metadata
dict
text
stringlengths
60
3.49M
{ "source": "jouvemax/DeepLearning", "score": 3 }
#### File: DeepLearning/Proj1/test.py ```python import torch from dlc_practical_prologue import generate_pair_sets import torch.nn as nn from utils import * from utils_pipeline2 import * import time import models import torch.nn.functional as F def main(): # Set the device to cuda if it is available otherwise use the CPU if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' BATCH_SIZE = 64 # Use our best architecture architecture = models.SiameseNetwork # Use the best parameters we found for the SGD optimizer optimizer_params = {'lr': 0.05, 'momentum':0.9, 'weight_decay': 0., 'gamma': 0.97} nb_epochs = 50 nb_conv = 3 aux_loss_alpha = 0.4 nb_rounds = 10 # We use 10 reruns because of the high variance, reduce it to make everything faster print("Training and testing independently 10 times the model (takes a few minutes)") # Evaluate the model accuracies = evaluate_model(architecture, nb_conv, aux_loss_alpha, nb_rounds, nn.CrossEntropyLoss(), nb_epochs, BATCH_SIZE, optimizer_params, device) print("The mean accuracy is: {a:0.2f}".format(a = accuracies.mean())) print("The accuracy standard deviation is: {s:0.4f}".format(s = accuracies.std())) if __name__ == '__main__': main() ``` #### File: DeepLearning/Proj1/utils_pipeline1.py ```python import torch import torch.nn as nn import matplotlib.pyplot as plt from utils import * import time def test(test_input, test_target, test_classes, model, criterion, batch_size, with_aux_loss = False, aux_loss_alpha = 0.5): """ This methods is used for testing the model given as input on the testing data """ with torch.no_grad(): nb_data_errors = 0 loss_sum = 0 for inputs, targets in zip(test_input.split(batch_size), test_target.split(batch_size)): if with_aux_loss: outputs, output_aux = model(inputs) aux_loss = criterion(output_aux, targets) primary_loss = criterion(outputs, targets) loss = primary_loss + aux_loss_alpha * aux_loss else: outputs = model(inputs) loss = criterion(outputs, targets) loss_sum += loss _, predicted_classes = torch.max(outputs, 1) for k in range(len(inputs)): if targets[k] != predicted_classes[k]: nb_data_errors = nb_data_errors + 1 accuracy = (1 - (nb_data_errors / test_input.size(0))) * 100 return accuracy, loss_sum.item() def train_model(model, train_input, train_target, train_classes, test_input, test_target, test_classes, nb_epoch, batch_size, optimizer_params, logging = False, with_aux_loss = False, aux_loss_alpha = 0.5): """ This methods is used for training the model given as input """ nb_epoch, batch_size = nb_epoch, batch_size lr, momentum, weight_decay, gamma = optimizer_params['lr'], optimizer_params['momentum'], optimizer_params['weight_decay'], optimizer_params['gamma'] optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=gamma) criterion = nn.CrossEntropyLoss() if logging: log_acc_loss_header(color=Color.GREEN) train_accuracies = [] train_losses = [] test_accuracies = [] test_losses = [] start_time = time.time() for e in range(nb_epoch): for inputs, targets in zip(train_input.split(batch_size), train_target.split(batch_size)): if with_aux_loss: outputs, output_aux = model(inputs) aux_loss = criterion(output_aux, targets) primary_loss = criterion(outputs, targets) loss = primary_loss + aux_loss_alpha * aux_loss else: outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() # Update the learning rate if logging: train_acc, train_loss = test(train_input, train_target, train_classes, model, criterion, batch_size, with_aux_loss) test_acc, test_loss = test(test_input, test_target, test_classes, model, criterion, batch_size, with_aux_loss) train_accuracies.append(train_acc) train_losses.append(train_loss) test_accuracies.append(test_acc) test_losses.append(test_loss) elapsed_time = time.time() - start_time log_acc_loss(e, nb_epoch, elapsed_time, train_loss, train_acc, test_loss, test_acc, persistent=False) if logging: print() return train_accuracies, train_losses, test_accuracies, test_losses def evaluate_model(model, nb_rounds, criterion, device, batch_size, nb_epoch, optimizer_params, model_params = None, with_aux_loss = False, aux_loss_alpha = 0.5): """ This method is used to evaluate the model passed as argument """ accuracies = [] for round in range(nb_rounds): # initialize new model if model_params != None: model_evaluated = model(model_params).to(device) else: model_evaluated = model().to(device) # generate new data train_input, train_target, train_classes, test_input, test_target, test_classes = generate_data_device(1000, device=device) train_input = normalize_data(train_input) test_input = normalize_data(test_input) train_model(model_evaluated, train_input, train_target, train_classes, None, None, None, nb_epoch, batch_size, optimizer_params, False, with_aux_loss, aux_loss_alpha) accuracy, loss = test(test_input, test_target, test_classes, model_evaluated, criterion, batch_size, with_aux_loss, aux_loss_alpha) print("Round {i}: accuracy = {a:0.2f}% | loss = {l:0.4f}".format(i = (round + 1), a = accuracy, l = loss)) accuracies.append(accuracy) return torch.FloatTensor(accuracies) def cross_validation(model_untrained, K, train_input, train_target, train_classes, device, batch_size, nb_epoch, aux_loss_alphas): """ This methods perform a cross validation and returns the optimal alpha used for auxiliary loss """ best_alpha = None best_accuracy = -1 proportion = 1.0 / K # parameters you want to test for aux_loss_alpha in aux_loss_alphas: accuracy_sum = 0 for i in range(K): model = model_untrained(aux_loss = True).to(device = device) tr_input, tr_target, tr_classes, val_input, val_target, val_classes = split_train_validation(train_input, train_target, train_classes, validation_proportion = proportion) train_model(model, tr_input, tr_target, tr_classes, val_input, val_target, val_classes, nb_epoch, batch_size, {'lr': 0.1, 'momentum':0.9, 'weight_decay': 0.0, 'gamma': 0.97}, logging = False, with_aux_loss = True, aux_loss_alpha = aux_loss_alpha) accuracy, _ = test(val_input, val_target, val_classes, model, nn.CrossEntropyLoss(), batch_size, with_aux_loss = True, aux_loss_alpha = aux_loss_alpha) accuracy_sum += accuracy accuracy_mean = accuracy_sum / K print('aux_loss_alpha = {a} - mean accuracy = {m}'.format(a = aux_loss_alpha, m = accuracy_mean)) if accuracy_mean > best_accuracy: best_accuracy = accuracy_mean best_alpha = aux_loss_alpha return best_alpha, best_accuracy ``` #### File: DeepLearning/Proj1/utils_pipeline2.py ```python import torch from utils import * import torch.nn as nn import time def test(test_input, test_target, test_classes, model, criterion, batch_size, aux_loss_alpha=0.0): """ This method tests the model passed as argument on the testing data """ model.eval() # Switch to eval mode in case we use an architecture that requires it with torch.no_grad(): nb_final_errors = 0 nb_digit_errors = 0 loss_sum = 0 for inputs, classes, targets in zip(test_input.split(batch_size), test_classes.split(batch_size), test_target.split(batch_size)): classes1, classes2 = classes[:, 0], classes[:, 1] inputs1, inputs2 = separate_channels(inputs) outputs1, outputs2 = model.digit_pred(inputs1), model.digit_pred(inputs2) loss_digit = criterion(outputs1, classes1) + criterion(outputs2, classes2) loss_sum += aux_loss_alpha * loss_digit _, predicted1 = torch.max(outputs1, 1) _, predicted2 = torch.max(outputs2, 1) for k in range(len(inputs)): if classes1[k] != predicted1[k]: nb_digit_errors += 1 if classes2[k] != predicted2[k]: nb_digit_errors += 1 outputs = model(inputs) loss_final = criterion(outputs, targets) loss_sum += loss_final _, predicted = torch.max(outputs, 1) for k in range(len(inputs)): if targets[k] != predicted[k]: nb_final_errors += 1 final_acc = (1 - (nb_final_errors / test_input.size(0))) * 100 digit_acc = (1 - (nb_digit_errors / (test_input.size(0) * 2))) * 100 return final_acc, digit_acc, loss_sum.item() def train_model(model, train_input, train_target, train_classes, test_input, test_target, test_classes, nb_epochs, batch_size, optimizer_params, logging = False, aux_loss_alpha=0.0): """ This method is used to train the model passed as argument """ lr, momentum, weight_decay, gamma = optimizer_params['lr'], optimizer_params['momentum'], optimizer_params['weight_decay'], optimizer_params['gamma'] optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=gamma) criterion = nn.CrossEntropyLoss() if logging: log_acc_loss_header(color=Color.GREEN, aux=True) train_final_accuracies = [] train_digit_accuracies = [] train_losses = [] test_final_accuracies = [] test_digit_accuracies = [] test_losses = [] start_time = time.time() for e in range(nb_epochs): model.train() # Switch to train mode in case we use an architecture that requires it for inputs, targets, classes in zip(train_input.split(batch_size), train_target.split(batch_size), train_classes.split(batch_size)): inputs1, inputs2 = separate_channels(inputs) outputs1, outputs2 = model.digit_pred(inputs1), model.digit_pred(inputs2) loss_digit = criterion(outputs1, classes[:, 0]) + criterion(outputs2, classes[:, 1]) loss = aux_loss_alpha * loss_digit outputs = model(inputs) loss_final = criterion(outputs, targets) loss += loss_final optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() # Update the learning rate if logging: train_final_acc, train_digit_acc, train_loss = test(train_input, train_target, train_classes, model, criterion, batch_size, aux_loss_alpha=aux_loss_alpha) test_final_acc, test_digit_acc, test_loss = test(test_input, test_target, test_classes, model, criterion, batch_size, aux_loss_alpha=aux_loss_alpha) train_final_accuracies.append(train_final_acc) train_digit_accuracies.append(train_digit_acc) train_losses.append(train_loss) test_final_accuracies.append(test_final_acc) test_digit_accuracies.append(test_digit_acc) test_losses.append(test_loss) elapsed_time = time.time() - start_time log_acc_loss_aux(e, nb_epochs, elapsed_time, train_loss, train_final_acc, train_digit_acc, test_loss, test_final_acc, test_digit_acc, persistent=False) if logging: print() return train_final_accuracies, train_digit_accuracies, train_losses, test_final_accuracies, test_digit_accuracies, test_losses def evaluate_model(architecture, nb_conv, aux_loss_alpha, nb_rounds, criterion, nb_epochs, batch_size, optimizer_params, device): """ This method is used to evaluate the model passed as argument """ accuracies = [] log_evaluate_header(color=Color.GREEN) for round in range(nb_rounds): # initialize new model model_evaluated = architecture(nb_conv=nb_conv, final_bias=True).to(device=device) # generate new data train_input, train_target, train_classes, test_input, test_target, test_classes = generate_data_device(1000, device=device) train_input = normalize_data(train_input) test_input = normalize_data(test_input) train_model(model_evaluated, train_input, train_target, train_classes, None, None, None, nb_epochs, batch_size, optimizer_params, aux_loss_alpha=aux_loss_alpha) accuracy, _, loss = test(test_input, test_target, test_classes, model_evaluated, criterion, batch_size, aux_loss_alpha=aux_loss_alpha) log_evaluate(round, nb_rounds, accuracy, loss, persistent=True) accuracies.append(accuracy) return torch.FloatTensor(accuracies) def cross_validation(architecture, K, train_input, train_target, train_classes, device, batch_size, nb_epoch, aux_loss_alphas, optimizer_params): """ This methods performs a cross validation and returns the best alpha used with auxiliary loss """ best_alpha = None best_accuracy = -1 proportion = 1.0 / K # parameters you want to test for aux_loss_alpha in aux_loss_alphas: accuracy_sum = 0 for i in range(K): model = architecture(nb_conv=2).to(device = device) tr_input, tr_target, tr_classes, val_input, val_target, val_classes = split_train_validation(train_input, train_target, train_classes, validation_proportion = proportion) train_model(model, tr_input, tr_target, tr_classes, val_input, val_target, val_classes, nb_epoch, batch_size, optimizer_params, logging=False, aux_loss_alpha=aux_loss_alpha) accuracy, _, _ = test(val_input, val_target, val_classes, model, nn.CrossEntropyLoss(), batch_size, aux_loss_alpha=aux_loss_alpha) accuracy_sum += accuracy accuracy_mean = accuracy_sum / K print('Aux loss alpha = {a} => Mean accuracy = {m}'.format(a = aux_loss_alpha, m = accuracy_mean)) if accuracy_mean > best_accuracy: best_accuracy = accuracy_mean best_alpha = aux_loss_alpha return best_alpha, best_accuracy ``` #### File: Proj2/modules/Activations.py ```python from modules import Module class ReLU(Module): """Class representing the rectified linear unit activation function.""" def forward(self, input) : """ Apllies the relu function to the input. Args: input -- tensor of size (N, *) Return: output -- tensor of same size as input """ # The input is needed when computing the backward pass. self.input = input.clone() output = input.clamp(min=0) return output __call__ = forward def backward(self, grad_output): """ Given the gradient w.r.t. to the output of the activation, computes the gradient w.r.t. to the input of the activation. Args: grad_output -- tensor of same size as self.input Returns: grad_input -- tensor of same size as self.input """ assert(self.input is not None) assert(grad_output.size() == self.input.size()) grad_input = grad_output.clone() grad_input[self.input < 0] = 0 return grad_input class Tanh(Module): """Class representing the hyperbolic tangent activation function.""" def forward(self, input): """ Applies the hyperbolic tangent to the input. Args: input -- tensor of size (N, *) Returns: output -- tensor of same size as input """ # The input is needed when computing the backward pass. self.input = input.clone() output = input.tanh() return output __call__ = forward def backward (self, grad_output): """ Given the gradient w.r.t. to the output of the activation, computes the gradient w.r.t. to the input of the activation. Args: grad_output -- tensor of same size as self.input Returns: grad_input -- tensor of same size as self.input """ grad_input = 1 - (self.input.tanh() ** 2) grad_input = grad_output * grad_input return grad_input ``` #### File: Proj2/modules/Linear.py ```python import math from torch import empty from modules import Module class Linear(Module): """Class representing a fully connected linear layer in a neural network.""" def __init__(self, in_features, out_features, bias=True): self.in_features = in_features self.out_features = out_features self.params = [] tmp = math.sqrt(in_features) # For weight initialization. self.weight = empty(size=(out_features, in_features)).uniform_(-1/tmp,1/tmp) self.dw = empty(size=(out_features, in_features)).zero_() self.params.append((self.weight, self.dw)) if bias: self.bias = empty(out_features).normal_() self.db = empty(out_features).zero_() self.params.append((self.bias, self.db)) else: self.bias = None self.db = None def forward(self, input): """ Forwards the input data by applying a linear transformation on it. Args: input -- tensor of size (N, in_features) Returns: output -- tensor of size (N, out_features) """ assert(input.size(-1) == self.in_features) # Required information for the backward pass. # We clone to ensure that input won't be modified by the user before # calling backward. self.input = input.clone() output = input @ self.weight.T if self.bias is not None: output += self.bias return output __call__ = forward def backward(self, grad_output): """ Computes the gradient w.r.t. the input of the layer given the gradient w.r.t. to the output of the layer. Also computes and updates the gradient w.r.t. the parameters of the layer. Args: grad_output -- tensor of size (N, out_features) Returns grad_input -- tensor of size (N, in_features) """ assert(grad_output.size(-1) == self.out_features) grad_input = grad_output @ self.weight if self.bias is not None: self.db += grad_output.sum(axis=0) self.dw += grad_output.T @ self.input return grad_input def zero_grad(self): """ Sets the gradient w.r.t. the parametes to zero. """ self.dw = empty(size=(self.out_features, self.in_features)).zero_() if self.bias is not None: self.db = empty(self.out_features).zero_() return def param(self): """ Returns the parameters of the layer i.e. its weight and bias along with their gradient. Returns: params -- a list of pairs, each composed of a parameter tensor, and a gradient tensor of same size. """ # We just return a copy as we don't want the user # to be able to change the params of the model through this method. params = self.params.copy() return params def update_params(self, step_size): """ Updates the parameters of the linear layer by going in the opposite direction of the gradient. Args: step_size -- the size of an update step """ self.weight -= step_size * self.dw if self.bias is not None: self.bias -= step_size * self.db return ``` #### File: Proj2/modules/Module.py ```python class Module(object): """Base class for all neural network modules.""" def forward(self, *input): raise NotImplementedError def backward(self, *gradwrtoutput): raise NotImplementedError def update_params(self, step_size): return def zero_grad(self): return def param(self): return [] ``` #### File: Proj2/modules/Sequential.py ```python from modules import Module class Sequential(Module): """Class representing a neural network composed of several modules""" def __init__(self, *modules): self.modules = list(modules) def forward(self, input): """ Computes the output of the neural network given some input. Args: input -- tensor of size (N, i), i = in_features of the first layer of the nn. Returns: output -- tensor of size (N, o), o = out_features of the last layer of the nn. """ output = input for module in self.modules: output = module(output) return output __call__ = forward def backward(self, grad_output): """ Performs whole backward pass of the neural networks. Args: grad_output -- gradient of the loss w.r.t. the output of the nn. Returns: grad_input -- gradient of the loss w.r.t. to the input of the nn. """ grad_input = grad_output self.modules.reverse() for module in self.modules: grad_input = module.backward(grad_input) self.modules.reverse() return grad_input def zero_grad(self): """ Sets the gradient w.r.t. the parametes of the nn. to zero. """ for module in self.modules: module.zero_grad() return def param(self): """ Returns the parameters of the nn along with their gradient. Returns: params -- a list of pairs, each composed of a parameter tensor, and a gradient tensor of same size. """ params = [] for module in self.modules: params.append(module.param()) return params def update_params(self, step_size): """ Updates the parameters of the nn going in the opposite direction of the gradient. Args: step_size -- the size of an update step """ for module in self.modules: module.update_params(step_size) return ``` #### File: DeepLearning/Proj2/print_util.py ```python import matplotlib.pyplot as plt class Color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' BRIGHT_GREEN = '\033[92m' GREEN = '\033[32m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' GRAY = '\033[90m' UNDERLINE = '\033[4m' END = '\033[0m' def log_acc_loss_header(color=''): print(color + 'Epoch'.ljust(12) + 'Time'.ljust(8) + 'Train loss'.ljust(15) + 'Train accuracy'.ljust(20) + 'Train F1 score'.ljust(15) + Color.END) def log_acc_loss(e, nb_epoch, time, train_loss, train_acc, train_f, color='', persistent=True): print('\r' + color + '[{0}/{1}]'.format(e + 1, nb_epoch).ljust(12) + '{time:.0f}s'.format(time=time).ljust(8) + '{0:.4f}'.format(train_loss).ljust(15) + '{0:.4f}'.format(train_acc).ljust(20) + '{0:.4f}'.format(train_f).ljust(15) + Color.END, end='\n' if persistent else '') ```
{ "source": "jouvencia/aiortc", "score": 2 }
#### File: visionia/gif/travail72.py ```python import argparse import asyncio import json import logging import os import platform import ssl import math import cv2 import numpy from av import VideoFrame from aiohttp import web from aiortc import RTCPeerConnection, RTCSessionDescription, VideoStreamTrack from aiortc.contrib.media import MediaPlayer ROOT = os.path.dirname(__file__) async def index(request): content = open(os.path.join(ROOT, "index.html"), "r").read() return web.Response(content_type="text/html", text=content) async def javascript(request): content = open(os.path.join(ROOT, "client.js"), "r").read() return web.Response(content_type="application/javascript", text=content) class FlagVideoStreamTrack(VideoStreamTrack): """ A video track that returns an animated flag. """ def __init__(self): super().__init__() # don't forget this! self.counter = 0 height, width = 480, 640 # generate flag data_bgr = numpy.hstack( [ self._create_rectangle( width=213, height=480, color=(255, 0, 0) ), # blue self._create_rectangle( width=214, height=480, color=(255, 255, 255) ), # white self._create_rectangle(width=213, height=480, color=(0, 0, 255)), # red ] ) # shrink and center it M = numpy.float32([[0.5, 0, width / 4], [0, 0.5, height / 4]]) data_bgr = cv2.warpAffine(data_bgr, M, (width, height)) # compute animation omega = 2 * math.pi / height id_x = numpy.tile(numpy.array(range(width), dtype=numpy.float32), (height, 1)) id_y = numpy.tile( numpy.array(range(height), dtype=numpy.float32), (width, 1) ).transpose() self.frames = [] for k in range(30): phase = 2 * k * math.pi / 30 map_x = id_x + 10 * numpy.cos(omega * id_x + phase) map_y = id_y + 10 * numpy.sin(omega * id_x + phase) img = cv2.imread('test'+str(k%3)+'.jpg') self.frames.append( VideoFrame.from_ndarray(numpy.array(img)) #VideoFrame.from_ndarray( # cv2.remap(data_bgr, map_x, map_y, cv2.INTER_LINEAR), format="bgr24" #) ) async def recv(self): pts, time_base = await self.next_timestamp() frame = self.frames[self.counter % 30] frame.pts = pts frame.time_base = time_base self.counter += 1 return frame def _create_rectangle(self, width, height, color): data_bgr = numpy.zeros((height, width, 3), numpy.uint8) data_bgr[:, :] = color return data_bgr async def offer(request): params = await request.json() offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"]) pc = RTCPeerConnection() pcs.add(pc) @pc.on("connectionstatechange") async def on_connectionstatechange(): print("Connection state is %s" % pc.connectionState) if pc.connectionState == "failed": await pc.close() pcs.discard(pc) """ # open media source if true: player = new FlagVideoStreamTrack() else: options = {"framerate": "30", "video_size": "640x480"} if platform.system() == "Darwin": player = MediaPlayer("default:none", format="avfoundation", options=options) else: player = MediaPlayer("/dev/video0", format="v4l2", options=options) """ await pc.setRemoteDescription(offer) #for t in pc.getTransceivers(): pc.addTrack(FlagVideoStreamTrack()) answer = await pc.createAnswer() await pc.setLocalDescription(answer) return web.Response( content_type="application/json", text=json.dumps( {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type} ), ) pcs = set() async def on_shutdown(app): # close peer connections coros = [pc.close() for pc in pcs] await asyncio.gather(*coros) pcs.clear() if __name__ == "__main__": parser = argparse.ArgumentParser(description="WebRTC webcam demo") parser.add_argument("--cert-file", help="SSL certificate file (for HTTPS)") parser.add_argument("--key-file", help="SSL key file (for HTTPS)") parser.add_argument("--play-from", help="Read the media from a file and sent it."), parser.add_argument( "--host", default="0.0.0.0", help="Host for HTTP server (default: 0.0.0.0)" ) parser.add_argument( "--port", type=int, default=8080, help="Port for HTTP server (default: 8080)" ) parser.add_argument("--verbose", "-v", action="count") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) if args.cert_file: ssl_context = ssl.SSLContext() ssl_context.load_cert_chain(args.cert_file, args.key_file) else: ssl_context = None app = web.Application() app.on_shutdown.append(on_shutdown) app.router.add_get("/", index) app.router.add_get("/client.js", javascript) app.router.add_post("/offer", offer) web.run_app(app, host=args.host, port=args.port, ssl_context=ssl_context) ``` #### File: visionia/webcam/Videoquimarche.py ```python import argparse import asyncio import json import logging import os import platform import ssl import math import cv2 import numpy from av import VideoFrame from utils import ArducamUtils import subprocess import time from aiohttp import web from aiortc import RTCPeerConnection, RTCSessionDescription, VideoStreamTrack from aiortc.contrib.media import MediaPlayer logging.basicConfig(level=logging.DEBUG) ROOT = os.path.dirname(__file__) Expo=40 Freeram=50 async def index(request): content = open(os.path.join(ROOT, "index.html"), "r").read() return web.Response(content_type="text/html", text=content) async def javascript(request): content = open(os.path.join(ROOT, "client.js"), "r").read() return web.Response(content_type="application/javascript", text=content) class CamVideoStreamTrack(VideoStreamTrack): def __init__(self): super().__init__() # don't forget this! self.counter = 0 self.frames = [] async def recv(self): ret, frame = cap.read() frame = arducam_utils.convert(frame) cv2.imwrite('cam.jpg',frame) img = cv2.imread('cam.jpg') if self.counter%(Freeram)==(0): self.frames=[] logging.debug('Liste vidée') self.frames.append(VideoFrame.from_ndarray(numpy.array(img))) logging.debug('Frame dans la liste') pts, time_base = await self.next_timestamp() frame = self.frames[self.counter%(Freeram)] logging.debug('Frame lue') logging.debug(self.counter) frame.pts = pts frame.time_base = time_base self.counter += 1 return frame async def offer(request): params = await request.json() offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"]) pc = RTCPeerConnection() pcs.add(pc) @pc.on("connectionstatechange") async def on_connectionstatechange(): print("Connection state is %s" % pc.connectionState) if pc.connectionState == "failed": await pc.close() pcs.discard(pc) await pc.setRemoteDescription(offer) pc.addTrack(CamVideoStreamTrack()) answer = await pc.createAnswer() await pc.setLocalDescription(answer) return web.Response( content_type="application/json", text=json.dumps( {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type} ), ) pcs = set() async def on_shutdown(app): # close peer connections coros = [pc.close() for pc in pcs] await asyncio.gather(*coros) pcs.clear() if __name__ == "__main__": parser = argparse.ArgumentParser(description="WebRTC webcam demo") parser.add_argument("--cert-file", help="SSL certificate file (for HTTPS)") parser.add_argument("--key-file", help="SSL key file (for HTTPS)") parser.add_argument("--play-from", help="Read the media from a file and sent it."), parser.add_argument( "--host", default="0.0.0.0", help="Host for HTTP server (default: 0.0.0.0)" ) parser.add_argument( "--port", type=int, default=8080, help="Port for HTTP server (default: 8080)" ) parser.add_argument("--verbose", "-v", action="count") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) if args.cert_file: ssl_context = ssl.SSLContext() ssl_context.load_cert_chain(args.cert_file, args.key_file) else: ssl_context = None #Init camera cmd1 = 'v4l2-ctl -d 0 -c exposure='+str(Expo) cap = cv2.VideoCapture(0, cv2.CAP_V4L2) arducam_utils = ArducamUtils(0) cap.set(cv2.CAP_PROP_CONVERT_RGB, arducam_utils.convert2rgb) # Aquisition des dimentions de l'image en provenance du capteur w = cap.get(cv2.CAP_PROP_FRAME_WIDTH) h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) logging.debug('Caméra initialisée') # needed to purge the frame with default exposure for i in range(6): subprocess.call(cmd1, shell=True) ret, frame = cap.read() logging.debug('Temps d\'exposition réglé') app = web.Application() app.on_shutdown.append(on_shutdown) app.router.add_get("/", index) app.router.add_get("/client.js", javascript) app.router.add_post("/offer", offer) web.run_app(app, host=args.host, port=args.port, ssl_context=ssl_context) ``` #### File: visionia/webcam/webcam.py ```python import argparse import asyncio import json import logging import os import platform import ssl from aiohttp import web from aiortc import RTCPeerConnection, RTCSessionDescription from aiortc.contrib.media import MediaPlayer ROOT = os.path.dirname(__file__) logger2 = logging.getLogger("main") logger2.setLevel(logging.DEBUG) # create console handler and set level to debug ch = logging.StreamHandler() #interface ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') #formate (requetes ?) pour l'interface # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger2.addHandler(ch) # ajout des infos de ch au logger async def index(request): # lance requetes return reponse.toString content = open(os.path.join(ROOT, "index.html"), "r").read() return web.Response(content_type="text/html", text=content) async def javascript(request): #lancement du script content = open(os.path.join(ROOT, "client.js"), "r").read() return web.Response(content_type="application/javascript", text=content) async def offer(request): params = await request.json() # Attente d'une requete pour interpreter la suite offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"]) # formalise et standardise le traitement du json plus haut pc = RTCPeerConnection() #cree toutes les options du RTC pcs.add(pc) # Stocke toutes les differentes RTC ? a controler @pc.on("connectionstatechange") #actualisation des etats de connection ? async def on_connectionstatechange(): print("Connection state is %s" % pc.connectionState) if pc.connectionState == "failed": await pc.close() pcs.discard(pc) # open media source if args.play_from: player = MediaPlayer(args.play_from) #option pour lire des videos else: options = {"framerate": "1", "video_size": "1280x800"} # reglage des options par défault, si v4l2,par exemple, ne reecrit pas dessus print(platform.system()) logger2.debug(f'La plateforme est : {platform.system()}') if platform.system() == "Darwin": player = MediaPlayer("default:none", format="avfoundation", options=options) else: player = MediaPlayer("/dev/video0", format="v4l2", options=options) await pc.setRemoteDescription(offer) #communication for t in pc.getTransceivers(): if t.kind == "audio" and player.audio: pc.addTrack(player.audio) elif t.kind == "video" and player.video: pc.addTrack(player.video) answer = await pc.createAnswer()#Acteur de la negociation RTC await pc.setLocalDescription(answer) return web.Response(#le json de retour content_type="application/json", text=json.dumps( {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type} ), ) pcs = set() async def on_shutdown(app): # close peer connections coros = [pc.close() for pc in pcs] await asyncio.gather(*coros) pcs.clear() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Aucune idee de l'utilité de cette string, je recroiserais peut être ce message un jour") parser.add_argument("--cert-file", help="SSL certificate file (for HTTPS)") parser.add_argument("--key-file", help="SSL key file (for HTTPS)") parser.add_argument("--play-from", help="Read the media from a file and sent it."), parser.add_argument( "--host", default="0.0.0.0", help="Host for HTTP server (default: 0.0.0.0)" ) parser.add_argument( "--port", type=int, default=8080, help="Port for HTTP server (default: 8080)" ) parser.add_argument("--verbose", "-v", action="count") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG)#l'option verbose if args.cert_file: ssl_context = ssl.SSLContext() ssl_context.load_cert_chain(args.cert_file, args.key_file)#l'option cert_file, aucune idee de son utilite else: ssl_context = None app = web.Application() app.on_shutdown.append(on_shutdown) app.router.add_get("/", index) app.router.add_get("/client.js", javascript)#demande un client au javascript app.router.add_post("/offer", offer)#lance l'echange web.run_app(app, host=args.host, port=args.port, ssl_context=ssl_context) #lance l'app ```
{ "source": "jouvin/indico-mlz-export", "score": 2 }
#### File: indico-mlz-export/indico_mlz_export/controller.py ```python from __future__ import unicode_literals from flask import jsonify, request from werkzeug.exceptions import Forbidden from indico.modules.events.models.events import Event from indico.modules.oauth import oauth from indico.web.rh import RH from indico_mlz_export.api import all_registrations, one_registration class RHMLZExportBase(RH): """RESTful registrant API base class""" CSRF_ENABLED = False FLAT = False @oauth.require_oauth('registrants') def _check_access(self): try: ok = self.event.can_manage(request.oauth.user, permission='registration') except TypeError: ok = self.event.can_manage(request.oauth.user) if not ok: raise Forbidden() class RHExportRegistrations(RHMLZExportBase): """ Export a list of registrations for an event""" def _process_args(self): self.event_id = request.view_args['event_id'] self.event = Event.get(self.event_id, is_deleted=False) def _process_GET(self): return jsonify(all_registrations(self.event, self.FLAT)) class RHExportRegistrationsFlat(RHExportRegistrations): FLAT = True class RHExportRegistration(RHMLZExportBase): """ Export a single registration for an event""" def _process_args(self): self.event_id = request.view_args['event_id'] self.registrant_id = request.view_args['registrant_id'] self.event = Event.get(self.event_id, is_deleted=False) def _process_GET(self): return jsonify(one_registration(self.event, self.registrant_id, self.FLAT)) class RHExportRegistrationFlat(RHExportRegistration): FLAT = True ```
{ "source": "JouvinLea/pyirf", "score": 3 }
#### File: pyirf/perf/utils.py ```python import numpy as np import pickle import gzip def percentiles(values, bin_values, bin_edges, percentile): # Seems complicated for vector defined as [inf, inf, .., inf] percentiles_binned = np.squeeze(np.full((len(bin_edges) - 1, len(values.shape)), np.inf)) err_percentiles_binned = np.squeeze(np.full((len(bin_edges) - 1, len(values.shape)), np.inf)) for i, (bin_l, bin_h) in enumerate(zip(bin_edges[:-1], bin_edges[1:])): try: print(i) print(bin_l) print(bin_h) distribution = values[(bin_values > bin_l) & (bin_values < bin_h)] percentiles_binned[i] = np.percentile(distribution, percentile) print(percentiles_binned[i]) err_percentiles_binned[i] = percentiles_binned[i] / np.sqrt(len(distribution)) except IndexError: pass return percentiles_binned.T, err_percentiles_binned.T def plot_hist(ax, data, edges, norm=False, yerr=False, hist_kwargs={}, error_kw={}): """Utility function to plot histogram""" weights = np.ones_like(data) if norm is True: weights = weights / float(np.sum(data)) if yerr is True: yerr = np.sqrt(data) * weights else: yerr = np.zeros(len(data)) centers = 0.5 * (edges[1:] + edges[:-1]) width = edges[1:] - edges[:-1] ax.bar(centers, data * weights, width=width, yerr=yerr, error_kw=error_kw, **hist_kwargs) return ax def save_obj(obj, name): """Save object in binary""" with gzip.open(name, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): """Load object in binary""" with gzip.open(name, 'rb') as f: return pickle.load(f) ``` #### File: pyirf/scripts/make_performance.py ```python import os import astropy.units as u import argparse import pandas as pd import numpy as np from gammapy.spectrum import cosmic_ray_flux, CrabSpectrum from pyirf.io.io import load_config from pyirf.perf import (CutsOptimisation, CutsDiagnostic, CutsApplicator, IrfMaker, SensitivityMaker, ) def main(): # Read arguments parser = argparse.ArgumentParser(description='Make performance files') parser.add_argument('--config_file', type=str, required=True, help='') parser.add_argument( '--obs_time', type=str, required=True, help='Observation time, should be given as a string, value and astropy unit separated by a dot. E.g:`50.h`' ) mode_group = parser.add_mutually_exclusive_group() mode_group.add_argument('--wave', dest="mode", action='store_const', const="wave", default="tail", help="if set, use wavelet cleaning") mode_group.add_argument('--tail', dest="mode", action='store_const', const="tail", help="if set, use tail cleaning, otherwise wavelets") args = parser.parse_args() # Read configuration file cfg = load_config(args.config_file) # Add obs. time in configuration file str_obs_time = args.obs_time.split('.') cfg['analysis']['obs_time'] = {'value': float(str_obs_time[0]), 'unit': str(str_obs_time[-1])} print(cfg['analysis']['obs_time']) # Create output directory if necessary outdir = os.path.join(cfg['general']['outdir'], 'irf_{}_ThSq_{}_Time{:.2f}{}'.format( args.mode, cfg['analysis']['thsq_opt']['type'], cfg['analysis']['obs_time']['value'], cfg['analysis']['obs_time']['unit']) ) if not os.path.exists(outdir): os.makedirs(outdir) indir = cfg['general']['indir'] template_input_file = cfg['general']['template_input_file'] # Load data particles = ['gamma', 'electron', 'proton'] evt_dict = dict() # Contain DL2 file for each type of particle for particle in particles: # template looks like dl2_{}_{}_merged.h5 infile = os.path.join(indir, template_input_file.format(args.mode, particle)) evt_dict[particle] = pd.read_hdf(infile, key='reco_events') # Apply offset cut to proton and electron for particle in ['electron', 'proton']: # print('Initial stat: {} {}'.format(len(evt_dict[particle]), particle)) evt_dict[particle] = evt_dict[particle].query('offset <= {}'.format( cfg['particle_information'][particle]['offset_cut']) ) # Add required data in configuration file for future computation for particle in particles: n_files = cfg['particle_information'][particle]['n_files'] print(f"{n_files} files for {particle}") cfg['particle_information'][particle]['n_files'] = \ len(np.unique(evt_dict[particle]['obs_id'])) cfg['particle_information'][particle]['n_simulated'] = \ cfg['particle_information'][particle]['n_files'] * cfg['particle_information'][particle]['n_events_per_file'] # Define model for the particles model_dict = {'gamma': CrabSpectrum('hegra').model, 'proton': cosmic_ray_flux, 'electron': cosmic_ray_flux} # Reco energy binning cfg_binning = cfg['analysis']['ereco_binning'] ereco = np.logspace(np.log10(cfg_binning['emin']), np.log10(cfg_binning['emax']), cfg_binning['nbin'] + 1) * u.TeV # Handle theta square cut optimisation # (compute 68 % containment radius PSF if necessary) thsq_opt_type = cfg['analysis']['thsq_opt']['type'] if thsq_opt_type in 'fixed': thsq_values = np.array([cfg['analysis']['thsq_opt']['value']]) * u.deg print('Using fixed theta cut: {}'.format(thsq_values)) elif thsq_opt_type in 'opti': thsq_values = np.arange(0.05, 0.40, 0.01) * u.deg print('Optimising theta cut for: {}'.format(thsq_values)) elif thsq_opt_type in 'r68': print('Using R68% theta cut') print('Computing...') cfg_binning = cfg['analysis']['ereco_binning'] ereco = np.logspace(np.log10(cfg_binning['emin']), np.log10(cfg_binning['emax']), cfg_binning['nbin'] + 1) * u.TeV radius = 68 thsq_values = list() for ibin in range(len(ereco) - 1): emin = ereco[ibin] emax = ereco[ibin + 1] energy_query = 'reco_energy > {} and reco_energy <= {}'.format( emin.value, emax.value ) data = evt_dict['gamma'].query(energy_query).copy() min_stat = 0 if len(data) <= min_stat: print(' ==> Not enough statistics:') print('To be handled...') thsq_values.append(0.3) continue # import sys # sys.exit() psf = np.percentile(data['offset'], radius) psf_err = psf / np.sqrt(len(data)) thsq_values.append(psf) thsq_values = np.array(thsq_values) * u.deg # Set 0.05 as a lower value idx = np.where(thsq_values.value < 0.05) thsq_values[idx] = 0.05 * u.deg print('Using theta cut: {}'.format(thsq_values)) # Cuts optimisation print('### Finding best cuts...') cut_optimiser = CutsOptimisation( config=cfg, evt_dict=evt_dict, verbose_level=0 ) # Weight events print('- Weighting events...') cut_optimiser.weight_events( model_dict=model_dict, colname_mc_energy=cfg['column_definition']['mc_energy'] ) # Find best cutoff to reach best sensitivity print('- Estimating cutoffs...') cut_optimiser.find_best_cutoff(energy_values=ereco, angular_values=thsq_values) # Save results and auxiliary data for diagnostic print('- Saving results to disk...') cut_optimiser.write_results( outdir, '{}.fits'.format(cfg['general']['output_table_name']), format='fits' ) # Cuts diagnostic print('### Building cut diagnostics...') cut_diagnostic = CutsDiagnostic(config=cfg, indir=outdir) cut_diagnostic.plot_optimisation_summary() cut_diagnostic.plot_diagnostics() # Apply cuts and save data print('### Applying cuts to data...') cut_applicator = CutsApplicator(config=cfg, evt_dict=evt_dict, outdir=outdir) cut_applicator.apply_cuts() # Irf Maker print('### Building IRF...') irf_maker = IrfMaker(config=cfg, evt_dict=evt_dict, outdir=outdir) irf_maker.build_irf() # Sensitivity maker print('### Estimating sensitivity...') sensitivity_maker = SensitivityMaker(config=cfg, outdir=outdir) sensitivity_maker.load_irf() sensitivity_maker.estimate_sensitivity() if __name__ == '__main__': main() ```
{ "source": "jouvin/release", "score": 3 }
#### File: documentation_builder/test/builder.py ```python import sys import os import shutil import filecmp from tempfile import mkdtemp from unittest import TestCase, main, TestLoader sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../lib'))) # noqa from quattordocbuild import builder class BuilderTest(TestCase): """Test class for builder.py.""" def setUp(self): """Set up temp dir for tests.""" self.tmpdir = mkdtemp() def tearDown(self): """Remove temp dir.""" shutil.rmtree(self.tmpdir) def test_which(self): """Test which function.""" self.assertFalse(builder.which('testtest1234')) self.assertTrue(builder.which('python')) def test_check_input(self): """Test check_input function.""" self.assertFalse(builder.check_input("", "")) self.assertFalse(builder.check_input(self.tmpdir, "")) self.assertFalse(builder.check_input("/nonexistingdir", "")) self.assertTrue(builder.check_input(self.tmpdir, self.tmpdir)) os.makedirs(os.path.join(self.tmpdir, "test")) self.assertTrue(builder.check_input(self.tmpdir, os.path.join(self.tmpdir, "test"))) def test_check_commands(self): """Test check_commands function.""" self.assertTrue(builder.check_commands(True)) def test_build_site_structure(self): """Test build_site_structure function.""" repomap = { "configuration-modules-core": { "sitesection": "components", "targets": ["/NCM/Component/", "/components/", "/pan/quattor/"] }, "CCM": { "sitesection": "CCM", "targets": ["EDG/WP4/CCM/"], }, } testdata = {'CCM': {'/tmp/qdoc/src/CCM/target/doc/pod/EDG/WP4/CCM/Fetch/Download.pod': "# NAME\n\nEDG::WP4::CC"}, 'configuration-modules-core': {'/tmp/doc/src/configuration-modules-core/ncm-profile/target/pan/components/profile/functions.pan': u'\n### Functions\n', '/tmp/doc/src/configuration-modules-core/ncm-fmonagent/target/doc/pod/NCM/Component/fmonagent.pod': 'Hello', '/tmp/doc/src/configuration-modules-core/ncm-freeipa/target/pan/quattor/aii/freeipa/schema.pan': 'Hello2' }} expected_response = {'CCM': {'Fetch::Download.md': '# NAME\n\nEDG::WP4::CC'}, 'components': {'aii::freeipa::schema.md': 'Hello2', 'fmonagent.md': 'Hello', 'profile::functions.md': u'\n### Functions\n'}} self.assertEquals(builder.build_site_structure(testdata, repomap), expected_response) def test_make_interlinks(self): """Test make_interlinks function.""" # Replace one reference test_data = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to `fmonagent`.'}} expected = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to [fmonagent](../components-grid/fmonagent.md).'}} self.assertEquals(builder.make_interlinks(test_data), expected) # Replace two references test_data = {'comps-gr': {'fmnt.md': ''}, 'comps': {'icinga.md': 'refr `fmnt` and `fmnt`.'}} expected = {'comps-gr': {'fmnt.md': ''}, 'comps': {'icinga.md': 'refr [fmnt](../comps-gr/fmnt.md) and [fmnt](../comps-gr/fmnt.md).'}} self.assertEquals(builder.make_interlinks(test_data), expected) # Replace ncm- reference test_data = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to `ncm-fmonagent`.'}} expected = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to [fmonagent](../components-grid/fmonagent.md).'}} self.assertEquals(builder.make_interlinks(test_data), expected) # Replace newline reference test_data = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to \n`ncm-fmonagent`.'}} expected = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to \n[fmonagent](../components-grid/fmonagent.md).'}} self.assertEquals(builder.make_interlinks(test_data), expected) # Replace linked wrong reference test_data = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer \ to [NCM::Component::FreeIPA::Client](https://metacpan.org/pod/NCM::Component::FreeIPA::Client).', 'FreeIPA::Client': 'Allo'}} expected = {'components-grid': {'fmonagent.md': ''}, 'components': {'icinga.md': 'I refer to [FreeIPA::Client](../components/FreeIPA::Client).', 'FreeIPA::Client': 'Allo'}} self.assertEquals(builder.make_interlinks(test_data), expected) # Don't replace in own page test_data = {'comps-grid': {'fmonagent.md': 'ref to `fmonagent`.'}, 'comps': {'icinga.md': 'ref to `icinga` and `ncm-icinga`.'}} self.assertEquals(builder.make_interlinks(test_data), test_data) def test_write_site(self): """Test write_site function.""" input = {'CCM': {'fetch::download.md': '# NAME\n\nEDG::WP4::CC'}, 'components': {'fmonagent.md': 'Hello', 'profile::functions.md': u'\n### Functions\n'}} sitedir = os.path.join(self.tmpdir, "docs") builder.write_site(input, self.tmpdir, "docs") self.assertTrue(os.path.exists(os.path.join(sitedir, 'components'))) self.assertTrue(os.path.exists(os.path.join(sitedir, 'components/profile::functions.md'))) self.assertTrue(os.path.exists(os.path.join(sitedir, 'components/fmonagent.md'))) self.assertTrue(os.path.exists(os.path.join(sitedir, 'CCM'))) self.assertTrue(os.path.exists(os.path.join(sitedir, 'CCM/fetch::download.md'))) def test_write_toc(self): """Test write_toc function.""" toc = {'CCM': set(['fetch::download.md']), 'components': set(['fmonagent.md', 'profile::functions.md'])} builder.write_toc(toc, self.tmpdir) with open(os.path.join(self.tmpdir, "mkdocs.yml")) as fih: print fih.read() self.assertTrue(filecmp.cmp('test/testdata/mkdocs.yml', os.path.join(self.tmpdir, "mkdocs.yml"))) toc = {'components': set(['profile::functions.md', 'fmonagent.md']), 'CCM': set(['fetch::download.md'])} builder.write_toc(toc, self.tmpdir) with open(os.path.join(self.tmpdir, "mkdocs.yml")) as fih: print fih.read() self.assertTrue(filecmp.cmp('test/testdata/mkdocs.yml', os.path.join(self.tmpdir, "mkdocs.yml"))) def suite(self): """Return all the testcases in this module.""" return TestLoader().loadTestsFromTestCase(BuilderTest) if __name__ == '__main__': main() ``` #### File: scripts/plenary_template_library/plenary_template_library.py ```python import logging from urllib import urlopen from json import load from datetime import datetime, timedelta from os.path import exists, isdir, join, abspath from os import chdir, makedirs, sep from shutil import rmtree from tempfile import mkdtemp from sys import exit as sys_exit from argparse import ArgumentParser import subprocess import errno RELEASES_URL = 'http://www.quattor.org/release/releases.json' LIBRARY_URL_PATTERN = 'https://github.com/quattor/template-library-%s.git' LIBRARY_BRANCHES = { 'core' : ['master'], 'grid' : ['emi-2', 'umd-3'], 'os' : ['sl5.x-x86_64', 'sl6.x-x86_64', 'el7.x-x86_64'], 'standard' : ['master'], #'openstack' : ['icehouse'], } BIN_GIT = '/usr/bin/git' BIN_RSYNC = '/usr/bin/rsync' def execute(command): """Wrapper around subprocess, calls an external process, logging stdout and stderr to debug""" logger = logging.getLogger('sync-template-library') if command: process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) output, error = process.communicate() logger.debug('Executed %s, stdout: "%s", stderr: "%s"', command[0], output.strip(), error.strip()) if process.returncode > 0: logger.error('Executed %s with errors: "%s"', command[0], error.strip()) return False return True else: logger.error('Called execute without specifing a command to run') return False def make_target_dir(directory): """Create specified directory. Stay silent if it already exists, but complain loudly if it isn't a directory""" logger = logging.getLogger('sync-template-library') try: makedirs(directory) logger.debug('Created directory %s', directory) return True except OSError, e: if e.errno != errno.EEXIST: raise if exists(directory): if isdir(directory): logger.debug('Directory %s already exists', directory) else: logger.error('Tried to create directory %s, but it already exists and is not a directory', directory) return False def get_release_dates(): #logger = logging.getLogger('sync-template-library') releases = load(urlopen(RELEASES_URL)) results = [] for release, properties in releases.iteritems(): release = '%s.0' % release release_date = datetime.strptime(properties['target'], '%Y-%m-%d') results.append((release, release_date)) return results def get_current_releases(): logger = logging.getLogger('sync-template-library') results = [] now = datetime.now() threshold = now - timedelta(days=365) for release, release_date in get_release_dates(): if release_date < now: if release_date > threshold: results.append(release) else: logger.debug('Skipping %s, release was too far in the past', release) else: logger.debug('Skipping %s, release is in the future', release) return results def sync_template_library(base_dir, releases): logger = logging.getLogger('sync-template-library') logger.debug('Using %s as base directory', base_dir) for library, branches in LIBRARY_BRANCHES.iteritems(): logger.info('Processing library %s', library) url = LIBRARY_URL_PATTERN % (library) temp_dir = mkdtemp(prefix='quattor-template-library_') logger.info('Cloning %s to %s', url, temp_dir) execute([BIN_GIT, 'clone', url, temp_dir]) chdir(temp_dir) logger.info('Done') for release in releases: logger.info('Release %s available', release) for branch in branches: logger.info(' Processing branch %s', branch) tag = release target_dir = join(base_dir, release, library) logger.debug('Target dir is %s', target_dir) if branch != 'master': tag = '%s-%s' % (branch, tag) target_dir = join(target_dir, branch) logger.debug('Added branch to target dir, which is now %s', target_dir) make_target_dir(target_dir) logger.info(' Checking out tag %s', tag) if execute([BIN_GIT, 'checkout', tag]): source = temp_dir + sep target = target_dir + sep logger.info(' rsyncing tag from %s to %s', source, target) execute([BIN_RSYNC, '-rtx', '--exclude=\.git', source, target]) chdir(base_dir) try: rmtree(temp_dir) logger.debug('Removed temporary directory %s', temp_dir) except OSError, e: logger.error('Caught exception %s trying to remove temporary directory %s', temp_dir, e.strerror) if __name__ == '__main__': logging.basicConfig( level=logging.INFO, format='%(levelname)s: %(message)s', name='sync-template-library' ) parser = ArgumentParser(description='Synchronise quattor template libraries') parser.add_argument('--debug', action='store_true', help='Enable debug output') parser.add_argument('--releases', help='Sync specific release(s), delimit multiple releases with commas') parser.add_argument( 'path', metavar='PATH', type=str, help='Target base path for template library', ) args = parser.parse_args() logger = logging.getLogger('sync-template-library') if args.debug: logger.setLevel(logging.DEBUG) if args.releases: releases = args.releases.split(',') else: releases = get_current_releases() sync_template_library(abspath(args.path), releases) sys_exit(0) ```
{ "source": "jouvin/SLAM", "score": 2 }
#### File: slam/webinterface/middleware.py ```python import re import itertools from slam import interface _HTML_TYPES = ('text/html', 'application/xhtml+xml') _SUPPORTED_TRANSFORMS = ['PUT', 'DELETE'] _FORM_RE = re.compile( r'((<form\W[^>]*\bmethod=(\'|"|))(%s)((\'|"|)\b[^>]*>))' % '|'.join(_SUPPORTED_TRANSFORMS), re.IGNORECASE) _MIDDLEWARE_KEY = 'method_middleware_transform' class HttpMethodsMiddleware(object): """This middleware class allow web browser to perform PUT and DELETE requests by adding a hidden field to the forms. This middleware is *not* compatible with the Django's CSRF protection.""" # Snippet from http://djangosnippets.org/snippets/174/ def process_request(self, request): if request.POST and request.POST.has_key(_MIDDLEWARE_KEY): if request.POST[_MIDDLEWARE_KEY].upper() in _SUPPORTED_TRANSFORMS: request.method = request.POST[_MIDDLEWARE_KEY] return None def process_response(self, request, response): if response['Content-Type'].split(';')[0] in _HTML_TYPES: # ensure we don't add the 'id' attribute twice (HTML validity) idattributes = itertools.chain(("id='" + _MIDDLEWARE_KEY + "'",), itertools.repeat('')) def add_transform_field(match): """Returns the matched <form> tag with a modified method and the added <input> element""" return match.group(2) + "POST" + match.group(5) + \ "<div style='display:none;'>" + \ "<input type='hidden' " + idattributes.next() + \ " name='" + _MIDDLEWARE_KEY + "' value='" + \ match.group(4).upper() + "' /></div>" # Modify any POST forms response.content = _FORM_RE.sub( add_transform_field, response.content) return response class LoginRecordMiddleware: """Record the login used inside slam.interface to correctly report it inside the logs.""" def process_request(self, request): if request.user and request.user.username: interface.set_log_author(request.user.username) else: interface.set_log_author("rootEnDur") return None ``` #### File: SLAM/test/__init__.py ```python import os import sys sys.path.append("test/") sys.path.append("src/") os.environ["DJANGO_SETTINGS_MODULE"] = "webinterface.settings" from django.core.management import call_command from django.conf import settings def setup(): call_command("syncdb", interactive=False) def teardown(): os.unlink(settings.DATABASES["default"]["NAME"]) ``` #### File: SLAM/test/test_range.py ```python import sys sys.path.append("../src") from nose.tools import assert_raises from slam import addrrange from slam.addrrange import InvalidAddressError def test_format_ip4(): assert addrrange._format_ip4(42) == "0.0.0.42" assert addrrange._format_ip4(16974599) == "1.3.3.7" assert addrrange._format_ip4(3232300823) == "192.168.255.23" def test_parse_ip4(): assert addrrange._parse_ip4("0.0.0.42") == 42 assert addrrange._parse_ip4("1.3.3.7") == 16974599 assert addrrange._parse_ip4("192.168.255.23") == 3232300823 assert_raises(InvalidAddressError, addrrange._parse_ip4, "invalid") assert_raises(InvalidAddressError, addrrange._parse_ip4, "192.168.256.0") def test_ip4range(): ipr = addrrange.Ip4Range("172.16.50.80/12") assert addrrange._format_ip4(ipr.net) == "172.16.0.0" and ipr.mask == 12 ipr = addrrange.Ip4Range("10.42.137.23/28") assert addrrange._format_ip4(ipr.net) == "10.42.137.16" and ipr.mask == 28 assert_raises(InvalidAddressError, addrrange.Ip4Range, "1.2.3.4") assert_raises(InvalidAddressError, addrrange.Ip4Range, "1.2.3.4/42") assert_raises(InvalidAddressError, addrrange.Ip4Range, "1.23.4/23") assert ipr[15] == "10.42.137.31" assert_raises(IndexError, ipr.__getitem__, 16) def test_ip4range_contains(): ipr = addrrange.Ip4Range("10.42.137.23/28") assert "10.42.137.15" not in ipr assert "10.42.137.16" in ipr assert "10.42.137.23" in ipr assert "10.42.137.31" in ipr assert "10.42.137.32" not in ipr def test_ip4range_str(): ipr = addrrange.Ip4Range("10.42.137.23/28") assert str(ipr) == "10.42.137.16/28" ipr = addrrange.Ip4Range("172.16.50.80/12") assert str(ipr) == "172.16.0.0/12" def test_format_ip6(): assert(addrrange._format_ip6(42) == "fc00:e968:6179::de52:7100") assert(addrrange._format_ip6(0x1337 << 16) == "fc00:db20:35b:7399::5") assert(addrrange._format_ip6(24197857203266734884469844682461802258) == "fc00:e968:6179::de52:7100") def test_parse_ip6(): assert(addrrange._parse_ip6("fc00:e968:6179::de52:7100") == 42) assert(addrrange._parse_ip6("fc00:db20:35b:7399::5") == 0x13370000) assert(addrrange._parse_ip6("fc00:e968:6179::de52:7100") == 24197857203266734884469844682461802258) assert_raises(InvalidAddressError, addrrange._parse_ip6, "invalid") assert_raises(InvalidAddressError, addrrange._parse_ip6, "0000:0000:0000:00g0:0000:0000:0000:0000") # short form assert addrrange._parse_ip6("::") == 0 assert addrrange._parse_ip6("::2a") == 42 assert addrrange._parse_ip6("2a::") == 42 << 112 assert(addrrange._parse_ip6("fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b:abcd") == (42 << 112) + (0x1234 << 16) + 0xabcd) assert(addrrange._parse_ip6("fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b:abcd") == (42 << 112) + (0x1234 << 96) + (0x5678 << 16) + 0xabcd) def test_ip6range(): ipr = addrrange.Ip6Range("fc42:0f00:0ba2:cafe:1234:1234:1234:1234/64") assert(addrrange._format_ip6(ipr.net) == "fc42:0f00:0ba2:cafe:0000:0000:0000:0000") assert ipr.mask == 64 ipr = addrrange.Ip6Range("fc42:0f00:0ba2:cafe:1234:1234:efcd:1234/110") assert(addrrange._format_ip6(ipr.net) == "fc42:0f00:0ba2:cafe:1234:1234:efcc:0000") assert ipr.mask == 110 assert len(ipr) == 262144 assert_raises(InvalidAddressError, addrrange.Ip6Range, "1.2.3.4") assert_raises(InvalidAddressError, addrrange.Ip6Range, "::1/154") assert_raises(InvalidAddressError, addrrange.Ip6Range, "42") assert ipr[262143] == "fc42:0f00:0ba2:cafe:1234:1234:efcf:ffff" assert_raises(IndexError, ipr.__getitem__, 262144) def test_ip6range_contains(): ipr = addrrange.Ip6Range("fc42:0f00:0ba2:cafe:1234:1234:efcd:1234/110") assert "fc42:0f00:0ba2:cafe:1234:1234:efcb:ffff" not in ipr assert "fc42:0f00:0ba2:cafe:1234:1234:efcc:0000" in ipr assert "fc42:0f00:0ba2:cafe:1234:1234:efce:1234" in ipr assert "fc42:0f00:0ba2:cafe:1234:1234:efcf:ffff" in ipr assert "fc42:0f00:0ba2:cafe:1234:1234:efd0:0000" not in ipr def test_ip6range_str(): ipr = addrrange.Ip6Range("fc42:0f00:0ba2:cafe:1234:1234:efcd:1234/110") assert str(ipr) == "fc42:0f00:0ba2:cafe:1234:1234:efcc:0000/110" ipr = addrrange.Ip6Range("feaf:1234:0000:0000:0000:0000:0000:1234/10") assert str(ipr) == "fe80:0000:0000:0000:0000:0000:0000:0000/10" def test_addrset(): addrs = addrrange.AddrSet() addrs.add("1.2.3.4") addrs.add("127.0.0.1") assert "127.0.0.1" in addrs and "1.2.3.4" in addrs addr = addrs.addr_set.pop() assert addr == "127.0.0.1" or addr == "1.2.3.4" addrs.add("iamanaddress") assert addrs.len() == 2 addrs.remove("iamanaddress") assert addrs.len() == 1 assert_raises(IndexError, addrs.__getitem__, 2) ```
{ "source": "JouziP/DOS", "score": 3 }
#### File: DOS/BasicFunctions/cleanNeighbors.py ```python import numpy as np import pandas as pd # def sortNeighbors(neighbs): neighbs_df = pd.DataFrame(neighbs) neighbs_df = neighbs_df.sort_values(1, ascending=False) neighbs[:,:]= neighbs_df.values[:,:] return neighbs def cleanNeighbors(neighbs): neighbs=sortNeighbors(np.array(neighbs) ) length=neighbs.shape[0] val1=round(neighbs[0, 1], 3) j=0 # all_neighbs=[] while j<length: val=round(neighbs[j, 1], 3) # print j, length nn=[] q=0 while val1==val: # print val1, val # print q nn.append(neighbs[j+q, :]) q+=1 if (j+q)<length: val1 = round(neighbs[j+q, 1],3) else: break all_neighbs.append(nn) j=j+q return all_neighbs ``` #### File: Direct/Functions/latticeConstructor.py ```python import numpy as np #from numpy import linalg as lg ################ from cleanNeighbors import cleanNeighbors def getFirstneighbors(neighb_table): pass def getCartesianFromCoords(coords, **kwgs): a1_x=kwgs['a1_x'] a1_y=kwgs['a1_y'] # a2_x=kwgs['a2_x'] a2_y=kwgs['a2_y'] # q1=coords[0] q2=coords[1] x = a1_x*q1 + a2_x*q2 y = a1_y*q1 + a2_y*q2 return x,y def getIndexFromCoords(coords, **kwgs): N1 = kwgs['N1'] q1 = coords[0] q2 = coords[1] idx = q2*N1 + q1 return idx def getCoordsFromIndex(idx, **kwgs): N1 = kwgs['N1'] q2=idx/N1 q1=idx - q2*N1 return q1, q2 def getDistance(deltaX, deltaY): distance = ( (deltaX)**2 + (deltaY)**2)**(0.5) return distance def constructLattice(**kwgs): N1 = kwgs['N1'] N2 = kwgs['N2'] num_sites = N1* N2 neighbors_array = [] for n in range(num_sites): neighbors_array.append(getNeighborTableGeneralized(n, **kwgs)) return neighbors_array def getNeighborTableGeneralized(idx, **kwgs): ### power = kwgs['power'] a1_x=kwgs['a1_x'] a1_y=kwgs['a1_y'] # a2_x=kwgs['a2_x'] a2_y=kwgs['a2_y'] # ### neighbs=[] q1, q2 = getCoordsFromIndex(idx, **kwgs) # N1 = kwgs['N1'] # N2 = kwgs['N2'] # N = N1 * N2 for i in range(0, N, 1): q1_n, q2_n = getCoordsFromIndex(i, **kwgs) ### direct if q1==q1_n and q2==q2_n: pass else: x_n, y_n = getCartesianFromCoords(np.array([q1_n, q2_n]), **kwgs) # cartesian coords x0,y0 = getCartesianFromCoords(np.array([q1,q2]), **kwgs) distance = getDistance( (x_n-(x0)) , (y_n-y0) ) ### periodic 1 # cartesian coords x=x0+N2*a1_x y=y0+N2*a1_y distance10 = getDistance( (x_n-x), (y_n-y) ) # x=x0-N2*a1_x y=y0-N2*a1_y distance11 = getDistance( (x_n-x), (y_n-y) ) distance1=np.min([distance10, distance11]) ### peridic in 2 x=x0+N1*a2_x y=y0+N1*a2_y distance20 = getDistance( (x_n-x), (y_n-y) ) x=x0-N1*a2_x y=y0-N1*a2_y distance21 = getDistance( (x_n-x), (y_n-y) ) distance2=np.min([distance20, distance21]) #### peridic in 1 and 2 # cartesian coords x=x0+N1*a2_x+N2*a1_x y=y0+N1*a2_y+N2*a1_y distance300 = getDistance( (x_n-x), (y_n-y) ) x=x0+N1*a2_x-N2*a1_x y=y0+N1*a2_y-N2*a1_y distance301 = getDistance( (x_n-x), (y_n-y) ) x=x0-N1*a2_x+N2*a1_x y=y0-N1*a2_y+N2*a1_y distance310 = getDistance( (x_n-x), (y_n-y) ) x=x0-N1*a2_x-N2*a1_x y=y0-N1*a2_y-N2*a1_y distance311 = getDistance( (x_n-x), (y_n-y) ) distance3=np.min([distance300, distance310, distance301, distance311]) distance = np.min([distance, distance1, distance2, distance3, ]) # strength = 1./distance**(power) # neighbs.append([i, strength]) if kwgs['first_neighb']==True: all_neighbors = cleanNeighbors(neighbs) neighbs=all_neighbors[0] ### return np.array(neighbs) ``` #### File: DOS/FunctionsLayer1/getNumberMatrix.py ```python import numpy as np from BasicFunctions.generateNumberArray import generateNumberArray def isRepeatedSample(numberArray, samples_list): # for recordedNumberArray in samples_list: diff = [recordedNumberArray[i] - numberArray[i]\ for i in range(len(numberArray))] if diff==[0 for i in range(len(numberArray))]: return 0 return 1 def generateNumberMatrix(**args): N_spins = args['N_spins'] max_n_spins_in_basket = args['max_n_spins_in_basket'] N_samples = args['N_samples'] sampling_method=args['sampling_method'] ########################### num_baskets = (N_spins/max_n_spins_in_basket+1, N_spins/max_n_spins_in_basket)\ [N_spins-(N_spins/max_n_spins_in_basket)*\ max_n_spins_in_basket==0] if num_baskets!=(N_spins/max_n_spins_in_basket): num_spins_in_the_last_basket =\ N_spins - (N_spins/max_n_spins_in_basket)*max_n_spins_in_basket else: num_spins_in_the_last_basket=0 ########################### samples_matrix=[] ## first sample numberArray_init = generateNumberArray(N_spins, max_n_spins_in_basket) samples_matrix.append(numberArray_init) N_sampled = 0 while N_sampled != N_samples-1 and (N_sampled<2**N_spins): # ################## update method if sampling_method =='update': numberArray = updateNumberArray(numberArray_init, max_n_spins_in_basket, num_spins_in_the_last_basket ) ################## direct if sampling_method =='direct': numberArray = generateNumberArray(N_spins, max_n_spins_in_basket) ################# # if isRepeatedSample(numberArray, samples_matrix)!=0: samples_matrix.append(numberArray) N_sampled+=1 numberArray_init = numberArray samples_matrix = np.matrix(samples_matrix) return samples_matrix , N_sampled def updateNumberArray(numberArray_init, max_n_spins_in_basket, num_spins_in_the_last_basket ): # numberArray_new = np.copy(numberArray_init) if num_spins_in_the_last_basket==0: col = np.random.randint(len(numberArray_init)) new_number = np.random.randint(2**max_n_spins_in_basket) numberArray_new[col] = new_number else: col = np.random.randint(len(numberArray_init)) if col !=len(numberArray_init)-1: new_number = np.random.randint(2**max_n_spins_in_basket) numberArray_new[col] = new_number else: new_number = np.random.randint(2**num_spins_in_the_last_basket) numberArray_new[col] = new_number return numberArray_new # #### testing # #args={} #args['N_spins']=100 #args['max_n_spins_in_basket']=20 #args['N_samples']=10 ##M=generateNumberMatrix(**args) #M = generateNumberMatrix(**args) #print M[:6, :] #print M[6:, :] ``` #### File: DOS/FunctionsLayer2/getEnergy2Expectation.py ```python import numpy as np def getEnergy2Expectation(energy_hist, beta, E_0, **args): energy_expect=0 Z=0 energies=(energy_hist[:, 0]-E_0) #### for b in range(energy_hist.shape[0]): energy = energies[b] energy_density = energy_hist[b, 1] # print [energy, # energy_density, # np.exp(-beta*energy), # Z, # energy_expect, # ] energy_expect+=energy_density * np.exp(-beta*energy)* (energy+E_0)**2 Z+=energy_density * np.exp(-beta*energy) energy_expect = energy_expect/Z # print '---------------', energy_expect return energy_expect ```
{ "source": "jovahe/Mask_RCNN_RS", "score": 3 }
#### File: Mask_RCNN_RS/my/shp2json.py ```python from osgeo import ogr import gdal import sys import os import fire def ChangeToJson(vector, output): print("Starting........") #打开矢量图层 gdal.SetConfigOption("GDAL_FILENAME_IS_UTF8", "YES") gdal.SetConfigOption("SHAPE_ENCODING", "GBK") shp_ds = ogr.Open(vector) shp_lyr = shp_ds.GetLayer(0) numFeatures = shp_lyr.GetFeatureCount() print("Features number:{}".format(numFeatures)) # 获取范围 extent = shp_lyr.GetExtent() print("Extent:", extent) print("UL:", extent[0], extent[3]) print("LR:", extent[1], extent[2]) # 循环每个要素属性 for i in range(numFeatures): feature = shp_lyr.GetNextFeature() # 获取字段“id”的属性 # id = feature.GetField('type') # 获取空间属性 # print(id) geometry = feature.GetGeometryRef() # x = geometry.GetX() polygonextent = geometry.GetEnvelope() print(geometry.GetEnvelope()) # print(y) # y = geometry.GetY() print("UL:", polygonextent[0], polygonextent[3]) print("LR:", polygonextent[1], polygonextent[2]) print("segmentation:", geometry) # # 创建结果Geojson # baseName = os.path.basename(output) # out_driver = ogr.GetDriverByName('GeoJSON') # out_ds = out_driver.CreateDataSource(output) # if out_ds.GetLayer(baseName): # out_ds.DeleteLayer(baseName) # out_lyr = out_ds.CreateLayer(baseName, shp_lyr.GetSpatialRef()) # out_lyr.CreateFields(shp_lyr.schema) # out_feat = ogr.Feature(out_lyr.GetLayerDefn()) # # #生成结果文件 # for feature in shp_lyr: # out_feat.SetGeometry(feature.geometry()) # for j in range(feature.GetFieldCount()): # out_feat.SetField(j, feature.GetField(j)) # out_lyr.CreateFeature(out_feat) # # del out_ds # del shp_ds print("Success........") def getPolygonEnvelope(vector): driver = ogr.GetDriverByName('ESRI Shapefile') ds = driver.Open(vector,0) if ds is None: print("Could not open {}".format(vector)) return -1 layer = ds.GetLayer() numFeatures=layer.GetFeatureCount() print("Features number:{}".format(numFeatures)) # 获取范围 extent = layer.GetExtent() print("Extent:", extent) print("UL:", extent[0], extent[3]) print("LR:", extent[1], extent[2]) #循环每个要素属性 for i in range(numFeatures): feature = layer.GetNextFeature() # 获取字段“id”的属性 # id = feature.GetField('type') # 获取空间属性 # print(id) geometry = feature.GetGeometryRef() # x = geometry.GetX() polygonextent = geometry.GetEnvelope() print(geometry.GetEnvelope()) # print(y) # y = geometry.GetY() print("UL:", polygonextent[0], polygonextent[3]) print("LR:", polygonextent[1], polygonextent[2]) return 0 if __name__ == '__main__': shapefile = '/home/omnisky/PycharmProjects/data/maskRcnn/mytest/onepolygon/262985539_1709e54576_z.shp' out = '/home/omnisky/PycharmProjects/data/maskRcnn/mytest/onepolygon/262985539_1709e54576_z.json' ChangeToJson(shapefile, out) # getPolygonEnvelope(shapefile) # fire.Fire() ```
{ "source": "jovajiv/Knesset_Bill_Classifier", "score": 3 }
#### File: jovajiv/Knesset_Bill_Classifier/mergeXML.py ```python import os, os.path, sys import glob import urllib.request from xml.etree import ElementTree import time #specify the max skiptoken used in odata kneset gov for this query , as odata returns info in increments of 100 , # going higher then the max is ok , going lower is not #also need to specify the query table for odata. def download_by_count(query ,upto): print("start download") PATH="XML\\" index=0 while(upto > index): urllib.request.urlretrieve("http://knesset.gov.il/Odata/ParliamentInfo.svc/{}()?$skip={}&top=100".format(query,index),PATH+"xml_{}.xml".format(index)) index +=100 def init_download(query): global index print("start download") PATH="XML\\xml_{}.xml".format(0) url = "http://knesset.gov.il/Odata/ParliamentInfo.svc/{}()".format(query) urllib.request.urlretrieve(url,PATH) index +=100 return PATH def download(url): global index print("start download") PATH="XML\\xml_{}.xml".format(index) retry(url,PATH) #urllib.request.urlretrieve(url,PATH) index +=100 return PATH def retry(url,PATH): remaining_download_tries = 15 while remaining_download_tries > 0: try: urllib.request.urlretrieve(url, PATH) print("successfully downloaded: " + url) #time.sleep(0.1) except: print("error downloading " + url + " on trial no: " + str(16 - remaining_download_tries)) remaining_download_tries = remaining_download_tries - 1 time.sleep(2) continue else: break def run(query): ElementTree.register_namespace('', "http://www.w3.org/2005/Atom") ElementTree.register_namespace('d',"http://schemas.microsoft.com/ado/2007/08/dataservices") ElementTree.register_namespace('m',"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata") ElementTree.register_namespace('base',"http://knesset.gov.il/Odata/ParliamentInfo.svc") xml_element_tree = None file=init_download(query) while 1: root = ElementTree.parse(file).getroot() if xml_element_tree is None: xml_element_tree = root to_remove=root.findall(".")[0][-1] # remove the next label from the final result next = root.findall(".")[0][-1].attrib['href'] file = download(next) xml_element_tree.remove(to_remove) continue else: for entry in root.iter('{http://www.w3.org/2005/Atom}entry'): temp = ElementTree.Element('entry') temp.append(entry) xml_element_tree.extend(temp) try: next = root.findall(".")[0][-1].attrib['href'] print(next) except: break file = download(next) if xml_element_tree is not None: #print(ElementTree.tostring(xml_element_tree)) f = open("myfile.xml", "wb") f.write(ElementTree.tostring(xml_element_tree, encoding='utf8')) f.close() ############################################################################################### this is main ############################################################################### index=0 #download_by_count("KNS_Bill",100) run("KNS_IsraelLaw") # need to manually delete the next.. def old_run(): files = "./XML" ElementTree.register_namespace('', "http://www.w3.org/2005/Atom") ElementTree.register_namespace('d',"http://schemas.microsoft.com/ado/2007/08/dataservices") ElementTree.register_namespace('m',"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata") ElementTree.register_namespace('base',"http://knesset.gov.il/Odata/ParliamentInfo.svc") xml_files = glob.glob(files +"/*.xml") xml_element_tree = None #init_download("KNS_IsraelLawClassificiation") for xml_file in xml_files: root = ElementTree.parse(xml_file).getroot() if xml_element_tree is None: xml_element_tree = root temp= root.findall(".")[0][-1] print(root.findall(".")[0][-1].attrib['href']) #next #for link in xml_element_tree.findall('{http://www.w3.org/2005/Atom}link'): # print(link.attrib) continue for entry in root.iter('{http://www.w3.org/2005/Atom}entry'): temp = ElementTree.Element('entry') temp.append(entry) xml_element_tree.extend(temp) #print(ElementTree.tostring(xml_element_tree,encoding='utf8')) if xml_element_tree is not None: toto=xml_element_tree.find('link') print(ElementTree.tostring(xml_element_tree)) f = open("myfile.xml", "wb") f.write(ElementTree.tostring(xml_element_tree,encoding='utf8')) f.close() ```
{ "source": "j-ovalle/data-structures-and-algorithms", "score": 4 }
#### File: data-structures-and-algorithms/data-structures/linked_list.py ```python class Element(object): def __init__(self, value): self.value = value self.next = None class LinkedList(object): def __init__(self, head=None): self.head = head def append(self, new_element): # Add new element to the tail of the linked list current = self.head if self.head: while current.next: current = current.next current.next = new_element else: self.head = new_element def get_element(self, position): # Get element by position (1 based) counter = 1 current = self.head if position < 1: return None while current and counter <= position: if counter == position: return current current = current.next counter += 1 return None def insert(self, new_element, position): # Insert new element at position (1 based) counter = 1 current = self.head if position > 1: while current and counter < position: if counter == position - 1: new_element.next = current.next current.next = new_element current = current.next counter += 1 elif position == 1: new_element.next = self.head self.head = new_element def delete(self, value): # Delete first element with the given value current = self.head previous = None while current.value != value and current.next: previous = current current = current.next if current.value == value: if previous: previous.next = current.next else: self.head = current.next def insert_first(self, new_element): # Insert new element as head new_element.next = self.head self.head = new_element def delete_first(self): # Delete first element and return it if self.head: deleted_element = self.head temp = deleted_element.next self.head = temp return deleted_element else: return None ```
{ "source": "jovalle/fusion-rest-api", "score": 3 }
#### File: jovalle/fusion-rest-api/main.py ```python import requests import json import argparse import os def print_json(obj): """Parse JSON objects""" print(json.dumps(obj, sort_keys=True, indent=4)) # vm management def get_vms(): """Returns a list of VM IDs and paths for all VMs""" return requests.get(api_url + '/vms', headers=headers).json() def get_vm_by_name(name): """Returns the VM setting information of a VM""" for vm in get_vms(): if os.path.split(vm['path'])[1].split('.')[0] == name: r = requests.get(api_url + '/vms/' + vm['id'], headers=headers).json() r['name'] = name return r def get_vm_by_id(id): """Returns the VM setting information of a VM""" r = requests.get(api_url + '/vms/' + id, headers=headers).json() # populate name for vm in get_vms(): if vm['id'] == id: r['name'] = os.path.split(vm['path'])[1].split('.')[0] return r def update_vm(name, processors=None, memory=None): """Updates the VM settings""" vm = get_vm_by_name(name) # Get current values to avoid empty parameters if processors is None or memory is None: if processors is None: print("[DEBUG] Inheriting processor spec") processors = int(vm['cpu']['processors']) if memory is None: print("[DEBUG] Inheriting memory spec") memory = int(vm['memory']) payload = { "processors": int(processors), "memory": int(memory) } return requests.put(url=api_url + '/vms/' + vm['id'], headers=headers, json=payload).json() def create_vm(parent_name, name, processors, memory, vmnet): """Creates a copy of the VM""" parent_vm = get_vm_by_name(parent_name) print("[DEBUG] Arguments: %s, %s, %s, %s" % (str(parent_name), str(name), str(processors), str(memory))) # Set default values if processors is None or memory is None: if processors is None: print("[DEBUG] Inheriting processor spec") processors = int(parent_vm['cpu']['processors']) if memory is None: print("[DEBUG] Inheriting memory spec") memory = int(parent_vm['memory']) payload = { "cpu": { "processors": int(processors) }, "memory": int(memory), "name": str(name), "parentId": str(parent_vm['id']) } r = requests.post(url=api_url + '/vms', headers=headers, json=payload).json() # BUG: cannot manipulate processor count on cloning. must update after if parent_vm['cpu']['processors'] is not processors: r = update_vm(name, processors, memory) return r def delete_vm(name): """Deletes a VM""" r = requests.delete(api_url + '/vms/' + get_vm_by_name(name)['id'], headers=headers) if r.status_code == 204: print("[INFO] Deleted VM %s" % name) return None # vm power management def get_power(name): """Returns power state of VM""" return requests.get(api_url + '/vms/' + get_vm_by_name(name)['id'] + '/power', headers=headers).json() def power_vm(name, state): """Power on or off a VM""" r = requests.put(api_url + '/vms/' + get_vm_by_name(name)['id'] + '/power', headers=headers, data=state) if r.status_code == 200: print("[INFO] Powered %s %s" % (state, name)) return None # vm network adapters management def get_ip(name): """Returns current IP of (assuming) first NIC""" return requests.get(api_url + '/vms/' + get_vm_by_name(name)['id'] + '/ip', headers=headers).json() def get_nics(name): """Returns list of NICs for the VM""" return requests.get(api_url + '/vms/' + get_vm_by_name(name)['id'] + '/nic', headers=headers).json() def get_nic(name, index): """List specs of specific NIC of VM""" for nic in get_nics(name)['nics']: print("[DEBUG] Current Index: %s, Expected Index: %s" % (str(nic['index']), str(index))) if nic['index'] == index: return nic def update_nic(name, index, type): """Updates a network adapter in the VM""" nic = get_nic(name, int(index)) # Set default values if type is None: print("[DEBUG] Inheriting type key") type = nic['type'] if mac_addr is None: print("[DEBUG] Inheriting mac_addr") mac_addr = nic['macAddress'] payload = { "index": nic['index'], "type": type, "vmnet": vmnet, "macAddress": mac_addr } return requests.put(url=api_url + '/vms/' + get_vm_by_name(name)['id'] + '/nic/' + str(nic['index']), headers=headers, json=payload).json() def create_nic(name, index, type): """Creates a network adapter in the VM""" # Set next index if not defined if index is None: index = 0 for nic in get_nics(name)['nics']: if int(nic['index']) >= index: index = int(nic['index']) + 1 payload = { "index": index, "type": type, "vmnet": vmnet, "macAddress": mac_addr } return requests.post(url=api_url + '/vms/' + get_vm_by_name(name)['id'] + '/nic', headers=headers, json=payload).json() def delete_nic(name, index): """Deletes a VM network adapter""" r = requests.delete(api_url + '/vms/' + get_vm_by_name(name)['id'] + '/nic/' + str(index), headers=headers) if r.status_code == 204: print("[INFO] Deleted NIC %s on %s" % (index, name)) return None if __name__ == '__main__': # parse positional arguments parser = argparse.ArgumentParser(description="Wrapper script for VMware Fusion REST API") parser.add_argument("method", choices=['get','create','update','delete', 'power'], default='get', help="Execute API operation") parser.add_argument("resource", nargs='?', default='vm') # api options parser.add_argument("--api-key", type=str, help="Your VMware Fusion REST API key") # vm management options parser.add_argument("--name", type=str, help="Resource identifier") parser.add_argument("--parent-name", type=str, help="Target VM for cloning") parser.add_argument("--processors", type=int, help="Set vCPUs for VM") parser.add_argument("--memory", type=int, help="Set system memory for VM") # vm power management options parser.add_argument("--state", type=str, help="Set power state of VM") # vm net adapter options parser.add_argument("--index", type=int, help="Adapter identifier") parser.add_argument("--type", type=str, help="Set adapter type (hostonly, nat, bridged, etc.)") # finalize parsing args = parser.parse_args() # Check for API URL if os.getenv('VMWARE_FUSION_REST_API_URL') is not None: api_url = os.getenv('VMWARE_FUSION_REST_API_URL') else: api_url = 'http://127.0.0.1:8697/api' # Check/prompt for API key if os.getenv('VMWARE_FUSION_REST_API_KEY') is not None: api_key = os.getenv('VMWARE_FUSION_REST_API_KEY') else: if args.api_key is not None: api_key = args.api_key else: api_key = input("VMware Fusion REST API Key: ") # Boilerplate header headers = { "Content-Type": "application/vnd.vmware.vmw.rest-v1+json", "Accept": "application/vnd.vmware.vmw.rest-v1+json", "Authorization": "Basic " + api_key } # switchboard if args.method == 'get': if args.resource == 'vm': if args.name is None: print("[INFO] List all VMs") print_json(get_vms()) else: print("[INFO] Get VM (Name: %s)" % str(args.name)) print_json(get_vm_by_name(args.name)) elif args.resource == 'ip': print("[INFO] Get VM IP") print_json(get_ip(args.name)) elif args.resource == 'nics': print("[INFO] Get network adapters for VM") print_json(get_nics(args.name)) elif args.method == 'update': if args.resource == 'vm': print("[INFO] Update VM (Name: %s)" % str(args.name)) print_json(update_vm(args.name, args.processors, args.memory)) elif args.resource == 'nic': print("[INFO] Update NIC (VM: %s, Index %s)" % (str(args.name), str(args.index))) print_json(update_nic(args.name, args.index, args.type)) elif args.method == 'create': if args.resource == 'vm': print("[INFO] Create VM (Name: %s)" % str(args.name)) print_json(create_vm(args.parent_name, args.name, args.processors, args.memory, args.vmnet)) elif args.resource == 'nic': print("[INFO] Create NIC (Name: %s)" % str(args.name)) print_json(create_nic(args.name, args.index, args.type)) elif args.method == 'delete': if args.resource == 'vm': print("[INFO] Delete VM (Name: %s)" % str(args.name)) delete_vm(args.name) elif args.resource == 'nic': print("[INFO] Delete NIC (VM: %s, Index: %s)" % (str(args.name), str(args.index))) delete_nic(args.name, args.index) elif args.method == 'power': if args.resource == 'on' or args.resource == 'off': print("[DEBUG] power_vm(%s, %s)" % (str(args.name), str(args.resource))) power_vm(args.name, args.resource) elif args.resource == 'state': if args.name is not None: if args.state == None: print("[DEBUG] get_power(%s)" % str(args.name)) print_json(get_power(args.name)) else: print("[DEBUG] power_vm(%s, %s)" % (str(args.name), str(args.state))) print_json(power_vm(args.name, args.state)) else: for vm in get_vms(): print("[DEBUG] get_power(get_vm_by_id(%s))" % str(vm['id'])) print_json(get_power(get_vm_by_id(vm['id'])['name'])) ```
{ "source": "JoValo/realEstate", "score": 3 }
#### File: realEstate/api/validations.py ```python import boto3, json class CoordinatesValidation(): def valid(self, latitude, longitude): coordinates= json.dumps({ "latitude": latitude, "longitude": longitude }) client = boto3.client('lambda') response = client.invoke( FunctionName='CoordinatesValidation', InvocationType='RequestResponse', Payload=bytes(coordinates, 'utf8') ) approved = response['Payload'].read().decode("utf-8") return approved == "true" ```
{ "source": "Jovamih/EndpointAppBuscaTutor", "score": 2 }
#### File: Jovamih/EndpointAppBuscaTutor/endpoint_tutores.py ```python import pymysql import sys import json host="buscatutordatabase.cuxsffuy95k9.us-east-1.rds.amazonaws.com" port=3306 user="admin" password="<PASSWORD>" db="buscatutor" def lambda_handler(event, context): params=event["queryStringParameters"] #definimos la estructura de las consultas if "id" in params.keys(): id=params['id'] query_info=f"""SELECT T.id_tutor, E.nombre_completo, E.num_telefono, T.descripcion,T.foto FROM Tutor as T LEFT JOIN Estudiante as E ON T.id_estudiante=E.id_estudiante WHERE T.id_tutor={id} ;""" elif "select" in params.keys(): limit=int(params['select']) if limit<0: #si el query es negativo -1 devolvemos todos los registros query_info=f"""SELECT T.id_tutor, E.nombre_completo, E.num_telefono,T.descripcion, T.foto FROM Tutor as T LEFT JOIN Estudiante as E ON T.id_estudiante=E.id_estudiante ;""" else: query_info=f"""SELECT T.id_tutor, E.nombre_completo, E.num_telefono,T.descripcion, T.foto FROM Tutor as T LEFT JOIN Estudiante as E ON T.id_estudiante=E.id_estudiante LIMIT {limit} ;""" elif "especialidad" in params.keys(): especialidad=params['especialidad'] query_info=f""" SELECT T.id_tutor, E.nombre_completo, E.num_telefono,T.descripcion,T.foto FROM Tutor as T LEFT JOIN Estudiante as E ON T.id_estudiante=E.id_estudiante LEFT JOIN EspecialidadesTutor as ET ON T.id_tutor=ET.id_tutor WHERE ET.desc_especialidad LIKE '%{especialidad}%'; """ else: return { 'statusCode': 200, 'body': json.dumps({"mensaje":"Los parametros enviados son incorrectos. Use id o select"}) } #consulta de especialidades de los tutores query_especialidades="""SELECT ET.desc_especialidad FROM Tutor as T LEFT JOIN EspecialidadesTutor as ET ON T.id_tutor= ET.id_tutor WHERE T.id_tutor= %s;""" #consulta de las habilidades de los tutores query_habilidades="""SELECT HT.desc_habilidad FROM Tutor as T LEFT JOIN HabilidadesTutor as HT ON T.id_tutor= HT.id_tutor WHERE T.id_tutor= %s;""" lista_tutores=list() #todo implement conn=pymysql.connect(host=host,user=user,password=password,db=db,connect_timeout=5) with conn.cursor() as cursor: cursor.execute(query_info) result=cursor.fetchall() #primero consultamos al tutor for row in result: content={ "id_tutor":row[0], "nombre_completo":row[1], "num_telefono":row[2], "descripcion":row[3], "foto":row[4], "especialidades":[], "habilidades":[] } id_tutor=row[0] #consultamos las espececialidades del tutor cursor.execute(query_especialidades,(id_tutor,)) result_especialidades=cursor.fetchall() for row_esp in result_especialidades: if row_esp[0]: content["especialidades"].append(row_esp[0]) cursor.execute(query_habilidades,(id_tutor,)) result_habilidades=cursor.fetchall() for row_hab in result_habilidades: if row_hab[0]: content["habilidades"].append(row_hab[0]) #agregamos el registro a la lista lista_tutores.append(content) return { 'statusCode': 200, 'body': json.dumps({"tutores":lista_tutores}) } ```
{ "source": "Jovamih/Modelo-Deteccion-COVID19", "score": 3 }
#### File: Modelo-Deteccion-COVID19/Notebooks/gradcam.py ```python import cv2 import numpy as np from PIL import Image import tensorflow as tf import tensorflow.keras as K import matplotlib.pyplot as plt from skimage.transform import resize from tensorflow.keras.models import Model #aqui obtenemos el modelo original del transfer learning def get_transfer_model(model): model_transfer=None for layer in model.layers: if isinstance(layer,tf.keras.Model): model_transfer=layer break return model_transfer def get_last_conv_layer(model): for layer in model.layers[::-1]: if isinstance(layer,K.layers.Conv2D): return layer return None def VizGradCAM(model, image, interpolant=0.5, plot_results=True): # Sanity Check #if interpolant < 0 or interpolant >1: # print("Heatmap Interpolation Must Be Between 0 - 1") # return None transfer_model=get_transfer_model(model) last_conv_layer = get_last_conv_layer(transfer_model) target_layer = transfer_model.get_layer(last_conv_layer.name) original_img = image img = np.expand_dims(original_img, axis=0) prediction = model.predict(img) # Obtain Prediction Index prediction_idx = np.argmax(prediction) # Compute Gradient of Top Predicted Class with tf.GradientTape() as tape: gradient_model = Model([transfer_model.inputs], [target_layer.output, transfer_model.output]) conv2d_out, prediction = gradient_model(img) # Obtain the Prediction Loss loss = prediction[:, prediction_idx] # Gradient() computes the gradient using operations recorded # in context of this tape gradients = tape.gradient(loss, conv2d_out) # Obtain the Output from Shape [1 x H x W x CHANNEL] -> [H x W x CHANNEL] output = conv2d_out[0] # Obtain Depthwise Mean weights = tf.reduce_mean(gradients[0], axis=(0, 1)) # Create a 7x7 Map for Aggregation activation_map = np.zeros(output.shape[0:2], dtype=np.float32) # Multiply Weights with Every Layer for idx, weight in enumerate(weights): activation_map += weight * output[:, :, idx] # Resize to Size of Image activation_map = cv2.resize( activation_map.numpy(), (original_img.shape[1], original_img.shape[0]) ) # Ensure No Negative Numbers activation_map = np.maximum(activation_map, 0) # Convert Class Activation Map to 0 - 255 activation_map = (activation_map - activation_map.min()) / ( activation_map.max() - activation_map.min() ) activation_map = np.uint8(255 * activation_map) # Convert to Heatmap heatmap = cv2.applyColorMap(activation_map, cv2.COLORMAP_JET) # Superimpose Heatmap on Image Data original_img = np.uint8( (original_img - original_img.min()) / (original_img.max() - original_img.min()) * 255 ) cvt_heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) # Enlarge Plot plt.rcParams["figure.dpi"] = 100 if plot_results == True: plt.imshow( np.uint8(original_img * interpolant + cvt_heatmap * (1 - interpolant)) ) else: return cvt_heatmap ```
{ "source": "Jovamih/PythonProyectos", "score": 3 }
#### File: PythonProyectos/Intellicense/motion-detector.py ```python import cv2 import numpy as np import sys def motion_detector(video): while video.isOpened(): ret,image_last=video.read() ret,image_current=video.read() if not ret: break diff= cv2.absdiff(image_last,image_current) if np.mean(diff)>3: print("Movimiento detectado :{}".format(np.mean(diff))) cv2.imshow("Motion Dectector",image_current) if cv2.waitKey(1) & 0xFF==ord('q'): break if __name__=="__main__": if len(sys.argv)<2: video=cv2.VideoCapture(0) else: video=cv2.VideoCapture(sys.argv[1]) try: motion_detector(video) video.release() cv2.destroyAllWindows() except Exception as e: print(e) ``` #### File: PythonProyectos/Matplotlib/graficos-dispersion-simples.py ```python import matplotlib.pyplot as plt import numpy as np def dispersion(): x=np.linspace(-20,20,100) y=np.sin(x) plt.plot(x,y,'-^',color='black') #podemos especificar '-ok' #la estrcutura del 3er argumento de la declaracion de plot() es 'linea de separacion|disperso|color' #los marcadores de dispersion puden ser: [o,>,<,^] #plt.show() #pero la mejor herramienta para hacer dispersiones es plt.scatter() plt.scatter(x,y,marker='o') plt.show() def dispersionAdvanced(): #la diferencia de usar plt.scatter y no plt.plt es que la primera nos permiye asignar #propiedades indivuales a cada punto (color tamaño transaparencia) #obtendremos rangso de valors aleatorios para demstrarlo rng=np.random.RandomState(0) x=np.random.randint(10,200,size=100) y=np.random.randint(20,200,size=100) color=rng.rand(100) size=100*rng.rand(100) plt.scatter(x,y,c='green',s=size,alpha=0.5,cmap='viridis') plt.axis('tight') plt.colorbar() plt.show() if __name__=="__main__": dispersionAdvanced() ``` #### File: PythonProyectos/Matplotlib/histogramas.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt #los histogramas sirven para representar variables cuantitativas en Graficas #como distribucion de personas por el rango de edad presentado .etc def histogramas(): #la mayoria de histogramas se representan de forma simple data=np.random.randint(1,100,size=100) plt.hist(data,bins=6,color='green',histtype='bar',alpha=0.5) #plt.hist() plt.show() #si lo que queremos en contar el numero de ocurrencias dentro de cada contenedor(bin) dado #sin mostrar el grafico podems recurrir a la funcion de Numpy histogram #np.histogram(data,bins=10) : data->los datos, bins->Los contenedores o intervalos de datos parejos counts,bin_edges=np.histogram(data,bins=6) for (count,_bin) in zip(counts,bin_edges): print("{} -> {} ocurrencias".format(_bin,count)) #podemos tamien reutilizar fragmentos de codigo para vada grafica hist() que necesitamos analizar data1=np.random.normal(-10,10,100) data2=np.random.normal(-10,10,100) data3=np.random.normal(-10,10,100) #normed ya quedo en desiuso y se recomienda usar density kwargs=dict(histtype='stepfilled',alpha=0.3,density=True,bins=20) plt.hist(data1,**kwargs) plt.hist(data2,**kwargs) plt.hist(data3,**kwargs) plt.show() def histograma2d(): #podemos tener histogramas en dos dimensiones #para ello utilizaremos una distribucion normal multivariada mean=[0,0] cov=[[1,1],[1,2]] x,y=np.random.multivariate_normal(mean,cov,100000).T plt.hist2d(x,y,bins=20,cmap='Blues') cb=plt.colorbar() cb.set_label('Cantidad por contenedores') plt.show() def histogramaHex(): mean=[0,0] cov=[[1,1],[1,2]] x,y=np.random.multivariate_normal(mean,cov,100000).T plt.hexbin(x, y, gridsize=30, cmap='Blues') cb = plt.colorbar(label='count in bin') plt.show() if __name__=="__main__": histogramaHex() ``` #### File: Numpy/Arrays/atributos.py ```python import numpy as np import sys def atributos(): np.random.seed(0) x1= np.random.randint(2,10,size=6) x2=np.random.randint(2,10,size=(3,5)) x3=np.random.randint(2,10,size=(3,4,5)) #ndim= Numero de dimesiones #shape=Retorna el tamaño de las dimensiones (a,b) #size= El tamaño de las dimensiones (n de elementos) #dtype= tipo de elemento #itemsize=El tamaño de cada elemnto de la matriz #nbytes El tamaño total de la matriz en byte's print(x3.ndim) print(x3.shape) print(x3.size) print(x3.itemsize,x3.nbytes) if __name__=="__main__": atributos() ``` #### File: Numpy/FuncionesUniversales/Otros.py ```python import numpy as np def otros(): x=np.random.randint(10,size=8) y=np.empty(8) np.multiply(x,2, out=y) print(y) def agregados(): #reduce y acumulate x=np.random.randint(9,23,size=20) z=np.arange(1,4) print(x) print(np.add.reduce(x)) print(np.add.accumulate(x)) #funciones externas f= np.multiply.outer(x,z) print(f) if __name__=="__main__": agregados() ``` #### File: Numpy/FuncionesUniversales/trigonometricos.py ```python import numpy as np def trig(): z= np.random.randint(0,10,size=(3,4)) x= np.cos(z) x=np.sin(z) x=np.tan(z) x=np.acos(z) x=np.asin(z) x=np.atan(z) #Exponentes y logaritmos x=np.exp(z) x=np.exp2(z) x=np.power(z,4) ##logaritmos x=np.log(z) x=np.log2(z) x=np.log10(z) ``` #### File: Pandas/Data Sciensist/alto-rendimiento.py ```python import pandas as pd import numpy as np import numexpr def rendimiento(): #la libreria numexpr proporciona eval() funcion que evalua literales de cadena a expresiones python logicas data=pd.DataFrame(np.random.randint(12,200,size=(8,4)),columns=list('ABCD')) #la libreria Pandas tambien posee pd.eval() para operar atraves de estos data_mask=pd.eval('data.A>100') print(data[data_mask]) #podemos usar eval() en python en asignaciones internas data.eval('TOTAL=A+B+C+D',inplace=True) print(data) #el uso particular de eval() es para sumas y gestion de columnas de forma mas rapida y eficiente #tambien podemos usar query() y combinarlos con el uso de variables temporales data_mean=(data.mean(axis=0)).mean() data_mask=data.query('(A>@data_mean )& (D>@data_mean)') print(data[data_mask]) if __name__=="__main__": rendimiento() ``` #### File: Pandas/Data Sciensist/combinacion-subconjuntos.py ```python import pandas as pd import numpy as np def make_df(cols='ABCD',ind=range(2)): info={ c: [str(c)+ str(i) for i in ind] for c in cols } return pd.DataFrame(info,index=ind) def make_fr(cols=list('ABCD'),ind=range(2)): info=[[str(i)+str(e) for i in cols] for e in ind] return pd.DataFrame(info,index=ind,columns=cols) def combinacion_DataSets(): #combinacion de conjunto de datos DataSets con Concatenate() y concat() a=np.random.randint(1,200,size=(5,8)) b=np.random.randint(34,890,size=(5,10)) c=np.concatenate([a,b],axis=1) print(c) print('Concatenando Series de Pandas') #combinacion de Datasets con concat del paquete Pandas--> pd.concat #se aplica para series y DataFrames ser1= pd.Series(np.random.randint(1,200,size=3),name='Indice') ser2=pd.Series(np.random.randint(1,200,size=4),index=range(3,7),name='Indice') c=pd.concat([ser1,ser2],axis=0) print(c) p1= make_fr(list('ABCD'),range(3)) p2=make_fr(list('CDEF'),range(3)) c1=pd.concat([p1,p2],axis=0,ignore_index=True).fillna(axis=0,method='ffill') #tambien se pudo usar axis='columns' print(c1) #recomendacion: ignore_index=True--> cuando el indice no importa se recmienda ignorarlo para una concatenacion limpia #añadiendo etiquetas a las fuentes de datos con key c1=pd.concat([p1,p2],axis=0,keys=['Datos 1','Datos 2']) print(c1) #concat tambien nos permite especificar el tipo de uniion de datos print("Fusion de datoss con join='inner'") #el tipo por defecto pd.concat(join='outer'), asi que podemos extennder a join='inner' para que intesecte las columnas c1=pd.concat([p1,p2],axis=0,keys=['D1','D2'],join='inner') print(c1) print("Podemos lograr un efecto similar a pd.concat() con append()") c1=p1.append(p2) print(c1) if __name__=="__main__": combinacion_DataSets() ``` #### File: Pandas/Data Sciensist/pivot-tables.py ```python import numpy as np import pandas as pd from seaborn import load_dataset import matplotlib.pyplot as plt def pivot(): #podemo usar pivot para mostrar una mejor vista #pibot usala funcion de agregado mean() por defecto en aggfunc='mean' data=load_dataset('titanic') a=data.pivot_table('survived',index='sex',columns='class') print(a) #ppodemos usar pd.cut() apara greagr mas indices ages=pd.cut(data['age'],[0,18,80]) a=data.pivot_table('survived',index=['sex',ages],columns='class') print(a) #pivot tambien posee fill_value para asignar valores por defcto #dropna: para borrar columnas que no poseen datos True por defecto #podemos graficar datos con matplotlib def datosAdvanced(): data=pd.read_csv('births.csv',sep=',') a=data.pivot_table('births',index='year',columns='gender',aggfunc='sum') a.plot() plt.ylabel('Total de nacimientos por decada') plt.show() def explorarcion_datos(): pass #pronta implementacion if __name__=="__main__": datosAdvanced() ``` #### File: PythonProyectos/Pandas/readcsv.py ```python import pandas as pd import matplotlib.pyplot as plt def read(csv): #cells=['ID','Nombre','Apellido','Nacimiento','Domicilio','Email','Observacion','DNI'] data=pd.read_csv(csv) data.head() print(data) print(data["nombre"]) if __name__=="__main__": read(r"D:\User\PythonProyectos\Pandas\Pacientes.csv") ``` #### File: PythonProyectos/Pandas/readexcel.py ```python import pandas as pd import sys import matplotlib.pyplot as plt def readExcel(url): data= pd.ExcelFile(url) print(data.sheet_names) data_gender= data.parse('Paciente',skiprows=0)#skipfooter=0,names=[) data_gender.set_index('idPais',inplace=True) data_gender.plot() plt.show() print(data_gender) print(type(data)) print(type(data_gender)) if __name__=="__main__": if len(sys.argv)<2: print("Ingrese una <PATH> relativa") exit(0) try: readExcel(sys.argv[1]) except Exception as e: print(e) ``` #### File: PythonProyectos/Pytest/face_detector.py ```python import cv2 import sys def identifier(path): cascadePath=r"D:\User\PythonProyectos\Intellicense\haarcascade_frontalface_alt.xml" detector=cv2.CascadeClassifier(cascadePath) image=cv2.imread(path) image_gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) #ubicamos las caras en la imagen array_faces=detector.detectMultiScale( image_gray, scaleFactor=1.2, minNeighbors=2, minSize=(1,1) ) #dibujamos las caras en la imagen segun sean las cordenadas encontradas for (x,y,w,h) in array_faces: cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2) print("{} rostros encontrados".format(len(array_faces))) #mostramos la imagen cv2.imshow("{} Faces found".format(len(array_faces)),image) if cv2.waitKey(0) & 0xFF==ord('q'): return if __name__=="__main__": if len(sys.argv)<2: print("Debe especifica una imagen como ruta de acceso") exit(0) try: identifier(sys.argv[1]) except Exception as e: print(e) ``` #### File: PythonProyectos/WordCount/wordcount.py ```python import sys def word_count(text): word= text.split(" ") return len(word) def lines_count(text): lines= text.split("\n") for l in lines: if not l : lines.remove(l) return len(lines) if __name__=="__main__": if len(sys.argv)<2: print("Ingrese la ruta del archivo",file=sys.stderr) exit(1) filename= sys.argv[1] with open(filename,"r") as f: text=f.read() num_word=word_count(text) num_lines=lines_count(text) print("Number of Words:",num_word) print("Number of lines:",num_lines) ```
{ "source": "JovanCe/mfp", "score": 2 }
#### File: mfp/test/run_benchmark_parallel.py ```python __author__ = '<NAME> <<EMAIL>>' __date__ = '26 September 2015' __copyright__ = 'Copyright (c) 2015 Seven Bridges Genomics' import multiprocessing import time import json import maxflow import util from graph.graph import DIMACSGraphFactory class Worker(object): def __init__(self, density, batch_size): self._density = density self._batch_size = batch_size def measure_execution_time(self, func, *args): t1 = time.clock() func(*args) t2 = time.clock() return t2 - t1 def _run_maxflow(self, maxflow_func, data_file): flow_network = DIMACSGraphFactory.create(util.get_data_file(data_file)) return self.measure_execution_time(maxflow_func, flow_network) def _run_by_density(self, maxflow_func): results = [self._run_maxflow(maxflow_func, '%s_%d.txt' % (self._density, i)) for i in range(self._start, self._start + self._batch_size)] return results def _run_batch(self): results = { 'ek': self._run_by_density(maxflow.edmonds_karp), 'df': self._run_by_density(maxflow.edmonds_karp_dfs), 'ff': self._run_by_density(maxflow.ford_fulkerson), 'pq': self._run_by_density(maxflow.ford_fulkerson_pq), 'cs': self._run_by_density(maxflow.capacity_scaling), 'pr': self._run_by_density(maxflow.generic_push_relabel), 'rf': self._run_by_density(maxflow.relabel_to_front) } return results def __call__(self, ord): self._ord = ord + 1 self._start = ord * self._batch_size + 1 results = self._run_batch() with open(util.get_out_file('worker', 'sparse_%d.txt' % self._ord), 'w') as f: json.dump(results, f) print "WORKER %d DONE" % self._ord def _execute(density): num_process = 10 batch_size = 20 pool = multiprocessing.Pool(processes=num_process) pool.map(Worker(density, batch_size), range(num_process)) pool.close() pool.join() results = { 'ff': [], 'pq': [], 'ek': [], 'df': [], 'cs': [], 'pr': [], 'rf': [] } for i in range(num_process): res = json.load(open(util.get_out_file('worker', '%s_%d.txt' % (density, i+1)))) for k, v in res.items(): results[k].extend(v) with open(util.get_out_file('%s.txt' % density), 'w') as f: json.dump(results, f) print '%s DONE' % density.upper() if __name__ == '__main__': _execute('sparse') _execute('medium') _execute('dense') ``` #### File: mfp/test/run_benchmark.py ```python __author__ = '<NAME> <<EMAIL>>' __date__ = '08 September 2015' __copyright__ = 'Copyright (c) 2015 Seven Bridges Genomics' import time import json import maxflow import util from graph.graph import DIMACSGraphFactory def measure_execution_time(func, *args): t1 = time.clock() func(*args) t2 = time.clock() return t2 - t1 def _run_maxflow(maxflow_func, data_file): flow_network = DIMACSGraphFactory.create(util.get_data_file(data_file)) return measure_execution_time(maxflow_func, flow_network) def _run_by_density(density, maxflow_func): results = [_run_maxflow(maxflow_func, '%s_%d.txt' % (density, i+1)) for i in range(200)] return results def _run_batch(density): results = { 'ek': _run_by_density(density, maxflow.edmonds_karp), 'df': _run_by_density(density, maxflow.edmonds_karp_dfs), 'ff': _run_by_density(density, maxflow.ford_fulkerson), 'pq': _run_by_density(density, maxflow.ford_fulkerson_pq), 'cs': _run_by_density(density, maxflow.capacity_scaling), 'pr': _run_by_density(density, maxflow.generic_push_relabel), 'rf': _run_by_density(density, maxflow.relabel_to_front) } return results if __name__ == '__main__': sparse_results = _run_batch('sparse') with open(util.get_out_file('sparse.txt'), 'w') as f: json.dump(sparse_results, f) medium_results = _run_batch('medium') with open(util.get_out_file('medium.txt'), 'w') as f: json.dump(medium_results, f) dense_results = _run_batch('dense') with open(util.get_out_file('dense.txt'), 'w') as f: json.dump(dense_results, f) ```
{ "source": "jovandeginste/jenkins-jobs-mattermost", "score": 2 }
#### File: jenkins-jobs-mattermost/jenkins_jobs_mattermost/mattermost.py ```python import xml.etree.ElementTree as XML def mattermost_publisher(parser, xml_parent, data): """yaml: mattermost Example:: publishers: - mattermost: notify-start: true notify-success: true notify-aborted: true notify-notbuilt: true notify-unstable: true notify-failure: true notify-backtonormal: true notify-repeatedfailure: true include-test-summary: true show-commit-list: true endpoint: example.com room: '#jenkins' icon: 'http://url.to/image.png' custom-message: message """ if data is None: data = dict() notifier = XML.SubElement( xml_parent, 'jenkins.plugins.mattermost.MattermostNotifier') notifier.set('plugin', '@1.0') for opt, attr in (('notify-start', 'startNotification'), ('notify-success', 'notifySuccess'), ('notify-aborted', 'notifyAborted'), ('notify-notbuilt', 'notifyNotBuilt'), ('notify-unstable', 'notifyUnstable'), ('notify-failure', 'notifyFailure'), ('notify-backtonormal', 'notifyBackToNormal'), ('notify-repeatedfailure', 'notifyRepeatedFailure'), ('include-test-summary', 'includeTestSummary'), ('show-commit-list', 'showCommitList')): (XML.SubElement(notifier, attr) .text) = 'true' if data.get(opt, True) else 'false' for opt, attr in (('endpoint', 'endpoint'), ('room', 'room'), ('icon', 'icon')): (XML.SubElement(notifier, attr) .text) = data.get(opt) if data.get('include-custom-message'): (XML.SubElement(notifier, 'includeCustomMessage') .text) = 'true' (XML.SubElement(notifier, 'customMessage') .text) = data.get('custom-message') else: (XML.SubElement(notifier, 'includeCustomMessage') .text) = 'false' (XML.SubElement(notifier, 'customMessage') .text) = '' ```
{ "source": "JovaneJames/CollectionOfExercises", "score": 4 }
#### File: JovaneJames/CollectionOfExercises/ex4.py ```python def ex4(): running = True shortest_word = "" longest_word = "" while running: try: user_input = input("Please input a line of text: ").split() if len(user_input) == 0: print("Invalid input") continue print(f"String input from the user \"{user_input}\"") longest_word, running, shortest_word = figure_out_which_is_shortest_and_longest(longest_word, shortest_word, user_input) except IOError as e: print(e) print(f"The length of the shortest word '{shortest_word}' is {len(shortest_word)}") print(f"The length of the shortest word '{longest_word}' is {len(longest_word)}") def figure_out_which_is_shortest_and_longest(longest_word, shortest_word, user_input): for word in user_input: if len(shortest_word) == 0 or len(word.casefold()) < len(shortest_word.casefold()): shortest_word = word if len(longest_word) == 0 or len(word) > len(longest_word.casefold()): longest_word = word print(word) running = False return longest_word, running, shortest_word ``` #### File: JovaneJames/CollectionOfExercises/ex7.py ```python def ex7(): running = True while running: try: user_input = int(input("Enter an integer: ")) if user_input < 2 or str(user_input) == 0: print("Invalid input") if user_input == 1: print(f"Btw the integer {user_input} is not a prime number, you know that right?") continue if user_input in range(4): print(f"{user_input} is a prime integer") check_for_prime(user_input) running = False except ValueError as v_error: print(v_error) def check_for_prime(user_input): for i in range(2, user_input): if user_input % i == 0: print(f"{user_input} is not a prime number") break else: print(f"{user_input} is a prime number") break ``` #### File: JovaneJames/CollectionOfExercises/exercises.py ```python from ex1 import ex1 from ex2 import ex2 from ex3 import ex3 from ex4 import ex4 from ex5 import ex5 from ex6 import ex6 from ex7 import ex7 from ex8 import ex8 from ex9 import ex9 from ex10 import ex10 def select_exercise(): # list_of_exercises = [None, ex1, ex2, ex3, ex4, ex5, ex6, ex7, ex8, ex9, e10]#e11 # running = True # while running: # line = input("Select an exercise (0 or 'q' to quit): ") # if line == "0" or line == "q": # running = False # elif len(line) == 1 and "1" <= line <= "11": # list_of_exercises[int(line)]() # else: # print("Invalid input - try again") ex10() if __name__ == '__main__': select_exercise() ``` #### File: JovaneJames/CollectionOfExercises/validation_handler.py ```python def check_if_input_is_positive(user_input, token): # checks if user input is a positive integer = if not prompts user to do so and then returns result if user_input <= 0: running = True if token == "bin<PASSWORD>_k" and user_input == 0: return 0 while running: print("Please enter a positive integer") user_input = determine_message_to_be_shown(user_input, token) if user_input > 0.0: running = False return user_input def determine_message_to_be_shown(user_input, token): match token: case "height" | "width": return float(input(f"Enter the {token} of the triangle: ")) case "fibonacci": return int(input("How many numbers of the fibonacci sequence should be displayed? ")) case "binomial_n": return int(input("Enter the value of integer n: ")) case "binomial_k" if user_input < 0: return int(input("Enter the value of integer k: ")) case "line of text": return input("Please input a line of text: ") case "rpw" | "column" : return int(input(f"Enter how many {token} you want to be displayed: ")) ```
{ "source": "Jovanez/flask", "score": 3 }
#### File: Jovanez/flask/filme.py ```python from flask import render_template,redirect,url_for, Blueprint, request, json, session from banco import Filme, Programacao, Cinema, DiaSemana, Sessao, Sala, TipoAudio, TipoTela from peewee import DoesNotExist import datetime filme = Blueprint("filme", __name__,static_folder='static', url_prefix="/filme") @filme.route("/sessoes/<int:codigoCinema>/<int:codigoDia>/<int:codigoFilme>") def sessoesJson(codigoCinema, codigoFilme, codigoDia): listaGeral = Sessao.select(Sessao).where((Sessao.dataHora > datetime.datetime.now()) & ( Sala.cinema == codigoCinema) & (Sessao.filme == codigoFilme)).join(Sala).group_by(Sessao.codigo) listaVazio = [] for s in listaGeral: if s.dataHora.strftime("%w") == str(codigoDia): print ("fiu") listaVazio.append(s) return render_template("painelSessoesFilme.html", sessoes=listaVazio) @filme.route("/diasJson/<int:codigoCinema>") def diasJson(codigoCinema): listaDiasSemana = DiaSemana.select().where((DiaSemana.cinema == codigoCinema)).order_by(DiaSemana.numero) return render_template('painelDiasFilme.html', dias=listaDiasSemana) @filme.route("/", methods=['POST', 'GET']) def index(): session['url'] = 'filme/' listaCinemas = Cinema.select() filmes = (Filme.select(Filme).where((Programacao.periodoInicio < datetime.datetime.now()) & ( Programacao.periodoFinal > datetime.datetime.now())).join(Programacao).group_by(Filme.codigo)) if request.method == 'GET': return render_template("product.html", listaCinemas=listaCinemas, listaFilmes=filmes) else: codigoCinema = request.form['cinema'] if 'codigoFilme' in request.form: codigo = request.form['codigoFilme'] if codigo: try: filmes = (Filme.select(Filme).where((Programacao.periodoInicio < datetime.datetime.now()) & ( Programacao.periodoFinal > datetime.datetime.now()) & (Programacao.cinema == codigoCinema) & (Filme.codigo == codigo)).join(Programacao).group_by(Filme.codigo)) except DoesNotExist: pass if 'nomeFilme' in request.form: nome = request.form['nomeFilme'] if nome: try: filmes = (Filme.select(Filme).where((Programacao.periodoInicio < datetime.datetime.now()) & ( Programacao.periodoFinal > datetime.datetime.now()) & (Programacao.cinema == codigoCinema) & (Filme.nome.contains(nome))).join(Programacao).group_by(Filme.codigo)) except DoesNotExist: pass return render_template("product.html", listaCinemas=listaCinemas, listaFilmes=filmes) @filme.route("/detalhes", methods=['POST', 'GET']) def detalhes(): if request.method == 'POST': session['url'] = '/detalhes' codigo = request.form['codigo'] filme = None cinemas = None try: filme = Filme.select(Filme).where( (Filme.codigo == codigo) & ( Programacao.filme == Filme.codigo) & ( Programacao.periodoInicio < datetime.datetime.now()) & ( Programacao.periodoFinal > datetime.datetime.now()) & ( Programacao.cinema == Cinema.codigo) ).join(Programacao).join(Cinema).get() recomendados = Filme.select().where((Filme.codigo != codigo) & (Filme.genero == filme.genero)) except DoesNotExist: return redirect("/") try: cinemas = Cinema.select(Cinema).where((Programacao.filme == codigo)& (Programacao.cinema == Cinema.codigo)).join(Programacao).join(Filme).group_by(Cinema.codigo) except DoesNotExist: return redirect("/") return render_template("product-detail.html", filme=filme, listaCinema=cinemas, recomendados=recomendados) @filme.route("/teste") def teste(): filmes = (Filme.select(Filme).where((Programacao.periodoInicio < datetime.datetime.now()) & (Programacao.periodoFinal > datetime.datetime.now())).join(Programacao).group_by(Filme.codigo)) string = "" for ob in filmes: string+="Filme: %s \n "%(ob.nome) return string def teste2(): filmes = (Programacao.select(Programacao,Filme).where((Programacao.periodoInicio < datetime.datetime.now()) & (Programacao.periodoFinal > datetime.datetime.now())).join(Filme)) string = "" for ob in filmes: string+="Filme: %s Data:%s "%(ob.filme.nome,ob.periodoInicio.strftime(' %d, %b %Y')) return string ```
{ "source": "JovaniPink/awesomenbadata-api", "score": 2 }
#### File: app/views/landing.py ```python from flask import Blueprint, redirect, render_template, current_app from flask import ( request, url_for, flash, send_from_directory, jsonify, render_template_string, ) # When using a Flask app factory we must use a blueprint to avoid needing 'app' for '@app.route' main_blueprint = Blueprint("main", __name__, template_folder="templates") @main_blueprint.route("/") def member_page(): if current_user.is_authenticated: return redirect(url_for("main.home_page")) return render_template("pages/global.html") @main_blueprint.route("/home") @login_required def home_page(): return render_template("pages/home.html") ```
{ "source": "JovaniPink/belly-graphs-dash", "score": 3 }
#### File: app/dashbelly/callbacks.py ```python from datetime import datetime as dt import pandas_datareader as pdr from dash.dependencies import Input from dash.dependencies import Output def register_callbacks(dashapp): @dashapp.callback(Output("my-graph", "figure"), [Input("my-dropdown", "value")]) def update_graph(selected_dropdown_value): df = pdr.get_data_yahoo( selected_dropdown_value, start=dt(2017, 1, 1), end=dt.now() ) return { "data": [{"x": df.index, "y": df.Close}], "layout": {"margin": {"l": 40, "r": 0, "t": 20, "b": 30}}, } ```
{ "source": "JovaniPink/cocktail-data", "score": 3 }
#### File: JovaniPink/cocktail-data/cocktail_data.py ```python import json import os import typing temp_dict = {} def map_values(obj, fn): ret = {} for key in obj.keys(): ret[key] = fn(obj[key]) return ret def json_extract(obj, key): """Recursively fetch values from nested JSON.""" arr = {} def extract(obj, arr, key): """Recursively search for values of key in JSON tree.""" if isinstance(obj, dict): for k, v in obj.items(): if isinstance(v, (dict, list)) and k != key: extract(v, arr, key) elif k == key: arr[obj["id"]] = obj[key] elif isinstance(obj, list): for item in obj: extract(item, arr, key) return arr values = extract(obj, arr, key) return values # def double_check_dict(dict): # return(key, value in dict.items() if value == val) def find_keys(dict, val): return list(key for key, value in dict.items() if value == val and isinstance(value, (dict, list))) file_to_load = os.path.join("data/cocktails.json") with open(file_to_load, "r") as cocktail_data: cocktail_data_loaded = json.load(cocktail_data) # json.dump(json_extract(cocktail_data_loaded, "ingredients"), open("out.json", "w")) temp_dict = find_keys(json_extract(cocktail_data_loaded, "ingredients"), "Cranberry Juice") print(temp_dict) ```
{ "source": "JovaniPink/masky", "score": 3 }
#### File: masky/app/__init__.py ```python from datetime import datetime import json, os, re, base64 import connexion from flask_marshmallow import Marshmallow from flask import ( Flask, render_template, request, jsonify, make_response, send_from_directory, ) from flask_wtf.csrf import CSRFProtect from werkzeug.utils import secure_filename # import app.predictor basedir = os.path.abspath(os.path.dirname(__file__)) # Instantiate Flask extensions ma = Marshmallow() csrf = CSRFProtect() # https://flask.palletsprojects.com/en/0.12.x/patterns/appfactories/ def create_app(extra_config_settings={}): """Create a Flask application.""" # Create the connexion application instance app = connexion.FlaskApp(__name__, specification_dir=basedir) # Read the openapi.yaml file to configure the endpoints app.add_api("openapi.yaml") application = app.app # Load App Config settings # Load common settings from 'app/settings.py' file application.config.from_object("app.settings") # Load local settings from 'app/local_settings.py' application.config.from_object("app.local_settings") # Load extra config settings from 'extra_config_settings' param application.config.update(extra_config_settings) # Setup Flask-Extensions -- do this _after_ app config has been loaded # We are doing this because our web application could have different # config files depending the server environment and context. # Setup Marshmallow ma.init_app(application) # Setup CSRF csrf.init_app(application) @app.route("/") def index(): return render_template("index.html") @app.route("/about") def about(): return render_template("about.html") @app.route("/features") def features(): return render_template("features.html") @app.route("/<path:filename>") def locations_json(filename): return send_from_directory("static", filename) @app.route("/photo_capture", methods=["POST"]) @csrf.exempt def process_capture(): req = request.get_json() header, encoded = req["photo_cap"].split(",", 1) binary_data = base64.b64decode(encoded) image_name = "capture.jpeg" with open( os.path.join(application.config["IMAGE_UPLOADS"], image_name), "wb" ) as f: f.write(binary_data) # facial recognition operations response = {"msg": "success", "size": 20} return make_response(jsonify(response=response), 200) return application ```
{ "source": "JovaniPink/orlando-job-market-data", "score": 4 }
#### File: orlando-job-market-data/config/set_matching_data.py ```python import json class MatchingData: @staticmethod def make_matching_data(): # Prompt the user for matching keywords print( "\nTERMS MATCHING: Let's make your search more specific!" "\tNow you will have the chance to introduce keywords you would like the job titles and description" "to contain" ) user_input = True title_selected_keywords = [] while user_input: term = input( "\nEnter a term you want in the title" "\n\tIf you don't want to add more title words, hit enter\n" ).lower() if len(term) < 1: user_input = False break title_selected_keywords.append(term) user_input = True title_discarded_keywords = [] while user_input: term = input( "\n\nEnter a term DON'T want in the job title" "\n\tIf you don't want to add more title words, hit enter\n" ).lower() if len(term) < 1: user_input = False break title_discarded_keywords.append(term) user_input = True description_selected_keywords = [] while user_input: term = input( "\n\nEnter a term you want in the job description\n" "\tIf you don't want to add more description words, hit enter\n" ).lower() if len(term) < 1: user_input = False break description_selected_keywords.append(term) user_input = True description_discarded_keywords = [] while user_input: term = input( "\n\nEnter a term you DON'T want in the job description\n" "\tIf you don't want to add more words, hit enter\n" ).lower() if len(term) < 1: user_input = False break description_discarded_keywords.append(term) # Make the keyword matching dictionary to later append the matching data # and save it to a json file matching_data = { "titleMatching": {"select": [], "discard": []}, "descriptionMatching": {"select": [], "discard": []}, } # Add selected terms for title for i in range(len(title_selected_keywords)): matching_data["titleMatching"]["select"].append( {"term": title_selected_keywords[i]} ) # Add discarded terms for title for i in range(len(title_discarded_keywords)): matching_data["titleMatching"]["discard"].append( {"term": title_discarded_keywords[i]} ) # Add selected terms for description for i in range(len(description_selected_keywords)): matching_data["descriptionMatching"]["select"].append( {"term": description_selected_keywords[i]} ) # Add discarded terms for description for i in range(len(description_discarded_keywords)): matching_data["descriptionMatching"]["discard"].append( {"term": description_discarded_keywords[i]} ) # Dump matching data into json file with open("config/matching_terms.json", "w", encoding="utf-8") as mt: json.dump(matching_data, mt, ensure_ascii=False, indent=4) ``` #### File: orlando-job-market-data/indeed_jobs_crawler/data_matcher.py ```python class MatchJob: def __init__( self, titles, descriptions, locations, companies, salaries, ratings, urls, days, discarded_title_terms, # discarded_desc_terms, selected_title_terms, # selected_description_terms, ): self.keep_titles = [] self.keep_description = [] self.keep_locations = [] self.keep_companies = [] self.keep_salaries = [] self.keep_ratings = [] self.keep_urls = [] self.keep_days = [] self.titles = titles self.descriptions = descriptions self.locations = locations self.companies = companies self.salaries = salaries self.ratings = ratings self.urls = urls self.days = days self.discarded_title_items = discarded_title_terms # self.discarded_desc_terms = discarded_desc_terms self.selected_title_terms = selected_title_terms # self.selected_description_terms = selected_description_terms def keep_job_data(self, i): self.keep_titles.append(self.titles[i]) self.keep_description.append(self.descriptions[i]) self.keep_locations.append(self.locations[i]) self.keep_companies.append(self.companies[i]) self.keep_salaries.append(self.salaries[i]) self.keep_ratings.append(self.ratings[i]) self.keep_urls.append(self.urls[i]) self.keep_days.append(self.days[i]) def check_title_has_selected_terms(self, title): if self.selected_title_terms: if any(term in title.lower() for term in self.selected_title_terms): return True else: return False # def check_description_has_selected_terms(self, description): # if self.selected_description_terms: # if any( # term in description.lower() for term in self.selected_description_terms # ): # return True # else: # return False def check_title_has_discarded_terms(self, title): if self.discarded_title_items: if any(term in title.lower() for term in self.discarded_title_items): return True else: return False # def check_description_has_discarded_terms(self, description): # if self.discarded_desc_terms: # if any(term in description.lower() for term in self.discarded_desc_terms): # return True # else: # return False # def matching(self): # for t, d in zip(self.titles, self.descriptions): # if self.check_title_has_selected_terms( # t # ) or self.check_description_has_selected_terms(d): # if not self.check_title_has_discarded_terms( # t # ) or not self.check_description_has_discarded_terms(d): # idx = self.titles.index(t) # self.keep_job_data(idx) def get_targeted_jobs_data(self): if ( self.selected_title_terms # or self.selected_description_terms or self.discarded_title_items # or self.discarded_desc_terms ): # self.matching() return ( self.keep_titles, self.keep_description, self.keep_locations, self.keep_companies, self.keep_salaries, self.keep_ratings, self.keep_urls, self.keep_days, ) else: return ( self.titles, self.descriptions, self.locations, self.companies, self.salaries, self.ratings, self.urls, self.days, ) ```
{ "source": "JovaniPink/surfs-up", "score": 3 }
#### File: JovaniPink/surfs-up/app_refactored.py ```python __version__ = "0.1.0" import os from datetime import date, datetime, timedelta import connexion from flask.templating import render_template from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow # @connex_app.route("/api/v1.0/precipitation") def precipitation(): db.create_all() precipitation = Measurement.query.all() print(type(precipitation)) precipitation_schema = MeasurementSchema(many=True) print(type(precipitation_schema)) prep_sch_json = precipitation_schema.dump(precipitation) print(type(prep_sch_json)) return prep_sch_json # @connex_app.route("/api/v1.0/stations") def stations(): return # @connex_app.route("/api/v1.0/tobs") def temp_monthly(): return # @connex_app.route("/api/v1.0/temp/<start>") # @connex_app.route("/api/v1.0/temp/<start>/<end>") def stats(): return # Create the connexion application instance connex_app = connexion.FlaskApp(__name__) # Read the openapi.yaml file to configure the endpoints connex_app.add_api("openapi.yaml") # Get the underlying Flask app instance app = connex_app.app # basedir = os.path.abspath(os.path.dirname(__file__)) # # Build the Sqlite ULR for SQLAlchemy # sqlite_url = "sqlite:////" + os.path.join(basedir, "hawaii.db") # Configure the SQLAlchemy part of the app instance app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///notebook/hawaii.db" app.config["SQLALCHEMY_ECHO"] = True app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False # Flask-SQLAlchemy makes using the database outside of a Flask context difficult. # I ran into this issue when I wanted to still use my SQLAlchemy scripts in FastAPI. # Create the SQLAlchemy db instance db = SQLAlchemy(app) class Measurement(db.Model): __tablename__ = "measurement" id = db.Column(db.Integer, primary_key=True) station = db.Column(db.String) date = db.Column(db.String) prcp = db.Column(db.Float) tobs = db.Column(db.Float) class Station(db.Model): __tablename__ = "station" id = db.Column(db.Integer, primary_key=True) station = db.Column(db.String) name = db.Column(db.String) latitude = db.Column(db.Float) longitude = db.Column(db.Float) elevation = db.Column(db.Float) # Initialize Marshmallow ma = Marshmallow(app) class MeasurementSchema(ma.SQLAlchemySchema): class Meta: model = Measurement sqla_session = db.session id = ma.auto_field() station = ma.auto_field() date = ma.auto_field() prcp = ma.auto_field() tobs = ma.auto_field() class StationSchema(ma.SQLAlchemySchema): class Meta: model = Station sqla_session = db.session id = ma.auto_field() station = ma.auto_field() name = ma.auto_field() latitude = ma.auto_field() longitude = ma.auto_field() elevation = ma.auto_field() db.init_app(app) # Create a URL route in our application for "/" @connex_app.route("/") def index(): """ This function just responds to the browser URL localhost:5000/ :return: the rendered template "index.html" """ return render_template("index.html") if __name__ == "__main__": connex_app.run(debug=True) ```
{ "source": "JovanMarkovic99/blockade-board-game", "score": 4 }
#### File: JovanMarkovic99/blockade-board-game/board.py ```python import heapq from copy import deepcopy, copy from math import inf class Board: def __init__(self, rows, columns, player_1_pawns, player_2_pawns): self.rows = rows self.columns = columns self.num_placed_walls = 0 self.player_1_pawns = deepcopy(player_1_pawns) self.player_2_pawns = deepcopy(player_2_pawns) self.player_1_start = (copy(player_1_pawns[0]), copy(player_1_pawns[1])) self.player_2_start = (copy(player_2_pawns[0]), copy(player_2_pawns[1])) self.board = [[BoardSquare() for _ in range(columns)] for _ in range(rows)] self.board[player_1_pawns[0][0]][player_1_pawns[0][1]].set_start('X') self.board[player_1_pawns[1][0]][player_1_pawns[1][1]].set_start('X') self.board[player_2_pawns[0][0]][player_2_pawns[0][1]].set_start('O') self.board[player_2_pawns[1][0]][player_2_pawns[1][1]].set_start('O') def print_board(self): for i in range(2 * self.rows + 3): # When i and j are divisible by 2 index_i and index_j are board coordinates index_i = i // 2 - 1 for j in range(2 * self.columns + 3): index_j = j // 2 - 1 # Top-bottom border if i == 0 or i == 2 * self.rows + 2: if j == 0 or j == 2 * self.columns + 2 or j % 2 == 1: print(" ", end="") else: print(self.matrix_index_to_board_index(index_j), end="") elif i == 1 or i == 2 * self.rows + 1: if j == 0 or j == 2 * self.columns + 2 or j % 2 == 1: print(" ", end="") else: print("=", end="") # Square rows elif i % 2 == 0: # Left-right border if j == 0 or j == 2 * self.columns + 2: print(self.matrix_index_to_board_index(index_i), end="") elif j == 1 or j == 2 * self.columns + 1: print("‖", end="") # Squares elif j % 2 == 0: print(self.board[index_i][index_j].center, end="") # Left-right walls else: print("‖" if self.board[index_i][index_j].right else "|", end="") # Top-bottom wall rows # Top-bottom walls elif j != 0 and j != 2 * self.columns + 2 and j % 2 == 0: print("=" if self.board[index_i][index_j].bottom else "—", end="") else: print(" ", end="") print() def game_end(self): return self.player_1_pawns[0] in self.player_2_start or self.player_1_pawns[1] in self.player_2_start or \ self.player_2_pawns[0] in self.player_1_start or self.player_2_pawns[1] in self.player_1_start def valid_pawn_move(self, player, pawn_index, row, column, print_failure=True): # Check if pawn indices are in range if row >= self.rows or column >= self.columns: self.conditional_print("Pawn indices are out of bounds!", print_failure) return False prev_pos = self.player_1_pawns[pawn_index] if player == 'X' else self.player_2_pawns[pawn_index] old_square = self.board[prev_pos[0]][prev_pos[1]] new_square = self.board[row][column] if abs(prev_pos[0] - row) + abs(prev_pos[1] - column) == 0 or \ abs(prev_pos[0] - row) + abs(prev_pos[1] - column) > 2: self.conditional_print("You cannot stay in place or move more than two squares from you current position!", print_failure) return False if (new_square.center == 'X' or new_square.center == 'O') and \ (new_square.starting is None or new_square.starting == player): self.conditional_print("You cannot jump to a square with a pawn!", print_failure) return False # Top if row < prev_pos[0]: # Top-Left if column < prev_pos[1]: if old_square.top_left() or new_square.bottom_right() or \ (old_square.left and new_square.right) or (old_square.top and new_square.bottom): self.conditional_print("You cannot jump over a wall!", print_failure) return False # Top-Right elif column > prev_pos[1]: if old_square.top_right() or new_square.bottom_left() or \ (old_square.right and new_square.left) or (old_square.top and new_square.bottom): self.conditional_print("You cannot jump over a wall!", print_failure) return False else: # Top-Middle if prev_pos[0] - row == 1: if new_square.bottom: self.conditional_print("You cannot jump over a wall!", print_failure) return False elif new_square.starting is not None and new_square.starting != player: pass elif new_square.top: self.conditional_print("You cannot jump just one space forward!", print_failure) return False elif row == 0 or (self.board[row - 1][column].center != 'X' and self.board[row - 1][column].center != 'O'): self.conditional_print("You cannot jump just one space forward!", print_failure) return False # Top-Middle-Long else: if new_square.bottom or old_square.top: self.conditional_print("You cannot jump over a wall!", print_failure) return False # Bottom elif row > prev_pos[0]: # Bottom-Left if column < prev_pos[1]: if old_square.bottom_left() or new_square.top_right() or \ (old_square.bottom and new_square.top) or (old_square.left and new_square.right): self.conditional_print("You cannot jump over a wall!", print_failure) return False # Bottom-Right elif column > prev_pos[1]: if old_square.bottom_right() or new_square.top_left() or \ (old_square.bottom and new_square.top) or (old_square.right and new_square.left): self.conditional_print("You cannot jump over a wall!", print_failure) return False else: # Bottom-Middle if row - prev_pos[0] == 1: if new_square.top: self.conditional_print("You cannot jump over a wall!", print_failure) return False elif new_square.starting is not None and new_square.starting != player: pass elif new_square.bottom: self.conditional_print("You cannot jump just one space forward!", print_failure) return False elif row == self.rows - 1 or (self.board[row + 1][column].center != 'X' and self.board[row + 1][column].center != 'O'): self.conditional_print("You cannot jump just one space forward!", print_failure) return False # Bottom-Middle-Long else: if new_square.top or old_square.bottom: self.conditional_print("You cannot jump over a wall!", print_failure) return False elif column > prev_pos[1]: # Middle-Right if column - prev_pos[1] == 1: if new_square.left: self.conditional_print("You cannot jump over a wall!", print_failure) return False elif new_square.starting is not None and new_square.starting != player: pass elif new_square.right: self.conditional_print("You cannot jump just one space forward!", print_failure) return False elif column == self.columns - 1 or (self.board[row][column + 1].center != 'X' and self.board[row][column + 1].center != 'O'): self.conditional_print("You cannot jump just one space forward!", print_failure) return False # Middle-Right-Long else: if new_square.left or old_square.right: self.conditional_print("You cannot jump over a wall!", print_failure) return False else: # Middle-Left if prev_pos[1] - column == 1: if new_square.right: self.conditional_print("You cannot jump over a wall!", print_failure) return False elif new_square.starting is not None and new_square.starting != player: pass elif new_square.left: self.conditional_print("You cannot jump just one space forward!", print_failure) return False elif column == 0 or (self.board[row][column - 1].center != 'X' and self.board[row][column - 1].center != 'O'): self.conditional_print("You cannot jump just one space forward!", print_failure) return False # Middle-Left-Long else: if new_square.right or old_square.left: self.conditional_print("You cannot jump over a wall!", print_failure) return False return True def move_pawn(self, player, pawn_index, row, column): player_pawns = self.player_1_pawns if player == 'X' else self.player_2_pawns old_row, old_column = player_pawns[pawn_index][0], player_pawns[pawn_index][1] # Update pawn position player_pawns[pawn_index][0], player_pawns[pawn_index][1] = row, column # Update board self.board[old_row][old_column].center = \ ' ' if self.board[old_row][old_column].starting is None else '·' self.board[row][column].center = player # Return the undoing move return player, pawn_index, old_row, old_column def valid_wall_placement(self, wall_type, row, column, print_failure=True): # Check if wall indices are in range if row >= self.rows - 1 or column >= self.columns - 1: self.conditional_print("Wall indices out of bound!", print_failure) return False if (wall_type == 'Z' and (self.board[row][column].right or self.board[row + 1][column].right)) or \ (wall_type == 'P' and (self.board[row][column].bottom or self.board[row][column + 1].bottom)): self.conditional_print("A wall already exists on those coordinates!", print_failure) return False return True def place_wall(self, wall_type, row, column, lift=False): if wall_type == 'Z': self.board[row][column].right = not lift self.board[row][column + 1].left = not lift self.board[row + 1][column].right = not lift self.board[row + 1][column + 1].left = not lift else: self.board[row][column].bottom = not lift self.board[row][column + 1].bottom = not lift self.board[row + 1][column].top = not lift self.board[row + 1][column + 1].top = not lift self.num_placed_walls += not lift def check_paths_after_move(self, move, print_failure=True): # Make the move undo_move = self.move_pawn(*(move[0])) self.place_wall(*(move[1])) if not self.check_path(self.player_1_pawns[0], self.player_2_start[0]) or \ not self.check_path(self.player_1_pawns[0], self.player_2_start[1]) or \ not self.check_path(self.player_1_pawns[1], self.player_2_start[0]) or \ not self.check_path(self.player_1_pawns[1], self.player_2_start[1]) or \ not self.check_path(self.player_2_pawns[0], self.player_1_start[0]) or \ not self.check_path(self.player_2_pawns[0], self.player_1_start[1]) or \ not self.check_path(self.player_2_pawns[1], self.player_1_start[0]) or \ not self.check_path(self.player_2_pawns[1], self.player_1_start[1]): # Undo the move self.place_wall(*(move[1]), lift=True) self.move_pawn(*undo_move) self.conditional_print("You cannot block one of the pawns' path to the goal!", print_failure) return False # Undo the move self.place_wall(*(move[1]), lift=True) self.move_pawn(*undo_move) return True # A* algorithm to check if there is a pawn path from the source to the destination def check_path(self, source, destination): # Dictionary for keeping track of visited nodes seen_set = {(source[0], source[1])} prio_queue = [(self.non_diagonal_distance(source, destination), *source)] while len(prio_queue): # noinspection PyTupleAssignmentBalance _, row, column = heapq.heappop(prio_queue) if row == destination[0] and column == destination[1]: return True for new_pos in filter(lambda jump: jump not in seen_set, self.iter_non_blocking_jumps(row, column)): seen_set.add(new_pos) heapq.heappush(prio_queue, (self.non_diagonal_distance(new_pos, destination), *new_pos)) return False # Returns all one square jumps from the square with the row and column taking into account only the walls. # It's similar to all legal jumps except it's jumps one square away and doesn't account for player position on # the squares. Used for path-checking def iter_non_blocking_jumps(self, row, column): # Top side if row > 0: # Top if not self.board[row][column].top: yield row - 1, column # Top-Left if column > 0 and not ( self.board[row][column].top_left() or self.board[row - 1][column - 1].bottom_right() or (self.board[row][column].top and self.board[row][column - 1].top) or (self.board[row][column].left and self.board[row - 1][column].left) ): yield row - 1, column - 1 # Top-Right if column < self.columns - 1 and not ( self.board[row][column].top_right() or self.board[row - 1][column + 1].bottom_left() or (self.board[row][column].top and self.board[row][column + 1].top) or (self.board[row][column].right and self.board[row - 1][column].right) ): yield row - 1, column + 1 # Bottom side if row < self.rows - 1: # Bottom if not self.board[row][column].bottom: yield row + 1, column # Bottom-Left if column > 0 and not ( self.board[row][column].bottom_left() or self.board[row + 1][column - 1].top_right() or (self.board[row][column].bottom and self.board[row][column - 1].bottom) or (self.board[row][column].left and self.board[row + 1][column].left) ): yield row + 1, column - 1 # Bottom-Right if column < self.columns - 1 and not ( self.board[row][column].bottom_right() or self.board[row + 1][column + 1].top_left() or (self.board[row][column].bottom and self.board[row][column + 1].bottom) or (self.board[row][column].right and self.board[row + 1][column].right) ): yield row + 1, column + 1 # Left if column > 0 and not self.board[row][column].left: yield row, column - 1 # Right if column < self.columns - 1 and not self.board[row][column].right: yield row, column + 1 @staticmethod def non_diagonal_distance(source, destination): return abs(source[0] - destination[0]) + abs(source[1] - destination[1]) def static_evaluation(self): evaluation = 0 for pawn in self.player_1_pawns: pawn_distance_1 = self.non_diagonal_distance(pawn, self.player_2_start[0]) pawn_distance_2 = self.non_diagonal_distance(pawn, self.player_2_start[1]) if pawn_distance_1 == 0 or pawn_distance_2 == 0: return inf evaluation += 1 / pawn_distance_1 + 1 / pawn_distance_2 for pawn in self.player_2_pawns: pawn_distance_1 = self.non_diagonal_distance(pawn, self.player_1_start[0]) pawn_distance_2 = self.non_diagonal_distance(pawn, self.player_1_start[1]) if pawn_distance_1 == 0 or pawn_distance_2 == 0: return -inf evaluation -= 1 / pawn_distance_1 + 1 / pawn_distance_2 return evaluation @staticmethod def matrix_index_to_board_index(index): return chr(ord('0') + index + 1) if index < 9 else chr(ord('A') - 9 + index) @staticmethod def board_index_to_matrix_index(char): return ord(char) - ord('0') - 1 if ord('0') <= ord(char) <= ord('9') else ord(char) - ord('A') + 9 # Helper method for printing a message if a condition is true @staticmethod def conditional_print(message, condition): if condition: print(message) class BoardSquare: def __init__(self, center=" ", top=False, left=False, right=False, bottom=False): self.center = center self.top = top self.left = left self.right = right self.bottom = bottom # Variable for remembering the starting position of the first or second player self.starting = None def set_start(self, player): self.center = player self.starting = player def top_left(self): return self.top and self.left def top_right(self): return self.top and self.right def bottom_left(self): return self.bottom and self.left def bottom_right(self): return self.bottom and self.right ```
{ "source": "Jovanny02/GradingGUI", "score": 2 }
#### File: Jovanny02/GradingGUI/main.py ```python from tkinter import * from tkinter import ttk from tkinter.font import Font from tkinter.scrolledtext import ScrolledText from tkinter.ttk import Combobox, Style import subprocess from subprocess import PIPE, Popen, STDOUT from OpenFiles import * from functools import partial from helpers import * __author__ = "<NAME>" class Application(Tk): def __init__(self): super().__init__() self.minsize(1000, 600) # init attributes self.leftFrame = None self.rightFrame = None self.uploadFileFrame = None self.generateNewRunFrame = None self.subProcess = None self.terminalScrolledText = None self.exitFlag = False self.runThread = None self.runAllThread = None self.currentProject = None self.isRunning = False self.timer = 0 self.currentStudent = None self.isGenerating = False self.style = None self.selectedTestbenches = [] # Create a style self.style = Style(self) # Import the tcl file self.tk.call('source', 'azure-dark.tcl') self.tk.call('source', 'azure.tcl') # Set the theme with the theme_use method self.style.theme_use('azure') self.createLayout() self.createUploadFiles() self.createNewProjectFrame() self.createScrollWindow() self.createRunProjectFrame() # Load Runs loadProjects(self) style = ttk.Style() style.configure("Red.TLabel", foreground="red") style2 = ttk.Style() style2.configure("Green.TLabel", foreground="green") self.updateTimer() def createLayout(self): # create two columns self.grid_columnconfigure(0, weight=1) self.grid_columnconfigure(1, weight=5) self.grid_rowconfigure(0, weight=1) # create left column self.leftFrame = ttk.Frame(self) self.leftFrame.grid(row=0, column=0, sticky="NSWE") # create left column subgrid self.leftFrame.grid_columnconfigure(0, weight=1) self.leftFrame.grid_rowconfigure(0, weight=1) self.leftFrame.grid_rowconfigure(1, weight=3) # create right column self.rightFrame = ttk.Frame(self) self.rightFrame.grid(row=0, column=1, sticky="NSWE") # create right column subgrid self.rightFrame.grid_columnconfigure(0, weight=1) self.rightFrame.grid_rowconfigure(0, weight=1) self.rightFrame.grid_rowconfigure(1, weight=6) def createUploadFiles(self): self.uploadFileFrame = ttk.Frame(self.leftFrame, borderwidth=1, relief='solid') # highlightthickness=1, highlightbackground="black") self.uploadFileFrame.grid(row=0, column=0, sticky="NSEW", padx=5, pady=5) # configure columns self.uploadFileFrame.grid_columnconfigure(0, weight=1) self.uploadFileFrame.grid_columnconfigure(1, weight=1, minsize=100) self.uploadFileFrame.grid_columnconfigure(2, weight=1, minsize=100) self.uploadFileFrame.grid_columnconfigure(3, weight=4) # Titlettk.Label uploadFileTitle = ttk.Label(self.uploadFileFrame, text="Copy Files to GUI Directory", font=("TkDefaultFont", 18)) uploadFileTitle.grid(row=0, column=0, columnspan=3, sticky="NSEW", padx=5, pady=(5, 0)) # Title sep sep = ttk.Separator(self.uploadFileFrame, orient='horizontal') sep.grid(row=1, column=0, columnspan=3, padx=5, pady=(0, 5), sticky='NEW') # TCL upload self.tclUploadVar = StringVar(self.uploadFileFrame) # tclLabel = ttk.Label(self.uploadFileFrame, text="TCL Files: ") # tclLabel.grid(row=2, column=0, sticky=W) self.tclStatusLabel = ttk.Label(self.uploadFileFrame, textvariable=self.tclUploadVar) self.tclStatusLabel.grid(row=2, column=1, columnspan=3, sticky=W) tclButton = ttk.Button(self.uploadFileFrame, text="Copy TCL Files", style='AccentButton', command=partial(uploadTCLFile, self)) tclButton.grid(row=2, column=0, sticky=NSEW, padx=5, pady=5) # tclButton.pack(side=TOP, fill=BOTH, expand=FALSE, padx=(0, 5), pady=5) # Testbench upload self.tbUploadVar = StringVar(self.uploadFileFrame) # testBenchLabel = ttk.Label(self.uploadFileFrame, text="VHDL Test Benches: ").grid(row=3, column=0, sticky=W) self.tbUploadLabel = ttk.Label(self.uploadFileFrame, textvariable=self.tbUploadVar) self.tbUploadLabel.grid(row=3, column=1, columnspan=3, sticky=W) testBenchButton = ttk.Button(self.uploadFileFrame, style='AccentButton', text="Copy Test Benches", command=partial(uploadVHDFile, self)) testBenchButton.grid(row=3, column=0, sticky=NSEW, padx=5, pady=5) # testBenchButton.pack(side=TOP, fill=BOTH, expand=FALSE, padx=(0, 5), pady=5) # Student List upload self.textUploadVar = StringVar(self.uploadFileFrame) # studentListLabel = ttk.Label(self.uploadFileFrame, text="Student Lists: ").grid(row=4, column=0, sticky=W) self.studentListLabel = ttk.Label(self.uploadFileFrame, textvariable=self.textUploadVar) self.studentListLabel.grid(row=4, column=1, columnspan=3, sticky=W) studentListButton = ttk.Button(self.uploadFileFrame, text="Copy Student Lists", style='AccentButton', command=partial(uploadTextFile, self)) studentListButton.grid(row=4, column=0, sticky=NSEW, padx=5, pady=5) #studentListButton.pack(side=TOP, fill=BOTH, expand=FALSE, padx=(0, 5), pady=5) def createNewProjectFrame(self): self.generateNewRunFrame = ttk.Frame(self.leftFrame, borderwidth=1, relief='solid') # highlightthickness=1, highlightbackground="black") self.generateNewRunFrame.grid(row=1, column=0, sticky="NSEW", padx=5, pady=5) # Titlettk.Label uploadFileTitle = ttk.Label(self.generateNewRunFrame, text="Create Grading Project", font=("TkDefaultFont", 18)) uploadFileTitle.grid(row=0, column=0, columnspan=2, padx=5, pady=(5, 0), sticky=W) # Title sep sep = ttk.Separator(self.generateNewRunFrame, orient='horizontal') sep.grid(row=1, column=0, columnspan=2, padx=5, pady=(0, 5), sticky='NEW') # choose TCL self.tclVar = StringVar(self.generateNewRunFrame) self.chooseTclLabel = ttk.Label(self.generateNewRunFrame, text="") self.chooseTclLabel.grid(row=2, column=1, sticky=W) tclButton = ttk.Button(self.generateNewRunFrame, style='AccentButton', text="Select TCL Script", command=partial(openTCLFile, self)) tclButton.grid(row=2, column=0, sticky=EW, padx=5, pady=5) # choose student list self.studentListVar = StringVar(self.generateNewRunFrame) self.chooseStudentsLabel = ttk.Label(self.generateNewRunFrame, text="") self.chooseStudentsLabel.grid(row=3, column=1, sticky=W) tclButton = ttk.Button(self.generateNewRunFrame, text="Select Student List", style='AccentButton', command=partial(openStudentListFile, self)) tclButton.grid(row=3, column=0, sticky=EW, padx=5, pady=5) # ZIP file upload self.zipVar = StringVar(self.generateNewRunFrame) self.zipLabel = ttk.Label(self.generateNewRunFrame, text="") self.zipLabel.grid(row=4, column=1, sticky=W) zipButton = ttk.Button(self.generateNewRunFrame, style='AccentButton', text="Choose Zip File", command=partial(uploadZipFile, self)) zipButton.grid(row=4, column=0, sticky=EW, padx=5, pady=5) self.deleteZipVal = IntVar() self.zipCheckBox = ttk.Checkbutton(self.generateNewRunFrame, variable=self.deleteZipVal, style='Switch', text="delete zip") self.zipCheckBox.grid(row=4, column=2, sticky="NSEW", padx=5, pady=5) # testbench section tbButton = ttk.Button(self.generateNewRunFrame, style='AccentButton', text="Choose Testbenches", command=partial(chooseVHDFiles, self)) tbButton.grid(row=5, column=0, sticky=NW, padx=5, pady=5) self.tbSelectLabel = ttk.Label(self.generateNewRunFrame, text="") self.tbSelectLabel.grid(row=5, column=1, sticky=NSEW) # choose generated name generationLabel = ttk.Label(self.generateNewRunFrame, text="Grading Project Name: ").grid(row=7, column=0, sticky=W) self.generationEntry = ttk.Entry(self.generateNewRunFrame) self.generationEntry.grid(row=7, column=1, sticky=W, padx=5, pady=5) # choose generated name generateButton = ttk.Button(self.generateNewRunFrame, text="Create", style='AccentButton', command=partial(generateProject, self)) generateButton.grid(row=7, column=2, sticky="NSEW", padx=5, pady=5) # error label self.errorLabel = Label(self.generateNewRunFrame, text="", fg="red") self.errorLabel.grid(row=8, column=0, columnspan=3, sticky=W) def createRunProjectFrame(self): runFrame = ttk.Frame(self.rightFrame, borderwidth=1, relief='solid') # highlightthickness=1, highlightbackground="black") runFrame.grid(row=0, column=0, columnspan=2, sticky="NSEW", padx=5, pady=5) runTitle = ttk.Label(runFrame, text="Load Grading Project", font=("TkDefaultFont", 18)) runTitle.grid(row=0, column=0, columnspan=2, padx=5, pady=(5, 0), sticky=W) # Title sep sep = ttk.Separator(runFrame, orient='horizontal') sep.grid(row=1, column=0, columnspan=2, padx=5, pady=(0, 5), sticky='NEW') # select run comboBox and button self.projectComboBox = Combobox(runFrame, state='readonly') self.projectComboBox.grid(row=2, column=0, sticky="NSEW", padx=5, pady=5) self.projectComboBox.set('Choose Grading Project') loadButton = ttk.Button(runFrame, text="Load Project", style='AccentButton', command=partial(loadStudents, self)) loadButton.grid(row=2, column=1, sticky="NSEW", padx=5, pady=5) deleteButton = ttk.Button(runFrame, text="Delete Project", style='AccentButton', command=partial(deleteProject, self)) deleteButton.grid(row=2, column=2, sticky="NSEW", padx=5, pady=5) self.themeVar = IntVar() self.themeCheckBox = ttk.Checkbutton(runFrame, variable=self.themeVar, style='Switch', text="Dark Mode", command=self.toggleTheme) self.themeCheckBox.grid(row=2, column=3, sticky="W", padx=5, pady=5) # select student comboBox self.studentComboBox = Combobox(runFrame, state='readonly') self.studentComboBox.grid(row=3, column=0, sticky="EW", padx=5, pady=5) self.studentComboBox.set('Choose Student') buttonFrame = ttk.Frame(runFrame) buttonFrame.grid(row=3, column=1, columnspan=5, sticky="NSEW", padx=5, pady=5) loadButton = ttk.Button(buttonFrame, style='AccentButton', text="Load Result", command=partial(loadStudentResult, self)) loadButton.pack(side=LEFT, fill=Y, expand=FALSE, padx=(0, 5), pady=5) previousButton = ttk.Button(buttonFrame, style='AccentButton', text="Load Previous Result", command=partial(changeComboBox, self.studentComboBox, -1, self)) previousButton.pack(side=LEFT, fill=Y, expand=FALSE, padx=(5, 5), pady=5) nextButton = ttk.Button(buttonFrame, style='AccentButton', text="Load Next Result", command=partial(changeComboBox,self.studentComboBox, 1, self)) nextButton.pack(side=LEFT, fill=Y, expand=FALSE, padx=(5, 5), pady=5) return def createScrollWindow(self): # create scrollWindow terminalWindowFrame = ttk.Frame(self.rightFrame, borderwidth=1, relief='solid') terminalWindowFrame.grid(row=1, column=0, sticky="NSEW", padx=5, pady=5) self.terminalScrolledText = ScrolledText(terminalWindowFrame, highlightthickness=1, highlightbackground="black", font=("TkDefaultFont", 9)) self.terminalScrolledText.pack(side=TOP, fill=BOTH, expand=TRUE) self.terminalScrolledText.pack_propagate(False) self.windowStatusVar = StringVar(terminalWindowFrame) self.windowStatusLabel = ttk.Label(terminalWindowFrame, textvariable=self.windowStatusVar, font=("TkDefaultFont", 9)) self.windowStatusLabel.pack(side=BOTTOM) # Font change for terminal window file = os.getcwd() + '\\images\\add.png' try: self.addIcon = PhotoImage(file=file) self.increase = ttk.Button(self.terminalScrolledText, style='AccentButton', image=self.addIcon, command=partial(changeTerminalFont, self.windowStatusLabel, self.terminalScrolledText, 1)) self.increase.place(relx=1.0, rely=0.0, x=-2, y=2, anchor="ne") except: self.increase = ttk.Button(self.terminalScrolledText, style='AccentButton', text='+', command=partial(changeTerminalFont, self.windowStatusLabel, self.terminalScrolledText, 1)) self.increase.place(relx=1.0, rely=0.0, x=-2, y=2, anchor="ne", height=40, width=40) file = os.getcwd() + '\\images\\subtract.png' try: self.subIcon = PhotoImage(file=file) self.increase = ttk.Button(self.terminalScrolledText, style='AccentButton', image=self.subIcon, command=partial(changeTerminalFont, self.windowStatusLabel, self.terminalScrolledText, -1)) self.increase.place(relx=1.0, rely=0.0, x=-45, y=2, anchor="ne") except: self.increase = ttk.Button(self.terminalScrolledText, style='AccentButton', text='-', command=partial(changeTerminalFont, self.windowStatusLabel, self.terminalScrolledText, -1)) self.increase.place(relx=1.0, rely=0.0, x=-45, y=2, anchor="ne", height=40, width=40) # Terminal controls terminalControlFrame = ttk.Frame(self.rightFrame, borderwidth=1, relief='solid') # highlightthickness=1, highlightbackground="black") terminalControlFrame.grid(row=2, column=0, sticky="NSEW", padx=5, pady=5) runButton = ttk.Button(terminalControlFrame, style='AccentButton', text="Run", command=partial(runStudent, self)) runButton.pack(side=LEFT, fill=BOTH, padx=5, pady=5) runNextButton = ttk.Button(terminalControlFrame, style='AccentButton', text="Run Next", command=partial(runNextStudent, self)) runNextButton.pack(side=LEFT, fill=BOTH, padx=5, pady=5) runAllButton = ttk.Button(terminalControlFrame, style='AccentButton', text="Run All", command=partial(runAllStudents, self)) runAllButton.pack(side=LEFT, fill=BOTH, padx=5, pady=5) clearWindowButton = ttk.Button(terminalControlFrame, style='AccentButton', text="Clear Window", command=partial(clearWindowText, self.terminalScrolledText)) clearWindowButton.pack(side=LEFT, fill=BOTH, padx=5, pady=5) quitWindowButton = ttk.Button(terminalControlFrame, style='AccentButton', text="Stop", command=partial(stopRunning, self)) quitWindowButton.pack(side=LEFT, fill=BOTH, padx=5, pady=5) self.guiCheckBoxVal = IntVar() self.guiCheckBox = ttk.Checkbutton(terminalControlFrame, variable=self.guiCheckBoxVal, style='Switch', text="gui") self.guiCheckBox.pack(side=LEFT, fill=BOTH, padx=5, pady=5) self.parseOutputVar = IntVar() self.parseOutputCheckBox = ttk.Checkbutton(terminalControlFrame, variable=self.parseOutputVar, style='Switch', text="Result Only") self.parseOutputCheckBox.pack(side=LEFT, fill=BOTH, padx=5, pady=5) def clearSubprocess(self): self.subProcess = None def assignSubprocess(self, cmd): self.subProcess = None self.subProcess = Popen(cmd, stdout=PIPE, stdin=PIPE, stderr=STDOUT, text=True, universal_newlines=True, creationflags=subprocess.CREATE_NO_WINDOW) return self.subProcess def setCurrStudent(self, student): self.currentStudent = student def getTimer(self): return self.timer def setExitFlag(self, flag): self.exitFlag = flag def setIsGenerating(self, val): self.isGenerating = val def getExitFlag(self): return self.exitFlag def clearTimer(self): self.timer = 0 def toggleTheme(self): style = self.style.theme_use() if self.style.theme_use() == 'azure': self.style.theme_use('azure-dark') # set window background self.terminalScrolledText["bg"] = "#333333" self.terminalScrolledText["fg"] = "#ffffff" # set label background self.errorLabel["bg"] = "#333333" # only toggle text color if it is black or white if self.errorLabel["fg"] == "#000000": self.errorLabel["fg"] = "#ffffff" return # set ttk element backgrounds self.style.theme_use('azure') # set other backgrounds that cant be set using style # set window background self.terminalScrolledText["bg"] = "#ffffff" self.terminalScrolledText["fg"] = "#000000" # set label background self.errorLabel["bg"] = "#ffffff" if self.errorLabel["fg"] == "#ffffff": self.errorLabel["fg"] = "#000000" def updateTimer(self): if not self.isRunning and not self.isGenerating: self.after(1000, self.updateTimer) return if self.isRunning: self.windowStatusVar.set( f'''Running {self.currentStudent}. Time Elapsed: {getTimerText(self.timer, operator.floordiv)}:{getTimerText(self.timer, operator.mod)}''') # update time self.timer += 1 self.after(1000, self.updateTimer) def setIsRunning(self, val): self.isRunning = val def handleClosing(): app.exitFlag = True if app.subProcess is not None: app.subProcess.terminate() app.destroy() # Create directories if they dont exist if not os.path.exists(os.getcwd() + os.path.join("\\lab_tcl")): os.makedirs(os.getcwd() + os.path.join("\\lab_tcl")) if not os.path.exists(os.getcwd() + os.path.join("\\testbenches")): os.makedirs(os.getcwd() + os.path.join("\\testbenches")) if not os.path.exists(os.getcwd() + os.path.join("\\studentlists")): os.makedirs(os.getcwd() + os.path.join("\\studentlists")) if not os.path.exists(os.getcwd() + os.path.join("\\grading_projects")): os.makedirs(os.getcwd() + os.path.join("\\grading_projects")) app = Application() app.title("Digital Design Grading GUI") app.iconbitmap(os.getcwd() + os.path.join("\\images\\integrated-circuit.ico")) app.protocol("WM_DELETE_WINDOW", handleClosing) app.mainloop() ```
{ "source": "jovannypcg/python_scheduler", "score": 3 }
#### File: jovannypcg/python_scheduler/scraper.py ```python import requests from BeautifulSoup import BeautifulSoup from celery import Celery HOST = 'amqp://guest@localhost' QUEUE = 'celery_pages' app = Celery(QUEUE, broker=HOST) @app.task def scrape(url): print "-> Starting: [%s]" % url r = requests.get(url) soup = BeautifulSoup(r.text) print "-> Extracted: %s" % soup.html.head.title print "-> Done: [%s]" % url ``` #### File: jovannypcg/python_scheduler/with_schedule_library.py ```python import pika # RabbitMQ client library import schedule # Schedules processes import time # To use the sleep method # List of urls to send via RabbitMQ URLS = ['http://ebay.to/1G163Lh', 'http://www.google.com.mx', 'http://localhost:8080'] # The host in which RabbitMQ is running HOST = 'localhost' # The name of the queue QUEUE = 'urls' print 'Connecting to RabbitMQ...\n' # Starting the connection # Creation of the channel based on the connection # The queue is declared connection = pika.BlockingConnection(pika.ConnectionParameters(host=HOST)) channel = connection.channel() channel.queue_declare(queue=QUEUE) """ Sends the list of urls to RabbitMQ """ def produce(): for url in URLS: print '* Pushed: [%s]' % url channel.publish(exchange='', routing_key=QUEUE, body=url) # Every 2 seconds the method 'produce' is executed schedule.every(2).seconds.do(produce) # Runs the scheduler as a daemon while True: schedule.run_pending() time.sleep(1) # The connection is closed connection.close() ```
{ "source": "Jovansam/ConsumptionSaving", "score": 4 }
#### File: ConsumptionSaving/consav/grids.py ```python import numpy as np from numba import njit def nonlinspace(x_min,x_max,n,phi): """ like np.linspace. but with unequal spacing Args: x_min (double): minimum value x_max (double): maximum value n (int): number of points phi (double): phi = 1 -> eqaul spacing, phi up -> more points closer to minimum Returns: y (list): grid with unequal spacing """ assert x_max > x_min assert n >= 2 assert phi >= 1 # 1. recursion y = np.empty(n) y[0] = x_min for i in range(1, n): y[i] = y[i-1] + (x_max-y[i-1]) / (n-i)**phi # 3. assert increaing assert np.all(np.diff(y) > 0) return y @njit def nonlinspace_jit(x_min,x_max,n,phi): """ like nonlinspace, but can be used in numba """ y = np.zeros(n) y[0] = x_min for i in range(1,n): y[i] = y[i-1] + (x_max-y[i-1]) / (n-i)**phi return y def equilogspace(x_min,x_max,n): """ like np.linspace. but (close to) equidistant in logs Args: x_min (double): maximum value x_max (double): minimum value n (int): number of points Returns: y (list): grid with unequal spacing """ pivot = np.abs(x_min) + 0.25 y = np.geomspace(x_min + pivot, x_max + pivot, n) - pivot y[0] = x_min # make sure *exactly* equal to x_min return y ``` #### File: ConsumptionSaving/consav/quadrature.py ```python import math import numpy as np def gauss_hermite(n): """ gauss-hermite nodes Args: n (int): number of points Returns: x (numpy.ndarray): nodes of length n w (numpy.ndarray): weights of length n """ # a. calculations i = np.arange(1,n) a = np.sqrt(i/2) CM = np.diag(a,1) + np.diag(a,-1) L,V = np.linalg.eig(CM) I = L.argsort() V = V[:,I].T # b. nodes and weights x = L[I] w = np.sqrt(math.pi)*V[:,0]**2 return x,w def normal_gauss_hermite(sigma,n=7,mu=None): """ normal gauss-hermite nodes Args: sigma (double): standard deviation n (int): number of points mu (double,optinal): mean (if None, then mean zero) Returns: x (numpy.ndarray): nodes of length n w (numpy.ndarray): weights of length n """ if sigma == 0.0 or n == 1: w = np.ones(n)/n if mu is None: x = np.zeroes(n) else: x = np.zeroes(n)+mu return x,w # a. GaussHermite x,w = gauss_hermite(n) x *= np.sqrt(2)*sigma w /= np.sqrt(math.pi) # b. adjust mean if mu is None: x = x else: x = x + mu return x,w def log_normal_gauss_hermite(sigma,n=7,mu=None): """ log-normal gauss-hermite nodes Args: sigma (double): standard deviation n (int): number of points mu (double,optinal): mean (if None, the mean one) Returns: x (numpy.ndarray): nodes of length n w (numpy.ndarray): weights of length n """ if sigma == 0.0 or n == 1: w = np.ones(n)/n if mu is None: x = np.exp(np.zeros(n)) else: x = np.exp(np.zeros(n)+ np.log(mu)) return x,w # a. GaussHermite x,w = gauss_hermite(n) x *= np.sqrt(2)*sigma w /= np.sqrt(math.pi) # b. adjust mean if mu is None: x = np.exp(x-0.5*sigma**2) else: x = np.exp(x+np.log(mu)-0.5*sigma**2) return x,w def create_PT_shocks(sigma_psi,Npsi,sigma_xi,Nxi,pi=0,mu=None): """ log-normal gauss-hermite nodes for permanent transitory model Args: sigma_psi (double): standard deviation of permanent shock Npsi (int): number of points for permanent shock sigma_xi (double): standard deviation of transitory shock Nxi (int): number of points for transitory shock pi (double): probability of low income shock mu (double): value of low income shock Returns: psi (numpy.ndarray): nodes for permanent shock of length Npsi*Nxi+1 psi_w (numpy.ndarray): weights for permanent shock of length Npsi*Nxi+1 xi (numpy.ndarray): nodes for transitory shock of length Npsi*Nxi+1 xi_w (numpy.ndarray): weights for transitory shock of length Npsi*Nxi+1 Nshocks (int): number of nodes = Npsi*Nxi+1 """ # a. gauss hermite psi, psi_w = log_normal_gauss_hermite(sigma_psi,Npsi) xi, xi_w = log_normal_gauss_hermite(sigma_xi,Nxi) # b. add low inncome shock if pi > 0: # i. weights xi_w *= (1.0-pi) xi_w = np.insert(xi_w,0,pi) # ii. values xi = (xi-mu*pi)/(1.0-pi) xi = np.insert(xi,0,mu) # c. tensor product psi,xi = np.meshgrid(psi,xi,indexing='ij') psi_w,xi_w = np.meshgrid(psi_w,xi_w,indexing='ij') return psi.ravel(),psi_w.ravel(),xi.ravel(),xi_w.ravel(),psi.size ```
{ "source": "jovanshernandez/basic-flask-template", "score": 2 }
#### File: jovanshernandez/basic-flask-template/app.py ```python from flask import Flask, render_template app = Flask(__name__) app_data = { "name": "BBI RND Template for a Flask Web App", "description": "A basic Flask app using bootstrap for layout", "author": "BBI DevOps", "html_title": "A template for a Flask Web App", "project_name": "RND Web App Demo", "keywords": "flask, webapp, template, basic" } @app.route('/') def index(): return render_template('index.html', app_data=app_data) @app.route('/b1') def b1(): return render_template('b1.html', app_data=app_data) @app.route('/b2') def b2(): return render_template('b2.html', app_data=app_data) @app.route('/b3') def b3(): return render_template('b3.html', app_data=app_data) # ------- PRODUCTION CONFIG ------- #if __name__ == '__main__': # app.run() # ------- DEVELOPMENT CONFIG ------- if __name__ == '__main__': app.run(debug=True) ```
{ "source": "JovanWang/AdaptiveStreamSpTTMFramework", "score": 3 }
#### File: dynamic/pytool/generalmatrix.py ```python import math import random import sys import numpy # 生成稀疏度不同,规模不同的随机矩阵 rows = 100 cols = 100 degree = 0.8 def generalmat(rows, cols, degree): nonzeros_num = int(rows*cols*degree) index_array = random.sample(range(rows*cols), nonzeros_num) index_array.sort() # write file output = 'exp_gemat/m%d_%d_%.4f.tns' %(rows,cols,degree) f = open(output, 'w') f.write('%d %d %d' % (rows,cols,nonzeros_num)) f.write('\n') for i in range(nonzeros_num): value = random.random() f.write('%d %d %f \n' % (int(index_array[i]/cols)+1, index_array[i]%cols+1, value)) mat_num = 1000 for i in range(mat_num): degree_list = [random.uniform(0.001,0.01), random.uniform(0.01,0.1), random.uniform(0.1,0.3)] size_list = [random.randint(50,150),random.randint(150,300),random.randint(300,500),random.randint(500,800),random.randint(800,1000),random.randint(1000,1500),random.randint(1500,2500),random.randint(2500,5000)] rows = size_list[i%len(size_list)] cols = random.choice(size_list) degree = random.choice(degree_list) generalmat(rows, cols, degree) nonzeros_num = int(rows*cols*degree) print("%d(%d %d %d) general success!" % (i,rows,cols,nonzeros_num)) ``` #### File: partiExp/tools/generate_tensor.py ```python import math import random import sys if sys.version_info < (3,): range = xrange def randround(x): int_part = math.floor(x) frac_part = x - int_part return int(math.ceil(x) if random.random() < frac_part else int_part) def human_size(nbytes): if nbytes < 1024000: if nbytes < 1000: return '%d bytes' % nbytes else: return '%.1f KiB' % (nbytes / 1024.0) else: if nbytes < 1048576000: return '%.1f MiB' % (nbytes / 1048576.0) else: return '%.1f GiB' % (nbytes / 1073741824.0) def main(argv): if len(argv) < 3: print('Usage: %s output.tns [nonzero_rate%%]mode_dimension ...' % argv[0]) print() # print('Example: %s output.tns 256 50%%1024 2%%4096' % argv[0]) print('Example: %s output.tns 50%%1024 2%%4096' % argv[0]) print() print('Each non-zero element will be a gaussian random number (mu=0, sigma=1).') print() return 1 output = argv[1] rates = [] dims = [] for i in argv[2:]: if '%' in i: rate, dim = i.split('%', 1) rates.append(float(rate) * 0.01) dims.append(int(dim)) else: rates.append(1) dims.append(int(i)) ndims = len(dims) nnz = 1 for i in range(ndims): nnz *= rates[i] * dims[i] print('%d non-zero elements estimated.' % round(nnz)) written = 0 percent = 0 f = open(output, 'w') f.write('%d\n' % ndims) f.write('\t'.join(map(str, dims))) f.write('\n') inds = [None] * ndims ptrs = [0] * ndims for i in range(ndims): if rates[i] == 1: inds[i] = range(dims[i]) else: inds[i] = random.sample(range(dims[i]), randround(rates[i] * dims[i])) inds[i].sort() while ptrs[0] != len(inds[0]): for i in range(ndims): f.write('%d\t' % (inds[i][ptrs[i]]+1)) f.write('% .16f\n' % random.gauss(0, 1)) ptrs[ndims-1] += 1 written += 1 if nnz != 0: new_percent = int(written * 100.0 / nnz) if new_percent < 100 and new_percent != percent: percent = new_percent print('%3d%% completed, %d generated, %s written.' % (percent, written, human_size(f.tell())), end='\r', flush=True) for i in range(ndims-1, 0, -1): if ptrs[i] == len(inds[i]): if rates[i] == 1: inds[i] = range(dims[i]) else: inds[i] = random.sample(range(dims[i]), randround(rates[i] * dims[i])) inds[i].sort() ptrs[i] = 0 ptrs[i-1] += 1 print('100%% completed, %d generated, %s written.' % (written, human_size(f.tell()))) f.close() print('Successfully written into %s.' % output) return 0 if __name__ == '__main__': sys.exit(main(sys.argv)) ``` #### File: partiExp/tools/transset2tensor.py ```python import numpy as np import pandas as pd from plyfile import PlyData,PlyElement # 读取点云 def read_ply(filename): """ read XYZ point cloud from filename PLY file """ plydata = PlyData.read(filename) pc = plydata['vertex'].data pc_array = np.array([[x, y, z] for x,y,z in pc]) return pc_array # 读取点云数据集 def read_dir_ply(dirname): pc_list = [] for i in range(0,336+24,24): filename = dirname + "happyStandRight_%d.ply" % i """ read XYZ point cloud from filename PLY dirs """ plydata = PlyData.read(filename) pc = plydata['vertex'].data pc_list.extend([[x, y, z] for x,y,z in pc]) pc_array = np.array(pc_list) return pc_array # 读取点云ply文件 # pc_array = read_ply("../tensors/oridataset/happy_stand/happyStandRight_0.ply") pc_array = read_dir_ply("../tensors/oridataset/happy_stand/") print(pc_array.shape) df = pd.DataFrame(pc_array,columns=['x', 'y','z']) df['x'] = df['x'] - df['x'].min() df['y'] = df['y'] - df['y'].min() df['z'] = df['z'] - df['z'].min() # 用来划分维度和精度679,保证以1为index,防止后面代码出错 df = df*50000+1 df = df.astype(int) print(df.describe()) print(df.dtypes) # print(df.min()) nnz = df["x"].count() dim_num = df.shape[1] dims_list = df.max().values arr = df.values-1 # print(df.values-1) with open('../tensors/ply0336_%d_%d.tns'%(dims_list[-1],nnz), 'w') as f: f.write('%d\n' % (dim_num)) for i in range(dim_num): f.write('%d ' % (dims_list[i])) f.write('\n') for i in range(nnz): for j in range(dim_num): f.write('%d ' % arr[i, j]) f.write('%f\n' % (1.0)) # 读取CSV # df = pd.read_csv("../tensors/oridataset/speeddata_Aug.csv", delimiter=',') # 开始数据装换成张量的形式 # nnz = df["speed"].count() # dim_num = df.shape[1]-1 # dims_list = df.max().values # arr = df.values-1 # # print(df.values-1) # with open('../tensors/speedAug_%d_%d.tns'%(dims_list[-2],nnz), 'w') as f: # f.write('%d\n' % (dim_num)) # for i in range(dim_num): # f.write('%d ' % (dims_list[i])) # f.write('\n') # for i in range(nnz): # for j in range(dim_num): # f.write('%d ' % arr[i, j]) # f.write('%f\n' % (arr[i, dim_num])) ``` #### File: AdaptiveStreamSpTTMFramework/pygExp/graphclasstestgpu.py ```python import os.path as osp import torch import torch.nn.functional as F # from torch.nn import Linear from torch_geometric.data import DataLoader from torch_geometric.datasets import Matformattestgpu # from torch_geometric.data import Matformattestgpu from torch_geometric import transforms as T import numpy as np import torch from torch.nn import Sequential as Seq, Linear as Lin, ReLU from torch_geometric.nn import GraphConv, TopKPooling, SAGEConv from torch_geometric.nn import global_add_pool from torch_geometric.nn import TopKPooling from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp from torch_scatter import scatter_mean import time embed_dim = 10 batch_size = 1 num_epochs = 10000 lr=0.00001 path = osp.join(osp.dirname(osp.realpath(__file__)), '.', 'data', 'Matformattestgpu') train_dataset = Matformattestgpu(path,train_type=0) # val_dataset = Matformattestgpu(path,train_type=1) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size) # val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size) # dataset_val = Matformattestgpu(path,train_type=1) # data = dataset[0] # print(data.x) # print(dataset.num_classes) # 额外信息文件读取并保存 xelist=[] xelist = np.loadtxt('./data/Matformattestgpu/raw/matformattest_exinfo.txt') def getexinfo(graph_no_list): # print("graph_no_list:",graph_no_list) result = None for graph_no in graph_no_list: result_temp = xelist[np.where(xelist[:,0] == graph_no)] if result is None: result = result_temp[:,1:] else: # result = result + result_temp result = np.concatenate((result,result_temp[:,1:]),axis=0) # result.append(result_temp[:,1:].astype(np.float32)) # print("result:",result) result = torch.from_numpy(np.array(result).astype(np.float32)) return result.to(device) class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() # 卷积神经网络 self.conv1 = GraphConv(train_dataset.num_features-2, 256) # self.pool1 = TopKPooling(256, ratio=0.8) self.conv2 = GraphConv(256, 256) # self.pool2 = TopKPooling(256, ratio=0.8) # self.conv3 = GraphConv(128, 128) # self.pool3 = TopKPooling(128, ratio=0.8) # 加上2遍conv再加上额外信息 self.lin1 = torch.nn.Linear(256*2+3, 128) # self.lin1 = torch.nn.Linear(128*2, 64) # 只使用大图的属性做MLP-NN # self.lin1 = torch.nn.Linear(10, 64) self.lin2 = torch.nn.Linear(128, 32) self.lin3 = torch.nn.Linear(32, train_dataset.num_classes) # 添加额外信息8个 def forward(self, data, exinfo): # 两层卷积层 x, edge_index, batch = data.x[:,2:4], data.edge_index, data.batch x1 = F.relu(self.conv1(x, edge_index)) x1 = F.dropout(x1, p=0.2, training=self.training) x2 = F.relu(self.conv2(x1, edge_index)) x2 = F.dropout(x2, p=0.2, training=self.training) x = torch.cat([x1, x2], dim=-1) x = gmp(x, batch) xe = exinfo # print("xe:",xe) # print("x:",x) x = torch.cat([x, xe], dim=-1) # x = torch.cat([x], dim=-1) # 直接MLP # x = exinfo x = F.relu(self.lin1(x)) x = F.dropout(x, p=0.2, training=self.training) x = F.relu(self.lin2(x)) x = F.log_softmax(self.lin3(x), dim=-1) return x @torch.no_grad() def graphtest(loader): model.eval() total_correct = total_examples = 0 total_Traincorrect = total_Trainexamples = 0 # time_start = time.time() for data in loader: # 额外信息 exinfo = getexinfo(list(set(data.x[:,0].numpy()))) # exinfo = [] data = data.to(device) out = model(data, exinfo) pred = out.max(1)[1] total_correct += int((pred==data.y).sum()) total_examples += int((pred==pred).sum()) # time_end=time.time() # print('totally cost',time_end-time_start,'s') # 看看训练集上的准确率 # for data_train in train_loader: # # 额外信息 # exinfo_train = getexinfo(list(set(data_train.x[:,0].numpy()))) # data_train = data_train.to(device) # out_train = model(data_train, exinfo_train) # pred_train = out_train.max(1)[1] # total_Traincorrect += int((pred_train==data_train.y).sum()) # total_Trainexamples += int((pred_train==pred_train).sum()) return total_correct, total_examples # return total_correct, total_examples # 保存所有测试结果 @torch.no_grad() def saveall(loader): sava_list = [] model.eval() for data in loader: no_list = list(set(data.x[:,0].numpy())) # 额外信息 exinfo = getexinfo(no_list) # exinfo = [] data = data.to(device) out = model(data, exinfo) pred = out.max(1)[1] # 拼接序号和预测结果 batch_list = list(zip(no_list, pred)) sava_list.extend(batch_list) return sava_list # # total_correct = total_examples = 0 # for i,data in enumerate(loader): # # print(data) # data = data.to(device) # out = model(data) # # print(out) # _ , out_indices = torch.sort(out,dim=0) # # _ , y_indices = torch.sort(data.y[:,0],dim=0) # # total_correct += int((out_indices==y_indices).sum()) # order_list = list(out_indices.cpu().numpy().flatten()) # # sava_list = [0] * len(order_list) # # for item,val in enumerate(order_list): # # sava_list[val] = item # # print(i) # # print(test_dt[i]) # # print(names_list[test_dt[i]]) # # sava_list = [i] # filename = int(data.x.cpu().numpy()[0,0]) # np.savetxt("./resultdata/{}.mtx".format(filename), order_list, fmt='%d', delimiter='\t', newline='\n') # # sava_list.extend(list(out_indices.cpu().numpy().flatten())) # # print(sava_list) # # np.savetxt("s3rmt3m3.txt", sava_list, fmt='%d', delimiter='\t', newline='\n') # return sava_list device = torch.device('cpu') # device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # model = Net().to(device) model = torch.load('./models/gpuexpbestmodel.torch', map_location=lambda storage, loc: storage) # optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 看看准确率 total_correct, total_examples = graphtest(train_loader) print( # f'Epoch: {epoch:03d}, Loss: {loss:.4f}, ' # print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train: {train_acc:.4f}, ' f'total_correct: {total_correct:.1f},' f'total_examples: {total_examples:.1f},' f'accuracy: {total_correct/total_examples:.4f},' # f'Train_accuracy: {total_Traincorrect/total_Trainexamples:.4f}' ) # 存入文件 time_start = time.time() # graphtest(test_loader) sava_list = saveall(train_loader) time_end=time.time() # sava_list 排个序再保存 sava_list.sort(key=lambda i:(i[0])) np.savetxt("./result_out/test_gpu_nolabel.txt", sava_list, fmt='%d', delimiter='\t', newline='\n') # print('totally cost',time_end-time_start) print('totally time',time_end-time_start) # crit = torch.nn.BCELoss() # train_loader = DataLoader(train_dataset, batch_size=batch_size) # for epoch in range(1): # # loss = graphtrain() # # # train_acc = graphtest(dataset_val) # # # val_acc = graphtest(dataset_val) # # # # time_start = time.time() # # # # test_acc = graphtest(test_loader) # # # # time_end=time.time() # # # # print('totally cost',time_end-time_start) # # # # test_acc = saveall(test_loader) # # # # val_acc = graphtest(val_loader) # # # # test_acc = graphtest(test_loader) # # train_acc = graphtest(train_loader) # best_correct = 0 # total_correct, total_examples, total_Traincorrect, total_Trainexamples = graphtest(val_loader) # # if epoch % 10 == 0: # if total_correct > best_correct: # # total_correct, total_examples = graphtest(val_loader) # print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, ' # # print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train: {train_acc:.4f}, ' # f'total_correct: {total_correct:.1f},' # f'total_examples: {total_examples:.1f},' # f'accuracy: {total_correct/total_examples:.4f},' # f'Train_accuracy: {total_Traincorrect/total_Trainexamples:.4f}') # torch.save(model, './models/bestmodel_ep{}.torch'.format(epoch)) ```
{ "source": "JovanXin/data_collector", "score": 3 }
#### File: JovanXin/data_collector/app.py ```python from flask import Flask, url_for, render_template, flash, redirect from flask_sqlalchemy import SQLAlchemy import os from search import Stalk from models import db from models import Number from forms import DataForm from sqlalchemy import exc app = Flask(__name__) user_data_dict = {} db.init_app(app) app.config["SECRET_KEY"] = "SECRET KEY" app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///data.db" with app.app_context(): db.create_all() @app.route("/", methods=["GET", "POST"]) def home(): form = DataForm() print("OH YES") if form.validate_on_submit(): print("OH AGAIN") number_from = form.number_from.data number_to = form.number_to.data email = form.email.data with app.app_context(): number = Number(email=email, number_from=number_from, number_to=number_to) db.session.add(number) db.session.commit() flash("Successfully sent message, wait a few minutes to recieve") user_data_dict[email] = Stalk(email) user_data_dict[email].search(email) user_data_dict[email].write(user_data_dict[email].results) return render_template("index.jinja2", form=form) @app.route("/data") def data(): with app.app_context(): numbers = Number.query.all() return render_template("data.jinja2", data=numbers) @app.route("/data/<string:email>") def user_data(email): with app.app_context(): numbers = Number.query.filter_by(email=email).all() return render_template("data.jinja2", data=numbers) @app.route("/data/<string:email>/search_results") def search_results(email): links = [] with open(f"{str(email)}.txt", "r") as user_data: user_data = eval(user_data.read()) return render_template("user_data.jinja2", data=user_data.values()) if __name__ == '__main__': app.run(debug=True) ``` #### File: JovanXin/data_collector/models.py ```python from datetime import datetime from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class Number(db.Model): _id = db.Column(db.Integer, primary_key=True, nullable=False) email = db.Column(db.String(50), nullable=False) date = db.Column(db.DateTime, default=datetime.utcnow(), nullable=False) number_from = db.Column(db.String(200), nullable=False) number_to = db.Column(db.String(200), nullable=False) def __repr__(self): return f"Number(_id={self._id}, user_id={self.user_id}" ```
{ "source": "Jovany-Rong/minerva", "score": 2 }
#### File: minerva/views/main.py ```python from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from forms.Ui_mainWindow import Ui_MainWindow from views.core import * from views.maps import * import cv2 import os class Minerva(QMainWindow, Ui_MainWindow): def __init__(self): super().__init__() self.setupUi(self) self.setWindowIcon(QIcon("lib/src/icon.png")) self.actionAbout_Minerva.triggered.connect(self.about_minerva) self.btnCopy.clicked.connect(self.copy_text) self.btnSave.clicked.connect(self.save_text_to_file) self.btnFromCb.clicked.connect(self.convert_from_clipboard) self.btnFromFile.clicked.connect(self.convert_from_file) def convert_from_clipboard(self): img = load_img_from_clipboard() if not img: QMessageBox.information(self, "Info", "No picture in the clipboard.") return self.convert_to_text(img) self.show_image() def convert_from_file(self): fileName, fileType = QFileDialog.getOpenFileName(self, "Select a picture", os.getcwd(), "Picture Files (*.png *.jpeg *.jpg *.webp *.bmp)") if fileName == "": return img = load_img_from_file(fileName) if not img: QMessageBox.information(self, "Info", "It's not a picture.") return self.convert_to_text(img) self.show_image() def convert_to_text(self, img): lang = LANGUAGES[self.comboBoxLang.currentIndex()] text = img_to_txt(img, lang) self.textBrowser.clear() self.textBrowser.append(text) def show_image(self): img = cv2.imread("temp.png") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) x = img.shape[1] y = img.shape[0] frame = QImage(img, x, y, x*3, QImage.Format_RGB888) pix = QPixmap.fromImage(frame) self.graphicsView.item = QGraphicsPixmapItem(pix) self.graphicsView.scene = QGraphicsScene() self.graphicsView.scene.addItem(self.graphicsView.item) self.graphicsView.setScene(self.graphicsView.scene) def copy_text(self): text = self.textBrowser.toPlainText() clipboard = QApplication.clipboard() clipboard.setText(text) def about_minerva(self): text = """Minerva %s Minerva is a OCR tool which can get text from pictures. It has complete functions even if there is no network. Author: <NAME> """ % (VERSION) QMessageBox.about(self, "About", text) def save_text_to_file(self): text = self.textBrowser.toPlainText() fileName, fileType = QFileDialog.getSaveFileName(self, "Save", os.getcwd(), "All Files (*);;Text Files (*.txt)") if fileName != "": with open(fileName, "w+", encoding="utf-8") as f: f.write(text) QMessageBox.information(self, "Info", "Text saved to file: %s." % fileName) ```
{ "source": "jovany-wang/pygloo", "score": 2 }
#### File: pygloo/tests/test_gather.py ```python import pygloo import numpy as np import os import ray import time import shutil import torch @ray.remote(num_cpus=1) def test_gather(rank, world_size, fileStore_path): ''' rank # Rank of this process within list of participating processes world_size # Number of participating processes ''' if rank==0: if os.path.exists(fileStore_path): shutil.rmtree(fileStore_path) os.makedirs(fileStore_path) else: time.sleep(0.5) context = pygloo.rendezvous.Context(rank, world_size) attr = pygloo.transport.tcp.attr("localhost") # Perform rendezvous for TCP pairs dev = pygloo.transport.tcp.CreateDevice(attr) fileStore = pygloo.rendezvous.FileStore(fileStore_path) store = pygloo.rendezvous.PrefixStore(str(world_size), fileStore) context.connectFullMesh(store, dev) sendbuf = np.array([rank, rank+1], dtype=np.float32) sendptr = sendbuf.ctypes.data recvbuf = np.zeros((1, world_size*2), dtype=np.float32) recvptr = recvbuf.ctypes.data # sendbuf = torch.Tensor([i+1 for i in range(sum([j+1 for j in range(world_size)]))]).float() # sendptr = sendbuf.data_ptr() # recvbuf = torch.zeros(rank+1).float() # recvptr = recvbuf.data_ptr() data_size = sendbuf.size if isinstance(sendbuf, np.ndarray) else sendbuf.numpy().size datatype = pygloo.glooDataType_t.glooFloat32 pygloo.gather(context, sendptr, recvptr, data_size, datatype, root = 0) print(f"rank {rank} sends {sendbuf}, receives {recvbuf}") ## example output # (pid=23172) rank 2 sends [2. 3.], receives [[0. 0. 0. 0. 0. 0.]] # (pid=23171) rank 1 sends [1. 2.], receives [[0. 0. 0. 0. 0. 0.]] # (pid=23173) rank 0 sends [0. 1.], receives [[0. 1. 1. 2. 2. 3.]] if __name__ == "__main__": ray.init(num_cpus=6) world_size = 3 fileStore_path = f"{ray.worker._global_node.get_session_dir_path()}" + "/collective/gloo/rendezvous" fns = [test_gather.remote(i, world_size, fileStore_path) for i in range(world_size)] ray.get(fns) ``` #### File: pygloo/tests/test_send_recv.py ```python import pygloo import numpy as np import os import ray import time import shutil import torch @ray.remote(num_cpus=1) def test_send_recv(rank, world_size, fileStore_path): ''' rank # Rank of this process within list of participating processes world_size # Number of participating processes ''' if rank==0: if os.path.exists(fileStore_path): shutil.rmtree(fileStore_path) os.makedirs(fileStore_path) else: time.sleep(0.5) context = pygloo.rendezvous.Context(rank, world_size) attr = pygloo.transport.tcp.attr("localhost") # Perform rendezvous for TCP pairs dev = pygloo.transport.tcp.CreateDevice(attr) fileStore = pygloo.rendezvous.FileStore(fileStore_path) store = pygloo.rendezvous.PrefixStore(str(world_size), fileStore) context.connectFullMesh(store, dev) if rank == 0: sendbuf = np.array([[1,2,3],[1,2,3]], dtype=np.float32) sendptr = sendbuf.ctypes.data # sendbuf = torch.Tensor([[1,2,3],[1,2,3]]).float() # sendptr = sendbuf.data_ptr() data_size = sendbuf.size if isinstance(sendbuf, np.ndarray) else sendbuf.numpy().size datatype = pygloo.glooDataType_t.glooFloat32 peer = 1 pygloo.send(context, sendptr, data_size, datatype, peer) print(f"rank {rank} sends {sendbuf}") elif rank == 1: recvbuf = np.zeros((2,3), dtype=np.float32) recvptr = recvbuf.ctypes.data # recvbuf = torch.zeros(2,3).float() # recvptr = recvbuf.data_ptr() data_size = recvbuf.size if isinstance(recvbuf, np.ndarray) else recvbuf.numpy().size datatype = pygloo.glooDataType_t.glooFloat32 peer = 0 pygloo.recv(context, recvptr, data_size, datatype, peer) print(f"rank {rank} receives {recvbuf}") else: raise Exception("Only support 2 process to test send function and recv function") ## example output if __name__ == "__main__": ray.init(num_cpus=6) world_size = 2 fileStore_path = f"{ray.worker._global_node.get_session_dir_path()}" + "/collective/gloo/rendezvous" fns = [test_send_recv.remote(i, world_size, fileStore_path) for i in range(world_size)] ray.get(fns) ```
{ "source": "jovany-wang/ray", "score": 2 }
#### File: utils/exploration/slate_soft_q.py ```python from typing import Union from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.utils.annotations import override from ray.rllib.utils.exploration.exploration import TensorType from ray.rllib.utils.exploration.soft_q import SoftQ from ray.rllib.utils.framework import try_import_tf, try_import_torch tf1, tf, tfv = try_import_tf() torch, _ = try_import_torch() class SlateSoftQ(SoftQ): @override(SoftQ) def get_exploration_action( self, action_distribution: ActionDistribution, timestep: Union[int, TensorType], explore: bool = True, ): assert ( self.framework == "torch" ), "ERROR: SlateSoftQ only supports torch so far!" cls = type(action_distribution) # Re-create the action distribution with the correct temperature # applied. action_distribution = cls( action_distribution.inputs, self.model, temperature=self.temperature ) # per_slate_q_values = dist.inputs all_slates = self.model.slates batch_size = action_distribution.inputs.size()[0] action_logp = torch.zeros(batch_size, dtype=torch.float) self.last_timestep = timestep # Explore. if explore: # Return stochastic sample over (q-value) logits. explore_indices = action_distribution.sample() explore_action = all_slates[explore_indices] return explore_action, action_logp # Return the deterministic "sample" (argmax) over (q-value) logits. else: exploit_indices = action_distribution.deterministic_sample() exploit_action = all_slates[exploit_indices] return exploit_action, action_logp ```
{ "source": "jovanzac/Captain", "score": 3 }
#### File: Captain/Scripts/splash_pg.py ```python import tkinter as tk from PIL import Image, ImageTk import tkinter.ttk as ttk from ttkthemes import ThemedTk class SplashScreen : def __init__(self,parent:object,nxt_func:object) : """Initialize main background image and set widow size.""" self.parent = parent self.parent.overrideredirect(True) self.nxt_func = nxt_func self.splash() self.window() def splash(self) : self.image1 = Image.open('project_pics\\splash.png') def window(self) : width, height = self.image1.size setwinwidth = (self.parent.winfo_screenwidth()-width)//2 setwinheight = (self.parent.winfo_screenheight()-height)//2 self.parent.geometry(f"{width}x{height}+{setwinwidth}+{setwinheight}") def proceed(self) : self.nxt_func() def display(self) : self.parent.deiconify() screen_width = self.parent.winfo_screenwidth() screen_height = self.parent.winfo_screenheight() splash_canvas = tk.Canvas(self.parent,width=screen_width,height=screen_height) splash_canvas.pack() self.tkimage = ImageTk.PhotoImage(self.image1) splash_canvas.create_image(0,0,image=self.tkimage,anchor="nw") splash_canvas.create_text(200,34,text="[LOADING]...PLEASE WAIT",font=("small fonts",20),fill="white") progressbar = ttk.Progressbar(orient=tk.HORIZONTAL, length=900, mode='determinate',style="Horizontal.TProgressbar") progressbar.place(x=450,y=25) progressbar.start() if self.nxt_func != None : self.parent.after(5050,self.proceed) if __name__ == '__main__' : root = ThemedTk("black") root["bg"] = "gray21" style = ttk.Style() style.configure("Horizontal.TProgressbar", foreground='gray21') app = SplashScreen(root,None) app.display() root.after(5050,root.destroy) root.mainloop() ```
{ "source": "jovanzers/quart", "score": 2 }
#### File: quart/flask_patch/globals.py ```python from __future__ import annotations from typing import Any, AnyStr from werkzeug.datastructures import MultiDict from werkzeug.local import LocalProxy from quart.globals import ( _app_ctx_stack, _ctx_lookup, _request_ctx_stack, current_app, g, request as quart_request, session, ) from ._synchronise import sync_with_context class FlaskRequestProxy(LocalProxy): @property def data(self) -> bytes: return sync_with_context(self._get_current_object().data) @property def form(self) -> MultiDict: return sync_with_context(self._get_current_object().form) @property def files(self) -> MultiDict: return sync_with_context(self._get_current_object().files) @property def json(self) -> Any: return sync_with_context(self._get_current_object().json) def get_json(self, *args: Any, **kwargs: Any) -> Any: return sync_with_context(self._get_current_object().get_json(*args, **kwargs)) def get_data(self, *args: Any, **kwargs: Any) -> AnyStr: return sync_with_context(self._get_current_object().get_data(*args, **kwargs)) request = FlaskRequestProxy(lambda: quart_request) def _lookup_app_object(name: str) -> Any: return _ctx_lookup([_app_ctx_stack], name) def _lookup_req_object(name: str) -> Any: return _ctx_lookup([_request_ctx_stack], name) __all__ = ( "_app_ctx_stack", "_lookup_app_object", "_lookup_req_object", "_request_ctx_stack", "current_app", "g", "request", "session", ) ``` #### File: src/quart/globals.py ```python from __future__ import annotations from contextvars import ContextVar from functools import partial from typing import Any, List, TYPE_CHECKING from werkzeug.local import ContextVar as WerkzeugContextVar, LocalProxy, LocalStack if TYPE_CHECKING: from .app import Quart from .ctx import _AppCtxGlobals from .sessions import SessionMixin from .wrappers import Request, Websocket if WerkzeugContextVar != ContextVar: raise RuntimeError("Error with Werkzeug's locals, please open a Quart issue for help") def _ctx_lookup(ctx_stacks: List[LocalStack], name: str) -> Any: top = None for ctx_stack in ctx_stacks: top = ctx_stack.top if top is not None: break if top is None: raise RuntimeError(f"Attempt to access {name} outside of a relevant context") return getattr(top, name) _app_ctx_stack = LocalStack() _request_ctx_stack = LocalStack() _websocket_ctx_stack = LocalStack() current_app: Quart = LocalProxy(partial(_ctx_lookup, [_app_ctx_stack], "app")) # type: ignore g: _AppCtxGlobals = LocalProxy(partial(_ctx_lookup, [_app_ctx_stack], "g")) # type: ignore request: Request = LocalProxy(partial(_ctx_lookup, [_request_ctx_stack], "request")) # type: ignore session: SessionMixin = LocalProxy(partial(_ctx_lookup, [_request_ctx_stack, _websocket_ctx_stack], "session")) # type: ignore # noqa: E501 websocket: Websocket = LocalProxy(partial(_ctx_lookup, [_websocket_ctx_stack], "websocket")) # type: ignore # noqa: E501 ``` #### File: quart/wrappers/base.py ```python from __future__ import annotations from typing import Any, Dict, List, Optional, TYPE_CHECKING from hypercorn.typing import WWWScope from werkzeug.datastructures import Headers from werkzeug.sansio.request import Request as SansIORequest from ..globals import current_app if TYPE_CHECKING: from ..routing import QuartRule # noqa class BaseRequestWebsocket(SansIORequest): """This class is the basis for Requests and websockets.. Attributes: routing_exception: If an exception is raised during the route matching it will be stored here. url_rule: The rule that this request has been matched too. view_args: The keyword arguments for the view from the route matching. """ routing_exception: Optional[Exception] = None url_rule: Optional["QuartRule"] = None view_args: Optional[Dict[str, Any]] = None def __init__( self, method: str, scheme: str, path: str, query_string: bytes, headers: Headers, root_path: str, http_version: str, scope: WWWScope, ) -> None: """Create a request or websocket base object. Arguments: method: The HTTP verb. scheme: The scheme used for the request. path: The full unquoted path of the request. query_string: The raw bytes for the query string part. headers: The request headers. root_path: The root path that should be prepended to all routes. http_version: The HTTP version of the request. scope: Underlying ASGI scope dictionary. Attributes: args: The query string arguments. scheme: The URL scheme, http or https. """ super().__init__( method, scheme, scope.get("server"), root_path, path, query_string, headers, headers.get("Remote-Addr"), ) self.http_version = http_version self.scope = scope @property def max_content_length(self) -> Optional[int]: """Read-only view of the ``MAX_CONTENT_LENGTH`` config key.""" if current_app: return current_app.config["MAX_CONTENT_LENGTH"] else: return None @property def endpoint(self) -> Optional[str]: """Returns the corresponding endpoint matched for this request. This can be None if the request has not been matched with a rule. """ if self.url_rule is not None: return self.url_rule.endpoint else: return None @property def blueprint(self) -> Optional[str]: """Returns the blueprint the matched endpoint belongs to. This can be None if the request has not been matched or the endpoint is not in a blueprint. """ if self.endpoint is not None and "." in self.endpoint: return self.endpoint.rsplit(".", 1)[0] else: return None @property def blueprints(self) -> List[str]: """Return the names of the current blueprints. The returned list is ordered from the current blueprint, upwards through parent blueprints. """ # Avoid circular import from ..helpers import _split_blueprint_path if self.blueprint is not None: return _split_blueprint_path(self.blueprint) else: return [] @property def script_root(self) -> str: return self.root_path @property def url_root(self) -> str: return self.root_url ``` #### File: quart/tests/test_utils.py ```python from __future__ import annotations from functools import partial from werkzeug.datastructures import Headers from quart.utils import decode_headers, encode_headers, is_coroutine_function def test_is_coroutine_function() -> None: async def async_func() -> None: pass assert is_coroutine_function(async_func) assert is_coroutine_function(partial(async_func)) def test_encode_headers() -> None: assert encode_headers(Headers({"Foo": "Bar"})) == [(b"foo", b"Bar")] def test_decode_headers() -> None: assert decode_headers([(b"foo", b"Bar")]) == Headers({"Foo": "Bar"}) ```
{ "source": "Jovasa/bjontegaard", "score": 2 }
#### File: bjontegaard/bd/bd_cubic.py ```python __author__ = "<EMAIL> (<NAME>)," __author__ += "<EMAIL> (<NAME>)" __author__ += "<EMAIL> (<NAME>)" # AH: source of this file: https://github.com/google/compare-codecs/blob/master/lib/visual_metrics.py # Then slightly modified. import math # noqa: E402 import numpy # noqa: E402 import matplotlib.pyplot as plt # noqa: E402 def bd_PSNR(rate1, psnr1, rate2, psnr2): """ BJONTEGAARD Bjontegaard metric calculation Bjontegaard's metric allows to compute the average gain in psnr between two rate-distortion curves [1]. rate1,psnr1 - RD points for curve 1 rate2,psnr2 - RD points for curve 2 returns the calculated Bjontegaard metric 'dsnr' code adapted from code written by : (c) 2010 <NAME> http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m """ # pylint: disable=too-many-locals # numpy seems to do tricks with its exports. # pylint: disable=no-member # map() is recommended against. # pylint: disable=bad-builtin # log_rate1 = map(math.log, rate1) # log_rate2 = map(math.log, rate2) log_rate1 = numpy.log(rate1) log_rate2 = numpy.log(rate2) # Best cubic poly fit for graph represented by log_ratex, psrn_x. poly1 = numpy.polyfit(log_rate1, psnr1, 3) poly2 = numpy.polyfit(log_rate2, psnr2, 3) # Integration interval. min_int = max([min(log_rate1), min(log_rate2)]) max_int = min([max(log_rate1), max(log_rate2)]) # Integrate poly1, and poly2. p_int1 = numpy.polyint(poly1) p_int2 = numpy.polyint(poly2) # Calculate the integrated value over the interval we care about. int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int) int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int) # Calculate the average improvement. if max_int != min_int: avg_diff = (int2 - int1) / (max_int - min_int) else: avg_diff = 0.0 return avg_diff def bd_rate(rate1, psnr1, rate2, psnr2, *, ax=None, convert_to_percentage=True): """ BJONTEGAARD Bjontegaard metric calculation Bjontegaard's metric allows to compute the average % saving in bitrate between two rate-distortion curves [1]. rate1,psnr1 - RD points for curve 1 rate2,psnr2 - RD points for curve 2 adapted from code from: (c) 2010 <NAME> """ # numpy plays games with its exported functions. # pylint: disable=no-member # pylint: disable=too-many-locals # pylint: disable=bad-builtin # log_rate1 = map(math.log, rate1) # log_rate2 = map(math.log, rate2) log_rate1 = numpy.log(rate1) log_rate2 = numpy.log(rate2) # Best cubic poly fit for graph represented by log_ratex, psrn_x. poly1 = numpy.polyfit(psnr1, log_rate1, 3) poly2 = numpy.polyfit(psnr2, log_rate2, 3) # Integration interval. min_int = max([min(psnr1), min(psnr2)]) max_int = min([max(psnr1), max(psnr2)]) # find integral p_int1 = numpy.polyint(poly1) p_int2 = numpy.polyint(poly2) # Calculate the integrated value over the interval we care about. int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int) int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int) # Calculate the average improvement. avg_exp_diff = (int2 - int1) / (max_int - min_int) # In really bad formed data the exponent can grow too large. # clamp it. if avg_exp_diff > 200: avg_exp_diff = 200 # Convert to a percentage. if convert_to_percentage: avg_diff = (math.exp(avg_exp_diff) - 1) * 100 else: avg_diff = (math.exp(avg_exp_diff) - 1) if ax: ax.set_title('Cubic interpolation (non-piece-wise)') # plot rateA and distA pA = ax.plot(log_rate1, psnr1, '-o', label='encoder1') dists = numpy.linspace(psnr1.min(), psnr1.max(), num=10, endpoint=True) ax.plot(numpy.poly1d(poly1)(dists), dists, '--', color=pA[-1].get_color()) # plot rateB and distB pB = plt.plot(log_rate2, psnr2, '-o', label='encoder2') dists = numpy.linspace(psnr2.min(), psnr2.max(), num=10, endpoint=True) ax.plot(numpy.poly1d(poly2)(dists), dists, '--', color=pB[-1].get_color()) ax.set_xlabel('log(rate)') ax.set_ylabel('PSNR') ax.grid() ax.legend() return avg_diff ```
{ "source": "Jovascript/DrawPy", "score": 3 }
#### File: hardware/hardware_internals/rpgpio.py ```python from .rpgpio_private import * import time from collections import deque import sys import logging logger = logging.getLogger(__name__) class GPIO(object): MODE_OUTPUT = 1 MODE_INPUT_NOPULL = 2 MODE_INPUT_PULLUP = 3 MODE_INPUT_PULLDOWN = 4 def __init__(self): """ Create object which can control GPIO. This class writes directly to CPU registers and doesn't use any libs or kernel modules. """ self._mem = PhysicalMemory(PERI_BASE + GPIO_REGISTER_BASE) def _pull_up_dn(self, pin, mode): p = self._mem.read_int(GPIO_PULLUPDN_OFFSET) p &= ~3 if mode == self.MODE_INPUT_PULLUP: p |= 2 elif mode == self.MODE_INPUT_PULLDOWN: p |= 1 self._mem.write_int(GPIO_PULLUPDN_OFFSET, p) address = 4 * int(pin / 32) + GPIO_PULLUPDNCLK_OFFSET self._mem.write_int(address, 1 << (pin % 32)) p = self._mem.read_int(GPIO_PULLUPDN_OFFSET) p &= ~3 self._mem.write_int(GPIO_PULLUPDN_OFFSET, p) self._mem.write_int(address, 0) def init(self, pin, mode): """ Initialize or re-initialize GPIO pin. :param pin: pin number. :param mode: one of MODE_* variables in this class. """ address = 4 * int(pin / 10) + GPIO_FSEL_OFFSET v = self._mem.read_int(address) v &= ~(7 << ((pin % 10) * 3)) # input value if mode == self.MODE_OUTPUT: v |= (1 << ((pin % 10) * 3)) # output value, base on input self._mem.write_int(address, v) else: self._mem.write_int(address, v) self._pull_up_dn(pin, mode) def set(self, pin): """ Set pin to HIGH state. :param pin: pin number. """ address = 4 * int(pin / 32) + GPIO_SET_OFFSET self._mem.write_int(address, 1 << (pin % 32)) def clear(self, pin): """ Set pin to LOW state. :param pin: pin number. """ address = 4 * int(pin / 32) + GPIO_CLEAR_OFFSET self._mem.write_int(address, 1 << (pin % 32)) def read(self, pin): """ Read pin current value. :param pin: pin number. :return: integer value 0 or 1. """ address = 4 * int(pin / 32) + GPIO_INPUT_OFFSET v = self._mem.read_int(address) v &= 1 << (pin % 32) if v == 0: return 0 return 1 # When DMAGPIO is an active with two channels simultaneously, delay time shifts # a little bit, because all DMA channels query the same PWM(which is used as # clock for delay). So, do not create two or more instances of DMAGPIO. class DMAGPIO(DMAProto): _DMA_CONTROL_BLOCK_SIZE = 32 _DMA_CHANNEL = 4 _BLOCK_NUMBER = 983040 _PREFERRED_BATCH = _BLOCK_NUMBER / 10 def __init__(self): """ Create object which control GPIO pins via DMA(Direct Memory Access). This object allows to add arbitrary sequence of pulses to any GPIO outputs and run this sequence in background without using CPU since DMA is a separated hardware module. Note: keep this object out of garbage collector until it stops, otherwise memory will be unlocked and it could be overwritten by operating system. """ super(DMAGPIO, self).__init__(self._BLOCK_NUMBER*self._DMA_CONTROL_BLOCK_SIZE, self._DMA_CHANNEL) self.__current_address = 0 # get helpers registers, this class uses PWM module to create precise # delays self._pwm = PhysicalMemory(PERI_BASE + PWM_BASE) self._clock = PhysicalMemory(PERI_BASE + CM_BASE) # pre calculated variables for control blocks self._delay_info = (DMA_TI_NO_WIDE_BURSTS | DMA_SRC_IGNORE | DMA_TI_PER_MAP(DMA_TI_PER_MAP_PWM) | DMA_TI_DEST_DREQ) self._delay_destination = PHYSICAL_PWM_BUS + PWM_FIFO self._delay_stride = 0 self._pulse_info = (DMA_TI_NO_WIDE_BURSTS | DMA_TI_TDMODE | DMA_TI_WAIT_RESP) self._pulse_destination = PHYSICAL_GPIO_BUS + GPIO_SET_OFFSET # YLENGTH is transfers count and XLENGTH size of each transfer self._pulse_length = (DMA_TI_TXFR_LEN_YLENGTH(2) | DMA_TI_TXFR_LEN_XLENGTH(4)) self._pulse_stride = (DMA_TI_STRIDE_D_STRIDE(12) | DMA_TI_STRIDE_S_STRIDE(4)) self.logger = logging.getLogger(__name__ + ".DMAGPIO") self.blocks_queue = deque() def add_pulses(self, blocks): for b in blocks: self.blocks_queue.append(b) def update(self): if len(self.blocks_queue) > 0: # Must get before just in case running suddenly stops running_address = self.current_control_block() if not self.is_active(): # Can start from begining self.clear() self._insert_blocks(min(self._BLOCK_NUMBER, len(self.blocks_queue))) self.logger.debug("Started a DMA session") self.run() else: current_end = self.__current_address if current_end >= self._phys_memory.get_size(): # Insert at beginning [++++^---------] if 1 < running_address < self._phys_memory.get_size(): self.logger.debug("Filling starter gap blocks") self.__current_address = 0 self._insert_blocks(min(len(self.blocks_queue), running_address - 1)) self._redirect_block(current_end-self._DMA_CONTROL_BLOCK_SIZE, 0) else: self.logger.debug("Cannot fill starter gap cos of strange running_address") elif current_end > running_address: # Insert next block [ ^----++++] self.logger.debug("Filling Tight Gap Blocks") self._insert_blocks(min(len(self.blocks_queue), self._phys_memory.get_size()-current_end)) self._redirect_block(current_end-self._DMA_CONTROL_BLOCK_SIZE, current_end) elif current_end < running_address: # Insert next block [----++++++^---] self.logger.debug("Filling Healthy Gap Blocks") self._insert_blocks(min(len(self.blocks_queue), running_address-current_end)) self._redirect_block(current_end-self._DMA_CONTROL_BLOCK_SIZE, current_end) elif current_end == running_address: self.logger.debug("It caught me, or I caught it?") else: self.logger.debug("Nothing to do") else: self.logger.debug("Nothing to do") def _redirect_block(self, block_address, target_block_address): if block_address >= self._phys_memory.get_size() or target_block_address >= self._phys_memory.get_size(): raise IndexError("Referenced blocks are outside allocated memory") self._phys_memory.write_int(block_address + 20, self._phys_memory.get_bus_address()+target_block_address) def _insert_blocks(self, number): if self.__current_address + (number * self._DMA_CONTROL_BLOCK_SIZE) > self._phys_memory.get_size(): raise MemoryError("Out of allocated memory.") elif number > len(self.blocks_queue) : raise IndexError("Cannot insert this many blocks.") # The address of the first CB to add current_address = self.__current_address # Loop thru pulses for _ in range(number): p = self.blocks_queue.popleft() # Address of next cb next1 = current_address + self._DMA_CONTROL_BLOCK_SIZE + self._phys_memory.get_bus_address() source = next1 - 8 # last 8 bytes are padding, use it to store data if len(p) > 1: data = ( self._pulse_info, source, self._pulse_destination, self._pulse_length, self._pulse_stride, next1, p[0], p[1] ) else: # Is a delay length = p[0] << 4 # * 16 data = ( self._delay_info, source, self._delay_destination, length, self._delay_stride, next1, 0, 0 ) self._phys_memory.write(current_address, "8I", data) current_address += self._DMA_CONTROL_BLOCK_SIZE oldaddr = self.__current_address self.__current_address = current_address # Finalise the block self._phys_memory.write_int(self.__current_address + 20 - self._DMA_CONTROL_BLOCK_SIZE, 0) self.logger.info("DMA Inserted and Finalised {}MB".format(round((self.__current_address - oldaddr)/1048576.0, 2))) def run_stream(self): """ Run DMA module in stream mode, i.e. does'n finalize last block and do not check if there is anything to do. """ # configure PWM hardware module which will clocks DMA self._pwm.write_int(PWM_CTL, 0) # disable self._clock.write_int(CM_PWM_CNTL, CM_PASSWORD | CM_SRC_PLLD) while (self._clock.read_int(CM_PWM_CNTL) & CM_CNTL_BUSY) != 0: time.sleep(0.00001) # 10 us, wait until BUSY bit is clear # configure, 100 MHz self._clock.write_int(CM_PWM_DIV, CM_PASSWORD | CM_DIV_VALUE(5)) self._clock.write_int(CM_PWM_CNTL, CM_PASSWORD | CM_SRC_PLLD | CM_CNTL_ENABLE) self._pwm.write_int(PWM_RNG1, 100) self._pwm.write_int(PWM_DMAC, PWM_DMAC_ENAB | PWM_DMAC_PANIC(15) | PWM_DMAC_DREQ(15)) self._pwm.write_int(PWM_CTL, PWM_CTL_CLRF) # enable self._pwm.write_int(PWM_CTL, PWM_CTL_USEF1 | PWM_CTL_PWEN1) super(DMAGPIO, self)._run_dma() def run(self): """ Run DMA module and start sending specified pulses. :param loop: If true, run pulse sequence in infinite loop. Otherwise """ if self.__current_address == 0: raise RuntimeError("Nothing was added.") self.run_stream() def stop(self): """ Stop any DMA activities. """ self._pwm.write_int(PWM_CTL, 0) super(DMAGPIO, self)._stop_dma() def clear(self): """ Remove any specified pulses. Doesn't affect currently running sequence. """ self.__current_address = 0 def current_address(self): """ Get current buffer offset. :return: current buffer offset in bytes. """ return self.__current_address def control_block_size(self): """ Get control block size. :return: control block size in bytes. """ return self._DMA_CONTROL_BLOCK_SIZE class DMAPWM(DMAProto): _DMA_CONTROL_BLOCK_SIZE = 32 _DMA_DATA_OFFSET = 24 _TOTAL_NUMBER_OF_BLOCKS = 58880 _DMA_CHANNEL = 14 def __init__(self): """ Initialise PWM. PWM has 8 bit resolution and fixed frequency (~11.5 KHz and may flow). Though duty cycle is quite precise and it uses the minimum amount of system resources (just one lite DMA channel without any anything else). That's why such PWM is best to use with collector motors, heaters and other non sensitive hardware. Implementation is super simple and uses lite DMA channel. Overall frequency depends on number of blocks. To adjust frequency, just write more byte per operation, use Wait Cycles in info field of control blocks. """ super(DMAPWM, self).__init__(self._TOTAL_NUMBER_OF_BLOCKS * self._DMA_CONTROL_BLOCK_SIZE, self._DMA_CHANNEL) self._clear_pins = dict() # first control block always set pins self.__add_control_block(0, GPIO_SET_OFFSET) # fill control blocks for i in range(1, self._TOTAL_NUMBER_OF_BLOCKS): self.__add_control_block(i * self._DMA_CONTROL_BLOCK_SIZE, GPIO_CLEAR_OFFSET) # loop self._phys_memory.write_int((self._TOTAL_NUMBER_OF_BLOCKS - 1) * self._DMA_CONTROL_BLOCK_SIZE + 20, self._phys_memory.get_bus_address()) self._gpio = PhysicalMemory(PERI_BASE + GPIO_REGISTER_BASE) def __add_control_block(self, address, offset): ba = self._phys_memory.get_bus_address() + address data = ( DMA_TI_NO_WIDE_BURSTS | DMA_TI_WAIT_RESP | DMA_TI_DEST_INC | DMA_TI_SRC_INC, # info ba + self._DMA_DATA_OFFSET, # source, use padding for storing data PHYSICAL_GPIO_BUS + offset, # destination 4, # length 0, # stride ba + self._DMA_CONTROL_BLOCK_SIZE, # next control block 0, # padding, uses as data storage 0 # padding ) self._phys_memory.write(address, "8I", data) def add_pin(self, pin, duty_cycle): """ Add pin to PMW with specified duty cycle. :param pin: pin number to add. :param duty_cycle: duty cycle 0..100 which represent percents. """ assert 0 <= duty_cycle <= 100 self.remove_pin(pin) block_number = int(duty_cycle * self._TOTAL_NUMBER_OF_BLOCKS / 100.0) if block_number == 0: self._gpio.write_int(GPIO_CLEAR_OFFSET, 1 << pin) elif block_number == self._TOTAL_NUMBER_OF_BLOCKS: self._gpio.write_int(GPIO_SET_OFFSET, 1 << pin) self._clear_pins[pin] = self._DMA_DATA_OFFSET else: value = self._phys_memory.read_int(self._DMA_DATA_OFFSET) value |= 1 << pin self._phys_memory.write_int(self._DMA_DATA_OFFSET, value) clear_address = (block_number * self._DMA_CONTROL_BLOCK_SIZE + self._DMA_DATA_OFFSET) value = self._phys_memory.read_int(clear_address) value |= 1 << pin self._phys_memory.write_int(clear_address, value) self._clear_pins[pin] = clear_address if not self.is_active(): super(DMAPWM, self)._run_dma() def remove_pin(self, pin): """ Remove pin from PWM :param pin: pin number to remove. """ assert 0 <= pin < 32 if pin in self._clear_pins.keys(): address = self._clear_pins[pin] value = self._phys_memory.read_int(address) value &= ~(1 << pin) self._phys_memory.write_int(address, value) value = self._phys_memory.read_int(self._DMA_DATA_OFFSET) value &= ~(1 << pin) self._phys_memory.write_int(self._DMA_DATA_OFFSET, value) del self._clear_pins[pin] self._gpio.write_int(GPIO_CLEAR_OFFSET, 1 << pin) if len(self._clear_pins) == 0 and self.is_active(): super(DMAPWM, self)._stop_dma() def remove_all(self): """ Remove all pins from PWM and stop it. """ pins_list = self._clear_pins.keys() for pin in pins_list: self.remove_pin(pin) assert len(self._clear_pins) == 0 class DMAWatchdog(DMAProto): _DMA_CONTROL_BLOCK_SIZE = 32 _DMA_CHANNEL = 13 _DMA_BLOCKS = 2047 def __init__(self): """ Initialize hardware watchdog timer. """ super(DMAWatchdog, self).__init__(self._DMA_CONTROL_BLOCK_SIZE * (self._DMA_BLOCKS + 1), self._DMA_CHANNEL) def start(self): """ Arm watchdog for ~15 seconds. If watchdog wasn't fed in 15 seconds, GPIO pins 0-29 will be switched to input to prevent any output from them. """ data = () ba = self._phys_memory.get_bus_address() # first blocks is just a delay for _ in range(0, self._DMA_BLOCKS): data += ( DMA_TI_NO_WIDE_BURSTS | DMA_DEST_IGNORE | DMA_TI_WAIT_RESP | DMA_TI_WAITS(31), ba + 24, ba + 28, 65535, 0, ba + self._DMA_CONTROL_BLOCK_SIZE, 0, 0 ) ba += self._DMA_CONTROL_BLOCK_SIZE # The last block writes zeros(switches to input state) in GPIO's FSEL # registers. In normal operating should never be called until watchdog # timeout is reached. data += ( DMA_TI_NO_WIDE_BURSTS | DMA_TI_WAIT_RESP | DMA_TI_DEST_INC, ba + 24, PHYSICAL_GPIO_BUS + GPIO_FSEL_OFFSET, 12, 0, 0, 0, 0 ) self._phys_memory.write(0, str(len(data)) + "I", data) super(DMAWatchdog, self)._run_dma() def stop(self): """ Disarm watchdog. """ super(DMAWatchdog, self)._stop_dma() def feed(self): """ Feed watchdog, restart waiting loop from the very beginning. """ self._dma.write_int(self._DMA_CHANNEL_ADDRESS + DMA_NEXTCONBK, self._phys_memory.get_bus_address()) # for testing purpose def main(): pin = 21 g = GPIO() g.init(pin, GPIO.MODE_INPUT_NOPULL) print("nopull " + str(g.read(pin))) g.init(pin, GPIO.MODE_INPUT_PULLDOWN) print("pulldown " + str(g.read(pin))) g.init(pin, GPIO.MODE_INPUT_PULLUP) print("pullup " + str(g.read(pin))) time.sleep(1) g.init(pin, GPIO.MODE_OUTPUT) g.set(pin) print("set " + str(g.read(pin))) time.sleep(1) g.clear(pin) print("clear " + str(g.read(pin))) time.sleep(1) cma = CMAPhysicalMemory(1*1024*1024) print(str(cma.get_size() / 1024 / 1024) + "MB of memory allocated at " + hex(cma.get_phys_address())) a = cma.read_int(0) print("was " + hex(a)) cma.write_int(0, 0x12345678) a = cma.read_int(0) assert a == 0x12345678, "Memory isn't written or read correctly" print("now " + hex(a)) del cma dg = DMAGPIO() # TODO: Re-add example print("dmagpio is started") try: print("press enter to stop...") sys.stdin.readline() except KeyboardInterrupt: pass dg.stop() g.clear(pin) print("dma stopped") pwm = DMAPWM() pwm.add_pin(pin, 20) print("pwm is started") try: print("press enter to stop...") sys.stdin.readline() except KeyboardInterrupt: pass pwm.remove_pin(pin) print("pwm stopped") if __name__ == "__main__": main() ``` #### File: drawpi/hardware/plotter.py ```python from drawpi import config from drawpi.point import Point from drawpi.utils import frequency_to_delay, mm_to_steps from drawpi.hardware.steppers import XYSteppers import logging import time import pigpio from drawpi.hardware.hardware_internals.rpgpio import GPIO, DMAGPIO logger = logging.getLogger(__name__) class Plotter: '''Manages the plotter, and its capabilities''' def __init__(self): # Store location in STEPS self.location = Point(0, 0) # Store current direction self.direction = (True, True) self.gpio = GPIO() self.dma = DMAGPIO() self.pi = pigpio.pi() # Setup pins as outputs/inputs self.setup_pins() self.pulses = [] logger.info("Plotter is ready") def _get_pulse(self, pins, delay=0): setmask = 0 resetmask = 0 for pin, state in pins.items(): if state: setmask |= 1 << pin else: resetmask |= 1 << pin return (setmask, resetmask, delay) def add_pulse(self, pulse): self.pulses.append((pulse[0], pulse[1])) if len(pulse) > 2: self.pulses.append((pulse[2],)) if len(self.pulses) > config.PREFERRED_PULSE_BATCH: logger.debug("Committing Pulses") # Enable steppers self.gpio.clear(config.ENABLE_STEPPER) self.dma.add_pulses(self.pulses) self.pulses = [] self.dma.update() def flush_pulses(self): logger.debug("Flushing Pulses") self.dma.add_pulses(self.pulses) self.pulses = [] self.dma.update() def wait_till_idle(self): self.flush_pulses() logger.debug("Waiting till Idle") while self.dma.is_active(): self.dma.update() time.sleep(0.1) def stop(self): # Disable the steppers first self.gpio.set(config.ENABLE_STEPPER) self.dma.stop() def shutdown(self): '''Shutdown tidily''' self.stop() self.pi.set_servo_pulsewidth(config.PEN_SERVO, config.PEN_UP_PULSE) self.pi.stop() def _set_direction(self, dirX, dirY): set = 0 reset = 0 if dirX != config.X_INVERTED: set |= 1 << config.X_DIR else: reset |= 1 << config.X_DIR if dirY != config.Y_INVERTED: set |= 1 << config.Y_DIR else: reset |= 1 << config.Y_DIR self.add_pulse((set, reset, 0)) def _pulse_steppers(self, stepx, stepy, delay): bitmask = 0 if stepx: bitmask |= 1 << config.X_STEP if stepy: bitmask |= 1 << config.Y_STEP self.add_pulse((bitmask, 0, int(delay / 2))) self.add_pulse((0, bitmask, int((delay + 1) / 2))) def _get_steps_to(self, point): # Get the steps to a point diff=point - self.location return diff.x, diff.y def goto(self, point): logger.info("GOTO " + str(point)) # Get no. steps to endpoint x, y=self._get_steps_to(point) dirx=diry=True # If steps are negative, change direction and make steps positive if (x < 0): dirx=False x=abs(x) if (y < 0): diry=False y=abs(y) # Add the pulse for setting the direction self._set_direction(dirx, diry) # Rate is a frequency, get us between pulses delay_per_pulseset=frequency_to_delay(mm_to_steps(config.GOTO_RATE)) # -DEBUG- pulse_count=0 # Add pulses until correct no. of steps is achieved. while (x > 0) or (y > 0): # Decrement if x > 0: x -= 1 if y > 0: y -= 1 # Add the pulse for the steppers self._pulse_steppers(x > 0, y > 0, delay_per_pulseset) pulse_count += 1 logger.debug("GOTO generated {} pulses".format(pulse_count)) # Update location self.location=point def penup(self): '''Set servo to move pen up''' self.wait_till_idle() self.pi.set_servo_pulsewidth(config.PEN_SERVO, config.PEN_UP_PULSE) time.sleep(config.PEN_MOVE_DELAY) def pendown(self): '''Set servo to move pen down''' self.wait_till_idle() self.pi.set_servo_pulsewidth(config.PEN_SERVO, config.PEN_DOWN_PULSE) time.sleep(config.PEN_MOVE_DELAY) def zero_me(self): '''Zero the plotter(move it to home)''' # The delay in us delay=frequency_to_delay(mm_to_steps(config.ZERO_RATE)) # 1 Second of waves are generated at a time(just in case) safety_pregen_no=mm_to_steps(config.ZERO_RATE) # For each axis for is_x, triggerp, extent, endinverted in [ [True, config.X_MIN, config.X_EXTENT, config.X_END_INVERTED], [False, config.Y_MIN, config.Y_EXTENT, config.Y_END_INVERTED] ]: self.wait_till_idle() theoretical_maximum_steps = mm_to_steps(extent) steps_moved = 0 while steps_moved < theoretical_maximum_steps: # This limits just in case of malfunction (inversion for endstops -> high when pressed) endstop = (self.gpio.read(triggerp) == 1) == endinverted if endstop: self.stop() logger.info("ZERO AXIS SUCCESS") break if not self.dma.is_active(): self._set_direction(False, False) for _ in range(safety_pregen_no): steps_moved += 1 self._pulse_steppers(is_x, not is_x, delay) # We are now zeroed. self.location=Point(0, 0) def draw_line(self, start, finish, rate): logger.info("LINE from {} to {}".format(str(start), str(finish))) # ensure at start point if self.location != start: self.goto(start) # Get no. steps to endpoint x, y=self._get_steps_to(finish) dirx=diry=True # If steps are negative, change direction and make steps positive if (x < 0): dirx=False x=abs(x) if (y < 0): diry=False y=abs(y) # Add the pulse for setting the direction self._set_direction(dirx, diry) # generate pulses pulse_count=self._generate_line_pulses((x, y), mm_to_steps(rate)) logger.debug("LINE generated {} pulses".format(pulse_count)) self.location=finish def _generate_line_pulses(self, steps, rate): x=y=0 dx, dy=steps fxy=dx - dy delay=frequency_to_delay(rate) # -DEBUG- pulse_count=0 while((x != dx) or (y != dy)): pulse_count += 1 # The endpoint has not been reached # Works along the line in zigzag, going towards 'ideal' until achieved # and then switching to other axis if fxy > 0: self._pulse_steppers(True, False, delay) x += 1 fxy -= dy else: self._pulse_steppers(False, True, delay) y += 1 fxy += dx return pulse_count def setup_pins(self): # Stepper driver pins are outputs self.gpio.init(config.X_DIR, GPIO.MODE_OUTPUT) self.gpio.init(config.Y_DIR, GPIO.MODE_OUTPUT) self.gpio.init(config.X_STEP, GPIO.MODE_OUTPUT) self.gpio.init(config.Y_STEP, GPIO.MODE_OUTPUT) # Set servo to default pen up position. self.gpio.init(config.PEN_SERVO, GPIO.MODE_OUTPUT) self.pi.set_servo_pulsewidth(config.PEN_SERVO, config.PEN_UP_PULSE) # Disable steppers for now self.gpio.init(config.ENABLE_STEPPER, GPIO.MODE_OUTPUT) self.gpio.set(config.ENABLE_STEPPER) ``` #### File: Jovascript/DrawPy/webserver.py ```python from flask import Flask, render_template, send_file from flask_socketio import SocketIO, emit from drawpi.svgreader import slice, parse from threading import Thread import logging from drawpi.runner import main app = Flask(__name__) app.config['SECRET_KEY'] = 'TopSecretMagic' socketio = SocketIO(app) thread = None class RunningThread(Thread): def __init__(self, commands, *args, **kwargs): super().__init__(*args, **kwargs) self.commands = commands def run(self): try: main(self.commands) socketio.emit("StatusUpdate", {"error": False, "text":"Draw Completed Successfully"}) except Exception as e: logging.error(str(e)) socketio.emit("StatusUpdate", {"error": True, "text":"The application errored: "+ str(e)}) socketio.emit("NewStatus", "ready") class LogSenderHandler(logging.Handler): def emit(self, record): log = self.format(record) socketio.emit("CommandOutput", log) return True @app.route("/") def index(): return send_file("site/index.html") @socketio.on("SVGLoad") def load_svg(text): emit("SVGProcessed", slice(parse(text))) @socketio.on("RunCommands") def run_commands(commands): global thread if thread is None or not thread.is_alive(): logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.DEBUG, handlers=[LogSenderHandler()] ) thread = RunningThread(commands) thread.start() socketio.emit("NewStatus", "running") emit("StatusUpdate", {"error": False, "text":"Draw has begun"}) else: emit("StatusUpdate", {"error": True, "text":"Cannot Start while Running"}) def run(): socketio.run(app) if __name__ == "__main__": run() ```
{ "source": "Jovascript/laggard-parser", "score": 3 }
#### File: laggard-parser/laggard/abstracts.py ```python from typing import List, Callable from laggard import Buffer from laggard.exceptions import ParseException from laggard import helpers class Parser: def __init__(self, source: str): self.source = source self.buffer = self._get_buffer(source) self.stack: List[str] = [] self.error_stack: List[ParseException] = [] self._mark_name: str = None def _get_buffer(self, source:str) -> Buffer: return Buffer(source) def parse(self): """ Begin the parse. If the parse is unsuccessful, it will throw ParseException. Ensures that the end of the string provided is reached. Returns: The result of the start rule. """ result = self.parse_start() if not self.buffer.is_eof(): raise ParseException("Did not consume whole file.") return result def parse_start(self): raise NotImplementedError def expect(self, literal:str): """ Attempts to parse the given literal. Will skip until the first char, and then no more. Args: literal: The literal to match Returns: The literal matched """ return helpers.expect(self.buffer, literal) def expectOneOf(self, charset: List[str], skip: bool = True): """ Attempts to parse a character from charset. Args: charset: The characters to accept skip: Whether it should skip the specified characters in buffer. Returns: The char matched """ return helpers.expectOneOf(self.buffer, charset, skip) def expectManyOutOf(self, charset: List[str]): """ Attempts to greedily parse characters from charset. It will parse at least one, or error. It will skip the specified chars until the first matching character, and then it will cease skipping. Args: charset: The characters to accept Returns: A string of the characters it managed to parse. """ return helpers.expectManyOutOf(self.buffer, charset) def parseMultipleOf(self, parser: Callable, accept_none: bool = False): """ Attempts to parse many of the provided parser rule. Args: parser: The callable which parses the rule accept_none: Whether it raises if it cannot parse even 1 of the rule Returns: A list of the parses it managed to do """ return helpers.parseMultipleOf(self.buffer, parser, accept_none) def parseUntil(self, charset: List[str]): """ Parses characters until it finds a character in charset Args: charset: The characters to look out for Returns: A string of all characters parsed """ return helpers.parseUntil(self.buffer, charset) def __call__(self, name: str): """ Allows the context manager setion to be marked with the name of the rule, for easier debugging. Args: name: The marker name Returns: Self """ self._mark_name = name return self def __enter__(self): self.stack.append(self._mark_name) self.buffer.mark() self._mark_name = None def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: self.error_stack.append() self.buffer.abandon() else: self.buffer.commit() ``` #### File: laggard-parser/laggard/buffer.py ```python from collections import namedtuple from typing import List, Union from laggard.exceptions import ParseException from laggard.infoholders import TextPosition StackEntry = namedtuple("StackEntry", ["pos", "name"]) class Buffer: """ Represents the incoming stream of characters for the parser, provided by a source string. An instance of :class:`Buffer` is a `context manager <http://book.pythontips.com/en/latest/context_managers.html#context-managers>`_. Examples: To parse the string "hello":: buf = Buffer("hello") # Execute a parser with buf now In a parsing function, to make the buffer revert if a :class:`~laggard.exceptions.ParseException` occurs, simply use buffer as a context manager:: with buffer: if is_bad_text(): raise ParseException else: return "good text :)" If the function returns successfully, the buffer will be moved forward(:meth:`commit`), otherwise it will :meth:`abandon`. """ def __init__(self, source: str, skip: List = []): """ Args: source: A string, which is used as the text to be parsed. skip: A list of the characters which the buffer will skip; they will not appear in the results of :meth:`fetch`. """ self.source = source self.stack: List[int] = [] self.current_index = 0 self.skip = skip def _get_position_from_index(self, index): # Line number should start at 1 line_number = self.source.count("\n", 0, index) + 1 column_number = index - self.source.rfind("\n", 0, index) return TextPosition(line_number, column_number) @property def last_pos(self) -> TextPosition: """The last position the stack was located.""" if len(self.stack): return self._get_position_from_index(self.stack[-1]) else: return TextPosition(0, 0) @property def current_pos(self) -> TextPosition: """The current position of the buffer, as a tuple (line number, column number)""" return self._get_position_from_index(self.current_index) def fetch_char(self, skip=True) -> str: try: while True: x = self.source[self.current_index] self.current_index += 1 if x not in self.skip or (not skip): return x except IndexError: return "[EOF]" def fetch(self, count: int = 1, skip: Union[str, bool] = True) -> str: """ Fetches the next section from the buffer Args: count: Length of required string skip: Whether the Buffer's skip property should be respected. Returns: A string of specified length """ retval = "" # Skip until the first char if skip == "initial": retval += self.fetch_char(True) count -= 1 skip = False for i in range(count): retval += self.fetch_char(skip) return retval def peek(self, count: int = 1, skip: bool = True) -> str: self.mark() try: return self.fetch(count, skip) finally: self.abandon() def mark(self): """ Adds the current location to the stack. """ self.stack.append(self.current_index) print(len(self.stack)) def abandon(self): """ Reverts to last recorded position on the stack """ self.current_index = self.stack.pop() def commit(self): """ Progresses on the buffer. """ self.stack.pop() def cry(self, message: str): """Raises a parse error with the location detailed. Args: message: The simple parse message, not a full sentence. """ raise ParseException("Failed to parse: {} at {}".format(message, self.last_pos)) def __enter__(self): self.mark() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type: self.abandon() else: self.commit() def is_eof(self): print(self.current_index) return self.current_index + 1 >= len(self.source) ```
{ "source": "Jovascript/pseudo-fun", "score": 2 }
#### File: pseudofun/pseudocode/python_gen.py ```python from tatsu.codegen import ModelRenderer from tatsu.codegen import CodeGenerator from tatsu.synth import synthesize from tatsu.semantics import Node import sys from tatsu.model import ModelBuilderSemantics symbol_conversions = { 'AND': 'and', 'OR': 'or', '<>': '!=', '=': '==' } class PseudoPythonSemantics(ModelBuilderSemantics): def SYMBOL(self, ast): if ast in symbol_conversions: ast = symbol_conversions[ast] return ast THIS_MODULE = sys.modules[__name__] class PythonCodeGenerator(CodeGenerator): def __init__(self): super(PythonCodeGenerator, self).__init__(modules=[THIS_MODULE]) class Script(ModelRenderer): template = '''{lines::\n:}''' class Block(ModelRenderer): template = '''{lines:1:\n:}''' class ForStatement(ModelRenderer): template = '''\ for {identifier} in range(int({start}), int({end})+1): {body} ''' class WhileStatement(ModelRenderer): template = '''\ while {condition}: {body} ''' class RepeatStatement(ModelRenderer): template = '''\ while True: {body} if {condition}: break ''' class ConditionalStatement(ModelRenderer): template = '''\ if {condition}: {body} ''' class AssignmentStatement(ModelRenderer): template = '''\ {identifier} = {expression}''' class Identifier(ModelRenderer): template = '''\ {name}''' class SumExpression(ModelRenderer): template = '''\ {left} {operator} {right}\ ''' class BracketedExpression(ModelRenderer): template = '''\ ({expression})\ ''' class FunctionCall(ModelRenderer): template = '''\ {name}{arguments}''' class ArgumentList(ModelRenderer): template = '''({arguments::,:})''' class FunctionDef(ModelRenderer): template = '''\ def {name}{arguments}: {body} ''' class ReturnStatement(ModelRenderer): template = '''return {expression}''' ```
{ "source": "jovechina/ABBYY-Cloud-OCR-PoC", "score": 2 }
#### File: ABBYY-Cloud-OCR-PoC/abbyy_cloud/cloud_api.py ```python import shutil import requests import json from utils.env_variables import Endpoint, Auth from logging import getLogger logger = getLogger(__name__) class ABBYYCloudAPI: """ Call abbyy cloud ocr api with project id and pwd """ image = None setting = None app_id = Auth.abbyy_appid app_pwd = <PASSWORD> cloud_api = Endpoint.abbyy_api def __init__(self, image, setting): self.image = image self.setting = setting def text_detection(self): url_params = { "language": self.setting.Language, "exportFormat": self.setting.OutputFormat } request_url = self.get_request_url("processImage") response = requests.post(request_url, data=self.image, params=url_params, auth=(self.app_id, self.app_pwd)) task = self.decode_response(response.text) return task def get_task_status(self, task): if task.Id.find('00000000-0') != -1: # GUID_NULL is being passed. This may be caused by a logical error in the calling code logger.error("Null task id passed") return None url_params = {"taskId": task.Id} status_url = self.get_request_url("getTaskStatus") response = requests.get(status_url, params=url_params, auth=(self.app_id, self.app_pwd), ) task = self.decode_response(response.text) return task def decode_response(self, json_response): """ Decode json response of the server. Return Task object """ # logger.debug("json_response:{}".format(json_response)) response_value = json.loads(json_response) task = Task() task.Id = response_value["taskId"] task.Status = response_value["status"] if task.Status == "Completed": task.DownloadUrl = response_value["resultUrls"][0] return task def download_result(self, task, output_path): get_result_url = task.DownloadUrl if get_result_url is None: print("No download URL found") return file_response = requests.get(get_result_url, stream=True) with open(output_path, 'wb') as output_file: shutil.copyfileobj(file_response.raw, output_file) def get_request_url(self, url): return self.cloud_api.strip('/') + '/' + url.strip('/') class Task: Status = "Unknown" Id = None DownloadUrl = None def is_active(self): if self.Status == "InProgress" or self.Status == "Queued": return True else: return False class ProcessingSettings: Language = "Japanese, English" OutputFormat = "docx" ```
{ "source": "jovechina/google-ocr-demo", "score": 3 }
#### File: google-ocr-demo/response_handler/res_data_conversion.py ```python from logging import getLogger import re from pykakasi import kakasi import jaconv logger = getLogger(__name__) class DataConversion: def __init__(self, row_list, description): self.kks = kakasi() self.data = row_list self.description = description self.result = {} def data_conversion(self): self.fetch_by_field_name() def fetch_by_field_name(self): """ fetch value data from pre-defined label assume one contain one label remove "break" of not last label in case more than one labels in same row """ breakflag = 0 for rn in range(len(self.data)): # post code  if "〒" in self.data[rn]: post_code = self.data[rn] post_code = post_code.partition("〒")[2] breakflag += 1 self.result_update("post_code", post_code) # ITEM2 # ITEM3 # ITEM4 # when all item completed, exit the loop if breakflag == 1: break def result_update(self, str_key, str_value): result = self.result logger.debug("result to be update, key: {}, value: {}".format(str_key, str_value)) if str_value: if not result.__contains__(str_key): result.update({str_key: str_value}) elif str_value != result[str_key]: if str_value: result.update({str_key: str_value}) self.result = result ``` #### File: jovechina/google-ocr-demo/test_google_ocr.py ```python import unittest import yaml from google_vision.rest_api import GoogleVisionRestAPI from google_vision.vision_client import GoogleVisionClient from response_handler.res_data_conversion import DataConversion from response_handler.vision_res_data_wrapper import VisionResDataWrapper from utils.file_utils import FileUtils from logging import getLogger, config logger = getLogger(__name__) class RestAPITestCase(unittest.TestCase): def test_fail_case_1(self): file_name = "<file_path>.jpg" data_convert = self.__data_convert(file_name) self.assertEqual("<value>", data_convert.result["<item>"]) def __data_convert(self, file_name): # google client api # content = FileUtils.load_image(file_name=file_name) # vision_client = GoogleVisionClient(content) # res_data = vision_client.text_detection() # rest api rest_api = GoogleVisionRestAPI(FileUtils.load_image_b64(file_name=file_name)) res_data = rest_api.document_text_detection() wrapper = VisionResDataWrapper(res_data) data_convert = DataConversion(wrapper.txt_2_column_list_by_row, wrapper.description) data_convert.data_conversion() return data_convert if __name__ == '__main__': config.dictConfig(yaml.load(open("logging.yaml").read(), Loader=yaml.SafeLoader)) unittest.main() ```
{ "source": "JoveH-H/path-following-control", "score": 3 }
#### File: path-following-control/controller/incremental_pid.py ```python import numpy as np import copy class CU: ''' 增量式PID控制器 ''' def __init__(self, kp, ki, kd): ''' 增量式PID控制器初始化 参数: kp: 比例系数 ki: 积分系数 kd: 微分系数 ''' self.kp = kp self.ki = ki self.kd = kd self.ep = 0.0 self.ei = 0.0 self.ed = 0.0 def update_e(self, e): ''' 更新偏差 参数: e: 测量值与给定值之间的差 ''' self.ed = e - self.ep self.ei = e + self.ep self.ep = copy.deepcopy(e) def get_ut(self): ''' 更新给定值变化量 返回: ut: 给定值变化量 ''' ut = self.kp * self.ep + self.ki * self.ei + self.kd * self.ed if ut > np.pi / 5: ut = np.pi / 5 elif ut < -np.pi / 5: ut = -np.pi / 5 return ut if __name__ == "__main__": input("位置式PID控制器,任意键退出") ``` #### File: path-following-control/controller/pure_pursuit.py ```python import numpy as np import math class CU: ''' 纯跟踪控制器 ''' def __init__(self, ld): ''' 纯跟踪控制器初始化 参数: ld: 预瞄距离 ''' self.ld = ld def get_deltat(self, model, alpha): ''' 获取前轮转角 参数: model: 被控模型 alpha: 期望角度 ''' delta = math.atan2(2.0 * model.l * np.sin(alpha - model.theta) / self.ld, 1) if delta > np.pi / 5: delta = np.pi / 5 elif delta < -np.pi / 5: delta = -np.pi / 5 return delta if __name__ == "__main__": input("纯跟踪控制器,任意键退出") ```
{ "source": "joveh/qsim", "score": 2 }
#### File: qsim/qsimcirq/qsimh_simulator.py ```python from typing import Union, Sequence from cirq import study, ops, protocols, circuits, value, SimulatesAmplitudes from qsimcirq import qsim import qsimcirq.qsim_circuit as qsimc class QSimhSimulator(SimulatesAmplitudes): def __init__(self, qsimh_options: dict = {}): self.qsimh_options = {'t': 1, 'f': 2, 'v': 0} self.qsimh_options.update(qsimh_options) def compute_amplitudes_sweep( self, program: circuits.Circuit, bitstrings: Sequence[int], params: study.Sweepable, qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT, ) -> Sequence[Sequence[complex]]: if not isinstance(program, qsimc.QSimCircuit): program = qsimc.QSimCircuit(program, device=program.device) n_qubits = len(program.all_qubits()) # qsim numbers qubits in reverse order from cirq bitstrings = [format(bitstring, 'b').zfill(n_qubits)[::-1] for bitstring in bitstrings] options = {'i': '\n'.join(bitstrings)} options.update(self.qsimh_options) param_resolvers = study.to_resolvers(params) trials_results = [] for prs in param_resolvers: solved_circuit = protocols.resolve_parameters(program, prs) options['c'] = solved_circuit.translate_cirq_to_qsim(qubit_order) options.update(self.qsimh_options) amplitudes = qsim.qsimh_simulate(options) trials_results.append(amplitudes) return trials_results ``` #### File: qsim/qsimcirq_tests/qsimcirq_test.py ```python import numpy as np import sympy import unittest import cirq import qsimcirq class MainTest(unittest.TestCase): def test_cirq_too_big_gate(self): # Pick qubits. a, b, c, d, e, f, g = [ cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(0, 2), cirq.GridQubit(1, 0), cirq.GridQubit(1, 1), cirq.GridQubit(1, 2), cirq.GridQubit(2, 0), ] # Create a circuit with a gate larger than 6 qubits. cirq_circuit = cirq.Circuit(cirq.IdentityGate(7).on(a, b, c, d, e, f, g)) qsimSim = qsimcirq.QSimSimulator() with self.assertRaises(NotImplementedError): qsimSim.compute_amplitudes(cirq_circuit, bitstrings=[0b0, 0b1]) def test_cirq_qsim_simulate(self): # Pick qubits. a, b, c, d = [ cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 1), cirq.GridQubit(1, 0) ] # Create a circuit cirq_circuit = cirq.Circuit( cirq.X(a)**0.5, # Square root of X. cirq.Y(b)**0.5, # Square root of Y. cirq.Z(c), # Z. cirq.CZ(a, d) # ControlZ. ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.compute_amplitudes( cirq_circuit, bitstrings=[0b0100, 0b1011]) assert np.allclose(result, [0.5j, 0j]) def test_cirq_qsim_simulate_fullstate(self): # Pick qubits. a, b, c, d = [ cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 1), cirq.GridQubit(1, 0) ] # Create a circuit. cirq_circuit = cirq.Circuit( cirq.Moment([ cirq.X(a)**0.5, # Square root of X. cirq.H(b), # Hadamard. cirq.X(c), # X. cirq.H(d), # Hadamard. ]), cirq.Moment([ cirq.X(a)**0.5, # Square root of X. cirq.CX(b, c), # ControlX. cirq.S(d), # S (square root of Z). ]), cirq.Moment([ cirq.I(a), cirq.ISWAP(b, c), ]) ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=[a, b, c, d]) assert result.state_vector().shape == (16,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=[a, b, c, d]) # When using rotation gates such as S, qsim may add a global phase relative # to other simulators. This is fine, as the result is equivalent. assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_cirq_qsim_run(self): # Pick qubits. a, b, c, d = [ cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 1), cirq.GridQubit(1, 0) ] # Create a circuit cirq_circuit = cirq.Circuit( cirq.X(a)**0.5, # Square root of X. cirq.Y(b)**0.5, # Square root of Y. cirq.Z(c), # Z. cirq.CZ(a, d), # ControlZ. # measure qubits cirq.measure(a, key='ma'), cirq.measure(b, key='mb'), cirq.measure(c, key='mc'), cirq.measure(d, key='md'), ) qsimSim = qsimcirq.QSimSimulator() assert isinstance(qsimSim, cirq.SimulatesSamples) result = qsimSim.run(cirq_circuit, repetitions=5) for key, value in result.measurements.items(): assert(value.shape == (5, 1)) def test_qsim_run_vs_cirq_run(self): # Simple circuit, want to check mapping of qubit(s) to their measurements a, b, c, d = [ cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), cirq.GridQubit(1, 0), cirq.GridQubit(1, 1), ] circuit = cirq.Circuit( cirq.X(b), cirq.CX(b, d), cirq.measure(a, b, c, key='mabc'), cirq.measure(d, key='md'), ) # run in cirq simulator = cirq.Simulator() cirq_result = simulator.run(circuit, repetitions=20) # run in qsim qsim_simulator = qsimcirq.QSimSimulator() qsim_result = qsim_simulator.run(circuit, repetitions=20) # are they the same? assert(qsim_result == cirq_result) def test_intermediate_measure(self): # Demonstrate that intermediate measurement is possible. a, b = [ cirq.GridQubit(0, 0), cirq.GridQubit(0, 1), ] circuit = cirq.Circuit( cirq.X(a), cirq.CX(a, b), cirq.measure(a, b, key='m1'), cirq.CZ(a, b), cirq.measure(a, b, key='m2'), cirq.X(a), cirq.CX(a, b), cirq.measure(a, b, key='m3'), # Trailing gates with no measurement do not affect results. cirq.H(a), cirq.H(b), ) simulator = cirq.Simulator() cirq_result = simulator.run(circuit, repetitions=20) qsim_simulator = qsimcirq.QSimSimulator() qsim_result = qsim_simulator.run(circuit, repetitions=20) assert(qsim_result == cirq_result) def test_sampling_nondeterminism(self): # Ensure that reusing a QSimSimulator doesn't reuse the original seed. q = cirq.GridQubit(0, 0) circuit = cirq.Circuit(cirq.H(q), cirq.measure(q, key='m')) qsim_simulator = qsimcirq.QSimSimulator() qsim_result = qsim_simulator.run(circuit, repetitions=100) result_counts = qsim_result.histogram(key='m') assert(result_counts[0] > 1) assert(result_counts[1] > 1) def test_matrix1_gate(self): q = cirq.LineQubit(0) m = np.array([[1, 1j], [1j, 1]]) * np.sqrt(0.5) cirq_circuit = cirq.Circuit(cirq.MatrixGate(m).on(q)) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit) assert result.state_vector().shape == (2,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_matrix2_gate(self): qubits = cirq.LineQubit.range(2) m = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) cirq_circuit = cirq.Circuit(cirq.MatrixGate(m).on(*qubits)) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (4,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_big_matrix_gates(self): qubits = cirq.LineQubit.range(3) # Toffoli gate as a matrix. m = np.array([ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ]) cirq_circuit = cirq.Circuit( cirq.H(qubits[0]), cirq.H(qubits[1]), cirq.MatrixGate(m).on(*qubits), ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (8,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_decompose_to_matrix_gates(self): class UnknownThreeQubitGate(cirq.ops.Gate): """This gate is not recognized by qsim, and cannot be decomposed. qsim should attempt to convert it to a MatrixGate to resolve the issue. """ def __init__(self): pass def _num_qubits_(self): return 3 def _qid_shape_(self): return (2, 2, 2) def _unitary_(self): # Toffoli gate as a matrix. return np.array([ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ]) qubits = cirq.LineQubit.range(3) cirq_circuit = cirq.Circuit( cirq.H(qubits[0]), cirq.H(qubits[1]), UnknownThreeQubitGate().on(*qubits), ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (8,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_basic_controlled_gate(self): qubits = cirq.LineQubit.range(3) cirq_circuit = cirq.Circuit( cirq.H(qubits[1]), cirq.Y(qubits[2]), cirq.X(qubits[0]).controlled_by(qubits[1]), cirq.CX(*qubits[1:]).controlled_by(qubits[0]), cirq.H(qubits[1]).controlled_by(qubits[0], qubits[2]), ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (8,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_controlled_matrix_gates(self): qubits = cirq.LineQubit.range(4) m1 = np.array([[1, 1j], [1j, 1]]) * np.sqrt(0.5) m2 = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) cirq_circuit = cirq.Circuit( cirq.MatrixGate(m1).on(qubits[0]).controlled_by(qubits[3]), cirq.MatrixGate(m2).on(*qubits[1:3]).controlled_by(qubits[0]), cirq.MatrixGate(m1).on(qubits[2]).controlled_by(qubits[0], qubits[1], qubits[3]), cirq.MatrixGate(m2).on(qubits[0], qubits[3]).controlled_by(*qubits[1:3]), ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (16,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_control_values(self): qubits = cirq.LineQubit.range(3) cirq_circuit = cirq.Circuit( # Controlled by |01) state on qubits 1 and 2 cirq.X(qubits[0]).controlled_by(*qubits[1:], control_values=[0, 1]), # Controlled by either |0) or |1) on qubit 0 (i.e., uncontrolled) cirq.X(qubits[1]).controlled_by(qubits[0], control_values=[(0, 1)]), # Controlled by |10) state on qubits 0 and 1 cirq.X(qubits[2]).controlled_by(qubits[1], qubits[0], control_values=[0, 1]), ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (8,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) qubits = cirq.LineQid.for_qid_shape([2, 3, 2]) cirq_circuit = cirq.Circuit( # Controlled by |12) state on qubits 0 and 1 # Since qsim does not support qudits (yet), this gate is omitted. cirq.X(qubits[2]).controlled_by(*qubits[:2], control_values=[1, 2]), ) qsimSim = qsimcirq.QSimSimulator() with self.assertWarnsRegex(RuntimeWarning, 'Gate has no valid control value'): result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector()[0] == 1 def test_decomposable_gate(self): qubits = cirq.LineQubit.range(4) # The Toffoli gate (CCX) decomposes into multiple qsim-supported gates. cirq_circuit = cirq.Circuit( cirq.H(qubits[0]), cirq.H(qubits[1]), cirq.Moment( cirq.CCX(*qubits[:3]), cirq.H(qubits[3]), ), cirq.H(qubits[2]), cirq.H(qubits[3]), ) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (16,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) # Decomposition may result in gates which add a global phase. assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_complicated_decomposition(self): qubits = cirq.LineQubit.range(4) # The QFT gate decomposes cleanly into the qsim gateset. cirq_circuit = cirq.Circuit( cirq.QuantumFourierTransformGate(4).on(*qubits)) qsimSim = qsimcirq.QSimSimulator() result = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert result.state_vector().shape == (16,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(cirq_circuit, qubit_order=qubits) # Decomposition may result in gates which add a global phase. assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector()) def test_multi_qubit_fusion(self): q0, q1, q2, q3 = cirq.LineQubit.range(4) qubits = [q0, q1, q2, q3] cirq_circuit = cirq.Circuit( cirq.CX(q0, q1), cirq.X(q2)**0.5, cirq.Y(q3)**0.5, cirq.CX(q0, q2), cirq.T(q1), cirq.T(q3), cirq.CX(q1, q2), cirq.X(q3)**0.5, cirq.Y(q0)**0.5, cirq.CX(q1, q3), cirq.T(q0), cirq.T(q2), cirq.CX(q2, q3), cirq.X(q0)**0.5, cirq.Y(q1)**0.5, ) qsimSim = qsimcirq.QSimSimulator(qsim_options={'f': 2}) result_2q_fusion = qsimSim.simulate(cirq_circuit, qubit_order=qubits) qsimSim = qsimcirq.QSimSimulator(qsim_options={'f': 4}) result_4q_fusion = qsimSim.simulate(cirq_circuit, qubit_order=qubits) assert cirq.linalg.allclose_up_to_global_phase( result_2q_fusion.state_vector(), result_4q_fusion.state_vector()) def test_cirq_qsim_simulate_random_unitary(self): q0, q1 = cirq.LineQubit.range(2) qsimSim = qsimcirq.QSimSimulator(qsim_options={'t': 16, 'v': 0}) for iter in range(10): random_circuit = cirq.testing.random_circuit(qubits=[q0, q1], n_moments=8, op_density=0.99, random_state=iter) cirq.ConvertToCzAndSingleGates().optimize_circuit(random_circuit) # cannot work with params cirq.ExpandComposite().optimize_circuit(random_circuit) result = qsimSim.simulate(random_circuit, qubit_order=[q0, q1]) assert result.state_vector().shape == (4,) cirqSim = cirq.Simulator() cirq_result = cirqSim.simulate(random_circuit, qubit_order=[q0, q1]) # When using rotation gates such as S, qsim may add a global phase relative # to other simulators. This is fine, as the result is equivalent. assert cirq.linalg.allclose_up_to_global_phase( result.state_vector(), cirq_result.state_vector(), atol = 1.e-6 ) def test_cirq_qsimh_simulate(self): # Pick qubits. a, b = [cirq.GridQubit(0, 0), cirq.GridQubit(0, 1)] # Create a circuit cirq_circuit = cirq.Circuit(cirq.CNOT(a, b), cirq.CNOT(b, a), cirq.X(a)) qsimh_options = {'k': [0], 'w': 0, 'p': 1, 'r': 1} qsimhSim = qsimcirq.QSimhSimulator(qsimh_options) result = qsimhSim.compute_amplitudes( cirq_circuit, bitstrings=[0b00, 0b01, 0b10, 0b11]) assert np.allclose(result, [0j, 0j, (1 + 0j), 0j]) def test_cirq_qsim_params(self): qubit = cirq.GridQubit(0,0) circuit = cirq.Circuit(cirq.X(qubit)**sympy.Symbol("beta")) params = cirq.ParamResolver({'beta': 0.5}) simulator = cirq.Simulator() cirq_result = simulator.simulate(circuit, param_resolver = params) qsim_simulator = qsimcirq.QSimSimulator() qsim_result = qsim_simulator.simulate(circuit, param_resolver = params) assert cirq.linalg.allclose_up_to_global_phase( qsim_result.state_vector(), cirq_result.state_vector()) def test_cirq_qsim_all_supported_gates(self): q0 = cirq.GridQubit(1, 1) q1 = cirq.GridQubit(1, 0) q2 = cirq.GridQubit(0, 1) q3 = cirq.GridQubit(0, 0) circuit = cirq.Circuit( cirq.Moment([ cirq.H(q0), cirq.H(q1), cirq.H(q2), cirq.H(q3), ]), cirq.Moment([ cirq.T(q0), cirq.T(q1), cirq.T(q2), cirq.T(q3), ]), cirq.Moment([ cirq.CZPowGate(exponent=0.7, global_shift=0.2)(q0, q1), cirq.CXPowGate(exponent=1.2, global_shift=0.4)(q2, q3), ]), cirq.Moment([ cirq.XPowGate(exponent=0.3, global_shift=1.1)(q0), cirq.YPowGate(exponent=0.4, global_shift=1)(q1), cirq.ZPowGate(exponent=0.5, global_shift=0.9)(q2), cirq.HPowGate(exponent=0.6, global_shift=0.8)(q3), ]), cirq.Moment([ cirq.CX(q0, q2), cirq.CZ(q1, q3), ]), cirq.Moment([ cirq.X(q0), cirq.Y(q1), cirq.Z(q2), cirq.S(q3), ]), cirq.Moment([ cirq.XXPowGate(exponent=0.4, global_shift=0.7)(q0, q1), cirq.YYPowGate(exponent=0.8, global_shift=0.5)(q2, q3), ]), cirq.Moment([ cirq.I(q0), cirq.I(q1), cirq.IdentityGate(2)(q2, q3) ]), cirq.Moment([ cirq.rx(0.7)(q0), cirq.ry(0.2)(q1), cirq.rz(0.4)(q2), cirq.PhasedXPowGate( phase_exponent=0.8, exponent=0.6, global_shift=0.3)(q3), ]), cirq.Moment([ cirq.ZZPowGate(exponent=0.3, global_shift=1.3)(q0, q2), cirq.ISwapPowGate(exponent=0.6, global_shift=1.2)(q1, q3), ]), cirq.Moment([ cirq.XPowGate(exponent=0.1, global_shift=0.9)(q0), cirq.YPowGate(exponent=0.2, global_shift=1)(q1), cirq.ZPowGate(exponent=0.3, global_shift=1.1)(q2), cirq.HPowGate(exponent=0.4, global_shift=1.2)(q3), ]), cirq.Moment([ cirq.SwapPowGate(exponent=0.2, global_shift=0.9)(q0, q1), cirq.PhasedISwapPowGate(phase_exponent = 0.8, exponent=0.6)(q2, q3), ]), cirq.Moment([ cirq.PhasedXZGate( x_exponent=0.2, z_exponent=0.3, axis_phase_exponent=1.4)(q0), cirq.T(q1), cirq.H(q2), cirq.S(q3), ]), cirq.Moment([ cirq.SWAP(q0, q2), cirq.XX(q1, q3), ]), cirq.Moment([ cirq.rx(0.8)(q0), cirq.ry(0.9)(q1), cirq.rz(1.2)(q2), cirq.T(q3), ]), cirq.Moment([ cirq.YY(q0, q1), cirq.ISWAP(q2, q3), ]), cirq.Moment([ cirq.T(q0), cirq.Z(q1), cirq.Y(q2), cirq.X(q3), ]), cirq.Moment([ cirq.FSimGate(0.3, 1.7)(q0, q2), cirq.ZZ(q1, q3), ]), cirq.Moment([ cirq.ry(1.3)(q0), cirq.rz(0.4)(q1), cirq.rx(0.7)(q2), cirq.S(q3), ]), cirq.Moment([ cirq.IdentityGate(4).on(q0, q1, q2, q3), ]), cirq.Moment([ cirq.CCZPowGate(exponent=0.7, global_shift=0.3)(q2, q0, q1), ]), cirq.Moment([ cirq.CCXPowGate(exponent=0.4, global_shift=0.6)( q3, q1, q0).controlled_by(q2, control_values=[0]), ]), cirq.Moment([ cirq.rx(0.3)(q0), cirq.ry(0.5)(q1), cirq.rz(0.7)(q2), cirq.rx(0.9)(q3), ]), cirq.Moment([ cirq.TwoQubitDiagonalGate([0.1, 0.2, 0.3, 0.4])(q0, q1), ]), cirq.Moment([ cirq.ThreeQubitDiagonalGate([0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.3])(q1, q2, q3), ]), cirq.Moment([ cirq.CSwapGate()(q0, q3, q1), ]), cirq.Moment([ cirq.rz(0.6)(q0), cirq.rx(0.7)(q1), cirq.ry(0.8)(q2), cirq.rz(0.9)(q3), ]), cirq.Moment([ cirq.TOFFOLI(q3, q2, q0), ]), cirq.Moment([ cirq.FREDKIN(q1, q3, q2), ]), cirq.Moment([ cirq.MatrixGate(np.array([[0, -0.5 - 0.5j, -0.5 - 0.5j, 0], [0.5 - 0.5j, 0, 0, -0.5 + 0.5j], [0.5 - 0.5j, 0, 0, 0.5 - 0.5j], [0, -0.5 - 0.5j, 0.5 + 0.5j, 0]]))(q0, q1), cirq.MatrixGate(np.array([[0.5 - 0.5j, 0, 0, -0.5 + 0.5j], [0, 0.5 - 0.5j, -0.5 + 0.5j, 0], [0, -0.5 + 0.5j, -0.5 + 0.5j, 0], [0.5 - 0.5j, 0, 0, 0.5 - 0.5j]]))(q2, q3), ]), cirq.Moment([ cirq.MatrixGate(np.array([[1, 0], [0, 1j]]))(q0), cirq.MatrixGate(np.array([[0, -1j], [1j, 0]]))(q1), cirq.MatrixGate(np.array([[0, 1], [1, 0]]))(q2), cirq.MatrixGate(np.array([[1, 0], [0, -1]]))(q3), ]), cirq.Moment([ cirq.riswap(0.7)(q0, q1), cirq.givens(1.2)(q2, q3), ]), cirq.Moment([ cirq.H(q0), cirq.H(q1), cirq.H(q2), cirq.H(q3), ]), ) simulator = cirq.Simulator() cirq_result = simulator.simulate(circuit) qsim_simulator = qsimcirq.QSimSimulator() qsim_result = qsim_simulator.simulate(circuit) assert cirq.linalg.allclose_up_to_global_phase( qsim_result.state_vector(), cirq_result.state_vector()) def test_cirq_qsim_global_shift(self): q0 = cirq.GridQubit(1, 1) q1 = cirq.GridQubit(1, 0) q2 = cirq.GridQubit(0, 1) q3 = cirq.GridQubit(0, 0) circuit = cirq.Circuit( cirq.Moment([ cirq.H(q0), cirq.H(q1), cirq.H(q2), cirq.H(q3), ]), cirq.Moment([ cirq.CXPowGate(exponent=1, global_shift=0.7)(q0, q1), cirq.CZPowGate(exponent=1, global_shift=0.9)(q2, q3), ]), cirq.Moment([ cirq.XPowGate(exponent=1, global_shift=1.1)(q0), cirq.YPowGate(exponent=1, global_shift=1)(q1), cirq.ZPowGate(exponent=1, global_shift=0.9)(q2), cirq.HPowGate(exponent=1, global_shift=0.8)(q3), ]), cirq.Moment([ cirq.XXPowGate(exponent=1, global_shift=0.2)(q0, q1), cirq.YYPowGate(exponent=1, global_shift=0.3)(q2, q3), ]), cirq.Moment([ cirq.ZPowGate(exponent=0.25, global_shift=0.4)(q0), cirq.ZPowGate(exponent=0.5, global_shift=0.5)(q1), cirq.YPowGate(exponent=1, global_shift=0.2)(q2), cirq.ZPowGate(exponent=1, global_shift=0.3)(q3), ]), cirq.Moment([ cirq.ZZPowGate(exponent=1, global_shift=0.2)(q0, q1), cirq.SwapPowGate(exponent=1, global_shift=0.3)(q2, q3), ]), cirq.Moment([ cirq.XPowGate(exponent=1, global_shift=0)(q0), cirq.YPowGate(exponent=1, global_shift=0)(q1), cirq.ZPowGate(exponent=1, global_shift=0)(q2), cirq.HPowGate(exponent=1, global_shift=0)(q3), ]), cirq.Moment([ cirq.ISwapPowGate(exponent=1, global_shift=0.3)(q0, q1), cirq.ZZPowGate(exponent=1, global_shift=0.5)(q2, q3), ]), cirq.Moment([ cirq.ZPowGate(exponent=0.5, global_shift=0)(q0), cirq.ZPowGate(exponent=0.25, global_shift=0)(q1), cirq.XPowGate(exponent=0.9, global_shift=0)(q2), cirq.YPowGate(exponent=0.8, global_shift=0)(q3), ]), cirq.Moment([ cirq.CZPowGate(exponent=0.3, global_shift=0)(q0, q1), cirq.CXPowGate(exponent=0.4, global_shift=0)(q2, q3), ]), cirq.Moment([ cirq.ZPowGate(exponent=1.3, global_shift=0)(q0), cirq.HPowGate(exponent=0.8, global_shift=0)(q1), cirq.XPowGate(exponent=0.9, global_shift=0)(q2), cirq.YPowGate(exponent=0.4, global_shift=0)(q3), ]), cirq.Moment([ cirq.XXPowGate(exponent=0.8, global_shift=0)(q0, q1), cirq.YYPowGate(exponent=0.6, global_shift=0)(q2, q3), ]), cirq.Moment([ cirq.HPowGate(exponent=0.7, global_shift=0)(q0), cirq.ZPowGate(exponent=0.2, global_shift=0)(q1), cirq.YPowGate(exponent=0.3, global_shift=0)(q2), cirq.XPowGate(exponent=0.7, global_shift=0)(q3), ]), cirq.Moment([ cirq.ZZPowGate(exponent=0.1, global_shift=0)(q0, q1), cirq.SwapPowGate(exponent=0.6, global_shift=0)(q2, q3), ]), cirq.Moment([ cirq.XPowGate(exponent=0.4, global_shift=0)(q0), cirq.YPowGate(exponent=0.3, global_shift=0)(q1), cirq.ZPowGate(exponent=0.2, global_shift=0)(q2), cirq.HPowGate(exponent=0.1, global_shift=0)(q3), ]), cirq.Moment([ cirq.ISwapPowGate(exponent=1.3, global_shift=0)(q0, q1), cirq.CXPowGate(exponent=0.5, global_shift=0)(q2, q3), ]), cirq.Moment([ cirq.H(q0), cirq.H(q1), cirq.H(q2), cirq.H(q3), ]), ) simulator = cirq.Simulator() cirq_result = simulator.simulate(circuit) qsim_simulator = qsimcirq.QSimSimulator() qsim_result = qsim_simulator.simulate(circuit) assert cirq.linalg.allclose_up_to_global_phase( qsim_result.state_vector(), cirq_result.state_vector()) if __name__ == '__main__': unittest.main() ```
{ "source": "joveh/tensorboard", "score": 2 }
#### File: backend/event_processing/event_file_loader.py ```python import contextlib from tensorboard import data_compat from tensorboard import dataclass_compat from tensorboard.compat import tf from tensorboard.compat.proto import event_pb2 from tensorboard.util import platform_util from tensorboard.util import tb_logging logger = tb_logging.get_logger() @contextlib.contextmanager def _nullcontext(): """Pre-Python-3.7-compatible standin for contextlib.nullcontext.""" yield # Might as well make this a singleton. _NULLCONTEXT = _nullcontext() def _silence_deprecation_warnings(): """Context manager that best-effort silences TF deprecation warnings.""" try: # Learn this one weird trick to make TF deprecation warnings go away. from tensorflow.python.util import deprecation return deprecation.silence() except (ImportError, AttributeError): return _NULLCONTEXT def _make_tf_record_iterator(file_path): """Returns an iterator over TF records for the given tfrecord file.""" # If we don't have TF at all, use the stub implementation. if tf.__version__ == "stub": # TODO(#1711): Reshape stub implementation to fit tf_record_iterator API # rather than needlessly emulating the old PyRecordReader_New API. logger.debug("Opening a stub record reader pointing at %s", file_path) return _PyRecordReaderIterator( tf.pywrap_tensorflow.PyRecordReader_New, file_path ) # If PyRecordReader exists, use it, otherwise use tf_record_iterator(). # Check old first, then new, since tf_record_iterator existed previously but # only gained the semantics we need at the time PyRecordReader was removed. # # TODO(#1711): Eventually remove PyRecordReader fallback once we can drop # support for TF 2.1 and prior, and find a non-deprecated replacement for # tf.compat.v1.io.tf_record_iterator. try: from tensorflow.python import pywrap_tensorflow py_record_reader_new = pywrap_tensorflow.PyRecordReader_New except (ImportError, AttributeError): py_record_reader_new = None if py_record_reader_new: logger.debug("Opening a PyRecordReader pointing at %s", file_path) return _PyRecordReaderIterator(py_record_reader_new, file_path) else: logger.debug("Opening a tf_record_iterator pointing at %s", file_path) # TODO(#1711): Find non-deprecated replacement for tf_record_iterator. with _silence_deprecation_warnings(): return tf.compat.v1.io.tf_record_iterator(file_path) class _PyRecordReaderIterator(object): """Python iterator for TF Records based on PyRecordReader.""" def __init__(self, py_record_reader_new, file_path): """Constructs a _PyRecordReaderIterator for the given file path. Args: py_record_reader_new: pywrap_tensorflow.PyRecordReader_New file_path: file path of the tfrecord file to read """ with tf.compat.v1.errors.raise_exception_on_not_ok_status() as status: self._reader = py_record_reader_new( tf.compat.as_bytes(file_path), 0, tf.compat.as_bytes(""), status ) if not self._reader: raise IOError( "Failed to open a record reader pointing to %s" % file_path ) def __iter__(self): return self def __next__(self): try: self._reader.GetNext() except tf.errors.OutOfRangeError as e: raise StopIteration return self._reader.record() next = __next__ # for python2 compatibility class RawEventFileLoader(object): """An iterator that yields Event protos as serialized bytestrings.""" def __init__(self, file_path, detect_file_replacement=False): """Constructs a RawEventFileLoader for the given file path. Args: file_path: the event file path to read from detect_file_replacement: if True, when Load() is called, the loader will make a stat() call to check the size of the file. If it sees that the file has grown, it will reopen the file entirely (while preserving the current offset) before attempting to read from it. Otherwise, Load() will simply poll at EOF for new data. """ if file_path is None: raise ValueError("A file path is required") self._file_path = platform_util.readahead_file_path(file_path) self._detect_file_replacement = detect_file_replacement self._file_size = None self._iterator = _make_tf_record_iterator(self._file_path) if self._detect_file_replacement and not hasattr( self._iterator, "reopen" ): logger.warning( "File replacement detection requested, but not enabled because " "TF record iterator impl does not support reopening. This " "functionality requires TensorFlow 2.9+" ) self._detect_file_replacement = False def Load(self): """Loads all new events from disk as raw serialized proto bytestrings. Calling Load multiple times in a row will not 'drop' events as long as the return value is not iterated over. Yields: All event proto bytestrings in the file that have not been yielded yet. """ logger.debug("Loading events from %s", self._file_path) if self._detect_file_replacement: has_increased = self.CheckForIncreasedFileSize() # Only act on the file size information if we got a concrete result. if has_increased is not None: if has_increased: logger.debug( "Reopening %s since file size has changed", self._file_path, ) self._iterator.close() self._iterator.reopen() else: logger.debug( "Skipping attempt to poll %s since file size has not " "changed (still %d)", self._file_path, self._file_size, ) return while True: try: yield next(self._iterator) except StopIteration: logger.debug("End of file in %s", self._file_path) break except tf.errors.DataLossError as e: # We swallow partial read exceptions; if the record was truncated # and a later update completes it, retrying can then resume from # the same point in the file since the iterator holds the offset. logger.debug("Truncated record in %s (%s)", self._file_path, e) break logger.debug("No more events in %s", self._file_path) def CheckForIncreasedFileSize(self): """Stats the file to get its updated size, returning True if it grew. If the stat call fails or reports a smaller size than was previously seen, then any previously cached size is left unchanged. Returns: boolean or None: True if the file size increased; False if it was the same or decreased; or None if neither case could be detected (either because the previous size had not been recorded yet, or because the stat call for the current size failed). """ previous_size = self._file_size try: self._file_size = tf.io.gfile.stat(self._file_path).length except tf.errors.OpError as e: logger.error("Failed to stat %s: %s", self._file_path, e) return None logger.debug( "Stat on %s got size %d, previous size %s", self._file_path, self._file_size, previous_size, ) if previous_size is None: return None if self._file_size > previous_size: return True if self._file_size < previous_size: logger.warning( "File %s shrank from previous size %d to size %d", self._file_path, previous_size, self._file_size, ) # In case this was transient, preserve the previously cached size, # to avoid reporting a spurious increase next time. If the file was # actually truncated, we can't recover anyway, so just ignore it. self._file_size = previous_size return False class LegacyEventFileLoader(RawEventFileLoader): """An iterator that yields parsed Event protos.""" def Load(self): """Loads all new events from disk. Calling Load multiple times in a row will not 'drop' events as long as the return value is not iterated over. Yields: All events in the file that have not been yielded yet. """ for record in super(LegacyEventFileLoader, self).Load(): yield event_pb2.Event.FromString(record) class EventFileLoader(LegacyEventFileLoader): """An iterator that passes events through read-time compat layers. Specifically, this includes `data_compat` and `dataclass_compat`. """ def __init__(self, *args, **kwargs): super(EventFileLoader, self).__init__(*args, **kwargs) # Track initial metadata for each tag, for `dataclass_compat`. # This is meant to be tracked per run, not per event file, so # there is a potential failure case when the second event file # in a single run has no summary metadata. This only occurs when # all of the following hold: (a) the events were written with # the TensorFlow 1.x (not 2.x) writer, (b) the summaries were # created by `tensorboard.summary.v1` ops and so do not undergo # `data_compat` transformation, and (c) the file writer was # reopened by calling `.reopen()` on it, which creates a new # file but does not clear the tag cache. This is considered # sufficiently improbable that we don't take extra mitigations. self._initial_metadata = {} # from tag name to `SummaryMetadata` def Load(self): for event in super(EventFileLoader, self).Load(): event = data_compat.migrate_event(event) events = dataclass_compat.migrate_event( event, self._initial_metadata ) for event in events: yield event class TimestampedEventFileLoader(EventFileLoader): """An iterator that yields (UNIX timestamp float, Event proto) pairs.""" def Load(self): """Loads all new events and their wall time values from disk. Calling Load multiple times in a row will not 'drop' events as long as the return value is not iterated over. Yields: Pairs of (UNIX timestamp float, Event proto) for all events in the file that have not been yielded yet. """ for event in super(TimestampedEventFileLoader, self).Load(): yield (event.wall_time, event) ``` #### File: data/server/update_protos.py ```python import os import sys # Paths to "tensorboard/data/server/" in (a) the Bazel runfiles tree, # whence we can read data dependencies, and (b) the Git repository, # whither we can write output files. _BAZEL_DIR = os.path.join("tensorboard", "data", "server") _REPO_DIR = os.path.dirname(os.readlink(__file__)) # Basename for the gRPC file descriptor set. The same basename is used # for the generated file and the source file. _FILE_DESCRIPTOR_SET = "descriptor.bin" _RUST_LICENSE = """\ /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ """ def pkg_basename(pkg, rust_extension): if pkg == _FILE_DESCRIPTOR_SET: return _FILE_DESCRIPTOR_SET else: return "%s%s" % (pkg, rust_extension) def expected_contents(pkg): src = os.path.join(_BAZEL_DIR, "genproto", pkg_basename(pkg, ".rs")) with open(src, "rb") as infile: contents = infile.read() if pkg != _FILE_DESCRIPTOR_SET: contents = _RUST_LICENSE.encode("utf-8") + contents return contents def repo_file_path(pkg): return os.path.join(_REPO_DIR, pkg_basename(pkg, ".pb.rs")) def runfiles_file_path(pkg): return os.path.join(_BAZEL_DIR, pkg_basename(pkg, ".pb.rs")) def update(proto_packages): for pkg in proto_packages: with open(repo_file_path(pkg), "wb") as outfile: outfile.write(expected_contents(pkg)) def check(proto_packages): failed = False for pkg in proto_packages: dst = runfiles_file_path(pkg) try: expected = expected_contents(pkg) with open(dst, "rb") as infile: actual = infile.read() except OSError as e: failed = True print("Could not read package %s: %s" % (pkg, e)) continue if expected == actual: print("%s OK" % dst) else: print("%s out of date" % dst) failed = True if failed: print("To update, run //tensorboard/data/server:update_protos") raise SystemExit(1) def main(): (mode, *proto_packages) = sys.argv[1:] if mode == "--update": return update(proto_packages) if mode == "--check": return check(proto_packages) raise ValueError("unknown mode: %r" % mode) if __name__ == "__main__": main() ```
{ "source": "JoveIC/Grad-CAM", "score": 3 }
#### File: JoveIC/Grad-CAM/gradcam.py ```python import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['GradCam'] class GradCam(): """ Produce 'visual explanations' for decisions made by CNN-based models """ def __init__(self, device='cpu', model=None, hasrecurrent=False): self.device = device self.model = model self.gradients = None self.image = None self.hasrecurrent = hasrecurrent def __call__(self, *args, **kwargs): # get target feature map and model output (the score for class c before softmax y^c) # target feature map target, output = self.get_target_fmap(*args, **kwargs) # y^c if 'index' not in kwargs.keys(): index = torch.argmax(output) else: index = kwargs['index'] if index == None: index = torch.argmax(output) one_hot = self.get_y_index(index=index, output=output) # compute the gradient w.r.t. feature map activations A^k of a convolutional layer one_hot.backward() # obtain the neuron importance weights: # global-average-pool gradients over the width and height dimensions weights = torch.mean(self.gradients.squeeze_(0), (1, 2)) # channel, w, h # heatmap: weighted combination of forward activation maps, follow by a ReLU heatmap = torch.zeros(target.size()[1:], dtype=torch.float32).to(self.device) for i, w in enumerate(weights): heatmap += w * target[i, :, :] heatmap = F.relu(heatmap) # ReLU return heatmap def get_target_fmap(self, *args, **kwargs): x = self.setup(*args, **kwargs) self._model_setup_() target, output = self.forward_pass(x, kwargs['target_layer']) target = target.squeeze(0) return target, output def get_y_index(self, index=None, output=None): one_hot = torch.zeros(output.size(), dtype=torch.float32) one_hot[index] = 1 one_hot = torch.sum(one_hot.to(self.device) * output) return one_hot def _model_setup_(self): self.model.to(self.device) if self.hasrecurrent: #RuntimeError: cudnn RNN backward can only be called in training mode #https://github.com/pytorch/pytorch/issues/10006 self.model.train() for name, module in self.model.named_modules(): if isinstance(module, nn.Dropout): module.p = 0 elif isinstance(module, (nn.RNN, nn.LSTM, nn.GRU)): module.dropout = 0 else: self.model.eval() for param in self.model.parameters(): param.requires_grad = False self.model.zero_grad() # get target feature maps and model output def forward_pass(self, x): r""" Note: for getting the partial derivative of class score over target feature maps, technically it is the same for setting requires_grad to True for either model parameters or model input, since either way the target feature maps would be a intermediate node on the computation graph, which is enough for attach a hook to it. (of course only requires_grad for feature maps works as well... ) I disabled requires_grad for all model parameters, only set the requires_grad for input to be true, just to be explicit - General flow: # get the feature maps we want >> x = get_feature(x) >> target_activations = x # register hook on the fearure maps we want the gradient for >> x.register_hook(self.save_gradient) # get predicitons >> x = the_rest_of_the_model_before_softmax(x) """ target_activations = None raise NotImplementedError('Overwrite this one') return target_activations, x def save_gradient(self, grad): self.gradients = grad def setup(self, *args, **kwargs) -> torch.Tensor: """ Prepare original image and tfed model input Args: - set self.image - return model input x * Don't forget to update hidden (cell) states for recurrent models """ x.requires_grad = True raise NotImplementedError('Overwrite this one') return x ``` #### File: JoveIC/Grad-CAM/misc.py ```python import cv2 import torch import numpy as np def fuse_heatmap_image(img, heatmap, resize=None, keep_heatmap=False): img = img.cpu().numpy() if isinstance(img, torch.Tensor) else np.array(img) heatmap = heatmap.detach().cpu().numpy() if isinstance(heatmap, torch.Tensor) else heatmap if not resize: size = img.shape else: size = resize heatmap = heatmap - np.min(heatmap) heatmap = heatmap / np.max(heatmap) heatmap = np.float32(cv2.resize(heatmap, size)) heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) fused = np.float32(cv2.resize(img/255, size)) + np.float32(heatmap/255, size) fused = np.uint8((fused / np.max(fused)) * 255) if keep_heatmap: return fused, heatmap else: return heatmap ```
{ "source": "jovemmanuelre/Simple-and-Multivariate-Classification", "score": 3 }
#### File: jovemmanuelre/Simple-and-Multivariate-Classification/Testing the Model - Exercise.py ```python import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns sns.set() raw_data = pd.read_csv('Bank-data.csv') data = raw_data.copy() data = data.drop(['Unnamed: 0'], axis=1) data['y'] = data['y'].map({'yes': 1, 'no': 0}) data.describe() # ## Model: Simple Classification y = data['y'] x1 = data['duration'] x = sm.add_constant(x1) reg_log = sm.Logit(y, x) results_log = reg_log.fit() results_log.summary() plt.scatter(x1, y, color='C0') plt.xlabel('Duration', fontsize=20) plt.ylabel('Subscription', fontsize=20) plt.show() # ## Expanded model: Multivariate Classification estimators = ['interest_rate', 'credit', 'march', 'previous', 'duration'] X1_all = data[estimators] y = data['y'] X_all = sm.add_constant(X1_all) reg_logit = sm.Logit(y, X_all) results_logit = reg_logit.fit() results_logit.summary2() # ### Confusion Matrix def confusion_matrix(data_array, actual_values, model): pred_values = model.predict(data_array) bins = np.array([0, 0.5, 1]) cm = np.histogram2d(actual_values, pred_values, bins=bins)[0] accuracy = (cm[0, 0] + cm[1, 1]) / cm.sum() return cm, accuracy confusion_matrix(X_all, y, results_logit) # ## Testing the accuracy of the model raw_data2 = pd.read_csv('Bank-data-testing.csv') data_test = raw_data2.copy() data_test = data_test.drop(['Unnamed: 0'], axis=1) data_test['y'] = data_test['y'].map({'yes': 1, 'no': 0}) y_test = data_test['y'] X1_test = data_test[estimators] X_test = sm.add_constant(X1_test) confusion_matrix(X_test, y_test, results_logit) confusion_matrix(X_all, y, results_logit) ```
{ "source": "jovencoda/troca", "score": 2 }
#### File: core/templatetags/core_extras.py ```python from django.contrib.auth.models import User from django import template from core.models import UserProfile, Project, Skills, Skills_categories from django.template.defaultfilters import stringfilter register = template.Library() @register.filter(name='get_project_author') @stringfilter def get_project_author(value): context = User.get_context_data(username=value) obj = UserProfile.objects.get(user=user.id) return {'author': obj} ```
{ "source": "jovenwayfarer/Pneumothorax", "score": 2 }
#### File: jovenwayfarer/Pneumothorax/dataset.py ```python from torch.utils.data import DataLoader, Dataset import pandas as pd import albumentations as albu from albumentations.pytorch import ToTensorV2 from sklearn.model_selection import StratifiedKFold import cv2 import os import numpy as np pd.options.mode.chained_assignment = None class SIIMDataset(Dataset): def __init__(self, df, image_folder, mask_folder, size, mean, std, phase): self.df = df self.root_images = image_folder self.root_masks = mask_folder self.size = size self.mean = mean self.std = std self.phase = phase self.transforms = get_transforms(phase, size, mean, std) self.gb = self.df.groupby('ImageId') self.fnames = list(self.gb.groups.keys()) def __getitem__(self, idx): image_id = self.fnames[idx] image_path = os.path.join(self.root_images, image_id + ".png") mask_path = os.path.join(self.root_masks, image_id + ".png") image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) mask = cv2.imread(mask_path) mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) mask = (mask > 0).astype(np.float32) augmented = self.transforms(image=image, mask=mask) image = augmented['image'] mask = augmented['mask'] return image, mask def __len__(self): return len(self.fnames) def get_transforms(phase, size, mean, std): list_transforms = [] if phase == "train": list_transforms.extend( [ albu.HorizontalFlip(), albu.OneOf([ albu.RandomContrast(), albu.RandomGamma(), albu.RandomBrightness(), ], p=0.3), albu.OneOf([ albu.ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03), albu.GridDistortion(), albu.OpticalDistortion(distort_limit=2, shift_limit=0.5), ], p=0.3), albu.ShiftScaleRotate(), ] ) list_transforms.extend( [ albu.Normalize(mean=mean, std=std, p=1), albu.Resize(size, size), ToTensorV2(), ] ) list_trfms = albu.Compose(list_transforms) return list_trfms def provider( fold, total_folds, image_folder, mask_folder, df_path, phase, size, mean=None, std=None, batch_size=8, num_workers=4, shuffle = False, ): df = pd.read_csv(df_path) df_with_mask = df[df["EncodedPixels"] != "-1"] df_with_mask['has_mask'] = 1 df_without_mask = df[df["EncodedPixels"] == "-1"] df_without_mask['has_mask'] = 0 df_without_mask_sampled = df_without_mask.sample(len(df_with_mask.drop_duplicates('ImageId'))) df = pd.concat([df_with_mask, df_without_mask_sampled]) kfold = StratifiedKFold(total_folds, shuffle=True, random_state=69) train_idx, val_idx = list(kfold.split( df["ImageId"], df["has_mask"]))[fold] train_df, val_df = df.iloc[train_idx], df.iloc[val_idx] df = train_df if phase == "train" else val_df # NOTE: total_folds=5 -> train/val : 80%/20% image_dataset = SIIMDataset(df, image_folder, mask_folder, size, mean, std, phase) dataloader = DataLoader( image_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, shuffle=shuffle, ) return dataloader ```
{ "source": "joverandout/frequency_in_python", "score": 3 }
#### File: joverandout/frequency_in_python/monoalph.py ```python import frequency freq = frequency.Freq("emails/email1.enc") mapper0 = { "A" : "G", "B" : "Y", "C" : "O", "D" : "R", "E" : "D", "F" : "Q", "G" : "C", "H" : "V", "I" : "X", "J" : "K", "K" : "T", "L" : "L", "M" : "E", "N" : "N", "O" : "P", "P" : "U", "Q" : "B", "R" : "J", "S" : "S", "T" : "A", "U" : "H", "V" : "W", "W" : "M", "X" : "Z", "Y" : "F", "Z" : "I" } def replace(text): test_string = "" tempy=0 for char in text: if char in mapper0: newChar = mapper0[char] inty = ord(newChar)-tempy if inty < 65: inty = 91-(65-inty) finalChar = chr(inty) test_string += finalChar elif char == ' ': tempy+=1 test_string += char else: test_string += char return test_string def main(): with open("emails/email1.enc","rt") as f: cipher_text = f.read() print(cipher_text) new_string = replace(cipher_text) print(freq.ordered()) with open("emails/output.txt","wt") as f: f.write(new_string) print(new_string) main() ```
{ "source": "joverbey/WebCode", "score": 3 }
#### File: modules/template_manager/models.py ```python from app.database import Base, session class Template(Base): """Model object for entries in the templates database table.""" __tablename__ = 'templates' def commit_to_session(self): """Commit this problem to the database as a new template.""" session.add(self) session.flush() session.commit() session.refresh(self) def to_dict(self): return { 'template_id': self.template_id, 'title': self.title, 'body': self.body, 'cursor_x': self.cursor_x, 'cursor_y': self.cursor_y, 'type': self.type } ```
{ "source": "joverwey/Diverse-Motion-Stylization", "score": 2 }
#### File: Diverse-Motion-Stylization/model/motion_graph_gan_model.py ```python import os import torch import torch.nn as nn import torch.nn.functional as F from model import st_networks class MotionGraphGANModel(nn.Module): def __init__(self, opt): super(MotionGraphGANModel, self).__init__() self.opt = opt self.mode = opt.mode self.device = torch.device("cuda:{}".format(opt.gpu_ids[0]) if torch.cuda.is_available() else "cpu") self.save_dir = opt.save_dir self.model_names = ['G', 'E', 'F', 'D'] # define networks self.netG = st_networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.style_dim, opt.ng_blk, opt.ng_btn) self.netE = st_networks.define_E(opt.input_nc, opt.nef, opt.style_dim, opt.num_domains, opt.clip_size, opt.ne_blk, opt.ne_btn) self.netF = st_networks.define_F(opt.latent_dim, opt.hidden_dim, opt.style_dim, opt.num_domains) self.netD = st_networks.define_D(opt.input_nc, opt.ndf, opt.num_domains, opt.clip_size, opt.nd_blk, opt.nd_btn) # set optimizers if self.mode == 'train': for name in self.model_names: setattr(self, 'optimizer_' + name, self.set_optimizer(name)) # set lr schedulers if self.mode == 'train': for name in self.model_names: setattr(self, 'scheduler_' + name, self.set_scheduler(name)) self.to(self.device) def set_optimizer(self, name): net = getattr(self, 'net' + name) if name == 'F': lr = self.opt.f_lr elif name == 'G': lr = self.opt.g_lr elif name == 'D': lr = self.opt.d_lr elif name == 'E': lr = self.opt.e_lr else: NotImplementedError() optimizer = torch.optim.Adam( params=net.parameters(), lr=lr, betas=(self.opt.beta1, self.opt.beta2), weight_decay=self.opt.weight_decay) return optimizer def set_scheduler(self, name): optimizer = getattr(self, 'optimizer_' + name) scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer=optimizer, gamma=0.95 ) return scheduler def reset_grad(self): for name in self.model_names: optim = getattr(self, 'optimizer_' + name) optim.zero_grad() def get_current_iter(self): return self.current_iter def get_current_lrs(self): learning_rates = {} for name in self.model_names: optimizer = getattr(self, 'optimizer_' + name) for param_group in optimizer.param_groups: learning_rates[name] = param_group['lr'] return learning_rates def print_networks(self): for name in self.model_names: save_path = os.path.join(self.save_dir, 'net%s.txt' % name) with open(save_path, 'w') as nets_f: if isinstance(name, str): net = getattr(self, 'net' + name) st_networks.print_network(net, nets_f) def save_networks(self, iter=None, latest=False): if latest: save_filename = 'latest_checkpoint.pth' else: save_filename = '%d_checkpoint.pth' % iter save_path = os.path.join(self.save_dir, save_filename) print('Saving the model into %s...' % save_path) checkpoint = {'iter': iter} for name in self.model_names: if isinstance(name, str): net_name = 'net' + name optim_name = 'optimizer_' + name net = getattr(self, net_name) optim = getattr(self, optim_name) checkpoint[net_name + '_state_dict'] = net.state_dict() checkpoint[optim_name + '_state_dict'] = optim.state_dict() torch.save(checkpoint, save_path) def load_networks(self, iter=None): if iter is not None: load_filename = '%d_checkpoint.pth' % iter else: load_filename = 'latest_checkpoint.pth' load_path = os.path.join(self.save_dir, load_filename) print('Loading the model from %s...' % load_path) checkpoint = torch.load(load_path, map_location='cuda:0') for name in self.model_names: if isinstance(name, str): net_name = 'net' + name net = getattr(self, net_name) net.load_state_dict(checkpoint[net_name + '_state_dict']) if self.mode == 'train': optim_name = 'optimizer_' + name optim = getattr(self, optim_name) if name == 'F': lr = self.opt.f_lr elif name == 'G': lr = self.opt.g_lr elif name == 'D': lr = self.opt.d_lr elif name == 'E': lr = self.opt.e_lr optim.load_state_dict(checkpoint[optim_name + '_state_dict']) for param_group in optim.param_groups: param_group['lr'] = lr self.current_iter = checkpoint['iter'] ``` #### File: Diverse-Motion-Stylization/options/base_options.py ```python import argparse from datetime import datetime from utils.logger import make_dir f = open('contents.txt', 'r') contents = [line.strip() for line in f.readlines()] f = open('styles.txt', 'r') styles = [line.strip() for line in f.readlines()] class BaseOptions: def __init__(self): self.initialized = False def initialize(self, parser): # basic parameters parser.add_argument('--mode', type=str, default='train', choices=['train', 'test']) parser.add_argument('--name', type=str, default='experiment_name') parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints') parser.add_argument('--num_domains', type=int, default=len(styles)) parser.add_argument('--domains', type=str, nargs='+', default=styles) # content domains for recongnition parser.add_argument('--num_contents', type=int, default=len(contents)) parser.add_argument('--contents', type=str, nargs='+', default=contents) # model parameters parser.add_argument('--model', type=str, default='motion_graph_gan') parser.add_argument('--input_nc', type=int, default=7) parser.add_argument('--output_nc', type=int, default=7) parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--nef', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--latent_dim', type=int, default=16) parser.add_argument('--hidden_dim', type=int, default=512) parser.add_argument('--style_dim', type=int, default=64) parser.add_argument('--ng_blk', type=int, default=2) parser.add_argument('--ng_btn', type=int, default=0) parser.add_argument('--nd_blk', type=int, default=2) parser.add_argument('--nd_btn', type=int, default=0) parser.add_argument('--ne_blk', type=int, default=2) parser.add_argument('--ne_btn', type=int, default=0) # misc parser.add_argument('--gpu_ids', type=str, default='0') parser.add_argument('--opt_print', type=bool, default=True) self.initialized = True return parser def gather_options(self): parser = None if not self.initialized: parser = argparse.ArgumentParser() parser = self.initialize(parser) self.parser = parser return parser.parse_args() def check(self, opt): pass def parse(self): opt = self.gather_options() opt.save_dir = make_dir(opt.checkpoints_dir, opt.name) self.check(opt) return opt def print_options(self, opt): now = datetime.now() message = '' message += '----------------- %s options -----------------\n' % (opt.mode).capitalize() message += '{}_start: {}\n'.format(opt.mode, now.strftime('%Y/%m/%d %H:%M:%S')) for k, v in sorted(vars(opt).items()): comment = '' default = self.parser.get_default(k) if v != default: comment = '[default: %s]' % str(default) message += '{}: {} {}\n'.format(str(k), str(v), comment) message += '----------------- End -----------------' if opt.opt_print: print(message) return message ``` #### File: Diverse-Motion-Stylization/preprocess/export_dataset.py ```python import os import sys import numpy as np import scipy.ndimage.filters as filters sys.path.append('../') from animation import BVH, Animation from animation.Quaternions import Quaternions from animation.Pivots import Pivots njoints = 21 selected_joints = [0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 22, 25, 26, 27, 29] parents = [-1, 0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 10, 13, 14, 15, 10, 17, 18, 19] f = open('contents.txt', 'r') contents = [line.strip() for line in f.readlines()] f = open('styles.txt', 'r') styles = [line.strip() for line in f.readlines()] def get_bvh_files(directory): return [os.path.join(directory, f) for f in sorted(list(os.listdir(directory))) if os.path.isfile(os.path.join(directory, f)) and f.endswith('.bvh') and f != 'rest.bvh'] def feet_contact_from_positions(positions, fid_l=(3, 4), fid_r=(7, 8)): fid_l, fid_r = np.array(fid_l), np.array(fid_r) velfactor = np.array([0.05, 0.05]) feet_contact = [] for fid_index in [fid_l, fid_r]: foot_vel = (positions[1:, fid_index] - positions[:-1, fid_index]) ** 2 foot_vel = np.sum(foot_vel, axis=-1) foot_contact = (foot_vel < velfactor).astype(np.float) feet_contact.append(foot_contact) feet_contact = np.concatenate(feet_contact, axis=-1) feet_contact = np.concatenate((feet_contact[0:1].copy(), feet_contact), axis=0) return feet_contact def preprocess(filename, downsample=2, slice=True, window=64, window_step=32): anim, names, frametime = BVH.load(filename) anim = anim[::downsample] global_xforms = Animation.transforms_global(anim) global_positions = global_xforms[:,:,:3,3] / global_xforms[:,:,3:,3] global_rotations = Quaternions.from_transforms(global_xforms) global_positions = global_positions[:, selected_joints] global_rotations = global_rotations[:, selected_joints] clip, feet = get_motion_data(global_positions, global_rotations) if not slice: return clip, feet else: cls = np.array([-1, -1]) clip_windows = [] feet_windows = [] class_windows = [] cls_name = os.path.split(filename)[1] cls = np.array([contents.index(cls_name.split('_')[0].split()[-1]), styles.index(cls_name.split('_')[1])]) if not (cls[0] < 0) & (cls[1] < 0): for j in range(0, len(clip) - window // 8, window_step): assert (len(global_positions) >= window // 8) clip_slice = clip[j:j + window] clip_feet = feet[j:j + window] if len(clip_slice) < window: # left slices clip_left = clip_slice[:1].repeat((window - len(clip_slice)) // 2 + (window - len(clip_slice)) % 2, axis=0) clip_left[:, :, -4:] = 0.0 clip_feet_l = clip_feet[:1].repeat((window - len(clip_slice)) // 2 + (window - len(clip_slice)) % 2, axis=0) # right slices clip_right = clip_slice[-1:].repeat((window - len(clip_slice)) // 2, axis=0) clip_right[:, :, -4:] = 0.0 clip_feet_r = clip_feet[-1:].repeat((window - len(clip_slice)) // 2, axis=0) # padding clip_slice = np.concatenate([clip_left, clip_slice, clip_right], axis=0) clip_feet = np.concatenate([clip_feet_l, clip_feet, clip_feet_r], axis=0) if len(clip_slice) != window: raise Exception() if len(clip_feet) != window: raise Exception() clip_windows.append(clip_slice) feet_windows.append(clip_feet) class_windows.append(cls) return clip_windows, feet_windows, class_windows def get_motion_data(global_positions, global_rotations): # extract forward direction sdr_l, sdr_r, hip_l, hip_r = 13, 17, 1, 5 across = ((global_positions[:, sdr_l] - global_positions[:, sdr_r]) + (global_positions[:, hip_l] - global_positions[:, hip_r])) across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis] # (F, 3) # smooth forward direction direction_filterwidth = 20 forward = filters.gaussian_filter1d(np.cross(across, np.array([[0, 1, 0]])), direction_filterwidth, axis=0, mode='nearest') forward = forward / np.sqrt((forward ** 2).sum(axis=-1))[..., np.newaxis] # remove translation & rotation root_rotation = Quaternions.between(forward, np.array([[0, 0, 1]]).repeat(len(forward), axis=0))[:, np.newaxis] positions = global_positions.copy() rotations = global_rotations.copy() positions[:, :, 0] = positions[:, :, 0] - positions[:, 0:1, 0] positions[:, :, 1] = positions[:, :, 1] - positions[:, 0:1, 1] + positions[0:1, 0:1, 1] positions[:, :, 2] = positions[:, :, 2] - positions[:, 0:1, 2] positions = root_rotation * positions rotations = root_rotation * rotations # trajectory info root_velocity = root_rotation[:-1] * (global_positions[1:, 0:1] - global_positions[:-1, 0:1]) root_rvelocity = Pivots.from_quaternions(root_rotation[1:] * -root_rotation[:-1]).ps root_velocity = root_velocity.repeat(njoints, axis=1) root_rvelocity = root_rvelocity.repeat(njoints, axis=1)[..., np.newaxis] # motion clip info positions = positions[:-1] rotations = rotations[:-1] root_trajectory = np.concatenate([root_velocity, root_rvelocity], axis=-1) motion_clip = np.concatenate([positions, rotations, root_trajectory], axis=-1) # feet contact info """ motion_feet = feet_contact_from_positions(positions) return motion_clip, motion_feet def generate_data(filename, downsample=1): dataframe, feet_cnt = preprocess(filename, slice=False, downsample=downsample) dataframe = np.transpose(dataframe, (2, 0, 1)) # (C, F, J) return dataframe, feet_cnt def generate_dataset(data_dir, out_path, downsample=2, window=64, window_step=16): style_files = get_bvh_files(data_dir) style_clips = [] style_feet = [] style_classes = [] for i, item in enumerate(style_files): print('Processing %i of %i (%s)' % (i, len(style_files), item)) clip, feet, cls = preprocess(item, downsample=downsample, window=window, window_step=window_step) style_clips += clip style_feet += feet style_classes += cls style_clips = np.array(style_clips) style_feet = np.array(style_feet) style_clips = np.transpose(style_clips, (0, 3, 1, 2)) np.savez_compressed(out_path, clips=style_clips, feet=style_feet, classes=style_classes) def generate_mean_std(dataset_path, out_path): X = np.load(dataset_path)['clips'] print('Total shape: ', X.shape) # (N, C, F, J) X = X[:, :-4, :, :] # (N, 7, F, J) Xmean = X.mean(axis=(0, 2), keepdims=True)[0] Xmean = np.concatenate([Xmean, np.zeros((4,) + Xmean.shape[1:])]) Xstd = X.std(axis=(0, 2), keepdims=True)[0] idx = Xstd < 1e-5 Xstd[idx] = 1 Xstd = np.concatenate([Xstd, np.ones((4,) + Xstd.shape[1:])]) print('Mean shape', Xmean.shape) print('Std shape: ', Xstd.shape) np.savez_compressed(out_path, Xmean=Xmean, Xstd=Xstd) """ if __name__ == '__main__': generate_dataset('../bvh/generate', '../datasets/styletransfer_generate', downsample=2, window=64, window_step=32) generate_mean_std('../datasets/styletransfer_generate.npz', '../datasets/preprocess_styletransfer_generate') generate_dataset('../bvh/classify', '../datasets/styletransfer_classify', downsample=2, window=64, window_step=32) generate_mean_std('../datasets/styletransfer_classify.npz', '../datasets/preprocess_styletransfer_classify') print('done!') """ ```
{ "source": "joverwey/tokenizers", "score": 3 }
#### File: tests/bindings/test_decoders.py ```python import pytest import pickle from tokenizers.decoders import Decoder, ByteLevel, WordPiece, Metaspace, BPEDecoder class TestByteLevel: def test_instantiate(self): assert ByteLevel() is not None assert isinstance(ByteLevel(), Decoder) assert isinstance(ByteLevel(), ByteLevel) assert isinstance(pickle.loads(pickle.dumps(ByteLevel())), ByteLevel) def test_decoding(self): decoder = ByteLevel() assert decoder.decode(["My", "Ġname", "Ġis", "ĠJohn"]) == "My name is John" class TestWordPiece: def test_instantiate(self): assert WordPiece() is not None assert WordPiece(prefix="__") is not None assert WordPiece(cleanup=True) is not None assert isinstance(WordPiece(), Decoder) assert isinstance(WordPiece(), WordPiece) assert isinstance(pickle.loads(pickle.dumps(WordPiece())), WordPiece) def test_decoding(self): decoder = WordPiece() assert decoder.decode(["My", "na", "##me", "is", "Jo", "##hn"]) == "My name is John" assert decoder.decode(["I", "'m", "Jo", "##hn"]) == "I'm John" decoder = WordPiece(prefix="__", cleanup=False) assert decoder.decode(["My", "na", "__me", "is", "Jo", "__hn"]) == "My name is John" assert decoder.decode(["I", "'m", "Jo", "__hn"]) == "I 'm John" class TestMetaspace: def test_instantiate(self): assert Metaspace() is not None assert Metaspace(replacement="-") is not None with pytest.raises(Exception, match="replacement must be a character"): Metaspace(replacement="") assert Metaspace(add_prefix_space=True) is not None assert isinstance(Metaspace(), Decoder) assert isinstance(Metaspace(), Metaspace) assert isinstance(pickle.loads(pickle.dumps(Metaspace())), Metaspace) def test_decoding(self): decoder = Metaspace() assert decoder.decode(["▁My", "▁name", "▁is", "▁John"]) == "My name is John" decoder = Metaspace(replacement="-", add_prefix_space=False) assert decoder.decode(["-My", "-name", "-is", "-John"]) == " My name is John" class TestBPEDecoder: def test_instantiate(self): assert BPEDecoder() is not None assert BPEDecoder(suffix="_") is not None assert isinstance(BPEDecoder(), Decoder) assert isinstance(BPEDecoder(), BPEDecoder) assert isinstance(pickle.loads(pickle.dumps(BPEDecoder())), BPEDecoder) def test_decoding(self): decoder = BPEDecoder() assert ( decoder.decode(["My</w>", "na", "me</w>", "is</w>", "Jo", "hn</w>"]) == "My name is John" ) decoder = BPEDecoder(suffix="_") assert decoder.decode(["My_", "na", "me_", "is_", "Jo", "hn_"]) == "My name is John" ``` #### File: tokenizers/implementations/bert_wordpiece.py ```python from tokenizers import Tokenizer, AddedToken, decoders, trainers from tokenizers.models import WordPiece from tokenizers.normalizers import BertNormalizer from tokenizers.pre_tokenizers import BertPreTokenizer from tokenizers.processors import BertProcessing from .base_tokenizer import BaseTokenizer from typing import Optional, List, Union class BertWordPieceTokenizer(BaseTokenizer): """ Bert WordPiece Tokenizer """ def __init__( self, vocab_file: Optional[str] = None, unk_token: Union[str, AddedToken] = "[UNK]", sep_token: Union[str, AddedToken] = "[SEP]", cls_token: Union[str, AddedToken] = "[CLS]", pad_token: Union[str, AddedToken] = "[PAD]", mask_token: Union[str, AddedToken] = "[MASK]", clean_text: bool = True, handle_chinese_chars: bool = True, strip_accents: Optional[bool] = None, lowercase: bool = True, wordpieces_prefix: str = "##", ): if vocab_file is not None: tokenizer = Tokenizer(WordPiece(vocab_file, unk_token=str(unk_token))) else: tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token))) # Let the tokenizer know about special tokens if they are part of the vocab if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) if tokenizer.token_to_id(str(sep_token)) is not None: tokenizer.add_special_tokens([str(sep_token)]) if tokenizer.token_to_id(str(cls_token)) is not None: tokenizer.add_special_tokens([str(cls_token)]) if tokenizer.token_to_id(str(pad_token)) is not None: tokenizer.add_special_tokens([str(pad_token)]) if tokenizer.token_to_id(str(mask_token)) is not None: tokenizer.add_special_tokens([str(mask_token)]) tokenizer.normalizer = BertNormalizer( clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase, ) tokenizer.pre_tokenizer = BertPreTokenizer() if vocab_file is not None: sep_token_id = tokenizer.token_to_id(str(sep_token)) if sep_token_id is None: raise TypeError("sep_token not found in the vocabulary") cls_token_id = tokenizer.token_to_id(str(cls_token)) if cls_token_id is None: raise TypeError("cls_token not found in the vocabulary") tokenizer.post_processor = BertProcessing( (str(sep_token), sep_token_id), (str(cls_token), cls_token_id) ) tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix) parameters = { "model": "BertWordPiece", "unk_token": unk_token, "sep_token": sep_token, "cls_token": cls_token, "pad_token": pad_token, "mask_token": mask_token, "clean_text": clean_text, "handle_chinese_chars": handle_chinese_chars, "strip_accents": strip_accents, "lowercase": lowercase, "wordpieces_prefix": wordpieces_prefix, } super().__init__(tokenizer, parameters) def train( self, files: Union[str, List[str]], vocab_size: int = 30000, min_frequency: int = 2, limit_alphabet: int = 1000, initial_alphabet: List[str] = [], special_tokens: List[Union[str, AddedToken]] = [ "[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]", ], show_progress: bool = True, wordpieces_prefix: str = "##", ): """ Train the model using the given files """ trainer = trainers.WordPieceTrainer( vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix, ) if isinstance(files, str): files = [files] self._tokenizer.train(trainer, files) ```
{ "source": "jovesus/gencoor", "score": 3 }
#### File: gencoor/data/update_gene_info.py ```python import os from tqdm import tqdm from urllib.request import urlopen """ This script is for updating the files below: alias files genes_<genome>.bed chrom.sizes.<genome> """ def get_num_lines(file_path): with open(file_path) as f: for i, l in enumerate(f): pass return i + 1 ########################################################################## ### HG38 ### -- Update hg19/alias_human.txt ### -- Update hg38/alias_human.txt ### -- Update hg38/genes_hg38.bed ########################################################################## alias = [] genes = [] file_path = "hg38/gencode.v32.annotation.gtf" print("Parsing "+file_path) with open(file_path) as gtf_hg38: for line in tqdm(gtf_hg38, total=get_num_lines(file_path)): if line.startswith("#"): pass else: line = line.replace('"', "") line = line.replace(';', "") l = line.split() if l[2] == "gene": id_symbol = l.index("gene_name") id_ensembl = l.index("gene_id") if "hgnc_id" in l: tag_HGNC = l[l.index("hgnc_id")+1] else: tag_HGNC = "" if "havana_gene" in l: tag_Havana = l[l.index("havana_gene")+1] else: tag_Havana = "" alias.append([l[id_symbol + 1], l[id_ensembl + 1], tag_HGNC, tag_Havana]) genes.append([l[0], l[3], l[4], l[id_symbol + 1], "0", l[6]]) res_alias = list(set(tuple(g) for g in alias)) res_genes = list(set(tuple(g) for g in genes)) # Save alias to HG38 alias_file = "hg38/alias_human.txt" with open(alias_file, "w") as f: for g in res_alias: print("\t".join(g), file=f) # Save alias to HG19 alias_file = "hg19/alias_human.txt" with open(alias_file, "w") as f: for g in res_alias: print("\t".join(g), file=f) # Save genes to HG38 genes_file = "hg38/genes_hg38.txt" with open(genes_file, "w") as f: for g in res_genes: print("\t".join(g), file=f) ########################################################################## ### HG19 ### -- Update hg19/genes_hg19.bed ########################################################################## genes = [] file_path = "hg19/gencode.v19.annotation.gtf" print("Parsing "+file_path) with open(file_path) as gtf_hg19: for line in tqdm(gtf_hg19, total=get_num_lines(file_path)): if line.startswith("#"): pass else: line = line.replace('"', "") line = line.replace(';', "") l = line.split() if l[2] == "gene": id_symbol = l.index("gene_name") genes.append([l[0], l[3], l[4], l[id_symbol + 1], "0", l[6]]) res_genes = list(set(tuple(g) for g in genes)) # Save genes to HG19 genes_file = "hg19/genes_hg19.txt" with open(genes_file, "w") as f: for g in res_genes: print("\t".join(g), file=f) ########################################################################## ### MM10 ### -- Update mm9/alias_mouse.txt ### -- Update mm10/alias_mouse.txt ### -- Update mm10/genes_mm10.bed ########################################################################## alias = [] genes = [] file_path = "mm10/gencode.vM23.annotation.gtf" print("Parsing "+file_path) with open(file_path) as gtf_mm10: for line in tqdm(gtf_mm10, total=get_num_lines(file_path)): if line.startswith("#"): pass else: line = line.replace('"', "") line = line.replace(';', "") l = line.split() if l[2] == "gene": id_symbol = l.index("gene_name") id_ensembl = l.index("gene_id") if "hgnc_id" in l: tag_HGNC = l[l.index("hgnc_id")+1] else: tag_HGNC = "" if "havana_gene" in l: tag_Havana = l[l.index("havana_gene")+1] else: tag_Havana = "" alias.append([l[id_symbol + 1], l[id_ensembl + 1], tag_HGNC, tag_Havana]) genes.append([l[0], l[3], l[4], l[id_symbol + 1], "0", l[6]]) res_alias = list(set(tuple(g) for g in alias)) res_genes = list(set(tuple(g) for g in genes)) # Save alias to MM10 alias_file = "mm10/alias_mouse.txt" with open(alias_file, "w") as f: for g in res_alias: print("\t".join(g), file=f) # Save alias to MM9 alias_file = "mm9/alias_mouse.txt" with open(alias_file, "w") as f: for g in res_alias: print("\t".join(g), file=f) # Save genes to MM10 genes_file = "mm10/genes_mm10.txt" with open(genes_file, "w") as f: for g in res_genes: print("\t".join(g), file=f) ########################################################################## ### MM9 ### -- Update mm9/genes_mm.bed ########################################################################## genes = [] file_path = "mm9/gencode.vM1.annotation.gtf" print("Parsing "+file_path) with open(file_path) as gtf_mm9: for line in tqdm(gtf_mm9, total=get_num_lines(file_path)): if line.startswith("#"): pass else: line = line.replace('"', "") line = line.replace(';', "") l = line.split() if l[2] == "gene": id_symbol = l.index("gene_name") genes.append([l[0], l[3], l[4], l[id_symbol + 1], "0", l[6]]) res_genes = list(set(tuple(g) for g in genes)) # Save genes to MM9 genes_file = "mm9/genes_mm9.txt" with open(genes_file, "w") as f: for g in res_genes: print("\t".join(g), file=f) ########################################################################## ### Chromosome Size ########################################################################## chrom_size = { "hg19": "http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes", "hg38": "http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes", "mm9": "http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/mm9.chrom.sizes", "mm10": "http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes" } for genome in chrom_size.keys(): with open(os.path.join(genome, "chrom.sizes." + genome), "w") as f: data = urlopen(chrom_size[genome]) for line in data: l = line.decode('utf-8').strip() if "_" not in l: print(l, file=f) ``` #### File: gencoor/gencoor/experiment_matirx.py ```python class ExpMatrix: """Experimental Matrix is a class for loading, storing and \ manipulating the files from different sources and format.""" def __init__(self): self.names = [] self.types = {} self.files = {} # self.labels = {} self.headers = [] self.additional_columns = {} self.tags = {} def read(self, path): fixed_headers = ["name", "type", "file"] fixed_idx = {} with open(path) as f: for i, line in enumerate(f): if i == 0: l = line.strip().split() for h in fixed_headers: if h in l: fixed_idx[h] = l.index(h) self.headers = [h for h in l if h not in fixed_headers] if self.headers: for h in self.headers: self.additional_columns[h] = {} elif line.startswith("#"): continue else: l = line.strip().split() if len(l) >= 4: new_name = l[fixed_idx["name"]] self.names.append(new_name) self.types[new_name] = l[fixed_idx["type"]] self.files[new_name] = l[fixed_idx["file"]] # self.labels[new_name] = l[fixed_idx["label"]] ll = list(set(range(len(l))) - set(fixed_idx.values())) # print(range(len(l))) # print() if self.headers: for j, h in enumerate(self.headers): self.additional_columns[h][new_name] = l[ll[j]] else: continue self.extend_entries() self.sum_up_tags() def sum_up_tags(self): for n in self.names: self.tags[n] = [] if self.headers: for h in self.headers: self.tags[n].append(self.additional_columns[h][n]) self.tags[n].append(self.types[n]) # self.tags[n].append(self.labels[n]) self.tags[n] = set(self.tags[n]) def remove_a_name(self, name): self.names.remove(name) del self.types[name] del self.files[name] # del self.labels[name] if self.headers: for h in self.additional_columns.keys(): del self.additional_columns[h][name] def duplicate_entry(self, name, new_name): self.names.append(new_name) self.types[new_name] = self.types[name] self.files[new_name] = self.files[name] # self.labels[new_name] = self.labels[name] if self.headers: for h in self.additional_columns.keys(): self.additional_columns[h][new_name] = self.additional_columns[h][name] def extend_entries(self): def split_a_tag(): for h in self.headers: for name, tag in self.additional_columns[h].items(): if "," in tag: new_labels = tag.split(",") combined_labels = [name+"_"+ s for s in new_labels] for i, ll in enumerate(combined_labels): self.duplicate_entry(name, ll) self.additional_columns[h][ll] = new_labels[i] self.remove_a_name(name) return False return True def complete_all_tag(): for h in self.headers: for name, tag in self.additional_columns[h].items(): if tag == ".": tags = self.get_all_tags(h) combined_labels = [name + "_" + s for s in tags] for i, t in enumerate(combined_labels): self.duplicate_entry(name, t) self.additional_columns[h][t] = tags[i] self.remove_a_name(name) return False return True if self.headers: reach_end = False while not reach_end: reach_end = split_a_tag() reach_end = False while not reach_end: reach_end = complete_all_tag() def get_regions(self): res = [] for name, type in self.types.items(): if type == "regions": res.append(name) return res def get_signals(self): res = [] for name, type in self.types.items(): if type == "signals": res.append(name) return res def print(self): print("####################################") print("\t".join(["name", "type", "file"] + self.headers)) for name in self.names: print("\t".join([name, self.types[name], self.files[name]] + [self.additional_columns[h][name] for h in self.headers])) print("####################################") def get_all_tags(self, header): res = [] if header in self.headers: for name in self.names: tag = self.additional_columns[header][name] if tag != "." and tag not in res: res.append(tag) elif header == "regions": res = self.get_regions() elif header == "signals": res = self.get_signals() else: res = [""] return res def filter_by_tags(self, tags): res = [] cue = [t for t in tags if t != ""] # print("cue: "+ " ".join(cue)) # print(self.tags) for name in self.names: if set(cue) <= set(self.tags[name]): res.append(name) return res def get_file(self, name): return self.files[name] # # def get_label(self, name): # return self.labels[name] ```
{ "source": "jovi521/swsw", "score": 2 }
#### File: python/fusion12h/fusion12h.py ```python import sys import netCDF4 as nc import numpy as np import time import os import json import math def create_json(filepath, savedir): dataset = nc.Dataset(filepath, 'r') filename = filepath.split('/')[-1] lat = dataset.variables['latitude'][:] lon = dataset.variables['longitude'][:] time_shape = dataset.variables['r2m'].shape[0] temp = dataset.variables['t2m'][:] rhu = dataset.variables['r2m'][:] prs = dataset.variables['msl'][:] pre = dataset.variables['tp'][:] # windu = dataset.variables['u10'][:] # windv = dataset.variables['v10'][:] # 从文件名截取时间(该时间为国际时) time_str = filename[0: 15] # 转为时间数组 time_array = time.strptime(time_str, '%Y%m%d_%H%M%S') # 转为时间戳 time_stamp = int(time.mktime(time_array)) time_stamp += 8 * 3600 time_array = time.localtime(time_stamp) other_style_time = time.strftime('%Y%m%d%H%M%S', time_array) yyyyMM = other_style_time[0: 8] lon_max_line = 105 lon_min_line = 102.5 lat_max_line = 31.5 lat_min_line = 30 # 对经纬度数组进行截取 lon_idx = np.where((lon >= float(lon_min_line)) & (lon <= float(lon_max_line))) lon_after = lon[lon_idx] lat_idx = np.where((lat >= float(lat_min_line)) & (lat <= float(lat_max_line))) lat_after = lat[lat_idx] lon_min_ind = lon_idx[0][0] lon_max_ind = lon_idx[0][-1] lat_min_ind = lat_idx[0][0] lat_max_ind = lat_idx[0][-1] lon_min = float('{:.2f}'.format(lon_after[0])) lon_max = float('{:.2f}'.format(lon_after[-1])) lat_min = float('{:.2f}'.format(lat_after[0])) lat_max = float('{:.2f}'.format(lat_after[-1])) lon_count = len(lon_after) lat_count = len(lat_after) for i in range(time_shape): temp_after = temp[i][lat_min_ind:lat_max_ind + 1, lon_min_ind: lon_max_ind + 1] rhu_after = rhu[i][lat_min_ind:lat_max_ind + 1, lon_min_ind: lon_max_ind + 1] prs_after = prs[i][lat_min_ind:lat_max_ind + 1, lon_min_ind: lon_max_ind + 1] pre_after = pre[i][lat_min_ind:lat_max_ind + 1, lon_min_ind: lon_max_ind + 1] # windu_after = windu[i][lat_min_ind:lat_max_ind + 1, lon_min_ind: lon_max_ind + 1] # windv_after = windv[i][lat_min_ind:lat_max_ind + 1, lon_min_ind: lon_max_ind + 1] # # 计算风速 # windspeed = np.sqrt(np.square(windu_after) + np.square(windv_after)) # # 计算风向 # winddirect = 180 + np.arctan(windu_after / windv_after) * 180 / math.pi # 将温度k转换为c temp_after = temp_after - 273.15 # 保留一位小数 temp_after = np.around(temp_after, 1) rhu_after = np.around(rhu_after, 1) prs_after = np.around(prs_after, 1) pre_after = np.around(pre_after, 1) temp_filename = '{}{}{}{}{}{}'.format(other_style_time, '_', i, '_', 0, '_tem.json') rhu_filename = '{}{}{}{}{}{}'.format(other_style_time, '_', i, '_', 0, '_rhu.json') prs_filename = '{}{}{}{}{}{}'.format(other_style_time, '_', i, '_', 0, '_prs.json') pre_filename = '{}{}{}{}{}{}'.format(other_style_time, '_', i, '_', 0, '_rain.json') # windfield_filename = '{}{}{}{}{}{}'.format(other_style_time, '_', i, '_', 0, '_windfield.json') temp_dic = {} rhu_dic = {} prs_dic = {} pre_dic = {} # wind_dic = {} temp_dic['modifyType'] = 0 temp_dic['latCount'] = lat_count temp_dic['lonMax'] = lon_max temp_dic['data'] = [float('{:.1f}'.format(j)) for j in temp_after.flatten().tolist()] temp_dic['lonCount'] = lon_count temp_dic['latMin'] = lat_min temp_dic['forecastCount'] = int(i) temp_dic['layer'] = 0 temp_dic['filename'] = temp_filename temp_dic['time'] = other_style_time temp_dic['lonMin'] = lon_min temp_dic['latMax'] = lat_max temp_dic['productType'] = 'tem' rhu_dic['modifyType'] = 0 rhu_dic['latCount'] = lat_count rhu_dic['lonMax'] = lon_max rhu_dic['data'] = [float('{:.1f}'.format(j)) for j in rhu_after.flatten().tolist()] rhu_dic['lonCount'] = lon_count rhu_dic['latMin'] = lat_min rhu_dic['forecastCount'] = int(i) rhu_dic['layer'] = 0 rhu_dic['filename'] = rhu_filename rhu_dic['time'] = other_style_time rhu_dic['lonMin'] = lon_min rhu_dic['latMax'] = lat_max rhu_dic['productType'] = 'rhu' prs_dic['modifyType'] = 0 prs_dic['latCount'] = lat_count prs_dic['lonMax'] = lon_max prs_dic['data'] = [float('{:.1f}'.format(j)) for j in prs_after.flatten().tolist()] prs_dic['lonCount'] = lon_count prs_dic['latMin'] = lat_min prs_dic['forecastCount'] = int(i) prs_dic['layer'] = 0 prs_dic['filename'] = prs_filename prs_dic['time'] = other_style_time prs_dic['lonMin'] = lon_min prs_dic['latMax'] = lat_max prs_dic['productType'] = 'prs' pre_dic['modifyType'] = 0 pre_dic['latCount'] = lat_count pre_dic['lonMax'] = lon_max pre_dic['data'] = [float('{:.1f}'.format(j)) for j in pre_after.flatten().tolist()] pre_dic['lonCount'] = lon_count pre_dic['latMin'] = lat_min pre_dic['forecastCount'] = int(i) pre_dic['layer'] = 0 pre_dic['filename'] = pre_filename pre_dic['time'] = other_style_time pre_dic['lonMin'] = lon_min pre_dic['latMax'] = lat_max pre_dic['productType'] = 'rain' # wind_dic['modifyType'] = 0 # wind_dic['latCount'] = lat_count # wind_dic['lonMax'] = lon_max # wind_dic['windSpeed'] = [float('{:.1f}'.format(j)) for j in windspeed.flatten().tolist()] # wind_dic['windDirection'] = [float('{:.1f}'.format(j)) for j in winddirect.flatten().tolist()] # wind_dic['lonCount'] = lon_count # wind_dic['latMin'] = lat_min # wind_dic['forecastCount'] = int(i) # wind_dic['layer'] = 0 # wind_dic['filename'] = windfield_filename # wind_dic['time'] = other_style_time # wind_dic['lonMin'] = lon_min # wind_dic['latMax'] = lat_max # wind_dic['productType'] = 'windfield' temp_json = json.dumps(temp_dic) rhu_json = json.dumps(rhu_dic) prs_json = json.dumps(prs_dic) pre_json = json.dumps(pre_dic) # wind_json = json.dumps(wind_dic) temp_dir = '{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'TEM') rhu_dir = '{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'RHU') prs_dir = '{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'PRS') pre_dir = '{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'RAIN') # wind_dir = '{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'WINDFIELD') temp_path = '{}{}{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'TEM', '\\\\', temp_filename) rhu_path = '{}{}{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'RHU', '\\\\', rhu_filename) prs_path = '{}{}{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'PRS', '\\\\', prs_filename) pre_path = '{}{}{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'RAIN', '\\\\', pre_filename) # wind_path = '{}{}{}{}{}{}{}'.format(savedir, '\\\\', yyyyMM, '\\\\', 'WINDFIELD', '\\\\', windfield_filename) if os.path.exists(temp_dir) == False: os.makedirs(temp_dir) if os.path.exists(rhu_dir) == False: os.makedirs(rhu_dir) if os.path.exists(prs_dir) == False: os.makedirs(prs_dir) if os.path.exists(pre_dir) == False: os.makedirs(pre_dir) # if os.path.exists(wind_dir) == False: # os.makedirs(wind_dir) with open(temp_path, 'w+') as file_obj: file_obj.write(temp_json) with open(rhu_path, 'w+') as file_obj: file_obj.write(rhu_json) with open(prs_path, 'w+') as file_obj: file_obj.write(prs_json) with open(pre_path, 'w+') as file_obj: file_obj.write(pre_json) # with open(wind_path, 'w+') as file_obj: # file_obj.write(wind_json) if __name__ == '__main__': filepath = sys.argv[1] savedir = sys.argv[2] # filepath = r'D:\\Data\\20210104_000000.grapes.12h.nc' # create_json(filepath, 'D:\\Data\\fusion12h_parse') create_json(filepath, savedir) ``` #### File: python/statellite/fy4a_channel12.py ```python import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.basemap import Basemap import sys import os import time from fy4a import FY4A_AGRI_L1 def create_img(file_path, geo_range, save_dir): ''' file_path:需要解析的文件路径 geo_range:需要裁剪的区域范围和粒度,格式:最小纬度,最大纬度,最小经度,最大经度,粒度 例如:10, 54, 70, 140, 0.1 save_path:保存路径 ''' # 获得文件名 filename = file_path.split('\\')[-1] # 从文件名中获得时间 start_time = filename.split('_')[-4] # 将世界时转化为北京时 time_array = time.strptime(start_time, "%Y%m%d%H%M%S") time_stamp = int(time.mktime(time_array)) + 8 * 3600 time_array = time.localtime(time_stamp) other_style_time = time.strftime('%Y%m%d%H%M%S', time_array) yyyyMMdd = other_style_time[0:8] # 卫星类型 satellite_type = 'FY4A' # 通道号 channel_number = 'Channel12' # 读取文件,获得fy4a对象 fy4a_agri_l1 = FY4A_AGRI_L1(file_path) # 选择通道和区域 fy4a_agri_l1.extract('Channel12', geo_range) # 获得通道对象 channel12 = fy4a_agri_l1.channels['Channel12'] # 绘图 # 设置图片大小和dpi # plt.subplot(1, 1, 1) plt.figure(figsize=(10, 8), dpi=200) lat_S, lat_N, lon_W, lon_E, step = eval(geo_range) channel12 = np.array(channel12) channel12 = np.flip(channel12, axis=0) Basemap(projection='merc', llcrnrlat=lat_S, urcrnrlat=lat_N, \ llcrnrlon=lon_W, urcrnrlon=lon_E, lat_ts=5, resolution='c') x = np.arange(lon_W, lon_E + 0.1, 0.1) y = np.arange(lat_S, lat_N + 0.1, 0.1) xx, yy = np.meshgrid(x, y) # 色彩定制:ch012色标 levels = [198.55, 218.15, 232.38, 243.94, 253.88, 262.69, 270.1, 277.51, 284.39, 290.85, 296.96, 302.76, 308.32, 313.65, 318.79, 323.74, 328.55, 334.39] cdict = ( '#474447', '#EBA6C3', '#DA5146', '#DCB758', '#C0D9C6', '#99C7E1', '#84ABCF', '#6D8DBC', '#5971A9', '#425396', '#303B84', '#242C78', '#1B1F6D', '#1B1F6D', '#111262', '#0a0b5B', '#0a0a5B', '#0c0c5D') plt.contourf(xx, yy, channel12, levels=levels, extend='both', colors=cdict) # plt.contourf(xx, yy, channel12) # 去除边框 plt.axis('off') img_name = '{}{}{}{}{}{}'.format('C012', '_', other_style_time, '_', satellite_type, '.png') save_dir = '{}{}{}{}{}{}'.format(save_dir, satellite_type, '/', yyyyMMdd, '/', channel_number.upper()) if not os.path.exists(save_dir): os.makedirs(save_dir) save_path = '{}{}{}'.format(save_dir, '/', img_name) plt.savefig(save_path, transparent=True, bbox_inches='tight', pad_inches=0) if __name__ == '__main__': file_path = sys.argv[1] geo_range = sys.argv[2] save_path = sys.argv[3] # file_path = 'D:/Z_SATE_C_BAWX_20201217062328_P_FY4A-_AGRI--_N_DISK_1047E_L2-_LSE-_MULT_NOM_20201217060000_20201217061459_012KM_V0001.NC' # color_dict = 'D:/color_dict.txt' # geo_range = '10,54,70,140,0.1' # save_path = 'D:/China.png' # file_path = 'D:\\Data\\Z_SATE_C_BAWX_20210131142647_P_FY4A-_AGRI--_N_REGC_1047E_L1-_FDI-_MULT_NOM_20210131141918_20210131142335_4000M_V0001.HDF' # geo_range = '10,54,70,140,0.1' # save_path = 'D:/Data/satellite_parse/' create_img(file_path, geo_range, save_path) ``` #### File: python/statellite/fy4a.py ```python import netCDF4 as nc import numpy as np from projection import latlon2linecolumn # 各分辨率文件包含的通道号 CONTENTS = {'0500M': ('Channel02',), '1000M': ('Channel01', 'Channel02', 'Channel03'), '2000M': tuple([f'Channel{x:02d}' for x in range(1, 8)]), '4000M': tuple([f'Channel{x:02d}' for x in range(1, 15)])} # 各分辨率行列数 SIZES = {'0500M': 21984, '1000M': 10992, '2000M': 5496, '4000M': 2748} class FY4A_AGRI_L1(object): """ FY4A(AGRI一级数据)类 """ def __init__(self, l1name): """ 获得L1数据hdf5文件对象、记录读取状态 """ # 解析得到数据集 self.dataset = nc.Dataset(l1name, 'r') # 得到空间分辨率 self.resolution = l1name[-15:-10] # 得到需要的通道号 self.channels = {x: None for x in CONTENTS[self.resolution]} self.line_begin = self.dataset.getncattr('Begin Line Number') self.line_end = self.dataset.getncattr('End Line Number') # geo_range与line和column同步并对应 self.geo_range = None self.line = None self.column = None def __del__(self): """ 确保关闭L1数据hdf5文件 """ self.dataset.close() def extract(self, channelname, geo_range=None): """ 最邻近插值提取 line:行号 column:列号 channelname:要提取的通道名(如'Channel01') 返回字典 暂时没有处理缺测值(异常) REGC超出范围未解决 """ NOMChannelname = 'NOM' + channelname CALChannelname = 'CAL' + channelname # 若geo_range没有指定,则读取整幅图像,不定标 if geo_range is None: channel = self.dataset[NOMChannelname][()] self.channels[channelname] = channel return None geo_range = eval(geo_range) if self.geo_range != geo_range: self.geo_range = geo_range # 先乘1000取整是为了防止浮点数的精度误差累积 lat_S, lat_N, lon_W, lon_E, step = \ [int(1000 * x) for x in geo_range] lat = np.arange(lat_N, lat_S-1, -step) / 1000 lon = np.arange(lon_W, lon_E+1, step) / 1000 lon_mesh, lat_mesh = np.meshgrid(lon, lat) # 求geo_range对应的标称全圆盘行列号 line, column = latlon2linecolumn(lat_mesh, lon_mesh, self.resolution) self.line = np.rint(line).astype(np.uint16) - self.line_begin self.column = np.rint(column).astype(np.uint16) # DISK全圆盘数据和REGC中国区域数据区别在起始行号和终止行号 channel = \ self.dataset[NOMChannelname][()][self.line, self.column] # 定标表 CALChannel = self.dataset[CALChannelname][()].astype(np.float32) if NOMChannelname != 'NOMChannel07': CALChannel = np.append(CALChannel, np.nan) channel[channel >= 65534] = 4096 else: CALChannel[65535] = np.nan self.channels[channelname] = CALChannel[channel] # # 演示导出指定范围数据到一个.nc文件 # if __name__ == '__main__': # from os import listdir # from os.path import join # from datetime import datetime # from netCDF4 import date2num, Dataset as ncDataset # from matplotlib import pyplot as plt # h5path = r'..\data' # FY-4A一级数据所在路径 # ncname = r'..\data\test.nc' # h5list = [join(h5path, x) for x in listdir(h5path) # if '4000M' in x and 'FDI' in x] # geo_range = '10, 54, 70, 140, 0.05' # lat_S, lat_N, lon_W, lon_E, step = eval(geo_range) # lat = np.arange(lat_N, lat_S-0.01, -step) # lon = np.arange(lon_W, lon_E+0.01, step) # channelnames = ('Channel12',) # 测试数据Channel02有问题 # # 创建nc文件 # ncfile = ncDataset(ncname, 'w', format='NETCDF4') # ncfile.createDimension('lat', len(lat)) # ncfile.createDimension('lon', len(lon)) # ncfile.createDimension('time') # 不限长 # nclat = ncfile.createVariable('lat', 'f4', ('lat',)) # nclon = ncfile.createVariable('lon', 'f4', ('lon',)) # nctime = ncfile.createVariable('time', 'f8', ('time',)) # nctime.units = 'minutes since 0001-01-01 00:00:00.0' # t = 0 # for channelname in channelnames: # ncfile.createVariable(channelname, 'f4', ('time', 'lat', 'lon')) # ncfile.set_auto_mask(False) # # 向nc文件中写入 # nclat[:] = lat # nclon[:] = lon # lon, lat = np.meshgrid(lon, lat) # for l1name in h5list: # fy4a_h5 = FY4A_H5(l1name, channelnames) # print('FY4A_H5实例化成功') # for channelname in channelnames: # fy4a_h5.extract(channelname, geo_range) # ncfile[channelname][t, :, :] = fy4a_h5.channels[channelname] # print(channelname + '读取成功') # time = datetime.strptime(l1name[-45: -33], '%Y%m%d%H%M%S') # nctime[t] = date2num(time, nctime.units) # ncfile.sync() # 手动写入硬盘 # t += 1 # plt.figure(l1name[-45: -31]) # plt.imshow(fy4a_h5.channels['Channel12'], cmap='gray_r') # plt.show() # ncfile.close() ``` #### File: resources/python/word2pdf.py ```python import sys from win32com.client import Dispatch wdFormatPDF = 17 def doc2pdf(input_files): global word try: word = Dispatch('KWPS.application') except: word = Dispatch('WORD.application') finally: doc = word.Documents.Open(input_files) if input_files.endswith(".docx"): doc.SaveAs(input_files.replace(".docx", ".pdf"), FileFormat=wdFormatPDF) elif input_files.endswith(".doc"): doc.SaveAs(input_files.replace(".doc", ".pdf"), FileFormat=wdFormatPDF) doc.Close() word.Quit() if __name__ == '__main__': input_file = sys.argv[1] doc2pdf(input_file) ```
{ "source": "jovial/arcus-slurm-on-openstack", "score": 2 }
#### File: modules/ironic_compute/baremetal.py ```python from __future__ import print_function import sys, json, pprint import openstack import pprint from ClusterShell import NodeSet def get_config(): config = {} if len(sys.argv) == 1: # using from terraform config = json.load(sys.stdin) config["debug"] = False else: config = dict( zip(('os_cloud', 'hostname_pattern', 'cluster_name'), sys.argv[1:])) config["debug"] = True pprint.pprint(config) return config def get_hostnames(host_pattern): return list(NodeSet.NodeSet(host_pattern)) def find_baremetal_nodes(conn, hostnames): found = [] nodes = conn.baremetal.nodes() for node in nodes: if node.name in hostnames: found.append({ "uuid": node["id"], "name": node["name"], "instance_uuid": node["instance_id"], }) if len(found) != len(hostnames): print(found) print(hostnames) raise Exception("Unable to find all baremetal nodes") return found def print_result(nodes): result = {} for node in nodes: result[node["name"]] = node["uuid"] print(json.dumps(result)) config = get_config() conn = openstack.connection.from_config(cloud=config["os_cloud"]) found = find_baremetal_nodes(conn, get_hostnames(config["hostname_pattern"])) print_result(found) ```
{ "source": "jovial/arcus-terraform-idrac", "score": 3 }
#### File: arcus-terraform-idrac/ansible_enroll/configuration-filter.py ```python import json import argparse import fileinput import re import sys def filter_attr(component, regexps): if not regexps: return component if "Attributes" not in component: # no attributes to filter return component attrs = component["Attributes"] component["Attributes"] = [x for x in attrs if re.match("|".join(regexps), x["Name"])] return component if __name__ == "__main__": parser = argparse.ArgumentParser(description='Filter system configuration') parser.add_argument('--attr-filter', metavar='', nargs='*', action="append", help='Filter attributes', default=[]) parser.add_argument('--component-filter', metavar='', nargs='*', action="append", help='Filter components', default=[]) parser.add_argument('--input', metavar='', nargs='?', help='input file', default=[]) args = parser.parse_args() # flatten component_filters = sum(args.component_filter, []) if len(component_filters) != len(args.attr_filter): print("Missing attr-filter for a component", sys.stderr) sys.exit(1) buffer = [] for line in fileinput.input(args.input): buffer.append(line) content = json.loads("\n".join(buffer)) components = content["SystemConfiguration"]["Components"] filtered = [] for component in components: for i, regex in enumerate(component_filters): if re.match(regex, component["FQDD"]): filtered.append(filter_attr(component, args.attr_filter[i])) # [filter_attr(x, args.attr_filter[i]) for i, x in enumerate(components) if not component_filters or re.match("|".join(component_filters), x["FQDD"])] # filter_attr returns none on no attributes content["SystemConfiguration"]["Components"] = [x for x in filtered if x] print(json.dumps(content)) ```
{ "source": "jovialio/datumaro", "score": 2 }
#### File: datumaro/components/environment.py ```python from functools import partial from typing import ( Callable, Dict, Generic, Iterable, Iterator, Optional, Type, TypeVar, ) import glob import importlib import inspect import logging as log import os.path as osp from datumaro.components.cli_plugin import CliPlugin, plugin_types from datumaro.components.format_detection import detect_dataset_format from datumaro.util.os_util import import_foreign_module, split_path T = TypeVar('T') class Registry(Generic[T]): def __init__(self): self.items: Dict[str, T] = {} def register(self, name: str, value: T) -> T: self.items[name] = value return value def unregister(self, name: str) -> Optional[T]: return self.items.pop(name, None) def get(self, key: str): """Returns a class or a factory function""" return self.items[key] def __getitem__(self, key: str) -> T: return self.get(key) def __contains__(self, key) -> bool: return key in self.items def __iter__(self) -> Iterator[T]: return iter(self.items) class PluginRegistry(Registry[Type[CliPlugin]]): def __init__(self, filter: Callable[[Type[CliPlugin]], bool] = None): \ #pylint: disable=redefined-builtin super().__init__() self.filter = filter def batch_register(self, values: Iterable[CliPlugin]): for v in values: if self.filter and not self.filter(v): continue self.register(v.NAME, v) class Environment: _builtin_plugins = None def __init__(self): def _filter(accept, skip=None): accept = (accept, ) if inspect.isclass(accept) else tuple(accept) skip = {skip} if inspect.isclass(skip) else set(skip or []) skip = tuple(skip | set(accept)) return lambda t: issubclass(t, accept) and t not in skip from datumaro.components.converter import Converter from datumaro.components.extractor import ( Extractor, Importer, ItemTransform, SourceExtractor, Transform, ) from datumaro.components.launcher import Launcher from datumaro.components.validator import Validator self._extractors = PluginRegistry(_filter(Extractor, skip=SourceExtractor)) self._importers = PluginRegistry(_filter(Importer)) self._launchers = PluginRegistry(_filter(Launcher)) self._converters = PluginRegistry(_filter(Converter)) self._transforms = PluginRegistry(_filter(Transform, skip=ItemTransform)) self._validators = PluginRegistry(_filter(Validator)) self._builtins_initialized = False def _get_plugin_registry(self, name): if not self._builtins_initialized: self._builtins_initialized = True self._register_builtin_plugins() return getattr(self, name) @property def extractors(self) -> PluginRegistry: return self._get_plugin_registry('_extractors') @property def importers(self) -> PluginRegistry: return self._get_plugin_registry('_importers') @property def launchers(self) -> PluginRegistry: return self._get_plugin_registry('_launchers') @property def converters(self) -> PluginRegistry: return self._get_plugin_registry('_converters') @property def transforms(self) -> PluginRegistry: return self._get_plugin_registry('_transforms') @property def validators(self) -> PluginRegistry: return self._get_plugin_registry('_validators') @staticmethod def _find_plugins(plugins_dir): plugins = [] for pattern in ('*.py', '*/*.py'): for path in glob.glob( osp.join(glob.escape(plugins_dir), pattern)): if not osp.isfile(path): continue path_rel = osp.relpath(path, plugins_dir) name_parts = split_path(osp.splitext(path_rel)[0]) # a module with a dot in the name won't load correctly if any('.' in part for part in name_parts): log.warning( "Python file '%s' in directory '%s' can't be imported " "due to a dot in the name; skipping.", path_rel, plugins_dir) continue plugins.append('.'.join(name_parts)) return plugins @classmethod def _get_plugin_exports(cls, module, types): exports = [] if hasattr(module, 'exports'): exports = module.exports else: for symbol in dir(module): if symbol.startswith('_'): continue exports.append(getattr(module, symbol)) exports = [s for s in exports if inspect.isclass(s) and issubclass(s, types) and not s in types] return exports @classmethod def _load_plugins(cls, module_names, *, importer, types=None): types = tuple(types or plugin_types()) all_exports = [] for module_name in module_names: try: module = importer(module_name) exports = cls._get_plugin_exports(module, types) except Exception as e: module_search_error = ModuleNotFoundError message = ["Failed to import module '%s': %s", module_name, e] if isinstance(e, module_search_error): log.debug(*message) else: log.warning(*message) continue log.debug("Imported the following symbols from %s: %s" % \ ( module_name, ', '.join(s.__name__ for s in exports) ) ) all_exports.extend(exports) return all_exports @classmethod def _load_builtin_plugins(cls): if cls._builtin_plugins is None: import datumaro.plugins plugins_dir = osp.dirname(datumaro.plugins.__file__) module_names = [datumaro.plugins.__name__ + '.' + name for name in cls._find_plugins(plugins_dir)] cls._builtin_plugins = cls._load_plugins(module_names, importer=importlib.import_module) return cls._builtin_plugins def load_plugins(self, plugins_dir): module_names = self._find_plugins(plugins_dir) plugins = self._load_plugins(module_names, importer=partial(import_foreign_module, path=plugins_dir)) self._register_plugins(plugins) def _register_builtin_plugins(self): self._register_plugins(self._load_builtin_plugins()) def _register_plugins(self, plugins): self.extractors.batch_register(plugins) self.importers.batch_register(plugins) self.launchers.batch_register(plugins) self.converters.batch_register(plugins) self.transforms.batch_register(plugins) self.validators.batch_register(plugins) def make_extractor(self, name, *args, **kwargs): return self.extractors.get(name)(*args, **kwargs) def make_importer(self, name, *args, **kwargs): return self.importers.get(name)(*args, **kwargs) def make_launcher(self, name, *args, **kwargs): return self.launchers.get(name)(*args, **kwargs) def make_converter(self, name, *args, **kwargs): result = self.converters.get(name) if inspect.isclass(result): result = result.convert return partial(result, *args, **kwargs) def make_transform(self, name, *args, **kwargs): return partial(self.transforms.get(name), *args, **kwargs) def is_format_known(self, name): return name in self.importers or name in self.extractors def detect_dataset(self, path): return detect_dataset_format( ((format_name, importer.detect) for format_name, importer in self.importers.items.items()), path, ) ``` #### File: datumaro/components/media.py ```python from __future__ import annotations from typing import Callable, Iterable, Iterator, Optional, Tuple, Union import os import os.path as osp import shutil import weakref import cv2 import numpy as np from datumaro.util.image import ( _image_loading_errors, decode_image, lazy_image, save_image, ) class MediaElement: def __init__(self, path: str) -> None: self._path = path @property def path(self) -> str: """Path to the media file""" return self._path @property def ext(self) -> str: """Media file extension (with the leading dot)""" return osp.splitext(osp.basename(self.path))[1] def __eq__(self, other: object) -> bool: # We need to compare exactly with this type if type(other) is not __class__: # pylint: disable=unidiomatic-typecheck return False return self._path == other._path class Image(MediaElement): def __init__(self, data: Union[np.ndarray, Callable[[str], np.ndarray], None] = None, *, path: Optional[str] = None, ext: Optional[str] = None, size: Optional[Tuple[int, int]] = None) -> None: """ Creates an image. Any combination of the `data`, `path` and `size` is possible, but at least one of these arguments must be provided. The `ext` parameter cannot be used as a single argument for construction. Args: data - Image pixels or a function to retrieve them. The expected image shape is (H, W [, C]). If a function is provided, it must accept image path as the first argument. path - Image path ext - Image extension. Cannot be used together with `path`. It can be used for saving with a custom extension - in that case, the image need to have the `data` and `ext` fields defined. size - A pair (H, W), which represents image size. """ assert size is None or len(size) == 2, size if size is not None: assert len(size) == 2 and 0 < size[0] and 0 < size[1], size size = tuple(map(int, size)) self._size = size # (H, W) if path is None: path = '' elif path: path = path.replace('\\', '/') self._path = path if ext: assert not path, "Can't specify both 'path' and 'ext' for image" if not ext.startswith('.'): ext = '.' + ext ext = ext.lower() else: ext = None self._ext = ext if not isinstance(data, np.ndarray): assert path or callable(data) or size, "Image can not be empty" assert data is None or callable(data) if data or path and osp.isfile(path): data = lazy_image(path, loader=data) self._data = data @property def data(self) -> np.ndarray: """Image data in BGR HWC [0; 255] (float) format""" if callable(self._data): data = self._data() else: data = self._data if self._size is None and data is not None: self._size = tuple(map(int, data.shape[:2])) return data @property def has_data(self) -> bool: return self._data is not None @property def has_size(self) -> bool: """Indicates that size info is cached and won't require image loading""" return self._size is not None or isinstance(self._data, np.ndarray) @property def size(self) -> Optional[Tuple[int, int]]: """Returns (H, W)""" if self._size is None: try: data = self.data except _image_loading_errors: return None if data is not None: self._size = tuple(map(int, data.shape[:2])) return self._size @property def ext(self) -> str: """Media file extension""" if self._ext is not None: return self._ext else: return osp.splitext(osp.basename(self.path))[1] def __eq__(self, other): if not isinstance(other, __class__): return False return \ (np.array_equal(self.size, other.size)) and \ (self.has_data == other.has_data) and \ (self.has_data and np.array_equal(self.data, other.data) or \ not self.has_data) def save(self, path): cur_path = osp.abspath(self.path) path = osp.abspath(path) cur_ext = self.ext.lower() new_ext = osp.splitext(osp.basename(path))[1].lower() os.makedirs(osp.dirname(path), exist_ok=True) if cur_ext == new_ext and osp.isfile(cur_path): if cur_path != path: shutil.copyfile(cur_path, path) else: save_image(path, self.data) class ByteImage(Image): _FORMAT_MAGICS = ( (b'\x89PNG\r\n\x1a\n', '.png'), (b'\xff\xd8\xff', '.jpg'), (b'BM', '.bmp'), ) def __init__(self, data: Union[bytes, Callable[[str], bytes], None] = None, *, path: Optional[str] = None, ext: Optional[str] = None, size: Optional[Tuple[int, int]] = None): if not isinstance(data, bytes): assert path or callable(data), "Image can not be empty" assert data is None or callable(data) if path and osp.isfile(path) or data: data = lazy_image(path, loader=data) self._bytes_data = data if ext is None and path is None and isinstance(data, bytes): ext = self._guess_ext(data) super().__init__(path=path, ext=ext, size=size, data=lambda _: decode_image(self.get_bytes())) if data is None: # We don't expect decoder to produce images from nothing, # otherwise using this class makes no sense. We undefine # data to avoid using default image loader for loading binaries # from the path, when no data is provided. self._data = None @classmethod def _guess_ext(cls, data: bytes) -> Optional[str]: return next( (ext for magic, ext in cls._FORMAT_MAGICS if data.startswith(magic)), None, ) def get_bytes(self): if callable(self._bytes_data): return self._bytes_data() return self._bytes_data def save(self, path): cur_path = osp.abspath(self.path) path = osp.abspath(path) cur_ext = self.ext.lower() new_ext = osp.splitext(osp.basename(path))[1].lower() os.makedirs(osp.dirname(path), exist_ok=True) if cur_ext == new_ext and osp.isfile(cur_path): if cur_path != path: shutil.copyfile(cur_path, path) elif cur_ext == new_ext: with open(path, 'wb') as f: f.write(self.get_bytes()) else: save_image(path, self.data) class VideoFrame(Image): def __init__(self, video: Video, index: int): self._video = video self._index = index super().__init__(lambda _: self._video.get_frame_data(self._index)) @property def size(self) -> Tuple[int, int]: return self._video.frame_size @property def index(self) -> int: return self._index @property def video(self) -> Video: return self._video class _VideoFrameIterator(Iterator[VideoFrame]): """ Provides sequential access to the video frames. """ _video: Video _iterator: Iterator[VideoFrame] _pos: int _current_frame_data: Optional[np.ndarray] def __init__(self, video: Video): self._video = video self._reset() def _reset(self): self._video._reset_reader() self._iterator = self._decode(self._video._get_reader()) self._pos = -1 self._current_frame_data = None def _decode(self, cap) -> Iterator[VideoFrame]: """ Decodes video frames using opencv """ self._pos = -1 success, frame = cap.read() while success: self._pos += 1 if self._video._includes_frame(self._pos): self._current_frame_data = frame.astype(float) yield self._make_frame(index=self._pos) success, frame = cap.read() if self._video._frame_count is None: self._video._frame_count = self._pos + 1 def _make_frame(self, index) -> VideoFrame: return VideoFrame(self._video, index=index) def __next__(self): return next(self._iterator) def __getitem__(self, idx: int) -> VideoFrame: if not self._video._includes_frame(idx): raise IndexError(f"Video doesn't contain frame #{idx}.") return self._navigate_to(idx) def get_frame_data(self, idx: int) -> np.ndarray: self._navigate_to(idx) return self._current_frame_data def _navigate_to(self, idx: int) -> VideoFrame: """ Iterates over frames to the required position. """ if idx < 0: raise IndexError() if idx < self._pos: self._reset() if self._pos < idx: try: while self._pos < idx: v = self.__next__() except StopIteration as e: raise IndexError() from e else: v = self._make_frame(index=self._pos) return v class Video(MediaElement, Iterable[VideoFrame]): """ Provides random access to the video frames. """ def __init__(self, path: str, *, step: int = 1, start_frame: int = 0, end_frame: Optional[int] = None) -> None: super().__init__(path) if end_frame: assert start_frame < end_frame assert 0 < step self._step = step self._start_frame = start_frame self._end_frame = end_frame or None self._reader = None self._iterator: Optional[_VideoFrameIterator] = None self._frame_size: Optional[Tuple[int, int]] = None # We don't provide frame count unless we have a reliable source of # this information. # - Not all videos provide length / duration metainfo # - We can get an estimation based on metadata, but it # can be invalid or inaccurate due to variable frame rate # or fractional values rounded up. Relying on the value will give # errors during requesting frames. # https://stackoverflow.com/a/47796468 self._frame_count = None self._length = None from .media_manager import MediaManager MediaManager.get_instance().push(weakref.ref(self), self) def close(self): self._iterator = None if self._reader is not None: self._reader.release() self._reader = None def __getitem__(self, idx: int) -> VideoFrame: if not self._includes_frame(idx): raise IndexError(f"Video doesn't contain frame #{idx}.") return self._get_iterator()[idx] def get_frame_data(self, idx: int) -> VideoFrame: if not self._includes_frame(idx): raise IndexError(f"Video doesn't contain frame #{idx}.") return self._get_iterator().get_frame_data(idx) def __iter__(self) -> Iterator[VideoFrame]: """ Iterates over frames lazily, if possible. """ if self._frame_count is not None: # Decoding is not necessary to get frame pointers # However, it can be inacurrate end_frame = self._get_end_frame() for index in range(self._start_frame, end_frame, self._step): yield VideoFrame(video=self, index=index) else: # Need to decode to iterate over frames yield from self._get_iterator() @property def length(self) -> Optional[int]: """ Returns frame count, if video provides such information. Note that not all videos provide length / duration metainfo, so the result may be undefined. Also note, that information may be inaccurate because of variable FPS in video or incorrect metainfo. The count is only guaranteed to be valid after video is completely read once. The count is affected by the frame filtering options of the object, i.e. start frame, end frame and frame step. """ if self._length is None: end_frame = self._get_end_frame() length = None if end_frame is not None: length = (end_frame - self._start_frame) // self._step assert 0 < length self._length = length return self._length @property def frame_size(self) -> Tuple[int, int]: """Returns (H, W)""" if self._frame_size is None: self._frame_size = self._get_frame_size() return self._frame_size def _get_frame_size(self) -> Tuple[int, int]: cap = self._get_reader() w = cap.get(cv2.CAP_PROP_FRAME_WIDTH) h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) if h and w: frame_size = (int(h), int(w)) else: image = next(self._get_iterator()).data frame_size = image.shape[0:2] return frame_size def _get_end_frame(self): if self._end_frame is not None and self._frame_count is not None: end_frame = min(self._end_frame, self._frame_count) else: end_frame = self._end_frame or self._frame_count return end_frame def _includes_frame(self, i): end_frame = self._get_end_frame() if self._start_frame <= i: if (i - self._start_frame) % self._step == 0: if end_frame is None or i < end_frame: return True return False def _get_iterator(self): if self._iterator is None: self._iterator = _VideoFrameIterator(self) return self._iterator def _get_reader(self): if self._reader is None: self._reset_reader() return self._reader def _reset_reader(self): if self._reader is not None: self._reader.release() self._reader = cv2.VideoCapture(self._path) assert self._reader.isOpened() def __eq__(self, other: object) -> bool: if not isinstance(other, __class__): return False return self.path == other.path and \ self._start_frame == other._start_frame and \ self._step == other._step and \ self._end_frame == other._end_frame def __hash__(self): # Required for caching return hash((self._path, self._step, self._start_frame, self._end_frame)) ``` #### File: plugins/datumaro_format/converter.py ```python import os import os.path as osp import shutil import numpy as np import pycocotools.mask as mask_utils from datumaro.components.annotation import ( Annotation, Bbox, Caption, Cuboid3d, Label, LabelCategories, Mask, MaskCategories, Points, PointsCategories, Polygon, PolyLine, RleMask, _Shape, ) from datumaro.components.converter import Converter from datumaro.components.dataset import ItemStatus from datumaro.components.extractor import DEFAULT_SUBSET_NAME, DatasetItem from datumaro.util import cast, dump_json_file from .format import DatumaroPath class _SubsetWriter: def __init__(self, context): self._context = context self._data = { 'info': {}, 'categories': {}, 'items': [], } @property def categories(self): return self._data['categories'] @property def items(self): return self._data['items'] def is_empty(self): return not self.items def add_item(self, item): annotations = [] item_desc = { 'id': item.id, 'annotations': annotations, } if item.attributes: item_desc['attr'] = item.attributes if item.has_image: path = item.image.path if self._context._save_images: path = self._context._make_image_filename(item) self._context._save_image(item, osp.join(self._context._images_dir, item.subset, path)) item_desc['image'] = { 'path': path, } if item.image.has_size: # avoid occasional loading item_desc['image']['size'] = item.image.size if item.has_point_cloud: path = item.point_cloud if self._context._save_images: path = self._context._make_pcd_filename(item) self._context._save_point_cloud(item, osp.join(self._context._pcd_dir, item.subset, path)) item_desc['point_cloud'] = { 'path': path } if item.related_images: images = sorted(item.related_images, key=lambda i: i.path) if self._context._save_images: related_images = [] for i, img in enumerate(images): ri_desc = {} # Images can have completely the same names or don't have # them at all, so we just rename them ri_desc['path'] = \ f'image_{i}{self._context._find_image_ext(img)}' if img.has_data: img.save(osp.join(self._context._related_images_dir, item.subset, item.id, ri_desc['path'])) if img.has_size: ri_desc['size'] = img.size related_images.append(ri_desc) else: related_images = [{'path': img.path} for img in images] item_desc['related_images'] = related_images self.items.append(item_desc) for ann in item.annotations: if isinstance(ann, Label): converted_ann = self._convert_label_object(ann) elif isinstance(ann, Mask): converted_ann = self._convert_mask_object(ann) elif isinstance(ann, Points): converted_ann = self._convert_points_object(ann) elif isinstance(ann, PolyLine): converted_ann = self._convert_polyline_object(ann) elif isinstance(ann, Polygon): converted_ann = self._convert_polygon_object(ann) elif isinstance(ann, Bbox): converted_ann = self._convert_bbox_object(ann) elif isinstance(ann, Caption): converted_ann = self._convert_caption_object(ann) elif isinstance(ann, Cuboid3d): converted_ann = self._convert_cuboid_3d_object(ann) else: raise NotImplementedError() annotations.append(converted_ann) def add_categories(self, categories): for ann_type, desc in categories.items(): if isinstance(desc, LabelCategories): converted_desc = self._convert_label_categories(desc) elif isinstance(desc, MaskCategories): converted_desc = self._convert_mask_categories(desc) elif isinstance(desc, PointsCategories): converted_desc = self._convert_points_categories(desc) else: raise NotImplementedError() self.categories[ann_type.name] = converted_desc def write(self, ann_file): dump_json_file(ann_file, self._data) def _convert_annotation(self, obj): assert isinstance(obj, Annotation) ann_json = { 'id': cast(obj.id, int), 'type': cast(obj.type.name, str), 'attributes': obj.attributes, 'group': cast(obj.group, int, 0), } return ann_json def _convert_label_object(self, obj): converted = self._convert_annotation(obj) converted.update({ 'label_id': cast(obj.label, int), }) return converted def _convert_mask_object(self, obj): converted = self._convert_annotation(obj) if isinstance(obj, RleMask): rle = obj.rle else: rle = mask_utils.encode( np.require(obj.image, dtype=np.uint8, requirements='F')) if isinstance(rle['counts'], str): counts = rle['counts'] else: counts = rle['counts'].decode('ascii') converted.update({ 'label_id': cast(obj.label, int), 'rle': { # serialize as compressed COCO mask 'counts': counts, 'size': list(int(c) for c in rle['size']), }, 'z_order': obj.z_order, }) return converted def _convert_shape_object(self, obj): assert isinstance(obj, _Shape) converted = self._convert_annotation(obj) converted.update({ 'label_id': cast(obj.label, int), 'points': [float(p) for p in obj.points], 'z_order': obj.z_order, }) return converted def _convert_polyline_object(self, obj): return self._convert_shape_object(obj) def _convert_polygon_object(self, obj): return self._convert_shape_object(obj) def _convert_bbox_object(self, obj): converted = self._convert_shape_object(obj) converted.pop('points', None) converted['bbox'] = [float(p) for p in obj.get_bbox()] return converted def _convert_points_object(self, obj): converted = self._convert_shape_object(obj) converted.update({ 'visibility': [int(v.value) for v in obj.visibility], }) return converted def _convert_caption_object(self, obj): converted = self._convert_annotation(obj) converted.update({ 'caption': cast(obj.caption, str), }) return converted def _convert_cuboid_3d_object(self, obj): converted = self._convert_annotation(obj) converted.update({ 'label_id': cast(obj.label, int), 'position': [float(p) for p in obj.position], 'rotation': [float(p) for p in obj.rotation], 'scale': [float(p) for p in obj.scale] }) return converted def _convert_attribute_categories(self, attributes): return sorted(attributes) def _convert_label_categories(self, obj): converted = { 'labels': [], 'attributes': self._convert_attribute_categories(obj.attributes), } for label in obj.items: converted['labels'].append({ 'name': cast(label.name, str), 'parent': cast(label.parent, str), 'attributes': self._convert_attribute_categories(label.attributes), }) return converted def _convert_mask_categories(self, obj): converted = { 'colormap': [], } for label_id, color in obj.colormap.items(): converted['colormap'].append({ 'label_id': int(label_id), 'r': int(color[0]), 'g': int(color[1]), 'b': int(color[2]), }) return converted def _convert_points_categories(self, obj): converted = { 'items': [], } for label_id, item in obj.items.items(): converted['items'].append({ 'label_id': int(label_id), 'labels': [cast(label, str) for label in item.labels], 'joints': [list(map(int, j)) for j in item.joints], }) return converted class DatumaroConverter(Converter): DEFAULT_IMAGE_EXT = DatumaroPath.IMAGE_EXT def apply(self): os.makedirs(self._save_dir, exist_ok=True) images_dir = osp.join(self._save_dir, DatumaroPath.IMAGES_DIR) os.makedirs(images_dir, exist_ok=True) self._images_dir = images_dir annotations_dir = osp.join(self._save_dir, DatumaroPath.ANNOTATIONS_DIR) os.makedirs(annotations_dir, exist_ok=True) self._annotations_dir = annotations_dir self._pcd_dir = osp.join(self._save_dir, DatumaroPath.PCD_DIR) self._related_images_dir = osp.join(self._save_dir, DatumaroPath.RELATED_IMAGES_DIR) writers = {s: _SubsetWriter(self) for s in self._extractor.subsets()} for writer in writers.values(): writer.add_categories(self._extractor.categories()) for item in self._extractor: subset = item.subset or DEFAULT_SUBSET_NAME writers[subset].add_item(item) for subset, writer in writers.items(): ann_file = osp.join(self._annotations_dir, '%s.json' % subset) if self._patch and subset in self._patch.updated_subsets and \ writer.is_empty(): if osp.isfile(ann_file): # Remove subsets that became empty os.remove(ann_file) continue writer.write(ann_file) @classmethod def patch(cls, dataset, patch, save_dir, **kwargs): for subset in patch.updated_subsets: conv = cls(dataset.get_subset(subset), save_dir=save_dir, **kwargs) conv._patch = patch conv.apply() conv = cls(dataset, save_dir=save_dir, **kwargs) for (item_id, subset), status in patch.updated_items.items(): if status != ItemStatus.removed: item = patch.data.get(item_id, subset) else: item = DatasetItem(item_id, subset=subset) if not (status == ItemStatus.removed or \ not item.has_image and not item.has_point_cloud): continue image_path = osp.join(save_dir, DatumaroPath.IMAGES_DIR, item.subset, conv._make_image_filename(item)) if osp.isfile(image_path): os.unlink(image_path) pcd_path = osp.join(save_dir, DatumaroPath.PCD_DIR, item.subset, conv._make_pcd_filename(item)) if osp.isfile(pcd_path): os.unlink(pcd_path) related_images_path = osp.join(save_dir, DatumaroPath.RELATED_IMAGES_DIR, item.subset, item.id) if osp.isdir(related_images_path): shutil.rmtree(related_images_path) ```
{ "source": "jovialio/visualDet3D", "score": 2 }
#### File: visualDet3D/scripts/imdb_precompute_test.py ```python from copy import deepcopy import torch import cv2 import time import pickle import os import numpy as np import ctypes from _path_init import * from visualDet3D.utils.timer import Timer from visualDet3D.utils.utils import cfg_from_file from visualDet3D.data.kitti.kittidata import KittiData def read_one_split(cfg, index_names, data_root_dir, output_dict, data_split='training', time_display_inter=100): N = len(index_names) frames = [None] * N print("start reading {} data".format(data_split)) timer = Timer() for i, index_name in enumerate(index_names): # read data with dataloader api data_frame = KittiData(data_root_dir, index_name, output_dict) calib, _, _, _ = data_frame.read_data() # store the list of kittiObjet and kittiCalib data_frame.calib = calib frames[i] = data_frame if (i+1) % time_display_inter == 0: avg_time = timer.compute_avg_time(i+1) eta = timer.compute_eta(i+1, N) print("{} iter:{}/{}, avg-time:{}, eta:{}".format( data_split, i+1, N, avg_time, eta), end='\r') save_dir = os.path.join(cfg.path.preprocessed_path, data_split) if not os.path.isdir(save_dir): os.makedirs(save_dir) pkl_file = os.path.join(save_dir, 'imdb.pkl') pickle.dump(frames, open(pkl_file, 'wb')) print("{} split finished precomputing".format(data_split)) def main(config="config/config.py"): cfg = cfg_from_file(config) torch.cuda.set_device(cfg.trainer.gpu) time_display_inter = 100 # define the inverval displaying time consumed in loop data_root_dir = cfg.path.test_path # the base directory of training dataset calib_path = os.path.join(data_root_dir, 'calib') list_calib = os.listdir(calib_path) N = len(list_calib) # no need for image, could be modified for extended use output_dict = { "calib": True, "image": False, "label": False, "velodyne": False, } num_test_file = N test_names = ["%06d" % i for i in range(num_test_file)] read_one_split(cfg, test_names, data_root_dir, output_dict, 'test', time_display_inter) print("Preprocessing finished") if __name__ == '__main__': from fire import Fire Fire(main) ``` #### File: kitti/dataset/depth_mono_dataset.py ```python from __future__ import print_function, division from multiprocessing import Manager from torch.utils.data import Dataset, DataLoader import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data from visualDet3D.data.kitti.utils import read_image, read_pc_from_bin, read_depth from visualDet3D.data.pipeline import build_augmentator from visualDet3D.networks.utils.registry import DATASET_DICT from PIL import Image import os import pickle import numpy as np from copy import deepcopy import sys from tqdm import tqdm from matplotlib import pyplot as plt ros_py_path = '/opt/ros/kinetic/lib/python2.7/dist-packages' import skimage.measure if sys.version_info > (3, 0) and ros_py_path in sys.path: #Python 3, compatible with a naive ros environment sys.path.remove(ros_py_path) import cv2 sys.path.append(ros_py_path) else: #Python 2 import cv2 def read_K_from_depth_prediction(file): with open(file, 'r') as f: line = f.readlines()[0] data = line.split(" ") K = np.array([float(data[i]) for i in range(len(data[0:9]))]) return np.reshape(K, (3, 3)) def read_P23_from_sequence(file): """ read P2 and P3 from a sequence file calib_cam_to_cam.txt """ P2 = None P3 = None with open(file, 'r') as f: for line in f.readlines(): if line.startswith("P_rect_02"): data = line.split(" ") P2 = np.array([float(x) for x in data[1:13]]) P2 = np.reshape(P2, [3, 4]) if line.startswith("P_rect_03"): data = line.split(" ") P3 = np.array([float(x) for x in data[1:13]]) P3 = np.reshape(P3, [3, 4]) assert P2 is not None, f"can not find P2 in file {file}" assert P3 is not None, f"can not find P3 in file {file}" return P2, P3 def read_T_from_sequence(file): """ read T from a sequence file calib_velo_to_cam.txt """ R = None T = None with open(file, 'r') as f: for line in f.readlines(): if line.startswith("R:"): data = line.split(" ") R = np.array([float(x) for x in data[1:10]]) R = np.reshape(R, [3, 3]) if line.startswith("T:"): data = line.split(" ") T = np.array([float(x) for x in data[1:4]]) T = np.reshape(T, [3, 1]) assert R is not None, "can not find R in file {}".format(file) assert T is not None, "can not find T in file {}".format(file) T_velo2cam = np.eye(4) T_velo2cam[0:3, 0:3] = R T_velo2cam[0:3, 3:4] = T return T_velo2cam @DATASET_DICT.register_module class KittiDepthMonoDataset(torch.utils.data.Dataset): """Some Information about KittiDataset""" def __init__(self, cfg, split='training'): super(KittiDepthMonoDataset, self).__init__() raw_path = cfg.path.raw_path depth_paths = cfg.path.depth_path if isinstance(cfg.path.depth_path, list) else [cfg.path.depth_path] aug_cfg = cfg.data.augmentation manager = Manager() # multithread manage wrapping for list objects self.is_eval = not split == 'training' self.size = aug_cfg.cropSize #[352, 1216] raw_sequences = {} for date_time in os.listdir(raw_path): sequences = os.listdir(os.path.join(raw_path, date_time)) sequences = [sequence for sequence in sequences if not sequence.endswith(".txt")] P2, P3 = read_P23_from_sequence(os.path.join(raw_path, date_time, "calib_cam_to_cam.txt")) T = read_T_from_sequence (os.path.join(raw_path, date_time, "calib_velo_to_cam.txt")) for sequence in sequences: raw_sequences[sequence] = dict(P2=P2, P3=P3, T_velo2cam=T, date_time=date_time) self.imdb = [] print("Start counting images in depth prediction dataset.") for depth_path in depth_paths: for sequence in tqdm(os.listdir(depth_path)): sequence_gt_path = os.path.join(depth_path, sequence, 'proj_depth', 'groundtruth') P2 = raw_sequences[sequence]['P2'] P3 = raw_sequences[sequence]['P3'] T = raw_sequences[sequence]['T_velo2cam'] left_gt_dir = os.path.join(sequence_gt_path, 'image_02') right_gt_dir = os.path.join(sequence_gt_path, 'image_03') gt_names = set(os.listdir(left_gt_dir)) left_image_dir = os.path.join(raw_path, raw_sequences[sequence]['date_time'], sequence, 'image_02', 'data') right_image_dir = os.path.join(raw_path, raw_sequences[sequence]['date_time'], sequence, 'image_03', 'data') point_cloud_dir = os.path.join(raw_path, raw_sequences[sequence]['date_time'], sequence, 'velodyne_points', 'data') image_names = set(os.listdir(left_image_dir)) intersection = gt_names.intersection(image_names) # names in both instances = [ dict( image_2_file = os.path.join(left_image_dir, name), image_3_file = os.path.join(right_image_dir, name), gt_2_file = os.path.join(left_gt_dir, name), gt_3_file = os.path.join(right_gt_dir, name), P2 = P2.copy(), P3 = P3.copy(), # T_velo2cam = T.copy(), # point_cloud_file = os.path.join(point_cloud_dir, name.replace('.png', '.bin')) ) for name in sorted(intersection) ] self.imdb += instances self.imdb = manager.list(self.imdb) if not self.is_eval: self.transform = build_augmentator(cfg.data.train_augmentation) else: self.transform = build_augmentator(cfg.data.test_augmentation) def __getitem__(self, index): obj = self.imdb[index] # point_cloud = read_pc_from_bin(obj['point_cloud_file'])[..., 0:3] #[-1, 4] # T_velo2cam = obj['T_velo2cam'] if self.is_eval or np.random.rand() < 0.5: # Randomly select left/right image image = read_image(obj['image_2_file']) gt = read_depth(obj['gt_2_file']) P = obj['P2'] else: image = read_image(obj['image_3_file']) gt = read_depth(obj['gt_3_file']) P = obj['P3'] transformed_image, P_new, gt = self.transform(image, p2=P.copy(), image_gt=gt) output_dict = {'K': P_new[0:3, 0:3].copy(), 'image': transformed_image, 'gt': gt, 'original_shape': image.shape} return output_dict def __len__(self): return len(self.imdb) @staticmethod def collate_fn(batch): rgb_images = np.array([item["image"] for item in batch])#[batch, H, W, 3] rgb_images = rgb_images.transpose([0, 3, 1, 2]) Ks = [item["K"] for item in batch] gts = np.stack([item["gt"] for item in batch], axis=0) #[B, H, W] return torch.from_numpy(rgb_images).float(), Ks, torch.from_numpy(gts).float() @DATASET_DICT.register_module class KittiDepthMonoValTestDataset(torch.utils.data.Dataset): """Some Information about KittiDataset""" def __init__(self, cfg, split='validation'): super(KittiDepthMonoValTestDataset, self).__init__() base_path = cfg.path[split + "_path"] self.transform = build_augmentator(cfg.data.test_augmentation) self.imdb = [] image_dir = os.path.join(base_path, "image") intrinsic_dir = os.path.join(base_path, "intrinsics") image_list = os.listdir(image_dir) image_list.sort() K_list = os.listdir(intrinsic_dir) K_list.sort() self.imdb = [ dict( image_file = os.path.join(image_dir, image_list[i]), K = read_K_from_depth_prediction(os.path.join(intrinsic_dir, K_list[i])) ) for i in range(len(image_list)) ] def __getitem__(self, index): obj = self.imdb[index] image = read_image(obj['image_file']) K = obj['K'].copy() transformed_image = self.transform(image)[0] # shape should not change since input output should all be 352 * 1216 output_dict = {'K': K, 'image': transformed_image, 'original_shape': image.shape} return output_dict def __len__(self): return len(self.imdb) @staticmethod def collate_fn(batch): rgb_images = np.array([item["image"] for item in batch]) #[batch, H, W, 3] rgb_images = rgb_images.transpose([0, 3, 1, 2]) Ks = [item["K"] for item in batch] return torch.from_numpy(rgb_images).float(), Ks ``` #### File: data/kitti/utils.py ```python import os from typing import Optional import numpy as np from PIL import Image from numba import jit from numpy.linalg import inv import cv2 def read_pc_from_bin(bin_path): """Load PointCloud data from bin file.""" p = np.fromfile(bin_path, dtype=np.float32).reshape(-1, 4) return p def read_image(path): ''' read image inputs: path(str): image path returns: img(np.array): [w,h,c] ''' return np.array(Image.open(path, 'r')) def read_depth(path:str)->np.ndarray: """ Read Ground Truth Depth Image Args: path: image path Return: depth image: floating image [H, W] """ return (cv2.imread(path, -1)) / 256.0 @jit(nopython=True, cache=True) def _leftcam2lidar(pts, Tr_velo_to_cam, R0_rect): ''' transform the pts from the left camera frame to lidar frame pts_lidar = Tr_velo_to_cam^{-1} @ R0_rect^{-1} @ pts_cam inputs: pts(np.array): [#pts, 3] points in the left camera frame Tr_velo_to_cam:[4, 4] R0_rect:[4, 4] ''' hfiller = np.expand_dims(np.ones(pts.shape[0]), axis=1) pts_hT = np.ascontiguousarray(np.hstack((pts, hfiller)).T) #(4, #pts) pts_lidar_T = np.ascontiguousarray(inv(Tr_velo_to_cam)) @ np.ascontiguousarray(inv(R0_rect)) @ pts_hT # (4, #pts) pts_lidar = np.ascontiguousarray(pts_lidar_T.T) # (#pts, 4) return pts_lidar[:, :3] @jit(nopython=True, cache=True) def _lidar2leftcam(pts, Tr_velo_to_cam, R0_rect): ''' transform the pts from the lidar frame to the left camera frame pts_cam = R0_rect @ Tr_velo_to_cam @ pts_lidar inputs: pts(np.array): [#pts, 3] points in the lidar frame ''' hfiller = np.expand_dims(np.ones(pts.shape[0]), axis=1) pts_hT = np.hstack((pts, hfiller)).T #(4, #pts) pts_cam_T = R0_rect @ Tr_velo_to_cam @ pts_hT # (4, #pts) pts_cam = pts_cam_T.T # (#pts, 4) return pts_cam[:, :3] @jit(nopython=True, cache=True) def _leftcam2imgplane(pts, P2): ''' project the pts from the left camera frame to left camera plane pixels = P2 @ pts_cam inputs: pts(np.array): [#pts, 3] points in the left camera frame ''' hfiller = np.expand_dims(np.ones(pts.shape[0]), axis=1) pts_hT = np.hstack((pts, hfiller)).T #(4, #pts) pixels_T = P2 @ pts_hT #(3, #pts) pixels = pixels_T.T pixels[:, 0] /= pixels[:, 2] + 1e-6 pixels[:, 1] /= pixels[:, 2] + 1e-6 return pixels[:, :2] @jit(nopython=True, cache=True) def generate_dispariy_from_velo(pc_velo:np.ndarray, height:int, width:int, Tr_velo_to_cam:np.ndarray, R0_rect:np.ndarray, P2:np.ndarray, baseline:float=0.54): """ Generate disparity map from point clouds. Args: pc_velo : point clouds in lidar coordinate; np.array of shape [n, 3] -> [[x, y, z]; ...] height, width : output disparity map shape; int Tr_velo_to_cam : transform from lidar to camera; np.array [3, 4] -> [R | T] R0_rect : rotation transform into camera coordinates(z forward, x towards right); np.array [3, 4] -> [R | T] P2 : transform from P0 camera coordinates to target image plane; np.array [3, 4] -> [R | T] baseline : baseline length in meter of the stereo setup; float Output: disp_map : disparity map; np.array of [height, width], dtype=np.uint16; if disp_map==0 -> should be ignore """ #pts_2d = calib.project_velo_to_image(pc_velo) pts_cam = _lidar2leftcam(pc_velo, Tr_velo_to_cam, R0_rect) pts_2d = _leftcam2imgplane(pts_cam, P2) fov_inds = (pts_2d[:, 0] < width - 1) & (pts_2d[:, 0] >= 0) & \ (pts_2d[:, 1] < height - 1) & (pts_2d[:, 1] >= 0) fov_inds = fov_inds & (pc_velo[:, 0] > 2) imgfov_pts_2d = pts_2d[fov_inds, :] imgfov_pc_rect = pts_cam[fov_inds, :] depth_map = np.ones((height, width)) * 1e9 imgfov_pts_2d = imgfov_pts_2d.astype(np.int32)#np.round(imgfov_pts_2d).astype(int) for i in range(imgfov_pts_2d.shape[0]): depth = imgfov_pc_rect[i, 2] depth_map[int(imgfov_pts_2d[i, 1]), int(imgfov_pts_2d[i, 0])] = depth disp_map = (P2[0, 0] * baseline) / (depth_map) * 16 disp_map = disp_map.astype(np.uint16) return disp_map @jit(nopython=True, cache=True) def generate_depth_from_velo(pc_velo:np.ndarray, height:int, width:int, Tr_velo_to_cam:np.ndarray, R0_rect:np.ndarray, P2:np.ndarray, base_depth:Optional[np.ndarray]=None): """ Generate disparity map from point clouds. Args: pc_velo : point clouds in lidar coordinate; np.array of shape [n, 3] -> [[x, y, z]; ...] height, width : output disparity map shape; int Tr_velo_to_cam : transform from lidar to camera; np.array [3, 4] -> [R | T] R0_rect : rotation transform into camera coordinates(z forward, x towards right); np.array [3, 4] -> [R | T] P2 : transform from P0 camera coordinates to target image plane; np.array [3, 4] -> [R | T] baseline : baseline length in meter of the stereo setup; float Output: disp_map : disparity map; np.array of [height, width], dtype=np.uint16; if disp_map==0 -> should be ignore """ #pts_2d = calib.project_velo_to_image(pc_velo) pts_cam = _lidar2leftcam(pc_velo, Tr_velo_to_cam, R0_rect) pts_2d = _leftcam2imgplane(pts_cam, P2) fov_inds = (pts_2d[:, 0] < width - 1) & (pts_2d[:, 0] >= 0) & \ (pts_2d[:, 1] < height - 1) & (pts_2d[:, 1] >= 0) fov_inds = fov_inds & (pc_velo[:, 0] > 2) imgfov_pts_2d = pts_2d[fov_inds, :] imgfov_pc_rect = pts_cam[fov_inds, :] if base_depth is None: depth_map = np.zeros((height, width)) else: depth_map = base_depth imgfov_pts_2d = imgfov_pts_2d.astype(np.int32)#np.round(imgfov_pts_2d).astype(int) for i in range(imgfov_pts_2d.shape[0]): depth = imgfov_pc_rect[i, 2] depth_map[int(imgfov_pts_2d[i, 1]), int(imgfov_pts_2d[i, 0])] = depth return depth_map def write_result_to_file(base_result_path:str, index:int, scores, bbox_2d, bbox_3d_state_3d=None, thetas=None, obj_types=['Car', 'Pedestrian', 'Cyclist'], threshold=0.4): """Write Kitti prediction results of one frame to a file Args: base_result_path (str): path to the result dictionary index (int): index of the target frame scores (List[float]): A list or numpy array or cpu tensor of float for score bbox_2d (np.ndarray): numpy array of [N, 4] bbox_3d_state_3d (np.ndarray, optional): 3D stats [N, 7] [x_center, y_center, z_center, w, h, l, alpha]. Defaults to None. thetas (np.ndarray, optional): [N]. Defaults to None. obj_types (List[str], optional): List of string if object type names. Defaults to ['Car', 'Pedestrian', 'Cyclist']. threshold (float, optional): Threshold for selection samples. Defaults to 0.4. """ name = "%06d" % index text_to_write = "" file = open(os.path.join(base_result_path, name + '.txt'), 'w') if bbox_3d_state_3d is None: bbox_3d_state_3d = np.ones([bbox_2d.shape[0], 7], dtype=int) bbox_3d_state_3d[:, 3:6] = -1 bbox_3d_state_3d[:, 0:3] = -1000 bbox_3d_state_3d[:, 6] = -10 else: for i in range(len(bbox_2d)): bbox_3d_state_3d[i][1] = bbox_3d_state_3d[i][1] + 0.5*bbox_3d_state_3d[i][4] # kitti receive bottom center if thetas is None: thetas = np.ones(bbox_2d.shape[0]) * -10 if len(scores) > 0: for i in range(len(bbox_2d)): if scores[i] < threshold: continue bbox = bbox_2d[i] text_to_write += ('{} -1 -1 {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {} \n').format( obj_types[i], bbox_3d_state_3d[i][-1], bbox[0], bbox[1], bbox[2], bbox[3], bbox_3d_state_3d[i][4], bbox_3d_state_3d[i][3], bbox_3d_state_3d[i][5], bbox_3d_state_3d[i][0], bbox_3d_state_3d[i][1], bbox_3d_state_3d[i][2], thetas[i], scores[i]) file.write(text_to_write) file.close() if __name__ == "__main__": pts, Tr_velo_to_cam, R0_rect = np.zeros([10, 3]), np.eye(4), np.eye(4) points = _leftcam2lidar(pts, Tr_velo_to_cam, R0_rect) points = _lidar2leftcam(pts, Tr_velo_to_cam, R0_rect) P2 = np.zeros([3, 4]) pixels = _leftcam2imgplane(pts, P2) print(points.shape) ``` #### File: evaluator/kitti_depth_prediction/evaluate_depth.py ```python import numpy as np from numba import jit import cv2 import os @jit(cache=True, nopython=True) def compute_errors(image_gt, image_pred): """ Compute Errors from two floating point image. init errors 1. mae 2. rmse 3. inverse mae 4. inverse rmse 5. log mae 6. log rmse 7. scale invariant log 8. abs relative 9. squared relative """ errors = np.zeros(9) num_pixels = 0.0 # log sum for scale invariant metric logSum = 0.0 w, h = image_gt.shape for i in range(w): for j in range(h): if image_gt[i, j] > 0.01: depth_pred = image_pred[i, j] depth_gt = image_gt[i, j] d_err = abs(depth_pred - depth_gt) d_err_squared = d_err ** 2 d_err_inv = abs(1.0 / depth_gt - 1.0 / depth_pred) d_err_inv_squared = d_err_inv ** 2 d_err_log = abs(np.log(depth_pred) - np.log(depth_gt)) d_err_log_squared = d_err_log ** 2 # MAE errors[0] += d_err # rmse errors[1] += d_err_squared # inv_mae errors[2] += d_err_inv # inv_rmse errors[3] += d_err_inv_squared # log errors[4] += d_err_log errors[5] += d_err_log_squared # log diff for scale invariancet metric logSum += np.log(depth_gt) - np.log(depth_pred) # abs relative errors[7] += d_err / depth_gt # squared relative errors[8] += d_err_squared / (depth_gt ** 2 ) num_pixels += 1 # normalize mae errors[0] = errors[0] / num_pixels # normalize and take sqrt for rmse errors[1] = errors[1] / num_pixels errors[1] = np.sqrt(errors[1]) # normalize inverse absoulte error errors[2] = errors[2] / num_pixels # normalize and take sqrt for inverse rmse errors[3] = errors[3] / num_pixels errors[3] = np.sqrt(errors[3]) # normalize log mae errors[4] = errors[4] / num_pixels # first normalize log rmse -> we need this result later normalizedSquaredLog = errors[5] / num_pixels errors[5] = np.sqrt(normalizedSquaredLog) # calculate scale invariant metric errors[6] = np.sqrt(normalizedSquaredLog - (logSum**2 / (num_pixels**2))) # normalize abs relative errors[7] = errors[7] / num_pixels # normalize squared relative errors[8] = errors[8] / num_pixels return errors def evaluate_depth(label_path, result_path, scale=256.0): gt_list = os.listdir(label_path) gt_list.sort() gt_list = [os.path.join(label_path, gt) for gt in gt_list if gt.endswith(".png")] result_list = os.listdir(result_path) result_list.sort() result_list = [os.path.join(result_path, result) for result in result_list if result.endswith(".png")] if not len(gt_list) == len(result_list): print("Notice: the lenght of gt_list {} is not the same as the result_list {}".format(len(gt_list), len(result_list))) print("totally found {} images in {} and {}".format(len(gt_list), label_path, result_path)) error_vectors = [] for i in range(len(gt_list)): image_gt = cv2.imread(gt_list[i], -1) / scale image_pred = cv2.imread(result_list[i], -1) / scale error_vectors.append(compute_errors(image_gt, image_pred)) error_vectors = np.array(error_vectors) metric_names = [ "mae", "rmse", "inverse mae", "inverse rmse", "log mae", "log rmse", "scale invariant log", "abs relative", "squared relative" ] result_texts = [] for i in range(len(error_vectors[0])): text = "mean {} : {}\n".format(metric_names[i], np.mean(error_vectors[:, i])) result_texts.append(text) return result_texts if __name__ == "__main__": from fire import Fire def main(label_path, result_path): texts = evaluate(label_path, result_path) for text in texts: print(text, end="") Fire(main) ``` #### File: detectors/unet/u_net.py ```python import torch import torch.nn as nn import torch.nn.functional as F from visualDet3D.networks.backbones import resnet from visualDet3D.networks.lib.look_ground import LookGround from visualDet3D.networks.lib.coordconv import DisparityConv from visualDet3D.networks.lib.ops import ModulatedDeformConvPack class ResConv(nn.Module): """Some Information about ResConv""" def __init__(self, *args, **kwarg): super(ResConv, self).__init__() self.conv = nn.Conv2d(*args, **kwarg) def forward(self, x): x = x + self.conv(x) return x class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None, is_look_ground=False): super().__init__() self.is_look_ground=is_look_ground if not mid_channels: mid_channels = out_channels if is_look_ground: self.conv0 = LookGround(in_channels, baseline=0.54) self.conv1 = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=5, padding=2), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), ) self.conv2 = nn.Sequential( ModulatedDeformConvPack(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x, P2=None, scale=1.0): """Forward Methods for Double Conv Args: x (torch.Tensor): [description] P2 ([torch.Tensor], optional): Only apply this when double conv appy disparity conv and look ground operation. Defaults to None. scale (float, optional): the shrink ratio of the current feature map w.r.t. the original one along with P2, e.g. 1.0/2.0/4.0. Defaults to 1.0. Returns: x: torch.Tensor """ if P2 is not None: P = x.new_zeros([x.shape[0], 3, 4]) P[:, :, 0:3] = P2[:, :, 0:3] P[:, 0:2] /= float(scale) x = self.conv0(dict(features=x, P2=P)) x = self.conv1(x) x = self.conv2(x) return x class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True, is_look_ground=False): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample( scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv( in_channels, out_channels, in_channels, is_look_ground) else: self.up = nn.ConvTranspose2d( in_channels, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2=None, **kwargs): x1 = self.up(x1) # input is CHW if x2 is not None: diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] if diffX > 0 or diffY > 0: x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) else: x = x1 return self.conv(x, **kwargs) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x): return self.conv(x) class UNet_Core(nn.Module): def __init__(self, n_channels, n_classes, look_ground=True, bilinear=True, backbone_arguments=dict()): super(UNet_Core, self).__init__() self.backbone = resnet(**backbone_arguments) self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear factor = 2 if bilinear else 1 self.up0 = Up(512 + 256, 256, bilinear, is_look_ground=look_ground) self.up1 = Up(256 + 128, 128 // factor, bilinear, is_look_ground=look_ground) self.up2 = Up(128, 64, bilinear) #self.up3 = Up(64, 64, bilinear) #self.up4 = Up(64 + n_channels, 32, bilinear, is_look_ground=True) self.out_scale_8 = OutConv(64, n_classes) self.out_scale_4 = OutConv(64, n_classes) self.outc = OutConv(64, n_classes) def forward(self, x, P2=None): #residual = x x3, x4, x5, x6 = self.backbone(x) outs = {} #x6 = F.relu(x6 + self.fullencoders(x6)) x = self.up0(x6, x5, P2=P2, scale=32) x = self.up1(x, x4, P2=P2, scale=16) outs['scale_8'] = self.out_scale_8(x) x = self.up2(x, x3) outs['scale_4'] = self.out_scale_4(x) #x = F.upsample_bilinear(x, scale_factor=4) x = F.interpolate(x, scale_factor=4, align_corners=True, mode='bilinear') #x = self.up3(x) #x = self.up4(x, residual) #x = torch.cat([x, residual], dim=1) outs['scale_1'] = self.outc(x) return outs ``` #### File: networks/detectors/yolomono3d_core.py ```python import numpy as np import torch.nn as nn import torch import math import time from visualDet3D.networks.backbones import resnet class YoloMono3DCore(nn.Module): """Some Information about YoloMono3DCore""" def __init__(self, backbone_arguments=dict()): super(YoloMono3DCore, self).__init__() self.backbone =resnet(**backbone_arguments) def forward(self, x): x = self.backbone(x['image']) x = x[0] return x ``` #### File: lib/disparity_loss/disp2prob.py ```python import warnings import torch import torch.nn.functional as F def isNaN(x): return x != x class Disp2Prob(object): """ Convert disparity map to matching probability volume Args: maxDisp, (int): the maximum of disparity gtDisp, (torch.Tensor): in (..., Height, Width) layout start_disp (int): the start searching disparity index, usually be 0 dilation (int): the step between near disparity index Outputs: probability, (torch.Tensor): in [BatchSize, maxDisp, Height, Width] layout """ def __init__(self, maxDisp:int, gtDisp:torch.Tensor, start_disp:int=0, dilation:int=1): if not isinstance(maxDisp, int): raise TypeError('int is expected, got {}'.format(type(maxDisp))) if not torch.is_tensor(gtDisp): raise TypeError('tensor is expected, got {}'.format(type(gtDisp))) if not isinstance(start_disp, int): raise TypeError('int is expected, got {}'.format(type(start_disp))) if not isinstance(dilation, int): raise TypeError('int is expected, got {}'.format(type(dilation))) if gtDisp.dim() == 2: # single image H x W gtDisp = gtDisp.view(1, 1, gtDisp.size(0), gtDisp.size(1)) if gtDisp.dim() == 3: # multi image B x H x W gtDisp = gtDisp.view(gtDisp.size(0), 1, gtDisp.size(1), gtDisp.size(2)) if gtDisp.dim() == 4: if gtDisp.size(1) == 1: # mult image B x 1 x H x W gtDisp = gtDisp else: raise ValueError('2nd dimension size should be 1, got {}'.format(gtDisp.size(1))) self.gtDisp = gtDisp self.maxDisp = maxDisp self.start_disp = start_disp self.dilation = dilation self.end_disp = start_disp + maxDisp - 1 self.disp_sample_number = (maxDisp + dilation -1) // dilation self.eps = 1e-40 def getProb(self): # [BatchSize, 1, Height, Width] b, c, h, w = self.gtDisp.shape assert c == 1 # if start_disp = 0, dilation = 1, then generate disparity candidates as [0, 1, 2, ... , maxDisp-1] index = torch.linspace(self.start_disp, self.end_disp, self.disp_sample_number) index = index.to(self.gtDisp.device) # [BatchSize, maxDisp, Height, Width] self.index = index.repeat(b, h, w, 1).permute(0, 3, 1, 2).contiguous() # the gtDisp must be (start_disp, end_disp), otherwise, we have to mask it out mask = (self.gtDisp > self.start_disp) & (self.gtDisp < self.end_disp) mask = mask.detach().type_as(self.gtDisp) self.gtDisp = self.gtDisp * mask probability = self.calProb() # let the outliers' probability to be 0 # in case divide or log 0, we plus a tiny constant value probability = probability * mask + self.eps # in case probability is NaN if isNaN(probability.min()) or isNaN(probability.max()): print('Probability ==> min: {}, max: {}'.format(probability.min(), probability.max())) print('Disparity Ground Truth after mask out ==> min: {}, max: {}'.format(self.gtDisp.min(), self.gtDisp.max())) raise ValueError(" \'probability contains NaN!") return probability def kick_invalid_half(self): distance = self.gtDisp - self.index invalid_index = distance < 0 # after softmax, the valid index with value 1e6 will approximately get 0 distance[invalid_index] = 1e6 return distance def calProb(self): raise NotImplementedError class LaplaceDisp2Prob(Disp2Prob): # variance is the diversity of the Laplace distribution def __init__(self, maxDisp, gtDisp, variance=1, start_disp=0, dilation=1): super(LaplaceDisp2Prob, self).__init__(maxDisp, gtDisp, start_disp, dilation) self.variance = variance def calProb(self): # 1/N * exp( - (d - d{gt}) / var), N is normalization factor, [BatchSize, maxDisp, Height, Width] scaled_distance = ((-torch.abs(self.index - self.gtDisp)) / self.variance) probability = F.softmax(scaled_distance, dim=1) return probability class GaussianDisp2Prob(Disp2Prob): # variance is the variance of the Gaussian distribution def __init__(self, maxDisp, gtDisp, variance=1, start_disp=0, dilation=1): super(GaussianDisp2Prob, self).__init__(maxDisp, gtDisp, start_disp, dilation) self.variance = variance def calProb(self): # 1/N * exp( - (d - d{gt})^2 / b), N is normalization factor, [BatchSize, maxDisp, Height, Width] distance = (torch.abs(self.index - self.gtDisp)) scaled_distance = (- distance.pow(2.0) / self.variance) probability = F.softmax(scaled_distance, dim=1) return probability class OneHotDisp2Prob(Disp2Prob): # variance is the variance of the OneHot distribution def __init__(self, maxDisp, gtDisp, variance=1, start_disp=0, dilation=1): super(OneHotDisp2Prob, self).__init__(maxDisp, gtDisp, start_disp, dilation) self.variance = variance def getProb(self): # |d - d{gt}| < variance, [BatchSize, maxDisp, Height, Width] probability = torch.lt(torch.abs(self.index - self.gtDisp), self.variance).type_as(self.gtDisp) return probability ```
{ "source": "jovial/ironic", "score": 2 }
#### File: modules/storage/external.py ```python from oslo_config import cfg from oslo_log import log from ironic.common import exception from ironic.drivers import base CONF = cfg.CONF LOG = log.getLogger(__name__) class ExternalStorage(base.StorageInterface): """Externally driven Storage Interface.""" def validate(self, task): def _fail_validation(task, reason, exception=exception.InvalidParameterValue): msg = (_("Failed to validate external storage interface for node " "%(node)s. %(reason)s") % {'node': task.node.uuid, 'reason': reason}) LOG.error(msg) raise exception(msg) if (not self.should_write_image(task) and not CONF.pxe.ipxe_enabled): msg = _("The [pxe]/ipxe_enabled option must " "be set to True to support network " "booting to an iSCSI volume.") _fail_validation(task, msg) def get_properties(self): return {} def attach_volumes(self, task): pass def detach_volumes(self, task): pass def should_write_image(self, task): """Determines if deploy should perform the image write-out. This enables the user to define a volume and Ironic understand that the image may already exist and we may be booting to that volume. :param task: The task object. :returns: True if the deployment write-out process should be executed. """ instance_info = task.node.instance_info if 'image_source' not in instance_info: for volume in task.volume_targets: if volume['boot_index'] == 0: return False return True ``` #### File: modules/oneview/test_deploy.py ```python import mock from ironic.common import exception from ironic.common import states from ironic.conductor import task_manager from ironic.conf import CONF from ironic.drivers.modules import agent from ironic.drivers.modules import iscsi_deploy from ironic.drivers.modules.oneview import common from ironic.drivers.modules.oneview import deploy from ironic.drivers.modules.oneview import deploy_utils from ironic.tests.unit.drivers.modules.oneview import test_common from ironic.tests.unit.objects import utils as obj_utils METHODS = ['iter_nodes', 'update_node', 'do_provisioning_action'] oneview_error = common.SERVER_HARDWARE_ALLOCATION_ERROR maintenance_reason = common.NODE_IN_USE_BY_ONEVIEW driver_internal_info = {'oneview_error': oneview_error} nodes_taken_by_oneview = [(1, 'oneview')] nodes_freed_by_oneview = [(1, 'oneview', maintenance_reason)] nodes_taken_on_cleanfail = [(1, 'oneview', driver_internal_info)] nodes_taken_on_cleanfail_no_info = [(1, 'oneview', {})] GET_POWER_STATE_RETRIES = 5 def _setup_node_in_available_state(node): node.provision_state = states.AVAILABLE node.maintenance = False node.maintenance_reason = None node.save() def _setup_node_in_manageable_state(node): node.provision_state = states.MANAGEABLE node.maintenance = True node.maintenance_reason = common.NODE_IN_USE_BY_ONEVIEW node.save() def _setup_node_in_cleanfailed_state_with_oneview_error(node): node.provision_state = states.CLEANFAIL node.maintenance = False node.maintenance_reason = None driver_internal_info = node.driver_internal_info oneview_error = common.SERVER_HARDWARE_ALLOCATION_ERROR driver_internal_info['oneview_error'] = oneview_error node.driver_internal_info = driver_internal_info node.save() def _setup_node_in_cleanfailed_state_without_oneview_error(node): node.provision_state = states.CLEANFAIL node.maintenance = False node.maintenance_reason = None node.save() class OneViewDriverDeploy(deploy.OneViewPeriodicTasks): oneview_driver = 'oneview' @mock.patch('ironic.objects.Node', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'is_node_in_use_by_oneview') class OneViewPeriodicTasks(test_common.BaseOneViewTest): def setUp(self): super(OneViewPeriodicTasks, self).setUp() self.config(manager_url='https://1.2.3.4', group='oneview') self.config(username='user', group='oneview') self.config(password='password', group='oneview') self.deploy = OneViewDriverDeploy() self.os_primary = mock.MagicMock(spec=METHODS) def test_node_manageable_maintenance_when_in_use_by_oneview( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_available_state(self.node) self.os_primary.iter_nodes.return_value = nodes_taken_by_oneview mock_is_node_in_use_by_oneview.return_value = True self.deploy._periodic_check_nodes_taken_by_oneview( self.os_primary, self.context ) mock_is_node_in_use_by_oneview.assert_called_once_with(self.node) self.assertTrue(self.os_primary.update_node.called) self.assertTrue(self.os_primary.do_provisioning_action.called) self.assertTrue(self.node.maintenance) self.assertEqual(common.NODE_IN_USE_BY_ONEVIEW, self.node.maintenance_reason) def test_node_stay_available_when_not_in_use_by_oneview( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_available_state(self.node) mock_node_get.return_value = self.node mock_is_node_in_use_by_oneview.return_value = False self.os_primary.iter_nodes.return_value = nodes_taken_by_oneview self.deploy._periodic_check_nodes_taken_by_oneview( self.os_primary, self.context ) mock_is_node_in_use_by_oneview.assert_called_once_with(self.node) self.assertFalse(self.os_primary.update_node.called) self.assertFalse(self.os_primary.do_provisioning_action.called) self.assertFalse(self.node.maintenance) self.assertIsNone(self.node.maintenance_reason) def test_node_stay_available_when_raise_exception( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_available_state(self.node) side_effect = exception.OneViewError('boom') mock_is_node_in_use_by_oneview.side_effect = side_effect self.os_primary.iter_nodes.return_value = nodes_taken_by_oneview self.deploy._periodic_check_nodes_taken_by_oneview( self.os_primary, self.context ) mock_is_node_in_use_by_oneview.assert_called_once_with(self.node) self.assertFalse(self.os_primary.update_node.called) self.assertFalse(self.os_primary.do_provisioning_action.called) self.assertFalse(self.node.maintenance) self.assertNotEqual(common.NODE_IN_USE_BY_ONEVIEW, self.node.maintenance_reason) def test_node_available_when_not_in_use_by_oneview( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_manageable_state(self.node) self.os_primary.iter_nodes.return_value = nodes_freed_by_oneview mock_is_node_in_use_by_oneview.return_value = False self.deploy._periodic_check_nodes_freed_by_oneview( self.os_primary, self.context ) mock_is_node_in_use_by_oneview.assert_called_once_with(self.node) self.assertTrue(self.os_primary.update_node.called) self.assertTrue(self.os_primary.do_provisioning_action.called) self.assertFalse(self.node.maintenance) self.assertIsNone(self.node.maintenance_reason) def test_node_stay_manageable_when_in_use_by_oneview( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_manageable_state(self.node) mock_is_node_in_use_by_oneview.return_value = True self.os_primary.iter_nodes.return_value = nodes_freed_by_oneview self.deploy._periodic_check_nodes_freed_by_oneview( self.os_primary, self.context ) mock_is_node_in_use_by_oneview.assert_called_once_with(self.node) self.assertFalse(self.os_primary.update_node.called) self.assertFalse(self.os_primary.do_provisioning_action.called) self.assertTrue(self.node.maintenance) self.assertEqual(common.NODE_IN_USE_BY_ONEVIEW, self.node.maintenance_reason) def test_node_stay_manageable_maintenance_when_raise_exception( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_manageable_state(self.node) side_effect = exception.OneViewError('boom') mock_is_node_in_use_by_oneview.side_effect = side_effect self.os_primary.iter_nodes.return_value = nodes_freed_by_oneview self.deploy._periodic_check_nodes_freed_by_oneview( self.os_primary, self.context ) mock_is_node_in_use_by_oneview.assert_called_once_with(self.node) self.assertFalse(self.os_primary.update_node.called) self.assertFalse(self.os_primary.do_provisioning_action.called) self.assertTrue(self.node.maintenance) self.assertEqual(common.NODE_IN_USE_BY_ONEVIEW, self.node.maintenance_reason) def test_node_manageable_maintenance_when_oneview_error( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_cleanfailed_state_with_oneview_error(self.node) self.os_primary.iter_nodes.return_value = nodes_taken_on_cleanfail self.deploy._periodic_check_nodes_taken_on_cleanfail( self.os_primary, self.context ) self.assertTrue(self.os_primary.update_node.called) self.assertTrue(self.os_primary.do_provisioning_action.called) self.assertTrue(self.node.maintenance) self.assertEqual(common.NODE_IN_USE_BY_ONEVIEW, self.node.maintenance_reason) self.assertNotIn('oneview_error', self.node.driver_internal_info) def test_node_stay_clean_failed_when_no_oneview_error( self, mock_is_node_in_use_by_oneview, mock_node_get ): mock_node_get.get.return_value = self.node _setup_node_in_cleanfailed_state_without_oneview_error(self.node) self.os_primary.iter_nodes.return_value = ( nodes_taken_on_cleanfail_no_info) self.deploy._periodic_check_nodes_taken_on_cleanfail( self.os_primary, self.context ) self.assertFalse(self.os_primary.update_node.called) self.assertFalse(self.os_primary.do_provisioning_action.called) self.assertFalse(self.node.maintenance) self.assertNotEqual(common.NODE_IN_USE_BY_ONEVIEW, self.node.maintenance_reason) self.assertNotIn('oneview_error', self.node.driver_internal_info) class OneViewIscsiDeployTestCase(test_common.BaseOneViewTest): deploy_interface = 'oneview-iscsi' def setUp(self): super(OneViewIscsiDeployTestCase, self).setUp() self.config(manager_url='https://1.2.3.4', group='oneview') self.config(username='user', group='oneview') self.config(password='password', group='oneview') self.port = obj_utils.create_test_port(self.context, node_id=self.node.id) self.info = common.get_oneview_info(self.node) def test_get_properties(self): expected = common.COMMON_PROPERTIES self.assertEqual(expected, deploy.OneViewIscsiDeploy().get_properties()) @mock.patch.object(common, 'validate_oneview_resources_compatibility', spect_set=True, autospec=True) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'validate', spec_set=True, autospec=True) def test_validate( self, iscsi_deploy_validate_mock, mock_validate): with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.validate(task) self.assertTrue(mock_validate.called) iscsi_deploy_validate_mock.assert_called_once_with(mock.ANY, task) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'prepare', autospec=True) @mock.patch.object(deploy_utils, 'allocate_server_hardware_to_ironic') def test_prepare(self, allocate_server_hardware_mock, iscsi_deploy_prepare_mock): self.node.provision_state = states.DEPLOYING self.node.save() with task_manager.acquire(self.context, self.node.uuid) as task: task.driver.deploy.prepare(task) iscsi_deploy_prepare_mock.assert_called_once_with(mock.ANY, task) self.assertTrue(allocate_server_hardware_mock.called) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'prepare', spec_set=True, autospec=True) def test_prepare_active_node(self, iscsi_deploy_prepare_mock): """Ensure nodes in running states are not inadvertently changed""" test_states = list(states.STABLE_STATES) test_states.extend([states.CLEANING, states.CLEANWAIT, states.INSPECTING]) for state in test_states: self.node.provision_state = state self.node.save() iscsi_deploy_prepare_mock.reset_mock() with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.prepare(task) iscsi_deploy_prepare_mock.assert_called_once_with( mock.ANY, task) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'deploy', spec_set=True, autospec=True) def test_deploy(self, iscsi_deploy_mock): with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.deploy(task) iscsi_deploy_mock.assert_called_once_with(mock.ANY, task) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'tear_down', spec_set=True, autospec=True) def test_tear_down(self, iscsi_tear_down_mock): iscsi_tear_down_mock.return_value = states.DELETED with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: returned_state = task.driver.deploy.tear_down(task) iscsi_tear_down_mock.assert_called_once_with(mock.ANY, task) self.assertEqual(states.DELETED, returned_state) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'tear_down', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'deallocate_server_hardware_from_ironic') def test_tear_down_with_automated_clean_disabled( self, deallocate_server_hardware_mock, iscsi_tear_down_mock): CONF.conductor.automated_clean = False iscsi_tear_down_mock.return_value = states.DELETED with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: returned_state = task.driver.deploy.tear_down(task) iscsi_tear_down_mock.assert_called_once_with(mock.ANY, task) self.assertEqual(states.DELETED, returned_state) self.assertTrue(deallocate_server_hardware_mock.called) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'prepare_cleaning', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'allocate_server_hardware_to_ironic') def test_prepare_cleaning( self, allocate_server_hardware_mock, iscsi_prep_clean_mock): iscsi_prep_clean_mock.return_value = states.CLEANWAIT with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: ret = task.driver.deploy.prepare_cleaning(task) self.assertEqual(states.CLEANWAIT, ret) iscsi_prep_clean_mock.assert_called_once_with(mock.ANY, task) self.assertTrue(allocate_server_hardware_mock.called) @mock.patch.object(iscsi_deploy.ISCSIDeploy, 'tear_down_cleaning', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'deallocate_server_hardware_from_ironic') def test_tear_down_cleaning( self, deallocate_server_hardware_mock, iscsi_tear_down_clean_mock): iscsi_tear_down_clean_mock.return_value = states.CLEANWAIT with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.tear_down_cleaning(task) iscsi_tear_down_clean_mock.assert_called_once_with(mock.ANY, task) self.assertTrue(deallocate_server_hardware_mock.called) class OneViewAgentDeployTestCase(test_common.BaseOneViewTest): deploy_interface = 'oneview-direct' def setUp(self): super(OneViewAgentDeployTestCase, self).setUp() self.config(manager_url='https://1.2.3.4', group='oneview') self.config(username='user', group='oneview') self.config(password='password', group='oneview') self.port = obj_utils.create_test_port(self.context, node_id=self.node.id) self.info = common.get_oneview_info(self.node) def test_get_properties(self): expected = common.COMMON_PROPERTIES self.assertEqual(expected, deploy.OneViewAgentDeploy().get_properties()) @mock.patch.object(common, 'validate_oneview_resources_compatibility', spect_set=True, autospec=True) @mock.patch.object(agent.AgentDeploy, 'validate', spec_set=True, autospec=True) def test_validate( self, agent_deploy_validate_mock, mock_validate): with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.validate(task) self.assertTrue(mock_validate.called) @mock.patch.object(agent.AgentDeploy, 'prepare', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'allocate_server_hardware_to_ironic') def test_prepare( self, allocate_server_hardware_mock, agent_deploy_prepare_mock): self.node.provision_state = states.DEPLOYING self.node.save() with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.prepare(task) agent_deploy_prepare_mock.assert_called_once_with(mock.ANY, task) self.assertTrue(allocate_server_hardware_mock.called) @mock.patch.object(agent.AgentDeploy, 'prepare', spec_set=True, autospec=True) def test_prepare_active_node(self, agent_deploy_prepare_mock): """Ensure nodes in running states are not inadvertently changed""" test_states = list(states.STABLE_STATES) test_states.extend([states.CLEANING, states.CLEANWAIT, states.INSPECTING]) for state in test_states: self.node.provision_state = state self.node.save() agent_deploy_prepare_mock.reset_mock() with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.prepare(task) agent_deploy_prepare_mock.assert_called_once_with( mock.ANY, task) @mock.patch.object(agent.AgentDeploy, 'deploy', spec_set=True, autospec=True) def test_deploy(self, agent_deploy_mock): with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.deploy(task) agent_deploy_mock.assert_called_once_with(mock.ANY, task) @mock.patch.object(agent.AgentDeploy, 'tear_down', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'deallocate_server_hardware_from_ironic') def test_tear_down_with_automated_clean_disabled( self, deallocate_server_hardware_mock, agent_tear_down_mock): CONF.conductor.automated_clean = False agent_tear_down_mock.return_value = states.DELETED with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: returned_state = task.driver.deploy.tear_down(task) agent_tear_down_mock.assert_called_once_with(mock.ANY, task) self.assertEqual(states.DELETED, returned_state) self.assertTrue(deallocate_server_hardware_mock.called) @mock.patch.object(agent.AgentDeploy, 'prepare_cleaning', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'allocate_server_hardware_to_ironic') def test_prepare_cleaning( self, allocate_server_hardware_mock, agent_prep_clean_mock): agent_prep_clean_mock.return_value = states.CLEANWAIT with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: ret = task.driver.deploy.prepare_cleaning(task) self.assertEqual(states.CLEANWAIT, ret) agent_prep_clean_mock.assert_called_once_with(mock.ANY, task) self.assertTrue(allocate_server_hardware_mock.called) @mock.patch.object(agent.AgentDeploy, 'tear_down_cleaning', spec_set=True, autospec=True) @mock.patch.object(deploy_utils, 'deallocate_server_hardware_from_ironic') def test_tear_down_cleaning( self, deallocate_server_hardware_mock, agent_tear_down_clean_mock): agent_tear_down_clean_mock.return_value = states.CLEANWAIT with task_manager.acquire(self.context, self.node.uuid, shared=False) as task: task.driver.deploy.tear_down_cleaning(task) agent_tear_down_clean_mock.assert_called_once_with(mock.ANY, task) self.assertTrue(deallocate_server_hardware_mock.called) ```
{ "source": "jovial/kayobe-1", "score": 2 }
#### File: ironic-inspector-rules/library/os_ironic_inspector_rule.py ```python from ansible.module_utils.basic import * from ansible.module_utils.openstack import * # Store a list of import errors to report to the user. IMPORT_ERRORS = [] try: import ironic_inspector_client except Exception as e: IMPORT_ERRORS.append(e) try: import shade except Exception as e: IMPORT_ERRORS.append(e) DOCUMENTATION = """ module: os_ironic_inspector_rule short_description: Create or destroy an Ironic Inspector rule. author: "<NAME> <<EMAIL>>" extends_documentation_fragment: openstack description: - Create or destroy an Ironic inspector rule. options: state: description: - State of the rule choices: ["present", "absent"] uuid: description: - Globally unique identifier for the rule. required: false description: description: - Description for the rule. required: false conditions: description: - List of conditions that must be met in order to apply the rule. required: true actions: description: - List of actions to be taken when the conditions are met. required: true """ EXAMPLES = """ # Ensure that an inspector rule exists. os_ironic_inspector_rule: cloud: "openstack" state: present uuid: "d44666e1-35b3-4f6b-acb0-88ab7052da69" description: Set IPMI username in driver_info if not set conditions: - field: "node://driver_info.ipmi_username" op: "is-empty" actions: - action: "set-attribute" path: "driver_info/ipmi_username" value: "root" """ def _build_client(module): """Create and return an Ironic inspector client.""" cloud = shade.operator_cloud(**module.params) session = cloud.cloud_config.get_session() # Ensure the requested API version is supported. # API 1.14 is the latest API version available in Rocky. api_version = (1, 14) client = ironic_inspector_client.v1.ClientV1( inspector_url=module.params['inspector_url'], session=session, region_name=module.params['region_name'], api_version=api_version) return client def _ensure_rule_present(module, client): """Ensure that an inspector rule is present.""" if module.params['uuid']: try: rule = client.rules.get(module.params['uuid']) except ironic_inspector_client.ClientError as e: if e.response.status_code != 404: module.fail_json(msg="Failed retrieving Inspector rule %s: %s" % (module.params['uuid'], repr(e))) else: # Check whether the rule differs from the request. keys = ('conditions', 'actions', 'description') for key in keys: if rule[key] != module.params[key]: break else: # Nothing to do - rule exists and is as requested. return False # Rule differs - delete it before recreating. _ensure_rule_absent(module, client) client.rules.create(module.params['conditions'], module.params['actions'], module.params['uuid'], module.params['description']) return True def _ensure_rule_absent(module, client): """Ensure that an inspector rule is absent.""" if not module.params['uuid']: module.fail_json(msg="UUID is required to ensure rules are absent") try: client.rules.delete(module.params['uuid']) except ironic_inspector_client.ClientError as e: # If the rule does not exist, no problem and no change. if e.response.status_code == 404: return False module.fail_json(msg="Failed retrieving Inspector rule %s: %s" % (module.params['uuid'], repr(e))) return True def main(): argument_spec = openstack_full_argument_spec( conditions=dict(type='list', required=True), actions=dict(type='list', required=True), description=dict(required=False), uuid=dict(required=False), state=dict(required=False, default='present', choices=['present', 'absent']), inspector_url=dict(required=False), ) module_kwargs = openstack_module_kwargs() module = AnsibleModule(argument_spec, **module_kwargs) # Fail if there were any exceptions when importing modules. if IMPORT_ERRORS: module.fail_json(msg="Import errors: %s" % ", ".join([repr(e) for e in IMPORT_ERRORS])) if (module.params['auth_type'] in [None, 'None'] and module.params['inspector_url'] is None): module.fail_json(msg="Authentication appears disabled, please " "define an inspector_url parameter") if (module.params['inspector_url'] and module.params['auth_type'] in [None, 'None']): module.params['auth'] = dict( endpoint=module.params['inspector_url'] ) try: client = _build_client(module) if module.params["state"] == "present": changed = _ensure_rule_present(module, client) else: changed = _ensure_rule_absent(module, client) except Exception as e: module.fail_json(msg="Failed to configure Ironic Inspector rule: %s" % repr(e)) else: module.exit_json(changed=changed) if __name__ == '__main__': main() ``` #### File: kayobe-1/kayobe/ansible.py ```python import errno import logging import os import os.path import shutil import subprocess import sys import tempfile from kayobe import exception from kayobe import utils from kayobe import vault DEFAULT_CONFIG_PATH = "/etc/kayobe" CONFIG_PATH_ENV = "KAYOBE_CONFIG_PATH" LOG = logging.getLogger(__name__) def add_args(parser): """Add arguments required for running Ansible playbooks to a parser.""" default_config_path = os.getenv(CONFIG_PATH_ENV, DEFAULT_CONFIG_PATH) parser.add_argument("-b", "--become", action="store_true", help="run operations with become (nopasswd implied)") parser.add_argument("-C", "--check", action="store_true", help="don't make any changes; instead, try to predict " "some of the changes that may occur") parser.add_argument("--config-path", default=default_config_path, help="path to Kayobe configuration. " "(default=$%s or %s)" % (CONFIG_PATH_ENV, DEFAULT_CONFIG_PATH)) parser.add_argument("-e", "--extra-vars", metavar="EXTRA_VARS", action="append", help="set additional variables as key=value or " "YAML/JSON") parser.add_argument("-i", "--inventory", metavar="INVENTORY", help="specify inventory host path " "(default=$%s/inventory or %s/inventory) or " "comma-separated host list" % (CONFIG_PATH_ENV, DEFAULT_CONFIG_PATH)) parser.add_argument("-l", "--limit", metavar="SUBSET", help="further limit selected hosts to an additional " "pattern") parser.add_argument("--skip-tags", metavar="TAGS", help="only run plays and tasks whose tags do not " "match these values") parser.add_argument("-t", "--tags", metavar="TAGS", help="only run plays and tasks tagged with these " "values") parser.add_argument("-lt", "--list-tasks", action="store_true", help="only print names of tasks, don't run them, " "note this has no affect on kolla-ansible.") def _get_inventory_path(parsed_args): """Return the path to the Kayobe inventory.""" if parsed_args.inventory: return parsed_args.inventory else: return os.path.join(parsed_args.config_path, "inventory") def _validate_args(parsed_args, playbooks): """Validate Kayobe Ansible arguments.""" vault.validate_args(parsed_args) result = utils.is_readable_dir(parsed_args.config_path) if not result["result"]: LOG.error("Kayobe configuration path %s is invalid: %s", parsed_args.config_path, result["message"]) sys.exit(1) inventory = _get_inventory_path(parsed_args) result = utils.is_readable_dir(inventory) if not result["result"]: LOG.error("Kayobe inventory %s is invalid: %s", inventory, result["message"]) sys.exit(1) for playbook in playbooks: result = utils.is_readable_file(playbook) if not result["result"]: LOG.error("Kayobe playbook %s is invalid: %s", playbook, result["message"]) sys.exit(1) def _get_vars_files(config_path): """Return a list of Kayobe Ansible configuration variable files. The files will be sorted alphabetically by name. """ vars_files = [] for vars_file in os.listdir(config_path): abs_path = os.path.join(config_path, vars_file) if utils.is_readable_file(abs_path): root, ext = os.path.splitext(vars_file) if ext in (".yml", ".yaml", ".json"): vars_files.append(abs_path) return sorted(vars_files) def build_args(parsed_args, playbooks, extra_vars=None, limit=None, tags=None, verbose_level=None, check=None): """Build arguments required for running Ansible playbooks.""" cmd = ["ansible-playbook"] if verbose_level: cmd += ["-" + "v" * verbose_level] if parsed_args.list_tasks: cmd += ["--list-tasks"] cmd += vault.build_args(parsed_args, "--vault-password-file") inventory = _get_inventory_path(parsed_args) cmd += ["--inventory", inventory] vars_files = _get_vars_files(parsed_args.config_path) for vars_file in vars_files: cmd += ["-e", "@%s" % vars_file] if parsed_args.extra_vars: for extra_var in parsed_args.extra_vars: # Don't quote or escape variables passed via the kayobe -e CLI # argument, to match Ansible's behaviour. cmd += ["-e", extra_var] if extra_vars: for extra_var_name, extra_var_value in extra_vars.items(): # Quote and escape variables originating within the python CLI. extra_var_value = utils.quote_and_escape(extra_var_value) cmd += ["-e", "%s=%s" % (extra_var_name, extra_var_value)] if parsed_args.become: cmd += ["--become"] if check or (parsed_args.check and check is None): cmd += ["--check"] if parsed_args.limit or limit: limits = [l for l in [parsed_args.limit, limit] if l] cmd += ["--limit", ":&".join(limits)] if parsed_args.skip_tags: cmd += ["--skip-tags", parsed_args.skip_tags] if parsed_args.tags or tags: all_tags = [t for t in [parsed_args.tags, tags] if t] cmd += ["--tags", ",".join(all_tags)] cmd += playbooks return cmd def run_playbooks(parsed_args, playbooks, extra_vars=None, limit=None, tags=None, quiet=False, check_output=False, verbose_level=None, check=None): """Run a Kayobe Ansible playbook.""" _validate_args(parsed_args, playbooks) cmd = build_args(parsed_args, playbooks, extra_vars=extra_vars, limit=limit, tags=tags, verbose_level=verbose_level, check=check) env = os.environ.copy() vault.update_environment(parsed_args, env) # If the configuration path has been specified via --config-path, ensure # the environment variable is set, so that it can be referenced by # playbooks. env.setdefault(CONFIG_PATH_ENV, parsed_args.config_path) try: utils.run_command(cmd, check_output=check_output, quiet=quiet, env=env) except subprocess.CalledProcessError as e: LOG.error("Kayobe playbook(s) %s exited %d", ", ".join(playbooks), e.returncode) if check_output: LOG.error("The output was:\n%s", e.output) sys.exit(e.returncode) def run_playbook(parsed_args, playbook, *args, **kwargs): """Run a Kayobe Ansible playbook.""" return run_playbooks(parsed_args, [playbook], *args, **kwargs) def config_dump(parsed_args, host=None, hosts=None, var_name=None, facts=None, extra_vars=None, tags=None, verbose_level=None): dump_dir = tempfile.mkdtemp() try: if not extra_vars: extra_vars = {} extra_vars["dump_path"] = dump_dir if host or hosts: extra_vars["dump_hosts"] = host or hosts if var_name: extra_vars["dump_var_name"] = var_name if facts is not None: extra_vars["dump_facts"] = facts # Don't use check mode for configuration dumps as we won't get any # results back. playbook_path = utils.get_data_files_path("ansible", "dump-config.yml") run_playbook(parsed_args, playbook_path, extra_vars=extra_vars, tags=tags, check_output=True, verbose_level=verbose_level, check=False) hostvars = {} for path in os.listdir(dump_dir): LOG.debug("Found dump file %s", path) inventory_hostname, ext = os.path.splitext(path) if ext == ".yml": hvars = utils.read_yaml_file(os.path.join(dump_dir, path)) if host: return hvars else: hostvars[inventory_hostname] = hvars else: LOG.warning("Unexpected extension on config dump file %s", path) return hostvars finally: shutil.rmtree(dump_dir) def install_galaxy_roles(parsed_args, force=False): """Install Ansible Galaxy role dependencies. Installs dependencies specified in kayobe, and if present, in kayobe configuration. :param parsed_args: Parsed command line arguments. :param force: Whether to force reinstallation of roles. """ LOG.info("Installing galaxy role dependencies from kayobe") requirements = utils.get_data_files_path("requirements.yml") roles_destination = utils.get_data_files_path('ansible', 'roles') utils.galaxy_install(requirements, roles_destination, force=force) # Check for requirements in kayobe configuration. kc_reqs_path = os.path.join(parsed_args.config_path, "ansible", "requirements.yml") if not utils.is_readable_file(kc_reqs_path)["result"]: LOG.info("Not installing galaxy role dependencies from kayobe config " "- requirements.yml not present") return LOG.info("Installing galaxy role dependencies from kayobe config") # Ensure a roles directory exists in kayobe-config. kc_roles_path = os.path.join(parsed_args.config_path, "ansible", "roles") try: os.makedirs(kc_roles_path) except OSError as e: if e.errno != errno.EEXIST: raise exception.Error("Failed to create directory ansible/roles/ " "in kayobe configuration at %s: %s" % (parsed_args.config_path, str(e))) # Install roles from kayobe-config. utils.galaxy_install(kc_reqs_path, kc_roles_path, force=force) def prune_galaxy_roles(parsed_args): """Prune galaxy roles that are no longer necessary. :param parsed_args: Parsed command line arguments. """ LOG.info("Removing unnecessary galaxy roles from kayobe") roles_to_remove = [ 'stackhpc.os-flavors', 'stackhpc.os-projects', 'stackhpc.parted-1-1', 'yatesr.timezone', ] LOG.debug("Removing roles: %s", ",".join(roles_to_remove)) utils.galaxy_remove(roles_to_remove, "ansible/roles") ``` #### File: tests/unit/test_vault.py ```python import argparse import os import unittest import mock from kayobe import utils from kayobe import vault class TestCase(unittest.TestCase): def test_validate_args_ok(self): parser = argparse.ArgumentParser() vault.add_args(parser) parsed_args = parser.parse_args([]) vault.validate_args(parsed_args) @mock.patch.dict(os.environ, {"KAYOBE_VAULT_PASSWORD": "<PASSWORD>"}) def test_validate_args_env(self): parser = argparse.ArgumentParser() vault.add_args(parser) parsed_args = parser.parse_args([]) vault.validate_args(parsed_args) @mock.patch.dict(os.environ, {"KAYOBE_VAULT_PASSWORD": "<PASSWORD>"}) def test_validate_args_ask_vault_pass(self): parser = argparse.ArgumentParser() vault.add_args(parser) parsed_args = parser.parse_args(["--ask-vault-pass"]) self.assertRaises(SystemExit, vault.validate_args, parsed_args) @mock.patch.dict(os.environ, {"KAYOBE_VAULT_PASSWORD": "<PASSWORD>"}) def test_validate_args_vault_password_file(self): parser = argparse.ArgumentParser() vault.add_args(parser) parsed_args = parser.parse_args(["--vault-password-file", "/path/to/file"]) self.assertRaises(SystemExit, vault.validate_args, parsed_args) @mock.patch.object(vault.getpass, 'getpass') def test__ask_vault_pass(self, mock_getpass): mock_getpass.return_value = 'test-pass' # Call twice to verify that the user is only prompted once. result = vault._ask_vault_pass() self.assertEqual('test-pass', result) mock_getpass.assert_called_once_with("Vault password: ") result = vault._ask_vault_pass() self.assertEqual('test-pass', result) mock_getpass.assert_called_once_with("Vault password: ") @mock.patch.object(utils, 'read_file') def test__read_vault_password_file(self, mock_read): mock_read.return_value = "test-pass\n" result = vault._read_vault_password_file("/path/to/file") self.assertEqual("test-pass", result) mock_read.assert_called_once_with("/path/to/file") def test_update_environment_no_vault(self): parser = argparse.ArgumentParser() vault.add_args(parser) parsed_args = parser.parse_args([]) env = {} vault.update_environment(parsed_args, env) self.assertEqual({}, env) @mock.patch.object(vault, '_ask_vault_pass') def test_update_environment_prompt(self, mock_ask): mock_ask.return_value = "test-pass" parser = argparse.ArgumentParser() vault.add_args(parser) parsed_args = parser.parse_args(["--ask-vault-pass"]) env = {} vault.update_environment(parsed_args, env) self.assertEqual({"KAYOBE_VAULT_PASSWORD": "<PASSWORD>"}, env) mock_ask.assert_called_once_with() @mock.patch.object(vault, '_read_vault_password_file') def test_update_environment_file(self, mock_read): mock_read.return_value = "test-pass" parser = argparse.ArgumentParser() vault.add_args(parser) args = ["--vault-password-file", "/path/to/file"] parsed_args = parser.parse_args(args) env = {} vault.update_environment(parsed_args, env) self.assertEqual({"KAYOBE_VAULT_PASSWORD": "<PASSWORD>"}, env) mock_read.assert_called_once_with("/path/to/file") ```
{ "source": "jovial/kayobe", "score": 2 }
#### File: ansible/filter_plugins/switches.py ```python import six def switch_interface_config_select_name(switch_interface_config, names): """Select and return all switch interfaces matching requested names. :param switch_interface_config: Switch interface configuration dict :param names: String or list of strings - interface names to match """ if isinstance(names, six.string_types): names = [names] return { name: config for name, config in switch_interface_config.items() if name in names } def switch_interface_config_select_description(switch_interface_config, descriptions): """Select and return all switch interfaces matching requested descriptions. :param switch_interface_config: Switch interface configuration dict :param descriptions: String or list of strings - descriptions to match """ if isinstance(descriptions, six.string_types): descriptions = [descriptions] return { name: config for name, config in switch_interface_config.items() if (config.get('description') in descriptions and config.get('ngs_trunk_port', True)) } def switch_interface_config_select_trunk(switch_interface_config): """Select and return all switch interfaces which are trunk links. Interfaces are assumed to be trunked, unless they have a ngs_trunk_port item which is set to False. :param switch_interface_config: Switch interface configuration dict """ return { name: config for name, config in switch_interface_config.items() if config.get('ngs_trunk_port', True) } class FilterModule(object): """Switch filters.""" def filters(self): return { 'switch_interface_config_select_name': switch_interface_config_select_name, 'switch_interface_config_select_description': switch_interface_config_select_description, 'switch_interface_config_select_trunk': switch_interface_config_select_trunk, } ``` #### File: unit/cli/test_commands.py ```python import unittest import cliff.app import cliff.commandmanager import mock from kayobe.cli import commands from kayobe import utils class TestApp(cliff.app.App): def __init__(self): super(TestApp, self).__init__( description='Test app', version='0.1', command_manager=cliff.commandmanager.CommandManager('kayobe.cli')) class TestCase(unittest.TestCase): @mock.patch.object(utils, "galaxy_install", spec=True) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_control_host_bootstrap(self, mock_run, mock_install): command = commands.ControlHostBootstrap(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) mock_install.assert_called_once_with("requirements.yml", "ansible/roles") expected_calls = [ mock.call(mock.ANY, ["ansible/bootstrap.yml"]), mock.call(mock.ANY, ["ansible/kolla-ansible.yml"], tags="install"), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(utils, "galaxy_install", spec=True) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_control_host_upgrade(self, mock_run, mock_install): command = commands.ControlHostUpgrade(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) mock_install.assert_called_once_with("requirements.yml", "ansible/roles", force=True) expected_calls = [ mock.call(mock.ANY, ["ansible/bootstrap.yml"]), mock.call(mock.ANY, ["ansible/kolla-ansible.yml"], tags="install"), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_network_connectivity_check(self, mock_run): command = commands.NetworkConnectivityCheck(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call(mock.ANY, ["ansible/network-connectivity.yml"]), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_seed_hypervisor_host_configure(self, mock_run, mock_dump): command = commands.SeedHypervisorHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = "stack" result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call(mock.ANY, host="seed-hypervisor", var_name="kayobe_ansible_user", tags="dump-config") ] self.assertEqual(expected_calls, mock_dump.call_args_list) expected_calls = [ mock.call( mock.ANY, [ "ansible/ip-allocation.yml", "ansible/ssh-known-host.yml", "ansible/kayobe-ansible-user.yml", "ansible/kayobe-target-venv.yml", "ansible/users.yml", "ansible/yum.yml", "ansible/dev-tools.yml", "ansible/network.yml", "ansible/sysctl.yml", "ansible/ntp.yml", "ansible/seed-hypervisor-libvirt-host.yml", ], limit="seed-hypervisor", ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_seed_hypervisor_host_upgrade(self, mock_run): command = commands.SeedHypervisorHostUpgrade(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/kayobe-target-venv.yml", "ansible/kolla-target-venv.yml", ], limit="seed-hypervisor", ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_seed") def test_seed_host_configure(self, mock_kolla_run, mock_run, mock_dump): command = commands.SeedHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "seed": {"kayobe_ansible_user": "stack"} } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call(mock.ANY, hosts="seed", tags="dump-config") ] self.assertEqual(expected_calls, mock_dump.call_args_list) expected_calls = [ mock.call( mock.ANY, [ "ansible/ip-allocation.yml", "ansible/ssh-known-host.yml", "ansible/kayobe-ansible-user.yml", "ansible/kayobe-target-venv.yml", "ansible/users.yml", "ansible/yum.yml", "ansible/dev-tools.yml", "ansible/disable-selinux.yml", "ansible/network.yml", "ansible/sysctl.yml", "ansible/ip-routing.yml", "ansible/snat.yml", "ansible/disable-glean.yml", "ansible/ntp.yml", "ansible/lvm.yml", ], limit="seed", ), mock.call( mock.ANY, ["ansible/kolla-ansible.yml"], tags="config", ), mock.call( mock.ANY, [ "ansible/kolla-target-venv.yml", "ansible/kolla-host.yml", "ansible/docker.yml", ], limit="seed", ), ] self.assertEqual(expected_calls, mock_run.call_args_list) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={"ansible_user": "stack"}, ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_seed") def test_seed_host_configure_kayobe_venv(self, mock_kolla_run, mock_run, mock_dump): command = commands.SeedHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "seed": { "ansible_python_interpreter": "/kayobe/venv/bin/python", "kayobe_ansible_user": "stack", } } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={ "ansible_python_interpreter": "/kayobe/venv/bin/python", "ansible_user": "stack", }, ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_seed") def test_seed_host_configure_kolla_venv(self, mock_kolla_run, mock_run, mock_dump): command = commands.SeedHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "seed": { "kayobe_ansible_user": "stack", "kolla_ansible_target_venv": "/kolla/venv/bin/python", } } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={ "ansible_python_interpreter": "/usr/bin/python", "ansible_user": "stack", "virtualenv": "/kolla/venv/bin/python", }, ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_seed") def test_seed_host_configure_both_venvs(self, mock_kolla_run, mock_run, mock_dump): command = commands.SeedHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "seed": { "ansible_python_interpreter": "/kayobe/venv/bin/python", "kayobe_ansible_user": "stack", "kolla_ansible_target_venv": "/kolla/venv/bin/python", } } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={ "ansible_python_interpreter": "/kayobe/venv/bin/python", "ansible_user": "stack", "virtualenv": "/kolla/venv/bin/python", }, ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_seed_host_upgrade(self, mock_run): command = commands.SeedHostUpgrade(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/kayobe-target-venv.yml", "ansible/kolla-target-venv.yml", ], limit="seed", ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_seed_container_image_build(self, mock_run): command = commands.SeedContainerImageBuild(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/container-image-builders-check.yml", "ansible/kolla-build.yml", "ansible/container-image-build.yml" ], extra_vars={ "container_image_sets": ( "{{ seed_container_image_sets }}"), "push_images": False, } ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_seed_container_image_build_with_regex(self, mock_run): command = commands.SeedContainerImageBuild(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args(["--push", "^regex1$", "^regex2$"]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/container-image-builders-check.yml", "ansible/kolla-build.yml", "ansible/container-image-build.yml" ], extra_vars={ "container_image_regexes": "'^regex1$ ^regex2$'", "push_images": True, } ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_seed") def test_service_deploy(self, mock_kolla_run, mock_run): command = commands.SeedServiceDeploy(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, ["ansible/kolla-ansible.yml"], tags="config", ), mock.call( mock.ANY, ["ansible/kolla-bifrost.yml"], ), mock.call( mock.ANY, [ "ansible/overcloud-host-image-workaround-resolv.yml", "ansible/seed-introspection-rules.yml", "ansible/dell-switch-bmp.yml", ], ), ] self.assertEqual(expected_calls, mock_run.call_args_list) expected_calls = [ mock.call( mock.ANY, "deploy-bifrost", ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_overcloud") def test_overcloud_host_configure(self, mock_kolla_run, mock_run, mock_dump): command = commands.OvercloudHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "controller0": {"kayobe_ansible_user": "stack"} } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call(mock.ANY, hosts="overcloud", tags="dump-config") ] self.assertEqual(expected_calls, mock_dump.call_args_list) expected_calls = [ mock.call( mock.ANY, [ "ansible/ip-allocation.yml", "ansible/ssh-known-host.yml", "ansible/kayobe-ansible-user.yml", "ansible/kayobe-target-venv.yml", "ansible/users.yml", "ansible/yum.yml", "ansible/dev-tools.yml", "ansible/disable-selinux.yml", "ansible/network.yml", "ansible/sysctl.yml", "ansible/disable-glean.yml", "ansible/disable-cloud-init.yml", "ansible/ntp.yml", "ansible/lvm.yml", ], limit="overcloud", ), mock.call( mock.ANY, ["ansible/kolla-ansible.yml"], tags="config", ), mock.call( mock.ANY, [ "ansible/kolla-target-venv.yml", "ansible/kolla-host.yml", "ansible/docker.yml", "ansible/ceph-block-devices.yml", ], limit="overcloud", ), ] self.assertEqual(expected_calls, mock_run.call_args_list) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={"ansible_user": "stack"}, ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_overcloud") def test_overcloud_host_configure_kayobe_venv(self, mock_kolla_run, mock_run, mock_dump): command = commands.OvercloudHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "controller0": { "ansible_python_interpreter": "/kayobe/venv/bin/python", "kayobe_ansible_user": "stack", } } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={ "ansible_python_interpreter": "/kayobe/venv/bin/python", "ansible_user": "stack", } ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_overcloud") def test_overcloud_host_configure_kolla_venv(self, mock_kolla_run, mock_run, mock_dump): command = commands.OvercloudHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "controller0": { "kayobe_ansible_user": "stack", "kolla_ansible_target_venv": "/kolla/venv/bin/python", } } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={ "ansible_python_interpreter": "/usr/bin/python", "ansible_user": "stack", "virtualenv": "/kolla/venv/bin/python", } ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_config_dump") @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") @mock.patch.object(commands.KollaAnsibleMixin, "run_kolla_ansible_overcloud") def test_overcloud_host_configure_both_venvs(self, mock_kolla_run, mock_run, mock_dump): command = commands.OvercloudHostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) mock_dump.return_value = { "controller0": { "ansible_python_interpreter": "/kayobe/venv/bin/python", "kayobe_ansible_user": "stack", "kolla_ansible_target_venv": "/kolla/venv/bin/python", } } result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, "bootstrap-servers", extra_vars={ "ansible_python_interpreter": "/kayobe/venv/bin/python", "ansible_user": "stack", "virtualenv": "/kolla/venv/bin/python", } ), ] self.assertEqual(expected_calls, mock_kolla_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_overcloud_host_upgrade(self, mock_run): command = commands.OvercloudHostUpgrade(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/kayobe-target-venv.yml", "ansible/kolla-target-venv.yml", "ansible/overcloud-docker-sdk-upgrade.yml", "ansible/overcloud-etc-hosts-fixup.yml", ], limit="overcloud", ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_overcloud_container_image_build(self, mock_run): command = commands.OvercloudContainerImageBuild(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/container-image-builders-check.yml", "ansible/kolla-build.yml", "ansible/container-image-build.yml" ], extra_vars={ "container_image_sets": ( "{{ overcloud_container_image_sets }}"), "push_images": False, } ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_overcloud_container_image_build_with_regex(self, mock_run): command = commands.OvercloudContainerImageBuild(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args(["--push", "^regex1$", "^regex2$"]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/container-image-builders-check.yml", "ansible/kolla-build.yml", "ansible/container-image-build.yml" ], extra_vars={ "container_image_regexes": "'^regex1$ ^regex2$'", "push_images": True, } ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_overcloud_post_configure(self, mock_run): command = commands.OvercloudPostConfigure(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ 'ansible/overcloud-ipa-images.yml', 'ansible/overcloud-introspection-rules.yml', 'ansible/overcloud-introspection-rules-dell-lldp-workaround.yml', # noqa 'ansible/provision-net.yml', 'ansible/overcloud-grafana-configure.yml' ], ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_baremetal_compute_inspect(self, mock_run): command = commands.BaremetalComputeInspect(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/baremetal-compute-inspect.yml", ], ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_baremetal_compute_manage(self, mock_run): command = commands.BaremetalComputeManage(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/baremetal-compute-manage.yml", ], ), ] self.assertEqual(expected_calls, mock_run.call_args_list) @mock.patch.object(commands.KayobeAnsibleMixin, "run_kayobe_playbooks") def test_baremetal_compute_provide(self, mock_run): command = commands.BaremetalComputeProvide(TestApp(), []) parser = command.get_parser("test") parsed_args = parser.parse_args([]) result = command.run(parsed_args) self.assertEqual(0, result) expected_calls = [ mock.call( mock.ANY, [ "ansible/baremetal-compute-provide.yml", ], ), ] self.assertEqual(expected_calls, mock_run.call_args_list) ```
{ "source": "JovialKnoll/jovial-engine", "score": 3 }
#### File: src/jovialengine/fontwrap.py ```python import pygame class FontWrap(object): __slots__ = ( 'font', 'line_height', '_antialias', ) def __init__(self, font: pygame.font.Font, line_height: int, antialias: bool): self.font = font self.line_height = line_height self._antialias = antialias def renderTo(self, surf: pygame.Surface, dest, text: str, color, background=None): surf.blit(self.font.render(text, self._antialias, color, background), dest) def renderToCentered(self, surf: pygame.Surface, dest, text: str, color, background=None): text_size = self.font.size(text) surf.blit( self.font.render(text, self._antialias, color, background), (dest[0] - text_size[0] // 2, dest[1] - text_size[1] // 2) ) def _calculateLinesForWords(self, width: int, words: list[str]): lines = [words[0].replace('_', ' ')] for word in words[1:]: new_word = word.replace('_', ' ') if self.font.size(lines[-1] + " " + new_word)[0] > width: lines.append(new_word) else: lines[-1] += " " + new_word return lines def renderToInside(self, surf: pygame.Surface, dest, width: int, text: str, color, background=None): # probably more efficient to do once? part_dest = [dest[0], dest[1]] for words in [line.split() for line in text.splitlines()]: if not words: words = [""] lines = self._calculateLinesForWords(width, words) for line in lines: surf.blit( self.font.render(line, self._antialias, color, background), part_dest ) part_dest[1] += self.line_height def _renderWordsInside(self, width: int, words: list[str], color, background): """Returns a surface of the width with the words drawn on it. If any word is too long to fit, it will be in its own line, and truncated. """ lines = self._calculateLinesForWords(width, words) result = pygame.Surface((width, self.line_height * len(lines))).convert() result.fill(background) for i, line in enumerate(lines): drawn_line = self.font.render(line, self._antialias, color, background).convert() result.blit(drawn_line, (0, i * self.line_height)) return result def renderInside(self, width: int, text: str, color, background): # probably more efficient if keeping resultant surface and using that to draw over and over? height = 0 imgs = [] for words in [line.split() for line in text.splitlines()]: if not words: words = [""] imgs.append(self._renderWordsInside(width, words, color, background)) height += imgs[-1].get_height() result = pygame.Surface((width, height)).convert() dest = [0, 0] for img in imgs: result.blit(img, dest) dest[1] += img.get_height() return result ``` #### File: src/jovialengine/modebase.py ```python import abc import typing import pygame import constants class ModeBase(abc.ABC): """This is an abstract object for game modes. """ __slots__ = ( '__pressed_mouse_buttons', '_space', '_background', '_all_sprites', '_camera', 'next_mode', ) def __init__(self): """If you want a mode's space to not share dimension with the screen size, call out to init yourself.""" self._init(constants.SCREEN_SIZE) def _init(self, space_size: tuple[int, int]): self.__pressed_mouse_buttons = dict() self._space = pygame.Surface(space_size).convert() self._background = pygame.Surface(space_size).convert() self._background.fill((255, 255, 255)) self._all_sprites = pygame.sprite.LayeredDirty() self._camera = pygame.rect.Rect((0, 0), constants.SCREEN_SIZE) """All game modes must set the next mode when they are done. Don't create another mode unless you are immediately assigning it to self.next_mode """ self.next_mode = None def cleanup(self): self._all_sprites.empty() def __trackMouseButton(self, event: pygame.event.Event): if event.type == pygame.MOUSEBUTTONDOWN: self.__pressed_mouse_buttons[event.button] = event.pos elif event.type == pygame.MOUSEBUTTONUP: if event.button in self.__pressed_mouse_buttons: del self.__pressed_mouse_buttons[event.button] def _mouseButtonStatus(self, button: int): if button not in self.__pressed_mouse_buttons: return False return self.__pressed_mouse_buttons[button] @abc.abstractmethod def _input(self, event: pygame.event.Event): raise NotImplementedError( type(self).__name__ + "._input(self, event)" ) def _postInput(self): """Handle any input that's checked directly, like joysticks etc.""" pass @typing.final def inputEvents(self, events: typing.Iterable[pygame.event.Event]): """All game modes can take in events.""" for event in events: self._input(event) self.__trackMouseButton(event) self._postInput() def _update(self, dt: int): pass @typing.final def update(self, dt: int): """All game modes can update.""" self._update(dt) self._all_sprites.update(dt) def _updatePreDraw(self, screen: pygame.surface.Surface): pass def _drawPreSprites(self, screen: pygame.surface.Surface): pass def _drawPostSprites(self, screen: pygame.surface.Surface): pass def _drawPostCamera(self, screen: pygame.surface.Surface): pass @typing.final def draw(self, screen: pygame.surface.Surface): """All game modes can draw to the screen""" self._updatePreDraw(screen) self._space.blit(self._background, (0, 0)) self._drawPreSprites(self._space) self._all_sprites.draw(self._space) self._drawPostSprites(self._space) screen.blit(self._space, (0, 0), self._camera) self._drawPostCamera(screen) @staticmethod def _stopMixer(): pygame.mixer.music.stop() pygame.mixer.music.unload() pygame.mixer.stop() ```
{ "source": "JovialKnoll/monsters", "score": 3 }
#### File: monsters/src/anim.py ```python import pygame.mixer from vec2d import Vec2d from saveable import Saveable class Anim(Saveable): __slots__ = ( 'func', 'time', 'pos', 'sound', 'positional_sound', ) def __init__(self, func: str, time: int, x_or_pair, y=None, sound: pygame.mixer.Sound = None, positional_sound: bool = False): self.func = func self.time = time self.pos = Vec2d(x_or_pair, y) self.sound = sound self.positional_sound = positional_sound def save(self): # no sound right now, sorry # if we need it, either start passing sounds as paths # or don't save when there are pending Anims return self.func, self.time, self.pos @classmethod def load(cls, save_data): return cls(*save_data) ``` #### File: monsters/src/animsprite.py ```python from collections import deque import pygame import constants import utility from anim import Anim from vec2d import Vec2d from saveable import Saveable class AnimSprite(pygame.sprite.DirtySprite, Saveable): Binary = 'Binary' Lerp = 'LERP' IncSpeed = 'INC' DecSpeed = 'DEC' IncDecSpeed = 'INC_DEC' DecIncSpeed = 'DEC_INC' funcDict = { Binary: utility.binary, Lerp: utility.lerp, IncSpeed: utility.incSpeedLerp, DecSpeed: utility.decSpeedLerp, IncDecSpeed: utility.incDecSpeedLerp, DecIncSpeed: utility.decIncSpeedLerp, } @classmethod def toFunc(cls, func): return cls.funcDict.get(func, utility.lerp) __slots__ = ( 'anims', 'last_pos', 'time', 'positional_sound', 'sound_channel', ) def __init__(self): super().__init__() # dirty = 2 : always draw self.dirty = 2 self.anims = deque() self.last_pos = None self.time = 0 self.positional_sound = False self.sound_channel = None def save(self): return { 'rect_topleft': self.rect.topleft, 'anims': self.anims, 'last_pos': self.last_pos, 'time': self.time, } @classmethod def load(cls, save_data): new_obj = cls() new_obj.rect.topleft = save_data['rect_topleft'] new_obj.anims = save_data['anims'] new_obj.last_pos = save_data['last_pos'] new_obj.time = save_data['time'] return new_obj def stillAnimating(self): if self.anims: return True return False def update(self, *args): if self.last_pos is None: self.last_pos = self.rect.center # adding dt self.time += args[0] while self.anims and self.time >= self.anims[0].time: done_anim = self.anims.popleft() self.time -= done_anim.time self.rect.center = done_anim.pos self.last_pos = self.rect.center if done_anim.sound: self.positional_sound = done_anim.positional_sound channel = done_anim.sound.play() if self.positional_sound: self.sound_channel = channel if self.anims: current_anim = self.anims[0] func = self.toFunc(current_anim.func) self.rect.center = func( self.last_pos, current_anim.pos, self.time / current_anim.time ) else: self.last_pos = None self.time = 0 if self.positional_sound: if self.sound_channel.get_busy(): pos = min(max(self.rect.centerx / constants.SCREEN_SIZE[0], 0), 1) channel_l = self.boundChannelVolume(utility.cos_curve(pos)) channel_r = self.boundChannelVolume(utility.sin_curve(pos)) self.sound_channel.set_volume(channel_l, channel_r) else: self.positional_sound = False self.sound_channel = None @staticmethod def boundChannelVolume(volume): return .2 + (volume * .8) def addPosAbs(self, func, time, x_or_pair, y=None, sound=None, positional_sound=False): self.anims.append( Anim(func, time, x_or_pair, y, sound, positional_sound) ) def addPosRel(self, func, time, x_or_pair, y=None, sound=None, positional_sound=False): newPos = Vec2d(x_or_pair, y) if self.anims: newPos += self.anims[-1].pos else: newPos += self.rect.center self.addPosAbs(func, time, newPos, sound=sound, positional_sound=positional_sound) def addWait(self, time, sound=None, positional_sound=False): self.addPosRel(AnimSprite.Binary, time, 0, 0, sound, positional_sound) ``` #### File: monsters/src/convopart.py ```python import csv import mode class ConvoChoice(object): __slots__ = ( 'text', 'key', ) def __init__(self, text: str, key: str): self.text = text self.key = key def getNextMode(self): if hasattr(mode, self.key): mode_cls = getattr(mode, self.key) # currently only handling modes that can be created with no arguments return mode_cls return None class ConvoPart(object): __slots__ = ( 'style', 'text', 'choices', ) def __init__(self, style: set[str], text: str, choices: list[ConvoChoice]): self.style = style self.text = text self.choices = choices @staticmethod def getConvoDict(convo_file: str): convo_dict = {} with open(convo_file) as convo_data: convo_reader = csv.reader(convo_data) for row in convo_reader: row_iter = iter(row) key = next(row_iter) if key in convo_dict: raise ValueError(f"The convo file {convo_file} has a duplicate row key {key}.") style = {tag.strip() for tag in next(row_iter).upper().split('|')} text = next(row_iter) choices = [] try: for i in range(len(mode.ModeConvo.buttons)): choice_text = next(row_iter) choice_key = next(row_iter) if choice_key: choice = ConvoChoice(choice_text, choice_key) choices.append(choice) except StopIteration: pass if not choices: raise ValueError(f"The convo file {convo_file} has no choices in the row with key {key}.") convo_part = ConvoPart(style, text, choices) convo_dict[key] = convo_part return convo_dict ``` #### File: src/mode/modegamemenu.py ```python import abc import pygame import constants import shared from save import Save from saveable import Saveable from .mode import Mode class ModeGameMenu(Mode, abc.ABC): MENU_CHAR_WIDTH = 20 MENU_WIDTH = MENU_CHAR_WIDTH * constants.FONT_SIZE SHARED_DISP_TEXT = "Options:\nESC) Go Back\n" __slots__ = ( '_previous_mode', '_old_screen', ) def __init__(self, previous_mode, old_screen=None): super().__init__() self._previous_mode = previous_mode if old_screen is None: old_screen = self._getOldScreen() self._old_screen = old_screen def _getOldScreen(self): old_screen = pygame.Surface(constants.SCREEN_SIZE).convert(shared.display.screen) self._previous_mode.draw(old_screen) old_screen = pygame.transform.smoothscale( pygame.transform.smoothscale( old_screen, (constants.SCREEN_SIZE[0] * 4 // 5, constants.SCREEN_SIZE[1] * 4 // 5) ), constants.SCREEN_SIZE ) return old_screen def _drawScreen(self, screen): screen.blit(self._old_screen, (0, 0)) @classmethod def _drawText(cls, screen, disp_text): shared.font_wrap.renderToInside( screen, (0, 0), cls.MENU_WIDTH, disp_text, False, constants.WHITE, constants.BLACK ) class ModeGameMenuTop(ModeGameMenu): def _input(self, event): if event.type == pygame.QUIT: shared.game_running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: self.next_mode = self._previous_mode elif event.key == pygame.K_1: self.next_mode = ModeGameMenuSave(self._previous_mode, self._old_screen) elif event.key == pygame.K_2: self.next_mode = ModeGameMenuLoad(self._previous_mode, self._old_screen) elif event.key == pygame.K_3: self.next_mode = ModeGameMenuOptions(self._previous_mode, self._old_screen) elif event.key == pygame.K_4: shared.game_running = False def _drawScreen(self, screen): super()._drawScreen(screen) disp_text = self.SHARED_DISP_TEXT disp_text += "1) Save\n2) Load\n3) Options\n4) Quit" self._drawText(screen, disp_text) class ModeGameMenuSave(ModeGameMenu): FILE_EXT = '.sav' __slots__ = ( '_save_name', '_cursor_position', '_confirm_overwrite', '_save_success', '_cursor_switch', '_cursor_timer', ) def __init__(self, previous_mode, old_screen=None): super().__init__(previous_mode, old_screen) self._save_name = '' self._resetCursorBlink() self._cursor_position = 0 self._confirm_overwrite = False self._save_success = None def _resetCursorBlink(self): self._cursor_switch = True self._cursor_timer = 0 def _input(self, event): if event.type == pygame.QUIT: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif event.type == pygame.KEYDOWN: char = event.unicode length = len(self._save_name) if self._save_success: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif event.key == pygame.K_ESCAPE: if self._confirm_overwrite: self._confirm_overwrite = False self._save_success = None else: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif event.key == pygame.K_RETURN: if self._save_name and isinstance(self._previous_mode, Saveable): if Save.willOverwrite(self._save_name + self.FILE_EXT) and not self._confirm_overwrite: self._confirm_overwrite = True elif not self._save_success: new_save = Save.getFromMode(self._save_name + self.FILE_EXT, self._previous_mode) self._save_success = new_save.save() elif event.key == pygame.K_LEFT: self._cursor_position = max(self._cursor_position - 1, 0) self._resetCursorBlink() elif event.key == pygame.K_RIGHT: self._cursor_position = min(self._cursor_position + 1, length) self._resetCursorBlink() elif event.key in (pygame.K_UP, pygame.K_HOME): self._cursor_position = 0 self._resetCursorBlink() elif event.key in (pygame.K_DOWN, pygame.K_END): self._cursor_position = length self._resetCursorBlink() elif event.key == pygame.K_DELETE: self._save_name = self._save_name[:self._cursor_position] + self._save_name[self._cursor_position + 1:] self._resetCursorBlink() elif event.key == pygame.K_BACKSPACE: if self._cursor_position > 0: self._save_name = self._save_name[:self._cursor_position - 1] \ + self._save_name[self._cursor_position:] self._cursor_position -= 1 self._resetCursorBlink() elif ( length < (self.MENU_CHAR_WIDTH - len(self.FILE_EXT) - 1) and ( # numbers ('0' <= char <= '9') # or letters or (96 < event.key < 123) ) ): self._save_name = self._save_name[:self._cursor_position] \ + char \ + self._save_name[self._cursor_position:] self._cursor_position += 1 self._resetCursorBlink() def _update(self, dt): self._cursor_timer += dt if self._cursor_timer >= constants.CURSOR_TIME: self._cursor_switch = not self._cursor_switch self._cursor_timer -= constants.CURSOR_TIME def _drawScreen(self, screen): super()._drawScreen(screen) disp_text = self.SHARED_DISP_TEXT if not isinstance(self._previous_mode, Saveable): disp_text += "\nYou can't save now." elif not self._save_success: disp_text += "ENTER) Save\nType a file name:\n>" if self._save_name: disp_text += self._save_name disp_text += self.FILE_EXT if self._confirm_overwrite and self._save_success is None: disp_text += "\nThis will overwrite an existing save file." \ + "\nPress ENTER again to confirm, or ESC to go back." elif self._save_success is False: disp_text += "\nSave failed.\nPress ENTER to try again, or ESC to go back." else: disp_text += "\nSaved successfully.\nPress any key to go back." self._drawText(screen, disp_text) if self._cursor_switch and not self._confirm_overwrite and self._save_success is None: screen.fill( constants.WHITE, ( ((self._cursor_position + 1) * constants.FONT_SIZE, 4 * constants.FONT_HEIGHT), (1, constants.FONT_HEIGHT) ) ) class ModeGameMenuLoad(ModeGameMenu): __slots__ = ( '_saves', '_save_index', '_loaded_save', ) def __init__(self, previous_mode, old_screen=None): super().__init__(previous_mode, old_screen) self._saves = Save.getAllFromFiles() self._save_index = 0 self._loaded_save = False def _input(self, event): if event.type == pygame.QUIT: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE or self._loaded_save: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif len(self._saves) > 0: if event.key in (pygame.K_UP, pygame.K_LEFT): self._save_index = max(self._save_index - 1, 0) pass elif event.key in (pygame.K_DOWN, pygame.K_RIGHT): self._save_index = min(self._save_index + 1, len(self._saves) - 1) pass elif event.key == pygame.K_RETURN: self._stopMixer() self._previous_mode = self._saves[self._save_index].load() pygame.mixer.music.pause() pygame.mixer.pause() self._old_screen = self._getOldScreen() self._loaded_save = True pass def _drawScreen(self, screen): super()._drawScreen(screen) disp_text = self.SHARED_DISP_TEXT if len(self._saves) == 0: disp_text += "\nThere are no save files to select from." elif self._loaded_save: disp_text += "\nLoaded successfully.\nPress any key to go back." else: disp_text += "ENTER) Load\nARROW KEYS) Select a file:" for i in range(-1, 2): disp_text += "\n" this_index = self._save_index + i if i == 0: disp_text += ">" else: disp_text += "_" if 0 <= this_index < len(self._saves): disp_text += self._saves[this_index].file_name self._drawText(screen, disp_text) class ModeGameMenuOptions(ModeGameMenu): def _input(self, event): if event.type == pygame.QUIT: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif event.type == pygame.KEYUP: if event.key in ( pygame.K_DOWN, pygame.K_s, pygame.K_LEFT, pygame.K_a, pygame.K_PAGEDOWN, pygame.K_MINUS, ): shared.display.changeScale(-1) elif event.key in ( pygame.K_UP, pygame.K_w, pygame.K_RIGHT, pygame.K_d, pygame.K_PAGEUP, pygame.K_EQUALS, ): shared.display.changeScale(1) elif event.key in (pygame.K_f, pygame.K_F11,): shared.display.toggleFullscreen() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: self.next_mode = ModeGameMenuTop(self._previous_mode, self._old_screen) elif '1' <= event.unicode <= '9': target_scale = int(event.unicode) shared.display.setScale(target_scale) def _drawScreen(self, screen): super()._drawScreen(screen) disp_text = self.SHARED_DISP_TEXT disp_text += f"ARROWS) Upscaling: {shared.display.upscale}" \ f"\nF) Fullscreen: {self.getTickBox(shared.display.is_fullscreen)}" self._drawText(screen, disp_text) @staticmethod def getTickBox(value: bool): inside = "X" if value else "_" return f"[{inside}]" ``` #### File: src/mode/modemonconvotest.py ```python import shared from monster import Monster from .modefight import ModeFight from .modeconvo import ModeConvo class ModeMonConvoTest(ModeConvo): def _handleButton(self, prev_convo_key: str, index: int): if index == 1: print("Really anything can happen here.") self._stopMixer() self.next_mode = ModeFight( shared.state.protag_mon, Monster.atLevel(0), lambda: ModeMonConvoTest(), ) return True elif index == 3: print("The other main thing would be to have pressing a button change the mode.\n" + "It could set variables and then change the mode.") return False ``` #### File: src/mode/modeopening3.py ```python import random from collections import deque import pygame import constants import shared from monster import Monster from .modeintroduction0 import ModeIntroduction0 from .modeopening import ModeOpening class ModeOpening3(ModeOpening): GROUND_LEVEL = constants.SCREEN_SIZE[1] - 8 CENTER_TIME = 2500 TRANSITION_TIME = 750 EMPTY_TIME = 250 FULL_MONSTER_WAIT_TIME = EMPTY_TIME + TRANSITION_TIME + CENTER_TIME + TRANSITION_TIME __slots__ = ( 'monsters', 'wait_time', 'last_level', 'background', 'initial_wait_time', ) def __init__(self): super().__init__() # static elements setup self.background = pygame.Surface(constants.SCREEN_SIZE).convert(shared.display.screen) self.background.fill(constants.WHITE) shared.font_wrap.renderToCentered( self.background, (constants.SCREEN_SIZE[0] // 2, constants.SCREEN_SIZE[1] // 2 + 4), "press any key to start", False, constants.BLACK ) logo = pygame.image.load(constants.CHIKKAI_LOGO).convert(shared.display.screen) self.background.blit( logo, ( constants.SCREEN_SIZE[0] // 2 - logo.get_width() // 2, constants.SCREEN_SIZE[1] // 4 - logo.get_height() // 2, ) ) # monster loop setup self.last_level = 3 self.monsters = deque((), 3) monster = self._getMonster(0, 3) # start the first one in the center monster.rect.midbottom = (constants.SCREEN_SIZE[0] // 2, self.GROUND_LEVEL) monster.anims.popleft() monster.anims.popleft() self.monsters.append(monster) self.wait_time = self.CENTER_TIME + self.TRANSITION_TIME self.monsters.append(self._getMonster(self.wait_time)) self.wait_time += self.FULL_MONSTER_WAIT_TIME self.monsters.append(self._getMonster(self.wait_time)) self.wait_time += self.FULL_MONSTER_WAIT_TIME self.initial_wait_time = self.wait_time def _getMonster(self, wait_time, level=None): # wait_time is how much time until the previous mon is off the screen if level is None: level = random.choice( [i for i in range(1, 4) if i != self.last_level] ) monster = Monster.atLevel(level) self.last_level = level self.all_sprites.add(monster) monster.rect.midbottom = ( constants.SCREEN_SIZE[0] + monster.rect.width // 2, self.GROUND_LEVEL ) monster.addWait(wait_time + self.EMPTY_TIME) monster.addPosAbs( Monster.Lerp, self.TRANSITION_TIME, constants.SCREEN_SIZE[0] // 2, self.GROUND_LEVEL - monster.rect.height // 2 ) monster.addWait(self.CENTER_TIME) monster.addPosAbs( Monster.Lerp, self.TRANSITION_TIME, monster.rect.width // -2, self.GROUND_LEVEL - monster.rect.height // 2 ) return monster def _switchMode(self): self.next_mode = ModeIntroduction0() def _update(self, dt): self.wait_time -= dt # every so often, set up additional looping monsters here, so we don't run out if self.wait_time < self.initial_wait_time - self.FULL_MONSTER_WAIT_TIME: monster = self._getMonster(self.wait_time) self.monsters[0].kill() self.monsters.append(monster) self.wait_time += self.FULL_MONSTER_WAIT_TIME def _drawScreen(self, screen): screen.blit(self.background, (0, 0)) ``` #### File: monsters/src/saveable.py ```python import sys import abc import json from collections import deque class Saveable(abc.ABC): @abc.abstractmethod def save(self): """Return a serializable object representing all the information that should be saved from this object.""" raise NotImplementedError( type(self).__name__ + ".saveMode(self)" ) @classmethod @abc.abstractmethod def load(cls, save_data): """Take in an object (the result of a call to save()), and return an instance of this object.""" raise NotImplementedError( cls.__name__ + ".loadMode(cls, saveData)" ) KEY_COLLECTION = 'COLLECTION' COLLECTION_DEQUE = 'DEQUE' COLLECTION_SET = 'SET' KEY_ELEMENTS = 'ELEMENTS' KEY_MAXLEN = 'MAXLEN' KEY_MODULE = 'MODULE' KEY_CLASS = 'CLASS' KEY_SAVEABLE = 'SAVEABLE' class SaveableJSONEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, deque): return { KEY_COLLECTION: COLLECTION_DEQUE, KEY_ELEMENTS: list(o), KEY_MAXLEN: o.maxlen, } elif isinstance(o, set): return { KEY_COLLECTION: COLLECTION_SET, KEY_ELEMENTS: list(o), } elif isinstance(o, type): return { KEY_MODULE: o.__module__, KEY_CLASS: o.__qualname__, } elif isinstance(o, Saveable): return { KEY_MODULE: type(o).__module__, KEY_CLASS: type(o).__qualname__, KEY_SAVEABLE: o.save(), } return super().default(o) def _getClass(dct: dict): attr = sys.modules[dct[KEY_MODULE]] for name in dct[KEY_CLASS].split('.'): attr = getattr(attr, name) return attr def decodeSaveable(dct: dict): if KEY_COLLECTION in dct: if dct[KEY_COLLECTION] == COLLECTION_DEQUE: return deque(dct[KEY_ELEMENTS], dct[KEY_MAXLEN]) elif dct[KEY_COLLECTION] == COLLECTION_SET: return set(dct[KEY_ELEMENTS]) elif {KEY_MODULE, KEY_CLASS} == dct.keys(): return _getClass(dct) elif {KEY_MODULE, KEY_CLASS, KEY_SAVEABLE} == dct.keys(): saveable_class = _getClass(dct) return saveable_class.load(dct[KEY_SAVEABLE]) return dct ``` #### File: monsters/src/save.py ```python import os import json import constants import shared import saveable import mode from state import State class Save(object): __slots__ = ( 'file_name', '_mode_name', '_mode_data', '_shared_data', ) def __init__(self, file_name: str, mode_name: str, mode_data, shared_data): self.file_name = file_name self._mode_name = mode_name self._mode_data = mode_data self._shared_data = shared_data @staticmethod def willOverwrite(file_name: str): return os.path.exists( os.path.join(constants.SAVE_DIRECTORY, file_name) ) @staticmethod def _getSaveFiles(): if not os.path.isdir(constants.SAVE_DIRECTORY): return () return ( file_name for file_name in os.listdir(constants.SAVE_DIRECTORY) if os.path.isfile( os.path.join(constants.SAVE_DIRECTORY, file_name) ) ) @classmethod def getAllFromFiles(cls): return tuple( sorted( ( save for save in ( cls.getFromFile(file) for file in cls._getSaveFiles() ) if save ), key=lambda s: (s.file_name.lower(), s.file_name) ) ) @classmethod def getFromFile(cls, file_name: str): file_path = os.path.join(constants.SAVE_DIRECTORY, file_name) try: with open(file_path, 'r') as file: save_object = json.load(file, object_hook=saveable.decodeSaveable) return cls(file_name, save_object['mode_name'], save_object['mode_data'], save_object['shared_data']) except (IOError, json.decoder.JSONDecodeError): return False @classmethod def getFromMode(cls, file_name: str, from_mode: saveable.Saveable): return cls(file_name, type(from_mode).__name__, from_mode.save(), shared.state.save()) def save(self): try: os.mkdir(constants.SAVE_DIRECTORY) except FileExistsError: pass save_object = { 'mode_name': self._mode_name, 'mode_data': self._mode_data, 'shared_data': self._shared_data, } file_path = os.path.join(constants.SAVE_DIRECTORY, self.file_name) try: with open(file_path, 'w') as file: json.dump(save_object, file, cls=saveable.SaveableJSONEncoder) return True except IOError: return False def load(self): shared.state = State.load(self._shared_data) mode_cls = getattr(mode, self._mode_name) new_mode = mode_cls.load(self._mode_data) return new_mode ```
{ "source": "jovial/netmiko", "score": 2 }
#### File: netmiko/juniper/juniper.py ```python from __future__ import unicode_literals import re import time from netmiko.base_connection import BaseConnection from netmiko.scp_handler import BaseFileTransfer from netmiko.py23_compat import text_type class JuniperBase(BaseConnection): """ Implement methods for interacting with Juniper Networks devices. Disables `enable()` and `check_enable_mode()` methods. Overrides several methods for Juniper-specific compatibility. """ def session_preparation(self): """ Prepare the session after the connection has been established. Disable paging (the '--more--' prompts). Set the base prompt for interaction ('>'). """ self._test_channel_read() self.enter_cli_mode() self.set_base_prompt() self.disable_paging(command="set cli screen-length 0") self.set_terminal_width(command='set cli screen-width 511') # Clear the read buffer time.sleep(.3 * self.global_delay_factor) self.clear_buffer() def _enter_shell(self): """Enter the Bourne Shell.""" return self.send_command('start shell sh', expect_string=r"[\$#]") def _return_cli(self): """Return to the Juniper CLI.""" return self.send_command('exit', expect_string=r"[#>]") def enter_cli_mode(self): """Check if at shell prompt root@ and go into CLI.""" delay_factor = self.select_delay_factor(delay_factor=0) count = 0 cur_prompt = '' while count < 50: self.write_channel(self.RETURN) time.sleep(.1 * delay_factor) cur_prompt = self.read_channel() if re.search(r'root@', cur_prompt) or re.search(r"^%$", cur_prompt.strip()): self.write_channel("cli" + self.RETURN) time.sleep(.3 * delay_factor) self.clear_buffer() break elif '>' in cur_prompt or '#' in cur_prompt: break count += 1 def check_enable_mode(self, *args, **kwargs): """No enable mode on Juniper.""" pass def enable(self, *args, **kwargs): """No enable mode on Juniper.""" pass def exit_enable_mode(self, *args, **kwargs): """No enable mode on Juniper.""" pass def check_config_mode(self, check_string=']'): """Checks if the device is in configuration mode or not.""" return super(JuniperBase, self).check_config_mode(check_string=check_string) def config_mode(self, config_command='configure'): """Enter configuration mode.""" return super(JuniperBase, self).config_mode(config_command=config_command) def exit_config_mode(self, exit_config='exit configuration-mode'): """Exit configuration mode.""" output = "" if self.check_config_mode(): output = self.send_command_timing(exit_config, strip_prompt=False, strip_command=False) if 'Exit with uncommitted changes?' in output: output += self.send_command_timing('yes', strip_prompt=False, strip_command=False) if self.check_config_mode(): raise ValueError("Failed to exit configuration mode") return output def commit(self, confirm=False, confirm_delay=None, check=False, comment='', and_quit=False, delay_factor=1): """ Commit the candidate configuration. Commit the entered configuration. Raise an error and return the failure if the commit fails. Automatically enters configuration mode default: command_string = commit check and (confirm or confirm_dely or comment): Exception confirm_delay and no confirm: Exception confirm: confirm_delay option comment option command_string = commit confirmed or commit confirmed <confirm_delay> check: command_string = commit check """ delay_factor = self.select_delay_factor(delay_factor) if check and (confirm or confirm_delay or comment): raise ValueError("Invalid arguments supplied with commit check") if confirm_delay and not confirm: raise ValueError("Invalid arguments supplied to commit method both confirm and check") # Select proper command string based on arguments provided command_string = 'commit' commit_marker = 'commit complete' if check: command_string = 'commit check' commit_marker = 'configuration check succeeds' elif confirm: if confirm_delay: command_string = 'commit confirmed ' + text_type(confirm_delay) else: command_string = 'commit confirmed' commit_marker = 'commit confirmed will be automatically rolled back in' # wrap the comment in quotes if comment: if '"' in comment: raise ValueError("Invalid comment contains double quote") comment = '"{0}"'.format(comment) command_string += ' comment ' + comment if and_quit: command_string += ' and-quit' # Enter config mode (if necessary) output = self.config_mode() # and_quit will get out of config mode on commit if and_quit: prompt = self.base_prompt output += self.send_command_expect(command_string, expect_string=prompt, strip_prompt=False, strip_command=False, delay_factor=delay_factor) else: output += self.send_command_expect(command_string, strip_prompt=False, strip_command=False, delay_factor=delay_factor) if commit_marker not in output: raise ValueError("Commit failed with the following errors:\n\n{0}" .format(output)) return output def strip_prompt(self, *args, **kwargs): """Strip the trailing router prompt from the output.""" a_string = super(JuniperBase, self).strip_prompt(*args, **kwargs) return self.strip_context_items(a_string) def strip_context_items(self, a_string): """Strip Juniper-specific output. Juniper will also put a configuration context: [edit] and various chassis contexts: {master:0}, {backup:1} This method removes those lines. """ strings_to_strip = [ r'\[edit.*\]', r'\{master:.*\}', r'\{backup:.*\}', r'\{line.*\}', r'\{primary.*\}', r'\{secondary.*\}', ] response_list = a_string.split(self.RESPONSE_RETURN) last_line = response_list[-1] for pattern in strings_to_strip: if re.search(pattern, last_line): return self.RESPONSE_RETURN.join(response_list[:-1]) return a_string class JuniperSSH(JuniperBase): pass class JuniperTelnet(JuniperBase): def __init__(self, *args, **kwargs): default_enter = kwargs.get('default_enter') kwargs['default_enter'] = '\r\n' if default_enter is None else default_enter super(JuniperTelnet, self).__init__(*args, **kwargs) class JuniperFileTransfer(BaseFileTransfer): """Juniper SCP File Transfer driver.""" def __init__(self, ssh_conn, source_file, dest_file, file_system="/var/tmp", direction='put'): return super(JuniperFileTransfer, self).__init__(ssh_conn=ssh_conn, source_file=source_file, dest_file=dest_file, file_system=file_system, direction=direction) def remote_space_available(self, search_pattern=""): """Return space available on remote device.""" return self._remote_space_available_unix(search_pattern=search_pattern) def check_file_exists(self, remote_cmd=""): """Check if the dest_file already exists on the file system (return boolean).""" return self._check_file_exists_unix(remote_cmd=remote_cmd) def remote_file_size(self, remote_cmd="", remote_file=None): """Get the file size of the remote file.""" return self._remote_file_size_unix(remote_cmd=remote_cmd, remote_file=remote_file) def remote_md5(self, base_cmd='file checksum md5', remote_file=None): return super(JuniperFileTransfer, self).remote_md5(base_cmd=base_cmd, remote_file=remote_file) def enable_scp(self, cmd=None): raise NotImplementedError def disable_scp(self, cmd=None): raise NotImplementedError ``` #### File: netmiko/tests/test_netmiko_sesssion_log.py ```python from __future__ import print_function from __future__ import unicode_literals import time import hashlib import io from netmiko import ConnectHandler def calc_md5(file_name=None, contents=None): """Compute MD5 hash of file.""" if contents is not None: pass elif file_name: with open(file_name, "rb") as f: contents = f.read() else: raise ValueError("Most specify either file_name or contents") return hashlib.md5(contents).hexdigest() def read_session_log(session_file, append=False): """Leading white-space can vary. Strip off leading white-space.""" with open(session_file, "rb") as f: if append is True: line = f.readline().decode() assert 'Initial file contents' in line log_content = f.read().lstrip() return log_content def session_action(my_connect, command): """Common actions in the netmiko session to generate the session log.""" time.sleep(1) my_connect.clear_buffer() output = my_connect.send_command(command) my_connect.disconnect() return output def session_log_md5(session_file, compare_file): """Compare the session_log MD5 to the compare_file MD5""" compare_log_md5 = calc_md5(file_name=compare_file) log_content = read_session_log(session_file) session_log_md5 = calc_md5(contents=log_content) assert session_log_md5 == compare_log_md5 def session_log_md5_append(session_file, compare_file): """Compare the session_log MD5 to the compare_file MD5""" compare_log_md5 = calc_md5(file_name=compare_file) log_content = read_session_log(session_file, append=True) session_log_md5 = calc_md5(contents=log_content) assert session_log_md5 == compare_log_md5 def test_session_log(net_connect, commands, expected_responses): """Verify session_log matches expected content.""" command = commands["basic"] session_action(net_connect, command) compare_file = expected_responses['compare_log'] session_file = expected_responses['session_log'] session_log_md5(session_file, compare_file) def test_session_log_write(net_connect_slog_wr, commands, expected_responses): """Verify session_log matches expected content, but when channel writes are also logged.""" command = commands["basic"] session_action(net_connect_slog_wr, command) compare_file = expected_responses['compare_log_wr'] session_file = expected_responses['session_log'] session_log_md5(session_file, compare_file) def test_session_log_append(device_slog, commands, expected_responses): """Verify session_log matches expected content, but when channel writes are also logged.""" session_file = expected_responses['session_log_append'] # Create a starting file with open(session_file, "wb") as f: f.write(b"Initial file contents\n\n") # The netmiko connection has not been established yet. device_slog['session_log'] = session_file conn = ConnectHandler(**device_slog) command = commands["basic"] session_action(conn, command) compare_file = expected_responses['compare_log_append'] session_log_md5_append(session_file, compare_file) def test_session_log_bytesio(device_slog, commands, expected_responses): """Verify session_log matches expected content, but when channel writes are also logged.""" s_log = io.BytesIO() # The netmiko connection has not been established yet. device_slog['session_log'] = s_log device_slog['session_log_file_mode'] = 'write' conn = ConnectHandler(**device_slog) command = commands["basic"] session_action(conn, command) compare_file = expected_responses['compare_log'] compare_log_md5 = calc_md5(file_name=compare_file) log_content = s_log.getvalue() session_log_md5 = calc_md5(contents=log_content) assert session_log_md5 == compare_log_md5 ```
{ "source": "jovial/nova", "score": 2 }
#### File: placement/handlers/resource_provider.py ```python from oslo_db import exception as db_exc from oslo_serialization import jsonutils from oslo_utils import encodeutils from oslo_utils import timeutils from oslo_utils import uuidutils import webob from nova.api.openstack.placement import errors from nova.api.openstack.placement import exception from nova.api.openstack.placement import microversion from nova.api.openstack.placement.objects import resource_provider as rp_obj from nova.api.openstack.placement.policies import resource_provider as policies from nova.api.openstack.placement.schemas import resource_provider as rp_schema from nova.api.openstack.placement import util from nova.api.openstack.placement import wsgi_wrapper from nova.i18n import _ def _serialize_links(environ, resource_provider): url = util.resource_provider_url(environ, resource_provider) links = [{'rel': 'self', 'href': url}] rel_types = ['inventories', 'usages'] want_version = environ[microversion.MICROVERSION_ENVIRON] if want_version >= (1, 1): rel_types.append('aggregates') if want_version >= (1, 6): rel_types.append('traits') if want_version >= (1, 11): rel_types.append('allocations') for rel in rel_types: links.append({'rel': rel, 'href': '%s/%s' % (url, rel)}) return links def _serialize_provider(environ, resource_provider, want_version): data = { 'uuid': resource_provider.uuid, 'name': resource_provider.name, 'generation': resource_provider.generation, 'links': _serialize_links(environ, resource_provider) } if want_version.matches((1, 14)): data['parent_provider_uuid'] = resource_provider.parent_provider_uuid data['root_provider_uuid'] = resource_provider.root_provider_uuid return data def _serialize_providers(environ, resource_providers, want_version): output = [] last_modified = None get_last_modified = want_version.matches((1, 15)) for provider in resource_providers: if get_last_modified: last_modified = util.pick_last_modified(last_modified, provider) provider_data = _serialize_provider(environ, provider, want_version) output.append(provider_data) last_modified = last_modified or timeutils.utcnow(with_timezone=True) return ({"resource_providers": output}, last_modified) @wsgi_wrapper.PlacementWsgify @util.require_content('application/json') def create_resource_provider(req): """POST to create a resource provider. On success return a 201 response with an empty body and a location header pointing to the newly created resource provider. """ context = req.environ['placement.context'] context.can(policies.CREATE) schema = rp_schema.POST_RESOURCE_PROVIDER_SCHEMA want_version = req.environ[microversion.MICROVERSION_ENVIRON] if want_version.matches((1, 14)): schema = rp_schema.POST_RP_SCHEMA_V1_14 data = util.extract_json(req.body, schema) try: uuid = data.setdefault('uuid', uuidutils.generate_uuid()) resource_provider = rp_obj.ResourceProvider(context, **data) resource_provider.create() except db_exc.DBDuplicateEntry as exc: # Whether exc.columns has one or two entries (in the event # of both fields being duplicates) appears to be database # dependent, so going with the complete solution here. duplicate = ', '.join(['%s: %s' % (column, data[column]) for column in exc.columns]) raise webob.exc.HTTPConflict( _('Conflicting resource provider %(duplicate)s already exists.') % {'duplicate': duplicate}, comment=errors.DUPLICATE_NAME) except exception.ObjectActionError as exc: raise webob.exc.HTTPBadRequest( _('Unable to create resource provider "%(name)s", %(rp_uuid)s: ' '%(error)s') % {'name': data['name'], 'rp_uuid': uuid, 'error': exc}) req.response.location = util.resource_provider_url( req.environ, resource_provider) if want_version.matches(min_version=(1, 20)): req.response.body = encodeutils.to_utf8(jsonutils.dumps( _serialize_provider(req.environ, resource_provider, want_version))) req.response.content_type = 'application/json' modified = util.pick_last_modified(None, resource_provider) req.response.last_modified = modified req.response.cache_control = 'no-cache' else: req.response.status = 201 req.response.content_type = None return req.response @wsgi_wrapper.PlacementWsgify def delete_resource_provider(req): """DELETE to destroy a single resource provider. On success return a 204 and an empty body. """ uuid = util.wsgi_path_item(req.environ, 'uuid') context = req.environ['placement.context'] context.can(policies.DELETE) # The containing application will catch a not found here. try: resource_provider = rp_obj.ResourceProvider.get_by_uuid( context, uuid) resource_provider.destroy() except exception.ResourceProviderInUse as exc: raise webob.exc.HTTPConflict( _('Unable to delete resource provider %(rp_uuid)s: %(error)s') % {'rp_uuid': uuid, 'error': exc}, comment=errors.PROVIDER_IN_USE) except exception.NotFound as exc: raise webob.exc.HTTPNotFound( _("No resource provider with uuid %s found for delete") % uuid) except exception.CannotDeleteParentResourceProvider as exc: raise webob.exc.HTTPConflict( _("Unable to delete parent resource provider %(rp_uuid)s: " "It has child resource providers.") % {'rp_uuid': uuid}, comment=errors.PROVIDER_CANNOT_DELETE_PARENT) req.response.status = 204 req.response.content_type = None return req.response @wsgi_wrapper.PlacementWsgify @util.check_accept('application/json') def get_resource_provider(req): """Get a single resource provider. On success return a 200 with an application/json body representing the resource provider. """ want_version = req.environ[microversion.MICROVERSION_ENVIRON] uuid = util.wsgi_path_item(req.environ, 'uuid') context = req.environ['placement.context'] context.can(policies.SHOW) # The containing application will catch a not found here. resource_provider = rp_obj.ResourceProvider.get_by_uuid( context, uuid) response = req.response response.body = encodeutils.to_utf8(jsonutils.dumps( _serialize_provider(req.environ, resource_provider, want_version))) response.content_type = 'application/json' if want_version.matches((1, 15)): modified = util.pick_last_modified(None, resource_provider) response.last_modified = modified response.cache_control = 'no-cache' return response @wsgi_wrapper.PlacementWsgify @util.check_accept('application/json') def list_resource_providers(req): """GET a list of resource providers. On success return a 200 and an application/json body representing a collection of resource providers. """ context = req.environ['placement.context'] context.can(policies.LIST) want_version = req.environ[microversion.MICROVERSION_ENVIRON] schema = rp_schema.GET_RPS_SCHEMA_1_0 if want_version.matches((1, 18)): schema = rp_schema.GET_RPS_SCHEMA_1_18 elif want_version.matches((1, 14)): schema = rp_schema.GET_RPS_SCHEMA_1_14 elif want_version.matches((1, 4)): schema = rp_schema.GET_RPS_SCHEMA_1_4 elif want_version.matches((1, 3)): schema = rp_schema.GET_RPS_SCHEMA_1_3 allow_forbidden = want_version.matches((1, 22)) util.validate_query_params(req, schema) filters = {} # special handling of member_of qparam since we allow multiple member_of # params at microversion 1.24. if 'member_of' in req.GET: filters['member_of'] = util.normalize_member_of_qs_params(req) qpkeys = ('uuid', 'name', 'in_tree', 'resources', 'required') for attr in qpkeys: if attr in req.GET: value = req.GET[attr] if attr == 'resources': value = util.normalize_resources_qs_param(value) elif attr == 'required': value = util.normalize_traits_qs_param( value, allow_forbidden=allow_forbidden) filters[attr] = value try: resource_providers = rp_obj.ResourceProviderList.get_all_by_filters( context, filters) except exception.ResourceClassNotFound as exc: raise webob.exc.HTTPBadRequest( _('Invalid resource class in resources parameter: %(error)s') % {'error': exc}) except exception.TraitNotFound as exc: raise webob.exc.HTTPBadRequest( _('Invalid trait(s) in "required" parameter: %(error)s') % {'error': exc}) response = req.response output, last_modified = _serialize_providers( req.environ, resource_providers, want_version) response.body = encodeutils.to_utf8(jsonutils.dumps(output)) response.content_type = 'application/json' if want_version.matches((1, 15)): response.last_modified = last_modified response.cache_control = 'no-cache' return response @wsgi_wrapper.PlacementWsgify @util.require_content('application/json') def update_resource_provider(req): """PUT to update a single resource provider. On success return a 200 response with a representation of the updated resource provider. """ uuid = util.wsgi_path_item(req.environ, 'uuid') context = req.environ['placement.context'] context.can(policies.UPDATE) want_version = req.environ[microversion.MICROVERSION_ENVIRON] # The containing application will catch a not found here. resource_provider = rp_obj.ResourceProvider.get_by_uuid( context, uuid) schema = rp_schema.PUT_RESOURCE_PROVIDER_SCHEMA if want_version.matches((1, 14)): schema = rp_schema.PUT_RP_SCHEMA_V1_14 data = util.extract_json(req.body, schema) for field in rp_obj.ResourceProvider.SETTABLE_FIELDS: if field in data: setattr(resource_provider, field, data[field]) try: resource_provider.save() except db_exc.DBDuplicateEntry as exc: raise webob.exc.HTTPConflict( _('Conflicting resource provider %(name)s already exists.') % {'name': data['name']}, comment=errors.DUPLICATE_NAME) except exception.ObjectActionError as exc: raise webob.exc.HTTPBadRequest( _('Unable to save resource provider %(rp_uuid)s: %(error)s') % {'rp_uuid': uuid, 'error': exc}) response = req.response response.status = 200 response.body = encodeutils.to_utf8(jsonutils.dumps( _serialize_provider(req.environ, resource_provider, want_version))) response.content_type = 'application/json' if want_version.matches((1, 15)): response.last_modified = resource_provider.updated_at response.cache_control = 'no-cache' return response ``` #### File: openstack/placement/test_direct.py ```python from oslo_config import cfg from nova.api.openstack.placement import direct from nova.api.openstack.placement.objects import resource_provider from nova import context from nova import test from nova.tests import fixtures from nova.tests import uuidsentinel CONF = cfg.CONF # FIXME(cdent): some dupes with db/test_base.py class TestDirect(test.NoDBTestCase): USES_DB_SELF = True def setUp(self): super(TestDirect, self).setUp() self.api_db = self.useFixture(fixtures.Database(database='placement')) self._reset_traits_synced() self.context = context.get_admin_context() self.addCleanup(self._reset_traits_synced) @staticmethod def _reset_traits_synced(): """Reset the _TRAITS_SYNCED boolean to base state.""" resource_provider._TRAITS_SYNCED = False def test_direct_is_there(self): with direct.PlacementDirect(CONF) as client: resp = client.get('/') self.assertTrue(resp) data = resp.json() self.assertEqual('v1.0', data['versions'][0]['id']) def test_get_resource_providers(self): with direct.PlacementDirect(CONF) as client: resp = client.get('/resource_providers') self.assertTrue(resp) data = resp.json() self.assertEqual([], data['resource_providers']) def test_create_resource_provider(self): data = {'name': 'fake'} with direct.PlacementDirect(CONF) as client: resp = client.post('/resource_providers', json=data) self.assertTrue(resp) resp = client.get('/resource_providers') self.assertTrue(resp) data = resp.json() self.assertEqual(1, len(data['resource_providers'])) def test_json_validation_happens(self): data = {'name': 'fake', 'cowsay': 'moo'} with direct.PlacementDirect(CONF) as client: resp = client.post('/resource_providers', json=data) self.assertFalse(resp) self.assertEqual(400, resp.status_code) def test_microversion_handling(self): with direct.PlacementDirect(CONF) as client: # create parent parent_data = {'name': uuidsentinel.p_rp, 'uuid': uuidsentinel.p_rp} resp = client.post('/resource_providers', json=parent_data) self.assertTrue(resp, resp.text) # attempt to create child data = {'name': 'child', 'parent_provider_uuid': uuidsentinel.p_rp} # no microversion, 400 resp = client.post('/resource_providers', json=data) self.assertFalse(resp) self.assertEqual(400, resp.status_code) # low microversion, 400 resp = client.post('/resource_providers', json=data, microversion='1.13') self.assertFalse(resp) self.assertEqual(400, resp.status_code) resp = client.post('/resource_providers', json=data, microversion='1.14') self.assertTrue(resp, resp.text) ```
{ "source": "jovial/PerfKitBenchmarker", "score": 2 }
#### File: PerfKitBenchmarker/perfkitbenchmarker/messaging_service.py ```python import abc import os from typing import Any, Dict from perfkitbenchmarker import resource MESSAGING_SERVICE_DATA_DIR = 'messaging_service' MESSAGING_SERVICE_CLIENT_PY = 'messaging_service_client.py' def GetMessagingServiceClass(cloud, delivery): """Gets the underlying Messaging Service class.""" return resource.GetResourceClass(BaseMessagingService, CLOUD=cloud, DELIVERY=delivery) class BaseMessagingService(resource.BaseResource): """Common interface of a messaging service resource. Attributes: client: The client virtual machine that runs the benchmark. """ REQUIRED_ATTRS = ['CLOUD', 'DELIVERY'] RESOURCE_TYPE = 'BaseMessagingService' # TODO(odiego): Move DELIVERY down to child classes when adding more options DELIVERY = 'pull' @classmethod def FromSpec(cls, messaging_service_spec): return cls() def setVms(self, vm_groups): self.client_vm = vm_groups['clients' if 'clients' in vm_groups else 'default'][0] def PrepareClientVm(self): self._InstallCommonClientPackages() self._InstallCloudClients() def _InstallCommonClientPackages(self): """Installs common software for running benchmarks on the client VM.""" # Install commom packages self.client_vm.Install('python3') self.client_vm.Install('pip3') self.client_vm.RemoteCommand('sudo pip3 install absl-py numpy') # Upload Common Client Interface self.client_vm.PushDataFile( os.path.join(MESSAGING_SERVICE_DATA_DIR, MESSAGING_SERVICE_CLIENT_PY)) @abc.abstractmethod def _InstallCloudClients(self): """Installs software for running benchmarks on the client VM. This method should be overriden by subclasses to install software specific to the flavor of MessagingService they provide. """ raise NotImplementedError @abc.abstractmethod def Run(self, benchmark_scenario: str, number_of_messages: str, message_size: str) -> Dict[str, Any]: """Runs remote commands on client VM - benchmark's run phase. Runs a benchmark that consists of first publishing messages and then pulling messages from messaging service, based on the configuration specified through the FLAGS: benchmark_scenario, number_of_messages, and message_size. Specific implementations should override this method. Different providers needs different info to run the benchmark - for GCP we need 'topic_name' and 'subscription_name', while for AWS 'queue_name' suffices. Args: benchmark_scenario: Specifies which benchmark scenario to run. number_of_messages: Number of messages to use on the benchmark. message_size: Size of the messages that will be used on the benchmark. It specifies the number of characters in those messages. Returns: Dictionary with metric_name (mean_latency, p50_latency...) as key and the results from the benchmark as the value: results = { 'mean_latency': 0.3423443... ... } """ raise NotImplementedError ``` #### File: providers/aws/aws_container_service.py ```python import json import os import uuid from absl import flags from perfkitbenchmarker import container_service from perfkitbenchmarker import context from perfkitbenchmarker import errors from perfkitbenchmarker import resource from perfkitbenchmarker import vm_util from perfkitbenchmarker.providers import aws from perfkitbenchmarker.providers.aws import aws_load_balancer from perfkitbenchmarker.providers.aws import aws_logs from perfkitbenchmarker.providers.aws import aws_network from perfkitbenchmarker.providers.aws import s3 from perfkitbenchmarker.providers.aws import util import requests import six import yaml FLAGS = flags.FLAGS _ECS_NOT_READY = frozenset(['PROVISIONING', 'PENDING']) class EcrRepository(resource.BaseResource): """Class representing an Elastic Container Registry image repository.""" def __init__(self, name, region): super(EcrRepository, self).__init__() self.name = name self.region = region def _Create(self): """Creates the image repository.""" if self._Exists(): self.user_managed = True return create_cmd = util.AWS_PREFIX + [ 'ecr', 'create-repository', '--region', self.region, '--repository-name', self.name ] _, stderr, retcode = vm_util.IssueCommand( create_cmd, raise_on_failure=False) if retcode: if 'InsufficientInstanceCapacity' in stderr: raise errors.Benchmarks.InsufficientCapacityCloudFailure(stderr) if 'InstanceLimitExceeded' in stderr or 'VpcLimitExceeded' in stderr: raise errors.Benchmarks.QuotaFailure(stderr) raise errors.Resource.CreationError( 'Failed to create EKS Cluster: {} return code: {}'.format( retcode, stderr)) def _Exists(self): """Returns True if the repository exists.""" describe_cmd = util.AWS_PREFIX + [ 'ecr', 'describe-repositories', '--region', self.region, '--repository-names', self.name ] stdout, _, _ = vm_util.IssueCommand( describe_cmd, suppress_warning=True, raise_on_failure=False) if not stdout or not json.loads(stdout)['repositories']: return False return True def _Delete(self): """Deletes the repository.""" delete_cmd = util.AWS_PREFIX + [ 'ecr', 'delete-repository', '--region', self.region, '--repository-name', self.name, '--force' ] vm_util.IssueCommand(delete_cmd, raise_on_failure=False) class ElasticContainerRegistry(container_service.BaseContainerRegistry): """Class for building and storing container images on AWS.""" CLOUD = aws.CLOUD def __init__(self, registry_spec): super(ElasticContainerRegistry, self).__init__(registry_spec) self.account = self.project or util.GetAccount() self.region = util.GetRegionFromZone(self.zone.split(',')[0]) self.repositories = [] def _Delete(self): """Deletes the repositories.""" for repository in self.repositories: repository.Delete() def Push(self, image): """Push a locally built image to the registry.""" repository_name = '{namespace}/{name}'.format( namespace=self.name, name=image.name) repository = EcrRepository(repository_name, self.region) self.repositories.append(repository) repository.Create() super(ElasticContainerRegistry, self).Push(image) def GetFullRegistryTag(self, image): """Gets the full tag of the image.""" tag = '{account}.dkr.ecr.{region}.amazonaws.com/{namespace}/{name}'.format( account=self.account, region=self.region, namespace=self.name, name=image) return tag def Login(self): """Logs in to the registry.""" get_login_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecr', 'get-login', '--no-include-email' ] stdout, _, _ = vm_util.IssueCommand(get_login_cmd) login_cmd = stdout.split() vm_util.IssueCommand(login_cmd) def RemoteBuild(self, image): """Build the image remotely.""" # TODO(ehankland) use AWS codebuild to build the image. raise NotImplementedError() class TaskDefinition(resource.BaseResource): """Class representing an AWS task definition.""" def __init__(self, name, container_spec, cluster): super(TaskDefinition, self).__init__() self.name = name self.cpus = container_spec.cpus self.memory = container_spec.memory self.image = container_spec.image self.container_port = container_spec.container_port self.region = cluster.region self.arn = None self.log_group = aws_logs.LogGroup(self.region, 'pkb') def _CreateDependencies(self): """Create the log group if it doesn't exist.""" if not self.log_group.Exists(): self.log_group.Create() def _Create(self): """Create the task definition.""" register_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'register-task-definition', '--family', self.name, '--execution-role-arn', 'ecsTaskExecutionRole', '--network-mode', 'awsvpc', '--requires-compatibilities=FARGATE', '--cpu', str(int(1024 * self.cpus)), '--memory', str(self.memory), '--container-definitions', self._GetContainerDefinitions() ] stdout, _, _ = vm_util.IssueCommand(register_cmd) response = json.loads(stdout) self.arn = response['taskDefinition']['taskDefinitionArn'] def _Delete(self): """Deregister the task definition.""" if self.arn is None: return deregister_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'deregister-task-definition', '--task-definition', self.arn ] vm_util.IssueCommand(deregister_cmd) def _GetContainerDefinitions(self): """Returns a JSON representation of the container definitions.""" definitions = [{ 'name': self.name, 'image': self.image, 'essential': True, 'portMappings': [{ 'containerPort': self.container_port, 'protocol': 'TCP' }], 'logConfiguration': { 'logDriver': 'awslogs', 'options': { 'awslogs-group': 'pkb', 'awslogs-region': self.region, 'awslogs-stream-prefix': 'pkb' } } }] return json.dumps(definitions) class EcsTask(container_service.BaseContainer): """Class representing an ECS/Fargate task.""" def __init__(self, name, container_spec, cluster): super(EcsTask, self).__init__(container_spec) self.name = name self.task_def = cluster.task_defs[name] self.arn = None self.region = cluster.region self.cluster_name = cluster.name self.subnet_id = cluster.network.subnet.id self.ip_address = None self.security_group_id = ( cluster.network.regional_network.vpc.default_security_group_id) def _GetNetworkConfig(self): network_config = { 'awsvpcConfiguration': { 'subnets': [self.subnet_id], 'securityGroups': [self.security_group_id], 'assignPublicIp': 'ENABLED', } } return json.dumps(network_config) def _GetOverrides(self): """Returns a JSON representaion of task overrides. While the container level resources can be overridden, they have no effect on task level resources for Fargate tasks. This means that modifying a container spec will only affect the command of any new containers launched from it and not cpu/memory. """ overrides = { 'containerOverrides': [{ 'name': self.name, }] } if self.command: overrides['containerOverrides'][0]['command'] = self.command return json.dumps(overrides) def _Create(self): """Creates the task.""" run_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'run-task', '--cluster', self.cluster_name, '--task-definition', self.task_def.arn, '--launch-type', 'FARGATE', '--network-configuration', self._GetNetworkConfig(), '--overrides', self._GetOverrides() ] stdout, _, _ = vm_util.IssueCommand(run_cmd) response = json.loads(stdout) self.arn = response['tasks'][0]['taskArn'] def _PostCreate(self): """Gets the tasks IP address.""" container = self._GetTask()['containers'][0] self.ip_address = container['networkInterfaces'][0]['privateIpv4Address'] def _DeleteDependencies(self): """Delete the task def.""" self.task_def.Delete() def _Delete(self): """Deletes the task.""" if self.arn is None: return stop_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'stop-task', '--cluster', self.cluster_name, '--task', self.arn ] vm_util.IssueCommand(stop_cmd) def _GetTask(self): """Returns a dictionary representation of the task.""" describe_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'describe-tasks', '--cluster', self.cluster_name, '--tasks', self.arn ] stdout, _, _ = vm_util.IssueCommand(describe_cmd) response = json.loads(stdout) return response['tasks'][0] def _IsReady(self): """Returns true if the task has stopped pending.""" return self._GetTask()['lastStatus'] not in _ECS_NOT_READY def WaitForExit(self, timeout=None): """Waits until the task has finished running.""" @vm_util.Retry( timeout=timeout, retryable_exceptions=(container_service.RetriableContainerException,)) def _WaitForExit(): task = self._GetTask() if task['lastStatus'] != 'STOPPED': raise container_service.RetriableContainerException( 'Task is not STOPPED.') return task return _WaitForExit() def GetLogs(self): """Returns the logs from the container.""" task_id = self.arn.split('/')[-1] log_stream = 'pkb/{name}/{task_id}'.format(name=self.name, task_id=task_id) return six.text_type( aws_logs.GetLogStreamAsString(self.region, log_stream, 'pkb')) class EcsService(container_service.BaseContainerService): """Class representing an ECS/Fargate service.""" def __init__(self, name, container_spec, cluster): super(EcsService, self).__init__(container_spec) self.client_token = str(uuid.uuid4())[:32] self.name = name self.task_def = cluster.task_defs[name] self.arn = None self.region = cluster.region self.cluster_name = cluster.name self.subnet_id = cluster.network.subnet.id self.security_group_id = ( cluster.network.regional_network.vpc.default_security_group_id) self.load_balancer = aws_load_balancer.LoadBalancer( [cluster.network.subnet]) self.target_group = aws_load_balancer.TargetGroup( cluster.network.regional_network.vpc, self.container_port) self.port = 80 def _CreateDependencies(self): """Creates the load balancer for the service.""" self.load_balancer.Create() self.target_group.Create() listener = aws_load_balancer.Listener(self.load_balancer, self.target_group, self.port) listener.Create() self.ip_address = self.load_balancer.dns_name def _DeleteDependencies(self): """Deletes the service's load balancer.""" self.task_def.Delete() self.load_balancer.Delete() self.target_group.Delete() # TODO(ferneyhough): Consider supporting the flag container_cluster_version. def _Create(self): """Creates the service.""" create_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'create-service', '--desired-count', '1', '--client-token', self.client_token, '--cluster', self.cluster_name, '--service-name', self.name, '--task-definition', self.task_def.arn, '--launch-type', 'FARGATE', '--network-configuration', self._GetNetworkConfig(), '--load-balancers', self._GetLoadBalancerConfig(), ] vm_util.IssueCommand(create_cmd) def _Delete(self): """Deletes the service.""" update_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'update-service', '--cluster', self.cluster_name, '--service', self.name, '--desired-count', '0' ] vm_util.IssueCommand(update_cmd) delete_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'delete-service', '--cluster', self.cluster_name, '--service', self.name ] vm_util.IssueCommand(delete_cmd, raise_on_failure=False) def _GetNetworkConfig(self): network_config = { 'awsvpcConfiguration': { 'subnets': [self.subnet_id], 'securityGroups': [self.security_group_id], 'assignPublicIp': 'ENABLED', } } return json.dumps(network_config) def _GetLoadBalancerConfig(self): """Returns the JSON representation of the service load balancers.""" load_balancer_config = [{ 'targetGroupArn': self.target_group.arn, 'containerName': self.name, 'containerPort': self.container_port, }] return json.dumps(load_balancer_config) def _IsReady(self): """Returns True if the Service is ready.""" url = 'http://%s' % self.ip_address try: r = requests.get(url) except requests.ConnectionError: return False if r.status_code == 200: return True return False class FargateCluster(container_service.BaseContainerCluster): """Class representing an AWS Fargate cluster.""" CLOUD = aws.CLOUD CLUSTER_TYPE = 'Fargate' def __init__(self, cluster_spec): super(FargateCluster, self).__init__(cluster_spec) self.region = util.GetRegionFromZone(self.zone) self.network = aws_network.AwsNetwork.GetNetwork(self) self.firewall = aws_network.AwsFirewall.GetFirewall() self.name = 'pkb-%s' % FLAGS.run_uri self.task_defs = {} self.arn = None def _Create(self): """Creates the cluster.""" create_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'create-cluster', '--cluster-name', self.name ] stdout, _, _ = vm_util.IssueCommand(create_cmd) response = json.loads(stdout) self.arn = response['cluster']['clusterArn'] def _Exists(self): """Returns True if the cluster exists.""" if not self.arn: return False describe_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'describe-clusters', '--clusters', self.arn ] stdout, _, _ = vm_util.IssueCommand(describe_cmd) response = json.loads(stdout) clusters = response['clusters'] if not clusters or clusters[0]['status'] == 'INACTIVE': return False return True def _Delete(self): """Deletes the cluster.""" delete_cmd = util.AWS_PREFIX + [ '--region', self.region, 'ecs', 'delete-cluster', '--cluster', self.name ] vm_util.IssueCommand(delete_cmd, raise_on_failure=False) def DeployContainer(self, name, container_spec): """Deploys the container according to the spec.""" if name not in self.task_defs: task_def = TaskDefinition(name, container_spec, self) self.task_defs[name] = task_def task_def.Create() task = EcsTask(name, container_spec, self) self.containers[name].append(task) task.Create() def DeployContainerService(self, name, container_spec): """Deploys the container service according to the spec.""" if name not in self.task_defs: task_def = TaskDefinition(name, container_spec, self) self.task_defs[name] = task_def task_def.Create() service = EcsService(name, container_spec, self) self.services[name] = service self.firewall.AllowPortInSecurityGroup(service.region, service.security_group_id, service.container_port) service.Create() class AwsKopsCluster(container_service.KubernetesCluster): """Class representing a kops based Kubernetes cluster.""" CLOUD = aws.CLOUD CLUSTER_TYPE = 'kops' def __init__(self, spec): super(AwsKopsCluster, self).__init__(spec) self.name += '.k8s.local' self.config_bucket = 'kops-%s-%s' % (FLAGS.run_uri, str(uuid.uuid4())) self.region = util.GetRegionFromZone(self.zone) self.s3_service = s3.S3Service() self.s3_service.PrepareService(self.region) def _CreateDependencies(self): """Create the bucket to store cluster config.""" self.s3_service.MakeBucket(self.config_bucket) def _DeleteDependencies(self): """Delete the bucket that stores cluster config.""" self.s3_service.DeleteBucket(self.config_bucket) def _Create(self): """Creates the cluster.""" # Create the cluster spec but don't provision any resources. create_cmd = [ FLAGS.kops, 'create', 'cluster', '--name=%s' % self.name, '--zones=%s' % self.zone, '--node-count=%s' % self.num_nodes, '--node-size=%s' % self.machine_type ] env = os.environ.copy() env['KUBECONFIG'] = FLAGS.kubeconfig env['KOPS_STATE_STORE'] = 's3://%s' % self.config_bucket vm_util.IssueCommand(create_cmd, env=env) # Download the cluster spec and modify it. get_cmd = [FLAGS.kops, 'get', 'cluster', self.name, '--output=yaml'] stdout, _, _ = vm_util.IssueCommand(get_cmd, env=env) spec = yaml.safe_load(stdout) spec['metadata']['creationTimestamp'] = None spec['spec']['api']['loadBalancer']['idleTimeoutSeconds'] = 3600 benchmark_spec = context.GetThreadBenchmarkSpec() spec['spec']['cloudLabels'] = { 'owner': FLAGS.owner, 'perfkitbenchmarker-run': FLAGS.run_uri, 'benchmark': benchmark_spec.name, 'perfkit_uuid': benchmark_spec.uuid, 'benchmark_uid': benchmark_spec.uid } # Replace the cluster spec. with vm_util.NamedTemporaryFile() as tf: yaml.dump(spec, tf) tf.close() replace_cmd = [FLAGS.kops, 'replace', '--filename=%s' % tf.name] vm_util.IssueCommand(replace_cmd, env=env) # Create the actual cluster. update_cmd = [FLAGS.kops, 'update', 'cluster', self.name, '--yes'] vm_util.IssueCommand(update_cmd, env=env) def _Delete(self): """Deletes the cluster.""" delete_cmd = [ FLAGS.kops, 'delete', 'cluster', '--name=%s' % self.name, '--state=s3://%s' % self.config_bucket, '--yes' ] vm_util.IssueCommand(delete_cmd, raise_on_failure=False) def _IsReady(self): """Returns True if the cluster is ready, else False.""" validate_cmd = [ FLAGS.kops, 'validate', 'cluster', '--name=%s' % self.name, '--state=s3://%s' % self.config_bucket ] env = os.environ.copy() env['KUBECONFIG'] = FLAGS.kubeconfig _, _, retcode = vm_util.IssueCommand( validate_cmd, env=env, suppress_warning=True, raise_on_failure=False) return not retcode ```
{ "source": "jovial/refstack", "score": 2 }
#### File: api/controllers/results.py ```python import functools from oslo_config import cfg from oslo_log import log import pecan from pecan import rest from six.moves.urllib import parse from refstack import db from refstack.api import constants as const from refstack.api import utils as api_utils from refstack.api import validators from refstack.api.controllers import validation LOG = log.getLogger(__name__) CONF = cfg.CONF class MetadataController(rest.RestController): """/v1/results/<test_id>/meta handler.""" rw_access_keys = ('shared', 'guideline', 'target',) def _check_key(func): """Decorator to check that a specific key has write access.""" @functools.wraps(func) def wrapper(*args, **kwargs): meta_key = args[2] if meta_key not in args[0].rw_access_keys: pecan.abort(403) return func(*args, **kwargs) return wrapper @pecan.expose('json') def get(self, test_id): """Get test run metadata.""" test_info = db.get_test_result(test_id) role = api_utils.get_user_role(test_id) if role in (const.ROLE_FOUNDATION, const.ROLE_OWNER): return test_info['meta'] elif role in (const.ROLE_USER): return {k: v for k, v in test_info['meta'].items() if k in self.rw_access_keys} pecan.abort(403) @pecan.expose('json') def get_one(self, test_id, key): """Get value for key from test run metadata.""" role = api_utils.get_user_role(test_id) if role in (const.ROLE_FOUNDATION, const.ROLE_OWNER): return db.get_test_result_meta_key(test_id, key) elif role in (const.ROLE_USER) and key in self.rw_access_keys: return db.get_test_result_meta_key(test_id, key) pecan.abort(403) @_check_key @api_utils.check_permissions(level=const.ROLE_OWNER) @pecan.expose('json') def post(self, test_id, key): """Save value for key in test run metadata.""" test = db.get_test_result(test_id) if test['verification_status'] == const.TEST_VERIFIED: pecan.abort(403, 'Can not add/alter a new metadata key for a ' 'verified test run.') db.save_test_result_meta_item(test_id, key, pecan.request.body) pecan.response.status = 201 @_check_key @api_utils.check_permissions(level=const.ROLE_OWNER) @pecan.expose('json') def delete(self, test_id, key): """Delete key from test run metadata.""" test = db.get_test_result(test_id) if test['verification_status'] == const.TEST_VERIFIED: pecan.abort(403, 'Can not delete a metadata key for a ' 'verified test run.') db.delete_test_result_meta_item(test_id, key) pecan.response.status = 204 class ResultsController(validation.BaseRestControllerWithValidation): """/v1/results handler.""" __validator__ = validators.TestResultValidator meta = MetadataController() def _check_authentication(self): x_public_key = pecan.request.headers.get('X-Public-Key') if x_public_key: public_key = x_public_key.strip().split()[1] stored_public_key = db.get_pubkey(public_key) if not stored_public_key: pecan.abort(401, 'User with specified key not found. ' 'Please log into the RefStack server to ' 'upload your key.') else: stored_public_key = None if not CONF.api.enable_anonymous_upload and not stored_public_key: pecan.abort(401, 'Anonymous result uploads are disabled. ' 'Please create a user account and an api ' 'key at https://refstack.openstack.org/#/') return stored_public_key def _auto_version_associate(self, test, test_, pubkey): if test.get('cpid'): version = db.get_product_version_by_cpid( test['cpid'], allowed_keys=['id', 'product_id']) # Only auto-associate if there is a single product version # with the given cpid. if len(version) == 1: is_foundation = api_utils.check_user_is_foundation_admin( pubkey.openid) is_product_admin = api_utils.check_user_is_product_admin( version[0]['product_id'], pubkey.openid) if is_foundation or is_product_admin: test_['product_version_id'] = version[0]['id'] return test_ @pecan.expose('json') @api_utils.check_permissions(level=const.ROLE_USER) def get_one(self, test_id): """Handler for getting item.""" user_role = api_utils.get_user_role(test_id) if user_role in (const.ROLE_FOUNDATION, const.ROLE_OWNER): test_info = db.get_test_result( test_id, allowed_keys=['id', 'cpid', 'created_at', 'duration_seconds', 'meta', 'product_version', 'verification_status'] ) else: test_info = db.get_test_result(test_id) test_list = db.get_test_results(test_id) test_name_list = [test_dict['name'] for test_dict in test_list] test_info.update({'results': test_name_list, 'user_role': user_role}) if user_role not in (const.ROLE_FOUNDATION, const.ROLE_OWNER): # Don't expose product information if product is not public. if (test_info.get('product_version') and not test_info['product_version'] ['product_info']['public']): test_info['product_version'] = None test_info['meta'] = { k: v for k, v in test_info['meta'].items() if k in MetadataController.rw_access_keys } return test_info def store_item(self, test): """Handler for storing item. Should return new item id.""" # If we need a key, or the key isn't available, this will throw # an exception with a 401 pubkey = self._check_authentication() test_ = test.copy() if pubkey: if 'meta' not in test_: test_['meta'] = {} test_['meta'][const.USER] = pubkey.openid test_ = self._auto_version_associate(test, test_, pubkey) test_id = db.store_test_results(test_) return {'test_id': test_id, 'url': parse.urljoin(CONF.ui_url, CONF.api.test_results_url) % test_id} @pecan.expose('json') @api_utils.check_permissions(level=const.ROLE_OWNER) def delete(self, test_id): """Delete test run.""" test = db.get_test_result(test_id) if test['verification_status'] == const.TEST_VERIFIED: pecan.abort(403, 'Can not delete a verified test run.') db.delete_test_result(test_id) pecan.response.status = 204 @pecan.expose('json') def get(self): """Get information of all uploaded test results. Get information of all uploaded test results in descending chronological order. Make it possible to specify some input parameters for filtering. For example: /v1/results?page=<page number>&cpid=1234. By default, page is set to page number 1, if the page parameter is not specified. """ expected_input_params = [ const.START_DATE, const.END_DATE, const.CPID, const.SIGNED, const.VERIFICATION_STATUS, const.PRODUCT_ID ] filters = api_utils.parse_input_params(expected_input_params) if const.PRODUCT_ID in filters: product = db.get_product(filters[const.PRODUCT_ID]) vendor_id = product['organization_id'] is_admin = (api_utils.check_user_is_foundation_admin() or api_utils.check_user_is_vendor_admin(vendor_id)) if is_admin: filters[const.ALL_PRODUCT_TESTS] = True elif not product['public']: pecan.abort(403, 'Forbidden.') records_count = db.get_test_result_records_count(filters) page_number, total_pages_number = \ api_utils.get_page_number(records_count) try: per_page = CONF.api.results_per_page results = db.get_test_result_records( page_number, per_page, filters) is_foundation = api_utils.check_user_is_foundation_admin() for result in results: if not (api_utils.check_owner(result['id']) or is_foundation): # Don't expose product info if the product is not public. if (result.get('product_version') and not result['product_version']['product_info'] ['public']): result['product_version'] = None # Only show all metadata if the user is the owner or a # member of the Foundation group. result['meta'] = { k: v for k, v in result['meta'].items() if k in MetadataController.rw_access_keys } result.update({'url': parse.urljoin( CONF.ui_url, CONF.api.test_results_url ) % result['id']}) page = {'results': results, 'pagination': { 'current_page': page_number, 'total_pages': total_pages_number }} except Exception as ex: LOG.debug('An error occurred during ' 'operation with database: %s' % str(ex)) pecan.abort(500) return page @api_utils.check_permissions(level=const.ROLE_OWNER) @pecan.expose('json') def put(self, test_id, **kw): """Update a test result.""" test_info = {'id': test_id} is_foundation_admin = api_utils.check_user_is_foundation_admin() if 'product_version_id' in kw: test = db.get_test_result(test_id) if test['verification_status'] == const.TEST_VERIFIED: pecan.abort(403, 'Can not update product_version_id for a ' 'verified test run.') if kw['product_version_id']: # Verify that the user is a member of the product's vendor. version = db.get_product_version(kw['product_version_id'], allowed_keys=['product_id']) is_vendor_admin = ( api_utils .check_user_is_product_admin(version['product_id']) ) else: # No product vendor to check membership for, so just set # is_vendor_admin to True. is_vendor_admin = True kw['product_version_id'] = None if not is_vendor_admin and not is_foundation_admin: pecan.abort(403, 'Forbidden.') test_info['product_version_id'] = kw['product_version_id'] if 'verification_status' in kw: if not is_foundation_admin: pecan.abort(403, 'You do not have permission to change a ' 'verification status.') if kw['verification_status'] not in (0, 1): pecan.abort(400, 'Invalid verification_status value: %d' % kw['verification_status']) # Check pre-conditions are met to mark a test verified. if (kw['verification_status'] == 1 and not (db.get_test_result_meta_key(test_id, 'target') and db.get_test_result_meta_key(test_id, 'guideline') and db.get_test_result_meta_key(test_id, const.SHARED_TEST_RUN))): pecan.abort(403, 'In order to mark a test verified, the ' 'test must be shared and have been ' 'associated to a guideline and target ' 'program.') test_info['verification_status'] = kw['verification_status'] test = db.update_test_result(test_info) pecan.response.status = 201 return test ``` #### File: api/controllers/validation.py ```python import json import pecan from pecan import rest class BaseRestControllerWithValidation(rest.RestController): """Rest controller with validation. Controller provides validation for POSTed data exposed endpoints: POST base_url/ GET base_url/<item uid> GET base_url/schema """ __validator__ = None _custom_actions = { "schema": ["GET"], } def __init__(self): # pragma: no cover """Init.""" if self.__validator__: self.validator = self.__validator__() else: raise ValueError("__validator__ is not defined") def store_item(self, item_in_json): # pragma: no cover """Handler for storing item. Should return new item id.""" raise NotImplementedError @pecan.expose('json') def schema(self): """Return validation schema.""" return self.validator.schema @pecan.expose('json') def post(self, ): """POST handler.""" self.validator.validate(pecan.request) item = json.loads(pecan.request.body.decode('utf-8')) item_id = self.store_item(item) pecan.response.status = 201 return item_id ``` #### File: refstack/api/guidelines.py ```python import itertools from oslo_config import cfg from oslo_log import log from operator import itemgetter import re import requests import requests_cache CONF = cfg.CONF LOG = log.getLogger(__name__) # Cached requests will expire after 12 hours. requests_cache.install_cache(cache_name='github_cache', backend='memory', expire_after=43200) class Guidelines: """This class handles guideline/capability listing and retrieval.""" def __init__(self, repo_url=None, raw_url=None, additional_capability_urls=None): """Initialize class with needed URLs. The URL for the guidelines repository is specified with 'repo_url'. The URL for where raw files are served is specified with 'raw_url'. These values will default to the values specified in the RefStack config file. """ self.guideline_sources = list() if additional_capability_urls: self.additional_urls = additional_capability_urls.split(',') else: self.additional_urls = \ CONF.api.additional_capability_urls.split(',') [self.guideline_sources.append(url) for url in self.additional_urls] if repo_url: self.repo_url = repo_url else: self.repo_url = CONF.api.github_api_capabilities_url if self.repo_url and self.repo_url not in self.guideline_sources: self.guideline_sources.append(self.repo_url) if raw_url: self.raw_url = raw_url else: self.raw_url = CONF.api.github_raw_base_url def get_guideline_list(self): """Return a list of a guideline files. The repository url specificed in class instantiation is checked for a list of JSON guideline files. A list of these is returned. """ capability_files = {} capability_list = [] powered_files = [] addon_files = [] for src_url in self.guideline_sources: try: resp = requests.get(src_url) LOG.debug("Response Status: %s / Used Requests Cache: %s" % (resp.status_code, getattr(resp, 'from_cache', False))) if resp.status_code == 200: regex = re.compile('([0-9]{4}\.[0-9]{2}|next)\.json') for rfile in resp.json(): if rfile["type"] == "file" and \ regex.search(rfile["name"]): if 'add-ons' in rfile['path'] and \ rfile[ 'name'] not in map(itemgetter('name'), addon_files): file_dict = {'name': rfile['name']} addon_files.append(file_dict) elif 'add-ons' not in rfile['path'] and \ rfile['name'] not in map(itemgetter('name'), powered_files): file_dict = {'name': rfile['name'], 'file': rfile['path']} powered_files.append(file_dict) else: LOG.warning('Guidelines repo URL (%s) returned ' 'non-success HTTP code: %s' % (src_url, resp.status_code)) except requests.exceptions.RequestException as e: LOG.warning('An error occurred trying to get repository ' 'contents through %s: %s' % (src_url, e)) for k, v in itertools.groupby(addon_files, key=lambda x: x['name'].split('.')[0]): values = [{'name': x['name'].split('.', 1)[1], 'file': x['name']} for x in list(v)] capability_list.append((k, list(values))) capability_list.append(('powered', powered_files)) capability_files = dict((x, y) for x, y in capability_list) return capability_files def get_guideline_contents(self, gl_file): """Get contents for a given guideline path.""" if '.json' not in gl_file: gl_file = '.'.join((gl_file, 'json')) regex = re.compile("[a-z]*\.([0-9]{4}\.[0-9]{2}|next)\.json") if regex.search(gl_file): guideline_path = 'add-ons/' + gl_file else: guideline_path = gl_file file_url = ''.join((self.raw_url.rstrip('/'), '/', guideline_path)) LOG.debug("file_url: %s" % (file_url)) try: response = requests.get(file_url) LOG.debug("Response Status: %s / Used Requests Cache: %s" % (response.status_code, getattr(response, 'from_cache', False))) LOG.debug("Response body: %s" % str(response.text)) if response.status_code == 200: return response.json() else: LOG.warning('Raw guideline URL (%s) returned non-success HTTP ' 'code: %s' % (self.raw_url, response.status_code)) return None except requests.exceptions.RequestException as e: LOG.warning('An error occurred trying to get raw capability file ' 'contents from %s: %s' % (self.raw_url, e)) return None def get_target_capabilities(self, guideline_json, types=None, target='platform'): """Get list of capabilities that match the given statuses and target. If no list of types in given, then capabilities of all types are given. If not target is specified, then all capabilities are given. """ components = guideline_json['components'] if ('metadata' in guideline_json and guideline_json['metadata']['schema'] >= '2.0'): schema = guideline_json['metadata']['schema'] platformsMap = { 'platform': 'OpenStack Powered Platform', 'compute': 'OpenStack Powered Compute', 'object': 'OpenStack Powered Storage', 'dns': 'OpenStack with DNS', 'orchestration': 'OpenStack with Orchestration' } if target == 'dns' or target == 'orchestration': targets = ['os_powered_' + target] else: comps = \ guideline_json['platforms'][platformsMap[target] ]['components'] targets = (obj['name'] for obj in comps) else: schema = guideline_json['schema'] targets = set() if target != 'platform': targets.add(target) else: targets.update(guideline_json['platform']['required']) target_caps = set() for component in targets: complist = components[component] if schema >= '2.0': complist = complist['capabilities'] for status, capabilities in complist.items(): if types is None or status in types: target_caps.update(capabilities) return list(target_caps) def get_test_list(self, guideline_json, capabilities=[], alias=True, show_flagged=True): """Generate a test list based on input. A test list is formed from the given guideline JSON data and list of capabilities. If 'alias' is True, test aliases are included in the list. If 'show_flagged' is True, flagged tests are included in the list. """ caps = guideline_json['capabilities'] if ('metadata' in guideline_json and guideline_json['metadata']['schema'] >= '2.0'): schema = guideline_json['metadata']['schema'] else: schema = guideline_json['schema'] test_list = [] for cap, cap_details in caps.items(): if cap in capabilities: if schema == '1.2': for test in cap_details['tests']: if show_flagged: test_list.append(test) elif not show_flagged and \ test not in cap_details['flagged']: test_list.append(test) else: for test, test_details in cap_details['tests'].items(): added = False if test_details.get('flagged'): if show_flagged: test_str = '{}[{}]'.format( test, test_details.get('idempotent_id', '') ) test_list.append(test_str) added = True else: # Make sure the test UUID is in the test string. test_str = '{}[{}]'.format( test, test_details.get('idempotent_id', '') ) test_list.append(test_str) added = True if alias and test_details.get('aliases') and added: for alias in test_details['aliases']: test_str = '{}[{}]'.format( alias, test_details.get('idempotent_id', '') ) test_list.append(test_str) test_list.sort() return test_list ``` #### File: db/sqlalchemy/api.py ```python import base64 import hashlib import sys import uuid from oslo_config import cfg from oslo_db import options as db_options from oslo_db.sqlalchemy import session as db_session from oslo_log import log from refstack.api import constants as api_const from refstack.db.sqlalchemy import models CONF = cfg.CONF _FACADE = None LOG = log.getLogger(__name__) db_options.set_defaults(cfg.CONF) class NotFound(Exception): """Raise if item not found in db.""" pass class Duplication(Exception): """Raise if unique constraint violates.""" pass def _create_facade_lazily(): """Create DB facade lazily.""" global _FACADE if _FACADE is None: _FACADE = db_session.EngineFacade.from_config(CONF) return _FACADE def get_engine(): """Get DB engine.""" facade = _create_facade_lazily() return facade.get_engine() def get_session(**kwargs): """Get DB session.""" facade = _create_facade_lazily() return facade.get_session(**kwargs) def get_backend(): """The backend is this module itself.""" return sys.modules[__name__] def _to_dict(sqlalchemy_object, allowed_keys=None): if isinstance(sqlalchemy_object, list): return [_to_dict(obj, allowed_keys=allowed_keys) for obj in sqlalchemy_object] if (hasattr(sqlalchemy_object, 'keys') and hasattr(sqlalchemy_object, 'index')): return {key: getattr(sqlalchemy_object, key) for key in sqlalchemy_object.keys()} if hasattr(sqlalchemy_object, 'default_allowed_keys'): items = sqlalchemy_object.iteritems() if not allowed_keys: allowed_keys = sqlalchemy_object.default_allowed_keys if allowed_keys: items = filter(lambda item: item[0] in allowed_keys, items) result = {} for key, value in items: if key in sqlalchemy_object.metadata_keys: result[key] = { item.get(sqlalchemy_object.metadata_keys[key]['key']): item.get(sqlalchemy_object.metadata_keys[key]['value']) for item in value} elif hasattr(value, 'default_allowed_keys'): result[key] = _to_dict(value) elif (isinstance(value, list) and value and hasattr(value[0], 'default_allowed_keys')): result[key] = [_to_dict(item) for item in value] else: result[key] = value return result if hasattr(sqlalchemy_object, 'all'): return _to_dict(sqlalchemy_object.all()) return sqlalchemy_object def store_test_results(results): """Store test results.""" test = models.Test() test_id = str(uuid.uuid4()) test.id = test_id test.cpid = results.get('cpid') test.duration_seconds = results.get('duration_seconds') test.product_version_id = results.get('product_version_id') session = get_session() with session.begin(): for result in results.get('results', []): test_result = models.TestResults() test_result.test_id = test_id test_result.name = result['name'] test_result.uuid = result.get('uuid', None) test.results.append(test_result) for k, v in results.get('meta', {}).items(): meta = models.TestMeta() meta.meta_key, meta.value = k, v test.meta.append(meta) test.save(session) return test_id def get_test_result(test_id, allowed_keys=None): """Get test info.""" session = get_session() test_info = session.query(models.Test). \ filter_by(id=test_id). \ first() if not test_info: raise NotFound('Test result %s not found' % test_id) return _to_dict(test_info, allowed_keys) def delete_test_result(test_id): """Delete test information from the database.""" session = get_session() with session.begin(): test = session.query(models.Test).filter_by(id=test_id).first() if test: session.query(models.TestMeta) \ .filter_by(test_id=test_id).delete() session.query(models.TestResults) \ .filter_by(test_id=test_id).delete() session.delete(test) else: raise NotFound('Test result %s not found' % test_id) def update_test_result(test_info): """Update test from the given test_info dictionary.""" session = get_session() _id = test_info.get('id') test = session.query(models.Test).filter_by(id=_id).first() if test is None: raise NotFound('Test result with id %s not found' % _id) keys = ['product_version_id', 'verification_status'] for key in keys: if key in test_info: setattr(test, key, test_info[key]) with session.begin(): test.save(session=session) return _to_dict(test) def get_test_result_meta_key(test_id, key, default=None): """Get metadata value related to specified test run.""" session = get_session() meta_item = session.query(models.TestMeta). \ filter_by(test_id=test_id). \ filter_by(meta_key=key). \ first() value = meta_item.value if meta_item else default return value def save_test_result_meta_item(test_id, key, value): """Store or update item value related to specified test run.""" session = get_session() meta_item = (session.query(models.TestMeta) .filter_by(test_id=test_id) .filter_by(meta_key=key).first() or models.TestMeta()) meta_item.test_id = test_id meta_item.meta_key = key meta_item.value = value with session.begin(): meta_item.save(session) def delete_test_result_meta_item(test_id, key): """Delete metadata item related to specified test run.""" session = get_session() meta_item = session.query(models.TestMeta). \ filter_by(test_id=test_id). \ filter_by(meta_key=key). \ first() if meta_item: with session.begin(): session.delete(meta_item) else: raise NotFound('Metadata key %s ' 'not found for test run %s' % (key, test_id)) def get_test_results(test_id): """Get test results.""" session = get_session() results = session.query(models.TestResults). \ filter_by(test_id=test_id). \ all() return [_to_dict(result) for result in results] def _apply_filters_for_query(query, filters): """Apply filters for DB query.""" start_date = filters.get(api_const.START_DATE) if start_date: query = query.filter(models.Test.created_at >= start_date) end_date = filters.get(api_const.END_DATE) if end_date: query = query.filter(models.Test.created_at <= end_date) cpid = filters.get(api_const.CPID) if cpid: query = query.filter(models.Test.cpid == cpid) verification_status = filters.get(api_const.VERIFICATION_STATUS) if verification_status: query = query.filter(models.Test.verification_status == verification_status) if api_const.PRODUCT_ID in filters: query = (query .join(models.ProductVersion) .filter(models.ProductVersion.product_id == filters[api_const.PRODUCT_ID])) all_product_tests = filters.get(api_const.ALL_PRODUCT_TESTS) signed = api_const.SIGNED in filters # If we only want to get the user's test results. if signed: query = (query .join(models.Test.meta) .filter(models.TestMeta.meta_key == api_const.USER) .filter(models.TestMeta.value == filters[api_const.OPENID]) ) elif not all_product_tests: # Get all non-signed (aka anonymously uploaded) test results # along with signed but shared test results. signed_results = (query.session .query(models.TestMeta.test_id) .filter_by(meta_key=api_const.USER)) shared_results = (query.session .query(models.TestMeta.test_id) .filter_by(meta_key=api_const.SHARED_TEST_RUN)) query = (query.filter(models.Test.id.notin_(signed_results)) .union(query.filter(models.Test.id.in_(shared_results)))) return query def get_test_result_records(page, per_page, filters): """Get page with list of test records.""" session = get_session() query = session.query(models.Test) query = _apply_filters_for_query(query, filters) results = query.order_by(models.Test.created_at.desc()). \ offset(per_page * (page - 1)). \ limit(per_page).all() return _to_dict(results) def get_test_result_records_count(filters): """Get total test records count.""" session = get_session() query = session.query(models.Test.id) records_count = _apply_filters_for_query(query, filters).count() return records_count def user_get(user_openid): """Get user info by openid.""" session = get_session() user = session.query(models.User).filter_by(openid=user_openid).first() if user is None: raise NotFound('User with OpenID %s not found' % user_openid) return user def user_save(user_info): """Create user DB record if it exists, otherwise record will be updated.""" try: user = user_get(user_info['openid']) except NotFound: user = models.User() session = get_session() with session.begin(): user.update(user_info) user.save(session=session) return user def get_pubkey(key): """Get the pubkey info corresponding to the given public key. The md5 hash of the key is used for the query for quicker lookups. """ session = get_session() md5_hash = hashlib.md5(base64.b64decode(key)).hexdigest() pubkeys = session.query(models.PubKey).filter_by(md5_hash=md5_hash).all() if len(pubkeys) == 1: return pubkeys[0] elif len(pubkeys) > 1: for pubkey in pubkeys: if pubkey['pubkey'] == key: return pubkey return None def store_pubkey(pubkey_info): """Store public key in to DB.""" pubkey = models.PubKey() pubkey.openid = pubkey_info['openid'] pubkey.format = pubkey_info['format'] pubkey.pubkey = pubkey_info['pubkey'] pubkey.md5_hash = hashlib.md5( base64.b64decode( pubkey_info['pubkey'] ) ).hexdigest() pubkey.comment = pubkey_info['comment'] session = get_session() with session.begin(): pubkeys_collision = (session. query(models.PubKey). filter_by(md5_hash=pubkey.md5_hash). filter_by(pubkey=pubkey.pubkey).all()) if not pubkeys_collision: pubkey.save(session) else: raise Duplication('Public key already exists.') return pubkey.id def delete_pubkey(id): """Delete public key from DB.""" session = get_session() with session.begin(): key = session.query(models.PubKey).filter_by(id=id).first() session.delete(key) def get_user_pubkeys(user_openid): """Get public pubkeys for specified user.""" session = get_session() pubkeys = session.query(models.PubKey).filter_by(openid=user_openid).all() return _to_dict(pubkeys) def add_user_to_group(user_openid, group_id, created_by_user): """Add specified user to specified group.""" item = models.UserToGroup() session = get_session() with session.begin(): item.user_openid = user_openid item.group_id = group_id item.created_by_user = created_by_user item.save(session=session) def remove_user_from_group(user_openid, group_id): """Remove specified user from specified group.""" session = get_session() with session.begin(): (session.query(models.UserToGroup). filter_by(user_openid=user_openid). filter_by(group_id=group_id). delete(synchronize_session=False)) def add_organization(organization_info, creator): """Add organization.""" session = get_session() with session.begin(): group = models.Group() group.name = 'Group for %s' % organization_info['name'] group.save(session=session) group_id = group.id item = models.UserToGroup() item.user_openid = creator item.group_id = group_id item.created_by_user = creator item.save(session=session) organization = models.Organization() organization.type = organization_info.get( 'type', api_const.PRIVATE_VENDOR) organization.name = organization_info['name'] organization.description = organization_info.get('description') organization.group_id = group_id organization.created_by_user = creator organization.properties = organization_info.get('properties') organization.save(session=session) return _to_dict(organization) def update_organization(organization_info): """Update organization.""" session = get_session() _id = organization_info['id'] organization = (session.query(models.Organization). filter_by(id=_id).first()) if organization is None: raise NotFound('Organization with id %s not found' % _id) with session.begin(): organization.type = organization_info.get( 'type', organization.type) organization.name = organization_info.get( 'name', organization.name) organization.description = organization_info.get( 'description', organization.description) organization.properties = organization_info.get( 'properties', organization.properties) organization.save(session=session) return _to_dict(organization) def get_organization(organization_id, allowed_keys=None): """Get organization by id.""" session = get_session() organization = (session.query(models.Organization). filter_by(id=organization_id).first()) if organization is None: raise NotFound('Organization with id %s not found' % organization_id) return _to_dict(organization, allowed_keys=allowed_keys) def delete_organization(organization_id): """delete organization by id.""" session = get_session() with session.begin(): product_ids = (session .query(models.Product.id) .filter_by(organization_id=organization_id)) (session.query(models.ProductVersion). filter(models.ProductVersion.product_id.in_(product_ids)). delete(synchronize_session=False)) (session.query(models.Product). filter_by(organization_id=organization_id). delete(synchronize_session=False)) (session.query(models.Organization). filter_by(id=organization_id). delete(synchronize_session=False)) def add_product(product_info, creator): """Add product.""" product = models.Product() product.id = str(uuid.uuid4()) product.type = product_info['type'] product.product_type = product_info['product_type'] product.product_ref_id = product_info.get('product_ref_id') product.name = product_info['name'] product.description = product_info.get('description') product.organization_id = product_info['organization_id'] product.created_by_user = creator product.public = product_info.get('public', False) product.properties = product_info.get('properties') session = get_session() with session.begin(): product.save(session=session) product_version = models.ProductVersion() product_version.created_by_user = creator product_version.version = product_info.get('version') product_version.product_id = product.id product_version.save(session=session) return _to_dict(product) def update_product(product_info): """Update product by id.""" session = get_session() _id = product_info.get('id') product = session.query(models.Product).filter_by(id=_id).first() if product is None: raise NotFound('Product with id %s not found' % _id) keys = ['name', 'description', 'product_ref_id', 'public', 'properties'] for key in keys: if key in product_info: setattr(product, key, product_info[key]) with session.begin(): product.save(session=session) return _to_dict(product) def get_product(id, allowed_keys=None): """Get product by id.""" session = get_session() product = session.query(models.Product).filter_by(id=id).first() if product is None: raise NotFound('Product with id "%s" not found' % id) return _to_dict(product, allowed_keys=allowed_keys) def delete_product(id): """delete product by id.""" session = get_session() with session.begin(): (session.query(models.ProductVersion) .filter_by(product_id=id) .delete(synchronize_session=False)) (session.query(models.Product).filter_by(id=id). delete(synchronize_session=False)) def get_foundation_users(): """Get users' openid-s that belong to group of foundation.""" session = get_session() organization = ( session.query(models.Organization.group_id) .filter_by(type=api_const.FOUNDATION).first()) if organization is None: LOG.warning('Foundation organization record not found in DB.') return [] group_id = organization.group_id users = (session.query(models.UserToGroup.user_openid). filter_by(group_id=group_id)) return [user.user_openid for user in users] def get_organization_users(organization_id): """Get users that belong to group of organization.""" session = get_session() organization = (session.query(models.Organization.group_id) .filter_by(id=organization_id).first()) if organization is None: raise NotFound('Organization with id %s is not found' % organization_id) group_id = organization.group_id users = (session.query(models.UserToGroup, models.User) .join(models.User, models.User.openid == models.UserToGroup.user_openid) .filter(models.UserToGroup.group_id == group_id)) keys = ['openid', 'fullname', 'email'] return {item[1].openid: _to_dict(item[1], allowed_keys=keys) for item in users} def get_organizations(allowed_keys=None): """Get all organizations.""" session = get_session() items = ( session.query(models.Organization) .order_by(models.Organization.created_at.desc()).all()) return _to_dict(items, allowed_keys=allowed_keys) def get_organizations_by_types(types, allowed_keys=None): """Get organization by list of types.""" session = get_session() items = ( session.query(models.Organization) .filter(models.Organization.type.in_(types)) .order_by(models.Organization.created_at.desc()).all()) return _to_dict(items, allowed_keys=allowed_keys) def get_organizations_by_user(user_openid, allowed_keys=None): """Get organizations for specified user.""" session = get_session() items = ( session.query(models.Organization, models.Group, models.UserToGroup) .join(models.Group, models.Group.id == models.Organization.group_id) .join(models.UserToGroup, models.Group.id == models.UserToGroup.group_id) .filter(models.UserToGroup.user_openid == user_openid) .order_by(models.Organization.created_at.desc()).all()) items = [item[0] for item in items] return _to_dict(items, allowed_keys=allowed_keys) def get_products(allowed_keys=None, filters=None): """Get products based on passed in filters.""" if filters is None: filters = {} expected_filters = ['public', 'organization_id'] filter_args = {} for key, value in filters.items(): if key not in expected_filters: raise Exception('Unknown filter key "%s"' % key) filter_args[key] = value session = get_session() query = session.query(models.Product) if filter_args: query = query.filter_by(**filter_args) items = query.order_by(models.Product.created_at.desc()).all() return _to_dict(items, allowed_keys=allowed_keys) def get_products_by_user(user_openid, allowed_keys=None, filters=None): """Get products that a user can manage.""" if filters is None: filters = {} session = get_session() query = ( session.query(models.Product, models.Organization, models.Group, models.UserToGroup) .join(models.Organization, models.Organization.id == models.Product.organization_id) .join(models.Group, models.Group.id == models.Organization.group_id) .join(models.UserToGroup, models.Group.id == models.UserToGroup.group_id) .filter(models.UserToGroup.user_openid == user_openid)) expected_filters = ['organization_id'] for key, value in filters.items(): if key not in expected_filters: raise Exception('Unknown filter key "%s"' % key) query = query.filter(getattr(models.Product, key) == filters[key]) items = query.order_by(models.Organization.created_at.desc()).all() items = [item[0] for item in items] return _to_dict(items, allowed_keys=allowed_keys) def get_product_by_version(product_version_id, allowed_keys=None): """Get product info from a product version ID.""" session = get_session() product = (session.query(models.Product).join(models.ProductVersion) .filter(models.ProductVersion.id == product_version_id).first()) return _to_dict(product, allowed_keys=allowed_keys) def get_product_version(product_version_id, allowed_keys=None): """Get details of a specific version given the id.""" session = get_session() version = ( session.query(models.ProductVersion) .filter_by(id=product_version_id).first() ) if version is None: raise NotFound('Version with id "%s" not found' % product_version_id) return _to_dict(version, allowed_keys=allowed_keys) def get_product_version_by_cpid(cpid, allowed_keys=None): """Get a product version given a cloud provider id.""" session = get_session() version = ( session.query(models.ProductVersion) .filter_by(cpid=cpid).all() ) return _to_dict(version, allowed_keys=allowed_keys) def get_product_versions(product_id, allowed_keys=None): """Get all versions for a product.""" session = get_session() version_info = ( session.query(models.ProductVersion) .filter_by(product_id=product_id).all() ) return _to_dict(version_info, allowed_keys=allowed_keys) def add_product_version(product_id, version, creator, cpid, allowed_keys=None): """Add a new product version.""" product_version = models.ProductVersion() product_version.created_by_user = creator product_version.version = version product_version.product_id = product_id product_version.cpid = cpid session = get_session() with session.begin(): product_version.save(session=session) return _to_dict(product_version, allowed_keys=allowed_keys) def update_product_version(product_version_info): """Update product version from product_info_version dictionary.""" session = get_session() _id = product_version_info.get('id') version = session.query(models.ProductVersion).filter_by(id=_id).first() if version is None: raise NotFound('Product version with id %s not found' % _id) # Only allow updating cpid. keys = ['cpid'] for key in keys: if key in product_version_info: setattr(version, key, product_version_info[key]) with session.begin(): version.save(session=session) return _to_dict(version) def delete_product_version(product_version_id): """Delete a product version.""" session = get_session() with session.begin(): (session.query(models.ProductVersion).filter_by(id=product_version_id). delete(synchronize_session=False)) ``` #### File: tests/api/test_profile.py ```python import binascii import json from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives import serialization import mock import webtest.app from refstack.tests import api from refstack import db class TestProfileEndpoint(api.FunctionalTest): """Test case for the 'profile' API endpoint.""" URL = '/v1/profile/' def setUp(self): super(TestProfileEndpoint, self).setUp() self.user_info = { 'openid': 'test-open-id', 'email': '<EMAIL>', 'fullname': '<NAME>' } db.user_save(self.user_info) @mock.patch('refstack.api.utils.get_user_id', return_value='test-open-id') def test_get(self, mock_get_user): response = self.get_json(self.URL) self.user_info['is_admin'] = False self.assertEqual(self.user_info, response) @mock.patch('refstack.api.utils.get_user_id', return_value='test-open-id') def test_pubkeys(self, mock_get_user): """Test '/v1/profile/pubkeys' API endpoint.""" url = self.URL + 'pubkeys' key = rsa.generate_private_key( public_exponent=65537, key_size=1024, backend=default_backend() ) signer = key.signer(padding.PKCS1v15(), hashes.SHA256()) signer.update('signature'.encode('utf-8')) sign = signer.finalize() pubkey = key.public_key().public_bytes( serialization.Encoding.OpenSSH, serialization.PublicFormat.OpenSSH ).decode('utf-8') body = {'raw_key': pubkey, 'self_signature': binascii.b2a_hex(sign).decode('utf-8')} json_params = json.dumps(body) # POST endpoint pubkey_id = self.post_json(url, params=json_params) # GET endpoint user_pubkeys = self.get_json(url) self.assertEqual(1, len(user_pubkeys)) self.assertEqual(pubkey.split()[1], user_pubkeys[0]['pubkey']) self.assertEqual('ssh-rsa', user_pubkeys[0]['format']) self.assertEqual(pubkey_id, user_pubkeys[0]['id']) delete_url = '{}/{}'.format(url, pubkey_id) # DELETE endpoint response = self.delete(delete_url) self.assertEqual(204, response.status_code) user_pubkeys = self.get_json(url) self.assertEqual(0, len(user_pubkeys)) # DELETE endpoint - nonexistent pubkey self.assertRaises(webtest.app.AppError, self.delete, delete_url) ``` #### File: tests/api/test_results.py ```python import json import uuid import mock from oslo_config import fixture as config_fixture import six import webtest.app from refstack.api import constants as api_const from refstack.api import validators from refstack import db from refstack.tests import api import binascii from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives import serialization FAKE_TESTS_RESULT = { 'cpid': 'foo', 'duration_seconds': 10, 'results': [ {'name': 'tempest.foo.bar'}, {'name': 'tempest.buzz', 'uid': '42'} ] } FAKE_JSON_WITH_EMPTY_RESULTS = { 'cpid': 'foo', 'duration_seconds': 20, 'results': [ ] } class TestResultsEndpoint(api.FunctionalTest): """Test case for the 'results' API endpoint.""" URL = '/v1/results/' def setUp(self): super(TestResultsEndpoint, self).setUp() self.config_fixture = config_fixture.Config() self.CONF = self.useFixture(self.config_fixture).conf def test_post(self): """Test results endpoint with post request.""" results = json.dumps(FAKE_TESTS_RESULT) actual_response = self.post_json(self.URL, params=results) self.assertIn('test_id', actual_response) try: uuid.UUID(actual_response.get('test_id'), version=4) except ValueError: self.fail("actual_response doesn't contain test_id") def test_post_with_empty_result(self): """Test results endpoint with empty test results request.""" results = json.dumps(FAKE_JSON_WITH_EMPTY_RESULTS) self.assertRaises(webtest.app.AppError, self.post_json, self.URL, params=results) def test_post_with_invalid_schema(self): """Test post request with invalid schema.""" results = json.dumps({ 'foo': 'bar', 'duration_seconds': 999, }) self.assertRaises(webtest.app.AppError, self.post_json, self.URL, params=results) @mock.patch('refstack.api.utils.check_owner') @mock.patch('refstack.api.utils.check_user_is_foundation_admin') @mock.patch('refstack.api.utils.get_user_id', return_value='test-open-id') def test_put(self, mock_user, mock_check_foundation, mock_check_owner): """Test results endpoint with put request.""" results = json.dumps(FAKE_TESTS_RESULT) test_response = self.post_json(self.URL, params=results) test_id = test_response.get('test_id') url = self.URL + test_id user_info = { 'openid': 'test-open-id', 'email': '<EMAIL>', 'fullname': '<NAME>' } db.user_save(user_info) fake_product = { 'name': 'product name', 'description': 'product description', 'product_type': api_const.CLOUD, } # Create a product product_response = self.post_json('/v1/products/', params=json.dumps(fake_product)) # Create a product version version_url = '/v1/products/' + product_response['id'] + '/versions/' version_response = self.post_json(version_url, params=json.dumps({'version': '1'})) # Test Foundation admin can put. mock_check_foundation.return_value = True body = {'product_version_id': version_response['id']} self.put_json(url, params=json.dumps(body)) get_response = self.get_json(url) self.assertEqual(version_response['id'], get_response['product_version']['id']) # Test when product_version_id is None. body = {'product_version_id': None} self.put_json(url, params=json.dumps(body)) get_response = self.get_json(url) self.assertIsNone(get_response['product_version']) # Test when test verification preconditions are not met. body = {'verification_status': api_const.TEST_VERIFIED} put_response = self.put_json(url, expect_errors=True, params=json.dumps(body)) self.assertEqual(403, put_response.status_code) # Share the test run. db.save_test_result_meta_item(test_id, api_const.SHARED_TEST_RUN, True) put_response = self.put_json(url, expect_errors=True, params=json.dumps(body)) self.assertEqual(403, put_response.status_code) # Now associate guideline and target program. Now we should be # able to mark a test verified. db.save_test_result_meta_item(test_id, 'target', 'platform') db.save_test_result_meta_item(test_id, 'guideline', '2016.01.json') put_response = self.put_json(url, params=json.dumps(body)) self.assertEqual(api_const.TEST_VERIFIED, put_response['verification_status']) # Unshare the test, and check that we can mark it not verified. db.delete_test_result_meta_item(test_id, api_const.SHARED_TEST_RUN) body = {'verification_status': api_const.TEST_NOT_VERIFIED} put_response = self.put_json(url, params=json.dumps(body)) self.assertEqual(api_const.TEST_NOT_VERIFIED, put_response['verification_status']) # Test when verification_status value is invalid. body = {'verification_status': 111} put_response = self.put_json(url, expect_errors=True, params=json.dumps(body)) self.assertEqual(400, put_response.status_code) # Check test owner can put. mock_check_foundation.return_value = False mock_check_owner.return_value = True body = {'product_version_id': version_response['id']} self.put_json(url, params=json.dumps(body)) get_response = self.get_json(url) self.assertEqual(version_response['id'], get_response['product_version']['id']) # Test non-Foundation user can't change verification_status. body = {'verification_status': 1} put_response = self.put_json(url, expect_errors=True, params=json.dumps(body)) self.assertEqual(403, put_response.status_code) # Test unauthorized put. mock_check_foundation.return_value = False mock_check_owner.return_value = False self.assertRaises(webtest.app.AppError, self.put_json, url, params=json.dumps(body)) def test_get_one(self): """Test get request.""" results = json.dumps(FAKE_TESTS_RESULT) post_response = self.post_json(self.URL, params=results) get_response = self.get_json(self.URL + post_response.get('test_id')) # CPID is only exposed to the owner. self.assertNotIn('cpid', get_response) self.assertEqual(FAKE_TESTS_RESULT['duration_seconds'], get_response['duration_seconds']) for test in FAKE_TESTS_RESULT['results']: self.assertIn(test['name'], get_response['results']) def test_get_one_with_nonexistent_uuid(self): """Test get request with nonexistent uuid.""" self.assertRaises(webtest.app.AppError, self.get_json, self.URL + six.text_type(uuid.uuid4())) def test_get_one_schema(self): """Test get request for getting JSON schema.""" validator = validators.TestResultValidator() expected_schema = validator.schema actual_schema = self.get_json(self.URL + 'schema') self.assertEqual(actual_schema, expected_schema) def test_get_one_invalid_url(self): """Test get request with invalid url.""" self.assertRaises(webtest.app.AppError, self.get_json, self.URL + 'fake_url') def test_get_pagination(self): self.CONF.set_override('results_per_page', 2, 'api') responses = [] for i in range(3): fake_results = { 'cpid': six.text_type(i), 'duration_seconds': i, 'results': [ {'name': 'tempest.foo.bar'}, {'name': 'tempest.buzz'} ] } actual_response = self.post_json(self.URL, params=json.dumps(fake_results)) responses.append(actual_response) page_one = self.get_json(self.URL) page_two = self.get_json('/v1/results?page=2') self.assertEqual(len(page_one['results']), 2) self.assertEqual(len(page_two['results']), 1) self.assertNotIn(page_two['results'][0], page_one) self.assertEqual(page_one['pagination']['current_page'], 1) self.assertEqual(page_one['pagination']['total_pages'], 2) self.assertEqual(page_two['pagination']['current_page'], 2) self.assertEqual(page_two['pagination']['total_pages'], 2) def test_get_with_not_existing_page(self): self.assertRaises(webtest.app.AppError, self.get_json, '/v1/results?page=2') def test_get_with_empty_database(self): results = self.get_json(self.URL) self.assertEqual([], results['results']) def test_get_with_cpid_filter(self): self.CONF.set_override('results_per_page', 2, 'api') responses = [] for i in range(2): fake_results = { 'cpid': '12345', 'duration_seconds': i, 'results': [ {'name': 'tempest.foo'}, {'name': 'tempest.bar'} ] } json_result = json.dumps(fake_results) actual_response = self.post_json(self.URL, params=json_result) responses.append(actual_response) for i in range(3): fake_results = { 'cpid': '54321', 'duration_seconds': i, 'results': [ {'name': 'tempest.foo'}, {'name': 'tempest.bar'} ] } results = self.get_json('/v1/results?page=1&cpid=12345') self.assertEqual(len(results), 2) response_test_ids = [test['test_id'] for test in responses[0:2]] for r in results['results']: self.assertIn(r['id'], response_test_ids) def test_get_with_date_filters(self): self.CONF.set_override('results_per_page', 10, 'api') responses = [] for i in range(5): fake_results = { 'cpid': '12345', 'duration_seconds': i, 'results': [ {'name': 'tempest.foo'}, {'name': 'tempest.bar'} ] } json_result = json.dumps(fake_results) actual_response = self.post_json(self.URL, params=json_result) responses.append(actual_response) all_results = self.get_json(self.URL) slice_results = all_results['results'][1:4] url = '/v1/results?start_date=%(start)s&end_date=%(end)s' % { 'start': slice_results[2]['created_at'], 'end': slice_results[0]['created_at'] } filtering_results = self.get_json(url) for r in slice_results: self.assertIn(r, filtering_results['results']) url = '/v1/results?end_date=1000-01-01 12:00:00' filtering_results = self.get_json(url) self.assertEqual([], filtering_results['results']) @mock.patch('refstack.api.utils.get_user_id') def test_get_with_product_id(self, mock_get_user): user_info = { 'openid': 'test-open-id', 'email': '<EMAIL>', 'fullname': '<NAME>' } db.user_save(user_info) mock_get_user.return_value = 'test-open-id' fake_product = { 'name': 'product name', 'description': 'product description', 'product_type': api_const.CLOUD, } product = json.dumps(fake_product) response = self.post_json('/v1/products/', params=product) product_id = response['id'] # Create a version. version_url = '/v1/products/' + product_id + '/versions' version = {'cpid': '123', 'version': '6.0'} post_response = self.post_json(version_url, params=json.dumps(version)) version_id = post_response['id'] # Create a test and associate it to the product version and user. results = json.dumps(FAKE_TESTS_RESULT) post_response = self.post_json('/v1/results', params=results) test_id = post_response['test_id'] test_info = {'id': test_id, 'product_version_id': version_id} db.update_test_result(test_info) db.save_test_result_meta_item(test_id, api_const.USER, 'test-open-id') url = self.URL + '?page=1&product_id=' + product_id # Test GET. response = self.get_json(url) self.assertEqual(1, len(response['results'])) self.assertEqual(test_id, response['results'][0]['id']) # Test unauthorized. mock_get_user.return_value = 'test-foo-id' response = self.get_json(url, expect_errors=True) self.assertEqual(403, response.status_code) # Make product public. product_info = {'id': product_id, 'public': 1} db.update_product(product_info) # Test result is not shared yet, so no tests should return. response = self.get_json(url) self.assertFalse(response['results']) # Share the test run. db.save_test_result_meta_item(test_id, api_const.SHARED_TEST_RUN, 1) response = self.get_json(url) self.assertEqual(1, len(response['results'])) self.assertEqual(test_id, response['results'][0]['id']) @mock.patch('refstack.api.utils.check_owner') def test_delete(self, mock_check_owner): results = json.dumps(FAKE_TESTS_RESULT) test_response = self.post_json(self.URL, params=results) test_id = test_response.get('test_id') url = self.URL + test_id mock_check_owner.return_value = True # Test can't delete verified test run. db.update_test_result({'id': test_id, 'verification_status': 1}) resp = self.delete(url, expect_errors=True) self.assertEqual(403, resp.status_code) # Test can delete verified test run. db.update_test_result({'id': test_id, 'verification_status': 0}) resp = self.delete(url, expect_errors=True) self.assertEqual(204, resp.status_code) class TestResultsEndpointNoAnonymous(api.FunctionalTest): URL = '/v1/results/' def _generate_keypair_(self): return rsa.generate_private_key( public_exponent=65537, key_size=1024, backend=default_backend() ) def _sign_body_(self, keypair, body): signer = keypair.signer(padding.PKCS1v15(), hashes.SHA256()) signer.update(body) return signer.finalize() def _get_public_key_(self, keypair): pubkey = keypair.public_key().public_bytes( serialization.Encoding.OpenSSH, serialization.PublicFormat.OpenSSH ) return pubkey def setUp(self): super(TestResultsEndpointNoAnonymous, self).setUp() self.config_fixture = config_fixture.Config() self.CONF = self.useFixture(self.config_fixture).conf self.CONF.api.enable_anonymous_upload = False self.user_info = { 'openid': 'test-open-id', 'email': '<EMAIL>', 'fullname': '<NAME>' } db.user_save(self.user_info) good_key = self._generate_keypair_() self.body = json.dumps(FAKE_TESTS_RESULT).encode() signature = self._sign_body_(good_key, self.body) pubkey = self._get_public_key_(good_key) x_signature = binascii.b2a_hex(signature) self.good_headers = { 'X-Signature': x_signature, 'X-Public-Key': pubkey } self.pubkey_info = { 'openid': 'test-open-id', 'format': 'ssh-rsa', 'pubkey': pubkey.split()[1], 'comment': 'comment' } db.store_pubkey(self.pubkey_info) bad_key = self._generate_keypair_() bad_signature = self._sign_body_(bad_key, self.body) bad_pubkey = self._get_public_key_(bad_key) x_bad_signature = binascii.b2a_hex(bad_signature) self.bad_headers = { 'X-Signature': x_bad_signature, 'X-Public-Key': bad_pubkey } def test_post_with_no_token(self): """Test results endpoint with post request.""" results = json.dumps(FAKE_TESTS_RESULT) actual_response = self.post_json(self.URL, expect_errors=True, params=results) self.assertEqual(actual_response.status_code, 401) def test_post_with_valid_token(self): """Test results endpoint with post request.""" results = json.dumps(FAKE_TESTS_RESULT) actual_response = self.post_json(self.URL, headers=self.good_headers, params=results) self.assertIn('test_id', actual_response) try: uuid.UUID(actual_response.get('test_id'), version=4) except ValueError: self.fail("actual_response doesn't contain test_id") def test_post_with_invalid_token(self): results = json.dumps(FAKE_TESTS_RESULT) actual_response = self.post_json(self.URL, headers=self.bad_headers, expect_errors=True, params=results) self.assertEqual(actual_response.status_code, 401) ```
{ "source": "jovian34/j34rockpaper", "score": 4 }
#### File: jovian34/j34rockpaper/players.py ```python import random class Player(object): def __init__(self): self.score = 0 self.choice = 'START' def add_to_score(self): self.score += 1 class Human(Player): def get_user_input(self): options = ['r', 'p', 's'] print('choose (r)ock, (p)aper, or (s)cissors: ', end='') self.choice = input() if self.choice[0].lower() in options: self.choice = self.choice[0].lower() else: print('Invalid choice... please try again.') return self.get_user_input() def process_choice(self): if self.choice == 'r': print('You chose rock!') self.choice = 'rock' if self.choice == 'p': print('You chose paper!') self.choice = 'paper' if self.choice == 's': print('You chose scissors!') self.choice = 'scissors' def set_user_choice(self): self.get_user_input() self.process_choice() class Computer(Player): def set_random_choice(self): self.choice = random.randint(1, 3) ```
{ "source": "Jovian-Dsouza/MOC-Detector", "score": 2 }
#### File: MOC-Detector/src/DataModule.py ```python import math import random import pytorch_lightning as pl import torch import os import pickle import cv2 import numpy as np from torch.utils import data from datasets.init_dataset import get_dataset from ACT_utils.ACT_utils import tubelet_in_out_tubes, tubelet_has_gt from MOC_utils.gaussian_hm import gaussian_radius, draw_umich_gaussian from ACT_utils.ACT_aug import apply_distort, apply_expand, crop_image from pprint import pprint class UCFDataset(data.Dataset): def __init__(self, root_dir, mode, # train or val pkl_filename = 'UCF101v2-GT.pkl', K=7, skip=1, downratio=4, mean=[0.40789654, 0.44719302, 0.47026115], std=[0.28863828, 0.27408164, 0.27809835], resize=(288, 288), # (h, w) max_objs=128): super().__init__() self.root_dir = root_dir self.mode = mode self.K = K self.skip = skip # TODO implement skiping frames in getitem self._resize_height = resize[0] self._resize_width = resize[1] self.down_ratio = downratio self.mean = mean self.std = std self.max_objs = max_objs pkl_file = os.path.join(root_dir, pkl_filename) with open(pkl_file, 'rb') as fid: pkl = pickle.load(fid, encoding='iso-8859-1') for k in pkl: setattr(self, ('_' if k != 'labels' else '') + k, pkl[k]) # labels, _nframes, _train_videos, _test_videos # _gttubes, _resolution self.num_classes = len(self.labels) self._indices = [] video_list = self._train_videos if mode == 'train' else self._test_videos for v in video_list: vtubes = sum(self._gttubes[v].values(), []) self._indices += [(v, i) for i in range(1, self._nframes[v] + 2 - self.K, self.K) if tubelet_in_out_tubes(vtubes, i, self.K) and tubelet_has_gt(vtubes, i, self.K)] self.init_aug_params() def init_aug_params(self): self._mean_values = [104.0136177, 114.0342201, 119.91659325] self.distort_param = { 'brightness_prob': 0.5, 'brightness_delta': 32, 'contrast_prob': 0.5, 'contrast_lower': 0.5, 'contrast_upper': 1.5, 'hue_prob': 0.5, 'hue_delta': 18, 'saturation_prob': 0.5, 'saturation_lower': 0.5, 'saturation_upper': 1.5, 'random_order_prob': 0.0, } self.expand_param = { 'expand_prob': 0.5, 'max_expand_ratio': 4.0, } self.batch_samplers = [{ 'sampler': {}, 'max_trials': 1, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': {'min_jaccard_overlap': 0.1, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': {'min_jaccard_overlap': 0.3, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': {'min_jaccard_overlap': 0.5, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': {'min_jaccard_overlap': 0.7, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': {'min_jaccard_overlap': 0.9, }, 'max_trials': 50, 'max_sample': 1, }, { 'sampler': {'min_scale': 0.3, 'max_scale': 1.0, 'min_aspect_ratio': 0.5, 'max_aspect_ratio': 2.0, }, 'sample_constraint': {'max_jaccard_overlap': 1.0, }, 'max_trials': 50, 'max_sample': 1, }, ] def __len__(self): return len(self._indices) def imagefile(self, v, i): return os.path.join(self.root_dir, 'rgb-images', v, '{:0>5}.jpg'.format(i)) def flip_video(self, images, frame, v): do_mirror = random.getrandbits(1) == 1 # filp the image if do_mirror: images = [im[:, ::-1, :] for im in images] h, w = self._resolution[v] gt_bbox = {} for ilabel, tubes in self._gttubes[v].items(): for t in tubes: if frame not in t[:, 0]: continue assert frame + self.K - 1 in t[:, 0] # copy otherwise it will change the gt of the dataset also t = t.copy() if do_mirror: # filp the gt bbox xmin = w - t[:, 3] t[:, 3] = w - t[:, 1] t[:, 1] = xmin boxes = t[(t[:, 0] >= frame) * (t[:, 0] < frame + self.K), 1:5] assert boxes.shape[0] == self.K if ilabel not in gt_bbox: gt_bbox[ilabel] = [] # gt_bbox[ilabel] ---> a list of numpy array, each one is K, x1, x2, y1, y2 gt_bbox[ilabel].append(boxes) return images, gt_bbox def make_gttbox(self, frame, v): gt_bbox = {} for ilabel, tubes in self._gttubes[v].items(): for t in tubes: if frame not in t[:, 0]: continue assert frame + self.K - 1 in t[:, 0] t = t.copy() boxes = t[(t[:, 0] >= frame) * (t[:, 0] < frame + self.K), 1:5] assert boxes.shape[0] == self.K if ilabel not in gt_bbox: gt_bbox[ilabel] = [] gt_bbox[ilabel].append(boxes) return gt_bbox def resize_video(self, images, gt_bbox): original_h, original_w = images[0].shape[:2] output_h = self._resize_height // self.down_ratio output_w = self._resize_width // self.down_ratio # resize the original img and it's GT bbox for ilabel in gt_bbox: for itube in range(len(gt_bbox[ilabel])): gt_bbox[ilabel][itube][:, 0] = gt_bbox[ilabel][itube][:, 0] / original_w * output_w gt_bbox[ilabel][itube][:, 1] = gt_bbox[ilabel][itube][:, 1] / original_h * output_h gt_bbox[ilabel][itube][:, 2] = gt_bbox[ilabel][itube][:, 2] / original_w * output_w gt_bbox[ilabel][itube][:, 3] = gt_bbox[ilabel][itube][:, 3] / original_h * output_h images = [cv2.resize(im, (self._resize_width, self._resize_height), interpolation=cv2.INTER_LINEAR) for im in images] return images, gt_bbox def normalize(self, images): data = [np.empty((3, self._resize_height, self._resize_width), dtype=np.float32) for i in range(self.K)] mean = np.tile(np.array(self.mean, dtype=np.float32)[:, None, None], (1, 1, 1)) std = np.tile(np.array(self.std, dtype=np.float32)[:, None, None], (1, 1, 1)) for i in range(self.K): data[i][0:3, :, :] = np.transpose(images[i], (2, 0, 1)) data[i] = ((data[i] / 255.) - mean) / std return data def draw_ground_truths(self, gt_bbox): output_h = self._resize_height // self.down_ratio output_w = self._resize_width // self.down_ratio hm = np.zeros((self.num_classes, output_h, output_w), dtype=np.float32) wh = np.zeros((self.max_objs, self.K * 2), dtype=np.float32) mov = np.zeros((self.max_objs, self.K * 2), dtype=np.float32) index = np.zeros((self.max_objs), dtype=np.int64) index_all = np.zeros((self.max_objs, self.K * 2), dtype=np.int64) mask = np.zeros((self.max_objs), dtype=np.uint8) num_objs = 0 for ilabel in gt_bbox: for itube in range(len(gt_bbox[ilabel])): key = self.K // 2 # key frame's bbox height and width (both on the feature map) key_h, key_w = gt_bbox[ilabel][itube][key, 3] - gt_bbox[ilabel][itube][key, 1], gt_bbox[ilabel][itube][key, 2] - gt_bbox[ilabel][itube][key, 0] # create gaussian heatmap radius = gaussian_radius((math.ceil(key_h), math.ceil(key_w))) radius = max(0, int(radius)) # ground truth bbox's center in key frame center = np.array([(gt_bbox[ilabel][itube][key, 0] + gt_bbox[ilabel][itube][key, 2]) / 2, (gt_bbox[ilabel][itube][key, 1] + gt_bbox[ilabel][itube][key, 3]) / 2], dtype=np.float32) center_int = center.astype(np.int32) assert 0 <= center_int[0] and center_int[0] <= output_w and 0 <= center_int[1] and center_int[1] <= output_h # draw ground truth gaussian heatmap at each center location draw_umich_gaussian(hm[ilabel], center_int, radius) for i in range(self.K): center_all = np.array([(gt_bbox[ilabel][itube][i, 0] + gt_bbox[ilabel][itube][i, 2]) / 2, (gt_bbox[ilabel][itube][i, 1] + gt_bbox[ilabel][itube][i, 3]) / 2], dtype=np.float32) center_all_int = center_all.astype(np.int32) # wh is ground truth bbox's height and width in i_th frame wh[num_objs, i * 2: i * 2 + 2] = 1. * (gt_bbox[ilabel][itube][i, 2] - gt_bbox[ilabel][itube][i, 0]), 1. * (gt_bbox[ilabel][itube][i, 3] - gt_bbox[ilabel][itube][i, 1]) # mov is ground truth movement from i_th frame to key frame mov[num_objs, i * 2: i * 2 + 2] = (gt_bbox[ilabel][itube][i, 0] + gt_bbox[ilabel][itube][i, 2]) / 2 - \ center_int[0], (gt_bbox[ilabel][itube][i, 1] + gt_bbox[ilabel][itube][i, 3]) / 2 - center_int[1] # index_all are all frame's bbox center position index_all[num_objs, i * 2: i * 2 + 2] = center_all_int[1] * output_w + center_all_int[0], center_all_int[1] * output_w + center_all_int[0] # index is key frame's boox center position index[num_objs] = center_int[1] * output_w + center_int[0] # mask indicate how many objects in this tube mask[num_objs] = 1 num_objs = num_objs + 1 return hm, wh, mov, index, index_all, mask def __getitem__(self, id): v, frame = self._indices[id] # Read images images = [cv2.imread(self.imagefile(v, frame + i)).astype(np.float32) for i in range(0,self.K,self.skip)] if self.mode == 'train': # apply data augmentation images, gt_bbox = self.flip_video(images, frame, v) images = apply_distort(images, self.distort_param) images, gt_bbox = apply_expand(images, gt_bbox, self.expand_param, self._mean_values) images, gt_bbox = crop_image(images, gt_bbox, self.batch_samplers) else: # no data augmentation or flip when validation gt_bbox = self.make_gttbox(frame, v) # Resize the video images, gt_bbox = self.resize_video(images, gt_bbox) data = self.normalize(images) hm, wh, mov, index, index_all, mask = self.draw_ground_truths(gt_bbox) return {'input': data, 'hm': hm, 'mov': mov, 'wh': wh, 'mask': mask, 'index': index, 'index_all': index_all} def _draw_bb(self, video, frame, index): i = index for label in self._gttubes[video]: # print(label) tubes = self._gttubes[video][label] for tube in tubes: x = np.where(tube[..., 0] == i)[0] if (len(x) != 0): x = int(x) x1, y1, x2, y2 = tube[x, 1:] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) frame = cv2.rectangle(frame, (x1, y1), (x2, y2), color=(255, 0, 0), thickness=2) return frame def save_video(self, index, fps=25, drawbb=True, save_dir='.'): video, start_frame = self._indices[index] h, w = self._resolution[video] save_path = video.split(os.path.sep)[-1] + '_'+ str(index) + '.mp4' save_path = os.path.join(save_dir, save_path) out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) for i in range(start_frame, start_frame+self.K, self.skip): frame = cv2.imread(self.imagefile(video, i)) if drawbb: frame = self._draw_bb(video, frame, i) out.write(frame) out.release() class VideoDataModule(pl.LightningDataModule): def __init__(self, root_dir, pkl_file, K, resize, batch_size, num_workers=None, pin_memory=False): super().__init__() self.root_dir = root_dir self.pkl_file = pkl_file self.batch_size = batch_size self.num_workers = os.cpu_count() - 1 if num_workers is None else num_workers self.pin_memory = pin_memory self.Dataset = get_dataset("ucf101") #ucf101 or hmdb self.num_classes = self.Dataset.num_classes self.K = K self.resize = resize def train_dataloader(self): return torch.utils.data.DataLoader( UCFDataset(root_dir=self.root_dir, pkl_filename=self.pkl_file, mode='train', K=self.K, resize=self.resize, ), batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True, ) def val_dataloader(self): return torch.utils.data.DataLoader( UCFDataset(root_dir=self.root_dir, pkl_filename=self.pkl_file, mode='val', K=self.K, resize=self.resize, ), batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True, ) # TEST CASES def test_dataset(): dataset = UCFDataset(root_dir='../data/ucf24', mode='train', pkl_filename='SalsaSpin.pkl', K=7 ) print("len of dataset ", len(dataset)) data = dataset.__getitem__(0) print(data.keys()) # 'input', 'hm', 'mov', 'wh', 'mask', 'index', 'index_all'] print(data['input'][0].shape) print(data['hm'].shape) print(data['mov'].shape) print(data['wh'].shape) # save_dir = '../SalsaSpin' # os.makedirs(save_dir, exist_ok=True) # for i in range(len(dataset)): # dataset.save_video(i, fps=1, save_dir=save_dir, drawbb=True) if __name__ == '__main__': datamodule = VideoDataModule(root_dir='../data/ucf24', pkl_file="SalsaSpin.pkl", K=7, resize=(288, 288), batch_size=2, num_workers=0, pin_memory=False ) print("Number of classes ", datamodule.num_classes) train_dl = datamodule.train_dataloader() print("Len of train_dl", len(train_dl)) for data in train_dl: break print(data.keys()) # 'input', 'hm', 'mov', 'wh', 'mask', 'index', 'index_all'] print(data['hm'].shape) print(data['mov'].shape) print(data['wh'].shape) val_dl = datamodule.val_dataloader() print("Len of val_dl", len(val_dl)) for data in val_dl: break print(data.keys()) ``` #### File: datasets/dataset/ucf101.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from .base_dataset import BaseDataset class UCF101(BaseDataset): num_classes = 24 def __init__(self, root_dir, mode, split=1, K=7, ninput=1, resize=(288, 288)): assert split == 1, "We use only the first split of UCF101" self.ROOT_DATASET_PATH = root_dir pkl_filename = 'UCF101v2-GT.pkl' super(UCF101, self).__init__(mode, self.ROOT_DATASET_PATH, pkl_filename, split, K, ninput, resize_height=resize[0], resize_width=resize[1]) def imagefile(self, v, i): return os.path.join(self.ROOT_DATASET_PATH, 'rgb-images', v, '{:0>5}.jpg'.format(i)) def flowfile(self, v, i): return os.path.join(self.ROOT_DATASET_PATH, 'brox-images', v, '{:0>5}.jpg'.format(i)) ``` #### File: src/MOC_utils/gaussian_hm.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np def gaussian_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_umich_gaussian(heatmap, center, radius, k=1): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def draw_msra_gaussian(heatmap, center, sigma): tmp_size = sigma * 3 mu_x = int(center[0] + 0.5) mu_y = int(center[1] + 0.5) w, h = heatmap.shape[0], heatmap.shape[1] ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if ul[0] >= h or ul[1] >= w or br[0] < 0 or br[1] < 0: return heatmap size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, np.newaxis] x0 = y0 = size // 2 g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) g_x = max(0, -ul[0]), min(br[0], h) - ul[0] g_y = max(0, -ul[1]), min(br[1], w) - ul[1] img_x = max(0, ul[0]), min(br[0], h) img_y = max(0, ul[1]), min(br[1], w) heatmap[img_y[0]:img_y[1], img_x[0]:img_x[1]] = np.maximum( heatmap[img_y[0]:img_y[1], img_x[0]:img_x[1]], g[g_y[0]:g_y[1], g_x[0]:g_x[1]]) return heatmap ``` #### File: MOC-Detector/src/model.py ```python import torch import torch.nn as nn import torch.optim as optim import pytorch_lightning as pl from network.dla import MOC_DLA from network.resnet import MOC_ResNet from trainer.losses import MOCLoss from MOC_utils.model import load_coco_pretrained_model backbone = { 'dla': MOC_DLA, 'resnet': MOC_ResNet } def fill_fc_weights(layers): for m in layers.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: nn.init.constant_(m.bias, 0) class MOC_Branch(nn.Module): def __init__(self, input_channel, arch, head_conv, branch_info, K): super(MOC_Branch, self).__init__() assert head_conv > 0 wh_head_conv = 64 if arch == 'resnet' else head_conv self.hm = nn.Sequential( nn.Conv2d(K * input_channel, head_conv, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(head_conv, branch_info['hm'], kernel_size=1, stride=1, padding=0, bias=True)) self.hm[-1].bias.data.fill_(-2.19) self.mov = nn.Sequential( nn.Conv2d(K * input_channel, head_conv, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(head_conv, branch_info['mov'], kernel_size=1, stride=1, padding=0, bias=True)) fill_fc_weights(self.mov) self.wh = nn.Sequential( nn.Conv2d(input_channel, wh_head_conv, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(wh_head_conv, branch_info['wh'] // K, kernel_size=1, stride=1, padding=0, bias=True)) fill_fc_weights(self.wh) def forward(self, input_chunk): output = {} output_wh = [] for feature in input_chunk: output_wh.append(self.wh(feature)) input_chunk = torch.cat(input_chunk, dim=1) output_wh = torch.cat(output_wh, dim=1) output['hm'] = self.hm(input_chunk) output['mov'] = self.mov(input_chunk) output['wh'] = output_wh return output class MOC_Net(pl.LightningModule): def __init__(self, arch, num_classes, head_conv=256, K=7, **kwargs): super().__init__() self.save_hyperparameters() num_layers = int(arch[arch.find('_') + 1:]) if '_' in arch else 0 arch = arch[:arch.find('_')] if '_' in arch else arch branch_info = {'hm': num_classes, 'mov': 2 * K, 'wh': 2 * K} self.K = K self.backbone = backbone[arch](num_layers) self.branch = MOC_Branch(self.backbone.output_channel, arch, head_conv, branch_info, K) # Define the loss function self.loss = MOCLoss() def forward(self, x): chunk = [self.backbone(x[i]) for i in range(self.K)] return [self.branch(chunk)] def configure_optimizers(self): if self.hparams.optimizer == 'sgd': return optim.SGD(self.parameters(), self.hparams.lr, momentum = 0.9) elif self.hparams.optimizer == 'adam': return optim.Adam(self.parameters(), self.hparams.lr) elif self.hparams.optimizer == 'adamax': return optim.Adamax(self.parameters(), self.hparams.lr) def run_epoch(self, phase, batch, batch_idx): assert len(batch['input']) == self.K output = self(batch['input'])[0] loss, loss_stats = self.loss(output, batch) self.log(f'{phase}_loss', loss, prog_bar=True, logger=True) self.log(f'{phase}_loss_hm', loss_stats['loss_hm'], prog_bar=True, logger=True) self.log(f'{phase}_loss_mov', loss_stats['loss_mov'], prog_bar=True, logger=True) self.log(f'{phase}_loss_wh', loss_stats['loss_wh'], prog_bar=True, logger=True) return loss.mean() def training_step(self, batch, batch_idx): return self.run_epoch("train", batch, batch_idx) def validation_step(self, batch, batch_idx): self.run_epoch("val", batch, batch_idx) def test_step(self, batch, batch_idx): self.run_epoch("test", batch, batch_idx) if __name__ == '__main__': num_classes = 24 K = 7 arch = 'resnet_18' head_conv = 256 model = MOC_Net(arch, num_classes, head_conv, K, lr=0.001, optimizer='adam') model = load_coco_pretrained_model(model, arch, print_log=False) input_shape = (1, 3, 288, 288) x = [torch.randn(input_shape)] * K # y = model.backbone(x) #1, 64, 72, 72 y = model(x) # print(len(y)) print(y[0].keys()) hm = y[0]['hm'] mov = y[0]['mov'] wh = y[0]['wh'] print(hm.shape) print(mov.shape) print(wh.shape) print(model.hparams) model.configure_optimizers() ``` #### File: network/DCNv2/my_dcn_v2.py ```python from __future__ import absolute_import from __future__ import print_function from __future__ import division import torch import math from torch import nn from torch.nn.modules.utils import _pair class DCN(nn.Module): ## Convlotion wrapper function def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, deformable_groups=1): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride ,padding, dilation) def register_parameter(self): self.conv.weight.data.zero_() self.conv.bias.data.zero_() def forward(self, input): return self.conv(input) ```
{ "source": "Jovian-Dsouza/sahayak_bot", "score": 2 }
#### File: ebot_main/scripts/task5.py ```python import rospy import random from math import pi, sin, cos from geometry_msgs.msg import Point, Quaternion, Pose, PointStamped, PoseStamped from std_msgs.msg import Header from object_msgs.msg import ObjectPose from std_srvs.srv import Empty from tf.transformations import quaternion_from_euler from tf.transformations import euler_from_quaternion from ebot_mani.srv import * from testNav import Ebot from perception.srv import * transformPose = rospy.ServiceProxy('/get_transform_pose', GetTransformPose) transformPoint = rospy.ServiceProxy('/get_transform_point', GetTransformPoint) def TransformPoint(point, from_frame, to_frame): req = GetTransformPointRequest() req.point = point req.from_frame = from_frame req.to_frame = to_frame return transformPoint(req).point # width estimate = 0.2 + width of detection window (printed in terminal) # w_dict uses real model names w_dict = {'coke_can': 0.27086, 'battery': 0.26500, 'glue': 0.31, 'eYFi_board': 0.5, 'adhesive': 0.267674286664, 'water_glass': 0.2, 'robot_wheels': 0.26, 'FPGA_board': 0.3 } def printReached(name): print(">> " + name + " Reached") def printPicked(name): print(">> " + name + " Picked") def printDropped(name, dropbox): print(">> " + name + " Dropped in " + dropbox) def printPoint(point): p = point print("create_point(%0.5f, %0.5f, %0.5f)" % (p.x, p.y, p.z)) def create_point(x, y, z): position = Point() position.x = x position.y = y position.z = z return position def printPose(pose): p = pose.position q = pose.orientation print("create_pose_quaternion(%0.5f, %0.5f, %0.5f, %0.5f, %0.5f, %0.5f, %0.5f)" % (p.x, p.y, p.z, q.x, q.y, q.z, q.w)) def create_pose_quaternion(x, y, z, qx, qy, qz, qw): ''' returns a Pose() object from the given x, y, z, qx, qy , qz, qw values ''' pose = Pose() pose.position.x = x pose.position.y = y pose.position.z = z pose.orientation.x = qx pose.orientation.y = qy pose.orientation.z = qz pose.orientation.w = qw return pose def orient_from_euler(roll, pitch, yaw): ''' Input is roll, pitch, yaw output is Quaternion pose.orientation ''' q = quaternion_from_euler(roll, pitch, yaw) o = Quaternion() o.x, o.y, o.z, o.w = q[0], q[1], q[2], q[3] return o def createPoseStamped(point): poseStamped = PoseStamped() poseStamped.header.frame_id = 'base_link' poseStamped.header.stamp = rospy.Time.now() poseStamped.pose.position = point poseStamped.pose.orientation.x = 0 poseStamped.pose.orientation.y = -0.7071 poseStamped.pose.orientation.z = 0 poseStamped.pose.orientation.w = 0.7071 return poseStamped def pickupObject(object_name): ''' Note : object_name should be the real model name and not the gazebo model name ''' ur5.openGripper() graspPose_pub.publish(createPoseStamped(detect.dict[object_name])) if object_name == 'eYFi_board': # TODO need a better way of finding the object's yaw angle instead of manually giving it return ur5.graspObjectVertical(detect.dict[object_name], width=w_dict[object_name], yaw=pi/4).success elif object_name == 'FPGA_board': # return ur5.graspObjectVertical(detect.dict[object_name], width=w_dict[object_name], yaw=pi/3).success return ur5.graspObjectHorizontal(detect.dict[object_name], width=w_dict[object_name], yaw=-pi/6) else: # .success return ur5.graspObjectHorizontal(detect.dict[object_name], width=w_dict[object_name], yaw=0) class Detect(): def __init__(self): self.dict = {} rospy.loginfo("waiting for detect service") rospy.wait_for_service('/ebot/detect') self.detectTable = rospy.ServiceProxy('/ebot/detectTable', Empty) self.detect_service = rospy.ServiceProxy('/ebot/detect', Empty) rospy.Subscriber("/detection_info", ObjectPose, self.detect_callback) def print_detected(self): for item in self.dict.keys(): print(">> " + item + " Identified") def detect(self): self.dict = {} self.detect_service() rospy.sleep(2) self.print_detected() def detect_callback(self, msg): self.dict[msg.name] = msg.pose.pose.position self.frame_id = msg.pose.header.frame_id class Ur5(): def __init__(self): rospy.loginfo("waiting for ur5_service") rospy.wait_for_service('ebot_mani/set_named_pose') rospy.wait_for_service('ebot_mani/set_pose') rospy.wait_for_service('ebot_mani/set_gripper') rospy.wait_for_service('ebot_mani/open_gripper') rospy.wait_for_service('ebot_mani/grasp_object_vertical') rospy.wait_for_service('ebot_mani/grasp_object_horizontal') rospy.wait_for_service('ebot_mani/set_pose_relative') rospy.loginfo("connected to services") self.go_to_named_pose = rospy.ServiceProxy( 'ebot_mani/set_named_pose', SetNamedPose) self.print_name_pose = rospy.ServiceProxy( '/ebot_mani/print_name_pose', SetNamedPose) self.go_to_pose = rospy.ServiceProxy('ebot_mani/set_pose', SetPose) self.closeGripper = rospy.ServiceProxy( 'ebot_mani/set_gripper', SetGripper) self.openGripper = rospy.ServiceProxy('ebot_mani/open_gripper', Empty) self.graspObjectVerticalService = rospy.ServiceProxy( 'ebot_mani/grasp_object_vertical', GraspObject) self.graspObjectHorizontalService = rospy.ServiceProxy( 'ebot_mani/grasp_object_horizontal', GraspObject) self.set_pose_relative = rospy.ServiceProxy( 'ebot_mani/set_pose_relative', SetPose) self.getCurrentPoseOdom = rospy.ServiceProxy( 'ebot_mani/get_current_pose_odom', GetPose) self.set_pose_odom = rospy.ServiceProxy( 'ebot_mani/set_pose_odom', SetPose) self.set_pose_wrist = rospy.ServiceProxy( 'ebot_mani/set_pose_wrist', SetPose) self.align_wrist = rospy.ServiceProxy('ebot_mani/align_wrist', Empty) self.set_pose_wrist_no_align = rospy.ServiceProxy( 'ebot_mani/set_pose_wrist_no_align', SetPose) def go_to_pose_wrist(self, arg_pose): req = SetPoseRequest() req.pose = arg_pose return self.set_pose_wrist(req).success def go_to_pose_wrist_no_align(self, arg_pose): req = SetPoseRequest() req.pose = arg_pose return self.set_pose_wrist_no_align(req).success def go_to_pose_relative(self, arg_pose): req = SetPoseRequest() req.pose = arg_pose return self.set_pose_relative(req).success # def graspObjectHorizontal(self, point, width, yaw=0): # req = GraspObjectRequest() # req.point = point # req.width = width # req.yaw = yaw # return self.graspObjectHorizontalService(req) def graspObjectVerticalOld(self, point, width, yaw): req = GraspObjectRequest() req.point = point req.width = width req.yaw = yaw return self.graspObjectVerticalService(req).success def graspObjectVertical(self, point, width, yaw): ''' Given the position of object within reach it grasps it. Argument : position (Point msg) ''' self.align_wrist() req = GetTransformPointRequest() req.point = point req.from_frame = "base_link" req.to_frame = "wrist_3_link" point = transformPoint(req).point graspPose = Pose() graspPose.position = point graspPose.position.x -= 0.25 * sin(yaw) graspPose.position.y -= 0.15 # + 0.1 graspPose.position.z -= 0.12 # Should be 0.25 * sin(grasp_angle) # Pose just Above the object flag = self.go_to_pose_wrist(graspPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False # Set grasping angle if yaw != 0.0: newOPose = Pose() newOPose.orientation = orient_from_euler(0, 0, yaw) flag = self.go_to_pose_wrist(newOPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False newOPose = Pose() newOPose.orientation = orient_from_euler(0.558505, 0, 0) # 32 deg flag = self.go_to_pose_wrist_no_align(newOPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False newOPose = Pose() newOPose.position.z += 0.01 flag = self.go_to_pose_wrist(newOPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False return flag def graspObjectHorizontal(self, point, width, yaw): ''' Given the position of object within reach it grasps it. Argument : position (Point msg) ''' self.align_wrist() req = GetTransformPointRequest() req.point = point req.from_frame = "base_link" req.to_frame = "wrist_3_link" point = transformPoint(req).point graspPose = Pose() graspPose.position = point graspPose.position.x -= 0.25 * sin(yaw) graspPose.position.y -= 0.188 # + 0.1 graspPose.position.z -= 0.07 # Should be 0.25 * sin(grasp_angle) # Pose just Above the object flag = self.go_to_pose_wrist(graspPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False # Set grasping angle if yaw != 0.0: newOPose = Pose() newOPose.orientation = orient_from_euler(0, 0, yaw) # 32 deg flag = self.go_to_pose_wrist(newOPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False newOPose = Pose() newOPose.orientation = orient_from_euler(0.558505, 0, 0) # 32 deg flag = self.go_to_pose_wrist_no_align(newOPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False # # #Grasp self.closeGripper(width) rospy.sleep(1) newOPose = Pose() newOPose.position.z = -0.09 flag = self.go_to_pose_wrist_no_align(newOPose) if flag == False: rospy.logerr("Could not Reach grasp Pose") return False return True def main(): # maind() getFPGA() ur5.openGripper() def maind(): ur5.go_to_named_pose("navPose") # ebot.go_to_goal('store_table_fpga') ebot.go_to_goal('store_table') # ebot.go_to_goal_precise('store_table') ebot.print_current_pose() # detect.detectTable() # ur5.go_to_named_pose("seeObjectJ") ur5.go_to_named_pose("fpgaPoseOdom") detect.detect() object_name = 'FPGA_board' pointBaseLink = detect.dict[object_name] graspPose_pub.publish(createPoseStamped(pointBaseLink)) pointOdom = TransformPoint(pointBaseLink, 'base_link', 'odom') ur5.go_to_named_pose("graspVerticalJ") pose = Pose() pose.position.z = 0.1 ur5.go_to_pose_relative(pose) ebot.go_to_goal_precise('store_table_close') ebot.go_to_waypoint_relative(0.4, 0 ,0) pointBaseLink = TransformPoint(pointOdom,'odom', 'base_link') graspPose_pub.publish(createPoseStamped(pointBaseLink)) detect.detectTable() rospy.sleep(0.1) flag = ur5.graspObjectVerticalOld( pointBaseLink, width=w_dict[object_name], yaw=pi/3) while flag == False: ebot.go_to_waypoint_relative(0.2, 0, 0) detect.detect() flag = ur5.graspObjectVerticalOld( pointBaseLink, width=w_dict[object_name], yaw=pi/3) ur5.openGripper() def getFPGAnew(): ur5.go_to_named_pose("navPose") # ebot.go_to_goal('store_table_fpga') ebot.go_to_goal('store_table') ebot.go_to_goal_precise('store_table_fpga') ebot.print_current_pose() detect.detectTable() ur5.go_to_named_pose("seeObjectJ") ur5.go_to_named_pose("fpgaPoseOdom") ebot.go_to_waypoint_relative(0.25, 0, 0) ur5.go_to_named_pose("fpgaPoseOdom") detect.detect() detect.detectTable() ur5.openGripper() object_name = 'FPGA_board' graspPose_pub.publish(createPoseStamped(detect.dict[object_name])) printPoint(detect.dict[object_name]) ur5.go_to_named_pose("graspVerticalJ") pose = Pose() pose.position.z = 0.1 ur5.go_to_pose_relative(pose) flag = ur5.graspObjectVerticalOld( detect.dict[object_name], width=w_dict[object_name], yaw=pi/3) while flag == False: ebot.go_to_waypoint_relative(0.2, 0, 0) detect.detect() flag = ur5.graspObjectVerticalOld( detect.dict[object_name], width=w_dict[object_name], yaw=pi/3) ebot.go_to_pose_relative(-1, 0, 0, rospy.Duration(5)) ur5.go_to_named_pose("navPose") ebot.go_to_goal("store_exit") def getFPGA(): ur5.go_to_named_pose("navPose") # ebot.go_to_goal('store_table_fpga') ebot.go_to_goal('store_table') ebot.go_to_goal_precise('store_table_fpga') ebot.print_current_pose() detect.detectTable() ur5.go_to_named_pose("seeObjectJ") ur5.go_to_named_pose("fpgaPoseOdom") ebot.go_to_waypoint_relative(0.25, 0, 0) ur5.go_to_named_pose("fpgaPoseOdom") detect.detect() detect.detectTable() ur5.openGripper() object_name = 'FPGA_board' graspPose_pub.publish(createPoseStamped(detect.dict[object_name])) printPoint(detect.dict[object_name]) ur5.go_to_named_pose("seeObjectJ") flag = ur5.graspObjectVerticalOld( detect.dict[object_name], width=w_dict[object_name], yaw=pi/3) while flag == False: ebot.go_to_waypoint_relative(0.2, 0, 0) detect.detect() flag = ur5.graspObjectVerticalOld( detect.dict[object_name], width=w_dict[object_name], yaw=pi/3) ebot.go_to_pose_relative(-1, 0, 0, rospy.Duration(5)) ur5.go_to_named_pose("navPose") ebot.go_to_goal("store_exit") def getGlue(): ur5.go_to_named_pose("navPose") # TODO check if in meeting Room # ebot.go_to_goal('meeting_entry') # print("Entered room") ebot.print_current_pose() ebot.go_to_goal_precise('meeting_table') ebot.go_to_goal('meeting_table') print("Reached Goal") ebot.print_current_pose() ebot.applyBrakes() detect.detectTable() ur5.go_to_named_pose("meetingTable") detect.detect() pickupObject('glue') ur5.go_to_named_pose("navPose") ebot.releaseBrakes() def enter_pantry(): ur5.go_to_named_pose("navPose") ebot.go_to_goal('pantry_entry') ebot.go_to_waypoint_relative(1.3, 0, 0) printReached("pantry") def getCoke(): enter_pantry() ebot.go_to_goal_precise('pantry_table1') ebot.go_to_goal('pantry_table1') ebot.applyBrakes() detect.detectTable() ur5.go_to_named_pose("pantryTable1Odom") detect.detect() pickupObject('coke_can') ur5.go_to_named_pose("navPoseOld") ebot.releaseBrakes() exit_pantry() def exit_pantry(): # ebot.go_to_goal('pantry_exit') # ebot.go_to_waypoint_relative(1.2,0,0) # ebot.go_to_goal('pantry_exit_old') ebot.go_to_goal_precise('pantry_exit') ebot.set_yaw(pi/2) ebot.go_to_waypoint_relative(1.2, 0, 0) def dropbox3(): ebot.go_to_goal('research_entry') ebot.print_current_pose() ebot.go_to_goal('research_dropbox') ebot.print_current_pose() ebot.applyBrakes() detect.detectTable() ur5.go_to_named_pose("researchDropbox") ur5.openGripper() rospy.sleep(0.5) ur5.go_to_named_pose("navPose") ebot.releaseBrakes() def exit_meeting(): ebot.go_to_goal_precise('meeting_exit') ebot.go_to_goal('meeting_exit') def enter_meeting(): ebot.go_to_goal('meeting_entry') ebot.go_to_waypoint_relative(1, 0, 0) def dropbox2(): ebot.go_to_goal_precise('meeting_dropbox') # ebot.go_to_goal('meeting_dropbox') ebot.print_current_pose() detect.detectTable() ur5.go_to_named_pose("researchDropboxJ") ur5.go_to_named_pose("meetingDropboxOdom") ur5.openGripper() rospy.sleep(0.5) ur5.go_to_named_pose("navPose") # ebot.go_to_pose_relative(0.95,0,0) def enter_conference_room(): ebot.go_to_goal('conference_entry') ebot.go_to_waypoint_relative(1, 0, 0) def dropbox1(): ur5.go_to_named_pose("navPose") enter_conference_room() ebot.go_to_goal('conference_dropbox') ebot.print_current_pose() ebot.applyBrakes() detect.detectTable() ur5.go_to_named_pose("conferenceDropbox") ur5.openGripper() rospy.sleep(0.5) ur5.go_to_named_pose("navPose") ebot.releaseBrakes() exit_conference_room() def exit_conference_room(): ebot.set_yaw(-3*pi/2) ebot.go_to_waypoint_relative(1, 0, 0) def subtask1(): getFPGA() dropbox1() def subtask2(): getCoke() enter_meeting() dropbox2() def subtask3(): getGlue() exit_meeting() dropbox3() if __name__ == '__main__': rospy.init_node('grasping_node') graspPose_pub = rospy.Publisher("/graspPose", PoseStamped, queue_size=1) ur5 = Ur5() ebot = Ebot() detect = Detect() # main() getFPGA() # subtask1() # subtask2() # subtask3() # ebot.releaseBrakes() ``` #### File: perception/scripts/pclFilterAndObjDectection.py ```python from pcl_helper import * from transform_helper import Transformer from image_helper import ImagePub import pcl import rospy from sensor_msgs.msg import PointCloud2 from geometry_msgs.msg import Point, PoseStamped from std_msgs.msg import Header from object_msgs.msg import ObjectPose import numpy as np from std_srvs.srv import Empty, EmptyResponse from ebot_mani.srv import AddPlane, AddPlaneRequest #SVM from svmClassifier import Classifier camera_matrix = np.array([[554.3827128226441, 0.0, 320.5, 0],\ [0.0, 554.3827128226441, 240.5, 0.0],\ [0.0, 0.0, 1.0, 0.0]]) def euclidiean_cluster(cloud_objects): #Remove RGB data from PCL cloud white_cloud = pcl.PointCloud() points = [] for p in cloud_objects: points.append([p[0], p[1], p[2]]) white_cloud.from_list(points) tree = white_cloud.make_kdtree() # Create a cluster extraction object ec = white_cloud.make_EuclideanClusterExtraction() ec.set_ClusterTolerance(0.015) ec.set_MinClusterSize(25) ec.set_MaxClusterSize(2000) ec.set_SearchMethod(tree) # Search the k-d tree for clusters # Extract indices for each of the discovered clusters return ec.Extract() def mapToImage(x , y, z): point_3d = np.array([(x, y, z, 1.0)]) point_2d = np.matmul(camera_matrix, point_3d.T) x = int(np.asscalar(point_2d[0] / point_2d[2])) y = int(np.asscalar(point_2d[1] / point_2d[2])) return x, y def numpyToPoint(np_array): p = Point() p.x = np.asscalar(np_array[0]) p.y = np.asscalar(np_array[1]) p.z = np.asscalar(np_array[2]) return p class DetectObject: def __init__(self): rospy.Subscriber('/camera2/depth/points2', PointCloud2, self.callback, queue_size=1) self.detection_info_pub = rospy.Publisher("/detection_info", ObjectPose, latch=True, queue_size=1) self.service = rospy.Service('/ebot/detect', Empty, self.detect) rospy.Service('/ebot/detectTable', Empty, self.detectTable_cb) self.pcl_object_pub = rospy.Publisher("/pcl_objects", PointCloud2, queue_size=1) self.pcl_table_pub = rospy.Publisher("/pcl_table", PointCloud2, queue_size=1, latch=True) self.tablePose_pub = rospy.Publisher("/table_Pose", PoseStamped, queue_size=1) self.addPlane = rospy.ServiceProxy('ebot_mani/add_plane', AddPlane) self.clear_octomap = rospy.ServiceProxy('/clear_octomap', Empty) def callback(self, msg): #/camera2/depth/points2 self.ros_cloud = msg def pclFilter(self): cloud = ros_to_pcl(self.ros_cloud) #Voxel Grid Downsampling vox = cloud.make_voxel_grid_filter() LEAF_SIZE = 0.008 vox.set_leaf_size(LEAF_SIZE, LEAF_SIZE, LEAF_SIZE) cloud_filtered = vox.filter() # PassThrough Filter x axis passthrough = cloud_filtered.make_passthrough_filter() filter_axis = 'x' passthrough.set_filter_field_name(filter_axis) axis_min = -1 axis_max = 1 passthrough.set_filter_limits(axis_min, axis_max) cloud_filtered = passthrough.filter() # #PassThrough Filter y axis passthrough = cloud_filtered.make_passthrough_filter() filter_axis = 'y' passthrough.set_filter_field_name(filter_axis) axis_min = -0.2 axis_max = 0.8 passthrough.set_filter_limits(axis_min, axis_max) cloud_filtered = passthrough.filter() #PassThrough Filter z axis passthrough = cloud_filtered.make_passthrough_filter() filter_axis = 'z' passthrough.set_filter_field_name(filter_axis) axis_min = 0 #TODO Think of better way to set limits axis_max = 2 passthrough.set_filter_limits(axis_min, axis_max) cloud_filtered = passthrough.filter() #RANSAC Plane Segmentation seg = cloud_filtered.make_segmenter() seg.set_model_type(pcl.SACMODEL_PLANE) seg.set_method_type(pcl.SAC_RANSAC) max_distance = 0.01 seg.set_distance_threshold(max_distance) inliers, coefficients = seg.segment() #Extract inliers and outliers self.pcl_table = cloud_filtered.extract(inliers, negative=False) self.pcl_objects = cloud_filtered.extract(inliers, negative=True) #Convert PCL data to ROS messages ros_cloud_objects = pcl_to_ros(self.pcl_objects) ros_cloud_table = pcl_to_ros(self.pcl_table) #Publish ROS messages self.pcl_object_pub.publish(ros_cloud_objects) self.pcl_table_pub.publish(ros_cloud_table) def detectTable(self): pcl_cluster_arr = self.pcl_table.to_array() centroid = np.mean(pcl_cluster_arr , axis=0)[:3] centroid_point = Point() centroid_point.x = np.asscalar(centroid[0]) centroid_point.y = np.asscalar(centroid[1]) centroid_point.z = np.asscalar(centroid[2]) centroid_point = transformer.transform_point(centroid_point, 'camera_rgb_frame2' , 'base_link') tablePose = PoseStamped() tablePose.header.frame_id = 'base_link' tablePose.header.stamp = rospy.Time.now() tablePose.pose.position = centroid_point tablePose.pose.orientation.x = 0 tablePose.pose.orientation.y = -0.7071 tablePose.pose.orientation.z = 0 tablePose.pose.orientation.w = 0.7071 # req = AddPlaneRequest() # req.name = "table" # req.pose = tablePose # self.addPlane(req) self.tablePose_pub.publish(tablePose) return centroid_point.z def detectTable_cb(self, req): self.clear_octomap() self.pclFilter() self.detectTable() return EmptyResponse() def detect(self, req): self.clear_octomap() self.pclFilter() tableHeight = self.detectTable() cloud_objects = self.pcl_objects cluster_indices = euclidiean_cluster(cloud_objects) imagePub.capture_image() objPoseMsg = ObjectPose() for index , pts_list in enumerate(cluster_indices): pcl_cluster = cloud_objects.extract(pts_list) pcl_cluster_arr = pcl_cluster.to_array() centroid = np.mean(pcl_cluster_arr , axis=0)[:3] grasp_point = Point() grasp_point.x = np.asscalar(centroid[0]) grasp_point.y = np.asscalar(centroid[1]) grasp_point.z = np.asscalar(centroid[2]) #Transform the grasp_point to base_link grasp_point = transformer.transform_point(grasp_point, 'camera_rgb_frame2' , 'base_link') #check if the centroid of object is above the table if(grasp_point.z < tableHeight): continue #Grasp point above the object grasp_point.z = tableHeight + 2*(grasp_point.z-tableHeight) print(grasp_point.z) max_val = np.max(pcl_cluster_arr, axis=0)[:2] min_val = np.min(pcl_cluster_arr, axis=0)[:2] x1, y1 = mapToImage(min_val[0], min_val[1], centroid[2]) x2, y2 = mapToImage(max_val[0], max_val[1], centroid[2]) #Classifier label = classifier.predict(pcl_cluster) rospy.loginfo("DETECTED " + label) imagePub.draw_rectangle_with_label([x1, y1, x2, y2], label) imagePub.publish_image() objPoseMsg.name = label objPoseMsg.pose.header.frame_id = 'base_link' objPoseMsg.pose.header.stamp = rospy.Time.now() objPoseMsg.pose.pose.position = grasp_point #TODO REMOVE this berfore submission # width = np.asscalar(max_val[0] - min_val[0]) # objPoseMsg.pose.pose.orientation.w = width # hight = np.asscalar(max_val[1] - min_val[1]) # objPoseMsg.pose.pose.orientation.z = hight self.detection_info_pub.publish(objPoseMsg) rospy.sleep(0.1) #print("%d, %d, %d, %d %0.5f" % (x1, y1, x2, y2, width)) return EmptyResponse() if __name__ == '__main__': rospy.init_node('pclFilterAndobjDetection') transformer = Transformer() classifier = Classifier() objDetector = DetectObject() imagePub = ImagePub() rospy.loginfo("Started Object detection") rospy.spin() ``` #### File: perception/scripts/transform_helper.py ```python import tf2_ros import tf2_geometry_msgs import rospy class Transformer: def __init__(self): self.tf_buffer = tf2_ros.Buffer() self.listener = tf2_ros.TransformListener(self.tf_buffer) def transform_pose(self, input_pose, from_frame, to_frame): pose_stamped = tf2_geometry_msgs.PoseStamped() pose_stamped.pose = input_pose pose_stamped.header.frame_id = from_frame pose_stamped.header.stamp = rospy.Time.now() try: # ** It is important to wait for the listener to start listening. Hence the rospy.Duration(1) output_pose_stamped = self.tf_buffer.transform(pose_stamped, to_frame, rospy.Duration(1)) return output_pose_stamped.pose except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): raise def transform_point(self, input_point, from_frame, to_frame): point_stamped = tf2_geometry_msgs.PointStamped() point_stamped.point = input_point point_stamped.header.frame_id = from_frame point_stamped.header.stamp = rospy.Time.now() try: # ** It is important to wait for the listener to start listening. Hence the rospy.Duration(1) output_point_stamped = self.tf_buffer.transform(point_stamped, to_frame, rospy.Duration(1)) return output_point_stamped.point except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): raise ``` #### File: perception/scripts/transform_service.py ```python import rospy from transform_helper import Transformer from perception.srv import * def get_transform_point_cb(req): resp = GetTransformPointResponse() resp.point = transformer.transform_point(req.point, req.from_frame, req.to_frame) return resp def get_transform_pose_cb(req): resp = GetTransformPoseResponse() resp.pose = transformer.transform_pose(req.pose, req.from_frame, req.to_frame) return resp if __name__ == '__main__': rospy.init_node('transformer_service') transformer = Transformer() rospy.Service('get_transform_point', GetTransformPoint, get_transform_point_cb) rospy.Service('get_transform_pose', GetTransformPose, get_transform_pose_cb) rospy.loginfo('\033[94m Started Transformer service \033[0m') rospy.spin() ```
{ "source": "JoviaNierenberg/project5", "score": 3 }
#### File: project5/test/test_kmeans.py ```python import pytest import numpy as np from scipy.spatial.distance import cdist from cluster import KMeans, make_clusters # Write your k-means unit tests here def test_num_labels_types_is_k(): """ Tests that the number of clusters produced is k """ clusters, labels = make_clusters(k=4, scale=1) km = KMeans(k=4) km.fit(clusters) created_labels = km.predict(clusters) should_be_k = np.shape(np.unique(created_labels))[0] assert should_be_k==4 def test_vals(): """ Tests values for error and and two centroid values when k==7 """ clusters, labels = make_clusters(k=4, scale=1) km = KMeans(k=7) km.fit(clusters) assert km.get_error() == 1.4503012126641381 assert km.get_centroids()[0,0]==7.875495297338064 assert km.get_centroids()[6,1]==-4.171662182273182 ```
{ "source": "JovianML/opendatasets", "score": 3 }
#### File: opendatasets/opendatasets/__init__.py ```python import importlib from opendatasets.utils.network import download_url, is_url from opendatasets.utils.googledrive import is_google_drive_url, download_google_drive import os from opendatasets._version import __version__ from opendatasets.utils.kaggle_api import download_kaggle_dataset, is_kaggle_url from opendatasets.utils.archive import extract_archive def download(dataset_id_or_url, data_dir='.', force=False, dry_run=False, **kwargs): # Check for a Kaggle dataset URL if is_kaggle_url(dataset_id_or_url): return download_kaggle_dataset(dataset_id_or_url, data_dir=data_dir, force=force, dry_run=dry_run) # Check for Google Drive URL if is_google_drive_url(dataset_id_or_url): return download_google_drive(dataset_id_or_url, data_dir) # Download a raw URL if is_url(dataset_id_or_url): return download_url(dataset_id_or_url, data_dir) dataset_id = dataset_id_or_url data_dir = os.path.join(data_dir, dataset_id_or_url) if not os.path.exists(data_dir): os.makedirs(data_dir) dataset = importlib.import_module('opendatasets.datasets.' + dataset_id) if dry_run: print('This is a dry run. URLs will be displayed but the files will not be downloaded.') return dataset.download(dataset_id=dataset_id, data_dir=data_dir, dry_run=dry_run, **kwargs) def version(): return __version__ ```
{ "source": "JovianOrigin/drf-auth-jwt", "score": 2 }
#### File: drf-auth-jwt/tests/test_utils.py ```python import json import base64 import jwt.exceptions from django.test import TestCase from rest_framework_jwt import utils from rest_framework_jwt.compat import get_user_model from rest_framework_jwt.settings import api_settings, DEFAULTS User = get_user_model() def base64url_decode(input): rem = len(input) % 4 if rem > 0: input += b'=' * (4 - rem) return base64.urlsafe_b64decode(input) class UtilsTests(TestCase): def setUp(self): self.username = 'jpueblo' self.email = '<EMAIL>' self.user = User.objects.create_user(self.username, self.email) def test_jwt_payload_handler(self): payload = utils.jwt_payload_handler(self.user) self.assertTrue(isinstance(payload, dict)) self.assertEqual(payload['username'], self.username) self.assertTrue('exp' in payload) def test_jwt_encode(self): payload = utils.jwt_payload_handler(self.user) token = utils.jwt_encode_handler(payload) payload_data = base64url_decode(token.split('.')[1].encode('utf-8')) payload_from_token = json.loads(payload_data.decode('utf-8')) self.assertEqual(payload_from_token, payload) def test_jwt_decode(self): payload = utils.jwt_payload_handler(self.user) token = utils.jwt_encode_handler(payload) decoded_payload = utils.jwt_decode_handler(token) self.assertEqual(decoded_payload, payload) def test_jwt_response_payload(self): payload = utils.jwt_payload_handler(self.user) token = utils.jwt_encode_handler(payload) response_data = utils.jwt_response_payload_handler(token) self.assertEqual(response_data, dict(token=token)) def test_jwt_decode_verify_exp(self): api_settings.JWT_VERIFY_EXPIRATION = False payload = utils.jwt_payload_handler(self.user) payload['exp'] = 1 token = utils.jwt_encode_handler(payload) utils.jwt_decode_handler(token) api_settings.JWT_VERIFY_EXPIRATION = True class TestAudience(TestCase): def setUp(self): api_settings.JWT_AUDIENCE = 'my_aud' self.username = 'jpueblo' self.email = '<EMAIL>' self.user = User.objects.create_user(self.username, self.email) return super(TestAudience, self).setUp() def test_fail_audience_missing(self): payload = utils.jwt_payload_handler(self.user) del payload['aud'] token = utils.jwt_encode_handler(payload) with self.assertRaises(jwt.exceptions.MissingRequiredClaimError): utils.jwt_decode_handler(token) def test_fail_audience_wrong(self): payload = utils.jwt_payload_handler(self.user) payload['aud'] = 'my_aud2' token = utils.jwt_encode_handler(payload) with self.assertRaises(jwt.exceptions.InvalidAudienceError): utils.jwt_decode_handler(token) def test_correct_audience(self): payload = utils.jwt_payload_handler(self.user) token = utils.jwt_encode_handler(payload) decoded_payload = utils.jwt_decode_handler(token) self.assertEqual(decoded_payload, payload) def tearDown(self): api_settings.JWT_AUDIENCE = DEFAULTS['JWT_AUDIENCE'] class TestIssuer(TestCase): def setUp(self): api_settings.JWT_ISSUER = 'example.com' self.username = 'jpueblo' self.email = '<EMAIL>' self.user = User.objects.create_user(self.username, self.email) return super(TestIssuer, self).setUp() def test_fail_issuer_missing(self): payload = utils.jwt_payload_handler(self.user) del payload['iss'] token = utils.jwt_encode_handler(payload) with self.assertRaises(jwt.exceptions.MissingRequiredClaimError): utils.jwt_decode_handler(token) def test_fail_issuer_wrong(self): payload = utils.jwt_payload_handler(self.user) payload['iss'] = 'example2.com' token = utils.jwt_encode_handler(payload) with self.assertRaises(jwt.exceptions.InvalidIssuerError): utils.jwt_decode_handler(token) def test_correct_issuer(self): payload = utils.jwt_payload_handler(self.user) token = utils.jwt_encode_handler(payload) decoded_payload = utils.jwt_decode_handler(token) self.assertEqual(decoded_payload, payload) def tearDown(self): api_settings.JWT_ISSUER = DEFAULTS['JWT_ISSUER'] ```
{ "source": "JoviCastillo/TH-Project-1-guessing-game-", "score": 4 }
#### File: JoviCastillo/TH-Project-1-guessing-game-/guessing_game.py ```python import random highscore = [] def not_in_range(guess_it): """This is to check that the numbers inputted by the user are in range, and will let the user know. If the numbers are in range then it passes. """ if guess_it < 1: print('I am not thinking of negative numbers!') elif guess_it > 10: print('That number is way bigger than 10!') else: pass def new_game(tries): """After the user has guessed the number correctly, the game will ask the player if they would like to play again. Yes will start the game again. No will exit the game. Highscore will be displayed by the lowest amount of tries recorded. """ play_again = input('Would you like to play again? (Yes/No) ') if play_again.upper() == 'YES': highscore.append(tries) highscore.sort print('The highscore is {}.'.format(highscore[0])) start_game() elif play_again.upper() == 'NO': exit() else: play_again = input('Please let me know by typing yes or no: ') def start_game(): # title screen of the game """This is the start of the game which include the title screen and is the main function that runs all the other functions as well. """ print('-' * 40) print('Welcome to the Number Guessing Game!!!') print('-' * 40) print('I am thinking of a number between 1-10.') random_number = random.randint(1, 10) tries = 0 while True: try: guess_it = int(input('Can you guess it?: ')) except ValueError: print('I said number, not gibberish!') else: while guess_it != random_number: not_in_range(guess_it) tries += 1 if guess_it > random_number: print('That is too high!') elif guess_it < random_number: print('That is too low') break else: print('You guessed it right! Your number was {}.'.format(random_number)) print('It took you {} tries.'.format(tries)) break new_game(tries) if __name__ == '__main__': # Kick off the program by calling the start_game function. start_game() ```
{ "source": "jovicigor/opensanctions", "score": 2 }
#### File: opensanctions/opensanctions/cli.py ```python import click import logging from followthemoney.cli.util import write_object from opensanctions.core import Target, Context, setup @click.group(help="OpenSanctions ETL toolkit") @click.option("-v", "--verbose", is_flag=True, default=False) @click.option("-q", "--quiet", is_flag=True, default=False) def cli(verbose=False, quiet=False): level = logging.INFO if quiet: level = logging.ERROR if verbose: level = logging.DEBUG setup(log_level=level) @cli.command("dump", help="Export the entities from a target") @click.argument("target", default=Target.ALL, type=click.Choice(Target.names())) @click.option("-o", "--outfile", type=click.File("w"), default="-") def dump_target(target, outfile): target = Target.get(target) for dataset in target.datasets: # TODO: consolidate the data for entity in dataset.store: write_object(outfile, entity) @cli.command("crawl", help="Crawl entities into the given target") @click.argument("target", default=Target.ALL, type=click.Choice(Target.names())) def crawl(target): target = Target.get(target) for dataset in target.datasets: Context(dataset).crawl() ``` #### File: opensanctions/core/target.py ```python import yaml from banal import ensure_list from ftmstore import get_dataset as get_store from opensanctions import settings class Target(object): """A target (think: Makefile target) is a unit of execution of crawlers, and a grouping of data. There are two types: datasets (which relate to a specific data source), and collections (which group datasets into more useful units).""" ALL = "all" def __init__(self, type_, file_path, config): self.type = type_ self.file_path = file_path self.name = config.get("name", file_path.stem) self.title = config.get("title", self.name) self.description = config.get("description", "") # Collections can be part of other collections. collections = ensure_list(config.get("collections")) if self.name != self.ALL: collections.append(self.ALL) self.collections = set(collections) @property def store(self): name = f"{self.type}_{self.name}" return get_store(name, database_uri=settings.DATABASE_URI) @classmethod def _from_metadata(cls, file_path): from opensanctions.core.dataset import Dataset from opensanctions.core.collection import Collection with open(file_path, "r") as fh: config = yaml.load(fh, Loader=yaml.SafeLoader) type_ = config.get("type", Dataset.TYPE) type_ = type_.lower().strip() if type_ == Collection.TYPE: return Collection(file_path, config) if type_ == Dataset.TYPE: return Dataset(file_path, config) @classmethod def _load_cache(cls): if not hasattr(cls, "_cache"): cls._cache = {} for glob in ("**/*.yml", "**/*.yaml"): for file_path in settings.METADATA_PATH.glob(glob): target = cls._from_metadata(file_path) cls._cache[target.name] = target return cls._cache @classmethod def all(cls): return cls._load_cache().values() @classmethod def get(cls, name): return cls._load_cache().get(name) @classmethod def names(cls): """An array of all target names found in the metadata path.""" return [target.name for target in cls.all()] def to_dict(self): return { "name": self.name, "type": self.type, "title": self.title, "description": self.description, } def __eq__(self, other): return self.name == other.name def __hash__(self): return hash(self.name) ``` #### File: opensanctions/crawlers/au_dfat_sanctions.py ```python import xlrd # from xlrd.xldate import xldate_as_datetime from collections import defaultdict from pprint import pprint # noqa from datetime import datetime from normality import slugify from followthemoney import model def clean_reference(ref): if isinstance(ref, (int, float)): return int(ref) number = ref while len(number): try: return int(number) except Exception: number = number[:-1] raise ValueError() def parse_reference(context, reference, rows): entity = context.make("LegalEntity") entity.make_id("AUDFAT", reference) entity.add("sourceUrl", context.dataset.url) sanction = context.make("Sanction") sanction.make_id("Sanction", entity.id) sanction.add("authority", context.dataset.publisher.title) sanction.add("entity", entity) for row in rows: if row.pop("type") == "Individual": entity.schema = model.get("Person") name = row.pop("name_of_individual_or_entity", None) if row.pop("name_type") == "aka": entity.add("alias", name) else: entity.add("name", name) entity.add("address", row.pop("address")) entity.add("notes", row.pop("additional_information")) sanction.add("program", row.pop("committees")) entity.add("nationality", row.pop("citizenship"), quiet=True) entity.add("birthDate", row.pop("date_of_birth"), quiet=True) entity.add("birthPlace", row.pop("place_of_birth"), quiet=True) entity.add("status", row.pop("listing_information"), quiet=True) control_date = int(row.pop("control_date")) base_date = datetime(1900, 1, 1).toordinal() dt = datetime.fromordinal(base_date + control_date - 2) sanction.add("modifiedAt", dt) entity.add("modifiedAt", dt) entity.context["updated_at"] = dt.isoformat() context.emit(entity) context.emit(sanction) def crawl(context): context.fetch_artifact("source.xls", context.dataset.data.url) xls = xlrd.open_workbook(context.get_artifact_path("source.xls")) ws = xls.sheet_by_index(0) headers = [slugify(h, sep="_") for h in ws.row_values(0)] references = defaultdict(list) for r in range(1, ws.nrows): row = ws.row(r) row = dict(zip(headers, row)) for header, cell in row.items(): if cell.ctype == 2: row[header] = str(int(cell.value)) elif cell.ctype == 0: row[header] = None else: row[header] = cell.value reference = clean_reference(row.get("reference")) references[reference].append(row) for ref, rows in references.items(): parse_reference(context, ref, rows) ```
{ "source": "jovil210/lab4_logiciel", "score": 3 }
#### File: lab4_logiciel/server/TwitterAPI.py ```python import requests BEARER_TOKEN = '<KEY>' #API_KEY_SECRET = '<KEY>' #API_KEY = '<KEY>' class TwitterAPI: @staticmethod def create_twitter_headers(): headers = {'Authorization': f'Bearer {BEARER_TOKEN}'} return headers @staticmethod def create_twitter_url(keyword, max_results=10): search_url = 'https://api.twitter.com/2/tweets/search/recent' query_params = { 'query': keyword, 'max_results': max_results, 'expansions': 'author_id,in_reply_to_user_id,geo.place_id', 'tweet.fields': 'id,text,author_id,in_reply_to_user_id,geo,conversation_id,created_at,lang,' 'public_metrics,referenced_tweets,reply_settings,source', 'user.fields': 'id,name,username,created_at,description,public_metrics,verified', 'place.fields': 'full_name,id,country,country_code,geo,name,place_type', 'next_token': {} } return search_url, query_params @staticmethod def query_twitter_api(url, headers, params): response = requests.request('GET', url, headers=headers, params=params) return response.json() ```
{ "source": "jovillarroelb/project_fyyur", "score": 3 }
#### File: jovillarroelb/project_fyyur/forms.py ```python from datetime import datetime from flask_wtf import FlaskForm as Form from wtforms import ( StringField, SelectField, SelectMultipleField, DateTimeField, BooleanField ) from wtforms.fields.core import BooleanField from wtforms.validators import DataRequired, URL from enums import Genre, State class VenueForm(Form): name = StringField( 'name', validators=[DataRequired()] ) city = StringField( 'city', validators=[DataRequired()] ) state = SelectField( 'state', validators=[DataRequired()], choices=State.choices() ) address = StringField( 'address', validators=[DataRequired()] ) phone = StringField( 'phone', validators=[DataRequired()] ) image_link = StringField( 'image_link' ) website = StringField( 'website', ) seeking_talent = BooleanField( 'seeking_talent', ) seeking_description = StringField( 'seeking_description', ) genres = SelectMultipleField( 'genres', validators=[DataRequired()], choices=Genre.choices(), ) facebook_link = StringField( 'facebook_link', ) def validate(self): """Define a custom validate method in your Form:""" rv = Form.validate(self) if not rv: return False if not set(self.genres.data).issubset(dict(Genre.choices()).keys()): self.genres.errors.append('Invalid genre.') return False if self.state.data not in dict(State.choices()).keys(): self.state.errors.append('Invalid state.') return False # if pass validation return True class ArtistForm(Form): name = StringField( 'name', validators=[DataRequired()] ) city = StringField( 'city', validators=[DataRequired()] ) state = SelectField( 'state', validators=[DataRequired()], choices=State.choices() ) phone = StringField( 'phone', validators=[DataRequired()] ) website = StringField( 'website', ) seeking_venue = BooleanField( 'seeking_venue', ) seeking_description = StringField( 'seeking_description', ) image_link = StringField( 'image_link', ) genres = SelectMultipleField( 'genres', validators=[DataRequired()], choices=Genre.choices() ) facebook_link = StringField( 'facebook_link', ) def validate(self): """Define a custom validate method in your Form:""" rv = Form.validate(self) if not rv: return False if not set(self.genres.data).issubset(dict(Genre.choices()).keys()): self.genres.errors.append('Invalid genre.') return False if self.state.data not in dict(State.choices()).keys(): self.state.errors.append('Invalid state.') return False # if pass validation return True class ShowForm(Form): artist_id = StringField( 'artist_id', validators=[DataRequired()] ) venue_id = StringField( 'venue_id', validators=[DataRequired()] ) start_time = DateTimeField( 'start_time', validators=[DataRequired()], default= datetime.today() ) ```
{ "source": "Jovioluiz/IA", "score": 4 }
#### File: IA/Tarefas RNAs/backpropagation.py ```python RNAs/backpropagation.py #tarefa 5 #<NAME> import numpy as np #função sigmoide def sigmoid(x): return 1/(1 + np.exp(-x)) #arquitetura da MPL n_input = 3 n_hidden = 4 n_output = 2 #vetor dos valores de entrada(aleatoria) x = np.array([1, 2, 3]) target = 0.6 learnrate = 0.5 #pesos camada oculta weights_input_hidden = np.array([[0.2, 0.1, -0.08, -0.1], [0.6, -0.8, 0.05, 0.02], [0.5, -0.6, -0.01, -0.07]]) #pesos camada de saida weights_hidden_output = np.array([[0.1, -0.3], [-0.15, 0.12], [-0.03, 0.03], [-0.02, 0.02]]) #camada oculta #calcule a combinação linear de entradas e pesos sinápticos hidden_layer_input = np.dot(x, weights_input_hidden) hidden_layer_output = sigmoid(hidden_layer_input) #camada de saida output_layer_in = np.dot(hidden_layer_output, weights_hidden_output) #aplicar a função de ativação output = sigmoid(output_layer_in) print('As saidas da rede são: {}'.format(output)) #backward pass error = target - output #calculo do termo do erro output_error_term = error * output * (1 - output) hidden_error = np.dot(weights_hidden_output, output_error_term) hidden_error_term = hidden_error * hidden_layer_output * (1 - hidden_layer_output) delta_w_h_o = learnrate * output_error_term * hidden_layer_output[:, None] print(delta_w_h_o) print('\n') delta_w_i_h = learnrate * hidden_error_term * x[:, None] print(delta_w_i_h) print('\n') weights_input_hidden = learnrate * delta_w_i_h print('Peso da entrada oculta: {}'.format(weights_input_hidden)) print('\n') weights_hidden_output = learnrate * delta_w_h_o print('Peso da saída oculta: {}'.format(weights_hidden_output)) ``` #### File: IA/Tarefas RNAs/gradienteDescendente.py ```python import numpy as np #função sigmoide def sigmoid(x): return 1/(1 + np.exp(-x)) #derivada da função sigmoide def sigmoid_prime(x): return sigmoid(x) * (1-sigmoid(x)) #taxa de aprendizado learnrate = 0.5 x = np.array([1, 2, 3, 4]) y = np.array([0.5])#valor esperado bies = 0.5 #pesos iniciais w = np.random.randn(4)/10 epocas = 100 del_w = 0 for e in range(epocas): h = np.dot(x, w) + bies nn_output = sigmoid(h) #erro calcular de rede neural error = y - nn_output #calcular termo do erro erro_term = error * sigmoid_prime(h) #atualizando o passo del_w = learnrate * erro_term * x #aplicando os novos pesos w = w + del_w print('Saída da rede: {}' .format(nn_output)) print('Erro: {}'.format(error)) if nn_output == 0.5: break ``` #### File: IA/Tarefas RNAs/rna_mpl.py ```python import numpy as np #função sigmoide def sigmoid(x): return 1/(1 + np.exp(-x)) #arquitetura da MPL n_input = 3 n_hidden = 4 n_output = 2 #vetor dos valores de entrada(aleatoria) x = np.array([1, 2, 3]) #pesos camada oculta weights_in_hidden = np.array([[0.2, 0.1, -0.9, 0.03], [0.6, -0.8,0.9, 0.02], [0.5, -0.6, 0.1, 0.01]]) #pesos camada de saida weights_hidden_out = np.array([[-0.18, 0.11], [-0.09, 0.05], [-0.04, 0.05], [-0.02, 0.07]]) #passagem forward pela rede #camada oculta #calcule a combinação linear de entradas e pesos sinápticos #entrada camada oculta hidden_layer_in = np.dot(x, weights_in_hidden) #saída camada oculta hidden_layer_out = sigmoid(hidden_layer_in) #camada de saida output_layer_in = np.dot(hidden_layer_out, weights_hidden_out) #aplicar a função de ativação output_layer_out = sigmoid(output_layer_in) print('As saídas da rede são {}' .format(output_layer_out)) ```
{ "source": "jovi-s/PeekingDuck", "score": 3 }
#### File: PeekingDuck/scripts/check_links.py ```python import urllib.request from pathlib import Path from typing import Iterator, List, Tuple, Union import markdown from bs4 import BeautifulSoup from texttable import Texttable # Currently not in use because Sphinx generated html files # do not show in the Peekingduck repo on github # # def get_html(): # # search path is hard coded with ref of this script locaiton # return [ # path # for path in walk(Path.cwd() / "docs" / "build" / "html") # if path.suffix == ".html" # ] def walk(top: Path) -> Iterator[Path]: """Walks a given directory tree using pathlib.Path. Returns: (Iterator): An iterator of the file paths in the directory tree """ for path in top.iterdir(): if path.is_dir(): yield from walk(path) continue yield path.resolve() def get_md_rst_paths() -> List[Path]: """Returns all .md and .rst files in the repository""" return [path for path in walk(Path.cwd()) if path.suffix in (".md", ".rst")] def check_for_faulty_links( file_paths: List[Path], ) -> List[Tuple[Path, str, Union[int, Path]]]: """Returns faulty links from documentation files in the repository. Parse the provided .md and .rst files for faulty hyperlinks or faulty relative path links. For URLs, the current implementation only returns links which give HTTP 404. Args: file_paths (List[Path]): File paths of all .md and .rst files in the repository. Returns: (List[Tuple[Path, str, Union[int, Path]]]): A list of file paths in which faulty links are found, the corresponding faulty links, and the root folder/request error code. """ faulty_links: List[Tuple[Path, str, Union[int, Path]]] = [] for path in file_paths: print(f"===== Checking {path}") with open(path, "r", encoding="utf-8") as infile: content = infile.read() content_html = markdown.markdown(content) soup = BeautifulSoup(content_html, "html.parser") img_links = [ tag["src"] for tag in soup.find_all( lambda tag: tag.name == "img" and tag.get("src") ) ] href_links = [ tag["href"] for tag in soup.find_all( lambda tag: tag.name == "a" and tag.get("href") ) ] # "." filters out section links, split("#")[0] to filter out URI # fragments all_links = [ link.split("#")[0] for link in filter(lambda link: "." in link, img_links + href_links) ] for link in all_links: if link.startswith("http"): try: # Validated the URL to start with "http" urllib.request.urlopen(link) # nosec except urllib.error.HTTPError as error: # In this implementation only 404 is flagged for broken links # 404 = http page not found error # if statement can be removed/adjusted to flag multiple error # codes such as 404,403,408... if error.code == 404: # path is the current file being parsed # link is the link found in the current parsed file # e.code is the execption code rel_path = path.relative_to(Path.cwd()) faulty_links.append((rel_path, link, error.code)) else: if not (path.parent / link).exists(): # path is the current file being parsed # link is the link found in the current parsed file # root is the root folder of the filepath of current file condition = ["/peekingduck", "pipeline", "nodes"] if link.split(".")[:3] != condition: rel_path = path.relative_to(Path.cwd()) faulty_links.append((rel_path, link, rel_path.parent)) print(f"Checked {path}") return faulty_links def print_output(faulty_links: List[Tuple[Path, str, Union[int, Path]]]) -> None: """Displays the list of file paths and faulty links in a table Args: faulty_links (List[Tuple[Path, str, Union[int, Path]]]): A list of file paths in which faulty links are found, the corresponding faulty links, and the root folder/request error code. """ print("\nTable of broken links\n") table = Texttable() table.set_cols_width([25, 25, 20]) table.header(("Filepath", "Broken_Link", "Root_Folder / Request Error Code")) table.add_rows(faulty_links, False) print(table.draw()) if __name__ == "__main__": MD_RST_PATHS = get_md_rst_paths() print("\nCHECKING FILES") print("-" * 50) FAULTY_LINKS = check_for_faulty_links(sorted(MD_RST_PATHS)) print_output(FAULTY_LINKS) ```
{ "source": "jovi-s/supermarket-object-detection", "score": 3 }
#### File: src/utils/subsample_images.py ```python import os import shutil import random def subsample(main_path, sub_path, min_size=10, max_size=20, num_classes=27, seed=42): random.seed(seed) train_image_names = os.listdir(main_path + 'images/train/') val_image_names = os.listdir(main_path + 'images/val/') for mode, filenames in zip(['train', 'val'], [train_image_names, val_image_names]): counts = [0] * num_classes selected = set() copied = set() while min(counts) < min_size: # Select a random image file filename = random.choice(filenames) while filename in selected: filename = random.choice(filenames) selected.add(filename) # Access the correspinding label file label_filename = 'labels/' + mode + '/' + filename.split('.')[0] + '.txt' super_ids = [] with open(main_path + label_filename, 'r') as f: # Count the object instances in the file for line in f: super_ids.append(int(line.split()[0])) # If mode is 'train' and any category already exceeded the max_size, skip the image exceeded = False if mode == 'train': for idx in super_ids: if counts[idx] >= max_size: exceeded = True break if not exceeded: copied.add(filename) for idx in super_ids: counts[idx] += 1 # Copy selected image and label file to sub_path folder shutil.copy(main_path + 'images/' + mode + '/' + filename, # source sub_path + 'images/' + mode + '/' + filename) # destination shutil.copy(main_path + label_filename, # source sub_path + label_filename) # destination print(len(copied), counts) main_path = 'D:/mvtec_yolo/' sub_path = 'D:/mvtec_yolo_small/' subsample(main_path, sub_path, min_size=15, max_size=60) ```
{ "source": "jovit/mc-346", "score": 4 }
#### File: mc-346/python/exs1.py ```python def pares(l): return [x for x in l if x % 2 == 0] # criar uma lista com os valores nas posicoes pares def posicoes_pares(l): return [x for ind, x in enumerate(l) if ind % 2 == 0] # criar um dicionario com a contagem de cada elemento numa lista def conta_elems(l): dic = {} for x in l: if x in dic: dic[x] = dic[x] + 1 else: dic[x] = 1 return dic # qual é a chave associada ao maior valor num dicionario def encontra_chave_maior(dic): maior=-1 maior_chave=-1 for k,x in dic.items(): if x > maior: maior_chave = k return maior_chave # qual o elemento mais comum numa lista def most_common(l): elem_count = conta_elems(l) common_key = encontra_chave_maior(elem_count) return common_key # uma lista é sublista de outra? # dado 2 strings o fim de um é igual ao comeco do outro? (do projeto de prolog) print(pares([1,2,3,4,5,6])) print(posicoes_pares([1,3,5,7,9,11])) print(conta_elems([1,1,1,2,2,2,3,3,3,4,4,4,4,4,4])) print(encontra_chave_maior({1:50, 2:10, 3:67})) ``` #### File: mc-346/python/exs3.py ```python import time # decorator para imprimir o tempo de execucao def exectime(f): def wrapper(*args): currenttime = time.time() x = f(*args) print("Time elapsed:", time.time()-currenttime) return x return wrapper # decorator para construir um string com linhas para a hora e argumentos e saida de cada chamada da funcao. O string sera acessado via atributo class calllog: def __init__(self, f): self.f = f self.callstring = "" def __call__(self,*args): self.callstring += "hora " + str(args) return self.f(*args) # decorator para memoizar a funcao. Memoizacao é criar um dicionario que se lembra dos valores de entrada e de saida da funcao ja executado. Se um desses valores de entrada for re-executado, a funcao nao sera re-executada - ela apenas retorna o valor de saida memoizado class memoize: def __init__(self, f): self.f = f self.dic = {} def __call__(self,*args): try: return self.dic[args] except: print("miss") x = self.f(*args) self.dic[args] = x return x # decorator para log argumentos e horario num arquivo (append no arquivo) dado como argumento do decorator (ver o primer on decorators) @exectime @calllog def printstuff(): for x in range(10000): print(x) return None @exectime @memoize def times2(x): for x in range(100000000): None return x * 2 cc = calllog(printstuff) printstuff() cc() cc() print(cc.callstring) print(times2(10)) print(times2(5)) print(times2(4)) print(times2(10)) ```
{ "source": "jovobe/compose", "score": 2 }
#### File: tests/unit/cli_test.py ```python from __future__ import absolute_import from __future__ import unicode_literals import os import shutil import tempfile from io import StringIO import docker import py import pytest from docker.constants import DEFAULT_DOCKER_API_VERSION from .. import mock from .. import unittest from ..helpers import build_config from compose.cli.command import get_project from compose.cli.command import get_project_name from compose.cli.docopt_command import NoSuchCommand from compose.cli.errors import UserError from compose.cli.main import TopLevelCommand from compose.const import IS_WINDOWS_PLATFORM from compose.project import Project class CLITestCase(unittest.TestCase): def test_default_project_name(self): test_dir = py._path.local.LocalPath('tests/fixtures/simple-composefile') with test_dir.as_cwd(): project_name = get_project_name('.') assert 'simple-composefile' == project_name def test_project_name_with_explicit_base_dir(self): base_dir = 'tests/fixtures/simple-composefile' project_name = get_project_name(base_dir) assert 'simple-composefile' == project_name def test_project_name_with_explicit_uppercase_base_dir(self): base_dir = 'tests/fixtures/UpperCaseDir' project_name = get_project_name(base_dir) assert 'uppercasedir' == project_name def test_project_name_with_explicit_project_name(self): name = 'explicit-project-name' project_name = get_project_name(None, project_name=name) assert 'explicit-project-name' == project_name @mock.patch.dict(os.environ) def test_project_name_from_environment_new_var(self): name = 'namefromenv' os.environ['COMPOSE_PROJECT_NAME'] = name project_name = get_project_name(None) assert project_name == name def test_project_name_with_empty_environment_var(self): base_dir = 'tests/fixtures/simple-composefile' with mock.patch.dict(os.environ): os.environ['COMPOSE_PROJECT_NAME'] = '' project_name = get_project_name(base_dir) assert 'simple-composefile' == project_name @mock.patch.dict(os.environ) def test_project_name_with_environment_file(self): base_dir = tempfile.mkdtemp() try: name = 'namefromenvfile' with open(os.path.join(base_dir, '.env'), 'w') as f: f.write('COMPOSE_PROJECT_NAME={}'.format(name)) project_name = get_project_name(base_dir) assert project_name == name # Environment has priority over .env file os.environ['COMPOSE_PROJECT_NAME'] = 'namefromenv' assert get_project_name(base_dir) == os.environ['COMPOSE_PROJECT_NAME'] finally: shutil.rmtree(base_dir) def test_get_project(self): base_dir = 'tests/fixtures/longer-filename-composefile' project = get_project(base_dir) assert project.name == 'longer-filename-composefile' assert project.client assert project.services def test_command_help(self): with mock.patch('sys.stdout', new=StringIO()) as fake_stdout: TopLevelCommand.help({'COMMAND': 'up'}) assert "Usage: up" in fake_stdout.getvalue() def test_command_help_nonexistent(self): with pytest.raises(NoSuchCommand): TopLevelCommand.help({'COMMAND': 'nonexistent'}) @pytest.mark.xfail(IS_WINDOWS_PLATFORM, reason="requires dockerpty") @mock.patch('compose.cli.main.RunOperation', autospec=True) @mock.patch('compose.cli.main.PseudoTerminal', autospec=True) @mock.patch.dict(os.environ) def test_run_interactive_passes_logs_false(self, mock_pseudo_terminal, mock_run_operation): os.environ['COMPOSE_INTERACTIVE_NO_CLI'] = 'true' mock_client = mock.create_autospec(docker.APIClient) mock_client.api_version = DEFAULT_DOCKER_API_VERSION mock_client._general_configs = {} project = Project.from_config( name='composetest', client=mock_client, config_data=build_config({ 'service': {'image': 'busybox'} }), ) command = TopLevelCommand(project) with pytest.raises(SystemExit): command.run({ 'SERVICE': 'service', 'COMMAND': None, '-e': [], '--label': [], '--user': None, '--no-deps': None, '--detach': False, '-T': None, '--entrypoint': None, '--service-ports': None, '--use-aliases': None, '--publish': [], '--volume': [], '--rm': None, '--name': None, '--workdir': None, }) _, _, call_kwargs = mock_run_operation.mock_calls[0] assert call_kwargs['logs'] is False def test_run_service_with_restart_always(self): mock_client = mock.create_autospec(docker.APIClient) mock_client.api_version = DEFAULT_DOCKER_API_VERSION mock_client._general_configs = {} project = Project.from_config( name='composetest', client=mock_client, config_data=build_config({ 'service': { 'image': 'busybox', 'restart': 'always', } }), ) command = TopLevelCommand(project) command.run({ 'SERVICE': 'service', 'COMMAND': None, '-e': [], '--label': [], '--user': None, '--no-deps': None, '--detach': True, '-T': None, '--entrypoint': None, '--service-ports': None, '--use-aliases': None, '--publish': [], '--volume': [], '--rm': None, '--name': None, '--workdir': None, }) assert mock_client.create_host_config.call_args[1]['restart_policy']['Name'] == 'always' command = TopLevelCommand(project) command.run({ 'SERVICE': 'service', 'COMMAND': None, '-e': [], '--label': [], '--user': None, '--no-deps': None, '--detach': True, '-T': None, '--entrypoint': None, '--service-ports': None, '--use-aliases': None, '--publish': [], '--volume': [], '--rm': True, '--name': None, '--workdir': None, }) assert not mock_client.create_host_config.call_args[1].get('restart_policy') def test_command_manual_and_service_ports_together(self): project = Project.from_config( name='composetest', client=None, config_data=build_config({ 'service': {'image': 'busybox'}, }), ) command = TopLevelCommand(project) with pytest.raises(UserError): command.run({ 'SERVICE': 'service', 'COMMAND': None, '-e': [], '--label': [], '--user': None, '--no-deps': None, '--detach': True, '-T': None, '--entrypoint': None, '--service-ports': True, '--use-aliases': None, '--publish': ['80:80'], '--rm': None, '--name': None, }) ```
{ "source": "jovsa/jovsatools", "score": 3 }
#### File: Module-2/minitorch/modules.py ```python # from .tensor import rand # from .functions import matmul, conv2d # from .module import Module, Parameter # class tLinear(Module): # def __init__(self, in_size, out_size): # super().__init__() # self.weights = Parameter(rand((in_size, out_size))) # self.bias = Parameter(rand((out_size,))) # self.out_size = out_size # def forward(self, x): # batch, in_size = x.shape # return ( # self.weights.value.view(1, in_size, self.out_size) # * x.view(batch, in_size, 1) # ).sum(1).view(batch, self.out_size) + self.bias.value.view(1, self.out_size) # class tLinear2(Module): # def __init__(self, in_size, out_size): # super().__init__() # self.weights = Parameter(rand((in_size, out_size))) # self.bias = Parameter(rand((out_size,))) # self.out_size = out_size # def forward(self, x): # batch, in_size = x.shape # return matmul(x, self.weights.value) + self.bias.value.view(1, self.out_size) # class Dropout(Module): # def __init__(self, rate): # super().__init__() # self.rate = rate # def forward(self, x): # return (rand(x.shape) / 2 + 0.5 < self.rate) * x # class Conv2d(Module): # def __init__(self, in_features, out_features, size): # super().__init__() # size1 = [size[0], size[1], in_features, out_features] # size2 = [size[0], size[1], out_features] # self.weights = Parameter(rand(size1)) # self.bias = Parameter(rand(size2)) # def forward(self, x): # return conv2d(x, self.weights.value, self.bias.value) # # class MaxPool2d(Module): # # def __init__(self, in_features, out_features, size): # # super().__init__() # # def forward(self, x): # # return conv2d(x, self.weights.value, self.bias.value) ``` #### File: Module-4/minitorch/nn.py ```python import numpy as np from .fast_ops import FastOps from .tensor import rand, Function from . import operators from .tensor_data import ( count, index_to_position, broadcast_index, MAX_DIMS, ) from numba import njit, prange max_reduce = FastOps.reduce(operators.max, -1e9) def argmax(input, dim): """ Compute the argmax as a 1-hot tensor. Args: input (:class:`Tensor`): input tensor dim (int): dimension to apply argmax Returns: :class:`Tensor` : tensor with 1 on highest cell in dim, 0 otherwise """ out = max_reduce(input, [dim]) return out == input class Max(Function): @staticmethod def forward(ctx, input, dim): "Forward of max should be max reduction" out = max_reduce(input, [dim]) ctx.save_for_backward(input, out) return out @staticmethod def backward(ctx, grad_output): "Backward of max should be argmax (see above)" input, out = ctx.saved_values return (out == input) * grad_output, None max = Max.apply def softmax(input, dim): r""" Compute the softmax as a tensor. .. math:: z_i = \frac{e^{x_i}}{\sum_i e^{x_i}} Args: input (:class:`Tensor`): input tensor dim (int): dimension to apply argmax Returns: :class:`Tensor` : softmax tensor """ e = input.exp() partition = e.sum(dim=dim) return e / partition def logsoftmax(input, dim): r""" Compute the log of the softmax as a tensor. .. math:: z_i = x_i - \log \sum_i e^{x_i} See https://en.wikipedia.org/wiki/LogSumExp#log-sum-exp_trick_for_log-domain_calculations Args: input (:class:`Tensor`): input tensor dim (int): dimension to apply argmax Returns: :class:`Tensor` : log of softmax tensor """ e = input mx = max(e, dim) lse = (e - mx).exp().sum(dim=dim).log() + mx return e - lse def tile(input, kernel): """ Reshape an image tensor for 2D pooling Args: input (:class:`Tensor`): batch x channel x height x width kernel ((int, int)): height x width of pooling Returns: (:class:`Tensor`, int, int) : Tensor of size batch x channel x new_height x new_width x kernel_height x kernel_width as well as the new_height and new_width value. """ batch, channel, height, width = input.shape kh, kw = kernel assert height % kh == 0 assert width % kw == 0 new_width = width // kw new_height = height // kh x = input.view(batch, channel, new_height, kh, new_width, kw) x = x.permute(0, 1, 2, 4, 3, 5).contiguous() x = x.view(batch, channel, new_height, new_width, kh * kw) return x, new_height, new_width def maxpool2d(input, kernel): """ Tiled max pooling 2D Args: input (:class:`Tensor`): batch x channel x height x width kernel ((int, int)): height x width of pooling Returns: :class:`Tensor` : pooled tensor """ batch, channel, height, width = input.shape x, new_height, new_width = tile(input, kernel) return max(x, 4).view(batch, channel, new_height, new_width) def avgpool2d(input, kernel): """ Tiled average pooling 2D Args: input (:class:`Tensor`): batch x channel x height x width kernel ((int, int)): height x width of pooling Returns: :class:`Tensor` : pooled tensor """ batch, channel, height, width = input.shape x, new_height, new_width = tile(input, kernel) return x.mean(dim=4).view(batch, channel, new_height, new_width) count = njit()(count) index_to_position = njit()(index_to_position) broadcast_index = njit()(broadcast_index) @njit(parallel=True) def tensor_conv2d( output, output_shape, output_strides, out_size, input, input_shape, input_strides, weight, weight_shape, weight_strides, reverse, ): """ 2D Convolution implementation. Args: out (array): storage for `out` tensor. out_shape (array): shape for `out` tensor. out_strides (array): strides for `out` tensor. out_size (int): size of the `out` tensor. input (array): storage for `input` tensor. input_shape (array): shape for `input` tensor. input_strides (array): strides for `input` tensor. weight (array): storage for `input` tensor. weight_shape (array): shape for `input` tensor. weight_strides (array): strides for `input` tensor. reverse (bool): Compute forward (False) or backward conv """ batch, in_channels, height, width = input_shape _, _, kh, kw = weight_shape for i in prange(out_size): out_index = np.zeros(MAX_DIMS, np.int32) count(i, output_shape, out_index) b = out_index[0] oc = out_index[1] h = out_index[2] w = out_index[3] for dh in range(kh): for dw in range(kw): ih, iw = h + dh, w + dw if reverse: ih, iw = h - dh, w - dw if ih < 0 or ih >= height or iw < 0 or iw >= width: continue for ic in range(in_channels): s1 = input_strides term1 = input[s1[0] * b + s1[1] * ic + s1[2] * ih + s1[3] * iw] s2 = weight_strides term2 = weight[s2[0] * oc + s2[1] * ic + s2[2] * dh + s2[3] * dw] output[i] += term1 * term2 @njit(parallel=True) def _conv2d_back_weight( grad_output, grad_output_shape, grad_output_strides, input, input_shape, input_strides, grad_weight, grad_weight_shape, grad_weight_strides, grad_weight_size, ): batch, in_channels, height, width = input_shape for i in prange(grad_weight_size): grad_weight_index = np.zeros(MAX_DIMS, np.int32) count(i, grad_weight_shape, grad_weight_index) oc = grad_weight_index[0] ic = grad_weight_index[1] dh = grad_weight_index[2] dw = grad_weight_index[3] for h in range(height): for w in range(width): ih, iw = h - dh, w - dw if ih < 0 or ih >= height or iw < 0 or iw >= width: continue for b in range(batch): s1 = input_strides term1 = input[s1[0] * b + s1[1] * ic + s1[2] * h + s1[3] * w] s2 = grad_output_strides term2 = grad_output[ s2[0] * b + s2[1] * oc + s2[2] * ih + s2[3] * iw ] grad_weight[i] += term1 * term2 class Conv2dFun(Function): @staticmethod def forward(ctx, input, weight): """ Args: input (:class:`tensor`) : batch x in_channel x h x w weight (:class:`tensor`) : out_channel x in_channel x kh x kw """ ctx.save_for_backward(input, weight) batch, in_channels, h, w = input.shape out_channels, in_channels2, kh, kw = weight.shape assert in_channels == in_channels2 output = input.zeros((batch, out_channels, h, w)) tensor_conv2d( *output.tuple(), output.size, *input.tuple(), *weight.tuple(), False ) return output @staticmethod def backward(ctx, grad_output): input, weight = ctx.saved_values out_channels, in_channels, kh, kw = weight.shape grad_weight = grad_output.zeros(weight.shape) _conv2d_back_weight( *grad_output.tuple(), *input.tuple(), *grad_weight.tuple(), grad_weight.size, ) grad_input = grad_output.zeros(input.shape) new_weight = weight.permute(1, 0, 2, 3) tensor_conv2d( *grad_input.tuple(), grad_input.size, *grad_output.tuple(), *new_weight.tuple(), True, ) return grad_input, grad_weight conv2d = Conv2dFun.apply def dropout(input, rate, ignore=False): """ Dropout dimensions based on random noise Args: input (:class:`Tensor`): input tensor rate (float): probability of dropping out each dimension ignore (bool): skip Returns: :class:`Tensor` : tensor with dropout dimensions """ if ignore: return input r = rand(input.shape) drop = rate < r return input * drop ``` #### File: minitorch/minitorch/operators.py ```python import math ## Task 0.1 ## Mathematical operators def mul(x, y): ":math:`f(x, y) = x * y`" # ASSIGN0.1 return x * y # END ASSIGN0.1 def id(x): ":math:`f(x) = x`" # ASSIGN0.1 return x # END ASSIGN0.1 def add(x, y): ":math:`f(x, y) = x + y`" # ASSIGN0.1 return x + y # END ASSIGN0.1 def neg(x): ":math:`f(x) = -x`" # ASSIGN0.1 return -x # END ASSIGN0.1 def lt(x, y): ":math:`f(x) =` 1.0 if x is less than y else 0.0" # ASSIGN0.1 return 1.0 if x < y else 0.0 # END ASSIGN0.1 def eq(x, y): ":math:`f(x) =` 1.0 if x is equal to y else 0.0" # ASSIGN0.1 return 1.0 if x == y else 0.0 # END ASSIGN0.1 def max(x, y): ":math:`f(x) =` x if x is greater than y else y" # ASSIGN0.1 return x if x > y else y # END ASSIGN0.1 def sigmoid(x): r""" :math:`f(x) = \frac{1.0}{(1.0 + e^{-x})}` (See `<https://en.wikipedia.org/wiki/Sigmoid_function>`_ .) Calculate as :math:`f(x) = \frac{1.0}{(1.0 + e^{-x})}` if x >=0 else :math:`\frac{e^x}{(1.0 + e^{x})}` for stability. """ # ASSIGN0.1 if x >= 0: return 1.0 / (1.0 + math.exp(-x)) else: return math.exp(x) / (1.0 + math.exp(x)) # END ASSIGN0.1 def relu(x): """ :math:`f(x) =` x if x is greater than 0, else 0 (See `<https://en.wikipedia.org/wiki/Rectifier_(neural_networks)>`_ .) """ # ASSIGN0.1 return x if x > 0 else 0.0 # END ASSIGN0.1 def relu_back(x, y): ":math:`f(x) =` y if x is greater than 0 else 0" # ASSIGN0.1 return y if x > 0 else 0.0 # END ASSIGN0.1 EPS = 1e-6 def log(x): ":math:`f(x) = log(x)`" return math.log(x + EPS) def exp(x): ":math:`f(x) = e^{x}`" return math.exp(x) def log_back(a, b): return b / (a + EPS) def inv(x): ":math:`f(x) = 1/x`" return 1.0 / x def inv_back(a, b): return -(1.0 / a ** 2) * b ## Task 0.3 ## Higher-order functions. def map(fn): """ Higher-order map. .. image:: figs/Ops/maplist.png See `<https://en.wikipedia.org/wiki/Map_(higher-order_function)>`_ Args: fn (one-arg function): Function from one value to one value. Returns: function : A function that takes a list, applies `fn` to each element, and returns a new list """ # ASSIGN0.3 def _map(ls): ret = [] for x in ls: ret.append(fn(x)) return ret return _map # END ASSIGN0.3 def negList(ls): "Use :func:`map` and :func:`neg` to negate each element in `ls`" return map(neg)(ls) def zipWith(fn): """ Higher-order zipwith (or map2). .. image:: figs/Ops/ziplist.png See `<https://en.wikipedia.org/wiki/Map_(higher-order_function)>`_ Args: fn (two-arg function): combine two values Returns: function : takes two equally sized lists `ls1` and `ls2`, produce a new list by applying fn(x, y) one each pair of elements. """ # ASSIGN0.3 def _zipWith(ls1, ls2): ret = [] for x, y in zip(ls1, ls2): ret.append(fn(x, y)) return ret return _zipWith # END ASSIGN0.3 def addLists(ls1, ls2): "Add the elements of `ls1` and `ls2` using :func:`zipWith` and :func:`add`" return zipWith(add)(ls1, ls2) def reduce(fn, start): r""" Higher-order reduce. .. image:: figs/Ops/reducelist.png Args: fn (two-arg function): combine two values start (float): start value :math:`x_0` Returns: function : function that takes a list `ls` of elements :math:`x_1 \ldots x_n` and computes the reduction :math:`fn(x_3, fn(x_2, fn(x_1, x_0)))` """ # ASSIGN0.3 def _reduce(ls): val = start for l in ls: val = fn(val, l) return val return _reduce # END ASSIGN0.3 def sum(ls): """ Sum up a list using :func:`reduce` and :func:`add`. """ # ASSIGN0.3 return reduce(add, 0.0)(ls) # END ASSIGN0.3 def prod(ls): """ Product of a list using :func:`reduce` and :func:`mul`. """ # ASSIGN0.3 return reduce(mul, 1.0)(ls) # END ASSIGN0.3 ```
{ "source": "jovsa/jTorch", "score": 3 }
#### File: jTorch/project/run_mnist.py ```python from mnist import MNIST import jtorch import visdom import numpy vis = visdom.Visdom() mndata = MNIST("data/") images, labels = mndata.load_training() BACKEND = jtorch.make_tensor_functions(jtorch.FastOps) RATE = 0.01 HIDDEN = 20 BATCH = 16 class Network(jtorch.Module): def __init__(self): super().__init__() self.layer1 = MMLinear(784, HIDDEN) self.layer2 = MMLinear(HIDDEN, HIDDEN) self.layer3 = MMLinear(HIDDEN, 1) def forward(self, x): # ASSIGN1.5 h = self.layer1.forward(x).relu() h = self.layer2.forward(h).relu() return self.layer3.forward(h).sigmoid() # END ASSIGN2.5 class MMLinear(jtorch.Module): def __init__(self, in_size, out_size): super().__init__() r = jtorch.rand((in_size, out_size)) r.type_(BACKEND) self.weights = jtorch.Parameter(0.1 * (r - 0.5)) r = jtorch.rand((out_size,)) r.type_(BACKEND) self.bias = jtorch.Parameter(0.1 * (r - 0.5)) self.out_size = out_size def forward(self, x): # ASSIGN3.5 batch, in_size = x.shape return jtorch.matmul( x.view(batch, 1, in_size), self.weights.value.view(1, in_size, self.out_size), ).view(batch, self.out_size) + self.bias.value.view(1, self.out_size) # END ASSIGN3.5 class Conv2d(jtorch.Module): def __init__(self, in_channels, out_channels, kh, kw): super().__init__() r = jtorch.rand((out_channels, in_channels, kh, kw)) r.type_(BACKEND) self.weights = jtorch.Parameter(0.1 * (r - 0.5)) r = jtorch.rand((out_channels, 1, 1)) r.type_(BACKEND) self.bias = jtorch.Parameter(0.1 * (r - 0.5)) def forward(self, input): out = jtorch.Conv2dFun.apply(input, self.weights.value) + self.bias.value return out class Network2(jtorch.Module): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 4, 3, 3) self.conv2 = Conv2d(4, 8, 3, 3) self.linear1 = MMLinear(392, 64) self.linear2 = MMLinear(64, 1) # For vis self.mid = None self.out = None def forward(self, x): x = self.conv1(x).relu() self.mid = x x = self.conv2(x).relu() self.out = x x = jtorch.avgpool2d(x, (4, 4)) x = self.linear1(x.view(BATCH, 392)).relu() x = self.linear2(x).sigmoid() return x ys = [] X = [] for i in range(10000): y = labels[i] if y == 3 or y == 5: ys.append(1.0 if y == 3 else 0.0) X += images[i] val_ys = [] val_x = [] for i in range(10000, 10500): y = labels[i] if y == 3 or y == 5: val_ys.append(1.0 if y == 3 else 0.0) val_x += images[i] vis.images( numpy.array(val_x).reshape((len(val_ys), 1, 28, 28))[:BATCH], win="val_images" ) model = Network2() losses = [] for epoch in range(250): total_loss = 0.0 cur = 0 for i, j in enumerate(range(0, len(ys), BATCH)): if len(ys) - j <= BATCH: continue y = jtorch.tensor(ys[j : j + BATCH], (BATCH,)) x = jtorch.tensor(X[cur : cur + 28 * 28 * BATCH], (BATCH, 28 * 28)) x.requires_grad_(True) y.requires_grad_(True) y.type_(BACKEND) x.type_(BACKEND) # Forward out = model.forward(x.view(BATCH, 1, 28, 28)).view(BATCH) prob = (out * y) + (out - 1.0) * (y - 1.0) loss = -prob.log() (loss.sum().view(1)).backward() total_loss += loss[0] losses.append(total_loss) # Update for p in model.parameters(): if p.value.grad is not None: p.update(p.value - RATE * (p.value.grad / float(BATCH))) if i % 10 == 0: correct = 0 y = jtorch.tensor(val_ys[:BATCH], (BATCH,)) x = jtorch.tensor(val_x[: (BATCH * 28 * 28)], (BATCH, 28 * 28)) out = model.forward(x.view(BATCH, 1, 28, 28)).view(BATCH) for i in range(BATCH): if y[i] == 1 and out[i] > 0.5: correct += 1 if y[i] == 0 and out[i] < 0.5: correct += 1 for channel in range(4): vis.images( -1 * model.mid.to_numpy()[:, channel : channel + 1], win=f"mid_images_{channel}", opts=dict(nrow=4, caption=f"mid_images_{channel}"), ) for channel in range(8): vis.images( -1 * model.out.to_numpy()[:, channel : channel + 1], win=f"out_images_{channel}", opts=dict(nrow=4, caption=f"out_images_{channel}"), ) print("Epoch ", epoch, " loss ", total_loss, "correct", correct) # im = f"Epoch: {epoch}" # data.graph(im, lambda x: model.forward(jtorch.tensor(x, (1, 2)))[0, 0]) # plt.plot(losses, c="blue") # vis.matplot(plt, win="loss") total_loss = 0.0 cur += 28 * 28 * BATCH ``` #### File: jTorch/tests/test_cuda_ops.py ```python import jtorch import pytest from hypothesis import given from .strategies import tensors, shaped_tensors, assert_close from .test_tensor import one_arg, two_arg, reduce # TESTS are the same as test_tensor with different backend CudaTensorFunctions = jtorch.make_tensor_functions(jtorch.CudaOps) @given(tensors(backend=CudaTensorFunctions)) @pytest.mark.task3_3 @pytest.mark.parametrize("fn", one_arg) def test_one_args(fn, t1): t2 = fn[1](t1) for ind in t2._tensor.indices(): assert_close(t2[ind], fn[1](jtorch.Scalar(t1[ind])).data) @given(shaped_tensors(2, backend=CudaTensorFunctions)) @pytest.mark.task3_3 @pytest.mark.parametrize("fn", two_arg) def test_two_args(fn, ts): t1, t2 = ts t3 = fn[1](t1, t2) for ind in t3._tensor.indices(): assert t3[ind] == fn[1](jtorch.Scalar(t1[ind]), jtorch.Scalar(t2[ind])).data @given(tensors(backend=CudaTensorFunctions)) @pytest.mark.task3_3 @pytest.mark.parametrize("fn", one_arg) def test_one_derivative(fn, t1): jtorch.grad_check(fn[1], t1) @given(tensors(backend=CudaTensorFunctions)) @pytest.mark.task3_3 @pytest.mark.parametrize("fn", reduce) def test_reduce(fn, t1): jtorch.grad_check(fn[1], t1) @given(shaped_tensors(2, backend=CudaTensorFunctions)) @pytest.mark.task3_3 @pytest.mark.parametrize("fn", two_arg) def test_two_grad(fn, ts): t1, t2 = ts jtorch.grad_check(fn[1], t1, t2) @given(shaped_tensors(2, backend=CudaTensorFunctions)) @pytest.mark.task3_3 @pytest.mark.parametrize("fn", two_arg) def test_two_grad_broadcast(fn, ts): t1, t2 = ts jtorch.grad_check(fn[1], t1, t2) # broadcast check jtorch.grad_check(fn[1], t1.sum(0), t2) jtorch.grad_check(fn[1], t1, t2.sum(0)) ``` #### File: jTorch/tests/test_functions.py ```python import jtorch import pytest from .strategies import assert_close @pytest.mark.task3_1 def test_mm(): a = jtorch.rand((2, 3)) b = jtorch.rand((3, 4)) c = jtorch.matmul(a, b) c2 = (a.view(2, 3, 1) * b.view(1, 3, 4)).sum(1).view(2, 4) print(c) print(c2) for ind in c._tensor.indices(): assert_close(c[ind], c2[ind]) @pytest.mark.task3_1 def test_broad_mm(): a = jtorch.rand((2, 2, 3)) b = jtorch.rand((2, 3, 4)) c = jtorch.matmul(a, b) c2 = (a.view(2, 2, 3, 1) * b.view(2, 1, 3, 4)).sum(2).view(2, 2, 4) print(c) print(c2) for ind in c._tensor.indices(): assert_close(c[ind], c2[ind]) @pytest.mark.task3_4 def test_cuda_mm(): a = jtorch.rand((2, 2, 3)) b = jtorch.rand((2, 3, 4)) c = jtorch.cuda_matmul(a, b) c2 = (a.view(2, 2, 3, 1) * b.view(2, 1, 3, 4)).sum(2).view(2, 2, 4) print(c) print(c2) for ind in c._tensor.indices(): assert_close(c[ind], c2[ind]) ``` #### File: jTorch/tests/test_module.py ```python import jtorch import pytest VAL = 40 class Module1(jtorch.Module): def __init__(self): super().__init__() self.module_a = Module2(5) self.module_b = Module2(10) self.parameter_a = jtorch.Parameter(VAL) VAL_A = 50 VAL_B = 100 class Module2(jtorch.Module): def __init__(self, extra=0): super().__init__() self.parameter_a = jtorch.Parameter(VAL_A) self.parameter_b = jtorch.Parameter(VAL_B) self.non_parameter = 10 for i in range(extra): self.add_parameter(f"extra_parameter_{i}", None) @pytest.mark.task0_4 def test_module(): "Check the properties of a single module" module = Module2() module.eval() assert module.mode == "eval" module.train() assert module.mode == "train" assert len(module.parameters()) == 2 module = Module2(10) assert len(module.parameters()) == 12 module = Module2(5) named_parameters = module.named_parameters() assert named_parameters["parameter_a"].value == VAL_A assert named_parameters["parameter_b"].value == VAL_B assert named_parameters["extra_parameter_0"].value is None @pytest.mark.task0_4 def test_stacked_module(): "Check the properties of a stacked module" module = Module1() print(module) module.eval() assert module.mode == "eval" assert module.module_a.mode == "eval" assert module.module_b.mode == "eval" module.train() assert module.mode == "train" assert module.module_a.mode == "train" assert module.module_b.mode == "train" assert len(module.parameters()) == 1 + 7 + 12 named_parameters = module.named_parameters() assert named_parameters["parameter_a"].value == VAL assert named_parameters["module_a.parameter_a"].value == VAL_A assert named_parameters["module_a.parameter_b"].value == VAL_B assert named_parameters["module_b.parameter_a"].value == VAL_A assert named_parameters["module_b.parameter_b"].value == VAL_B class ModuleA1(jtorch.Module): def __init__(self): super().__init__() self.p1 = jtorch.Parameter(5) self.a = ModuleA2() self.b = ModuleA3() class ModuleA2(jtorch.Module): def __init__(self): super().__init__() self.p2 = jtorch.Parameter(10) class ModuleA3(jtorch.Module): def __init__(self): super().__init__() self.c = ModuleA4() class ModuleA4(jtorch.Module): def __init__(self): super().__init__() self.p3 = jtorch.Parameter(15) @pytest.mark.task0_4 def test_stacked_module2(): np = ModuleA1().named_parameters() assert np["p1"].value == 5 assert np["a.p2"].value == 10 assert np["b.c.p3"].value == 15 ```
{ "source": "Jovvik/Thesis", "score": 3 }
#### File: Jovvik/Thesis/dotdict.py ```python from typing import Any class dotdict(dict): """dot.notation access to dictionary attributes""" def __getattr__(*args: Any) -> Any: val = dict.get(*args) return dotdict(val) if type(val) is dict else val __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ ```
{ "source": "Jow1e/jupy", "score": 2 }
#### File: jupy/jupy/easy_func_access.py ```python from .tensor import apply_forward def square(z): return apply_forward([z], "square") def log(z): return apply_forward([z], "log") def mse(y_hat, y): return apply_forward([y_hat, y], "mse") def cross_entropy(y_hat, y): return apply_forward([y_hat, y], "cross_entropy") def linear(z, weight, bias): return apply_forward([z, weight, bias], "linear") def sigmoid(z): return apply_forward([z], "sigmoid") def prelu(z, slope): return apply_forward([z, slope], "prelu") ``` #### File: jupy/jupy/functional.py ```python import numpy as np # this file contains everything for calculating gradient # e.g. functions (forward, backward) # "gradient graph" (invisible -> we see only independent nodes as GradNode) def add_forward(input_1, input_2): return input_1 + input_2, None def add_backward(grad, inputs, cache): return grad, grad def sub_forward(input_1, input_2): return input_1 - input_2, None def sub_backward(grad, inputs, cache): return grad, -grad def mul_forward(input_1, input_2): return input_1 * input_2, None def mul_backward(grad, inputs, cache): input_1, input_2 = inputs return grad * input_2, grad * input_1 def neg_forward(input): return -input, None def neg_backward(grad, inputs, cache): return -grad, def div_forward(input_1, input_2): return input_1 / input_2, None def div_backward(grad, inputs, cache): input_1, input_2 = inputs temp = 1 / np.square(input_2) return grad * temp * input_2, -grad * input_1 * temp def square_forward(input): return np.square(input), None def square_backward(grad, inputs, cache): return 2 * grad * inputs[0], def pow_forward(input, power): out = input ** power return out, out def pow_backward(grad, inputs, cache): input, power = inputs return grad * power * (input ** (power - 1)), grad * np.log(power) * cache def log_forward(input): return np.log(input), None def log_backward(grad, inputs, cache): return grad / inputs[0], ```
{ "source": "jowabels/vt-shiznit", "score": 3 }
#### File: jowabels/vt-shiznit/vt-shiz.py ```python import requests import json import os, sys import time conf = "config.json" cache = [] fo = open(conf, "r") conf_json = json.loads(fo.read()) fo.close() def main(): mykey = conf_json["apikey"] hash_file = sys.argv[1] if not os.path.exists(hash_file): print "The text file you provided does not exists!" sys.exit() outfile = r"{0}\{1}_output".format(os.path.dirname(hash_file), os.path.basename(hash_file)) cache = {} with open(hash_file, "r") as fa, open(outfile, "a") as out: for line in fa: myline = line.strip().split(",") file_path = myline[0] file_sha1 = myline[-1] #time.sleep(1) try: if file_sha1 not in cache: params = {"apikey" : mykey, "resource" : "{0}".format(file_sha1)} response = requests.get("https://www.virustotal.com/vtapi/v2/file/report", params=params) if response.status_code == 200: json_response = response.json() if json_response["response_code"]: print "{0},{1},{2},{3}/{4}\n".format(file_path, file_sha1, json_response["scan_date"], json_response["positives"], json_response["total"]) out.write("{0},{1},{2},{3}/{4}\n".format(file_path, file_sha1, json_response["scan_date"], json_response["positives"], json_response["total"])) cache[file_sha1] = json_response else: print "{0},{1},NONE,NONE\n".format(file_path, file_sha1) out.write("{0},{1},NONE,NONE\n".format(file_path, file_sha1)) else: print "Request HTTP code: {0}".format(response.status_code) pass else: print "{0},{1},{2}/{3}\n".format(file_path, file_sha1, cache[file_sha1]["positives"], cache[file_sha1]["total"]) out.write("{0},{1},{2}/{3}\n".format(file_path, file_sha1, cache[file_sha1]["positives"], cache[file_sha1]["total"])) except Exception as e: print e pass outjson = r"{0}\{1}_json".format(os.path.dirname(hash_file), os.path.basename(hash_file)) with open(outjson, "w") as oj: json.dump(cache, oj) if __name__ == "__main__": if len(sys.argv) != 2: print "\nUsage:\n\tpython vt-shiz.py [path to text file of hashes]\n" sys.exit() main() ```
{ "source": "JoWagnerAtLimagoDe/RUVPython", "score": 3 }
#### File: Dekorator/Dekorator/Dekorator.py ```python def my_decorator(func): def wrapper(): print("before Advice") func() print("After Returning Advice") return wrapper @my_decorator def say_muh(): print("Muh") #say_muh = my_decorator(say_muh) say_muh() def log_decorator(func): def wrapper(*args, **kwargs): print("log it") retval = func(*args, **kwargs) print("after log") return retval return wrapper @log_decorator def add(a,b): return a + b @log_decorator def sub(a,b): return a - b print(add(3,4)) ``` #### File: Nimmspiel/Games/TakeGameModul.py ```python from Games.Game import Game class TakeGame(Game): def __init__(self): self.__steine = 23 self.__spielende = False def play(self): while not self.__spielende: self.__exceuteTurns () def __exceuteTurns(self): self.__spielerzug() self.__computerzug() def __spielerzug(self): while True: zug = int(input("Es gibt {steine} Steine. Bitte nehmen Sie 1,2 oder 3.".format(steine = self.__steine))) if zug >= 1 and zug <= 3: break print("Ungültiger Zug") self.__steine -= zug def __computerzug(self): if self.__steine <= 0: print("Du Loser") self.__spielende = True return if self.__steine == 1: print("Du hast nur Glück gehabt") self.__spielende = True return zuege = (3,1,1,2) zug = zuege[self.__steine % 4] print ("Computer nimmt {zug} Steine".format(zug = zug)) self.__steine -= zug ```
{ "source": "Jo-wang/disentangle", "score": 3 }
#### File: disvae/models/encoders.py ```python import numpy as np import torch from torch import nn # import torch.functional as F import torch.nn.functional as F # ALL encoders should be called Enccoder<Model> def get_encoder(model_type): model_type = model_type.lower().capitalize() return eval("Encoder{}".format(model_type)) class EncoderBurgess(nn.Module): def __init__(self, img_size, latent_dim=10): r"""Encoder of the model proposed in [1]. Parameters ---------- img_size : tuple of ints Size of images. E.g. (1, 32, 32) or (3, 64, 64). latent_dim : int Dimensionality of latent output. Model Architecture (transposed for decoder) ------------ - 4 convolutional layers (each with 32 channels), (4 x 4 kernel), (stride of 2) - 2 fully connected layers (each of 256 units) - Latent distribution: - 1 fully connected layer of 20 units (log variance and mean for 10 Gaussians) References: [1] Burgess, <NAME>., et al. "Understanding disentangling in $\beta$-VAE." arXiv preprint arXiv:1804.03599 (2018). """ super(EncoderBurgess, self).__init__() # Layer parameters hid_channels = 32 kernel_size = 4 hidden_dim = 256 self.latent_dim = latent_dim self.img_size = img_size # Shape required to start transpose convs self.reshape = (hid_channels, kernel_size, kernel_size) n_chan = self.img_size[0] # Convolutional layers cnn_kwargs = dict(stride=2, padding=1) self.conv1 = nn.Conv2d(n_chan, hid_channels, kernel_size, **cnn_kwargs) self.conv2 = nn.Conv2d(hid_channels, hid_channels, kernel_size, **cnn_kwargs) self.conv3 = nn.Conv2d(hid_channels, hid_channels, kernel_size, **cnn_kwargs) # If input image is 64x64 do fourth convolution if self.img_size[1] == self.img_size[2] == 64: self.conv_64 = nn.Conv2d(hid_channels, hid_channels, kernel_size, **cnn_kwargs) # Fully connected layers self.lin1 = nn.Linear(np.product(self.reshape), hidden_dim) self.lin2 = nn.Linear(hidden_dim, hidden_dim) # Fully connected layers for mean and variance self.mu_logvar_gen = nn.Linear(hidden_dim, self.latent_dim * 2) def forward(self, x): batch_size = x.size(0) # Convolutional layers with ReLu activations x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) if self.img_size[1] == self.img_size[2] == 64: x = torch.relu(self.conv_64(x)) # Fully connected layers with ReLu activations x = x.view((batch_size, -1)) x = torch.relu(self.lin1(x)) x = torch.relu(self.lin2(x)) # Fully connected layer for log variance and mean # Log std-dev in paper (bear in mind) mu_logvar = self.mu_logvar_gen(x) mu, logvar = mu_logvar.view(-1, self.latent_dim, 2).unbind(-1) return mu, logvar class ConvEncoder(nn.Module): def __init__(self, output_dim): # latent output dimensions super(ConvEncoder, self).__init__() self.latent_dim = output_dim self.conv1 = nn.Conv2d(3, 64, kernel_size=5, stride=1, padding=2) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2) self.bn3 = nn.BatchNorm2d(128) self.fc1 = nn.Linear(8192, 3072) self.bn1_fc = nn.BatchNorm1d(3072) self.fc2 = nn.Linear(3072, 2048) self.bn2_fc = nn.BatchNorm1d(2048) self.mu_logvar_gen = nn.Linear(2048, output_dim * 2) # setup the non-linearity self.act = nn.LeakyReLU(inplace=True) def forward(self, inputs): assert len(inputs.shape) == 4 batch_size, channel, width, height = inputs.size() h = inputs.contiguous().view(-1, channel, width, height) h = F.max_pool2d(self.act(self.bn1(self.conv1(h))), stride=2, kernel_size=3, padding=1) h = F.max_pool2d(self.act(self.bn2(self.conv2(h))), stride=2, kernel_size=3, padding=1) h = self.act(self.bn3(self.conv3(h))) # [CHECK] did not add dropout so far h = h.view(batch_size, -1) h = self.act(self.bn1_fc(self.fc1(h))) h = self.act(self.bn2_fc(self.fc2(h))) mu_logvar = self.mu_logvar_gen(h) outputs = mu_logvar.view(batch_size, self.latent_dim, 2).unbind(-1) return outputs class DomainEncoder(nn.Module): def __init__(self, num_domains, output_dim): super(DomainEncoder, self).__init__() self.latent_dim = output_dim self.embed = nn.Embedding(num_domains, 512) self.bn = nn.BatchNorm1d(512) self.mu_logvar_gen = nn.Linear(512, output_dim * 2) # setup the non-linearity self.act = nn.LeakyReLU(inplace=True) def forward(self, inputs): batch_size = inputs.size()[0] # inputs.cuda() h = self.act(self.bn(self.embed(inputs))) mu_logvar = self.mu_logvar_gen(h) outputs = mu_logvar.view(batch_size, self.latent_dim, 2).unbind(-1) return outputs ```
{ "source": "Jo-wang/LDBE", "score": 2 }
#### File: LDBE/trainer/ldbe_trainer.py ```python import torch from utils.optimize import adjust_learning_rate from .base_trainer import BaseTrainer from utils.flatwhite import * from easydict import EasyDict as edict import os.path as osp from dataset import dataset import neptune import math from PIL import Image from utils.meters import AverageMeter, GroupAverageMeter import torchvision.transforms.functional as tf import torch.nn.functional as F import operator import pickle import random import copy from utils.kmeans import kmeans_cluster from utils.func import Acc, thres_cb_plabel, gene_plabel_prop, mask_fusion from utils.pool import Pool from utils.flatwhite import * from trainer.base_trainer import * from utils.shot import * import time criterion_nll = nn.NLLLoss() def Entropy(input_): bs = input_.size(0) epsilon = 1e-7 entropy = -input_ * torch.log(input_ + epsilon) entropy = torch.sum(entropy, dim=1) return entropy class EMA(object): def __init__(self, model, alpha): self.step = 0 self.model = copy.deepcopy(model) self.alpha = alpha def update(self, model): decay = min(1 - 1 / (self.step + 1), self.alpha) for ema_param, param in zip(self.model.parameters(), model.parameters()): ema_param.data = decay * ema_param.data + (1 - decay) * param.data self.step += 1 def generate_class_mask(pseudo_labels, pseudo_labels2): labels = torch.unique(pseudo_labels) # all unique labels labels_select = labels[torch.randperm(len(labels))][:len(labels) // 2] # randomly select half of labels mask = (pseudo_labels.unsqueeze(-1) == labels_select).any(-1) return mask.float() def generate_unsup_data(data, target, logits=None): batch_size, _, im_h, im_w = data.shape device = data.device new_data = [] new_target = [] new_logits = [] for i in range(batch_size): mix_mask = generate_class_mask(target[i], target[(i + 1)% batch_size]).to(device) new_data.append((data[i] * mix_mask + data[(i + 1) % batch_size] * (1 - mix_mask)).unsqueeze(0)) new_target.append((target[i] * mix_mask + target[(i + 1) % batch_size] * (1 - mix_mask)).unsqueeze(0)) new_logits.append((logits[i] * mix_mask + logits[(i + 1) % batch_size] * (1 - mix_mask)).unsqueeze(0)) new_data, new_target, new_logits = torch.cat(new_data), torch.cat(new_target), torch.cat(new_logits) return new_data, new_target.long() , new_logits def compute_unsupervised_loss(predict, target, logits, strong_threshold): batch_size = predict.shape[0] valid_mask = (target >= 0).float() # only count valid pixels weighting = logits.view(batch_size, -1).ge(strong_threshold).sum(-1) / valid_mask.view(batch_size, -1).sum(-1) loss = F.cross_entropy(predict, target, reduction='none', ignore_index=-1) weighted_loss = torch.mean(torch.masked_select(weighting[:, None, None] * loss, loss > 0)) return weighted_loss class Trainer(BaseTrainer): def __init__(self, model_stu, config, writer): self.model = model_stu self.model.train() self.ema = EMA(self.model,0.99) self.config = config self.writer = writer def entropy_loss(self, p): p = F.softmax(p, dim=1) log_p = F.log_softmax(p, dim=1) loss = -torch.sum(p * log_p, dim=1) return loss def dis_iter(self, batch): img_s, label_s, _, _, name = batch b, c, h, w = img_s.shape img_s = img_s.cuda() label_s = label_s.long().cuda() with torch.no_grad(): pred_u, _ = self.ema.model(img_s) pseudo_logits, pseudo_labels = torch.max(torch.softmax(pred_u, dim=1), dim=1) pseudo_labels[label_s != 255] = label_s[label_s != 255] # use selected class-balanced label pseudo_logits[label_s != 255] = 1.0 train_u_aug_data, train_u_aug_label, train_u_aug_logits = \ generate_unsup_data(img_s, pseudo_labels, pseudo_logits) pred_stu, feat_stu = self.model(train_u_aug_data) loss_s = compute_unsupervised_loss(pred_stu, train_u_aug_label, train_u_aug_logits, 0.97) loss = loss_s self.losses.loss_s = loss_s loss.backward() def iter(self, batch, r): img_s, label_s, _, _, name = batch b, c, h, w = img_s.shape pred_s = self.model.forward(img_s.cuda())[0] label_s = label_s.long().cuda() if self.config.method == 'simsfss': pred_s = pred_s.permute(0, 2, 3, 1).contiguous().view(-1, self.config.num_classes) pred_s_softmax = F.softmax(pred_s, -1) label_s = label_s.view(-1) loss_s = F.cross_entropy(pred_s, label_s, ignore_index=255) loss_e = self.entropy_loss(pred_s) loss_e = loss_e.mean() self.losses.loss_source = loss_s self.losses.loss_entropy = loss_e width = 3 k = self.config.num_classes // 2 + random.randint(-width, width) _, labels_neg = torch.topk(pred_s_softmax, k, dim=1, sorted=True) s_neg = torch.log(torch.clamp(1. - pred_s_softmax, min=1e-5, max=1.)) labels_neg = labels_neg[:, -1].squeeze().detach() loss_neg = criterion_nll(s_neg, labels_neg) self.losses.loss_neg = loss_neg loss = loss_s + 1 * loss_e + 1 * loss_neg loss.backward() def train(self): if self.config.neptune: neptune.init(project_qualified_name="solacex/segmentation-DA") neptune.create_experiment(params=self.config, name=self.config["note"]) if self.config.resume: self.resume() else: self.round_start = 0 for r in range(self.round_start, self.config.round): torch.manual_seed(1234) torch.cuda.manual_seed(1234) np.random.seed(1234) random.seed(1234) self.class_num = 19 self.model = self.model.train() self.source_all = get_list(self.config.gta5.data_list) self.target_all = get_list(self.config.cityscapes.data_list) if self.config.method == 'ld' or self.config.method == "be": start = time.clock() print("cb_prop:{}".format(self.config.cb_prop)) self.cb_thres = self.gene_thres(self.config.cb_prop) for i in self.cb_thres: if self.cb_thres[i] > 0.999999999: self.cb_thres[i] = 0.999999999 print(self.cb_thres) self.save_pred(r) self.plabel_path = osp.join(self.config.plabel, self.config.note, str(r)) # self.plabel_path = osp.join(self.config.plabel, self.config.note, str(r)) end = time.clock() print('Running time: %s Seconds' % (end - start)) self.config.cb_prop += 0.05 else: self.plabel_path = None self.optim = torch.optim.SGD( self.model.optim_parameters(self.config.learning_rate), lr=self.config.learning_rate, momentum=self.config.momentum, weight_decay=self.config.weight_decay, ) self.loader, _ = dataset.init_target_dataset(self.config, plabel_path=self.plabel_path, target_selected=self.target_all) self.config.num_steps = 5000 cu_iter = 0 self.gamma = 1.0 * (r + 1) miou = self.validate() for epoch in range(self.config.epochs): for i_iter, batch in tqdm(enumerate(self.loader)): # self.save_model('STNTHIA_source_only',0,0) # print('done') # self.model.module.disable_train() # miou = self.validate() cu_step = epoch * len(self.loader) + i_iter self.model = self.model.train() # self.model.module.enable_train() self.losses = edict({}) self.optim.zero_grad() adjust_learning_rate(self.optim, cu_step, self.config) if self.config.method == 'ld': self.iter(batch, r) elif self.config.method == 'be': self.dis_iter(batch) self.optim.step() self.ema.update(self.model) if i_iter % self.config.print_freq == 0: self.print_loss(i_iter) if i_iter % self.config.val_freq == 0 and i_iter != 0: # self.model.module.disable_train() miou = self.validate() if i_iter % self.config.save_freq == 0 and i_iter != 0: self.save_model(self.config.source, cu_step, miou) miou = self.validate() self.config.learning_rate = self.config.learning_rate / (math.sqrt(2)) if self.config.neptune: neptune.stop() def resume(self): iter_num = self.config.init_weight[-5] # .split(".")[0].split("_")[1] iter_num = int(iter_num) self.round_start = int(math.ceil((iter_num + 1) / self.config.epochs)) print("Resume from Round {}".format(self.round_start)) if self.config.lr_decay == "sqrt": self.config.learning_rate = self.config.learning_rate / ( (math.sqrt(2)) ** self.round_start ) def gene_thres(self, prop, num_cls=19): print('[Calculate Threshold using config.cb_prop]') # r in section 3.3 probs = {} freq = {} loader = dataset.init_test_dataset(self.config, self.config.target, set="train", selected=self.target_all, batchsize=1) for index, batch in tqdm(enumerate(loader)): img, label, _, _, _ = batch with torch.no_grad(): pred = F.softmax(self.model.forward(img.cuda())[0], dim=1) pred_probs = pred.max(dim=1)[0] pred_probs = pred_probs.squeeze() pred_label = torch.argmax(pred, dim=1).squeeze() for i in range(num_cls): cls_mask = pred_label == i cnt = cls_mask.sum() if cnt == 0: continue cls_probs = torch.masked_select(pred_probs, cls_mask) cls_probs = cls_probs.detach().cpu().numpy().tolist() cls_probs.sort() if i not in probs: probs[i] = cls_probs[::5] # reduce the consumption of memory else: probs[i].extend(cls_probs[::5]) growth = {} thres = {} for k in probs.keys(): cls_prob = probs[k] cls_total = len(cls_prob) freq[k] = cls_total cls_prob = np.array(cls_prob) cls_prob = np.sort(cls_prob) index = int(cls_total * prop) cls_thres = cls_prob[-index] cls_thres2 = cls_prob[index] thres[k] = cls_thres print(thres) return thres def save_pred(self, round): # Using the threshold to generate pseudo labels and save print("[Generate pseudo labels]") loader = dataset.init_test_dataset(self.config, self.config.target, set="train", selected=self.target_all) interp = nn.Upsample(size=(1024, 2048), mode="bilinear", align_corners=True) self.plabel_path = osp.join(self.config.plabel, self.config.note, str(round)) mkdir(self.plabel_path) self.config.target_data_dir = self.plabel_path self.pool = Pool() # save the probability of pseudo labels for the pixel-wise similarity matchinng, which is detailed around Eq. (9) accs = AverageMeter() # Counter props = AverageMeter() # Counter cls_acc = GroupAverageMeter() # Class-wise Acc/Prop of Pseudo labels self.mean_memo = {i: [] for i in range(self.config.num_classes)} with torch.no_grad(): for index, batch in tqdm(enumerate(loader)): image, label, _, _, name = batch label = label.cuda() img_name = name[0].split("/")[-1] dir_name = name[0].split("/")[0] img_name = img_name.replace("leftImg8bit", "gtFine_labelIds") temp_dir = osp.join(self.plabel_path, dir_name) if not os.path.exists(temp_dir): os.mkdir(temp_dir) output = self.model.forward(image.cuda())[0] output = interp(output) # pseudo labels selected by glocal threshold mask, plabel = thres_cb_plabel(output, self.cb_thres, num_cls=self.config.num_classes) # pseudo labels selected by local threshold if round >= 0: local_prop = self.config.cb_prop mask2, plabel2 = gene_plabel_prop(output, local_prop) mask, plabel = mask_fusion(output, mask, mask2) self.pool.update_pool(output, mask=mask.float()) acc, prop, cls_dict = Acc(plabel, label, num_cls=self.config.num_classes) cnt = (plabel != 255).sum().item() accs.update(acc, cnt) props.update(prop, 1) cls_acc.update(cls_dict) plabel = plabel.view(1024, 2048) plabel = plabel.cpu().numpy() plabel = np.asarray(plabel, dtype=np.uint8) plabelz = Image.fromarray(plabel) plabelz.save("%s/%s.png" % (temp_dir, img_name.split(".")[0])) print('The Accuracy :{:.2%} and proportion :{:.2%} of Pseudo Labels'.format(accs.avg.item(), props.avg.item())) if self.config.neptune: neptune.send_metric("Acc", accs.avg) neptune.send_metric("Prop", props.avg) def save_model(self, source, iter, miou): name = str(iter) + "_miou" + str(miou) tmp_name = "_EntMin_".join((source, str(name))) + ".pth" torch.save(self.model.state_dict(), osp.join(self.config["snapshot"], tmp_name)) ```
{ "source": "Jo-wang/ProDA", "score": 3 }
#### File: ProDA/data/__init__.py ```python import importlib import numpy as np import torch.utils.data from data.base_dataset import BaseDataset from data.augmentations import * from data.DataProvider import DataProvider # import data.cityscapes_dataset def find_dataset_using_name(name): """Import the module "data/[dataset_name]_dataset.py". In the file, the class called DatasetNameDataset() will be instantiated. It has to be a subclass of BaseDataset, and it is case-insensitive. """ dataset_filename = "data." + name + "_dataset" datasetlib = importlib.import_module(dataset_filename) dataset = None target_dataset_name = name + '_loader' for _name, cls in datasetlib.__dict__.items(): if _name.lower() == target_dataset_name.lower() \ and issubclass(cls, BaseDataset): dataset = cls if dataset is None: raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) return dataset def get_option_setter(dataset_name): """Return the static method <modify_commandline_options> of the dataset class.""" dataset_class = find_dataset_using_name(dataset_name) return dataset_class.modify_commandline_options def create_dataset(opt, logger): """Create a dataset given the option. This function wraps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from data import create_dataset >>> dataset = create_dataset(opt) """ data_loader = CustomDatasetDataLoader(opt, logger) dataset = data_loader.load_data() return dataset def get_composed_augmentations(opt): return Compose([RandomSized(opt.resize), RandomCrop(opt.rcrop), RandomHorizontallyFlip(opt.hflip)]) class CustomDatasetDataLoader(): def __init__(self, opt, logger): self.opt = opt self.logger = logger # status == 'train': source_train = find_dataset_using_name(opt.src_dataset) data_aug = None if opt.noaug else get_composed_augmentations(opt) self.source_train = source_train(opt, logger, augmentations=data_aug) logger.info("{} source dataset has been created".format(self.source_train.__class__.__name__)) print("dataset {} for source was created".format(self.source_train.__class__.__name__)) self.source_train[0] data_aug = None if opt.noaug else get_composed_augmentations(opt) target_train = find_dataset_using_name(opt.tgt_dataset) self.target_train = target_train(opt, logger, augmentations=data_aug, split='train') logger.info("{} target dataset has been created".format(self.target_train.__class__.__name__)) print("dataset {} for target was created".format(self.target_train.__class__.__name__)) self.target_train[0] ## create train loader self.source_train_loader = DataProvider( dataset=self.source_train, batch_size=opt.bs, shuffle=not opt.noshuffle, num_workers=int(opt.num_workers), drop_last=True, pin_memory=True, ) self.target_train_loader = torch.utils.data.DataLoader( self.target_train, batch_size=opt.bs, shuffle=not opt.noshuffle, num_workers=int(opt.num_workers), drop_last=not opt.no_droplast, pin_memory=True, ) # status == valid self.source_valid = None self.source_valid_loader = None self.target_valid = None self.target_valid_loader = None target_valid = find_dataset_using_name(opt.tgt_dataset) self.target_valid = target_valid(opt, logger, augmentations=None, split='val') logger.info("{} target_valid dataset has been created".format(self.target_valid.__class__.__name__)) print("dataset {} for target_valid was created".format(self.target_valid.__class__.__name__)) self.target_valid_loader = torch.utils.data.DataLoader( self.target_valid, batch_size=opt.bs, shuffle=False, num_workers=int(opt.num_workers), drop_last=False, pin_memory=True, ) def load_data(self): return self ``` #### File: ProDA/data/randaugment.py ```python import random import numpy as np import PIL import PIL.ImageOps import PIL.ImageEnhance import PIL.ImageDraw from PIL import Image import torch import torch.nn.functional as F import torchvision.transforms as transforms PARAMETER_MAX = 10 def AutoContrast(img, **kwarg): return PIL.ImageOps.autocontrast(img), None def Brightness(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Brightness(img).enhance(v), v def Color(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Color(img).enhance(v), v def Contrast(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Contrast(img).enhance(v), v def Cutout(img, v, max_v, bias=0): if v == 0: return img v = _float_parameter(v, max_v) + bias v = int(v * min(img.size)) return CutoutAbs(img, v) def CutoutAbs(img, v, **kwarg): w, h = img.size x0 = np.random.uniform(0, w) y0 = np.random.uniform(0, h) x0 = int(max(0, x0 - v / 2.)) y0 = int(max(0, y0 - v / 2.)) x1 = int(min(w, x0 + v)) y1 = int(min(h, y0 + v)) xy = (x0, y0, x1, y1) # gray color = (127, 127, 127) img = img.copy() PIL.ImageDraw.Draw(img).rectangle(xy, color) return img, xy def Equalize(img, **kwarg): return PIL.ImageOps.equalize(img), None def Identity(img, **kwarg): return img, None def Invert(img, **kwarg): return PIL.ImageOps.invert(img), None def Posterize(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias return PIL.ImageOps.posterize(img, v), v # def Rotate(img, v, max_v, bias=0): # v = _int_parameter(v, max_v) + bias # if random.random() < 0.5: # v = -v # #return img.rotate(v), v # img_t = transforms.ToTensor()(img) # H = img_t.shape[1] # W = img_t.shape[2] # theta = np.array([[np.cos(v/180*np.pi), -np.sin(v/180*np.pi), 0], [np.sin(v/180*np.pi), np.cos(v/180*np.pi), 0]]).astype(np.float) # theta[0,1] = theta[0,1]*H/W # theta[1,0] = theta[1,0]*W/H # #theta = np.array([[np.cos(v/180*np.pi), -np.sin(v/180*np.pi)], [np.sin(v/180*np.pi), np.cos(v/180*np.pi)]]).astype(np.float) # theta = torch.Tensor(theta).unsqueeze(0) # # meshgrid_x, meshgrid_y = torch.meshgrid(torch.arange(W, dtype=torch.float), torch.arange(H, dtype=torch.float)) # # meshgrid = torch.stack((meshgrid_x.t()*2/W - 1, meshgrid_y.t()*2/H - 1), dim=-1).unsqueeze(0) # # grid = torch.matmul(meshgrid, theta) # # s_h = int(abs(H - W) // 2) # # dim_last = s_h if H > W else 0 # # img_t = F.pad(img_t.unsqueeze(0), (dim_last, dim_last, s_h - dim_last, s_h - dim_last)).squeeze(0) # grid = F.affine_grid(theta, img_t.unsqueeze(0).size()) # img_t = F.grid_sample(img_t.unsqueeze(0), grid, mode='bilinear').squeeze(0) # # img_t = img_t[:,:,s_h:-s_h] if H > W else img_t[:,s_h:-s_h,:] # img_t = transforms.ToPILImage()(img_t) # return img_t, v def Rotate(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.rotate(v, resample=Image.BILINEAR, fillcolor=(127,127,127)), v def Sharpness(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Sharpness(img).enhance(v), v def ShearX(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0), resample=Image.BILINEAR, fillcolor=(127,127,127)), v def ShearY(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0), resample=Image.BILINEAR, fillcolor=(127,127,127)), v def Solarize(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias return PIL.ImageOps.solarize(img, 256 - v), 256 - v def SolarizeAdd(img, v, max_v, bias=0, threshold=128): v = _int_parameter(v, max_v) + bias if random.random() < 0.5: v = -v img_np = np.array(img).astype(np.int) img_np = img_np + v img_np = np.clip(img_np, 0, 255) img_np = img_np.astype(np.uint8) img = Image.fromarray(img_np) return PIL.ImageOps.solarize(img, threshold), threshold def TranslateX(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v v = int(v * img.size[0]) return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0), resample=Image.BILINEAR, fillcolor=(127,127,127)), v def TranslateY(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v v = int(v * img.size[1]) return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v), resample=Image.BILINEAR, fillcolor=(127,127,127)), v def _float_parameter(v, max_v): return float(v) * max_v / PARAMETER_MAX def _int_parameter(v, max_v): return int(v * max_v / PARAMETER_MAX) def fixmatch_augment_pool(): # FixMatch paper augs = [(AutoContrast, None, None), (Brightness, 0.9, 0.05), (Color, 0.9, 0.05), (Contrast, 0.9, 0.05), (Equalize, None, None), (Identity, None, None), (Posterize, 4, 4), (Rotate, 30, 0), (Sharpness, 0.9, 0.05), (ShearX, 0.3, 0), (ShearY, 0.3, 0), (Solarize, 256, 0), (TranslateX, 0.3, 0), (TranslateY, 0.3, 0)] return augs def my_augment_pool(): # Test augs = [(AutoContrast, None, None), (Brightness, 1.8, 0.1), (Color, 1.8, 0.1), (Contrast, 1.8, 0.1), (Cutout, 0.2, 0), (Equalize, None, None), (Invert, None, None), (Posterize, 4, 4), (Rotate, 30, 0), (Sharpness, 1.8, 0.1), (ShearX, 0.3, 0), (ShearY, 0.3, 0), (Solarize, 256, 0), (SolarizeAdd, 110, 0), (TranslateX, 0.45, 0), (TranslateY, 0.45, 0)] return augs class RandAugmentPC(object): def __init__(self, n, m): assert n >= 1 assert 1 <= m <= 10 self.n = n self.m = m self.augment_pool = my_augment_pool() def __call__(self, img): ops = random.choices(self.augment_pool, k=self.n) for op, max_v, bias in ops: prob = np.random.uniform(0.2, 0.8) if random.random() + prob >= 1: img = op(img, v=self.m, max_v=max_v, bias=bias) img = CutoutAbs(img, 16) return img class RandAugmentMC(object): def __init__(self, n, m): assert n >= 1 assert 1 <= m <= 10 self.n = n self.m = m self.augment_pool = fixmatch_augment_pool() def __call__(self, img, type='crc'): aug_type = {'Hflip':False, 'ShearX':1e4, 'ShearY':1e4, 'TranslateX':1e4, 'TranslateY':1e4, 'Rotate':1e4, 'CutoutAbs':1e4} if random.random() < 0.5: img = img.transpose(Image.FLIP_LEFT_RIGHT) #aug_type.append(['Hflip', True]) aug_type['Hflip'] = True if type == 'cr' or type == 'crc': ops = random.choices(self.augment_pool, k=self.n) for op, max_v, bias in ops: v = np.random.randint(1, self.m) if random.random() < 0.5: img, params = op(img, v=v, max_v=max_v, bias=bias) if op.__name__ in ['ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']: #aug_type.append([op.__name__, params]) aug_type[op.__name__] = params if type == 'cc' or type == 'crc': img, params = CutoutAbs(img, min(img.size[0], img.size[1]) // 3) #aug_type.append([CutoutAbs.__name__, params]) aug_type['CutoutAbs'] = params return img, aug_type def affine_sample(tensor, v, type): # tensor: B*C*H*W # v: scalar, translation param if type == 'Rotate': theta = np.array([[np.cos(v/180*np.pi), -np.sin(v/180*np.pi), 0], [np.sin(v/180*np.pi), np.cos(v/180*np.pi), 0]]).astype(np.float) elif type == 'ShearX': theta = np.array([[1, v, 0], [0, 1, 0]]).astype(np.float) elif type == 'ShearY': theta = np.array([[1, 0, 0], [v, 1, 0]]).astype(np.float) elif type == 'TranslateX': theta = np.array([[1, 0, v], [0, 1, 0]]).astype(np.float) elif type == 'TranslateY': theta = np.array([[1, 0, 0], [0, 1, v]]).astype(np.float) H = tensor.shape[2] W = tensor.shape[3] theta[0,1] = theta[0,1]*H/W theta[1,0] = theta[1,0]*W/H if type != 'Rotate': theta[0,2] = theta[0,2]*2/H + theta[0,0] + theta[0,1] - 1 theta[1,2] = theta[1,2]*2/H + theta[1,0] + theta[1,1] - 1 theta = torch.Tensor(theta).unsqueeze(0) grid = F.affine_grid(theta, tensor.size()).to(tensor.device) tensor_t = F.grid_sample(tensor, grid, mode='nearest') return tensor_t if __name__ == '__main__': randaug = RandAugmentMC(2, 10) #path = r'E:\WorkHome\IMG_20190131_142431.jpg' path = r'E:\WorkHome\0.png' img = Image.open(path) img_t = transforms.ToTensor()(img).unsqueeze(0) #img_aug, aug_type = randaug(img) #img_aug.show() # v = 20 # img_pil = img.rotate(v) # img_T = affine_sample(img_t, v, 'Rotate') v = 0.12 img_pil = img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0)) img_T = affine_sample(img_t, v, 'ShearY') img_ten = transforms.ToPILImage()(img_T.squeeze(0)) img_pil.show() img_ten.show() ```
{ "source": "jowanpittevils/Databasemanager_Signalplotter", "score": 2 }
#### File: databasemanager/classes/channelinfo.py ```python class ChannelInfo(object): def __init__(self, name=None, fs=None, order=None): self.name = name self.fs = fs self.order = order def __str__(self): return "channel: {}, fs: {}, ind: {})".format( self.name, self.fs, self.order, ) def __repr__(self): return str(self) ``` #### File: databasemanager/classes/copyable.py ```python from abc import ABC import copy class Copyable(ABC): def copy(self, new_name=None): res = copy.deepcopy(self) if(new_name is not None): res.name = new_name return res def copy_shallow(self): return copy.copy(self) ``` #### File: databasemanager/classes/eventlist.py ```python import numpy as np from databasemanager.classes.event import Event from databasemanager.classes.copyable import Copyable from databasemanager.classes.noneablelist import NoneableList from databasemanager.labelaggregator import majority_voting class EventList(Copyable, list): def __init__(self, liste:list = []): super().__init__(liste) if(liste is not None): if(len(liste)>0): assert(all([isinstance(item, Event) for item in liste])) @property def number_of_events(self): return len(self) @property def has_none_start(self): return any([event.start is None for event in self]) @property def has_none_end(self): return any([event.end is None for event in self]) @property def has_overlap(self): '''It is True if events have overlap together.''' if(self.has_none_start or self.has_none_end): return True sevent = self.sorted() starts = np.array([event.start for event in sevent]) ends = np.array([event.end for event in sevent]) assert(len(starts) == len(ends)) for i in range(len(starts)-1): if(ends[i] > starts[i+1]): return True return False def sort(self): '''Sort the events based on the start time and return nothing''' super().sort(key=lambda event: event.start) def sorted(self): '''Sort the events based on the start time one a copy of the list and return it.''' res = self.copy_shallow() res.sort() return res @staticmethod def merge_eventlist(lists:list, duration_threshold_sec:float=1): ''' This function take a list of EventList and merge them together taking their annotations overlap into account. This function does not perform any aggregation on the labels. Instead, the events in the returned list has a vectorized label merging the labels respectively. The labels can also be previously vectorized by this function. Hense, the length of label vector of the returning list equals the summation of lengths of the two label vectors. In case of missing label for some events, the label vector takes None for the corresponding annotator. It does not change the inputs. parameter: --------- lists: the list of eventlist to be merged duration_threshold_sec: the minimum accepted event duration. After the merging process, the events shorter than this threshold will be deleted. return ------ an EventList resulted from the merging process ''' if(len(lists)==0): return None res = lists[0] for i in range(1, len(lists)): res = EventList.__merge_two_eventlist_time(res,lists[i]) return res @staticmethod def __merge_two_eventlist_time(list1, list2, duration_threshold_sec:float=1): ''' This function take two EventList lists and merge them together taking their annotations overlap into account. This function does not perform any aggregation on the labels. Instead, the events in the returned list has a vectorized label merging the labels of list1 and list2 respectively. The labels of list1 and list2 can also be previously vectorized by this function. Hense, the length of label vector of the returning list equals the summation of lengths of the two label vectors. In case of missing label for some events, the label vector takes None for the corresponding annotator. It does not change the inputs. parameter: --------- list1 / list2: the two event lists to be merged duration_threshold_sec: the minimum accepted event duration. After the merging process, the events shorter than this threshold will be deleted. return ------ an EventList resulted from the merging process ''' if(list1.has_none_end or list2.has_none_end): raise ValueError("The events with 'None'-end are not supported in merging.") if(list1.has_none_start or list2.has_none_start): raise ValueError("The events with 'None'-start are not supported in merging.") if(list1.has_overlap or list2.has_overlap): raise ValueError("The events with intera overlap are not supported in merging.") merged = EventList.__merge_two_eventlist_label(list1, list2) merged.sort() res = EventList() while(True): if(len(merged)==0): break current_event = merged[0] if(len(merged)==1): res.append(current_event) break next_event = merged[1] if(current_event.has_overlap(next_event, False)): merged.remove(current_event) merged.remove(next_event) ls = EventList.__split_event(current_event, next_event) current_event = ls[0] next_event = ls[-1] merged = ls + merged res.append(current_event) merged.remove(current_event) res = EventList([r for r in res if r.duration>=duration_threshold_sec]) return res @staticmethod def __split_event0(event1:Event, event2:Event): ''' It takes two events and check the overlap. In case of overlap it makes a third event indicating the overlap period. It returns an EventList that has 2 (in case of no overlap) or 3 (in case of overlap) events. The label of the events must be previouslu vectorized to None-form (using the 'make_label_list' function). In case of overlap, first copies of event1/2 are made, then the start/end are corrected, and next added to the returning list. It does not change the inputs. return ------ EvenList object having 2/3 events ''' event1 = event1.copy_shallow() event2 = event2.copy_shallow() res = EventList() if(event1.start > event2.start): (event1, event2) = (event2, event1) res.append(event1) d = event2.start - event1.end if(d<0): #has overlap newEvent = Event(event2.start, event1.end, EventList.__merge_labels(event1.label, event2.label), None,event1.annotation) event1.end = newEvent.start event2.start = newEvent.end res.append(newEvent) res.append(event2) return res @staticmethod def __split_event(event1:Event, event2:Event): ''' It takes two events and check the overlap. In case of overlap it makes a third event indicating the overlap period. It returns an EventList that has 2 (in case of no overlap) or 3 (in case of overlap) events. The label of the events must be previouslu vectorized to None-form (using the 'make_label_list' function). In case of overlap, first copies of event1/2 are made, then the start/end are corrected, and next added to the returning list. It does not change the inputs. return ------ EvenList object having 2/3 events ''' utimes = list(set([event1.start, event1.end, event2.start, event2.end])) utimes.sort() res = EventList([]) for i in range(0, len(utimes)-1): st = utimes[i] en = utimes[i+1] lbl1 = EventList._get_label_if_overlap(event1, st,en) lbl2 = EventList._get_label_if_overlap(event2, st,en) lbl = EventList.__merge_labels(lbl1, lbl2) res.append(Event(st, en,lbl,None, event1.annotation)) return res @staticmethod def _get_label_if_overlap(event:Event, start:float, end:float): '''It returns the event label if it has overlap with the given range, otherwise None.''' if(event.has_overlap_range(start, end, False)): return event.label else: return None @staticmethod def __merge_labels(label1:list, label2:list): '''It merges two vectorized event labels. The None vecros should have no overlap. It does not change the inputs. ''' if(label1 is None): return label2 if(label2 is None): return label1 N = len(label1) assert(N == len(label2)) res = EventList() for i in range(N): res.append(EventList.__take_not_None(label1[i],label2[i])) return res @staticmethod def __take_not_None(val1, val2): '''It returns any one the values that is not None. If both are not 'None, it returns None.''' if(val1 is not None): return val1 else: return val2 @staticmethod def __merge_two_eventlist_label(list1, list2): ''' It take two EventList lists and merge all events together without taking any overlap into account. If the labels of any of the input lists have not been vectorized, it will be done here. them together taking their annotationsoverlap into account. The length of label vector of the returning list equals the summation of the lengths of two label vectors. In case of missing label for some events, the label vector takes None for the corresponding annotator. It does not change the inputs. The input lists must have at least one event. return ------ an EventList resulted from the merging process. It has not been sorted ''' assert(len(list1)>0) assert(len(list2)>0) list1 = list1.copy_shallow() list2 = list2.copy_shallow() if(isinstance(list1[0].label,str)): l1 = 1 elif(isinstance(list1[0].label,list)): l1 = len(list1[0].label) else: l1 = 1 if(isinstance(list2[0].label,str)): l2 = 1 elif(isinstance(list2[0].label,list)): l2 = len(list2[0].label) else: l2 = 1 L = l1+l2 EventList.__vetorize_label(list1, L, [0,l1]) EventList.__vetorize_label(list2, L, [l1,L]) merged = EventList(list1 + list2) return merged @staticmethod def __vetorize_label(eventlist, label_list_len:int, label_position): '''It converts the labels of the eventlist in to a vector while extra elements are None. It is applied directly on the egiven list. Parameters: ----------- eventlist: the list in which the labels should be vectorized label_list_len: the output length of the label vector label_position: a list (or int) with two numbers indicating the start and end (python end: n+1) index of the vector that correspons to this event. If it is an int it is supposed to tbe [label_position, label_position + 1]. It returns nothing.''' if(not isinstance(label_position,list)): label_position = NoneableList([label_position, label_position+1]) for event in eventlist: nonelist = NoneableList([None]*label_list_len) if(not isinstance(event.label, list)): event.label = NoneableList([event.label]) nonelist[label_position[0]:label_position[1]] = event.label event.label = nonelist def aggregate( self, label_tied_order:list = None, minimum_duration_threshold_sec:float = 1, confidence_ratio:float = 0, remove_Nones:bool = True, combine_equals:bool = True, ): ''' This function aggregated all annotations into one using majority voting. parameters: ----------- label_tied_order: is a list of label string defining the priority of labels if the aggregation is tied. If it is None, the tied annotations are broken randomly. minimum_duration_threshold_sec: the events smaller than this thresholds will be set to None after the aggregation. confidence_ratio: the events having less aggrement than this ratio will be set to None after the aggregation. remove_Nones: If it is true, the events that have None label after the aggregation, will be removed. combine_equals: if it is True, the consecutive labels that are exactly following each other in time domain (end1 == start2) and having equal labels will be merged together. In this case, their confidences must not be necessarily equal. The confidence of the merged event is resulted from a weighted averaging of the confidences of the two events proportional to their durations. return: ------- eventList ''' event_list = majority_voting(self, label_tied_order) event_list.set_None_short_events(minimum_duration_threshold_sec) event_list.set_None_low_confident_events(confidence_ratio) if(combine_equals): event_list = event_list.combine_equals() if(remove_Nones): event_list = event_list.remove_Unknowns() return event_list def set_None_short_events(self, minimum_duration_threshold_sec:float): ''' This function sets the label of the events that are shorter than the given minimum_duration_threshold_sec to None and return nothing.''' for event in self: if event.duration < minimum_duration_threshold_sec: event.label = None event.label_confidence = None def set_None_low_confident_events(self, confidence_ratio:float): ''' This function sets the label of the events that have a confidence less than the given confidence_ratio to None and return nothing.''' for event in self: if (event.label_confidence is None) or (event.label_confidence < confidence_ratio): event.label = None event.label_confidence = None def combine_equals(self, ignored_interval:float = 0): ''' This function merges the consecutive labels that are exactly following each other in time domain (end1 == start2) and having equal labels. Their confidences must not be necessarily equal. The confidence of the merged event is resulted from a weighted averaging of the confidences of the two events proportional to their durations. It does not change the input list, all events will be deep-copied. parameters: ---------- ignored_interval: that maximum interval (in seconds) between two equally labelled events that should be ignored to be merged. return: ------- eventlist ''' orig_list = self.copy_shallow() res = EventList([]) if(len(orig_list)==0): return res for i in range(0,len(orig_list)-1): if( (orig_list[i].label == orig_list[i+1].label) and ((orig_list[i].end + ignored_interval) >= orig_list[i+1].start) ): orig_list[i+1].start = orig_list[i].start orig_list[i+1].label_confidence = self._get_averaged_confidence(orig_list[i],orig_list[i+1]) else: res.append(orig_list[i]) res.append(orig_list[-1]) return res @staticmethod def _get_averaged_confidence(event1:Event, event2:Event)->float: if(event1.label_confidence is None): return event2.label_confidence if(event2.label_confidence is None): return event1.label_confidence if(event1.duration == 0 and event2.duration == 0): return (event1.label_confidence + event2.label_confidence)/2 sm = (event1.duration*event1.label_confidence) + (event2.duration*event2.label_confidence) dv = (event1.duration + event2.duration) return sm / dv def remove_Unknowns(self, unknown_label:str=None): ''' This function removes the events with None label and return the remaining. It does not change the input list, but it returns the same events in a new eventList list. So it does not deep-copy. ''' if(unknown_label is not None): for event in self: if(event.label == unknown_label): event.label = None return EventList([event for event in self if (event.label is not None)]) def add_background_label(self, label:str, start:float = 0, end:float = None, annotation=None): ''' It adds events in all intervals (in the given start-end range) where no event was assign by the annotators. It can be very usefull in 2-class problems where only one label is annotated (e.g. seizures in seizure detection problems). This functions will sort the events. It returns nothing. parameters: ----------- label: the label of the background (e.g. non-seizure) start: the start of recording that should be logically 0 (unless in some special usecases). If it sets to None, it will be set to the start of the first event. end: the end of recording. If it sets to None, it will be set to the end of the last event. annotation: the annotation object to which the background events belong ''' if(len(self)==0): if(end is None): raise ValueError("The end is None and there is no event in the list to be set!") self.append(Event(start, end, label, None, annotation)) return self.sort() if(start is None): if(self[0].start is None): raise ValueError("The start is None and the first event has a None start!") start = self[0].start if(end is None): if(self[-1].end is None): raise ValueError("The end is None and the last event has a None end!") end = self[-1].end extra = EventList() if(start < self[0].start): extra.append(Event(start, self[0].start, label, None, annotation)) if(end > self[-1].end): extra.append(Event(self[-1].end, end, label, None, annotation)) for i in range(0, len(self)-1): if(self[i].end < self[i+1].start): extra.append(Event(self[i].end, self[i+1].start, label, None, annotation)) self.extend(extra) self.sort() ``` #### File: databasemanager/classes/event.py ```python from databasemanager.classes.queryable import Queryable from databasemanager.classes.eventextrainfo import EventExtraInfo import math class Event(Queryable): #override copyabledoubleside def reassign(self): pass ''' Start, End, and Durations are in seconds but can be a float including ms.''' _time_splitter = ':' def __init__(self, start, end, label, extrainfo, annotation, label_confidence=1): self.start = start self.end = end self.label = label self.label_confidence = label_confidence self.extrainfo = extrainfo self.annotation = annotation self.reassign() @property def stop(self): return self.end @property def duration(self): if(self.start is None): return -math.inf if(self.end is None): return math.inf return self.end - self.start @property def start_time(self): if(self.start is None): return 'None' return Event._to_time_format(self.start) @property def end_time(self): if(self.end is None): return 'None' return Event._to_time_format(self.end) @property def duration_time(self): if(self.start is None): return 'inf' if(self.end is None): return 'inf' return Event._to_time_format(self.duration) @staticmethod def _to_time_format(sec): if(sec is None): return 'None' if(sec is math.inf or sec is -math.inf): return str(sec) z = sec h = int(z//3600) z -= (h*3600) m = int(z//60) z -= (m*60) s = int(z//1) z -= s ss = str(h) + Event._time_splitter + str(m)+Event._time_splitter + str(s) if(z>0): ss += Event._time_splitter + str(z)[0:3] #3 digits of ms if exists return ss def __str__(self): conf_str = "({}%)".format(round(self.label_confidence*100)) if self.label_confidence is not None else "" return "<Event: {}{} from {} ({}) to {} ({}) (dur: {} ({}))>".format( str(self.label), conf_str, self.start_time, self.start, self.end_time, self.end, self.duration_time, self.duration, ) def __repr__(self): return str(self) def summary(self): print(str(self)) @staticmethod def make_event(event_tsv, annotation): max_column = 4 min_column = 3 if(len(event_tsv)==0): return None if(len(event_tsv)<min_column): print('??: '+str(event_tsv)) if(len(event_tsv)>max_column): event_tsv = event_tsv[:(max_column-1)]+[','.join(event_tsv[(max_column-1):])] if(event_tsv[0].lower() == 'none'): start = None elif(Event.__is_number(event_tsv[0])): start = float(event_tsv[0]) elif(Event.__is_time_format(event_tsv[0])): r = Event.__try_load_time_format(event_tsv[0]) start = r[0]*3600 + r[1]*60 + r[2] else: raise BaseException('the start should be in seconds or in ''h:m:s'' format while it is {} (file: {})'.format(event_tsv[0], annotation.name)) if(event_tsv[1].lower() == 'none'): end = None elif(Event.__is_number(event_tsv[1])): end = float(event_tsv[1]) elif(Event.__is_time_format(event_tsv[1])): r = Event.__try_load_time_format(event_tsv[1]) end = r[0]*3600 + r[1]*60 + r[2] else: raise BaseException('the end should be in seconds or in ''h:m:s'' format while it is {} (file: {})'.format(event_tsv[0], annotation.name)) if(event_tsv[2].lower() == 'none' or event_tsv[2].lower() == ''): label = None else: label = event_tsv[2] commentTag = (event_tsv[3] if (len(event_tsv)>3) else "") extrainfo = EventExtraInfo(commentTag) return Event(start, end, label, extrainfo, annotation) @staticmethod def __is_number(s): try: s = float(s) # for int, long and float return True except ValueError: return False @staticmethod def __is_time_format(s): r = Event.__try_load_time_format(s) return (True if r is not None else False) @staticmethod def __try_load_time_format(s): ss = s.split(Event._time_splitter) try: h = float(ss[0]) m = float(ss[1]) s = float(ss[2]) return (h,m,s) except: return None def has_overlap(self, other_event, accept_end_end): ''' It returns True if the event has overlap with the other. parameters: ----------- other_event: to be compared with accept_end_end: to return true if end of one is exactly the start of the other ''' return self.has_overlap_range(other_event.start, other_event.end, accept_end_end) def has_overlap_range(self, start, stop, accept_end_end): ''' It returns True if the event has overlap with the range. parameters: ----------- start: start time in seconds stop: end time in seconds accept_end_end: to return true if end of one is exactly the start of the other ''' ma = max(self.start, start) mi = min(self.end, stop) if(ma == mi): return accept_end_end return (ma < mi) ``` #### File: databasemanager/classes/path.py ```python import glob import collections from os import walk from os.path import join from pathlib import Path as PathLibClass class Path(): ''' This class organizes all path and folders of the database. There are two ways for making a Path object: -- set the root, in which there is a 'Data' and a 'Datasets' folder. -- set data_folder and datasets_folder. for each case, the other(s) must be None. parameters: ----------- root: the path of the root folder data_path: the path of the data folder (if root is not set) datasets_path: the path of the datasets folder (if root is not set) General rules of the database structure: subjects folder Name: [string]number. must ends with number. e.g. a123, 123 recording file Name: subjectName+letter where letter ranges between 'a' to 'z'. It must starts with the subjectname and ends with a single letter (maximum 28 rec is possible now). In case of a single recording, the letter can be dropped. e.g. a123c.edf, 123a.edf, 123.edf. annotation file Name: recordingName+number where the number is a single digit starting from 1. must starts with the corresponding recording file name and ends with number. In case of a single annotation, the file name can be exactly as the recording file name (the extensions are different). e.g. a123.tsv, a123c.tsv, 123a_2.tsv ''' DATAFOLDER = 'Data' DATASETSFOLDER = 'Datasets' DATASETFILEEXTENSION = '.tsv' ANNOTATIONFILEEXTENSION = '.tsv' EXTRAFOLDER = 'Extra' RECORDINGSUFFIX = '_r' ANNOTATIONSUFFIX = '_a' @classmethod def _get_path(cls, path, has_session_folder:bool = False): if(isinstance(path, cls)): return path elif(isinstance(path, str)): return Path(path, has_session_folder=has_session_folder) else: raise BaseException('Path must be a string or an object of '+str(cls)) @classmethod def get_defaulte_data_folder_fullpath(cls, root): '''returns the full path of the 'Data' folder based on the 'root' attribute.''' return join(root, cls.DATAFOLDER) @classmethod def get_defaulte_datasets_folder_fullpath(cls, root): '''returns the full path of the 'Datasets' folder based on the 'root' attribute.''' return join(root, cls.DATASETSFOLDER) @classmethod def get_defaulte_extra_folder_fullpath(cls, root): '''returns the full path of the 'Extra' folder based on the 'root' attribute.''' return join(root, cls.EXTRAFOLDER) def __init__(self, root, data_path=None, datasets_path=None): if(root is not None): assert((data_path is None ) and (datasets_path is None)) self.root = root self.__data_path = self.get_defaulte_data_folder_fullpath(root) self.__datasets_path = self.get_defaulte_datasets_folder_fullpath(root) else: assert((data_path is not None ) and (datasets_path is not None)) self.__data_path = data_path self.__datasets_path = datasets_path self.root = None @property def datafolder_fullpath(self): '''returns the full path of the 'Data' folder.''' return self.__data_path @property def datasetsfolder_fullpath(self): '''returns the full path of the 'Datasets' folder.''' return self.__datasets_path @property def extrafolder_fullpath(self): '''returns the full path of the 'Extra' folder if the root has been set.''' if(self.root is None): return None return self.get_extrafolder_fullpath(self.root) @property def datasets_list_fullpath(self): '''returns a list of all fullpath corresponding the existing datasets.''' folderS = join(self.datasetsfolder_fullpath, "*" + Path.DATASETFILEEXTENSION) files = [f for f in glob.glob(folderS, recursive=False)] return files @property def datasets_list_names(self): '''returns a list of all existing dataset names.''' names = [PathLibClass(f).stem for f in self.datasets_list_fullpath] return names def get_dataset_fullpath(self, name): '''returns the full path of a dataset based on the given dataset name.''' return join(self.datasetsfolder_fullpath, name + self.DATASETFILEEXTENSION) def get_subject_fullpath(self, name): '''returns the full path of the subject data folder based on the subject name.''' return join(self.datafolder_fullpath, name) def get_annotation_fullpath(self, subject_name, annotation_name): '''returns the full path of an annotation file.''' p = self.get_subject_fullpath(subject_name) return join(p, annotation_name + self.ANNOTATIONFILEEXTENSION) def get_recording_fullpath(self, subject_name,recording_name_with_extension): '''returns the full path of an recording file.''' p = self.get_subject_fullpath(subject_name) return join(p,recording_name_with_extension) def get_all_subject_names(self): '''returns a list of all folders (subject names) in the 'Data' folder.''' return self.get_all_folder_names(self.datafolder_fullpath) @staticmethod def get_all_folder_names(dir): res = [] for (_, dirs, _) in walk(dir, topdown=False): for name in dirs: res.append(name) return res def get_recordings_details(self, subject_name): ''' returns a sorted list of tuples as (fullpath,recname,extension,recordingSuffix) e.g. ('c:\\data\\a1\\a1.edf', 'a1_r1','.edf',1) the output is sorted by the recording suffix '_rx'. parameters: ----------- subjectName: the name of the target subject ''' filepath = self.get_subject_fullpath(subject_name) folderS = join(filepath, "*") full = [(f,PathLibClass(f).stem, PathLibClass(f).suffix) for f in glob.glob(folderS, recursive=False) if PathLibClass(f).suffix.lower() != self.ANNOTATIONFILEEXTENSION.lower()] compnames = [] for f in full: fullpath = f[0] recname = f[1] extension = f[2] ind0 = recname.rfind(self.RECORDINGSUFFIX) if(ind0 == -1): raise ValueError("All recording files must end with '_r' following the recording index, e.g. 'sub1_r5.edf'. Error on: " + recname) ind = ind0 + len(self.RECORDINGSUFFIX) suffix = int(recname[ind:]) compnames.append((fullpath, recname, extension, suffix)) compnames.sort(key = lambda comp: comp[3]) return compnames def get_annotations_details(self, subject_name, recording_name): ''' returns a sorted list of tuples as (fullpath,annotationname,annotationsuffix) where a is the fullpath, b is the real file name, and c is the annotator suffix. Note that if the annotation does not end with a number it is supposed to end with '1' as the first annotation file. e.g. ('c:\\amir1.tsv', 'amir1a.tsv', 'amir1a2.tsv') It is sorted by the annotation number of the sorting file names. parameters: ----------- subjectName: the name of the target subject recordingName: the name of the real recording file name ''' recs = self.get_recordings_details(subject_name) rec = [c for c in recs if c[1].lower() == recording_name.lower()] assert(len(rec)==1) rec = rec[0] f = self.get_subject_fullpath(subject_name) folderS = join(f, "*") full = [(f,PathLibClass(f).stem) for f in glob.glob(folderS, recursive=False) if PathLibClass(f).suffix.lower() == self.ANNOTATIONFILEEXTENSION.lower()] compnames = [] for f in full: fullpath = f[0] annotname = f[1] ind0 = annotname.rfind(self.ANNOTATIONSUFFIX) if(ind0 == -1): raise ValueError("All annotation files must end with '_a' following the annotation index, e.g. 'sub1_r5_a1.edf'. Error on: " + annotname) recnameofannot = annotname[:ind0] if(recnameofannot != recording_name): continue ind = ind0 + len(self.ANNOTATIONSUFFIX) suff = int(annotname[ind:]) compnames.append((fullpath, annotname, suff)) compnames.sort(key = lambda comp: comp[2]) return compnames ``` #### File: databasemanager/classes/subject.py ```python from pathlib import Path as PathLibClass from databasemanager.classes.path import Path from databasemanager.classes.recordingmaker import RecordingMaker from databasemanager.classes.MNEfetchableinterface import MNEFetchableInterface from databasemanager.classes.queryable import Queryable from databasemanager.classes.listextension import ListExtension from databasemanager.operators.operatorbase import OperatorBase from databasemanager.operators.resampler import Resampler from databasemanager.operators.montagemaker import MontageMaker from databasemanager.operators.rereferencer import Rereferencer class Subject(MNEFetchableInterface, Queryable): # override MNEFetchableInterface.fetch_mne_list() def fetch_mne_list(self, set_annotations: bool = True): mne_list = [] temp_none = [mne_list.extend(recording.fetch_mne_list(set_annotations)) for recording in self.recordings] return mne_list #override copyabledoubleside def reassign(self): if(self.recordings is not None): for rec in self.recordings: rec.subject = self rec.reassign() def __init__(self, path, name, annotation_warning=True): if(isinstance(path, Path)): self.path = path else: raise BaseException('Path must be an object of Path') self.name = name self.recordings = self.__load_recordings() self.annotation_warning = annotation_warning self.reassign() def add_operator(self, op:OperatorBase): ''' It gets an operator and assigns it to all of its recordings. ''' assert(isinstance(op, OperatorBase)) for r in self.recordings: r.add_operator(op.copy()) def __load_recordings(self): recording_files = self.path.get_recordings_details(self.name) recordings = [] for i,r in enumerate(recording_files): rec_file_name = r[1] rec_file_extension = r[2] anns = self.path.get_annotations_details(self.name, rec_file_name) if(anns is None or len(anns)==0): print('Warning: {0} has no annotation.'.format(rec_file_name)) else: annotation_list = zip([a[1] for a in anns],[a[2] for a in anns]) rec = RecordingMaker.make(self.path, self.name, rec_file_name,rec_file_extension, annotation_list) if(rec.has_content): recordings.append(rec) return recordings def __len__(self): if(self.recordings is None): return 0 return len(self.recordings) @property def number_of_recordings(self): return len(self) @property def number_of_annotations(self): return sum(rec.number_of_annotations for rec in self.recordings) @property def number_of_events(self): return sum(rec.number_of_events for rec in self.recordings) @property def duration_sec(self)->float: dur_sec = [rec.duration_sec for rec in self.recordings] return sum(dur_sec) @property def fs(self): if(self.number_of_recordings==0): return None if(self.number_of_recordings==1): return self.recordings[0].fs fs = ListExtension() for rec in self.recordings: fs.extend_append(rec.fs,'ignore') return fs.similar_in_list() @property def number_of_channels(self): if(self.number_of_recordings==0): return None if(self.number_of_recordings==1): return self.recordings[0].number_of_channels ch = ListExtension() for rec in self.recordings: ch.extend_append(rec.number_of_channels,'ignore') return ch.similar_in_list() @property def fs_output(self): '''It returns the sampling frequency of the loaded data and can be affected by resampling operators (the last one).''' fs_output = ListExtension([r.fs_output for r in self.recordings]) return fs_output.similar_in_list() @property def number_of_channels_output(self): '''It returns the number of channels of the loaded data and can be affected by montagmaker operators (the last one).''' res = ListExtension([rec.number_of_channels_output for rec in self.recordings]) return res.similar_in_list() @property def unique_labels(self): if(self.recordings is None): return None lbl = ListExtension() non = [lbl.extend_append(rec.unique_labels,'add') for rec in self.recordings] return set(lbl) def __str__(self): return "<Subject {0} with {1} recordings.>".format(self.name, len(self)) def summary(self): print(str(self)) ``` #### File: databasemanager/operators/filterbase.py ```python import numpy as np from abc import ABC, abstractmethod, abstractproperty from databasemanager.operators.operatorbase import OperatorBase from databasemanager.operators.interfaces.fsneededinterface import FsNeededInterface from databasemanager.operators.interfaces.timeaxisneededinterface import TimeAxisNeededInterface from databasemanager.operators.filtercorrector import FilterCorrector class FilterBase(OperatorBase, FsNeededInterface, TimeAxisNeededInterface, ABC): #override from FsNeededInterface.set_fs() def set_fs(self, fs): self.fs = fs if(self.axis is not None): self.set_filter() #override from TimeAxisNeededInterface.set_axis() def set_axis(self, axis): self.axis = axis if(self.fs is not None): self.set_filter() def __init__(self, output_type:str='valid'): ''' output_type: {'valid', 'same'} (case-insensitive) -- same: return the output as the same size of the input. depending on the filter approach it may have edge distortion. This distortion values are reachable by correction_samples -- valid: only returns the output that are valid by filtering. in this case the outputs size is smaller (x.shape - correction_samples) than the input size. ''' self.output_type = output_type.lower() self.corrector = None self.axis = None self.fs = None # override Operation.apply(x) def apply(self, x): return self.filter(x) def filter(self, x:np.ndarray): y = self._filter_raw(x) if(self.corrector is not None): y = self.corrector.apply(y) return y def set_filter(self): self._init_filter() if(self.output_type == 'valid'): self.corrector = FilterCorrector(self) self.corrector.set_axis(self.axis) @abstractmethod def _filter_raw(self, x:np.ndarray): pass @abstractmethod def _init_filter(self): pass @abstractproperty def filter_length(self): pass ``` #### File: databasemanager/operators/operatorlist.py ```python from databasemanager.operators.operatorbase import OperatorBase from databasemanager.operators.filterbase import FilterBase from databasemanager.operators.filtercorrector import FilterCorrector from databasemanager.classes.virtuallist import VirtualList class OperatorList(VirtualList): def __init__(self, master_list): super().__init__() self.init_virtual_list(master_list, OperatorBase) def summary(self): for op in self: print(str(op)) ``` #### File: Databasemanager_Signalplotter/src/example_plotter.py ```python from database_explorer_plotter.extra_functions import plot_browser from databasemanager import * root = "A:\\db\\toyDB" data_root = "A:\\db\\toyDB\\data" db = Database(root) ds = db.load_dataset('all') recording = ds.subjects[1].recordings[0] def callback(): print("Callback working!") plot_browser(recording = recording, window=30, start=0, y=None, title=None,fs=1,sens=None,channel_names=None, callback=callback(), verbose = True) ``` #### File: src/qt_designer/additional_qtclasses.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class QLabel_Clickable(QtWidgets.QLabel): clicked=QtCore.pyqtSignal() def __init__(self, parent=None): super().__init__(parent) self.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) def mousePressEvent(self, ev): self.clicked.emit() class lineEdit_autocomplete(QtWidgets.QLineEdit): model = QtCore.QStringListModel() completer = QtWidgets.QCompleter() def start(self, subject_names): self.model.setStringList(subject_names) self.completer.setModel(self.model) self.setCompleter(self.completer) class lineEdit_autocomplete2(QtWidgets.QLineEdit): model = QtCore.QStringListModel() completer = QtWidgets.QCompleter() def start(self, subject_names): self.model.setStringList(subject_names) self.completer.setModel(self.model) self.setCompleter(self.completer) ``` #### File: src/qt_designer/base_GUI.py ```python from PyQt5 import QtCore, QtGui, QtWidgets import os class Ui_DB_explorer(object): def setupUi(self, DB_explorer): icon = QtGui.QIcon() plg_dir = os.path.dirname(__file__) icon.addPixmap(QtGui.QPixmap(plg_dir+"\\heartbeat.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) DB_explorer.setWindowIcon(icon) DB_explorer.setObjectName("DB_explorer") DB_explorer.resize(900, 450) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(DB_explorer.sizePolicy().hasHeightForWidth()) DB_explorer.setSizePolicy(sizePolicy) DB_explorer.setMinimumSize(QtCore.QSize(900, 450)) self.centralwidget = QtWidgets.QWidget(DB_explorer) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout_8 = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout_8.setObjectName("horizontalLayout_8") self.verticalLayout_3 = QtWidgets.QVBoxLayout() self.verticalLayout_3.setSizeConstraint(QtWidgets.QLayout.SetNoConstraint) self.verticalLayout_3.setObjectName("verticalLayout_3") self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.Dataset_label = QLabel_Clickable(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.Dataset_label.sizePolicy().hasHeightForWidth()) self.Dataset_label.setSizePolicy(sizePolicy) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.Dataset_label.setPalette(palette) font = QtGui.QFont() font.setUnderline(True) self.Dataset_label.setFont(font) self.Dataset_label.setOpenExternalLinks(True) self.Dataset_label.setObjectName("Dataset_label") self.horizontalLayout_4.addWidget(self.Dataset_label) self.label_11 = QtWidgets.QLabel(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_11.sizePolicy().hasHeightForWidth()) self.label_11.setSizePolicy(sizePolicy) self.label_11.setMinimumSize(QtCore.QSize(1, 20)) self.label_11.setText("") self.label_11.setObjectName("label_11") self.horizontalLayout_4.addWidget(self.label_11) self.verticalLayout_3.addLayout(self.horizontalLayout_4) self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox_3.sizePolicy().hasHeightForWidth()) self.groupBox_3.setSizePolicy(sizePolicy) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.groupBox_3.setPalette(palette) font = QtGui.QFont() font.setUnderline(False) self.groupBox_3.setFont(font) self.groupBox_3.setObjectName("groupBox_3") self.gridLayout = QtWidgets.QGridLayout(self.groupBox_3) self.gridLayout.setObjectName("gridLayout") self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setSizeConstraint(QtWidgets.QLayout.SetMinAndMaxSize) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.label_10 = QtWidgets.QLabel(self.groupBox_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_10.sizePolicy().hasHeightForWidth()) self.label_10.setSizePolicy(sizePolicy) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.label_10.setPalette(palette) font = QtGui.QFont() font.setUnderline(False) self.label_10.setFont(font) self.label_10.setObjectName("label_10") self.horizontalLayout_5.addWidget(self.label_10) self.lineEdit = lineEdit_autocomplete(self.groupBox_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineEdit.sizePolicy().hasHeightForWidth()) self.lineEdit.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setUnderline(False) self.lineEdit.setFont(font) self.lineEdit.setObjectName("lineEdit") self.horizontalLayout_5.addWidget(self.lineEdit) self.verticalLayout.addLayout(self.horizontalLayout_5) self.subject_list = QtWidgets.QListWidget(self.groupBox_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.subject_list.sizePolicy().hasHeightForWidth()) self.subject_list.setSizePolicy(sizePolicy) self.subject_list.setMinimumSize(QtCore.QSize(1, 50)) font = QtGui.QFont() font.setUnderline(False) self.subject_list.setFont(font) self.subject_list.setSizeAdjustPolicy(QtWidgets.QAbstractScrollArea.AdjustIgnored) self.subject_list.setObjectName("subject_list") self.verticalLayout.addWidget(self.subject_list) self.verticalLayout_2.addLayout(self.verticalLayout) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.verticalLayout_2.addLayout(self.horizontalLayout_6) self.gridLayout.addLayout(self.verticalLayout_2, 0, 0, 1, 1) self.verticalLayout_3.addWidget(self.groupBox_3) self.horizontalLayout_8.addLayout(self.verticalLayout_3) spacerItem = QtWidgets.QSpacerItem(10, 20, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_8.addItem(spacerItem) self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setSizeConstraint(QtWidgets.QLayout.SetNoConstraint) self.verticalLayout_5.setObjectName("verticalLayout_5") spacerItem1 = QtWidgets.QSpacerItem(20, 26, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.verticalLayout_5.addItem(spacerItem1) self.groupBox_4 = QtWidgets.QGroupBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox_4.sizePolicy().hasHeightForWidth()) self.groupBox_4.setSizePolicy(sizePolicy) self.groupBox_4.setObjectName("groupBox_4") self.gridLayout_2 = QtWidgets.QGridLayout(self.groupBox_4) self.gridLayout_2.setObjectName("gridLayout_2") self.verticalLayout_4 = QtWidgets.QVBoxLayout() self.verticalLayout_4.setObjectName("verticalLayout_4") self.horizontalLayout_7 = QtWidgets.QHBoxLayout() self.horizontalLayout_7.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint) self.horizontalLayout_7.setObjectName("horizontalLayout_7") self.label_9 = QtWidgets.QLabel(self.groupBox_4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_9.sizePolicy().hasHeightForWidth()) self.label_9.setSizePolicy(sizePolicy) self.label_9.setMaximumSize(QtCore.QSize(16777215, 19)) self.label_9.setObjectName("label_9") self.horizontalLayout_7.addWidget(self.label_9) self.lineEdit_2 = lineEdit_autocomplete2(self.groupBox_4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineEdit_2.sizePolicy().hasHeightForWidth()) self.lineEdit_2.setSizePolicy(sizePolicy) self.lineEdit_2.setObjectName("lineEdit_2") self.horizontalLayout_7.addWidget(self.lineEdit_2) self.verticalLayout_4.addLayout(self.horizontalLayout_7) self.recordings_list = QtWidgets.QListWidget(self.groupBox_4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.recordings_list.sizePolicy().hasHeightForWidth()) self.recordings_list.setSizePolicy(sizePolicy) self.recordings_list.setMinimumSize(QtCore.QSize(1, 50)) self.recordings_list.setObjectName("recordings_list") self.verticalLayout_4.addWidget(self.recordings_list) self.gridLayout_2.addLayout(self.verticalLayout_4, 0, 0, 1, 1) self.verticalLayout_5.addWidget(self.groupBox_4) self.horizontalLayout_8.addLayout(self.verticalLayout_5) spacerItem2 = QtWidgets.QSpacerItem(10, 20, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_8.addItem(spacerItem2) self.verticalLayout_9 = QtWidgets.QVBoxLayout() self.verticalLayout_9.setSizeConstraint(QtWidgets.QLayout.SetNoConstraint) self.verticalLayout_9.setObjectName("verticalLayout_9") self.horizontalLayout_9 = QtWidgets.QHBoxLayout() self.horizontalLayout_9.setObjectName("horizontalLayout_9") self.verticalLayout_9.addLayout(self.horizontalLayout_9) self.verticalLayout_8 = QtWidgets.QVBoxLayout() self.verticalLayout_8.setSizeConstraint(QtWidgets.QLayout.SetNoConstraint) self.verticalLayout_8.setObjectName("verticalLayout_8") self.groupBox = QtWidgets.QGroupBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox.sizePolicy().hasHeightForWidth()) self.groupBox.setSizePolicy(sizePolicy) self.groupBox.setMinimumSize(QtCore.QSize(0, 0)) self.groupBox.setObjectName("groupBox") self.verticalLayout_10 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_10.setObjectName("verticalLayout_10") self.annotations_list = QtWidgets.QListWidget(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.annotations_list.sizePolicy().hasHeightForWidth()) self.annotations_list.setSizePolicy(sizePolicy) self.annotations_list.setMinimumSize(QtCore.QSize(0, 50)) self.annotations_list.setMaximumSize(QtCore.QSize(16777215, 100)) self.annotations_list.setObjectName("annotations_list") self.verticalLayout_10.addWidget(self.annotations_list) self.verticalLayout_8.addWidget(self.groupBox) self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox_2.sizePolicy().hasHeightForWidth()) self.groupBox_2.setSizePolicy(sizePolicy) self.groupBox_2.setObjectName("groupBox_2") self.verticalLayout_11 = QtWidgets.QVBoxLayout(self.groupBox_2) self.verticalLayout_11.setObjectName("verticalLayout_11") self.label = QtWidgets.QLabel(self.groupBox_2) self.label.setObjectName("label") self.verticalLayout_11.addWidget(self.label) self.verticalLayout_7 = QtWidgets.QVBoxLayout() self.verticalLayout_7.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint) self.verticalLayout_7.setContentsMargins(1, 1, 1, 1) self.verticalLayout_7.setObjectName("verticalLayout_7") self.verticalLayout_6 = QtWidgets.QVBoxLayout() self.verticalLayout_6.setSizeConstraint(QtWidgets.QLayout.SetNoConstraint) self.verticalLayout_6.setObjectName("verticalLayout_6") self.horizontalLayout_10 = QtWidgets.QHBoxLayout() self.horizontalLayout_10.setObjectName("horizontalLayout_10") self.verticalLayout_6.addLayout(self.horizontalLayout_10) self.events_list = QtWidgets.QListWidget(self.groupBox_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.events_list.sizePolicy().hasHeightForWidth()) self.events_list.setSizePolicy(sizePolicy) self.events_list.setMinimumSize(QtCore.QSize(0, 50)) self.events_list.setObjectName("events_list") self.verticalLayout_6.addWidget(self.events_list) self.verticalLayout_7.addLayout(self.verticalLayout_6) self.pushButton_8 = QtWidgets.QPushButton(self.groupBox_2) self.pushButton_8.setObjectName("pushButton_8") self.verticalLayout_7.addWidget(self.pushButton_8) self.verticalLayout_11.addLayout(self.verticalLayout_7) self.verticalLayout_8.addWidget(self.groupBox_2) self.verticalLayout_9.addLayout(self.verticalLayout_8) self.horizontalLayout_8.addLayout(self.verticalLayout_9) DB_explorer.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(DB_explorer) self.menubar.setGeometry(QtCore.QRect(0, 0, 900, 25)) self.menubar.setObjectName("menubar") DB_explorer.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(DB_explorer) self.statusbar.setObjectName("statusbar") DB_explorer.setStatusBar(self.statusbar) self.retranslateUi(DB_explorer) QtCore.QMetaObject.connectSlotsByName(DB_explorer) def retranslateUi(self, DB_explorer): _translate = QtCore.QCoreApplication.translate DB_explorer.setWindowTitle(_translate("DB_explorer", "Database explorer")) self.Dataset_label.setText(_translate("DB_explorer", "Dataset:")) self.groupBox_3.setTitle(_translate("DB_explorer", "Subject")) self.label_10.setText(_translate("DB_explorer", "Find:")) self.groupBox_4.setTitle(_translate("DB_explorer", "Recordings")) self.label_9.setText(_translate("DB_explorer", "Find:")) self.groupBox.setTitle(_translate("DB_explorer", "Annotations")) self.groupBox_2.setTitle(_translate("DB_explorer", "Events")) self.label.setText(_translate("DB_explorer", "label start-end [s]")) self.pushButton_8.setText(_translate("DB_explorer", "Temporal Profile")) from qt_designer.additional_qtclasses import QLabel_Clickable, lineEdit_autocomplete, lineEdit_autocomplete2 if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) DB_explorer = QtWidgets.QMainWindow() ui = Ui_DB_explorer() ui.setupUi(DB_explorer) DB_explorer.show() sys.exit(app.exec_()) ``` #### File: src/qt_designer/dataset_selector.py ```python from PyQt5 import QtCore, QtGui, QtWidgets import os class Ui_dataset(object): def setupUi(self, dataset): icon = QtGui.QIcon() plg_dir = os.path.dirname(__file__) icon.addPixmap(QtGui.QPixmap(plg_dir+"\\heartbeat.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) dataset.setWindowIcon(icon) dataset.setObjectName("dataset") dataset.resize(190, 170) dataset.setMinimumSize(QtCore.QSize(190, 170)) self.centralwidget = QtWidgets.QWidget(dataset) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName("horizontalLayout") self.listWidget = QtWidgets.QListWidget(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.listWidget.sizePolicy().hasHeightForWidth()) self.listWidget.setSizePolicy(sizePolicy) self.listWidget.setMinimumSize(QtCore.QSize(1, 1)) self.listWidget.setObjectName("listWidget") self.horizontalLayout.addWidget(self.listWidget) dataset.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(dataset) self.menubar.setGeometry(QtCore.QRect(0, 0, 190, 25)) self.menubar.setObjectName("menubar") dataset.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(dataset) self.statusbar.setObjectName("statusbar") dataset.setStatusBar(self.statusbar) self.retranslateUi(dataset) QtCore.QMetaObject.connectSlotsByName(dataset) def retranslateUi(self, dataset): _translate = QtCore.QCoreApplication.translate dataset.setWindowTitle(_translate("dataset", "Dataset_selector")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) dataset = QtWidgets.QMainWindow() ui = Ui_dataset() ui.setupUi(dataset) dataset.show() sys.exit(app.exec_()) ``` #### File: signalplotter/qt/makePyUI.py ```python def makeUI(uiNames): import sys, os print('Check the pwd first, It must be at .../SignalPlotter/qt.') print(os.getcwd()) p0 = os.path.dirname(sys.executable) for uiName in (uiNames): print('===== for: ',uiName,' ======') p1 = '"'+p0+'\Scripts\pyuic5.exe'+'" ' p1 += ' -x "' + uiName + '.ui"' p1 += ' -o "' + uiName + '.py"' print(p1) import subprocess res = subprocess.call(p1) != 0 print('Done.') print('Is there any error: ', res) uiNames = ['plotter_uiDesign'] makeUI(uiNames) # %% ``` #### File: signalplotter/qt/plotter_ui_Thread.py ```python from threading import Thread import threading class plotter_ui(Thread): def __init__(self, MainWindow, x, title=None,fs=1, sens=None, channelNames=None): Thread.__init__(self) self.lock = threading.Lock() self.MainWindow = MainWindow self.x = x self.title = title self.fs = fs self.sens = sens self.channelNames = channelNames def run(self): self.plotter_ui = plotter_ui(self.MainWindow, self.x, self.title, self.fs, self.sens, self.channelNames) ```
{ "source": "joway/dockerfiles", "score": 3 }
#### File: resource_limit/multi_container/multi_proc.py ```python import os from datetime import datetime TASK_NUM = int(os.environ.get('TASK_NUM', 4)) def log(msg): print("[%s] proc-%s" % (datetime.now(), msg)) def run(): proc = os.getpid() while True: v = 10 ** 10000000 log('%s ' % (proc,)) if __name__ == '__main__': # p = Pool() # for i in range(TASK_NUM): # p.apply_async(run) # p.close() # p.join() run() ```
{ "source": "joway/git-lint", "score": 2 }
#### File: git-lint/gitlint/git.py ```python import os.path import subprocess import gitlint.utils as utils def repository_root(): """Returns the root of the repository as an absolute path.""" try: root = subprocess.check_output(['git', 'rev-parse', '--show-toplevel'], stderr=subprocess.STDOUT).strip() # Convert to unicode first return root.decode('utf-8') except subprocess.CalledProcessError: return None def last_commit(): """Returns the SHA1 of the last commit.""" try: root = subprocess.check_output(['git', 'rev-parse', 'HEAD'], stderr=subprocess.STDOUT).strip() # Convert to unicode first return root.decode('utf-8') except subprocess.CalledProcessError: return None def _remove_filename_quotes(filename): """Removes the quotes from a filename returned by git status.""" if filename.startswith('"') and filename.endswith('"'): return filename[1:-1] return filename def modified_files(root, tracked_only=False, commit=None): """Returns a list of files that has been modified since the last commit. Args: root: the root of the repository, it has to be an absolute path. tracked_only: exclude untracked files when True. commit: SHA1 of the commit. If None, it will get the modified files in the working copy. Returns: a dictionary with the modified files as keys, and additional information as value. In this case it adds the status returned by git status. """ assert os.path.isabs(root), "Root has to be absolute, got: %s" % root if commit: return _modified_files_with_commit(root, commit) # Convert to unicode and split status_lines = subprocess.check_output([ 'git', 'status', '--porcelain', '--untracked-files=all', '--ignore-submodules=all']).decode('utf-8').split(os.linesep) modes = ['M ', ' M', 'A ', 'AM', 'MM'] if not tracked_only: modes.append(r'\?\?') modes_str = '|'.join(modes) modified_file_status = utils.filter_lines( status_lines, r'(?P<mode>%s) (?P#.+)' % modes_str, groups=('filename', 'mode')) return dict((os.path.join(root, _remove_filename_quotes(filename)), mode) for filename, mode in modified_file_status) def _modified_files_with_commit(root, commit): # Convert to unicode and split status_lines = subprocess.check_output( ['git', 'diff-tree', '-r', '--root', '--no-commit-id', '--name-status', commit]).decode('utf-8').split(os.linesep) modified_file_status = utils.filter_lines( status_lines, r'(?P<mode>A|M)\s(?P#.+)', groups=('filename', 'mode')) # We need to add a space to the mode, so to be compatible with the output # generated by modified files. return dict((os.path.join(root, _remove_filename_quotes(filename)), mode + ' ') for filename, mode in modified_file_status) def modified_lines(filename, extra_data, commit=None): """Returns the lines that have been modifed for this file. Args: filename: the file to check. extra_data: is the extra_data returned by modified_files. Additionally, a value of None means that the file was not modified. commit: the complete sha1 (40 chars) of the commit. Note that specifying this value will only work (100%) when commit == last_commit (with respect to the currently checked out revision), otherwise, we could miss some lines. Returns: a list of lines that were modified, or None in case all lines are new. """ if extra_data is None: return [] if extra_data not in ('M ', ' M', 'MM'): return None if commit is None: commit = '0' * 40 commit = commit.encode('utf-8') # Split as bytes, as the output may have some non unicode characters. blame_lines = subprocess.check_output( ['git', 'blame', '--porcelain', filename]).split( os.linesep.encode('utf-8')) modified_line_numbers = utils.filter_lines( blame_lines, commit + br' (?P<line>\d+) (\d+)', groups=('line',)) return list(map(int, modified_line_numbers)) ```
{ "source": "joway/kubernetes-network-benchmark", "score": 2 }
#### File: kubernetes-network-benchmark/bench/server.py ```python import time from lemon.app import Lemon from lemon.context import Context async def handler(ctx: Context): server_recv = int(time.time() * 1000) # do something server_resp = int(time.time() * 1000) ctx.body = { 'server_recv': server_recv, 'server_resp': server_resp, } app = Lemon() app.use(handler) app.listen(port=9999) ```
{ "source": "joway/Leetcode", "score": 4 }
#### File: array/easy/maxProfit.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ Example: Input: [7, 1, 5, 3, 6, 4] Output: 5 """ def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ profit = 0 if not prices: return profit min_so_far = prices[0] for i in range(1, len(prices)): profit = max(profit, prices[i] - min_so_far) min_so_far = min(prices[i], min_so_far) return profit if __name__ == '__main__': prices = [7,1,5,3,6,4] result = Solution().maxProfit(prices) print(result) ``` #### File: array/easy/moveZeroes.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/move-zeroes/ Example: given nums = [0, 1, 0, 3, 12], after calling your function, nums should be [1, 3, 12, 0, 0] """ def moveZeroes(self, nums): """ :type nums: List[int] :rtype: void Do not return anything, modify nums in-place instead. """ cur = 0 non_zero = len(nums) - 1 while cur < non_zero: if nums[cur] == 0: for i in range(cur + 1, non_zero + 1): nums[i - 1] = nums[i] nums[non_zero] = 0 non_zero -= 1 else: cur += 1 if __name__ == '__main__': nums = [0, 1, 0, 3, 12] result = Solution().moveZeroes(nums) print(nums) ``` #### File: array/easy/plusOne.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/plus-one/ Example: input: [1,2,9,9] output: [1,3,0,0] """ def plusOne(self, digits): """ :type digits: List[int] :rtype: List[int] """ carry = 1 remainder = 0 for i in range(len(digits) - 1 , -1 , -1): r = digits[i] + carry + remainder if r >= 10: carry = 1 remainder = r % 10 else: carry = 0 remainder = 0 digits[i] = r % 10 if carry and digits[0] == 0: digits = [1] + digits return digits if __name__ == '__main__': digits = [9] result = Solution().plusOne(digits) print(result) ``` #### File: array/easy/removeDuplicates.py ```python class Solution(object): """ Problem: https://leetcode.com/problems/remove-duplicates-from-sorted-array/ Example: nums = [1,1,2] >> Your function should return length = 2, with the first two elements of nums being 1 and 2 respectively. It doesn't matter what you leave beyond the new length. """ def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ nums[:] = sorted(list(set(nums))) return len(nums) if __name__ == '__main__': nums = [1,1,2] result = Solution().removeDuplicates(nums) print(nums) print(result) ```
{ "source": "joway/lemon", "score": 2 }
#### File: lemon/examples/catch_error.py ```python from lemon.app import Lemon from lemon.context import Context async def err_middleware(ctx: Context, nxt): ctx.body = { 'msg': 'err_middleware' } try: await nxt() except Exception: ctx.body = { 'msg': 'error handled' } async def middleware_exception(ctx: Context): raise Exception('error') app = Lemon(debug=True) app.use(err_middleware) app.use(middleware_exception) app.listen() ``` #### File: lemon/examples/cookies.py ```python from lemon.app import Lemon from lemon.context import Context async def handle(ctx: Context): my_cookie = ctx.req.cookies.get('my_cookie') ctx.body = { 'my_cookie': my_cookie, } app = Lemon(debug=True) app.use(handle) app.listen() ``` #### File: lemon/examples/raw_uvicorn.py ```python import uvicorn class EchoBody(): def __init__(self, scope): self.scope = scope async def read_body(self, receive): """ Read and return the entire body from an incoming ASGI message. """ body = b'' more_body = True while more_body: message = await receive() body += message.get('body', b'') more_body = message.get('more_body', False) return body async def __call__(self, receive, send): body = await self.read_body(receive) await send({ 'type': 'http.response.start', 'status': 200, 'headers': [ [b'content-type', b'text/plain'], ] }) await send({ 'type': 'http.response.body', 'body': body, }) uvicorn.run(EchoBody, host='127.0.0.1', port='9998') ``` #### File: lemon/examples/router.py ```python from lemon.app import Lemon from lemon.context import Context from lemon.router import SimpleRouter async def middleware(ctx: Context, nxt): ctx.body = { 'msg': 'hello lemon' } await nxt() async def handler1(ctx: Context): ctx.body['ack'] = 'yeah !' async def handler2(ctx: Context): ctx.body['ack'] = 'yeah !' ctx.body['data'] = ctx.req.json app = Lemon(debug=True) router = SimpleRouter() router.get('/handler1', middleware, handler1) router.post('/handler2', middleware, handler2) app.use(router.routes()) app.listen() ``` #### File: lemon/examples/throw.py ```python from lemon.app import Lemon from lemon.context import Context async def middleware(ctx: Context): ctx.throw(status=403, body={ 'msg': '403' }) app = Lemon(debug=True) app.use(middleware) app.listen() ``` #### File: lemon/lemon/asgi.py ```python import typing from werkzeug.datastructures import ImmutableMultiDict from lemon.parsers import parse_http_body from lemon.request import Request, HttpHeaders class ASGIRequest: def __init__(self, scope): self.scope = scope async def __call__(self, receive: typing.Callable, send: typing.Callable): # receive body body = b'' more_body = True while more_body: message = await receive() body += message.get('body', b'') more_body = message.get('more_body', False) # parse headers http_headers = HttpHeaders(raw_headers=self.scope['headers']) # parse data data = parse_http_body(headers=http_headers, body=body) if body else ImmutableMultiDict() # create request return Request( http_version=self.scope['http_version'], method=self.scope['method'], scheme=self.scope['scheme'], path=self.scope['path'], query_string=self.scope['query_string'].decode('utf-8'), headers=http_headers, body=body, data=data, client=self.scope['client'], server=self.scope['server'], ) ``` #### File: lemon/lemon/context.py ```python import typing from lemon.exception import GeneralException from lemon.request import Request from lemon.response import Response class Context: """The Context object store the current request and response . Your can get all information by use ctx in your handler function . """ def __init__(self) -> None: self.req: typing.Optional[Request] = None self.res: Response = Response() # store middleware communication message self.state: dict = {} self.params: typing.Optional[dict] = None def __setattr__(self, key, value) -> None: # alias if key == 'body': self.res.body = value elif key == 'status': self.res.status = value else: self.__dict__[key] = value def __getattr__(self, item) -> typing.Any: # alias if item == 'body': return self.res.body elif item == 'status': return self.res.status return self.__dict__[item] @staticmethod def throw(status: int, body: typing.Union[str, dict] = None) -> None: """Throw the status and response body""" raise GeneralException(status=status, body=body) ``` #### File: lemon/lemon/middleware.py ```python import re import traceback import typing from lemon.config import settings from lemon.context import Context from lemon.exception import GeneralException async def exception_middleware(ctx: Context, nxt: typing.Callable) -> typing.Any: """Catch the final exception""" try: return await nxt() except GeneralException as e: ctx.body = e.body ctx.status = e.status if settings.LEMON_DEBUG: traceback.print_exc() except Exception as e: ctx.status = 500 ctx.body = ctx.body or { 'error': 'unknown error', } traceback.print_exc() async def cors_middleware(ctx: Context, nxt: typing.Callable): # settings LEMON_CORS_ORIGIN_WHITELIST = settings.LEMON_CORS_ORIGIN_WHITELIST LEMON_CORS_ORIGIN_REGEX_WHITELIST = settings.LEMON_CORS_ORIGIN_REGEX_WHITELIST LEMON_CORS_ORIGIN_ALLOW_ALL = settings.LEMON_CORS_ORIGIN_ALLOW_ALL LEMON_CORS_ALLOW_METHODS = settings.LEMON_CORS_ALLOW_METHODS LEMON_CORS_ALLOW_HEADERS = settings.LEMON_CORS_ALLOW_HEADERS LEMON_CORS_EXPOSE_HEADERS = settings.LEMON_CORS_EXPOSE_HEADERS LEMON_CORS_ALLOW_CREDENTIALS = settings.LEMON_CORS_ALLOW_CREDENTIALS LEMON_CORS_MAX_AGE = settings.LEMON_CORS_MAX_AGE if ctx.req is None: return headers = ctx.req.headers origin = headers.get('origin', None) origin_header = origin # pass request if origin is None: return await nxt() if LEMON_CORS_ORIGIN_ALLOW_ALL: origin_header = '*' # preflight request if ctx.req.method == 'OPTIONS': acrm = headers.get('access-control-request-method', None) acrh = headers.get('access-control-request-headers', None) if acrm is None: return await nxt() matched = False if LEMON_CORS_ORIGIN_ALLOW_ALL: matched = True else: for domain in LEMON_CORS_ORIGIN_WHITELIST: if domain == origin: matched = True for domain_pattern in LEMON_CORS_ORIGIN_REGEX_WHITELIST: if re.match(domain_pattern, origin): matched = True if matched is False: ctx.status = 200 return ctx.res.headers['access-control-allow-origin'] = origin_header if LEMON_CORS_ALLOW_CREDENTIALS: ctx.res.headers['access-control-allow-credentials'] = 'true' ctx.res.headers['access-control-max-age'] = LEMON_CORS_MAX_AGE ctx.res.headers['access-control-allow-methods'] = ','.join(LEMON_CORS_ALLOW_METHODS) ctx.res.headers['access-control-allow-headers'] = ','.join(LEMON_CORS_ALLOW_HEADERS) or acrh # stop request ctx.status = 204 return # cross origin request ctx.res.headers['access-control-allow-origin'] = origin_header if LEMON_CORS_ALLOW_CREDENTIALS: ctx.res.headers['access-control-allow-credentials'] = 'true' if LEMON_CORS_EXPOSE_HEADERS: ctx.res.headers['access-control-expose-headers'] = ','.join(LEMON_CORS_EXPOSE_HEADERS) return await nxt() ``` #### File: lemon/lemon/request.py ```python import typing from urllib.parse import parse_qs from werkzeug.http import parse_cookie from lemon.const import MIME_TYPES class HttpHeaders(dict): def __init__(self, raw_headers=None, *args, **kwargs): super(HttpHeaders, self).__init__(*args, **kwargs) if raw_headers: for h in raw_headers: self.__setitem__(h[0].decode(), h[1].decode()) def __setitem__(self, key: str, value): return super(HttpHeaders, self).__setitem__(key.lower(), str(value)) def __getitem__(self, key: str): return super(HttpHeaders, self).__getitem__(key.lower()) def set(self, key: str, value): return self.__setitem__(key, value) def to_raw(self): raw_headers = [] for k in self: raw_headers.append([ k.encode(), self[k].encode(), ]) return raw_headers class Request: """The Request object store the current request's fully information Example usage: ctx.req """ def __init__( self, http_version: str, method: str, scheme: str, path: str, query_string: bytes, headers: HttpHeaders, body: bytes, data: typing.Optional[typing.Dict], client: tuple, server: tuple, ) -> None: self.http_version = http_version self.method = method.upper() self.scheme = scheme self.path = path self.query_string = query_string self.headers = headers self.body = body self.data = data self.client = client self.server = server # for cache self._json = None self._query: typing.Optional[dict] = None @property def protocol(self) -> str: """http or https """ return self.scheme @property def secure(self) -> bool: """is using https protocol """ return self.scheme == 'https' @property def host(self) -> str: """HTTP_HEADERS['Host'] """ return self.headers.get('host', '') @property def content_type(self) -> str: """HTTP_HEADERS['Content-Type'] """ return self.headers.get('content-type', MIME_TYPES.TEXT_PLAIN) @property def query(self) -> dict: if self._query is None: _q = parse_qs(self.query_string) self._query = {k: _q[k][0] for k in _q} return self._query @property def form(self) -> typing.Optional[typing.Any]: return self.data @property def cookies(self) -> dict: return parse_cookie(self.headers.get('cookie')) ``` #### File: lemon/lemon/response.py ```python import json from lemon.const import MIME_TYPES, CHARSETS from lemon.request import HttpHeaders class Response: def __init__( self, status: int = 200, headers: HttpHeaders = None, body: str = None, content_type: str = MIME_TYPES.APPLICATION_JSON, charset: str = CHARSETS.UTF8, ) -> None: self.status = status self.headers = headers if headers else HttpHeaders() self.body = body or '' self.content_type = content_type self.charset = charset @property def raw_content_type(self): content_type = '{type}; {charset}'.format( type=self.content_type, charset=self.charset ) return [b'content-type', content_type.encode()] @property def raw_headers(self): content_type_header = self.raw_content_type _raw_headers = self.headers.to_raw() _raw_headers.append(content_type_header) return _raw_headers @property def raw_body(self) -> bytes: _raw_body = b'' if isinstance(self.body, dict): _raw_body = json.dumps(self.body).encode() elif isinstance(self.body, str): _raw_body = self.body.encode() elif isinstance(self.body, bytes): _raw_body = self.body return _raw_body ``` #### File: lemon/tests/test_cors.py ```python import pytest from lemon.app import Lemon from lemon.const import HTTP_METHODS from lemon.context import Context from tests import BasicHttpTestCase @pytest.mark.asyncio class TestCors(BasicHttpTestCase): async def test_cors_simple_request(self): async def handle(ctx: Context): ctx.body = { 'ack': 'ok', } self.app.use(handle) # GET req = await self.asgi_request( self.app, HTTP_METHODS.GET, '/', headers=[ [b'origin', b'http://a.com'], ] ) assert req.headers['access-control-allow-origin'] == 'http://a.com' # POST req = await self.asgi_request( self.app, HTTP_METHODS.POST, '/', headers=[ [b'origin', b'http://a.com'], ] ) assert req.headers['access-control-allow-origin'] == 'http://a.com' # HEAD req = await self.asgi_request( self.app, HTTP_METHODS.HEAD, '/', headers=[ [b'origin', b'http://a.com'], ] ) assert req.headers['access-control-allow-origin'] == 'http://a.com' async def test_cors_preflight_request(self): async def handle(ctx: Context): ctx.body = { 'ack': 'ok', } app = Lemon(config={ 'LEMON_CORS_ENABLE': True, 'LEMON_CORS_ALLOW_METHODS': ['GET', 'POST'], 'LEMON_CORS_ALLOW_CREDENTIALS': True, 'LEMON_CORS_ORIGIN_WHITELIST': [ 'http://a.com', ], 'LEMON_CORS_ORIGIN_REGEX_WHITELIST': [ 'http://b.com', ], }, debug=True) app.use(handle) # EMPTY OPTIONS req = await self.asgi_request( app, HTTP_METHODS.OPTIONS, '/', headers=[ [b'origin', b'http://a.com'], ] ) assert req.status_code == 200 assert req.json()['ack'] == 'ok' req = await self.asgi_request( app, HTTP_METHODS.OPTIONS, '/', headers=[ [b'origin', b'http://a.com'], [b'access-control-request-method', b'POST'], [b'access-control-request-headers', b'X-PINGOTHER, Content-Type'], ] ) assert req.status_code == 204 assert req.headers['access-control-allow-origin'] == 'http://a.com' assert req.headers['access-control-allow-methods'] == 'GET,POST' assert req.headers['access-control-allow-headers'] == 'X-PINGOTHER, Content-Type' req = await self.asgi_request( app, HTTP_METHODS.OPTIONS, '/', headers=[ [b'origin', b'http://b.com'], [b'access-control-request-method', b'POST'], [b'access-control-request-headers', b'X-PINGOTHER, Content-Type'], ] ) assert req.status_code == 204 assert req.headers['access-control-allow-origin'] == 'http://b.com' assert req.headers['access-control-allow-methods'] == 'GET,POST' assert req.headers['access-control-allow-headers'] == 'X-PINGOTHER, Content-Type' req = await self.asgi_request( app, HTTP_METHODS.OPTIONS, '/', headers=[ [b'origin', b'http://c.com'], [b'access-control-request-method', b'POST'], [b'access-control-request-headers', b'X-PINGOTHER, Content-Type'], ] ) assert req.status_code == 200 async def test_cors_config(self): async def handle(ctx: Context): ctx.body = { 'ack': 'ok', } app = Lemon(config={ 'LEMON_CORS_ENABLE': True, 'LEMON_CORS_ALLOW_METHODS': ['GET', 'POST'], 'LEMON_CORS_ALLOW_HEADERS': ['allow_header'], 'LEMON_CORS_EXPOSE_HEADERS': ['test_header'], 'LEMON_CORS_ALLOW_CREDENTIALS': True, 'LEMON_CORS_ORIGIN_WHITELIST': [ 'http://a.com', ], 'LEMON_CORS_ORIGIN_REGEX_WHITELIST': [ r'^(https?://)?(\w+\.)?b\.com$', ], 'LEMON_CORS_MAX_AGE': 8640, }, debug=True) app.use(handle) # preflight req = await self.asgi_request( app, HTTP_METHODS.OPTIONS, '/', headers=[ [b'origin', b'http://a.com'], [b'access-control-request-method', b'POST'], [b'access-control-request-headers', b'X-PINGOTHER, Content-Type'], ] ) assert req.headers['access-control-allow-origin'] == 'http://a.com' assert req.headers['access-control-allow-methods'] == 'GET,POST' assert req.headers['access-control-allow-headers'] == 'allow_header' assert req.headers['access-control-allow-credentials'] == 'true' assert req.headers['access-control-max-age'] == '8640' assert req.status == 204 req = await self.asgi_request( app, HTTP_METHODS.POST, '/', headers=[ [b'origin', b'http://a.com'], [b'x-pingother', b'xxx'], ] ) assert req.headers['access-control-allow-origin'] == 'http://a.com' assert req.headers['access-control-allow-credentials'] == 'true' assert req.headers['access-control-expose-headers'] == 'test_header' assert req.status == 200 async def test_cors_not_allowed_request(self): async def handle(ctx: Context): ctx.body = { 'ack': 'ok', } app = Lemon(config={ 'LEMON_CORS_ENABLE': True, 'LEMON_CORS_ALLOW_METHODS': ['GET', 'POST'], 'LEMON_CORS_ORIGIN_WHITELIST': [ 'http://a.com', ], 'LEMON_CORS_MAX_AGE': 8640, }, debug=True) app.use(handle) req = await self.asgi_request( app, HTTP_METHODS.OPTIONS, '/', headers=[ [b'origin', b'https://b.com'], [b'access-control-request-method', b'POST'], [b'access-control-request-headers', b'X-PINGOTHER, Content-Type'], ] ) assert 'access-control-allow-origin' not in req.headers assert req.status == 200 ```
{ "source": "joway/net_scripts", "score": 3 }
#### File: joway/net_scripts/hznu.py ```python import requests from helpers import get_lan_ip, str_to_base64 from local_settings import HZNU_STU_NUM, HZNU_STU_PWD api = 'http://172.31.1.30/include/auth_action.php' IP = get_lan_ip()[:-1] + '1' def init_data(username, password): return { 'action': 'login', 'username': username, 'password': <PASSWORD>}' + str_to_base64(password), 'ac_id': '9', 'user_ip': IP, 'nas_ip': '', 'user_mac': '', 'url': '', 'ajax': 1, } data = init_data(HZNU_STU_NUM, HZNU_STU_PWD) resp = requests.post(api, data=data) if 'login_ok' in resp.content.decode(): print('Login success') else: print(resp.content.decode()) ```