metadata
dict
text
stringlengths
60
3.49M
{ "source": "josephhuxley/PoloDB", "score": 3 }
#### File: PoloDB/pypolodb/test_db.py ```python import polodb import os.path DB_PATH = '/tmp/test-py.db' def test_open(): if os.path.exists(DB_PATH): print('database exist, remove') os.remove(DB_PATH) db = polodb.Database(DB_PATH) db.close() def test_create_collection(): db = polodb.Database(DB_PATH) try: collection = db.createCollection('test') collection.insert({ 'name': '<NAME>', 'age': 14, }) result = collection.find({ 'name': '<NAME>', 'age': 14, }) assert len(result) == 1 assert result[0]['name'] == '<NAME>' assert result[0]['age'] == 14 finally: db.close() ```
{ "source": "Josephine-coding/coach_diary", "score": 3 }
#### File: src/utils/sql_functions.py ```python import sqlalchemy import mysql.connector def mysql_connect(): ''' Allow the connection to the mysql database coach_diary ''' from conf.conf_connect import mysql_pseudo, mysql_pw mysql_username = mysql_pseudo mysql_password = mysql_pw database_name = 'coach_diary' database_connection = sqlalchemy.create_engine('mysql+mysqlconnector://{0}:{1}@localhost/{2}'.format(mysql_username, mysql_password, database_name), pool_recycle=1, pool_timeout=57600).connect() return database_connection # Creation of the tables def create_client_table(db_connection): ''' Create the client table''' query = ''' CREATE TABLE IF NOT EXISTS client( id_client INT NOT NULL, name VARCHAR(30) NOT NULL, firstname VARCHAR(30), information VARCHAR(250), PRIMARY KEY (id_customer) )''' db_connection.execute(query) def create_text_table(db_connection): """ Create the text table """ query = '''CREATE TABLE IF NOT EXISTS text( id_text INT NOT NULL, content TEXT NOT NULL, creation_date DATE NOT NULL, modification_date DATE, id_client INT NOT NULL, PRIMARY KEY (id_text), FOREIGN KEY (id_client) REFERENCES client(id_client) )''' db_connection.execute(query) # Testing query def test_add_client(db_connection): query = """INSERT INTO client (id_client, name, firstname, information) VALUES (0, Doe, John, new client )""" db_connection.execute(query) ```
{ "source": "josephinemonica/pcn", "score": 3 }
#### File: josephinemonica/pcn/my_kitti_util.py ```python import os import numpy as np class Analyzer(): ''' Analyze for error of all track all car and all time ''' def __init__(self, eval_path_fun): # To use self.get_eval_path(data_type,track_no,car_no) # lambda fuunction self.get_eval_path = eval_path_fun self.poses = np.empty((0,4)) self.errors = np.empty((0,3)) def get_datatype_trackno_carno(self,data_types = ["train","val"]): ''' argument_list list of tuple ("data_type", track_no, car_no) ''' # Get data_type, track_no, car_no argument_list = [] for data_type in data_types: path_ = self.get_eval_path(data_type) # Get all tracks track_number_string_list = os.listdir(path_) track_number_list = list(map(int,track_number_string_list)) track_number_list.sort() for track_no in track_number_list: # Get all cars inside track track_path = self.get_eval_path(data_type,track_no) # All car numbers(in string) contains -001 which is invalid car_number_string_list = os.listdir(track_path) car_number_list = list(map(int,car_number_string_list)) car_number_list.sort() car_number_list = [car_no for car_no in car_number_list if car_no >=0] for car_no in car_number_list: argument_list.append((data_type,track_no,car_no)) return argument_list ```
{ "source": "josephine-nl/advent-of-code-2021", "score": 3 }
#### File: advent-of-code-2021/day10/main.py ```python def loadfile(name): lines = [] f = open(name, "r") for x in f: if x.endswith('\n'): x = x[:-1] lines.append(x) return lines def findCorrupted(line): closingsExpected = [] for character in line: if character in openingCharacters.keys(): closingsExpected.insert(0,openingCharacters[character]) elif character == closingsExpected[0]: del closingsExpected[0] else: return closingCharacters[character] return 0 def completeLine(line): closingsExpected = [] total = 0 for character in line: if character in openingCharacters.keys(): closingsExpected.insert(0,openingCharacters[character]) elif character == closingsExpected[0]: del closingsExpected[0] else: return 0 for character in closingsExpected: total = (total*5) + closingCharactersComplete[character] return total openingCharacters = { "(":")", "<":">", "{":"}", "[":"]" } closingCharacters = { ")": 3, "]": 57, "}": 1197, ">": 25137 } closingCharactersComplete = { ")": 1, "]": 2, "}": 3, ">": 4 } lines = loadfile("data.txt") print(lines) total = 0 for line in lines: total = total + findCorrupted(line) print("Answer 10a: ", total) total = 0 scores = [] for line in lines: score = completeLine(line) if score > 0: scores.append(score) scores = sorted(scores) middlescore = scores[int(len(scores)/2-0.5)] print("Answer 10b: ", middlescore) ``` #### File: advent-of-code-2021/day12/main.py ```python def loadfile(name): lines = [] f = open(name, "r") for x in f: if x.endswith('\n'): x = x[:-1] lines.append(x.split("-")) return lines def pathFromPosition (position, graph, path, s, e, goingTwice, bt): beenThere = bt.copy() path = path + "-" + position print(path) paths = [] if position == e: return [path] else: edges = findEdgesFromPosition(position, graph) if len(edges) == 0: print("Doodlopend ", path) return [] for edge in edges: if not position[0].isupper(): if goingTwice == False: graph = removeNodeFromGraph(graph, position) else: if position == s: graph = removeNodeFromGraph(graph, position) elif position in beenThere: print(beenThere) print("hiephoooi", path) goingTwice = False for p in beenThere: graph = removeNodeFromGraph(graph, p) else: beenThere.append(position) print("Beenthere", position, path) cedge = edge.copy() cedge.remove(position) nextNode = cedge[0] print(goingTwice) paths.extend(pathFromPosition(nextNode, graph, path, s, e, goingTwice, beenThere)) return paths def removeNodeFromGraph (graph, position): g = [] for edge in graph: if position not in edge: g.append(edge) return g def findEdgesFromPosition (position, graph): edges = [] for edge in graph: if position in edge: edges.append(edge) return edges originalGraph = loadfile("test.txt") print(originalGraph) endPaths = pathFromPosition("start", originalGraph, "", "start", "end", False, []) endPaths2 = pathFromPosition("start", originalGraph, "", "start", "end", True, []) print(endPaths) print(endPaths2) endPaths2 = list(dict.fromkeys(endPaths2)) print("Opdracht 12a: ", len(endPaths)) print("Opdracht 12b: ", len(endPaths2)) ``` #### File: advent-of-code-2021/day2/main.py ```python def loadfile(name): values = [] f = open(name, "r") for x in f: values.append(x) return values def day2(): depth = 0 position = 0 depth2 = 0 for i in range(0, len(values)): value = values[i].split() if value[0] == "forward": position += int(value[1]) depth2 += int(value[1]) * depth elif value[0] == "down": depth += int(value[1]) elif value[0] == "up": depth -= int(value[1]) return [position,depth, depth2] values = loadfile("data.txt") print(values) solution = day2() print("full solution: " + str(solution)) print("solution day2a: " + str(solution[0]*solution[1])) print("solution day2b: " + str(solution[0]*solution[2])) ``` #### File: advent-of-code-2021/day5/main.py ```python def loadfile(name): lines = [] f = open(name, "r") for x in f: if x.endswith('\n'): x = x[:-1] points = x.split(" -> ") line = [] for point in points: p = [int(point.split(",")[0]), int(point.split(",")[1])] line.append(p) lines.append(line) return lines def getStraightLines(): straightLines = [] for line in lines: if line[0][0] == line[1][0] or line[0][1] == line[1][1]: straightLines.append(line) return straightLines def getAllPointsHit(Lines): pointsHit = {} for line in Lines: if line[0][0] == line[1][0]: direction = 1 if line[0][1] < line[1][1] else -1 for i in range(line[0][1], line[1][1] + direction, direction): coordinate = str(line[0][0]) + "," + str(i) if coordinate in pointsHit: pointsHit[coordinate] = pointsHit[coordinate] + 1 else: pointsHit[coordinate] = 1 elif line[0][1] == line[1][1]: direction = 1 if line[0][0] < line[1][0] else -1 for i in range(line[0][0], line[1][0] + direction, direction): coordinate = str(i) + "," + str(line[0][1]) if coordinate in pointsHit: pointsHit[coordinate] = pointsHit[coordinate] + 1 else: pointsHit[coordinate] = 1 elif (line[0][0] - line[1][0] == line[0][1] - line[1][1]): c = line[0] if line[0][0] < line [1][0] else line[1] endpoint = line[0] if line[0][0] > line [1][0] else line[1] notConnectedToEndPoint = True while notConnectedToEndPoint: coordinate = str(c[0]) + "," + str(c[1]) if coordinate in pointsHit: pointsHit[coordinate] = pointsHit[coordinate] + 1 else: pointsHit[coordinate] = 1 if c[0] == endpoint[0] and c[1] == endpoint[1]: notConnectedToEndPoint = False c[0] = c[0] + 1 c[1] = c[1] + 1 elif (line[0][0] - line[1][0] == line[1][1] - line[0][1]): c = line[0] if line[0][0] < line [1][0] else line[1] endpoint = line[0] if line[0][0] > line [1][0] else line[1] notConnectedToEndPoint = True while notConnectedToEndPoint: coordinate = str(c[0]) + "," + str(c[1]) if coordinate in pointsHit: pointsHit[coordinate] = pointsHit[coordinate] + 1 else: pointsHit[coordinate] = 1 if c[0] == endpoint[0] and c[1] == endpoint[1]: notConnectedToEndPoint = False c[0] = c[0] + 1 c[1] = c[1] - 1 else: print("ERROR") print("Line: ", str(line)) return pointsHit def getAmountPointsMoreThenOne(hitPoints): counter = 0 for coordinate, hits in hitPoints.items(): if hits > 1: counter += 1 return counter lines = loadfile("data.txt") straightLines = getStraightLines() hitPointsStraight = getAllPointsHit(straightLines) amountStraight = getAmountPointsMoreThenOne(hitPointsStraight) hitPoints = getAllPointsHit(lines) amount = getAmountPointsMoreThenOne(hitPoints) print("solution day3a: " + str(amountStraight)) print("solution day3b: " + str(amount)) ```
{ "source": "JosephineRabbit/cycle_depth_estimation", "score": 2 }
#### File: cycle_depth_estimation/models/encoder_decoder.py ```python import torch.nn as nn import torch import functools import torch.nn.functional as F def get_norm_layer(norm_type='batch'): if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) elif norm_type == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_nonlinearity_layer(activation_type='PReLU'): if activation_type == 'ReLU': nonlinearity_layer = nn.ReLU(True) elif activation_type == 'SELU': nonlinearity_layer = nn.SELU(True) elif activation_type == 'LeakyReLU': nonlinearity_layer = nn.LeakyReLU(0.1, True) elif activation_type == 'PReLU': nonlinearity_layer = nn.PReLU() else: raise NotImplementedError('activation layer [%s] is not found' % activation_type) return nonlinearity_layer class _EncoderBlock(nn.Module): def __init__(self, input_nc, middle_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.PReLU(), use_bias=False): super(_EncoderBlock, self).__init__() model = [ nn.Conv2d(input_nc, middle_nc, kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(middle_nc), nonlinearity, nn.Conv2d(middle_nc, output_nc, kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(output_nc), nonlinearity ] self.model = nn.Sequential(*model) def forward(self, x): return self.model(x) class _InceptionBlock(nn.Module): def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.PReLU(), width=1, drop_rate=0, use_bias=False): super(_InceptionBlock, self).__init__() self.width = width self.drop_rate = drop_rate for i in range(width): layer = nn.Sequential( nn.ReflectionPad2d(i*2+1), nn.Conv2d(input_nc, output_nc, kernel_size=3, padding=0, dilation=i*2+1, bias=use_bias) ) setattr(self, 'layer'+str(i), layer) self.norm1 = norm_layer(output_nc * width) self.norm2 = norm_layer(output_nc) self.nonlinearity = nonlinearity self.branch1x1 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(output_nc * width, output_nc, kernel_size=3, padding=0, bias=use_bias) ) def forward(self, x): result = [] for i in range(self.width): layer = getattr(self, 'layer'+str(i)) result.append(layer(x)) output = torch.cat(result, 1) output = self.nonlinearity(self.norm1(output)) output = self.norm2(self.branch1x1(output)) if self.drop_rate > 0: output = F.dropout(output, p=self.drop_rate, training=self.training) return self.nonlinearity(output+x) class _DecoderUpBlock(nn.Module): def __init__(self, input_nc, middle_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.PReLU(), use_bias=False): super(_DecoderUpBlock, self).__init__() model = [ nn.ReflectionPad2d(1), nn.Conv2d(input_nc, middle_nc, kernel_size=3, stride=1, padding=0, bias=use_bias), norm_layer(middle_nc), nonlinearity, nn.ConvTranspose2d(middle_nc, output_nc, kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(output_nc), nonlinearity ] self.model = nn.Sequential(*model) def forward(self, x): return self.model(x) class _OutputBlock(nn.Module): def __init__(self, input_nc, output_nc, kernel_size=3, use_bias=False): super(_OutputBlock, self).__init__() model = [ nn.ReflectionPad2d(int(kernel_size/2)), nn.Conv2d(input_nc, output_nc, kernel_size=kernel_size, padding=0, bias=use_bias), nn.Tanh() ] self.model = nn.Sequential(*model) def forward(self, x): return self.model(x) class _UNetEncoder(nn.Module): def __init__(self, input_nc,ngf=64, layers=4, norm='batch', activation='PReLU', drop_rate=0, weight=0.1): super(_UNetEncoder, self).__init__() self.layers = layers self.weight = weight norm_layer = get_norm_layer(norm_type=norm) nonlinearity = get_nonlinearity_layer(activation_type=activation) if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d # encoder part self.pool = nn.AvgPool2d(kernel_size=2, stride=2) self.conv1 = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nonlinearity ) self.conv2 = _EncoderBlock(ngf, ngf*2, ngf*2, norm_layer, nonlinearity, use_bias) self.conv3 = _EncoderBlock(ngf*2, ngf*4, ngf*4, norm_layer, nonlinearity, use_bias) self.conv4 = _EncoderBlock(ngf*4, ngf*8, ngf*8, norm_layer, nonlinearity, use_bias) center=[] for i in range(7-layers): center +=[ _InceptionBlock(ngf*8, ngf*8, norm_layer, nonlinearity, 7-layers, drop_rate, use_bias) ] self.center = nn.Sequential(*center) def forward(self, input): conv1 = self.pool(self.conv1(input)) conv2 = self.pool(self.conv2.forward(conv1)) conv3 = self.pool(self.conv3.forward(conv2)) center_in = self.pool(self.conv4.forward(conv3)) center_out = self.center.forward(center_in) result = [conv1,conv2,conv3,center_in,center_out] return result class _UNetDecoder(nn.Module): def __init__(self,output_nc, ngf=64, layers=4, norm='batch', activation='PReLU',weight=0.1): super(_UNetDecoder, self).__init__() self.layers = layers self.weight = weight norm_layer = get_norm_layer(norm_type=norm) nonlinearity = get_nonlinearity_layer(activation_type=activation) if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d # encoder part self.pool = nn.AvgPool2d(kernel_size=2, stride=2) center=[] self.deconv_center=_DecoderUpBlock(ngf * 8, ngf * 8, ngf * 4, norm_layer, nonlinearity, use_bias) self.deconv4 = _DecoderUpBlock(ngf * (4 + 4), ngf * 8, ngf * 2, norm_layer, nonlinearity, use_bias) self.deconv3 = _DecoderUpBlock(ngf * (2 + 2) + output_nc, ngf * 4, ngf, norm_layer, nonlinearity, use_bias) self.deconv2 = _DecoderUpBlock(ngf * (1 + 1) + output_nc, ngf * 2, int(ngf / 2), norm_layer, nonlinearity, use_bias) self.output4 = _OutputBlock(ngf * (4 + 4), output_nc, 3, use_bias) self.output3 = _OutputBlock(ngf * (2 + 2) + output_nc, output_nc, 3, use_bias) self.output2 = _OutputBlock(ngf * (1 + 1) + output_nc, output_nc, 3, use_bias) self.output1 = _OutputBlock(int(ngf / 2) + output_nc, output_nc, 7, use_bias) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') def forward(self, input): conv1, conv2, conv3, center_in, center_out=input result=[center_in] center_out=self.deconv_center(center_out) deconv4 = self.deconv4.forward(torch.cat([center_out, conv3 * self.weight], 1)) output4 = self.output4.forward(torch.cat([center_out, conv3 * self.weight], 1)) result.append(output4) deconv3 = self.deconv3.forward(torch.cat([deconv4, conv2 * self.weight * 0.5, self.upsample(output4)], 1)) output3 = self.output3.forward(torch.cat([deconv4, conv2 * self.weight * 0.5, self.upsample(output4)], 1)) result.append(output3) deconv2 = self.deconv2.forward(torch.cat([deconv3, conv1 * self.weight * 0.1, self.upsample(output3)], 1)) output2 = self.output2.forward(torch.cat([deconv3, conv1 * self.weight * 0.1, self.upsample(output3)], 1)) result.append(output2) output1 = self.output1.forward(torch.cat([deconv2, self.upsample(output2)], 1)) result.append(output1) return result ``` #### File: my_seg_depth/dis_seg/train2.py ```python import sys import time from options.train_options import TrainOptions from my_seg_depth.dis_seg.my_data import dataloader from util.visualizer import Visualizer from tensorboardX import SummaryWriter from torch.nn import init import torch #from .model import Seg_Depth #from .networks import G_1,Discriminator,Feature_net,SEG,DEP from my_seg_depth.dis_seg.model2 import Seg_Depth import torch import itertools from util.image_pool import ImagePool import torch.nn as nn from util.util import scale_pyramid import os import util.util as util from collections import OrderedDict my_weights = [ 1.2,#ground 0.9,#road 1.3,#sidewalk 1.3,#parking 1.3,#railtrack 0.9,#building 1.1,#wall 1.2,#fence 1.2,#guardrail 1.3,#bridge 1.3,#tunnel 1.3,#pole 1.3,#polegroup 1.4,#trafficlight 1.4,#trafficsign 1.2,#vegetation 1.3,#terrain 1.1,#sky 1.5,#person 1.6,#rider 1.1,#car 1.3,#truck 1.3,#bus 1.3,#carvan 1.5,#trailer 1.5,#train 1.6,#motorcycle 1.4,#biicycle ] def create_model_segdepth(opt): print(opt.model) model = Seg_Depth() model.initialize(opt) print("model [%s] was created." % (model.name())) return model if __name__ == '__main__': opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') writer_train = SummaryWriter(log_dir='./summary/my_seg_depth') writer_test = SummaryWriter(log_dir='./summary/my_seg_depth') opt = TrainOptions().parse() #opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') #dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') model =create_model_segdepth(opt) visualizer = Visualizer(opt) total_steps = 0 global_iter=0 for epoch in range(1,30): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset_train): print(global_iter) global_iter += 1 iter_start_time = time.time() #if total_steps % opt.print_freq == 0: # t_data = iter_start_time - iter_data_time #visualizer.reset() total_steps += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) model.optimize_parameters(train_or_test='train') if (global_iter % 20 == 0): errors = model.get_current_losses() for name, error in errors.items(): print('------------------') writer_train.add_scalar("{}train/{}".format(opt.name, name), error, global_iter) images = model.get_current_visuals() for name, img in images.items(): img = img / img.max() # if len(img.shape)==3: img = torch.from_numpy(img.transpose([2, 0, 1])) writer_train.add_image("{}train/img_{}".format(opt.name, name), img, global_iter) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_networks('iter_%d' % total_steps) iter_data_time = time.time() if (global_iter % 200 == 0 and global_iter > 200): print("validation start") model.eval() for ii, data_test in enumerate(dataset_test): if (ii == 10): break with torch.no_grad(): model.set_input(data_test) model.optimize_parameters(train_or_test='test') errors = model.get_current_losses() for name, error in errors.items(): writer_test.add_scalar("{}test/{}".format(opt.name, name), error, global_iter + ii) images = model.get_current_visuals() for name, img in images.items(): im = torch.from_numpy(img.transpose([2, 0, 1])).squeeze(0) writer_test.add_image("{}test/img_{}".format(opt.name, name), im, global_iter + ii) print("validation done") if epoch % 5 == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save_networks(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) #model.update_learning_rate() ``` #### File: cycle_depth_estimation/my_seg_depth/my_data.py ```python import numpy as np import torch import os import os.path import random from PIL import Image import torchvision.transforms as transforms import torch.utils.data as data import torchvision.transforms.functional as F from options.train_options import TrainOptions ignore_label = 255 IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) class MaskToTensor(object): def __call__(self, img): return torch.from_numpy(np.array(img, dtype=np.int32)).long() def make_dataset(path_files): image_paths = [] assert os.path.isdir(path_files), '%s is not a valid directory' %path_files #print(path_files) for root, _, fnames in os.walk(path_files): for fname in sorted(fnames): #print(fname) if is_image(fname): # print('----------------') path = os.path.join(root,fname) image_paths.append(path) #print(len(image_paths)) return image_paths, len(image_paths) class CreateDataset(data.Dataset): def initialize(self,opt,train_or_test): self.opt = opt self.train_or_test = train_or_test if(train_or_test=='train'): img_syn_path = opt.img_source_file_train img_real_path = opt.img_target_file_train lab_syn_path = opt.lab_source_file_train lab_real_path = opt.lab_target_file_train depth_source_path = opt.depth_source_file_train else: img_syn_path = opt.img_source_file_test img_real_path = opt.img_target_file_test lab_syn_path = opt.lab_source_file_test lab_real_path = opt.lab_target_file_test depth_source_path = opt.depth_source_file_test self.img_syn_paths,self.img_syn_size = make_dataset(img_syn_path) self.img_real_paths, self.img_real_size = make_dataset(img_real_path) self.lab_syn_paths,self.lab_syn_size = make_dataset(lab_syn_path) self.lab_real_paths,self.lab_real_suze = make_dataset(lab_real_path) self.depth_source_paths, self.depth_source_size = make_dataset(depth_source_path) self.transform_augment_normalize = get_transform(opt, True, normalize=True) self.transform_no_augment_normalize = get_transform(opt, False, normalize=True) self.mask2tensor = MaskToTensor() self.invalid_synthia = [0, 1, 2, 3, 4, 5] self.invalid_cityscape = [0, 1, 2, 3, 4, 5] self.syn_id_to_realid = {0: 0, 1: 7, 2: 8, 3: 11, 4: 12, 5: 13, 6: 17, 7: 19, 8: 20, 9: 21, 10: 22, 11: 23, 12: 24, 13: 25, 14: 26, 15: 27, 16: 28, 17: 31, 18: 32, 19: 33, 20: 7, 21: 0, 22: 0, } self.real_id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: 0, 7: 1, 8: 2, 9: 3, 10: 4, 11: 5, 12: 6, 13: 7, 14: 8, 15: 9, 16: 10, 17: 11, 18: 12, 19: 13, 20: 14, 21: 15, 22: 16, 23: 17, 24: 18, 25: 19, 26: 20, 27: 21, 28: 22, 29: 23, 30: 24, 31: 25, 32: 26, 33: 27 } def __getitem__(self, item): index = random.randint(0, self.img_real_size - 1) img_source_path = self.img_syn_paths[item % self.img_syn_size] img_target_path = self.img_real_paths[index] img_source = Image.open(img_source_path).convert('RGB') img_target = Image.open(img_target_path).convert('RGB') img_source = img_source.resize([640, 192], Image.BILINEAR) img_target = img_target.resize([640, 192], Image.BILINEAR) depth_source_path = self.depth_source_paths[item % self.depth_source_size] depth_source = Image.open(depth_source_path) # .convert('RGB') depth_source = depth_source.resize([640, 192], Image.BILINEAR) lab_source_path = self.lab_syn_paths[item % self.lab_syn_size] lab_target_path = self.lab_real_paths[index] lab_source = Image.open(lab_source_path) # .convert('RGB') lab_target = Image.open(lab_target_path) # .convert('RGB') lab_source = lab_source.resize([640, 192], Image.NEAREST) lab_target = lab_target.resize([640, 192], Image.NEAREST) lab_source = np.array(lab_source) lab_source_copy = lab_source.copy() for k, v in self.syn_id_to_realid.items(): lab_source_copy[lab_source == k] = v lab_target = np.array(lab_target) lab_target_copy = lab_target.copy() for k, v in self.real_id_to_trainid.items(): lab_target_copy[lab_target == k] = v lab_source_copy[lab_source_copy == k] = v lab_target = Image.fromarray(lab_target_copy.astype(np.uint8)) lab_source = Image.fromarray(lab_source_copy.astype(np.uint8)) if (self.train_or_test == 'train'): img_source, lab_source,depth_source, scale = paired_transform_(self.opt, img_source, lab_source,depth_source) img_source = self.transform_augment_normalize(img_source) depth_source = self.transform_augment_normalize(depth_source) lab_source = self.mask2tensor(np.array(lab_source)) target_dummy = lab_target if (self.train_or_test == 'train'): img_target, lab_target, scale = paired_transform(self.opt, img_target, lab_target) img_target = self.transform_augment_normalize(img_target) lab_target = self.mask2tensor(np.array(lab_target)) lab_source = lab_source.unsqueeze(0) lab_target = lab_target.unsqueeze(0) depth_source = depth_source.unsqueeze(0) del target_dummy return {'img_syn': img_source, 'img_real': img_target, 'seg_l_syn': lab_source, 'seg_l_real': lab_target, 'dep_l_syn': depth_source, 'img_source_paths': img_source_path, 'img_target_paths': img_target_path, 'lab_source_paths': lab_source_path, 'lab_target_paths': lab_target_path, 'depth_source_path': depth_source_path } def __len__(self): return max(self.img_syn_size, self.img_real_size) def name(self): return 'T^2Dataset' def paired_transform(opt, image, seg): scale_rate = 1.0 opt.flip=True opt.rotation=True if opt.flip: n_flip = random.random() if n_flip > 0.5: image = F.hflip(image) seg= F.hflip(seg) if opt.rotation: n_rotation = random.random() if n_rotation > 0.5: degree = random.randrange(-500, 500)/100 image = F.rotate(image, degree, Image.BILINEAR) seg=F.rotate(seg, degree, Image.NEAREST) return image, seg, scale_rate def paired_transform_(opt, image, seg,dep): scale_rate = 1.0 opt.flip=True opt.rotation=True if opt.flip: n_flip = random.random() if n_flip > 0.5: image = F.hflip(image) seg= F.hflip(seg) dep = F.hflip(dep) if opt.rotation: n_rotation = random.random() if n_rotation > 0.5: degree = random.randrange(-500, 500)/100 image = F.rotate(image, degree, Image.BILINEAR) seg=F.rotate(seg, degree, Image.NEAREST) dep = F.rotate(dep,degree,Image.NEAREST) return image, seg,dep, scale_rate def get_transform(opt, augment,normalize): transforms_list = [] # if augment: # if opt.isTrain: # transforms_list.append(transforms.ColorJitter(brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0)) if normalize: transforms_list += [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] else: transforms_list += [ transforms.ToTensor() ] return transforms.Compose(transforms_list) def dataloader(opt,train_or_test): datasets = CreateDataset() datasets.initialize(opt,train_or_test) dataset = data.DataLoader(datasets, batch_size=opt.batch_size, shuffle=True, num_workers=8) return dataset if __name__ == '__main__': import matplotlib.pyplot as plt opt = TrainOptions().parse() dataset=dataloader(opt,train_or_test='train') for i, data in enumerate(dataset): img=data['lab_target'].data.numpy() print(img.shape) print(img.max()) plt.imshow(np.squeeze(img[0,:,:,:])) plt.show() ``` #### File: cycle_depth_estimation/my_seg_depth/train.py ```python import sys import time from options.train_options import TrainOptions from my_seg_depth.my_data import dataloader from util.visualizer import Visualizer from tensorboardX import SummaryWriter import my_seg_depth.networks as networks from torch.nn import init import torch #from .model import Seg_Depth #from .networks import G_1,Discriminator,Feature_net,SEG,DEP import torch import itertools from util.image_pool import ImagePool import torch.nn as nn from util.util import scale_pyramid import os import util.util as util from collections import OrderedDict class BaseModel(): @staticmethod def modify_commandline_options(parser, is_train): return parser def name(self): return 'BaseModel' def initialize(self,opt): self.opt = opt # self.gpu_ids = opt.gpu_ids self.is_Train = opt.isTrain # self.device = torch.device('cuda:{}'.format(self.gpu_ids[0,1])) \ # if self.gpu_ids else torch.device('cpu') self.save_dir = os.path.join(opt.checkpoints_dir,opt.name) if opt.resize_or_crop != 'scale_width': torch.backends.cudnn.benchmark = True self.loss_names = [] self.model_names = [] self.visual_names = [] self.image_paths = [] def set_input(self,input): self.input = input def forward(self): pass def setup(self, opt, parser=None): if self.isTrain: self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.isTrain or opt.continue_train: self.load_networks(opt.epoch) self.print_networks(opt.verbose) # make models eval mode during test time def eval(self): for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net_' + name) net.eval() def test(self): with torch.no_grad(): self.forward() # get image paths def get_image_paths(self): return self.image_paths def optimize_parameters(self,train_or_test): pass # update learning rate (called once every epoch) def update_learning_rate(self): for scheduler in self.schedulers: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] print('learning rate = %.7f' % lr) # return visualization images. train.py will display these images, and save the images to a html def get_current_visuals(self): visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): value = getattr(self, name) if isinstance(value, list): visual_data=value[-1].data else: visual_data=value.data segname_syn=['syn_seg_l', 'syn_seg_pre'] segname_real=['real_seg_l', 'real_seg_pre'] if (name in segname_syn): visual_ret[name]=util.label2im(visual_data) elif (name in segname_real): visual_ret[name]=util.label2im(visual_data) else: visual_ret[name] = util.tensor2im(visual_data) return visual_ret # return traning losses/errors. train.py will print out these errors as debugging information def get_current_losses(self): errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): # float(...) works for both scalar tensor and float number errors_ret[name] = float(getattr(self,'loss_'+name)) return errors_ret # save models to the disk def save_networks(self, epoch): for name in self.model_names: if isinstance(name, str): save_filename = '%s_net_%s.pth' % (epoch, name) save_path = os.path.join(self.save_dir, save_filename) net = getattr(self, 'net_' + name) torch.save(net.state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): key = keys[i] if i + 1 == len(keys): # at the end, pointing to a parameter/buffer if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'running_mean' or key == 'running_var'): if getattr(module, key) is None: state_dict.pop('.'.join(keys)) if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'num_batches_tracked'): state_dict.pop('.'.join(keys)) else: self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) # load models from the disk def load_networks(self, epoch): for name in self.model_names: if isinstance(name, str): load_filename = '%s_net_%s.pth' % (epoch, name) load_path = os.path.join(self.save_dir, load_filename) net = getattr(self, 'net' + name) if isinstance(net, torch.nn.DataParallel): net = net.module print('loading the model from %s' % load_path) # if you are using PyTorch newer than 0.4 (e.g., built from # GitHub source), you can remove str() on self.device state_dict = torch.load(load_path, map_location=str(self.device)) if hasattr(state_dict, '_metadata'): del state_dict._metadata # patch InstanceNorm checkpoints prior to 0.4 for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop self.__patch_instance_norm_state_dict(state_dict, net, key.split('.')) net.load_state_dict(state_dict) # print network information def print_networks(self, verbose): print('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net_' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) print('-----------------------------------------------') # set requies_grad=Fasle to avoid computation def set_requires_grad(self, nets, requires_grad=False): if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def init_weights(net, init_type='normal', gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): # if len(gpu_ids) > 0: # assert(torch.cuda.is_available()) # net.to(gpu_ids[0]) # net = torch.nn.DataParallel(net, gpu_ids) net = net.cuda() net = nn.DataParallel(net) init_weights(net, init_type, gain=init_gain) return net class Seg_Depth(BaseModel): def name(self): return 'Seg_Depth_Model' def initialize(self,opt): BaseModel.initialize(self,opt) self.loss_names=['G1_dis','G1_seg','D_G1', 'G2_dis','G2_seg','D_G2', 'seg_syn','seg_real','dep_syn' ] self.visual_names = ['syn_img','real_img','syn_seg_l','real_seg_l', 'syn_seg_pre','real_seg_pre', 'syn_dep_l','syn_dep_pre'] if self.is_Train: self.model_names = ['G_1', 'G_2', 'Dis_en', 'Feature','Seg_de','Dep_de' ] else: # during test time, only load Gs self.model_names = ['G_1', 'G_2', 'Feature','Seg_de','Dep_de'] self.net_G_1 = networks.define_G(opt.input_nc, opt.output_nc, opt.netG, opt.init_type, opt.init_gain) self.net_G_2 = networks.define_G(opt.input_nc, opt.output_nc, opt.netG, opt.init_type, opt.init_gain) self.net_Dis_en = networks.define_D(input_nc=128) # self.net_Feature = networks.Feature_net(input_nc=128,mid_nc =1024) self.net_Feature = init_net(networks.Feature_net(input_nc=128,mid_nc =1024)) self.net_Seg_de = init_net(networks.SEG(n_cls=28)) self.net_Dep_de = init_net(networks.DEP()) self.optimizer_G_1 = torch.optim.Adam(self.net_G_1.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_G_2 = torch.optim.Adam(self.net_G_2.parameters(), lr=opt.lr,betas=(opt.beta1,0.999)) self.optimizer_F = torch.optim.Adam(self.net_Feature.parameters(), lr=opt.lr,betas=(opt.beta1,0.999)) self.optimizer_Seg = torch.optim.Adam(self.net_Seg_de.parameters(), lr=opt.lr,betas=(opt.beta1,0.999)) self.optimizer_Dep = torch.optim.Adam(self.net_Dep_de.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(itertools.chain(self.net_Dis_en.parameters()), lr=opt.lr_D, betas=(opt.beta1, 0.999)) self.syn_imgpool = ImagePool(opt.pool_size) self.real_imgpool = ImagePool(opt.pool_size) self.criterionGAN = networks.GANLoss(use_lsgan =not opt.no_lsgan).cuda() self.criterionSeg = torch.nn.CrossEntropyLoss(size_average=True, ignore_index=255).cuda() self.criterionDep = torch.nn.L1Loss() def set_input(self,input): self.real_img = input['img_real'].cuda() self.syn_img = input['img_syn'].cuda() self.real_seg_l = input['seg_l_real'].squeeze(1).cuda() self.syn_seg_l = input['seg_l_syn'].squeeze(1).cuda() #print(self.syn_seg_l.shape) self.syn_dep_l = input['dep_l_syn'].squeeze(1).cuda() def forward(self): self.syn_features1 = self.net_G_1(self.syn_img) self.real_features1 = self.net_G_2(self.real_img) def forward_features2(self,features1): self.features2 = self.net_Feature(features1.detach()) return self.features2 def backward_D(self): pre_s = self.net_Dis_en(self.syn_features1.detach()) self.loss_D_G1 = self.criterionGAN(pre_s,False) pre_r = self.net_Dis_en(self.real_features1.detach()) self.loss_D_G2 = self.criterionGAN(pre_r,True) return self.loss_D_G1+self.loss_D_G2 def detach_list(self,list): for i in list: i = i.detach() return list def backward_Seg(self): syn_f2,syn_inf = self.net_Feature(self.syn_features1.detach()) real_f2, real_inf = self.net_Feature(self.real_features1.detach()) self.syn_seg_pre = self.net_Seg_de(self.detach_list(syn_f2),syn_inf.detach()) self.real_seg_pre = self.net_Seg_de(self.detach_list(real_f2), real_inf.detach()) self.loss_seg_syn = self.criterionSeg(self.syn_seg_pre,self.syn_seg_l) self.loss_seg_real = self.criterionSeg(self.real_seg_pre,self.real_seg_l) return self.loss_seg_real+self.loss_seg_syn def backward_Dep(self): syn_f2, syn_inf = self.net_Feature(self.syn_features1.detach()) self.syn_dep_pre = self.net_Dep_de(self.detach_list(syn_f2),syn_inf.detach()) self.loss_dep_syn = self.criterionDep(self.syn_dep_pre,self.syn_dep_l) return self.loss_dep_syn def backward_G(self): #print(self.syn_features1.shape) pre_s = self.net_Dis_en(self.syn_features1) self.loss_G1_dis = self.criterionGAN(pre_s, True) pre_r = self.net_Dis_en(self.real_features1) self.loss_G2_dis = self.criterionGAN(pre_r, False) syn_f2, syn_inf = self.net_Feature(self.syn_features1) real_f2, real_inf = self.net_Feature(self.real_features1) seg_syn_pre = self.net_Seg_de(syn_f2, syn_inf) seg_real_pre = self.net_Seg_de(real_f2, real_inf) #print(seg_real_pre.shape,self.real_seg_l.shape) self.loss_G1_seg = self.criterionSeg(seg_syn_pre, self.syn_seg_l) self.loss_G2_seg = self.criterionSeg(seg_real_pre, self.real_seg_l) # self.loss_G_1 = self.+loss_seg_real # self.loss_G_2 = loss_G_syn+loss_seg_syn return self.loss_G1_dis+self.loss_G1_seg,self.loss_G2_dis+self.loss_G2_seg def optimize_parameters(self,train_or_test): self.set_requires_grad(self.net_Dis_en, False) self.set_requires_grad([self.net_G_1, self.net_G_2, self.net_Seg_de, self.net_Feature, self.net_Dep_de], False) if (train_or_test=='train'): print('train') self.set_requires_grad(self.net_Dis_en,False) self.set_requires_grad([self.net_G_1,self.net_G_2, self.net_Seg_de,self.net_Feature,self.net_Dep_de],True) self.forward() self.optimizer_G_1.zero_grad() self.optimizer_G_2.zero_grad() self.loss_G1,self.loss_G2 =self.backward_G() if (train_or_test == 'train'): print('g_update') self.loss_G1.backward() self.loss_G2.backward() self.optimizer_G_1.step() self.optimizer_G_2.step() self.optimizer_F.zero_grad() self.loss_s = self.backward_Seg() self.loss_d = self.backward_Dep() self.loss_ff = 5*self.loss_s+self.loss_d if (train_or_test == 'train'): print('F udate') self.loss_ff.backward() self.optimizer_F.step() #self.forward() self.optimizer_Seg.zero_grad() self.loss_s = self.backward_Seg() if (train_or_test == 'train'): self.loss_s.backward() print('seg update') self.optimizer_Seg.step() #self.forward() self.optimizer_Dep.zero_grad() self.loss_d = self.backward_Dep() if (train_or_test == 'train'): self.loss_d.backward() print('dep update') self.optimizer_Dep.step() if (train_or_test == 'train'): self.set_requires_grad(self.net_Dis_en, True) self.set_requires_grad([self.net_G_1, self.net_G_2, self.net_Seg_de, self.net_Feature, self.net_Dep_de], False) self.optimizer_D.zero_grad() self.loss_D = self.backward_D() self.loss_D.backward() print('dis update') self.optimizer_D.step() def create_model_segdepth(opt): print(opt.model) model = Seg_Depth() model.initialize(opt) print("model [%s] was created." % (model.name())) return model if __name__ == '__main__': opt = TrainOptions().parse() opt.name = 'synthia_segCycle' dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') writer_train = SummaryWriter(log_dir='./summary/my_seg_depth') writer_test = SummaryWriter(log_dir='./summary/my_seg_depth') opt = TrainOptions().parse() #opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') #dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') model =create_model_segdepth(opt) visualizer = Visualizer(opt) total_steps = 0 global_iter=0 for epoch in range(1,30): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset_train): print(global_iter) if (global_iter % 200 == 0 and global_iter > 200): print("validation start") model.eval() for ii, data_test in enumerate(dataset_test): if (ii == 50): break with torch.no_grad(): model.set_input(data_test) model.optimize_parameters(train_or_test='test') errors = model.get_current_losses() for name, error in errors.items(): writer_test.add_scalar("{}test/{}".format(opt.name, name), error, global_iter + ii) images = model.get_current_visuals() for name, img in images.items(): im = torch.from_numpy(img.transpose([2, 0, 1])).squeeze(0) writer_test.add_image("{}test/img_{}".format(opt.name, name), im, global_iter + ii) print("validation done") global_iter += 1 iter_start_time = time.time() if total_steps % opt.print_freq == 0: t_data = iter_start_time - iter_data_time visualizer.reset() total_steps += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) model.optimize_parameters(train_or_test='train') if (global_iter % 50 == 0): errors = model.get_current_losses() for name, error in errors.items(): print('------------------') writer_train.add_scalar("{}train/{}".format(opt.name, name), error, global_iter) images = model.get_current_visuals() for name, img in images.items(): print(name,img.shape) img = img / img.max() # if len(img.shape)==3: img = torch.from_numpy(img.transpose([2, 0, 1])) writer_train.add_image("{}train/img_{}".format(opt.name, name), img, global_iter) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_networks('iter_%d' % total_steps) iter_data_time = time.time() if epoch % 5 == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save_networks(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) model.update_learning_rate() ``` #### File: cycle_depth_estimation/new_model/train7.py ```python import sys import time from options.train_options import TrainOptions from try_data import dataloader from util.visualizer import Visualizer from tensorboardX import SummaryWriter import cv2 import shutil import numpy as np import os from torch.nn import init import torch #from .model import Seg_Depth #from .networks import G_1,Discriminator,Feature_net,SEG,DEP from model7 import Seg_Depth import torch import itertools from util.image_pool import ImagePool import torch.nn as nn from my_eval import eval_metric from collections import OrderedDict def create_model_segdepth(opt): print(opt.model) model = Seg_Depth() model.initialize(opt) print("model [%s] was created." % (model.name())) return model if __name__ == '__main__': opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') writer_train = SummaryWriter(log_dir='./summary/215_vt_t') writer_test = SummaryWriter(log_dir='./summary/215_vt_t') opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') model =create_model_segdepth(opt) visualizer = Visualizer(opt) total_steps = 0 global_iter=0 for epoch in range(1,600): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset_train): model.train() print(global_iter) global_iter += 1 iter_start_time = time.time() total_steps += opt.batch_size epoch_iter += opt.batch_size model.set_input(data,train_or_test='train') model.optimize_parameters(train_or_test='train') model.visual(train_or_test='train') if (global_iter % 20 == 0): errors = model.get_current_losses() for name, error in errors.items(): writer_train.add_scalar("{}train/{}".format(opt.name, name), error, global_iter) images = model.get_current_visuals() for name, img in images.items(): img = img / img.max() # if len(img.shape)==3: # if (name in segname_syn): print('show_shape', img.shape,'show_name',name) img = torch.from_numpy(img.transpose([2, 0, 1])) writer_train.add_image("{}train/img_{}".format(opt.name, name), img, global_iter) if global_iter % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_networks('iter_%d' % total_steps) iter_data_time = time.time() if global_iter % 500 == 0: print("validation start") model.eval() model.visual(train_or_test='test') shutil.rmtree('/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/data/test_re') os.mkdir('/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/data/test_re') for ii, data_test in enumerate(dataset_test): model.set_input(data_test,train_or_test='test') model.optimize_parameters(train_or_test='test') images = model.get_eval_visuals() for name, imgs in images.items(): #writer_train.add_image("{}test/img_{}".format(opt.name, name), img, global_iter + ii) if name=='real_dep_pre': for nn in range(len(imgs)): img = imgs[nn] print(img.max(),img.min()) #img = img / 255 # print('show_shape',img.shape,name) # if len(img.shape)==3: img = torch.from_numpy(img.transpose([2, 0, 1])) print(str(model.return_name()[nn]),'++++++++++++++') cv2.imwrite( # '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/my_seg_depth/trymulti/semantic_trans/save_kitti/2011_09_26/2011_09_26_drive_0001_sync/image_02/dep_ref/' '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/data/test_re/'+ str(model.return_name()[nn]), np.array(img[0,:, :])) abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3=eval_metric() print('{:>10},{:>10},{:>10},{:>10},{:>10},{:>10},{:>10}'.format('abs_rel', 'sq_rel', 'rmse', 'rmse_log','a1', 'a2', 'a3')) print('{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3)) with open('records.txt', 'a+') as f: f.write(str(epoch) + "-"+str(global_iter) + '{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3) + "\n") print("validation done") writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'abs_rel'), abs_rel, global_iter) writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'sq_rel'), sq_rel, global_iter) writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'rmse'), rmse, global_iter) writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'rmse_log'), rmse_log, global_iter) writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'a1'), a1, global_iter) writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'a2'), a2, global_iter) writer_train.add_scalar("{}val_dep/{}".format(opt.name, 'a3'), a3, global_iter) #if epoch % 2 == 0: # print('saving the model at the end of epoch %d, iters %d' % # (epoch, total_steps)) # model.save_networks(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) ``` #### File: cycle_depth_estimation/new_model/train_new.py ```python import sys import time from options.train_options import TrainOptions from my_seg_depth.trymulti.semantic_trans.try_data import dataloader from util.visualizer import Visualizer from tensorboardX import SummaryWriter import cv2 import shutil import numpy as np import os from torch.nn import init import torch #from .model import Seg_Depth #from .networks import G_1,Discriminator,Feature_net,SEG,DEP from mdoel6 import Seg_Depth import torch import itertools from util.image_pool import ImagePool import torch.nn as nn from my_eval import eval_metric from collections import OrderedDict def create_model_segdepth(opt): print(opt.model) model = Seg_Depth() model.initialize(opt) print("model [%s] was created." % (model.name())) return model if __name__ == '__main__': opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') writer_train = SummaryWriter(log_dir='./summary/1_30_vt_t') writer_test = SummaryWriter(log_dir='./summary/1_30_vt_t') opt = TrainOptions().parse() dataset_train = dataloader(opt, train_or_test='train') dataset_test = dataloader(opt, train_or_test='test') model =create_model_segdepth(opt) visualizer = Visualizer(opt) total_steps = 0 global_iter=0 for epoch in range(1,30): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset_train): print(global_iter) global_iter += 1 iter_start_time = time.time() total_steps += opt.batch_size epoch_iter += opt.batch_size model.set_input(data,train_or_test='train') model.optimize_parameters(train_or_test='train') model.visual(train_or_test='train') if (global_iter % 20 == 0): errors = model.get_current_losses() for name, error in errors.items(): print('------------------') writer_train.add_scalar("{}train/{}".format(opt.name, name), error, global_iter) images = model.get_current_visuals() for name, img in images.items(): img = img / img.max() # if len(img.shape)==3: # if (name in segname_syn): print('show_shape', img.shape,'show_name',name) img = torch.from_numpy(img.transpose([2, 0, 1])) writer_train.add_image("{}train/img_{}".format(opt.name, name), img, global_iter) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_networks('iter_%d' % total_steps) iter_data_time = time.time() if global_iter % 1000 == 0: print("validation start") model.eval() model.visual(train_or_test='test') shutil.rmtree('/home/dut-ai/Documents/depth_selection/val_selection_cropped/pred') os.mkdir('/home/dut-ai/Documents/depth_selection/val_selection_cropped/pred') for ii, data_test in enumerate(dataset_test): with torch.no_grad(): model.set_input(data_test,train_or_test='test') model.optimize_parameters(train_or_test='test') images = model.get_eval_visuals() for name, img in images.items(): img = img / img.max() print('show_shape',img.shape) # if len(img.shape)==3: img = torch.from_numpy(img.transpose([2, 0, 1])) #writer_train.add_image("{}test/img_{}".format(opt.name, name), img, global_iter + ii) if name=='real_dep_ref': print(str(model.return_name()[0][0])+'groundtruth_depth'+str(model.return_name()[1][0])) cv2.imwrite( # '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/my_seg_depth/trymulti/semantic_trans/save_kitti/2011_09_26/2011_09_26_drive_0001_sync/image_02/dep_ref/' '/home/dut-ai/Documents/depth_selection/val_selection_cropped/pred/'+ str(model.return_name()[0][0])+'groundtruth_depth'+str(model.return_name()[1][0]), np.array(img[0,:, :])*255) abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3=eval_metric() print('{:>10},{:>10},{:>10},{:>10},{:>10},{:>10},{:>10}'.format('abs_rel', 'sq_rel', 'rmse', 'rmse_log','a1', 'a2', 'a3')) print('{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3)) with open('records.txt', 'a+') as f: f.write(str(epoch) + "-"+str(global_iter) + '{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3) + "\n") print("validation done") #if epoch % 2 == 0: # print('saving the model at the end of epoch %d, iters %d' % # (epoch, total_steps)) # model.save_networks(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) ``` #### File: cycle_depth_estimation/new_multi/model5.py ```python import torch import itertools from util.image_pool import ImagePool #from .base_model import BaseModel from new_multi import networks5_ds from new_multi.networks5_ds import init_net, init_weights,get_masks import torch.nn as nn import os import util.util as util from collections import OrderedDict import functools import torch.nn.functional as F import torch.autograd as autograd import numpy as np class BaseModel(): @staticmethod def modify_commandline_options(parser, is_train): return parser def name(self): return 'BaseModel' def initialize(self,opt): self.opt = opt self.is_Train = opt.isTrain self.save_dir = os.path.join(opt.checkpoints_dir,opt.name) if opt.resize_or_crop != 'scale_width': torch.backends.cudnn.benchmark = True self.loss_names = [] self.model_names = [] self.visual_names = [] self.dep_ref_name = [] self.image_paths = [] def set_input(self,input): self.input = input def forward(self): pass def setup(self, opt, parser=None): if self.is_Train: self.schedulers = [networks5_ds.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.is_Train or opt.continue_train: self.load_networks5_ds(opt.epoch) self.print_networks5_ds(opt.verbose) # make models eval mode during test time def eval(self): for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net_' + name) net.eval() def test(self): with torch.no_grad(): self.forward() # get image paths def get_image_paths(self): return self.image_paths def optimize_parameters(self,train_or_test): pass # update learning rate (called once every epoch) def update_learning_rate(self): for scheduler in self.schedulers: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] print('learning rate = %.7f' % lr) # return visualization images. train.py will display these images, and save the images to a html def get_current_visuals(self): visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): value = getattr(self, name) if isinstance(value, list): visual_data=value[-1].data else: visual_data=value.data #print(name,visual_data.shape) segname_syn=['syn_seg_l', 'syn_seg_pre'] segname_real=['real_seg_l', 'real_seg_pre'] if (name in segname_syn): visual_ret[name]=util.label2im(visual_data) elif (name in segname_real): visual_ret[name]=util.label2im(visual_data) else: visual_ret[name] = util.tensor2im(visual_data) return visual_ret def get_eval_visuals(self): visual_ret = OrderedDict() for name in self.dep_ref_name: if isinstance(name, str): value = getattr(self, name) if isinstance(value, list): visual_data=value[-1].data else: visual_data=value.data visual_ret[name] = util.tensor2im(visual_data) return visual_ret def save_current_visuals(self): visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): value = getattr(self, name) if isinstance(value, list): visual_data=value[-1].data else: visual_data=value.data segname_syn=['syn_seg_l', 'syn_seg_pre'] segname_real=['real_seg_l', 'real_seg_pre'] if (name in segname_syn): visual_ret[name]=util.label2im(visual_data) elif (name in segname_real): visual_ret[name]=util.label2im(visual_data) else: visual_ret[name] = util.tensor2im(visual_data) return visual_ret # return traning losses/errors. train.py will print out these errors as debugging information def get_current_losses(self): errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): # float(...) works for both scalar tensor and float number errors_ret[name] = float(getattr(self,'loss_'+name)) return errors_ret # save models to the disk def save_networks(self, epoch): for name in self.model_names: save_dir = './checkpoints/1_21' print(name) save_filename = '%s_net_%s.pth' % (epoch, name) save_path = os.path.join(save_dir, save_filename) net = getattr(self, 'net_' + name) torch.save(net.state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): key = keys[i] if i + 1 == len(keys): # at the end, pointing to a parameter/buffer if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'running_mean' or key == 'running_var'): if getattr(module, key) is None: state_dict.pop('.'.join(keys)) if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'num_batches_tracked'): state_dict.pop('.'.join(keys)) else: self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) # load models from the disk # print network information def print_networks5_ds(self, verbose): print('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net_' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) print('-----------------------------------------------') # set requies_grad=Fasle to avoid computation def set_requires_grad(self, nets, requires_grad=False): if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad class Seg_Depth(BaseModel): def name(self): return 'Seg_Depth_Model' def initialize(self,opt): BaseModel.initialize(self,opt) self.net_FD1 = networks5_ds._Discriminator(input_nc=512).cuda() self.net_FD2 = networks5_ds._Discriminator(input_nc=256).cuda() self.net_FD3 = networks5_ds._Discriminator(input_nc=128).cuda() self.net_FD1 = init_net(self.net_FD1) self.net_FD2 = init_net(self.net_FD2) self.net_FD3 = init_net(self.net_FD3) #self.net_FD0 = networks5_ds._Discriminator(input_nc=64).cuda() self.net_G_1 = networks5_ds.G_1().cuda() self.net_G_1 = nn.DataParallel(self.net_G_1) self.net_G_1.load_state_dict(torch.load( '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/my_seg_depth/trymulti/semantic_trans/checkpoints/1_14/iter_8000_net_G_1.pth')) print('1') self.net_G_2 = networks5_ds.General_net().cuda() self.net_G_2 = nn.DataParallel(self.net_G_2) self.net_G_2.load_state_dict(torch.load( '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/my_seg_depth/trymulti/semantic_trans/checkpoints/1_14/iter_8000_net_G_2.pth')) print('2') # self.net_Seg_de = networks5_ds.SEG(n_cls=28).cuda() # # self.net_Seg_de = init_net(self.net_Seg_de) # self.net_Seg_de = nn.DataParallel(self.net_Seg_de) # self.net_Seg_de.load_state_dict(torch.load( # './checkpoints/1_14/iter_8000_net_Seg_de.pth')) # # self.net_Dep_de = networks5_ds.DEP().cuda() # # self.net_Dep_de = init_net(self.net_Dep_de) # self.net_Dep_de = nn.DataParallel(self.net_Dep_de) # self.net_Dep_de.load_state_dict(torch.load( # './checkpoints/1_14/iter_8000_net_Dep_de.pth')) # './checkpoints/1_3_0_vt_t/iter_70000_net_Dep_de.pth')) self.net_R_D = networks5_ds.R_dep().cuda() # self.net_R_D = nn.DataParallel(self.net_R_D).cuda() self.net_R_D = init_net(self.net_R_D) # self.net_R_D.load_state_dict(torch.load( # '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/my_seg_depth/trymulti/semantic_trans/checkpoints/1_14/iter_8000_net_R_D.pth' # '/home/dut-ai/Documents/temp/code/pytorch-CycleGAN-and-pix2pix/my_seg_depth/trymulti/semantic_trans/checkpoints/1_14/iter_8000_net_R_D.pth' # './checkpoints/1_1_4/iter_34000_net_R_D.pth' # './checkpoints/1_3_0_vt_t/iter_70000_net_R_D.pth' #)) self.optimizer_G_1 = torch.optim.Adam(self.net_G_1.parameters(), lr=opt.lr/5, betas=(opt.beta1, 0.999)) self.optimizer_G_2 = torch.optim.Adam(self.net_G_2.parameters(), lr=opt.lr/3,betas=(opt.beta1,0.999)) # self.optimizer_Seg = torch.optim.Adam(self.net_Seg_de.parameters(), # lr=opt.lr/2,betas=(opt.beta1,0.999)) # self.optimizer_Dep = torch.optim.Adam(self.net_Dep_de.parameters(), # lr=opt.lr/2, betas=(opt.beta1, 0.999)) self.optimizer_R_D = torch.optim.Adam(self.net_R_D.parameters(), lr=opt.lr/2, betas=(opt.beta1, 0.999) ) # self.optimizer_FD0 = torch.optim.Adam(self.net_FD0.parameters(), # lr=opt.lr/4, betas=(opt.beta1, 0.999) # ) self.optimizer_FD1 = torch.optim.Adam(self.net_FD1.parameters(), lr=opt.lr/4, betas=(opt.beta1, 0.999) ) self.optimizer_FD2 = torch.optim.Adam(self.net_FD2.parameters(), lr=opt.lr/4, betas=(opt.beta1, 0.999) ) self.optimizer_FD3 = torch.optim.Adam(self.net_FD3.parameters(), lr=opt.lr/4, betas=(opt.beta1, 0.999) ) self.syn_imgpool = ImagePool(opt.pool_size) self.real_imgpool = ImagePool(opt.pool_size) self.criterionGAN = networks5_ds.GANLoss(use_lsgan =True) self.criterionSeg = torch.nn.CrossEntropyLoss(size_average=True, ignore_index=255) self.criterionDep =torch.nn.L1Loss() self.criterionStyle = torch.nn.MSELoss() # self.criterionEdge = nn.BCELoss() self.criterionDep_bce = networks5_ds.BCEDepLoss() def visual(self,train_or_test): if train_or_test=='train': self.loss_names = [ ] self.visual_names = ['syn_img', 'real_img', 'syn_seg_l', # 'real_seg_l', #'syn_seg_pre', 'real_seg_pre', 'syn_dep_l', #'syn_dep_pre', 'real_dep_pre', 'syn_dep_ref', 'real_dep_ref', ] self.dep_ref_name = ['real_dep_ref'] self.model_names = ['G_1', 'G_2',# 'Dis0_en', # ,'Dis1_en',#'Dis2_en','Dis3_en', #'Dep_de', #'Seg_de', 'R_D' # ,'DIS' ] else: # during test time, only load Gs self.loss_names = [ # 'G2_dis', ] self.visual_names = ['syn_img', 'real_img', 'syn_seg_l', # 'real_seg_l', #'syn_seg_pre', 'real_seg_pre', 'syn_dep_l', #'syn_dep_pre', 'real_dep_pre', 'syn_dep_ref', 'real_dep_ref', ] self.dep_ref_name = ['real_dep_ref'] self.model_names = ['G_1', 'G_2', #'Dep_de', #'Seg_de', 'R_D'] def detach_list(self,list): for i in list: i = i.detach() return list def set_input(self,input,train_or_test): self.real_img = input['img_real'].cuda() self.syn_img = input['img_syn'].cuda() if train_or_test =='train': self.is_Train=True self.real_seg_l = input['seg_l_real'].squeeze(1).cuda() self.syn_seg_l = input['seg_l_syn'].squeeze(1).cuda() self.syn_dep_l = input['dep_l_syn'].squeeze(1).cuda() self.real_img_paths = input['img_source_paths'] self.syn_img_paths = input['img_target_paths'] self.syn_dep_ls = input['depth_l_s'].float().cuda() self.syn_seg_le = input['seg_e_syn'].float().cuda() self.real_seg_le = input['seg_e_real'].float().cuda() else: self.f_name = input['f_name'] self.l_name = input['l_name'] self.is_Train=False # self.real_seg_l = input['seg_l_real'].squeeze(1).cuda() self.syn_seg_l = input['seg_l_syn'].squeeze(1).cuda() self.syn_dep_l = input['dep_l_syn'].squeeze(1).cuda() self.real_img_paths = input['img_source_paths'] self.syn_img_paths = input['img_target_paths'] self.syn_dep_ls = input['depth_l_s'].float().cuda() self.syn_seg_le = input['seg_e_syn'].float().cuda() #self.real_seg_le = input['seg_e_real'].float().cuda() def return_name(self): return self.f_name,self.l_name def calc_gradient_penalty(self,netD, real_data, fake_data): interpolates = real_data #for i in range(12): alpha = torch.rand(1).cuda() interpolates[0,:,:,:] = alpha*real_data[0,:,:,:]+ ((1 - alpha) * fake_data[0,:,:,:]) interpolates = interpolates.cuda() interpolates = autograd.Variable(interpolates, requires_grad=True) disc_interpolates = netD(interpolates) gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True)[0] LAMBDA = 10 gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA return gradient_penalty def backward_D(self): self.set_requires_grad([ # self.net_Dis3_en, self.net_Dis2_en, #self.net_Dis1_en, self.net_FD0], True) self.optimizer_FD0.zero_grad() #self.optimizer_D1.zero_grad() # self.optimizer_D2.zero_grad() # self.optimizer_D3.zero_grad() s_f = self.net_G_1(self.syn_img) #syn_features1,syn_Features = self.net_G_2(s_f,'S') #del syn_Features pre_s= self.net_FD0(s_f) loss_D_syn0 = self.criterionGAN(pre_s, False) pre_r0 = self.net_FD0(self.real_Features[0]) # pre_r2 = self.net_Dis2_en(real_features1[:, 512:768, :, :]) # pre_r3 = self.net_Dis3_en(real_features1[:, 768:1024, :, :]) loss_D_real0 = self.criterionGAN(pre_r0, True) self.loss_D0 = loss_D_real0+ loss_D_syn0 self.loss_D0.backward() print('DF0 update') self.optimizer_FD0.step() # self.loss_D_real2 = self.criterionGAN(pre_r2, False) # self.loss_D_real3 = self.criterionGAN(pre_r3, False) self.loss_D_real = (loss_D_real0).detach() self.loss_D_syn = (loss_D_syn0).detach() #+self.loss_D_real2+self.loss_D_real3).detach() def backward_DISDEP(self): # self.set_requires_grad([self.net_FD1,self.net_FD2,self.net_FD3],True) # feats, seg, (dep_4, dep_o) = self.net_R_D(self.real_Features, self.real_features1) # real_feats = self.detach_list(feats) # del feats,seg,(dep_4,dep_o) # s_feats, seg, (dep_4, dep_o) = self.net_R_D(self.syn_Features, self.syn_features1) # syn_feats = self.detach_list(s_feats) # del s_feats, seg, (dep_4, dep_o) # self.optimizer_R_D.zero_grad() # self.optimizer_R_D.step() #self.optimizer_.zero_grad() self.optimizer_FD1.zero_grad() D_real = self.net_FD1(self.real_feats[0].detach()) D_fake = self.net_FD1(self.syn_feats[0].detach()) loss = self.criterionGAN(D_real, True) + self.criterionGAN(D_fake, False) loss.backward() self.optimizer_FD1.step() self.loss_DEP_syn = self.criterionGAN(D_fake, False).detach() self.loss_DEP_real = self.criterionGAN(D_real, True).detach() print('FD1 update') del D_real,D_fake self.optimizer_FD2.zero_grad() D_real = self.net_FD2(self.real_feats[1].detach()) self.loss_DEP_real += self.criterionGAN(D_real, True).detach() D_fake = self.net_FD2(self.syn_feats[1].detach()) self.loss_DEP_syn += self.criterionGAN(D_fake, False).detach() (self.criterionGAN(D_real, True) + self.criterionGAN(D_fake, False)).backward() self.optimizer_FD2.step() self.loss_DEP_syn += self.criterionGAN(D_fake, False).detach() self.loss_DEP_real += self.criterionGAN(D_real, True).detach() del D_fake,D_real print('FD2 update') self.optimizer_FD3.zero_grad() D_real = self.net_FD3(self.real_feats[2].detach()) self.loss_DEP_real = self.criterionGAN(D_real, True).detach() D_fake = self.net_FD3(self.syn_feats[2].detach()) self.loss_DEP_syn = self.criterionGAN(D_fake, False).detach() (self.criterionGAN(D_real, True) + self.criterionGAN(D_fake, False)).backward() self.optimizer_FD3.step() self.loss_DEP_syn += self.criterionGAN(D_fake, False).detach() self.loss_DEP_real += self.criterionGAN(D_real, True).detach() del D_fake, D_real self.set_requires_grad([self.net_FD1,self.net_FD2,self.net_FD3], False) def test_return(self): return self.real_img,self.real_dep_ref def backward_R_D(self,train_or_test): self.optimizer_R_D.zero_grad() A = True if A: feats,seg,(dep_4,dep_o) = self.net_R_D(self.real_Features,self.real_features1) self.real_feats = self.detach_list(feats) seg_loss_real = 0 if self.is_Train: # for sed in r_Seds: # se_loss_real =se_loss_real+ se_loss_real+self.criterionEdge(sed[:,0,:,:],self.real_seg_le) seg_loss_real = self.criterionSeg(seg,self.real_seg_l) pred1 = self.net_FD1(feats[0]) pred2 = self.net_FD2(feats[1]) pred3 = self.net_FD3(feats[2]) D_real_loss =seg_loss_real+0.2*self.criterionGAN(pred1,False) \ +0.2*self.criterionGAN(pred2,False)+0.2*self.criterionGAN(pred3,False)#+ seg_loss_real#+se_loss_real self.real_dep_ref = dep_o.squeeze(1).detach() if train_or_test=='train': D_real_loss.backward() self.optimizer_R_D.step() self.real_feats = self.detach_list(feats) self.optimizer_R_D.zero_grad() del feats,seg,(dep_4,dep_o) feats, seg, (dep_4, dep_o) = self.net_R_D(self.syn_Features,self.syn_features1) s_se_loss = 0 s_seg_loss = 0 dep_loss=0 #o_m, z_m = get_masks(self.syn_dep_l.clone()) B = True if B: sky_m= self.syn_seg_l.clone() sky_m[sky_m!=17]=1 sky_m[sky_m==17]=0 print(sky_m.shape,'sky_m') oms, zms = get_masks(torch.cat([sky_m.unsqueeze(1),sky_m.unsqueeze(1), sky_m.unsqueeze(1),sky_m.unsqueeze(1)],1).float()*self.syn_dep_ls.clone()) dep_loss = self.criterionDep(dep_o,sky_m.float()*self.syn_dep_l) s_seg_loss = self.criterionSeg(seg,self.syn_seg_l) for s_Dep in dep_4: dep_loss = dep_loss+self.criterionDep_bce(sky_m.unsqueeze(1).float()*s_Dep,torch.cat([sky_m.unsqueeze(1),sky_m.unsqueeze(1), sky_m.unsqueeze(1),sky_m.unsqueeze(1)],1).float()*self.syn_dep_ls.clone(),oms,zms) # D_real_160=self.net_Dis_160(real_dep_160) # D_real_320 = self.net_Dis_320(real_dep_320) syn_dep_ref = dep_o.squeeze(1) D_syn_loss = dep_loss+s_se_loss+s_seg_loss#+dep_loss if train_or_test == 'train': D_syn_loss.backward() self.optimizer_R_D.step() self.loss_dep_ref = dep_loss.detach() # print('loss_dep',self.loss_dep_ref) self.syn_dep_ref = syn_dep_ref.detach() self.syn_feats = self.detach_list(feats) return D_syn_loss#+#D_real_loss+D_syn_loss#+D_syn_loss#+10**-30*(loss_style_0+loss_style_1+loss_style_2) def backward_G_1(self): self.set_requires_grad([self.net_R_D,self.net_G_2], False) self.set_requires_grad([self.net_G_1],True) ss = self.net_G_1(self.syn_img) syn_features1, syn_Features = self.net_G_2(ss, 'S') s_feats,s_seg,(s_dep_4,s_dep_o) = self.net_R_D(syn_Features,syn_features1) loss_dep = self.criterionDep(s_dep_o, self.syn_dep_l) loss_seg_syn = self.criterionSeg(s_seg, self.syn_seg_l) loss_G_1 = loss_seg_syn+loss_dep return loss_G_1 def backward_G_2(self): self.set_requires_grad([self.net_R_D, self.net_G_1], False) self.set_requires_grad([#self.net_Dis3_en,self.net_Dis2_en, # self.net_Dis1_en, #self.net_FD0, self.net_FD1,self.net_FD2], False) ss = self.net_G_1(self.syn_img) syn_features1, syn_Features = self.net_G_2(ss.detach(), 'S') feats, seg, (dep_4, dep_o) = self.net_R_D(syn_Features,syn_features1) self.syn_feats = self.detach_list(feats) s_seg_loss = 0 dep_loss = 0 B = True if B: sky_m = self.syn_seg_l.clone() sky_m[sky_m != 17] = 1 sky_m[sky_m == 17] = 0 print(sky_m.shape, 'sky_m') dep_loss = self.criterionDep(dep_o, sky_m.float() * self.syn_dep_l) s_seg_loss = self.criterionSeg(seg, self.syn_seg_l) D_syn_loss = dep_loss + s_seg_loss self.syn_features1 = syn_features1.detach() self.syn_Features = self.detach_list(syn_Features) del syn_features1,syn_Features,feats real_features1,real_Features = self.net_G_2(self.real_img,'R') feats, seg, (dep_4, dep_o) = self.net_R_D(real_Features, real_features1) self.real_features1 = real_features1.detach() self.real_Features = self.detach_list(real_Features) del (dep_4,dep_o),feats seg_loss_real = 0 if self.is_Train: # for sed in r_Seds: # se_loss_real =se_loss_real+ se_loss_real+self.criterionEdge(sed[:,0,:,:],self.real_seg_le) seg_loss_real = self.criterionSeg(seg, self.real_seg_l) D_real_loss = seg_loss_real return D_syn_loss+2*D_real_loss def optimize_parameters(self,train_or_test): self.set_requires_grad(self.net_G_2, True) self.optimizer_G_2.zero_grad() self.loss_G2 = self.backward_G_2() if (train_or_test == 'train'): print('g2_update') self.loss_G2.backward() self.optimizer_G_2.step() self.set_requires_grad([self.net_G_1, #self.net_G_2, #self.net_Seg_de ], True) self.set_requires_grad([#self.net_Seg_de, self.net_G_2, #self.net_Dis3_en, self.net_Dis2_en, # self.net_Dis1_en, ], False) self.optimizer_G_1.zero_grad() self.loss_G1 =self.backward_G_1() if (train_or_test == 'train'): print('g1_update') self.loss_G1.backward() self.optimizer_G_1.step() # self.set_requires_grad([self.net_Seg_de, self.net_Dep_de],True) self.set_requires_grad([self.net_G_1, self.net_G_2],False)#,self.net_DIS], False) self.set_requires_grad([self.net_G_1, self.net_G_2], False) self.set_requires_grad(self.net_R_D,True) loss_R_D = self.backward_R_D(train_or_test) if (train_or_test=='train'): print('R_D update') if (train_or_test == 'train'): self.set_requires_grad([self.net_G_1, self.net_G_2, self.net_R_D], False) self.set_requires_grad([ self.net_FD1,self.net_FD2,self.net_FD3], True) #self.backward_D() self.backward_DISDEP() ``` #### File: cycle_depth_estimation/util/util.py ```python from __future__ import print_function import torch import numpy as np from PIL import Image import os import torch.nn.functional as F synthia_txtpath='/home/dut-ai/Documents/temp/synthia_encoding.txt' cat2color_synthia={} with open(synthia_txtpath,'r') as file: for line in file.readlines(): templist = line.strip().split('\t') label = templist.pop(0) templist=[int(element) for element in templist] cat2color_synthia[int(label)] = templist cityscape_txtpath='/home/dut-ai/Documents/temp/cityscape_encoding.txt' cat2color_cityscape={} with open(cityscape_txtpath,'r') as file: for line in file.readlines(): templist = line.strip().split('\t') label = templist.pop(0) templist=[int(element) for element in templist] cat2color_cityscape[int(label)] = templist def label2im(image_tensor): cat2color=cat2color_cityscape if len(image_tensor.shape)==3: print(image_tensor.shape) image_tensor=image_tensor.cpu().numpy()[0,:,:] else: print('++++++++++',image_tensor.shape) image_tensor=np.argmax(image_tensor[0,:,:,:].cpu().numpy(),0) print('------------',image_tensor.shape) h=image_tensor.shape[0] w=image_tensor.shape[1] image_show=np.zeros(shape=[h,w,3]) for category in list(cat2color.keys()): try: x, y = np.where(image_tensor == category) image_show[x, y] = np.array(cat2color[category]) except: continue return image_show # Converts a Tensor into an image array (numpy) # |imtype|: the desired type of the converted numpy array def tensor2im(input_image, imtype=np.uint8): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data if len(image_tensor.shape) == 3: image_tensor = image_tensor.unsqueeze(1) else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) print(image_numpy.shape) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def diagnose_network(net, name='network'): mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def scale_pyramid(img, num_scales): scaled_imgs = [img] s = img.size() h = s[2] w = s[3] for i in range(1, num_scales): ratio = 2**i nh = h // ratio nw = w // ratio scaled_img = F.upsample(img, size=(nh, nw), mode='nearest') scaled_imgs.append(scaled_img) scaled_imgs.reverse() return scaled_imgs ```
{ "source": "JosephineRabbit/MLMSNet", "score": 2 }
#### File: JosephineRabbit/MLMSNet/pr_curve.py ```python import numpy as np import os import PIL.Image as Image import pdb import matplotlib.pyplot as plt def main(): #algs = ['sb_crf'] datasets = ['ECSSD'] for dataset in datasets: print(dataset) #dir = '/home/rabbit/Datasets/%s'%dataset input_dir = '/home/rabbit/Desktop/DUT_train/PRE/ECSSD/test2/mask2/' output_dir = '/home/rabbit/Desktop/DUT_train/PRE/ECSSD/test2/' #gt_dir = '%s/masks'%dir gt_dir = '/home/rabbit/Desktop/DUT_train/PRE/ECSSD/test2/gt/' #input_dirs = ['%s/%s'%(dir, alg) for alg in algs] fig = plt.figure(figsize=(9, 3)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) name = 'result' #for input_dir, alg in zip(input_dirs, algs): evaluate(input_dir,gt_dir, output_dir,name="result") sb = np.load('%s/%s.npz'%(output_dir,name)) ax1.plot(sb['m_recs'], sb['m_pres'], linewidth=1, ) ax2.plot(np.linspace(0, 1, 21), sb['m_fms'], linewidth=1) print(' fm: %.4f, mea: %.4f'%( sb['m_thfm'], sb['m_mea'])) ax1.grid(True) ax1.set_xlabel('Recall', fontsize=14) ax1.set_ylabel('Precision', fontsize=14) ax2.grid(True) ax2.set_xlabel('Threshold', fontsize=14) ax2.set_ylabel('F-measure', fontsize=14) handles, labels = ax1.get_legend_handles_labels() lgd = ax1.legend(handles, labels, loc='center left', bbox_to_anchor=(0.5, -0.5), ncol=8, fontsize=14) fig.savefig('%s.pdf'%dataset, bbox_extra_artists=(lgd,), bbox_inches='tight') def evaluate(input_dir, gt_dir, output_dir=None, name=None): if not os.path.exists(output_dir): os.mkdir(output_dir) filelist = os.listdir(input_dir) eps = np.finfo(float).eps m_pres = np.zeros(21) m_recs = np.zeros(21) m_fms = np.zeros(21) m_thfm = 0 m_mea = 0 it = 1 for filename in filelist: if not filename.endswith('.png'): continue # print('evaluating image %d'%it) mask = Image.open('%s/%s' % (input_dir, filename)) mask = np.array(mask, dtype=np.float) if len(mask.shape) != 2: mask = mask[:, :, 0] mask = (mask - mask.min()) / (mask.max()-mask.min()+eps) gt = Image.open('%s/%s' % (gt_dir, filename)) gt = np.array(gt, dtype=np.uint8) gt[gt != 0] = 1 pres = [] recs = [] fms = [] mea = np.abs(gt-mask).mean() # threshold fm binary = np.zeros(mask.shape) th = 2*mask.mean() if th > 1: th = 1 binary[mask >= th] = 1 sb = (binary * gt).sum() pre = sb / (binary.sum()+eps) rec = sb / (gt.sum()+eps) thfm = 1.3 * pre * rec / (0.3 * pre + rec + eps) for th in np.linspace(0, 1, 21): binary = np.zeros(mask.shape) binary[ mask >= th] = 1 pre = (binary * gt).sum() / (binary.sum()+eps) rec = (binary * gt).sum() / (gt.sum()+ eps) fm = 1.3 * pre * rec / (0.3*pre + rec + eps) pres.append(pre) recs.append(rec) fms.append(fm) fms = np.array(fms) pres = np.array(pres) recs = np.array(recs) m_mea = m_mea * (it-1) / it + mea / it m_fms = m_fms * (it - 1) / it + fms / it m_recs = m_recs * (it - 1) / it + recs / it m_pres = m_pres * (it - 1) / it + pres / it m_thfm = m_thfm * (it - 1) / it + thfm / it it += 1 if not (output_dir is None or name is None): np.savez('%s/%s.npz'%(output_dir, name), m_mea=m_mea, m_thfm=m_thfm, m_recs=m_recs, m_pres=m_pres, m_fms=m_fms) return m_thfm, m_mea if __name__ == '__main__': main() ``` #### File: JosephineRabbit/MLMSNet/test.py ```python import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim from torch.utils.data import DataLoader import torch.nn.functional as F #import config import numpy as np from data_new import DataFolder #from NN import * import time # from gan import *from torch.optim.lr_scheduler import StepLR, MultiStepLR import os from torch.autograd import Variable import cv2 #from e_m_transfer import * from D_E_U import * # test_dirs = [("/home/neverupdate/Downloads/SalGAN-master/Dataset/TEST-IMAGE", "/home/neverupdate/Downloads/SalGAN-master/Dataset/TEST-MASK")] import numpy as np import os import PIL.Image as Image import pdb import matplotlib.pyplot as plt #D2 = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']), connect['dss'], 1).cuda() #D2.load_state_dict(torch.load('/home/rabbit/Desktop/DUT_train/checkpoint/DSS/with_e/D3epoch21.pkl')) #D2.load_state_dict(torch.load('D15epoch11.pkl')) #G = Generator(input_dim=4,num_filter=64,output_dim=1) #G.cuda() #G.load_state_dict(torch.load('/home/rabbit/Desktop/DUT_train/Gepoch6_2.pkl')) D_E = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']),config.BATCH_SIZE).cuda() U = D_U().cuda() D_E.load_state_dict(torch.load('/home/rabbit/Desktop/D_E4epoch2.pkl')) U.load_state_dict(torch.load('/home/rabbit/Desktop/U_4epoch2.pkl')) p= './PRE/ECSSD/test2/' test_dirs = [ #("/home/rabbit/Datasets/DUTS/DUT-test/DUT-test-Image", #"/home/rabbit/Datasets/DUTS/DUT-test/DUT-test-Mask"), #( "/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Image", #"/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Mask") ("/home/rabbit/Datasets/ECSSD/ECSSD-Image", "/home/rabbit/Datasets/ECSSD/ECSSD-Mask"), #("/home/rabbit/Datasets/THUR-Image", #"/home/rabbit/Datasets/THUR-Mask"), #("/home/www/Desktop/DUT_train/Sal_Datasets/THUR-Image", # "/home/www/Desktop/DUT_train/Sal_Datasets/THUR-Mask"), #("/home/rabbit/Datasets/SOD/SOD-Image", #"/home/rabbit/Datasets/SOD/SOD-Mask") #("/home/rabbit/Datasets/SED1/SED1-Image", #"/home/rabbit/Datasets/SED1/SED1-Mask") #("/home/neverupdate/Downloads/SalGAN-master/SED2/SED2-Image", # "/home/neverupdate/Downloads/SalGAN-master/SED2/SED2-Mask") #("/home/rabbit/Datasets/PASCALS/PASCALS-Image", #"/home/rabbit/Datasets/PASCALS/PASCALS-Mask") #("/home/neverupdate/Downloads/SalGAN-master/MSRA5000/MSRA5000-Image", #"/home/neverupdate/Downloads/SalGAN-master/MSRA5000/MSRA5000-Mask") #("/home/neverupdate/Downloads/SalGAN-master/HKU-IS/HKU-IS_Image", #"/home/neverupdate/Downloads/SalGAN-master/HKU-IS/HKU-IS-Mask") #("/home/rabbit/Datasets/OMRON/OMRON-Image", #"/home/rabbit/Datasets/OMRON/OMRON-Mask") ] def process_data_dir(data_dir): files = os.listdir(data_dir) files = map(lambda x: os.path.join(data_dir, x), files) return sorted(files) batch_size = 1 DATA_DICT = {} IMG_FILES = [] GT_FILES = [] IMG_FILES_TEST = [] GT_FILES_TEST = [] for dir_pair in test_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) IMG_FILES.extend(X) GT_FILES.extend(y) IMGS_train, GT_train = IMG_FILES, GT_FILES test_folder = DataFolder(IMGS_train, GT_train, False) test_data = DataLoader(test_folder, batch_size=1, num_workers=2, shuffle=False, ) sum_eval_mae = 0 sum_eval_loss = 0 num_eval = 0 mae = 0 evaluation = nn.L1Loss() mean = (0.485,0.456,0.406) std = (0.229,0.224,0.225) best_eval = None sum_train_mae = 0 sum_train_loss = 0 sum_train_gan = 0 sum_fm=0 eps = np.finfo(float).eps ##train for iter_cnt, (img_batch, label_batch, edges, shape, name) in enumerate(test_data): #D2.eval() D_E.eval() print(iter_cnt) label_batch = label_batch.numpy()[0, :, :] img_batch = Variable(img_batch).cuda() # ,Variable(z_.cuda()) binary = np.zeros(label_batch.shape) f,m,e = D_E(img_batch) masks, es, DIC = U(f) #ut2 = out2.numpy() mask = masks[2].data[0].cpu() edges=edges.cpu().numpy()[0,:,:] print(np.shape(edges)) #mask1 =out[1].data[0].cpu() #mask2 =out[2].data[0].cpu() #mask2 =out[2].data[0].cpu() mask=mask.numpy() #p_edge = out[7].data[0].cpu().numpy() #img_batch = img_batch.cpu().numpy()[0,:,:,:] #print(np.shape(img_batch)) #img = np.transpose(img_batch, [1, 2, 0]) #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #g_t=label_batch #print(np.shape(g_t)) #print(np.shape(mask)) #pr = np.transpose(mask, [1, 2, 0]) #save_img = p +'gt/'+str(name)[2:-3] save_gt = p+ '/gt/'+str(name)[2:-3] #save_pre = p+ str(name)[2:-7]+'_p.png' save_m = p+'/mask/'+str(name)[2:-7]+'.png' #save_m2 = p+ '/mask2/'+str(name)[2:-7]+'.png' save_edge = p+str(name)[2:-7]+'_e.png' save_ed_p = p+str(name)[2:-7]+'_pe.png' #print(save_pre) cv2.imwrite(save_m, mask[0, :, :] * 255) #cv2.imwrite(save_m2, out2[0,:,:]*255) cv2.imwrite(save_gt, label_batch[0,:,:] * 255) #cv2.imwrite(save_edge, edges[0,:,:]* 255) #cv2.imwrite(save_ed_p,p_edge[0,:,:]*255) #mask = (mask-mask.min())/(mask.max()-mask.min()) import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim from torch.utils.data import DataLoader import torch.nn.functional as F #import config import numpy as np from data_new import DataFolder #from NN import * import time # from gan import *from torch.optim.lr_scheduler import StepLR, MultiStepLR import os from torch.autograd import Variable import cv2 #from e_m_transfer import * from D_E_U import * # test_dirs = [("/home/neverupdate/Downloads/SalGAN-master/Dataset/TEST-IMAGE", "/home/neverupdate/Downloads/SalGAN-master/Dataset/TEST-MASK")] import numpy as np import os import PIL.Image as Image import pdb import matplotlib.pyplot as plt #D2 = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']), connect['dss'], 1).cuda() #D2.load_state_dict(torch.load('/home/rabbit/Desktop/DUT_train/checkpoint/DSS/with_e/D3epoch21.pkl')) #D2.load_state_dict(torch.load('D15epoch11.pkl')) #G = Generator(input_dim=4,num_filter=64,output_dim=1) #G.cuda() #G.load_state_dict(torch.load('/home/rabbit/Desktop/DUT_train/Gepoch6_2.pkl')) D_E = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']),config.BATCH_SIZE).cuda() U = D_U().cuda() D_E.load_state_dict(torch.load('/home/rabbit/Desktop/D_E4epoch2.pkl')) U.load_state_dict(torch.load('/home/rabbit/Desktop/U_4epoch2.pkl')) p= './PRE/ECSSD/test2/' test_dirs = [ #("/home/rabbit/Datasets/DUTS/DUT-test/DUT-test-Image", #"/home/rabbit/Datasets/DUTS/DUT-test/DUT-test-Mask"), #( "/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Image", #"/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Mask") ("/home/rabbit/Datasets/ECSSD/ECSSD-Image", "/home/rabbit/Datasets/ECSSD/ECSSD-Mask"), #("/home/rabbit/Datasets/THUR-Image", #"/home/rabbit/Datasets/THUR-Mask"), #("/home/www/Desktop/DUT_train/Sal_Datasets/THUR-Image", # "/home/www/Desktop/DUT_train/Sal_Datasets/THUR-Mask"), #("/home/rabbit/Datasets/SOD/SOD-Image", #"/home/rabbit/Datasets/SOD/SOD-Mask") #("/home/rabbit/Datasets/SED1/SED1-Image", #"/home/rabbit/Datasets/SED1/SED1-Mask") #("/home/neverupdate/Downloads/SalGAN-master/SED2/SED2-Image", # "/home/neverupdate/Downloads/SalGAN-master/SED2/SED2-Mask") #("/home/rabbit/Datasets/PASCALS/PASCALS-Image", #"/home/rabbit/Datasets/PASCALS/PASCALS-Mask") #("/home/neverupdate/Downloads/SalGAN-master/MSRA5000/MSRA5000-Image", #"/home/neverupdate/Downloads/SalGAN-master/MSRA5000/MSRA5000-Mask") #("/home/neverupdate/Downloads/SalGAN-master/HKU-IS/HKU-IS_Image", #"/home/neverupdate/Downloads/SalGAN-master/HKU-IS/HKU-IS-Mask") #("/home/rabbit/Datasets/OMRON/OMRON-Image", #"/home/rabbit/Datasets/OMRON/OMRON-Mask") ] def process_data_dir(data_dir): files = os.listdir(data_dir) files = map(lambda x: os.path.join(data_dir, x), files) return sorted(files) batch_size = 1 DATA_DICT = {} IMG_FILES = [] GT_FILES = [] IMG_FILES_TEST = [] GT_FILES_TEST = [] for dir_pair in test_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) IMG_FILES.extend(X) GT_FILES.extend(y) IMGS_train, GT_train = IMG_FILES, GT_FILES test_folder = DataFolder(IMGS_train, GT_train, False) test_data = DataLoader(test_folder, batch_size=1, num_workers=2, shuffle=False, ) sum_eval_mae = 0 sum_eval_loss = 0 num_eval = 0 mae = 0 evaluation = nn.L1Loss() mean = (0.485,0.456,0.406) std = (0.229,0.224,0.225) best_eval = None sum_train_mae = 0 sum_train_loss = 0 sum_train_gan = 0 sum_fm=0 eps = np.finfo(float).eps ##train for iter_cnt, (img_batch, label_batch, edges, shape, name) in enumerate(test_data): #D2.eval() D_E.eval() print(iter_cnt) label_batch = label_batch.numpy()[0, :, :] img_batch = Variable(img_batch).cuda() # ,Variable(z_.cuda()) binary = np.zeros(label_batch.shape) f,m,e = D_E(img_batch) masks, es, DIC = U(f) #ut2 = out2.numpy() mask = masks[2].data[0].cpu() edges=edges.cpu().numpy()[0,:,:] print(np.shape(edges)) #mask1 =out[1].data[0].cpu() #mask2 =out[2].data[0].cpu() #mask2 =out[2].data[0].cpu() mask=mask.numpy() #p_edge = out[7].data[0].cpu().numpy() #img_batch = img_batch.cpu().numpy()[0,:,:,:] #print(np.shape(img_batch)) #img = np.transpose(img_batch, [1, 2, 0]) #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #g_t=label_batch #print(np.shape(g_t)) #print(np.shape(mask)) #pr = np.transpose(mask, [1, 2, 0]) #save_img = p +'gt/'+str(name)[2:-3] save_gt = p+ '/gt/'+str(name)[2:-3] #save_pre = p+ str(name)[2:-7]+'_p.png' save_m = p+'/mask/'+str(name)[2:-7]+'.png' #save_m2 = p+ '/mask2/'+str(name)[2:-7]+'.png' save_edge = p+str(name)[2:-7]+'_e.png' save_ed_p = p+str(name)[2:-7]+'_pe.png' #print(save_pre) cv2.imwrite(save_m, mask[0, :, :] * 255) #cv2.imwrite(save_m2, out2[0,:,:]*255) cv2.imwrite(save_gt, label_batch[0,:,:] * 255) #cv2.imwrite(save_edge, edges[0,:,:]* 255) #cv2.imwrite(save_ed_p,p_edge[0,:,:]*255) #mask = (mask-mask.min())/(mask.max()-mask.min()) ``` #### File: JosephineRabbit/MLMSNet/train_DEU.py ```python from D_E_U import * D_E = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']),config.BATCH_SIZE).cuda() U = D_U().cuda() U.cuda() data_dirs = [ ("/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Image", "/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Mask"), ] test_dirs = [("/home/rabbit/Datasets/SED1/SED1-Image", "/home/rabbit/Datasets/SED1/SED1-Mask")] D_E.base.load_state_dict(torch.load('/home/rabbit/Desktop/DUT_train/weights/vgg16_feat.pth')) initialize_weights(U) DE_optimizer = optim.Adam(D_E.parameters(), lr=config.D_LEARNING_RATE, betas=(0.5, 0.999)) U_optimizer = optim.Adam(U.parameters(), lr=config.U_LEARNING_RATE, betas=(0.5, 0.999)) BCE_loss = torch.nn.BCELoss().cuda() def process_data_dir(data_dir): files = os.listdir(data_dir) files = map(lambda x: os.path.join(data_dir, x), files) return sorted(files) batch_size =BATCH_SIZE DATA_DICT = {} IMG_FILES = [] GT_FILES = [] IMG_FILES_TEST = [] GT_FILES_TEST = [] for dir_pair in data_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) IMG_FILES.extend(X) GT_FILES.extend(y) for dir_pair in test_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) IMG_FILES_TEST.extend(X) GT_FILES_TEST.extend(y) IMGS_train, GT_train = IMG_FILES, GT_FILES train_folder = DataFolder(IMGS_train, GT_train, True) train_data = DataLoader(train_folder, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, shuffle=True, drop_last=True) test_folder = DataFolder(IMG_FILES_TEST, GT_FILES_TEST, trainable=False) test_data = DataLoader(test_folder, batch_size=1, num_workers=NUM_WORKERS, shuffle=False) def cal_DLoss(out_m,out_e, mask, edge): # if l == 0: # 0 f 1 t # ll = Variable(torch.ones(mask.shape())) D_masks_loss = 0 D_edges_loss = 0 for i in range(6): #print(out_m[i].size()) #print(mask.size()) D_masks_loss += F.binary_cross_entropy(out_m[i], mask) for i in range(6): D_edges_loss += F.binary_cross_entropy(out_e[i], edge) return ( D_masks_loss, D_edges_loss) best_eval = None x = 0 ma = 1 for epoch in range(1, config.NUM_EPOCHS + 1): sum_train_mae = 0 sum_train_loss = 0 sum_train_gan = 0 ##train for iter_cnt, (img_batch, label_batch, edges, shape, name) in enumerate(train_data): D_E.train() x = x + 1 # print(img_batch.size()) label_batch = Variable(label_batch).cuda() # print(torch.typename(label_batch)) print('training start!!') # for iter, (x_, _) in enumerate(train_data): img_batch = Variable(img_batch.cuda()) # ,Variable(z_.cuda()) edges = Variable(edges).cuda() ##########DSS######################### ######train dis ##fake f,y1,y2 = D_E(img_batch) m_l_1,e_l_1 = cal_DLoss(y1,y2,label_batch,edges) DE_optimizer.zero_grad() DE_l_1 = m_l_1 +e_l_1 DE_l_1.backward() DE_optimizer.step() w = [2,2,3,3] f, y1, y2 = D_E(img_batch) masks,DIC = U(f) pre_ms_l = 0 ma = torch.abs(label_batch-masks[4]).mean() pre_m_l = F.binary_cross_entropy(masks[4],label_batch) for i in range(4): pre_ms_l +=w[i] * F.binary_cross_entropy(masks[i],label_batch) DE_optimizer.zero_grad() DE_l_1 = pre_ms_l/20+30*pre_m_l DE_l_1.backward() DE_optimizer.step() f, y1, y2 = D_E(img_batch) masks,DIC = U(f) pre_ms_l = 0 ma = torch.abs(label_batch-masks[4]).mean() pre_m_l = F.binary_cross_entropy(masks[4], label_batch) for i in range(4): pre_ms_l += w[i] * F.binary_cross_entropy(masks[i], label_batch) U_optimizer.zero_grad() U_l_1 = pre_ms_l/20+30*pre_m_l U_l_1.backward() U_optimizer.step() sum_train_mae += ma.data.cpu() print("Epoch:{}\t {}/{}\ \t mae:{}".format(epoch, iter_cnt + 1, len(train_folder) / config.BATCH_SIZE, sum_train_mae / (iter_cnt + 1))) ##########save model # torch.save(D.state_dict(), './checkpoint/DSS/with_e_2/D15epoch%d.pkl' % epoch) torch.save(D_E.state_dict(), './checkpoint/DSS/with_e_2/D_Eepoch%d.pkl' % epoch) torch.save(U.state_dict(), './checkpoint/DSS/with_e_2/Uis.pkl') print('model saved') ###############test eval1 = 0 eval2 = 0 t_mae = 0 for iter_cnt, (img_batch, label_batch, edges, shape, name) in enumerate(test_data): D_E.eval() U.eval() label_batch = Variable(label_batch).cuda() print('val!!') # for iter, (x_, _) in enumerate(train_data): img_batch = Variable(img_batch.cuda()) # ,Variable(z_.cuda()) f,y1,y2 = D_E(img_batch) masks, DIC = U(f) mae_v2 = torch.abs(label_batch - masks[4]).mean().data[0] # eval1 += mae_v1 eval2 += mae_v2 # m_eval1 = eval1 / (iter_cnt + 1) m_eval2 = eval2 / (iter_cnt + 1) print("test mae", m_eval2) with open('results1.txt', 'a+') as f: f.write(str(epoch) + " 2:" + str(m_eval2) + "\n") ``` #### File: JosephineRabbit/MLMSNet/train.py ```python from model import * from config import * import torch.optim as optim from collections import OrderedDict def load(path): state_dict = torch.load(path) state_dict_rename = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` state_dict_rename[name] = v #print(state_dict_rename) #model.load_state_dict(state_dict_rename) return state_dict_rename D_E = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']),e_extract_layer(),nums =BATCH_SIZE).cuda() #initialize_weights(D_E) #D_E.base.load_state_dict(torch.load('../vgg16_feat.pth')) #print(D_E) D_E.load_state_dict(load('D:\WRm/checkpoints/D_Eepoch3.pkl')) D_E =nn.DataParallel(D_E).cuda() U = D_U().cuda() #initialize_weights(U) U.load_state_dict(load('D:\WRm/checkpoints/Uepoch3.pkl')) U =nn.DataParallel(U) #D_E.base.load_state_dict(torch.load('/home/neverupdate/Downloads/SalGAN-master/weights/vgg16_feat.pth')) #D_E.load_state_dict(torch.load('./checkpoints/D_Eepoch3.pkl')) #U.load_state_dict(torch.load('./checkpoints/Uepoch3.pkl')) DE_optimizer = optim.Adam(D_E.parameters(), lr=config.D_LEARNING_RATE,betas=(0.5,0.999)) U_optimizer = optim.Adam(U.parameters(), lr=config.U_LEARNING_RATE, betas=(0.5, 0.999)) TR_sal_dirs = [ ("D:\WRM/DUTS/DUTS-TR/DUTS-TR-Image", "D:\WRM/DUTS/DUTS-TR/DUTS-TR-Mask")] TR_ed_dir = [("./images/train", "./bon/train")] TE_sal_dirs = [("D:\WRM/ECSSD (2)/ECSSD-Image", "D:\WRM/ECSSD (2)/ECSSD-Mask")] TE_ed_dir = [("./images/test", "./bon/test")] def DATA(sal_dirs,ed_dir,trainable): S_IMG_FILES = [] S_GT_FILES = [] E_IMG_FILES = [] E_GT_FILES = [] for dir_pair in sal_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) S_IMG_FILES.extend(X) S_GT_FILES.extend(y) for dir_pair in ed_dir: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) E_IMG_FILES.extend(X) E_GT_FILES.extend(y) S_IMGS_train, S_GT_train = S_IMG_FILES, S_GT_FILES E_IMGS_train, E_GT_train = E_IMG_FILES, E_GT_FILES folder = DataFolder(S_IMGS_train, S_GT_train, E_IMGS_train, E_GT_train, trainable) if trainable: data = DataLoader(folder, batch_size=BATCH_SIZE, num_workers=2, shuffle=trainable) else: data = DataLoader(folder, batch_size=1, num_workers=2, shuffle=trainable) return data train_data = DATA(TR_sal_dirs,TR_ed_dir,trainable=True) test_data = DATA(TE_sal_dirs,TE_ed_dir,trainable=False) def cal_eLoss(edges,label): loss = 0 w =[1,1,1,1,1,5] for i in range(6): #print(label[i].shape) #print(edges[i].shape) loss += w[i]*F.binary_cross_entropy(edges[i],label)/10 return loss def cal_s_mLoss(maps,label): loss = 0 w = [1, 1, 1, 1, 1, 1] for i in range(6): loss =loss+ w[i]*F.binary_cross_entropy( maps[i],label) / 6 return loss def cal_s_eLoss(es,label): loss = 0 w =[1,1,1,1,1] for i in range(5): loss =loss+w[i]* F.binary_cross_entropy(es[i],label)/5 return loss def cal_e_mLoss(e_m,label): loss=0 w = [1, 1, 1, 1, 1, 1] for i in range(5): loss =loss+ w[i] * F.binary_cross_entropy(e_m[i],label) / 5 return loss def cal_s_e2mLoss(e_m,maps): loss = 0 w = [1, 1, 1, 1, 1, 1] for i in range(5): loss = loss+ w[i] * F.binary_cross_entropy( e_m[i],maps[i]) / 5 return loss best_eval = None ma = 0 def main(train_data,test_data): best_eval = None ma = 0 for epoch in range(1, NUM_EPOCHS + 1): sum_train_mae = 0 sum_train_loss = 0 x = 0 ##train for iter_cnt, (img, img_e, sal_l, sal_e, ed_l, name) in enumerate(train_data): D_E.train() U.train() x = x + 1 print('training start!!') # for iter, (x_, _) in enumerate(train_data): img = Variable(img.cuda()) # ,Variable(z_.cuda()) img_e = Variable(img_e.cuda()) sal_l = Variable(sal_l.cuda(), requires_grad=False) sal_e = Variable(sal_e.cuda(), requires_grad=False) ed_l = Variable(ed_l, requires_grad=False).cuda() ##########DSS######################### ######train dis dd = True if dd == True: ##fake f, edges, e_s, e = D_E(img,img_e) ff = list() for i in range(5): ff.append(f[i].detach()) edges_L = cal_eLoss(edges,ed_l) e_s_L = cal_e_mLoss(e_s, sal_l) e_L = cal_s_eLoss(e, sal_e) #s_m_L = cal_s_mLoss(s, sal_l) # masks, es = U(f) # pre_ms_l = 0 # pre_es_l = 0 # ma = torch.abs(sal_l - masks[1]).mean() # pre_m_l = F.binary_cross_entropy(masks[1], sal_l) # for i in range(2): # pre_ms_l += F.binary_cross_entropy(masks[1], sal_l) # pre_es_l += F.binary_cross_entropy(es[1], sal_e) DE_optimizer.zero_grad() DE_l_1 = 5 * e_s_L + 10*e_L + 5*edges_L DE_l_1.backward() DE_optimizer.step() uu = True if uu == True: masks, es = U(ff) # mmm = masks[2].detach().cpu().numpy() # print(mmm.shape) # mmmmm = Image.fromarray(mmm[0,0,:,:]) # mmmmm.save('1.png') # cv2.imshow('1.png',mmm[0,0,:,:]*255) # cv2.waitKey() pre_ms_l = 0 pre_es_l = 0 ma = torch.abs(sal_l - masks[2]).mean() # print(ma) pre_m_l = F.binary_cross_entropy(masks[2], sal_l) for i in range(2): pre_ms_l += F.binary_cross_entropy(masks[i], sal_l) pre_es_l += F.binary_cross_entropy(es[i], sal_e) U_l_1 = 50 * pre_m_l + 10 * pre_es_l + pre_ms_l U_optimizer.zero_grad() U_l_1.backward() U_optimizer.step() sum_train_mae += float(ma) print( "Epoch:{}\t iter:{} sum:{} \t mae:{}".format(epoch, x, len(train_data), sum_train_mae / (iter_cnt + 1))) ##########save model # torch.save(D.state_dict(), './checkpoint/DSS/with_e_2/D15epoch%d.pkl' % epoch) torch.save(D_E.state_dict(), 'D:\WRM/checkpoints/D_Eepoch%d.pkl' % epoch) torch.save(U.state_dict(), 'D:\WRM/checkpoints/Uepoch%d.pkl' % epoch) print('model saved') ###############test eval1 = 0 eval2 = 0 t_mae = 0 for iter_cnt, (img, img_e, sal_l, sal_e, ed_l, name) in enumerate(test_data): D_E.eval() U.eval() label_batch = Variable(sal_l).cuda() img_eb = Variable(img_e).cuda() print('val!!') # for iter, (x_, _) in enumerate(train_data): img_batch = Variable(img.cuda()) # ,Variable(z_.cuda()) f, edges, e_s, e = D_E(img_batch,img_eb) masks, es = U(f) mae_v2 = torch.abs(label_batch - masks[2]).mean().data[0] # eval1 += mae_v1 eval2 += mae_v2 # m_eval1 = eval1 / (iter_cnt + 1) m_eval2 = eval2 / (iter_cnt + 1) print("test mae", m_eval2) with open('results1.txt', 'a+') as f: f.write(str(epoch) + " 2:" + str(m_eval2) + "\n") if __name__ == '__main__': main(train_data,test_data) ```
{ "source": "Josephine-Tsai/sc-projects", "score": 4 }
#### File: stanCode_Projects/my_photoshop/blur.py ```python from simpleimage import SimpleImage def blur(old_img): """ This function can blur the picture. :param old_img: image, the original image "images/smiley-face.png" :return new_img: image, the blurred 'old_img' """ # Create a new blank image which is as big as the original image. new_img = SimpleImage.blank(old_img.width, old_img.height) for x in range(old_img.width): for y in range(old_img.height): # Pick up a pixel which we want to record new value. new_pixel = new_img.get_pixel(x, y) count = 0 pixel_red = 0 pixel_green = 0 pixel_blue = 0 # Get the total value of 9 (the central one + other nearest 8) pixels (the red/green/blue value). for i in range(-1, 2): for j in range(-1, 2): # Make sure all the pixels are in the scale of image. if old_img.width > (x+i) >= 0 and old_img.height > (y+j) >= 0: avg_pixel = old_img.get_pixel(x+i, y+j) pixel_red += avg_pixel.red pixel_green += avg_pixel.green pixel_blue += avg_pixel.blue count += 1 # Calculate the average value of 9 pixels and record it into the pixel we picked(new_pixel). new_pixel.red = pixel_red//count new_pixel.green = pixel_green//count new_pixel.blue = pixel_blue//count return new_img def main(): """ The user needs to give a picture, and the program will firstly show the picture. Then the program will use the blur() function to blur the picture for one time. And then put it into a for loop to run the blur() function for several times. Finally, show that picture. """ old_img = SimpleImage("images/smiley-face.png") old_img.show() blurred_img = blur(old_img) for i in range(5): blurred_img = blur(blurred_img) blurred_img.show() if __name__ == '__main__': main() ``` #### File: stanCode_Projects/recursion_application/anagram.py ```python FILE = 'dictionary.txt' # This is the filename of an English dictionary EXIT = '-1' # Controls when to stop the loop # Global Variables dictionary = [] # This is a list of dictionary. searching_list = [] # This is a list of searching results. def main(): """ This program use the 'find_anagrams' function to find all the anagram(s) for the word input by user. Then, it will print all the results and the total amount of the results. """ global searching_list read_dictionary() print("Welcome to stanCode \"Anagram Generator\" (or -1 to quit)") word = input('Find anagrams for: ') # Before user typing the EXIT number, this program will keep working. while word != '-1': current_str = [] print('Searching...') find_anagrams(word, current_str) print(f'{len(searching_list)} anagrams: {searching_list}') # Clear the list 'searching_list' and then restart. searching_list = [] word = input('Find anagrams for: ') return def read_dictionary(): """ This function reads file "dictionary.txt" stored in FILE and appends words in each line into a Python list. """ global dictionary with open(FILE, 'r') as file: for line in file: dictionary += [line.strip()] def find_anagrams(s, current_index): """ This function use recursion to find all the possible permutations of s (the user input). :param s: string, the user input word :param current_index: list, a empty list which will be use to record the index :return: nothing / this function only adds words into the global variable'searching_list' """ global searching_list # Base-Case if len(current_index) == len(s): current_str = '' # Turns the index list into string, and check if the string is in the dictionary. for digit in current_index: current_str += s[digit] if current_str in dictionary: if current_str not in searching_list: searching_list += [current_str] print('Found: ' + current_str) print('Searching...') else: if has_prefix(s, current_index): for i in range(len(s)): if i in current_index: pass else: current_index.append(i) # Recursion find_anagrams(s, current_index) current_index.pop() else: return def has_prefix(s, sub_index): """ This function can make sure that the current string(recorded in index) is in the dictionary. (or it will return False and stop finding. :param s: string, the user input word :param sub_index: list, current list (recorded in the index type) :return: (bool) If there is any words with prefix stored in current list(recorded in index) """ current_str = '' for digit in sub_index: current_str += s[digit] for word in dictionary: if word.startswith(current_str): return True return False if __name__ == '__main__': main() ```
{ "source": "joseph-ismailyan/nand", "score": 4 }
#### File: joseph-ismailyan/nand/nand.py ```python import numpy as np import matplotlib.pyplot as plt #sigmoid function def nonlin(x, deriv=False): if(deriv==True): return x*(1-x) else: return 1/(1+np.exp(-x)) #input data X = np.array([[0,0], [0,1], [1,0], [1,1]]) #correct output data y = np.array([[0], [1], [1], [0]]) #assign seed so we always start with the same data np.random.seed(1) #generate random weights w1 = 2*np.random.random((2,4)) - 1 w2 = 2*np.random.random((4,1)) - 1 #print('\nWeights 1: \n', w1,'\n\n') #print('Weights 2:\n', w2,'\n') #optimize weights Er_list = [] optFound = False runs = 80000 #split into segments to test cost vs benefit of runs #choose n within 2 ordes of magnitude of 'runs' num_segments = int(runs/100) rate = 3 #this is the % between segments that will make a segement the 'optimum' for i in range(runs): #layer 1 is the input layer X l1 = X #layer 2 is X multiplied by the randomly generated weight matrix, w1 l2 = nonlin(np.dot(l1, w1)) #layer 3 is layer 2 mulitplied by random weight matrix w2 #layer 3 is also the output layer l3 = nonlin(np.dot(l2, w2)) Er_l3 = y - l3 Er_list.append(np.mean(abs(Er_l3))) #aka error of output mulitplied by the derivative of the output #this find how far off our weights are l3_delta = Er_l3*nonlin(l3, deriv=True) Er_l2 = l3_delta.dot(w2.T) l2_delta = Er_l2*nonlin(l2, deriv=True) #keep within 1 order of magnitude of runs if(i % 10000 == 0): print('Error at run #{}: '.format(i), np.mean(np.abs(Er_l3))) #print(w2,'\n') #update weights w2 += l2.T.dot(l3_delta) w1 += l1.T.dot(l2_delta) if(len(Er_list) > (num_segments*2) and (optFound == False)): #if the relative difference between segents is less # than 'rate' then we've found a (relatively) optimal number of runs if(100*np.abs((Er_list[i-num_segments]- Er_list[i])/Er_list[i-num_segments]) < rate): optPoint = i optFound = True #print('Input: ',X) #print('Output: ',l3) #print('Actual: ',y) #print('\n\n\n',Er_list[2000] - Er_list[4000]) fig, ax = plt.subplots() #ax.annotate('figure pixels', #xy=(optPoint, Er_list[optPoint]), xycoords='figure pixels') if(optFound): print('Optimum stopping point at', optPoint) ax.annotate('optimum', xy=(optPoint, Er_list[optPoint]), xycoords='data', xytext=(-15, 25), textcoords='offset points', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='bottom') plt.plot(Er_list) plt.show() ```
{ "source": "josephites/pyethapp", "score": 2 }
#### File: pyethapp/examples/urlfetcher.py ```python import json, re import random import sys import ethereum.blocks import ethereum.utils import ethereum.abi import rlp try: from urllib.request import build_opener except: from urllib2 import build_opener my_privkey = ethereum.utils.sha3('<KEY>') my_address = ethereum.utils.privtoaddr(my_privkey).encode('hex') print 'My address', my_address # Address of the main proxy contract my_contract_address = ethereum.utils.normalize_address('0xd53096b3cf64d4739bb774e0f055653e7f2cd710') # Makes a request to a given URL (first arg) and optional params (second arg) def make_request(*args): opener = build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0'+str(random.randrange(1000000)))] try: return opener.open(*args).read().strip() except Exception as e: try: p = e.read().strip() except: p = e raise Exception(p) true, false = True, False # ContractTranslator object for the main proxy contract ct = ethereum.abi.ContractTranslator([{"constant": false, "type": "function", "name": "get(string)", "outputs": [{"type": "int256", "name": "out"}], "inputs": [{"type": "string", "name": "url"}]}, {"inputs": [{"indexed": false, "type": "string", "name": "url"}, {"indexed": false, "type": "address", "name": "callback"}, {"indexed": false, "type": "uint256", "name": "responseId"}, {"indexed": false, "type": "uint256", "name": "fee"}], "type": "event", "name": "GetRequest(string,address,uint256,uint256)"}]) # ContractTranslator object for the contract that is used for testing the main contract ct2 = ethereum.abi.ContractTranslator([{"constant": false, "type": "function", "name": "callback(bytes,uint256)", "outputs": [], "inputs": [{"type": "bytes", "name": "response"}, {"type": "uint256", "name": "responseId"}]}]) app, my_nonce, chainservice = None, None, None # Called once on startup def on_start(_app): print 'Starting URL translator service' global app, my_nonce, chainservice app = _app chainservice = app.services.chain my_nonce = chainservice.chain.head.get_nonce(my_address) # Called every block def on_block(blk): global my_nonce, chainservice for receipt in blk.get_receipts(): for _log in receipt.logs: # Get all logs to the proxy contract address of the right type if _log.address == my_contract_address: log = ct.listen(_log) if log and log["_event_type"] == "GetRequest": print 'fetching: ', log["url"] # Fetch the response try: response = make_request(log["url"]) except: response = '' print 'response: ', response # Create the response transaction txdata = ct2.encode('callback', [response, log["responseId"]]) tx = ethereum.transactions.Transaction(my_nonce, 60 * 10**9, min(100000 + log["fee"] / (60 * 10**9), 2500000), log["callback"], 0, txdata).sign(my_privkey) print 'txhash: ', tx.hash.encode('hex') print 'tx: ', rlp.encode(tx).encode('hex') # Increment the nonce so the next transaction is also valid my_nonce += 1 # Send it success = chainservice.add_transaction(tx, broadcast_only=True) assert success print 'sent tx' ``` #### File: pyethapp/pyethapp/dao.py ```python from ethereum.block import BlockHeader from ethereum.utils import decode_hex, int256, big_endian_to_int def is_dao_challenge(config, number, amount, skip): return number == config['DAO_FORK_BLKNUM'] and amount == 1 and skip == 0 def build_dao_header(config): return BlockHeader( prevhash=decode_hex('a218e2c611f21232d857e3c8cecdcdf1f65f25a4477f98f6f47e4063807f2308'), uncles_hash=decode_hex('1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'), coinbase=decode_hex('bcdfc35b86bedf72f0cda046a3c16829a2ef41d1'), state_root=decode_hex('c5e389416116e3696cce82ec4533cce33efccb24ce245ae9546a4b8f0d5e9a75'), tx_list_root=decode_hex('7701df8e07169452554d14aadd7bfa256d4a1d0355c1d174ab373e3e2d0a3743'), receipts_root=decode_hex('26cf9d9422e9dd95aedc7914db690b92bab6902f5221d62694a2fa5d065f534b'), bloom=int256.deserialize( decode_hex('00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000'), ), difficulty=big_endian_to_int(decode_hex('38c3bf2616aa')), number=config['DAO_FORK_BLKNUM'], gas_limit=big_endian_to_int(decode_hex('47e7c0')), gas_used=big_endian_to_int(decode_hex('014820')), timestamp=big_endian_to_int(decode_hex('578f7aa8')), extra_data=config['DAO_FORK_BLKEXTRA'], mixhash=decode_hex('5b5acbf4bf305f948bd7be176047b20623e1417f75597341a059729165b92397'), nonce=decode_hex('bede87201de42426') ) ``` #### File: pyethapp/pyethapp/leveldb_service.py ```python import os import sys from devp2p.service import BaseService from ethereum.db import BaseDB from gevent.event import Event from gevent.hub import getcurrent import leveldb from ethereum import slogging from ethereum.utils import encode_hex import random slogging.set_level('db', 'debug') log = slogging.get_logger('db') compress = decompress = lambda x: x PY3 = sys.version_info >= (3,) """ memleak in py-leveldb 25140 ralf 20 0 3360m 1.3g 53m S 3 4.2 4:12.71 pyethapp 26167 ralf 20 0 2943m 1.0g 44m S 1 3.3 3:19.51 pyethapp 25140 ralf 20 0 3531m 1.5g 61m S 1 4.7 5:07.49 pyethapp 26167 ralf 20 0 3115m 1.1g 47m S 1 3.6 4:03.54 pyethapp mit reload_db() 4096 ralf 20 0 1048m 362m 14m S 2 1.1 1:21.97 pyethapp 4109 ralf 20 0 975m 307m 14m S 2 1.0 1:16.03 pyethapp 4096 ralf 20 0 903m 431m 9484 S 2 1.3 1:54.29 pyethapp 4109 ralf 20 0 807m 367m 8852 S 1 1.1 1:47.01 pyethapp 4109 ralf 20 0 2609m 640m 60m S 3 2.0 2:41.05 pyethapp 4096 ralf 20 0 1232m 521m 14m S 6 1.6 2:28.68 pyethapp deserializing all blocks + pow + add to list: 1GB after 300k blocks reading all entries == 400MB + check pow every 1000 32 caches = 580MB + check pow every 1000 1 cache = 590MB """ class LevelDB(BaseDB): """ filename the database directory block_cache_size (default: 8 * (2 << 20)) maximum allowed size for the block cache in bytes write_buffer_size (default 2 * (2 << 20)) block_size (default: 4096) unit of transfer for the block cache in bytes max_open_files: (default: 1000) create_if_missing (default: True) if True, creates a new database if none exists error_if_exists (default: False) if True, raises and error if the database exists paranoid_checks (default: False) if True, raises an error as soon as an internal corruption is detected """ max_open_files = 32000 block_cache_size = 8 * 1024**2 write_buffer_size = 4 * 1024**2 def __init__(self, dbfile): self.uncommitted = dict() log.info('opening LevelDB', path=dbfile, block_cache_size=self.block_cache_size, write_buffer_size=self.write_buffer_size, max_open_files=self.max_open_files) self.dbfile = dbfile self.db = leveldb.LevelDB(dbfile, max_open_files=self.max_open_files) self.commit_counter = 0 def reopen(self): del self.db self.db = leveldb.LevelDB(self.dbfile) def get(self, key): log.trace('getting entry', key=encode_hex(key)[:8]) if key in self.uncommitted: if self.uncommitted[key] is None: raise KeyError("key not in db") log.trace('from uncommitted') return self.uncommitted[key] log.trace('from db') if PY3: if isinstance(key, str): key = key.encode() o = bytes(self.db.Get(key)) else: o = decompress(self.db.Get(key)) self.uncommitted[key] = o return o def put(self, key, value): log.trace('putting entry', key=encode_hex(key)[:8], len=len(value)) self.uncommitted[key] = value def commit(self): log.debug('committing', db=self) batch = leveldb.WriteBatch() for k, v in list(self.uncommitted.items()): if v is None: batch.Delete(k) else: compress_v = compress(v) if PY3: if isinstance(k, str): k = k.encode() if isinstance(compress_v, str): compress_v = compress_v.encode() batch.Put(k, compress_v) self.db.Write(batch, sync=False) self.uncommitted.clear() log.debug('committed', db=self, num=len(self.uncommitted)) # self.commit_counter += 1 # if self.commit_counter % 100 == 0: # self.reopen() def delete(self, key): log.trace('deleting entry', key=key) self.uncommitted[key] = None def _has_key(self, key): try: self.get(key) return True except KeyError: return False except Exception as e: log.info('key: {}, type(key):{}'.format(key, type(key))) raise def __contains__(self, key): return self._has_key(key) def __eq__(self, other): return isinstance(other, self.__class__) and self.db == other.db def __repr__(self): return '<DB at %d uncommitted=%d>' % (id(self.db), len(self.uncommitted)) def inc_refcount(self, key, value): self.put(key, value) def dec_refcount(self, key): pass def revert_refcount_changes(self, epoch): pass def commit_refcount_changes(self, epoch): pass def cleanup(self, epoch): pass def put_temporarily(self, key, value): self.inc_refcount(key, value) self.dec_refcount(key) class LevelDBService(LevelDB, BaseService): """A service providing an interface to a level db.""" name = 'db' default_config = dict(data_dir='') def __init__(self, app): BaseService.__init__(self, app) assert self.app.config['data_dir'] self.uncommitted = dict() self.stop_event = Event() dbfile = os.path.join(self.app.config['data_dir'], 'leveldb') LevelDB.__init__(self, dbfile) self.h = random.randrange(10**50) def _run(self): self.stop_event.wait() def stop(self): self.stop_event.set() # commit? log.debug('closing db') def __hash__(self): return self.h ``` #### File: pyethapp/pyethapp/lmdb_service.py ```python import os import lmdb from devp2p.service import BaseService from ethereum.db import BaseDB from ethereum.slogging import get_logger from gevent.event import Event log = get_logger('db') # unique objects to represent state in the transient store, the delete # operation will store the DELETE constant in the transient store, and NULL is # used to avoid conflicts with None, effectivelly allowing the user to store it NULL = object() DELETE = object() TB = (2 ** 10) ** 4 class LmDBService(BaseDB, BaseService): """A service providing an interface to a lmdb.""" name = 'db' default_config = dict() # the defaults are defined in pyethapp.db_service def __init__(self, app): assert app.config['data_dir'] BaseService.__init__(self, app) db_directory = os.path.join(app.config['data_dir'], 'lmdb') self.env = lmdb.Environment(db_directory, map_size=TB) self.db_directory = db_directory self.uncommitted = dict() self.stop_event = Event() def _run(self): self.stop_event.wait() def stop(self): self.stop_event.set() def put(self, key, value): self.uncommitted[key] = value def delete(self, key): self.uncommitted[key] = DELETE def inc_refcount(self, key, value): self.put(key, value) def dec_refcount(self, key): pass def put_temporarily(self, key, value): self.inc_refcount(key, value) self.dec_refcount(key) def reopen(self): self.env.close() del self.env # the map_size is stored in the database itself after it's first created self.env = lmdb.Environment(self.db_directory) def get(self, key): value = self.uncommitted.get(key, NULL) if value is DELETE: raise KeyError('key not in db') if value is NULL: with self.env.begin(write=False) as transaction: value = transaction.get(key, NULL) if value is NULL: raise KeyError('key not in db') self.uncommitted[key] = value return value def commit(self): keys_to_delete = ( key for key, value in list(self.uncommitted.items()) if value is DELETE ) items_to_insert = ( (key, value) for key, value in list(self.uncommitted.items()) if value not in (DELETE, NULL) # NULL shouldn't happen ) with self.env.begin(write=True) as transaction: for key in keys_to_delete: transaction.delete(key) cursor = transaction.cursor() cursor.putmulti(items_to_insert, overwrite=True) def revert_refcount_changes(self, epoch): pass def commit_refcount_changes(self, epoch): pass def cleanup(self, epoch): pass def __contains__(self, key): try: self.get(key) except KeyError: return False return True def __eq__(self, other): return isinstance(other, self.__class__) and self.db == other.db def __repr__(self): return '<DB at %d uncommitted=%d>' % (id(self.env), len(self.uncommitted)) ``` #### File: pyethapp/pyethapp/pow_service.py ```python from __future__ import division from builtins import object from past.utils import old_div import time import gevent import gipc import random from devp2p.service import BaseService from ethereum.pow.ethpow import mine, TT64M1 from ethereum.slogging import get_logger from ethereum.utils import encode_hex log = get_logger('pow') log_sub = get_logger('pow.subprocess') class Miner(gevent.Greenlet): rounds = 100 max_elapsed = 1. def __init__(self, mining_hash, block_number, difficulty, nonce_callback, hashrate_callback, cpu_pct=100): self.mining_hash = mining_hash self.block_number = block_number self.difficulty = difficulty self.nonce_callback = nonce_callback self.hashrate_callback = hashrate_callback self.cpu_pct = cpu_pct self.is_stopped = False super(Miner, self).__init__() def _run(self): nonce = random.randint(0, TT64M1) while not self.is_stopped: log_sub.trace('starting mining round') st = time.time() bin_nonce, mixhash = mine(self.block_number, self.difficulty, self.mining_hash, start_nonce=nonce, rounds=self.rounds) elapsed = time.time() - st if bin_nonce: log_sub.info('nonce found') self.nonce_callback(bin_nonce, mixhash, self.mining_hash) break delay = elapsed * (1 - old_div(self.cpu_pct, 100.)) hashrate = int(self.rounds // (elapsed + delay)) self.hashrate_callback(hashrate) log_sub.trace('sleeping', delay=delay, elapsed=elapsed, rounds=self.rounds) gevent.sleep(delay + 0.001) nonce += self.rounds # adjust adjust = old_div(elapsed, self.max_elapsed) self.rounds = int(old_div(self.rounds, adjust)) log_sub.debug('mining task finished', is_stopped=self.is_stopped) def stop(self): self.is_stopped = True self.join() class PoWWorker(object): """ communicates with the parent process using: tuple(str_cmd, dict_kargs) """ def __init__(self, cpipe, cpu_pct): self.cpipe = cpipe self.miner = None self.cpu_pct = cpu_pct def send_found_nonce(self, bin_nonce, mixhash, mining_hash): log_sub.info('sending nonce') self.cpipe.put(('found_nonce', dict(bin_nonce=bin_nonce, mixhash=mixhash, mining_hash=mining_hash))) def send_hashrate(self, hashrate): log_sub.trace('sending hashrate') self.cpipe.put(('hashrate', dict(hashrate=hashrate))) def recv_set_cpu_pct(self, cpu_pct): self.cpu_pct = max(0, min(100, cpu_pct)) if self.miner: self.miner.cpu_pct = self.cpu_pct def recv_mine(self, mining_hash, block_number, difficulty): "restarts the miner" log_sub.debug('received new mining task', difficulty=difficulty) assert isinstance(block_number, int) if self.miner: self.miner.stop() self.miner = Miner(mining_hash, block_number, difficulty, self.send_found_nonce, self.send_hashrate, self.cpu_pct) self.miner.start() def run(self): while True: cmd, kargs = self.cpipe.get() assert isinstance(kargs, dict) getattr(self, 'recv_' + cmd)(**kargs) def powworker_process(cpipe, cpu_pct): "entry point in forked sub processes, setup env" gevent.get_hub().SYSTEM_ERROR = BaseException # stop on any exception PoWWorker(cpipe, cpu_pct).run() # parent process defined below ##############################################3 class PoWService(BaseService): name = 'pow' default_config = dict(pow=dict( activated=False, cpu_pct=100, coinbase_hex=None, mine_empty_blocks=True )) def __init__(self, app): super(PoWService, self).__init__(app) cpu_pct = self.app.config['pow']['cpu_pct'] self.cpipe, self.ppipe = gipc.pipe(duplex=True) self.worker_process = gipc.start_process( target=powworker_process, args=(self.cpipe, cpu_pct)) self.chain = app.services.chain self.chain.on_new_head_cbs.append(self.mine_head_candidate) self.hashrate = 0 @property def active(self): return self.app.config['pow']['activated'] def mine_head_candidate(self, _=None): hc = self.chain.head_candidate if not self.active or self.chain.is_syncing: return elif (hc.transaction_count == 0 and not self.app.config['pow']['mine_empty_blocks']): return log.debug('mining', difficulty=hc.difficulty) self.ppipe.put(('mine', dict(mining_hash=hc.mining_hash, block_number=hc.number, difficulty=hc.difficulty))) def recv_hashrate(self, hashrate): log.trace('hashrate updated', hashrate=hashrate) self.hashrate = hashrate def recv_found_nonce(self, bin_nonce, mixhash, mining_hash): log.info('nonce found: {}'.format(encode_hex(mining_hash))) block = self.chain.head_candidate if block.mining_hash != mining_hash: log.warn('mining_hash does not match') gevent.spawn_later(0.5, self.mine_head_candidate) return False block.header.mixhash = mixhash block.header.nonce = bin_nonce if self.chain.add_mined_block(block): log.debug('mined block %d (%s) added to chain' % ( block.number, encode_hex(block.hash[:8]))) return True else: log.debug('failed to add mined block %d (%s) to chain' % ( block.number, encode_hex(block.hash[:8]))) return False def _run(self): self.mine_head_candidate() while True: cmd, kargs = self.ppipe.get() assert isinstance(kargs, dict) getattr(self, 'recv_' + cmd)(**kargs) def stop(self): self.worker_process.terminate() self.worker_process.join() super(PoWService, self).stop() ``` #### File: pyethapp/tests/test_app.py ```python from builtins import str import os import pytest from pyethapp import app from pyethapp import config from click.testing import CliRunner genesis_json = { "nonce": "0x00000000000000ff", "difficulty": "0xff0000000", "mixhash": "0xff00000000000000000000000000000000000000000000000000000000000000", "coinbase": "0xff00000000000000000000000000000000000000", "timestamp": "0xff", "parentHash": "0xff00000000000000000000000000000000000000000000000000000000000000", "extraData": "0x11bbe8db4e347b4e8c937c1c8370e4b5ed33adb3db69cbdb7a38e1e50b1b82fa", "gasLimit": "0xffff", "alloc": { "ffffffffffffffffffffffffffffffffffffffff": {"balance": "9876543210"}, "0000000000000000000000000000000000000000": {"balance": "1234567890"} } } genesis_yaml = """ eth: genesis: {} """.format(genesis_json) def test_show_usage(): runner = CliRunner() result = runner.invoke(app.app, []) assert "Usage: app " in result.output, result.output def test_no_such_option(): runner = CliRunner() result = runner.invoke(app.app, ['--WTF']) assert 'no such option: --WTF' in result.output, result.output def test_no_such_command(): runner = CliRunner() result = runner.invoke(app.app, ['eat']) assert 'Error: No such command "eat"' in result.output, result.output @pytest.mark.parametrize('content', ['', '<html/>', 'print "hello world"']) def test_non_dict_yaml_as_config_file(content): runner = CliRunner() with runner.isolated_filesystem(): with open('config.yaml', 'w') as text_file: text_file.write(content) result = runner.invoke(app.app, ['-C', 'config.yaml']) assert 'content of config should be an yaml dictionary' in result.output, result.output @pytest.mark.parametrize('param', [('--Config', 'myconfig.yaml'), ('-C', 'myconfig.yaml'), ('-c', 'mygenesis.json'), ('-c', 'dict')]) def test_custom_config_file(param): runner = CliRunner() with runner.isolated_filesystem(): opt, arg = param if arg.endswith('.yaml'): with open(arg, 'w') as text_file: text_file.write(genesis_yaml) elif arg.endswith('.json'): with open(arg, 'w') as text_file: text_file.write(str(genesis_json)) else: arg = str(genesis_json).replace('\n', '').replace(' ', '') if opt == '-c': arg = 'eth.genesis={}'.format(arg) result = runner.invoke(app.app, [opt, arg, 'config']) if arg.endswith('.json'): patterns = ['genesis: {}'.format(param[1])] else: patterns = ["{}: '{}'".format(k, v) for k, v in list(genesis_json.items()) if k != 'alloc'] for pat in patterns: assert pat in result.output, '`{}` not found'.format(pat) for k, v in list(genesis_json['alloc'].items()): assert k in result.output assert v['balance'] in result.output def test_config_from_datadir(tmpdir): """Test, that when given a `--data-dir`, the app reads the config from the '`--data-dir`/config.yaml'. """ DIR = "datadir" runner = CliRunner() with runner.isolated_filesystem(): os.mkdir(DIR) runner.invoke(app.app, ["--data-dir", DIR, "config"]) with open(os.path.join(DIR, config.CONFIG_FILE_NAME), "w") as configfile: configfile.write("p2p:\n max_peers: 9000") result = runner.invoke(app.app, ["--data-dir", DIR, "config"]) assert "max_peers: 9000" in result.output if __name__ == '__main__': test_show_usage() test_no_such_option() test_no_such_command() test_non_dict_yaml_as_config_file('') test_non_dict_yaml_as_config_file('<html/>') test_non_dict_yaml_as_config_file('print "hello world"') test_custom_config_file(('--Config', 'myconfig.yaml')) test_custom_config_file(('-C', 'myconfig.yaml')) test_custom_config_file(('-c', 'mygenesis.json')) test_custom_config_file(('-c', 'dict')) ``` #### File: pyethapp/tests/test_genesis.py ```python from pprint import pprint import pytest from ethereum.db import DB from ethereum.config import Env, default_config from ethereum.genesis_helpers import mk_genesis_block from ethereum.state import State from ethereum.utils import encode_hex from pyethapp.utils import merge_dict from pyethapp.config import update_config_from_genesis_json import pyethapp.config as konfig from pyethapp.profiles import PROFILES def test_genesis_config(): "test setting genesis alloc using the config" alloc = {'1' * 40: {'wei': 1}, # wei '2' * 40: {'balance': 2}, # balance '3' * 20: {'balance': 3}, # 20 bytes } config = dict(eth=dict(genesis=dict(alloc=alloc))) konfig.update_config_with_defaults(config, {'eth': {'block': default_config}}) # Load genesis config update_config_from_genesis_json(config, config['eth']['genesis']) bc = config['eth']['block'] pprint(bc) env = Env(DB(), bc) genesis = mk_genesis_block(env) state = State(genesis.state_root, env) for address, value_dict in list(alloc.items()): value = list(value_dict.values())[0] assert state.get_balance(address) == value @pytest.mark.parametrize('profile', list(PROFILES.keys())) def test_profile(profile): config = dict(eth=dict()) konfig.update_config_with_defaults(config, {'eth': {'block': default_config}}) # Set config values based on profile selection merge_dict(config, PROFILES[profile]) # Load genesis config update_config_from_genesis_json(config, config['eth']['genesis']) bc = config['eth']['block'] pprint(bc) env = Env(DB(), bc) genesis = mk_genesis_block(env) assert encode_hex(genesis.hash) == config['eth']['genesis_hash'] ``` #### File: pyethapp/pyethapp/validator_service.py ```python from __future__ import print_function import time import random import gevent from devp2p.service import BaseService from ethereum.slogging import get_logger from ethereum.utils import privtoaddr, encode_hex, sha3 from ethereum.casper_utils import generate_validation_code, call_casper, check_skips, \ get_timestamp, \ get_casper_ct, get_dunkle_candidates, sign_block, \ make_withdrawal_signature, RandaoManager log = get_logger('validator') BLOCK_TIME = 3 global_block_counter = 0 casper_ct = get_casper_ct() class ValidatorService(BaseService): name = 'validator' default_config = dict(validator=dict( activated=False, privkey='', deposit_size=0, seed='' )) def __init__(self, app): super(ValidatorService, self).__init__(app) self.config = app.config self.chainservice = app.services.chain self.chain = self.chainservice.chain self.chain.time = lambda: int(time.time()) self.key = self.config['validator']['privkey'] print("*"*100) print(repr(self.key)) print(len(self.key)) self.address = privtoaddr(self.key) self.validation_code = generate_validation_code(self.address) self.validation_code_hash = sha3(self.validation_code) # TODO: allow configure seed? seed = sha3(self.key) self.randao = RandaoManager(seed) self.received_objects = {} self.used_parents = {} self.next_skip_count = 0 self.next_skip_timestamp = 0 self.epoch_length = self.call_casper('getEpochLength') self.active = False self.activated = self.app.config['validator']['activated'] app.services.chain.on_new_head_cbs.append(self.on_new_head) self.update_activity_status() self.cached_head = self.chain.head_hash def on_new_head(self, block): if not self.activated: return if self.app.services.chain.is_syncing: return self.update() def update_activity_status(self): start_epoch = self.call_casper('getStartEpoch', [self.validation_code_hash]) now_epoch = self.call_casper('getEpoch') end_epoch = self.call_casper('getEndEpoch', [self.validation_code_hash]) if start_epoch <= now_epoch < end_epoch: self.active = True self.next_skip_count = 0 self.next_skip_timestamp = get_timestamp(self.chain, self.next_skip_count) else: self.active = False def tick(self): delay = 0 # Try to create a block # Conditions: # (i) you are an active validator, # (ii) you have not yet made a block with this parent if self.active and self.chain.head_hash not in self.used_parents: t = time.time() # Is it early enough to create the block? if t >= self.next_skip_timestamp and (not self.chain.head or t > self.chain.head.header.timestamp): # Wrong validator; in this case, just wait for the next skip count if not check_skips(self.chain, self.validation_code_hash, self.next_skip_count): self.next_skip_count += 1 self.next_skip_timestamp = get_timestamp(self.chain, self.next_skip_count) log.debug('Not my turn, wait', next_skip_count=self.next_skip_count, next_skip_timestamp=self.next_skip_timestamp, now=int(time.time())) return self.used_parents[self.chain.head_hash] = True blk = self.make_block() assert blk.timestamp >= self.next_skip_timestamp if self.chainservice.add_mined_block(blk): self.received_objects[blk.hash] = True log.debug('0x%s made and added block %d (%s) to chain' % (encode_hex(self.address[:8]), blk.header.number, encode_hex(blk.header.hash[:8]))) else: log.debug('0x%s failed to make and add block %d (%s) to chain' % (encode_hex(self.address[:8]), blk.header.number, encode_hex(blk.header.hash[:8]))) self.update() else: delay = max(self.next_skip_timestamp - t, 0) # Sometimes we received blocks too early or out of order; # run an occasional loop that processes these if random.random() < 0.02: self.chain.process_time_queue() self.chain.process_parent_queue() self.update() return delay def make_block(self): pre_dunkle_count = self.call_casper('getTotalDunklesIncluded') dunkle_txs = get_dunkle_candidates(self.chain, self.chain.state) blk = self.chainservice.head_candidate randao = self.randao.get_parent(self.call_casper('getRandao', [self.validation_code_hash])) blk = sign_block(blk, self.key, randao, self.validation_code_hash, self.next_skip_count) # Make sure it's valid global global_block_counter global_block_counter += 1 for dtx in dunkle_txs: assert dtx in blk.transactions, (dtx, blk.transactions) log.debug('made block with timestamp %d and %d dunkles' % (blk.timestamp, len(dunkle_txs))) return blk def update(self): if self.cached_head == self.chain.head_hash: return self.cached_head = self.chain.head_hash if self.chain.state.block_number % self.epoch_length == 0: self.update_activity_status() if self.active: self.next_skip_count = 0 self.next_skip_timestamp = get_timestamp(self.chain, self.next_skip_count) log.debug('Head changed: %s, will attempt creating a block at %d' % (encode_hex(self.chain.head_hash), self.next_skip_timestamp)) def withdraw(self, gasprice=20 * 10**9): sigdata = make_withdrawal_signature(self.key) txdata = casper_ct.encode('startWithdrawal', [self.validation_code_hash, sigdata]) tx = Transaction(self.chain.state.get_nonce(self.address), gasprice, 650000, self.chain.config['CASPER_ADDR'], 0, txdata).sign(self.key) self.chainservice.add_transaction(tx, force=True) def deposit(self, gasprice=20 * 10**9): assert value * 10**18 >= self.chain.state.get_balance(self.address) + gasprice * 1000000 tx = Transaction(self.chain.state.get_nonce(self.address) * 10**18, gasprice, 1000000, casper_config['CASPER_ADDR'], value * 10**18, ct.encode('deposit', [self.validation_code, self.randao.get(9999)])) def call_casper(self, fun, args=[]): return call_casper(self.chain.state, fun, args) def _run(self): while True: if self.activated: delay = self.tick() gevent.sleep(delay) def stop(self): super(ValidatorService, self).stop() ```
{ "source": "joseph-iussa/dupfinder", "score": 3 }
#### File: tests/integration/core_test.py ```python import pytest from pathlib import Path from dupfinder.core import get_absolute_root_paths, get_absolute_file_paths def test__get_absolute_root_paths__throws_on_bad_path(tmpdir): bad_root_paths = [str(Path(str(tmpdir), 'not/a/path'))] with pytest.raises(FileNotFoundError): get_absolute_root_paths(bad_root_paths) def test__get_absolute_file_paths__gets_all_paths(tmpdir): test_paths = ( Path(str(tmpdir), 'foo.txt'), Path(str(tmpdir), 'sub/foo.txt'), Path(str(tmpdir), 'sub/bar.txt'), Path(str(tmpdir), 'sub/sub/baz.txt'), Path(str(tmpdir), 'sub/sub/box.txt'), ) for path in test_paths: if not path.parent.exists(): path.parent.mkdir(parents=True) path.touch() test_root_paths = ( str(Path(str(tmpdir), '.').resolve()), str(Path(str(tmpdir), 'sub').resolve()) ) returned_paths = get_absolute_file_paths(test_root_paths) assert all(str(test_path.resolve()) in returned_paths for test_path in test_paths) ```
{ "source": "josephizatt/furucombo-contract", "score": 2 }
#### File: furucombo-contract/scripts/certora_ci.py ```python import os import time import subprocess import argparse RULE_DIR = './specs/scripts' CONTRACT_RULES_MAP = { # Proxy, Registry and libPrams "LibParam.sol": ["libParam.sh", "naiveLibParam.sh", "naiveLibParamB63.sh"], "Registry.sol": ["privRegistry.sh", "registry.sh"], "Proxy.sol": ["privProxy.sh", "proxy.sh proxy"], # Handler "HAaveProtocol.sol": ["runHAave.sh"], "HAaveProtocolV2.sol": ["runHAave2.sh"], "HBalancer.sol": ["runHBalancer.sh", "runHBalancerSpecific.sh"], "HBProtocol.sol": ["runHBProtocol.sh", "runHBProtocolSpecific.sh"], "HCEther.sol": ["runHCEther.sh"], "HCToken.sol": ["runHCToken.sh"], "HComptroller.sol": ["runHComptroller.sh"], "HSCompound.sol": ["runHSCompound.sh", "runHSCompoundSpecific.sh"], "HCurve.sol": ["runHCurve.sh"], "HCurveDao.sol": ["runHCurveDao.sh"], "HFunds.sol": ["runHFunds.sh"], "HFurucomboStaking.sol": ["runHFurucomboStaking.sh"], "HGasTokens.sol": ["runHGasTokens.sh"], "HMaker.sol": ["runHMaker.sh", "runHMakerSpecific.sh"], "HStakingRewardsAdapter.sol": ["runHStakingRewardsAdapter.sh"], "HSushiSwap.sol": ["runHSushiSwap.sh"], "HUniswapV2.sol": ["runHUniswapV2.sh"], "HYVault.sol": ["runHYVault.sh"], "HWeth.sol": ["runHWeth.sh"], "HUniswapV3.sol": ["runHUniswapV3.sh"], "HPolygon.sol": ["runHPolygon.sh"], "HOneInchV3.sol": ["runHOneInchV3.sh"], "HGelatoV2LimitOrder.sol": ["runHGelatoV2LimitOrder.sh"] } def run_cmd(cmd): process = subprocess.Popen([cmd], stdout=subprocess.PIPE, shell=True) status = process.wait() out, err = process.communicate() if status > 0: raise Exception("execute cmd(%s): %r" % (cmd, err)) return out def get_changed_contracts(): out = run_cmd("git log -m -1 --name-only --pretty=\"format: \"") files = str(out, 'utf-8').split('\n') sols = [] for f in files: if str.endswith(f, '.sol') and str.startswith(f, 'contracts'): sols.append(f.split('/')[-1]) print("changed contract: \n %r" % sols) return sols def _exec_certora_rule(rule): _cmd = "%s/%s" % (RULE_DIR, rule) print(_cmd) report = { "job_id": "Not found, please review certora prover home", "job_status": '', "job_output": '' } process = subprocess.Popen( [_cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) _prefix = 'You can follow up on the status: ' while True: output = process.stdout.readline().decode('utf-8') if _prefix in output: output = output.replace(_prefix, '') report["job_id"] = output.split('?')[0].split('/')[-1] report["job_status"] = output report["job_output"] = output.replace("jobStatus", "output") break if 'Fatal error' in output: report["job_id"] = output break if process.poll() is not None: report["job_id"] = "Not found url" break process.terminate() return report def run_certora_rules(sols): reports = dict() for sol in sols: if sol not in CONTRACT_RULES_MAP.keys(): print("Can't find %s rules" % sol) continue reports[sol] = dict() rules = CONTRACT_RULES_MAP.get(sol, []) for rule in rules: report = _exec_certora_rule(rule) reports[sol][rule] = report return reports def output_reports(reports): print("--- Report Output ---") for sol, rule in reports.items(): for rule_name, rule_report in rule.items(): print("%s(%s) job_id:%s" % (sol, rule_name, rule_report['job_id'])) print(rule_report['job_status'].replace('\n', '')) print(rule_report['job_output'].replace('\n', '')) print('-------\n') if __name__ == "__main__": # parse command parser = argparse.ArgumentParser( description='Process certora prover rules.') parser.add_argument('--range', "-r", type=str, nargs='?', default='diff', choices=['diff', 'all']) args = parser.parse_args() print(args) # execute certora rule if args.range == 'diff': sols = get_changed_contracts() else: sols = CONTRACT_RULES_MAP.keys() print("checked contract: \n %r" % sols) # Run certora rules reports = run_certora_rules(sols) output_reports(reports) ```
{ "source": "JosephJamesDoyle87/software", "score": 3 }
#### File: software/tests/failure_test.py ```python import unittest -class TestSimple(unittest.TestCase): - - def test_failure(self): - self.assertTrue(False) +def test_success(): + assert True ```
{ "source": "JosephJContreras/dbreport", "score": 3 }
#### File: tests/data/db_setup.py ```python import os import sqlite3 as sq3 import sys from text_unidecode import unidecode # set up paths for where to find original database BASE_PATH = os.path.split(os.path.abspath(__file__))[0] BASE_DATABASE_FILENAME = "chinook.db" BASE_DATABASE_PATH = os.path.join(BASE_PATH, BASE_DATABASE_FILENAME) # Or where to find dump file and create test database DUMP_PATH = os.path.join(BASE_PATH, f"{BASE_DATABASE_FILENAME[:-3]}_dump.sql") TEST_PATH = os.path.join(BASE_PATH, f"test_{BASE_DATABASE_FILENAME}") VIEW_DIR = os.path.join(BASE_PATH, "views") def extract_dump(db_path, dump_path): """ Create dump of database given the path to the database file PARAMETERS db_path: str: path to database file dump_path: str: path to the dump file to be saved """ with sq3.connect(db_path) as conn: with open(dump_path, "w", newline="") as f: # noinspection PyTypeChecker for line in conn.iterdump(): f.write(unidecode(line)) def load_dump(db_path, dump_path): """ Create test database given path to dump file PARAMETERS db_path: str: path to database file to be created dump_path: str: path to the dump file to be used to create database """ # start by removing the existing database if one exists try: os.remove(db_path) except PermissionError: print(f"could not delete {db_path}, continuing anyway") except FileNotFoundError: # if the file was not found, nothing needs to be done. pass with open(dump_path, "r") as f: sql = f.read() with sq3.connect(db_path) as cursor: try: cursor.executescript(sql) except sq3.OperationalError: # most likely cause is the table already exists pass def add_views(db_path, view_dir): """ add views to database PARAMETERS db_path: str: path to database to have views added view_dir: str: path the directory with view files. The contents of the files are not the sql to create the view, but rather the query the view should have. The view name uses the filename of the query """ conn = sq3.connect(db_path) cursor = conn.cursor() for file in os.listdir(view_dir): if not file.lower().endswith(".sql"): # skip all non .sql files continue path = os.path.join(view_dir, file) sql = f"CREATE VIEW IF NOT EXISTS [{file[:-4]}] AS\n" with open(path, "r") as f: sql += f.read() try: cursor.execute(sql) conn.commit() except sq3.OperationalError: print(f"failed to create view {file}") continue cursor.close() conn.close() if __name__ == "__main__": args = sys.argv[1] if args == "create-dump": # to extract database and create dump file run... extract_dump(BASE_DATABASE_PATH, DUMP_PATH) elif args == "load-dump": # to load dump file and create test db run... load_dump(TEST_PATH, DUMP_PATH) add_views(TEST_PATH, VIEW_DIR) else: print("did not create anything") ```
{ "source": "josephjcontreras/FEMethods", "score": 3 }
#### File: femethods/core/_base_elements.py ```python from abc import ABC, abstractmethod from typing import List, Optional, Tuple from warnings import warn import matplotlib.pyplot as plt import numpy as np # Importing loads is only used for checking the type. Find a better way to do # this without needing to import loads from femethods.loads import Load, PointLoad from femethods.mesh import Mesh from femethods.reactions import Reaction BOUNDARY_CONDITIONS = List[Tuple[Optional[int], Optional[int]]] # Allow upper case letters for variable names to match engineering conventions # for variables, such as E for Young's modulus and I for the polar moment of # inertia # noinspection PyPep8Naming class Base(ABC): """base object to be used as base for both FEM analysis""" def __init__(self, length: float, E: float = 1, Ixx: float = 1) -> None: self.length = length self.E = E # Young's modulus self.Ixx = Ixx # area moment of inertia @property def length(self) -> float: return self._length @length.setter def length(self, length: float) -> None: if length <= 0: # length must be a positive number raise ValueError("length must be positive!") self._length = length @property def E(self) -> float: return self._E @E.setter def E(self, E: float) -> None: if E <= 0: raise ValueError("Young's modulus must be positive!") self._E = E @property def Ixx(self) -> float: return self._Ixx @Ixx.setter def Ixx(self, Ixx: float) -> None: if Ixx <= 0: raise ValueError("Area moment of inertia must be positive!") self._Ixx = Ixx # Allow upper case letters for variable names to match engineering conventions # for variables, such as E for Young's modulus and I for the polar moment of # inertia # noinspection PyPep8Naming class Element(Base, ABC): """General element that will be inherited from for specific elements""" def __init__(self, length: float, E: float = 1, Ixx: float = 1) -> None: super().__init__(length, E, Ixx) self._node_deflections = None self._K = None # global stiffness matrix self._reactions: Optional[List[Reaction]] = None self._loads: Optional[List[Load]] = None @property def loads(self) -> Optional[List[Load]]: return self._loads @loads.setter def loads(self, loads: List[Load]) -> None: # validate that loads is a list of valid Loads for load in loads: if not isinstance(load, Load): raise TypeError(f"type {type(load)} is not of type Load") self.invalidate() self._loads = loads self.__validate_load_locations() def __validate_load_locations(self) -> bool: """All loads and reactions must have unique locations This function will validate that all loads do not line up with any reactions. If a load is aligned with a reaction, it is adjusted by a slight amount so it can be solved. :returns True if successful, False otherwise """ assert self.reactions is not None assert self.loads is not None for reaction in self.reactions: for load in self.loads: if load.location == reaction.location: # the load is directly on the reaction. Offset the load # location a tiny amount so that it is very close, but not # exactly on the reaction. # This is done so that the global stiffness matrix # is calculated properly to give accurate results # offset the load towards the inside of the beam to be sure # the new load position is located on the beam. if reaction.location == 0: load.location += 1e-8 warn( f"load location moved by 1e-8 to avoid reaction " f"at {reaction.location}" ) else: load.location -= 1e-8 warn( f"load location moved by -1e-8 to avoid reaction" f" at {reaction.location}" ) return True @property def reactions(self) -> Optional[List[Reaction]]: return self._reactions @reactions.setter def reactions(self, reactions: List[Reaction]) -> None: for reaction in reactions: if not isinstance(reaction, Reaction): msg = f"type {type(reaction)} is not of type Reaction" raise TypeError(msg) self.invalidate() self._reactions = reactions @abstractmethod def remesh(self) -> None: """force a remesh calculation and invalidate any calculation results""" raise NotImplementedError("method must be overloaded") def invalidate(self) -> None: """invalidate the element to force resolving""" self._node_deflections = None self._K = None if self.reactions is not None: for reaction in self.reactions: reaction.invalidate() @property def K(self) -> np.array: """global stiffness matrix""" if self._K is None: self._K = self.stiffness_global() return self._K def solve(self) -> None: """solve the system the FEM system to define the nodal displacements and reaction forces. """ self.__validate_load_locations() self.remesh() self._calc_node_deflections() self._get_reaction_values() @abstractmethod def _calc_node_deflections(self) -> None: raise NotImplementedError("must be overloaded!") @abstractmethod def _get_reaction_values(self) -> None: raise NotImplementedError("must be overloaded!") @abstractmethod def stiffness(self, L: float) -> None: """return local stiffness matrix, k, as numpy array evaluated with beam element length L, where L defaults to the length of the beam """ raise NotImplementedError("Method must be overloaded!") @abstractmethod def stiffness_global(self) -> None: # Initialize the global stiffness matrix, then iterate over the # elements, calculate a local stiffness matrix, and add it to the # global stiffness matrix. raise NotImplementedError("Method must be overloaded!") @staticmethod def apply_boundary_conditions( k: np.array, bcs: BOUNDARY_CONDITIONS ) -> np.array: """ Given the stiffness matrix 'k_local', and the boundary conditions as a list of tuples, apply the boundary conditions to the stiffness matrix by setting the rows and columns that correspond to the boundary conditions to zeros, with ones on the diagonal. The boundary conditions (bcs) are in the form bcs = [(displacement1, rotation1), (displacement2, rotation2)] For the boundary condition, if the conditional evaluates to None, then movement is allowed, otherwise no displacement is allowed. The boundary condition coordinates must match the stiffness matrix. That is, if the stiffness matrix is a local matrix, the boundary conditions must also be local. returns the adjusted stiffness matrix after the boundary conditions are applied """ def apply(k_local: np.array, i: int) -> np.array: """sub function to apply the boundary condition at row/col i to stiffness matrix k_local return the stiffness matrix k_local with boundary conditions applied """ k_local[i] = 0 # set entire row to zeros k_local[:, i] = 0 # set entire column to zeros k_local[i][i] = 1 # set diagonal to 1 return k_local # TODO: Check the sizes of the boundary conditions and stiffness matrix for node, bc in enumerate(bcs): v, q = bc if v is not None: k = apply(k, node * 2) if q is not None: k = apply(k, node * 2 + 1) return k # Allow upper case letters for variable names to match engineering conventions # for variables, such as E for Young's modulus and I for the polar moment of # inertia # noinspection PyPep8Naming class BeamElement(Element): """base beam element""" def __init__( self, length: float, loads: List[Load], reactions: List[Reaction], E: float = 1, Ixx: float = 1, ): super().__init__(length, E, Ixx) self.reactions = reactions self.loads = loads # note loads are set after reactions self.mesh = Mesh(length, loads, reactions, 2) def remesh(self) -> None: assert self.loads is not None assert self.reactions is not None self.mesh = Mesh(self.length, self.loads, self.reactions, 2) self.invalidate() @property def node_deflections(self) -> np.ndarray: if self._node_deflections is None: self._node_deflections = self._calc_node_deflections() return self._node_deflections def __get_boundary_conditions(self) -> BOUNDARY_CONDITIONS: # Initialize the boundary conditions to None for each node, then # iterate over reactions and apply them to the boundary conditions # based on the reaction type. assert self.reactions is not None bc: BOUNDARY_CONDITIONS = [ (None, None) for _ in range(len(self.mesh.nodes)) ] for r in self.reactions: assert r is not None i = self.mesh.nodes.index(r.location) bc[i] = r.boundary return bc def _calc_node_deflections(self) -> np.ndarray: """solve for vertical and angular displacement at each node""" assert self.loads is not None # Get the boundary conditions from the reactions bc = self.__get_boundary_conditions() # Apply boundary conditions to global stiffness matrix. Note that the # boundary conditions are applied to a copy of the stiffness matrix to # avoid changing the property K, so it can still be used with further # calculations (ie, for calculating reaction values) kg = self.K.copy() kg = self.apply_boundary_conditions(kg, bc) # Use the same method of adding the input loads as the boundary # conditions. Start by initializing a numpy array to zero loads, then # iterate over the loads and add them to the appropriate index based on # the load type (force or moment) # noinspection PyUnresolvedReferences p = np.zeros((self.mesh.dof, 1)) for ld in self.loads: i = self.mesh.nodes.index(ld.location) if isinstance(ld, PointLoad): p[i * 2][0] = ld.magnitude # input force else: p[i * 2 + 1][0] = ld.magnitude # input moment # Solve the global system of equations {p} = [K]*{d} for {d} # save the deflection vector for the beam, so the analysis can be # reused without recalculating the stiffness matrix. # This vector should be cleared anytime any of the beam parameters # gets changed. self._node_deflections = np.linalg.solve(kg, p) return self._node_deflections def _get_reaction_values(self) -> np.ndarray: """Calculate the nodal forces acting on the beam. Note that the forces will also include the input forces. reactions are calculated by solving the matrix equation {r} = [K] * {d} where - {r} is the vector of forces acting on the beam - [K] is the global stiffness matrix (without BCs applied) - {d} displacements of nodes """ K = self.K # global stiffness matrix d = self.node_deflections # force displacement vector # noinspection PyUnresolvedReferences r = np.matmul(K, d) assert self.reactions is not None for ri in self.reactions: i = self.mesh.nodes.index(ri.location) force, moment = r[i * 2 : i * 2 + 2] # set the values in the reaction objects ri.force = force[0] ri.moment = moment[0] return r def shape(self, x: float, L: Optional[float] = None) -> np.ndarray: """return an array of the shape functions evaluated at x the local x-value """ if L is None: L = self.length N1 = 1 / L ** 3 * (L ** 3 - 3 * L * x ** 2 + 2 * x ** 3) N2 = 1 / L ** 2 * (L ** 2 * x - 2 * L * x ** 2 + x ** 3) N3 = 1 / L ** 3 * (3 * L * x ** 2 - 2 * x ** 3) N4 = 1 / L ** 2 * (-L * x ** 2 + x ** 3) return np.array([N1, N2, N3, N4]) def plot_shapes(self, n: int = 25) -> None: # pragma: no cover """plot shape functions for the with n data points""" x = np.linspace(0, self.length, n) # set up list of axes with a grid where the two figures in each column # share an x axis axes = [] fig = plt.figure() axes.append(fig.add_subplot(221)) axes.append(fig.add_subplot(222)) axes.append(fig.add_subplot(223, sharex=axes[0])) axes.append(fig.add_subplot(224, sharex=axes[1])) N: List[List[int]] = [[], [], [], []] for xi in x: n_local = self.shape(xi) for i in range(4): N[i].append(n_local[i]) for k in range(4): ax = axes[k] ax.grid(True) ax.plot(x, N[k], label=f"$N_{k + 1}$") ax.legend() fig.subplots_adjust(wspace=0.25, hspace=0) plt.show() def stiffness(self, L: float) -> np.ndarray: """return local stiffness matrix, k, as numpy array evaluated with beam element length L """ E = self.E Ixx = self.Ixx k = np.array( [ [12, 6 * L, -12, 6 * L], [6 * L, 4 * L ** 2, -6 * L, 2 * L ** 2], [-12, -6 * L, 12, -6 * L], [6 * L, 2 * L ** 2, -6 * L, 4 * L ** 2], ] ) return E * Ixx / L ** 3 * k def stiffness_global(self) -> np.array: # Initialize the global stiffness matrix, then iterate over the # elements, calculate a local stiffness matrix, and add it to the # global stiffness matrix. # noinspection PyUnresolvedReferences kg = np.zeros((self.mesh.dof, self.mesh.dof)) for e in range(self.mesh.num_elements): # iterate over all the elements and add the local stiffness matrix # to the global stiffness matrix at the proper index k = self.stiffness(self.mesh.lengths[e]) # local stiffness matrix i1, i2 = (e * 2, e * 2 + 4) # global slicing index kg[i1:i2, i1:i2] = kg[i1:i2, i1:i2] + k # current element self._K = kg return self._K ``` #### File: josephjcontreras/FEMethods/run_examples.py ```python from femethods.elements import Beam from femethods.loads import PointLoad from femethods.reactions import FixedReaction, PinnedReaction def example_1(): """ Cantilevered Beam with Fixed Support and End Loading """ print("=" * 79) print("Example 1") print( "Show an example with a cantilevered beam with a fixed support and " "point load at the end\n" ) beam_len = 10 # Note that both the reaction and load are both lists. They must always be # given to Beam as a list, r = [FixedReaction(0)] # define reactions as list p = [PointLoad(magnitude=-2, location=beam_len)] # define loads as list b = Beam(beam_len, loads=p, reactions=r, E=29e6, Ixx=125) # an explicit solve is required to calculate the reaction values b.solve() print(b) def example_2(): """ Cantilevered Beam with 3 Pinned Supports and End Loading """ print("=" * 79) print("Example 2") print("Show an example with 3 Pinned Supports and End Loading\n") beam_len = 10 # Note that both the reaction and load are both lists. They must always be # given to Beam as a list, r = [PinnedReaction(0), PinnedReaction(2), PinnedReaction(6)] # define reactions p = [PointLoad(magnitude=-2, location=beam_len)] # define loads b = Beam(beam_len, loads=p, reactions=r, E=29e6, Ixx=125) # an explicit solve is required to calculate the reaction values b.solve() print(b) if __name__ == "__main__": example_1() example_2() ```
{ "source": "josephjcontreras/FormatSearch", "score": 3 }
#### File: josephjcontreras/FormatSearch/FormatSearch.py ```python import sublime import sublime_plugin from sublime import get_clipboard, set_clipboard from Default.paragraph import expand_to_paragraph class Base(object): def process(self, func): t = self.getText() set_clipboard(func(t)) self.view.window().status_message('data copied to clipboard') def getText(self): view = self.view text = [] if view.sel(): for region in view.sel(): if region.empty(): # text is not selected, expand to the current paragraph text.append(view.substr(expand_to_paragraph(view, region.b))) else: # there is some text already selected, use that only text.append(view.substr(region)) text = text[0].split('\n') return text def parseText(self, paragraphs, quote=False, suffix=''): parsed_text = [] for par in paragraphs: if len(par) > 0: parsed_text.append(str(par) + suffix) if quote: # parsed text should should be enclosed in double quotes, and # separated by commas and space string = ', '.join(['"' + item + '"' for item in parsed_text]) else: # create a space delimited list of the parsed text string = ' '.join(parsed_text) return string class PlainCommand(sublime_plugin.TextCommand, Base): def run(self, edit): self.process(self.plain) def plain(self, text): return self.parseText(text, quote=False, suffix='') class DrawingCommand(sublime_plugin.TextCommand, Base): def run(self, edit): self.process(self.drawing) def drawing(self, text): return self.parseText(text, quote=False, suffix='.SLDDRW') class PartCommand(sublime_plugin.TextCommand, Base): def run(self, edit): self.process(self.part) def part(self, text): return self.parseText(text, quote=False, suffix='.SLDPRT') class AssemblyCommand(sublime_plugin.TextCommand, Base): def run(self, edit): self.process(self.assembly) def assembly(self, text): return self.parseText(text, quote=False, suffix='.SLDASM') class TcmCommand(sublime_plugin.TextCommand, Base): def run(self, edit): self.process(self.TCM) def TCM(self, text): return self.parseText(text, quote=True, suffix='') class CommaCommand(sublime_plugin.TextCommand, Base): def run(self, edit): self.process(self.comma) def comma(self, text): return self.parseText(text) def parseText(self, paragraphs): parsed_text = [] for par in paragraphs: if len(par) > 0: parsed_text.append(str(par)) string = ', '.join(parsed_text) return string ```
{ "source": "josephjcontreras/revisions", "score": 4 }
#### File: josephjcontreras/revisions/revisions.py ```python from itertools import cycle class MaximumRevisionError(Exception): """ Exception for when the sequence runs out and revisions start repeating """ def __init__(self, *args, **kwargs): super().__init__(*args, *kwargs) def revisions(sequence="full"): """ Generates infinite series of revisions Creates a generator that will iterate over an infinite sequence of revisions in the form 0, A, B, C, ..., X, Y, Z, AA, AB, AC, ..., AX, AY, AZ, BA, BB, BC, ... yield: revision yield type: str """ if sequence == "full": sequence = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" elif sequence == "partial": # missing i, o, and s sequence = "ABCDEFGHJKLMNPQRTUVWXYZ" else: # for simplicity here, do not allow custom sequences raise ValueError( f"sequence parameter must be either " f"'full', or 'partial', not {sequence}" ) # yield the initial release as revision 0 yield "0" # create a revision cycle, and a suffix cycle. The suffix cycle is the same # as the revision cycle, but will be incremented at a different rate. The # suffix will be used when the revision cycles through and starts repeating rev_cycle = cycle(sequence) suffix_cycle = cycle(sequence) # length of revision cycle. This will be used to determine when a suffix # is required. rev_length = len(sequence) rev_limit = rev_length + rev_length ** 2 suffix = "" # initially, no suffix (A, B, C, ...) for k, rev in enumerate(rev_cycle): if rev_limit < k: # limit of sequence with a single suffix have been reached # break msg = f"maximum revision level ({rev_limit}) has been reached!" raise MaximumRevisionError(msg) if k % rev_length == 0 and k > 0: # increment the suffix every time the revision list rolls over suffix = next(suffix_cycle) yield suffix + rev ```
{ "source": "josephjcontreras/vectormath", "score": 3 }
#### File: vectormath/tests/test_vector3.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import numpy as np from vectormath import Vector2, Vector2Array, Vector3, Vector3Array class TestVMathVector3(unittest.TestCase): def test_init_exceptions(self): self.assertRaises(TypeError, Vector3Array, np.r_[1], np.r_[1], 3) self.assertRaises(ValueError, Vector3Array, np.r_[1, 2], np.r_[1], np.r_[1]) self.assertRaises(ValueError, Vector3Array, np.array([0, 0])) self.assertRaises(ValueError, Vector3Array, 'Make', ' me a ', 'vector!') self.assertRaises(ValueError, Vector3Array, ([0, 0], [0, 0], [0, 0])) def test_init(self): v1 = Vector3Array() v2 = Vector3Array(0, 0, 0) self.assertTrue(np.array_equal(v1, v2)) v3 = Vector3Array(v1) self.assertTrue(np.array_equal(v1, v3)) self.assertTrue(v1 is not v3) v4 = Vector3Array(np.r_[0, 0, 0]) self.assertTrue(np.array_equal(v1, v4)) v5 = Vector3Array(np.c_[np.r_[1, 0, 0], np.r_[0, 1, 0], np.r_[0, 0, 1]]) self.assertTrue(np.array_equal(v5.length, np.r_[1, 1, 1])) v6 = Vector3Array(np.r_[1, 0, 0], np.r_[0, 1, 0], np.r_[0, 0, 1]) self.assertTrue(np.array_equal(v6.length, np.r_[1, 1, 1])) v7 = Vector3Array([0, 0, 0]) self.assertTrue(np.array_equal(v1, v7)) v8 = Vector3Array(x=0, y=0, z=0) self.assertTrue(np.array_equal(v1, v8)) v9 = Vector3Array( [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ) v10 = Vector3Array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]) self.assertTrue(np.array_equal(v9, v10)) v11 = Vector3Array([[[[[0]], [[0]], [[0]]]]]) self.assertTrue(np.array_equal(v1, v11)) v12 = Vector3Array([0]*5, [0]*5, [0]*5) self.assertTrue(np.array_equal(v10, v12)) v13 = Vector3Array((0, 0, 0)) self.assertTrue(np.array_equal(v1, v13)) v14 = Vector3Array(([0, 0, 0], [0, 0, 0])) self.assertTrue(np.array_equal(v14, Vector3Array([0]*2, [0]*2, [0]*2))) def test_indexing(self): v2 = Vector3Array(1, 2, 3) self.assertTrue(v2[0, 0] == 1) self.assertTrue(v2[0, 1] == 2) self.assertTrue(v2[0, 2] == 3) self.assertTrue(len(v2[0]) == 3) self.assertRaises(IndexError, lambda: v2[3]) self.assertRaises(IndexError, lambda: v2[0, 3]) l = [] for x in v2[0]: l.append(x) self.assertTrue(np.array_equal(np.array(l), np.r_[1, 2, 3])) self.assertTrue(np.array_equal(v2, Vector3Array(l))) l = [] v3 = Vector3Array([[1, 2, 3], [2, 3, 4]]) for v in v3: l.append(v) self.assertTrue(np.array_equal( np.array(l), np.array([[1, 2, 3], [2, 3, 4]])) ) self.assertTrue(np.array_equal(Vector3Array(l), v3)) v4 = Vector3Array() v4[0, 0] = 1 v4[0, 1] = 2 v4[0, 2] = 3 self.assertTrue(np.array_equal(v2, v4)) def test_copy(self): vOrig = Vector3Array() vCopy = vOrig.copy() self.assertTrue(np.array_equal(vOrig, vCopy)) self.assertTrue(vOrig is not vCopy) def test_size(self): v1 = Vector3Array() self.assertTrue(v1.nV == 1) v2 = Vector3Array(np.c_[np.r_[1, 0, 0], np.r_[0, 1, 0], np.r_[0, 0, 1]]) self.assertTrue(v2.nV == 3) v3 = Vector3Array( [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ) self.assertTrue(v3.nV == 5) v4 = Vector3Array(0, 0, 0) self.assertTrue(v4.nV == 1) def test_setget(self): v1 = Vector3Array(1, 1, 1) self.assertTrue(v1.x == 1) v1.x = 2 self.assertTrue(v1.x == 2) self.assertTrue(v1.y == 1) v1.y = 2 self.assertTrue(v1.y == 2) self.assertTrue(v1.z == 1) v1.z = 2 self.assertTrue(v1.z == 2) v2 = Vector3Array([[0, 1, 2], [1, 2, 3]]) self.assertTrue(np.array_equal(v2.x, [0, 1])) v2.x = [0, -1] self.assertTrue(np.array_equal(v2.x, [0, -1])) self.assertTrue(np.array_equal(v2.y, [1, 2])) v2.y = [-1, -2] self.assertTrue(np.array_equal(v2.y, [-1, -2])) self.assertTrue(np.array_equal(v2.z, [2, 3])) v2.z = [0, 0] self.assertTrue(np.array_equal(v2.z, [0, 0])) def test_length(self): v1 = Vector3Array(1, 1, 1) self.assertTrue(v1.length == np.sqrt(3)) v2 = Vector3Array(np.r_[1, 2], np.r_[1, 2], np.r_[1, 2]) self.assertTrue(np.array_equal(v2.length, np.sqrt(np.r_[3, 12]))) v3 = Vector3Array(1, 0, 0) v3.length = 5 self.assertTrue(v3.length == 5) v4 = Vector3Array(np.r_[1, 1], np.r_[0, 0], np.r_[1, 2]) self.assertRaises(ValueError, lambda: setattr(v4, 'length', 5)) v5 = Vector3Array(np.r_[1, 0], np.r_[0, 0], np.r_[0, 1]) self.assertTrue(np.array_equal(v5.length, [1, 1])) v5.length = [-1, 3] self.assertTrue(np.array_equal(v5, [[-1., -0., -0.], [0., 0., 3.]])) self.assertTrue(np.array_equal(v5.length, [1, 3])) v6 = Vector3Array() self.assertTrue(v6.length == 0) self.assertRaises(ZeroDivisionError, lambda: setattr(v6, 'length', 5)) v6.length = 0 self.assertTrue(v6.length == 0) v7 = Vector3Array( [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0] ) length = [5, 5, 5, 5, 5] self.assertRaises(ZeroDivisionError, lambda: setattr(v7, 'length', length)) length = [5, 5, 5, 0, 0] v7.length = length self.assertTrue(np.array_equal(length, v7.length)) def test_ops(self): v1 = Vector3Array(1, 1, 1) v2 = Vector3Array(2, 2, 2) self.assertTrue(np.array_equal(v2-v1, v1)) self.assertTrue(np.array_equal(v1-v2, -v1)) self.assertTrue(np.array_equal(v1+v1, v2)) self.assertTrue(np.array_equal(v1*v2, v2)) self.assertTrue(np.array_equal(v2/v1, v2)) self.assertTrue(np.array_equal(2*v1, v2)) self.assertTrue(np.array_equal(v2/2, v1)) self.assertTrue(np.array_equal(v1+1, v2)) self.assertTrue(np.array_equal(v2-1, v1)) v1 = Vector3Array(np.r_[1, 1.], np.r_[1, 1.], np.r_[1, 1.]) v2 = Vector3Array(np.r_[2, 2.], np.r_[2, 2.], np.r_[2, 2.]) self.assertTrue(np.array_equal(v2-v1, v1)) self.assertTrue(np.array_equal(v1-v2, -v1)) self.assertTrue(np.array_equal(v1+v1, v2)) self.assertTrue(np.array_equal(v1*v2, v2)) self.assertTrue(np.array_equal(v2/v1, v2)) self.assertTrue(np.array_equal(2*v1, v2)) self.assertTrue(np.array_equal(v2/2, v1)) self.assertTrue(np.array_equal(v1+1, v2)) self.assertTrue(np.array_equal(v2-1, v1)) def test_dot(self): v1 = Vector3Array(1, 1, 1) v2 = Vector3Array(2, 2, 2) self.assertTrue(v1.dot(v2) == 6) v1l = Vector3Array(np.r_[1, 1.], np.r_[1, 1.], np.r_[1, 1.]) v2l = Vector3Array(np.r_[2, 2.], np.r_[2, 2.], np.r_[2, 2.]) self.assertTrue(np.array_equal(v1l.dot(v2l), np.r_[6, 6])) self.assertTrue(np.array_equal(v1.dot(v2l), np.r_[6, 6])) self.assertTrue(np.array_equal(v1l.dot(v2), np.r_[6, 6])) v3 = Vector3Array([3]*4, [3]*4, [3]*4) self.assertRaises(ValueError, lambda: v3.dot(v2l)) self.assertRaises(TypeError, lambda: v3.dot(5)) def test_cross(self): v1 = Vector3Array(1, 0, 0) v2 = Vector3Array(0, 1, 0) vC = Vector3Array(0, 0, 1) self.assertTrue(np.array_equal(v1.cross(v2), vC)) v1 = Vector3Array(np.r_[1, 1], np.r_[0, 0], np.r_[0, 0]) v2 = Vector3Array(np.r_[0, 0], np.r_[1, 1], np.r_[0, 0]) vC = Vector3Array(np.r_[0, 0], np.r_[0, 0], np.r_[1, 1]) self.assertTrue(np.array_equal(v1.cross(v2), vC)) v3 = Vector3Array([3]*4, [3]*4, [3]*4) def f(): v3.cross(v2) self.assertRaises(ValueError, f) def f(): v3.cross(5) self.assertRaises(TypeError, f) def test_as_percent(self): v1 = Vector3Array(10, 0, 0) v2 = Vector3Array(20, 0, 0) self.assertTrue(np.array_equal(v1.as_percent(2), v2)) self.assertTrue(np.array_equal(v1, Vector3Array(10, 0, 0)))# not copied v3 = Vector3Array( [0, 0, 2, 0, 0], [0, 2, 0, 0, 0], [2, 0, 0, 0, 0] ) v4 = v3 * .5 self.assertTrue(np.array_equal(v3.as_percent(.5), v4)) v5 = Vector3Array() self.assertTrue(np.array_equal(v5.as_percent(100), v5)) v6 = Vector3Array(5, 5, 5) self.assertTrue(np.array_equal(v6.as_percent(0), v5)) self.assertRaises(TypeError, lambda: v6.as_percent('One Hundred Percent')) def test_normalize(self): v1 = Vector3Array(5, 0, 0) self.assertTrue(v1.length == 5) self.assertTrue(v1.normalize() is v1) self.assertTrue(v1.length == 1) v2 = Vector3Array() self.assertRaises(ZeroDivisionError, lambda: v2.normalize()) v3 = Vector3Array( [0, 0, 2], [0, 2, 0], [2, 0, 0] ) self.assertTrue(np.array_equal(v3.length, [2, 2, 2])) self.assertTrue(v3.normalize() is v3) self.assertTrue(np.array_equal(v3.length, [1, 1, 1])) def test_as_length(self): v1 = Vector3Array(1, 1, 1) v2 = v1.as_length(1) self.assertTrue(v1 is not v2) self.assertTrue(v1.length == np.sqrt(3)) self.assertTrue(v2.length == 1) v3 = Vector3Array(np.r_[1, 2], np.r_[1, 2], np.r_[1, 2]) v4 = v3.as_length([1, 2]) self.assertTrue(np.array_equal(v4.length, [1, 2])) self.assertRaises(ValueError, lambda: v3.as_length(5)) v5 = Vector3Array(np.r_[1, 0], np.r_[0, 0], np.r_[0, 1]) self.assertTrue(np.array_equal(v5.length, [1, 1])) v6 = v5.as_length([-1, 3]) self.assertTrue(np.array_equal(v6, [[-1., -0., -0.], [0., 0., 3.]])) self.assertTrue(np.array_equal(v6.length, [1, 3])) v7 = Vector3Array() self.assertRaises(ZeroDivisionError, lambda: v7.as_length(5)) v8 = v7.as_length(0) self.assertTrue(v8.length == 0) v9 = Vector3Array( [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0] ) length = [5, 5, 5, 5, 5] self.assertRaises(ZeroDivisionError, lambda: v9.as_length(length)) length = [5, 5, 5, 0, 0] v10 = v9.as_length(length) self.assertTrue(np.array_equal(length, v10.length)) def test_as_unit(self): v1 = Vector3Array(1, 0, 0) v2 = v1.as_unit() self.assertTrue(v1 is not v2) self.assertTrue(np.array_equal(v1, v2)) self.assertTrue(v2.length == 1) v3 = Vector3Array(np.r_[1, 2], np.r_[1, 2], np.r_[1, 2]) v4 = v3.as_unit() self.assertTrue(np.array_equal(v4.length, [1, 1])) v5 = Vector3Array(1, 1, 1) v6 = v5.as_unit() self.assertTrue(v6.length == 1) self.assertTrue(v6.x == v6.y) self.assertTrue(v6.z == v6.y) v7 = Vector3Array() self.assertRaises(ZeroDivisionError, v7.as_unit) v9 = Vector3Array( [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0] ) self.assertRaises(ZeroDivisionError, v9.as_unit) def test_view_types(self): v1 = Vector3Array(np.random.rand(100, 3)) self.assertTrue(isinstance(v1, Vector3Array)) self.assertTrue(isinstance(v1[1:2], Vector3Array)) self.assertTrue(isinstance(v1[1:50:2], Vector3Array)) self.assertTrue(isinstance(v1[4], Vector3)) self.assertTrue(isinstance(v1[4, :], np.ndarray)) self.assertTrue(isinstance(v1.x, np.ndarray)) self.assertTrue(isinstance(v1[1:30, :], np.ndarray)) a1 = np.array([1., 2.]) with self.assertRaises(ValueError): a1.view(Vector3) with self.assertRaises(ValueError): a1.view(Vector3Array) a1 = np.array([1., 2., 3.]) self.assertTrue(isinstance(a1.view(Vector3), Vector3)) with self.assertRaises(ValueError): a1.view(Vector3Array) a1 = np.array([[1., 2., 3.]]) with self.assertRaises(ValueError): a1.view(Vector3) self.assertTrue(isinstance(a1.view(Vector3Array), Vector3Array)) self.assertTrue(isinstance(v1.view(Vector3Array), Vector3Array)) with self.assertRaises(ValueError): v1.view(Vector2Array) with self.assertRaises(ValueError): v1.view(Vector3) with self.assertRaises(ValueError): v1.view(Vector2) v1 = Vector3([1., 2., 3.]) with self.assertRaises(ValueError): v1.view(Vector3Array) with self.assertRaises(ValueError): v1.view(Vector2Array) with self.assertRaises(ValueError): v1.view(Vector2) self.assertTrue(isinstance(v1.view(Vector3), Vector3)) v1 = np.kron(Vector3([1., 0., 0.]), np.atleast_2d(np.ones(10)).T) self.assertFalse(isinstance(v1, Vector3)) def test_angle(self): # test a unit vector along each coordinate v1 = Vector3(1, 0, 0) # x-axis, use this as datum v = [Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(-1, 0, 0), Vector3(0, -1, 0), Vector3(0, 0, -1)] angles_deg = [0, 90, 90, 180, 90, 90] angles_rad = [0, np.pi / 2, np.pi / 2, np.pi, np.pi / 2, np.pi / 2] for k in range(6): a_deg = v1.angle(v[k], unit='deg') a_rad0 = v1.angle(v[k], unit='rad') a_rad1 = v1.angle(v[k]) self.assertEqual(a_deg, angles_deg[k]) self.assertEqual(a_rad0, angles_rad[k]) self.assertEqual(a_rad1, angles_rad[k]) # verify the associative property self.assertEqual(v1.angle(v[k]), v[k].angle(v1)) with self.assertRaises(TypeError): angleResult = v1.angle('anything but Vector3') with self.assertRaises(ValueError): angleResult = v1.angle(v[0], unit='invalid entry') with self.assertRaises(ZeroDivisionError): angleResult = v1.angle(Vector3(0, 0, 0)) # def test_mult_warning(self): # with warnings.catch_warnings(record=True) as w: # v1 = Vector3Array() # v2 = v1 * 3 # self.assertTrue(len(w) == 0) # M = Matrix3() # v3 = v2 * M # self.assertTrue(len(w) == 1) if __name__ == '__main__': unittest.main() ``` #### File: vectormath/vectormath/vector.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np class BaseVector(np.ndarray): """Class to contain basic operations used by all Vector classes""" def __new__(cls, *args, **kwargs): """BaseVector cannot be created""" raise NotImplementedError('Please specify Vector2 or Vector3') @property def x(self): """x-component of vector""" return self[0] @x.setter def x(self, value): self[0] = value @property def y(self): """y-component of vector""" return self[1] @y.setter def y(self, value): self[1] = value @property def length(self): """Length of vector""" return float(np.sqrt(np.sum(self**2))) @length.setter def length(self, value): if not np.isscalar(value): raise ValueError('Length must be a scalar') value = float(value) if self.length != 0: new_length = value/self.length self *= new_length return if value != 0: raise ZeroDivisionError('Cannot resize vector of length 0 to ' 'nonzero length') @property def rho(self): """Radial coordinate of this vector (equal to the length of the vector)""" return self.length @rho.setter def rho(self, value): self.length = value @property def theta(self): """Angular coordinate / azimuthal angle of this vector in radians Based on polar coordinate space (or sperical coordinate space for `Vector3`) returns angle between this vector and the positive x-axis range: (-pi <= theta <= pi) """ return float(np.arctan2(self.y, self.x)) # pylint: disable=fixme # TODO: Add `theta` and `theta_deg` setters # @theta.setter # def theta(self, value): # ... @property def theta_deg(self): """Angular coordinate / azimuthal angle of this vector in degrees Based on polar coordinate space (or sperical coordinate space for `Vector3`) returns angle between this vector and the positive x-axis range: (-180 <= theta_deg <= 180) """ return self.theta * 180 / np.pi def as_length(self, value): """Return a new vector scaled to given length""" new_vec = self.copy() new_vec.length = value return new_vec def as_percent(self, value): """Return a new vector scaled by given decimal percent""" new_vec = self.copy() new_vec.length = value * self.length return new_vec def as_unit(self): """Return a new vector scaled to length 1""" new_vec = self.copy() new_vec.normalize() return new_vec def normalize(self): """Scale the length of a vector to 1 in place""" self.length = 1 return self def dot(self, vec): """Dot product with another vector""" if not isinstance(vec, self.__class__): raise TypeError('Dot product operand must be a vector') return np.dot(self, vec) def cross(self, vec): """Cross product with another vector""" if not isinstance(vec, self.__class__): raise TypeError('Cross product operand must be a vector') return self.__class__(np.cross(self, vec)) def angle(self, vec, unit='rad'): """Calculate the angle between two Vectors unit: unit for returned angle, either 'rad' or 'deg'. Defaults to 'rad' """ if not isinstance(vec, self.__class__): raise TypeError('Angle operand must be of class {}' .format(self.__class__.__name__)) if unit not in ['deg', 'rad']: raise ValueError('Only units of rad or deg are supported') denom = self.length * vec.length if denom == 0: raise ZeroDivisionError('Cannot calculate angle between ' 'zero-length vector(s)') ang = np.arccos(self.dot(vec) / denom) if unit == 'deg': ang = ang * 180 / np.pi return ang def __mul__(self, multiplier): return self.__class__(self.view(np.ndarray) * multiplier) class Vector3(BaseVector): """Primitive 3D vector defined from the origin New Vector3 can be created with: - another Vector3 - length-3 array - x, y, and y values - no input (returns [0., 0., 0.]) """ # pylint: disable=fixme # TODO: add support for instantiating Vector3 with `polar`=True def __new__(cls, x=None, y=None, z=None): #pylint: disable=arguments-differ def read_array(X, Y, Z): """Build Vector3 from another Vector3, [x, y, z], or x/y/z""" if isinstance(X, cls) and Y is None and Z is None: return cls(X.x, X.y, X.z) if (isinstance(X, (list, tuple, np.ndarray)) and len(X) == 3 and Y is None and Z is None): return cls(X[0], X[1], X[2]) if X is None and Y is None and Z is None: return cls(0, 0, 0) if np.isscalar(X) and np.isscalar(Y) and np.isscalar(Z): xyz = np.r_[X, Y, Z] xyz = xyz.astype(float) return xyz.view(cls) raise ValueError('Invalid input for Vector3 - must be an instance ' 'of a Vector3, a length-3 array, 3 scalars, or ' 'nothing for [0., 0., 0.]') return read_array(x, y, z) def __array_wrap__(self, out_arr, context=None): #pylint: disable=no-self-use, unused-argument """This is called at the end of ufuncs If the output is the wrong shape, return the ndarray view instead of vector view """ if out_arr.shape != (3,): out_arr = out_arr.view(np.ndarray) return out_arr def __array_finalize__(self, obj): """This is called when initializing the vector If the constructor is used, obj is None. If slicing is used, obj has the same class as self. In both these cases, we let things pass. If we are viewing another array class as a vector, then obj has a different class than self. In this case, if the array has an invalid shape a ValueError is raised """ if obj is None or obj.__class__ is Vector3: return if self.shape != (3,): raise ValueError( 'Invalid array to view as Vector3 - must be length-3 array.' ) @property def z(self): """z-component of vector""" return self[2] @z.setter def z(self, value): self[2] = value @property def phi(self): """Polar angle / inclination of this vector in radians Based on sperical coordinate space returns angle between this vector and the positive z-azis range: (0 <= phi <= pi) """ return np.arctan2(np.sqrt(self.x**2 + self.y**2), self.z) # pylint: disable=fixme # TODO: Add `phi` and `phi_deg` setters # @phi.setter # def phi(self, value): # ... @property def phi_deg(self): """Polar angle / inclination of this vector in degrees Based on sperical coordinate space returns angle between this vector and the positive z-azis range: (0 <= phi <= pi) """ return self.phi * 180 / np.pi class Vector2(BaseVector): """Primitive 2D vector defined from the origin New Vector2 can be created with: - another Vector2 - length-2 array - x and y values - rho and theta, if polar=True; specify unit as 'rad' (default) or 'deg' - no input (returns [0., 0.]) """ def __new__(cls, x=None, y=None, polar=False, unit='rad'): #pylint: disable=arguments-differ def read_array(X, Y): """Build Vector2 from another Vector2, [x, y], or x/y""" if isinstance(X, cls) and Y is None: if polar: raise ValueError( 'When copying a Vector2, polar=True is not supported' ) return cls(X.x, X.y) if (isinstance(X, (list, tuple, np.ndarray)) and len(X) == 2 and Y is None): return cls(X[0], X[1], polar, unit) if X is None and Y is None: return cls(0, 0, polar, unit) if np.isscalar(X) and np.isscalar(Y): if polar: if unit not in ['deg', 'rad']: raise ValueError( 'Only units of rad or deg are supported' ) if unit == 'deg': Y = Y / 180 * np.pi X, Y = X * np.cos(Y), X * np.sin(Y) xyz = np.r_[X, Y] xyz = xyz.astype(float) return xyz.view(cls) raise ValueError('Invalid input for Vector2 - must be an instance ' 'of a Vector2, a length-2 array, 2 scalars, or ' 'nothing for [0., 0.]') return read_array(x, y) def __array_wrap__(self, out_arr, context=None): #pylint: disable=no-self-use, unused-argument if out_arr.shape != (2,): out_arr = out_arr.view(np.ndarray) return out_arr def __array_finalize__(self, obj): if obj is None or obj.__class__ is Vector2: return if self.shape != (2,): raise ValueError( 'Invalid array to view as Vector2 - must be length-2 array.' ) def cross(self, vec): """Cross product with another vector""" if not isinstance(vec, self.__class__): raise TypeError('Cross product operand must be a vector') return Vector3(0, 0, np.asscalar(np.cross(self, vec))) class BaseVectorArray(BaseVector): """Class to contain basic operations used by all VectorArray classes""" @property def x(self): """Array of x-component of vectors""" return self[:, 0] @x.setter def x(self, value): self[:, 0] = value @property def y(self): """Array of y-component of vectors""" return self[:, 1] @y.setter def y(self, value): self[:, 1] = value @property def nV(self): """Number of vectors""" return self.shape[0] def normalize(self): """Scale the length of all vectors to 1 in place""" self.length = np.ones(self.nV) return self @property def dims(self): """Tuple of different dimension names for Vector type""" raise NotImplementedError('Please use Vector2Array or Vector3Array') @property def length(self): """Array of vector lengths""" return np.sqrt(np.sum(self**2, axis=1)).view(np.ndarray) @length.setter def length(self, l): l = np.array(l) if self.nV != l.size: raise ValueError('Length vector must be the same number of ' 'elements as vector.') # This case resizes all vectors with nonzero length if np.all(self.length != 0): new_length = l/self.length for dim in self.dims: setattr(self, dim, new_length*getattr(self, dim)) return # This case only applies to single vectors if self.nV == 1 and l == 0: assert self.length == 0, \ 'Nonzero length should be resized in the first case' for dim in self.dims: setattr(self, dim, 0.) return # This case only applies if vectors with length == 0 # in an array are getting resized to 0 if self.nV > 1 and np.array_equal(self.length.nonzero(), l.nonzero()): #pylint: disable=no-member new_length = l/[x if x != 0 else 1 for x in self.length] for dim in self.dims: setattr(self, dim, new_length*getattr(self, dim)) return # Error if length zero array is resized to nonzero value raise ZeroDivisionError('Cannot resize vector of length 0 to ' 'nonzero length') def dot(self, vec): """Dot product with another vector""" if not isinstance(vec, self.__class__): raise TypeError('Dot product operand must be a VectorArray') if self.nV != 1 and vec.nV != 1 and self.nV != vec.nV: raise ValueError('Dot product operands must have the same ' 'number of elements.') return np.sum((getattr(self, d)*getattr(vec, d) for d in self.dims), 1) def angle(self, vec, unit='rad'): """Angle method is only for Vectors, not VectorArrays""" raise NotImplementedError('angle not implemented for VectorArrays') class Vector3Array(BaseVectorArray): """List of Vector3 A new Vector3Array can be created with: - another Vector3Array - x/y/z lists of equal length - n x 3 array - nothing (returns [[0., 0., 0.]]) """ def __new__(cls, x=None, y=None, z=None): #pylint: disable=arguments-differ def read_array(X, Y, Z): """Build Vector3Array from various inputs""" if isinstance(X, cls) and Y is None and Z is None: X = np.atleast_2d(X) return cls(X.x.copy(), X.y.copy(), X.z.copy()) if isinstance(X, (list, tuple)): X = np.array(X) if isinstance(Y, (list, tuple)): Y = np.array(Y) if isinstance(Z, (list, tuple)): Z = np.array(Z) if isinstance(X, np.ndarray) and Y is None and Z is None: X = np.squeeze(X) if X.size == 3: X = X.flatten() return cls(X[0], X[1], X[2]) if len(X.shape) == 2 and X.shape[1] == 3: return cls( X[:, 0].copy(), X[:, 1].copy(), X[:, 2].copy() ) raise ValueError( 'Unexpected shape for vector init: {shp}'.format( shp=X.shape ) ) if np.isscalar(X) and np.isscalar(Y) and np.isscalar(Z): X, Y, Z = float(X), float(Y), float(Z) elif not (isinstance(X, type(Y)) and isinstance(X, type(Z))): raise TypeError('Must be the same types for x, y, and ' 'z for vector init') if isinstance(X, np.ndarray): if not (X.shape == Y.shape and X.shape == Z.shape): raise ValueError('Must be the same shapes for x, y, ' 'and z in vector init') vec_ndarray = np.c_[X, Y, Z] vec_ndarray = vec_ndarray.astype(float) return vec_ndarray.view(cls) if X is None: X, Y, Z = 0.0, 0.0, 0.0 vec_ndarray = np.r_[X, Y, Z].reshape((1, 3)) return np.asarray(vec_ndarray).view(cls) return read_array(x, y, z) def __array_wrap__(self, out_arr, context=None): #pylint: disable=no-self-use, unused-argument if len(out_arr.shape) != 2 or out_arr.shape[1] != 3: out_arr = out_arr.view(np.ndarray) return out_arr def __array_finalize__(self, obj): if obj is None or obj.__class__ is Vector3Array: return if len(self.shape) != 2 or self.shape[1] != 3: #pylint: disable=unsubscriptable-object raise ValueError( 'Invalid array to view as Vector3Array - must be ' 'array of shape (*, 3).' ) def __getitem__(self, i): """Overriding _getitem__ allows coersion to Vector3 or ndarray""" item_out = super(Vector3Array, self).__getitem__(i) if np.isscalar(i): return item_out.view(Vector3) if isinstance(i, slice): return item_out return item_out.view(np.ndarray) @property def z(self): """Array of z-component of vectors""" return self[:, 2] @z.setter def z(self, value): self[:, 2] = value @property def dims(self): return ('x', 'y', 'z') def cross(self, vec): """Cross product with another Vector3Array""" if not isinstance(vec, Vector3Array): raise TypeError('Cross product operand must be a Vector3Array') if self.nV != 1 and vec.nV != 1 and self.nV != vec.nV: raise ValueError('Cross product operands must have the same ' 'number of elements.') return Vector3Array(np.cross(self, vec)) class Vector2Array(BaseVectorArray): """List of Vector2 A new Vector2Array can be created with: - another Vector2Array - x/y lists of equal length - n x 2 array - nothing (returns [[0., 0.]]) """ def __new__(cls, x=None, y=None): #pylint: disable=arguments-differ def read_array(X, Y): """Build Vector2Array from various inputs""" if isinstance(X, cls) and Y is None: X = np.atleast_2d(X) return cls(X.x.copy(), X.y.copy()) if isinstance(X, (list, tuple)): X = np.array(X) if isinstance(Y, (list, tuple)): Y = np.array(Y) if isinstance(X, np.ndarray) and Y is None: X = np.squeeze(X) if X.size == 2: X = X.flatten() return cls(X[0], X[1]) if len(X.shape) == 2 and X.shape[1] == 2: return cls( X[:, 0].copy(), X[:, 1].copy() ) raise ValueError( 'Unexpected shape for vector init: {shp}'.format( shp=X.shape ) ) if np.isscalar(X) and np.isscalar(Y): X, Y = float(X), float(Y) elif not isinstance(X, type(Y)): raise TypeError('Must be the same types for x and y ' 'for vector init') if isinstance(X, np.ndarray): if X.shape != Y.shape: raise ValueError('Must be the same shapes for x and y ' 'in vector init') vec_ndarray = np.c_[X, Y] vec_ndarray = vec_ndarray.astype(float) return vec_ndarray.view(cls) if X is None: X, Y = 0.0, 0.0 vec_ndarray = np.r_[X, Y].reshape((1, 2)) return np.asarray(vec_ndarray).view(cls) return read_array(x, y) def __array_wrap__(self, out_arr, context=None): #pylint: disable=no-self-use, unused-argument if len(out_arr.shape) != 2 or out_arr.shape[1] != 2: out_arr = out_arr.view(np.ndarray) return out_arr def __array_finalize__(self, obj): if obj is None or obj.__class__ is Vector2Array: return if len(self.shape) != 2 or self.shape[1] != 2: #pylint: disable=unsubscriptable-object raise ValueError( 'Invalid array to view as Vector2Array - must be ' 'array of shape (*, 2).' ) def __getitem__(self, i): """Overriding _getitem__ allows coercion to Vector2 or ndarray""" item_out = super(Vector2Array, self).__getitem__(i) if np.isscalar(i): return item_out.view(Vector2) if isinstance(i, slice): return item_out return item_out.view(np.ndarray) @property def dims(self): return ('x', 'y') ```
{ "source": "joseph-jnl/rlbook", "score": 2 }
#### File: rlbook/rlbook/bandits.py ```python import pandas as pd import numpy as np from abc import ABCMeta, abstractmethod from concurrent.futures import ProcessPoolExecutor from multiprocessing import cpu_count from typing import Callable, Type, Dict from rlbook.testbeds import Testbed import warnings from collections import namedtuple import logging from itertools import repeat from copy import deepcopy from math import sqrt, log def init_constant(testbed, q_val=0): """Set initial action value estimate as a given constant, defaults to 0""" return {a: q_val for a in testbed.expected_values} class Bandit(metaclass=ABCMeta): """Base Bandit class Attributes: testbed (TestBed class object): Testbed object that returns a Reward value for a given Action columns (list of strings): List of numpy column names to use when outputting results as a pandas dataframe. action_values (numpy array): Stores results of the actions values method. Contains Run, Step, Action, and Reward Initialized as None, and created with the run method. n (int): Current step in a run Q_init (initialization function): Function to use for initializing Q values, defaults to zero init Q (dict): Action-value estimates in format {action: reward_estimate (float), ...} Na (dict): Count of how many times an action has been chosen {action X: action X count, ...} At (int): Action that corresponds to the index of the selected testbed arm """ def __init__(self, Q_init: Dict): self.columns = [ "run", "step", "action", "reward", "optimal_action", ] self.action_values = None self.n = 1 self.Q_init = Q_init self.Q = deepcopy(Q_init) self.Na = {a: 0 for a in self.Q} self.At = self.argmax(self.Q) def initialization(self, testbed): """Reinitialize bandit for a new run when running in serial or parallel""" testbed.reset_ev() self.n = 1 self.Q = deepcopy(self.Q_init) self.Na = {a: 0 for a in self.Q} self.At = self.argmax(self.Q) def argmax(self, Q): """Return max estimate Q, if tie between actions, choose at random between tied actions""" Q_array = np.array(list(self.Q.values())) At = np.argwhere(Q_array == np.max(Q_array)).flatten().tolist() if len(At) > 1: At = np.random.choice(At) else: At = At[0] return list(Q.keys())[At] @abstractmethod def select_action(self, testbed): """Select action logic""" pass def run(self, testbed, steps, n_runs=1, n_jobs=4, serial=False): """Run bandit for specified number of steps and optionally multiple runs""" if serial: self.action_values = self._serialrun(testbed, steps, n_runs) elif n_runs >= 4: if n_jobs > cpu_count(): warnings.warn( f"Warning: running n_jobs: {n_jobs}, with only {cpu_count()} cpu's detected", RuntimeWarning, ) self.action_values = self._multirun(testbed, steps, n_runs, n_jobs=n_jobs) else: self.action_values = self._serialrun(testbed, steps, n_runs) def _serialrun(self, testbed, steps, n_runs): action_values = np.empty((steps, len(self.columns), n_runs)) for k in range(n_runs): action_values[:, 0, k] = k for n in range(steps): action_values[n, 1, k] = n action_values[n, 2:, k] = self.select_action(testbed) # Reset Q for next run self.initialization(testbed) return action_values def _singlerun(self, testbed, steps, idx_run): # Generate different random states for parallel workers np.random.seed() action_values = np.empty((steps, len(self.columns), 1)) action_values[:, 0, 0] = idx_run for n in range(steps): action_values[n, 1, 0] = n action_values[n, 2:, 0] = self.select_action(testbed) # Reset Q for next run self.initialization(testbed) return action_values def _multirun(self, testbed, steps, n_runs, n_jobs=4): with ProcessPoolExecutor(max_workers=n_jobs) as executor: action_values = executor.map( self._singlerun, repeat(testbed, n_runs), [steps for n in range(n_runs)], list(range(n_runs)), ) return np.squeeze(np.stack(list(action_values), axis=2)) def output_df(self): """Reshape action_values numpy array and output as pandas dataframe""" n_rows = self.action_values.shape[2] * self.action_values.shape[0] df = pd.DataFrame( data=self.action_values.transpose(2, 0, 1).reshape(-1, len(self.columns)), columns=self.columns, ) return df class EpsilonGreedy(Bandit): """Epsilon greedy bandit Choose the 'greedy' option that maximizes reward but 'explore' a random action for a certain percentage of steps according to the epsilon value Attributes: epsilon (float): epsilon coefficient configuring the probability to explore non-optimal actions, ranging from 0.0 to 1.0 alpha (float or "sample_average"): Constant step size ranging from 0.0 to 1.0, resulting in Q being the weighted average of past rewards and initial estimate of Q Note on varying step sizes such as using 1/n "sample_average": self.Q[self.At] = self.Q[self.At] + 1/self.Na[self.At]*(R-self.Q[self.At]) Theoretically guaranteed to converge, however in practice, slow to converge compared to constant alpha """ def __init__(self, Q_init: Dict, epsilon=0.1, alpha=0.1): super().__init__(Q_init) self.epsilon = epsilon self.alpha = alpha def select_action(self, testbed): if np.random.binomial(1, self.epsilon) == 1: self.At = list(self.Q.keys())[np.random.randint(len(self.Q))] else: self.At = self.argmax(self.Q) A_best = testbed.best_action() R = testbed.action_value(self.At) self.Na[self.At] += 1 if self.alpha == "sample_average": self.Q[self.At] = self.Q[self.At] + 1 / self.Na[self.At] * ( R - self.Q[self.At] ) else: logging.debug(f"alpha: {self.alpha}, At: {self.At}, R: {R}") self.Q[self.At] = self.Q[self.At] + self.alpha * (R - self.Q[self.At]) self.n += 1 return (self.At, R, A_best) def output_df(self): """Reshape action_values numpy array and output as pandas dataframe Add epsilon coefficient used for greedy bandit """ df = super().output_df() df["epsilon"] = self.epsilon return df class UCL(Bandit): """Upper Confidence Limit bandit Estimate an upper bound for a given action that includes a measure of uncertainty based on how often the action has been chosen in the past At = argmax( Qt(a) + c * sqrt(ln(t)/Nt(a))) Sqrt term is a measure of variance of an action's Upper Bound The more often an action is selected, the uncertainty decreases (denominator increases) When another action is selected, the uncertainty increases (the numerator since time increase, but in smaller increments due to the ln) Attributes: c (float): c > 0 controls the degree of exploration, specifically the confidence level of a UCL for a given action U (dict): Action-value uncertainty estimate in format {action: uncertainty (float), ...} alpha (float or "sample_average"): Constant step size ranging from 0.0 to 1.0, resulting in Q being the weighted average of past rewards and initial estimate of Q Note on varying step sizes such as using 1/n "sample_average": self.Q[self.At] = self.Q[self.At] + 1/self.Na[self.At]*(R-self.Q[self.At]) Theoretically guaranteed to converge, however in practice, slow to converge compared to constant alpha """ def __init__(self, Q_init: Dict, c=0.1, alpha=0.1): """ """ super().__init__(Q_init) self.c = c # Initialize self.Na as 1e-100 number instead of 0 self.Na = {a: 1e-100 for a in self.Na} self.alpha = alpha def initialization(self, testbed): """Reinitialize bandit attributes for a new run""" testbed.reset_ev() self.n = 1 self.Q = deepcopy(self.Q_init) self.Na = {a: 1e-100 for a in self.Na} def select_action(self, testbed): logging.debug(f"Na: {self.Na}") self.U = {a: Q + self.c * sqrt(log(self.n)/self.Na[a]) for a, Q in self.Q.items()} self.At = self.argmax(self.U) A_best = testbed.best_action() R = testbed.action_value(self.At) self.Na[self.At] += 1 if self.alpha == "sample_average": self.Q[self.At] = self.Q[self.At] + 1 / self.Na[self.At] * ( R - self.Q[self.At] ) else: logging.debug(f"alpha: {self.alpha}, At: {self.At}, R: {R}") self.Q[self.At] = self.Q[self.At] + self.alpha * (R - self.Q[self.At]) self.n += 1 return (self.At, R, A_best) def output_df(self): """Reshape action_values numpy array and output as pandas dataframe Add c coefficient used for UCL """ df = super().output_df() df["c"] = self.c return df class Gradient(Bandit): """Gradient bandit Learn a set of numerical preferences "H" rather than estimate a set of action values "Q" H preferences are all relative to each other, no correlation to a potential reward Update H using: Ht+1(At) = Ht(At) + lr * (Rt - Q[At]) * (1 - softmax(At)) for At Ht+1(a) = Ht(a) + lr * (Rt - Q[At]) * softmax(a) for all a != At where At is action chosen Attributes: H (dict): Action-value uncertainty estimate in format {action: uncertainty (float), ...} lr (float between 0.0-1.0): learning rate, step size to update H alpha (float or "sample_average"): Constant step size ranging from 0.0 to 1.0, resulting in Q being the weighted average of past rewards and initial estimate of Q Note on varying step sizes such as using 1/n "sample_average": self.Q[self.At] = self.Q[self.At] + 1/self.Na[self.At]*(R-self.Q[self.At]) Theoretically guaranteed to converge, however in practice, slow to converge compared to constant alpha """ def __init__(self, Q_init: Dict, lr=0.1, alpha=0.1): """ """ super().__init__(Q_init) self.lr = lr self.alpha = alpha self.H = deepcopy(self.Q_init) def initialization(self, testbed): """Reinitialize bandit attributes for a new run""" testbed.reset_ev() self.n = 1 self.H = deepcopy(self.Q_init) self.Q = deepcopy(self.Q_init) self.Na = {a: 0 for a in self.Q} def softmax(self, H): h = np.array([val for val in H.values()]) probs = np.exp(h)/sum(np.exp(h)) return dict(zip(H.keys(), probs)) def select_action(self, testbed): """ Select At based on H prob Then update H via: Ht+1(At) = Ht(At) + lr * (Rt - Q[At]) * (1 - softmax(At)) for At Ht+1(a) = Ht(a) + lr * (Rt - Q[At]) * softmax(a) for all a != At where At is action chosen """ probs = self.softmax(self.H) logging.debug(f"probs: {probs}") self.At = int(np.random.choice(list(self.H.keys()), 1, p=list(probs.values()))) A_best = testbed.best_action() R = testbed.action_value(self.At) self.Na[self.At] += 1 logging.debug(f"H: {self.H}") logging.debug(f"Q: {self.Q}") for a in self.H: if a == self.At: self.H[a] = self.H[a] + self.lr * (R - self.Q[a]) * (1 - probs[a]) else: self.H[a] = self.H[a] - self.lr * (R - self.Q[a]) * (probs[a]) if self.alpha == "sample_average": self.Q[self.At] = self.Q[self.At] + 1 / self.Na[self.At] * ( R - self.Q[self.At] ) else: logging.debug(f"alpha: {self.alpha}, At: {self.At}, R: {R}") self.Q[self.At] = self.Q[self.At] + self.alpha * (R - self.Q[self.At]) self.n += 1 return (self.At, R, A_best) def output_df(self): """Reshape action_values numpy array and output as pandas dataframe Add learning rate """ df = super().output_df() df["lr"] = self.lr return df ```
{ "source": "JosephJvB/terminal", "score": 3 }
#### File: JosephJvB/terminal/im-bill-gates.py ```python import os import sys #print(os.getcwd()) class Main: def __init__(self, ext): self.ext = ext def main_loop(self, d): for f in os.listdir(d): if not f.startswith("."): rel_path = os.path.join(d, f) if os.path.isdir(rel_path): self.main_loop(rel_path) elif os.path.isfile(rel_path) and not f == "im-bill-gates.py":# make script file recognize self self.rename(rel_path) else: print("not file or dir?", rel_path) return def rename(self, f): arr = f.split(".") del arr [-1] arr.append(self.ext) renamed = ".".join(arr) os.rename(f, renamed) return if not len(sys.argv) > 1 or not sys.argv[1]: print("but what language tho?") else: m = Main(sys.argv[1]) m.main_loop(os.getcwd()) print("DONE!") ```
{ "source": "josephkane/zoo-testing", "score": 3 }
#### File: zoo-testing/zoo/animal.py ```python from species import * from transport import * class Animal: def __init__(self, name, species): self.name = name self.species = species class Betta(Animal, Swimming): def __init__(self, color, name): super().__init__(name, BettaTrifasciata(color)) ``` #### File: zoo-testing/zoo/test_habitat.py ```python import unittest from zoo import * class TestHabitat(unittest.TestCase): def test_name_empty_string_by_default(self): habitat = Habitat() self.assertEqual(habitat.name, '') def test_members_empty_set_by_default(self): habitat = Habitat() self.assertIsInstance(habitat.members, set) def test_add_animal_to_habitat(self): aquarium = Aquarium('freshwater') bob = Betta('orange', 'Bob') james = Betta('orange', 'James') aquarium.add_member(bob) self.assertIn(bob, aquarium.members) aquarium.add_member(james) self.assertIn(bob, aquarium.members) self.assertIn(james, aquarium.members) def test_remove_members(self): aquarium = Aquarium('freshwater') james = Betta('orange', 'James') aquarium.add_member(james) aquarium.remove_member(james) self.assertNotIn(james, aquarium.members) if __name__ == '__main__': unittest.main() ``` #### File: zoo-testing/zoo/test_species.py ```python import unittest from zoo import * class TestSpecies(unittest.TestCase): def test_common_name_empty_string_by_default(self): species = Species() self.assertEqual(species.common_name, '') def test_georegion_empty_string_by_default(self): species = Species() self.assertEqual(species.geo_region, '') if __name__ == '__main__': unittest.main() ```
{ "source": "JosephKBS/util", "score": 3 }
#### File: util/chatbot/app.py ```python from flask import Flask, render_template, request, jsonfy from flask_cors import flask_cors from chat import get_response app = Flask(__name__) #CORS(app) # 만약 CORS(app) 실행할거면 밑에 app.get전부 지우면 됨. @app.get("/") def index_get(): return render_template("base.html") # landing page @app.post("/predict"): def predict(): text = request.get_json.get("message") # TODO: check if text is valid response = get_response(text) message = {"answer":response} return jsonfy(message) if __name__=="__main__": app.run(debug=True) ```
{ "source": "Josephkhland/MUFA-MMO", "score": 3 }
#### File: Josephkhland/MUFA-MMO/mufadb.py ```python import pymongo import math import datetime from enum import Enum from mongoengine import * #Connects with the Database connect('MUFAdatabase', host='localhost', port=27017) #Creates an array size 15 filled with zeros. Used later for initializations. array_zero_15 = [] array_zero_24 = [] for i in range(15): array_zero_15.append(0) for i in range(24): array_zero_24.append(0) #Useful function: def nextLevelEXP(level): exponent = 1.5 baseXP = 100 return math.floor(baseXP*(level**exponent)) #Classes Declarations class Battler(Document): meta = {'allow_inheritance': True} class Monster(Battler): pass class Player(Battler): pass class Node(Document): meta = {'allow_inheritance': True} class WorldNode(Node): pass class GuildHub(Document): pass class ArmorSet(Document): pass class Spell(Document): pass class Item(Document): meta = {'allow_inheritance': True} class Armor(Item): pass class Weapon(Item): pass class Spellbook(Item): pass class Artifact(Item): pass class Battle(Node): pass class Dungeon(Node): pass class activeCondition(EmbeddedDocument): pass class descendant(EmbeddedDocument): pass class character(EmbeddedDocument): pass #ENUMERATIONS class Conditions(Enum): POISONED = 0 #Take 1 Damage per Action, until condition expires. BURNING = 1 #Take 5 Damage per Action, until condition expires. If FROZEN applies, both conditions are removed FROZEN = 2 #Can't move. If attacked with Crash weapon you take double damage but the condition is removed. If BURNING applies both conditions are removed. PARALYZED = 3 #Agility counts as 0 for combat calculations. TERRIFIED = 4 #Can't use Slash, Pierce or Crash Weapons. BLINDED = 5 #Your Precision is actively 10% DEAFENED = 6 #Your Evasion is 0% SILENCED = 7 #You can't use Spells CURSED = 8 #Your Health doesn't heal up BLEEDING = 9 #Take 1 Damage per Action, until condition expires. Prevents healing. Healing cures the condition. SLOWED = 10 #Agility is halved for any calculations WEAKENED = 11 #Strength is halved for any calculations ASLEEP = 12 #Can't move. Wakes up on Damage or After 1 Hour. PETRIFIED = 13 #Can't move. Double Crash Damage. DEAD = 14 #Can't move. Can't be healed. Can't be selected as active character. class Buffs(Enum): ARMOR_UP = 0 #Increases Physical DR_p by 10% and Physical DR_f by 10. EVASION_UP = 1 #Increases Evasion by 5% MARMOR_UP = 2 #Increases Magical DR_p by 10% and Magical DR_f by 10. PRECISION_UP = 3 #Increases Precision by 5% DAMAGE_UP = 4 #Increases total DAMAGE you deal by 1% KARMA_UP =5 #Increases Karma by 1% SPELL_RES_UP = 6 #Increases Spell Resist by 10 % CRAFT_UP = 7 #Increases Crafting chances / Dismantling chances by 10% F_EXHAUSTION_RES_UP =8 #Increases Forced Exhaustion damage resistance by 10% CONDITION_RES_POISONED = 9 #Increases corresponding condition resistance by 10% CONDITION_RES_BURNING = 10 CONDITION_RES_FROZEN = 11 CONDITION_RES_PARALYZED = 12 CONDITION_RES_TERRIFIED = 13 CONDITION_RES_BLINDED = 14 CONDITION_RES_DEAFENED = 15 CONDITION_RES_SILENCED = 16 CONDITION_RES_CURSED = 17 CONDITION_RES_BLEEDING = 18 CONDITION_RES_SLOWED = 19 CONDITION_RES_WEAKENED = 20 CONDITION_RES_ASLEEP = 21 CONDITION_RES_PETRIFIED = 22 CONDITION_RES_DEAD = 23 class ItemType(Enum): HELMET = 0 CHESTPIECE = 1 BOOTS = 2 SLASH = 3 PIERCE = 4 CRASH = 5 RANGED = 6 ARTIFACT = 7 SPELLBOOK = 8 class GuildPrivacy(Enum): CLOSED = 0 #The Guild can't be entered by those that discover its node. ALLIANCE = 1 #The Guild can only be entered by Players with a Base within an Allied Guild. OPEN = 2 #The Guild is open and anyone that finds it can enter. class PrimaryStat(Enum): WIL = 0 VIT = 1 AGI = 2 STR = 3 #Classes definitions class Item(Document): item_id = IntField(primary_key = True) name = StringField(max_length = 50) #item_types: 0 -> helmet (armor), # 1 -> chestpiece (armor), # 2 -> boots (armor), # 3 -> slash (weapon) # 4 -> pierce (weapon) # 5 -> crash (weapon) # 6 -> ranged (weapon) # 7 -> artifact (use from inventory) # 8 -> spellbook item_type = IntField( default = 9) #Special Stats: spell_resistance = IntField(default = 0) #When targeted by a spell, reduce the success chance of it's effect on you by X% condition_resistances = ListField(IntField(), default = array_zero_15 ) #When someone attempts to inflict a condition on you, use these to resist. forced_exhaustion_resistance = IntField(default = 0) #When someone attempts to deal damage to your actions (Exhaustion Damage) use this to resist it. #Looting drop_chance = IntField(default = 0) #Chance of dropping when a character wielding it is killed. #Crafting Stats: crafting_recipe = ListField(ListField(IntField()), default = []) #List of Resources required in format List([resource_id, quantity]) dismantling_difficulty = IntField() #Reduces Chance of acquiring each of its resources upon dismantling. value = IntField(default = 0) meta = {'allow_inheritance': True} class activeCondition(EmbeddedDocument): name = StringField() date_added = DateTimeField() duration = IntField() class descendant(EmbeddedDocument): will_bonus = IntField( default =1) vitality_bonus = IntField( default =1) agility_bonus = IntField( default =1) strength_bonus = IntField(default =1) starting_karma = IntField( default =0) character_name = StringField(max_length = 20) class ArmorSet(Document): name = StringField(max_length = 20) two_items_set_bonus = ListField(IntField(), default = [0,0,0,0]) #Armor Set Bonus increase [Will, Vitality, Agility, Strength] while equipped. full_set_bonus = ListField(IntField(), default = [0,0,0,0]) class character(EmbeddedDocument): willpower = IntField(default = 1) vitality = IntField(default = 1) agility = IntField(default = 1) strength = IntField(default = 1) money_carried = IntField( default = 0) inventory = ListField(ReferenceField(Item), default =[]) precision_base = IntField( default = 10) evasion_base = IntField( default = 10) coordinates = ListField(IntField()) instance_stack = ListField(ReferenceField(Node), default =[]) conditions = EmbeddedDocumentListField(activeCondition, default =[]) buffs = EmbeddedDocumentListField(activeCondition, default = []) #Three values: armor_equiped[0] -> helmet, # armor_equiped[1] -> chestpiece, # armor_equiped[2] -> boots armor_equiped = ListField(ReferenceField(Item), default=[]) armor_set = ReferenceField(ArmorSet) set_bonus_specification= IntField(default =0) # 0 for none, 1 for half, 2 for full #Four values: weapons_equiped[0] -> slash, # weapons_equiped[1] -> pierce , # weapons_equiped[2] -> crash , # weapons_equiped[3] ->ranged weapons_equiped = ListField(ReferenceField(Item), default=[]) max_actions = IntField(default = 100) actions_left = IntField(default = 100) karma = IntField(default = 0) current_health = IntField( default = 10) current_sanity = IntField( default = 10) level = IntField(default = 1) experience = IntField(default =0) exp_to_next_level = IntField(default = nextLevelEXP(1)) unused_points = IntField(default =0) is_dead = BooleanField(default = False) imageURL = StringField(default = "https://cdn.discordapp.com/embed/avatars/0.png") name = StringField() spell_resistance = IntField(default = 0) #When targeted by a spell, reduce the success chance of it's effect on you by X% condition_resistances = ListField(IntField(), default = array_zero_15 ) #When someone attempts to inflict a condition on you, use these to resist. forced_exhaustion_resistance = IntField(default = 0) #When someone attempts to deal damage to your actions (Exhaustion Damage) use this to resist it. def getInstance(self): return self.instance_stack[-1] def replaceInstance(self,new_instance): self.instance_stack[-1] = new_instance return 0 def enterInstance(self, new_instance): self.instance_stack.append(new_instance) return 0 def exitInstance(self): return self.instance_stack.pop() def checkLevel(self): if self.experience > self.exp_to_next_level: self.levelUp() def levelUp(self): self.level+= 1 self.experience = self.experience % self.exp_to_next_level self.exp_to_next_level = nextLevelEXP(self.level) self.unused_points += 1 self.checkLevel() def addCondition(self, condition): for con in self.conditions: if con.name == condition.name: if con.duration == -1: return "**"+self.name + "** *is already* `" + con.name +"`" if con.duration != -1 and con.duration < condition.duration: con.duration = condition.duration con.date_added = condition.date_added return "**"+self.name + "** *is now* `" + con.name +"`!" self.conditions.append(condition) return "**"+self.name + "** *is now* `" + condition.name +"`!" def kill(self): self.current_health = 0 self.current_sanity = 0 self.actions_left = 0 self.is_dead = True n_con = activeCondition(name = 'DEAD', date_added = datetime.datetime.now(), duration = -1) return self.addCondition(n_con) class Node(Document): node_id = StringField(primary_key = True) sub_nodes_ids = ListField(StringField()) north_exit = StringField() east_exit = StringField() south_exit = StringField() west_exit = StringField() members = ListField(ReferenceField(Battler)) entrance_message = StringField(default = "No description Available.") resources = ListField(IntField()) meta = {'allow_inheritance': True} class WorldNode(Node): coordinates = ListField(IntField()) guild_id = StringField(max_length = 20) class GuildHub(Document): guild_id = StringField(primary_key = True) name = StringField() coordinates = ListField(IntField()) invites_channel = StringField() privacy_setting = IntField(default = GuildPrivacy.CLOSED.value) alliances = ListField(StringField(max_length = 20), default =[]) #List of Guild_ids that this guild is friendly with. shop = ListField(ReferenceField(Item), default =[]) class Battler(Document): battler_id = StringField(primary_key = True) name = StringField() faction = IntField() creation_date = DateTimeField() meta = {'allow_inheritance': True} def getCharacter(self): pass def updateCurrentCharacter(self, c): pass class Player(Battler): characters_list = EmbeddedDocumentListField(character, default = []) active_character = IntField(default =0) money_stored = IntField(default =0) items_stored = ListField(ReferenceField(Item), default =[]) descendant_options = EmbeddedDocumentListField(descendant, default = []) guild_id = StringField(max_length = 20) last_action_date = DateTimeField() faction = IntField(default = 0) pve_player_limit = IntField(default = 1) pve_join_password = StringField() def getCharacter(self): return self.characters_list[self.active_character] def updateCurrentCharacter(self, c): self.characters_list[self.active_character] = c return def getCharacterByName(self, name): for ch in self.characters_list: if ch.name == name: return ch return None def updateCharacterByName(self, c): counter = 0 for ch in self.characters_list: if ch.name == c.name: self.characters_list[counter] = c return counter +=1 def getCharacterInNode(self, node_id): for c in self.characters_list: if c.getInstance().node_id == node_id: return c return None def getCurrentNode(self): return self.getCharacter().getInstance() def maxCharacters(self): return 6 class Monster(Battler): character_stats = EmbeddedDocumentField(character) behaviour = IntField() #Monster Behaviors will be figured out later. faction = IntField(default = 1) def getCharacter(self): return self.character_stats def getCharacterInNode(self, node): return self.character_stats class GhostBattler(Battler): previous_id = StringField() def getCharacter(self): return None class MonsterEntry(Document): name = StringField() character_stats = EmbeddedDocumentField(character) class Spell(Document): name = StringField(max_length = 50) sanity_cost = IntField(default = 0) spell_success_rate = IntField(default = 100) #The success rate of the spell taking effect on a target. instance_type = IntField() #The instance this spell can be activated Free Roam: 0, Dungeon: 1, Battle: 2 targets = IntField(default = 1) # Special Values: Self -> 0 , ONE_SIDE -> -1 , ALL -> -2 damage = IntField(default = 0) #Negative for Healing. on_success_buff_chance = ListField(IntField(), default = array_zero_24) on_success_buff_duration = ListField (IntField(), default = array_zero_24) on_success_condition_inflict_chance = ListField(IntField(), default = array_zero_15) on_success_condition_duration = ListField(IntField(), default = array_zero_15) on_success_force_exhaustion_damage = IntField(default = 0) #Deals damage directly to someone's actions left. (PvP-Only) actions_required = IntField(default = 1) #The number of actions required to use this spell. ingredients = ListField(ListField(IntField()), default = []) #List of Resources required in format List([resource_id, quantity]) class Armor(Item): armor_set = ReferenceField(ArmorSet) evasion_chance_reduction = IntField(default = 0) #Armor Stat | Decrease evasion by X% physical_damage_reduction_f = IntField (default = 0) #Armor Stat | Flat damage reduction from Physical Sources magic_damage_reduction_f = IntField(default = 0) #Armor Stat | Flat damage reduction from Magical Sources physical_damage_reduction_p = IntField(default = 0) #Armor Stat | Percentage damage reduction from Physical Sources magic_damage_reduction_p = IntField(default = 0) #Armor Stat | Percentage damage reduction from Magical Sources thorn_condition_inflict_chance = ListField(IntField(), default = array_zero_15) #Upon getting hit, chance of inflicting conditions to attacker. thorn_condition_duration = ListField(IntField(), default = array_zero_15) #Upon getting hit, duration of any condition that gets inflicted to attacker from Thorn effect. thorn_force_exhaustion_damage = IntField(default = 0) #Upon getting hit, deals damage to the Attacker's Actions (Exhaustion Damage) (vs Players only) class Weapon(Item): precision_scale = IntField(default = 0) #Weapon Stat | For each point in agility this is added to the Precision% damage_amp_scale = IntField(default = 0) #Weapon Stat | For each point in strength this is added to damage_amplification% damage_per_amp = IntField(default = 0) #Weapon Stat | Amount of Bonus Damage, for each time that the damage is amplified. damage_base = IntField(default = 0) #Weapon Stat | Base damage that is dealt per Hit. on_hit_condition_inflict_chance = ListField(IntField(), default = array_zero_15) #Upon hitting someone. chance of inflicting conditions to attacker. on_hit_condition_duration = ListField(IntField(), default = array_zero_15) #Upon hitting someone, duration of any inflicting conditions. on_hit_force_exhaustion_damage = IntField() #Deals damage directly to someone's actions left. (vs Player only) class Spellbook(Item): spells = ListField(ReferenceField(Spell), default = []) #Spellbook | Includes the available spells. class Artifact(Item): study_requirement = IntField() consumable = BooleanField() spell = ReferenceField(Spell) key_item = BooleanField() class battlelog(EmbeddedDocument): battler = ReferenceField(Battler) action_description = StringField() timestamp = DateTimeField() class Battle(Node): loot = ListField(ReferenceField(Item)) money_loot = IntField(default = 0) actions_log = EmbeddedDocumentListField(battlelog) player_limit = IntField(default = 1) join_password = StringField() meta = {'allow_inheritance': True} def getMember_not_in_faction(self, mid, faction): counter = 0 for member in self.members: if member.faction != faction: if counter == mid: return member counter += 1 return None def getEnemies_of_faction(self,faction): enemies = [] for member in self.members: if member.faction != faction: enemies.append(member) return enemies class lock(EmbeddedDocument): is_active = BooleanField(default = False) key_tag = StringField() #Starts with "SWITCH_" if it's a switch. hack_difficulty = IntField(default = 100) demolish_difficulty = IntField(default = 100) inspection_description = StringField() tag = StringField() class trap(EmbeddedDocument): is_active = BooleanField(default = False) trap_obscurity = IntField(default = 100) trap_lethality = IntField(default = 10) #Damage taken when triggered hack_difficulty = IntField(default = 100) inspection_description = StringField() class path(EmbeddedDocument): lock = EmbeddedDocumentField(lock) trap = EmbeddedDocumentField(trap) obscurity = IntField(default = 0) inspection_description = StringField() tag = StringField() class interactable(EmbeddedDocument): lock = EmbeddedDocumentField(lock) trap = EmbeddedDocumentField(trap) obscurity = IntField(default = 0) is_dial = BooleanField(default = False) #When True, the dial can take more than 1 value correct_dial_value = IntField(default = 1) current_dial_value = IntField(default = 0) inspection_description = StringField() this_location_string = StringField() tag = StringField() location_of_lock = StringField() class Dungeon(Node): name = StringField() d_name = StringField() dungeon_instance = IntField() treasure = ListField(ReferenceField(Item), default = []) gold_loot = IntField() entrance_side = StringField() north = EmbeddedDocumentField(path) east = EmbeddedDocumentField(path) south = EmbeddedDocumentField(path) west = EmbeddedDocumentField(path) interactables = EmbeddedDocumentListField(interactable, default = []) class DungeonEntry(Document): name = StringField() max_monsters = IntField(default = 1) current_monsters = IntField(default = 0) monsters_list = ListField(StringField(), default = []) average_number_of_rooms = IntField(default = 1) id_prefix = StringField() descriptor_tags = ListField(StringField(),default =[]) deadends_tags = ListField(StringField(), default = []) pathways_tags = ListField(StringField(), default =[]) existing_instances = IntField(default = 0) max_instances_of_dungeon = IntField(default = 1) class PackageNames(Document): name = StringField() class Tags(Document): name = StringField() collection = ListField(StringField(), default =[]) ``` #### File: Josephkhland/MUFA-MMO/mufaintervals.py ```python import time, threading import math import datetime import mufadb as db import mufabattle as mb import mufagenerator as mg StartTime=time.time() def hourly_content_generation(): mg.generate_random_dungeons() mg.dungeon_monsters_generate() mg.global_monsters_generate() def action() : print('action ! -> time : {:.1f}s'.format(time.time()-StartTime)) def solve_conditions(hourly= False, tworly = False): battlers = db.Battler.objects.no_dereference() for b in battlers: if isinstance(b, db.Player): for pCharac in b.characters_list: to_remove = [] for con in pCharac.conditions: if con.duration == -1: continue else : end_time = con.date_added + datetime.timedelta(hours =con.duration) if (datetime.datetime.now() >= end_time): to_remove.append(con) for i in to_remove: pCharac.conditions.remove(i) if hourly: if mb.has_condition(pCharac,"CURSED") or mb.has_condition(pCharac,"DEAD") or mb.has_condition(pCharac, "BLEEDING"): pass else: pCharac.current_health = min(pCharac.vitality*10, math.ceil(pCharac.current_health+ (pCharac.vitality*0.1))) pCharac.actions_left = pCharac.max_actions if tworly: pCharac.current_sanity = min(pCharac.willpower*10, math.ceil(pCharac.current_sanity+ (pCharac.willpower*0.1))) b.updateCharacterByName(pCharac) b.save() elif isinstance (b, db.Monster): pCharac = b.getCharacter() to_remove = [] for con in pCharac.conditions: if con.duration == -1: continue else : end_time = con.date_added + datetime.timedelta(hours =con.duration) if (datetime.datetime.now() >= end_time): to_remove.append(con) for i in to_remove: pCharac.conditions.remove(i) if hourly: if mb.has_condition(pCharac,"CURSED") or mb.has_condition(pCharac,"DEAD") or mb.has_condition(pCharac, "BLEEDING"): pass else: pCharac.current_health = min(pCharac.vitality*10, math.ceil(pCharac.current_health+ (pCharac.vitality*0.1))) pCharac.actions_left = pCharac.max_actions if tworly: pCharac.current_sanity = min(pCharac.willpower*10, math.ceil(pCharac.current_sanity+ (pCharac.willpower*0.1))) b.character_stats = pCharac b.save() log_message = datetime.datetime.now().ctime() + " : Completed Interval Update" if hourly: hourly_content_generation() log_message += " | hourly == TRUE" if tworly: hourly_content_generation() log_message += " | tworly == TRUE" print(log_message) class setInterval : def __init__(self,interval,action) : self.interval=interval self.action=action self.stopEvent=threading.Event() self.seconds_passed = datetime.datetime.now().minute*60 if datetime.datetime.now().hour % 2 == 0: self.seconds_passed += 0 else: self.seconds_passed += 3600 thread=threading.Thread(target=self.__setInterval) thread.start() def __setInterval(self) : nextTime=time.time()+self.interval while not self.stopEvent.wait(nextTime-time.time()) : self.seconds_passed = (self.seconds_passed+self.interval)%7200 if self.seconds_passed == 3600: nextTime+=self.interval self.action(True,False) elif self.seconds_passed == 0: nextTime+=self.interval self.action(False,True) else: nextTime+=self.interval self.action(False,False) def cancel(self) : self.stopEvent.set() def update(): inter = setInterval(30,solve_conditions) # start action every 60s #inter=setInterval(30,solve_conditions) #print('just after setInterval -> time : {:.1f}s'.format(time.time()-StartTime)) # will stop interval in 5s #t=threading.Timer(5,inter.cancel) #t.start() ``` #### File: MUFA-MMO/Players/profile.py ```python import mufadb as db import mufa_constants as mconst import mufa_world as mw import mufadisplay as mdisplay import mufa_item_management as mim import character import datetime import discord import asyncio from discord.ext import commands class Profile(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name='myprofile') async def show(self,ctx, user: discord.User = None): """Shows your Profile, or the profile of a mentioned user.""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") userID = str(ctx.author.id) if user != None : userID = str(user.id) await ctx.channel.send(embed=character.show(userID, self.bot)) @commands.command(name='myimage') async def image(self,ctx, *args): """Shows your active character's image +myimage set imageURL In order to set a new picture for your character. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) pCharac = battler.getCharacter() if len(args)==0: await ctx.send(pCharac.imageURL) else: if len(args) == 2 and args[0] == "set": pCharac.imageURL = args[1] battler.updateCurrentCharacter(pCharac) battler.save() @commands.command(name='mycharacter') async def my_character(self, ctx, *args): """Shows the details of your currently Active Character""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) pCharac = battler.getCharacter() status = ":bust_in_silhouette: " if pCharac.is_dead: status = ":skull: " healthString = mdisplay.digits_panel(pCharac.current_health,pCharac.vitality*10, 8) + ":heart: " sanityString = mdisplay.digits_panel(pCharac.current_sanity,pCharac.willpower*10, 8) + ":brain: " actionsString = mdisplay.digits_panel(pCharac.actions_left, pCharac.max_actions, 8) + ":zap: " embed = discord.Embed( title = status+pCharac.name + " ("+playerID+")", description = healthString + sanityString + actionsString, colour = discord.Colour.red(), timestamp = datetime.datetime.now() ) embed.set_footer(text="Instance: "+str(pCharac.getInstance().node_id) +" ("+str(pCharac.coordinates[0])+","+str(pCharac.coordinates[1])+")") #Setting up the field for the Primary Stats. primaryStatsString = mdisplay.line("Willpower",pCharac.willpower,12) primaryStatsString += mdisplay.line("Vitality",pCharac.vitality,12) primaryStatsString += mdisplay.line("Agility",pCharac.agility,12) primaryStatsString += mdisplay.line("Strength",pCharac.strength,12) primaryStatsString += mdisplay.line("Karma",pCharac.karma,12) embed.add_field(name="Primary Stats", value=primaryStatsString, inline=True) #Setting up the field for the Progression Stats progressionStatsString = mdisplay.line("Level", pCharac.level,12) progressionStatsString += "Experience: "+ mdisplay.digits_panel(pCharac.experience, pCharac.exp_to_next_level,12) + "\n" progressionStatsString += mdisplay.line("Unused Points", pCharac.unused_points,12) embed.add_field(name="Progression", value=progressionStatsString, inline=True) #Setting up the field for the Armor armorString = mdisplay.equipment(0,pCharac.armor_equiped[0]) armorString += mdisplay.equipment(1,pCharac.armor_equiped[1]) armorString += mdisplay.equipment(2,pCharac.armor_equiped[2]) if pCharac.set_bonus_specification == 1: armorString += " :small_blue_diamond:*Set Bonus*: `"+pCharac.armor_set.name if pCharac.armor_set.two_items_set_bonus[0] != 0: armorString += " "+ str(pCharac.armor_set.two_items_set_bonus[0]) + " WILL" if pCharac.armor_set.two_items_set_bonus[1] != 0: armorString += " "+ str(pCharac.armor_set.two_items_set_bonus[1]) + " VIT" if pCharac.armor_set.two_items_set_bonus[2] != 0: armorString += " "+ str(pCharac.armor_set.two_items_set_bonus[2]) + " AGI" if pCharac.armor_set.two_items_set_bonus[3] != 0: armorString += " "+ str(pCharac.armor_set.two_items_set_bonus[3]) + " STR" armorString += "`\n" if pCharac.set_bonus_specification == 2: armorString += " :small_orange_diamond:*Set Bonus*: `"+pCharac.armor_set.name if pCharac.armor_set.full_set_bonus[0] != 0: armorString += " "+ str(pCharac.armor_set.full_set_bonus[0]) + " WILL" if pCharac.armor_set.full_set_bonus[1] != 0: armorString += " "+ str(pCharac.armor_set.full_set_bonus[1]) + " VIT" if pCharac.armor_set.full_set_bonus[2] != 0: armorString += " "+ str(pCharac.armor_set.full_set_bonus[2]) + " AGI" if pCharac.armor_set.full_set_bonus[3] != 0: armorString += " "+ str(pCharac.armor_set.full_set_bonus[3]) + " STR" armorString += "`\n" embed.add_field(name="Armor", value=armorString, inline=False) #Setting up the field for Weapons weaponString = mdisplay.equipment(3,pCharac.weapons_equiped[0]) weaponString += mdisplay.equipment(4,pCharac.weapons_equiped[1]) weaponString += mdisplay.equipment(5,pCharac.weapons_equiped[2]) weaponString += mdisplay.equipment(6,pCharac.weapons_equiped[3]) embed.add_field(name=":crossed_swords:Weapons:crossed_swords:", value=weaponString, inline=True) #Setting up the Spells Field spellString = ":diamond_shape_with_a_dot_inside:`Fireball`\n:diamond_shape_with_a_dot_inside:`Diamond Spray`" embed.add_field(name=":book:Spells:book:", value=spellString, inline=True) #Setting up Inventory Field inventoryString = "Use `+myinventory` to access your inventory\n\n" inventoryString+= ":scales:Carrying `"+str(len(pCharac.inventory))+"/"+str(pCharac.strength*6)+"` items " inventoryString+= ":coin: Gold Carried `"+str(pCharac.money_carried)+"`" embed.add_field(name=":handbag:Inventory:handbag:", value=inventoryString, inline=False) embed.set_thumbnail(url= pCharac.imageURL) await ctx.send(embed = embed) @commands.command(name='mycharacters') async def my_characters(self, ctx): """Shows an index of your characters""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) embed = discord.Embed( title = battler.name + " ("+playerID+")", description = "Index of your characters. Use the indexes here when attempting to select another of your characters", colour = discord.Colour.red(), timestamp = datetime.datetime.now() ) counter = 0 for chara in battler.characters_list: disabling_conditions = [False,False,False] this_value = "Conditions: " for con in chara.conditions: if con.name == 'DEAD': disabling_conditions[0] = True if con.name == 'PETRIFIED': disabling_conditions[1] = True if con.name == 'ASLEEP': disabling_conditions[2] = True this_value += "`"+con.name+"` " name_plugin = " " if disabling_conditions[2]: name_plugin += ":zzz: " if disabling_conditions[1]: name_plugin += ":rock: " if disabling_conditions[0]: name_plugin += ":skull: " embed.add_field(name=str(counter) +": " + chara.name +name_plugin, value= this_value, inline = False) counter += 1 await ctx.send(embed = embed) @commands.command(name='suicide') async def suicide(self, ctx): """Kills your currently active character""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) pCharac = battler.getCharacter() message_to_send = pCharac.kill() battler.updateCurrentCharacter(pCharac) battler.save() await ctx.send(message_to_send) @commands.command(name='switch_to_character') async def switch_to_character(self, ctx, *args): """Switch your Active character to the one you define with an index. Use the index as seen in your character's list. ( !mycharacters ) Correct usage: !switch_to_character index """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) if int(args[0]) <0 or int(args[0]) >= len(battler.characters_list): message_to_send = "Invalid argument" else: battler.active_character = int(args[0]) battler.save() message_to_send = "Successfully changed active character to: **"+battler.getCharacter().name+"**." await ctx.send(message_to_send) @commands.command(name='abandon_character') async def abandon_character(self, ctx, *args): """Permamently deletes a character. Use it to clear up space for more characters. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) if int(args[0]) <0 or int(args[0]) >= len(battler.characters_list): message_to_send = "Invalid argument" else: temp = battler.characters_list[int(args[0])].name del battler.characters_list[int(args[0])] if battler.active_character >= int(args[0]): battler.active_character = max(0, battler.active_character -1) battler.save() message_to_send = "Goodbye forever: **"+temp+"**." await ctx.send(message_to_send) @commands.command(name='mydescendants', aliases = ['descendants', 'character_options']) async def show_descendants(self, ctx, *args): """ Shows your available descendants. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) embedList = mdisplay.displayDescendants(battler) totalTabs = len(embedList) c_t = 0 if len(embedList) == 0 : return await ctx.send("You have no items in your inventory!") msg = await ctx.send(embed = embedList[0]) if totalTabs > 1: loop = True previous_tab = '◀️' next_tab = '▶️' await msg.add_reaction(previous_tab) await msg.add_reaction(next_tab) def reaction_filter(reaction, user): return str(user.id) == str(ctx.author.id) and str(reaction.emoji) in [previous_tab,next_tab] while loop: try: pending_collectors =[self.bot.wait_for('reaction_add', timeout=5, check = reaction_filter), self.bot.wait_for('reaction_remove', timeout=5, check = reaction_filter)] done_collectors, pending_collectors = await asyncio.wait(pending_collectors, return_when=asyncio.FIRST_COMPLETED) for collector in pending_collectors: collector.cancel() for collector in done_collectors: reaction, user = await collector if reaction.emoji == next_tab: c_t = (c_t+1) % totalTabs elif reaction.emoji == previous_tab: c_t = (c_t-1) if c_t <0: c_t = totalTabs -1 msg.edit(embed = embedList[c_t]) except asyncio.TimeoutError: await msg.add_reaction('💤') loop = False @commands.command(name='myinventory', aliases = ['inventory', 'inv', 'i']) async def show_inventory(self, ctx, *args): """ Shows your inventory """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.get(battler_id = playerID) if len(battler.characters_list) == 0: return await ctx.send("You don't have an active character") pCharac = battler.getCharacter() embedList = mdisplay.displayInventoryList(pCharac) totalTabs = len(embedList) c_t = 0 if len(embedList) == 0 : return await ctx.send("You have no items in your inventory!") msg = await ctx.send(embed = embedList[0]) if totalTabs > 1: loop = True previous_tab = '◀️' next_tab = '▶️' await msg.add_reaction(previous_tab) await msg.add_reaction(next_tab) def reaction_filter(reaction, user): return str(user.id) == str(ctx.author.id) and str(reaction.emoji) in [previous_tab,next_tab] while loop: try: pending_collectors =[self.bot.wait_for('reaction_add', timeout=5, check = reaction_filter), self.bot.wait_for('reaction_remove', timeout=5, check = reaction_filter)] done_collectors, pending_collectors = await asyncio.wait(pending_collectors, return_when=asyncio.FIRST_COMPLETED) for collector in pending_collectors: collector.cancel() for collector in done_collectors: reaction, user = await collector if reaction.emoji == next_tab: c_t = (c_t+1) % totalTabs elif reaction.emoji == previous_tab: c_t = (c_t-1) if c_t <0: c_t = totalTabs -1 msg.edit(embed = embedList[c_t]) except asyncio.TimeoutError: await msg.add_reaction('💤') loop = False @commands.command(name='upgrade', aliases = ['level_up']) async def upgrade_character(self, ctx, *args): """ Use this command in order to use any unspent points you've earned from leveling up. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.no_dereference().get(battler_id = playerID) if len(battler.characters_list) == 0: return await ctx.send("You don't have an active character") pCharac = battler.getCharacter() embed = mdisplay.display_level_up_details(pCharac) msg = await ctx.send(embed= embed) willpower_emoji = "🧠" vitality_emoji = "💟" agility_emoji = "👟" strength_emoji = "💪" success_emoji = "✅" cancel_emoji = "❎" loop = True used_emojis = [success_emoji,cancel_emoji] if pCharac.willpower <= pCharac.unused_points: await msg.add_reaction(willpower_emoji) used_emojis.append(willpower_emoji) if pCharac.vitality <= pCharac.unused_points: await msg.add_reaction(vitality_emoji) used_emojis.append(vitality_emoji) if pCharac.agility <= pCharac.unused_points: await msg.add_reaction(agility_emoji) used_emojis.append(agility_emoji) if pCharac.strength <= pCharac.unused_points: await msg.add_reaction(strength_emoji) used_emojis.append(strength_emoji) await msg.add_reaction(success_emoji) await msg.add_reaction(cancel_emoji) def reaction_filter(reaction, user): return str(user.id) == str(ctx.author.id) and str(reaction.emoji) in used_emojis while loop: try: pending_collectors =[self.bot.wait_for('reaction_add', timeout=5, check = reaction_filter), self.bot.wait_for('reaction_remove', timeout=5, check = reaction_filter)] done_collectors, pending_collectors = await asyncio.wait(pending_collectors, return_when=asyncio.FIRST_COMPLETED) for collector in pending_collectors: collector.cancel() for collector in done_collectors: reaction, user = await collector if reaction.emoji == willpower_emoji: if pCharac.willpower <= pCharac.unused_points: pCharac.unused_points -= pCharac.willpower pCharac.willpower += 1 elif reaction.emoji == vitality_emoji: if pCharac.vitality <= pCharac.unused_points: pCharac.unused_points -= pCharac.vitality pCharac.vitality += 1 elif reaction.emoji == agility_emoji: if pCharac.agility <= pCharac.unused_points: pCharac.unused_points -= pCharac.agility pCharac.agility += 1 elif reaction.emoji == strength_emoji: if pCharac.strength <= pCharac.unused_points: pCharac.unused_points -= pCharac.strength pCharac.strength += 1 elif reaction.emoji == success_emoji: battler.updateCharacterByName(pCharac.name) battler.save() await msg.add_reaction('💤') loop = False elif reaction.emoji == cancel_emoji: await msg.add_reaction('💤') loop = False msg.edit(embed = mdisplay.display_level_up_details(pCharac)) except asyncio.TimeoutError: await msg.add_reaction('💤') loop = False @commands.command(name='migrate') @commands.guild_only() async def migrate(self, ctx): """Change the Serve/Guild you are registered to.""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) guildID = str(ctx.guild.id) battler = db.Player.objects.get(battler_id = playerID) battler.guild_id = guildID battler.save() await ctx.send("Migrated to **"+ ctx.guild.name + "** succesfully!") @commands.command(name='compare') async def compare_items(self, ctx, *args): """Compare an item, with the one you have equipped in the according slot, use with""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") if not await character.playabilityCheck(ctx, str(ctx.author.id)): return battler = db.Player.objects.get(battler_id = str(ctx.author.id)) if len(args) <1 or len(args) >2: return await ctx.send("Invalid number of arguments") storage_aliases = ["-s", "s", "storage", "vault", "house"] if args[1] in storage_aliases: return await ctx.send(embed =mim.compare_item(int(args[0]),battler,True)) else: return await ctx.send(embed =mim.compare_item(int(args[0]),battler,False)) @commands.command(name='equip') async def equip_item(self, ctx, *args): """Equip an item from your inventory""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") if not await character.playabilityCheck(ctx, str(ctx.author.id)): return battler = db.Player.objects.get(battler_id = str(ctx.author.id)) pCharac = battler.getCharacter() node = pCharac.getInstance() if isinstance(node, db.Battle): return await ctx.send("You can't change your equipment during a battle.") if len(args) <1 or len(args) >2: return await ctx.send("Invalid number of arguments") item_index = int(args[0]) try: slot_index = int(args[1]) except: slot_index = 0 return await ctx.send(mim.equipItem(item_index,battler,slot_index)) @commands.command(name='unequip') async def unequip_item(self, ctx, *args): """Place an equipped item in your inventory""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") if not await character.playabilityCheck(ctx, str(ctx.author.id)): return battler = db.Player.objects.get(battler_id = str(ctx.author.id)) pCharac = battler.getCharacter() node = pCharac.getInstance() if isinstance(node, db.Battle): return await ctx.send("You can't change your equipment during a battle.") if len(args) !=1 : return await ctx.send("Invalid number of arguments") slot_index = int(args[0]) return await ctx.send(mim.unequipItem(battler,slot_index)) @commands.command(name='storeitem') @commands.guild_only() async def store_item(self, ctx, *args): """Place an item from inventory to Storage""" if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") if not await character.playabilityCheck(ctx, str(ctx.author.id)): return battler = db.Player.objects.get(battler_id = str(ctx.author.id)) pCharac = battler.getCharacter() node = pCharac.getInstance() if node.guild_id != battler.guild_id: return await ctx.send("Your currently active character is not near your guild.") if len(args) !=1 : return await ctx.send("Invalid number of arguments") slot_index = int(args[0]) await ctx.send(mim.storeItem(pCharac.inventory, slot_index, battler)) inventory = pCharac.inventory del inventory[slot_index] pCharac.inventory = inventory battler.updateCurrentCharacter(pCharac) battler.save() return @commands.command(name='set_pve_password') async def set_pve_password(self,ctx, *args): """If you wish for your PvE Sessions to be password protected, use this Command in order to create a password. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") if len(args) == 0: return await ctx.send("This command requires at least one argument") if len(args[0]) < 6: return await ctx.send("If you wish to set a new password it needs to be at least 6 Characters.") playerID = str(ctx.author.id) battler = db.Player.objects.no_dereference().get(battler_id = playerID) battler.pve_join_password = args[0] battler.save() await ctx.send("You have successfully created a password for your PvE Sessions") return @commands.command(name='remove_pve_password') async def remove_pve_password(self,ctx, *args): """Use this if you have created a password for your PvE sessions, and you wish to make them public once again. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") playerID = str(ctx.author.id) battler = db.Player.objects.no_dereference().get(battler_id = playerID) battler.pve_join_password = None battler.save() await ctx.send("You have successfully turned your PvE Sessions Public.") return @commands.command(name='set_party_limit') async def set_party(self,ctx, *args): """Use this to determine the maximum number of players in your party for Battle instances and Dungeons. """ if not character.checkRegistration(str(ctx.author.id)): return await ctx.send("You are not registered. Please register by using the command `!register`") if len(args) == 0: return await ctx.send("This command requires at least one argument") if int(args[0]) < 1: return await ctx.send("Party size limit can't be less than 1") playerID = str(ctx.author.id) battler = db.Player.objects.no_dereference().get(battler_id = playerID) battler.pve_player_limit = int(args[0]) battler.save() await ctx.send("You have successfully changed your Party Limit.") return # The setup fucntion below is neccesarry. Remember we give bot.add_cog() the name of the class in this case MembersCog. # When we load the cog, we use the name of the file. def setup(bot): bot.add_cog(Profile(bot)) ```
{ "source": "josephkirk/MeshBaker", "score": 2 }
#### File: bakermod/marmoset/marmoset.py ```python import mset import os import json import inspect import sys from enum import Enum # from CrossBaker import BakeMap, Import, ImportType, Padding from pprint import pprint from re import compile # Enums Import = Enum("Import", ["UseMeshName", "UseFileName"]) ImportTypes = { Import.UseMeshName: compile(r"(\w*)_(low|high)_?\w*.(obj|fbx)"), Import.UseFileName: compile(r"(\w*).(obj|fbx)\Z") } Padding = Enum("Padding",[ "None", "Moderate", "Extreme"]) BakeMap = Enum("BakeMap",[ "Normals", "ObjectNormals", "Height", "Position", "Curvature", "Convexity", "Concavity", "Thickness", "BentNormals", "ObjectBentNormals", "AO", "Albedo", "Gloss", "Specular", "Diffuse", "Roughness", "Metalness", "Emissive", "Transparency", "VertexColor", "DiffuseLighting", "SpecularLighting", "Lighting", "MaterialID", "ObjectID", "GroupID", "UVIsland", "Wireframe", "AlphaMask"]) # Variable ImportType = Import.UseFileName MeshPath = D:/test SavePath = D:/test ExportPath = BakeMaps = ['Normals', 'ObjectNormal', 'Curvature', 'Ambient Occlusion', 'Material ID', 'Position', 'Thickness', 'Height'] OutputWidth = 2048 OutputHeight = 2048 OutputSamples = 8 OutputBits = 8 if not MeshPath: print("Mesh Path not found") raise RuntimeError # Method class BakeGroup: def __init__(self, transform): self.transform = transform @property def high(self): return self.transform.getChildren()[1] @property def low(self): return self.transform.getChildren()[0] def addChild(self, childItem, gc=None): if "low" in childItem.name.lower(): for item in childItem.getChildren(): item.parent = self.low elif "high" in childItem.name.lower(): for item in childItem.getChildren(): item.parent = self.high else: for item in childItem.getChildren(): if "low" in item.name.lower(): item.parent = self.low elif "high" in item.name.lower(): item.parent = self.high else: if isinstance(gc, mset.TransformObject): item.parent = gc childItem.destroy() class Baker: def __init__(self): self.baker = mset.BakerObject() self.bakeMaps = {name:bakemapItem for name,bakemapItem in zip(BakeMap, self.baker.getAllMaps())} pprint(self.bakeMaps) self.groups = {} def toggleMapState(self, mapName, state): self.getMap(mapName).enabled = state def isMapEnabled(self, mapName): return self.getMap(mapName).enabled def getMap(self, mapName): self.bakeMaps.get(mapName) def setMapSuffix(self, mapName, suffix): self.bakeMaps.get(mapName).suffix = suffix def resetMapSuffix(self, mapName): self.bakeMaps.get(mapName).resetSuffix() def hasGroup(self, grpName): return grpName in self.groups def getGroup(self, grpName): return self.groups.get(grpName) def addGroup(self, name): grp = BakeGroup(self.baker.addGroup(name)) self.groups[name] = grp return grp def setOutputSize(self, width , height): self.baker.outputWidth = width self.baker.outputHeight = height def setOuputPath(self, path): self.outputPath = path def setOuputPSD(self, state): self.outputSinglePsd = state def setOuputBits(self, value): self.outputBits = value def setOuputSamples(self, value): self.outputSamples = value def setIgnoreGroups(self, state): for map in self.bakeMaps.values(): if hasattr(map, "ignoreGroups"): map.ignoreGroups = state def setDither(self, state): for map in self.bakeMaps.values(): if hasattr(map, "dither"): map.dither = state def resetSuffixAll(self): for map in self.bakeMaps.values(): map.resetSuffix() def useMultipleTextureSet(self, state): self.baker.multipleTextureSets = state def setPadding(self, paddingType): """None, Moderate, Extreme""" self.edgePadding = paddingType.name def setPaddingSize(self, paddingSize): self.edgePaddingSize = paddingSize def getRegexGrp(regex, grpid, default=""): result = default try: result = regex.group(grpid) except IndexError: pass return result if __name__ == "__main__": regex = ImportTypes[ImportType] mfiles = dict() files = (dict( name=getRegexGrp(regex.search(f), 1), path=os.path.join(MeshPath,f)) for f in os.listdir(MeshPath) if regex.match(f)) # files = (f for f in dirContents if os.path.isfile(f)) baker = Baker() wrongNameGrp = mset.TransformObject("Wrong Namming") for mfile in files: if not baker.hasGroup(mfile["name"]): baker.addGroup(mfile["name"]) obj = mset.importModel(mfile["path"]) baker.getGroup(mfile["name"]).addChild(obj, wrongNameGrp) mset.saveScene(SavePath) ``` #### File: crossbaker/libs/classes.py ```python try: from PySide2.QtCore import Property, QObject, Signal, Slot except: from PySide.QtCore import Property, QObject, Signal, Slot from collections import namedtuple from crossbaker import logger import subprocess import os Size = namedtuple("Size", ["w","h"]) class App(QObject): def __init__(self, name, path, execmod=[]): super(App, self).__init__() # self._name = "" self._path = "" self._mod = [] # self.name = name self.path = path self.mod = execmod def __str__(self): return self.path def __repr__(self): return "{}:{}:{}".format(self.name, self.path, self.mod) @property def name(self): return self._name @name.setter def name(self, newName): self._name = str(newName) @property def path(self): return self._path @path.setter def path(self, newpath): self._path = str(newpath) @property def mod(self): return self._mod @mod.setter def mod(self, newmod): if hasattr(newmod, "__iter__"): self._mod = [str(mod) for mod in newmod] def getname(self): return self.name.capitalize() def setname(self, newName): self.name = newName logger.debug(newName) def getpath(self): return self.path def setpath(self, newpath): self.path = newpath logger.debug(newpath) @Signal def nameChanged(self): pass @Signal def pathChanged(self): pass def run(self): logger.debug("exec {} with args: {}".format(self.path, self.mod)) if os.path.exists(self.path): com = subprocess.Popen( ["{}".format(self.path)]+self.mod, stdin=subprocess.PIPE, stdout=subprocess.PIPE) return com.communicate() appname = Property(str, getname, setname, notify=nameChanged) apppath = Property(str, getpath, setpath, notify=pathChanged) class BakerApp(App): def __init__(self, name, path, execmod=None): super(BakerApp, self).__init__(name, path) self.mod = execmod @property def mod(self): return self._mod @mod.setter def mod(self, newmod): if hasattr(newmod, "get"): self._mod = newmod def run(self): if hasattr(self.mod, "get"): logger.debug("exec {} with args: {}".format(self.name, self.mod.get())) com = subprocess.Popen( ["{}".format(self.path)]+self.mod.get(), stdin=subprocess.PIPE, stdout=subprocess.PIPE) com.communicate() class ImageApp(App): def __init__(self, name, path, execmod=[]): super(ImageApp, self).__init__(name, path, execmod) def run(self): super(ImageApp, self).run() ``` #### File: samples/editabletreemodel/ui_mainwindow.py ```python from PySide import QtCore, QtGui class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(573, 468) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.vboxlayout = QtGui.QVBoxLayout(self.centralwidget) self.vboxlayout.setContentsMargins(0, 0, 0, 0) self.vboxlayout.setSpacing(0) self.vboxlayout.setObjectName("vboxlayout") self.view = QtGui.QTreeView(self.centralwidget) self.view.setAlternatingRowColors(True) self.view.setSelectionBehavior(QtGui.QAbstractItemView.SelectItems) self.view.setHorizontalScrollMode(QtGui.QAbstractItemView.ScrollPerPixel) self.view.setAnimated(False) self.view.setAllColumnsShowFocus(True) self.view.setObjectName("view") self.vboxlayout.addWidget(self.view) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 573, 31)) self.menubar.setObjectName("menubar") self.fileMenu = QtGui.QMenu(self.menubar) self.fileMenu.setObjectName("fileMenu") self.actionsMenu = QtGui.QMenu(self.menubar) self.actionsMenu.setObjectName("actionsMenu") MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.exitAction = QtGui.QAction(MainWindow) self.exitAction.setObjectName("exitAction") self.insertRowAction = QtGui.QAction(MainWindow) self.insertRowAction.setObjectName("insertRowAction") self.removeRowAction = QtGui.QAction(MainWindow) self.removeRowAction.setObjectName("removeRowAction") self.insertColumnAction = QtGui.QAction(MainWindow) self.insertColumnAction.setObjectName("insertColumnAction") self.removeColumnAction = QtGui.QAction(MainWindow) self.removeColumnAction.setObjectName("removeColumnAction") self.insertChildAction = QtGui.QAction(MainWindow) self.insertChildAction.setObjectName("insertChildAction") self.fileMenu.addAction(self.exitAction) self.actionsMenu.addAction(self.insertRowAction) self.actionsMenu.addAction(self.insertColumnAction) self.actionsMenu.addSeparator() self.actionsMenu.addAction(self.removeRowAction) self.actionsMenu.addAction(self.removeColumnAction) self.actionsMenu.addSeparator() self.actionsMenu.addAction(self.insertChildAction) self.menubar.addAction(self.fileMenu.menuAction()) self.menubar.addAction(self.actionsMenu.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow", "Editable Tree Model", None, QtGui.QApplication.UnicodeUTF8)) self.fileMenu.setTitle(QtGui.QApplication.translate("MainWindow", "&File", None, QtGui.QApplication.UnicodeUTF8)) self.actionsMenu.setTitle(QtGui.QApplication.translate("MainWindow", "&Actions", None, QtGui.QApplication.UnicodeUTF8)) self.exitAction.setText(QtGui.QApplication.translate("MainWindow", "E&xit", None, QtGui.QApplication.UnicodeUTF8)) self.exitAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+Q", None, QtGui.QApplication.UnicodeUTF8)) self.insertRowAction.setText(QtGui.QApplication.translate("MainWindow", "Insert Row", None, QtGui.QApplication.UnicodeUTF8)) self.insertRowAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+I, R", None, QtGui.QApplication.UnicodeUTF8)) self.removeRowAction.setText(QtGui.QApplication.translate("MainWindow", "Remove Row", None, QtGui.QApplication.UnicodeUTF8)) self.removeRowAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+R, R", None, QtGui.QApplication.UnicodeUTF8)) self.insertColumnAction.setText(QtGui.QApplication.translate("MainWindow", "Insert Column", None, QtGui.QApplication.UnicodeUTF8)) self.insertColumnAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+I, C", None, QtGui.QApplication.UnicodeUTF8)) self.removeColumnAction.setText(QtGui.QApplication.translate("MainWindow", "Remove Column", None, QtGui.QApplication.UnicodeUTF8)) self.removeColumnAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+R, C", None, QtGui.QApplication.UnicodeUTF8)) self.insertChildAction.setText(QtGui.QApplication.translate("MainWindow", "Insert Child", None, QtGui.QApplication.UnicodeUTF8)) self.insertChildAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+N", None, QtGui.QApplication.UnicodeUTF8)) import editabletreemodel_rc ``` #### File: crossbaker/test/test_baker.py ```python import pytest def test_run_current_baker(): import crossbaker print("exec {} baker using arguments: {}".format( crossbaker.bakers.current().path, crossbaker.bakers.current().mod.get())) crossbaker.bakers.current().run() assert False ```
{ "source": "josephkirk/PipelineTools", "score": 2 }
#### File: PipelineTools/main/ControlsMakerUI.py ```python import os from maya import OpenMayaUI, cmds, mel import pymel.core as pm import uiStyle import logging from ..core.objectClass import controlShape as cs from functools import partial try: from PySide2 import QtWidgets, QtCore, QtGui except ImportError: from PySide import QtCore, QtGui QtWidgets = QtGui reload(cs) reload(uiStyle) # ------------------------------------------------------------------------------ logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) # ------------------------------------------------------------------------------ SIGNAL = QtCore.SIGNAL SLOT = QtCore.SLOT # ------------------------------------------------------------------------------ def mayaWindow(): """ Get Maya's main window. :rtype: QMainWindow """ # window = OpenMayaUI.MQtUtil.mainWindow() # window = shiboken.wrapInstance(long(window), QMainWindow) window = pm.ui.Window('MayaWindow').asQtObject() return window # ------------------------------------------------------------------------------ def connect_transform(ob, target, **kws): attrdict = { 'translate': ['tx', 'ty', 'tz'], 'rotate': ['rx', 'ry', 'rz'], 'scale': ['sx', 'sy', 'sz'] } for atr in attrdict: if atr not in kws: kws[atr] = False if 'all' in kws: if kws['all']: kws[atr] = True for atr, value in attrdict.items(): if atr in kws: if kws[atr] is False: continue if 'disconnect' in kws: if kws['disconnect']: ob.attr(atr) // target.attr(atr) for attr in value: ob.attr(attr) // target.attr(attr) log.info('{} disconnect to {}'.format( ob.attr(attr), target.attr(attr))) continue ob.attr(atr) >> target.attr(atr) for attr in value: ob.attr(attr) >> target.attr(attr) log.info('{} connect to {}'.format( ob.attr(attr), target.attr(attr))) def xformTo(ob, target): const = pm.parentConstraint(target, ob) pm.delete(const) log.info('{} match to {}'.format(ob,target)) def create_group(ob): obname = ob.name().split('|')[-1] if ob.nodeType() == 'joint': parent = pm.nt.Joint(name=obname + '_offset') else: parent = pm.nt.Transform(name=obname + 'Gp') oldParent = ob.getParent() # parent.setTranslation(ob.getTranslation('world'), 'world') # parent.setRotation(ob.getRotation('world'), 'world') xformTo(parent, ob) parent.setParent(oldParent) ob.setParent(parent) log.info('create Parent Transform %s'%parent) return parent def create_loc(ob): obname = ob.name().split('|')[-1] loc = pm.spaceLocator(name=obname + '_loc') loc.setTranslation(ob.getTranslation('world'), 'world') loc.setRotation(ob.getRotation('world'), 'world') loc_Gp = create_group(loc) return loc def getUIValue(valueName, defaultValue=0): if valueName in pm.optionVar: log.debug('{}:{}'.format(valueName, pm.optionVar[valueName])) return pm.optionVar[valueName] else: pm.optionVar[valueName] = defaultValue log.debug('{}:{}'.format(valueName, pm.optionVar[valueName])) return defaultValue def setUIValue(valueName, value): pm.optionVar[valueName] = value log.debug('{}:{}'.format(valueName, pm.optionVar[valueName])) def null(): pass # ------------------------------------------------------------------------------ class main(QtWidgets.QMainWindow): ''' Qt UI to rename Object in Scene ''' def __init__(self, parent=None): super(main, self).__init__() self._name = 'ControlCreatorWindow' try: pm.deleteUI(self._name) except: pass if parent: assert isinstance(parent, QtWidgets.QMainWindow), \ 'Parent is not of type QMainWindow' self.setParent(parent) else: self.setParent(mayaWindow()) self.setWindowFlags(QtCore.Qt.Window) self.setWindowTitle('Control Maker') self.setObjectName(self._name) self.setStyleSheet(uiStyle.styleSheet) self.createMenuBar() self.createStatusBar() def _initUIValue(self): self.nameSuffix = 'ctl' self.name = "controlObject" self.controlObject = cs.main(self.name, color=(255,255,0,255)) self.controlColor = tuple(self.controlObject.color) self.connectType_dict = { 'translate': partial(connect_transform, translate=True), 'rotate': partial(connect_transform, rotate=True), 'scale': partial(connect_transform, scale=True), 'all': partial(connect_transform, all=True), 'parent': partial(pm.parentConstraint, mo=True), 'point': partial(pm.pointConstraint, mo=True), 'orient': partial(pm.orientConstraint, mo=True), } getUIValue('controlmaker_connectUseLoc', 0) getUIValue('controlmaker_connectType',0) getUIValue('controlmaker_createSelOffset', 1) getUIValue('controlmaker_createCtlOffset', 1) getUIValue('controlmaker_createChain', 0) getUIValue('controlmaker_useObjectName', 0) self._storeshape = None def _initMainUI(self): self._initUIValue() # create Widget self.topFiller = QtWidgets.QWidget(self) self.topFiller.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) self.bottomFiller = QtWidgets.QWidget(self) self.bottomFiller.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) self.mainCtner = QtWidgets.QWidget(self) # Create Layout self.mainLayout = QtWidgets.QVBoxLayout(self.mainCtner) # Add widget self.mainLayout.addWidget(self.topFiller) self.createMainWidgets() self.mainLayout.addWidget(self.bottomFiller) # Set Layout self.mainCtner.setLayout(self.mainLayout) self.setCentralWidget(self.mainCtner) self.setStyleSheet(uiStyle.styleSheet) self.disableSetAxis = False self._connectFunction() def createMainWidgets(self): self.mainLayout.addWidget(self.controlShapeBox()) def controlShapeBox(self): uiGrp = QtWidgets.QGroupBox('Control Shape Maker') layout = QtWidgets.QVBoxLayout() # - Create Sub Layout -------------------------- controlAttributeGroupLayout = QtWidgets.QGridLayout() controlNameAttributeLayout = QtWidgets.QVBoxLayout() controlAttributeGroupLayout.setAlignment(QtCore.Qt.AlignTop) controlNameAttributeLayout.setAlignment(QtCore.Qt.AlignTop) controlNameAttributeLayout.setSpacing(2) controlNameLayout = QtWidgets.QHBoxLayout() controlAttributeLayout = QtWidgets.QHBoxLayout() controlShapeLayout = QtWidgets.QVBoxLayout() controlOptionGroup = QtWidgets.QGroupBox('Option') controlOptionGroupLayout = QtWidgets.QHBoxLayout() controlOptionGroup.setLayout(controlOptionGroupLayout) createButtonLayout = QtWidgets.QHBoxLayout() # - Create Widget ------------------------------ self.controlName_text = uiStyle.labelGroup( "Name: ", QtWidgets.QLineEdit, controlNameLayout) self.controlNameSuffix_comboBox = uiStyle.labelGroup( "Suffix: ", QtWidgets.QComboBox, controlNameLayout) controlNameAttributeLayout.addLayout(controlNameLayout) self.controlHeight_label, self.controlHeight_floatspinbox = uiStyle.labelGroup( "Height: ", QtWidgets.QDoubleSpinBox, controlAttributeLayout, returnLabel=True) self.controlLength_label, self.controlLength_floatspinbox = uiStyle.labelGroup( "Length: ", QtWidgets.QDoubleSpinBox, controlAttributeLayout, returnLabel=True) self.controlRadius_label, self.controlRadius_floatspinbox = uiStyle.labelGroup( "Radius: ", QtWidgets.QDoubleSpinBox, controlAttributeLayout, returnLabel=True) self.controlColor_button = uiStyle.labelGroup( "Color: ", QtWidgets.QPushButton, controlAttributeLayout) controlNameAttributeLayout.addLayout(controlAttributeLayout) self.controlType_combobox = uiStyle.labelGroup( "Type: ", QtWidgets.QComboBox, controlShapeLayout) self.controlSmoothness_combobox = uiStyle.labelGroup( "Step: ", QtWidgets.QComboBox, controlShapeLayout) self.controlAxis_combobox = uiStyle.labelGroup( "Axis: ", QtWidgets.QComboBox, controlShapeLayout) controlAttributeGroupLayout.addLayout(controlNameAttributeLayout,0,0) controlAttributeGroupLayout.addLayout(controlShapeLayout,0,1) controlAttributeGroupLayout.setColumnStretch(0,2) layout.addLayout(controlAttributeGroupLayout) # self.groupControl_checkbox, = uiStyle.multiOptionsLayout( # ['group',], # parent=controlOptionGroupLayout # ) self.offsetX_floatspinbox,\ self.offsetY_floatspinbox,\ self.offsetZ_floatspinbox = uiStyle.multiLabelLayout( ['x', 'y', 'z'], QtWidgets.QDoubleSpinBox, groupLabel='Offset: ', parent=controlOptionGroupLayout ) self.addControlShape_button = QtWidgets.QPushButton('Add Shape') self.deleteControlShape_button = QtWidgets.QPushButton('Delete Shape') self.changeControlShape_button = QtWidgets.QPushButton('Change Shape') self.copyControlShape_button = QtWidgets.QPushButton('Copy Shape') self.pasteControlShape_button = QtWidgets.QPushButton('Paste Shape') self.createControl_button = QtWidgets.QPushButton('Create Control') self.setColor_button = QtWidgets.QPushButton('Set Color') createButtonLayout.addWidget(self.addControlShape_button) createButtonLayout.addWidget(self.deleteControlShape_button) createButtonLayout.addWidget(self.changeControlShape_button) createButtonLayout.addWidget(self.copyControlShape_button) createButtonLayout.addWidget(self.pasteControlShape_button) createButtonLayout.addWidget(self.setColor_button) createButtonLayout.addWidget(self.createControl_button) layout.addWidget(controlOptionGroup) layout.addLayout(createButtonLayout) # ---------------------------------------------- self.controlName_text.setPlaceholderText(self.name) self.controlNameSuffix_comboBox.addItems(['ctl','cnt','control']) self.controlLength_floatspinbox.setValue(self.controlObject.length) self.controlRadius_floatspinbox.setValue(self.controlObject.radius) self.controlHeight_floatspinbox.setValue(self.controlObject.height) self.controlHeight_label.hide() self.controlHeight_floatspinbox.hide() self.controlType_combobox.addItems(self.controlObject._controlType.keys()) self.controlType_combobox.setCurrentText('Pin') self.controlSmoothness_combobox.addItems(self.controlObject._resolutions.keys()) self.controlAxis_combobox.addItems(self.controlObject._axisList) self.controlColor_button.setStyleSheet(".QPushButton { background-color: rgba(%d,%d,%d,%d) } "%tuple(self.controlObject.color)) # ---------------------------------------------- uiGrp.setLayout(layout) return uiGrp def createMenuBar(self): # create Action def menuItem(name, func , parent, **kws): newAction = QtWidgets.QAction(name, self) if 'checkable' in kws: newAction.setCheckable(kws['checkable']) if 'checked' in kws: # if kws['checked'].isdigit(): # newAction.setChecked(bool(int(kws['checked']))) if 'value' in kws and kws['value'] != 'isCheck': newAction.setChecked(kws['checked'] == kws['value']) else: newAction.setChecked(kws['checked']) if 'value' in kws: def emitValue(): if kws['value'] == 'isCheck': # print newAction.isChecked() func(newAction.isChecked()) return func(kws['value']) newAction.triggered.connect(emitValue) else: newAction.triggered.connect(func) if parent: parent.addAction(newAction) return newAction self.reset_action = QtWidgets.QAction('Reset', self) self.reset_action.setToolTip('Reset UI To Default Value') self.reset_action.setStatusTip('Reset UI To Default Value') self.reset_action.triggered.connect(self.resetUI) # create Menu self.menubar = self.menuBar() self.optionmenu = self.menubar.addMenu('Option') self.optionmenu.addAction(self.reset_action) self.optionmenu.addSeparator().setText('Connect Action') # self.toggleConnectThroughLocAction = menuItem( # 'Create Control for Childrens', partial(setUIValue, 'controlmaker_createForHie'), self.optionmenu, value ='isCheck', # checkable=True, checked=getUIValue('controlmaker_createForHie')) self.toggleConnectThroughLocAction = menuItem( 'Connect Through Loc', partial(setUIValue, 'controlmaker_connectUseLoc'), self.optionmenu, value ='isCheck', checkable=True, checked=getUIValue('controlmaker_connectUseLoc')) self.connectTypeGroup = QtWidgets.QActionGroup(self) self.toggleConnectTranslateAction = menuItem( 'Connect Translate', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value='translate', checkable=True, checked=getUIValue('controlmaker_connectType')) self.toggleConnectRotateAction = menuItem( 'Connect Rotate', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value='rotate', checkable=True, checked=getUIValue('controlmaker_connectType')) self.toggleConnectAllAction = menuItem( 'Connect All', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value='all', checkable=True, checked=getUIValue('controlmaker_connectType')) self.togglePoConstraintAction = menuItem( 'Point Constraint', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value='point', checkable=True, checked=getUIValue('controlmaker_connectType')) self.toggleOConstraintAction = menuItem( 'Orient Constraint', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value='orient', checkable=True, checked=getUIValue('controlmaker_connectType')) self.togglePConstraintAction = menuItem( 'Parent Constraint', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value='parent', checkable=True, checked=getUIValue('controlmaker_connectType')) self.toggleConnectAction = menuItem( 'None', partial(setUIValue, 'controlmaker_connectType'), self.connectTypeGroup, value=0, checkable=True, checked=getUIValue('controlmaker_connectType')) # self.toggleConnectAction.setChecked(True) self.optionmenu.addAction(self.toggleConnectTranslateAction) self.optionmenu.addAction(self.toggleConnectRotateAction) self.optionmenu.addAction(self.toggleConnectAllAction) self.optionmenu.addAction(self.togglePoConstraintAction) self.optionmenu.addAction(self.toggleOConstraintAction) self.optionmenu.addAction(self.togglePConstraintAction) self.optionmenu.addAction(self.toggleConnectAction) self.toggleCreateSelectOffset = menuItem( 'Create Select Offset', partial(setUIValue, 'controlmaker_createSelOffset') , self.optionmenu, value ='isCheck', checkable=True, checked=getUIValue('controlmaker_createSelOffset')) self.toggleTakeObjectName = menuItem( 'Use Object Name', partial(setUIValue, 'controlmaker_useObjectName') , self.optionmenu, value ='isCheck', checkable=True, checked=getUIValue('controlmaker_useObjectName')) self.optionmenu.addSeparator().setText('Other Action') self.toggleCreateOffset = menuItem( 'Create Control Offset', partial(setUIValue, 'controlmaker_createCtlOffset') , self.optionmenu, value ='isCheck', checkable=True, checked=getUIValue('controlmaker_createCtlOffset')) self.toggleParent = menuItem( 'Create Parent Chain', partial(setUIValue, 'controlmaker_createChain') , self.optionmenu, value ='isCheck', checkable=True, checked=getUIValue('controlmaker_createChain')) def createStatusBar(self): self.statusbar = self.statusBar() self.statusbar.showMessage('Tool to create rig Controls') # UI Changed Action def showEvent(self, event): self._initMainUI() # self.updateUIJob = pm.scriptJob( # e= ["SelectionChanged",self.autoUpdateUI], # parent = self._name, # rp=True) self.show() def closeEvent(self, event): # if hasattr(self, 'updateUIJob'): # if pm.scriptJob(exists=self.updateUIJob): # pm.scriptJob(k=self.updateUIJob) self.close() def autoUpdateUI(self): pass def resetUI(self): self.resetOptionVar() self._initMainUI() self.show() def _connectFunction(self): self.controlName_text.textEdited.connect(self.onChangeName) self.controlNameSuffix_comboBox.currentTextChanged.connect(self.onChangeNameSuffix) self.controlRadius_floatspinbox.valueChanged.connect(self.onChangeRadius) self.controlLength_floatspinbox.valueChanged.connect(self.onChangeLength) self.controlHeight_floatspinbox.valueChanged.connect(self.onChangeHeight) self.controlColor_button.clicked.connect(self.onChangeColor) self.controlType_combobox.currentTextChanged.connect(self.onChangeType) self.controlSmoothness_combobox.currentTextChanged.connect(self.onChangeResolution) self.controlAxis_combobox.currentTextChanged.connect(self.onChangeAxis) # self.groupControl_checkbox.stateChanged.connect(self.setGroupOptionState) # self.setAxis_checkbox.stateChanged.connect(self.setAxisOptionState) # self.mirror_checkbox.stateChanged.connect(self.setMirrorOptionState) self.offsetX_floatspinbox.valueChanged.connect(self.onChangeOffsetX) self.offsetY_floatspinbox.valueChanged.connect(self.onChangeOffsetY) self.offsetZ_floatspinbox.valueChanged.connect(self.onChangeOffsetZ) self.addControlShape_button.clicked.connect(self.onAddShape) self.deleteControlShape_button.clicked.connect(self.onDeleteShape) self.changeControlShape_button.clicked.connect(self.onChangeShape) self.copyControlShape_button.clicked.connect(self.onCopyShape) self.pasteControlShape_button.clicked.connect(self.onPasteShape) self.createControl_button.clicked.connect(self.onCreateShape) self.setColor_button.clicked.connect(self.onSetColor) # def onToggleConnectType(self): # if self.toggleConnectAction.isChecked(): # self.toggleConstraintAction.setChecked(False) # return # if self.toggleConstraintAction.isChecked(): # self.toggleConnectAction.setChecked(False) # return def onChangeName(self, value): self.controlObject.name = value log.debug("name: %s"%self.controlObject.name) def onChangeNameSuffix(self, value): self.controlObject._suffix = value log.debug("Name: %s"%self.controlObject.name) def onChangeRadius(self, value): self.controlObject.radius = value log.debug("Radius: %s"%self.controlObject.radius) def onChangeLength(self, value): self.controlObject.length = value log.debug("Length: %s"%self.controlObject.length) def onChangeHeight(self, value): self.controlObject.height = value log.debug("Height: %s"%self.controlObject.height) def onChangeColor(self): colorDialog = QtWidgets.QColorDialog.getColor(QtCore.Qt.yellow) color = colorDialog.getRgb() self.controlColor_button.setStyleSheet( ".QPushButton { background-color: rgba(%d,%d,%d,%d) } "%tuple(color)) self.controlObject.color = [color[0]/255.0, color[1]/255.0, color[2]/255.0, color[3]/255.0] log.debug("Color: %s"%self.controlObject.color) def onChangeType(self, value): self.controlObject.currentType = value currentIndex = self.controlAxis_combobox.currentIndex() self.controlAxis_combobox.setEnabled(True) self.controlSmoothness_combobox.setEnabled(True) self.disableSetAxis = True self.controlObject.forceSetAxis = False self.controlLength_label.show() self.controlLength_floatspinbox.show() self.controlHeight_label.hide() self.controlHeight_floatspinbox.hide() self.controlRadius_label.show() self.controlRadius_floatspinbox.show() self.controlRadius_label.setText('Radius') if value.endswith('Pin'): self.controlAxis_combobox.clear() if value.startswith('Double'): self.controlAxis_combobox.addItems( self.controlObject._axisList[:6]) if value.startswith('Sphere'): axisList = self.controlObject._axisList[:2] axisList.append(self.controlObject._axisList[3]) axisList.extend(['-'+a for a in axisList]) self.controlAxis_combobox.addItems(axisList) else: self.controlAxis_combobox.addItems( self.controlObject._axisList) elif any([value == typ for typ in ['Arrow','Cylinder', 'CircleArrow','HalfCylinder','Circle','Hemisphere']]): self.controlObject.forceSetAxis = True self.controlAxis_combobox.clear() self.controlAxis_combobox.addItems( self.controlObject._axisList[:6]) elif any([value == typ for typ in ['DoubleArrow','Rectangle', 'Cross', 'Triangle', 'ThinCross', 'RoundSquare']]): self.controlSmoothness_combobox.setEnabled(False) self.controlObject.forceSetAxis = True self.controlAxis_combobox.clear() self.controlAxis_combobox.addItems( self.controlObject._axisList[:3]) self.controlRadius_label.hide() self.controlRadius_floatspinbox.hide() else: self.controlAxis_combobox.setEnabled(False) self.controlAxis_combobox.setCurrentIndex(currentIndex) self.disableSetAxis = False if currentIndex > (self.controlAxis_combobox.count()-1): self.controlAxis_combobox.setCurrentIndex( self.controlAxis_combobox.count()-1) if any([value == typ for typ in ['Octa','NSphere','Hemisphere','Sphere','Circle']]): self.controlLength_label.hide() self.controlLength_floatspinbox.hide() self.controlHeight_label.hide() self.controlHeight_floatspinbox.hide() self.controlSmoothness_combobox.setEnabled(False) if any([value == typ for typ in ['Cube','Arrow','DoubleArrow']]): self.controlRadius_label.show() self.controlRadius_floatspinbox.show() self.controlRadius_label.setText('Width') self.controlHeight_label.show() self.controlHeight_floatspinbox.show() self.controlLength_floatspinbox.setEnabled(True) log.debug("CurrentType: %s"%self.controlObject.currentType.__name__) def onChangeResolution(self, value): self.controlObject.step = value log.debug("Resolution: %s"%self.controlObject.step) def onChangeAxis(self, value): if not self.disableSetAxis: self.controlObject.axis = value log.debug("Axis: %s"%self.controlObject.axis) def onChangeOffsetX(self, value): offset = self.controlObject.offset offset[0] = value self.controlObject.offset = offset log.debug("Offset: %s"%self.controlObject.offset) def onChangeOffsetY(self, value): offset = self.controlObject.offset offset[1] = value self.controlObject.offset = offset log.debug("Offset: %s"%self.controlObject.offset) def onChangeOffsetZ(self, value): offset = self.controlObject.offset offset[2] = value self.controlObject.offset = offset log.debug("Offset: %s"%self.controlObject.offset) def onCreateShape(self): if pm.selected(): controls = [] # with pm.UndoChunk(): pm.undoInfo( state=False ) sel = pm.selected() for ob in sel: control = self.controlObject.currentType() control.setMatrix(ob.getMatrix(ws=True), ws=True) if getUIValue('controlmaker_useObjectName'): control.rename(ob+'_ctl') if getUIValue('controlmaker_createCtlOffset'): create_group(control) if getUIValue('controlmaker_createSelOffset'): if ob.nodeType() == "joint": create_group(ob) if getUIValue('controlmaker_connectType'): if getUIValue('controlmaker_connectUseLoc'): loc = create_loc(ob) pm.parentConstraint(control, loc) loc.getParent().setParent(control.getParent()) self.connectType_dict[getUIValue('controlmaker_connectType')](loc, ob) else: self.connectType_dict[getUIValue('controlmaker_connectType')](control, ob) if controls and getUIValue('controlmaker_createChain'): if control.getParent(): control.getParent().setParent(controls[-1]) else: control.setParent(controls[-1]) controls.append(control) pm.undoInfo( state=True ) return controls else: control = self.controlObject.currentType return control() def onSetColor(self): for control in pm.selected(): try: controlShape = control.getShape() if controlShape: controlShape.overrideEnabled.set(True) controlShape.overrideRGBColors.set(True) controlShape.overrideColorRGB.set(self.controlObject.color) sg = control.shadingGroups()[0] if control.shadingGroups() else None if sg: shdr = sg.inputs()[0] shdr.outColor.set(self.controlObject.color.rgb) shdr.outTransparency.set([self.controlObject.color.a for i in range(3)]) except AttributeError as why: log.error(why) def onChangeShape(self): for control in pm.selected(): temp = self.controlObject.currentType() pm.delete(control.getShape(), shape=True) pm.parent(temp.getShape(), control, r=True, s=True) pm.delete(temp) # return control def onCopyShape(self): if not pm.selected(): return sel = pm.selected()[0] sel_shape = sel.getShape() if not isinstance(sel_shape, pm.nt.NurbsCurve): return self._storeshape = sel_shape.getCVs() def onPasteShape(self): if not self._storeshape: return axisData = {} axisData['XY'] = (0, 0, 0) axisData['XZ'] = (90, 0, 0) axisData['YZ'] = (0, 0, 90) axisData['YX'] = (180, 0, 0) axisData['ZX'] = (-90, 0, 0) axisData['ZY'] = (0, 0, -90) for control in pm.selected(): if not hasattr(control, "getShape"): if not control.getShape(): continue temp = pm.curve(p=self._storeshape) try: temp.setRotation(axisData[self.controlobject.axis]) pm.makeIdentity(temp, apply=True) pm.delete(control.getShape(), shape=True) pm.parent(temp.getShape(), control, r=True, s=True) finally: pm.delete(temp) def onAddShape(self): for control in pm.selected(): temp = self.controlObject.currentType() pm.parent(temp.getShape(), control, r=True, s=True) pm.delete(temp) def onDeleteShape(self): for control in pm.selected(): try: pm.delete(control.getShapes()[-1]) except AttributeError, IndexError: pass @staticmethod def resetOptionVar(): for var in pm.optionVar: try: if var.startswith('controlmaker'): del pm.optionVar[var] except KeyError: pass def show(): win = main() win.show() return win if __name__ =='__main__': try: app = QtWidgets.QApplication([]) except: raise show() if app in globals(): app.exec_() ```
{ "source": "josephkirk/qt_crossApps", "score": 2 }
#### File: qt_crossApps/Libs/ui.py ```python try: from PySide2 import QtWidgets, QtCore, QtGui except ImportError: from PySide import QtCore, QtGui QtWidgets = QtGui styleSheet = """ QFrame { font: italic 12px; border: 2px solid rgb(20,20,20); border-radius: 4px; border-width: 0px; padding: 2px; background-color: rgb(70,70,70); } QMenu { margin: 2px; /* some spacing around the menu */ } QMenuBar { font: bold 12px; border-color: lightgray; border-width: 2px; background-color: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 rgb(30,30,30), stop:1 rgb(40,40,40)); } QPushButton { background-color: rgb(100,100,100); } QGroupBox { font: bold 12px; color: rgb(200,200,200); padding-top: 10px; background-color: rgb(80,80,80); border: 1px solid gray; border-radius: 4px; margin-top: 5px; } QGroupBox::title { subcontrol-origin: margin; subcontrol-position: top center; /* position at the top center */ padding: 0px 5px; } QSlider::groove:horizontal { border: 1px solid #999999; height: 8px; /* the groove expands to the size of the slider by default. by giving it a height, it has a fixed size */ background: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 #B1B1B1, stop:1 #c4c4c4); margin: 2px 0; } QSlider::handle:horizontal { background: qlineargradient(x1:0, y1:0, x2:1, y2:1, stop:0 #b4b4b4, stop:1 #8f8f8f); border: 1px solid #5c5c5c; width: 18px; margin: -2px 0; /* handle is placed by default on the contents rect of the groove. Expand outside the groove */ border-radius: 3px; } QListWidget { color: lightgray; font: bold; background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1, stop: 0 #222222, stop: 1 #333333); show-decoration-selected: 1; /* make the selection span the entire width of the view */ } QListWidget::item { bottom: 5px; } QListWidget::item:selected { padding-left: 5px; } QListWidget::item:selected:!active { background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1, stop: 0 darkgray, stop: 1 gray); } QListWidget::item:selected:active { background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1, stop: 0 darkgray, stop: 1 gray); } QListWidget::item:hover { background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1, stop: 0 #333333, stop: 1 #444444); } QStatusBar { border-color: lightgray; border-width: 2px; background: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 rgb(30,30,30), stop:1 rgb(40,40,40)); } QStatusBar::item { border: 1px solid red; border-radius: 3px; } """ def addDivider(widget, layout=None): line = QtWidgets.QFrame(widget) line.setFrameShape(QtWidgets.QFrame.HLine) line.setFrameShadow(QtWidgets.QFrame.Sunken) if layout: layout.addWidget(line) else: return widget def labelGroup(name, widget, parent=None, returnLabel=False, *args, **kws): layout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel(name) # print args, kws createWidget = widget(*args, **kws) layout.addWidget(label) layout.addWidget(createWidget) if parent: parent.addLayout(layout) result = (label, createWidget) if returnLabel else createWidget return result else: result = (label, createWidget, layout) if returnLabel else (createWidget, layout) return result def multiLabelLayout(names, widget, groupLabel='', dir='horizontal', parent=None, *args, **kws): dirDict = { 'horizontal': QtWidgets.QBoxLayout.LeftToRight, 'vertical': QtWidgets.QBoxLayout.TopToBottom } layout = QtWidgets.QBoxLayout(dirDict[dir]) if groupLabel: label = QtWidgets.QLabel(groupLabel) layout.addWidget(label) widgets = [] for name in names: sublayout = QtWidgets.QHBoxLayout() sublabel = QtWidgets.QLabel(name) createWidget = widget(*args, **kws) sublayout.addWidget(sublabel) sublayout.addWidget(createWidget) layout.addLayout(sublayout) widgets.append(createWidget) if parent: parent.setSpacing(2) # parent.setStretch(0,1) parent.addLayout(layout) return tuple(widgets) else: return (tuple(widgets), layout) def multiOptionsLayout(names, groupname='', parent=None, updateActions=[]): layout = QtWidgets.QHBoxLayout() if groupname: label = QtWidgets.QLabel(groupname) layout.addWidget(label) createWidgets = [] for name in names: createWidget = QtWidgets.QCheckBox(name) layout.addWidget(createWidget) createWidgets.append(createWidget) if updateActions: for id, cc in enumerate(updateActions): try: createWidgets[id].stateChanged.connect(cc) except IndexError: pass if parent: parent.addLayout(layout) return tuple(createWidgets) else: return (tuple(createWidgets), layout) def multiButtonsLayout(names, parent=None, actions=[]): layout = QtWidgets.QHBoxLayout() createWidgets = [] for name in names: # print name createWidget = QtWidgets.QPushButton(name) layout.addWidget(createWidget) createWidgets.append(createWidget) if actions: for id, cc in enumerate(actions): try: createWidgets[id].clicked.connect(cc) except IndexError: pass if parent: parent.addLayout(layout) # print tuple(createWidgets) return tuple(createWidgets) else: return (tuple(createWidgets), layout) def buttonsGroup(groupnames, names, collums=2, parent=None, iconsPath=[], actions=[]): group = QtWidgets.QGroupBox(groupnames) layout = QtWidgets.QGridLayout() buttons = [QtWidgets.QPushButton(name) for name in names] for id, iconPath in enumerate(iconsPath): icon = QtGui.QIcon(iconPath) buttons[id].setIcon(icon) buttons[id].setText('') buttons[id].setIconSize(QtCore.QSize(28,28)) buttons[id].setFixedSize(QtCore.QSize(28,28)) buttons[id].setStyleSheet('QPushButton {border-style: none; border-width: 0px; background-color: rgba(0,0,0,0) } ') stack = buttons[:] row=0 while stack: for collum in range(collums): if stack: button = stack.pop() layout.addWidget(button, row, collum) row += 1 for id, action in enumerate(actions): buttons[id].clicked.connect(action) group.setLayout(layout) return group def findIcon(icon): """ Loop over all icon paths registered in the XBMLANGPATH environment variable ( appending the tools icon path to that list ). If the icon exist a full path will be returned. :param str icon: icon name including extention :return: icon path :rtype: str or None """ paths = [] # get maya icon paths if os.environ.get("XBMLANGPATH"): paths = os.environ.get("XBMLANGPATH").split(os.pathsep) # append tool icon path paths.insert( 0, os.path.join( os.path.split(__file__)[0], "icons" ) ) ``` #### File: josephkirk/qt_crossApps/main.py ```python _name = "Universal_Tool_Checker" _version = "001.00" _author = "<NAME>" try: from PySide2 import QtCore, QtGui, QtWidgets, QtNetwork except ImportError: from PySide import QtCore, QtGui QtWidgets = QtGui import logging from .Lib.ui import styleSheet # Pyside Refactor Signal = QtCore.Signal Slot = QtCore.Slot QW = QtWidgets QC = QtCore QG = QtGui # Logging initialize # logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) # Utils Function # UIClass class main(QtWidgets.QMainWindow): ''' Universal Tool Finder ''' def __init__(self): super().__init__() self.setWindowFlags(QtCore.Qt.Window) self.setWindowTitle(_name) self.setObjectName(_name) # init UI self._initMainUI() self.createMenuBar() self.statusBar() # Util Function # Initial Value Definition def _initUIValue(self): pass def _getUIValue(self): pass def _initMainUI(self): self._initUIValue() self._getUIValue() # create Widget self.topFiller = QtWidgets.QWidget(self) self.topFiller.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) self.bottomFiller = QtWidgets.QWidget(self) self.bottomFiller.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) self.mainCtner = QtWidgets.QWidget(self) # Create Layout self.mainLayout = QtWidgets.QVBoxLayout(self.mainCtner) # Add widget self.addWidgets() # Set Layout self.mainCtner.setLayout(self.mainLayout) self.setCentralWidget(self.mainCtner) self.setStyleSheet(uiStyle.styleSheet) self._connectFunction() def addWidgets(self): pass def _connectFunction(self): def connect(button,func): button.clicked.connect(func) pass def createMenuBar(self): # create Action self.reset_action = QtWidgets.QAction('Reset', self) self.reset_action.setToolTip('Reset UI To Default Value') self.reset_action.setStatusTip('Reset UI To Default Value') self.reset_action.triggered.connect(self.resetUI) # create Menu self.menubar = self.menuBar() self.optionmenu = self.menubar.addMenu('Option') self.optionmenu.addAction(self.reset_action) # self.me def resetUI(self): self._initMainUI() self.show() @classmethod def showUI(cls): cls().show() def show(): win = main() win.show() return win if __name__ =='__main__': try: app = QtWidgets.QApplication([]) except: raise show() if app in globals(): app.exec_() ``` #### File: thonside/viewimplementation/widget_example.py ```python from PySide2.QtWidgets import QApplication from viewimplementation import terminal from pyinterpreter import interpreter class TerminalPython(terminal.Terminal): def __init__(self, parent=None): super(TerminalPython, self).__init__(parent=parent) # Init interpreter and add globals to context that give access from it. self.interpreter = interpreter.Interpreter(extra_context=globals().copy()) # connect write and input interpreter to the view implementation. self.interpreter.write_slot = self.write self.interpreter.input_slot = self.raw_input # define prompt self.prompt = self.interpreter.prompt # connect enter signal to interpreter self.press_enter.connect(self.interpreter.run) # rename interpreter self.interpreter.inter_name = "ThonSide Interpreter" # start interpreter self.interpreter.interact() if __name__ == '__main__': import sys app = QApplication(sys.argv) console = TerminalPython() console.show() sys.exit(app.exec_()) ```
{ "source": "JosephKithome/recipeApi", "score": 4 }
#### File: app/app/calc.py ```python def add(x, y): """Sum two numbers""" return x + y def subtract(x, y): """Subtract two numbers""" return x - y ```
{ "source": "JosephKJ/ARM", "score": 2 }
#### File: code/scripts/print_results.py ```python import argparse import os import pickle import torch import numpy as np args = argparse.ArgumentParser(allow_abbrev=False) args.add_argument("--root", type=str, required=True) args.add_argument("--start", type=int, required=True) args.add_argument("--load_model", default=False, action="store_true") args.add_argument("--num_runs", type=int, default=5) args = args.parse_args() def treat_underscores(x): res = [] for c in x: if c == "_": res.append("\\_") else: res.append(c) return "".join(res) def print_results(args): ms_avg = {"val": {"acc": [], "forgetting": []}, "test": {"acc": [], "forgetting": []}} for m in range(args.start, args.start + args.num_runs): out_dir = os.path.join(args.root, str(m)) config_p = os.path.join(out_dir, "config.pickle") config = None tries = 0 while tries < 1000: try: with open(config_p, "rb") as config_f: config = pickle.load(config_f) break except: tries += 1 if config is None: continue if args.load_model: torch.load(os.path.join(config.out_dir, "latest_models.pytorch")) actual_t = config.max_t for prefix in ["val", "test"]: if not config.stationary: accs_dict = getattr(config, "%s_accs" % prefix) ms_avg[prefix]["acc"].append(accs_dict[actual_t]) forgetting_dict = getattr(config, "%s_forgetting" % prefix) if actual_t in forgetting_dict: ms_avg[prefix]["forgetting"].append(forgetting_dict[actual_t]) print("model %d, %s: acc %.4f, forgetting %.4f" % ( config.model_ind, prefix, accs_dict[actual_t], forgetting_dict[actual_t])) else: accs_dict = getattr(config, "%s_accs_data" % prefix) ms_avg[prefix]["acc"].append(accs_dict[actual_t]) print("model %d, %s: acc %.4f" % (config.model_ind, prefix, accs_dict[actual_t])) print("---") for prefix in ["val", "test"]: for metric in ["acc", "forgetting"]: if len(ms_avg[prefix][metric]) == 0: ms_avg[prefix][metric] = (-1, -1) else: avg = np.array(ms_avg[prefix][metric]).mean() std = np.array(ms_avg[prefix][metric]).std() ms_avg[prefix][metric] = (avg, std) print("average %s: acc %.4f +- %.4f, forgetting %.4f +- %.4f" % ( prefix, ms_avg[prefix]["acc"][0], ms_avg[prefix]["acc"][1], ms_avg[prefix]["forgetting"][0], ms_avg[prefix]["forgetting"][1])) if __name__ == "__main__": print_results(args) ```
{ "source": "JosephKJ/class-incremental-learning", "score": 2 }
#### File: adaptive-aggregation-networks/trainer/zeroth_phase.py ```python import torch import tqdm import numpy as np import torch.nn as nn import torchvision from torch.optim import lr_scheduler from torchvision import datasets, models, transforms from utils.misc import * from utils.process_fp import process_inputs_fp import torch.nn.functional as F def incremental_train_and_eval_zeroth_phase(the_args, epochs, b1_model, ref_model, \ tg_optimizer, tg_lr_scheduler, trainloader, testloader, iteration, start_iteration, \ lamda, dist, K, lw_mr, fix_bn=False, weight_per_class=None, device=None): # Setting up the CUDA device if device is None: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for epoch in range(epochs): # Set the 1st branch model to the training mode b1_model.train() # Fix the batch norm parameters according to the config if fix_bn: for m in b1_model.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() # Set all the losses to zeros train_loss = 0 train_loss1 = 0 train_loss2 = 0 # Set the counters to zeros correct = 0 total = 0 # Learning rate decay tg_lr_scheduler.step() # Print the information print('\nEpoch: %d, learning rate: ' % epoch, end='') print(tg_lr_scheduler.get_lr()[0]) for batch_idx, (inputs, targets) in enumerate(trainloader): # Get a batch of training samples, transfer them to the device inputs, targets = inputs.to(device), targets.to(device) # Clear the gradient of the paramaters for the tg_optimizer tg_optimizer.zero_grad() # Forward the samples in the deep networks outputs = b1_model(inputs) # Compute classification loss loss = nn.CrossEntropyLoss(weight_per_class)(outputs, targets) # Backward and update the parameters loss.backward() tg_optimizer.step() # Record the losses and the number of samples to compute the accuracy train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() # Print the training losses and accuracies print('Train set: {}, train loss: {:.4f} accuracy: {:.4f}'.format(len(trainloader), train_loss/(batch_idx+1), 100.*correct/total)) # Running the test for this epoch b1_model.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = b1_model(inputs) loss = nn.CrossEntropyLoss(weight_per_class)(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() print('Test set: {} test loss: {:.4f} accuracy: {:.4f}'.format(len(testloader), test_loss/(batch_idx+1), 100.*correct/total)) if len(the_args.ckpt_dir_fg) > 0: torch.save(b1_model, the_args.ckpt_dir_fg) return b1_model ```
{ "source": "JosephKJ/iOD", "score": 3 }
#### File: data/datasets/finetune_dataset.py ```python import os import torch import torch.utils.data as data from fvcore.common.file_io import PathManager class ImageStoreDataset(data.Dataset): def __init__(self, cfg): path = os.path.join(cfg.WG.IMAGE_STORE_LOC, 'image_store.pth') with PathManager.open(path, 'rb') as f: image_store = torch.load(f) self.images = image_store.retrieve() def __getitem__(self, index): return self.images[index] def __len__(self): return len(self.images) ``` #### File: iOD/tests/test_rpn.py ```python import logging import unittest import torch from detectron2.config import get_cfg from detectron2.modeling.backbone import build_backbone from detectron2.modeling.proposal_generator.build import build_proposal_generator from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes from detectron2.utils.events import EventStorage logger = logging.getLogger(__name__) class RPNTest(unittest.TestCase): def test_rpn(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RPN" cfg.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator" cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1) backbone = build_backbone(cfg) proposal_generator = build_proposal_generator(cfg, backbone.output_shape()) num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) image_shape = (15, 15) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) gt_instances = Instances(image_shape) gt_instances.gt_boxes = Boxes(gt_boxes) with EventStorage(): # capture events in a iOD storage to discard them proposals, proposal_losses = proposal_generator( images, features, [gt_instances[0], gt_instances[1]] ) expected_losses = { "loss_rpn_cls": torch.tensor(0.0804563984), "loss_rpn_loc": torch.tensor(0.0990132466), } for name in expected_losses.keys(): assert torch.allclose(proposal_losses[name], expected_losses[name]) expected_proposal_boxes = [ Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])), Boxes( torch.tensor( [ [0, 0, 30, 20], [0, 0, 16.7862777710, 13.1362524033], [0, 0, 30, 13.3173446655], [0, 0, 10.8602609634, 20], [7.7165775299, 0, 27.3875980377, 20], ] ) ), ] expected_objectness_logits = [ torch.tensor([0.1225359365, -0.0133192837]), torch.tensor([0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783, -0.0428492837]), ] for i in range(len(image_sizes)): assert len(proposals[i]) == len(expected_proposal_boxes[i]) assert proposals[i].image_size == (image_sizes[i][0], image_sizes[i][1]) assert torch.allclose( proposals[i].proposal_boxes.tensor, expected_proposal_boxes[i].tensor ) assert torch.allclose(proposals[i].objectness_logits, expected_objectness_logits[i]) def test_rrpn(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]] cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]] cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" backbone = build_backbone(cfg) proposal_generator = build_proposal_generator(cfg, backbone.output_shape()) num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) image_shape = (15, 15) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32) gt_instances = Instances(image_shape) gt_instances.gt_boxes = RotatedBoxes(gt_boxes) with EventStorage(): # capture events in a iOD storage to discard them proposals, proposal_losses = proposal_generator( images, features, [gt_instances[0], gt_instances[1]] ) expected_losses = { "loss_rpn_cls": torch.tensor(0.0432923734), "loss_rpn_loc": torch.tensor(0.1552739739), } for name in expected_losses.keys(): assert torch.allclose(proposal_losses[name], expected_losses[name]) expected_proposal_boxes = [ RotatedBoxes( torch.tensor( [ [0.60189795, 1.24095452, 61.98131943, 18.03621292, -4.07244873], [15.64940453, 1.69624567, 59.59749603, 16.34339333, 2.62692475], [-3.02982378, -2.69752932, 67.90952301, 59.62455750, 59.97010040], [16.71863365, 1.98309708, 35.61507797, 32.81484985, 62.92267227], [0.49432933, -7.92979717, 67.77606201, 62.93098450, -1.85656738], [8.00880814, 1.36017394, 121.81007385, 32.74150467, 50.44297409], [16.44299889, -4.82221127, 63.39775848, 61.22503662, 54.12270737], [5.00000000, 5.00000000, 10.00000000, 10.00000000, -0.76943970], [17.64130402, -0.98095351, 61.40377808, 16.28918839, 55.53118134], [0.13016054, 4.60568953, 35.80157471, 32.30180359, 62.52872086], [-4.26460743, 0.39604485, 124.30079651, 31.84611320, -1.58203125], [7.52815342, -0.91636634, 62.39784622, 15.45565224, 60.79549789], ] ) ), RotatedBoxes( torch.tensor( [ [0.07734215, 0.81635046, 65.33510590, 17.34688377, -1.51821899], [-3.41833067, -3.11320257, 64.17595673, 60.55617905, 58.27033234], [20.67383385, -6.16561556, 63.60531998, 62.52315903, 54.85546494], [15.00000000, 10.00000000, 30.00000000, 20.00000000, -0.18218994], [9.22646523, -6.84775209, 62.09895706, 65.46472931, -2.74307251], [15.00000000, 4.93451595, 30.00000000, 9.86903191, -0.60272217], [8.88342094, 2.65560246, 120.95362854, 32.45022202, 55.75970078], [16.39088631, 2.33887148, 34.78761292, 35.61492920, 60.81977463], [9.78298569, 10.00000000, 19.56597137, 20.00000000, -0.86660767], [1.28576660, 5.49873352, 34.93610382, 33.22600174, 60.51599884], [17.58912468, -1.63270092, 62.96052551, 16.45713997, 52.91245270], [5.64749718, -1.90428460, 62.37649155, 16.19474792, 61.09543991], [0.82255805, 2.34931135, 118.83985901, 32.83671188, 56.50753784], [-5.33874989, 1.64404404, 125.28501892, 33.35424042, -2.80731201], ] ) ), ] expected_objectness_logits = [ torch.tensor( [ 0.10111768, 0.09112845, 0.08466332, 0.07589971, 0.06650183, 0.06350251, 0.04299347, 0.01864817, 0.00986163, 0.00078543, -0.04573630, -0.04799230, ] ), torch.tensor( [ 0.11373727, 0.09377633, 0.05281663, 0.05143715, 0.04040275, 0.03250912, 0.01307789, 0.01177734, 0.00038105, -0.00540255, -0.01194804, -0.01461012, -0.03061717, -0.03599222, ] ), ] torch.set_printoptions(precision=8, sci_mode=False) for i in range(len(image_sizes)): assert len(proposals[i]) == len(expected_proposal_boxes[i]) assert proposals[i].image_size == (image_sizes[i][0], image_sizes[i][1]) # It seems that there's some randomness in the result across different machines: # This test can be run on a local machine for 100 times with exactly the same result, # However, a different machine might produce slightly different results, # thus the atol here. err_msg = "computed proposal boxes = {}, expected {}".format( proposals[i].proposal_boxes.tensor, expected_proposal_boxes[i].tensor ) assert torch.allclose( proposals[i].proposal_boxes.tensor, expected_proposal_boxes[i].tensor, atol=1e-5 ), err_msg err_msg = "computed objectness logits = {}, expected {}".format( proposals[i].objectness_logits, expected_objectness_logits[i] ) assert torch.allclose( proposals[i].objectness_logits, expected_objectness_logits[i], atol=1e-5 ), err_msg if __name__ == "__main__": unittest.main() ```
{ "source": "JosephKJ/NCL", "score": 2 }
#### File: JosephKJ/NCL/selfsupervised_learning.py ```python from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torchvision import transforms import pickle import os import os.path import datetime import numpy as np from data.rotationloader import DataLoader, GenericDataset from utils.util import AverageMeter, accuracy from models.resnet import BasicBlock from tqdm import tqdm import shutil class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) if is_adapters: self.parallel_conv1 = nn.Conv2d(3, 64, kernel_size=1, stride=1, bias=False) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): if is_adapters: out = F.relu(self.bn1(self.conv1(x)+self.parallel_conv1(x))) else: out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def train(epoch, model, device, dataloader, optimizer, exp_lr_scheduler, criterion, args): loss_record = AverageMeter() acc_record = AverageMeter() exp_lr_scheduler.step() model.train() for batch_idx, (data, label) in enumerate(tqdm(dataloader(epoch))): data, label = data.to(device), label.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, label) # measure accuracy and record loss acc = accuracy(output, label) acc_record.update(acc[0].item(), data.size(0)) loss_record.update(loss.item(), data.size(0)) # compute gradient and do optimizer step optimizer.zero_grad() loss.backward() optimizer.step() print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg)) return loss_record def test(model, device, dataloader, args): acc_record = AverageMeter() model.eval() for batch_idx, (data, label) in enumerate(tqdm(dataloader())): data, label = data.to(device), label.to(device) output = model(data) # measure accuracy and record loss acc = accuracy(output, label) acc_record.update(acc[0].item(), data.size(0)) print('Test Acc: {:.4f}'.format(acc_record.avg)) return acc_record def main(): # Training settings parser = argparse.ArgumentParser(description='Rot_resNet') parser.add_argument('--batch_size', type=int, default=128, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--num_workers', type=int, default=4, help='number of data loading workers') parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--epochs', type=int, default=200, metavar='N', help='number of epochs to train (default: 200)') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--dataset_name', type=str, default='cifar10', help='options: cifar10, cifar100, svhn') parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/') parser.add_argument('--exp_root', type=str, default='./data/experiments/') parser.add_argument('--model_name', type=str, default='rotnet') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") torch.manual_seed(args.seed) runner_name = os.path.basename(__file__).split(".")[0] model_dir= os.path.join(args.exp_root, runner_name) if not os.path.exists(model_dir): os.makedirs(model_dir) args.model_dir = model_dir+'/'+'{}.pth'.format(args.model_name) dataset_train = GenericDataset( dataset_name=args.dataset_name, split='train', dataset_root=args.dataset_root ) dataset_test = GenericDataset( dataset_name=args.dataset_name, split='test', dataset_root=args.dataset_root ) dloader_train = DataLoader( dataset=dataset_train, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True) dloader_test = DataLoader( dataset=dataset_test, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) global is_adapters is_adapters = 0 model = ResNet(BasicBlock, [2,2,2,2], num_classes=4) model = model.to(device) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=5e-4, nesterov=True) exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[60, 120, 160, 200], gamma=0.2) criterion = nn.CrossEntropyLoss() best_acc = 0 for epoch in range(args.epochs +1): loss_record = train(epoch, model, device, dloader_train, optimizer, exp_lr_scheduler, criterion, args) acc_record = test(model, device, dloader_test, args) is_best = acc_record.avg > best_acc best_acc = max(acc_record.avg, best_acc) if is_best: torch.save(model.state_dict(), args.model_dir) if __name__ == '__main__': main() ```
{ "source": "JosephKJ/PyTorch-MAML-and-Reptile", "score": 3 }
#### File: JosephKJ/PyTorch-MAML-and-Reptile/main.py ```python import argparse import numpy as np import torch from torch import nn, autograd as ag import matplotlib.pyplot as plt from copy import deepcopy def experiment(run, plot=True): seed = 0 inner_step_size = 0.02 # stepsize in inner SGD inner_epochs = 1 # number of epochs of each inner SGD outer_stepsize_reptile = 0.1 # stepsize of outer optimization, i.e., meta-optimization outer_stepsize_maml = 0.01 n_iterations = 30000 # number of outer updates; each iteration we sample one task and update on it rng = np.random.RandomState(seed) torch.manual_seed(seed) # Define task distribution x_all = np.linspace(-5, 5, 50)[:, None] # All of the x points n_train = 10 # Size of training minibatches def gen_task(): "Generate classification problem" phase = rng.uniform(low=0, high=2 * np.pi) ampl = rng.uniform(0.1, 5) f_randomsine = lambda x: np.sin(x + phase) * ampl return f_randomsine # Define model. Reptile paper uses ReLU, but Tanh gives slightly better results model = nn.Sequential( nn.Linear(1, 64), nn.Tanh(), nn.Linear(64, 64), nn.Tanh(), nn.Linear(64, 1), ) def to_torch(x): return ag.Variable(torch.Tensor(x)) def train_on_batch(x, y): x = to_torch(x) y = to_torch(y) model.zero_grad() ypred = model(x) loss = (ypred - y).pow(2).mean() loss.backward() for param in model.parameters(): param.data -= inner_step_size * param.grad.data def predict(x): x = to_torch(x) return model(x).data.numpy() # Choose a fixed task and minibatch for visualization f_plot = gen_task() xtrain_plot = x_all[rng.choice(len(x_all), size=n_train)] # Training loop for iteration in range(n_iterations): weights_before = deepcopy(model.state_dict()) # Generate task f = gen_task() y_all = f(x_all) # Do SGD on this task inds = rng.permutation(len(x_all)) train_ind = inds[:-1 * n_train] val_ind = inds[-1 * n_train:] # Val contains 1/5th of the sine wave for _ in range(inner_epochs): for start in range(0, len(train_ind), n_train): mbinds = train_ind[start:start + n_train] train_on_batch(x_all[mbinds], y_all[mbinds]) if run == 'MAML': outer_step_size = outer_stepsize_maml * (1 - iteration / n_iterations) # linear schedule for start in range(0, len(val_ind), n_train): dpinds = val_ind[start:start + n_train] x = to_torch(x_all[dpinds]) y = to_torch(y_all[dpinds]) # Compute the grads model.zero_grad() y_pred = model(x) loss = (y_pred - y).pow(2).mean() loss.backward() # Reload the model model.load_state_dict(weights_before) # SGD on the params for param in model.parameters(): param.data -= outer_step_size * param.grad.data else: # Interpolate between current weights and trained weights from this task # I.e. (weights_before - weights_after) is the meta-gradient weights_after = model.state_dict() outerstepsize = outer_stepsize_reptile * (1 - iteration / n_iterations) # linear schedule model.load_state_dict({name: weights_before[name] + (weights_after[name] - weights_before[name]) * outerstepsize for name in weights_before}) # Periodically plot the results on a particular task and minibatch if plot and iteration == 0 or (iteration + 1) % 1000 == 0: plt.cla() f = f_plot weights_before = deepcopy(model.state_dict()) # save snapshot before evaluation plt.plot(x_all, predict(x_all), label="pred after 0", color=(0, 0, 1)) for inneriter in range(32): train_on_batch(xtrain_plot, f(xtrain_plot)) if (inneriter + 1) % 8 == 0: frac = (inneriter + 1) / 32 plt.plot(x_all, predict(x_all), label="pred after %i" % (inneriter + 1), color=(frac, 0, 1 - frac)) plt.plot(x_all, f(x_all), label="true", color=(0, 1, 0)) lossval = np.square(predict(x_all) - f(x_all)).mean() plt.plot(xtrain_plot, f(xtrain_plot), "x", label="train", color="k") plt.ylim(-4, 4) plt.legend(loc="lower right") plt.pause(0.01) model.load_state_dict(weights_before) # restore from snapshot print(f"-----------------------------") print(f"iteration {iteration + 1}") print(f"loss on plotted curve {lossval:.3f}") # would be better to average loss over a set of examples, but this is optimized for brevity def main(): parser = argparse.ArgumentParser(description='MAML and Reptile Sine wave regression example.') parser.add_argument('--run', dest='run', default='Reptile') # MAML, Reptile args = parser.parse_args() experiment(args.run) if __name__ == '__main__': main() ```
{ "source": "JosephKJ/RegionProposer", "score": 3 }
#### File: RegionProposer/lib/_init_path.py ```python import os.path as osp import sys def add_path(path): if path not in sys.path: sys.path.insert(0, path) this_dir = osp.dirname(__file__) # Add caffe to PYTHONPATH caffe_path = osp.join('/home/joseph/workspace/SDD-RFCN-python/caffe/python') # caffe_path = osp.join(this_dir, '..', '..', 'caffe', 'python') add_path(caffe_path) ```
{ "source": "JosephKJ/SDD-RFCN-python", "score": 3 }
#### File: lib/objectness/utils.py ```python import scipy import os import cv2 import numpy as np from map import HeatMap from sklearn.metrics import jaccard_similarity_score from timer import Timer from gc_executor import GC_executor def generate_objectness_map(heatMapObj, image, hr_method='interpolation', use_gradcam=True): """ Generates the objectness confidence score, for a given image. :param heatMapObj: An object of the heatmap Class :param image: The image which should be processed :param hr_method: optional, to so SR or not. :return: binary_map: which contains the objectness info; filtered_image: which is the map applied to the image. """ # 1. Create a Higher Resolution Image img_gc = None img = scipy.misc.imresize(image, 8.0, interp='bicubic') if hr_method == 'super_resolution': # TODO: Super Resolution pass # 2. Get objectness timer = Timer() timer.tic() heat_map = heatMapObj.get_map(img) # Adding for GC if use_gradcam: heat_map_for_gc = heat_map.data * ~heat_map.mask gc = GC_executor() heat_map_for_gc = scipy.misc.imresize(heat_map_for_gc, image.shape[0:2], interp='bicubic') # img_gc, binary_map = gc.grab_cut_with_patch(np.copy(image), np.copy(heat_map_for_gc)) img_gc, binary_map = gc.grab_cut_without_patch(np.copy(image)) negative_binary_map = 1 - binary_map else: timer.toc() # print 'Heatmap genetation took {:.3f}s '.format(timer.total_time) # print timer.total_time min_pixel_intensity = heat_map.min() binary_map = np.where(heat_map > min_pixel_intensity, 1, 0) negative_binary_map = np.where(heat_map > min_pixel_intensity, 0, 1) # Trim off any extra rows in the map map_h, map_w = binary_map.shape img_h, img_w, _ = image.shape if map_h > img_h: diff = map_h - img_h binary_map = np.delete(binary_map, diff, axis=0) # remove 'diff' rows negative_binary_map = np.delete(negative_binary_map, diff, axis=0) # remove 'diff' rows if map_w > img_w: diff = map_w - img_w binary_map = np.delete(binary_map, diff, axis=1) # remove 'diff' columns negative_binary_map = np.delete(negative_binary_map, diff, axis=1) # remove 'diff' columns # Remove the border in the detections border = 2 temp = np.zeros_like(binary_map) temp[border:-border, border:-border] = binary_map[border:-border, border:-border] binary_map = temp temp = np.ones_like(negative_binary_map) temp[border:-border, border:-border] = negative_binary_map[border:-border, border:-border] negative_binary_map = temp # Adding for GC ends # Calculate the IoU iou = findIoU(image, binary_map) # Calculate objectness score # It is the percentage of pixels that are not black h, w = binary_map.shape obj_score = np.count_nonzero(binary_map) / (w * h * 1.) # Expand the map to three channels three_channel_map = np.stack((binary_map, binary_map, binary_map), axis=2) # Applying map on the image filtered_image = image * three_channel_map filtered_image = filtered_image.astype(np.uint8) return binary_map, negative_binary_map, filtered_image, iou, obj_score, img_gc def findIoU(image, preditiction): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Otsu's Threshholding ret, thresh = cv2.threshold(gray, 0, 1, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # Noise removal # kernel = np.ones((2, 2), np.uint8) # opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) gt = thresh.flatten() mask = preditiction.flatten() iou = jaccard_similarity_score(gt, mask) return iou def semantic_segment_image(heatMapObj, image, color='red'): # Getting the objectness binary_map, negative_binary_map, filtered_image, iou, obj_score, img_gc = generate_objectness_map(heatMapObj, image) # Calculating the background three_channel_map = np.stack((negative_binary_map, negative_binary_map, negative_binary_map), axis=2) background = (image * three_channel_map).astype(np.uint8) # Segmentation Foreground r,g,b = get_rgb_from_color(color) foreground = np.stack((binary_map*r, binary_map*g, binary_map*b), axis=2).astype(np.uint8) # Combined Image full_image = background + foreground return full_image, iou, obj_score def get_rgb_from_color(color): colors = {'red': (255, 83, 26), 'green': (26, 255, 83), 'blue': (26, 140, 255), 'black': (77, 0, 77), 'white': (230, 230, 230), 'violet': (255, 26, 255)} return colors[color]; if __name__ == '__main__': print('Inside Main.') hm = HeatMap() image_path = os.path.join( '/home/cs17mtech01001/workspace/SDD-RFCN-python/data/detections/bookstore_video0_9500_pedestrian_2.png') img = cv2.imread(image_path, cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) semantic_segment_image(hm, img, 'red') ```
{ "source": "josephklaw/99-CapstoneProject-201920", "score": 3 }
#### File: 99-CapstoneProject-201920/src/m1_extra.py ```python import shared_gui_delegate_on_robot import time import rosebot import ev3dev.ev3 as ev3 #Sprint 2 Functions def increasing_rate_of_beep(rate_of_beep,rate_of_beep_increase,robot): """:type robot: rosebot.RoseBot""" robot.drive_system.go(20,20) while True: distance = robot.sensor_system.ir_proximity_sensor.get_distance_in_inches() # # time.sleep(abs(int(og_rate_of_beep) - (int(rate_of_beep_increase)/int(distance)))) robot.sound_system.beeper.beep().wait() if int(distance) <= 20: for k in range(20): if int(distance) == k: delay = (k * int(rate_of_beep_increase) + int(rate_of_beep))*(1/100) time.sleep(delay) else: time.sleep(20) if distance <= 1: break robot.drive_system.stop() robot.arm_and_claw.raise_arm() def spin_to_find_object(direction,speed,rate_of_beep,rate_of_beep_increase,robot): """:type robot: rosebot.RoseBot""" pixy = ev3.Sensor(driver_name="pixy-lego") pixy.mode = "SIG1" if direction == "CCW": robot.drive_system.spin_counterclockwise_until_sees_object(int(speed),pixy.value(3)*pixy.value(4)) if direction == "CW": robot.drive_system.spin_clockwise_until_sees_object(int(speed),pixy.value(3)*pixy.value(4)) increasing_rate_of_beep(rate_of_beep,rate_of_beep_increase,robot) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Sprint 3 Functions # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def spin_to_find_package(speed,robot): """:type robot: rosebot.RoseBot""" pixy = ev3.Sensor(driver_name="pixy-lego") pixy.mode = "SIG1" robot.drive_system.spin_clockwise_until_sees_object(20, pixy.value(3) * pixy.value(4)) robot.drive_system.stop() robot.drive_system.go(speed, speed) while True: if robot.sensor_system.ir_proximity_sensor.get_distance_in_inches() <=0.5: break robot.drive_system.stop() robot.arm_and_claw.raise_arm() def find_road(robot): """:type robot: rosebot.RoseBot""" robot.drive_system.go(-30,30) while True: if robot.sensor_system.color_sensor.get_color() == 1: break time.sleep(0.01) robot.drive_system.stop() def find_house(color,robot): """:type robot: rosebot.RoseBot""" robot.drive_system.go(50,50) while True: #If the color sensor detects the color corresponding to the house if robot.sensor_system.color_sensor.get_color() == int(color): # If the color is green, the robot turns left if int(color) == 3: robot.drive_system.stop() robot.drive_system.go(0, 50) break # If the color is yellow, the robot turns right if int(color) == 4: robot.drive_system.stop() robot.drive_system.go(50,0) break # If the color is red, the robot turns left if int(color) == 5: robot.drive_system.stop() robot.drive_system.go(0, 50) break # If the color is blue,the robot turns right if int(color) == 2: robot.drive_system.stop() robot.drive_system.go(50,0) break #Allows for a 90 degree turn time.sleep(2) robot.drive_system.stop() def deliver_package(greeting,goodbye,robot): """:type robot: rosebot.RoseBot""" robot.drive_system.go(50, 50) time.sleep(2.3) robot.drive_system.stop() robot.sound_system.speech_maker(greeting).wait robot.arm_and_claw.lower_arm() robot.sound_system.speech_maker(goodbye).wait robot.drive_system.go(-50,-50) def full_delivery(color,greeting,goodbye,robot): find_road(robot) find_house(color,robot) deliver_package(greeting,goodbye,robot) def theft(robot): """:type robot: rosebot.RoseBot""" robot.drive_system.go(50,50) while True: if robot.sensor_system.ir_proximity_sensor.get_distance_in_inches() <=0.5: break robot.drive_system.stop() robot.arm_and_claw.raise_arm() robot.drive_system.go(-50,50) time.sleep(2) robot.drive_system.stop() robot.drive_system.go(-50,50) #Allows for a turn time.sleep(2.3) def getaway(laugh,robot): robot.drive_system.go(100, 100) robot.sound_system.speech_maker(laugh).wait time.sleep(5) robot.drive_system.stop() def steal_package(color,laugh,robot): find_house(color,robot) theft(robot) getaway(laugh,robot) ```
{ "source": "josephko91/2d-path-finder", "score": 3 }
#### File: josephko91/2d-path-finder/Node.py ```python import numpy as np class Node: def __init__(self, xy, h): self.coord = xy # coordinate of node self.height = h # height of node self.cost = 0 # cumulated cost of node self.parent = 0 # parent of node self.id = 0 # unique ID of node self.heuristic = 0 # heuristic cost of node self.state_id = np.array2string(xy, precision=0, separator=',') ``` #### File: josephko91/2d-path-finder/search_algorithms.py ```python from collections import deque from Node import Node from utility import find_height, bound_check, height_check, simple_loop_check, loop_check, get_path, calc_unit_path_cost, sort_by_path_cost, find_mud_cost, calc_heuristic, astar_sort import numpy as np import time # Breadth First Search (BFS) def bfs(grid, start, target, max_height_delta): """ This function performs BFS on input data """ # create start node w = grid.shape[1] # width of grid h = grid.shape[0] # height of grid neighbor_matrix = np.array([[1, -1], [1, 0], [1, 1], [0, -1], [0, 1], [-1, -1], [-1, 0], [-1, 1]]) start_height = find_height(grid, start) start_node = Node(start, start_height) node_id = 1 # initialize unique node id start_node.id = node_id # add start_node to queue open_queue = deque() open_queue.append(start_node) closed = {} # initialize closed dictionary # loop until queue empty or target found loop_count = 1 # for testing start_loop_time = time.time() #while True: while loop_count < 1001: #start_loop_time = time.time() if len(open_queue) == 0: # return fail if queue is empty result = 'FAIL' print('result: ', result) # test print print('cost: ', 2147483647) # for testing return result active_node = open_queue.popleft() #print('ACTIVE NODE: ', active_node.coord) #FOR TESTING if np.array_equal(active_node.coord, target): # return path when target is reached result = get_path(active_node, closed) # calls function to print full solution path print('result: ', result) # test print print('cost: ', len(result) - 1) return result for j in range(8): # loop through all 8 potential neighbors neighbor_coord = active_node.coord + neighbor_matrix[j] if bound_check(neighbor_coord, w, h): # boundary check neighbor_height = find_height(grid, neighbor_coord) if height_check(neighbor_height, active_node.height, max_height_delta): # height check node_id += 1 neighbor = Node(neighbor_coord, neighbor_height) neighbor.id = node_id neighbor.parent = active_node.id open_queue, closed = loop_check(neighbor, closed, open_queue) # performs loop check and modifies open/closed as needed closed[active_node.id] = active_node # add node to closed dictionary #print('closed coord: ', closed[active_node.id].coord) #FOR TESTING end_loop_time = time.time() # if loop_count % 1000 == 0: # for testing # print('still looping...just passed loop #', loop_count) # print('time spent in loop #', loop_count, ': ', end_loop_time - start_loop_time, 'seconds') # loop_count += 1 if loop_count % 10 == 0: # for testing print('======================= loop #', loop_count, "=======================") print('Popped node ID: ', active_node.id) print('Popped node coord: ', active_node.coord) print('Parent of popped node: ', active_node.parent) print('elapsed time: ', end_loop_time - start_loop_time, 'seconds') loop_count += 1 # Uniform Cost Search (UCS) def ucs(grid, start, target, max_height_delta): """ This function performs UCS on input data """ # create start node w = grid.shape[1] # width of grid h = grid.shape[0] # height of grid neighbor_matrix = np.array([[1, -1], [1, 0], [1, 1], [0, -1], [0, 1], [-1, -1], [-1, 0], [-1, 1]]) start_height = find_height(grid, start) start_node = Node(start, start_height) node_id = 1 # initialize unique node id start_node.id = node_id # add start_node to queue open_queue = deque() open_queue.append(start_node) closed = {} # initialize closed dictionary # loop until queue empty or target found loop_count = 1 # for testing start_loop_time = time.time() #while True: while loop_count < 1001: #start_loop_time = time.time() if len(open_queue) == 0: # return fail if queue is empty result = 'FAIL' print('result: ', result) # test print print('cost: ', 2147483647) # for testing return result active_node = open_queue.popleft() #print('ACTIVE NODE: ', active_node.coord) #FOR TESTING if np.array_equal(active_node.coord, target): # return path when target is reached result = get_path(active_node, closed) # calls function to print full solution path print('result: ', result) # test print print('cost: ', active_node.cost) # for testing return result for j in range(8): # loop through all 8 potential neighbors neighbor_coord = active_node.coord + neighbor_matrix[j] unit_path_cost = calc_unit_path_cost(neighbor_matrix[j]) if bound_check(neighbor_coord, w, h): # boundary check neighbor_height = find_height(grid, neighbor_coord) if height_check(neighbor_height, active_node.height, max_height_delta): # height check node_id += 1 neighbor = Node(neighbor_coord, neighbor_height) neighbor.id = node_id neighbor.parent = active_node.id neighbor.cost = active_node.cost + unit_path_cost # cumulative path cost open_queue, closed = loop_check(neighbor, closed, open_queue) # performs loop check and modifies open/closed as needed closed[active_node.id] = active_node # add node to closed dictionary open_queue = sort_by_path_cost(open_queue) # sort open queue #print('closed coord: ', closed[active_node.id].coord) #FOR TESTING end_loop_time = time.time() if loop_count % 10 == 0: # for testing print('======================= loop #', loop_count, "=======================") print('Popped node ID: ', active_node.id) print('Popped node coord: ', active_node.coord) print('Parent of popped node: ', active_node.parent) print('elapsed time: ', end_loop_time - start_loop_time, 'seconds') loop_count += 1 # A* search (astar) def astar(grid, start, target, max_height_delta): """ This function performs A* on input data """ # create start node w = grid.shape[1] # width of grid h = grid.shape[0] # height of grid neighbor_matrix = np.array([[1, -1], [1, 0], [1, 1], [0, -1], [0, 1], [-1, -1], [-1, 0], [-1, 1]]) start_height = find_height(grid, start) start_node = Node(start, start_height) node_id = 1 # initialize unique node id start_node.id = node_id # add start_node to queue open_queue = deque() open_queue.append(start_node) closed = {} # initialize closed dictionary loop_count = 1 # for testing # loop until queue empty or target found start_loop_time = time.time() #while True: while loop_count < 1001: #for i in range(2): # testing #start_loop_time = time.time() if len(open_queue) == 0: # return fail if queue is empty result = 'FAIL' print('result: ', result) # test print print('cost: ', 2147483647) # for testing return result active_node = open_queue.popleft() #print('ACTIVE NODE: ', active_node.coord) #FOR TESTING if np.array_equal(active_node.coord, target): # return path when target is reached result = get_path(active_node, closed) # calls function to print full solution path print('result: ', result) # test print print('cost: ', active_node.cost) # for testing return result for j in range(8): # loop through all 8 potential neighbors neighbor_coord = active_node.coord + neighbor_matrix[j] unit_path_cost = calc_unit_path_cost(neighbor_matrix[j]) if bound_check(neighbor_coord, w, h): # boundary check neighbor_height = find_height(grid, neighbor_coord) mud_cost = find_mud_cost(grid, neighbor_coord, neighbor_height) #print('mud cost: ', neighbor_coord, mud_cost) #testing if height_check(neighbor_height, active_node.height, max_height_delta): # height check height_change = abs(neighbor_height - active_node.height) node_id += 1 neighbor = Node(neighbor_coord, neighbor_height) neighbor.id = node_id neighbor.parent = active_node.id neighbor.cost = active_node.cost + unit_path_cost + mud_cost + height_change # cumulative path cost neighbor.heuristic = calc_heuristic(neighbor_coord, target) open_queue, closed = loop_check(neighbor, closed, open_queue) # performs loop check and modifies open/closed as needed closed[active_node.id] = active_node # add node to closed dictionary open_queue = astar_sort(open_queue) # sort open queue end_loop_time = time.time() # if loop_count % 1000 == 0: # for testing # print('still looping...just passed loop #', loop_count) # print('time spent in loop #', loop_count, ': ', end_loop_time - start_loop_time, 'seconds') # loop_count += 1 if loop_count % 10 == 0: # for testing print('======================= loop #', loop_count, "=======================") print('Popped node ID: ', active_node.id) print('Popped node coord: ', active_node.coord) print('Parent of popped node: ', active_node.parent) print('elapsed time: ', end_loop_time - start_loop_time, 'seconds') loop_count += 1 #print('closed coord: ', closed[active_node.id].coord) #FOR TESTING ```
{ "source": "josephko91/checkers-ai", "score": 4 }
#### File: josephko91/checkers-ai/algorithm.py ```python from board import Board import copy import time import random def minimax(board, depth, max_player): """ The basic minimax algorithm with no modifications input: board (Board), depth (int), max_player (Bool) output: tuple of best move sequence e.g. ('E', (1,2), (2,3)) """ minimax.count += 1 # If you reached a terminal node or game is over if depth == 0 or board.game_over(): return board.evaluate(max_player), () if max_player: # maximizing player value = float('-inf') for move, child_board in board.possible_moves().items(): child_board = copy.deepcopy(child_board) minimax_value = minimax(child_board, depth - 1, False)[0] if minimax_value > value: value = minimax_value best_move = move return value, best_move else: # minimizing player value = float('inf') board.active_player = not board.active_player # switch the player for move, child_board in board.possible_moves().items(): child_board = copy.deepcopy(child_board) child_board.active_player = not child_board.active_player value = min(value, minimax(child_board, depth - 1, True)[0]) return value, () # def minimax_alpha_beta(board, depth, alpha, beta, max_player): # """ # Minimax with alpha-beta pruning # input: board (Board), depth (int), max_player (Bool) # output: tuple of best move sequence e.g. ('E', (1,2), (2,3)) # """ # minimax_alpha_beta.count += 1 # # If you reached a terminal node or game is over # if depth == 0 or board.game_over(): # return board.evaluate(max_player), () # if max_player: # maximizing player # value = float('-inf') # for move, child_board in board.possible_moves().items(): # child_board = copy.deepcopy(child_board) # child_board.active_player = not child_board.active_player # minimax_value = minimax_alpha_beta(child_board, depth - 1, alpha, beta, False)[0] # if minimax_value > value: # value = minimax_value # best_move = move # # in case of equal value, update based on random binary generator # if minimax_value == value: # random_num = random.randint(1, 101) # if random_num > 50: # #if bool(random.getrandbits(1)): # random T or F # best_move = move # update best move with random probability # alpha = max(alpha, value) # if alpha > beta: # break # elif alpha == beta: # random_num = random.randint(1, 101) # if random_num > 50: # #if bool(random.getrandbits(1)): # random T or F # break # return value, best_move, child_board # else: # minimizing player # value = float('inf') # #board_copy = copy.deepcopy(board) # #board.active_player = not board.active_player # switch the player # for move, child_board in board.possible_moves().items(): # child_board = copy.deepcopy(child_board) # child_board.active_player = not child_board.active_player # value = min(value, minimax_alpha_beta(child_board, depth - 1, alpha, beta, True)[0]) # beta = min(beta, value) # if beta < alpha: # break # elif beta == alpha: # random_num = random.randint(1, 101) # if random_num > 50: # #if bool(random.getrandbits(1)): # random T or F # break # return value, () def minimax_alpha_beta(board, color, root, depth, alpha, beta, max_player, moves_list, board_list): """ Minimax with alpha-beta pruning input: board (Board), depth (int), max_player (Bool) output: tuple of best move sequence e.g. ('E', (1,2), (2,3)) """ minimax_alpha_beta.count += 1 # If you reached a terminal node or game is over if depth == 0 or board.game_over(): return board.evaluate(color), () if max_player: # maximizing player value = float('-inf') for move, max_child in board.possible_moves().items(): max_child_copy = copy.deepcopy(max_child) max_child_copy.active_player = not max_child_copy.active_player minimax_value = minimax_alpha_beta(max_child_copy, color, root, depth - 1, alpha, beta, False, moves_list, board_list)[0] if minimax_value >= value: value = minimax_value if depth == root: moves_list.append(move) board_list.append(max_child) # # TESTING # if move[0] == "J": # JUMP heuristic # value += 10*(len(move)-2) alpha = max(alpha, value) if alpha >= beta: break # pick best move if depth == root: if len(moves_list) == 0: return value, None, None else: random_num = random.randint(0,len(moves_list)-1) #random_num = 0 best_move = moves_list[random_num] best_board = board_list[random_num] return value, best_move, best_board else: return value, () else: # minimizing player value = float('inf') #board_copy = copy.deepcopy(board) #board.active_player = not board.active_player # switch the player for move, min_child in board.possible_moves().items(): min_child_copy = copy.deepcopy(min_child) min_child_copy.active_player = not min_child_copy.active_player value = min(value, minimax_alpha_beta(min_child_copy, color, root, depth - 1, alpha, beta, True, moves_list, board_list)[0]) beta = min(beta, value) # # TESTING # if move[0] == "J": # JUMP heuristic # value -= 5*(len(move)-2) if beta <= alpha: break return value, () def minimax_alpha_beta_final(static_board, board, color, root, depth, alpha, beta, max_player, best_move, best_board): """ Minimax with alpha-beta pruning input: board (Board), depth (int), max_player (Bool) output: tuple of best move sequence e.g. ('E', (1,2), (2,3)) """ minimax_alpha_beta_final.count += 1 # If you reached a terminal node or game is over if depth == 0 or board.game_over(): return board.evaluate(color, static_board), None, None # maximizing player if max_player: value = float('-inf') moves_dict = board.possible_moves() for move, max_child in moves_dict.items(): max_child_copy = copy.deepcopy(max_child) max_child_copy.active_player = not max_child_copy.active_player minimax_value = minimax_alpha_beta_final(static_board, max_child_copy, color, root, depth - 1, alpha, beta, False, best_move, best_board)[0] if minimax_value > value: value = minimax_value best_move = move best_board = max_child if depth == root and minimax_value == value: if bool(random.getrandbits(1)): # random T/F value = minimax_value best_move = move best_board = max_child alpha = max(alpha, value) if alpha >= beta: break #return float('inf'), None, None return value, best_move, best_board # minimizing player else: value = float('inf') moves_dict = board.possible_moves() for move, min_child in moves_dict.items(): min_child_copy = copy.deepcopy(min_child) min_child_copy.active_player = not min_child_copy.active_player value = min(value, minimax_alpha_beta_final(static_board, min_child_copy, color, root, depth - 1, alpha, beta, True, best_move, best_board)[0]) beta = min(beta, value) if beta <= alpha: break #return float('-inf'), None, None return value, None, None def minimax_alpha_beta_rand(static_board, board, color, root, depth, alpha, beta, max_player, best_move, best_board): """ Minimax with alpha-beta pruning input: board (Board), depth (int), max_player (Bool) output: tuple of best move sequence e.g. ('E', (1,2), (2,3)) """ minimax_alpha_beta_rand.count += 1 # If you reached a terminal node or game is over if depth == 0 or board.game_over(): return board.evaluate(color, static_board), None, None # maximizing player if max_player: value = float('-inf') for move, max_child in board.possible_moves().items(): max_child_copy = copy.deepcopy(max_child) max_child_copy.active_player = not max_child_copy.active_player minimax_value = minimax_alpha_beta_rand(static_board, max_child_copy, color, root, depth - 1, alpha, beta, False, best_move, best_board)[0] if minimax_value > value: value = minimax_value best_move = move best_board = max_child if depth == root and minimax_value == value: if bool(random.getrandbits(1)): # random T/F value = minimax_value best_move = move best_board = max_child alpha = max(alpha, value) if alpha >= beta: break return value, best_move, best_board # minimizing player else: value = float('inf') #board_copy = copy.deepcopy(board) #board.active_player = not board.active_player # switch the player for move, min_child in board.possible_moves().items(): min_child_copy = copy.deepcopy(min_child) min_child_copy.active_player = not min_child_copy.active_player value = min(value, minimax_alpha_beta_rand(static_board, min_child_copy, color, root, depth - 1, alpha, beta, True, best_move, best_board)[0]) beta = min(beta, value) if beta <= alpha: break return value, None, None # ================ UNFINISHED AND UNUSED CODE ====================== # # def iterative_deepening(board, max_player, time_limit): # """ # Minimax with alpha-beta pruning and iterative deepening # input: board (Board), depth (int), max_player (Bool) # output: tuple of best move sequence e.g. ('E', (1,2), (2,3)) # """ # minimax_alpha_beta.count = 0 # start_time = time.time() # depth = 0 # condition = True # result_matrix = [] # hash_table = {} # while condition == True: # try: # result = minimax_alpha_beta(board, depth, float("-inf"), float("inf"), True, start_time, time_limit, hash_table) # except: # break # depth += 1 # result_matrix[depth] = result # return result_matrix[len(result_matrix)], minimax_alpha_beta.count, depth # return last available result # # define minimax_alpha_beta here # def minimax_alpha_beta(board, depth, alpha, beta, max_player, start_time, time_limit, hash_table): # ### throw timeout exception ### # if (time_limit - (current_time - start_time)) < 0.01*time_limit or (current_time - start_time) > time_limit: # raise Exception("timeout!") # ### retrieve stored bounds from transposition table ### # if hash(board) in hash_table: # minimax_alpha_beta.count += 1 # keep count of all recursive function calls (i.e. # of nodes) # # If you reached a terminal node or game is over # if depth == 0 or board.game_over(): # return board.evaluate(max_player), () # if max_player: # maximizing player # value = float('-inf') # for move, child_board in board.possible_moves().items(): # child_board = copy.deepcopy(child_board) # minimax_value = minimax_alpha_beta(child_board, depth - 1, alpha, beta, False, start_time, time_limit, hash_table)[0] # if minimax_value > value: # value = minimax_value # best_move = move # alpha = max(alpha, value) # if alpha >= beta: # break # return value, best_move # else: # minimizing player # value = float('inf') # board.active_player = not board.active_player # switch the player # for move, child_board in board.possible_moves().items(): # child_board = copy.deepcopy(child_board) # child_board.active_player = not child_board.active_player # value = min(value, minimax_alpha_beta(child_board, depth - 1, alpha, beta, True, start_time, time_limit, hash_table)[0]) # beta = min(beta, value) # if beta <= alpha: # break # return value, () # ### Store bounds in transposition table ### # # fail low result -> upper bound # if value <= alpha: # if hash(board) in hash_table: # updated_entry = {"upper" = value} # hash_table[hash(board)].update(updated_entry) # update upper bound # else: # create new entry # hash_table[hash(board)] = {"upper" = value, "lower" = float("-inf")} # # exact minimax value # if value > alpha and value < beta: # hash_table[hash(board)] = {"upper" = value, "lower" = value} # overwrite # # fail high result -> lower bound # if value >= beta: # if hash(board) in hash_table: # updated_entry = {"lower" = value} # hash_table[hash(board)].update(updated_entry) # update upper bound # else: # create new entry # hash_table[hash(board)] = {"upper" = float("inf"), "lower" = value} ``` #### File: josephko91/checkers-ai/board.py ```python import copy import itertools from collections import deque from utility import create_jumps_sequences, create_jumps_dict from statistics import mean from math import sqrt, floor, ceil import random class Board: def __init__(self, board_list, is_black): self.positions_black = {} # {(row, col):pawn_or_king} self.positions_white = {} self.positions_empty = set() self.num_pieces_black = 0 self.num_pieces_white = 0 self.num_kings_black = 0 self.num_kings_white = 0 self.nrows = len(board_list) self.ncols = len(board_list[0]) self.active_player = is_black # iterate through board and fill out attributes for i in range(self.nrows): for j in range((i+1)%2, self.ncols + (i+1)%2, 2): if board_list[i][j] == ".": # empty square self.positions_empty.add((i, j)) elif board_list[i][j] == "b": # black pawn self.positions_black[(i, j)] = "pawn" self.num_pieces_black += 1 elif board_list[i][j] == "B": # black king self.positions_black[(i, j)] = "king" self.num_kings_black += 1 self.num_pieces_black += 1 elif board_list[i][j] == "w": # white pawn self.positions_white[(i, j)] = "pawn" self.num_pieces_white += 1 elif board_list[i][j] == "W": # white king self.positions_white[(i, j)] = "king" self.num_kings_white += 1 self.num_pieces_white += 1 # ============================== UNUSED CODE ============================== # # def __eq__(self, other): # if len(self.positions_black) != len(other.positions_black) or len(self.positions_white) != len(other.positions_white): # return False # else: # return self.positions_black == other.positions_black and self.positions_white == other.positions_white # def __hash__(self): # hash_value = "" # black_positions = self.positions_black.keys() # sorted_black_positions = sorted(black_positions, key = lambda k: (k[0], k[1])) # white_positions = self.positions_white.keys() # sorted_white_positions = sorted(white_positions, key = lambda k: (k[0], k[1])) # for key in sorted_black_positions: # coord = str(key[0]) + str(key[1]) # if self.positions_black[key] == "pawn": # letter = str(ord("b")) # else: # letter = str(ord("B")) # hash_value = hash_value + coord + letter # for key in sorted_white_positions: # coord = str(key[0]) + str(key[1]) # if self.positions_white[key] == "pawn": # letter = str(ord("w")) # else: # letter = str(ord("W")) # hash_value = hash_value + coord + letter # if self.active_player == True: # color_switch = 1 # else: # color_switch = 0 # hash_value = hash_value + str(color_switch) # return int(hash_value) # ==================================================================================== # def change_to_king(self, new_position): """ Change pawn to a king """ if self.active_player: # active player is BLACK self.positions_black[new_position] = "king" self.num_kings_black += 1 else: # active player is WHITE self.positions_white[new_position] = "king" self.num_kings_white += 1 def simple_move(self, old_position, new_position): """ Move a piece from one coordinate to another """ self.positions_empty.add(old_position) # add an empty space where old position was self.positions_empty.remove(new_position) # remove new position from empty if self.active_player: # active player is BLACK piece_type = self.positions_black[old_position] del self.positions_black[old_position] # remove old entry from dictionary self.positions_black[new_position] = piece_type # add new position to dictionary # if land on last row, change to kind if piece_type == "pawn" and new_position[0] == 7: self.change_to_king(new_position) else: # active player is WHITE piece_type = self.positions_white[old_position] del self.positions_white[old_position] # remove old entry from dictionary self.positions_white[new_position] = piece_type # add new position to dictionary # if land on last row, change to kind if piece_type == "pawn" and new_position[0] == 0: self.change_to_king(new_position) def jump_move(self, old_position, new_position): """ Jump active piece and remove the jumped piece """ jumped_position = (int((old_position[0]+new_position[0])/2), int((old_position[1]+new_position[1])/2)) self.positions_empty.add(old_position) # add an empty space where old position was self.positions_empty.add(jumped_position) # add an empty space where jumped piece was self.positions_empty.remove(new_position) # remove new position from empty if self.active_player: # active player is BLACK # exit if there is a failed jump if jumped_position not in self.positions_white: return "fail" piece_type = self.positions_black[old_position] del self.positions_black[old_position] # remove old entry from dictionary self.positions_black[new_position] = piece_type # add new position to dictionary if self.positions_white[jumped_position] == "king": self.num_pieces_white -= 1 self.num_kings_white -= 1 else: self.num_pieces_white -= 1 del self.positions_white[jumped_position] # remove jumped opp piece # if land on last row, change to kind if piece_type == "pawn" and new_position[0] == 7: self.change_to_king(new_position) else: # active player is WHITE # exit if there is a failed jump if jumped_position not in self.positions_black: return "fail" piece_type = self.positions_white[old_position] del self.positions_white[old_position] # remove old entry from dictionary self.positions_white[new_position] = piece_type # add new position to dictionary if self.positions_black[jumped_position] == "king": self.num_pieces_black -= 1 self.num_kings_black -= 1 else: self.num_pieces_black -= 1 del self.positions_black[jumped_position] # remove jumped opp piece # if land on last row, change to kind if piece_type == "pawn" and new_position[0] == 0: self.change_to_king(new_position) def evaluate(self, color, static_board): """ Evaluation heuristic function of the board - most recent moves were made by opposite of self.active_player """ if color: # active player is BLACK # value = 0 # initialize # # if player has won # if self.num_pieces_white == 0 and self.num_pieces_black > 0: # return 1000000000 # elif self.num_pieces_black == 0 and self.num_pieces_white > 0: # return -1000000000 # else: # if player has not won yet # num_in_king_row = 0 # num_in_middle_center = 0 # num_in_middle_sides = 0 # # iterate through pieces on board # n = 0 # sum_x = 0 # sum_y = 0 # for position in self.positions_black: # # calculations for mean # n += 1 # sum_x += position[0] # sum_y += position[1] # # assign value to pieces # if self.positions_black[position] == "pawn": # value += 6000 # else: # value += 9000 # # count number of pieces in king row (i.e. home row) # if position[0] == 0: # num_in_king_row += 1 # # count board positioning # if position[0] > 2 and position[0] < 5: # middle two rows # if position[1] > 1 and position[1] < 6: # num_in_middle_center += 1 # else: # num_in_middle_sides += 1 # # calculate mean # mean_x = sum_x/n # mean_y = sum_y/n # # calculate RMS # running_sum_x = 0 # running_sum_y = 0 # for position in self.positions_black: # running_sum_x += (position[0] - mean_x)**2 # running_sum_y += (position[1] - mean_y)**2 # rms = ((running_sum_x + running_sum_y)/n)**(1/2) # if rms == 0: # rms_value = 1 # else: # rms_value = ceil(1/rms) # # early to mid game # if static_board.num_pieces_black > 10 and static_board.num_pieces_white > 10: # value += (2*num_in_middle_center + num_in_middle_sides + num_in_king_row)*100 + (1/rms_value)*20 # else: # later game # value += 10*((static_board.num_pieces_white - self.num_pieces_white) - (static_board.num_pieces_black - self.num_pieces_black)) + (1/rms_value)*10 # # add random value for last digit of value # #value += random.randint(0, 9) # return value if self.num_pieces_white == 0 and self.num_pieces_black > 0: return 1000000000 elif self.num_pieces_black == 0 and self.num_pieces_white > 0: return -1000000000 elif self.num_pieces_black > 8 and self.num_pieces_white > 8: num_in_king_row = 0 num_in_center = 0 for position in self.positions_black: # heuristic for king row pawns if self.positions_black[position] == "pawn": if position[0] == 0: num_in_king_row += 1 # heuristic for being in center of board if position[1] > 1 and position[1] < 6: num_in_center += 1 if static_board.num_pieces_black > 10: return 10*(self.num_pieces_black - self.num_kings_black) + 15*self.num_kings_black + 2*num_in_king_row else: return 10*(self.num_pieces_black - self.num_kings_black) + 15*self.num_kings_black + num_in_king_row else: if static_board.num_pieces_black >= static_board.num_pieces_white: num_lost_black = static_board.num_pieces_black - self.num_pieces_black num_lost_white = static_board.num_pieces_white - self.num_pieces_white if num_lost_black <= num_lost_white: trades = min(num_lost_white, num_lost_black) + 1 return 10*(self.num_pieces_black - self.num_kings_black) + 15*self.num_kings_black + 10*trades else: return 10*(self.num_pieces_black - self.num_kings_black) + 15*self.num_kings_black else: return 10*(self.num_pieces_black - self.num_kings_black) + 15*self.num_kings_black #return 10*self.num_pieces_black #return 20*(self.num_pieces_black-self.num_kings_black) + 30*self.num_kings_black + 10*(self.num_pieces_black-self.num_pieces_white) #return 100*(self.num_pieces_black - self.num_kings_black) + 150*(self.num_kings_black) + 10*(self.num_pieces_black - self.num_pieces_white) # if self.num_pieces_black < 10: # #========================= hard-coded assignment based on location ======================# # piece_value = {(0,1):4, (0,3):4, (0,5):4, (0,7):4, # (1,0):4, (1,2):3, (1,4):3, (1,6):3, # (2,1):3, (2,3):2, (2,5):2, (2,7):4, # (3,0):4, (3,2):2, (3,4):1, (3,6):3, # (4,1):3, (4,3):1, (4,5):2, (4,7):4, # (5,0):4, (5,2):2, (5,4):1, (5,6):3, # (6,1):3, (6,3):2, (6,5):2, (6,7):4, # (7,0):4, (7,2):4, (7,4):4, (7,6):4} # h_value = 0 # for key in self.positions_black: # h_value += piece_value[key] # return h_value + self.num_kings_black + 5*(self.num_pieces_black-self.num_kings_white) # else: # return 4*(self.num_pieces_black - self.num_kings_black) + 8*self.num_kings_black #=======================================================================================# #if game over for any player # if self.num_pieces_white == 0 or self.num_pieces_black == 0: # heuristic = (self.num_pieces_black - self.num_kings_black) + 3*(self.num_kings_black) + 20*self.num_pieces_black # return heuristic # # calculate heuristics # num_in_king_row = 0 # num_in_center = 0 # x_white = [] # y_white = [] # x_black = [] # y_black = [] # for position in self.positions_black: # # heuristic for king row pawns # if self.positions_black[position] == "pawn": # if position[0] == 7: # num_in_king_row += 1 # # heuristic for being in center of board # if position[1] > 1 and position[1] < 6: # num_in_center += 1 # # store x and y coords in list # x_black.append(position[0]) # y_black.append(position[1]) # for position in self.positions_white: # # store x and y coords in list # x_white.append(position[0]) # y_white.append(position[1]) # # calculate centroids # centroid_white = (mean(x_white), mean(y_white)) # centroid_black = (mean(x_black), mean(y_black)) # # calculate distance between centroids # dist_bw_centroids = sqrt(pow(centroid_white[0]-centroid_black[0], 2) + pow(centroid_white[1]-centroid_black[1], 2)) # if self.num_pieces_black > 10: # early in the game # heuristic = 10*(self.num_pieces_black - self.num_kings_black) + 20*num_in_king_row + 5*num_in_center # elif self.num_pieces_white < 3: # idling_kings = 0 # for position in self.positions_black: # # heuristic to deter kings away from idling at kings row # if self.positions_black[position] == "king": # if position[0] == 0: # idling_kings += 2 # if position[0] == 1 or position[0] == 2: # idling_kings += 1 # heuristic = 10*(self.num_pieces_black) - 5*idling_kings - floor(5*dist_bw_centroids) # else: # heuristic = 10*(self.num_pieces_black - self.num_kings_black) + 30*(self.num_kings_black) + 10*(self.num_pieces_black - self.num_pieces_white) # return heuristic else: # active player is WHITE #return 10*self.num_pieces_white if self.num_pieces_black == 0 and self.num_pieces_white > 0: return 1000000000 elif self.num_pieces_white == 0 and self.num_pieces_black > 0: return -1000000000 elif self.num_pieces_black > 8 and self.num_pieces_white > 8: num_in_king_row = 0 num_in_center = 0 for position in self.positions_white: # heuristic for king row pawns if self.positions_white[position] == "pawn": if position[0] == 0: num_in_king_row += 1 # heuristic for being in center of board if position[1] > 1 and position[1] < 6: num_in_center += 1 if static_board.num_pieces_white > 10: return 10*(self.num_pieces_white - self.num_kings_white) + 15*self.num_kings_white + 2*num_in_king_row else: return 10*(self.num_pieces_white - self.num_kings_white) + 15*self.num_kings_white + num_in_king_row else: if static_board.num_pieces_white >= static_board.num_pieces_black: num_lost_black = static_board.num_pieces_black - self.num_pieces_black num_lost_white = static_board.num_pieces_white - self.num_pieces_white if num_lost_white <= num_lost_black: trades = min(num_lost_white, num_lost_black) + 1 return 10*(self.num_pieces_white - self.num_kings_white) + 15*self.num_kings_white + 10*trades else: return 10*(self.num_pieces_white - self.num_kings_white) + 15*self.num_kings_white else: return 10*(self.num_pieces_white - self.num_kings_white) + 15*self.num_kings_white # #if game over for any player # if self.num_pieces_white == 0 or self.num_pieces_black == 0: # heuristic = (self.num_pieces_white - self.num_kings_white) + 3*(self.num_kings_white) + 20*self.num_pieces_white # return heuristic # # calculate heuristics # num_in_king_row = 0 # num_in_center = 0 # x_white = [] # y_white = [] # x_black = [] # y_black = [] # for position in self.positions_white: # # heuristic for king row pawns # if self.positions_white[position] == "pawn": # if position[0] == 7: # num_in_king_row += 1 # # heuristic for being in center of board # if position[1] > 1 and position[1] < 6: # num_in_center += 1 # # store x and y coords in list # x_white.append(position[0]) # y_white.append(position[1]) # for position in self.positions_black: # # store x and y coords in list # x_black.append(position[0]) # y_black.append(position[1]) # # calculate centroids # centroid_white = (mean(x_white), mean(y_white)) # centroid_black = (mean(x_black), mean(y_black)) # # calculate distance between centroids # dist_bw_centroids = sqrt(pow(centroid_white[0]-centroid_black[0], 2) + pow(centroid_white[1]-centroid_black[1], 2)) # if self.num_pieces_white > 10: # early in the game # heuristic = 10*(self.num_pieces_white - self.num_kings_white) + 20*num_in_king_row + 5*num_in_center # elif self.num_pieces_black < 3: # idling_kings = 0 # for position in self.positions_white: # # heuristic to deter kings away from idling at kings row # if self.positions_white[position] == "king": # if position[0] == 0: # idling_kings += 2 # if position[0] == 1 or position[0] == 2: # idling_kings += 1 # heuristic = 10*(self.num_pieces_white) - 5*idling_kings - floor(5*dist_bw_centroids) # else: # heuristic = 10*(self.num_pieces_white - self.num_kings_white) + 30*(self.num_kings_white) + 10*(self.num_pieces_white - self.num_pieces_black) # return heuristic def game_over(self): """ Check if board is in a game over state """ # if self.num_pieces_black < 3 or self.num_pieces_white < 3: # if self.num_pieces_black == 0 or self.num_pieces_white == 0 or len(self.possible_moves()) == 0: # return True # else: # return False # else: # if self.num_pieces_black == 0 or self.num_pieces_white == 0: #or len(self.possible_moves()) == 0: # return True # else: # return False if self.num_pieces_black == 0 or self.num_pieces_white == 0: #or len(self.possible_moves()) == 0: return True else: return False def empty_here(self, coord): """ Returns true if the coordinate is empty (and on the board) """ if coord in self.positions_empty: return True else: return False def opp_here(self, coord): """ Returns true if there is an opponent's piece in the coordinate """ if self.active_player: # active player is BLACK if coord in self.positions_white: return True else: return False else: # active player is WHITE if coord in self.positions_black: return True else: return False def possible_moves(self): """ Finds all possible next moves (i.e., all possible next boards) input: self (Board) output: moves (Dictionary) e.g. {(J, (coord_old), (coord_jump_1), (coord_jump_2)) : new_board} """ moves = {} jumps_available = False if self.active_player: # active player is BLACK for piece in self.positions_black: # loop through all available pieces piece_type = self.positions_black[piece] # check if jump available (MUST jump if available) jumps_queue = self.jumps_available(piece, piece_type, deque()) if jumps_queue != None: jumps_dict = create_jumps_dict(jumps_queue) jumps_sequences = create_jumps_sequences(jumps_dict, piece) for sequence in jumps_sequences: jumps_available = True board_copy = copy.deepcopy(self) origin = piece for i in range(1, len(sequence)): landing_spot = sequence[i] board_copy = copy.deepcopy(board_copy) if board_copy.jump_move(origin, landing_spot) == "fail": break origin = landing_spot else: sequence.insert(0, "J") sequence = tuple(sequence) moves[sequence] = board_copy if jumps_available == False: # if there are no jumps available to any piece for piece in self.positions_black: piece_type = self.positions_black[piece] # check if simple move available for move in self.simple_moves_available(piece, piece_type): board_copy = copy.deepcopy(self) board_copy.simple_move(piece, move) move_sequence = ('E', piece, move) moves[move_sequence] = board_copy else: # active player is WHITE for piece in self.positions_white: # loop through all available pieces piece_type = self.positions_white[piece] # check if jump available (MUST jump if available) jumps_queue = self.jumps_available(piece, piece_type, deque()) if jumps_queue != None: jumps_dict = create_jumps_dict(jumps_queue) jumps_sequences = create_jumps_sequences(jumps_dict, piece) for sequence in jumps_sequences: jumps_available = True board_copy = copy.deepcopy(self) origin = piece for i in range(1, len(sequence)): landing_spot = sequence[i] board_copy = copy.deepcopy(board_copy) if board_copy.jump_move(origin, landing_spot) == "fail": break origin = landing_spot else: sequence.insert(0, "J") sequence = tuple(sequence) moves[sequence] = board_copy if jumps_available == False: # if there are no jumps available to any piece for piece in self.positions_white: piece_type = self.positions_white[piece] # check if simple move available for move in self.simple_moves_available(piece, piece_type): board_copy = copy.deepcopy(self) board_copy.simple_move(piece, move) move_sequence = ('E', piece, move) moves[move_sequence] = board_copy return moves def simple_moves_available(self, piece, piece_type): """ Checks which simple moves can be made and returns a list """ moves_available = [] if piece_type == "king": # check all four diagonals for i in range(-1, 2, 2): for j in range(-1, 2, 2): if self.empty_here((piece[0]+i, piece[1]+j)): moves_available.append((piece[0]+i, piece[1]+j)) else: # piece is a pawn if self.active_player: # active player is BLACK for j in range(-1, 2, 2): # only moves DOWN (i.e., index goes UP) if self.empty_here((piece[0]+1, piece[1]+j)): moves_available.append((piece[0]+1, piece[1]+j)) else: # active player is WHITE for j in range(-1, 2, 2): # only moves UP (i.e., index goes DOWN) if self.empty_here((piece[0]-1, piece[1]+j)): moves_available.append((piece[0]-1, piece[1]+j)) return moves_available def jumps_available(self, piece, piece_type, jumps): """ Checks to see if there is a jump available from this piece's coordinate and returns available jumps in list of sequences """ no_jumps = True if piece_type == "king": # check all four diagonals for i in range(-1, 2, 2): for j in range(-1, 2, 2): if self.opp_here((piece[0]+i, piece[1]+j)) and self.empty_here((piece[0]+2*i, piece[1]+2*j)): jumps.append(piece) no_jumps = False landing_coord = (piece[0]+2*i, piece[1]+2*j) jumps.append(landing_coord) board_copy = copy.deepcopy(self) board_copy.jump_move(piece, landing_coord) board_copy.jumps_available(landing_coord, piece_type, jumps) # recursive call here if no_jumps: return else: # it's a pawn piece if self.active_player: # active player is BLACK for j in range(-1, 2, 2): # only moves DOWN (i.e., index goes UP) if self.opp_here((piece[0]+1, piece[1]+j)) and self.empty_here((piece[0]+2, piece[1]+2*j)): jumps.append(piece) no_jumps = False landing_coord = (piece[0]+2, piece[1]+2*j) jumps.append(landing_coord) board_copy = copy.deepcopy(self) board_copy.jump_move(piece, landing_coord) board_copy.jumps_available(landing_coord, piece_type, jumps) # recursive call here if no_jumps: return else: # active player is WHITE for j in range(-1, 2, 2): # only moves UP (i.e., index goes DOWN) if self.opp_here((piece[0]-1, piece[1]+j)) and self.empty_here((piece[0]-2, piece[1]+2*j)): # jump available jumps.append(piece) no_jumps = False landing_coord = (piece[0]-2, piece[1]+2*j) jumps.append(landing_coord) board_copy = copy.deepcopy(self) board_copy.jump_move(piece, landing_coord) board_copy.jumps_available(landing_coord, piece_type, jumps) # recursive call here if no_jumps: return return jumps # jumps_dict = create_jumps_dict(jumps) # jumps_sequences = create_jumps_sequences(jumps_dict, piece) # return jumps_sequences ``` #### File: josephko91/checkers-ai/gamemaster.py ```python import os from utility import write_to_output, print_board, color_is_black, board_to_list, print_results from board import Board import time from algorithm import minimax, minimax_alpha_beta, minimax_alpha_beta_final, minimax_alpha_beta_rand from math import sqrt, floor start = time.time() # parse input file with open("input.txt", "r") as input_file: game_mode = input_file.readline().rstrip() # 1st line: game mode color = input_file.readline().rstrip() # 2nd line: player color time_left = float(input_file.readline().rstrip()) # 3rd line: remaining time board_list = [] for i in range(8): # next 8 lines: 2-d list representing the board board_list.append(list(input_file.readline().rstrip())) # create initial board object is_black = color_is_black(color) start = time.time() board = Board(board_list, is_black) end = time.time() print("time to make board object =", end - start) # write mean runtimes to calibrate.txt with open('test.txt', 'w') as output: # print description of game print("d_b = 4; d_w = 4; simple heuristic for both b/w", file = output) #print("v3 changes: changed king weight from 30 to 20, added delta weight to small opp piece case", file = output) # play 100 games and store in game_results_1.txt black_wins = 0 white_wins = 0 timeouts = 0 for i in range(10): start = time.time() # parse input file with open("input.txt", "r") as input_file: game_mode = input_file.readline().rstrip() # 1st line: game mode color = input_file.readline().rstrip() # 2nd line: player color time_left = float(input_file.readline().rstrip()) # 3rd line: remaining time board_list = [] for i in range(8): # next 8 lines: 2-d list representing the board board_list.append(list(input_file.readline().rstrip())) # create initial board object is_black = color_is_black(color) start = time.time() board = Board(board_list, is_black) end = time.time() print("time to make board object =", end - start) max_iterations = 100 iteration_count = 1 total_time_black = 0 total_time_white = 0 # loop until someone wins or maximum iterations exceeded while True: start = time.time() minimax_alpha_beta_rand.count = 0 minimax_alpha_beta_final.count = 0 move_count = floor(iteration_count/2) if board.active_player: # black's turn # if iteration_count > 50: # if move_count % 2 == 0: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 1, float("-inf"), float("inf"), True, (), board) # # elif move_count % 9 == 0: # # value, result, new_board = minimax_alpha_beta(board, 8, float("-inf"), float("inf"), True) # else: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 6, float("-inf"), float("inf"), True, (), board) if move_count%2 == 0: value, result, new_board = minimax_alpha_beta_final(board, board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) else: value, result, new_board = minimax_alpha_beta_final(board, board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) # if move_count < 5: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) # elif board.num_pieces_black < 4: # if move_count%2 == 0: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) # else: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) # else: # if move_count%2 == 0: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) # else: # value, result, new_board = minimax_alpha_beta(board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) else: # white's turn # value, result, new_board = minimax_alpha_beta(board, board.active_player, 4, 4, float("-inf"), float("inf"), True, (), board) if move_count%2 == 0: value, result, new_board = minimax_alpha_beta_rand(board, board, board.active_player, 2, 2, float("-inf"), float("inf"), True, (), board) else: value, result, new_board = minimax_alpha_beta_rand(board, board, board.active_player, 2, 2, float("-inf"), float("inf"), True, (), board) end = time.time() runtime = end - start # if we run into a blocked board with lots of pieces left (i.e. it wasn't caught in game_over method): if result == None: print("total time black =", total_time_black) print("total time white =", total_time_white) if board.num_pieces_black == 0: white_wins += 1 elif board.num_pieces_white == 0: black_wins += 1 else: timeouts += 1 break # set up new board board = new_board # create new board_list (for printing later) board_list = board_to_list(board) # print result to game_output.txt print_results(board, result, board_list, iteration_count, runtime) # accumulate total runtime if board.active_player: # black's total time total_time_black += runtime else: # white's total time total_time_white += runtime # switch player board.active_player = not board.active_player # break loop if someone won or exceeded max iterations if board.game_over() or iteration_count >= max_iterations: print("total time black =", total_time_black) print("total time white =", total_time_white) if board.num_pieces_black == 0: white_wins += 1 elif board.num_pieces_white == 0: black_wins += 1 else: timeouts += 1 break iteration_count += 1 # print final results to file print("black wins =", black_wins, file = output) print("white wins =", white_wins, file = output) print("timeouts =", timeouts, file = output) # def print_results(board, result, board_list, iteration_count, runtime): # if board.active_player == True: # player = "black" # else: # player = "white" # print("iteration:", iteration_count) # print("runtime:", runtime) # print("player:", player) # print("move:", result) # for row in board_list: # print(row) ```
{ "source": "josephko91/first-order-logic-engine", "score": 3 }
#### File: josephko91/first-order-logic-engine/resolution.py ```python from Literal import * from Sentence import * from KnowledgeBase import * import copy import time def resolution(query, kb): """ The resolution algorithm. input: query (string), kb (KnowledgeBase) output: returns "TRUE" or "FALSE" and updated kb """ #new = set() history = set() # negate query and add to KB query_literal = Literal(query) # convert to Literal query_literal.negate() # negate negated_query_sentence = Sentence(str(query_literal)) # convert to Sentence kb.add_sentence(negated_query_sentence) # add to KB # loop until all possible sentences have been inferred or contradiction is found loop_count = 1 # #with open("test_output.txt", "w") as test_output: # print("==================== original KB ====================") # print("KB size:", kb.size) # for sentence in kb.set: # print(sentence) sentence1 = negated_query_sentence # initial root of resolution while True: #new = set() # with open("test_output.txt", "a") as test_output: # print("==================== loop", loop_count, "====================", file=test_output) start = time.time() # start with resolvent from previous iteration (initialize with negated query) possibly_resolvable_sentences = sentence1.get_possibly_resolvable(kb) sentence2_tuple = possibly_resolvable_sentences[0] for sentence2_tuple in possibly_resolvable_sentences: # sentence2_tuple = (predicate, Sentence) predicate = sentence2_tuple[0] sentence2 = sentence2_tuple[1] # skip to next iteration if sentences are the same if sentence1 == sentence2: continue # skip to next iteration if sentences already been resolved sentence_pair_id_1 = hash((sentence1, predicate, sentence2)) # unique id sentence_pair_id_2 = hash((sentence2, predicate, sentence1)) if sentence_pair_id_1 in history: continue elif sentence_pair_id_2 in history: continue else: history.add(sentence_pair_id_1) # add to history history.add(sentence_pair_id_2) # resolve two sentences resolvents = sentence1.resolve(predicate, sentence2) if len(resolvents) == 0: continue else: break # if reached this point -> break loop with current sentence 2 # if new KB is a subset of old KB if len(resolvents) == 0: # print("final kb size =", kb.size) return "FALSE" # if there is a contradiction encountered if resolvents == "CONTRADICTION": # print("sentence1:", sentence1) # print("sentence2:", sentence2) # print("final kb size =", kb.size) return "TRUE" # if it was resolved, add to new else: # TESTING # with open("test_output.txt", "a") as test_output: # print(" -> sentence 1:", sentence1, file=test_output) # print(" -> sentence 2:", sentence2, file=test_output) # add new resolvent to KB resolvent = resolvents[0] # set new resolvent kb.add_sentence(resolvent) # update kb end = time.time() # with open("test_output.txt", "a") as test_output: # print("!!! NEW SENTENCES !!!", file=test_output) # print("( size of new =", len(new), ")", file=test_output) # for sentence in new: # print(" ", sentence, file=test_output) # print("============================================", file=test_output) # print("KB size, loop", loop_count, ":", kb.size, file=test_output) # print("time in loop", loop_count, "=", end-start, "seconds", file=test_output) # if loop_count == 5: # test_output.close() # return "False" loop_count += 1 # update sentence1 sentence1 = resolvent ```
{ "source": "josephko91/hmm", "score": 3 }
#### File: josephko91/hmm/tagger.py ```python import numpy as np from util import accuracy from hmm import HMM def model_training(train_data, tags): """ Train HMM based on training data Inputs: - train_data: (1*num_sentence) a list of sentences, each sentence is an object of line class - tags: (1*num_tags) a list of POS tags Returns: - model: an object of HMM class initialized with parameters(pi, A, B, obs_dict, state_dict) you calculated based on train_data """ model = None L = len(train_data) S = len(tags) ################################################### ###### Create obs_dict ###### obs_dict = {} obs_indx = 0 for i in range(L): for j in range(train_data[i].length): if train_data[i].words[j] not in obs_dict.keys(): obs_dict[train_data[i].words[j]] = obs_indx obs_indx += 1 ###### Create state_dict ###### state_dict = {i:0 for i in tags} for i in range(S): state_dict[tags[i]] = i ###### Calculate pi ###### pi = np.zeros(S, dtype = 'float') state_counts = {i:0 for i in tags} # dictionary storing counts for each tag (state) for i in range(len(train_data)): first_tag = train_data[i].tags[0] # first tag of each Line object state_counts[first_tag] += 1 # increase count in dictionary # add counts to pi array in same order as tags array for i in range(len(tags)): pi[i] = state_counts[tags[i]] # normalize by total number of lines to get probabilities pi = pi / len(train_data) ###### Calculate A ###### A = np.zeros([S, S], dtype = 'float') # loop through each line for i in range(len(train_data)): # loop through each element (except the last one) for j in range(train_data[i].length - 1): from_indx = state_dict[train_data[i].tags[j]] to_indx = state_dict[train_data[i].tags[j+1]] A[from_indx, to_indx] += 1 # normalize each row of A by sum to get transition matrix sum_rows = A.sum(axis = 1) A = A / sum_rows[:, np.newaxis] ###### Calculate B ###### B = np.zeros([S, len(obs_dict)]) for i in range(len(train_data)): # loop through each element for j in range(train_data[i].length): s_indx = state_dict[train_data[i].tags[j]] o_indx = obs_dict[train_data[i].words[j]] B[s_indx, o_indx] += 1 # normalize each row of B to get emissions matrix sum_rows = B.sum(axis = 1) B = B / sum_rows[:, np.newaxis] # initialize HMM object model = HMM(pi, A, B, obs_dict, state_dict) ################################################### return model def sentence_tagging(test_data, model, tags): """ Inputs: - test_data: (1*num_sentence) a list of sentences, each sentence is an object of line class - model: an object of HMM class - tags: list of unique tags from pos_tags.txt (optional use) Returns: - tagging: (num_sentence*num_tagging) a 2D list of output tagging for each sentences on test_data """ tagging = [] S = len(model.pi) ################################################### # loop through each line in data for i in range(len(test_data)): # loop through each element for j in range(test_data[i].length): # update obs_dict and emissions if there is an unseen observation if test_data[i].words[j] not in model.obs_dict.keys(): o_indx = len(model.obs_dict) model.obs_dict[test_data[i].words[j]] = o_indx new_column = np.full((S, 1), 10**-6) model.B = np.append(model.B, new_column, axis = 1) # run viterbi on each line Osequence = np.asarray(test_data[i].words) state_path = model.viterbi(Osequence) tagging.append(state_path) ################################################### return tagging ```
{ "source": "josephkokchin/MY-Syok-Bot", "score": 3 }
#### File: MY-Syok-Bot/bot/petrol.py ```python from requests import get from parsel import Selector as sel def PetrolPrice(): """DaMaCaiDMCJackPot Methods!""" # Connect to Source url='https://hargapetrol.my/malaysia-petrol-prices-list.html' data=get(url,headers={'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'en-GB,en;q=0.9,en-US;q=0.8,zh-TW;q=0.7,zh;q=0.6','Cache-Control': 'max-age=0','Connection': 'keep-alive','DNT': '1','Upgrade-Insecure-Requests': '1','User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'}) # Find the valid range date_from=sel(text=data.text).xpath('.//div[@class="daterange active"][1]/text()').get() date_till=sel(text=data.text).xpath('.//div[@class="daterange active"][2]/text()').get() # Price ron95=sel(text=data.text).xpath('//div[@class="ron95 active"][1]/text()').get() ron97=sel(text=data.text).xpath('//div[@class="ron97 active"][1]/text()').get() diesel=sel(text=data.text).xpath('//div[@class="diesel active"][1]/text()').get() ron95_lw=sel(text=data.text).xpath('.//span[2]//span[@itemprop="priceComponent"]//div[@class="ron95"]/text()').get() ron97_lw=sel(text=data.text).xpath('.//span[2]//span[@itemprop="priceComponent"]//div[@class="ron97"]/text()').get() diesel_lw=sel(text=data.text).xpath('.//span[2]//span[@itemprop="priceComponent"]//div[@class="diesel"]/text()').get() ron95_diff=round((float(ron95)-float(ron95_lw))) ron95_diff='+'+'{:.2f}'.format(ron95_diff) if ron95_diff>=0 else'-'+str(ron95_diff) ron97_diff=round((float(ron97)-float(ron97_lw)),3) ron97_diff='+'+'{:.2f}'.format(ron97_diff) if ron97_diff>=0 else'-'+str(ron97_diff) diesel_diff=round((float(diesel)-float(diesel_lw)),3) diesel_diff='+'+'{:.2f}'.format(diesel_diff) if diesel_diff>=0 else'-'+str(diesel_diff) prices = "RON95 - " + "RM"+str(ron95)+"({})".format(ron95_diff) + "\nRON97 - " + "RM"+str(ron97)+"({})".format(ron97_diff) + "\nDiesel - " + "RM"+str(diesel)+"({})".format(diesel_diff) # Create Reply chat_reply = "<b>Petrol prices from " + str(date_from) + " until " + str(date_till) + "</b> \n\n" chat_reply += prices return chat_reply ```
{ "source": "JosephKowalski2/Py-BasicStats", "score": 3 }
#### File: Py-BasicStats/statzcw/stats.py ```python from typing import List import math def zcount(data: List[float]) -> float: return float(len(data)) def zmean(data: List[float]) -> float: return sum(data) / zcount(data) def zmode(data: List[float]) -> float: return max(set(data), key=data.count) def zmedian(data: List[float]) -> float: sorted_list = sorted(data) index = (len(data) - 1) // 2 if len(data) % 2: return sorted_list[index] else: return (sorted_list[index] + sorted_list[index + 1]) / 2.0 def zvariance(data: List[float]) -> float: n = zcount(data) - 1 mean = sum(data) / n deviations = [] for x in data: deviations.append(abs(mean - x) ** 2) return sum(deviations) / n def zstddev(data: List[float]) -> float: return math.sqrt(zvariance(data)) def zstderr(data: List[float]) -> float: return zstddev(data) / zcount(data) def zcorr(datax: List[float], datay: List[float]) -> float: return cov(datax, datay) / (zstddev(datax) * zstddev(datay)) def cov(datax: List[float], datay: List[float]) -> float: sum = 0 if zcount(datax) == zcount(datay): for i in range(len(datax)): sum += ((datax[i] - zmean(datax)) * (datay[i] - zmean(datay))) return sum / (zcount(datax) - 1) def readDataFile(file): setA, setB = [], [] with open(file) as f: next_line = f.readline() for line in f: row = line.split(',') setA.append(float(row[0])) setB.append(float(row[1])) return setA, setB def readDataSets(files): data = {} for file in files: csvs = readDataFile(file) data[file] = csvs return data ```
{ "source": "JosephLai241/AAG", "score": 4 }
#### File: AAG/aag/AAG.py ```python import random from pyfiglet import Figlet from utils.Cli import CheckArgs, Parser from utils.Examples import Examples from utils.Fonts import FONTS from utils.List import List from utils.Make import Make from utils.Titles import Titles class Main(): """ Putting it all together. """ @staticmethod def main(): args, parser = Parser().parse_args() ### List all fonts with their corresponding number. if args.list: Titles.title() List.print_fonts() ### Generate examples for all fonts. elif args.examples: Titles.title() Examples.generate_examples() ### Generate ASCII art based on the selected font and entered string. elif args.make: CheckArgs.check_make(args, parser) for args in args.make: Make.make(FONTS[int(args[0])], args[1]) ### Generate ASCII art from a random font and entered string. elif args.randomize: Titles.random_title() for text in args.randomize: Make.make(FONTS[random.randint(1,426)], text) if __name__ == "__main__": Main.main() ``` #### File: aag/utils/Make.py ```python from pyfiglet import Figlet class Make(): """ Method for making ASCII art. """ @staticmethod def make(font, text): banner = Figlet(font = font) print("\n%s" % banner.renderText(text)) ```
{ "source": "JosephLai241/Reddit-Scraper", "score": 3 }
#### File: tests/test_utils/test_Utilities.py ```python import os from rich.tree import Tree from urs.utils.Utilities import DateTree class TestDateTreeCheckDateFormatMethod(): """ Testing DateTree class _check_date_format() method. """ def test_check_date_format_dash_format(self): test_date = "06-28-2021" test_search_date = DateTree._check_date_format(test_date) assert test_search_date == test_date def test_check_date_format_slash_format(self): test_date = "06/28/2021" test_search_date = DateTree._check_date_format(test_date) assert test_search_date == "06-28-2021" def test_check_date_wrong_format(self): test_date = "06.28.2021" try: _ = DateTree._check_date_format(test_date) assert False except TypeError: assert True def test_check_date_short_date_wrong_format(self): test_date = "06-28-21" try: _ = DateTree._check_date_format(test_date) assert False except TypeError: assert True class TestDateTreeFindDateDirectoryMethod(): """ Testing DateTree class _find_date_directory() method. """ def test_find_date_directory_directory_exists(self): os.mkdir("../scrapes/06-28-2021") dir_exists = DateTree._find_date_directory("06-28-2021") assert dir_exists == True def test_find_date_directory_directory_does_not_exist(self): os.rmdir("../scrapes/06-28-2021") dir_exists = DateTree._find_date_directory("06-28-2021") assert dir_exists == False class TestDateTreeCreateDirectoryTreeMethod(): """ Testing DateTree class _create_directory_tree() method. """ def test_create_directory_tree(self): os.makedirs("../scrapes/06-28-2021/testing/nested/directories/tree") test_tree = Tree("test") try: DateTree._create_directory_tree("../scrapes/06-28-2021", test_tree) assert True except Exception as e: print(f"An exception was thrown when testing DateTree._create_directory_tree(): {e}") assert False class TestDateTreeDisplayTreeMethod(): """ Testing DateTree class display_tree() method. """ def test_display_tree_method_valid_search_date(self): try: DateTree.display_tree("06-28-2021") assert True except Exception as e: print(f"An exception was thrown when testing DateTree.display_tree(): {e}") assert False def test_display_tree_method_search_date_not_found(self): try: DateTree.display_tree("00-00-0000") assert False except SystemExit: assert True def test_display_tree_method_invalid_search_date(self): try: DateTree.display_tree("00.00.0000") assert False except SystemExit: assert True ``` #### File: analytics/utils/PrepData.py ```python import json from pathlib import Path from urs.utils.DirInit import InitializeDirectory from urs.utils.Global import Status from urs.utils.Logger import LogAnalyticsErrors class GetPath(): """ Methods for determining file paths. """ @staticmethod @LogAnalyticsErrors.log_invalid_top_dir def get_scrape_type(scrape_file, tool): """ Get the name of the scrape-specific directory in which the data is stored and create the directories within the `analytics` folder. Parameters ---------- scrape_file: str String denoting the filepath tool: str String denoting the tool type Exceptions ---------- TypeError: Raised if the file is not JSON or if the file resides in the `analytics` directory Returns ------- analytics_dir: str String denoting the path to the directory in which the analytical data will be written scrape_dir: str String denoting the scrape-specific directory """ file_path = Path(scrape_file) scrape_dir = list(file_path.parts)[file_path.parts.index("scrapes") + 2] if file_path.name.split(".")[1] != "json" or scrape_dir == "analytics": raise TypeError split_analytics_dir = \ list(file_path.parts)[:file_path.parts.index("scrapes") + 2] + \ ["analytics", tool] + \ list(file_path.parts)[file_path.parts.index("scrapes") + 2:-1] analytics_dir = "/".join(split_analytics_dir) InitializeDirectory.create_dirs(analytics_dir) return analytics_dir, scrape_dir @staticmethod def name_file(analytics_dir, path): """ Name the frequencies data or wordcloud when saving to file. Parameters ---------- analytics_dir: str String denoting the path to the directory in which the analytical data will be written path: str String denoting the full filepath Returns ------- filename: str String denoting the new filepath to save file """ return f"{Path(analytics_dir)}/{Path(path).name}" class Extract(): """ Methods for extracting the data from scrape files. """ @staticmethod def extract(scrape_file): """ Extract data from the file. Parameters ---------- scrape_file: str String denoting the filepath Returns ------- data: dict Dictionary containing extracted scrape data """ with open(str(scrape_file), "r", encoding = "utf-8") as raw_data: return json.load(raw_data) class CleanData(): """ Methods for cleaning words found in "title", "body" or "text" fields. """ @staticmethod def _remove_extras(word): """ Removing unnecessary characters from words. Parameters ---------- word: str String denoting the word to clean Returns ------- cleaned_word: str String denoting the cleaned word """ illegal_chars = [char for char in "[(),:;.}{<>`]"] fixed = [ " " if char in illegal_chars else char for char in word ] return "".join(fixed).strip() @staticmethod def count_words(field, obj, plt_dict): """ Count words that are present in a field, then update the plt_dict dictionary. Calls previously defined private method: CleanData._remove_extras() Parameters ---------- field: str String denoting the dictionary key to extract data from obj: dict Dictionary containing scrape data plt_dict: dict Dictionary containing frequency data Returns ------- None """ words = obj[field].split(" ") for word in words: word = CleanData._remove_extras(word) if not word: continue if word not in plt_dict.keys(): plt_dict[word] = 1 else: plt_dict[word] += 1 class PrepSubreddit(): """ Methods for preparing Subreddit data. """ @staticmethod def prep_subreddit(data): """ Prepare Subreddit data. Calls previously defined public method: CleanData.count_words() Parameters ---------- data: list List containing extracted scrape data Returns ------- frequencies: dict Dictionary containing finalized word frequencies """ status = Status( "Finished Subreddit analysis.", "Analyzing Subreddit scrape.", "white" ) plt_dict = dict() status.start() for submission in data: CleanData.count_words("selftext", submission, plt_dict) CleanData.count_words("title", submission, plt_dict) status.succeed() return plt_dict class PrepMutts(): """ Methods for preparing data that may contain a mix of Reddit objects. """ @staticmethod def prep_mutts(data, plt_dict): """ Prepare data that may contain a mix of Reddit objects. Parameters ---------- data: list List containing Reddit objects plt_dict: dict Dictionary containing frequency data Returns ------- None """ for obj in data: ### Indicates there is valid data in this field. if isinstance(obj, dict): try: if obj["type"] == "submission": CleanData.count_words("selftext", obj, plt_dict) CleanData.count_words("title", obj, plt_dict) elif obj["type"] == "comment": CleanData.count_words("body", obj, plt_dict) except KeyError: continue ### Indicates this field is forbidden when analyzing Redditor scrapes. elif isinstance(obj, str): continue class PrepRedditor(): """ Methods for preparing Redditor data. """ @staticmethod def prep_redditor(data): """ Prepare Redditor data. Calls previously defined public methods: CleanData.count_words() PrepMutts.prep_mutts() Parameters ---------- data: dict Dictionary containing extracted scrape data Returns ------- frequencies: dict Dictionary containing finalized word frequencies """ status = Status( "Finished Redditor analysis.", "Analyzing Redditor scrape.", "white" ) plt_dict = dict() status.start() for interactions in data["interactions"].values(): PrepMutts.prep_mutts(interactions, plt_dict) status.succeed() return plt_dict class PrepComments(): """ Methods for preparing submission comments data. """ @staticmethod def _prep_raw(data, plt_dict): """ Prepare raw submission comments. Calls previously defined public method: CleanData.count_words() Parameters ---------- data: list List containing extracted scrape data plt_dict: dict Dictionary containing frequency data Returns ------- None """ status = Status( "Finished raw submission comments analysis.", "Analyzing raw submission comments scrape.", "white" ) status.start() for comment in data: CleanData.count_words("body", comment, plt_dict) status.succeed() @staticmethod def _prep_structured(data, plt_dict): """ An iterative implementation of depth-first search to prepare structured comments. Parameters ---------- data: list List containing extracted scrape data plt_dict: dict Dictionary containing frequency data Returns ------- None """ status = Status( "Finished structured submission comments analysis.", "Analyzing structured submission comments scrape.", "white" ) status.start() for comment in data: CleanData.count_words("body", comment, plt_dict) stack = [] stack.append(comment) visited = [] visited.append(comment) while stack: current_comment = stack.pop(0) for reply in current_comment["replies"]: CleanData.count_words("body", reply, plt_dict) if reply not in visited: stack.insert(0, reply) visited.append(reply) status.succeed() @staticmethod def prep_comments(data): """ Prepare submission comments data. Calls previously defined private methods: PrepComments._prep_raw() PrepComments._prep_structured() Parameters ---------- data: dict Dictionary containing extracted scrape data Returns ------- frequencies: dict Dictionary containing finalized word frequencies """ plt_dict = dict() PrepComments._prep_raw(data["data"]["comments"], plt_dict) \ if data["scrape_settings"]["style"] == "raw" \ else PrepComments._prep_structured(data["data"]["comments"], plt_dict) return plt_dict class PrepLivestream(): """ Methods for preparing livestream data. """ @staticmethod def prep_livestream(data): """ Prepare livestream data. Parameters ---------- data: list List containing extracted scrape data """ status = Status( "Finished livestream analysis.", "Analyzing livestream scrape.", "white" ) plt_dict = {} status.start() PrepMutts.prep_mutts(data, plt_dict) status.succeed() return plt_dict class PrepData(): """ Calling all methods for preparing scraped data. """ @staticmethod def prep(scrape_file, scrape_type): """ Combine all prep methods into one public method. Calls previously defined public methods: PrepSubreddit.prep_subreddit() PrepSubreddit.prep_redditor() PrepSubreddit.prep_comments() Parameters ---------- scrape_file: str String denoting the filepath scrape_type: str String denoting the scrape type Returns ------- frequency_data: dict Dictionary containing extracted scrape data """ data = Extract.extract(scrape_file) if scrape_type == "subreddits": plt_dict = PrepSubreddit.prep_subreddit(data["data"]) elif scrape_type == "redditors": plt_dict = PrepRedditor.prep_redditor(data["data"]) elif scrape_type == "comments": plt_dict = PrepComments.prep_comments(data) elif scrape_type == "livestream": plt_dict = PrepLivestream.prep_livestream(data["data"]) return dict(sorted(plt_dict.items(), key = lambda item: item[1], reverse = True)) ``` #### File: urs/utils/Logger.py ```python import logging import time from colorama import ( Fore, Style ) from urs.utils.DirInit import InitializeDirectory from urs.utils.Global import ( categories, convert_time, date, short_cat ) from urs.utils.Titles import Errors class LogMain(): """ Decorator for logging URS runtime. Also handles KeyboardInterrupt and adds the event to the log if applicable. """ ### Set directory path and log format. DIR_PATH = f"../scrapes/{date}" LOG_FORMAT = "[%(asctime)s] [%(levelname)s]: %(message)s" ### Makes the `scrapes/[DATE]` directory in which the log and scraped files ### will be stored. InitializeDirectory.create_dirs(DIR_PATH) ### Configure logging settings. logging.basicConfig( filename = DIR_PATH + "/urs.log", format = LOG_FORMAT, level = logging.INFO ) @staticmethod def master_timer(function): """ Wrapper for logging the amount of time it took to execute main(). Handle KeyboardInterrupt if user cancels URS. Parameters ---------- function: function() Run method within the wrapper Exceptions ---------- KeyboardInterrupt: Raised if user cancels URS Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(*args): logging.info("INITIALIZING URS.") logging.info("") start = time.time() try: function(*args) except KeyboardInterrupt: print(Style.BRIGHT + Fore.RED + "\n\nURS ABORTED BY USER.\n") logging.warning("") logging.warning("URS ABORTED BY USER.\n") quit() logging.info(f"URS COMPLETED IN {time.time() - start:.2f} SECONDS.\n") return wrapper class LogError(): """ Decorator for logging args, PRAW, or rate limit errors. """ @staticmethod def log_no_args(function): """ Wrapper for logging if the help message was printed/if no arguments were given. Parameters ---------- function: function() Run method within the wrapper Exceptions ---------- SystemExit: Raised if no, invalid, or example args were entered Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(self): try: args, parser = function(self) return args, parser except SystemExit: logging.info("HELP OR VERSION WAS DISPLAYED.\n") quit() return wrapper @staticmethod def log_args(error): """ Wrapper for logging individual (specific) arg errors. Parameters ---------- error: str String denoting the specific error that was raised when processing args Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def decorator(function): def wrapper(*args): try: function(*args) except ValueError: Errors.e_title(f"INVALID {error}.") logging.critical(f"RECEIVED INVALID {error}.") logging.critical("ABORTING URS.\n") quit() return wrapper return decorator @staticmethod def log_rate_limit(function): """ Wrapper for logging rate limit and errors. Parameters ---------- function: function() Run method within the wrapper Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(reddit): user_limits = function(reddit) logging.info("RATE LIMIT DISPLAYED.") logging.info(f"Remaining requests: {user_limits['remaining']}") logging.info(f"Used requests: {user_limits['used']}") logging.info("") if int(user_limits["remaining"]) == 0: Errors.l_title(convert_time(user_limits["reset_timestamp"])) logging.critical(f"RATE LIMIT REACHED. RATE LIMIT WILL RESET AT {convert_time(user_limits['reset_timestamp'])}.") logging.critical("ABORTING URS.\n") quit() return user_limits return wrapper class LogPRAWScraper(): """ Decorator for logging scraper runtimes and events. """ @staticmethod def _format_subreddit_log(settings_dict): """ Format Subreddit log message. Parameters ---------- settings_dict: dict Dictionary containing Subreddit scraping settings Returns ------- None """ time_filters = [ "day", "hour", "month", "week", "year" ] for subreddit_name, settings in settings_dict.items(): for each_setting in settings: if each_setting[2] in time_filters: logging.info(f"Getting posts from the past {each_setting[2]} for {categories[short_cat.index(each_setting[0].upper())]} results.") if each_setting[0].lower() != "s": logging.info(f"Scraping r/{subreddit_name} for {each_setting[1]} {categories[short_cat.index(each_setting[0].upper())]} results...") elif each_setting[0].lower() == "s": logging.info(f"Searching and scraping r/{subreddit_name} for posts containing '{each_setting[1]}'...") logging.info("") @staticmethod def _format_two_arg_log(scraper_type, settings_dict): """ Format Redditor or submission comments log message. Both only take two arguments, which is why only one method is needed to format the messages. Parameters ---------- scraper_type: str String denoting the scraper type (Redditors or submission comments) settings_dict: dict Dictionary containing Redditor scraping settings Returns ------- None """ for reddit_object, n_results in settings_dict.items(): plurality = "results" \ if int(n_results) > 1 \ else "result" if scraper_type == "redditor": logging.info(f"Scraping {n_results} {plurality} for u/{reddit_object}...") elif scraper_type == "comments": logging.info(f"Processing all comments from Reddit post {reddit_object}...") \ if int(n_results) == 0 \ else logging.info(f"Processing {n_results} {plurality} from Reddit post {reddit_object}...") logging.info("") @staticmethod def _format_scraper_log(scraper, settings_dict): """ Format log depending on raw or structured export. Calls previously defined private methods: LogPRAWScraper._format_subreddit_log() LogPRAWScraper._format_two_arg_log() Parameters ---------- scraper: str String denoting the scraper that was run settings_dict: dict Dictionary containing scrape settings Returns ------- None """ if scraper == "subreddit": LogPRAWScraper._format_subreddit_log(settings_dict) elif scraper == "redditor": LogPRAWScraper._format_two_arg_log("redditor", settings_dict) elif scraper == "comments": LogPRAWScraper._format_two_arg_log("comments", settings_dict) @staticmethod def scraper_timer(scraper): """ Wrapper for logging the amount of time it took to execute a scraper. Parameters ---------- scraper: str String denoting the scraper that is run Returns ------- decorator: function() Return the decorator function that runs the method passed into this method """ def decorator(function): def wrapper(*args): start = time.time() logging.info(f"RUNNING {scraper.upper()} SCRAPER.") logging.info("") settings_dict = function(*args) LogPRAWScraper._format_scraper_log(scraper, settings_dict) logging.info(f"{scraper.upper()} SCRAPER FINISHED IN {time.time() - start:.2f} SECONDS.") logging.info("") return wrapper return decorator @staticmethod def log_cancel(function): """ Wrapper for logging if the user cancelled Subreddit scraping at the confirmation page. Parameters ---------- function: function() Run method within the wrapper Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(*args): try: function(*args) except KeyboardInterrupt: print(Fore.RED + Style.BRIGHT + "\n\nCancelling.\n") logging.info("") logging.info("SUBREDDIT SCRAPING CANCELLED BY USER.\n") quit() return wrapper class LogAnalyticsErrors(): """ Decorator for logging errors while exporting analytical data. """ @staticmethod def log_invalid_top_dir(function): """ Log invalid top directory when running analytical tools. Parameters ---------- function: function() Run method within the wrapper Exceptions ---------- ValueError: Raised if the file is not located within the scrapes directory Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(*args): try: return function(*args) except ValueError: Errors.i_title("Scrape data is not located within the `scrapes` directory.") logging.critical("AN ERROR HAS OCCURRED WHILE PROCESSING SCRAPE DATA.") logging.critical("Scrape data is not located within the `scrapes` directory.") logging.critical("ABORTING URS.\n") quit() except TypeError: Errors.i_title("Invalid file. Try again with a valid JSON file.") logging.critical("AN ERROR HAS OCCURRED WHILE PROCESSING SCRAPE DATA.") logging.critical("Invalid file.") logging.critical("ABORTING URS.\n") quit() return wrapper class LogAnalytics(): """ Decorator for logging analytical tools. """ @staticmethod def _get_args_switch(args, tool): """ Get tool type for logging. Parameters ---------- args: Namespace Namespace object containing all arguments used in the CLI tool: str Tool type which denotes a key in the dictionary Returns ------- scraper_args: list List of arguments returned from args """ tools = { "frequencies": [arg_set for arg_set in args.frequencies] \ if args.frequencies \ else None, "wordcloud": [arg_set for arg_set in args.wordcloud] \ if args.wordcloud \ else None } return tools.get(tool) @staticmethod def log_save(tool): """ Wrapper for logging if the result was saved. Parameters ---------- tool: str String denoting the tool that is run Returns ------- decorator: function() Return the decorator function that runs the method passed into this method """ def decorator(function): def wrapper(*args): filename = function(*args) logging.info(f"Saved {tool} to {filename}.") logging.info("") return wrapper return decorator @staticmethod def log_show(tool): """ Wrapper for logging if the result was displayed. Parameters ---------- tool: str String denoting the tool that is run Returns ------- decorator: function() Return the decorator method that runs the method passed into this method """ def decorator(function): def wrapper(*args): function(*args) logging.info(f"Displayed {tool}.") logging.info("") return wrapper return decorator @staticmethod def _get_export_switch(f_type): """ Get export type for logging. Parameters ---------- f_type: str String denoting the file type Returns ------- export_message: str String denoting export option """ export_options = { 0: "Exporting to JSON.", 1: "Exporting to CSV." } if f_type == "csv": return export_options.get(1) return export_options.get(0) @staticmethod def log_export(function): """ Log the export format for the frequencies generator. Parameters ---------- function: function() Run method within the wrapper Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(*args): try: function(*args) logging.info(LogAnalytics._get_export_switch(args[1])) logging.info("") except Exception as e: Errors.ex_title(e) logging.critical("AN ERROR HAS OCCURRED WHILE EXPORTING SCRAPED DATA.") logging.critical(f"{e}") logging.critical("ABORTING URS.\n") quit() return wrapper @staticmethod def _log_tool(args, tool): """ Log the analytical tool that was used. Parameters ---------- args: Namespace Namespace object containing all arguments used in the CLI tool: str String denoting the analytical tool Returns ------- None """ args_list = LogAnalytics._get_args_switch(args, tool) for filename in args_list: logging.info(f"Generating {tool} for file {filename[0]}...") logging.info("") @staticmethod def generator_timer(tool): """ Wrapper for logging the amount of time it took to execute a tool. Parameters ---------- tool: str String denoting the tool that is run Returns ------- decorator: function() Return the decorator method that runs the method passed into this method """ def decorator(function): def wrapper(*args): start = time.time() logging.info(f"RUNNING {tool.upper()} GENERATOR.") logging.info("") LogAnalytics._log_tool(args[0], tool) function(*args) logging.info(f"{tool.upper()} GENERATOR FINISHED IN {time.time() - start:.2f} SECONDS.") logging.info("") return wrapper return decorator class LogExport(): """ Decorator for logging exporting files. """ @staticmethod def _get_export_switch(args): """ Get export type for logging. Parameters ---------- args: Namespace Namespace object containing all arguments used in the CLI Returns ------- export_message: str String denoting export option """ export_options = { 0: "Exporting to JSON.", 1: "Exporting to CSV." } if args.csv: return export_options.get(1) return export_options.get(0) @staticmethod def log_export(function): """ Wrapper for logging the export option. Parameters ---------- function: function() Run method within the wrapper Returns ------- wrapper: function() Return the wrapper method that runs the method passed into the decorator """ def wrapper(*args): try: function(*args) logging.info(LogExport._get_export_switch(args[0])) logging.info("") except Exception as e: Errors.ex_title(e) logging.critical("AN ERROR HAS OCCURRED WHILE EXPORTING SCRAPED DATA.") logging.critical(f"{e}") logging.critical("ABORTING URS.\n") quit() return wrapper ```
{ "source": "JosephLalli/ORCHARDS", "score": 2 }
#### File: secondary_analysis/figures/figure_functions.py ```python import os import numpy as np import pandas as pd import seaborn as sns import subprocess import re import pysam from itertools import product import matplotlib.pyplot as plt from matplotlib import rcParams from matplotlib.ticker import MultipleLocator import math import scipy.stats as stats from scipy.stats import truncnorm from figure_constants import palettes, genelengths, hongkongContigs, SNPs, SNP_frequency_cutoff, transmissionSNPs, figures def set_fig_settings(displayContext, rcParams=dict()): sns.set() sns.set_style("white") assert (displayContext in ['paper','talk','poster']) sns.set_context(displayContext) if displayContext == 'paper': sns.set_context('paper', font_scale=1) elif displayContext == 'talk': sns.set_context("talk") elif displayContext == 'poster': sns.set_context("poster") rcParams['figure.figsize'] = [8.0, 6.0] rcParams['figure.titleweight'] = 'bold' rcParams['axes.labelweight'] = 'bold' rcParams['font.weight'] = 'bold' rcParams['font.size'] = 36 rcParams['font.stretch'] = 'condensed' rcParams['axes.labelsize'] = 26 rcParams['axes.labelweight'] = 'bold' rcParams['xtick.labelsize'] = 18 rcParams['ytick.labelsize'] = 18 rcParams['figure.dpi'] = 300 rcParams['font.family'] = 'Roboto' return rcParams def addStatsLines(ax, x, y, data, method='mean', hue=None, order=None, hue_order=None, dodge=True, linewidth=2, meanwidth=0.35, err_ratio=0.5, meancolor='black', color='black'): hw = meanwidth er = err_ratio xticks = [text.get_text() for text in ax.get_xticklabels()] sns_box_plotter = sns.categorical._BoxPlotter(x, y, hue, data, order, hue_order, orient=None, width=.8, color=None, palette=None, saturation=.75, dodge=dodge, fliersize=5, linewidth=None) if hue: hueOffsets = {hue: sns_box_plotter.hue_offsets[sns_box_plotter.hue_names.index(hue)] for hue in sns_box_plotter.hue_names} xlocs = {group: xticks.index(str(group[0])) + hueOffsets[group[1]] for group in product(sns_box_plotter.group_names, hueOffsets.keys())} groups = [x, hue] hw = hw / len(sns_box_plotter.hue_names) else: groups = [x] xlocs = {group: xcat for group, xcat in zip(sns_box_plotter.group_names, ax.xaxis.get_ticklocs())} for xcat, df in data.groupby(groups): xloc = xlocs[xcat] if method == 'median': middle = df[y].median() uppererror = np.percentile(df[y].dropna(), 75) - middle lowererror = middle - np.percentile(df[y].dropna(), 25) print (f'{middle}, 95th upper-lower {np.percentile(df[y].dropna(), 95)}, {np.percentile(df[y].dropna(), 5)}, 25th upper-lower {np.percentile(df[y].dropna(), 75)}, {np.percentile(df[y].dropna(), 25)}') else: middle = df[y].mean() uppererror = lowererror = df[y].sem() * 1.96 ax.hlines(middle, xloc - hw, xloc + hw, zorder=10, linewidth=linewidth, color=meancolor) ax.hlines((middle - lowererror, middle + uppererror), xloc - (hw * er), xloc + (hw * er), zorder=10, linewidth=linewidth, color=color) ax.vlines(xloc, middle - lowererror, middle + uppererror, zorder=10, linewidth=linewidth, color=color) return ax def addRegStats(ax, x, y, data): def form(x): if x < 0.01: return f'{x:.2e}' elif x > 10: exp = x//10 exp += 3 return f'{x:.3e}' else: return f'{x:.3}' m, b, r_value, p_value, std_err = stats.linregress(data[[x, y]].dropna().to_numpy()) textstr = f'y = {form(m)}x + {form(b)}\n$r^2$ = {form(r_value**2)}\nci = {form(std_err*1.96)}\np = {form(p_value)}' ax.text(0.05, .78, textstr, transform=ax.transAxes, ha="left", fontsize=rcParams['font.size'] * .66) def errorbar(x, y, low, high, order, color, ax): ynum = [order.index(y_i) for y_i in y] lowerrbar = [x - low for x, low in zip(x, low)] uppererrbar = [high - x for x, high in zip(x, high)] return ax.errorbar(ynum, x, yerr=(lowerrbar, uppererrbar), fmt="none", color=color, elinewidth=1, capsize=5) def calc_ci(array, z=1.96): s = np.std(array) # std of vector n = len(array) # number of obs return (z * (s / math.sqrt(n))) def bootstrap(array, num_of_bootstraps, function, *args, **kwargs): x_bar = function(array, *args, **kwargs) sampled_results = np.zeros(num_of_bootstraps) for i in range(num_of_bootstraps): sample = np.random.choice(array, len(array), replace=True) sampled_results[i] = function(sample, *args, **kwargs) deltastar = sampled_results - x_bar ci = np.percentile(deltastar, 2.5) return ci def bootstrap_df(df, num_of_bootstraps, function, *args, **kwargs): x_bar = function(df, *args, **kwargs) sampled_results = np.zeros(num_of_bootstraps) for i in range(num_of_bootstraps): sample = df.sample(n=len(df), replace=True) sampled_results[i] = function(sample, *args, **kwargs) deltastar = sampled_results - x_bar ci = np.nanpercentile(deltastar, 2.5) if ci == np.nan: print (sampled_results) return ci def convertListofClassicH3N2SitestoZeroIndexedMStart(listOfSites): return [site + 15 for site in listOfSites] def parseGTF(gtffile, segmentLocations): '''given file location of gtf, and dictionary of starting locations of each chrom in a concatenated sequence, return dictionary of {gene product : numpy filter for concatenated sequence''' with open(gtffile, 'r') as g: gtf = g.readlines() coding_regions = {} for line in gtf: line = line.replace("/", "_") lineitems = line.split("\t") segment_name = lineitems[0] annotation_type = lineitems[2] start = int(lineitems[3]) - 1 # adding the -1 here for 0 indexing stop = int(lineitems[4]) - 1 # adding the -1 here for 0 indexing gene_name = lineitems[8] gene_name = gene_name.split(";")[0] gene_name = gene_name.replace("gene_id ", "") gene_name = gene_name.replace("\"", "") if annotation_type.lower() == "cds": if segment_name not in coding_regions: coding_regions[segment_name] = {} coding_regions[segment_name][gene_name] = [[start, stop]] elif segment_name in coding_regions and gene_name not in coding_regions[segment_name]: coding_regions[segment_name][gene_name] = [[start, stop]] elif gene_name in coding_regions[segment_name]: coding_regions[segment_name][gene_name].append([start, stop]) return coding_regions def makeManhattanPlot(ax, y, data, nrows=2, subtype=None, geneorder=None, antigenic=True, hue=None, hue_order=['Nonsynonymous', 'Synonymous'], palette_type='synon', color=None, dotsize=40, linewidth=0, alpha=1, negativeDataSet=False, y_label='Minor Allele\nFrequency', no_zero_for_ha=True): mother_ax = ax del ax mother_ax.get_yaxis().set_visible(False) mother_ax.get_xaxis().set_visible(False) mother_ax.spines['right'].set_visible(False) mother_ax.spines['top'].set_visible(False) mother_ax.spines['left'].set_visible(False) mother_ax.spines['bottom'].set_visible(False) if subtype: if subtype == 'H1N1pdm': # Early on while coding this I called all H1N1 samples "H1N1pdm"; this is incorrect. subtype = 'H1N1' data = data.replace('H1N1pdm', 'H1N1') data = data.loc[data.subtype == subtype] else: subtype = data.subtype.first() if geneorder: pass elif antigenic: geneorder = ["PB2", "PB1", "PA", "HA", "HA_antigenic", "HA_nonantigenic", "NP", "NA", "M1", "M2", "NS1", "NEP", 'PB1-F2', 'PA-X'] else: geneorder = ["PB2", "PB1", "PA", "HA", "NP", "NA", "M1", "M2", "NS1", "NEP", 'PB1-F2', 'PA-X'] args = {'y': y, 'hue': hue, 'color': color, 'hue_order': hue_order, 'palette': palettes[palette_type], 'alpha': alpha} if type(dotsize) == int: args['s'] = dotsize elif type(dotsize) == str: args['size'] = dotsize args['s'] = 40 ymax = data[y].max() ymin = data[y].min() ordered_gene_lengths = [(gene, length) for gene, length in genelengths[subtype].items() if gene in geneorder] ordered_gene_lengths.sort(key=lambda x: geneorder.index(x[0])) lengths = [x[1] for x in ordered_gene_lengths] current_length = 0 end_of_row = sum([length for gene, length in ordered_gene_lengths])/nrows reset_points = [0] for i, (gene, length) in enumerate(ordered_gene_lengths): if current_length > end_of_row: reset_points.append(i) current_length = length else: current_length += length ncolumns = reset_points[1] minorrowadjust = int(abs(sum(lengths[0:ncolumns]) - sum(lengths[ncolumns:])) / 2) # make gene subaxes ax_x_positions = list() row_x_positions = list() current_x_pos = 0 max_x_pos = 0 for i, (gene, length) in enumerate(ordered_gene_lengths): if (i not in reset_points) or i == 0: row_x_positions.append((current_x_pos, length)) current_x_pos += length else: current_x_pos = minorrowadjust ax_x_positions.append(row_x_positions) row_x_positions = list() row_x_positions.append((current_x_pos, length)) current_x_pos += length if current_x_pos > max_x_pos: max_x_pos = current_x_pos ax_x_positions.append(row_x_positions) # convert from data to axis positions text_offset = 0.15 ax_x_positions = [(start / max_x_pos, ((nrows - (i + 1)) / nrows) + text_offset, length / max_x_pos, (1 / nrows) - text_offset) for i, row in enumerate(ax_x_positions) for start, length in row] axes = [mother_ax.inset_axes(bounds) for bounds in ax_x_positions] properGeneName = {gene: gene for gene in geneorder} properGeneName['HA_antigenic'] = 'Antigenic\nHA' properGeneName['HA_nonantigenic'] = 'Nonantigenic\nHA' properGeneName['PB1-F2'] = 'PB1-\nF2' for i, ((gene, length), ax) in enumerate(zip(ordered_gene_lengths, axes)): if i in reset_points: ax.set_ylabel(y_label, labelpad=12) else: ax.get_yaxis().set_visible(False) ax = sns.scatterplot(x='inGenePos', data=data.loc[(data['product'] == gene)], legend=False, ax=ax, linewidth=linewidth, **args) ax.set_xlim(left=0, right=length) ax.set_xlabel(properGeneName[gene], labelpad=8) ax.xaxis.set_major_locator(MultipleLocator(500)) ax.xaxis.set_minor_locator(MultipleLocator(250)) ax.set_ylim((ymin - ymax*0.04), (ymax + ymax*0.04)) ax.tick_params(reset=True, which='both', axis='x', bottom=True, top=False) if no_zero_for_ha and gene == 'HA' and subtype == 'H3N2': ax.xaxis.get_major_ticks()[0].draw = lambda *args:None ax.xaxis.get_major_ticks()[1].draw = lambda *args:None return mother_ax # Functions related to calculating bottleneck size def getReadDepth(sample, segment, pos, alt): reffile = SNPs.loc[SNPs['sampleID'] == sample, 'referenceFile'].iloc[0] ref = reffile.split('/')[5] if 'Hong_Kong' in reffile: chrom = hongkongContigs[segment] elif 'Michigan' in reffile: chrom = ref[:-7] + segment elif ref[-2:] in ['17', '18', '19']: chrom = ref[:-2] + segment else: chrom = ref + '_' + segment bamfile = '/'.join(reffile.split('/')[0:6]) + '/map_to_consensus/' + sample + '.bam' pos = int(pos) sam = pysam.AlignmentFile(bamfile, "rb") pileup = sam.pileup(contig=chrom, start=pos-1, end=pos, truncate=True, stepper="nofilter") column = next(pileup) column.set_min_base_quality(30) try: bases = column.get_query_sequences(mark_matches=True) altreads = bases.count(alt.lower()) + bases.count(alt.upper()) except: altreads = 0 frequency = round((altreads / column.get_num_aligned()), 4) depth = column.get_num_aligned() return frequency, altreads, depth def makeBottleneckInputFile(pairings, category): pairings = list(pairings) indexes = [pairing[0] for pairing in pairings] contacts = [pairing[1] for pairing in pairings] export = transmissionSNPs.loc[(transmissionSNPs['index'].isin(indexes)) & (transmissionSNPs.contact.isin(contacts)), ['index','contact','segment', 'pos', 'ref_nuc','alt_nuc', 'SNP_frequency_index', 'AD_index', 'depth_index','SNP_frequency_contact', 'AD_contact', 'depth_contact']] for ix, row in export.iterrows(): if pd.isna(row.depth_contact): export.loc[ix, ['SNP_frequency_contact','AD_contact','depth_contact']] = getReadDepth(row.contact, ix[0], ix[1], row.alt_nuc_contact) export.fillna(0) filename = figures + '/bottleneck_figures/' + category.replace(' ', '_') + '.txt' export.to_csv(filename[:-4] + '.tsv', sep='\t') export = export.loc[(0.99 > export.SNP_frequency_index) & (export.SNP_frequency_index > 0.01)] export.loc[export['depth_contact'] == 0, ['SNP_frequency_contact', 'depth_contact', 'AD_contact']] = export.loc[export["depth_contact"]==0].apply(lambda x:getReadDepth(x['contact'], x['segment'], x['pos'], x['alt_nuc']), axis=1) export = export.loc[~export.duplicated()] export = export[['SNP_frequency_index', 'SNP_frequency_contact', 'depth_contact', 'AD_contact']].round(5) export.to_csv(filename, sep='\t', header=False, index=False) return filename def koelleBottleneckCategorical(data, category): categories = list(data[category].unique()) if np.nan in categories: categories.remove(np.nan) returnlist = [] for group in categories: subdata = data.loc[data[category] == group] indexes = subdata['index'] contacts = subdata['contact'] assert (len(indexes) == len(contacts)) pairings = (zip(indexes, contacts)) filename = makeBottleneckInputFile(pairings, group) bottleneckregex = r"(?:size\n)(\d*)" lowerboundregex = r"(?:left bound\n)(\d*)" upperboundregex = r"(?:right bound\n)(\d*)" with open(f"{figures}/betabinomialResults_exact.log", 'a+') as outputFile: cmd = f'Rscript /d/orchards/betaBinomial/Bottleneck_size_estimation_exact.r --file {filename} --plot_bool TRUE --var_calling_threshold {SNP_frequency_cutoff} --Nb_min 1 --Nb_max 200 --confidence_level .95' outputFile.write(f"\n\n--------------------\n\n{group}\n\n") print (cmd) results = subprocess.run(cmd.split(" "), text=True, stdout=subprocess.PIPE) print (results.stdout) bottleneck = int(re.search(bottleneckregex, results.stdout).group(1)) lowerbound = int(re.search(lowerboundregex, results.stdout).group(1)) upperbound = int(re.search(upperboundregex, results.stdout).group(1)) outputFile.write(f"{group}: {lowerbound}|--- {bottleneck} ---|{upperbound}") print (f"{group}: {lowerbound}|--- {bottleneck} ---|{upperbound}") try: os.rename('/mnt/d/orchards/betaBinomial/exact_plot.svg', f'{figures}/{group}_bottleneckplot_exact.svg') except: print (f'{category} doesn\'t have an exact plot svg') returnlist.append({'Pairing Category': group, 'Lower CI': lowerbound, 'Avg Bottleneck': bottleneck, 'Upper CI': upperbound}) return returnlist # Functions related to adding zeros to a log-scaled chart def extract_exponent(x): return np.floor(np.log10(x)) def round_to_exponent(x, high=False): if high: return 10**extract_exponent(x) + 1 else: return 10**extract_exponent(x) def get_truncated_normal_distribution(mean=0, sd=1, low=0, upp=10, n=1): dist = truncnorm((low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd) return dist.rvs(n) def set_log_ax_ytick_range(ax, r=1): t = np.log10(ax.get_yticks()) new_t = 10**np.arange(t[0], t[-1], step=r) ax.set_yticks(new_t) return ax def swarmplot_with_zeros(figargs, fig, spacing=.2, gap_between_data_and_zero=0, dotsize=5, jitter_zeros=False): y = figargs['y'] figargs['data'] = data = figargs['data'].copy() log_new_zero = determine_log_zero(figargs, spacing) - gap_between_data_and_zero line_placement = 10**(log_new_zero + spacing) ax_bottom = 10**(log_new_zero - spacing) if not jitter_zeros: figargs['data'][y] = data[y].replace(0, 10**log_new_zero) else: data.loc[data[y] == 0, y] = jitter(data.loc[data[y] == 0, y], log_new_zero, (np.log10(ax_bottom * 1.05), np.log10(line_placement * .95))) figargs['data'] = data ax = sns.swarmplot(**figargs, size=dotsize) ax.axhline(line_placement, color='black', linestyle='--') old_ylim = ax.get_ylim() fig.canvas.draw_idle() add_zero_y_axis(ax, log_new_zero) ax.set_ylim(ax_bottom, old_ylim[1]) return ax def jitter(points, mid, ranges): low, high = ranges sd = (high - low) * .34 return np.power(10, np.array(get_truncated_normal_distribution(mid, sd, low, high, len(points)))) def render_ax(ax): renderer = plt.gcf().canvas.renderer ax.draw(renderer) def determine_log_zero(figargs, spacing): y = figargs['y'] figargs['data'] = data = figargs['data'].copy() min_nonzero_y = data.loc[data[y] > 0, y].min() log_min_y = np.log10(round_to_exponent(min_nonzero_y)) - spacing return log_min_y def add_zero_y_axis(ax, log_new_zero): yticks = ax.get_yticks() yticks[1] = 10**log_new_zero labels = [tick._text for tick in ax.get_yticklabels()] labels[1] = '0' ax.set_yticks(yticks) ax.set_yticklabels(labels) return ax ``` #### File: secondary_analysis/pre_processing_scripts/figure_constants.py ```python import os import numpy as np import pandas as pd import seaborn as sns import glob SNP_frequency_cutoff = 0.01 min_coverage = 100 calcBottlenecks = False #Set Constants potentialmixed = ['18VR001531', '19VR004455', '19VR003675', '19VR003920', '19VR003675'] #Samples which, based off visual inspection of mutations, seem to be mixed infections. #This is determined by looking at 10 samples with the most mutations and seeing if those #mutations, when close together, tend to be linked on the same read. installDir = '/'.join(os.getcwd().split('/')[:-3]) metadataDir = installDir + '/data/sample_metadata/' metadatafile = metadataDir + 'sample_metadata.csv' completemetadatakey = metadataDir + 'subject_metadata_key.csv' expandedMetadata = metadataDir + 'subject_metadata.csv' figures = os.path.join(installDir, 'results', 'figures') bottleneck_output = os.path.join(installDir, 'results', 'bottleneck_output') secondaryDataFolders = [installDir + '/data/secondary_analysis/H3N2/18-19', installDir + '/data/secondary_analysis/H3N2/17-18', installDir + '/data/secondary_analysis/H1N1/18-19', installDir + '/data/secondary_analysis/H1N1/17-18', installDir + '/data/secondary_analysis/FluB/16-17', installDir + '/data/secondary_analysis/FluB/17-18'] referenceDir = installDir + '/references' vcfdirs = secondaryDataFolders vcffiles = [f + '/all_snps_filtered.vcf' for f in vcfdirs] references = ['A_Singapore_INFIMH-16-0019_2016', 'A_Hong_Kong_4801_2014_EPI834581', 'A_Michigan_45_2015_H1N1_18', 'A_Michigan_45_2015_H1N1_19', 'B_Phuket_3073_2013_17', 'B_Phuket_3073_2013_18'] consensusReferences = [mainSampleFolder + '/consensus/' + reference + '_consensus_noambig.fasta' for mainSampleFolder, reference in zip(secondaryDataFolders, references)] gtfFiles = [referenceDir + '/' + reference + '_antigenic.gtf' for reference in references] SnpGenieSegFolders = [] for f in secondaryDataFolders: SnpGenieSegFolders.extend(glob.glob(f + '/SNPGenie_output/*')) treefiles = [installDir + '/data/secondary_analysis/FluB/FluB.tree', installDir + '/data/secondary_analysis/H3N2/H3N2.tree', installDir + '/data/secondary_analysis/H1N1/H1N1.tree'] clade_references = installDir + '/data/references/subclade_definitions/Clade_reference_sequence_names.txt' hongkongContigs = {'NP': 'A_Hong_Kong_4801_2014_834574_NP', 'NS': 'A_Hong_Kong_4801_2014_834575_NS', 'MP': 'A_Hong_Kong_4801_2014_834576_MP', 'PA': 'A_Hong_Kong_4801_2014_834577_PA', 'PB2': 'A_Hong_Kong_4801_2014_834578_PB2', 'PB1': 'A_Hong_Kong_4801_2014_834579_PB1', 'NA': 'A_Hong_Kong_4801_2014_834580_NA', 'HA': 'A_Hong_Kong_4801_2014_834581_HA'} # location of all statistics tsvs: dataFolder = installDir + '/results/dataframes' subtypesToAnalyze = ['H1N1', 'H3N2', 'Influenza B'] # exclude 'NA' as a reserved term for nan when importing pandas dataframes naValues = ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan', '', '*'] read_tsv_args = {'sep': '\t', 'keep_default_na': False, 'na_values': naValues} read_csv_args = {'keep_default_na': False, 'na_values': naValues} gene_to_seg_dict = {'HA': 'HA', 'NA': 'NA', 'PB1': 'PB1', 'PB2': 'PB2', 'PA': 'PA', 'NP': 'NP', 'NEP': 'NS', 'NS1': 'NS', 'M1': 'MP', 'M2': 'MP', 'PB1-F2': 'PB1', 'PA-X': 'PA', 'NB': 'NA', 'BM2': 'MP'} referenceDict = {"A_Singapore_INFIMH-16-0019_2016": "H3N2", "A_Hong_Kong_4801_2014_EPI834581": "H3N2", "A_Michigan_45_2015_H1N1": "H1N1", "A_Michigan_45_2015_H1N1_18": "H1N1", "A_Michigan_45_2015_H1N1_19": "H1N1", "B_Brisbane_60_2008": "Influenza B", "B_Phuket_3073_2013_17": "Influenza B", "B_Phuket_3073_2013_18": "Influenza B", "Influenza A H3N2, Influenza B (Yamagata)": "Mixed"} referenceSeasonDict = {"A_Singapore_INFIMH-16-0019_2016": "2018-2019 H3N2", "A_Hong_Kong_4801_2014_EPI834581": "2017-2018 H3N2", "A_Michigan_45_2015_H1N1_18": "2017-2018 H1N1", "A_Michigan_45_2015_H1N1_19": "2018-2019 H1N1", "B_Phuket_3073_2013_17": "2017-2018 Influenza B", "B_Phuket_3073_2013_18": "2018-2019 Influenza B", "B_Phuket_3073_2013_16": "2016-2017 Influenza B"} sampleFolderDict = {'H3N2': {'17-18': installDir + '/data/secondary_analysis/H3N2/17-18', '18-19': installDir + '/data/secondary_analysis/H3N2/18-19'}, 'H1N1': {'17-18': installDir + '/data/secondary_analysis/H1N1/17-18', '18-19': installDir + '/data/secondary_analysis/H1N1/18-19'}, 'H1N1pdm': {'17-18': installDir + '/data/secondary_analysis/H1N1/17-18', '18-19': installDir + '/data/secondary_analysis/H1N1/18-19'}, 'Influenza B': {'16-17': installDir + '/data/secondary_analysis/FluB/16-17', '17-18': installDir + '/data/secondary_analysis/FluB/17-18'}} # Dictionary to convert myriad different subtypes in metadata file into consistent set of four subtypes subtypeDict = {'Influenza A H3N2': 'H3N2', 'Flu A (H3)': 'H3N2', 'Flu A (Unable to Subtype)': 'H3N2', 'Flu B (Yamagata)': 'Influenza B', 'Flu A 09H1': 'H1N1', 'Influenza A H1N1': 'H1N1', 'Influenza A, Influenza B': 'Mixed', 'Influenza B': 'Influenza B', 'Influenza A H3N2, Influenza B (Yamagata)': 'Mixed', 'Influenza A H3N2, Influenza A H1N1': 'Mixed', 'Influenza A, Influenza B (Yamagata)': 'Mixed', 'Influenza B (Yamagata)': 'Influenza B', 'Influenza A': 'H3N2', 'Influenza B (Victoria)': 'Influenza B', 'H3N2': 'H3N2', 'H1N1': 'H1N1', 'Influenza B': 'Influenza B'} H1N1_antigenic_sites = [87, 88, 90, 91, 92, 132, 141, 142, 143, 147, 171, 172, 174, 177, 180, 170, 173, 202, 206, 210, 211, 212, 151, 154, 156, 157, 158, 159, 200, 238] H1N1_antigenic_sites = [site - 1 for site in H1N1_antigenic_sites] # convert to zero-index antigenic_sites = {59, 60, 61, 62, 63, 65, 66, 68, 69, 72, 74, 77, 78, 82, 90, 93, 95, 96, 97, 98, 101, 102, 103, 106, 107, 109, 111, 117, 118, 124, 132, 136, 137, 139, 141, 143, 144, 145, 146, 147, 148, 150, 152, 153, 155, 157, 158, 159, 160, 161, 165, 167, 170, 171, 172, 173, 174, 178, 180, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 197, 201, 202, 203, 204, 205, 207, 208, 209, 211, 212, 213, 216, 218, 222, 223, 224, 227, 228, 229, 230, 231, 232, 233, 234, 241, 242, 243, 244, 245, 253, 255, 257, 259, 261, 262, 263, 275, 276, 277, 280, 288, 290, 291, 293, 294, 295, 309, 312, 314, 315, 319, 320, 322, 323, 324, 325, 326, 327} def convertListofClassicH3N2SitestoZeroIndexedMStart(listOfSites): return [site + 15 for site in listOfSites] glycosylation_sites = [8, 22, 38, 45, 63, 81, 133, 126, 159, 160, 165, 246, 285] glycosylation_sites = set(convertListofClassicH3N2SitestoZeroIndexedMStart(glycosylation_sites)) antigenic_sites = antigenic_sites.union(glycosylation_sites) genelengths = {'H3N2': {'NEP': 366, 'HA': 1701, 'HA_antigenic': len(antigenic_sites) * 3, 'HA_nonantigenic': 1701 - len(antigenic_sites) * 3, 'M1': 759, 'M2': 294, 'NA': 1410, 'NP': 1497, 'NS1': 693, 'PA': 2151, 'PA-X': 759, 'PB1': 2274, 'PB1-F2': 273, 'PB2': 2280}, 'H1N1': {'HA_antigenic': len(H1N1_antigenic_sites) * 3, 'HA_nonantigenic': 1701 - len(H1N1_antigenic_sites) * 3, 'HA': 1701, 'M1': 759, 'M2': 294, 'NA': 1410, 'NP': 1497, 'NEP': 366, 'NS1': 660, 'PA': 2151, 'PA-X': 699, 'PB1': 2274, 'PB1-F2': 273, 'PB2': 2280}, 'Influenza B': {'HA': 1755, 'M1': 747, 'NA': 1401, 'NP': 1683, 'NEP': 369, 'NS1': 846, 'PA': 2181, 'PB1': 2259, 'PB2': 2313, 'BM2': 330, 'NB': 303}} # Display constants displayContext = 'poster' palettes = dict() snsblue, snsorange, snsgreen, snsred, snspurple, snsbrown, snspink, snsgrey, snsyellow, snssky = sns.color_palette('muted') palettes['kind'] = sns.color_palette(('#eedc5b', '#d3494e'), 2) palettes['subtype'] = sns.color_palette('deep') palettes['AAtype'] = sns.color_palette((snsblue, snsorange, snsgreen), 3) palettes['synon'] = sns.color_palette((snsblue, snsorange), 2) palettes['vax'] = sns.color_palette('Reds', 2)[::-1] palettes['age_category'] = sns.color_palette('Paired') palettes['age_category_only'] = sns.color_palette('tab20')[8:10] geneOrder = ["PB2", "PB1", 'PB1-F2', "PA", 'PA-X', "HA", "NP", "NA", "M1", "M2", "NS1", "NEP"] antigenicGeneOrder = ["PB2", "PB1", 'PB1-F2', "PA", 'PA-X', "HA", 'HA_antigenic', 'HA_nonantigenic',"NP", "NA", "M1", "M2", "NS1", "NEP"] segOrder = ['PB2', 'PB1', 'NP', 'HA', 'NA', 'PA', 'MP', 'NS'] subtypeOrder = ['H3N2', 'H1N1', 'Influenza B'] vaxOrder = [0, 1] named_vaxOrder = ['Unvaccinated', 'Vaccinated'] ageOrder = ['18 or Under', 'Over 18'] NS_order = ['Nonsynon', 'Synon'] antigenicGeneNames = ["PB2", "PB1", "PA", "HA", 'Anti.\nHA', 'Nonanti.\nHA', "NP", "NA", "M1", "M2", "NS1", "NEP"] antigenicGeneNames_withMinor = ["PB2", "PB1", 'PB1-F2', "PA", 'PA-X', "HA", 'Anti.\nHA', 'Nonanti.\nHA', "NP", "NA", "M1", "M2", "NS1", "NEP"] errorBarArgs = {"capsize": .1, "errwidth": 2} # Load data print ('loading subjects...') subjects = pd.read_csv(dataFolder + '/subjects.tsv', **read_tsv_args) print ('loading samples...') samples = pd.read_csv(dataFolder + '/samples.tsv', **read_tsv_args) # For downstream analysis, it can be nice to have a few figure-specific variables samples['age_category'] = '18 or Under' samples.loc[samples.age > 18, 'age_category'] = 'Over 18' meltedPiSamples = samples.melt(id_vars=['sampleID', 'subtype', 'recieved_flu_vaccine', 'age_category', 'symptom_severity'], value_vars=['piN_sample', 'piS_sample']).rename(columns={'variable': 'PiN_PiS', 'value': 'Pi'}) print ('loading segments...') segments = pd.read_csv(dataFolder + '/segments.tsv', **read_tsv_args) # I'll go ahead and make a melted version of all dataframes with piN/piS measurements meltedPiSegments = segments.melt(id_vars=['sampleID', 'subtype', 'segment', 'recieved_flu_vaccine', 'symptom_severity'], value_vars=['piN_segment', 'piS_segment']).rename(columns={'variable': 'PiN_PiS', 'value': 'Pi'}) print ('loading genes...') genes = pd.read_csv(dataFolder + '/genes.tsv', **read_tsv_args) try: meltedPiGenes = genes.melt(id_vars=['sampleID', 'subtype', 'segment', 'product', 'age_category', 'recieved_flu_vaccine', 'symptom_severity'], value_vars=['piN_gene', 'piS_gene']).rename(columns={'variable': 'PiN_PiS', 'value': 'Pi'}) except: print (genes.columns) raise print ('loading SNPs...') SNPs = pd.read_csv(dataFolder + '/SNPs_lenient_filter.gz', **read_tsv_args) SNPs print ('loading transmission pairs...') transmissionPairs = pd.read_csv(dataFolder + '/transmissionPairs.tsv', **read_tsv_args) print ('loading transmission segments...') transmissionSegments = pd.read_csv(dataFolder + '/transmissionSegments.tsv', **read_tsv_args) print ('loading transmission SNPs...') transmissionSNPs = pd.read_csv(dataFolder + '/transmissionSNPs_lenient_filter.gz', **read_tsv_args) # make all vs all distance DF for distance comparisons allvsall = pd.read_csv('/mnt/d/orchards/H1N1/figures/allvsall.tsv', **read_tsv_args) allvsall = allvsall.merge(samples, left_on='index', right_on='sampleID', how='left') allvsall = allvsall.merge(samples, left_on='contact', right_on='sampleID', how='left', suffixes=('_index', '_contact')) # limit comparisons to those where contact infected after index, and onset of symptoms are separated by less than one week allvsall = allvsall.loc[(pd.to_datetime(allvsall['time_of_symptom_onset_contact']) - pd.to_datetime(allvsall['time_of_symptom_onset_index'])) >= pd.Timedelta(0)] allvsall = allvsall.loc[pd.to_datetime(allvsall['time_of_symptom_onset_contact']) - pd.to_datetime(allvsall['time_of_symptom_onset_index']) <= pd.Timedelta('10 days')] allvsall = allvsall.loc[allvsall.subtype_index == allvsall.subtype_contact] allvsall['school_match'] = 'Does not attend' allvsall.loc[allvsall.school_index == allvsall.school_contact, 'school_match'] = 'Within school' allvsall.loc[allvsall.school_index != allvsall.school_contact, 'school_match'] = 'Between schools' allvsall['household_match'] = 'Other' allvsall.loc[allvsall.household_index != allvsall.household_contact, 'household_match'] = 'No' allvsall.loc[allvsall.household_index == allvsall.household_contact, 'household_match'] = 'Yes' allvsall = allvsall.reset_index(drop=True) allvsall['Relatedness'] = 'Random' allvsall.loc[allvsall.clade_index == allvsall.clade_contact, 'Relatedness'] = 'Same Clade' allvsall.loc[allvsall.subclade_index == allvsall.subclade_contact, 'Relatedness'] = 'Same Subclade' allvsall.loc[allvsall.household_index == allvsall.household_contact, 'Relatedness'] = 'Same Household' allvsall.loc[allvsall.school_index == allvsall.school_contact, 'Relatedness'] = 'Same School' id_columns = ['sampleID', 'subtype', 'season', 'age', 'age_category', 'recieved_flu_vaccine', 'clade', 'subclade'] sample_N_stats = ['nonsynon_snps_per_day_samp', 'Xue_nonsynon_divergence', 'num_of_nonsynon_muts', 'nonsynon_mutation_rate_samp', 'Xue_nonsynon_divergence_per_day', 'nonsynon_divergence_rate'] sample_S_stats = ['synon_snps_per_day_samp', 'Xue_synon_divergence', 'num_of_synon_muts', 'synon_mutation_rate_samp', 'Xue_synon_divergence_per_day', 'synon_divergence_rate'] segment_N_stats = ['nonsynon_snps_per_day_seg', 'Xue_nonsynon_divergence_segment', 'num_of_nonsynon_muts_segment', 'nonsynon_mutation_rate_seg', 'nonsynon_divergence_per_day_seg', 'nonsynon_divergence_rate_seg'] segment_S_stats = [col.replace('nonsynon_', 'synon_') for col in segment_N_stats] gene_N_stats = [col.replace('_segment', '').replace('_seg', '')+'_gene' for col in segment_N_stats] gene_S_stats = [col.replace('_segment', '').replace('_seg', '')+'_gene' for col in segment_S_stats] sample_N_stats.append('piN_sample') sample_S_stats.append('piS_sample') segment_N_stats.append('piN_segment') segment_S_stats.append('piS_segment') gene_N_stats.append('piN_gene') gene_S_stats.append('piS_gene') N_sample_renameDict = {col: col.replace('nonsynon_', '').replace('piN', 'pi') for col in sample_N_stats} S_sample_renameDict = {col: col.replace('synon_', '').replace('piS', 'pi') for col in sample_S_stats} N_segment_renameDict = {col: col.replace('nonsynon_', '').replace('piN', 'pi') for col in segment_N_stats} S_segment_renameDict = {col: col.replace('synon_', '').replace('piS', 'pi') for col in segment_S_stats} N_gene_renameDict = {col: col.replace('nonsynon_', '').replace('piN', 'pi') for col in gene_N_stats} S_gene_renameDict = {col: col.replace('synon_', '').replace('piS', 'pi') for col in gene_S_stats} N_samples = samples[id_columns + sample_N_stats].rename(columns=N_sample_renameDict) S_samples = samples[id_columns + sample_S_stats].rename(columns=S_sample_renameDict) N_segments = segments[['segment'] + id_columns + segment_N_stats].rename(columns=N_segment_renameDict) S_segments = segments[['segment'] + id_columns + segment_S_stats].rename(columns=S_segment_renameDict) N_genes = genes[['segment', 'product'] + id_columns + gene_N_stats].rename(columns=N_gene_renameDict) S_genes = genes[['segment', 'product'] + id_columns + gene_S_stats].rename(columns=S_gene_renameDict) N_samples['Synon_Nonsynon'] = N_segments['Synon_Nonsynon'] = N_genes['Synon_Nonsynon'] = 'Nonsynon' S_samples['Synon_Nonsynon'] = S_segments['Synon_Nonsynon'] = S_genes['Synon_Nonsynon'] = 'Synon' NS_samples = N_samples.append(S_samples) NS_segments = N_segments.append(S_segments) NS_genes = N_genes.append(S_genes) samples['recieved_flu_vaccine'] = samples['recieved_flu_vaccine'].map({0: 'Unvaccinated', 1: 'Vaccinated', np.nan: np.nan}) NS_samples['recieved_flu_vaccine'] = NS_samples['recieved_flu_vaccine'].map({0: 'Unvaccinated', 1: 'Vaccinated', np.nan: np.nan}) genes['recieved_flu_vaccine'] = genes['recieved_flu_vaccine'].map({0: 'Unvaccinated', 1: 'Vaccinated', np.nan: np.nan}) ``` #### File: secondary_analysis/pre_processing_scripts/vcfClass.py ```python import pandas as pd import os import gzip from Bio import SeqIO from Bio.Seq import Seq import pysam import numpy as np def importVCF(location): return VCF(location) class VCF: def __init__ (self, location, refFile=None, gtfFile=None, bamfiles={}): self.vcfFileName = location # handle gz files: try: with open(location, 'r') as vcffile:#imgigi self._vcflines = vcffile.readlines() except: try: with gzip.open(location, 'r') as vcffile:#imgigi self._vcflines = vcffile.readlines() except: raise self._rowstoskip = self._getVCFStart() self.header = Header(self._vcflines[0:self._rowstoskip - 1]) self.reference = {} if refFile: self.addReferenceFile(refFile) self.gtffile = gtfFile self.refFile = refFile self.bamfiles = {} self.samples = [] self.samples = self._vcflines[self._rowstoskip - 1].strip().split('\t')[9:] self.mutations = [MutCall(row, [sample for sample in self.samples]) for row in self._vcflines[self._rowstoskip:]] self.SNPs = [mut for mut in self.mutations if mut.type == 'SNP'] self.indels = [mut for mut in self.mutations if mut.type == 'insertion' or mut.type == 'deletion'] self._hashedmuts = {mut.chrom: {int(mut1.pos): mut1 for mut1 in self.mutations if mut1.chrom == mut.chrom} for mut in self.mutations} self.read_tsv_args = {'sep': '\t', 'keep_default_na': False, 'na_values': ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan']} self.add_bamfile_locations(bamfiles) def _getVCFStart(self): rowstoskip = 0 # Opens resentative vcf as a text file and identifies the row in which our data begins for index, line in enumerate(self._vcflines): if "#CHROM" in line: rowstoskip = index + 1 break return rowstoskip def addReferenceFile(self, ref): self.refFile = ref with open(ref, 'r') as r: ref = SeqIO.parse(r, 'fasta') self.reference = {seq.id: str(seq.seq) for seq in ref} def averageWithVCF(self, otherVCF, newSampleName=None): ''' *assumes one sample per vcf* take intersection of mutations and average their coverages/frequencies etc. ''' print (f'Averaging {self} with {otherVCF}') mutsnotinotherVCF = {(mut.chrom, mut.pos) for mut in self.mutations} for mut in otherVCF: try: self._hashedmuts[mut.chrom][mut.pos] = self._hashedmuts[mut.chrom][mut.pos].average(mut) mutsnotinotherVCF.discard((mut.chrom, mut.pos)) if self._hashedmuts[mut.chrom][mut.pos] == None: mutsnotinotherVCF.add((mut.chrom, mut.pos)) except KeyError: pass for chrom, pos in mutsnotinotherVCF: self.removemut(chrom, pos) self.renameSample(self.samples[0],newSampleName) #self.header = self.header.combineHeaders(otherVCF.header) return self def averageSamples(self,sampleA,sampleB,newSampleName=None): '''take intersection of mutations and average their coverages/frequencies etc.''' intersection = [mut for mut in self.mutations if mut.hasSample(sampleA) and mut.hasSample(sampleB)] #iterate through all mutations for mut in intersection: mut = mut.averageSamples(sampleA,sampleB) self.renameSample(sampleA, newSampleName) self.deleteSample(sampleB) return self def renameSample(self, origname, newName): '''update name of sample origname in both list of samples (self.samples) and in all mutations''' if newName == None: return 1 for mut in self.mutations: mut.renameSample(origname, newName) self.samples = [sample if sample != origname else newName for sample in self.samples] def deleteSample(self, samplename): for mut in self.mutations: mut.deleteSample(samplename) self.samples.remove(samplename) def mergeVCFs(self,otherVCF): for mut in otherVCF: try: self._hashedmuts[mut.chrom][mut.pos].addSamples(mut.samples, mut) self.samples.extend(mut.samples) except KeyError: self.addMut(mut) return self def addMut(self,newMut): raise Exception('addMut not implemented yet') def removemut(self, chrom, pos): '''muts are stored in self.mutations and self._hashedmuts. this removes all muts w/ chrom and pos from both lists.''' try: print('deleting ' + chrom + ' '+str(pos)) self.mutations = [mut for mut in self.mutations if ((mut.chrom != chrom) or (mut.pos != pos))] del self._hashedmuts[chrom][pos] except KeyError: pass def annotate(self, gtffile=None, reference=None): if not self.gtffile: self.gtffile = gtffile if not self.refFile: self.addReferenceFile(reference) coding_regions = extractCodingRegions(gtffile) # use gene coordinates to create coding sequences from reference sequences transcripts = createTranscripts(coding_regions, self.reference) AAtranscripts = {gene:str(Seq(transcript).translate()) for gene, transcript in transcripts.items()} for segment in coding_regions.keys(): for gene in coding_regions[segment].keys(): priorExonLength = 0 for start, stop in coding_regions[segment][gene]: for mut in self.fetchSNPs(segment, start, stop+1): offset = start - priorExonLength mut.annotate(gene, offset, transcripts[gene], AAtranscripts[gene]) priorExonLength += (stop+1-start) def add_bamfile_locations(self, bamfiles): if len(bamfiles) == 0: self.bamfiles = {} elif type(bamfiles) == str and len(self.samples) == 1: bamfile = os.path.abspath(bamfiles) self.bamfiles = {self.samples[0]:bamfile} elif type(bamfiles) == list and len(bamfiles) == len(self.samples): self.bamfiles = {sample:os.path.abspath(bamfile) for sample, bamfile in zip(self.samples, bamfiles)} elif type(bamfiles == dict): for sample, bamfile in bamfiles.items(): if sample not in self.samples: raise Exception(f'Sample {sample} not in VCF.') self.bamfiles.update(bamfiles) else: raise Exception ('Unable to associate bamfiles with samples.') def fetchSNPs(self, chrom, start=0, end=float('inf')): return [mutation for mutation in self.mutations \ if (mutation.chrom == chrom and mutation.pos >= start and mutation.pos < end)] def apply_position_filter(self, removeFails = True, signifigance_at = 0.05, removeFailsMethod = 'Bonferroni', in_read_cutoff=0.1, freq_cutoff=0.01): #count mutations deleted for fun if removeFailsMethod == 'Bonferroni': #Number of comparisons that will be made is number of mutations * number of samples df = self.to_dataframe() self.pval_cutoff = signifigance_at/len(df.loc[df.FREQ > 0.01]) else: self.pval_cutoff = signifigance_at failcount = 0 for sample in self.samples: try: bamfile = self.bamfiles[sample] except KeyError: print (f'''Position filter requires the original bamfile from which SNPs were called.\n Bamfile for sample {sample} is missing.)''') print ("You can add the bamfile by using vcf.add_bamfile_locations(format: {sample:bamfileLocation})") bam = pysam.AlignmentFile(bamfile, 'rb') print (f'Processing {sample}') origMuts = len(self.mutations) for mut in self.mutations: if mut.hasSample(sample): samp = mut.get(sample) RD = samp.RD AD = samp.AD if .5-abs(.5-samp.freq) > freq_cutoff: pos_filter_result = mut.apply_pos_filter(bam, sample, self.pval_cutoff, removeFails, in_read_cutoff) else: continue if pos_filter_result != 'PASS': print(pos_filter_result) if pos_filter_result == 'FAIL': failcount += 1 print (failcount) if not mut.stillHasSNPs(): self.removemut(mut.chrom, mut.pos) print (f'Finished.\n{failcount} SNVs failed position filter.') return self def get_synonymous(self): return [mutation for mutation in self.mutations \ if mutation.AAtype == 'Synonymous'] def get_nonsynonymous(self): return [mutation for mutation in self.mutations \ if mutation.AAtype == 'Nonsynonymous'] def to_dict(self): '''returns list of dictionaries. Each dictionary is 'property':value for each snp in each sample.''' return [entry for mut in self.mutations for entry in mut.to_dict()] def to_numpy(self, referenceFile=None, cutoff_freq=0): # def generate_ref_numpy(self, referenceFile): if len(self.reference) < 1: if referenceFile: self.addReferenceFile(referenceFile) else: print('This function requires VCF to have a reference sequence.') return None concatrefseq = "" segStarts = dict() segCoords = dict() runningtally = 0 for chrom, seq in self.reference.items(): segStarts[chrom.split('_')[-1]] = runningtally segCoords[chrom.split('_')[-1]] = (runningtally, runningtally+len(seq)) runningtally += len(seq) concatrefseq += seq totalConcatLength = len(concatrefseq) df = self.to_dataframe() # only report muts that are within cutoff_freq; adjust all other read counts to 0/1 # first adjust SNPs under cutoff_freq (all ref) df.loc[(df.FREQ > 0) & (df.FREQ < cutoff_freq), 'AD'] = 0 df.loc[(df.FREQ > 0) & (df.FREQ < cutoff_freq), 'DP'] = df.loc[(df.FREQ > 0) & (df.FREQ < cutoff_freq), 'RD'] df.loc[(df.FREQ > 0) & (df.FREQ < cutoff_freq), 'FREQ'] = 0 # then adjust SNPs above 1-cutoff_freq (all alt) df.loc[(df.FREQ < 1) & (df.FREQ > 1-cutoff_freq), 'RD'] = 0 df.loc[(df.FREQ < 1) & (df.FREQ > 1-cutoff_freq), 'DP'] = df.loc[(df.FREQ < 1) & (df.FREQ > 1-cutoff_freq), 'AD'] df.loc[(df.FREQ < 1) & (df.FREQ > 1-cutoff_freq), 'FREQ'] = 1 df.chrom = df.chrom.str.split('_').str[-1] df['inConcatPos'] = df.pos for seg, offset in segStarts.items(): df.loc[df.chrom == seg,'inConcatPos'] += offset nucDict={'A':0,'C':1,'G':2,'T':3} df['ref_nuc'] = df.ref.map(nucDict) df['alt_nuc'] = df.alt.map(nucDict) RDdf = df[['sampleID','inConcatPos','ref_nuc','RD', 'chrom']] RDdf = RDdf.sort_values('RD',ascending=False).reset_index(drop=True) RDdf = RDdf.loc[~RDdf[['sampleID','inConcatPos','chrom','ref_nuc']].duplicated()] readCtsDF = pd.pivot_table(RDdf[['sampleID','inConcatPos','ref_nuc','RD']], columns='ref_nuc', values = 'RD', index=('sampleID', 'inConcatPos')) ADdf = df[['sampleID','inConcatPos','alt_nuc','AD', 'chrom']] ADdf = ADdf.sort_values('AD',ascending=False).reset_index(drop=True) ADdf = ADdf.loc[~ADdf[['sampleID','inConcatPos','chrom','alt_nuc']].duplicated()] readCtsDF.update(pd.pivot_table(df[['sampleID','inConcatPos','alt_nuc','AD']], columns='alt_nuc', values = 'AD', index=('sampleID', 'inConcatPos'))) readCtsDF = readCtsDF.unstack().fillna(0) positions = readCtsDF[0].columns readCts = np.zeros((readCtsDF.shape[0],totalConcatLength,4)) readCts[:,positions,0] = readCtsDF[0].to_numpy() readCts[:,positions,1] = readCtsDF[1].to_numpy() readCts[:,positions,2] = readCtsDF[2].to_numpy() readCts[:,positions,3] = readCtsDF[3].to_numpy() samplelist = list(readCtsDF.index.get_level_values(0)) return readCts, samplelist, list(positions) def to_dataframe(self): '''export VCF as tidy dataframe''' return pd.DataFrame(self.to_dict()).rename(columns={'sample':'sampleID'}) #sample is a reserved term in Pandas def to_vcf(self, location): with open (location, 'w') as outfile: outfile.write(str(self.header)) columnheader = "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t"+'\t'.join(self.samples)+'\n' outfile.write(columnheader) outfile.writelines([str(mutation)+'\n' for mutation in self.mutations]) def __len__(self): return len(self.mutations) def __iter__(self): for mutation in self.mutations: yield mutation def __str__(self): return f"VCF containing {len (self.samples)} samples and {len(self.mutations)} mutation calls" class MutCall: def __init__(self, row, samples): self._rawlist = row.split('\t') self.samples = samples self.chrom = self._rawlist[0] #internal representation will be 0-indexed. Will export VCFs as 1-indexed, all other export formats as 0-indexed. self.pos = int(self._rawlist[1])-1 self.id = self._rawlist[2] self.ref = self._rawlist[3] self.alt = self._rawlist[4] self.qual = self._rawlist[5] self.filter = self._rawlist[6] self.info = self._rawlist[7] self.format = self._rawlist[8] self.type = self._determinetype() self._sampledata = {sample:SampleMut(sample, data, self.format) for data, sample in zip(self._rawlist[9:], self.samples)} del self._rawlist self.genes = [] self.genePOS = [] self.AArefs = [] self.AAalts = [] self.AApos = [] self.AAstrs = [] self.AAtypes = [] def _determinetype(self): if len(self.ref) > 1: return "deletion" elif len(self.alt) > 1: return "insertion" elif len(self.alt) == 1: return "SNP" else: return "translocation" def get(self, sample): return self._sampledata[sample] def stillHasSNPs(self): return np.array([self.hasSample(sample) for sample in self.samples]).any() def apply_pos_filter(self, bam, sample, cutoff=0.05, removeFails=True, in_read_cutoff=0.1, min_base_quality=30, min_mapping_quality=10, log_loc='snp_filter_log.log'): '''given pysam alignment object and relevent sample, determine whether average in-read positions for ref and alt alleles come from different distributions. If so, it sets that sample's minority allele read ct to 0 (since these are presumed to be alignment errors). If that means the ref allele is 100%, the sample is removed from the mutation. If that means the alt allele is 100%, the sample is retained with updated statistics.''' chrom = self.chrom pos = self.pos pileup = bam.pileup(contig=chrom, start=pos, end=pos+1, truncate=True, stepper="nofilter") column = next(pileup) sampmut = self.get(sample) column.set_min_base_quality(min_base_quality) bases = [base.upper() for base in column.get_query_sequences()] map_quals = column.get_mapping_qualities() soft_clipped_positions = [read.alignment.get_reference_positions().index(pos) if pos in read.alignment.get_reference_positions() else 0 for read in column.pileups] read_lengths = [read.alignment.query_alignment_length for read in column.pileups] positions = defaultdict(list) for position, read_length, base, mQ in zip(soft_clipped_positions, read_lengths, bases, map_quals): if mQ < min_mapping_quality: continue try: inReadPos = position/read_length positions[base].append(.50-abs(inReadPos-.50)) #distance of SNP from end of read except: print (base) print (bases) avg_ref_pos = np.mean(positions[self.ref.upper()]) avg_alt_pos = np.mean(positions[self.alt.upper()]) if (self.ref.upper() not in positions.keys()) or (self.alt.upper() not in positions.keys()): p_value = 1 #Definitely not an error. p-value = 1. elif (len(positions[self.ref.upper()]) <= 1) or (len(positions[self.alt.upper()]) <= 1): p_value = 1 #Can't do pvalue calc on one position else: ref_positions = bootstrap(np.array(positions[self.ref.upper()]), int(1/cutoff)+1) alt_positions = bootstrap(np.array(positions[self.alt.upper()]), int(1/cutoff)+1) bigger_than_pvalue = np.mean(ref_positions>alt_positions) less_than_pvalue = np.mean(ref_positions<alt_positions) p_value = min(bigger_than_pvalue, less_than_pvalue) sampmut.avg_ref_pos = avg_ref_pos sampmut.avg_alt_pos = avg_alt_pos sampmut.read_pos_p_value = p_value # regardless of "ref" and "alt", we want to examine the in-read position of the allele w/ # fewer mapped entries. if len(positions[self.ref.upper()]) < len(positions[self.alt.upper()]): dominant_allele_positions = positions[self.alt.upper()] minor_allele_positions = positions[self.ref.upper()] else: minor_allele_positions = positions[self.alt.upper()] dominant_allele_positions = positions[self.ref.upper()] location_cutoff = in_read_cutoff # Read position logic: # If the positions are significantly different and are separated by a distinct amount, the mutation is not valid. # If the positions are not significantly different but they are on average # within last 10% of end of read, the mutation is not valid. close_to_end_of_read = np.mean(minor_allele_positions) < location_cutoff sig_diff_pos_from_major_allele = (p_value < cutoff) if sig_diff_pos_from_major_allele: sampmut.position_filter = 'FAIL' with open(log_loc, 'a') as log: print (f'For sample {sample}, mutation {self.chrom.split("_")[-1]} {self.pos} failed read position filter.',file=log) print (f'Avg ref position: {np.round(avg_ref_pos,3)}(n={len(positions[self.ref.upper()])}). Avg alt position: {np.round(avg_alt_pos,3)}(n={len(positions[self.alt.upper()])}).',file=log) print (f'Read location cutoff was {np.round(location_cutoff, 4)}. p-value {p_value} is less than cutoff {cutoff}.', file = log) #Write to screen freq= len(positions[self.ref.upper()])/(len(positions[self.ref.upper()])+len(positions[self.alt.upper()])) if (freq > 0.01) and (freq < 0.99): print (f'For sample {sample}, mutation {self.chrom.split("_")[-1]} {self.pos} read position filter: {sampmut.position_filter}.') print (f'Avg ref position: {np.round(avg_ref_pos,3)}(n={len(positions[self.ref.upper()])}). Avg alt position: {np.round(avg_alt_pos,3)}(n={len(positions[self.alt.upper()])}).') print (f'Read location cutoff was {np.round(location_cutoff, 4)}. p-value {p_value} is less than cutoff {cutoff}.') if removeFails: if sampmut.RD>sampmut.AD: sampmut.zeroOut() elif sampmut.RD<=sampmut.AD: sampmut.position_filter = 'PASS' sampmut.DP -= sampmut.RD sampmut.RD = 0 sampmut.freq = 1.0 sampmut.freqstring='100%' sampmut.PVAL = np.round(p_value,4) sampmut.RBQ = 0 sampmut.RDF = 0 sampmut.RDR = 0 sampmut.update() print (sampmut.position_filter, sampmut.freqstring) else: sampmut.position_filter = 'PASS' return sampmut.position_filter def averageSamples(self, sampleA, sampleB): self._sampledata[sampleA] = self._sampledata[sampleA].average(self._sampledata[sampleB]) return self def renameSample(self,oldsamplename,newName): self._sampledata[newName] = self._sampledata.pop(oldsamplename) self.samples = [sample if sample != oldsamplename else newName for sample in self.samples] def deleteSample(self, sampletoDelete): self._sampledata.pop(sampletoDelete) self.samples.remove(sampletoDelete) def average(self, otherMut): sample = self.get(self.samples[0]) sample2 = otherMut.get(otherMut.samples[0]) if sample2.SDP == 0 or sample.SDP==0: return None else: sample = sample.average(sample2) tempinfo = self.info.split(';') for ADPloc, item in enumerate(tempinfo): if "ADP" in item: ADP = int(item.split('=')[-1]) for otheritem in otherMut.info.split(';'): if "ADP" in otheritem: otherADP = int(otheritem.split('=')[-1]) break break tempinfo[ADPloc] = str(int((ADP+otherADP)/2)) self.info = "ADP="+";".join(tempinfo) return self def hasSample(self, samplename): return self._sampledata[samplename].exists() def addSamples(self,samplelist,newMut): pass def annotate(self, gene, adjust, dnaseq, AAseq): inGenePos = self.pos-adjust #pos is 0-indexed, so this is 0-indexed. self.genes.append(gene) self.genePOS.append(inGenePos) if self.ref != dnaseq[inGenePos]: print (self.pos) print (self.ref) print (inGenePos) print (adjust) print (gene) print (dnaseq) print (AAseq) print (dnaseq[inGenePos]) raise Exception #Calc assuming type is SNP: AApos = int((inGenePos)/3) refAA = AAseq[AApos] inAApos = (inGenePos)%3 refcodon = dnaseq[inGenePos-inAApos:inGenePos-inAApos+3] altcodon = refcodon[:inAApos]+self.alt+refcodon[inAApos+1:] altAA = str(Seq(altcodon).translate()) # currently not calling indels, this is incomplete (cannot handle partial indels, multiple alts) if self.type == 'deletion': refAA = '-'*int(len(self.ref)/3) if len(refAA) == 0: refAA = 'd' if self.type == 'insertion': altAA = '-'*int(len(self.ref)/3) if len(refAA) == 0: altAA = 'd' self.AApos.append(AApos) self.AArefs.append(refAA) self.AAalts.append(altAA) self.AAstrs.append(refAA+str(AApos)+altAA) if refAA == altAA: self.AAtypes.append('Synonymous') else: self.AAtypes.append('Nonsynonymous') def to_dict(self): selfDict = [] for samplename in self.samples: sample = self.get(samplename) result = {'sample':samplename,'chrom':self.chrom, 'pos':self.pos, 'id':self.id, 'ref':self.ref,'alt':self.alt,'qual':self.qual} result.update(sample.to_dict()) if len(self.AApos) > 0: #if annotated for gene, inGenePos, AAref, AApos, AAalt, AAstr, AAtype in zip(self.genes, self.genePOS, self.AArefs, self.AApos,self.AAalts,self.AAstrs, self.AAtypes): geneSpecificResult = result.copy() geneSpecificResult.update({'gene':gene,'inGenePos':inGenePos,'refAA':AAref, 'AApos':AApos, 'altAA':AAalt, 'AAstr':AAstr, 'AAtype':AAtype}) selfDict.append(geneSpecificResult) else: selfDict.append(result) return selfDict def __str__(self): #Add 1 to pos to account for 1-indexing of VCF files return '\t'.join([self.chrom, str(self.pos+1), self.id, self.ref,self.alt,self.qual,self.filter,self.info,self.format])+'\t'+'\t'.join(str(self.get(sample)) for sample in self.samples) def __iter__(self): for sample in self.samples: yield self._sampledata[sample] class SampleMut: def __init__(self, samplename, data, formatinfo): self.name = samplename self.format = formatinfo self.other=[] for label, item in zip(self.format.split(":"), data.split(":")): item = item.strip('\n').strip('\"') if item == '.': item = 0 elif item.isnumeric(): item = int(item) if label == "GT": self.GT = item elif label == "GQ": self.GQ = item elif label == "SDP": self.SDP = item elif label == "DP": self.DP = item elif label == "RD": self.RD = item elif label == "AD": self.AD = item elif label == "FREQ": self.freqstring = item try: self.freq = round(float(item.rstrip('%'))/100,4) except: self.freq = round(float(self.freqstring)/100,4) elif label == "PVAL": self.PVAL = item elif label == "RBQ": self.RBQ = item elif label == "ABQ": self.ABQ = item elif label == "RDF": self.RDF = item elif label == "RDR": self.RDR = item elif label == "ADF": self.ADF = item elif label == "ADR": self.ADR = item else: self.other.append((label,item)) # #When calculating freq and depth, Varscan removes AD reads due to quality filter, but not RD reads. # #But it reports only quality RD reads. # #That's a problem when you've got 7 crummy RD reads and a 100 good AD reads! # #I'll recalc depth and frequency here. if self.SDP != 0: self.DP = self.RD + self.AD self.freq = round(self.AD/self.DP, 4) self.freqstring = str(round((self.freq*100),4))+'%' self._properties = [self.GT,self.GQ,self.SDP,self.DP,self.RD,self.AD,self.freqstring,self.PVAL,self.RBQ,self.ABQ,self.RDF,self.RDR,self.ADF,self.ADR] def update(self): self._properties = [self.GT,self.GQ,self.SDP,self.DP,self.RD,self.AD,self.freqstring,self.PVAL,self.RBQ,self.ABQ,self.RDF,self.RDR,self.ADF,self.ADR] def average(self, otherSample): self.freq = round((self.freq+otherSample.freq)/2, 4) self.freqstring = str(self.freq*100)+"%" self.GQ = int(round((self.GQ+otherSample.GQ)/2, 0)) self.SDP += otherSample.SDP self.DP += otherSample.DP oldAD = self.AD self.AD = int(round(self.DP*self.freq,0)) oldRD = self.RD self.RD = self.DP-self.AD self.RBQ = int(round((self.RBQ+otherSample.RBQ)/2, 0)) self.ABQ = int(round((self.ABQ+otherSample.ABQ)/2, 0)) try: RDFtoRD = ((self.RDF/oldRD)+(otherSample.RDF/otherSample.RD))/2 self.RDF = int(round(self.RD*RDFtoRD,0)) self.RDR = self.RD-self.RDF except ZeroDivisionError: self.RDF=0 self.RDR=0 try: ADFtoRD = ((self.ADF/oldAD)+(otherSample.ADF/otherSample.AD))/2 self.ADF = int(round(self.AD*ADFtoRD,0)) self.ADR = self.AD-self.ADF except ZeroDivisionError: self.RDF=0 self.RDR=0 self.update() return self def exists(self): if self.SDP == 0: return False else: return True def zeroOut(self): '''If a sample fails a filter or otherwise needs to be deleted in only one sample, it's zero-ed out so that it's blank. Importantly, deleting a sample from one mutation is different than deleting a sample from the whole vcf.''' self.GT='./.' self.GQ=0 self.SDP=0 self.DP=0 self.RD=0 self.AD=0 self.freqstring=0 self.PVAL=0 self.RBQ=0 self.ABQ=0 self.RDF=0 self.RDR=0 self.ADF=0 self.ADR=0 self.update() def to_dict(self): self.update() return {"GT":self.GT,"GQ":self.GQ,"SDP":self.SDP,"DP":self.DP,"RD":self.RD,"AD":self.AD,"FREQ":self.freq,"PVAL":self.PVAL,"RBQ":self.RBQ,"ABQ":self.ABQ,"RDF":self.RDF,"RDR":self.RDR,"ADF":self.ADF,"ADR":self.ADR} def __str__(self): self.update() return ":".join([str(item) for item in self._properties]) class Header: def __init__(self, headertext): self.text = headertext def combineHeaders(self,otherheader): for line in otherheader.text: if line not in self.text: self.text.append(line) def __str__(self): return "".join(self.text) def extractCodingRegions(gtffile): with open(gtffile, 'r') as g: gtf = g.readlines() coding_regions = {} for line in gtf: line = line.replace("/", "_") lineitems = line.split("\t") segment_name = lineitems[0] annotation_type = lineitems[2] start = int(lineitems[3]) - 1 # adding the -1 here for 0 indexing stop = int(lineitems[4]) - 1 # adding the -1 here for 0 indexing gene_name = lineitems[8] gene_name = gene_name.split(";")[0] gene_name = gene_name.replace("gene_id ","") gene_name = gene_name.replace("\"","") if annotation_type.lower() == "cds": if segment_name not in coding_regions: coding_regions[segment_name] = {} coding_regions[segment_name][gene_name] = [[start, stop]] elif segment_name in coding_regions and gene_name not in coding_regions[segment_name]: coding_regions[segment_name][gene_name] = [[start, stop]] elif gene_name in coding_regions[segment_name]: coding_regions[segment_name][gene_name].append([start, stop]) return coding_regions def createTranscripts(coding_regions, ref_segments): transcripts = {} for segment in coding_regions: for gene in coding_regions[segment]: transcripts[gene] = "" coordinates = coding_regions[segment][gene] # define the coding regions for each gene for start, stop in coordinates: # loop through start/stop sites in coding regions sequence_chunk = ref_segments[segment][start:stop+1] transcripts[gene] = transcripts[gene] + sequence_chunk # append each piece of the transcript together return transcripts def bootstrap(self, array, bootsize): return np.random.choice(array, len(array)*bootsize, replace=True).reshape(-1, bootsize).mean(axis=0) ```
{ "source": "JosephLalli/statannotations", "score": 2 }
#### File: statannotations/statannotations/format_annotations.py ```python from statannotations.stats.StatResult import StatResult from typing import Union, List import numpy as np import pandas as pd def pval_annotation_text(result: Union[List[StatResult], StatResult], pvalue_thresholds): single_value = False if isinstance(result, list): x1_pval = np.array([res.pval for res in result]) x1_signif_suff = [res.significance_suffix for res in result] else: x1_pval = np.array([result.pval]) x1_signif_suff = [result.significance_suffix] single_value = True # Sort the threshold array pvalue_thresholds = pd.DataFrame(pvalue_thresholds).sort_values(by=0, ascending=False).values x_annot = pd.Series(["" for _ in range(len(x1_pval))]) for i in range(0, len(pvalue_thresholds)): if i < len(pvalue_thresholds) - 1: condition = (x1_pval <= pvalue_thresholds[i][0]) & (pvalue_thresholds[i + 1][0] < x1_pval) x_annot[condition] = pvalue_thresholds[i][1] else: condition = x1_pval < pvalue_thresholds[i][0] x_annot[condition] = pvalue_thresholds[i][1] x_annot = pd.Series([f"{star}{signif}" for star, signif in zip(x_annot, x1_signif_suff)]) return x_annot if not single_value else x_annot.iloc[0] def simple_text(result: StatResult, pvalue_format, pvalue_thresholds, test_short_name=None): """ Generates simple text for test name and pvalue :param result: StatResult instance :param pvalue_format: format string for pvalue :param test_short_name: Short name of test to show :param pvalue_thresholds: String to display per pvalue range :return: simple annotation """ # Sort thresholds thresholds = sorted(pvalue_thresholds, key=lambda x: x[0]) # Test name if passed text = test_short_name and test_short_name + " " or "" for threshold in thresholds: if result.pval < threshold[0]: pval_text = "p ≤ {}".format(threshold[1]) break else: pval_text = "p = {}".format(pvalue_format).format(result.pval) return text + pval_text + result.significance_suffix ``` #### File: statannotations/tests/test_stat_result.py ```python import unittest import warnings from functools import partial import numpy.testing as npt from statannotations.stats.ComparisonsCorrection import ComparisonsCorrection from statannotations.stats.StatResult import StatResult class TestStatResult(unittest.TestCase): """Test correction implementation.""" def setUp(self) -> None: self.benjamini_hochberg = ComparisonsCorrection("Benjamini-Hochberg") self.stat_result = StatResult("Test X", "X", "Stat", 1, 0.02, alpha=0.05) self.stat_result.correction_method = self.benjamini_hochberg.name def test_ns_if_ns(self): self.stat_result.corrected_significance = False assert self.stat_result.formatted_output == ( "Test X with Benjamini-Hochberg correction, P_val:2.000e-02 (ns) " "Stat=1.000e+00") def test_nothing_if_s(self): self.stat_result.corrected_significance = True assert self.stat_result.formatted_output == ( "Test X with Benjamini-Hochberg correction, P_val:2.000e-02 " "Stat=1.000e+00") ```
{ "source": "JosephLalli/statannot", "score": 3 }
#### File: statannot/tests/test_statannot.py ```python import unittest import warnings import numpy.testing as npt from statannot import statannot class TestBonferroni(unittest.TestCase): """Test Bonferroni correction function.""" def test_returns_scalar_with_scalar_input(self): corrected = statannot.bonferroni(0.5) with self.assertRaisesRegex(TypeError, 'has no len'): # If `corrected` is a scalar, calling `len` should raise an error. len(corrected) def test_returns_correct_values_with_auto_num_comparisons(self): raw_p_values = [0.1, 0.05, 0.5] expected = [0.3, 0.15, 1.0] observed = statannot.bonferroni(raw_p_values) npt.assert_allclose(observed, expected) def test_returns_correct_values_with_manual_num_comparisons_int(self): raw_p_values = [0.1, 0.05, 0.5] expected = [0.5, 0.25, 1.0] with warnings.catch_warnings(): warnings.simplefilter('ignore') observed = statannot.bonferroni(raw_p_values, 5) npt.assert_allclose(observed, expected) def test_returns_correct_values_with_manual_num_comparisons_float(self): raw_p_values = [0.1, 0.05, 0.5] expected = [0.5, 0.25, 1.0] with warnings.catch_warnings(): warnings.simplefilter('ignore') observed = statannot.bonferroni(raw_p_values, 5.0) npt.assert_allclose(observed, expected) ```
{ "source": "JosephLalli/tensorqtl", "score": 2 }
#### File: tensorqtl/tensorqtl/cis.py ```python import torch import numpy as np import pandas as pd import scipy.stats as stats import sys import os import time from collections import OrderedDict sys.path.insert(1, os.path.dirname(__file__)) import genotypeio, eigenmt from core import * import imp import core imp.reload(core) from core import * imp.reload(eigenmt) def calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=None, return_af=True): """ Calculate nominal associations genotypes_t: genotypes x samples phenotype_t: single phenotype residualizer: Residualizer object (see core.py) """ p = phenotype_t.reshape(1,-1) r_nominal_t, genotype_var_t, phenotype_var_t = calculate_corr(genotypes_t, p, residualizer=residualizer, return_var=True) std_ratio_t = torch.sqrt(phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1)) r_nominal_t = r_nominal_t.squeeze() r2_nominal_t = r_nominal_t.double().pow(2) if residualizer is not None: dof = residualizer.dof else: dof = p.shape[1] - 2 slope_t = r_nominal_t * std_ratio_t.squeeze() tstat_t = r_nominal_t * torch.sqrt(dof / (1 - r2_nominal_t)) slope_se_t = (slope_t.double() / tstat_t).float() # tdist = tfp.distributions.StudentT(np.float64(dof), loc=np.float64(0.0), scale=np.float64(1.0)) # pval_t = tf.scalar_mul(2, tdist.cdf(-tf.abs(tstat))) if return_af: af_t, ma_samples_t, ma_count_t = get_allele_stats(genotypes_t) return tstat_t, slope_t, slope_se_t, af_t, ma_samples_t, ma_count_t else: return tstat_t, slope_t, slope_se_t def calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=None, random_tiebreak=False): """Calculate nominal and empirical correlations""" permutations_t = phenotype_t[permutation_ix_t] r_nominal_t, genotype_var_t, phenotype_var_t = calculate_corr(genotypes_t, phenotype_t.reshape(1,-1), residualizer=residualizer, return_var=True) std_ratio_t = torch.sqrt(phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1)) r_nominal_t = r_nominal_t.squeeze(dim=-1) std_ratio_t = std_ratio_t.squeeze(dim=-1) corr_t = calculate_corr(genotypes_t, permutations_t, residualizer=residualizer).pow(2) # genotypes x permutations corr_t = corr_t[~torch.isnan(corr_t).any(1),:] if corr_t.shape[0] == 0: raise ValueError('All correlations resulted in NaN. Please check phenotype values.') r2_perm_t,_ = corr_t.max(0) # maximum correlation across permutations r2_nominal_t = r_nominal_t.pow(2) r2_nominal_t[torch.isnan(r2_nominal_t)] = -1 # workaround for nanargmax() if not random_tiebreak: ix = r2_nominal_t.argmax() else: ix = torch.nonzero(r2_nominal_t == r2_nominal_t.max(), as_tuple=True)[0] ix = ix[torch.randint(0, len(ix), [1])[0]] return r_nominal_t[ix], std_ratio_t[ix], ix, r2_perm_t, genotypes_t[ix] def calculate_association(genotype_df, phenotype_s, covariates_df=None, interaction_s=None, maf_threshold_interaction=0.05, window=1000000, verbose=True): """ Standalone helper function for computing the association between a set of genotypes and a single phenotype. """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") assert genotype_df.columns.equals(phenotype_s.index) # copy to GPU phenotype_t = torch.tensor(phenotype_s.values, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotype_df.values, dtype=torch.float).to(device) impute_mean(genotypes_t) dof = phenotype_s.shape[0] - 2 if covariates_df is not None: assert phenotype_s.index.equals(covariates_df.index) residualizer = Residualizer(torch.tensor(covariates_df.values, dtype=torch.float32).to(device)) dof -= covariates_df.shape[1] else: residualizer = None if interaction_s is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer) tstat, slope, slope_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] df = pd.DataFrame({ 'pval_nominal':2*stats.t.cdf(-np.abs(tstat), dof), 'slope':slope, 'slope_se':slope_se, 'tstat':tstat, 'af':af, 'ma_samples':ma_samples, 'ma_count':ma_count, }, index=genotype_df.index) else: interaction_t = torch.tensor(interaction_s.values.reshape(1,-1), dtype=torch.float32).to(device) if maf_threshold_interaction > 0: mask_s = pd.Series(True, index=interaction_s.index) mask_s[interaction_s.sort_values(kind='mergesort').index[:interaction_s.shape[0]//2]] = False interaction_mask_t = torch.BoolTensor(mask_s).to(device) else: interaction_mask_t = None genotypes_t, mask_t = filter_maf_interaction(genotypes_t, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=maf_threshold_interaction) res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer, return_sparse=False) tstat, b, b_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] mask = mask_t.cpu().numpy() dof -= 2 df = pd.DataFrame({ 'pval_g':2*stats.t.cdf(-np.abs(tstat[:,0]), dof), 'b_g':b[:,0], 'b_g_se':b_se[:,0], 'pval_i':2*stats.t.cdf(-np.abs(tstat[:,1]), dof), 'b_i':b[:,1], 'b_i_se':b_se[:,1], 'pval_gi':2*stats.t.cdf(-np.abs(tstat[:,2]), dof), 'b_gi':b[:,2], 'b_gi_se':b_se[:,2], 'af':af, 'ma_samples':ma_samples, 'ma_count':ma_count, }, index=genotype_df.index[mask]) if df.index.str.startswith('chr').all(): # assume chr_pos_ref_alt_build format df['position'] = df.index.map(lambda x: int(x.split('_')[1])) return df def map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df, prefix, covariates_df=None, maf_threshold=0, interaction_df=None, maf_threshold_interaction=0.05, group_s=None, window=1000000, run_eigenmt=False, output_dir='.', write_top=True, write_stats=True, logger=None, verbose=True): """ cis-QTL mapping: nominal associations for all variant-phenotype pairs Association results for each chromosome are written to parquet files in the format <output_dir>/<prefix>.cis_qtl_pairs.<chr>.parquet If interaction_df is provided, the top association per phenotype is written to <output_dir>/<prefix>.cis_qtl_top_assoc.txt.gz unless write_top is set to False, in which case it is returned as a DataFrame """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if logger is None: logger = SimpleLogger() if group_s is not None: group_dict = group_s.to_dict() logger.write('cis-QTL mapping: nominal associations for all variant-phenotype pairs') logger.write(f' * {phenotype_df.shape[1]} samples') logger.write(f' * {phenotype_df.shape[0]} phenotypes') if covariates_df is not None: assert np.all(phenotype_df.columns==covariates_df.index) logger.write(f' * {covariates_df.shape[1]} covariates') residualizer = Residualizer(torch.tensor(covariates_df.values, dtype=torch.float32).to(device)) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] else: residualizer = None dof = phenotype_df.shape[1] - 2 logger.write(f' * {variant_df.shape[0]} variants') if interaction_df is not None: assert interaction_df.index.equals(phenotype_df.columns) logger.write(f" * including {interaction_df.shape[1]} interaction term(s)") if maf_threshold_interaction > 0: logger.write(f' * using {maf_threshold_interaction:.2f} MAF threshold') elif maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter') genotype_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype_df.columns]) genotype_ix_t = torch.from_numpy(genotype_ix).to(device) if interaction_df is not None: ni = interaction_df.shape[1] dof -= 2 * ni interaction_t = torch.tensor(interaction_df.values, dtype=torch.float32).to(device) if maf_threshold_interaction > 0 and ni == 1: mask_s = pd.Series(True, index=interaction_df.index) mask_s[interaction_df[interaction_df.columns[0]].sort_values(kind='mergesort').index[:interaction_df.shape[0]//2]] = False interaction_mask_t = torch.BoolTensor(mask_s).to(device) else: # TODO: implement filtering for multiple interactions? interaction_mask_t = None if ni == 1: col_order = ['phenotype_id', 'variant_id', 'tss_distance', 'af', 'ma_samples', 'ma_count', 'pval_g', 'b_g', 'b_g_se', 'pval_i', 'b_i', 'b_i_se', 'pval_gi', 'b_gi', 'b_gi_se'] else: col_order = (['phenotype_id', 'variant_id', 'tss_distance', 'af', 'ma_samples', 'ma_count', 'pval_g', 'b_g', 'b_g_se'] + [k.replace('i', f"i{i+1}") for i in range(0,ni) for k in ['pval_i', 'b_i', 'b_i_se', 'pval_gi', 'b_gi', 'b_gi_se']]) # use column names instead of numbered interaction variables in output files var_dict = [] for i,v in enumerate(interaction_df.columns, 1): for c in ['pval_i', 'b_i', 'b_i_se']: var_dict.append((c.replace('_i', f'_i{i}'), c.replace('_i', f'_{v}'))) for c in ['pval_gi', 'b_gi', 'b_gi_se']: var_dict.append((c.replace('_gi', f'_gi{i}'), c.replace('_gi', f'_g-{v}'))) var_dict = dict(var_dict) igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, group_s=group_s, window=window) # iterate over chromosomes best_assoc = [] start_time = time.time() k = 0 logger.write(' * Computing associations') for chrom in igc.chrs: logger.write(f' Mapping chromosome {chrom}') # allocate arrays n = 0 # number of pairs if group_s is None: for i in igc.phenotype_pos_df[igc.phenotype_pos_df['chr'] == chrom].index: j = igc.cis_ranges[i] n += j[1] - j[0] + 1 else: for i in igc.group_s[igc.phenotype_pos_df['chr'] == chrom].drop_duplicates().index: j = igc.cis_ranges[i] n += j[1] - j[0] + 1 chr_res = OrderedDict() chr_res['phenotype_id'] = [] chr_res['variant_id'] = [] chr_res['tss_distance'] = np.empty(n, dtype=np.int32) chr_res['af'] = np.empty(n, dtype=np.float32) chr_res['ma_samples'] = np.empty(n, dtype=np.int32) chr_res['ma_count'] = np.empty(n, dtype=np.int32) if interaction_df is None: chr_res['pval_nominal'] = np.empty(n, dtype=np.float64) chr_res['slope'] = np.empty(n, dtype=np.float32) chr_res['slope_se'] = np.empty(n, dtype=np.float32) else: chr_res['pval_g'] = np.empty(n, dtype=np.float64) chr_res['b_g'] = np.empty(n, dtype=np.float32) chr_res['b_g_se'] = np.empty(n, dtype=np.float32) chr_res['pval_i'] = np.empty([n, ni], dtype=np.float64) chr_res['b_i'] = np.empty([n, ni], dtype=np.float32) chr_res['b_i_se'] = np.empty([n, ni], dtype=np.float32) chr_res['pval_gi'] = np.empty([n, ni], dtype=np.float64) chr_res['b_gi'] = np.empty([n, ni], dtype=np.float32) chr_res['b_gi_se'] = np.empty([n, ni], dtype=np.float32) start = 0 if group_s is None: for k, (phenotype, genotypes, genotype_range, phenotype_id) in enumerate(igc.generate_data(chrom=chrom, verbose=verbose), k+1): # copy genotypes to GPU phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) variant_ids = variant_df.index[genotype_range[0]:genotype_range[-1]+1] tss_distance = np.int32(variant_df['pos'].values[genotype_range[0]:genotype_range[-1]+1] - igc.phenotype_tss[phenotype_id]) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) variant_ids = variant_ids[mask] tss_distance = tss_distance[mask] if interaction_df is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=residualizer) tstat, slope, slope_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] n = len(variant_ids) else: genotypes_t, mask_t = filter_maf_interaction(genotypes_t, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=maf_threshold_interaction) if genotypes_t.shape[0] > 0: mask = mask_t.cpu().numpy() variant_ids = variant_ids[mask] res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer=residualizer, return_sparse=False, variant_ids=variant_ids) tstat, b, b_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] tss_distance = tss_distance[mask] n = len(variant_ids) # top association ix = np.nanargmax(np.abs(tstat[:,1+ni:]).max(1)) # top association among all interactions tested # index order: 0, 1, 1+ni, 2, 2+ni, 3, 3+ni, ... order = [0] + [i if j % 2 == 0 else i+ni for i in range(1,ni+1) for j in range(2)] top_s = [phenotype_id, variant_ids[ix], tss_distance[ix], af[ix], ma_samples[ix], ma_count[ix]] for i in order: top_s += [tstat[ix,i], b[ix,i], b_se[ix,i]] top_s = pd.Series(top_s, index=col_order) if run_eigenmt: # compute eigenMT correction top_s['tests_emt'] = eigenmt.compute_tests(genotypes_t, var_thresh=0.99, variant_window=200) best_assoc.append(top_s) else: # all genotypes in window were filtered out n = 0 if n > 0: chr_res['phenotype_id'].extend([phenotype_id]*n) chr_res['variant_id'].extend(variant_ids) chr_res['tss_distance'][start:start+n] = tss_distance chr_res['af'][start:start+n] = af chr_res['ma_samples'][start:start+n] = ma_samples chr_res['ma_count'][start:start+n] = ma_count if interaction_df is None: chr_res['pval_nominal'][start:start+n] = tstat chr_res['slope'][start:start+n] = slope chr_res['slope_se'][start:start+n] = slope_se else: # columns: [g, i_1 ... i_n, gi_1, ... gi_n] --> 0, 1:1+ni, 1+ni:1+2*ni chr_res['pval_g'][start:start+n] = tstat[:,0] chr_res['b_g'][start:start+n] = b[:,0] chr_res['b_g_se'][start:start+n] = b_se[:,0] chr_res['pval_i'][start:start+n] = tstat[:,1:1+ni] chr_res['b_i'][start:start+n] = b[:,1:1+ni] chr_res['b_i_se'][start:start+n] = b_se[:,1:1+ni] chr_res['pval_gi'][start:start+n] = tstat[:,1+ni:] chr_res['b_gi'][start:start+n] = b[:,1+ni:] chr_res['b_gi_se'][start:start+n] = b_se[:,1+ni:] start += n # update pointer else: # groups for k, (phenotypes, genotypes, genotype_range, phenotype_ids, group_id) in enumerate(igc.generate_data(chrom=chrom, verbose=verbose), k+1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) variant_ids = variant_df.index[genotype_range[0]:genotype_range[-1]+1] # assuming that the TSS for all grouped phenotypes is the same tss_distance = np.int32(variant_df['pos'].values[genotype_range[0]:genotype_range[-1]+1] - igc.phenotype_tss[phenotype_ids[0]]) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) variant_ids = variant_ids[mask] tss_distance = tss_distance[mask] if interaction_df is not None: genotypes_t, mask_t = filter_maf_interaction(genotypes_t, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=maf_threshold_interaction) mask = mask_t.cpu().numpy() variant_ids = variant_ids[mask] tss_distance = tss_distance[mask] n = len(variant_ids) if genotypes_t.shape[0] > 0: # process first phenotype in group phenotype_id = phenotype_ids[0] phenotype_t = torch.tensor(phenotypes[0], dtype=torch.float).to(device) if interaction_df is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=residualizer) tstat, slope, slope_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] else: res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer=residualizer, return_sparse=False, variant_ids=variant_ids) tstat, b, b_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] px = [phenotype_id]*n # iterate over remaining phenotypes in group for phenotype, phenotype_id in zip(phenotypes[1:], phenotype_ids[1:]): phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) if interaction_df is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=residualizer) tstat0, slope0, slope_se0, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] else: res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer=residualizer, return_sparse=False, variant_ids=variant_ids) tstat0, b0, b_se0, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] # find associations that are stronger for current phenotype if interaction_df is None: ix = np.where(np.abs(tstat0) > np.abs(tstat))[0] else: ix = np.where(np.abs(tstat0[:,2]) > np.abs(tstat[:,2]))[0] # update relevant positions for j in ix: px[j] = phenotype_id if interaction_df is None: tstat[ix] = tstat0[ix] slope[ix] = slope0[ix] slope_se[ix] = slope_se0[ix] else: tstat[ix] = tstat0[ix] b[ix] = b0[ix] b_se[ix] = b_se0[ix] chr_res['phenotype_id'].extend(px) chr_res['variant_id'].extend(variant_ids) chr_res['tss_distance'][start:start+n] = tss_distance chr_res['af'][start:start+n] = af chr_res['ma_samples'][start:start+n] = ma_samples chr_res['ma_count'][start:start+n] = ma_count if interaction_df is None: chr_res['pval_nominal'][start:start+n] = tstat chr_res['slope'][start:start+n] = slope chr_res['slope_se'][start:start+n] = slope_se else: chr_res['pval_g'][start:start+n] = tstat[:,0] chr_res['b_g'][start:start+n] = b[:,0] chr_res['b_g_se'][start:start+n] = b_se[:,0] chr_res['pval_i'][start:start+n] = tstat[:,1:1+ni] chr_res['b_i'][start:start+n] = b[:,1:1+ni] chr_res['b_i_se'][start:start+n] = b_se[:,1:1+ni] chr_res['pval_gi'][start:start+n] = tstat[:,1+ni:] chr_res['b_gi'][start:start+n] = b[:,1+ni:] chr_res['b_gi_se'][start:start+n] = b_se[:,1+ni:] # top association for the group if interaction_df is not None: ix = np.nanargmax(np.abs(tstat[:,1+ni:]).max(1)) # top association among all interactions tested # index order: 0, 1, 1+ni, 2, 2+ni, 3, 3+ni, ... order = [0] + [i if j % 2 == 0 else i+ni for i in range(1,ni+1) for j in range(2)] top_s = [chr_res['phenotype_id'][start:start+n][ix], variant_ids[ix], tss_distance[ix], af[ix], ma_samples[ix], ma_count[ix]] for i in order: top_s += [tstat[ix,i], b[ix,i], b_se[ix,i]] top_s = pd.Series(top_s, index=col_order) top_s['num_phenotypes'] = len(phenotype_ids) if run_eigenmt: # compute eigenMT correction top_s['tests_emt'] = eigenmt.compute_tests(genotypes_t, var_thresh=0.99, variant_window=200) best_assoc.append(top_s) start += n # update pointer logger.write(f' time elapsed: {(time.time()-start_time)/60:.2f} min') # convert to dataframe, compute p-values and write current chromosome if start < len(chr_res['af']): for x in chr_res: chr_res[x] = chr_res[x][:start] if write_stats: if interaction_df is not None: cols = ['pval_i', 'b_i', 'b_i_se', 'pval_gi', 'b_gi', 'b_gi_se'] if ni == 1: # squeeze columns for k in cols: chr_res[k] = chr_res[k][:,0] else: # split interactions for i in range(0, ni): # fix order for k in cols: chr_res[k.replace('i', f"i{i+1}")] = None for k in cols: for i in range(0, ni): chr_res[k.replace('i', f"i{i+1}")] = chr_res[k][:,i] del chr_res[k] chr_res_df = pd.DataFrame(chr_res) if interaction_df is None: m = chr_res_df['pval_nominal'].notnull() chr_res_df.loc[m, 'pval_nominal'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_nominal'].abs(), dof) else: if ni == 1: m = chr_res_df['pval_gi'].notnull() chr_res_df.loc[m, 'pval_g'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_g'].abs(), dof) chr_res_df.loc[m, 'pval_i'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_i'].abs(), dof) chr_res_df.loc[m, 'pval_gi'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_gi'].abs(), dof) else: m = chr_res_df['pval_gi1'].notnull() chr_res_df.loc[m, 'pval_g'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_g'].abs(), dof) for i in range(1, ni+1): chr_res_df.loc[m, f'pval_i{i}'] = 2*stats.t.cdf(-chr_res_df.loc[m, f'pval_i{i}'].abs(), dof) chr_res_df.loc[m, f'pval_gi{i}'] = 2*stats.t.cdf(-chr_res_df.loc[m, f'pval_gi{i}'].abs(), dof) # substitute column headers chr_res_df.rename(columns=var_dict, inplace=True) print(' * writing output') chr_res_df.to_parquet(os.path.join(output_dir, f'{prefix}.cis_qtl_pairs.{chrom}.parquet')) if interaction_df is not None and len(best_assoc) > 0: best_assoc = pd.concat(best_assoc, axis=1, sort=False).T.set_index('phenotype_id').infer_objects() m = best_assoc['pval_g'].notnull() best_assoc.loc[m, 'pval_g'] = 2*stats.t.cdf(-best_assoc.loc[m, 'pval_g'].abs(), dof) if ni == 1: best_assoc.loc[m, 'pval_i'] = 2*stats.t.cdf(-best_assoc.loc[m, 'pval_i'].abs(), dof) best_assoc.loc[m, 'pval_gi'] = 2*stats.t.cdf(-best_assoc.loc[m, 'pval_gi'].abs(), dof) else: for i in range(1, ni+1): best_assoc.loc[m, f'pval_i{i}'] = 2*stats.t.cdf(-best_assoc.loc[m, f'pval_i{i}'].abs(), dof) best_assoc.loc[m, f'pval_gi{i}'] = 2*stats.t.cdf(-best_assoc.loc[m, f'pval_gi{i}'].abs(), dof) if run_eigenmt and ni == 1: # leave correction of specific p-values up to user for now (TODO) if group_s is None: best_assoc['pval_emt'] = np.minimum(best_assoc['tests_emt']*best_assoc['pval_gi'], 1) else: best_assoc['pval_emt'] = np.minimum(best_assoc['num_phenotypes']*best_assoc['tests_emt']*best_assoc['pval_gi'], 1) best_assoc['pval_adj_bh'] = eigenmt.padjust_bh(best_assoc['pval_emt']) if ni > 1: # substitute column headers best_assoc.rename(columns=var_dict, inplace=True) if write_top: best_assoc.to_csv(os.path.join(output_dir, f'{prefix}.cis_qtl_top_assoc.txt.gz'), sep='\t', float_format='%.6g') else: return best_assoc logger.write('done.') def prepare_cis_output(r_nominal, r2_perm, std_ratio, g, num_var, dof, variant_id, tss_distance, phenotype_id, nperm=10000): """Return nominal p-value, allele frequencies, etc. as pd.Series""" r2_nominal = r_nominal*r_nominal pval_perm = (np.sum(r2_perm>=r2_nominal)+1) / (nperm+1) slope = r_nominal * std_ratio tstat2 = dof * r2_nominal / (1 - r2_nominal) slope_se = np.abs(slope) / np.sqrt(tstat2) n2 = 2*len(g) af = np.sum(g) / n2 if af <= 0.5: ma_samples = np.sum(g>0.5) ma_count = np.sum(g[g>0.5]) else: ma_samples = np.sum(g<1.5) ma_count = n2 - np.sum(g[g>0.5]) res_s = pd.Series(OrderedDict([ ('num_var', num_var), ('beta_shape1', np.NaN), ('beta_shape2', np.NaN), ('true_df', np.NaN), ('pval_true_df', np.NaN), ('variant_id', variant_id), ('tss_distance', tss_distance), ('ma_samples', ma_samples), ('ma_count', ma_count), ('af', af), ('pval_nominal', pval_from_corr(r2_nominal, dof)), ('slope', slope), ('slope_se', slope_se), ('pval_perm', pval_perm), ('pval_beta', np.NaN), ]), name=phenotype_id) return res_s def _process_group_permutations(buf, variant_df, tss, dof, group_id, nperm=10000, beta_approx=True): """ Merge results for grouped phenotypes buf: [r_nominal, std_ratio, var_ix, r2_perm, g, num_var, phenotype_id] """ # select phenotype with strongest nominal association max_ix = np.argmax(np.abs([b[0] for b in buf])) r_nominal, std_ratio, var_ix = buf[max_ix][:3] g, num_var, phenotype_id = buf[max_ix][4:] # select best phenotype correlation for each permutation r2_perm = np.max([b[3] for b in buf], 0) # return r_nominal, std_ratio, var_ix, r2_perm, g, num_var, phenotype_id variant_id = variant_df.index[var_ix] tss_distance = variant_df['pos'].values[var_ix] - tss res_s = prepare_cis_output(r_nominal, r2_perm, std_ratio, g, num_var, dof, variant_id, tss_distance, phenotype_id, nperm=nperm) if beta_approx: res_s[['pval_beta', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df']] = calculate_beta_approx_pval(r2_perm, r_nominal*r_nominal, dof*0.25) res_s['group_id'] = group_id res_s['group_size'] = len(buf) return res_s def map_cis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df=None, group_s=None, maf_threshold=0, beta_approx=True, nperm=10000, window=1000000, random_tiebreak=False, logger=None, seed=None, verbose=True, warn_monomorphic=True): """Run cis-QTL mapping""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if logger is None: logger = SimpleLogger() logger.write('cis-QTL mapping: empirical p-values for phenotypes') logger.write(f' * {phenotype_df.shape[1]} samples') logger.write(f' * {phenotype_df.shape[0]} phenotypes') if group_s is not None: logger.write(f' * {len(group_s.unique())} phenotype groups') group_dict = group_s.to_dict() if covariates_df is not None: assert np.all(phenotype_df.columns==covariates_df.index), 'Sample names in phenotype matrix columns and covariate matrix rows do not match!' assert ~(covariates_df.isnull().any().any()), f'Missing or null values in covariates matrix, in columns {",".join(covariates_df.columns[covariates_df.isnull().any(axis=0)].astype(str))}' logger.write(f' * {covariates_df.shape[1]} covariates') residualizer = Residualizer(torch.tensor(covariates_df.values, dtype=torch.float32).to(device)) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] else: residualizer = None dof = phenotype_df.shape[1] - 2 logger.write(f' * {genotype_df.shape[0]} variants') if maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter') if random_tiebreak: logger.write(f' * randomly selecting top variant in case of ties') genotype_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype_df.columns]) genotype_ix_t = torch.from_numpy(genotype_ix).to(device) # permutation indices n_samples = phenotype_df.shape[1] ix = np.arange(n_samples) if seed is not None: logger.write(f' * using seed {seed}') np.random.seed(seed) permutation_ix_t = torch.LongTensor(np.array([np.random.permutation(ix) for i in range(nperm)])).to(device) res_df = [] igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, group_s=group_s, window=window) if igc.n_phenotypes == 0: raise ValueError('No valid phenotypes found.') start_time = time.time() logger.write(' * computing permutations') if group_s is None: for k, (phenotype, genotypes, genotype_range, phenotype_id) in enumerate(igc.generate_data(verbose=verbose), 1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) genotype_range = genotype_range[mask] # filter monomorphic variants mono_t = (genotypes_t == genotypes_t[:, [0]]).all(1) if mono_t.any(): genotypes_t = genotypes_t[~mono_t] genotype_range = genotype_range[~mono_t.cpu()] if warn_monomorphic: logger.write(f' * WARNING: excluding {mono_t.sum()} monomorphic variants') if genotypes_t.shape[0] == 0: logger.write(f'WARNING: skipping {phenotype_id} (no valid variants)') continue phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) r_nominal, std_ratio, var_ix, r2_perm, g = [i.cpu().numpy() for i in res] var_ix = genotype_range[var_ix] variant_id = variant_df.index[var_ix] tss_distance = variant_df['pos'].values[var_ix] - igc.phenotype_tss[phenotype_id] res_s = prepare_cis_output(r_nominal, r2_perm, std_ratio, g, genotypes_t.shape[0], dof, variant_id, tss_distance, phenotype_id, nperm=nperm) if beta_approx: res_s[['pval_beta', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df']] = calculate_beta_approx_pval(r2_perm, r_nominal*r_nominal, dof) res_df.append(res_s) else: # grouped mode for k, (phenotypes, genotypes, genotype_range, phenotype_ids, group_id) in enumerate(igc.generate_data(verbose=verbose), 1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) genotype_range = genotype_range[mask] # filter monomorphic variants mono_t = (genotypes_t == genotypes_t[:, [0]]).all(1) if mono_t.any(): genotypes_t = genotypes_t[~mono_t] genotype_range = genotype_range[~mono_t.cpu()] if warn_monomorphic: logger.write(f' * WARNING: excluding {mono_t.sum()} monomorphic variants') if genotypes_t.shape[0] == 0: logger.write(f'WARNING: skipping {phenotype_id} (no valid variants)') continue # iterate over phenotypes buf = [] for phenotype, phenotype_id in zip(phenotypes, phenotype_ids): phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) res = [i.cpu().numpy() for i in res] # r_nominal, std_ratio, var_ix, r2_perm, g res[2] = genotype_range[res[2]] buf.append(res + [genotypes_t.shape[0], phenotype_id]) res_s = _process_group_permutations(buf, variant_df, igc.phenotype_tss[phenotype_ids[0]], dof, group_id, nperm=nperm, beta_approx=beta_approx) res_df.append(res_s) res_df = pd.concat(res_df, axis=1, sort=False).T res_df.index.name = 'phenotype_id' logger.write(f' Time elapsed: {(time.time()-start_time)/60:.2f} min') logger.write('done.') return res_df.astype(output_dtype_dict).infer_objects() def map_independent(genotype_df, variant_df, cis_df, phenotype_df, phenotype_pos_df, covariates_df, group_s=None, maf_threshold=0, fdr=0.05, fdr_col='qval', nperm=10000, window=1000000, random_tiebreak=False, logger=None, seed=None, verbose=True): """ Run independent cis-QTL mapping (forward-backward regression) cis_df: output from map_cis, annotated with q-values (calculate_qvalues) """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") assert np.all(phenotype_df.index==phenotype_pos_df.index) assert np.all(covariates_df.index==phenotype_df.columns) if logger is None: logger = SimpleLogger() signif_df = cis_df[cis_df[fdr_col]<=fdr].copy() cols = [ 'num_var', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df', 'variant_id', 'tss_distance', 'ma_samples', 'ma_count', 'af', 'pval_nominal', 'slope', 'slope_se', 'pval_perm', 'pval_beta', ] if group_s is not None: cols += ['group_id', 'group_size'] signif_df = signif_df[cols] signif_threshold = signif_df['pval_beta'].max() # subset significant phenotypes if group_s is None: ix = phenotype_df.index[phenotype_df.index.isin(signif_df.index)] else: ix = group_s[phenotype_df.index].loc[group_s[phenotype_df.index].isin(signif_df['group_id'])].index logger.write('cis-QTL mapping: conditionally independent variants') logger.write(f' * {phenotype_df.shape[1]} samples') if group_s is None: logger.write(f' * {signif_df.shape[0]}/{cis_df.shape[0]} significant phenotypes') else: logger.write(f' * {signif_df.shape[0]}/{cis_df.shape[0]} significant groups') logger.write(f' {len(ix)}/{phenotype_df.shape[0]} phenotypes') group_dict = group_s.to_dict() logger.write(f' * {covariates_df.shape[1]} covariates') logger.write(f' * {genotype_df.shape[0]} variants') if maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter') if random_tiebreak: logger.write(f' * randomly selecting top variant in case of ties') phenotype_df = phenotype_df.loc[ix] phenotype_pos_df = phenotype_pos_df.loc[ix] genotype_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype_df.columns]) genotype_ix_t = torch.from_numpy(genotype_ix).to(device) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] ix_dict = {i:k for k,i in enumerate(genotype_df.index)} # permutation indices n_samples = phenotype_df.shape[1] ix = np.arange(n_samples) if seed is not None: logger.write(f' * using seed {seed}') np.random.seed(seed) permutation_ix_t = torch.LongTensor(np.array([np.random.permutation(ix) for i in range(nperm)])).to(device) res_df = [] igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, group_s=group_s, window=window) if igc.n_phenotypes == 0: raise ValueError('No valid phenotypes found.') logger.write(' * computing independent QTLs') start_time = time.time() if group_s is None: for k, (phenotype, genotypes, genotype_range, phenotype_id) in enumerate(igc.generate_data(verbose=verbose), 1): # copy genotypes to GPU phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) genotype_range = genotype_range[mask] # 1) forward pass forward_df = [signif_df.loc[phenotype_id]] # initialize results with top variant covariates = covariates_df.values.copy() # initialize covariates dosage_dict = {} while True: # add variant to covariates variant_id = forward_df[-1]['variant_id'] ig = genotype_df.values[ix_dict[variant_id], genotype_ix].copy() m = ig == -1 ig[m] = ig[~m].mean() dosage_dict[variant_id] = ig covariates = np.hstack([covariates, ig.reshape(-1,1)]).astype(np.float32) dof = phenotype_df.shape[1] - 2 - covariates.shape[1] residualizer = Residualizer(torch.tensor(covariates, dtype=torch.float32).to(device)) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) r_nominal, std_ratio, var_ix, r2_perm, g = [i.cpu().numpy() for i in res] x = calculate_beta_approx_pval(r2_perm, r_nominal*r_nominal, dof) # add to list if empirical p-value passes significance threshold if x[0] <= signif_threshold: var_ix = genotype_range[var_ix] variant_id = variant_df.index[var_ix] tss_distance = variant_df['pos'].values[var_ix] - igc.phenotype_tss[phenotype_id] res_s = prepare_cis_output(r_nominal, r2_perm, std_ratio, g, genotypes.shape[0], dof, variant_id, tss_distance, phenotype_id, nperm=nperm) res_s[['pval_beta', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df']] = x forward_df.append(res_s) else: break forward_df = pd.concat(forward_df, axis=1, sort=False).T dosage_df = pd.DataFrame(dosage_dict) # 2) backward pass if forward_df.shape[0]>1: back_df = [] variant_set = set() for k,i in enumerate(forward_df['variant_id'], 1): covariates = np.hstack([ covariates_df.values, dosage_df[np.setdiff1d(forward_df['variant_id'], i)].values, ]) dof = phenotype_df.shape[1] - 2 - covariates.shape[1] residualizer = Residualizer(torch.tensor(covariates, dtype=torch.float32).to(device)) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) r_nominal, std_ratio, var_ix, r2_perm, g = [i.cpu().numpy() for i in res] var_ix = genotype_range[var_ix] variant_id = variant_df.index[var_ix] x = calculate_beta_approx_pval(r2_perm, r_nominal*r_nominal, dof) if x[0] <= signif_threshold and variant_id not in variant_set: tss_distance = variant_df['pos'].values[var_ix] - igc.phenotype_tss[phenotype_id] res_s = prepare_cis_output(r_nominal, r2_perm, std_ratio, g, genotypes.shape[0], dof, variant_id, tss_distance, phenotype_id, nperm=nperm) res_s[['pval_beta', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df']] = x res_s['rank'] = k back_df.append(res_s) variant_set.add(variant_id) if len(back_df)>0: res_df.append(pd.concat(back_df, axis=1, sort=False).T) else: # single independent variant forward_df['rank'] = 1 res_df.append(forward_df) else: # grouped phenotypes for k, (phenotypes, genotypes, genotype_range, phenotype_ids, group_id) in enumerate(igc.generate_data(verbose=verbose), 1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) genotype_range = genotype_range[mask] # 1) forward pass forward_df = [signif_df[signif_df['group_id']==group_id].iloc[0]] # initialize results with top variant covariates = covariates_df.values.copy() # initialize covariates dosage_dict = {} while True: # add variant to covariates variant_id = forward_df[-1]['variant_id'] ig = genotype_df.values[ix_dict[variant_id], genotype_ix].copy() m = ig == -1 ig[m] = ig[~m].mean() dosage_dict[variant_id] = ig covariates = np.hstack([covariates, ig.reshape(-1,1)]).astype(np.float32) dof = phenotype_df.shape[1] - 2 - covariates.shape[1] residualizer = Residualizer(torch.tensor(covariates, dtype=torch.float32).to(device)) # iterate over phenotypes buf = [] for phenotype, phenotype_id in zip(phenotypes, phenotype_ids): phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) res = [i.cpu().numpy() for i in res] # r_nominal, std_ratio, var_ix, r2_perm, g res[2] = genotype_range[res[2]] buf.append(res + [genotypes.shape[0], phenotype_id]) res_s = _process_group_permutations(buf, variant_df, igc.phenotype_tss[phenotype_ids[0]], dof, group_id, nperm=nperm) # add to list if significant if res_s['pval_beta'] <= signif_threshold: forward_df.append(res_s) else: break forward_df = pd.concat(forward_df, axis=1, sort=False).T dosage_df = pd.DataFrame(dosage_dict) # 2) backward pass if forward_df.shape[0]>1: back_df = [] variant_set = set() for k,variant_id in enumerate(forward_df['variant_id'], 1): covariates = np.hstack([ covariates_df.values, dosage_df[np.setdiff1d(forward_df['variant_id'], variant_id)].values, ]) dof = phenotype_df.shape[1] - 2 - covariates.shape[1] residualizer = Residualizer(torch.tensor(covariates, dtype=torch.float32).to(device)) # iterate over phenotypes buf = [] for phenotype, phenotype_id in zip(phenotypes, phenotype_ids): phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) res = [i.cpu().numpy() for i in res] # r_nominal, std_ratio, var_ix, r2_perm, g res[2] = genotype_range[res[2]] buf.append(res + [genotypes.shape[0], phenotype_id]) res_s = _process_group_permutations(buf, variant_df, igc.phenotype_tss[phenotype_ids[0]], dof, group_id, nperm=nperm) if res_s['pval_beta'] <= signif_threshold and variant_id not in variant_set: res_s['rank'] = k back_df.append(res_s) variant_set.add(variant_id) if len(back_df)>0: res_df.append(pd.concat(back_df, axis=1, sort=False).T) else: # single independent variant forward_df['rank'] = 1 res_df.append(forward_df) res_df = pd.concat(res_df, axis=0, sort=False) res_df.index.name = 'phenotype_id' logger.write(f' Time elapsed: {(time.time()-start_time)/60:.2f} min') logger.write('done.') return res_df.reset_index().astype(output_dtype_dict) ``` #### File: tensorqtl/tensorqtl/coloc.py ```python import numpy as np import pandas as pd import scipy.stats as stats import torch import os import time import sys sys.path.insert(1, os.path.dirname(__file__)) import genotypeio, eigenmt from core import * def logsumexp(x, dim=0): mmax,_ = torch.max(x, dim=dim, keepdim=True) return mmax + (x-mmax).exp().sum(dim, keepdim=True).log() def logdiff(x, y, dim=0): xmax,_ = torch.max(x, dim=dim, keepdim=True) ymax,_ = torch.max(y, dim=dim, keepdim=True) mmax = torch.max(xmax, ymax) return mmax + ((x - mmax).exp() - (y - mmax).exp()).log() def coloc(genotypes1_t, genotypes2_t, phenotype1_t, phenotype2_t, residualizer1=None, residualizer2=None, mode='beta', p1=1e-4, p2=1e-4, p12=1e-5): """COLOC from summary statistics (either beta/sds or p-values and MAF)""" assert phenotype1_t.dim() == 1 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # phenotype 1 if mode == 'beta': r_nominal_t, genotype_var_t, phenotype_var_t = calculate_corr( genotypes1_t, phenotype1_t.reshape(1,-1), residualizer1, return_var=True) r_nominal_t = r_nominal_t.squeeze() var_ratio_t = phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1) else: r_nominal_t = calculate_corr(genotypes1_t, phenotype1_t.reshape(1,-1), residualizer1, return_var=False).squeeze() r2_nominal_t = r_nominal_t.double().pow(2) if residualizer1 is not None: dof = residualizer1.dof else: dof = phenotype1_t.shape[0] - 2 if mode == 'beta': tstat2_t = r2_nominal_t * dof / (1 - r2_nominal_t) beta2_t = r2_nominal_t * var_ratio_t.squeeze() beta_var_t = beta2_t / tstat2_t var_prior = 0.0225 * phenotype_var_t r = var_prior / (var_prior + beta_var_t) l1 = 0.5 * ((1 - r).log() + r*tstat2_t) else: # compute p-values and z-score to match COLOC results exactly # (instead of directly using t-statistic) tstat_t = r_nominal_t * torch.sqrt(dof / (1 - r2_nominal_t)) p = stats.t.cdf(-np.abs(tstat_t.cpu().numpy()), dof) # 2 dropped since canceled in isf maf_t = calculate_maf(genotypes1_t) N = phenotype1_t.shape[0] v = 1 / (2 * N * maf_t * (1 - maf_t)) z2_t = torch.Tensor(stats.norm.isf(p)**2).to(device) r = 0.0225 / (0.0225 + v) l1 = 0.5 * ((1 - r).log() + r*z2_t) # phenotype 2 if phenotype2_t.dim() == 1: num_phenotypes = 1 num_samples = phenotype2_t.shape[0] phenotype2_t = phenotype2_t.reshape(1,-1) else: num_phenotypes, num_samples = phenotype2_t.shape if mode == 'beta': r_nominal_t, genotype_var_t, phenotype_var_t = calculate_corr( genotypes2_t, phenotype2_t, residualizer2, return_var=True) r_nominal_t = r_nominal_t.squeeze() var_ratio_t = phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1) else: r_nominal_t = calculate_corr(genotypes2_t, phenotype2_t, residualizer2, return_var=False).squeeze() r2_nominal_t = r_nominal_t.double().pow(2) if residualizer2 is not None: dof = residualizer2.dof else: dof = num_samples - 2 if mode == 'beta': tstat2_t = r2_nominal_t * dof / (1 - r2_nominal_t) beta2_t = r2_nominal_t * var_ratio_t.squeeze() beta_var_t = beta2_t / tstat2_t var_prior = 0.0225 * phenotype_var_t r = var_prior / (var_prior + beta_var_t) l2 = 0.5 * ((1 - r).log() + r*tstat2_t) else: tstat_t = r_nominal_t * torch.sqrt(dof / (1 - r2_nominal_t)) p = stats.t.cdf(-np.abs(tstat_t.cpu().numpy()), dof) maf_t = calculate_maf(genotypes2_t) v = 1 / (2 * num_samples * maf_t * (1 - maf_t)) z2_t = torch.Tensor(stats.norm.isf(p)**2).to(device) r = 0.0225 / (0.0225 + v) if num_phenotypes > 1: r = r.reshape(-1,1) l2 = 0.5 * ((1 - r).log() + r*z2_t) if num_phenotypes > 1: lsum = l1.reshape(-1,1) + l2 lh0_abf = torch.zeros([1, num_phenotypes]).to(device) lh1_abf = np.log(p1) + logsumexp(l1).repeat([1, num_phenotypes]) else: lsum = l1 + l2 lh0_abf = torch.zeros([1]).to(device) lh1_abf = np.log(p1) + logsumexp(l1) lh2_abf = np.log(p2) + logsumexp(l2) lh3_abf = np.log(p1) + np.log(p2) + logdiff(logsumexp(l1) + logsumexp(l2), logsumexp(lsum)) lh4_abf = np.log(p12) + logsumexp(lsum) all_abf = torch.cat([lh0_abf, lh1_abf, lh2_abf, lh3_abf, lh4_abf]) return (all_abf - logsumexp(all_abf, dim=0)).exp().squeeze() def run_pairs(genotype_df, variant_df, phenotype1_df, phenotype2_df, phenotype_pos_df, covariates1_df=None, covariates2_df=None, p1=1e-4, p2=1e-4, p12=1e-5, mode='beta', maf_threshold=0, window=1000000, batch_size=10000, logger=None, verbose=True): """Compute COLOC for all phenotype pairs""" assert np.all(phenotype1_df.index == phenotype2_df.index) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if logger is None: logger = SimpleLogger() logger.write('Computing COLOC for all pairs of phenotypes') logger.write(f' * {phenotype1_df.shape[0]} phenotypes') logger.write(f' * phenotype group 1: {phenotype1_df.shape[1]} samples') logger.write(f' * phenotype group 2: {phenotype2_df.shape[1]} samples') if covariates1_df is not None: assert np.all(phenotype1_df.columns == covariates1_df.index) logger.write(f' * phenotype group 1: {covariates1_df.shape[1]} covariates') residualizer1 = Residualizer(torch.tensor(covariates1_df.values, dtype=torch.float32).to(device)) else: residualizer1 = None if covariates2_df is not None: assert np.all(phenotype2_df.columns == covariates2_df.index) logger.write(f' * phenotype group 2: {covariates2_df.shape[1]} covariates') residualizer2 = Residualizer(torch.tensor(covariates2_df.values, dtype=torch.float32).to(device)) else: residualizer2 = None if maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter (in at least one cohort)') genotype1_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype1_df.columns]) genotype1_ix_t = torch.from_numpy(genotype1_ix).to(device) genotype2_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype2_df.columns]) genotype2_ix_t = torch.from_numpy(genotype2_ix).to(device) igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype1_df, phenotype_pos_df, window=window) coloc_df = [] start_time = time.time() logger.write(' * Computing pairwise colocalization') for phenotype1, genotypes, genotype_range, phenotype_id in igc.generate_data(verbose=verbose): phenotype2 = phenotype2_df.loc[phenotype_id] # copy to GPU phenotype1_t = torch.tensor(phenotype1, dtype=torch.float).to(device) phenotype2_t = torch.tensor(phenotype2, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes1_t = genotypes_t[:,genotype1_ix_t] genotypes2_t = genotypes_t[:,genotype2_ix_t] del genotypes_t # filter monomorphic sites m = ((genotypes1_t==0).all(1) | (genotypes1_t==1).all(1) | (genotypes1_t==2).all(1) | (genotypes2_t==0).all(1) | (genotypes2_t==1).all(1) | (genotypes2_t==2).all(1)) genotypes1_t = genotypes1_t[~m] genotypes2_t = genotypes2_t[~m] impute_mean(genotypes1_t) impute_mean(genotypes2_t) if maf_threshold > 0: maf1_t = calculate_maf(genotypes1_t) maf2_t = calculate_maf(genotypes2_t) mask_t = (maf1_t >= maf_threshold) | (maf2_t >= maf_threshold) genotypes1_t = genotypes1_t[mask_t] genotypes2_t = genotypes2_t[mask_t] coloc_t = coloc(genotypes1_t, genotypes2_t, phenotype1_t, phenotype2_t, residualizer1=residualizer1, residualizer2=residualizer2, p1=p1, p2=p2, p12=p12, mode=mode) coloc_df.append(coloc_t.cpu().numpy()) logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) coloc_df = pd.DataFrame(coloc_df, columns=[f'pp_h{i}_abf' for i in range(5)], index=phenotype1_df.index) logger.write('done.') return coloc_df ``` #### File: tensorqtl/tensorqtl/mixqtl.py ```python import numpy as np import pandas as pd import os import sys sys.path.insert(1, os.path.dirname(__file__)) import cis from core import * def trc(genotypes_t, counts_t, covariates_t=None, select_covariates=True, count_threshold=0, imputation='offset', mode='standard', return_af=False): """ Inputs genotypes_t: dosages (variants x samples) counts_t: DESeq size factor-normalized read counts covariates_t: covariates matrix, first column must be intercept mode: if 'standard', parallel regression for each variant in genotypes_t if 'multi', multiple regression for all variants in genotypes_t Outputs: t-statistic, beta, beta_se {af, ma_samples, ma_counts} (mode='standard') beta, beta_se (mode='multi') """ nonzero_t = counts_t != 0 if imputation == 'offset': log_counts_t = counts_t.log1p() elif imputation == 'half_min': log_counts_t = counts_t.clone() log_counts_t[~nonzero_t] = log_counts_t[nonzero_t].min() / 2 log_counts_t = log_counts_t.log() if covariates_t is not None: if select_covariates: # select significant covariates b_t, b_se_t = linreg(covariates_t[nonzero_t, :], log_counts_t[nonzero_t], dtype=torch.float32) tstat_t = b_t / b_se_t m = tstat_t.abs() > 2 m[0] = True # keep intercept sel_covariates_t = covariates_t[:, m] else: sel_covariates_t = covariates_t # Regress out covariates from non-zero counts, and keep zeros. # This follows the original mixQTL implementation, but may be # problematic when count_threshold is 0. residualizer = Residualizer(sel_covariates_t[nonzero_t, 1:]) # exclude intercept y_t = counts_t.clone() y_t[nonzero_t] = residualizer.transform(log_counts_t[nonzero_t].reshape(1,-1), center=True) else: y_t = log_counts_t m_t = counts_t >= count_threshold if mode == 'standard': res = cis.calculate_cis_nominal(genotypes_t[:, m_t] / 2, y_t[m_t], return_af=False) if return_af: af, ma_samples, ma_counts = get_allele_stats(genotypes_t) return *res, af, ma_samples, ma_counts else: return res elif mode.startswith('multi'): X_t = torch.cat([torch.ones([m_t.sum(), 1], dtype=bool).to(genotypes_t.device), genotypes_t[:, m_t].T / 2], axis=1) b_t, b_se_t = linreg(X_t, y_t[m_t], dtype=torch.float32) return b_t[1:], b_se_t[1:] ```
{ "source": "josephlbarnett/sgqlc", "score": 2 }
#### File: sgqlc/types/relay.py ```python __docformat__ = 'reStructuredText en' __all__ = ('Node', 'PageInfo', 'Connection', 'connection_args') from . import Type, Interface, non_null, ArgDict, String, Int class Node(Interface): '''Global Object Identification based on Relay specification. https://facebook.github.io/relay/graphql/objectidentification.htm ''' id = non_null(id) # noqa: A003 class PageInfo(Type): ''':class:`Connection` page information. https://facebook.github.io/relay/graphql/connections.htm ''' end_cursor = str start_cursor = str has_next_page = non_null(bool) has_previous_page = non_null(bool) class Connection(Type): '''Cursor Connections based on Relay specification. https://facebook.github.io/relay/graphql/connections.htm .. note:: This class exposes ``+=`` (in-place addition) operator to append information from another connection into this. The usage is as follow, if ``obj.connection.page_info.has_next_page``, then you should query the next page using ``after=obj.connection.page_info.end_cursor``. The resulting object should be ``obj.connection += obj2.connection``, this will add the contents of ``obj2.connection`` to ``obj.connection``, resetting ``obj.connection.page_info.has_next_page``, ``obj.connection.page_info.end_cursor`` and the JSON backing store, if any. ''' __auto_register = False # do not expose this in Schema, just subclasses page_info = non_null(PageInfo) def __iadd__(self, other): # NOTE: assign to list, not '+=', so ContainerType.__setattr__() # is called to apply to backing store has_self_nodes = hasattr(self, 'nodes') and self.nodes is not None has_other_nodes = hasattr(other, 'nodes') and other.nodes is not None if has_self_nodes and has_other_nodes: self.nodes = self.nodes + other.nodes elif has_other_nodes: self.nodes = other.nodes has_self_edges = hasattr(self, 'edges') and self.edges is not None has_other_edges = hasattr(other, 'edges') and other.edges is not None if has_self_edges and has_other_edges: self.edges = self.edges + other.edges elif has_other_edges: self.edges = other.edges has_self_page_info = hasattr(self, 'page_info') and \ self.page_info is not None has_other_page_info = hasattr(other, 'page_info') and \ other.page_info is not None if has_self_page_info and has_other_page_info: self.page_info.end_cursor = other.page_info.end_cursor self.page_info.has_next_page = other.page_info.has_next_page elif has_other_page_info: self.page_info = other.page_info return self def connection_args(*lst, **mapping): '''Returns the default parameters for connection. Extra parameters may be given as argument, both as iterable, positional tuples or mapping. By default, provides: - ``after: String`` - ``before: String`` - ``first: Int`` - ``last: Int`` ''' pd = ArgDict(*lst, **mapping) pd.setdefault('after', String) pd.setdefault('before', String) pd.setdefault('first', Int) pd.setdefault('last', Int) return pd ```
{ "source": "josephlee222/py-project", "score": 2 }
#### File: josephlee222/py-project/ASP_Project_testcase.py ```python import unittest import grp1_ASP_Project as prog class testMyProgram(unittest.TestCase): def test_topTotals(self): self.assertEqual(5934194, prog.findCountries.top3_total) def test_topMean(self): self.assertEqual(1978066, prog.findCountries.top3_mean) if __name__ == '__main__': unittest.main() ```
{ "source": "josephlee3454/web-scraping", "score": 3 }
#### File: josephlee3454/web-scraping/scraping.py ```python import requests # requests library # print(requests) from bs4 import BeautifulSoup as b_soup # print(b_soup) URL = 'https://en.wikipedia.org/wiki/Washington_(state)' response = requests.get(URL) # print(response) content = response.content # bringing in unparsed data # print(content) soup = b_soup(content, 'html.parser') # parsed data but still kinda krazy with a k # print(soup.prettify()) # div id = "bodyContent" class = "mw-body-content" # citation_content = soup.find_all(class_="noprint Inline-Template Template-Fact") # print(citation_content) new_list = [] def get_citations_needed_count(): citation_content = soup.find_all(class_="noprint Inline-Template Template-Fact") new_list.append(citation_content) number_of_occurences = len(citation_content) # print(citation_content) return new_list def get_citations_needed_report(): citation_content_1 = new_list[0][0] print("first cite" + citation_content_1.text.strip()) citation_content_2 = new_list[0][1] print("second cite" + citation_content_2.text.strip()) citation_content_3 = new_list[0][2] print("third cite" + citation_content_3.text.strip()) citation_content_4 = new_list[0][3] print("fourth cite" + citation_content_4.text.strip()) citation_content_5 = new_list[0][4] print("fith cite" + citation_content_5.text.strip()) citation_content_6 = new_list[0][5] print("sixth cite" + citation_content_6.text.strip()) citation_content_7 = new_list[0][6] print("seventh cite" + citation_content_7.text.strip()) if __name__ == "__main__": get_citations_needed_count() get_citations_needed_report() ```
{ "source": "josephlewis42/magpie", "score": 2 }
#### File: plugins/hypertext2/__init__.py ```python import magpie from flask import Flask, render_template, request, url_for, redirect from magpie.plugins.abstract_plugin import AbstractPlugin import threading import pprint import json frontend_instance = None # used by flask to access methods of HTTPFrontend2 app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def upload_file(): try: if request.method == 'GET': tests = frontend_instance._magpie.test_configurations.keys() return render_template('upload.html', tests=tests, **frontend_instance._config) else: # POST doc = magpie.comm.Document("No User", frontend_instance.get_name()) file = request.files['upfile'] doc.add_file(file.filename,file) test = request.form['test'] frontend_instance._magpie.submit_document(doc, test) return render_template('results.html', document=doc, **frontend_instance._config) except Exception as e: frontend_instance._logger.exception(e) print("Exception") return (str(e)) @app.route('/config', methods=['GET']) def configure_app(): contents = "<h3>Tests<h3>" for testname, testconfig in frontend_instance._magpie.test_configurations.items(): contents += "<h4>{}</h4><pre>{}</pre>".format(testname, pprint.pformat(testconfig)) contents += "<br><a href='{}'>Delete</a>".format(url_for('delete_test', test_name=testname)) contents += "<br><a href='{}'>Edit</a>".format(url_for('edit_test', test_name=testname)) return render_template('configure.html', config = contents, **frontend_instance._config) @app.route('/edit/<test_name>', methods=['GET', 'POST']) def edit_test(test_name): if request.method == 'GET': # check to see if we're making a new config or editing an existing one testval = frontend_instance._magpie.test_configurations.get(test_name, None) if testval == None: testval = frontend_instance._magpie.make_new_test_configuration(test_name) testval = json.dumps(testval, sort_keys=True, indent=4, separators=(',', ': ')) return render_template('edit_test.html', test_name=test_name, test_value=testval, msg="", **frontend_instance._config) else: # POST testval = request.form['test'] print(testval) newtests = json.loads(testval) frontend_instance._magpie.test_configurations[test_name] = newtests return redirect(url_for('configure_app')) @app.route('/delete/<test_name>') def delete_test(test_name): if test_name in frontend_instance._magpie.test_configurations: del frontend_instance._magpie.test_configurations[test_name] return redirect(url_for('configure_app')) @app.route('/newtest', methods=['POST']) def new_test(): try: name = request.form['name'] except KeyError: name = 'New Test' return redirect(url_for('edit_test', test_name=name)) def shutdown_server(): func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() DEFAULT_CONFIG = { 'port':8080, 'host':'', 'upload_instructions':"""Welcome to the Magpie submission tool, to begin upload the file you would like processed.""", 'title':"Magpie", 'results_header':"", 'results_tail':"", 'message_of_the_day':'' } class HTTPFrontend2(AbstractPlugin): def __init__(self): global frontend_instance AbstractPlugin.__init__(self, "HTTP2", "<NAME> <<EMAIL>>", 0.1, "BSD 3 Clause", DEFAULT_CONFIG, {}) frontend_instance = self def teardown(self): '''Shuts down the plugin, should exit all threads and do all cleanup needed before closing.''' def update_config(self, *args): '''Called when the configuration for the plugin has been updated from another source. ''' AbstractPlugin.update_config(self, *args) print("http2 updating config {}".format(self._config)) try: shutdown_server() except RuntimeError: pass # not running yet. self._logger.info("Starting HTTP2 Server on Port: http://{host}:{port}".format(**self._config)) background_thread = threading.Thread(target=app.run, kwargs={'host':self._config['host'], 'port':self._config['port'], 'threaded':True}) background_thread.daemon = True background_thread.start() ```
{ "source": "josephlewis42/personal_codebase", "score": 3 }
#### File: personal_codebase/blog/dns_message.py ```python import subprocess DNS_SERVER = '8.8.8.8' DOMAIN_NAME = "www.testdnsflagsetting{}.com" NORECURSE_OPT = "+norecurse" msg = raw_input("Enter a message, or blank to receive: ") def read_byte(byteno): byte = "0b" for i in range(byteno * 8, (byteno + 1) * 8): output = subprocess.check_output(['dig','@{}'.format(DNS_SERVER), DOMAIN_NAME.format(i), NORECURSE_OPT]) if ";; AUTHORITY SECTION:" in output: byte += '1' else: byte += '0' return int(byte, 2) # converts binary to an int def write_byte(byteno, byte): to_write = bin(byte)[2:].zfill(8) # gets binary representation of a byte for loc, b in enumerate(to_write): if b == '1': i = (byteno * 8) + loc subprocess.check_output(['dig','@{}'.format(DNS_SERVER), DOMAIN_NAME.format(i)]) print "Wrote 1 at: {}".format(i) if len(msg) == 0: message = "" for byte in range(1,read_byte(0) + 1): # first byte is length of message message += chr(read_byte(byte)) if len(message) > 0: print message else: print "[No Message]" else: total = len(msg) write_byte(0, total) for loc, char in enumerate(msg): write_byte(loc + 1, ord(char)) print "Message written" ``` #### File: python/auto_summary/AutoSummary.py ```python import sys import re import argparse __author__ = "<NAME>" __copyright__ = "Copyright 2011, <NAME>" __license__ = "BSD" TOP_HUNDRED_SCORE = 0 EN_TOP = '''the be to of and a in that have i it for not on with he as you do at this but his by from they we say her she or an will my one all would there their what so up out if about who get which go me when make can like time no just him know take person into year your good some could them see other than then now look only come its over think also back after use two how our work first well way even new want because any these give day most us''' def chars_per_word(sentence): '''Returns the average characters per word.''' return float(len(sentence)) / float(len(sentence.split(' '))) def clean_text(text,leavepunct=False): # Strip to a-z A-Z (TODO: I18N). text = text.replace("\n", " ") if leavepunct: return re.sub("[^a-z.!\? ]", " ", text.strip().lower()) return re.sub("[^a-z ]", " ", text.strip().lower()) def word_frequency(text): '''Counts the frequenc of words in the piece of text, and returns a dict for each word (a-z) lowercased where the key represents the word and the number of times the word is found the value. ''' words = {} tmp = clean_text(text) # Cut to words. for word in tmp.split(): if word in words: words[word] += 1 else: words[word] = 1 return words def set_words_to_value(word_dict, top=EN_TOP, value=TOP_HUNDRED_SCORE): '''Sets the given words to the given value in the given word_dict. The default is to set the top hundred words in english to the TOP_HUNDRED_SCORE. ''' j = word_frequency(top).keys() # get the words in the top hundred text. # remove the top 100 words for w in j: words[w] = value def sentences_in(text): '''Returns a list of sentences in the text. ''' text = text.replace("\n", " ") return re.split('[\?.!]', text) def score_sentence(sentence, words): '''The scoring function, given a dictoinary of word:value pairs, creates a score for each sentence. ''' # Score value based upon words and frequencies of those words. tmp = clean_text(sentence) total = 0 for word in tmp.split(): if word in words: total += words[word] # Make the total in to a percentage. try: total /= float(len(tmp.split())) # Secret ingredient, higher characters per word generally means # more important sentence. total *= chars_per_word(tmp) return total except ZeroDivisionError: return -100 def top_sentences(text, word_freq_dict): '''Returns a sorted list with the top rated sentences first, that contains the tuples (score, sentence_location, sentence_text) For example, the sentence "Call me Ishmael" would come back: (1.8304283, 0, "Call me Ishmael.") 0 would mean it was the first sentence in the text, and it had a score of 1.83... ''' sentences = [] # array of tuples (total score, sentence num, sentence text) known_sentences = set() currs = 0 for s in sentences_in(text): currs += 1 # Increment the current sentence. total = score_sentence(s, words) # Don't add duplicate sentences. s = s.strip() if s not in known_sentences: sentences.append((total, currs, s+".")) known_sentences.add(s) # Sort highest rated sentences to lowest. sentences = sorted(sentences) sentences.reverse() return sentences def __combine_summary(summary): '''Combines a summary in to a meaningful paragraph. A summary is an array of tuples with values of (position of sentence, text). This creates better summary paragraphs by ordering important sentences in the order they were originally. ''' summary = sorted(summary) paragraph = "" for l, s in summary: paragraph += s + " " return paragraph def percentage_top(percentage, sorted_sentences): '''Returns the top rated percentage of the given sentences, in paragraph form. i.e. to get the top 25 percent of a text, call with: percentage_top(25, <list from top_sentences>) ''' percentage = percentage / 100.0 num_sentences = int(len(sorted_sentences)*percentage) + 1 if num_sentences >= len(sorted_sentences): num_sentences = len(sorted_sentences) # Create summary (top x sentences) summary = [] for j in range(num_sentences): t,l,s = sorted_sentences[j] summary.append((l,s)) return __combine_summary(summary) def top_words(num_words, sorted_sentences): '''Returns x number of words from the top sentences.''' summary = [] words = 0 try: for t,l,s in sorted_sentences: if words >= num_words: break words += len(s.split()) summary.append((l,s)) except IndexError: pass return __combine_summary(summary) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Creates summaries from documents by magic.') parser.add_argument('-p','--percent', type=int, default=None, help='the percent of the original document to give as a summary') parser.add_argument('-w', '--words', type=int, default=None, help='the number of words to output as a summary') parser.add_argument('PATH', help='the path of the textfile to read from') args = parser.parse_args() try: if args.PATH: text = open(args.PATH).read() words = word_frequency(text) set_words_to_value(words) sentences = top_sentences(text, words) if args.words: print top_words(args.words, sentences) if args.percent: if args.words: print "\n\n" print percentage_top(args.percent, sentences) except IOError: print "File given can't be found." ``` #### File: personal_codebase/python/distributed_hash_table.py ```python import SocketServer, subprocess, sys from threading import Thread HASH_LENGTH = 32 NUM_HASHES = 2**HASH_LENGTH START_HASH = 0 END_HASH = 0 port = 8000 next_host = "" next_port = "" prev_host = "" prev_port = "" hashed_items = {} def recv_all(socket): total_data=[] while True: data = socket.recv(1024) if not data: break total_data.append(data) return "".join(total_data) def pipe_command(request, host, port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) sock.send(request) response = recv_all(sock) sock.close() return response class SingleTCPHandler(SocketServer.BaseRequestHandler): "One instance per connection. Override handle(self) to customize action." def handle(self): # self.request is the client connection cmd = self.read_token() # read the command cmd = cmd.upper() if cmd == "SEARCH": self.search() elif cmd == "SET_LEFT": self.set_left() elif cmd == "SET_RIGHT": self.set_right() elif cmd == "STORE": self.store() elif cmd == "DELETE": self.delete() self.request.close() def read_token(self): """Reads a token from the input, discarding beginning whitespace and consuming a single whitepsace character after the token """ WHITESPACE = " \t\r\n" data = "" char = self.request.recv(1) while char in WHITESPACE: char = self.request.recv(1) while char not in WHITESPACE and char is not None: data += char char = self.request.recv(1) return data def hash_in_range(self, hashvalue): return hashvalue >= START_HASH and hashvalue < END_HASH def search(self): hashvalue = int(self.read_token()) if self.hash_in_range(hashvalue): if hashvalue in hashed_items: self.request.send(hashed_items[hashvalue]) else: self.request.send(pipe_command("SEARCH " + str(hashvalue), next_host, next_port)) def set_left(self): prev_host = self.read_token() prev_port = int(self.read_token()) def set_right(self): next_host = self.read_token() next_port = int(self.read_token()) def store(self): hashvalue = int(self.read_token()) data = recv_all(self.request) if self.hash_in_range(hashvalue): hashed_items[hashvalue] = data print("stored: {}".format(hashvalue)) else: self.request.send(pipe_command("STORE " + str(hashvalue) + " " + data, next_host, next_port)) def delete(self): hashvalue = int(self.read_token()) if self.hash_in_range(hashvalue): hashed_items[hashvalue] = None print("deleted: {}".format(hashvalue)) else: self.request.send(pipe_command("DELETE " + str(hashvalue) + " ", next_host, next_port)) class SimpleServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): # Ctrl-C will cleanly kill all spawned threads daemon_threads = True # much faster rebinding allow_reuse_address = True def __init__(self, server_address, RequestHandlerClass): SocketServer.TCPServer.__init__(self, server_address, RequestHandlerClass) if __name__ == "__main__": nodeid = int(sys.argv[1]) maxnodes = int(sys.argv[2]) port = int(sys.argv[3]) keyspace = NUM_HASHES / maxnodes START_HASH = nodeid * keyspace END_HASH = (nodeid + 1) * keyspace print("taking hashes between: {} and {} on port {}".format(START_HASH, END_HASH, port)) server = SimpleServer(("", port), SingleTCPHandler) server.serve_forever() ``` #### File: personal_codebase/python/dns.py ```python import socket import time UDP_IP = 'localhost' UDP_PORT = 53 #53 is the standard for DNS. BUFFER_SIZE = 1024 LOG_FILENAME = "DNS.log" qdb = {'google.p2p':'172.16.17.32','home.p2p':'192.168.127.12','localhost.p2p':'127.0.0.1'} class DNS(): ''' This class is for creating a simple DNS server.''' def start(self): '''Starts the DNS and gets it listening.''' try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind( (UDP_IP, UDP_PORT) ) print("Server starts at: %s:%d" % (UDP_IP, UDP_PORT)) self.log_time() except socket.error,e: print("Error connecting to socket: %s" % (e)) exit() while True: #Accept Unlimited Connections try: #If the connection closes before ready it will cause an error. #Receive data data, addr = s.recvfrom(BUFFER_SIZE) #If there is garbage notify the admin. if not data: break #Get a response. query, ip, packet = self.proc_data(data) #Send the packet back. self.log(str(addr) + " : " + query + " <--> " + ip) s.sendto(packet, addr) except KeyboardInterrupt: print("Control + c pressed exit() called...") self.log_time() exit() except: self.log("Connection error, possibly a portscan.") self.log_time() def log_time(self): '''Logs the current time.''' self.log('Time UTC: ' + str(time.asctime(time.gmtime())) + "\n") self.log('Time Local: ' + str(time.asctime(time.localtime())) + "\n") def log(self, data): '''Logs any data sent to the file specified by LOG_FILENAME.''' print( str( data.replace("\n", "") ) ) #Give visual feedback. log_file = open(LOG_FILENAME, 'a') log_file.write( str(data) ) log_file.close() def proc_data(self, data): ''' Processes the data. Return the return packet as a string. and the query site. This is what the original packet looks like (taken from the rfc). http://www.faqs.org/rfcs/rfc1035.html 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ID | char 0,1 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |QR| Opcode |AA|TC|RD|RA| Z | RCODE | char 2,3 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | QDCOUNT | char 4,5 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ANCOUNT | char 6,7 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | NSCOUNT | char 8,9 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ | ARCOUNT | char 10,11 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ ''' #First 16 bits are query ID qid = data[0:2] #Next sixteen bits are query info (changes to strings of bits) first = bin(ord(data[2]))[2:] second = bin(ord(data[3]))[2:] #Query or response? qr = bool(int(first[0])) #Opcode (0,1 or 2) remove all but first four bits #opcode = eval('0b'+first[1:5]) opcode = (ord(data[2]) >> 3) & 15 #QDCOUNT an unsigned 16 bit integer specifying the number of # entries in the question section. qdcount = data[4:6] #ANCOUNT an unsigned 16 bit integer specifying the number of # resource records in the answer section. ancount = data[6:8] #NSCOUNT an unsigned 16 bit integer specifying the number of name # server resource records in the authority records # section. nscount = data[8:10] #ARCOUNT an unsigned 16 bit integer specifying the number of # resource records in the additional records section. arcount = data[10:12] #Query (for now assume that there is only one) #Query starts with a number of characters, then prints that #number of chars, then another number, then prints that, etc #until we get a 0 query = '' pos=12 length=ord(data[pos]) while length: query += data[pos+1 : pos+length+1] + '.' pos += length + 1 length = ord(data[pos]) #Remove trailing dot. query = query[:-1] #Only look up our domains if query.endswith('.p2p') and not query.endswith('.icann.p2p'): try: if query.startswith('www.'): #Save db space by not storing wwws query = query[4:] ip = qdb[query] except: self.log("Query not in DB: %s" % (query)) ip = '0.0.0.0' else: try: ip = socket.gethostbyname(query) except: #Can't reach dns, just send back nothing. ip = '0.0.0.0' #CONSTRUCT RESPONSE: response = '' #Add the query id response += qid #Add response header. # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 #|QR| Opcode |AA|TC|RD|RA| Z | RCODE | response += chr(0b10000000) + chr(0b0000000) #Add qd count response += qdcount #Add answer count (same as qd count) FIXME Will fail with more than one msg. response += qdcount #Add aanswer coundt response += chr(0b0) + chr(0b0) + chr(0b0) + chr(0b0) #Add original question response += data[12:] #Add pointer for message compression: #See RFC Section 4.1.4. Message compression response += chr(0b11000000) + chr(0b1100) #TYPE two octets containing one of the RR type codes. This # field specifies the meaning of the data in the RDATA # field. response += chr(0b00000000) + chr(0b00000001) #CLASS two octets which specify the class of the data in the # RDATA field. response += chr(0b00000000) + chr(0b00000001) #TTL a 32 bit unsigned integer that specifies the time # interval (in seconds) that the resource record may be # cached before it should be discarded. Zero values are # interpreted to mean that the RR can only be used for the # transaction in progress, and should not be cached. # #This should be the same length of time until next DNS cache update, for #now don't cache. response += chr(0b00000000) + chr(0b00000000) + chr(0b00000000) + chr(0b00000000) #RDLENGTH an unsigned 16 bit integer that specifies the length in # octets of the RDATA field. # #For now this is 4 bytes (size of an ip address) response += chr(0b00000000) + chr(0b00000100) #RDATA a variable length string of octets that describes the # resource. The format of this information varies # according to the TYPE and CLASS of the resource record. # For example, the if the TYPE is A and the CLASS is IN, # the RDATA field is a 4 octet ARPA Internet address. response += socket.inet_aton(ip) return (query, ip, response) if __name__ == "__main__": print("Simple DNS server written by <NAME> <<EMAIL>>") value = "" while value != 'y' and value != 'n': value = raw_input("Do you want to bind externally y/n?") if value == 'y': #Find our external ip s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('google.com', 80)) UDP_IP = s.getsockname()[0] else: UDP_IP = 'localhost' DNS().start() ``` #### File: python/gamebot/games_db.py ```python import sqlite3 import time import re conn = None # Connection to the games db. cursor = None #The cursor for games def setup(): '''Sets up the games database (connects, etc.)''' global conn global cursor conn = sqlite3.connect('games_db.sqlite') conn.row_factory = sqlite3.Row #Produce dicts of data rather than tuples cursor = conn.cursor() #If the database isn't set up, create the new tables. try: #Is this database set up? cursor.execute("select * from Games") except sqlite3.OperationalError: ''' ==Database Layout== TABLE: Games name (name of the game) date (date last accessed) file (blob of this file) ''' cursor.execute('''create table Games (name text, date numeric, file blob)''') setup() def cleanup(t): '''Removes games older than the given time (UNIX time).''' #Remove all deleted nodes cursor.execute("DELETE FROM Games WHERE date<?",(t,)) # Clean up the database. cursor.execute("VACUUM") conn.commit() def empty(): '''Completely cleans the database.''' cleanup(time.time()) def __clean_name(name): return re.sub('[^a-z1-9]', '', name.lower().strip()) def add(name, blob): '''Adds a game to the database.''' b = sqlite3.Binary(blob) #Convert the input to a blob. #Clean up the name to be very simple (for easier searching) name = __clean_name(name) cursor.execute("INSERT INTO Games (name, date, file) VALUES (?, ?, ?)", (name, int(time.time()), b)) conn.commit() def find(name): '''Finds the game with the given name, returns the binary if possible, if not returns None. ''' name = __clean_name(name) cursor.execute("SELECT * FROM Games WHERE Name=?",(name,)) row = cursor.fetchone() if row != None: return row['file'] return None def random_names(): '''Returns a list of the names of 10 random games.''' cursor.execute("SELECT name FROM Games ORDER BY RANDOM() LIMIT 10") names = [] for n in cursor.fetchall(): names.append(n['name']) return names ``` #### File: python/gamebot/game_searcher.py ```python import codescraper DEBUGGING = True class NoResultsException(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class GameSearcher: '''The game searcher class provides a framework for searching Google for swfs.''' _page_list = [] _list_loc = 0 _next_page = 0 _game_query = "" _current_url = "" #The current swf's url. max_recursion = 30 #Number of pages to search until saying there is no game current_recursion = 0 def _clear_current_search(self): '''Clears the current game search.''' self._page_list = [] self._list_loc = 0 self._next_page = 0 self._game_query = "" def _get_more_games(self): #Get google page, and get potential paths query = self._game_query + "&start=" + str(self._next_page) page_text = codescraper.fetch_page(query) #There are 10 results per page, so the next page should be 10 results further along. self._next_page += 10 #This gets all the text between the tags given on the page. url_list = codescraper.return_between("<cite>", "</cite>", page_text) if url_list == []: raise NoResultsException, "No results found!" for a in url_list: #Google sometimes puts html tags in their cite tags like <b> #since these will become messy when you try to create urls from it #we need to remove them. a = codescraper.remove_HTML_tags(a) self._page_list.append(a) def _get_next_game_url(self): '''Creates a url for the next game on the list.''' try: url = 'http://' + self._page_list[self._list_loc] except IndexError: #Index out of bounds. self._get_more_games() return self._get_next_game_url() self._list_loc += 1 return url def get_next_game(self): self.current_recursion += 1 #Get the next game url url = self._get_next_game_url() if url == None: return None #Get the content type as told by the webserver. ct = codescraper.url_content_type(url) if ct in ["application/x-shockwave-flash", "text/html; charset=iso-8859-1"]: self._current_url = url #Remember the current url. return url return self.get_next_game() def get_current_game(self): return self._current_url def search_for_games(self, query): '''Searches for games with the current query''' #Clean the current search self._clear_current_search() #Build google query query = query.replace("%20", "+") self._game_query = "http://www.google.com/search?q=" + query + "+filetype%3Aswf&hl=en&num=10" #Populate the list so the first request will be faster. self._get_more_games() if __name__ == "__main__": print("Running breaking tests.") g = GameSearcher() g.search_for_games("blah blah all good things happen to great people hannah") while(g._list_loc < 1): print g.get_next_game() print("Running bubble tanks tests.") g.search_for_games("bubble%20tanks") while(g._list_loc < 1): print g.get_next_game() ``` #### File: python/gamebot/games_server.py ```python import games_db import game_searcher import codescraper import re import email_fetch gs = game_searcher.GameSearcher() ef = None sofar = 0 #served so far inst = ''' <span style="text-align: center;"><h1>Game Bot</h1></span> <p>Thank you for using GAME BOT, the best (and probably only) automated game fetching service in the world. The game you requested has been attached, if nothing attached, GAME BOT couldn't find the game you requested.</p> <p><i>Sharing is caring!</i> Please forward these games to your allies, rather than having them download from GAME BOT so we can keep bandwidth costs down.</p> <p>Better yet, just start an email account (we suggest Gmail) which you and your friends share the password to, then use it to fetch and store games you all like, creating a private, secure, game collection.</p> <hr> <h3> FAQs </h3> <p> Q: This isn't the game I asked for, what happened?<br> A: GAME BOT is after all a computer, and sometimes it gets fooled.<br> <br> Q: How do I use GAME BOT?<br> A: Send GAME BOT an email message where the subject is the game you want to play, GAME BOT will find it on the Internet and send it back to you soon.<br> <br> Q: Who actually owns these games?<br> A: All games are Copyright their respective creators, GAME BOT simply passes what is already available on the Internet on to you.<br> <br> Q: How do I contribute?<br> A: In the future GAME BOT may ask you to complete a survey, that will pay the maker of GAME BOT to keep it running and updated, but for now, just enjoy it :)<br> <br> Q: How do I play these games?<br> A: Download the file attached, then open it up in Firefox, Internet Explorer, Chrome, or any other Flash enabled web browser.<br> <br> Q: The game attached does not work, why?<br> A: Some game authors only allow their games to be played on the sites they put them on, there is nothing GAME BOT can do about this.<br> </p> ''' def __clean_name(name): return re.sub('[^a-z1-9\w+]', '', name.lower().strip()) def fetch_game(name): print "Looking for: %s" % (name) bin = games_db.find(name) if bin: print " > Found in database." return bin else: try: name = __clean_name(name) gs.search_for_games(name) game_loc = gs.get_next_game() print " > Finding online at: %s" % (game_loc) games_db.add(name, codescraper.fetch_page(game_loc)) return games_db.find(name) except game_searcher.NoResultsException: return None def build_body(): '''Builds the body of the message.''' body = inst + ''' <hr> <h3> Random Games You Might Like </h3> <ul> ''' for i in games_db.random_names(): body += " <li> "+ i + "</li>" body += "</ul>" return body def mail_caller(msg): global sofar j = email_fetch.SimpleMessage(msg) sofar += 1 print ("%s : %s is searching for: %s" % (sofar, j.personfrom, j.subject)) game = fetch_game(j.subject) attach = {} if game != None: attach['%s.swf' % (__clean_name(j.subject))] = game ef.send_mail(j.personfrom, j.subject, build_body(), full_attachments=attach) if __name__ == "__main__": #while 1: # fetch_game(raw_input("What game do you want? ")) email_fetch.DEBUG = True #turn on debugging for email fetch (verbose mode) print "If this is your first time running the server, please configure" print "it using config_file.ini, config_file.ini is already set up for" print "gmail (just change your email and password!)" ef = email_fetch.EmailInterface(time=3, callback=mail_caller) #Have the email fetcher set up by the ini file. import ini_reader ini_reader.setup_fetcher(ef) try: ef.run() except KeyboardInterrupt: print "Server terminated, bye." ``` #### File: Genetic Programming/Examples/pyevolve_ex17_gtree.py ```python from pyevolve import GSimpleGA from pyevolve import GTree from pyevolve import Crossovers from pyevolve import Mutators import time import random def eval_func(chromosome): score = 0.0 # If you want to add score values based # in the height of the Tree, the extra # code is commented. #height = chromosome.getHeight() for node in chromosome: score += (100 - node.getData())*0.1 #if height <= chromosome.getParam("max_depth"): # score += (score*0.8) return score def run_main(): genome = GTree.GTree() root = GTree.GTreeNode(2) genome.setRoot(root) genome.processNodes() genome.setParams(max_depth=3, max_siblings=2, method="grow") genome.evaluator.set(eval_func) genome.crossover.set(Crossovers.GTreeCrossoverSinglePointStrict) ga = GSimpleGA.GSimpleGA(genome) ga.setGenerations(100) ga.setMutationRate(0.05) ga.evolve(freq_stats=10) print ga.bestIndividual() if __name__ == "__main__": run_main() ``` #### File: Genetic Programming/Finished Programs/2010-08-25 GP Test One.py ```python from pyevolve import * import math error_accum = Util.ErrorAccumulator() def gp_add(a, b): return a+b def gp_sub(a,b): return a-b def gp_mul(a, b): return a*b def gp_div(a,b): ''' "Safe" division, if divide by 0, return 1. ''' if b == 0: return 1.0 else: return a/(b*1.0) def rangef(min, max, step): result = [] while 1: result.append(min) min = min+step if min>=max: break return result def eval_func(chromosome): global error_accum error_accum.reset() code_comp = chromosome.getCompiledCode() for x in rangef(-1, 1, .1): evaluated = eval(code_comp) target = x**2 + x + 1 error_accum += (target, evaluated) return error_accum.getRMSE() def main_run(): genome = GTree.GTreeGP() genome.setParams(max_depth=5, method="ramped") genome.evaluator.set(eval_func) ga = GSimpleGA.GSimpleGA(genome) ga.setParams(gp_terminals = ['x', '1'], gp_function_prefix = "gp") ga.setMinimax(Consts.minimaxType["minimize"]) ga.setGenerations(100) ga.setMutationRate(0.08) ga.setCrossoverRate(1.0) ga.setPopulationSize(100) ga.evolve(freq_stats=5) print ga.bestIndividual() if __name__ == "__main__": main_run() ``` #### File: personal_codebase/python/image_generator.py ```python import os import random def write_pgm(filename, content, width): '''Writes a pgm image file from the given content, with width being given. The contnet written is the value at the content at the position, if contnet was [1,0,1,0] and width was 2 the pixels would end up being 10 10 1 being on and 0 being off (black and white). content can be any iteratable object. ''' #Create folders if necessary if os.sep in filename: filepath = filename[:filename.rfind("/")] if not os.path.exists(filepath): os.makedirs(filepath) #Set up variables height = int(len(content) / width) j = 0 line = "" #Open up the new file. with open(filename, 'w') as f: #File header based on pgm standard: f.write("P1\n%i %i\n" % (width, height)) for i in content: if j < width: line += str(i) + " " j += 1 else: f.write(line + "\n") line = "" j = 0 #Append the last line. f.write(line) def add_one(array): add = True for i in range(len(array)): if add: if array[i] == 1: array[i] = 0 else: array[i] = 1 add = False def main_straight_through(): a = [0]*100 i = 0 while a[99] != 1: add_one(a) i += 1 print i write_pgm("%i/%i/%i.pgm"%(i/1000, i/100, i), a, 10) def main_random(height=10, width=10, num_to_gen=10000): length = height * width num_so_far = 0 try: while num_so_far < num_to_gen: my_rand = random.randint(0, 2**length) a = bin(my_rand)[2:] to_add = "0" * (length - len(a)) #Padding front with zeros. a = to_add + a write_pgm("randout_%s.pgm" % (hex(my_rand)[2:-1]), a, width) num_so_far += 1 except KeyboardInterrupt: print("Control + C pressed.") print("Generated %i random images." % (i)) if __name__ == "__main__": a = raw_input("[R]andom or [S]equential Image Generation?") if a.lower() == 'r': h = input("Height in pixels? ") w = input("Width in pixels? ") n = input("How many random images do you want to generate? ") print("The images will be generated in the present working directory") print("Their respective ids will be the hex value of their binary represenation.") main_random(h,w,n) else: print("Generating sequential images, warning, this happens very fast.") print("Press Control + C to stop generation...") main_straight_through() ``` #### File: Code/Functions/Standard.py ```python import math import OpenCalc #Define Constants #Define Functions def abs(num): return math.fabs(num) ``` #### File: personal_codebase/python/pretty_diff.py ```python import difflib import sys import webbrowser import sys import tempfile def generate_diff(lines1, lines2): '''Generates a pretty diff and opens the system web browser to show it. lines1 - a list of strings for the first file's lines. lines2 - a list of strings for the second file's lines. ''' diff = difflib.HtmlDiff().make_file(fromlines, tolines, "Original", "New") with tempfile.NamedTemporaryFile(suffix='.html', delete=False) as tmp: tmp.writelines(diff) webbrowser.open(tmp.name) if __name__ == "__main__": if len(sys.argv) < 3: print("usage: {} original_file new_file".format(sys.argv[0])) exit(2) fromlines = open(sys.argv[1], 'U').readlines() tolines = open(sys.argv[2], 'U').readlines() generate_diff(fromlines, tolines) ``` #### File: python/py_basic_ide/MAIN.pyw ```python import wx #YYYYMMDD.HHMMSS of this release. __version__ = 20100528 human_version = "2010-05-28" # begin wxGlade: extracode import pyBASIC import threading import time thread_is_on = False kill_thread = False file_location = "" debug_mode = False input_queue = "" OUTPUT_EVENT_ID = wx.NewId() OPEN_ID = wx.NewId() SAVE_AS_ID = wx.NewId() SAVE_ID = wx.NewId() RUN_ID = wx.NewId() DEBUG_ID = wx.NewId() ABOUT_ID = wx.NewId() UPDATES_ID = wx.NewId() class OutputEvent ( wx.PyEvent ): '''An event that handles output from the parser.''' def __init__(self, standard_output, error_output): wx.PyEvent.__init__(self) self.SetEventType(OUTPUT_EVENT_ID) self.stdout = standard_output self.stderr = error_output def OUTPUT_EVENT(win, func): """Define Result Event.""" win.Connect(-1, -1, OUTPUT_EVENT_ID, func) class BASICThread ( threading.Thread ): '''This thread runs the BASIC program and manages messages to and from it.''' def __init__(self, program_text, notify_window): self.program_text = program_text threading.Thread.__init__( self ) self._notify_window = notify_window def stdout(self, text): '''Handles the stdout questioning for the thread.''' wx.PostEvent(self._notify_window, OutputEvent(text, "")) def stderr(self, text): '''Handles the stderr for the thread.''' wx.PostEvent(self._notify_window, OutputEvent("", text)) def input(self, text): '''Handles input for the thread.''' global input_queue self.stdout(text) while input_queue == "": time.sleep(.1) iq = input_queue input_queue = "" return iq def kill( self ): '''Gives the thread a suicide mission.''' return kill_thread def run ( self ): import pyBASIC global program_text global thread_is_on, kill_thread thread_is_on = True #Replace handlers with our own. pyBASIC.parser.error_fx = self.stderr pyBASIC.runner.error_fx = self.stderr pyBASIC.runner.input_fx = self.input pyBASIC.runner.output_fx = self.stdout pyBASIC.runner.check_killed = self.kill pyBASIC.set_debug( debug_mode ) print "Compileing" doc = pyBASIC.tokenize_document(self.program_text) print "Running" try: pyBASIC.run(doc) except: self.stderr("FATAL ERROR, Quitting") self.stdout("-------------\nABNORMAL EXIT") print "Quitting" kill_thread = False thread_is_on = False # end wxGlade class main_frame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: main_frame.__init__ kwds["style"] = wx.CAPTION|wx.CLOSE_BOX|wx.MINIMIZE_BOX|wx.MAXIMIZE_BOX|wx.SYSTEM_MENU|wx.RESIZE_BORDER|wx.TAB_TRAVERSAL|wx.CLIP_CHILDREN wx.Frame.__init__(self, *args, **kwds) self.window_1 = wx.SplitterWindow(self, -1, style=wx.SP_3D|wx.SP_BORDER) self.window_1_pane_2 = wx.Panel(self.window_1, -1) self.window_1_pane_1 = wx.Panel(self.window_1, -1) # Menu Bar self.frame_1_menubar = wx.MenuBar() self.file_menu = wx.Menu() self.open_document_item = wx.MenuItem(self.file_menu, OPEN_ID, "Open\tCtrl+o", "Opens an existing document.", wx.ITEM_NORMAL) self.file_menu.AppendItem(self.open_document_item) self.file_menu.AppendSeparator() self.save_document_item = wx.MenuItem(self.file_menu, SAVE_ID, "Save\tCtrl+s", "Saves the current document you are working on.", wx.ITEM_NORMAL) self.file_menu.AppendItem(self.save_document_item) self.save_document_as_item = wx.MenuItem(self.file_menu, SAVE_AS_ID, "Save As\tCtrl+Shift+s", "Saves the document you are working with in a new location.", wx.ITEM_NORMAL) self.file_menu.AppendItem(self.save_document_as_item) self.frame_1_menubar.Append(self.file_menu, "File") wxglade_tmp_menu = wx.Menu() self.run_document_item = wx.MenuItem(wxglade_tmp_menu, RUN_ID, "Run\tCtrl+r", "Runs the currently open document.", wx.ITEM_NORMAL) wxglade_tmp_menu.AppendItem(self.run_document_item) self.debug_button = wx.MenuItem(wxglade_tmp_menu, DEBUG_ID, "Debug\tCtrl+d", "Shows debug statments to help you figure out whats going wrong.", wx.ITEM_CHECK) wxglade_tmp_menu.AppendItem(self.debug_button) self.frame_1_menubar.Append(wxglade_tmp_menu, "Program") wxglade_tmp_menu = wx.Menu() self.about_button = wx.MenuItem(wxglade_tmp_menu, ABOUT_ID, "About", "About pyBASIC IDE", wx.ITEM_NORMAL) wxglade_tmp_menu.AppendItem(self.about_button) self.check_updates_menuitem = wx.MenuItem(wxglade_tmp_menu, UPDATES_ID, "Check For Updates", "Checks for updates.", wx.ITEM_NORMAL) wxglade_tmp_menu.AppendItem(self.check_updates_menuitem) self.frame_1_menubar.Append(wxglade_tmp_menu, "Help") self.SetMenuBar(self.frame_1_menubar) # Menu Bar end self.editor_text_ctrl = wx.TextCtrl(self.window_1_pane_1, -1, "PRINT \"Hello World\"", style=wx.TE_MULTILINE) self.output_text_ctrl = wx.TextCtrl(self.window_1_pane_2, -1, "", style=wx.TE_MULTILINE) self.input_text_ctrl = wx.TextCtrl(self.window_1_pane_2, -1, "") self.submit_button = wx.Button(self.window_1_pane_2, -1, "Submit") self.error_text_ctrl = wx.TextCtrl(self.window_1_pane_2, -1, "", style=wx.TE_MULTILINE) self.__set_properties() self.__do_layout() wx.EVT_MENU(self, OPEN_ID, self.open_document) wx.EVT_MENU(self, SAVE_ID, self.save_document) wx.EVT_MENU(self, SAVE_AS_ID, self.save_document_as) wx.EVT_MENU(self, RUN_ID, self.run_basic) wx.EVT_MENU(self, DEBUG_ID, self.debug_activate) wx.EVT_MENU(self, ABOUT_ID, self.about_program) wx.EVT_MENU(self, UPDATES_ID, self.check_updates) wx.EVT_BUTTON(self, self.submit_button.GetId(), self.submit_text) # end wxGlade # Set up event handler for any worker thread results OUTPUT_EVENT(self,self.OnOutput) #Bind the input control with the enter key self.input_text_ctrl.Bind(wx.EVT_KEY_DOWN, self.input_key_press) def input_key_press(self, event): ''' Checks for the enter key, if it has been pressed then the program will submit the value that is in the pad input box ''' keycode = event.GetKeyCode() #If user pressed enter or return spawn the submit input event if keycode == wx.WXK_RETURN or keycode == wx.WXK_NUMPAD_ENTER: self.submit_text(event) event.Skip() def OnOutput(self, event): '''Handles changing the display when an event is post.''' if event.stderr != "": self.error_text_ctrl.AppendText( str(event.stderr) + "\n") if event.stdout != "": if event.stdout.endswith("\n"): self.output_text_ctrl.AppendText( str(event.stdout)) else: self.output_text_ctrl.AppendText( str(event.stdout) + "\n") def __set_properties(self): # begin wxGlade: main_frame.__set_properties self.SetTitle("pyBASIC - Integrated Development Enviornment") self.SetSize((700, 500)) self.editor_text_ctrl.SetToolTipString("Write your code here.") self.output_text_ctrl.SetBackgroundColour(wx.Colour(0, 0, 0)) self.output_text_ctrl.SetForegroundColour(wx.Colour(255, 255, 255)) self.output_text_ctrl.SetToolTipString("Output will appear here") self.input_text_ctrl.SetToolTipString("Input your text here.") self.error_text_ctrl.SetForegroundColour(wx.Colour(255, 0, 0)) self.error_text_ctrl.SetToolTipString("Errors will appear here") # end wxGlade def __do_layout(self): # begin wxGlade: main_frame.__do_layout sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_3 = wx.BoxSizer(wx.VERTICAL) sizer_4 = wx.BoxSizer(wx.HORIZONTAL) sizer_2 = wx.BoxSizer(wx.HORIZONTAL) sizer_2.Add(self.editor_text_ctrl, 1, wx.ALL|wx.EXPAND, 4) self.window_1_pane_1.SetSizer(sizer_2) sizer_3.Add(self.output_text_ctrl, 2, wx.ALL|wx.EXPAND, 4) sizer_4.Add(self.input_text_ctrl, 1, wx.ALL, 4) sizer_4.Add(self.submit_button, 0, wx.ALL, 3) sizer_3.Add(sizer_4, 0, wx.EXPAND, 0) sizer_3.Add(self.error_text_ctrl, 1, wx.ALL|wx.EXPAND, 4) self.window_1_pane_2.SetSizer(sizer_3) self.window_1.SplitVertically(self.window_1_pane_1, self.window_1_pane_2) sizer_1.Add(self.window_1, 1, wx.EXPAND, 0) self.SetSizer(sizer_1) self.Layout() self.Centre() self.SetSize((700, 500)) # end wxGlade def submit_text(self, event): # wxGlade: main_frame.<event_handler> global input_queue input_queue = self.input_text_ctrl.GetValue() #Set even if 0 if input_queue != "": self.output_text_ctrl.AppendText(">" + str(input_queue) + "\n") else: self.error_text_ctrl.AppendText( "INPUT ERROR: Please input some real text or a number.\n") self.input_text_ctrl.Clear() event.Skip() def open_document(self, event): # wxGlade: main_frame.<event_handler> import os global file_location dlg = wx.FileDialog(self, "Open a file", os.getcwd(), "", "BASIC Files (*.bas)|*.bas|All Files|*.*", wx.OPEN) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() print "Opening at: %s" % (path) file = open(path, 'r') self.editor_text_ctrl.Clear() self.editor_text_ctrl.AppendText( file.read() ) file.close() file_location = path dlg.Destroy() def save_document(self, event, quiet=False): # wxGlade: main_frame.<event_handler> global file_location if file_location == "": import os dlg = wx.FileDialog(self, "Save a file", os.getcwd(), "", "BASIC Files (*.bas)|*.bas|All Files|*.*", wx.SAVE) if dlg.ShowModal() == wx.ID_OK: file_location = dlg.GetPath() if dlg.GetFilterIndex() == 0 and not file_location.endswith(".bas"): file_location = file_location+".bas" dlg.Destroy() print "Saving at: %s" % (file_location) file = open(file_location, 'w') file.write(self.editor_text_ctrl.GetValue()) file.close() event.Skip() def run_basic(self, event): # wxGlade: main_frame.<event_handler> '''Run the BASIC program the user has.''' global kill_thread global thread_is_on if thread_is_on: '''If thread is running''' print "Thread is on" kill_thread = True time.sleep(1) print "Starting another thread..." #Clear the inputs self.input_text_ctrl.Clear() self.error_text_ctrl.Clear() self.output_text_ctrl.Clear() program_text = self.editor_text_ctrl.GetValue() compiler_thread = BASICThread( program_text, self ) compiler_thread.start() #event.skip() def about_program(self, event): # wxGlade: main_frame.<event_handler> description = """pyBASIC IDE is a cross between TIBASIC, and CLASSIC BASIC, allowing new programmers to experience the excitement of the classical home programming language.\n\n Special thanks to <NAME>.""" licence = """pyBASIC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Ubuntu Remote is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Ubuntu Remote; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA""" info = wx.AboutDialogInfo() info.SetName( 'pyBASIC IDE' ) info.SetVersion( human_version ) info.SetDescription( description ) info.SetCopyright( '© 2010 <NAME> <<EMAIL>>' ) info.SetWebSite( 'http://code.google.com/p/pybasic/' ) info.SetLicence( licence ) info.AddDeveloper( '<NAME> <<EMAIL>>' ) wx.AboutBox(info) def save_document_as(self, event): # wxGlade: main_frame.<event_handler> global file_location file_location = "" self.save_document(event) def debug_activate(self, event): # wxGlade: main_frame.<event_handler> global debug_mode debug_mode = not debug_mode print debug_mode def check_updates(self, event, silent=False): # wxGlade: main_frame.<event_handler> print "Checking for updates please wait..." import urllib import webbrowser try: version_on_site = urllib.urlopen("http://pybasic.googlecode.com/svn/trunk/current_version.txt").read() print "Version On Site: " + str(float(version_on_site)) + " This Version " + str(__version__) if float(version_on_site) > __version__: dial = wx.MessageDialog(None, 'Updates Avalable!\nhttp://code.google.com/p/pybasic/', 'Info', wx.OK) dial.ShowModal() webbrowser.open("http://code.google.com/p/pybasic") elif silent == False: dial = wx.MessageDialog(None, 'You are up to date!', 'Info', wx.OK) dial.ShowModal() elif float(version_on_site) < __version__: dial = wx.MessageDialog(None, 'You are using BETA, Thanks!', 'Info', wx.OK) dial.ShowModal() except: if silent == False: dial = wx.MessageDialog(None, 'Unable to reach server.', 'Info', wx.OK) dial.ShowModal() # end of class main_frame def startup(): app = wx.PySimpleApp(0) wx.InitAllImageHandlers() frame_1 = main_frame(None, -1, "") app.SetTopWindow(frame_1) frame_1.Show() frame_1.check_updates("", silent=True) app.MainLoop() if __name__ == "__main__": startup() ``` #### File: py_basic_ide/pyBASIC/parser.py ```python SHOW_ERRORS = True import sys def error_fx(text): '''The default error handling, print the text to the console. replace with your own function if you want, have it print to your wx application or whatever.''' sys.stderr.write(text) def show_error(text): ''' Send an error if SHOW_ERRORS = True ''' if SHOW_ERRORS: error_fx(text) def split_text(text, seperator=" "): return get_word(text, seperator) def get_word(text, seperator=" "): ''' Returns the beginning and end of text seperated around seperator. If seperator is not found, the tail will be a blank string. ''' try: head = text[0:text.index(seperator)] tail = text[text.index(seperator) + len(seperator) : len(text)] except ValueError: return text, "" return head.strip(), tail.strip() def remove_between(text, char="\""): ''' Returns a string from between the next two characters from the input string, returns the head, thorax, and tail. Example: remove_between("TEST \"Hello Jane!\" said Dick.") ("TEST ", "Hello Jane!", "said Dick.") ''' head, tail = get_word(text, char) thorax, abdomen = get_word(tail,char) return head.strip(), thorax.strip(), abdomen.strip() def has_another(text, substring): ''' Tests if the text has another substring, if it does returns true, if else it returns false. ''' try: text.index(substring) return True except: return False def tokenize(line, linenumber): ''' Tokenize so the runner can work and check for errors in the syntax. ''' word_list = [] #Is returned with each token in a proper area. #Get the keyword first_word, rest_line = split_text(line) first_word = first_word.upper() #Add the first word to the list for identification in runner. word_list.append(first_word) #Check for first keyword acceptable_words_list = ["PRINT", "CLS", "IF", "GOTO", \ "LABEL", "INPUT", "LET", "REM", \ "END", "STOP", "", "CLEAR", "LBL"] if first_word not in acceptable_words_list: show_error("Token error line %d, %s is not a valid token." %(linenumber, first_word)) #Tokenize the rest of the line based off of first keyword. """ If statment: ["IF", "EXPRESSION", "THEN STATMENT", "ELSE STATMENT"] Example IF y=='' THEN PRINT 'Hello' Is formatted as. ["IF", "%(y)s == ''", "PRINT 'Hello'", "PRINT 'Goodbye'"] The else is optional. """ if first_word in ["IF"]: #Check for syntax errors if not has_another(rest_line, "THEN"): show_error("IF error line %d, no THEN statment."%(linenumber)) expression, tail = get_word(rest_line, "THEN") word_list.append(expression) if not has_another(rest_line, "ELSE"): #if no else word_list.append( tokenize(tail, linenumber) ) word_list.append( tokenize("REM Nothing", linenumber) ) else: #If there is an else still. then, rest = get_word(tail, "ELSE") word_list.append( tokenize(then, linenumber) ) word_list.append( tokenize(rest, linenumber) ) #Let if first_word in ["LET"]: if not has_another(rest_line, "="): show_error("LET error line %d, no assignment operator after variable." %(linenumber)) else: head, tail = get_word(rest_line, "=") word_list.append(head) word_list.append(tail) #Input if first_word in ["INPUT"]: a,b,c = remove_between(rest_line, "\"") if a != "": show_error("INPUT error line %d, too many tokens before String." %(linenumber)) if has_another(c, " "): show_error("INPUT error line %d, extra tokens found after variable." %(linenumber)) if c == "": show_error("INPUT error line %d, no assignment variable." %(linenumber)) word_list.append(b) #User Display Text word_list.append(c) #Variable #Rem if first_word in ["REM"]: word_list.append(rest_line) #End if first_word in ["END"]: if rest_line != "": show_error("END error line %d, too many tokens after END." %(linenumber)) #Stop if first_word in ["STOP"]: if rest_line != "": show_error("STOP error line %d, too many tokens after STOP." %(linenumber)) #gosub #Goto Statment if first_word in ["GOTO"]: if has_another(rest_line, " "): show_error("GOTO error line %d, too many tokens after GOTO" %(linenumber)) else: word_list.append(rest_line) #PRINT Statment if first_word in ["PRINT"]: word_list.append(rest_line) #Clear statment if first_word in ["CLS", "CLEAR"]: if rest_line != "": show_error("CLEAR/CLS error line %d, too many tokens after CLEAR/CLS." %(linenumber)) #LABEL statment if first_word in ["LABEL", "LBL"]: if has_another(rest_line, " "): show_error("LABEL/LBL error line %d, too many tokens after LABEL/LBL." %(linenumber)) else: word_list.append(rest_line) #Return the list of tokenized words return word_list def tokenize_document(text): ''' Create a token list of a document with newline characters. ''' tokens = [] tokenlines = text.split("\n") index = 1 for line in tokenlines: t = tokenize(line, index) if t != [""]: tokens.append(t) index += 1 return tokens def tokenize_from_file(path): ''' Create a basic token list from a document. ''' text = "" a = file(path) for line in a: text += line return tokenize_document(text) ``` #### File: py_basic_ide/pyBASIC/runner.py ```python import time debug = False def error_fx(text): '''The default error handling, print the text to the console. replace with your own function if you want, have it print to your wx application or whatever.''' sys.stderr.write(text) def output_fx(text): '''The default output handling, print text to the console. replace with your own function if you want, like have it print to a text control in your wx application.''' print text def input_fx(text): '''The default user input handler, use raw_input, if you like you can replace this with your own function, like have it read from a text control.''' return raw_input(text) def check_killed(): '''Checks if the program was killed during execution implemented by pyBASIC ide to kill runaway threads.''' return False def var_replace(string, var_dict): ''' Replaces variables the user is using ($asdf) with python understood ones ( %(asdf)s ) ''' terminators = [" ", ",", "\'", "\"", ".", ";", ":", "!", "?"] #string = string.replace("\\$", "|DOLLAR SIGN|") newstring = "" in_var = False curr_var = "" for char in string: #If we are in a var add the current char to the curr var if in_var and char not in terminators: curr_var += char #The start of a variable if char == '$': in_var = True newstring += "%(" #The end of a var elif in_var == True and char in terminators: #Give the appropriate ending based on type if type(var_dict[curr_var.strip()]) == type(0.0): newstring+=")d" if type(var_dict[curr_var.strip()]) == type(0): newstring += ")i" if type(var_dict[curr_var.strip()]) == type(""): newstring += ")s" newstring += char curr_var = "" in_var = False else: newstring += char #if closed without finishing variable if in_var == True: #Give the appropriate ending based on type if type(var_dict[curr_var.strip()]) == type(0.0): newstring+=")d" if type(var_dict[curr_var.strip()]) == type(0): newstring += ")i" if type(var_dict[curr_var.strip()]) == type(""): newstring += ")s" return newstring.replace("|DOLLAR SIGN|", "$") def get_labels(td): labeldict = {"START": 0} index = 0; for line in td: if line[0] in ["LBL", "LABEL"]: labeldict[line[1]] = index index += 1 return labeldict def error(str,line): error_fx("Error Line %d: %s" % (line, str)) def debug_msg(str): if debug: output_fx(str) def process_line(index, line, label_list, var_dict): ''' Processes a line of basic to run. Returns the new index along with the new variable list. ''' if line[0] in ["STOP"]: #Force out of bounds = program stops index = -100 #Print statment if line[0] in ["PRINT"]: try: output_fx( eval(var_replace(line[1], var_dict)%(var_dict)) ) except KeyError: error("No such variable", index) except ValueError: error("Value Error",index) except TypeError: error("Type Error", index) #Clear Statment if line[0] in ["CLEAR", "CLS"]: for i in range(0,100): output_fx("") #If statment if line[0] in ["IF"]: #debug_msg(var_replace(line[1], var_dict) %(var_dict)) #debug_msg(eval(var_replace(line[1], var_dict)%(var_dict)))) if eval(var_replace(line[1], var_dict)%(var_dict)): index, var_dict = process_line(index, line[2], label_list, var_dict) else: index, var_dict = process_line(index, line[3], label_list, var_dict) index -= 1 #Goto Statment if line[0] in ["GOTO"]: index = label_list[line[1]] -1 #Define Let Statment if line[0] in ["LET"]: try: mystr = var_replace(line[2], var_dict) x = eval(mystr %(var_dict)) var_dict[line[1]] = x except ValueError: error("ValueError", index) except TypeError: error("Type Error", index) #Define Input Statment if line[0] in ["INPUT"]: x = input_fx(line[1] + "\n") try: x = float(x) except ValueError: x = str(x) var_dict[line[2]] = x debug_msg(var_dict) index += 1 return index, var_dict def run(td): ''' Runs a BASIC program given a token document. ''' debug_msg("Lines List:\n"+str(td)+"\n") start_time=time.time() index = 0 #Current line in file. running = True label_list = get_labels(td) var_dict = {} while running: try: line = td[index] index, var_dict = process_line(index, line, label_list, var_dict) if check_killed(): #Stop by making a long line print "Killed" index = len(td) except IndexError: running = False end_time=time.time() output_fx("\n\n") output_fx("--------------------------------") output_fx("Program exited normally.") debug_msg("Debug Mode ON:") debug_msg("Variables: " + str(var_dict)) debug_msg("Labels: " + str(label_list)) debug_msg("Uptime: " + str(end_time - start_time) + " seconds") ``` #### File: python/pyWebserver/webserver.py ```python from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer from os import curdir, sep, path import mimetypes import time import sys import os import socket #Data port_number = 8000 indexpath = "/index.html" _404 = "/404.html" webdir = curdir + "/siteroot" errordir = "/errors" host_name = "" class RequestHandler(BaseHTTPRequestHandler): global webdir global indexpath def do_HEAD(self): ''' Sends the headders for the content, by guessing the mime based on the extention ''' mime = mimetypes.guess_type(self.path) #Guess MIME self.send_response(200) #Send Client OK Response self.send_header('Content-type', mime) self.end_headers() def do_GET(self): ''' Sends the client the web page/file that they requested. This also takes care of the index file. ''' #Show The Headder mime = mimetypes.guess_type(self.path) #Guess MIME self.send_response(200) #Send Client OK Response self.send_header('Content-type', mime) self.end_headers() try: #If the path is blank show the index if self.path == "/": self.path = indexpath #Send the user the web file f = open(webdir + self.path) self.wfile.write(f.read()) f.close() except(IOError): ''' Show the 404 error for pages that are unknown. ''' f = open(webdir + errordir + _404) self.wfile.write(f.read()) f.close() def start(): ''' Sets up and starts the webserver. ''' #Imports global host_name global port_number #Tell the admin when the server started print "Started HTTPServer, press Control + C to quit." print time.asctime(), "Server Starts - Host:%s Port:%s" % (host_name, port_number) #Start the server server = HTTPServer((host_name,port_number), RequestHandler) try: server.serve_forever() except KeyboardInterrupt: print time.asctime(), "Server Stops" server.server_close() def read_config(): import ConfigParser global port_number global indexpath global _404 global webdir global errordir global host_name global password config = ConfigParser.ConfigParser() config.read(curdir + '/Configuration/configure.cfg') #Set all vars from the file _404 = config.get('Pages', '_404') webdir = curdir + config.get('Pages', 'siteroot') errordir = config.get('Pages', 'error_dir') indexpath = config.get('Pages', 'index') config.get('Server', 'host_name') # The commented section gets the hostname from the file #host_name = socket.gethostname() port_number = int(config.get('Server', 'port')) def main(): read_config() start() if __name__ == '__main__': main() ``` #### File: randallai/AI/pavlov.py ```python import threading import time import sys #Turn the variable DEBUGGING to True if you want to see debugging #messages for this module. DEBUGGING = False __version__ = 1.1 __author__ = "<NAME> <<EMAIL>>" ASSOCIATION_TO_EVENT = 1.0 #The amount of association neededed before one event triggers another ASSOCIATION_PER_SECOND = 0.2 #The amount to raise association per second that is left in the amount of time since the last neuron call to this one. DISASSOCIATION_PER_CALL = 0.05 #The amount of association to remove per disassoc call. MAX_ASSOCIATION_TIME = 3.0 #The number of seconds until two events get no association added when they are fired. class Neuron: _evt_a = None _evt_b = None _evt_a_time = 0 _evt_b_time = 0 assoc = 0.0 def __init__(self, event_a, event_b): '''Create a new Neuron that "remembers" how often two events are registered in proximity to one another. Paramaters: event_a -- The first event. event_b -- The second event. WARNING: Do not use this class directly unless you are absoloutly sure you know what you are doing, it is better to instantiate a ResponseNetwork, which will build and manage Neurons for you. ''' self._evt_a = event_a self._evt_b = event_b if DEBUGGING: print("Neuron created between %s, %s" % (event_a, event_b)) def _evt_time_diff(self): '''The difference in the times each event was last called. Always positive. ''' return abs(self._evt_a_time - self._evt_b_time) def _closeness_to_perfect(self): '''The measure of how close the events were to being in sync, closer events mean more related events. ''' return (MAX_ASSOCIATION_TIME - self._evt_time_diff()) / MAX_ASSOCIATION_TIME def send_event(self, e): '''If the association is above the threshold return the event that was not put in as a paramater, else return None. ''' if self.assoc >= ASSOCIATION_TO_EVENT: if DEBUGGING: print("Response between %s, %s " % (self._evt_a, self._evt_b)) if e == self._evt_b: return self._evt_a return self._evt_b return None def register_event(self, e): '''If the event given is one of those that this Neuron registers and it is in a close enough proximity to the other event this Neuron registers, add association between the two relative to how close they are (closer = more association). If the association is higher than the threshold return the event that was not called. Paramaters: e -- The event that might be in this Neuron that is needed to be updated. ''' if e in (self._evt_a, self._evt_b): #Update time for appropriate event if e == self._evt_a: self._evt_a_time = time.time() else: self._evt_b_time = time.time() #If times close enough together add association. if self._evt_time_diff() < MAX_ASSOCIATION_TIME: self.assoc += self._closeness_to_perfect() * ASSOCIATION_PER_SECOND #Notify of updated association if DEBUGGING: print("%s, %s Association: %.2f%%" % (self._evt_a, self._evt_b, self.percent_associated())) #If assoc high enough, return the event not yet sent. return self.send_event(e) def decrement_assoc(self, multiplier=1): '''Decrements the association, based off the DISASSOCIATION_PER_CALL variable. The optional paramater multiplier can make up for _very_ large neural nets by multiplying the disassoc time. Paramaters: multiplier -- DEFAULT:1 Multiplies the disassoc call by a this number. (int/float) ''' self.assoc -= DISASSOCIATION_PER_CALL * multiplier if self.assoc < 0: self.assoc = 0 def percent_associated(self): '''Returns the association of the two events as a percent, useful for user output, but should not be used anywhere else. (float) ''' return (float(self.assoc)/float(ASSOCIATION_TO_EVENT)) * 100 class ResponseNetwork(threading.Thread): '''A rudimentary condition response "brain". Conditions are registered, then the brain is started. Any time the class is notified with a condition it judges the closeness of that condition with others, if they commonly occur together then an association is built. When an association meets a supplied threshhold both events are triggered, in this fashion rudimentary behavior may be observed. WARNING: The response network is not meant to be shut down and turned back on at will, once off returning to an on state may cause bizarre crashes. Instead use a function that halts updates for a variable amount of time. ''' _neurons = [] #A list of created neurons. _cr = {} #A dictionary of condition > response pairs. _awake = True #Set to false to have the thread kill itself. def __init__(self, update_time=1, autostart=False): '''Sets up the response-network. Paramaters: update_time -- A function that returns a float as the number of seconds until the organs update and fire events, or just a float. DEFAULT: 1 (function, float) autostart -- Should pavlov bootstrap it's own thread (true) or are you going to call start() manually (false)? (bool) Default: False Note: Why use a function for update_time? Well, what if your device wanted to go to sleep but still retain all of it's conditions and responses? What about suspending condition response memory loss while in a state of panic? Maybe the charging station is a long way away for your robot, and you don't want it to forget while it is making the trip. ''' self._update_time = update_time threading.Thread.__init__ ( self ) if autostart: self.start() def __getitem__(self, key): '''Emulates a list or dictionary, called with a tuple of the emotion cross, or an index. Raises IndexError if not found. Example: >>> ResponseNetwork[('one','two')] <class Neuron at 0x0000007b> >>> ResponseNetwork[0] <class Neuron at 0x0000002a> >>> ResponseNetwork[None] IndexError ''' #Check for strings try: for n in self._neurons: if n._evt_a in key and n._evt_b in key: return n except TypeError: pass #Check for indexes try: return self._neurons[key] except TypeError: pass #else raise error raise IndexError def __len__(self): '''Returns the number of neurons.''' return len(self._neurons) def register_con_res(self, condition, response=None): '''Registers a condition with a response. Paramaters: condition -- Any object, usually a string, used to identify a condition. (any) response -- A function, or None. The response will be run any time the condition is created. DEFAULT:None (__call__ or None) Note: If no response is created then a lambda is generated that performs the operation "1+1"; in very large systems this could be a problem with speed or memory storage. Warning: If the response does not have the __call__ attribute (is a function) then the default lambda is generated, no warning will be given. It is assumed you know what you are doing! ''' #If thread alive, we must add them to the active list right now. if self.is_alive(): for cond2 in self._cr.keys(): self._neurons.append(Neuron(cond2, condition)) #Add to the dictionary now. if hasattr(response, '__call__'): self._cr[condition] = response else: self._cr[condition] = (lambda : 1+1) def change_response(self, condition, response): '''Changes the response for a given condition that is allready registered. ''' self._cr[condition] = response def _setup_net(self): '''Sets up the neural net with the current conditions and responses in the dictionary. ''' self._neurons = [] #Get a list of all the conditions tmp = self._cr.keys() #Add a neuron bridging all possible keys for i in range(0, len(tmp)): for j in range(i + 1, len(tmp)): self._neurons.append(Neuron(tmp[i], tmp[j])) if DEBUGGING: print('-' * 30) print("Total Neurons: %i" % (len(self._neurons))) def run(self): '''A pretty simple run method, decrements all of the associations in the neurons on a schedule. ''' #Set up neurons self._setup_net() #Allow starting self._awake = True #Decrement from here on in until the network is killed. while self._awake: #Get the time until the next decrement. if hasattr(self._update_time, '__call__'): ut = float(self._update_time()) else: ut = self._update_time time.sleep(ut) for n in self._neurons: n.decrement_assoc() def condition(self, c, autoappend=True): '''Sends a condition through the neural network creating responses and association between the neurons. Paramaters: c -- The condition to begin registering events from. autoappend -- If the condition is not known about yet, should it be added to the neural net? Yes makes the creature more resiliant and able to learn, but harder to debug. (boolean) Default: True ''' if autoappend: if c not in self._cr.keys(): self.register_con_res(c) #Holds conditions already fired so there are no infinite loops. done_conditions = set() fired = set() #Holds the conditions that have yet to be processed new_conditions = [c] if DEBUGGING: print("=" * 80) while new_conditions: c = new_conditions.pop() done_conditions.add(c) if DEBUGGING: print("Condition raised: %s" % (str(c))) for n in self._neurons: #Only fire neurons once if n not in fired: resp = n.register_event(c) #Not null and not called before if resp and resp not in done_conditions: if resp not in new_conditions: new_conditions.append(resp) fired.add(n) #Call all of the responses now. for c in done_conditions: r = self._cr[c] if hasattr(r, '__call__'): r() def lookup_association(self, c): '''Returns a list of all the things associated with the given condition. A complete reverse-lookup. If a and b are associated, and b and c, and c and d, and c and f, then a reverse lookup for a would return [b,c,d,f]. Note: This does not raise association between Neurons. Paramaters: c -- The condition to lookup events from. ''' #Hold conditions already fired so there are no infinite loops. done_conditions = set() #Conditions already checked. fired = set() #Neurons already fired. #Holds the conditions that have yet to be processed, but have #been fired by a neuron. new_conditions = [c] if DEBUGGING: print("=" * 80) print("Reverse lookup on condition: %s" % (str(c))) while new_conditions: c = new_conditions.pop() done_conditions.add(c) if DEBUGGING: print("Condition checked: %s" % (str(c))) for n in self._neurons: #Only fire neurons once if n not in fired: resp = n.send_event(c) #If the Neuron was fired, and the condition hasn't #allready been sent. if resp and resp not in done_conditions: if resp not in new_conditions: new_conditions.append(resp) fired.add(n) return list(done_conditions) def get_neuron(self, evt1, evt2): '''Returns the Neuron that bridges the two events, returns None if the Neuron doesn't exist. ''' try: return self.__getitem__((evt1, evt2)) except IndexError: return None def get_association(self, evt1, evt2): '''Returns a tuple (association, assoc_to_event) for the Neuron bridging the given two events, Returns (None, None) if Neuron doesn't exist. ''' n = self.get_neuron(evt1, evt2) if n != None: return (n.assoc, n.assoc_to_evt) return (None, None) def sleep(self): '''Kills the thread.''' self._awake = False def export_csv(self): '''Returns a string representation of a csv file. This can be written to a file later. The columns and rows are the neuron names, and in the cells between are the percentages of association between the two. The csv is comma delimited and single quotes designate cell contents. Neurons that don't exist will be blank, neurons with 0 association will be 0.0000. ''' output = "" tmp = self._cr.keys() #Get all the conditions now so it doesn't change. tmp.sort() #Get a list of every neuron and it's value for quick lookup #later on. neuron_snapshot = {} for n in self._neurons: neuron_snapshot[(n._evt_a, n._evt_b)] = n.percent_associated() #Write column header. output += "''," #Blank for first col (row headers). for k in tmp: output += "'%s'," % (str(k)) output += "\n" #Write rows for i in tmp: #Row header output += "'%s'," % (i) #Row contents for j in tmp: #Try fetching the percent forward and backward, if not #found that means we are comparing a key to itself, #which has no value, for sanity purposes. try: percent = neuron_snapshot[(i,j)] except: try: percent = neuron_snapshot[(j,i)] except: percent = "" output += "'%s'," % (str(percent)) #End this line. output += "\n" return output def export_HTML_table(self, hidezeros=True): '''Returns a string representation of an HTML table. This can be written to a file later. The columns and rows are the neuron names, and in the cells between are the percentages of association between the two. Neurons that don't exist will be blank. Paramaters: hidezeros - If the neuron is zero hide the value. (bool) DEFAULT: True ''' output = "" tmp = self._cr.keys() #Get all the conditions now so it doesn't change. tmp.sort() #Get a list of every neuron and it's value for quick lookup #later on. neuron_snapshot = {} for n in self._neurons: neuron_snapshot[(n._evt_a, n._evt_b)] = n.percent_associated() #Write column header. output += "<table>\n<tr><th></th>" #Blank for first col (row headers). for k in tmp: output += "<th>%s</th>" % (str(k)) output += "</tr>\n" #Write rows for i in tmp: #Row header output += "<tr><th>%s</th>" % (i) #Row contents for j in tmp: #Try fetching the percent forward and backward, if not #found that means we are comparing a key to itself, #which has no value, for sanity purposes. try: percent = neuron_snapshot[(i,j)] except: try: percent = neuron_snapshot[(j,i)] except: percent = None if not percent or hidezeros and int(percent) == 0: output += "<td></td>" else: output += "<td>%.2f</td>" % (percent) #End this line. output += "</tr>\n" output += "</table>" return output if __name__ == "__main__": DEBUGGING = True r = ResponseNetwork() r.register_con_res('a') r.register_con_res('b') r.register_con_res('c') r.register_con_res('d') r.start() time.sleep(1) print r[1] r.condition('a') r.condition('b') r.condition('a') r.condition('b') r.condition('a') r.condition('b') r.condition('a') r.condition('b') r.condition('a') r.condition('b') r.condition('a') time.sleep(5) r.condition('a') r.condition('c') r.condition('a') r.condition('c') r.condition('a') r.condition('c') r.condition('a') print r.lookup_association('a') r.sleep() ``` #### File: personal_codebase/wheel_of_fortune_ai/wordgraph.py ```python import collections class NgramGraph: graph = None def __init__(self): self.graph = collections.defaultdict(list) def add_edge(from_node, to_node, score): graph[from_node].append((score, to_node)) graph[from_node] = sorted(graph[from_node], reverse=True) def dfs(self, start_node, depth, match_function): ```
{ "source": "josephlijo/PythonBoot", "score": 3 }
#### File: types-statements-def-classes/SampleCode/01.Helloworld.py ```python print 'Hello, world' # A function definition def greet(): """A function which prints a string""" # These are docstrings :: https://docs.python.org/3/tutorial/controlflow.html#documentation-strings print 'Hello from Python' # Invoke the function greet() # Prints __main__ if it is executed as a program print __name__ ``` #### File: types-statements-def-classes/SampleCode/03.Functions.py ```python def func_without_args(): """Function without arguments""" print 'This is function without arguments' func_without_args() # Function with arguments def func_with_args(arg1, arg2): """Function which accepts two arguments""" print 'This function has arguments: ', str(arg1), ' and ', str(arg2) func_with_args(1, 3) def get_square_root(num): """Function which calculates square root of the passed in argument""" return num * num def get_cube_root(arg1): """Function which calculates cube root of the passed in argument""" print 'The cube root is: ', str(arg1 * arg1 * arg1) print get_square_root(3) get_cube_root(2) print get_cube_root(3) # Since there is no return value, it returns `None` # Function with default parameters def func_with_def_values(num1, num2=2): """Function which has default parameters""" print 'Value of argument 1 is ', num1, '; argument 2 is ', num2 func_with_def_values(1, 10) func_with_def_values(2) func_with_def_values(num1=20, num2=40) func_with_def_values(num1=443) #funWithDefaults(num2=99993) # This will give error as we haven't passed the required argument # Function with variable number of arguments def func_with_var_args(*args): """Function with variable number of arguments""" result = 0 for item in args: # looping items in the argument list result = result + item return result ADD_RESULT = func_with_var_args(1, 30, 2, 43) print ADD_RESULT ``` #### File: types-statements-def-classes/SampleCode/04.Conditional.Structures.py ```python def main(): """Function demonstration the usage of `if,elif,else""" x, y = 10, 20 if x < y: print 'x is less than y' elif x > y: print 'x is greater than y' else: print 'x and y are both equal' # Using conditional statements in Python # a if C else b def con_state(x, y): """Conditional statement - a if C else b""" print 'x is less than y' if (x < y) else 'x is greater than or equal to y' if __name__ == '__main__': main() con_state(1, 2) con_state(2, 1) con_state(2, 2) ``` #### File: types-statements-def-classes/SampleCode/05.Loops.py ```python def func_with_while(): """Function demonstratin the usage of `while` loop""" x, y = 1, 10 print 'This is a while loop' while x < y: print x x = x + 1 def func_with_for(): """Function demoing the usage of `for` loop""" x, y = 4, 8 print 'This is a for loop' # This will print from 4 through 7 for item in range(x, y): print item def func_with_collection(): """Function demoing collection""" collection = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] for day in collection: print day def func_with_break_continue(): """Function demoing the usage of `break` and `continue`""" collection = [7, 1, 2, 4, 3, 9] for item in collection: if item % 2 == 0: continue # Skips the rest of the loop if (item == 1 or item == 9): break # Breaks the loop print item def enum_for_index_value(): """Function demoing enumeration""" collection = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] for x, y in enumerate(collection): print x, y if __name__ == "__main__": func_with_while() func_with_for() func_with_collection() func_with_break_continue() enum_for_index_value() ```
{ "source": "josephlim94/rapa", "score": 3 }
#### File: josephlim94/rapa/application_side_routing.py ```python import asyncio import websockets import pyaudio import wave import sys import time #CHUNK = 1024*512 CHUNK=1920 wf = wave.open('test.wav', 'rb') async def hello(uri): from opus import encoder async with websockets.connect(uri) as websocket: CHANNELS = 2 RATE = 48000 encoder = encoder.Encoder(RATE,CHANNELS,'voip') #await websocket.send("Hello world!") data = wf.readframes(CHUNK) #await websocket.send(data) #text = await websocket.recv() #print("Should wait: ", text) ##time.sleep(CHUNK/44100) #time.sleep(int(text)) #data = wf.readframes(CHUNK) #await websocket.send(data) #text = await websocket.recv() #print("Should wait: ", text) #time.sleep(int(text)) #time.sleep(2) total = 0 while data: #stream.write(data) encoded_data = encoder.encode(data, CHUNK) #await websocket.send(data) await websocket.send(encoded_data) data = wf.readframes(CHUNK) #response = await websocket.recv() #time.sleep(int(response)) #if len(data) < CHUNK: # print(data) total = total + len(data) # wait a bit more for the buffered data to finish time.sleep(2) print("Read complete") print(total) asyncio.get_event_loop().run_until_complete( hello('ws://192.168.0.104:8000/ws/speaker/audioplayback/')) ``` #### File: rapa/speaker/pyaudio_asynchronous.py ```python import pyaudio import logging import threading import multiprocessing from collections import deque import time import signal class PyAudioAsync(multiprocessing.Process): chunk_frame_length = 1920 number_of_output_channel = 2 number_of_input_channel = 2 channel_width = 2 sample_rate = 44100 audio_input = False audio_output = False def __init__(self, *args, **kwargs): super().__init__(target=self, args=args, kwargs=kwargs) self.daemon = True self.save_kwargs(kwargs) self.process_terminated = multiprocessing.Event() self.process_terminated.clear() def save_kwargs(self, kwargs): if "audio_packet_queue" in kwargs: self.audio_packet_queue = kwargs["audio_packet_queue"] if "period_sync_event" in kwargs: self.period_sync_event = kwargs["period_sync_event"] if "audio_input" in kwargs: self.audio_input = kwargs["audio_input"] if "audio_output" in kwargs: self.audio_output = kwargs["audio_output"] def terminate_process(self, signum, frame): self.process_terminated.set() def run_audio_output(self): bytes_per_frame = self.channel_width * self.number_of_output_channel silent_chunk = b'\x00' * self.chunk_frame_length * bytes_per_frame output_device_info = self.p.get_default_output_device_info() ''' output_device_name = "Speakers " output_device_info = None for i in range(p.get_device_count()): device_info = p.get_device_info_by_index(i) if output_device_name in device_info["name"]: output_device_info = device_info if not output_device_info: print("Output device not found") return ''' self.logger.info(output_device_info) stream = self.p.open(format=pyaudio.paInt16, channels=self.number_of_output_channel, rate=self.sample_rate, output=True, output_device_index=output_device_info["index"]) while not self.process_terminated.is_set(): self.logger.info("Process: iterating") audio_packet = None if not self.audio_packet_queue.empty(): self.logger.info("Playing audio") audio_packet = self.audio_packet_queue.get() else: self.logger.info("Playing silent") audio_packet = silent_chunk self.period_sync_event.set() stream.write(audio_packet) def run_audio_input(self): input_device_info = self.p.get_default_input_device_info() self.logger.info(input_device_info) stream = self.p.open(format=pyaudio.paInt16, channels=self.number_of_input_channel, rate=self.sample_rate, frames_per_buffer=self.chunk_frame_length, input=True, input_device_index=input_device_info["index"]) while not self.process_terminated.is_set(): self.logger.info("Process Audio Input: iterating") audio_packet = stream.read(self.chunk_frame_length) self.audio_packet_queue.put(audio_packet) def run(self): self.logger = multiprocessing.get_logger() self.logger.setLevel(logging.INFO) signal.signal(signal.SIGTERM, self.terminate_process) self.p = pyaudio.PyAudio() if self.audio_output: self.run_audio_output() elif self.audio_input: self.run_audio_input() else: self.logger.info("Neither output or input enabled") # start #process_object = None logger_created = False def init_logger(): #format = "%(asctime)s: %(message)s" #logging.basicConfig(format=format, level=logging.INFO, # datefmt="%H:%M:%S") global logger_created if not logger_created: multiprocessing.log_to_stderr() logger_created = True ''' def wait_data_play_start(period_sync_event): tic = time.perf_counter() period_sync_event.wait() toc = time.perf_counter() logging.info("Waited for: %f s", toc-tic) period_sync_event.clear() ''' ``` #### File: rapa/speaker/views.py ```python from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.template import loader import pyaudio # Create your views here. p = pyaudio.PyAudio() def index(request): template = loader.get_template('speaker/index.html') return HttpResponse(template.render(None, request)) def get_input_device_list(request): global p input_device_list = {} for device_index in range(p.get_device_count()): device_info = p.get_device_info_by_index(device_index) if device_info['maxInputChannels'] is not 0: input_device_list[device_index] = device_info response = JsonResponse(input_device_list) return response def get_output_device_list(request): global p output_device_list = {} for device_index in range(p.get_device_count()): device_info = p.get_device_info_by_index(device_index) if device_info['maxOutputChannels'] is not 0: output_device_list[device_index] = device_info response = JsonResponse(output_device_list) return response ```
{ "source": "josephlin55555/dask", "score": 2 }
#### File: dask/bytes/_pyarrow.py ```python from __future__ import absolute_import import pyarrow as pa class HDFS3Wrapper(pa.filesystem.DaskFileSystem): """Pyarrow compatibility wrapper class""" def isdir(self, path): return self.fs.isdir(path) def isfile(self, path): return self.fs.isfile(path) ```
{ "source": "JosephLipinski/DnD-5e-Player-Readability", "score": 3 }
#### File: JosephLipinski/DnD-5e-Player-Readability/pdf_converter.py ```python from PIL import Image import PIL from pdf2image import convert_from_path, convert_from_bytes from pdf2image.exceptions import PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError import os def convert_file_to_images(path_to_file): return convert_from_path(path_to_file) def save_pil_images(save_path, images): print(len(images)) for i in range(0, len(images)): image = images[i] image_save_path = os.path.join(save_path, str(i) + ".jpg") print(image_save_path) image.save(image_save_path) if __name__ == "__main__": cwd = os.getcwd() path_to_pdf = os.path.join(cwd, 'SRD-OGL_V5.1.pdf') images = convert_file_to_images(path_to_pdf) output_path = os.path.join(cwd, 'output') save_pil_images(output_path, images) ```
{ "source": "josephl/lastmod", "score": 3 }
#### File: src/lastmod/manager.py ```python from configparser import ConfigParser, SectionProxy from contextlib import contextmanager import json import logging import os import sqlite3 import typing import urllib.request import uuid NAMESPACE = "lastmod" class CacheManager: """ Use as the interface for URL requests :param cache_path: parent directory for storing/reading cached payloads :param db: path to SQLite3 database for response records """ @classmethod def from_config( cls, config_ini: typing.Union[ConfigParser, SectionProxy, os.PathLike, None] = None, ): """ Factory function for using config file instantiation """ if isinstance(config_ini, ConfigParser): section = config_ini[NAMESPACE] elif isinstance(config_ini, SectionProxy): section = config_ini elif isinstance(config_ini, str): config = ConfigParser() config.read(config_ini) section = config[NAMESPACE] return cls(cache_path=section.get("cache_path"), db=section.get("db")) def __init__( self, cache_path: typing.Optional[os.PathLike], db: typing.Optional[os.PathLike] = None, ): if not cache_path: raise ValueError("Must specify cache_path in argument or config") self.cache_path = cache_path self.db = db def get_cached_response(self, request: urllib.request.Request) -> dict: """ Serialize request URL to a subpath relative to self.cache_path """ url = request.get_full_url() cur = self._cx.cursor() cur.execute("SELECT * FROM response WHERE url = ?", (url,)) return cur.fetchone() @contextmanager def database_connection(self): try: self._cx = sqlite3.connect(self.db) self.init_db(self._cx) self._cx.row_factory = self.response_dict_factory yield self._cx except Exception: raise finally: self._cx.close() self._cx = None @staticmethod def init_db(cx): cur = cx.cursor() cur.execute( """ CREATE TABLE IF NOT EXISTS response ( url TEXT PRIMARY KEY, headers TEXT, location TEXT ) """ ) @staticmethod def response_dict_factory(cursor, row): """ Convert fetched rows to dict Set connection.row_factory = <this method> https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.row_factory """ data = {} for i, col in enumerate(cursor.description): data[col[0]] = row[i] return data def generate_cache_location(self, url: str) -> os.PathLike: """ Create a unique cache location for a URL (absolute path) """ basename = str(uuid.uuid5(uuid.NAMESPACE_URL, url)) return os.path.abspath(os.path.join(self.cache_path, basename)) @staticmethod def normalize_headers(headers: typing.Dict) -> str: """ Normalization is lower-casing keys, then serialize the result to JSON """ norm = {} for k, v in headers.items(): norm[k.lower()] = v return json.dumps(norm) def insert_response(self, url: str, headers: typing.Dict, location: os.PathLike): """ Create record for response """ headers = self.normalize_headers(headers) self._cx.execute( "INSERT OR REPLACE INTO response VALUES (?, ?, ?)", (url, headers, location), ) self._cx.commit() @contextmanager def urlopen( self, url: typing.Union[str, urllib.request.Request], data: typing.Any = None, timeout: typing.Union[int, float, None] = None, **kwargs, ): """ Primary method to make URL request Accepts arguments matching urllib.request.urlopen(...) :param url: resource to fetch :param cache_dest: destination to cache payload if not specified, automatically determines location within self.cache_path """ if isinstance(url, urllib.request.Request): request = url else: request = urllib.request.Request(url) with self.database_connection(): cached_resp = self.get_cached_response(request) if cached_resp: cache_dest = cached_resp.get("location") if cache_dest: cache_dest = os.path.abspath(cache_dest) if cached_resp and os.path.exists(cache_dest): cached_headers = json.loads(cached_resp["headers"]) last_modified = cached_headers.get("last-modified") if last_modified: request.add_header("If-Modified-Since", last_modified) try: resp = urllib.request.urlopen(request, data, timeout, **kwargs) logging.info(f"Request {resp.status}: {resp.url}") if resp.status == 200: body = resp.read() try: yield body finally: cache_dest = cache_dest or self.generate_cache_location( request.full_url ) self.insert_response(request.full_url, resp.headers, cache_dest) with open(cache_dest, "wb") as f: f.write(body) except urllib.error.HTTPError as err: logging.warning(f"Error {err.status}: {err.url}") if err.status == 304 and cache_dest: with open(cache_dest, "rb") as f: body = f.read() yield body else: raise if __name__ == "__main__": from argparse import ArgumentParser logging.basicConfig(level=logging.INFO) parser = ArgumentParser() parser.add_argument("-c", "--config", help="Path to INI config") parser.add_argument( "-p", "--cache-path", help="Parent directory for caching payload files" ) parser.add_argument("-d", "--db", help="SQLite3 database for response data") parser.add_argument("url", help="Fetch url") parsed_args = parser.parse_args() if parsed_args.cache_path and parsed_args.db: mgr = CacheManager(parsed_args.cache_path, parsed_args.db) elif parsed_args.config: mgr = CacheManager.from_config(parsed_args.config) else: raise ValueError( "Specify cache path and database path by config or command-line args" ) with mgr.urlopen(parsed_args.url) as f: print(f.decode()) ```
{ "source": "j-osephlong/j-LC3", "score": 3 }
#### File: j-osephlong/j-LC3/lc3.py ```python import numpy as np import lc3asm #2^16 16bit memory address's memory = np.uint16([0]*0xFFFF) #registers reg = np.uint16([0]*8) pc = np.int16(0x0200) psr = 0xFFFC halt = True #special memory ptrs kbsr_ptr = 0xFE00 kbdr_ptr = 0xFE02 dsr_ptr = 0xFE04 ddr_ptr = 0xFE06 mcr_ptr = 0xFFFE #from stackoverflow # https://stackoverflow.com/questions/32030412/twos-complement-sign-extension-python/32031543 def sign_extend(value, bits): sign_bit = 1 << (bits - 1) return (value & (sign_bit - 1)) - (value & sign_bit) def logSign(num): n = sign_extend(num, 16) memory[psr]&=0b1111111111111000 if n == 0: memory[psr]|=0b10 elif n < 0: memory[psr]|=0b100 elif n > 0: memory[psr]|=0b1 def getSign(): if (memory[psr]&0b100)>>2 == 0b1: return -1 elif (memory[psr]&0b10)>>1 == 0b1: return 0 elif memory[psr]&0b1 == 0b1: return 1 def addOp(instruct): ans = reg[(instruct>>6)&0b111] if (instruct>>5)&0b1 == 0b0: ans+=reg[instruct&0b111] else: ans+=sign_extend(instruct&0b11111, 5) logSign(ans) reg[(instruct>>9)&0b111] = ans def andOp(instruct): ans = reg[(instruct>>6)&0b111] if (instruct>>5)&0b1 == 0b0: ans&=reg[instruct&0b111] else: ans&=sign_extend(instruct&0b11111, 5) logSign(ans) reg[(instruct>>9)&0b111] = ans def brOp(instruct): global pc if (instruct >> 11) & 0b1 == 0b1 and getSign() == -1: pc+=sign_extend(instruct&0b111111111, 9) return elif (instruct >> 10) & 0b1 == 0b1 and getSign() == 0: pc+=sign_extend(instruct&0b111111111, 9) return elif (instruct >> 9) & 0b1 == 0b1 and getSign() == 1: pc+=sign_extend(instruct&0b111111111, 9) def jmpOp(instruct): pc = reg[(instruct>>6)&0b111] def jsrOp(instruct): reg[7] = pc if (instruct>>11)&0b1 == 0b1: pc = sign_extend(instruct&0b11111111111, 11)+pc else: pc = reg[(instruct>>6)&0b111] def ldOp(instruct): ans = memory[sign_extend(instruct&0b111111111, 9) + pc] logSign(ans) reg[(instruct>>9)&0b111] = ans def ldiOp(instruct): ad = memory[sign_extend(instruct&0b111111111, 9) + pc] ans = memory[ad] logSign(ans) reg[(instruct>>9)&0b111] = ans def ldrOp(instruct): ans = memory[sign_extend(instruct&0b111111, 6) + reg[(instruct>>6)&0b111]] logSign(ans) reg[(instruct>>9)&0b111] = ans def leaOp(instruct): ans = pc+sign_extend(instruct&0b111111111, 9) logSign(ans) reg[(instruct>>9)&0b111] = ans def notOp(instruct): ans = ~reg[(instruct>>6)&0b111] logSign(ans) reg[(instruct>>9)&0b111] = ans def retOp(instruct): pc = reg[7] def rtiOp(instruct): global pc, reg reg[6]+=2 memory[psr] = memory[reg[6]-1] pc = memory[reg[6]-2] # print("PSR popped: " + hex(memory[reg[6]-1])) # print("PC popped: " + hex(memory[reg[6]-2])) # print("SysS:"+hex(reg[6])) def stOp(instruct): ans = reg[(instruct>>9)&0b111] memory[sign_extend(instruct&0b111111111, 9) + pc] = ans def stiOp(instruct): ad = memory[sign_extend(instruct&0b111111111, 9) + pc] memory[ad] = reg[(instruct>>9)&0b111] def strOp(instruct): memory[sign_extend(instruct&0b111111, 6) + reg[(instruct>>6)&0b111]] = reg[(instruct>>9)&0b111] def trapOp(instruct): global halt if instruct&0b11111111 == 0x21: print(chr(reg[0]), end='') if instruct&0b11111111 == 0x25: halt = True if instruct&0b11111111 == 0x22: ptr = reg[0] while memory[ptr] != 0: print(chr(memory[ptr]), end='') ptr+=1 def rTrap(instruct): global pc, reg # print("rTrap " + hex(instruct)) if memory[psr]&0x8000 == 0x8000: #set OS_SP reg[6] = memory[lc3asm.symTable['OS_SP']] #push PSR and PC #if in user mode, set OS_SP #change to super mode reg[6]-=2 memory[reg[6]+1] = memory[psr] memory[reg[6]] = pc pc = np.int16(memory[instruct&0b11111111]) if memory[psr]&0x8000 == 0x8000: #goto super mode memory[psr]&=0x7FFF # print("PSR pushed: " + hex(memory[reg[6]-1])) # print("PC pushed: " + hex(memory[reg[6]])) # print("SysS:"+hex(reg[6])) def display(): if memory[ddr_ptr] != 0: memory[dsr_ptr]&=0x7FFF print(chr(memory[ddr_ptr]&0xFF), end='') memory[ddr_ptr] = 0 memory[dsr_ptr]|=0x8000 else: memory[dsr_ptr]|=0x8000 op_codes = { 0b0001: addOp, 0b0101: andOp, 0b0000: brOp, 0b1100: jmpOp, 0b0100: jsrOp, 0b0010: ldOp, 0b1010: ldiOp, 0b0110: ldrOp, 0b1110: leaOp, 0b1001: notOp, 0b1100: retOp, 0b1000: rtiOp, 0b0011: stOp, 0b1011: stiOp, 0b0111: strOp, 0b1111: trapOp } def parse(instruct, debug): op_code = (instruct >> 12) & 0b1111 if op_code in op_codes: if debug: print(op_codes[op_code]) if instruct == 0xF025 or instruct == 0xF021 or instruct == 0xF022: rTrap(instruct) else: op_codes[op_code](instruct) else: print("NOP") def loadIn(): for ad, bina in lc3asm.out.items(): memory[ad] = bina def run(debug = True): global pc, halt, memory halt = False memory[mcr_ptr] = 0b1000000000000000 while memory[mcr_ptr] == 0b1000000000000000: pc+=1 if debug: print(hex(pc)) parse(memory[pc-1], debug) display() c = input("\n>") if debug else '' if c == "r": for i in range(0, 8): print("R" + str(i) + ": \t" + hex(reg[i])) print('PSR:\t' + bin(memory[psr])) print('MCR:\t' + bin(memory[mcr_ptr])) print('PC: \t' + hex(pc)) elif c == "p": return elif c == "ss": print("----------------") for i in range(reg[6], 0x3000): print(hex(i) + ":\t"+hex(memory[i])) print("----------------") print("[LC3.py] Assembling LC3 OS") lc3asm.loadFile("OS_vector_tables.asm") lc3asm.asm() loadIn() pc = np.int16(0x200) memory[psr] &=0x7FFF #set supervisor mode print("[LC3.py] Starting LC3 OS") run(debug = False) # pc = np.int16(0x3000) ```
{ "source": "Josephlouislg/aiohttpRedisPubSubChat", "score": 2 }
#### File: aiohttpRedisPubSubChat/chat_frontend/__main__.py ```python import argparse import aioredis import logging.handlers import asyncio import uvloop from aiohttp import web from motor.motor_asyncio import AsyncIOMotorClient from prometheus_client import start_http_server from chat_frontend.app import websocket_handler, healthcheck from chat_frontend.room_service import RoomService log = logging.getLogger(__name__) def parse_args(): ap = argparse.ArgumentParser() ap.add_argument("--port", type=int, default=2000) ap.add_argument("--host", default='0.0.0.0') ap.add_argument("--redis_host", default='redis') ap.add_argument("--redis_port", type=int, default=6432) ap.add_argument("--mongo_host") ap.add_argument("--mongo_username", default='') ap.add_argument("--mongo_password", default='') ap.add_argument("--mongo_db", default='') ap.add_argument("--debug", default=False) return ap.parse_args() async def create_redis_pool(redis_host='redis', redis_port='', pool_size=1): return await aioredis.create_redis_pool( address=f'redis://{redis_host}:{redis_port}', maxsize=pool_size ) def create_mongo_client(debug, mongo_host, mongo_username, mongo_password): auth = f"{mongo_username}:{mongo_password}@" if not debug else '' return AsyncIOMotorClient( f'mongodb://{auth}{mongo_host}' ) async def shutdown(app): for task in app['tasks']: if not task.cancelled(): task.cancel() redis_pool = app['redis_pool'] redis_pool.close() await redis_pool.wait_closed() async def create_frontend(args): redis_pool = await create_redis_pool(redis_host=args.redis_host, redis_port=args.redis_port) mongo_client = create_mongo_client( debug=args.debug, mongo_host=args.mongo_host, mongo_password=args.mongo_password, mongo_username=args.mongo_username ) db = mongo_client[args.mongo_db] room_service = RoomService(redis=redis_pool, db=db) loop = asyncio.get_event_loop() tasks = ( loop.create_task(room_service.listen_new_messages()), loop.create_task(room_service.ping_pong_task()) ) app = web.Application() app['db'] = db app['mongo_client'] = mongo_client app['tasks'] = tasks app['mongo_client'] = mongo_client app['room_service'] = room_service app['redis_pool'] = redis_pool app.router.add_route( 'GET', '/ws', websocket_handler ) app.router.add_route( 'GET', '/health', healthcheck ) app.on_shutdown.append(shutdown) return app def main(): args = parse_args() host = args.host port = args.port try: start_http_server(9100) except Exception as e: log.error(f'Prometheus client error, {e}') asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) log.info(f"Listening {host}:{port}") web.run_app(create_frontend(args), host=host, port=port) if __name__ == '__main__': main() ```
{ "source": "Josephlouislg/TagSearcher", "score": 2 }
#### File: TagSearcher/tag_searcher/app.py ```python import logging.handlers from aiohttp import web, WSMsgType from tag_searcher.tag_tree import TagTreeService log = logging.getLogger(__name__) async def request_handler(request): try: data = await request.json() text = data['text'] except Exception as e: return web.Response(status=400) tag_tree_service: TagTreeService = request.app['tag_tree_service'] return web.json_response( status=200, data={"tags": tag_tree_service.get_tags_by_text(text)} ) ``` #### File: TagSearcher/tag_searcher/__main__.py ```python import argparse import csv import logging.handlers import asyncio import uvloop from aiohttp import web from tag_searcher.app import request_handler from tag_searcher.tag_tree import TagTreeService log = logging.getLogger(__name__) def parse_args(): ap = argparse.ArgumentParser() ap.add_argument("--port", type=int, default=2000) ap.add_argument("--host", default='0.0.0.0') ap.add_argument("--tag_file_path", default='tags.csv') return ap.parse_args() async def create_app(args): app = web.Application() with open(args.tag_file_path) as file: csv_reader = csv.reader(file, delimiter='\n') tags = (title[0] for title in csv_reader) app['tag_tree_service'] = TagTreeService(tags=tags) app.router.add_route( 'POST', '/text', request_handler ) return app def main(): args = parse_args() host = args.host port = args.port asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) log.info(f"Listening {host}:{port}") web.run_app(create_app(args), host=host, port=port) if __name__ == '__main__': main() ``` #### File: tests/test_api/test_api.py ```python from tests.conftest import create_app async def test_200(test_client): client = await test_client(create_app) resp = await client.post( '/text', json={"text": "test1"}, headers={'Content-Type': 'application/json'} ) assert resp.status == 200 data = await resp.json() assert 'tags' in data assert 'test1' in data['tags'] async def test_400(test_client): client = await test_client(create_app) resp = await client.post( '/text', data={"text": "test1"}, headers={'Content-Type': 'application/json'} ) assert resp.status == 400 async def test_invalid_payload(test_client): client = await test_client(create_app) resp = await client.post( '/text', json={"test": "test1"}, headers={'Content-Type': 'application/json'} ) assert resp.status == 400 async def test_empty_text(test_client): client = await test_client(create_app) resp = await client.post( '/text', json={"text": ""}, headers={'Content-Type': 'application/json'} ) assert resp.status == 200 data = await resp.json() assert 'tags' in data assert data['tags'] == [] ``` #### File: tests/test_tags_tree/test_tag_tags_tree.py ```python import pytest from tag_searcher.tag_tree import TagTreeService @pytest.fixture def tags_tree_service(): return TagTreeService( tags=[ 'tag1', 'tag1 tag2', 'tag2 tag3', 'tag2 tag3 tag4', 'tag5 tag6' ] ) def test_tags_tree_build(): tags_tree_service = TagTreeService( tags=[ 'tag1', 'tag1 tag2', 'tag2 tag3', 'tag2 tag4', 'tag2 tag3 tag4', 'tag5 tag6' ] ) assert tags_tree_service.tags_tree == { 'tag1': { 'is_leaf': True, 'childs': {'tag2': {'is_leaf': True, 'childs': {}}} }, 'tag2': { 'is_leaf': False, 'childs': { 'tag3': { 'is_leaf': True, 'childs': { 'tag4': { 'is_leaf': True, 'childs': {} } } }, 'tag4': { 'is_leaf': True, 'childs': {} } } }, 'tag5': { 'is_leaf': False, 'childs': { 'tag6': { 'is_leaf': True, 'childs': {} } } } } def test_tag_search(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='test test tag1 tag2 test test' ) assert set(tags) == {'tag1', 'tag1 tag2'} def test_tag_search_with_one_word_beetween_tags(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='test tag1 test tag2' ) assert set(tags) == {'tag1', 'tag1 tag2'} def test_tag_search_with_two_word_beetween_tags(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='test tag1 test test tag2' ) assert set(tags) == {'tag1', 'tag1 tag2'} def test_finding_multiple_tags_with(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='tag2 tag3 tag4' ) assert set(tags) == {'tag2 tag3 tag4', 'tag2 tag3'} def test_no_tags_text_search(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='test test test test' ) assert set(tags) == set() def test_all_tags_search(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='tag1 tag2 tag3 tag4 tag2' ) assert set(tags) == { 'tag1', 'tag1 tag2', 'tag2 tag3', 'tag2 tag3 tag4' } def test_nested_tags_search(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='tag1 tag5 tag6 tag2' ) assert set(tags) == { 'tag1', 'tag1 tag2', 'tag5 tag6' } def test_upper_case(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='Tag1 tAg5 taG6 TAG2' ) assert set(tags) == { 'Tag1', 'Tag1 TAG2', 'tAg5 taG6' } def test_special_chars_removing(tags_tree_service: TagTreeService): tags = tags_tree_service.get_tags_by_text( text='tag1 \n tag5, tag6. \r\t\n tag2' ) assert set(tags) == { 'tag1', 'tag1 tag2', 'tag5 tag6' } def test_special_chars_removing_from_tag_tree(): tags_tree_service = TagTreeService( tags=[ 'tAg1', 'tAg1,\n\r\ttag2', 'tag2.\ntag3', ] ) text = 'tag1 tag2 tag3' assert set(tags_tree_service.get_tags_by_text(text=text)) == { 'tag1', 'tag1 tag2', 'tag2 tag3' } ```
{ "source": "josephl/summit-python", "score": 3 }
#### File: samples/twilio-sms/run_twilio.py ```python import ConfigParser from flask import Flask, jsonify, request import json from twilio.rest import TwilioRestClient app = Flask(__name__) config = ConfigParser.ConfigParser() config.read('config.ini') @app.route('/sms/<recipient>', methods=['POST']) def sms_send(recipient): auth = ( config.get('Twilio', 'account_sid'), config.get('Twilio', 'auth_token')) from_number = config.get('Twilio', 'from_number') body = request.get_data() or 'OH HI THERE' client = TwilioRestClient(*auth) message = client.messages.create(to=recipient, from_=from_number, body=body) return jsonify(status=message.status) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "JosephLteif/Smart-Assistant", "score": 3 }
#### File: Smart-Assistant/Features/chatbot.py ```python import nltk from nltk.stem.lancaster import LancasterStemmer stemmer = LancasterStemmer() import numpy import tflearn from tensorflow.python.framework import ops import random import json import pickle with open("Data\\ChatBot_Data\\Data\\intents.JSON") as file: data = json.load(file) try: with open("Data\\ChatBot_Data\\Model\\data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) except: words = [] labels = [] docs_x = [] docs_y = [] for intent in data['intents']: for pattern in intent['patterns']: wrds = nltk.word_tokenize(pattern) words.extend(wrds) docs_x.append(wrds) docs_y.append(intent['tag']) if intent['tag'] not in labels: labels.append(intent['tag']) words = [stemmer.stem(w.lower()) for w in words if w not in "?"] words = sorted(list(set(words))) labels = sorted(labels) training = [] output = [] out_empty = [0 for _ in range(len(labels))] for x, doc in enumerate(docs_x): bag=[] wrds = [stemmer.stem(w) for w in doc] for w in words: if w in wrds: bag.append(1) else: bag.append(0) output_row = out_empty[:] output_row[labels.index(docs_y[x])] = 1 training.append(bag) output.append(output_row) training = numpy.array(training) output = numpy.array(output) with open("Data\\ChatBot_Data\\Model\\data.pickle", "wb") as f: pickle.dump((words, labels, training, output), f) ops.reset_default_graph() # creating a neural network # defining an input shape for the model net = tflearn.input_data(shape=[None, len(training[0])]) # adding this fully connected layer to the neural network and it will have 8 neurons for the hidden layer net = tflearn.fully_connected(net, int(((len(training[0])+len(output[0]))*2)/3)) print(int(((len(training[0])+len(output[0]))*2)/3)) net = tflearn.fully_connected(net, int(((len(training[0])+len(output[0]))*2)/3)) # this allow us to get probabilities for each output net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) # type of neural network DNN model = tflearn.DNN(net) try: model.load("Data\\ChatBot_Data\\Model\\model.tflearn") except: # epoch is the number of times the model will see the data model.fit(training,output,n_epoch=1000, batch_size=8, show_metric=True) model.save("Data\\ChatBot_Data\\Model\\model.tflearn") # model.fit(training,output,n_epoch=1000, batch_size=8, show_metric=False) # model.save("Data\\ChatBot_Data\\Model\\model.tflearn") def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = nltk.word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return numpy.array(bag) def chat(command): result = model.predict([bag_of_words(command, words)]) result_index = numpy.argmax(result) tag = labels[result_index] for tg in data['intents']: if tg['tag'] == tag: responses = tg['responses'] context = tg["context"][0] response=random.choice(responses) bot_response = [response,context] return bot_response ``` #### File: Smart-Assistant/Features/OCR.py ```python import os import time import cv2 import imutils import numpy as np import pytesseract from autocorrect import Speller from PIL import Image def VideoOn(): video = cv2.VideoCapture(0, cv2.CAP_DSHOW) while True: # check returns true if python can actually read and frame is ndim numpy array check, frame = video.read() cv2.imshow('Capturing...', frame) key = cv2.waitKey(1) if key == ord('q'): check, frame = video.read() a = cv2.imwrite("Data\\OCR_Data\\CaptureImage.jpg", frame) break video.release() cv2.destroyAllWindows() def TesseractSetup(): # Mention the installed location of Tesseract-OCR in your system pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract.exe' def CropBorder(): # return cropped image from which text needs to be extracted im = Image.open("Data\OCR_Data\SteveJobsQuote.jpg") # im = Image.open("./Assets/quote-luck-is-when-skill-meets-opportunity-vinnie-paz-80-71-88.jpg") if im.mode != 'RGB': im = im.convert('RGB') im.save("Data\OCR_Data\SteveJobsQuote.jpg", dpi=(300, 300)) # return border_crop("CaptureImage.jpg") return cv2.imread("Data\OCR_Data\SteveJobsQuote.jpg") def ExtractImageData(img): # cv2.imshow("img", img) # cv2.waitKey(0) img = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) # cv2.imshow("img", img) # cv2.waitKey(0) # image data try: data = pytesseract.image_to_osd(img).split() except: return "",0 # Detect language language = data[-4] # Detect angle rotation = data[-9] print(rotation) print(data) # return Image Data return language, rotation def PreprocessingImage(img, rotation): cv2.imshow("img", img) cv2.waitKey(0) # apply rotation rotated = imutils.rotate(img, angle=-(int(rotation))) cv2.imshow("img", rotated) cv2.waitKey(0) # Resize the image to a given scale img = cv2.resize(rotated, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) cv2.imshow("img", img) cv2.waitKey(0) # Blur using GaussianBlur method img = cv2.GaussianBlur(img, (5, 5), 0) cv2.imshow("img", img) cv2.waitKey(0) # Convert the image to gray scale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imshow("img", gray) # cv2.waitKey(0) # Apply threshhold thresh1 = cv2.threshold(gray, 0, 255, cv2.THRESH_TOZERO)[1] cv2.imshow("img", thresh1) cv2.waitKey(0) # Specify structure shape and kernel size. # Kernel size increases or decreases the area # of the rectangle to be detected. # A smaller value like (10, 10) will detect # each word instead of a sentence. rect_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 20)) # Appplying dilation on the threshold image dilation = cv2.dilate(thresh1, rect_kernel, iterations=1) cv2.imshow("img", dilation) cv2.waitKey(0) # Finding contours contours, hierarchy = cv2.findContours( dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Creating a copy of image im2 = img.copy() return im2, contours def CreateFileToPrintTo(): # A text file is created and flushed file = open("Data\\OCR_Data\\recognized.txt", "w+") file.write("") file.close() def FindContour(im2, contours, language): # Looping through the identified contours # Then rectangular part is cropped and passed on # to pytesseract for extracting text from it # Extracted text is then written into the text file result = "" file = open("Data\\OCR_Data\\recognized.txt", "a", encoding='utf-8') for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) # Drawing a rectangle on copied image rect = cv2.rectangle(im2, (x, y), (x + w, y + h), (0, 255, 0), 2) # Cropping the text block for giving input to OCR cropped = im2[y:y + h, x:x + w] try: # Apply OCR on the cropped image if language.lower() == 'latin': text = pytesseract.image_to_string(cropped, lang="eng") else: text = pytesseract.image_to_string(cropped) except: return "","" # Storing the text result += (text + "\n") return result, file def AppendResultToFile(result, file): spell = Speller(only_replacements=True) result = result.replace(" ", "") var = spell(result) file.write(var) # Close the file file.close def launch(): # VideoOn() TesseractSetup() img = CropBorder() language, rotation = ExtractImageData(img) im2, contours = PreprocessingImage(img, rotation) CreateFileToPrintTo() result, file = FindContour(im2, contours, language) AppendResultToFile(result, file) os.remove('Data\\OCR_Data\\CaptureImage.jpg') ```
{ "source": "JosephLutz/serialCommTest", "score": 2 }
#### File: serialCommTest/example_progs/commBoardTests.py ```python from traceback import format_tb import threading from threading import Lock import termios import hashlib import random import select import serial import Queue import time import sys import os if (sys.hexversion < 0x020100f0): import TERMIOS else: TERMIOS = termios if (sys.hexversion < 0x020200f0): import FCNTL else: import fcntl FCNTL = fcntl TEST_TIMEOUT = 10 NUM_TIMES_PER_BAUD = 1 TEST_BREAK_TIME = 12.0 # ammount of time to allow the serial module to read as many bytes as requested: non-blocking reads RX_BUFFER_FILL_TIME = 0.02 READ_SIZE = 512 WARMUP_TIME = 0.001 COOLDOWN_TIME =1.0 baudrates = (115200, 57600, 38400, 28800, 19200, 14400, 9600, 4800, 2400, 1200) def get_state(ser_ports, msg_queue): out = '' print_msg_queue(msg_queue) try: out += 'event: TX={txEvent}\n'.format(txEvent=ser_ports[0].TX_thread.TX_event.is_set()) except: out += 'event: TX=[NONE]\n' for ser in ser_ports: try: port = ser.port except: port = '[NONE]' try: opened = ser.isOpen() except: opened = '[NONE]' try: alive = ser.TX_thread.is_alive() except: alive = '[NONE]' try: txEvent = ser.TX_thread.TX_event.is_set() except: txEvent = '[NONE]' try: open_event = ser.TX_thread.port_open_event.is_set() except: open_event = '[NONE]' try: self.running_lock.acquire() running = ser.TX_thread.running self.running_lock.release() except: running = '[NONE]' out += ' port({port:<12}) opened:{opened:<6} Thread:(alive={alive:<6} TX_event={txEvent:<6} open_event={open_event:<6} running={running:<6})\n'.format( port=port, opened=opened, alive=alive, txEvent=txEvent, open_event=open_event, running=running) return out def get_rand_data(bytes, printableChars=True): rand = random.SystemRandom() if printableChars: returnVal = ''.join([chr(rand.randint(33,126)) for i in range(bytes)]) else: returnVal = ''.join([chr(rand.randint(1,255)) for i in range(bytes)]) return hashlib.sha1(returnVal).hexdigest() + returnVal def print_msg_queue(msg_queue): while not msg_queue.empty(): (threadID, thread_name, msg) = msg_queue.get_nowait() if threadID is None: print msg else: print '{0:<4} {1:<25} {2}'.format(threadID, ('"'+thread_name+'"'), msg) def setup_serial_port(port, msg_queue, read_timeout=RX_BUFFER_FILL_TIME, write_timeout=None): # create generic serial port object if not os.path.exists( port ): msg_queue.put((None, None, ('!!!!!!!!!! Port "{port}" does not exist. !!!!!!!!!!'.format(port=port)))) raise BaseException ser = serial.Serial(port=None) ser.port = port ser.baudrate = 115200 ser.bytesize = serial.EIGHTBITS ser.parity = serial.PARITY_NONE ser.stopbits = serial.STOPBITS_ONE ser.xonxoff = False ser.rtscts = False ser.timeout = read_timeout ser.writeTimeout = write_timeout ser.close() print 'Generate data for {port}'.format(port=ser.port) ser.data = get_rand_data(10240, printableChars=False) ser.read_buffer = [] # ['', 0.0] ser.port_lock = Lock() # lock exclusive use of hardware msg_queue.put((None, None, ('Port "{port}" created'.format(port=port)))) return ser def wait_ports_opened(ser_ports): # wait for all serial ports to be opened events = [] for ser in ser_ports: if not ser.TX_thread.port_open_event.is_set(): events.append(ser.TX_thread.port_open_event) start_time = time.time() while (len(events) is not 0): if not ser.TX_thread.msg_queue.empty(): print_msg_queue(ser.TX_thread.msg_queue) # wait 100 mSec before checking agan events[0].wait(0.1) events = [port_event for port_event in events if not port_event.is_set()] if ((time.time() - start_time) > TEST_TIMEOUT): ser_thread.msg_queue.put((ser_thread.threadID, ser_thread.name, ('!!!!!!!!!! Timmed out waiting for serial ports to open. !!!!!!!!!!'))) ser_threads = [ser.TX_thread for ser in ser_ports if not ser.TX_thread.port_open_event.is_set()] ser_thread.msg_queue.put((None, None, ('ports that did not open:'.format('"' + '", "'.join([ser_threads.name]) + '"')))) raise BaseException ''' def check_recieved_data(data, ser_thread): shaHash = hashlib.sha1() digestLen = shaHash.digest_size * 2 digest = '' for index in range(len(data)): for data_index in range(len(data[index][0])): digest += data[index][0][data_index] if len(digest) is digestLen: break if len(digest) is digestLen: break if len(digest) < digestLen: self.msg_queue.put((ser_thread.threadID, ser_thread.name, 'Did not even recieve the checksum')) return False shaHash.update(data[index][0][(data_index + 1):]) for index in range(index + 1, len(data)): shaHash.update(data[index][0]) return digest == shaHash.hexdigest() ''' def _open_serial_port(ser_thread): ser_thread.ser.port_lock.acquire() if not ser_thread.ser.isOpen(): try: ser_thread.ser.open() except serial.SerialException: ser_thread.msg_queue.put((ser_thread.threadID, ser_thread.name, ('!!!!!!!!!! serial exception when opening port {port}. !!!!!!!!!!'.format(port=ser_thread.ser.port)))) if not os.path.exists(ser_thread.ser.port): ser_thread.msg_queue.put((ser_thread.threadID, ser_thread.name, ('!!!!!!!!!! serial port no longer exists {port}. !!!!!!!!!!'.format(port=ser_thread.ser.port)))) ser_thread.ser.port_lock.release() raise BaseException if not ser_thread.ser.isOpen(): ser_thread.msg_queue.put((ser_thread.threadID, ser_thread.name, ('!!!!!!!!!! Port "{port}" is not open. !!!!!!!!!!'.format(port=ser_thread.ser.port)))) ser_thread.ser.port_lock.release() raise BaseException # DEBUG: Disabling tcdrain #iflag, oflag, cflag, lflag, ispeed, ospeed, cc = termios.tcgetattr(ser_thread.ser.fd) #iflag |= (TERMIOS.IGNBRK | TERMIOS.IGNPAR) #termios.tcsetattr(ser_thread.ser.fd, TERMIOS.TCSANOW, [iflag, oflag, cflag, lflag, ispeed, ospeed, cc]) ser_thread.ser.setRTS(0) ser_thread.ser.port_lock.release() ''' class rxThread(threading.Thread): def __init__(self, name, threadID, msg_queue, timeout): threading.Thread.__init__(self) self.running_lock = Lock() self.port_open_event = threading.Event() # Blocks untill the port is opened self.running = False self.threadID = threadID self.name = name self.msg_queue = msg_queue self.timeout = timeout self.msg_queue.put((self.threadID, self.name, 'RX THREAD CREATED')) # sync RX and TX self.event = threading.Event() def run(self): self.running_lock.acquire() self.running = True _open_serial_port(self) # notify this port is opened if not self.port_open_event.is_set(): self.port_open_event.set() self.msg_queue.put((self.threadID, self.name, 'RX STARTING')) # start recieving try: while self.running: self.running_lock.release() data = self._read_data() if len(data) is 0: self.running_lock.acquire() # no new characters recieved within self.timeout period self.running = False else: self.ser.read_buffer += data self.running_lock.acquire() except serial.SerialTimeoutException: pass else: self.running_lock.release() def _read_data(self): # Wait untill no data has been recieved for a period of time not less than self.timeout. # Return all data read. # The value of self.timeout should be less than self.timeout for this to work properly start_time = time.time() read_buffer = [] data = '' while data is not None: (rlist, _, _) = select.select([self.ser.fileno()], [], [], self.timeout) if (len(rlist) is 1) and rlist[0] is self.ser.fileno(): data = self.ser.read(READ_SIZE) read_buffer.append((data, (time.time() - start_time)),) else: data = None return read_buffer ''' class txThread (threading.Thread): def __init__(self, name, threadID, msg_queue, TX_event): threading.Thread.__init__(self) self.running_lock = Lock() self.port_open_event = threading.Event() # Blocks untill the port is opened self.TX_event = TX_event # Releases all the TX threads at the same time (when they are all opened) self.running = False self.threadID = threadID self.name = name self.msg_queue = msg_queue self.msg_queue.put((self.threadID, self.name, 'TX THREAD CREATED')) def run(self): self.running_lock.acquire() self.running = True _open_serial_port(self) self.msg_queue.put((self.threadID, self.name, 'TX WAITING')) # notify this port is opened if not self.port_open_event.is_set(): self.port_open_event.set() # wait for ALL serial ports to be opened self.TX_event.wait() self.msg_queue.put((self.threadID, self.name, 'TX STARTING')) # start transmit self.ser.port_lock.acquire() self.ser.setRTS(1) self.ser.port_lock.release() time.sleep(WARMUP_TIME) try: while self.running: self.running_lock.release() self.work_funct(self.ser) self.running_lock.acquire() except serial.SerialTimeoutException: pass else: self.running_lock.release() # stop transmit self.ser.port_lock.acquire() if (self.ser.fd > 0): #termios.tcdrain(self.ser.fd) # DEBUG: Disabling tcdrain time.sleep(COOLDOWN_TIME) self.ser.setRTS(0) if self.ser.isOpen(): self.ser.close() self.ser.port_lock.release() self.msg_queue.put((self.threadID, self.name, 'TX STOPPING')) def write_work_function(ser): start_time = time.time() try: ser.write(ser.data) ser.close() ser.TX_thread.msg_queue.put((ser.TX_thread.threadID, ser.TX_thread.name, ('-- {time:<6.4} sec. ({port:<12} @ {baud:<6}).'.format( time=(time.time() - start_time), baud=ser.baudrate, port=ser.port)))) except serial.SerialTimeoutException: if self.ser.isOpen(): ser.close() ser.TX_thread.msg_queue.put((ser.TX_thread.threadID, ser.TX_thread.name, ('-- {time:<6.4} sec. +++++ SerialTimeoutException +++++ ({port:<12} @ {baud:<6})'.format( time=(time.time() - start_time), baud=ser.baudrate, port=ser.port)))) def test1(funct, ser_ports, msg_queue): msg_queue.put((None, None, '\n\n{line:{fill}40}\n{fill}{msg:^38}{fill}\n{line:{fill}40}\n'.format(line='', fill='*', msg='SETUP FOR TEST'))) # Create the threads id_count = 1 TX_event = threading.Event() for ser in ser_ports: # TX Thread ser.TX_thread = txThread( '{port}_TX@{baud}'.format(port=os.path.basename(ser.port), baud=ser.baudrate), id_count, msg_queue, TX_event) ser.TX_thread.ser = ser # Need to acces the serial port inside the thread ser.TX_thread.work_funct = funct # RX Thread ''' ser.RX_thread = rxThread( '{port}_RX@{baud}'.format(port=os.path.basename(ser.port), baud=ser.baudrate), (id_count + 1), msg_queue, (TEST_TIMEOUT / 2)) ser.RX_thread.ser = ser # Need to acces the serial port inside the thread ''' id_count += 2 # start the threads runnung running_txThreads = [] for ser in ser_ports: '''ser.RX_thread.start()''' ser.TX_thread.start() running_txThreads.append(ser.TX_thread.name) num_running_txThreads = len(running_txThreads) + 1 # wait for all serial ports to be opened wait_ports_opened(ser_ports) # releas all transmit threads to start sending if not TX_event.is_set(): TX_event.set() msg_queue.put((None, None, '\n\n{line:{fill}40}\n{fill}{msg:^38}{fill}\n{line:{fill}40}\n'.format(line='', fill='*', msg='START TEST'))) # loop while the threads run start_time = time.time() while (len(running_txThreads) is not 0): running_txThreads = [] # display what is in the message queue print_msg_queue(msg_queue) # have the threads been running long enough if ((time.time() - start_time) >= TEST_TIMEOUT): # Stop all threads from running due to timeout for ser in ser_ports: ser.TX_thread.running_lock.acquire() ser.TX_thread.running = False ser.TX_thread.running_lock.release() # collect which threads are running for ser in ser_ports: ser.TX_thread.running_lock.acquire() if ser.TX_thread.running: running_txThreads.append('{padding}"{name}"'.format(padding=('.'*10), name=ser.TX_thread.name)) ser.TX_thread.running_lock.release() if (len(running_txThreads) is not num_running_txThreads): num_running_txThreads = len(running_txThreads) # creat the message to display which threads are running if len(running_txThreads) is 0: msg = ' ***** No threads left running. *****' else: msg = 'Running threads:\n' + '\n'.join(running_txThreads) # queue up the message msg_queue.put((None, None, ('\n{msg}'.format(line=('-'*30), msg=msg)))) msg_queue.put((None, None, ' ***** Wait for all TX threads to terminate. *****')) # display what is in the message queue print_msg_queue(msg_queue) # wait for all threads to finish non_terminated_len = len([ser.TX_thread for ser in ser_ports if ser.TX_thread.is_alive()] + [None]) while non_terminated_len is not 0: print_msg_queue(msg_queue) non_terminated = [ser.TX_thread for ser in ser_ports if ser.TX_thread.is_alive()] if len(non_terminated) is not non_terminated_len: non_terminated_len = len(non_terminated) msg_queue.put((None, None, get_state(ser_ports, msg_queue))) for ser in ser_ports: ser.TX_thread.join() ''' msg_queue.put((None, None, 'Time of TX threads: {time:<6.4} sec.'.format(time=(time.time() - start_time)))) msg_queue.put((None, None, ' ***** Wait for all RX threads to terminate. *****')) # display what is in the message queue print_msg_queue(msg_queue) # wait for all threads to finish for ser in ser_ports: ser.RX_thread.join() ''' msg_queue.put((None, None, 'All threads stopped. Total test time: {time:<6.4} sec.'.format(time=(time.time() - start_time)))) msg_queue.put((None, None, '\n\n{line:{fill}40}\n{fill}{msg:^38}{fill}\n{line:{fill}40}\n'.format(line='', fill='*', msg='STOP TEST'))) msg_queue.put((None, None, '\nSleep: {time:<6.4} sec.\n'.format(time=TEST_BREAK_TIME))) print_msg_queue(msg_queue) time.sleep(TEST_BREAK_TIME) def main(): msg_queue = Queue.Queue() ser_ports = ( setup_serial_port('/dev/ttyACM0', msg_queue), setup_serial_port('/dev/ttyACM1', msg_queue), setup_serial_port('/dev/ttyACM2', msg_queue), setup_serial_port('/dev/ttyACM3', msg_queue), setup_serial_port('/dev/ttyACM4', msg_queue), setup_serial_port('/dev/ttyACM5', msg_queue), setup_serial_port('/dev/ttyACM6', msg_queue), setup_serial_port('/dev/ttyACM7', msg_queue), ) # choose which baudrates to test at selected_baudrates = baudrates # run the test NUM_TIMES_PER_BAUD times at the # baud rate or forever if NUM_TIMES_PER_BAUD is 0 count = NUM_TIMES_PER_BAUD try: while ((count is not 0) or (NUM_TIMES_PER_BAUD is 0)): # run the test for each baudrate for baud in selected_baudrates: msg_queue.put((None, None, '\n\n{line:{fill}40}\n{fill}{msg:^38}{fill}\n{line:{fill}40}\n'.format(line='', fill='*', baud='BAUDRATE = {0}'.format(baud)))) # set the baud rate for each serial port for ser in ser_ports: ser.baudrate = baud test1(write_work_function, ser_ports, msg_queue) msg_queue.put((None, None, '\n\n')) msg_queue.put((None, None, '{line:40*}\n\n\n'.format(line=''))) if (NUM_TIMES_PER_BAUD is not 0): count -= 1 except: error_out = get_state(ser_ports, msg_queue) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] error_out += '{0}\n'.format('='*80) error_out += 'lineno:{lineno}, fname:{fname}'.format(fname=fname, lineno=exc_tb.tb_lineno) #for line in format_tb(exc_tb): # error_out += '{0}\n'.format(line) print('\n{line:{fill}80}\n{out}\n{line:{fill}80}'.format(line='', fill='#', out=error_out)) for ser in ser_ports: # ignore locking ser.TX_thread.running = False if not ser.TX_thread.port_open_event.is_set(): ser.TX_thread.port_open_event.set() if not ser.TX_thread.TX_event.is_set(): ser.TX_thread.TX_event.set() if __name__ == "__main__": main() ``` #### File: JosephLutz/serialCommTest/serialData.py ```python from OrionPythonModules import serial_settings from msgMonitor import CREATE_SERIAL_PORT from msgMonitor import PORT_OPENED from msgMonitor import PORT_CLOSED from msgMonitor import REPORT_DATA_RECIEVED import threading import serial import select import termios import Queue import time import sys import os if sys.hexversion < 0x020100f0: import TERMIOS else: TERMIOS = termios from config import * class SerialData(serial.Serial): #Used by the txThread and rxThread as the DataSendObj and dataGetObj. LXM_MODE_VALUES = [ u'RS-232', u'RS-485 2-wire', u'RS-485/422 4-wire', u'Loopback' ] LXM_SERIAL_TYPES = { u'RS232': LXM_MODE_VALUES[0], u'RS485': LXM_MODE_VALUES[1], u'RS422': LXM_MODE_VALUES[2], None: LXM_MODE_VALUES[3], } def __init__(self, port, packetSource, msgQueue=None, readTimeout=SERIAL_PORT_READ_TIMEOUT, writeTimeout=None, interCharTimeout=None): serial.Serial.__init__(self, port = None, #number of device, numbering starts at #zero. if everything fails, the user #can specify a device string, note #that this isn't portable anymore #port will be opened if one is specified baudrate=115200, #baudrate bytesize=serial.EIGHTBITS, #number of databits parity=serial.PARITY_NONE, #enable parity checking stopbits=serial.STOPBITS_ONE, #number of stopbits timeout=readTimeout, #set a timeout value, None to wait forever xonxoff=0, #enable software flow control rtscts=0, #enable RTS/CTS flow control writeTimeout=writeTimeout, #set a timeout for writes dsrdtr=None, #None: use rtscts setting, dsrdtr override if true or false interCharTimeout=interCharTimeout #Inter-character timeout, None to disable ) if isinstance(port, str) or isinstance(port, unicode): self.port = os.path.normpath(port) else: # Using an intiger is not as reliable (A guess is made). self.port = port # Queue for sending state back to messaging thread self.msgQueue = msgQueue # lock for when a thread needs exclusive access to the serial port self.portLock = threading.Lock() # lock exclusive use of hardware # list of sent packet information self.sentPackets = [] #[(packetID, packetLength, hash), ...] # place holder populated when the txThread is created self.txThread = None # data recieved (list of tuples, each containing data read and time since last read) self.readBuffer = [] # [(data, time), ...] # place holder populated when the rxThread is created self.rxThread = None # Queue that holds data packets to be sent self.packetSource = packetSource if self.msgQueue is not None: self.msgQueue.put((None, {'port': self.port}, CREATE_SERIAL_PORT)) def set_serial_mode(self, mode=None): def mode_in(mode): if ((isinstance(mode, str) or isinstance(mode, unicode)) and (unicode(mode.upper()) in SerialData.LXM_SERIAL_TYPES.keys())): return SerialData.LXM_SERIAL_TYPES[mode] elif ((isinstance(mode, str) or isinstance(mode, unicode)) and (unicode(mode) in SerialData.LXM_SERIAL_TYPES.values())): return unicode(mode) elif isinstance(mode, int) and (mode >= 0) and (mode < len(SerialData.LXM_MODE_VALUES)): return SerialData.LXM_MODE_VALUES[mode] else: return u'Loopback' settings = serial_settings.SerialSettings() settings.cards = [{ 'type': '124', 'ports': [{}, {}, {}, {}, ] }, { 'type': '124', 'ports': [{}, {}, {}, {}, ] }] if isinstance(mode, tuple) and len(mode) is 8: for mode_index in range(0, 4): settings.cards[0]['ports'][mode_index]['type'] = mode_in(mode[mode_index]) for mode_index in range(0, 4): settings.cards[1]['ports'][mode_index]['type'] = mode_in(mode[mode_index]) elif isinstance(mode, str) or isinstance(mode, unicode) or isinstance(mode, int): mode = mode_in(mode) for mode_index in range(0, 4): settings.cards[0]['ports'][mode_index]['type'] = mode for mode_index in range(0, 4): settings.cards[1]['ports'][mode_index]['type'] = mode else: mode = 'Loopback' for mode_index in range(0, 4): settings.cards[0]['ports'][mode_index]['type'] = mode for mode_index in range(0, 4): settings.cards[1]['ports'][mode_index]['type'] = mode settings.apply() def open_serial_port(self): self.portLock.acquire() if not self.isOpen(): if not os.path.exists(self.port): if self.msgQueue is not None: self.msgQueue.put((self.txThread.threadID, None, 'Serial port {port} does not exist.'.format(port=self.port))) self.portLock.release() return False try: self.open() except serial.SerialException: if not os.path.exists(self.port): if self.msgQueue is not None: self.msgQueue.put( (self.txThread.threadID, None, ('SerialException while opening port {port}, ' + 'and the port dissapeared after open atempt.'.format(port=self.port)))) else: if self.msgQueue is not None: self.msgQueue.put( (self.txThread.threadID, None, 'SerialException while opening port {port}.'.format(port=self.port))) self.portLock.release() return False if not self.isOpen(): if self.msgQueue is not None: self.msgQueue.put( (self.txThread.threadID, None, 'Serial port {port} would not open with specified port configuration.'.format(port=self.port))) self.portLock.release() return False if ENABLE_RTS_LINE: # NOTE: Set RTS back to False as soon as possible after open. # open resets RTS True when RTS/CTS flow control disabled # (re)set RTS to off self.setRTS(False) if ENABLE_DTR_LINE: # set DTR to on self.setDTR(True) if ENABLE_TCDRAIN: iflag, oflag, cflag, lflag, ispeed, ospeed, cc = termios.tcgetattr(self.fd) iflag |= (TERMIOS.IGNBRK | TERMIOS.IGNPAR) termios.tcsetattr(self.fd, TERMIOS.TCSANOW, [iflag, oflag, cflag, lflag, ispeed, ospeed, cc]) if self.msgQueue is not None: self.msgQueue.put((self.txThread.threadID, {'port': self.port}, PORT_OPENED)) self.portLock.release() return True def close_serial_port(self): self.portLock.acquire() if self.isOpen(): if ENABLE_RTS_LINE: # set RTS to off self.setRTS(False) if ENABLE_DTR_LINE: # set DTR to off self.setDTR(False) # close the port self.close() if self.msgQueue is not None: self.msgQueue.put((self.txThread.threadID, {'port': self.port}, PORT_CLOSED)) self.portLock.release() # # These methods determine how the port is used # def thread_send_startup(self): self.sentPackets = [] # opent the port if not self.open_serial_port(): raise BaseException def thread_send_start(self): if ENABLE_RTS_LINE: self.portLock.acquire() # set RTS to on self.setRTS(True) self.portLock.release() time.sleep(SERIAL_PORT_WARMUP_TIME) def send_data(self): start_time = time.time() if self.packetSource.queue.empty(): return False # get the dataTuple from the Queue dataTuple = None try: while dataTuple is None: dataTuple = self.packetSource.queue.get_nowait() except Queue.Empty: return False # notify we are using a packet self.packetSource.packetUsed.set() # write the data try: if self.msgQueue is not None: self.msgQueue.put( (self.txThread.threadID, None, 'Started TX on {packetLength} byte packet {packetID} @ {time}'.format( packetID=dataTuple[1], time=(time.time() - start_time), packetLength=dataTuple[2]))) self.write(dataTuple[0]) if self.msgQueue is not None: self.msgQueue.put(self.txThread.threadID, None, 'Finished TX on {packetLength} byte packet {packetID} @ {time}'.format( packetID=dataTuple[1], time=(time.time() - start_time), packetLength=dataTuple[2])) except serial.SerialTimeoutException: if self.msgQueue is not None: self.msgQueue.put(self.txThread.threadID, None, 'SerialException durring packet write') return False # store tuple of packet info: (packetID, packetLength, hash) self.sentPackets.append(dataTuple[1:]) return True def thread_send_stop(self): if (self.fd > 0): if ENABLE_RTS_LINE: self.portLock.acquire() if ENABLE_TCDRAIN: termios.tcdrain(self.fd) time.sleep(SERIAL_PORT_COOLDOWN_TIME) # set RTS to off self.setRTS(False) self.portLock.release() # use the message queue to send self.sentPackets if self.msgQueue is not None: self.msgQueue.put((self.txThread.threadID, self.sentPackets, REPORT_DATA_RECIEVED)) def thread_get_startup(self): # reset the readBuffer self.readBuffer = [] # open the port if not self.open_serial_port(): raise BaseException def thread_get_start(self): pass def get_data(self): reading = True bytes_read = 0 start_time = time.time() while reading: (rlist, _, _) = select.select([self.fileno()], [], [], self.timeout) if (len(rlist) is 1) and rlist[0] is self.fileno(): data = self.read(NUM_BYTES_TO_READ) bytes_read += len(data) self.readBuffer.append((data, (time.time() - start_time)),) else: reading = False if bytes_read is 0: return False return True def thread_get_stop(self): # send the readBuffer in the message queue if self.msgQueue is not None: self.msgQueue.put((self.txThread.threadID, self.readBuffer, 'Data read before timeout.')) if __name__ == '__main__': import tests.serialData_test tests.serialData_test.runtests ```
{ "source": "Joseph-Lux/go", "score": 4 }
#### File: Joseph-Lux/go/Board.py ```python from Piece import Piece from Group import Group class Board: def __init__(self): self.pieces = [[Piece(row, column) for column in range(19)] for row in range(19)] self.groups = [] self.turn = 'X' self.ko = None def setPiecesBoard(self): for row in self.pieces: for piece in row: piece.board = self def checkMove(self, row, column): # Check to see if there is already a piece there if self.pieces[row][column].player != '-': return False # Check to see if move is killing itself # Return the reverse of the ko property # This will return true, we can go there, if there is no ko, # but false, we cannot go there if there is a ko return True def addPiece(self, row, column): # Change the player of the piece at the position of the move self.pieces[row][column].player = self.turn # Calculate the liberties of the new move self.pieces[row][column].calculateLiberties() # Update groups self.addToGroups(row, column) # Update liberties of opposing pieces around the move self.updateLibsAround(row, column) # Remove groups self.removeGroups() # Switch the player self.turn = self.oppositeTurn() def oppositeTurn(self): if self.turn == 'X': return 'O' else: return 'X' def addToGroups(self, row, column): # Make a new group for the new piece newGroup = Group(self.turn, self) newGroup.appendPiece(self.pieces[row][column]) # Add the upper neighbor if it matches player if row != 0 and self.pieces[row - 1][column].player == self.turn: newGroup.appendGroup(self.pieces[row - 1][column].group) # Add the right neighbor if it matches player if column != 18 and self.pieces[row][column + 1].player == self.turn: newGroup.appendGroup(self.pieces[row][column + 1].group) # Add the lower neighbor if it matches player if row != 18 and self.pieces[row + 1][column].player == self.turn: newGroup.appendGroup(self.pieces[row + 1][column].group) # Add the left neighbor if it matches player if column != 0 and self.pieces[row][column - 1].player == self.turn: newGroup.appendGroup(self.pieces[row][column - 1].group) newGroup.calculateLiberties() self.groups.append(newGroup) def removeGroups(self): for group in self.groups: if not group.calculateLiberties(): for piece in group.pieces: piece.player = '-' self.groups.remove(group) def updateLibsAround(self, row, column): # Update upper neighbor if row != 0 and self.pieces[row - 1][column].player == self.oppositeTurn(): self.pieces[row - 1][column].liberties -= 1 self.pieces[row - 1][column].group.liberties -= 1 # Update right neighbor if column != 18 and self.pieces[row][column + 1].player == self.oppositeTurn(): self.pieces[row][column + 1].liberties -= 1 self.pieces[row][column + 1].group.liberties -= 1 # Update lower neighbor if row != 18 and self.pieces[row + 1][column].player == self.oppositeTurn(): self.pieces[row + 1][column].liberties -= 1 self.pieces[row + 1][column].group.liberties -= 1 # Update left neighbor if column != 0 and self.pieces[row][column - 1].player == self.oppositeTurn(): self.pieces[row][column - 1].liberties -= 1 self.pieces[row][column - 1].group.liberties -= 1 def outputLibs(self): string = '' for row in self.pieces: for item in row: string += str(item.liberties) + ' ' string += "\n" print(string) def __str__(self): # Iterate over each row and then iterate over the items in each row, # keeping spaces between each item and newlines between each row. string = '' for row in self.pieces: for item in row: string += str(item) + ' ' string += "\n" return string ``` #### File: Joseph-Lux/go/GoGUI.py ```python import pygame, sys from pygame.locals import * pygame.init() # Initialize pygame FPS = 50 # Frame rate for the game fpsClock = pygame.time.Clock() # Clock # Colors BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0, 40) YELLOW = (255, 255, 0, 30) BLUE = (0, 0, 255) # Make display surface DISPLAYSURF = pygame.display.set_mode((800, 800), 0, 32) pygame.display.set_caption('Go') # Load images BACKGROUNDIMAGE = pygame.image.load('ash.jpg') BLACKPIECE = pygame.transform.scale(pygame.image.load('1024px-Realistic_Go_Stone.svg.png'), (40, 40)) WHITEPIECE = pygame.transform.scale(pygame.image.load('1024px-Realistic_White_Go_Stone.svg.png'), (40, 40)) HL_BLACKPIECE = BLACKPIECE.copy() HL_WHITEPIECE = WHITEPIECE.copy() HL_BLACKPIECE.fill((255, 255, 255, 128), None, pygame.BLEND_RGBA_MULT) HL_WHITEPIECE.fill((255, 255, 255, 128), None, pygame.BLEND_RGBA_MULT) ################################## # Event Handling # ################################## # Check if move can be made and make it if it can def handleClick(box, board): if not box[0] or not box[1]: return column = (box[0] - 20) // 40 row = (box[1] - 20) // 40 if board.checkMove(row, column): board.addPiece(row, column) # Returns a tuple with the x and y position of # the box where the mouse is hovering def getBoxAtMousePos(mousex, mousey): for boxx in range(20, 780, 40): for boxy in range(20, 780, 40): boxRect = pygame.Rect(boxx, boxy, 40, 40) if boxRect.collidepoint(mousex, mousey): return (boxx, boxy) return (None, None) ################################## # Drawing methods # ################################## # Draws the board onto DISPLAYSURF def drawBoard(box, board): # Background image DISPLAYSURF.blit(BACKGROUNDIMAGE, (0, 0)) # Lines for x in range(1, 20): pygame.draw.line(DISPLAYSURF, BLACK, (40 * x, 40), (40 * x, 760)) for y in range(1, 20): pygame.draw.line(DISPLAYSURF, BLACK, (40, 40 * y), (760, 40 * y)) # Circles for star points for x in range(3): for y in range(3): pygame.draw.circle(DISPLAYSURF, BLACK, (160 + x * 240, 160 + y * 240), 3) drawPieces(board) # Draw cursor on the board if box[0] and box[1] and board.checkMove((box[1] - 20) // 40, (box[0] - 20) // 40): if board.turn == 'O': DISPLAYSURF.blit(HL_WHITEPIECE, box) else: DISPLAYSURF.blit(HL_BLACKPIECE, box) # Draw pieces def drawPieces(board): for row in board.pieces: for piece in row: if piece.player == 'X': DISPLAYSURF.blit(BLACKPIECE, (20 + 40 * piece.column, 20 + 40 * piece.row)) elif piece.player == 'O': DISPLAYSURF.blit(WHITEPIECE, (20 + 40 * piece.column, 20 + 40 * piece.row)) ################################## # Main game loop # ################################## def runGame(board): while True: mouseClicked = False for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() elif event.type == MOUSEMOTION: mousex, mousey = event.pos elif event.type == MOUSEBUTTONUP: mousex, mousey = event.pos mouseClicked = True elif event.type == KEYUP: if event.key == K_k: print(board) board.outputLibs() mousedBox = getBoxAtMousePos(mousex, mousey) if mouseClicked: handleClick(mousedBox, board) drawBoard(mousedBox, board) pygame.display.update() fpsClock.tick(FPS) ```
{ "source": "josephm28/math-nerd-py", "score": 4 }
#### File: math-nerd-py/number-types/number_type.py ```python import divisors class NumberType: def __init__(self, num): self.num = num self.is_prime = False self.divisors = divisors.Find(self.num) self.determine_type() def show_rundown(self): print("Looking at number:\t", self.num) print("\tDivisors:\t", self.divisors.divisors) print("\tProper Divisors:", self.divisors.proper_divisors) print("\tType:\t\t", self.type) def determine_type(self): if self.num == 0: self.type = "Zero" elif self.divisors.proper_sum == self.num: self.type = "Perfect" elif self.divisors.proper_sum > self.num: self.type = "Abundant" elif self.divisors.proper_sum < self.num: if self.divisors.proper_sum == 1: self.is_prime = True self.type = "Deficient" ```
{ "source": "josephM96/PGM_project", "score": 2 }
#### File: PGM_project/model/modules.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import weight_norm from functools import partial from model.model_utils import concat_elu import numpy as np from model.model_utils import * from scipy import linalg as la logabs = lambda x: torch.log(torch.abs(x)) # dictionary for indicating kernel size, kernel valid regrion # "masking convolution" or "normal convolution with shift and crop" # what is mixture indicator? # is horizontal stream reference more than 1 row? # differnece between conditional dependence and corresponding (r, g, b) selection method # and mixture logistic and conditioning on the whole image in the pixelCNN++ # where to deploy 3 NIN modules? # apply dropout # network in network module class nin(nn.Module): def __init__(self, in_channels, out_channels): super(nin, self).__init__() self.conv = weight_norm(nn.Conv2d(in_channels, out_channels, 1)) def forward(self, x): return self.conv(x) class gated_residual_conv(nn.Module): def __init__(self, in_channels, is_horizontal=False, is_decoder=False): super(gated_residual_conv, self).__init__() self.is_horizontal = is_horizontal self.is_decoder = is_decoder conv_op = down_rightward_conv if is_horizontal else downward_conv self.conv_1 = conv_op(2 * in_channels, in_channels) self.conv_2 = conv_op(2 * in_channels, 2 * in_channels) """ Encoder horizontal stream input : previous layer's horizontal output, current layer's vertical output(dim=C) vertical stream input : previous layer's vertical output Decoder horizontal stream input : previous layer's horizontal output, CONCAT(current layer's vertical output(C), symmetric horizontal output from Encoder)(dim=2C) vertical stream input : previous layer's vertical output, symmetric vertical output from Encoder(dim=C) """ if self.is_decoder: if self.is_horizontal: self.nin = nin(2 * 2 * in_channels, in_channels) else: self.nin = nin(2 * in_channels, in_channels) else: if self.is_horizontal: self.nin = nin(2 * in_channels, in_channels) self.dropout = nn.Dropout2d(0.5) def forward(self, x, shortcut_or_vertical_output=None): original_x = x x = self.conv_1(concat_elu(x)) if shortcut_or_vertical_output is not None: x += self.nin(concat_elu(shortcut_or_vertical_output)) x = concat_elu(x) x = self.dropout(x) x = self.conv_2(x) x, gate = x.chunk(2, dim=1) # split across the channel dimension x *= torch.sigmoid(gate) # gating x return original_x + x # "down" means "vertical" stream # "downright" means "horizontal" stream class downward_conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(2, 3), stride=(1, 1), top_pad_output=False): super(downward_conv, self).__init__() # for vertical, (left, right, top) have to be padded self.top_pad_output = top_pad_output self.pad = nn.ZeroPad2d((int((kernel_size[1] - 1) / 2), (int((kernel_size[1] - 1) / 2)), kernel_size[0] - 1, 0)) self.conv = weight_norm(nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride)) if self.top_pad_output: # down shift means removing the last row of output and add padding at the first index of row # so that it prevents prediction operation of the last row self.down_shift = down_shift def forward(self, x): x = self.pad(x) x = self.conv(x) x = self.down_shift(x) if self.top_pad_output else x return x class down_rightward_conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(2, 2), stride=(1, 1), left_pad_output=False): super(down_rightward_conv, self).__init__() # for horiontal, (left, top) have to be padded self.left_pad_output = left_pad_output self.pad = nn.ZeroPad2d((kernel_size[1] - 1, 0, kernel_size[0] - 1, 0)) self.conv = weight_norm(nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride)) if self.left_pad_output: # right shift means removing the last column of output and add padding at the first index of column # so that it prevents prediction operation of the last column self.right_shift = right_shift def forward(self, x): x = self.pad(x) x = self.conv(x) x = self.right_shift(x) if self.left_pad_output else x return x class downward_deconv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(2, 3), stride=(2, 2)): super(downward_deconv, self).__init__() # output_padding=1 -> add padding to bottom and right self.deconv = weight_norm( nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, output_padding=1)) self.kernel_size = kernel_size def forward(self, x): x = self.deconv(x) kernel_H, kernel_W = self.kernel_size # cropping spatial dimension => removing null regions return x[Ellipsis, :-(kernel_H - 1), int(np.floor(kernel_W / 2)):-int(np.floor(kernel_W / 2))] class down_rightward_deconv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=(2, 2), stride=(2, 2)): super(down_rightward_deconv, self).__init__() self.deconv = weight_norm( nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, output_padding=1)) self.kernel_size = kernel_size def forward(self, x): x = self.deconv(x) kernel_H, kernel_W = self.kernel_size # cropping spatial dimension => removing null regions return x[Ellipsis, :-(kernel_H - 1), :-(kernel_W - 1)] #################### From this line, modules for Glow #################### class ActNorm(nn.Module): def __init__(self, in_channel, logdet=True): super().__init__() self.shift = nn.Parameter(torch.zeros(1, in_channel, 1, 1)) self.scale = nn.Parameter(torch.ones(1, in_channel, 1, 1)) self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) self.logdet = logdet def initialize(self, input): with torch.no_grad(): flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) mean = (flatten.mean(1).unsqueeze(1).unsqueeze(2).unsqueeze(3).permute(1, 0, 2, 3)) std = (flatten.std(1).unsqueeze(1).unsqueeze(2).unsqueeze(3).permute(1, 0, 2, 3)) self.shift.data.copy_(-mean) self.scale.data.copy_(1/(std+1e-6)) def forward(self, input): """ x(data) -> z(latent) """ _, _, H, W = input.shape if self.initialized.item() == 0: self.initialize(input) self.initialized.fill_(1) log_abs = logabs(self.scale) logdet = H * W * torch.sum(log_abs) if self.logdet: return self.scale*(input+self.shift), logdet else: return self.scale * (input + self.shift) def reverse(self, output): """ z(latent) -> x(data) """ return output / self.scale - self.shift class InvConv2d(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def forward(self, input): _, _, H, W = input.shape out = F.conv2d(input, self.weight) logdet = ( H * W * torch.slogdet(self.weight.squeeze().double())[1].float() ) return out, logdet def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unqueeze(2).unsqueeze(3)) class InvConv2dLU(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = la.qr(weight) w_p, w_l, w_u = la.lu(q.astype(np.float32)) w_s = np.diag(w_u) w_u = np.triu(w_u, 1) u_mask = np.triu(np.ones_like(w_u), 1) l_mask = u_mask.T w_p = torch.from_numpy(w_p) # rotation matrix w_l = torch.from_numpy(w_l) # lower triangular matrix with 1 as diagonal entries w_s = torch.from_numpy(w_s) # diagonal entries of w_u w_u = torch.from_numpy(w_u) # zero diagonal entries of w_u(upper triangular matrix) self.register_buffer('w_p', w_p) # rotation matrix, fixed self.register_buffer('u_mask', torch.from_numpy(u_mask)) # upper triangular matrix as mask 1 without diagonal entries. self.register_buffer('l_mask', torch.from_numpy(l_mask)) # lower triangular matrix as mask 1 without diagonal entries. self.register_buffer('s_sign', torch.sign(w_s)) # sign of diagonal entries of s self.register_buffer('l_eye', torch.eye(l_mask.shape[0])) # identity matrix as size c x c self.w_l = nn.Parameter(w_l) self.w_s = nn.Parameter(logabs(w_s)) self.w_u = nn.Parameter(w_u) def forward(self, input): _, _, H, W = input.shape weight = self.calc_weight() out = F.conv2d(input, weight) logdet = H*W*torch.sum(self.w_s) return out, logdet def calc_weight(self): weight =(self.w_p @(self.w_l*self.l_mask + self.l_eye) @((self.w_u*self.u_mask) + torch.diag(self.s_sign * torch.exp(self.w_s)))) return weight.unsqueeze(2).unsqueeze(3) def reverse(self, output): weight = self.calc_weight() return F.conv2d(output, weight.squeeze().inverse().unsqueeze(2).unsqueeze(3)) class ZeroConv2d(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input): out = F.pad(input, [1, 1, 1, 1], value=1) out = self.conv(out) out = out * torch.exp(self.scale*3) return out class CouplingLayer(nn.Module): def __init__(self, in_channel, filter_size=512, affine=True): super().__init__() self.affine = affine self.net = nn.Sequential( nn.Conv2d(in_channel//2, filter_size, 3, padding=1), nn.ReLU(True), nn.Conv2d(filter_size, filter_size, 1), nn.ReLU(True), ZeroConv2d(filter_size, in_channel if self.affine else in_channel//2), ) self.net[0].weight.data.normal_(0, 0.05) self.net[0].bias.data.zero_() self.net[2].weight.data.normal_(0, 0.05) self.net[2].bias.data.zero_() def forward(self, input): in_a, in_b = input.chunk(2, 1) if self.affine: log_s, t = self.net(in_a).chunk(2, 1) # s = torch.exp(log_s + 2) s = torch.sigmoid(log_s + 2) # out_b = s * in_b + t out_b = (in_b + t) * s # logdet = torch.sum(torch.log(s).view(input.shape[0], -1), 1) logdet = torch.sum(torch.log(s).view(input.shape[0], -1), 1) else: net_out = self.net(in_a) out_b = in_b + net_out logdet = None return torch.cat([in_a, out_b], dim=1), logdet def reverse(self, output): out_a, out_b = output.chunk(2, 1) if self.affine: log_s, t = self.net(out_a).chunk(2, 1) # s = torch.exp(log_s + 2) s = torch.sigmoid(log_s + 2) # in_b = (out_b - t)/s in_b = out_b/s - t else: net_out = self.net(out_a) in_b = out_b - net_out return torch.cat([out_a, in_b], dim=1) class Flow(nn.Module): def __init__(self, in_channel, affine=True, conv_lu=True): super().__init__() self.actnorm = ActNorm(in_channel) if conv_lu: self.invconv = InvConv2dLU(in_channel) else: self.invconv = InvConv2d(in_channel) self.coupling = CouplingLayer(in_channel, affine=affine) def forward(self, input): out, logdet = self.actnorm(input) out, logdet1 = self.invconv(out) out, logdet2 = self.coupling(out) logdet = logdet + logdet1 if logdet2 is not None: logdet = logdet + logdet2 return out, logdet def reverse(self, output): input = self.coupling.reverse(output) input = self.invconv.reverse(input) input = self.actnorm.reverse(input) return input class Block(nn.Module): def __init__(self, in_channel, n_flow, split=True, affine=True, conv_lu=True, learned_prior=True): super().__init__() squeeze_dim = in_channel * 4 self.flows = nn.ModuleList([]) for i in range(n_flow): self.flows.append(Flow(squeeze_dim, affine=affine, conv_lu=conv_lu)) self.split = split self.learned_prior = learned_prior if learned_prior: if split: self.prior = ZeroConv2d(in_channel*2, in_channel*4) else: self.prior = ZeroConv2d(in_channel*4, in_channel*8) else: if split: self.prior = torch.zeros((1, in_channel*4, 1, 1)) else: self.prior = torch.zeros((1, in_channel*8, 1, 1)) def forward(self, input): B, C, H, W = input.size() out = self.squeeze(input) logdet = 0 for flow in self.flows: out, det = flow(out) logdet = logdet + det if self.split: out, z_new = out.chunk(2, 1) if self.learned_prior: mean, log_sd = self.prior(out).chunk(2, 1) else: mean, log_sd = self.prior.chunk(2, 1) mean = mean.repeat(B, 1, *out.shape[2:]).to(out.device) log_sd = log_sd.repeat(B, 1, *out.shape[2:]).to(out.device) log_p = gaussian_log_p(z_new, mean, log_sd) log_p = log_p.view(B, -1).sum(1) else: zero = torch.zeros_like(out) if self.learned_prior: mean, log_sd = self.prior(zero).chunk(2, 1) else: mean, log_sd = self.prior.chunk(2, 1) mean = mean.repeat(B, 1, *out.shape[2:]).to(out.device) log_sd = log_sd.repeat(B, 1, *out.shape[2:]).to(out.device) log_p = gaussian_log_p(out, mean, log_sd) log_p = log_p.view(B, -1).sum(1) z_new = out return out, logdet, log_p, z_new def reverse(self, output, eps=None, reconstruct=False): """ z(latent) -> x(data) """ input = output if reconstruct: if self.split: input = torch.cat([output, eps], 1) else: input = eps else: if self.split: if self.learned_prior: mean, log_sd = self.prior(input).chunk(2, 1) else: mean, log_sd = self.prior.chunk(2, 1) mean = mean.repeat(eps.shape[0], 1, *eps.shape[2:]).to(eps.device) log_sd = log_sd.repeat(eps.shape[0], 1, *eps.shape[2:]).to(eps.device) z = gaussian_sample(eps, mean, log_sd) input = torch.cat([output, z], 1) else: zero = torch.zeros_like(input) if self.learned_prior: mean, log_sd = self.prior(zero).chunk(2, 1) else: mean, log_sd = self.prior.chunk(2, 1) mean = mean.repeat(eps.shape[0], 1, *eps.shape[2:]).to(eps.device) log_sd = log_sd.repeat(eps.shape[0], 1, *eps.shape[2:]).to(eps.device) z = gaussian_sample(eps, mean, log_sd) input = z for flow in self.flows[::-1]: input = flow.reverse(input) input = self.undo_squeeze(input) return input def squeeze(self, input): B, C, H, W = input.size() squeezed = input.view(B, C, H//2, 2, W//2, 2) squeezed = squeezed.permute(0, 1, 3, 5, 2, 4) out = squeezed.contiguous().view((B, C*4, H//2, W//2)) return out def undo_squeeze(self, output): B, C, H, W = output.size() unsqueezed = output.view(B, C//4, 2, 2, H, W) unsqueezed = unsqueezed.permute(0, 1, 4, 2, 5, 3) out = unsqueezed.contiguous().view((B, C//4, H*2, W*2)) return out ``` #### File: josephM96/PGM_project/test.py ```python import argparse import torch from tqdm import tqdm import data_loader.data_loaders as module_data import model.loss as module_loss import model.metric as module_metric import model.model as module_arch from parse_config import ConfigParser def main(config): logger = config.get_logger('test') # setup data_loader instances #TODO Be careful of 'mode' parameter data_loader = getattr(module_data, config['data_loader']['type'])( config['data_loader']['args']['data_dir'], img_size = config['data_loader']['args']['img_size'], batch_size=64, shuffle=False, validation_split=0.0, training=False, num_workers=1 ) # build model architecture model_background = config.init_obj('arch_background', module_arch) model_semantic = config.init_obj('arch_semantic', module_arch) logger.info(model_background) logger.info(model_semantic) # get function handles of loss and metrics loss_fn = getattr(module_loss, config['loss']) # One Logger, Two different model(background model & semantic model) logger.info('Loading background model checkpoint: {} ...'.format(config['resume']['background'])) checkpoint_bg = torch.load(config['resume']['background']) state_bg_dict = checkpoint_bg['state_dict'] if config['n_gpu'] > 1: model_background = torch.nn.DataParallel(model_background) model_background.load_state_dict(state_bg_dict) logger.info('Loading semantic model checkpoint: {} ...'.format(config['resume']['semantic'])) checkpoint_sem = torch.load(config['resume']['semantic']) state_sem_dict = checkpoint_sem['state_dict'] if config['n_gpu'] > 1: model_background = torch.nn.DataParallel(model_background) model_semantic.load_state_dict(state_sem_dict) # prepare model for testing device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_b = model_background.to(device) model_s = model_semantic.to(device) model_b.eval() model_s.eval() total_loss = 0.0 with torch.no_grad(): for i, (data, target) in enumerate(tqdm(data_loader)): data, target = data.to(device), target.to(device) output_b, output_s = model_b(data), model_s(data) # computing loss, metrics on test set loss_b = loss_fn(data, output_b, input_channels=data.shape[1]) loss_s = loss_fn(data, output_s, input_channels=data.shape[1]) batch_size = data.shape[0] total_loss += (loss_s.item() - loss_b.item()) * batch_size n_samples = len(data_loader.sampler) log = {'loss': total_loss / n_samples} logger.info(log) if __name__ == '__main__': args = argparse.ArgumentParser(description='Test code for evaluation.') # args.add_argument('-c', '--config', default=None, type=str, # help='config file path (default: None)') args.add_argument('-c', '--config', default='./configs/fmnist_glow_config_test.json', type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)') config_test = ConfigParser.from_args(args) main(config_test) ```
{ "source": "josephmaa/pyuoi", "score": 3 }
#### File: pyuoi/linear_model/elasticnet.py ```python import numpy as np from .base import AbstractUoILinearRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model._coordinate_descent import _alpha_grid from sklearn.linear_model import ElasticNet class UoI_ElasticNet(AbstractUoILinearRegressor, LinearRegression): r"""UoI\ :sub:`ElasticNet` solver. Parameters ---------- n_boots_sel : int The number of data bootstraps to use in the selection module. Increasing this number will make selection more strict. n_boots_est : int The number of data bootstraps to use in the estimation module. Increasing this number will relax selection and decrease variance. selection_frac : float The fraction of the dataset to use for training in each resampled bootstrap, during the selection module. Small values of this parameter imply larger "perturbations" to the dataset. estimation_frac : float The fraction of the dataset to use for training in each resampled bootstrap, during the estimation module. The remaining data is used to obtain validation scores. Small values of this parameters imply larger "perturbations" to the dataset. IGNORED - Leaving this here to double check later n_lambdas : int The number of regularization values to use for selection. alphas : list or ndarray The parameter that trades off L1 versus L2 regularization for a given lambda. stability_selection : int, float, or array-like If int, treated as the number of bootstraps that a feature must appear in to guarantee placement in selection profile. If float, must be between 0 and 1, and is instead the proportion of bootstraps. If array-like, must consist of either ints or floats between 0 and 1. In this case, each entry in the array-like object will act as a separate threshold for placement in the selection profile. estimation_score : string, "r2" | "AIC" | "AICc" | "BIC" Objective used to choose the best estimates per bootstrap. estimation_target : string, "train" | "test" Decide whether to assess the estimation_score on the train or test data across each bootstrap. By default, a sensible choice is made based on the chosen estimation_score. warm_start : bool When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution eps : float Length of the lasso path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. copy_X : bool If ``True``, X will be copied; else, it may be overwritten. fit_intercept : bool Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (e.g. data is expected to be already centered). standardize : bool If True, the regressors X will be standardized before regression by subtracting the mean and dividing by their standard deviations. max_iter : int Maximum number of iterations for iterative fitting methods. random_state : int, RandomState instance, or None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. comm : MPI communicator If passed, the selection and estimation steps are parallelized. logger : Logger The logger to use for messages when ``verbose=True`` in ``fit``. If *None* is passed, a logger that writes to ``sys.stdout`` will be used. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) Estimated coefficients for the linear regression problem. intercept_ : float Independent term in the linear model. supports_ : ndarray, shape (n_supports, n_features) Boolean array indicating whether a given regressor (column) is selected for estimation for a given regularization parameter value (row). """ def __init__(self, n_boots_sel=24, n_boots_est=24, selection_frac=0.9, estimation_frac=0.9, n_lambdas=48, alphas=np.array([0.5]), stability_selection=1., estimation_score='r2', estimation_target=None, warm_start=True, eps=1e-3, copy_X=True, fit_intercept=True, standardize=True, max_iter=1000, random_state=None, comm=None, logger=None): super(UoI_ElasticNet, self).__init__( n_boots_sel=n_boots_sel, n_boots_est=n_boots_est, selection_frac=selection_frac, estimation_frac=estimation_frac, stability_selection=stability_selection, estimation_score=estimation_score, estimation_target=estimation_target, copy_X=copy_X, fit_intercept=fit_intercept, standardize=standardize, random_state=random_state, comm=comm, max_iter=max_iter, logger=logger) self.n_lambdas = n_lambdas self.alphas = alphas self.n_alphas = len(alphas) self.warm_start = warm_start self.eps = eps self.lambdas = None self._selection_lm = ElasticNet( fit_intercept=fit_intercept, max_iter=max_iter, copy_X=copy_X, warm_start=warm_start, random_state=random_state) self._estimation_lm = LinearRegression(fit_intercept=fit_intercept) def get_reg_params(self, X, y): r"""Calculates the regularization parameters (alpha and lambda) to be used for the provided data. Note that the Elastic Net penalty is given by .. math:: \frac{1}{2\ \text{n_samples}} ||y - Xb||^2_2 + \lambda (\alpha |b|_1 + 0.5 (1 - \alpha) |b|^2_2) where lambda and alpha are regularization parameters. ``scikit-learn`` does not use these names. Instead, ``scitkit-learn`` denotes alpha by 'l1_ratio' and lambda by 'alpha'. Parameters ---------- X : array-like, shape (n_samples, n_features) The design matrix. y : array-like, shape (n_samples) The response vector. Returns ------- reg_params : a list of dictionaries A list containing dictionaries with the value of each (lambda, alpha) describing the type of regularization to impose. The keys adhere to scikit-learn's terminology (lambda->alpha, alpha->l1_ratio). This allows easy passing into the ElasticNet object. """ if self.lambdas is None: self.lambdas = np.zeros((self.n_alphas, self.n_lambdas)) # a set of lambdas are generated for each alpha value (l1_ratio in # sci-kit learn parlance) for alpha_idx, alpha in enumerate(self.alphas): self.lambdas[alpha_idx, :] = _alpha_grid( X=X, y=y, l1_ratio=alpha, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_lambdas) # place the regularization parameters into a list of dictionaries reg_params = list() for alpha_idx, alpha in enumerate(self.alphas): for lamb_idx, lamb in enumerate(self.lambdas[alpha_idx]): # reset the regularization parameter reg_params.append(dict(alpha=lamb, l1_ratio=alpha)) return reg_params ``` #### File: pyuoi/pyuoi/utils.py ```python import numpy as np import sys import logging import os import time import json import base64 def softmax(y, axis=-1): """Calculates the softmax distribution. Parameters ---------- y : ndarray Log-probabilities. """ yp = y - y.max(axis=axis, keepdims=True) epy = np.exp(yp) return epy / np.sum(epy, axis=axis, keepdims=True) def sigmoid(x): """Calculates the bernoulli distribution. Parameters ---------- x : ndarray Log-probabilities. """ return np.exp(-np.logaddexp(0, -x)) def log_likelihood_glm(model, y_true, y_pred): """Calculates the log-likelihood of a generalized linear model given the true response variables and the "predicted" response variables. The "predicted" response variable varies by the specific generalized linear model under consideration. Parameters ---------- model : string The generalized linear model to calculate the log-likelihood for. y_true : nd-array, shape (n_samples,) Array of true response values. y_pred : nd-array, shape (n_samples,) Array of predicted response values (conditional mean). Returns ------- ll : float The log-likelihood. """ if model == 'normal': # this log-likelihood is calculated under the assumption that the # variance is the value that maximizes the log-likelihood rss = (y_true - y_pred)**2 n_samples = y_true.size ll = -n_samples / 2 * (1 + np.log(np.mean(rss))) elif model == 'poisson': if not np.any(y_pred): if np.any(y_true): ll = -np.inf else: ll = 0. else: ll = np.mean(y_true * np.log(y_pred) - y_pred) else: raise ValueError('Model is not available.') return ll def BIC(ll, n_features, n_samples): """Calculates the Bayesian Information Criterion. Parameters ---------- ll : float The log-likelihood of the model. n_features : int The number of features used in the model. n_samples : int The number of samples in the dataset being tested. Returns ------- BIC : float Bayesian Information Criterion """ BIC = n_features * np.log(n_samples) - 2 * ll return BIC def AIC(ll, n_features): """Calculates the Akaike Information Criterion. Parameters ---------- ll : float The log-likelihood of the model. n_features : int The number of features used in the model. n_samples : int The number of samples in the dataset being tested. Returns ------- AIC : float Akaike Information Criterion """ AIC = 2 * n_features - 2 * ll return AIC def AICc(ll, n_features, n_samples): """Calculate the corrected Akaike Information Criterion. This criterion is useful in cases when the number of samples is small. If the number of features is equal to the number of samples plus one, then the AIC is returned (the AICc is undefined in this case). Parameters ---------- ll : float The log-likelihood of the model. n_features : int The number of features used in the model. n_samples : int The number of samples in the dataset being tested. Returns ------- AIC : float Akaike Information Criterion """ AICc = AIC(ll, n_features) if n_samples > (n_features + 1): AICc += 2 * (n_features**2 + n_features) / (n_samples - n_features - 1) return AICc def check_logger(logger, name='uoi', comm=None): ret = logger if ret is None: if comm is not None and comm.Get_size() > 1: r, s = comm.Get_rank(), comm.Get_size() name += " " + str(r).rjust(int(np.log10(s)) + 1) ret = logging.getLogger(name=name) handler = logging.StreamHandler(sys.stdout) fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' handler.setFormatter(logging.Formatter(fmt)) ret.addHandler(handler) return ret def is_json_serializable(object: any) -> bool: try: json.dumps(object) return True except (TypeError, OverflowError): return False def dump_json(model: "AbstractUoILinearModel", filename: str, results: dict) -> None: """ Writes out all model values to JSON. """ dirname, basename = os.path.dirname(filename), os.path.basename( filename) with open(generate_timestamp_filename(dirname=dirname, basename=basename, file_format=".json"), "w") as file: json_dump = {} for dump in (model.__dict__, results): for key, val in dump.items(): if is_json_serializable(val): json_dump[key] = val elif isinstance(val, np.ndarray): # Encode arrays as base64 strings. json_dump[key] = (val.shape, str( base64.b64encode(val), 'utf-8')) print( f"JSON attributes written to {generate_timestamp_filename(dirname=dirname, basename=basename, file_format='.json')}.") json.dump(json_dump, file, sort_keys=True, indent=4) def generate_timestamp_filename(dirname: str, basename: str, file_format: str) -> str: """ Generate a timestamped filename for use in saving files. """ timestr = time.strftime("%Y%m%d-%H%M%S") return os.path.join(dirname, f"{timestr}.{basename}{file_format}") def write_timestamped_numpy_binary(filename: str, **data: np.array) -> None: """ Writes a numpy binary file with a timestamped prefix to a 'saved_runs' directory in the same directory. """ basename, dirname = os.path.basename(filename), os.path.dirname(filename) saved_runs_directory = os.path.join(dirname, 'saved_runs') if not os.path.exists(saved_runs_directory): os.makedirs(saved_runs_directory) # Only process one keyword argument array. if len(data) == 1: saved_filename = generate_timestamp_filename( dirname=saved_runs_directory, basename=basename, file_format='.npy') np.save(saved_filename, data) # Process multiple keyworse argument arrays. else: saved_filename = saved_filename = generate_timestamp_filename( dirname=saved_runs_directory, basename=basename, file_format='.npz') np.savez(saved_filename, **data) print('File saved to: ', saved_filename) ``` #### File: pyuoi/tests/test_rat7m.py ```python from pyuoi.linear_model import UoI_L1Logistic from pyuoi.datasets import make_classification from matplotlib.widgets import Button import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import time import xarray as xr from sklearn.model_selection import train_test_split # filename = "/Users/josephgmaa/pyuoi/pyuoi/data/nolj_Recording_day7_overnight_636674151185633714_1_nolj.c3d.243.features.netcdf" filename = "/Users/josephgmaa/pyuoi/pyuoi/data/features/nolj_Recording_day7_overnight_636674151185633714_35_nolj.c3d.916.features.netcdf" df = xr.load_dataset(filename, engine='h5netcdf').to_dataframe() fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.2) class Index(object): global df # used so you can access local list, funcs, here global ax def __init__(self): self.ind = 0 self.line = None def next(self, event): if self.line: self.line.pop(0).remove() ax.clear() ax.plot(df['behavior_name'].to_numpy(), alpha=0.5) self.ind += 1 y = df.iloc[:, self.ind].to_numpy() name = df.columns[self.ind] self.line = ax.plot(y, alpha=0.5) # set y value data ax.title.set_text(name) # set title of graph plt.draw() def prev(self, event): if self.line: self.line.pop(0).remove() ax.clear() ax.plot(df['behavior_name'].to_numpy(), alpha=0.5) self.ind += 1 y = df.iloc[:, self.ind].to_numpy() name = df.columns[self.ind] self.line = ax.plot(y, alpha=0.5) # set y value data ax.title.set_text(name) # set title of graph plt.draw() def main(): pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) start = time.time() callback = Index() axprev = plt.axes([0.7, 0.05, 0.1, 0.075]) axnext = plt.axes([0.81, 0.05, 0.1, 0.075]) bnext = Button(axnext, 'Next') bnext.on_clicked(callback.next) bprev = Button(axprev, 'Previous') bprev.on_clicked(callback.prev) ax.plot(df['behavior_name'].to_numpy()) plt.show() # for feature in df.columns: # map_behavior_to_values = {'Walk': 100, 'WetDogShake': 200, 'FaceGroom': 300, 'RScratch': 400, 'BadTracking': 500, 'RGroom': 600, # 'ProneStill': 700, 'AdjustPosture': 800} # df['behavior_values'] = df['behavior_name'].map(map_behavior_to_values) # feature = ax.plot(df[feature]) # ax.scatter(df.index, df.behavior_values) # ax.text(x=0, y=-100, s=[f"{key}: {value}" for key, # value in map_behavior_to_values.items()], fontsize="small") # plt.show() # del feature # # Run the classifier. # print('Running the classifier.') # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # l1log = UoI_L1Logistic().fit(X_train, y_train) # y_hat = l1log.predict(X_test) # print(y_hat) # # Save the results to a numpy binary. # with open('test.npy', 'wb') as file: # np.save(file, X) # np.save(file, y) # np.save(file, y_hat) # np.save(file, y_test) # print(np.load('test.npy').shape) # ax.clear() # ax.plot(y_hat) # plt.show() end = time.time() print('Time elapsed: ', end - start) if __name__ == "__main__": main() ``` #### File: pyuoi/tests/test_uoi_l1logistic.py ```python import pytest, numbers, warnings import numpy as np from numpy.testing import assert_array_equal, assert_allclose, assert_equal from scipy.sparse import rand as sprand from scipy import optimize from pyuoi import UoI_L1Logistic from pyuoi.linear_model.logistic import (fit_intercept_fixed_coef, MaskedCoefLogisticRegression, LogisticInterceptFitterNoFeatures, _logistic_regression_path, _multinomial_loss_grad, _logistic_loss_and_grad) from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.utils import (compute_class_weight, check_consistent_length, check_array) from sklearn.exceptions import ConvergenceWarning from pyuoi.datasets import make_classification from pyuoi.lbfgs import fmin_lbfgs, AllZeroLBFGSError def _logistic_regression_path_old(X, y, Cs=48, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, coef=None, class_weight=None, penalty='l2', multi_class='auto', check_input=True, sample_weight=None, l1_ratio=None, coef_mask=None): """Compute a Logistic Regression model for a list of regularization parameters. This is the original function used to check the new indexing-based version rather than the masking version implemented here. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. Useless for liblinear solver. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. multi_class : str, {'multinomial', 'auto'}, default: 'auto' For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'auto' selects binary if the data is binary and otherwise selects 'multinomial'. check_input : bool, default True If False, the input arrays X and y will not be checked. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. coef_mask : array-like, shape (n_features), (n_classes, n_features) optional Masking array for coef. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. For ``multiclass='multinomial'``, the shape is (n_classes, n_cs, n_features) or (n_classes, n_cs, n_features + 1). Cs : ndarray Grid of Cs used for cross-validation. n_iter : array, shape (n_cs,) Actual number of iteration for each Cs. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) # Preprocessing. if check_input: X = check_array(X, accept_sparse='csr', dtype=np.float64, accept_large_sparse=True) y = check_array(y, ensure_2d=False, dtype=None) check_consistent_length(X, y) _, n_features = X.shape classes = np.unique(y) if multi_class == 'auto': if len(classes) > 2: multi_class = 'multinomial' else: multi_class = 'ovr' # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples if sample_weight is not None: sample_weight = np.array(sample_weight, dtype=X.dtype, order='C') check_consistent_length(y, sample_weight) else: sample_weight = np.ones(X.shape[0], dtype=X.dtype) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "balanced", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict) or multi_class == 'multinomial': class_weight_ = compute_class_weight(class_weight, classes=classes, y=y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': coef_size = n_features w0 = np.zeros(n_features + int(fit_intercept), dtype=X.dtype) mask_classes = np.array([-1, 1]) mask = (y == 1) y_bin = np.ones(y.shape, dtype=X.dtype) y_bin[~mask] = -1. # for compute_class_weight if class_weight == "balanced": class_weight_ = compute_class_weight(class_weight, classes=mask_classes, y=y_bin) sample_weight *= class_weight_[le.fit_transform(y_bin)] else: coef_size = classes.size * n_features lbin = OneHotEncoder(categories=[range(classes.size)], sparse=False) Y_multi = lbin.fit_transform(y[:, np.newaxis]) if Y_multi.shape[1] == 1: Y_multi = np.hstack([1 - Y_multi, Y_multi]) w0 = np.zeros((classes.size, n_features + int(fit_intercept)), dtype=X.dtype) w0[:, -1] = LogisticInterceptFitterNoFeatures(y, classes.size).intercept_ if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: w0[:, :coef.shape[1]] = coef # Mask initial array if coef_mask is not None: if multi_class == 'ovr': w0[:n_features] *= coef_mask else: w0[:, :n_features] *= coef_mask if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. target = Y_multi if penalty == 'l2': w0 = w0.ravel() def func(x, *args): return _multinomial_loss_grad(x, *args)[0:2] else: w0 = w0.T.ravel().copy() def inner_func(x, *args): return _multinomial_loss_grad(x, *args)[0:2] def func(x, g, *args): x = x.reshape(-1, classes.size).T.ravel() loss, grad = inner_func(x, *args) grad = grad.reshape(classes.size, -1).T.ravel() g[:] = grad return loss else: target = y_bin if penalty == 'l2': func = _logistic_loss_and_grad else: def func(x, g, *args): loss, grad = _logistic_loss_and_grad(x, *args) g[:] = grad return loss coefs = list() n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): iprint = [-1, 50, 1, 100, 101][ np.searchsorted(np.array([0, 1, 2, 3]), verbose)] if penalty == 'l2': w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, coef_mask, sample_weight), iprint=iprint, pgtol=tol, maxiter=max_iter) else: zeros_seen = [0] def zero_coef(x, *args): if multi_class == 'multinomial': x = x.reshape(-1, classes.size)[:-1] else: x = x[:-1] now_zeros = np.array_equiv(x, 0.) if now_zeros: zeros_seen[0] += 1 else: zeros_seen[0] = 0 if zeros_seen[0] > 1: return -2048 try: w0 = fmin_lbfgs(func, w0, orthantwise_c=1. / C, args=(X, target, 0., coef_mask, sample_weight), max_iterations=max_iter, epsilon=tol, orthantwise_end=coef_size, progress=zero_coef) except AllZeroLBFGSError: w0 *= 0. info = None if info is not None and info["warnflag"] == 1: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.", ConvergenceWarning) # In scipy <= 1.0.0, nit may exceed maxiter. # See https://github.com/scipy/scipy/issues/7854. if info is None: n_iter_i = -1 else: n_iter_i = min(info['nit'], max_iter) if multi_class == 'multinomial': n_classes = max(2, classes.size) if penalty == 'l2': multi_w0 = np.reshape(w0, (n_classes, -1)) else: multi_w0 = np.reshape(w0, (-1, n_classes)).T if coef_mask is not None: multi_w0[:, :n_features] *= coef_mask coefs.append(multi_w0.copy()) else: if coef_mask is not None: w0[:n_features] *= coef_mask coefs.append(w0.copy()) n_iter[i] = n_iter_i return np.array(coefs), np.array(Cs), n_iter def test_fit_intercept_fixed_coef(): """Test that the intercept in fit correctly for fixed coefficients.""" X = np.zeros((6, 5)) coef = np.ones((1, 5)) y = np.ones(6, dtype=int) y[:3] = 0 b = fit_intercept_fixed_coef(X, coef, y, 2) assert_allclose(b, 0.) X = np.zeros((7, 5)) y = np.ones(7, dtype=int) y[:3] = 0 b = fit_intercept_fixed_coef(X, coef, y, 3) assert_allclose(b.argmax(), 1) assert_allclose(b.argmin(), 2) def test_fit_intercept_no_features(): """Test that the intercept in fit correctly for fixed coefficients.""" X = np.zeros((5, 1)) y = np.ones(6, dtype=int) y[:3] = 0 LR = LogisticInterceptFitterNoFeatures(y, 1) b = LR.intercept_ assert_allclose(b, 0.) y = np.ones(7, dtype=int) y[:3] = 0 LR = LogisticInterceptFitterNoFeatures(y, 1) yhat = LR.predict(X) assert_allclose(yhat, 1) py = LR.predict_proba(X) assert np.all(py > .5) y = np.ones(7, dtype=int) y[:3] = 0 LR = LogisticInterceptFitterNoFeatures(y, 3) yhat = LR.predict(X) assert_allclose(yhat, 1) py = LR.predict_proba(X) assert_allclose(py.argmax(axis=1), 1) assert_allclose(py.argmin(axis=1), 2) def test_l1logistic_intercept(): """Test that binary L1 Logistic fits an intercept when run.""" for fi in [True, False]: X, y, w, b = make_classification(n_samples=100, random_state=11, n_features=4, w_scale=4., include_intercept=fi) l1log = UoI_L1Logistic(fit_intercept=fi, n_boots_sel=3, n_boots_est=3).fit(X, y) if not fi: assert_array_equal(l1log.intercept_, 0.) else: l1log.intercept_ def test_l1logistic_binary(): """Test that binary L1 Logistic runs in the UoI framework.""" n_inf = 10 X, y, w, b = make_classification(n_samples=200, random_state=6, n_informative=n_inf, n_features=20, w_scale=4., include_intercept=True) l1log = UoI_L1Logistic(random_state=10).fit(X, y) l1log = UoI_L1Logistic(random_state=10, fit_intercept=False).fit(X, y) l1log.predict_proba(X) l1log.predict_log_proba(X) y_hat = l1log.predict(X) assert_equal(accuracy_score(y, y_hat), l1log.score(X, y)) assert (np.sign(abs(w)) == np.sign(abs(l1log.coef_))).mean() >= .8 def test_l1logistic_binary_multinomial(): """Test that binary L1 Logistic runs in the UoI framework using multi_class='multinomial'.""" n_inf = 10 X, y, w, b = make_classification(n_samples=200, random_state=6, n_informative=n_inf, n_features=20, w_scale=4., include_intercept=True) UoI_L1Logistic(random_state=10, multi_class='multinomial').fit(X, y) UoI_L1Logistic(random_state=10, fit_intercept=False, multi_class='multinomial').fit(X, y) def test_l1logistic_no_ovr(): """Test that binary L1 Logistic model raises an error for multiclass='ovr'.""" with pytest.raises(ValueError): UoI_L1Logistic(multi_class='ovr') def test_l1logistic_multiclass(): """Test that multiclass L1 Logistic runs in the UoI framework when all classes share a support.""" n_features = 20 n_inf = 10 X, y, w, b = make_classification(n_samples=200, random_state=10, n_classes=5, n_informative=n_inf, n_features=n_features, shared_support=True, w_scale=4.) l1log = UoI_L1Logistic().fit(X, y) l1log.predict_proba(X) l1log.predict_log_proba(X) y_hat = l1log.predict(X) assert_equal(accuracy_score(y, y_hat), l1log.score(X, y)) assert (np.sign(abs(w)) == np.sign(abs(l1log.coef_))).mean() >= .8 def test_l1logistic_multiclass_not_shared(): """Test that multiclass L1 Logistic runs in the UoI framework when all classes share a support.""" n_features = 20 n_inf = 10 X, y, w, b = make_classification(n_samples=400, random_state=10, n_classes=5, n_informative=n_inf, n_features=n_features, shared_support=False, w_scale=4.) l1log = UoI_L1Logistic(shared_support=False).fit(X, y) l1log.predict_log_proba(X) y_hat = l1log.predict(X) assert_equal(accuracy_score(y, y_hat), l1log.score(X, y)) assert (np.sign(abs(w)) == np.sign(abs(l1log.coef_))).mean() >= .7 def test_masked_logistic(): """Test the masked logistic regression class.""" n_features = 20 n_inf = 10 for shared_support in [True, False]: for n_classes in [2, 3]: for intercept in [True, False]: X, y, w, b = make_classification(n_samples=200, random_state=10, n_classes=n_classes, n_informative=n_inf, n_features=n_features, shared_support=shared_support, include_intercept=intercept, w_scale=4.) mask = np.squeeze(np.logical_not(np.equal(w, 0))) for penalty in ['l1', 'l2']: lr = MaskedCoefLogisticRegression(penalty=penalty, C=10., warm_start=True, fit_intercept=intercept) lr.fit(X, y, coef_mask=mask) coef_idxs = np.flatnonzero(np.equal(lr.coef_, 0.)) coef_idxs = set(coef_idxs.tolist()) mask_idxs = np.flatnonzero(np.equal(mask, 0)) mask_idxs = set(mask_idxs.tolist()) assert mask_idxs.issubset(coef_idxs) lr.fit(X, y, coef_mask=mask) def test_masked_logistic_standardize(): """Test the masked logistic regression class with `standardize=True`.""" n_features = 20 n_inf = 10 for shared_support in [True, False]: for n_classes in [2, 3]: for intercept in [True, False]: X, y, w, b = make_classification(n_samples=200, random_state=10, n_classes=n_classes, n_informative=n_inf, n_features=n_features, shared_support=shared_support, include_intercept=intercept, w_scale=4.) mask = np.squeeze(np.logical_not(np.equal(w, 0))) for penalty in ['l1', 'l2']: lr = MaskedCoefLogisticRegression(penalty=penalty, C=10., warm_start=True, fit_intercept=intercept, standardize=True) lr.fit(X, y, coef_mask=mask) coef_idxs = np.flatnonzero(np.equal(lr.coef_, 0.)) coef_idxs = set(coef_idxs.tolist()) mask_idxs = np.flatnonzero(np.equal(mask, 0)) mask_idxs = set(mask_idxs.tolist()) assert mask_idxs.issubset(coef_idxs) lr.fit(X, y, coef_mask=mask) @pytest.mark.parametrize("n_classes,penalty,fit_intercept", [(3, "l2", True), (3, "l2", False), (3, "l1", True), (3, "l1", False), (2, "l2", True), (2, "l2", False), (2, "l1", True), (2, "l1", False)]) def test_masking_with_indexing(n_classes, penalty, fit_intercept): """Check that indexing the masks gives the same results as masking with logistic regression. """ X, y, w, intercept = make_classification(n_samples=1000, n_classes=n_classes, n_features=20, n_informative=10, random_state=0) mask = w != 0. if n_classes == 2: mask = mask.ravel() coefs, _, _ = _logistic_regression_path(X, y, [10.], coef_mask=mask, penalty=penalty, fit_intercept=fit_intercept) coefs_old, _, _ = _logistic_regression_path_old(X, y, [10.], coef_mask=mask, penalty=penalty, fit_intercept=fit_intercept) assert_allclose(coefs, coefs_old) coefs, _, _ = _logistic_regression_path(X, y, [10.], penalty=penalty, fit_intercept=fit_intercept) coefs_old, _, _ = _logistic_regression_path_old(X, y, [10.], penalty=penalty, fit_intercept=fit_intercept) assert_allclose(coefs, coefs_old) @pytest.mark.parametrize("n_classes,penalty,fit_intercept", [(3, "l2", True), (3, "l2", False), (3, "l1", True), (3, "l1", False), (2, "l2", True), (2, "l2", False), (2, "l1", True), (2, "l1", False)]) def test_all_masked_with_indexing(n_classes, penalty, fit_intercept): """Check masking all of the coef either works with intercept or raises an error. """ X, y, w, intercept = make_classification(n_samples=1000, n_classes=n_classes, n_features=20, n_informative=10, random_state=0) mask = np.zeros_like(w) if n_classes == 2: mask = mask.ravel() coefs, _, _ = _logistic_regression_path(X, y, [10.], coef_mask=mask, fit_intercept=fit_intercept) if fit_intercept: if n_classes == 2: assert_equal(coefs[0][:-1], 0.) else: assert_equal(coefs[0][:, :-1], 0.) else: assert_equal(coefs[0], 0.) def test_estimation_score_usage(): """Test the ability to change the estimation score in UoI L1Logistic""" methods = ('acc', 'log', 'BIC', 'AIC', 'AICc') X, y, w, b = make_classification(n_samples=200, random_state=6, n_informative=5, n_features=10) scores = [] for method in methods: l1log = UoI_L1Logistic(random_state=12, estimation_score=method, tol=1e-2, n_boots_sel=24, n_boots_est=24) assert_equal(l1log.estimation_score, method) l1log.fit(X, y) scores.append(l1log.scores_) scores = np.stack(scores) assert_equal(len(np.unique(scores, axis=0)), len(methods)) def test_set_random_state(): """Tests whether random states are handled correctly.""" X, y, w, b = make_classification(n_samples=100, random_state=60, n_informative=4, n_features=5, w_scale=4.) # same state l1log_0 = UoI_L1Logistic(random_state=13) l1log_1 = UoI_L1Logistic(random_state=13) l1log_0.fit(X, y) l1log_1.fit(X, y) assert_array_equal(l1log_0.coef_, l1log_1.coef_) # different state l1log_1 = UoI_L1Logistic(random_state=14) l1log_1.fit(X, y) assert not np.array_equal(l1log_0.coef_, l1log_1.coef_) # different state, not set l1log_0 = UoI_L1Logistic() l1log_1 = UoI_L1Logistic() l1log_0.fit(X, y) l1log_1.fit(X, y) assert not np.array_equal(l1log_0.coef_, l1log_1.coef_) def test_normalization_by_samples(): """Test that coef_ does not depend directly on the number of samples.""" n_features = 20 for n_classes in [2, 3]: X, y, w, b = make_classification(n_samples=200, random_state=10, n_classes=n_classes, n_informative=n_features, n_features=n_features, w_scale=4.) for penalty in ['l1', 'l2']: lr1 = MaskedCoefLogisticRegression(penalty=penalty, C=1e2) lr1.fit(X, y) lr3 = MaskedCoefLogisticRegression(penalty=penalty, C=1e2) lr3.fit(np.tile(X, (3, 1)), np.tile(y, 3)) assert_allclose(lr1.coef_, lr3.coef_) def test_l1logistic_binary_strings(): """Test that binary L1 Logistic runs in the UoI framework.""" n_inf = 10 X, y, w, b = make_classification(n_samples=200, random_state=6, n_informative=n_inf, n_features=20, w_scale=4., include_intercept=True) classes = ['a', 'b'] lb = LabelEncoder() lb.fit(classes) y = lb.inverse_transform(y) l1log = UoI_L1Logistic(random_state=10).fit(X, y) y_hat = l1log.predict(X) assert set(classes) >= set(y_hat) def test_l1logistic_multiclass_strings(): """Test that multiclass L1 Logistic runs in the UoI framework when all classes share a support.""" n_features = 20 n_inf = 10 X, y, w, b = make_classification(n_samples=200, random_state=10, n_classes=5, n_informative=n_inf, n_features=n_features, shared_support=True, w_scale=4.) classes = ['a', 'b', 'c', 'd', 'e'] lb = LabelEncoder() lb.fit(classes) y = lb.inverse_transform(y) l1log = UoI_L1Logistic(random_state=10).fit(X, y) y_hat = l1log.predict(X) assert set(classes) >= set(y_hat) def test_l1logistic_sparse_input(): """Test that multiclass L1 Logistic works when using sparse matrix inputs""" rs = np.random.RandomState(17) X = sprand(100, 100, random_state=rs) classes = ['abc', 'de', 'fgh'] y = np.array(classes)[rs.randint(3, size=100)] kwargs = dict( fit_intercept=False, random_state=rs, n_boots_sel=4, n_boots_est=4, n_C=7, ) l1log = UoI_L1Logistic(**kwargs).fit(X, y) y_hat = l1log.predict(X) assert set(classes) >= set(y_hat) def test_l1logistic_sparse_input_no_center(): """Test that multiclass L1 Logistic raises an error when asked to center sparse data. """ rs = np.random.RandomState(17) X = sprand(10, 10, random_state=rs) classes = ['abc', 'de', 'fgh'] y = np.array(classes)[rs.randint(3, size=10)] with pytest.raises(ValueError): UoI_L1Logistic(fit_intercept=True).fit(X, y) def test_l1logistic_bad_est_score(): """Test that multiclass L1 Logistic raises an error when given a bad estimation_score value. """ X = np.random.randn(20, 5) y = np.ones(20) with pytest.raises(ValueError): UoI_L1Logistic(estimation_score='z', n_boots_sel=10, n_boots_est=10).fit(X, y) def test_reg_params(): """Test whether the upper bound on the regularization parameters correctly zero out the coefficients.""" n_features = 20 n_inf = 10 n_classes = 5 X, y, w, b = make_classification(n_samples=200, random_state=101, n_classes=n_classes, n_informative=n_inf, n_features=n_features, shared_support=True) uoi_log = UoI_L1Logistic() uoi_log.output_dim = n_classes reg_params = uoi_log.get_reg_params(X, y) C = reg_params[0]['C'] # check that coefficients get set to zero lr = MaskedCoefLogisticRegression(penalty='l1', C=0.99 * C, standardize=False, fit_intercept=True) lr.fit(X, y) assert_equal(lr.coef_, 0.) # check that coefficients above the bound are not set to zero lr = MaskedCoefLogisticRegression(penalty='l1', C=1.01 * C, standardize=False, fit_intercept=True) lr.fit(X, y) assert np.count_nonzero(lr.coef_) > 0 def test_fit_intercept(): """Tests whether `include_intercept` in passed through to the linear models. """ lr = UoI_L1Logistic(fit_intercept=True) assert lr._selection_lm.fit_intercept assert lr._estimation_lm.fit_intercept lr = UoI_L1Logistic(fit_intercept=False) assert not lr._selection_lm.fit_intercept assert not lr._estimation_lm.fit_intercept ```
{ "source": "josephmachado/online_store", "score": 2 }
#### File: app/ops/extract_load.py ```python from typing import Dict, List import boto3 import psycopg2.extras as p import requests from dagster import op from utils.config import ( get_aws_creds, get_customer_db_creds, get_warehouse_creds, ) from utils.db import WarehouseConnection @op(config_schema={"risk_endpoint": str}) def extract_customer_risk_score(context) -> List[Dict[str, int]]: resp = requests.get(context.op_config["risk_endpoint"]) return resp.json() @op def load_customer_risk_score(customer_risk_score: List[Dict[str, int]]): ins_qry = """ INSERT INTO store.customer_risk_score( customer_id, risk_score ) VALUES ( %(customer_id)s, %(risk_score)s ) """ with WarehouseConnection(get_warehouse_creds()).managed_cursor() as curr: p.execute_batch(curr, ins_qry, customer_risk_score) @op(config_schema={"orders_bucket_name": str}) def extract_orders_data(context) -> List[Dict[str, str]]: s3 = boto3.client("s3", **get_aws_creds()) objs = s3.list_objects_v2(Bucket=context.op_config["orders_bucket_name"])[ "Contents" ] def get_last_modified(obj) -> int: return int(obj["LastModified"].strftime("%s")) last_added = [ obj["Key"] for obj in sorted(objs, key=get_last_modified, reverse=True) ][0] obj = s3.get_object( Bucket=context.op_config["orders_bucket_name"], Key=last_added ) data = obj["Body"].read().decode("utf-8") orders = [] for line in data.split("\n")[:-1]: order_id, customer_id, item_id, item_name, delivered_on = str( line ).split(",") orders.append( { "order_id": order_id, "customer_id": customer_id, "item_id": item_id, "item_name": item_name, "delivered_on": delivered_on, } ) return orders @op def load_orders_data(orders_data: List[Dict[str, str]]): ins_qry = """ INSERT INTO store.orders( order_id, customer_id, item_id, item_name, delivered_on ) VALUES ( %(order_id)s, %(customer_id)s, %(item_id)s, %(item_name)s, %(delivered_on)s ) """ with WarehouseConnection(get_warehouse_creds()).managed_cursor() as curr: p.execute_batch(curr, ins_qry, orders_data) @op def extract_customer_data() -> List[Dict[str, str]]: with WarehouseConnection(get_customer_db_creds()).managed_cursor() as curr: curr.execute( ''' select customer_id, first_name, last_name, state_code, datetime_created, datetime_updated from customers where TO_TIMESTAMP(datetime_created, 'YY-MM-DD HH24:MI:ss') >= current_timestamp - interval '5 minutes' or TO_TIMESTAMP(datetime_updated, 'YY-MM-DD HH24:MI:ss') >= current_timestamp - interval '5 minutes' ''' ) cust_data = curr.fetchall() return [ { "customer_id": str(d[0]), "first_name": str(d[1]), "last_name": str(d[2]), "state_code": str(d[3]), "datetime_created": str(d[4]), "datetime_updated": str(d[5]), } for d in cust_data ] @op def load_customer_data(customer_data: List[Dict[str, str]]): ins_qry = """ INSERT INTO store.customers( customer_id, first_name, last_name, state_code, datetime_created, datetime_updated ) VALUES ( %(customer_id)s, %(first_name)s, %(last_name)s, %(state_code)s, %(datetime_created)s, %(datetime_updated)s ) """ with WarehouseConnection(get_warehouse_creds()).managed_cursor() as curr: p.execute_batch(curr, ins_qry, customer_data) ```
{ "source": "Josephmaclean/flask-easy", "score": 3 }
#### File: src/flask_easy/auth.py ```python import os import inspect from functools import wraps import jwt from flask import request from jwt.exceptions import ExpiredSignatureError, InvalidTokenError, PyJWTError from .exc import Unauthorized, ExpiredTokenException, OperationError def auth_required(other_roles=None): """auth required decorator""" def authorize_user(func): """ A wrapper to authorize an action using :param func: {function}` the function to wrap around :return: """ @wraps(func) def view_wrapper(*args, **kwargs): authorization_header = request.headers.get("Authorization") if not authorization_header: raise Unauthorized("Missing authentication token") token = authorization_header.split()[1] try: key = os.getenv("JWT_SECRET") # noqa E501 payload = jwt.decode( token, key=key, algorithms=["HS256", "RS256"] ) # noqa E501 # Get realm roles from payload available_roles = payload.get("realm_access").get("roles") # Append service name to function name to form role # generated_role = service_name + "_" + func.__name__ generated_role = "s" authorized_roles = [] if other_roles: authorized_roles = other_roles.split("|") authorized_roles.append(generated_role) if is_authorized(authorized_roles, available_roles): if "user_id" in inspect.getfullargspec(func).args: kwargs["user_id"] = payload.get( "preferred_username" ) # noqa E501 return func(*args, **kwargs) except ExpiredSignatureError as error: raise ExpiredTokenException("Token Expired") from error except InvalidTokenError as error: raise OperationError("Invalid Token") from error except PyJWTError as error: raise OperationError("Error decoding token") from error raise Unauthorized(status_code=403) return view_wrapper return authorize_user def is_authorized(access_roles, available_roles): """Check if access roles is in available roles""" for role in access_roles: if role in available_roles: return True return False ``` #### File: flask_easy/repository/mongo_repository.py ```python import typing as t import mongoengine as me from ..exc import OperationError, NotFoundException from .repository_interface import RepositoryInterface class MongoRepository(RepositoryInterface): """ MongoRepository to be inherited """ model: t.Type[me.Document] @classmethod def index(cls) -> t.List[me.Document]: """ gets all documents in a mongodb collection :return: list of mongodb documents """ try: return cls.model.objects() except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def create(cls, data: dict) -> t.Type[me.Document]: """ creates a mongodb document with the data passed to it :param data: data to persist in the database :return: mongodb document """ try: db_obj = cls.model(**data) db_obj.save() return db_obj except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def create_all(cls, data: t.List[dict]) -> t.List[t.Type[me.Document]]: try: obj_data = [cls.model(**item) for item in data] return cls.model.objects.insert(obj_data) except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def update_by_id(cls, obj_id: t.Union[int, str], data: dict) -> t.Type[me.Document]: """ :param obj_id: :param data: :return: """ try: db_obj = cls.find_by_id(obj_id) db_obj.modify(**data) return db_obj except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def find(cls, query_params: dict) -> t.Type[me.Document]: """ returns an item that satisfies the data passed to it if it exists in the database :param query_params: {dict} :return: model_object - Returns an instance object of the model passed """ try: db_obj = cls.model.objects.get(**query_params) return db_obj except me.DoesNotExist as error: raise NotFoundException({"error": "Resource does not exist"}) from error except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def find_all(cls, query_params: dict) -> t.List[t.Type[me.Document]]: """ returns all items that satisfy the filter query_params passed to it :param query_params: query parameters to filter by :return: model_object - Returns an instance object of the model passed """ try: db_obj = cls.model.objects(**query_params) return db_obj except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def find_by_id(cls, obj_id: t.Union[int, str]) -> t.Type[me.Document]: try: db_obj = cls.model.objects.get(pk=obj_id) return db_obj except me.DoesNotExist as error: raise NotFoundException( {"error": f"Resource of id {obj_id} does not exist"} ) from error except me.OperationError as error: raise OperationError([error.args[0]]) from error @classmethod def delete(cls, obj_id: t.Union[int, str]) -> bool: """ delete an object matching the id :param obj_id: id of object to be deleted :return: """ try: db_obj = cls.model.objects.get(pk=obj_id) db_obj.delete() return True except me.DoesNotExist as error: raise NotFoundException( {"error": f"Resource of id {obj_id} does not exist"} ) from error except me.OperationError as error: raise OperationError([error.args[0]]) from error ``` #### File: flask_easy/scripts/easy_scripts.py ```python import click from cookiecutter.main import cookiecutter @click.group() def cli(): """ base cli command :return: None """ @cli.command("scaffold") @click.argument("output_dir", required=False) def scaffold(output_dir: str): """ Spawn a new project :param output_dir: :return: """ if output_dir is None: val = click.prompt("Project name") extra_context = {"_project_name": val} else: extra_context = {"_project_name": "My Awesome App", "_remove_parent": True} cookiecutter( "https://github.com/Josephmaclean/easy-scaffold.git", output_dir=output_dir, extra_context=extra_context, ) if __name__ == "__main__": cli() ``` #### File: scripts/resources/model.py ```python import os import click from jinja2 import Template from .utils import add_to_init, convert_to_camelcase def create_model(root_path, name, is_sql=True): """ This function creates a model with the name specified. The model is created in the rootdir/models directory and its auto imported in the models __init__.py file. """ name = name.lower() file_dir = os.path.join(root_path, "models") if not os.path.exists(file_dir): click.echo(click.style(f"cannot find models in {root_path}", fg="red")) file_name = f"{name}.py" model_name = convert_to_camelcase(name) template_string = get_template_string(is_sql) template = Template(template_string) data = template.render(model_name=model_name) file_path = os.path.join(file_dir, file_name) if not os.path.exists(file_path): with open(file_path, "w", encoding="UTF-8") as file: file.write(data) add_to_init(file_dir, name, model_name) else: click.echo(f"{name}.py exits") def get_template_string(sql): """generate template string""" if sql: template_string = """from flask_easy import db, fields class {{model_name}}(db.Model): pass """ else: template_string = """import mongoengine as me class {{model_name}}(me.Document): id = me.IntField(primary_key=True) """ return template_string ```
{ "source": "Josephmaclean/great_expectations", "score": 2 }
#### File: core/usage_statistics/package_dependencies.py ```python import os import re from typing import List, Set from great_expectations.data_context.util import file_relative_path class GEDependencies: """Store and provide dependencies when requested. Also acts as a utility to check stored dependencies match our library requirements. Attributes: None """ """This list should be kept in sync with our requirements.txt file.""" GE_REQUIRED_DEPENDENCIES: List[str] = sorted( [ "altair", "Click", "colorama", "cryptography", "dataclasses", "importlib-metadata", "Ipython", "jinja2", "jsonpatch", "jsonschema", "mistune", "nbformat", "numpy", "packaging", "pandas", "pyparsing", "python-dateutil", "pytz", "requests", "ruamel.yaml", "scipy", "termcolor", "tqdm", "typing-extensions", "urllib3", "tzlocal", ] ) """This list should be kept in sync with our requirements-dev*.txt files.""" ALL_GE_DEV_DEPENDENCIES: List[str] = sorted( [ "PyMySQL", "azure-identity", "azure-keyvault-secrets", "azure-storage-blob", "black", "boto3", "feather-format", "flake8", "flask", "freezegun", "gcsfs", "google-cloud-secret-manager", "google-cloud-storage", "ipywidgets", "isort", "mistune", "moto", "nbconvert", "openpyxl", "pre-commit", "psycopg2-binary", "pyarrow", "pyathena", "pyfakefs", "pyodbc", "pypd", "pyspark", "pytest", "pytest-benchmark", "pytest-cov", "pytest-order", "pyupgrade", "requirements-parser", "s3fs", "snapshottest", "snowflake-connector-python", "snowflake-sqlalchemy", "sqlalchemy", "sqlalchemy-bigquery", "sqlalchemy-dremio", "sqlalchemy-redshift", "teradatasqlalchemy", "xlrd", ] ) GE_DEV_DEPENDENCIES_EXCLUDED_FROM_TRACKING: List[str] = [ # requirements-dev-contrib.txt: "black", "flake8", "isort", "pre-commit", "pytest-cov", "pytest-order", "pyupgrade", # requirements-dev-lite.txt: "flask", "freezegun", "ipywidgets", "mistune", "moto", "nbconvert", "pyfakefs", "pytest", "pytest-benchmark", "requirements-parser", "s3fs", "snapshottest", # "sqlalchemy", # Not excluded from tracking ] GE_DEV_DEPENDENCIES: List[str] = set(ALL_GE_DEV_DEPENDENCIES) - set( GE_DEV_DEPENDENCIES_EXCLUDED_FROM_TRACKING ) def __init__(self, requirements_relative_base_dir: str = "../../../"): self._requirements_relative_base_dir = file_relative_path( __file__, requirements_relative_base_dir ) self._dev_requirements_prefix: str = "requirements-dev" def get_required_dependency_names(self) -> List[str]: """Sorted list of required GE dependencies""" return self.GE_REQUIRED_DEPENDENCIES def get_dev_dependency_names(self) -> List[str]: """Sorted list of dev GE dependencies""" return self.GE_DEV_DEPENDENCIES def get_required_dependency_names_from_requirements_file(self) -> List[str]: """Get unique names of required dependencies. Returns: List of string names of required dependencies. """ return sorted( set( self._get_dependency_names_from_requirements_file( self.required_requirements_path ) ) ) def get_dev_dependency_names_from_requirements_file(self) -> List[str]: """Get unique names of dependencies from all dev requirements files. Returns: List of string names of dev dependencies. """ dev_dependency_names: Set[str] = set() dev_dependency_filename: str for dev_dependency_filename in self.dev_requirements_paths: dependency_names: List[ str ] = self._get_dependency_names_from_requirements_file( os.path.join( self._requirements_relative_base_dir, dev_dependency_filename ) ) dev_dependency_names.update(dependency_names) return sorted(dev_dependency_names) @property def required_requirements_path(self) -> str: """Get path for requirements.txt Returns: String path of requirements.txt """ return os.path.join(self._requirements_relative_base_dir, "requirements.txt") @property def dev_requirements_paths(self) -> List[str]: """Get all paths for requirements-dev files with dependencies in them. Returns: List of string filenames for dev requirements files """ return [ filename for filename in os.listdir(self._requirements_relative_base_dir) if filename.startswith(self._dev_requirements_prefix) ] def _get_dependency_names_from_requirements_file(self, filepath: str) -> List[str]: """Load requirements file and parse to retrieve dependency names. Args: filepath: String relative filepath of requirements file to parse. Returns: List of string names of dependencies. """ with open(filepath) as f: dependencies_with_versions = f.read().splitlines() return self._get_dependency_names(dependencies_with_versions) def _get_dependency_names(self, dependencies: List[str]) -> List[str]: """Parse dependency names from a list of strings. List of strings typically from a requirements*.txt file. Args: dependencies: List of strings of requirements. Returns: List of dependency names. E.g. 'pandas' from 'pandas>=0.23.0'. """ dependency_matches = [ re.search(r"^(?!--requirement)([\w\-.]+)", s) for s in dependencies ] dependency_names: List[str] = [] for match in dependency_matches: if match is not None: dependency_names.append(match.group(0)) return dependency_names def main(): """Run this module to generate a list of packages from requirements files to update our static lists""" ge_dependencies: GEDependencies = GEDependencies() print("\n\nRequired Dependencies:\n\n") print(ge_dependencies.get_required_dependency_names_from_requirements_file()) print("\n\nDev Dependencies:\n\n") print(ge_dependencies.get_dev_dependency_names_from_requirements_file()) assert ( ge_dependencies.get_required_dependency_names() == ge_dependencies.get_required_dependency_names_from_requirements_file() ), "Mismatch between required dependencies in requirements files and in GEDependencies" assert ( ge_dependencies.get_dev_dependency_names() == ge_dependencies.get_dev_dependency_names_from_requirements_file() ), "Mismatch between dev dependencies in requirements files and in GEDependencies" print( "\n\nRequired and Dev dependencies in requirements files match those in GEDependencies" ) if __name__ == "__main__": main() ```
{ "source": "josephmancuso/college", "score": 3 }
#### File: college/bootstrap/start.py ```python from pydoc import locate from dotenv import find_dotenv, load_dotenv ''' |-------------------------------------------------------------------------- | Load Environment Variables |-------------------------------------------------------------------------- | | Take environment variables from the .env file and load them in. | ''' load_dotenv(find_dotenv()) def app(environ, start_response): ''' The WSGI Application Server ''' from wsgi import container ''' |-------------------------------------------------------------------------- | Add Environ To Service Container |-------------------------------------------------------------------------- | | Add the environ to the service container. The environ is generated by the | the WSGI server above and used by a service provider to manipulate the | incoming requests | ''' container.bind('Environ', environ) ''' |-------------------------------------------------------------------------- | Execute All Service Providers That Require The WSGI Server |-------------------------------------------------------------------------- | | Run all service provider boot methods if the wsgi attribute is true. | ''' try: for provider in container.make('Application').PROVIDERS: located_provider = locate(provider)().load_app(container) if located_provider.wsgi is True: container.resolve(located_provider.boot) except Exception as e: container.make('ExceptionHandler').load_exception(e) ''' |-------------------------------------------------------------------------- | We Are Ready For Launch |-------------------------------------------------------------------------- | | If we have a solid response and not redirecting then we need to return | a 200 status code along with the data. If we don't, then we'll have | to return a 302 redirection to where ever the user would like go | to next. | ''' start_response(container.make('StatusCode'), container.make('Headers')) ''' |-------------------------------------------------------------------------- | Final Step |-------------------------------------------------------------------------- | | This will take the data variable from the Service Container and return | it to the WSGI server. | ''' return iter([bytes(container.make('Response'), 'utf-8')]) ```
{ "source": "josephmancuso/gbaleague-masonite2", "score": 3 }
#### File: app/events/UserSignedUp.py ```python from events import Event from app.notifications import WelcomeNotification class UserSignedUp(Event): """ UserSignedUp Event Class """ subscribe = [ 'user.signedup' ] def __init__(self, Notify): """ Event Class Constructor """ self.notify = Notify def handle(self): """ Event Handle Method """ self.notify.mail(WelcomeNotification, to='<EMAIL>') ``` #### File: http/controllers/DraftController.py ```python from masonite.request import Request from app.DraftedPokemon import DraftedPokemon from app.League import League from app.Pokemon import Pokemon from app.Team import Team class DraftController: ''' Class Docstring Description ''' def __init__(self, request: Request): self.request = request self.league = League.find(request.param('id')) def show(self): if self.request.has('tier'): tier = self.request.input('tier') else: tier = 1 return view('leagues/draft', {'league': self.league, 'tier': tier}) def draft(self): if self.request.has('draft'): DraftedPokemon.create( team_id=self.league.current.team(self.league).id, pokemon_id=self.request.input('pokemon'), league_id=self.league.id ) DraftedPokemon.where('queue_id', self.request.input( 'pokemon')).where('league_id', self.league.id).delete() # Get Pokemon pokemon = Pokemon.find(self.request.input('pokemon')) team = Team.find(self.league.current.team(self.league).id) team.points -= pokemon.points team.save() self.league.broadcast('{} was drafted by {} for {} points'.format(pokemon.name, team.name, pokemon.points)) self.league.next_drafter() self.league.broadcast("It is currently {}'s turn to draft.".format(team.owner.name)) self.request.session.flash( 'success', 'Successfully Drafted {0}'.format(pokemon.name)) self.request.redirect_to('league.draft', {'id': self.league.id}) elif self.request.has('unqueue'): DraftedPokemon \ .where('queue_id', self.request.input('pokemon')) \ .where('team_id', self.request.user() .team(self.league).id).where('league_id', self.league.id) \ .first().delete() self.request.session.flash('success', 'Successfully Unqueued') return self.request.redirect_to('league.draft', {'id': self.league.id}) elif self.request.has('queue'): DraftedPokemon.create( team_id=auth().team(self.league).id, queue_id=self.request.input('pokemon'), league_id=self.league.id ) self.request.session.flash('success', 'Queue Successful') return self.request.redirect_to('league.draft', {'id': self.league.id}) self.request.session.flash('warning', 'Could not draft at this time') return self.request.redirect_to('league.draft', {'id': self.league.id}) def status(self): league = League.find(request().param('id')) if request().has('draft-open'): league.start_draft() league.broadcast('The draft has started!') elif request().has('draft-close'): league.close_draft() league.broadcast('The draft is closed!') return request().redirect('/league/{0}/draft'.format(league.id)) ``` #### File: http/controllers/WelcomeController.py ```python from masonite.request import Request from masonite.view import View from events import Event from app.League import League from masonite import Broadcast class WelcomeController: """ Controller For Welcoming The User """ def __init__(self, view: View, request: Request): self.view = view self.request = request def show(self, event: Event, broadcast: Broadcast) -> View.render: ''' Show Welcome Template ''' return self.view.render('index') def discover(self) -> View.render: """Shows the discover page Returns: View.render """ if self.request.input('search'): leagues = League.order_by('id', 'desc').get().filter(lambda league: self.request.input( 'search').lower() in league.name.lower()) else: leagues = League.order_by('id', 'desc').get().take(100) return self.view.render('discover', {'leagues': leagues}) def slack(self): return '' # response = IntegrationManager.driver('discord').user() # requests.post( # 'https://discordapp.com/api/webhooks/{0}/{1}'.format( # response['webhook']['id'], # response['webhook']['token'] # ), # json={ # 'content': 'Masonite was successfully integrated!', # 'username': 'Masonite' # } # ) # return response['access_token'] ``` #### File: http/middleware/HtmlMinifyMiddleware.py ```python import htmlmin from masonite.request import Request from masonite.response import Response class HtmlMinifyMiddleware: def __init__(self, request: Request, response: Response): self.request = request self.response = response def after(self): if 'text/html' in self.request.header('Content-Type') and not self.request.header('Location'): self.response.view( htmlmin.minify(self.response.data()) ) self.request.header('Cache-Control', 'max-age=3600, must-revalidate', http_prefix=False) ``` #### File: http/middleware/LeagueOwner.py ```python from app.League import League from masonite.request import Request class LeagueOwner: """ Middleware to check if the user is the owner of the league """ def __init__(self, request: Request): """ Inject Any Dependencies From The Service Container """ self.request = request def before(self): """ Run This Middleware Before The Route Executes """ if self.request.user(): if not League.where('owner_id', self.request.user().id).where('id', self.request.param('id')).first(): raise Exception('You are not the league owner.') def after(self): """ Run This Middleware After The Route Executes """ pass ``` #### File: app/jobs/ResetEmail.py ```python from masonite.queues import Queueable from notifications import Notify from app.notifications import ResetEmailNotification class ResetEmail(Queueable): """A ResetEmail Job """ def __init__(self, notify: Notify): """A ResetEmail Constructor """ self.notify = notify def handle(self, user): """Logic to handle the job """ return self.notify.mail(ResetEmailNotification, user=user, to=user.email) ``` #### File: app/providers/UserModelProvider.py ```python import os from events import Event from masonite.provider import ServiceProvider from masonite.request import Request from app.commands.ShareCommand import ShareCommand # from app.commands.BroadcastWorkCommand import BroadcastWorkCommand from app.commands.SeedTableCommand import SeedTableCommand # from app.drivers.BroadcastLocalDriver import BroadcastLocalDriver from app.events import UserSignedUp from app.User import User from config import application from masonite.view import View class UserModelProvider(ServiceProvider): ''' Binds the User model into the Service Container ''' wsgi = False def register(self): ''' Registers The User Into The Service Container ''' self.app.bind('ShareCommand', ShareCommand()) # self.app.bind('BroadcastWorkCommand', BroadcastWorkCommand()) self.app.bind('SeedTableCommand', SeedTableCommand()) # self.app.bind('BroadcastLocalDriver', BroadcastLocalDriver) def boot(self, view: View, event: Event): view.share({ 'show_if': self._show_if, 'env': os.getenv, 'DEBUG': application.DEBUG }) event.subscribe(UserSignedUp) @staticmethod def _show_if(output, check1, check2=False): if check2: if check1 == check2: return output else: if check1: return output return '' ``` #### File: gbaleague-masonite2/app/Requests.py ```python from config.database import Model from orator.orm import belongs_to class Requests(Model): __fillable__ = ['team_id', 'league_id'] __table__ = 'requests' @belongs_to('team_id', 'id') def team(self): from app.Team import Team return Team ``` #### File: gbaleague-masonite2/app/Team.py ```python from config.database import Model from orator.orm import belongs_to from app.DraftedPokemon import DraftedPokemon class Team(Model): __fillable__ = ['name', 'league_id', 'owner_id', 'picture'] def get_team_pokemon(self, league=False): if league: return DraftedPokemon \ .where('team_id', self.id) \ .where('league_id', league.id) \ .where_not_null('pokemon_id') \ .get() else: return DraftedPokemon \ .where('team_id', self.id) \ .where('league_id', self.league_id) \ .where_not_null('pokemon_id') \ .get() @belongs_to('owner_id', 'id') def owner(self): from app.User import User return User ``` #### File: databases/migrations/2018_02_18_032808_create_requests_table.py ```python from orator.migrations import Migration class CreateRequestsTable(Migration): def up(self): """ Run the migrations. """ with self.schema.create('requests') as table: table.increments('id') table.integer('team_id').unsigned() table.foreign('team_id').references('id').on('teams') table.integer('league_id').unsigned() table.foreign('league_id').references('id').on('leagues') table.timestamps() def down(self): """ Revert the migrations. """ self.schema.drop('requests') ``` #### File: databases/migrations/2018_07_24_012319_fix_request_league_foreign_key.py ```python from orator.migrations import Migration class FixRequestLeagueForeignKey(Migration): def up(self): """ Run the migrations. """ with self.schema.table('requests') as table: table.drop_foreign('requests_league_id_foreign') table.foreign('league_id').references('id').on('leagues') \ .on_delete('cascade') def down(self): """ Revert the migrations. """ with self.schema.table('requests') as table: pass ``` #### File: databases/migrations/2018_07_24_012836_fix_team_league_foreign_key.py ```python from orator.migrations import Migration class FixTeamLeagueForeignKey(Migration): def up(self): """ Run the migrations. """ with self.schema.table('teams') as table: table.drop_foreign('teams_league_id_foreign') table.foreign('league_id').references('id').on('leagues') \ .on_delete('SET NULL') def down(self): """ Revert the migrations. """ with self.schema.table('teams') as table: pass ```
{ "source": "josephmancuso/masonite-azure-driver", "score": 2 }
#### File: azure/providers/AzureProvider.py ```python from config import storage from masonite.provider import ServiceProvider from ..drivers import UploadAzureDriver class AzureProvider(ServiceProvider): wsgi = False def register(self): self.app.bind('UploadAzureDriver', UploadAzureDriver) def boot(self): pass ```
{ "source": "josephmancuso/masonite-forum", "score": 3 }
#### File: http/controllers/RegisterController.py ```python from validator import Required, Not, Blank, validate, Length from masonite.facades.Auth import Auth from config import auth import bcrypt class RegisterController(object): ''' Class Docstring Description ''' def __init__(self): pass def show(self, Request): ''' Show the registration page ''' return view('auth/register') def store(self, Request, Session): ''' Register a new user ''' ok, errors = self.validate_input(Request.all()) if not ok: display = '' for error in errors: display += '{0} {1} \n\n\n'.format(error.title(), errors[error][0]) Session.flash('danger', display) return Request.redirect('/register') # register the user password = bytes(bcrypt.hashpw( bytes(Request.input('password'), 'utf-8'), bcrypt.gensalt() )).decode('utf-8') auth.AUTH['model'].create( name=Request.input('name'), password=password, email=Request.input('email'), ) # login the user # redirect to the homepage if Auth(Request).login(Request.input(auth.AUTH['model'].__auth__), Request.input('password')): Session.flash('success', 'Logged successfuly!') return Request.redirect('/') def validate_input(self, data): rules = { 'name': [Required, Not(Blank())], 'email': [Required, Not(Blank())], 'password': [Required, Not(Blank()),Length(6)], } return validate(rules, data) ``` #### File: http/middleware/LoadUserMiddleware.py ```python from masonite.facades.Auth import Auth class LoadUserMiddleware: ''' Middleware class which loads the current user into the request ''' def __init__(self, Request): ''' Inject Any Dependencies From The Service Container ''' self.request = Request def before(self): ''' Run This Middleware Before The Route Executes ''' self.load_user(self.request) return self.request def after(self): ''' Run This Middleware After The Route Executes ''' pass def load_user(self, request): ''' Load user into the request ''' request.set_user(Auth(request).user()) ```
{ "source": "josephmancuso/masonite-inertia", "score": 3 }
#### File: inertia/commands/DemoCommand.py ```python import os from cleo import Command from masonite.packages import append_web_routes package_directory = os.path.dirname(os.path.realpath(__file__)) class DemoCommand(Command): """ Create a Inertia.js demo and add it to your project. command:name {argument : description} """ def handle(self): demo_path = os.path.join(package_directory, "../snippets/demo") append_web_routes(os.path.join(demo_path, "routes.py")) # install controller # scaffold app ? ``` #### File: inertia/commands/InstallCommand.py ```python from cleo import Command import os from masonite.packages import create_or_append_config package_directory = os.path.dirname(os.path.realpath(__file__)) class InstallCommand(Command): """ Install Masonite adapter for Inertia.js install:inertia """ def handle(self): create_or_append_config( os.path.join(package_directory, "../snippets/config/inertia.py") ) ``` #### File: masonite/inertia/helpers.py ```python from jinja2 import Markup def inertia(page_data, app_id="app"): """Inertia view helper to render a div with page data required by client-side Inertia.js adapter.""" return Markup("<div id='{0}' data-page='{1}'></div>".format(app_id, page_data)) ``` #### File: inertia/providers/InertiaProvider.py ```python from masonite.provider import ServiceProvider from masonite.view import View from masonite.inertia.core.InertiaResponse import InertiaResponse from masonite.inertia.commands.InstallCommand import InstallCommand from masonite.inertia.commands.DemoCommand import DemoCommand from masonite.inertia.helpers import inertia class InertiaProvider(ServiceProvider): """Masonite adapter for Inertia.js Service Provider.""" wsgi = False def register(self): self.app.bind("Inertia", InertiaResponse(self.app)) self.app.bind("InstallCommand", InstallCommand()) self.app.bind("DemoCommand", DemoCommand()) def boot(self, view: View): self.register_view_helper(view) def register_view_helper(self, view): view.share({"inertia": inertia}) ```
{ "source": "josephmancuso/masonite", "score": 2 }
#### File: drivers/queue/AMQPDriver.py ```python import pickle import pendulum import inspect from urllib import parse from ...utils.console import HasColoredOutput class AMQPDriver(HasColoredOutput): def __init__(self, application): self.application = application self.connection = None self.publishing_channel = None def set_options(self, options): self.options = options return self def push(self, *jobs, args=(), **kwargs): for job in jobs: payload = { "obj": job, "args": args, "callback": self.options.get("callback", "handle"), "created": pendulum.now(tz=self.options.get("tz", "UTC")), } try: self.connect().publish(payload) except (self.get_connection_exceptions()): self.connect().publish(payload) def get_connection_exceptions(self): pika = self.get_package_library() return ( pika.exceptions.ConnectionClosed, pika.exceptions.ChannelClosed, pika.exceptions.ConnectionWrongStateError, pika.exceptions.ChannelWrongStateError, ) def publish(self, payload): pika = self.get_package_library() self.publishing_channel.basic_publish( exchange=self.options.get("exchange"), routing_key=self.options.get("queue"), body=pickle.dumps(payload), properties=pika.BasicProperties( delivery_mode=2, # make message persistent ), ) self.publishing_channel.close() self.connection.close() def get_package_library(self): try: import pika except ImportError: raise ModuleNotFoundError( "Could not find the 'pika' library. Run 'pip install pika' to fix this." ) return pika def connect(self): try: import pika except ImportError: raise ModuleNotFoundError( "Could not find the 'pika' library. Run 'pip install pika' to fix this." ) connection_url = "amqp://{}:{}@{}{}/{}".format( self.options.get("username"), self.options.get("password"), self.options.get("host"), ":" + str(self.options.get("port")) if self.options.get("port") else "", self.options.get("vhost", "%2F"), ) if self.options.get("connection_options"): connection_url += "?" + parse.urlencode( self.options.get("connection_options") ) self.connection = pika.BlockingConnection(pika.URLParameters(connection_url)) self.publishing_channel = self.connection.channel() self.publishing_channel.queue_declare(self.options.get("queue"), durable=True) return self def consume(self): self.success( '[*] Waiting to process jobs on the "{}" queue. To exit press CTRL+C'.format( self.options.get("queue") ) ) self.connect() self.publishing_channel.basic_qos(prefetch_count=1) self.publishing_channel.basic_consume(self.options.get("queue"), self.work) try: self.publishing_channel.start_consuming() finally: self.publishing_channel.stop_consuming() self.publishing_channel.close() self.connection.close() def retry(self): builder = ( self.application.make("builder") .new() .on(self.options.get("connection")) .table(self.options.get("failed_table", "failed_jobs")) ) jobs = builder.get() if len(jobs) == 0: self.success("No failed jobs found.") return for job in jobs: try: self.connect().publish(pickle.loads(job["payload"])) except (self.get_connection_exceptions()): self.connect().publish(pickle.loads(job["payload"])) self.success(f"Added {len(jobs)} failed jobs back to the queue") builder.table(self.options.get("failed_table", "failed_jobs")).where_in( "id", [x["id"] for x in jobs] ).delete() def work(self, ch, method, _, body): job = pickle.loads(body) obj = job["obj"] args = job["args"] callback = job["callback"] try: try: if inspect.isclass(obj): obj = self.application.resolve(obj) getattr(obj, callback)(*args) except AttributeError: obj(*args) self.success( f"[{method.delivery_tag}][{pendulum.now(tz=self.options.get('tz', 'UTC')).to_datetime_string()}] Job Successfully Processed" ) except Exception as e: self.danger( f"[{method.delivery_tag}][{pendulum.now(tz=self.options.get('tz', 'UTC')).to_datetime_string()}] Job Failed" ) getattr(obj, "failed")(job, str(e)) self.add_to_failed_queue_table( self.application.make("builder").new(), str(job["obj"]), body, str(e) ) ch.basic_ack(delivery_tag=method.delivery_tag) def add_to_failed_queue_table(self, builder, name, payload, exception): builder.table(self.options.get("failed_table", "failed_jobs")).create( { "driver": "amqp", "queue": self.options.get("queue", "default"), "name": name, "connection": self.options.get("connection"), "created_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string(), "exception": exception, "payload": payload, "failed_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string(), } ) ``` #### File: drivers/queue/DatabaseDriver.py ```python import pickle import pendulum from ...utils.console import HasColoredOutput from ...utils.time import parse_human_time import time class DatabaseDriver(HasColoredOutput): def __init__(self, application): self.application = application def set_options(self, options): self.options = options return self def push(self, *jobs, args=(), **kwargs): builder = self.get_builder() available_at = parse_human_time(kwargs.get("delay", "now")) for job in jobs: payload = pickle.dumps( { "obj": job, "args": args, "kwargs": kwargs, "callback": self.options.get("callback", "handle"), } ) builder.create( { "name": str(job), "payload": payload, "available_at": available_at.to_datetime_string(), "attempts": 0, "queue": self.options.get("queue", "default"), } ) def consume(self): print("Listening for jobs on queue: " + self.options.get("queue", "default")) builder = self.get_builder() while True: time.sleep(int(self.options.get("poll", 1))) if self.options.get("verbosity") == "vv": print("Checking for available jobs .. ") builder = builder.new().table(self.options.get("table")) jobs = ( builder.where("queue", self.options.get("queue", "default")) .where( "available_at", "<=", pendulum.now(tz=self.options.get("tz", "UTC")).to_datetime_string(), ) .limit(10) .order_by("id") .get() ) if self.options.get("verbosity") == "vv": print(f"Found {len(jobs)} job(s) ") builder.where_in("id", [x["id"] for x in jobs]).update( { "reserved_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string() } ) for job in jobs: builder.where("id", job["id"]).table(self.options.get("table")).update( { "ran_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string(), } ) payload = job["payload"] unserialized = pickle.loads(job["payload"]) obj = unserialized["obj"] args = unserialized["args"] callback = unserialized["callback"] try: try: getattr(obj, callback)(*args) except AttributeError: obj(*args) self.success( f"[{job['id']}][{pendulum.now(tz=self.options.get('tz', 'UTC')).to_datetime_string()}] Job Successfully Processed" ) if self.options.get("verbosity") == "vv": print(f"Successful. Deleting Job ID: {job['id']}") builder.where("id", job["id"]).delete() except Exception as e: # skipcq self.danger( f"[{job['id']}][{pendulum.now(tz=self.options.get('tz', 'UTC')).to_datetime_string()}] Job Failed" ) job["attempts"] = int(job["attempts"]) if job["attempts"] + 1 < int(self.options.get("attempts", 1)): builder.where("id", job["id"]).table( self.options.get("table") ).update( { "attempts": int(job["attempts"] + 1), } ) elif job["attempts"] + 1 >= int( self.options.get("attempts", 1) ) and not self.options.get("failed_table"): # Delete the jobs builder.where("id", job["id"]).table( self.options.get("table") ).update( { "attempts": job["attempts"] + 1, } ) if hasattr(obj, "failed"): getattr(obj, "failed")(unserialized, str(e)) builder.where("id", job["id"]).table( self.options.get("table") ).delete() elif self.options.get("failed_table"): self.add_to_failed_queue_table( builder, job["name"], payload, str(e) ) if hasattr(obj, "failed"): getattr(obj, "failed")(unserialized, str(e)) builder.where("id", job["id"]).table( self.options.get("table") ).delete() else: builder.where("id", job["id"]).table( self.options.get("table") ).update( { "attempts": job["attempts"] + 1, } ) def retry(self): builder = self.get_builder() jobs = ( builder.table(self.options.get("failed_table")) .where("queue", self.options.get("queue", "default")) .get() ) if len(jobs) == 0: self.success("No failed jobs found.") return for job in jobs: builder.table("jobs").create( { "name": str(job["name"]), "payload": job["payload"], "attempts": 0, "available_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string(), "queue": job["queue"], } ) self.success(f"Added {len(jobs)} failed job(s) back to the queue") builder.table(self.options.get("failed_table", "failed_jobs")).where_in( "id", [x["id"] for x in jobs] ).delete() def get_builder(self): return ( self.application.make("builder") .new() .on(self.options.get("connection")) .table(self.options.get("table")) ) def add_to_failed_queue_table(self, builder, name, payload, exception): builder.table(self.options.get("failed_table", "failed_jobs")).create( { "driver": "database", "queue": self.options.get("queue", "default"), "name": name, "connection": self.options.get("connection"), "created_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string(), "exception": exception, "payload": payload, "failed_at": pendulum.now( tz=self.options.get("tz", "UTC") ).to_datetime_string(), } ) ``` #### File: exceptions/exceptionite/solutions.py ```python class TableNotFound: def title(self): return "Table Not Found" def description(self): return "You are trying to make a query on a table that cannot be found. Check that :table migration exists and that migrations have been ran with 'python craft migrate' command." def regex(self): return r"no such table: (?P<table>(\w+))" class MissingCSRFToken: def title(self): return "Missing CSRF Token" def description(self): return "You are trying to make a sensitive request without providing a CSRF token. Your request might be vulnerable to Cross Site Request Forgery. To resolve this issue you should use {{ csrf_field }} in HTML forms or add X-CSRF-TOKEN header in AJAX requests." def regex(self): return r"Missing CSRF Token" class InvalidCSRFToken: def title(self): return "The session does not match the CSRF token" def description(self): return "Try clearing your cookies for the localhost domain in your browsers developer tools." def regex(self): return r"Invalid CSRF Token" class TemplateNotFound: def title(self): return "Template Not Found" def description(self): return """':template.html' view file has not been found in registered view locations. Please verify the spelling of the template and that it exists in locations declared in Kernel file. You can check available view locations with app.make('view.locations').""" def regex(self): return r"Template '(?P<template>(\w+))' not found" class NoneResponse: def title(self): return "Response cannot be None" def description(self): return """Ensure that the controller method used in this request returned something. A controller method cannot return None or nothing. If you don't want to return a value you can return an empty string ''.""" def regex(self): return r"Responses cannot be of type: None." class RouteMiddlewareNotFound: def title(self): return "Did you register the middleware key in your Kernel.py file?" def description(self): return "Check your Kernel.py file inside your 'route_middleware' attribute and look for a :middleware key" def regex(self): return r"Could not find the \'(?P<middleware>(\w+))\' middleware key" ``` #### File: masonite/filesystem/Storage.py ```python from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from ..foundation import Application class Storage: """File storage manager for Masonite handling managing files with different drivers.""" def __init__(self, application: "Application", store_config: dict = None): self.application = application self.drivers = {} self.store_config = store_config or {} self.options = {} def add_driver(self, name: str, driver: str): self.drivers.update({name: driver}) def set_configuration(self, config: dict) -> "Storage": self.store_config = config return self def get_driver(self, name: str = None) -> Any: if name is None: return self.drivers[self.store_config.get("default")] return self.drivers[name] def get_config_options(self, name: str = None) -> dict: if name is None or name == "default": return self.store_config.get(self.store_config.get("default")) return self.store_config.get(name) def disk(self, name: str = "default") -> Any: """Get the file manager instance for the given disk name.""" store_config = self.get_config_options(name) driver = self.get_driver(self.get_config_options(name).get("driver")) return driver.set_options(store_config) ``` #### File: masonite/foundation/Kernel.py ```python import os from cleo import Application as CommandApplication from typing import TYPE_CHECKING if TYPE_CHECKING: from .Application import Application from .response_handler import response_handler from .. import __version__ from ..commands import ( TinkerCommand, CommandCapsule, KeyCommand, ServeCommand, QueueWorkCommand, QueueRetryCommand, QueueTableCommand, QueueFailedCommand, AuthCommand, MakePolicyCommand, MakeControllerCommand, MakeJobCommand, MakeMailableCommand, MakeProviderCommand, PublishPackageCommand, MakeTestCommand, DownCommand, UpCommand, MakeCommandCommand, MakeViewCommand, MakeMiddlewareCommand, PresetCommand, ) from ..environment import LoadEnvironment from ..middleware import MiddlewareCapsule from ..routes import Router from ..loader import Loader from ..tests.HttpTestResponse import HttpTestResponse from ..tests.TestResponseCapsule import TestResponseCapsule class Kernel: def __init__(self, app: "Application"): self.application = app def register(self) -> None: """Register core Masonite features in the project.""" self.load_environment() self.register_framework() self.register_commands() self.register_testing() def load_environment(self) -> None: """Load environment variables into the application.""" LoadEnvironment() def register_framework(self) -> None: self.application.set_response_handler(response_handler) self.application.use_storage_path( os.path.join(self.application.base_path, "storage") ) self.application.bind("middleware", MiddlewareCapsule()) self.application.bind( "router", Router(), ) self.application.bind("loader", Loader()) def register_commands(self) -> None: self.application.bind( "commands", CommandCapsule(CommandApplication("Masonite", __version__)).add( TinkerCommand(), KeyCommand(), ServeCommand(self.application), QueueWorkCommand(self.application), QueueRetryCommand(self.application), QueueFailedCommand(), QueueTableCommand(), AuthCommand(self.application), MakePolicyCommand(self.application), MakeControllerCommand(self.application), MakeJobCommand(self.application), MakeMailableCommand(self.application), MakeProviderCommand(self.application), PublishPackageCommand(self.application), MakeTestCommand(self.application), DownCommand(), UpCommand(), MakeCommandCommand(self.application), MakeViewCommand(self.application), MakeMiddlewareCommand(self.application), PresetCommand(self.application), ), ) def register_testing(self) -> None: test_response = TestResponseCapsule(HttpTestResponse) self.application.bind("tests.response", test_response) ``` #### File: middleware/route/ShareErrorsInSessionMiddleware.py ```python from .. import Middleware from ...facades import Session from ...validation import MessageBag class ShareErrorsInSessionMiddleware(Middleware): """Share errors as a Message bag if there are any errors flashed to session. If not the message bag will be empty.""" def before(self, request, _): request.app.make("view").share( { "errors": MessageBag(Session.pull("errors") or {}), } ) return request def after(self, request, _): return request ``` #### File: masonite/providers/Provider.py ```python from typing import TYPE_CHECKING if TYPE_CHECKING: from ..foundation import Application class Provider: def __init__(self, application: "Application") -> None: self.application = application def register(self) -> None: pass def boot(self) -> None: pass ``` #### File: masonite/rates/RateLimiter.py ```python import pendulum from typing import TYPE_CHECKING, Any, Callable if TYPE_CHECKING: from ..foundation import Application from .limiters import Limiter class RateLimiter: def __init__(self, application: "Application"): self.application = application self.limiters: dict = {} def register(self, name, callback: "Limiter") -> "RateLimiter": self.limiters[name] = callback return self @property def cache(self) -> Any: """Get default cache driver""" return self.application.make("cache").store() def attempts(self, key: str) -> int: key = self.clean_key(key) return int(self.cache.get(key, default=0)) def clean_key(self, key: str) -> str: """Clean the rate limiter key from unicode characters.""" if isinstance(key, bytes): return key.decode("utf-8") return key def get_limiter(self, name: str) -> "Limiter": return self.limiters[name] def attempt(self, key: str, callback: Callable, max_attempts: int, delay: int = 60): # don't execute callback if key limited if self.too_many_attempts(key, max_attempts): return False result = callback() self.hit(key, delay) return result def too_many_attempts(self, key: str, max_attempts: int) -> bool: key = self.clean_key(key) if self.attempts(key) >= max_attempts: # trigger remove of cache value if needed self.cache.get(f"{key}:timer") if self.cache.has(f"{key}:timer"): return True self.reset_attempts(key) return False def hit(self, key: str, delay: int) -> int: key = self.clean_key(key) # store timestamp when key limit be available again available_at = pendulum.now().add(seconds=delay).int_timestamp self.cache.add(f"{key}:timer", available_at, delay) # ensure key exists self.cache.add(key, 0, delay) hits = self.cache.increment(key) return hits def reset_attempts(self, key: str) -> bool: key = self.clean_key(key) return self.cache.put(key, 0) def clear(self, key: str): key = self.clean_key(key) self.cache.forget(key) self.cache.forget(f"{key}:timer") def available_at(self, key: str) -> int: """Get UNIX integer timestamp at which key will be available again.""" key = self.clean_key(key) timestamp = int(self.cache.get(f"{key}:timer", 0)) return timestamp def available_in(self, key: str) -> int: """Get seconds in which key will be available again.""" timestamp = self.available_at(key) if not timestamp: return 0 else: return max(0, timestamp - pendulum.now().int_timestamp) def remaining(self, key: str, max_attempts: int) -> int: """Get remaining attempts before limitation.""" key = self.clean_key(key) return max_attempts - self.attempts(key) ``` #### File: masonite/routes/Router.py ```python from urllib import parse from ..utils.collections import flatten from ..exceptions import RouteNotFoundException, MethodNotAllowedException class Router: http_methods = ["GET", "HEAD", "POST", "PUT", "PATCH", "DELETE", "OPTIONS"] def __init__(self, *routes, module_location=None): self.routes = flatten(routes) def find(self, path, request_method, subdomain=None): from .HTTPRoute import HTTPRoute for route in self.routes: if route.match(path, request_method, subdomain=subdomain): return route # we did not find a route matching the given path and method. # we will try to find a route matching other methods other_methods = [ method for method in self.http_methods if method != request_method ] matched_methods = [] for other_method in other_methods: for route in self.routes: if route.match(path, other_method, subdomain=subdomain): matched_methods.append(other_method) break # we really did not find a route if not matched_methods: return None # if alternative methods have been found, check if current request method is OPTIONS # to build a proper reponse else build a method not allowed response if request_method == "OPTIONS": def preflight_response(app): return ( app.make("response") .with_headers({"Allow": ", ".join(matched_methods)}) .status(204) ) preflight_route = HTTPRoute(path, request_method=["options"]) preflight_route.get_response = preflight_response return preflight_route else: raise MethodNotAllowedException(matched_methods, request_method) def matches(self, path): for route in self.routes: if route.matches(path): return route def find_by_name(self, name): for route in self.routes: if route.match_name(name): return route def route(self, name: str, parameters: dict = {}, query_params: dict = {}) -> str: """Return URL string from given route name and parameters.""" route = self.find_by_name(name) if route: return route.to_url(parameters, query_params) raise RouteNotFoundException(f"Could not find route with the name '{name}'") def set_controller_locations(self, location): self.controller_locations = location return self def add(self, *routes): self.routes.append(*routes) self.routes = flatten(self.routes) def set(self, *routes): self.routes = [] self.routes.append(*routes) self.routes = flatten(self.routes) @classmethod def compile_to_url(cls, uncompiled_route, params={}, query_params={}): """Compile the route url into a usable url: converts /url/@id into /url/1. Used for redirection Arguments: route {string} -- An uncompiled route like (/dashboard/@user:string/@id:int) Keyword Arguments: params {dict} -- Dictionary of parameters to pass to the route (default: {{}}) query_params {dict} -- Dictionary of query parameters to pass to the route (default: {{}}) Returns: string -- Returns a compiled string (/dashboard/joseph/1) """ if "http" in uncompiled_route: return uncompiled_route # Split the url into a list split_url = uncompiled_route.split("/") # Start beginning of the new compiled url compiled_url = "/" # Iterate over the list for url in split_url: if url: # if the url contains a parameter variable like @id:int if "@" in url: url = url.replace("@", "").split(":")[0] if isinstance(params, dict): compiled_url += str(params[url]) + "/" elif isinstance(params, list): compiled_url += str(params.pop(0)) + "/" elif "?" in url: url = url.replace("?", "").split(":")[0] if isinstance(params, dict): compiled_url += str(params.get(url, "/")) + "/" elif isinstance(params, list): compiled_url += str(params.pop(0)) + "/" else: compiled_url += url + "/" compiled_url = compiled_url.replace("//", "") # The loop isn't perfect and may have an unwanted trailing slash if compiled_url.endswith("/") and not uncompiled_route.endswith("/"): compiled_url = compiled_url[:-1] # The loop isn't perfect and may have 2 slashes next to eachother if "//" in compiled_url: compiled_url = compiled_url.replace("//", "/") # Add eventual query parameters if query_params: compiled_url += "?" + parse.urlencode(query_params) return compiled_url ``` #### File: core/helpers/test_optional.py ```python from tests import TestCase from src.masonite.helpers import optional class SomeClass: my_attr = 3 def my_method(self): return 4 class TestOptionalHelper(TestCase): def test_optional_with_existing(self): obj = SomeClass() assert optional(obj).my_attr == 3 assert optional(obj).my_method() == 4 def test_optional_with_undefined(self): obj = SomeClass() assert optional(obj).non_existing_attr is None # not beautiful but we can do this to handle calling methods assert optional(optional(obj).non_existing_method)() is None def test_optional_with_undefined_on_none(self): obj = None assert optional(obj).non_existing_attr is None def test_optional_with_default(self): obj = SomeClass() assert optional(obj, 0).non_existing_attr == 0 def test_optional_with_callable_default(self): obj = SomeClass() assert optional(obj, lambda the_obj: "a").non_existing_attr == "a" ``` #### File: core/utils/test_filesystem.py ```python from tests import TestCase from src.masonite.utils.filesystem import get_extension class TestFileUtils(TestCase): def test_get_extension(self): self.assertEqual(get_extension("log.txt"), ".txt") self.assertEqual(get_extension("archive.tar.gz"), ".tar.gz") self.assertEqual(get_extension("path/to/log.txt"), ".txt") self.assertEqual(get_extension("log.txt", without_dot=True), "txt") self.assertEqual(get_extension("archive.tar.gz", without_dot=True), "tar.gz") ``` #### File: features/dumps/test_dumper.py ```python from tests import TestCase from src.masonite.facades import Dump from src.masonite.exceptions import DumpException class TestDumper(TestCase): def setUp(self): super().setUp() self.dumper = self.application.make("dumper") def tearDown(self): super().tearDown() self.dumper.clear() def test_get_dumps(self): dumps = self.dumper.get_dumps() assert dumps == [] def test_get_serialized_dumps(self): dumps = self.dumper.get_serialized_dumps() assert dumps == [] def test_dump(self): self.dumper.dump(1, {"test": "value"}) dumps = self.dumper.get_dumps() assert len(dumps) == 1 first_dump = self.dumper.last() assert first_dump.line == 25 assert first_dump.filename.endswith("test_dumper.py") assert first_dump.method == "test_dump" assert len(first_dump.objects.keys()) == 2 assert first_dump.objects.get("<class 'int'>") == 1 assert first_dump.objects.get("<class 'dict'>") == {"test": "value"} def test_dump_can_get_variables_name(self): test = 1 other_test = "a" self.dumper.dump(test, other_test) test_dump = self.dumper.last() assert test_dump.objects.get("test") == 1 assert test_dump.objects.get("other_test") == "a" def test_serialize_dump(self): self.dumper.dump(1, {"test": "value"}) data = self.dumper.last().serialize() assert data.get("line") == 46 assert data.get("filename") assert data.get("timestamp") assert data.get("method") first_object = data.get("objects").get("<class 'int'>") assert first_object.get("value") == "1" def test_serialize_dump_properties(self): class TestObject: key = "value" _other_key = 1 my_obj = TestObject() self.dumper.dump(my_obj) data = self.dumper.last().serialize() assert "my_obj" in data.get("objects") obj_props = data.get("objects").get("my_obj").get("properties") assert obj_props.get("private").get("_other_key") == "1" assert obj_props.get("public").get("key") == "value" def test_can_add_several_dumps(self): self.dumper.dump(1) self.dumper.dump(2) self.dumper.dump(3) assert len(self.dumper.get_dumps()) == 3 def test_can_clear_dumps(self): self.dumper.dump(1) self.dumper.dump(2) self.dumper.clear() assert len(self.dumper.get_dumps()) == 0 def test_dump_and_die(self): self.dumper.dump(1) with self.assertRaises(DumpException): self.dumper.dd(2) assert len(self.dumper.get_dumps()) == 2 def test_dumps_are_ordered_by_most_recent(self): var = 1 var_latest = 2 self.dumper.dump(var) self.dumper.dump(var_latest) assert self.dumper.last().objects.get("var_latest") == 2 assert self.dumper.get_dumps()[0].objects.get("var_latest") == 2 def test_can_revert_dump_order(self): var = 1 var_latest = 2 self.dumper.dump(var) self.dumper.dump(var_latest) assert self.dumper.get_dumps(ascending=True)[0].objects.get("var") == 1 def test_dump_facade(self): var = "test" Dump.dump(var) assert Dump.last().objects.get("var") == "test" def test_dump_builtins(self): var = "test" dump(var) assert self.dumper.last().objects.get("var") == "test" def test_dump_output_data_in_console(self): var = "test" dump(var) self.assertConsoleOutputContains(">>> DUMP") self.assertConsoleOutputContains("test") ``` #### File: features/rates/test_limits.py ```python import sys from tests import TestCase from src.masonite.rates import UnlimitedLimiter, GlobalLimiter, Limit, GuestsOnlyLimiter from tests.integrations.app.User import User class TestLimits(TestCase): def test_limit_from_str(self): limit = Limit.from_str("10/hour") assert limit.max_attempts == 10 assert limit.delay == 60 def test_limit_per_minute(self): limit = Limit.per_minute(5) assert limit.max_attempts == 5 assert limit.delay == 1 def test_limit_per_hour(self): limit = Limit.per_hour(10) assert limit.max_attempts == 10 assert limit.delay == 60 def test_limit_per_day(self): limit = Limit.per_day(10) assert limit.max_attempts == 10 assert limit.delay == 60 * 24 def test_limit_custom(self): limit = Limit(500, 40) assert limit.max_attempts == 500 assert limit.delay == 40 def test_limit_unlimited(self): limit = Limit.unlimited() assert limit.max_attempts == sys.maxsize assert limit.is_unlimited() class TestLimiters(TestCase): def test_unlimited(self): request = "fake" limiter = UnlimitedLimiter() limit = limiter.allow(request) assert limit.is_unlimited() assert limit.max_attempts == sys.maxsize def test_global(self): request = "fake" limiter = GlobalLimiter("3/minute") limit = limiter.allow(request) assert not limit.is_unlimited() assert limit.max_attempts == 3 assert limit.delay == 1 limiter = GlobalLimiter("100/day") limit = limiter.allow(request) assert not limit.is_unlimited() assert limit.max_attempts == 100 assert limit.delay == 24 * 60 def test_guests_only(self): # request as guest request = self.make_request() request._ip = "127.0.0.1" limiter = GuestsOnlyLimiter("2/hour") limit = limiter.allow(request) assert not limit.is_unlimited() assert limit.max_attempts == 2 assert limit.delay == 60 assert limit.key == "127.0.0.1" request._ip = "192.168.0.1" limit = limiter.allow(request) assert limit.key == "192.168.0.1" def test_guests_only_with_authenticated_user(self): limiter = GuestsOnlyLimiter("2/hour") user = User.find(1) # request as authenticated user request = self.make_request() request.set_user(user) limit = limiter.allow(request) assert limit.is_unlimited() ``` #### File: features/scheduling/test_scheduling.py ```python import pendulum from src.masonite.tests import TestCase from src.masonite.scheduling import Task class MockTask(Task): run_every = "5 minutes" timezone = "America/New_York" class TestScheduler(TestCase): def setUp(self): super().setUp() self.task = MockTask() def test_scheduler_should_run(self): assert self.task.run_every == "5 minutes" time = pendulum.now().on(2018, 5, 21).at(22, 5, 5) self.task._date = time assert self.task.should_run(time) == True time = pendulum.now().on(2018, 5, 21).at(22, 6, 5) self.task._date = time assert self.task.should_run(time) == False def test_scheduler_should_run_every_minute(self): self.task.run_every = "1 minute" time = pendulum.now().on(2018, 5, 21).at(22, 5, 5) self.task._date = time assert self.task.should_run(time) == True time = pendulum.now().on(2018, 5, 21).at(22, 6, 5) self.task._date = time assert self.task.should_run(time) == True def test_scheduler_should_run_every_2_minutes(self): self.task.run_every = "2 minutes" time = pendulum.now().on(2018, 5, 21).at(14, 56, 5) self.task._date = time assert self.task.should_run(time) == True time = pendulum.now().on(2018, 5, 21).at(14, 58, 5) self.task._date = time assert self.task.should_run(time) == True def test_scheduler_should_run_every_hour(self): self.task.run_every = "1 hour" time = pendulum.now().on(2018, 5, 21).at(2, 0, 1) self.task._date = time assert self.task.should_run(time) == True time = pendulum.now().on(2018, 5, 21).at(3, 0, 1) self.task._date = time assert self.task.should_run(time) == True self.task.run_every = "2 hours" time = pendulum.now().on(2018, 5, 21).at(2, 0, 1) self.task._date = time assert self.task.should_run(time) == True self.task.run_every = "2 hours" time = pendulum.now().on(2018, 5, 21).at(3, 0, 1) self.task._date = time assert self.task.should_run(time) == False time = pendulum.now().on(2018, 5, 21).at(4, 0, 1) self.task._date = time assert self.task.should_run(time) == True def test_scheduler_should_run_every_days(self): self.task.run_every = "2 days" time = pendulum.now().on(2018, 5, 21).at(0, 0, 1) self.task._date = time assert self.task.should_run(time) == False time = pendulum.now().on(2018, 5, 23).at(0, 0, 1) self.task._date = time assert self.task.should_run(time) == False self.task.run_at = "5:30" time = pendulum.now().on(2018, 5, 22).at(5, 30, 0) self.task._date = time assert self.task.should_run(time) == True self.task.run_at = "5:35" time = pendulum.now().on(2018, 5, 22).at(5, 30, 0) self.task._date = time assert self.task.should_run(time) == False def test_scheduler_should_run_every_months(self): self.task.run_every = "2 months" time = pendulum.now().on(2018, 1, 1).at(0, 0, 1) self.task._date = time assert self.task.should_run(time) == False time = pendulum.now().on(2018, 2, 1).at(0, 0, 1) self.task._date = time assert self.task.should_run(time) == True time = pendulum.now().on(2018, 2, 1).at(10, 0, 1) self.task._date = time assert self.task.should_run(time) == False self.task.run_at = "5:30" time = pendulum.now().on(2018, 2, 1).at(5, 30, 0) self.task._date = time assert self.task.should_run(time) == False def test_twice_daily_at_correct_time(self): time = pendulum.now().on(2018, 1, 1).at(1, 20, 5) self.task.run_every = "" self.task.twice_daily = (1, 13) self.task._date = time assert self.task.should_run() time = pendulum.now().on(2018, 1, 1).at(13, 20, 5) self.task._date = time assert self.task.should_run() def test_twice_daily_at_incorrect_time(self): time = pendulum.now().on(2018, 1, 1).at(12, 20, 5) self.task.run_every = "" self.task.twice_daily = (1, 13) self.task._date = time assert self.task.should_run() is False def test_run_at(self): self.task.run_every = "" self.task.run_at = "13:00" time = pendulum.now().on(2018, 1, 1).at(13, 0, 5) self.task._date = time self.task.run_at = "13:05" time = pendulum.now().on(2018, 1, 1).at(13, 5, 5) self.task._date = time assert self.task.should_run() is True time = pendulum.now().on(2018, 1, 1).at(13, 6, 5) self.task._date = time assert self.task.should_run() is False def test_method_calls(self): task = MockTask() task.at("13:00") time = pendulum.now().on(2018, 1, 1).at(13, 0, 5) task._date = time assert task.should_run(time) == True task = MockTask() task.every_minute() time = pendulum.now().on(2018, 5, 21).at(22, 5, 5) task._date = time assert task.should_run(time) == True def test_should_run_task_immediately_by_class(self): self.craft("schedule:run", "--task TaskTest --force").assertSuccess() def test_should_run_task_immediately_by_name(self): self.craft("schedule:run", "--task task_test --force").assertSuccess() ``` #### File: features/session/test_cookie_session.py ```python from tests import TestCase class TestCookieSession(TestCase): def test_can_start_session(self): request = self.make_request() session = self.application.make("session") request.cookie("s_hello", "test") session.start("cookie") self.assertEqual(session.get("hello"), "test") def test_can_get_session_dict(self): request = self.make_request() session = self.application.make("session") request.cookie("s_hello", '{"hello": "test"}') session.start("cookie") self.assertEqual(type(session.get("hello")), dict) def test_can_set_and_get_session_dict(self): request = self.make_request() session = self.application.make("session") session.start("cookie") session.set("key1", {"hello": "test"}) self.assertEqual(type(session.get("key1")), dict) self.assertEqual(session.get("key1")["hello"], "test") def test_can_set_and_get_session(self): self.make_request() session = self.application.make("session") session.start("cookie") session.set("key1", "test1") self.assertEqual(session.get("key1"), "test1") def test_can_increment_and_decrement_session(self): self.make_request() session = self.application.make("session") session.start("cookie") session.set("key1", "1") session.set("key5", "5") session.increment("key1") session.decrement("key5") self.assertEqual(session.get("key1"), "2") self.assertEqual(session.get("key5"), "4") def test_can_save_session(self): self.make_request() response = self.make_response() session = self.application.make("session") session.start("cookie") session.set("key1", "test1") self.assertEqual(response.cookie("s_key1"), "test1") def test_can_delete_session(self): request = self.make_request() response = self.make_response() session = self.application.make("session") request.cookie("s_key", "test") session.start("cookie") self.assertEqual(session.get("key"), "test") session.delete("key") self.assertEqual(session.get("key"), None) self.assertEqual(response.cookie("s_key"), None) self.assertTrue("s_key" in response.cookie_jar.deleted_cookies) def test_can_pull_session(self): request = self.make_request() response = self.make_response() session = self.application.make("session") request.cookie("s_key", "test") session.start("cookie") self.assertEqual(session.get("key"), "test") key = session.pull("key") self.assertEqual(key, "test") self.assertEqual(session.get("key"), None) self.assertEqual(response.cookie("s_key"), None) self.assertTrue("s_key" in response.cookie_jar.deleted_cookies) def test_can_flush_session(self): request = self.make_request() response = self.make_response() session = self.application.make("session") request.cookie("s_key", "test") session.start("cookie") self.assertEqual(session.get("key"), "test") session.flush() self.assertEqual(session.get("key"), None) self.assertEqual(response.cookie("s_key"), None) self.assertTrue("s_key" in response.cookie_jar.deleted_cookies) def test_can_flash(self): request = self.make_request() response = self.make_response() session = self.application.make("session") session.start("cookie") session.flash("key", "test") self.assertEqual(session.get("key"), "test") self.assertEqual(session.get("key"), None) self.assertEqual(response.cookie("f_key"), None) def test_flash_two_keys_does_not_duplicate_data(self): request = self.make_request() response = self.make_response() session = self.application.make("session") session.start("cookie") session.flash("key", "test") session.flash("key2", "test2") self.assertTrue(session.has("key")) self.assertTrue(session.has("key2")) self.assertTrue(response.cookie_jar.exists("f_key")) self.assertTrue(response.cookie_jar.exists("f_key2")) self.assertEqual(session.get("key"), "test") self.assertFalse(session.has("key")) self.assertTrue(session.has("key2")) self.assertFalse(response.cookie_jar.exists("f_key")) self.assertTrue(response.cookie_jar.exists("f_key2")) ```
{ "source": "josephmancuso/wire", "score": 2 }
#### File: http/controllers/AlertController.py ```python from jinja2 import Markup from masonite.controllers import Controller from masonite.request import Request from masonite.view import View from .Component import Component class AlertController(Component): """Count Component""" attrs = ['message'] def __init__(self): from wsgi import container self.message = 'This is a message' container.resolve(super().__init__) def show(self): return self.render('livewire.error') ``` #### File: http/controllers/NameController.py ```python from masonite.controllers import Controller from masonite.request import Request from masonite.view import View from masonite.auth import Auth from .Component import Component class NameController(Component): """NameController Controller Class.""" attrs = ['name', 'count', 'see', 'username', 'failed', 'password', 'success', 'loggedin'] def __init__(self, auth: Auth): self.name = "Joe" self.count = 10 self.see = False self.loggedin = False self.failed = False resolve(super().__init__) def show(self): return self.render('livewire.name') def increment(self): self.count += 1 def visible(self): self.see = True def login(self): from wsgi import container auth = container.make(Auth) if (auth.login(self.username, self.password or '')): self.failed = False self.loggedin = True return self.failed = True self.loggedin = False ``` #### File: app/providers/LiveWire.py ```python from masonite.provider import ServiceProvider class LiveWire(ServiceProvider): """Provides Services To The Service Container.""" wsgi = False def register(self): """Register objects into the Service Container.""" pass def boot(self): """Boots services required by the container.""" pass ```
{ "source": "josephmarcus9/futurecoder", "score": 2 }
#### File: backend/main/tests.py ```python import json import os import re from pathlib import Path from django.test import Client, TestCase from main.text import pages from main.workers import master client = Client() master.TESTING = True def api(method, **kwargs): response = client.post(f"/api/{method}/", data=kwargs, content_type="application/json") return response.json() class StepsTestCase(TestCase): def setUp(self): from main.models import User self.user = User.objects.create_user("admin", "<EMAIL>", "<PASSWORD>") client.post("/accounts/login/", dict(login="<EMAIL>", password="<PASSWORD>")) def test_steps(self): transcript = [] for page_index, page in enumerate(pages.values()): for step_index, step_name in enumerate(page.step_names[:-1]): step = getattr(page, step_name) for substep in [*step.messages, step]: program = substep.program if "\n" in program: code_source = step.expected_code_source or "editor" else: code_source = "shell" response = api( "run_code", code=program, source=code_source, page_index=page_index, step_index=step_index, ) if "state" not in response: self.fail(response) state = response.pop("state") for line in response["result"]: line["text"] = normalise_output(line["text"]) del response["birdseye_url"] transcript_item = dict( program=program.splitlines(), page=page.title, step=step_name, response=response, ) transcript.append(transcript_item) is_message = substep in step.messages if is_message: self.assertEqual(response["message"], substep.text, transcript_item) elif step.get_solution: get_solution = "".join(step.get_solution["tokens"]) assert "def solution(" not in get_solution assert "returns_stdout" not in get_solution assert get_solution.strip() in program transcript_item["get_solution"] = get_solution.splitlines() if step.parsons_solution: is_function = transcript_item["get_solution"][0].startswith("def ") assert len(step.get_solution["lines"]) >= 4 + is_function self.assertEqual( response["passed"], not is_message, transcript_item, ) self.assertEqual( step_index + response["passed"], state["pages_progress"][page_index], transcript_item, ) path = Path(__file__).parent / "test_transcript.json" if os.environ.get("FIX_TESTS", 0): dump = json.dumps(transcript, indent=4, sort_keys=True) path.write_text(dump) else: self.assertEqual(transcript, json.loads(path.read_text())) def normalise_output(s): s = re.sub(r" at 0x\w+>", " at 0xABC>", s) return s ``` #### File: main/workers/birdseye.py ```python import ast import inspect from datetime import datetime import birdseye.bird from birdseye.bird import BirdsEye from main.utils import rows_to_dicts from .worker import console, execute birdseye.bird.get_unfrozen_datetime = datetime.now # Import necessary files before limit is set str(BirdsEye("sqlite://").db) def exec_birdseye(filename, code): # Create database in memory eye = BirdsEye("sqlite://") traced_file = eye.compile(code, filename) eye._trace('<module>', filename, traced_file, traced_file.code, 'module', code) console.locals.update(eye._trace_methods_dict(traced_file)) nodes_by_lineno = { node.lineno: node for node in traced_file.nodes if isinstance(node, ast.FunctionDef) } def find_code(root_code): """ Trace all functions recursively, like trace_module_deep. """ for code_obj in root_code.co_consts: if not inspect.iscode(code_obj) or code_obj.co_name.startswith('<'): continue find_code(code_obj) lineno = code_obj.co_firstlineno node = nodes_by_lineno.get(lineno) if not node: continue eye._trace( code_obj.co_name, filename, traced_file, code_obj, typ='function', source=code, start_lineno=lineno, end_lineno=node.last_token.end[0] + 1, ) find_code(traced_file.code) execute(traced_file.code) with eye.db.session_scope() as session: objects = session.query(eye.db.Call, eye.db.Function).all() calls, functions = [rows_to_dicts(set(column)) for column in zip(*objects)] return dict(calls=calls, functions=functions) ```
{ "source": "josephmartin09/packet_util", "score": 3 }
#### File: packet_util/packet_util/bit_field.py ```python import struct from . import PacketField class BitField(PacketField): def __init__(self, dtype, bitfields, big_endian=True): """Initialize the BitField. :param dtype: The datatype to pack and unpack the individual bitfields as. This must be an unsigned type. :param bitfields: A dict of field_name to integers that maps the name of the bitfields to their bit lengths. .. note:: The sum of these bitfields must be equal to the bitlength of the dtype parameter. """ # Verify dtype works for bitfields if not dtype in self._unsigned_types: raise ValueError(f"{dtype} is not a valid field type. Must be an unsigned type.") endian_key = ">" if big_endian else "<" self._struct_key = endian_key + self._unsigned_types[dtype].type_spec self._len = self._field_types[dtype].size self._bitlen = self._len * 8 # Verify bitfield lengths add up to exactly the type length requested_bitlen = sum(bitfields.values()) if not requested_bitlen == self._len * 8: raise ValueError(f"Length of bitfields input is {requested_bitlen} bits, but MUST be {self._bitlen} bits.") self._bitfields = bitfields def __len__(self): """Return the length of bitfield in bytes.""" return self._len def __pack_pyint(self, value): """Pack a pyint using the struct library. :param value: A pyint that must be in the range of this BitFields dtype. :returns: A bytearray of the value in binary. """ return struct.pack(self._struct_key, value) def pack(self, bitfield): """Convert a dict of bitfield values to a bytearray.""" # First check if an int was passed. If so, we can skip everything and just pack it if isinstance(bitfield, int): return self.__pack_pyint(bitfield) if not isinstance(bitfield, dict): raise TypeError(f"input to pack must be an int or dict. Got {type(bitfield)}") # Check missing keys. Note the type cast to list is necessary to consider ordering when the keys are compared req_keys = list(self._bitfields.keys()) provided_keys = list(bitfield.keys()) if req_keys != provided_keys: raise ValueError(f"bitfield must be supplied the following keys in this order {self._bitfields.keys()}") # Convert dict to pyint final_pyint = 0 bitcount = self._bitlen for name, field_val in bitfield.items(): field_bitlen = self._bitfields[name] if field_val >= 2**field_bitlen: raise ValueError(f"Value of {field_val} is too large for a bitfield of {field_bitlen} bits.") final_pyint |= field_val << (bitcount - field_bitlen) bitcount -= field_bitlen # Pack the pyint as bytes return self.__pack_pyint(final_pyint) def unpack(self, value, as_pyint=False): """Unpack a bytes-like into a dict of bitfield values. :param value: A bytes-like to unpack. :param bool as_pyint: Return an int if True, otherwise a dict of each field. :returns: A pyint of the unpacked value, or a dict of field_name -> pyints for each bitfield. """ if not isinstance(value, (bytes, bytearray)): raise TypeError(f"{value} is not a bytes or bytearray") if len(value) != self._len: raise ValueError(f"Bytes-like to unpack must be {self._len} bytes, but got {len(value)} bytes") # Unpack as pyint unpacked_pyint = struct.unpack(self._struct_key, value)[0] if as_pyint: return unpacked_pyint # Unpack bitfields bitcount = self._bitlen unpacked_fields = dict() for name, field_bitlen in self._bitfields.items(): unpacked_fields[name] = unpacked_pyint >> (bitcount - field_bitlen) bitcount -= field_bitlen unpacked_pyint &= (2**bitcount - 1) return unpacked_fields ``` #### File: packet_util/test/test_type_field.py ```python import pytest from packet_util import TypeField # For these endian tests, all byte logic is actually handled by the struct libray. # Therefore, it's sufficient to ensure that Typefield is just passing the correct endian key to struct def test_big_endian(): f = TypeField('uint32') assert f._struct_key.startswith(">") def test_little_endian(): f = TypeField('uint32', big_endian=False) assert f._struct_key.startswith("<") def test_pack_invalid_type(): f = TypeField('uint32') with pytest.raises(TypeError): f.pack("not an int or float") def test_unpack_invalid_type(): f = TypeField('uint32') with pytest.raises(TypeError): f.unpack("not a bytes-like") def test_pack(): # signed type f = TypeField('int16') assert f.pack(-300) == bytearray([0xFE, 0xD4]) # unsigned type f = TypeField('uint16') assert f.pack(65236) == bytearray([0xFE, 0xD4]) # float type f = TypeField('float') assert f.pack(1.234) == bytearray([0x3F, 0x9D, 0xF3, 0xB6]) def test_unpack(): # signed type f = TypeField('int16') assert f.unpack(bytearray([0xFE, 0xD4])) == -300 # unsigned type f = TypeField('uint16') assert f.unpack(bytearray([0xFE, 0xD4])) == 65236 # float type f = TypeField('float') assert f.unpack(bytearray([0x3F, 0x9D, 0xF3, 0xB6])) == pytest.approx(1.234) def test_len(): f = TypeField('int8') assert len(f) == 1 f = TypeField('int16') assert len(f) == 2 f = TypeField('int32') assert len(f) == 4 f = TypeField('int64') assert len(f) == 8 f = TypeField('float') assert len(f) == 4 f = TypeField('double') assert len(f) == 8 ```
{ "source": "JosephMart/reddit-recomender", "score": 3 }
#### File: reddit-recomender/src/main.py ```python from flask import Flask, request, jsonify from flask_cors import CORS from typing import List from response import Subreddit import solr import utils import traceback app = Flask(__name__) CORS(app) @app.route("/search", methods=["POST"]) def search(): body = request.get_json() query_subs: List[Subreddit] = None try: query_subs = solr.validate_query(body["subreddits"]) except Exception as e: traceback.print_exc() return jsonify({"message": str(e)}), 400 query_words, query_words_lmtzd = utils.analyze_queries(query_subs) doc_subs: List[Subreddit] = None doc_subs = solr.get_docs(query_words) docs_lmtzd = utils.analyze_documents(doc_subs) result = utils.order(query_words_lmtzd, docs_lmtzd, doc_subs) return jsonify({"result": list(result)}) @app.route("/autocomplete", methods=["GET"]) def autocomplete(): q = request.args.get("q") over18 = request.args.get("over18") results = solr.autocomplete(q, over18) return jsonify({"results": results}) app.run(port=8080) # query1 = "JavaScript is for losers who like web development" # query2 = "JavaScript is good for front end web development" # docs = [ # "JavaScript is a great language", # "I really enjoy writing JavaScript on the front end", # "Modern web development is done using JavaScript" # ] # doc_ids = [1, 2, 3] # analyzed_query = utils.analyze_queries([query1, query2]) # analyzed_docs = utils.analyze_documents(docs) # result = utils.order(analyzed_query, analyzed_docs, doc_ids) # print(result) # solr.search(set(["basketball", "baseball"])) ``` #### File: reddit-recomender/src/response.py ```python import json from typing import Dict, Union, Type class Subreddit: _id: int = None subscribers: int = None title: str = None description: str = None over_18: bool = None display_name: str = None @staticmethod def from_json(j: Dict[str, Union[str, int]]): s = Subreddit() s._id = j["id"] s.display_name = j["display_name"][0] try: s.description = j["public_description"][0] except: s.description = "" s.title = j["title"][0] s.subscribers = j["subscribers"][0] s.over_18 = j["over18"][0] return s def to_json(self): return { "id": self._id, "display_name": self.display_name, "subscribers": self.subscribers, "title": self.title, "description": self.description, "over18": self.over_18 } ```
{ "source": "josephmc5/sentry", "score": 2 }
#### File: sentry/filters/builtins.py ```python from __future__ import absolute_import from django.utils.datastructures import SortedDict from django.utils.translation import ugettext_lazy as _ from sentry.models import GroupStatus from .base import Filter __all__ = ('StatusFilter',) STATUS_LEVELS = ( (GroupStatus.UNRESOLVED, _('Unresolved')), (GroupStatus.RESOLVED, _('Resolved')), (GroupStatus.MUTED, _('Muted')), ) class StatusFilter(Filter): label = _('Status') column = 'status' default = '0' choices = SortedDict(STATUS_LEVELS) def get_choices(self): return self.choices ``` #### File: web/frontend/access_group_migration.py ```python from __future__ import absolute_import from collections import defaultdict from sentry.models import ( AccessGroup, OrganizationMember, OrganizationMemberType, Team ) from sentry.web.frontend.base import OrganizationView class AccessGroupMigrationView(OrganizationView): required_access = OrganizationMemberType.ADMIN def process_posted_member(self, request, organization, member): global_access = request.POST.get('user[%s][global_access]' % member.user_id) teams = request.POST.getlist('user[%s][team]' % member.user_id) remove = request.POST.get('user[%s][remove]' % member.user_id) access_type = request.POST.get('user[%s][type]' % member.user_id) if not access_type: return if remove != '1': if access_type == 'member': access_type = OrganizationMemberType.MEMBER elif access_type == 'admin': access_type = OrganizationMemberType.ADMIN else: return global_access = global_access == '1' om, created = OrganizationMember.objects.get_or_create( organization=organization, user=member.user, defaults={ 'has_global_access': global_access, 'type': access_type, } ) if created and not global_access: for team in teams: om.teams.add(Team.objects.get_from_cache(slug=team)) member.delete() def handle(self, request, organization): member_list = list(AccessGroup.members.through.objects.filter( accessgroup__team__organization=organization, ).select_related('user', 'accessgroup', 'accessgroup__team')) if request.method == 'POST': for member in member_list: self.process_posted_member(request, organization, member) for ag in AccessGroup.objects.filter(team__organization=organization): if not ag.members.exists(): ag.delete() return self.redirect(request.path) group_list = set(m.accessgroup for m in member_list) team_list = organization.team_set.all() project_list = list(AccessGroup.projects.through.objects.filter( accessgroup__in=group_list, ).select_related('project', 'project__team')) # sort projects by group projects_by_group = defaultdict(list) for obj in project_list: projects_by_group[obj.accessgroup_id].append(obj.project) projects_by_user = defaultdict(list) for member in member_list: projects_by_user[member.user_id].extend(projects_by_group[member.accessgroup_id]) results = [] for member in member_list: results.append(( member.user, projects_by_user[member.user_id], )) context = { 'member_list': results, 'group_list': group_list, 'team_list': team_list, } return self.respond('sentry/access-group-migration.html', context) ```
{ "source": "joseph-mccarthy/night-sky-pi", "score": 3 }
#### File: night-sky-pi/test/test_time_functions.py ```python from datetime import datetime from unittest import TestCase from unittest.mock import patch import src.time_functions as time class TestTimeFunctions(TestCase): @patch('src.time_functions._get_now', return_value=datetime(2022,2,1)) def test_get_today(self,mock_datetime): today = time.get_today() self.assertEqual(today,datetime(2022,2,1)) @patch('src.time_functions._get_now', return_value=datetime(2022,2,1)) def test_get_yesterday(self,mock_datetime): yesterday = time.get_yesterday() self.assertEqual(yesterday,datetime(2022,1,31)) @patch('src.time_functions._get_now', return_value=datetime(2022,2,1)) def test_get_tomorrow(self,mock_datetime): tomorrow = time.get_tomorrow() self.assertEqual(tomorrow,datetime(2022,2,2)) @patch('src.time_functions._get_now', return_value=datetime(2022,2,1)) def test_get_dates(self,mock_datetime): yesterday,today,tomorrow = time.get_dates() self.assertEqual(yesterday,datetime(2022,1,31)) self.assertEqual(today,datetime(2022,2,1)) self.assertEqual(tomorrow,datetime(2022,2,2)) def test_get_now(self): self.assertEqual(time._get_now().day,datetime.now().day) ```
{ "source": "joseph-mccombs/puente-serverless", "score": 3 }
#### File: puente-serverless/puente-etl/load_from_s3.py ```python import json import io import pickle import pandas as pd from utils.clients import Clients # # Load JSON # def load_json_from_s3(s3_client, file_name: str): print('load_json_from_s3') response = s3_client.get_object( Bucket=Clients.S3_BUCKET_NAME, Key=f'store_json/{file_name}.json', ) return json.loads( response['Body'].read().decode('utf-8') ) # # Load Pandas DataFrame # def load_dataframe_from_s3(s3_client, file_name: str): print('load_pickle_dict_from_s3') response = s3_client.get_object( Bucket=Clients.S3_BUCKET_NAME, Key=f'store_dataframes/{file_name}.df', ) pickled_df_buffer = io.BytesIO(response['Body'].read()) df = pd.read_pickle(pickled_df_buffer) return df # # Load Python Dictionary # def load_pickle_dict_from_s3(s3_client, file_name: str): print('load_pickle_dict_from_s3') response = s3_client.get_object( Bucket=Clients.S3_BUCKET_NAME, Key=f'store_pickle_dicts/{file_name}.pickle', ) raw = response['Body'].read() data = pickle.loads(raw) return data # # Load Python List # def load_pickle_list_from_s3(s3_client, file_name: str): print('load_pickle_list_from_s3') response = s3_client.get_object( Bucket=Clients.S3_BUCKET_NAME, Key=f'store_pickle_lists/{file_name}.pickle', ) raw = response['Body'].read() data = pickle.loads(raw) return data if __name__ == '__main__': # load_json_from_s3(Clients.S3, 'form_specifications_v2') # load_pickle_dict_from_s3(Clients.S3, 'form_specifications_v2') load_pickle_list_from_s3(Clients.S3, 'form_specifications_v2') ``` #### File: puente-serverless/puente-etl/transform_form_specifications.py ```python import pandas as pd from dotenv import load_dotenv; load_dotenv() from load_from_s3 import load_pickle_list_from_s3 from utils.clients import Clients from utils.constants import ColumnOrder from utils.helpers import \ get_column_order_by_least_null, \ get_fields_from_list_of_dicts, \ get_unique_fields_from_list, \ shortuuid_random, \ to_snake_case def get_custom_form_schema_df(): full_table_data: list = load_pickle_list_from_s3(Clients.S3, 'form_specifications_v2') # Denormalize Custom Form JSON form_df = denormalize_custom_forms(full_table_data) questions_df = denormalize_questions(full_table_data) answers_df = denormalize_answers(questions_df=questions_df) form_schema_df = form_df \ .merge(questions_df, on='custom_form_id') \ .drop(columns='question_options') \ .merge(answers_df, on='question_id') form_schema_df = form_schema_df[ColumnOrder.FORM_SPECIFICATIONS] return form_schema_df def denormalize_custom_forms(forms_data: list): # Remove nested "fields" which are denormalized elsewhere and "location" which we do not need. all_fields = get_fields_from_list_of_dicts(forms_data) cols = [ c for c in all_fields if c not in ('fields', 'location') ] # Order Row Elements by Column data = [] for form_data in forms_data: row = [] for col in cols: row.append(form_data.get(col)) data.append(row) # Clean Column Names: Remove leading underscore and apply snake_case column_names = [ to_snake_case(col.lstrip('_')) for col in cols ] # Create DataFrame df = pd.DataFrame(data, columns=column_names) \ .add_prefix('custom_form_') return df def denormalize_questions(forms_data: list): # Get unique nested fields across all data set fields_list = [] for fields_data in forms_data: for cols_data in fields_data.get('fields'): fields_list.extend(list(cols_data.keys())) cols = get_unique_fields_from_list(fields_list) if 'id' in cols: cols.remove('id') rows = [] for form_data in forms_data: fields = form_data.get('fields') custom_form_id = form_data.get('_id') header = get_section_header(fields) for item in fields: row = [custom_form_id, header, shortuuid_random()] for col in cols: row.append(item.get(col)) rows.append(row) # Prepend column for IDs and section Header # Format column names and add columns for Question ID and Answer ID cols_renamed = [f'question_{i}' for i in cols] cols_renamed.insert(0, 'custom_form_id') cols_renamed.insert(1, 'custom_form_header') cols_renamed.insert(2, 'question_id') cols_formatted = to_snake_case(cols_renamed) df = pd.DataFrame(rows, columns=cols_formatted) cols_ordered = get_column_order_by_least_null(df) df = df[cols_ordered] return df def denormalize_answers(questions_df: pd.DataFrame): tmp_df = questions_df[['question_id', 'question_options']] # Exclude fieldTypes "header" and "numberInput" tmp_df = tmp_df[tmp_df['question_options'].notnull()] cols = [] for options_list in tmp_df['question_options']: if options_list is not None: for option in options_list: # Get cols for fk in list(option.keys()): if fk not in cols: cols.append(fk) if 'id' in cols: cols.remove('id') rows = [] for q_id, options_list in zip(tmp_df['question_id'], tmp_df['question_options']): if options_list is not None: for option in options_list: row = [q_id, shortuuid_random()] for col in cols: row.append(option.get(col)) rows.append(row) # Format column names and add columns for Question ID and Answer ID cols_renamed = [f'answer_{i}' for i in cols] cols_renamed.insert(0, 'question_id') cols_renamed.insert(1, 'answer_id') cols_formatted = to_snake_case(cols_renamed) df = pd.DataFrame(rows, columns=cols_formatted) return df def get_section_header(fields_dict): for item in fields_dict: if item.get('fieldType') == 'header': return item.get('label') if __name__ == '__main__': get_custom_form_schema_df() ```
{ "source": "joseph-mcdaniel/load-testing", "score": 3 }
#### File: joseph-mcdaniel/load-testing/cli.py ```python import click @click.command() @click.option("--requests", "-r", default=500, help="Number of requests") @click.option("--concurrency", "-c", default=1, help="Number of concurrent requests") @click.option("--json-file", "-j", default=None, help="Path to output JSON file") @click.argument("url") def cli(requests, concurrency, json_file, url): print(f"Requests: {requests}") print(f"Concurrency: {concurrency}") print(f"JSON File: {json_file}") print(f"URL: {url}") pass if __name__ == "__main__": cli() ```
{ "source": "JosephMcGrath/markdown_notebook", "score": 3 }
#### File: src/tidynotes/mardown_document.py ```python import copy import os import re from typing import Any, Dict, List, Optional import jinja2 import markdown import yaml class MarkdownPart: """ A part of a markdown document. Has several mandatory attributes: * title - the name of the document / section. * body - the text of the section. * parts - sub-sections (also MarkdownParts) for any sub-headings. * metadata - any metadata for the object (stored in a YAML header). * level - the markdown level of the section (with 0 being used for Pandoc PDFs). And one optional attribute: * file - The path that the document came from (if applicable). """ renderer = markdown.Markdown( extensions=["fenced_code", "tables", "sane_lists", "admonition"] ) env = jinja2.Environment(loader=jinja2.PackageLoader("tidynotes")) def __init__(self, text: str) -> None: self.raw = text self.level = 0 self.file: Optional[str] = None self.title: Optional[str] = None self.body: str = "" self.parts: List[MarkdownPart] = [] self.meta: Dict[str, Any] = {} self._parse_raw(text) @classmethod def from_file(cls, path: str, encoding: str = "utf-8") -> "MarkdownPart": """ Load a markdown document from a text file at the specified path. """ with open(path, encoding=encoding) as file: text = file.read() doc = cls(text) file_name = os.path.split(path)[1] file_name = os.path.splitext(file_name)[0] doc.file = file_name doc.meta[".file"] = { "path": path, "mtime": os.stat(path).st_mtime, "name": file_name, } return doc def to_file(self, path: str, encoding: str = "utf-8") -> None: """ Writes the document to a text file at the specified path. """ output = self.combine() if not output: return if os.path.exists(path): with open(path, "r", encoding=encoding) as file: existing = file.read() if existing == output: return with open(path, "w", encoding=encoding) as file: file.write(output) def combine(self, metadata: bool = True) -> str: """ Recombine the document and its parts into a markdown string. """ parts = [] if metadata and self.meta: useable_meta = {x: y for x, y in self.meta.items() if x not in [".file"]} useable_meta["title"] = self.title meta_block = "\n".join(["---", yaml.dump(useable_meta).strip(), "---", ""]) parts.append(meta_block) if self.level > 0 and self.title is not None: title = "#" * self.level + " " + self.title + "\n" else: title = "" body = "\n".join([title, self.body.strip("\n"), ""]).strip("\n") + "\n" if self.level == 2: body = "\n" * 2 + body elif self.level == 3: body = "\n" + body parts.append(body) if self.parts: parts.append("\n".join([x.combine(metadata=False) for x in self.parts])) if not self.body.strip(): parts[-1] = parts[-1].lstrip("\n") return "\n".join(parts) def drop_parts(self, pattern: str) -> None: """ Drop any parts that have a title matching the provided regex. Parts without a title can't be dropped this way. """ self.parts = [ x for x in self.parts if x.title is not None and not re.match(pattern, x.title) ] def copy(self) -> "MarkdownPart": """ Create a copy of the document and all its parts. """ return copy.deepcopy(self) def extract_parts(self, pattern: str) -> List["MarkdownPart"]: """ Extract any parts of the document that have a title matching the provided regex. Parts without a title can't be extracted this way. """ output = [] for part in self.parts: if part.title is not None and re.match(pattern, part.title): output.append(part.copy()) output.extend(part.extract_parts(pattern)) return output def is_stub(self) -> bool: """ Checks if the note is a stub (no body text and no parts). """ return not self.body.strip() and len(self.parts) == 0 def make_replacement( self, pattern: str, replacement: str, regex: bool = True ) -> None: """ Replace any text in the body patching `pattern` with `replacement`. If `regex` is true then re.sub is used. """ if regex: self.body = re.sub(pattern, replacement, self.body) else: self.body = self.body.replace(pattern, replacement) for part in self.parts: part.make_replacement(pattern, replacement, regex=regex) def replace_title( self, replacements: Dict[str, str], level: Optional[int] = None ) -> None: """ Replace the title of the document or its children using a dictionary map. """ if self.title is None: return if level is None or level == self.level: self.title = replacements.get(self.title, self.title) if level == self.level: return for part in self.parts: part.replace_title(replacements=replacements, level=level) def get_links(self) -> List[str]: """ Get any wikilink-style links from the document or its children. """ links = re.findall(r"\[\[([^\]]*)\]\]", self.body) for part in self.parts: links.extend(part.get_links()) return links def get_images(self) -> List[str]: """ Get any wikilink-style links from the document or its children. """ images = re.findall(r"\!\[([^\]]*)\]\(([^\)]*)\)", self.body) images = [x[1] for x in images] for part in self.parts: images.extend(part.get_images()) return images def add_part(self, new_part: "MarkdownPart") -> None: """ Add a copy of the provided part as a sub-heading. """ new_part = new_part.copy() new_part.set_level(self.level + 1) self.parts.append(new_part) def html(self) -> str: """ Render this document as a a chunk of HTML. """ return self.env.get_template("document.html").render(document=self) def _body_html(self) -> str: return self.renderer.convert(self.combine(metadata=False)) def _parse_raw(self, text: str) -> None: """ Parse raw markdown into its component parts. """ lines = text.split("\n") line_no = -1 lines = self._parse_metadata(lines) lines = self._parse_title(lines) child_pattern = re.compile(f"^({'#' * (self.level + 1)}) (.*)$") # Parse main text body: List[str] = [] for line_no, line in enumerate(lines): if re.match(child_pattern, line): break body.append(line) lines = lines[line_no:] # Parse children current_child: List[str] = [] children: List[MarkdownPart] = [] for line_no, line in enumerate(lines): if not re.match(child_pattern, line): current_child.append(line) else: temp = "\n".join(current_child) if temp.strip(): children.append(MarkdownPart(temp)) current_child = [line] if current_child and re.match(child_pattern, current_child[0]): temp = "\n".join(current_child) if temp.strip(): children.append(MarkdownPart(temp)) self.body = "\n".join(body).strip("\n") + "\n" self.parts = children self.set_level(self.level) def _parse_metadata(self, lines: List[str]) -> List[str]: """Parse any metadata from the file.""" line_no = -1 if lines[0].startswith("---"): meta_block = [] for line_no, line in enumerate(lines): if line.startswith("---"): if line_no > 0: break else: meta_block.append(line) self.meta = {**self.meta, **yaml.safe_load("\n".join(meta_block))} if "title" in self.meta: self.title = self.meta["title"] self.level = 0 lines = lines[line_no + 1 :] return lines def _parse_title(self, lines: List[str]) -> List[str]: """Parse the document to get the title of the document.""" heading_pattern = re.compile(r"^(#+) (.*)$") for line_no, line in enumerate(lines): if not line.strip(): continue if not re.match(heading_pattern, line): break temp, first_heading = re.findall(heading_pattern, line)[0] if not self.title or first_heading == self.title: self.title = first_heading self.level = len(temp) lines = lines[line_no + 1 :] break return lines def set_level(self, level: int) -> None: """ Set the level of a document part. Its children parts are set to one level higher (recursively). """ self.level = level for part in self.parts: part.set_level(level + 1) def __repr__(self) -> str: return f"<MarkdownPart, title = {self.title}, level = {self.level}>" __str__ = __repr__ ``` #### File: markdown_notebook/tests/test_markdown_document.py ```python from tidynotes.mardown_document import MarkdownPart def test_simple_note() -> None: """Test for simple note creation.""" title = "Test Title" body = "This is the note body\n" test_note = MarkdownPart(f"# {title}\n\n{body}") assert test_note.title == title assert test_note.body == body assert len(test_note.parts) == 0 def test_stub() -> None: """Tests for stub note check.""" title = "Test Title" body = "" test_note = MarkdownPart(f"# {title}\n\n{body}") assert test_note.is_stub() title = "Test Title" body = "." test_note = MarkdownPart(f"# {title}\n\n{body}") assert not test_note.is_stub() def test_replacement() -> None: """Check text replacement without regex.""" title = "Test Title" body = "Hello world, this isn't a test!\n" test_note = MarkdownPart(f"# {title}\n\n{body}") test_note.make_replacement("isn't", "is", regex=False) assert test_note.body == "Hello world, this is a test!\n" def test_replacement_regex() -> None: """Check text replacement with regex.""" title = "Test Title" body = "Hello world, this isn't a test!\n" test_note = MarkdownPart(f"# {title}\n\n{body}") test_note.make_replacement("isn't", "is", regex=True) assert test_note.body == "Hello world, this is a test!\n" def test_no_title_note() -> None: """Test for note creation without a title.""" body = "This is the note body" test_note = MarkdownPart(f"{body}") assert test_note.title is None assert test_note.body.strip() == body assert len(test_note.parts) == 0 ```
{ "source": "JosephMcGrath/tidyclipper", "score": 3 }
#### File: src/tidyclipper/feed_entry.py ```python import datetime import re from urllib import parse import feedparser from bs4 import BeautifulSoup from .templates import ENTRY def sanitise_html(html: str) -> str: """ Removes a set of tags from a HTML string. Intended to return HTML that can be embeded in a larger document. """ if html is None: return "" soup = BeautifulSoup(html, "lxml") # Don't want these tags: for tag_label in ["img", "script", "embed", "iframe", "hr"]: for entry in soup.findAll(tag_label): entry.extract() # Don't want most attributes for tag in soup.recursiveChildGenerator(): if hasattr(tag, "attrs"): tag.attrs = { key: value for key, value in tag.attrs.items() if key == "href" } # Remove tags without text for target_tag in soup.find_all(): if len(target_tag.get_text(strip=True)) == 0: target_tag.extract() output = soup.prettify() # Wipe out unwwanted tags entirely output = re.sub(r"<\/?html>", "", output) output = re.sub(r"<\/?body>", "", output) output = re.sub(r"<\/?div>", "", output) output = re.sub(r"<\/?span>", "", output) output = re.sub(r"(\s)+", r"\1", output) output = re.sub(r"<(\/?)h1>", r"<\1h3>", output) output = re.sub(r"<(\/?)h2>", r"<\1h3>", output) output = output.strip() return output def sanitise_url(url: str) -> str: """ Cleans up a url by removing the query parameter. """ temp = list(parse.urlparse(url)) temp[4] = "" return parse.urlunparse(temp) class FeedEntry: """ A single entry from an RSS feed. """ @classmethod def from_rss( cls, entry: feedparser.FeedParserDict, feed: feedparser.FeedParserDict ) -> "FeedEntry": """ Converts a feedparser entry / feed into a FeedEntry. """ try: time = datetime.datetime(*entry.published_parsed[:6]).isoformat() except (AttributeError, TypeError): time = datetime.datetime.now().isoformat() return cls( title=entry.get("title"), summary=entry.get("summary"), link=sanitise_url(entry.get("link")), time=time, feed=feed.feed.get("title"), source=feed.get("href"), ) def __init__( self, title: str, summary: str, link: str, time: str, feed: str, source: str ): if title is None: self.title: str = "-" else: self.title = title.strip() self.summary = summary self.link = link self.time = time self.feed = feed self.source = source try: self.summary = sanitise_html(self.summary) except TypeError: pass def __hash__(self) -> int: return hash(self.link) def __repr__(self) -> str: return f"<Feed Entry : {self.title[:50]}>" def as_markdown(self) -> str: """ Convert the feed entry to a simple markdown output format. """ output = f"## {self.title}\n\n" output += f"* {self.time}\n* {self.feed}\n* {self.link}\n\n" output += f"{self.summary}\n\n---" return output def as_html(self) -> str: """ Formats the feed entry to a snippet of HTML. """ self.summary = sanitise_html(self.summary) return ENTRY.render(entry=self) ```
{ "source": "josephmckenna/2021_June_IOP_CAPS_2021", "score": 3 }
#### File: 2021_June_IOP_CAPS_2021/examples/print_type_info.py ```python import sys def PrintTypeInfoTitle(): print("Name\tBytes\tmin\tmax\n") def PrintTypeInfo(T): print((type(T).__name__) + "\t" + str(sys.getsizeof(T))) PrintTypeInfo(True) PrintTypeInfo('a') PrintTypeInfo(123) PrintTypeInfo(12345) PrintTypeInfo(2* 10**307) ```
{ "source": "josephmckinsey/movievoting", "score": 3 }
#### File: josephmckinsey/movievoting/movievoting.py ```python import inspect from textwrap import wrap import gspread import numpy import terminaltables from google_auth_oauthlib.flow import Flow class Credentials: "This is a complete hack to work with gspread and google-auth." def __init__(self, token, refresh): self.access_token = token self.refresh = refresh def debug_print(self): "Aid in debugging this mess" print("------ Access Token --------") print(self.access_token) print("------ Refresh --------") print(inspect.getsource(self.refresh)) @classmethod def from_flowcred(cls, flow_cred): """Create flowcred using deprecated flowcred object""" return cls(flow_cred.token, flow_cred.refresh) def get_credentials(): """Generates new credentials for google api. TODO: google_auth has yet to implement storage, so that may have wait for another day. TODO: This also doesn't automatically open in your browser. """ # We only need read permissions. scopes = ['https://www.googleapis.com/auth/drive.readonly', 'https://www.googleapis.com/auth/spreadsheets.readonly'] flow = Flow.from_client_secrets_file( 'client_secret.json', scopes, redirect_uri='urn:ietf:wg:oauth:2.0:oob') auth_url, _ = flow.authorization_url(prompt='consent') print('Go to') print(auth_url) print('and copy Auth Code') code = input('Enter auth code: ') print("Fetching Token.") flow.fetch_token(code=code) return flow.credentials def get_column(wks, row, col, number): """Get column with starting row and column, and then going down `number` rows.""" return list(map(lambda x: x.value, wks.range(row, col, number+row-1, col))) class Movie: """Define a movie class. Should probably be replaced with dictionary.""" def __init__(self, name, streaming, notes, veto): self.name = name self.streaming = streaming self.notes = notes self.veto = veto class Movies: """Handles movie information as well as weighted rankings""" def __init__(self, movies, people, rankings): """Define all the things!""" self.movies = movies self.people = people self.rankings = rankings self.votes = [] self.weighted_ranking = rankings self.sorting = rankings @classmethod def from_worksheet(cls, wks): """Grab all the necessary information if it is laid out as expected. See template for actual understanding behind this.""" print("Getting movie information based on template") # See the movie spreadsheet for values it is creating. The +2 terms came from # mostly trial and error. row_start = 3 movie_names = wks.col_values(1)[2:] num_movies = len(movie_names) streaming = get_column(wks, row_start, 2, num_movies) notes = get_column(wks, row_start, 3, num_movies) veto = get_column(wks, row_start, 4, num_movies) movies = [] for i in range(num_movies): movies.append( Movie(movie_names[i], streaming[i], notes[i], veto[i]) ) # This should allow for any number of people voting num_col = len(wks.row_values(2)) people = list(map(lambda x: x.value, wks.range(2, 5, 2, num_col))) print("Getting people's scores") # Gets the whole matrix of values unprocessed_rankings = wks.range(3, 5, num_movies+2, num_col) # Move out of cells. Convert to float. And turn it into a matrix. rankings = numpy.reshape(list(map(lambda x: float(x.value), unprocessed_rankings)), (num_movies, num_col - 5 + 1)) return cls(movies, people, rankings) def input_votes(self): """Reset inputs from user input""" # Request the votings. Use positives for people who are here, and negatives for # people who aren't. print("\nPlace equal positive values for people present\ and negative for those absent.") self.votes.clear() for i in self.people: self.votes.append(float(input(str(i) + ': '))) def calculate_weights(self): """Use matrix multiplication to apply weights to rankings. Stores sorted values to self.sorting.""" self.weighted_ranking = self.rankings.dot(self.votes) self.sorting = list(reversed(self.weighted_ranking.argsort())) def pretty_table(self): """Formats nice table with `terminaltables` package. Returns unicode string that you can then print.""" data = [] for i in self.sorting: entry = self.movies[i] data.append([entry.name, entry.streaming, '', # notes is blank for wrapping entry.veto, self.weighted_ranking[i]]) # Should use fancy terminal characters for seamless lines. table = terminaltables.SingleTable(data) table.inner_heading_row_border = False # We don't take about titles. # We need the max width available for notes, so we can wrap it correctly. max_width = table.column_max_width(2) # 2 is the index for notes field. # We want to wrap all of the notes fields (see textwrap). Then we use it to # replace the table_data. for i, sorted_i in enumerate(self.sorting): wrapped_notes = '\n'.join( wrap(self.movies[sorted_i].notes, max_width) ) table.table_data[i][2] = wrapped_notes return table.table # need to return the string print("Authorizing spreadsheet access.") credentials = Credentials.from_flowcred(get_credentials()) gc = gspread.authorize(credentials) # Open a worksheet from spreadsheet with one shot print('Opening "Movies" spreadsheet and "Movies" sheet') worksheet = gc.open("Movies").worksheet('Movies') what_to_watch = Movies.from_worksheet(worksheet) what_to_watch.input_votes() what_to_watch.calculate_weights() print() print(what_to_watch.pretty_table()) ```
{ "source": "JosephMeghanath/apptuit-py", "score": 2 }
#### File: apptuit-py/apptuit/apptuit_client.py ```python import json import os import sys import time import warnings import zlib from collections import defaultdict import requests from apptuit import APPTUIT_PY_TOKEN, APPTUIT_PY_TAGS, DEPRECATED_APPTUIT_PY_TOKEN, __version__ from apptuit.utils import _contains_valid_chars, _get_tags_from_environment, \ _validate_tags, sanitize_name_prometheus, sanitize_name_apptuit try: from urllib import quote except ImportError: from urllib.parse import quote try: from functools import lru_cache except ImportError: from backports.functools_lru_cache import lru_cache MAX_TAGS_LIMIT = 25 SANITIZERS = { "apptuit": sanitize_name_apptuit, "prometheus": sanitize_name_prometheus } def _get_user_agent(): py_version = sys.version.split()[0] return "apptuit-py-" + __version__ + ", requests-" + requests.__version__ + ", Py-" + py_version def _generate_query_string(query_string, start, end): ret = "?start=" + str(start) if end: ret += "&end=" + str(end) ret += "&q=" + quote(query_string, safe='') return ret def _parse_response(resp, start, end=None): json_resp = json.loads(resp) outputs = json_resp["outputs"] if not outputs: # Pythonic way of checking if list is empty return None qresult = QueryResult(start, end) for output in outputs: results = output["result"] if not results: continue output_id = output["id"] qresult[output_id] = Output() for result in results: dps = result["dps"] index = [] values = [] for point in dps: if point[0] < start: continue if end is not None and point[0] >= end: continue index.append(point[0]) values.append(point[1]) series = TimeSeries(result["metric"], result["tags"], index, values) qresult[output_id].series.append(series) return qresult class Apptuit(object): """ Apptuit client - providing APIs to send and query data from Apptuit """ def __init__(self, token=None, api_endpoint="https://api.apptuit.ai", global_tags=None, ignore_environ_tags=False, sanitize_mode="prometheus"): """ Create an apptuit client object Params: token: Apptuit token for your tenant api_endpoint: Apptuit API End point (including the protocol and port) global_tags: Tags for all datapoints (should be a dict). If you pass value for global_tags, the APPTUIT_PY_TAGS environment variable will not be used, even if ignore_environ_tags is false. ignore_environ_tags: True/False - whether to use environment variable for global tags (APPTUIT_PY_TAGS) sanitize_mode: will enable sanitizer, which will automatically change your metric names to be compatible with apptuit or prometheus. Set it to None of not needed. """ self.sanitizer = None if sanitize_mode: self.sanitizer = SANITIZERS.get(sanitize_mode.lower(), None) if not self.sanitizer: raise ValueError("sanitizer_mode can only be set to apptuit" ",prometheus or None.") if not token: token = os.environ.get(APPTUIT_PY_TOKEN) if not token: token = os.environ.get(DEPRECATED_APPTUIT_PY_TOKEN) if token: warnings.warn("The environment variable %s is deprecated," "please use %s instead" % (DEPRECATED_APPTUIT_PY_TOKEN, APPTUIT_PY_TOKEN), DeprecationWarning) if not token: raise ValueError("Missing Apptuit API token, " "either pass it as a parameter or " "set as value of the environment variable '" + APPTUIT_PY_TOKEN + "'.") self.token = token if not api_endpoint: raise ValueError("Invalid value for the 'api_endpoint' parameter") self.endpoint = api_endpoint if self.endpoint[-1] == '/': self.endpoint = self.endpoint[:-1] self._global_tags = global_tags if not self._global_tags and not ignore_environ_tags: self._global_tags = _get_tags_from_environment() @property def put_apiurl(self): """ Apptuit PUT API URL """ return self.endpoint + "/api/put?details" def _combine_tags_with_globaltags(self, tags): if tags: if self._global_tags: combined_tags = self._global_tags.copy() combined_tags.update(tags) else: combined_tags = tags return combined_tags elif self._global_tags: return self._global_tags return None def _create_payload_from_datapoints(self, datapoints): data = [] for point in datapoints: if self.sanitizer: sanitized_metric = self.sanitizer(point.metric) else: if not _contains_valid_chars(point.metric): raise ValueError("Metric Name %s contains an invalid character, " "allowed characters are unicode letter, " "a-z, A-Z, 0-9, -, _, ., and /" % point.metric) sanitized_metric = point.metric tags = self._combine_tags_with_globaltags(point.tags) if not tags: raise ValueError("Missing tags for the metric " + point.metric + ". Either pass it as value of the tags" " parameter to DataPoint or" " set environment variable '" + APPTUIT_PY_TAGS + "' for global tags") if len(tags) > MAX_TAGS_LIMIT: raise ValueError("Too many tags for datapoint %s, maximum allowed number of tags " "is %d, found %d tags" % (point, MAX_TAGS_LIMIT, len(tags))) if self.sanitizer: sanitized_tags = {} for key, val in tags.items(): sanitized_tags[self.sanitizer(key)] = val tags = sanitized_tags else: _validate_tags(tags) row = dict() row["metric"] = sanitized_metric row["timestamp"] = point.timestamp row["value"] = point.value row["tags"] = tags data.append(row) return data def _create_payload_from_timeseries(self, timeseries_list): data = [] points_count = 0 for timeseries in timeseries_list: tags = self._combine_tags_with_globaltags(timeseries.tags) if not tags: raise ValueError("Missing tags for the metric '%s'. Either pass it as value " "of the tags parameter to TimeSeriesName, or set environment " "variable '%s' for global tags, or pass 'global_tags' parameter " "to the apptuit_client" % (timeseries.metric, APPTUIT_PY_TAGS)) if len(tags) > MAX_TAGS_LIMIT: raise ValueError("Too many tags for timeseries %s, maximum allowed number of tags " "is %d, found %d tags" % (timeseries, MAX_TAGS_LIMIT, len(tags))) for timestamp, value in zip(timeseries.timestamps, timeseries.values): row = {"metric": timeseries.metric, "tags": tags, "timestamp": timestamp, "value": value} data.append(row) points_count += 1 return data, points_count def send(self, datapoints, timeout=60): """ Send the given set of datapoints to Apptuit Params: datapoints: A list of DataPoint objects timeout: Timeout (in seconds) for the HTTP request It raises an ApptuitSendException in case the backend API responds with an error """ if not datapoints: return payload = self._create_payload_from_datapoints(datapoints) self.__send(payload, len(datapoints), timeout) def send_timeseries(self, timeseries_list, timeout=60): """ Send a list of timeseries to Apptuit Parameters ---------- timeseries_list: A list of TimeSeries objects timeout: Timeout (in seconds) for the HTTP request """ if not timeseries_list: return data, points_count = self._create_payload_from_timeseries(timeseries_list) if points_count != 0: self.__send(data, points_count, timeout) @staticmethod def __get_size_in_mb(buf): return sys.getsizeof(buf) * 1.0 / (1024 ** 2) def __send(self, payload, points_count, timeout): body = json.dumps(payload) body = zlib.compress(body.encode("utf-8")) headers = dict() headers["Authorization"] = "Bearer " + self.token headers["Content-Type"] = "application/json" headers["Content-Encoding"] = "deflate" headers["User-Agent"] = _get_user_agent() response = requests.post(self.put_apiurl, data=body, headers=headers, timeout=timeout) if response.status_code != 200 and response.status_code != 204: status_code = response.status_code if status_code == 400: resp_json = response.json() raise ApptuitSendException( "Apptuit.send() failed, Due to %d" % status_code, status_code, resp_json["success"], resp_json["failed"], resp_json["errors"] ) if status_code == 413: raise ApptuitSendException("Too big payload for Apptuit.send(). Trying to send" " %f mb of data with %d points, please try sending " "again with fewer points" % (self.__get_size_in_mb(body), points_count), status_code, 0, points_count) if status_code == 401: error = "Apptuit API token is invalid" else: error = "Server Error" raise ApptuitSendException("Apptuit.send() failed, due to %d: %s" % (status_code, error), status_code, 0, points_count, []) def query(self, query_str, start, end=None, retry_count=0, timeout=180): """ Execute the given query on Query service Params: query_str - The query string start - the start timestamp (unix epoch in seconds) end - the end timestamp (unix epoch in seconds) timeout - timeout (in seconds) for the HTTP request Returns a QueryResult object Individual queried items can be accessed by indexing the result object using either the integer index of the metric in the query or the metric name. Example: apptuit = Apptuit(token=token, api_endpoint='http://api.apptuit.ai') res = apptuit.query("cpu=fetch('node.cpu').downsample('1h', 'avg');\n \ load=fetch('node.load1').downsample('1h', 'avg');\n \ output(cpu, load)",start=start_time) # The resulting data can be accessed in two wasy # 1. using the output name used in the query: cpu_df = res['cpu'].to_df() load_df = res['load'].to_df() # 2. using integer index based on the ordering of the metric in the query cpu_df = res[0].to_df() load_df = res[1].to_df() """ try: url = self.__generate_request_url(query_str, start, end) return self._execute_query(url, start, end, timeout) except (requests.exceptions.HTTPError, requests.exceptions.SSLError) as e: if retry_count > 0: time.sleep(1) return self.query(query_str, start, end, retry_count=retry_count - 1) else: raise ApptuitException("Failed to get response from Apptuit" "query service due to exception: %s" % str(e)) def _execute_query(self, query_string, start, end, timeout): headers = dict() headers["User-Agent"] = _get_user_agent() if self.token: headers["Authorization"] = "Bearer " + self.token hresp = requests.get(query_string, headers=headers, timeout=timeout) body = hresp.content return _parse_response(body, start, end) def __generate_request_url(self, query_string, start, end): query_string = self.endpoint + "/api/query" + \ _generate_query_string(query_string, start, end) return query_string class TimeSeries(object): """ Represents a timeseries consisting of metadata, such as tags and metric name, as well as the data (the index and the values) """ def __init__(self, metric, tags, index=None, values=None): self.name = TimeSeriesName(metric, tags) if not index and values: raise ValueError("index cannot be None if values is not None") if index and not values: raise ValueError("values cannot be None if index is not None") if index and values: if len(index) != len(values): raise ValueError("Length of index and values must be equal") self.timestamps = index or [] self.values = values or [] @property def tags(self): return self.name.tags @property def metric(self): return self.name.metric def __repr__(self): repr_str = '%s{' % self.name.metric for tagk in sorted(self.name.tags): tagv = self.name.tags[tagk] repr_str = repr_str + '%s:%s, ' % (tagk, tagv) repr_str = repr_str[:-2] + '}' return repr_str def __str__(self): return self.__repr__() def __len__(self): return len(self.timestamps) def add_point(self, timestamp, value): """ Add a new point to the timeseries object """ self.timestamps.append(timestamp) self.values.append(float(value)) class TimeSeriesName(object): """ Encapsulates a timeseries name representation by using the metric name and tags """ def __init__(self, metric, tags): """ Parameters ---------- metric: name of the metric tags: tags for the metric (expected a dict type) """ self.metric = metric self.tags = tags @property def tags(self): return self._tags @tags.setter def tags(self, tags): if tags: for key in tags: if not key: raise ValueError("Tag key can't be '%s'" % key) self._tags = tags @property def metric(self): return self._metric @metric.setter def metric(self, metric): if not metric: raise ValueError("metric name cannot be None or empty") self._metric = metric def __str__(self): return self.metric + json.dumps(self.tags, sort_keys=True) @staticmethod def encode_metric(metric_name, metric_tags): """ Generate an encoded metric name by combining metric_name and metric_tags Params: metric_name: name of the metric metric_tags: tags (expected a dictionary of tag keys vs values) Returns: An string encoding the metric name and the tags which can be used when creating metric objects, such as counters, timers etc. Example: s = reporter.encode_metric_name('node.cpu', {"type": "idle"}) print(s) # 'node.cpu {"type": "idle"}' """ if not isinstance(metric_name, str): raise ValueError("metric_name should be a string") if metric_name == "": raise ValueError("metric_name cannot be empty") if not isinstance(metric_tags, dict): raise ValueError("metric_tags must be a dictionary") encoded_metric_name = metric_name + json.dumps(metric_tags, sort_keys=True) return encoded_metric_name @staticmethod @lru_cache(maxsize=2000) def decode_metric(encoded_metric_name): """ Decode the metric name as encoded by encode_metric_name Params: encoded_metric_name: a string encoded in a format as returned by encode_metric_name() example: 'metricName {"metricTagKey1":"metricValue1","metricTagKey2":"metricValue2"}' Returns: The metric name and the dictionary of tags """ if encoded_metric_name is None or encoded_metric_name == "": raise ValueError("Invalid value for encoded_metric_name") metric_tags = {} metric_name = encoded_metric_name.strip() brace_index = encoded_metric_name.find('{') if brace_index > -1: try: metric_tags = json.loads(encoded_metric_name[brace_index:]) metric_name = encoded_metric_name[:brace_index].strip() except Exception as err: raise ValueError("Failed to parse the encoded_metric_name %s, invalid format" % encoded_metric_name, err) return metric_name, metric_tags class Output(object): """ Represents the output of a query, consisting of a list of TimeSeries objects representing each time series returned for the query. """ def __init__(self): self.series = [] self.__dataframe = None def to_df(self, tz=None): """ Create a Pandas DataFrame from this data """ import pandas as pd series_names = [] series_list = [] for s in self.series: series_name = str(s) series_names.append(series_name) series_index = pd.to_datetime(s.timestamps, unit='s').tz_localize(tz) pseries = pd.Series(data=s.values, index=series_index) series_list.append(pseries) dataframe = pd.concat(series_list, axis=1) dataframe.columns = series_names self.__dataframe = dataframe return dataframe class QueryResult(object): """ The object returned by Apptuit.query method. Represents the combined results of the query being executed. If the query which was executed consisted of multiple lines and multiple outputs were expected it will contain multiple Output objects for each of those. """ def __init__(self, start, end=None): self.__outputs = defaultdict(Output) self.start = start self.end = end self.__output_keys = {} self.__output_index = 0 def __repr__(self): return '{start: %d, end: %s, outputs: %s}' % \ (self.start, str(self.end) if self.end is not None else '', ', '.join(self.__outputs.keys())) def __setitem__(self, key, value): self.__outputs[key] = value self.__output_keys[self.__output_index] = key self.__output_index += 1 def __getitem__(self, key): output_id = key if isinstance(key, int): output_id = self.__output_keys[key] return self.__outputs[output_id] class DataPoint(object): """ A single datapoint, representing value of a metric at a specific timestamp """ def __init__(self, metric, tags, timestamp, value): """ Params: metric: The name of the metric tags: A dict representing the tag keys and values of this metric timestamp: Number of seconds since Unix epoch value: value of the metric at this timestamp (int or float) """ self.timestamp = timestamp self.timeseries_name = TimeSeriesName(metric, tags) try: self.value = float(value) except TypeError: raise ValueError("Expected a numeric value got %s" % value) @property def metric(self): return self.timeseries_name.metric @property def tags(self): return self.timeseries_name.tags def __repr__(self): _repr = self.metric + "{" for tagk in sorted(self.tags): _repr = _repr + "%s:%s, " % (tagk, self.tags[tagk]) _repr = _repr[:-2] + ", timestamp: %d, value: %f}" % (self.timestamp, self.value) return _repr def __str__(self): return self.__repr__() class ApptuitException(Exception): def __init__(self, msg): super(ApptuitException, self).__init__(msg) self.msg = msg def __repr__(self): return self.msg def __str__(self): return self.msg class ApptuitSendException(ApptuitException): """ An exception raised by Apptuit.send() """ def __init__(self, msg, status_code=None, success=None, failed=None, errors=None): super(ApptuitSendException, self).__init__(msg) self.msg = msg self.status_code = status_code self.errors = errors or [] self.success = success self.failed = failed def __repr__(self): return self.__str__() def __str__(self): msg = str(self.failed) + " points failed" if self.status_code: msg += " with status: %d\n" % self.status_code else: msg += "\n" for error in self.errors: dp = error["datapoint"] error_msg = error["error"] msg += "%s error occurred in the datapoint %s\n" % (str(error_msg), str(dp)) return msg ```
{ "source": "josephmisiti/django-c10k-demo", "score": 3 }
#### File: django-c10k-demo/c10ktools/websockets.py ```python import collections import io import random import struct import tulip class WebSocket: """ Basic WebSocket protocol implementation on top of Tulip. """ server = True def __init__(self, reader, writer): """ Create a WebSocket handler. reader must be a tulip.StreamReader, writer a tulip.WriteTransport. """ self.reader = reader self.writer = writer self.local_closed = False self.remote_closed = False @tulip.coroutine def read_message(self): """ Read the next message from the client. A text frame is returned as str, a binary frame as bytes, None if the end of the message stream was reached. """ # Handle fragmentation frame = yield from self.read_data_frame() if frame is None: return text = (frame.opcode == 1) data = [frame.data] while not frame.fin: frame = yield from self.read_data_frame() assert frame.opcode == 0 data.append(frame.data) data = b''.join(data) return data.decode('utf-8') if text else data def write_message(self, data, opcode=None): """ Write a message to the client. By default, str is sent as a text frame, bytes as a binary frame. """ self.write_frame(data, opcode) def close(self, data=b''): """ Close the connection with the client. """ if not self.local_closed: self.write_frame(data, opcode=8) self.local_closed = True self.writer.close() def ping(self, data=b''): """ Send a Ping. """ self.write_frame(data, opcode=9) def pong(self, data=b''): """ Send a Pong. """ self.write_frame(data, opcode=10) @tulip.coroutine def read_data_frame(self): while not self.remote_closed: frame = yield from self.read_frame() if frame.opcode & 0b1000: # control frame assert 8 <= frame.opcode <= 10 if frame.opcode == 8: self.remote_closed = True self.close() raise StopIteration # could use a specific exception elif frame.opcode == 9: self.pong(frame.data) elif frame.opcode == 10: pass # unsolicited Pong else: # data frame assert 0 <= frame.opcode <= 2 return frame @tulip.coroutine def read_frame(self): if self.remote_closed: raise IOError("Cannot read from a closed WebSocket") # Read the header data = yield from self.reader.readexactly(2) head1, head2 = struct.unpack('!BB', data) fin = bool(head1 & 0b10000000) assert not head1 & 0b01110000, "reserved bits must be 0" opcode = head1 & 0b00001111 assert bool(head2 & 0b10000000) == self.server, "invalid masking" length = head2 & 0b01111111 if length == 126: data = yield from self.reader.readexactly(2) length, = struct.unpack('!H', data) elif length == 127: data = yield from self.reader.readexactly(8) length, = struct.unpack('!Q', data) if self.server: mask = yield from self.reader.readexactly(4) # Read the data data = yield from self.reader.readexactly(length) if self.server: data = bytes(b ^ mask[i % 4] for i, b in enumerate(data)) return Frame(fin, opcode, data) def write_frame(self, data=b'', opcode=None): if self.local_closed: raise IOError("Cannot write to a closed WebSocket") # Encode text and set default opcodes if isinstance(data, str): if opcode is None: opcode = 1 data = data.encode('utf-8') elif isinstance(data, bytes): if opcode is None: opcode = 2 else: raise TypeError("data must be bytes or str") # Write the header header = io.BytesIO() header.write(struct.pack('!B', 0b10000000 | opcode)) if self.server: mask_bit = 0b00000000 else: mask_bit = 0b10000000 mask = struct.pack('!I', random.getrandbits(32)) length = len(data) if length < 0x7e: header.write(struct.pack('!B', mask_bit | length)) elif length < 0x7fff: header.write(struct.pack('!BH', mask_bit | 126, length)) else: header.write(struct.pack('!BQ', mask_bit | 127, length)) if not self.server: header.write(mask) self.writer.write(header.getvalue()) # Write the data if not self.server: data = bytes(b ^ mask[i % 4] for i, b in enumerate(data)) self.writer.write(data) class ClientWebSocket(WebSocket): """Client-side WebSocket implementation, for testing.""" server = False Frame = collections.namedtuple('Frame', ('fin', 'opcode', 'data')) ```
{ "source": "josephmisiti/django_gmail", "score": 2 }
#### File: django_gmail/django_gmail/views.py ```python import httplib2 import logging import pytz import random import re import time import urllib import base64 from datetime import datetime, date, timedelta from email.mime.text import MIMEText from apiclient.discovery import build from apiclient.errors import HttpError from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.urlresolvers import reverse from django.http import HttpResponseBadRequest, HttpResponseRedirect, Http404 from django.shortcuts import get_object_or_404 from django.contrib.auth.decorators import login_required from django.utils.timezone import utc, make_aware, get_current_timezone from oauth2client import xsrfutil from oauth2client.client import OAuth2WebServerFlow, FlowExchangeError from oauth2client.django_orm import Storage FLOW = OAuth2WebServerFlow(client_id=settings.GA_CLIENT_ID, client_secret=settings.GA_CLIENT_SECRET, scope=settings.GA_SCOPE, redirect_uri=settings.GOOGLE_REDIRECT_URI) @login_required def gmail_oauth_callback(request): """ Google API oauth2 callback route https://developers.google.com/api-client-library/python/guide/django """ internal_contact = None code = request.REQUEST.get('code') state = request.REQUEST.get('state') user = request.user #if not xsrfutil.validate_token(settings.SECRET_KEY, state, user): #print "token not valid" #return HttpResponseBadRequest() # if user denies access redirect to activate if request.GET.get('error') != 'access_denied': try: credentials = FLOW.step2_exchange(request.REQUEST) except FlowExchangeError, exc: raise Http404 http = httplib2.Http() http = credentials.authorize(http) service = build('gmail', 'v1', http=http) profile = service.users().getProfile(userId="me").execute() creds,_ = GoogleCredentials.objects.get_or_create(user=request.user) creds.credentials = credentials creds.save() return redirect(settings.GMAIL_POST_AUTH_REDIRECT) ```
{ "source": "josephmisiti/django-s3direct", "score": 2 }
#### File: django-s3direct/s3direct/views.py ```python import json from django.http import HttpResponse from django.views.decorators.http import require_POST from django.core.exceptions import PermissionDenied from django.conf import settings from .utils import create_upload_data S3DIRECT_AUTH_TEST = getattr(settings, 'S3DIRECT_AUTH_TEST', lambda u: True) @require_POST def get_upload_params(request): if not S3DIRECT_AUTH_TEST(request.user): raise PermissionDenied() content_type = request.POST['type'] source_filename = request.POST['name'] upload_to = request.POST['upload_to'] data = create_upload_data(content_type, source_filename, upload_to) return HttpResponse(json.dumps(data), content_type="application/json") ```
{ "source": "josephmisiti/goodreads_etl_pipeline", "score": 2 }
#### File: goodreads_etl_pipeline/src/goodreads_driver.py ```python from pyspark.sql import SparkSession from goodreads_transform import GoodreadsTransform from s3_module import GoodReadsS3Module from pathlib import Path import logging import logging.config import configparser from warehouse.goodreads_warehouse_driver import GoodReadsWarehouseDriver import time config = configparser.ConfigParser() config.read_file(open(f"{Path(__file__).parents[0]}/config.cfg")) # Setting up logger, Logger properties are defined in logging.ini file logging.config.fileConfig(f"{Path(__file__).parents[0]}/logging.ini") logger = logging.getLogger(__name__) def create_sparksession(): return SparkSession.builder.master('yarn').appName("goodreads") \ .config("spark.jars.packages","saurfang:spark-sas7bdat:2.0.0-s_2.11") \ .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.2") \ .enableHiveSupport().getOrCreate() def main(): logging.debug("\n\nSetting up Spark Session...") spark = create_sparksession() grt = GoodreadsTransform(spark) # Modules in the project modules = { "author.csv": grt.transform_author_dataset, "book.csv" : grt.transform_books_dataset, "reviews.csv" : grt.transform_reviews_dataset, "user.csv" : grt.tranform_users_dataset } logging.debug("\n\nCopying data from s3 landing zone to ...") gds3 = GoodReadsS3Module() gds3.s3_move_data(source_bucket= config.get('BUCKET','LANDING_ZONE'), target_bucket= config.get('BUCKET', 'WORKING_ZONE')) files_in_working_zone = gds3.get_files(config.get('BUCKET', 'WORKING_ZONE')) # Cleanup processed zone if files available in working zone if len([set(modules.keys()) & set(files_in_working_zone)]) > 0: logging.info("Cleaning up processed zone.") gds3.clean_bucket(config.get('BUCKET', 'PROCESSED_ZONE')) for file in files_in_working_zone: if file in modules.keys(): modules[file]() logging.debug("Waiting before setting up Warehouse") time.sleep(5) # Starting warehouse functionality grwarehouse = GoodReadsWarehouseDriver() logging.debug("Setting up staging tables") grwarehouse.setup_staging_tables() logging.debug("Populating staging tables") grwarehouse.load_staging_tables() logging.debug("Setting up Warehouse tables") grwarehouse.setup_warehouse_tables() logging.debug("Performing UPSERT") grwarehouse.perform_upsert() if __name__ == "__main__": main() ```
{ "source": "josephmisiti/gunicorn", "score": 2 }
#### File: gunicorn/tests/test_007-ssl.py ```python import inspect import ssl from unittest import TestCase # gunicorn from gunicorn.config import KeyFile, CertFile, SSLVersion, CACerts, \ SuppressRaggedEOFs, DoHandshakeOnConnect, Ciphers, Setting, validate_bool, validate_string, \ validate_pos_int class SSLTestCase(TestCase): def test_settings_classes(self): """ Tests all settings options and their defaults. """ self.assertTrue(issubclass(KeyFile, Setting)) self.assertEquals(KeyFile.name, 'keyfile') self.assertEquals(KeyFile.section, 'Ssl') self.assertEquals(KeyFile.cli, ['--keyfile']) self.assertEquals(KeyFile.meta, 'FILE') self.assertEquals(KeyFile.default, None) self.assertTrue(issubclass(CertFile, Setting)) self.assertEquals(CertFile.name, 'certfile') self.assertEquals(CertFile.section, 'Ssl') self.assertEquals(CertFile.cli, ['--certfile']) self.assertEquals(CertFile.default, None) self.assertTrue(issubclass(SSLVersion, Setting)) self.assertEquals(SSLVersion.name, 'ssl_version') self.assertEquals(SSLVersion.section, 'Ssl') self.assertEquals(SSLVersion.cli, ['--ssl-version']) self.assertEquals(SSLVersion.default, ssl.PROTOCOL_TLSv1) self.assertTrue(issubclass(CACerts, Setting)) self.assertEquals(CACerts.name, 'ca_certs') self.assertEquals(CACerts.section, 'Ssl') self.assertEquals(CACerts.cli, ['--ca-certs']) self.assertEquals(CACerts.meta, 'FILE') self.assertEquals(CACerts.default, None) self.assertTrue(issubclass(SuppressRaggedEOFs, Setting)) self.assertEquals(SuppressRaggedEOFs.name, 'suppress_ragged_eofs') self.assertEquals(SuppressRaggedEOFs.section, 'Ssl') self.assertEquals(SuppressRaggedEOFs.cli, ['--suppress-ragged-eofs']) self.assertEquals(SuppressRaggedEOFs.action, 'store_true') self.assertEquals(SuppressRaggedEOFs.default, True) self.assertTrue(issubclass(DoHandshakeOnConnect, Setting)) self.assertEquals(DoHandshakeOnConnect.name, 'do_handshake_on_connect') self.assertEquals(DoHandshakeOnConnect.section, 'Ssl') self.assertEquals(DoHandshakeOnConnect.cli, ['--do-handshake-on-connect']) self.assertEquals(DoHandshakeOnConnect.action, 'store_true') self.assertEquals(DoHandshakeOnConnect.default, False) self.assertTrue(issubclass(Ciphers, Setting)) self.assertEquals(Ciphers.name, 'ciphers') self.assertEquals(Ciphers.section, 'Ssl') self.assertEquals(Ciphers.cli, ['--ciphers']) self.assertEquals(Ciphers.default, 'TLSv1') ```
{ "source": "josephmisiti/jobtastic", "score": 2 }
#### File: jobtastic/jobtastic/task.py ```python from __future__ import division import logging import time import os import sys import warnings from contextlib import contextmanager from hashlib import md5 import psutil from celery.datastructures import ExceptionInfo from celery.states import PENDING, SUCCESS from celery.task import Task from celery.utils import gen_unique_id get_task_logger = None try: from celery.utils.log import get_task_logger except ImportError: pass # get_task_logger is new in Celery 3.X cache = None try: # For now, let's just say that if Django exists, we should use it. # Otherwise, try Flask. This definitely needs an actual configuration # variable so folks can make an explicit decision. from django.core.cache import cache HAS_DJANGO = True except ImportError: try: # We should really have an explicitly-defined way of doing this, but # for now, let's just use werkzeug Memcached if it exists from werkzeug.contrib.cache import MemcachedCache from celery import conf if conf.CELERY_RESULT_BACKEND == 'cache': uri_str = conf.CELERY_CACHE_BACKEND.strip('memcached://') uris = uri_str.split(';') cache = MemcachedCache(uris) HAS_WERKZEUG = True except ImportError: pass if cache is None: raise Exception( "Jobtastic requires either Django or Flask + Memcached result backend") from jobtastic.states import PROGRESS @contextmanager def acquire_lock(lock_name): """ A contextmanager to wait until an exclusive lock is available, hold the lock and then release it when the code under context is complete. TODO: This code doesn't work like it should. It doesn't wait indefinitely for the lock and in fact cycles through very quickly. """ for _ in range(10): try: value = cache.incr(lock_name) except ValueError: cache.set(lock_name, 0) value = cache.incr(lock_name) if value == 1: break else: cache.decr(lock_name) else: yield cache.set(lock_name, 0) return yield cache.decr(lock_name) class JobtasticTask(Task): """ A base ``Celery.Task`` class that provides some common niceties for running tasks that return some kind of result for which you need to wait. To create a task that uses these helpers, use ``JobtasticTask`` as a subclass and define a ``calculate_result`` method which returns a dictionary to be turned in to JSON. You will also need to define the following class variables: * ``significant_kwargs`` The kwarg values that will be converted to strings and hashed to determine if two versions of the same task are equivalent. This is a list of 2-tuples with the first item being the kwarg string and the second being a callable that converts the value to a hashable string. If no second item is given, it's assumed that calling ``str()`` on the value works just fine. * ``herd_avoidance_timeout`` Number of seconds to hold a lock on this task for other equivalent runs. Generally, this should be set to the longest estimated amount of time the task could consume. The following class members are optional: * ``cache_prefix`` A unique string representing this task. Eg. ``foo.bar.tasks.BazzTask`` * ``cache_duration`` The number of seconds for which the result of this task should be cached, meaning subsequent equivalent runs will skip computation. The default is to do no result caching. * ``memleak_threshold`` When a single run of a Task increase the resident process memory usage by more than this number of MegaBytes, a warning is logged to the logger. This is useful for finding tasks that are behaving badly under certain conditions. By default, no logging is performed. Set this value to 0 to log all RAM changes and -1 to disable logging. Provided are helpers for: 1. Handling failures to connect the task broker by either directly running the task (`delay_or_run`) or by returning a task that contains the connection error (`delay_or_fail`). This minimizes the user-facing impact of a dead task broker. 2. Defeating any thundering herd issues by ensuring only one of a task with specific arguments can be running at a time by directing subsequent calls to latch on to the appropriate result. 3. Caching the final result for a designated time period so that subsequent equivalent calls return quickly. 4. Returning the results as JSON, so that they can be processed easily by client-side javascript. 5. Returning time-based, continually updating progress estimates to front-end code so that users know what to expect. """ abstract = True @classmethod def delay_or_eager(self, *args, **kwargs): """ Attempt to call self.delay, or if that fails because of a problem with the broker, run the task eagerly and return an EagerResult. """ possible_broker_errors = self._get_possible_broker_errors_tuple() try: return self.apply_async(args=args, kwargs=kwargs) except possible_broker_errors: return self.apply(args=args, kwargs=kwargs) @classmethod def delay_or_run(self, *args, **kwargs): """ Attempt to call self.delay, or if that fails, call self.run. Returns a tuple, (result, required_fallback). ``result`` is the result of calling delay or run. ``required_fallback`` is True if the broker failed we had to resort to `self.run`. """ warnings.warn( "delay_or_run is deprecated. Please use delay_or_eager", DeprecationWarning, ) possible_broker_errors = self._get_possible_broker_errors_tuple() try: result = self.apply_async(args=args, kwargs=kwargs) required_fallback = False except possible_broker_errors: result = self().run(*args, **kwargs) required_fallback = True return result, required_fallback @classmethod def delay_or_fail(self, *args, **kwargs): """ Attempt to call self.delay, but if that fails with an exception, we fake the task completion using the exception as the result. This allows us to seamlessly handle errors on task creation the same way we handle errors when a task runs, simplifying the user interface. """ possible_broker_errors = self._get_possible_broker_errors_tuple() try: return self.apply_async(args=args, kwargs=kwargs) except possible_broker_errors as e: return self.simulate_async_error(e) @classmethod def _get_possible_broker_errors_tuple(self): if hasattr(self.app, 'connection'): dummy_conn = self.app.connection() else: # Celery 2.5 uses `broker_connection` instead dummy_conn = self.app.broker_connection() return dummy_conn.connection_errors + dummy_conn.channel_errors @classmethod def simulate_async_error(self, exception): """ Take this exception and store it as an error in the result backend. This unifies the handling of broker-connection errors with any other type of error that might occur when running the task. So the same error-handling that might retry a task or display a useful message to the user can also handle this error. """ task_id = gen_unique_id() async_result = self.AsyncResult(task_id) einfo = ExceptionInfo(sys.exc_info()) async_result.backend.mark_as_failure( task_id, exception, traceback=einfo.traceback, ) return async_result @classmethod def apply_async(self, args, kwargs, **options): """ Put this task on the Celery queue as a singleton. Only one of this type of task with its distinguishing args/kwargs will be allowed on the queue at a time. Subsequent duplicate tasks called while this task is still running will just latch on to the results of the running task by synchronizing the task uuid. Additionally, identical task calls will return those results for the next ``cache_duration`` seconds. """ self._validate_required_class_vars() cache_key = self._get_cache_key(**kwargs) # Check for an already-computed and cached result task_id = cache.get(cache_key) # Check for the cached result if task_id: # We've already built this result, just latch on to the task that # did the work logging.info( 'Found existing cached and completed task: %s', task_id) return self.AsyncResult(task_id) # Check for an in-progress equivalent task to avoid duplicating work task_id = cache.get('herd:%s' % cache_key) if task_id: logging.info('Found existing in-progress task: %s', task_id) return self.AsyncResult(task_id) # It's not cached and it's not already running. Use an atomic lock to # start the task, ensuring there isn't a race condition that could # result in multiple identical tasks being fired at once. with acquire_lock('lock:%s' % cache_key): task_meta = super(JobtasticTask, self).apply_async( args, kwargs, **options ) logging.info('Current status: %s', task_meta.status) if task_meta.status in (PROGRESS, PENDING): cache.set( 'herd:%s' % cache_key, task_meta.task_id, timeout=self.herd_avoidance_timeout) logging.info( 'Setting herd-avoidance cache for task: %s', cache_key) return task_meta def calc_progress(self, completed_count, total_count): """ Calculate the percentage progress and estimated remaining time based on the current number of items completed of the total. Returns a tuple of ``(percentage_complete, seconds_remaining)``. """ self.logger.debug( "calc_progress(%s, %s)", completed_count, total_count, ) current_time = time.time() time_spent = current_time - self.start_time self.logger.debug("Progress time spent: %s", time_spent) if total_count == 0: return 100, 1 completion_fraction = completed_count / total_count if completion_fraction == 0: completion_fraction = 1 total_time = 0 total_time = time_spent / completion_fraction time_remaining = total_time - time_spent completion_display = completion_fraction * 100 if completion_display == 100: return 100, 1 # 1 second to finish up return completion_display, time_remaining def update_progress( self, completed_count, total_count, update_frequency=1, ): """ Update the task backend with both an estimated percentage complete and number of seconds remaining until completion. ``completed_count`` Number of task "units" that have been completed out of ``total_count`` total "units." ``update_frequency`` Only actually store the updated progress in the background at most every ``N`` ``completed_count``. """ if completed_count - self._last_update_count < update_frequency: # We've updated the progress too recently. Don't stress out the # result backend return # Store progress for display progress_percent, time_remaining = self.calc_progress( completed_count, total_count) self.logger.debug( "Updating progress: %s percent, %s remaining", progress_percent, time_remaining) if self.request.id: self._last_update_count = completed_count self.update_state(None, PROGRESS, { "progress_percent": progress_percent, "time_remaining": time_remaining, }) def run(self, *args, **kwargs): if get_task_logger: self.logger = get_task_logger(self.__class__.__name__) else: # Celery 2.X fallback self.logger = self.get_logger(**kwargs) self.logger.info("Starting %s", self.__class__.__name__) self.cache_key = self._get_cache_key(**kwargs) # Record start time to give estimated time remaining estimates self.start_time = time.time() # Keep track of progress updates for update_frequency tracking self._last_update_count = 0 # Report to the backend that work has been started. if self.request.id: self.update_state(None, PROGRESS, { "progress_percent": 0, "time_remaining": -1, }) memleak_threshold = int(getattr(self, 'memleak_threshold', -1)) if memleak_threshold >= 0: begining_memory_usage = self._get_memory_usage() self.logger.info("Calculating result") try: task_result = self.calculate_result(*args, **kwargs) except Exception: # Don't want other tasks waiting for this task to finish, since it # won't self._break_thundering_herd_cache() raise # We can use normal celery exception handling for this if hasattr(self, 'cache_duration'): cache_duration = self.cache_duration else: cache_duration = -1 # By default, don't cache if cache_duration >= 0: # If we're configured to cache this result, do so. cache.set(self.cache_key, self.request.id, cache_duration) # Now that the task is finished, we can stop all of the thundering herd # avoidance self._break_thundering_herd_cache() if memleak_threshold >= 0: self._warn_if_leaking_memory( begining_memory_usage, self._get_memory_usage(), memleak_threshold, task_kwargs=kwargs, ) return task_result def calculate_result(self, *args, **kwargs): raise NotImplementedError(( "Tasks using JobtasticTask must implement " "their own calculate_result" )) @classmethod def _validate_required_class_vars(self): """ Ensure that this subclass has defined all of the required class variables. """ required_members = ( 'significant_kwargs', 'herd_avoidance_timeout', ) for required_member in required_members: if not hasattr(self, required_member): raise Exception( "JobtasticTask's must define a %s" % required_member) def on_success(self, retval, task_id, args, kwargs): """ Store results in the backend even if we're always eager. This ensures the `delay_or_run` calls always at least have results. """ if self.request.is_eager: # Store the result because celery wouldn't otherwise self.update_state(task_id, SUCCESS, retval) def _break_thundering_herd_cache(self): cache.delete('herd:%s' % self.cache_key) @classmethod def _get_cache_key(self, **kwargs): """ Take this task's configured ``significant_kwargs`` and build a hash that all equivalent task calls will match. Takes in kwargs and returns a string. To change the way the cache key is generated or do more in-depth processing, override this method. """ m = md5() for significant_kwarg in self.significant_kwargs: key, to_str = significant_kwarg m.update(to_str(kwargs[key])) if hasattr(self, 'cache_prefix'): cache_prefix = self.cache_prefix else: cache_prefix = '%s.%s' % (self.__module__, self.__name__) return '%s:%s' % (cache_prefix, m.hexdigest()) def _get_memory_usage(self): current_process = psutil.Process(os.getpid()) usage = current_process.get_memory_info() return usage.rss def _warn_if_leaking_memory( self, begining_usage, ending_usage, threshold, task_kwargs, ): growth = ending_usage - begining_usage threshold_in_bytes = threshold * 1000000 if growth > threshold_in_bytes: self.warn_of_memory_leak( growth, begining_usage, ending_usage, task_kwargs, ) def warn_of_memory_leak( self, growth, begining_usage, ending_usage, task_kwargs, ): self.logger.warning( "Jobtastic:memleak memleak_detected. memory_increase=%05d unit=MB", growth / 1000000, ) self.logger.info( "Jobtastic:memleak memory_usage_start=%05d unit=MB", begining_usage / 1000000, ) self.logger.info( "Jobtastic:memleak memory_usage_end=%05d unit=MB", ending_usage / 1000000, ) self.logger.info( "Jobtastic:memleak task_kwargs=%s", repr(task_kwargs), ) ```
{ "source": "josephmisiti/merchant", "score": 3 }
#### File: merchant/billing/gateway.py ```python from django.utils.importlib import import_module from django.conf import settings gateway_cache = {} class GatewayModuleNotFound(Exception): pass class GatewayNotConfigured(Exception): pass class CardNotSupported(Exception): pass class InvalidData(Exception): pass class Gateway(object): """Sub-classes to inherit from this and implement the below methods""" # To indicate if the gateway is in test mode or not test_mode = getattr(settings, "MERCHANT_TEST_MODE", True) # The below are optional attributes to be implemented and used by subclases. # # Set to indicate the default currency for the gateway. default_currency = "" # Sequence of countries supported by the gateway in ISO 3166 alpha-2 format. # http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 supported_countries = [] # Sequence of supported card types by the gateway. Members should be valid # subclasses of the Credit Card object. supported_cardtypes = [] # Home page URL for the gateway. Used for information purposes only. homepage_url = "" # Name of the gateway. display_name = "" # Application name or some unique identifier for the gateway. application_id = "" def validate_card(self, credit_card): """Checks if the credit card is supported by the gateway and calls the `is_valid` method on it. Responsibility of the gateway author to use this method before every card transaction.""" card_supported = None for card in self.supported_cardtypes: card_supported = card.regexp.match(credit_card.number) if card_supported: credit_card.card_type = card break if not card_supported: raise CardNotSupported("This credit card is not " "supported by the gateway.") # Gateways might provide some random number which # might not pass Luhn's test. if self.test_mode: return True return credit_card.is_valid() def purchase(self, money, credit_card, options = None): """One go authorize and capture transaction""" raise NotImplementedError def authorize(self, money, credit_card, options = None): """Authorization for a future capture transaction""" raise NotImplementedError def capture(self, money, authorization, options = None): """Capture funds from a previously authorized transaction""" raise NotImplementedError def void(self, identification, options = None): """Null/Blank/Delete a previous transaction""" raise NotImplementedError def credit(self, money, identification, options = None): """Refund a previously 'settled' transaction""" raise NotImplementedError def recurring(self, money, creditcard, options = None): """Setup a recurring transaction""" raise NotImplementedError def store(self, creditcard, options = None): """Store the credit card and user profile information on the gateway for future use""" raise NotImplementedError def unstore(self, identification, options = None): """Delete the previously stored credit card and user profile information on the gateway""" raise NotImplementedError def get_gateway(gateway, *args, **kwargs): """ Return a gateway instance specified by `gateway` name. This caches gateway classes in a module-level dictionnary to avoid hitting the filesystem every time we require a gateway. Should the list of available gateways change at runtime, one should then invalidate the cache, the simplest of ways would be to: >>> gateway_cache = {} """ # Is the class in the cache? clazz = gateway_cache.get(gateway, None) if not clazz: # Let's actually load it (it's not in the cache) gateway_filename = "%s_gateway" %gateway gateway_module = None for app in settings.INSTALLED_APPS: try: gateway_module = import_module(".gateways.%s" %gateway_filename, package=app) except ImportError: pass if not gateway_module: raise GatewayModuleNotFound("Missing gateway") gateway_class_name = "".join(gateway_filename.title().split("_")) try: clazz = getattr(gateway_module, gateway_class_name) except AttributeError: raise GatewayNotConfigured("Missing %s class in the gateway module." %gateway_class_name) gateway_cache[gateway] = clazz # We either hit the cache or load our class object, let's return an instance # of it. return clazz(*args, **kwargs) ``` #### File: billing/integrations/google_checkout_integration.py ```python from billing import Integration from billing.models import GCNewOrderNotification from django.conf import settings from xml.dom.minidom import Document import hmac, hashlib, base64 from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import require_POST from django.http import HttpResponse from billing.signals import transaction_was_successful, transaction_was_unsuccessful from django.conf.urls.defaults import patterns from django.utils.decorators import method_decorator SANDBOX_URL = 'https://sandbox.google.com/checkout/api/checkout/v2/checkout/Merchant/%s' PROD_URL = 'https://checkout.google.com/api/checkout/v2/checkout/Merchant/%s' BUTTON_SANDBOX_URL = 'http://sandbox.google.com/checkout/buttons/checkout.gif?merchant_id=%(merchant_id)s&w=%(width)s&h=%(height)s&style=white&variant=text&loc=en_US' BUTTON_URL = 'http://checkout.google.com/checkout/buttons/checkout.gif?merchant_id=%(merchant_id)s&w=%(width)s&h=%(height)s&style=white&variant=text&loc=en_US' csrf_exempt_m = method_decorator(csrf_exempt) require_POST_m = method_decorator(require_POST) class NotConfiguredError(Exception): pass class GoogleCheckoutIntegration(Integration): def __init__(self, options=None): if not options: options = {} super(GoogleCheckoutIntegration, self).__init__(options=options) if not getattr(settings, "GOOGLE_CHECKOUT_MERCHANT_ID", None): raise NotConfiguredError("Could not locate the 'GOOGLE_CHECKOUT_MERCHANT_ID' setting") self.merchant_id = settings.GOOGLE_CHECKOUT_MERCHANT_ID self._signature = None @property def service_url(self): if self.test_mode: return SANDBOX_URL % self.merchant_id return PROD_URL % self.merchant_id def button_image_url(self): params = {"merchant_id": self.merchant_id, "width": self.button_width, "height": self.button_height} if self.test_mode: return BUTTON_SANDBOX_URL % params return BUTTON_URL % params @property def button_width(self): return self.fields.get("button_width", 180) @property def button_height(self): return self.fields.get("button_height", 46) def generate_cart_xml(self): doc = Document() root = doc.createElement('checkout-shopping-cart') root.setAttribute('xmlns', 'http://checkout.google.com/schema/2') doc.appendChild(root) cart = doc.createElement('shopping-cart') root.appendChild(cart) items = doc.createElement('items') cart.appendChild(items) ip_items = self.fields.get("items", []) for item in ip_items: it = doc.createElement("item") items.appendChild(it) it_name = doc.createElement("item-name") it_name.appendChild(doc.createTextNode(unicode(item["name"]))) it.appendChild(it_name) it_descr = doc.createElement('item-description') it_descr.appendChild(doc.createTextNode(unicode(item["description"]))) it.appendChild(it_descr) it_price = doc.createElement("unit-price") it_price.setAttribute("currency", unicode(item["currency"])) it_price.appendChild(doc.createTextNode(unicode(item["amount"]))) it.appendChild(it_price) it_qty = doc.createElement("quantity") it_qty.appendChild(doc.createTextNode(unicode(item["quantity"]))) it.appendChild(it_qty) it_unique_id = doc.createElement("merchant-item-id") it_unique_id.appendChild(doc.createTextNode(unicode(item["id"]))) it.appendChild(it_unique_id) checkout_flow = doc.createElement('checkout-flow-support') root.appendChild(checkout_flow) merchant_checkout_flow = doc.createElement('merchant-checkout-flow-support') checkout_flow.appendChild(checkout_flow) return_url = doc.createElement('continue-shopping-url') return_url.appendChild(doc.createTextNode(self.fields["return_url"])) merchant_checkout_flow.appendChild(return_url) cart_xml = doc.toxml(encoding="utf-8") hmac_signature = hmac.new(settings.GOOGLE_CHECKOUT_MERCHANT_KEY, cart_xml, hashlib.sha1).digest() self._signature = base64.b64encode(hmac_signature) return base64.b64encode(cart_xml) def signature(self): if not self._signature: self.generate_cart_xml() return self._signature @csrf_exempt_m @require_POST_m def gc_notify_handler(self, request): if request.POST['_type'] == 'new-order-notification': self.gc_new_order_notification(request) elif request.POST['_type'] == 'order-state-change-notification': self.gc_order_state_change_notification(request) return HttpResponse(request.POST['serial-number']) def gc_cart_items_blob(self, post_data): items = post_data.getlist('shopping-cart.items') cart_blob = '' for item in items: item_id = post_data.get('%s.merchant-item-id' % (item), '') item_name = post_data.get('%s.item-name' % (item), '') item_desc = post_data.get('%s.item-description' % (item), '') item_price = post_data.get('%s.unit-price' % (item), '') item_price_currency = post_data.get('%s.unit-price.currency' % (item), '') item_quantity = post_data.get('%s.quantity' % (item), '') cart_blob += '%(item_id)s\t%(item_name)s\t%(item_desc)s\t%(item_price)s\t%(item_price_currency)s\t%(item_quantity)s\n\n' % ({"item_id": item_id, "item_name": item_name, "item_desc": item_desc, "item_price": item_price, "item_price_currency": item_price_currency, "item_quantity": item_quantity,}) return cart_blob def gc_new_order_notification(self, request): post_data = request.POST.copy() data = {} resp_fields = { "_type": "notify_type", "serial-number" : "serial_number", "google-order-number" : "google_order_number", "buyer-id" : "buyer_id", "buyer-shipping-address.contact-name" : "shipping_contact_name", "buyer-shipping-address.address1" : "shipping_address1", "buyer-shipping-address.address2" : "shipping_address2", "buyer-shipping-address.city" : "shipping_city", "buyer-shipping-address.postal-code" : "shipping_postal_code", "buyer-shipping-address.region" : "shipping_region", "buyer-shipping-address.country-code" : "shipping_country_code", "buyer-shipping-address.email" : "shipping_email", "buyer-shipping-address.company-name" : "shipping_company_name", "buyer-shipping-address.fax" : "shipping_fax", "buyer-shipping-address.phone" : "shipping_phone", "buyer-billing-address.contact-name" : "billing_contact_name", "buyer-billing-address.address1" : "billing_address1", "buyer-billing-address.address2" : "billing_address2", "buyer-billing-address.city" : "billing_city", "buyer-billing-address.postal-code" : "billing_postal_code", "buyer-billing-address.region" : "billing_region", "buyer-billing-address.country-code" : "billing_country_code", "buyer-billing-address.email" : "billing_email", "buyer-billing-address.company-name" : "billing_company_name", "buyer-billing-address.fax" : "billing_fax", "buyer-billing-address.phone" : "billing_phone", "buyer-marketing-preferences.email-allowed" : "marketing_email_allowed", "order-adjustment.total-tax" : "total_tax", "order-adjustment.total-tax.currency" : "total_tax_currency", "order-adjustment.adjustment-total" : "adjustment_total", "order-adjustment.adjustment-total.currency" : "adjustment_total_currency", "order-total" : "order_total", "order-total.currency" : "order_total_currency", "financial-order-state" : "financial_order_state", "fulfillment-order-state" : "fulfillment_order_state", "timestamp" : "timestamp", } for (key, val) in resp_fields.iteritems(): data[val] = post_data.get(key, '') data['num_cart_items'] = len(post_data.getlist('shopping-cart.items')) data['cart_items'] = self.gc_cart_items_blob(post_data) try: resp = GCNewOrderNotification.objects.create(**data) # TODO: Make the type more generic # TODO: The person might have got charged and yet transaction # might have failed here. Need a better way to communicate it transaction_was_successful.send(sender=self.__class__, type="purchase", response=resp) status = "SUCCESS" except: transaction_was_unsuccessful.send(sender=self.__class__, type="purchase", response=post_data) status = "FAILURE" return HttpResponse(status) def gc_order_state_change_notification(self, request): post_data = request.POST.copy() order = GCNewOrderNotification.objects.get(google_order_number=post_data['google-order-number']) order.financial_order_state = post_data['new-financial-order-state'] order.fulfillment_order_state = post_data['new-fulfillment-order-state'] order.save() def get_urls(self): urlpatterns = patterns('', (r'^gc-notify-handler/$', self.gc_notify_handler), ) return urlpatterns ``` #### File: example/app/views.py ```python import datetime from django.core.urlresolvers import reverse from django.shortcuts import render_to_response from django.template import RequestContext from django.http import HttpResponse from billing import CreditCard, get_gateway from billing.gateway import CardNotSupported from app.forms import CreditCardForm from app.urls import (google_checkout_obj, world_pay_obj, pay_pal_obj, amazon_fps_obj, fps_recur_obj, braintree_obj) from django.conf import settings from django.contrib.sites.models import RequestSite def render(request, template, template_vars={}): return render_to_response(template, template_vars, RequestContext(request)) def index(request, gateway=None): return authorize(request) def authorize(request): amount = 1 response = None if request.method == 'POST': form = CreditCardForm(request.POST) if form.is_valid(): data = form.cleaned_data credit_card = CreditCard(**data) merchant = get_gateway("authorize_net") try: merchant.validate_card(credit_card) except CardNotSupported: response = "Credit Card Not Supported" response = merchant.purchase(amount, credit_card) #response = merchant.recurring(amount, credit_card) else: form = CreditCardForm(initial={'number':'4222222222222'}) return render(request, 'app/index.html', {'form': form, 'amount': amount, 'response': response, 'title': 'Authorize'}) def paypal(request): amount = 1 response = None if request.method == 'POST': form = CreditCardForm(request.POST) if form.is_valid(): data = form.cleaned_data credit_card = CreditCard(**data) merchant = get_gateway("pay_pal") try: merchant.validate_card(credit_card) except CardNotSupported: response = "Credit Card Not Supported" # response = merchant.purchase(amount, credit_card, options={'request': request}) response = merchant.recurring(amount, credit_card, options={'request': request}) else: form = CreditCardForm(initial={'number':'4797503429879309', 'verification_value': '037', 'month': 1, 'year': 2019, 'card_type': 'visa'}) return render(request, 'app/index.html', {'form': form, 'amount': amount, 'response': response, 'title': 'Paypal'}) def eway(request): amount = 1 response = None if request.method == 'POST': form = CreditCardForm(request.POST) if form.is_valid(): data = form.cleaned_data credit_card = CreditCard(**data) merchant = get_gateway("eway") try: merchant.validate_card(credit_card) except CardNotSupported: response = "Credit Card Not Supported" billing_address = {'salutation': 'Mr.', 'address1': 'test', 'address2': ' street', 'city': 'Sydney', 'state': 'NSW', 'company': 'Test Company', 'zip': '2000', 'country': 'au', 'email': '<EMAIL>', 'fax': '0267720000', 'phone': '0267720000', 'mobile': '0404085992', 'customer_ref': 'REF100', 'job_desc': 'test', 'comments': 'any', 'url': 'http://www.google.com.au', } response = merchant.purchase(amount, credit_card, options={'request': request, 'billing_address': billing_address}) else: form = CreditCardForm(initial={'number':'4444333322221111', 'verification_value': '000', 'month': 7, 'year': 2012}) return render(request, 'app/index.html', {'form': form, 'amount': amount, 'response': response, 'title': 'Eway'}) def braintree(request): amount = 1 response = None if request.method == 'POST': form = CreditCardForm(request.POST) if form.is_valid(): data = form.cleaned_data credit_card = CreditCard(**data) merchant = get_gateway("braintree_payments") try: merchant.validate_card(credit_card) except CardNotSupported: response = "Credit Card Not Supported" response = merchant.purchase(amount, credit_card) else: form = CreditCardForm(initial={'number':'4111111111111111'}) return render(request, 'app/index.html', {'form': form, 'amount': amount, 'response': response, 'title': 'Braintree Payments (S2S)'}) def offsite_paypal(request): invoice_id = datetime.datetime.now().strftime('%Y%m%d%H%M%S') return_url = request.build_absolute_uri(reverse('app_offsite_paypal_done')) cancel_return = request.build_absolute_uri(request.META['PATH_INFO']) notify_url = request.build_absolute_uri(reverse('paypal-ipn')) paypal_params = {'amount': 1, 'item_name': "name of the item", 'invoice': invoice_id, 'notify_url': notify_url, 'return_url': return_url, 'cancel_return': cancel_return, } pay_pal_obj.add_fields(paypal_params) template_vars = {"obj": pay_pal_obj, 'title': 'PayPal Offsite'} return render(request, 'app/offsite_paypal.html', template_vars) def offsite_google_checkout(request): return_url = request.build_absolute_uri(reverse('app_offsite_google_checkout_done')) fields = {'items': [{'amount': 1, 'name': 'name of the item', 'description': 'Item description', 'id': '999AXZ', 'currency': 'USD', 'quantity': 1, }], 'return_url': return_url,} google_checkout_obj.add_fields(fields) template_vars = {'title': 'Google Checkout', "gc_obj": google_checkout_obj} return render(request, 'app/google_checkout.html', template_vars) def offsite_world_pay(request): fields = {"instId": settings.WORLDPAY_INSTALLATION_ID_TEST, "cartId": "TEST123", "currency": "USD", "amount": 1, "desc": "Test Item",} world_pay_obj.add_fields(fields) template_vars = {'title': 'WorldPay', "wp_obj": world_pay_obj} return render(request, 'app/world_pay.html', template_vars) def offsite_amazon_fps(request): fields = {"transactionAmount": "100", "pipelineName": "SingleUse", "paymentReason": "Merchant Test", "paymentPage": request.build_absolute_uri(), "returnURLPrefix": RequestSite(request), } # Save the fps.fields["callerReference"] in the db along with # the amount to be charged or use the user's unique id as # the callerReference so that the amount to be charged is known # Or save the callerReference in the session and send the user # to FPS and then use the session value when the user is back. amazon_fps_obj.add_fields(fields) fields.update({"transactionAmount": "100", "pipelineName": "Recurring", "recurringPeriod": "1 Hour", }) fps_recur_obj.add_fields(fields) template_vars = {'title': 'Amazon Flexible Payment Service', "fps_recur_obj": fps_recur_obj, "fps_obj": amazon_fps_obj} return render(request, 'app/amazon_fps.html', template_vars) def offsite_braintree(request): fields = {"transaction": { "order_id": datetime.datetime.now().strftime("%Y%m%d%H%M%S"), "type": "sale", "options": { "submit_for_settlement": True }, }, "site": "%s://%s" %("https" if request.is_secure() else "http", RequestSite(request).domain) } braintree_obj.add_fields(fields) template_vars = {'title': 'Braintree Payments Transparent Redirect', "bp_obj": braintree_obj} return render(request, "app/braintree_tr.html", template_vars) ```
{ "source": "josephmisiti/NewsBlur", "score": 2 }
#### File: apps/rss_feeds/models.py ```python import difflib import datetime import time import random import re import math import mongoengine as mongo import zlib import hashlib import redis import pymongo from collections import defaultdict from operator import itemgetter from bson.objectid import ObjectId # from nltk.collocations import TrigramCollocationFinder, BigramCollocationFinder, TrigramAssocMeasures, BigramAssocMeasures from django.db import models from django.db import IntegrityError from django.conf import settings from django.db.models.query import QuerySet from django.core.urlresolvers import reverse from django.contrib.sites.models import Site from mongoengine.queryset import OperationError, Q from mongoengine.base import ValidationError from vendor.timezones.utilities import localtime_for_timezone from apps.rss_feeds.tasks import UpdateFeeds, PushFeeds from apps.rss_feeds.text_importer import TextImporter from apps.search.models import SearchStarredStory, SearchFeed from apps.statistics.rstats import RStats from utils import json_functions as json from utils import feedfinder, feedparser from utils import urlnorm from utils import log as logging from utils.fields import AutoOneToOneField from utils.feed_functions import levenshtein_distance from utils.feed_functions import timelimit, TimeoutError from utils.feed_functions import relative_timesince from utils.feed_functions import seconds_timesince from utils.story_functions import strip_tags, htmldiff, strip_comments, strip_comments__lxml from vendor.haystack.query import SearchQuerySet ENTRY_NEW, ENTRY_UPDATED, ENTRY_SAME, ENTRY_ERR = range(4) class Feed(models.Model): feed_address = models.URLField(max_length=764, db_index=True) feed_address_locked = models.NullBooleanField(default=False, blank=True, null=True) feed_link = models.URLField(max_length=1000, default="", blank=True, null=True) feed_link_locked = models.BooleanField(default=False) hash_address_and_link = models.CharField(max_length=64, unique=True) feed_title = models.CharField(max_length=255, default="[Untitled]", blank=True, null=True) is_push = models.NullBooleanField(default=False, blank=True, null=True) active = models.BooleanField(default=True, db_index=True) num_subscribers = models.IntegerField(default=-1) active_subscribers = models.IntegerField(default=-1, db_index=True) premium_subscribers = models.IntegerField(default=-1) active_premium_subscribers = models.IntegerField(default=-1) branch_from_feed = models.ForeignKey('Feed', blank=True, null=True, db_index=True) last_update = models.DateTimeField(db_index=True) next_scheduled_update = models.DateTimeField() last_story_date = models.DateTimeField(null=True, blank=True) fetched_once = models.BooleanField(default=False) known_good = models.BooleanField(default=False) has_feed_exception = models.BooleanField(default=False, db_index=True) has_page_exception = models.BooleanField(default=False, db_index=True) has_page = models.BooleanField(default=True) exception_code = models.IntegerField(default=0) errors_since_good = models.IntegerField(default=0) min_to_decay = models.IntegerField(default=0) days_to_trim = models.IntegerField(default=90) creation = models.DateField(auto_now_add=True) etag = models.CharField(max_length=255, blank=True, null=True) last_modified = models.DateTimeField(null=True, blank=True) stories_last_month = models.IntegerField(default=0) average_stories_per_month = models.IntegerField(default=0) last_load_time = models.IntegerField(default=0) favicon_color = models.CharField(max_length=6, null=True, blank=True) favicon_not_found = models.BooleanField(default=False) s3_page = models.NullBooleanField(default=False, blank=True, null=True) s3_icon = models.NullBooleanField(default=False, blank=True, null=True) class Meta: db_table="feeds" ordering=["feed_title"] # unique_together=[('feed_address', 'feed_link')] def __unicode__(self): if not self.feed_title: self.feed_title = "[Untitled]" self.save() return "%s (%s - %s/%s/%s)%s" % ( self.feed_title, self.pk, self.num_subscribers, self.active_subscribers, self.active_premium_subscribers, (" [B: %s]" % self.branch_from_feed.pk if self.branch_from_feed else "")) @property def title(self): return self.feed_title or "[Untitled]" @property def favicon_url(self): if settings.BACKED_BY_AWS['icons_on_s3'] and self.s3_icon: return "http://%s/%s.png" % (settings.S3_ICONS_BUCKET_NAME, self.pk) return reverse('feed-favicon', kwargs={'feed_id': self.pk}) @property def favicon_url_fqdn(self): if settings.BACKED_BY_AWS['icons_on_s3'] and self.s3_icon: return self.favicon_url return "http://%s%s" % ( Site.objects.get_current().domain, self.favicon_url ) @property def s3_pages_key(self): return "%s.gz.html" % self.pk @property def s3_icons_key(self): return "%s.png" % self.pk def canonical(self, full=False, include_favicon=True): feed = { 'id': self.pk, 'feed_title': self.feed_title, 'feed_address': self.feed_address, 'feed_link': self.feed_link, 'num_subscribers': self.num_subscribers, 'updated': relative_timesince(self.last_update), 'updated_seconds_ago': seconds_timesince(self.last_update), 'subs': self.num_subscribers, 'is_push': self.is_push, 'fetched_once': self.fetched_once, 'not_yet_fetched': not self.fetched_once, # Legacy. Doh. 'favicon_color': self.favicon_color, 'favicon_fade': self.favicon_fade(), 'favicon_border': self.favicon_border(), 'favicon_text_color': self.favicon_text_color(), 'favicon_fetching': self.favicon_fetching, 'favicon_url': self.favicon_url, 's3_page': self.s3_page, 's3_icon': self.s3_icon, } if include_favicon: try: feed_icon = MFeedIcon.objects.get(feed_id=self.pk) feed['favicon'] = feed_icon.data except MFeedIcon.DoesNotExist: pass if self.has_page_exception or self.has_feed_exception: feed['has_exception'] = True feed['exception_type'] = 'feed' if self.has_feed_exception else 'page' feed['exception_code'] = self.exception_code elif full: feed['has_exception'] = False feed['exception_type'] = None feed['exception_code'] = self.exception_code if not self.has_page: feed['disabled_page'] = True if full: feed['feed_tags'] = json.decode(self.data.popular_tags) if self.data.popular_tags else [] feed['feed_authors'] = json.decode(self.data.popular_authors) if self.data.popular_authors else [] return feed def save(self, *args, **kwargs): if not self.last_update: self.last_update = datetime.datetime.utcnow() if not self.next_scheduled_update: self.next_scheduled_update = datetime.datetime.utcnow() self.fix_google_alerts_urls() feed_address = self.feed_address or "" feed_link = self.feed_link or "" self.hash_address_and_link = hashlib.sha1(feed_address+feed_link).hexdigest() max_feed_title = Feed._meta.get_field('feed_title').max_length if len(self.feed_title) > max_feed_title: self.feed_title = self.feed_title[:max_feed_title] max_feed_address = Feed._meta.get_field('feed_address').max_length if len(feed_address) > max_feed_address: self.feed_address = feed_address[:max_feed_address] max_feed_link = Feed._meta.get_field('feed_link').max_length if len(feed_link) > max_feed_link: self.feed_link = feed_link[:max_feed_link] try: super(Feed, self).save(*args, **kwargs) except IntegrityError, e: logging.debug(" ---> ~FRFeed save collision (%s), checking dupe..." % e) duplicate_feeds = Feed.objects.filter(feed_address=self.feed_address, feed_link=self.feed_link) if not duplicate_feeds: feed_address = self.feed_address or "" feed_link = self.feed_link or "" hash_address_and_link = hashlib.sha1(feed_address+feed_link).hexdigest() duplicate_feeds = Feed.objects.filter(hash_address_and_link=hash_address_and_link) if not duplicate_feeds: # Feed has been deleted. Just ignore it. logging.debug(" ***> Changed to: %s - %s: %s" % (self.feed_address, self.feed_link, duplicate_feeds)) logging.debug(' ***> [%-30s] Feed deleted (%s).' % (unicode(self)[:30], self.pk)) return if self.pk != duplicate_feeds[0].pk: logging.debug(" ---> ~FRFound different feed (%s), merging..." % duplicate_feeds[0]) feed = Feed.get_by_id(merge_feeds(duplicate_feeds[0].pk, self.pk)) return feed return self def index_for_search(self): if self.num_subscribers > 1 and not self.branch_from_feed: SearchFeed.index(feed_id=self.pk, title=self.feed_title, address=self.feed_address, link=self.feed_link, num_subscribers=self.num_subscribers) def sync_redis(self): return MStory.sync_feed_redis(self.pk) @classmethod def autocomplete(self, prefix, limit=5): results = SearchQuerySet().autocomplete(address=prefix).order_by('-num_subscribers')[:limit] if len(results) < limit: results += SearchQuerySet().autocomplete(title=prefix).order_by('-num_subscribers')[:limit-len(results)] return list(set([int(f.pk) for f in results])) @classmethod def find_or_create(cls, feed_address, feed_link, *args, **kwargs): feeds = cls.objects.filter(feed_address=feed_address, feed_link=feed_link) if feeds: return feeds[0], False if feed_link and feed_link.endswith('/'): feeds = cls.objects.filter(feed_address=feed_address, feed_link=feed_link[:-1]) if feeds: return feeds[0], False return cls.objects.get_or_create(feed_address=feed_address, feed_link=feed_link, *args, **kwargs) @classmethod def merge_feeds(cls, *args, **kwargs): return merge_feeds(*args, **kwargs) def fix_google_alerts_urls(self): if (self.feed_address.startswith('http://user/') and '/state/com.google/alerts/' in self.feed_address): match = re.match(r"http://user/(\d+)/state/com.google/alerts/(\d+)", self.feed_address) if match: user_id, alert_id = match.groups() self.feed_address = "http://www.google.com/alerts/feeds/%s/%s" % (user_id, alert_id) @classmethod def schedule_feed_fetches_immediately(cls, feed_ids): logging.info(" ---> ~SN~FMScheduling immediate fetch of ~SB%s~SN feeds..." % len(feed_ids)) feeds = Feed.objects.filter(pk__in=feed_ids) for feed in feeds: feed.count_subscribers() feed.schedule_feed_fetch_immediately(verbose=False) @property def favicon_fetching(self): return bool(not (self.favicon_not_found or self.favicon_color)) @classmethod def get_feed_from_url(cls, url, create=True, aggressive=False, fetch=True, offset=0): feed = None def criteria(key, value): if aggressive: return {'%s__icontains' % key: value} else: return {'%s' % key: value} def by_url(address): feed = cls.objects.filter( branch_from_feed=None ).filter(**criteria('feed_address', address)).order_by('-num_subscribers') if not feed: duplicate_feed = DuplicateFeed.objects.filter(**criteria('duplicate_address', address)) if duplicate_feed and len(duplicate_feed) > offset: feed = [duplicate_feed[offset].feed] if not feed and aggressive: feed = cls.objects.filter( branch_from_feed=None ).filter(**criteria('feed_link', address)).order_by('-num_subscribers') return feed # Normalize and check for feed_address, dupes, and feed_link url = urlnorm.normalize(url) feed = by_url(url) # Create if it looks good if feed and len(feed) > offset: feed = feed[offset] elif create: create_okay = False if feedfinder.isFeed(url): create_okay = True elif aggressive: # Could still be a feed. Just check if there are entries fp = feedparser.parse(url) if len(fp.entries): create_okay = True if create_okay: feed = cls.objects.create(feed_address=url) feed = feed.update() # Still nothing? Maybe the URL has some clues. if not feed and fetch: feed_finder_url = feedfinder.feed(url) if feed_finder_url and 'comments' not in feed_finder_url: feed = by_url(feed_finder_url) if not feed and create: feed = cls.objects.create(feed_address=feed_finder_url) feed = feed.update() elif feed and len(feed) > offset: feed = feed[offset] # Not created and not within bounds, so toss results. if isinstance(feed, QuerySet): return return feed @classmethod def task_feeds(cls, feeds, queue_size=12, verbose=True): if not feeds: return r = redis.Redis(connection_pool=settings.REDIS_FEED_POOL) if isinstance(feeds, Feed): if verbose: logging.debug(" ---> ~SN~FBTasking feed: ~SB%s" % feeds) feeds = [feeds.pk] elif verbose: logging.debug(" ---> ~SN~FBTasking ~SB%s~SN feeds..." % len(feeds)) if isinstance(feeds, QuerySet): feeds = [f.pk for f in feeds] r.srem('queued_feeds', *feeds) now = datetime.datetime.now().strftime("%s") p = r.pipeline() for feed_id in feeds: p.zadd('tasked_feeds', feed_id, now) p.execute() # for feed_ids in (feeds[pos:pos + queue_size] for pos in xrange(0, len(feeds), queue_size)): for feed_id in feeds: UpdateFeeds.apply_async(args=(feed_id,), queue='update_feeds') @classmethod def drain_task_feeds(cls, empty=False): r = redis.Redis(connection_pool=settings.REDIS_FEED_POOL) if not empty: tasked_feeds = r.zrange('tasked_feeds', 0, -1) r.sadd('queued_feeds', *tasked_feeds) r.zremrangebyrank('tasked_feeds', 0, -1) def update_all_statistics(self, full=True, force=False): self.count_subscribers() if not self.last_story_date: self.calculate_last_story_date() count_extra = False if random.random() > .99 or not self.data.popular_tags or not self.data.popular_authors: count_extra = True if force or full: self.save_feed_stories_last_month() if force or (full and count_extra): self.save_popular_authors() self.save_popular_tags() self.save_feed_story_history_statistics() def calculate_last_story_date(self): last_story_date = None try: latest_story = MStory.objects( story_feed_id=self.pk ).limit(1).order_by('-story_date').only('story_date').first() if latest_story: last_story_date = latest_story.story_date except MStory.DoesNotExist: pass if not last_story_date or seconds_timesince(last_story_date) < 0: last_story_date = datetime.datetime.now() self.last_story_date = last_story_date self.save() @classmethod def setup_feeds_for_premium_subscribers(cls, feed_ids): logging.info(" ---> ~SN~FMScheduling immediate premium setup of ~SB%s~SN feeds..." % len(feed_ids)) feeds = Feed.objects.filter(pk__in=feed_ids) for feed in feeds: feed.setup_feed_for_premium_subscribers() def setup_feed_for_premium_subscribers(self): self.count_subscribers() self.set_next_scheduled_update() def check_feed_link_for_feed_address(self): @timelimit(10) def _1(): feed_address = None feed = self try: is_feed = feedfinder.isFeed(self.feed_address) except KeyError: is_feed = False if not is_feed: feed_address = feedfinder.feed(self.feed_address) if not feed_address and self.feed_link: feed_address = feedfinder.feed(self.feed_link) else: feed_address_from_link = feedfinder.feed(self.feed_link) if feed_address_from_link != self.feed_address: feed_address = feed_address_from_link if feed_address: if (feed_address.endswith('feedburner.com/atom.xml') or feed_address.endswith('feedburner.com/feed/')): logging.debug(" ---> Feed points to 'Wierdo', ignoring.") return False, self try: self.feed_address = feed_address feed = self.save() feed.schedule_feed_fetch_immediately() feed.has_feed_exception = False feed.active = True feed = feed.save() except IntegrityError: original_feed = Feed.objects.get(feed_address=feed_address, feed_link=self.feed_link) original_feed.has_feed_exception = False original_feed.active = True original_feed.save() merge_feeds(original_feed.pk, self.pk) return feed_address, feed if self.feed_address_locked: return False, self try: feed_address, feed = _1() except TimeoutError, e: logging.debug(' ---> [%-30s] Feed address check timed out...' % (unicode(self)[:30])) self.save_feed_history(505, 'Timeout', e) feed = self feed_address = None return bool(feed_address), feed def save_feed_history(self, status_code, message, exception=None): MFetchHistory.add(feed_id=self.pk, fetch_type='feed', code=int(status_code), message=message, exception=exception) if status_code not in (200, 304): self.errors_since_good += 1 self.count_errors_in_history('feed', status_code) self.set_next_scheduled_update() elif self.has_feed_exception or self.errors_since_good: self.errors_since_good = 0 self.has_feed_exception = False self.active = True self.save() def save_page_history(self, status_code, message, exception=None): MFetchHistory.add(feed_id=self.pk, fetch_type='page', code=int(status_code), message=message, exception=exception) if status_code not in (200, 304): self.count_errors_in_history('page', status_code) elif self.has_page_exception: self.has_page_exception = False self.has_page = True self.active = True self.save() def count_errors_in_history(self, exception_type='feed', status_code=None): logging.debug(' ---> [%-30s] Counting errors in history...' % (unicode(self)[:30])) fetch_history = MFetchHistory.feed(self.pk) fh = fetch_history[exception_type + '_fetch_history'] non_errors = [h for h in fh if h['status_code'] and int(h['status_code']) in (200, 304)] errors = [h for h in fh if h['status_code'] and int(h['status_code']) not in (200, 304)] if len(non_errors) == 0 and len(errors) > 1: self.active = True if exception_type == 'feed': self.has_feed_exception = True # self.active = False # No longer, just geometrically fetch elif exception_type == 'page': self.has_page_exception = True self.exception_code = status_code or int(errors[0]) self.save() elif self.exception_code > 0: self.active = True self.exception_code = 0 if exception_type == 'feed': self.has_feed_exception = False elif exception_type == 'page': self.has_page_exception = False self.save() return errors, non_errors def count_subscribers(self, verbose=False): SUBSCRIBER_EXPIRE = datetime.datetime.now() - datetime.timedelta(days=settings.SUBSCRIBER_EXPIRE) from apps.reader.models import UserSubscription if self.branch_from_feed: original_feed_id = self.branch_from_feed.pk else: original_feed_id = self.pk feed_ids = [f['id'] for f in Feed.objects.filter(branch_from_feed=original_feed_id).values('id')] feed_ids.append(original_feed_id) feed_ids = list(set(feed_ids)) subs = UserSubscription.objects.filter(feed__in=feed_ids) self.num_subscribers = subs.count() active_subs = UserSubscription.objects.filter( feed__in=feed_ids, active=True, user__profile__last_seen_on__gte=SUBSCRIBER_EXPIRE ) self.active_subscribers = active_subs.count() premium_subs = UserSubscription.objects.filter( feed__in=feed_ids, active=True, user__profile__is_premium=True ) self.premium_subscribers = premium_subs.count() active_premium_subscribers = UserSubscription.objects.filter( feed__in=feed_ids, active=True, user__profile__is_premium=True, user__profile__last_seen_on__gte=SUBSCRIBER_EXPIRE ) self.active_premium_subscribers = active_premium_subscribers.count() self.save() if verbose: if self.num_subscribers <= 1: print '.', else: print "\n %s> %s subscriber%s: %s" % ( '-' * min(self.num_subscribers, 20), self.num_subscribers, '' if self.num_subscribers == 1 else 's', self.feed_title, ), def _split_favicon_color(self): color = self.favicon_color if color: splitter = lambda s, p: [s[i:i+p] for i in range(0, len(s), p)] red, green, blue = splitter(color[:6], 2) return red, green, blue return None, None, None def favicon_fade(self): red, green, blue = self._split_favicon_color() if red and green and blue: fade_red = hex(min(int(red, 16) + 35, 255))[2:].zfill(2) fade_green = hex(min(int(green, 16) + 35, 255))[2:].zfill(2) fade_blue = hex(min(int(blue, 16) + 35, 255))[2:].zfill(2) return "%s%s%s" % (fade_red, fade_green, fade_blue) def favicon_border(self): red, green, blue = self._split_favicon_color() if red and green and blue: fade_red = hex(min(int(int(red, 16) * .75), 255))[2:].zfill(2) fade_green = hex(min(int(int(green, 16) * .75), 255))[2:].zfill(2) fade_blue = hex(min(int(int(blue, 16) * .75), 255))[2:].zfill(2) return "%s%s%s" % (fade_red, fade_green, fade_blue) def favicon_text_color(self): # Color format: {r: 1, g: .5, b: 0} def contrast(color1, color2): lum1 = luminosity(color1) lum2 = luminosity(color2) if lum1 > lum2: return (lum1 + 0.05) / (lum2 + 0.05) else: return (lum2 + 0.05) / (lum1 + 0.05) def luminosity(color): r = color['red'] g = color['green'] b = color['blue'] val = lambda c: c/12.92 if c <= 0.02928 else math.pow(((c + 0.055)/1.055), 2.4) red = val(r) green = val(g) blue = val(b) return 0.2126 * red + 0.7152 * green + 0.0722 * blue red, green, blue = self._split_favicon_color() if red and green and blue: color = { 'red': int(red, 16) / 256.0, 'green': int(green, 16) / 256.0, 'blue': int(blue, 16) / 256.0, } white = { 'red': 1, 'green': 1, 'blue': 1, } grey = { 'red': 0.5, 'green': 0.5, 'blue': 0.5, } if contrast(color, white) > contrast(color, grey): return 'white' else: return 'black' def save_feed_stories_last_month(self, verbose=False): month_ago = datetime.datetime.utcnow() - datetime.timedelta(days=30) stories_last_month = MStory.objects(story_feed_id=self.pk, story_date__gte=month_ago).count() self.stories_last_month = stories_last_month self.save() if verbose: print " ---> %s [%s]: %s stories last month" % (self.feed_title, self.pk, self.stories_last_month) def save_feed_story_history_statistics(self, current_counts=None): """ Fills in missing months between earlier occurances and now. Save format: [('YYYY-MM, #), ...] Example output: [(2010-12, 123), (2011-01, 146)] """ now = datetime.datetime.utcnow() min_year = now.year total = 0 month_count = 0 if not current_counts: current_counts = self.data.story_count_history and json.decode(self.data.story_count_history) if not current_counts: current_counts = [] # Count stories, aggregate by year and month. Map Reduce! map_f = """ function() { var date = (this.story_date.getFullYear()) + "-" + (this.story_date.getMonth()+1); emit(date, 1); } """ reduce_f = """ function(key, values) { var total = 0; for (var i=0; i < values.length; i++) { total += values[i]; } return total; } """ dates = {} res = MStory.objects(story_feed_id=self.pk).map_reduce(map_f, reduce_f, output='inline') for r in res: dates[r.key] = r.value year = int(re.findall(r"(\d{4})-\d{1,2}", r.key)[0]) if year < min_year and year > 2000: min_year = year # Add on to existing months, always amending up, never down. (Current month # is guaranteed to be accurate, since trim_feeds won't delete it until after # a month. Hacker News can have 1,000+ and still be counted.) for current_month, current_count in current_counts: year = int(re.findall(r"(\d{4})-\d{1,2}", current_month)[0]) if current_month not in dates or dates[current_month] < current_count: dates[current_month] = current_count if year < min_year and year > 2000: min_year = year # Assemble a list with 0's filled in for missing months, # trimming left and right 0's. months = [] start = False for year in range(min_year, now.year+1): for month in range(1, 12+1): if datetime.datetime(year, month, 1) < now: key = u'%s-%s' % (year, month) if dates.get(key) or start: start = True months.append((key, dates.get(key, 0))) total += dates.get(key, 0) month_count += 1 self.data.story_count_history = json.encode(months) self.data.save() if not total or not month_count: self.average_stories_per_month = 0 else: self.average_stories_per_month = int(round(total / float(month_count))) self.save() def save_classifier_counts(self): from apps.analyzer.models import MClassifierTitle, MClassifierAuthor, MClassifierFeed, MClassifierTag def calculate_scores(cls, facet): map_f = """ function() { emit(this["%s"], { pos: this.score>0 ? this.score : 0, neg: this.score<0 ? Math.abs(this.score) : 0 }); } """ % (facet) reduce_f = """ function(key, values) { var result = {pos: 0, neg: 0}; values.forEach(function(value) { result.pos += value.pos; result.neg += value.neg; }); return result; } """ scores = [] res = cls.objects(feed_id=self.pk).map_reduce(map_f, reduce_f, output='inline') for r in res: facet_values = dict([(k, int(v)) for k,v in r.value.iteritems()]) facet_values[facet] = r.key if facet_values['pos'] + facet_values['neg'] > 1: scores.append(facet_values) scores = sorted(scores, key=lambda v: v['neg'] - v['pos']) return scores scores = {} for cls, facet in [(MClassifierTitle, 'title'), (MClassifierAuthor, 'author'), (MClassifierTag, 'tag'), (MClassifierFeed, 'feed_id')]: scores[facet] = calculate_scores(cls, facet) if facet == 'feed_id' and scores[facet]: scores['feed'] = scores[facet] del scores['feed_id'] elif not scores[facet]: del scores[facet] if scores: self.data.feed_classifier_counts = json.encode(scores) self.data.save() def update(self, **kwargs): from utils import feed_fetcher r = redis.Redis(connection_pool=settings.REDIS_FEED_POOL) original_feed_id = int(self.pk) if getattr(settings, 'TEST_DEBUG', False): self.feed_address = self.feed_address % {'NEWSBLUR_DIR': settings.NEWSBLUR_DIR} self.feed_link = self.feed_link % {'NEWSBLUR_DIR': settings.NEWSBLUR_DIR} self.save() options = { 'verbose': kwargs.get('verbose'), 'timeout': 10, 'single_threaded': kwargs.get('single_threaded', True), 'force': kwargs.get('force'), 'compute_scores': kwargs.get('compute_scores', True), 'mongodb_replication_lag': kwargs.get('mongodb_replication_lag', None), 'fake': kwargs.get('fake'), 'quick': kwargs.get('quick'), 'debug': kwargs.get('debug'), 'fpf': kwargs.get('fpf'), 'feed_xml': kwargs.get('feed_xml'), } disp = feed_fetcher.Dispatcher(options, 1) disp.add_jobs([[self.pk]]) feed = disp.run_jobs() if feed: feed = Feed.get_by_id(feed.pk) if feed: feed.last_update = datetime.datetime.utcnow() feed.set_next_scheduled_update() r.zadd('fetched_feeds_last_hour', feed.pk, int(datetime.datetime.now().strftime('%s'))) if not feed or original_feed_id != feed.pk: logging.info(" ---> ~FRFeed changed id, removing %s from tasked_feeds queue..." % original_feed_id) r.zrem('tasked_feeds', original_feed_id) r.zrem('error_feeds', original_feed_id) if feed: r.zrem('tasked_feeds', feed.pk) r.zrem('error_feeds', feed.pk) return feed @classmethod def get_by_id(cls, feed_id, feed_address=None): try: feed = Feed.objects.get(pk=feed_id) return feed except Feed.DoesNotExist: # Feed has been merged after updating. Find the right feed. duplicate_feeds = DuplicateFeed.objects.filter(duplicate_feed_id=feed_id) if duplicate_feeds: return duplicate_feeds[0].feed if feed_address: duplicate_feeds = DuplicateFeed.objects.filter(duplicate_address=feed_address) if duplicate_feeds: return duplicate_feeds[0].feed @classmethod def get_by_name(cls, query, limit=1): results = SearchFeed.query(query) feed_ids = [result.feed_id for result in results] if limit == 1: return Feed.get_by_id(feed_ids[0]) else: return [Feed.get_by_id(f) for f in feed_ids][:limit] def add_update_stories(self, stories, existing_stories, verbose=False): ret_values = dict(new=0, updated=0, same=0, error=0) error_count = self.error_count if settings.DEBUG or verbose: logging.debug(" ---> [%-30s] ~FBChecking ~SB%s~SN new/updated against ~SB%s~SN stories" % ( self.title[:30], len(stories), len(existing_stories.keys()))) for story in stories: if not story.get('title'): continue story_content = story.get('story_content') if error_count: story_content = strip_comments__lxml(story_content) else: story_content = strip_comments(story_content) story_tags = self.get_tags(story) story_link = self.get_permalink(story) existing_story, story_has_changed = self._exists_story(story, story_content, existing_stories) if existing_story is None: if settings.DEBUG and False: logging.debug(' ---> New story in feed (%s - %s): %s' % (self.feed_title, story.get('title'), len(story_content))) s = MStory(story_feed_id = self.pk, story_date = story.get('published'), story_title = story.get('title'), story_content = story_content, story_author_name = story.get('author'), story_permalink = story_link, story_guid = story.get('guid'), story_tags = story_tags ) try: s.save() ret_values['new'] += 1 except (IntegrityError, OperationError), e: ret_values['error'] += 1 if settings.DEBUG: logging.info(' ---> [%-30s] ~SN~FRIntegrityError on new story: %s - %s' % (self.feed_title[:30], story.get('guid'), e)) elif existing_story and story_has_changed: # update story original_content = None try: if existing_story and existing_story.id: try: existing_story = MStory.objects.get(id=existing_story.id) except ValidationError: existing_story, _ = MStory.find_story(existing_story.story_feed_id, existing_story.id, original_only=True) elif existing_story and existing_story.story_guid: existing_story, _ = MStory.find_story(existing_story.story_feed_id, existing_story.story_guid, original_only=True) else: raise MStory.DoesNotExist except (MStory.DoesNotExist, OperationError), e: ret_values['error'] += 1 if verbose: logging.info(' ---> [%-30s] ~SN~FROperation on existing story: %s - %s' % (self.feed_title[:30], story.get('guid'), e)) continue if existing_story.story_original_content_z: original_content = zlib.decompress(existing_story.story_original_content_z) elif existing_story.story_content_z: original_content = zlib.decompress(existing_story.story_content_z) # print 'Type: %s %s' % (type(original_content), type(story_content)) if story_content and len(story_content) > 10: story_content_diff = htmldiff(unicode(original_content), unicode(story_content)) else: story_content_diff = original_content # logging.debug("\t\tDiff: %s %s %s" % diff.getStats()) # logging.debug("\t\tDiff content: %s" % diff.getDiff()) # if existing_story.story_title != story.get('title'): # logging.debug('\tExisting title / New: : \n\t\t- %s\n\t\t- %s' % (existing_story.story_title, story.get('title'))) if existing_story.story_guid != story.get('guid'): self.update_read_stories_with_new_guid(existing_story.story_guid, story.get('guid')) if settings.DEBUG and False: logging.debug('- Updated story in feed (%s - %s): %s / %s' % (self.feed_title, story.get('title'), len(story_content_diff), len(story_content))) existing_story.story_feed = self.pk existing_story.story_title = story.get('title') existing_story.story_content = story_content_diff existing_story.story_latest_content = story_content existing_story.story_original_content = original_content existing_story.story_author_name = story.get('author') existing_story.story_permalink = story_link existing_story.story_guid = story.get('guid') existing_story.story_tags = story_tags # Do not allow publishers to change the story date once a story is published. # Leads to incorrect unread story counts. # existing_story.story_date = story.get('published') # No, don't try: existing_story.save() ret_values['updated'] += 1 except (IntegrityError, OperationError): ret_values['error'] += 1 if verbose: logging.info(' ---> [%-30s] ~SN~FRIntegrityError on updated story: %s' % (self.feed_title[:30], story.get('title')[:30])) except ValidationError: ret_values['error'] += 1 if verbose: logging.info(' ---> [%-30s] ~SN~FRValidationError on updated story: %s' % (self.feed_title[:30], story.get('title')[:30])) else: ret_values['same'] += 1 # logging.debug("Unchanged story: %s " % story.get('title')) return ret_values def update_read_stories_with_new_guid(self, old_story_guid, new_story_guid): from apps.reader.models import RUserStory from apps.social.models import MSharedStory old_hash = RUserStory.story_hash(old_story_guid, self.pk) new_hash = RUserStory.story_hash(new_story_guid, self.pk) # RUserStory.switch_hash(feed_id=self.pk, old_hash=old_hash, new_hash=new_hash) shared_stories = MSharedStory.objects.filter(story_feed_id=self.pk, story_guid=old_story_guid) for story in shared_stories: story.story_guid = new_story_guid story.save() def save_popular_tags(self, feed_tags=None, verbose=False): if not feed_tags: all_tags = MStory.objects(story_feed_id=self.pk, story_tags__exists=True).item_frequencies('story_tags') feed_tags = sorted([(k, v) for k, v in all_tags.items() if int(v) > 0], key=itemgetter(1), reverse=True)[:25] popular_tags = json.encode(feed_tags) if verbose: print "Found %s tags: %s" % (len(feed_tags), popular_tags) # TODO: This len() bullshit will be gone when feeds move to mongo # On second thought, it might stay, because we don't want # popular tags the size of a small planet. I'm looking at you # Tumblr writers. if len(popular_tags) < 1024: self.data.popular_tags = popular_tags self.data.save() return tags_list = [] if feed_tags and isinstance(feed_tags, unicode): tags_list = json.decode(feed_tags) if len(tags_list) >= 1: self.save_popular_tags(tags_list[:-1]) def save_popular_authors(self, feed_authors=None): if not feed_authors: authors = defaultdict(int) for story in MStory.objects(story_feed_id=self.pk).only('story_author_name'): authors[story.story_author_name] += 1 feed_authors = sorted([(k, v) for k, v in authors.items() if k], key=itemgetter(1), reverse=True)[:20] popular_authors = json.encode(feed_authors) if len(popular_authors) < 1023: self.data.popular_authors = popular_authors self.data.save() return if len(feed_authors) > 1: self.save_popular_authors(feed_authors=feed_authors[:-1]) def trim_feed(self, verbose=False): trim_cutoff = 500 if self.active_subscribers <= 0: trim_cutoff = 25 elif self.num_subscribers <= 10 or self.active_premium_subscribers <= 1: trim_cutoff = 100 elif self.num_subscribers <= 30 or self.active_premium_subscribers <= 3: trim_cutoff = 200 elif self.num_subscribers <= 50 or self.active_premium_subscribers <= 5: trim_cutoff = 300 elif self.num_subscribers <= 100 or self.active_premium_subscribers <= 10: trim_cutoff = 350 elif self.num_subscribers <= 150 or self.active_premium_subscribers <= 15: trim_cutoff = 400 elif self.num_subscribers <= 200 or self.active_premium_subscribers <= 20: trim_cutoff = 450 stories = MStory.objects( story_feed_id=self.pk, ).order_by('-story_date') if stories.count() > trim_cutoff: logging.debug(' ---> [%-30s] ~FBFound %s stories. Trimming to ~SB%s~SN...' % (unicode(self)[:30], stories.count(), trim_cutoff)) try: story_trim_date = stories[trim_cutoff].story_date except IndexError, e: logging.debug(' ***> [%-30s] ~BRError trimming feed: %s' % (unicode(self)[:30], e)) return extra_stories = MStory.objects(story_feed_id=self.pk, story_date__lte=story_trim_date) extra_stories_count = extra_stories.count() for story in extra_stories: story.delete() if verbose: existing_story_count = MStory.objects(story_feed_id=self.pk).count() print "Deleted %s stories, %s left." % (extra_stories_count, existing_story_count) # @staticmethod # def clean_invalid_ids(): # history = MFeedFetchHistory.objects(status_code=500, exception__contains='InvalidId:') # urls = set() # for h in history: # u = re.split('InvalidId: (.*?) is not a valid ObjectId\\n$', h.exception)[1] # urls.add((h.feed_id, u)) # # for f, u in urls: # print "db.stories.remove({\"story_feed_id\": %s, \"_id\": \"%s\"})" % (f, u) def get_stories(self, offset=0, limit=25, force=False): stories_db = MStory.objects(story_feed_id=self.pk)[offset:offset+limit] stories = self.format_stories(stories_db, self.pk) return stories def find_stories(self, query, offset=0, limit=25): stories_db = MStory.objects( Q(story_feed_id=self.pk) & (Q(story_title__icontains=query) | Q(story_content__icontains=query) | Q(story_author_name__icontains=query)) ).order_by('-starred_date')[offset:offset+limit] stories = self.format_stories(stories_db, self.pk) return stories @classmethod def format_stories(cls, stories_db, feed_id=None, include_permalinks=False): stories = [] for story_db in stories_db: story = cls.format_story(story_db, feed_id, include_permalinks=include_permalinks) stories.append(story) return stories @classmethod def format_story(cls, story_db, feed_id=None, text=False, include_permalinks=False): if isinstance(story_db.story_content_z, unicode): story_db.story_content_z = story_db.story_content_z.decode('base64') story_content = story_db.story_content_z and zlib.decompress(story_db.story_content_z) or '' story = {} story['story_hash'] = getattr(story_db, 'story_hash', None) story['story_tags'] = story_db.story_tags or [] story['story_date'] = story_db.story_date.replace(tzinfo=None) story['story_authors'] = story_db.story_author_name story['story_title'] = story_db.story_title story['story_content'] = story_content story['story_permalink'] = story_db.story_permalink story['story_feed_id'] = feed_id or story_db.story_feed_id story['comment_count'] = story_db.comment_count if hasattr(story_db, 'comment_count') else 0 story['comment_user_ids'] = story_db.comment_user_ids if hasattr(story_db, 'comment_user_ids') else [] story['share_count'] = story_db.share_count if hasattr(story_db, 'share_count') else 0 story['share_user_ids'] = story_db.share_user_ids if hasattr(story_db, 'share_user_ids') else [] story['guid_hash'] = story_db.guid_hash if hasattr(story_db, 'guid_hash') else None if hasattr(story_db, 'source_user_id'): story['source_user_id'] = story_db.source_user_id story['id'] = story_db.story_guid or story_db.story_date if hasattr(story_db, 'starred_date'): story['starred_date'] = story_db.starred_date if hasattr(story_db, 'shared_date'): story['shared_date'] = story_db.shared_date if include_permalinks and hasattr(story_db, 'blurblog_permalink'): story['blurblog_permalink'] = story_db.blurblog_permalink() if text: from BeautifulSoup import BeautifulSoup soup = BeautifulSoup(story['story_content']) text = ''.join(soup.findAll(text=True)) text = re.sub(r'\n+', '\n\n', text) text = re.sub(r'\t+', '\t', text) story['text'] = text if '<ins' in story['story_content'] or '<del' in story['story_content']: story['has_modifications'] = True return story def get_tags(self, entry): fcat = [] if entry.has_key('tags'): for tcat in entry.tags: term = None if hasattr(tcat, 'label') and tcat.label: term = tcat.label elif hasattr(tcat, 'term') and tcat.term: term = tcat.term if not term: continue qcat = term.strip() if ',' in qcat or '/' in qcat: qcat = qcat.replace(',', '/').split('/') else: qcat = [qcat] for zcat in qcat: tagname = zcat.lower() while ' ' in tagname: tagname = tagname.replace(' ', ' ') tagname = tagname.strip() if not tagname or tagname == ' ': continue fcat.append(tagname) fcat = [strip_tags(t)[:250] for t in fcat[:12]] return fcat def get_permalink(self, entry): link = entry.get('link') if not link: links = entry.get('links') if links: link = links[0].get('href') if not link: link = entry.get('id') return link def _exists_story(self, story=None, story_content=None, existing_stories=None): story_in_system = None story_has_changed = False story_link = self.get_permalink(story) existing_stories_guids = existing_stories.keys() # story_pub_date = story.get('published') # story_published_now = story.get('published_now', False) # start_date = story_pub_date - datetime.timedelta(hours=8) # end_date = story_pub_date + datetime.timedelta(hours=8) for existing_story in existing_stories.values(): content_ratio = 0 # existing_story_pub_date = existing_story.story_date # print 'Story pub date: %s %s' % (story_published_now, story_pub_date) if 'story_latest_content_z' in existing_story: existing_story_content = unicode(zlib.decompress(existing_story.story_latest_content_z)) elif 'story_latest_content' in existing_story: existing_story_content = existing_story.story_latest_content elif 'story_content_z' in existing_story: existing_story_content = unicode(zlib.decompress(existing_story.story_content_z)) elif 'story_content' in existing_story: existing_story_content = existing_story.story_content else: existing_story_content = u'' if isinstance(existing_story.id, unicode): existing_story.story_guid = existing_story.id if (story.get('guid') in existing_stories_guids and story.get('guid') != existing_story.story_guid): continue elif story.get('guid') == existing_story.story_guid: story_in_system = existing_story # Title distance + content distance, checking if story changed story_title_difference = abs(levenshtein_distance(story.get('title'), existing_story.story_title)) seq = difflib.SequenceMatcher(None, story_content, existing_story_content) if (seq and story_content and existing_story_content and seq.real_quick_ratio() > .9 and seq.quick_ratio() > .95): content_ratio = seq.ratio() if story_title_difference > 0 and content_ratio > .98: story_in_system = existing_story if story_title_difference > 0 or content_ratio < 1.0: # print "Title difference - %s/%s (%s): %s" % (story.get('title'), existing_story.story_title, story_title_difference, content_ratio) story_has_changed = True break # More restrictive content distance, still no story match if not story_in_system and content_ratio > .98: # print "Content difference - %s/%s (%s): %s" % (story.get('title'), existing_story.story_title, story_title_difference, content_ratio) story_in_system = existing_story story_has_changed = True break if story_in_system and not story_has_changed: if story_content != existing_story_content: # print "Content difference - %s/%s" % (story_content, existing_story_content) story_has_changed = True if story_link != existing_story.story_permalink: # print "Permalink difference - %s/%s" % (story_link, existing_story.story_permalink) story_has_changed = True # if story_pub_date != existing_story.story_date: # story_has_changed = True break # if story_has_changed or not story_in_system: # print 'New/updated story: %s' % (story), return story_in_system, story_has_changed def get_next_scheduled_update(self, force=False, verbose=True): if self.min_to_decay and not force: return self.min_to_decay upd = self.stories_last_month / 30.0 subs = (self.active_premium_subscribers + ((self.active_subscribers - self.active_premium_subscribers) / 10.0)) # UPD = 1 Subs > 1: t = 5 # 11625 * 1440/5 = 3348000 # UPD = 1 Subs = 1: t = 60 # 17231 * 1440/60 = 413544 # UPD < 1 Subs > 1: t = 60 # 37904 * 1440/60 = 909696 # UPD < 1 Subs = 1: t = 60 * 12 # 143012 * 1440/(60*12) = 286024 # UPD = 0 Subs > 1: t = 60 * 3 # 28351 * 1440/(60*3) = 226808 # UPD = 0 Subs = 1: t = 60 * 24 # 807690 * 1440/(60*24) = 807690 if upd >= 1: if subs > 1: total = 10 else: total = 60 elif upd > 0: if subs > 1: total = 60 - (upd * 60) else: total = 60*12 - (upd * 60*12) elif upd == 0: if subs > 1: total = 60 * 6 else: total = 60 * 24 months_since_last_story = seconds_timesince(self.last_story_date) * 60*60*24*30 total *= max(1, months_since_last_story) # updates_per_day_delay = 3 * 60 / max(.25, ((max(0, self.active_subscribers)**.2) # * (self.stories_last_month**0.25))) # if self.active_premium_subscribers > 0: # updates_per_day_delay /= min(self.active_subscribers+self.active_premium_subscribers, 4) # updates_per_day_delay = int(updates_per_day_delay) # Lots of subscribers = lots of updates # 24 hours for 0 subscribers. # 4 hours for 1 subscriber. # .5 hours for 2 subscribers. # .25 hours for 3 subscribers. # 1 min for 10 subscribers. # subscriber_bonus = 6 * 60 / max(.167, max(0, self.active_subscribers)**3) # if self.premium_subscribers > 0: # subscriber_bonus /= min(self.active_subscribers+self.premium_subscribers, 5) # subscriber_bonus = int(subscriber_bonus) if self.is_push: total = total * 12 # 3 day max if total > 60*24*3: total = 60*24*3 if verbose: logging.debug(" ---> [%-30s] Fetched every %s min - Subs: %s/%s/%s Stories: %s" % ( unicode(self)[:30], total, self.num_subscribers, self.active_subscribers, self.active_premium_subscribers, upd)) return total def set_next_scheduled_update(self, verbose=False, skip_scheduling=False): r = redis.Redis(connection_pool=settings.REDIS_FEED_POOL) total = self.get_next_scheduled_update(force=True, verbose=verbose) error_count = self.error_count if error_count: total = total * error_count if verbose: logging.debug(' ---> [%-30s] ~FBScheduling feed fetch geometrically: ' '~SB%s errors. Time: %s min' % ( unicode(self)[:30], self.errors_since_good, total)) random_factor = random.randint(0, total) / 4 next_scheduled_update = datetime.datetime.utcnow() + datetime.timedelta( minutes = total + random_factor) self.min_to_decay = total delta = self.next_scheduled_update - datetime.datetime.now() minutes_to_next_fetch = delta.total_seconds() / 60 if minutes_to_next_fetch > self.min_to_decay or not skip_scheduling: self.next_scheduled_update = next_scheduled_update if self.active_subscribers >= 1: r.zadd('scheduled_updates', self.pk, self.next_scheduled_update.strftime('%s')) r.zrem('tasked_feeds', self.pk) r.srem('queued_feeds', self.pk) self.save() @property def error_count(self): r = redis.Redis(connection_pool=settings.REDIS_FEED_POOL) fetch_errors = int(r.zscore('error_feeds', self.pk) or 0) return fetch_errors + self.errors_since_good def schedule_feed_fetch_immediately(self, verbose=True): r = redis.Redis(connection_pool=settings.REDIS_FEED_POOL) if verbose: logging.debug(' ---> [%-30s] Scheduling feed fetch immediately...' % (unicode(self)[:30])) self.next_scheduled_update = datetime.datetime.utcnow() r.zadd('scheduled_updates', self.pk, self.next_scheduled_update.strftime('%s')) return self.save() def setup_push(self): from apps.push.models import PushSubscription try: push = self.push except PushSubscription.DoesNotExist: self.is_push = False else: self.is_push = push.verified self.save() def queue_pushed_feed_xml(self, xml): r = redis.Redis(connection_pool=settings.REDIS_POOL) queue_size = r.llen("push_feeds") if queue_size > 1000: self.schedule_feed_fetch_immediately() else: logging.debug(' ---> [%-30s] [%s] ~FBQueuing pushed stories...' % (unicode(self)[:30], self.pk)) self.set_next_scheduled_update() PushFeeds.apply_async(args=(self.pk, xml), queue='push_feeds') # def calculate_collocations_story_content(self, # collocation_measures=TrigramAssocMeasures, # collocation_finder=TrigramCollocationFinder): # stories = MStory.objects.filter(story_feed_id=self.pk) # story_content = ' '.join([s.story_content for s in stories if s.story_content]) # return self.calculate_collocations(story_content, collocation_measures, collocation_finder) # # def calculate_collocations_story_title(self, # collocation_measures=BigramAssocMeasures, # collocation_finder=BigramCollocationFinder): # stories = MStory.objects.filter(story_feed_id=self.pk) # story_titles = ' '.join([s.story_title for s in stories if s.story_title]) # return self.calculate_collocations(story_titles, collocation_measures, collocation_finder) # # def calculate_collocations(self, content, # collocation_measures=TrigramAssocMeasures, # collocation_finder=TrigramCollocationFinder): # content = re.sub(r'&#8217;', '\'', content) # content = re.sub(r'&amp;', '&', content) # try: # content = unicode(BeautifulStoneSoup(content, # convertEntities=BeautifulStoneSoup.HTML_ENTITIES)) # except ValueError, e: # print "ValueError, ignoring: %s" % e # content = re.sub(r'</?\w+\s+[^>]*>', '', content) # content = re.split(r"[^A-Za-z-'&]+", content) # # finder = collocation_finder.from_words(content) # finder.apply_freq_filter(3) # best = finder.nbest(collocation_measures.pmi, 10) # phrases = [' '.join(phrase) for phrase in best] # # return phrases # class FeedCollocations(models.Model): # feed = models.ForeignKey(Feed) # phrase = models.CharField(max_length=500) class FeedData(models.Model): feed = AutoOneToOneField(Feed, related_name='data') feed_tagline = models.CharField(max_length=1024, blank=True, null=True) story_count_history = models.TextField(blank=True, null=True) feed_classifier_counts = models.TextField(blank=True, null=True) popular_tags = models.CharField(max_length=1024, blank=True, null=True) popular_authors = models.CharField(max_length=2048, blank=True, null=True) def save(self, *args, **kwargs): if self.feed_tagline and len(self.feed_tagline) >= 1000: self.feed_tagline = self.feed_tagline[:1000] try: super(FeedData, self).save(*args, **kwargs) except (IntegrityError, OperationError): if hasattr(self, 'id') and self.id: self.delete() class MFeedIcon(mongo.Document): feed_id = mongo.IntField(primary_key=True) color = mongo.StringField(max_length=6) data = mongo.StringField() icon_url = mongo.StringField() not_found = mongo.BooleanField(default=False) meta = { 'collection' : 'feed_icons', 'allow_inheritance' : False, } def save(self, *args, **kwargs): if self.icon_url: self.icon_url = unicode(self.icon_url) try: super(MFeedIcon, self).save(*args, **kwargs) except (IntegrityError, OperationError): # print "Error on Icon: %s" % e if hasattr(self, '_id'): self.delete() class MFeedPage(mongo.Document): feed_id = mongo.IntField(primary_key=True) page_data = mongo.BinaryField() meta = { 'collection': 'feed_pages', 'allow_inheritance': False, } def save(self, *args, **kwargs): if self.page_data: self.page_data = zlib.compress(self.page_data) super(MFeedPage, self).save(*args, **kwargs) @classmethod def get_data(cls, feed_id): data = None feed_page = cls.objects(feed_id=feed_id) if feed_page: page_data_z = feed_page[0].page_data if page_data_z: data = zlib.decompress(page_data_z) if not data: dupe_feed = DuplicateFeed.objects.filter(duplicate_feed_id=feed_id) if dupe_feed: feed = dupe_feed[0].feed feed_page = MFeedPage.objects.filter(feed_id=feed.pk) if feed_page: page_data_z = feed_page[0].page_data if page_data_z: data = zlib.decompress(feed_page[0].page_data) return data class MStory(mongo.Document): '''A feed item''' story_feed_id = mongo.IntField() story_date = mongo.DateTimeField() story_title = mongo.StringField(max_length=1024) story_content = mongo.StringField() story_content_z = mongo.BinaryField() story_original_content = mongo.StringField() story_original_content_z = mongo.BinaryField() story_latest_content = mongo.StringField() story_latest_content_z = mongo.BinaryField() original_text_z = mongo.BinaryField() story_content_type = mongo.StringField(max_length=255) story_author_name = mongo.StringField() story_permalink = mongo.StringField() story_guid = mongo.StringField() story_hash = mongo.StringField() story_tags = mongo.ListField(mongo.StringField(max_length=250)) comment_count = mongo.IntField() comment_user_ids = mongo.ListField(mongo.IntField()) share_count = mongo.IntField() share_user_ids = mongo.ListField(mongo.IntField()) meta = { 'collection': 'stories', 'indexes': [('story_feed_id', '-story_date'), {'fields': ['story_hash'], 'unique': True, 'types': False, 'drop_dups': True }], 'index_drop_dups': True, 'ordering': ['-story_date'], 'allow_inheritance': False, 'cascade': False, } @property def guid_hash(self): return hashlib.sha1(self.story_guid).hexdigest()[:6] @property def feed_guid_hash(self): return "%s:%s" % (self.story_feed_id, self.guid_hash) def save(self, *args, **kwargs): story_title_max = MStory._fields['story_title'].max_length story_content_type_max = MStory._fields['story_content_type'].max_length self.story_hash = self.feed_guid_hash if self.story_content: self.story_content_z = zlib.compress(self.story_content) self.story_content = None if self.story_original_content: self.story_original_content_z = zlib.compress(self.story_original_content) self.story_original_content = None if self.story_latest_content: self.story_latest_content_z = zlib.compress(self.story_latest_content) self.story_latest_content = None if self.story_title and len(self.story_title) > story_title_max: self.story_title = self.story_title[:story_title_max] if self.story_content_type and len(self.story_content_type) > story_content_type_max: self.story_content_type = self.story_content_type[:story_content_type_max] super(MStory, self).save(*args, **kwargs) self.sync_redis() def delete(self, *args, **kwargs): self.remove_from_redis() super(MStory, self).delete(*args, **kwargs) @classmethod def find_story(cls, story_feed_id, story_id, original_only=False): from apps.social.models import MSharedStory original_found = True if isinstance(story_id, ObjectId): story = cls.objects(id=story_id).limit(1).first() else: guid_hash = hashlib.sha1(story_id).hexdigest()[:6] story_hash = "%s:%s" % (story_feed_id, guid_hash) story = cls.objects(story_hash=story_hash).limit(1).first() if not story: original_found = False if not story and not original_only: story = MSharedStory.objects.filter(story_feed_id=story_feed_id, story_guid=story_id).limit(1).first() if not story and not original_only: story = MStarredStory.objects.filter(story_feed_id=story_feed_id, story_guid=story_id).limit(1).first() return story, original_found @classmethod def find_by_id(cls, story_ids): from apps.social.models import MSharedStory count = len(story_ids) multiple = isinstance(story_ids, list) or isinstance(story_ids, tuple) stories = list(cls.objects(id__in=story_ids)) if len(stories) < count: shared_stories = list(MSharedStory.objects(id__in=story_ids)) stories.extend(shared_stories) if not multiple: stories = stories[0] return stories @classmethod def find_by_story_hashes(cls, story_hashes): from apps.social.models import MSharedStory count = len(story_hashes) multiple = isinstance(story_hashes, list) or isinstance(story_hashes, tuple) stories = list(cls.objects(story_hash__in=story_hashes)) if len(stories) < count: hashes_found = [s.story_hash for s in stories] remaining_hashes = list(set(story_hashes) - set(hashes_found)) story_feed_ids = [h.split(':')[0] for h in remaining_hashes] shared_stories = list(MSharedStory.objects(story_feed_id__in=story_feed_ids, story_hash__in=remaining_hashes)) stories.extend(shared_stories) if not multiple: stories = stories[0] return stories def sync_redis(self, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) UNREAD_CUTOFF = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.id and self.story_date > UNREAD_CUTOFF: r.sadd('F:%s' % self.story_feed_id, self.story_hash) r.zadd('zF:%s' % self.story_feed_id, self.story_hash, time.mktime(self.story_date.timetuple())) r.expire('F:%s' % self.story_feed_id, settings.DAYS_OF_UNREAD*24*60*60) r.expire('zF:%s' % self.story_feed_id, settings.DAYS_OF_UNREAD*24*60*60) def remove_from_redis(self, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) if self.id: r.srem('F:%s' % self.story_feed_id, self.story_hash) r.zrem('zF:%s' % self.story_feed_id, self.story_hash) @classmethod def sync_feed_redis(cls, story_feed_id): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) UNREAD_CUTOFF = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) feed = Feed.get_by_id(story_feed_id) stories = cls.objects.filter(story_feed_id=story_feed_id, story_date__gte=UNREAD_CUTOFF) r.delete('F:%s' % story_feed_id) r.delete('zF:%s' % story_feed_id) logging.info(" ---> [%-30s] ~FMSyncing ~SB%s~SN stories to redis" % (feed and feed.title[:30] or story_feed_id, stories.count())) p = r.pipeline() for story in stories: story.sync_redis(r=p) p.execute() def count_comments(self): from apps.social.models import MSharedStory params = { 'story_guid': self.story_guid, 'story_feed_id': self.story_feed_id, } comments = MSharedStory.objects.filter(has_comments=True, **params).only('user_id') shares = MSharedStory.objects.filter(**params).only('user_id') self.comment_count = comments.count() self.comment_user_ids = [c['user_id'] for c in comments] self.share_count = shares.count() self.share_user_ids = [s['user_id'] for s in shares] self.save() def fetch_original_text(self, force=False, request=None): original_text_z = self.original_text_z if not original_text_z or force: ti = TextImporter(self, request=request) original_text = ti.fetch() else: logging.user(request, "~FYFetching ~FGoriginal~FY story text, ~SBfound.") original_text = zlib.decompress(original_text_z) return original_text class MStarredStory(mongo.Document): """Like MStory, but not inherited due to large overhead of _cls and _type in mongoengine's inheritance model on every single row.""" user_id = mongo.IntField(unique_with=('story_guid',)) starred_date = mongo.DateTimeField() story_feed_id = mongo.IntField() story_date = mongo.DateTimeField() story_title = mongo.StringField(max_length=1024) story_content = mongo.StringField() story_content_z = mongo.BinaryField() story_original_content = mongo.StringField() story_original_content_z = mongo.BinaryField() original_text_z = mongo.BinaryField() story_content_type = mongo.StringField(max_length=255) story_author_name = mongo.StringField() story_permalink = mongo.StringField() story_guid = mongo.StringField() story_hash = mongo.StringField() story_tags = mongo.ListField(mongo.StringField(max_length=250)) meta = { 'collection': 'starred_stories', 'indexes': [('user_id', '-starred_date'), ('user_id', 'story_feed_id'), 'story_feed_id'], 'index_drop_dups': True, 'ordering': ['-starred_date'], 'allow_inheritance': False, } def save(self, *args, **kwargs): if self.story_content: self.story_content_z = zlib.compress(self.story_content) self.story_content = None if self.story_original_content: self.story_original_content_z = zlib.compress(self.story_original_content) self.story_original_content = None self.story_hash = self.feed_guid_hash super(MStarredStory, self).save(*args, **kwargs) # self.index_for_search() def index_for_search(self): story_content = zlib.decompress(self.story_content_z) SearchStarredStory.index(user_id=self.user_id, story_id=self.story_guid, story_title=self.story_title, story_content=story_content, story_author=self.story_author_name, story_date=self.story_date, db_id=str(self.id)) @property def guid_hash(self): return hashlib.sha1(self.story_guid).hexdigest()[:6] @property def feed_guid_hash(self): return "%s:%s" % (self.story_feed_id or "0", self.guid_hash) def fetch_original_text(self, force=False, request=None): original_text_z = self.original_text_z if not original_text_z or force: ti = TextImporter(self, request=request) original_text = ti.fetch() else: logging.user(request, "~FYFetching ~FGoriginal~FY story text, ~SBfound.") original_text = zlib.decompress(original_text_z) return original_text class MFetchHistory(mongo.Document): feed_id = mongo.IntField(unique=True) feed_fetch_history = mongo.DynamicField() page_fetch_history = mongo.DynamicField() push_history = mongo.DynamicField() meta = { 'collection': 'fetch_history', 'allow_inheritance': False, } @classmethod def feed(cls, feed_id, timezone=None): fetch_history, _ = cls.objects.get_or_create( feed_id=feed_id, read_preference=pymongo.ReadPreference.PRIMARY ) history = {} for fetch_type in ['feed_fetch_history', 'page_fetch_history', 'push_history']: history[fetch_type] = getattr(fetch_history, fetch_type) if not history[fetch_type]: history[fetch_type] = [] for f, fetch in enumerate(history[fetch_type]): date_key = 'push_date' if fetch_type == 'push_history' else 'fetch_date' history[fetch_type][f] = { date_key: localtime_for_timezone(fetch[0], timezone).strftime("%Y-%m-%d %H:%M:%S"), 'status_code': fetch[1], 'message': fetch[2] } return history @classmethod def add(cls, feed_id, fetch_type, date=None, message=None, code=None, exception=None): if not date: date = datetime.datetime.now() fetch_history, _ = cls.objects.get_or_create( feed_id=feed_id, read_preference=pymongo.ReadPreference.PRIMARY ) if fetch_type == 'feed': history = fetch_history.feed_fetch_history or [] elif fetch_type == 'page': history = fetch_history.page_fetch_history or [] elif fetch_type == 'push': history = fetch_history.push_history or [] history.insert(0, (date, code, message)) history = history[:5] if fetch_type == 'feed': fetch_history.feed_fetch_history = history elif fetch_type == 'page': fetch_history.page_fetch_history = history elif fetch_type == 'push': fetch_history.push_history = history fetch_history.save() if exception: MFetchExceptionHistory.add(feed_id, date=date, code=code, message=message, exception=exception) if fetch_type == 'feed': RStats.add('feed_fetch') class MFetchExceptionHistory(mongo.Document): feed_id = mongo.IntField(unique=True) date = mongo.DateTimeField() code = mongo.IntField() message = mongo.StringField() exception = mongo.StringField() meta = { 'collection': 'fetch_exception_history', 'allow_inheritance': False, } @classmethod def add(cls, feed_id, date=None, code=None, message="", exception=""): if not date: date = datetime.datetime.now() if not isinstance(exception, basestring): exception = unicode(exception) fetch_exception, _ = cls.objects.get_or_create( feed_id=feed_id, read_preference=pymongo.ReadPreference.PRIMARY ) fetch_exception.date = date fetch_exception.code = code fetch_exception.message = message fetch_exception.exception = exception fetch_exception.save() class DuplicateFeed(models.Model): duplicate_address = models.CharField(max_length=764, db_index=True) duplicate_link = models.CharField(max_length=764, null=True, db_index=True) duplicate_feed_id = models.CharField(max_length=255, null=True, db_index=True) feed = models.ForeignKey(Feed, related_name='duplicate_addresses') def __unicode__(self): return "%s: %s / %s" % (self.feed, self.duplicate_address, self.duplicate_link) def to_json(self): return { 'duplicate_address': self.duplicate_address, 'duplicate_link': self.duplicate_link, 'duplicate_feed_id': self.duplicate_feed_id, 'feed_id': self.feed_id } def save(self, *args, **kwargs): max_address = DuplicateFeed._meta.get_field('duplicate_address').max_length if len(self.duplicate_address) > max_address: self.duplicate_address = self.duplicate_address[:max_address] max_link = DuplicateFeed._meta.get_field('duplicate_link').max_length if self.duplicate_link and len(self.duplicate_link) > max_link: self.duplicate_link = self.duplicate_link[:max_link] super(DuplicateFeed, self).save(*args, **kwargs) def merge_feeds(original_feed_id, duplicate_feed_id, force=False): from apps.reader.models import UserSubscription from apps.social.models import MSharedStory if original_feed_id == duplicate_feed_id: logging.info(" ***> Merging the same feed. Ignoring...") return original_feed_id try: original_feed = Feed.objects.get(pk=original_feed_id) duplicate_feed = Feed.objects.get(pk=duplicate_feed_id) except Feed.DoesNotExist: logging.info(" ***> Already deleted feed: %s" % duplicate_feed_id) return original_feed_id heavier_dupe = original_feed.num_subscribers < duplicate_feed.num_subscribers branched_original = original_feed.branch_from_feed if (heavier_dupe or branched_original) and not force: original_feed, duplicate_feed = duplicate_feed, original_feed original_feed_id, duplicate_feed_id = duplicate_feed_id, original_feed_id if branched_original: original_feed.feed_address = duplicate_feed.feed_address logging.info(" ---> Feed: [%s - %s] %s - %s" % (original_feed_id, duplicate_feed_id, original_feed, original_feed.feed_link)) logging.info(" Orig ++> %s: (%s subs) %s / %s %s" % (original_feed.pk, original_feed.num_subscribers, original_feed.feed_address, original_feed.feed_link, " [B: %s]" % original_feed.branch_from_feed.pk if original_feed.branch_from_feed else "")) logging.info(" Dupe --> %s: (%s subs) %s / %s %s" % (duplicate_feed.pk, duplicate_feed.num_subscribers, duplicate_feed.feed_address, duplicate_feed.feed_link, " [B: %s]" % duplicate_feed.branch_from_feed.pk if duplicate_feed.branch_from_feed else "")) original_feed.branch_from_feed = None user_subs = UserSubscription.objects.filter(feed=duplicate_feed).order_by('-pk') for user_sub in user_subs: user_sub.switch_feed(original_feed, duplicate_feed) def delete_story_feed(model, feed_field='feed_id'): duplicate_stories = model.objects(**{feed_field: duplicate_feed.pk}) # if duplicate_stories.count(): # logging.info(" ---> Deleting %s %s" % (duplicate_stories.count(), model)) duplicate_stories.delete() delete_story_feed(MStory, 'story_feed_id') delete_story_feed(MFeedPage, 'feed_id') try: DuplicateFeed.objects.create( duplicate_address=duplicate_feed.feed_address, duplicate_link=duplicate_feed.feed_link, duplicate_feed_id=duplicate_feed.pk, feed=original_feed ) except (IntegrityError, OperationError), e: logging.info(" ***> Could not save DuplicateFeed: %s" % e) # Switch this dupe feed's dupe feeds over to the new original. duplicate_feeds_duplicate_feeds = DuplicateFeed.objects.filter(feed=duplicate_feed) for dupe_feed in duplicate_feeds_duplicate_feeds: dupe_feed.feed = original_feed dupe_feed.duplicate_feed_id = duplicate_feed.pk dupe_feed.save() logging.debug(' ---> Dupe subscribers (%s): %s, Original subscribers (%s): %s' % (duplicate_feed.pk, duplicate_feed.num_subscribers, original_feed.pk, original_feed.num_subscribers)) if duplicate_feed.pk != original_feed.pk: duplicate_feed.delete() else: logging.debug(" ***> Duplicate feed is the same as original feed. Panic!") logging.debug(' ---> Deleted duplicate feed: %s/%s' % (duplicate_feed, duplicate_feed_id)) original_feed.branch_from_feed = None original_feed.count_subscribers() original_feed.save() logging.debug(' ---> Now original subscribers: %s' % (original_feed.num_subscribers)) MSharedStory.switch_feed(original_feed_id, duplicate_feed_id) return original_feed_id def rewrite_folders(folders, original_feed, duplicate_feed): new_folders = [] for k, folder in enumerate(folders): if isinstance(folder, int): if folder == duplicate_feed.pk: # logging.info(" ===> Rewrote %s'th item: %s" % (k+1, folders)) new_folders.append(original_feed.pk) else: new_folders.append(folder) elif isinstance(folder, dict): for f_k, f_v in folder.items(): new_folders.append({f_k: rewrite_folders(f_v, original_feed, duplicate_feed)}) return new_folders ```
{ "source": "josephmisiti/sympy", "score": 3 }
#### File: combinatorial/tests/test_comb_numbers.py ```python from sympy import bernoulli, Symbol, Sum, harmonic, Rational, oo, zoo, pi, I, bell, \ fibonacci, lucas, euler, catalan, binomial, gamma, sqrt, hyper, log, polygamma, diff x = Symbol('x') def test_bernoulli(): assert bernoulli(0) == 1 assert bernoulli(1) == Rational(-1,2) assert bernoulli(2) == Rational(1,6) assert bernoulli(3) == 0 assert bernoulli(4) == Rational(-1,30) assert bernoulli(5) == 0 assert bernoulli(6) == Rational(1,42) assert bernoulli(7) == 0 assert bernoulli(8) == Rational(-1,30) assert bernoulli(10) == Rational(5,66) assert bernoulli(1000001) == 0 assert bernoulli(0, x) == 1 assert bernoulli(1, x) == x-Rational(1,2) assert bernoulli(2, x) == x**2-x+Rational(1,6) assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2 # Should be fast; computed with mpmath b = bernoulli(1000) assert b.p % 10**10 == 7950421099 assert b.q == 342999030 b = bernoulli(10**6, evaluate=False).evalf() assert str(b) == '-2.23799235765713e+4767529' def test_fibonacci(): assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3] assert fibonacci(100) == 354224848179261915075 assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7] assert lucas(100) == 792070839848372253127 assert fibonacci(1, x) == 1 assert fibonacci(2, x) == x assert fibonacci(3, x) == x**2 + 1 assert fibonacci(4, x) == x**3 + 2*x def test_bell(): assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877] assert bell(0, x) == 1 assert bell(1, x) == x assert bell(2, x) == x**2 + x assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x def test_harmonic(): assert harmonic(1,1) == 1 assert harmonic(2,1) == Rational(3,2) assert harmonic(3,1) == Rational(11,6) assert harmonic(4,1) == Rational(25,12) # assert harmonic(3,1) == harmonic(3) assert harmonic(3,5) == 1 + Rational(1,2**5) + Rational(1,3**5) assert harmonic(10,0) == 10 assert harmonic(oo,1) == zoo assert harmonic(oo,2) == (pi**2)/6 def test_euler(): assert euler(0) == 1 assert euler(1) == 0 assert euler(2) == -1 assert euler(3) == 0 assert euler(4) == 5 assert euler(6) == -61 assert euler(8) == 1385 assert euler(20, evaluate=False) != 370371188237525 n = Symbol('n', integer=True) assert euler(n) != -1 assert euler(n).subs(n, 2) == -1 assert euler(20).evalf() == 370371188237525.0 assert euler(20, evaluate=False).evalf() == 370371188237525.0 assert euler(n).rewrite(Sum) == euler(n) #assert euler(2*n).rewrite(Sum) == I*Sum(Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)*binomial(_k, _j)/_k, (_j, 0, _k)), (_k, 1, 2*n + 1)) assert euler(2*n+1).rewrite(Sum) == 0 def test_catalan(): assert catalan(1) == 1 assert catalan(2) == 2 assert catalan(3) == 5 assert catalan(4) == 14 # assert catalan(x) == catalan(x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(Rational(1,2)).rewrite(gamma) == 8/(3*pi) assert catalan(3*x).rewrite(gamma) == 4**(3*x)*gamma(3*x + Rational(1,2))/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert diff(catalan(x),x) == (polygamma(0, x + Rational(1,2)) - polygamma(0, x + 2) + 2*log(2))*catalan(x) c = catalan(0.5).evalf() assert str(c) == '0.848826363156775' ```
{ "source": "josephmisiti/taskmaster", "score": 2 }
#### File: taskmaster/cli/master.py ```python from taskmaster.util import parse_options from taskmaster.constants import DEFAULT_LOG_LEVEL, DEFAULT_ADDRESS, \ DEFAULT_BUFFER_SIZE def run(target, kwargs=None, reset=False, size=DEFAULT_BUFFER_SIZE, address=DEFAULT_ADDRESS, log_level=DEFAULT_LOG_LEVEL): from taskmaster.server import Server, Controller server = Server(address, size=size, log_level=log_level) controller = Controller(server, target, kwargs=kwargs, log_level=log_level) if reset: controller.reset() controller.start() def main(): import optparse import sys parser = optparse.OptionParser() parser.add_option("--address", dest="address", default=DEFAULT_ADDRESS) parser.add_option("--size", dest="size", default=DEFAULT_BUFFER_SIZE, type=int) parser.add_option("--reset", dest="reset", default=False, action='store_true') parser.add_option("--log-level", dest="log_level", default=DEFAULT_LOG_LEVEL) (options, args) = parser.parse_args() if len(args) < 1: print 'Usage: tm-master <callback> [key=value, key2=value2]' sys.exit(1) sys.exit(run(args[0], parse_options(args[1:]), **options.__dict__)) if __name__ == '__main__': main() ```
{ "source": "josephmje/datman", "score": 3 }
#### File: datman/bin/archive_manifest.py ```python from docopt import docopt import pandas as pd import datman import datman.utils default_headers = [ 'StudyDescription', 'StudyID', 'PatientName', 'SeriesNumber', 'SeriesDescription'] def main(): arguments = docopt(__doc__) if arguments['--showheaders']: for archive in arguments['<archive>']: manifest = datman.utils.get_archive_headers(archive, stop_after_first=False) filepath, headers = list(manifest.items())[0] print(",".join([archive, filepath])) print("\t" + "\n\t".join(headers.dir())) return headers = (arguments['--headers'] and arguments['--headers'].split(',')) \ or default_headers[:] headers.insert(0, "Path") rows = [] for archive in arguments["<archive>"]: manifest = datman.utils.get_archive_headers(archive) sortedseries = sorted(manifest.items(), key=lambda x: x[1].get('SeriesNumber')) for path, dataset in sortedseries: row = {header: dataset.get(header, "") for header in headers} row['Path'] = path rows.append(row) if arguments['--oneseries']: break data = pd.DataFrame(rows) print(data.to_csv(index=False)) if __name__ == "__main__": main() ``` #### File: datman/bin/dm_symlink_scans.py ```python import os import sys import fnmatch import logging from docopt import docopt import datman.config import datman.utils import datman.scanid # set up logging logger = logging.getLogger(__name__) formatter = logging.Formatter('%(asctime)s - %(name)s - ' '%(levelname)s - %(message)s') log_handler = logging.StreamHandler(sys.stdout) log_handler.setFormatter(formatter) logger.addHandler(log_handler) def find_files(directory): for root, dirs, files in os.walk(directory): for extension in ['*.nii.gz', '*.bvec', '*.bval']: for basename in files: if fnmatch.fnmatch(basename, extension): filename = os.path.join(root, basename) yield filename def create_symlink(src, target_name, dest): datman.utils.define_folder(dest) target_path = os.path.join(dest, target_name) if os.path.isfile(target_path): logger.warn('{} already exists. Not linking.'.format(target_path)) return with datman.utils.cd(dest): rel_path = os.path.relpath(src, dest) logger.info('Linking {} -> {}'.format(rel_path, target_path)) try: os.symlink(rel_path, target_path) except OSError: logger.error('Unable to link to {}'.format(rel_path)) def force_json_name(json_filename, sub_dir): ''' dcm2niix adds a suffix if a nifti file already exists even though you just want the .json sidecar. Force name to match what is expected ''' json_base = json_filename.split('.')[0] candidate = [f for f in os.listdir(sub_dir) if (json_base in f) and ('.json' in f)][0] if candidate != json_base: logger.warning('dcm2niix added suffix!\nShould be {}\n' 'Found {}'.format(json_filename, candidate)) src = os.path.join(sub_dir, candidate) dst = os.path.join(sub_dir, json_filename) os.rename(src, dst) def create_json_sidecar(scan_filename, session_nii_dir, session_dcm_dir): json_filename = os.path.splitext(scan_filename)[0] + '.json' if os.path.isfile(os.path.join(session_nii_dir, json_filename)): logger.warn('JSON sidecar {} already exists. ' 'Not creating.'.format(json_filename)) return logger.info('Creating JSON sidecar {}'.format(json_filename)) try: # dcm2niix creates json using single dicom in dcm directory datman.utils.run('dcm2niix -b o -s y -f {} -o {} {}' .format(os.path.splitext(scan_filename)[0], session_nii_dir, os.path.join(session_dcm_dir, scan_filename))) force_json_name(json_filename, session_nii_dir) except Exception: logger.error('Unable to create JSON sidecar {}'.format(json_filename)) def get_series(file_name): # need better way to get series number from nifti return int(os.path.basename(file_name).split("_")[1][1:]) def is_blacklisted(resource_file, session): blacklist = datman.utils.read_blacklist(subject=session) if not blacklist: return False series = get_series(resource_file) for entry in blacklist: bl_series = int(datman.scanid.parse_filename(entry)[2]) if series == bl_series: return True return False def main(): arguments = docopt(__doc__) study = arguments['<study>'] site = arguments['--site'] session = arguments['--session'] create_json = arguments['--json'] quiet = arguments['--quiet'] verbose = arguments['--verbose'] debug = arguments['--debug'] # setup log levels log_level = logging.WARN if quiet: log_level = logging.ERROR if verbose: log_level = logging.INFO if debug: log_level = logging.DEBUG logger.setLevel(log_level) log_handler.setLevel(log_level) # setup the config object cfg = datman.config.config(study=study) # get paths dir_nii = cfg.get_path('nii') dir_res = cfg.get_path('resources') dir_dcm = cfg.get_path('dcm') # get sessions depending on which command line argument was specified if site: sessions = [subject for subject in os.listdir(dir_res) if datman.scanid.parse(subject).site == site] elif session: sessions = session else: sessions = os.listdir(dir_res) logger.info('Processing {} sessions'.format(len(sessions))) for session in sessions: try: ident = datman.scanid.parse(session) except datman.scanid.ParseException: logger.error('Invalid session: {}'.format(session)) continue # get all files of interest stored in the session directory within # RESOURCES session_res_dir = os.path.join(dir_res, session) # extensions = ('**/*.nii.gz', '**/*.bvec', '**/*.bval') session_res_files = [] # temporarily commment out since glob in python 2 can't recurse # for extension in extensions: # session_res_files.extend( # glob(os.path.join(session_res_dir, extension), # recursive=True) # ) for filename in find_files(session_res_dir): session_res_files.append(filename) session_name = ident.get_full_subjectid_with_timepoint() session_nii_dir = os.path.join(dir_nii, session_name) session_dcm_dir = os.path.join(dir_dcm, session_name) if session_res_files: # check whether nifti directory exists, otherwise create it datman.utils.define_folder(session_nii_dir) # create dictionary with DICOM series numbers as keys and # filenames as values session_dcm_files = os.listdir(session_dcm_dir) dcm_dict = {int(datman.scanid.parse_filename(dcm)[2]): dcm for dcm in session_dcm_files} for f in session_res_files: series_num = get_series(f) # try to get new nifti filename by matching series number # in dictionary try: scan_filename = os.path.splitext(dcm_dict[series_num])[0] except (IndexError, KeyError): if is_blacklisted(f, session_name): logger.info('Ignored blacklisted series {}'.format(f)) continue logger.error('Corresponding dcm file not found for {}' .format(f)) continue ext = datman.utils.get_extension(f) nii_name = scan_filename + ext if create_json and nii_name.endswith('.nii.gz'): create_json_sidecar(dcm_dict[series_num], session_nii_dir, session_dcm_dir) create_symlink(f, nii_name, session_nii_dir) if __name__ == '__main__': main() ``` #### File: datman/bin/dm_update_standards.py ```python import os from docopt import docopt import datman.scanid import datman.scan import datman.dashboard import datman.config from dashboard.exceptions import InvalidDataException import logging logging.basicConfig(level=logging.INFO, format="[%(name)s] %(levelname)s: \ %(message)s") logger = logging.getLogger(os.path.basename(__file__)) def main(): arguments = docopt(__doc__) study = arguments["<study>"] debug = arguments["--debug"] if debug: logger.info("Logging in DEBUG mode") logger.setLevel(logging.DEBUG) # Get standards and database study cfg = datman.config.config(study=study) standards_path = cfg.get_path("std") standards = [f for f in os.listdir(standards_path) if ".json" in f] db_study = datman.dashboard.get_project(name=study) # Add standards to database for s in standards: try: db_study.add_gold_standard(os.path.join(standards_path, s)) except InvalidDataException as e: logger.error("Standard {} already exists in the Dashboard!" .format(s)) logger.debug("Returned error: {}".format(e)) continue else: logger.info("Successfully added {} to gold_standards".format(s)) if __name__ == "__main__": main() ``` #### File: datman/bin/purge_session.py ```python import os import subprocess import logging from docopt import docopt import datman.config import datman.dashboard logger = logging.getLogger(__file__) CFG = datman.config.config() def main(): arguments = docopt(__doc__) study = arguments['<study>'] session = arguments['<session>'] backupdir = arguments['--backupdir'] purgedb = arguments['--purgedb'] CFG.set_study(study) base_dir = CFG.get_study_base() logger.info('Searching folders:{}'.format(base_dir)) # Create the backup folder outdir = os.path.realpath(os.path.join(backupdir, session)) try: os.makedirs(outdir) except OSError: logger.error('Failed making backup directory:{}'.format(outdir)) return if not purge_filesystem(session, base_dir, outdir): # somethings gone wrong. End processing here. return if purgedb: try: db = datman.dashboard.dashboard(study) db.delete_session(session) except Exception: return def purge_filesystem(session, base_dir, out_dir): """ session - session name to remove base_dir - root of the filesystem to search from out_dir - directory to create the backup """ cmd_rsync = ['rsync', '-rmz', '--remove-source-files', '--include={}*/**'.format(session), '--include=*/', '--exclude=*', base_dir, out_dir] if not run_cmd(cmd_rsync): logger.error('Backup of session:{} failed'.format(session)) return cmd_find = ['find', base_dir, '-depth', '-type', 'd', '-empty', '-name', '{}*'.format(session), '-delete'] if not run_cmd(cmd_find): logger.error('Cleanup of session:{} failed'.format(session)) return return True def run_cmd(cmd): """Runs a command, logs stuff if fails, returns True on success""" try: subprocess.check_call(cmd) except subprocess.CalledProcessError as e: logger.info('Cmd:{}'.format(e.cmd)) logger.info('Status:{}'.format(e.returncode)) if(e.output): logger.info('Output:{}'.format(e.output)) return return True if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) main() ``` #### File: datman/tests/test_datman_scanid.py ```python import datman.scanid as scanid import pytest def test_parse_empty(): with pytest.raises(scanid.ParseException): scanid.parse("") def test_parse_None(): with pytest.raises(scanid.ParseException): scanid.parse(None) def test_parse_garbage(): with pytest.raises(scanid.ParseException): scanid.parse("lkjlksjdf") def test_parse_good_datman_scanid(): ident = scanid.parse("DTI_CMH_H001_01_02") assert ident.study == "DTI" assert ident.site == "CMH" assert ident.subject == "H001" assert ident.timepoint == "01" assert ident.session == "02" def test_parse_good_datman_PHA_scanid(): ident = scanid.parse("DTI_CMH_PHA_ADN0001") assert ident.study == "DTI" assert ident.site == "CMH" assert ident.subject == "PHA_ADN0001" assert ident.timepoint == "" assert ident.session == "" assert str(ident) == "DTI_CMH_PHA_ADN0001" def test_parse_good_date_based_datman_pha_scanid(): ident = scanid.parse("OPT01_UTO_PHA_FBN190603") assert ident.study == "OPT01" assert ident.site == "UTO" assert ident.subject == "PHA_FBN190603" assert ident.timepoint == "" assert str(ident) == "OPT01_UTO_PHA_FBN190603" def test_parse_good_kcni_scanid(): ident = scanid.parse("ABC01_CMH_12345678_01_SE02_MR") assert ident.study == 'ABC01' assert ident.site == 'CMH' assert ident.subject == '12345678' assert ident.timepoint == '01' assert ident.session == '02' def test_parse_good_kcni_PHA_scanid(): ident = scanid.parse("ABC01_CMH_LEGPHA_0001_MR") assert ident.study == 'ABC01' assert ident.site == 'CMH' assert ident.subject == 'PHA_LEG0001' def test_parses_datman_subject_id_as_datman_identifier(): dm_subject = "DTI01_CMH_H001_01_02" ident = scanid.parse(dm_subject) assert isinstance(ident, scanid.DatmanIdentifier) def test_parses_datman_pha_id_as_datman_identifier(): dm_pha = "DTI01_CMH_PHA_FBN0001" ident = scanid.parse(dm_pha) assert isinstance(ident, scanid.DatmanIdentifier) def test_parses_kcni_subject_id_as_kcni_identifier(): kcni_subject = "DTI01_CMH_H001_01_SE02_MR" ident = scanid.parse(kcni_subject) assert isinstance(ident, scanid.KCNIIdentifier) def test_parses_kcni_pha_id_as_kcni_identifier(): kcni_pha = "DTI01_CMH_ABCPHA_0001_MR" ident = scanid.parse(kcni_pha) assert isinstance(ident, scanid.KCNIIdentifier) def test_parse_exception_when_kcni_subject_id_modality_missing(): with pytest.raises(scanid.ParseException): scanid.parse("DTI01_CMH_H001_01_SE02") def test_parse_exception_when_kcni_pha_id_modality_missing(): with pytest.raises(scanid.ParseException): scanid.parse("DTI01_CMH_ABCPHA_0001") def test_parse_exception_when_kcni_session_malformed(): with pytest.raises(scanid.ParseException): scanid.parse("DTI01_CMH_H001_01_02_MR") def test_user_settings_id_type_respected(): # Datman IDs should be rejected if user says to parse only KCNI IDs with pytest.raises(scanid.ParseException): scanid.parse("DTI01_CMH_H001_01_02", settings={'ID_TYPE': 'KCNI'}) # KCNI IDs should be rejected if the user says to parse only Datman IDs with pytest.raises(scanid.ParseException): scanid.parse("DTI01_CMH_H001_01_SE02_MR", settings={'ID_TYPE': 'DATMAN'}) def test_kcni_study_field_is_modified_when_settings_given(): settings = { 'STUDY': { 'DTI01': 'DTI' } } kcni_id = "DTI01_CMH_H001_01_SE02_MR" ident = scanid.parse(kcni_id, settings=settings) assert ident.study == 'DTI' assert str(ident) == "DTI_CMH_H001_01_02" def test_kcni_site_field_is_modified_when_settings_given(): settings = { 'SITE': { 'UTO': 'UT2' } } kcni_id = 'ABC01_UTO_12345678_01_SE02_MR' ident = scanid.parse(kcni_id, settings=settings) assert ident.site == 'UT2' assert str(ident) == 'ABC01_UT2_12345678_01_02' def test_kcni_subid_field_is_modified_when_settings_given(): settings = { 'SUBJECT': { '^(100001|100002)->H\\1': '^H([0-9]+)->\\1' } } kcni_id = 'PAC01_CMH_100001_01_SE01_MR' ident = scanid.parse(kcni_id, settings=settings) assert ident.subject == 'H100001' kcni_id = 'PAC01_CMH_100004_01_SE03_MR' ident = scanid.parse(kcni_id, settings=settings) assert ident.subject == '100004' def test_get_kcni_identifier_from_datman_str(): kcni_ident = scanid.get_kcni_identifier("ABC01_UTO_12345678_01_02") assert isinstance(kcni_ident, scanid.KCNIIdentifier) assert kcni_ident.orig_id == "ABC01_UTO_12345678_01_SE02_MR" def test_get_kcni_identifier_from_datman_pha_str(): kcni_ident = scanid.get_kcni_identifier("ABC01_CMH_PHA_FBN0001") assert isinstance(kcni_ident, scanid.KCNIIdentifier) assert kcni_ident.orig_id == "ABC01_CMH_FBNPHA_0001_MR" def test_get_kcni_identifier_from_datman_date_based_pha_str(): kcni_ident = scanid.get_kcni_identifier("OPT01_UTO_PHA_FBN190603") assert isinstance(kcni_ident, scanid.KCNIIdentifier) assert kcni_ident.orig_id == "OPT01_UTO_FBNPHA_190603_MR" def test_get_kcni_identifier_from_datman_ident(): ident = scanid.parse("SPN01_CMH_0001_01_01") kcni_ident = scanid.get_kcni_identifier(ident) assert isinstance(kcni_ident, scanid.KCNIIdentifier) assert kcni_ident.orig_id == "SPN01_CMH_0001_01_SE01_MR" def test_get_kcni_identifier_from_datman_pha_ident(): dm_ident = scanid.parse("OPT01_UTO_PHA_ADN0001") kcni_ident = scanid.get_kcni_identifier(dm_ident) assert isinstance(kcni_ident, scanid.KCNIIdentifier) assert kcni_ident.orig_id == "OPT01_UTO_ADNPHA_0001_MR" def test_get_kcni_identifier_from_datman_with_field_changes(): settings = { "STUDY": { "AND01": "ANDT" }, "SITE": { "UTO": "CMH" } } kcni = scanid.get_kcni_identifier("ANDT_CMH_0001_01_01", settings) assert kcni.study == "ANDT" assert kcni.site == "CMH" assert kcni.orig_id == "AND01_UTO_0001_01_SE01_MR" kcni_pha = scanid.get_kcni_identifier("ANDT_CMH_PHA_FBN0023", settings) assert kcni_pha.study == "ANDT" assert kcni_pha.site == "CMH" assert kcni_pha.orig_id == "AND01_UTO_FBNPHA_0023_MR" def test_get_kcni_identifier_correctly_reverses_subject_field_changes(): settings = { 'SUBJECT': { '(100001|100002)->H\\1': '^H([0-9]+)->\\1' } } kcni = scanid.get_kcni_identifier("ABC01_CMH_H100001_01_01", settings) assert kcni.subject == "H100001" assert kcni.orig_id == "ABC01_CMH_100001_01_SE01_MR" kcni = scanid.get_kcni_identifier("ABC01_CMH_PHA_FBN201013", settings) assert kcni.subject == "PHA_FBN201013" assert kcni.orig_id == "ABC01_CMH_FBNPHA_201013_MR" def test_get_kcni_identifier_handles_already_kcni(): kcni = "ABC01_UTO_12345678_01_SE02_MR" kcni_ident = scanid.parse(kcni) kcni1 = scanid.get_kcni_identifier(kcni) assert isinstance(kcni1, scanid.KCNIIdentifier) assert kcni1.orig_id == kcni kcni2 = scanid.get_kcni_identifier(kcni_ident) assert isinstance(kcni2, scanid.KCNIIdentifier) assert kcni2.orig_id == kcni def test_datman_converted_to_kcni_and_back_is_unmodified(): orig_datman = 'SPN01_CMH_0001_01_01' dm_ident = scanid.parse(orig_datman) kcni = scanid.get_kcni_identifier(dm_ident) assert isinstance(kcni, scanid.KCNIIdentifier) new_datman = scanid.parse(str(kcni)) assert str(new_datman) == orig_datman def test_kcni_converted_to_datman_and_back_is_unmodified(): orig_kcni = 'SPN01_CMH_0001_01_SE01_MR' kcni_ident = scanid.parse(orig_kcni) datman = scanid.parse(str(kcni_ident)) assert isinstance(datman, scanid.DatmanIdentifier) new_kcni = scanid.get_kcni_identifier(datman) assert new_kcni.orig_id == orig_kcni def test_id_field_changes_correct_for_repeat_conversions(): settings = { 'STUDY': { 'AND01': 'ANDT' }, 'SITE': { 'UTO': 'CMH' }, 'SUBJECT': { '^(0001|0002)->H\\1': '^H([0-9]+)->\\1' } } correct_kcni = "AND01_UTO_0001_01_SE01_MR" correct_datman = "ANDT_CMH_H0001_01_01" # KCNI to datman and back kcni_ident = scanid.parse(correct_kcni, settings) dm_ident = scanid.parse(str(kcni_ident), settings) assert str(dm_ident) == correct_datman new_kcni = scanid.get_kcni_identifier(dm_ident, settings) assert new_kcni.orig_id == correct_kcni # Datman to KCNI and back dm_ident = scanid.parse(correct_datman, settings) kcni_ident = scanid.get_kcni_identifier(dm_ident, settings) assert kcni_ident.orig_id == correct_kcni new_dm = scanid.parse(str(kcni_ident), settings) assert str(new_dm) == correct_datman def test_kcni_get_xnat_subject_id_not_affected_by_field_translation(): settings = { "STUDY": { "ABC01": "ABCD" } } pha = "ABC01_CMH_LEGPHA_0001_MR" pha_ident = scanid.parse(pha, settings) assert pha_ident.get_xnat_subject_id() == "ABC01_CMH_LEGPHA" sub = "ABC01_CMH_12345678_01_SE02_MR" sub_ident = scanid.parse(sub, settings) assert sub_ident.get_xnat_subject_id() == "ABC01_CMH_12345678" def test_kcni_get_xnat_experiment_id_not_affected_by_field_translations(): settings = { "STUDY": { "ABC01": "ABCD" } } pha = "ABC01_CMH_LEGPHA_0001_MR" pha_ident = scanid.parse(pha, settings) assert pha_ident.get_xnat_experiment_id() == pha sub = "ABC01_CMH_12345678_01_SE02_MR" sub_ident = scanid.parse(sub, settings) assert sub_ident.get_xnat_experiment_id() == sub def test_is_scanid_garbage(): assert not scanid.is_scanid("garbage") def test_is_scanid_subjectid_only(): assert not scanid.is_scanid("DTI_CMH_H001") def test_is_scanid_extra_fields(): assert scanid.is_scanid("DTI_CMH_H001_01_01_01_01_01_01") is False def test_is_datman_scanid_good(): assert scanid.is_scanid("SPN01_CMH_0002_01_01") def test_is_kcni_scanid_good(): assert scanid.is_scanid("SPN01_CMH_0001_01_SE01_MR") def test_is_scanid_good_when_already_parsed(): parsed = scanid.parse("DTI_CMH_H001_01_01") assert scanid.is_scanid(parsed) def test_is_scanid_with_session_when_already_parsed(): parsed = scanid.parse("OPT01_UT2_UT10001_01_01") assert scanid.is_scanid_with_session(parsed) def test_get_full_subjectid(): ident = scanid.parse("DTI_CMH_H001_01_02") assert ident.get_full_subjectid() == "DTI_CMH_H001" def test_subject_id_with_timepoint(): ident = scanid.parse("DTI_CMH_H001_01_02") assert ident.get_full_subjectid_with_timepoint() == 'DTI_CMH_H001_01' def test_PHA_timepoint(): ident = scanid.parse("DTI_CMH_PHA_ADN0001") assert ident.get_full_subjectid_with_timepoint() == 'DTI_CMH_PHA_ADN0001' def test_parse_filename(): ident, tag, series, description = scanid.parse_filename( 'DTI_CMH_H001_01_01_T1_03_description.nii.gz') assert str(ident) == 'DTI_CMH_H001_01_01' assert tag == 'T1' assert series == '03' assert description == 'description' def test_parse_filename_parses_when_tag_contains_pha(): ident, tag, series, description = scanid.parse_filename( "CLZ_CMP_0000_01_01_PHABCD_11_FieldMap-2mm") assert str(ident) == "CLZ_CMP_0000_01_01" assert tag == "PHABCD" assert series == "11" assert description == "FieldMap-2mm" _, tag, _, _ = scanid.parse_filename( "CLZ_CMP_0000_01_01_ABCPHA_11_FieldMap-2mm") assert tag == "ABCPHA" _, tag, _, _ = scanid.parse_filename( "CLZ_CMP_0000_01_01_ABCPHADEF_11_FieldMap-2mm") assert tag == "ABCPHADEF" def test_parse_filename_parses_when_tag_contains_kcniish_MR_substring(): ident, tag, series, description = scanid.parse_filename( "CLZ_CMP_0000_01_01_MRABC_11_FieldMap-2mm.nii.gz") assert str(ident) == "CLZ_CMP_0000_01_01" assert tag == "MRABC" assert series == "11" assert description == "FieldMap-2mm" _, tag, _, _ = scanid.parse_filename( "CLZ_CMP_0000_01_01_ABCMR_11_FieldMap-2mm") assert tag == "ABCMR" _, tag, _, _ = scanid.parse_filename( "CLZ_CMP_0000_01_01_ABCMRDEF_11_FieldMap-2mm") assert tag == "ABCMRDEF" def test_parse_filename_parses_when_tag_contains_kcniish_SE_substring(): ident, tag, series, description = scanid.parse_filename( "CLZ_CMP_0000_01_01_SEABC_11_FieldMap-2mm.nii.gz") assert str(ident) == "CLZ_CMP_0000_01_01" assert tag == "SEABC" assert series == "11" assert description == "FieldMap-2mm" _, tag, _, _ = scanid.parse_filename( "CLZ_CMP_0000_01_01_ABCSE_11_FieldMap-2mm") assert tag == "ABCSE" _, tag, _, _ = scanid.parse_filename( "CLZ_CMP_0000_01_01_ABCSEDEF_11_FieldMap-2mm") assert tag == "ABCSEDEF" def test_parse_filename_PHA(): ident, tag, series, description = scanid.parse_filename( 'DTI_CMH_PHA_ADN0001_T1_02_description.nii.gz') assert str(ident) == 'DTI_CMH_PHA_ADN0001' assert tag == 'T1' assert series == '02' assert description == 'description' def test_parse_filename_PHA_2(): ident, tag, series, description = scanid.parse_filename( 'SPN01_MRC_PHA_FBN0013_RST_04_EPI-3x3x4xTR2.nii.gz') assert ident.study == 'SPN01' assert ident.site == 'MRC' assert ident.subject == 'PHA_FBN0013' assert ident.timepoint == '' assert ident.session == '' assert str(ident) == 'SPN01_MRC_PHA_FBN0013' assert tag == 'RST' assert series == '04' assert description == 'EPI-3x3x4xTR2' def test_kcni_id_with_non_mr_modality_is_valid(): ident = scanid.parse("ABC01_CMH_0001_01_SE01_EEG") assert ident.modality == "EEG" def test_datman_ids_assigned_mr_modality(): ident = scanid.parse("ABC01_CMH_0001_01_01") assert ident.modality == "MR" ident = scanid.parse("ABC01_CMH_PHA_FBN0001") assert ident.modality == "MR" def test_parse_filename_with_path(): ident, tag, series, description = scanid.parse_filename( '/data/DTI_CMH_H001_01_01_T1_02_description.nii.gz') assert str(ident) == 'DTI_CMH_H001_01_01' assert tag == 'T1' assert series == '02' assert description == 'description' def test_parse_bids_filename(): ident = scanid.parse_bids_filename("sub-CMH0001_ses-01_run-1_T1w.nii.gz") assert ident.subject == 'CMH0001' assert ident.session == '01' assert ident.run == '1' assert ident.suffix == 'T1w' def test_parse_bids_filename_with_full_path(): ident = scanid.parse_bids_filename( "/some/folder/sub-CMH0001_ses-01_run-1_T1w.nii.gz") assert ident.subject == 'CMH0001' assert ident.session == '01' assert ident.run == '1' assert ident.suffix == 'T1w' def test_parse_bids_filename_without_ext(): ident = scanid.parse_bids_filename( "/some/folder/sub-CMH0001_ses-02_run-3_T1w") assert ident.subject == 'CMH0001' assert ident.session == '02' assert ident.run == '3' assert ident.suffix == 'T1w' def test_parse_bids_filename_without_run(): scanid.parse_bids_filename("sub-CMH0001_ses-01_T1w.nii.gz") def test_parse_bids_filename_missing_subject(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("ses-01_run-1_T1w") def test_parse_bids_filename_malformed_subject(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("CMH0001_ses-01_run-1_T1w") def test_parse_bids_filename_missing_session(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH0001_run-1_T1w") def test_parse_bids_filename_malformed_session(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH0001_ses-_run-1_T1w") def test_parse_bids_filename_missing_suffix(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH0001_ses-01_run-1.nii.gz") def test_parse_bids_filename_missing_suffix_and_run(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH0001_ses-01.nii.gz") def test_unknown_entity_does_not_get_set_as_suffix(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH_ses-01_new-FIELD_T1w.nii.gz") def test_empty_entity_name_does_not_get_set_as_suffix(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH_ses-01_-FIELD_T1w.nii.gz") def test_empty_entity_name_and_label_does_not_get_set_as_suffix(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH_ses-01_-_T1w.nii.gz") def test_bids_file_raises_exception_when_wrong_entities_used_for_anat(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename( "sub-CMH0001_ses-01_ce-somefield_dir-somedir" "_run-1_T1w.nii.gz") def test_bids_file_raises_exception_when_wrong_entities_used_for_task(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH0001_ses-01_task-sometask_" "ce-somefield_run-1_T1w.nii.gz") def test_bids_file_raises_exception_when_wrong_entities_used_for_fmap(): with pytest.raises(scanid.ParseException): scanid.parse_bids_filename("sub-CMH0001_ses-01_dir-somedir_" "rec-somefield_run-1_T1w.nii.gz") def test_optional_entities_dont_get_parsed_as_suffix(): optional_entities = "sub-CMH0001_ses-01_{}_T1w.nii.gz" for entity in ['run', 'acq', 'ce', 'rec', 'echo', 'ce', 'mod', 'task']: optional_field = '{}-11'.format(entity) bids_name = optional_entities.format(optional_field) parsed = scanid.parse_bids_filename(bids_name) assert optional_field not in parsed.suffix def test_bids_file_equals_string_of_itself(): bids_name = "sub-CMH0001_ses-01_run-1_T1w" ident = scanid.parse_bids_filename(bids_name) assert ident == bids_name def test_bids_file_equals_string_of_itself_minus_run(): bids_name = "sub-CMH0001_ses-01_run-1_T1w" ident = scanid.parse_bids_filename(bids_name) assert ident == bids_name.replace("run-1_", "") def test_bids_file_equals_itself_with_path_and_ext(): bids_name = "sub-CMH0001_ses-01_run-1_T1w" bids_full_path = "/some/folder/somewhere/{}.nii.gz".format(bids_name) ident = scanid.parse_bids_filename(bids_name) assert ident == bids_full_path def test_bids_file_correctly_parses_when_all_anat_entities_given(): anat_bids = "sub-CMH0001_ses-01_acq-abcd_ce-efgh_rec-ijkl_" + \ "run-1_mod-mnop_somesuffix" parsed = scanid.parse_bids_filename(anat_bids) assert str(parsed) == anat_bids def test_bids_file_correctly_parses_when_all_task_entities_given(): task_bids = "sub-CMH0001_ses-01_task-abcd_acq-efgh_" + \ "rec-ijkl_run-1_echo-11_imi" parsed = scanid.parse_bids_filename(task_bids) assert str(parsed) == task_bids def test_bids_file_correctly_parses_when_all_fmap_entities_given(): fmap_bids = "sub-CMH0001_ses-01_acq-abcd_dir-efgh_run-1_fmap" parsed = scanid.parse_bids_filename(fmap_bids) assert str(parsed) == fmap_bids def test_bids_file_handles_prelapse_session_strings(): prelapse_file = "sub-BRG33006_ses-01R_run-1_something" parsed = scanid.parse_bids_filename(prelapse_file) assert str(parsed) == prelapse_file ``` #### File: datman/tests/test_dm_link_project_scans.py ```python import unittest import logging import importlib from mock import patch import datman.scanid # Disable logging for tests logging.disable(logging.CRITICAL) link_scans = importlib.import_module('bin.dm_link_project_scans') class CopyChecklistEntry(unittest.TestCase): source = datman.scanid.parse("STUDY_CMH_ID1_01_01") target = datman.scanid.parse("STUDY2_CMH_ID2_01_01") path = "./target_checklist.csv" @patch('datman.utils.update_checklist') @patch('datman.utils.read_checklist') def test_does_nothing_when_target_checklist_has_entry(self, mock_read, mock_update): mock_read.side_effect = lambda subject=None: \ {self.target: "signed_off", self.source: "signed_off"}[subject] link_scans.copy_checklist_entry(self.source, self.target, self.path) assert mock_update.call_count == 0 @patch('datman.utils.update_checklist') @patch('datman.utils.read_checklist') def test_does_nothing_when_no_relevant_entries_in_source(self, mock_read, mock_update): mock_read.return_value = None link_scans.copy_checklist_entry(self.source, self.target, self.path) assert mock_update.call_count == 0 @patch('datman.utils.update_checklist') @patch('datman.utils.read_checklist') def test_updates_with_correct_entry(self, mock_read, mock_update): comment = "signed_off" mock_read.side_effect = lambda subject=None: \ {self.source: comment, self.target: None}[subject] link_scans.copy_checklist_entry(self.source, self.target, self.path) expected_entry = {self.target: comment} assert mock_update.call_count == 1 mock_update.assert_called_once_with(expected_entry, path=self.path) class TagsMatch(unittest.TestCase): tags = ["T1", "PDT2", "DTI60"] def test_doesnt_crash_with_empty_line(self): entry = "" tags_match = link_scans.tags_match(entry, self.tags) assert tags_match is False def test_returns_false_with_unparseable_entry(self): entry = "BAD_ID_01_DTI60_15_Ax-DTI-60plus5 --corrupted-data" tags_match = link_scans.tags_match(entry, self.tags) assert tags_match is False def test_returns_false_with_excluded_tag(self): entry = "STUDY_SITE_ID_01_01_T2_num_description --corrupted-data" tags_match = link_scans.tags_match(entry, self.tags) assert tags_match is False def test_returns_true_with_matching_tag(self): entry = "STUDY_SITE_ID_01_01_DTI60_15_Ax-DTI-60plus5 --corrupted-data" tags_match = link_scans.tags_match(entry, self.tags) assert tags_match is True class CopyBlacklistData(unittest.TestCase): source = 'STUDY_SITE_ID1_01_01' source_list = './fake_dir/blacklist1.csv' target = 'STUDY2_SITE_ID2_01_01' target_list = './fake_dir/blacklist2.csv' tags = ['T1', 'DTI60'] @patch('datman.utils.update_blacklist') @patch('datman.utils.read_blacklist') def test_does_nothing_without_source_blacklist_entries_to_copy( self, mock_read, mock_update): mock_read.return_value = {} link_scans.copy_blacklist_data(self.source, self.source_list, self.target, self.target_list, self.tags) assert mock_update.call_count == 0 @patch('datman.utils.update_blacklist') @patch('datman.utils.read_blacklist') def test_does_nothing_if_all_entries_present_in_target_blacklist( self, mock_read, mock_update): post_fix = "_DTI60_05_Ax-DTI-60plus5" def mock_blacklist(subject, path): if path == self.target_list and subject == self.target: return {self.target + post_fix: '--corrupted'} if path == self.source_list and subject == self.source: return {self.source + post_fix: '--corrupted'} return {} mock_read.side_effect = mock_blacklist link_scans.copy_blacklist_data(self.source, self.source_list, self.target, self.target_list, self.tags) assert mock_update.call_count == 0 @patch('datman.utils.update_blacklist') @patch('datman.utils.read_blacklist') def test_adds_missing_entries_with_matched_tags(self, mock_read, mock_update): fname1 = "_DTI60_05_Ax-DTI-60plus5" fname2 = "_T1_06_SagT1Bravo" fname3 = "_PDT2_07_OblAx-T2DEfseXL" comments = ["--corrupted", "", "--corrupted"] def mock_blacklist(subject, path): if path == self.target_list and subject == self.target: return self._make_entries(self.target, [fname1], comments) if path == self.source_list and subject == self.source: return self._make_entries(self.source, [fname1, fname2, fname3], comments) return {} mock_read.side_effect = mock_blacklist link_scans.copy_blacklist_data(self.source, self.source_list, self.target, self.target_list, self.tags) missing_entries = self._make_entries(self.target, [fname2], [""]) assert mock_update.call_count == 1 mock_update.assert_called_once_with(missing_entries, path=self.target_list) def _make_entries(self, subject, fnames, comments): entries = {} for num, fname in enumerate(fnames): entries[subject + fname] = comments[num] return entries ``` #### File: datman/tests/test_dm_link_shared_ids.py ```python import importlib import unittest import copy import logging # Disable all logging output for tests logging.disable(logging.CRITICAL) link_shared = importlib.import_module('bin.dm_link_shared_ids') class TestRecord(unittest.TestCase): mock_redcap_record = {'par_id': 'STUDY_SITE_0001_01_01', 'record_id': 0, 'shared_parid_1': 'STUDY_SITE_0002_01_01', 'shared_parid_2': 'STUDY2_CMH_9999_01_01', 'shared_parid_8': 'OTHER_CMH_1234_01_01', 'cmts': 'No comment.'} mock_kcni_record = {'par_id': 'STU01_ABC_0001_01_SE01_MR', 'record_id': 1, 'shared_parid_1': 'STU02_ABC_0002_01_SE01_MR', 'shared_parid_2': 'STUDY3_ABC_0003_01_SE01_MR', 'cmts': 'Test comment.'} def test_ignores_records_with_bad_subject_id(self): bad_redcap_record = {'par_id': 'STUDY_0001_01', 'record_id': 0, 'shared_parid_1': '', 'cmts': ''} record = link_shared.Record(bad_redcap_record) assert record.id is None assert record.study is None assert not record.matches_study('STUDY') def test_ignores_badly_named_shared_ids(self): bad_shared_id = copy.copy(self.mock_redcap_record) bad_id = 'STUDY_0001_01' bad_shared_id['shared_parid_4'] = bad_id record = link_shared.Record(bad_shared_id) assert bad_id not in record.shared_ids def test_finds_all_shared_ids_in_record(self): record = link_shared.Record(self.mock_redcap_record) expected = [self.mock_redcap_record['shared_parid_1'], self.mock_redcap_record['shared_parid_2'], self.mock_redcap_record['shared_parid_8']] assert sorted(record.shared_ids) == sorted(expected) def test_correctly_handles_kcni_main_id(self): id_map = { 'STUDY': { 'STU01': 'STUDY', }, 'SITE': { 'ABC': 'SITE' } } record = link_shared.Record(self.mock_kcni_record, id_map) assert str(record.id) == 'STUDY_SITE_0001_01_01' def test_correctly_handles_kcni_shared_ids(self): id_map = { 'STUDY': { 'STU02': 'STUDY2', }, 'SITE': { 'ABC': 'SITE' } } record = link_shared.Record(self.mock_kcni_record, id_map) assert 'STUDY2_SITE_0002_01_01' in record.shared_ids ```
{ "source": "josephmje/niworkflows", "score": 2 }
#### File: niworkflows/interfaces/nibabel.py ```python import numpy as np import nibabel as nb from nipype import logging from nipype.utils.filemanip import fname_presuffix from nipype.interfaces.base import ( traits, TraitedSpec, BaseInterfaceInputSpec, File, SimpleInterface, OutputMultiObject, InputMultiObject, ) IFLOGGER = logging.getLogger("nipype.interface") class _ApplyMaskInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc="an image") in_mask = File(exists=True, mandatory=True, desc="a mask") threshold = traits.Float( 0.5, usedefault=True, desc="a threshold to the mask, if it is nonbinary" ) class _ApplyMaskOutputSpec(TraitedSpec): out_file = File(exists=True, desc="masked file") class ApplyMask(SimpleInterface): """Mask the input given a mask.""" input_spec = _ApplyMaskInputSpec output_spec = _ApplyMaskOutputSpec def _run_interface(self, runtime): img = nb.load(self.inputs.in_file) msknii = nb.load(self.inputs.in_mask) msk = msknii.get_fdata() > self.inputs.threshold self._results["out_file"] = fname_presuffix( self.inputs.in_file, suffix="_masked", newpath=runtime.cwd ) if img.dataobj.shape[:3] != msk.shape: raise ValueError("Image and mask sizes do not match.") if not np.allclose(img.affine, msknii.affine): raise ValueError("Image and mask affines are not similar enough.") if img.dataobj.ndim == msk.ndim + 1: msk = msk[..., np.newaxis] masked = img.__class__(img.dataobj * msk, None, img.header) masked.to_filename(self._results["out_file"]) return runtime class _BinarizeInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc="input image") thresh_low = traits.Float(mandatory=True, desc="non-inclusive lower threshold") class _BinarizeOutputSpec(TraitedSpec): out_file = File(exists=True, desc="masked file") out_mask = File(exists=True, desc="output mask") class Binarize(SimpleInterface): """Binarizes the input image applying the given thresholds.""" input_spec = _BinarizeInputSpec output_spec = _BinarizeOutputSpec def _run_interface(self, runtime): img = nb.load(self.inputs.in_file) self._results["out_file"] = fname_presuffix( self.inputs.in_file, suffix="_masked", newpath=runtime.cwd ) self._results["out_mask"] = fname_presuffix( self.inputs.in_file, suffix="_mask", newpath=runtime.cwd ) data = img.get_fdata() mask = data > self.inputs.thresh_low data[~mask] = 0.0 masked = img.__class__(data, img.affine, img.header) masked.to_filename(self._results["out_file"]) img.header.set_data_dtype("uint8") maskimg = img.__class__(mask.astype("uint8"), img.affine, img.header) maskimg.to_filename(self._results["out_mask"]) return runtime class _SplitSeriesInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc="input 4d image") class _SplitSeriesOutputSpec(TraitedSpec): out_files = OutputMultiObject(File(exists=True), desc="output list of 3d images") class SplitSeries(SimpleInterface): """Split a 4D dataset along the last dimension into a series of 3D volumes.""" input_spec = _SplitSeriesInputSpec output_spec = _SplitSeriesOutputSpec def _run_interface(self, runtime): in_file = self.inputs.in_file img = nb.load(in_file) extra_dims = tuple(dim for dim in img.shape[3:] if dim > 1) or (1,) if len(extra_dims) != 1: raise ValueError(f"Invalid shape {'x'.join(str(s) for s in img.shape)}") img = img.__class__( img.dataobj.reshape(img.shape[:3] + extra_dims), img.affine, img.header ) self._results["out_files"] = [] for i, img_3d in enumerate(nb.four_to_three(img)): out_file = fname_presuffix( in_file, suffix=f"_idx-{i:03}", newpath=runtime.cwd ) img_3d.to_filename(out_file) self._results["out_files"].append(out_file) return runtime class _MergeSeriesInputSpec(BaseInterfaceInputSpec): in_files = InputMultiObject( File(exists=True, mandatory=True, desc="input list of 3d images") ) allow_4D = traits.Bool( True, usedefault=True, desc="whether 4D images are allowed to be concatenated" ) class _MergeSeriesOutputSpec(TraitedSpec): out_file = File(exists=True, desc="output 4d image") class MergeSeries(SimpleInterface): """Merge a series of 3D volumes along the last dimension into a single 4D image.""" input_spec = _MergeSeriesInputSpec output_spec = _MergeSeriesOutputSpec def _run_interface(self, runtime): nii_list = [] for f in self.inputs.in_files: filenii = nb.squeeze_image(nb.load(f)) ndim = filenii.dataobj.ndim if ndim == 3: nii_list.append(filenii) continue elif self.inputs.allow_4D and ndim == 4: nii_list += nb.four_to_three(filenii) continue else: raise ValueError( "Input image has an incorrect number of dimensions" f" ({ndim})." ) img_4d = nb.concat_images(nii_list) out_file = fname_presuffix( self.inputs.in_files[0], suffix="_merged", newpath=runtime.cwd ) img_4d.to_filename(out_file) self._results["out_file"] = out_file return runtime class _RegridToZoomsInputSpec(BaseInterfaceInputSpec): in_file = File( exists=True, mandatory=True, desc="a file whose resolution is to change" ) zooms = traits.Tuple( traits.Float, traits.Float, traits.Float, mandatory=True, desc="the new resolution", ) order = traits.Int(3, usedefault=True, desc="order of interpolator") clip = traits.Bool( True, usedefault=True, desc="clip the data array within the original image's range", ) smooth = traits.Either( traits.Bool(), traits.Float(), default=False, usedefault=True, desc="apply gaussian smoothing before resampling", ) class _RegridToZoomsOutputSpec(TraitedSpec): out_file = File(exists=True, dec="the regridded file") class RegridToZooms(SimpleInterface): """Change the resolution of an image (regrid).""" input_spec = _RegridToZoomsInputSpec output_spec = _RegridToZoomsOutputSpec def _run_interface(self, runtime): from ..utils.images import resample_by_spacing self._results["out_file"] = fname_presuffix( self.inputs.in_file, suffix="_regrid", newpath=runtime.cwd ) resample_by_spacing( self.inputs.in_file, self.inputs.zooms, order=self.inputs.order, clip=self.inputs.clip, smooth=self.inputs.smooth, ).to_filename(self._results["out_file"]) return runtime class _DemeanImageInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc="image to be demeaned") in_mask = File( exists=True, mandatory=True, desc="mask where median will be calculated" ) only_mask = traits.Bool(False, usedefault=True, desc="demean only within mask") class _DemeanImageOutputSpec(TraitedSpec): out_file = File(exists=True, desc="demeaned image") class DemeanImage(SimpleInterface): input_spec = _DemeanImageInputSpec output_spec = _DemeanImageOutputSpec def _run_interface(self, runtime): from ..utils.images import demean self._results["out_file"] = demean( self.inputs.in_file, self.inputs.in_mask, only_mask=self.inputs.only_mask, newpath=runtime.cwd, ) return runtime class _FilledImageLikeInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc="image to be demeaned") fill_value = traits.Float(1.0, usedefault=True, desc="value to fill") dtype = traits.Enum( "float32", "uint8", usedefault=True, desc="force output data type" ) class _FilledImageLikeOutputSpec(TraitedSpec): out_file = File(exists=True, desc="demeaned image") class FilledImageLike(SimpleInterface): input_spec = _FilledImageLikeInputSpec output_spec = _FilledImageLikeOutputSpec def _run_interface(self, runtime): from ..utils.images import nii_ones_like self._results["out_file"] = nii_ones_like( self.inputs.in_file, self.inputs.fill_value, self.inputs.dtype, newpath=runtime.cwd, ) return runtime class _GenerateSamplingReferenceInputSpec(BaseInterfaceInputSpec): fixed_image = File( exists=True, mandatory=True, desc="the reference file, defines the FoV" ) moving_image = File(exists=True, mandatory=True, desc="the pixel size reference") xform_code = traits.Enum(None, 2, 4, usedefault=True, desc="force xform code") fov_mask = traits.Either( None, File(exists=True), usedefault=True, desc="mask to clip field of view (in fixed_image space)", ) keep_native = traits.Bool( True, usedefault=True, desc="calculate a grid with native resolution covering " "the volume extent given by fixed_image, fast forward " "fixed_image otherwise.", ) class _GenerateSamplingReferenceOutputSpec(TraitedSpec): out_file = File(exists=True, desc="one file with all inputs flattened") class GenerateSamplingReference(SimpleInterface): """ Generates a reference grid for resampling one image keeping original resolution, but moving data to a different space (e.g. MNI). If the `fov_mask` optional input is provided, then the abbr:`FoV (field-of-view)` is cropped to a bounding box containing the brain mask plus an offest of two voxels along all dimensions. The `fov_mask` should be to the brain mask calculated from the T1w, and should not contain the brain stem. The mask is resampled into target space, and then the bounding box is calculated. Finally, the FoV is adjusted to that bounding box. """ input_spec = _GenerateSamplingReferenceInputSpec output_spec = _GenerateSamplingReferenceOutputSpec def _run_interface(self, runtime): if not self.inputs.keep_native: self._results["out_file"] = self.inputs.fixed_image return runtime from .. import __version__ self._results["out_file"] = _gen_reference( self.inputs.fixed_image, self.inputs.moving_image, fov_mask=self.inputs.fov_mask, force_xform_code=self.inputs.xform_code, message="%s (niworkflows v%s)" % (self.__class__.__name__, __version__), newpath=runtime.cwd, ) return runtime class _IntensityClipInputSpec(BaseInterfaceInputSpec): in_file = File( exists=True, mandatory=True, desc="3D file which intensity will be clipped" ) p_min = traits.Float(35.0, usedefault=True, desc="percentile for the lower bound") p_max = traits.Float(99.98, usedefault=True, desc="percentile for the upper bound") nonnegative = traits.Bool( True, usedefault=True, desc="whether input intensities must be positive" ) dtype = traits.Enum( "int16", "float32", "uint8", usedefault=True, desc="output datatype" ) invert = traits.Bool(False, usedefault=True, desc="finalize by inverting contrast") class _IntensityClipOutputSpec(TraitedSpec): out_file = File(exists=True, desc="file after clipping") class IntensityClip(SimpleInterface): """Clip the intensity range as prescribed by the percentiles.""" input_spec = _IntensityClipInputSpec output_spec = _IntensityClipOutputSpec def _run_interface(self, runtime): self._results["out_file"] = _advanced_clip( self.inputs.in_file, p_min=self.inputs.p_min, p_max=self.inputs.p_max, nonnegative=self.inputs.nonnegative, dtype=self.inputs.dtype, invert=self.inputs.invert, newpath=runtime.cwd, ) return runtime def _gen_reference( fixed_image, moving_image, fov_mask=None, out_file=None, message=None, force_xform_code=None, newpath=None, ): """Generate a sampling reference, and makes sure xform matrices/codes are correct.""" import nilearn.image as nli if out_file is None: out_file = fname_presuffix( fixed_image, suffix="_reference", newpath=newpath ) # Moving images may not be RAS/LPS (more generally, transverse-longitudinal-axial) reoriented_moving_img = nb.as_closest_canonical(nb.load(moving_image)) new_zooms = reoriented_moving_img.header.get_zooms()[:3] # Avoid small differences in reported resolution to cause changes to # FOV. See https://github.com/nipreps/fmriprep/issues/512 # A positive diagonal affine is RAS, hence the need to reorient above. new_affine = np.diag(np.round(new_zooms, 3)) resampled = nli.resample_img( fixed_image, target_affine=new_affine, interpolation="nearest" ) if fov_mask is not None: # If we have a mask, resample again dropping (empty) samples # out of the FoV. fixednii = nb.load(fixed_image) masknii = nb.load(fov_mask) if np.all(masknii.shape[:3] != fixednii.shape[:3]): raise RuntimeError("Fixed image and mask do not have the same dimensions.") if not np.allclose(masknii.affine, fixednii.affine, atol=1e-5): raise RuntimeError("Fixed image and mask have different affines") # Get mask into reference space masknii = nli.resample_img( masknii, target_affine=new_affine, interpolation="nearest" ) res_shape = np.array(masknii.shape[:3]) # Calculate a bounding box for the input mask # with an offset of 2 voxels per face bbox = np.argwhere(np.asanyarray(masknii.dataobj) > 0) new_origin = np.clip(bbox.min(0) - 2, a_min=0, a_max=None) new_end = np.clip(bbox.max(0) + 2, a_min=0, a_max=res_shape - 1) # Find new origin, and set into new affine new_affine_4 = resampled.affine.copy() new_affine_4[:3, 3] = new_affine_4[:3, :3].dot(new_origin) + new_affine_4[:3, 3] # Calculate new shapes new_shape = new_end - new_origin + 1 resampled = nli.resample_img( fixed_image, target_affine=new_affine_4, target_shape=new_shape.tolist(), interpolation="nearest", ) xform = resampled.affine # nibabel will pick the best affine _, qform_code = resampled.header.get_qform(coded=True) _, sform_code = resampled.header.get_sform(coded=True) xform_code = sform_code if sform_code > 0 else qform_code if xform_code == 1: xform_code = 2 if force_xform_code is not None: xform_code = force_xform_code # Keep 0, 2, 3, 4 unchanged resampled.header.set_qform(xform, int(xform_code)) resampled.header.set_sform(xform, int(xform_code)) resampled.header["descrip"] = "reference image generated by %s." % ( message or "(unknown software)" ) resampled.to_filename(out_file) return out_file def _advanced_clip( in_file, p_min=35, p_max=99.98, nonnegative=True, dtype="int16", invert=False, newpath=None, ): """ Remove outliers at both ends of the intensity distribution and fit into a given dtype. This interface tries to emulate ANTs workflows' massaging that truncate images into the 0-255 range, and applies percentiles for clipping images. For image registration, normalizing the intensity into a compact range (e.g., uint8) is generally advised. To more robustly determine the clipping thresholds, data are removed of spikes with a median filter. Once the thresholds are calculated, the denoised data are thrown away and the thresholds are applied on the original image. """ from pathlib import Path import nibabel as nb import numpy as np from scipy import ndimage from skimage.morphology import ball out_file = (Path(newpath or "") / "clipped.nii.gz").absolute() # Load data img = nb.squeeze_image(nb.load(in_file)) if len(img.shape) != 3: raise RuntimeError(f"<{in_file}> is not a 3D file.") data = img.get_fdata(dtype="float32") # Calculate stats on denoised version, to preempt outliers from biasing denoised = ndimage.median_filter(data, footprint=ball(3)) a_min = np.percentile( denoised[denoised > 0] if nonnegative else denoised, p_min ) a_max = np.percentile( denoised[denoised > 0] if nonnegative else denoised, p_max ) # Clip and cast data = np.clip(data, a_min=a_min, a_max=a_max) data -= data.min() data /= data.max() if invert: data = 1.0 - data if dtype in ("uint8", "int16"): data = np.round(255 * data).astype(dtype) hdr = img.header.copy() hdr.set_data_dtype(dtype) img.__class__(data, img.affine, hdr).to_filename(out_file) return str(out_file) ```