="inputnode") outputnode = pe.Node( niu.IdentityInterface(fields=["fmap_ref", "fmap_mask", "mask_report"]), name="outputnode", ) # Merge input magnitude images # Do not reorient to RAS to preserve the validity of PhaseEncodingDirection magmrg = pe.Node(IntraModalMerge(hmc=False, to_ras=False), name="magmrg") # de-gradient the fields ("bias/illumination artifact") n4_correct = pe.Node( N4BiasFieldCorrection(dimension=3, copy_header=True), name="n4_correct", n_procs=omp_nthreads, ) bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True), name="bet") # fmt: off workflow.connect([ (inputnode, magmrg, [("magnitude", "in_files")]), (magmrg, n4_correct, [("out_avg", "input_image")]), (n4_correct, bet, [("output_image", "in_file")]), (bet, outputnode, [("mask_file", "fmap_mask"), ("out_file", "fmap_ref"), ("out_report", "mask_report")]), ]) # fmt: on return workflow def init_phdiff_wf(omp_nthreads, debug=False, name="phdiff_wf"): r""" Generate a :math:`B_0` field from consecutive-phases and phase-difference maps. This workflow preprocess phase-difference maps (or generates the phase-difference map should two ``phase1``/``phase2`` be provided at the input), and generates an image equivalent to BIDS's ``fieldmap`` that can be processed with the general fieldmap workflow. Besides phase2 - phase1 subtraction, the core of this particular workflow relies in the phase-unwrapping with FSL PRELUDE [Jenkinson2003]_. FSL PRELUDE takes wrapped maps in the range 0 to 6.28, `as per the user guide <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide#Step_2_-_Getting_.28wrapped.29_phase_in_radians>`__. For the phase-difference maps, recentering back to :math:`[-\pi \dotsb \pi )` is necessary. After some massaging and with the scaling of the echo separation factor :math:`\Delta \text{TE}`, the phase-difference maps are converted into an actual :math:`B_0` map in Hz units. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fit.fieldmap import init_phdiff_wf wf = init_phdiff_wf(omp_nthreads=1) Parameters ---------- omp_nthreads : :obj:`int` Maximum number of threads an individual process may use debug : :obj:`bool` Run on debug mode name : :obj:`str` Name of workflow (default: ``phdiff_wf``) Inputs ------ magnitude : :obj:`os.PathLike` A reference magnitude image preprocessed elsewhere. phase : :obj:`list` of :obj:`tuple` of (:obj:`os.PathLike`, :obj:`dict`) List containing one GRE phase-difference map with its corresponding metadata (requires ``EchoTime1`` and ``EchoTime2``), or the phase maps for the two subsequent echoes, with their metadata (requires ``EchoTime``). mask : :obj:`os.PathLike` A brain mask calculated from the magnitude image. Outputs ------- fieldmap : :obj:`os.PathLike` The estimated fieldmap in Hz. """ from nipype.interfaces.fsl import PRELUDE from ...interfaces.fmap import Phasediff2Fieldmap, PhaseMap2rads, SubtractPhases workflow = Workflow(name=name) workflow.__postdesc__ = f"""\ The corresponding phase-map(s) were phase-unwrapped with `prelude` (FSL {PRELUDE.version}). """ inputnode = pe.Node( niu.IdentityInterface(fields=["magnitude", "phase", "mask"]), name="inputnode" ) outputnode = pe.Node(niu.IdentityInterface(fields=["fieldmap"]), name="outputnode",) def _split(phase): return phase split = pe.MapNode( # We cannot use an inline connection function with MapNode niu.Function(function=_split, output_names=["map_file", "meta"]), iterfield=["phase"], run_without_submitting=True, name="split", ) # phase diff -> radians phmap2rads = pe.MapNode( PhaseMap2rads(), name="phmap2rads", iterfield=["in_file"], run_without_submitting=True, ) # FSL PRELUDE will perform phase-unwrapping prelude = pe.Node(PRELUDE(), name="prelude") calc_phdiff = pe.Node( SubtractPhases(), name="calc_phdiff", run_without_submitting=True ) calc_phdiff.interface._always_run = debug compfmap = pe.Node(Phasediff2Fieldmap(), name="compfmap") # fmt: off workflow.connect([ (inputnode, split, [("phase", "phase")]), (inputnode, prelude, [("magnitude", "magnitude_file"), ("mask", "mask_file")]), (split, phmap2rads, [("map_file", "in_file")]), (phmap2rads, calc_phdiff, [("out_file", "in_phases")]), (split, calc_phdiff, [("meta", "in_meta")]), (calc_phdiff, prelude, [("phase_diff", "phase_file")]), (prelude, compfmap, [("unwrapped_phase_file", "in_file")]), (calc_phdiff, compfmap, [("metadata", "metadata")]), (compfmap, outputnode, [("out_file", "fieldmap")]), ]) # fmt: on return workflow def _get_file(intuple): """ Extract the filename from the inputnode. >>> _get_file([("fmap.nii.gz", {"Units": "rad/s"})]) 'fmap.nii.gz' >>> _get_file(("fmap.nii.gz", {"Units": "rad/s"})) 'fmap.nii.gz' """ if isinstance(intuple, list): intuple = intuple[0] return intuple[0] def _get_units(intuple): """ Extract Units from metadata. >>> _get_units([("fmap.nii.gz", {"Units": "rad/s"})]) 'rad/s' >>> _get_units(("fmap.nii.gz", {"Units": "rad/s"})) 'rad/s' """ if isinstance(intuple, list): intuple = intuple[0] return intuple[1]["Units"] ``` #### File: fit/tests/test_phdiff.py ```python import os from pathlib import Path from json import loads import pytest from ..fieldmap import init_fmap_wf, Workflow @pytest.mark.skipif(os.getenv("TRAVIS") == "true", reason="this is TravisCI") @pytest.mark.skipif(os.getenv("GITHUB_ACTIONS") == "true", reason="this is GH Actions") @pytest.mark.parametrize( "fmap_file", [ ("ds001600/sub-1/fmap/sub-1_acq-v4_phasediff.nii.gz",), ( "ds001600/sub-1/fmap/sub-1_acq-v2_phase1.nii.gz", "ds001600/sub-1/fmap/sub-1_acq-v2_phase2.nii.gz", ), ("ds001771/sub-36/fmap/sub-36_acq-topup1_fieldmap.nii.gz",), ("HCP101006/sub-101006/fmap/sub-101006_phasediff.nii.gz",), ], ) def test_phdiff(tmpdir, datadir, workdir, outdir, fmap_file): """Test creation of the workflow.""" tmpdir.chdir() fmap_path = [datadir / f for f in fmap_file] fieldmaps = [ (str(f.absolute()), loads(Path(str(f).replace(".nii.gz", ".json")).read_text())) for f in fmap_path ] wf = Workflow( name=f"phdiff_{fmap_path[0].name.replace('.nii.gz', '').replace('-', '_')}" ) mode = "mapped" if "fieldmap" in fmap_path[0].name else "phasediff" phdiff_wf = init_fmap_wf(omp_nthreads=2, debug=True, mode=mode,) phdiff_wf.inputs.inputnode.fieldmap = fieldmaps phdiff_wf.inputs.inputnode.magnitude = [ f.replace("diff", "1") .replace("phase", "magnitude") .replace("fieldmap", "magnitude") for f, _ in fieldmaps ] if outdir: from ...outputs import init_fmap_derivatives_wf, init_fmap_reports_wf outdir = outdir / "unittests" / fmap_file[0].split("/")[0] fmap_derivatives_wf = init_fmap_derivatives_wf( output_dir=str(outdir), write_coeff=True, bids_fmap_id="phasediff_id", ) fmap_derivatives_wf.inputs.inputnode.source_files = [f for f, _ in fieldmaps] fmap_derivatives_wf.inputs.inputnode.fmap_meta = [f for _, f in fieldmaps] fmap_reports_wf = init_fmap_reports_wf( output_dir=str(outdir), fmap_type=mode if len(fieldmaps) == 1 else "phases", ) fmap_reports_wf.inputs.inputnode.source_files = [f for f, _ in fieldmaps] # fmt: off wf.connect([ (phdiff_wf, fmap_reports_wf, [ ("outputnode.fmap", "inputnode.fieldmap"), ("outputnode.fmap_ref", "inputnode.fmap_ref"), ("outputnode.fmap_mask", "inputnode.fmap_mask")]), (phdiff_wf, fmap_derivatives_wf, [ ("outputnode.fmap", "inputnode.fieldmap"), ("outputnode.fmap_ref", "inputnode.fmap_ref"), ("outputnode.fmap_coeff", "inputnode.fmap_coeff"), ]), ]) # fmt: on else: wf.add_nodes([phdiff_wf]) if workdir: wf.base_dir = str(workdir) wf.run(plugin="Linear") ```
{ "source": "josephmjoy/robotics", "score": 3 }
#### File: robotutils/comm/common.py ```python import abc from collections import namedtuple class DatagramTransport(abc.ABC): """ Interface for a datagram transport that is provided to an instance of RobotComm to provide the underlying raw communication. NOTE TO IMPLEMENTORS: The destination/remote node object is opaque to the clinents, however there are two requirements for this object: 1. It must support str to obtain a text representation of the address 2. It must be suitable for use as a key or set element, hence immutable. Strings and tuples work well for this. """ @abc.abstractmethod def send(self, msg, destination) -> None: """Sends a single text message. {destination} is an opaque node object returned by get_remote_node or in the transpoet receive handler""" @abc.abstractmethod def start_listening(self, handler) -> None: """ Starts listening for incoming datagrams. This will likely use up resources, such as a dedicated thread, depending on the implementation. handler(msg: str, remote_node: Object) -- called when a message arrives. The handler will likely be called in some other thread's context. The handler MUST NOT block. If time consuming operations need to be performed, queue the message for further processing, or implement a state machine. The handler *may* be reentered or called concurrently from another thread. Call stop_listening to stop new messages from being received. """ @abc.abstractmethod def stop_listening(self) -> None: """Stops listening""" @abc.abstractmethod def close(self) ->None: """Closes all open listeners and remote notes.""" ReceivedMessage = namedtuple('ReceivedMessage', ('msgtype', 'message', 'remote_node', 'received_timestamp', 'channel')) # Following requires Python 3.5+ ReceivedMessage.__doc__ += """: Incoming message as reported to client""" ServerStatistics = namedtuple('ServerStatistics', ('rcvd_commands', 'rcvd_CMDs', 'sent_CMDRESPs', 'rcvd_CMDRESPACKs', 'cur_SvrRecvdCmdMap_size', 'cur_SvrRcvdCmdIncomingQueue_size', 'cur_SvrRcvdCmdCompletedQueue_size')) ClientStatistics = namedtuple('ClientStatistics', ('sent_commands', 'sent_CMDs', 'rcvd_CMDRESPs', 'sent_CMDRESPACKs', 'cur_CliSentCmdMap_size', 'cur_CliSentCmdCompletionQueue_size')) ClientRtStatistics = namedtuple('ClientRtStatistics', ('approx_sent_rtcommands', 'approx_send_RTCMDs', 'approx_rcvd_RTCMDRESPs', 'approx_rttimeouts', 'cur_CliSentRtCmdMap_size')) ChannelStatistics = namedtuple('ChannelStatistics', ('channel_name', 'sent_messages', 'rcvd_messages', 'client_stats', 'client_rtstats', 'server_stats')) ``` #### File: python_robotutils/robotutils/config_helper.py ```python import sys import re _COLONSPACE = ": " # space after : is MANDATORY _REGEX_WHITESPACE = re.compile(r"\s+") _HYPHENSPACE = "- " # space after - is MANDATORY def read_section(reader, section_name, keys) -> dict: """ Loads the specified section from the specified reader. It will not raise an exception. On error (OS exception or not being able to find the section) it will return an empty dict. It leaves the reader in the same seek position as it did on entry, unless there was an OS exception, in which case the state of the file pointer will be unknown If {keys} is non-null it will clear it and fill it with the keys in the order that they were found in the input. Returns: dict representing mapping of keys to values for that specified section. """ mapping = {} if keys: keys.clear() # We work with a copy becaues we have to seek ahead # looking for the section # OBSOLETE with io.TextIOWrapper(reader) as reader2: try: start = reader.tell() if _find_section(section_name, reader): _process_section(reader, mapping, keys) reader.seek(start) except OSError as err: _printerr(err) #nothing to do return mapping def write_section(section_name, section, keys, writer) -> bool: """ Saves the specified section to the specified writer starting at the current point in the writer. It will not throw an exception. On error (IO exception or not being able to write the section) it will return false. WARNING: It can not scan the destination to see if this section has already been written, so typically this method is called when writing out an entire configuration with multiple sections in sequence. Returns True on success and False on failure. """ keys = keys if keys else section.keys() ret = False # OBSOLETE with io.TextIOWrapper(writer) as writer2: try: writer.write(section_name + ":\n") for k in keys: val = section.get(k) if val: output = " " + k + _COLONSPACE + val + "\n" writer.write(output) ret = True except OSError as err: _printerr(err) # Just return false return ret def read_list(section_name, reader) -> list: """ Loads the specified list-of-strings section from the specified reader. It will not throw an exception. On error (OS xception or not being able to find the section) it will return an empty list. It leaves the reader in the same seek position as it did on entry, unless there was an OS exception, in which case the state of the file pointer will be unknown. Return: List of strings in the section """ list_items = [] # OBSOLETE with io.TextIOWrapper(reader) as reader2: try: start = reader.tell() if _find_section(section_name, reader): _process_list_section(reader, list_items) reader.seek(start) except OSError as err: _printerr(err) # Just return false return list_items def write_list(section_name, list_items, writer) -> bool: """ Saves the specified list-of-strings section to the specified writer starting at the current point in the writer. It will not throw an exception. On error (OS exception or not being able to write the section) it will return false. WARNING: It cannot scan the destination to see if this section has already been written, so typically this method is called when writing out an entire configuration with multiple sections in sequence. Returns: True on success and False on failure. """ ret = False #OBSOLETE with io.TextIOWrapper(writer) as writer2: try: writer.write(section_name + ":\n") for item in list_items: output = " " + _HYPHENSPACE + item + "\n" writer.write(output) ret = True except OSError as err: _printerr(err) # Just return false return ret # # ------------ Private Methods ---------------- # def _find_section(section_name, reader) -> bool: """ Seeks to the start of the specified section. If it does not find the section the reader's file pointer will be in an unknown state. Returns: True on success and False on failure. """ if not section_name or ' ' in section_name or ':' in section_name or '\t' in section_name: # Bogus section name. Note that colons are not allowed within section names, # though that is valid YAML. # This is because this is a configuration reader, not general YAML parser. return False # ******************** EARLY RETURN ******************* ret = False for line in reader: if line.startswith("..."): break if _matches_section_name(line, section_name): remaining = line[len(section_name):] remaining = _trim_comment(remaining).strip() if ':' in remaining: icolon = remaining.index(':') precolon = remaining[:icolon].strip() postcolon = remaining[icolon + 1:].strip() ret = not (precolon or postcolon) break # doesn't match, keep looking... return ret def _matches_section_name(line, section_name) -> bool: """Checks if {line} starts with the specified section name """ if not line.startswith(section_name): return False # Line STARTS with {section_name} - promising, but perhaps it's a prefix of # a longer section name or something badly garbled... if len(line) > len(section_name): char = line[len(section_name)] # char right after sectioName if not char in "\t :#": # 1st post char could be part of a longer section name, so let's just keep # looking return False return True def _trim_comment(line) -> str: """Remove comment from end of line, if any""" if '#' in line: icomment = line.index('#') line = line[:icomment] return line def _process_section(reader, mapping, keys) -> None: """ Read in a section. Place any (k,v) pairs in to dict {mapping}. If {keys} add any keys read, in the order they were read. """ indentation = -1 # we will set it when we find the first child of the section. for line in reader: if line.startswith("..."): break line = _trim_comment(line) validkv = False pre = post = "" if line and not _REGEX_WHITESPACE.fullmatch(line): icolon = line.index(_COLONSPACE) if _COLONSPACE in line else -1 if icolon: pre = line[:icolon].strip() post = line[icolon + 1:].strip() # +1 for space after colon else: # The other case is the line *ends* in a colon... if line.endswith(':'): pre = line[:-1].strip() post = "" if pre: this_indentation = line.index(pre) if indentation < 0: indentation = this_indentation assert indentation >= 0 if indentation < 1 or this_indentation < indentation: # We are done because indentation level has popped up. break validkv = indentation == this_indentation and post if validkv: mapping[pre] = post if keys: keys.append(pre) def _process_list_section(reader, items) -> None: """ Read a list of strings and put them into {items}. Quit early if encountering anything unexpected """ indentation = -1 # we will set it when we find the first child of the section. quit_ = False for line in reader: if quit_ or line.startswith("..."): break line = _trim_comment(line) if line and not _REGEX_WHITESPACE.fullmatch(line): quit_ = True if _HYPHENSPACE in line: ihyphen = line.index(_HYPHENSPACE) pre = line[:ihyphen].strip() post = line[ihyphen + 1:].strip() # +1 for space after hyphen if not pre: this_indentation = ihyphen if indentation < 0: indentation = this_indentation assert indentation >= 0 # We expect strictly indented lines with exactly the same # indentation. if indentation >= 1 and this_indentation == indentation: items.append(post) # Empty strings are added too. quit_ = False def _printerr(*args): """print error message""" print(*args, file=sys.stderr) ``` #### File: python_robotutils/tests/test_comm_helper.py ```python import time import logging import unittest import concurrent.futures #Pylint complains about import order of .context, but if it is put later, #unittest (with -k) can't find robotutils, because it hasn't loaded .context #when discovering other tests #from .context import robotutils from robotutils.comm_helper import UdpTransport, EchoServer, EchoClient from robotutils import concurrent_helper as conc from .context import logging_helper # also to ensure .context gets loaded _LOGNAME = "test" _LOGGER = logging.getLogger(_LOGNAME) _TRACE = logging_helper.LevelSpecificLogger(logging_helper.TRACELEVEL, _LOGGER) # Uncomment one of these to set the global trace level for ALL unit tests, not # just the ones in this file. # logging.basicConfig(level=logging.INFO) #logging.basicConfig(level=logging_helper.TRACELEVEL) SERVER_IP_ADDRESS = "127.0.0.1" SERVER_PORT = 41899 + 3 MAX_PACKET_SIZE = 1024 class CommUtilsTest(unittest.TestCase): """Unit tests for comm_helper""" # Echo client-server tests use these channel names. ECHO_CHANNEL_A = "A" MSG_PREFIX = "MSG" def test_udp_transport_simple(self): """Simple test of the UDP transport""" # The client sends string versions of integers 1 to N # The server parses and adds these up and in the end # the test verifies that the sum is as expected. client = UdpTransport(recv_bufsize=MAX_PACKET_SIZE) server = UdpTransport(recv_bufsize=MAX_PACKET_SIZE, local_host=SERVER_IP_ADDRESS, local_port=SERVER_PORT) count = 1000 total = conc.AtomicNumber(0) latch = conc.CountDownLatch(count) def process_message(msg, node): _TRACE("Server got message [{}] from {}".format(msg, node)) val = int(msg[len(self.MSG_PREFIX):]) # skip past prefix total.add(val) latch.count_down() server.start_listening(process_message) remote = client.new_remote_node(SERVER_IP_ADDRESS, SERVER_PORT) for i in range(1, count+1): msg = self.MSG_PREFIX + str(i) client.send(msg, remote) _TRACE("Client sent message [{}]".format(msg)) # time.sleep(0.1) _LOGGER.info("Waiting for all messages to arrive...") if latch.wait(1): _LOGGER.info("Done waiting for all %d messages to arrive.", count) expected = count * (count + 1) // 2 # sum of 1 to count self.assertEqual(total.value(), expected) else: msg = "TIMED OUT waiting for all {} messages to arrive.".format(count) self.fail(msg) client.close() server.close() self.assertEqual(client._send_errors, 0) # pylint: disable=protected-access self.assertEqual(server._send_errors, 0) # pylint: disable=protected-access def test_only_echo_client(self): """Test the UDP echo client sending to nowhere""" client = EchoClient('localhost') num_sends = 4 # send_messages will block until done... _TRACE("GOING TO SEND MESSAGES") client.send_messages(num_sends) _TRACE("DONE SENDING MESSAGES") client.close() self.assertTrue(bool(client)) # replace with some better check def test_only_echo_server(self): """Test the UDP echo server waiting for a client never shows up""" server = EchoServer('localhost') stop_server = False with concurrent.futures.ThreadPoolExecutor(1) as executor: def runserver(): server.start() while not stop_server: server.periodic_work() time.sleep(0.1) server.stop() executor.submit(runserver) time.sleep(1) stop_server = True _TRACE("Waiting for server to shut down") self.assertTrue(stop_server) # replace with some better check def test_echo_nomsgs(self): """Test the UDP echo client and server with 0 messages""" self.run_echo_test(num_sends=0) def test_echo_simple(self): """Test the UDP echo client and server with a small number of messages""" self.run_echo_test(num_sends=1) def test_echo_stress(self): """Test the UDP echo client and server with a small number of messages""" self.run_echo_test(num_sends=1000, rate=5000) def run_echo_test(self, *, num_sends, rate=1): """Parametrized echo client server test""" server = EchoServer('localhost') client = EchoClient('localhost') client.set_parameters(rate=rate) stop_server = False receive_count = 0 server.start() with concurrent.futures.ThreadPoolExecutor(1) as executor: def runserver(): while not stop_server: server.periodic_work() time.sleep(0.1) executor.submit(runserver) time.sleep(0.1) # Give some time for server to get started def response_handler(resptype, respbody): _TRACE("GOT RESPONSE (%s, %s)", resptype, respbody) nonlocal receive_count receive_count += 1 # assume call to hander is serialized # send_messages will block until done... try: _TRACE("GOING TO SEND MESSAGES") client.send_messages(num_sends, response_handler=response_handler) _TRACE("DONE SENDING MESSAGES") except Exception: # pylint: disable=broad-except _LOGGER.exception("While sending messages") self.fail("Exception thrown") finally: client.close() server.stop() stop_server = True _TRACE("Waiting for server to shut down") _LOGGER.info("Echo test complete. Sent: %d Received: %d", num_sends, receive_count) if num_sends > 2: # We may lose the 1st or last message based on timing self.assertGreater(receive_count, 0) # Should receive at least 1 message" ``` #### File: python_robotutils/tests/test_config_helper.py ```python import unittest import io from .context import config_helper class TestConfigHelper(unittest.TestCase): """Container for config_helper unit tests""" def test_simple_section_usage(self): """Test simple non-empty section""" inp = "\n".join(("mySection:", " sk: sv", " ik: 10\n")) reader = io.StringIO(inp) # in-memory stream input keys = [] mapper = config_helper.read_section(reader, "mySection", keys) writer = io.StringIO() # in-memory stream output bresult = config_helper.write_section("mySection", mapper, keys, writer) self.assertTrue(bresult) output = writer.getvalue() self.assertEqual(inp, output) def test_simple_list_usage(self): """Test a simple list of two items""" inp = "\n".join(("myList:", " - item1", " - item2\n")) reader = io.StringIO(inp) # in-memory stream input lines = config_helper.read_list("myList", reader) writer = io.StringIO() # in-memory stream output bresult = config_helper.write_list("myList", lines, writer) self.assertTrue(bresult) output = writer.getvalue() self.assertEqual(inp, output) def test_messy_yaml_input(self): """Test a much more complicated config file""" inp = """ # This is a comment --- # Section 1 section1: k1a: v1a k1b: v1b sectionx:# empty section section2: # with comment k2a: v2a k2b: v2b section3: # with comment kComplex: #complex section to be ignored with complex floating text complex1: 1 complex2: 2 k3a: v3a # added comment # some comment and empty lines and lines with spacecs # comment \t k3b: v3b section4: # with comment k4a: v4a k4b: v4b badSect: badVal skip: skip # List 1 list1: - v1a - v1b listx:# empty section list2: # with comment - v2a - v2b list3: # with comment - v3a # added comment # some comment and empty lines and lines with spacecs # comment \t - v3b kComplex: #complex section will trigger early quitting with complex floating text complex1: 1 complex2: 2 - random item list4: # with comment - v4a - v4b - badVal - skip """ keys = [] writer = io.StringIO() # in-memory stream output reader = io.StringIO(inp) # in-memory stream input # Process sections for i in range(1, 5): stri = str(i) section = "section" + stri mapping = config_helper.read_section(reader, section, keys) ret = config_helper.write_section(section, mapping, keys, writer) self.assertEqual(True, ret) # We expect certain keys and values to be there. self.assertEqual(2, len(mapping)) self.assertEqual("v" + stri + "a", mapping.get("k" + stri + "a")) self.assertEqual("v" + stri + "b", mapping.get("k" + stri + "b")) # Process lists for i in range(1, 5): stri = str(i) section = "list" + stri items = config_helper.read_list(section, reader) ret = config_helper.write_list(section, items, writer) self.assertTrue(ret) # We expect certain list items to be there. self.assertEqual(2, len(items)) self.assertEqual("v"+ stri +"a", items[0]) self.assertEqual("v"+ stri +"b", items[1]) # Creat new input from what was just written input2 = writer.getvalue() writer2 = io.StringIO() # Process sections a 2nd time - from the new input reader = io.StringIO(input2) for i in range(1, 5): section = "section" + str(i) mapping = config_helper.read_section(reader, section, keys) ret = config_helper.write_section(section, mapping, keys, writer2) self.assertTrue(ret) # Process lists a 2nd time - from the new input for i in range(1, 5): section = "list" + str(i) items = config_helper.read_list(section, reader) ret = config_helper.write_list(section, items, writer2) self.assertTrue(ret) output2 = writer2.getvalue() self.assertEqual(input2, output2) ``` #### File: python_robotutils/tests/test_msgmap.py ```python import unittest import random import sys from .context import msgmap # pylint: disable=invalid-name class TestStringMethods(unittest.TestCase): """Container class for unittest tests.""" def test_empty_str_to_dict(self): """Empty string to dict """ d = msgmap.str_to_dict('') self.assertEqual(len(d), 0) def test_empty_dict_to_str(self): """Empty dict to string""" s = msgmap.dict_to_str(dict()) self.assertEqual(len(s), 0) def test_singleton_str_to_dict(self): """single kv-pair to dict""" d = msgmap.str_to_dict('k:v') self.assertEqual(len(d), 1) self.assertEqual(d.get('k'), 'v') def test_singleton_dict_to_str(self): """dict to single kv-pair""" s = msgmap.dict_to_str({'k':'v'}) self.assertEqual(s, 'k:v') def test_simple_str_to_dict(self): """ Simple case of multiple kv-pairs - str to dict""" d = msgmap.str_to_dict('k1:v1 k2:v2 k3:v3') self.assertEqual(len(d), 3) self.assertEqual(d.get('k1'), 'v1') self.assertEqual(d.get('k2'), 'v2') self.assertEqual(d.get('k3'), 'v3') def test_simple_dict_to_str(self): """ Simple case of multiple kv-pairs - dict to str""" s = msgmap.dict_to_str({'k1':'v1', 'k2':'v2', 'k3':'v3'}) # On Python < 3.7, key insert order may not be in order of insertion... sorted_s = " ".join(sorted(s.split())) self.assertEqual(sorted_s, 'k1:v1 k2:v2 k3:v3') def test_more_complex_mappings(self): ''' This test creates some crazy key-value pairs with random amounts of whitespace between them, and verifies that str-to-dict works in both directions. ''' keys = [ "!#!@AB89.[],/-+", "2f0j20j0j", "13r2ffs,,,,,,", "-n339ghhss8898v", "d" ] values = [ "13r \n\t \r doo bE B", "waka waka waka", "What's all the fuss?!", "(a=3.5, b=4.5, c=11.2)", "\"some quoted string\"" ] #keys = ['a', 'b', 'c'] #values = ['1', '2', '3'] assert len(keys) == len(values) kv_dirty = [] # includes random whitespace kv_clean = [] # does not include any whitespace pre = '' for (k, v) in zip(keys, values): # make sure our keys and values have no edge whitespaces. We # depend on this so that when we convert from dict to str we # get exactly what we predict. assert k == k.strip() assert v == v.strip() # This is to ensure that there is a space between each value and # subsequent key pk = pre + k pre = ' ' # note: random_whitespace may return an empty string kv_dirty.append(random_whitespace()) kv_clean.append(pk) kv_dirty.append(pk) kv_dirty.append(random_whitespace()) kv_clean.append(':') kv_dirty.append(':') kv_dirty.append(random_whitespace()) kv_clean.append(v) kv_dirty.append(v) kv_dirty.append(random_whitespace()) msg_dirty = ''.join(kv_dirty) msg_clean = ''.join(kv_clean) # create a dictionary using the 'dirty' message - which has random # whitespace inserted -- and verify that all the k:v mappings are there d = msgmap.str_to_dict(msg_dirty) for (k, v) in zip(keys, values): self.assertEqual(v, d.get(k)) # now convert back to a string and verify it is what we expect - the # clean string! This only works in Python 3.7+ because key order is # not deterministic in earlier versons if min_version(3, 7): output_msg = msgmap.dict_to_str(d) self.assertEqual(output_msg, msg_clean) def random_whitespace(): """Return a 'random' amount of 'random' whitespace characters""" whitespace = ' \t\t \n\r ' i = random.randrange(len(whitespace)) return whitespace[i:] def min_version(major, minor): """Returns true if the python version is at least {major}'.'{minor}""" cur = sys.version_info return cur.major >= major and cur.minor >= minor ```
{ "source": "Joseph-ML/training-data-analyst", "score": 2 }
#### File: blogs/beamadvent/day3b.py ```python import apache_beam as beam import numpy as np import argparse, logging def find_locations(wire): positions = [(0,(0,0))] # row, (col, steps) for nav in wire.split(','): dir = nav[0] if dir == 'L': update = (-1, 0) elif dir == 'R': update = (1, 0) elif dir == 'U': update = (0, 1) else: update = (0, -1) n = int(nav[1:]) for _ in range(n): row, (col, steps) = positions[-1] newpos = (row + update[0], (col + update[1], steps+1)) positions.append(newpos) return positions[1:] # remove the 0,0 def find_intersection(kv): row, d = kv if d['wire1'] and d['wire2']: wire1 = d['wire1'][0] wire2 = d['wire2'][0] for col1, steps1 in wire1: for col2, steps2 in wire2: if col1 == col2: yield (row, col1, steps1+steps2) def manhattan(rc): row, col = rc return abs(row) + abs(col) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Solutions to https://adventofcode.com/2019/ using Apache Beam') parser.add_argument('--input', required=True, help='Specify input file') parser.add_argument('--output', required=True, help='Specify output file') options = parser.parse_args() runner = 'DirectRunner' # run Beam on local machine, but write outputs to cloud logging.basicConfig(level=getattr(logging, 'INFO', None)) #wires = ('R75,D30,R83,U83,L12,D49,R71,U7,L72', 'U62,R66,U55,R34,D71,R55,D58,R83') #wires = ('R98,U47,R26,D63,R33,U87,L62,D20,R33,U53,R51', 'U98,R91,D20,R16,D67,R40,U7,R15,U6,R7') wires = [line.rstrip() for line in open(options.input)] print(wires) opts = beam.pipeline.PipelineOptions(flags=[]) p = beam.Pipeline(runner, options=opts) locations = {'wire1': (p | 'create1' >> beam.Create(find_locations(wires[0])) | 'group1' >> beam.GroupByKey()), 'wire2': (p | 'create2' >> beam.Create(find_locations(wires[1])) | 'group2' >> beam.GroupByKey()) } (locations | 'cogroup' >> beam.CoGroupByKey() | 'intersect' >> beam.FlatMap(find_intersection) | 'signal' >> beam.Map(lambda rcs: rcs[2]) | 'mindist' >> beam.CombineGlobally(beam.transforms.combiners.TopCombineFn(1, reverse=True)) | 'output' >> beam.io.textio.WriteToText(options.output) ) job = p.run() if runner == 'DirectRunner': job.wait_until_finish() ``` #### File: blogs/df_linear_opt/linearopt.py ```python PROJECT = 'ai-analytics-solutions' BUCKET = 'ai-analytics-solutions-kfpdemo' REGION = 'us-central1' INPUT = 'input.json' RUNNER = 'DirectRunner' OUTPUT = 'output.json' # to try it in streaming mode, write one json message at a time to pub/sub # and change the input to beam.io.ReadFromPubSub(topic=input_topic) # and change the output to beam.io.WriteStringsToPubSub(output_topic) from datetime import datetime import apache_beam as beam class Inventory: # only dye & concentrate can be carried forward in time, not labor or water def __init__(self, leftover=[]): if len(leftover) == 4: self.dye = leftover[0] self.concentrate = leftover[3] else: self.dye = self.concentrate = 0 def update(self, leftover): self.dye = leftover[0] self.concentrate = leftover[3] def linopt(materials, inventory): import numpy as np from scipy.optimize import linprog from scipy.optimize import OptimizeResult # coefficients of optimization function to *minimize* c = -1 * np.array([50, 100, 125, 40]) # constraints A_ub @x <= b_ub (could also use a_eq, b_eq, etc.) A_ub = [ [50, 60, 100, 50], [5, 25, 10, 5], [300, 400, 800, 200], [30, 75, 50, 20] ] b_ub = [ materials['dye'] + inventory.dye, materials['labor'], materials['water'], materials['concentrate'] + inventory.concentrate ] bounds = [ (0, np.inf), (0, 25), (0, 10), (0, np.inf) ] def log_info(status): print(status.nit, status.fun) res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=bounds, callback=log_info) qty = np.floor(np.round(res.x, 1)) leftover = b_ub - np.matmul(A_ub, qty) print("{} --> {} --> {} + {}".format(materials, b_ub, qty, list(np.round(leftover)))) inventory.update(leftover) return qty def get_latest_inventory(pvalue): return Inventory(beam.pvalue.AsSingleton(lambda x: x[-1])) # last value def run(): import json options = beam.options.pipeline_options.PipelineOptions() setup_options = options.view_as(beam.options.pipeline_options.SetupOptions) setup_options.save_main_session = True google_cloud_options = options.view_as(beam.options.pipeline_options.GoogleCloudOptions) google_cloud_options.project = PROJECT google_cloud_options.region = REGION google_cloud_options.job_name = 'linearopt-{}'.format(datetime.now().strftime("%Y%m%d-%H%M%S")) google_cloud_options.staging_location = 'gs://{}/staging'.format(BUCKET) google_cloud_options.temp_location = 'gs://{}/temp'.format(BUCKET) std_options = options.view_as(beam.options.pipeline_options.StandardOptions) std_options.runner = RUNNER p = beam.Pipeline(options=options) inventory = Inventory() (p | 'ingest' >> beam.io.ReadFromText(INPUT) | 'parse' >> beam.Map(lambda x: json.loads(x)) | 'with_ts' >> beam.Map(lambda x: beam.window.TimestampedValue(x, x['timestamp'])) # | 'windowed' >> beam.WindowInto(beam.window.FixedWindows(60)) # 1-minute windows # | 'materials' >> beam.CombinePerKey(sum) | 'optimize' >> beam.Map(lambda x: linopt(x, inventory)) | 'output' >> beam.io.WriteToText(OUTPUT) ) result = p.run() result.wait_until_finish() if __name__ == '__main__': run() ``` #### File: blogs/gcp_forecasting/time_series.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import numpy as np import pandas as pd from pandas.tseries.holiday import USFederalHolidayCalendar as calendar def _keep(window, windows): """Helper function for creating rolling windows.""" windows.append(window.copy()) return -1. # Float return value required for Pandas apply. def create_rolling_features_label(series, window_size, pred_offset, pred_n=1): """Computes rolling window of the series and creates rolling window of label. Args: series: A Pandas Series. The indices are datetimes and the values are numeric type. window_size: integer; steps of historical data to use for features. pred_offset: integer; steps into the future for prediction. pred_n: integer; window size of label. Returns: Pandas dataframe where the index is the datetime predicting at. The columns beginning with "-" indicate windows N steps before the prediction time. Examples: >>> series = pd.Series(np.random.random(6), index=pd.date_range(start='1/1/2018', end='1/06/2018')) # Example #1: >>> series 2018-01-01 0.803948 2018-01-02 0.269849 2018-01-03 0.971984 2018-01-04 0.809718 2018-01-05 0.324454 2018-01-06 0.229447 >>> window_size = 3 # get 3 months of historical data >>> pred_offset = 1 # predict starting next month >>> pred_n = 1 # for predicting a single month >>> utils.create_rolling_features_label(series, window_size, pred_offset, pred_n) pred_datetime -3_steps -2_steps -1_steps label 2018-01-04 0.803948 0.269849 0.971984 0.809718 2018-01-05 0.269849 0.971984 0.809718 0.324454 2018-01-06 0.971984 0.809718 0.324454 0.229447 # Example #2: >>> window_size = 3 # get 3 months of historical data >>> pred_offset = 2 # predict starting 2 months into future >>> pred_n = 1 # for predicting a single month >>> utils.create_rolling_features_label(series, window_size, pred_offset, pred_n) pred_datetime -4_steps -3_steps -2_steps label 2018-01-05 0.803948 0.269849 0.971984 0.324454 2018-01-06 0.269849 0.971984 0.809718 0.229447 # Example #3: >>> window_size = 3 # get 3 months of historical data >>> pred_offset = 1 # predict starting next month >>> pred_n = 2 # for predicting a multiple months >>> utils.create_rolling_features_label(series, window_size, pred_offset, pred_n) pred_datetime -3_steps -2_steps -1_steps label_0_steps label_1_steps 2018-01-04 0.803948 0.269849 0.971984 0.809718 0.324454 2018-01-05 0.269849 0.971984 0.809718 0.324454 0.229447 """ if series.isnull().sum() > 0: raise ValueError('Series must not contain missing values.') if pred_n < 1: raise ValueError('pred_n must not be < 1.') if len(series) < (window_size + pred_offset + pred_n): raise ValueError('window_size + pred_offset + pred_n must not be greater ' 'than series length.') total_steps = len(series) def compute_rolling_window(series, window_size): # Accumulate series into list. windows = [] series.rolling(window_size)\ .apply(_keep, args=(windows,)) return np.array(windows) features_start = 0 features_end = total_steps - (pred_offset - 1) - pred_n historical_windows = compute_rolling_window( series[features_start:features_end], window_size) # Get label pred_offset steps into the future. label_start, label_end = window_size + pred_offset - 1, total_steps label_series = series[label_start:label_end] y = compute_rolling_window(label_series, pred_n) if pred_n == 1: # TODO(crawles): remove this if statement/label name. It's for backwards # compatibility. columns = ['label'] else: columns = ['label_{}_steps'.format(i) for i in range(pred_n)] # Make dataframe. Combine features and labels. label_ix = label_series.index[0:len(label_series) + 1 - pred_n] df = pd.DataFrame(y, columns=columns, index=label_ix) df.index.name = 'pred_date' # Populate dataframe with past sales. for day in range(window_size - 1, -1, -1): day_rel_label = pred_offset + window_size - day - 1 df.insert(0, '-{}_steps'.format(day_rel_label), historical_windows[:, day]) return df def add_aggregate_features(df, time_series_col_names): """Compute summary statistic features for every row of dataframe.""" x = df[time_series_col_names] features = {'mean': x.mean(axis=1)} features['std'] = x.std(axis=1) features['min'] = x.min(axis=1) features['max'] = x.max(axis=1) percentiles = range(10, 100, 20) for p in percentiles: features['{}_per'.format(p)] = np.percentile(x, p, axis=1) df_features = pd.DataFrame(features, index=x.index) return df_features.merge(df, left_index=True, right_index=True) def move_column_to_end(df, column_name): temp = df[column_name] df.drop(column_name, axis=1, inplace=True) df[column_name] = temp def is_between_dates(dates, start=None, end=None): """Return boolean indices indicating if dates occurs between start and end.""" if start is None: start = pd.to_datetime(0) if end is None: end = pd.to_datetime(sys.maxsize) date_series = pd.Series(pd.to_datetime(dates)) return date_series.between(start, end).values def _count_holidays(dates, months, weeks): """Count number of holidays spanned in prediction windows.""" cal = calendar() holidays = cal.holidays(start=dates.min(), end=dates.max()) def count_holidays_during_month(date): beg = date end = date + pd.DateOffset(months=months, weeks=weeks) return sum(beg <= h < end for h in holidays) return pd.Series(dates).apply(count_holidays_during_month) def _get_day_of_month(x): """From a datetime object, extract day of month.""" return int(x.strftime('%d')) def add_date_features(df, dates, months, weeks, inplace=False): """Create features using date that is being predicted on.""" if not inplace: df = df.copy() df['doy'] = dates.dayofyear df['dom'] = dates.map(_get_day_of_month) df['month'] = dates.month df['year'] = dates.year df['n_holidays'] = _count_holidays(dates, months, weeks).values return df class Metrics(object): """Performance metrics for regressor.""" def __init__(self, y_true, predictions): self.y_true = y_true self.predictions = predictions self.residuals = self.y_true - self.predictions self.rmse = self.calculate_rmse(self.residuals) self.mae = self.calculate_mae(self.residuals) self.malr = self.calculate_malr(self.y_true, self.predictions) def calculate_rmse(self, residuals): """Root mean squared error.""" return np.sqrt(np.mean(np.square(residuals))) def calculate_mae(self, residuals): """Mean absolute error.""" return np.mean(np.abs(residuals)) def calculate_malr(self, y_true, predictions): """Mean absolute log ratio.""" return np.mean(np.abs(np.log(1 + predictions) - np.log(1 + y_true))) def report(self, name=None): if name is not None: print_string = '{} results'.format(name) print(print_string) print('~' * len(print_string)) print('RMSE: {:2.3f}\nMAE: {:2.3f}\nMALR: {:2.3f}'.format( self.rmse, self.mae, self.malr)) ``` #### File: rl_model_code/trainer/model.py ```python import json import os import gym import numpy as np import tensorflow as tf tf.reset_default_graph() # task.py arguments. N_GAMES_PER_UPDATE = None DISCOUNT_RATE = None N_HIDDEN = None LEARNING_RATE = None # Currently hardcoded. n_max_steps = 1000 n_iterations = 30 save_iterations = 5 # For cartpole. env = gym.make('CartPole-v0') n_inputs = 4 n_outputs = 1 def discount_rewards(rewards, discount_rate): discounted_rewards = np.zeros(len(rewards)) cumulative_rewards = 0 for step in reversed(range(len(rewards))): cumulative_rewards = rewards[step] + cumulative_rewards * discount_rate discounted_rewards[step] = cumulative_rewards return discounted_rewards def discount_and_normalize_rewards(all_rewards, discount_rate): all_discounted_rewards = [ discount_rewards(rewards, discount_rate) for rewards in all_rewards ] flat_rewards = np.concatenate(all_discounted_rewards) reward_mean = flat_rewards.mean() reward_std = flat_rewards.std() return [(discounted_rewards - reward_mean) / reward_std for discounted_rewards in all_discounted_rewards] def hp_directory(model_dir): """If running a hyperparam job, create subfolder name with trial ID. If not running a hyperparam job, just keep original model_dir. """ trial_id = json.loads(os.environ.get('TF_CONFIG', '{}')).get('task', {}).get( 'trial', '') return os.path.join(model_dir, trial_id) # Play games and train agent. Or evaluate and make gifs. def run(outdir, train_mode): # Build network. initializer = tf.keras.initializers.VarianceScaling() X = tf.placeholder(tf.float32, shape=[None, n_inputs]) hidden = tf.layers.dense( X, N_HIDDEN, activation=tf.nn.elu, kernel_initializer=initializer) logits = tf.layers.dense(hidden, n_outputs) outputs = tf.nn.sigmoid(logits) # probability of action 0 (left) p_left_and_right = tf.concat(axis=1, values=[outputs, 1 - outputs]) action = tf.multinomial(tf.log(p_left_and_right), num_samples=1) # Optimizer, gradients. y = 1. - tf.to_float(action) cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits( labels=y, logits=logits) optimizer = tf.train.AdamOptimizer(LEARNING_RATE) grads_and_vars = optimizer.compute_gradients(cross_entropy) gradients = [grad for grad, variable in grads_and_vars] gradient_placeholders = [] grads_and_vars_feed = [] for grad, variable in grads_and_vars: gradient_placeholder = tf.placeholder(tf.float32, shape=grad.get_shape()) gradient_placeholders.append(gradient_placeholder) grads_and_vars_feed.append((gradient_placeholder, variable)) training_op = optimizer.apply_gradients(grads_and_vars_feed) # For TensorBoard. episode_reward = tf.placeholder(dtype=tf.float32, shape=[]) tf.summary.scalar('reward', episode_reward) init = tf.global_variables_initializer() saver = tf.train.Saver() if train_mode: hp_save_dir = hp_directory(outdir) with tf.Session() as sess: init.run() # For TensorBoard. print('hp_save_dir') train_writer = tf.summary.FileWriter(hp_save_dir, sess.graph) for iteration in range(n_iterations): all_rewards = [] all_gradients = [] for game in range(N_GAMES_PER_UPDATE): current_rewards = [] current_gradients = [] obs = env.reset() for _ in range(n_max_steps): action_val, gradients_val = sess.run( [action, gradients], feed_dict={X: obs.reshape(1, n_inputs)}) obs, reward, done, info = env.step(action_val[0][0]) current_rewards.append(reward) current_gradients.append(gradients_val) if done: break all_rewards.append(current_rewards) all_gradients.append(current_gradients) avg_reward = np.mean(([np.sum(r) for r in all_rewards])) print('\rIteration: {}, Reward: {}'.format( iteration, avg_reward, end='')) all_rewards = discount_and_normalize_rewards( all_rewards, discount_rate=DISCOUNT_RATE) feed_dict = {} for var_index, gradient_placeholder in enumerate(gradient_placeholders): mean_gradients = np.mean([ reward * all_gradients[game_index][step][var_index] for game_index, rewards in enumerate(all_rewards) for step, reward in enumerate(rewards) ], axis=0) feed_dict[gradient_placeholder] = mean_gradients sess.run(training_op, feed_dict=feed_dict) if iteration % save_iterations == 0: print('Saving model to ', hp_save_dir) model_file = '{}/my_policy_net_pg.ckpt'.format(hp_save_dir) saver.save(sess, model_file) # Also save event files for TB. merge = tf.summary.merge_all() summary = sess.run(merge, feed_dict={episode_reward: avg_reward}) train_writer.add_summary(summary, iteration) obs = env.reset() steps = [] done = False else: # Make a gif. from moviepy.editor import ImageSequenceClip model_file = '{}/my_policy_net_pg.ckpt'.format(outdir) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.restore(sess, save_path=model_file) # Run model. obs = env.reset() done = False steps = [] rewards = [] while not done: s = env.render('rgb_array') steps.append(s) action_val = sess.run(action, feed_dict={X: obs.reshape(1, n_inputs)}) obs, reward, done, info = env.step(action_val[0][0]) rewards.append(reward) print('Final reward :', np.mean(rewards)) clip = ImageSequenceClip(steps, fps=30) clip.write_gif('cartpole.gif', fps=30) ``` #### File: mnist/testing/tfjob_test.py ```python import json import logging import os import pytest from kubernetes.config import kube_config from kubernetes import client as k8s_client from kubeflow.tf_operator import tf_job_client #pylint: disable=no-name-in-module from kubeflow.testing import util def test_training(record_xml_attribute, tfjob_name, namespace, trainer_image, num_ps, #pylint: disable=too-many-arguments num_workers, train_steps, batch_size, learning_rate, model_dir, export_dir): util.set_pytest_junit(record_xml_attribute, "test_mnist") util.maybe_activate_service_account() app_dir = os.path.join(os.path.dirname(__file__), "../training/GCS") app_dir = os.path.abspath(app_dir) logging.info("--app_dir not set defaulting to: %s", app_dir) # TODO (@jinchihe) Using kustomize 2.0.3 to work around below issue: # https://github.com/kubernetes-sigs/kustomize/issues/1295 kusUrl = 'https://github.com/kubernetes-sigs/kustomize/' \ 'releases/download/v2.0.3/kustomize_2.0.3_linux_amd64' util.run(['wget', '-q', '-O', '/usr/local/bin/kustomize', kusUrl], cwd=app_dir) util.run(['chmod', 'a+x', '/usr/local/bin/kustomize'], cwd=app_dir) # TODO (@jinchihe): The kubectl need to be upgraded to 1.14.0 due to below issue. # Invalid object doesn't have additional properties ... kusUrl = 'https://storage.googleapis.com/kubernetes-release/' \ 'release/v1.14.0/bin/linux/amd64/kubectl' util.run(['wget', '-q', '-O', '/usr/local/bin/kubectl', kusUrl], cwd=app_dir) util.run(['chmod', 'a+x', '/usr/local/bin/kubectl'], cwd=app_dir) # Configurate custom parameters using kustomize util.run(['kustomize', 'edit', 'set', 'namespace', namespace], cwd=app_dir) util.run( ['kustomize', 'edit', 'set', 'image', f'training-image={trainer_image}'], cwd=app_dir, ) util.run(['../base/definition.sh', '--numPs', num_ps], cwd=app_dir) util.run(['../base/definition.sh', '--numWorkers', num_workers], cwd=app_dir) trainning_config = { "name": tfjob_name, "trainSteps": train_steps, "batchSize": batch_size, "learningRate": learning_rate, "modelDir": model_dir, "exportDir": export_dir, } configmap = 'mnist-map-training' for key, value in trainning_config.items(): util.run( [ 'kustomize', 'edit', 'add', 'configmap', configmap, f'--from-literal={key}={value}', ], cwd=app_dir, ) # Created the TFJobs. util.run(['kustomize', 'build', app_dir, '-o', 'generated.yaml'], cwd=app_dir) util.run(['kubectl', 'apply', '-f', 'generated.yaml'], cwd=app_dir) logging.info("Created job %s in namespaces %s", tfjob_name, namespace) kube_config.load_kube_config() api_client = k8s_client.ApiClient() # Wait for the job to complete. logging.info("Waiting for job to finish.") results = tf_job_client.wait_for_job( api_client, namespace, tfjob_name, status_callback=tf_job_client.log_status) logging.info("Final TFJob:\n %s", json.dumps(results, indent=2)) if creation_failures := tf_job_client.get_creation_failures_from_tfjob( api_client, namespace, results): logging.warning(creation_failures) if not tf_job_client.job_succeeded(results): failure = "Job {0} in namespace {1} in status {2}".format( # pylint: disable=attribute-defined-outside-init tfjob_name, namespace, results.get("status", {})) logging.error(failure) # if the TFJob failed, print out the pod logs for debugging. pod_names = tf_job_client.get_pod_names( api_client, namespace, tfjob_name) logging.info("The Pods name:\n %s", pod_names) core_api = k8s_client.CoreV1Api(api_client) for pod in pod_names: logging.info("Getting logs of Pod %s.", pod) try: pod_logs = core_api.read_namespaced_pod_log(pod, namespace) logging.info("The logs of Pod %s log:\n %s", pod, pod_logs) except k8s_client.rest.ApiException as e: logging.info("Exception when calling CoreV1Api->read_namespaced_pod_log: %s\n", e) return # We don't delete the jobs. We rely on TTLSecondsAfterFinished # to delete old jobs. Leaving jobs around should make it # easier to debug. if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format=('%(levelname)s|%(asctime)s' '|%(pathname)s|%(lineno)d| %(message)s'), datefmt='%Y-%m-%dT%H:%M:%S', ) logging.getLogger().setLevel(logging.INFO) pytest.main() ```
{ "source": "JosephMontoya-TRI/api", "score": 2 }
#### File: tests/materials/test_utils.py ```python from mp_api.routes.materials.utils import formula_to_criteria def test_formula_to_criteria(): # Regular formula assert formula_to_criteria("Cr2O3") == { "composition_reduced.Cr": 2.0, "composition_reduced.O": 3.0, "nelements": 2, } # Add wildcard assert formula_to_criteria("Cr2*3") == { "composition_reduced.Cr": 2.0, "formula_anonymous": "A2B3", } # Anonymous element assert formula_to_criteria("A2B3") == {"formula_anonymous": "A2B3"} # Chemsys assert formula_to_criteria("Si-O") == {"chemsys": "O-Si"} assert formula_to_criteria("Si-*") == {"elements": {"$all": ["Si"]}, "nelements": 2} assert formula_to_criteria("*-*-*") == {"nelements": 3} ```
{ "source": "JosephMontoya-TRI/BEEP", "score": 3 }
#### File: BEEP/beep/principal_components.py ```python import numpy as np import pandas as pd import json from monty.json import MSONable from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from monty.serialization import loadfn class PrincipalComponents(MSONable): """ PCA object. Attributes: data (pandas.DataFrame): dataframe to be decomposed using PCA. name (str): name for PCA instance. n_components (int): number of principal components to use. explained_variance_threshold (float): desired variance to be explained. pca (sklearn.pca.PCA): pca object. """ def __init__( self, data, name="FastCharge", n_components=15, explained_variance_threshold=0.90, ): """ Args: data (pandas.DataFrame): dataframe to be decomposed using PCA. name (str): name for PCA instance. n_components (int): number of principal components to use. explained_variance_threshold (float): desired variance to be explained. """ self.data = data self.name = name self.explained_variance_threshold = explained_variance_threshold self.n_components = n_components self.scaler = StandardScaler() self.pca = PCA(n_components=self.n_components) self.fit() self.get_reconstruction_errors() @classmethod def from_interpolated_data( cls, file_list_json, name="FastCharge", qty_to_pca="discharge_capacity", pivot_column="voltage", cycles_to_pca=np.linspace(20, 500, 20, dtype="int"), ): """ Method to take a list of structure jsons containing interpolated capacity vs voltage, create a PCA object and perform fitting. Args: file_list_json (str): json string or json filename corresponding. name (str): qty_to_pca (str): string denoting quantity to pca. pivot_column (str): string denoting column to pivot on. For PCA of Q(V), pivot_column would be voltage. cycles_to_pca (int): how many cycles per file to use for pca decomposition. Returns: beep.principal_components.PrincipalComponents: """ return cls( pivot_data(file_list_json, qty_to_pca, pivot_column, cycles_to_pca), name ) def as_dict(self): """ Method for dictionary/json serialization. Returns: dict: object representation as dictionary. """ obj = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "pca": self.pca.__dict__, "scaler": self.scaler.__dict__, "embeddings": self.embeddings, "reconstruction_errors": self.reconstruction_errors, } return obj def fit(self): """ Method to scale the dataframe, run PCA and evaluate embeddings. """ # Center and scale training data scaled_data = self.scaler.fit_transform(self.data) self.pca.fit(scaled_data) # Find minimum number of components to explain threshold amount of variance in the data. self.min_components = ( np.min( np.where( np.cumsum(self.pca.explained_variance_ratio_) > self.explained_variance_threshold ) ) + 1 ) # Eval embeddings of training data self.embeddings = self.pca.transform(scaled_data) self.white_embeddings = ( self.embeddings - np.mean(self.embeddings, axis=0) ) / np.std(self.embeddings, axis=0) self.reconstructions = self.scaler.inverse_transform( self.pca.inverse_transform(self.embeddings) ) return def get_pca_embeddings(self, data): """ Method to compute PCA embeddings on new data using the trained PCA fit. Args: data (pandas.DataFrame): data frame Returns: numpy.array: transformed to embedded space, shape (n_samples, n_components) """ return self.pca.transform(self.scaler.transform(data)) def get_pca_reconstruction(self, embeddings): """ Method to inverse transform PCA embeddings to reconstruct data Returns: numpy.array, shape [n_samples, n_features]. Transformed array. """ return self.scaler.inverse_transform(self.pca.inverse_transform(embeddings)) def get_pca_decomposition_outliers(self, data, upper_quantile=95, lower_quantile=5): """ Outlier detection using PCA decomposition. Args: data (pandas.DataFrame): dataframe for which outlier detection needs to be performed upper_quantile (int): upper quantile for outlier detection lower_quantile (int): lower quantile for outlier detection Returns: numpy.array: distances to center of PCA set numpy.array: boolean vector of same length as data """ # Compute center of the PCA training set center = np.median(self.white_embeddings, axis=0) # Define upper and lower quantiles for detecting outliers q_upper, q_lower = np.percentile( self.white_embeddings, [upper_quantile, lower_quantile], axis=0 ) # Transform new data embeddings = self.pca.transform(self.scaler.transform(data)) # Compute centered embeddings and distances white_embeddings = (embeddings - np.mean(self.embeddings, axis=0)) / np.std( self.embeddings, axis=0 ) distances = np.linalg.norm(white_embeddings - center, axis=1) # Flag outliers even if one of the principal components falls out of inter-quantile range outlier_list = (white_embeddings > q_upper).any(axis=1) | ( white_embeddings < q_lower ).any(axis=1) return distances, outlier_list def get_reconstruction_errors(self): """ Method to compute reconstruction errors of training dataset """ self.reconstruction_errors = np.mean( np.abs(self.reconstructions - self.data), axis=1 ) return def get_reconstruction_error_outliers(self, data, threshold=1.5): """ Get outliers based on PCA reconstruction errors. Args: data (pandas.DataFrame): dataframe for which outlier detection needs to be performed. threshold (float): threshold for outlier detection Returns: numpy.array: vector of same length as data. """ embeddings = self.pca.transform(self.scaler.transform(data)) reconstructions = self.scaler.inverse_transform( self.pca.inverse_transform(embeddings) ) reconstruction_errors = np.mean(np.abs(reconstructions - data), axis=1) return ( reconstruction_errors, reconstruction_errors > max(self.reconstruction_errors) * threshold, ) def pivot_data( file_list_json, qty_to_pca="discharge_capacity", pivot_column="voltage", cycles_to_pca=np.linspace(10, 100, 10, dtype="int"), ): """ Method to take a list of structure jsons, construct a dataframe to PCA using a pivoting column. Args: file_list_json (str): json string or json filename corresponding to a dictionary with a file_list and validity attribute, if this string ends with ".json", a json file is assumed. qty_to_pca (str): string denoting quantity to pca. pivot_column (str): string denoting column to pivot on. For PCA of Q(V), pivot_column would be voltage. cycles_to_pca (np.array): how many cycles per file to use for pca decomposition. Returns: pandas.DataFrame: pandas dataframe to PCA. """ if file_list_json.endswith(".json"): file_list_data = loadfn(file_list_json) else: file_list_data = json.loads(file_list_json) file_list = file_list_data["file_list"] df_to_pca = pd.DataFrame() for file in file_list: processed_run = loadfn(file) df = processed_run.cycles_interpolated df = df[df.cycle_index.isin(cycles_to_pca)] df_to_pca = df_to_pca.append( df.pivot(index="cycle_index", columns=pivot_column, values=qty_to_pca), ignore_index=True, ) return df_to_pca ``` #### File: beep/tests/test_splice.py ```python import os import unittest import numpy as np from beep.utils import MaccorSplice TEST_DIR = os.path.dirname(__file__) TEST_FILE_DIR = os.path.join(TEST_DIR, "test_files") class SpliceTest(unittest.TestCase): def setUp(self): self.arbin_file = os.path.join(TEST_FILE_DIR, "FastCharge_000000_CH29.csv") self.filename_part_1 = os.path.join(TEST_FILE_DIR, "xTESLADIAG_000038.078") self.filename_part_2 = os.path.join(TEST_FILE_DIR, "xTESLADIAG_000038con.078") self.output = os.path.join(TEST_FILE_DIR, "xTESLADIAG_000038joined.078") self.test = os.path.join(TEST_FILE_DIR, "xTESLADIAG_000038test.078") def test_maccor_read_write(self): splicer = MaccorSplice(self.filename_part_1, self.filename_part_2, self.output) meta_1, data_1 = splicer.read_maccor_file(self.filename_part_1) splicer.write_maccor_file(meta_1, data_1, self.test) meta_test, data_test = splicer.read_maccor_file(self.test) assert meta_1 == meta_test assert np.allclose(data_1["Volts"].to_numpy(), data_test["Volts"].to_numpy()) assert np.allclose(data_1["Amps"].to_numpy(), data_test["Amps"].to_numpy()) assert np.allclose( data_1["Test (Sec)"].to_numpy(), data_test["Test (Sec)"].to_numpy() ) def test_column_increment(self): splicer = MaccorSplice(self.filename_part_1, self.filename_part_2, self.output) meta_1, data_1 = splicer.read_maccor_file(self.filename_part_1) meta_2, data_2 = splicer.read_maccor_file(self.filename_part_2) data_1, data_2 = splicer.column_increment(data_1, data_2) assert data_1["Rec#"].max() < data_2["Rec#"].min() ```
{ "source": "JosephMontoya-TRI/CAMD", "score": 2 }
#### File: CAMD/camd/analysis.py ```python import abc import warnings import json import pickle import os import numpy as np import itertools import pandas as pd from camd import tqdm from qmpy.analysis.thermodynamics.phase import Phase, PhaseData from qmpy.analysis.thermodynamics.space import PhaseSpace from multiprocessing import Pool, cpu_count from pymatgen import Composition from pymatgen.entries.computed_entries import ComputedEntry from pymatgen.analysis.phase_diagram import ( PhaseDiagram, PDPlotter, tet_coord, triangular_coord, ) from pymatgen.analysis.structure_matcher import StructureMatcher from pymatgen import Structure from camd.utils.data import cache_matrio_data, \ filter_dataframe_by_composition, ELEMENTS from camd import CAMD_CACHE from monty.os import cd from monty.serialization import loadfn class AnalyzerBase(abc.ABC): """ The AnalyzerBase class defines the contract for post-processing experiments and creating a new seed_data object for the agent. """ def __init__(self): """ Initialize an Analyzer. Should contain all necessary state variables for consistent analysis methods """ self._initial_seed_indices = [] @abc.abstractmethod def analyze(self, new_experimental_results, seed_data): """ Analyze method, performs some operation on new experimental results in order to place them in the context of the seed data Args: new_experimental_results (DataFrame): new data to be added to the seed seed_data (DataFrame): current seed data from campaign Returns: (DataFrame): dataframe corresponding to the summary of the previous set of experiments (DataFrame): dataframe corresponding to the new seed data """ @property def initial_seed_indices(self): """ Returns: The list of indices contained in the initial seed. Intended to be set by the Campaign. """ return self._initial_seed_indices class GenericMaxAnalyzer(AnalyzerBase): """ Generic analyzer that checks new data with a target column against a threshold to be crossed. """ def __init__(self, threshold=0): """ Args: threshold (int or float): The target values of new acquisitions are compared to find if they are above this threshold, to keep track of the performance in sequential framework. """ self.threshold = threshold self.score = [] self.best_examples = [] super(GenericMaxAnalyzer, self).__init__() def analyze(self, new_experimental_results, seed_data): """ Analyzes the results of an experiment by finding the best examples and their scores Args: new_experimental_results (pandas.DataFrame): new experimental results to be analyzed seed_data (pandas.DataFrame): past data to include in analysis Returns: (pandas.DataFrame): one-row dataframe summarizing past results (pandas.DataFrame): new seed data to be passed to agent """ new_seed = seed_data.append(new_experimental_results) self.score.append(np.sum(new_seed["target"] > self.threshold)) self.best_examples.append(new_seed.loc[new_seed.target.idxmax()]) new_discovery = ( [self.score[-1] - self.score[-2]] if len(self.score) > 1 else [self.score[-1]] ) summary = pd.DataFrame( { "score": [self.score[-1]], "best_example": [self.best_examples[-1]], "new_discovery": new_discovery, } ) return summary, new_seed class AnalyzeStructures(AnalyzerBase): """ This class tests if a list of structures are unique. Typically used for comparing hypothetical structures (post-DFT relaxation) and those from ICSD. """ def __init__(self, structures=None, hull_distance=None): """ Analyzer for structural analysis of jobs Args: structures ([Structure]): list of a-priori structures to compare against hull_distance ([float]): hull_distance by which to filter results """ self.structures = structures if structures else [] self.structure_ids = None self.unique_structures = None self.groups = None self.energies = None self.against_icsd = False self.structure_is_unique = None self.hull_distance = hull_distance super(AnalyzeStructures, self).__init__() def analyze( self, structures=None, structure_ids=None, against_icsd=False, energies=None ): """ One encounter of a given structure will be labeled as True, its remaining matching structures as False. Args: structures (list): a list of structures to be compared. structure_ids (list): uids of structures, optional. against_icsd (bool): whether a comparison to icsd is also made. energies (list): list of energies (per atom) corresponding to structures. If given, the lowest energy instance of a given structure will be return as the unique one. Otherwise, there is no such guarantee. (optional) Returns: ([bool]) list of bools corresponding to the given list of structures corresponding to uniqueness """ self.structures = structures self.structure_ids = structure_ids self.against_icsd = against_icsd self.energies = energies smatch = StructureMatcher() self.groups = smatch.group_structures(structures) self.structure_is_unique = [] if self.energies: for i in range(len(self.groups)): self.groups[i] = [ x for _, x in sorted( zip( [ self.energies[self.structures.index(s)] for s in self.groups[i] ], self.groups[i], ) ) ] self._unique_structures = [i[0] for i in self.groups] for s in structures: if s in self._unique_structures: self.structure_is_unique.append(True) else: self.structure_is_unique.append(False) self._not_duplicate = self.structure_is_unique if self.against_icsd: structure_file = "oqmd1.2_exp_based_entries_structures.json" cache_matrio_data(structure_file) with open(os.path.join(CAMD_CACHE, structure_file), "r") as f: icsd_structures = json.load(f) chemsys = set() for s in self._unique_structures: chemsys = chemsys.union(set(s.composition.as_dict().keys())) self.icsd_structs_inchemsys = [] for k, v in icsd_structures.items(): try: s = Structure.from_dict(v) elems = set(s.composition.as_dict().keys()) if elems == chemsys: self.icsd_structs_inchemsys.append(s) # TODO: can we make this exception more specific, # do we have an example where this fails? except Exception as e: warnings.warn("Unable to process structure {}".format(k)) warnings.warn("Error: {}".format(e)) self.matching_icsd_strs = [] for i in range(len(structures)): if self.structure_is_unique[i]: match = None for s2 in self.icsd_structs_inchemsys: if smatch.fit(self.structures[i], s2): match = s2 break self.matching_icsd_strs.append( match ) # store the matching ICSD structures. else: self.matching_icsd_strs.append(None) # Flip matching bools, and create a filter self._icsd_filter = [not i for i in self.matching_icsd_strs] self.structure_is_unique = ( np.array(self.structure_is_unique) * np.array(self._icsd_filter) ).tolist() self.unique_structures = list( itertools.compress(self.structures, self.structure_is_unique) ) else: self.unique_structures = self._unique_structures # We store the final list of unique structures as unique_structures. # We return a corresponding list of bool to the initial structure # list provided. return self.structure_is_unique def analyze_vaspqmpy_jobs(self, jobs, against_icsd=False, use_energies=False): """ Useful for analysis integrated as part of a campaign itself Args: jobs (pd.DataFrame): dataframe of DFT experiment results against_icsd (bool): whether to validate against ICSD or not Returns: """ self.structure_ids = [] self.structures = [] self.energies = [] for j, r in jobs.iterrows(): if r["status"] == "SUCCEEDED": rdict = r['result'].as_dict() self.structures.append(r['result'].final_structure) self.structure_ids.append(j) self.energies.append(rdict["output"]["final_energy_per_atom"]) if use_energies: return self.analyze( self.structures, self.structure_ids, against_icsd, self.energies ) else: return self.analyze(self.structures, self.structure_ids, against_icsd) class StabilityAnalyzer(AnalyzerBase): """ Analyzer object for stability campaigns """ def __init__(self, hull_distance=0.05, parallel=cpu_count(), entire_space=False, plot=True): """ The Stability Analyzer is intended to analyze DFT-result data in the context of a global compositional seed in order to determine phase stability. Args: hull_distance (float): distance above hull below which to deem a material "stable" parallel (bool): flag for whether or not multiprocessing is to be used # TODO: is there ever a case where you would # would want to do the entire space? entire_space (bool): flag for whether to analyze entire space of results or just new chemical space plot (bool): whether to generate plot as part of standard analyze sequence """ self.hull_distance = hull_distance self.parallel = parallel self.entire_space = entire_space self.space = None self.plot = plot super(StabilityAnalyzer, self).__init__() @staticmethod def get_phase_space(dataframe): """ Gets PhaseSpace object associated with dataframe Args: dataframe (DataFrame): dataframe with columns "Composition" containing formula and "delta_e" containing formation energy per atom """ phases = [] for data in dataframe.iterrows(): phases.append( Phase( data[1]["Composition"], energy=data[1]["delta_e"], per_atom=True, description=data[0], ) ) for el in ELEMENTS: phases.append(Phase(el, 0.0, per_atom=True)) pd = PhaseData() pd.add_phases(phases) space = PhaseSpaceAL(bounds=ELEMENTS, data=pd) return space def analyze(self, new_experimental_results, seed_data): """ Args: new_experimental_results (DataFrame): new experimental results to be added to the seed seed_data (DataFrame): seed to be augmented via the new_experimental_results Returns: (DataFrame): summary of the process, i. e. of the increment or experimental results (DataFrame): augmented seed data, i. e. "new" seed data according to the experimental results """ # Check for new results new_comp = new_experimental_results['Composition'].sum() new_experimental_results = new_experimental_results.dropna(subset=['delta_e']) new_seed = seed_data.append(new_experimental_results) # Aggregate seed_data and new experimental results include_columns = ["Composition", "delta_e"] filtered = new_seed[include_columns].drop_duplicates(keep="last").dropna() if not self.entire_space: # Constrains the phase space to that of the target compounds. # More efficient when searching in a specified chemistry, # less efficient if larger spaces are without specified chemistry. filtered = filter_dataframe_by_composition(filtered, new_comp) space = self.get_phase_space(filtered) new_phases = [p for p in space.phases if p.description in filtered.index] space.compute_stabilities(phases=new_phases, ncpus=self.parallel) # Compute new stabilities and update new seed, note that pandas will complain # if the index is not explicit due to multiple types (e. g. ints for OQMD # and strs for prototypes) new_data = pd.DataFrame( {"stability": [phase.stability for phase in new_phases]}, index=[phase.description for phase in new_phases] ) new_data["is_stable"] = new_data["stability"] <= self.hull_distance # TODO: This is implicitly adding "stability", and "is_stable" columns # but could be handled more gracefully if "stability" not in new_seed.columns: new_seed = pd.concat([new_seed, new_data], axis=1, sort=False) else: new_seed.update(new_data) # Write hull figure to disk if self.plot: self.plot_hull(filtered, new_experimental_results.index, filename="hull.png") # Compute summary metrics summary = self.get_summary( new_seed, new_experimental_results.index, initial_seed_indices=self.initial_seed_indices, ) # Drop excess columns from experiment new_seed = new_seed.drop([ 'path', 'status', 'start_time', 'jobId', 'jobName', 'jobArn', 'result', 'error', 'elapsed_time' ], axis="columns", errors="ignore") return summary, new_seed @staticmethod def get_summary(new_seed, new_ids, initial_seed_indices=None): """ Gets summary row for given experimental results after preliminary stability analysis. This is not meant to provide the basis for a generic summary method and is particular to the StabilityAnalyzer. Args: new_seed (DataFrame): dataframe corresponding to new processed seed new_ids ([]): list of index values for those experiments that are "new" initial_seed_indices ([]): indices of the initial seed Returns: (DataFrame): dataframe summarizing processed experimental data including values for how many materials were discovered """ # TODO: Right now analyzers don't know anything about the history # of experiments, so can be difficult to determine marginal # value of a given experimental run processed_new = new_seed.loc[new_ids] initial_seed_indices = initial_seed_indices if initial_seed_indices else [] total_discovery = new_seed.loc[ ~new_seed.index.isin(initial_seed_indices) ].is_stable.sum() return pd.DataFrame( { "new_candidates": [len(processed_new)], "new_discovery": [processed_new.is_stable.sum()], "total_discovery": [total_discovery], } ) def plot_hull(self, df, new_result_ids, filename=None, finalize=False): """ Generate plots of convex hulls for each of the runs Args: df (DataFrame): dataframe with formation energies and formulas new_result_ids ([]): list of new result ids (i. e. indexes in the updated dataframe) filename (str): filename to output, if None, no file output is produced finalize (bool): flag indicating whether to include all new results Returns: (pyplot): plotter instance """ # Generate all entries total_comp = Composition(df['Composition'].sum()) if len(total_comp) > 4: warnings.warn("Number of elements too high for phase diagram plotting") return None filtered = filter_dataframe_by_composition(df, total_comp) filtered = filtered[['delta_e', 'Composition']] filtered = filtered.dropna() # Create computed entry column with un-normalized energies filtered["entry"] = [ ComputedEntry( Composition(row["Composition"]), row["delta_e"] * Composition(row["Composition"]).num_atoms, entry_id=index, ) for index, row in filtered.iterrows() ] ids_prior_to_run = list(set(filtered.index) - set(new_result_ids)) if not ids_prior_to_run: warnings.warn("No prior data, prior phase diagram cannot be constructed") return None # Create phase diagram based on everything prior to current run entries = filtered.loc[ids_prior_to_run]["entry"].dropna() # Filter for nans by checking if it's a computed entry pg_elements = sorted(total_comp.keys()) pd = PhaseDiagram(entries, elements=pg_elements) plotkwargs = { "markerfacecolor": "white", "markersize": 7, "linewidth": 2, } if finalize: plotkwargs.update({"linestyle": "--"}) else: plotkwargs.update({"linestyle": "-"}) plotter = PDPlotter(pd, backend='matplotlib', **plotkwargs) getplotkwargs = {"label_stable": False} if finalize else {} plot = plotter.get_plot(**getplotkwargs) # Get valid results valid_results = [ new_result_id for new_result_id in new_result_ids if new_result_id in filtered.index ] if finalize: # If finalize, we'll reset pd to all entries at this point to # measure stabilities wrt. the ultimate hull. pd = PhaseDiagram(filtered["entry"].values, elements=pg_elements) plotter = PDPlotter( pd, backend="matplotlib", **{"markersize": 0, "linestyle": "-", "linewidth": 2} ) plot = plotter.get_plot(plt=plot) for entry in filtered["entry"][valid_results]: decomp, e_hull = pd.get_decomp_and_e_above_hull(entry, allow_negative=True) if e_hull < self.hull_distance: color = "g" marker = "o" markeredgewidth = 1 else: color = "r" marker = "x" markeredgewidth = 1 # Get coords coords = [entry.composition.get_atomic_fraction(el) for el in pd.elements][ 1: ] if pd.dim == 2: coords = coords + [pd.get_form_energy_per_atom(entry)] if pd.dim == 3: coords = triangular_coord(coords) elif pd.dim == 4: coords = tet_coord(coords) plot.plot( *coords, marker=marker, markeredgecolor=color, markerfacecolor="None", markersize=11, markeredgewidth=markeredgewidth ) if filename is not None: plot.savefig(filename, dpi=70) plot.close() def finalize(self, path="."): """ Post-processing a dft campaign """ update_run_w_structure( path, hull_distance=self.hull_distance, parallel=self.parallel ) class PhaseSpaceAL(PhaseSpace): """ Modified qmpy.PhaseSpace for GCLP based stability computations TODO: basic multithread or Gurobi for gclp """ def compute_stabilities(self, phases, ncpus=cpu_count()): """ Calculate the stability for every Phase. Args: phases ([Phase]): list of Phases for which to compute stability ncpus (int): number of cpus to use, i. e. processes to use Returns: ([float]) stability values for all phases """ self.update_phase_dict(ncpus=ncpus) if ncpus > 1: with Pool(ncpus) as pool: stabilities = pool.map(self.compute_stability, phases) # Pool doesn't always modify the phases directly, # so assign stability after for phase, stability in zip(phases, stabilities): phase.stability = stability else: stabilities = [self.compute_stability(phase) for phase in tqdm(phases)] return stabilities def compute_stability(self, phase): """ Computes stability for a given phase in the phase diagram Args: phase (Phase): phase for which to compute stability Returns: (float): stability of given phase """ # If the phase name (formula) is in the set of minimal # phases by formula, compute it relative to that minimal phase if phase.name in self.phase_dict: phase.stability = ( phase.energy - self.phase_dict[phase.name].energy + self.phase_dict[phase.name].stability ) else: phase.stability = self._compute_stability_gclp(phase) return phase.stability def _compute_stability_gclp(self, phase): """ Computes stability using gclp. The function is still a little unstable, so we use a blank try-except to let it do what it can. Args: phase (Phase): phase for which to compute stability using gclp Returns: (float): stability """ try: phase.stability = phase.energy - self.gclp(phase.unit_comp)[0] # TODO: do we have an example where this fails? Can we provide # a more concrete exception? except Exception as e: print(phase, "stability determination failed, error {}".format(e)) phase.stability = np.nan return phase.stability def update_phase_dict(self, ncpus=cpu_count()): """ Function to update the phase dict associated with the PhaseSpaceAL Args: ncpus (int): number of processes to use Returns: (None) """ uncomputed_phases = [ phase for phase in self.phase_dict.values() if phase.stability is None ] if ncpus > 1: # Compute stabilities, then update, pool doesn't modify attribute with Pool(ncpus) as pool: stabilities = pool.map(self._compute_stability_gclp, uncomputed_phases) for phase, stability in zip(uncomputed_phases, stabilities): phase.stability = stability else: for phase in uncomputed_phases: self._compute_stability_gclp(phase) assert ( len( [phase for phase in self.phase_dict.values() if phase.stability is None] ) == 0 ) def update_run_w_structure(folder, hull_distance=0.2, parallel=True): """ Updates a campaign grouped in directories with structure analysis """ with cd(folder): required_files = ["seed_data.pickle"] if os.path.isfile("error.json"): error = loadfn("error.json") print("{} ERROR: {}".format(folder, error)) if not all([os.path.isfile(fn) for fn in required_files]): print("{} ERROR: no seed data, no analysis to be done") else: with open("seed_data.pickle", "rb") as f: df = pickle.load(f) with open("experiment.pickle", "rb") as f: experiment = pickle.load(f) # Hack to update agg_history experiment.update_current_data(None) all_submitted, all_results = experiment.agg_history old_results = df.drop(all_results.index, errors='ignore') new_results = df.drop(old_results.index) st_a = StabilityAnalyzer( hull_distance=hull_distance, parallel=parallel, entire_space=True, plot=False) summary, new_seed = st_a.analyze(new_results, old_results) # Having calculated stabilities again, we plot the overall hull. # Filter by chemsys new_comp = new_results['Composition'].sum() filtered = filter_dataframe_by_composition(new_seed, new_comp) st_a.plot_hull( filtered, all_submitted.index, filename="hull_finalized.png", finalize=True, ) stable_discovered = new_seed[new_seed["is_stable"].fillna(False)] # Analyze structures if present in experiment if "structure" in all_results.columns: s_a = AnalyzeStructures() s_a.analyze_vaspqmpy_jobs(all_results, against_icsd=True, use_energies=True) unique_s_dict = {} for i in range(len(s_a.structures)): if s_a.structure_is_unique[i] and ( s_a.structure_ids[i] in stable_discovered ): unique_s_dict[s_a.structure_ids[i]] = s_a.structures[i] with open("discovered_unique_structures.json", "w") as f: json.dump(dict([(k, s.as_dict()) for k, s in unique_s_dict.items()]), f) with open("structure_report.log", "w") as f: f.write("consumed discovery unique_discovery duplicate in_icsd \n") f.write( str(len(all_submitted)) + " " + str(len(stable_discovered)) + " " + str(len(unique_s_dict)) + " " + str(len(s_a.structures) - sum(s_a._not_duplicate)) + " " + str(sum([not i for i in s_a._icsd_filter])) ) ``` #### File: CAMD/camd/domain.py ```python import pandas as pd import abc import warnings import itertools import numpy as np from protosearch.build_bulk.oqmd_interface import OqmdInterface from pymatgen.io.ase import AseAtomsAdaptor from pymatgen import Composition, Element from matminer.featurizers.base import MultipleFeaturizer from matminer.featurizers.composition import ( ElementProperty, Stoichiometry, ValenceOrbital, IonProperty, ) from matminer.featurizers.structure import ( SiteStatsFingerprint, StructuralHeterogeneity, ChemicalOrdering, StructureComposition, MaximumPackingEfficiency, ) class DomainBase(abc.ABC): """ Domains combine generation and featurization and prepare the search space for CAMD Loop. """ @abc.abstractmethod def candidates(self): """ Primary method for every Domain to provide candidates. Returns: (pandas.DataFrame): features for generated hypothetical structures. The Index of dataframe should be the unique ids for the structures. """ pass @property @abc.abstractmethod def bounds(self): """ Returns: list: names of dimensions of the search space. """ pass @abc.abstractmethod def sample(self, num_samples): """ Abstract method for sampling from created domain Args: num_samples: Returns: """ pass @property def bounds_string(self): """ Property representation of search space bounds Returns: (str): representation of search space bounds, e.g. "Ir-Fe-O" or "x1-x2-x3" """ return "-".join(self.bounds) class StructureDomain(DomainBase): """ Provides machine learning ready candidate domains (search spaces) for hypothetical structures. If scanning an entire system, use the StructureDomain.from_bounds method. If scanning for formula(s), provide a list of formulas directly to StructureDomain. Once the StructureDomain is initialized, the method candidates returns a fully-featurized hypothetical materials set subject to n_max_atoms. """ def __init__(self, formulas, n_max_atoms=None): """ Args: formulas ([str]): list of chemical formulas to create new material candidates. n_max_atoms (int): number of max atoms """ self.formulas = formulas self.n_max_atoms = n_max_atoms self.features = None self._hypo_structures = None @classmethod def from_bounds( cls, bounds, n_max_atoms=None, charge_balanced=True, create_subsystems=False, **kwargs ): """ Convenience constructor that delivers an ML-ready domain from defined chemical boundaries. Args: bounds ([str]): list of element strings corresponding to bounds of the composition space, e. g. ['Fe', 'O', 'N'] n_max_atoms (int): maximum number of atoms in the generated formulae charge_balanced (bool): whether to filter generated formulae by charge balancing the respective elements according to allowed oxidation states create_subsystems (bool): TODO - what is this? **kwargs: arguments to pass to formula creator """ formulas = create_formulas( bounds, charge_balanced=charge_balanced, create_subsystems=create_subsystems, **kwargs ) print("Generated chemical formulas: {}".format(formulas)) return cls(formulas, n_max_atoms) @property def bounds(self): """ Method to get bounds from StructureDomain Returns: ([]): list of dimensions in search space """ bounds = set() for formula in self.formulas: bounds = bounds.union(Composition(formula).as_dict().keys()) return bounds def get_structures(self): """ Method to call protosearch structure generation """ if self.formulas: print("Generating hypothetical structures...") self._hypo_structures = get_structures_from_protosearch(self.formulas) print( "Generated {} hypothetical structures".format(len(self.hypo_structures)) ) else: raise ValueError("Need formulas to create structures") @property def hypo_structures(self): """ Returns (dataframe): Hypothetical structures generated by protosearch, filtered by n_max_atoms """ if self._hypo_structures is None: self.get_structures() if self.n_max_atoms: n_max_filter = [ i.num_sites <= self.n_max_atoms for i in self._hypo_structures["structure"] ] if self._hypo_structures is not None: return self._hypo_structures[n_max_filter] else: return None else: return self._hypo_structures @property def hypo_structures_dict(self): """ Returns: (dict): Hypothetical structures generated by protosearch, filtered by n_max_atoms """ return self.hypo_structures["structure"].to_dict() @property def compositions(self): """ Returns: (list): Compositions of hypothetical structures generated. """ if self.hypo_structures is not None: return [s.composition for s in self.hypo_structures] else: warnings.warn("No stuctures available.") return [] @property def formulas_with_valid_structures(self): """ Quick method to filter formulas with valid structures Returns: ([str]): list of formulas with corresponding valid structures """ # Note the redundancy here is for pandas to work if self.valid_structures is not None: return [s.composition.formula for s in self.valid_structures["structure"]] else: warnings.warn("No structures available yet.") return [] def featurize_structures(self, featurizer=None, **kwargs): """ Featurizes the hypothetical structures available from hypo_structures method. Hypothetical structures for which featurization fails are removed and valid structures are made available as valid_structures Args: featurizer (Featurizer): A MatMiner Featurizer. Defaults to MultipleFeaturizer with PRB Ward Voronoi descriptors. **kwargs (dict): kwargs passed to featurize_many method of featurizer. Returns: (pandas.DataFrame): features """ # Note the redundancy here is for pandas to work if self.hypo_structures is None: warnings.warn("No structures available. Generating structures.") self.get_structures() print("Generating features") featurizer = ( featurizer if featurizer else MultipleFeaturizer( [ SiteStatsFingerprint.from_preset( "CoordinationNumber_ward-prb-2017" ), StructuralHeterogeneity(), ChemicalOrdering(), MaximumPackingEfficiency(), SiteStatsFingerprint.from_preset( "LocalPropertyDifference_ward-prb-2017" ), StructureComposition(Stoichiometry()), StructureComposition(ElementProperty.from_preset("magpie")), StructureComposition(ValenceOrbital(props=["frac"])), StructureComposition(IonProperty(fast=True)), ] ) ) features = featurizer.featurize_many( self.hypo_structures["structure"], ignore_errors=True, **kwargs ) n_species, formula = [], [] for s in self.hypo_structures["structure"]: n_species.append(len(s.composition.elements)) formula.append(s.composition.formula) self._features_df = pd.DataFrame.from_records( features, columns=featurizer.feature_labels() ) self._features_df.index = self.hypo_structures.index self._features_df["N_species"] = n_species self._features_df["Composition"] = formula self._features_df["structure"] = self.hypo_structures["structure"] self.features = self._features_df.dropna(axis=0, how="any") self.features = self.features.reindex(sorted(self.features.columns), axis=1) self._valid_structure_labels = list(self.features.index) self.valid_structures = self.hypo_structures.loc[self._valid_structure_labels] print( "{} out of {} structures were successfully featurized.".format( self.features.shape[0], self._features_df.shape[0] ) ) return self.features def candidates(self, include_composition=True): """ This is the recommended convenience method that returns a fully-featurized set of hypothetical structures. Args: include_composition (bool): Adds a column named "formula" to the dataframe. Returns: (pandas.DataFrame) feature vectors of valid hypothetical structures. """ if self._hypo_structures is None: self.get_structures() if self.features is None: self.featurize_structures() if include_composition: return self.features else: return self.features.drop("Composition", axis=1) def sample(self, num_samples): """ Method for sampling domain Args: num_samples (int): number of samples to return Returns: (pd.DataFrame): dataframe corresponding to sampled domain with num_samples candidates """ self.candidates().sample(num_samples) def get_structures_from_protosearch(formulas, source="icsd", db_interface=None): """ Calls protosearch to get the hypothetical structures. Args: formulas ([str]): list of chemical formulas from which to generate candidate structures source (str): project name in OQMD to be used as source. Defaults to ICSD. db_interface (DbInterface): interface to OQMD database by default uses the one pulled from data.matr.io Returns: (pandas.DataFrame) hypothetical pymatgen structures generated and their unique ids from protosearch """ if db_interface is None: db_interface = OqmdInterface(source) dataframes = [ db_interface.create_proto_data_set(chemical_formula=formula) for formula in formulas ] _structures = pd.concat(dataframes) # Drop bad structures _structures.dropna(axis=0, how="any", inplace=True) # conversion to pymatgen structures ase_adap = AseAtomsAdaptor() pmg_structures = [ ase_adap.get_structure(_structures.iloc[i]["atoms"]) for i in range(len(_structures)) ] _structures["structure"] = pmg_structures # This is for compatibility with Mc1, which doesn't allow # underscores structure_uids = [ _structures.iloc[i]["structure_name"].replace('_', '-') for i in range(len(_structures)) ] _structures.index = structure_uids return _structures def get_stoichiometric_formulas(n_components, grid=None): """ Generates anonymous stoichiometric formulas for a set of n_components with specified coefficients Args: n_components (int): number of components (dimensions) grid (list): a range of integers Returns: (list): unique stoichiometric formula from an allowed grid of integers. """ grid = grid if grid else list(range(1, 8)) args = [grid for _ in range(n_components)] stoics = np.array(list(itertools.product(*args))) fracs = stoics.astype(float) / np.sum(stoics, axis=1)[:, None] _, indices, counts = np.unique(fracs, axis=0, return_index=True, return_counts=True) return stoics[indices] def create_formulas( bounds, charge_balanced=True, oxi_states_extend=None, oxi_states_override=None, all_oxi_states=False, grid=None, create_subsystems=False, ): """ Creates a list of formulas given the bounds of a chemical space. TODO: - implement create_subsystems Args: bounds ([str]): list of elements to bound the space charge_balanced (bool): whether to balance oxidations states in the generated formulae oxi_states_extend ({}): dictionary of {element: [int]} where the value is the added oxidation state to be included oxi_states_override ({str: int}): override for oxidation states, see Composition.oxi_state_guesses all_oxi_states ({str: int): global config for oxidation states, see Composition.oxi_state_guesses grid ([]): list of integers to use for coefficients create_subsystems (bool): whether to create formulas for sub-chemical systems, e. g. for Sr-Ti-O, whether to create Ti-O and Sr-O Returns: ([str]): list of chemical formulas """ if create_subsystems: raise NotImplementedError("Create subsystems not yet implemented.") stoichs = get_stoichiometric_formulas(len(bounds), grid=grid) formulas = [] for f in stoichs: f_ = "" for i in range(len(f)): f_ += bounds[i] + f.astype(str).tolist()[i] formulas.append(f_) if charge_balanced: charge_balanced_formulas = [] if oxi_states_extend: oxi_states_override = oxi_states_override if oxi_states_override else {} for element, states in oxi_states_extend.items(): states = states if isinstance(states, list) else [states] _states = states + list(Element[element].common_oxidation_states) if element in oxi_states_override: oxi_states_override[element] += states else: oxi_states_override[element] = _states for formula in formulas: c = Composition(formula) if c.oxi_state_guesses( oxi_states_override=oxi_states_override, all_oxi_states=all_oxi_states ): charge_balanced_formulas.append(formula) return charge_balanced_formulas else: return formulas def heuristic_setup(elements): """ Helper function to setup a default structure_domain Args: elements ([str]): list of elements to use to generate formulae Returns: (int): maximum coefficient for element set (bool): whether or not charge balancing should be used """ grid_defaults = {2: 5, 3: 5} n_comp = len(elements) _g = grid_defaults.get(n_comp, 4) # Charge balance ionic compounds if {"O", "Cl", "F", "S", "N", "Br", "I"}.intersection(set(elements)): charge_balanced = True else: charge_balanced = False if not charge_balanced: return _g, charge_balanced else: g_max_max = 8 while True: sd = StructureDomain.from_bounds( elements, charge_balanced=True, grid=range(1, _g) ) n = len(sd.formulas) if n >= 20: return _g, charge_balanced else: if _g < g_max_max: _g += 1 else: return _g, charge_balanced ```
{ "source": "JosephMontoya-TRI/FTCP", "score": 2 }
#### File: JosephMontoya-TRI/FTCP/main_semi.py ```python from data import * from model import * from utils import * from sampling import * import joblib import numpy as np import matplotlib.pyplot as plt from keras import optimizers from keras.callbacks import ReduceLROnPlateau, LearningRateScheduler from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler # Query ternary and quaternary compounds with number of sites <= 40 max_elms = 4 min_elms = 3 max_sites = 40 # Use your own API key to query Materials Project (https://materialsproject.org/open) mp_api_key = 'YourAPIKey' dataframe = data_query(mp_api_key, max_elms, min_elms, max_sites, include_te=True) # Obtain FTCP representation FTCP_representation, Nsites = FTCP_represent(dataframe, max_elms, max_sites, return_Nsites=True) # Preprocess FTCP representation to obtain input X FTCP_representation = pad(FTCP_representation, 2) X, scaler_X = minmax(FTCP_representation) # Get Y from queried dataframe prop = ['formation_energy_per_atom', 'band_gap', 'Powerfactor', 'ind'] prop_dim = 2 semi_prop_dim = 1 Y = dataframe[prop].values scaler_y = MinMaxScaler() scaler_y_semi = MinMaxScaler() Y[:, :prop_dim] = scaler_y.fit_transform(Y[:, :prop_dim]) Y[:, prop_dim:prop_dim+semi_prop_dim] = scaler_y_semi.fit_transform(Y[:, prop_dim:prop_dim+semi_prop_dim]) # Get training, and test data; feel free to have a validation set if you need to tune the hyperparameter ind_train, ind_test = train_test_split(np.arange(len(Y)), test_size=0.2, random_state=21) X_train, X_test = X[ind_train], X[ind_test] y_train, y_test = Y[ind_train], Y[ind_test] # Get model VAE, encoder, decoder, regression, vae_loss = FTCP(X_train, y_train, coeffs=(3, 20, 5,), semi=True, label_ind=dataframe.dropna()['ind'].values, prop_dim=(prop_dim, semi_prop_dim), ) # Train model reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.3, patience=4, min_lr=1e-6) def scheduler(epoch, lr): if epoch == 50: lr = 2e-4 elif epoch == 100: lr = 5e-5 return lr schedule_lr = LearningRateScheduler(scheduler) VAE.compile(optimizer=optimizers.rmsprop(lr=8e-4), loss=vae_loss) VAE.fit([X_train, y_train], X_train, shuffle=True, batch_size=256, epochs=200, callbacks=[reduce_lr, schedule_lr], ) #%% Visualize latent space with two arbitrary dimensions train_latent = encoder.predict(X_train, verbose=1) y_train_ = np.concatenate((scaler_y.inverse_transform(y_train[:, :prop_dim]), scaler_y_semi.inverse_transform(y_train[:, prop_dim:prop_dim+semi_prop_dim])), axis=1 ) y_test_ = np.concatenate((scaler_y.inverse_transform(y_test[:, :prop_dim]), scaler_y_semi.inverse_transform(y_test[:, prop_dim:prop_dim+semi_prop_dim])), axis=1 ) font_size = 26 plt.rcParams['axes.labelsize'] = font_size plt.rcParams['xtick.labelsize'] = font_size-2 plt.rcParams['ytick.labelsize'] = font_size-2 fig, ax = plt.subplots(1, 3, figsize=(18, 5.3)) s0 = ax[0].scatter(train_latent[:,0], train_latent[:,1], s=7, c=np.squeeze(y_train_[:,0])) plt.colorbar(s0, ax=ax[0], ticks=list(range(-1, -8, -2))) s1 = ax[1].scatter(train_latent[:,0], train_latent[:,1], s=7, c=np.squeeze(y_train_[:,1])) plt.colorbar(s1, ax=ax[1], ticks=list(range(0, 10, 2))) s2 = ax[2].scatter(train_latent[:,0], train_latent[:,1], s=7, c=np.squeeze(y_train_[:,2])) plt.colorbar(s2, ax=ax[2]) fig.text(0, 0.92, '(A) $E_\mathrm{f}$', fontsize=font_size) fig.text(0.33, 0.92, '(B) $E_\mathrm{g}$', fontsize=font_size) fig.text(0.678, 0.92, '(C) Power Factor', fontsize=font_size) plt.tight_layout() plt.subplots_adjust(wspace=0.3, top=0.85) plt.show() #%% Evalute Reconstruction, and Target-Learning Branch Error X_test_recon = VAE.predict([X_test, y_test], verbose=1) X_test_recon_ = inv_minmax(X_test_recon, scaler_X) X_test_recon_[X_test_recon_ < 0.1] = 0 X_test_ = inv_minmax(X_test, scaler_X) # Mean absolute percentage error def MAPE(y_true, y_pred): # Add a small value to avoid division of zero y_true, y_pred = np.array(y_true+1e-12), np.array(y_pred+1e-12) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 # Mean absolute error def MAE(y_true, y_pred): return np.nanmean(np.abs(y_true - y_pred), axis=0) # Mean absolute error for reconstructed site coordinate matrix def MAE_site_coor(SITE_COOR, SITE_COOR_recon, Nsites): site = [] site_recon = [] # Only consider valid sites, namely to exclude zero padded (null) sites for i in range(len(SITE_COOR)): site.append(SITE_COOR[i, :Nsites[i], :]) site_recon.append(SITE_COOR_recon[i, :Nsites[i], :]) site = np.vstack(site) site_recon = np.vstack(site_recon) return np.mean(np.ravel(np.abs(site - site_recon))) # Read string of elements considered in the study (to get dimension for element matrix) elm_str = joblib.load('data/element.pkl') # Get lattice constants, abc abc = X_test_[:, len(elm_str), :3] abc_recon = X_test_recon_[:, len(elm_str), :3] print('abc (MAPE): ', MAPE(abc,abc_recon)) # Get lattice angles, alpha, beta, and gamma ang = X_test_[:, len(elm_str)+1, :3] ang_recon = X_test_recon_[:, len(elm_str)+1, :3] print('angles (MAPE): ', MAPE(ang, ang_recon)) # Get site coordinates coor = X_test_[:, len(elm_str)+2:len(elm_str)+2+max_sites, :3] coor_recon = X_test_recon_[:, len(elm_str)+2:len(elm_str)+2+max_sites, :3] print('coordinates (MAE): ', MAE_site_coor(coor, coor_recon, Nsites[ind_test])) # Get accuracy of reconstructed elements elm_accu = [] for i in range(max_elms): elm = np.argmax(X_test_[:, :len(elm_str), i], axis=1) elm_recon = np.argmax(X_test_recon_[:, :len(elm_str), i], axis=1) elm_accu.append(metrics.accuracy_score(elm, elm_recon)) print(f'Accuracy for {len(elm_str)} elements are respectively: {elm_accu}') # Get target-learning branch regression error y_test_hat = regression.predict(X_test, verbose=1) y_test_hat_ = scaler_y.inverse_transform(y_test_hat[0]) y_test_semi_hat_ = scaler_y_semi.inverse_transform(y_test_hat[1]) print(f'The regression MAE for {prop[:prop_dim]} are respectively', MAE(y_test_[:, :prop_dim], y_test_hat_)) print(f'The regression MAE for {prop[prop_dim:prop_dim+semi_prop_dim]} are respectively', MAE(y_test_[:, prop_dim:prop_dim+semi_prop_dim], y_test_semi_hat_)) #%% Sampling the latent space and perform inverse design # Specify design targets, 0.3 eV <= Eg <= 1.5 eV, Ef < 0 eV/atom (power factor as high as possible) target_Ef, target_Eg_min, target_Eg_max = -1.5, 0.3, 1.5 # Set number of compounds to purturb locally about Nsamples = 10 # Obtain points that are closest to the design target in the training set ind_constraint_1 = np.squeeze(np.argwhere(y_train_[:, 0] < target_Ef)) ind_constraint_2 = np.squeeze(np.argwhere(y_train_[:, 1] >= target_Eg_min)) ind_constraint_3 = np.squeeze(np.argwhere(y_train_[:, 1] <= target_Eg_max)) ind_constraint = np.intersect1d(np.intersect1d(ind_constraint_1, ind_constraint_2), ind_constraint_3) # Sort the latent space according to the value of predicted power factor y_train_semi_hat = regression.predict(X_train, verbose=1)[1] ind_temp = np.argsort(-y_train_semi_hat[ind_constraint, 0]) ind_sample = ind_constraint[ind_temp][:Nsamples] # Set number of purturbing instances around each compound Nperturb = 3 # Set local purturbation (Lp) scale Lp_scale = 0.9 # Sample (Lp) samples = train_latent[ind_sample, :] samples = np.tile(samples, (Nperturb, 1)) gaussian_noise = np.random.normal(0, 1, samples.shape) samples = samples + gaussian_noise * Lp_scale ftcp_designs = decoder.predict(samples, verbose=1) ftcp_designs = inv_minmax(ftcp_designs, scaler_X) # Get chemical info for designed crystals and output CIFs pred_formula, pred_abc, pred_ang, pred_latt, pred_site_coor, ind_unique = get_info(ftcp_designs, max_elms, max_sites, elm_str=joblib.load('data/element.pkl'), to_CIF=True, check_uniqueness=True, mp_api_key=mp_api_key, ) ```
{ "source": "JosephMontoya-TRI/materialnet", "score": 3 }
#### File: legacy/data/process.py ```python import csv import json import sys def unique_nodes(edges): nodes = set([]); for e in edges: nodes.add(e[0]) nodes.add(e[1]) return nodes def filter_edges(edges, nodes): return filter(lambda e: e[0] in nodes and e[1] in nodes, edges) def extract(rec): val = {'degree': rec['deg'][-1], 'eigen_cent': rec['eigen_cent'][-1], 'deg_cent': rec['deg_cent'][-1], 'shortest_path': rec['shortest_path'][-1], 'deg_neigh': rec['deg_neigh'][-1], 'clus_coeff': rec['clus_coeff'][-1], 'discovery': rec['discovery'], 'x': rec['x'], 'y': rec['y']} if 'synthesis_probability' in rec: val['synthesis_probability'] = rec['synthesis_probability'] if 'formation_energy' in rec: val['formation_energy'] = rec['formation_energy'] if 'discovery_prec' in rec: val['discovery'] = min(rec['discovery_prec']) return val def exit_error(): print >>sys.stderr, 'usage: process.py <num_nodes> <edges> <networkexist> <networkhypo> <synthesis> <oqmdexist> <oqmdhypo> <position>' return 1 def main(): if len(sys.argv) < 4: return exit_error() n = None try: n = int(sys.argv[1]) except ValueError: return exit_error() edgefile = sys.argv[2] nodefile = sys.argv[3] hyponodefile = sys.argv[4] synthfile = sys.argv[5] oqmdfile = sys.argv[6] oqmdhypofile = sys.argv[7] positionfile = sys.argv[8] try: with open(edgefile) as f: reader = csv.reader(f) edges = list(reader) except IOError: print >>sys.stderr, 'fatal: could not open edgefile %s' % (edgefile) return 1 nodes = unique_nodes(edges) node_sample = set(list(nodes)[:n]) if n > 0 else set(list(nodes)) try: with open(nodefile) as f: data = json.loads(f.read()) with open(hyponodefile) as f: hypodata = json.loads(f.read()) for h in hypodata: assert h not in data data[h] = hypodata[h] with open(positionfile) as f: positions = json.loads(f.read()) for p in positions: name = p['name'] if name in data: data[name]['x'] = p['x'] data[name]['y'] = p['y'] with open(synthfile) as f: synth = json.loads(f.read()) for k, v in synth.iteritems(): assert k in data data[k]['synthesis_probability'] = v for oqmdf in [oqmdfile, oqmdhypofile]: with open(oqmdf) as f: oqmd = json.loads(f.read()) for k, v in oqmd.iteritems(): formula = v['formula'] assert formula in data data[formula]['formation_energy'] = v['formation_energy'] except IOError: print >>sys.stderr, 'fatal: could not open nodefile %s' % (nodefile) return 1 for k in data: data[k] = extract(data[k]) edge_sample = filter_edges(edges, data) with open('edges.json', 'w') as f: print >>f, json.dumps(edge_sample, indent=2) with open('nodes.json', 'w') as f: print >>f, json.dumps(data) return 0 if __name__ == '__main__': sys.exit(main()) ```
{ "source": "JosephMontoya-TRI/monty", "score": 3 }
#### File: monty/monty/math.py ```python from __future__ import division, unicode_literals, absolute_import """ Addition math functions. """ __author__ = '<NAME>' __copyright__ = 'Copyright 2013, The Materials Virtual Lab' __version__ = '0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __date__ = '10/28/14' import math def nCr(n, r): """ Calculates nCr. Args: n (int): total number of items. r (int): items to choose Returns: nCr. """ f = math.factorial return int(f(n) / f(r) / f(n-r)) def nPr(n, r): """ Calculates nPr. Args: n (int): total number of items. r (int): items to permute Returns: nPr. """ f = math.factorial return int(f(n) / f(n-r)) ``` #### File: monty/os/__init__.py ```python from __future__ import absolute_import import os import errno from contextlib import contextmanager __author__ = '<NAME>' __copyright__ = 'Copyright 2013, The Materials Project' __version__ = '0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __date__ = '1/24/14' @contextmanager def cd(path): """ A Fabric-inspired cd context that temporarily changes directory for performing some tasks, and returns to the original working directory afterwards. E.g., with cd("/my/path/"): do_something() Args: path: Path to cd to. """ cwd = os.getcwd() os.chdir(path) try: yield finally: os.chdir(cwd) def makedirs_p(path, **kwargs): """ Wrapper for os.makedirs that does not raise an exception if the directory already exists, in the fashion of "mkdir -p" command. The check is performed in a thread-safe way Args: path: path of the directory to create kwargs: standard kwargs for os.makedirs """ try: os.makedirs(path, **kwargs) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise ``` #### File: monty/tests/test_itertools.py ```python from __future__ import division, unicode_literals, print_function """ #TODO: Replace with proper module doc. """ __author__ = '<NAME>' __copyright__ = 'Copyright 2013, The Materials Project' __version__ = '0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __date__ = '8/29/14' import unittest from monty.itertools import iterator_from_slice class FuncTest(unittest.TestCase): def test_iterator_from_slice(self): self.assertEqual(list(iterator_from_slice(slice(0, 6, 2))), [0, 2, 4]) if __name__ == '__main__': unittest.main() ``` #### File: monty/tests/test_math.py ```python from __future__ import division, unicode_literals __author__ = '<NAME>' __copyright__ = 'Copyright 2014, The Materials Virtual Lab' __version__ = '0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __date__ = '1/24/14' import unittest from monty.math import nCr, nPr class FuncTest(unittest.TestCase): def test_nCr(self): self.assertEqual(nCr(4, 2), 6) def test_deprecated_property(self): self.assertEqual(nPr(4, 2), 12) if __name__ == "__main__": unittest.main() ```
{ "source": "JosephMontoya-TRI/qmpy", "score": 2 }
#### File: qmpy/tests/test_tri_py3.py ```python import unittest import os import tempfile import shutil from qmpy.materials.structure import Structure TEST_DIR = os.path.dirname(os.path.abspath(__file__)) # Stub for testing phases class PhaseTest(unittest.TestCase): def test_phases(self): pass class VaspIOTest(unittest.TestCase): def setUp(self): self.cwd = os.getcwd() self.temp_dir = tempfile.mkdtemp() os.chdir(self.temp_dir) def tearDown(self): os.chdir(self.cwd) shutil.rmtree(self.temp_dir) def test_vasp_io(self): # Get structure from CIF # Write VASP files from structure pass if __name__ == '__main__': unittest.main() ```
{ "source": "josephmoyer/WALKOFF-Apps", "score": 3 }
#### File: WALKOFF-Apps/Converter/main.py ```python from apps import App, action from PIL import Image import logging import os logger = logging.getLogger(__name__) @action def convert_image(input_file, output_file): """Converts images from one file type to another Arguments: input_file -- the file path to be converted from output_file -- the file path to the new file Note: List of supported formats: https://pillow.readthedocs.io/en/5.3.x/handbook/image-file-formats.html """ if input_file != output_file: try: Image.open(input_file).save(output_file) except IOError: return ('Failed to convert ' + input_file + ' to ' + output_file), 'FailedToConvert' except ValueError: return ('Failed to convert ' + input_file + ' to ' + output_file + '. Check suppprted file types.'), 'FailedToConvert' return output_file, 'Success' @action def convert_image_batch(input_dir, output_type, sub_directories): """Converts all images from their original file type to a specified type calls convert_image for each file. Outputs the new file to the same directory as the original file. Tries to convert every file, will only convert supported formats Arguments: input_dir -- the directory path to convert output_type -- the type to convert to ('PNG', 'JPG', etc.) sub_directories -- boolean to determine if all sub dir will be explored Note: List of supported formats: https://pillow.readthedocs.io/en/5.3.x/handbook/image-file-formats.html """ successful_converts = 0 if(sub_directories): for root, dirs, files in os.walk(input_dir): for name in files: fp = os.path.join(root, name) # file path output_name = fp[0:(fp.rfind('.') + 1)] + output_type if (convert_image(fp, output_name).status == 'Success'): successful_converts += 1 else: for entry in os.scandir(input_dir): if entry.is_file(): output_name = entry.path[0:(entry.name.rfind('.') + 1)] + output_type if (convert_image(entry.path, output_name).status == 'Success'): successful_converts += 1 # Make sure at least one file gets converted, if not it's a failure if successful_converts > 0: return input_dir, 'Success' else: return input_dir, 'FailedToConvert' ``` #### File: signature-base/threatintel/get-otx-iocs.py ```python from OTXv2 import OTXv2 import re import os import sys import traceback import argparse OTX_KEY = '7607c7e15409381f7f8532b4d4caaeaa6c96e75cea7ef3169d9b6bad19290c43' # Hashes that are often included in pulses but are false positives HASH_WHITELIST = ['e617348b8947f28e2a280dd93c75a6ad', '125da188e26bd119ce8cad7eeb1fc2dfa147ad47', '06f7826c2862d184a49e3672c0aa6097b11e7771a4bf613ec37941236c1a8e20', 'd378bffb70923139d6a4f546864aa61c', '8094af5ee310714caebccaeee7769ffb08048503ba478b879edfef5f1a24fefe', '01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b', 'b6f9aa44c5f0565b5deb761b1926e9b6', # Empty file 'd41d8cd98f00b204e9800998ecf8427e', 'da39a3ee5e6b4b0d3255bfef95601890afd80709', 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855', # One byte line break file (Unix) 0x0a '68b329da9893e34099c7d8ad5cb9c940', 'adc83b19e793491b1c6ea0fd8b46cd9f32e592fc', '01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b', # One byte line break file (Windows) 0x0d0a '81051bcc2cf1bedf378224b0a93e2877', 'ba8ab5a0280b953aa97435ff8946cbcbb2755a27', '<KEY>', ] FILENAMES_WHITELIST = ['wncry'] DOMAIN_WHITELIST = ['proofpoint.com'] class WhiteListedIOC(Exception): pass class OTXReceiver(): # IOC Strings hash_iocs = "" filename_iocs = "" c2_iocs_ipv4 = "" c2_iocs_ipv6 = "" c2_iocs_domain = "" # Output format separator = ";" use_csv_header = False extension = "txt" hash_upper = True filename_regex_out = True def __init__(self, api_key, siem_mode, debug, proxy, csvheader, extension): self.debug = debug self.otx = OTXv2(api_key, proxy) if siem_mode: self.separator = "," self.use_csv_header = csvheader self.extension = extension self.hash_upper = True self.filename_regex_out = False def get_iocs_last(self): # mtime = (datetime.now() - timedelta(days=days_to_load)).isoformat() print("Starting OTX feed download ...") self.events = self.otx.getall() print("Download complete - %s events received" % len(self.events)) # json_normalize(self.events) def write_iocs(self, ioc_folder): hash_ioc_file = os.path.join(ioc_folder, "otx-hash-iocs.{0}".format(self.extension)) filename_ioc_file = os.path.join(ioc_folder, "otx-filename-iocs.{0}".format(self.extension)) c2_ioc_ipv4_file = os.path.join(ioc_folder, "otx-c2-iocs-ipv4.{0}".format(self.extension)) c2_ioc_ipv6_file = os.path.join(ioc_folder, "otx-c2-iocs-ipv6.{0}".format(self.extension)) c2_ioc_domain_file = os.path.join(ioc_folder, "otx-c2-iocs.{0}".format(self.extension)) print("Processing indicators ...") for event in self.events: try: for indicator in event["indicators"]: try: # Description description = event["name"].encode('unicode-escape').replace(self.separator, " - ") # Hash IOCs if indicator["type"] in ('FileHash-MD5', 'FileHash-SHA1', 'FileHash-SHA256'): # Whitelisting if indicator["indicator"].lower() in HASH_WHITELIST: raise WhiteListedIOC hash = indicator["indicator"] if self.hash_upper: hash = indicator["indicator"].upper() self.hash_iocs += "{0}{3}{1} {2}\n".format( hash, description, " / ".join(event["references"])[:80], self.separator) # Filename IOCs if indicator["type"] == 'FilePath': # Whitelisting for w in FILENAMES_WHITELIST: if w in indicator["indicator"]: raise WhiteListedIOC filename = indicator["indicator"] if self.filename_regex_out: filename = my_escape(indicator["indicator"]) self.filename_iocs += "{0}{3}{1} {2}\n".format( filename, description, " / ".join(event["references"])[:80], self.separator) # C2 IOCs # Whitelisting if indicator["type"] in ('IPv4', 'IPv6', 'domain', 'hostname', 'CIDR'): for domain in DOMAIN_WHITELIST: if domain in indicator["indicator"]: print(indicator["indicator"]) raise WhiteListedIOC if indicator["type"] == 'IPv4': self.c2_iocs_ipv4 += "{0}{3}{1} {2}\n".format( indicator["indicator"], description, " / ".join(event["references"])[:80], self.separator) if indicator["type"] == 'IPv6': self.c2_iocs_ipv6 += "{0}{3}{1} {2}\n".format( indicator["indicator"], description, " / ".join(event["references"])[:80], self.separator) if indicator["type"] in ('domain', 'hostname', 'CIDR'): self.c2_iocs_domain += "{0}{3}{1} {2}\n".format( indicator["indicator"], description, " / ".join(event["references"])[:80], self.separator) except WhiteListedIOC as e: pass except Exception as e: traceback.print_exc() # Write to files with open(hash_ioc_file, "w") as hash_fh: if self.use_csv_header: hash_fh.write('hash{0}'.format(self.separator) + 'source\n') hash_fh.write(self.hash_iocs) print("{0} hash iocs written to {1}".format(self.hash_iocs.count('\n'), hash_ioc_file)) with open(filename_ioc_file, "w") as fn_fh: if self.use_csv_header: fn_fh.write('filename{0}'.format(self.separator) + 'source\n') fn_fh.write(self.filename_iocs) print("{0} filename iocs written to {1}".format(self.filename_iocs.count('\n'), filename_ioc_file)) with open(c2_ioc_ipv4_file, "w") as c24_fh: if self.use_csv_header: c24_fh.write('host{0}'.format(self.separator) + 'source\n') c24_fh.write(self.c2_iocs_ipv4) print("{0} c2 ipv4 iocs written to {1}".format(self.c2_iocs_ipv4.count('\n'), c2_ioc_ipv4_file)) with open(c2_ioc_ipv6_file, "w") as c26_fh: if self.use_csv_header: c26_fh.write('host{0}'.format(self.separator) + 'source\n') c26_fh.write(self.c2_iocs_ipv6) print("{0} c2 ipv6 iocs written to {1}".format(self.c2_iocs_ipv6.count('\n'), c2_ioc_ipv6_file)) with open(c2_ioc_domain_file, "w") as c2d_fh: if self.use_csv_header: c2d_fh.write('host{0}'.format(self.separator) + 'source\n') c2d_fh.write(self.c2_iocs_domain) print("{0} c2 domain iocs written to {1}".format(self.c2_iocs_domain.count('\n'), c2_ioc_domain_file)) def my_escape(string): return re.sub(r'([\-\(\)\.\[\]\{\}\\\+])', r'\\\1', string) if __name__ == '__main__': parser = argparse.ArgumentParser(description='OTX IOC Receiver') parser.add_argument('-k', help='OTX API key', metavar='APIKEY', default=OTX_KEY) # parser.add_argument('-l', help='Time frame in days (default=1)', default=1) parser.add_argument('-o', metavar='dir', help='Output directory', default='../iocs') parser.add_argument('-p', metavar='proxy', help='Proxy server (e.g. http://proxy:8080 or ' 'http://user:pass@proxy:8080', default=None) parser.add_argument('--verifycert', action='store_true', help='Verify the server certificate', default=False) parser.add_argument('--siem', action='store_true', default=False, help='CSV output for use in SIEM systems (e.g. Splunk)') parser.add_argument('--nocsvheader', action='store_true', default=False, help='Disable header in CSV output (e.g. McAfee SIEM)') parser.add_argument('-e', metavar='ext', help='File extension', default='txt') parser.add_argument('--debug', action='store_true', default=False, help='Debug output') args = parser.parse_args() if len(args.k) != 64: print("Set an API key in script or via -k APIKEY. Go to https://otx.alienvault.com create an account and get your own API key") sys.exit(0) # Create a receiver otx_receiver = OTXReceiver(api_key=args.k, siem_mode=args.siem, debug=args.debug, proxy=args.p, csvheader=(not args.nocsvheader), extension=args.e) # Retrieve the events and store the IOCs # otx_receiver.get_iocs_last(int(args.l)) otx_receiver.get_iocs_last() # Write IOC files otx_receiver.write_iocs(ioc_folder=args.o) ``` #### File: interfaces/nmapopenvas/graphs.py ```python from interfaces import dispatcher, AppBlueprint from walkoff.events import WalkoffEvent from flask import Blueprint, jsonify import json blueprint = AppBlueprint(blueprint=Blueprint('NOVAS_Demo', __name__)) latest_graph = "WalkoffDemoGraph.json" @dispatcher.on_app_actions('Nmap', actions=['graph from results'], events=WalkoffEvent.ActionExecutionSuccess) def get_latest_graph(data): global latest_graph latest_graph = data['arguments'][3]['value'] @blueprint.blueprint.route('/demo', methods=['GET']) def read_and_send_graph(): try: global latest_graph with open(latest_graph) as f: r = jsonify(json.load(f)) return r, 200 except IOError: return None, 461 ``` #### File: WALKOFF-Apps/SkeletonApp/main.py ```python import logging from apps import App, action logger = logging.getLogger(__name__) @action def test_global_action(data): return data class Main(App): """ Skeleton example app to build other apps off of Args: name (str): Name of the app device (list[str]): List of associated device names """ def __init__(self, name, device, context): App.__init__(self, name, device, context) #Required to call superconstructor @action def test_function(self): """ Basic self contained function """ return {} @action def test_function_with_param(self, test_param): """ Basic function that takes in a parameter Args: test_param (str): String that will be returned """ return test_param @action def test_function_with_device_reference(self): """ Basic function that calls an instance variable. In this case, a device name. """ # password = self.get_device().get_encrypted_field('password'); do not store this variable in cache return self.device_fields['username'] ```
{ "source": "josephmtinangi/python-basics", "score": 2 }
#### File: python-basics/functions/check-for-prime.py ```python def check(number): print('Coming soon') ```
{ "source": "joseph-nagel/torchutils", "score": 3 }
#### File: torchutils/tests/test_data.py ```python import pytest import numpy as np import torch from torch.utils.data import TensorDataset from torchutils.data import mean_std_over_dataset, image2tensor, tensor2image @pytest.mark.parametrize('no_samples', [100, 1000]) @pytest.mark.parametrize('feature_shape', [(), (1,), (10,), (10,10)]) def test_mean_std_over_dataset(no_samples, feature_shape): '''Test correctness of evaluating the mean and standard deviation.''' torch.manual_seed(0) X = torch.randn(no_samples, *feature_shape) y = torch.randint(2, size=(no_samples,)) data_set = TensorDataset(X, y) mean, std = mean_std_over_dataset(data_set) ref_mean = X.numpy().mean() ref_std = X.numpy().std() assert np.isclose(mean, ref_mean, rtol=1e-02, atol=1e-03) assert np.isclose(std, ref_std, rtol=1e-02, atol=1e-03) @pytest.mark.parametrize('shape', [(10,10), (10,10,3), (1,10,10,3)]) def test_image2tensor2image(shape): '''Test the transformation and back-transformation of an image.''' np.random.seed(0) image = np.random.randn(*shape) tensor = image2tensor(image) new_image = tensor2image(tensor) assert np.allclose(image.squeeze(), new_image.squeeze()) @pytest.mark.parametrize('shape', [(10,10), (3,10,10), (1,3,10,10)]) def test_tensor2image2tensor(shape): '''Test the transformation and back-transformation of a tensor.''' torch.manual_seed(0) tensor = torch.randn(*shape) image = tensor2image(tensor) new_tensor = image2tensor(image) assert np.allclose(tensor.squeeze(), new_tensor.squeeze()) ``` #### File: torchutils/tests/test_tools.py ```python import pytest import itertools import torch import torch.nn as nn from torchutils.tools import conv_out_shape input_shapes = [(10,10), (100,100)] kernel_sizes = [(3,3), (5,5)] strides = [1] paddings = [0, 1, 2] dilations = [1] cartesian_product = [elem for elem in itertools.product( input_shapes, kernel_sizes, strides, paddings, dilations )] @pytest.fixture(params=cartesian_product) def data_conv_model_and_input(request): '''Create convolutional layer and input tensor.''' torch.manual_seed(0) input_shape, kernel_size, stride, padding, dilation = request.param model = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation) X = torch.randn(1, model.in_channels, *input_shape) return model, X def test_conv_out_shape(data_conv_model_and_input): '''Test the predicted output shape after the convolution.''' model, X = data_conv_model_and_input y = model(X) actual_out_shape = y.shape[2:] predicted_out_shape = conv_out_shape(input_shape=X.shape[2:], kernel_size=model.kernel_size, stride=model.stride, padding=model.padding, dilation=model.dilation) assert predicted_out_shape == actual_out_shape ``` #### File: torchutils/torchutils/data.py ```python import numpy as np import torch from torch.utils.data import DataLoader, Sampler def mean_std_over_dataset(data_set, batch_size=1, channel_wise=False, verbose=True): ''' Calculate mean and std. in a batch-wise sweep over the dataset. Parameters ---------- data_set : PyTorch DataSet object Set of data to be analyzed. Returns ------- mean : float or array Mean value or channel-wise mean values. std : float or array Standard deviation or channel-wise standard deviations. ''' # data loader data_loader = DataLoader(data_set, batch_size=batch_size, shuffle=False) # mean and std. if not channel_wise: # mean mean = 0. for images, labels in data_loader: # print('{}'.format(images.numpy().shape)) mean += np.mean(images.numpy()) mean /= len(data_loader) # std. std = 0. for images, labels in data_loader: std += np.mean((images.numpy() - mean)**2) std /= len(data_loader) - 1 std = np.sqrt(std) # channel-wise mean and std. else: # mean no_summands = 0. mean = np.zeros(3) for images, labels in data_loader: mean += np.sum(images.numpy(), axis=(0,2,3)) no_summands += np.size(images.numpy()[:,0,:,:]) mean /= no_summands # std. no_summands = 0. std = np.zeros(3) for images, labels in data_loader: std += np.sum((images.numpy() - mean.reshape(1,-1,1,1))**2, axis=(0,2,3)) no_summands += np.size(images.numpy()[:,0,:,:]) std /= no_summands - 1 std = np.sqrt(std) if verbose: print('Mean: {}'.format(np.array2string(np.array(mean), precision=4))) print('Std.: {}'.format(np.array2string(np.array(std), precision=4))) return mean, std class GaussianNoise(object): ''' Gaussian noise corruptions. Summary ------- The class realizes a transformer corrupting images with Gaussian noise. This can be used for data augmentation or robustness evaluation. ''' def __init__(self, noise_std=1.0): self.noise_std = noise_std def __call__(self, X): X_noisy = X + torch.randn_like(X) * self.noise_std return X_noisy class BalancedSampler(Sampler): ''' Balanced sampling of imbalanced datasets. Summary ------- In order to deal with an imbalanced classification dataset, an appropriate over/undersampling scheme is implemented. Here, samples are taken with replacement from the set, such that all classes are equally likely to occur in the training mini-batches. This might be especially helpful in combination with data augmentation. Different weights for samples in the empirical loss would be an alternative. Parameters ---------- data_set : PyTorch dataset Imbalanced dataset to be over/undersampled. no_samples : int or None Number of samples to draw in one epoch. indices : array_like or None Subset of indices that are sampled. ''' def __init__(self, dataset, no_samples=None, indices=None): self.indices = list(range(len(dataset))) if no_samples is None: self.no_samples = len(dataset) if indices is None else len(indices) else: self.no_samples = no_samples # class occurrence counts data_loader = DataLoader(dataset, batch_size=1, shuffle=False) labels_list = [] for image, label in data_loader: labels_list.append(label) labels_tensor = torch.cat(labels_list, dim=0) unique_labels, counts = torch.unique(labels_tensor, return_counts=True) # unnormalized probabilities weights_for_class = 1.0 / counts.float() weights_for_index = torch.tensor( [weights_for_class[labels_tensor[idx]] for idx in self.indices] ) # zero indices if indices is not None: zero_ids = np.setdiff1d(self.indices, indices).tolist() weights_for_index[zero_ids] = torch.tensor(0.0) # balanced sampling distribution self.categorical = torch.distributions.Categorical(probs=weights_for_index) def __iter__(self): return (idx for idx in self.categorical.sample((self.no_samples,))) def __len__(self): return self.no_samples def image2tensor(image, unsqueeze=True): ''' Convert image array to PyTorch tensor. Parameters ---------- image : array unsqueeze : bool Returns ------- tensor : PyTorch tensor ''' if image.ndim == 2: # (no_rows, no_cols) tensor = torch.from_numpy(image) elif image.ndim == 3: # (no_rows, no_cols, no_channels) tensor = torch.from_numpy(image.transpose(2, 0, 1)) elif image.ndim == 4: # (no_samples, no_rows, no_channels) tensor = torch.from_numpy(image.transpose(0, 3, 1, 2)) if unsqueeze: for _ in range(4 - image.ndim): tensor = tensor.unsqueeze(0) return tensor # (no_samples, no_channels, no_rows, no_colums) def tensor2image(tensor, squeeze=True): ''' Convert PyTorch tensor to image array. Parameters ---------- tensor : PyTorch tensor squeeze : bool Returns ------- image : array ''' if tensor.ndim == 2: # (no_rows, no_cols) image = tensor.numpy() elif tensor.ndim == 3: # (no_channels, no_rows, no_cols) image = tensor.numpy().transpose((1, 2, 0)) elif tensor.ndim == 4: # (no_samples, no_channels, no_rows, no_cols) image = tensor.numpy().transpose((0, 2, 3, 1)) if squeeze: image = image.squeeze() return image # (no_samples, no_rows, no_cols, no_channels) ``` #### File: torchutils/torchutils/pretrained.py ```python import numpy as np import torch import torch.nn as nn from torchvision.models import AlexNet, VGG, ResNet, DenseNet def create_feature_extractor(model_architecture, input_shape=None, is_pretrained=True, is_frozen=True): ''' Create a pretrained feature extractor. Summary ------- A feature extractor is created from a predefined model architecture. At the moment, AlexNet, VGG, and ResNet and DenseNet models are supported. The shape of the output features is empirically determined. Parameters ---------- model_architecture : PyTorch module or constructor function Predefined model architecture. input_shape : tuple or None Model input shape. If not given, ImageNet defaults are used. is_pretrained : bool Determines whether pretrained weights are loaded. is_frozen : bool Determines whether weights are frozen. ''' # initialize model if isinstance(model_architecture, (AlexNet, VGG, ResNet, DenseNet)): pretrained_model = model_architecture # is already a model instance else: pretrained_model = model_architecture(pretrained=is_pretrained) # is only a model constructor # freeze parameters if is_frozen: freeze_parameters(pretrained_model) # input shape if input_shape is None: input_shape = (3, 224, 224) elif len(input_shape) == 2: input_shape = (3,) + input_shape # create features if isinstance(pretrained_model, (AlexNet, VGG, DenseNet)): feature_list = list(pretrained_model.features.children()) elif isinstance(pretrained_model, ResNet): feature_list = list(pretrained_model.children())[:-2] # feature_list.append(nn.AvgPool2d((7,7))) feature_extractor = nn.Sequential(*feature_list) # feature shape feature_shape = get_output_shape(feature_extractor, input_shape) # no_features = np.prod(feature_shape) return feature_extractor, feature_shape def freeze_parameters(model): '''Freeze the weights of a model.''' for param in model.parameters(): param.requires_grad = False def get_output_shape(model, input_shape): ''' Return the output shape of a model. Summary ------- The model output shape is empirically determined for input tensors of a certain shape. Its values are randomly sampled from a standard normal distribution. Very generally, for a given input tensor with shape (no_samples, *input_shape), the model predicts an (no_samples, *output_shape)-shaped output. The shape of this output, without the sample size, is returned. ''' model.eval() with torch.no_grad(): predictions = model(torch.randn(1, *input_shape)) output_shape = tuple(predictions.shape[1:]) return output_shape def extract_features(feature_extractor, data_loader, expand=None, as_array=False): ''' Extract features given a model and a data loader. Summary ------- Extracts features from all images generated by the data loader. After they are computed in batches, they are eventually concatenated and returned as either PyTorch tensors or Numpy arrays. Parameters ---------- feature_extractor : PyTorch module Feature extraction model. data_loader : PyTorch DataLoader Data loader instance. expand : tuple or None If given, input tensors are expanded accordingly. as_array : bool Determines whether outputs are returned as Numpy arrays. ''' features_list = [] labels_list = [] feature_extractor.eval() with torch.no_grad(): for images, labels in data_loader: if expand is not None: images = images.expand(*expand) features = feature_extractor(images) features_list.append(features) labels_list.append(labels) if as_array: # Numpy arrays features = np.concatenate([tensor.numpy() for tensor in features_list], axis=0) labels = np.concatenate([tensor.numpy() for tensor in labels_list], axis=0) else: # PyTorch tensors features = torch.cat(features_list, dim=0) labels = torch.cat(labels_list, dim=0) return features, labels ``` #### File: torchutils/torchutils/tools.py ```python import numpy as np def moving_average(x, window=3, mode='full'): ''' Calculate the moving average over an array. Summary ------- This function computes the running mean of an array. Padding is performed for the "left" side, not for the "right". Parameters ---------- x : array Input array. window : int Window size. mode : {'full', 'last'} Determines whether the full rolling mean history or only its last element is returned. Returns ------- running_mean : float Rolling mean. ''' x = np.array(x) if mode == 'full': x_padded = np.pad(x, (window-1, 0), mode='constant', constant_values=x[0]) running_mean = np.convolve(x_padded, np.ones((window,))/window, mode='valid') elif mode == 'last': if x.size >= window: running_mean = np.convolve(x[-window:], np.ones((window,))/window, mode='valid')[0] else: x_padded = np.pad(x, (window-x.size, 0), mode='constant', constant_values=x[0]) running_mean = np.convolve(x_padded, np.ones((window,))/window, mode='valid')[0] return running_mean def conv_out_shape(input_shape, kernel_size, stride=1, padding=0, dilation=1, mode='floor'): ''' Calculate the output shape of a convolutional layer. Summary ------- This function returns the output tensor shape of a convolutional layer. One needs to pass the input shape and all relevant layer properties as arguments. The parameter convention of PyTorch's convolutional layer modules is adopted herein, e.g. see the documentation of the torch.nn.Conv2d class. Parameters ---------- input_shape : int or array-like Shape of the layer input tensor. kernel_size : int or array-like Size of the convolutional kernels. stride : int or array-like Stride parameter. padding : int or array-like Padding parameter. dilation : int or array-like Dilation parameter. mode : {'floor', 'ceil'} Determines whether to floor or to ceil. Returns ------- output_shape : int or tuple Shape of the layer output tensor. Notes ----- The same function can be used to determine the output size of pooling layers. Though, some care regarding the ceil/floor mode has to be taken. PyTorch's default behavior is to floor the output size. ''' input_shape = np.array(input_shape) no_dims = input_shape.size kernel_size = _make_array(kernel_size, no_dims) stride = _make_array(stride, no_dims) padding = _make_array(padding, no_dims) dilation = _make_array(dilation, no_dims) if mode == 'floor': output_shape = np.floor((input_shape + 2*padding - dilation*(kernel_size-1) - 1) / stride + 1).astype('int') elif mode == 'ceil': output_shape = np.ceil((input_shape + 2*padding - dilation*(kernel_size-1) - 1) / stride + 1).astype('int') if no_dims == 1: output_shape = int(output_shape) if no_dims >= 2: output_shape = tuple([int(output_shape[i]) for i in range(no_dims)]) return output_shape def _make_array(x, no_dims): '''Transform a scalar into an array with equal entries.''' return np.array(x) if np.size(x) == no_dims else np.array([x for i in range(no_dims)]) ```
{ "source": "josephnavarro/ascii-art-generator", "score": 4 }
#### File: ascii-art-generator/src/hashable.py ```python from PIL import Image import uuid class HashableImage: """ : : Hashable PIL Image container. Enables PIL image data to be used as dictionary keys. : : : Attrs: : Image image : Image object : UUID _hash : Uniquely hashable element : : """ __slots__ = [ "image", "_hash", ] def __init__(self, image: Image): self.image = image # type: Image self._hash = uuid.uuid4() # type: uuid.UUID @property def size(self) -> (int, int): """ : : Gets size (i.e. width and height) of the contained image object. : : """ return self.image.size def __hash__(self): """ : : Returns hash(self). : : """ return hash(self._hash) def convert(self, mode: str) -> Image: """ : : Implements Image.convert(). Note that this returns a PIL Image, not a HashableImage. : : """ return self.image.convert(mode) def crop(self, rect: (int, int, int, int)): """ : : Implements Image.crop(). Note that this returns another HashableImage, not a PIL Image. : : """ return HashableImage(self.image.crop(rect)) def load(self): """ : : Returns pixel access data for the contained image object. : : """ return self.image.load() ```
{ "source": "josephndep/Traffic-signals-simple-codes--Intermediate-Python-program", "score": 4 }
#### File: Traffic-signals-simple-codes--Intermediate-Python-program/Traffic signal codes/patrol.py ```python import time from datetime import datetime from time import sleep now = datetime.now() current_time = now.strftime("%H:%M:%S") # Time is of esssence that is why current_time is included # Define a function convoy def traffic(): while True: for X in range(10000): print("Green....", current_time) # GREEN Traffic lights with timer below time.sleep(5) # print("Orange....") # With the orange light print("Possible convoy or Ambulance", current_time) # Decisions of leaving space for convoys print('Press tap Ctrl+C for Emergency: ') # or Ambulance can be decided try: for i in range(0,5): sleep(3) print("No Interruptions...") except KeyboardInterrupt: print("OK Blue Traffic lights Activated") # BLUE Activated print("Blue....") print("Space for Emergency") time.sleep(7) print("Red okay stop", current_time) # Red Traffic lights with Timer below time.sleep(5) traffic() # recall the function ``` #### File: Traffic-signals-simple-codes--Intermediate-Python-program/Traffic signal codes/traffic.py ```python import time import random from random import choice # Green = 2 # Orange = 0 # Red = 1 def traffic_colors(): color = [1, 2] print('Orange[0]...') X = (choice(color)) print(X) if X == 1: print("Red!..") time.sleep(3.5) print("Hey! Hold on") elif X == 2: print("Green!...Move on") traffic_colors() # for n in range(n, -1, -1): # print(n, end= '', flush=True) # print(c, flush=True) # time.sleep(5) # pass ```
{ "source": "josephneumann/spirit-island-logger", "score": 3 }
#### File: spirit-island-logger/app/forms.py ```python from flask_wtf import FlaskForm from wtforms import ( ValidationError, BooleanField, IntegerField, SubmitField, DateField, SelectMultipleField, SelectField, TextAreaField, PasswordField, StringField, ) from wtforms.validators import DataRequired, NumberRange, Optional class CreateGameForm(FlaskForm): players = SelectField("Players", validators=[DataRequired()]) expansions = SelectMultipleField("Expansions") create_game = SubmitField("Create Game") def validate_spirit_count(form, field): if field.data and len(field.data) != form.players.data: raise ValidationError("Number of Spirits selected does not match player count") def validate_board_count(form, field): if field.data and len(field.data) != form.players.data: raise ValidationError("Number of Boards selected does not match player count") class SpiritCreateGameForm(FlaskForm): players = SelectField("Players", validators=[DataRequired()]) spirits = SelectMultipleField("Spirits") expansions = SelectMultipleField("Expansions") create_game = SubmitField("Create Game") class EditGameForm(FlaskForm): players = IntegerField( "Players", validators=[ DataRequired(), NumberRange(min=1, max=4, message="Must be 1-4 players"), ], ) update_game = SubmitField("Save Game") date = DateField("Date") spirits = SelectMultipleField("Spirits", validators=[validate_spirit_count]) boards = SelectMultipleField("Boards", validators=[validate_board_count]) scenario = SelectField("Scenario") adversary = SelectField("Adversary") status = SelectField("Status") rating = IntegerField( "Rating (1-10)", validators=[Optional(), NumberRange(min=0, max=10)] ) notes = TextAreaField("Notes") class ScoreGameForm(FlaskForm): outcome = SelectField("Outcome") invader_cards = IntegerField( "Invader Cards in Deck", validators=[NumberRange(min=0, max=12)] ) dahan = IntegerField( "Dahan Left", validators=[NumberRange(min=0, max=50)] ) blight = IntegerField( "Blight", validators=[NumberRange(min=0, max=50)] ) score_game = SubmitField("Calculate Score") class RandomizeGameForm(FlaskForm): use_thematic_boards = BooleanField("Thematic") spirit_max_complexity = SelectField("Max Spirit Complexity") use_scenario = BooleanField("Use Scenario") scenario_max_difficulty = SelectField( "Scenario Max Difficulty", validators=[Optional()] ) use_adversary = BooleanField("Use Adversary") adversary_max_difficulty = SelectField( "Adversary Max Difficulty", validators=[Optional()] ) force = BooleanField("Force Over-write") randomize = SubmitField("Randomize Game") class LoginForm(FlaskForm): username = StringField("Username") password = PasswordField("Password") remember_me = BooleanField("Remember Me") login = SubmitField("Log In") class DeleteGameForm(FlaskForm): confirm_text = StringField("Confirm Text") delete = SubmitField("Delete") ```
{ "source": "josephnglynn/blenderCustomSaveFolder", "score": 2 }
#### File: josephnglynn/blenderCustomSaveFolder/CustomRenderOptions.py ```python import ntpath import os import bpy bl_info = { "name": "Render TO Specific Directory", "blender": (2, 80, 0), "category": "Render", } home = os.path.expanduser("~") RenderOutputDir = home + "/Documents/Blender Render Outputs/" RenderAnimationDir = home + "/Documents/Blender Video Outputs/" def checkIfDirectoriesExist(projectName): if (os.path.exists(RenderOutputDir) == False): os.mkdir(RenderOutputDir) if (os.path.exists(RenderOutputDir + projectName) == False): os.mkdir(RenderOutputDir + projectName) if (os.path.exists(RenderAnimationDir) == False): os.mkdir(RenderAnimationDir) if (os.path.exists(RenderAnimationDir + projectName) == False): os.mkdir(RenderAnimationDir + projectName) def getVersion(projectName, dir): location = dir + projectName + "/config" v = "" print("starting") if os.path.isfile(location): config = open(location, 'r+') version = config.readlines()[0] if (version[len(version)-1] == "9"): stringVersion = str(version) strings = [] for i in stringVersion: strings.append(i) bigNumber = "" for i in range(0, len(stringVersion)-1): if (strings[i] != "."): bigNumber += strings[i] numberAsInt = int(bigNumber) numberAsInt += 1 numberAsString = str(numberAsInt) writeToFile = [numberAsString, ".", "0"] config.seek(0) config.writelines(writeToFile) for i in writeToFile: v += i else: stringVersion = str(version) strings = [] for i in stringVersion: strings.append(i) numberAsInt = int(version[len(version)-1]) numberAsInt = numberAsInt + 1 numberAsString = str(numberAsInt) strings[len(stringVersion)-1] = numberAsString finalVersion = "" for i in strings: finalVersion += i config.seek(0) config.writelines(finalVersion) v = finalVersion else: config = open(location, 'w+') config.writelines("1.0") v = "1.0" return v def getFileNameAndLocation(dir): projectName = os.path.splitext(ntpath.basename(bpy.data.filepath))[0] checkIfDirectoriesExist(projectName=projectName) version = getVersion(projectName=projectName, dir=dir) fileName = dir + projectName + "/" + projectName + "_v" + version + \ "." + str(bpy.context.scene.render.image_settings.file_format).lower() return fileName class SimpleRender(bpy.types.Operator): bl_idname = "myops.render" bl_label = "Render" def execute(self, context): bpy.context.scene.render.image_settings.file_format = "PNG" bpy.context.scene.render.filepath = getFileNameAndLocation(RenderOutputDir) bpy.ops.render.render('INVOKE_DEFAULT',animation=False, write_still=True) return {'FINISHED'} class SimpleRenderAnimation(bpy.types.Operator): bl_idname = "myops.renderanimation" bl_label = "Render Animation" def execute(self, context): bpy.context.scene.render.image_settings.file_format = "FFMPEG" bpy.context.scene.render.ffmpeg.constant_rate_factor = "PERC_LOSSLESS" bpy.context.scene.render.filepath = getFileNameAndLocation(RenderAnimationDir) bpy.ops.render.render('INVOKE_DEFAULT',animation=True, write_still=True) return {'FINISHED'} class TOPBAR_MT_custom_menu(bpy.types.Menu): bl_label = "Custom Render" def draw(self, context): layout = self.layout layout.operator("myops.render", text="render") layout.operator("myops.renderanimation", text="render Animation") def menu_draw(self, context): self.layout.menu("TOPBAR_MT_custom_menu") def register(): bpy.utils.register_class(SimpleRender) bpy.utils.register_class(SimpleRenderAnimation) bpy.utils.register_class(TOPBAR_MT_custom_menu) bpy.types.TOPBAR_MT_editor_menus.append(TOPBAR_MT_custom_menu.menu_draw) def unregister(): bpy.types.TOPBAR_MT_editor_menus.remove(TOPBAR_MT_custom_menu.menu_draw) bpy.utils.unregister_class(SimpleRender) bpy.utils.unregister_class(SimpleRenderAnimation) bpy.utils.unregister_class(TOPBAR_MT_custom_menu) if __name__ == "__main__": register() ```
{ "source": "josephniwjc/MINE-Database", "score": 3 }
#### File: MINE-Database/minedatabase/metabolomics.py ```python from __future__ import annotations import math import os import re import time import xml.etree.ElementTree as ET from ast import literal_eval from typing import Callable, Generator, List, Optional, Set, Tuple import numpy as np import pymongo import minedatabase from minedatabase.databases import MINE from minedatabase.utils import mongo_ids_to_mine_ids, score_compounds MINEDB_DIR = os.path.dirname(minedatabase.__file__) class MetabolomicsDataset: """A class containing all the information for a metabolomics data set.""" # pylint: disable=redefined-outer-name def __init__( self, name: str, adducts: List[str] = None, known_peaks: List[Peak] = None, unknown_peaks: List[Peak] = None, native_set: Set[str] = set(), ppm: bool = False, tolerance: float = 0.001, halogens: bool = False, verbose: bool = False, ): """Metabolomics Dataset initialization. Parameters ---------- name : str Name of metabolomics dataset. adducts : List[str], optional List of adduct names, e.g. ["[M-H]-", "[M+H]+"] (defaults to all) See minedatabase/data/adducts/{Negative/Positive} Adducts full.txt for a full list of possible adducts. known_peaks : List[Peak], optional List of Peak objects annotated with ID and associated data, by default None. unknown_peaks : List[Peak], optional List of Peak objects annotated with associated data, by default None. native_set : Set[str], optional Set of compound IDs native to the organism that generated the dataset (e.g. IDs from model), by default set(). ppm : bool, optional If True, tolerance is set in parts per million, and if false (default), tolerance is set in Daltons. tolerance : float, optional Mass tolerance for hits, by default 0.001. halogens : bool, optional Filters out compounds containing halogens if True, by default False. verbose : bool, optional Prints more info to stdout if True, by default False. """ # Load adducts pos_fp = os.path.join(MINEDB_DIR, "data/adducts/Positive Adducts full.txt") neg_fp = os.path.join(MINEDB_DIR, "data/adducts/Negative Adducts full.txt") all_pos_adducts = self._read_adduct_file(pos_fp) all_neg_adducts = self._read_adduct_file(neg_fp) if adducts: self.pos_adducts = list(filter(lambda x: x[0] in adducts, all_pos_adducts)) self.neg_adducts = list(filter(lambda x: x[0] in adducts, all_neg_adducts)) else: self.pos_adducts = all_pos_adducts self.neg_adducts = all_neg_adducts # MongoDB projection for compound search self.hit_projection = { "Formula": 1, "MINE_id": 1, "SMILES": 1, "Inchikey": 1, "Spectra.Positive": 1, "Spectra.Negative": 1, "logP": 1 } # Load peak data and initialize other attributes self.name = name self.known_peaks = known_peaks if known_peaks else [] self.unknown_peaks = unknown_peaks if unknown_peaks else [] self.native_set = native_set self.ppm = ppm self.tolerance = tolerance self.halogens = halogens self.verbose = verbose self.total_formulas = 0 self.total_hits = 0 self.matched_peaks = 0 self.possible_masses = {"+": [], "-": []} self.possible_ranges = {"+": [], "-": []} def __str__(self) -> str: """Give string representation. Returns ------- self.name : str Name of the metabolomics dataset. """ return self.name def _read_adduct_file(self, filepath: str) -> List[Tuple]: """Read specified adduct file. Parameters ---------- filepath : str Path to adduct file. Returns ------- adducts : List[Tuple] A list of (str, float, float) tuples of form ('adduct name', m/z multiplier, adduct mass change). """ adducts = [] with open(filepath, "r") as infile: for line in infile: if line.startswith("#"): continue adduct = line.strip().split("\t") adduct[0] = adduct[0].strip() adduct[1] = float(adduct[1]) adduct[2] = float(adduct[2]) adducts.append(tuple(adduct)) return adducts def enumerate_possible_masses(self, tolerance: float) -> None: """Generate all possible masses from unknown peaks and list of adducts. Saves these mass ranges to self.possible_ranges. Parameters ---------- tolerance : float Mass tolerance in Daltons. """ for peak in self.unknown_peaks: if peak.charge == "+": peak_adducts = self.pos_adducts else: peak_adducts = self.neg_adducts masses, ranges = peak._enumerate_possible_masses( self, peak_adducts, tolerance ) self.possible_masses[peak.charge] += masses self.possible_ranges[peak.charge] += ranges for charge in ["+", "-"]: self.possible_masses[charge] = np.array(set(self.possible_masses[charge])) def get_rt(self, peak_id: str) -> Optional[float]: """Return retention time for peak with given ID. If not found, returns None. Parameters ---------- peak_id : str ID of peak as listed in dataset. Returns ------- rt : float, optional Retention time of peak with given ID, None if not found. """ rt = None for peak in self.unknown_peaks + self.known_peaks: if peak_id == peak.name: rt = peak.r_time break return rt def find_db_hits( self, peak: Peak, db: MINE, core_db: MINE, adducts: List[Tuple[str, float, float]], ) -> None: """This function searches the database for matches of a peak given adducts and updates the peak object with that information. Parameters ---------- peak : Peak Peak object to query against MINE compound database. db : MINE MINE database to query. adducts : List[Tuple[str, float, float]] List of adducts. Each adduct contains three values in a tuple: (adduct name, mass multiplier, ion mass). """ # find nominal mass for a given m/z for each adduct and the max and # min values for db potential_masses = [(peak.mz - adduct[2]) / adduct[1] for adduct in adducts] if self.ppm: precision = (self.tolerance / 100000.0) * potential_masses else: precision = self.tolerance * 0.001 # convert to mDa upper_bounds = [pm + precision for pm in potential_masses] lower_bounds = [pm - precision for pm in potential_masses] # search database for hits in the each adducts mass range that have no # innate charge. mongo_ids = [] for i, adduct in enumerate(adducts): # build the query by adding the optional terms query_terms = [ {"Mass": {"$gte": float(lower_bounds[i])}}, {"Mass": {"$lte": float(upper_bounds[i])}}, {"Charge": 0}, {"MINES": {"$eq": db.name}}, ] if adduct[0] == "[M]+": query_terms[2] = {"Charge": 1} for compound in core_db.compounds.find( {"$and": query_terms}, self.hit_projection ): # Filters out halogens if the flag is enabled by moving to the # next compound before the current compound is counted or # stored. if not self.halogens: if re.search("F[^e]|Cl|Br", compound["Formula"]): continue # update the total hits for the peak and make a note if the # compound is in the native_set peak.total_hits += 1 if compound["_id"] in self.native_set: peak.native_hit = True compound["native_hit"] = True peak.formulas.add(compound["Formula"]) compound["adduct"] = adduct[0] compound["peak_name"] = peak.name mongo_ids.append(compound["_id"]) peak.isomers.append(compound) # Get MINE IDs in bulk mongo_to_mine = mongo_ids_to_mine_ids(mongo_ids, core_db) for cpd in peak.isomers: cpd["MINE_id"] = mongo_to_mine[cpd["_id"]] def annotate_peaks(self, db: MINE, core_db: MINE) -> None: """This function iterates through the unknown peaks in the dataset and searches the database for compounds that match a peak m/z given the adducts permitted. Statistics on the annotated data set are printed. Parameters ---------- db : MINE MINE database. core_db : MINE Core database containing spectra info. """ for i, peak in enumerate(self.unknown_peaks): positive = ( peak.charge == "+" or peak.charge == "Positive" or (peak.charge and isinstance(peak.charge, bool)) ) negative = ( peak.charge == "-" or peak.charge == "Negative" or (not peak.charge and isinstance(peak.charge, bool)) ) if positive: self.find_db_hits(peak, db, core_db, self.pos_adducts) elif negative: self.find_db_hits(peak, db, core_db, self.neg_adducts) else: raise ValueError( "Invalid compound charge specification. " 'Please use "+" or "Positive" for ' 'positive ions and "-" or "Negative" for ' f"negative ions. (charge = {peak.charge})" ) if peak.total_hits > 0: self.matched_peaks += 1 self.total_hits += peak.total_hits self.total_formulas += len(peak.formulas) if self.verbose: pct_done = int(float(i) / float(len(self.unknown_peaks)) * 100) print(f"{pct_done} percent of peaks processed") # Scoring functions appear before the Peak class because dot_product method is # default object for Peak.score_isomers def dot_product(x: List[tuple], y: List[tuple], epsilon: float = 0.01) -> float: """Calculate the dot product of two spectra, allowing for some variability in mass-to-charge ratios Parameters ---------- x : List[tuple] First spectra m/z values. y : List[tuple] Second spectra m/z values. epsilon : float, optional Mass tolerance in Daltons, by default 0.01. Returns ------- dot_prod : float Dot product of x and y. """ z = 0 n_v1 = 0 n_v2 = 0 for int1, int2 in _approximate_matches(x, y, epsilon): z += int1 * int2 n_v1 += int1 * int1 n_v2 += int2 * int2 dot_prod = z / (math.sqrt(n_v1) * math.sqrt(n_v2)) return dot_prod def jaccard(x: List[tuple], y: List[tuple], epsilon: float = 0.01) -> float: """Calculate the Jaccard Index of two spectra, allowing for some variability in mass-to-charge ratios Parameters ---------- x : List[tuple] First spectra m/z values. y : List[tuple] Second spectra m/z values. epsilon : float, optional Mass tolerance in Daltons, by default 0.01. Returns ------- jaccard_index : float Jaccard Index of x and y. """ intersect = 0 for val1, val2 in _approximate_matches(x, y, epsilon): if val1 and val2: intersect += 1 jaccard_index = intersect / float((len(x) + len(y) - intersect)) return jaccard_index def _approximate_matches( list1: List[tuple], list2: List[tuple], epsilon: float = 0.01 ) -> Generator: """Takes two list of tuples and searches for matches of tuples first value within the supplied epsilon. Emits tuples with the tuples second values where found. if a value in one dist does not match the other list, it is emitted alone but with a 0 as the other value. Parameters ---------- list1 : list First list of tuples. list2 : list Second list of tuples. epsilon : float, optional Maximum difference, by default 0.01. Yields ------- Generator Generator that yields found matches. """ list1.sort() list2.sort() list1_index = 0 list2_index = 0 while list1_index < len(list1) or list2_index < len(list2): if list1_index == len(list1): yield (0, list2[list2_index][1]) list2_index += 1 continue if list2_index == len(list2): yield (list1[list1_index][1], 0) list1_index += 1 continue list1_element = list1[list1_index][0] list2_element = list2[list2_index][0] difference = abs(list1_element - list2_element) if difference < epsilon: yield (list1[list1_index][1], list2[list2_index][1]) list1_index += 1 list2_index += 1 elif list1_element < list2_element: yield (list1[list1_index][1], 0) list1_index += 1 elif list2_element < list1_element: yield (0, list2[list2_index][1]) list2_index += 1 class Peak: """Peak object which contains peak metadata as well as mass, retention time, spectra, and any MINE database hits. Parameters ---------- name : str Name or ID of the peak. r_time : float Retention time of the peak. mz : float Mass-to-charge ratio (m/z) of the peak. charge : str Charge of the peak, "+" or "-". inchi_key : str, optional InChI key of the peak, if already identified, by default None. ms2 : List[float], optional MS2 spectra m/z values for this peak, by default None. Attributes ---------- isomers : List[Dict] List of compound documents in JSON (dict) format. formulas : Set[str] All the unique compound formulas from compounds found for this peak. total_hits : int Number of compound hits for this peak. native_hit : bool Whether this peak matches a compound provided in the native set. """ def __init__( self, name: str, r_time: float, mz: float, charge: str, inchi_key: str = None, ms2: List[(float, float)] = None, ) -> None: self.name = name if r_time: self.r_time = float(r_time) else: self.r_time = None self.mz = float(mz) self.charge = charge self.inchi_key = inchi_key self.ms2peaks = ms2 self.isomers = [] self.formulas = set() self.total_hits = 0 self.native_hit = False def __str__(self) -> str: """String representation of the peak. Returns ------- str Name of the peak. """ return self.name def __repr__(self) -> str: """Print representation of the peak. Returns ------- str Print representation of the peak. """ return ( f"Peak {self.name}: {self.mz} m/z, {self.r_time} RT, {self.charge} mode, " f"Contains {len(self.ms2peaks)} MS2 peaks starting with {self.ms2peaks[:3]}..." ) def _enumerate_possible_masses( self, met_dataset: MetabolomicsDataset, adducts: List[str], tolerance: float ) -> (List[float], List[Tuple[float, float]]): """Generate all possible masses for a given peak. Parameters ---------- met_dataset : MetabolomicsDataset Instance of MetabolomicsDataset with associated adducts. adducts : List[str] List of adducts, charge should match charge of this peak. tolerance : float Mass tolernace in Daltons. Returns ------- possible_masses : List[float] List of possible masses. possible_ranges : List[Tuple(float, float)] List of lower and upper bounds provided aggregate mass + tolerance. """ possible_masses = [] possible_ranges = [] if self.charge == "+": adducts = met_dataset.pos_adducts else: adducts = met_dataset.neg_adducts for adduct in adducts: possible_mass = (self.mz - adduct[2]) / adduct[1] possible_masses.append(possible_mass) possible_ranges.append( ( possible_mass - tolerance, possible_mass + tolerance, self.name, adduct[0], ) ) return possible_masses, possible_ranges def score_isomers( self, metric: Callable[[list, list], float] = dot_product, energy_level: int = 20, tolerance: float = 0.005, ) -> None: """Scores and sorts isomers based on mass spectra data. Calculates the cosign similarity score between the provided ms2 peak list and pre-calculated CFM-spectra and sorts the isomer list according to this metric. Parameters ---------- metric : function, optional The scoring metric to use for the spectra. Function must accept 2 lists of (mz, intensity) tuples and return a score, by default dot_product. energy_level : int, optional The Fragmentation energy level to use. May be 10, 20 or 40., by default 20. tolerance : float, optional The precision to use for matching m/z in mDa, by default 0.005. Raises ------ ValueError Empty ms2 peak. """ if not self.ms2peaks: raise ValueError("The ms2 peak list is empty") if self.charge == "+": spec_key = "Positive" else: spec_key = "Negative" for i, hit in enumerate(self.isomers): if spec_key in hit['Spectra']: hit_spec = hit['Spectra'][spec_key][f"{energy_level}V"] score = metric(self.ms2peaks, hit_spec, epsilon=tolerance) rounded_score = round(score * 1000) self.isomers[i]["Spectral_score"] = rounded_score else: self.isomers[i]["Spectral_score"] = 0 self.isomers.sort(key=lambda x: x["Spectral_score"], reverse=True) def get_KEGG_comps( db: MINE, core_db: MINE, kegg_db: pymongo.database.Database, model_ids: List[str] ) -> set: """Get KEGG IDs from KEGG MINE database for compounds in model(s). Parameters ---------- db : MINE MINE Mongo database. kegg_db : pymongo.database.Database Mongo database with annotated organism metabolomes from KEGG. model_ids : List[str] List of organism identifiers from KEGG. Returns ------- set MINE IDs of compounds that are linked to a KEGG ID in at least one of the organisms in model_ids. """ kegg_ids, _ids = set(), set() for model in kegg_db.models.find({"_id": {"$in": model_ids}}): comp_ids = model['Compounds'] kegg_ids = kegg_ids.union(comp_ids) kegg_id_list = list(kegg_ids) # sets are not accepted as query params for pymongo for comp in core_db.compounds.find({"$and": [{"KEGG_id": {"$in": kegg_id_list}}, {"MINES": db.name}]}): _ids.add(comp["_id"]) return _ids def read_adduct_names(filepath: str) -> List[str]: """Read adduct names from text file at specified path into a list. Parameters ---------- filepath : str Path to adduct text file. Returns ------- adducts : list Names of adducts in text file. Notes ----- Not used in this codebase but used by MINE-Server to validate adduct input. """ with open(filepath) as infile: adducts = [line.split(" \t")[0] for line in infile if not line[0] == "#"] return adducts def read_mgf(input_string: str, charge: bool, ms2_delim="\t") -> List[Peak]: """Parse mgf metabolomics data file. Parameters ---------- input_string : str Metabolomics input data file. charge : bool True if positive, False if negative. ms2_delim : str Delimiter for whitespace between intensity and m/z value. Usually tab but can also be a space in some MGF files. Tab by default. Returns ------- peaks : List[Peak] A list of Peak objects. """ peaks = [] ms2 = [] r_time = None for line in input_string.split("\n"): sl = line.strip(" \r\n").split("=") if sl[0] == "PEPMASS": if len(sl) > 1: mass = sl[1] else: mass = None elif sl[0] == "TITLE": if len(sl) > 1: name = sl[1] else: name = "" elif sl[0] == "RTINSECONDS": r_time = sl[1] elif sl[0] == "END IONS": peaks.append(Peak(name, r_time, mass, charge, "False", ms2=ms2)) ms2 = [] else: try: mz, i = sl[0].split(ms2_delim) ms2.append((float(mz), float(i))) except ValueError: continue return peaks def read_msp(input_string: str, charge: bool) -> List[Peak]: """Parse msp metabolomics data file. Parameters ---------- input_string : str Metabolomics input data file. charge : bool True if positive, False if negative. Returns ------- peaks : List[Peak] A list of Peak objects. """ peaks = [] for spec in input_string.strip().split("\n\n"): ms2 = [] inchikey = "False" r_time = 0 name = "N/A" for line in spec.split("\n"): sl = line.split(": ") sl[0] = sl[0].replace(" ", "").replace("/", "").upper() if sl[0] == "PRECURSORMZ": mass = sl[1] elif sl[0] == "NAME": name = sl[1] elif sl[0] == "RETENTIONTIME": r_time = sl[1] elif sl[0] == "INCHIKEY": inchikey = sl[1] elif line and line[0].isdigit(): try: row = re.split("[\t ]", line) ms2.append((float(row[0]), float(row[1]))) except ValueError: continue peaks.append(Peak(name, r_time, mass, charge, inchikey, ms2=ms2)) return peaks def read_mzxml(input_string: str, charge: bool) -> List[Peak]: """Parse mzXML metabolomics data file. Parameters ---------- input_string : str Metabolomics input data file. charge : bool True if positive, False if negative. Returns ------- List[Peak] A list of Peak objects. """ peaks = [] root = ET.fromstring(input_string) prefix = root.tag.strip("mzXML") for scan in root.findall(f".//{prefix}scan"): # somewhat counter intuitively we will get the peak info from the # second fragments precursor info. if scan.attrib["msLevel"] == "2": precursor = scan.find(f"./{prefix}precursorMz") mz = precursor.text r_time = scan.attrib["retentionTime"][2:-1] name = f"{mz} @ {r_time}" charge = scan.attrib["polarity"] peaks.append(Peak(name, r_time, mz, charge, "False")) return peaks class Struct: """convert key-value pairs into object-attribute pairs.""" def __init__(self, **entries): self.__dict__.update(entries) def ms_adduct_search( db: MINE, core_db: MINE, keggdb: pymongo.database.Database, text: str, text_type: str, ms_params, ) -> List: """Search for compound-adducts matching precursor mass. Parameters ---------- db : MINE Contains compound documents to search. core_db : MINE Contains extra info (including spectra) for compounds in db. keggdb : pymongo.database.Database Contains models with associated compound documents. text : str Text as in metabolomics datafile for specific peak. text_type : str Type of metabolomics datafile (mgf, mzXML, and msp are supported). If text, assumes m/z values are separated by newlines (and set text_type to "form"). ms_params : dict Specifies search settings, using the following key-value pairs: ------------------------ Required Key-Value Pairs ------------------------ "tolerance": float specifying tolerance for m/z, in mDa by default. Can specify in ppm if "ppm" key's value is set to True. "charge": bool ('+' for positive, '-' for negative). ------------------------ Optional Key-Value Pairs ------------------------ "adducts": list of adducts to use. If not specified, uses all adducts. "models": List of model _ids. If supplied, score compounds higher if present in model. ["eco"] by default (E. coli). "ppm": bool specifying whether "tolerance" is in mDa or ppm. Default value for ppm is False (so tolerance is in mDa by default). "kovats": length 2 tuple specifying min and max kovats retention index to filter compounds (e.g. (500, 1000)). "logp": length 2 tuple specifying min and max logp to filter compounds (e.g. (-1, 2)). "halogens": bool specifying whether to filter out compounds containing F, Cl, or Br. Filtered out if set to True. False by default. Returns ------- ms_adduct_output : list Compound JSON documents matching ms adduct query. """ print( f"<MS Adduct Search: TextType={text_type}, Text={text}, Parameters={ms_params}>" ) name = text_type + time.strftime("_%d-%m-%Y_%H:%M:%S", time.localtime()) if isinstance(ms_params, dict): ms_params = Struct(**ms_params) dataset = MetabolomicsDataset( name, adducts=ms_params.adducts, ppm=ms_params.ppm, tolerance=ms_params.tolerance, halogens=ms_params.halogens, verbose=ms_params.verbose, ) ms_adduct_output = [] if text_type == "form": for mz in text.split("\n"): dataset.unknown_peaks.append( Peak(mz, 0, float(mz), ms_params.charge, "False") ) elif text_type == "mgf": dataset.unknown_peaks = read_mgf(text, ms_params.charge) elif text_type == "mzXML" or text_type == "mzxml": dataset.unknown_peaks = read_mzxml(text, ms_params.charge) elif text_type == "msp": dataset.unknown_peaks = read_msp(text, ms_params.charge) else: raise IOError(f"{text_type} files not supported") if ms_params.models: dataset.native_set = get_KEGG_comps(db, core_db, keggdb, ms_params.models) else: dataset.native_set = set() dataset.annotate_peaks(db, core_db) if ms_params.logp: min_logp, max_logp = ms_params.logp else: min_logp, max_logp = (-1000, 1000) for peak in dataset.unknown_peaks: for hit in peak.isomers: if min_logp < hit['logP'] < max_logp: ms_adduct_output.append(hit) if ms_params.models: ms_adduct_output = score_compounds( db, ms_adduct_output, ms_params.models[0], parent_frac=0.75, reaction_frac=0.25, ) return ms_adduct_output def ms2_search( db: MINE, core_db: MINE, keggdb: pymongo.database.Database, text: str, text_type: str, ms_params ) -> List: """Search for compounds matching MS2 spectra. Parameters ---------- db : MINE Contains compound documents to search. core_db : MINE Contains extra info (including spectra) for compounds in db. keggdb : pymongo.database.Database Contains models with associated compound documents. text : str Text as in metabolomics datafile for specific peak. text_type : str Type of metabolomics datafile (mgf, mzXML, and msp are supported). If text, assumes m/z values are separated by newlines (and set text_type to "form"). ms_params : dict Specifies search settings, using the following key-value pairs: ------------------------ Required Key-Value Pairs ------------------------ "tolerance": float specifying tolerance for m/z, in mDa by default. Can specify in ppm if "ppm" key's value is set to True. "charge": bool (1 for positive, 0 for negative). "energy_level": int specifying fragmentation energy level to use. May be 10, 20, or 40. "scoring_function": str describing which scoring function to use. Can be either "jaccard" or "dot product". ------------------------ Optional Key-Value Pairs ------------------------ "adducts": list of adducts to use. If not specified, uses all adducts. "models": List of model _ids. If supplied, score compounds higher if present in model. "ppm": bool specifying whether "tolerance" is in mDa or ppm. Default value for ppm is False (so tolerance is in mDa by default). "kovats": length 2 tuple specifying min and max kovats retention index to filter compounds (e.g. (500, 1000)). "logp": length 2 tuple specifying min and max logp to filter compounds (e.g. (-1, 2)). "halogens": bool specifying whether to filter out compounds containing F, Cl, or Br. Filtered out if set to True. False by default. Returns ------- ms_adduct_output : list Compound JSON documents matching ms2 search query. """ print(f"<MS2 Search: TextType={text_type}, Parameters={ms_params}, Spectra={repr(text)}>") name = text_type + time.strftime("_%d-%m-%Y_%H:%M:%S", time.localtime()) if isinstance(ms_params, dict): ms_params = Struct(**ms_params) dataset = MetabolomicsDataset( name, adducts=ms_params.adducts, ppm=ms_params.ppm, tolerance=ms_params.tolerance, halogens=ms_params.halogens, verbose=ms_params.verbose, ) ms_adduct_output = [] if text_type == "form": split_form = [x.split() for x in text.strip().split("\n")] ms2_data = [(float(mz), float(i)) for mz, i in split_form[1:]] peak = Peak( split_form[0][0], 0, float(split_form[0][0]), ms_params.charge, "False", ms2=ms2_data, ) dataset.unknown_peaks.append(peak) elif text_type == "mgf": dataset.unknown_peaks = read_mgf(text, ms_params.charge) elif text_type == "mzXML": dataset.unknown_peaks = read_mzxml(text, ms_params.charge) elif text_type == "msp": dataset.unknown_peaks = read_msp(text, ms_params.charge) else: raise IOError(f"{text_type} files not supported") if not ms_params.models: ms_params.models = ["eco"] if ms_params.models: dataset.native_set = get_KEGG_comps(db, core_db, keggdb, ms_params.models) dataset.annotate_peaks(db, core_db) if ms_params.logp: min_logp, max_logp = ms_params.logp else: min_logp, max_logp = (-1000, 1000) for peak in dataset.unknown_peaks: if ms_params.scoring_function == "jaccard": if not ms_params.ppm: peak.score_isomers( metric=jaccard, energy_level=ms_params.energy_level, tolerance=float(ms_params.tolerance) / 1000, ) else: peak.score_isomers(metric=jaccard, energy_level=ms_params.energy_level) elif ms_params.scoring_function == "dot product": if not ms_params.ppm: peak.score_isomers( metric=dot_product, energy_level=ms_params.energy_level, tolerance=float(ms_params.tolerance) / 1000, ) else: peak.score_isomers( metric=dot_product, energy_level=ms_params.energy_level ) else: raise ValueError( 'ms_params["scoring_function"] must be either ' '"jaccard" or "dot product".' ) for hit in peak.isomers: if min_logp < hit['logP'] < max_logp: ms_adduct_output.append(hit) if ms_params.models: ms_adduct_output = score_compounds( db, ms_adduct_output, ms_params.models[0], parent_frac=0.75, reaction_frac=0.25, ) return ms_adduct_output def spectra_download(db: MINE, mongo_id: str = None) -> str: """Download one or more spectra for compounds matching a given query. Parameters ---------- db : MINE Contains compound documents to search. mongo_query : str, optional (default: None) A valid Mongo query as a literal string. If None, all compound spectra are returned. parent_filter : str, optional (default: None) If set to a metabolic model's Mongo _id, only get spectra for compounds in or derived from that metabolic model. putative : bool, optional (default: True) If False, only find known compounds (i.e. in Generation 0). Otherwise, finds both known and predicted compounds. Returns ------- spectral_library : str Text of all matching spectra, including headers and peak lists. """ def print_peaklist(peaklist): text = [f"Num Peaks: {len(peaklist)}"] for x in peaklist: text.append(f"{x[0]} {x[1]}") text.append("") return text spectral_library = [] msp_projection = { "MINE_id": 1, "KEGG_id": 1, "Mass": 1, "Inchikey": 1, "Formula": 1, "SMILES": 1, "logP": 1, "Charge": 1, "Spectra.Positive": 1, "Spectra.Negative": 1, } query_dict = {"_id": mongo_id} compound = db.compounds.find_one(query_dict, msp_projection) # add header header = [] header.append(f"Name: MINE Compound {compound['_id']}") for k, v in compound.items(): if k not in {"_id", "Spectra"}: header.append(f"{k}: {v}") header.append("Instrument: CFM-ID 4.0") # add peak lists if compound["Spectra"]: for ion_mode in ["Positive", "Negative"]: for energy, spec in compound["Spectra"][ion_mode].items(): spectral_library += header spectral_library += [f"Ionization: {ion_mode}", f"Energy: {energy}"] spectral_library += print_peaklist(spec) spectral_library = "\n".join(spectral_library) return spectral_library ``` #### File: josephniwjc/MINE-Database/pickaxe_run_template.py ```python import datetime import multiprocessing import pickle import time import pymongo from rdkit import DataStructs from rdkit.Chem import AllChem # Make sure you have minedatabase installed! (either from GitHub or via pip) from minedatabase.filters import ( AtomicCompositionFilter, MCSFilter, MetabolomicsFilter, MWFilter, SimilarityFilter, SimilaritySamplingFilter ) # Uncomment to use these. Pickaxe doesn't come packaged with dependencies by default. # from minedatabase.filters import ThermoFilter # from minedatabase.filters import ReactionFeasibilityFilter from minedatabase.pickaxe import Pickaxe from minedatabase.rules import metacyc_generalized, metacyc_intermediate start = time.time() ############################################################################### #### Database and output information # The default mongo is localhost:27017 # Connecting remotely requires the location of the database # as well as username/password if security is being used. # # The mongo_uri is read from mongo_uri.csv # Database writing options write_db = False # Database name and message to print in metadata database = "example_db" message = "Example run to show how pickaxe is run." # Whether to write compounds to core compound database with extra info write_core = False # Force overwrite existing database database_overwrite = False # Use local DB, i.e. localhost:27017 use_local = False # Writing compound and reaction csv files locally write_to_csv = False output_dir = "." ############################################################################### ############################################################################### #### Starting Compounds, Cofactors, and Rules # Input compounds in a csv folder with headings: # id,smiles input_cpds = "./example_data/starting_cpds_single.csv" # Rule specification and generation. Rules can be manually created or # metacyc_intermediate or metacyc_generalized can provide correctly formatted # biological reactions derived from metacyc. # # See the documentation for description of options. rule_list, coreactant_list, rule_name = metacyc_intermediate( n_rules=None, fraction_coverage=0.2, anaerobic=True, exclude_containing = ["aromatic", "halogen"] ) ############################################################################### ############################################################################### # Core Pickaxe Run Options generations = 1 # Total rounds of rule applications processes = 1 # Number of processes for parallelization verbose = False # Display RDKit warnings and errors # These are for MINE-Database generation and advanced options. # Be careful changing these. inchikey_blocks_for_cid = 1 # Number of inchi key blocks to gen cid explicit_h = False # use explicit hydrogens in rules kekulize = True # kekulize molecules neutralise = True # Neutralise all molecules when loading quiet = True # Silence errors indexing = False # ############################################################################### ############################################################################### #### Filtering and Sampling Options ############################################# # Global Filtering Options # Path to target cpds file (not required for all filters) target_cpds = "./example_data/target_list_many.csv" # Load compounds even without a filter # Can be paired with prune_to_targets to reduce end network load_targets_without_filter = True # Should targets be flagged for reaction react_targets = False # Prune generated network to contain only compounds # that are used to generate a target prune_to_targets = False # Apply filter after final generation, before pruning filter_after_final_gen = True ########################################## # Molecular Weight Filter options. # Removes compounds not in range of [min_MW, max_MW] # Apply this filter? MW_filter = True # Minimum MW in g/mol. None gives no lower bound. min_MW = 100 # Maximum MW in g/mol. None gives no upper bound. max_MW = 150 ########################################## # Atomic Composition Filter options. # Filters compounds that do not fall within atomic composition range # Only elements specified will be filtered # Apply this filter? atomic_composition_filter = False # Atomic composition constraint specification atomic_composition_constraints = { "C": [4, 7], "O": [5, 5] } ########################################## # Thermodynamics Filter options. # Uses eQuilibrator to filter by ∆Gr # Information for use of eQuilibrator # URI of eQuilibrator DB, either postgres URI, or sqlite file name location eq_uri = "compounds.sqlite" # Maximum allowable ∆Gr in kJ/mol dg_max = 10 # conditions p_h = 7 p_mg = 3 ionic_strength = 0.15 # comment below line and uncomment other definition if using thermo filter thermo_filter = None # thermo_filter = ThermoFilter( # eq_uri=eq_uri, # dg_max=dg_max, # p_h=p_h, # p_mg=p_mg, # ionic_strength=ionic_strength # ) ########################################## # Feasibility Filter options. # Checks Feasibility of reaction # Apply this filter? feasibility_filter = False # Which generations to filter, empty list filtters all generation_list = [] last_generation_only = True # comment below line and uncomment other definition if using thermo filter feasibility_filter = None # uncomment below if using feasibility filter (note this requires extra dependencies) # feasibility_filter = ReactionFeasibilityFilter( # generation_list=generation_list, # last_generation_only=last_generation_only # ) ########################################## # Similarity Filtering options. # Filters by similarity score, uses default RDKit fingerprints and tanimoto by default # Apply this filter? similarity_filter = True # Methods to calculate similarity by, default is RDkit and Tanimoto # Supports Morgan Fingerprints and Dice similarity as well. cutoff_fingerprint_method = "Morgan" # arguments to pass to fingerprint_method cutoff_fingerprint_args = {"radius": 2} cutoff_similarity_method = "Tanimoto" # Similarity filter threshold. Can be single number or a list with length at least # equal to the number of generations (+1 if filtering after expansion) similarity_threshold = [0, 0.2, 0.7] # Only accepts compounds whose similarity is increased in comparison to their parent increasing_similarity = False ########################################## # Similarity Sampling Options # Samples by similarity score # Uses default RDKit fingerprints and tanimoto by default, but supports # Morgan and dice # Apply this sampler? similarity_sample = True # Number of compounds per generation to sample sample_size = 100 # Default is RDKit sample_fingerprint_method = "Morgan" # arguments to pass to fingerprint_method sample_fingerprint_args = {"radius": 2} sample_similarity_method = "Tanimoto" def weight(score): """weight is a function that accepts a similarity score as the sole argument and returns a scaled value. """ return score**4 # How to represent the function in text for database entry weight_representation = "score^4" ########################################## # Maximum common substructure (MCS) filter # Apply this filter? mcs_filter = False # Finds the MCS of the target and compound and identifies fraction of target # the MCS composes crit_mcs = [0.3, 0.8, 0.95] ########################################## # Metabolomics Filter Options # Apply this filter? metabolomics_filter = False # Path to csv with list of detected masses (and optionally, retention times). # For example: Peak ID, Retention Time, Aggregate M/Z, Polarity, Compound Name, # Predicted Structure (smile), ID # # Peak1, 6.33, 74.0373, negative, propionic acid, CCC(=O)O, yes # Peak2, 26.31, 84.06869909, positive, , , no # ... met_data_path = "./local_data/ADP1_Metabolomics_PeakList_final.csv" # Name of dataset met_data_name = "ADP1_metabolomics" # Adducts to add to each mass in mass list to create final list of possible # masses. # See "./minedatabase/data/adducts/All adducts.txt" for options. possible_adducts = ["[M+H]+", "[M-H]-"] # Tolerance in Da mass_tolerance = 0.001 # Retention Time Filter Options (optional but included in metabolomics filter) # Path to pickled machine learning predictor (SMILES => RT) rt_predictor_pickle_path = "../RT_Prediction/final_RT_model.pickle" # Allowable deviation in predicted RT (units just have to be consistent with dataset) rt_threshold = 4.5 # Mordred descriptors to use as input to model (must be in same order as in trained model) # If None, will try to use all (including 3D) mordred descriptors rt_important_features = ["nAcid", "ETA_dEpsilon_D", "NsNH2", "MDEO-11"] ############################################################################### ############################################################################### # Verbose output print_parameters = True def print_run_parameters(): """Write relevant parameters.""" def print_parameter_list(plist): for i in plist: print(f"--{i}: {eval(i)}") print("\n-------------Run Parameters-------------") print("\nRun Info") print_parameter_list(["coreactant_list", "rule_name", "input_cpds"]) print("\nExpansion Options") print_parameter_list(["generations", "processes"]) print("\nGeneral Filter Options") print_parameter_list( [ "filter_after_final_gen", "react_targets", "prune_to_targets", ] ) if similarity_sample: print("\nTanimoto Sampling Filter Options") print_parameter_list( [ "sample_size", "weight_representation", "sample_fingerprint_args", "sample_fingerprint_method", "sample_similarity_method" ] ) if similarity_filter: print("\nTanimoto Threshold Filter Options") print_parameter_list( [ "similarity_threshold", "increasing_similarity", "cutoff_fingerprint_args", "cutoff_fingerprint_method", "cutoff_similarity_method" ] ) if mcs_filter: print("\nMaximum Common Substructure Filter Options") print_parameter_list(["crit_mcs"]) if metabolomics_filter: print("\nMetabolomics Filter Options") print_parameter_list(["met_data_path", "met_data_name", "possible_adducts", "mass_tolerance"]) if MW_filter: print("\nMolecular Weight Filter Options") print_parameter_list(["min_MW", "max_MW"]) if atomic_composition_filter: print("\nAtomic Composition Filter") print_parameter_list(["atomic_composition_constraints"]) print("\nPickaxe Options") print_parameter_list( [ "verbose", "explicit_h", "kekulize", "neutralise", "quiet", "indexing" ] ) print("----------------------------------------\n") ############################################################################### ############################################################################### # Running pickaxe, don"t touch unless you know what you are doing if __name__ == "__main__": # Use "spawn" for multiprocessing multiprocessing.set_start_method("spawn") # Define mongo_uri # mongo_uri definition, don't modify if write_db == False: mongo_uri = None elif use_local: mongo_uri = "mongodb://localhost:27017" else: mongo_uri = open("mongo_uri.csv").readline().strip("\n") # Change database to none if not writing if write_db is False: database = None ### Initialize the Pickaxe class # print parameters if print_parameters: print_run_parameters() pk = Pickaxe( coreactant_list=coreactant_list, rule_list=rule_list, errors=verbose, explicit_h=explicit_h, kekulize=kekulize, neutralise=neutralise, image_dir=None, inchikey_blocks_for_cid=inchikey_blocks_for_cid, database=database, database_overwrite=database_overwrite, mongo_uri=mongo_uri, quiet=quiet, react_targets=react_targets, filter_after_final_gen=filter_after_final_gen ) # Load compounds pk.load_compound_set(compound_file=input_cpds) # Load target compounds for filters if ( similarity_filter or mcs_filter or similarity_sample or load_targets_without_filter or MW_filter or atomic_composition_filter or thermo_filter or feasibility_filter ): pk.load_targets(target_cpds) # Apply filters in this order if MW_filter: pk.filters.append(MWFilter(min_MW, max_MW)) if atomic_composition_filter: pk.filters.append(AtomicCompositionFilter(atomic_composition_constraints)) if similarity_filter: taniFilter = SimilarityFilter( crit_similarity=similarity_threshold, increasing_similarity=increasing_similarity, fingerprint_method=cutoff_fingerprint_args, fingerprint_args=cutoff_fingerprint_args, similarity_method=cutoff_similarity_method ) pk.filters.append(taniFilter) if similarity_sample: taniSampleFilter = SimilaritySamplingFilter( sample_size=sample_size, weight=weight, fingerprint_method=sample_fingerprint_method, fingerprint_args=sample_fingerprint_args, similarity_method=sample_similarity_method) pk.filters.append(taniSampleFilter) if mcs_filter: mcsFilter = MCSFilter(crit_mcs=crit_mcs) pk.filters.append(mcsFilter) if metabolomics_filter: if rt_predictor_pickle_path: with open(rt_predictor_pickle_path, "rb") as infile: rt_predictor = pickle.load(infile) else: rt_predictor = None metFilter = MetabolomicsFilter( filter_name="ADP1_Metabolomics_Data", met_data_name=met_data_name, met_data_path=met_data_path, possible_adducts=possible_adducts, mass_tolerance=mass_tolerance, rt_predictor=rt_predictor, rt_threshold=rt_threshold, rt_important_features=rt_important_features ) pk.filters.append(metFilter) if feasibility_filter: pk.filers.append(feasibility_filter) if thermo_filter: pk.filters.append(thermo_filter) # Transform compounds (the main step) pk.transform_all(processes, generations) if pk.targets and prune_to_targets: pk.prune_network_to_targets() # Write results to database if write_db: pk.save_to_mine(processes=processes, indexing=indexing, write_core=write_core) client = pymongo.MongoClient(mongo_uri) db = client[database] db.meta_data.insert_one({"Timestamp": datetime.datetime.now(), "Run Time": f"{round(time.time() - start, 2)}", "Generations": f"{generations}", "Rule Name": f"{rule_name}", "Input compound file": f"{input_cpds}" }) db.meta_data.insert_one({"Timestamp": datetime.datetime.now(), "Message": message}) if (similarity_filter or mcs_filter or similarity_sample): db.meta_data.insert_one( { "Timestamp": datetime.datetime.now(), "React Targets": react_targets, "Tanimoto Filter": similarity_filter, "Tanimoto Values": f"{similarity_threshold}", "MCS Filter": mcs_filter, "MCS Values": f"{crit_mcs}", "Sample By": similarity_sample, "Sample Size": sample_size, "Sample Weight": weight_representation, "Pruned": prune_to_targets } ) if write_to_csv: pk.assign_ids() pk.write_compound_output_file(output_dir + "/compounds.tsv") pk.write_reaction_output_file(output_dir + "/reactions.tsv") print("----------------------------------------") print(f"Overall run took {round(time.time() - start, 2)} seconds.") print("----------------------------------------") ``` #### File: MINE-Database/Scripts/db_plots.py ```python import matplotlib matplotlib.use('Agg') import seaborn import pandas import matplotlib.pyplot as plt from minedatabase.databases import MINE from collections import defaultdict, Counter import sys def make_violin_plots(db_list, prop_list=('Mass', 'logP', 'NP_likeness')): df = pandas.DataFrame() for db_name in db_list: db = MINE(db_name) l = [] cursor = db.compounds.find({"Type":{'$ne': 'Coreactant'}}, dict([('_id', 0), ('Type', 1)] + [(x, 1) for x in prop_list])) for x in cursor: x['DB'] = str(db_name.strip('exp2')) l.append(x) df = df.append(l) f, ax = plt.subplots(1, len(prop_list)) for i, prop in enumerate(prop_list): seaborn.violinplot(split=True, hue='Type', x='DB', y=prop, data=df, ax=ax[i]) if i > 0: ax[i].legend_.remove() plt.tight_layout() plt.savefig("MINE property comparison.png") def make_box_plots(db_list, prop_list=('Mass', 'logP', 'NP_likeness')): df = pandas.DataFrame() for db_name in db_list: db = MINE(db_name) new_name = str(db_name.replace('exp2', 'MINE').split('-')[0]) l = [] cursor = db.compounds.find(dict([(x, {'$exists': 1}) for x in prop_list]), dict([('_id', 0)] + [(x, 1) for x in prop_list])) for x in cursor: x['DB'] = new_name l.append(x) df = df.append(l) f, ax = plt.subplots(1, len(prop_list)) for i, prop in enumerate(prop_list): seaborn.boxplot(x='DB', y=prop, data=df, ax=ax[i], showfliers=False) plt.tight_layout() plt.savefig("MINE property comparison.png") def make_fp_heatmap(db_name, fp_type='MACCS', n_rows=25): db = MINE(db_name) data = defaultdict(Counter) for comp in db.compounds.find({}, {"_id": 0, "Generation": 1, fp_type: 1}): if fp_type in comp and int(comp['Generation']) > -1: data[int(comp['Generation'])].update(comp[fp_type]) df = pandas.DataFrame(data) df_norm = df.div(df.max(axis=0), axis=1) if not n_rows: df_top = df_norm else: df_norm['range'] = df_norm.max(axis=1) - df_norm.min(axis=1) df_top = df_norm.sort_values('range', ascending=False).head(int(n_rows)).ix[:, :-1] hm = seaborn.heatmap(df_top) hm.collections[0].colorbar.set_label("Prevalence") plt.xlabel('Generation') plt.ylabel(fp_type + " bit") plt.yticks(rotation=0) plt.savefig(db_name + '_fp_heatmap.png') if __name__ == "__main__": if sys.argv[1] == "violin": make_violin_plots(sys.argv[2:]) elif sys.argv[1] == "boxplot": make_box_plots(sys.argv[2:]) elif sys.argv[1] == 'heatmap': make_fp_heatmap(*sys.argv[2:]) else: print("Unrecognised plot type") ``` #### File: tests/test_unit/test_databases.py ```python import json import os import shutil from copy import copy, deepcopy from pathlib import Path from shutil import rmtree import pymongo import pytest from pymongo.errors import ServerSelectionTimeoutError from minedatabase import utils from minedatabase.databases import ( MINE, write_compounds_to_mine, write_core_compounds, write_reactions_to_mine, ) try: client = pymongo.MongoClient(ServerSelectionTimeoutMS=10) client.server_info() del client except ServerSelectionTimeoutError as err: pytest.skip("No Mongo Server Found", allow_module_level=True) file_path = Path(__file__) file_dir = file_path.parent DATA_DIR = (file_dir / "../data/").resolve() @pytest.fixture() def cpd_dict(): """Create a compound dict for testing.""" cpd_dict = { "_id": "Ctest", "SMILES": ( "Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)OS(=O)(=O)O)[C@@H]" "(OP(=O)(O)O)[C@H]1O" ), "Inchi": ( "InChI=1S/C10H15N5O13P2S/c11-8-5-9(13-2-12-8)15(3-14-5)10-" "6(16)7(27-29(17,18)19)4(26-10)1-25-30(20,21)28-31(22,23)" "24/h2-4,6-7,10,16H,1H2,(H,20,21)(H2,11,12,13)(H2,17,18,19" ")(H,22,23,24)/t4-,6-,7-,10-/m1/s1" ), "Type": "Coreactant", "Generation": 0, "Formula": "C10H15N5O13P2S", "Expand": False, } yield cpd_dict @pytest.fixture() def rxn_dicts(): """Create two reaction dictionaries for testing.""" rxn_dicts = [ { "_id": "RXN1", "Reactants": [[1, "cpd1"], [2, "cpd2"]], "Products": [[1, "cpd3"], [1, "cpd4"]], "Operators": ["op1", "op2"], "SMILES_rxn": "(1) A + (2) B -> (1) C + (2) D", }, { "_id": "RXN2", "Reactants": [[1, "cpd1"], [2, "cpd2"]], "Products": [[1, "cpd3"], [1, "cpd4"]], "Operators": ["op1"], "SMILES_rxn": "(1) A + (2) B -> (1) C + (2) D", }, ] return rxn_dicts @pytest.mark.skipif( os.name == "nt", reason="MolConvert fails on Windows due to permissions errors" ) def test_generate_image_files(test_db): """Test image generation.""" img_dir = DATA_DIR / "imgs/" test_db.generate_image_files(img_dir) try: assert (img_dir / "C455bc3dc93cd3bb3bef92a34767693a4716aa3fb.svg").is_file() assert len(os.listdir(img_dir)) == 26 finally: rmtree(img_dir) # Use 'Generation': 1 to do this for just the starting compound test_db.generate_image_files(img_dir, {"Generation": 1}, 3, "png") try: assert ( img_dir / "C/c/f" / "Ccffda1b2e82fcdb0e1e710cad4d5f70df7a5d74f.png" ).is_file() finally: shutil.rmtree(img_dir) def test_insert_single_mine_compound(test_db): """Test single mine insertion.""" smiles = "CC(=O)O" compound_dict = [{"_id": "test_cpd", "SMILES": smiles}] write_compounds_to_mine(compound_dict, test_db) entry = test_db.compounds.find_one({"SMILES": smiles}) assert entry assert entry["_id"] == "test_cpd" def test_insert_bulk_mine_compounds(test_db): """Test inserting bulk compounds.""" smiles1 = "CC(=O)O" smiles2 = "CCN" compound_dict = [ {"_id": "test_cpd1", "SMILES": smiles1}, {"_id": "test_cpd2", "SMILES": smiles2}, ] write_compounds_to_mine(compound_dict, test_db) entry1 = test_db.compounds.find_one({"SMILES": smiles1}) assert entry1 assert entry1["_id"] == "test_cpd" entry2 = test_db.compounds.find_one({"SMILES": smiles2}) assert entry2 assert entry2["_id"] == "test_cpd2" def test_insert_single_core_compound(test_db, cpd_dict): """Test inserting a single core compound.""" write_core_compounds([cpd_dict], test_db, "test") try: entry = test_db.core_compounds.find_one({"_id": cpd_dict["_id"]}) assert entry assert isinstance(entry["Mass"], float) assert entry["Inchi"] assert entry["Inchikey"] finally: test_db.core_compounds.delete_many({"_id": cpd_dict["_id"]}) def test_insert_bulk_core_compound(test_db, cpd_dict): """Test inserting many core compounds.""" cpd_dict2 = copy(cpd_dict) cpd_dict2["_id"] = "cpd_dict2" write_core_compounds([cpd_dict, cpd_dict2], test_db, "test") # try: for smiles in [cpd_dict["SMILES"], cpd_dict2["SMILES"]]: entry = test_db.core_compounds.find_one({"SMILES": smiles}) assert entry assert isinstance(entry["Mass"], float) assert entry["Inchi"] assert entry["Inchikey"] finally: for i in [0, 1]: test_db.core_compounds.delete_many({"_id": f"test_mine_cpd{i}"}) def test_write_reaction(test_db, rxn_dicts): """Test writing reactions.""" write_reactions_to_mine(rxn_dicts, test_db) assert (deepcopy(rxn_dicts[0])) == deepcopy( test_db.reactions.find_one({"_id": "RXN1"}) ) assert (deepcopy(rxn_dicts[1])) == deepcopy( test_db.reactions.find_one({"_id": "RXN2"}) ) def db_driver(test_db): """Test database driver.""" assert isinstance(test_db.compounds, pymongo.collection.Collection) assert isinstance(test_db.reactions, pymongo.collection.Collection) assert isinstance(test_db.operators, pymongo.collection.Collection) assert isinstance(test_db.core_compounds, pymongo.collection.Collection) assert isinstance(test_db._db, pymongo.database.Database) ``` #### File: tests/test_unit/test_pickaxe.py ```python import hashlib import os import re import subprocess from filecmp import cmp from pathlib import Path import pymongo import pytest from pymongo.errors import ServerSelectionTimeoutError from rdkit.Chem import AllChem from minedatabase import pickaxe from minedatabase.databases import MINE try: client = pymongo.MongoClient(ServerSelectionTimeoutMS=20) client.server_info() del client is_mongo = True except ServerSelectionTimeoutError as err: is_mongo = False valid_db = pytest.mark.skipif(not is_mongo, reason="No MongoDB Connection") file_path = Path(__file__) file_dir = file_path.parent DATA_DIR = (file_dir / "../data/").resolve() def purge(directory, pattern): """Delete all files in a directory matching a regex pattern.""" for filename in os.listdir(directory): if re.search(pattern, filename): os.remove(os.path.join(directory, filename)) def delete_database(name): """Delete database.""" mine = MINE(name) mine.client.drop_database(name) mine.client.close() def test_cofactor_loading(pk): """Test loading cofactors. GIVEN a default Pickaxe object WHEN cofactors are loaded into the Pickaxe object in its creation THEN make sure those cofactors were loaded correctly """ c_id = "X73bc8ef21db580aefe4dbc0af17d4013961d9d17" assert c_id in pk.compounds assert pk.compounds[c_id]["Formula"] == "H2O" assert pk.compounds[c_id]["Type"] == "Coreactant" assert isinstance(pk.coreactants["Water"][0], AllChem.Mol) assert pk.coreactants["Water"][1][0] == "X" def test_reaction_rule_loading(default_rule): """Test loading rules. GIVEN a reaction rule dict WHEN reaction rules are loaded during Pickaxe object initialization THEN make sure it is formatted correctly """ assert isinstance(default_rule[0], AllChem.ChemicalReaction) assert isinstance(default_rule[1], dict) assert default_rule[1]["Reactants"] == ["ATP", "Any"] assert "Products" in default_rule[1] assert "Comments" in default_rule[1] def test_compound_loading(pk): """Test loading compounds. GIVEN a default Pickaxe object WHEN compounds are loaded THEN check that they are loaded correctly """ compound_smiles = pk.load_compound_set( compound_file=file_dir / "../data/test_compounds.tsv" ) assert len(compound_smiles) == 14 def test_transform_all(default_rule, smiles_dict, coreactant_dict): """Test transform function. GIVEN a set of rules and starting compounds WHEN we run pickaxe to predict potential transformations THEN make sure all expected transformations are predicted """ pk = pickaxe.Pickaxe(errors=False, explicit_h=True) pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound( smiles_dict["FADH"], smiles_dict["FADH"], cpd_type="Starting Compound" ) pk.operators["2.7.1.a"] = default_rule pk.transform_all(generations=2) assert len(pk.compounds) == 31 assert len(pk.reactions) == 49 comp_gens = set([x["Generation"] for x in pk.compounds.values()]) assert comp_gens == {0, 1, 2} def test_compound_output_writing(pk_transformed): """Test compound output writing. GIVEN a Pickaxe object with predicted transformations WHEN all compounds (including predicted) are written to an output file THEN make sure they are correctly written, and that they are all present """ with open(file_dir / "../data/testcompoundsout.tsv", "rb") as infile: expected = hashlib.sha256(infile.read()).hexdigest() pk_transformed.write_compound_output_file(file_dir / "../data/testcompoundsout.tsv") assert os.path.exists(file_dir / "../data/testcompoundsout_new.tsv") try: with open(file_dir / "../data/testcompoundsout_new.tsv", "rb") as infile: output_compounds = hashlib.sha256(infile.read()).hexdigest() assert expected == output_compounds finally: os.remove(file_dir / "../data/testcompoundsout_new.tsv") def test_reaction_output_writing(pk_transformed): """Test writing reaction output. GIVEN a Pickaxe object with predicted transformations WHEN all reactions (including predicted) are written to an output file THEN make sure they are correctly written, and that they are all present """ with open(file_dir / "../data/testreactionsout.tsv", "rb") as infile: expected = hashlib.sha256(infile.read()).hexdigest() pk_transformed.write_reaction_output_file(file_dir / "../data/testreactionsout.tsv") assert os.path.exists(file_dir / "../data/testreactionsout_new.tsv") try: with open(file_dir / "../data/testreactionsout_new.tsv", "rb") as infile: output_compounds = hashlib.sha256(infile.read()).hexdigest() assert expected == output_compounds finally: os.remove(file_dir / "../data/testreactionsout_new.tsv") def test_multiprocessing(pk, smiles_dict, coreactant_dict): """Test multiprocessing. GIVEN a Pickaxe object WHEN we use multiprocessing to enumerate predicted reactions THEN make sure those predictions are correct """ pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound("FADH", smiles_dict["FADH"], cpd_type="Starting Compound") pk.transform_all(generations=2, processes=2) assert len(pk.compounds) == 67 assert len(pk.reactions) == 49 comp_gens = set([x["Generation"] for x in pk.compounds.values()]) assert comp_gens == {0, 1, 2} def test_pruning(default_rule, smiles_dict, coreactant_dict): """Test pruning network to targets. GIVEN a Pickaxe expansion WHEN that expansion is pruned via Pickaxe.prune_network() THEN make sure that the pruned compounds no longer exist in the network """ pk = pickaxe.Pickaxe(explicit_h=True) pk.operators["2.7.1.a"] = default_rule pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound("FADH", smiles_dict["FADH"], cpd_type="Starting Compound") pk.transform_all(generations=2) ids = [ "C89d19c432cbe8729c117cfe50ff6ae4704a4e6c1", "C750e93db23dd3f796ffdf9bdefabe32b10710053", "C41", ] pk.prune_network(ids) pk.assign_ids() DATA_DIR = (file_dir / "../data").resolve() pk.write_compound_output_file(DATA_DIR / "pruned_comps.tsv") pk.write_reaction_output_file(DATA_DIR / "pruned_rxns.tsv") assert os.path.exists(DATA_DIR / "pruned_comps_new.tsv") assert os.path.exists(DATA_DIR / "pruned_rxns_new.tsv") try: assert cmp(DATA_DIR / "pruned_comps.tsv", DATA_DIR / "pruned_comps_new.tsv") assert cmp(DATA_DIR / "pruned_rxns.tsv", DATA_DIR / "pruned_rxns_new.tsv") finally: os.remove((DATA_DIR / "pruned_comps_new.tsv").resolve()) os.remove((DATA_DIR / "pruned_rxns_new.tsv").resolve()) def test_target_generation(default_rule, smiles_dict, coreactant_dict): """Test generating a target from starting compounds.""" pk = pickaxe.Pickaxe(explicit_h=True) pk.operators["2.7.1.a"] = default_rule pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound("FADH", smiles_dict["FADH"], cpd_type="Starting Compound") pk.load_targets(file_dir / "../data/test_targets.csv") pk.transform_all(generations=2) pk.prune_network_to_targets() assert "C11088915f64b93293e70af9c3b7822a4f131225d" in pk.compounds assert len(pk.reactions) == 4 assert len(pk.compounds) == 6 @valid_db def test_save_as_mine(default_rule, smiles_dict, coreactant_dict): """Test saving compounds to database. GIVEN a Pickaxe expansion WHEN that expansion is saved as a MINE DB in the MongoDB THEN make sure that all features are saved in the MongoDB as expected """ DATA_DIR = (file_dir / "../data").resolve() delete_database("MINE_test") pk = pickaxe.Pickaxe(database="MINE_test", image_dir=DATA_DIR, explicit_h=True) pk.operators["2.7.1.a"] = default_rule pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound("FADH", smiles_dict["FADH"], cpd_type="Starting Compound") pk.transform_all(generations=2) pk.save_to_mine(processes=1) mine_db = MINE("MINE_test") try: assert mine_db.compounds.estimated_document_count() == 31 assert mine_db.reactions.estimated_document_count() == 49 assert mine_db.operators.estimated_document_count() == 1 assert mine_db.operators.find_one()["Reactions_predicted"] == 49 assert os.path.exists( DATA_DIR / "X9c29f84930a190d9086a46c344020283c85fb917.svg" ) start_comp = mine_db.compounds.find_one({"Type": "Starting Compound"}) assert len(start_comp["Reactant_in"]) > 0 # Don't track sources of coreactants coreactant = mine_db.compounds.find_one({"Type": "Coreactant"}) assert "Product_of" not in coreactant assert "Reactant_in" not in coreactant product = mine_db.compounds.find_one({"Generation": 2}) assert len(product["Product_of"]) > 0 assert product["Type"] == "Predicted" finally: delete_database("MINE_test") purge(DATA_DIR, r".*\.svg$") @valid_db def test_save_target_mine(default_rule, smiles_dict, coreactant_dict): """Test saving the target run to a MINE.""" delete_database("MINE_test") pk = pickaxe.Pickaxe(database="MINE_test", explicit_h=True) pk.operators["2.7.1.a"] = default_rule pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound("FADH", smiles_dict["FADH"], cpd_type="Starting Compound") pk.load_targets(file_dir / "../data/test_targets.csv") pk.transform_all(generations=2) pk.prune_network_to_targets() pk.save_to_mine() mine_db = MINE("MINE_test") try: assert mine_db.compounds.estimated_document_count() == 6 assert mine_db.reactions.estimated_document_count() == 4 assert mine_db.operators.estimated_document_count() == 1 assert mine_db.operators.find_one()["Reactions_predicted"] == 4 start_comp = mine_db.target_compounds.find_one() assert start_comp["InChI_key"] == "<KEY>" assert all([i in start_comp.keys() for i in ["_id", "SMILES", "InChI_key"]]) finally: delete_database("MINE_test") @valid_db def test_database_already_exists(default_rule, smiles_dict, coreactant_dict): """Test database collision. GIVEN an existing MINE WHEN a new pickaxe object is defined THEN make sure program exits with database collision """ delete_database("MINE_test") pk = pickaxe.Pickaxe(database="MINE_test") pk.operators["2.7.1.a"] = default_rule pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound("FADH", smiles_dict["FADH"], cpd_type="Starting Compound") pk.transform_all(generations=2) pk.save_to_mine(processes=1) try: with pytest.raises(SystemExit) as pytest_wrapped_e: pk = pickaxe.Pickaxe(database="MINE_test") assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == ( "Exiting due to database name collision." ) finally: delete_database("MINE_test") def test_pickle(coreactant_dict, smiles_dict, default_rule): """Test pickling of pickaxe objects.""" pickle_path = Path("test_pickle.pk") pk = pickaxe.Pickaxe(errors=False, explicit_h=True) pk._load_coreactant(coreactant_dict["ATP"]) pk._load_coreactant(coreactant_dict["ADP"]) pk._add_compound( smiles_dict["FADH"], smiles_dict["FADH"], cpd_type="Starting Compound" ) pk.operators["2.7.1.a"] = default_rule pk.transform_all(generations=2) pk.pickle_pickaxe(pickle_path) del pk pk = pickaxe.Pickaxe(errors=False) pk.load_pickled_pickaxe(pickle_path) assert len(pk.compounds) == 31 assert len(pk.reactions) == 49 comp_gens = set([x["Generation"] for x in pk.compounds.values()]) assert comp_gens == {0, 1, 2} pickle_path.unlink() def test_local_cli(): """Test command line interface writing locally. GIVEN the pickaxe CLI WHEN pickaxe is run from the command line THEN make sure it exits with exit code 0 (no errors) """ os.chdir(file_dir / "../data/../..") rc = subprocess.call( f"python minedatabase/pickaxe.py -o tests/ -r tests/data/test_cd_rxn_rule.tsv", shell=True, ) assert not rc purge(DATA_DIR / "..", r".*\.tsv$") @valid_db def test_mongo_cli(): """Test command line interface writing to mongo.""" mine = MINE("tests") os.chdir(file_dir / "../data/../..") rc = subprocess.call( "python minedatabase/pickaxe.py -d tests -r tests/data/test_cd_rxn_rule.tsv", shell=True, ) assert not rc try: assert mine.compounds.estimated_document_count() == 51 finally: mine.client.drop_database("tests") purge(file_dir / "..", r".*\.svg$") ```
{ "source": "josephnjeri/advent_of_code", "score": 3 }
#### File: advent_of_code/src/laternfish.py ```python from collections import deque import sys def create_and_reset_lanternfish_timer(initial_states): next_states = [None] * len(initial_states) for index, item in enumerate(initial_states): if index == len(initial_states) - 1: if item == 0: next_states.append(8) else: next_states[index] = initial_states[index] - 1 else: if item == 0: next_states[index] = 6 next_states.append(8) else: next_states[index] = initial_states[index] - 1 return next_states def count_number_of_fish_after_n_days(laternfish_list, no_of_days): # init counts basket = deque([0] * 9) for laternfish in laternfish_list: basket[laternfish] += 1 # run through days for each_day in range(no_of_days): basket[7] += basket[0] basket.rotate(-1) return sum(basket) class Lanternfish: """ lanternfish swimming across the deep sea """ def __init__(self, data_file, days_to_simulate): self.initial_states = None self.initial_state = None self.data_file = data_file self.days_to_simulate = days_to_simulate def read_data(self): with open(self.data_file, "r") as afile: data = afile.read() self.initial_states = [int(i) for i in data.split(",")] def examine_lanternfish_growth_over_time(self, days): self.read_data() initial_states = self.initial_states for day in range(days): print(f'day: {day}/{days} days') next_states = create_and_reset_lanternfish_timer(initial_states) initial_states = next_states sys.getsizeof(initial_states) return next_states def count_total_number_of_fish(self, days): return len(self.examine_lanternfish_growth_over_time(days)) def get_total_number_of_fish_deque(self): self.read_data() return count_number_of_fish_after_n_days(self.initial_states, self.days_to_simulate) if __name__ == "__main__": # datafile = "../data/day6_example_data.csv" datafile = "../data/day6_lanternfish_data.csv" obj = Lanternfish(datafile, days_to_simulate=256) print("") print("") print(f'After {obj.days_to_simulate} days, there shall a total of {obj.get_total_number_of_fish_deque()} fish') # print(obj.count_total_number_of_fish(150)) ```
{ "source": "joseph-njogu/Devansiblelib", "score": 4 }
#### File: joseph-njogu/Devansiblelib/calculator.py ```python def add(first_term, second_term): return first_term + second_term def subtract(first_term, second_term): return first_term - second_term # def multiplication(first_term, second_term): # return first_term * second_term ```
{ "source": "joseph-njogu/Django_local_lib", "score": 3 }
#### File: locallib/catalog/tests.py ```python from django.core.management import call_command from django.test import TestCase from catalog.models import Author from django.urls import reverse from django.test import Client class AuthorModelTest(TestCase): @classmethod def setUpTestData(cls): # Set up non-modified objects used by all test methods Author.objects.create(first_name='Njogu', last_name='Joseph') def test_first_name_label(self): author = Author.objects.get(id=1) field_label = author._meta.get_field('first_name').verbose_name self.assertEquals(field_label, 'first name') def test_date_of_birth_label(self): author = Author.objects.get(id=1) field_label = author._meta.get_field('date_of_birth').verbose_name self.assertEquals(field_label, 'date of birth') def test_date_of_death_label(self): author = Author.objects.get(id=1) field_label = author._meta.get_field('date_of_death').verbose_name self.assertEquals(field_label, 'Died') def test_first_name_max_length(self): author = Author.objects.get(id=1) max_length = author._meta.get_field('first_name').max_length self.assertEquals(max_length, 100) def test_last_name_max_length(self): author = Author.objects.get(id=1) max_length = author._meta.get_field('last_name').max_length self.assertEquals(max_length, 100) def test_object_name_is_last_name_comma_first_name(self): author = Author.objects.get(id=1) expected_object_name =f'{author.last_name},{author.first_name}' self.assertEquals(expected_object_name, str(author)) def test_get_absolute_url(self): author = Author.objects.get(id=1) # This will also fail if the urlconf is not defined. self.assertEquals(author.get_absolute_url(), '/catalog/author/1') # Class AuthorListViewTest(TestCase): from django.test import Client @classmethod def setUpTestData(cls): # Create 13 authors for pagination tests number_of_authors = 13 # for author_id in range(number_of_authors): # Author.objects.create( # first_name=f' Christian {author_id}', # last_name=f'Surname {author_id}', # ) def test_view_uses_correct_view(self): response = self.client.get(reverse('index')) self.assertEqual(response.status_code, 200) def test_view_url_exists_at_desired_location(self): response = self.client.get('/catalog/authors/') self.assertEqual(response.status_code, 200) def test_view_url_accessible_by_name(self): response = self.client.get(reverse('authors')) self.assertEqual(response.status_code, 200) def test_view_uses_correct_template(self): response = self.client.get(reverse('authors')) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'catalog/author_list.html') def test_pagination_is_ten(self): response = self.client.get(reverse('authors')) self.assertEqual(response.status_code, 200) self.assertTrue('is_paginated' in response.context) # self.assertTrue(response.context['is_paginated'] == True) self.assertTrue(len(response.context['author_list']) == 2) def test_lists_all_authors(self): # Get second page and confirm it has (exactly) remaining 3 items response = self.client.get(reverse('authors') + '?page=2') self.assertEqual(response.status_code, 200) self.assertTrue('is_paginated' in response.context) # self.assertTrue(response.context['is_paginated'] == True) self.assertTrue(len(response.context['author_list']) == 2) import datetime from django.utils import timezone from catalog.models import BookInstance, Book, Genre from django.test import TestCase # Create your tests here. import datetime from catalog.forms import RenewBookForm class RenewBookFormTest(TestCase): def test_renew_form_date_in_past(self): """Test form is invalid if renewal_date is before today.""" date = datetime.date.today() - datetime.timedelta(days=1) form = RenewBookForm(data={'renewal_date': date}) self.assertFalse(form.is_valid()) def test_renew_form_date_too_far_in_future(self): # """Test form is invalid if renewal_\ # date more than 4 weeks from today.""" date = datetime.date.today() + datetime.timedelta(weeks=4) + \ datetime.timedelta(days=1) form = RenewBookForm(data={'renewal_date': date}) self.assertFalse(form.is_valid()) def test_renew_form_date_today(self): """Test form is valid if renewal_date is today.""" date = datetime.date.today() form = RenewBookForm(data={'renewal_date': date}) self.assertTrue(form.is_valid()) def test_renew_form_date_max(self): """Test form is valid if renewal_date is within 4 weeks.""" date = datetime.date.today() + datetime.timedelta(weeks=4) form = RenewBookForm(data={'renewal_date': date}) self.assertTrue(form.is_valid()) def test_renew_form_date_field_label(self): """Test renewal_date label is 'renewal date'.""" form = RenewBookForm() self.assertTrue( form.fields['renewal_date'].label is None or form.fields['renewal_date'].label == 'renewal date') def test_renew_form_date_field_help_text(self): """Test renewal_date help_text is as expected.""" form = RenewBookForm() self.assertEqual( form.fields['renewal_date'].help_text, 'Enter a date between now and 4 weeks (default 3).') ```
{ "source": "joseph-njogu/EcloudFinance-module", "score": 2 }
#### File: e_cloud_finance/e_cloud_finance_module/models.py ```python from django.db import models # Create your models here. from django.contrib.auth.models import User # Create your models here. class UserProfileInfo(models.Model): user = models.OneToOneField(User,on_delete=models.CASCADE) portfolio_site = models.URLField(blank=True) profile_pic = models.ImageField(upload_to='profile_pics',blank=True) def __str__(self): return self.user.username class banking_details(models.Model): banke_name = models.OneToOneField(User,on_delete=models.CASCADE) portfolio_site = models.URLField(blank=True) profile_pic = models.ImageField(upload_to='profile_pics',blank=True) def __str__(self): return self.user.username class institution_income(models.Model): institution_name = models.OneToOneField(User,on_delete=models.CASCADE) portfolio_site = models.URLField(blank=True) profile_pic = models.ImageField(upload_to='profile_pics',blank=True) def __str__(self): return self.user.username ```
{ "source": "joseph-njogu/Projects-from-the-Backend-Development", "score": 4 }
#### File: Projects-from-the-Backend-Development/concurrency/determine_the_current_thread.py ```python import threading import time # Naming threads is useful in server processes with multiple service threads # that can handle different operations def first_function(): print(threading.currentThread().getName()+str(' is Starting \n')) time.sleep(2) print(threading.currentThread().getName()+str(' is Exiting \n')) return def second_function(): print(threading.currentThread().getName()+str(' is Starting \n')) time.sleep(2) print(threading.currentThread().getName()+str(' is Exiting \n')) return def third_function(): print(threading.currentThread().getName()+str(' is Starting \n')) time.sleep(2) print(threading.currentThread().getName()+str(' is Exiting \n')) return if __name__ == "__main__": t1 = threading.Thread(name='first_function', target=first_function) t2 = threading.Thread(name='second_function', target=second_function) t3 = threading.Thread(name='third_function', target=third_function) t1.start() t2.start() t3.start() t1.join() t2.join() t3.join() ``` #### File: Projects-from-the-Backend-Development/concurrency/spawn_a_process.py ```python import multiprocessing def function(i): print('called function in process: {}'.format(i)) return if __name__ == '__main__': Process_jobs = [] for i in range(5): p = multiprocessing.Process(target=function, args=(i,)) Process_jobs.append(p) p.start() p.join() ``` #### File: Projects-from-the-Backend-Development/memtests/memc.py ```python MEM_SERVER = '127.0.0.1' # Server Address MEM_PORT = '11211' # Mem Port MEM_TIMEOUT = 30 # Data TTL (Seconds) import memcache, hashlib # Connect To Local Memcache Server mem = memcache.Client(['%s:%s' % (MEM_SERVER,MEM_PORT)]) def get_result(query): # Check if query has a value if query: hash = hashlib.md5(query).hexdigest() # hash query with md5 # Check Cache result = mem.get(hash) if result: # Check if query is cached return result else: return False # Nothing Cached, Run Query def set_result(query, result): # Check if query has a value if query: hash = hashlib.md5(query).hexdigest() # Set Key and Value (hash, result) mem.set(hash,result, MEM_TIMEOUT) ```
{ "source": "JosephNjuguna/QuestionerV2", "score": 3 }
#### File: v2/views/questionsviews.py ```python import datetime #imports from flask_restful import Resource from flask import request, make_response, jsonify #local import from app.api.v2.utilis.validations import CheckData from app.api.v2.models.questions import QuestionsModel from app.api.v2.models.meetup import MeetUp #error messages empty_question_title = "Question title empty. Please input data" empty_question_body = "Question body empty. Please input data" class PostQuestion(Resource): """post question class""" def post(self, m_id): try: data = request.get_json() question_body = data['question_body'] question_title = data['question_title'] meetup_id = m_id user_id = 1 votes = 0 question = { "question_body":question_body, "question_title":question_title, "meetup_id": meetup_id, "user_id":user_id, "votes":votes } if len(question_title)== 0: return make_response(jsonify({"message": empty_question_title}),400) if len(question_body)== 0: return make_response(jsonify({"message": empty_question_body }),400) question_data = QuestionsModel(**question) saved = question_data.post_question_db() question_id = saved resp = { "message": "Question successfully posted", "username": question_body, "question_id": "{}".format(question_id) } if saved == True: return make_response(jsonify({"Message":"Question already exist"}),409) return resp, 201 except KeyError: return make_response(jsonify({"status":400, "message": "Missing either Question body or Question title input"}),400) class GetQuestionsMeetup(Resource): def get(self, m_id): questions = QuestionsModel() meetup_id = questions.check_meetup_id(m_id) single_meetup_questions= questions.get_questions(m_id) resp = { "status":200, "message":"all meetups", "data":[{ "meetups": single_meetup_questions }] } if not meetup_id: return make_response(jsonify({"Message":"Meetup id not found"}),404) return resp class GetSingleQuestion(Resource): """get single question class""" def get(self, m_id, q_id ): single_question = QuestionsModel() one_meetup_questions= single_question.get_specificquestion(m_id, q_id) resp = { "status":200, "message":"all meetups", "data":[{ "meetups": str(one_meetup_questions) }] } return resp,200 class UpvoteQuestion(Resource): """upvote question class""" @staticmethod def patch(m_id, q_id): upvoted = QuestionsModel().upvote_question(m_id, q_id) question_id, question_createdon, question_title, question_body, question_votes= upvoted resp = { "id":question_id, "createdon": question_createdon, "question_meetup_id":question_body, "question_title":question_title, "question_body":question_body, "votes":question_votes } print(resp) class DownVoteQuestion(Resource): """downvote question class""" def __init__(self): pass ``` #### File: test/v2/test_questions.py ```python import json import unittest # local imports from app import create_app class QuestionsTest(unittest.TestCase): """Testing Question URL API endpoints""" def setUp(self): self.app = create_app("testing").test_client() self.question1 = { "question_body":"Youtube ads are everything??", "question_title":"Youtube" } self.question2 = { "question_title":"", "question_body":"Youtube ads are everything" } self.question3 = { "question_title":"Youtube", "question_body":"" } def test_1_question_post(self): """test that user post a question with all required fields""" response = self.app.post('/api/v2/meetup/1/question', data=json.dumps(self.question1), content_type='application/json') self.assertEqual(response.status_code, 201) def test_2_questions(self): """test that user post a question with all required fields""" response = self.app.get('/api/v2/meetup/1/question', data=json.dumps(self.question1), content_type='application/json') self.assertEqual(response.status_code, 200) def test_3_single_questions(self): """test that user post a question with all required fields""" response = self.app.get('/api/v2/meetup/1/question/1', data=json.dumps(self.question1), content_type='application/json') self.assertEqual(response.status_code, 200) def test_empty_title_question_post(self): """test user input question with empty title""" response = self.app.post('/api/v2/meetup/1/question', data=json.dumps(self.question2), content_type='application/json') self.assertEqual(response.status_code, 400) def test_empty_body_question_post(self): """test user input question with empty body""" response = self.app.post('/api/v2/meetup/1/question', data=json.dumps(self.question3), content_type='application/json') self.assertEqual(response.status_code, 400) ```
{ "source": "josephnl/deploy", "score": 2 }
#### File: josephnl/deploy/diff_deploy.py ```python import configparser import paramiko import os def main(): # 读取配置文件,注意configparser模块和函数的大小写 cf = configparser.ConfigParser() cf.read("C:\\Work\\Joseph\\deploy\\config.ini") host = cf.get("server", "host") port = int(cf.get("server", "port")) user = cf.get("server", "user") passwd = cf.get("server", "passwd") local_path = cf.get("path", "local_path") project_path = cf.get("path", "project_path") server_path = cf.get("path", "server_path") # 拼接本地目录 webinf_path = local_path + '\\webapp\\WEB-INF' java_path = local_path + '\\java' webapp_path = local_path + '\\webapp' # 从SVN 导出拆分的包到本地local_path, 有jsp和JAVA文件 # 准备拆分发布文件列表, 把所有JAVA文件对应的CLASS找到,并且复制到WEB-INF下 # 因为windows不支持os.path.walk 利用dir命令,查找java_path目录下的所有java文件 listdir_cmd = 'dir ' + java_path + ' /aa /s /b' file_list = os.popen(listdir_cmd).readlines() for java_file in file_list: classfile_src = project_path + '\\WEB-INF\\classes'+ java_file[len(java_path):-5] + 'class' classfile_des = webinf_path + '\\classes' + java_file[len(java_path):-5] + 'class' os.system('mkdir ' + os.path.dirname(classfile_des)) # 建目录 os.system('copy ' + classfile_src + ' ' + classfile_des) # copy文件 print(os.path.basename(classfile_des) + ' has being copyed\n') # 链接SFTP, 上传文件 t = paramiko.Transport(host, port) t.connect(username=user, password=<PASSWORD>) sftp = paramiko.SFTPClient.from_transport(t) # 准备需要拆分上传的文件列表,基于webapp, 因为所有CLASS文件已经在WEB-INF下面 # 这里还没有做远程路径不存在的情况,后续增加 listdir_cmd = 'dir ' + webinf_path + ' /aa /s /b' file_list = os.popen(listdir_cmd).readlines() print(file_list) for file in file_list: src = file[0:-1] des = server_path + file[len(webapp_path):-1].replace('\\','/') try: sftp.put(src, des) print(os.path.basename(des) + ' Uploading success\n') except FileNotFoundError: print(os.path.basename(des) + ' Uploading failed, server path not exist\n') t.close() if __name__ == '__main__': main() ```
{ "source": "josephnoir/ctutlz", "score": 2 }
#### File: ctutlz/ctutlz/ctlog.py ```python import json import re import requests from os.path import abspath, expanduser, join, isfile, dirname import html2text from utlz import load_json, namedtuple, text_with_newlines from utlz.types import Enum from ctutlz.utils.encoding import decode_from_b64, encode_to_b64 from ctutlz.utils.encoding import digest_from_b64 from ctutlz.utils.logger import logger # https://groups.google.com/forum/#!topic/certificate-transparency/zZwGExvQeiE # PENDING: # The Log has requested inclusion in the Log list distributor’s trusted Log list, # but has not yet been accepted. # A PENDING Log does not count as ‘currently qualified’, and does not count as ‘once qualified’. # QUALIFIED: # The Log has been accepted by the Log list distributor, and added to the CT checking code # used by the Log list distributor. # A QUALIFIED Log counts as ‘currently qualified’. # USABLE: # SCTs from the Log can be relied upon from the perspective of the Log list distributor. # A USABLE Log counts as ‘currently qualified’. # FROZEN (READONLY in JSON-schema): # The Log is trusted by the Log list distributor, but is read-only, i.e. has stopped accepting # certificate submissions. # A FROZEN Log counts as ‘currently qualified’. # RETIRED: # The Log was trusted by the Log list distributor up until a specific retirement timestamp. # A RETIRED Log counts as ‘once qualified’ if the SCT in question was issued before the retirement timestamp. # A RETIRED Log does not count as ‘currently qualified’. # REJECTED: # The Log is not and will never be trusted by the Log list distributor. # A REJECTED Log does not count as ‘currently qualified’, and does not count as ‘once qualified’. KnownCTStates = Enum( PENDING='pending', QUALIFIED='qualified', USABLE='usable', READONLY='readonly', # frozen RETIRED='retired', REJECTED='rejected' ) Log = namedtuple( typename='Log', field_names=[ # each of type: str 'key', # base-64 encoded, type: str 'log_id', 'mmd', # v1: maximum_merge_delay 'url', # optional ones: 'description=None', 'dns=None', 'temporal_interval=None', 'log_type=None', 'state=None', # JSON-schema has: pending, qualified, usable, readonly, retired, rejected 'operated_by=None' ], lazy_vals={ 'key_der': lambda self: decode_from_b64(self.key), # type: bytes 'log_id_der': lambda self: digest_from_b64(self.key), # type: bytes 'pubkey': lambda self: '\n'.join([ # type: str '-----BEGIN PUBLIC KEY-----', text_with_newlines(text=self.key, line_length=64), '-----END PUBLIC KEY-----']), 'scts_accepted_by_chrome': lambda self: None if self.state is None else True if next(iter(self.state)) in [KnownCTStates.USABLE, KnownCTStates.QUALIFIED, KnownCTStates.READONLY] else False, } ) # plurale tantum constructor def Logs(log_dicts): ''' Arg log_dicts example: { "logs": [ { "description": "Google 'Argon2017' log", "log_id": "+tTJfMSe4vishcXqXOoJ0CINu/TknGtQZi/4aPhrjCg=", "key": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEVG18id3qnfC6X/RtYHo3TwIlvxz2b4WurxXfaW7t26maKZfymXYe5jNGHif0vnDdWde6z/7Qco6wVw+dN4liow==", "url": "https://ct.googleapis.com/logs/argon2017/", "mmd": 86400, "state": { "rejected": { "timestamp": "2018-02-27T00:00:00Z" } }, "temporal_interval": { "start_inclusive": "2017-01-01T00:00:00Z", "end_exclusive": "2018-01-01T00:00:00Z" }, "operated_by": { "name": "Google", "email": [ "<EMAIL>" ], } }, ''' logs_out = [] for log in log_dicts: logs_out += [Log(**kwargs) for kwargs in log['logs']] return logs_out def set_operator_names(logs_dict): ''' Fold the logs listing by operator into list of logs. Append operator information to each log Arg log_dicts example: { "operators": [ { "name": "Google", "email": [ "<EMAIL>" ], "logs": [ { "description": "Google 'Argon2017' log", "log_id": "+tTJfMSe4vishcXqXOoJ0CINu/TknGtQZi/4aPhrjCg=", "key": "<KEY> "url": "https://ct.googleapis.com/logs/argon2017/", "mmd": 86400, "state": { "rejected": { "timestamp": "2018-02-27T00:00:00Z" } }, "temporal_interval": { "start_inclusive": "2017-01-01T00:00:00Z", "end_exclusive": "2018-01-01T00:00:00Z" } }, ''' logs_dict['logs'] = [] for operator in logs_dict['operators']: operator_name = operator['name'] operator_email = operator['email'] for log in operator['logs']: log['operated_by'] = { 'name': operator_name, 'email': operator_email } logs_dict['logs'].append(log) del logs_dict['operators'] '''logs included in chrome browser''' BASE_URL = 'https://www.gstatic.com/ct/log_list/v2/' URL_LOG_LIST = BASE_URL + 'log_list.json' URL_ALL_LOGS = BASE_URL + 'all_logs_list.json' def download_log_list(url=URL_ALL_LOGS): '''Download json file with known logs accepted by chrome and return the logs as a list of `Log` items. Return: dict, the 'logs_dict' Arg log_dicts example: { "operators": [ { "name": "Google", "email": [ "<EMAIL>" ], "logs": [ { "description": "Google 'Argon2017' log", "log_id": "+tTJfMSe4vishcXqXOoJ0CINu/TknGtQZi/4aPhrjCg=", "key": "<KEY> "url": "https://ct.googleapis.com/logs/argon2017/", "mmd": 86400, "state": { "rejected": { "timestamp": "2018-02-27T00:00:00Z" } }, "temporal_interval": { "start_inclusive": "2017-01-01T00:00:00Z", "end_exclusive": "2018-01-01T00:00:00Z" } }, ''' response = requests.get(url) response_str = response.text data = json.loads(response_str) data['url'] = url return data def read_log_list(filename): '''Read log list from file `filename` and return as logs_dict. Return: dict, the 'logs_dict' logs_dict example: { 'logs: [ { "description": "Google 'Aviator' log", "key": "MFkwE..." "url": "ct.googleapis.com/aviator/", "maximum_merge_delay": 86400, "operated_by": [0], "final_sth": { ... }, "dns_api_endpoint": ... }, ], 'operators': [ ... ] } ''' filename = abspath(expanduser(filename)) data = load_json(filename) return data def get_log_list(list_name='really_all_logs.json'): '''Try to read log list from local file. If file not exists download log list. Return: dict, the 'logs_dict' logs_dict example: { 'logs: [ { "description": "Google 'Aviator' log", "key": "MFkwE..." "url": "ct.googleapis.com/aviator/", "maximum_merge_delay": 86400, "operated_by": [0], "final_sth": { ... }, "dns_api_endpoint": ... }, ], 'operators': [ ... ] } ''' thisdir = dirname(__file__) filename = join(thisdir, list_name) if isfile(filename): logs_dict = read_log_list(filename) else: logs_dict = download_log_list(''.join([BASE_URL, list_name])) return logs_dict def print_schema(): thisdir = dirname(__file__) filename = join(thisdir, 'log_list_schema.json') with open(filename, 'r') as fh: json_str = fh.read() # print(json_str.strip()) print('TODO') ``` #### File: ctutlz/scripts/ctloglist.py ```python import argparse import datetime import json import logging from utlz import first_paragraph, red from ctutlz.ctlog import download_log_list from ctutlz.ctlog import set_operator_names, print_schema from ctutlz.ctlog import URL_ALL_LOGS, Logs from ctutlz.utils.logger import VERBOSE, init_logger, setup_logging, logger from ctutlz._version import __version__ def create_parser(): parser = argparse.ArgumentParser(description=first_paragraph(__doc__)) parser.epilog = __doc__.split('\n', 1)[-1] parser.add_argument('-v', '--version', action='version', default=False, version=__version__, help='print version number') me1 = parser.add_mutually_exclusive_group() me1.add_argument('--short', dest='loglevel', action='store_const', const=logging.INFO, default=VERBOSE, # default loglevel if nothing set help='show short results') me1.add_argument('--debug', dest='loglevel', action='store_const', const=logging.DEBUG, help='show more for diagnostic purposes') me2 = parser.add_mutually_exclusive_group() me2.add_argument('--json', action='store_true', dest='print_json', help='print merged log lists as json') me2.add_argument('--schema', action='store_true', dest='print_schema', help='print json schema') return parser def warn_inconsistency(url, val_a, val_b): # suppress warning doubles (i know it's hacky) key = url + ''.join(sorted('%s%s' % (val_a, val_b))) if not hasattr(warn_inconsistency, 'seen'): warn_inconsistency.seen = {} if not warn_inconsistency.seen.get(key, False): warn_inconsistency.seen[key] = True else: return logger.warning(red('inconsistent data for log %s: %s != %s' % (url, val_a, val_b))) def data_structure_from_log(log): log_data = dict(log._asdict()) log_data['id_b64'] = log.id_b64 log_data['pubkey'] = log.pubkey log_data['scts_accepted_by_chrome'] = \ log.scts_accepted_by_chrome return log_data def list_from_lists(log_lists): log_list = [] for item_dict in log_lists: for log in item_dict['logs']: log_data = data_structure_from_log(log) log_list.append(log_data) return log_list def show_log(log, order=3): logger.verbose('#' * order + ' %s\n' % log.url) logdict = log._asdict() for key, value in logdict.items(): if key == 'id_b64_non_calculated' and value == log.id_b64: value = None # don't log this value if key == 'operated_by': value = ', '.join(value) # avoid markdown syntax interpretation and improve readablity key = key.replace('_', ' ') if value is not None: logger.verbose('* __%s__: `%s`' % (key, value)) logger.verbose('* __scts accepted by chrome__: ' '%s' % log.scts_accepted_by_chrome) if log.key is not None: logger.verbose('* __id b64__: `%s`' % log.log_id) logger.verbose('* __pubkey__:\n```\n%s\n```' % log.pubkey) logger.verbose('') def show_logs(logs, heading, order=2): if len(logs) <= 0: return logger.info('#' * order + '%s\n' % ' ' + heading if heading else '') s_or_not = 's' if len(logs) == 1: s_or_not = '' # show log size logger.info('%i log%s\n' % (len(logs), s_or_not)) # list log urls for log in logs: if logger.level < logging.INFO: anchor = log.url.replace('/', '') logger.verbose('* [%s](#%s)' % (log.url, anchor)) else: logger.info('* %s' % log.url) logger.info('') for log in logs: show_log(log) logger.info('End of list') def ctloglist(print_json=None): '''Gather ct-log lists and print the merged log list. Args: print_json(boolean): If True, print merged log list as json data. Else print as markdown. ''' if not print_json: today = datetime.date.today() now = datetime.datetime.now() logger.info('# Known Certificate Transparency (CT) Logs\n') logger.verbose('Created with [ctloglist]' '(https://github.com/theno/ctutlz#ctloglist)\n') logger.verbose('* [all_logs_list.json](' 'https://www.gstatic.com/ct/log_list/v2/all_logs_list.json)' '\n') logger.info('Version (Date): %s\n' % today) logger.verbose('Datetime: %s\n' % now) logger.info('') # formatting: insert empty line # all_logs_list.json all_dict = download_log_list(URL_ALL_LOGS) orig_all_dict = dict(all_dict) set_operator_names(all_dict) all_logs = Logs([all_dict]) if print_json: json_str = json.dumps(orig_all_dict, indent=4, sort_keys=True) print(json_str) else: show_logs(all_logs, '') def main(): init_logger() parser = create_parser() args = parser.parse_args() setup_logging(args.loglevel) logger.debug(args) if args.print_schema: print_schema() else: ctloglist(args.print_json) if __name__ == '__main__': main() ``` #### File: ctutlz/utils/string.py ```python def to_hex(val): '''Return val as str of hex values concatenated by colons.''' if type(val) is int: return hex(val) try: # Python-2.x if type(val) is long: return hex(val) except NameError: pass # else: try: # Python-2.x return ":".join("{0:02x}".format(ord(char)) for char in val) except TypeError: # Python-3.x return ":".join("{0:02x}".format(char) for char in val) # http://stackoverflow.com/a/16891418 def string_without_prefix(prefix ,string): '''Return string without prefix. If string does not start with prefix, return string. ''' if string.startswith(prefix): return string[len(prefix):] return string def string_with_prefix(prefix, string): '''Return string with prefix prepended. If string already starts with prefix, return string. ''' return str(prefix) + string_without_prefix(str(prefix), str(string)) ``` #### File: ctutlz/utils/tdf_bytes.py ```python import struct from utlz import namedtuple as namedtuple_utlz # tdf := "TLS Data Format" (cf. https://tools.ietf.org/html/rfc5246#section-4) def namedtuple(typename, field_names='arg', lazy_vals=None, **kwargs): lazy_vals['_parse'] = lambda self: \ self.arg if type(self.arg) == dict else \ self._parse_func(self.arg)[0] if type(self.arg) == bytes else \ None lazy_vals['tdf'] = lambda self: \ self._parse['tdf'] return namedtuple_utlz(typename, field_names, lazy_vals, **kwargs) class TdfBytesParser(object): '''An instance of this is a file like object which enables access of a tdf (data) struct (a bytes string). ''' # context methods def __init__(self, tdf_bytes): self._bytes = tdf_bytes self.offset = 0 '''mutable parse results (read and delegate) dict''' self.res = {} def __enter__(self): self.offset = 0 return self def __exit__(self, exc_type, exc_value, exc_traceback): self.offset = 0 return # methods for parsing def read(self, key, fmt): data = struct.unpack_from(fmt, self._bytes, self.offset) self.offset += struct.calcsize(fmt) if len(data) == 1: self.res[key] = data[0] else: self.res[key] = data return self.res[key] def delegate(self, key, read_func): self.res[key], offset = read_func(self._bytes[self.offset:]) self.offset += offset return self.res[key] def result(self): self.res['tdf'] = bytes(bytearray(self._bytes[0:self.offset])) return self.res, self.offset ``` #### File: josephnoir/ctutlz/setup.py ```python import os import shutil from setuptools import setup, find_packages from codecs import open def create_readme_with_long_description(): this_dir = os.path.abspath(os.path.dirname(__file__)) readme_md = os.path.join(this_dir, 'README.md') readme = os.path.join(this_dir, 'README') if os.path.isfile(readme_md): if os.path.islink(readme): os.remove(readme) shutil.copy(readme_md, readme) try: import pypandoc long_description = pypandoc.convert(readme_md, 'rst', format='md') if os.path.islink(readme): os.remove(readme) with open(readme, 'w') as out: out.write(long_description) except(IOError, ImportError, RuntimeError): if os.path.isfile(readme_md): os.remove(readme) os.symlink(readme_md, readme) with open(readme, encoding='utf-8') as in_: long_description = in_.read() return long_description this_dir = os.path.abspath(os.path.dirname(__file__)) filename = os.path.join(this_dir, 'ctutlz', '_version.py') with open(filename, 'rt') as fh: version = fh.read().split('"')[1] description = __doc__.split('\n')[0] long_description = create_readme_with_long_description() setup( name='ctutlz', version=version, description=description, long_description=long_description, url='https://github.com/theno/ctutlz', author='<NAME>', author_email='<EMAIL>', license='MIT', entry_points={ 'console_scripts': [ 'ctloglist = ctutlz.scripts.ctloglist:main', 'decompose-cert = ctutlz.scripts.decompose_cert:main', 'verify-scts = ctutlz.scripts.verify_scts:main', ], }, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], keywords='python development utilities library ' 'certificate-transparency ct signed-certificate-timestamp sct', packages=find_packages(exclude=[ 'contrib', 'docs', 'tests', ]), package_data={'ctutlz': ['really_all_logs.json', 'log_list_schema.json'], }, install_requires=[ 'cffi>=1.4.0', 'cryptography>=2.8.0', 'html2text>=2016.9.19', 'pyasn1>=0.4.0', 'pyasn1-modules>=0.2.0', 'pyOpenSSL>=18.0.0', 'requests>=2.20.0', 'utlz>=0.10.0', ], extras_require={ 'dev': ['pypandoc'], }, setup_requires=[ 'cffi>=1.4.0' ], cffi_modules=[ 'ctutlz/tls/handshake_openssl_build.py:ffibuilder' ], ) ``` #### File: ctutlz/tests/test_rfc6962.py ```python from ctutlz import rfc6962 def test_parse_log_entry_type_0(): tdf = b'\x00\x00' parse, offset = rfc6962._parse_log_entry_type(tdf) assert offset == 2 assert parse == { 'tdf': b'\x00\x00', 'val': 0, } def test_parse_log_entry_type_1(): tdf = b'\x00\x01' parse, offset = rfc6962._parse_log_entry_type(tdf) assert offset == 2 assert parse == { 'tdf': b'\x00\x01', 'val': 1, } def test_log_entry_type_0_from_tdf(): tdf = b'\x00\x00anything' log_entry_type = rfc6962.LogEntryType(arg=tdf) assert log_entry_type.is_x509_entry is True assert log_entry_type.is_precert_entry is False assert log_entry_type.tdf == b'\x00\x00' assert str(log_entry_type) == 'x509_entry' assert log_entry_type._parse == { 'tdf': b'\x00\x00', 'val': 0, } def test_log_entry_type_0_from_parse(): parse = { 'tdf': b'\x00\x00', 'val': 0, } log_entry_type = rfc6962.LogEntryType(arg=parse) assert log_entry_type.is_x509_entry is True assert log_entry_type.is_precert_entry is False assert log_entry_type.tdf == b'\x00\x00' assert str(log_entry_type) == 'x509_entry' assert log_entry_type._parse == { 'tdf': b'\x00\x00', 'val': 0, } def test_log_entry_type_1_from_tdf(): tdf = b'\x00\x01' log_entry_type = rfc6962.LogEntryType(arg=tdf) assert log_entry_type.is_x509_entry is False assert log_entry_type.is_precert_entry is True assert log_entry_type.tdf == b'\x00\x01' assert str(log_entry_type) == 'precert_entry' assert log_entry_type._parse == { 'tdf': b'\x00\x01', 'val': 1, } def test_log_entry_type_1_from_parse(): parse = { 'tdf': b'\x00\x01', 'val': 1, } log_entry_type = rfc6962.LogEntryType(arg=parse) assert log_entry_type.is_x509_entry is False assert log_entry_type.is_precert_entry is True assert log_entry_type.tdf == b'\x00\x01' assert str(log_entry_type) == 'precert_entry' assert log_entry_type._parse == { 'tdf': b'\x00\x01', 'val': 1, } def test_signature_type_0_from_tdf(): tdf = b'\x00\x01\x02\x03\x04\x05\x06\x07\x89' signature_type = rfc6962.SignatureType(arg=tdf) assert signature_type.is_certificate_timestamp is True assert signature_type.is_tree_hash is False assert signature_type._parse == { 'tdf': b'\x00', 'val': 0, } def test_signature_type_0_from_parse(): parse = { 'tdf': b'\x00', 'val': 0, } signature_type = rfc6962.SignatureType(arg=parse) assert signature_type.is_certificate_timestamp is True assert signature_type.is_tree_hash is False assert signature_type._parse == { 'tdf': b'\x00', 'val': 0, } def test_signature_type_1_from_tdf(): tdf = b'\x01' signature_type = rfc6962.SignatureType(arg=tdf) assert signature_type.is_certificate_timestamp is False assert signature_type.is_tree_hash is True assert signature_type._parse == { 'tdf': b'\x01', 'val': 1, } def test_signature_type_1_from_parse(): parse = { 'tdf': b'\x01', 'val': 1, } signature_type = rfc6962.SignatureType(arg=parse) assert signature_type.is_certificate_timestamp is False assert signature_type.is_tree_hash is True assert signature_type._parse == { 'tdf': b'\x01', 'val': 1, } def test_version_from_tdf(): tdf = b'\x00anything' version = rfc6962.Version(tdf) assert version.is_v1 is True assert version._parse == { 'tdf': b'\x00', 'val': 0, } # invalid version number invalid_tdf = b'\x10' version = rfc6962.Version(invalid_tdf) assert version.is_v1 is False assert version._parse == { 'tdf': b'\x10', 'val': 16, } def test_version_from_parse(): parse = { 'val': 0, 'tdf': b'\x00', } version = rfc6962.Version(arg=parse) assert version.is_v1 is True assert version._parse == { 'tdf': b'\x00', 'val': 0, } def test_SignedCertificateTimestamp_from_tdf(): tdf = (b'\x00\xeeK\xbd\xb7u\xce`\xba\xe1Bi\x1f\xab\xe1\x9ef\xa3\x0f~_\xb0r' b'\xd8\x83\x00\xc4{\x89z\xa8\xfd\xcb\x00\x00\x01]\xe7\x11\xf5\xf7' b'\x00\x00\x04\x03\x00F0D\x02 ph\xa0\x08\x96H\xbc\x1b\x11\x0e\xd0' b'\x98\x02\xa8\xac\xb8\x19-|,\xe5\x0e\x9e\xf8/_&\xf7b\x88\xb4U\x02 X' b'\xbc\r>jFN\x0e\xda\x0b\x1b\xb5\xc0\x1a\xfd\x90\x91\xb0&\x1b\xdf' b'\xdc\x02Z\xd4zd\xd7\x80c\x0f\xd5') sct = rfc6962.SignedCertificateTimestamp(arg=tdf) assert sct.log_id.tdf == (b'\xeeK\xbd\xb7u\xce`\xba\xe1Bi\x1f\xab\xe1\x9ef' b'\xa3\x0f~_\xb0r\xd8\x83\x00\xc4{\x89z\xa8\xfd' b'\xcb') assert sct.tdf == tdf ``` #### File: ctutlz/tests/test_sct_ee_cert.py ```python from os.path import join, dirname import OpenSSL from pyasn1.codec.der.decoder import decode as der_decoder from pyasn1.type.univ import ObjectIdentifier, Sequence from utlz import flo from ctutlz.sct.ee_cert import pyopenssl_certificate_from_der, EndEntityCert def test_pyopenssl_certificate_from_der(): basedir = join(dirname(__file__), 'data', 'test_sct_ee_cert') for filename in ['ev_cert.der', 'cert_no_ev.der']: cert_der = open(flo('{basedir}/{filename}'), 'rb').read() got = pyopenssl_certificate_from_der(cert_der) assert type(got) is OpenSSL.crypto.X509 def test_is_ev_cert(): basedir = join(dirname(__file__), 'data', 'test_sct_ee_cert') test_data = [ ('ev_cert.der', True), ('cert_no_ev.der', False), ] for filename, expected in test_data: cert_der = open(flo('{basedir}/{filename}'), 'rb').read() ee_cert = EndEntityCert(cert_der) assert ee_cert.is_ev_cert is expected def test_is_letsencrypt_cert(): basedir = join(dirname(__file__), 'data', 'test_sct_ee_cert') test_data = [ ('issued_by_letsencrypt.der', True), ('issued_by_letsencrypt_2.der', True), ('issued_by_letsencrypt_not.der', False), ] for filename, expected in test_data: cert_der = open(flo('{basedir}/{filename}'), 'rb').read() ee_cert = EndEntityCert(cert_der) assert ee_cert.is_letsencrypt_cert is expected ```
{ "source": "josephnowak/multitask_organizer", "score": 3 }
#### File: multitask_queue/tests/test_decorator.py ```python from multitask_queue.task import TaskDescriptor from multitask_queue import decorators class TestDecorators: def test_decorators(self): total_decorators = { 'regular_task': 'regular', 'parallel_task': 'parallel', 'independent_task': 'independent', 'pre_execution_task': 'pre_execution', 'autofill_task': 'autofill' } for decorator_name, type_task in total_decorators.items(): decorator = getattr(decorators, decorator_name) if decorator_name != 'autofill_task': parameters = dict( exec_on_events=['event'], exec_after_tasks=['dummy'], exec_before_tasks=['dummy2'], autofill=['dummy3'] ) if type_task in ['independent', 'parallel']: parameters['type_parallelization'] = 'thread' @decorator(**parameters) def dummy_func(a: int = 5): pass task = decorators.PLUGINS['dummy_func'] assert task.func == dummy_func assert task.exec_on_events == {'event'} assert task.exec_after_tasks == {'dummy'} assert task.exec_before_tasks == {'dummy2'} assert task.autofill == {'dummy3'} else: @decorator def dummy_func(a: int = 5): pass task = decorators.PLUGINS['dummy_func'] assert task.type_task == type_task assert task.parameters == ['a'] assert task.default_parameters == {'a': 5} del decorators.PLUGINS['dummy_func'] if __name__ == "__main__": test = TestDecorators() test.test_decorators() ``` #### File: multitask_queue/tests/test_multitask.py ```python from multitask_queue.multitask import MultitasksQueue, Multitask, MultitasksOrganizer from multitask_queue.task import TasksOrganizer, Task, TaskDescriptor from multitask_queue.decorators import regular_task, pre_execution_task, parallel_task class TestMultitask: def test_multitask(self): def add_event_modification(multitask: Multitask): multitask.add_events({'modification'}) return {} def add_event_exception(multitask: Multitask): multitask.add_events({'exception'}) return {} def sum_to_value(value: int, a: int): return {'value': value + a} def mul_value(value: int, b: int): return {'value': value * b} def divide_value(value: int, c: int): return {'value': value / c} task_event_modification = Task( TaskDescriptor( func=add_event_modification, type_task='pre_execution', exec_on_events=['regular'], exec_after_tasks=[], exec_before_tasks=[], autofill=[] ) ) task_event_exception = Task( TaskDescriptor( func=add_event_exception, type_task='pre_execution', exec_on_events=['regular'], exec_after_tasks=[], exec_before_tasks=[], autofill=[] ) ) task_sum = Task( TaskDescriptor( func=sum_to_value, type_task='regular', exec_on_events=['modification'], exec_after_tasks=[], exec_before_tasks=[], autofill=[] ) ) task_mul = Task( TaskDescriptor( func=mul_value, type_task='regular', exec_on_events=['modification'], exec_after_tasks=['sum_to_value'], exec_before_tasks=[], autofill=['sum_to_value'] ) ) task_div = Task( TaskDescriptor( func=divide_value, type_task='regular', exec_on_events=['exception'], exec_after_tasks=[], exec_before_tasks=[], autofill=[] ) ) multitask_handler = Multitask( multitask_id='any', events={'regular'} ) data = {'value': 1, 'a': 1, 'b': 2, 'c': 2} multitask_handler.run( data, TasksOrganizer([task_mul, task_sum, task_div, task_event_modification]) ) assert data['value'] == 4 multitask_handler = Multitask( multitask_id='any', events={'regular'} ) multitask_handler.run( data, TasksOrganizer([task_mul, task_sum, task_div, task_event_exception]) ) assert data['value'] == 2 def test_multitasks_queue(self): @pre_execution_task(exec_on_events=['preprocess']) def enqueue_multitasks(mt_queue: MultitasksOrganizer): mt_queue.put( Multitask( multitask_id=1, events={'modification'} ) ) mt_queue.put( Multitask( multitask_id=2, events={'exception'} ) ) return {} @regular_task(exec_on_events=['modification']) def sum_to_value(value: int, a: int): return {'value': value + a} @regular_task(exec_on_events=['modification'], exec_after_tasks=['sum_to_value']) def mul_value(value: int, b: int): return {'value': value * b} @parallel_task(exec_on_events=['exception'], type_parallelization='thread') def divide_value(value: int, c: int): return {'value': value / c} data = {'value': 1, 'a': 1, 'b': 4, 'c': 2} multitasks = MultitasksQueue() multitasks.run(data) assert data['value'] == 4 if __name__ == "__main__": test = TestMultitask() # test.test_multitask() test.test_multitasks_queue() ```
{ "source": "josephobonyo/sigma_coding_youtube", "score": 3 }
#### File: python/python-vba/Lesson 2 - Creating Python Formulas.py ```python import pythoncom import numpy as np import win32com.client class PythonObjectLibrary: # This will create a GUID to register it with Windows, it is unique. _reg_clsid_ = pythoncom.CreateGuid() # Register the object as an EXE file, the alternative is an DLL file (INPROC_SERVER) _reg_clsctx_ = pythoncom.CLSCTX_LOCAL_SERVER # the program ID, this is the name of the object library that users will use to create the object. _reg_progid_ = "Python.ObjectLibrary" # this is a description of our object library. _reg_desc_ = "This is our Python object library." # a list of strings that indicate the public methods for the object. If they aren't listed they are conisdered private. _public_methods_ = ['pythonSum', 'pythonMultiply','addArray'] # multiply two cell values. def pythonMultiply(self, a, b): return a * b # add two cell values def pythonSum(self, x, y): return x + y # add a range of cell values def addArray(self, myRange): # create an instance of the range object that is passed through rng1 = win32com.client.Dispatch(myRange) # Get the values from the range rng1val = np.array(list(rng1.Value)) return rng1val.sum() if __name__ == '__main__': import win32com.server.register win32com.server.register.UseCommandLine(PythonObjectLibrary) ```
{ "source": "Joseph-Odhiambo/Blog-Post", "score": 3 }
#### File: Blog-Post/tests/user_test.py ```python import unittest from app.models import User class UserTest(unittest.TestCase): def setUp(self): self.new_user = User(username='joseph', email="<EMAIL>", bio='default bio', password='<PASSWORD>') def test_password_setter(self): self.assertTrue(self.new_user.hashed_password is not None) def test_no_access_password(self): with self.assertRaises(AttributeError): self.new_user.hashed_password def test_password_verification(self): self.assertTrue(self.new_user.verify_password('<PASSWORD>')) ```
{ "source": "josePhoenix/omabutton", "score": 2 }
#### File: josePhoenix/omabutton/player.py ```python import re import sys import multiprocessing import subprocess import time import os import glob import Queue as queue import logging LOG_FORMAT = "%(asctime)s %(module)s:%(lineno)d [%(levelname)s]: %(message)s" logging.basicConfig(format=LOG_FORMAT, level=logging.WARN) log = logging # shorthand try: from RPi import GPIO _ON_RASPI = True except ImportError: GPIO = None _ON_RASPI = False import vlc import id3reader if _ON_RASPI: MEDIA_ROOT = "/media/usb0" SPEECH_HELPER = "flite" else: MEDIA_ROOT = "/Users/jdl/dev/omabutton/media" SPEECH_HELPER = "say" BUTTON_PREVIOUS = 25 BUTTON_PLAYPAUSE = 22 BUTTON_NEXT = 4 class Buttons(object): def __init__(self, button_names): self._lookup = {} for identifier, channel_number in button_names.items(): setattr(self, identifier, channel_number) self._lookup[channel_number] = identifier def __getitem__(self, channel_number): return self._lookup[channel_number] def initialize(self, callback): GPIO.setmode(GPIO.BCM) for channel in self._lookup.keys(): GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.add_event_detect( channel, GPIO.FALLING, # buttons pulled down, so falling # means when button released callback=callback, bouncetime=1000 ) class SpeechRequest(object): NOT_STARTED = 0 IN_PROGRESS = 1 COMPLETED = 2 def __init__(self, msg): self.msg = msg self.ref = None def play(self): self.ref = subprocess.Popen((SPEECH_HELPER, self.msg)) def wait(self): if self.ref is None: return while self.status() != SpeechRequest.COMPLETED: time.sleep(0.2) def stop(self): if self.ref: try: self.ref.terminate() except OSError as e: if e.errno == errno.ESRCH: pass # race condition where pid might be cleaned up before # we try to kill it else: raise def status(self): if self.ref is None: return SpeechRequest.NOT_STARTED else: if self.ref.poll() is None: return SpeechRequest.IN_PROGRESS else: return SpeechRequest.COMPLETED class Player(multiprocessing.Process): media_files = [] def __init__(self, media_root, buttons): self.buttons = buttons self.event_queue = multiprocessing.Queue() # VLC plumbing self._media_root = media_root self._instance = vlc.Instance() self.now_playing = self._instance.media_player_new() self._vlc_event_manager = self.now_playing.event_manager() self._vlc_event_manager.event_attach( vlc.EventType.MediaPlayerEndReached, self._auto_advance # proceed to the next item upon finishing one ) self._media_list_position = 0 self.running = False self.media_files = glob.glob(os.path.join(self._media_root, '*.[mM][pP]3')) self.media_files.sort() if not len(self.media_files) > 0: log.error('Cannot init player! No media ' 'found in {}'.format(self._media_root)) sys.exit(1) super(Player, self).__init__() def _auto_advance(self, *args, **kwargs): log.debug('[_auto_advance] event from VLC: {} {}'.format(args, kwargs)) player.send_event(BUTTON_NEXT) @staticmethod def _say(message): speech = SpeechRequest(message) speech.play() speech.wait() @staticmethod def _name_for_media(normpath): id3r = id3reader.Reader(normpath) if id3r.getValue('title') is not None and \ id3r.getValue('performer') is not None: return '{0} from {1}'.format( id3r.getValue('title').encode('ascii', 'ignore'), id3r.getValue('performer').encode('ascii', 'ignore') ) else: # Fallback on filename parsing filename = os.path.basename(normpath).replace('.mp3', '') return re.sub(r'\d+\s*-?\s*', '', filename) def _begin_media(self, filepath, begin_as_paused=False): if self.now_playing.is_playing(): log.debug('[_begin_media] currently is_playing, stopping before ' 'switching media') self.now_playing.stop() normpath = os.path.abspath(filepath) log.debug('[_begin_media] attempting to load {}'.format(normpath)) try: media = self._instance.media_new(normpath) except NameError: log.error('NameError: %s (%s vs LibVLC %s)' % (sys.exc_info()[1], __version__, libvlc_get_version())) sys.exit(1) self.now_playing.set_media(media) log.debug('[_begin_media] set_media succeeded') self._name = self._name_for_media(normpath) if not begin_as_paused: log.debug('[_begin_media] begin_as_paused not set, playing') self.play() def play(self): log.debug('[play] announcing name: {}'.format(self._name)) self._say('Now playing: {}'.format(self._name)) log.debug('[play] begin playing...') self.now_playing.play() log.debug('[play] ...playing!') def pause(self): if self.now_playing.is_playing(): self.now_playing.set_pause(True) def playpause(self): if not self.now_playing.is_playing(): log.debug('[playpause] currently not is_playing, play()') self.play() else: log.debug('[playpause] currently is_playing, pause()') self.pause() def next_media(self): self._media_list_position += 1 if self._media_list_position >= len(self.media_files): self._say('That is the end of the material currently available. ' 'Have someone load some more for you, or press the green ' 'play button to start from the beginning.') log.debug('[next_media] wrap around, we reached the end') self._media_list_position = 0 self._begin_media(self.media_files[self._media_list_position], begin_as_paused=True) else: self._begin_media(self.media_files[self._media_list_position], begin_as_paused=False) def previous_media(self): self._media_list_position -= 1 if self._media_list_position < 0: self._say('You have reached the beginning of the list. Now ' 'counting back from the last item on the list.') log.debug('[previous_media] wrap around, we reached the beginning') self._media_list_position = len(self.media_files) - 1 self._begin_media(self.media_files[self._media_list_position]) def send_event(self, event_channel): log.debug('[send_event] {}'.format(event_channel)) self.event_queue.put(event_channel) def initialize(self): # on first start, load the first media item in the list # and set it to paused log.debug("[initialize] Queueing up first media item...") self._media_list_position = 0 self._begin_media(self.media_files[0], begin_as_paused=True) self._say("There are {} pod cast recordings available. " "Ready to play!".format(len(self.media_files))) log.debug("[initialize] Ready to play!") def dispatch(self, event): if self.now_playing is None: log.debug('[dispatch] Not done initializing yet; ' 'ignore button press') return if event == BUTTON_NEXT: # cancel currently playing item # begin playing next item, wrapping if necessary log.debug('[dispatch] got BUTTON_NEXT') self.next_media() elif event == BUTTON_PLAYPAUSE: # pause currently playing item log.debug('[dispatch] got BUTTON_PLAYPAUSE') self.playpause() elif event == BUTTON_PREVIOUS: # cancel currently playing item # begin playing previous item, wrapping if necessary log.debug('[dispatch] got BUTTON_PREVIOUS') self.previous_media() else: log.debug('[dispatch] What? Unknown button: {}'.format(event)) def run(self): self.running = True self.initialize() while self.running: try: log.debug('[run] checking for event...') event = self.event_queue.get(block=True, timeout=1.0) log.debug('[run] got event {} ({})', self.buttons[event], event) self.dispatch(event) except queue.Empty: pass # try again for another second # (prevents waiting forever on quit for a blocking get()) if __name__ == "__main__": if _ON_RASPI: buttons = Buttons({ 'PREVIOUS': BUTTON_PREVIOUS, 'PLAYPAUSE': BUTTON_PLAYPAUSE, 'NEXT': BUTTON_NEXT, }) else: buttons = {} player = Player(MEDIA_ROOT, buttons) if _ON_RASPI: buttons.initialize(callback=player.send_event) player.start() while not _ON_RASPI: command = raw_input("---\nnext - n\nplaypause - .\nprevious - p\n> ") if not command: continue elif command[0] == 'n': print 'next' player.send_event(BUTTON_NEXT) elif command[0] == 'p': print 'previous' player.send_event(BUTTON_PREVIOUS) elif command[0] == '.': print 'play/pause' player.send_event(BUTTON_PLAYPAUSE) else: print '???' # run forever player.join() ```
{ "source": "JosephOHagan/pyspheregl", "score": 2 }
#### File: pyspheregl/demo/dots_test.py ```python import numpy as np import pyglet from pyglet.gl import * # sphere stuff from ..sim.sphere_sim import getshader, resource_file from ..sim import sphere_sim from ..sphere import sphere from ..utils.graphics_utils import make_unit_quad_tile from ..utils.shader import ShaderVBO, shader_from_file from ..utils.np_vbo import VBuf, IBuf from ..utils import transformations as tn from ..touch.rotater import RotationHandler from ..touch import rotater class DotsTest(object): def __init__(self): self.viewer = sphere_sim.make_viewer(show_touches=True, draw_fn=self.draw, tick_fn=self.tick, touch_fn=self.touch) self.rotater = RotationHandler() self.pts = sphere.lon_ring(0, 200) + sphere.lon_ring(30, 200) + sphere.lon_ring(-30, 200) + sphere.lon_ring(90, 200) + sphere.lon_ring(60, 200) + sphere.lon_ring(-60, 200) self.pts += sphere.lat_ring(0, 200) + sphere.lat_ring(30, 200) + sphere.lat_ring(-30, 200) + sphere.lat_ring(90, 200) + sphere.lat_ring(60, 200) + sphere.lat_ring(-60, 200) self.pts = np.array(self.pts, dtype=float) point_shader = shader_from_file([getshader("sphere.vert"), getshader("user/point.vert")], [getshader("user/point.frag")]) self.point_vbo = ShaderVBO(point_shader, IBuf(np.arange(len(self.pts))), buffers={"position":VBuf(self.pts), }, vars={"constant_size":10, }, attribs={"color":(1,1,1,1)}, primitives=GL_POINTS) self.viewer.start() def touch(self, events): for event in events: xyz = sphere.polar_to_cart(*event.touch.lonlat) if event.event=="DRAG": self.rotater.drag(event.touch.id, xyz) if event.event=="UP": self.rotater.up(event.touch.id, xyz) if event.event=="DOWN": self.rotater.down(event.touch.id, xyz) def draw(self): glClearColor(0.0,0.0,0.0,1) glClear(GL_COLOR_BUFFER_BIT) glEnable(GL_VERTEX_PROGRAM_POINT_SIZE) glEnable(GL_POINT_SPRITE) self.point_vbo.draw(vars={"quat":self.rotater.orientation}) def tick(self): self.rotater.update(1/60.0) pass if __name__=="__main__": p = DotsTest() ``` #### File: pyspheregl/demo/search_test.py ```python import math import random from random import randint import datetime import numpy as np import pyglet from pyglet.gl import * # sphere stuff from ..sim.sphere_sim import getshader, resource_file from ..sim import sphere_sim from ..sphere import sphere from ..utils.shader import ShaderVBO, shader_from_file from ..utils.np_vbo import VBuf, IBuf from ..utils import transformations as tn from ..touch.rotater import RotationHandler class SearchTest(object): spiral_amount = 256 # Number of spirals to generate target_distance = 99 # Initial dummy value for target distance target_threshold = 3.0 # Threshold target in degrees before target timer starts threshold_flag = True end_threshold = datetime.datetime.now() + datetime.timedelta(seconds=3600) # Dummy initial value time_within_ring = 3 # Number of seconds to align dot within ring align_n = 31 # Dot position to display task dot target_pt = np.array([[np.radians(180), np.radians(0)]], dtype=np.float) # Position of target on sphere reset = False touched_point = False complete = False # Generate a new random dot position from spiral amount def generate_random_dot_pt(self): t = self.align_n while t == self.align_n: t = randint(0, self.spiral_amount-1) return t # Check if two points are within some threshold degree of each other def check_pts(self, xyz, rotated_origin): if (np.degrees(self.target_distance) < self.target_threshold and np.degrees(self.target_distance) > (-1) * self.target_threshold): return True else: return False def xyz_to_lonlat(self, xyz): return sphere.cart_to_polar(xyz[0], xyz[1], xyz[2]) def __init__(self): self.viewer = sphere_sim.make_viewer(show_touches=True, draw_fn=self.draw, tick_fn=self.tick, touch_fn=self.touch) self.rotater = RotationHandler() self.point_colour = (1.0, 0.0, 0.0, 1.0) self.background_colour = (1.0, 1.0, 1.0, 1.0) # Generate random point self.pts = np.array(sphere.spiral_layout(256)) self.align_n = self.generate_random_dot_pt() self.align_pts = self.pts[self.align_n : self.align_n + 1, :] self.origin = sphere.spherical_to_cartesian(self.pts[self.align_n]) # The point that we start at self.finger_pts = np.array([[0.0, 0.0]], dtype=np.float) # Point shader; simple coloured circles, with no spherical correction point_shader = shader_from_file([getshader("sphere.vert"), getshader("user/point.vert")], [getshader("user/point.frag")]) self.point_vbo = ShaderVBO(point_shader, IBuf(np.arange(len(self.pts))), buffers={"position":VBuf(self.pts), }, vars={"constant_size":10.0, }, primitives=GL_POINTS) # Point (dot) shader and VBO align_point_shader = shader_from_file([getshader("sphere.vert"), getshader("user/point.vert")], [getshader("user/point.frag")]) self.align_point_vbo = ShaderVBO(align_point_shader, IBuf(np.arange(len(self.align_pts))), buffers={"position":VBuf(self.align_pts), }, vars={"constant_size":20.0, }, primitives=GL_POINTS) self.viewer.start() def touch(self, events): for event in events: xyz = sphere.polar_to_cart(*event.touch.lonlat) if event.event=="DRAG": self.rotater.drag(event.touch.id, xyz) if event.event=="UP": self.rotater.up(event.touch.id, xyz) if not self.complete: self.end_threshold = datetime.datetime.now() + datetime.timedelta(seconds=360000) self.point_colour = (1.0, 0.0, 0.0, 1.0) self.touched_point = False if event.event=="DOWN": self.rotater.down(event.touch.id, xyz) self.finger_pts = np.array([self.xyz_to_lonlat(xyz)], dtype=np.float) if (self.check_pts(xyz, self.rotated_origin)): self.end_threshold = datetime.datetime.now() + datetime.timedelta(seconds=2) self.touched_point = True self.point_colour = (0.0, 1.0, 0.0, 1.0) def draw(self): glClearColor(0.0,0.0,0.0,1) glClear(GL_COLOR_BUFFER_BIT) glEnable(GL_VERTEX_PROGRAM_POINT_SIZE) glEnable(GL_POINT_SPRITE) # Draw the background self.point_vbo.set_attrib("color", self.background_colour) self.point_vbo.draw(vars={"quat":self.rotater.orientation}) # self.point_vbo.draw() # Modification # Draw the single moving target point self.align_point_vbo.set_attrib("color", self.point_colour) self.align_point_vbo.draw(vars={"quat":self.rotater.orientation}) # self.align_point_vbo.draw() # Modification # Compute distance between the points (must be in Cartesian space) quat = self.rotater.orientation self.rotated_origin = sphere.rotate_cartesian(quat/np.linalg.norm(quat), np.array(self.origin)) # rotate the points with the quaternion # Compare distance, again directly in Cartesian space self.target_distance = sphere.spherical_distance(sphere.cart_to_polar(self.rotated_origin[0], self.rotated_origin[1], -self.rotated_origin[2]) , self.finger_pts[0]) # self.target_distance = sphere.spherical_distance_cartesian(self.rotated_origin, self.target) def tick(self): self.rotater.update(1/60.0) if (datetime.datetime.now() >= self.end_threshold and self.touched_point): self.touched_point = False self.complete = True # Change background dots to indicate success self.background_colour = (0.0, 1.0, 0.0, 1.0) self.reset = True # Set and start timer between iterations if self.reset: self.end_threshold = datetime.datetime.now() + datetime.timedelta(seconds=5) self.reset = False # Start next iteration if datetime.datetime.now() >= self.end_threshold: # Reset flags and dummy value self.touched_point = False self.complete = False self.end_threshold = datetime.datetime.now() + datetime.timedelta(seconds=360000) # Reset colours and orientation self.background_colour = (1.0, 1.0, 1.0, 1.0) self.point_colour = (1.0, 0.0, 0.0, 1.0) self.rotater.orientation = np.array([0,0,0,1], dtype=np.float) self.rotater.angular_velocity = np.array([0,0,0,0.0], dtype=np.float) # Get next target point self.align_n = self.generate_random_dot_pt() self.align_pts = self.pts[self.align_n : self.align_n + 1, :] self.origin = sphere.spherical_to_cartesian(self.pts[self.align_n]) align_point_shader = shader_from_file([getshader("sphere.vert"), getshader("user/point.vert")], [getshader("user/point.frag")]) self.align_point_vbo = ShaderVBO(align_point_shader, IBuf(np.arange(len(self.align_pts))), buffers={"position":VBuf(self.align_pts), }, vars={"constant_size":20.0, }, primitives=GL_POINTS) pass if __name__=="__main__": p = SearchTest() ``` #### File: pyspheregl/utils/np_vbo.py ```python import pyglet from pyglet.gl import * import numpy as np class VBuf: def __init__(self, buffer, name="", id=-1, divisor=-1, mode=GL_STATIC_DRAW): self.buffer = create_vbo(buffer, mode=mode) self.name = name self.id = id self.shape = buffer.shape self.divisor = divisor self.mode = mode def set(self, array): assert(self.shape==array.shape) self.buffer.set_data(array) #self.buffer.set_data(array.astype(np.float32).ctypes.data) def create_vao(vbufs, ibo): """ Takes a list of VBufs, and generates the VAO which attaches all of them and returns it. """ # generate a new vao vao = GLuint() glGenVertexArrays(1, vao) glBindVertexArray(vao) # attach vbos for vbuf in vbufs: glEnableVertexAttribArray(vbuf.id) attach_vbo(vbuf.buffer, vbuf.id) if vbuf.divisor!=-1: glVertexAttribDivisor(vbuf.id, vbuf.divisor) if ibo!=None: glBindBuffer(ibo.target, ibo.id) # unbind all buffers glBindVertexArray(0) glBindBuffer(GL_ARRAY_BUFFER, 0) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) return vao def draw_vao(vao, primitives=GL_QUADS, n_vtxs=0, n_prims=0): glBindVertexArray(vao) if n_prims==0: glDrawElements(primitives, n_vtxs, GL_UNSIGNED_INT, 0) else: glDrawElementsInstanced(primitives, n_vtxs, GL_UNSIGNED_INT, 0, n_prims) glBindVertexArray(0) # simple VBO wrapper since pyglet's built in object # seems to be buggy (?) class VBO: def __init__(self, data, mode): vbo = GLuint() glGenBuffers(1, vbo) self.target = GL_ARRAY_BUFFER self.id = vbo self.bind() self.mode = mode # upload the placeholder data # must be the same shape on subsequent updates! data = data.astype(np.float32) glBufferData(self.target, data.nbytes, data.ctypes.data, self.mode) self.nbytes = data.nbytes self.vbo_id = vbo self.shape = data.shape self.unbind() def bind(self): glBindBuffer(self.target, self.id) def unbind(self): glBindBuffer(self.target, 0) def set_data(self, data): data = data.astype(np.float32) assert(data.nbytes == self.nbytes and data.shape==self.shape) self.bind() glBufferSubData(self.target, 0, data.nbytes, data.ctypes.data) def create_vbo(arr, mode=GL_STATIC_DRAW): """Creates an np.float32/GL_FLOAT buffer from the numpy array arr on the GPU""" #bo = pyglet.graphics.vertexbuffer.create_buffer(arr.nbytes, GL_ARRAY_BUFFER, mode, vbo=True) bo = VBO(arr, mode) return bo def create_elt_buffer(arr, mode=GL_STATIC_DRAW): """Creates an np.uint32/GL_UNSIGNED_INT buffer from the numpy array arr on the GPU""" arr = arr.astype(np.uint32) bo = pyglet.graphics.vertexbuffer.create_buffer(arr.nbytes, GL_ELEMENT_ARRAY_BUFFER, mode, vbo=True) bo.bind() bo.set_data(arr.ctypes.data) bo.shape = arr.shape # store shape for later # unbind glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) return bo def IBuf(arr): return create_elt_buffer(arr) def attach_vbo(bo, n): """Attach a vertex buffer object to attribute pointer n""" glEnableVertexAttribArray(n) glBindBuffer(bo.target, bo.id) # use number of elements in last element of the buffer object glVertexAttribPointer(n, bo.shape[-1], GL_FLOAT, False, 0, 0) def draw_elt_buffer(elt_bo, primitives=GL_QUADS): """Using the given element buffer, draw the indexed geometry""" glBindBuffer(elt_bo.target, elt_bo.id) glDrawElements(primitives, elt_bo.shape[0], GL_UNSIGNED_INT, 0) # unbind all buffers glBindBuffer(GL_ARRAY_BUFFER, 0) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0) ```
{ "source": "josephok/ProjectEuler", "score": 4 }
#### File: ProjectEuler/p29/solve.py ```python def distinct_powers(low = 2, up = 5): result = set() for a in range(low, up + 1): for b in range(low, up + 1): result.add(a ** b) return result # test # answer is 9183 print(len(distinct_powers(2, 100))) ``` #### File: ProjectEuler/p74/solve.py ```python import math def digit_factorial_chains(n=1000000): number_of_chains = 0 for i in range(1, n): if chains_length(i) == 60: number_of_chains += 1 return number_of_chains def sum_of_factorial(number): return sum(math.factorial(int(i)) for i in str(number)) def chains_length(number): chains = set() chains.add(number) t = number while True: t = sum_of_factorial(t) if t not in chains: chains.add(t) else: break return len(chains) if __name__ == "__main__": print(digit_factorial_chains()) ``` #### File: ProjectEuler/p80/solve.py ```python from decimal import Decimal, getcontext import unittest getcontext().prec = 105 def sum_of_100_digits(n): sq_root = str(Decimal(n).sqrt()) if sq_root.find('.') != -1: temp = sq_root.replace('.', '')[0:100] return sum(map(int, [i for i in temp])) return 0 def one_hundred_natural_numbers(n=100): return sum([sum_of_100_digits(i) for i in range(1, n+1)]) class TestResult(unittest.TestCase): def test_sum_of_100_digits(self): self.assertEqual(sum_of_100_digits(2), 475) def test_one_hundred_natural_numbers(self): self.assertEqual(one_hundred_natural_numbers(n=100), 40886) if __name__ == '__main__': unittest.main() ``` #### File: ProjectEuler/p92/test.py ```python import unittest from solve import sum_of_square class MyTest(unittest.TestCase): def test_sum_of_square(self): self.assertEqual(1, sum_of_square(1)) self.assertEqual(4, sum_of_square(2)) self.assertEqual(9, sum_of_square(3)) self.assertEqual(32, sum_of_square(44)) self.assertEqual(89, sum_of_square(85)) if __name__ == '__main__': unittest.main() ```
{ "source": "Josepholaidepetro/tensorflow_job", "score": 3 }
#### File: tensorflow_job/churn/tfjobchurn.py ```python import argparse import logging import json import os import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import numpy as np import pandas as pd # splitting the data from sklearn.model_selection import train_test_split # Standardization - feature scaling from sklearn.preprocessing import StandardScaler # data encoding from sklearn.preprocessing import LabelEncoder import tensorflow_datasets as tfds import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.optimizers import SGD, Adam, RMSprop logging.getLogger().setLevel(logging.INFO) def make_datasets_unbatched(): data = pd.read_csv("https://raw.githubusercontent.com/AdeloreSimiloluwa/Artificial-Neural-Network/master/data/Churn_Modelling.csv") #preprocessing X = data.iloc[:, 3:-1] y = data.iloc[:,-1:] # encoding country encoder_X_1= LabelEncoder() X.iloc[:,1] = encoder_X_1.fit_transform(X.iloc[:,1]) # encoding gender encoder_X_2= LabelEncoder() X.iloc[:,2] = encoder_X_2.fit_transform(X.iloc[:,2]) # we would also use the dummy variable because they are norminal variables dummy = pd.get_dummies(X["Geography"], prefix = ['Geography'],drop_first=True) X=pd.concat([X,dummy], axis = 1) X=X.drop(columns = ['Geography'], axis = 1) # split the data X_train,X_test,y_train,y_test = train_test_split( X,y, test_size=0.2, random_state = 10) train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)) test_dataset = tf.data.Dataset.from_tensor_slices((X_test, y_test)) train = train_dataset.cache().shuffle(2000).repeat() return train, test_dataset def model(args): model = models.Sequential() model.add(Dense(units =9, activation='relu', input_dim=11)) model.add(Dense(units =9, activation='relu')) model.add(Dense(units =1, activation='sigmoid')) model.summary() opt = args.optimizer model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) tf.keras.backend.set_value(model.optimizer.learning_rate, args.learning_rate) return model def main(args): # MultiWorkerMirroredStrategy creates copies of all variables in the model's # layers on each device across all workers strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy( communication=tf.distribute.experimental.CollectiveCommunication.AUTO) logging.debug(f"num_replicas_in_sync: {strategy.num_replicas_in_sync}") BATCH_SIZE_PER_REPLICA = args.batch_size BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync # Datasets need to be created after instantiation of `MultiWorkerMirroredStrategy` train_dataset, test_dataset = make_datasets_unbatched() train_dataset = train_dataset.batch(batch_size=BATCH_SIZE) test_dataset = test_dataset.batch(batch_size=BATCH_SIZE) # See: https://www.tensorflow.org/api_docs/python/tf/data/experimental/DistributeOptions options = tf.data.Options() options.experimental_distribute.auto_shard_policy = \ tf.data.experimental.AutoShardPolicy.DATA train_datasets_sharded = train_dataset.with_options(options) test_dataset_sharded = test_dataset.with_options(options) with strategy.scope(): # Model building/compiling need to be within `strategy.scope()`. multi_worker_model = model(args) # Keras' `model.fit()` trains the model with specified number of epochs and # number of steps per epoch. multi_worker_model.fit(train_datasets_sharded, epochs=50, steps_per_epoch=30) eval_loss, eval_acc = multi_worker_model.evaluate(test_dataset_sharded, verbose=0, steps=10) # Log metrics for Katib logging.info("loss={:.4f}".format(eval_loss)) logging.info("accuracy={:.4f}".format(eval_acc)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--batch_size", type=int, default=32, metavar="N", help="Batch size for training (default: 128)") parser.add_argument("--learning_rate", type=float, default=0.1, metavar="N", help='Initial learning rate') parser.add_argument("--optimizer", type=str, default='adam', metavar="N", help='optimizer') parsed_args, _ = parser.parse_known_args() main(parsed_args) ```
{ "source": "josepholasoji/expert-valuator", "score": 3 }
#### File: expert-valuator/model_generator/gen.py ```python import definitions as utils import json import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing import text as txtProcessor from tensorflow.keras.preprocessing.text import Tokenizer def generate(): #Parse and tokenized the library data tenkenizer = Tokenizer(num_words=None, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split='\,', char_level=False, oov_token=None) tenkenizer.fit_on_texts(utils.libraries.split(",")) librarySequence = tenkenizer.word_index #Parse and tokenized the language data tenkenizer = Tokenizer(num_words=None, filters='!"$%&()*,./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split='\,', char_level=False, oov_token=None) tenkenizer.fit_on_texts(utils.programming_languages.split(",")) programming_laguage_sequence = tenkenizer.word_index #Parse and tokenized the classification data tenkenizer = Tokenizer(num_words=None, filters='!"$%&()*,./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split='\,', char_level=False, oov_token=None) tenkenizer.fit_on_texts(utils.classifications.split(",")) classifications_sequence = tenkenizer.word_index #load the template data template = (json.loads(utils.template_data)) language_of_interest = [] for language in template['languages']: language = language.lower() if language in programming_laguage_sequence: token = programming_laguage_sequence[language] else: token = programming_laguage_sequence["none"] language_of_interest.append(token) lib_of_interest = [] for lib in template['technology']: lib = lib.lower() if lib in librarySequence: token = librarySequence[lib] else: token = librarySequence["none"] lib_of_interest.append(token) header = ["language", "library", "imported_library", "commit_count", "days_since_last_commit", "code_churn", "classificatioin"] table = [] table.append(header) #for disqualified for entry_data in template['disqualified']: entry = utils.gen_classification_data(entry_data, librarySequence, programming_laguage_sequence, classifications_sequence) table+=(entry) #for expert for entry_data in template['expert']: entry = utils.gen_classification_data(entry_data, librarySequence, programming_laguage_sequence, classifications_sequence) table+=(entry) #for novice for entry_data in template['novice']: entry = utils.gen_classification_data(entry_data, librarySequence, programming_laguage_sequence, classifications_sequence) table+=(entry) #for intermediate for entry_data in template['intermediate']: entry = utils.gen_classification_data(entry_data, librarySequence, programming_laguage_sequence, classifications_sequence) table+=(entry) my_df = pd.DataFrame(table) my_df.to_csv('truth_template_dataset.csv', index=True) return 0 ```
{ "source": "josephoregon/plant-cv", "score": 2 }
#### File: plant-cv/tests/tests.py ```python import pytest import os import shutil import json import numpy as np import cv2 import sys import pandas as pd from plotnine import ggplot from plantcv import plantcv as pcv import plantcv.learn import plantcv.parallel import plantcv.utils # Import matplotlib and use a null Template to block plotting to screen # This will let us test debug = "plot" import matplotlib import dask from dask.distributed import Client PARALLEL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "parallel_data") TEST_TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", ".cache") TEST_IMG_DIR = "images" TEST_IMG_DIR2 = "images_w_date" TEST_SNAPSHOT_DIR = "snapshots" TEST_PIPELINE = os.path.join(PARALLEL_TEST_DATA, "plantcv-script.py") META_FIELDS = {"imgtype": 0, "camera": 1, "frame": 2, "zoom": 3, "lifter": 4, "gain": 5, "exposure": 6, "id": 7} VALID_META = { # Camera settings "camera": { "label": "camera identifier", "datatype": "<class 'str'>", "value": "none" }, "imgtype": { "label": "image type", "datatype": "<class 'str'>", "value": "none" }, "zoom": { "label": "camera zoom setting", "datatype": "<class 'str'>", "value": "none" }, "exposure": { "label": "camera exposure setting", "datatype": "<class 'str'>", "value": "none" }, "gain": { "label": "camera gain setting", "datatype": "<class 'str'>", "value": "none" }, "frame": { "label": "image series frame identifier", "datatype": "<class 'str'>", "value": "none" }, "lifter": { "label": "imaging platform height setting", "datatype": "<class 'str'>", "value": "none" }, # Date-Time "timestamp": { "label": "datetime of image", "datatype": "<class 'datetime.datetime'>", "value": None }, # Sample attributes "id": { "label": "image identifier", "datatype": "<class 'str'>", "value": "none" }, "plantbarcode": { "label": "plant barcode identifier", "datatype": "<class 'str'>", "value": "none" }, "treatment": { "label": "treatment identifier", "datatype": "<class 'str'>", "value": "none" }, "cartag": { "label": "plant carrier identifier", "datatype": "<class 'str'>", "value": "none" }, # Experiment attributes "measurementlabel": { "label": "experiment identifier", "datatype": "<class 'str'>", "value": "none" }, # Other "other": { "label": "other identifier", "datatype": "<class 'str'>", "value": "none" } } METADATA_COPROCESS = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_VIS_ONLY = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_NIR_ONLY = { 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } # Set the temp directory for dask dask.config.set(temporary_directory=TEST_TMPDIR) # ########################## # Tests setup function # ########################## def setup_function(): if not os.path.exists(TEST_TMPDIR): os.mkdir(TEST_TMPDIR) # ############################## # Tests for the parallel subpackage # ############################## def test_plantcv_parallel_workflowconfig_save_config_file(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_save_config_file") os.mkdir(cache_dir) # Define output path/filename template_file = os.path.join(cache_dir, "config.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # Save template file config.save_config(config_file=template_file) assert os.path.exists(template_file) def test_plantcv_parallel_workflowconfig_import_config_file(): # Define input path/filename config_file = os.path.join(PARALLEL_TEST_DATA, "workflow_config_template.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # import config file config.import_config(config_file=config_file) assert config.cluster == "LocalCluster" def test_plantcv_parallel_workflowconfig_validate_config(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_validate_config") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir # Validate config assert config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_startdate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_startdate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.start_date = "2020-05-10" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_enddate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_enddate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.end_date = "2020-05-10" config.timestampformat = "%Y%m%d" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_metadata_terms(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_metadata_terms") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set an incorrect metadata term config.filename_metadata.append("invalid") # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_filename_metadata(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_filename_metadata") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Do not set required filename_metadata # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_cluster(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_cluster") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set invalid cluster type config.cluster = "MyCluster" # Validate config assert not config.validate_config() def test_plantcv_parallel_metadata_parser_snapshots(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_snapshots_coimg(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots_coimg", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "FAKE" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014" config.end_date = "2014" config.timestampformat = '%Y' # no date in filename so check date range and date_format are ignored config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected config.include_all_subdirs = False meta = plantcv.parallel.metadata_parser(config=config) assert meta == expected def test_plantcv_parallel_metadata_parser_regex(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.delimiter = r'(VIS)_(SV)_(\d+)_(z1)_(h1)_(g0)_(e82)_(\d+)' meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected def test_plantcv_parallel_metadata_parser_images_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR2) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "timestamp"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "NIR"} config.start_date = "1970-01-01 00_00_00" config.end_date = "1970-01-01 00_00_00" config.timestampformat = "%Y-%m-%d %H_%M_%S" config.imgformat = "jpg" config.delimiter = r"(NIR)_(SV)_(\d)_(z1)_(h1)_(g0)_(e65)_(\d{4}-\d{2}-\d{2} \d{2}_\d{2}_\d{2})" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_no_default_dates(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_no_default_dates", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV", "id": "117770"} config.start_date = None config.end_date = None config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_check_date_range_wrongdateformat(): start_date = 10 end_date = 10 img_time = '2010-10-10' with pytest.raises(SystemExit, match=r'does not match format'): date_format = '%Y%m%d' _ = plantcv.parallel.check_date_range( start_date, end_date, img_time, date_format) def test_plantcv_parallel_metadata_parser_snapshot_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshot_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_fail_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_fail_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"cartag": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_NIR_ONLY def test_plantcv_parallel_metadata_parser_images_with_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_with_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "X", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_camera(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "X", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'none', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'none', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_job_builder_single_image(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_single_image") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True jobs = plantcv.parallel.job_builder(meta=METADATA_VIS_ONLY, config=config) image_name = list(METADATA_VIS_ONLY.keys())[0] result_file = os.path.join(cache_dir, image_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', METADATA_VIS_ONLY[image_name]['path'], '--outdir', cache_dir, '--result', result_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_job_builder_coprocess(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_coprocess") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True config.coprocess = "NIR" jobs = plantcv.parallel.job_builder(meta=METADATA_COPROCESS, config=config) img_names = list(METADATA_COPROCESS.keys()) vis_name = img_names[0] vis_path = METADATA_COPROCESS[vis_name]['path'] result_file = os.path.join(cache_dir, vis_name + '.txt') nir_name = img_names[1] coresult_file = os.path.join(cache_dir, nir_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', vis_path, '--outdir', cache_dir, '--result', result_file, '--coresult', coresult_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_multiprocess_create_dask_cluster_local(): client = plantcv.parallel.create_dask_cluster(cluster="LocalCluster", cluster_config={}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster(): client = plantcv.parallel.create_dask_cluster(cluster="HTCondorCluster", cluster_config={"cores": 1, "memory": "1GB", "disk": "1GB"}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster_invalid_cluster(): with pytest.raises(ValueError): _ = plantcv.parallel.create_dask_cluster(cluster="Skynet", cluster_config={}) def test_plantcv_parallel_convert_datetime_to_unixtime(): unix_time = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m-%d") assert unix_time == 0 def test_plantcv_parallel_convert_datetime_to_unixtime_bad_strptime(): with pytest.raises(SystemExit): _ = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m") def test_plantcv_parallel_multiprocess(): image_name = list(METADATA_VIS_ONLY.keys())[0] image_path = os.path.join(METADATA_VIS_ONLY[image_name]['path'], image_name) result_file = os.path.join(TEST_TMPDIR, image_name + '.txt') jobs = [['python', TEST_PIPELINE, '--image', image_path, '--outdir', TEST_TMPDIR, '--result', result_file, '--writeimg', '--other', 'on']] # Create a dask LocalCluster client client = Client(n_workers=1) plantcv.parallel.multiprocess(jobs, client=client) assert os.path.exists(result_file) def test_plantcv_parallel_process_results(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) # Assert that the output JSON file matches the expected output JSON file result_file = open(os.path.join(cache_dir, "appended_results.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "appended_results.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_new_output(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_new_output") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'new_result.json')) # Assert output matches expected values result_file = open(os.path.join(cache_dir, "new_result.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "new_result.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_valid_json(): # Test when the file is a valid json file but doesn't contain expected keys with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(PARALLEL_TEST_DATA, "valid.json")) def test_plantcv_parallel_process_results_invalid_json(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_invalid_json") os.mkdir(cache_dir) # Move the test data to the tmp directory shutil.copytree(os.path.join(PARALLEL_TEST_DATA, "bad_results"), os.path.join(cache_dir, "bad_results")) with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(cache_dir, "bad_results"), json_file=os.path.join(cache_dir, "bad_results", "invalid.txt")) # #################################################################################################################### # ########################################### PLANTCV MAIN PACKAGE ################################################### matplotlib.use('Template') TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") HYPERSPECTRAL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "hyperspectral_data") HYPERSPECTRAL_DATA = "darkReference" HYPERSPECTRAL_WHITE = "darkReference_whiteReference" HYPERSPECTRAL_DARK = "darkReference_darkReference" HYPERSPECTRAL_HDR = "darkReference.hdr" HYPERSPECTRAL_MASK = "darkReference_mask.png" HYPERSPECTRAL_DATA_NO_DEFAULT = "darkReference2" HYPERSPECTRAL_HDR_NO_DEFAULT = "darkReference2.hdr" HYPERSPECTRAL_DATA_APPROX_PSEUDO = "darkReference3" HYPERSPECTRAL_HDR_APPROX_PSEUDO = "darkReference3.hdr" HYPERSPECTRAL_HDR_SMALL_RANGE = {'description': '{[HEADWALL Hyperspec III]}', 'samples': '800', 'lines': '1', 'bands': '978', 'header offset': '0', 'file type': 'ENVI Standard', 'interleave': 'bil', 'sensor type': 'Unknown', 'byte order': '0', 'default bands': '159,253,520', 'wavelength units': 'nm', 'wavelength': ['379.027', '379.663', '380.3', '380.936', '381.573', '382.209']} FLUOR_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "photosynthesis_data") FLUOR_IMG = "PSII_PSD_supopt_temp_btx623_22_rep1.DAT" TEST_COLOR_DIM = (2056, 2454, 3) TEST_GRAY_DIM = (2056, 2454) TEST_BINARY_DIM = TEST_GRAY_DIM TEST_INPUT_COLOR = "input_color_img.jpg" TEST_INPUT_GRAY = "input_gray_img.jpg" TEST_INPUT_GRAY_SMALL = "input_gray_img_small.jpg" TEST_INPUT_BINARY = "input_binary_img.png" # Image from http://www.libpng.org/pub/png/png-OwlAlpha.html # This image may be used, edited and reproduced freely. TEST_INPUT_RGBA = "input_rgba.png" TEST_INPUT_BAYER = "bayer_img.png" TEST_INPUT_ROI_CONTOUR = "input_roi_contour.npz" TEST_INPUT_ROI_HIERARCHY = "input_roi_hierarchy.npz" TEST_INPUT_CONTOURS = "input_contours.npz" TEST_INPUT_OBJECT_CONTOURS = "input_object_contours.npz" TEST_INPUT_OBJECT_HIERARCHY = "input_object_hierarchy.npz" TEST_VIS = "VIS_SV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR = "NIR_SV_0_z300_h1_g0_e15000_v500_93059.png" TEST_VIS_TV = "VIS_TV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR_TV = "NIR_TV_0_z300_h1_g0_e15000_v500_93059.png" TEST_INPUT_MASK = "input_mask_binary.png" TEST_INPUT_MASK_OOB = "mask_outbounds.png" TEST_INPUT_MASK_RESIZE = "input_mask_resize.png" TEST_INPUT_NIR_MASK = "input_nir.png" TEST_INPUT_FDARK = "FLUO_TV_dark.png" TEST_INPUT_FDARK_LARGE = "FLUO_TV_DARK_large" TEST_INPUT_FMIN = "FLUO_TV_min.png" TEST_INPUT_FMAX = "FLUO_TV_max.png" TEST_INPUT_FMASK = "FLUO_TV_MASK.png" TEST_INPUT_GREENMAG = "input_green-magenta.jpg" TEST_INPUT_MULTI = "multi_ori_image.jpg" TEST_INPUT_MULTI_MASK = "multi_ori_mask.jpg" TEST_INPUT_MULTI_OBJECT = "roi_objects.npz" TEST_INPUT_MULTI_CONTOUR = "multi_contours.npz" TEST_INPUT_ClUSTER_CONTOUR = "clusters_i.npz" TEST_INPUT_MULTI_HIERARCHY = "multi_hierarchy.npz" TEST_INPUT_VISUALIZE_CONTOUR = "roi_objects_visualize.npz" TEST_INPUT_VISUALIZE_HIERARCHY = "roi_obj_hierarchy_visualize.npz" TEST_INPUT_VISUALIZE_CLUSTERS = "clusters_i_visualize.npz" TEST_INPUT_VISUALIZE_BACKGROUND = "visualize_background_img.png" TEST_INPUT_GENOTXT = "cluster_names.txt" TEST_INPUT_GENOTXT_TOO_MANY = "cluster_names_too_many.txt" TEST_INPUT_CROPPED = 'cropped_img.jpg' TEST_INPUT_CROPPED_MASK = 'cropped-mask.png' TEST_INPUT_MARKER = 'seed-image.jpg' TEST_INPUT_SKELETON = 'input_skeleton.png' TEST_INPUT_SKELETON_PRUNED = 'input_pruned_skeleton.png' TEST_FOREGROUND = "TEST_FOREGROUND.jpg" TEST_BACKGROUND = "TEST_BACKGROUND.jpg" TEST_PDFS = "naive_bayes_pdfs.txt" TEST_PDFS_BAD = "naive_bayes_pdfs_bad.txt" TEST_VIS_SMALL = "setaria_small_vis.png" TEST_MASK_SMALL = "setaria_small_mask.png" TEST_VIS_COMP_CONTOUR = "setaria_composed_contours.npz" TEST_ACUTE_RESULT = np.asarray([[[119, 285]], [[151, 280]], [[168, 267]], [[168, 262]], [[171, 261]], [[224, 269]], [[246, 271]], [[260, 277]], [[141, 248]], [[183, 194]], [[188, 237]], [[173, 240]], [[186, 260]], [[147, 244]], [[163, 246]], [[173, 268]], [[170, 272]], [[151, 320]], [[195, 289]], [[228, 272]], [[210, 272]], [[209, 247]], [[210, 232]]]) TEST_VIS_SMALL_PLANT = "setaria_small_plant_vis.png" TEST_MASK_SMALL_PLANT = "setaria_small_plant_mask.png" TEST_VIS_COMP_CONTOUR_SMALL_PLANT = "setaria_small_plant_composed_contours.npz" TEST_SAMPLED_RGB_POINTS = "sampled_rgb_points.txt" TEST_TARGET_IMG = "target_img.png" TEST_TARGET_IMG_WITH_HEXAGON = "target_img_w_hexagon.png" TEST_TARGET_IMG_TRIANGLE = "target_img copy.png" TEST_SOURCE1_IMG = "source1_img.png" TEST_SOURCE2_IMG = "source2_img.png" TEST_TARGET_MASK = "mask_img.png" TEST_TARGET_IMG_COLOR_CARD = "color_card_target.png" TEST_SOURCE2_MASK = "mask2_img.png" TEST_TARGET_MATRIX = "target_matrix.npz" TEST_SOURCE1_MATRIX = "source1_matrix.npz" TEST_SOURCE2_MATRIX = "source2_matrix.npz" TEST_MATRIX_B1 = "matrix_b1.npz" TEST_MATRIX_B2 = "matrix_b2.npz" TEST_TRANSFORM1 = "transformation_matrix1.npz" TEST_MATRIX_M1 = "matrix_m1.npz" TEST_MATRIX_M2 = "matrix_m2.npz" TEST_S1_CORRECTED = "source_corrected.png" TEST_SKELETON_OBJECTS = "skeleton_objects.npz" TEST_SKELETON_HIERARCHIES = "skeleton_hierarchies.npz" TEST_THERMAL_ARRAY = "thermal_img.npz" TEST_THERMAL_IMG_MASK = "thermal_img_mask.png" TEST_INPUT_THERMAL_CSV = "FLIR2600.csv" PIXEL_VALUES = "pixel_inspector_rgb_values.txt" # ########################## # Tests for the main package # ########################## @pytest.mark.parametrize("debug", ["print", "plot"]) def test_plantcv_debug(debug, tmpdir): from plantcv.plantcv._debug import _debug # Create a test tmp directory img_outdir = tmpdir.mkdir("sub") pcv.params.debug = debug img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) _debug(visual=img, filename=os.path.join(img_outdir, TEST_INPUT_COLOR)) assert True @pytest.mark.parametrize("datatype,value", [[list, []], [int, 2], [float, 2.2], [bool, True], [str, "2"], [dict, {}], [tuple, ()], [None, None]]) def test_plantcv_outputs_add_observation(datatype, value): # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=datatype, value=value, label=[]) assert outputs.observations["default"]["test"]["value"] == value def test_plantcv_outputs_add_observation_invalid_type(): # Create output instance outputs = pcv.Outputs() with pytest.raises(RuntimeError): outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=list, value=np.array([2]), label=[]) def test_plantcv_outputs_save_results_json_newfile(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_json_existing_file(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "data_results.txt") shutil.copyfile(os.path.join(TEST_DATA, "data_results.txt"), outfile) # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_csv(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.csv") testfile = os.path.join(TEST_DATA, "data_results.csv") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='string', trait='string variable', method='string', scale='none', datatype=str, value="string", label="none") outputs.add_observation(sample='default', variable='boolean', trait='boolean variable', method='boolean', scale='none', datatype=bool, value=True, label="none") outputs.add_observation(sample='default', variable='list', trait='list variable', method='list', scale='none', datatype=list, value=[1, 2, 3], label=[1, 2, 3]) outputs.add_observation(sample='default', variable='tuple', trait='tuple variable', method='tuple', scale='none', datatype=tuple, value=(1, 2), label=(1, 2)) outputs.add_observation(sample='default', variable='tuple_list', trait='list of tuples variable', method='tuple_list', scale='none', datatype=list, value=[(1, 2), (3, 4)], label=[1, 2]) outputs.save_results(filename=outfile, outformat="csv") with open(outfile, "r") as fp: results = fp.read() with open(testfile, "r") as fp: test_results = fp.read() assert results == test_results def test_plantcv_transform_warp_smaller(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) bimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY),-1) bimg_small = cv2.resize(bimg, (200,300)) #not sure why INTER_NEAREST doesn't preserve values bimg_small[bimg_small>0]=255 mrow, mcol = bimg_small.shape vrow, vcol, vdepth = img.shape pcv.params.debug = None mask_warped = pcv.transform.warp(bimg_small, img[:,:,2], pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) pcv.params.debug = 'plot' mask_warped_plot = pcv.transform.warp(bimg_small, img[:,:,2], pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) assert np.count_nonzero(mask_warped)==93142 assert np.count_nonzero(mask_warped_plot)==93142 def test_plantcv_transform_warp_larger(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) gimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY),-1) gimg_large = cv2.resize(gimg, (5000,7000)) mrow, mcol = gimg_large.shape vrow, vcol, vdepth = img.shape pcv.params.debug='print' mask_warped_print = pcv.transform.warp(gimg_large, img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) assert np.sum(mask_warped_print)==83103814 def test_plantcv_transform_warp_rgbimgerror(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) gimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY),-1) gimg_large = cv2.resize(gimg, (5000,7000)) mrow, mcol = gimg_large.shape vrow, vcol, vdepth = img.shape with pytest.raises(RuntimeError): _ = pcv.transform.warp(img, img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) def test_plantcv_transform_warp_4ptserror(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) mrow, mcol, _ = img.shape vrow, vcol, vdepth = img.shape with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,0], img, pts = [(0,0),(mcol-1,0),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(0,vrow-1)]) with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,1], img, pts = [(0,0),(mcol-1,0),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,2], img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1),(0,vrow-1)]) def test_plantcv_acute(): # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) _ = pcv.acute(obj=np.array(([[213, 190]], [[83, 61]], [[149, 246]])), win=84, thresh=192, mask=mask) _ = pcv.acute(obj=np.array(([[3, 29]], [[31, 102]], [[161, 63]])), win=148, thresh=56, mask=mask) _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) # Test with debug = None pcv.params.debug = None _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) homology_pts = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) assert all([i == j] for i, j in zip(np.shape(homology_pts), (29, 1, 2))) def test_plantcv_acute_vertex(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, label="prefix") _ = pcv.acute_vertex(obj=[], win=5, thresh=15, sep=5, img=img) _ = pcv.acute_vertex(obj=[], win=.01, thresh=.01, sep=1, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) # Test with debug = None pcv.params.debug = None acute = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(np.shape(acute), np.shape(TEST_ACUTE_RESULT))) pcv.outputs.clear() def test_plantcv_acute_vertex_bad_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) obj_contour = np.array([]) pcv.params.debug = None result = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(result, [0, ("NA", "NA")])) pcv.outputs.clear() def test_plantcv_analyze_bound_horizontal(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_above_bound_only = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=300, label="prefix") pcv.outputs.clear() _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=100) _ = pcv.analyze_bound_horizontal(img=img_above_bound_only, obj=object_contours, mask=mask, line_position=1756) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(pcv.outputs.observations["default"]) == 7 def test_plantcv_analyze_bound_horizontal_grayscale_image(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(np.shape(boundary_img1)) == 3 def test_plantcv_analyze_bound_horizontal_neg_y(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug=None, line position that will trigger -y pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=-1000) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=0) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=2056) assert pcv.outputs.observations['default']['height_above_reference']['value'] == 713 def test_plantcv_analyze_bound_vertical(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 def test_plantcv_analyze_bound_vertical_grayscale_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 pcv.outputs.clear() def test_plantcv_analyze_bound_vertical_neg_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug="plot", line position that will trigger -x pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=2454) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 441 def test_plantcv_analyze_bound_vertical_small_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug='plot', line position that will trigger -x, and two channel object pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1) assert pcv.outputs.observations['default']['width_right_reference']['value'] == 441 def test_plantcv_analyze_color(): # Clear previous outputs pcv.outputs.clear() # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = "print" # pcv.params.debug = "print" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") # Test with debug = "plot" # pcv.params.debug = "plot" # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = None # pcv.params.debug = None _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='rgb') assert pcv.outputs.observations['default']['hue_median']['value'] == 84.0 def test_plantcv_analyze_color_incorrect_image(): img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img_binary, mask=mask, hist_plot_type=None) # # def test_plantcv_analyze_color_bad_hist_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='bgr') def test_plantcv_analyze_color_incorrect_hist_plot_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="bgr") def test_plantcv_analyze_nir(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_nir_16bit(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_object(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) pcv.outputs.clear() assert len(obj_images) != 0 def test_plantcv_analyze_object_grayscale_input(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 1 def test_plantcv_analyze_object_zero_slope(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:11, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[11, 10]], [[12, 10]], [[13, 10]], [[14, 10]], [[15, 10]], [[16, 10]], [[17, 10]], [[18, 10]], [[19, 10]], [[20, 10]], [[21, 10]], [[22, 10]], [[23, 10]], [[24, 10]], [[25, 10]], [[26, 10]], [[27, 10]], [[28, 10]], [[29, 10]], [[30, 10]], [[31, 10]], [[32, 10]], [[33, 10]], [[34, 10]], [[35, 10]], [[36, 10]], [[37, 10]], [[38, 10]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2d(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[0:5, 45:49, 0] = 255 img[0:5, 0:5, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[45, 1]], [[45, 2]], [[45, 3]], [[45, 4]], [[46, 4]], [[47, 4]], [[48, 4]], [[48, 3]], [[48, 2]], [[48, 1]], [[47, 1]], [[46, 1]], [[1, 1]], [[1, 2]], [[1, 3]], [[1, 4]], [[2, 4]], [[3, 4]], [[4, 4]], [[4, 3]], [[4, 2]], [[4, 1]], [[3, 1]], [[2, 1]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2e(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:15, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[10, 11]], [[10, 12]], [[10, 13]], [[10, 14]], [[11, 14]], [[12, 14]], [[13, 14]], [[14, 14]], [[15, 14]], [[16, 14]], [[17, 14]], [[18, 14]], [[19, 14]], [[20, 14]], [[21, 14]], [[22, 14]], [[23, 14]], [[24, 14]], [[25, 14]], [[26, 14]], [[27, 14]], [[28, 14]], [[29, 14]], [[30, 14]], [[31, 14]], [[32, 14]], [[33, 14]], [[34, 14]], [[35, 14]], [[36, 14]], [[37, 14]], [[38, 14]], [[39, 14]], [[39, 13]], [[39, 12]], [[39, 11]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_small_contour(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_contour = [np.array([[[0, 0]], [[0, 50]], [[50, 50]], [[50, 0]]], dtype=np.int32)] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert obj_images is None def test_plantcv_analyze_thermal_values(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_thermal_values") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data # img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_THERMAL_IMG_MASK), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_THERMAL_ARRAY), encoding="latin1") img = contours_npz['arr_0'] pcv.params.debug = None thermal_hist = pcv.analyze_thermal_values(thermal_array=img, mask=mask, histplot=True) assert thermal_hist is not None and pcv.outputs.observations['default']['median_temp']['value'] == 33.20922 def test_plantcv_apply_mask_white(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_white") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="white") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_black(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_black") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="black") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) hyper_array = pcv.hyperspectral.read_data(filename=spectral_filename) img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img_stacked, mask=img, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" masked_array = pcv.apply_mask(img=hyper_array.array_data, mask=img, mask_color="black") assert np.mean(masked_array) == 13.97111260224949 def test_plantcv_apply_mask_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="wite") def test_plantcv_auto_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=(20, 10), padding_y=(20, 10), color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], color='image') _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=2000, padding_y=2000, color='image') # Test with debug = None pcv.params.debug = None cropped = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=20, padding_y=20, color='black') x, y, z = np.shape(img1) x1, y1, z1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='white') x, y = np.shape(gray_img) x1, y1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_bad_color_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='wite') def test_plantcv_auto_crop_bad_padding_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x="one", padding_y=20, color='white') def test_plantcv_canny_edge_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.canny_edge_detect(img=rgb_img, mask=mask, mask_color='white') _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.canny_edge_detect(img=img, thickness=2) _ = pcv.canny_edge_detect(img=img) # Test with debug = None pcv.params.debug = None edge_img = pcv.canny_edge_detect(img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(edge_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(edge_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_canny_edge_detect_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color="gray") def test_plantcv_closing(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.closing(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.closing(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.closing(bin_img) assert np.sum(filtered_img) == 16261860 def test_plantcv_closing_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.closing(rgb_img) def test_plantcv_cluster_contours(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierarchy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierarchy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, show_grid=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierarchy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierachy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierachy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_splitimg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] # Test with debug = None pcv.params.debug = None _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file=None, filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=[[0]], contours=[], hierarchy=np.array([[[1, -1, -1, -1]]])) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file='multi', filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names_too_many) output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_cluster_contours_splitimg_grayscale(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg_grayscale") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] pcv.params.debug = None output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_color_palette(): # Return a color palette colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_random(): # Return a color palette in random order pcv.params.color_sequence = "random" colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_saved(): # Return a color palette that was saved pcv.params.saved_color_scale = [[0, 0, 0], [255, 255, 255]] colors = pcv.color_palette(num=2, saved=True) assert colors == [[0, 0, 0], [255, 255, 255]] def test_plantcv_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img, _, _ = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50) def test_plantcv_crop_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50, 4) def test_plantcv_crop_position_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_three_channel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_three_channel, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_color(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE)) mask_non_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="top", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=45, y=2, v_pos="top", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_bad_input_x(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=-1, y=-1, v_pos="top", h_pos="right") def test_plantcv_crop_position_mask_bad_input_vpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="below", h_pos="right") def test_plantcv_crop_position_mask_bad_input_hpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="starboard") def test_plantcv_dilate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_dilate") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None dilate_img = pcv.dilate(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(dilate_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(dilate_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_dilate_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.dilate(img, 1, 1) def test_plantcv_erode(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_erode") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None erode_img = pcv.erode(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(erode_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(erode_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_erode_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.erode(img, 1, 1) def test_plantcv_distance_transform(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_distance_transform") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = None pcv.params.debug = None distance_transform_img = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(distance_transform_img), np.shape(mask))) def test_plantcv_fatal_error(): # Verify that the fatal_error function raises a RuntimeError with pytest.raises(RuntimeError): pcv.fatal_error("Test error") def test_plantcv_fill(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill(bin_img=img, size=63632) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.fill(bin_img=img, size=63632) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill(bin_img=img, size=63632) # Assert that the output image has the dimensions of the input image # assert all([i == j] for i, j in zip(np.shape(fill_img), TEST_BINARY_DIM)) assert np.sum(fill_img) == 0 def test_plantcv_fill_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill(bin_img=img, size=1) def test_plantcv_fill_holes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill_holes(bin_img=img) pcv.params.debug = "plot" _ = pcv.fill_holes(bin_img=img) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill_holes(bin_img=img) assert np.sum(fill_img) > np.sum(img) def test_plantcv_fill_holes_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill_holes(bin_img=img) def test_plantcv_find_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = None pcv.params.debug = None contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_find_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "plot" pcv.params.debug = "plot" contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_flip(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_flip") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.flip(img=img, direction="horizontal") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.flip(img=img, direction="vertical") _ = pcv.flip(img=img_binary, direction="vertical") # Test with debug = None pcv.params.debug = None flipped_img = pcv.flip(img=img, direction="horizontal") assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM)) def test_plantcv_flip_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.flip(img=img, direction="vert") def test_plantcv_gaussian_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_gaussian_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) _ = pcv.gaussian_blur(img=img_color, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = None pcv.params.debug = None gaussian_img = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) imgavg = np.average(img) gavg = np.average(gaussian_img) assert gavg != imgavg def test_plantcv_get_kernel_cross(): kernel = pcv.get_kernel(size=(3, 3), shape="cross") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_rectangle(): kernel = pcv.get_kernel(size=(3, 3), shape="rectangle") assert (kernel == np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])).all() def test_plantcv_get_kernel_ellipse(): kernel = pcv.get_kernel(size=(3, 3), shape="ellipse") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_bad_input_size(): with pytest.raises(ValueError): _ = pcv.get_kernel(size=(1, 1), shape="ellipse") def test_plantcv_get_kernel_bad_input_shape(): with pytest.raises(RuntimeError): _ = pcv.get_kernel(size=(3, 1), shape="square") def test_plantcv_get_nir_sv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS) nirpath1 = os.path.join(TEST_DATA, TEST_NIR) assert nirpath == nirpath1 def test_plantcv_get_nir_tv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS_TV) nirpath1 = os.path.join(TEST_DATA, TEST_NIR_TV) assert nirpath == nirpath1 def test_plantcv_hist_equalization(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.hist_equalization(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.hist_equalization(gray_img=img) # Test with debug = None pcv.params.debug = None hist = pcv.hist_equalization(gray_img=img) histavg = np.average(hist) imgavg = np.average(img) assert histavg != imgavg def test_plantcv_hist_equalization_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), 1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.hist_equalization(gray_img=img) def test_plantcv_image_add(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_add") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = None pcv.params.debug = None added_img = pcv.image_add(gray_img1=img1, gray_img2=img2) assert all([i == j] for i, j in zip(np.shape(added_img), TEST_BINARY_DIM)) def test_plantcv_image_subtract(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_sub") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = 'print' _ = pcv.image_subtract(img1, img2) # Test with debug = "plot" pcv.params.debug = 'plot' _ = pcv.image_subtract(img1, img2) # Test with debug = None pcv.params.debug = None new_img = pcv.image_subtract(img1, img2) assert np.array_equal(new_img, np.zeros(np.shape(new_img), np.uint8)) def test_plantcv_image_subtract_fail(): # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) # test with pytest.raises(RuntimeError): _ = pcv.image_subtract(img1, img2) def test_plantcv_invert(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_invert") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.invert(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.invert(gray_img=img) # Test with debug = None pcv.params.debug = None inverted_img = pcv.invert(gray_img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(inverted_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(inverted_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_landmark_reference_pt_dist(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_landmark_reference") os.mkdir(cache_dir) points_rescaled = [(0.0139, 0.2569), (0.2361, 0.2917), (0.3542, 0.3819), (0.3542, 0.4167), (0.375, 0.4236), (0.7431, 0.3681), (0.8958, 0.3542), (0.9931, 0.3125), (0.1667, 0.5139), (0.4583, 0.8889), (0.4931, 0.5903), (0.3889, 0.5694), (0.4792, 0.4306), (0.2083, 0.5417), (0.3194, 0.5278), (0.3889, 0.375), (0.3681, 0.3472), (0.2361, 0.0139), (0.5417, 0.2292), (0.7708, 0.3472), (0.6458, 0.3472), (0.6389, 0.5208), (0.6458, 0.625)] centroid_rescaled = (0.4685, 0.4945) bottomline_rescaled = (0.4685, 0.2569) _ = pcv.landmark_reference_pt_dist(points_r=[], centroid_r=('a', 'b'), bline_r=(0, 0)) _ = pcv.landmark_reference_pt_dist(points_r=[(10, 1000)], centroid_r=(10, 10), bline_r=(10, 10)) _ = pcv.landmark_reference_pt_dist(points_r=[], centroid_r=(0, 0), bline_r=(0, 0)) _ = pcv.landmark_reference_pt_dist(points_r=points_rescaled, centroid_r=centroid_rescaled, bline_r=bottomline_rescaled, label="prefix") assert len(pcv.outputs.observations['prefix'].keys()) == 8 def test_plantcv_laplace_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_laplace_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Test with debug = None pcv.params.debug = None lp_img = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(lp_img), TEST_GRAY_DIM)) def test_plantcv_logical_and(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_and") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_and(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_and(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None and_img = pcv.logical_and(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(and_img), TEST_BINARY_DIM)) def test_plantcv_logical_or(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_or") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_or(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_or(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None or_img = pcv.logical_or(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(or_img), TEST_BINARY_DIM)) def test_plantcv_logical_xor(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_xor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_xor(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_xor(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None xor_img = pcv.logical_xor(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(xor_img), TEST_BINARY_DIM)) def test_plantcv_median_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_median_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.median_blur(gray_img=img, ksize=5) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.median_blur(gray_img=img, ksize=5) # Test with debug = None pcv.params.debug = None blur_img = pcv.median_blur(gray_img=img, ksize=5) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(blur_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(blur_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_median_blur_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_median_blur_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.median_blur(img, 5.) def test_plantcv_naive_bayes_classifier(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_naive_bayes_classifier") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Test with debug = None pcv.params.debug = None mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(mask), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(mask), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_naive_bayes_classifier_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS_BAD)) def test_plantcv_object_composition(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_object_composition") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) _ = pcv.object_composition(img=img, contours=[], hierarchy=object_hierarchy) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Test with debug = None pcv.params.debug = None contours, mask = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Assert that the objects have been combined contour_shape = np.shape(contours) # type: tuple assert contour_shape[1] == 1 def test_plantcv_object_composition_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_object_composition_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "plot" pcv.params.debug = "plot" contours, mask = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Assert that the objects have been combined contour_shape = np.shape(contours) # type: tuple assert contour_shape[1] == 1 def test_plantcv_within_frame(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_within_frame") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask_ib = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_oob = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_OOB), -1) in_bounds_ib = pcv.within_frame(mask=mask_ib, border_width=1, label="prefix") in_bounds_oob = pcv.within_frame(mask=mask_oob, border_width=1) assert (in_bounds_ib is True and in_bounds_oob is False) def test_plantcv_within_frame_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_within_frame") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data grayscale_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) with pytest.raises(RuntimeError): _ = pcv.within_frame(grayscale_img) def test_plantcv_opening(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.opening(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.opening(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.opening(bin_img) assert np.sum(filtered_img) == 16184595 def test_plantcv_opening_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.opening(rgb_img) def test_plantcv_output_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_output_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=None, mask_only=False) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) _ = pcv.output_mask(img=img_color, mask=mask, filename='test.png', outdir=None, mask_only=False) # Remove tmp files in working direcctory shutil.rmtree("ori-images") shutil.rmtree("mask-images") # Test with debug = None pcv.params.debug = None imgpath, maskpath, analysis_images = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) assert all([os.path.exists(imgpath) is True, os.path.exists(maskpath) is True]) def test_plantcv_output_mask_true(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_output_mask") pcv.params.debug_outdir = cache_dir os.mkdir(cache_dir) # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.output_mask(img=img_color, mask=mask, filename='test.png', outdir=cache_dir, mask_only=True) pcv.params.debug = None imgpath, maskpath, analysis_images = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) assert all([os.path.exists(imgpath) is True, os.path.exists(maskpath) is True]) def test_plantcv_plot_image_matplotlib_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pimg = pcv.visualize.pseudocolor(gray_img=img, mask=mask, min_value=10, max_value=200) with pytest.raises(RuntimeError): pcv.plot_image(pimg) def test_plantcv_plot_image_plotnine(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_image_plotnine") os.mkdir(cache_dir) dataset = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 2, 3, 4]}) img = ggplot(data=dataset) try: pcv.plot_image(img=img) except RuntimeError: assert False # Assert that the image was plotted without error assert True def test_plantcv_print_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR)) filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=img, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_image_bad_type(): with pytest.raises(RuntimeError): pcv.print_image(img=[], filename="/dev/null") def test_plantcv_print_image_plotnine(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image_plotnine") os.mkdir(cache_dir) dataset = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 2, 3, 4]}) img = ggplot(data=dataset) filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=img, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_results(tmpdir): # Create a tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") pcv.print_results(filename=outfile) assert os.path.exists(outfile) def test_plantcv_readimage_native(): # Test with debug = None pcv.params.debug = None _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='rgba') _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') # Assert that the image name returned equals the name of the input image # Assert that the path of the image returned equals the path of the input image # Assert that the dimensions of the returned image equals the expected dimensions if img_name == TEST_INPUT_COLOR and path == TEST_DATA: if all([i == j] for i, j in zip(np.shape(img), TEST_COLOR_DIM)): assert 1 else: assert 0 else: assert 0 def test_plantcv_readimage_grayscale(): # Test with debug = None pcv.params.debug = None _, _, _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="grey") img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="gray") assert len(np.shape(img)) == 2 def test_plantcv_readimage_rgb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="rgb") assert len(np.shape(img)) == 3 def test_plantcv_readimage_rgba_as_rgb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_RGBA), mode="native") assert np.shape(img)[2] == 3 def test_plantcv_readimage_csv(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_THERMAL_CSV), mode="csv") assert len(np.shape(img)) == 2 def test_plantcv_readimage_envi(): # Test with debug = None pcv.params.debug = None array_data = pcv.readimage(filename=os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA), mode="envi") if sys.version_info[0] < 3: assert len(array_data.array_type) == 8 def test_plantcv_readimage_bad_file(): with pytest.raises(RuntimeError): _ = pcv.readimage(filename=TEST_INPUT_COLOR) def test_plantcv_readbayer_default_bg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_readbayer_default_bg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="default") # Test with debug = "plot" pcv.params.debug = "plot" img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_bg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_bg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_bad_input(): # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _, _, _ = pcv.readbayer(filename=os.path.join(TEST_DATA, "no-image.png"), bayerpattern="GR", alg="default") def test_plantcv_rectangle_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rectangle_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="white") _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rectangle_mask(img=img_color, p1=(0, 0), p2=(2454, 2056), color="gray") # Test with debug = None pcv.params.debug = None masked, hist, contour, heir = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="black") maskedsum = np.sum(masked) imgsum = np.sum(img) assert maskedsum < imgsum def test_plantcv_rectangle_mask_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rectangle_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="whit") def test_plantcv_report_size_marker_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_report_size_marker_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120) pcv.outputs.clear() assert len(images) != 0 def test_plantcv_report_size_marker_define(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='define', objcolor='light', thresh_channel='s', thresh=120) assert len(images) != 0 def test_plantcv_report_size_marker_grayscale_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # ROI contour roi_contour = [np.array([[[0, 0]], [[0, 49]], [[49, 49]], [[49, 0]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='define', objcolor='light', thresh_channel='s', thresh=120) assert len(images) != 0 def test_plantcv_report_size_marker_bad_marker_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='none', objcolor='light', thresh_channel='s', thresh=120) def test_plantcv_report_size_marker_bad_threshold_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel=None, thresh=120) def test_plantcv_rgb2gray_cmyk(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) c = pcv.rgb2gray_cmyk(rgb_img=img, channel="c") # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(c), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_cmyk_bad_channel(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): # Channel S is not in CMYK _ = pcv.rgb2gray_cmyk(rgb_img=img, channel="s") def test_plantcv_rgb2gray_hsv(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray_hsv") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Test with debug = None pcv.params.debug = None s = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(s), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_hsv_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rgb2gray_hsv(rgb_img=img, channel="l") def test_plantcv_rgb2gray_lab(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray_lab") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Test with debug = None pcv.params.debug = None b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(b), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_lab_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rgb2gray_lab(rgb_img=img, channel="v") def test_plantcv_rgb2gray(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray(rgb_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray(rgb_img=img) # Test with debug = None pcv.params.debug = None gray = pcv.rgb2gray(rgb_img=img) # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(gray), TEST_GRAY_DIM)) def test_plantcv_roi2mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "plot" _ = pcv.roi.roi2mask(img=img, contour=obj_contour) pcv.params.debug = "print" mask = pcv.roi.roi2mask(img=img, contour=obj_contour) assert np.shape(mask)[0:2] == np.shape(img)[0:2] and np.sum(mask) == 255 def test_plantcv_roi_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="largest") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="partial") # Test with debug = None and roi_type = cutto pcv.params.debug = None _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="cutto") # Test with debug = None kept_contours, kept_hierarchy, mask, area = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="partial") # Assert that the contours were filtered as expected assert len(kept_contours) == 1891 def test_plantcv_roi_objects_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.roi_objects(img=img, roi_type="cut", roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy) def test_plantcv_roi_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "plot" pcv.params.debug = "plot" kept_contours, kept_hierarchy, mask, area = pcv.roi_objects(img=img, roi_type="partial", roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy) # Assert that the contours were filtered as expected assert len(kept_contours) == 1891 def test_plantcv_rotate(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) rotated = pcv.rotate(img=img, rotation_deg=45, crop=True) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_transform_rotate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rotate_img") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) # Test with debug = None pcv.params.debug = None rotated = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_transform_rotate_gray(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=False) # Test with debug = None pcv.params.debug = None rotated = pcv.transform.rotate(img=img, rotation_deg=45, crop=False) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_scale_features(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_scale_features") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position='NA') # Test with debug = None pcv.params.debug = None points_rescaled, centroid_rescaled, bottomline_rescaled = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) assert len(points_rescaled) == 23 def test_plantcv_scale_features_bad_input(): mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_scharr_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_scharr_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "print" # Test with debug = "print" _ = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Test with debug = None pcv.params.debug = None scharr_img = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(scharr_img), TEST_GRAY_DIM)) def test_plantcv_shift_img(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_shift_img") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.shift_img(img=img, number=300, side="top") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.shift_img(img=img, number=300, side="top") # Test with debug = "plot" _ = pcv.shift_img(img=img, number=300, side="bottom") # Test with debug = "plot" _ = pcv.shift_img(img=img, number=300, side="right") # Test with debug = "plot" _ = pcv.shift_img(img=mask, number=300, side="left") # Test with debug = None pcv.params.debug = None rotated = pcv.shift_img(img=img, number=300, side="top") imgavg = np.average(img) shiftavg = np.average(rotated) assert shiftavg != imgavg def test_plantcv_shift_img_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.shift_img(img=img, number=-300, side="top") def test_plantcv_shift_img_bad_side_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.shift_img(img=img, number=300, side="starboard") def test_plantcv_sobel_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_sobel_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Test with debug = None pcv.params.debug = None sobel_img = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(sobel_img), TEST_GRAY_DIM)) def test_plantcv_stdev_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_sobel_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) pcv.params.debug = "plot" _ = pcv.stdev_filter(img=img, ksize=11) pcv.params.debug = "print" filter_img = pcv.stdev_filter(img=img, ksize=11) assert (np.shape(filter_img) == np.shape(img)) def test_plantcv_watershed_segmentation(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_watershed_segmentation") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10) # Test with debug = None pcv.params.debug = None _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10) assert pcv.outputs.observations['default']['estimated_object_count']['value'] > 9 def test_plantcv_white_balance_gray_16bit(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_gray_16bit") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_gray_8bit(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_gray_8bit") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_rgb(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_rgb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 5, 5, 5)) def test_plantcv_white_balance_bad_mode_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER)) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='histogram', roi=(5, 5, 80, 80)) def test_plantcv_white_balance_bad_input_int(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='hist', roi=(5., 5, 5, 5)) def test_plantcv_x_axis_pseudolandmarks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_x_axis_pseudolandmarks_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "print" _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img, label="prefix") _ = pcv.x_axis_pseudolandmarks(obj=np.array([[0, 0], [0, 0]]), mask=np.array([[0, 0], [0, 0]]), img=img) _ = pcv.x_axis_pseudolandmarks(obj=np.array(([[89, 222]], [[252, 39]], [[89, 207]])), mask=np.array(([[42, 161]], [[2, 47]], [[211, 222]])), img=img) _ = pcv.x_axis_pseudolandmarks(obj=(), mask=mask, img=img) # Test with debug = None pcv.params.debug = None top, bottom, center_v = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(top), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(bottom), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_v), (20, 1, 2)))]) def test_plantcv_x_axis_pseudolandmarks_small_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR_SMALL_PLANT), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.x_axis_pseudolandmarks(obj=[], mask=mask, img=img) _, _, _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _ = pcv.x_axis_pseudolandmarks(obj=[], mask=mask, img=img) top, bottom, center_v = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) assert all([all([i == j] for i, j in zip(np.shape(top), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(bottom), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_v), (20, 1, 2)))]) def test_plantcv_x_axis_pseudolandmarks_bad_input(): img = np.array([]) mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_x_axis_pseudolandmarks_bad_obj_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) with pytest.raises(RuntimeError): _ = pcv.x_axis_pseudolandmarks(obj=np.array([[-2, -2], [-2, -2]]), mask=np.array([[-2, -2], [-2, -2]]), img=img) def test_plantcv_y_axis_pseudolandmarks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "print" _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() _ = pcv.y_axis_pseudolandmarks(obj=[], mask=mask, img=img) _ = pcv.y_axis_pseudolandmarks(obj=(), mask=mask, img=img) _ = pcv.y_axis_pseudolandmarks(obj=np.array(([[89, 222]], [[252, 39]], [[89, 207]])), mask=np.array(([[42, 161]], [[2, 47]], [[211, 222]])), img=img) _ = pcv.y_axis_pseudolandmarks(obj=np.array(([[21, 11]], [[159, 155]], [[237, 11]])), mask=np.array(([[38, 54]], [[144, 169]], [[81, 137]])), img=img) # Test with debug = None pcv.params.debug = None left, right, center_h = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(left), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(right), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_h), (20, 1, 2)))]) def test_plantcv_y_axis_pseudolandmarks_small_obj(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR_SMALL_PLANT), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.y_axis_pseudolandmarks(obj=[], mask=mask, img=img) _, _, _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" pcv.outputs.clear() left, right, center_h = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(left), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(right), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_h), (20, 1, 2)))]) def test_plantcv_y_axis_pseudolandmarks_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) img = np.array([]) mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_y_axis_pseudolandmarks_bad_obj_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) with pytest.raises(RuntimeError): _ = pcv.y_axis_pseudolandmarks(obj=np.array([[-2, -2], [-2, -2]]), mask=np.array([[-2, -2], [-2, -2]]), img=img) def test_plantcv_background_subtraction(): # List to hold result of all tests. truths = [] fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) big_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Testing if background subtraction is actually still working. # This should return an array whose sum is greater than one pcv.params.debug = None fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) fgmask = pcv.background_subtraction(background_image=big_img, foreground_image=bg_img) truths.append(np.sum(fgmask) > 0) # The same foreground subtracted from itself should be 0 fgmask = pcv.background_subtraction(background_image=fg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) == 0) # The same background subtracted from itself should be 0 fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=bg_img) truths.append(np.sum(fgmask) == 0) # All of these should be true for the function to pass testing. assert (all(truths)) def test_plantcv_background_subtraction_debug(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_background_subtraction_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # List to hold result of all tests. truths = [] fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) # Test with debug = "print" pcv.params.debug = "print" fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) # Test with debug = "plot" pcv.params.debug = "plot" fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) # All of these should be true for the function to pass testing. assert (all(truths)) def test_plantcv_background_subtraction_bad_img_type(): fg_color = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_gray = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND), 0) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.background_subtraction(background_image=bg_gray, foreground_image=fg_color) def test_plantcv_background_subtraction_different_sizes(): fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) bg_shp = np.shape(bg_img) # type: tuple bg_img_resized = cv2.resize(bg_img, (int(bg_shp[0] / 2), int(bg_shp[1] / 2)), interpolation=cv2.INTER_AREA) pcv.params.debug = None fgmask = pcv.background_subtraction(background_image=bg_img_resized, foreground_image=fg_img) assert np.sum(fgmask) > 0 def test_plantcv_spatial_clustering_dbscan(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_spatial_clustering_dbscan") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = "print" _ = pcv.spatial_clustering(img, algorithm="DBSCAN", min_cluster_size=10, max_distance=None) pcv.params.debug = "plot" spmask = pcv.spatial_clustering(img, algorithm="DBSCAN", min_cluster_size=10, max_distance=None) assert len(spmask[1]) == 2 def test_plantcv_spatial_clustering_optics(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_spatial_clustering_optics") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = None spmask = pcv.spatial_clustering(img, algorithm="OPTICS", min_cluster_size=100, max_distance=5000) assert len(spmask[1]) == 2 def test_plantcv_spatial_clustering_badinput(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = None with pytest.raises(NameError): _ = pcv.spatial_clustering(img, algorithm="Hydra", min_cluster_size=5, max_distance=100) # ############################## # Tests for the learn subpackage # ############################## def test_plantcv_learn_naive_bayes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_learn_naive_bayes") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") maskdir = os.path.join(cache_dir, "masks") if not os.path.exists(imgdir): os.mkdir(imgdir) if not os.path.exists(maskdir): os.mkdir(maskdir) # Copy and image and mask to the image/mask directories shutil.copyfile(os.path.join(TEST_DATA, TEST_VIS_SMALL), os.path.join(imgdir, "image.png")) shutil.copyfile(os.path.join(TEST_DATA, TEST_MASK_SMALL), os.path.join(maskdir, "image.png")) # Run the naive Bayes training module outfile = os.path.join(cache_dir, "naive_bayes_pdfs.txt") plantcv.learn.naive_bayes(imgdir=imgdir, maskdir=maskdir, outfile=outfile, mkplots=True) assert os.path.exists(outfile) def test_plantcv_learn_naive_bayes_multiclass(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_learn_naive_bayes_multiclass") os.mkdir(cache_dir) # Run the naive Bayes multiclass training module outfile = os.path.join(cache_dir, "naive_bayes_multiclass_pdfs.txt") plantcv.learn.naive_bayes_multiclass(samples_file=os.path.join(TEST_DATA, TEST_SAMPLED_RGB_POINTS), outfile=outfile, mkplots=True) assert os.path.exists(outfile) # #################################### # Tests for the morphology subpackage # #################################### def test_plantcv_morphology_segment_curvature(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_curvature") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) pcv.outputs.clear() _ = pcv.morphology.segment_curvature(segmented_img, seg_objects, label="prefix") pcv.params.debug = "plot" pcv.outputs.clear() _ = pcv.morphology.segment_curvature(segmented_img, seg_objects) assert len(pcv.outputs.observations['default']['segment_curvature']['value']) == 22 def test_plantcv_morphology_check_cycles(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_branches") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "print" _ = pcv.morphology.check_cycles(mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.check_cycles(mask) pcv.params.debug = None _ = pcv.morphology.check_cycles(mask) assert pcv.outputs.observations['default']['num_cycles']['value'] == 1 def test_plantcv_morphology_find_branch_pts(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_branches") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.find_branch_pts(skel_img=skeleton, mask=mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.find_branch_pts(skel_img=skeleton) pcv.params.debug = None branches = pcv.morphology.find_branch_pts(skel_img=skeleton) assert np.sum(branches) == 9435 def test_plantcv_morphology_find_tips(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_tips") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.find_tips(skel_img=skeleton, mask=mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.find_tips(skel_img=skeleton) pcv.params.debug = None tips = pcv.morphology.find_tips(skel_img=skeleton) assert np.sum(tips) == 9435 def test_plantcv_morphology_prune(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.prune(skel_img=skeleton, size=1) pcv.params.debug = "plot" _ = pcv.morphology.prune(skel_img=skeleton, size=1, mask=skeleton) pcv.params.debug = None pruned_img, _, _ = pcv.morphology.prune(skel_img=skeleton, size=3) assert np.sum(pruned_img) < np.sum(skeleton) def test_plantcv_morphology_prune_size0(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned_img, _, _ = pcv.morphology.prune(skel_img=skeleton, size=0) assert np.sum(pruned_img) == np.sum(skeleton) def test_plantcv_morphology_iterative_prune(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned_img = pcv.morphology._iterative_prune(skel_img=skeleton, size=3) assert np.sum(pruned_img) < np.sum(skeleton) def test_plantcv_morphology_segment_skeleton(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_skeleton") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.segment_skeleton(skel_img=skeleton, mask=mask) pcv.params.debug = "plot" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) assert len(segment_objects) == 73 def test_plantcv_morphology_fill_segments(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_fill_segments") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_dic = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS)) obj = [] for key, val in obj_dic.items(): obj.append(val) pcv.params.debug = "print" _ = pcv.morphology.fill_segments(mask, obj, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.fill_segments(mask, obj) tests = [pcv.outputs.observations['default']['segment_area']['value'][42] == 5529, pcv.outputs.observations['default']['segment_area']['value'][20] == 5057, pcv.outputs.observations['default']['segment_area']['value'][49] == 3323] assert all(tests) def test_plantcv_morphology_fill_segments_with_stem(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_fill_segments") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_dic = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS)) obj = [] for key, val in obj_dic.items(): obj.append(val) stem_obj = obj[0:4] pcv.params.debug = "print" _ = pcv.morphology.fill_segments(mask, obj, stem_obj) num_objects = len(pcv.outputs.observations['default']['leaf_area']['value']) assert num_objects == 70 def test_plantcv_morphology_segment_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_angles") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_angle(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_angle']['value']) == 22 def test_plantcv_morphology_segment_angle_overflow(): # Clear previous outputs pcv.outputs.clear() # Don't prune, would usually give overflow error without extra if statement in segment_angle # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_angles") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_angle(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_angle']['value']) == 73 def test_plantcv_morphology_segment_euclidean_length(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_eu_length") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_eu_length']['value']) == 22 def test_plantcv_morphology_segment_euclidean_length_bad_input(): mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skel = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = None segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skel) with pytest.raises(RuntimeError): _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects) def test_plantcv_morphology_segment_path_length(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_path_length") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_path_length(segmented_img, segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_path_length(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_path_length']['value']) == 22 def test_plantcv_morphology_skeletonize(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_skeletonize") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) input_skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = "plot" _ = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = None skeleton = pcv.morphology.skeletonize(mask=mask) arr = np.array(skeleton == input_skeleton) assert arr.all() def test_plantcv_morphology_segment_sort(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_sort") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) pcv.params.debug = "print" _ = pcv.morphology.segment_sort(skeleton, seg_objects, mask=skeleton) pcv.params.debug = "plot" leaf_obj, stem_obj = pcv.morphology.segment_sort(skeleton, seg_objects) assert len(leaf_obj) == 36 def test_plantcv_morphology_segment_tangent_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_tangent_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) objects = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS), encoding="latin1") objs = [objects[arr_n] for arr_n in objects] pcv.params.debug = "print" _ = pcv.morphology.segment_tangent_angle(skel, objs, 2, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_tangent_angle(skel, objs, 2) assert len(pcv.outputs.observations['default']['segment_tangent_angle']['value']) == 73 def test_plantcv_morphology_segment_id(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_tangent_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) objects = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS), encoding="latin1") objs = [objects[arr_n] for arr_n in objects] pcv.params.debug = "print" _ = pcv.morphology.segment_id(skel, objs) pcv.params.debug = "plot" _, labeled_img = pcv.morphology.segment_id(skel, objs, mask=skel) assert np.sum(labeled_img) > np.sum(skel) def test_plantcv_morphology_segment_insertion_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=6) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) pcv.params.debug = "plot" _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 3, label="prefix") pcv.params.debug = "print" _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 10) assert pcv.outputs.observations['default']['segment_insertion_angle']['value'][:6] == ['NA', 'NA', 'NA', 24.956918822001636, 50.7313343343401, 56.427712102130734] def test_plantcv_morphology_segment_insertion_angle_bad_stem(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=5) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) stem_obj = [leaf_obj[0], leaf_obj[10]] with pytest.raises(RuntimeError): _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 10) def test_plantcv_morphology_segment_combine(): skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "plot" # Test with list of IDs input _, new_objects = pcv.morphology.segment_combine([0, 1], seg_objects, skel) assert len(new_objects) + 1 == len(seg_objects) def test_plantcv_morphology_segment_combine_lists(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "print" # Test with list of lists input _, new_objects = pcv.morphology.segment_combine([[0, 1, 2], [3, 4]], seg_objects, skel) assert len(new_objects) + 3 == len(seg_objects) def test_plantcv_morphology_segment_combine_bad_input(): skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _, new_objects = pcv.morphology.segment_combine([0.5, 1.5], seg_objects, skel) def test_plantcv_morphology_analyze_stem(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_analyze_stem") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, segmented_img, _ = pcv.morphology.prune(skel_img=skeleton, size=6) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) pcv.params.debug = "plot" _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj, label="prefix") pcv.params.debug = "print" _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj) assert pcv.outputs.observations['default']['stem_angle']['value'] == -12.531776428222656 def test_plantcv_morphology_analyze_stem_bad_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=5) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) _, _ = pcv.morphology.segment_sort(pruned, seg_objects) # print([stem_obj[3]]) # stem_obj = [stem_obj[3]] stem_obj = [[[[1116, 1728]], [[1116, 1]]]] _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj) assert pcv.outputs.observations['default']['stem_angle']['value'] == 22877334.0 # ######################################## # Tests for the hyperspectral subpackage # ######################################## def test_plantcv_hyperspectral_read_data_default(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_read_data_default") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) _ = pcv.hyperspectral.read_data(filename=spectral_filename) pcv.params.debug = "print" array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_no_default_bands(): pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_NO_DEFAULT) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_approx_pseudorgb(): pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_APPROX_PSEUDO) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_spectral_index_ndvi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ndvi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndvi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ndvi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndvi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ndvi(hsi=index_array, distance=20) def test_plantcv_spectral_index_gdvi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_gdvi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.gdvi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_gdvi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.gdvi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.gdvi(hsi=index_array, distance=20) def test_plantcv_spectral_index_savi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_savi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_savi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.savi(hsi=index_array, distance=20) def test_plantcv_spectral_index_pri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pri(hsi=index_array, distance=20) def test_plantcv_spectral_index_ari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ari(hsi=index_array, distance=20) def test_plantcv_spectral_index_ci_rededge(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ci_rededge") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ci_rededge(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ci_rededge_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ci_rededge(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ci_rededge(hsi=index_array, distance=20) def test_plantcv_spectral_index_cri550(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_cri550") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri550(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_cri550_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri550(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.cri550(hsi=index_array, distance=20) def test_plantcv_spectral_index_cri700(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_cri700") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri700(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_cri700_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri700(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.cri700(hsi=index_array, distance=20) def test_plantcv_spectral_index_egi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_egi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) index_array = pcv.spectral_index.egi(rgb_img=rgb_img) assert np.shape(index_array.array_data) == (2056, 2454) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_evi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_evi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.evi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_evi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.evi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.evi(hsi=index_array, distance=20) def test_plantcv_spectral_index_mari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mari(hsi=index_array, distance=20) def test_plantcv_spectral_index_mcari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mcari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mcari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mcari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mcari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mcari(hsi=index_array, distance=20) def test_plantcv_spectral_index_mtci(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mtci") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mtci(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mtci_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mtci(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mtci(hsi=index_array, distance=20) def test_plantcv_spectral_index_ndre(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ndre") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndre(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ndre_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndre(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ndre(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_chla(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_chla") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chla(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_chla_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chla(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_chla(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_chlb(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_chlb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chlb(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_chlb_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chlb(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_chlb(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_car(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_car") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_car(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_car_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_car(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_car(hsi=index_array, distance=20) def test_plantcv_spectral_index_psri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psri(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_chla(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_chla") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chla(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_chla_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chla(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_chla(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_chlb(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_chlb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chlb(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_chlb_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chlb(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_chlb(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_car(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_car") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_car(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_car_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_car(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_car(hsi=index_array, distance=20) def test_plantcv_spectral_index_rgri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_rgri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rgri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_rgri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rgri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.rgri(hsi=index_array, distance=20) def test_plantcv_spectral_index_rvsi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_rvsi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rvsi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_rvsi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rvsi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.rvsi(hsi=index_array, distance=20) def test_plantcv_spectral_index_sipi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_sipi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sipi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_sipi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sipi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.sipi(hsi=index_array, distance=20) def test_plantcv_spectral_index_sr(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_sr") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sr(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_sr_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sr(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.sr(hsi=index_array, distance=20) def test_plantcv_spectral_index_vari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_vari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_vari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.vari(hsi=index_array, distance=20) def test_plantcv_spectral_index_vi_green(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_vi_green") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vi_green(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_vi_green_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vi_green(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.vi_green(hsi=index_array, distance=20) def test_plantcv_spectral_index_wi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_wi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.wi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_wi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.wi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.wi(hsi=index_array, distance=20) def test_plantcv_hyperspectral_analyze_spectral(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_spectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) mask = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) # pcv.params.debug = "plot" # _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True) # pcv.params.debug = "print" # _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True, label="prefix") pcv.params.debug = None _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True, label="prefix") assert len(pcv.outputs.observations['prefix']['spectral_frequencies']['value']) == 978 def test_plantcv_hyperspectral_analyze_index(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 # pcv.params.debug = "print" # pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) # pcv.params.debug = "plot" # pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_set_range(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_set_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True, min_bin=0, max_bin=1) assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_auto_range(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_auto_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, min_bin="auto", max_bin="auto") assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_outside_range_warning(): import io from contextlib import redirect_stdout cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_auto_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 f = io.StringIO() with redirect_stdout(f): pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, min_bin=.5, max_bin=.55, label="i") out = f.getvalue() # assert os.listdir(cache_dir) is 0 assert out[0:10] == 'WARNING!!!' def test_plantcv_hyperspectral_analyze_index_bad_input_mask(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK)) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img) def test_plantcv_hyperspectral_analyze_index_bad_input_index(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) index_array.array_data = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK)) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img) def test_plantcv_hyperspectral_analyze_index_bad_input_datatype(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=array_data, mask=mask_img) def test_plantcv_hyperspectral_calibrate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_calibrate") os.mkdir(cache_dir) raw = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) white = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_WHITE) dark = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DARK) raw = pcv.hyperspectral.read_data(filename=raw) white = pcv.hyperspectral.read_data(filename=white) dark = pcv.hyperspectral.read_data(filename=dark) pcv.params.debug = "plot" _ = pcv.hyperspectral.calibrate(raw_data=raw, white_reference=white, dark_reference=dark) pcv.params.debug = "print" calibrated = pcv.hyperspectral.calibrate(raw_data=raw, white_reference=white, dark_reference=dark) assert np.shape(calibrated.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_extract_wavelength(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_extract_wavelength") os.mkdir(cache_dir) spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) spectral = pcv.hyperspectral.read_data(filename=spectral) pcv.params.debug = "plot" _ = pcv.hyperspectral.extract_wavelength(spectral_data=spectral, wavelength=500) pcv.params.debug = "print" new = pcv.hyperspectral.extract_wavelength(spectral_data=spectral, wavelength=500) assert np.shape(new.array_data) == (1, 1600) def test_plantcv_hyperspectral_avg_reflectance(): spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) spectral = pcv.hyperspectral.read_data(filename=spectral) avg_reflect = pcv.hyperspectral._avg_reflectance(spectral, mask=mask_img) assert len(avg_reflect) == 978 def test_plantcv_hyperspectral_inverse_covariance(): spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) spectral = pcv.hyperspectral.read_data(filename=spectral) inv_cov = pcv.hyperspectral._inverse_covariance(spectral) assert np.shape(inv_cov) == (978, 978) # ######################################## # Tests for the photosynthesis subpackage # ######################################## def test_plantcv_photosynthesis_read_dat(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_photosynthesis_read_dat") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = "plot" fluor_filename = os.path.join(FLUOR_TEST_DATA, FLUOR_IMG) _, _, _ = pcv.photosynthesis.read_cropreporter(filename=fluor_filename) pcv.params.debug = "print" fdark, fmin, fmax = pcv.photosynthesis.read_cropreporter(filename=fluor_filename) assert np.sum(fmin) < np.sum(fmax) def test_plantcv_photosynthesis_analyze_fvfm(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # filename = os.path.join(cache_dir, 'plantcv_fvfm_hist.png') # Read in test data fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" fvfm_images = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) assert len(fvfm_images) != 0 def test_plantcv_photosynthesis_analyze_fvfm_print_analysis_results(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) result_file = os.path.join(cache_dir, "results.txt") pcv.print_results(result_file) pcv.outputs.clear() assert os.path.exists(result_file) def test_plantcv_photosynthesis_analyze_fvfm_bad_fdark(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark + 3000, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) check = pcv.outputs.observations['default']['fdark_passed_qc']['value'] is False assert check def test_plantcv_photosynthesis_analyze_fvfm_bad_input(): fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) with pytest.raises(RuntimeError): _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) # ############################## # Tests for the roi subpackage # ############################## def test_plantcv_roi_from_binary_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_from_binary_image") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Create a binary image bin_img = np.zeros(np.shape(rgb_img)[0:2], dtype=np.uint8) cv2.rectangle(bin_img, (100, 100), (1000, 1000), 255, -1) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 3600, 1, 2) def test_plantcv_roi_from_binary_image_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Create a binary image bin_img = np.zeros(np.shape(gray_img)[0:2], dtype=np.uint8) cv2.rectangle(bin_img, (100, 100), (1000, 1000), 255, -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.from_binary_image(bin_img=bin_img, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 3600, 1, 2) def test_plantcv_roi_from_binary_image_bad_binary_input(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Binary input is required but an RGB input is provided with pytest.raises(RuntimeError): _, _ = pcv.roi.from_binary_image(bin_img=rgb_img, img=rgb_img) def test_plantcv_roi_rectangle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_rectangle") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 4, 1, 2) def test_plantcv_roi_rectangle_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 4, 1, 2) def test_plantcv_roi_rectangle_out_of_frame(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The resulting rectangle needs to be within the dimensions of the image with pytest.raises(RuntimeError): _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=3000, img=rgb_img) def test_plantcv_roi_circle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_circle") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.circle(x=100, y=100, r=50, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.circle(x=100, y=100, r=50, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.circle(x=200, y=225, r=75, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 424, 1, 2) def test_plantcv_roi_circle_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.circle(x=200, y=225, r=75, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 424, 1, 2) def test_plantcv_roi_circle_out_of_frame(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The resulting rectangle needs to be within the dimensions of the image with pytest.raises(RuntimeError): _, _ = pcv.roi.circle(x=50, y=225, r=75, img=rgb_img) def test_plantcv_roi_ellipse(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_ellipse") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 360, 1, 2) def test_plantcv_roi_ellipse_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.ellipse(x=200, y=200, r1=75, r2=50, angle=0, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 360, 1, 2) def test_plantcv_roi_ellipse_out_of_frame(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The resulting rectangle needs to be within the dimensions of the image with pytest.raises(RuntimeError): _, _ = pcv.roi.ellipse(x=50, y=225, r1=75, r2=50, angle=0, img=rgb_img) def test_plantcv_roi_multi(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.roi.multi(rgb_img, coord=[(25, 120), (100, 100)], radius=20) # Test with debug = None pcv.params.debug = None rois1, roi_hierarchy1 = pcv.roi.multi(rgb_img, coord=(25, 120), radius=20, spacing=(10, 10), nrows=3, ncols=6) # Assert the contours has 18 ROIs assert len(rois1) == 18 def test_plantcv_roi_multi_bad_input(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # The user must input a list of custom coordinates OR inputs to make a grid. Not both with pytest.raises(RuntimeError): _, _ = pcv.roi.multi(rgb_img, coord=[(25, 120), (100, 100)], radius=20, spacing=(10, 10), nrows=3, ncols=6) def test_plantcv_roi_multi_bad_input_oob(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # nputs to make a grid make ROIs that go off the screen with pytest.raises(RuntimeError): _, _ = pcv.roi.multi(rgb_img, coord=(25000, 12000), radius=2, spacing=(1, 1), nrows=3, ncols=6) def test_plantcv_roi_multi_bad_input_oob_list(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # All vertices in the list of centers must draw roi's that are inside the image with pytest.raises(RuntimeError): _, _ = pcv.roi.multi(rgb_img, coord=[(25000, 25000), (25000, 12000), (12000, 12000)], radius=20) def test_plantcv_roi_custom(): # Read in test RGB image img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = "plot" cnt, hier = pcv.roi.custom(img=img, vertices=[[226, 1], [313, 184], [240, 202], [220, 229], [161, 171]]) assert np.shape(cnt) == (1, 5, 2) def test_plantcv_roi_custom_bad_input(): # Read in test RGB image img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # ROI goes out of bounds with pytest.raises(RuntimeError): _ = pcv.roi.custom(img=img, vertices=[[226, -1], [3130, 1848], [2404, 2029], [2205, 2298], [1617, 1761]]) # ############################## # Tests for the transform subpackage # ############################## def test_plantcv_transform_get_color_matrix(): # load in target_matrix matrix_file = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") matrix_compare = matrix_file['arr_0'] # Read in rgb_img and gray-scale mask rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) # The result should be a len(np.unique(mask))-1 x 4 matrix headers, matrix = pcv.transform.get_color_matrix(rgb_img, mask) assert np.array_equal(matrix, matrix_compare) def test_plantcv_transform_get_color_matrix_img(): # Read in two gray-scale images rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) # The input for rgb_img needs to be an RGB image with pytest.raises(RuntimeError): _, _ = pcv.transform.get_color_matrix(rgb_img, mask) def test_plantcv_transform_get_color_matrix_mask(): # Read in two gray-scale images rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK)) # The input for rgb_img needs to be an RGB image with pytest.raises(RuntimeError): _, _ = pcv.transform.get_color_matrix(rgb_img, mask) def test_plantcv_transform_get_matrix_m(): # load in comparison matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_compare_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_compare_b = matrix_b_file['arr_0'] # read in matrices t_matrix_file = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") t_matrix = t_matrix_file['arr_0'] s_matrix_file = np.load(os.path.join(TEST_DATA, TEST_SOURCE1_MATRIX), encoding="latin1") s_matrix = s_matrix_file['arr_0'] # apply matrices to function matrix_a, matrix_m, matrix_b = pcv.transform.get_matrix_m(t_matrix, s_matrix) matrix_compare_m = np.rint(matrix_compare_m) matrix_compare_b = np.rint(matrix_compare_b) matrix_m = np.rint(matrix_m) matrix_b = np.rint(matrix_b) assert np.array_equal(matrix_m, matrix_compare_m) and np.array_equal(matrix_b, matrix_compare_b) def test_plantcv_transform_get_matrix_m_unequal_data(): # load in comparison matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M2), encoding="latin1") matrix_compare_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B2), encoding="latin1") matrix_compare_b = matrix_b_file['arr_0'] # read in matrices t_matrix_file = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") t_matrix = t_matrix_file['arr_0'] s_matrix_file = np.load(os.path.join(TEST_DATA, TEST_SOURCE2_MATRIX), encoding="latin1") s_matrix = s_matrix_file['arr_0'] # apply matrices to function matrix_a, matrix_m, matrix_b = pcv.transform.get_matrix_m(t_matrix, s_matrix) matrix_compare_m = np.rint(matrix_compare_m) matrix_compare_b = np.rint(matrix_compare_b) matrix_m = np.rint(matrix_m) matrix_b = np.rint(matrix_b) assert np.array_equal(matrix_m, matrix_compare_m) and np.array_equal(matrix_b, matrix_compare_b) def test_plantcv_transform_calc_transformation_matrix(): # load in comparison matrices matrix_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_compare = matrix_file['arr_0'] # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] # apply to function _, matrix_t = pcv.transform.calc_transformation_matrix(matrix_m, matrix_b) matrix_t = np.rint(matrix_t) matrix_compare = np.rint(matrix_compare) assert np.array_equal(matrix_t, matrix_compare) def test_plantcv_transform_calc_transformation_matrix_b_incorrect(): # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] matrix_b = np.asmatrix(matrix_b, float) with pytest.raises(RuntimeError): _, _ = pcv.transform.calc_transformation_matrix(matrix_m, matrix_b.T) def test_plantcv_transform_calc_transformation_matrix_not_mult(): # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] with pytest.raises(RuntimeError): _, _ = pcv.transform.calc_transformation_matrix(matrix_m, matrix_b[:3]) def test_plantcv_transform_calc_transformation_matrix_not_mat(): # read in matrices matrix_m_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_M1), encoding="latin1") matrix_m = matrix_m_file['arr_0'] matrix_b_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_b = matrix_b_file['arr_0'] with pytest.raises(RuntimeError): _, _ = pcv.transform.calc_transformation_matrix(matrix_m[:, 1], matrix_b[:, 1]) def test_plantcv_transform_apply_transformation(): # load corrected image to compare corrected_compare = cv2.imread(os.path.join(TEST_DATA, TEST_S1_CORRECTED)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") # read in matrices matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # read in images target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = imgdir _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) # Test with debug = None pcv.params.debug = None corrected_img = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) # assert source and corrected have same shape assert np.array_equal(corrected_img, corrected_compare) def test_plantcv_transform_apply_transformation_incorrect_t(): # read in matrices matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_MATRIX_B1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # read in images target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) with pytest.raises(RuntimeError): _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) def test_plantcv_transform_apply_transformation_incorrect_img(): # read in matrices matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # read in images target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) with pytest.raises(RuntimeError): _ = pcv.transform.apply_transformation_matrix(source_img, target_img, matrix_t) def test_plantcv_transform_save_matrix(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # read in matrix matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # .npz filename filename = os.path.join(cache_dir, 'test.npz') pcv.transform.save_matrix(matrix_t, filename) assert os.path.exists(filename) is True def test_plantcv_transform_save_matrix_incorrect_filename(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # read in matrix matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # .npz filename filename = "test" with pytest.raises(RuntimeError): pcv.transform.save_matrix(matrix_t, filename) def test_plantcv_transform_load_matrix(): # read in matrix_t matrix_t_file = np.load(os.path.join(TEST_DATA, TEST_TRANSFORM1), encoding="latin1") matrix_t = matrix_t_file['arr_0'] # test load function with matrix_t matrix_t_loaded = pcv.transform.load_matrix(os.path.join(TEST_DATA, TEST_TRANSFORM1)) assert np.array_equal(matrix_t, matrix_t_loaded) def test_plantcv_transform_correct_color(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform") os.mkdir(cache_dir) # load corrected image to compare corrected_compare = cv2.imread(os.path.join(TEST_DATA, TEST_S1_CORRECTED)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_correct_color") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") matdir = os.path.join(cache_dir, "saved_matrices") # Read in target, source, and gray-scale mask target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) output_path = os.path.join(matdir) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = imgdir _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, cache_dir) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # Test with debug = None pcv.params.debug = None _, _, matrix_t, corrected_img = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # assert source and corrected have same shape assert all([np.array_equal(corrected_img, corrected_compare), os.path.exists(os.path.join(output_path, "target_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "source_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "transformation_matrix.npz")) is True]) def test_plantcv_transform_correct_color_output_dne(): # load corrected image to compare corrected_compare = cv2.imread(os.path.join(TEST_DATA, TEST_S1_CORRECTED)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_correct_color_output_dne") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") # Read in target, source, and gray-scale mask target_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) source_img = cv2.imread(os.path.join(TEST_DATA, TEST_SOURCE1_IMG)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_MASK), -1) output_path = os.path.join(cache_dir, "saved_matrices_1") # output_directory that does not currently exist # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = imgdir _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _, _ = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # Test with debug = None pcv.params.debug = None _, _, matrix_t, corrected_img = pcv.transform.correct_color(target_img, mask, source_img, mask, output_path) # assert source and corrected have same shape assert all([np.array_equal(corrected_img, corrected_compare), os.path.exists(os.path.join(output_path, "target_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "source_matrix.npz")) is True, os.path.exists(os.path.join(output_path, "transformation_matrix.npz")) is True]) def test_plantcv_transform_create_color_card_mask(): # Load target image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_create_color_card_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=(166, 166), spacing=(21, 21), nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=(166, 166), spacing=(21, 21), nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = None pcv.params.debug = None mask = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=(166, 166), spacing=(21, 21), nrows=6, ncols=4, exclude=[20, 0]) assert all([i == j] for i, j in zip(np.unique(mask), np.array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220], dtype=np.uint8))) def test_plantcv_transform_quick_color_check(): # Load target image t_matrix = np.load(os.path.join(TEST_DATA, TEST_TARGET_MATRIX), encoding="latin1") target_matrix = t_matrix['arr_0'] s_matrix = np.load(os.path.join(TEST_DATA, TEST_SOURCE1_MATRIX), encoding="latin1") source_matrix = s_matrix['arr_0'] # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_quick_color_check") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" pcv.transform.quick_color_check(target_matrix, source_matrix, num_chips=22) # Test with debug = "plot" pcv.params.debug = "plot" pcv.transform.quick_color_check(target_matrix, source_matrix, num_chips=22) # Test with debug = None pcv.params.debug = None pcv.transform.quick_color_check(target_matrix, source_matrix, num_chips=22) assert os.path.exists(os.path.join(cache_dir, "color_quick_check.png")) def test_plantcv_transform_find_color_card(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir df, start, space = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='adaptgauss', blurry=False, threshvalue=90) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=start, spacing=space, nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=start, spacing=space, nrows=6, ncols=4, exclude=[20, 0]) # Test with debug = None pcv.params.debug = None mask = pcv.transform.create_color_card_mask(rgb_img=rgb_img, radius=6, start_coord=start, spacing=space, nrows=6, ncols=4, exclude=[20, 0]) assert all([i == j] for i, j in zip(np.unique(mask), np.array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220], dtype=np.uint8))) def test_plantcv_transform_find_color_card_optional_parameters(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with threshold ='normal' df1, start1, space1 = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='normal', blurry=True, background='light', threshvalue=90, label="prefix") assert pcv.outputs.observations["prefix"]["color_chip_size"]["value"] > 15000 def test_plantcv_transform_find_color_card_otsu(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card_otsu") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with threshold ='normal' df1, start1, space1 = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='otsu', blurry=True, background='light', threshvalue=90, label="prefix") assert pcv.outputs.observations["prefix"]["color_chip_size"]["value"] > 15000 def test_plantcv_transform_find_color_card_optional_size_parameters(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, record_chip_size="mean") assert pcv.outputs.observations["default"]["color_chip_size"]["value"] > 15000 def test_plantcv_transform_find_color_card_optional_size_parameters_none(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_COLOR_CARD)) # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_find_color_card") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, record_chip_size=None) assert pcv.outputs.observations.get("default") is None def test_plantcv_transform_find_color_card_bad_record_chip_size(): # Clear previous outputs pcv.outputs.clear() # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, record_chip_size='averageeeed') assert pcv.outputs.observations["default"]["color_chip_size"]["value"] is None def test_plantcv_transform_find_color_card_bad_thresh_input(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) with pytest.raises(RuntimeError): pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, threshold_type='gaussian') def test_plantcv_transform_find_color_card_bad_background_input(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) with pytest.raises(RuntimeError): pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img, background='lite') def test_plantcv_transform_find_color_card_bad_colorcard(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG_WITH_HEXAGON)) with pytest.raises(RuntimeError): pcv.params.debug = None _, _, _ = pcv.transform.find_color_card(rgb_img=rgb_img) def test_plantcv_transform_rescale(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_rescale") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.rescale(gray_img=gray_img, min_value=0, max_value=100) pcv.params.debug = "plot" rescaled_img = pcv.transform.rescale(gray_img=gray_img, min_value=0, max_value=100) assert max(np.unique(rescaled_img)) == 100 def test_plantcv_transform_rescale_bad_input(): # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) with pytest.raises(RuntimeError): _ = pcv.transform.rescale(gray_img=rgb_img) def test_plantcv_transform_resize(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_trancform_resize") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) size = (100, 100) # Test with debug "print" pcv.params.debug = "print" _ = pcv.transform.resize(img=gray_img, size=size, interpolation="auto") # Test with debug "plot" pcv.params.debug = "plot" resized_img = pcv.transform.resize(img=gray_img, size=size, interpolation="auto") assert resized_img.shape == size def test_plantcv_transform_resize_unsupported_method(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) with pytest.raises(RuntimeError): _ = pcv.transform.resize(img=gray_img, size=(100, 100), interpolation="mymethod") def test_plantcv_transform_resize_crop(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) size = (20, 20) resized_im = pcv.transform.resize(img=gray_img, size=size, interpolation=None) assert resized_im.shape == size def test_plantcv_transform_resize_pad(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) size = (100, 100) resized_im = pcv.transform.resize(img=gray_img, size=size, interpolation=None) assert resized_im.shape == size def test_plantcv_transform_resize_pad_crop_color(): color_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL)) size = (100, 100) resized_im = pcv.transform.resize(img=color_img, size=size, interpolation=None) assert resized_im.shape == (size[1], size[0], 3) def test_plantcv_transform_resize_factor(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_trancform_resize_factor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) # Resizing factors factor_x = 0.5 factor_y = 0.2 # Test with debug "print" pcv.params.debug = "print" _ = pcv.transform.resize_factor(img=gray_img, factors=(factor_x, factor_y), interpolation="auto") # Test with debug "plot" pcv.params.debug = "plot" resized_img = pcv.transform.resize_factor(img=gray_img, factors=(factor_x, factor_y), interpolation="auto") output_size = resized_img.shape expected_size = (int(gray_img.shape[0] * factor_y), int(gray_img.shape[1] * factor_x)) assert output_size == expected_size def test_plantcv_transform_resize_factor_bad_input(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) with pytest.raises(RuntimeError): _ = pcv.transform.resize_factor(img=gray_img, factors=(0, 2), interpolation="auto") def test_plantcv_transform_nonuniform_illumination_rgb(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_nonuniform_illumination") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Load rgb image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_TARGET_IMG)) pcv.params.debug = "plot" _ = pcv.transform.nonuniform_illumination(img=rgb_img, ksize=11) pcv.params.debug = "print" corrected = pcv.transform.nonuniform_illumination(img=rgb_img, ksize=11) assert np.mean(corrected) < np.mean(rgb_img) def test_plantcv_transform_nonuniform_illumination_gray(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_transform_nonuniform_illumination") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Load rgb image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "plot" _ = pcv.transform.nonuniform_illumination(img=gray_img, ksize=11) pcv.params.debug = "print" corrected = pcv.transform.nonuniform_illumination(img=gray_img, ksize=11) assert np.shape(corrected) == np.shape(gray_img) # ############################## # Tests for the threshold subpackage # ############################## def test_plantcv_threshold_binary(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_binary") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with object type = dark pcv.params.debug = None _ = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type="dark") # Test with debug = "print" pcv.params.debug = "print" _ = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type="light") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type="light") # Test with debug = None pcv.params.debug = None binary_img = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type="light") # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_binary_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.binary(gray_img=gray_img, threshold=25, max_value=255, object_type="lite") def test_plantcv_threshold_gaussian(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_gaussian") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with object type = dark pcv.params.debug = None _ = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type="dark") # Test with debug = "print" pcv.params.debug = "print" _ = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type="light") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type="light") # Test with debug = None pcv.params.debug = None binary_img = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type="light") # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_gaussian_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.gaussian(gray_img=gray_img, max_value=255, object_type="lite") def test_plantcv_threshold_mean(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_mean") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with object type = dark pcv.params.debug = None _ = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type="dark") # Test with debug = "print" pcv.params.debug = "print" _ = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type="light") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type="light") # Test with debug = None pcv.params.debug = None binary_img = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type="light") # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_mean_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.mean(gray_img=gray_img, max_value=255, object_type="lite") def test_plantcv_threshold_otsu(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_otsu") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GREENMAG), -1) # Test with object set to light pcv.params.debug = None _ = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type="light") # Test with debug = "print" pcv.params.debug = "print" _ = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type='dark') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type='dark') # Test with debug = None pcv.params.debug = None binary_img = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type='dark') # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_otsu_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.otsu(gray_img=gray_img, max_value=255, object_type="lite") def test_plantcv_threshold_custom_range(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = 'print' # Test channel='gray' _, _ = pcv.threshold.custom_range(img, lower_thresh=[0], upper_thresh=[255], channel='gray') _, _ = pcv.threshold.custom_range(gray_img, lower_thresh=[0], upper_thresh=[255], channel='gray') # Test channel='HSV' _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0, 0], upper_thresh=[255, 255, 255], channel='HSV') # Test channel='LAB' _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0, 0], upper_thresh=[255, 255, 255], channel='LAB') pcv.params.debug = 'plot' # Test channel='RGB' mask, binary_img = pcv.threshold.custom_range(img, lower_thresh=[0, 0, 0], upper_thresh=[255, 255, 255], channel='RGB') # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_custom_range_bad_input_hsv(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2, 2, 2, 2], channel='HSV') def test_plantcv_threshold_custom_range_bad_input_rgb(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2, 2, 2, 2], channel='RGB') def test_plantcv_threshold_custom_range_bad_input_lab(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2, 2, 2], channel='LAB') def test_plantcv_threshold_custom_range_bad_input_gray(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0, 0], upper_thresh=[2], channel='gray') def test_plantcv_threshold_custom_range_bad_input_channel(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _, _ = pcv.threshold.custom_range(img, lower_thresh=[0], upper_thresh=[2], channel='CMYK') def test_plantcv_threshold_saturation(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_saturation") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.threshold.saturation(rgb_img=rgb_img, threshold=254, channel="all") # Test with debug = "plot" pcv.params.debug = "plot" thresh = pcv.threshold.saturation(rgb_img=rgb_img, threshold=254, channel="any") assert np.sum(thresh) == 920050455 and len(np.unique(thresh)) == 2 def test_plantcv_threshold_saturation_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_saturation_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _ = pcv.threshold.saturation(rgb_img=rgb_img, threshold=254, channel="red") def test_plantcv_threshold_triangle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_triangle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="dark", xstep=10) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="light", xstep=10) # Test with debug = None pcv.params.debug = None binary_img = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="light", xstep=10) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_threshold_triangle_incorrect_object_type(): gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.threshold.triangle(gray_img=gray_img, max_value=255, object_type="lite", xstep=10) def test_plantcv_threshold_texture(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_threshold_texture") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) binary_img = pcv.threshold.texture(gray_img, ksize=6, threshold=7, offset=3, texture_method='dissimilarity', borders='nearest', max_value=255) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(binary_img), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(binary_img), [0, 255])): assert 1 else: assert 0 else: assert 0 # ################################### # Tests for the visualize subpackage # ################################### def test_plantcv_visualize_auto_threshold_methods_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_threshold_methods") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _ = pcv.visualize.auto_threshold_methods(gray_img=img) def test_plantcv_visualize_auto_threshold_methods(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_threshold_methods") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "print" _ = pcv.visualize.auto_threshold_methods(gray_img=img) pcv.params.debug = "plot" labeled_imgs = pcv.visualize.auto_threshold_methods(gray_img=img) assert len(labeled_imgs) == 5 and np.shape(labeled_imgs[0])[0] == np.shape(img)[0] def test_plantcv_visualize_pseudocolor(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] filename = os.path.join(cache_dir, 'plantcv_pseudo_image.png') # Test with debug = "print" pcv.params.debug = "print" _ = pcv.visualize.pseudocolor(gray_img=img, mask=None) _ = pcv.visualize.pseudocolor(gray_img=img, mask=None) pimg = pcv.visualize.pseudocolor(gray_img=img, mask=mask, min_value=10, max_value=200) pcv.print_image(pimg, filename) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="image") _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="image", title="customized title") _ = pcv.visualize.pseudocolor(gray_img=img, mask=None) _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="black", obj=obj_contour, axes=False, colorbar=False) _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="image", obj=obj_contour, obj_padding=15) _ = pcv.visualize.pseudocolor(gray_img=img, mask=None, axes=False, colorbar=False) # Test with debug = None pcv.params.debug = None _ = pcv.visualize.pseudocolor(gray_img=img, mask=None) pseudo_img = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="white") # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(pseudo_img), TEST_BINARY_DIM)): assert 1 else: assert 0 def test_plantcv_visualize_pseudocolor_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): _ = pcv.visualize.pseudocolor(gray_img=img) def test_plantcv_visualize_pseudocolor_bad_background(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor_bad_background") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, background="pink") def test_plantcv_visualize_pseudocolor_bad_padding(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor_bad_background") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] with pytest.raises(RuntimeError): _ = pcv.visualize.pseudocolor(gray_img=img, mask=mask, obj=obj_contour, obj_padding="pink") def test_plantcv_visualize_colorize_masks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_naive_bayes_classifier") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=[(0, 0, 0), (1, 1, 1)]) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=[(0, 0, 0), (1, 1, 1)]) # Test with debug = None pcv.params.debug = None colored_img = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=['red', 'blue']) # Assert that the output image has the dimensions of the input image assert not np.average(colored_img) == 0 def test_plantcv_visualize_colorize_masks_bad_input_empty(): with pytest.raises(RuntimeError): _ = pcv.visualize.colorize_masks(masks=[], colors=[]) def test_plantcv_visualize_colorize_masks_bad_input_mismatch_number(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) with pytest.raises(RuntimeError): _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=['red', 'green', 'blue']) def test_plantcv_visualize_colorize_masks_bad_color_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) with pytest.raises(RuntimeError): _ = pcv.visualize.colorize_masks(masks=[mask['plant'], mask['background']], colors=['red', 1.123]) @pytest.mark.parametrize("bins,lb,ub,title", [[200, 0, 255, "Include Title"], [100, None, None, None]]) def test_plantcv_visualize_histogram(bins, lb, ub, title): # Test with debug = None pcv.params.debug = None # Read test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) fig_hist, hist_df = pcv.visualize.histogram(img=img, mask=mask, bins=bins, lower_bound=lb, upper_bound=ub, title=title, hist_data=True) assert all([isinstance(fig_hist, ggplot), isinstance(hist_df, pd.core.frame.DataFrame)]) def test_plantcv_visualize_histogram_no_mask(): # Test with debug = None pcv.params.debug = None # Read test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) fig_hist = pcv.visualize.histogram(img=img, mask=None) assert isinstance(fig_hist, ggplot) def test_plantcv_visualize_histogram_rgb_img(): # Test with debug = None pcv.params.debug = None # Test RGB input image img_rgb = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) fig_hist = pcv.visualize.histogram(img=img_rgb) assert isinstance(fig_hist, ggplot) def test_plantcv_visualize_histogram_multispectral_img(): # Test with debug = None pcv.params.debug = None # Test multi-spectral image img_rgb = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_multi = np.concatenate((img_rgb, img_rgb), axis=2) fig_hist = pcv.visualize.histogram(img=img_multi) assert isinstance(fig_hist, ggplot) def test_plantcv_visualize_histogram_no_img(): with pytest.raises(RuntimeError): _ = pcv.visualize.histogram(img=None) def test_plantcv_visualize_histogram_array(): # Read test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.visualize.histogram(img=img[0, :]) def test_plantcv_visualize_clustered_contours(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_hist") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_BACKGROUND), -1) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_CONTOUR), encoding="latin1") hierarchy = np.load(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_HIERARCHY), encoding="latin1") cluster_i = np.load(os.path.join(TEST_DATA, TEST_INPUT_VISUALIZE_CLUSTERS), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierarchy['arr_0'] cluster = [cluster_i[arr_n] for arr_n in cluster_i] # Test in plot mode pcv.params.debug = "plot" # Reset the saved color scale (can be saved between tests) pcv.params.saved_color_scale = None _ = pcv.visualize.clustered_contours(img=img1, grouped_contour_indices=cluster, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, bounding=False) # Test in print mode pcv.params.debug = "print" # Reset the saved color scale (can be saved between tests) pcv.params.saved_color_scale = None cluster_img = pcv.visualize.clustered_contours(img=img, grouped_contour_indices=cluster, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=2, ncol=2, bounding=True) assert np.sum(cluster_img) > np.sum(img) def test_plantcv_visualize_colorspaces(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_hist") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = "plot" vis_img_small = pcv.visualize.colorspaces(rgb_img=img, original_img=False) pcv.params.debug = "print" vis_img = pcv.visualize.colorspaces(rgb_img=img) assert np.shape(vis_img)[1] > (np.shape(img)[1]) and np.shape(vis_img_small)[1] > (np.shape(img)[1]) def test_plantcv_visualize_colorspaces_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_hist") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.visualize.colorspaces(rgb_img=img) def test_plantcv_visualize_overlay_two_imgs(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) pcv.params.debug = None out_img = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2) sample_pt1 = img1[1445, 1154] sample_pt2 = img2[1445, 1154] sample_pt3 = out_img[1445, 1154] pred_rgb = (sample_pt1 * 0.5) + (sample_pt2 * 0.5) pred_rgb = pred_rgb.astype(np.uint8) assert np.array_equal(sample_pt3, pred_rgb) def test_plantcv_visualize_overlay_two_imgs_grayscale(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs_grayscale") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) out_img = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2) sample_pt1 = np.array([255, 255, 255], dtype=np.uint8) sample_pt2 = np.array([255, 255, 255], dtype=np.uint8) sample_pt3 = out_img[1445, 1154] pred_rgb = (sample_pt1 * 0.5) + (sample_pt2 * 0.5) pred_rgb = pred_rgb.astype(np.uint8) assert np.array_equal(sample_pt3, pred_rgb) def test_plantcv_visualize_overlay_two_imgs_bad_alpha(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs_bad_alpha") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) alpha = -1 with pytest.raises(RuntimeError): _ = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2, alpha=alpha) def test_plantcv_visualize_overlay_two_imgs_size_mismatch(): pcv.params.debug = None cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_visualize_overlay_two_imgs_size_mismatch") os.mkdir(cache_dir) img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED)) with pytest.raises(RuntimeError): _ = pcv.visualize.overlay_two_imgs(img1=img1, img2=img2) # ############################## # Tests for the utils subpackage # ############################## def test_plantcv_utils_json2csv(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_json2csv") os.mkdir(cache_dir) plantcv.utils.json2csv(json_file=os.path.join(TEST_DATA, "merged_output.json"), csv_file=os.path.join(cache_dir, "exports")) assert all([os.path.exists(os.path.join(cache_dir, "exports-single-value-traits.csv")), os.path.exists(os.path.join(cache_dir, "exports-multi-value-traits.csv"))]) def test_plantcv_utils_json2csv_no_json(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_json2csv_no_json") os.mkdir(cache_dir) with pytest.raises(IOError): plantcv.utils.json2csv(json_file=os.path.join(TEST_DATA, "not_a_file.json"), csv_file=os.path.join(cache_dir, "exports")) def test_plantcv_utils_json2csv_bad_json(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_json2csv_bad_json") os.mkdir(cache_dir) with pytest.raises(ValueError): plantcv.utils.json2csv(json_file=os.path.join(TEST_DATA, "incorrect_json_data.txt"), csv_file=os.path.join(cache_dir, "exports")) def test_plantcv_utils_sample_images_snapshot(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) snapshot_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) img_outdir = os.path.join(cache_dir, "snapshot") plantcv.utils.sample_images(source_path=snapshot_dir, dest_path=img_outdir, num=3) assert os.path.exists(os.path.join(cache_dir, "snapshot")) def test_plantcv_utils_sample_images_flatdir(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) flat_dir = os.path.join(TEST_DATA) img_outdir = os.path.join(cache_dir, "images") plantcv.utils.sample_images(source_path=flat_dir, dest_path=img_outdir, num=30) random_images = os.listdir(img_outdir) assert all([len(random_images) == 30, len(np.unique(random_images)) == 30]) def test_plantcv_utils_sample_images_bad_source(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) fake_dir = os.path.join(TEST_DATA, "snapshot") img_outdir = os.path.join(cache_dir, "images") with pytest.raises(IOError): plantcv.utils.sample_images(source_path=fake_dir, dest_path=img_outdir, num=3) def test_plantcv_utils_sample_images_bad_flat_num(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) flat_dir = os.path.join(TEST_DATA) img_outdir = os.path.join(cache_dir, "images") with pytest.raises(RuntimeError): plantcv.utils.sample_images(source_path=flat_dir, dest_path=img_outdir, num=300) def test_plantcv_utils_sample_images_bad_phenofront_num(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_sample_images") os.mkdir(cache_dir) snapshot_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) img_outdir = os.path.join(cache_dir, "images") with pytest.raises(RuntimeError): plantcv.utils.sample_images(source_path=snapshot_dir, dest_path=img_outdir, num=300) def test_plantcv_utils_tabulate_bayes_classes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_tabulate_bayes_classes") os.mkdir(cache_dir) outfile = os.path.join(cache_dir, "rgb_table.txt") plantcv.utils.tabulate_bayes_classes(input_file=os.path.join(TEST_DATA, PIXEL_VALUES), output_file=outfile) table = pd.read_csv(outfile, sep="\t") assert table.shape == (228, 2) def test_plantcv_utils_tabulate_bayes_classes_missing_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_utils_tabulate_bayes_classes_missing_input") os.mkdir(cache_dir) outfile = os.path.join(cache_dir, "rgb_table.txt") with pytest.raises(IOError): plantcv.utils.tabulate_bayes_classes(input_file=os.path.join(PIXEL_VALUES), output_file=outfile) # ############################## # Clean up test files # ############################## def teardown_function(): shutil.rmtree(TEST_TMPDIR) ```
{ "source": "josephorourke/topp", "score": 2 }
#### File: josephorourke/topp/TOPP.py ```python from __future__ import nested_scopes import fileinput, glob, os, re, shutil, string, sys, time, warnings import distutils.spawn from UserDict import UserDict from UserList import UserList import remove_url_spaces home_url = "http://cs.smith.edu/~orourke/TOPP/" public_html = "/Users/orourke/public_html/TOPP/" front_page_links_to_problems = 1 warning_file = open ("warnings", "w+") #latex2html = "/Users/edemaine/Packages/bin/latex2html" #if not os.path.exists (latex2html): latex2html = "latex2html" pandoc = 'pandoc' #latex = 'latex' latex = 'pdflatex' bibtex = 'bibtex' ## Netlify if os.environ.get('DEPLOY_URL'): latex = './netlify-latex.sh' bibtex = './netlify-latex.sh bibtex' pandoc = './netlify-pandoc.sh' ############################################################################## def main (): problems = read_problems (glob.glob ("Problems/P.[0-9][0-9][0-9][0-9][0-9][0-9]")) process_categories (problems) if not os.path.isdir('tex'): os.mkdir('tex') make_problems_latex (problems, "tex/problems.tex") make_numerical_problem_list (problems, "tex/problems_by_number.tex") make_categorized_problem_list (problems, "tex/categorized_problem_list.tex") make_category_list (problems, "tex/category_list.tex") os.system ("%s master" % latex) find_cites (problems, "master.aux") run ("%s master" % bibtex, "Warning", "Error", "couldn't open", "Repeated", "^ : ", "^I", "You're") remove_url_spaces.replace_file ("master.bbl") bibitems = grab_bibitems ("master.bbl") make_problems_latex (problems, "tex/problems.tex", "tex", bibitems) os.system ("%s master" % latex) run ("%s master" % latex, "(Citation|Reference).*undefined") #os.system ("dvips -o master.ps master.dvi") #os.system ("ps2pdf -dMaxSubsetPct=100 -dCompatibilityLevel=1.2 -dSubsetFonts=true -dEmbedAllFonts=true master.ps") #run ("cp master.tex Welcome.tex") #run ("cp master.aux Welcome.aux") header = '\\section*{\\href{./}{The Open Problems Project}}\n\n' #footer = "The Open Problems Project - %s" % time.strftime ("%B %d, %Y") #os.system ("%s -noreuse -split 4 -toc_depth 3 -link 0 -image_type gif -no_math -html_version 3.2,math,latin1,unicode -local_icons -accent_images=normalsize -nofootnode -address '%s' -init_file dot_latex2html-init -custom_titles Welcome.tex" % (latex2html, footer)) ## -no_navigation if not os.path.isdir('html'): os.mkdir('html') for probnum in problems.problem_numbers (): problem = problems[probnum] prefix = header if probnum+1 in problems: prefix += '\\textbf{Next:} \\href{P%d.html}{%s}\n\n' % (probnum+1, problems[probnum+1].text_with_number_focus()) if probnum-1 in problems: prefix += '\\textbf{Previous:} \\href{P%d.html}{%s}\n\n' % (probnum-1, problems[probnum-1].text_with_number_focus()) run_pandoc('tex/P%s.tex' % probnum, 'html/P%s.html' % probnum, 'TOPP: ' + problem.text_with_number_focus(), prefix) run_pandoc('tex/problems_by_number.tex', 'html/problems_by_number.html', 'TOPP: Numerical List of All Problems', header) indexbib = open('tex/index_bib.tex', 'w') indexbib.write(bibitems['_begin']) indexbib.write(bibitems['mo-cgc42-01']) indexbib.write(bibitems['_end']) indexbib.close() run ("cat author.tex intro.tex tex/categorized_problem_list.tex tex/index_bib.tex acknowledgments.tex >tex/index.tex") run_pandoc('tex/index.tex', 'html/index.html', 'TOPP: The Open Problems Project', '\\section*{The Open Problems Project}') # + ''' #<h2>edited by <a href="http://erikdemaine.org/"><NAME></a>, <a href="http://www.ams.sunysb.edu/~jsbm/">Joseph~S.~B.~Mitchell</a>, <a href=" #''') #run ("cp master.ps master.pdf Welcome/") run ("cp master.pdf html/") run ("cp Problems/problem.template html/") run ("ln -f -s index.html html/Welcome.html") # backward compatibility run ("chmod -R a+rX html") #run ("chgrp -R topp Welcome && chmod -R g+rwX Welcome") if len (sys.argv) > 1: print "Copying files into public_html..." #run ("cp -d -p Welcome/* %s" % public_html) copy_files ("html/*", public_html) if warning_file.tell () > 0: print "*** Warnings from TOPP.py are in the file 'warnings'. Please inspect. ***" ############################################################################## class Problem (UserDict): def __init__ (self): UserDict.__init__ (self) self.fields = [] ## Ordered list of fields def cleanup_fields (self): ## Remove extreme blank lines. for key in self.keys (): if type (self[key]) == type ([]): while self[key] and self[key][0] == "": del self[key][0] while self[key] and self[key][-1] == "": del self[key][-1] def text_with_number_focus (self): return "Problem %d: %s" % (self['Number'], self['Problem']) def text_without_number_focus (self): return "%s (Problem~%d)" % (self['Problem'], self['Number']) class Problems (UserDict): def category_list (self): ## Sort keys (categories) without regard to case. catlist = self.categories.keys () catlist.sort (lambda x, y: cmp (x.lower (), y.lower ())) return catlist def problem_numbers (self): """Returns a sorted list of category numbers.""" probnums = self.keys () probnums.sort () return probnums class Categories (UserList): def __init__ (self, s): return UserList.__init__ (self, map (string.strip, string.join (s, " ").replace (",", ";").split (";"))) def __str__ (self): return string.join (self, "; ") ############################################################################## class TOPPWarning (UserWarning): pass ## Copy all warnings to warning_file. def showwarning (*args, **dict): formatted = apply (warnings.formatwarning, args, dict) sys.stderr.write (formatted) warning_file.write (formatted) warnings.showwarning = showwarning def run (command, *keep): """Run the given command with os.system but with stderr copied to `warning_file`. If extra options are specified beyond the command, filter to include only lines with the specified regular expressions. """ stdin, stdouterr = os.popen4 (command, bufsize = 1) stdin.close () first = 1 if not keep: keep = [""] while 1: line = stdouterr.readline () if not line: break sys.stdout.write (line) for keeper in keep: if re.search (keeper, line): if first: warning_file.write ("--- Messages from running: %s\n" % command) first = 0 warning_file.write (line) break stdouterr.close () def copy_files (src_spec, dest_dir): """Copy multiple files specified by glob pattern to target directory. Attempts to preserve mode and modification times, and produces one unique warning if this happens. Doesn't preserve links of any kind, but that seems safest in the context of LaTeX2HTML's hard links. """ if not os.path.isdir (dest_dir): warnings.warn ("%r is not a directory; failing to copy %r there" % (dest_dir, src_spec), TOPPWarning) return for src in glob.glob (src_spec): dest = os.path.join (dest_dir, os.path.basename (src)) try: shutil.copyfile (src, dest) ## like shutil.copy but without preserving mode or anything except (IOError, OSError), e: warnings.warn ("Failed to copy %r to %r: %s" % (src, dest, e), TOPPWarning) else: try: copygroup (src, dest) shutil.copymode (src, dest) shutil.copystat (src, dest) except (IOError, OSError), e: warnings.warn ("Unable to preserve some modes and/or modification " "times while copying %r to %r" % (src_spec, dest_dir), TOPPWarning) def copygroup (src, dest): src_stat = os.stat (src) dest_stat = os.stat (dest) os.chown (dest, dest_stat.st_uid, src_stat.st_gid) ############################################################################## problem_sep_re = r"^-+\s*$" problem_sep_rec = re.compile (problem_sep_re) field_re = r"^\* ([^:]*):\s*(.*)$" field_rec = re.compile (field_re) none_re = r"\<none\>" none_rec = re.compile (none_re) def read_problems (files): """Read one or more problems in TOPP problem format. Reads file(s) in problem format and outputs a dictionary of Problem's, indexed by problem number and secondarily indexed by field. A problem-file consists of one or more problem records, separated by a line of all dashes. Each problem consists of a number of fields. Files no longer have to end with a line of all dashes to separate from the next file. Field begin: ^* field-name: field-value For certain fields (Number, Problem), the value is expected to be on that line. For others, it may continue for an arbitrary number of lines. To suppress output for a field, use field-value of <none>. For Categories field, categories are separated by ;'s (or ,'s). fname : field name fvalue : value of field on the field-name line pname : Problem name pnumber : Problem number Note each problem is given a LaTeX label "Problem.N" where N is the problem number. So there can be inter-problem references using \ref{}. """ def end_problem (): problem.cleanup_fields () ## Put problem in numeric index, assuming it has a number. if problem.has_key ('Number'): problems[problem['Number']] = problem def warn_where (): return "%s:%d" % (input.filename (), input.filelineno ()) problems = Problems () for file in files: problem = Problem () fname = None input = fileinput.input (file) for line in input: line = line.rstrip () ## Trim off trailing whitespace, including newline if problem_sep_rec.match (line): end_problem () problem = Problem () fname = None elif field_rec.match (line): ## Beginning of new field match = field_rec.match (line) fname = match.group (1) fvalue = match.group (2) ## Note: leading spaces removed by pattern match. if none_rec.match (fvalue): pass ## Ignore empty field. elif fname == 'Number': ## Numeric single-line field problem[fname] = int (fvalue) elif fname == 'Problem': ## Single-line field problem[fname] = fvalue else: if problem.has_key (fname): warnings.warn ("%s: Field %s occurs a second time in the same problem; second occurrence overwriting first" % (warn_where (), fname), TOPPWarning) else: problem.fields.append (fname) problem[fname] = [fvalue] else: if problem.has_key (fname): if type (problem[fname]) == type ([]): problem[fname].append (line) elif line: ## Nonblank lines after one-liner are ignored. warnings.warn ("%s: Field %s extends to multiple lines; only first line kept" % (warn_where (), fname), TOPPWarning) else: warnings.warn ("%s: Stray line outside of any field" % warn_where (), TOPPWarning) end_problem () return problems ############################################################################## def process_categories (problems): """Process 'Categories' field of all problems. Splits 'Categories' field according to separations by semicolons.""" problems.categories = {} for problem in problems.values (): if not problem.has_key ('Categories'): ##continue warnings.warn ("Problem %d has no categories specified; listing under Miscellaneous" % problem['Number'], TOPPWarning) problem['Categories'] = 'Miscellaneous' problem['Categories'] = Categories (problem['Categories']) for category in problem['Categories']: if problems.categories.has_key (category): problems.categories[category].append (problem) else: problems.categories[category] = [problem] ############################################################################## auto_disclaimer = "% DO NOT EDIT THIS FILE. Auto-generated by TOPP.py.\n" def make_problems_latex (problems, outname, outdir = None, bibitems = None): """Converts set of problems into a LaTeX file.""" outfile = open (outname, "w") outfile.write (auto_disclaimer) if bibitems: ## Disable final \bibliography outfile.write ("%begin{latexonly}\n") outfile.write ("\\onebigbibfalse\n") outfile.write ("%end{latexonly}\n") outfile.write (bibitems['_commands']) for probnum in problems.problem_numbers (): if outdir: probfile = open (os.path.join(outdir, 'P%s.tex' % probnum), 'w') def write(s): outfile.write(s) if outdir: probfile.write(s) problem = problems[probnum] text = problem.text_with_number_focus () #\\section*{\\htmladdnormallink{The Open Problem Project:}{%s}\\\\ # \\label{Problem.%d}%s} write (""" \\problem{%d} \\section*{\\label{Problem.%d}%s} \\begin{description} """ % (probnum, probnum, text)) for field in problem.fields: if type (problem[field]) == type ([]): write ("\\item[%s] %s" % (field, string.join (problem[field] + [""], "\n"))) else: write ("\\item[%s] %s" % (field, str (problem[field]))) write (""" \\end{description} """) if bibitems and problem.cites: write (bibitems['_begin']) for tag in problem.cites: if bibitems.has_key (tag): write (bibitems[tag]) else: warnings.warn ("Problem %d cites unseen reference %s" % (probnum, tag), TOPPWarning) write (bibitems['_end']) if outdir: probfile.close() outfile.close () ############################################################################## def make_numerical_problem_list (problems, outname): """Creates LaTeX file with list of all problems by number.""" outfile = open (outname, "w") outfile.write (auto_disclaimer + """ \\section{\\label{problems by number}Numerical List of All Problems} %%\\refstepcounter{section} The following lists all problems sorted by number. These numbers can be used for citations and correspond to the order in which the problems were entered. \\begin{itemize} """) for probnum in problems.problem_numbers (): problem = problems[probnum] text = "Problem %d: %s" % (problem['Number'], problem['Problem']) outfile.write (" \\item \\htmlref{%s}{Problem.%d}\n" % (text, problem['Number'])) outfile.write (""" \\end{itemize} """) outfile.close () ############################################################################## def make_categorized_problem_list (problems, outname): """Creates LaTeX file with list of categories and corresponding problems.""" outfile = open (outname, "w") if front_page_links_to_problems: section = "\\subsection" else: section = "\\section" outfile.write (auto_disclaimer + """ %s{\\label{categorized problem list}Categorized List of All Problems} Below, each category lists the problems that are classified under that category. Note that each problem may be classified under several categories. \\begin{description} """ % section) catnum = 0 for category in problems.category_list (): catnum += 1 outfile.write (""" \\item[\label{Category.%d}%s:] %%begin{latexonly} ~ %%end{latexonly} """ % (catnum, category)) outfile.write ("\\begin{itemize}\n") problems_in_cat = problems.categories[category] problems_in_cat.sort (lambda x, y: cmp (x['Problem'], y['Problem'])) for problem in problems_in_cat: text = problem.text_without_number_focus () outfile.write (" \\item \\htmlref{%s}{Problem.%d}\n" % (text, problem['Number'])) #outfile.write (" \\item %s\n" % (problem.text_without_number_focus ())) outfile.write ("\\end{itemize}\n") outfile.write (""" \\end{description} """) outfile.close () ############################################################################## def make_category_list (problems, outname): """Creates LaTeX file with list of categories.""" outfile = open (outname, "w") if front_page_links_to_problems: outfile.close (); return outfile.write (auto_disclaimer + """ \\html{% \\subsection{\\label{category list}Categories} \\begin{htmlonly} To begin navigating through the open problems, select a category of interest. Alternatively, you may view \\end{htmlonly} %begin{latexonly} The following lists the categories covered by the open problems. See also %end{latexonly} \\hyperref{a list of all problems sorted by category} {Section } { for a list of all problems sorted by category} {categorized problem list} or \\hyperref{a list of all problems sorted numerically} {Section } { for a list of all problems sorted numerically} {problems by number}. \\begin{itemize} """) catnum = 0 for category in problems.category_list (): catnum += 1 outfile.write (" \\item \htmlref{%s}{Category.%d}\n" % (category, catnum)) outfile.write (""" \\end{itemize} }% \\html """) outfile.close () ############################################################################## beginbiblio_re = r"^\\begin\{thebibliography\}" beginbiblio_rec = re.compile (beginbiblio_re) newcommand_re = r"^\\newcommand" newcommand_rec = re.compile (newcommand_re) endbiblio_re = r"^\\end\{thebibliography\}" endbiblio_rec = re.compile (endbiblio_re) bibitem_re = r"^\\bibitem.*\{([^\}]*)\}" bibitem_rec = re.compile (bibitem_re) def grab_bibitems (bblfile): """Finds \\bibitem statements in .bbl file. Returns a dictionary of strings indexed by the \\cite key. Each string is all the lines of the bibitem. There is also a special key '_begin' which contains the \\begin{thebibliography} line. Ditto for '_end'. An additional entry '_commands' should be included just once.""" bibitems = {'_begin': "", '_commands': "", '_end': ""} key = None for line in fileinput.input (bblfile): ## Store lines for later use. if beginbiblio_rec.match (line): bibitems['_begin'] += line elif newcommand_rec.match (line): bibitems['_commands'] += line elif endbiblio_rec.match (line): bibitems['_end'] += line break elif bibitem_rec.match (line): match = bibitem_rec.match (line) key = match.group (1) bibitems[key] = line elif key is not None: bibitems[key] += line return bibitems ############################################################################## problem_marker_re = r"^% BeginProblem\{(\d+)\}" problem_marker_rec = re.compile (problem_marker_re) citation_re = r"^\\citation\{([^\}]*)\}" citation_rec = re.compile (citation_re) def find_cites (problems, auxfile): """Finds which problems cite which bibliographic references. Finds all \\citation commands in the given .aux file which has already been augmented by '% BeginProblem{123}' comments. Sets the 'cites' entry of each problem to the list of references cited by that problem.""" problem = None for line in fileinput.input (auxfile): if problem_marker_rec.match (line): match = problem_marker_rec.match (line) problem = problems[int (match.group (1))] problem.cites = [] elif citation_rec.match (line): match = citation_rec.match (line) if problem is not None: problem.cites.append (match.group (1)) else: warnings.warn ("Citation %s used before a problem began; potentially dangerous" % match.group (1), TOPPWarning) for problem in problems.values (): ## Sort and remove duplicate citations problem.cites.sort () for i in range (len (problem.cites) - 1, 0, -1): if problem.cites[i] == problem.cites[i-1]: del problem.cites[i] ############################################################################## tempfile = 'temp.tex' def run_pandoc(infile, outfile, title, prefix = ''): print 'pandoc %s -> %s' % (infile, outfile) tex = prefix + open(infile, 'r').read() tex = re.sub(r'%begin{latexonly}(?:.|\n)*?%end{latexonly}', '', tex) tex = re.sub(r'\\label\s*{((Problem|Category)\.(\d+)|problems by number|categorized problem list)}', '', tex) tex = re.sub(r'\\author\s*{((?:[^{}]|{[^{}]*})*)}', r'\\subsubsection*{\1}', tex) tex = re.sub(r'\\and\b', ', ', tex) tex = re.sub(r'(Problem[\s~]*|)\\ref\s*{Problem\.(\d+)}', r'\\href{P\2.html}{\1\2}', tex) tex = re.sub(r'\\htmlref\s*{([^{}]*)}\s*{Problem\.(\d+)}', r'\\href{P\2.html}{\1}', tex) tex = re.sub(r'\\htmlref\s*{([^{}]*)}\s*{([^{}]*)}', (lambda match: '\\href{%s}{%s}' % (match.group(2).replace(' ','_').replace('Problem.','P')+'.html', match.group(1))), tex) tex = re.sub(r'\\htmladdnormallink\s*{([^{}]*)}\s*{([^{}]*)}', r'\\href{\2}{\1}', tex) tex = re.sub(r'\\hyperref\s*{([^{}]*)}\s*{([^{}]*)}\s*{([^{}]*)}\s*{([^{}]*)}', (lambda match: '\\href{%s}{%s}' % (match.group(4).replace(' ','_').replace('Problem.','P')+'.html', match.group(1))), tex) tex = re.sub(r'\\begin\s*{thebibliography}\s*{[^{}]*}', r''' \\section*{Bibliography} \\begin{description} ''', tex) tex = re.sub(r'\\end\s*{thebibliography}', r'\\end{description}', tex) tex = re.sub(r'\\newblock\b', r'', tex) tex = re.sub(r'{\\etalchar{\+}}', r'+', tex) tex = re.sub(r"{\\'e}", r'é', tex) tex = re.sub(r"{\\'o}", r'ó', tex) tex = re.sub(r'{\\"o}', r'ö', tex) tex = re.sub(r'{\\"u}', r'ü', tex) tex = re.sub(r'{Her}', r'Her', tex) cites = {} def bibitem(match): cites[match.group(2)] = match.group(1) return '\item[\label{%s}]' % match.group(1) tex = re.sub(r'\\bibitem\s*\[([^][]*)\]\s*{([^{}]*)}', bibitem, tex) def cite(match): out = [] for part in match.group(2).split(','): part = part.strip() if part in cites: part = cites[part] out.append('\\ref{%s}' % part) if match.group(1): out.append(match.group(1)) return ', '.join(out) tex = re.sub(r'\\cite\s*(?:\[([^][]*)\]\s*)?{([^{}]*)}', cite, tex) def includegraphics(match): #run ("convert figs/%s.pdf html/%s.png" % (match.group(2), match.group(2))) run ("cp figs/%s.png html/%s.png" % (match.group(2), match.group(2))) return match.group(0)[:-1] + '.png}' tex = re.sub(r'\\includegraphics\s*(?:\[([^][]*)\]\s*)?{([^{}]*)}', includegraphics, tex) #print tex temp = open(tempfile, 'w') temp.write(tex) temp.close() os.system ("%s -d pandoc.defaults -i %s -o %s -M title=%s" % (pandoc, tempfile, outfile, repr(title))) os.remove(tempfile) ############################################################################## if __name__ == '__main__': main () ```
{ "source": "josephp27/env2yml", "score": 3 }
#### File: env2yml/E2Yaml/utilities.py ```python import subprocess def ignored_term_in_line(line, ignored_terms): for term in ignored_terms: if term in line: return True return False def process_key(key, preserved_words_dict): key = key.strip().lower() key = replace_separator_in_preserved_words(key, preserved_words_dict) tree = key.split('_') converted_cases = convert_casing(tree, preserved_words_dict) return convert_separator_back(converted_cases) def convert_casing(targets, source): for i, word in enumerate(targets): targets[i] = source.get(word, word) return targets def replace_separator_in_preserved_words(target, preserved_words): for key, val in preserved_words.items(): modified_val = val.replace('_', '|') target = target.replace(val, modified_val) return target def convert_separator_back(targets): for i, word in enumerate(targets): targets[i] = word.replace('|', '_') return targets def convert_key_value_pairs_to_dictionary(keys, value, dictionary): level = dictionary for i in range(len(keys) - 1): node = keys[i] if node not in level: level[node] = {} level = level[node] level[keys[-1]] = value return dictionary def write_to_clipboard(output): process = subprocess.Popen( 'pbcopy', env={'LANG': 'en_US.UTF-8'}, stdin=subprocess.PIPE) process.communicate(output.encode('utf-8')) def read_from_clipboard(): return subprocess.check_output( 'pbpaste', env={'LANG': 'en_US.UTF-8'}).decode('utf-8') ```
{ "source": "josephp27/Zeno", "score": 3 }
#### File: Zeno/examples/impl.py ```python import yaml from ZenoMapper.Configuration import ConfigParser, Configuration from ZenoMapper.Types import String, Boolean, Integer, List from ZenoMapper.zeno import Zeno class MyConfig(ConfigParser): """ loading your own config is done via subclassing the ConfigParser class and implementing the get_config function. """ cache = None @staticmethod def get_config(): # each time an object is instantiated, this is called, so let's cache the results to increase performance if not MyConfig.cache: with open("data.yml", 'r') as stream: MyConfig.cache = yaml.safe_load(stream) return MyConfig.cache class Spring(Configuration): """ loads in from data.yml. accessing nested sections can be done via nested classes """ class Data: class MongoDb: database = String() encryption = Boolean() # conversion automatically happens when specifying the type encryptionKey = String() password = String() replicaSet = String() second = Integer() myList = List() class MyServer(Configuration): host = String() port = Integer() class SuperNested(Configuration): """Specifying section""" __section__ = 'Spring.Data.MongoDb' database = String() encryption = Boolean() encryptionKey = String() password = String() replicaSet = String() class Nested: key = Integer() print(Spring().Data.myList) # ['first', 'second', 'third'] print(Spring().Data.MongoDb.encryption is True) # True print(MyServer().host) # my.server.com print(SuperNested().database) # TESTDB print(SuperNested().Nested.key) # True # this method is used if specifying a class is not ideal for the user zeno = Zeno() print(zeno.Spring.Data.MongoDb.database) # TESTDB # if the constructor is specified, it denotes how to search withing the yml file starting # in the section mongodb withing the data section, within the spring section # in this case it will be all these member variables: database encryption encryptionKey password replicaSet zeno_2 = Zeno('Spring.Data.MongoDb') print(zeno_2.database) # TESTDB ``` #### File: Zeno/test/test_immutability.py ```python from unittest import TestCase from ZenoMapper.zeno import Zeno from test import SuperNested class TestImmutable(TestCase): def test_cannot_set_item(self): with self.assertRaises(AttributeError): SuperNested()['database'] = 1 def test_cannot_set_attriute(self): with self.assertRaises(AttributeError): SuperNested().database = 1 def test_cannot_set_item_zeno(self): with self.assertRaises(AttributeError): Zeno()['Spring'] = 1 def test_cannot_set_attriute_zeno(self): with self.assertRaises(AttributeError): Zeno().Spring = 1 ``` #### File: Zeno/test/test_types.py ```python from unittest import TestCase from ZenoMapper import Integer, List, Boolean, String class TestInteger(TestCase): def test_convert_converts_integer(self): actual = Integer().convert(183) self.assertEqual(actual, 183) def test_convert_converts_string(self): actual = Integer().convert("183") self.assertEqual(actual, 183) class TestList(TestCase): def test_convert_converts_list(self): actual = List().convert([]) self.assertEqual(actual, []) def test_convert_converts_empty_string(self): actual = List().convert('') self.assertEqual(actual, []) def test_convert_converts_empty_list(self): actual = List().convert('[]') self.assertEqual(actual, []) def test_convert_converts_list_with_braces(self): actual = List().convert('[first, second, third]') self.assertEqual(actual, ['first', 'second', 'third']) def test_convert_converts_list_without_braces(self): actual = List().convert('first, second, third') self.assertEqual(actual, ['first', 'second', 'third']) def test_convert_throws_exception_when_not_string_or_list(self): with self.assertRaises(Exception) as context: List().convert(543234) self.assertTrue('543234 is not a string or list' in str(context.exception)) class TestBoolean(TestCase): def test_convert_converts_boolean_True(self): actual = Boolean().convert(True) self.assertEqual(actual, True) def test_convert_converts_boolean_False(self): actual = Boolean().convert(False) self.assertEqual(actual, False) def test_convert_converts_string_yes(self): actual = Boolean().convert('yes') self.assertEqual(actual, True) def test_convert_converts_string_yes_different_case(self): actual = Boolean().convert('YES') self.assertEqual(actual, True) def test_convert_converts_string_true(self): actual = Boolean().convert('true') self.assertEqual(actual, True) def test_convert_converts_string_t(self): actual = Boolean().convert('t') self.assertEqual(actual, True) def test_convert_converts_string_one(self): actual = Boolean().convert('1') self.assertEqual(actual, True) def test_convert_converts_string_false(self): actual = Boolean().convert('false') self.assertEqual(actual, False) def test_convert_converts_string_not_yes_true_t_1(self): actual = Boolean().convert('fjkdsla;') self.assertEqual(actual, False) def test_convert_throws_exception_when_not_string(self): with self.assertRaises(Exception) as context: Boolean().convert(543234) self.assertTrue('Invalid literal for boolean. Not a string: 543234' in str(context.exception)) class TestString(TestCase): def test_converts_string(self): actual = String().convert(183) self.assertEqual(actual, "183") def test_converts_list(self): actual = String().convert([]) self.assertEqual(actual, "[]") ``` #### File: Zeno/test/test_zeno.py ```python from unittest import TestCase from ZenoMapper.zeno import Zeno from test import parsed_yml class TestZeno(TestCase): def test_zeno_is_equal_dictionary_when_nothing_set_in_constructor(self): self.assertEqual(Zeno(), parsed_yml) def test_zeno_is_equal_dictionary(self): self.assertEqual(Zeno('Spring'), parsed_yml['Spring']) def test_zeno_is_equal_dictionary_referencing_first_nested(self): self.assertEqual(Zeno('Spring').Data, parsed_yml['Spring']['Data']) def test_zeno_is_equal_dictionary_referencing_second_nested(self): self.assertEqual(Zeno('Spring.Data.MongoDb'), parsed_yml['Spring']['Data']['MongoDb']) def test_zeno_is_equal_dictionary_referencing_third_nested(self): self.assertEqual(Zeno('Spring.Data.MongoDb').Nested, parsed_yml['Spring']['Data']['MongoDb']['Nested']) def test_zeno_nested_loads_list(self): self.assertEqual(Zeno('Spring').Data.myList, ['first', 'second', 'third']) def test_zeno_nested_loads_second_first_nested(self): self.assertEqual(Zeno('Spring').Data.second, 1) def test_zeno_nested_loads_nested_dot_notation_db(self): self.assertEqual(Zeno('Spring.Data.MongoDb').database, 'TESTDB') def test_zeno_nested_loads_nested_dot_notation_encryption(self): self.assertEqual(Zeno('Spring.Data.MongoDb').encryption, True) def test_zeno_nested_loads_nested_dot_notation_enckey(self): self.assertEqual(Zeno('Spring.Data.MongoDb').encryptionKey, 'FakePassWord!') def test_zeno_nested_loads_nested_dot_notation_pass(self): self.assertEqual(Zeno('Spring.Data.MongoDb').password, '!<PASSWORD>') def test_zeno_nested_loads_nested_dot_notation_replica(self): self.assertEqual(Zeno('Spring.Data.MongoDb').replicaSet, 'FAKE-DB-531') def test_zeno_nested_loads_nested_dot_notation_nested_key(self): self.assertEqual(Zeno('Spring.Data.MongoDb').Nested.key, 5243) ```
{ "source": "JosephP91/obstacle-avoidance", "score": 3 }
#### File: JosephP91/obstacle-avoidance/sift.py ```python import cv2 from time import time from base import FeatureExtractorThread from utils import save_image, debug class SIFTThread(FeatureExtractorThread): def __init__(self, image_path, name, config): super(SIFTThread, self).__init__(image_path, name) self.results = None self.config = config def run(self): sift = cv2.SIFT(self.config.get('points'), self.config.get('levels')) start_time = time() keypoints, descriptors = sift.detectAndCompute(self.image, None) debug("SIFT time: {} seconds.".format(time() - start_time)) self.results = {'img': self.image, 'ext': self.extension, 'kp': keypoints, 'desc': descriptors} image = cv2.drawKeypoints(self.image, keypoints) save_image(image, self.name, self.extension) def join(self, timeout=None): """ Override del metodo join, che effettua dapprima il joining del thread e poi ritorna i risultati della computazione precedente. :param timeout: eventuale timeout di connessione. :return: i risultati della computazione. """ super(SIFTThread, self).join(timeout) return self.results ```
{ "source": "JosephPai/FashionAI-Attributes", "score": 3 }
#### File: JosephPai/FashionAI-Attributes/single_task_predict.py ```python import gc from tqdm import tqdm from keras.layers import * from keras.models import * from keras.applications import * from keras.applications.densenet import preprocess_input from .dataset import * def getX(n, x_path): X = np.zeros((n, image_size, image_size, 3), dtype=np.uint8) for i in tqdm(range(n)): X[i] = padding(x_path[i]) return X def predict(): x_path, y = create_dataset(TEST_PATH % task_name) num_classes = len(y[0]) n = len(x_path) X = getX(n, x_path) cnn_model = DenseNet121(include_top=False, input_shape=(image_size, image_size, 3), weights='imagenet') inputs = Input((image_size, image_size, 3)) x = inputs x = Lambda(preprocess_input, name='preprocessing')(x) x = cnn_model(x) x = GlobalAveragePooling2D()(x) x = Dropout(0.5)(x) x = Dense(num_classes, activation='softmax', name='softmax')(x) model = Model(inputs, x) model.load_weights(model_name) test_np = model.predict(X, batch_size=256) np.savetxt(SAVE_LABEL_PATH, test_np) del model del X gc.collect() if __name__=="__main__": predict() ```
{ "source": "JosephPai/Python3App", "score": 2 }
#### File: Python3App/www/ormTest.py ```python import logging; logging.basicConfig(level=logging.INFO) from models import User import asyncio import orm loop = asyncio.get_event_loop() # 插入 async def insert(): await orm.create_pool(loop,user='root', password='password', db='awesome') u = User(name='Test2', email='<EMAIL>', passwd='<PASSWORD>', image='about:blank') await u.save() r = await User.findALL() print(r) # 删除 async def remove(): await orm.create_pool(loop, user='root', password='password', db='awesome') r = await User.find('001492757565916ec<PASSWORD>eeb<PASSWORD>') await r.remove() print('remove',r) await orm.destory_pool() # 更新 async def update(): await orm.create_pool(loop, user='root', password='password', db='awesome') r = await User.find('00149276202953<PASSWORD>') r.passwd = '<PASSWORD>' await r.update() print('update',r) await orm.destory_pool() async def find(): await orm.create_pool(loop, user='root', password='password', db='awesome') all = await User.findAll() print(all) pk = await User.find('00149276202953187d8d3176f894f1fa82d9caa7d36775a000') print(pk) num = await User.findNumber('email') print(num) await orm.destory_pool() loop.run_until_complete(find()) loop.close() ```
{ "source": "josephpalma/manda-dash", "score": 3 }
#### File: manda-dash/scraper/ports.py ```python import requests import pandas as pd from bs4 import BeautifulSoup import time import numpy as np import random import logging def searates(country, country_abr): response = requests.get(url='https://www.searates.com/maritime/' + country +'.html',) soup = BeautifulSoup(response.content, 'html.parser') # This is going to collect all of the ports in the given country ports = [] for tr in soup.find_all('ul')[1:2]: tds = tr.find_all('li') for x in range ((len(tds))): ports.append("%s" % \ (tds[x].text)) ports_details = [] # This is going to go through each port in the given country and collect all of the current port data on searates.com for x in range(len(ports)): link = ports[x].lower().replace(' ','_') link = link.replace('-','_') link = link.replace('(','') link = link.replace(')','') link = link.replace(',','') link = link.replace("'",'') link = link.replace('/','') response = requests.get(url='https://www.searates.com/port/' + link + '_' + country_abr + '.htm',) soup = BeautifulSoup(response.content, 'html.parser') ports_details.append([ports[x]]) for tr in soup.find_all('table'): tds = tr.find_all('tr') for k in range ((len(tds))-1): ports_details[x].append("%s" % (tds[k+1].text)) time.sleep(random.uniform(.5, 9.9)) #This is to create a random time inbetween visits to the website to avoid being black/stopped col_title = [] # Give col headers to the csv file. if len(ports_details[0]) > 2: for x in range(len(ports_details[0])): x_split = ports_details[0][x].split(':',1) col_title.append(x_split[0]) col_title[0] = ' Port Name' else: for x in range(len(ports_details[-1])): x_split = ports_details[-1][x].split(':',1) col_title.append(x_split[0]) col_title[0] = ' Port Name' # Revomve any redundent information from the csv. for x in range(len(ports_details)): for k in range(len(ports_details[x])): data = ports_details[x][k].split(':',1) if len(data)>1: ports_details[x][k] = data[1] # Creates the data frame for the csv. df = pd.DataFrame(ports_details) df.columns = col_title for x in range(len(df)): name = df[' Port Name'][x].split() if name[0] == 'Port': new_name = ' '.join(name[1:]) df[' Port Name'][x] = new_name df.to_csv(r'../../../../../../scraper/data/ports_vs.csv') def WPI(country, country_abr): # This just pulls the data from the already downloaded PUB150 database that has been exported from an Access Database file to csv file manually saved and exported as WPI_complete.csv file = pd.read_csv(r'../../../../../../scraper/WPI_complete.csv') df = pd.DataFrame(file) df_new = df[df['Country '] == country_abr.upper()] df_new.to_csv(r'../../../../../../scraper/WPI_Data.csv') def combine_data_frames(country, country_abr): file1 = pd.read_csv(r'../../../../../../scraper/data/ports_vs.csv') file2 = pd.read_csv(r'../../../../../../scraper/WPI_Data.csv') df1 = pd.DataFrame(file1) df2 = pd.DataFrame(file2) # Clearing all of the blank rows from the dataframe df2 = df2.dropna(how='all') # Creating a Latitude and longitude field in the PUB150 extracted data. This is because it does not list data in a readable long lat format. lat = [] long = [] df2 = df2.reset_index(drop=True) for x in range(len(df2)): lat.append('-' +str(df2['Field4'][x]) + ' ' + str(df2['Field5'][x]) + ' ' + str(df2['Combo353'][x])) long.append(str(int(df2['Field7'][x])) + ' ' + str(int(df2['Field8'][x])) + ' ' + str(df2['Combo214'][x])) df2['Latitude'] = lat df2['Longitude'] = long # Removing white spaces from the columns df1_col = list(df1.columns) df2_col = list(df2.columns) for x in range(len(df1_col)): df1_col[x] = df1_col[x].strip() for x in range(len(df2_col)): df2_col[x] = df2_col[x].strip() df2.columns = df2_col df1.columns = df1_col # Renaming columns so that they match in both dataframes and can easily be combined df2 = df2.rename(columns = { '1st Port of Entry' : 'First Port of Entry', 'ETA Message' : 'ETA Message Required', 'U.S. Representative' : 'USA Representative', 'Maximum Size Vessel' : 'Maximum Vessel Size', 'Overhead Limits' : 'Overhead Limit', 'Tide.1' : 'Mean Tide', '100 Tons Plus' : '100+ Ton Lifts', '50-100 Tons' : '50-100 Ton Lifts', '25-49 Tons' : '25-49 Ton Lifts', '0-24 Tons' : '0-24 Ton Lifts', 'Fixed' : 'Fixed Cranes', 'Mobile' : 'Mobile Cranes', 'Floating' : 'Floating Cranes', 'Electric Repair' : 'Electrical Repair', 'Nav Equipment' : 'Navigation Equipment', 'Repair' : 'Ship Repairs', 'Railway' : 'Marine Railroad Size', 'Drydock' : 'Drydock Size' }) df1 = df1.rename(columns = { 'Local Assist' : 'Local Assistance', 'Assist' : 'Tug Assistance', 'Salvage' : 'Tug Salvage', 'Deratt Cert' : 'SSCC Cert', 'Radio Tel' : 'Radio Telephone', 'Med Moor' : 'Med. Moor', 'Ice' : 'Ice Moor', 'Beach' : 'Beach Moor', }) for x in range(len(df2['Port Name'])): name = df2['Port Name'][x].split() if name[0] == 'PORT': new_name = ' '.join(name[1:]) df2['Port Name'][x] = new_name # Combining both dataframes into one combine = [df1,df2] result = pd.concat(combine, ignore_index = True, keys= ['Port Name', 'Publication', 'Chart', 'Harbor Size', 'Harbor Type', 'Shelter', 'Tide', 'Swell', 'Other', 'Overhead Limit', 'Channel', 'Anchorage', 'Cargo Pier', 'Oil Terminal', 'Mean Tide', 'Maximum Vessel Size', 'Good Holding Ground', 'Turning Area', 'First Port of Entry', 'USA Representative', 'ETA Message Required', 'Compulsory', 'Available', 'Local Assistance', 'Advisable', 'Tug Salvage', 'Tug Assistance', 'Pratique', 'SSCC Cert', 'Other.1', 'Telephone', 'Telefax', 'Radio', 'Radio Telephone', 'Air', 'Rail', 'Wharves', 'Anchor', 'Med. Moor', 'Beach Moor', 'Ice Moor', 'Medical Facilities', 'Garbage Disposal', 'Degauss', 'Dirty Ballast', 'Fixed Cranes', 'Mobile Cranes', 'Floating Cranes', '100+ Ton Lifts', '50-100 Ton Lifts', '25-49 Ton Lifts', '0-24 Ton Lifts', 'Longshore', 'Electrical', 'Steam', 'Navigation Equipment', 'Electrical Repair', 'Provisions', 'Water', 'Fuel Oil', 'Diesel Oil', 'Deck', 'Engine', 'Ship Repairs', 'Drydock Size', 'Marine Railroad Size', 'Latitude', 'Longitude'], sort=False) # Formating the combined data frame so theat the country abr is filled for all ports along with capitalizing all ports for uniform data result['Country'] = df2['Country'][0] result['Port Name'] = result['Port Name'].str.upper() result = result.drop(columns = ['Combo214', 'Combo353', 'Field4', 'Field5', 'Field7', 'Field8', 'Unnamed: 0', 'Index No.', 'Region', 'Ice', 'Telefax']) # Reordering to move the Country abr to the first column first_column = result.pop('Country') result.insert(0, 'Country', first_column) # returns the csv of the combined data result.to_csv(r'../../../../../../scraper/data/data_before_clean.csv') clean_up(country, country_abr) # remove dupliacte port info def clean_up(country, country_abr): file = pd.read_csv(r'../../../../../../scraper/data/data_before_clean.csv') df = pd.DataFrame(file) df = df.replace(np.nan, '', regex=True) # This section is a very roundabout way to check for duplicates and prevent data loss when merging the data frames. # It could be quicker but I could not figure out a way to make faster functions work without data loss. df = df.replace(r'^\s*$', 'nan', regex=True) data = [[x] for x in df.columns] test = [] for x in range(len(df)): w = 0 k = 0 name = df['Port Name'][x].split() if name[0] == 'PORT': name = name[1] else: name = ' '.join(name) while k < len(df): name2 = df['Port Name'][k].split() if name2[0] == 'PORT': name2 = name2[1] else: name2 = ' '.join(name2) if name == name2 and x != k: if k not in test: test.append(x) set1 = df.iloc[x] set2 = df.iloc[k] for j in range(len(data)): if set1[j] == set2[j]: data[j].append(set1[j]) elif set1[j] == 'nan': data[j].append(set2[j]) elif set2[j] == 'nan': data[j].append(set1[j]) else: data[j].append(set1[j]) break k+=1 if k == len(df): set1 = df.iloc[x] check = set1['Port Name'] check = check.split() if check[-1] == 'HARBOR' or check[-1] == 'HARBOUR': check = ' '.join(check[:-1]) if len(data[2]) > 1: for x in data[2]: if check in x: w = 1 break if w == 1: break for j in range(len(data)): data[j].append(set1[j]) final = pd.DataFrame(data) final = final.transpose() final.columns = df.columns final = final.drop([0]) final = final.replace('nan', '', regex=True) # End of roundabout data loss fix. # This section is cleaning the data into a format that was agreed to for the data reporting. # These drops are data that at the time were said to be unneccesary however, # this program will still scrap the data and drops it here incase at any point in the future it is deemed necessary to have these data points. final = final.drop(['Unnamed: 0', 'UN/LOCODE', '800 Number', 'Max Draft', 'ETA Message Required', 'Other', 'Advisable', 'Local Assistance', 'Other.1', 'SSCC Cert', 'Telephone', 'Radio', 'Air', 'Telegraph', 'Radio Telephone', 'Ice Moor', 'Anchor', 'Beach Moor', 'Electrical Repair', 'Steam', 'Electrical', 'Navigation Equipment', 'Engine', 'Degauss', 'Garbage Disposal', 'Dirty Ballast'], axis = 1) # This section is for cleaning data into a uniform standard done through hard coding along with decoding some of the encoded sections of data. final['Harbor Size'].replace({ # HARBOR SIZE 'L': 'Large', 'M': 'Medium', 'S': 'Small' , 'V': 'Very Small' }, inplace=True) final['Harbor Type'].replace({ # HARBOR TYPE 'RT' : 'River Tide Gate' , 'LC' : 'Lake or Canal' , 'OR' : 'Open Roadstead' , 'TH' : 'Typhoon Harbor' , 'RN' : 'River Natural', 'CN' : 'Coastal Natural', 'CB' : 'Coastal Breakwater', 'CT' : 'Coastal Tide Gate' , 'RB' : 'RIVER BASIN', 'N' : 'NONE' }, inplace=True) final['Shelter'].replace({ # SHELTER AFFORDED 'E' : 'Excellent', 'G' : 'Good', 'F' : 'Fair', 'P' : 'Poor', 'N' : 'None' }, inplace=True) for x in ['Channel','Cargo Pier','Anchorage','Oil Terminal']: final[x].replace({ # FEET 'A' : '76 - over ft' , 'B' : '71 - 75 ft', 'C' : '66 - 70 ft' , 'D' : '61 - 65 ft' , 'E' : '56 - 60 ft' , 'F' : '51 - 55 ft' , 'G' : '46 - 51 ft' , 'H' : '41 - 45 ft' , 'J' : '36 - 40 ft' , 'K' : '31 - 35 ft' , 'L' : '26 - 30 ft' , 'M' : '21 - 25 ft' , 'N' : '16 - 20 ft', 'O' : '11 - 15 ft', 'P' : '6 - 10 ft', 'Q' : '0 - 5 ft' }, inplace=True) final['Maximum Vessel Size'].replace({ # MAXIMUM SIZE VESSEL 'L': 'over 500 feet', #(152.4 meters) 'M': 'less than 500 feet' #(152.4 meters) }, inplace=True) final['Ship Repairs'].replace({ #REPAIRS 'A' : 'Major', #– Extensive overhauling and rebuilding in well equipped shipyards. 'B' : 'Moderate', #– Extensive overhauling and rebuilding that does not require drydocking. Suitable drydocking facilities are usually lacking or inadequate. 'C' : 'Limited', #– Small repair work in independent machine shops or foundries. 'D' : 'Emergency only', 'N' : 'None' }, inplace=True) final['Marine Railroad Size'].replace({ #Railways 'S' : 'Up to 200 tons', 'M' : '201 to 1,000 tons', 'L' : 'over 1,000 tons', ' Small ' : 'Up to 200 tons', ' Medium ' : '201 to 1,000 tons', ' Large ' : 'over 1,000 tons' }, inplace=True) final['Drydock Size'].replace({ # Drydock 'S' : 'Up to 656 ft', #(200 meters) 'M' : '657 ft to 984 ft', #(201 to 300 meters) 'L' : '985 ft and over', #(301 meters and over) ' Small ' : 'Up to 656 ft', #(200 meters) ' Medium ' : '657 ft to 984 ft', #(201 to 300 meters) ' Large ' : '985 ft and over' #(301 meters and over) }, inplace=True) # Leaving this in incase anyone wants to add Max Draft again # final['Max Draft'].replace({ # # FEET # ' a ' : '76 - over ft' , # ' b ' : '71 - 75 ft', # ' c ' : '66 - 70 ft' , # ' d ' : '61 - 65 ft' , # ' e ' : '56 - 60 ft' , # ' f ' : '51 - 55 ft' , # ' g ' : '46 - 51 ft' , # ' h ' : '41 - 45 ft' , # ' j ' : '36 - 40 ft' , # ' k ' : '31 - 35 ft' , # ' l ' : '26 - 30 ft' , # ' m ' : '21 - 25 ft' , # ' n ' : '16 - 20 ft', # ' o ' : '11 - 15 ft', # ' p ' : '6 - 10 ft', # ' q ' : '0 - 5 ft' # }, inplace=True) remove_units = ['Channel','Cargo Pier','Anchorage','Oil Terminal'] for x in remove_units: final[x].replace({ ' 6 - 10 feet 1.8 - 3 meters ' : '6 -10 ft', ' 11 - 15 feet 3.4 - 4.6 meters ' :'11 - 15 ft', ' 16 - 20 feet 4.9 - 6.1 meters ' :'16 - 20 ft', ' 21 - 25 feet 6.4 - 7.6 meters ' :'21 - 25 ft', ' 26 - 30 feet 7.1 - 9.1 meters ' :'26 - 30 ft', ' 31 - 35 feet 9.4 - 10 meters ' :'31 - 35 ft', ' 36 - 40 feet 11 - 12.2 meters ' :'36 - 40 ft', ' 41 - 45 feet 12.5 - 13.7 meters ' : '41 - 45 ft', ' 46 - 50 feet 14 - 15.2 meters ' :'46 - 50 ft', ' 51 - 55 feet 15.5 - 16 meters ' :'51 - 55 ft', ' 61 - 65 feet 18.6 - 19.8 meters ' : '61 - 65 ft', ' 71 - 75 feet 21.6 - 22.9 meters ' : '71 - 75 ft', ' 76 feet - OVER 23.2m - OVER ' : '76 - over ft' }, inplace=True) for x in range(len(final['Mean Tide'])): data = final['Mean Tide'][x+1].split() if len(data)>0: final['Mean Tide'][x+1] = data[0] else: final['Mean Tide'][x+1] = '' final_fixes = ['First Port of Entry', 'USA Representative', 'Medical Facilities', 'Turning Area', 'Good Holding Ground', 'Tide', 'Overhead Limit', 'Swell', 'Compulsory', 'Available', 'Tug Assistance', 'Tug Salvage', 'Pratique', 'Rail', 'Wharves', 'Med. Moor', '100+ Ton Lifts', '50-100 Ton Lifts', '25-49 Ton Lifts', '0-24 Ton Lifts', 'Fixed Cranes', 'Mobile Cranes', 'Floating Cranes', 'Longshore', 'Provisions', 'Fuel Oil', 'Deck', 'Water', 'Diesel Oil'] for x in final_fixes: try: final[x].replace({ 'Y': 'Yes', ' Yes ': 'Yes', 'N': 'No' , ' No ': 'No', 1 : 'Yes', ' 1 ': 'Yes' }, inplace=True) except: final[x].astype(str).replace({ 'Y': 'Yes', ' Yes ': 'Yes', 'N': 'No' , ' No ': 'No', 1 : 'Yes', ' 1 ': 'Yes' }, inplace=True) # This is to fix encoding errors in the degree symbols and make the pulled data easily readable for x in range(len(final['Latitude'])): data = final['Latitude'][x+1].strip() if len(data) > 0: if data[-1] == 'S': data = final['Latitude'][x+1].replace("'",'') data = data.replace('º','') data = data.replace('-','') final['Latitude'][x+1] = '-' + data else: data = final['Latitude'][x+1].replace("'",'') data = data.replace('º','') data = data.replace('-','') final['Latitude'][x+1] = data else: final['Latitude'][x+1] = '0' for x in range(len(final['Longitude'])): data = final['Longitude'][x+1].strip() if len(data) > 0: if data[-1] == 'E': data = final['Longitude'][x+1].strip() data = data.replace('º','') data = data.replace("'",'') data = data.replace('-','') final['Longitude'][x+1] = data.replace('"','') else: data = final['Longitude'][x+1].strip() data = data.replace('º','') data = data.replace("'",'') data = data.replace('-','') data = data.replace('"','') final['Longitude'][x+1] = '-' + data else: final['Longitude'][x+1] = '0' # This section is to give the dd cords. for digital maps dd_lat_list = [] for x in range(len(final['Latitude'])): data = final['Latitude'][x+1].strip() if data == '0': dd_lat_list.append(data) else: if data[-1] == 'S': data = data.replace('S','') data = data.replace('-','- ') data = data.split() if len(data) > 3: dd = int(data[1]) + int(data[2])/60 + int(data[3])/3600 dd_lat_list.append(str(data[0]) + str(dd)) else: dd = int(data[1]) + int(data[2])/60 dd_lat_list.append(str(data[0]) + str(dd)) else: data = data.replace('N','') data = data.replace('-','- ') data = data.split() if len(data) > 3: dd = int(data[0]) + int(data[1])/60 + int(data[2])/3600 dd_lat_list.append(str(dd)) else: dd = int(data[0]) + int(data[1])/60 dd_lat_list.append(str(dd)) dd_long_list = [] for x in range(len(final['Longitude'])): data = final['Longitude'][x+1].strip() if data == '0': dd_long_list.append(data) else: if data[-1] == 'E': data = data.replace('E','') data = data.split() if len(data) > 3: dd = int(data[0]) + int(data[1])/60 + int(data[2])/3600 dd_long_list.append(str(dd)) else: dd = int(data[0]) + int(data[1])/60 dd_long_list.append(str(dd)) else: data = data.replace('W','') data = data.replace('-','- ') data = data.split() if len(data) > 3: dd = int(data[1]) + int(data[2])/60 + int(data[3])/3600 dd_long_list.append(str(data[0]) + str(dd)) else: dd = int(data[1]) + int(data[2])/60 dd_long_list.append(str(data[0]) + str(dd)) insert = final.columns.get_loc('Longitude')+1 final.insert(insert, 'DD Lat.', dd_lat_list) final.insert(insert+1, 'DD Long.', dd_long_list) # Final change and send to csv # This header change is to make the headers work with the app. new_headers = [ 'country', 'portName', 'portAuthority', 'address', 'phone', 'fax', 'email', 'latitude', 'longitude', 'ddLatitude', 'ddLongitude', 'portType', 'portSize', 'firstPortofEntry', 'publication', 'chart', 'usaRep', 'medicalFacilities', 'harborSize', 'shelter', 'maxVesselSize', 'harborType', 'turningArea', 'holdingGround', 'tide', 'overheadLimit', 'swell', 'channel', 'cargoPier', 'meanTide', 'anchorage', 'oilTerminal', 'compulsory', 'available', 'tugAssistance', 'tugSalvage', 'pratique', 'rail', 'wharves', 'medMoor', 'hundredTonLifts', 'fiftyTonLifts', 'twentyTonLifts', 'zeroTonLifts', 'fixedCranes', 'mobileCranes', 'floatingCranes', 'longshore', 'provisions', 'fuelOil', 'deck', 'water', 'dieselOil', 'shipRepairs', 'marineRailroadSize', 'drydockSize' ] final.columns = new_headers # This section is to fix some formatting with addresses lst = [x for x in final.address] for x in range(len(lst)): res = [] if type(lst[x]) == str: new_lst = lst[x].split() test = [x for x in new_lst] # these two for loops from https://www.geeksforgeeks.org/python-add-space-between-potential-words/ for ele in test: temp = [[]] for char in ele: # checking for upper case character if char.isupper(): temp.append([]) # appending character at latest list temp[-1].append(char) # joining lists after adding space res.append(' '.join(''.join(ele) for ele in temp)) new_add = ' '.join(res) new_add = new_add.replace(' ', ' ') new_add = new_add.replace('- ', '-') new_add = new_add.replace('G P O', 'GPO') new_add = new_add.replace('P O', 'PO') new_add = new_add.strip() final.address[x+1] = new_add else: final.address[x+1] = 'should be blank' final = final.reset_index(drop=True) final.to_csv(r'../../../../../../scraper/data/port_data/' + country + '_ports.csv') def run_ports(): # List of countries of intrest to scrap though. This is based on the formating of the searates website urls (which requires country name and country code) # and the PUB150 database country codes. countries = [ ['australia', 'au'], ['bangladesh', 'bd'], ['cambodia', 'kh'], ['china', 'cn'], ['fiji', 'fj'], ['germany', 'de'], ['hong_kong', 'hk'], ['italy', 'it'], ['india', 'in'], ['indonesia', 'id'], ['japan', 'jp'], ['malaysia', 'my'], ['myanmar', 'mm'], ['nauru', 'nr'], ['new_caledonia', 'nc'], ['new_zealand', 'nz'], ['papua_new_guinea', 'pg'], ['philippines', 'ph'], ['samoa', 'ws'], ['solomon_islands', 'sb'], ['south_korea', 'kr'], ['sri_lanka', 'lk'], ['taiwan', 'tw'], ['thailand', 'th'], ['tonga', 'to'], ['tuvalu', 'tv'], ['vanuatu', 'vu'], ['vietnam', 'vn'] ] errors = [] for x in range(len(countries)): try: searates(countries[x][0], countries[x][1]) WPI(countries[x][0], countries[x][1]) combine_data_frames(countries[x][0], countries[x][1]) except Exception as e: error_log = 'Failed to update ' + str(countries[x][0]) + ' because of ' + str(e) logging.error('Failed to update ' + str(countries[x][0]) + ' because of ' + str(e)) errors.append(error_log) # This is to tell the user which countries ran into errors and did not run completely. # Most often the reason this will cause errors is because of being rejected from the website. with open(r'../../../../../../scraper/data/port_errors.txt', 'w') as f: f.write('Encountered errors with the following countries please run again with only the following countries. \n' + '\n'.join(errors)) if (__name__ == '__main__'): run_ports() ```
{ "source": "Joseph-Park-dev/image_scraper_with_URL", "score": 4 }
#### File: Joseph-Park-dev/image_scraper_with_URL/image_scraper_with_URL.py ```python from selenium import webdriver import requests import os import time import io from PIL import Image import hashlib ''' Web Image Scraper - Give this a URL, you get the image. Original Author -"<NAME>" on towardsdatascience.com [https://towardsdatascience.com/image-scraping-with-python-a96feda8af2d] - "eamander" on GitHub [https://github.com/eamander/Pinterest_scraper] Code Modified by - <NAME> (<NAME>) ''' class InputManager(object): def __init__(self): self.print_menu() self.img_source = None def print_menu(self): print(""" Web Image Scraper_ver 1.11 - Give it the URL, you get the image. Original Author -"<NAME>" on towardsdatascience.com [https://towardsdatascience.com/image-scraping-with-python-a96feda8af2d] - "eamander" on GitHub [https://github.com/eamander/Pinterest_scraper] Code Modified by - <NAME> (<NAME>) """) def get_search_info(self): while self.img_source == None: URL = input("Please insert the URL containing images [Google] > ") img_source = self.verify_user_input(URL) if img_source != None: self.img_source = img_source break if img_source == "Google": print(""" Current Image Source : Google """) return URL, None, None elif img_source == "Others": print(""" Current Image Source : Others """) return URL, None, None def get_destination_folder(self): folder_name = None folder_location = None folder_location = input("Please insert the destination to save image > ") folder_name = input("How would you name your image folder? > ") return os.path.join(folder_location,'_'.join(folder_name.split(' '))) def get_image_count(self): return int(input("How many images are you willing to download? > ")) def verify_user_input(self, URL): src = None if URL.find("www.google.com") != -1: src = "Google" else: src = "Others" return src ########## Fabian Bosler's Code, modified by <NAME> ########## class URLImageScraper(object): def __init__(self, driver_path): my_input_manager = InputManager() self.URL, self.login_Pinterest_ID, self.login_Pinterest_PWD = my_input_manager.get_search_info() self.folder_location = my_input_manager.get_destination_folder() self.max_download_count = my_input_manager.get_image_count() self.wd = webdriver.Chrome(executable_path=driver_path) self.num_of_downloads = 0 def __del__(self): self.wd.quit() self.show_result() def search_and_download(self, driver_path): if not os.path.exists(self.folder_location): os.makedirs(self.folder_location) res = self.fetch_image_urls(wd= self.wd, sleep_between_interactions=0.5) for elem in res: self.persist_image(elem) self.num_of_downloads += 1 def fetch_image_urls(self, wd:webdriver, sleep_between_interactions:int=1): def scroll_to_end(wd): self.wd.execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(sleep_between_interactions) # build the google query # load the page wd.get(self.URL) image_urls = set() download_count = 0 results_start = 0 while download_count < self.max_download_count: scroll_to_end(wd) # get all image thumbnail results thumbnail_results = wd.find_elements_by_css_selector("img.Q4LuWd") number_results = len(thumbnail_results) print(f"Found: {number_results} search results. Extracting links from {results_start}:{number_results}") for img in thumbnail_results[results_start:number_results]: # try to click every thumbnail such that we can get the real image behind it try: img.click() time.sleep(sleep_between_interactions) except Exception: continue # extract image urls actual_images = wd.find_elements_by_css_selector('img.n3VNCb') for actual_image in actual_images: if actual_image.get_attribute('src') and 'http' in actual_image.get_attribute('src'): image_urls.add(actual_image.get_attribute('src')) download_count = len(image_urls) if len(image_urls) >= self.max_download_count: print(f"Found: {len(image_urls)} image links, done!") break else: print("Found:", len(image_urls), "image links, looking for more ...") time.sleep(30) return load_more_button = wd.find_element_by_css_selector(".mye4qd") if load_more_button: wd.execute_script("document.querySelector('.mye4qd').click();") # move the result startpoint further down results_start = len(thumbnail_results) return image_urls def persist_image(self, URL:str): try: image_content = requests.get(URL).content except Exception as e: print(f"ERROR - Could not download {URL} - {e}") try: image_file = io.BytesIO(image_content) image = Image.open(image_file).convert('RGB') file_path = os.path.join(self.folder_location,hashlib.sha1(image_content).hexdigest()[:10] + '.jpg') with open(file_path, 'wb') as f: image.save(f, "JPEG", quality=85) print(f"SUCCESS - saved {URL} - as {file_path}") except Exception as e: print(f"ERROR - Could not save {URL} - {e}") def show_result(self): print(""" Process Finished Number of Downloaded Images : {num_of_dwn} Location of Folder containing Images : {folder_loc} """.format( num_of_dwn = self.num_of_downloads, folder_loc = self.folder_location) ) ########## Fabian Bosler's Code, modified by <NAME> ########## def main(): DRIVER_PATH = "./ChromeDriver/chromedriver.exe" my_image_scraper = URLImageScraper(DRIVER_PATH) my_image_scraper.search_and_download(DRIVER_PATH) del my_image_scraper query = input("Type anything to exit > ") if query != None: return if __name__ == "__main__": main() ```
{ "source": "josephpaulgiroux/gpt-2-tensorflow2.0", "score": 3 }
#### File: josephpaulgiroux/gpt-2-tensorflow2.0/sample.py ```python import tensorflow as tf import sentencepiece as spm from gpt2_model import Gpt2 import json import encoder def argmax(logits): return tf.argmax(logits) def top_k_logits(logits, k): if k == 0: return logits values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1] return tf.where( logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits ) # Nucleas Sampling (https://arxiv.org/pdf/1904.09751.pdf) def top_p_logits(logits, p): """Took from OpenAI GPT-2 Implememtation""" batch = tf.shape(logits)[0] sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) indices = tf.stack([ tf.range(0, batch), tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0), ], axis=-1) min_values = tf.gather_nd(sorted_logits, indices) return tf.where( logits < min_values, tf.ones_like(logits) * -1e10, logits, ) class SequenceGenerator: def __init__(self, model_path, model_param, vocab_path, encoder_path): self.sp = None self.model = None self.model_path = model_path self.model_param = model_param self.vocab_path = vocab_path self.encoder_path = encoder_path def load_weights(self): with open(self.model_param) as f: param = json.load(f) self.model = Gpt2(param['num_layers'], param['d_model'], param['num_heads'], param['dff'], param['max_seq_len'], param['vocab_size']) ckpt = tf.train.Checkpoint(model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, self.model_path, max_to_keep=1) ckpt.restore(ckpt_manager.latest_checkpoint).expect_partial() print('Model weights loaded into memory') self.encoder = encoder.get_encoder( model_name='1558M', models_dir=self.model_path, ) # self.sp = spm.SentencePieceProcessor() # self.sp.load(self.vocab_path) def sample_sequence(self, context=None, seq_len=512, bos=3, eos=4, temperature=1, top_k=8, top_p=8, nucleus_sampling=True): if context == None: print("Give some context to model.................") return context = tf.expand_dims(([bos] + self.encoder.encode(context)), 0) prev = context output = context past = None for i in range(seq_len): logits, past = self.model(prev, training=False, past=past) # print(logits) logits = logits[:, -1, :] / tf.cast(temperature, tf.float32) # print(logits) logits = top_k_logits(logits, k=top_k) # print(logits) if nucleus_sampling: logits = top_p_logits(logits, p=top_p) samples = tf.random.categorical(logits, num_samples=1, dtype=tf.int32) # print(samples) if tf.equal(samples, eos): # print("Predicted end of sequence.") break # print("shape.........") # print(tf.shape(output)) # print(tf.shape(samples)) output = tf.concat([output, samples], axis=-1) prev = samples # print(tf.shape(output)) # print(output) # print("--------------------------") result = tf.squeeze(output, axis=0) pred = [int(i) for i in result] generated_seq = self.encoder.decode(pred[1:]) generated_seq = generated_seq.replace("[SEP]", "").strip() generated_seq = ' '.join(generated_seq.split()) return generated_seq ```
{ "source": "JosephPB/n3jet", "score": 3 }
#### File: c++_calls/conversion/modeldump_single.py ```python import numpy as np np.random.seed(1337) from keras.models import Sequential, model_from_json from keras.optimizers import Adam import json import argparse from modeldump import ModelDump def parse(): """ Parse arguments """ parser = argparse.ArgumentParser(description= 'This is a simple script to dump Keras model into simple format suitable for porting into pure C++ model' ) parser.add_argument('-a', '--architecture', help="JSON with model architecture", required=True) parser.add_argument('-w', '--weights', help="Model weights in HDF5 format", required=True) parser.add_argument('-o', '--output', help="Ouput file name", required=True) parser.add_argument('-v', '--verbose', help="Verbose", required=False) args = parser.parse_args() return args if __name__ == "__main__": args = parse() print 'Read architecture from', args.architecture print 'Read weights from', args.weights print 'Writing to', args.output model_dump = ModelDump( architecture = args.architecture, weights = args.weights, output = args.output, verbose = args.verbose, init = True ) ``` #### File: n3jet/deprecated/rambo_while.py ```python import numpy as np from tqdm import tqdm import pandas as pd from n3jet.utils.general_utils import dot # set com energy s = 500 # set ps variable product delta_vars = 0.2 def pair_check(p1,p2,delta,s_com): '''Check proximity of pair of momenta :param p1, p2: 4-momenta :param delta: proximity measure according to the JADE algorithm - e.g. 0.01 returns: boolean - True if too close, False otherwise ''' distance = (dot(p1,p2))/s_com close = False if distance <= delta: close = True #print ('True: Distance is: {} and the delta is {}'.format(distance,delta)) return close def check_all(p_array,delta,s_com): 'Given an array of 4-momenta, check proximity of all pairs' too_close = False p_array = p_array[2:] #print ('Checking {}'.format(p_array)) for idx, p in enumerate(p_array): to_check = p_array[idx+1:] for j in to_check: proximity = pair_check(p,j,delta,s_com=s_com) if proximity == True: too_close = True return too_close def random_moms(num_points): 'Generate 4-mom components from a uniform distribution' moms = [] for i in range(num_points): moms.append(np.random.uniform(0,1,4)) return np.array(moms) def isotropic_moms(mom): 'Create massles 4-mom with isotropic angular distribution' c = 2*mom[0] - 1 phi = 2*np.pi*mom[1] q_0 = -np.log(mom[2]*mom[3]) q_1 = q_0*np.sqrt(1-c**2)*np.cos(phi) q_2 = q_0*np.sqrt(1-c**2)*np.sin(phi) q_3 = q_0*c return np.array([q_0,q_1,q_2,q_3]) def dot(p1,p2): 'Minkowski metric dot product' prod = p1[0]*p2[0]-(p1[1]*p2[1]+p1[2]*p2[2]+p1[3]*p2[3]) return prod def boost(mom, moms, w): ''' Boost and scale isotropic 4-mom for momentum conservation :param mom: one isotropic 4-mom :param moms: array of all isotropic momenta :param w: centre of mass energy returns: np array of boosted an scaled 4-mom corresponding to mom ''' q = mom Q = np.zeros(4) for i in moms: Q+=i M = np.sqrt(dot(Q,Q)) b = -Q[1:]/M x = w/M gamma = Q[0]/M a = 1/(1+gamma) p_0 = x*(gamma*q[0]+np.dot(b,q[1:])) p_space = x*(q[1:]+b*q[0]+a*(np.dot(b,q[1:]))*b) return np.array([p_0,p_space[0],p_space[1],p_space[2]]) def generate(num_jets, num_points, w, delta=0.4): p_1 = np.array([w/2,0.,0.,w/2]) p_2 = np.array([w/2,0.,0.,-w/2]) cut_momenta = [] # other_momenta = [] pbar = tqdm(total=num_points) while len(cut_momenta) < num_points: moms = random_moms(num_jets) iso_moms = [] for i in moms: iso_moms.append(isotropic_moms(i)) iso_moms = np.array(iso_moms) boost_moms = [] boost_moms.append(p_1) boost_moms.append(p_2) for i in iso_moms: boost_moms.append(boost(i,iso_moms,w)) close = check_all(boost_moms, delta=delta,s_com=dot(p_1,p_2)) if close == False: cut_momenta.append(boost_moms) pbar.update(1) # else: # other_momenta.append(boost_moms) pbar.close() cut_mom = pd.DataFrame({'momenta':list(cut_momenta)}) # other_mom = pd.DataFrame({'momenta':list(other_momenta)}) return cut_mom['momenta']#, other_mom['momenta'] ``` #### File: n3jet/models/model.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import time from sklearn.model_selection import train_test_split from sklearn.preprocessing import normalize, MinMaxScaler import tensorflow as tf from tensorflow.keras import activations from keras.models import Sequential from keras.layers import Dense, Activation from keras.wrappers.scikit_learn import KerasRegressor from keras import metrics from keras.initializers import glorot_uniform from keras.callbacks import EarlyStopping from keras.optimizers import Adam import keras.backend as K class Model: def __init__( self, input_size, momenta, labels, all_jets = False, all_legs = False, model_dataset = False, high_precision = False ): ''' :param input_size: the flattened input dim for the model e.g. 3 jets has input_dim of (3-1)*4=8 :param momenta: input momenta in NJET format (i.e. [num points, num jets, 4]) :param labels: labels ''' self.input_size = input_size self.momenta = momenta self.labels = labels self.all_jets = all_jets self.all_legs = all_legs self.model_dataset = model_dataset self.high_precision = high_precision if self.high_precision: K.set_floatx('float64') def standardise(self, data): '''standardise data :param data: an array over which to standardise (this array may be a variable column) ''' array = np.array(data) mean = np.mean(array) std = np.std(array) standard = (array-mean)/(std) return mean, std, standard def normalise(self, data): array = np.array(data) minimum = np.min(array) maximum = np.max(array) norm = (array-minimum)/(maximum-minimum) return minimum, maximum, norm def root_mean_squared_error(self, y_true, y_pred): 'custom loss function RMSE' return K.sqrt(K.mean(K.square(y_pred - y_true))) def process_training_data(self, random_state=42, scaling='standardise', **kwargs): ''' training data must be standardised and split for training and validation **kwargs can take on: :param moms: the PS points in format [no_PS_points, points, 4] :param labs: ground truth labels of squared matrix elements ''' moms = kwargs.get('moms', self.momenta) labs = kwargs.get('labs', self.labels) if self.all_legs == True: momenta = np.array(moms) elif self.all_jets == True: momenta = np.array(moms)[:,2:,:] #include all outgoing jets else: momenta = np.array(moms)[:,3:,:] #pick out all but one jet labels = np.array(labs) x_standard = momenta.reshape(-1,4).copy() #shape for standardising each momentum element self.x_mean = np.zeros(4) self.x_std = np.zeros(4) if scaling == 'standardise': self.x_mean[0],self.x_std[0],x_standard[:,0] = self.standardise(momenta.reshape(-1,4)[:,0]) self.x_mean[1],self.x_std[1],x_standard[:,1] = self.standardise(momenta.reshape(-1,4)[:,1]) self.x_mean[2],self.x_std[2],x_standard[:,2] = self.standardise(momenta.reshape(-1,4)[:,2]) self.x_mean[3],self.x_std[3],x_standard[:,3] = self.standardise(momenta.reshape(-1,4)[:,3]) self.y_mean, self.y_std, y_standard = self.standardise(labels) elif scaling == 'normalise': self.x_mean[0],self.x_std[0],x_standard[:,0] = self.normalise(momenta.reshape(-1,4)[:,0]) self.x_mean[1],self.x_std[1],x_standard[:,1] = self.normalise(momenta.reshape(-1,4)[:,1]) self.x_mean[2],self.x_std[2],x_standard[:,2] = self.normalise(momenta.reshape(-1,4)[:,2]) self.x_mean[3],self.x_std[3],x_standard[:,3] = self.normalise(momenta.reshape(-1,4)[:,3]) self.y_mean, self.y_std, y_standard = self.normalise(labels) else: raise ValueError('scaling must being either normalise or standardise and you have used {}'.format(scaling)) x_standard = x_standard.reshape(-1,self.input_size) #shape for passing into network # Note: shuffling is on by default for train_test_split if self.model_dataset: X_train, X_test, y_train, y_test = train_test_split(x_standard, y_standard, test_size=0.2) else: X_train, X_test, y_train, y_test = train_test_split(x_standard, y_standard, test_size=0.2, random_state=42) return X_train, X_test, y_train, y_test, self.x_mean, self.x_std, self.y_mean, self.y_std def baseline_model_dataset(self, layers, lr=0.001, activation='tanh', loss='mean_squared_error'): 'define and compile model with fixing weight initialisers and a random dataset' # create model # at some point can use new Keras tuning feature for optimising this model seeds = [ 1337, 1337+123, 1337+345, 1337+545, 1337-123, 1337-345, 1337+567, 1337-567, 1337-189, 1337+189, 1337+194, 1337-194, 1337-347, 1337+347, 1337-545 ] if len(layers) > len(seeds)-1: raise Exception( 'the number of layers cannot be more than {}, you have defined {} layers'.format( len(seeds)-1, len(layers) ) ) model = Sequential() model.add(Dense(layers[0], input_dim=(self.input_size), kernel_initializer = glorot_uniform(seed=seeds[0]))) if activation == 'tanh': model.add(Activation(activations.tanh)) elif activation == 'relu': model.add(Activation(activations.relu)) else: raise ValueError('activation supported are either tanh or relu, you have used {}'.format(activation)) for i in range(1,len(layers)): model.add(Dense(layers[i], kernel_initializer = glorot_uniform(seed=seeds[i]))) if activation == 'tanh': model.add(Activation(activations.tanh)) elif activation == 'relu': model.add(Activation(activations.relu)) model.add(Dense(1, kernel_initializer = glorot_uniform(seed=seeds[-1]))) # Compile model model.compile(optimizer = Adam(lr=lr, beta_1=0.9, beta_2=0.999, amsgrad=False), loss = loss) return model def baseline_model(self, layers, lr=0.001, activation='tanh', loss='mean_squared_error'): 'define and compile model with a fixed dataset but random weights' # create model # at some point can use new Keras tuning feature for optimising this model model = Sequential() model.add(Dense(layers[0], input_dim=(self.input_size))) if activation == 'tanh': model.add(Activation(activations.tanh)) elif activation == 'relu': model.add(Activation(activations.relu)) else: raise ValueError('activation supported are either tanh or relu, you have used {}'.format(activation)) for i in range(1, len(layers)): model.add(Dense(layers[i])) if activation == 'tanh': model.add(Activation(activations.tanh)) elif activation == 'relu': model.add(Activation(activations.relu)) model.add(Dense(1)) # Compile model model.compile(optimizer = Adam(lr=lr, beta_1=0.9, beta_2=0.999, amsgrad=False), loss = loss) return model def fit( self, scaling='standardise', layers=[32,16,8], epochs=10000, lr=0.001, activation='tanh', loss='mean_squared_error', **kwargs ): ''' fit model :param layers: an array of lengeth 3 providing the number of hidden nodes in the three layers ''' if activation == 'relu' and scaling !='normalise': raise ValueError('if activation is set to relu then scaling must be normalised') random_state = kwargs.get('random_state', 42) X_train, X_test, y_train, y_test,_,_,_,_ = self.process_training_data(random_state=random_state, scaling=scaling) print ('The training dataset has size {}'.format(X_train.shape)) if self.model_dataset: self.model = self.baseline_model_dataset(layers=layers, lr=lr, activation=activation, loss=loss) else: self.model = self.baseline_model(layers=layers, lr=lr, activation=activation, loss=loss) ES = EarlyStopping(monitor='val_loss', min_delta=0, patience=100, verbose=0, restore_best_weights=True) if self.model_dataset: self.model.fit(X_train, y_train, epochs=epochs, validation_data=(X_test, y_test), callbacks=[ES], batch_size=512, shuffle=False) else: self.model.fit(X_train, y_train, epochs=epochs, validation_data=(X_test, y_test), callbacks=[ES], batch_size=512) return self.model, self.x_mean, self.x_std, self.y_mean, self.y_std def standardise_test(self, data, mean, std): array = np.array(data) standard = (array-mean)/(std) return standard def normalise_test(self, data, minimum, maximum): array = np.array(data) norm = (array-minimum)/(maximum-minimum) return norm def process_testing_data(self, moms, scaling='standardise', **kwargs): ''' **kwargs can take on: :param x_mean, x_std, y_mean, y_std: mean and std of x and y values if not (properly) provided by class e.g. if using a pretrained model with known mean and std ''' labs = kwargs.get('labs', None) if self.all_legs == True: momenta = np.array(moms) elif self.all_jets == True: momenta = np.array(moms)[:,2:,:] #include all outgoing jets else: momenta = np.array(moms)[:,3:,:] #pick out all but one jet y_mean = kwargs.get('y_mean', self.y_mean) print_y = kwargs.get('print_y', True) if print_y == True: print ('Using y_mean of {} instead of {}'.format(y_mean, self.y_mean)) y_std = kwargs.get('y_std', self.y_std) x_mean = kwargs.get('x_mean', self.x_mean) x_std = kwargs.get('x_std', self.x_std) if labs is not None: labels = np.array(labs) x_standard = momenta.reshape(-1,4).copy() #shape for standardising each momentum element if scaling == 'standardise': x_standard[:,0] = self.standardise_test(momenta.reshape(-1,4)[:,0],x_mean[0],x_std[0]) x_standard[:,1] = self.standardise_test(momenta.reshape(-1,4)[:,1],x_mean[1],x_std[1]) x_standard[:,2] = self.standardise_test(momenta.reshape(-1,4)[:,2],x_mean[2],x_std[2]) x_standard[:,3] = self.standardise_test(momenta.reshape(-1,4)[:,3],x_mean[3],x_std[3]) x_standard = x_standard.reshape(-1,self.input_size) #shape for passing into network if labs is not None: y_standard = self.standardise_test(labels,y_mean,y_std) return x_standard, y_standard else: return x_standard elif scaling == 'normalise': x_standard[:,0] = self.normalise_test(momenta.reshape(-1,4)[:,0],x_mean[0],x_std[0]) x_standard[:,1] = self.normalise_test(momenta.reshape(-1,4)[:,1],x_mean[1],x_std[1]) x_standard[:,2] = self.normalise_test(momenta.reshape(-1,4)[:,2],x_mean[2],x_std[2]) x_standard[:,3] = self.normalise_test(momenta.reshape(-1,4)[:,3],x_mean[3],x_std[3]) x_standard = x_standard.reshape(-1,self.input_size) #shape for passing into network if labs is not None: y_standard = self.standardise_test(labels,y_mean,y_std) return x_standard, y_standard else: return x_standard else: raise ValueError('scaling must being either normalise or standardise and you have used {}'.format(scaling)) def destandardise(self, data, mean, std): 'destandardise array for inference and comparison' array = np.array(data) return (array*std) + mean def denormalise(seld, data, minimum, maximum): array = np.array(data) return array*(maximum-minimum) + minimum def destandardise_data(self, y_pred, x_pred=None, scaling='standardise', **kwargs): ''' destandardise any standardised data :param y_pred: squared matrix element values :param x_pred: optional parameter of momenta values to be destandardised **kwargs can take on: :param x_mean, x_std, y_mean, y_std: mean and std of x and y values if not (properly) provided by class e.g. if using a pretrained model with known mean and std note: when initialising the class with the data used to train a pretrained model, the standardised data will be the same as used in training if the dataset is loaded and passed correctly as the mean and std is independent of the data splitting ''' y_mean = kwargs.get('y_mean', self.y_mean) y_std = kwargs.get('y_std', self.y_std) x_mean = kwargs.get('x_mean', self.x_mean) x_std = kwargs.get('x_std', self.x_std) if scaling == 'standardise': y_destandard = self.destandardise(y_pred,y_mean,y_std) if x_pred is not None: x_pred = x_pred.reshape(-1,4) x_destandard = x_pred.copy() x_destandard[:,0] = self.destandardise(x_pred[:,0],x_mean[0],x_std[0]) x_destandard[:,1] = self.destandardise(x_pred[:,1],x_mean[1],x_std[1]) x_destandard[:,2] = self.destandardise(x_pred[:,2],x_mean[2],x_std[2]) x_destandard[:,3] = self.destandardise(x_pred[:,3],x_mean[3],x_std[3]) x_destandard = x_destandard.reshape(-1,int((self.input_size)/4),4) return x_destandard, y_destandard else: return y_destandard elif scaling == 'normalise': y_destandard = self.denormalise(y_pred,y_mean,y_std) if x_pred is not None: x_pred = x_pred.reshape(-1,4) x_destandard = x_pred.copy() x_destandard[:,0] = self.denormalise(x_pred[:,0],x_mean[0],x_std[0]) x_destandard[:,1] = self.denormalise(x_pred[:,1],x_mean[1],x_std[1]) x_destandard[:,2] = self.denormalise(x_pred[:,2],x_mean[2],x_std[2]) x_destandard[:,3] = self.denormalise(x_pred[:,3],x_mean[3],x_std[3]) x_destandard = x_destandard.reshape(-1,int((self.input_size)/4),4) return x_destandard, y_destandard else: return y_destandard else: raise ValueError('scaling must being either normalise or standardise and you have used {}'.format(scaling)) ``` #### File: n3jet/n3jet/paths.py ```python import logging import os try: from pathlib2 import Path except: from pathlib import Path from sys import argv logger = logging.getLogger( __name__ ) project_directory = Path( os.path.abspath(__file__) ).parent.parent working_directory = Path( os.getcwd() ) working_directory_parent = working_directory.parent def find_default(name): """ Get a default path when no command line argument is passed. - First attempt to find the folder in the current working directory. - If it is not found there then try the directory in which June lives. - Finally, try the directory above the current working directory. This is for the build pipeline. This means that tests will find the configuration regardless of whether they are run together or individually. Parameters ---------- name The name of some folder Returns ------- The full path to that directory """ for directory in ( working_directory, project_directory, working_directory_parent ): path = directory / name if os.path.exists( path ): return path raise FileNotFoundError( "Could not find a default path for {}".format(name) ) def path_for_name(name): """ Get a path input using a flag when the program is run. If no such argument is given default to the directory above the june with the name of the flag appended. e.g. --data indicates where the data folder is and defaults to june/../data Parameters ---------- name A string such as "data" which corresponds to the flag --data Returns ------- A path """ flag = "--{}".format(name) try: path = Path(argv[argv.index(flag) + 1]) if not path.exists(): raise FileNotFoundError( "No such folder {}".format(path) ) except (IndexError, ValueError): path = find_default(name) logger.warning( "No {} argument given - defaulting to:\n{}".format(flag, path) ) return path configs_path = path_for_name("configs") ``` #### File: n3jet/utils/fks_partition.py ```python import numpy as np from tqdm import tqdm from n3jet.utils.general_utils import dot from n3jet.phase import check_all class FKSPartition: def __init__( self, momenta, labels, all_legs = False, ): self.momenta = momenta self.labels = labels self.all_legs = all_legs if type(self.momenta) != list: raise AssertionError('Momentum must be in the form of a list') def cut_near_split(self, delta_cut, delta_near, return_indices = False): ''' Split momenta into near and cut arrays - near is the region close to the PS cuts and the cut region is the rest of the cut PS :param delta_cut: the PS cut delta :param delta_near: the secondary 'cut' defining the region 'close to' the cut boundary ''' cut_momenta = [] self.near_momenta = [] cut_labels = [] self.near_labels = [] cut_indices = [] near_indices = [] for idx, i in tqdm(enumerate(self.momenta), total = len(self.momenta)): close, min_distance = check_all( mom=i, delta=delta_cut, s_com=dot(i[0],i[1]), all_legs=self.all_legs ) if not close: if min_distance < delta_near: self.near_momenta.append(i) self.near_labels.append(self.labels[idx]) near_indices.append(idx) else: cut_momenta.append(i) cut_labels.append(self.labels[idx]) cut_indices.append(idx) if return_indices: return cut_momenta, self.near_momenta, cut_labels, self.near_labels, cut_indices, near_indices else: return cut_momenta, self.near_momenta, cut_labels, self.near_labels def s(self, p_1,p_2): 'CoM energy of two massless jets' return (2*dot(p_1,p_2)) def d_ij(self, mom, i,j): 'CoM energy of selected massless jets' return self.s(mom[i],mom[j]) def D_ij(self, mom): "Reciprocal of CoM energy for pairwise sum" ds = [] pairs = [] if not self.all_legs: for i in range(2, len(mom)): for j in range(i+1, len(mom)): ds.append(self.d_ij(mom,i,j)) pairs.append([i,j]) else: for i in range(len(mom)): for j in range(i+1, len(mom)): if i == 0 and j == 1: pass else: ds.append(self.d_ij(mom,i,j)) pairs.append([i,j]) return np.sum(1/np.array(ds)), pairs def S_ij(self, mom, i, j): 'Partition function' D_1,_ = self.D_ij(mom) return (1/(D_1*self.d_ij(mom,i,j))) def weighting(self, return_weights = False): ''' Weights scattering amplitudes according to the different partition function for pairs of particle ''' D_1, pairs = self.D_ij(self.near_momenta[0]) S_near = [] for idx, i in enumerate(pairs): print ('Pair {} of {}'.format(idx+1, len(pairs))) S = [] for j in tqdm(self.near_momenta, total=len(self.near_momenta)): S.append(self.S_ij(j,i[0],i[1])) S_near.append(np.array(S)) S_near = np.array(S_near) labs_split = [] for i in S_near: labs_split.append(self.near_labels*i) if return_weights: return pairs, labs_split, S_near else: return pairs, labs_split ```
{ "source": "josephpcox/udivs-backend", "score": 3 }
#### File: josephpcox/udivs-backend/questions.py ```python import pandas as pd import random import numpy as np from operator import itemgetter from datetime import datetime, timedelta import math import csv import os.path #import numpy as np #from sklearn.feature_selection import VarianceThreshold # def getWeek(DataFrame): def getLocation(DataFrame): ''' Grabs the day and location from a dataframe generated by the csv file stored in the amazon s3 bucket. ''' # filters the Day and Place column only filtered = DataFrame[['Place', 'Time']].copy() # remove rows with Nan in any column df = filtered.dropna() return df def getActivity(DataFrame): ''' Gets time and activity from the csv file store in the amazon s3 bucket ''' # filters the Day and Place column only filtered = DataFrame[['Day', 'Time', 'Activity']] # remove rows with Nam in any column df = filtered.dropna() final = df[(df.Activity != 'walk')] final = final[(final.Activity != 'lesson')] final = final[(final.Activity != 'home time')] final = final[(final.Activity != 'vehicle')] final = final[(final.Activity != 'groceries')] final = final[(final.Activity != 'sleep')] final = final[(final.Activity != 'drinks')] final = final[(final.Activity != 'religion')] final = final[(final.Activity != 'exhibition')] return df def getTodayLoc(DataFrame): ''' This returns a dataframe of location data for one day grabs the last index in the file (indicating today's date) use index to return all the locations from today as Dataframe from the csv file stored in the amazon s3 bucket. ''' day = int(datetime.strftime(datetime.now(), '%Y%m%d')) # """FIXME""" df = DataFrame[DataFrame.Day == day] df = getLocation(df) return df def getYesterdayLoc(DataFrame): ''' get all data from yesterday uses datetime library to grab the all data from yesterday returns all the location from yesterday as a dataframe ''' day = int(datetime.strftime(datetime.now(), '%Y%m%d')) # """FIXME""" # print(day) df = DataFrame[DataFrame.Day == day] df = getLocation(df) return df def checkLocList(DataFrame): ''' We return geolocations that are not from today, these locations get cleaned and double cheked in the udivs question set. steps------------------------------------------------------------------------------------------------# 1 creates a list of all the places visited in yesterday in placesVistedList 2 make an empty list that stores incorrect locations called inCorrect_loc iterate untill you have a list of 3 3 grab a random place from the data set, check it against the placesvisitedList if the random place does not exitst inside the place visted list append it to the inCorrect_loc list: else continue ''' df = getYesterdayLoc(DataFrame) df = df.drop_duplicates(subset='Place', keep='first') df = df['Place'] return df #this returns the time of place in the format HH:MM AM/PM----------------------------------------------# def getHourTime(DataFrame): ''' This is a helper function that returns the time from a geolocation in Hours and Minutes and AM or PM''' date_time = DataFrame['Time'].iloc[0] time = datetime.strptime(date_time, '%a %b %d %H:%M:%S %Z %Y') hour_time = time.strftime('%I:%M %p') return hour_time # This grabs location --------------------------------------------------------------------------------- # def getData(DataFrame, Amount): ''' This is a helper function to return a location for the udivs system''' lastday = DataFrame.iloc[:, 1] lastindex = len(lastday.index) #count = o #lastIndex = Activities return lastday[lastindex] def getDuration(DataFrame): '''function returns an array of applications used in a day each with a total duration ''' day = int(datetime.strftime(datetime.now(), '%Y%m%d')) # """FIXME""" df = data[data.Day == day] df = df[['Time', 'Activity', 'Duration ms']].copy() df = df.dropna() df = df[df['Activity'].str.contains("phone:")] group = df.groupby('Activity').sum() return group def convertms(ms): ''' This helper function converts the milliseconds into minutes for a question in the UDIVS system. It return the floor minute''' minutes = (ms/(1000*60)) minutes = math.floor(minutes) return minutes # -----------------------------------------------------------------------------------------------------# def getRecentApp(): ''' This helper function returns the most recent app used for the UDIVS system''' day = somDay_df['Activity'].dropna() for x in day[::-1]: # print(x) if "phone:" not in x: continue ans = x break return ans #-------------------------------------------------------------------------------------------------------# # get the first location that is not the current location, generate incorrect answers def getRecentLocation(): ''' Returns the most recent app used by the user for the UDIVS system''' x = 1 while(True): curLoc = somDay_df['Place'].iloc[-x] if curLoc == "nan": x = x+1 else: break # print("curLock:",curLoc) locData = somDay_df['Place'].dropna() # print(locData) ans = "" for x in locData[::-1]: if x != curLoc: ans = x break return ans def getOptions(n): ''' This is the logic to produce the questions, the incorrect answers, and the actual answer for the UDIVS survey. ''' options = [] q_string = '' # empty string to be returned # question options for "which app did you use most recently if n == 0: # Which app did you use most recently? ans = getRecentApp() options.append(ans) count = 1 q_string = 'Which app did you use most recently ?' # this loop gives an array of answers called options for the user to choose from day = somDay_df['Activity'].dropna() for x in day: flag = 0 if "phone:" in x: for y in options: if x == y: flag = 1 if flag == 0: options.append(x) count = count + 1 if count == 4: break random.shuffle(options, random.random) return q_string, ans, options elif n == 1: # What place were you at most recently? ans = getRecentLocation() options.append(ans) count = 1 locData = somDay_df['Place'].dropna() q_string = 'What place were you at most recently ?' # This loop gives an array of answers called options for the user to choose from for x in locData: flag = 0 for y in options: if x == y: flag = 1 if flag == 0: options.append(x) count = count + 1 if count == 4: break random.shuffle(options, random.random) return q_string, ans, options elif n == 2: # which place were you at around:(time) ? time_loc = getTodayLoc(data) ans_data = time_loc.sample(n=1) ans = ans_data['Place'].iloc[0] options.append(ans) q_string = 'Which place were you at around', getHourTime( ans_data), 'today ?' dummy_data = getLocation(data) count = 1 while count < 4: random_day = dummy_data.sample(n=1) place = random_day['Place'].iloc[0] flag = 0 for y in options: if y == place: flag = 1 if flag == 1: pass else: options.append(place) count = count + 1 random.shuffle(options, random.random) return q_string, ans, options elif n == 3: # Which of these places did you go to yesterday ? time_loc = getYesterdayLoc(data) ans_data = time_loc.sample(n=1) ans = ans_data['Place'].iloc[0] options.append(ans) placesVisited = checkLocList(data) q_string = 'Which of these places did you go to yesterday ?' dummy_data = getLocation(data) count = 1 while count < 4: random_day = dummy_data.sample(n=1) place = random_day['Place'].iloc[0] flag = 0 for z in placesVisited: if z == place: flag = 1 for y in options: if y == place: flag = 1 if flag == 1: pass else: options.append(place) count = count + 1 random.shuffle(options, random.random) return q_string, ans, options elif n == 4: # About how long did you use __ for ? options = ['0-10 minutes', '11-20 minutes', '21-30 minutes', '+30 minutes'] groups = getDuration(data) activity = groups.sample(n=1) miliseconds = int(activity['Duration ms']) minutes = convertms(miliseconds) app = activity.index[0] print("About how long did you use", app.replace('phone: ', '', 1), "today?") if minutes <= 10: ans = options[0] elif minutes <= 20: ans = options[1] elif minutes <= 30: ans = options[2] else: ans = options[3] return ans, options elif n == 5: # which app did you use most frequently today ? q_string = 'Which app did you use most frequently today ?' applicationList = [] count = 1 day = somDay_df['Activity'].dropna() for x in day: if "phone:" in x: applicationList.append(x) app_df = pd.DataFrame(data=applicationList) ans = app_df[0].value_counts().idxmax() options.append(ans) for x in day: flag = 0 if "phone:" in x: for y in options: if x == y: flag = 1 if flag == 0: options.append(x) count = count + 1 if count == 4: break random.shuffle(options, random.random) return q_string, ans, options ''' data = pd.read_csv('../../userdevice_data/Joe_Data/Smarter_time/timeslots.csv') # new version of filter to one day without hardcoding last_index = len(data) - 1 day = data.loc[last_index, 'Day'] somDay_df = data[data.Day == day] #-------------------------------------------------------------------------------------------------------------------------# ''' ''' This is where the actual survey begins, we ask the user three questions form or question set This is a score fusion with a random question form features chosen from the data set ''' ''' #-------------------------------------------------------------------------------------------------------------------------# print("Welcome to Joe's Device ! See if you can enter!") questions=['Which app did you use most recently?','What place were you at most recently?','which place were you at around ','Which of these places did you go to yesterday?', 'How long were you on this app?','Which app did you use most frequently today?'] randomNums=random.sample(range(0,6),3) print(randomNums) # Ask the user if they are genuine or an imposter to collect the data properly user = 2 genuine = True while(user !=1 and user !=0): print("Are you a genuine(1)user or an imposter(0)?") user =int(input("0: imposter\n1: genuine\n")) print(user) if (user == 0): genuine = False else: genuine =True score = 0 count = 1 for n in randomNums: ans,options = getOptions(n) #print(ans) # This is where we normaly print the answer for debugging for o in options: print(count,". ",o) count = count+1 userAns=int(input("input answer here: ")) # Utilize Switch CasegetOptions(n) if genuine: user = 'genuine' else: user = 'imposter' Q_Num = n + 1 file = open('../raw_scores/question' + str(Q_Num) + '_' + user + '.csv','a') writer = csv.writer(file) if ans == options[userAns-1]: score = score + 1 Qdata = [1] writer.writerow(Qdata) else: Qdata = [0] writer.writerow(Qdata) file.close() count = 1 if genuine: user = 'genuine' else: user = 'imposter' # This will write the score to the appropriate file scores = [score] file = open('../raw_scores/survey_score_'+user+'.csv','a') writer = csv.writer(file) writer.writerow(scores) file.close() #------------------------------------------------------------------------------ This is where the data analysis goes-------------------------------------------# ''' ''' This section of code is to to produce the False Reject Rate, The False Acceptance Rate, and True Reject Rate, True Accept Rate for the total system as well as analysis on each question''' ''' # Generate genuine and imposter scores with the seed at 1 genuine_scores = pd.read_csv('../raw_scores/survey_score_genuine.csv') imposter_scores = pd.read_csv('../raw_scores/survey_score_imposter.csv') Q1_gen = pd.read_csv('../raw_scores/question1_genuine.csv') Q1_imp = pd.read_csv('../raw_scores/question1_imposter.csv') Q2_gen = pd.read_csv('../raw_scores/question2_genuine.csv') Q2_imp = pd.read_csv('../raw_scores/question2_imposter.csv') Q3_gen = pd.read_csv('../raw_scores/question3_genuine.csv') Q3_imp = pd.read_csv('../raw_scores/question3_imposter.csv') Q4_gen = pd.read_csv('../raw_scores/question4_genuine.csv') Q4_imp = pd.read_csv('../raw_scores/question4_imposter.csv') Q5_gen = pd.read_csv('../raw_scores/question5_genuine.csv') Q5_imp = pd.read_csv('../raw_scores/question5_imposter.csv') ''' ```
{ "source": "josephperrott/rules_webtesting", "score": 2 }
#### File: web/versioned/browsers-0.3.2.bzl ```python load("//web/internal:platform_http_file.bzl", "platform_http_file") def browser_repositories(firefox = False, chromium = False, sauce = False): """Sets up repositories for browsers defined in //browsers/.... Args: firefox: Configure repositories for //browsers:firefox-native. chromium: Configure repositories for //browsers:chromium-native. sauce: Configure repositories for //browser/sauce:chrome-win10-connect. """ if chromium: org_chromium_chromedriver() org_chromium_chromium() if firefox: org_mozilla_firefox() org_mozilla_geckodriver() if sauce: com_saucelabs_sauce_connect() def com_saucelabs_sauce_connect(): platform_http_file( name = "com_saucelabs_sauce_connect", licenses = ["by_exception_only"], # SauceLabs EULA amd64_sha256 = "6eb18a5a3f77b190fa0bb48bcda4694d26731703ac3ee56499f72f820fe10ef1", amd64_urls = [ "https://saucelabs.com/downloads/sc-4.5.4-linux.tar.gz", ], macos_sha256 = "7dd691a46a57c7c39f527688abd4825531d25a8a1c5b074f684783e397529ba6", macos_urls = [ "https://saucelabs.com/downloads/sc-4.5.4-osx.zip", ], windows_sha256 = "4b2baaeb32624aa4e60ea4a2ca51f7c5656d476ba29f650a5dabb0faaf6cb793", windows_urls = [ "https://saucelabs.com/downloads/sc-4.5.4-win32.zip", ], ) # To update Chromium, do the following: # Step 1: Go to https://omahaproxy.appspot.com/ # Step 2: Look for branch_base_position of current stable releases # Step 3: Go to https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html?prefix=Linux_x64/ etc to verify presence of that branch release for that platform. # If no results, delete the last digit to broaden your search til you find a result. # Step 4: Verify both Chromium and ChromeDriver are released at that version. # Step 5: Update the URL to the new release. def org_chromium_chromedriver(): platform_http_file( name = "org_chromium_chromedriver", licenses = ["reciprocal"], # BSD 3-clause, ICU, MPL 1.1, libpng (BSD/MIT-like), Academic Free License v. 2.0, BSD 2-clause, MIT amd64_sha256 = "c8b8be2fc6835bd3003c16d73b9574242e215e81e9b3e01d6fed457988d052f4", amd64_urls = [ "https://commondatastorage.googleapis.com/chromium-browser-snapshots/Linux_x64/870763/chromedriver_linux64.zip", ], macos_sha256 = "ad36367b3cfa825ec5528954ef07408e66d7873fa59aa8917f6893a8c062034b", macos_urls = [ "https://commondatastorage.googleapis.com/chromium-browser-snapshots/Mac/870776/chromedriver_mac64.zip", ], windows_sha256 = "038624e31c327c40df979d699e7c1bba0f322025277f9c875266258169a56faa", windows_urls = [ "https://commondatastorage.googleapis.com/chromium-browser-snapshots/Win/870788/chromedriver_win32.zip", ], ) def org_chromium_chromium(): platform_http_file( name = "org_chromium_chromium", licenses = ["notice"], # BSD 3-clause (maybe more?) amd64_sha256 = "3a2ae26b7cc56018ea3435bbe22470a82c26340aac72330d6a87555bc3946ab1", amd64_urls = [ "https://commondatastorage.googleapis.com/chromium-browser-snapshots/Linux_x64/870763/chrome-linux.zip", ], macos_sha256 = "667be4bd866e14b38fdb1b4d1f4c04b4f86e1af710082c30f78c3c5b52e5a34d", macos_urls = [ "https://commondatastorage.googleapis.com/chromium-browser-snapshots/Mac/870776/chrome-mac.zip", ], windows_sha256 = "c0ef527ab7e4776b43da164b96969350cc87f1d18de2f6dfc6b74781092fcce5", windows_urls = [ "https://commondatastorage.googleapis.com/chromium-browser-snapshots/Win/870788/chrome-win.zip", ], ) def org_mozilla_firefox(): platform_http_file( name = "org_mozilla_firefox", licenses = ["reciprocal"], # MPL 2.0 amd64_sha256 = "284f58b5ee75daec5eaf8c994fe2c8b14aff6c65331e5deeaed6ba650673357c", amd64_urls = [ "https://ftp.mozilla.org/pub/firefox/releases/68.0.2/linux-x86_64/en-US/firefox-68.0.2.tar.bz2", ], macos_sha256 = "173440ca6147c6e1eebbe36f332da2c4347e37269152ad55c431f6b0d7078862", macos_urls = [ "https://ftp.mozilla.org/pub/firefox/releases/68.0.2/mac/en-US/Firefox%2068.0.2.dmg", ], ) def org_mozilla_geckodriver(): platform_http_file( name = "org_mozilla_geckodriver", licenses = ["reciprocal"], # MPL 2.0 amd64_sha256 = "03be3d3b16b57e0f3e7e8ba7c1e4bf090620c147e6804f6c6f3203864f5e3784", amd64_urls = [ "https://github.com/mozilla/geckodriver/releases/download/v0.24.0/geckodriver-v0.24.0-linux64.tar.gz", ], macos_sha256 = "4739ef8f8af5d89bd4a8015788b4dc45c2f5f16b2fdc001254c9a92fe7261947", macos_urls = [ "https://github.com/mozilla/geckodriver/releases/download/v0.26.0/geckodriver-v0.26.0-macos.tar.gz", ], ) ```
{ "source": "josephquang97/py4e03", "score": 3 }
#### File: josephquang97/py4e03/test_assignment.py ```python import pytest from main import calculate_price @pytest.mark.parametrize( "hours, rate, expected", [ (39, 3, 117.0), (40, 3, 120.0), (41, 3, 124.5), (45, 3, 142.5), (45, 2.75, 130.625), ], ) def test_price(hours, rate, expected): result = calculate_price(hours, rate) assert result == expected ```
{ "source": "josephquang97/pymemapi", "score": 3 }
#### File: pymemapi/tests/test_PyMemAPI.py ```python import sqlite3 from PyMemAPI import __version__ from PyMemAPI import Memrise, SQLite, Course from PyMemAPI.exception import LoginError, InvalidSeperateElement, AddBulkError, AddLevelError, InputOutOfRange, LanguageError import unittest from pytest import MonkeyPatch # Test version def test_version(): assert __version__ == "0.1.0" # Test Memrise features CLIENT = Memrise() COURSE: Course class TestMemrise(unittest.TestCase): def setUp(self): self.monkeypatch = MonkeyPatch() def test_login_fail(self): with self.assertRaises(LoginError): CLIENT.login("testingerror", "nopassword") def test_select_course(self): user = {"Enter username: ":"dummy_user", "Enter password: ":"<PASSWORD>"} # self.monkeypatch.setattr("builtins.input", lambda msg: user[msg]) # self.monkeypatch.setattr("getpass.getpass", lambda msg: user[msg]) success = CLIENT.login("dummy_user","testing2022") if success is True: responses = {"Make your choice: ": "1"} self.monkeypatch.setattr("builtins.input", lambda msg : responses[msg]) global COURSE COURSE = CLIENT.select_course() COURSE.delete_all_level() assert COURSE.name == "Testing Course" else: assert success # Unit test for Course class TestCourse(unittest.TestCase): def test_addlevel_with_bulk(self): global COURSE success = COURSE.add_level_with_bulk("Test Level", "Hello\tXinChao", "\t") self.assertEqual(success, True) def test_delete_level(self): global COURSE level_id, headers = COURSE.add_level() success = COURSE.delete_level(level_id) self.assertEqual(success, True) def test_move_level(self): global COURSE success = COURSE.move_level(1,2) self.assertEqual(1,1) def test_update_external_language(self): global COURSE COURSE._update_audio_external("en") self.assertEqual(1,1) # Test the Exceptions class TestException(unittest.TestCase): def setUp(self): self.monkeypatch = MonkeyPatch() # When the seperate item is different from "tab" or "comma". def test_InvalidSeperateElement(self): global COURSE with self.assertRaises(InvalidSeperateElement): success = COURSE.add_level_with_bulk("Test Level", "Hello\tXinChao", "a") # When the user requests unsupport languages generate audio -> Handled # This testcase will failed in Linux def test_LanguageError(self): global COURSE responses = { "Choose the voice number 1: ": "1", "Enter the number of voices you wish: ": "1", } self.monkeypatch.setattr("builtins.input", lambda msg : responses[msg]) COURSE.update_audio("unvalid language") # Raise Exception for Coverage def test_AddLevelException(self): with self.assertRaises(AddLevelError): raise AddLevelError(id="1",message="Test") # Raise Exception for Coverage def test_AddBulkException(self): with self.assertRaises(AddBulkError): raise AddBulkError(id="1",message="Test") def test_InputOutOfRangeException(self): with self.assertRaises(InputOutOfRange): responses = {"Make your choice: ": "99"} self.monkeypatch.setattr("builtins.input", lambda msg : responses[msg]) CLIENT.select_course() def test_TypeError(self): global COURSE success = COURSE.add_level_with_bulk("Test Level", "Hello\tXinChao", "\t") level = (COURSE.levels())[0] word = (level.get_words())[0] with self.assertRaises(TypeError): word.upload_audio(1) # Test SQLite # This case test for Windows def test_sync_database(db_conn,cmd): cur: sqlite3.Cursor = db_conn.cursor() cur.executescript(cmd) cur.close() db_conn.commit() global COURSE COURSE.sync_database("./course/course.db") level = (COURSE.levels())[-1] assert (level.name=="I can't say for sure") def test_remove_audio(): global COURSE level = (COURSE.levels())[-1] words = level.get_words() for word in words: word.remove_audio() word.upload_audio("./audio/audio.mp3") with open("./audio/audio.mp3","rb") as fp: audio = fp.read() word.upload_audio(audio) assert (1==1) class TestSQLite(unittest.TestCase): def test_SQLite_topic_to_bulk(self): with self.assertRaises(Exception): db = SQLite("./course/course.db") db.update_ipas() db.update_trans(src="en",dest="vi") db.topic_to_bulk(1,external=True) db.conn.close() def test_SQLite_topic_to_bulk2(self): db = SQLite("./course/course.db") bulk = db.topic_to_bulk(1,external=True,language="en") self.assertIsInstance(bulk,str) def test_ExceptionLanguageError(self): with self.assertRaises(LanguageError): db = SQLite("./course/course.db") db.topic_to_bulk(1,external=True,language="fr") db.conn.close() ```
{ "source": "josephramsay/LDSAPI", "score": 2 }
#### File: LDSAPI/APIInterface/LDSAPI.py ```python import shlex from abc import ABC, abstractmethod #, ABCMeta import json import re import os import datetime as DT import time import base64 #from http.client import HTTPMessage from six.moves.http_client import HTTPMessage from six.moves import http_cookiejar as cjar from six.moves.urllib import request #from six.moves.urllib import parse as ul1 from six.moves.urllib.parse import urlparse, urlencode from six.moves.urllib.error import URLError from six.moves.urllib.error import HTTPError from six.moves.urllib.request import Request from six import string_types try: from LDSUtilityScripts.LinzUtil import LogManager, Authentication, LDS except ImportError: from LinzUtil import LogManager, Authentication, LDS try: from http.client import RemoteDisconnected as HttpResponseError except ImportError: from http.client import BadStatusLine as HttpResponseError #from Main import CReader #request = ul2.Request("http://api.foursquare.com/v1/user") #base64string = base64.encodestring('%s:%s' % (username, password)).replace('\n', '') #request.add_header("Authorization", "Basic %s" % base64string) #result = ul2.urlopen(request) REDIRECT = False SLEEP_TIME = 5*60 SLEEP_RETRY_INCR = 5 MAX_RETRY_ATTEMPTS = 10 INIT_MAX_RETRY_ATTEMPTS = 10 KEYINDEX = 0 LM = LogManager() LM.register() class LDSAPI(ABC): #class LDSAPI(object): # __metaclass__ = ABCMeta __sec = 'LDSAPI Wrapper' sch = None sch_def = 'https' url = {'lds-l': 'data.linz.govt.nz', 'lds-t': 'data-test.linz.govt.nz', 'mfe-t': 'mfe.data-test.linz.govt.nz', 'apiary': 'private-cbd7-koordinates.apiary.io', 'koordinates': 'koordinates.com', 'ambury': 'ambury-ldsl.kx.gd'} url_def = 'lds-l' pxy = {'linz': 'webproxy1.ad.linz.govt.nz:3128', 'local': '127.0.0.1:3128', 'noproxy':':'} pxy_def = 'noproxy' ath = {'key':'.apikey3',#'api_llckey', 'basic':'.credentials'} ath_def = 'key' def __init__(self):#, creds, cfile): self.cookies = cjar.LWPCookieJar() #// self.setProxyRef(self.pxy_def) # cant set auth because we dont know yet what auth type to use, doesnt make sense to set up on default # self.setAuthentication(creds, self.ath[self.ath_def], self.ath_def) self.scheme = self.sch_def self.auth = None self.head = {} @abstractmethod def setParams(self): '''abstract host/path setting method''' pass def setCommonParams(self,scheme=None,host=None,fmt='json',sec=None,pth=None,url=None): '''Assigns path/host params or tries to extract them from a url''' self.fmt = fmt if url: p = urlparse(url) self.scheme = p.scheme self.host = p.netloc self.path = p.path return if pth: self.path = self.path_ref[sec][pth]+'?format={0}'.format(self.fmt) if host: self.host = super(DataAPI, self).url[host] self.scheme = scheme or self.sch_def def setProxyRef(self, pref): #proxy = ul2.ProxyHandler({'http': self.pxy[pref]}) #self.openerstrs_ntlm = ul2.build_opener(proxy) self.pref = pref self.openerstrs_ntlm = self.pxy[pref] def setAuthentication(self, creds, cfile, auth): self.ath = {auth:self.ath[auth]} if auth == 'basic': self._setBasicAuth(creds, cfile) elif auth == 'key': self._setKeyAuth(creds, cfile) else: LM.err('Auth error. Need key/basic specifier',LM._LogExtra('LDSAPI','sA')) raise Exception('Incorrect auth configuration supplied') def _setBasicAuth(self,creds,cfile): self.setCredentials(creds(cfile)) self._setRequestAuth("Basic {0}".format(self.b64a)) def _setKeyAuth(self,creds,cfile): self._setRequestKey(creds(cfile)) self._setRequestAuth("key {0}".format(self.key)) def setCredentials(self, creds): if type(creds) is dict: self.usr, self.pwd, self.dom = [creds[i] for i in 'upd'] else: self.usr = 'pp' #self.usr, self.pwd, self.dom = (*creds,None,None)[:3] #only since py3.5 self.usr, self.pwd, self.dom = (creds+(None,None))[:3] self.b64a = LDSAPI.encode_auth( {'user': self.usr, 'pass': <PASSWORD>, 'domain': self.dom} if self.dom and self.dom != 'WGRP' else {'user': self.usr, 'pass': <PASSWORD>} ) #--------------------------------------------------------------------------- def _setRequestKey(self, creds): self.key = creds['k'] if type(creds) is dict else creds def _setRequestAuth(self,auth): self.auth = auth def setRequest(self,req): if isinstance(req,string_types): self.req_str = req self.req = Request(req) else: self.req_str = req.full_url self.req = req def _setRequestData(self,data): self.data = data def _setRequestInfo(self,info): self.info = info def _setRequestHead(self,name,val): self.head[name] = val def addRequestHeader(self,name,head): self.req.add_header(name,head) def addRequestData(self,data=None): self.req.add_data(data if data else self.data) def getRequest(self): return self.req def getRequestStr(self,mask = True): return LDS.kmask(self.req_str) if mask else self.req_str #--------------------------------------------------------------------------- def setResponse(self,res): self.res = res self._setResponseData(res.read()) self._setResponseInfo(res.info()) self._setResponseURL(res.geturl()) self._setResponseHead(LDSAPI.parseHeaders(self.info._headers) if hasattr(self.info,'_headers') else None) def _setResponseData(self,respdata): self.respdata = respdata def _setResponseHead(self,head): self.head = head def _setResponseInfo(self,info): self.info = info def _setResponseURL(self,url): self.url = url def getResponse(self): return {'info':self.respinfo,'head':self.resphead,'data':self.respdata} #--------------------------------------------------------------------------- def setExteralLogManager(self,lm): global LM LM = lm @staticmethod def parseHeaders(head): # ['Server: nginx\r\n', # 'Date: Wed, 14 May 2014 20:59:22 GMT\r\n', # 'Content-Type: application/json\r\n', # 'Transfer-Encoding: chunked\r\n', # 'Connection: close\r\n', # 'Vary: Accept-Encoding\r\n', # 'Link: <https://data.linz.govt.nz/services/api/v1/layers/?sort=name&kind=raster&format=json>; # rel="sort-name", # <https://data.linz.govt.nz/services/api/v1/layers/?sort=-name&kind=raster&format=json>; # rel="sort-name-desc", # <https://data.linz.govt.nz/services/api/v1/layers/?kind=raster&page=1&format=json>; # rel="page-previous", # <https://data.linz.govt.nz/services/api/v1/layers/?kind=raster&page=3&format=json>; # rel="page-next", # <https://data.linz.govt.nz/services/api/v1/layers/?kind=raster&page=4&format=json>; # rel="page-last"\r\n', # 'Allow: GET, POST, HEAD, OPTIONS\r\n', # 'Vary: Accept,Accept-Encoding\r\n', # 'X-K-gentime: 0.716\r\n'] h={} relist = {'server':'Server:\s(.*)\r\n', 'date':'Date:\s(.*)\r\n', 'content-type':'Content-Type:\s(.*)\r\n', 'transfer-encoding':'Transfer-Encoding:\s(.*)\r\n', 'connection':'Connection:\s(.*)\r\n', 'vary':'Vary:\s(.*)\r\n', 'link':'Link:\s(.*)\r\n', 'vary-acc':'Vary:\s(.*?)\r\n', 'x-k-gentime':'X-K-gentime:\s(.*?)\r\n', 'oauth-scopes':'OAuth-Scopes:\s(.*?)\r\n'} if isinstance(head,HTTPMessage): for k in relist.keys(): s = [i[1] for i in head._headers if i[0].lower()==k] if s: h[k] = s[0] elif isinstance(head,string_types): for k in relist.keys(): s = re.search(relist[k],'|'.join(head)) if s: h[k] = s.group(1) elif isinstance(head,list): for k in relist.keys(): s = [i[1] for i in head if i[0].lower()==k] if s: h[k] = s[0] # --------------------- #Pull apart link string, if its available lnlist = {'sort-name':'<(http.*?)>;\s+rel="sort-name"', 'sort-name-desc':'<(http.*?)>;\s+rel="sort-name-desc"', 'page-previous':'<(http.*?)>;\s+rel="page-previous"', 'page-next':'<(http.*?)>;\s+rel="page-next"', 'page-last':'<(http.*?)>;\s+rel="page-last"'} link = h['link'].split(',') if 'link' in h else [] for ref in link: for rex in lnlist.keys(): s = re.search(lnlist[rex],ref) if s: if 'page' in rex: p = re.search('page=(\d+)',s.group(1)) h[rex] = {'u':s.group(1),'p':int(p.group(1)) if p else None} else: h[rex] = s.group(1) continue return h def opener(self,purl,puser=None,ppass=None,pscheme=('http','https')): if REDIRECT: h1,h2 = REDIRECT.BindableHTTPHandler,REDIRECT.BindableHTTPSHandler else: h1,h2 = request.HTTPHandler, request.HTTPSHandler handlers = [h1(), h2(), request.HTTPCookieProcessor(self.cookies)] if self.pref != 'noproxy' and purl and len(purl)>1: #if not noproxy and a proxy url is provided (and its not the placeholder url ie noproxy=':') add a handler handlers += [request.ProxyHandler({ps:purl for ps in pscheme}),] #handlers += [request.ProxyHandler({ps:purl}) for ps in pscheme] if puser and ppass: #if proxy user/pass provided and a proxy auth handler pm = request.HTTPPasswordMgrWithDefaultRealm() pm.add_password(None, purl, puser, ppass) handlers += [request.ProxyBasicAuthHandler(pm),] return request.build_opener(*handlers) def connect(self, plus='', head=None, data={}, auth=None): '''URL connection wrapper, wraps URL strings in request objects, applying selected openers''' #self.path='/services/api/v1/layers/{id}/versions/{version}/import/' self.setRequest('{0}://{1}{2}{3}'.format(self.scheme,self.host, self.path, plus)) # Add user header if provided if head: self._setRequestHead(head) self.addRequestHeader(shlex.split(head)[0].strip("(),"),shlex.split(head)[1].strip("(),")) if auth: self._setRequestAuth(auth) self.addRequestHeader("Authorization", auth) # Add user data if provided if data: #or true #for testing #NB. adding a data component in request switches request from GET to POST data = urlencode(data) self._setRequestData(data) self.addRequestData(data) return self.conn(self.getRequest()) def conn(self,req): '''URL connection wrappercatching common exceptions and retrying where necessary param: connreq can be either a url string or a request object ''' sr = self.__sec,'Connection Manager' self.setRequest(req) req_str = self.getRequestStr() #if self.auth is set it should have been added to the request header... might be legacy where that hasn't happened if self.auth: self.addRequestHeader("Authorization", self.auth) request.install_opener(self.opener(purl=self.openerstrs_ntlm)) retry = INIT_MAX_RETRY_ATTEMPTS while retry>0: retry -= 1 try: handle = request.urlopen(self.getRequest())#,data) if handle: if handle.geturl()!=req_str: msg = 'Redirect Warning' #cannot easily mask redirected url so logging original LM.info(msg,LM._LogExtra(*sr,exc=None,url=req_str,rty=0)) return handle #self.setResponse(handle) #break except HTTPError as he: last_exc = he if re.search('429',str(he)): msg = 'RateLimit Error {0}. Sleep awaiting 429 expiry. Attempt {1}'.format(he,MAX_RETRY_ATTEMPTS-retry) LM.error(msg,LM._LogExtra(*sr,exc=he,url=req_str,rty=retry)) LDSAPI.sleepIncr(retry) continue elif retry: # I'm leaving this code here to test with because LDS was # somehow throwing exceptions as well as redirecting # #if re.search('301',str(he)): # msg = 'Redirect Error {0}'.format(he) # #if we have a valid response and its a 301 see if it contains a redirect-to # if handle and handle.geturl(): # retry = 1 # self.setRequest(handle.geturl()) #TODO reauth? # msg += '. Attempting alternate connect' # else: # retry = 0 # LM.error(msg,LM._LogExtra(*sr,exc=he,url=self.getRequestStr(),rty=0)) # continue if re.search('401|500',str(he)): msg = 'HTTP Error {0} Returns {1}. Attempt {2}'.format(req_str,he,MAX_RETRY_ATTEMPTS-retry) LM.error(msg,LM._LogExtra(*sr,exc=he,url=req_str,rty=retry)) continue elif re.search('403',str(he)): msg = 'HTTP Error {0} Returns {1}. Attempt {2} (consider proxy)'.format(req_str,he,MAX_RETRY_ATTEMPTS-retry) LM.error(msg,LM._LogExtra(*sr,exc=he,url=req_str,rty=retry)) continue elif re.search('502',str(he)): msg = 'Proxy Error {0} Returns {1}. Attempt {2}'.format(req_str,he,MAX_RETRY_ATTEMPTS-retry) LM.error(msg,LM._LogExtra(*sr,exc=he,url=req_str,rty=retry)) continue elif re.search('410',str(he)): msg = 'Layer removed {0} Returns {1}. Attempt {2}'.format(req_str,he,MAX_RETRY_ATTEMPTS-retry) LM.error(msg,LM._LogExtra(*sr,exc=he,url=req_str,rty=retry)) retry = 0 continue else: msg = 'Error with request {0} returns {1}'.format(req_str,he) LM.error(msg,LM._LogExtra(*sr,exc=he,url=req_str,rty=retry)) continue else: #Retries have been exhausted, raise the active httpexception raise HTTPError(he.msg+msg) except HttpResponseError as rd: LM.warning('Disconnect. {}'.format(rd), LM._LogExtra(*sr,exc=rd,url=req_str,rty=retry)) LDSAPI.sleepIncr(retry) continue except URLError as ue: LM.warning('URL error on connect {}'.format(ue), LM._LogExtra(*sr,exc=ue,url=req_str,rty=retry)) if re.search('Connection refused|violation of protocol',str(ue)): LDSAPI.sleepIncr(retry) continue #raise ue except ConnectionError as ce: LM.warning('Error on connection. {}'.format(ce), LM._LogExtra(*sr,exc=ce,url=req_str,rty=retry)) LDSAPI.sleepIncr(retry) continue except ValueError as ve: LM.error('Value error on connect {}'.format(ve),LM._LogExtra(*sr,exc=ve,url=req_str,rty=retry)) raise ve except Exception as xe: LM.error('Other error on connect {}'.format(xe),LM._LogExtra(*sr,exc=xe,url=req_str,rty=retry)) raise xe else: raise last_exc #except Exception as e: # print e # def _testalt(self,ref='basic'): # p = os.path.join(os.path.dirname(__file__),cxf or LDSAPI.ath[ref]) # self.setAuthentication(Authentication.creds,p, ref) @staticmethod def encode_auth(auth): '''Build and b64 encode a http authentication string. [Needs to be bytes str, hence en/decode()]''' if 'domain' in auth: astr = '{d}\{u}:{p}'.format(u=auth['user'], p=auth['pass'], d=auth['domain']).strip().encode() else: astr = '{u}:{p}'.format(u=auth['user'], p=auth['pass']).strip().encode() return base64.b64encode(astr).decode() def fetchPages(self,psub=''): sr = self.__sec,'Page fetch' upd = [] page = 0 pagel = None morepages = True while morepages: page = page + 1 pstr = psub+'&page={0}'.format(page) try: res = self.connect(plus=pstr) if res: self.setResponse(res) else: raise HTTPError('No Response using URL {}'.format(pstr)) #api.dispReq(api.req) #api.dispRes(api.res) except HTTPError as he: LM.error('HTTP Error on page fetch {}'.format(he),LM._LogExtra(*sr,exc=he,url=pstr)) morepages = False raise #continue except Exception as e: #Outer catch of unknown errors LM.error('Error on page fetch {}'.format(he),LM._LogExtra(*sr,exc=he,url=pstr)) raise # The logic here is a bit redundant but basically if no last page found then its prob the last page # otherwise save the last page value and compare to current page. If they're equal get off loop if 'page-last' in self.head: pagel = self.head['page-last']['p'] else: morepages = False if page == pagel: morepages = False jdata = json.loads(self.respdata.decode()) upd += [jdata,] if isinstance(jdata,dict) else jdata return upd @staticmethod def sleepIncr(r): t = (INIT_MAX_RETRY_ATTEMPTS-r)*SLEEP_RETRY_INCR print('tock' if t%2 else 'tick',t,'{}/{}'.format(r,INIT_MAX_RETRY_ATTEMPTS)) time.sleep(t) @staticmethod def dispReq(req): print ('Request\n-------\n') print (LDS.kmask(req.get_full_url()),'auth',req.get_header('Authorization')) @staticmethod def dispRes(res): print ('Response\n--------\n') print (res.info()) @staticmethod def dispJSON(res): for l in json.loads(res.read()): print ('{0} - {1}\n'.format(l[0],l[1])) @staticmethod def _populate(data): return json.dumps({"name": data[0],"type": data[1],"description": data[2], "categories": data[3], "user": data[4], "options":{"username": data[5],"password": data[6]}, "url_remote": data[7],"scan_schedule": data[8]}) # GET # /services/api/v1/data/ # Read-only, filterable list views. # GET # /services/api/v1/layers/ # Filterable views of layers (at layers/) and tables (at tables/) respectively. # POST # /services/api/v1/layers/ # Creates a new layer. All fields except name and data.datasources are optional. # GET # /services/api/v1/layers/drafts/ # A filterable list views of layers (layers/drafts/) and and tables (tables/drafts/) respectively, similar to /layers/ and /tables/. This view shows the draft version of each layer or table #--------------------------------DataAccess # GET # /services/api/v1/layers/{id}/ # Displays details of a layer layers/{id}/ or a table tables/{id}/. # POST # /services/api/v1/layers/{id}/versions/ # Creates a new draft version, accepting the same content as POST layers/. # GET # /services/api/v1/layers/{id}/versions/draft/ # Get a link to the draft version for a layer or table. # GET # /services/api/v1/layers/{id}/versions/published/ # Get a link to the current published version for a layer or table. # GET # /services/api/v1/layers/{id}/versions/{version}/ # Get the details for a specific layer or table version. # PUT # /services/api/v1/layers/{id}/versions/{version}/ # Edits this draft layerversion. If it's already published, a 405 response will be returned. # POST # /services/api/v1/layers/{id}/versions/{version}/import/ # Starts importing this draft layerversion (cancelling any running import), even if the data object hasn't changed from the previous version. # POST # /services/api/v1/layers/{id}/versions/import/ # A shortcut to create a new version and start importing it. # POST # /services/api/v1/layers/{id}/versions/{version}/publish/ # Creates a publish task just for this version, which publishes as soon as any import is complete. # DELETE # /services/api/v1/layers/{id}/versions/{version}/ class DataAPI(LDSAPI): path_ref = {'list': {'dgt_data' :'/services/api/v1/data/', 'dgt_layers' :'/services/api/v1/layers/', 'dgt_tables' :'/services/api/v1/tables/', 'dgt_groups' :'/services/api/v1/groups', 'dgt_users' :'/services/api/v1/users', 'dpt_layers' :'/services/api/v1/layers/', 'dpt_tables' :'/services/api/v1/tables/', 'dpt_groups' :'/services/api/v1/groups', 'dpt_users' :'/services/api/v1/users', 'dgt_draftlayers' :'/services/api/v1/layers/drafts/', 'dgt_drafttables' :'/services/api/v1/tables/drafts/'}, 'detail': {'dgt_layers' :'/services/api/v1/layers/{id}/', 'dgt_tables' :'/services/api/v1/tables/{id}/', 'dgt_groups' :'/services/api/v1/groups/{id}/', 'dgt_users' :'/services/api/v1/users/{id}/', 'ddl_delete' :'/services/api/v1/layers/{id}/'}, 'access': {'dgt_permissions' :'/services/api/v1/layers/{id}/permissions/'}, 'version': {'dgt_version' :'/services/api/v1/layers/{id}/versions/', 'dpt_version' :'/services/api/v1/layers/{id}/versions/', 'dgt_draftversion' :'/services/api/v1/layers/{id}/versions/draft/', 'dgt_publicversion':'/services/api/v1/layers/{id}/versions/published/', 'dgt_versioninfo' :'/services/api/v1/layers/{id}/versions/{version}/', 'dpu_draftversion' :'/services/api/v1/layers/{id}/versions/{version}/', 'dpt_importversion':'/services/api/v1/layers/{id}/versions/{version}/import/', 'dpt_publish' :'/services/api/v1/layers/{id}/versions/{version}/publish/', 'ddl_delete' :'/services/api/v1/layers/{id}/versions/{version}/'}, 'publish': {'dpt_publish' :'/services/api/v1/publish/', 'dgt_publish' :'/services/api/v1/publish/{id}/', 'ddl_delete' :'/services/api/v1/publish/{id}/'}, 'permit':{}, 'metadata': {'dgt_metadata' :'/services/api/v1/layers/{id}/metadata/', 'dgt_metaconv' :'/services/api/v1/layers/{id}/metadata/{type}/', 'dgt_metaorig' :'/services/api/v1/layers/{id}/versions/{version}/metadata/', 'dgt_metaconvver' :'/services/api/v1/layers/{id}/versions/{version}/metadata/{type}/'}, 'unpublished': {'dgt_users':'/services/api/v2/users/'}#this of course doesn't work } def __init__(self): super(DataAPI,self).__init__() def setParams(self, sec='list', pth='dgt_data', host=LDSAPI.url_def, fmt='json', id=None, version=None, type=None): super(DataAPI,self).setCommonParams(host=host,fmt=fmt,sec=sec,pth=pth) if id and re.search('{id}',self.path): self.path = self.path.replace('{id}',str(id)) if version and re.search('{version}',self.path): self.path = self.path.replace('{version}',str(version)) if type and re.search('{type}',self.path): self.path = self.path.replace('{type}',str(type)) #self.host = super(DataAPI, self).url[host] class SourceAPI(LDSAPI): path_ref = {'list': {'sgt_sources':'/services/api/v1/sources/', 'spt_sources':'/services/api/v1/sources/'}, 'detail': {'sgt_sources':'/services/api/v1/sources/{id}/', 'spt_sources':'/services/api/v1/sources/{id}/'}, 'metadata': {'sgt_metadata':'/services/api/v1/sources/{id}/metadata/', 'spt_metadata':'/services/api/v1/sources/{id}/metadata/', 'spt_metatype':'/services/api/v1/sources/{id}/metadata/{type}/'}, 'scans': {'sgt_scans':'/services/api/v1/sources/{source-id}/', 'spt_scans':'/services/api/v1/sources/{source-id}/', 'sgt_scanid':'/services/api/v1/sources/{source-id}/scans/{scan-id}/', 'sdt_scandelete':'/services/api/v1/sources/{source-id}/scans/{scan-id}/', 'sgt_scanlog':'/services/api/v1/sources/{source-id}/scans/{scan-id}/log/'}, 'datasource': {'sgt_dslist':'/services/api/v1/sources/{source-id}/datasources/', 'sgt_dsinfo':'/services/api/v1/sources/{source-id}/datasources/{datasource-id}/', 'sgt_dsmeta':'/services/api/v1/sources/{source-id}/datasources/{datasource-id}/metadata/', }, 'groups': {'sgt_groups':'/services/api/v1/groups/', 'sgt_groupid':'/services/api/v1/groups/{id}/'} } def __init__(self): super(SourceAPI,self).__init__() def setParams(self,sec='list',pth='sgt_sources',host='lds-l',fmt='json',id=None,type=None,source_id=None,scan_id=None,datasource_id=None): super(DataAPI,self).setCommonParams(host=host,fmt=fmt,sec=sec,pth=pth) #insert optional args if available if id and re.search('{id}',self.path): self.path = self.path.replace('{id}',str(id)) if type and re.search('{type}',self.path): self.path = self.path.replace('{type}',str(type)) if source_id and re.search('{source-id}',self.path): self.path = self.path.replace('{source-id}',str(source_id)) if scan_id and re.search('{scan-id}',self.path): self.path = self.path.replace('{scan-id}',str(scan_id)) if datasource_id and re.search('{datasource-id}',self.path): self.path = self.path.replace('{datasource-id}',str(datasource_id)) #self.host = super(SourceAPI,self).url[host] # GET # /services/api/v1/layers/{id}/redactions/ # Displays a detailed list of redactions for the layer. # POST # /services/api/v1/layers{id}/redactions/ # Creates a new redaction for layer {id}. # # Note that start_version <= affected versions <= end_version # primary_key: The primary key(s) for the item being redacted. This should identify a single feature. # start_version: The URL of the first layer version to perform the redaction on. # end_version: (Optional) The URL of the last layer version to perform the redaction on. # new_values: The new values for the row. This can be any subset of fields and only specified fields will be redacted. # message: A message to be stored with the redaction. # GET # /services/api/v1/layers/{id}/redactions/{redaction}/ # Gets information about a specific redaction. class RedactionAPI(LDSAPI): path_ref = {'list': {'rgt_disp' :'/services/api/v1/layers/{id}/redactions/', 'rpt_disp' :'/services/api/v1/layers/{id}/redactions/'}, 'redact': {'rgt_info':'/services/api/v1/layers/{id}/redactions/{redaction}/'} } def __init__(self): super(RedactionAPI,self).__init__() def setParams(self,sec='list',pth='rgt_disp',h='lds-l',fmt='json',id=None,redaction=None): super(DataAPI,self).setCommonParams(host=h,fmt=fmt,sec=sec,pth=pth) #insert optional args if available if id and re.search('{id}',self.path): self.path = self.path.replace('{id}',str(id)) if redaction and re.search('{redaction}',self.path): self.path = self.path.replace('{redaction}',str(redaction)) #self.host = super(RedactionAPI,self).url[h] class APIAccess(object): defs = (LDSAPI.url_def, LDSAPI.pxy_def, LDSAPI.ath_def) def __init__(self, apit, creds, cfile, refs): self.api = apit() # Set a data, src or redact api self.uref,self.pref,self.aref = refs self.api.setProxyRef(self.pref) self.api.setAuthentication(creds, cfile, self.aref) def readLayerPages(self): '''Calls API custom page reader''' self.api.setParams(sec='list',pth=self.lpath,host=self.uref) return self.api.fetchPages() def readAllLayerIDs(self): '''Extracts and returns IDs from reading layer-pages''' return [p['id'] for p in self.readLayerPages() if 'id' in p] def readGroupPages(self): '''Calls API custom page reader''' self.api.setParams(sec='list',pth=self.gpath,host=self.uref) return self.api.fetchPages() def readAllGroupIDs(self): '''Extracts and returns IDs from reading group-pages''' return [p['id'] for p in self.readGroupPages() if 'id' in p] class SourceAccess(APIAccess): '''Convenience class for accessing sourceapi data''' def __init__(self,creds,ap_creds, uref=LDSAPI.url_def, pref=LDSAPI.pxy_def, aref=LDSAPI.ath_def): super(SourceAccess,self).__init__(SourceAPI,creds,ap_creds, (uref, pref, aref)) self.path = 'sgt_sources' #TODO. Implement these functions def writeDetailFields(self): pass def writePermissionFields(self): pass def writeSelectedFields(self): pass def writePrimaryKeyFields(self): pass class RedactionAccess(APIAccess): '''Convenience class for redacting api data''' def __init__(self,creds,ap_creds, uref=LDSAPI.url_def, pref=LDSAPI.pxy_def, aref=LDSAPI.ath_def): super(RedactionAccess,self).__init__(RedactionAPI,creds,ap_creds, (uref, pref, aref)) self.path = 'sgt_sources' #TODO. Implement these functions def redactDetailFields(self): pass def redactPermissionFields(self): pass def redactSelectedFields(self): pass def redactPrimaryKeyFields(self): pass class StaticFetch(): UREF = LDSAPI.url_def PREF = LDSAPI.pxy_def AREF = LDSAPI.ath_def @classmethod def get(cls,uref=None,pref=None,korb=None,cxf=None): '''get requested URL using specified defs''' uref = uref or cls.UREF pref = pref or cls.PREF if isinstance(korb,dict): return cls._get(uref,pref,korb,cxf) elif korb and korb.lower() in ['key','basic']: aref = korb.lower() else: aref = cls.AREF method = (Authentication.creds,cxf or LDSAPI.ath[aref]) if aref=='basic' else (Authentication.apikey,cxf or LDSAPI.ath[aref]) da = DataAccess(*method,uref=uref,pref=pref,aref=aref) return da.api.conn(uref) #return res or da.api.getResponse()['data'] @classmethod def _get(cls,uref=None,pref=None,korb={},cxf=None): '''korb must be a dict containing {'key':'ABC...','up':['user','pass'],'kfile':'apikey','cfile':'creds'}''' kk0 = list(korb.keys())[0] kd = { 'key' :(Authentication.direct,'key'), 'up' :(Authentication.direct,'basic'), 'kfile' :(Authentication.apikey,'key'), 'cfile' :(Authentication.creds, 'basic') } da = DataAccess(kd[kk0][0],korb[kk0],uref=uref,pref=pref,aref=kd[kk0][1]) return da.api.conn(uref) #unnecessary since only classmethods def __enter__(self): return self def __exit__(self, type, value, traceback): pass class DataAccess(APIAccess): '''Convenience class for accessing commonly needed data-api data''' PAGES = ('data','permission','group') LAYER_PAGES = ('data','permission') GROUP_PAGES = ('group',) def __init__(self, creds, cfile, uref=LDSAPI.url_def, pref=LDSAPI.pxy_def, aref=LDSAPI.ath_def): super(DataAccess, self).__init__(DataAPI, creds, cfile, (uref, pref, aref)) self.path = 'dgt_layers' self.lpath = 'dgt_layers' self.gpath = 'dgt_groups' self.ppath = 'dgt_permissions' def _set(self,l,nl=None): '''fetch if value present in path and returns utf encoded''' if nl: for ni in nl: if l and (ni in l or (isinstance(ni,int) and isinstance(l,(list,tuple)))): l = l[ni] else: l = None if isinstance(l, string_types): return l.encode('utf-8') else: return l #if n2: return l[n1][n2].encode('utf8') if n1 in l and n2 in l[n1] else None #else: return l[n1].encode('utf8') if n1 in l else None def readLayerFields(self,i): '''All field from detail layer pages''' self.api.setParams(sec='detail',pth=self.lpath,host='lds-l',id=i) return self.api.fetchPages()[0] def readGroupFields(self,i): '''All field from detail group pages''' self.api.setParams(sec='detail',pth=self.gpath,host='lds-l',id=i) return self.api.fetchPages()[0] def readPermissionFields(self,i,gfilter=True): '''All field from permission pages, filter by group.everyone i.e. accessible''' self.api.setParams(sec='access',pth=self.ppath,host='lds-l',id=i) pge = [p for p in self.api.fetchPages() if not gfilter or p['id']=='group.everyone'] return pge[0] if pge else None def readLayers(self): return self._readFields(idfunc=self.readAllLayerIDs,pagereq=self.LAYER_PAGES) #def readLayers(self): return self._readFields(idfunc=self._testLayerList,pagereq=self.LAYER_PAGES) #def _testLayerList(self): return [52109,51779] def readGroups(self): return self._readFields(idfunc=self.readAllGroupIDs,pagereq=self.GROUP_PAGES) #def readGroups(self): return self._readFields(idfunc=self._testGroupList,pagereq=self.GROUP_PAGES) #def _testGroupList(self): return [2006,2115] def _readFields(self,idfunc,pagereq): '''Read the fields from selected (predefined) pages''' detail,herror = {},{} for i in idfunc(): #print ('WARNING. READING LDS-API-ID SUBSET',i) detail[str(i)],herror[str(i)] = self._readDetail(i,pagereq) return detail,herror def _readDetail(self,i,pr): '''INPROGRESS Attempt to consolidate the readX functions''' dd,he = {},None fun_det = { 'data':(self.readLayerFields, {'id':('id',),'title':('title',),'type':('type',),'group':('group','id'),'kind':('kind',),'cat':('categories',0,'slug'),'crs':('data','crs'),\ 'grp-id':('group','id'),'grp-nm':('group','name'),\ 'lic-id':('license','id'),'lic-ttl':('license','title'),'lic-typ':('license','type'),'lic-ver':('license','version'),\ 'data-crs':('data','crs'),'data-pky':('data','primary_key_fields'),'data-geo':('data','geometry_field'),'data-fld':('data','fields'),\ 'date-pub':('published_at',),'date-fst':('first_published_at',),'date-crt':('created_at',),'date-col':('collected_at',) }), 'permission':(self.readPermissionFields, {'prm-id':('id',),'prm-typ':('permission',),'prm-gid':('group','id',),'prm-gnm':('group','name')}), 'group':(self.readGroupFields, {'grp-id':('id',),'grp-name':('name',),'grp-lyrs':('stats','layers',),'grp-tbls':('stats','tables'),'grp-docs':('stats','documents')}) } for fd in set(fun_det.keys()).intersection(pr): #fetch the requested pages try: d = fun_det[fd][0](i) except HTTPError as he: LM.error('HTTP Error on selectedFields data '+he,LM._LogExtra('LArsf','dhe',xid=i)) return #put the results into a dict try: dd.update( {k:self._set(d,fun_det[fd][1][k]) for k in fun_det[fd][1]} if d else {d:None for d in fun_det[fd][1]} ) #special postprocess if fd == 'data': dd['data-pky'] = self._set(','.join(dd['data-pky'])) dd['data-fld'] = self._set(','.join([f['name'] for f in dd['data-fld']])) except IndexError as ie: #not raising this as an error since it only occurs on 'test' layers msg = '{0}. Index error getting {1},{2}'.format(ie,d['id'],d['name']) LM.error(msg,LM._LogExtra('LArsf','die',xid=i)) except TypeError as te: msg = '{0}. Type error on layer {1}/{2}'.format(te,d['id'],d['name']) LM.error(msg,LM._LogExtra('LArsf','dte',xid=i)) return except Exception as e: msg = '{0}. Error on layer {1}/{2}'.format(e,d['id'],d['name']) LM.error(msg,LM._LogExtra('LArsf','de',xid=i)) raise return dd,he # def _readDetailGroup(self,i): # he = None # try: # #returns the permissions for group.everyone only # g = self.readGroupFields(i) # except HTTPError as he: # LM.error('HTTP Error on selectedFields group '+he,LM._LogExtra('LArsf','phe',xid=i)) # return # # try: # gx = {'grp-name':('name',),'grp-lyrs':('stats','layers',),'grp-tbls':('group','tables'),'grp-docs':('group','documents')} # gg = {k:self._set(g,gx[k]) for k in gx} if g else {g:None for g in gx} # # except IndexError as ie: # #not raising this as an error since it only occurs on 'test' layers # msg = '{0} error getting {1},{2}'.format(ie,i,g['name']) # LM.error(msg,LM._LogExtra('LArsf','gie',xid=i)) # except TypeError as te: # msg = '{0} error on layer {1}/{2}'.format(te,i,g['name']) # LM.error(msg,LM._LogExtra('LArsf','gte',xid=i)) # return # except Exception as e: # msg = '{0} error on layer {1}/{2}'.format(e,g['id'],g['name']) # LM.error(msg,LM._LogExtra('LArsf','ge',xid=i)) # raise # # return gg,he def _readSummaryPages2(self,pagereq=('data','group')): '''IN_PROGRESS Sometimes we don't need to get the detail pages. Just extract the summary''' detail = {} herror = {} if 'data' in pagereq: d,dh = self._readSummaryData() detail.update(d) if dh: herror += dh if 'group' in pagereq: d,dh = self._readSummaryGroup() detail.update(d) if dh: herror += dh return detail,herror def readPrimaryKeyFields(self): '''Read PrimaryKey field from detail pages''' res,_ = self.readLayers(pagereq=('data',)) return res '''Copied from LDSChecker for availability''' # class AuthenticationException(Exception):pass # class Authentication(object): # '''Static methods to read keys/user/pass from files''' # # @staticmethod # def apikey(keyfile,kk='key',keyindex=None): # '''Returns current key from a keyfile advancing KEYINDEX on subsequent calls (if ki not provided)''' # global KEYINDEX # key = Authentication.searchfile(keyfile,'{0}'.format(kk)) # if key: return key # key = Authentication.searchfile(keyfile,'{0}{1}'.format(kk,keyindex or KEYINDEX)) # if not key and not keyindex: # KEYINDEX = 0 # key = Authentication.searchfile(keyfile,'{0}{1}'.format(kk,KEYINDEX)) # elif not keyindex: # KEYINDEX += 1 # return key # # @staticmethod # def direct(value): # '''Returns arg for cases where user just wants to submit a key/userpass directly''' # return value # # @staticmethod # def creds(cfile): # '''Read CIFS credentials file''' # return (Authentication.searchfile(cfile,'username'),\ # Authentication.searchfile(cfile,'password'),\ # Authentication.searchfile(cfile, 'domain')) # # @staticmethod # def userpass(cfile): # return creds(cfile)[:2] # # #@staticmethod # #def userpass(upfile): # # return (Authentication.searchfile(upfile,'username'),Authentication.searchfile(upfile,'password')) # # @staticmethod # def searchfile(spf,skey,default=None): # '''Given a file name incl path look for the file in the provided path, the home dir and # the current dir then checks this file for the key/val named in skey''' # #value = default # #look in current then app then home # sp,sf = os.path.split(spf) # spath = (sp,'',os.path.expanduser('~'),os.path.dirname(__file__)) # verified = [os.path.join(p,sf) for p in spath if os.path.lexists(os.path.join(p,sf))] # if not verified: # LM.error('Cannot find file '+sf,LM._LogExtra('LAAs','sf')) # raise AuthenticationException('Cannot find requested file {}'.format(sf)) # with open(verified[0],'r') as h: # for line in h.readlines(): # k = re.search('^{key}=(.*)$'.format(key=skey),line) # if k: return k.group(1) # return default # # @staticmethod # def getHeader(korb,kfile): # '''Convenience method for auth header''' # if korb.lower() == 'basic': # b64s = base64.encodestring('{0}:{1}'.format(*Authentication.userpass(kfile))).replace('\n', '') # return ('Authorization', 'Basic {0}'.format(b64s)) # elif korb.lower() == 'key': # key = Authentication.apikey(kfile) # return ('Authorization', 'key {0}'.format(key)) # return None # Throw something class APIFunctionTest(object): '''Class will not run as-is but illustrates by example api ue and the paging mechanism''' credsfile = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','.test_credentials')) def _getCreds(self,cfile): return 'user','pass','domain' def _getPages(self): api = DataAPI(creds,self.credsfile) api.setParams(sec='list',pth='dgt_layers',host='lds-l') return api.fetchPages() def _getUsers(self): api = DataAPI(creds,self.credsfile) api.setParams(sec='unpublished',pth='dgt_users',host='lds-l') return api.fetchPages() def _getLastPubLayers(self,lk): '''Example function fetching raster layer id's with their last published date''' api = DataAPI(creds,self.credsfile) api.setParams(sec='list',pth='dgt_layers',host='lds-l') pages = api.fetchPages('&kind={0}'.format(lk)) return [(p['id'],DT.datetime(*map(int, re.split('[^\d]', p['published_at'])[:-1]))) for p in pages if 'id' in p and 'published_at' in p] def _testSA(self): sa = SourceAccess(creds,self.credsfile) #print sa.readAllLayerIDs() res = sa.readLayerPages() lsaids = [(r['id'],r['last_scanned_at']) for r in res if r['last_scanned_at']] for lid,dt in lsaids: print ('layer {} last scanned at {}'.format(lid,dt)) def _testDA(self): da = DataAccess(creds,self.credsfile) #print sa.readAllLayerIDs() res = da.readPrimaryKeyFields() print(res) def _testSF(self): #,plus='',head=None,data={} res1 = StaticFetch.get(uref='https://data.linz.govt.nz/layer/51424',korb='KEY',cxf='.apikey3') print(res1) res2 = StaticFetch.get(uref='https://data.linz.govt.nz/layer/51414') print(res2) def creds(cfile): '''Read CIFS credentials file''' return { 'u':searchfile(cfile,'username'), 'p':searchfile(cfile,'password'), 'd':searchfile(cfile,'domain','WGRP'), 'k':searchfile(cfile,'key') } def searchfile(sfile,skey,default=None): value = default with open(sfile,'r') as h: for line in h.readlines(): k = re.search('^{key}=(.*)$'.format(key=skey),line) if k: value=k.group(1) return value def main(): global REDIRECT if REDIRECT: import BindingIPHandler as REDIRECT bw = REDIRECT.BindableWrapper() bw.getLocalIP(True) t = APIFunctionTest() #print t._getLastPubLayers(lk='raster') #t._testSA() #t._testDA() t._testSF() #print t._getUsers() if __name__ == '__main__': main() ``` #### File: LDSAPI/APITest/TestDataAPI.py ```python import unittest import json import os from APIInterface.LDSAPI import DataAPI #from APIInterface.LDSAPI import SourceAPI #from APIInterface.LDSAPI import RedactionAPI from .TestFileReader import FileReader from .TestSuper import APITestCase ID = 455 VER = 460 TYP = 'iso' FMT = 'json' class DataTester(APITestCase): avoid = ['dpu_draftversion','ddl_delete'] def setUp(self): print('D')#\n----------------------------------\n' self.api = DataAPI(FileReader.creds,self.cdir+self.cfile) self.api.setParams() def tearDown(self): self.api = None #basic connect def test_10_ReadBaseData(self): self.api.connect() self.api.dispRes(self.api.res) #parameter sets test def test_20_DataAPI_list(self): sec='list' for pth in list(self.api.data_path[sec].keys()): print('*** Data API section={} key={} ***'.format(sec,str(pth))) self.api.setParams(s=sec,p=pth) self.api.connect('?format={}'.format(FMT)) print('*** {}'.format(self.api.req.get_full_url())) self.outputRes(self.api.res.read()) def test_30_DataAPI_detail(self): sec = 'detail' for pth in list(self.api.data_path[sec].keys()): if pth in self.avoid: continue print('*** Data API section={} key={} ***'.format(sec,str(pth))) self.api.setParams(s=sec,p=pth,id=ID) self.api.connect('?format={}'.format(FMT)) print('*** {}'.format(self.api.req.get_full_url())) self.outputRes(self.api.res.read()) def test_40_DataAPI_version(self): sec = 'version' for pth in list(self.api.data_path[sec].keys()): if pth in self.avoid: continue print('*** Data API section={} key={} ***'.format(sec,str(pth))) self.api.setParams(s=sec,p=pth,id=ID,version=VER) self.api.connect('?format={}'.format(FMT)) print('*** {}'.format(self.api.req.get_full_url())) self.outputRes(self.api.res.read()) # def test_50_DataAPI_publish(self): # sec = 'publish' # for pth in self.api.data_path[sec].keys(): # if pth in self.avoid: continue # print '*** Data API section={} key={} ***'.format(sec,str(pth)) # self.api.setParams(s=sec,p=pth,id=ID) # self.api.connect('?format=json') # print '*** {}'.format(self.api.req.get_full_url()) # self.outputRes(self.api.res.read()) def test_60_DataAPI_metadata(self): sec = 'metadata' for pth in list(self.api.data_path[sec].keys()): if pth in self.avoid: continue print('*** Data API section={} key={} ***'.format(sec,str(pth))) self.api.setParams(s=sec,p=pth,id=ID,version=VER,type=TYP) self.api.connect('?format={}'.format(FMT)) print('*** {}'.format(self.api.req.get_full_url())) self.outputRes(self.api.res.read()) def outputRes(self,res): be = json.loads(res) print('JSON - start') if isinstance(be, dict): self.outputFeat(be) else: for l in be: self.outputFeat(l) print('JSON - end') def outputFeat(self,feat): print('name:{} - id:{} type:{} published:{}'.format(feat['name'],feat['id'],feat['type'],feat['published_at'])) if __name__ == '__main__': unittest.main() ``` #### File: LDSAPI/KPCInterface/AuthReader.py ```python import os import re KEYINDEX = 0 KEY_FILE = '.apikey_ldst' AD_CREDS = '.credentials' CREDS = {} ARCONF = None class Authentication(object): '''Static methods to read keys/user/pass from files''' @staticmethod def userpass(upfile): return (Authentication.searchfile(upfile, 'username'), Authentication.searchfile(upfile, 'password')) @staticmethod def _apikey(kfile, kk='key'): '''Returns current key from a keyfile advancing on subsequent calls''' global KEYINDEX key = Authentication.searchfile(kfile, '{0}{1}'.format(kk, KEYINDEX)) if not key: KEYINDEX = 0 key = Authentication.searchfile(kfile, '{0}{1}'.format(kk, KEYINDEX)) else: KEYINDEX += 1 return key @staticmethod def _creds(cfile): '''Read CIFS credentials file''' return (Authentication.searchfile(cfile, 'username'), Authentication.searchfile(cfile, 'password'), Authentication.searchfile(cfile, 'domain', 'WGRP')) @staticmethod def searchfile(sfile, skey, default=None): value = default # look in current then app then home spath = (os.path.dirname(__file__), os.path.expanduser('~')) first = [os.path.join(p, sfile) for p in spath if os.path.exists(os.path.join(p, sfile))][0] with open(first, 'r') as h: for line in h.readlines(): k = re.search('^{key}=(.*)$'.format(key=skey), line) if k: value = k.group(1) return value @staticmethod def apikey(): return Authentication._apikey(os.path.join(os.path.expanduser('~'), KEY_FILE), 'admin') @staticmethod def creds(): # upd return Authentication._creds(os.path.join(os.path.expanduser('~'), AD_CREDS)) class ConfigAuthentication(Authentication): '''auth subclass where a configreader object is supplied instead of selected searchable files''' def __init__(self,conf): self.conf = conf def creds(self,sect='remote'): return (self.conf.d[sect]['user'], self.conf.d[sect]['pass'], self.conf.d[sect]['workgroup']) def userpass(self,sect='remote'): return (self.conf.d[sect]['user'], self.conf.d[sect]['pass']) def apikey(self,sect='server'): '''returns a single know apikey, doesnt do key cycling''' return self.conf.d[sect]['key'] ``` #### File: LDSAPI/KPCInterface/KPCAPI.py ```python import re import os import pickle from collections import namedtuple from KPCInterface.AuthReader import Authentication LDS_LIVE = 'data.linz.govt.nz' LDS_TEST = 'data-test.linz.govt.nz' RELOAD_INDEX = False CONF = 'rbu.conf' LayerInfo = namedtuple('LayerInfo', 'title id version versions dates files') class LayerRef(object): layeridmap = {} def __init__(self,client,reload): #init name and id refs self.client = client if reload or RELOAD_INDEX or not self._load(): self._indexLayers() self._dump() def _indexLayers(self, stype='catalog'): '''query the catalog/layer obj for layer name id pairs returning dict indexed by name (for easier metadata matching)''' #NB. Catalog layers not necessarily complete lsrc = self.client.catalog.list if stype=='layer' else self.client.layers.list #for i in self.client.catalog.list(): print('CL',i) #for i in self.client.layers.list(): print('LL',i) for ly in lsrc():#.filter(type='layer')[:10]: print('Ly',ly) dd = {'cpub':getattr(ly,'published_at',None), 'fpub':getattr(ly,'first_published_at',None), 'crt':getattr(ly,'created_at',None), 'col':getattr(ly,'collected_at',None)} self.layeridmap[ly.title] = LayerInfo(title=ly.title,id=ly.id,version=ly.version,versions=[x.id for x in ly.list_versions()],dates=dd, files=()) def _dump(self, config=CONF): pickle.dump(self.layeridmap,open(config,'wb')) def _load(self, config=CONF): try: self.layeridmap = pickle.load(open(config,'rb')) except: return False return True # class Authentication(object): # '''Static methods to read keys/user/pass from files''' # # # @staticmethod # def userpass(upfile): # return (Authentication.searchfile(upfile,'username'),Authentication.searchfile(upfile,'password')) # # @staticmethod # def _apikey(kfile,kk='key'): # '''Returns current key from a keyfile advancing on subsequent calls''' # global KEYINDEX # key = Authentication.searchfile(kfile,'{0}{1}'.format(kk,KEYINDEX)) # if not key: # KEYINDEX = 0 # key = Authentication.searchfile(kfile,'{0}{1}'.format(kk,KEYINDEX)) # else: # KEYINDEX += 1 # return key # # @staticmethod # def _creds(cfile): # '''Read CIFS credentials file''' # return (Authentication.searchfile(cfile,'username'),\ # Authentication.searchfile(cfile,'password'),\ # Authentication.searchfile(cfile,'domain','WGRP')) # # @staticmethod # def searchfile(sfile,skey,default=None): # value = default # #look in current then app then home # spath = (os.path.dirname(__file__),os.path.expanduser('~')) # first = [os.path.join(p,sfile) for p in spath if os.path.exists(os.path.join(p,sfile))][0] # with open(first,'r') as h: # for line in h.readlines(): # k = re.search('^{key}=(.*)$'.format(key=skey),line) # if k: value=k.group(1) # return value # # @staticmethod # def apikey(): # return Authentication._apikey(os.path.join(os.path.expanduser('~'),KEY_FILE),'admin') # # @staticmethod # def creds(): # #upd # return Authentication._creds(os.path.join(os.path.expanduser('~'),AD_CREDS)) ``` #### File: LDSAPI/LXMLWrapper/LDSLXML.py ```python import re import sys import http from lxml import etree from six.moves.urllib.error import HTTPError from six.moves.urllib.request import urlopen PYVER3 = sys.version_info > (3,) class LXMLWrapperException(Exception): pass class LXMLSyntaxException(Exception): pass class LXMLetree(object): def __init__(self): pass def parse(self,content,op='parse'): return LXMLtree(content,op) def fromstring(self,text,op='fromstring'): return LXMLtree(text,op) def XMLSchema(self,xsdd): '''return a vanilla schema since no customisation required''' return etree.XMLSchema(xsdd) @classmethod def _subNS(cls,url,ns): '''Hack for Py2.6 version of LXML to substitute namespace declarations /abc:path for /{full_abc}path''' for k in set(re.findall('(\w*?):',url)): url = re.sub(k+':','{'+ns[k]+'}',url) return url class LXMLtree(object): '''Wrapper class for etree objects''' def __init__(self,ct,op='parse'): if op=='parse': self._tree = self.parse(ct) elif op=='parsestring': self._tree = self.parse(ct,p='fromstring') elif op=='fromstring': self._tree = self.fromstring(ct) elif op=='recover': self._tree = self.parse(ct,p=etree.XMLParser(recover=True)) def fromstring(self,text): '''parses a string to root node''' return etree.fromstring(text) def tostring(self): '''string rep of tree''' return etree.tostring(self._tree) def xpath(self,text,namespaces=None): return etree.XPath(text,namespaces) if namespaces and False else etree.XPath(text) def parse(self,content,p=None): '''parses a URL or a response-string to doc tree''' #HACK. With CSW data need to check for JSON/masked 429s first try: if p=='fromstring': etp = self._parse_f(content) #parse using string method else: etp = self._parse_p(content,p) #parse normally or using provided parser except HTTPError as he: raise #but this won't happen because LXML pushes HTTP errors up to IO errors except (IOError,http.client.IncompleteRead) as ioe: #if re.search('failed to load HTTP resource', ioe.message): #No longer works on Py3 ioem = str(ioe) if PYVER3 else ioe.message if re.search('failed to load HTTP resource', ioem): raise HTTPError(content, 429, 'IOE. Possible 429 Rate Limiting Error. '+ioem, None, None) if re.search('IncompleteRead', ioem): raise HTTPError(content, 418, 'IOE. Cannot read. '+ioem, None, None) raise HTTPError(content, 404, 'IOE. Probable HTTP Error. '+ioem, None, None) except etree.XMLSyntaxError as xse: if re.search('Document is empty', str(xse)): raise LXMLSyntaxException('Response from server is empty') from xse except Exception as e: raise return etp def _parse_f(self,content): res = urlopen(content).read() if re.search('API rate limit exceeded',res): raise HTTPError(content, 429, 'Masked HTTP429 Rate Limiting Error. ', None, None) return etree.fromstring(res).getroottree() def _parse_p(self,content,p): return etree.parse(content,p) if p else etree.parse(content) def gettree(self): return self._tree def getroot(self): self.root = LXMLelem(self._tree,root=True) return self.root def get(self,path): self.elem = LXMLelem(self._tree,root=False,path=path) return self.elem def find(self,url,namespaces=None): return self._tree.find(url,namespaces) if sys.version_info[1]>6 else self._tree.find(LXMLetree._subNS(url, namespaces)) def findall(self,url,namespaces=None): reclist = self._tree.findall(url,namespaces) if sys.version_info[1]>6 else self._tree.findall(LXMLetree._subNS(url, namespaces)) return [LXMLelem(e,wrap=True) for e in reclist] class LXMLelem(object): #Python versions <2.7 dont parse namespace aliases SVI = sys.version_info[0]+(sys.version_info[1]/10)>2.6 '''Wrapper for the LXML element object, hacked to also act as a self wrapper for list/findall queries''' def __init__(self,parent,wrap=False,root=False,path=''): if wrap: self._elem = parent elif root: self._elem = parent.getroot() elif path: #this isn't used (in current code) so hasn't been tested self._elem = parent.get(path) else: raise LXMLWrapperException('Missing Element descriptor') self.tag = self._elem.tag self.text = self._elem.text def get(self,path): return self._elem.get(path) def items(self): return list(self._elem.items()) def find(self,url,namespaces=None): '''returns element''' return self._elem.find(url,namespaces) if self.SVI else self._elem.find(LXMLetree._subNS(url, namespaces)) def findall(self,url,namespaces=None): reclist = self._elem.findall(url,namespaces) if self.SVI else self._elem.findall(LXMLetree._subNS(url, namespaces)) return [LXMLelem(e,wrap=True) for e in reclist] ```
{ "source": "josephramsay/LDS", "score": 2 }
#### File: LDSReplicate/lds/ConfigWrapper.py ```python import logging import re from lds.ReadConfig import MainFileReader#, LayerFileReader from lds.LDSUtilities import LDSUtilities class ConfigFormatException(Exception): pass class ConfigContentException(Exception): pass ldslog = LDSUtilities.setupLogging() class ConfigWrapper(object): ''' Convenience wrapper class to main and user config-file reader instances. Main purpose of this class is to allow user to override selected portions of the main config file. This has nothing ''' def __init__(self,configdata=None): self.confdict = {} #self.layerconfig = None #internal/external; but only external is coded an never used #self.mainconfig = None #always a file #self.userconfig = None #always a file #check to see if conf file is string ie file path or not eg list, dict ##if isinstance(configdata,basestring): self.setupMainAndUserConfig(configdata) if isinstance(configdata,dict): #self.setupMainAndUserConfig(None) self.setupTempParameters(configdata) #else: #raise ConfigFormatException('Provided Config specifier is neither a parameter array or a file path') def setupMainAndUserConfig(self,inituserconfig): '''Sets up a reader to the main configuration file or alternatively, a user specified config file. Userconfig is not mean't to replace mainconfig, just overwrite the parts the user has decided to customise''' #self.userconfig = None self.userconfig = MainFileReader(LDSUtilities.standardiseUserConfigName(inituserconfig),False) if inituserconfig else None self.mainconfig = MainFileReader() def setupTempParameters(self,confdict): '''Build a dict matching returned values for use when doing a temporary setup e.g. to test a connection''' #this is only used for proxy testing at the moment. will configure others if needed self.confdict = confdict # #==============MAINCONFIG=========================================================== def readDSParameters(self,drv,params=None): '''Returns the datasource parameters. By request updated to let users override parts of the basic config file''' ul = () #read main config ml = self.mainconfig.readDriverConfig(drv) if self.confdict.has_key(drv): ul = self.readTempParameters(drv) elif self.userconfig: ul = self.userconfig.readDriverConfig(drv) #else: # return None if drv == 'Misc': ml = self._substIDP(params['idp'],ml) ul = self._substIDP(params['idp'],ul) rconfdata = [x if x else y for x,y in zip(ul if ul else (None,)*len(ml),ml)] return rconfdata def readTempParameters(self,drv): cdd = self.confdict[drv] if drv=='Proxy': return (cdd['type'],cdd['host'],cdd['port'],cdd['auth'],cdd['user'],cdd['pass']) elif drv=='WFS': return ('',cdd['key'],'','','','') else: raise ConfigContentException('Support for Proxy config type only') def _substIDP(self,idp,mul): '''add requested prefix to layer list. IDP = ID Prefix''' #64layers m0 = list([idp+str(s) for s in mul[0]]) if mul[0] else None #ptnlayers m1 = list([idp+str(s) for s in mul[1]]) if mul[1] else None return (m0,m1,mul[2],mul[3]) def readDSProperty(self,drv,prop): '''Gets a single property from a selected driver config''' #NB uprop can be none if there is no uc object or if the prop isnt listed in the uc uprop = self.userconfig.readMainProperty(drv,prop) if self.userconfig else None return uprop if uprop else self.mainconfig.readMainProperty(drv,prop) @classmethod def buildNewUserConfig(cls,ucfilename,uctriples): '''Class method to initialise a user config from an array of parameters''' uc = MainFileReader(ucfilename,False) #uc.initMainFile(os.path.join(os.path.dirname(__file__), '../conf/template.conf')) uc.initMainFile() cls.writeUserConfigData(uc,uctriples) @classmethod def writeUserConfigData(cls,ucfile,uctriples): '''Write config data to config file''' for sfv in uctriples: ucfile.writeMainProperty(sfv[0],sfv[1],sfv[2]) ``` #### File: LDS/LDSReplicate/ldsreplicate.py ```python import sys import getopt from datetime import datetime from urllib2 import HTTPError from lds.TransferProcessor import TransferProcessor from lds.TransferProcessor import InputMisconfigurationException from lds.VersionUtilities import AppVersion, VersionChecker, UnsupportedVersionException from lds.DataStore import DSReaderException from lds.LDSUtilities import LDSUtilities from lds.ConfigConnector import DatasourceRegister ldslog = LDSUtilities.setupLogging() #ldslog = logging.getLogger('LDS') #ldslog.setLevel(logging.DEBUG) # #path = os.path.normpath(os.path.join(os.path.dirname(__file__), "../../log/")) #if not os.path.exists(path): # os.mkdir(path) #df = os.path.join(path,"debug.log") # #fh = logging.FileHandler(df,'a') #fh.setLevel(logging.DEBUG) # #formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(module)s %(lineno)d - %(message)s') #fh.setFormatter(formatter) #ldslog.addHandler(fh) __version__ = AppVersion.getVersion() def usage(): print "Usage: python LDSReader/ldsreplicate.py -l <layer_id> [-f <from date>|-t <to date>|-c <cql filter>|-s <src conn str>|-d <dst conn str>|-v|-h] <output> [full]" print "For help use --help" def main(): '''Main entrypoint if the LDS incremental replication script usage: python LDSReader/ldsreplicate.py -l <layer_id> [-f <from date>|-t <to date>|-c <cql filter>|-s <src conn str>|-d <dst conn str>|-u <user_config>|-g <group keyword>|-e <conversion-epsg>|-h (help)] <output> ''' td = None fd = None ly = None gp = None ep = None sc = None dc = None cq = None uc = None gdal_ver = VersionChecker.getGDALVersion() #pgis_ver = VersionChecker.getPostGISVersion() #pg_ver = VersionChecker.getPostgreSQLVersion() if VersionChecker.compareVersions(VersionChecker.GDAL_MIN,gdal_ver.get('GDAL') if gdal_ver.get('GDAL') is not None else VersionChecker.GDAL_MIN): raise UnsupportedVersionException('PostgreSQL version '+str(gdal_ver.get('GDAL'))+' does not meet required minumum '+str(VersionChecker.GDAL_MIN)) #do the datasource checks in object and once initialised # message += 'GDAL '+pgis_ver.get('GDAL')+'<'+VersionChecker.GDAL_MIN+'(reqd) \n' # if VersionChecker.compareVersions(VersionChecker.GDAL_MIN,pgis_ver.get('GDAL') if pgis_ver.get('GDAL') is not None else VersionChecker.GDAL_MIN): # message += 'GDAL(pgis) '+pgis_ver.get('GDAL')+'<'+VersionChecker.GDAL_MIN+'(reqd) \n' # if VersionChecker.compareVersions(VersionChecker.PostgreSQL_MIN,pg_ver.get('PostgreSQL') if pgis_ver.get('PostgreSQL') is not None else VersionChecker.PostgreSQL_MIN): # message += 'PostgreSQL '+pg_ver.get('PostgreSQL')+'<'+VersionChecker.PostgreSQL_MIN+' (reqd)\n' # parse command line options try: opts, args = getopt.getopt(sys.argv[1:], "hvixf:t:l:g:e:s:d:c:u:", ["help","version","internal","external","fromdate=","todate=","layer=","group=","epsg=","source=","destination=","cql=","userconf="]) ldslog.info("OPTS:"+str(opts)) ldslog.info("ARGS:"+str(args)) except getopt.error, msg: print msg usage() sys.exit(2) # process options for opt, val in opts: if opt in ("-h", "--help"): print __doc__ sys.exit(0) elif opt in ("-v", "--version"): print __version__ sys.exit(0) elif opt in ("-f","--fromdate"): fd = val elif opt in ("-t","--todate"): td = val elif opt in ("-l","--layer"): ly = val elif opt in ("-g","--group"): gp = val elif opt in ("-e","--epsg"): ep = val elif opt in ("-s","--source"): sc = val elif opt in ("-d","--destination"): dc = val elif opt in ("-c","--cql"): cq = val elif opt in ("-u","--userconf"): uc = val else: print "unrecognised option:\n" \ "-f (--fromdate) Date in yyyy-mm-dd format start of incremental range (omission assumes auto incremental bounds)," \ "-t (--todate) Date in yyyy-mm-dd format for end of incremental range (omission assumes auto incremental bounds)," \ "-l (--layer) Layer name/id in format v:x### (IMPORTANT. Omission assumes all layers)," \ "-g (--group) Layer sub group list for layer selection, comma separated" \ "-e (--epsg) Destination EPSG. Layers will be converted to this SRS" \ "-s (--source) Connection string for source DS," \ "-d (--destination) Connection string for destination DS," \ "-c (--cql) Filter definition in CQL format," \ "-u (--user) User defined config file used as partial override for template.conf," \ "-h (--help) Display this message" sys.exit(2) # #TODO consider ly argument to specify a file name containing a list of layers? st = datetime.now() m1 = '*** Begin *** '+str(st.isoformat()) print m1 ldslog.info(m1) #layer overrides group, whether layer is IN group is not considered ly if ly else gp tp = TransferProcessor(None,ly if ly else gp,ep,fd,td,sc,dc,cq,uc) #output format if len(args)==0: print __doc__ sys.exit(0) else: #since we're not breaking the switch the last arg read will be the DST used pn = None for arg in args: if arg.lower() in ("init", "initialise", "initalize"): ldslog.info("Initialisation of configuration files/tables requested. Implies FULL rebuild") tp.setInitConfig() elif arg in ("clean"): ldslog.info("Cleaning named layer") tp.setCleanConfig() else: #if we dont have init/clean the only other arg must be output type pn = LDSUtilities.standardiseDriverNames(arg) if pn is None: print __doc__ raise InputMisconfigurationException("Unrecognised command; output type (pg,ms,slite,fgdb) declaration required") #aggregation point for common LDS errors mm = '*** Complete *** ' try: reg = DatasourceRegister() sep = reg.openEndPoint('WFS',uc) dep = reg.openEndPoint(pn,uc) reg.setupLayerConfig(tp,sep,dep, tp.getInitConfig()) tp.setSRC(sep) tp.setDST(dep) tp.processLDS() except HTTPError as he: ldslog.error('Error connecting to LDS. '+str(he)) mm = '*** Failed 1 *** ' except DSReaderException as dse: ldslog.error('Error creating DataSource. '+str(dse)) mm = '*** Failed 2 *** ' #except Exception as e: #if errors are getting through we catch/report them # ldslog.error("Error! "+str(e)) # mm = '*** Failed 3 *** ' finally: reg.closeEndPoint(pn) reg.closeEndPoint('WFS') sep,dep = None,None et = datetime.now() m2 = mm + str(et.isoformat()) print m2 ldslog.info(m2) dur = et-st m3 = '*** Duration *** '+str(dur) print m3 ldslog.info(m3) return 1000*dur.total_seconds() if __name__ == "__main__": #main() try: main() except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() ldslog.error('LDSReplicate Error.',exc_info=(exc_type,exc_value,exc_traceback)) print str(e)+'\n(see debug.log for full stack trace)' ``` #### File: lds/test/RequestBuilder_Test.py ```python import unittest import os import sys import time import subprocess sys.path.append('..') from lds.LDSUtilities import LDSUtilities from lds.RequestBuilder import RequestBuilder testlog = LDSUtilities.setupLogging(ff=2) class Test_1_RequestBuilder(unittest.TestCase): UCONF = 'TEST' LGVAL = 'v:x100' DESTNAME = 'PostgreSQL' PARAMS100 = ['http://wfs.data.linz.govt.nz/', 'aaaa1111bbbb2222cccc3333dddd4444', 'WFS', '1.0.0', 'GML2', ''] PARAMS110 = ['http://wfs.data.linz.govt.nz/', '1111bbbb2222cccc3333dddd4444eeee', 'WFS', '1.1.0', 'GML2', ''] PARAMS200 = ['http://wfs.data.linz.govt.nz/', 'bbbb2222cccc3333dddd4444eeee5555', 'WFS', '2.0.0', 'GML2', ''] def setUp(self): testlog.debug('LDSDataStore_Test.setUp') def tearDown(self): testlog.debug('LDSDataStore_Test.tearDown') def test_1_getInstance(self): w100 = RequestBuilder.getInstance(self.PARAMS100,None) w110 = RequestBuilder.getInstance(self.PARAMS110,None) w200 = RequestBuilder.getInstance(self.PARAMS200,None) #since RB is incomplete just test for name string #self.assertEqual(w100.__str__(),'RequestBuilder_WFS-1.0.0','str cmp 100') self.assertEqual(w100.__str__(),'RequestBuilder_WFS-1.1.0','str cmp 100 (subst)') self.assertEqual(w110.__str__(),'RequestBuilder_WFS-1.1.0','str cmp 110') self.assertEqual(w200.__str__(),'RequestBuilder_WFS-2.0.0','str cmp 200') if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testLDSRead'] unittest.main() ``` #### File: LDSReplicate/lds/WinUtilities.py ```python import os import re import sys import platform import _winreg from _winreg import * class WinUtilities(object): '''Windows utility/info functions.''' @staticmethod def callStartFile(file): os.startfile(file) @staticmethod def getArchitecture(): a = int(re.match('(\d+)',platform.architecture()[0]).group(1)) b = 64 if sys.maxsize>1e11 else 32 return (a+b)/2 class Registry(object): '''Windows Registry functions''' INTERNET_SETTINGS = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER, r'Software\Microsoft\Windows\CurrentVersion\Internet Settings', 0, _winreg.KEY_ALL_ACCESS) @staticmethod def readProxyValues(): enable = Registry._getRegistryKey('ProxyEnable') hp = Registry._getRegistryKey('ProxyServer') host,port = hp.split(':') return (enable,host,port) @staticmethod def writeProxyValues(host,port): hp = str(host)+":"+str(port) Registry._setRegistryKey('ProxyEnable',1) Registry._setRegistryKey('ProxyServer',hp) @staticmethod def readInstDir(name): return Registry._readAppVal(name) #--------------------------------------------------------- @classmethod def _readAppVal(cls,name): '''Used to find name in reg i.e. install path to LDSR app''' ipath = 0 val = None arch = WinUtilities.getArchitecture() if arch == 32: ipath = r'SOFTWARE\LDS Replicate' elif arch == 64: ipath = r'SOFTWARE\Wow6432Node\LDS Replicate' try: key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE, ipath, 0, _winreg.KEY_READ) val,_ = _winreg.QueryValueEx(key, name) except: pass return val @classmethod def _setRegistryKey(cls, name, value): _, reg_type = _winreg.QueryValueEx(cls.INTERNET_SETTINGS, name) _winreg.SetValueEx(cls.INTERNET_SETTINGS, name, 0, reg_type, value) @classmethod def _getRegistryKey(cls, name): val ,_ = _winreg.QueryValueEx(cls.INTERNET_SETTINGS, name) return val ```
{ "source": "josephrexme/stegman", "score": 3 }
#### File: josephrexme/stegman/stegman.py ```python import sys, re, binascii, string def gethex(image): f = open(image, 'rb') data = f.read() f.close() hexcode = binascii.hexlify(data) return hexcode def embed(embedFile, coverFile, stegFile): filetype = coverFile[-3:] stegtype = stegFile[-3:] if filetype != 'png' and filetype != 'jpg': print 'Invalid format' elif filetype != stegtype: print 'Output file has to be in the same format as cover image (%s)' % string.swapcase(filetype) else: data = open(embedFile, 'r').read() info = gethex(coverFile) if extradatacheck(info, filetype): print 'File already contains embedded data' else: info += data.encode('hex') f = open(stegFile, 'w') f.write(binascii.unhexlify(info)) f.close() print 'Storing data to', stegFile def extract(stegFile, outFile): filetype = stegFile[-3:] data = gethex(stegFile) if extradatacheck(data, filetype): store = open(outFile, 'w') store.write( binascii.unhexlify(extradatacheck(data, filetype)) ) store.close() print 'Extracted data stored to', outFile else: print 'File has no embedded data in it' def extradatacheck(data, type): if type == 'png': pattern = r'(?<=426082)(.*)' elif type == 'jpg': pattern == r'(?<=FFD9)(.*)' match = re.search(pattern, data) if match: return match.group(0) else: false def usage(): print """ Usage: Embeding stegman -s embedfile.txt coverfile.jpg output.jpg Extracting stegman -e stegfile.jpg output.txt Valid Formats: JPG, PNG """ def args(): if sys.argv[1] == '-s': embed(sys.argv[2], sys.argv[3], sys.argv[4]) elif sys.argv[1] == '-e': extract(sys.argv[2], sys.argv[3]) else: usage() def main(): if len(sys.argv) > 1: args() else: usage() if __name__ == '__main__': main() ```
{ "source": "joseph-reynolds/minecraft-pidoodles", "score": 4 }
#### File: joseph-reynolds/minecraft-pidoodles/try1.py ```python import mcpi.minecraft as minecraft import mcpi.block as block from mcpi.vec3 import Vec3 from mcpi.connection import Connection import time import timeit import Queue import threading def vec3_get_sign(self): # Warning: hack! Assumes unit vector return self.x + self.y + self.z Vec3.get_sign = vec3_get_sign class TorchFindError(Exception): """Torch not found nearby""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class CornerFindError(Exception): """Corner not found""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def different_block(b): if b == block.STONE.id: b = block.SANDSTONE.id elif b == block.SANDSTONE.id: b = block.DIRT.id elif b == block.DIRT.id: b = block.WOOD.id else: b = block.STONE.id return b def get_nearby_torchpos(p): """Return the position of a nearby torch""" torchpos = None search_size = 1 for x in range(int(p.x - search_size), int(p.x + search_size+1)): for z in range(int(p.z - search_size), int(p.z + search_size+1)): b = mc.getBlock(x, p.y, z) if b == block.TORCH.id: if not torchpos is None: raise TorchFindError("Too many torches") torchpos = Vec3(x, p.y, z) if torchpos is None: raise TorchFindError("Torch not found nearby") return torchpos def get_corner_data(pos): """Returns data about a corner next to the input position. A "corner" is two walls meeting at right angles with a post. The walls and post define the corner. The input position should be the inside corner at ground level such as returned by get_nearby_torchpos. The return value is a 2-tuple: - The corner position - A unit vector pointing "inside" the corner """ # Read blocks around the input pos blocks = [] # Usage: blocks[x][z] mask = 0 # Bit mask: abcdefghi, like: # adg # beh # cfi for x in range(int(pos.x - 1), int(pos.x + 2)): col = [] for z in range(int(pos.z - 1), int(pos.z + 2)): b = mc.getBlockWithData(x, pos.y, z) # Test b = mc.getBlock(x, pos.y, z) col.append(b) mask = (mask << 1) + (0 if b == block.AIR.id else 1) blocks.append(col) mask &= 0b111101111 # Mask off center block # print "Mask", format(mask,"#011b") nw_corner_mask = 0b111100100 ne_corner_mask = 0b100100111 sw_corner_mask = 0b111001001 se_corner_mask = 0b001001111 if mask == nw_corner_mask: corner = Vec3(pos.x - 1, pos.y, pos.z - 1) vector = Vec3(1, 1, 1) elif mask == ne_corner_mask: corner = Vec3(pos.x +1, pos.y, pos.z - 1) vector = Vec3(-1, 1, 1) elif mask == sw_corner_mask: corner = Vec3(pos.x - 1, pos.y, pos.z + 1) vector = Vec3(1, 1, -1) elif mask == se_corner_mask: corner = Vec3(pos.x + 1, pos.y, pos.z + 1) vector = Vec3(-1, 1, -1) else: raise CornerFindError("Corner not found") return corner, vector def get_length_of_block_run(startpos, vector): """determine the length of a run of blocks parameters: startpos is the starting block vector is a unit vector in the direction to count """ ans = 0 pos = startpos while mc.getBlock(pos) != block.AIR.id: ans += 1 pos = pos + vector ans -= 1 return ans * vector.get_sign() def get_house_data(pos): corner, vector = get_corner_data(pos) sizex = get_length_of_block_run(corner, Vec3(vector.x, 0, 0)) sizey = get_length_of_block_run(corner, Vec3(0, vector.y, 0)) sizez = get_length_of_block_run(corner, Vec3(0, 0, vector.z)) return corner, Vec3(sizex, sizey, sizez) def do_house(corner, dim): newblockid = different_block(mc.getBlock(corner)) # Unit test: just do a chimney #mc.setBlocks(corner.x, corner.y, corner.z, # corner.x, corner.y + dim.y, corner.z, # newblockid) # Near wall along x direction mc.setBlocks(corner.x, corner.y, corner.z, corner.x + dim.x, corner.y + dim.y, corner.z, newblockid) # Near wall along z direction mc.setBlocks(corner.x, corner.y, corner.z, corner.x, corner.y + dim.y, corner.z + dim.z, newblockid) mc = minecraft.Minecraft.create() #p = mc.player.getTilePos() #mc.x_connect_multiple(p.x, p.y+2, p.z, block.GLASS.id) #print 'bye!' #exit(0) # Algorithm to build a house for i in range(0,0): time.sleep(1) p = mc.player.getTilePos() b = mc.getBlock(p.x, p.y-1, p.z) info = "" try: tp = get_nearby_torchpos(p) info = "torch found" try: c,v = get_house_data(tp) info = "corner found" do_house(c,v) except CornerFindError as e: pass except TorchFindError as e: pass # print "TorchFindError:", e.value print b, info connections = [] def get_blocks_in_parallel(c1, c2, degree=35): """get a cuboid of block data parms: c1, c2: the corners of the cuboid degree: the degree of parallelism (number of sockets) returns: map from mcpi.vec3.Vec3 to mcpi.block.Block """ # Set up the work queue c1.x, c2.x = sorted((c1.x, c2.x)) c1.y, c2.y = sorted((c1.y, c2.y)) c1.z, c2.z = sorted((c1.z, c2.z)) workq = Queue.Queue() for x in range(c1.x, c2.x+1): for y in range(c1.y, c2.y+1): for z in range(c1.z, c2.z+1): workq.put((x,y,z)) print "Getting data for %d blocks" % workq.qsize() # Create socket connections, if needed # TO DO: Bad! Assumes degree is a constant # To do: close the socket global connections if not connections: connections = [Connection("localhost", 4711) for i in range(0,degree)] # Create worker threads def worker_fn(connection, workq, outq): try: while True: pos = workq.get(False) # print "working", pos[0], pos[1], pos[2] connection.send("world.getBlockWithData", pos[0], pos[1], pos[2]) ans = connection.receive() blockid, blockdata = map(int, ans.split(",")) outq.put((pos, (blockid, blockdata))) except Queue.Empty: pass outq = Queue.Queue() workers = [] for w in range(degree): t = threading.Thread(target = worker_fn, args = (connections[w], workq, outq)) t.start() workers.append(t) # Wait for workers to finish for w in workers: # print "waiting for", w.name w.join() # Collect results answer = {} while not outq.empty(): pos, block = outq.get() answer[pos] = block return answer while False: # mc.getHeight works ppos = mc.player.getPos() h = mc.getHeight(ppos.x, ppos.z) print h time.sleep(1) if False: """ degree = 200 corner1 = Vec3(-50, 8, -50) corner2 = Vec3( 50, 8, 50) starttime = timeit.default_timer() blks = get_blocks_in_parallel(corner1, corner2, degree) endtime = timeit.default_timer() print endtime-starttime, 'get_blocks_in_parallel' blks = get_blocks_in_parallel(corner1, corner2, degree) endtime2 = timeit.default_timer() print endtime2-endtime, 'get_blocks_in_parallel again' for z in range(corner1.z, corner2.z): s = "" for x in range(corner1.x, corner2.x): c = " " if blks[(x, 8, z)][0] == block.AIR.id else "x" s = s + c print s """ # Performance experiments """Results: Hardware: Raspbery Pi 3 Model B V1.2 with heat sink Linux commands show: $ uname -a Linux raspberrypi 4.4.34-v7+ #930 SMP Wed Nov 23 15:20:41 GMT 2016 armv7l GNU/Linux $ lscpu Architecture: armv7l Byte Order: Little Endian CPU(s): 4 On-line CPU(s) list: 0-3 Thread(s) per core: 1 Core(s) per socket: 4 Socket(s): 1 Model name: ARMv7 Processor rev 4 (v7l) CPU max MHz: 1200.0000 CPU min MHz: 600.0000 GPU memory is 128 (unit is Mb, I think) Test getting 10201 blocks, and stack_size=128Kb varying the number of threads: threads time(sec) blocks/sec ------- --------- ---------- 10 39.87 25 19.46 50 10.68 75 7.29 100 5.57 115 5.01 120 4.86 125 4.75 130 4.58 150 4.47 175 4.55 200 4.24 250 4.41 400 4.60 Observations: - Each thread process 15 to 25 blocks/sec - Some blocks take much longer to fetch, about 0.3 sec - performance peaks with 200 threads, at 2400 blocks/sec - creating threads is not free - can create 50 threads in 1 sec, 100 threads in 2.5 sec - memory consumption increases (not measured) - the tests were repeated while the game was being played interactively, specifically, flying at altitude and looking down so that new blocks were being fetched as quickly as possible. This did not affect performance: + no graphical slowdowns or glitches were observed + the performance of fetching blocks was not affected Note: The expected case is to create the required threads once and keep them around for the lifetime of the program. The experimental code was designed to do just that. Some data was captured that suggests how expensive starting up hundreds of threads is. Although it was not one of the objectives of the original study, it is given as an interesting observation. Conclusions: Eyeballing the data suggests that 200 threads is optimal. However, if the 6 seconds it takes to create the threads is not acceptable, consider using 100 threads which is about 30% slower, but only takes 1 second to create the threads. """ threading.stack_size(128*1024) for degree in [100, 150, 200]: connections = [] corner1 = Vec3(-50, 8, -50) corner2 = Vec3( 50, 8, 50) starttime = timeit.default_timer() blks = get_blocks_in_parallel(corner1, corner2, degree) endtime = timeit.default_timer() blks = get_blocks_in_parallel(corner1, corner2, degree) endtime2 = timeit.default_timer() print "entries=10201 degree=%s time1=%s time2=%s" % ( str(degree), str(endtime-starttime), str(endtime2-endtime)) # Idea: class for get_blocks_in_parallel() class ParallelGetter: """Get block data from the Mincraft Pi API -- NOT FINISHED""" def __init__(self, address = "localhost", port = 4711, parallelism=200): self.address = address self.port = port self.parallelism = parallelism self.connections = [Connection(address, port) for i in range(parallelism)] # To do: close the socket connection @staticmethod def normalize_corners(c1, c2): """ensure c1.x <= c2.x, etc., without changing the cuboid""" c1.x, c2.x = sorted((c1.x, c2.x)) c1.y, c2.y = sorted((c1.y, c2.y)) c1.z, c2.z = sorted((c1.z, c2.z)) return c1, c2 @staticmethod def generate_work_items_xyz(c1, c2): c1, c2 = normalize_corners(c1, c2) workq = Queue.Queue() for x in range(c1.x, c2.x+1): for y in range(c1.y, c2.y+1): for z in range(c1.z, c2.z+1): workq.put((x,y,z)) return workq @staticmethod def _unpack_int(self, response): return int(response) @staticmethod def _unpack_int_int(self, response): i1, i2 = map(int, response.split(",")) return i1, i2 def get_blocks(self, c1, c2): workq = generate_work_items_xyz(c, c2) return _do_work(workq, "world.getBlock", _unpack_int) def get_blocks_with_data(self, c1, c2): workq = generate_work_items_xyz(c, c2) return _do_work(workq, "world.getBlockWithData", _unpack_int_int) def _do_work(self, workq, api_name, unpack_fn): """Perform the parallel portion of the work. parms: workq - such as from generate_work_items_xyz Specifically, start a worker thread for each connection, Each worker feeds work from the workq to the API, formats the results, and enqueues the results. When there is no more work, the workers quit, and the return value is computed. """ def worker_fn(connection, workq, outq, unpack_fn): try: while True: pos = workq.get(False) connection.send(api_name, pos) outq.put((pos, unpack_fn(connection.receive()))) except Queue.Empty: pass # Create worker threads outq = Queue.Queue() workers = [] for w in range(parallelism): t = threading.Thread( target = worker_fn, args = (connections[w], workq, outq, unpack_fn)) t.start() workers.append(t) # Wait for workers to finish, then collect their data for w in workers: w.join() answer = {} while not outq.empty(): pos, data = outq.get() answer[pos] = data return answer """Idea: Tree jumper You can jump from tree to tree. If you are (a) on a tree (LEAVES = Block(18)), (b) moving forward, and (c) jumping, you will jump/fly to the nearest tree in your path. Algorithm: while True: player_velocity = "track player position to determine velocity" if "player is moving and on a leaf and jumps": destination = "find nearest tree(player_pos, player_vel)" if destination: parabola = compute(player_pos, destination) "move player smoothly along the parabola" "if player hits a block: break" where def nearest_tree(player_pos, player_vel): search_areas = [ player_pos + 30 * player_vel with radius=15, player_pos + 15 * player_vel with radius=10, player_pos + 40 * player_vel with radius=15] search areas *= [player_pos.y, player_pos.y-7, player_pos+7] for area in search_areas: fetch a plane of block data centered at (area) tree = find tree, prefering center of the area if tree: return tree return tree def compute_parabola(): gravity = 0.3 # blocks/time**2 xz_distance = sqrt(xd**2 + zd**2) xz_speed = 1 total_time = xz_distance / xz_speed x_vel = xd / total_time z_vel = zd / total_time y_vel = ((-yd / total_time) + ((0.5 * gravity * (total_time ** 2))) """ # Lets' try a leap/jump if False: # mc.player.setPos(1, 4, 3) # if the jump goes badly wrong ppos = mc.player.getPos() x = ppos.x y = ppos.y z = ppos.z xv = 0.005 yv = 0.1 zv = 0.02 while yv > 0: mc.player.setPos(x, y, z) x += xv y += yv z += zv yv -= 0.0001 time.sleep(0.001) # Try stacking up multiple getBlocks: if True: """This code is weird. Delete it!""" connection = Connection("localhost", 4711) for x in range(-20, 20): for z in range(-20, 20): connection.send("world.getBlockWithData", x, 2, z) print connection.receive() print connection.receive() # How big is the world? if False: corner1 = Vec3(-200, 0, 0) corner2 = Vec3(200, 0, 0) degree = 150 xaxis = get_blocks_in_parallel(corner1, corner2, degree) xmin = xmax = 0 for x in range(200): if xaxis[(x, 0, 0)][0] == block.BEDROCK_INVISIBLE.id: xmax = x - 1 break for x in range(0, -200, -1): if xaxis[(x, 0, 0)][0] == block.BEDROCK_INVISIBLE.id: xmin = x + 1 break #print "X-axis: %d to %d" % (xmin, xmax) corner1 = Vec3(0, 0, 200) corner2 = Vec3(0, 0, -200) degree = 150 zaxis = get_blocks_in_parallel(corner1, corner2, degree) zmin = zmax = 0 for z in range(200): if zaxis[(0, 0, z)][0] == block.BEDROCK_INVISIBLE.id: zmax = z - 1 break for z in range(0, -200, -1): if zaxis[(0, 0, z)][0] == block.BEDROCK_INVISIBLE.id: zmin = z + 1 break #print "Z-axis: %d to %d" % (zmin, zmax) print "The world is: [%d..%d][y][%d..%d]" % ( xmin, xmax, zmin, zmax) ### ### Try stuff with sockets ### ''' I have not finished coding this part. def gen_answers(connection, requests, format, parse_fn): """generate answers for each request, like (req, answer)""" request_buf = io.BufferedWriter(connection.socket.makefile('w')) response_buf = io.BufferedReader(connection.socket.makefile('r')) request_queue = [] while True: # Write requests into request_buffer # ...to do... # Perform socket I/O Communicate: r,w,e = select.select([response_buf], [request_buf], [], 1) if r: response_data = response_buf.peek() if "response_data has a newline at position n": response_text = response_buf.read(n) response_buf.read(???) if w: request_buf.write(???) # Read answers while resp_buf.hasSomeData: request = request_queue[0] # Er, use a queue? request_queue = request_queue[1:] response = parse_fn(response_buf.readline()) yield (request, response) Hmmm, my sockets are rusty, and my Python io buffer classes weak, but this seems more correct: # We write requests (like b"world.getBlock(0,0,0)" into the # request_buffer and then into the request_file (socket). request_buffer = bytearray() # bytes, bytearray, or memoryview request_file = io.FileIO(connection.socket.fileno(), "w", closeFd=False) "...append data to request_buffer..." if request_buffer: can select if selected: # Write exactly once bytes_written = request_file.write(request_buffer) request_buffer = request_buffer[bytes_written:] if bytes_written == 0: "something is wrong" # We read responses (like b"2") from the response_file (socket) # into the response_buffer. response_file = io.FileIO(connection.socket.fileno(), "r", closeFd=False) response_buffer = bytes() if selected: # Read exactly once response_buffer.append(response_file.read()) "...remove data from response_buffer..." # Try gen_answers: if True: connection = Connection("localhost", 4711) def some_rectangle(): for x in range(-2,2): for z in range(-2,2): yield (x, 0, z) for pos, blk in gen_answers(connection, some_rectangle, "world.getBlock(%d,%d)", int): print "Got", pos, blk my_blocks = {} for pos, blk in gen_answers(connection, some_rectangle, "world.getBlock(%d,%d)", int): my_blocks[pos] = blk ''' ```
{ "source": "joseph-r-hamilton/dataframe_image", "score": 3 }
#### File: dataframe_image/dataframe_image/_command_line.py ```python import argparse import textwrap import sys class CustomFormatter(argparse.RawTextHelpFormatter): pass HELP = '''\n\n ======================================================== dataframe_image ======================================================== Embed pandas DataFrames as images when converting Jupyter Notebooks to pdf or markdown documents. Required Positional Arguments ============================= filename The filename of the notebook you wish to convert Optional Keyword Arguments ========================== --to Type of document to create - either pdf or markdown. Possible values are 'pdf', 'markdown', and 'md'. (default: pdf) --use Possible options are 'latex' or 'browser'. Choose to convert using latex or chrome web browser when converting to pdf. Output is significantly different for each. Use 'latex' when you desire a formal report. Use 'browser' to get output similar to that when printing to pdf within a chrome web browser. (default: latex) --center-df Choose whether to center the DataFrames or not in the image. By default, this is True, though in Jupyter Notebooks, they are left-aligned. Use False to make left-aligned. (default: True) --max-rows Maximum number of rows to output from DataFrame. This is forwarded to the `to_html` DataFrame method. (default: 30) --max-cols Maximum number of columns to output from DataFrame. This is forwarded to the `to_html` DataFrame method. (deault: 10) --execute Whether or not to execute the notebook first. (default: False) --save-notebook Whether or not to save the notebook with DataFrames as images as a new notebook. The filename will be '{notebook_name}_dataframe_image.ipynb' (default: False) --limit Limit the number of cells in the notebook for conversion. This is useful to test conversion of a large notebook on a smaller subset. --document-name Name of newly created pdf/markdown document without the extension. If not provided, the name of the notebook will be used. --table-conversion DataFrames (and other tables) will be inserted in your document as an image using a screenshot from Chrome. If this doesn't work, use matplotlib, which will always work and produce similar results. Valid values are 'chrome' or 'matplotlib' (default: 'chrome') --chrome-path Path to your machine's chrome executable. By default, it is automatically found. Use this when chrome is not automatically found. --latex-command Pass in a list of commands that nbconvert will use to convert the latex document to pdf. The latex document is created temporarily when converting to pdf with the `use` option set to 'latex'. If the xelatex command is not found on your machine, then pdflatex will be substituted for it. You must have latex installed on your machine for this to work. Get more info on how to install latex - https://nbconvert.readthedocs.io/en/latest/install.html#installing-tex (default: ['xelatex', {filename}, 'quiet']) --output-dir Directory where new pdf and/or markdown files will be saved. By default, this will be in the same directory where the notebook is. The directory for images will also be created in here. If --save-notebook is set to True, it will be saved here as well. Provide a relative path to the current working directory or an absolute path. Examples ======== dataframe_image my_notebook.ipynb --to=pdf --save-notebook=True --execute=True dataframe_image path/to/my_notebook.ipynb --to=md --output-dir="some other/directory/" Created by <NAME> (https://www.dunderdata.com) ''' parser = argparse.ArgumentParser(formatter_class=CustomFormatter, add_help=False, usage=argparse.SUPPRESS) parser.add_argument('filename', default=False) parser.add_argument('-h', '--help', action='store_true', dest='help') parser.add_argument('--to', type=str, choices=['md', 'pdf', 'markdown'], default='pdf') parser.add_argument('--use', type=str, choices=['latex', 'browser'], default='latex') parser.add_argument('--center-df', type=bool, default=True) parser.add_argument('--max-rows', type=int, default=30) parser.add_argument('--max-cols', type=int, default=10) parser.add_argument('--execute', type=bool, default=False) parser.add_argument('--save-notebook', type=bool, default=False) parser.add_argument('--limit', type=int) parser.add_argument('--document-name') parser.add_argument('--table-conversion', type=str, choices=['chrome', 'matplotlib'], default='chrome') parser.add_argument('--chrome-path') parser.add_argument('--latex-command', type=list, default=['xelatex', '{filename}', 'quiet']) parser.add_argument('--output-dir') def main(): if len(sys.argv) == 1 or '-h' in sys.argv or '--help' in sys.argv: print(HELP) else: args = vars(parser.parse_args()) del args['help'] from ._convert import convert convert(**args) ``` #### File: dataframe_image/tests/test_df_image.py ```python import pytest import pandas as pd import dataframe_image df = pd.read_csv('tests/notebooks/data/covid19.csv', parse_dates=['date'], index_col='date') class TestImage: def test_df(self): df.tail(10).dfi.export('tests/test_output/covid19.png') def test_styled(self): df.tail(10).style.background_gradient().export_png('tests/test_output/covid19_styled.png') def test_mpl(self): df.tail(10).dfi.export('tests/test_output/covid19_mpl.png', table_conversion='matplotlib') ```
{ "source": "josephrocca/onnx-typecast", "score": 2 }
#### File: josephrocca/onnx-typecast/convert-float16-to-float32.py ```python import onnx from onnx import helper as h from onnx import checker as ch from onnx import TensorProto, GraphProto, AttributeProto from onnx import numpy_helper as nph import numpy as np from collections import OrderedDict from logger import log import typer def make_param_dictionary(initializer): params = OrderedDict() for data in initializer: params[data.name] = data return params def convert_params_to_float(params_dict): converted_params = [] for param in params_dict: data = params_dict[param] if data.data_type == TensorProto.FLOAT16: data_cvt = nph.to_array(data).astype(np.float32) data = nph.from_array(data_cvt, data.name) converted_params += [data] return converted_params def convert_constant_nodes_to_float(nodes): """ convert_constant_nodes_to_float Convert Constant nodes to FLOAT. If a constant node has data type FLOAT16, a new version of the node is created with FLOAT data type and stored. Args: nodes (list): list of nodes Returns: list: list of new nodes all with FLOAT constants. """ new_nodes = [] for node in nodes: if ( node.op_type == "Constant" and node.attribute[0].t.data_type == TensorProto.FLOAT16 ): data = nph.to_array(node.attribute[0].t).astype(np.float32) new_t = nph.from_array(data) new_node = h.make_node( "Constant", inputs=[], outputs=node.output, name=node.name, value=new_t, ) new_nodes += [new_node] else: new_nodes += [node] return new_nodes def convert_model_to_float(model_path: str, out_path: str): """ convert_model_to_float Converts ONNX model with FLOAT16 params to FLOAT params.\n Args:\n model_path (str): path to original ONNX model.\n out_path (str): path to save converted model. """ log.info("ONNX FLOAT16 --> FLOAT Converter") log.info(f"Loading Model: {model_path}") # * load model. model = onnx.load_model(model_path) ch.check_model(model) # * get model opset version. opset_version = model.opset_import[0].version graph = model.graph # * The initializer holds all non-constant weights. init = graph.initializer # * collect model params in a dictionary. params_dict = make_param_dictionary(init) log.info("Converting FLOAT16 model params to FLOAT...") # * convert all FLOAT16 aprams to FLOAT. converted_params = convert_params_to_float(params_dict) log.info("Converting constant FLOAT16 nodes to FLOAT...") new_nodes = convert_constant_nodes_to_float(graph.node) # convert input and output to FLOAT: input_type = graph.input[0].type.tensor_type.elem_type output_type = graph.output[0].type.tensor_type.elem_type if input_type == TensorProto.FLOAT16: graph.input[0].type.tensor_type.elem_type = TensorProto.FLOAT if output_type == TensorProto.FLOAT16: graph.output[0].type.tensor_type.elem_type = TensorProto.FLOAT # convert node attributes to FLOAT: for node in new_nodes: for attribute in node.attribute: if attribute.name == "to" and attribute.i == TensorProto.FLOAT16: # for op_type=="Cast" attribute.i = AttributeProto.FLOAT if hasattr(attribute, "type"): if attribute.type == TensorProto.FLOAT16: attribute.type = TensorProto.FLOAT elif attribute.type == AttributeProto.TENSOR: if attribute.t.data_type == TensorProto.FLOAT16: attribute.t.CopyFrom( nph.from_array( nph.to_array(attribute.t).astype(np.float32) ) ) graph_name = f"{graph.name}-float" log.info("Creating new graph...") # * create a new graph with converted params and new nodes. graph_float = h.make_graph( new_nodes, graph_name, graph.input, graph.output, initializer=converted_params, ) log.info("Creating new float model...") model_float = h.make_model(graph_float, producer_name="onnx-typecast") model_float.opset_import[0].version = opset_version ch.check_model(model_float) log.info(f"Saving converted model as: {out_path}") onnx.save_model(model_float, out_path) log.info(f"Done Done London. 🎉") return if __name__ == "__main__": typer.run(convert_model_to_float) ```
{ "source": "josephrocca/TokenCut", "score": 2 }
#### File: josephrocca/TokenCut/networks.py ```python import torch import torch.nn as nn from torchvision.models.resnet import resnet50 from torchvision.models.vgg import vgg16 import dino.vision_transformer as vits #import moco.vits as vits_moco def get_model(arch, patch_size, device): # Initialize model with pretraining url = None if "moco" in arch: if arch == "moco_vit_small" and patch_size == 16: url = "moco-v3/vit-s-300ep/vit-s-300ep.pth.tar" elif arch == "moco_vit_base" and patch_size == 16: url = "moco-v3/vit-b-300ep/vit-b-300ep.pth.tar" model = vits.__dict__[arch](num_classes=0) elif "mae" in arch: if arch == "mae_vit_base" and patch_size == 16: url = "mae/visualize/mae_visualize_vit_base.pth" model = vits.__dict__[arch](num_classes=0) elif "vit" in arch: if arch == "vit_small" and patch_size == 16: url = "dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth" elif arch == "vit_small" and patch_size == 8: url = "dino/dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" elif arch == "vit_base" and patch_size == 16: url = "dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth" elif arch == "vit_base" and patch_size == 8: url = "dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth" elif arch == "resnet50": url = "dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth" model = vits.__dict__[arch](patch_size=patch_size, num_classes=0) else: raise NotImplementedError for p in model.parameters(): p.requires_grad = False if url is not None: print( "Since no pretrained weights have been provided, we load the reference pretrained DINO weights." ) state_dict = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/" + url ) if "moco" in arch: state_dict = state_dict['state_dict'] for k in list(state_dict.keys()): # retain only base_encoder up to before the embedding layer if k.startswith('module.base_encoder') and not k.startswith('module.base_encoder.head'): # remove prefix state_dict[k[len("module.base_encoder."):]] = state_dict[k] # delete renamed or unused k del state_dict[k] elif "mae" in arch: state_dict = state_dict['model'] for k in list(state_dict.keys()): # retain only base_encoder up to before the embedding layer if k.startswith('decoder') or k.startswith('mask_token'): # remove prefix #state_dict[k[len("module.base_encoder."):]] = state_dict[k] # delete renamed or unused k del state_dict[k] msg = model.load_state_dict(state_dict, strict=True) print( "Pretrained weights found at {} and loaded with msg: {}".format( url, msg ) ) else: print( "There is no reference weights available for this model => We use random weights." ) model.eval() model.to(device) return model ``` #### File: TokenCut/unsupervised_saliency_detection/object_discovery.py ```python import torch import torch.nn.functional as F import numpy as np #from scipy.linalg.decomp import eig import scipy from scipy.linalg import eigh from scipy import ndimage #from sklearn.mixture import GaussianMixture #from sklearn.cluster import KMeans def ncut(feats, dims, scales, init_image_size, tau = 0, eps=1e-5, im_name='', no_binary_graph=False): """ Implementation of NCut Method. Inputs feats: the pixel/patche features of an image dims: dimension of the map from which the features are used scales: from image to map scale init_image_size: size of the image tau: thresold for graph construction eps: graph edge weight im_name: image_name no_binary_graph: ablation study for using similarity score as graph edge weight """ feats = F.normalize(feats, p=2, dim=0) A = (feats.transpose(0,1) @ feats) A = A.cpu().numpy() if no_binary_graph: A[A<tau] = eps else: A = A > tau A = np.where(A.astype(float) == 0, eps, A) d_i = np.sum(A, axis=1) D = np.diag(d_i) # Print second and third smallest eigenvector _, eigenvectors = eigh(D-A, D, subset_by_index=[1,2]) eigenvec = np.copy(eigenvectors[:, 0]) # method1 avg second_smallest_vec = eigenvectors[:, 0] avg = np.sum(second_smallest_vec) / len(second_smallest_vec) bipartition = second_smallest_vec > avg seed = np.argmax(np.abs(second_smallest_vec)) if bipartition[seed] != 1: eigenvec = eigenvec * -1 bipartition = np.logical_not(bipartition) bipartition = bipartition.reshape(dims).astype(float) # predict BBox pred, _, objects,cc = detect_box(bipartition, seed, dims, scales=scales, initial_im_size=init_image_size) ## We only extract the principal object BBox mask = np.zeros(dims) mask[cc[0],cc[1]] = 1 mask = torch.from_numpy(mask).to('cuda') # mask = torch.from_numpy(bipartition).to('cuda') bipartition = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=init_image_size, mode='nearest').squeeze() eigvec = second_smallest_vec.reshape(dims) eigvec = torch.from_numpy(eigvec).to('cuda') eigvec = F.interpolate(eigvec.unsqueeze(0).unsqueeze(0), size=init_image_size, mode='nearest').squeeze() return seed, bipartition.cpu().numpy(), eigvec.cpu().numpy() def detect_box(bipartition, seed, dims, initial_im_size=None, scales=None, principle_object=True): """ Extract a box corresponding to the seed patch. Among connected components extract from the affinity matrix, select the one corresponding to the seed patch. """ w_featmap, h_featmap = dims objects, num_objects = ndimage.label(bipartition) cc = objects[np.unravel_index(seed, dims)] if principle_object: mask = np.where(objects == cc) # Add +1 because excluded max ymin, ymax = min(mask[0]), max(mask[0]) + 1 xmin, xmax = min(mask[1]), max(mask[1]) + 1 # Rescale to image size r_xmin, r_xmax = scales[1] * xmin, scales[1] * xmax r_ymin, r_ymax = scales[0] * ymin, scales[0] * ymax pred = [r_xmin, r_ymin, r_xmax, r_ymax] # Check not out of image size (used when padding) if initial_im_size: pred[2] = min(pred[2], initial_im_size[1]) pred[3] = min(pred[3], initial_im_size[0]) # Coordinate predictions for the feature space # Axis different then in image space pred_feats = [ymin, xmin, ymax, xmax] return pred, pred_feats, objects, mask else: raise NotImplementedError ``` #### File: TokenCut/weakly_supvervised_detection/datasets.py ```python import os import torch import numpy as np import pandas as pd from PIL import Image from tqdm import tqdm from collections import defaultdict from torchvision.datasets.folder import default_loader from torchvision.datasets.utils import download_url from torch.utils.data import Dataset from torchvision import transforms class CUB200(Dataset): def __init__(self, root, is_train, transform=None, ori_size=False, input_size=224, center_crop=True): self.root = root self.is_train = is_train self.ori_size = ori_size if not ori_size and center_crop: image_size = int(256/224*input_size) #TODO check crop_size = input_size #TODO check shift = (image_size - crop_size) // 2 elif not ori_size and not center_crop: image_size = input_size crop_size = input_size shift = 0 self.data = self._load_data(image_size, crop_size, shift, center_crop) self.transform = transform def _load_data(self, image_size, crop_size, shift, center_crop=True): self._labelmap_path = os.path.join(self.root, 'CUB_200_2011', 'classes.txt') paths = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'images.txt'), sep=' ', names=['id', 'path']) labels = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'image_class_labels.txt'), sep=' ', names=['id', 'label']) splits = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'train_test_split.txt'), sep=' ', names=['id', 'is_train']) orig_image_sizes = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'image_sizes.txt'), sep=' ', names=['id', 'width', 'height']) bboxes = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'bounding_boxes.txt'), sep=' ', names=['id', 'x', 'y', 'w', 'h']) if self.ori_size: resized_bboxes = pd.DataFrame({'id': paths.id, 'xmin': bboxes.x, 'ymin': bboxes.y, 'xmax': bboxes.x + bboxes.w, 'ymax': bboxes.y + bboxes.h}) else: if center_crop: resized_xmin = np.maximum( (bboxes.x / orig_image_sizes.width * image_size - shift).astype(int), 0) resized_ymin = np.maximum( (bboxes.y / orig_image_sizes.height * image_size - shift).astype(int), 0) resized_xmax = np.minimum( ((bboxes.x + bboxes.w - 1) / orig_image_sizes.width * image_size - shift).astype(int), crop_size - 1) resized_ymax = np.minimum( ((bboxes.y + bboxes.h - 1) / orig_image_sizes.height * image_size - shift).astype(int), crop_size - 1) else: min_length = pd.concat([orig_image_sizes.width, orig_image_sizes.height], axis=1).min(axis=1) resized_xmin = (bboxes.x / min_length * image_size).astype(int) resized_ymin = (bboxes.y / min_length * image_size).astype(int) resized_xmax = ((bboxes.x + bboxes.w - 1) / min_length * image_size).astype(int) resized_ymax = ((bboxes.y + bboxes.h - 1) / min_length * image_size).astype(int) resized_bboxes = pd.DataFrame({'id': paths.id, 'xmin': resized_xmin.values, 'ymin': resized_ymin.values, 'xmax': resized_xmax.values, 'ymax': resized_ymax.values}) data = paths.merge(labels, on='id')\ .merge(splits, on='id')\ .merge(resized_bboxes, on='id') if self.is_train: data = data[data.is_train == 1] else: data = data[data.is_train == 0] return data def __len__(self): return len(self.data) # def _preprocess_bbox(self, origin_bbox, orig_image_size, center_crop=True): # xmin, ymin, xmax, ymax = origin_bbox # orig_width, orig_height = orig_image_size # if center_crop: # resized_xmin = np.maximum( # (bboxes.x / orig_image_sizes.width * image_size - shift).astype(int), 0) # resized_ymin = np.maximum( # (bboxes.y / orig_image_sizes.height * image_size - shift).astype(int), 0) # resized_xmax = np.minimum( # ((bboxes.x + bboxes.w - 1) / orig_image_sizes.width * image_size - shift).astype(int), # crop_size - 1) # resized_ymax = np.minimum( # ((bboxes.y + bboxes.h - 1) / orig_image_sizes.height * image_size - shift).astype(int), # crop_size - 1) # else: # print(f'width: {orig_image_sizes.width}, height: {orig_image_sizes.height}') # min_length = min(orig_image_sizes.width , orig_image_sizes.height) # resized_xmin = int(bb / min_length * self.image_size) # resized_ymin = int(ymin / min_length * self.image_size) # resized_xmax = int(xmax / min_length * self.image_size) # resized_ymax = int(ymax / min_length * self.image_size) # resized_bboxes = pd.DataFrame({'id': paths.id, # 'xmin': resized_xmin.values, # 'ymin': resized_ymin.values, # 'xmax': resized_xmax.values, # 'ymax': resized_ymax.values}) def __getitem__(self, idx): sample = self.data.iloc[idx] path = os.path.join(self.root, 'CUB_200_2011/images', sample.path) image = Image.open(path).convert('RGB') label = sample.label - 1 # label starts from 1 gt_box = torch.tensor( [sample.xmin, sample.ymin, sample.xmax, sample.ymax]) if self.transform is not None: image = self.transform(image) return (image, label, gt_box) @property def class_id_to_name(self): if hasattr(self, '_class_id_to_name'): return self._class_id_to_name labelmap = pd.read_csv(self._labelmap_path, sep=' ', names=['label', 'name']) labelmap['label'] = labelmap['label'].apply(lambda x: x - 1) self._class_id_to_name = labelmap.set_index('label')['name'].to_dict() return self._class_id_to_name @property def class_name_to_id(self): if hasattr(self, '_class_name_to_id'): return self._class_name_to_id self._class_name_to_id = {v: k for k, v in self.class_id_to_name.items()} return self._class_name_to_id @property def class_to_images(self): if hasattr(self, '_class_to_images'): return self._class_to_images #self.log.warn('Create index...') self._class_to_images = defaultdict(list) for idx in tqdm(range(len(self))): sample = self.data.iloc[idx] label = sample.label - 1 self._class_to_images[label].append(idx) #self.log.warn('Done!') return self._class_to_images #class ImageNet(H5Dataset): # def __init__(self, root, is_train, transform=None): # self.root = root # self.is_train = is_train # tag = 'train' if is_train else 'val' # self.h5_path = os.path.join(root, f'imagenet_{tag}.h5') # # super().__init__(self.h5_path, transform) class ImageNet(Dataset): def __init__(self, root, is_train, transform=None, ori_size=False, input_size=224, center_crop=True): self.root = root self.is_train = is_train self.ori_size = ori_size self.center_crop = center_crop if not ori_size and center_crop: self.image_size = int(256/224 * input_size) self.crop_size = input_size self.shift = (self.image_size - self.crop_size) // 2 elif not ori_size and not center_crop: print('resize, without center crop') self.image_size = input_size self._load_data() self.transform = transform def _load_data(self): self._labelmap_path = os.path.join( self.root, 'ILSVRC/Detection', 'imagenet1000_clsidx_to_labels.txt') if self.is_train: self.path = os.path.join(self.root, 'ILSVRC/Data/train') self.metadata = pd.read_csv( os.path.join(self.root, 'ILSVRC/Detection', 'train.txt'), sep=' ', names=['path', 'label']) else: self.path = os.path.join(self.root, 'ILSVRC/Data/val') self.metadata = pd.read_csv( os.path.join(self.root, 'ILSVRC/Detection', 'val.txt'), sep='\t', names=['path', 'label', 'xmin', 'ymin', 'xmax', 'ymax']) self.wnids = pd.read_csv( os.path.join(self.root, 'ILSVRC/Detection/', 'wnids.txt'), names=['dir_name']) def _preprocess_bbox(self, origin_bbox, orig_image_size, center_crop=True, image_path=None): xmin, ymin, xmax, ymax = origin_bbox orig_width, orig_height = orig_image_size if center_crop: resized_xmin = np.maximum( int(xmin / orig_width * self.image_size - self.shift), 0) resized_ymin = np.maximum( int(ymin / orig_height * self.image_size - self.shift), 0) resized_xmax = np.minimum( int(xmax / orig_width * self.image_size - self.shift), self.crop_size - 1) resized_ymax = np.minimum( int(ymax / orig_height * self.image_size - self.shift), self.crop_size - 1) else: #print(f'ori W: {orig_width} ori H: {orig_height}, xmin: {xmin}, ymin: {ymin}, xmax: {xmax}, ymax: {ymax}, input_size: {self.image_size}, image_path: {image_path}') min_length = min(orig_height, orig_width) resized_xmin = int(xmin / min_length * self.image_size) resized_ymin = int(ymin / min_length * self.image_size) resized_xmax = int(xmax / min_length * self.image_size) resized_ymax = int(ymax / min_length * self.image_size) #print(f'output: xmin, ymin, xmax, ymax: {[resized_xmin, resized_ymin, resized_xmax, resized_ymax]}') return [resized_xmin, resized_ymin, resized_xmax, resized_ymax] def __len__(self): return len(self.metadata) def __getitem__(self, idx): sample = self.metadata.iloc[idx] if self.is_train: image_path = os.path.join(self.path, sample.path) else: image_path = os.path.join( self.path, self.wnids.iloc[int(sample.label)].dir_name, sample.path) image = Image.open(image_path).convert('RGB') label = sample.label # preprocess bbox if self.is_train: gt_box = torch.tensor([0., 0., 0., 0.]) else: origin_box = [sample.xmin, sample.ymin, sample.xmax, sample.ymax] if self.ori_size: gt_box = torch.tensor(origin_box) else: gt_box = torch.tensor( self._preprocess_bbox(origin_box, image.size, self.center_crop, image_path)) if self.transform is not None: image = self.transform(image) return (image, label, gt_box) @property def class_id_to_name(self): if hasattr(self, '_class_id_to_name'): return self._class_id_to_name with open(self._labelmap_path, 'r') as f: self._class_id_to_name = eval(f.read()) return self._class_id_to_name @property def class_name_to_id(self): if hasattr(self, '_class_name_to_id'): return self._class_name_to_id self._class_name_to_id = {v: k for k, v in self.class_id_to_name.items()} return self._class_name_to_id @property def wnid_list(self): if hasattr(self, '_wnid_list'): return self._wnid_list self._wnid_list = self.wnids.dir_name.tolist() return self._wnid_list @property def class_to_images(self): if hasattr(self, '_class_to_images'): return self._class_to_images self.log.warn('Create index...') self._class_to_images = defaultdict(list) for idx in tqdm(range(len(self))): sample = self.metadata.iloc[idx] label = sample.label self._class_to_images[label].append(idx) self.log.warn('Done!') return self._class_to_images def verify_wnid(self, wnid): is_valid = bool(re.match(u'^[n][0-9]{8}$', wnid)) is_terminal = bool(wnid in self.wnids.dir_name.tolist()) return is_valid and is_terminal def get_terminal_wnids(self, wnid): page = requests.get("http://www.image-net.org/api/text/wordnet.structure.hyponym?wnid={}&full=1".format(wnid)) str_wnids = str(BeautifulSoup(page.content, 'html.parser')) split_wnids = re.split('\r\n-|\r\n', str_wnids) return [_wnid for _wnid in split_wnids if self.verify_wnid(_wnid)] def get_image_ids(self, wnid): terminal_wnids = self.get_terminal_wnids(wnid) image_ids = set() for terminal_wnid in terminal_wnids: class_id = self.wnid_list.index(terminal_wnid) image_ids |= set(self.class_to_images[class_id]) return list(image_ids) DATASETS = { 'cub': CUB200, 'imagenet': ImageNet, } LABELS = { 'cub': 200, 'imagenet': 1000, } def build_dataset(is_train, args): # Define arguments data_name = args.dataset root = args.data_path batch_size = args.batch_size_per_gpu num_workers = args.num_workers transform = build_transform(is_train, args) dataset = DATASETS[data_name](root, is_train=is_train, transform=transform, ori_size=args.ori_size, input_size = args.input_size, center_crop = not args.no_center_crop) return dataset, LABELS[data_name] def build_transform(is_train, args): resize_im = args.input_size > 32 if is_train: transform = transforms.Compose([ transforms.RandomResizedCrop(args.input_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop( args.input_size, padding=4) return transform t = [] if resize_im and (not args.ori_size): if args.no_center_crop: t.append(transforms.Resize(args.input_size, interpolation=3)) else: size = int((256 / 224) * args.input_size) t.append( transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images ) if not args.ori_size and not args.no_center_crop: print('center crop') t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))) return transforms.Compose(t) ``` #### File: TokenCut/weakly_supvervised_detection/metrics.py ```python import cv2 import torch import numpy as np def loc_accuracy(outputs, labels, gt_boxes, bboxes, iou_threshold=0.5): if outputs is not None: _, pred = torch.topk(outputs, k=1, dim=1, largest=True, sorted=True) pred = pred.t() correct = pred.eq(labels.view(1, -1).expand_as(pred)) wrongs = [c == 0 for c in correct.cpu().numpy()][0] batch_size = len(gt_boxes) gt_known, top1 = 0., 0. for i, (gt_box, bbox) in enumerate(zip(gt_boxes, bboxes)): iou_score = iou(gt_box, bbox) if iou_score >= iou_threshold: gt_known += 1. if outputs is not None and not wrongs[i]: top1 += 1. gt_loc = gt_known / batch_size top1_loc = top1 / batch_size return gt_loc, top1_loc def iou(box1, box2): """box: (xmin, ymin, xmax, ymax)""" box1_xmin, box1_ymin, box1_xmax, box1_ymax = box1 box2_xmin, box2_ymin, box2_xmax, box2_ymax = box2 inter_xmin = max(box1_xmin, box2_xmin) inter_ymin = max(box1_ymin, box2_ymin) inter_xmax = min(box1_xmax, box2_xmax) inter_ymax = min(box1_ymax, box2_ymax) inter_area = (inter_xmax - inter_xmin + 1) * (inter_ymax - inter_ymin + 1) box1_area = (box1_xmax - box1_xmin + 1) * (box1_ymax - box1_ymin + 1) box2_area = (box2_xmax - box2_xmin + 1) * (box2_ymax - box2_ymin + 1) iou = inter_area / (box1_area + box2_area - inter_area).float() return iou.item() ```
{ "source": "joseph-roitman/pytest-snapshot", "score": 2 }
#### File: pytest-snapshot/tests/test_assert_match.py ```python import os from pathlib import Path import pytest from pytest_snapshot.plugin import _file_encode from tests.utils import assert_pytest_passes @pytest.fixture def basic_case_dir(testdir): case_dir = testdir.mkdir('case_dir') case_dir.join('snapshot1.txt').write_text('the valuÉ of snapshot1.txt\n', 'utf-8') return case_dir def test_assert_match_with_external_snapshot_path(testdir, basic_case_dir): testdir.makepyfile(r""" from pathlib import Path def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('the value of snapshot1.txt\n', Path('not_case_dir/snapshot1.txt').absolute()) """) result = testdir.runpytest('-v') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', "E* AssertionError: Snapshot path not_case_dir?snapshot1.txt is not in case_dir", ]) assert result.ret == 1 def test_assert_match_success_string(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('the valuÉ of snapshot1.txt\n', 'snapshot1.txt') """) assert_pytest_passes(testdir) def test_assert_match_success_bytes(testdir, basic_case_dir): testdir.makepyfile(r""" import os def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match(b'the valu\xc3\x89 of snapshot1.txt' + os.linesep.encode(), 'snapshot1.txt') """) assert_pytest_passes(testdir) def test_assert_match_failure_string(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('the INCORRECT value of snapshot1.txt\n', 'snapshot1.txt') """) result = testdir.runpytest('-v') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', ">* raise AssertionError(snapshot_diff_msg)", 'E* AssertionError: value does not match the expected value in snapshot case_dir?snapshot1.txt', "E* assert * == *", "E* - the valuÉ of snapshot1.txt", "E* ? ^", "E* + the INCORRECT value of snapshot1.txt", "E* ? ++++++++++ ^", ]) assert result.ret == 1 def test_assert_match_failure_bytes(testdir, basic_case_dir): testdir.makepyfile(r""" import os def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match(b'the INCORRECT value of snapshot1.txt' + os.linesep.encode(), 'snapshot1.txt') """) result = testdir.runpytest('-v') result.stdout.fnmatch_lines([ r'*::test_sth FAILED*', r">* raise AssertionError(snapshot_diff_msg)", r'E* AssertionError: value does not match the expected value in snapshot case_dir?snapshot1.txt', r"E* assert * == *", r"E* At index 4 diff: * != *", r"E* Full diff:", r"E* - b'the valu\xc3\x89 of snapshot1.txt{}'".format(repr(os.linesep)[1:-1]), r"E* + b'the INCORRECT value of snapshot1.txt{}'".format(repr(os.linesep)[1:-1]), ]) assert result.ret == 1 def test_assert_match_invalid_type(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match(123, 'snapshot1.txt') """) result = testdir.runpytest('-v') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', 'E* TypeError: value must be str or bytes', ]) assert result.ret == 1 def test_assert_match_missing_snapshot(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('something', 'snapshot_that_doesnt_exist.txt') """) result = testdir.runpytest('-v') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', "E* snapshot case_dir?snapshot_that_doesnt_exist.txt doesn't exist. " "(run pytest with --snapshot-update to create it)", ]) assert result.ret == 1 def test_assert_match_update_existing_snapshot_no_change(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('the valuÉ of snapshot1.txt\n', 'snapshot1.txt') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth PASSED*', ]) assert result.ret == 0 assert_pytest_passes(testdir) # assert that snapshot update worked @pytest.mark.parametrize('case_dir_repr', ["'case_dir'", "str(Path('case_dir').absolute())", "Path('case_dir')", "Path('case_dir').absolute()"], ids=['relative_string_case_dir', 'abs_string_case_dir', 'relative_path_case_dir', 'abs_path_case_dir']) @pytest.mark.parametrize('snapshot_name_repr', ["'snapshot1.txt'", "str(Path('case_dir/snapshot1.txt').absolute())", "Path('case_dir/snapshot1.txt')", # TODO: support this or "Path('snapshot1.txt')"? "Path('case_dir/snapshot1.txt').absolute()"], ids=['relative_string_snapshot_name', 'abs_string_snapshot_name', 'relative_path_snapshot_name', 'abs_path_snapshot_name']) def test_assert_match_update_existing_snapshot(testdir, basic_case_dir, case_dir_repr, snapshot_name_repr): """ Tests that `Snapshot.assert_match` works when updating an existing snapshot. Also tests that `Snapshot` supports absolute/relative str/Path snapshot directories and snapshot paths. """ testdir.makepyfile(r""" from pathlib import Path def test_sth(snapshot): snapshot.snapshot_dir = {case_dir_repr} snapshot.assert_match('the NEW value of snapshot1.txt\n', {snapshot_name_repr}) """.format(case_dir_repr=case_dir_repr, snapshot_name_repr=snapshot_name_repr)) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth PASSED*', '*::test_sth ERROR*', "E* AssertionError: Snapshot directory was modified: case_dir", 'E* Updated snapshots:', 'E* snapshot1.txt', ]) assert result.ret == 1 assert_pytest_passes(testdir) # assert that snapshot update worked def test_assert_match_update_existing_snapshot_and_exception_in_test(testdir, basic_case_dir): """ Tests that `Snapshot.assert_match` works when updating an existing snapshot and then the test function fails. In this case, both the snapshot update error and the test function error are printed out. """ testdir.makepyfile(r""" from pathlib import Path def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('the NEW value of snapshot1.txt\n', 'snapshot1.txt') assert False """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', '*::test_sth ERROR*', "E* AssertionError: Snapshot directory was modified: case_dir", 'E* Updated snapshots:', 'E* snapshot1.txt', 'E* assert False', ]) assert result.ret == 1 def test_assert_match_create_new_snapshot(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('the NEW value of new_snapshot1.txt', 'sub_dir/new_snapshot1.txt') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth PASSED*', '*::test_sth ERROR*', "E* Snapshot directory was modified: case_dir", 'E* Created snapshots:', 'E* sub_dir?new_snapshot1.txt', ]) assert result.ret == 1 assert_pytest_passes(testdir) # assert that snapshot update worked def test_assert_match_create_new_snapshot_in_default_dir(testdir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.assert_match('the value of new_snapshot1.txt', 'sub_dir/new_snapshot1.txt') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth PASSED*', '*::test_sth ERROR*', "E* Snapshot directory was modified: snapshots?test_assert_match_create_new_snapshot_in_default_dir?test_sth", 'E* Created snapshots:', 'E* sub_dir?new_snapshot1.txt', ]) assert result.ret == 1 assert testdir.tmpdir.join( 'snapshots/test_assert_match_create_new_snapshot_in_default_dir/test_sth/sub_dir/new_snapshot1.txt' ).read_text('utf-8') == 'the value of new_snapshot1.txt' assert_pytest_passes(testdir) # assert that snapshot update worked def test_assert_match_existing_snapshot_is_not_file(testdir, basic_case_dir): basic_case_dir.mkdir('directory1') testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('something', 'directory1') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', "E* AssertionError: snapshot exists but is not a file: case_dir?directory1", ]) assert result.ret == 1 @pytest.mark.parametrize('tested_value', [ b'', '', bytes(bytearray(range(256))), ''.join(chr(i) for i in range(0, 10000)).replace('\r', ''), ' \n \t \n Whitespace! \n\t Whitespace! \n \t \n ', # We don't support \r due to cross-compatibility and git by default modifying snapshot files... pytest.param('\r', marks=pytest.mark.xfail(strict=True)), ], ids=[ 'empty-bytes', 'empty-string', 'all-bytes', 'unicode', 'whitespace', 'slash-r', ]) def test_assert_match_edge_cases(testdir, basic_case_dir, tested_value): """ This test tests many possible values to snapshot test. This test will fail if we change the snapshot file format in any way. This test also checks that assert_match will pass after a snapshot update. """ testdir.makepyfile(r""" def test_sth(snapshot): tested_value = {tested_value!r} snapshot.snapshot_dir = 'case_dir' snapshot.assert_match(tested_value, 'tested_value_snapshot') """.format(tested_value=tested_value)) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth PASSED*', '*::test_sth ERROR*', ]) assert result.ret == 1 if isinstance(tested_value, str): expected_encoded_snapshot = tested_value.replace('\n', os.linesep).encode() else: expected_encoded_snapshot = tested_value encoded_snapshot = Path(str(basic_case_dir)).joinpath('tested_value_snapshot').read_bytes() assert encoded_snapshot == expected_encoded_snapshot assert_pytest_passes(testdir) # assert that snapshot update worked def test_assert_match_unsupported_value_existing_snapshot(testdir, basic_case_dir): """ Test that when running tests without --snapshot-update, we don't tell the user that the value is unsupported. We instead tell the user that the value does not equal the snapshot. This behaviour is more helpful. """ basic_case_dir.join('newline.txt').write_binary(_file_encode('\n')) testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('\r', 'newline.txt') """) result = testdir.runpytest('-v') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', 'E* AssertionError: value does not match the expected value in snapshot case_dir?newline.txt', "E* - '\\n'", "E* + '\\r'", ]) assert result.ret == 1 def test_assert_match_unsupported_value_update_existing_snapshot(testdir, basic_case_dir): basic_case_dir.join('newline.txt').write_binary(_file_encode('\n')) testdir.makepyfile(r""" import os from unittest import mock def _file_encode(string: str) -> bytes: return string.replace('\n', os.linesep).encode() def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' with mock.patch('pytest_snapshot.plugin._file_encode', _file_encode): snapshot.assert_match('\r', 'newline.txt') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', "E* ValueError: value is not supported by pytest-snapshot's serializer.", ]) assert result.ret == 1 def test_assert_match_unsupported_value_create_snapshot(testdir, basic_case_dir): testdir.makepyfile(r""" import os from unittest import mock def _file_encode(string: str) -> bytes: return string.replace('\n', os.linesep).encode() def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' with mock.patch('pytest_snapshot.plugin._file_encode', _file_encode): snapshot.assert_match('\r', 'newline.txt') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', "E* ValueError: value is not supported by pytest-snapshot's serializer.", ]) assert result.ret == 1 def test_assert_match_unsupported_value_slash_r(testdir, basic_case_dir): testdir.makepyfile(r""" def test_sth(snapshot): snapshot.snapshot_dir = 'case_dir' snapshot.assert_match('\r', 'newline.txt') """) result = testdir.runpytest('-v', '--snapshot-update') result.stdout.fnmatch_lines([ '*::test_sth FAILED*', 'E* ValueError: Snapshot testing strings containing "\\r" is not supported.', ]) assert result.ret == 1 ```
{ "source": "josephroqueca/campus-guide-backend", "score": 3 }
#### File: campus-guide-backend/script/schema_validate.py ```python import json import os import re import sys import jsonschema RE_LANGUAGE = re.compile(r'[.][a-z]+$') RE_COMMENT = re.compile(r'^\s*[/]{2}.*$', flags=re.MULTILINE) VERBOSE = False SUCCESS_CODE = 0 if '-v' in sys.argv: VERBOSE = True sys.argv.remove('-v') if '--verbose' in sys.argv: VERBOSE = True sys.argv.remove('--verbose') if len(sys.argv) < 3: print('Usage: ./schema_validate.py <asset_dir> <schema_dir>') SUCCESS_CODE = 2 sys.exit(SUCCESS_CODE) # Import base schemas STORE = {} BASE_SCHEMA_DIR = os.path.join(sys.argv[2], '__base__') for base_schema_name in os.listdir(BASE_SCHEMA_DIR): with open(os.path.join(BASE_SCHEMA_DIR, base_schema_name)) as base_schema_raw: base_schema = json.load(base_schema_raw) STORE[base_schema['id']] = base_schema def set_success_code(code): """ Set the success code for the program. :param code: New code :type code: `int` """ global SUCCESS_CODE # pylint:disable=global-statement SUCCESS_CODE = code def strip_comments(str_in): """ Remove single line comments from a multiline string. :param str_in: Input string :type str_in: `str` :rtype: `str` """ comment = re.search(RE_COMMENT, str_in) while comment: str_in = str_in[:comment.span()[0]] + str_in[comment.span()[1] + 1:] comment = re.search(RE_COMMENT, str_in) return str_in def validate(config, schema_path, schema_name): """ Validate a single configuration file using the schema at the provided path, with the provided name. :param config: Location of the config file :type config: `str` :param schema_path: Location of the schema :type schema_path: `str` :param schema_name: Name of the schema file :type schema_name: `str` """ config_json = schema_json = None with open(config) as file: config_json = json.loads(strip_comments(file.read())) with open(os.path.join(schema_path, schema_name)) as file: schema_json = json.loads(file.read()) resolver = jsonschema.RefResolver( 'file://{0}/{1}'.format(schema_path, schema_name), schema_json, STORE, ) try: jsonschema.Draft4Validator(schema_json, resolver=resolver).validate(config_json) if VERBOSE: print(' Success: {0}'.format(config)) except jsonschema.ValidationError as error: set_success_code(1) print(' Failed: `{0}`'.format(config)) print(' {0}'.format(error.message)) def validate_all(config_dir, schema_dir): """ Validate all files in a directory. :param config_dir: The base directory of configuration files :type config_dir: `str` :param schema_dir: The base directory of schema files to validate with :type schema_dir: `str` """ directories = [] print('Beginning validation of `{0}`'.format(config_dir)) for file in os.listdir(config_dir): file_path = os.path.join(config_dir, file) if os.path.isfile(file_path): if not file_path.endswith('.json'): if VERBOSE: print(' Skipping `{0}`'.format(file_path)) continue schema_path = schema_name = None # Use specific schema for app config files if re.search(os.path.join(sys.argv[1], 'config'), file_path): schema_path = os.path.join(sys.argv[2], 'config') schema_name = 'config.schema.json' else: # Strip filetype and language modifier schema_path = schema_dir schema_name = file[:file.index('.json')] language_pos = re.search(RE_LANGUAGE, schema_name) if language_pos: schema_name = schema_name[:language_pos.span()[0]] + \ schema_name[language_pos.span()[1] + 1:] schema_name = '{0}.schema.json'.format(schema_name) validate(file_path, schema_path, schema_name) else: directories.append(file) for directory in directories: d_path = os.path.join(config_dir, directory) sd_path = os.path.join(schema_dir, directory) # Recursively push assets in directories validate_all(d_path, sd_path) validate_all(sys.argv[1], sys.argv[2]) sys.exit(SUCCESS_CODE) ```
{ "source": "josephroquedev/advent-of-code", "score": 3 }
#### File: day_13/python/day13.py ```python from aoc import AOC import re ## Part 1 aoc = AOC(year=2015, day=13) data = aoc.load() # Regular expression to get the names and happiness changes of each pair regex_happiness = re.compile( r"(\w+) would (gain|lose) (\d+) happiness units by sitting next to (\w+)." ) happiness = {} possibilities = [] # For every line in input for line in data.lines(): info = re.match(regex_happiness, line) # Check if the person is gaining or losing happiness mult = 1 if info.group(2) == "lose": mult = -1 # Add the person and their neighbor as an entry in the dict if info.group(1) in happiness: happiness[info.group(1)][info.group(4)] = mult * int(info.group(3)) else: happiness[info.group(1)] = {info.group(4): mult * int(info.group(3))} def calc_possibilities(first_person, person, visited, total_so_far): # Finds all the possibilities from a person to neighbors which have not been tried so far # and adds the total change in happiness together global happiness global possibilities # Make a copy of the list and add a new entry visited = visited[:] visited.append(person) # If all of the people are in the list, add the total change in happiness to the possibilities if len(visited) == len(happiness): total_so_far += ( happiness[first_person][person] + happiness[person][first_person] ) possibilities.append(total_so_far) # For each person the person can sit beside for neighbor in happiness[person]: # If they're already in the list, skip them if neighbor in visited: continue # Get all the possibilities of the next person's neighbor calc_possibilities( first_person, neighbor, visited, total_so_far + happiness[neighbor][person] + happiness[person][neighbor], ) # Start with each person and go around the table, trying every combination for p in happiness: for n in happiness[p]: calc_possibilities(p, n, [p], happiness[p][n] + happiness[n][p]) aoc.p1(max(possibilities)) ## Part 2 # Regular expression to get the names and happiness changes of each pair regex_happiness = re.compile( r"(\w+) would (gain|lose) (\d+) happiness units by sitting next to (\w+)." ) happiness = {} possibilities = [] # For every line in input for line in data.lines(): info = re.match(regex_happiness, line) # Check if the person is gaining or losing happiness mult = 1 if info.group(2) == "lose": mult = -1 # Add the person and their neighbor as an entry in the dict if info.group(1) in happiness: happiness[info.group(1)][info.group(4)] = mult * int(info.group(3)) else: happiness[info.group(1)] = {info.group(4): mult * int(info.group(3))} # Adding myself to the table happiness["Joseph"] = {} for p in happiness: if not p == "Joseph": happiness[p]["Joseph"] = 0 happiness["Joseph"][p] = 0 def calc_possibilities(first_person, person, visited, total_so_far): # Finds all the possibilities from a person to neighbors which have not been tried so far # and adds the total change in happiness together global happiness global possibilities # Make a copy of the list and add a new entry visited = visited[:] visited.append(person) # If all of the people are in the list, add the total change in happiness to the possibilities if len(visited) == len(happiness): total_so_far += ( happiness[first_person][person] + happiness[person][first_person] ) possibilities.append(total_so_far) # For each person the person can sit beside for neighbor in happiness[person]: # If they're already in the list, skip them if neighbor in visited: continue # Get all the possibilities of the next person's neighbor calc_possibilities( first_person, neighbor, visited, total_so_far + happiness[neighbor][person] + happiness[person][neighbor], ) # Start with each person and go around the table, trying every combination for p in happiness: for n in happiness[p]: calc_possibilities(p, n, [p], happiness[p][n] + happiness[n][p]) aoc.p2(max(possibilities)) ``` #### File: day_24/python/day24.py ```python from aoc import AOC from operator import mul from functools import reduce aoc = AOC(year=2015, day=24) data = aoc.load() ## Part 1 total_weight = 0 weights = [] for line in data.lines(): w = int(line) total_weight += w weights.append(w) # Get the weights from heaviest to lightest weights.sort(reverse=True) # Goal is to get 3 groups of exactly this weight target_weight = total_weight // 3 minimum_presents = -1 quantum_entanglement = -1 potential_first_bags = [] def bag_it(ws, add_to_compilation, compilation, bag): current_weight = sum(bag) if current_weight == target_weight: if add_to_compilation: compilation.append(bag) return True if current_weight > target_weight: return False bagged = False for i, weight in enumerate(ws): remaining = ws[i + 1 :] bagged = ( bag_it(remaining, add_to_compilation, compilation, bag + [weight]) or bagged ) if not add_to_compilation and bagged: return True return bagged bag_it(weights, True, potential_first_bags, []) for first_bag in potential_first_bags: if minimum_presents != -1 and minimum_presents < len(first_bag): continue bag_entanglement = reduce(mul, first_bag) if quantum_entanglement != -1 and bag_entanglement > quantum_entanglement: continue b = first_bag[:] remaining_weights = weights[:] while b: remaining_weights.remove(b.pop()) if bag_it(remaining_weights, False, None, []): minimum_presents = len(first_bag) quantum_entanglement = bag_entanglement aoc.p1(quantum_entanglement) ## Part 2 total_weight = 0 weights = [] for line in data.lines(): w = int(line) total_weight += w weights.append(w) # Get the weights from heaviest to lightest weights.sort(reverse=True) # Goal is to get 4 groups of exactly this weight target_weight = total_weight // 4 minimum_presents = -1 quantum_entanglement = -1 potential_first_bags = [] def bag_it(ws, add_to_compilation, compilation, bag): current_weight = sum(bag) if current_weight == target_weight: if add_to_compilation: compilation.append(bag) return True if current_weight > target_weight: return False bagged = False for i, weight in enumerate(ws): remaining = ws[i + 1 :] bagged = ( bag_it(remaining, add_to_compilation, compilation, bag + [weight]) or bagged ) if not add_to_compilation and bagged: return True return bagged bag_it(weights, True, potential_first_bags, []) for first_bag in potential_first_bags: if minimum_presents != -1 and minimum_presents < len(first_bag): continue bag_entanglement = reduce(mul, first_bag) if quantum_entanglement != -1 and bag_entanglement > quantum_entanglement: continue potential_second_bags = [] b = first_bag[:] remaining_weights = weights[:] while b: remaining_weights.remove(b.pop()) bag_it(remaining_weights, True, potential_second_bags, []) for second_bag in potential_second_bags: bag_again = second_bag[:] remaining_weights_again = remaining_weights[:] while bag_again: remaining_weights_again.remove(bag_again.pop()) if bag_it(remaining_weights, False, None, []): minimum_presents = len(first_bag) quantum_entanglement = bag_entanglement aoc.p2(quantum_entanglement) ``` #### File: day_07/python/day07.py ```python from aoc import AOC aoc = AOC(year=2017, day=7) data = aoc.load() ## Part 1 class Program: def __init__(self, params): components = params.split() self.name = components[0] self.weight = int(components[1][1:-1]) self.heldPrograms = [] if len(components) > 2: self.heldPrograms = [ name if name[-1] != "," else name[0:-1] for name in components[3:] ] programMap = {} for line in data.lines(): program = Program(line) programMap[program.name] = program subPrograms = { program for programName in programMap for program in programMap[programName].heldPrograms } baseProgram = "".join([x for x in programMap if x not in subPrograms]) aoc.p1(baseProgram) ## Part 2 class Program: def __init__(self, params): components = params.split() self.name = components[0] self.weight = int(components[1][1:-1]) self.held_programs = [] if len(components) > 2: self.held_programs = [ name if name[-1] != "," else name[0:-1] for name in components[3:] ] def total_weight(self): weight = self.weight sub_program_weights = [ program_map[name].total_weight() for name in self.held_programs ] if not sub_program_weights: return weight sub_weight = sum(sub_program_weights) return weight + sub_weight program_map = {} for line in data.lines(): program = Program(line) program_map[program.name] = program sub_programs = { program for program_name in program_map for program in program_map[program_name].held_programs } base_program_name = [x for x in program_map if x not in sub_programs][0] base_program = program_map[base_program_name] base_weight = base_program.total_weight() aoc.p2(base_weight) ``` #### File: day_06/python/day06.py ```python from aoc import AOC, manhattan aoc = AOC(year=2018, day=6) data = aoc.load() ## Part 1 coords = [tuple(t) for t in data.numbers_by_line()] width = max([x for x, _ in coords]) height = max([y for _, y in coords]) left = min([x for x, _ in coords]) top = min([y for _, y in coords]) region_sizes = dict(zip(coords, [0] * len(coords))) for region_center in region_sizes: x, y = region_center if x == left or x == width or y == top or y == height: region_sizes[region_center] = -1 def find_closest(coord): min_dist = max(width, height) current_closest = None for center in region_sizes: dist = manhattan(coord, center) if dist < min_dist: current_closest = center min_dist = dist elif dist == min_dist: current_closest = None return current_closest for x in range(left, width + 1): for y in range(top, height + 1): closest = find_closest((x, y)) if closest is not None and region_sizes[closest] >= 0: region_sizes[closest] += 1 aoc.p1(max(region_sizes.values())) ## Part 2 coords = [tuple(t) for t in data.numbers_by_line()] width = max([x for x, _ in coords]) height = max([y for _, y in coords]) left = min([x for x, _ in coords]) top = min([y for _, y in coords]) last_region_size = -1 valid_region_size = 0 max_valid_dist = 10000 def coord_is_valid(coord): total = 0 for other_coord in coords: total += manhattan(coord, other_coord) return total < max_valid_dist for x in range(0, width + 1): for y in range(0, height + 1): if coord_is_valid((x, y)): valid_region_size += 1 xx = width + 1 yy = height + 1 while last_region_size != valid_region_size: last_region_size = valid_region_size for y in range(yy + 1): if coord_is_valid((xx, y)): valid_region_size += 1 for x in range(xx + 1): if coord_is_valid((x, yy)): valid_region_size += 1 aoc.p2(valid_region_size) ``` #### File: day_22/python/day22.py ```python from aoc import AOC, numbers_from import queue aoc = AOC(year=2018, day=22) data = aoc.load() PUZZLE_INPUT = numbers_from(data.contents()) depth = PUZZLE_INPUT[0] target = (PUZZLE_INPUT[1], PUZZLE_INPUT[2]) mouth = (0, 0) ROCKY, WET, NARROW = 0, 1, 2 geologic_indices = { mouth: 0, target: 0, } def geologic_index(region): if region in geologic_indices: return geologic_indices[region] x, y = region if y == 0: index = x * 16807 elif x == 0: index = y * 48271 else: index = erosion_level((x - 1, y)) * erosion_level((x, y - 1)) geologic_indices[region] = index return index def erosion_level(region): index = geologic_index(region) return (index + depth) % 20183 def region_type(region): erosion = erosion_level(region) return erosion % 3 total_risk = sum( region_type((x, y)) for x in range(target[0] + 1) for y in range(target[1] + 1) ) aoc.p1(total_risk) ## Part 2 ROCKY, WET, NARROW = 0, 1, 2 TORCH, CLIMBING, NEITHER = 0, 1, 2 rocky_equip = [TORCH, CLIMBING] wet_equip = [CLIMBING, NEITHER] narrow_equip = [TORCH, NEITHER] torch_region = [ROCKY, NARROW] climbing_region = [ROCKY, WET] neither = [WET, NARROW] PUZZLE_INPUT = numbers_from(data.contents()) depth = PUZZLE_INPUT[0] puzzle_target = (PUZZLE_INPUT[1], PUZZLE_INPUT[2]) mouth = (0, 0) init = (TORCH, mouth) geologic_indices = { mouth: 0, puzzle_target: 0, } def geologic_index(region): if region in geologic_indices: return geologic_indices[region] x, y = region if y == 0: index = x * 16807 elif x == 0: index = y * 48271 else: index = erosion_level((x - 1, y)) * erosion_level((x, y - 1)) geologic_indices[region] = index return index def erosion_level(region): index = geologic_index(region) return (index + depth) % 20183 def region_type(region): erosion = erosion_level(region) return erosion % 3 def neighboring_regions(region): x, y = region return [ x for x in [ (x - 1, y) if x > 0 else None, (x, y - 1) if y > 0 else None, (x + 1, y), (x, y + 1), ] if x is not None ] def neighbors(state): equipment, region = state rt = region_type(region) nrs = neighboring_regions(region) nrts = [region_type(x) for x in nrs] possible_equipment = ( rocky_equip if rt == ROCKY else wet_equip if rt == WET else narrow_equip ) possible_regions = ( torch_region if equipment == TORCH else climbing_region if equipment == CLIMBING else neither ) return list( set( [(e, region, 7) for e in possible_equipment if e is not equipment] + [ (equipment, r, 1) for i, r in enumerate(nrs) if nrts[i] in possible_regions ] ) ) def bfs(initial_state, target): q = queue.PriorityQueue() dist = {initial_state: 0} prev = {initial_state: None} q.put((0, initial_state)) best_time = 99999 while not q.empty(): minutes, current_state = q.get() ns = neighbors(current_state) for ne in ns: ne_equipment, ne_region, ne_minutes = ne ne_state = (ne_equipment, ne_region) alt = minutes + ne_minutes if alt >= best_time: continue if ne_state not in dist or alt < dist[ne_state]: dist[ne_state] = alt prev[ne_state] = current_state if ne_region == target: if ne_equipment != TORCH: alt += 7 dist[(TORCH, ne_region)] = alt prev[(TORCH, ne_region)] = ne_state best_time = alt q.put((alt, ne_state)) return best_time aoc.p2(bfs(init, puzzle_target)) ``` #### File: day_04/python/day04.py ```python from aoc import AOC, chunk aoc = AOC(year=2019, day=4) password_range = range(256310, 732736 + 1) # Part 1 def has_pair(p): return any(x == y for x, y in zip(p[:-1], p[1:])) def never_decreases(p): return all(int(y) >= int(x) for x, y in zip(p[:-1], p[1:])) def is_valid(p): return has_pair(str(p)) and never_decreases(str(p)) valid_passwords = sum(1 for p in password_range if is_valid(p)) aoc.p1(valid_passwords) # Part 2 def has_pair(p): p = [None, None] + list(p) + [None, None] return any( x == y and x != w and y != z for w, x, y, z in zip(p[:-3], p[1:-2], p[2:-1], p[3:]) ) valid_passwords = sum(1 for p in password_range if is_valid(p)) aoc.p2(valid_passwords) ``` #### File: day_05/python/day05.py ```python from aoc import AOC aoc = AOC(year=2020, day=5) data = aoc.load() # Part 1 def bin_search(commands, lower, upper): for idx, dir in enumerate(commands): mid = (lower + upper) // 2 if dir == "F" or dir == "L": upper = mid elif dir == "B" or dir == "R": lower = mid + 1 return [lower, upper] def seat_id(boarding_pass): lower, upper = bin_search(boarding_pass[:7], 0, 127) row = lower if boarding_pass[6] == "B" else upper lower, upper = bin_search(boarding_pass[7:], 0, 7) col = lower if boarding_pass[-1] == "R" else upper return row * 8 + col seats = [seat_id(p) for p in data.lines()] aoc.p1(max(seats)) # Part 2 seats = set(seats) aoc.p2(next(sid for sid in seats if (sid + 1) not in seats) + 1) ``` #### File: day_12/python/day12.py ```python from aoc import AOC, Position, Direction aoc = AOC(year=2020, day=12) data = aoc.load() # Part 1 def turn_ship(dir, ins, val): directions = [d.name for d in Direction] directions = list(reversed(directions)) if ins == "L" else directions rotations = directions.index(dir) return (directions[rotations:] + directions[:rotations])[val // 90] def move_ship(ship, offset, val): return Position(ship.x + offset.x * val, ship.y + offset.y * val) def command_ship(ship, dir, ins, val): if ins in ["L", "R"]: return ship, turn_ship(dir, ins, val) elif ins == "F": return move_ship(ship, Direction[dir].position, val), dir else: return move_ship(ship, Direction[ins].position, val), dir ship, direction = Position(0, 0), "E" for instruction in data.parse_lines(r"(\w)(\d+)"): ship, direction = command_ship(ship, direction, instruction[0], int(instruction[1])) aoc.p1(abs(ship.x) + abs(ship.y)) # Part 2 def rotate_waypoint(waypoint, ins, val): while val >= 90: if ins == "R": waypoint = Position(-waypoint.y, waypoint.x) if ins == "L": waypoint = Position(waypoint.y, -waypoint.x) val -= 90 return waypoint def command_waypoint(ship, waypoint, ins, val): if ins in ["L", "R"]: return ship, rotate_waypoint(waypoint, ins, val) elif ins == "F": return move_ship(ship, waypoint, val), waypoint else: return ship, move_ship(waypoint, Direction[ins].position, val) ship, waypoint = Position(0, 0), Position(10, -1) for instruction in data.parse_lines(r"(\w)(\d+)"): ship, waypoint = command_waypoint( ship, waypoint, instruction[0], int(instruction[1]) ) aoc.p2(abs(ship.x) + abs(ship.y)) ``` #### File: day_19/python/day19.py ```python from aoc import AOC, Regex, Drop, String import re from functools import lru_cache aoc = AOC(year=2020, day=19) data = aoc.load() chunks = data.chunk( [ Regex(r"^(\d.*)$"), Drop(1), String(), ] ) rules = { int(m[0][: m[0].find(":")]): [ s[1] if '"' in s else [int(x) for x in s.split(" ")] for s in m[0][m[0].find(" ") + 1 :].split(" | ") ] for m in chunks[0] } """ Given input: 0: 1 2 1: "a" 2: 1 3 | 3 1 3: "b" `rules` will be: { 0: [[1, 2]], 1: ['a'], 2: [[1, 3], [3, 1]], 3: ['b'] } """ # Part 1 def resolve_rule(r): @lru_cache def resolver(r): if type(rules[r][0]) is str: return rules[r][0] else: return ( "(" + "|".join(["".join([resolver(y) for y in x]) for x in rules[r]]) + ")" ) return "^" + resolver(r) + "$" rule_zero = resolve_rule(0) aoc.p1(len([1 for x in chunks[1] if re.match(rule_zero, x)])) # Part 2 rules[8] = [[42], [42, 8]] rules[11] = [[42, 31], [42, 11, 31]] def resolve_infinite_rule(r): @lru_cache def manual_resolution(r): if r == 8: return "(" + resolver(42) + ")" + "+" elif r == 11: return ( "(" + "|".join([resolver(42) * i + resolver(31) * i for i in range(1, 5)]) + ")" ) return "" @lru_cache def resolver(r): if type(rules[r][0]) is str: return rules[r][0] else: return ( "(" + "|".join( [ "".join( [ manual_resolution(y) if y in [8, 11] else resolver(y) for y in x ] ) for x in rules[r] ] ) + ")" ) return "^" + resolver(r) + "$" rule_zero = resolve_infinite_rule(0) aoc.p2(len([1 for x in chunks[1] if re.match(rule_zero, x)])) ``` #### File: day_23/python/day23.py ```python from aoc import AOC aoc = AOC(year=2020, day=23) data = aoc.load() def get_cups(extended): cups = [int(c) for c in data.contents().strip()] if extended: cups.extend([x for x in range(max(cups), 1_000_001)]) cups = { c: {"v": c, "n": cups[i + 1] if i + 1 < len(cups) else cups[0]} for i, c in enumerate(cups) } return cups def step(): global current, cups head = cups[current] picked_up = ( cups[head["n"]]["v"], cups[cups[head["n"]]["n"]]["v"], cups[cups[cups[head["n"]]["n"]]["n"]]["v"], ) head["n"] = cups[cups[cups[cups[head["n"]]["n"]]["n"]]["n"]]["v"] destination = head["v"] - 1 if head["v"] > lowest else highest while destination in picked_up: destination = destination - 1 if destination > lowest else highest cups[picked_up[2]]["n"] = cups[destination]["n"] cups[destination]["n"] = picked_up[0] current = head["n"] # Part 1 cups = get_cups(False) lowest = min(cups.keys()) highest = max(cups.keys()) current = next(iter(cups.keys())) for _ in range(100): step() current = cups[1]["n"] labels = [] while current != 1: labels.append(str(cups[current]["v"])) current = cups[current]["n"] aoc.p1("".join(labels)) # Part 2 cups = get_cups(True) lowest = min(cups.keys()) highest = max(cups.keys()) current = next(iter(cups.keys())) for _ in range(10_000_000): step() aoc.p2(cups[1]["n"] * cups[cups[1]["n"]]["n"]) ``` #### File: day_16/python/day16.py ```python from aoc import AOC, chunk, flatten from typing import List, Tuple from math import prod aoc = AOC(year=2021, day=16) data = aoc.load() def read_binary(hexa: str) -> List[int]: # Convert hexadecimal to binary, padding all hex values to 4 digit binary vlaues return flatten([list(str(bin(int(c, 16))[2:].rjust(4, "0"))) for c in hexa]) def read_value(packet: List[int], len: int) -> Tuple[List[int], int]: # Read an int from the start of the packet and return the packet's remainder, and the value return packet[len:], int("".join(packet[:len]), 2) def perform_operation(op: int, values: List[int]) -> int: if op == 0: return sum(values) elif op == 1: return prod(values) elif op == 2: return min(values) elif op == 3: return max(values) elif op == 5: return 1 if values[0] > values[1] else 0 elif op == 6: return 1 if values[0] < values[1] else 0 elif op == 7: return 1 if values[0] == values[1] else 0 def read_literal(packet: List[int]) -> Tuple[List[int], int]: # Read the literal value literal = [] for c in chunk(5, packet): literal.append(c[1:]) if c[0] == "0": break packet = packet[len(literal) * 5 :] literal = int("".join(flatten(literal)), 2) return packet, literal def read_subpackets_by_length( packet: List[int], ) -> Tuple[List[int], List[int], List[int]]: packet, total_subpacket_length = read_value(packet, 15) subpackets = packet[:total_subpacket_length] values, versions = [], [] while subpackets: subpackets, value, subversions = read_packet(subpackets) values.append(value) versions += subversions return packet[total_subpacket_length:], values, versions def read_subpackets_by_count( packet: List[int], ) -> Tuple[List[int], List[int], List[int]]: packet, total_subpackets = read_value(packet, 11) values, versions = [], [] for _ in range(total_subpackets): packet, value, subversions = read_packet(packet) values.append(value) versions += subversions return packet, values, versions def read_packet(packet: List[int]): packet, version = read_value(packet, 3) packet, type_id = read_value(packet, 3) if type_id == 4: packet, literal = read_literal(packet) return packet, literal, [version] else: # Parse the subpackets packet, length_type_id = read_value(packet, 1) if length_type_id == 0: packet, subvalues, subversions = read_subpackets_by_length(packet) value = perform_operation(type_id, subvalues) return packet, value, subversions + [version] else: packet, subvalues, subversions = read_subpackets_by_count(packet) value = perform_operation(type_id, subvalues) return packet, value, subversions + [version] packet = read_binary(data.contents()) _, output, versions = read_packet(packet) aoc.p1(sum(versions)) aoc.p2(output) ``` #### File: day_19/python/day19.py ```python from itertools import product from typing import Dict, Iterable, List, Optional, Set, Tuple from aoc import AOC, manhattan, flatten from dataclasses import dataclass aoc = AOC(year=2021, day=19) data = aoc.load() @dataclass class ScannerPosition: absolute_offset: Tuple[int, int, int] offset: Tuple[int, int, int] rotation: Tuple[int, int, int] direction: int base: int def __iter__(self): return iter( ( self.absolute_offset, self.offset, self.rotation, self.direction, self.base, ) ) scanners: Dict[int, List[Tuple[int, int, int]]] = {} scanner_id: int = None for readings in data.numbers_by_line(): if len(readings) == 1: scanner_id = readings[0] scanners[scanner_id] = [] continue elif len(readings) == 3: scanners[scanner_id].append(tuple(readings)) def sub(a: Tuple[int, int, int], b: Tuple[int, int, int]) -> Tuple[int, int, int]: return tuple(map(lambda i, j: i - j, a, b)) def add(a: Tuple[int, int, int], b: Tuple[int, int, int]) -> Tuple[int, int, int]: return tuple(map(lambda i, j: i + j, a, b)) def mult(a: Tuple[int, int, int], b: Tuple[int, int, int]) -> Tuple[int, int, int]: return tuple(map(lambda i, j: i * j, a, b)) def facing(beacon: Tuple[int, int, int], i: int) -> Tuple[int, int, int]: x, y, z = beacon if i == 0: return (x, y, z) if i == 1: return (x, z, y) if i == 2: return (y, x, z) if i == 3: return (y, z, x) if i == 4: return (z, x, y) if i == 5: return (z, y, x) rotations = list(product((1, -1), (1, -1), (1, -1))) positions: Dict[int, ScannerPosition] = {} positions[0] = ScannerPosition( absolute_offset=(0, 0, 0), offset=(0, 0, 0), rotation=(1, 1, 1), direction=0, base=0 ) def find_overlap( base: Set[Tuple[int, int, int]], beacons: List[Tuple[int, int, int]] ) -> Optional[Tuple[int, int, int]]: for ref_idx, reference in enumerate(base): if len(base) - ref_idx < 12: continue for idx, beacon in enumerate(beacons): if len(beacons) - idx < 12: break offset = sub(reference, beacon) matched_beacons = sum(1 for b in beacons if add(b, offset) in base) if matched_beacons >= 12: return offset def find_position( base_ids: Iterable[int], scanner_id: int, beacons: List[Tuple[int, int, int]] ): for base_id in base_ids: if scanner_id == base_id: # Can't compare the same scanners continue base = scanners[base_id] checked_beacons = set() for rotation in rotations: for direction in range(6): first_beacon = mult(facing(beacons[0], direction), rotation) if first_beacon in checked_beacons: continue checked_beacons.add(first_beacon) comparable_beacons = [ mult(facing(b, direction), rotation) for b in beacons ] offset = find_overlap(set(base), comparable_beacons) if offset: return base_id, offset, rotation, direction def offset_relative_to_zero( position: Tuple[int, int, int], base: int ) -> Tuple[int, int, int]: relative_offset, _, relative_rotation, relative_direction, base = positions[base] position = mult(facing(position, relative_direction), relative_rotation) while base != 0: _, _, relative_rotation, _, base = positions[base] position = mult(position, relative_rotation) return add(position, relative_offset) def position_relative_to_zero( position: Tuple[int, int, int], base: int ) -> Tuple[int, int, int]: _, relative_offset, relative_rotation, relative_direction, base = positions[base] position = add( mult(facing(position, relative_direction), relative_rotation), relative_offset ) while base != 0: _, relative_offset, relative_rotation, relative_direction, base = positions[ base ] position = add( mult(facing(position, relative_direction), relative_rotation), relative_offset, ) return position prior_comparisons: Set[Tuple[int, int]] = set() while len(positions) < len(scanners): for scanner_id, beacons in scanners.items(): if scanner_id in positions: continue # Saving some work by not checking against scanners that have been checked in the past base_ids = [ id for id in positions.keys() if (scanner_id, id) not in prior_comparisons ] prior_comparisons.update([(scanner_id, id) for id in base_ids]) position = find_position(base_ids, scanner_id, beacons) if position is None: continue base_id, offset, rotation, direction = position if base_id == 0: positions[scanner_id] = ScannerPosition( offset, offset, rotation, direction, base_id ) else: positions[scanner_id] = ScannerPosition( offset_relative_to_zero(offset, base_id), offset, rotation, direction, base_id, ) # Part 1 beacons = set( flatten( [position_relative_to_zero(b, id) for b in scanners[id]] for id in positions ) ) aoc.p1(len(beacons)) # Part 2 maximum_distance = 0 for ida in positions: for idb in positions: position_a = position_relative_to_zero( positions[ida].offset, positions[ida].base ) position_b = position_relative_to_zero( positions[idb].offset, positions[idb].base ) maximum_distance = max(maximum_distance, manhattan(position_a, position_b)) aoc.p2(maximum_distance) ``` #### File: day_21/python/day21.py ```python from aoc import AOC from functools import cache from itertools import product aoc = AOC(year=2021, day=21) data = aoc.load() # Part 1 class Die: def __init__(self): self.last_roll = 0 self.roll_count = 0 def roll(self): self.roll_count += 1 self.last_roll = (self.last_roll % 100) + 1 return self.last_roll scores = [0, 0] positions = [l[1] for l in data.numbers_by_line()] current_player = 0 die = Die() while max(scores) < 1000: roll = sum([die.roll() for _ in range(3)]) positions[current_player] += roll while positions[current_player] > 10: positions[current_player] -= 10 scores[current_player] += positions[current_player] current_player = (current_player + 1) % 2 aoc.p1(min(scores) * die.roll_count) # Part 2 @cache def possibilities(scores, positions, current_player): if scores[0] >= 21: return (1, 0) if scores[1] >= 21: return (0, 1) p1_wins = p2_wins = 0 for r1, r2, r3 in product(range(1, 4), range(1, 4), range(1, 4)): new_position = (positions[current_player] + sum([r1, r2, r3])) % 10 next_positions = ( (new_position, positions[1]) if current_player == 0 else (positions[0], new_position) ) new_score = scores[current_player] + new_position + 1 next_score = ( (new_score, scores[1]) if current_player == 0 else (scores[0], new_score) ) p1, p2 = possibilities(next_score, next_positions, (current_player + 1) % 2) p1_wins += p1 p2_wins += p2 return (p1_wins, p2_wins) positions = tuple([l[1] - 1 for l in data.numbers_by_line()]) scores = (0, 0) aoc.p2(max(possibilities(scores, positions, 0))) ``` #### File: lib/commands/fetch.py ```python from argparse import ArgumentParser from lib.session import Session from os import path import requests class Fetch: @classmethod def build_parser(cls, parser: ArgumentParser): parser.description = "Fetch the input for the set challenge" def run(self, session: Session): session.validate(require_token=True) # Already cached input if path.exists(session.input_file): print(f"input already exists for {session.challenge}, not fetching") return # Fetch the input with the session cookies = {"session": session.token} r = requests.get(session.challenge.input_url, cookies=cookies) # Cache to the file with open(session.input_file, "w") as f: f.write(r.text) print(f"Fetched and cached input for ${session.challenge}") ``` #### File: lib/commands/submit.py ```python from argparse import ArgumentParser # from lib.commands.run import Run from lib.session import Session # import requests class Submit: @classmethod def build_parser(cls, parser: ArgumentParser): parser.description = "Submit the set challenge" parser.add_argument( "PART", help="which part of the day's challenge to submit", type=int, choices=[1, 2], ) def run(self, session: Session): print("submission is currently a WIP") # session.validate(require_token=True) # part = session.command_args.PART # # Run command will return the last line output when the Submit command is running # output = Run().run(session) # for line in output.splitlines(): # if line.startswith(f"p{part}="): # submission = line[3:] # if not submission: # print(f"no submission for part {part} in {output}") # return # # Submit the answer with the current "level" # cookies = {"session": session.token} # r = requests.post( # session.challenge.submit_url, # cookies=cookies, # json={ # 'level': str(part), # 'answer': submission # } # ) # print(r) # print(r.text) # print(r.json()) ``` #### File: aoc/util/aoc_wrapper.py ```python from datetime import datetime from typing import Optional from util.data.data import Data import sys class AOC: token: Optional[str] = None is_submitting: bool = False input_file: Optional[str] = None log_file: Optional[str] = None contains_test_input: bool = False force_skip_test: bool = False @classmethod def on_test_input_set(cls): AOC.contains_test_input = True def __init__(self, year: int, day: int): self.year = year self.day = day self.p1_solution = None self.p2_solution = None def load(self): contents = None if AOC.input_file: with open(AOC.input_file) as f: contents = f.read() if not contents: raise Exception(f"Failed to load input data ({AOC.input_file})") return Data( contents, force_skip_test=AOC.force_skip_test, on_test_input_set=AOC.on_test_input_set, ) def d(self, s): print(s) sys.stdout.flush() def log(self, s): if AOC.log_file: with open(AOC.log_file, "a") as f: f.write(f"{datetime.now()}: {s}\n") def p1(self, solution): self.p1_solution = solution if AOC.is_submitting: self.d(f"p1={solution}") else: self.d(solution) self.log(solution) def p2(self, solution): self.p2_solution = solution if AOC.is_submitting: self.d(f"p2={solution}") else: self.d(solution) self.log(solution) ``` #### File: aoc/util/direction.py ```python from enum import Enum from util.position import Position class Direction(Enum): N = (0, -1) E = (1, 0) S = (0, 1) W = (-1, 0) @property def position(self): return Position(self.value[0], self.value[1]) ``` #### File: util/intcode/state.py ```python from typing import DefaultDict, List, Tuple from aoc import AOC from util.functions import digits from util.intcode.mode import Mode class State: def __init__( self, program: DefaultDict[int, int], pointer: int = 0, mode: Mode = Mode.POSITION, ): self.program = program self.pointer = pointer self.mode = mode self.inputs = [] self.outputs = [] @property def output(self): return self.program[0] @property def next_input(self): return self.inputs.pop(0) def add_input(self, input): self.inputs.append(input) def add_output(self, output): self.outputs.append(output) @property def instruction(self) -> Tuple[int, List[int]]: instruction = digits(self.program[self.pointer]) if len(instruction) == 1: opcode = instruction[0] mode = [] else: opcode = instruction[-2] * 10 + instruction[-1] mode = [] if len(instruction) == 2 else instruction[-3::-1] return opcode, mode ``` #### File: lib/language/__init__.py ```python from lib.language.language_helper import LanguageHelper as _LanguageHelper from lib.language.language_id import LanguageID as _LanguageID from lib.language.python_helper import PythonHelper as _PythonHelper from lib.session import Session LanguageHelper = _LanguageHelper LanguageID = _LanguageID PythonHelper = _PythonHelper def language_helper(session: Session) -> LanguageHelper: if session.language == LanguageID.PYTHON: return PythonHelper(session) ``` #### File: lib/language/language_helper.py ```python from abc import ABC, abstractmethod, abstractproperty from lib.language.language_id import LanguageID from lib.session import Session from lib.util.filesystem import cd from os import listdir, path from typing import List, Optional, Tuple import subprocess class LanguageHelper(ABC): id: LanguageID session: Session def __init__(self, id: LanguageID, session: Session): self.id = id self.session = session @abstractproperty def file_extension(self) -> str: raise NotImplementedError() @abstractmethod def solve_challenge(self) -> Optional[subprocess.Popen[str]]: raise NotImplementedError() def run(self) -> Tuple[int, str]: return self._run() def _run(self, within_execution_directory: bool = False) -> Tuple[int, str]: if not within_execution_directory and self.execution_directory: with cd(self.execution_directory): return self._run(within_execution_directory=True) print("---") p = self.solve_challenge() if p is None: return 1, "failed to run" output = [] while True: stream = p.stdout.readline() if stream == "" and p.poll() is not None: break if stream: output.append(stream.rstrip()) print(stream.rstrip()) print("---") return p.returncode, "\n".join(output) @property def execution_directory(self) -> Optional[str]: return None @property def language_support_directory(self) -> str: return path.join(self.session.base_directory, "lib", "helpers", self.id.value) @property def starter_file(self) -> str: return path.join(self.language_support_directory, f"starter{self.file_extension}") @property def supporting_files_directory(self): return path.join(self.language_support_directory, "supporting_files") @property def helper_library(self): return path.join(self.language_support_directory, "aoc") @property def helper_files(self) -> List[str]: return list( map(lambda x: path.join(self.helper_library, x), listdir(self.helper_library)) ) @property def root_file(self) -> str: return path.join( self.session.working_directory, f"day{self.session.challenge.day_with_padding}{self.file_extension}", ) def open_pipe(self, command: str) -> subprocess.Popen[str]: return subprocess.Popen( command, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, text=True ) ```
{ "source": "JosephRPalmer/greenlight", "score": 3 }
#### File: greenlight/signalman/signalman.py ```python __author__ = "<NAME>" __version__ = "0.1.17" __license__ = "MIT" import argparse import requests import sys import time from interruptingcow import timeout from retrying import retry class Timeout(Exception): pass class ResponseError(Exception): def __init__(self, message="Request response did not match required response"): self.message = message super().__init__(self.message) def timedprint(message): print("{} -- {}".format(time.strftime("%H:%M:%S", time.localtime()), message)) def urlbuilder(url, port, ssl): scheme = "http" colon = ":" if ssl or port == 443: scheme = "https" elif not port: port = "80" if "://" in str(url): schema_array = url.split("://", 1) url = schema_array[1] timedprint( "Detected '{}://'. Removing protocol scheme and rebuilding URL.".format(schema_array[0])) if "/" in url: fqdn = url.split("/", 1)[0] path = url.split("/", 1)[1] else: fqdn = url path = "" if ":" in fqdn: colon = "" port = "" timedprint("Ignoring --port directive as port found in URL") urlbuilder = "{}://{}{}{}/{}".format(scheme, fqdn, colon, port, path) timedprint("Using built url {}".format(urlbuilder)) return urlbuilder @retry(wait_exponential_multiplier=1000, wait_exponential_max=10000) def caller(url, return_type, return_value, headers, debug): resp = requests.get(url, headers=headers) if debug: timedprint("Sent: {}".format(resp.request.headers)) timedprint("Recieved: Headers:{} Body:{}".format( resp.headers, str(resp.content))) if return_type == "code": if int(resp.status_code) != int(return_value): timedprint("Response code was {}, looking for {}".format( resp.status_code, code)) raise ResponseError() else: timedprint("Response code conditions met, found {}".format( resp.status_code)) elif return_type == "text": if return_value not in resp.text: timedprint("Response text did not contain {}".format(text)) raise ResponseError() else: timedprint( "Response text conditions met, found {} in response text".format(text)) elif return_type == "json": json_key = return_value.split(":", 1)[0] json_value = return_value.split(":", 1)[1] if json_key in resp.json(): if str(resp.json()[json_key]) == str(json_value): timedprint("Response JSON contains matching key and value. Found '{}:{}'".format( json_key, resp.json()[json_key])) else: timedprint("Response JSON contains matching key but wrong value. Value found is {}, looking for {}.".format( str(resp.json()[json_key]), str(json_value))) raise ResponseError() else: timedprint("Response key/value pair not matched. Retrying...") raise ResponseError() def header_format(headers): headerlist = [] if " " in str(headers): headerlist = headers.split(" ") else: headerlist = headers outputheaders = {} for header in headerlist: if header.count(":") < 1: print("Header with detail {} was skipped due to incompatible formatting".format( header)) continue templist = header.split(":") outputheaders[templist[0]] = templist[1] timedprint("Adding header '{}:{}'".format(templist[0], templist[1])) return outputheaders def main(): parser = argparse.ArgumentParser() parser.add_argument("--timeout", type=int, help='Set timeout for signalman to run in minutes', required=True) parser.add_argument("--endpoint", type=str, help='Endpoint to poll', required=True) parser.add_argument("--port", type=int, help='Port to poll') parser.add_argument( "--r-type", type=str, help='Set a return type for signalman to look for, choose from text, code and json', choices=["json", "code", "text"], required=True) parser.add_argument("--r-value", type=str, help='Set a return value for signalman to look for', required=True) parser.add_argument("--headers", type=str, nargs='+', help='Set request headers to use, for example to request Content-Type: application/json use content-type:application/json') parser.add_argument('--ssl', action='store_true', help="Use to poll with https enabled") parser.add_argument('--debug', action='store_true', help="Use to enable debugging") # Specify output of "--version" parser.add_argument( "--version", action="version", version="%(prog)s (version {version})".format(version=__version__)) args = parser.parse_args() headers = {} if args.headers: headers = header_format(args.headers) try: with timeout(args.timeout*60, exception=TimeoutError): caller(urlbuilder(args.endpoint, args.port, args.ssl), args.r_type, args.r_value, headers, args.debug) except TimeoutError: print("signalman timed out") sys.exit(1) if __name__ == '__main__': """ This is executed when run from the command line """ main() ```
{ "source": "JosephRS409/cse210-project", "score": 3 }
#### File: finding_dallin/game/dallin.py ```python import arcade import random as r from game import constants class Dallin(arcade.Sprite): def __init__(self): """Sets up the Dallin spritee in a random location on the map""" super().__init__(constants.DALLIN) # self.center_y = 3100 # self.center_x = 100 self.center_x = r.randint(100, 6300) self.center_y = r.randint(100, 6300) ``` #### File: finding_dallin/game/player.py ```python import arcade from game import constants class Player(arcade.Sprite): def __init__(self): """Sets up the player sprite""" super().__init__(constants.PLAYER_BAT, .4) self.center_x = 100 self.center_y = 6300 self.change_x = 0 self.change_y = 0 self.keys = [] def update(self): """ Move the player """ # Move player. self.center_x += self.change_x self.center_y += self.change_y ```
{ "source": "josephrubin/order-from-chaos", "score": 3 }
#### File: josephrubin/order-from-chaos/plane_v1.py ```python import json import math from os import sys import kdtree from matplotlib import pyplot as plt import matplotlib import matplotlib.patches from mpl_toolkits.mplot3d import Axes3D import numpy as np from drop import Drop from util import * import cProfile __author__ = "<NAME>, <NAME>" def bounce_probability(bounce_count): """Return the probability that a drop will bounce given that it has bounced `bounce_count` times already.""" return 1 / (math.pow(2, bounce_count + 1)) def _main(): """Run a 2D simulation of life.""" # Validate the cmd args. if len(sys.argv) > 3 or len(sys.argv) < 2 or '--help' in sys.argv: print('usage: {} <json_config_file_name> [output_file_name]'.format(sys.argv[0]), file=sys.stderr) exit(1) if len(sys.argv) < 3: output_file_name = '/dev/null' else: output_file_name = sys.argv[2] # Load the simulation settings from the JSON config file. json_config_file_name = sys.argv[1] with open(json_config_file_name, 'r') as json_config_file: settings = json.loads(json_config_file.read())['settings'] public_entry(settings, output_file_name) def public_entry(settings, output_file_name): # Define the initial state. state = {'points': {}, 'geo': kdtree.create(dimensions=2), 'steps_completed': 0, 'settings': settings} visualize_init(settings) # Run the simulation. state = simulate_step(state, settings['DROP_COUNT']) geo = state['geo'] points = state['points'] # Collect all of the stems for later analysis. none_count = 0 stems = [] for node in kdtree.level_order(geo): # Bug fix for empty root. if node.data is None: none_count += 1 assert none_count <= 1 break assert node is not None point_id = node.data.ident point = points[point_id] stems.append({'coord': point['coord'], 'height': point['height']}) #print('Number of stems: ', len(stems), file=sys.stderr) #print('Number of points: ', len(points), file=sys.stderr) # Output the relevant parts of the state. _state = {'settings': settings, 'stems': stems} with open(output_file_name, 'w') as output_file: output_file.write(json.dumps(_state)) def visualize_init(settings): matplotlib.use('TkAgg') plt.clf() fig = plt.gcf() ax = plt.gca() fig.set_size_inches(12, 12) ax.axis('equal', adjustable='datalim') ax.set(xlim=(-1.5, 1.5), ylim=(-1.5, 1.5)) if settings['PLANE_SHAPE'] == DISK: ax.add_artist(plt.Circle((0,0), radius=1, fill=False)) elif settings['PLANE_SHAPE'] == SQUARE: border = matplotlib.patches.Rectangle((-1, -1), 2, 2, fill=False) ax.add_patch(border) def visualize_random(settings, count=100): fig = plt.gcf() fig.clf() ax = plt.gca() ax.cla() fig.set_size_inches(12, 12) ax.axis('equal', adjustable='datalim') ax.set(xlim=(-1.5, 1.5), ylim=(-1.5, 1.5)) if settings['PLANE_SHAPE'] == DISK: ax.add_artist(plt.Circle((0,0), radius=1, fill=False)) elif settings['PLANE_SHAPE'] == SQUARE: border = matplotlib.patches.Rectangle((-1, -1), 2, 2, fill=False) ax.add_patch(border) for _ in range(count): coord = random_coord(settings['PLANE_SHAPE']) drop_artist = plt.Circle((coord[0], coord[1]), radius=settings['DROP_RADIUS'], fill=True, color=(0, 0, 0, 1)) ax.add_artist(drop_artist) if settings['SHOW_BOUNCE_RADIUS']: bounce_artist_outer = plt.Circle((coord[0], coord[1]), radius=settings['BOUNCE_DISTANCE'] + settings['DROP_RADIUS'], fill=False, color=(0, 0, 0, 1)) bounce_artist_inner = plt.Circle((coord[0], coord[1]), radius=settings['BOUNCE_DISTANCE'] - settings['DROP_RADIUS'], fill=False, color=(0, 0, 0, 1)) ax.add_artist(bounce_artist_outer) ax.add_artist(bounce_artist_inner) plt.draw() plt.show() last_fast_draw_artists = [] def visualize_state(state): global last_fast_draw_artists for artist in last_fast_draw_artists: artist.remove() last_fast_draw_artists = [] points = state['points'] geo = state['geo'] settings = state['settings'] fig = plt.gcf() ax = plt.gca() if settings['PLANE_SHAPE'] == DISK: border = plt.Circle((0,0), radius=1, fill=False) ax.add_artist(border) last_fast_draw_artists.append(border) elif settings['PLANE_SHAPE'] == SQUARE: border = matplotlib.patches.Rectangle((-1, -1), 2, 2, fill=False) ax.add_patch(border) last_fast_draw_artists.append(border) height_max = None for point_id in points: point = points[point_id] height = point['height'] if height_max is None or height > height_max: height_max = height none_count = 0 for node in kdtree.level_order(geo): # Bug fix for empty root. if node.data is None: none_count += 1 assert none_count <= 1 break assert node is not None point_id = node.data.ident point = points[point_id] coord = point['coord'] height = point['height'] if height < 0.5 * height_max: continue color = (height / (height_max + 1)) drop_artist = plt.Circle((coord[0], coord[1]), radius=settings['DROP_RADIUS'], fill=True, color=(color, 0, 0, 1)) ax.add_artist(drop_artist) last_fast_draw_artists.append(drop_artist) if settings['SHOW_BOUNCE_RADIUS']: bounce_artist_outer = plt.Circle((coord[0], coord[1]), radius=settings['BOUNCE_DISTANCE'] + settings['DROP_RADIUS'], fill=False, color=(color, 0, 0, 1)) bounce_artist_inner = plt.Circle((coord[0], coord[1]), radius=settings['BOUNCE_DISTANCE'] - settings['DROP_RADIUS'], fill=False, color=(color, 0, 0, 1)) ax.add_artist(bounce_artist_outer) ax.add_artist(bounce_artist_inner) plt.draw() #plt.savefig("gallery1/{}.png".format(state['steps_completed'])) plt.pause(settings['INTERACTIVE_DELAY']) def visualize_drop(coords, settings): """Draw a single drop on the screen.""" fig = plt.gcf() ax = plt.gca() drop_artist = plt.Circle((coords[0], coords[1]), radius=settings['DROP_RADIUS'], fill=True, color=(1, 0, 0, 0.4)) ax.add_artist(drop_artist) plt.draw() plt.pause(settings['INTERACTIVE_DELAY']) return drop_artist def visualize_drop_bounce(coords, settings): fig = plt.gcf() ax = plt.gca() drop_artist = plt.Circle((coords[0], coords[1]), radius=settings['DROP_RADIUS'], fill=True, color=(0, 1, 0, 0.4)) ax.add_artist(drop_artist) plt.draw() plt.pause(settings['INTERACTIVE_DELAY']) return drop_artist def visualize_drop_active(coords, settings): """Draw a single drop on the screen.""" fig = plt.gcf() ax = plt.gca() drop_artist = plt.Circle((coords[0], coords[1]), radius=settings['DROP_RADIUS'], fill=True, color=(0, 0, 1, 0.4)) ax.add_artist(drop_artist) plt.draw() plt.pause(settings['INTERACTIVE_DELAY']) return drop_artist def unvisualize_drop(artist): artist.remove() plt.draw() def simulate_step(state, step_count=1): """Run `step_count` steps of the simulation on `state`, returning the final state.""" for _ in range(step_count): state = _simulate_single_step(state) return state def _simulate_single_step(state): """Run a single step of the simulation on `state`, returning the next state.""" # Recover the important parts of our state. geo = state['geo'] points = state['points'] steps_completed = state['steps_completed'] settings = state['settings'] PLANE_SHAPE = settings['PLANE_SHAPE'] DROP_RADIUS = settings['DROP_RADIUS'] STEM_RADIUS = settings['STEM_RADIUS'] STEM_STICK_PROBABILITY = settings['STEM_STICK_PROBABILITY'] GROUND_STICK_PROBABILITY = settings['GROUND_STICK_PROBABILITY'] OLD_GENOME_BIAS = settings['OLD_GENOME_BIAS'] MELT_INTERVAL = settings['MELT_INTERVAL'] INTERACTIVE_MODE = settings['INTERACTIVE_MODE'] PERIODIC_BOUNDARY = settings['PERIODIC_BOUNDARY'] BOUNCE_DISTANCE = settings['BOUNCE_DISTANCE'] # We're constantly removing and adding to our kdtree, so rebalance it every # so often for efficiency. if len(points) != 0 and steps_completed % 600 == 0 and geo.data is not None: geo = geo.rebalance() # In interactive fast mode we draw the state every so often. if settings['INTERACTIVE_FAST_MODE'] and len(points) != 0: if steps_completed % settings['INTERACTIVE_FAST_INTERVAL'] == 0: visualize_state(state) # Create a new drop in the plane. drop_coord = random_coord(PLANE_SHAPE) drop_artist = None if settings['INTERACTIVE_MODE']: drop_artist = visualize_drop_active(drop_coord, settings) # The drop can keep bouncing as long as it intersects a stem # and hasn't stuck yet. The bounce probability is determined # by bounce_probability(bounce_count). drop_stuck = False bounce_count = 0 while not drop_stuck: # Check intersection with any stem. drop_stem_intersect = False # Search the tree for any drop intersections. intersections = geo.search_nn_dist(drop_coord, (DROP_RADIUS + STEM_RADIUS) * (DROP_RADIUS + STEM_RADIUS)) if settings['PERIODIC_BOUNDARY']: phantom_drops = [ (drop_coord[0] + 2, drop_coord[1]), (drop_coord[0] - 2, drop_coord[1]), (drop_coord[0], drop_coord[1] + 2), (drop_coord[0], drop_coord[1] - 2), (drop_coord[0] + 2, drop_coord[1] + 2), (drop_coord[0] + 2, drop_coord[1] - 2), (drop_coord[0] - 2, drop_coord[1] + 2), (drop_coord[0] - 2, drop_coord[1] - 2) ] for phantom_drop in phantom_drops: intersections.extend(geo.search_nn_dist(phantom_drop, (DROP_RADIUS + STEM_RADIUS) * (DROP_RADIUS + STEM_RADIUS))) if intersections: # The drop has intersected with some other drops that are already there. # Find the drop that is the highest up. highest_point_height = None highest_point = None highest_point_id = None for node in intersections: point_id = node.ident point = points[point_id] assert node == point['coord'] intersection_height = point['height'] if highest_point_height is None or intersection_height > highest_point_height: highest_point_height = intersection_height highest_point = point highest_point_id = point_id drop_stem_intersect = True # Check if the drop bounces. if drop_stem_intersect and random_real() <= bounce_probability(bounce_count): assert highest_point is not None if settings['INTERACTIVE_MODE']: unvisualize_drop(drop_artist) # The drop bounces. bounce_count += 1 bounce_angle = random_theta() bounce_offset = polar_to_cartesian(BOUNCE_DISTANCE, bounce_angle) # For periodic boundary conditions we roll over from the edges of the boundary. if PERIODIC_BOUNDARY: assert PLANE_SHAPE == SQUARE drop_coord = [highest_point['coord'][0] + bounce_offset[0], highest_point['coord'][1] + bounce_offset[1]] if drop_coord[0] > 1: drop_coord[0] -= 2 if drop_coord[1] > 1: drop_coord[1] -= 2 if drop_coord[0] < -1: drop_coord[0] += 2 if drop_coord[1] < -1: drop_coord[1] += 2 drop_coord = tuple(drop_coord) else: drop_coord = (highest_point['coord'][0] + bounce_offset[0], highest_point['coord'][1] + bounce_offset[1]) if INTERACTIVE_MODE: drop_artist = visualize_drop_bounce(drop_coord) else: # The drop does not bounce. drop_stuck = True if drop_stem_intersect: # The drop has landed on top of an existing stem. Replace # the top of the stem with the new drop. if random_real() <= STEM_STICK_PROBABILITY: if INTERACTIVE_MODE: unvisualize_drop(drop_artist) drop_artist = visualize_drop(drop_coord) unvisualize_drop(highest_point['artist']) geo = geo.remove(highest_point['coord']) assert drop_coord is not None new_coord = ((OLD_GENOME_BIAS * highest_point['coord'][0] + drop_coord[0]) / (1 + OLD_GENOME_BIAS), (OLD_GENOME_BIAS * highest_point['coord'][1] + drop_coord[1]) / (1 + OLD_GENOME_BIAS)) geo.add(Drop(new_coord, ident=steps_completed)) new_height = highest_point['height'] + 1 + settings['BOUNCE_HEIGHT_ADDITION'] points[steps_completed] = {'height': new_height, 'artist': drop_artist, 'coord': new_coord} else: # The drop has landed outside of any stem. Simply add # it as a new stem. if random_real() <= GROUND_STICK_PROBABILITY: # Create a new stem for this drop. if INTERACTIVE_MODE: unvisualize_drop(drop_artist) drop_artist = visualize_drop(drop_coord) assert drop_coord is not None geo.add(Drop(drop_coord, ident=steps_completed)) points[steps_completed] = {'height': 0, 'artist': drop_artist, 'coord': drop_coord} elif INTERACTIVE_MODE: unvisualize_drop(drop_artist) new_state = {'points': points, 'geo': geo, 'steps_completed': steps_completed, 'settings': settings} if steps_completed % MELT_INTERVAL == 0: new_state = melt(new_state) return {'points': new_state['points'], 'geo': new_state['geo'], 'steps_completed': new_state['steps_completed'] + 1, 'settings': settings} def melt(state): steps_completed = state['steps_completed'] geo = state['geo'] points = state['points'] settings = state['settings'] MELT_INTERVAL = settings['MELT_INTERVAL'] MELT_PROBABILITY = settings['MELT_PROBABILITY'] INTERACTIVE_MODE = settings['INTERACTIVE_MODE'] # Melt stems from the bottom. none_count = 0 if len(points) != 0: for node in kdtree.level_order(geo): # Bug fix for empty root. if node.data is None: none_count += 1 assert none_count <= 1 break point_id = node.data.ident point = points[point_id] # Calculate the proper melt amount probabalistically. binom_melt_amount = np.random.binomial(MELT_INTERVAL, MELT_PROBABILITY) # There shouldn't be any stems that should have already been removed. assert points[point_id]['height'] >= 0 # Melt the stem and remove it if its height has decreased past zero. points[point_id]['height'] -= binom_melt_amount if points[point_id]['height'] < 0: geo = geo.remove(point['coord']) if INTERACTIVE_MODE: unvisualize_drop(point['artist']) return {'points': points, 'geo': geo, 'steps_completed': steps_completed, 'settings': settings} if __name__ == '__main__': #cProfile.run('_main()') _main() ```
{ "source": "JosephRynkiewicz/CIFAR10", "score": 3 }
#### File: JosephRynkiewicz/CIFAR10/aggregate.py ```python from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import os import argparse import numpy as np from utils import progress_bar from collections import Counter from efficientnet_pytorch import EfficientNet parser = argparse.ArgumentParser(description='PyTorch CIFAR 10 aggregation') parser.add_argument('--ns', default=10, type=int, help='number of samples') args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' print("device : ",device) # Data print('==> Preparing data..') transform_test = transforms.Compose([ transforms.Resize(200), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) # Model print('==> Building model..') net = EfficientNet.from_pretrained('efficientnet-b4', num_classes=10) net = net.to(device) batch_size=10 nclasses=10 nsplit=args.ns testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=1) namesave='./checkpoint/ckpt' def extractoutputs(loader,namesave='./checkpoint/ckpt',batch_size=1,nsplit=10,nclasses=10,nbobs=10000): assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' outputsnet = torch.zeros(nsplit,nbobs,nclasses) predictsnet = torch.zeros(nsplit,nbobs,dtype=torch.int) for i in range(0,nsplit): print('split ',i) correct = 0 namesaveb=namesave+str(i)+'.t7' checkpoint = torch.load(namesaveb) net.load_state_dict(checkpoint['net']) net.eval() with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(loader): inputs = inputs.to(device) targets = targets.to(device) output = F.softmax(net(inputs),dim=1) _, predicted = output.max(1) correct += predicted.eq(targets).sum().item() output = output.to('cpu') indice=batch_idx*batch_size outputsnet[i,indice:(indice+output.size(0))]=output predictsnet[i,indice:(indice+output.size(0))]=predicted print("Test accuracy : ", 100.0*correct/nbobs) return outputsnet, predictsnet def find_majority(predictsnet): majvote=torch.zeros(predictsnet.size(1),dtype=torch.int) for i in range(predictsnet.size(1)): votes = Counter(predictsnet[:,i].tolist()) majvote[i]=votes.most_common(1)[0][0] return majvote outputsnet, predictsnet = extractoutputs(testloader,namesave,batch_size,nsplit,nclasses) moytest = torch.mean(outputsnet,dim=0) moyharmotest = torch.mean(outputsnet.log(),dim=0) majtest = find_majority(predictsnet) def testaggregatemoy(testloader,moytensor): correct = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): _, predicted = moytensor[batch_idx:(batch_idx+1)].max(1) correct += predicted.eq(targets).sum().item() return correct/moytensor.size(0) def testaggregatemaj(testloader,majtensor): correct = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): correct += majtensor[batch_idx].eq(targets).sum().item() return correct/majtensor.size(0) testloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, num_workers=0) erragregmoy = testaggregatemoy(testloader,moytest) erragregmoyharmo = testaggregatemoy(testloader,moyharmotest) erragregmaj = testaggregatemaj(testloader,majtest) print('==> Error of soft aggregation: ',erragregmoy) print('==> Error of soft harmonic aggregation: ',erragregmoyharmo) print('==> Error of hard aggregation: : ',erragregmaj) ```
{ "source": "josephsalimin/flask-router-wrapper", "score": 2 }
#### File: flask-router-wrapper/tests/conftest.py ```python from flask import Flask import pytest @pytest.fixture def app(): yield Flask(__name__) ``` #### File: flask-router-wrapper/tests/handler.py ```python from flask import g, jsonify from flask_router_wrapper import Middleware class SetValueMiddleware(Middleware): def _exec(self, next_function, *args, **kwargs): g.val = 0 return next_function(*args, **kwargs) class IncrementValueMiddleware(Middleware): def _exec(self, next_function, *args, **kwargs): g.val += 1 return next_function(*args, **kwargs) class SetValueCallable: def __call__(self, next_function, *args, **kwargs): g.val = 0 return next_function(*args, **kwargs) class IncrementValueCallable: def __call__(self, next_function, *args, **kwargs): g.val += 1 return next_function(*args, **kwargs) class NotCallableMiddleware: pass def set_value_middleware(next_function, *args, **kwargs): g.val = 0 return next_function(*args, **kwargs) def increment_value_middleware(next_function, *args, **kwargs): g.val += 1 return next_function(*args, **kwargs) def index_handler(): return jsonify({"message": "hello"}) def value_json_handler(): return jsonify({"value": g.val}) ```
{ "source": "josephsalmon/celer", "score": 3 }
#### File: celer/utils/testing.py ```python import numpy as np from scipy import sparse def build_dataset(n_samples=50, n_features=200, n_targets=1, sparse_X=False): """Build samples and observation for linear regression problem.""" random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) if sparse_X: X = sparse.random(n_samples, n_features, density=0.5, format='csc', random_state=random_state) else: X = np.asfortranarray(random_state.randn(n_samples, n_features)) y = X.dot(w) return X, y ```
{ "source": "JosephSalomon/GN-Core", "score": 3 }
#### File: src/helper/fileManager.py ```python from os import sys, path import os sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from helper import constants def create_dir(dir_path): try: os.makedirs(dir_path) print("Directory ", dir_path, " Created ") except FileExistsError: pass ``` #### File: src/helper/gpa.py ```python class GPA(): _term_gpa = 0 _cumulative_gpa = 0 def __init__(self, term_gpa=0, cumulative_gpa=0): self._term_gpa = term_gpa self._cumulative_gpa = cumulative_gpa def get_cumulative_gpa(self): return self._cumulative_gpa def get_term_gpa(self): return self._term_gpa @staticmethod def get_letter_grade(gpa): return { 'term_gpa': GPA.convert_float(gpa.get_term_gpa()), 'cumulative_gpa': GPA.convert_float(gpa.get_cumulative_gpa()) } @staticmethod def get_number_grade(gpa): return { 'term_gpa': GPA.convert_letter(GPA.convert_float(gpa.get_term_gpa())), 'cumulative_gpa': GPA.convert_letter(GPA.convert_float(gpa.get_cumulative_gpa())) } @staticmethod def convert_float(f): if 0 <= f < 1: return 'F' elif 1 <= f < 1.3: return 'D' elif 1.3 <= f < 1.7: return 'D+' elif 1.7 <= f < 2: return 'C-' elif 2 <= f < 2.3: return 'C' elif 2.3 <= f < 2.7: return 'C+' elif 2.7 <= f < 3: return 'B-' elif 3 <= f < 3.3: return 'B' elif 3.3 <= f < 3.7: return 'B+' elif 3.7 <= f < 4: return 'A-' else: return 'A' @staticmethod def convert_letter(l): scale = { 'A+': '97 - 100', 'A': '93 - 96', 'A-': '90 - 92', 'B+': '87 - 89', 'B': '83 - 86', 'B-': '80 - 82', 'C+': '77 - 79', 'C': '73 - 76', 'C-': '70 - 72', 'D+': '67 - 69', 'D': '65 - 66', 'F': '0' } return scale[l] ``` #### File: src/helper/helper.py ```python def print_to_screen(text): print("RENDER::" + text) ``` #### File: src/helper/refresh_result.py ```python class RefreshResult(): def __init__(self, classes, gpa): self.classes = classes self.gpa = gpa ```
{ "source": "JosephSamela/hyperv-quick-create-gallery-generator", "score": 3 }
#### File: hyperv-quick-create-gallery-generator/example/generate_new_gallery.py ```python import os import time import hashlib import sys import json base_url = "http://dc-sitf-ail/gallery/" def generate_images(): images = [] for root, dirs, files in os.walk('.'): for dir in dirs: name = dir locale = "en-US" publisher = "Draper" lastUpdated = time.strftime("%Y-%m-%dT%TZ", time.localtime()) for root, dirs, files in os.walk('./'+dir): for file in files: uri = base_url+dir+'/'+file hash = "sha256:" + sha256_checksum(dir+'/'+file) f = {"uri":uri, "hash":hash} if "disk" in file: disk = f elif "logo" in file: logo = f elif "symbol" in file: symbol = f elif "thumbnail" in file: thumbnail = f elif "description" in file: with open(dir+'/description.txt', 'r') as myfile: description = myfile.readlines() elif "version" in file: with open(dir+'/version.txt', 'r') as myfile: version=myfile.read().replace('\n', '') elif "details" in file: with open(dir+'/details.json') as myfile: details = json.load(myfile) image = { "name":name, "version":version, "locale":locale, "publisher":publisher, "lastUpdated":lastUpdated, "description":description, "disk":disk, "logo":logo, "symbol":symbol, "thumbnail":thumbnail, "details":details } images.append(image) return images def sha256_checksum(filename, block_size=65536): print("HASHING - "+filename) sha256 = hashlib.sha256() with open(filename, 'rb') as f: for block in iter(lambda: f.read(block_size), b''): sha256.update(block) return sha256.hexdigest() if __name__ == "__main__": print("Starting...") images = generate_images() gallery = {"images":images} with open('gallery.json', 'w') as outfile: json.dump(gallery, outfile) print("Success!") ```
{ "source": "JosephSamela/pychop3d", "score": 3 }
#### File: pychop3d/test/test_configuration.py ```python import trimesh import numpy as np import tempfile import yaml import os from pychop3d.configuration import Configuration from pychop3d import bsp_tree from pychop3d import bsp_node def test_modify_configuration(): """Verify that modifying the configuration modifies the behavior of the other modules. Create a tree with the default part and the default configuration, verify that it will fit in the printer volume, then modify the printer volume in the config and verify that a newly created tree will have a different n_parts objective """ config = Configuration.config print() mesh = trimesh.load(config.mesh, validate=True) # create bsp tree tree = bsp_tree.BSPTree(mesh) print(f"n parts: {tree.nodes[0].n_parts}") assert tree.nodes[0].n_parts == 1 config.printer_extents = config.printer_extents / 2 print("modified config") print(f"original tree n parts: {tree.nodes[0].n_parts}") assert tree.nodes[0].n_parts == 1 new_tree = bsp_tree.BSPTree(mesh) print(f"new tree n parts: {new_tree.nodes[0].n_parts}") assert new_tree.nodes[0].n_parts == 2 config.restore_defaults() def test_load(): """load a non-default parameter from a yaml file and verify that the config object matches """ config = Configuration.config with tempfile.TemporaryDirectory() as tempdir: params = { 'printer_extents': [1, 2, 3], 'test_key': 'test_value' } yaml_path = os.path.join(tempdir, "test.yml") with open(yaml_path, 'w') as f: yaml.safe_dump(params, f) new_config = Configuration(yaml_path) assert isinstance(new_config.printer_extents, np.ndarray) assert np.all(new_config.printer_extents == np.array([1, 2, 3])) assert new_config.test_key == 'test_value' assert not hasattr(config, 'test_key') def test_save(): """modify the config, save it, verify that the modified values are saved and can be loaded """ config = Configuration.config config.connector_diameter = 100 with tempfile.TemporaryDirectory() as tempdir: # change directory config.directory = tempdir # save using a file name path = config.save("test_config.yml") # load the config back new_config = Configuration(path) assert new_config.connector_diameter == 100 with tempfile.TemporaryDirectory() as tempdir: # change config directory config.directory = tempdir # save using cached name, should be 'test_config.yml' path = config.save() assert path == os.path.join(tempdir, 'test_config.yml') config.restore_defaults() def test_functions(): """modify the config and verify that various functions correctly use the updated version """ config = Configuration.config mesh = trimesh.load(config.mesh, validate=True) print() # BSPNode instantiation (n_parts) n_parts_1 = bsp_node.BSPNode(mesh).n_parts config.printer_extents = np.array([20, 20, 20]) n_parts_2 = bsp_node.BSPNode(mesh).n_parts assert n_parts_1 != n_parts_2 config.restore_defaults() # get_planes (plane_spacing, default is ) node = bsp_node.BSPNode(mesh) planes_1 = bsp_tree.get_planes(node.part, np.array([0, 1, 0])) config.plane_spacing /= 2 planes_2 = bsp_tree.get_planes(node.part, np.array([0, 1, 0])) assert len(planes_2) > len(planes_1) config.restore_defaults() # uniform normals normals1 = config.normals.copy() config.n_theta = 10 normals2 = config.normals.copy() config.n_phi = 10 normals3 = config.normals.copy() assert len(normals1) < len(normals2) < len(normals3) config.restore_defaults() # etc, etc ... ```
{ "source": "josephsarz/Instagram-Automation-Bot", "score": 2 }
#### File: josephsarz/Instagram-Automation-Bot/byPassSetup.py ```python from selenium import webdriver import time from selenium.webdriver.common.by import By def byPassSetup(): follow = browser.find_element_by_xpath('//*[@id="react-root"]/section/main/section/div/div/div[1]/div/div/div[2]/div[3]/button') follow.click() time.sleep(8) print('following....') ``` #### File: josephsarz/Instagram-Automation-Bot/createUser.py ```python from selenium import webdriver from random import randint import time from selenium.webdriver.common.by import By import accountInfoGenerator as account import json def createAccount(): browser= webdriver.Chrome("/usr/local/bin/chromedriver") browser.get("http://www.instagram.com") time.sleep(10) #time.sleep count can be changed depending on the Internet speed. #Generate User details email = account.generatingEmail() username = account.username() fullname = account.generatingName() password = '<PASSWORD>'+username #Save to File in json Format data = {} data['users'] = [] data['users'].append({ 'email': email, 'username': username, 'fullname': fullname, 'password': password }) with open('data.txt', 'w') as outfile: json.dump(data, outfile) #Fill the email value email_field = browser.find_element_by_name('emailOrPhone') email_field.send_keys(email) print('email : '+email) #Fill the fullname value fullname_field = browser.find_element_by_name('fullName') fullname_field.send_keys(fullname) print('account : '+fullname) #Fill username value username_field = browser.find_element_by_name('username') username_field.send_keys(username) print('username : '+username) #Fill password value password_field = browser.find_element_by_name('password') password_field.send_keys(password) #You can determine another password here. print('password : '+password) submit = browser.find_element_by_xpath('//*[@id="react-root"]/section/main/article/div[2]/div[1]/div/form/div[7]/div[1]/button') submit.click() time.sleep(8) print('Registering....') ``` #### File: josephsarz/Instagram-Automation-Bot/loginUser.py ```python from selenium import webdriver from random import randint import time from selenium.webdriver.common.by import By import accountInfoGenerator as account def loginUser(): browser= webdriver.Chrome("/usr/local/bin/chromedriver") browser.get("https://www.instagram.com/accounts/login/") time.sleep(10) #time.sleep count can be changed depending on the Internet speed. username = 'your username' password = '<PASSWORD>' #Fill the email value email_field = browser.find_element_by_name('username') email_field.send_keys(username) print('email : '+username) #Fill password value password_field = browser.find_element_by_name('password') password_field.send_keys(password) #You can determine another password here. print('password : '+password) submit = browser.find_element_by_xpath('//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[4]/button') submit.click() time.sleep(8) print('Login....') ```
{ "source": "josephsavage/hive-sbi-api", "score": 2 }
#### File: hive_sbi_api/v1/views.py ```python import logging from django_filters import rest_framework as filters from rest_framework.mixins import (ListModelMixin, RetrieveModelMixin) from rest_framework.viewsets import GenericViewSet from rest_framework.filters import OrderingFilter from rest_framework.generics import get_object_or_404 from hive_sbi_api.core.models import (Member, Transaction) from .serializers import (MemberSerializer, TransactionSerializer) from .filters import TransactionFilter logger = logging.getLogger('v1') class MemberViewSet(ListModelMixin, RetrieveModelMixin, GenericViewSet): lookup_value_regex = '[^/]+' lookup_field = 'account' queryset = Member.objects.all() serializer_class = MemberSerializer filter_backends = [OrderingFilter] ordering_fields = [ 'total_shares', 'shares', 'bonus_shares', 'estimate_rewarded', 'pending_balance', 'next_upvote_estimate', 'total_rshares',] def get_object(self): """ Returns the object the view is displaying. You may want to override this if you need to provide non-standard queryset lookups. Eg if objects are referenced using multiple keyword arguments in the url conf. """ queryset = self.filter_queryset(self.get_queryset()) # Perform the lookup filtering. lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field assert lookup_url_kwarg in self.kwargs, ( 'Expected view %s to be called with a URL keyword argument ' 'named "%s". Fix your URL conf, or set the `.lookup_field` ' 'attribute on the view correctly.' % (self.__class__.__name__, lookup_url_kwarg) ) filter_kwargs = {self.lookup_field: self.kwargs[lookup_url_kwarg].lower()} obj = get_object_or_404(queryset, **filter_kwargs) # May raise a permission denied self.check_object_permissions(self.request, obj) return obj class TransactionViewSet(ListModelMixin, RetrieveModelMixin, GenericViewSet): queryset = Transaction.objects.all() serializer_class = TransactionSerializer lookup_field = 'index' filter_backends = [ filters.DjangoFilterBackend, ] filterset_class = TransactionFilter ```
{ "source": "josephsavage/hive-sbi-webapp", "score": 2 }
#### File: hive_sbi_webapp/webapp/views.py ```python import json import logging import requests from django.conf import settings from django.views.generic import TemplateView from .viewmixins import BaseMixinView from .forms import UseInfoForm logger = logging.getLogger('webapp') class HomeView(BaseMixinView, TemplateView): template_name = "webapp/home.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['active_home'] = True return context class UserInfoForm(BaseMixinView, TemplateView): template_name = "webapp/userinfo_form.html" def get_user(self, **kwargs): return self.request.GET.get('user') def get_userinfo_form(self, **kwargs): user = self.get_user() initial = {} if user: initial = {'user': user} return UseInfoForm(initial=initial) def get_userinfo(self, **kwargs): user = self.get_user() userinfo = None if not user: return userinfo userinfo = { "status_code": None, "success": False, "data": None, "error": None, } try: response = requests.get( "{}/getUserInfo?user={}".format(settings.SBI_API_URL, user), ) userinfo["status_code"] = response.status_code if response.status_code == 200: content = json.loads(response.content.decode("utf-8")) userinfo["success"] = content["success"] if userinfo["success"]: userinfo["data"] = content["data"] else: userinfo["error"] = content["error"] except requests.exceptions.ConnectionError: userinfo["error"] = "Connection Error" return userinfo def get_userinfo_hive(self, **kwargs): user = self.get_user() userinfo_hive = None if not user: return userinfo_hive userinfo_hive = { "status_code": None, "success": False, "data": None, "error": None, } #try: response = requests.get( "{}/users/{}/".format(settings.SBI_API_URL_V1, user), ) userinfo_hive["status_code"] = response.status_code if response.status_code == 200: content = json.loads(response.content.decode("utf-8")) userinfo_hive["success"] = content["success"] if userinfo_hive["success"]: userinfo_hive["data"] = content["data"] else: userinfo_hive["error"] = content["error"] #except requests.exceptions.ConnectionError: # userinfo_hive["error"] = "Connection Error" return userinfo_hive def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['active_userinfo'] = True context['user'] = self.get_user() context['userinfo_form'] = self.get_userinfo_form() context['userinfo'] = self.get_userinfo() context['userinfo_hive'] = self.get_userinfo_hive() return context class RichListView(BaseMixinView, TemplateView): template_name = "webapp/rich_list.html" def get_richlist(self, **kwargs): LIMIT = 200 ordering = self.request.GET.get("ordering", "") try: offset = int(self.request.GET.get("offset", 0)) except ValueError: offset = 0 richlist = { "status_code": None, "previous": None, "next": None, "active_page_number": None, "prev_page_number": None, "next_page_number": None, } try: params = "" if ordering: params = "?ordering={}".format(ordering) if offset: if params: params = "{}&offset={}".format(params, offset) else: params = "?offset={}".format(offset) response = requests.get( "{}/v1/members/{}".format(settings.SBI_API_URL_V1, params), ) richlist["status_code"] = response.status_code if response.status_code == 200: content = json.loads(response.content.decode("utf-8")) if content["previous"]: richlist["previous"] = content["previous"].split("?")[1] if content["next"]: richlist["next"] = content["next"].split("?")[1] active_page_number = offset / LIMIT + 1 richlist["active_page_number"] = int(active_page_number) richlist["prev_page_number"] = int(active_page_number - 1) if offset + 200 < content["count"]: richlist["next_page_number"] = int(active_page_number + 1) richlist["results"] = content["results"] except requests.exceptions.ConnectionError: richlist["content"] = "Connection Error" return richlist def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['active_richlist'] = True context['richlist'] = self.get_richlist() context['total_shares_ascending_active'] = False context['total_shares_descending_active'] = False context['shares_ascending_active'] = False context['shares_descending_active'] = False context['bonus_shares_ascending_active'] = False context['bonus_shares_descending_active'] = False context['pending_balance_ascending_active'] = False context['pending_balance_descending_active'] = False context['next_upvote_estimate_ascending_active'] = False context['next_upvote_estimate_descending_active'] = False context['estimate_rewarded_ascending_active'] = False context['estimate_rewarded_descending_active'] = False ordering = self.request.GET.get("ordering", "") if ordering == "total_shares": context['total_shares_ascending_active'] = True if ordering == "-total_shares": context['total_shares_descending_active'] = True if ordering == "shares": context['shares_ascending_active'] = True if ordering == "-shares": context['shares_descending_active'] = True if ordering == "bonus_shares": context['bonus_shares_ascending_active'] = True if ordering == "-bonus_shares": context['bonus_shares_descending_active'] = True if ordering == "pending_balance": context['pending_balance_ascending_active'] = True if ordering == "-pending_balance": context['pending_balance_descending_active'] = True if ordering == "next_upvote_estimate": context['next_upvote_estimate_ascending_active'] = True if ordering == "-next_upvote_estimate": context['next_upvote_estimate_descending_active'] = True if ordering == "estimate_rewarded": context['estimate_rewarded_ascending_active'] = True if ordering == "-estimate_rewarded": context['estimate_rewarded_descending_active'] = True return context ```
{ "source": "Joseph-Schafer/Twitter2SQL", "score": 3 }
#### File: twitter2sql/analysis/coding.py ```python import os import csv import random from pprint import pprint from collections import Counter, defaultdict, namedtuple from itertools import combinations import xlsxwriter import pandas as pd import numpy as np from sklearn.metrics import cohen_kappa_score, confusion_matrix from tqdm import tqdm def analyze_codes( input_data, coders, output_directory, suffix='', multi_select_codes=None, lead_code=None, code_hierarchy=None, exclude_codes=None, exclude_values=None, arb_cols=None, code_groups=None, max_raters=2, aggregate_stats=True, confusion_matrices=True, pairwise_stats=True, arb=True, individual_stats=True, discussion=True, verbose=True, exclude=None): """ Input xlsx is expected to have the following format: 1. A 'Codebook' sheet with vertical cols of titled codes. 2. Coding sheets per coder titled 'Tweets_{coder}' 3. Any number of unrelated sheets. Each coding sheet is expected to have, in order: 1. Any number of data cols 2. TRUE/FALSE coder cols = to # of coders. 3. Code cols """ if exclude_codes is None: exclude_codes = ['Notes'] if exclude_values is None: exclude_values = ['Unclear'] code_level_stats = os.path.join(output_directory, f'Code_Level_Stats{suffix}.csv') confusion_matrix_stats = os.path.join(output_directory, f'Confusion_Matrices{suffix}.csv') confusion_matrix_image_dir = os.path.join(output_directory, f'Confusion_Matrices{suffix}') individual_csv = os.path.join(output_directory, f'Individual_Statistics{suffix}.csv') arb_csv = os.path.join(output_directory, f'Arbitration{suffix}.csv') output_xlsx = os.path.join(output_directory, f'Coding_Analysis{suffix}.xlsx') discussion_xlsx = os.path.join(output_directory, f'Discussion{suffix}.xlsx') if not os.path.exists(output_directory): os.mkdir(output_directory) if not os.path.exists(confusion_matrix_image_dir): os.mkdir(confusion_matrix_image_dir) file_type = os.path.splitext(input_data)[1] """ 1. Load data """ # Maybe support for non-Sheets coding later? if file_type not in ['.xlsx']: raise NotImplementedError if file_type == '.xlsx': raw_xlsx = pd.ExcelFile(input_data) data_dict = {} for coder in tqdm(coders): for name in raw_xlsx.sheet_names: if coder in name: df = raw_xlsx.parse(name, keep_default_na=False, na_values=['']) df = df.dropna(subset=['Tweet']) data_dict[coder] = df code_dict = {} codebook = raw_xlsx.parse('Codebook', keep_default_na=False, na_values=['']) for col in list(codebook): code_list = list(codebook[col].dropna().astype(str)) code_list = [x for x in code_list if x not in exclude_values] code_dict[col] = code_list """ 2. Extract codes and identify coders. Not great code, but extracts codes according to the order specified above. """ codes_only = [] past_coders = False for colname in list(data_dict[coders[0]]): if colname in coders: past_coders = True if past_coders: if colname not in coders and colname != exclude: codes_only += [colname] analysis_codes = [x for x in codes_only if x not in exclude_codes] if lead_code is None: lead_code = analysis_codes[0] print(lead_code) if max_raters is None: max_raters = len(coders) """ 3. Write out data. """ with open(code_level_stats, 'w') as codefile, \ open(confusion_matrix_stats, 'w') as confusionfile, \ open(arb_csv, 'w') as arbfile, \ open(individual_csv, 'w') as indivfile, \ xlsxwriter.Workbook(output_xlsx) as workbook, \ xlsxwriter.Workbook(discussion_xlsx) as dworkbook: # First figure out filewriting (ugh)... stats_sheet, confusion_sheet, arb_sheets, individual_sheet, \ writer, confusion_writer, arb_writer, individual_writer, \ code_header, individual_header = format_filewriters( workbook, arb_cols, coders + ['Discussion'], codes_only, data_dict, codefile, arbfile, confusionfile, indivfile) confusion_rownum, individual_rownum, stats_rownum = 0, 1, 1 arb_rownums = {coder: 1 for coder in coders} # Calculate individual ratios if individual_stats: process_individual_stats( individual_writer, individual_sheet, individual_rownum, data_dict, lead_code, analysis_codes, multi_select_codes, individual_header) # Get scores for the aggregate data first.. if aggregate_stats: coder1, coder2 = '0', '1' combined = process_aggregate_codesheet(data_dict, analysis_codes, lead_code) output_row = {'Combined Pair': 'All'} stats_rownum, confusion_rownum = write_data( output_row, combined, coder1, coder2, code_dict, code_hierarchy, multi_select_codes, code_groups, lead_code, exclude_values, confusion_matrices, confusion_rownum, confusion_writer, confusion_sheet, analysis_codes, stats_rownum, stats_sheet, code_header, writer) # Calculate scores for each coding pair. if pairwise_stats: for idx, (coder1, coder2) in enumerate(combinations(coders, 2)): combined = process_pair_codesheet( data_dict, coders, analysis_codes, coder1, coder2, lead_code) output_row = { 'Combined Pair': f'{coder1}_{coder2}', 'Pair 1': coder1, 'Pair 2': coder2} stats_rownum, confusion_rownum = write_data( output_row, combined, coder1, coder2, code_dict, code_hierarchy, multi_select_codes, code_groups, lead_code, exclude_values, False, confusion_rownum, confusion_writer, confusion_sheet, analysis_codes, stats_rownum, stats_sheet, code_header, writer) # Then write out rows for arb if arb: write_arb( arb_writer, data_dict, lead_code, arb_cols, codes_only, arb_sheets, arb_rownums) if discussion: write_discussion(dworkbook, data_dict, lead_code, codes_only, coders, analysis_codes) return output_xlsx def write_data( output_row, combined, coder1, coder2, code_dict, code_hierarchy, multi_select_codes, code_groups, lead_code, exclude_values, confusion_matrices, confusion_rownum, confusion_writer, confusion_sheet, analysis_codes, stats_rownum, stats_sheet, code_header, writer): for code in tqdm(analysis_codes): output_row['Code'] = code output_row = calculate_all_scores( output_row, combined, coder1, coder2, code_dict, code, code_hierarchy, multi_select_codes, code_groups, lead_code, exclude_values) if confusion_matrices: confusion_rownum = write_confusion( combined, confusion_writer, confusion_sheet, confusion_rownum, code, coder1, coder2, code_dict, multi_select_codes) stats_rownum = write_xlsx_row( stats_sheet, output_row, stats_rownum, code_header) writer.writerow(output_row) return stats_rownum, confusion_rownum def write_xlsx_row(sheet, row, rownum, code_header=None): if isinstance(row, dict): row = [row[x] if x in row else '' for x in code_header] sheet.write_row(rownum, 0, row) rownum += 1 return rownum def format_filewriters( workbook, arb_cols, coders, codes_only, data_dict, codefile, arbfile, confusionfile, indivfile): # XLSX Sheet Creation # Agreement Statistics code_header = ['Combined Pair', 'Pair 1', 'Pair 2', 'Code'] extra_measures = ['', 'Conditional_', 'Partial_', 'Grouped_'] for extra in extra_measures: code_header += [f'{extra}N', f'{extra}Agreement', f'{extra}Cohen_Kappa'] stats_sheet = workbook.add_worksheet('Agreement_Statistics') stats_sheet.write_row(0, 0, code_header) # Individual Statistics individual_header = ['Coder', 'Code', 'Value', 'N', 'Percent', 'Multi_N', 'Multi_Percent'] individual_sheet = workbook.add_worksheet('Individual_Statistics') individual_sheet.write_row(0, 0, individual_header) # Confusion Matrices confusion_sheet = workbook.add_worksheet('Confusion_Statistics') # Arbitration if arb_cols is None: arb_header = list(data_dict[coders[0]]) else: arb_header = [x for x in list(data_dict[coders[0]]) if x in arb_cols] arb_header = arb_header + ['Coder', 'Arbitrate?'] + codes_only arb_sheets = {} for coder in coders: arb_sheets[coder] = workbook.add_worksheet(f'Arbitration_{coder}') arb_sheets[coder].write_row(0, 0, arb_header) # Discussion # CSV Headers and Writers arb_writer = csv.writer(arbfile, delimiter=',') arb_writer.writerow(arb_header) writer = csv.DictWriter(codefile, code_header, delimiter=',') writer.writeheader() individual_writer = csv.DictWriter(indivfile, individual_header, delimiter=',') individual_writer.writeheader() confusion_writer = csv.writer(confusionfile, delimiter=',') return stats_sheet, confusion_sheet, arb_sheets, individual_sheet, \ writer, confusion_writer, arb_writer, individual_writer, code_header, \ individual_header def process_aggregate_codesheet(data_dict, analysis_codes, lead_code): # Get all codes from coders all_dfs = [] for coder, data in data_dict.items(): df = data[analysis_codes] all_dfs += [df] # Fill in that dataframe with the matching codes from coders coding_array = [] sample_df = df for index in tqdm(range(sample_df.shape[0])): row_vals = [] for df in all_dfs: row = df.iloc[index] if not pd.isnull(row[lead_code]): row_vals += row.values.tolist() row_vals += (len(all_dfs) * len(analysis_codes) - len(row_vals)) * [np.nan] coding_array += [row_vals] colnames = [] for i in range(len(all_dfs)): colnames += [f'{code}_{i}' for code in analysis_codes] combined_df = pd.DataFrame(coding_array, columns=colnames) combined_df = remove_bad_rows(combined_df, '0', '1', lead_code) return combined_df def process_pair_codesheet(data_dict, coders, analysis_codes, coder1, coder2, lead_code): dfs = [] for coder, pair_coder in [[coder1, coder2], [coder2, coder1]]: df = data_dict[coder][coders + analysis_codes] df = df.astype({c: 'bool' for c in coders}) df = df[(df[coder]) & (df[pair_coder])][analysis_codes] df = df.rename(columns={x: f'{x}_{coder}' for x in list(df)}) dfs += [df] combined_df = pd.concat(dfs, axis=1) combined_df = remove_bad_rows(combined_df, coder1, coder2, lead_code) return combined_df def remove_bad_rows(df, coder1, coder2, lead_code): """ Modify this to work for more than 2 coders with df.query """ # Remove null rows that have not yet been coded, according to the "lead code" (i.e. first code). df = df[~(df[f'{lead_code}_{coder1}'].isna()) & ~(df[f'{lead_code}_{coder2}'].isna())] return df def calculate_all_scores( output_row, df, coder1, coder2, code_dict, code, code_hierarchy, multi_select_codes, code_groups, lead_code, exclude_values): col1 = f'{code}_{coder1}' col2 = f'{code}_{coder2}' # Remove 'Unclear' and other excluded rows. df = df[~(df[col1].isin(exclude_values)) & ~(df[col2].isin(exclude_values))] # Basic Agreement output_row = calculate_agreement_scores( output_row, df, col1, col2, code_dict, code, prefix='') # Partial Agreement if code in multi_select_codes: if code in code_hierarchy: # Not generalizable to other data, obviously condition_code = code_hierarchy[code] h_data = df.copy() for key, item in condition_code.items(): h_data = h_data[(h_data[f'{key}_{coder1}'] != item) & (h_data[f'{key}_{coder2}'] != item)] output_row = calculate_agreement_scores( output_row, h_data, col1, col2, code_dict, code, prefix='Partial_', partial=True) else: output_row = calculate_agreement_scores( output_row, df, col1, col2, code_dict, code, prefix='Partial_', partial=True) # Conditional Agreement if code in code_hierarchy: output_row = calculate_agreement_scores( output_row, h_data, col1, col2, code_dict, code, prefix='Conditional_') else: output_row['Conditional_Agreement'] = None output_row['Conditional_Cohen_Kappa'] = None # Grouped Agreement if code in code_groups: group_dict = code_groups[code] for key, item in group_dict.items(): df = df.replace(key, item) grouped_categories = list(set(group_dict.values())) output_categories = grouped_categories + [x for x in code_dict[code] if x not in group_dict] output_dict = {code: list(output_categories)} output_row = calculate_agreement_scores( output_row, df, col1, col2, output_dict, code, prefix='Grouped_') else: output_row['Grouped_Agreement'] = None output_row['Grouped_Cohen_Kappa'] = None return output_row def calculate_agreement_scores( output_row, df, col1, col2, code_dict, code, prefix='', partial=False): # Total Rows count = df.shape[0] output_row[f'{prefix}N'] = count if partial: # This is so messed up. Means to an end. data1 = [] data2 = [] same_count = 0 for _, row in df.iterrows(): vals1, vals2 = str.split(str(row[col1]), '|'), str.split(str(row[col2]), '|') if not set(vals1).isdisjoint(vals2): vals1, vals2 = vals1[0], vals1[0] same_count += 1 else: vals1, vals2 = vals1[0], vals2[0] data1 += [vals1] data2 += [vals2] else: data1 = df[col1].astype(str) data2 = df[col2].astype(str) same_count = df[df[col1] == df[col2]].shape[0] # Agreement agreement = same_count / count output_row[f'{prefix}Agreement'] = agreement # Cohen's Kappa c_kappa = cohen_kappa_score(data1, data2, labels=code_dict[code]) if np.isnan(c_kappa): output_row[f'{prefix}Cohen_Kappa'] = 'N/A' else: output_row[f'{prefix}Cohen_Kappa'] = c_kappa # Fleiss' Kappa return output_row def write_confusion( df, writer, confusion_sheet, confusion_rownum, code, coder1, coder2, code_dict, multi_select_codes): """ Writes confusion matrices into something tractable in a .csv file. Enable for 2+ raters """ col1 = list(df[f'{code}_{coder1}'].astype(str)) col2 = list(df[f'{code}_{coder2}'].astype(str)) # # Remove 'Unclear' and other excluded rows. # df = df[~(df[col1].isin(exclude_values)) & ~(df[col2].isin(exclude_values))] # Deal with multi-select in the confusion matrices. Not sure if redundant if code in multi_select_codes: new_cols = [[], []] for idx, value1 in enumerate(col1): value2 = col2[idx] if '|' in value1 or '|' in value2: value1 = set(str.split(value1, '|')) value2 = set(str.split(value2, '|')) diff_vals = (value1 - value2).union(value2 - value1) match_vals = value1.intersection(value2) for match in match_vals: new_cols[0] += [match] new_cols[1] += [match] for diff in (value1 - value2): for val in value2: new_cols[0] += [diff] new_cols[1] += [val] for diff in (value2 - value1): for val in value1: new_cols[0] += [val] new_cols[1] += [diff] col1 += new_cols[0] col2 += new_cols[1] # Confusion matrix confusion = confusion_matrix(col1, col2, labels=code_dict[code]) # No ground truth, so make it symmetric # 20 points if you can find a Python-y way to do this. for i in range(confusion.shape[0]): for j in range(confusion.shape[1]): if i != j: total = confusion[i, j] + confusion[j, i] confusion[i, j] = total confusion[j, i] = total writer.writerow([code]) labels = code_dict[code] code_row = [code] writer.writerow(code_row) confusion_rownum = write_xlsx_row(confusion_sheet, code_row, confusion_rownum) header_row = [''] + labels writer.writerow(header_row) confusion_rownum = write_xlsx_row(confusion_sheet, header_row, confusion_rownum) for idx, row in enumerate(confusion): output_row = [labels[idx]] + row.tolist() confusion_sheet.write_row(confusion_rownum, 0, output_row) confusion_rownum += 1 writer.writerow(output_row) return confusion_rownum def write_arb( writer, data_dict, lead_code, arb_cols, codes_only, arb_sheets, arb_rownums): """ Identify codes without a majority consensus, and write those to a new sheet for arbitrating. Currently exits arb when any arbitrator affirms the choice of a previous coder, so more complex majority systems are not implemented. """ sample_df = data_dict[list(data_dict.keys())[0]] for i in tqdm(range(sample_df.shape[0])): # See who has and has not coded this data. have_coded = [] arbitrators = [] for coder, data in data_dict.items(): row = data.iloc[i] if not pd.isnull(row[lead_code]): have_coded += [coder] else: arbitrators += [coder] # If 2+ people have coded... if len(have_coded) > 1: # Grab the relevant data... if arbitrators: arbitrator = random.choice(arbitrators) else: arbitrator = 'Discussion' output_rows = [] code_rows = [] for coder in have_coded: output_row = data_dict[coder].iloc[i].fillna('') data_cols = output_row[arb_cols].values.tolist() code_cols = output_row[codes_only].values.tolist() code_rows += [code_cols] output_rows += [data_cols + [coder, 'FALSE'] + code_cols] # Wonky method to determine if there is a majority. # There's probably a better way.. # Hack here for the Notes column, TODO # majority_dict = defaultdict(int) majority = False for idx, row in enumerate(code_rows): for row2 in code_rows[idx + 1:]: if row[:-1] == row2[:-1]: majority = True # Finally, if there is no majority, write to arb file # if any([value > 0 for key, value in majority_dict.items()]): if majority: continue for output_row in output_rows: writer.writerow(output_row) arb_rownums[arbitrator] = write_xlsx_row( arb_sheets[arbitrator], output_row, arb_rownums[arbitrator]) arb_row = [''] * len(arb_cols) + [arbitrator, 'TRUE'] # Blank out disagreements for arbitrator # Very confusing. I'm a little out of it right now tbh. for idx in range(len(code_cols)): answers = [row[idx] for row in code_rows] if len(answers) == len(set(answers)): arb_row += [''] else: arb_row += [max(set(answers), key=answers.count)] writer.writerow(arb_row) arb_rownums[arbitrator] = write_xlsx_row( arb_sheets[arbitrator], arb_row, arb_rownums[arbitrator]) return arb_sheets, arb_rownums def process_individual_stats( individual_writer, individual_sheet, individual_rownum, data_dict, lead_code, analysis_codes, multi_select_codes, individual_header): for coder, df in data_dict.items(): output_row = {'Coder': coder} df = df[~df[lead_code].isnull()] for code in analysis_codes: output_row['Code'] = code sub_df = df[code].dropna() # Deal with multi-select in the confusion matrices. Not sure if redundant if code in multi_select_codes: data = list(sub_df.astype(str)) multi_select_count = 0 new_data = [] for idx, value in enumerate(data): if '|' in value: multi_select_count += 1 values = set(str.split(value, '|')) for val in values: new_data += [val] else: new_data += [value] sub_df = pd.DataFrame(new_data, columns=[code]) sub_df = sub_df[code] multi_select_percent = multi_select_count / len(data) else: multi_select_count = None multi_select_percent = None output_row['Multi_N'] = multi_select_count output_row['Multi_Percent'] = multi_select_percent # sub_df = sub_df[~sub_df[code].isnull()] percents = sub_df.value_counts(normalize=True) * 100 counts = sub_df.value_counts() for key, value in percents.items(): output_row['N'] = counts[key] output_row['Percent'] = value output_row['Value'] = key individual_writer.writerow(output_row) write_xlsx_row(individual_sheet, output_row, individual_rownum, individual_header) individual_rownum += 1 return def write_discussion(dworkbook, data_dict, lead_code, codes_only, coders, analysis_codes): # Individual Statistics discussion_header = ['Pair_1', 'Pair_2', 'Row'] + analysis_codes with open('Test_Count.csv', 'a') as f: writer = csv.writer(f, delimiter=',') for idx, (coder1, coder2) in enumerate(combinations(coders, 2)): discussion_sheet = dworkbook.add_worksheet(f'{coder1}_{coder2}') discussion_sheet.write_row(0, 0, discussion_header) combined = process_pair_codesheet( data_dict, coders, analysis_codes, coder1, coder2, lead_code) rownum = 1 for i in tqdm(range(combined.shape[0])): row = combined.iloc[i] output_row = {'Pair_1': coder1, 'Pair_2': coder2, 'Row': combined.index[i]} if row.iloc[0:len(analysis_codes)].tolist() == row.iloc[len(analysis_codes):].tolist(): writer.writerow([combined.index[i], 0]) continue wrong_codes = 0 for code in analysis_codes: if row[f'{code}_{coder1}'] != row[f'{code}_{coder2}']: output_row[code] = ' // '.join([str(row[f'{code}_{coder1}']), str(row[f'{code}_{coder2}'])]) wrong_codes += 1 writer.writerow([combined.index[i], wrong_codes]) write_xlsx_row(discussion_sheet, output_row, rownum, discussion_header) rownum += 1 return def scratch_code(): # params = namedtuple('Parameters', [ # 'code_dict', 'code_hierarchy', 'multi_select_codes', 'code_groups', # 'lead_code', 'exclude_values', 'analysis_codes', 'code_header', 'max_raters']) return if __name__ == '__main__': pass ``` #### File: twitter2sql/core/json_util.py ```python import json import pandas as pd from pprint import pprint def load_json(input_json, output_type='dict'): # Should probably check this at the format level. if input_json.endswith('json'): with open(input_json, 'r') as f: data = json.load(f) else: with open(input_json, 'r') as f: data = [json.loads(jline) for jline in list(f)] return data def extract_mentions(input_data): return def extract_images(input_data, types=['photo']): # Stolen from https://github.com/morinokami/twitter-image-downloader/blob/master/twt_img/twt_img.py if len(types) > 1: raise NotImplementedError if "media" in input_data["entities"]: if "extended_entities" in input_data: media_types = [x['type'] for x in input_data["extended_entities"]["media"]] extra = [ x["media_url"] for x in input_data["extended_entities"]["media"] if x['type'] in types ] else: media_types = None extra = [] if all([x in types for x in media_types]): urls = [x["media_url"] for x in input_data["entities"]["media"] if x['type'] in types] urls = set(urls + extra) return urls else: return None if __name__ == '__main__': pass ``` #### File: twitter2sql/core/util.py ```python import time import os import psycopg2 import csv import pandas as pd import re import tweepy import json from datetime import timedelta from datetime import datetime from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT from collections import defaultdict def twitter_str_to_dt(dt_str): return datetime.strptime(dt_str, "%a %b %d %H:%M:%S +0000 %Y") def open_tweepy_api(twitter_c_key=None, twitter_c_key_secret=None, twitter_a_key=None, twitter_a_key_secret=None, credentials=None): # This is a little stupid. if credentials: creds = {} for line in open(credentials).readlines(): key, value = line.strip().split("=") creds[key] = value twitter_c_key = creds['twitter_c_key'] twitter_c_key_secret = creds['twitter_c_key_secret'] twitter_a_key = creds['twitter_a_key'] twitter_a_key_secret = creds['twitter_a_key_secret'] #authorize twitter, initialize tweepy auth = tweepy.OAuthHandler(twitter_c_key, twitter_c_key_secret) auth.set_access_token(twitter_a_key, twitter_a_key_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) return api def open_database(database_name, db_config_file, overwrite_db=False, owner='example', admins=[], named_cursor=None, itersize=None,): # Parse the database credentials out of the file database_config = {"database": database_name} for line in open(db_config_file).readlines(): key, value = line.strip().split("=") database_config[key] = value # cursor.execute("select * from information_schema.tables where table_name=%s", ('mytable',)) if overwrite_db: create_statement = """CREATE DATABASE {db} WITH OWNER = {owner} ENCODING = 'UTF8' LC_COLLATE = 'en_US.UTF-8' LC_CTYPE = 'en_US.UTF-8' TABLESPACE = pg_default CONNECTION LIMIT = -1; """.format(db=database_name, owner=owner) public_permissions = """GRANT TEMPORARY, CONNECT ON DATABASE {db} TO PUBLIC;""".format(db=database_name) owner_permissions = """GRANT ALL ON DATABASE {db} TO {user};""".format(db=database_name, user=owner) admin_permissions = [] for admin in admins: admin_permissions += ['\nGRANT TEMPORARY ON DATABASE {db} to {user}'.format(db=database_name, user=admin)] all_commands = [create_statement] + [public_permissions] + [owner_permissions] + admin_permissions create_database_config = database_config create_database_config['database'] = 'postgres' database = psycopg2.connect(**database_config) database.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) cursor = database.cursor(cursor_factory=psycopg2.extras.DictCursor) for command in all_commands: cursor.execute(command) database.commit() cursor.close() database.close() # Connect to the database and get a cursor object database = psycopg2.connect(**database_config) cursor = database.cursor(cursor_factory=psycopg2.extras.DictCursor, name=named_cursor) if itersize is not None: cursor.itersize = itersize return database, cursor def get_column_header_dict(input_column_csv): column_header_dict = {} with open(input_column_csv, 'r') as readfile: reader = csv.reader(readfile, delimiter=',') next(reader) # This line skips the header row. for row in reader: column_header_dict[row[0]] = {'type': row[2], 'json_fieldname': row[1], 'clean': row[4], 'instructions': row[5]} if column_header_dict[row[0]]['clean'] == 'TRUE': column_header_dict[row[0]]['clean'] = True else: column_header_dict[row[0]]['clean'] = False return column_header_dict def close_database(cursor, database, commit=True): # Close everything cursor.close() if commit: database.commit() database.close() def clean(s): # Fix bytes/str mixing from earlier in code: if type(s) is bytes: s = s.decode('utf-8') # Replace weird characters that make Postgres unhappy s = s.replace("\x00", "") if s else None # re_pattern = re.compile(u"\u0000", re.UNICODE) # s = re_pattern.sub(u'\u0000', '') # add_item = re.sub(r'(?<!\\)\\(?!["\\/bfnrt]|u[0-9a-fA-F]{4})', r'', add_item) s = re.sub(r'(?<!\\)\\u0000', r'', s) if s else None return s def c(u): # Encode unicode so it plays nice with the string formatting return u.encode('utf8') def get_last_modified(json_file): return os.path.getmtime(json_file) def within_time_bounds(json_file, start_time, end_time): json_modified_time = get_last_modified(json_file) return (json_modified_time >= time.mktime(start_time.timetuple())) and (json_modified_time <= (time.mktime(end_time.timetuple()) + timedelta(days=1).total_seconds())) def save_to_csv(rows, output_filename, column_headers=None): with open(output_filename, 'w') as outfile: writer = csv.writer(outfile, delimiter=',') if column_headers is None: writer.writerow(rows[0].keys()) else: writer.writerow(column_headers) for item in rows: if column_headers is None: # This might not work if dictionaries don't pull out keys in same order. writer.writerow(item.values()) else: output_row = [item[column] for column in column_headers] writer.writerow(output_row) return def load_from_csv(input_csv, time_columns=[]): with open(input_csv, 'r') as readfile: reader = csv.reader(readfile, delimiter=',') output_dict_list = [] header = next(reader) for row in reader: output_dict = {} for idx, item in enumerate(row): # Time conversion is a little inefficient. But who cares! if header[idx] in time_columns: item = datetime.strptime(item, "%Y-%m-%d %H:%M:%S") output_dict[header[idx]] = item output_dict_list += [output_dict] return output_dict_list def list_on_key(dict_list, key): """ Is there a one-liner for this? """ return_list = [] for sub_dict in dict_list: return_list += [sub_dict[key]] return return_list def extract_entity_to_column(): return def to_list_of_dicts(cursor): results = cursor.fetchall() dict_result = [] for row in results: dict_result.append(dict(row)) return dict_result def to_pandas(cursor, dtype=None): results = cursor.fetchall() column_headers = list(results[0].keys()) if not dtype: data_frame = pd.DataFrame(results) else: new_results = [] for result in results: new_results += [[str(x) if x else None for x in result]] data_frame = pd.DataFrame(new_results, dtype='str') data_frame.columns = column_headers return data_frame def sort_json(input_file, output_file=None, reverse=False, key='created_at', format=None): if output_file is None: output_file = input_file with open(input_file, "r") as f: json_dict = json.load(f) if key == 'created_at': json_dict.sort(reverse=reverse, key=lambda t: twitter_str_to_dt(t[key])) else: json_dict.sort(reverse=reverse, key=lambda t: t[key]) with open(output_file, 'w') as f: json.dump(json_dict, f) return def write_json(input_file, output_file=None): return def format_json(input_file, output_file=None, json_format='newlines'): if output_file is None: output_file = input_file with open(input_file, "r") as f: json_dict = json.load(f) if json_format == 'newlines': with open(output_file, "w") as openfile: openfile.write("[\n") for idx, tweet in enumerate(json_dict): json.dump(tweet, openfile) if idx == len(json_dict) - 1: openfile.write('\n') else: openfile.write(",\n") openfile.write("]") return def sample_json_to_csv(input_directories, number, keys): return def int_dict(): return defaultdict(int) def set_dict(): return defaultdict(set) def dict_dict(): return defaultdict(dict) def list_dict(): return defaultdict(dict) def sql_type_dictionary(): """ Return a dictionary of PSQL types for typical column names in Twitter2SQL databases. """ type_dict = {'user_id': 'bigint', 'tweet': 'TEXT', 'user_name': 'TEXT', 'user_screen_name': 'TEXT', 'in_reply_to_status_id': 'bigint', 'created_at': 'timestamptz', 'in_reply_to_user_screen_name': 'TEXT', 'in_reply_to_user_id': 'bigint'} return type_dict ``` #### File: twitter2sql/query/commands.py ```python import datetime from psycopg2 import sql from collections import OrderedDict from twitter2sql.core.util import open_database, save_to_csv, to_list_of_dicts def aggregate_by_time(database_name, db_config_file, column_name='example', num_returned=10000, table_name='table', return_headers=None, distinct=None, output_filename=None, output_column_headers=None): return def filter_by_time(database_name, db_config_file, time_column='example', num_returned=10000, table_name='table', return_headers=None, distinct=None, output_filename=None, output_column_headers=None): database, cursor = open_database(database_name, db_config_file) cursor.execute(sql.SQL(""" SELECT * FROM {} WHERE time_column BETWEEN %s and %s LIMIT %s; """).format(sql.Identifier(table_name), sql.Identifier(column_name)), [start_date, end_date]) results = cursor.fetchall() dict_result = [] for row in results: dict_result.append(dict(row)) results = remove_duplicates(dict_result, limit=100) if output_filename is not None: save_to_csv(results, output_filename, output_column_headers) return results class Command(object): def __init__(self, verbose=False): self.verbose = verbose return def execute_sql(self): return def aggregate(database_name, db_config_file, aggregate_column='example', output_columns='example', table_name='table', count_column_name='total_tweets', num_returned=1000, return_headers=None, output_filename=None, output_column_headers=None, verbose=False): database, cursor = open_database(database_name, db_config_file) # Max is a bit shady here. output_columns_sql = sql.SQL(',').join([sql.SQL("MAX({output}) as {output}").format(output=sql.Identifier(output)) for output in output_columns]) sql_statement = sql.SQL(""" SELECT {agg}, COUNT({count}) as {count_name}, {outputs} FROM {table} GROUP BY {agg} ORDER BY {count_name} DESC LIMIT %s; """).format(agg=sql.Identifier(aggregate_column), count=sql.Identifier(aggregate_column), count_name=sql.Identifier(count_column_name), table=sql.Identifier(table_name), outputs=output_columns_sql) cursor.execute(sql_statement, [num_returned]) results = to_list_of_dicts(cursor) if verbose: for result in results: print(result) if output_filename is not None: save_to_csv(results, output_filename, output_column_headers) return def grab_top(database_name=None, db_config_file=None, cursor=None, column_name='example', num_returned=100, table_name='table', return_headers=None, distinct=None, output_filename=None, output_column_headers=None): if cursor is None: database, cursor = open_database(database_name, db_config_file) else: return if distinct is None: sql_statement = sql.SQL(""" SELECT user_screen_name,user_name,user_description,user_created_ts,user_followers_count,user_id,created_at,complete_text FROM (SELECT DISTINCT ON (user_id) user_screen_name,user_name,user_description,user_created_ts,user_followers_count,user_id,created_at,complete_text FROM {} WHERE lang='en') as sub_table ORDER BY {} DESC LIMIT %s; """).format(sql.Identifier(table_name), sql.Identifier(column_name)) cursor.execute(sql_statement, [num_returned]) else: # Currently non-functional. cursor.execute(sql.SQL(""" SELECT * FROM ( SELECT DISTINCT ON {} * FROM {} ORDER BY {} DESC LIMIT %s; """).format(sql.Identifier(distinct), sql.Identifier(table_name), sql.Identifier(column_name)), [num_returned]) results = to_list_of_dicts(cursor) # results = remove_duplicates(results, limit=100) if output_filename is not None: save_to_csv(results, output_filename, output_column_headers) return results def remove_duplicates(rows, duplicate_key='user_id', sort_key='user_followers_count', limit=None): """ Removes duplicates in a list, can return only top 'limit' results. Placeholder function until I find how to do this in SQL. Assumes list is sorted. This is like the worst function I have ever made. """ output_rows = [] key_dict = OrderedDict() for idx, item in enumerate(rows): item_key = item[duplicate_key] # Very difficult to understand code. if item_key not in key_dict: key_dict[item_key] = item else: if key_dict[item_key][sort_key] < item[sort_key]: key_dict[item_key] = item if limit is not None: if len(key_dict) == limit: break print('Removed duplicates from..', idx) for key, value in key_dict.items(): output_rows += [value] return output_rows if __name__ == '__main__': grab_top() ``` #### File: twitter2sql/request/lists.py ```python import tweepy import csv import os from pprint import pprint from tqdm import tqdm def get_list_members(api, user, list_id, output_csv_folder): members = [] if not os.path.exists(output_csv_folder): os.mkdir(output_csv_folder) descriptors = ['name', 'description', 'slug', 'created_at', 'id'] for list_object in api.lists_all(user): slug = list_object._json['slug'] print(slug, list_object._json['id']) try: users = [] for result in tweepy.Cursor(api.list_members, user, slug).pages(): for page in result: users += [[page._json['id'], page._json['screen_name'], page._json['name']]] with open(os.path.join(output_csv_folder, f'{slug}.csv'), 'w') as writefile: writer = csv.writer(writefile, delimiter=',') for row in users: print(row) writer.writerow(row) except Exception as e: print(f'Failed on {slug}') print(e) return None def add_to_list(api, input_ids, list_id): if type(input_ids) is list: pass elif type(input_ids) is str: if input_ids.endswith('.txt'): with open(input_ids, 'r') as f: input_ids = f.readlines() else: raise ValueError(f"{input_ids} in str format must be a .txt file.") else: raise ValueError(f"{input_ids} must be either a filepath or a list of screen names.") for idx, uid in enumerate(tqdm(input_ids)): print(list_id, uid) try: api.add_list_member(list_id=str(list_id), user_id=uid) except Exception as e: print(e) return None if __name__ == '__main__': pass ```
{ "source": "josephschorr/Python-Wrapper", "score": 3 }
#### File: Python-Wrapper/xboxapi/gamer.py ```python class Gamer(object): ''' Xbox profile wrapper ''' def __init__(self, gamertag=None, client=None, xuid=None): self.client = client self.gamertag = gamertag self.xuid = xuid if xuid is not None else self.fetch_xuid() self.endpoints = ['messages', 'conversations', 'recent-players', 'activity-feed', 'latest-xbox360-games', 'latest-xboxone-games', 'latest-xboxone-apps', 'xboxone-gold-lounge', 'game-details', 'game-details-hex'] self.endpoints_xuid = ['achievements', 'profile', 'presence', 'gamercard', 'activity', 'friends', 'followers', 'game-clips', 'game-clips/saved', 'game-stats', 'screenshots', 'xbox360games', 'xboxonegames', 'game-status'] def get(self, method=None, term=None): ''' Retrieve data from supported endpoints ''' # Hack to avoid calling api again for xuid retrieval if method == 'xuid': return self.xuid url = self.parse_endpoints(method, term) if url is not False: return self.client.api_get(url).json() url = self.parse_endpoints_secondary(method, term) if url is not False: return self.client.api_get(url).json() return {} def parse_endpoints(self, method=None, term=None): ''' Constructs a valid endpoint url for api ''' if method is None: return False for endpoint in self.endpoints: if endpoint != method: continue url = endpoint if term is not None: url = url + '/' + term return url return False def parse_endpoints_secondary(self, method=None, term=None): ''' Parse secondary endpoints that require xuid in url ''' for endpoint in self.endpoints_xuid: if endpoint != method: continue url = str(self.xuid) + '/' + endpoint if term is not None: url = url + '/' + term return url return False def send_message(self, message=None, xuids=None): ''' Send a message given a list of gamer xuids ''' payload = {} if message is None: raise ValueError('A message is required!') if xuids is not None and not hasattr(xuids, 'append'): raise TypeError('List was not given!') if xuids is None: xuids = [self.xuid] payload['to'] = xuids payload['message'] = message return self.client.api_post('messages', payload) def post_activity(self, message=None): ''' Post directly to your activity feed ''' payload = {} if message is None: raise ValueError('A message is required!') payload['message'] = message return self.client.api_post('acitivity-feed', payload) def fetch_xuid(self): ''' Fetch gamer xuid from gamertag ''' return self.client.api_get('xuid/' + self.gamertag).json() ```
{ "source": "josephscott/browser-engineering", "score": 3 }
#### File: josephscott/browser-engineering/browser.py ```python def request(url): assert url.startswith("http://") url = url[len("http://"):] host, path = url.split("/", 1) path = "/" + path import socket s = socket.socket( family=socket.AF_INET, type=socket.SOCK_STREAM, proto=socket.IPPROTO_TCP, ) s.connect(("example.org", 80)) s.send(b"GET /index.html HTTP/1.0\r\n" + b"Host: example.org\r\n\r\n") response = s.makefile("r", encoding="utf8", newline="\r\n") statusline = response.readline() version, status, explanation = statusline.split(" ", 2) assert status == "200", "{}: {}".format(status, explanation) headers = {} while True: line = response.readline() if line == "\r\n": break header, value = line.split(":", 1) headers[header.lower()] = value.strip() body = response.read() s.close() return headers, body def show(body): in_angle = False for c in body: if c == "<": in_angle = True elif c == ">": in_angle = False elif not in_angle: print(c, end="") def load(url): headers, body = request(url) show(body) if __name__ == "__main__": import sys load(sys.argv[1]) ```
{ "source": "josephsdavid/N2D", "score": 3 }
#### File: examples/stockCluster/augment.py ```python import numpy as np import pandas as pd from scipy.interpolate import CubicSpline # for warping from transforms3d.axangles import axangle2mat # for rotation # augmentation of data def Jitter(X, sigma=0.5): myNoise = np.random.normal(loc=0, scale=sigma, size=X.shape) return X + myNoise df = pd.read_csv("Data/stock_close.csv") df.apply(Jitter, axis=1) def augment(df, n): res = [] for i in range(0, n): x = df.apply(Jitter, axis=1) res.append(np.asarray(x)) return np.hstack(res) ``` #### File: examples/stockCluster/preprocess.py ```python import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler def scale(path): df = pd.read_csv(path, index_col=0) scaled_feats = StandardScaler().fit_transform(df.values) scaled_features_df = pd.DataFrame(scaled_feats, columns=df.columns) return scaled_features_df ``` #### File: N2D/n2d/generators.py ```python import numpy as np from tensorflow.keras.models import Model # Local modules from . import N2D class manifold_cluster_generator(N2D.UmapGMM): def __init__(self, manifold_class, manifold_args, cluster_class, cluster_args): # cluster exceptions self.manifold_in_embedding = manifold_class(**manifold_args) self.cluster_manifold = cluster_class(**cluster_args) proba = getattr(self.cluster_manifold, "predict_proba", None) self.proba = callable(proba) self.hle = None def fit(self, hl): super().fit(hl) def predict(self, hl): if self.proba: super().predict(hl) else: manifold = self.manifold_in_embedding.transform(hl) y_pred = self.cluster_manifold.predict(manifold) return np.asarray(y_pred) def fit_predict(self, hl): if self.proba: super().fit_predict(hl) else: self.hle = self.manifold_in_embedding.fit_transform(hl) y_pred = self.cluster_manifold.fit_predict(self.hle) return np.asarray(y_pred) def predict_proba(self, hl): if self.proba: super().predict_proba(hl) else: print("Your clusterer cannot predict probabilities") class autoencoder_generator(N2D.AutoEncoder): def __init__(self, model_levels=(), x_lambda=lambda x: x): self.Model = Model(model_levels[0], model_levels[2]) self.encoder = Model(model_levels[0], model_levels[1]) self.x_lambda = x_lambda def fit( self, x, batch_size, epochs, loss, optimizer, weights, verbose, weight_id, patience, ): super().fit( x, batch_size, epochs, loss, optimizer, weights, verbose, weight_id, patience, ) ```
{ "source": "JosephSemrai/TensorMap", "score": 3 }
#### File: app/resources/data_preprocessing.py ```python from flask import jsonify, redirect, url_for, render_template, request, session from . import main from .. import db from .database_models.data_preproc import dataset import os import json import csv import pandas as pd from flask import send_file from .template_manipulation import editExperimentConfigurations def createJsonData(entry): i= 0 columns = [] data = [] splitLine = None allData = {} if entry: with open(entry.filePath, 'r') as f: index = 0 for line in f: if index == 0: print(line) newLine = line.replace('\n', '').replace('"','') splitLine = newLine.split(",") print(splitLine) for column in splitLine: temColumn = {} temColumn["title"] = column temColumn["field"] = column columns.append(temColumn) print(columns) else: newRowLine = line.replace('\n', '').replace('"','') splitData = newRowLine.split(",") if index==1: print(line) print(newRowLine) print(splitData) print(splitLine) temRow = {} for i in range(len(splitData)): temRow[splitLine[i]] = splitData[i] data.append(temRow) index += 1 allData["columns"]=columns allData["data"]=data allData["error"]="None" responseData = json.dumps(allData) return responseData else: allData["columns"]="None" allData["data"]="None" allData["error"]="Dataset Not Found" responseData = json.dumps(allData) return responseData @main.route('/addData', methods=['POST']) def addData(): file = request.files['file'] datasetFile = file.filename dirPath = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '.', 'dataset')) path = '{}{}{}'.format(dirPath, "/", datasetFile) splitFileInfo = datasetFile.split(".") fileName = splitFileInfo[0] fileFormat = splitFileInfo[1] if dataset.query.filter_by(fileName=fileName).one_or_none(): return "error" else: file.save(path) # writing the file entry in the database. data = dataset(fileName, path, fileFormat, "None","None",0) db.session.add(data) db.session.commit() return splitFileInfo[0] @main.route('/visualizeData', methods=['GET']) def visualizeData(): # ******************************************change # entry = dataset.query.filter_by(fileName=request.args['fileName']).one() entry = dataset.query.filter_by(fileName="store").one() print(entry.filePath) responseData = createJsonData(entry) return responseData @main.route('/addRow', methods=['POST']) def addDataRow(): content = request.get_json() entry = dataset.query.filter_by(fileName=content['fileName']).one() print(entry.filePath) row = [] dataCsv = pd.read_csv(entry.filePath) for column in content["columnData"]: if column["title"] in content["rowdata"]: row.append(content["rowdata"][column["title"]]) else: row.append("None") print(row) dataCsv.loc[len(dataCsv)] = row dataCsv.to_csv(entry.filePath, index=False) return "Done" @main.route('/editRow', methods=['POST']) def editDataRow(): content = request.get_json() entry = dataset.query.filter_by(fileName=content['fileName']).one() print(entry.filePath) row = [] dataCsv = pd.read_csv(entry.filePath) for column in content["columnData"]: if column["title"] in content["newRowData"]: row.append(content["newRowData"][column["title"]]) else: row.append("None") print(row) dataCsv.loc[content["newRowData"]["tableData"]["id"]] = row dataCsv.to_csv(entry.filePath, index=False) return "Done" @main.route('/deleteRow', methods=['POST']) def deleteDataRow(): content = request.get_json() entry = dataset.query.filter_by(fileName=content['fileName']).one() print(entry.filePath) dataCsv = pd.read_csv(entry.filePath) dataCsv.drop(dataCsv.index[content["oldRowData"]["tableData"]["id"]], inplace = True) dataCsv.to_csv(entry.filePath, index=False) return "Done" @main.route('/deleteColumn', methods=['POST']) def deleteDataColumn(): content = request.get_json() entry = dataset.query.filter_by(fileName=content['fileName']).one() dataCsv = pd.read_csv(entry.filePath) for column in content["columnData"]: if column["checked"]: print(column["title"]) dataCsv.drop(column["title"], axis=1, inplace=True) print(column) dataCsv.to_csv(entry.filePath, index=False) entry.features = "None" entry.labels = "None" entry.testPercentage = 0 db.session.commit() responseData = createJsonData(entry) return responseData @main.route('/downloadCSV', methods=['POST']) def download(): content = request.get_json() entry = dataset.query.filter_by(fileName=content['fileName']).one() fullFileName = '{}{}{}'.format(entry.fileName, ".", entry.fileFormat) try: return send_file(entry.filePath, attachment_filename=fullFileName, as_attachment=True) except Exception as e: return str(e) @main.route('/saveConfig', methods=['POST']) def saveConfig(): content = request.get_json() featureString = "" labelString = "" index = 0 entry = dataset.query.filter_by(fileName=content['fileName']).one() for feature in content["features"]: if feature["checked"] : print(feature["title"]) if index == 0: featureString = '{}{}'.format(featureString, feature["title"]) else: featureString = '{}{}{}'.format(featureString, ",", feature["title"]) index += 1 index = 0 for label in content["labels"]: if label["checked"] : print(label["title"]) if index == 0: labelString = '{}{}'.format(labelString, label["title"]) else: labelString = '{}{}{}'.format(labelString, ",", label["title"]) index += 1 print(labelString) entry.features = featureString entry.labels = labelString entry.testPercentage = content['trainPercentage'] db.session.commit() editExperimentConfigurations(featureString,labelString,content['trainPercentage'],entry) return "done" @main.route('/viewData', methods=['GET']) def viewData(): entries = dataset.query.all() entries = [entry.serialize() for entry in entries] return json.dumps(entries) ```
{ "source": "josephshanks/Swing-and-a-miss", "score": 3 }
#### File: Swing-and-a-miss/src/Cleaner.py ```python import numpy as np import pandas as pd def cleaning(df): #dropping columns that contains information of the result of the play. I am trying to model the contact quality only by factors known before the batter hits the ball df=df.drop(['pitch_type','game_date','player_name','pitcher','batter','events','description','spin_dir','spin_rate_deprecated','break_angle_deprecated', 'break_length_deprecated','des','game_type','home_team','away_team','type','hit_location','bb_type','game_year','hc_x','hc_y', 'tfs_deprecated','tfs_zulu_deprecated','umpire','sv_id','hit_distance_sc','launch_speed','launch_angle','game_pk','pitcher', 'estimated_ba_using_speedangle','estimated_woba_using_speedangle','woba_value','woba_denom','babip_value','iso_value','pitch_name', 'launch_speed_angle','home_score','away_score','post_away_score','post_home_score','post_bat_score','post_fld_score'],axis=1) df[['on_3b','on_2b','on_1b']] = df[['on_3b','on_2b','on_1b']].fillna(value=0) df[['if_fielding_alignment','of_fielding_alignment']] = df[['if_fielding_alignment','of_fielding_alignment']].fillna(value='Standard') df.dropna() #Was there anybody on third base? df['on_3b']=df['on_3b'].apply(lambda x: 1 if x >= 1 else 0) #Was there anybody on first and second base? df['on_2b']=df['on_2b'].apply(lambda x: 1 if x >= 1 else 0) df['on_1b']=df['on_1b'].apply(lambda x: 1 if x >= 1 else 0) #batter stance and pitcher stance: 1 for Right, 0 for Left df['stand']=df['stand'].apply(lambda x: 1 if x=='R' else 0) df['p_throws']=df['p_throws'].apply(lambda x: 1 if x=='R' else 0) df['inning_topbot']=df['inning_topbot'].apply(lambda x: 1 if x=='Bot' else 0) df['if_fielding_alignment']=df['if_fielding_alignment'].apply(lambda x: 0 if x=='Standard' else 1) df['of_fielding_alignment']=df['of_fielding_alignment'].apply(lambda x: 0 if x=='Standard' else 1) #drop nulls df=df.dropna() return df ```
{ "source": "josephshell/bounceIO", "score": 2 }
#### File: josephshell/bounceIO/ProgramRunner.py ```python import pygame from src.utils.Logger import debug from src.games.bounceIO.BounceIo import bounce_io_debug RED = (255, 0, 0) BLUE = (0, 0, 255) WHITE = (255, 255, 255) SIZE = (800, 600) def main(): bounce_io_debug(pygame, WHITE, RED, BLUE, SIZE, 10, 50, debug) if __name__ == '__main__': main() ``` #### File: src/utils/Logger.py ```python import datetime def debug(msg: str): time = datetime.datetime.now().time() print("[%s]: %s" % (time, msg)) ```
{ "source": "Josephshitandi/News-API", "score": 3 }
#### File: app/main/views.py ```python from flask import render_template,request,redirect,url_for from . import main from ..request import get_news,get_article,get_category from .forms import ReviewForm # from ..models import Review @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' # Getting news sources popularity = get_news('popularity') bitcoin = get_news('bitcoin') business = get_news('business') techcrunch = get_news('techcrunch') wall_street = get_news('wsj') title = 'Home - Welcome to The best News Review Website Online' search_news = request.args.get('news_query') if search_news: return redirect(url_for('search', category_name = search_news)) else: return render_template('index.html', title = title, popularity = popularity, bitcoin = bitcoin, business = business, techcrunch = techcrunch, wall_street = wall_street ) @main.route('/article/') def article(): ''' View article page function that returns the news articles details page and its data ''' news = get_article(article) title = f'{news.title}' article = Article.get_article(news.url) return render_template('article.html',title = title,news = news,article = article) @main.route('/categories/<category_name>') def category(category_name): ''' method that returns the categories page ''' category = get_category(category_name) title = f'{category_name}' return render_template('categories.html', title = title, category = category) @main.route('/categories/technology') def technology(): ''' method that returns the categories page ''' technology = get_category('technology') title = 'TECHNOLOGY' return render_template('categories.html', title = title, technology = technology) @main.route('/categories/sport') def sports(): ''' method that returns the categories page ''' sports = get_category('sports') title = 'SPORTS' return render_template('categories.html', title = title, sports = sports) @main.route('/categories/entertainment') def entertainment(): ''' method that returns the categories page ''' sports = get_category('entertainment') title = 'ENTERTAINMENT' return render_template('categories.html', title = title, entertainment = entertainment) @main.route('/categories/business') def business(): ''' method that returns the categories page ''' business = get_category('business') title = 'BUSINESS' return render_template('categories.html', title = title, business = business) @main.route('/search/<category_name>') def search(category_name): ''' View function to display the search results ''' category_list = category.split(" ") category_format = "+".join(category_list) searched_news = search_movie(category_format) title = f'search results for {category_name}' return render_template('search.html',news = searched_news) ```
{ "source": "Josephshitandi/safe-boda-group", "score": 3 }
#### File: app/main/forms.py ```python from flask_wtf import FlaskForm from wtforms import StringField, TextAreaField,SubmitField,DateField from ..models import Comment from wtforms import StringField, TextAreaField, SubmitField, SelectField, PasswordField,IntegerField from wtforms.validators import Required, Email, EqualTo, ValidationError class CommentForm(FlaskForm): comment = TextAreaField('Comment') submit = SubmitField('Post a comment') class RiderForm(FlaskForm): email = StringField('Your Email Address',validators=[Required(),Email()]) ridername = StringField('Enter your ridername',validators = [Required()]) number_plate = StringField('Your number_plate',validators =[Required()]) motor_model = StringField('Your motor_model',validators =[Required()]) password = PasswordField('Password',validators = [Required(), EqualTo('password_confirm',message = 'Passwords must match')]) password_confirm = PasswordField('<PASSWORD> Passwords',validators = [Required()]) submit = SubmitField('Upload') def validate_email(self,data_field): if User.query.filter_by(email =data_field.data).first(): raise ValidationError('There is an account with that email') def validate_ridername(self,data_field): if User.query.filter_by(ridername = data_field.data).first(): raise ValidationError('That ridername is taken') class UpdateProfile(FlaskForm): bio = TextAreaField('Say something about yourself',validators=[Required()]) submit = SubmitField('Save') class TaskForm(FlaskForm): title = StringField('Title', validators=[Required()]) post = TextAreaField('Your Task', validators=[Required()]) submit = SubmitField('Task') class BookForm(FlaskForm): first_point = StringField('Enter your current Location') second_point = StringField('Enter your Destination point') mobile = IntegerField('Enter your Mobile number') payment = SelectField(u'Payment Method', choices=[('Cash', 'Cash'), ('Mpesa', 'Mpesa'),('Bank', 'Bank')]) submit = SubmitField('Submit') ```
{ "source": "josephsieh/Halide", "score": 3 }
#### File: python_bindings/apps/blur.py ```python import os, sys from halide import * OUT_DIMS = (1536, 2560) def main(): input = ImageParam(UInt(16), 2, 'input') x, y = Var('x'), Var('y') blur_x = Func('blur_x') blur_y = Func('blur_y') blur_x[x,y] = (input[x,y]+input[x+1,y]+input[x+2,y])/3 blur_y[x,y] = (blur_x[x,y]+blur_x[x,y+1]+blur_x[x,y+2])/3 xi, yi = Var('xi'), Var('yi') blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8) blur_x.compute_at(blur_y, x).vectorize(x, 8) maxval = 255 in_image = Image(UInt(16), builtin_image('rgb.png'), scale=1.0) # Set scale to 1 so that we only use 0...255 of the UInt(16) range eval_func = filter_image(input, blur_y, in_image, disp_time=True, out_dims = (OUT_DIMS[0]-8, OUT_DIMS[1]-8), times=5) I = eval_func() if len(sys.argv) >= 2: I.save(sys.argv[1], maxval) else: I.show(maxval) if __name__ == '__main__': main() ```
{ "source": "JosephSilvermanArt/qLib", "score": 2 }
#### File: scripts/python/qlibattribmenu.py ```python """ *** History entry for related change (update date accordingly) *** 2019-11-13: - Updated attribute popup menu(s) to use shared menu python code ([#899|https://github.com/qLab/qLib/issues/899]) *** Some Make-Me-Life-Easier Codez *** # use "class" parameter to determine if point, prim, etc # and return numeric attribs # import traceback r = [] try: import qlibattribmenu as qm r = qm.buildAttribMenu(kwargs, hou.pwd().parm("class").evalAsString(), filter=qm.isNumeric ) except: r = ["", ":("] print traceback.format_exc() return r # list ALL attributes # instead of "all" use "comp" or "component" to list all but detail attribs # import traceback r = [] try: import qlibattribmenu as qm r = qm.buildAttribMenu(kwargs, "all") except: r = ["", ":("] print traceback.format_exc() return r # list per-prim and per-point attributes, of type int or string # import traceback r = [] try: import qlibattribmenu as qm r = qm.buildAttribMenu(kwargs, "prim point", filter=lambda a: qm.isInt(a) or qm.isString(a) ) except: r = ["", "couldn't build this menu :("] print traceback.format_exc() return r """ import hou import re import traceback def buildAttribLabel(a, showClass=True): """Build an informative attrib label. TODO: - show unique values for ints too? not just strings? """ assert type(a) is hou.Attrib csh = { "global": "detail", "point": "pt", "vertex": "vtx" } had=hou.attribData td = { had.String:'s', had.Int:'i', had.Float:'f' } t = a.dataType() ts = a.size() ty = '?' if t in td: ty = td[t] if ts==3: ty='v' if ts==4: ty='p' ax=[] if showClass: c = re.search('[^.]+$', str(a.type()) ).group(0).lower() if c in csh: c = csh[c] ax.append(c) q = a.qualifier() if q and q!='': ax.append(str(q).lower()) s = len(a.strings()) if s>0: ax.append('strings:%d' % s) ax = ' (%s)' % ', '.join(ax) if len(ax) else '' R = '%s@ %s%s' % (ty, a.name(), ax, ) return R def buildAttribMenu( kwargs, # regular hou kwargs attribClass, # string or tuple inputGeo=None, # either a hou.Geometry or None means function will try its best filter=None, # filter function, taking a hou.Attrib object showClass=None, # None, True or False, to override default decision # if attribute class should be shown ): """Build an attribute popup menu based on various criteria. """ assert type(kwargs) is dict, "expected a valid kwargs dict" assert type(attribClass) in (str, tuple, list, ), "invalid attribClass argument" # auto-detect geometry input if necessary # if not inputGeo and kwargs and kwargs.has_key("node"): i = kwargs["node"].inputs() if len(i): inputGeo = i[0].geometry() # process attribClass input # if type(attribClass) is str: # support plain strings like "point primitive" attribClass = tuple(attribClass.split()) if "all" in attribClass: attribClass = ("point", "primitive", "vertex", "detail", ) if "comp" in attribClass or "component" in attribClass: attribClass = ("point", "primitive", "vertex", ) if type(attribClass) is not tuple: # this is intended for lists attribClass = tuple(attribClass) attribClass = tuple(sorted(attribClass)) # got inputGeo and attribClass (hopefully) if not inputGeo: raise hou.OperationFailed("Couldn't determine input geometry") # collect attributes, filter and sort them # get_funcs = {"point": "pointAttribs", "primitive": "primAttribs", "prim": "primAttribs", "vertex": "vertexAttribs", "detail": "globalAttribs", "global": "globalAttribs" } show_class = len(attribClass)>1 if showClass: show_class = showClass R = [] add_sep = False for c in attribClass: # get them attributes attribs = () if c in get_funcs: attribs = inputGeo.__getattribute__(get_funcs[c])() # filter them if required if filter: attribs = [ a for a in attribs if filter(a) ] # sort 'em alphabetically attribs = sorted(attribs, key = lambda a: a.name().lower()) # add menu separator between classes if add_sep and len(attribs)>0: R.append("_separator_") R.append("") for a in attribs: R.append(a.name()) R.append(buildAttribLabel(a, showClass=show_class)) add_sep = True return R def isNumeric(hou_attrib): """Convenience filter function for numeric attributes (floats, ints, vectors). """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return \ hou_attrib.dataType()!=hou.attribData.String def isNumber(hou_attrib): """Convenience filter function for numeric (int/float of size 1) attributes. """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return \ hou_attrib.dataType()!=hou.attribData.String and \ hou_attrib.size()==1 def isInt(hou_attrib): """Convenience filter function for integer attributes. """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return \ hou_attrib.dataType()==hou.attribData.Int and \ hou_attrib.size()==1 def isString(hou_attrib): """Convenience filter function for string attributes. """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return \ hou_attrib.dataType()==hou.attribData.String and \ hou_attrib.size()==1 def isIntOrString(hou_attrib): """Convenience filter function for int/string (usually partition or piece) attributes. """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return isInt(hou_attrib) or isString(hou_attrib) def isVector(hou_attrib): """Convenience filter function for numeric (int/float of size 3) attributes. """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return \ hou_attrib.dataType()!=hou.attribData.String and \ hou_attrib.size()==3 def isVector4(hou_attrib): """Convenience filter function for numeric (int/float of size 4) attributes. """ assert type(hou_attrib) is hou.Attrib, "invalid argument" return \ hou_attrib.dataType()!=hou.attribData.String and \ hou_attrib.size()==4 ```
{ "source": "josephslab/shared-code", "score": 3 }
#### File: shared-code/dnds_NeiGojoboriMethod/neiGojobori_dnds.py ```python from Bio import SeqIO from Bio.Seq import MutableSeq from Bio.Seq import Seq import sys import numpy as np # input for overall script, just fasta file of codon-aligned sequences fastaInput = sys.argv[1] # DNA alphabet, could be changed but probably not alphabet = ["A", "T", "G", "C"] ### Determine expected number of nonsynonymous sites in a codon # input: codon # output: expected number of nonsynonymous sites for codon def nonsynonymousSites(codon): codon = MutableSeq(codon) first = codon[0] second = codon[1] third = codon[2] mutatedCodons = list() # Generate a list of codons mutated at first position alphabetMinusOne = [x for x in alphabet if x not in first] # copy codon sequence, need [:] to avoid changing both original and copy mutatedCodon = codon[:] for letter in alphabetMinusOne: mutatedCodon[0] = letter mutatedCodons.append(mutatedCodon[:]) #print(mutatedCodon) alphabetMinusOne = [x for x in alphabet if x not in second] mutatedCodon = codon[:] for letter in alphabetMinusOne: mutatedCodon[1] = letter mutatedCodons.append(mutatedCodon[:]) #print(mutatedCodon) alphabetMinusOne = [x for x in alphabet if x not in third] mutatedCodon = codon[:] for letter in alphabetMinusOne: mutatedCodon[2] = letter mutatedCodons.append(mutatedCodon[:]) #print(mutatedCodon) # Translate seq to identify nonsynonymous mutations. For every nonsynonymous mutation, add 1/3 to number of nonsynonymous sites n = 0 for mutatedCodon in mutatedCodons: if mutatedCodon.translate() != codon.translate(): n = n + (1/3) return(n) ### Count substitutions in a step-wise mutational pathway # input: list of codons from a mutational pathway # output: number of non-synonymous and synonymous differences in pathway def countSubs(pathway): aaList = [x.translate() for x in pathway] nd = 0 sd = 0 for i in range(len(aaList) - 1): if aaList[i] != aaList[i+1]: nd = nd + 1 else: sd = sd + 1 return([nd, sd]) ### Determine distance between reference and sample codon # input: two codons of same length # output: distance between two codons (i.e. number of pairwise differences) def codonDistance(codon1, codon2): # make sequences mutable codon1 = MutableSeq(codon1) codon2 = MutableSeq(codon2) # vectors to store outputs distance = 0 nd = 0 sd = 0 mismatchPositions = list() # mismatches between codons #calculate differences between two codons for i in range(len(codon1)): letter1 = codon1[i] letter2 = codon2[i] if letter1 != letter2: distance = distance + 1 mismatchPositions.append(i) # If the codons are identical, then there are no differences if distance == 0: return([nd, sd]) # If codons differ by one basepair, their is either one synonymous or nonsynonymous site if distance == 1: if codon1.translate() == codon2.translate(): sd = sd + 1 return([nd, sd]) else: nd = nd + 1 return([nd, sd]) # If codons differ by two basepairs, there are two possible step-wise mutational pathways if distance == 2: # construct pathway one pathway = list() interCodon = codon1[:] # intermediate codon pathway.append(interCodon[:]) interCodon[mismatchPositions[0]] = codon2[mismatchPositions[0]] pathway.append(interCodon[:]) interCodon[mismatchPositions[1]] = codon2[mismatchPositions[1]] pathway.append(interCodon[:]) pathway1Count = countSubs(pathway) # count subs #print(pathway) # construct pathway two pathway = list() interCodon = codon1[:] pathway.append(interCodon[:]) interCodon[mismatchPositions[1]] = codon2[mismatchPositions[1]] pathway.append(interCodon[:]) interCodon[mismatchPositions[0]] = codon2[mismatchPositions[0]] pathway.append(interCodon[:]) pathway2Count = countSubs(pathway) # count substitutions #print(pathway) # assume pathways equally probable, so average result sum_list = [(a + b)/2 for a, b in zip(pathway1Count, pathway2Count)] return(sum_list) if distance == 3: mutPos = [[0,1,2],[0,2,1],[1,2,0],[1,0,2],[2,1,0],[2,0,1]] subCounts = list() # output counts of substitutions per pathway for i in mutPos: pathway = list() interCodon = codon1[:] # intermediate codon pathway.append(interCodon[:]) for j in i: interCodon[j] = codon2[j] pathway.append(interCodon[:]) subCounts.append(countSubs(pathway)) # count subs #print(pathway) #print(countSubs(pathway)) #print(subCounts) #print(list(np.sum(subCounts, axis=0)/6)) #sum_list = [sum(x) for x in zip(*subCounts)] # assume pathways are equally probable, so average result return(list(np.sum(subCounts, axis=0)/6)) ### APPLY FUNCTIONS ### # Load sequences records = list(SeqIO.parse(fastaInput, "fasta")) # Number of sequences recNum = len(records) # print header of output print("\t".join(["reference", "sample", "N", "S", "Nd", "Sd", "pN", "pS", "dN", "dS", "dNdS"])) # Loop over all pairs of sequences for j in range((recNum - 1)): for k in range(j+1, recNum): refRecord = records[j] samRecord = records[k] refSeq = refRecord.seq samSeq = samRecord.seq samName = samRecord.name refName = refRecord.name # count number of codons in sequence codonCount = len(refSeq)/3 # counts of nonsynonymous sites N = list() # loop over codons in reference sequence for i in range(int(codonCount)): codonRefSeq = refSeq[i*3:i*3+3] N.append(nonsynonymousSites(codonRefSeq)) # sum over nonsynonymous sites of individual codons to get total N = sum(N) # calculate number of synonymous sites: total sites - nonsynonymous sites S = 3*codonCount - N # calculate number of differences between sequence pair NdSd = list() for i in range(int(codonCount)): codonRefSeq = refSeq[i*3:i*3+3] codonSamSeq = samSeq[i*3:i*3+3] NdSd.append(codonDistance(codonRefSeq, codonSamSeq)) # Sum differences across codons to get total differences NdSd = np.sum(NdSd, axis=0) Nd = NdSd[0] Sd = NdSd[1] # Calculate proportion of differences pN = Nd/N pS = Sd/S # Calculate substitution rates dN = (-3/4)*np.log(1-(4/3)*pN) dS = (-3/4)*np.log(1-(4/3)*pS) # output final result print("\t".join([refName, samName, str(N), str(S), str(Nd), str(Sd), str(pN), str(pS), str(dN), str(dS), str(dN/dS)])) # Test countSubs function #print(countSubs([Seq("CCG"), Seq("CTG"), Seq("CTA")])) #print(countSubs([Seq("CCG"), Seq("CCA"), Seq("CTA")])) #print(countSubs([Seq("AAA"), Seq("TAA"), Seq("TTA"), Seq("TTG")])) # Test codonDistance #print(codonDistance(Seq("AAA"), Seq("AAA"))) # no difference #print(codonDistance(Seq("AAA"), Seq("TAA"))) # one nonsynonymous difference #print(codonDistance(Seq("AAA"), Seq("AAG"))) # one synonymous difference #print(codonDistance(Seq("TTT"), Seq("GTA"))) # two differences #print(codonDistance(Seq("AAA"), Seq("TTG"))) # three differences ```
{ "source": "josephsmann/UnsupervisedDeepLearning-Pytorch", "score": 3 }
#### File: test/.ipynb_checkpoints/helperFunctions-checkpoint.py ```python import sys # Check if using python 2 or 3 if sys.version_info.major == 2: import cPickle as pickle else: import pickle def get_experiment_data(exp_num): ''' This function loads a precomputed file: 'Experiment_data.pkl' that contains the subject that will be used for training/testing purposes. We have data for 10 experiments. The data in the pkl contains 70% of the data for trainig purposes and the remaining 30% for testing purposes. The data was divided in a stratified way --i.e. the proportion of positive samples is the same in both, training and test set. Inputs: - exp_num: it is a number between 0 - 9 indicating the experiment ID Outputs: - train_info: A matix of dimensions 1254 x 5. The first column contains a string with the subject_ID. The rest of the columns are: label, age, gender and TIV - test_info: Similar to train_info, but for testing purposes. The size of this matrix is 538 x 5 Example: train_info, test_info = get_experiment_data(0) print(train_info[0, :]) ['PAC2018_0592' 2 51 2 1658.0] print(test_info[0, :]) ['PAC2018_1807' 1 27 2 1620.0] ''' # Load the pickle files with the data to use as train and test sets in a given experiment matrices = pickle.load(open('Experiment_data.pkl', 'rb')) # Extract the train and test matrices train_matrices = matrices[0] test_matrices = matrices[1] train_info = train_matrices[exp_num] test_info = test_matrices[exp_num] return train_info, test_info ```
{ "source": "josephsnyder/CastXML-python-distributions", "score": 2 }
#### File: CastXML-python-distributions/tests/test_distribution.py ```python import os import pytest from path import Path DIST_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '../dist')) def _check_castxml_install(virtualenv, tmpdir): expected_version = "0.3.4" for executable_name in ["castxml"]: output = virtualenv.run( "%s --version" % executable_name, capture=True).splitlines()[0] assert output == "%s version %s" % (executable_name, expected_version) @pytest.mark.skipif(not Path(DIST_DIR).exists(), reason="dist directory does not exist") def test_wheel(virtualenv, tmpdir): wheels = Path(DIST_DIR).files(match="*.whl") if not wheels: pytest.skip("no wheel available") assert len(wheels) == 1 print(wheels) virtualenv.run("pip install %s" % wheels[0]) _check_castxml_install(virtualenv, tmpdir) ```
{ "source": "josephsnyder/cppwg", "score": 3 }
#### File: cppwg/input/info_helper.py ```python import os class CppInfoHelper(object): """ This attempts to automatically fill in some class info based on simple analysis of the source tree. """ def __init__(self, module_info): self.module_info = module_info self.class_dict = {} self.setup_class_dict() def setup_class_dict(self): # For convenience collect class info in a dict keyed by name for eachClassInfo in self.module_info.class_info: self.class_dict[eachClassInfo.name] = eachClassInfo def expand_templates(self, feature_info, feature_type): template_substitutions = feature_info.hierarchy_attribute_gather('template_substitutions') if len(template_substitutions) == 0: return # Skip any features with pre-defined template args no_template = feature_info.template_args is None source_path = feature_info.source_file_full_path if not (no_template and source_path is not None): return if not os.path.exists(source_path): return f = open(source_path) lines = (line.rstrip() for line in f) # Remove blank lines lines = list(line for line in lines if line) for idx, eachLine in enumerate(lines): stripped_line = eachLine.replace(" ", "") if idx+1 < len(lines): stripped_next = lines[idx+1].replace(" ", "") else: continue for idx, eachSub in enumerate(template_substitutions): template_args = eachSub['replacement'] template_string = eachSub['signature'] cleaned_string = template_string.replace(" ", "") if cleaned_string in stripped_line: feature_string = feature_type + feature_info.name feature_decl_next = feature_string + ":" in stripped_next feature_decl_whole = feature_string == stripped_next if feature_decl_next or feature_decl_whole: feature_info.template_args = template_args break f.close() def do_custom_template_substitution(self, feature_info): pass ``` #### File: cppwg/writers/header_collection_writer.py ```python import os import ntpath class CppHeaderCollectionWriter(): """ This class manages generation of the header collection file for parsing by CastXML """ def __init__(self, package_info, wrapper_root): self.wrapper_root = wrapper_root self.package_info = package_info self.header_file_name = "wrapper_header_collection.hpp" self.hpp_string = "" self.class_dict = {} self.free_func_dict = {} for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: self.class_dict[eachClassInfo.name] = eachClassInfo for eachFuncInfo in eachModule.free_function_info: self.free_func_dict[eachFuncInfo.name] = eachFuncInfo def add_custom_header_code(self): """ Any custom header code goes here """ pass def write_file(self): """ The actual write """ if not os.path.exists(self.wrapper_root + "/"): os.makedirs(self.wrapper_root + "/") file_path = self.wrapper_root + "/" + self.header_file_name hpp_file = open(file_path, 'w') hpp_file.write(self.hpp_string) hpp_file.close() def should_include_all(self): """ Return whether all source files in the module source locs should be included """ for eachModule in self.package_info.module_info: if eachModule.use_all_classes or eachModule.use_all_free_functions: return True return False def write(self): """ Main method for generating the header file output string """ hpp_header_dict = {'package_name': self.package_info.name} hpp_header_template = """\ #ifndef {package_name}_HEADERS_HPP_ #define {package_name}_HEADERS_HPP_ // Includes """ self.hpp_string = hpp_header_template.format(**hpp_header_dict) # Now our own includes if self.should_include_all(): for eachFile in self.package_info.source_hpp_files: include_name = ntpath.basename(eachFile) self.hpp_string += '#include "' + include_name + '"\n' else: for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: if eachClassInfo.source_file is not None: self.hpp_string += '#include "' + eachClassInfo.source_file + '"\n' elif eachClassInfo.source_file_full_path is not None: include_name = ntpath.basename(eachClassInfo.source_file_full_path) self.hpp_string += '#include "' + include_name + '"\n' for eachFuncInfo in eachModule.free_function_info: if eachFuncInfo.source_file_full_path is not None: include_name = ntpath.basename(eachFuncInfo.source_file_full_path) self.hpp_string += '#include "' + include_name + '"\n' # Add the template instantiations self.hpp_string += "\n// Instantiate Template Classes \n" for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: full_names = eachClassInfo.get_full_names() if len(full_names) == 1: continue prefix = "template class " for eachTemplateName in full_names: self.hpp_string += prefix + eachTemplateName.replace(" ","") + ";\n" # Add typdefs for nice naming self.hpp_string += "\n// Typedef for nicer naming\n" self.hpp_string += "namespace cppwg{ \n" for eachModule in self.package_info.module_info: for eachClassInfo in eachModule.class_info: full_names = eachClassInfo.get_full_names() if len(full_names) == 1: continue short_names = eachClassInfo.get_short_names() for idx, eachTemplateName in enumerate(full_names): short_name = short_names[idx] typdef_prefix = "typedef " + eachTemplateName.replace(" ","") + " " self.hpp_string += typdef_prefix + short_name + ";\n" self.hpp_string += "}\n" self.add_custom_header_code() self.hpp_string += "\n#endif // {}_HEADERS_HPP_\n".format(self.package_info.name) self.write_file() ```
{ "source": "josephsnyder/gitlab-runner-auth", "score": 2 }
#### File: gitlab-runner-auth/tests/test_generate_config.py ```python import os import re import socket import toml import json import stat import pytest from unittest.mock import MagicMock, patch from urllib.parse import parse_qs from httmock import HTTMock, urlmatch, response from pytest import fixture from pathlib import Path from tempfile import TemporaryDirectory from gitlab_runner_config import ( Runner, Executor, GitLabClientManager, SyncException, identifying_tags, generate_tags, owner_only_permissions, load_executors, create_runner, generate_runner_config, ) base_path = os.getcwd() @fixture def instance(): return "main" @fixture def top_level_call_patchers(): create_runner_patcher = patch("gitlab_runner_config.create_runner") client_manager_patcher = patch("gitlab_runner_config.GitLabClientManager") runner = MagicMock() runner.to_dict.return_value = {} create_runner_mock = create_runner_patcher.start() create_runner_mock.return_value = runner yield [create_runner_mock, client_manager_patcher.start()] create_runner_mock.stop() client_manager_patcher.stop() @fixture def established_prefix(instance, tmp_path): prefix = tmp_path prefix.chmod(0o700) instance_config_template_file = prefix / "config.template.{}.toml".format(instance) instance_config_template_file.write_text( """ [client_configs] foo = "bar" """.strip() ) executor_dir = prefix / "main" executor_dir.mkdir() executor_dir.chmod(0o700) return (prefix, instance) @fixture def executor_configs(): configs = [] url_tmpl = "http://localhost/{}" executor_tmpl = "{}-executor" for desc in ["foo", "bar"]: configs.append( { "description": "runner-{}".format(desc), "url": url_tmpl.format(desc), "executor": executor_tmpl.format(desc), } ) return configs @fixture def client_configs(): configs = [] url_tmpl = "http://localhost/{}" for server in ["foo", "bar"]: configs.append( { "registration_token": server, "url": url_tmpl.format(server), "personal_access_token": server, } ) return configs @fixture def runner_config(client_configs): return {"name": "foo", "client_configs": client_configs} @fixture def executor_tomls_dir(executor_configs): td = TemporaryDirectory() for config in executor_configs: with open(td.name / Path(config["description"] + ".toml"), "w") as f: toml.dump(config, f) yield Path(td.name) td.cleanup() @fixture def executor(instance, executor_configs): yield Executor(instance, executor_configs) @fixture def url_matchers(): runners = [{"id": 1}, {"id": 2}] @urlmatch(path=r".*\/api\/v4\/runners/all$", method="get") def runner_list_resp(url, request): query = parse_qs(url.query) # All calls by this utility must be qualified by tags assert "tag_list" in query tag_list = query["tag_list"].pop().split(",") assert len(tag_list) assert len(tag_list) == len(set(tag_list)) headers = {"content-type": "application/json"} content = json.dumps(runners) return response(200, content, headers, None, 5, request) @urlmatch(path=r".*\/api\/v4\/runners\/\d+$", method="get") def runner_detail_resp(url, request): runner_id = url.path.split("/")[-1] headers = {"content-type": "application/json"} content = json.dumps( { "id": runner_id, "token": "token", "description": "runner-{}".format(runner_id), } ) return response(200, content, headers, None, 5, request) @urlmatch(path=r".*\/api\/v4\/runners\/\d+$", method="delete") def runner_delete_resp(url, request): runner_id = url.path.split("/")[-1] headers = {"content-type": "application/json"} content = json.dumps( { "id": runner_id, "token": "token", "description": "runner-{}".format(runner_id), } ) return response(204, content, headers, None, 5, request) @urlmatch(path=r".*\/api\/v4\/runners$", method="post") def runner_registration_resp(url, request): # All registered runners must be qualified by tags body = json.loads(request.body.decode()) assert "tag_list" in body tag_list = body["tag_list"].split(",") assert len(tag_list) assert len(tag_list) == len(set(tag_list)) headers = {"content-type": "application/json"} # TODO id from request content = json.dumps( { "id": 3, "token": "token", "description": "runner-{}".format(3), } ) return response(201, content, headers, None, 5, request) return ( runner_list_resp, runner_detail_resp, runner_delete_resp, runner_registration_resp, ) def test_identifying_tags(instance): hostname = socket.gethostname() trimmed_hostname = re.sub(r"\d", "", hostname) with pytest.raises(ValueError, match="instance name cannot be"): identifying_tags("managed") with pytest.raises(ValueError, match="instance name cannot be"): identifying_tags(hostname) with pytest.raises(ValueError, match="instance name cannot be"): identifying_tags(trimmed_hostname) def test_generate_tags(instance): tags = generate_tags(instance) hostname = socket.gethostname() assert instance in tags assert hostname in tags # test finding a resource manager with TemporaryDirectory() as td: def get_tags(tag_schema=None): schema = None if tag_schema: with open(tag_schema) as fh: schema = json.load(fh) tags = generate_tags(instance, executor_type="batch", tag_schema=schema) return tags # test schema runs without error get_tags(tag_schema="tag_schema.json") def test_generate_tags_env(instance): env_name = "TEST_TAG" missing_env_name = "TEST_MISSING_TAG" env_val = "tag" os.environ[env_name] = env_val tags = generate_tags(instance, env=[env_name, missing_env_name]) assert env_val in tags assert missing_env_name not in tags def test_owner_only_permissions(): with TemporaryDirectory() as td: d = Path(td) os.chmod(d, 0o700) assert owner_only_permissions(d) os.chmod(d, 0o750) assert not owner_only_permissions(d) os.chmod(d, 0o705) assert not owner_only_permissions(d) os.chmod(d, 0o755) assert not owner_only_permissions(d) class TestExecutor: def test_normalize(self, executor): executor.normalize() assert all(c.get("description") for c in executor.configs) assert all(c.get("tags") for c in executor.configs) def test_missing_token(self, executor): url = executor.configs[0]["url"] assert len(executor.missing_token(url)) == 1 for e in executor.missing_token(url): e["token"] = "token" assert len(executor.missing_token(url)) == 0 def test_missing_required_config(self, executor): assert len(executor.missing_required_config()) == len(executor.configs) def test_load_executors(self, instance, executor_configs, executor_tomls_dir): executor = load_executors(instance, executor_tomls_dir) assert len(executor.configs) == len(executor_configs) def test_load_executors_no_files(self, instance, executor_tomls_dir): with TemporaryDirectory() as td: executor = load_executors(instance, Path(td)) assert len(executor.configs) == 0 def test_load_executors_extra_file(self, executor_configs, executor_tomls_dir): with open(executor_tomls_dir / "bat", "w") as fh: fh.write("bat") # loaded executors should only consider .toml files executor = load_executors(instance, executor_tomls_dir) assert len(executor.configs) == len(executor_configs) class TestRunner: def test_create(self, instance, runner_config, executor_tomls_dir): runner = create_runner(runner_config, instance, executor_tomls_dir) assert runner_config.get("client_configs") is not None assert runner.config is not None assert runner.executor is not None def test_empty(self, instance, runner_config): runner = Runner(runner_config, Executor(instance, [])) assert runner.empty() def test_to_dict(self, instance, runner_config, executor_tomls_dir): runner = create_runner(runner_config, instance, executor_tomls_dir) runner_dict = runner.to_dict() assert type(runner_dict.get("runners")) == list assert toml.dumps(runner_dict) class TestGitLabClientManager: def setup_method(self, method): self.runner = MagicMock() def test_init(self, instance, client_configs): client_manager = GitLabClientManager(instance, client_configs) assert client_manager.clients assert client_manager.registration_tokens def test_sync_runner_state(self, instance, client_configs, url_matchers): client_manager = GitLabClientManager(instance, client_configs) with HTTMock(*url_matchers): client_manager.sync_runner_state(self.runner) self.runner.executor.add_token.assert_called() def test_sync_runner_state_delete(self, instance, client_configs, url_matchers): client_manager = GitLabClientManager(instance, client_configs) self.runner.executor.add_token.side_effect = KeyError("Missing key!") with HTTMock(*url_matchers): client_manager.sync_runner_state(self.runner) self.runner.executor.add_token.assert_called() def test_sync_runner_state_missing(self, instance, client_configs, url_matchers): client_manager = GitLabClientManager(instance, client_configs) self.runner.executor.missing_token.return_value = [ {"description": "bat", "tags": ["bat", "bam"]} ] with HTTMock(*url_matchers): client_manager.sync_runner_state(self.runner) self.runner.executor.missing_token.assert_called() for config in client_configs: self.runner.executor.missing_token.assert_any_call(config["url"]) self.runner.executor.add_token.assert_called() class TestGitLabRunnerConfig: def test_generate_runner_config(self, established_prefix, top_level_call_patchers): generate_runner_config(*established_prefix) def test_generate_runner_config_invalid_prefix_perms( self, established_prefix, top_level_call_patchers ): prefix, instance = established_prefix prefix.chmod(0o777) with pytest.raises(SystemExit): generate_runner_config(prefix, instance) def test_generate_runner_config_invalid_executor_perms( self, established_prefix, top_level_call_patchers ): prefix, instance = established_prefix executor_dir = prefix / instance executor_dir.chmod(0o777) with pytest.raises(SystemExit): generate_runner_config(prefix, instance) def test_generate_runner_config_missing( self, established_prefix, top_level_call_patchers ): prefix, instance = established_prefix instance_config_template_file = prefix / "config.template.{}.toml".format( instance ) instance_config_template_file.unlink() with pytest.raises(SystemExit): generate_runner_config(prefix, instance) def test_generate_runner_sync_error( self, established_prefix, top_level_call_patchers ): manager = MagicMock() manager.sync_runner_state.side_effect = SyncException("oh no!") _, client_manager_patcher = top_level_call_patchers client_manager_patcher.return_value = manager with pytest.raises(SystemExit): generate_runner_config(*established_prefix) ```
{ "source": "josephsnyder/spack-infrastructure", "score": 2 }
#### File: images/gh-gl-sync/test_SpackCIBridge.py ```python import os from unittest.mock import create_autospec, patch, Mock import SpackCIBridge class AttrDict(dict): def __init__(self, iterable, **kwargs): super(AttrDict, self).__init__(iterable, **kwargs) for key, value in iterable.items(): if isinstance(value, dict): self.__dict__[key] = AttrDict(value) else: self.__dict__[key] = value def test_list_github_prs(capfd): """Test the list_github_prs method.""" github_pr_response = [ AttrDict({ "number": 1, "merge_commit_sha": "aaaaaaaa", "head": { "ref": "improve_docs", "sha": "shafoo" }, "base": { "sha": "shabar" } }), AttrDict({ "number": 2, "merge_commit_sha": "bbbbbbbb", "head": { "ref": "fix_test", "sha": "shagah" }, "base": { "sha": "shafaz" } }), ] gh_repo = Mock() gh_repo.get_pulls.return_value = github_pr_response bridge = SpackCIBridge.SpackCIBridge() bridge.py_gh_repo = gh_repo import subprocess actual_run_method = subprocess.run mock_run_return = Mock() mock_run_return.stdout = b"Merge shagah into ccccccc" subprocess.run = create_autospec(subprocess.run, return_value=mock_run_return) retval = bridge.list_github_prs() subprocess.run = actual_run_method github_prs = retval[0] assert github_prs["pr_strings"] == ["pr1_improve_docs", "pr2_fix_test"] assert github_prs["merge_commit_shas"] == ["aaaaaaaa", "bbbbbbbb"] assert gh_repo.get_pulls.call_count == 1 out, err = capfd.readouterr() expected = """Skip pushing pr2_fix_test because GitLab already has HEAD shagah All Open PRs: pr1_improve_docs pr2_fix_test Filtered Open PRs: pr1_improve_docs """ assert out == expected def test_list_github_protected_branches(capfd): """Test the list_github_protected_branches method and verify that we do not push main_branch commits when it already has a pipeline running.""" github_branches_response = [ AttrDict({ "name": "alpha", "protected": True }), AttrDict({ "name": "develop", "protected": True }), AttrDict({ "name": "feature", "protected": False }), AttrDict({ "name": "main", "protected": True }), AttrDict({ "name": "release", "protected": True }), AttrDict({ "name": "wip", "protected": False }), ] gh_repo = Mock() gh_repo.get_branches.return_value = github_branches_response bridge = SpackCIBridge.SpackCIBridge(main_branch="develop") bridge.currently_running_sha = "aaaaaaaa" bridge.py_gh_repo = gh_repo protected_branches = bridge.list_github_protected_branches() assert protected_branches == ["alpha", "main", "release"] expected = "Skip pushing develop because it already has a pipeline running (aaaaaaaa)" out, err = capfd.readouterr() assert expected in out def test_get_synced_prs(capfd): """Test the get_synced_prs method.""" bridge = SpackCIBridge.SpackCIBridge() bridge.get_gitlab_pr_branches = lambda *args: None bridge.gitlab_pr_output = b""" gitlab/github/pr1_example gitlab/github/pr2_another_try """ assert bridge.get_synced_prs() == ["pr1_example", "pr2_another_try"] out, err = capfd.readouterr() assert out == "Synced PRs:\n pr1_example\n pr2_another_try\n" def test_get_prs_to_delete(capfd): """Test the get_prs_to_delete method.""" open_prs = ["pr3_try_this", "pr4_new_stuff"] synced_prs = ["pr1_first_try", "pr2_different_approach", "pr3_try_this"] bridge = SpackCIBridge.SpackCIBridge() closed_refspecs = bridge.get_prs_to_delete(open_prs, synced_prs) assert closed_refspecs == [":github/pr1_first_try", ":github/pr2_different_approach"] out, err = capfd.readouterr() assert out == "Synced Closed PRs:\n pr1_first_try\n pr2_different_approach\n" def test_get_open_refspecs(): """Test the get_open_refspecs and update_refspecs_for_protected_branches methods.""" open_prs = { "pr_strings": ["pr1_this", "pr2_that"], "merge_commit_shas": ["aaaaaaaa", "bbbbbbbb"], "base_shas": ["shafoo", "shabar"], "head_shas": ["shabaz", "shagah"], "backlogged": [False, False] } bridge = SpackCIBridge.SpackCIBridge() open_refspecs, fetch_refspecs = bridge.get_open_refspecs(open_prs) assert open_refspecs == [ "github/pr1_this:github/pr1_this", "github/pr2_that:github/pr2_that" ] assert fetch_refspecs == [ "+aaaaaaaa:refs/remotes/github/pr1_this", "+bbbbbbbb:refs/remotes/github/pr2_that" ] protected_branches = ["develop", "master"] bridge.update_refspecs_for_protected_branches(protected_branches, open_refspecs, fetch_refspecs) assert open_refspecs == [ "github/pr1_this:github/pr1_this", "github/pr2_that:github/pr2_that", "github/develop:github/develop", "github/master:github/master", ] assert fetch_refspecs == [ "+aaaaaaaa:refs/remotes/github/pr1_this", "+bbbbbbbb:refs/remotes/github/pr2_that", "+refs/heads/develop:refs/remotes/github/develop", "+refs/heads/master:refs/remotes/github/master" ] def test_ssh_agent(): """Test starting & stopping ssh-agent.""" def check_pid(pid): """Local function to check if a PID is running or not.""" try: os.kill(pid, 0) except OSError: return False else: return True # Read in our private key. # Don't worry, this key was just generated for testing. # It's not actually used for anything. key_file = open("test_key.base64", "r") ssh_key_base64 = key_file.read() key_file.close() # Start ssh-agent. bridge = SpackCIBridge.SpackCIBridge() bridge.setup_ssh(ssh_key_base64) assert "SSH_AGENT_PID" in os.environ pid = int(os.environ["SSH_AGENT_PID"]) assert check_pid(pid) # Run our cleanup function to kill the ssh-agent. SpackCIBridge.SpackCIBridge.cleanup() # Make sure it's not running any more. # The loop/sleep is to give the process a little time to shut down. import time for i in range(10): if check_pid(pid): time.sleep(0.01) assert not check_pid(pid) # Prevent atexit from trying to kill it again. del os.environ["SSH_AGENT_PID"] def test_get_pipeline_api_template(): """Test that pipeline_api_template get constructed properly.""" bridge = SpackCIBridge.SpackCIBridge(gitlab_host="https://gitlab.spack.io", gitlab_project="zack/my_test_proj") template = bridge.pipeline_api_template assert template[0:84] == "https://gitlab.spack.io/api/v4/projects/zack%2Fmy_test_proj/pipelines?updated_after=" assert template.endswith("&ref={1}") def test_dedupe_pipelines(): """Test the dedupe_pipelines method.""" input = [ { "id": 1, "sha": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "ref": "github/pr1_readme", "status": "failed", "created_at": "2020-08-26T17:26:30.216Z", "updated_at": "2020-08-26T17:26:36.807Z", "web_url": "https://gitlab.spack.io/zack/my_test_proj/pipelines/1" }, { "id": 2, "sha": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "ref": "github/pr1_readme", "status": "passed", "created_at": "2020-08-27T17:27:30.216Z", "updated_at": "2020-08-27T17:27:36.807Z", "web_url": "https://gitlab.spack.io/zack/my_test_proj/pipelines/2" }, { "id": 3, "sha": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "ref": "github/pr2_todo", "status": "failed", "created_at": "2020-08-26T17:26:30.216Z", "updated_at": "2020-08-26T17:26:36.807Z", "web_url": "https://gitlab.spack.io/zack/my_test_proj/pipelines/3" }, ] expected = { "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa": { "id": 2, "sha": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "ref": "github/pr1_readme", "status": "passed", "created_at": "2020-08-27T17:27:30.216Z", "updated_at": "2020-08-27T17:27:36.807Z", "web_url": "https://gitlab.spack.io/zack/my_test_proj/pipelines/2" }, "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb": { "id": 3, "sha": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "ref": "github/pr2_todo", "status": "failed", "created_at": "2020-08-26T17:26:30.216Z", "updated_at": "2020-08-26T17:26:36.807Z", "web_url": "https://gitlab.spack.io/zack/my_test_proj/pipelines/3" }, } bridge = SpackCIBridge.SpackCIBridge() assert bridge.dedupe_pipelines(input) == expected def test_make_status_for_pipeline(): """Test the make_status_for_pipeline method.""" bridge = SpackCIBridge.SpackCIBridge() pipeline = {"web_url": "foo"} status = bridge.make_status_for_pipeline(pipeline) assert status == {} pipeline["status"] = "canceled" status = bridge.make_status_for_pipeline(pipeline) assert status == {} test_cases = [ { "input": "created", "state": "pending", "description": "Pipeline has been created", }, { "input": "waiting_for_resource", "state": "pending", "description": "Pipeline is waiting for resources", }, { "input": "preparing", "state": "pending", "description": "Pipeline is preparing", }, { "input": "pending", "state": "pending", "description": "Pipeline is pending", }, { "input": "running", "state": "pending", "description": "Pipeline is running", }, { "input": "manual", "state": "pending", "description": "Pipeline is running manually", }, { "input": "scheduled", "state": "pending", "description": "Pipeline is scheduled", }, { "input": "failed", "state": "error", "description": "Pipeline failed", }, { "input": "skipped", "state": "failure", "description": "Pipeline was skipped", }, { "input": "success", "state": "success", "description": "Pipeline succeeded", }, ] for test_case in test_cases: pipeline["status"] = test_case["input"] status = bridge.make_status_for_pipeline(pipeline) assert status["state"] == test_case["state"] assert status["description"] == test_case["description"] class FakeResponse: status: int data: bytes def __init__(self, *, data: bytes): self.data = data def read(self): self.status = 201 if self.data is not None else 404 return self.data def close(self): pass def test_post_pipeline_status(capfd): """Test the post_pipeline_status method.""" open_prs = { "pr_strings": ["pr1_readme"], "merge_commit_shas": ["aaaaaaaa"], "base_shas": ["shafoo"], "head_shas": ["shabaz"], "backlogged": [False] } gh_commit = Mock() gh_commit.create_status.return_value = AttrDict({"state": "error"}) gh_repo = Mock() gh_repo.get_commit.return_value = gh_commit bridge = SpackCIBridge.SpackCIBridge(gitlab_host="https://gitlab.spack.io", gitlab_project="zack/my_test_proj", github_project="zack/my_test_proj") bridge.py_gh_repo = gh_repo os.environ["GITHUB_TOKEN"] = "my_github_token" mock_data = b'''[ { "id": 1, "sha": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "ref": "github/pr1_readme", "status": "failed", "created_at": "2020-08-26T17:26:30.216Z", "updated_at": "2020-08-26T17:26:36.807Z", "web_url": "https://gitlab.spack.io/zack/my_test_proj/pipelines/1" } ]''' with patch('urllib.request.urlopen', return_value=FakeResponse(data=mock_data)) as mock_urlopen: bridge.post_pipeline_status(open_prs, []) assert mock_urlopen.call_count == 2 assert gh_repo.get_commit.call_count == 1 assert gh_commit.create_status.call_count == 1 out, err = capfd.readouterr() expected_content = " pr1_readme -> aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n" assert expected_content in out del os.environ["GITHUB_TOKEN"] def test_pipeline_status_backlogged_by_main_branch(capfd): """Test the post_pipeline_status method for a PR that is backlogged because its base is being tested.""" open_prs = { "pr_strings": ["pr1_readme"], "merge_commit_shas": ["aaaaaaaa"], "base_shas": ["shafoo"], "head_shas": ["shabaz"], "backlogged": ["base"] } gh_commit = Mock() gh_commit.create_status.return_value = AttrDict({"state": "pending"}) gh_repo = Mock() gh_repo.get_commit.return_value = gh_commit bridge = SpackCIBridge.SpackCIBridge(gitlab_host="https://gitlab.spack.io", gitlab_project="zack/my_test_proj", github_project="zack/my_test_proj", main_branch="develop") bridge.py_gh_repo = gh_repo os.environ["GITHUB_TOKEN"] = "my_github_token" currently_running_url = "https://gitlab.spack.io/zack/my_test_proj/pipelines/4" bridge.currently_running_url = currently_running_url expected_desc = "waiting for base develop commit pipeline to succeed" bridge.post_pipeline_status(open_prs, []) assert gh_commit.create_status.call_count == 1 gh_commit.create_status.assert_called_with( state="pending", context="ci/gitlab-ci", description=expected_desc, target_url=currently_running_url ) out, err = capfd.readouterr() expected_content = """Posting backlogged status to the following: pr1_readme -> shabaz""" assert expected_content in out del os.environ["GITHUB_TOKEN"] def test_pipeline_status_backlogged_by_checks(capfd): """Test the post_pipeline_status method for a PR that is backlogged because of a required check.""" """Helper function to parameterize the test""" def verify_backlogged_by_checks(capfd, checks_return_value): github_pr_response = [ AttrDict({ "number": 1, "merge_commit_sha": "aaaaaaaa", "head": { "ref": "improve_docs", "sha": "shafoo" }, "base": { "sha": "shabar" } }), ] gh_commit = Mock() gh_commit.get_check_runs.return_value = checks_return_value gh_commit.create_status.return_value = AttrDict({"state": "pending"}) gh_repo = Mock() gh_repo.get_pulls.return_value = github_pr_response gh_repo.get_commit.return_value = gh_commit bridge = SpackCIBridge.SpackCIBridge(gitlab_host="https://gitlab.spack.io", gitlab_project="zack/my_test_proj", github_project="zack/my_test_proj", prereq_checks=["style"]) bridge.py_gh_repo = gh_repo bridge.currently_running_sha = None import subprocess actual_run_method = subprocess.run mock_run_return = Mock() mock_run_return.stdout = b"Merge shagah into ccccccc" subprocess.run = create_autospec(subprocess.run, return_value=mock_run_return) all_open_prs, open_prs = bridge.list_github_prs() subprocess.run = actual_run_method os.environ["GITHUB_TOKEN"] = "<PASSWORD>" expected_desc = open_prs["backlogged"][0] assert expected_desc == "waiting for style check to succeed" bridge.post_pipeline_status(open_prs, []) assert gh_commit.create_status.call_count == 1 gh_commit.create_status.assert_called_with( state="pending", context="ci/gitlab-ci", description=expected_desc, target_url="", ) out, err = capfd.readouterr() expected_content = """Posting backlogged status to the following: pr1_improve_docs -> shafoo""" assert expected_content in out del os.environ["GITHUB_TOKEN"] # Verify backlogged status when the required check hasn't passed successfully. checks_return_value = [ AttrDict({ "name": "style", "status": "in_progress", "conclusion": None, }) ] verify_backlogged_by_checks(capfd, checks_return_value) # Verify backlogged status when the required check is missing from the API's response. checks_api_response = [] verify_backlogged_by_checks(capfd, checks_api_response) ```
{ "source": "josephsnyder/tech_journal", "score": 2 }
#### File: josephsnyder/tech_journal/setup.py ```python from setuptools import setup, Command, find_packages from subprocess import check_call import os class BuildUICommand(Command): description = 'Build the standalone front end and include it in the sdist' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): dest = os.path.join( os.path.abspath('girder_tech_journal'), 'external_web_client') install = ['yarn', 'install'] build = ['yarn', 'build'] copy = ['cp', '-r', 'dist', dest] commands = [install, build, copy] os.chdir(os.path.abspath('girder-tech-journal-gui')) for cmd in commands: check_call(cmd) with open('README.rst') as readme: long_description = readme.read() setup( name='girder-tech-journal', version='1.0.0', description='A Girder plugin for a Technical Journal', long_description=long_description, long_description_content_type='text/reStructuredText', url='https://github.com/girder/tech_journal', maintainer='Kitware, Inc.', maintainer_email='<EMAIL>', include_package_data=True, packages=find_packages(), install_requires=[ 'girder>=3', 'celery', 'girder-oauth', 'girder-worker[girder]', 'girder-worker-utils' ], entry_points={ 'girder.plugin': [ 'tech_journal = girder_tech_journal:TechJournalPlugin' ], 'girder_worker_plugins': [ 'tech_journal_tasks = girder_tech_journal.tasks:TechJournalTasks', ] }, cmdclass={ 'build_ui': BuildUICommand } ) ```
{ "source": "josephsnyder/VistA-1", "score": 2 }
#### File: Python/Pexpect/winpexpect.py ```python import os import sys import pywintypes import itertools import random import time import signal from Queue import Queue, Empty from threading import Thread, Lock from pexpect import spawn, ExceptionPexpect, EOF, TIMEOUT from subprocess import list2cmdline from msvcrt import open_osfhandle from win32api import (SetHandleInformation, GetCurrentProcess, OpenProcess, PostMessage, SendMessage, CloseHandle, GetCurrentThread, STD_INPUT_HANDLE) from win32pipe import CreateNamedPipe, ConnectNamedPipe from win32process import (STARTUPINFO, CreateProcess, CreateProcessAsUser, GetExitCodeProcess, TerminateProcess, ExitProcess, GetWindowThreadProcessId) from win32event import WaitForSingleObject, INFINITE from win32security import (LogonUser, OpenThreadToken, OpenProcessToken, GetTokenInformation, TokenUser, ACL_REVISION_DS, ConvertSidToStringSid, ConvertStringSidToSid, SECURITY_ATTRIBUTES, SECURITY_DESCRIPTOR, ACL, LookupAccountName) from win32file import CreateFile, ReadFile, WriteFile, INVALID_HANDLE_VALUE, FILE_SHARE_READ from win32console import (GetStdHandle, KEY_EVENT, ENABLE_WINDOW_INPUT, ENABLE_MOUSE_INPUT, ENABLE_ECHO_INPUT, ENABLE_LINE_INPUT, ENABLE_PROCESSED_INPUT, ENABLE_MOUSE_INPUT) from win32con import (HANDLE_FLAG_INHERIT, STARTF_USESTDHANDLES, STARTF_USESHOWWINDOW, CREATE_NEW_CONSOLE, SW_HIDE, PIPE_ACCESS_DUPLEX, WAIT_OBJECT_0, WAIT_TIMEOUT, LOGON32_PROVIDER_DEFAULT, LOGON32_LOGON_INTERACTIVE, TOKEN_ALL_ACCESS, GENERIC_READ, GENERIC_WRITE, OPEN_EXISTING, PROCESS_ALL_ACCESS, MAXIMUM_ALLOWED, LEFT_CTRL_PRESSED,RIGHT_CTRL_PRESSED, WM_CHAR, VK_RETURN, WM_KEYDOWN, WM_KEYUP) from win32gui import EnumWindows from winerror import (ERROR_PIPE_BUSY, ERROR_HANDLE_EOF, ERROR_BROKEN_PIPE, ERROR_ACCESS_DENIED) from pywintypes import error as WindowsError # Compatibility with Python < 2.6 try: from collections import namedtuple except ImportError: def namedtuple(name, fields): d = dict(zip(fields, [None]*len(fields))) return type(name, (object,), d) # Compatbility wiht Python 3 if sys.version_info[0] == 3: _WriteFile = WriteFile def WriteFile(handle, s): return _WriteFile(handle, s.encode('ascii')) _ReadFile = ReadFile def ReadFile(handle, size): err, data = _ReadFile(handle, size) return err, data.decode('ascii') def split_command_line(cmdline): """Split a command line into a command and its arguments according to the rules of the Microsoft C runtime.""" # http://msdn.microsoft.com/en-us/library/ms880421 s_free, s_in_quotes, s_in_escape = range(3) state = namedtuple('state', ('current', 'previous', 'escape_level', 'argument')) state.current = s_free state.previous = s_free state.argument = [] result = [] for c in itertools.chain(cmdline, ['EOI']): # Mark End of Input if state.current == s_free: if c == '"': state.current = s_in_quotes state.previous = s_free elif c == '\\': state.current = s_in_escape state.previous = s_free state.escape_count = 1 elif c in (' ', '\t', 'EOI'): if state.argument or state.previous != s_free: result.append(''.join(state.argument)) del state.argument[:] else: state.argument.append(c) elif state.current == s_in_quotes: if c == '"': state.current = s_free state.previous = s_in_quotes elif c == '\\': state.current = s_in_escape state.previous = s_in_quotes state.escape_count = 1 else: state.argument.append(c) elif state.current == s_in_escape: if c == '\\': state.escape_count += 1 elif c == '"': nbs, escaped_delim = divmod(state.escape_count, 2) state.argument.append(nbs * '\\') if escaped_delim: state.argument.append('"') state.current = state.previous else: if state.previous == s_in_quotes: state.current = s_free else: state.current = s_in_quotes state.previous = s_in_escape else: state.argument.append(state.escape_count * '\\') state.argument.append(c) state.current = state.previous state.previous = s_in_escape if state.current != s_free: raise ValueError, 'Illegal command line.' return result join_command_line = list2cmdline def which(command): path = os.environ.get('Path', '') path = path.split(os.pathsep) pathext = os.environ.get('Pathext', '.exe;.com;.bat;.cmd') pathext = pathext.split(os.pathsep) for dir in itertools.chain([''], path): for ext in itertools.chain([''], pathext): fname = os.path.join(dir, command) + ext if os.access(fname, os.X_OK): return fname def _read_header(handle, bufsize=4096): """INTERNAL: read a stub header from a handle.""" header = '' while '\n\n' not in header: err, data = ReadFile(handle, bufsize) header += data return header def _parse_header(header): """INTERNAL: pass the stub header format.""" parsed = {} lines = header.split('\n') for line in lines: if not line: break p1 = line.find('=') if p1 == -1: if line.startswith(' '): # Continuation if key is None: raise ValueError, 'Continuation on first line.' input[key] += '\n' + line[1:] else: raise ValueError, 'Expecting key=value format' key = line[:p1] parsed[key] = line[p1+1:] return parsed def _quote_header(s): """INTENAL: quote a string to be used in a stub header.""" return s.replace('\n', '\n ') def _get_current_sid(): """INTERNAL: get current SID.""" try: token = OpenThreadToken(GetCurrentThread(), MAXIMUM_ALLOWED, True) except WindowsError: token = OpenProcessToken(GetCurrentProcess(), MAXIMUM_ALLOWED) sid = GetTokenInformation(token, TokenUser)[0] return sid def _lookup_sid(domain, username): """INTERNAL: lookup the SID for a user in a domain.""" return LookupAccountName(domain, username)[0] def _create_security_attributes(*sids, **kwargs): """INTERNAL: create a SECURITY_ATTRIBUTES structure.""" inherit = kwargs.get('inherit', 0) access = kwargs.get('access', GENERIC_READ|GENERIC_WRITE) attr = SECURITY_ATTRIBUTES() attr.bInheritHandle = inherit desc = SECURITY_DESCRIPTOR() dacl = ACL() for sid in sids: dacl.AddAccessAllowedAce(ACL_REVISION_DS, access, sid) desc.SetSecurityDescriptorDacl(True, dacl, False) attr.SECURITY_DESCRIPTOR = desc return attr def _create_named_pipe(template, sids=None): """INTERNAL: create a named pipe.""" if sids is None: sattrs = None else: sattrs = _create_security_attributes(*sids) for i in range(100): name = template % random.randint(0, 999999) try: pipe = CreateNamedPipe(name, PIPE_ACCESS_DUPLEX, 0, 1, 1, 1, 100000, sattrs) SetHandleInformation(pipe, HANDLE_FLAG_INHERIT, 0) except WindowsError, e: if e.winerror != ERROR_PIPE_BUSY: raise else: return pipe, name raise ExceptionPexpect, 'Could not create pipe after 100 attempts.' def _stub(cmd_name, stdin_name, stdout_name, stderr_name): """INTERNAL: Stub process that will start up the child process.""" # Open the 4 pipes (command, stdin, stdout, stderr) cmd_pipe = CreateFile(cmd_name, GENERIC_READ|GENERIC_WRITE, 0, None, OPEN_EXISTING, 0, None) SetHandleInformation(cmd_pipe, HANDLE_FLAG_INHERIT, 1) stdin_pipe = CreateFile(stdin_name, GENERIC_READ, 0, None, OPEN_EXISTING, 0, None) SetHandleInformation(stdin_pipe, HANDLE_FLAG_INHERIT, 1) stdout_pipe = CreateFile(stdout_name, GENERIC_WRITE, 0, None, OPEN_EXISTING, 0, None) SetHandleInformation(stdout_pipe, HANDLE_FLAG_INHERIT, 1) stderr_pipe = CreateFile(stderr_name, GENERIC_WRITE, 0, None, OPEN_EXISTING, 0, None) SetHandleInformation(stderr_pipe, HANDLE_FLAG_INHERIT, 1) # Learn what we need to do.. header = _read_header(cmd_pipe) input = _parse_header(header) if 'command' not in input or 'args' not in input: ExitProcess(2) # http://msdn.microsoft.com/en-us/library/ms682499(VS.85).aspx startupinfo = STARTUPINFO() startupinfo.dwFlags |= STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW startupinfo.hStdInput = stdin_pipe startupinfo.hStdOutput = stdout_pipe startupinfo.hStdError = stderr_pipe startupinfo.wShowWindow = SW_HIDE # Grant access so that our parent can open its grandchild. if 'parent_sid' in input: mysid = _get_current_sid() parent = ConvertStringSidToSid(input['parent_sid']) sattrs = _create_security_attributes(mysid, parent, access=PROCESS_ALL_ACCESS) else: sattrs = None try: res = CreateProcess(input['command'], input['args'], sattrs, None, True, CREATE_NEW_CONSOLE, os.environ, os.getcwd(), startupinfo) except WindowsError, e: message = _quote_header(str(e)) WriteFile(cmd_pipe, 'status=error\nmessage=%s\n\n' % message) ExitProcess(3) else: pid = res[2] # Pass back results and exit err, nbytes = WriteFile(cmd_pipe, 'status=ok\npid=%s\n\n' % pid) ExitProcess(0) class ChunkBuffer(object): """A buffer that allows a chunk of data to be read in smaller reads.""" def __init__(self, chunk=''): self.add(chunk) def add(self, chunk): self.chunk = chunk self.offset = 0 def read(self, size): data = self.chunk[self.offset:self.offset+size] self.offset += size return data def __len__(self): return max(0, len(self.chunk)-self.offset) def run (command, timeout=-1, withexitstatus=False, events=None, extra_args=None, logfile=None, cwd=None, env=None, stub=None): """ This function runs the given command; waits for it to finish; then returns all output as a string. STDERR is included in output. If the full path to the command is not given then the path is searched. Note that lines are terminated by CR/LF (\\r\\n) combination even on UNIX-like systems because this is the standard for pseudo ttys. If you set 'withexitstatus' to true, then run will return a tuple of (command_output, exitstatus). If 'withexitstatus' is false then this returns just command_output. The run() function can often be used instead of creating a spawn instance. For example, the following code uses spawn:: from pexpect import * child = spawn('scp foo <EMAIL>:.') child.expect ('(?i)password') child.sendline (mypassword) The previous code can be replace with the following:: from pexpect import * run ('scp foo <EMAIL>:.', events={'(?i)password': mypassword}) Examples ======== Start the apache daemon on the local machine:: from pexpect import * run ("/usr/local/apache/bin/apachectl start") Check in a file using SVN:: from pexpect import * run ("svn ci -m 'automatic commit' my_file.py") Run a command and capture exit status:: from pexpect import * (command_output, exitstatus) = run ('ls -l /bin', withexitstatus=1) Tricky Examples =============== The following will run SSH and execute 'ls -l' on the remote machine. The password '<PASSWORD>' will be sent if the '(?i)password' pattern is ever seen:: run ("ssh <EMAIL>@machine.<EMAIL>.com 'ls -l'", events={'(?i)password':'<PASSWORD>'}) This will start mencoder to rip a video from DVD. This will also display progress ticks every 5 seconds as it runs. For example:: from pexpect import * def print_ticks(d): print d['event_count'], run ("mencoder dvd://1 -o video.avi -oac copy -ovc copy", events={TIMEOUT:print_ticks}, timeout=5) The 'events' argument should be a dictionary of patterns and responses. Whenever one of the patterns is seen in the command out run() will send the associated response string. Note that you should put newlines in your string if Enter is necessary. The responses may also contain callback functions. Any callback is function that takes a dictionary as an argument. The dictionary contains all the locals from the run() function, so you can access the child spawn object or any other variable defined in run() (event_count, child, and extra_args are the most useful). A callback may return True to stop the current run process otherwise run() continues until the next event. A callback may also return a string which will be sent to the child. 'extra_args' is not used by directly run(). It provides a way to pass data to a callback function through run() through the locals dictionary passed to a callback. """ if timeout == -1: child = winspawn(command, maxread=2000, logfile=logfile, cwd=cwd, env=env, stub=None) else: child = winspawn(command, timeout=timeout, maxread=2000, logfile=logfile, cwd=cwd, env=env, stub=None) if events is not None: patterns = events.keys() responses = events.values() else: patterns=None # We assume that EOF or TIMEOUT will save us. responses=None child_result_list = [] event_count = 0 while 1: try: index = child.expect (patterns) if isinstance(child.after, basestring): child_result_list.append(child.before + child.after) else: # child.after may have been a TIMEOUT or EOF, so don't cat those. child_result_list.append(child.before) if isinstance(responses[index], basestring): child.send(responses[index]) elif isinstance(responses[index], types.FunctionType): callback_result = responses[index](locals()) #sys.stdout.flush() if isinstance(callback_result, basestring): child.send(callback_result) elif callback_result: child.expect(EOF) break else: child.terminate() raise TypeError ('The callback must be a string or function type.') event_count = event_count + 1 except TIMEOUT, e: child_result_list.append(child.before) child.terminate() break except EOF, e: child_result_list.append(child.before) child.close() break child_result = ''.join(child_result_list) if withexitstatus: child.wait() return (child_result, child.exitstatus) else: return child_result class winspawn(spawn): """A version of pexpect.spawn for the Windows platform. """ # The Windows version of spawn is quite different when compared to the # Posix version. # # The first difference is that it's not possible on Windows to select() # on a file descriptor that corresponds to a file or a pipe. Therefore, # to do non-blocking I/O, we need to use threads. # # Secondly, there is no way to pass /only/ the file descriptors # corresponding to the redirected stdin/out/err to the child. Either all # inheritable file descriptors are passed, or none. We solve this by # indirectly executing our child via a stub for which we close all file # descriptors. The stub communicates back to us via a named pipe. # # Finally, Windows does not have ptys. It does have the concept of a # "Console" though but it's much less sophisticated. This code runs the # child in a new console by passing the flag CREATE_NEW_CONSOLE to # CreateProcess(). We create a new console for our child because this # way it cannot interfere with the current console, and it is also # possible to run the main program without a console (e.g. a Windows # service). # # NOTE: # Some special application will identify the input type. If its input handle # is not the stdin, the child process will disable the interactive mode. # For example: To run python as interactive mode, we should do like below: # child = winspawn('python', ['-i']) # option '-i' will force the python into interactive mode # pipe_buffer = 4096 pipe_template = r'\\.\pipe\winpexpect-%06d' def __init__(self, command, args=[], timeout=30, maxread=2000, searchwindowsize=None, logfile=None, cwd=None, env=None, username=None, domain=None, password=<PASSWORD>, stub=None): """Constructor.""" self.username = username self.domain = domain self.password = password self.stub = stub self.child_hwnd = None self.child_handle = None self.child_output = Queue() self.user_input = Queue() self.chunk_buffer = ChunkBuffer() self.stdout_handle = None self.stdout_eof = False self.stdout_reader = None self.stderr_handle = None self.stderr_eof = False self.stderr_reader = None self.stdin_reader = None # stdin of parent console self.stdin_handle = None # stdin of parent console self.interrupted = False super(winspawn, self).__init__(command, args, timeout=timeout, maxread=maxread, searchwindowsize=searchwindowsize, logfile=logfile, cwd=cwd, env=env) def __del__(self): try: self.terminate() except WindowsError: pass def _spawn(self, command, args=None): """Start the child process. If args is empty, command will be parsed according to the rules of the MS C runtime, and args will be set to the parsed args.""" if args: args = args[:] # copy args.insert(0, command) else: args = split_command_line(command) command = args[0] self.command = command self.args = args command = which(self.command) if command is None: raise ExceptionPexpect, 'Command not found: %s' % self.command args = join_command_line(self.args) # Create the pipes sids = [_get_current_sid()] if self.username and self.password: sids.append(_lookup_sid(self.domain, self.username)) cmd_pipe, cmd_name = _create_named_pipe(self.pipe_template, sids) stdin_pipe, stdin_name = _create_named_pipe(self.pipe_template, sids) stdout_pipe, stdout_name = _create_named_pipe(self.pipe_template, sids) stderr_pipe, stderr_name = _create_named_pipe(self.pipe_template, sids) startupinfo = STARTUPINFO() startupinfo.dwFlags |= STARTF_USESHOWWINDOW startupinfo.wShowWindow = SW_HIDE if self.stub == None or not getattr(sys, 'frozen', False): # python = os.path.join(sys.exec_prefix, 'python.exe') python = sys.executable self_dir = os.path.normpath(os.path.dirname(os.path.abspath(__file__))) pycmd = 'import sys; sys.path.insert(0, r"%s"); import winpexpect; winpexpect._stub(r"%s", r"%s", r"%s", r"%s")' \ % (self_dir, cmd_name, stdin_name, stdout_name, stderr_name) pyargs = join_command_line([python, '-c', pycmd]) else: python = self.stub pyargs = join_command_line([python, cmd_name, stdin_name, stdout_name, stderr_name]) # Create a new token or run as the current process. if self.username and self.password: token = LogonUser(self.username, self.domain, self.password, LOGON32_LOGON_INTERACTIVE, LOGON32_PROVIDER_DEFAULT) res = CreateProcessAsUser(token, python, pyargs, None, None, False, CREATE_NEW_CONSOLE, self.env, self.cwd, startupinfo) else: token = None res = CreateProcess(python, pyargs, None, None, False, CREATE_NEW_CONSOLE, self.env, self.cwd, startupinfo) child_handle = res[0] res[1].Close() # don't need thread handle ConnectNamedPipe(cmd_pipe) ConnectNamedPipe(stdin_pipe) ConnectNamedPipe(stdout_pipe) ConnectNamedPipe(stderr_pipe) # Tell the stub what to do and wait for it to exit WriteFile(cmd_pipe, 'command=%s\n' % command) WriteFile(cmd_pipe, 'args=%s\n' % args) if token: parent_sid = ConvertSidToStringSid(_get_current_sid()) WriteFile(cmd_pipe, 'parent_sid=%s\n' % str(parent_sid)) WriteFile(cmd_pipe, '\n') header = _read_header(cmd_pipe) output = _parse_header(header) if output['status'] != 'ok': m = 'Child did not start up correctly. ' m += output.get('message', '') raise ExceptionPexpect, m self.pid = int(output['pid']) self.child_handle = OpenProcess(PROCESS_ALL_ACCESS, False, self.pid) WaitForSingleObject(child_handle, INFINITE) # Start up the I/O threads self.child_fd = open_osfhandle(stdin_pipe.Detach(), 0) # for pexpect self.stdout_handle = stdout_pipe self.stdout_reader = Thread(target=self._child_reader, args=(self.stdout_handle,)) self.stdout_reader.start() self.stderr_handle = stderr_pipe self.stderr_reader = Thread(target=self._child_reader, args=(self.stderr_handle,)) self.stderr_reader.start() # find the handle of the child console window find_hwnds = [] def cb_comparewnd (hwnd, lparam): _, pid = GetWindowThreadProcessId(hwnd) if pid == self.pid: find_hwnds.append(hwnd) return True tmfind = time.time() while True: EnumWindows(cb_comparewnd, None) if find_hwnds: self.child_hwnd = find_hwnds[0] break if time.time() - tmfind > self.timeout: raise ExceptionPexpect, 'Did not find child console window' self.terminated = False self.closed = False def terminate(self, force=False): """Terminate the child process. This also closes all the file descriptors.""" if self.child_handle is None or self.terminated: return self.__terminate(force) self.close() self.wait() self.terminated = True def close(self): """Close all communications channels with the child.""" if self.closed: return self.interrupted = True if self.stdin_reader: CloseHandle(self.stdin_handle) self.stdin_reader.join() os.close(self.child_fd) CloseHandle(self.stdout_handle) CloseHandle(self.stderr_handle) # Now the threads are ready to be joined. self.stdout_reader.join() self.stderr_reader.join() self.closed = True def wait(self, timeout=None): """Wait until the child exits. If timeout is not specified this blocks indefinately. Otherwise, timeout specifies the number of seconds to wait.""" if self.exitstatus is not None: return if timeout is None: timeout = INFINITE else: timeout = 1000 * timeout ret = WaitForSingleObject(self.child_handle, timeout) if ret == WAIT_TIMEOUT: raise TIMEOUT, 'Timeout exceeded in wait().' self.exitstatus = GetExitCodeProcess(self.child_handle) return self.exitstatus def isalive(self): """Return True if the child is alive, False otherwise.""" if self.exitstatus is not None: return False ret = WaitForSingleObject(self.child_handle, 0) if ret == WAIT_OBJECT_0: self.exitstatus = GetExitCodeProcess(self.child_handle) return False return True def kill(self, signo): """The signal.CTRL_C_EVENT and signal.CTRL_BREAK_EVENT signals is avaiable under windows from Python3.2. Any other value for sig will cause the process to be unconditionally killed by the TerminateProcess API,""" if sys.version_info[0] == 3 and sys.version_info[1] >= 2: super().kill(signo) else: raise ExceptionPexpect, 'Signals are not availalbe on Windows' def __terminate(self, force=False): """This forces a child process to terminate. It starts nicely with signal.CTRL_C_EVENT and signal.CTRL_BREAK_EVENT. If "force" is True then moves onto TerminateProcess. This returns True if the child was terminated. This returns False if the child could not be terminated. For python earlier than 3.2, force parameter will be ignored and TerminateProcess will be always used""" if not self.isalive(): return True if sys.version_info[0] == 3 and sys.version_info[1] >= 2: try: self.kill(signal.CTRL_C_EVENT) time.sleep(self.delayafterterminate) if not self.isalive(): return True self.kill(signal.CTRL_BREAK_EVENT) time.sleep(self.delayafterterminate) if not self.isalive(): return True if force: # any value other than CTRL_C_EVENT and signal.CTRL_BREAK_EVENT # will terminate the process by killed by the TerminateProcess self.kill(123) time.sleep(self.delayafterterminate) return (not self.isalive()) return False except OSError as e: # I think there are kernel timing issues that sometimes cause # this to happen. I think isalive() reports True, but the # process is dead to the kernel. # Make one last attempt to see if the kernel is up to date. time.sleep(self.delayafterterminate) return (not self.isalive()) else: try: TerminateProcess(self.child_handle, 1) time.sleep(self.delayafterterminate) return (not self.isalive()) except WindowsError, e: # ERROR_ACCESS_DENIED (also) happens when the child has already # exited. return (e.winerror == ERROR_ACCESS_DENIED and not self.isalive()) def direct_send(self, s): """Some subprocess is using the getche() to get the input, the most common case is the password input. The getche() doesn't listen at the stdin. So the send() doesn't work on this case. Here we will send the string to the console window by windows message: WM_KEYDOWN, WM_KEYUP, WM_CHAR. There is another way available to implement the direct-send function. That is attach the child console from the stub process and write the console input directly. Here is the implement steps: 1. In the stub process add below code and don't exit the stub process. def _string2records(s): records = [] for c in s: rec = win32console.PyINPUT_RECORDType(KEY_EVENT) rec.KeyDown = True rec.RepeatCount = 1 rec.Char = c rec.VirtualKeyCode = ord(c) records.append(rec) rec = win32console.PyINPUT_RECORDType(KEY_EVENT) rec.KeyDown = False rec.RepeatCount = 1 rec.Char = c rec.VirtualKeyCode = ord(c) records.append(rec) return records while True: header = _read_header(cmd_pipe) input = _parse_header(header) if input['command'] == 'send': try: win32console.AttachConsole(pid) s = input['string'] stdin_handle = GetStdHandle(STD_INPUT_HANDLE) records = _string2records(s) nrecords = stdin_handle.WriteConsoleInput(records) win32console.FreeConsole() except WindowsError as e: message = _quote_header(str(e)) WriteFile(cmd_pipe, 'status=error\nmessage=%s\n\n' % message) else: WriteFile(cmd_pipe, 'status=ok\nnbytes=%d\n\n' % nrecords) 2. The stub executable must be win32gui type, using "pythonw.exe" instead of "python.exe" 3. direct_send function can be implemented as below: WriteFile(self.stub_pipe, 'command=send\nstring=%s\n\n' % s) header = _read_header(self.stub_pipe) output = _parse_header(header) if output['status'] != 'ok': m = 'send string failed: ' m += output.get('message', '') raise ExceptionPexpect(m) 4. This way can not send the CRLF(don't know the reason). For send the CRLF, we still need the SendMessage like the direct_sendline do. Finally, I choose to use the windows message solution, just because it looks like much simple than the attach-console solution. """ self._input_log(s) for c in s: PostMessage(self.child_hwnd, WM_CHAR, ord(c), 1) def direct_sendline(self, s): self.direct_send(s) self._input_log('\r\n') PostMessage(self.child_hwnd, WM_KEYDOWN, VK_RETURN, 0x001C0001) PostMessage(self.child_hwnd, WM_KEYUP, VK_RETURN, 0xC01C0001) def interact(self, escape_character = chr(29), input_filter = None, output_filter = None): # Flush the buffer. self.stdin_reader = Thread(target=self._stdin_reader) self.stdin_reader.start() self.interrupted = False try: while self.isalive(): data = self._interact_read(self.stdin_handle) if data != None: if input_filter: data = input_filter(data) i = data.rfind(escape_character) if i != -1: data = data[:i] os.write(self.child_fd, data.encode('ascii')) break os.write(self.child_fd, data.encode('ascii')) data = self._interact_read(self.child_fd) if data != None: if output_filter: data = output_filter(data) self._output_log(data) if sys.stdout not in (self.logfile, self.logfile_read): # interactive mode, the child output will be always output to stdout sys.stdout.write(data) # child exited, read all the remainder output while self.child_output.qsize(): handle, status, data = self.child_output.get(block=False) if status != 'data': break self._output_log(data) if sys.stdout not in (self.logfile, self.logfile_read): sys.stdout.write(data) except KeyboardInterrupt: self.interrupted = True self.terminate() return self.close() def _output_log(self, data): if self.logfile is not None: self.logfile.write (data) self.logfile.flush() if self.logfile_read is not None: self.logfile_read.write(data) self.logfile_read.flush() def _input_log(self, data): if self.logfile is not None: self.logfile.write (data) self.logfile.flush() if self.logfile_send is not None: self.logfile_send.write (data) self.logfile_send.flush() def _interact_read(self, fd): """This is used by the interact() method. """ data = None try: if fd == self.stdin_handle: data = self.user_input.get(block=False) else: handle, status, data = self.child_output.get(timeout=0.1) if status == 'eof': self._set_eof(handle) raise EOF, 'End of file in interact_read().' elif status == 'error': self._set_eof(handle) raise OSError, data except Exception as e: data = None return data def _stdin_reader(self): """INTERNAL: Reader thread that reads stdin for user interaction""" self.stdin_handle = GetStdHandle(STD_INPUT_HANDLE) self.stdin_handle.SetConsoleMode(ENABLE_LINE_INPUT|ENABLE_ECHO_INPUT|ENABLE_MOUSE_INPUT| ENABLE_WINDOW_INPUT|ENABLE_MOUSE_INPUT|ENABLE_PROCESSED_INPUT) # Remove flag: ENABLE_PROCESSED_INPUT to deal with the ctrl-c myself try: while not self.interrupted: ret = WaitForSingleObject(self.stdin_handle, 1000) if ret == WAIT_OBJECT_0: records = self.stdin_handle.PeekConsoleInput(1) rec = records[0] if rec.EventType == KEY_EVENT: if not rec.KeyDown or ord(rec.Char) == 0: self.stdin_handle.FlushConsoleInputBuffer() continue else: # discard the events: FOCUS_EVENT/WINDOW_BUFFER_SIZE_EVENT/MENU_EVENT, self.stdin_handle.FlushConsoleInputBuffer() continue err, data = ReadFile(self.stdin_handle, self.maxread) #print('read finished:', [hex(ord(i)) for i in data], err) self.user_input.put(data) except Exception as e: pass def _child_reader(self, handle): """INTERNAL: Reader thread that reads stdout/stderr of the child process.""" status = 'data' while not self.interrupted: try: err, data = ReadFile(handle, self.maxread) assert err == 0 # not expecting error w/o overlapped io except WindowsError, e: if e.winerror == ERROR_BROKEN_PIPE: status = 'eof' data = '' else: status = 'error' data = e.winerror self.child_output.put((handle, status, data)) if status != 'data': break def _set_eof(self, handle): """INTERNAL: mark a file handle as end-of-file.""" if handle == self.stdout_handle: self.stdout_eof = True elif handle == self.stderr_handle: self.stderr_eof = True def read_nonblocking(self, size=1, timeout=-1): """INTERNAL: Non blocking read.""" if len(self.chunk_buffer): return self.chunk_buffer.read(size) if self.stdout_eof and self.stderr_eof: assert self.child_output.qsize() == 0 return '' if timeout == -1: timeout = self.timeout try: handle, status, data = self.child_output.get(timeout=timeout) except Empty: raise TIMEOUT, 'Timeout exceeded in read_nonblocking().' if status == 'data': self.chunk_buffer.add(data) elif status == 'eof': self._set_eof(handle) raise EOF, 'End of file in read_nonblocking().' elif status == 'error': self._set_eof(handle) raise OSError, data buf = self.chunk_buffer.read(size) self._output_log(buf) return buf ``` #### File: VistA-1/Scripts/PopulatePatchesByPackage.py ```python from __future__ import with_statement import sys import os import csv # append this module in the sys.path at run time curDir = os.path.dirname(os.path.abspath(__file__)) if curDir not in sys.path: sys.path.append(curDir) from LoggerManager import logger, initConsoleLogging from PatchOrderGenerator import PatchOrderGenerator from PatchInfoParser import installNameToDirName from ConvertToExternalData import addToGitIgnoreList, isValidKIDSBuildHeaderSuffix from ConvertToExternalData import isValidSha1Suffix from PopulatePackages import populatePackageMapByCSV, order_long_to_short def place(src,dst): logger.info('%s => %s\n' % (src,dst)) d = os.path.dirname(dst) if d and not os.path.exists(d): try: os.makedirs(d) except OSError as ex: logger.error(ex) pass if not os.path.exists(dst): try: os.rename(src,dst) except OSError as ex: logger.error(ex) logger.error( "%s => %s" % (src, dst)) pass def placeToDir(infoSrc, destDir, addToGitIgnore=True): if not infoSrc or not os.path.exists(infoSrc): return infoSrcName = os.path.basename(infoSrc) infoDest = os.path.join(destDir, infoSrcName) if os.path.normpath(infoDest) != os.path.normpath(infoSrc): place(infoSrc, infoDest) if addToGitIgnore and isValidSha1Suffix(infoSrcName): addToGitIgnoreList(infoDest[:infoDest.rfind('.')]) def placeAssociatedFiles(associatedFileList, destDir): if associatedFileList: for infoSrc in associatedFileList: placeToDir(infoSrc, destDir) def placePatchInfo(patchInfo, curDir, path): """ place the KIDS info file first if present """ logger.debug("place patch info %s" % patchInfo) destDir = os.path.join(curDir, path) infoSrc = patchInfo.kidsInfoPath if infoSrc: placeToDir(infoSrc, destDir) """ place the associated files """ placeAssociatedFiles(patchInfo.associatedInfoFiles, destDir) """ place the global files """ placeAssociatedFiles(patchInfo.associatedGlobalFiles, destDir) """ place the custom installer file """ placeToDir(patchInfo.customInstallerPath, destDir) """ ignore the multiBuilds kids file """ if patchInfo.isMultiBuilds: return placeToDir(patchInfo.kidsFilePath, destDir) """ check the KIDS Sha1 path """ placeToDir(patchInfo.kidsSha1Path, destDir) #----------------------------------------------------------------------------- def populate(input): packages, namespaces = populatePackageMapByCSV(input) #--------------------------------------------------------------------------- # Collect all KIDS and info files under the current directory recursively #--------------------------------------------------------------------------- curDir = os.getcwd() patchOrderGen = PatchOrderGenerator() patchOrder = patchOrderGen.generatePatchOrder(curDir) patchInfoDict = patchOrderGen.getPatchInfoDict() patchInfoSet = set(patchInfoDict.keys()) patchList = patchInfoDict.values() noKidsInfoDict = patchOrderGen.getNoKidsBuildInfoDict() noKidsInfoSet = set(noKidsInfoDict.keys()) noKidsPatchList = noKidsInfoDict.values() leftoverTxtFiles = patchOrderGen.getInvalidInfoFiles() #--------------------------------------------------------------------------- # place multiBuilds KIDS Build under MultiBuilds directory #--------------------------------------------------------------------------- multiBuildSet = set([x.installName for x in patchList if x.isMultiBuilds]) for info in multiBuildSet: logger.info("Handling Multibuilds Kids %s" % info) patchInfo = patchInfoDict[info] src = patchInfo.kidsFilePath dest = os.path.normpath(os.path.join(curDir, "MultiBuilds", os.path.basename(src))) if src != dest: place(src,dest) if isValidKIDSBuildHeaderSuffix(dest): " add to ignore list if not there" addToGitIgnoreList(dest[0:dest.rfind('.')]) src = patchInfo.kidsSha1Path if not src: continue dest = os.path.normpath(os.path.join(curDir, "MultiBuilds", os.path.basename(src))) if src != dest: place(src,dest) # Map by package namespace (prefix). for ns in sorted(namespaces.keys(),order_long_to_short): path = namespaces[ns] nsPatchList = [x.installName for x in patchList if x.namespace==ns] for patch in nsPatchList: logger.info("Handling Kids %s" % patch) patchInfo = patchInfoDict[patch] patchDir = os.path.join(path, "Patches", installNameToDirName(patch)) placePatchInfo(patchInfo, curDir, patchDir) # Map KIDS Info Files that do not have associated KIDS Build Files nsNoKidsList = [x.installName for x in noKidsPatchList if x.namespace==ns] for patch in nsNoKidsList: logger.info("Handling No Kids info File %s" % patch) patchInfo = noKidsInfoDict[patch] patchDir = os.path.join(path, "Patches", installNameToDirName(patch)) placePatchInfo(patchInfo, curDir, patchDir) patchInfoSet.difference_update(nsPatchList) noKidsInfoSet.difference_update(nsNoKidsList) # Put leftover kids files in Uncategorized package. for patch in patchInfoSet: logger.info("Handling left over Kids File %s" % patch) patchInfo = patchInfoDict[patch] placePatchInfo(patchInfo, curDir, 'Uncategorized') for patch in noKidsInfoSet: logger.info("Handling left over no Kids Info File %s" % patch) patchInfo = noKidsInfoDict[patch] placePatchInfo(patchInfo, curDir, 'Uncategorized') # Put invalid kids info files in Uncategorized package. for src in leftoverTxtFiles: logger.info("Handling left over files: %s" % src) from KIDSAssociatedFilesMapping import getAssociatedInstallName installName = getAssociatedInstallName(src) if installName == "MultiBuilds": # put in Multibuilds directory dest = os.path.normpath(os.path.join(curDir, "MultiBuilds", os.path.basename(src))) if src != dest: place(src,dest) continue dirName = os.path.dirname(src) if not dirName.endswith("Packages"): logger.debug("Do not move %s" % src) continue dest = os.path.normpath(os.path.join(curDir, 'Uncategorized', os.path.basename(src))) if src != dest: place(src,dest) def main(): import logging initConsoleLogging(logging.INFO) populate(sys.stdin) if __name__ == '__main__': main() ``` #### File: Testing/PyUnit/TestSSEP.py ```python import socket import sys,os import unittest def createAndConnect(host="127.0.0.1", port=9210): print "Connect to host %s, port %s" % (host, port) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) sock.setblocking(0) # non-blocking return sock def sendDivGet(sock): inputfile = "divget.xml" sendRequestByFile(inputfile, sock) def sendDivSet(sock): inputfile = "divset.xml" sendRequestByFile(inputfile, sock) def sendGetUserInfo(sock): inputfile = "getuserinfo.xml" sendRequestByFile(inputfile, sock) def sendIamHere(sock): inputfile = "im_here.xml" sendRequestByFile(inputfile, sock) def sendGetPatientList(sock): inputfile = "getpatientlist.xml" sendRequestByFile(inputfile, sock) def sendGetPatientVitals(sock): inputfile = "getpatientvitals.xml" sendRequestByFile(inputfile, sock) def sendIntroMsgGet(sock): inputfile = "getintromessage.xml" sendRequestByFile(inputfile, sock) def createORContext(sock): inputfile = "createorguichartcontext.xml" sendRequestByFile(inputfile,sock) def createSignonContext(sock): inputfile = "createSignonContext.xml" sendRequestByFile(inputfile,sock) def signInAlexander(sock): inputfile = "signon.xml" sendRequestByFile(inputfile,sock) def sendRequestByFile(inputfile, sock): sock.settimeout(5) if os.path.dirname(__file__)+ "/" == "/": commandfile = inputfile else: commandfile = os.path.dirname(__file__)+ "/" + inputfile with open(commandfile,'r') as input: for line in input: sock.send(line) sock.send(chr(4)) def getResponse(sock, timeout=10): sock.settimeout(10) output = "" while True: data=sock.recv(256) if data: output = output + data if chr(4) in data: break return output def runRPC(self,rpcfilename, signon): if os.path.dirname(__file__)+ "/" == "/": resultsfile = rpcfilename.replace(".xml","_results.xml") else: resultsfile = os.path.dirname(__file__)+ "/" + rpcfilename.replace(".xml","_results.xml") correct_response = open(resultsfile,'r').read() sock = createSocket() if signon: createSignonContext(sock) getResponse(sock) signInAlexander(sock) getResponse(sock) createORContext(sock) getResponse(sock) sendRequestByFile(rpcfilename,sock) response = getResponse(sock) print "Response from " + rpcfilename print response self.assertEquals(response[:-1],correct_response, msg= "Didn't find a correct response to '" + rpcfilename + "'" ) sock.close() def createSocket(): sock = None sock = createAndConnect(results.host,int(results.port)) return sock class TestM2MBroker(unittest.TestCase): def test_IamHere_NoSignon(self): runRPC(self,"imhere.xml",False) def test_IamHere_Signon(self): runRPC(self,"imhere.xml",True) def test_GetIntroMessage_NoSignon(self): runRPC(self,"getintromessage.xml",False) def test_GetPatientList_Signon(self): runRPC(self,"getpatientlist.xml",True) def test_GetPatientList_NoSignon(self): runRPC(self,"patientlisterror.xml",False) def test_GetPatientVitals_NoSignon(self): runRPC(self,"getpatientvitals.xml",False) def main(): # Import Argparse and add Scripts/ directory to sys.path # by finding directory of current script and going up two levels import argparse curDir = os.path.dirname(os.path.abspath(__file__)) scriptDir = os.path.normpath(os.path.join(curDir, "../../")) if scriptDir not in sys.path: sys.path.append(scriptDir) # OSEHRA Imports from RPCBrokerCheck import CheckRPCListener from VistATestClient import createTestClientArgParser,VistATestClientFactory # Arg Parser to get address and port of RPC Listener along with a log file # Inherits the connection arguments of the testClientParser testClientParser = createTestClientArgParser() ssepTestParser= argparse.ArgumentParser(description='Test the M2M broker via XML files', parents=[testClientParser]) ssepTestParser.add_argument("-ha",required=True,dest='host', help='Address of the host where RPC Broker is listening') ssepTestParser.add_argument("-hp",required=True,dest='port', help='Port of the host machine where RPC Broker is listening') ssepTestParser.add_argument("-l",required=True,dest='log_file', help='Path to a file to log the output.') # A global variable so that each test is able to use the port and address of the host global results results = ssepTestParser.parse_args() testClient = VistATestClientFactory.createVistATestClientWithArgs(results) assert testClient with testClient: # If checkresult == 0, RPC listener is set up correctly and tests should be run # else, don't bother running the tests testClient.setLogFile(results.log_file) checkresult = CheckRPCListener(testClient.getConnection(),results.host,results.port) if checkresult == 0: suite = unittest.TestLoader().loadTestsFromTestCase(TestM2MBroker) unittest.TextTestRunner(verbosity=2).run(suite) else: print "FAILED: The RPC listener is not set up as needed." if __name__ == "__main__": main() ``` #### File: RAS/lib/PATActions.py ```python import time import TestHelper from Actions import Actions class PATActions (Actions): ''' This class extends the Actions class with methods specific to actions performed through the Roll and Scroll interface to add patients to system. Two methods are provided; patientaddcsv() which adds a single record from a CSV file and patientaddallcsv() which adds all patient records from a CSV file. ''' def __init__(self, VistAconn, user=None, code=None): Actions.__init__(self, VistAconn, user, code) def setuser (self, user=None, code=None): '''Set access code and verify code''' self.acode = user self.vcode = code def signon (self): '''Signon via XUP''' self.VistA.write('S DUZ=1 D ^XUP') def signoff (self): '''Signoff and halt''' self.VistA.write('') self.VistA.write('h\r\r') def patientaddcsv(self, ssn, pfile=None, getrow=None): '''Add a patient from a specified record of a specified CSV file''' prec = [1] if pfile is not None: preader = TestHelper.CSVFileReader() prec = preader.getfiledata(pfile, 'key', getrow) for pitem in prec: self.signon() self.VistA.wait('OPTION NAME'); self.VistA.write('Register a Patient') self.VistA.wait('PATIENT NAME'); self.VistA.write(prec[pitem]['fullname'].rstrip().lstrip()) self.VistA.wait('NEW PATIENT'); self.VistA.write('YES') self.VistA.wait('SEX'); self.VistA.write(prec[pitem]['sex'].rstrip().lstrip()) self.VistA.wait('DATE OF BIRTH'); self.VistA.write(prec[pitem]['dob'].rstrip().lstrip()) self.VistA.wait('SOCIAL SECURITY NUMBER'); self.VistA.write(ssn) self.VistA.wait('TYPE'); self.VistA.write(prec[pitem]['type'].rstrip().lstrip()) self.VistA.wait('PATIENT VETERAN'); self.VistA.write(prec[pitem]['veteran'].rstrip().lstrip()) self.VistA.wait('SERVICE CONNECTED'); self.VistA.write(prec[pitem]['service'].rstrip().lstrip()) self.VistA.wait('MULTIPLE BIRTH INDICATOR'); self.VistA.write(prec[pitem]['twin'].rstrip().lstrip()) self.VistA.wait('//'); self.VistA.write('^\r') self.VistA.wait('MAIDEN NAME'); self.VistA.write(prec[pitem]['maiden'].rstrip().lstrip()) self.VistA.wait('PLACE OF BIRTH'); self.VistA.write(prec[pitem]['cityob'].rstrip().lstrip()) self.VistA.wait('PLACE OF BIRTH'); self.VistA.write(prec[pitem]['stateob'].rstrip().lstrip()) self.VistA.wait(''); self.VistA.write('\r\r\r') def patientaddallcsv(self, pfile): '''Add ALL patients from specified CSV ''' preader = TestHelper.CSVFileReader() prec = preader.getfiledata(pfile, 'key') for pitem in prec: self.signon() self.VistA.wait('OPTION NAME'); self.VistA.write('Register a Patient') self.VistA.wait('PATIENT NAME'); self.VistA.write(prec[pitem]['fullname'].rstrip().lstrip()) self.VistA.wait('NEW PATIENT'); self.VistA.write('YES') self.VistA.wait('SEX'); self.VistA.write(prec[pitem]['sex'].rstrip().lstrip()) self.VistA.wait('DATE OF BIRTH'); self.VistA.write(prec[pitem]['dob'].rstrip().lstrip()) self.VistA.wait('SOCIAL SECURITY NUMBER'); self.VistA.write(pitem) self.VistA.wait('TYPE'); self.VistA.write(prec[pitem]['type'].rstrip().lstrip()) self.VistA.wait('PATIENT VETERAN'); self.VistA.write(prec[pitem]['veteran'].rstrip().lstrip()) self.VistA.wait('SERVICE CONNECTED'); self.VistA.write(prec[pitem]['service'].rstrip().lstrip()) self.VistA.wait('MULTIPLE BIRTH INDICATOR'); self.VistA.write(prec[pitem]['twin'].rstrip().lstrip()) if str(prec[pitem]['pdup'].rstrip().lstrip()) is '1': self.VistA.wait('as a new patient') self.VistA.write('Yes') self.VistA.wait('//'); self.VistA.write('^\r') self.VistA.wait('MAIDEN NAME'); self.VistA.write(prec[pitem]['maiden'].rstrip().lstrip()) self.VistA.wait('PLACE'); self.VistA.write(prec[pitem]['cityob'].rstrip().lstrip()) self.VistA.wait('PLACE'); self.VistA.write(prec[pitem]['stateob'].rstrip().lstrip()) self.VistA.wait(''); self.VistA.write('\r\r\r') ``` #### File: OTJ/VA FileMan 22.2/VistAInitFileMan.py ```python from __future__ import with_statement import sys import os import argparse # setup system path filedir = os.path.dirname(os.path.abspath(__file__)) test_python_dir = os.path.normpath(os.path.join(filedir, "../../Python/")) scripts_python_dir = os.path.normpath(os.path.join(filedir, "../../../Scripts")) sys.path.append(test_python_dir) sys.path.append(scripts_python_dir) from VistATestClient import VistATestClientFactory, createTestClientArgParser from LoggerManager import logger, initConsoleLogging from ExternalDownloader import obtainKIDSBuildFileBySha1 from ConvertToExternalData import readSha1SumFromSha1File from ConvertToExternalData import isValidRoutineSha1Suffix def getFileMan22_2RoutineFile(rFile): sha1sum = readSha1SumFromSha1File(rFile) logger.info("sha1sum is %s" % sha1sum) result, path = obtainKIDSBuildFileBySha1(rFile, sha1sum, filedir) if not result: logger.error("Could not obtain FileMan 22V2 file for %s" % rFile) raise Exception("Error getting FileMan 22V2 file for %s" % rFile) return path def inputMumpsSystem(testClient): connection = testClient.getConnection() if testClient.isCache(): # this is the Cache connection.send("CACHE\r") elif testClient.isGTM(): # this is GT.M(UNIX) connection.send("GT.M(UNIX)\r") else: pass def initFileMan(testClient, siteName, siteNumber): connection = testClient.getConnection() testClient.waitForPrompt() connection.send("D ^DINIT\r") connection.expect("Initialize VA FileMan now?") connection.send("YES\r") connection.expect("SITE NAME:") if siteName and len(siteName) > 0: connection.send(siteName+"\r") else: connection.send("\r") # just use the default connection.expect("SITE NUMBER") if siteNumber and int(siteNumber) != 0: connection.send(str(siteNumber)+"\r") else: connection.send("\r") selLst = [ "Do you want to change the MUMPS OPERATING SYSTEM File?", "TYPE OF MUMPS SYSTEM YOU ARE USING:", ] while True: idx = connection.expect(selLst) if idx == 0: connection.send("YES\r") # we want to change MUMPS OPERATING SYSTEM File continue elif idx == len(selLst) - 1: inputMumpsSystem(testClient) break testClient.waitForPrompt() connection.send('\r') def initFileMan22_2(testClient): testClient.waitForPrompt() conn = testClient.getConnection() conn.send('D ^DIINIT\r') conn.expect('ARE YOU SURE EVERYTHING\'S OK\? ') conn.send('YES\r') testClient.waitForPrompt() conn.send('D ^DMLAINIT\r') testClient.waitForPrompt() conn.send('\r') def inhibitLogons(testClient, flag=True): from VistAMenuUtil import VistAMenuUtil from VistATaskmanUtil import getBoxVolPair volumeSet = getBoxVolPair(testClient).split(':')[0] menuUtil = VistAMenuUtil(duz=1) menuUtil.gotoFileManEditEnterEntryMenu(testClient) conn = testClient.getConnection() conn.send('14.5\r') # 14.5 is the VOLUME SET File conn.expect('EDIT WHICH FIELD: ') conn.send('1\r') # field Inhibit Logons? conn.expect('THEN EDIT FIELD: ') conn.send('\r') conn.expect('Select VOLUME SET: ') conn.send('%s\r' % volumeSet) conn.expect('INHIBIT LOGONS\?: ') if flag: conn.send('YES\r') else: conn.send('NO\r') conn.expect('Select VOLUME SET: ') conn.send('\r') menuUtil.exitFileManMenu(testClient) def stopAllMumpsProcessGTM(): pass def deleteFileManRoutinesCache(testClient): conn = testClient.getConnection() testClient.waitForPrompt() conn.send('D ^%ZTRDEL\r') conn.expect('All Routines\? ') conn.send('No\r') for input in ("DI*", "'DIZ*", "DM*", "'DMZ*", "DD*", "'DDZ*"): conn.expect('Routine: ') conn.send(input+'\r') conn.expect('Routine: ') conn.send('\r') conn.expect('routines to DELETE, OK: ') conn.send('YES\r') testClient.waitForPrompt(120) conn.send('\r') def deleteFileManRoutinesGTM(): """ first get routine directory """ from ParseGTMRoutines import extract_m_source_dirs var = os.getenv('gtmroutines') routineDirs = extract_m_source_dirs(var) if not routineDirs: return [] import glob outDir = routineDirs[0:1] for routineDir in routineDirs: for pattern in ['DI*.m', 'DD*.m', 'DM*.m']: globPtn = os.path.join(routineDir, pattern) fmFiles = glob.glob(os.path.join(routineDir, pattern)) if fmFiles: if routineDir not in outDir: outDir.append(routineDir) for fmFile in fmFiles: logger.debug("removing file %s" % fmFile) os.remove(fmFile) return outDir def verifyRoutines(testClient): testClient.waitForPrompt() conn = testClient.getConnection() conn.send('D ^DINTEG\r') testClient.waitForPrompt() conn.send('\r') def rewriteFileManRoutineCache(testClient): testClient.waitForPrompt() conn = testClient.getConnection() for filename in ['DIDT','DIDTC','DIRCR']: conn.send('ZL %s ZS %s\r' % (filename, filename.replace('DI','%'))) testClient.waitForPrompt() conn.send('\r') def rewriteFileManRoutineGTM(outDir): import shutil for filename in ['DIDT','DIDTC','DIRCR']: src = os.path.join(outDir, filename + ".m") dst = os.path.join(outDir, filename.replace('DI','_') + '.m') logger.debug("Copy %s to %s" % (src, dst)) shutil.copyfile(src, dst) def installFileMan22_2(testClient, inputROFile): """ Script to initiate FileMan 22.2 """ if not os.path.exists(inputROFile): logger.error("File %s does not exist" % inputROFile) return rFile = inputROFile if isValidRoutineSha1Suffix(inputROFile): rFile = getFileMan22_2RoutineFile(inputROFile) from VistATaskmanUtil import VistATaskmanUtil outDir = None # gtm routine import out dir #allow logon to shutdown taskman via menu inhibitLogons(testClient, flag=False) # stop all taskman tasks taskManUtil = VistATaskmanUtil() logger.info("Stop Taskman...") taskManUtil.stopTaskman(testClient) logger.info("Inhibit logons...") inhibitLogons(testClient) # remove fileman 22.2 affected routines logger.info("Remove FileMan 22 routines") if testClient.isCache(): deleteFileManRoutinesCache(testClient) else: outDir = deleteFileManRoutinesGTM() if not outDir: logger.info("Can not identify mumps routine directory") return outDir = outDir[0] # import routines into System from VistARoutineImport import VistARoutineImport vistARtnImport = VistARoutineImport() logger.info("Import FileMan 22.2 Routines from %s" % rFile) vistARtnImport.importRoutines(testClient, rFile, outDir) # verify integrity of the routines that just imported logger.info("Verify FileMan 22.2 Routines...") verifyRoutines(testClient) # rewrite fileman routines logger.info("Rewrite FileMan 22.2 Routines...") if testClient.isCache(): rewriteFileManRoutineCache(testClient) else: rewriteFileManRoutineGTM(outDir) # initial fileman logger.info("Initial FileMan...") initFileMan(testClient, None, None) logger.info("Initial FileMan 22.2...") initFileMan22_2(testClient) logger.info("Enable logons...") inhibitLogons(testClient, flag=False) """ restart taskman """ logger.info("Restart Taskman...") taskManUtil.startTaskman(testClient) DEFAULT_OUTPUT_LOG_FILE_NAME = "VistAInitFileMan.log" import tempfile def getTempLogFile(): return os.path.join(tempfile.gettempdir(), DEFAULT_OUTPUT_LOG_FILE_NAME) def main(): testClientParser = createTestClientArgParser() parser = argparse.ArgumentParser(description='VistA Initialize FileMan Utilities', parents=[testClientParser]) parser.add_argument('roFile', help="routine import file in ro format") result = parser.parse_args(); print (result) """ create the VistATestClient""" testClient = VistATestClientFactory.createVistATestClientWithArgs(result) assert testClient with testClient as vistAClient: logFilename = getTempLogFile() print "Log File is %s" % logFilename initConsoleLogging() vistAClient.setLogFile(logFilename) installFileMan22_2(vistAClient, result.roFile) if __name__ == '__main__': main() ``` #### File: Dox/PythonScripts/FileManGlobalDataParser.py ```python import os import sys import re from datetime import datetime import logging import json from CrossReference import FileManField from ZWRGlobalParser import getKeys, sortDataEntryFloatFirst, printGlobal from ZWRGlobalParser import convertToType, createGlobalNodeByZWRFile from ZWRGlobalParser import readGlobalNodeFromZWRFileV2 from FileManSchemaParser import FileManSchemaParser FILE_DIR = os.path.dirname(os.path.abspath(__file__)) SCRIPTS_DIR = os.path.normpath(os.path.join(FILE_DIR, "../../../Scripts")) if SCRIPTS_DIR not in sys.path: sys.path.append(SCRIPTS_DIR) from FileManDateTimeUtil import fmDtToPyDt from PatchOrderGenerator import PatchOrderGenerator import glob """ These are used to capture install entries that don't use the package prefix as their install name or have odd capitalization after being passed through the title function """ INSTALL_PACKAGE_FIX = {"VA FILEMAN 22.0": "VA FileMan", "DIETETICS 5.5" : "Dietetics" } INSTALL_RENAME_DICT = {"Kernel Public Domain" : "Kernel", "Kernel - Virgin Install" : "Kernel", #"DIETETICS " : "Dietetics", "Rpc Broker": "RPC Broker", "Pce Patient Care Encounter": "PCE Patient Care Encounter", "Sagg" : "SAGG Project", "Sagg Project" : "SAGG Project", "Emergency Department" : "Emergency Department Integration Software", "Gen. Med. Rec. - Vitals" : "General Medical Record - Vitals", "Gen. Med. Rec. - I/O" : "General Medical Record - IO", "Mailman" : "MailMan", "Bar Code Med Admin" : "Barcode Medication Administration", "Ifcap" : "IFCAP", "Master Patient Index Vista" : "Master Patient Index VistA", "Consult/Request Tracking" : "Consult Request Tracking", "Outpatient Pharmacy Version" : "Outpatient Pharmacy", "Clinical Info Resource Network" : "Clinical Information Resource Network", "Dss Extracts" : "DSS Extracts", "Automated Info Collection Sys" : "Automated Information Collection System", "Text Integration Utilities" : "Text Integration Utility", "Drug Accountability V." : "Drug Accountability", "Women'S Health" : "Womens Health", "Health Data & Informatics" : "Health Data and Informatics", "Capacity Management - Rum" : "Capacity Management - RUM", "Authorization/Subscription" : "Authorization Subscription", "Pharmacy Data Management Host" : "Pharmacy Data Management", "Equipment/Turn-In Request" : "Equipment Turn-In Request", "Pbm" : "Pharmacy Benefits Management", "Cmoph" : "CMOP", "Cmop" : "CMOP" } regexRtnCode = re.compile("( ?[DQI] |[:',])(\$\$)?(?P<tag>" "([A-Z0-9][A-Z0-9]*)?)\^(?P<rtn>[A-Z%][A-Z0-9]+)") def getMumpsRoutine(mumpsCode): """ For a given mumpsCode, parse the routine and tag information via regular expression. return an iterator with (routine, tag, rtnpos) """ pos = 0 endpos = 0 for result in regexRtnCode.finditer(mumpsCode): if result: routine = result.group('rtn') if routine: tag = result.group('tag') start, end = result.span('rtn') endpos = result.end() pos = endpos yield (routine, tag, start) raise StopIteration def test_getMumpsRoutine(): for input in ( ('D ^TEST1', [('TEST1','',3)]), ('D ^%ZOSV', [('%ZOSV','',3)]), ('D TAG^TEST2',[('TEST2','TAG',6)]), ('Q $$TST^%RRST1', [('%RRST1','TST',8)]), ('D ACKMSG^DGHTHLAA',[('DGHTHLAA','ACKMSG',9)]), ('S XQORM(0)="1A",XQORM("??")="D HSTS^ORPRS01(X)"',[('ORPRS01','HSTS',36)]), ('I $$TEST^ABCD D ^EST Q:$$ENG^%INDX K ^DD(0)', [ ('ABCD','TEST',9), ('EST','',17), ('%INDX','ENG',29) ] ), ('S DUZ=1 K ^XUTL(0)', None), ("""W:'$$TM^%ZTLOAD() *7,!!,"WARNING -- TASK MANAGER DOESN'T!!!!",!!,*7""", [('%ZTLOAD','TM',8)] ), ("""W "This is a Test",$$TM^ZTLOAD()""",[('ZTLOAD','TM',24)]), ("""D ^PSIVXU Q:$D(XQUIT) D EN^PSIVSTAT,NOW^%DTC S ^PS(50.8,1,.2)=% K %""", [ ('PSIVXU','',3), ('PSIVSTAT','EN',27), ('%DTC','NOW',40) ] ), ("""D ^TEST1,EN^TEST2""", [ ('TEST1','',3), ('TEST2','EN',12) ] ), ): for idx, (routine,tag,pos) in enumerate(getMumpsRoutine(input[0])): assert (routine, tag, pos) == input[1][idx], "%s: %s" % ((routine, tag, pos), input[1][idx]) class FileManFileData(object): """ Class to represent FileMan File data WRT either a FileMan file or a subFile """ def __init__(self, fileNo, name): self._fileNo = fileNo self._name = name self._data = {} @property def dataEntries(self): return self._data @property def name(self): return self._name @property def fileNo(self): return self._fileNo def addFileManDataEntry(self, ien, dataEntry): self._data[ien] = dataEntry def __repr__(self): return "%s, %s, %s" % (self._fileNo, self._name, self._data) class FileManDataEntry(object): """ One FileMan File DataEntry """ def __init__(self, fileNo, ien): self._ien = ien self._data = {} self._fileNo = fileNo self._name = None self._type = None @property def fields(self): return self._data @property def name(self): return self._name @property def type(self): return self._type @property def ien(self): return self._ien @property def fileNo(self): return self._fileNo @name.setter def name(self, name): self._name = name @type.setter def type(self, type): self._type = type def addField(self, fldData): self._data[fldData.id] = fldData def __repr__(self): return "%s: %s: %s" % (self._fileNo, self._ien, self._data) class FileManDataField(object): """ Represent an individual field in a FileMan DataEntry """ def __init__(self, fieldId, type, name, value): self._fieldId = fieldId self._type = type self._name = name self._value = value @property def id(self): return self._fieldId @property def name(self): return self._name @property def type(self): return self._type @property def value(self): return self._value @value.setter def value(self, value): self._value = value def __repr__(self): return "%s: %s" % (self._name, self._value) def printFileManFileData(fileManData, level=0): curIndent = "\t"*(level+1) if level == 0: print "File#: %s, Name: %s" % (fileManData.fileNo, fileManData.name) for ien in getKeys(fileManData.dataEntries.keys(), float): dataEntry = fileManData.dataEntries[ien] printFileManDataEntry(dataEntry, ien, level) def printFileManDataEntry(dataEntry, ien, level): curIndent = "\t"*(level+1) if level == 0: print "FileEntry#: %s, Name: %s" % (ien, dataEntry.name) else: print for fldId in sorted(dataEntry.fields.keys(), key=lambda x: float(x)): dataField = dataEntry.fields[fldId] if dataField.type == FileManField.FIELD_TYPE_SUBFILE_POINTER: if dataField.value and dataField.value.dataEntries: print "%s%s:" % (curIndent, dataField.name) printFileManFileData(dataField.value, level+1) elif dataField.type == FileManField.FIELD_TYPE_WORD_PROCESSING: wdList = dataField.value if wdList: print "%s%s:" % (curIndent, dataField.name) for item in wdList: print "%s\t%s" % (curIndent, item) else: print "%s%s: %s" % (curIndent, dataField.name, dataField.value) print def test_FileManDataEntry(): fileManData = FileManFileData('1', 'TEST FILE 1') dataEntry = FileManDataEntry("Test",1) dataEntry.addField(FileManDataField('0.1', 0, 'NAME', 'Test')) dataEntry.addField(FileManDataField('1', 0, 'TAG', 'TST')) dataEntry.addField(FileManDataField('2', 1, 'ROUTINE', 'TEST1')) dataEntry.addField(FileManDataField('3', 2, 'INPUT TYPE', '1')) subFileData = FileManFileData('1.01', 'TEST FILE SUB-FIELD') subDataEntry = FileManDataEntry("1.01", 1) subDataEntry.addField(FileManDataField('.01',0, 'NAME', 'SUBTEST')) subDataEntry.addField(FileManDataField('1', 1, 'DATA', '0')) subFileData.addFileManDataEntry('1', subDataEntry) subDataEntry = FileManDataEntry("1.01", 2) subDataEntry.addField(FileManDataField('.01', 0, 'NAME', 'SUBTEST1')) subDataEntry.addField(FileManDataField('1', 1, 'DATA', '1')) subFileData.addFileManDataEntry('2', subDataEntry) dataEntry.addField(FileManDataField('4', 9, 'SUB-FIELD', subFileData)) fileManData.addFileManDataEntry('1', dataEntry) printFileManFileData(fileManData) def sortSchemaByLocation(fileSchema): locFieldDict = {} for fldAttr in fileSchema.getAllFileManFields().itervalues(): loc = fldAttr.getLocation() if not loc: continue locInfo = loc.split(';') if len(locInfo) != 2: logging.error("Unknown location info %s for %r" % (loc, fldAttr)) continue index,pos = locInfo if index not in locFieldDict: locFieldDict[index] = {} locFieldDict[index][pos] = fldAttr return locFieldDict """ hard code initial map due to the way the ^DIC is extracted """ initGlobalLocationMap = { x: "^DIC(" + x for x in ( '.2', '3.1', '3.4', '4', '4.001', '4.005', '4.009', '4.05', '4.1', '4.11', '4.2', '4.2996', '5', '7', '7.1', '8', '8.1', '8.2', '9.2', '9.4', '9.8', '10', '10.2', '10.3', '11', '13', '19', '19.1', '19.2', '19.8', '21', '22', '23', '25','30', '31', '34', '35', '36', '37', '39.1', '39.2', '39.3', '40.7', '40.9', '42', '42.4', '42.55', '43.4', '45.1', '45.3', '45.6', '45.61', '45.68', '45.7', '45.81', '45.82', '45.88', '45.89', '47', '49', '51.5', '68.4', '81.1', '81.2', '81.3', '150.9', '194.4', '194.5', '195.1', '195.2', '195.3', '195.4', '195.6', '213.9', '220.2', '220.3', '220.4', '620', '625', '627', '627.5', '627.9', '6910', '6910.1', '6921', '6922', ) } """ handle file# 0 or the schema file """ initGlobalLocationMap['0'] = '^DD(' class FileManGlobalDataParser(object): def __init__(self, crossRef=None): self.patchDir = None self._dataRoot = None self._allSchemaDict = None self._crossRef = crossRef self._curFileNo = None self._glbData = {} # fileNo => FileManData self._pointerRef = {} self._fileKeyIndex = {} # File: => ien => Value self._glbLocMap = initGlobalLocationMap # File: => Global Location self._fileParsed = set() # set of files that has been parsed self._rtnRefDict = {} # dict of rtn => fileNo => Details self._allFiles = {} # Dict of fileNum => Global file @property def outFileManData(self): return self._glbData @property def crossRef(self): return self._crossRef @property def globalLocationMap(self): return self._glbLocMap def getFileNoByGlobalLocation(self, glbLoc): """ get the file no by global location return fileNo if found, otherwise return None """ outLoc = normalizeGlobalLocation(glbLoc) for key, value in self._glbLocMap.iteritems(): if value == outLoc: return key return None def getFileManFileNameByFileNo(self, fileNo): if self._crossRef: fileManFile = self._crossRef.getGlobalByFileNo(fileNo) if fileManFile: return fileManFile.getFileManName() return "" def _createDataRootByZWRFile(self, inputFileName): self._dataRoot = createGlobalNodeByZWRFile(inputFileName) def getAllFileManZWRFiles(self, dirName, pattern): searchFiles = glob.glob(os.path.join(dirName, pattern)) outFiles = {} for file in searchFiles: fileName = os.path.basename(file) if fileName == 'DD.zwr': outFiles['0'] = {'name': 'Schema File', 'path': os.path.normpath(os.path.abspath(file))} continue result = re.search("(?P<fileNo>^[0-9.]+)(-[1-9])?\+(?P<des>.*)\.zwr$", fileName) if result: "ignore split file for now" if result.groups()[1]: logging.info("Ignore file %s" % fileName) continue fileNo = result.group('fileNo') if fileNo.startswith('0'): fileNo = fileNo[1:] globalDes = result.group('des') outFiles[fileNo] = {'name': globalDes, 'path': os.path.normpath(os.path.abspath(file))} return outFiles def parseAllZWRGlobaFilesBySchema(self, mRepositDir, allSchemaDict): """ Parsing all ZWR Global Files via Schema """ allFiles = self.getAllFileManZWRFiles(os.path.join(mRepositDir, 'Packages'), "*/Globals/*.zwr") allFileManGlobal = self._crossRef.getAllFileManGlobals() sizeLimit = 59*1024*1024 # 1 MiB for key in sorted(allFileManGlobal.keys()): fileManFile = allFileManGlobal[key] fileNo = fileManFile.getFileNo() if fileNo not in allFiles: continue ddFile = allFiles[fileNo]['path'] glbDes = allFiles[fileNo]['name'] self._createDataRootByZWRFile(ddFile) if not self._dataRoot: logging.warn("not data for file %s" % ddFile) continue globalName = fileManFile.getName() parts = globalName.split('(') rootName, subscript = (None, None) if len(parts) > 1: rootName = parts[0] subscript = parts[1].strip('"') else: rootName = parts[0] subscript = rootName assert rootName == self._dataRoot.subscript logging.info("File: %s, root: %s, sub: %s" % (ddFile, rootName, subscript)) self.parseZWRGlobalDataBySchema(self._dataRoot, allSchemaDict, fileNo, subscript) self._glbData = {} def parseZWRGlobalFileBySchema(self, inputFileName, allSchemaDict, fileNumber, subscript): self._createDataRootByZWRFile(inputFileName) self.parseZWRGlobalDataBySchema(dataRoot, allSchemaDict, fileNumber, subscript) def generateFileIndex(self, inputFileName, allSchemaDict, fileNumber): self._allSchemaDict = allSchemaDict schemaFile = allSchemaDict[fileNumber] if not schemaFile.hasField('.01'): logging.error("File does not have a .01 field, ignore") return keyField = schemaFile.getFileManFieldByFieldNo('.01') keyLoc = keyField.getLocation() if not keyLoc: logging.error(".01 field does not have a location") return self._curFileNo = fileNumber glbLoc = self._glbLocMap[fileNumber] for dataRoot in readGlobalNodeFromZWRFileV2(inputFileName, glbLoc): if not dataRoot: continue self._dataRoot = dataRoot fileDataRoot = dataRoot (ien, detail) = self._getKeyNameBySchema(fileDataRoot, keyLoc, keyField) if detail: self._addFileKeyIndex(fileNumber, ien, detail) elif ien: logging.info("No name associated with ien: %s, file: %s" % (ien, fileNumber)) else: logging.info("No index for data with ien: %s, file: %s" % (ien, fileNumber)) def _getKeyNameBySchema(self, dataRoot, keyLoc, keyField): floatKey = getKeys(dataRoot, float) logging.debug('Total # of entry is %s' % len(floatKey)) for ien in floatKey: if float(ien) <=0: continue dataEntry = dataRoot[ien] index, loc = keyLoc.split(';') if not index or index not in dataEntry: continue dataEntry = dataEntry[index] if not dataEntry.value: return (ien, None) values = dataEntry.value.split('^') dataValue = None if convertToType(loc, int): intLoc = int(loc) if intLoc > 0 and intLoc <= len(values): dataValue = values[intLoc-1] else: dataValue = str(dataEntry.value) if dataValue: return (ien, self._parseIndividualFieldDetail(dataValue, keyField, None)) return (None, None) def parseZWRGlobalFileBySchemaV2(self, inputFileName, allSchemaDict, fileNumber, glbLoc=None): self._allSchemaDict = allSchemaDict schemaFile = allSchemaDict[fileNumber] self._glbData[fileNumber] = FileManFileData(fileNumber, self.getFileManFileNameByFileNo(fileNumber)) self._curFileNo = fileNumber if not glbLoc: glbLoc = self._glbLocMap.get(fileNumber) logging.info("File: %s global loc: %s" % (fileNumber, glbLoc)) elif fileNumber in self._glbLocMap: logging.info("global loc %s, %s" % (glbLoc, self._glbLocMap[fileNumber])) for dataRoot in readGlobalNodeFromZWRFileV2(inputFileName, glbLoc): if not dataRoot: continue self._dataRoot = dataRoot fileDataRoot = dataRoot self._parseDataBySchema(fileDataRoot, schemaFile, self._glbData[fileNumber]) self._resolveSelfPointer() if self._crossRef: self._updateCrossReference() def parseZWRGlobalDataBySchema(self, dataRoot, allSchemaDict, fileNumber, subscript): self._allSchemaDict = allSchemaDict schemaFile = allSchemaDict[fileNumber] fileDataRoot = dataRoot if subscript: if subscript in dataRoot: logging.info("using subscript %s" % subscript) fileDataRoot = dataRoot[subscript] self._glbData[fileNumber] = FileManFileData(fileNumber, self.getFileManFileNameByFileNo(fileNumber)) self._parseDataBySchema(fileDataRoot, schemaFile, self._glbData[fileNumber]) else: # assume this is for all files in the entry for fileNo in getKeys(self._dataRoot, float): fileDataRoot = self._dataRoot[fileNo] self._glbData[fileNo] = FileManFileData(fileNo, schemaFile.getFileManName()) self._parseDataBySchema(fileDataRoot, schemaFile, self._glbData[fileNo]) self._resolveSelfPointer() if self._crossRef: self._updateCrossReference() def _updateCrossReference(self): if '8994' in self._glbData: self._updateRPCRefence() if '101' in self._glbData: self._updateHL7Reference() if '779.2' in self._glbData: self._updateHLOReference() if '9.7' in self._glbData: self._updateInstallReference() def outRtnReferenceDict(self): if len(self._rtnRefDict): """ generate the dependency in json file """ with open(os.path.join(self.outDir, "Routine-Ref.json"), 'w') as output: logging.info("Generate File: %s" % output.name) json.dump(self._rtnRefDict, output) def _updateHLOReference(self): hlo = self._glbData['779.2'] for ien in sorted(hlo.dataEntries.keys(),key=lambda x: float(x)): hloEntry = hlo.dataEntries[ien] entryName = hloEntry.name namespace, package = \ self._crossRef.__categorizeVariableNameByNamespace__(entryName) if package: package.hlo.append(hloEntry) logging.info("Adding hlo: %s to Package: %s" % (entryName, package.getName())) def _updateHL7Reference(self): protocol = self._glbData['101'] for ien in sorted(protocol.dataEntries.keys(), key=lambda x: float(x)): protocolEntry = protocol.dataEntries[ien] if '4' in protocolEntry.fields: type = protocolEntry.fields['4'].value if (type != 'event driver' and type != 'subscriber') and (not re.search("[Mm]enu", type)): logging.info("Adding Protocol Entry of type: %s" % (type)) entryName = protocolEntry.name namespace, package = \ self._crossRef.__categorizeVariableNameByNamespace__(entryName) if package: package.protocol.append(protocolEntry) logging.info("Adding Protocol Entry: %s to Package: %s" % (entryName, package.getName())) # only care about the event drive and subscriber type elif (type == 'event driver' or type == 'subscriber'): entryName = protocolEntry.name namespace, package = \ self._crossRef.__categorizeVariableNameByNamespace__(entryName) if package: package.hl7.append(protocolEntry) logging.info("Adding HL7: %s to Package: %s" % (entryName, package.getName())) elif '12' in protocolEntry.fields: # check the packge it belongs pass else: logging.warn("Can not find a package for HL7: %s" % entryName) for field in ('771', '772'): if field not in protocolEntry.fields: continue hl7Rtn = protocolEntry.fields[field].value if not hl7Rtn: continue for rtn, tag, pos in getMumpsRoutine(hl7Rtn): hl7Info = {"name": entryName, "ien": ien} if tag: hl7Info['tag'] = tag self._rtnRefDict.setdefault(rtn,{}).setdefault('101',[]).append(hl7Info) def _updateRPCRefence(self): rpcData = self._glbData['8994'] for ien in sorted(rpcData.dataEntries.keys(), key=lambda x: float(x)): rpcEntry = rpcData.dataEntries[ien] rpcRoutine = None if rpcEntry.name: namespace, package = \ self._crossRef.__categorizeVariableNameByNamespace__(rpcEntry.name) if package: package.rpcs.append(rpcEntry) logging.info("Adding RPC: %s to Package: %s" % (rpcEntry.name, package.getName())) if '.03' in rpcEntry.fields: rpcRoutine = rpcEntry.fields['.03'].value else: if rpcRoutine: """ try to categorize by routine called """ namespace, package = \ self._crossRef.__categorizeVariableNameByNamespace__(rpcRoutine) if package: package.rpcs.append(rpcEntry) logging.info("Adding RPC: %s to Package: %s based on routine calls" % (rpcEntry.name, package.getName())) else: logging.error("Can not find package for RPC: %s" % (rpcEntry.name)) """ Generate the routine referenced based on RPC Call """ if rpcRoutine: rpcInfo = {"name": rpcEntry.name, "ien" : ien } if '.02' in rpcEntry.fields: rpcTag = rpcEntry.fields['.02'].value rpcInfo['tag'] = rpcTag self._rtnRefDict.setdefault(rpcRoutine,{}).setdefault('8994',[]).append(rpcInfo) def _findInstallPackage(self,packageList, installEntryName): namespace, package = self._crossRef.__categorizeVariableNameByNamespace__(installEntryName) # A check to remove the mis-categorized installs which happen to fall in a namespace if installEntryName in INSTALL_PACKAGE_FIX: package = INSTALL_PACKAGE_FIX[installEntryName] # If it cannot match a package by namespace, capture the name via Regular Expression if package is None: pkgMatch = re.match("[A-Z./ \&\-\']+",installEntryName) if pkgMatch: # if a match is found, switch to title case and remove extra spaces targetName = pkgMatch.group(0).title().strip() # First check it against the list of package names if targetName in packageList: package = targetName # Then check it against the dictionary above for some odd spellings or capitalization elif targetName in INSTALL_RENAME_DICT: package = INSTALL_RENAME_DICT[targetName] # If all else fails, assign it to the "Unknown" else: package = "Unknown" package = str(package).strip() return package def _updateInstallReference(self): installData = self._glbData['9.7'] output = os.path.join(self.outDir, "install_information.json") installJSONData = {} packageList = self._crossRef.getAllPackages() patchOrderGen = PatchOrderGenerator() patchOrderGen.analyzeVistAPatchDir(self.patchDir +"/Packages") with open(output, 'w') as installDataOut: logging.warn("inside the _updateInstallReference") for ien in sorted(installData.dataEntries.keys(), key=lambda x: float(x)): installItem = {} installEntry = installData.dataEntries[ien] package = self._findInstallPackage(packageList, installEntry.name) # if this is the first time the package is found, add an entry in the install JSON data. if package not in installJSONData: installJSONData[package]={} if installEntry.name: logging.warn("Gathering info for: %s" % installEntry.name) installItem['name'] = installEntry.name installItem['ien'] = installEntry.ien installItem['label'] = installEntry.name installItem['value'] = len(installJSONData[package]) if installEntry.name in patchOrderGen._kidsDepBuildDict: installchildren = [] for child in patchOrderGen._kidsDepBuildDict[installEntry.name]: childPackage = self._findInstallPackage(packageList,child) installchildren.append({"name": child, "package": childPackage}); installItem['children'] = installchildren if '11' in installEntry.fields: installItem['installDate'] = installEntry.fields['11'].value.strftime("%Y-%m-%d") if '1' in installEntry.fields: installItem['packageLink'] = installEntry.fields['1'].value if '40' in installEntry.fields: installItem['numRoutines'] = len(installEntry.fields['40'].value.dataEntries) if '14' in installEntry.fields: installItem['numFiles'] = len(installEntry.fields['14'].value.dataEntries) # Checks for the absence of asterisks which usually denotes a package change. testMatch = re.search("\*+",installEntry.name) if testMatch is None: installItem['packageSwitch'] = True installJSONData[package][installEntry.name] = installItem installJSONData['MultiBuild']={} for multiBuildFile in patchOrderGen._multiBuildDict: multibuildItem = {} multibuildItem['name']=os.path.basename(multiBuildFile); multibuildItem['children'] = [] for installName in patchOrderGen._multiBuildDict[multiBuildFile]: package = self._findInstallPackage(packageList, installName) multibuildItem['children'].append({"name": installName, "package": package}); installJSONData['MultiBuild'][os.path.basename(multiBuildFile)] = multibuildItem logging.warn("About to dump data into %s" % output) json.dump(installJSONData,installDataOut) def _resolveSelfPointer(self): """ Replace self-reference with meaningful data """ for fileNo in self._pointerRef: if fileNo in self._glbData: fileData = self._glbData[fileNo] for ien, fields in self._pointerRef[fileNo].iteritems(): if ien in fileData.dataEntries: name = fileData.dataEntries[ien].name if not name: name = str(ien) for field in fields: field.value = "^".join((field.value, name)) del self._pointerRef self._pointerRef = {} def _parseFileDetail(self, dataEntry, ien): if 'GL' in dataEntry: loc = dataEntry['GL'].value loc = normalizeGlobalLocation(loc) self._glbLocMap[ien] = loc def _parseDataBySchema(self, dataRoot, fileSchema, outGlbData): """ first sort the schema Root by location """ locFieldDict = sortSchemaByLocation(fileSchema) """ for each data entry, parse data by location """ floatKey = getKeys(dataRoot, float) for ien in floatKey: if float(ien) <=0: continue #if level == 0 and int(ien) != 160: continue dataEntry = dataRoot[ien] outDataEntry = FileManDataEntry(fileSchema.getFileNo(), ien) dataKeys = [x for x in dataEntry] sortedKey = sorted(dataKeys, cmp=sortDataEntryFloatFirst) for locKey in sortedKey: if locKey == '0' and fileSchema.getFileNo() == '1': self._parseFileDetail(dataEntry[locKey], ien) if locKey in locFieldDict: fieldDict = locFieldDict[locKey] # a dict of {pos: field} curDataRoot = dataEntry[locKey] if len(fieldDict) == 1: fieldAttr = fieldDict.values()[0] if fieldAttr.isSubFilePointerType(): # Multiple self._parseSubFileField(curDataRoot, fieldAttr, outDataEntry) else: self._parseSingleDataValueField(curDataRoot, fieldAttr, outDataEntry) else: self._parseDataValueField(curDataRoot, fieldDict, outDataEntry) outGlbData.addFileManDataEntry(ien, outDataEntry) if fileSchema.getFileNo() == self._curFileNo: self._addFileKeyIndex(self._curFileNo, ien, outDataEntry.name) def _parseSingleDataValueField(self, dataEntry, fieldAttr, outDataEntry): if not dataEntry.value: return values = dataEntry.value.split('^') location = fieldAttr.getLocation() dataValue = None if location: index, loc = location.split(';') if loc: if convertToType(loc, int): intLoc = int(loc) if intLoc > 0 and intLoc <= len(values): dataValue = values[intLoc-1] else: dataValue = str(dataEntry.value) else: dataValue = str(dataEntry.value) if dataValue: self._parseIndividualFieldDetail(dataValue, fieldAttr, outDataEntry) def _parseDataValueField(self, dataRoot, fieldDict, outDataEntry): if not dataRoot.value: return values = dataRoot.value.split('^') if not values: return # this is very import to check for idx, value in enumerate(values, 1): if value and str(idx) in fieldDict: fieldAttr = fieldDict[str(idx)] self._parseIndividualFieldDetail(value, fieldAttr, outDataEntry) def _parseIndividualFieldDetail(self, value, fieldAttr, outDataEntry): if not value.strip(' '): return value = value.strip(' ') fieldDetail = value pointerFileNo = None if fieldAttr.isSetType(): setDict = fieldAttr.getSetMembers() if setDict and value in setDict: fieldDetail = setDict[value] elif fieldAttr.isFilePointerType() or fieldAttr.isVariablePointerType(): fileNo = None ien = None if fieldAttr.isFilePointerType(): filePointedTo = fieldAttr.getPointedToFile() if filePointedTo: fileNo = filePointedTo.getFileNo() ien = value else: fieldDetail = 'No Pointed to File' else: # for variable pointer type vpInfo = value.split(';') if len(vpInfo) != 2: logging.error("Unknown variable pointer format: %s" % value) fieldDetail = "Unknow Variable Pointer" else: fileNo = self.getFileNoByGlobalLocation(vpInfo[1]) ien = vpInfo[0] if not fileNo: logging.warn("Could not find File for %s" % value) fieldDetail = 'Global Root: %s, IEN: %s' % (vpInfo[1], ien) if fileNo and ien: fieldDetail = '^'.join((fileNo, ien)) idxName = self._getFileKeyIndex(fileNo, ien) if idxName: idxes = str(idxName).split('^') if len(idxes) == 1: fieldDetail = '^'.join((fieldDetail, str(idxName))) elif len(idxes) == 3: fieldDetail = '^'.join((fieldDetail, str(idxes[-1]))) elif fileNo == self._curFileNo: pointerFileNo = fileNo else: logging.warn("Can not find value for %s, %s" % (ien, fileNo)) elif fieldAttr.getType() == FileManField.FIELD_TYPE_DATE_TIME: # datetime if value.find(',') >=0: fieldDetail = horologToDateTime(value) else: outDt = fmDtToPyDt(value) if outDt: fieldDetail = outDt else: logging.warn("Could not parse Date/Time: %s" % value) elif fieldAttr.getName().upper().startswith("TIMESTAMP"): # timestamp field if value.find(',') >=0: fieldDetail = horologToDateTime(value) if outDataEntry: dataField = FileManDataField(fieldAttr.getFieldNo(), fieldAttr.getType(), fieldAttr.getName(), fieldDetail) if pointerFileNo: self._addDataFieldToPointerRef(pointerFileNo, value, dataField) outDataEntry.addField(dataField) if fieldAttr.getFieldNo() == '.01': outDataEntry.name = fieldDetail outDataEntry.type = fieldAttr.getType() return fieldDetail def _addDataFieldToPointerRef(self, fileNo, ien, dataField): self._pointerRef.setdefault(fileNo, {}).setdefault(ien, set()).add(dataField) def _addFileKeyIndex(self, fileNo, ien, value): ienDict = self._fileKeyIndex.setdefault(fileNo, {}) if ien not in ienDict: ienDict[ien] = value def _getFileKeyIndex(self, fileNo, ien): if fileNo in self._fileKeyIndex: if ien in self._fileKeyIndex[fileNo]: return self._fileKeyIndex[fileNo][ien] return None def _parseSubFileField(self, dataRoot, fieldAttr, outDataEntry): logging.debug ("%s" % (fieldAttr.getName() + ':')) subFile = fieldAttr.getPointedToSubFile() if fieldAttr.hasSubType(FileManField.FIELD_TYPE_WORD_PROCESSING): outLst = self._parsingWordProcessingNode(dataRoot) outDataEntry.addField(FileManDataField(fieldAttr.getFieldNo(), FileManField.FIELD_TYPE_WORD_PROCESSING, fieldAttr.getName(), outLst)) elif subFile: subFileData = FileManFileData(subFile.getFileNo(), subFile.getFileManName()) self._parseDataBySchema(dataRoot, subFile, subFileData) outDataEntry.addField(FileManDataField(fieldAttr.getFieldNo(), FileManField.FIELD_TYPE_SUBFILE_POINTER, fieldAttr.getName(), subFileData)) else: logging.info ("Sorry, do not know how to intepret the schema %s" % fieldAttr) def _parsingWordProcessingNode(self, dataRoot): outLst = [] for key in getKeys(dataRoot, int): if '0' in dataRoot[key]: outLst.append("%s" % dataRoot[key]['0'].value) return outLst def testGlobalParser(crosRef=None): parser = createArgParser() result = parser.parse_args() print result from InitCrossReferenceGenerator import parseCrossRefGeneratorWithArgs from FileManDataToHtml import FileManDataToHtml crossRef = parseCrossRefGeneratorWithArgs(result) glbDataParser = FileManGlobalDataParser(crossRef) #glbDataParser.parseAllZWRGlobaFilesBySchema(result.MRepositDir, allSchemaDict) allFiles = glbDataParser.getAllFileManZWRFiles(os.path.join(result.MRepositDir, 'Packages'), "*/Globals/*.zwr") assert '0' in allFiles and '1' in allFiles and set(result.fileNos).issubset(allFiles) schemaParser = FileManSchemaParser() allSchemaDict = schemaParser.parseSchemaDDFileV2(allFiles['0']['path']) isolatedFiles = schemaParser.isolatedFiles glbDataParser.parseZWRGlobalFileBySchemaV2(allFiles['1']['path'], allSchemaDict, '1', '^DIC(') glbDataParser._allFiles = allFiles glbDataParser._allSchemaDict = allSchemaDict for fileNo in result.fileNos: assert fileNo in glbDataParser.globalLocationMap if result.outdir: glbDataParser.outDir = result.outdir if result.patchRepositDir: glbDataParser.patchDir = result.patchRepositDir htmlGen = FileManDataToHtml(crossRef, result.outdir) if not result.all or set(result.fileNos).issubset(isolatedFiles): for fileNo in result.fileNos: gdFile = allFiles[fileNo]['path'] logging.info("Parsing file: %s at %s" % (fileNo, gdFile)) glbDataParser.parseZWRGlobalFileBySchemaV2(gdFile, allSchemaDict, fileNo) if result.outdir: htmlGen.outputFileManDataAsHtml(glbDataParser) else: fileManDataMap = glbDataParser.outFileManData for file in getKeys(fileManDataMap.iterkeys(), float): printFileManFileData(fileManDataMap[file]) del glbDataParser.outFileManData[fileNo] glbDataParser.outRtnReferenceDict() return """ Also generate all required files as well """ sccSet = schemaParser.sccSet fileSet = set(result.fileNos) for idx, value in enumerate(sccSet): fileSet.difference_update(value) if not fileSet: break for i in xrange(0,idx+1): fileSet = sccSet[i] fileSet &= set(allFiles.keys()) fileSet -= isolatedFiles fileSet.discard('757') if len(fileSet) > 1: for file in fileSet: zwrFile = allFiles[file]['path'] globalSub = allFiles[file]['name'] logging.info("Generate file key index for: %s at %s" % (file, zwrFile)) glbDataParser.generateFileIndex(zwrFile, allSchemaDict, file) for file in fileSet: zwrFile = allFiles[file]['path'] globalSub = allFiles[file]['name'] logging.info("Parsing file: %s at %s" % (file, zwrFile)) glbDataParser.parseZWRGlobalFileBySchemaV2(zwrFile, allSchemaDict, file) if result.outdir: htmlGen.outputFileManDataAsHtml(glbDataParser) del glbDataParser.outFileManData[file] def horologToDateTime(input): """ convert Mumps Horolog time to python datatime """ from datetime import timedelta originDt = datetime(1840,12,31,0,0,0) if input.find(',') < 0: # invalid format return None days, seconds = input.split(',') return originDt + timedelta(int(days), int(seconds)) def test_horologToDateTime(): input = ( ('57623,29373', datetime(1998,10,7,8,9,33)), ) for one, two in input: assert horologToDateTime(one) == two, "%s, %s" % (one, two) def normalizeGlobalLocation(input): if not input: return input result = input if input[0] != '^': result = '^' + result if input[-1] == ',': result = result[0:-1] return result def test_normalizeGlobalLocation(): input = ( ('DIPT(', '^DIPT('), ('^DIPT(', '^DIPT('), ('DIPT("IX",', '^DIPT("IX"'), ) for one, two in input: assert normalizeGlobalLocation(one) == two, "%s, %s" % (one, two) def createArgParser(): import argparse from InitCrossReferenceGenerator import createInitialCrossRefGenArgParser initParser = createInitialCrossRefGenArgParser() parser = argparse.ArgumentParser(description='FileMan Global Data Parser', parents=[initParser]) #parser.add_argument('ddFile', help='path to ZWR file contains DD global') #parser.add_argument('gdFile', help='path to ZWR file contains Globals data') parser.add_argument('fileNos', help='FileMan File Numbers', nargs='+') #parser.add_argument('glbRoot', help='Global root location for FileMan file') parser.add_argument('-outdir', help='top directory to generate output in html') parser.add_argument('-all', action='store_true', help='generate all dependency files as well') return parser def unit_test(): test_normalizeGlobalLocation() test_horologToDateTime() test_getMumpsRoutine() def main(): from LogManager import initConsoleLogging initConsoleLogging(formatStr='%(asctime)s %(message)s') unit_test() #test_FileManDataEntry() testGlobalParser() if __name__ == '__main__': main() ``` #### File: Dox/PythonScripts/LogManager.py ```python import logging import sys logger = logging.getLogger() def initConsoleLogging(defaultLevel=logging.INFO, formatStr = '%(asctime)s %(levelname)s %(message)s'): logger.setLevel(defaultLevel) consoleHandler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter(formatStr) consoleHandler.setLevel(defaultLevel) consoleHandler.setFormatter(formatter) logger.addHandler(consoleHandler) ```
{ "source": "JosephSolomon99/Web_Scraping", "score": 3 }
#### File: Web_Scraping/Scraper/scraper.py ```python from methods import * #from secrets import (LINKEDINUSERNAME, LINKEDINPASSWORD) def main(): ''' Function that controls scraper script ''' website = "https://www.linkedin.com/feed/" chrome_options = webdriver.ChromeOptions() user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36' chrome_options.add_argument("window-size=1920,1080") chrome_options.add_argument("--headless") chrome_options.add_argument(f'user-agent={user_agent}') chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--disable-dev-shm-usage') chrome_options.add_argument('--ignore-certificate-errors') chrome_options.add_argument('--allow-running-insecure-content') chrome_options.add_argument("--allow-insecure-localhost") chrome_options.add_experimental_option('detach', True) LINKEDINUSERNAME = input("Enter Linkedin username: ") LINKEDINPASSWORD = input("\n Enter Linkedin password: ") scraper = WebDriver(chrome_options, website, LINKEDINUSERNAME, LINKEDINPASSWORD) scraper.driver.implicitly_wait(2) scraper.driver.get(website) sleep(3) scraper.accept_cookies() sleep(2) scraper.log_me_in() sleep(2) scraper.get_database_details() sleep(1) # Edit this to change search term and location search_term = input("Enter job title to search for: ") search_location = input("Enter location to search in: ") scraper.search_term(search_term, search_location) sleep(2) scraper.extract_job_details() sleep(2) print("\n\nScraping has been completed") scraper.driver.quit() if __name__ == "__main__": # safeguard used to prevent script running # automatically if it's imported into another file main() ```
{ "source": "josephsookim/v2", "score": 2 }
#### File: josephsookim/v2/main.py ```python from flask import Flask, render_template from flask_talisman import Talisman app = Flask(__name__) csp = { 'default-src': [ '\'self\'', ], 'script-src': [ '\'self\'', '\'unsafe-inline\'', 'cdn.jsdelivr.net', 'ajax.googleapis.com', 'https://www.google-analytics.com', 'https://ssl.google-analytics.com', 'https://www.googletagmanager.com', 'cdnjs.cloudflare.com' ], 'style-src': [ '\'self\'', '\'unsafe-inline\'', 'cdnjs.cloudflare.com', 'cdn.jsdelivr.net', 'fonts.googleapis.com' ], 'font-src': [ '\'self\'', 'cdnjs.cloudflare.com', 'fonts.gstatic.com' ], 'img-src': [ '\'self\'', 'https://www.google-analytics.com', 'www.googletagmanager.com' ], 'connect-src': '*', } Talisman( app, content_security_policy=csp, ) @app.route('/', methods=['GET']) def home(): return render_template('index.html') if __name__ == '__main__': app.run() ```
{ "source": "josephstalin117/pytorch-DCRNN", "score": 2 }
#### File: pytorch-DCRNN/lib/metrics.py ```python import numpy as np import torch def masked_mse_torch(preds, labels, null_val=np.nan): """ Accuracy with masking. :param preds: :param labels: :param null_val: :return: """ if np.isnan(null_val): # mask = ~tf.is_nan(labels) mask = ~torch.isnan(labels) else: # mask = tf.not_equal(labels, null_val) mask = torch.ne(labels, null_val) # mask = tf.cast(mask, tf.float32) mask = mask.to(torch.float32) # mask /= tf.reduce_mean(mask) mask /= torch.mean(mask) # mask = tf.where(tf.is_nan(mask), tf.zeros_like(mask), mask) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) # loss = tf.square(tf.subtract(preds, labels)) loss = torch.pow(preds - labels, 2) loss = loss * mask # loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss) loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def masked_mae_torch(preds, labels, null_val=np.nan): """ Accuracy with masking. :param preds: :param labels: :param null_val: :return: """ if np.isnan(null_val): mask = ~torch.isnan(labels) else: mask = torch.ne(labels, null_val) mask = mask.to(torch.float32) mask /= torch.mean(mask) mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask) loss = torch.abs(preds - labels) loss = loss * mask loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss) return torch.mean(loss) def masked_rmse_torch(preds, labels, null_val=np.nan): """ Accuracy with masking. :param preds: :param labels: :param null_val: :return: """ return torch.sqrt(masked_mse_torch(preds=preds, labels=labels, null_val=null_val)) def masked_rmse_np(preds, labels, null_val=np.nan): return np.sqrt(masked_mse_np(preds=preds, labels=labels, null_val=null_val)) def masked_mse_np(preds, labels, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(labels) else: mask = np.not_equal(labels, null_val) mask = mask.astype('float32') mask /= np.mean(mask) rmse = np.square(np.subtract(preds, labels)).astype('float32') rmse = np.nan_to_num(rmse * mask) return np.mean(rmse) def masked_mae_np(preds, labels, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(labels) else: mask = np.not_equal(labels, null_val) mask = mask.astype('float32') mask /= np.mean(mask) mae = np.abs(np.subtract(preds, labels)).astype('float32') mae = np.nan_to_num(mae * mask) return np.mean(mae) def masked_mape_np(preds, labels, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(labels) else: mask = np.not_equal(labels, null_val) mask = mask.astype('float32') mask /= np.mean(mask) mape = np.abs(np.divide(np.subtract(preds, labels).astype('float32'), labels)) mape = np.nan_to_num(mask * mape) return np.mean(mape) # Builds loss function. def masked_mse_loss(scaler, null_val): def loss(preds, labels): if scaler: preds = scaler.inverse_transform(preds) labels = scaler.inverse_transform(labels) return masked_mse_torch(preds=preds, labels=labels, null_val=null_val) return loss def masked_rmse_loss(scaler, null_val): def loss(preds, labels): if scaler: preds = scaler.inverse_transform(preds) labels = scaler.inverse_transform(labels) return masked_rmse_torch(preds=preds, labels=labels, null_val=null_val) return loss def masked_mae_loss(scaler, null_val): def loss(preds, labels): if scaler: preds = scaler.inverse_transform(preds) labels = scaler.inverse_transform(labels) mae = masked_mae_torch(preds=preds, labels=labels, null_val=null_val) return mae return loss # def masked_mae_loss(null_val): # def loss(preds, labels): # mae = masked_mae_torch(preds=preds, labels=labels, null_val=null_val) # return mae # return loss def calculate_metrics(df_pred, df_test, null_val): """ Calculate the MAE, MAPE, RMSE :param df_pred: :param df_test: :param null_val: :return: """ mape = masked_mape_np(preds=df_pred.as_matrix(), labels=df_test.as_matrix(), null_val=null_val) mae = masked_mae_np(preds=df_pred.as_matrix(), labels=df_test.as_matrix(), null_val=null_val) rmse = masked_rmse_np(preds=df_pred.as_matrix(), labels=df_test.as_matrix(), null_val=null_val) return mae, mape, rmse ```
{ "source": "josephsurin/UoM-WAM-Spam", "score": 3 }
#### File: josephsurin/UoM-WAM-Spam/wamspam.py ```python import time import getpass import requests from bs4 import BeautifulSoup from functools import partial from notification import * # # # # SCRIPT CONFIGURATION # # set this to True if you would like the script to repeatedly check the results # page, or False if you only want it to run once CHECK_REPEATEDLY = True # if you set the script to check repeatedly above, you can configure the delay # between WAM checks in minutes here DELAY_BETWEEN_CHECKS = 60 # minutes # leave these lines unchanged to be prompted for your username and password # every time you run the script, or just hard code your credentials here if # you're lazy (but then be careful not to let anyone else see this file) UNIMELB_USERNAME = input("Username: ") UNIMELB_PASSWORD = getpass.getpass() # your WAM will be stored in this file in between checks WAM_FILENAME = "wam.txt" # # # # WEB SCRAPING CONFIGURATION # # if you have multiple degrees, set this to the id of the degree with the WAM # you want the script to watch (0, 1, 2, ... based on order from results page). # if you only have a single degree, you can ignore this one. DEGREE_INDEX = int(input("Degree index (or just press enter): ") or 0) # select the HTML parser for BeautifulSoup to use. in most cases, you won't # have to touch this. BS4_PARSER = "html.parser" # # # # EMAIL CONFIGURATION # # here we specify the format of the email messages (customise to your liking) SUBJECT = "WAM Update Detected" EMAIL_TEMPLATE = """Hello there! {message} Love, WAM Spammer """ INCREASE_MESSAGE_TEMPLATE = """ I noticed that your WAM increased from {before} to {after}. Congratulations! The hard work paid off (and I'm sure there was a little luck involved, too). """ DECREASE_MESSAGE_TEMPLATE = """ I noticed that your WAM changed from {before} to {after}. That's okay, I know you tried your best, and that's all anyone can ask for. """ FIRSTMSG_MESSAGE_TEMPLATE = """ I noticed that your WAM is {after}. I hope it makes you happy. Anyway, I'll keep an eye on it for you from now on, and I'll let you know if it changes. """ HELLO_SUBJECT = "Hello! I'm WAM Spammer" HELLO_MESSAGE = """ I'm <NAME>. This is just a test message to tell you that I'm running. I'll look out for a change to your WAM every so often---unless I crash! Every now and then you should probably check to make sure nothing has gone wrong. """ # let's get to it! def main(): """Run the checking script, once or forever, depending on configuration.""" # conduct the first check! don't catch any exceptions here, if the # check fails this first time, it's likely to be a configuration problem # (e.g. wrong username/password) so we should crash the script to let the # user know. # notification_helper = EmailNotification(UNIMELB_USERNAME, UNIMELB_PASSWORD) notification_helpers = select_notification_method() poll_and_notify(notification_helpers) # also send a test message to make sure the email configuration is working for notification_helper in notification_helpers: notification_helper.notify(HELLO_SUBJECT, EMAIL_TEMPLATE.format(message=HELLO_MESSAGE)) while CHECK_REPEATEDLY: print("Sleeping", DELAY_BETWEEN_CHECKS, "minutes before next check.") time.sleep(DELAY_BETWEEN_CHECKS * 60) # seconds print("Waking up!") try: poll_and_notify(notification_helpers) except Exception as e: # if we get an exception now, it may have been some temporary # problem accessing the website, let's just ignore it and try # again next time. print("Exception encountered:") print(f"{e.__class__.__name__}: {e}") print("Hopefully it won't happen again. Continuing.") def poll_and_notify(notification_helpers): """ Check for an updated WAM, and send an email notification if any change is detected. """ # check the results page for the updated WAM new_wam_text = scrape_wam() if new_wam_text is None: # no WAM found return new_wam = float(new_wam_text) # load the previous WAM to compare against try: with open(WAM_FILENAME) as wamfile: old_wam_text = wamfile.read() old_wam = float(old_wam_text) except: # the first time we run the script, there probably wont be a wam file old_wam = None # detect the type of WAM change so that we can choose which message to send if old_wam is None: message_template = FIRSTMSG_MESSAGE_TEMPLATE elif new_wam > old_wam: message_template = INCREASE_MESSAGE_TEMPLATE elif new_wam < old_wam: message_template = DECREASE_MESSAGE_TEMPLATE else: print("No change to WAM---stop before triggering notifications.") return # compose and send the message message = message_template.format(before=old_wam, after=new_wam) email_text = EMAIL_TEMPLATE.format(message=message) for notification_helper in notification_helpers: notification_helper.notify(SUBJECT, email_text) # update the wam file for next time with open(WAM_FILENAME, 'w') as wamfile: wamfile.write(f"{new_wam}\n") class InvalidLoginException(Exception): """Represent a login form validation error""" def scrape_wam(username=UNIMELB_USERNAME, password=<PASSWORD>): with requests.Session() as session: # step 1. load a login page to initialse session print("Logging in to the results page") response = session.get("https://prod.ss.unimelb.edu.au" "/student/SM/ResultsDtls10.aspx?f=$S1.EST.RSLTDTLS.WEB") soup = BeautifulSoup(response.content, BS4_PARSER) # step 2. fill in login form and authenticate, reaching results page # get the form's hidden field values into the POST data hidden_fields = soup.find_all('input', type='hidden') login_form = {tag['name']: tag['value'] for tag in hidden_fields} # simulate filling in the form with username and password, # and pressing the login button login_form['ctl00$Content$txtUserName$txtText'] = username login_form['ctl00$Content$txtPassword$txtText'] = password login_form['__EVENTTARGET'] = "ctl00$Content$cmdLogin" # post the form, with a URL that will take us back to the results page response = session.post("https://prod.ss.unimelb.edu.au/student/" "login.aspx?f=$S1.EST.RSLTDTLS.WEB&ReturnUrl=%2fstudent%2fSM%2f" "ResultsDtls10.aspx%3ff%3d%24S1.EST.RSLTDTLS.WEB", data=login_form) # detect a potential failed login soup = BeautifulSoup(response.content, BS4_PARSER) if soup.find(id="ctl00_Content_valErrors"): raise InvalidLoginException("Your login attempt was not successful." " Please check your details and try again.") # now `soup` should be the parsed results page or multi-degree page... # step 3. if necessary, navigate to a specific degree page (for # multi-degree students) title = soup.find(id="ctl00_h1PageTitle") if title.text == "Results > Choose a Study Plan": print("Multiple degrees detected.") degree_grid = soup.find("table", id="ctl00_Content_grdResultPlans") cell = degree_grid.find_all("tr")[DEGREE_INDEX+1].find_all("td")[2] print(f"Loading results for degree {DEGREE_INDEX} - {cell.text}") # get the form's hidden field values into the POST data hidden_fields = soup.find_all('input', type='hidden') degree_form = {tag['name']: tag['value'] for tag in hidden_fields} # now simulate pressing the required degree button degree_form['__EVENTTARGET'] = "ctl00$Content$grdResultPlans" degree_form['__EVENTARGUMENT'] = f"ViewResults${DEGREE_INDEX}" # post the form, to take us to the results page proper response = session.post("https://prod.ss.unimelb.edu.au/student/SM/" "ResultsDtls10.aspx?f=$S1.EST.RSLTDTLS.WEB", data=degree_form) soup = BeautifulSoup(response.content, BS4_PARSER) # now `soup` should be the parsed results page for the chosen degree... # step 4. extract the actual WAM text from the results page, as required print("Extracting WAM") wam_para = soup.find(class_='UMWAMText') if wam_para is not None: wam_text = wam_para.find('b').text else: print("Couldn't find WAM (no WAM yet?)") wam_text = None return wam_text def select_notification_method() -> NotificationHelper: print() methods = [ ("Email", partial(EmailNotification, UNIMELB_USERNAME, UNIMELB_PASSWORD)), ("Pushbullet", PushBulletNotification), ("ServerChan (WeChat)", ServerChanNotification), ("Telegram Bot", TelegramBotNotification), ("IFTTT Webhook", IFTTTWebhookNotification), ("Desktop Notifications", DesktopNotification), ("Log File", LogFile) ] for i, m in enumerate(methods): print("{}: {}".format(i, m[0])) inp = input("Please select your preferred notification method(s) (comma delimited): ") try: selected = set([int(i) for i in inp.split(',')]) print("You have selected:", ", ".join([methods[i][0] for i in selected])) except: print(f"There was an error in your input, defaulting to method 0: {methods[0][0]}") return [methods[0][1]()] helpers = [] for i in selected: helpers.append(methods[i][1]()) return helpers if __name__ == '__main__': main() ```
{ "source": "josephsv96/crate_classifier", "score": 2 }
#### File: crate_classifier/src/augmentation.py ```python import numpy as np from imgaug import augmenters as iaa from pathlib import Path from tqdm import tqdm import cv2 # Local Modules from src.utils import create_output_folder from src.utils import save_npy_v2 from src.utils import read_cmp from src.utils import write_cmp from src.utils import get_timestamp class Augmenter: """Class load image sets at different exposures and their annotations to generate augmented images from them. """ def __init__(self, PARAMS, img_paths, ann_paths, out_dir=None): self.img_paths = img_paths self.ann_paths = ann_paths self.src_h, self.src_w = PARAMS["img_src_shape"] self.out_h, self.out_w = PARAMS["net_in_shape"] self.num_exp = PARAMS["num_exp"] self.num_img = int(len(img_paths) / self.num_exp) self.AUG_CONFIG = PARAMS["augmentation"] self.GAUSS_CONFIG = PARAMS["guassian"] self.out_dir = out_dir if out_dir is None: out_path = create_output_folder(Path.cwd(), folder_name="output_") self.out_dir = "/".join(str(out_path).split("\\") ) + "/" + get_timestamp() (Path(self.out_dir)).mkdir() (Path(self.out_dir) / "images").mkdir() (Path(self.out_dir) / "npy_images").mkdir() (Path(self.out_dir) / "npy_annots").mkdir() @ staticmethod def get_augmenters(num_gen, aug_config): """Generate a list of deterministic augmenters. num_gen = 0 or None will return a single Augmenter Args: num_gen (int): Number of augmenters Returns: list: List of Augmeters """ seq_img = iaa.Sequential([iaa.Fliplr(0.5), iaa.Affine(scale=aug_config["scale"], translate_percent={ "x": aug_config["trans_x"], "y": aug_config["trans_y"]}, rotate=aug_config["rotate"], shear=aug_config["shear"] )], random_order=False, random_state=0) seq_img_list = seq_img.to_deterministic(n=num_gen) return seq_img_list @ staticmethod def to_square(img_instance): """Converts a wide image to square image, without loosing resolution. Args: img_instance (numpy.array): Image in wide resolution Returns: numpy.array: Squared image """ if len(img_instance.shape) != 3: img_instance = np.expand_dims(img_instance, axis=-1) if img_instance.shape[1] > img_instance.shape[0]: dim = img_instance.shape[0] mid = int(img_instance.shape[1]/2) img_sq = img_instance[:, int(mid-dim/2):int(mid+dim/2), :] else: dim = img_instance.shape[1] mid = int(img_instance.shape[0]/2) img_sq = img_instance[int(mid-dim/2):int(mid+dim/2), :, :] return img_sq @ staticmethod def gaussian_blur(img_instance, gauss_config): """Apply Gaussian filter to an image instance Args: img_instance (numpy.array): Input image array gauss_config (dict): Filter parameters Returns: numpy.array: Blurred image output """ img_instance = cv2.GaussianBlur(img_instance, ksize=tuple(gauss_config["ksize"]), sigmaX=gauss_config["sigma"], borderType=cv2.BORDER_DEFAULT) return img_instance def get_img_augs(self, img_files, augmenter): """Apply augmenter to img_files array. Args: img_files (numpy.array): Image set; (height, width, num_exp * 3) augmenter (imgaug.augmenters.meta.Augmenter): Augmenter Returns: numpy.array: Augmented image set of (out_h, out_w, num_exp * 3) """ img_aug = np.zeros([self.out_h, self.out_w, self.num_exp*3], dtype=np.float32) j = 0 for i in range(self.num_exp): image_instance = cv2.imread(str(img_files[i]), cv2.IMREAD_UNCHANGED) aug_img = augmenter.augment_image(image_instance) img_buffer = self.to_square(self.gaussian_blur(aug_img, self.GAUSS_CONFIG)) img_buffer = cv2.resize(img_buffer, (self.out_h, self.out_w), interpolation=cv2.INTER_NEAREST) img_aug[:, :, j:j+3] = img_buffer j += 3 return img_aug def get_ann_augs(self, annot, augmenter): """Apply augmenter to annotation array. Args: annot (numpy.array): Annotation; (height, width) augmenter (imgaug.augmenters.meta.Augmenter): Augmenter Returns: numpy.array: Augmented annotation set of (out_h, out_w, 1) """ annot_aug = np.zeros([self.out_h, self.out_w, 1], dtype=np.float32) aug_img = augmenter.augment_image(annot[:, :]) ann_buffer = self.to_square(aug_img) annot_aug[:, :, 0] = cv2.resize(ann_buffer, (self.out_h, self.out_w), interpolation=cv2.INTER_NEAREST) return annot_aug def generate_aug(self, num_gen, r_state=1, write_img=False, start_index=0): """To generate augmented image and annotation sets. Same augmentation is applied to a set of images and its annotation. Args: num_gen (int): Number of images to be generated. r_state (int, optional): Random state to select image set. Defaults to 1. write_img (bool, optional): Flag to write images to output folder. Defaults to False. Returns: numpy.array: Augmented annotation set of (out_h, out_w, num_exp*3) numpy.array: Augmented annotation set of (out_h, out_w, 1) """ img_aug_arr = np.zeros([num_gen, self.out_h, self.out_w, self.num_exp*3], dtype=np.float32) ann_aug_arr = np.zeros([num_gen, self.out_h, self.out_w, 1], dtype=np.float32) # Generating augmenters augs = self.get_augmenters(num_gen=num_gen, aug_config=self.AUG_CONFIG) # Select image and corresponding annotation randomly # for i in range(num_gen): for i in tqdm(range(num_gen)): np.random.seed(i * abs(r_state)) random_index = np.random.randint(0, self.num_img - 1) # Select image img_index = random_index * self.num_exp img_files = self.img_paths[img_index:img_index + self.num_exp] # Select annotation ann_file = self.ann_paths[random_index] # Image Generation # (i,128,128,9) = f(random_index,964,1292,9) img_aug_arr[i, :, :, :] = self.get_img_augs(img_files, augmenter=augs[i]) # Annot Generation # (i,128,128,1) = f(random_index,964,1292,1) annot_instance = read_cmp(ann_file, (self.src_h, self.src_w)) ann_aug_arr[i, :, :, :] = self.get_ann_augs(annot_instance, augmenter=augs[i]) # Saving images and masks if write_img is True: j = 0 exp_names = [chr(ord('`')+i+1) for i in range(self.num_exp)] # writing images to .bmp for _, ch in zip(range(self.num_exp), exp_names): img_name = f"img_{str(i+start_index).zfill(6)}_{ch}.bmp" img_file = f"{self.out_dir}/images/{img_name}" cv2.imwrite(img_file, img_aug_arr[i, :, :, j:j+self.num_exp]) j += self.num_exp # writing image set to .npy img_name = f"img_{str(i+start_index).zfill(6)}" img_file = f"{self.out_dir}/npy_images/{img_name}" save_npy_v2(img_aug_arr[i, :, :, :], img_file) # writing annotation to .npy ann_name = f"ann_{str(i+start_index).zfill(6)}" ann_file = f"{self.out_dir}/npy_annots/{ann_name}" save_npy_v2(ann_aug_arr[i, :, :, :], ann_file) # !WORK-IN-PROGRESS # writing annotation to .cmp # ann_name = f"img_{str(i+start_index).zfill(6)}.cmp" # ann_file = f"{self.out_dir}/images/{ann_name}" # write_cmp(np.argmax(ann_aug_arr[i, :, :, :], axis=-1), # ann_file) return img_aug_arr, ann_aug_arr ``` #### File: crate_classifier/src/main.py ```python def main(): # initialize the number of epochs to train for, initial learning rate, # batch size, and image dimensions """ EPOCHS = 500 R_STATE = 0 BS = 32 INIT_LR = 1e-3 input_height = 128 input_width = 128 # STEPS = len(train_X) // BS ##steps_per_epoch class_limit = 20""" ``` #### File: src/models/model_resnet18.py ```python from tensorflow.keras import Model from tensorflow.keras.layers import Input from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import LeakyReLU from tensorflow.keras.layers import Reshape # from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Add from tensorflow.keras.losses import CategoricalCrossentropy from tensorflow.keras.optimizers import Adam class CrateNet: def __init__(self, grid_h, grid_w, num_exp, num_classes, depth, init_lr, epochs): self.grid_h = grid_h self.grid_w = grid_w self.num_exp = num_exp self.num_classes = num_classes self.depth = depth self.init_lr = init_lr self.epochs = epochs @staticmethod def res_identity(x, kernel_no, num_layer): x_init = x x = Conv2D(kernel_no, (3, 3), strides=(1, 1), padding='same', name='conv_' + str(num_layer), use_bias=False)(x) x = BatchNormalization(name='norm_' + str(num_layer))(x) x = LeakyReLU(alpha=0.1)(x) num_layer += 1 x = Conv2D(kernel_no, (3, 3), strides=(1, 1), padding='same', name='conv_' + str(num_layer), use_bias=False)(x) x = BatchNormalization(name='norm_' + str(num_layer))(x) num_layer += 1 # Add block x = Add()([x, x_init]) x = LeakyReLU(alpha=0.1)(x) num_layer += 1 return x, num_layer @staticmethod def res_conv(x, kernel_no, num_layer): x_init = x x = Conv2D(kernel_no, (3, 3), strides=(1, 1), padding='same', name='conv_' + str(num_layer), use_bias=False)(x) x = BatchNormalization(name='norm_' + str(num_layer))(x) x = LeakyReLU(alpha=0.1)(x) num_layer += 1 x = Conv2D(kernel_no, (3, 3), strides=(1, 1), padding='same', name='conv_' + str(num_layer), use_bias=False)(x) x = BatchNormalization(name='norm_' + str(num_layer))(x) num_layer += 1 # Skip line x_skip = Conv2D(kernel_no, (1, 1), strides=(1, 1), padding='same', name='skip_conv_' + str(num_layer), use_bias=False)(x_init) x_skip = BatchNormalization(name='skip_norm_' + str(num_layer))(x_skip) # Add block x = Add()([x, x_skip]) x = LeakyReLU(alpha=0.1)(x) num_layer += 1 return x, num_layer @staticmethod def denife_cnn(height, width, num_exposures, num_classes, depth=3): input_layer = Input(shape=(height, width, depth*num_exposures), name="input_1") x = input_layer num_layer = 1 # stack 1 x = Conv2D(8, (7, 7), strides=(1, 1), padding='same', name='conv_' + str(num_layer), use_bias=False)(x) x = BatchNormalization(name='norm_' + str(num_layer))(x) x = LeakyReLU(alpha=0.1)(x) num_layer += 1 print("stack 1") # stack 2 # sub stack 1 x, num_layer = CrateNet.res_identity(x, 8, num_layer) # sub stack 2 x, num_layer = CrateNet.res_identity(x, 8, num_layer) print("stack 2") # stack 3 # sub stack 1 x, num_layer = CrateNet.res_conv(x, 16, num_layer) # sub stack 2 x, num_layer = CrateNet.res_identity(x, 16, num_layer) print("stack 3") # stack 4 # sub stack 1 x, num_layer = CrateNet.res_conv(x, 32, num_layer) # sub stack 2 x, num_layer = CrateNet.res_identity(x, 32, num_layer) print("stack 4") # stack 5 # sub stack 1 x, num_layer = CrateNet.res_conv(x, 64, num_layer) # sub stack 2 x, num_layer = CrateNet.res_identity(x, 64, num_layer) print("stack 5") # stack 6 x = Conv2D(num_classes, (1, 1), strides=(1, 1), padding='same', name='conv_' + str(num_layer), use_bias=False)(x) x = BatchNormalization(name='norm_' + str(num_layer))(x) x = LeakyReLU(alpha=0.1)(x) num_layer += 1 print("stack 6") # Output Detection layer x = Conv2D(num_classes, (1, 1), strides=(1, 1), padding='same', name='DetectionLayer', use_bias=False)(x) output_layer = Reshape((height, width, num_classes), name="reshape_1")(x) return input_layer, output_layer @staticmethod def build(grid_h, grid_w, num_exp, num_classes, depth, init_lr, epochs): """Build model with CategoricalCrossentropy loss """ input_l, output_l = CrateNet.denife_cnn(height=grid_h, width=grid_w, num_exposures=num_exp, num_classes=num_classes, depth=depth) # Model Defenition model = Model(inputs=input_l, outputs=output_l, name="cnn_model_" + str(num_exp) + "_exp") opt = Adam(lr=init_lr, decay=init_lr / (epochs * 0.5)) model.compile(loss=CategoricalCrossentropy(from_logits=True), optimizer=opt, metrics=["accuracy"]) return model ``` #### File: src/sub_modules/model_utils.py ```python import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tqdm import tqdm_notebook # Local modules from data_loader import load_json, load_npy from preprocessing import img_preprocess, ann_preprocess from preprocessing import resize_arr, split_data, stack_exp from preprocessing import stack_exp_v2, ann_preprocess_v2 from utils import img_arr_to_gray # import augmentation_dev as augmentation # import plotting # from train import train_model_1, train_model_2, train_model_1_v2 # Models from models import model_14k as model_1 # baseline model # VGG16 models from models import model_vgg16_24k as model_2 from models import model_vgg16_34k as model_3 from models import model_vgg16_47k as model_4 # ResNet models from models import model_resnet18_34k as model_5 from models import model_resnet18_46k as model_6 # DenseNet models from models import model_densenet21_35k as model_7 from models import model_densenet21_48k as model_8 # Colormap object for custom colours from matplotlib.colors import LinearSegmentedColormap # Colors class_colors = [(0, 0, 0), (0, 0.5, 0), (0, 1, 1), (0.5, 0.5, 0.5), (0.5, 1, 0.5), (0.5, 0.25, 0.25), (0.5, 0, 1), (0, 0.25, 0.5), (0, 0, 1), (1, 1, 1), (1, 0, 0.5)] CMAP_11 = LinearSegmentedColormap.from_list("cmap_11", class_colors, N=11) # Global num_exp = 3 model_list = [model_1, model_2, model_3, model_4, model_5, model_6, model_7, model_8] model_names = ["model_14k", "VGG16_24k", "VGG16_34k", "VGG16_47k", "ResNet18_34k", "ResNet18_46k", "DenseNet21_35k", "DenseNet21_48k"] # Constants net_h = 128 net_w = 128 class_limit = 20 R_STATE = 0 BS = 32 LR = 1e-2 PRE_EPOCHS = 500 EPOCHS = 500 # Converting from RGB to BGR def bgr_to_rgb(images): buffer_arr = np.zeros((images.shape)) j = 0 for i in range(num_exp): buffer_arr[:, :, :, j] = images[:, :, :, j+2] buffer_arr[:, :, :, j+1] = images[:, :, :, j+1] buffer_arr[:, :, :, j+2] = images[:, :, :, j] j += 3 return buffer_arr # Preview of data def preview_data_v2(img_arr, annot_arr, num_exp, index=0): plt.figure(figsize=(20, 50)) # showing images j = 0 for i in range(num_exp): plt.subplot(1, num_exp+2, i+1) plt.imshow(img_arr[index, :, :, j:j+num_exp]/255) plt.xlabel(f"exp_{i}") j += num_exp plt.xticks([]) plt.yticks([]) # showing annotations plt.subplot(1, num_exp+2, i+2) plt.imshow(annot_arr[index, :, :, 0]) plt.xlabel("mask") plt.xticks([]) plt.yticks([]) # showing label plt.show() # Misc def print_all_preds(img_arr, y_test, y_pred, cols=5, class_to_show=6, color_mode='rgb'): num = y_test.shape[0] if (num % cols != 0): rows = int(num/cols) + 1 else: rows = int(num/cols) fig_size = 2 col_set = cols * 3 k = 0 # Creating a img grid plt.figure(figsize=(fig_size*col_set, fig_size*rows)) plt_num = 1 rgb_img = np.zeros([img_arr.shape[1], img_arr.shape[2], 3]) for i in range(rows): for j in range(cols): if k == num: break if color_mode == 'bgr': rgb_img[:, :, 0] = img_arr[k, :, :, 2] rgb_img[:, :, 1] = img_arr[k, :, :, 1] rgb_img[:, :, 2] = img_arr[k, :, :, 0] else: rgb_img = img_arr[k, :, :, 0:3] plt.subplot(rows, col_set, plt_num) plt.imshow(rgb_img) plt.xlabel("Image") plt.xticks([]) plt.yticks([]) plt.subplot(rows, col_set, plt_num+1) plt.imshow(y_test[k]) plt.xlabel("Ground_Truth") plt.xticks([]) plt.yticks([]) plt.clim(vmin=0, vmax=class_to_show) plt.subplot(rows, col_set, plt_num+2) plt.imshow(y_pred[k]) plt.xlabel("Prediction") plt.xticks([]) plt.yticks([]) plt.colorbar() plt.clim(vmin=0, vmax=class_to_show) plt_num = plt_num + 3 k += 1 plt.tight_layout() plt.show() # plt.savefig("/content/drive/My Drive/rhs_werk_March2020/dataset_3_ann/all_preds.png") def print_all_preds_v2(img_arr, model_pred, cols=5, class_to_show=6, color_mode='rgb'): # arrays is_crate_arr = model_pred[:, :, :, 0] class_arr = np.argmax(model_pred[:, :, :, 1:], axis=-1) # Grid spec num = model_pred.shape[0] if (num % cols != 0): rows = int(num/cols) + 1 else: rows = int(num/cols) fig_size = 2 col_set = cols * 3 k = 0 # Creating a img grid plt.figure(figsize=(fig_size*col_set, fig_size*rows)) plt_num = 1 rgb_img = np.zeros([img_arr.shape[1], img_arr.shape[2], 3]) for i in range(rows): for j in range(cols): if k == num: break if color_mode == 'bgr': rgb_img[:, :, 0] = img_arr[k, :, :, 2] rgb_img[:, :, 1] = img_arr[k, :, :, 1] rgb_img[:, :, 2] = img_arr[k, :, :, 0] else: rgb_img = img_arr[k, :, :, 0:3] plt.subplot(rows, col_set, plt_num) plt.imshow(rgb_img) plt.xlabel("Image") plt.xticks([]) plt.yticks([]) plt.subplot(rows, col_set, plt_num+1) plt.imshow(is_crate_arr[k]) plt.xlabel("is_Crate") plt.xticks([]) plt.yticks([]) plt.clim(vmin=0, vmax=1) plt.subplot(rows, col_set, plt_num+2) plt.imshow(class_arr[k, :, :]) plt.xlabel("class") plt.xticks([]) plt.yticks([]) plt.colorbar() plt.clim(vmin=0, vmax=class_to_show) plt_num = plt_num + 3 k += 1 plt.tight_layout() plt.show() # plt.savefig("/content/drive/My Drive/rhs_werk_March2020/dataset_3_ann/all_preds.png") def pred_to_img(y_test, y_pred): y_test = np.argmax(y_test, axis=-1) y_pred = np.argmax(y_pred, axis=-1) return y_test, y_pred def show_model_pred(model, img_arr, annot_arr, net_h, net_w, class_to_show, color_mode): img_arr = resize_arr(img_preprocess(img_arr), net_h, net_w) model_pred = model.predict(img_arr) model_true = resize_arr(ann_preprocess( annot_arr, class_limit), net_h, net_w) y_test, y_pred = pred_to_img(model_true, model_pred) print_all_preds(img_arr, y_test, y_pred, cols=4, class_to_show=class_to_show, color_mode=color_mode) return model_pred def show_model_pred_2(model, img_arr, annot_arr, net_h, net_w, class_to_show, color_mode): img_arr = resize_arr(img_preprocess(img_arr), net_h, net_w) model_pred = model.predict(img_arr) # model_true = resize_arr(ann_preprocess(annot_arr,class_limit), net_h, net_w) print_all_preds_v2(img_arr, model_pred, cols=4, class_to_show=class_to_show, color_mode=color_mode) return model_pred def synth_exp(image_arr, num_exp=3): new_image_arr = np.zeros( [image_arr.shape[0], image_arr.shape[1], image_arr.shape[2], num_exp*3]) for i in range(image_arr.shape[0]): new_image_arr[i, :, :, 0:3] = image_arr[i, :, :, :] - 70 new_image_arr[i, :, :, 3:6] = image_arr[i, :, :, :] new_image_arr[i, :, :, 6:9] = image_arr[i, :, :, :] + 70 new_image_arr[new_image_arr > 255] = 255.0 new_image_arr[new_image_arr < 0] = 0.0 return new_image_arr def join_2_arr(arr_1, arr_2): img_num = arr_1.shape[0] + arr_2.shape[0] joined_arr = np.zeros( [img_num, arr_1.shape[1], arr_1.shape[2], arr_1.shape[-1]]) joined_arr[0:arr_1.shape[0], :, :, :] = arr_1 joined_arr[arr_1.shape[0]:img_num, :, :, :] = arr_2 return joined_arr # Plotting def lowest_point(arr): minimun_val = arr.index(min(arr)) return minimun_val def highest_point(arr): minimun_val = arr.index(max(arr)) return minimun_val def plot_history_mode(history_list, epochs, models_list, model_names=None, plot_mode="train"): # Setting modes (train or val) if plot_mode == "train": acc_mode = "accuracy" loss_mode = "loss" style = "dashed" elif plot_mode == "test": acc_mode = "val_accuracy" loss_mode = "val_loss" style = "solid" else: print("ERROR: Invalid plot_mode") plt.figure(figsize=(30, 15)) #plot_colors = ['b', 'm', 'r', 'g', ] # Initializing names if model_names is None or len(model_names) != len(history_list): model_names = [f"model_1{i}" for i in range(len(history_list))] # "Accuracies" plt.subplot(1, 2, 1) plot_legend = [] print("Max Accuracies:") for i, model_history in enumerate(history_list): max_acc_val = max(model_history.history[acc_mode]) * 100 max_pt_val = highest_point(model_history.history[acc_mode]) print( f"({plot_mode}) {model_names[i]}\t: {max_acc_val:.2f} @ {max_pt_val}/{epochs}") # Plots plt.plot(model_history.history[acc_mode], linestyle=style) # plt.hlines(y=max(model_history.history['accuracy']), xmin=0, xmax=epochs) plot_legend.append( f'{model_names[i]} [{models_list[i].count_params():,d}]') # plot labels plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(plot_legend, loc='best') # "Losses" plt.subplot(1, 2, 2) plot_legend = [] for i, model_history in enumerate(history_list): plt.plot(model_history.history[loss_mode], linestyle=style) # plt.hlines(y=min(model_history.history['loss']), xmin=0, xmax=epochs) plot_legend.append( f'{model_names[i]} [{models_list[i].count_params():,d}]') # plot labels plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(plot_legend, loc='best') plt.show() # Training Helper funcs # Preprocessing for Model 1 ("isCrate") def preprocess_iscrate(img_arr, annot_arr): X = resize_arr(img_preprocess(img_arr), net_h, net_w) # print("X shape:", X.shape) # convert y to "isCrate" classes y = resize_arr(ann_preprocess( annot_arr[:, :, :, 0], class_limit), net_h, net_w) y = y[:, :, :, 0:2] y[:, :, :, 1] = (y[:, :, :, 0] * - 1) + 1 # print("y shape:", y.shape) # Splitting data to detect "isCrate" train_data, test_data = split_data(X, y) return (train_data, test_data) # Preprocessing for Model 2 ("isClass") def preprocess_isclass(img_arr, annot_arr): X = resize_arr(img_preprocess(img_arr), net_h, net_w) # print("X shape:", X.shape) y = resize_arr(ann_preprocess( annot_arr[:, :, :, 0], class_limit), net_h, net_w) # print("y shape:", y.shape) # Splitting data to detect "isCrate" train_data, test_data = split_data(X, y) return (train_data, test_data) def bundle_models(model_list, height=net_h, width=net_w, exp_num=3, class_num=2, net_depth=3, LR=LR, EPOCHS=EPOCHS): """ Returns a list of compiled models with given config and model defenitions """ compiled_models = [] for i, model_def in enumerate(model_list): print(f"Building model_{i+1}/{len(model_list)}") model_comp = model_def.CrateNet.build(grid_h=height, grid_w=width, num_exp=exp_num, num_classes=class_num, depth=net_depth, init_lr=LR, epochs=EPOCHS) compiled_models.append(model_comp) return compiled_models def train_model_bundle(models, train_data, test_data, EPOCHS=EPOCHS, to_h5=True, mod_no='1'): """Training model from the list of defined models""" models_hist = [] for i, model in enumerate(models): print(f"Training model_{i+1}/{len(models)}") models_hist.append(model.fit(x=train_data[0], y=train_data[1], validation_data=test_data, epochs=EPOCHS)) if to_h5: model.save("mod_" + mod_no + '_' + model_names[i] + ".h5") model.save_weights("mod_" + mod_no + '_' + model_names[i] + "_w.h5") return models_hist # Crate detector # Crate detector def crate_detector(model_1, model_2, img_arr, annnot_arr, index): output_1 = np.argmax(model_1.predict( np.expand_dims(img_arr[index], axis=0)), axis=-1)[0, :, :] output_2 = np.argmax(model_2.predict( np.expand_dims(img_arr[index], axis=0)), axis=-1)[0, :, :] # Colors class_colors = ['black', '#259c14', '#4c87c6', '#737373', '#cbec24', '#f0441a', '#0d218f', 'blue', 'magenta', 'green'] output_3 = output_1 * output_2 plt.figure(figsize=(20, 4)) plt.subplot(1, 5, 1) plt.imshow(img_arr[index, :, :, 6:9], cmap="cividis") plt.title("Image") plt.xticks([]) plt.yticks([]) plt.subplot(1, 5, 2) plt.imshow(np.argmax(annnot_arr[index, :, :, :], axis=-1), cmap="cividis") plt.title("Groud truth") plt.xticks([]) plt.yticks([]) plt.colorbar() plt.clim(0, 10) plt.subplot(1, 5, 3) plt.imshow(output_1, cmap="cividis") plt.title("model_1 output") plt.xticks([]) plt.yticks([]) plt.colorbar() plt.clim(0, 1) plt.subplot(1, 5, 4) plt.imshow(output_2, cmap="cividis") plt.title("model_2 output") plt.xticks([]) plt.yticks([]) plt.colorbar() plt.clim(0, 10) plt.subplot(1, 5, 5) plt.imshow(output_3, cmap="cividis") plt.title("combined output") plt.xticks([]) plt.yticks([]) plt.colorbar() plt.clim(0, 10) plt.show() return output_3 def load_mod_weights(model_list, model_names, prefix="mod_1_"): loaded_model_list = [] for model, name in zip(model_list, model_names): loaded_model_list.append(model.load_weights(prefix + name + ".h5")) print(model) print(prefix + name + ".h5") print(loaded_model_list) return loaded_model_list class ModelBundle: def __init__(self, model_list, model_names, net_config, train_config): self.model_list = model_list self.model_names = model_names self.height = net_config["net_h"] self.width = net_config["net_w"] self.num_exp = net_config["num_exp"] self.net_depth = net_config["net_depth"] self.LR = train_config["learning_rate"] self.EPOCHS = train_config["epochs"] def bundle_models(self, class_num=2): """ Returns a list of compiled models with given config and model defenitions """ compiled_models = [] for i, model_def in enumerate(model_list): print(f"Building model_{i+1}/{len(model_list)}") model_comp = model_def.CrateNet.build(grid_h=self.height, grid_w=self.width, num_exp=self.num_exp, num_classes=class_num, depth=self.net_depth, init_lr=self.LR, epochs=self.EPOCHS) compiled_models.append(model_comp) return compiled_models def train_bundle(self, train_d, test_d, class_num, mod_no=1, to_h5=True): """Training model from the list of defined models""" c_models = self.bundle_models(class_num) models_hist = [] for i, model in enumerate(c_models): print(f"Training (mod_{mod_no}) {self.model_names[i]}") print(f"{i+1}/{len(c_models)}") # Loop over the different datasets models_hist.append(model.fit(x=train_d[0], y=train_d[1], validation_data=test_d, epochs=EPOCHS)) if to_h5: model_name_i = "mod_" + str(mod_no) + '_' + model_names[i] print(f"Saving model: {model_name_i}") model.save(model_name_i + ".h5") model.save_weights(model_name_i + "_w.h5") return models_hist ``` #### File: src/sub_modules/pkg_1a.py ```python import numpy as np from pathlib import Path # Local Modules from src.utils import load_json, rm_duplicate class DataChecker: def __init__(self, src_dir, num_exp): self.src_dir = src_dir self.num_exp = num_exp self.img_paths, self.ann_paths = DataChecker.data_checker(src_dir, num_exp) @staticmethod def data_checker(src_dir, num_exp, img_ext=".bmp", ann_ext=".cmp"): """Checks if there are missing annotation files in the source folder. Return pathlib.Path files for images and annotations WARNING!! DOES NOT CHECK IF ANNOTATIONS ARE CORRECT (by name) ADD CROSS VALIDATION Args: src_dir (str): Source path num_exp (int): Number of exposures of the images img_ext (str, optional): Image File Extension. Defaults to ".bmp". ann_ext (str, optional): Annotation File Extension. Defaults to ".cmp". Returns: list: Valid image file paths list: Valid annotation file paths """ src_path = Path(src_dir) # All image and annotation paths image_paths = list(src_path.glob("**/*" + img_ext)) annot_paths = list(src_path.glob("**/*" + ann_ext)) img_nums = rm_duplicate([file.stem.split("_")[1] for file in image_paths]) ann_nums = [file.stem.split("_")[1] for file in annot_paths] img_dict = dict(enumerate(img_nums)) indices = {v: k for k, v in img_dict.items()} # Matching valid_sets = set(img_dict.values()).intersection(ann_nums) valid_indices = np.sort([indices[value] for value in valid_sets]) # Missing annotations missing_sets = np.sort( list(set(img_dict.values()).symmetric_difference(ann_nums))) if missing_sets.size > 0: print(f"Missing annotation files: {missing_sets}") # Valid paths valid_image_paths = [] valid_annot_paths = [] for i, index in enumerate(valid_indices): j = index * num_exp valid_annot_paths.append(annot_paths[i]) for k in range(num_exp): valid_image_paths.append(image_paths[j+k]) valid_image_paths = valid_image_paths valid_annot_paths = valid_annot_paths return valid_image_paths, valid_annot_paths def logging(self): """Logging for pkg_1a """ print("img_paths sample:", self.img_paths[:4], sep="\n") print("ann_paths sample:", self.ann_paths[:4], sep="\n") return None def main(): # Initial Parameters PKG_1_PARAMS = load_json("pkg_1_config.json") # Checking for consistency in the dataset pkg_1a_obj = DataChecker(PKG_1_PARAMS["src_dir"], PKG_1_PARAMS["num_exp"]) pkg_1a_obj.logging() return None if __name__ == "__main__": main() ``` #### File: crate_classifier/src/train.py ```python import numpy as np from data_loader import load_json, load_npy from preprocessing import img_preprocess, ann_preprocess from preprocessing import resize_arr, split_data, stack_exp from model import make_model, make_model_2 def train_model_1(img_arr, annot_arr, net_h, net_w, class_limit, epochs=100): """ To train the standard model. img_arr shape => (img_num, height, width, 9) """ # Preprocessing - Images X = resize_arr(img_preprocess(img_arr), net_h, net_w) print("X shape:", X.shape) # Preprocessing - Annotations y = resize_arr(ann_preprocess(annot_arr, class_limit), net_h, net_w) print("y shape:", y.shape) # Splitting data train_data, test_data = split_data(X, y) model_input, model = make_model(img_shape=[net_w, net_h], num_classes=class_limit, num_exposures=3) model_hist = model.fit(x=train_data[0], y=train_data[1], validation_data=test_data, epochs=epochs) return model, model_input, model_hist def add_is_crate(class_label_arr): is_crate_arr = class_label_arr[:, :, :, 0] - (1.0) * (-1) is_crate_arr_2 = np.zeros( [is_crate_arr.shape[0], is_crate_arr.shape[1], is_crate_arr.shape[2], 1]) is_crate_arr_2[:, :, :, 0] = is_crate_arr return is_crate_arr_2 def train_model_1_v2(img_arr, annot_arr, net_h, net_w, class_limit, init_lr=1e-3, epochs=100): """ To train the standard model. img_arr shape => (img_num, height, width, 9) """ # Preprocessing - Images X = resize_arr(img_preprocess(img_arr), net_h, net_w) print("X shape:", X.shape) # Preprocessing - Annotations y = resize_arr(ann_preprocess(annot_arr, class_limit), net_h, net_w) print("y shape:", y.shape) # Splitting data train_data, test_data = split_data(X, y) # Creating 'isCrate output' train_data.append(add_is_crate(train_data[1])) test_data.append(add_is_crate(test_data[1])) # Making the model model_input, model = make_model_2(img_shape=[net_w, net_h], num_classes=class_limit, num_exposures=3, init_lr=init_lr, epochs=epochs) model_hist = model.fit(x=train_data[0], y={"isCrate": train_data[2], "class": train_data[1]}, validation_data=(test_data[0], {"isCrate": test_data[2], "class": test_data[1]}), epochs=epochs) return model, model_input, model_hist def train_model_2(img_arr, annot_arr, net_h, net_w, class_limit, epochs=100): """ To train the standard model. img_arr shape => (img_num, height, width, 9) train_model_1 adding "is_crate" class """ # Preprocessing - Images X = resize_arr(img_preprocess(img_arr), net_h, net_w) print("X shape:", X.shape) # Preprocessing - Annotations y = resize_arr(ann_preprocess(annot_arr, class_limit), net_h, net_w) # Adding "is_crate" class y[:, :, :, 0] = (y[:, :, :, 0] * -1) + 1 print("y shape:", y.shape) # Splitting data train_data, test_data = split_data(X, y) model_input, model = make_model(img_shape=[net_w, net_h], num_classes=class_limit, num_exposures=3) model_hist = model.fit(x=train_data[0], y=train_data[1], validation_data=test_data, epochs=epochs) return model, model_input, model_hist def main(): data_dir = "dataset/data_1" images_file = data_dir + "/dataset_images.npy" labels_file = data_dir + "/dataset_labels.npy" config = data_dir + "/label_config.json" images = load_npy(images_file) annotations = load_npy(labels_file) config = load_json(config) print("Image batch shape:\t", images.shape) print("Annotation batch shape:\t", annotations.shape) epochs = 10 R_STATE = 0 BS = 32 INIT_LR = 1e-3 net_w = 128 net_h = 128 # STEPS = len(train_X) // BS ##steps_per_epoch class_limit = 20 # Preprocessing - Images X = resize_arr(img_preprocess(stack_exp(images)), net_h, net_w) print(X.shape) # Preprocessing - Annotations y = resize_arr(ann_preprocess(annotations, class_limit), net_h, net_w) print(y.shape) # Splitting data train_data, test_data = split_data(X, y) model_1_input, model_1 = make_model(img_shape=[net_w, net_h], num_classes=class_limit, num_exposures=3) model_1_hist = model_1.fit(x=train_data[0], y=train_data[1], validation_data=test_data, epochs=epochs) return model_1_hist.history.key() if __name__ == "__main__": main() ``` #### File: crate_classifier/src/train_v2.py ```python from pathlib import Path from data_loader import load_npy from preprocessing import img_preprocess, ann_preprocess from preprocessing import resize_arr, split_data from preprocessing import stack_exp_v2, ann_preprocess_v2 from model_v2 import CrateNet def main(): # loading files images = load_npy(Path( "C:/Users/josep/Documents/work/crate_classifier/dataset/data_1/dataset/data_1_images_v1.npy")) annots = load_npy(Path( "C:/Users/josep/Documents/work/crate_classifier/dataset/data_1/dataset/data_1_labels_v1.npy")) # Constants net_h = 128 net_w = 128 class_limit = 20 LR = 1e-2 EPOCHS = 100 # Preprocessing img_arr = stack_exp_v2(images) annot_arr = ann_preprocess_v2(annots) X = resize_arr(img_preprocess(img_arr), net_h, net_w) print("X shape:", X.shape) y = resize_arr(ann_preprocess(annot_arr, class_limit), net_h, net_w) print("y shape:", y.shape) # Splitting data train_data, test_data = split_data(X, y) # Building and fitting model model = CrateNet.build(grid_h=net_h, grid_w=net_w, num_exp=3, num_classes=class_limit, init_lr=LR, epochs=EPOCHS) model_hist = model.fit(x=train_data[0], y=train_data[1], validation_data=test_data, epochs=EPOCHS) return model_hist if __name__ == "__main__": model_hist = main() ``` #### File: crate_classifier/tests/testing_utils.py ```python try: from src.utils import load_json except ImportError as error: print(f"Error: {error}; Local modules not found") except Exception as exception: print(exception) def load_params_1(): """Returns source path of images and number of exposures """ PKG_1_PARAMS = load_json("config/pkg_1_config.json") return PKG_1_PARAMS def load_params_2(): """Returns source path of images and number of exposures """ PKG_2_PARAMS = load_json("config/pkg_2_config.json") return PKG_2_PARAMS ``` #### File: crate_classifier/tests/test_pkg_1a.py ```python from pathlib import Path try: from tests.testing_utils import load_params_1 from src.sub_modules.pkg_1a import DataChecker except ImportError as error: print(f"Error: {error}; Local modules not found") except Exception as exception: print(exception) # Helper Functions def chk_dir(src_dir): """To check if the directory exists. Returns boolean """ src_is_dir = Path(src_dir).is_dir() if src_is_dir is False: print(f"Test Directory '{src_dir}' does not exist.") print("Add a directory containing the source images to run this test") return src_is_dir # Tests def test_data_checker_1(): PARAMS = load_params_1() src_dir, num_exp = PARAMS["src_dir"], PARAMS["num_exp"] assert(chk_dir(src_dir) is True) data_checker_obj = DataChecker(src_dir, num_exp) img_files = data_checker_obj.img_paths ann_files = data_checker_obj.ann_paths assert(int(len(img_files)/num_exp) == len(ann_files)) assert(img_files[int(0*num_exp)].stem.split('_')[1] == ann_files[0].stem.split('_')[1]) def test_data_checker_2(): PARAMS = load_params_1() src_dir, num_exp = PARAMS["src_dir"], PARAMS["num_exp"] assert(chk_dir(src_dir) is True) data_checker_obj = DataChecker(src_dir, num_exp) img_files = data_checker_obj.img_paths ann_files = data_checker_obj.ann_paths assert(int(len(img_files)/num_exp) == len(ann_files)) assert(img_files[int(10*num_exp)].stem.split('_')[1] == ann_files[10].stem.split('_')[1]) ```
{ "source": "josephtesla/quine-mccluskey-minimizer", "score": 4 }
#### File: quine-mccluskey-minimizer/Python/converter.py ```python def get_term(_bit_string): _ascii = 97 term = "" for x in range(len(_bit_string)): ch = chr(_ascii + x) if _bit_string[x] != '_': term = term + ch if _bit_string[x] == '1' else term + ch + "'" return term.upper() def get_function(prime_implicants, no_of_variables): bit_strings = list(map(lambda x: x[1], prime_implicants)) func = " + ".join([get_term(x) for x in bit_strings]) return func ``` #### File: quine-mccluskey-minimizer/Python/main.py ```python from qm_minimizer import QM_Minimizer from GUI import GUI def main(): print("|-----------------------------------------------|") print("| |") print("| |") print("| QUINE-McKluskey Minimizer |") print("| |") print("| SELECT AN ENVIRONMENT: |") print("| |") print("| ENTER '1' FOR GUI |") print("| |") print("| ENTER '2' FOR CONSOLE |") print("| |") print("| |") print("|-----------------------------------------------|") env = input("Enter here: ") while env not in ['1', '2']: print("!INVALID INPUT!") env = input("Enter here: ") if env == "1": GUI() #RUN GUI instance elif env == "2": print("\n|-------------- CONSOLE MODE -------------| \n") invalid = True while invalid: try: print("|-----ENTER MINTERMS SEPERATED BY COMMA (e.g 3,2,5,12...) ------|") minterms = input("minterms: ") print("\n\n|-----ENTER NUMBER OF VARIABLES (e.g 4) ------|") no_of_vars = int(input("no of variables: ")) func = QM_Minimizer(minterms, no_of_vars).minimize() print("|------ MINIMIZED EXPRESSION -------| \n") print("\t " + func) invalid = False except Exception as InvalidInputException: print("\n\n!----- ERROR: INVALID FUNCTION INPUT------|\n\n") invalid = True main() ``` #### File: quine-mccluskey-minimizer/Python/qm_minimizer.py ```python from converter import get_function class QM_Minimizer: def __init__(self, min_terms, N): self.min_terms = sorted([int(x) for x in min_terms.split(",")]) #initialize minterm from given function self.no_of_variables = N #set maximum number of variables in function self.s1_implicants = [] #to store size 2 implicants self.s2_implicants = [] #to store size 4 implicants self.prime_implicants = [] #to store prime implicants #Converts a given minterm integer into binary format with length of no of variables def to_binary(self, n): N = self.no_of_variables bin_string = "" while n != 0: rem = n % 2 n = n // 2 bin_string += str(rem) bin_string = bin_string[::-1] L = len(bin_string) if L < N: bin_string = "0" * (N - L) + bin_string return bin_string def generate_column_1(self): bin_column = [] no_of_terms = len(self.min_terms) for i in range(self.no_of_variables + 1): for _m in self.min_terms: bin_eq = self.to_binary(_m) if (bin_eq.count("1") == i): bin_column.append((_m, bin_eq)) return bin_column def position_of(self, string, key): pos = [] for k in range(len(string)): if string[k] == key: pos.append(k) return pos def is_next_gray(self, bin_1, bin_2): bit = "1" changed_bit_pos = "" for k in range(len(bin_1)): if (bin_1[k] == bit and bin_2[k] != bit): return (False, -1) if bin_1[k] != bit and bin_2[k] == bit: changed_bit_pos += str(k) if bin_1.count(bit) + 1 == bin_2.count(bit): return (True, changed_bit_pos) return (False, -1) def replace_all(self, string, x, y): return y.join(string.split(x)) def replace_pos(self, string, p, y): x = list(string) x[p] = y return "".join(x) def generate_column_2(self): self.s1_implicants = self.generate_column_1() for x in range(len(self.s1_implicants) - 1): for y in range(x + 1, len(self.s1_implicants)): imp_1 = self.s1_implicants[x] imp_2 = self.s1_implicants[y] gray_result = self.is_next_gray(imp_1[1], imp_2[1]) if gray_result[0]: changed_pos = gray_result[1] bit_str = self.replace_pos(imp_1[1], int(changed_pos), "_") self.s2_implicants.append([(imp_1[0], imp_2[0]), bit_str]) self.update_prime_implicants(self.s2_implicants) return self.s2_implicants def same_changed_pos(self, bit_str_1, bit_str_2): first_pos = bit_str_1.index("_") for k in range(len(bit_str_1)): if bit_str_1[k] == "_" and bit_str_2[k] != "_": return (False, first_pos) return (True, first_pos) def update_prime_implicants(self, current_column): for x in range(len(current_column)): c_imp_1 = current_column[x] is_match = False for y in range(len(current_column)): c_imp_2 = current_column[y] if x != y: is_match = self.same_changed_pos(c_imp_1[1], c_imp_2[1]) if is_match[0]: break if not is_match[0]: if c_imp_1 not in self.prime_implicants: self.prime_implicants.append(c_imp_1) return self.prime_implicants def get_next_column_and_results(self, current_column, _last_reached): if _last_reached: return self.prime_implicants is_last_column = False next_column = [] for x in range(len(current_column) - 1): for y in range(x + 1, len(current_column)): c_imp_1 = current_column[x] c_imp_2 = current_column[y] bit_compare_result = self.same_changed_pos(c_imp_1[1], c_imp_2[1]) fp = bit_compare_result[1] changed_bit = self.is_next_gray(c_imp_1[1][:fp], c_imp_2[1][:fp]) if bit_compare_result[0] and changed_bit[0]: # last_pos = len(c_imp_1[1]) - 1 - c_imp_1[1][::-1].index("_") if c_imp_1[1][fp + 1:] == c_imp_2[1][fp + 1:]: terms = c_imp_1[0] + c_imp_2[0] bit_str = self.replace_pos(c_imp_1[1], int(changed_bit[1]), "_") next_column.append([terms, bit_str]) self.update_prime_implicants(current_column) if len(next_column) == 0: is_last_column = True #recursively generate new columns return self.get_next_column_and_results(next_column, is_last_column) def minimize(self): prime_imps = self.get_next_column_and_results(self.generate_column_2(), False) return get_function(prime_imps, self.no_of_variables) ```
{ "source": "josephtessmer/EMsoft", "score": 3 }
#### File: EMsoft/resources/DDD_CSV_Presorter.py ```python import pandas as pd import h5py import numpy as np def round25(x): # return round(x*4)/4 return round(x*16)/16 rotate = True # does the data need to be rotated propdir = 'Z' # direction of beam propagation posscale= 1 # scale point grid, if not in nm disscale= 1 # scale of displacement values, if not in nm frac = 1 # Lower the resolution of the grid, which fraction of points are included # If the data needs to be rotated to a proper reference frame, this is the matrix describing the # relationship between the crystal and sample axes rotmat = np.matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]) rotmat = rotmat.transpose() # path to input file path = 'full/input/path/here' #full path to the input file inpath = path + ".txt" # extension for input path print(inpath) atomdata = pd.read_csv(inpath, sep=' ', skipinitialspace=True,header=None)#, skiprows=9,) maxIndex = atomdata.shape[0] print('read file') print(maxIndex) # rotate data if necessary ad = atomdata.as_matrix() if(rotate): for i in range(0,maxIndex): ad[i,3:6] = np.matmul(ad[i,3:6], rotmat) * disscale ad[i,0:3] = np.matmul(ad[i,0:3], rotmat) * posscale if i%1000000 == 0: print(i) print('rotated matrix') # now the 2D array needs to be sorted: maxs = np.amax(ad,0) mins = np.amin(ad,0) xxdim = (maxs[0] - mins[0])/frac yydim = (maxs[1] - mins[1])/frac zzdim = (maxs[2] - mins[2])/frac displacements = np.zeros((5,int(xxdim)+ 1,int(yydim)+ 1,int(zzdim)+ 1),dtype=float) for i in range(0,maxIndex): xx = round25(ad[i,0]/frac+xxdim/2) yy = round25(ad[i,1]/frac+yydim/2) zz = round25(ad[i,2]/frac+zzdim/2) if (xx%1 == 0.0 and yy%1 == 0.0 and zz%1 == 0.0): displacements[0:3,int(xx),int(yy),int(zz)] = ad[i,3:6] displacements[3,int(xx),int(yy),int(zz)] = 1 displacements[4,int(xx),int(yy),int(zz)] = 1 if i%1000000 == 0: print(i) # sort displacements for different prop dirs if (propdir == 'Z'): displacements = np.transpose(displacements,[3,2,1,0]) elif(propdir == 'Y'): # (disp,z,x,y) for i in range(0,sidel): for j in range(0,sidel): for k in range(0,2*depth+1): displacements[:,i,j,k] = (displacements[2,i,j,k],displacements[0,i,j,k],\ displacements[1,i,j,k],displacements[3,i,j,k],displacements[4,i,j,k]) displacements = np.transpose(displacements,[2,1,3,0]) elif(propdir == 'X'): # (disp,z,y,x) for i in range(0,sidel): for j in range(0,sidel): for k in range(0,2*depth+1): displacements[:,i,j,k] = (displacements[2,i,j,k],displacements[1,i,j,k],\ displacements[0,i,j,k],displacements[3,i,j,k],displacements[4,i,j,k]) displacements = np.transpose(displacements,[1,2,3,0]) print('sorted to 4D') outpath = path + ".h5" f = h5py.File(outpath,'w') dset = f.create_dataset('Data',data=displacements) ``` #### File: pyEMsoft/unittests/test_constants_and_typedefs.py ```python import sys from EMsoft import pyEMsoft from EMsoft.pyEMsoftTools import Tools import numpy as np import unittest class Test_Constants(unittest.TestCase): def setUp(self): pass # list a few constants the complete list of constants also include: permeability/permittivity # of vacuum, electron charge/rest mass,electron volt, Avogadro's constant, Bohr magnetron def test_SIconstants(self): print('Value of \u03C0 is %.19f' % (pyEMsoft.constants.cpi), '\n') print('Speed of light (c) is %.1f (m/s)' % (pyEMsoft.constants.clight), '\n') print('Planck constant (h) is %e (Js)' % (pyEMsoft.constants.cplanck), '\n') print('Boltzmann Constant (k) is %e (mˆ2kgsˆ(-1)Kˆ(-1))' % (pyEMsoft.constants.cboltzmann), '\n') # list of element symbols and atom color (the original output character array is an numpy.array in ASCII encoded format) # a tool is created to get the character array (Tools.get_character_array) def test_characterarray(self): print('Element Symbols:\n', Tools.get_character_array(pyEMsoft.constants.atom_sym), '\n') print('Atom colors for PostScript drawings:\n', Tools.get_character_array(pyEMsoft.constants.atom_color), '\n') # print out some numerical arrays def test_array(self): print('Shannon-Prewitt ionic radii in nanometer:\n', pyEMsoft.constants.atom_spradii, '\n') print('Atomic weights for things like density computations (from NIST elemental data base):\n', pyEMsoft.constants.atom_weights, '\n') print('Fundamental zone type:\n', pyEMsoft.constants.fztarray, '\n') print('Butterfly9x9 Filter:\n', pyEMsoft.constants.butterfly9x9, '\n') class Test_Typedefs(unittest.TestCase): def setUp(self): pass # print out a lot of useful crystallographic data def test_SG(self): print('All space group names:\n', Tools.get_character_array(pyEMsoft.typedefs.sym_sgname),'\n') print('Extended Hermann-Mauguin symbols for the orthorhombic space groups:\n',Tools.get_character_array(pyEMsoft.typedefs.extendedhmorthsymbols),'\n') print('First space group of each crystal system:\n', pyEMsoft.typedefs.sgxsym,'\n') print('First space group # for a given point group:\n', pyEMsoft.typedefs.sgpg,'\n') print('Numbers of all the symmorphic space groups:\n', pyEMsoft.typedefs.sgsym,'\n') print('Number of the symmorphic space group with the same point group symmetry:\n', pyEMsoft.typedefs.sgsymnum,'\n') print('10 2D point group symbols:\n', Tools.get_character_array(pyEMsoft.typedefs.pgtwd), '\n') print('Inverse table for 2D point groups:\n', pyEMsoft.typedefs.pgtwdinverse, '\n') print('2D point group orders :\n', pyEMsoft.typedefs.pgtwdorder, '\n') print('32 3D point group symbols:\n', Tools.get_character_array(pyEMsoft.typedefs.pgthd), '\n') if __name__ == '__main__': unittest.main() ```
{ "source": "JosephThePatrician/WikipediaQA", "score": 3 }
#### File: WikipediaQA/wikipediaqa/TextProcessor.py ```python import numpy as np import spacy import re from warnings import warn class TextProcessor: def __init__(self, spacy_model : str = "en_core_web_sm"): # try: self.nlp = spacy.load(spacy_model) # except Exception: # raise Exception(f"{spacy_model} was not found, you should install it via python -m spacy {spacy_model}") def __call__(self, question : str): """ Extract everything helpful for search queries """ question = self.removeExtraSpaces(question) doc = self.nlp(question) important_stuff = [] inQuot = self.getInQuotation(question) important_stuff.extend(inQuot) ne = self.getNE(doc) important_stuff.extend([sent for sent in ne if sent not in important_stuff]) title = self.getTitle(question) important_stuff.extend([sent for sent in title if sent not in important_stuff]) nnp = self.getNNP(doc) # check if any NNPs have already been taken nnp = self.remove_repeating(nnp + ne + inQuot + title) important_stuff.extend([sent for sent in nnp if sent not in important_stuff]) # if nothing is found, return question if len(important_stuff) == 0: return [question] return important_stuff def removeExtraSpaces(self, text): # remove multible spaces text = re.sub(' +', ' ', text) # remove spaces at the end and start of string text = re.sub(r'\A +| +$', '', text) return text def postprocess(self, text): # the is useless in search text = text.replace('the', '') text = self.removeExtraSpaces(text) return text def postprocess_answer(self, answer): """postrocess answer of model""" if '▁' in answer: # some models have this approach # replace "▁wo rd" with "word" answer = answer.replace(' ', '').replace('▁', ' ') if '##' in answer: # others models this # replace "wo ##rd" with "word" answer = answer.replace(' ##', '') # replace "word . Word" with "word. Word", same with comma answer = answer.replace(' .', '.').replace(' ,', ',') # replace "word ' s" with "word's" answer = answer.replace(' \' ', '\'') # replace floats "2. 3" and "2, 3" with "2.3" and "2,3" answer = re.sub(r'\d,\s\d|\d\.\s\d', lambda x: x.group(0).replace(' ', ''), answer) answer = self.removeExtraSpaces(answer) return answer def remove_punctuation(self, text): text = re.sub(r"[.,!?;:()[]{}\"'«»]", '', text) return text def getTitle(self, text): """ Get all words that start with upper letter example: "Hello World, it's me Mario" -> ["Hello World", "Mario"] """ text = self.remove_punctuation(text) split = text[:-1].split() capital = [i if i[0].isupper() else ' ' for i in split[1:]] capital = ' '.join(capital) return [i for i in re.split(' +', capital) if i] def getNE(self, doc): """return every named entity, that can be used in search""" ne = [self.postprocess(ent.text) for ent in doc.ents if ent.label_ not in ('CARDINAL', 'DATE', 'ORDINAL', 'NORP')] return ne def getAllNE(self, doc): """return every named entity""" if type(doc) == str: doc = self.nlp(doc) return doc.ents def getInQuotation(self, text): """ return sentence in quotations if there are any """ # get rid of 's, 've, etc. sent = re.sub(r"[a-zA-Z][\'][a-zA-Z]", '[quot]', text) # check if there are any quots if ('\'' not in sent) and ('\"' not in sent) and ('«' not in sent): return [] # there might be words like "James' " that have quots in the end if ('\"' in sent or '«' in sent) and "\'" in sent: sent = sent.replace("\'", '[quot]') if sent.count("\'") % 2 == 1: warn(f"could not figure out the quotations in {text}") return [] # find sentences in quotations sent = re.findall(r"(?<=').*(?=')|" r'(?<=").*(?=")|' r"(?<=«).*(?=»)", sent) # replace all quotes with " # wikipedia will search exact match for sentences in quotes sent = [f'"{i}"' for i in sent] sent = sent.replace('[quot]', "\'") # put back ' return [self.postprocess(i) for i in sent] def getNNP(self, doc): """return every proper noun or noun and everything associated with this words""" important = [] for id, token in enumerate(doc): if (token.pos_ in ['PROPN', 'NOUN']): associated = self.find_associated(token, []) # do not return simple words like "name" if (len(associated) > 0 or (len(associated) == 0 and token.text.istitle())): important.append(associated + [token.i]) return [' '.join([ self.postprocess(doc[i].text) for i in sorted(sent) if 'name' not in doc[i].text and 'many' not in doc[i].text and 'much' not in doc[i].text ]) for sent in important ] def remove_repeating(self, important): """ remove repeating words and parts of words example: ["Hello", "Hello World", "Hello World"] -> ["Hello World"] """ # get amount of words len_important = [i.count(' ') for i in important] # sort by the amount of words in ascending order sort = np.argsort(len_important) important = np.array(important, dtype=object)[sort] l = len(important) # list of positions of words to remove leave = list(range(l)) for i in range(l): for u in range(i+1, l): if important[i] in important[u]: leave[i] = -1 break # which words to leave leave = [i for i in leave if i != -1] return important[leave].tolist() def find_associated(self, token, output): # you need to pass output=[] """return everything connected with word""" for child in token.children: if child.dep_ in ['compound', 'nmod', 'nummod', 'amod']: output.append(child.i) self.find_associated(child, output) return output ```
{ "source": "JosephTico/paid-catalogo", "score": 3 }
#### File: entrega2/4-restauracion_imagenes/4_8_filtro_butterworth.py ```python import numpy as np from PIL import Image, ImageOps import matplotlib.pyplot as plt from scipy import ndimage def imageToArray(filename: str, rgb: bool = False): img = Image.open(filename) if not rgb: img = ImageOps.grayscale(img) img_array = np.array(img) return img_array img = imageToArray("camarografo.jpg") ruido = imageToArray("ruido_periodico.jpg") A = (img*(3/4)+ruido*(1/4)).astype(float) F1 = np.fft.fft2(A) D1 = np.fft.fftshift(F1) freq_base = np.log(1+np.abs(D1)) # matrix distancias m, n = A.shape dist = np.zeros(A.shape) m1 = m//2 n1 = n//2 for i in range(m): for j in range(n): dist[i, j] = np.sqrt((i-m1)**2 + (j-n1)**2) W = 6 D0 = 32 H = np.ones(A.shape) # ind = ((D0-W/2) <= dist) & (dist <= (D0+W/2)) H = 1/(1+((dist*W)/(dist**2-D0**2))**(2*n)) F2 = np.fft.fftshift(H)*F1 D2 = np.fft.fftshift(F2) freq_filtrada = np.log(1+np.abs(D2)) A_filtrada = np.fft.ifft2(F2) A_filtrada = np.real(A_filtrada) plt.subplot(2, 3, 1) plt.title('Imagen A') plt.imshow(A, cmap='gray') plt.subplot(2, 3, 4) plt.title('Frecuencia imagen') plt.imshow(freq_base, cmap='gray') plt.subplot(2, 3, 2) plt.title('Filtro rechaza banda Butterworth') plt.imshow(H, cmap='gray') plt.subplot(2, 3, 5) plt.title('Frecuencia imagen con filtro') plt.imshow(freq_filtrada, cmap='gray') plt.subplot(2, 3, 3) plt.title('Imagen con filtro') plt.imshow(A_filtrada, cmap='gray') plt.show() ``` #### File: entrega2/5-morfologicas/5_2_apertura_clausura_binarias.py ```python import numpy as np from PIL import Image, ImageOps import matplotlib.pyplot as plt from scipy import ndimage def imageToArray(filename:str, rgb:bool=False): img = Image.open(filename) if not rgb: img = ImageOps.grayscale(img) img_array = np.array(img) return img_array def binaria(input_image, th=127): result_image=input_image>=127 return result_image def apertura(input_image,structure_rank=2, structure_connectivity=1): structure=ndimage.generate_binary_structure(structure_rank, structure_connectivity) result_image = ndimage.binary_erosion(input_image,structure=structure ) result_image = ndimage.binary_dilation(result_image,structure=structure ) return result_image def clausura(input_image, structure_rank=2, structure_connectivity=1): structure=ndimage.generate_binary_structure(structure_rank, structure_connectivity) result_image = ndimage.binary_dilation(input_image,structure=structure ) result_image = ndimage.binary_erosion(result_image,structure=structure ) return result_image A = imageToArray("imagenes/imagen5.jpg") A_bin = binaria(A) # A_dilatada = ndimage.binary_dilation(A_bin, structure=np.ones((3,3))) # A_dilatada = ndimage.binary_dilation(A_bin, structure=np.ones((2,2))) # A_dilatada = ndimage.binary_dilation(A_bin) # A_erosionada = ndimage.binary_dilation(A_bin) A_apertura=apertura(A_bin, 2) A_clausura=clausura(A_bin, 2) # Imagen A plt.subplot(1, 3, 1) plt.title('Imagen A') plt.imshow(A_bin, cmap='gray') plt.subplot(1, 3, 2) plt.title('Apertura') plt.imshow(A_apertura, cmap='gray') plt.subplot(1, 3, 3) plt.title('Clausura') plt.imshow(A_clausura, cmap='gray') plt.show() ```
{ "source": "josephtjohnson/Meme_Generator", "score": 3 }
#### File: Meme_Generator/MemeGenerator/MemeEngine.py ```python import os import random from utils import image_resize, text_draw from typing import List from PIL import Image, ImageFont, ImageDraw class MemeEngine: """ A class to represent a meme. ... Attributes ---------- output : str file save location img_path : str image file path text : str quote text author : str quote author width : int width of image in pixels (default = 500) Methods ------- make_meme(img_path, text, author, width=500): Receives the image path, quote, and author and returns the file save location of the generated meme. """ def __init__(self, output): """ Constructs attribute for save location object. Parameters ---------- output : str file save location """ self.output = output if output is not None: if not os.path.exists(self.output): os.mkdir(self.output) def make_meme(self, img_path, text, author, width=500) -> str: """ Constructs attributes for meme and returns file save location for meme image. Parameters ---------- img_path : str image file path text : str quote text author : str quote author width : int width of image in pixels (default = 500) """ img = image_resize(img_path, width) width, height = img.size ext = img_path.split('.')[-1] font = ImageFont.truetype('fonts/Courgette-Regular.ttf', 25) fill = (255, 255, 255) draw = ImageDraw.Draw(img) text_draw(draw, text, author, fill, font, int(width), int(height)) save_dir = f'{self.output}/{random.randint(0,10000)}.{ext}' img.save(save_dir) return save_dir ``` #### File: Meme_Generator/QuoteEngine/DocxIngestor.py ```python from docx import Document from typing import List from .IngestorInterface import IngestorInterface from .QuoteModel import QuoteModel class DocxIngestor(IngestorInterface): """ A class that inherits from IngestorInterface and creates a list of quotes. ... Attributes ---------- path : str file path Methods ------- parse(path): Receives the quote file path and returns list of QuoteModel objects that contains the quote body and author. """ file_types = ['docx'] @classmethod def parse(cls, path: str) -> List[QuoteModel]: """ Parses an accepted file and returns a list of QuoteModel objects that contains the quote body and author. Parameters ---------- path : str file path """ if not cls.can_ingest(path): raise Exception(f'Cannot ingest {path}') quotes = [] doc = Document(path) for para in doc.paragraphs: if para.text != "": parse = para.text.split(' - ') new_quote = QuoteModel(str(parse[0]), str(parse[1])) quotes.append(new_quote) return quotes ``` #### File: josephtjohnson/Meme_Generator/utils.py ```python from QuoteEngine import Ingestor, QuoteModel from MemeGenerator import MemeEngine from PIL import Image import argparse import random import os import textwrap import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') file_handler = logging.FileHandler('utils.log') file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.addHandler(stream_handler) def open_image(category): """ Opens an image from a user-specified category. Parameters ---------- category : str image category (dog or book, default=dog) """ images = "./_data/photos/book/" if category == 'dog': images = "./_data/photos/dog/" imgs = [] for root, dirs, files in os.walk(images): imgs = [os.path.join(root, name) for name in files] return random.choice(imgs) def open_image_app(): """ Returns images for building the meme. Parameters ---------- category : str image category (dog or book, default=dog) """ images = "./_data/photos/dog/" imgs = [] for root, dirs, files in os.walk(images): imgs = [os.path.join(root, name) for name in files] return imgs def open_quote(category): """ Opens a quote from a user-specified category. Parameters ---------- category : str image category (dog or book, default=dog) """ quote_files = ['./_data/BookQuotes/BookQuotesDOCX.docx'] if category == 'dog': quote_files = ['./_data/DogQuotes/DogQuotesTXT.txt', './_data/DogQuotes/DogQuotesDOCX.docx', './_data/DogQuotes/DogQuotesPDF.pdf', './_data/DogQuotes/DogQuotesCSV.csv'] quotes = [] for f in quote_files: quotes.extend(Ingestor.parse(f)) return random.choice(quotes) def open_quote_app(): """ Return quotes for building the meme. Parameters ---------- category : str image category (dog or book, default=dog) """ quote_files = ['./_data/DogQuotes/DogQuotesTXT.txt', './_data/DogQuotes/DogQuotesDOCX.docx', './_data/DogQuotes/DogQuotesPDF.pdf', './_data/DogQuotes/DogQuotesCSV.csv'] quotes = [] for f in quote_files: quotes.extend(Ingestor.parse(f)) return quotes def image_resize(img_path, width=500): """ Resize an image to be used by make_meme() Paramters --------- img_path : str image file path width : int width of image in pixels (default = 500) """ MAX_WIDTH: int = 500 assert width is not None, 'Width is zero' assert width >= MAX_WIDTH, 'Width > 500' img_path = img_path with Image.open(img_path) as img: ratio = width/float(img.size[0]) height = int(ratio*img.size[1]) img = img.resize((width, height)) return img def text_draw(draw, text, author, fill, font, width, height): """ Draw text in random location on image. Paramters --------- draw : image object image text : str quote text author : str quote text fill : tuple text fill font : font object text font width : int image width height : int image height """ x_max = int(0.6*width) y_max = int(0.8*height) x = random.randint(15, x_max) y = random.randint(20, y_max) wrap_limit = (width - x)*0.08 text = textwrap.fill(text, wrap_limit) if len(text+author) > (height-y)*0.5: draw.text((20, 20), text=text+'\n'+'-'+author, fill=fill, font=font) else: draw.text((x, y), text=text+'\n'+'-'+author, fill=fill, font=font) return draw ```