metadata
dict
text
stringlengths
60
3.49M
{ "source": "jpape/daoc-log-parser", "score": 3 }
#### File: jpape/daoc-log-parser/app.py ```python from flask import Flask, request, render_template, Response from flask_cors import CORS import json import combat_parser import pve_parser import craft_parser app = Flask(__name__, static_url_path='', static_folder='dist') CORS(app) ALLOWED_EXTENSIONS = set(['txt', 'log']) API_VERSION = 'v2.0' @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/test', methods=['GET']) def test_endpoint(): return render_template('test.html') @app.route('/upload/<string:version>', methods=['POST']) def capture_upload(version): if version != API_VERSION: resp = {} resp['Errors'] = ['Version mismatch'] return json.dumps(resp) if 'logfile' not in request.files: return 'Missing logfile' file = request.files['logfile'] if file.filename == '' or not allowed_file(file.filename): return 'No selected file or incorrect file type' else: return Response(handle_uploaded_file(file), mimetype='application/json') def handle_uploaded_file(upload): error_messages = [] result = {} result['Combat'] = combat_parser.parse_uploaded_file(upload, error_messages) result['Crafting'] = craft_parser.parse_crafting(upload, error_messages) result['PvE'] = pve_parser.parse_pve(upload, error_messages) result['Messages'] = error_messages j_result = json.dumps(result) return j_result def allowed_file(filename): return '.' in filename and filename.rsplit('.',1)[1].lower() in ALLOWED_EXTENSIONS if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jpapejr/zoo-HttpAnimal", "score": 3 }
#### File: zoo-HttpAnimal/src/main.py ```python from flask import Flask import os import random app = Flask(__name__) @app.route('/') def hello(): return ("(animals can't talk, right?)", 200) @app.route('/exhibit') def ex(): if os.getenv('IMGURL') is not None: return ('<img src="' + os.getenv('IMGURL') + '" height="25%" width="25%" />', 200) else: return ('<img src="https://zoologyfoundation.org/wp-content/uploads/woocommerce-placeholder.png" height="25%" width="25%" />', 200) @app.route('/action') def action(): if os.getenv('NAME') is not None: name = os.getenv("NAME") else: name = 'animal' if os.getenv('ACTIONS') is not None: actionList = os.getenv('ACTIONS').split(',') random.seed() selection = random.randint(0, len(actionList) -1) else: return ('The animal is not visible right now.', 200) return ('The ' + name + ' ' + actionList[selection], 200) ```
{ "source": "jpapon/minimal_ros_nodes", "score": 2 }
#### File: src/cnn_classifier/cnn_classifier.py ```python import sys, time, os # numpy import numpy as np from scipy.misc import imsave # OpenCV import cv2 import tensorflow as tf import tensorvision.utils as tv_utils import tensorvision.core as core # Ros libraries import rospy import rospkg # Ros Messages from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError class cnn_classifier: def __init__(self, save_output = False): '''Initialize ros publisher, ros subscriber''' self.save_output_ = save_output # topic where we publish RGB version of classified result self.pub_rgb_labels = rospy.Publisher("rgb_labels",Image,queue_size=1) self.pub_labels = rospy.Publisher("labels",Image,queue_size=1) self.bridge = CvBridge() # subscribed Topic self.subscriber = rospy.Subscriber("image", Image, self.image_callback, queue_size=1) rospy.loginfo ("Initializing Network...") rospack = rospkg.RosPack() network_path = rospack.get_path('cnn_weights') self.network_path_ = os.path.join(network_path , 'networks','segnet') self.hypes_ = tv_utils.load_hypes_from_logdir(self.network_path_) self.num_classes_ = self.hypes_['arch']['num_classes'] rospy.loginfo("Hypes loaded successfully.") # Loading tv modules (encoder.py, decoder.py, eval.py) from logdir self.modules_ = tv_utils.load_modules_from_logdir(self.network_path_) rospy.loginfo("Modules loaded, building tf graph.") # Create tf graph and build module. with tf.Graph().as_default(): # Create placeholder for input self.image_pl_ = tf.placeholder(tf.float32) image = tf.expand_dims(self.image_pl_, 0) self.hypes_['dirs']['data_dir'] = self.network_path_ # build Tensorflow graph using the model from logdir self.prediction_ = core.build_inference_graph(self.hypes_, self.modules_, image=image) rospy.loginfo("Graph built successfully.") # Create a session for running Ops on the Graph. self.sess_ = tf.Session() self.saver_ = tf.train.Saver() # Load weights from logdir core.load_weights(self.network_path_, self.sess_, self.saver_) rospy.loginfo("Weights loaded successfully.") #Build map for colorizing self.label_colors_ = {} self.label_colors_alpha_ = {} for key in self.hypes_['data'].keys(): if ('_color' in key): color = np.array(self.hypes_['data'][key]) self.label_colors_[color[0]] = (color[1],color[2],color[3],255) self.label_colors_alpha_[color[0]] = (color[1],color[2],color[3],128) rospy.logwarn ("Done loading neural network!") self.image_count_ = 0 self.output_dir_ = "CNN_test_output" if not os.path.exists(self.output_dir_): os.makedirs(self.output_dir_) #--------------------------------------------------------------------------- # Image subscriber callback. #--------------------------------------------------------------------------- def image_callback(self, data): try: cv_image = self.bridge.imgmsg_to_cv2(data, "rgb8") except CvBridgeError as e: rospy.logerr( "Error =" + e) label_im, label_overlay_im = self.classify_image(cv_image) if (self.save_output_): imsave (os.path.join(self.output_dir_, "input_{:05d}.png".format(self.image_count_)), cv_image) imsave (os.path.join(self.output_dir_, "overlay_{:05d}.png".format(self.image_count_)), label_overlay_im) rospy.loginfo ("Saved frame {:05d}".format (self.image_count_)) self.image_count_ += 1 try: self.pub_rgb_labels.publish(self.bridge.cv2_to_imgmsg(label_overlay_im, "rgb8")) self.pub_labels.publish(self.bridge.cv2_to_imgmsg(label_im, "mono8")) except CvBridgeError as e: rospy.logerr( "Error =" + e) def classify_image (self, input_img): start = time.time() #rospy.loginfo ("Classifying image size={}".format(input_img.shape)) # Run KittiSeg model on image feed = {self.image_pl_: input_img} softmax = self.prediction_['softmax'] output = self.sess_.run([softmax], feed_dict=feed) # Reshape output from flat vector to 2D Image shape = input_img.shape output = output[0].reshape(shape[0], shape[1], self.num_classes_) label_im = np.argmax(output, axis = 2).astype(np.uint8) label_overlay_im = tv_utils.overlay_segmentation(input_img, label_im, self.label_colors_alpha_) rospy.loginfo ("Time to run neural net on image = {:.3f}s".format(time.time()-start)) return label_im, label_overlay_im def main(args): '''Initializes and cleanup ros node''' rospy.init_node('cnn_classifier', anonymous=True) save_output = rospy.get_param('save_output', False) classifier = cnn_classifier(save_output = save_output) try: rospy.spin() except KeyboardInterrupt: print("Shutting down CNN Classifier module") if __name__ == '__main__': main(sys.argv) ```
{ "source": "jparajuli/game_theory_models", "score": 3 }
#### File: jparajuli/game_theory_models/brd.py ```python from __future__ import division import numpy as np from normal_form_game import Player class BRD(object): def __init__(self, payoff_matrix, N): A = np.asarray(payoff_matrix) if A.ndim != 2 or A.shape[0] != A.shape[1]: raise ValueError('payoff matrix must be square') self.num_actions = A.shape[0] # Number of actions self.N = N # Number of players self.player = Player(A) # "Representative player" self.tie_breaking = 'smallest' # Current action distribution self.current_action_dist = np.zeros(self.num_actions, dtype=int) self.current_action_dist[0] = self.N # Initialization def set_init_action_dist(self, init_action_dist=None): """ Set the attribute `current_action_dist` to `init_action_dist`. Parameters ---------- init_action_dist : array_like(float, ndim=1), optional(default=None) Array containing the initial action distribution. If not supplied, randomly chosen uniformly over the set of possible action distributions. """ if init_action_dist is None: # Randomly choose an action distribution cutoffs = np.empty(self.num_actions, dtype=int) cutoffs[-1] = self.N + self.num_actions - 1 cutoffs[:-1] = np.random.choice(self.N+self.num_actions-1, self.num_actions-1, replace=False) cutoffs[:-1].sort() cutoffs[1:] -= cutoffs[:-1] + 1 init_action_dist = cutoffs self.current_action_dist[:] = init_action_dist def play(self, current_action): self.current_action_dist[current_action] -= 1 opponent_action_dist = self.current_action_dist next_action = self.player.best_response(opponent_action_dist, tie_breaking=self.tie_breaking) self.current_action_dist[next_action] += 1 def simulate(self, ts_length, init_action_dist=None): action_dist_sequence = \ np.empty((ts_length, self.num_actions), dtype=int) action_dist_sequence_iter = \ self.simulate_iter(ts_length, init_action_dist=init_action_dist) for t, action_dist in enumerate(action_dist_sequence_iter): action_dist_sequence[t] = action_dist return action_dist_sequence def simulate_iter(self, ts_length, init_action_dist=None): self.set_init_action_dist(init_action_dist=init_action_dist) # Sequence of randomly chosen players to revise player_ind_sequence = np.random.randint(self.N, size=ts_length) for t in range(ts_length): yield self.current_action_dist action = np.searchsorted( self.current_action_dist.cumsum(), player_ind_sequence[t], side='right' ) # Action the revising player is playing self.play(current_action=action) def replicate(self, T, num_reps, init_action_dist=None): out = np.empty((num_reps, self.num_actions), dtype=int) for j in range(num_reps): action_dist_sequence_iter = \ self.simulate_iter(T+1, init_action_dist=init_action_dist) for action_dist in action_dist_sequence_iter: x = action_dist out[j] = x return out class KMR(BRD): def __init__(self, payoff_matrix, N, epsilon=0.1): BRD.__init__(self, payoff_matrix, N) # Mutation probability self.epsilon = epsilon def play(self, current_action): if np.random.random() < self.epsilon: # Mutation self.current_action_dist[current_action] -= 1 next_action = self.player.random_choice() self.current_action_dist[next_action] += 1 else: # Best response BRD.play(self, current_action) class SamplingBRD(BRD): def __init__(self, payoff_matrix, N, k=2): BRD.__init__(self, payoff_matrix, N) # Sample size self.k = k def play(self, current_action): self.current_action_dist[current_action] -= 1 opponent_action_dist = self.current_action_dist actions = np.random.choice(self.num_actions, size=self.k, replace=True, p=opponent_action_dist/(self.N-1)) sample_action_dist = np.bincount(actions, minlength=self.num_actions) next_action = self.player.best_response(sample_action_dist, tie_breaking=self.tie_breaking) self.current_action_dist[next_action] += 1 ``` #### File: jparajuli/game_theory_models/test_brd.py ```python from __future__ import division import numpy as np from numpy.testing import assert_array_equal from nose.tools import eq_, ok_, raises from brd import BRD class TestBRD: '''Test the methods of BRD''' def setUp(self): '''Setup a BRD instance''' # 2x2 coordination game with action 1 risk-dominant payoff_matrix = [[4, 0], [3, 2]] self.N = 4 # 4 players self.brd = BRD(payoff_matrix, self.N) def test_set_init_action_dist_with_given_init_action_dist(self): self.brd.set_init_action_dist([1, 3]) assert_array_equal(self.brd.current_action_dist, [1, 3]) def test_set_init_action_dist_when_init_action_dist_None(self): self.brd.set_init_action_dist() # Action dist randomly chosen ok_(all(self.brd.current_action_dist >= 0)) ok_(self.brd.current_action_dist.sum() == self.N) def test_play(self): self.brd.set_init_action_dist([2, 2]) self.brd.play(current_action=1) # Player playing 1 revises ok_(np.array_equal(self.brd.current_action_dist, [3, 1]) or np.array_equal(self.brd.current_action_dist, [2, 2])) def test_simulate_rest_point(self): assert_array_equal( self.brd.simulate(ts_length=3, init_action_dist=[4, 0]), [[4, 0], [4, 0], [4, 0]] ) def test_simulate(self): np.random.seed(22) assert_array_equal( self.brd.simulate(ts_length=3, init_action_dist=[2, 2]), [[2, 2], [1, 3], [0, 4]] ) # Invalid inputs # @raises(ValueError) def test_brd_invalid_input_nonsquare_payoff_matrix(): brd = BRD(payoff_matrix=np.zeros((2, 3)), N=5) if __name__ == '__main__': import sys import nose argv = sys.argv[:] argv.append('--verbose') argv.append('--nocapture') nose.main(argv=argv, defaultTest=__file__) ``` #### File: jparajuli/game_theory_models/test_localint.py ```python from __future__ import division import numpy as np from numpy.testing import assert_array_equal from nose.tools import eq_, ok_, raises from localint import LocalInteraction class TestLocalInteraction: '''Test the methods of LocalInteraction''' def setUp(self): '''Setup a LocalInteraction instance''' # Circle network with 5 players adj_matrix = [[0, 1, 0, 0, 1], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 1, 0, 1], [1, 0, 0, 1, 0]] # 2x2 coordination game with action 1 risk-dominant payoff_matrix = [[4, 0], [2, 3]] self.li = LocalInteraction(payoff_matrix, adj_matrix) def test_set_init_actions_with_given_init_actions(self): self.li.set_init_actions([0, 1, 1, 0, 0]) assert_array_equal(self.li.current_actions, [0, 1, 1, 0, 0]) def test_set_init_actions_when_init_actions_None(self): self.li.set_init_actions() # Actions randomly assigned ok_(all( action in list(range(2)) for action in self.li.current_actions) ) def test_play_when_player_ind_None(self): self.li.set_init_actions([1, 0, 0, 0, 0]) self.li.play() # All players revise assert_array_equal(self.li.current_actions, [0, 1, 0, 0, 1]) def test_play_when_player_ind_int(self): self.li.set_init_actions([1, 0, 0, 0, 0]) self.li.play(player_ind=1) # Player 1 revises assert_array_equal(self.li.current_actions, [1, 1, 0, 0, 0]) def test_play_when_player_ind_list(self): self.li.set_init_actions([1, 0, 0, 0, 0]) self.li.play(player_ind=[0, 1, 2]) # Players 0, 1, and 2 revises assert_array_equal(self.li.current_actions, [0, 1, 0, 0, 0]) def test_simulate_with_simultaneous_revision(self): assert_array_equal( self.li.simulate(ts_length=3, init_actions=[1, 0, 0, 0, 1]), [[1, 0, 0, 0, 1], [1, 1, 0, 1, 1], [1, 1, 1, 1, 1]] ) def test_simulate_with_sequential_revison(self): np.random.seed(60) assert_array_equal( self.li.simulate(ts_length=4, init_actions=[1, 0, 0, 0, 1], revision='sequential'), [[1, 0, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 1, 0, 1], [1, 1, 1, 1, 1]] ) # Invalid inputs # @raises(ValueError) def test_localint_invalid_input_nonsquare_adj_matrix(): li = LocalInteraction(payoff_matrix=np.zeros((2, 2)), adj_matrix=np.zeros((2, 3))) @raises(ValueError) def test_localint_invalid_input_nonsquare_payoff_matrix(): li = LocalInteraction(payoff_matrix=np.zeros((2, 3)), adj_matrix=np.zeros((2, 2))) if __name__ == '__main__': import sys import nose argv = sys.argv[:] argv.append('--verbose') argv.append('--nocapture') nose.main(argv=argv, defaultTest=__file__) ```
{ "source": "jpardobl/cacti_rest", "score": 2 }
#### File: cacti_rest/cacti_rest/models.py ```python from __future__ import unicode_literals from django.core.urlresolvers import reverse from django.db import models import simplejson class Host(models.Model): id = models.IntegerField(primary_key=True) host_template_id = models.IntegerField() description = models.CharField(max_length=150L) hostname = models.CharField(max_length=250L, blank=True) notes = models.TextField(blank=True) snmp_community = models.CharField(max_length=100L, blank=True) snmp_version = models.IntegerField() snmp_username = models.CharField(max_length=50L, blank=True) snmp_password = models.CharField(max_length=50L, blank=True) snmp_auth_protocol = models.CharField(max_length=5L, blank=True) snmp_priv_passphrase = models.CharField(max_length=200L, blank=True) snmp_priv_protocol = models.CharField(max_length=6L, blank=True) snmp_context = models.CharField(max_length=64L, blank=True) snmp_port = models.IntegerField() snmp_timeout = models.IntegerField() availability_method = models.IntegerField() ping_method = models.IntegerField(null=True, blank=True) ping_port = models.IntegerField(null=True, blank=True) ping_timeout = models.IntegerField(null=True, blank=True) ping_retries = models.IntegerField(null=True, blank=True) max_oids = models.IntegerField(null=True, blank=True) device_threads = models.IntegerField() disabled = models.CharField(max_length=2L, blank=True) thold_send_email = models.IntegerField() thold_host_email = models.IntegerField() monitor = models.CharField(max_length=3L) monitor_text = models.TextField() status = models.IntegerField() status_event_count = models.IntegerField() status_fail_date = models.DateTimeField() status_rec_date = models.DateTimeField() status_last_error = models.CharField(max_length=255L, blank=True) min_time = models.DecimalField(null=True, max_digits=12, decimal_places=5, blank=True) max_time = models.DecimalField(null=True, max_digits=12, decimal_places=5, blank=True) cur_time = models.DecimalField(null=True, max_digits=12, decimal_places=5, blank=True) avg_time = models.DecimalField(null=True, max_digits=12, decimal_places=5, blank=True) total_polls = models.IntegerField(null=True, blank=True) failed_polls = models.IntegerField(null=True, blank=True) availability = models.DecimalField(max_digits=10, decimal_places=5) class Meta: db_table = 'host' def to_json(self): return simplejson.dumps({ "resource_type": "host", "hostname": self.hostname, "id": self.id, "description": self.description, "datasources": reverse('resource_host_datasource', args=[self.id, ])}) class DataTemplateData(models.Model): id = models.IntegerField(primary_key=True) local_data_template_data_id = models.IntegerField() local_data_id = models.ForeignKey("DataLocal", db_column="local_data_id", related_name="template") data_template_id = models.ForeignKey("DataTemplate", db_column="data_template_id") data_input_id = models.IntegerField() t_name = models.CharField(max_length=2L, blank=True) name = models.CharField(max_length=250L) name_cache = models.CharField(max_length=255L) data_source_path = models.CharField(max_length=255L, blank=True) t_active = models.CharField(max_length=2L, blank=True) active = models.CharField(max_length=2L, blank=True) t_rrd_step = models.CharField(max_length=2L, blank=True) rrd_step = models.IntegerField() t_rra_id = models.CharField(max_length=2L, blank=True) class Meta: db_table = 'data_template_data' def __unicode__(self): return u"%s" % self.name class DataTemplate(models.Model): id = models.IntegerField(primary_key=True) hash = models.CharField(max_length=32L) name = models.CharField(max_length=150L) class Meta: db_table = 'data_template' class DataLocal(models.Model): id = models.IntegerField(primary_key=True) data_template_id = models.ForeignKey(DataTemplateData, db_column="data_template_id") host_id = models.ForeignKey(Host,db_column="host_id") snmp_query_id = models.IntegerField() snmp_index = models.CharField(max_length=255L) class Meta: db_table = 'data_local' def to_json(self): return simplejson.dumps({ "resource_type": "datasource", "id": self.id, "host_id": self.host_id.description, "template": u"%s" % self.template.get().data_template_id.name, "data": reverse('resource_datasource', args=[self.id, ]), }) def get_rra_path(self): return self.data_template_id.data_source_path class Settings(models.Model): name = models.CharField(max_length=50L, primary_key=True) value = models.CharField(max_length=1024L) class Meta: db_table = 'settings' ``` #### File: cacti_rest/cacti_rest/resource_datasource.py ```python from cacti_rest.utils import retrieve_param from django.http import HttpResponseServerError from django.shortcuts import render_to_response from cacti_rest.models import DataTemplateData, DataLocal import logging, simplejson#, traceback from cacti_rest.rra import extract_data, convert_to_json from cacti_rest.settings import RRA_PATH from django.core.urlresolvers import reverse def get(request, id_ds): try: obj = DataTemplateData.objects.get(local_data_id=id_ds) path = obj.data_source_path.replace("<path_rra>", RRA_PATH) if path is None: raise("Can't find data related to datasouce %s" % data) start = retrieve_param(request, "start", "-1h") data = convert_to_json(extract_data(path, 300, start)) response = render_to_response( "cacti_rest/json/datasource.json", { "resource_type": "datasource", "data": data, "id": id_ds, "url": reverse("resource_datasource", args=[id_ds, ]), "host_resource": reverse("resource_host", args=[obj.local_data_id.host_id.id, ]), }, content_type="application/json") response['Cache-Control'] = 'no-cache' return response except Exception, ex: logging.error("Resource get error: %s" % ex) response = HttpResponseServerError( content=simplejson.dumps({"errors": str(ex)}), content_type="application/json") response['Cache-Control'] = 'no-cache' return response #@csrf_exempt #@access_required def entrance(request, *args, **kwargs): if request.method == "GET": return get(request, *args, **kwargs) ```
{ "source": "jpardobl/django-hautomation-suite", "score": 2 }
#### File: management/commands/backup_config.py ```python import logging, os from ha_cfg import paths from django.core.management.base import BaseCommand logger = logging.getLogger("backup_config") class Command(BaseCommand): args = '' help = 'Create a ready to run Django settings file for Home Automation Python Project' def handle(self, *args, **options): cwd = os.getcwd() logger.info("Backing up settings from every involved module to %s" % cwd) shutil.copyfile(paths.x10_plugin_settings(), os.path.join(cwd, "x10_plugin_settings.bak")) logger.info("Backed up file: %s" % os.path.join(cwd, "x10_plugin_settings.bak")) shutil.copyfile(paths.django_thermostat_settings(), os.path.join(cwd, "django_thermostat_settings.bak")) logger.info("Backed up file: %s" % os.path.join(cwd, "django_thermostat_settings.bak")) ``` #### File: management/commands/ha_apply_config.py ```python import logging, re, shutil, pytz from ha_cfg import paths from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): args = '' help = 'Create a ready to run Django settings file for Home Automation Python Project' DISTRO_SETTINGS_PATH = "django_hautomation_suite/distro_settings.py" RUNNING_SETTINGS_PATH = "django_hautomation_suite/settings.py" CONFIGURED_SETTINGS_PATH = "django_hautomation_suite/settings_configured.py" HAUTOMATION_X10_PATH = "django_hautomation_suite/distro_hautomation_x10_settings.py" THERMOSTAT_PATH = "django_hautomation_suite/distro_thermostat_settings.py" FQDN_PATTERN = r"(?=^.{4,255}$)(^((?!-)[a-zA-Z0-9-]{1,63}(?<!-)\.)+[a-zA-Z]{2,63}$)" IP_PATTERN = r"" def gen_settings(self): shutil.copyfile(Command.DISTRO_SETTINGS_PATH, Command.CONFIGURED_SETTINGS_PATH) def handle(self, *args, **options): logging.basicConfig(level=logging.DEBUG) logging.info("Applying settings from %s to %s" % (self.CONFIGURED_SETTINGS_PATH, self.RUNNING_SETTINGS_PATH)) shutil.copyfile(self.CONFIGURED_SETTINGS_PATH, self.RUNNING_SETTINGS_PATH) ```
{ "source": "jpardobl/django-thermostat", "score": 2 }
#### File: backends/rawfile/RAWFile.py ```python import os import sys import time import copy try: import cPickle as pickle except: import pickle from threading import Thread, Lock from pypelib.resolver.Resolver import Resolver ''' @author: lbergesio,omoya,cbermudo @organization: i2CAT, OFELIA FP7 RAWFile Implementes persistence engine to a raw file for RuleTables ''' class RAWFile(): #XXX: lbergesio: Is it necessary to use a mutex here? _mutex = Lock() @staticmethod def save(obj, parser, **kwargs): if "fileName" not in kwargs: raise Exception("FileName is required") with RAWFile._mutex: fileObj = open(kwargs["fileName"], "wb" ) try: cObj = obj.clone() except Exception,e: print "Could not clone original obj %s\n%s" %(str(obj),str(e)) pickle.dump(cObj,fileObj) fileObj.close() @staticmethod def load(tableName, resolverMappings, parser, **kwargs): with RAWFile._mutex: if not kwargs["fileName"]: raise Exception("FileName is required") fileObj = open(kwargs["fileName"], "r" ) table = pickle.load(fileObj) table._mutex = Lock() table._mappings = resolverMappings table._resolver = Resolver(table._mappings) fileObj.close() if table.name != tableName: raise Exception("Table name mismatch; did you specify the correct file?") return table ``` #### File: pypelib/persistence/PersistenceEngine.py ```python import os import sys import time ''' @author: msune,omoya,CarolinaFernandez @@organization: i2CAT, OFELIA FP7 Persistence engine Implementes driver-based persistence backend selection ''' class PersistenceEngine(): #Default Class Attributes _defaultParser = "RegexParser" _defaultPersistence = "Django" #Drivers _drivers = ["Django","RAWFile"] #Fill with appropiate path PATH_TO_DRIVERS="backends" def __init__(self): raise Exception("Static class cannot be instanciated") @staticmethod def _getDriver(driverName): print "driver name: %s" %driverName if driverName == "Django": PATH = PersistenceEngine.PATH_TO_DRIVERS + '.django.Django' try: exec('from ' + PATH + ' import Django') return Django except: raise Exception(driverName + ' persistence driver not found in ' + PersistenceEngine.PATH_TO_DRIVERS) elif driverName == "RAWFile": PATH = PersistenceEngine.PATH_TO_DRIVERS + '.rawfile.RAWFile' try: exec('from ' + PATH + ' import RAWFile') return RAWFile except: raise Exception(driverName + ' persistence driver not found in ' + PersistenceEngine.PATH_TO_DRIVERS) else: raise Exception(driverName + ' not supported') @staticmethod def save(obj, pBackend, parser=None, **kwargs): return PersistenceEngine._getDriver(pBackend).save(obj, parser, **kwargs) @staticmethod def load(tableName, pBackend, resolverMappings, parser=None, **kwargs): return PersistenceEngine._getDriver(pBackend).load(tableName, resolverMappings, parser, **kwargs) ''' Retrieves every Driver's PolicyRuleTable object for a given name. This method should be seldom used. ''' @staticmethod def loadAll(tableName, pBackend): return PersistenceEngine._getDriver(pBackend).loadAll(tableName) ''' Deletes a Driver's PolicyRuleTable object for a given ID. This method should be seldom used. ''' @staticmethod def delete(tableID, pBackend): return PersistenceEngine._getDriver(pBackend).delete(tableID) ``` #### File: pypelib/resolver/Resolver.py ```python import os import sys import time from threading import Thread, Lock ''' @author: msune @organization: i2CAT, OFELIA FP7 Resolver class Attemps to resolve keywords agains values/actions through mappings ''' #Resolvers dictionary _resolvers = {} '''Resolver class''' class Resolver(): #Class attributes _mappings = None _mutex = None #Constructor def __init__(self,mappings): self._mutex=Lock() self._mappings =mappings pass #set mappings #@mappings: dictionary containing name <-> mapping (object...) def setMappings(self,mappings): with self._mutex: self._mappings = mappings #Get or generate the resolver @staticmethod def getOrGenerateResolver(theId,mappings=None): if theId in _resolvers: return _resolvers[theId] if mappings == None: raise Exception("Could not find the resolver with id:"+theId) instance = Resolver(mappings) #Save instance _resolvers[theId] = instance return instance #Try to parse as a number def _getNumericValue(self,string): try: #Try to parse integer return int(string) except: #Try a floating point try: return float(string) except: return string #Resolve a key def resolve(self, key, metaObj): with self._mutex: #print "mappings: %s\n mmmmmmmmmmmmmmmmmmmmmmmm" % self._mappings if not (isinstance(key,str) or isinstance(key,unicode)): raise Exception("Only string keys are able to be resolved") if key not in self._mappings: #print "[DEBUG] "+str(self._getNumericValue(key)) return self._getNumericValue(key) if isinstance(self._mappings[key],str): #print "aaaaaaaaaaaaaaaaaa[DEBUG] resolved"+str(eval(self._mappings[key])) return eval(self._mappings[key]) else: #print "[DEBUG] Action: %s" % self._mappings[key] return self._mappings[key](metaObj) #resolver = Resolver.getOrGenerateResolver("hola",{"test":"metaObj","test2":2}) #metaObj = 3 #print "Value:"+str(resolver.resolve("test",metaObj)) #print "Value:"+str(resolver.resolve("test2",metaObj)) ``` #### File: django_thermostat/pypelib/Rule.py ```python import os import sys import time import exceptions import uuid import logging ''' @author: msune,lbergesio,omoya,CarolinaFernandez @organization: i2CAT, OFELIA FP7 PolicyEngine Rule class Encapsulates logic of a simple Rule ''' from django_thermostat.pypelib.Condition import Condition from django_thermostat.pypelib.persistence.PersistenceEngine import PersistenceEngine from django_thermostat.pypelib.utils.Logger import Logger class TerminalMatch(exceptions.Exception): value = None desc = None def __init__(self,rType,desc): if isinstance(rType['value'],bool): self.value = rType['value'] else: raise Exception("Unknown rule type") self.desc = desc def __str__(self): return "%s "%self.desc class Rule(): logger = Logger.getLogger() #Class Attributes _condition = None _description = None _errorMsg = None _uuid = None #uuid.uuid4().hex _defaultParser = "RegexParser" _defaultPersistence = "Django" #Types of rule POSITIVE_TERMINAL={'value':True,'terminal':True} POSITIVE_NONTERMINAL={'value':True,'terminal':False} NEGATIVE_TERMINAL={'value':False,'terminal':True} NEGATIVE_NONTERMINAL={'value':False,'terminal':False} _types = [POSITIVE_TERMINAL,POSITIVE_NONTERMINAL,NEGATIVE_TERMINAL, NEGATIVE_NONTERMINAL] #Rule type _type = None #Rule match Action _matchAction=None #Getters def getCondition(self): return self._condition def getDescription(self): return self._description def getType(self): return self._type def getErrorMsg(self): return self._errorMsg def getMatchAction(self): return self._matchAction def getUUID(self): return self._uuid #setters def setUUID(self,UUID): self._uuid = UUID #Constructor def __init__(self,condition,description,errorMsg,ruleType=POSITIVE_TERMINAL,action=None,uuid=None): if not isinstance(condition,Condition): raise Exception("Object must be an instance of Condition") if ruleType not in self._types: raise Exception("Unknown rule type") if action == None and (ruleType == self.NEGATIVE_NONTERMINAL or ruleType == self.POSITIVE_NONTERMINAL): raise Exception("You cannot create non-terminal actionless rules") self._condition = condition self._matchAction = action self._type = ruleType self._description = description self._errorMsg = errorMsg self._uuid = uuid def dump(self): #Debug dump toReturn = self._condition.dump() toReturn+="=> %s "%str(self._type['value']) if self._matchAction != None: toReturn += "(%s) "%str(self._matchAction) if self._type['terminal']: toReturn += "[TERM] " if self._description: toReturn+=" #"+self._description return toReturn #Resolver is passed at evaluation time to be able to dynamically redirect actions def evaluate(self,metaObj,resolver): try: Rule.logger.setLevel(logging.DEBUG) result = self._condition.evaluate(metaObj,resolver) Rule.logger.debug('Result was: %s rule: [%s]' % (str(result), self.dump())) except Exception as e: Rule.logger.error('Error on rule: %s',self.dump()) Rule.logger.error('Exception: %s', str(e)) Rule.logger.error('Rule will be skiped!') result = False if result: if self._matchAction != None: resolver.resolve(self._matchAction,metaObj) #If is terminal raise TerminalMatch if self._type['terminal']: raise TerminalMatch(self._type,self._errorMsg) #return whatever return def getConditionDump(self): return self.getCondition().dump() ``` #### File: pypelib/utils/Logger.py ```python import logging from django.conf import settings class Logger(): @staticmethod def getLogger(): logger = logging.getLogger("thermostat.rules") logger.setLevel(settings.LOG_LEVEL) return logger ``` #### File: django-thermostat/django_thermostat/rules.py ```python from django_thermostat.mappings import get_mappings from pypelib.RuleTable import RuleTable from django_thermostat.utils import gen_comparing_time from django_thermostat.models import Rule import logging from django.conf import settings logger = logging.getLogger("thermostat.rules") logger.setLevel(settings.LOG_LEVEL) def evaluate_non_themp(): mappings = get_mappings() table = RuleTable( "Non thermostat rules", mappings, "RegexParser", #rawfile, "RAWFile", None) table.setPolicy(False) for rule in Rule.objects.filter(active=True, thermostat=False).order_by("pk"): table.addRule(rule.to_pypelib()) if settings.DEBUG: table.dump(logger) try: table.evaluate({}) logger.debug("Table NONTHERM evaluated True") except Exception as ex: logger.debug("Table NONTHERM evaluated False") def evaluate(): mappings = get_mappings() table = RuleTable( "Decide tunned temp", mappings, "RegexParser", #rawfile, "RAWFile", None) logger.debug("current time: %s " % mappings["current_time"]()) logger.debug("current day of week: %s" % mappings["current_day_of_week"]()) logger.debug("current temp %s" % mappings["current_internal_temperature"]()) logger.debug("economic %s" % mappings["economic_temperature"]()) logger.debug("confort %s" % mappings["confort_temperature"]()) logger.debug("tuned %s" % mappings["tuned_temperature"]()) logger.debug("flame %s" % mappings["flame_on"]()) logger.debug("heat on %s" % mappings["heater_on"]()) table.setPolicy(False) table.addRule("if heater_manual = 1 then ACCEPT") for rule in Rule.objects.filter(active=True, thermostat=True).order_by("pk"): table.addRule(rule.to_pypelib()) if settings.DEBUG: table.dump(logger) metaObj = {} try: table.evaluate(metaObj) logger.debug("Table THERM1 evaluated True") mappings["tune_to_confort"]() except Exception: logger.debug("Table THERM1 evaluated False") mappings["tune_to_economic"]() table1 = RuleTable( "Decide flame status", mappings, "RegexParser", #rawfile, "RAWFile", None) table1.addRule("if heater_on = 0 then deny") table1.addRule("if current_internal_temperature < tuned_temperature then accept") if settings.DEBUG: table1.dump(logger) try: table1.evaluate(metaObj) logger.debug("Table THERM2 evaluated True") try: mappings["start_flame"]() except Exception as ex: logger.critical("ERROR: Cant start flame: %s" % ex) except Exception as e: logger.debug("Table THERM2 evaluated False") try: mappings["stop_flame"]() except Exception as ex: logger.critical("ERROR: Cant stop flame: %s" % ex) ``` #### File: django-thermostat/django_thermostat/tests.py ```python import unittest, os, subprocess, logging from django_thermostat.models import * from django_thermostat.mappings.weather import log_flame_stats from django_thermostat.mappings.timings import is_at_night from django_thermostat import settings from time import sleep class Testaws(unittest.TestCase): def test_sns_msg(self): from django_thermostat.aws import ses_send_email print ses_send_email("subject", "arn:aws:sns:eu-west-1:837355510129:JavierPardo", "hola") class TestMappings(unittest.TestCase): def test_is_at_night(self, ): from mappings.timings import is_at_night self.assertTrue(is_at_night() == 1, "Not properly calculating is_at_night") class TestFlameStatsParser(unittest.TestCase): def setUp(self): unittest.TestCase.setUp(self) def test_regular(self): print "Testing regular, 5 seconds flaming..." os.remove(settings.FLAME_STATS_PATH) log_flame_stats(True) sleep(5) log_flame_stats(False) out = subprocess.check_output(["python", "manage.py", "parse_flame_stats", "1"]) #self.assertRegexpMatches(text, expected_regexp, msg) self.assertRegexpMatches( out, "5\n$", "not properly parsing regular example of flame stats: %s" % out) def test_without_final_off(self): print "testing without final off plus and flame started 5 s before parsing..." os.remove(settings.FLAME_STATS_PATH) log_flame_stats(True) sleep(5) out = subprocess.check_output(["python", "manage.py", "parse_flame_stats", "1"]) self.assertRegexpMatches( out, "5\n$", "not properly parsing without final_off: %s" % out) def test_starts_before_time_range(self): print "Testing if flamings starts before time range, it takes 1 minute..." os.remove(settings.FLAME_STATS_PATH) log_flame_stats(True) sleep(61) out = subprocess.check_output(["python", "manage.py", "parse_flame_stats", "1"]) self.assertRegexpMatches( out, "60\n$", "not properly parsing when flaming starts before time range: %s" % out) def test_first_data_is_an_off(self): print "Testing when first data line included in time range is OFF" os.remove(settings.FLAME_STATS_PATH) log_flame_stats(False) sleep(10) out = subprocess.check_output(["python", "manage.py", "parse_flame_stats", "1"]) self.assertRegexpMatches( out, "49\n$", "not properly parsing when flaming starts before time range: %s" % out) class TestRules(unittest.TestCase): def setup(self, ): Day(name="Mon", value="Mon").save() Day(name="Tue", value="Tue").save() Day(name="Wed", value="Wed").save() Day(name="Thu", value="Thu").save() Day(name="Fri", value="Fri").save() def test_to_pyplib(self, ): self.setup() d = Day.objects.get(name="Mon") tr = TimeRange(start="6:00:00", end="7:00:00") tr.save() r = Rule() r.active = True r.action = "confort_temperature" r.save() r.days.add(d) r.ranges.add(tr) self.assertEquals( r.to_pypelib(), "if ( (current_day_of_week = Mon) ) && ( (1385528400.0 > current_time && current_time < 1385532000.0) ) then do confort_temperature", "Not properly trasnsforming to pypelib, got: %s" % r.to_pypelib() ) r.days.add(Day.objects.get(name="Tue")) self.assertEquals( r.to_pypelib(), "if ( (current_day_of_week = Mon) || (current_day_of_week = Tue) ) && ( (1385528400.0 > current_time && current_time < 1385532000.0) ) then do confort_temperature", "Not properly trasnsforming to pypelib, got: %s" % r.to_pypelib() ) r.days.add(Day.objects.get(name="Fri")) self.assertEquals( r.to_pypelib(), "if ( (current_day_of_week = Mon) || (current_day_of_week = Tue) || (current_day_of_week = Fri) ) && ( (1385528400.0 > current_time && current_time < 1385532000.0) ) then do confort_temperature", "Not properly trasnsforming to pypelib, got: %s" % r.to_pypelib() ) r.days.all().delete() self.assertEquals( r.to_pypelib(), "if ( (1385528400.0 > current_time && current_time < 1385532000.0) ) then do confort_temperature", "Not properly trasnsforming to pypelib, got: %s" % r.to_pypelib() ) r.ranges.all().delete() self.assertEquals( r.to_pypelib(), "if 1 = 1 then do confort_temperature", "Not properly trasnsforming to pypelib, got: %s" % r.to_pypelib() ) class TestMappings(unittest.TestCase): def test_is_at_night(self): logging.basicConfig(level=logging.DEBUG) print ( "Is at nigh? it says: %s" % is_at_night()) def main(): unittest.main() if __name__ == "__main__": unittest.main() ``` #### File: jpardobl/django-thermostat/parse_flame.py ```python import requests, logging, re from django_thermostat import settings from time import localtime, time, mktime def time_range(self, length): current = time() return [float(current - length * 60), float(current)] def handle(self, *args, **kwargs): # logging.basicConfig(level=logging.DEBUG) if len(args) != 1: self.stderr.write("Please send argument of how many minutes") exit(1) with open(settings.FLAME_STATS_PATH) as f: contents = f.readlines() t_range = time_range(int(args[0])) # logging.debug("Time range %s" % t_range) cont = 0 last_start = None data = [] for line in contents: cont = cont + 1 m = re.search("(\d+\.\d+)\n$", line) if m is None: logging.warn("Format of line %d not correct, cannot find time from epoch at the end" % cont) continue time = float(m.groups(0)[0]) m = re.search("^(ON|OFF)", line) if m is None: logging.warn("Format of line %d not correct, cannot find ON|OFF action at the beginning" % cont) continue action = m.groups(0)[0] if time < t_range[0] or time > t_range[1]: logging.debug("Dejamos la linea %d fuera porque se sale del rango pedido" % cont) #initialize the last_start so we know it even if it occur before the time range #if the line is OFF we put last_start = None so the state of the flame is off if action == "ON": last_start = time else: last_start = None continue data.append([action, time]) print data print "last_Start: %s " % last_start last_heating_period = None total_heating_period = 0 for action, time in data: if action == "ON": last_start = time last_heating_period = None if action == "OFF" and last_start is not None: #TODO que pasa si last_start es None last_heating_period = time - last_start last_start = None total_heating_period = int(total_heating_period) + int((last_heating_period if last_heating_period is not None else 0)) """ logging.debug("action: %s time: %d; %d %d %d" % ( action, time, last_heating_period if last_heating_period is not None else 0, last_start if last_start is not None else 0, total_heating_period)) """ #si there is no data (for example: every line was out of time range, we need to know #the status of the flame. Therefore we use the last_start, which is set above, when the time range uis checked if len(data) == 0 and last_start is not None: print "como todas las lineas son anteriores al periodo y esta arrancado desde antes, le meto el tiempo desde el principio del periodo" total_heating_period = int(args[0]) * 60 print total_heating_period #if the first action in data is OFF, means the flame was on by the starting of the time range #it is needed to add this time if len(data) and data[0][0] == "OFF": # print data[0][1] print "como la pimera linea es OFF tenemos que add el tiempo desde el principip del periodo hasta el OFF, ates: %s" % total_heating_period total_heating_period = int(total_heating_period) + int(data[0][1] - t_range[0]) print "despuest %s " % total_heating_period #if the last action is ON, need to add the time from the instance of that last action, #to the end of the range if len(data) and data[len(data)-1][0] == "ON": total_heating_period = int(total_heating_period) + int(t_range[1] - data[0][1]) try: #calculate the percent total_seconds = int(args[1]) * 60 print("absolute:%d percent:%.2f" % (total_heating_period, (100 * total_heating_period ) / total_seconds)) exit(0) except Exception, er: logging.error("Exception while trying to return the value: %s " % er) ```
{ "source": "jpardobl/hautomation_x10", "score": 2 }
#### File: hautomation_x10/hautomation_x10/cmds.py ```python from utils import validate_address from driver import netcat try: from django.conf import settings except ImportError: import settings import logging def pl_switch(address, value): if value not in ["on", "off"]: raise ValueError("Switch value must be 'on' or 'off'") validate_address(address) cmd = b"pl %s %s\n" % (address, value) netcat(settings.MOCHAD_HOST, settings.MOCHAD_PORT, cmd) def pl_dim(address, value): if int(value) not in range(0, 32): raise ValueError("Dim value must be in the range(0, 32)") validate_address(address) cmd = "pl %s dim %s\n" % (address, value) netcat(settings.MOCHAD_HOST, settings.MOCHAD_PORT, cmd) def pl_bri(address, value): if int(value) not in range(0, 32): raise ValueError("Dim value must be in the range(0, 32)") validate_address(address) cmd = "pl %s bright %s\n" % (address, value) netcat(settings.MOCHAD_HOST, settings.MOCHAD_PORT, cmd) def pl_all_lights_on(group): cmd = "pl %s1 extended_code_1 0 5\n" % group netcat(settings.MOCHAD_HOST, settings.MOCHAD_PORT, cmd) def pl_all_lights_off(group): cmd = "pl %s1 extended_code_1 0 11\n" % group netcat(settings.MOCHAD_HOST, settings.MOCHAD_PORT, cmd) ``` #### File: hautomation_x10/hautomation_x10/deploy.py ```python import os import sys def populate_db(): pwd = os.getcwd() sys.path.append(pwd) try: if "DJANGO_SETTINGS_MODULE" not in os.environ: raise ImportError("No DJANGO_SETTINGS_MODULE env variable found") from hacore.models import Protocol if Protocol.objects.filter(name="X10").count() == 0: Protocol( name="X10", gobj_name="driver_X10", module="hautomation_x10", validate_address_module="hautomation_x10.utils").save() sys.stdout.writelines("Protocoll successfully populated into db") else: sys.stdout.writelines("Protocol is already at the db. No changes made.") sys.path.remove(os.getcwd()) sys.exit(0) except Exception, ex: sys.path.remove(os.getcwd()) sys.stderr.writelines(ex.message) sys.exit(1) ``` #### File: hautomation_x10/hautomation_x10/driver.py ```python import socket try: from django.conf import settings except ImportError: import settings import logging driver_logger = logging.getLogger("driver") driver_logger.setLevel(settings.LOG_LEVEL) def netcat(hostname, port, content): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) driver_logger.debug("Trying connection to: %s:%s" % (hostname, port)) s.connect((hostname, port)) driver_logger.debug("Connected to: %s:%s" % (hostname, port)) s.sendall(b"%s\n" % content) driver_logger.debug("sent: %s" % content) s.shutdown(socket.SHUT_WR) buff = "" while True: data = s.recv(1024) if data == "": break buff = "%s%s" % (buff, data) driver_logger.debug("Received: %s" % repr(buff)) s.close() driver_logger.debug("Connection closed.") return repr(buff) except Exception as ex: driver_logger.error("ERROR: %s" % ex) raise ex ```
{ "source": "jpardobl/odoo_file_export", "score": 2 }
#### File: odoo_file_export/modules/blob.py ```python import logging import os import re import pandas as pd from odoo import api, fields, models from odoo.tools.config import config from azure.core.exceptions import ResourceExistsError from azure.storage.blob import BlobClient _logger = logging.getLogger(__name__) class BlobUpload(models.Model): _name = 'odoo_file_export.blob' _description = 'Blob File Upload' name = fields.Char(required=True) file = fields.Char(required=True) storage_account_url = fields.Char(required=True) container = fields.Char(required=True) blob_name = fields.Char(required=True) credential = fields.Char(required=True) def _do_upload(self, blob, file_full_path): with open(file_full_path, "rb") as data: blob.upload_blob(data) _logger.info("Local file {} uploaded to Blob Storage: {}".format(file_full_path, self.blob_name)) def upload(self, remove_local_data_file=True, overwrite=True): for record in self: try: file_full_path = os.path.join(config.get('data_dir'), record.file) if not os.path.exists(file_full_path): _logger.error("Cannot find file ({}), thus not uploading".format(file_full_path)) continue blob = BlobClient( account_url=record.storage_account_url, container_name=record.container, blob_name=record.blob_name, credential=record.credential) try: record._do_upload(blob, file_full_path) except ResourceExistsError as ex: if not overwrite: _logger.info("El fichero existe, no sd sobreescribe por que overwrite=False") continue _logger.debug("El fichero existe, hay que sobreescribirlo") blob.delete_blob() _logger.debug("El fichero se ha borrado para sobreescribirlo") record._do_upload(blob, file_full_path) if remove_local_data_file: os.unlink(file_full_path) except Exception as ex: _logger.error("Error uploading to Blob: type({}), {}".format(type(ex), ex)) continue ``` #### File: odoo_file_export/modules/google_drive.py ```python import logging import os import re import pandas as pd from odoo import api, fields, models from odoo.tools.config import config from odoo.tools.safe_eval import safe_eval from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from pydrive.files import ApiRequestError, FileNotUploadedError from google.cloud import storage _logger = logging.getLogger(__name__) #TODO post messages to the screen #TODO add credentials tool to the module class GoogleDriveUpload(models.Model): _name = 'odoo_file_export.google_drive' _description = 'Google Drive File Upload' name = fields.Char(required=True) file = fields.Char(required=True) file_mime_type = fields.Char(required=True, default='text/csv') target_folder_id = fields.Char(required=False) target_file_name = fields.Char(required=True) convet_to_google_format = fields.Boolean(default=True) google_drive_file_id = fields.Char() def _delete_gdrive_file(self, gdrive, file_id): try: _logger.debug("Trying to delete gdrive file: {}".format(file_id)) gdrive.CreateFile({'id': file_id}).Delete() _logger.debug("File deleted") except ApiRequestError as aex: _logger.error("Error while deleting gdrive file: {}".format(aex)) except FileNotUploadedError: pass def upload(self, overwrite=True, remove_local_data_file=True): settings_file = self.env['res.config.settings'].browse().gdrive_settings_file_name() _logger.debug("Reading gdrive settings: {}".format(settings_file)) gauth = GoogleAuth(settings_file=settings_file) gdrive_client = GoogleDrive(gauth) for record in self: try: file_full_path = os.path.join(config.get('data_dir'), record.file) if not os.path.exists(file_full_path): _logger.error("Cannot find extract file ({}), thus not uploading".format(file_full_path)) continue if overwrite and record.google_drive_file_id: record._delete_gdrive_file(gdrive_client, record.google_drive_file_id) params = { 'title': record.target_file_name, 'mimeType': record.file_mime_type, } if not self.target_folder_id is False: params['parents'] = [{'id': record.target_folder_id}] _logger.debug("Uploading file to Google Drive with params: {}".format(params)) f = gdrive_client.CreateFile(params) f.SetContentFile(file_full_path) f.Upload(param={ 'convert': record.convet_to_google_format }) self.google_drive_file_id = f['id'] _logger.info("Uploaded extract: {}".format(file_full_path)) if remove_local_data_file: os.unlink(file_full_path) except Exception as ex: _logger.error("Error uploading extract to gdrive: {}".format(ex)) continue ``` #### File: odoo_file_export/tests/test_gdrive_res_config_settings.py ```python import os import unittest import yaml from odoo.tests.common import TransactionCase from odoo.tools.config import config class TestResConfigSettings(TransactionCase): def setUp(self): super(TestResConfigSettings, self).setUp() self.config = self.env['res.config.settings'].with_user(self.env.user.id) def off_test_config_save_in_file(self): cc = self.config.create({ 'google_drive_client_id': 'client_id_testing', 'google_drive_client_secret': 'client_secret_testing' }) cc.set_values() assert os.path.isfile(cc.gdrive_settings_file_name()) with open(cc.gdrive_settings_file_name(), 'r') as reader: data = yaml.load(reader, Loader=yaml.FullLoader) assert 'client_id_testing' == data['client_config']['client_id'] assert 'client_secret_testing' == data['client_config']['client_secret'] self.assertIn('https://www.googleapis.com/auth/drive', data['oauth_scope']) self.assertIn('https://www.googleapis.com/auth/drive.install', data['oauth_scope']) assert data['save_credentials'] assert 'file' == data['save_credentials_backend'] credentials_file = os.path.join(config.get('data_dir'), "{}.json".format(cc.gdrive_settings_file_name())) assert credentials_file == data['save_credentials_file'] def off_test_config_read_from_file(self): cc = self.config.create({ 'google_drive_client_id': 'client_id_testing_reading', 'google_drive_client_secret': 'client_secret_testing_reading' }) cc.set_values() values = cc.get_values() assert 'client_id_testing_reading' == values['google_drive_client_id'] assert 'client_secret_testing_reading' == values['google_drive_client_secret'] """ assert values['save_credentials'] assert 'file' == 'save_credentials_backend' credentials_file = os.path.join(config.get('data_dir'), "{}.json".format(cc.gdrive_settings_file_name())) assert credentials_file == values['save_credentials_file'] """ ```
{ "source": "jparenas/Hack-a-Ton", "score": 3 }
#### File: app/api/database.py ```python import os import sqlite3 as lite def get_database(): connection = lite.connect('app.db', check_same_thread=False) cursor = connection.cursor() if os.getenv('DELETE_TABLES'): print('Restarted Tables!') cursor.execute("DROP TABLE PLAN") cursor.execute("DROP TABLE USERS") cursor.execute("DROP TABLE QUERIES") cursor.execute("DROP TABLE CITIES") cursor.execute("DROP TABLE IMAGES") cursor.execute(""" CREATE TABLE IF NOT EXISTS QUERIES ( query_id INT NOT NULL, query_hash BINARY(32) NOT NULL, uuid INT NOT NULL, time DATETIME NOT NULL, response_code INT, departure CHAR(3), budget INT, start_day CHAR(10), end_day CHAR(10), num_passengers INT, PRIMARY KEY (query_id), FOREIGN KEY (uuid) REFERENCES USERS(uuid)) """) cursor.execute(""" CREATE TABLE IF NOT EXISTS USERS ( uuid INT NOT NULL, last_query INT, PRIMARY KEY (uuid), FOREIGN KEY (last_query) REFERENCES QUERIES(query_id)) """) cursor.execute(""" CREATE TABLE IF NOT EXISTS CITIES ( iata_name CHAR(3) NOT NULL, city_name VARCHAR(255), latitude VARCHAR(255), longitude VARCHAR(255), PRIMARY KEY (iata_name)) """) cursor.execute(""" CREATE TABLE IF NOT EXISTS IMAGES ( iata_name CHAR(3) NOT NULL, image VARCHAR(1024) NOT NULL, FOREIGN KEY (iata_name) REFERENCES CITIES(iata_name)) """) cursor.execute(""" CREATE TABLE IF NOT EXISTS PLAN ( start_date DATE, end_date DATE, origin CHAR(3), destination CHAR(3), price INT, url VARCHAR(1024), like BIT, query_id INT, FOREIGN KEY (query_id) REFERENCES QUERIES(query_id), FOREIGN KEY (destination) REFERENCES CITIES(iata_name)) """) return connection, cursor ``` #### File: app/api/resources.py ```python import os import json import re import datetime import requests import hashlib import random import bisect import requests from amadeus import Client, Location, ResponseError, NotFoundError, ServerError import googlemaps from datetime import datetime, timedelta from flask import request, Response, jsonify from flask_restplus import Resource from sklearn.neighbors import KNeighborsRegressor from .security import require_auth from .database import get_database from . import api_rest amadeus = Client( client_id=os.getenv('AMADEUS_API_KEY'), client_secret=os.getenv('AMADEUS_SECRET_KEY'), #log_level='debug' ) gmaps = googlemaps.Client(key=os.getenv('GOOGLE_MAPS_SERVER_KEY')) cache_timeout = os.getenv('CACHE_TIMEOUT', 30) db_connection, db_cursor = get_database() def check_date(date): if re.match(r'\d{4}-\d{2}-\d{2}', date): return True else: return False class SecureResource(Resource): """ Calls require_auth decorator on all requests """ method_decorators = [require_auth] @api_rest.route('/get_flights') @api_rest.param('origin', 'Origin of the flight') @api_rest.param('uuid', 'UUID of the user') @api_rest.param('budget', 'Budget of the flight') @api_rest.param('start_date', 'Start date of the flight') @api_rest.param('end_date', 'End date of the flight') @api_rest.param('num_passengers', 'Number of passengers') class FlightResource(Resource): def get(self): arguments = {'currency': 'USD', 'nonStop': False} if not request.args.get('origin'): return {'error':'Origin city is mandatory', 'status':400}, 400 if not request.args.get('uuid'): return {'error':'UUID is mandatory', 'status':400}, 400 arguments['origin'] = request.args.get('origin') uuid = request.args.get('uuid') if request.args.get('budget'): arguments['maxPrice'] = abs(int(request.args.get('budget'))) if request.args.get('start_date'): if not check_date(request.args.get('start_date')): return {'error':'Start date is not using the right format', 'status':400}, 400 arguments['departureDate'] = request.args.get('start_date') if request.args.get('end_date') and request.args.get('start_date'): if not check_date(request.args.get('end_date')): return {'error':'End date is not using the right format', 'status':400}, 400 start_date = datetime.strptime(request.args.get('start_date'), '%Y-%m-%d').date() end_date = datetime.strptime(request.args.get('end_date'), '%Y-%m-%d').date() if start_date > end_date: return {'error':'End date is earlier than the start day', 'status':400}, 400 difference = end_date - start_date arguments['duration'] = difference.days if request.args.get('num_passengers'): num_passengers = abs(int(request.args.get('num_passengers'))) else: num_passengers = 1 arguments_hash = hashlib.sha256(str(arguments).encode('ascii')).hexdigest() db_cursor.execute("SELECT query_id, time FROM QUERIES WHERE query_hash=? AND uuid==?", (arguments_hash, uuid)) result = [] query_cache_result = db_cursor.fetchone() if query_cache_result and datetime.strptime(query_cache_result[1], '%Y-%m-%d %H-%M-%S') + timedelta(minutes=cache_timeout) > datetime.utcnow(): db_cursor.execute("SELECT PLAN.start_date, PLAN.end_date, PLAN.origin, PLAN.destination, PLAN.price FROM PLAN WHERE PLAN.query_id=?", (query_cache_result[0],)) for query_result in db_cursor.fetchall(): flight = { 'departureDate': query_result[0], 'returnDate': query_result[1], 'origin': query_result[2], 'destination': query_result[3], 'price': { 'total': query_result[4], } } db_cursor.execute('SELECT image FROM IMAGES WHERE iata_name=?', (flight['destination'],)) flight['image'] = random.choice(db_cursor.fetchall())[0] result.append(flight) else: try: flights = amadeus.shopping.flight_destinations.get(**arguments).result status_code = 200 except NotFoundError: return {'flights': []}, 201 except ServerError: return {'error':500, 'status':'Server Error', 'message':'Probably the city does not exist'}, 500 query_id = int(random.getrandbits(256)) % (2 << 63 - 1) db_cursor.execute("INSERT INTO QUERIES VALUES(?,?,?,strftime('%Y-%m-%d %H-%M-%S','now'),?,?,?,?,?,?)", ( query_id, arguments_hash, uuid, status_code, arguments['origin'], request.args.get('budget') if request.args.get('budget') else None, request.args.get('start_date') if request.args.get('start_date') else None, request.args.get('end_date') if request.args.get('end_date') else None, num_passengers )) db_cursor.execute("INSERT OR IGNORE INTO USERS (uuid, last_query) VALUES (?,?)", (uuid, query_id)) db_cursor.execute("UPDATE USERS SET last_query=? WHERE uuid=?", (query_id, uuid)) for flight in flights['data']: db_cursor.execute('INSERT INTO PLAN VALUES(?,?,?,?,?,?,?,?)', ( flight['departureDate'], flight['returnDate'], flight['origin'], flight['destination'], flight['price']['total'], flight['links']['flightOffers'], None, query_id, )) db_cursor.execute('SELECT image FROM IMAGES WHERE iata_name=?', (flight['destination'],)) query_result = db_cursor.fetchall() if query_result == []: """ destination_name = amadeus.reference_data.locations.get( keyword=flight['destination'], subType=Location.CITY ) if len(destination_name.result['data']) > 0: destination_name = destination_name.result['data'][0]['address']['cityName'].lower() else: destination_name = flight['destination'] """ destination_name = requests.get("https://iatacodes.org/api/v6/cities?api_key=" + os.getenv('IATA_API') + "&code=" + flight['destination'], verify=False).json() if 'response' in destination_name: destination_name = destination_name['response'][0]['name'].lower() else: destination_name = flight['destination'] """ json_response = requests.get(f'https://api.teleport.org/api/urban_areas/slug:{destination_name}/images/') try: json_response = json_response.json() if 'status' not in json_response: if len(json_response['photos']) > 0: image_url = json_response['photos'][0]['image']['mobile'] else: image_url = json_response['photos']['image']['mobile'] else: image_url = '' except json.decoder.JSONDecodeError: image_url = '' """ place_id = gmaps.find_place(destination_name, 'textquery')['candidates'] images = [] if len(place_id) > 0: place_id = place_id[0]['place_id'] place_details = gmaps.place(place_id, random.getrandbits(256), ['photo', 'rating', 'geometry']) if place_details['result'] != {}: if 'photos' in place_details['result']: for photo in place_details['result']['photos']: image_url = 'https://maps.googleapis.com/maps/api/place/photo?maxheight=400&photoreference=' + photo['photo_reference'] + '&key=' + os.getenv('GOOGLE_MAPS_SERVER_KEY') images.append(image_url) else: images.append('') db_cursor.execute('INSERT INTO CITIES VALUES(?,?,?,?)', ( flight['destination'], destination_name, place_details['result']['geometry']['location']['lat'], place_details['result']['geometry']['location']['lng'], )) else: images.append('') db_cursor.execute('INSERT INTO CITIES VALUES(?,?,?,?)', ( flight['destination'], destination_name, None, None, )) else: images.append('') db_cursor.execute('INSERT INTO CITIES VALUES(?,?,?,?)', ( flight['destination'], destination_name, None, None, )) for image in images: db_cursor.execute('INSERT INTO IMAGES VALUES(?,?)', (flight['destination'], image)) image_url = random.choice(images) else: image_url = random.choice(query_result)[0] flight['image'] = image_url del flight['type'] del flight['links'] if image_url != '': result.append(flight) for flight in result: flight['price']['passenger'] = float(flight['price']['total']) flight['price']['total'] = round(float(flight['price']['total']) * num_passengers, 2) db_cursor.execute('SELECT city_name FROM CITIES WHERE iata_name=?', (flight['destination'],)) city_name = db_cursor.fetchone()[0] flight['destination_name'] = city_name.title() db_connection.commit() return {'flights': result} @api_rest.route('/like_place') class CityLikeResource(Resource): def post(self): data = request.json if request.json else request.form if 'uuid' not in data: return {'error':'UUID is obligatory', 'status':400}, 400 if 'destination' not in data: return {'error': 'destination is required', 'status': 400}, 400 if 'like' not in data: return {'error': 'like status is required', 'status': 400}, 400 like = True if data['like'] else False db_cursor.execute("SELECT last_query FROM USERS WHERE uuid=?", (data['uuid'],)) query_id = db_cursor.fetchone() if query_id: db_cursor.execute("UPDATE PLAN SET like=? WHERE query_id=? AND destination=?", (like, query_id[0], data['destination'])) db_cursor.execute("SELECT PLAN.destination, PLAN.price, CITIES.latitude, CITIES.longitude, PLAN.like FROM PLAN INNER JOIN CITIES ON PLAN.destination = CITIES.iata_name WHERE PLAN.like IS NOT NULL AND PLAN.query_id=?", (query_id[0],)) places = db_cursor.fetchall() if len(places) > 4: x = [] y = [] def get_features(place): return [float(place[1]), float(place[2]), float(place[3])] for place in places: x.append(get_features(place)) y.append(float(place[4])) neigh = KNeighborsRegressor(n_neighbors=2) neigh.fit(x, y) def calculate_number(place): return neigh.predict([get_features(place)])[0] places.sort(key=calculate_number) db_connection.commit() result = [] for i in range(len(places)): if int(places[i][4]) == 1: result.append(places[i][0]) return {'destinations':places}, 200 else: return {'error': 'User does not exist', 'status': 404}, 404 @api_rest.route('/retrieve_previous_search') @api_rest.param('uuid', 'UUID of the user') class PreviousSearchResource(Resource): def get(self): if not request.args.get('uuid'): return {'error':'UUID is obligatory', 'status':400}, 400 db_cursor.execute("SELECT last_query FROM USERS WHERE uuid=?", (request.args.get('uuid'),)) query_results = db_cursor.fetchone() if not query_results: result = { 'error': 'User not found', 'status': 404 } return result, 404 db_cursor.execute("SELECT departure, budget, start_day, end_day, num_passengers FROM QUERIES WHERE query_id=?", (query_results[0],)) query_results = db_cursor.fetchone() if query_results: result = { 'departure': query_results[0], 'budget': query_results[1], 'start_day': query_results[2], 'end_day': query_results[3], 'num_passengers': query_results[4], } return result else: result = { 'error': 'No search found', 'status': 404 } return result, 404 @api_rest.route('/get_tickets') @api_rest.param('num_passengers', 'the number of passangers') @api_rest.param('returnDate', 'the date of arrival') @api_rest.param('departureDate', 'the date of departure') @api_rest.param('destination', 'the destination') @api_rest.param('origin', 'the origin') class TicketResource(Resource): def get(self): arguments = {} arguments['origin'] = request.args.get('origin') arguments['destination'] = request.args.get('destination') arguments['departureDate'] = request.args.get('departureDate') arguments['returnDate'] = request.args.get('returnDate') if request.args.get('num_passengers'): num_passengers = int(request.args.get('num_passengers')) else: num_passengers = 1 try: flights = amadeus.shopping.flight_offers.get(**arguments).result status_code = 200 except NotFoundError: return {'flights': []}, 201 except ServerError: return {'error': 500, 'status': 'Server Error', 'message': 'Probably the city does not exist'}, 500 extracted_flight_list = [] for offer_item in flights['data']: flight_data = {} flight_data['price_per_passenger'] = float(offer_item['offerItems'][0]['price']['total']) + float(offer_item['offerItems'][0]['price']['totalTaxes']) flight_data['price_total'] = round(flight_data['price_per_passenger'] * num_passengers, 2) flight_data['layovers'] = len(offer_item['offerItems'][0]['services'][0]['segments']) - 1 extracted_flight_list.append(flight_data) print(extracted_flight_list) return extracted_flight_list, status_code ``` #### File: Hack-a-Ton/server/places.py ```python from googleplaces import GooglePlaces, types, lang import os # if query_result.has_attributions: # print query_result.html_attributions def get_places(): API_KEY = os.getenv("GOOGLE_API_KEY") google_places = GooglePlaces(API_KEY) # You may prefer to use the text_search API, instead. query_result = google_places.text_search(location='DePauw University', radius=5) # If types param contains only 1 item the request to Google Places API # will be send as type param to fullfil: # http://googlegeodevelopers.blogspot.com.au/2016/02/changes-and-quality-improvements-in_16.html places = query_result.places return places ```
{ "source": "jparga/py4web-gae-example", "score": 3 }
#### File: apps/_default/controllers.py ```python from py4web import action, request, abort, redirect, URL from yatl.helpers import A from .common import ( db, session, T, cache, auth, logger, authenticated, unauthenticated, flash, ) @unauthenticated("index", "index.html") def index(): user = auth.get_user() flash.set("Hello myappforgae") message = T("Hello {first_name}".format(**user) if user else "Hello") return dict(message=message) ```
{ "source": "jparise/nosecomplete", "score": 2 }
#### File: jparise/nosecomplete/nosecomplete.py ```python import os import sys import re import ast from optparse import OptionParser class PythonTestFinder(object): def find_functions(self, ast_body, matcher): for obj in ast_body: if not matcher(obj): continue if isinstance(obj, ast.FunctionDef): yield obj.name if isinstance(obj, ast.ClassDef): for func in self.find_functions(obj.body, matcher): yield '%s.%s' % (obj.name, func) def get_module_tests(self, module): with open(module) as f: data = f.read() result = ast.parse(data) def matcher(obj): if isinstance(obj, ast.FunctionDef): return re.search('test', obj.name, re.IGNORECASE) # Unlike nose, we're not able to determine whether this class # inherits from unittest.TestCase # So it may be the case that this class name lacks 'test'. As a # compromise, match all classes return isinstance(obj, ast.ClassDef) tests = list( self.find_functions(result.body, matcher) ) return tests class NoseTestFinder(object): def _generate_tests(self, suite): from nose.suite import ContextSuite from nose.case import Test for context in suite._tests: if isinstance(context, Test): yield context continue assert isinstance(context, ContextSuite) for test in self._generate_tests(context): yield test def _get_test_name(self, test_wrapper): from nose.case import FunctionTestCase test = test_wrapper.test if isinstance(test, FunctionTestCase): return test.test.__name__ return test.__class__.__name__ + '.' + test._testMethodName def _generate_test_names(self, suite): return map(self._get_test_name, self._generate_tests(suite)) def get_module_tests(self, module): import nose loader = nose.loader.defaultTestLoader() return self._generate_test_names(loader.loadTestsFromName(module)) def _get_prefixed(strings, prefix): for string in strings: if string.startswith(prefix): yield string.replace(prefix, '', 1) def _get_py_or_dirs(directory, prefix): for entry in os.listdir(directory or '.'): path = os.path.join(directory, entry) if entry.startswith(prefix): leftover = entry.replace(prefix, '', 1) if os.path.isdir(path): yield leftover + '/' elif leftover.endswith('.py'): yield leftover + ':' def _complete(test_finder, thing): if ':' in thing: # complete a test module, test_part = thing.split(':') tests = list(test_finder.get_module_tests(module)) if '.' in test_part: # complete a method return _get_prefixed(strings=tests, prefix=test_part) funcs = [test for test in tests if test.count('.') == 0] classes = [test.split('.')[0] for test in tests if '.' in test] if test_part in classes: # indicate a method should be completed return ['.'] return _get_prefixed(strings=funcs + classes, prefix=test_part) if os.path.isdir(thing): # complete directory contents if thing != '.' and not thing.endswith('/'): return ['/'] return _get_py_or_dirs(thing, '') if os.path.exists(thing): # add a colon to indicate search for specific class/func return [':'] # path not exists, complete a partial path directory, file_part = os.path.split(thing) return _get_py_or_dirs(directory, file_part) def complete(test_finder, thing): for option in set(_complete(test_finder, thing)): sys.stdout.write(thing + option + ' ') # avoid print for python 3 def main(): methods = { 'nose': NoseTestFinder, 'python': PythonTestFinder, } parser = OptionParser(usage='usage: %prog [options] ') parser.add_option( "-s", "--search-method", help="Search method to use when locating tests", choices=list(methods.keys()), default='python', ) (options, args) = parser.parse_args() finder_class = methods[options.search_method] finder_instance = finder_class() complete(finder_instance, './' if len(args) == 0 else args[0]) if __name__ == '__main__': main() ``` #### File: tests/fixtures/basic.py ```python import unittest def test_red(): pass class AwesomeTestCase(unittest.TestCase): def test_yellow(self): pass def test_green(self): pass def test_blue(): pass ```
{ "source": "jparise/vesta", "score": 2 }
#### File: vesta/vesta/client.py ```python from __future__ import annotations from typing import Any from typing import Dict from typing import List from typing import Mapping from typing import Optional from typing import Union from urllib.parse import urljoin import requests from .chars import COLS from .chars import ROWS from .chars import Rows __all__ = ["Client"] class Session(requests.Session): def __init__(self, base_url: str): super().__init__() self.base_url = base_url def request( self, method: Union[str, bytes], url: Union[str, bytes], *args, **kwargs, ) -> requests.Response: url = urljoin(self.base_url, url if isinstance(url, str) else url.decode()) return super().request(method, url, *args, **kwargs) class Client: """Provides a Vestaboard API client interface. Credentials must be provided as an ``api_key`` and ``api_secret``. Optional, an alternate ``base_url`` can be specified, as well as any additional HTTP ``headers`` that should be sent with every request (such as a custom `User-Agent` header). """ def __init__( self, api_key: str, api_secret: str, *, base_url: str = "https://platform.vestaboard.com", headers: Optional[Mapping[str, str]] = None, ): self.session = Session(base_url) self.session.headers.update( { "X-Vestaboard-Api-Key": api_key, "X-Vestaboard-Api-Secret": api_secret, } ) if headers: self.session.headers.update(headers) def __repr__(self): return f"{type(self).__name__}(base_url={self.session.base_url!r})" def get_subscriptions(self) -> List[Dict[str, Any]]: """Lists all subscriptions to which the viewer has access.""" r = self.session.get("/subscriptions") r.raise_for_status() return r.json().get("subscriptions", []) def get_viewer(self) -> Dict[str, Any]: """Describes the currently authenticated viewer.""" r = self.session.get("/viewer") r.raise_for_status() return r.json() def post_message( self, subscription_id: str, message: Union[str, Rows], ) -> Dict[str, Any]: """Post of a new message to a subscription. The authenticated viewer must have access to the subscription. `message` can be either a string of text or a two-dimensional (6, 22) array of character codes representing the exact positions of characters on the board. If text is specified, lines will be centered horizontally and vertically if possible. Character codes will be inferred for alphanumeric and punctuation, or can be explicitly specified in-line in the message with curly braces containing the character code. :raises ValueError: if `message` is a list with unsupported dimensions """ data: Dict[str, Union[str, Rows]] if isinstance(message, str): data = {"text": message} elif isinstance(message, list): if len(message) != ROWS or not all(len(row) == COLS for row in message): raise ValueError( f"expected a ({ROWS}, {COLS}) array of encoded characters" ) data = {"characters": message} else: raise TypeError(f"unsupported message type: {type(message)}") r = self.session.post( f"/subscriptions/{subscription_id}/message", json=data, ) r.raise_for_status() return r.json() ```
{ "source": "jpark2111/rasaX", "score": 3 }
#### File: rasaX/actions/service.py ```python import requests address = "https://int-api.mx.com/users/USR-8fe5e260-fe63-47dd-b8cd-438cd5a48b94/accounts?page=1&records_per_page=10" headers = { "Accept": "application/vnd.mx.api.v1+json", "Content-Type": "application/json", } userName = "6<PASSWORD>" password = "<PASSWORD>" def get_mx_balance(): response = requests.get( address, verify=False, headers=headers, auth=(userName, password) ).json()["accounts"][0]["balance"] return response ```
{ "source": "jpark2111/rasaXazure", "score": 2 }
#### File: rasaXazure/actions/handoff.py ```python from rasa_sdk import Tracker, Action from rasa_sdk.executor import CollectingDispatcher import ruamel.yaml import pathlib from typing import Dict, Text, Any, List from rasa_sdk.events import EventType here = pathlib.Path(__file__).parent.absolute() handoff_config = ( ruamel.yaml.safe_load(open(f"{here}/handoff_config.yml", "r")) or {} ).get("handoff_hosts", {}) class ActionHandoffOptions(Action): def name(self) -> Text: return "action_handoff_options" async def run( self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> List[EventType]: if not any([config.get("url") for bot, config in handoff_config.items()]): dispatcher.utter_message(template="utter_no_handoff") else: buttons = [ { "title": config.get("title"), "payload": f'/trigger_handoff{{"handoff_to":"{bot}"}}', } for bot, config in handoff_config.items() ] dispatcher.utter_message( text=( "I can't transfer you to a human, " "but I can transfer you to one of these bots" ), buttons=buttons, ) return [] class ActionHandoff(Action): def name(self) -> Text: return "action_handoff" async def run( self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> List[EventType]: dispatcher.utter_message(template="utter_handoff") handoff_to = tracker.get_slot("handoff_to") handoff_bot = handoff_config.get(handoff_to, {}) url = handoff_bot.get("url") if url: if tracker.get_latest_input_channel() == "rest": dispatcher.utter_message( json_message={ "handoff_host": url, "title": handoff_bot.get("title"), } ) else: dispatcher.utter_message( template="utter_wouldve_handed_off", handoffhost=url ) else: dispatcher.utter_message(template="utter_no_handoff") return [] ```
{ "source": "jpark2320/bbalmu", "score": 2 }
#### File: usone/posts/views.py ```python from django.db.models import Q from rest_framework import status, pagination from rest_framework.decorators import ( authentication_classes, permission_classes ) from rest_framework.generics import ( ListAPIView, RetrieveAPIView, CreateAPIView, DestroyAPIView, UpdateAPIView ) from .models import Post, Image from . import serializers class BasicSizePagination(pagination.PageNumberPagination): page_size = 25 page_size_query_param = 'page_size' max_page_size = 1000 class PostByFilters(ListAPIView): serializer_class = serializers.PostSerializer pagination_class = BasicSizePagination authentication_classes = ([]) permission_classes = ([]) def get_queryset(self): queryset = Post.objects.all() reg = self.request.query_params.get('reg', None) cat = self.request.query_params.get('cat', None) limit = self.request.query_params.get('limit', None) sort_by = self.request.query_params.get('sort-by', None) order_by = self.request.query_params.get('order-by', None) # By region if reg: queryset = queryset.filter(region__iexact=reg) # By category if cat: queryset = queryset.filter(category__iexact=cat) # Sort by a given field, otherwise sorty by -created_at sort_field = None if sort_by: sort_field = '-{0}'.format(sort_by) else: sort_field = '-created_at' # Order by descending order as default, othewise order by ascending if order_by and sort_by: if order_by == 'asc': sort_field = sort_field[1:] # Order queryset based on sort_field if it is set if sort_field: queryset = queryset.order_by(sort_field) return queryset class ListAllImages(ListAPIView): serializer_class = serializers.ImageSerializer queryset = Image.objects.all() authentication_classes = ([]) permission_classes = ([]) class CreatePost(CreateAPIView): serializer_class = serializers.CreatePostSerializer pagination_class = BasicSizePagination queryset = Post.objects.all() authentication_classes = ([]) permission_classes = ([]) class UpdatePost(UpdateAPIView): serializer_class = serializers.CreatePostSerializer pagination_class = BasicSizePagination queryset = Post.objects.all() authentication_classes = ([]) permission_classes = ([]) class DeletePost(DestroyAPIView): serializer_class = serializers.CreatePostSerializer pagination_class = BasicSizePagination queryset = Post.objects.all() authentication_classes = ([]) permission_classes = ([]) class ViewPost(RetrieveAPIView): serializer_class = serializers.PostSerializer pagination_class = BasicSizePagination authentication_classes = ([]) permission_classes = ([]) queryset = Post.objects.all() ``` #### File: management/commands/ebuser.py ```python from django.core.management.base import BaseCommand from django.contrib.auth import get_user_model # Used this function to create super user class Command(BaseCommand): def handle(self, *args, **options): User = get_user_model() User.objects.create_superuser('jpark2320', '<EMAIL>', '1234567890') ```
{ "source": "jpark9013/aiocodeforces", "score": 3 }
#### File: aiocodeforces/aiocodeforces/enum.py ```python from enum import Enum class CEnum(Enum): def __str__(self): return self.name class ContestType(CEnum): CF = 0 IOI = 1 ICPC = 2 class ContestPhase(CEnum): BEFORE = 0 CODING = 1 PENDING_SYSTEM_TEST = 2 SYSTEM_TEST = 3 FINISHED = 4 class PartyParticipantType(CEnum): CONTESTANT = 0 PRACTICE = 1 VIRTUAL = 2 MANAGER = 3 class ProblemType(CEnum): PROGRAMMING = 0 QUESTION = 1 class SubmissionVerdict(CEnum): FAILED = 0 OK = 1 PARTIAL = 2 COMPILATION_ERROR = 3 RUNTIME_ERROR = 4 WRONG_ANSWER = 5 PRESENTATION_ERROR = 6 TIME_LIMIT_EXCEEDED = 7 MEMORY_LIMIT_EXCEEDED = 8 IDLENESS_LIMIT_EXCEEDED = 9 SECURITY_VIOLATED = 10 CRASHED = 11 INPUT_PREPARATION_CRASHED = 12 CHALLENGED = 13 SKIPPED = 14 TESTING = 15 REJECTED = 16 class SubmissionTestSet(CEnum): SAMPLES = 0 PRETESTS = 1 TESTS = 2 CHALLENGES = 3 TESTS1 = 4 TESTS2 = 5 TESTS3 = 6 TESTS4 = 7 TESTS5 = 8 TESTS6 = 9 TESTS7 = 10 TESTS8 = 11 TESTS9 = 12 TESTS10 = 13 class HackVerdict(CEnum): HACK_SUCCESSFUL = 0 HACK_UNSUCCESSFUL = 1 INVALID_INPUT = 2 GENERATOR_INCOMPATIBLE = 3 GENERATOR_CRASHED = 4 IGNORED = 5 TESTING = 6 OTHER = 7 class ProblemResultType(CEnum): PRELIMINARY = 0 FINAL = 1 ``` #### File: aiocodeforces/aiocodeforces/party.py ```python from aiocodeforces.enum import PartyParticipantType from aiocodeforces.member import Member class Party: __slots__ = ["contest_id", "members", "participant_type", "team_id", "team_name", "ghost", "room", "start_time_seconds"] def __init__(self, dic): self.contest_id: int = dic["contestId"] self.members: list = [Member(i) for i in dic["members"]] # of Members self.participant_type: PartyParticipantType = PartyParticipantType[dic["participantType"]] self.team_id: int = dic.get("teamId") # Can be none self.team_name: str = dic.get("teamName") # Can be none self.ghost: bool = dic["ghost"] self.room: int = dic.get("room") # Can be none self.start_time_seconds: int = dic.get("startTimeSeconds") # Can be none def __eq__(self, other): return isinstance(other, Party) and self.contest_id == other.contest_id and self.members == other.members def __ne__(self, other): return not self.__eq__(other) ``` #### File: aiocodeforces/aiocodeforces/problem_result.py ```python from aiocodeforces.enum import ProblemResultType class ProblemResult: __slots__ = ["points", "penalty", "rejected_attempt_count", "type", "best_submission_time_seconds"] def __init__(self, dic): self.points: float = dic["points"] self.penalty: int = dic["penalty"] self.rejected_attempt_count: int = dic["rejectedAttemptCount"] self.type: ProblemResultType = ProblemResultType[dic["type"]] # Enum: PRELIMINARY, FINAL self.best_submission_time_seconds: int = dic["bestSubmissionTimeSeconds"] ```
{ "source": "jpark96/capacity-of-metric-learners", "score": 3 }
#### File: jpark96/capacity-of-metric-learners/dataset.py ```python import torch from torch.utils.data import Dataset from torchvision import transforms import pandas as pd import skimage.io as io import numpy as np import matplotlib.pyplot as plt # Load data class LandmarksDataset(Dataset): """Landmarks dataset.""" def __init__(self, csv_file, root_dir, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.landmarks_metadata = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform # Bidict from ids to labels to keep labels within [0, num_classes] self.id_to_label = dict() self.label_to_id = dict() self.num_classes = 0 def __len__(self): return len(self.landmarks_metadata) def __getitem__(self, idx): landmark_id = self.landmarks_metadata['landmark_id'][idx] id = self.landmarks_metadata['id'][idx] img_name = self.root_dir + str(landmark_id) + "/" + str(id) + ".jpg" image = io.imread(img_name) # If id is not seen, add to id2label bidict if landmark_id not in self.id_to_label: self.id_to_label[landmark_id] = self.num_classes self.label_to_id[self.num_classes] = landmark_id self.num_classes += 1 if self.transform: image = self.transform(image) sample = {'image': image, 'label': self.id_to_label[landmark_id]} return sample class RandomDataset(Dataset): """Random dataset with input dimensions input_dims.""" def __init__(self, num_samples=1, input_dims=1, useLabels=False, labels=[]): self.input_dims = input_dims # Initialize dataset self.dataset = np.random.normal(size=(num_samples, input_dims)) # Initialize labels self.labels = labels if useLabels else np.random.randint(0, 2, size=num_samples) def __len__(self): return self.dataset.shape[0] def __getitem__(self, idx): return {'image': torch.FloatTensor(self.dataset[idx]), 'label': torch.from_numpy(np.array(self.labels[idx])).float()} ### SIAMESE DATA SAMPLER ### class SiameseDataset(Dataset): """Landmarks dataset.""" def __init__(self, dataset): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.dataset = dataset def __len__(self): return len(self.dataset) def __getitem__(self, idx): # Get two items, with 50% chance similarity/dissimilarity landmark_id0, landmark_id1 = None, None should_be_similar = np.random.randint(2) for i in range(10): idx0, idx1 = np.random.choice(len(self.dataset), size=2) landmark_id0 = self.dataset[idx0]['label'] landmark_id1 = self.dataset[idx1]['label'] if (should_be_similar and (landmark_id0 == landmark_id1)): break if (not should_be_similar and (landmark_id0 != landmark_id1)): break # Return sample sample = {'image0': self.dataset[idx0]['image'], 'image1': self.dataset[idx1]['image'], 'label': torch.from_numpy(np.array(int(landmark_id0 != landmark_id1))).float()} return sample if __name__ == "__main__": landmark_dataset = LandmarksDataset(csv_file='small-dataset/small-dataset.csv', root_dir='small-dataset/', transform=transforms.Compose([ transforms.ToPILImage(), transforms.Resize(256), transforms.RandomCrop(244), transforms.ToTensor()])) print("Dataset size: " + str(len(landmark_dataset))) print("Row 0: " + str(landmark_dataset[0])) siamese_landmark_dataset = SiameseDataset(dataset=landmark_dataset) sample = next(iter(siamese_landmark_dataset)) image0, image1, label = sample['image0'], sample['image1'], sample['label'] plt.imshow(image0.transpose(0, 2).transpose(0, 1)) plt.show() plt.imshow(image1.transpose(0, 2).transpose(0, 1)) plt.show() print(label) print(landmark_dataset[0]['label']) random_dataset = RandomDataset(input_dims=1) print(random_dataset[0]['label']) ```
{ "source": "jparkerholder/ASEBO", "score": 3 }
#### File: ASEBO/asebo/policies.py ```python import numpy as np from scipy.linalg import toeplitz import gym from copy import copy # Toeplitz policy from Choromanski (2018) # Can only have 2 layers class ToeplitzPolicy(object): def __init__(self, policy_params): self.init_seed = policy_params['seed'] self.ob_dim = policy_params['ob_dim'] self.h_dim = policy_params['h_dim'] self.ac_dim = policy_params['ac_dim'] self.w1 = self.weight_init(self.ob_dim + self.h_dim -1, policy_params['zeros']) self.w2 = self.weight_init(self.h_dim * 2 - 1, policy_params['zeros']) self.w3 = self.weight_init(self.ac_dim + self.h_dim - 1, policy_params['zeros']) self.W1 = self.build_layer(self.h_dim, self.ob_dim, self.w1) self.W2 = self.build_layer(self.h_dim, self.h_dim, self.w2) self.W3 = self.build_layer(self.ac_dim, self.h_dim, self.w3) self.b1 = self.weight_init(self.h_dim, policy_params['zeros']) self.b2 = self.weight_init(self.h_dim, policy_params['zeros']) self.params = np.concatenate([self.w1, self.b1, self.w2, self.b2, self.w3]) self.N = len(self.params) def weight_init(self, d, zeros): if zeros: w = np.zeros(d) else: np.random.seed(self.init_seed) w = np.random.rand(d) / np.sqrt(d) return(w) def build_layer(self, d1, d2, v): # len v = d1 + d2 - 1 col = v[:d1] row = v[(d1-1):] W = toeplitz(col, row) return(W) def update(self, vec): self.params += vec self.w1 += vec[:len(self.w1)] vec = vec[len(self.w1):] self.b1 += vec[:len(self.b1)] vec = vec[len(self.b1):] self.w2 += vec[:len(self.w2)] vec = vec[len(self.w2):] self.b2 += vec[:len(self.b2)] vec = vec[len(self.b2):] self.w3 += vec self.W1 = self.build_layer(self.h_dim, self.ob_dim, self.w1) self.W2 = self.build_layer(self.h_dim, self.h_dim, self.w2) self.W3 = self.build_layer(self.ac_dim, self.h_dim, self.w3) def evaluate(self, X): #if len(X.shape) == 1: # X = X.reshape(X.shape[0], 1) z1 = np.tanh(np.dot(self.W1, X) + self.b1) z2 = np.tanh(np.dot(self.W2, z1) + self.b2) return(np.tanh(np.dot(self.W3, z2))) class LinearPolicy(object): def __init__(self, policy_params): self.init_seed = policy_params['seed'] self.ob_dim = policy_params['ob_dim'] self.h_dim = policy_params['h_dim'] self.ac_dim = policy_params['ac_dim'] self.w = self.weight_init(self.ob_dim * self.ac_dim, policy_params['zeros']) self.W = self.w.reshape(self.ac_dim, self.ob_dim) self.params = copy(self.w) self.N = len(self.params) def weight_init(self, d, zeros): if zeros: w = np.zeros(d) else: np.random.seed(self.init_seed) w = np.random.rand(d) / np.sqrt(d) return(w) def update(self, vec): self.w += vec self.W = self.w.reshape(self.ac_dim, self.ob_dim) self.params = copy(self.w) def evaluate(self, X): X = X.reshape(X.size, 1) return(np.tanh(np.dot(self.W, X))) ```
{ "source": "jparker/therminator_server", "score": 2 }
#### File: migrations/versions/a59cf08dedf3_.py ```python from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = 'a59cf08dedf3' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=255), nullable=False), sa.Column('email', sa.String(length=255), nullable=False), sa.Column('password', sa.String(length=255), nullable=False), sa.Column('api_key', sa.String(length=255), server_default=sa.text("encode(gen_random_bytes(32), 'hex')"), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('api_key'), sa.UniqueConstraint('email') ) op.create_table('homes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=255), nullable=False), sa.Column('timezone', sa.String(length=255), server_default='UTC', nullable=False), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('user_id', 'name', name='user_id_name_unq') ) op.create_table('sensors', sa.Column('id', sa.Integer(), nullable=False), sa.Column('home_id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=255), nullable=False), sa.Column('uuid', postgresql.UUID(), server_default=sa.text('gen_random_uuid()'), nullable=False), sa.ForeignKeyConstraint(['home_id'], ['homes.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('home_id', 'name', name='home_id_name_unq'), sa.UniqueConstraint('uuid') ) op.create_table('readings', sa.Column('id', sa.Integer(), nullable=False), sa.Column('sensor_id', sa.Integer(), nullable=False), sa.Column('timestamp', sa.DateTime(), nullable=False), sa.Column('int_temp', sa.Float(), server_default='0.0', nullable=False), sa.Column('ext_temp', sa.Float(), nullable=False), sa.Column('humidity', sa.Float(), server_default='0.0', nullable=False), sa.Column('resistance', sa.Float(), server_default='0.0', nullable=False), sa.CheckConstraint('humidity >= 0 AND humidity <= 100', name='humidity_between_0_and_100'), sa.CheckConstraint('resistance >= 0', name='resistance_must_be_positive'), sa.ForeignKeyConstraint(['sensor_id'], ['sensors.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('sensor_id', 'timestamp', name='sensor_id_timestamp_unq') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('readings') op.drop_table('sensors') op.drop_table('homes') op.drop_table('users') # ### end Alembic commands ### ``` #### File: therminator_server/therminator/exc.py ```python from flask import jsonify from http import HTTPStatus from . import app class ApiError(Exception): def __init__(self, message, status_code=HTTPStatus.BAD_REQUEST): self.message = message self.status_code = status_code def as_dict(self): return dict(error=self.message) @app.errorhandler(ApiError) def handle_api_error(error): response = jsonify(error.as_dict()) response.status_code = error.status_code return response ``` #### File: therminator_server/therminator/views.py ```python from datetime import datetime, time, timedelta from flask import flash, redirect, render_template, request, url_for from flask_login import ( confirm_login, current_user, fresh_login_required, login_required, login_user, logout_user, ) import pytz from sqlalchemy.exc import IntegrityError from urllib.parse import urljoin, urlparse from . import app, db, login_manager from .forms import SignInForm, RefreshSessionForm, SensorForm from .models import User, Home, Sensor, Reading @login_manager.user_loader def load_user(user_id): return User.query.get(user_id) @app.context_processor def expose_timedelta(): def _timedelta(**kwargs): return timedelta(**kwargs) return dict(timedelta=_timedelta) @app.context_processor def expose_utcnow(): def utcnow(): return datetime.utcnow() return dict(utcnow=utcnow) @app.template_filter('localtime') def localtime(timestamp, timezone, fmt='%Y-%m-%d %H:%M %Z'): tz = pytz.timezone(timezone) local = pytz.utc.localize(timestamp, is_dst=None).astimezone(tz) return local.strftime(fmt) @app.template_filter('numerify') def numerify(number, prec=1): return '{:,.{prec}f}'.format(number, prec=prec) @app.route('/sign-in', methods=['GET', 'POST']) def sign_in(): form = SignInForm() target = get_redirect_target() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and user.is_correct_password(form.password.data): app.logger.info('User {!r} signed in'.format(user.email)) login_user(user, remember=form.remember.data) flash('You have successfully signed in.', 'success') return redirect_back('list_homes') else: app.logger.warning('User {!r} failed to sign in'.format(form.email.data)) flash('Invalid email address or password.', 'danger') return render_template('sign_in.html', form=form, target=target) @app.route('/sign-out', methods=['GET', 'DELETE']) def sign_out(): app.logger.info('User {!r} signed out'.format(current_user.email)) logout_user() flash('You have successfully signed out.', 'info') return redirect(url_for('list_homes')) @app.route('/refresh-session', methods=['GET', 'POST']) def refresh_session(): form = RefreshSessionForm() target = get_redirect_target() if form.validate_on_submit(): if current_user.is_correct_password(form.password.data): confirm_login() flash('You have successfully reauthenticated.', 'success') return redirect_back('list_homes') else: flash('Invalid password.', 'danger') return render_template('refresh_session.html', form=form, target=target) @app.route('/') @login_required def list_homes(): return render_template('homes/index.html', homes=current_user.homes) @app.route('/homes/<int:home_id>') @login_required def show_home(home_id): home = current_user.homes.filter_by(id=home_id).first_or_404() return render_template('homes/show.html', home=home) @app.route('/sensors/<int:sensor_id>', defaults={'date': None}) @app.route('/sensors/<int:sensor_id>/<date:date>') @login_required def show_sensor(sensor_id, date): sensor = db.session.query(Sensor).filter_by(id=sensor_id) \ .join(Home).filter_by(user_id=current_user.id).first_or_404() timezone = pytz.timezone(sensor.home.timezone) if not date: date = datetime.now(timezone).date() midnight = timezone.localize(datetime.combine(date, time())) \ .astimezone(pytz.utc).replace(tzinfo=None) readings = sensor.readings.filter(Reading.timestamp.between( midnight, midnight + timedelta(days=1), )).order_by(Reading.timestamp) return render_template( 'sensors/show.html', current_sensor=sensor, home=sensor.home, readings=readings, date=date, ) @app.route('/homes/<int:home_id>/sensors/new') @fresh_login_required def new_sensor(home_id): home = current_user.homes.filter_by(id=home_id).first_or_404() form = SensorForm() return render_template('sensors/new.html', form=form, home=home) @app.route('/homes/<int:home_id>/sensors', methods=['POST']) @fresh_login_required def create_sensor(home_id): home = current_user.homes.filter_by(id=home_id).first_or_404() form = SensorForm() if form.validate_on_submit(): sensor = Sensor(home=home, name=form.name.data) db.session.add(sensor) db.session.commit() flash('Sensor {} created successfully.'.format(sensor.name), 'success') return redirect(url_for('show_sensor', sensor_id=sensor.id)) flash('Sensor could not be created.', 'danger') return render_template('sensors/new.html', form=form, home=home) @app.route('/sensors/<int:sensor_id>/edit') @fresh_login_required def edit_sensor(sensor_id): sensor = db.session.query(Sensor).filter_by(id=sensor_id) \ .join(Home).filter_by(user_id=current_user.id).first_or_404() form = SensorForm() form.process(obj=sensor) return render_template( 'sensors/edit.html', form=form, current_sensor=sensor, home=sensor.home, ) @app.route('/sensors/<int:sensor_id>', methods=['POST', 'PATCH']) @fresh_login_required def update_sensor(sensor_id): sensor = db.session.query(Sensor).filter_by(id=sensor_id) \ .join(Home).filter_by(user_id=current_user.id).first_or_404() form = SensorForm() if form.validate_on_submit(): sensor.name = form.name.data db.session.add(sensor) db.session.commit() flash('Sensor {} updated successfully.'.format(sensor.name), 'success') return redirect(url_for('show_sensor', sensor_id=sensor.id)) flash('Sensor could not be updated.', 'danger') return render_template( 'sensors/edit.html', form=form, current_sensor=sensor, home=sensor.home, ) def get_redirect_target(): for target in request.values.get('next'), request.referrer: if not target: continue if is_safe_url(target): return target return None def redirect_back(default, **params): target = request.form['next'] if not target or not is_safe_url(target): target = url_for(default, **params) return redirect(target) def is_safe_url(url): ref_url = urlparse(request.host_url) test_url = urlparse(urljoin(request.host_url, url)) return test_url.scheme in ('http', 'https') \ and ref_url.netloc == test_url.netloc ```
{ "source": "jparkgeo/GEOG489", "score": 3 }
#### File: GEOG489/Week11/utils.py ```python from tqdm import tqdm, trange import osmnx as ox import networkx as nx from shapely.ops import cascaded_union import geopandas as gpd import pandas as pd from shapely.geometry import Point import numpy as np def assign_max_speed_with_highway_type(row_): """ Assign the maximum speed of an edge based on its attribute 'highway' # https://wiki.openstreetmap.org/wiki/Key:highway Args: row_: (dict) a row of OSMnx network data Returns: temp_speed_: (int) the maximum speed of an edge """ max_speed_per_type = {'motorway': 50, 'motorway_link': 30, 'trunk': 50, 'trunk_link': 30, 'primary': 40, 'primary_link': 30, 'secondary': 40, 'secondary_link': 30, 'tertiary': 40, 'tertiary_link': 20, 'residential': 30, 'living_street': 20, 'unclassified': 20 } # if the variable is a list, obtain just the first one. if type(row_['highway']) == list: road_type = row_['highway'][0] else: road_type = row_['highway'] # If the maximum speed of the road_type is predefined. if road_type in max_speed_per_type.keys(): temp_speed_ = max_speed_per_type[road_type] else: # If not defined, just use 20 mph. temp_speed_ = 20 return temp_speed_ def network_settings(network): for u, v, k, data in network.edges(data=True, keys=True): if 'maxspeed' in data.keys(): if type(data['maxspeed']) == list: temp_speed = data['maxspeed'][0] # extract only numbers else: temp_speed = data['maxspeed'] temp_speed = temp_speed.split(' ')[0] else: temp_speed = assign_max_speed_with_highway_type(data) data['maxspeed'] = temp_speed data['maxspeed_meters'] = int(data['maxspeed']) * 26.8223 # MPH * 1.6 * 1000 / 60; meter per minute data['time'] = float(data['length'] / data['maxspeed_meters']) # create point geometries for the entire graph for node, data in network.nodes(data=True): data['geometry'] = Point(data['x'], data['y']) return network def step1_E2SFCA(supply, supply_attr, demand, demand_attr, mobility, thresholds, weights): """ Input: - supply (GeoDataFrame): stores locations and attributes of supply - supply_attr (str): the column of `supply` to be used for the analysis - demand (GeoDataFrame): stores locations and attributes of demand - demand_attr (str): the column of `demand` to be used for the analysis - mobility (NetworkX MultiDiGraph): Network Dataset obtained from OSMnx - thresholds (list): the list of threshold travel times e.g., [5, 10, 15] - weights (dict): keys: threshold travel time, values: weigths according to the threshold travel times e.g., [5: 1, 10: 0.68, 15: 0.22] Output: - supply_ (GeoDataFrame): a copy of supply and it stores supply-to-demand ratio of each supply at `ratio` column """ # Your code here (Change the name of the variable according to the inputs) supply_ = supply.copy(deep=True) supply_['ratio'] = 0 for i in trange(supply.shape[0]): # Create catchment areas from a given location ctmt_area = calculate_catchment_area(mobility, supply.loc[i, 'nearest_osm'], thresholds) # Calculate the population within the catchment area based on distance decay ctmt_area_pops = 0 for c_idx, c_row in ctmt_area.iterrows(): temp_pop = demand.loc[demand['geometry'].centroid.within(c_row['geometry']), demand_attr].sum() ctmt_area_pops += temp_pop * weights[c_idx] # Calculate the number of hospital beds in each hospital temp_supply = supply.loc[i, supply_attr] # Calculate the number of hospital beds available for 100,000 people supply_.at[i, 'ratio'] = temp_supply / ctmt_area_pops * 100000 return supply_ def step2_E2SFCA(result_step1, demand, mobility, thresholds, weights): """ Input: - result_step1 (GeoDataFrame): stores locations and 'ratio' attribute that resulted in step1 - demand (GeoDataFrame): stores locations and attributes of demand - mobility (NetworkX MultiDiGraph): Network Dataset obtained from OSMnx - thresholds (list): the list of threshold travel times e.g., [5, 10, 15] - weights (dict): keys: threshold travel time, values: weigths according to the threshold travel times e.g., [5: 1, 10: 0.68, 15: 0.22] Output: - demand_ (GeoDataFrame): a copy of demand and it stores the final accessibility measures of each demand location at `ratio` column """ # Your code here (Change the name of the variable according to the inputs) demand_ = demand.copy(deep=True) demand_['access'] = 0 for j in trange(demand.shape[0]): # Create catchment areas from a given location ctmt_area = calculate_catchment_area(mobility, demand.loc[j, 'nearest_osm'], thresholds) # Sum the ratio within the catchment areas based on distance decay ctmt_area_ratio = 0 for c_idx, c_row in ctmt_area.iterrows(): temp_ratio = result_step1.loc[result_step1['geometry'].centroid.within(c_row['geometry']), 'ratio'].sum() ctmt_area_ratio += temp_ratio * weights[c_idx] # Assign the summed ratio for each demand location demand_.at[j, 'access'] = ctmt_area_ratio return demand_ def calculate_catchment_area(network, nearest_osm, minutes, distance_unit='time'): polygons = gpd.GeoDataFrame(crs="EPSG:4326") # Create convex hull for each travel time (minutes), respectively. for minute in minutes: access_nodes = nx.single_source_dijkstra_path_length(network, nearest_osm, minute, weight=distance_unit) convex_hull = gpd.GeoSeries(nx.get_node_attributes(network.subgraph(access_nodes), 'geometry')).unary_union.convex_hull polygon = gpd.GeoDataFrame({'minutes': [minute], 'geometry': [convex_hull]}, crs="EPSG:4326") polygon = polygon.set_index('minutes') polygons = polygons.append(polygon) # Calculate the differences between convex hulls which created in the previous section. polygons_ = polygons.copy(deep=True) for idx, minute in enumerate(minutes): if idx != 0: current_polygon = polygons.loc[[minute]] previous_polygons = cascaded_union(polygons.loc[minutes[:idx], 'geometry']) previous_polygons = gpd.GeoDataFrame({'geometry': [previous_polygons]}, crs="EPSG:4326") diff_polygon = gpd.overlay(current_polygon, previous_polygons, how="difference") if diff_polygon.shape[0] != 0: polygons_.at[minute, 'geometry'] = diff_polygon['geometry'].values[0] return polygons_.copy(deep=True) def extract_edges_nodes_from_networkx(network): nodes, edges = ox.graph_to_gdfs(network, nodes=True, edges=True, node_geometry=True) return nodes, edges def step1_2SFCA(supply, supply_attr, demand, demand_attr, mobility, threshold): """ Input: - supply (GeoDataFrame): stores locations and attributes of supply - supply_attr (str): the column of `supply` to be used for the analysis - demand (GeoDataFrame): stores locations and attributes of demand - demand_attr (str): the column of `demand` to be used for the analysis - mobility (NetworkX MultiDiGraph): Network Dataset obtained from OSMnx - threshold (int): threshold travel distance Output: - supply_ (GeoDataFrame): a copy of supply and it stores supply-to-demand ratio of each supply at `ratio` column """ # Extract the nodes and edges of the network dataset for the future analysis. nodes, edges = extract_edges_nodes_from_networkx(mobility) supply_ = supply.copy(deep=True) supply_['ratio'] = 0 for i in trange(supply.shape[0]): # Create a catchment area from a given location temp_nodes = nx.single_source_dijkstra_path_length(mobility, supply.loc[i, 'nearest_osm'], threshold, weight='length') access_nodes = nodes.loc[nodes.index.isin(temp_nodes.keys()), 'geometry'] access_nodes = gpd.GeoSeries(access_nodes.unary_union.convex_hull, crs="EPSG:5070") # Calculate the population within the catchment area temp_demand = demand.loc[demand['geometry'].centroid.within(access_nodes[0]), demand_attr].sum() # Calculate the number of hospital beds in each hospital temp_supply = supply.loc[i, supply_attr] # Calculate the number of hospital beds available for 100,000 people supply_.at[i, 'ratio'] = temp_supply / temp_demand * 100000 supply_['ratio'].replace(np.inf, 0, inplace=True) return supply_ def step2_2SFCA(result_step1, demand, mobility, threshold): """ Input: - result_step1 (GeoDataFrame): stores locations and 'ratio' attribute that resulted in step1 - demand (GeoDataFrame): stores locations and attributes of demand - mobility (NetworkX MultiDiGraph): Network Dataset obtained from OSMnx - threshold (int): threshold travel distance Output: - demand_ (GeoDataFrame): a copy of demand and it stores the final accessibility measures of each demand location at `ratio` column """ # Extract the nodes and edges of the network dataset for the future analysis. nodes, edges = extract_edges_nodes_from_networkx(mobility) demand_ = demand.copy(deep=True) demand_['access'] = 0 for j in trange(demand.shape[0]): temp_nodes = nx.single_source_dijkstra_path_length(mobility, demand.loc[j, 'nearest_osm'], threshold, weight='length') access_nodes = nodes.loc[nodes.index.isin(temp_nodes.keys()), 'geometry'] access_nodes = gpd.GeoSeries(access_nodes.unary_union.convex_hull, crs="EPSG:5070") accum_ratio = result_step1.loc[result_step1['geometry'].within(access_nodes[0]), 'ratio'].sum() demand_.at[j, 'access'] = accum_ratio return demand_ ```
{ "source": "jparkhill/notebook-molecular-visualization", "score": 2 }
#### File: notebook-molecular-visualization/nbmolviz/__init__.py ```python from __future__ import print_function # Copyright 2017 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os as _os # package metadata from . import _version __version__ = _version.get_versions()['version'] __copyright__ = "Copyright 2017 Autodesk Inc." __license__ = "Apache 2.0" PACKAGE_PATH = _os.path.dirname(_os.path.abspath(__file__)) def _jupyter_nbextension_paths(): return [{ 'section': 'notebook', 'src': 'static', 'dest': 'nbmolviz-js', 'require': 'nbmolviz-js/extension' }] def find_static_assets(): from warnings import warn warn("""To use the nbmolviz-js nbextension, you'll need to update the Jupyter notebook to version 4.2 or later.""") return [] ``` #### File: nbmolviz/mdtconfig/images.py ```python from __future__ import print_function, absolute_import, division from future.builtins import * from future import standard_library standard_library.install_aliases() # Copyright 2017 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading import subprocess import sys import os import ipywidgets as ipy import moldesign as mdt MISSING = u'\u274C' INSTALLED = u"\u2705" WARNING = u"⚠️" class DockerImageStatus(ipy.VBox): def __init__(self, client): self.client = client images = self._get_images() self.header = ipy.HTML( '<span class="nbv-table-header" style="width:950px"">Image status</span>', layout=ipy.Layout(align_items='flex-end')) super().__init__([self.header] + [DockerImageView(im, client) for im in sorted(images)]) def _get_images(self): return set(p.get_docker_image_path() for p in mdt.compute.packages.executables + mdt.compute.packages.packages) class DockerImageView(ipy.HBox): LOADER = "<div class='nbv-loader' />" DMKDIR = os.path.join(os.path.dirname(os.path.dirname(mdt.__file__)), 'DockerMakefiles') def __init__(self, image, client): self._err = False self._client = client self.image = image self.status = ipy.HTML(layout=ipy.Layout(width="20px")) self.html = ipy.HTML(value=image, layout=ipy.Layout(width="400px")) self.html.add_class('nbv-monospace') self.msg = ipy.HTML(layout=ipy.Layout(width='300px')) self.button = ipy.Button(layout=ipy.Layout(width='100px')) if mdt.compute.config.devmode: self.button.on_click(self.rebuild) else: self.button.on_click(self.pull) self._reactivate_button() self._set_status_value() super().__init__(children=[self.status, self.html, self.button, self.msg]) def rebuild(self, *args): if not os.path.isdir(self.DMKDIR): raise ValueError('Could not locate the docker makefiles. ' 'To run MDT in development mode, ' 'clone the molecular-design-toolkit repository and install it using ' '`pip install -e`.') namefields = self.image.split(':') assert len(namefields) == 2 and namefields[1] == 'dev' self._disable_button('Rebuilding...') thread = threading.Thread(target=self._run_rebuild, args=[namefields[0]]) thread.start() def _run_rebuild(self, targetname): try: self.msg.value = 'Running <code>docker-make</code>' cmd = ['docker-make', '--tag', 'dev',targetname] self.status.value = self.LOADER print('> %s' % ' '.join(cmd)) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=self.DMKDIR) for line in process.stdout: sys.stdout.write(line) except Exception as e: self._err = True self.msg.value = str(e) raise finally: self._reactivate_button() self._set_status_value() if not self._err: self.msg.value = 'Rebuilt <code>%s</code> successfully.' % self.image def pull(self, *args): self.button.disabled = True self._err = False thread = threading.Thread(target=self._run_pull) thread.start() def _run_pull(self): from docker import errors try: self._disable_button('Pulling...') self.status.value = self.LOADER self.msg.value = 'Starting download.' try: response = self._client.pull(self.image, stream=True, decode=True) self._watch_pull_logs(response) except errors.NotFound as exc: self._err = True self.msg.value = 'ERROR: %s' % exc.explanation except Exception as e: self._err = True self.msg = str(e) raise finally: self._set_status_value() self._reactivate_button() if not self._err: self.msg.value = 'Pull successful.' def _disable_button(self, description): self.button.disabled = True self.button.description = description self.button.style.font_weight = '100' self.button.style.button_color = 'lightgray' def _reactivate_button(self): self.button.disabled = False if self._client is None: self.button.description = 'no connection' self.button.disabled = True self.button.style.button_color = '#FAFAFA' else: if mdt.compute.config.devmode: self.button.description = 'Rebuild image' else: self.button.description = 'Pull image' self.button.style.font_weight = '400' self.button.style.button_color = '#9feeb2' def _set_status_value(self): from docker import errors if self._client is None: self.status.value = 'n/a' else: try: imginfo = self._client.inspect_image(self.image) except errors.ImageNotFound: if self._err: self.status.value = WARNING else: self.status.value = MISSING else: self.status.value = INSTALLED def _watch_pull_logs(self, stream): found = set() inprogress = set() done = set() for item in stream: if 'errorDetail' in item or 'error' in item: self.msg.value = item self._err = True elif 'status' in item and 'id' in item: # for pulling images imgid = item['id'] found.add(imgid) stat = item['status'].strip() fields = stat.split() if fields[0:2] in (['Pull','complete'], ['Already','exists']): done.add(imgid) self.msg.value = 'Pulling from repository: %s/%s layers complete' % (len(done), len(found)) elif fields[0] in ('Pulling','Extracting', 'Downloading'): inprogress.add(imgid) ``` #### File: nbmolviz/uielements/plotting.py ```python from builtins import zip from copy import deepcopy from moldesign.units import * def grid_map(f,v,dims,grids): """ Map function values along a grid :param f: function to be evaluated, call signature f(v) :param v: vector that sets the static coordinates :param dims: ndims-length list of dimensions to vary :param grids: ndims-length list of grid values for each dimension :return: function value grid """ vmod = deepcopy(v) for idx, vals in enumerate(zip(*[g.flat for g in grids])): for idim, val in zip(dims, vals): vmod[idim] = val if idx == 0: firstf = f(vmod) gridZ = np.zeros(grids[0].shape) * firstf gridZ.flat[0] = firstf else: gridZ.flat[idx] = f(vmod) return gridZ def function_slice(f,v,dims,ranges): """ Return an arbitrary dimensional slice of function values :param f: function to be evaluated, call signature f(v) :param v: vector that sets the static coordinates :param dims: ndims-length list of dimensions to vary :param ranges: ndims-list of values along those dimensions :return: gridpoints, function values """ assert len(dims)==len(ranges) if len(ranges)>1: grids = np.meshgrid(*ranges) else: grids=list(ranges) for igrid,(r,g) in enumerate(zip(ranges,grids)): grids[igrid] = units_transfer(r,g) gridZ = grid_map(f,v,dims,grids) return grids,gridZ ``` #### File: nbmolviz/viewers/common.py ```python from past.builtins import basestring from ..base.base_widget import MessageWidget from moldesign import utils from .. import colormaps class BaseViewer(MessageWidget): def colormap(self, atomvalues, atoms=None, mplmap='auto', categorical=None, save=True): """ Color atoms according to categorical or numeric data Args: atomvalues (callable OR list or str): Either: - a callable that takes an atom and the data, - a list of values of each atom - the name of an atomic property (e.g., 'residue' or 'mass') atoms (moldesign.molecules.AtomContainer): atoms to color (default: self.mol.atoms) mplmap (str): name of the matplotlib colormap to use if colors aren't explicitly specified) categorical (bool): If None (the default), automatically detect whether the data is categorical or numerical. Otherwise, use this flag to force interpretation of the data as categorical (True) or numerical (False) save (bool): permanently color theses atoms this way (until self.unset_color is called) Returns: dict: mapping of categories to colors """ atoms = utils.if_not_none(atoms, self.mol.atoms) if isinstance(atomvalues, basestring): # shortcut to use strings to access atom attributes, i.e. "ff.partial_charge" attrs = atomvalues.split('.') atomvalues = [] for atom in atoms: obj = atom for attr in attrs: obj = getattr(obj, attr) atomvalues.append(obj) elif callable(atomvalues): atomvalues = list(map(atomvalues, atoms)) colors = colormaps.colormap(atomvalues, mplmap=mplmap, categorical=categorical) self.set_colors(colors, atoms=atoms, save=save) return {v:c for v,c in zip(atomvalues, colors)} color_by = colormap ``` #### File: nbmolviz/viewers/orbital_viewer.py ```python from __future__ import print_function, absolute_import, division, unicode_literals from future.builtins import * from future import standard_library standard_library.install_aliases() # Copyright 2017 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from IPython.display import display as display_now import numpy as np import ipywidgets as ipy import traitlets import io from moldesign import units as u from moldesign.mathutils import padded_grid from ..viewers import GeometryViewer, translate_color from ..widget_utils import process_widget_kwargs from ..uielements.components import HBox, VBox from . import ViewerContainer class OrbitalViewer(ViewerContainer): """ Subclass of the standard geometry viewer with added UI for rendering orbitals Args: mol (mdt.Molecule): a molecule with A) orbitals, and B) an energy model with calculate_orbital_grid display (bool): immediately draw the viewer in the notebook **kwargs (dict): kwargs for the viewer """ current_orbital = traitlets.Any() # reference to the currently displayed orbital isoval = traitlets.Float(0.01) orb_opacity = traitlets.Float(0.8) negative_color = traitlets.Union([traitlets.Integer(), traitlets.Unicode()], default='red') positive_color = traitlets.Union([traitlets.Integer(), traitlets.Unicode()], default='blue') numpoints = traitlets.Integer(40, default=50, max=120, min=10) def __init__(self, mol, display=False, **kwargs): self.type_dropdown = None self.orblist = None self.isoval_selector = None self.opacity_selector = None self.viewer = GeometryViewer(mol=mol, **process_widget_kwargs(kwargs)) self.mol = mol self.wfn = mol.wfn # cache this directly because the molecule's state may change self._restyle_orbital() # sets defaults for orbital spec self._cached_cubefiles = {} self.uipane = self._make_ui_pane(self.viewer.layout.height) hb = HBox([self.viewer, self.uipane]) super().__init__([hb], viewer=self.viewer) if display: display_now(self) def draw_orbital(self, orbital): """Display a molecular orbital Args: orbital (moldesign.orbitals.Orbital): orbital to draw """ # This triggers self._redraw_orbital self.current_orbital = orbital @traitlets.observe('current_orbital', 'numpoints') def _redraw_orbital(self, *args): self.status_element.value = '<div class="nbv-loader"/>' try: if self.current_orbital is None: self.viewer.cubefile = '' return orbkey = (id(self.current_orbital), self.numpoints) if orbkey not in self._cached_cubefiles: grid, values = self._calc_orb_grid(self.current_orbital) cubefile = self._grid_to_cube(grid, values) self._cached_cubefiles[orbkey] = cubefile else: cubefile = self._cached_cubefiles[orbkey] self.viewer.cubefile = cubefile except Exception as e: self.status_element.value = u'⚠ %s' % e else: self.status_element.value = '' @traitlets.observe('negative_color', 'positive_color', 'isoval', 'orb_opacity') def _restyle_orbital(self, *args): # this triggers the redraw self.viewer.volumetric_style = { 'iso_val': self.isoval, 'opacity': self.orb_opacity, 'negativeVolumetricColor': self.negative_color, 'positiveVolumetricColor': self.positive_color} def _calc_orb_grid(self, orbital): """ Calculate grid of values for this orbital Args: orbital (moldesign.Orbital): orbital to calcualte grid for Returns: VolumetricGrid: grid that amplitudes where computed on Vector[1/length**1.5]: list of orbital amplitudes at each point on grid """ # NEWFEATURE: limit grid size based on the non-zero atomic centers. Useful for localized # orbitals, which otherwise require high resolution grid = padded_grid(self.wfn.positions, padding=3.0 * u.angstrom, npoints=self.numpoints) with np.errstate(under='ignore'): values = orbital(grid.allpoints()) return grid, values @staticmethod def _grid_to_cube(grid, values): """ Given a grid of values, create a gaussian cube file Args: grid (utils.VolumetricGrid): grid of points values (Iterable): iterator over grid values, in the same order as grid points Returns: str: contents of the cube file """ fobj = io.StringIO() # First two header lines print('CUBE File\nGenerated by nbmolviz', file=fobj) # third line: number of atoms (0, here) + origin of grid print('-1 %f %f %f' % tuple(grid.origin.value_in(u.angstrom)), file=fobj) # lines 4-7: number of points in each direction and basis vector for each # basis vectors are negative to indicate angstroms print('%d %f 0.0 0.0' % (-grid.xpoints, grid.dx.value_in(u.angstrom)), file=fobj) print('%d 0.0 %f 0.0' % (-grid.ypoints, grid.dy.value_in(u.angstrom)), file=fobj) print('%d 0.0 0.0 %f' % (-grid.zpoints, grid.dz.value_in(u.angstrom)), file=fobj) # Next is a line per atom # We put just one atom here - it shouldn't be rendered print('6 0.000 0.0 0.0 0.0', file=fobj) # Next, indicate that there's just one orbital print('1 1', file=fobj) # finally, write out all the grid values # ival = 0 valueiter = iter(values) for ix in range(grid.xpoints): for iy in range(grid.ypoints): for iz in range(grid.zpoints): print(str(next(valueiter)), end=' ', file=fobj) # ival += 1 # if ival%6 == 0: print >> fobj #newline if iz % 6 == 5: fobj.write('\n') fobj.write('\n') v = fobj.getvalue() fobj.close() return v def _make_ui_pane(self, hostheight): layout = ipy.Layout(width='325px', height=str(int(hostheight.rstrip('px')) - 50) + 'px') #element_height = str(int(hostheight.rstrip('px')) - 125) + 'px' element_height = None # NOTE - element_height was used for the listbox-style orblist. # HOWEVER ipywidgets 6.0 only displays those as a dropdown. # This is therefore disabled until we can display listboxes again. -- AMV 7/16 # Orbital set selector self.status_element = ipy.HTML(layout=ipy.Layout(width='inherit', height='20px')) orbtype_label = ipy.Label("Orbital set:") self.type_dropdown = ipy.Dropdown(options=list(self.wfn.orbitals.keys())) initialtype = 'canonical' if initialtype not in self.type_dropdown.options: initialtype = next(iter(self.type_dropdown.options.keys())) self.type_dropdown.value = initialtype self.type_dropdown.observe(self.new_orb_type, 'value') # List of orbitals in this set orblist_label = ipy.Label("Orbital:") self.orblist = ipy.Dropdown(options={None: None}, layout=ipy.Layout(width=layout.width, height=element_height)) traitlets.link((self.orblist, 'value'), (self, 'current_orbital')) # Isovalue selector isoval_label = ipy.Label('Isovalue:') self.isoval_selector = ipy.FloatSlider(min=0.0, max=0.075, value=0.01, step=0.00075, readout_format='.4f', layout=ipy.Layout(width=layout.width)) traitlets.link((self.isoval_selector, 'value'), (self, 'isoval')) # Opacity selector opacity_label = ipy.Label('Opacity:') self.opacity_selector = ipy.FloatSlider(min=0.0, max=1.0, value=0.8, step=0.01, readout_format='.2f', layout=ipy.Layout(width=layout.width)) traitlets.link((self.opacity_selector, 'value'), (self, 'orb_opacity')) # Resolution selector resolution_label = ipy.Label("Grid resolution:", layout=ipy.Layout(width=layout.width)) self.orb_resolution = ipy.Text(layout=ipy.Layout(width='75px', positioning='bottom')) self.orb_resolution.value = str(self.numpoints) self.resolution_button = ipy.Button(description='Update resolution') self.resolution_button.on_click(self.change_resolution) traitlets.directional_link((self, 'numpoints'), (self.orb_resolution, 'value'), transform=str) self.uipane = ipy.VBox([self.status_element, orbtype_label, self.type_dropdown, orblist_label, self.orblist, isoval_label, self.isoval_selector, opacity_label, self.opacity_selector, resolution_label, self.orb_resolution, self.resolution_button]) self.new_orb_type() self.type_dropdown.observe(self.new_orb_type, 'value') return self.uipane def new_orb_type(self, *args): """Create list of available orbitals when user selects a new type """ wfn = self.wfn newtype = self.type_dropdown.value neworbs = wfn.orbitals[newtype] orblist = collections.OrderedDict() orblist[None] = None for i, orb in enumerate(neworbs): if hasattr(orb, 'unicode_name'): orbname = orb.unicode_name else: orbname = orb.name meta = '' if orb.energy is not None: meta = '{:.02fP}'.format(orb.energy.defunits()) if orb.occupation is not None: if meta: meta += ', ' meta += 'occ %.2f' % orb.occupation if meta: desc = '%d. %s (%s)' % (i, orbname, meta) else: desc = '%d. %s' % (i, orbname) orblist[desc] = orb self.orblist.value = None self.orblist.options = orblist def change_resolution(self, *args): self.numpoints = int(self.orb_resolution.value) ``` #### File: nbmolviz/viewers/viewercontainer.py ```python from __future__ import print_function from future.builtins import * from future.standard_library import install_aliases install_aliases() # Copyright 2017 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ipywidgets as ipy from moldesign import utils from ..uielements.components import VBox from . import GeometryViewer class ViewerContainer(VBox): """ Container for one or more viewers. Delegates calls to the component viewers """ def __reduce__(self): """These don't gat passed around, so it reduces to NOTHING""" return utils.make_none, tuple() def __init__(self, children, viewer=None, graphviewer=None, **kwargs): if 'layout' not in kwargs: kwargs['layout'] = ipy.Layout(flex_flow='column', width='100%') super().__init__(children=children, **kwargs) self.viewer = viewer self.graphviewer = graphviewer @utils.args_from(GeometryViewer.set_color) def set_color(self, *args, **kwargs): if self.graphviewer: self.graphviewer.set_color(*args, **kwargs) if self.viewer: self.viewer.set_color(*args, **kwargs) @utils.args_from(GeometryViewer.set_color) def color_by(self, *args, **kwargs): if self.graphviewer: self.graphviewer.color_by(*args, **kwargs) if self.viewer: self.viewer.color_by(*args, **kwargs) @utils.args_from(GeometryViewer.set_color) def set_colors(self, *args, **kwargs): if self.graphviewer: self.graphviewer.set_colors(*args, **kwargs) if self.viewer: self.viewer.set_colors(*args, **kwargs) @utils.args_from(GeometryViewer.unset_color) def unset_color(self, *args, **kwargs): if self.graphviewer: self.graphviewer.unset_color(*args, **kwargs) if self.viewer: self.viewer.unset_color(*args, **kwargs) def __getattr__(self, item): if item != 'viewer' and self.viewer is not None: return getattr(self.viewer, item) else: raise AttributeError(item) ```
{ "source": "jparkie/cookiecutter-c99", "score": 2 }
#### File: functional/{{cookiecutter.lib_slug}}_cffi/compile_cffi.py ```python import subprocess import sys import cffi if __name__ == "__main__": path_include_dir = sys.argv[1] path_library_dir = sys.argv[2] lib_cffi = cffi.FFI() preprocess = subprocess.run( "gcc -E -P %s/{{cookiecutter.lib_slug}}/*.h" % path_include_dir, check=True, shell=True, stdout=subprocess.PIPE, universal_newlines=True, ) csource = preprocess.stdout csource = csource[csource.find("typedef void {{cookiecutter.lib_slug.upper()}}_UNUSED;"):] csource = "\n".join([ csource, """ """ ]) lib_cffi.cdef(csource) lib_cffi.set_source( "_{{cookiecutter.lib_slug}}_cffi", """ #include "{{cookiecutter.lib_slug}}/{{cookiecutter.lib_slug}}.h" """, libraries=["{{cookiecutter.lib_slug}}"], include_dirs=[path_include_dir, ], library_dirs=[path_library_dir, ], ) lib_cffi.compile() ```
{ "source": "jparklev/jesse", "score": 2 }
#### File: jesse/research/__init__.py ```python from .get_candles import get_candles def init(): """ """ from pydoc import locate import os import sys import jesse.helpers as jh # Python version validation. if jh.python_version() < 3.6: print( jh.color( 'Jesse has not beed tested with your Python version ({}), hence it may not work properly. Consider upgrading to >= 3.7'.format( jh.python_version()), 'red' ) ) # fix directory issue sys.path.insert(0, os.getcwd()) ls = os.listdir('.') is_jesse_project = 'strategies' in ls and 'config.py' in ls and 'storage' in ls and 'routes.py' in ls if not is_jesse_project: print( jh.color( 'Invalid directory. To use Jesse inside notebooks, create notebooks inside the root of a Jesse project.', 'red' ) ) if is_jesse_project: local_config = locate('config.config') from jesse.config import set_config set_config(local_config) ``` #### File: strategies/Test29/__init__.py ```python from jesse.strategies import Strategy # test_on_route_increased_position_and_on_route_reduced_position_and_strategy_vars part 1 - BTCUSD class Test29(Strategy): """ """ def __init__(self): super().__init__() self.vars['should_short'] = False self.vars['should_long'] = False def should_long(self): return self.vars['should_long'] def should_short(self): return self.vars['should_short'] def go_long(self): self.buy = 1, self.price self.take_profit = 1, self.price + 10 def go_short(self): self.sell = 1, self.price self.stop_loss = 1, self.price + 10 def on_route_increased_position(self, strategy): """ :param strategy: """ # setting it to True means we'll open a position on NEXT candle self.vars['should_long'] = True def on_route_reduced_position(self, strategy): """ :param strategy: """ # setting it to True means we'll open a position on NEXT candle self.vars['should_short'] = True def should_cancel(self): return False def on_take_profit(self): self.vars['should_long'] = False self.vars['should_short'] = False def on_stop_loss(self): self.vars['should_long'] = False self.vars['should_short'] = False ```
{ "source": "jparra5/dra_ut_decision_gate", "score": 2 }
#### File: jparra5/dra_ut_decision_gate/sauce.py ```python import requests import sys import json import time import os import base64 import urllib2 import logging import hmac from hashlib import md5 #from prettytable import PrettyTable #ascii color codes for output LABEL_GREEN = '\033[0;32m' LABEL_YELLOW = '\033[4;33m' LABEL_RED = '\033[0;31m' LABEL_COLOR = '\033[0;33m' LABEL_NO_COLOR = '\033[0m' STARS = "**********************************************************************" #test result url TEST_URL = "https://saucelabs.com/jobs/%s?auth=%s" #environment saucelabs variables SAUCE_URL = "https://saucelabs.com/rest/v1/" SAUCE_USER = os.environ.get('SAUCE_USERNAME') SAUCE_ACCESS_KEY = os.environ.get('SAUCE_ACCESS_KEY') START_TIME = os.environ.get('INIT_START_TIME') DOWNLOAD_ASSETS = os.environ.get('DOWNLOAD_ASSETS') chunk_size = 1024 exit_flag = 0 #browser test stat vars FIREFOX_PASS = 0 FIREFOX_TOTAL = 0 CHROME_PASS = 0 CHROME_TOTAL = 0 IE_PASS = 0 IE_TOTAL = 0 SAFARI_PASS = 0 SAFARI_TOTAL = 0 JOB_DATA = "job_data_collection.json" def request(url): base64string = base64.encodestring('%s:%s' % (SAUCE_USER, SAUCE_ACCESS_KEY)).replace('\n', '') headers = {'Authorization': 'Basic %s' % base64string} return requests.get(url, headers=headers) def download_log(url, job): base64string = base64.encodestring('%s:%s' % (SAUCE_USER, SAUCE_ACCESS_KEY)).replace('\n', '') headers = {'Authorization': 'Basic %s' % base64string} r = requests.get(url, headers=headers, stream=True) with open("selenium-server-" + job + ".log", 'wb') as fd: for chunk in r.iter_content(chunk_size): fd.write(chunk) def download_video(url, job): base64string = base64.encodestring('%s:%s' % (SAUCE_USER, SAUCE_ACCESS_KEY)).replace('\n', '') headers = {'Authorization': 'Basic %s' % base64string} r = requests.get(url, headers=headers, stream=True) with open("video-" + job + ".flv", 'wb') as fd: for chunk in r.iter_content(chunk_size): fd.write(chunk) def get_jobs(): try: response = request(SAUCE_URL + SAUCE_USER + "/jobs?from=" + START_TIME) response.raise_for_status() return response except requests.exceptions.RequestException as e: print e sys.exit(1) def get_job_status(job): try: response = request(SAUCE_URL + SAUCE_USER + "/jobs/" + job) response.raise_for_status() response_json = response.json() append_job_json(response.content) return response_json except requests.exceptions.RequestException as e: print e sys.exit(1) def get_job_assets(job): try: LOGGER.info("Getting selenium log for job: " + job) download_log(SAUCE_URL + SAUCE_USER + "/jobs/" + job + "/assets/selenium-server.log", job) LOGGER.info("Getting video for job: " + job) download_video(SAUCE_URL + SAUCE_USER + "/jobs/" + job + "/assets/video.flv", job) except requests.exceptions.RequestException as e: print e sys.exit(1) def output_job(job): global exit_flag auth_key = hmac.new(SAUCE_USER + ":" + SAUCE_ACCESS_KEY, job, md5).hexdigest() test_info = get_job_status(job) browser = test_info["browser"] test_status = test_info["consolidated_status"] if test_status == "passed": print LABEL_GREEN LOGGER.info("Job %s passed successfully." % job) LOGGER.info("See details at: " + TEST_URL % (job, auth_key)) print LABEL_NO_COLOR analyze_browser_results(0, browser) elif test_status == "complete": print LABEL_GREEN LOGGER.info("Job %s completed successfully." % job) LOGGER.info("See details at: " + TEST_URL % (job, auth_key)) print LABEL_NO_COLOR analyze_browser_results(0, browser) #for some reason job is still running elif test_status == "in progress": print LABEL_YELLOW LOGGER.info("Job %s is still in progress." % job) LOGGER.info("See details at: " + TEST_URL % (job, auth_key)) print LABEL_NO_COLOR #job failed else: print LABEL_RED LOGGER.error("There was problem with job %s." % job) LOGGER.info("See details at: " + TEST_URL % (job, auth_key)) print LABEL_NO_COLOR analyze_browser_results(1, browser) exit_flag = 1 #download assets if DOWNLOAD_ASSETS == "true": get_job_assets(job) def append_job_json(job_json): with open(JOB_DATA, 'a') as fd: fd.write(job_json + ",") fd.close() def analyze_browser_results(status, browser): global FIREFOX_PASS global FIREFOX_TOTAL global CHROME_PASS global CHROME_TOTAL global IE_PASS global IE_TOTAL global SAFARI_PASS global SAFARI_TOTAL if browser == "firefox": if status == 0: FIREFOX_PASS += 1 FIREFOX_TOTAL += 1 if browser == "googlechrome": if status == 0: CHROME_PASS += 1 CHROME_TOTAL += 1 if browser == "iexplore": if status == 0: IE_PASS += 1 IE_TOTAL += 1 if browser == "safari": if status == 0: SAFARI_PASS += 1 SAFARI_TOTAL += 1 def setup_logging(): logger = logging.getLogger('pipeline') logger.setLevel(logging.INFO) # if logmet is enabled, send the log through syslog as well if os.environ.get('LOGMET_LOGGING_ENABLED'): handler = logging.handlers.SysLogHandler(address='/dev/log') logger.addHandler(handler) # don't send debug info through syslog handler.setLevel(logging.INFO) # in any case, dump logging to the screen handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) handler.setLevel(logging.INFO) logger.addHandler(handler) return logger #Start logging.captureWarnings(True) LOGGER = setup_logging() LOGGER.info("Getting jobs...") jobs_json = get_jobs().json() #loop through each job in the list and process its assets with open(JOB_DATA, 'wb') as fd: fd.write("[") fd.close() LOGGER.info("Processing jobs...") for key in jobs_json: output_job(key["id"]) with open(JOB_DATA, 'a') as fd: fd.write("{}]") fd.close() #log test results #print LABEL_GREEN #print STARS #results_table = PrettyTable(["Browser", "Jobs Succeeded", "Jobs Failed", "Total Jobs"]) #results_table.align["Browser"] = "l" #results_table.add_row(["Firefox", FIREFOX_PASS, FIREFOX_TOTAL - FIREFOX_PASS, FIREFOX_TOTAL]) #results_table.add_row(["Google Chrome", CHROME_PASS, CHROME_TOTAL - CHROME_PASS, CHROME_TOTAL]) #results_table.add_row(["Internet Explorer", IE_PASS, IE_TOTAL - IE_PASS, IE_TOTAL]) #results_table.add_row(["Safari", SAFARI_PASS, SAFARI_TOTAL - SAFARI_PASS, SAFARI_TOTAL]) #print results_table #print STARS #print LABEL_NO_COLOR #log test results print STARS print LABEL_GREEN print '%d out of %d jobs succeeded on Firefox.' % (FIREFOX_PASS, FIREFOX_TOTAL) if FIREFOX_TOTAL - FIREFOX_PASS > 0: print LABEL_RED print '%d jobs failed.' % (FIREFOX_TOTAL - FIREFOX_PASS) print LABEL_NO_COLOR print STARS print LABEL_GREEN print '%d out of %d jobs succeeded on Google Chrome.' % (CHROME_PASS, CHROME_TOTAL) if CHROME_TOTAL - CHROME_PASS > 0: print LABEL_RED print '%d jobs failed.' % (CHROME_TOTAL - CHROME_PASS) print LABEL_NO_COLOR print STARS print LABEL_GREEN print '%d out of %d jobs succeeded on Internet Explorer.' % (IE_PASS, IE_TOTAL) if IE_TOTAL - IE_PASS > 0: print LABEL_RED print '%d jobs failed.' % (IE_TOTAL - IE_PASS) print LABEL_NO_COLOR print STARS print LABEL_GREEN print '%d out of %d jobs succeeded on Safari.' % (SAFARI_PASS, SAFARI_TOTAL) if SAFARI_TOTAL - SAFARI_PASS > 0: print LABEL_RED print '%d jobs failed.' % (SAFARI_TOTAL - SAFARI_PASS) print LABEL_NO_COLOR print STARS #exit with appropriate status sys.exit(exit_flag) ```
{ "source": "JParramore/search-engine", "score": 2 }
#### File: alembic/versions/a9422f5dde7c_add_page_location_word.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'a9422f5dde7c' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('page', sa.Column('created_at', sa.DateTime(timezone=True), nullable=True), sa.Column('updated_at', sa.DateTime(timezone=True), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.Column('url', sa.String(), nullable=True), sa.Column('title', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('word', sa.Column('id', sa.Integer(), nullable=False), sa.Column('stem', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('location', sa.Column('id', sa.Integer(), nullable=False), sa.Column('position', sa.String(), nullable=True), sa.Column('word_id', sa.Integer(), nullable=True), sa.Column('page_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['page_id'], ['page.id'], ), sa.ForeignKeyConstraint(['word_id'], ['word.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('location') op.drop_table('word') op.drop_table('page') # ### end Alembic commands ### ``` #### File: JParramore/search-engine/indexer.py ```python import asyncio from db.services import PageService, LocationService, WordService from db.session import get_session # https://stackoverflow.com/a/53256058 # allow functions to be 'fired and forgotten' def background(f): from functools import wraps @wraps(f) def wrapped(*args, **kwargs): loop = asyncio.get_event_loop() if callable(f): return loop.run_in_executor(None, f, *args, **kwargs) else: raise TypeError('Task must be a callable') return wrapped @background def add_to_index(url, title, text, description): ''' Add a page to our index. Add any new words as well as their locations on the page. If the page already exists in our index, presume it is stale. ''' session = get_session() page_service = PageService(session) location_service = LocationService(session) word_service = WordService(session) existing_page = page_service.find(url=url) if existing_page: # seen this page before? keep it up to date by removing its locations location_service.clean_up(existing_page) location_service.save() page = existing_page else: page = page_service.new(url=url, title=title, description=description) for index, stem in enumerate(text.lower().split()): word = word_service.find(stem=stem) if not word: word = word_service.new(stem=stem) location_service.new(page=page, word=word, position=index) page_service.save() ``` #### File: JParramore/search-engine/server.py ```python import time from flask import Flask, request, jsonify, render_template from query import query app = Flask(__name__, static_url_path='', static_folder='build', template_folder='build') @app.route("/") def index(): return render_template('index.html') @app.route('/search') def search(): q = request.args.get('q') if q: start = time.time() results = query(q.lower()) t = (time.time() - start) / 1000 if len(results) > 0: if t < 0.0001: t = 0.0001 stats = f'{len(results)} results found in {t:.4f}ms' else: stats = '0 results found.' return jsonify( { 'results': results, 'stats': stats, } ) else: return jsonify([]) if __name__ == "__main__": ''' In development, allow CORS requests so create-react-app can use hot reload and still hit us. ''' from flask_cors import CORS CORS(app) app.run(debug=True) ``` #### File: search-engine/tests/test_crawler.py ```python from crawler import extract_base, process_website, scrape_url_for_links, stream_seeds_into_queue import unittest from unittest.mock import patch from bs4 import BeautifulSoup from collections import deque class DotDict(dict): def __getattr__(self, item): if item in self: return self[item] raise AttributeError def __setattr__(self, key, value): if key in self: self[key] = value return raise AttributeError class TestCrawlerMethods(unittest.TestCase): def test_extract_base_url(self): url = 'https://www.duolingo.com/' expected = { 'strip_base': 'duolingo.com', 'base_url': 'https://www.duolingo.com', 'path': 'https://www.duolingo.com/' } actual = extract_base(url) self.assertEqual(actual['strip_base'], expected['strip_base']) self.assertEqual(actual['base_url'], expected['base_url']) self.assertEqual(actual['path'], expected['path']) def test_scrape_url_for_links(self): url = 'https://www.testcase.com/' with open('tests/data/test.html', 'r', encoding='utf-8') as stream: html_doc = stream.read() soup = BeautifulSoup(html_doc, 'lxml') base = extract_base(url) actual_internal_urls = scrape_url_for_links(base, soup) expected_internal_urls = set() expected_internal_urls.add('http://www.testcase.com/good-site-path') expected_internal_urls.add('https://www.testcase.com/good-site-path2') expected_internal_urls.add('https://www.testcase.com/goodpath3') expected_internal_urls.add('https://www.testcase.com/') self.assertCountEqual(actual_internal_urls, expected_internal_urls) @patch('crawler.process_website') def test_stream_seeds_into_queue(self, mock_process_website): test_yaml = 'tests/data/test.yaml' test_yaml_urls = ['https://facebook.com', 'https://google.com', 'https://www.test.com'] stream_seeds_into_queue(test_yaml) for test_url in test_yaml_urls: mock_process_website.assert_any_call(test_url) @patch('crawler.requests') @patch('crawler.add_to_index') def test_process_website(self, add_to_index, mock_requests): test_url = 'https://example.org' mock_requests.get.return_value = DotDict({"text": "<html></html>"}) process_website(test_url) mock_requests.get.assert_called_once_with('https://example.org') ``` #### File: search-engine/tests/test_indexer.py ```python from indexer import add_to_index from db.models import Page, Location, Word import unittest from unittest.mock import patch from setup.session import get_testing_session class TestIndexerData(unittest.TestCase): @patch('indexer.get_session') def test_add_data(self, mock_get_session): mock_session = get_testing_session() mock_get_session.return_value = mock_session url = 'http://google.com' title = 'Google' text = 'apple banana orange apple' description = 'Some description.' add_to_index.__wrapped__(url, title, text, description) page = mock_session.query(Page).first() words = mock_session.query(Word).all() # page saved self.assertEqual(page.url, url) self.assertEqual(page.title, title) self.assertEqual(page.description, description) # correct amount of locations locations = mock_session.query( Location).filter_by(page_id=page.id).all() self.assertEqual(len(locations), 4) # use existing words when necessary self.assertEqual(len(words), 3) # clear up stale locations old_locations = locations add_to_index.__wrapped__(url, title, text, description) locations = mock_session.query( Location).filter_by(page_id=page.id).all() for new_location in locations: self.assertNotIn(new_location, old_locations) ```
{ "source": "jparras/fed-baselines", "score": 3 }
#### File: fed-baselines/admm/admm_toolbox.py ```python import numpy as np import matplotlib.pyplot as plt import cvxpy as cp ''' In order to append / modify a problem, you should: (a) Add a new target function and modify the target method (b) Add its analytical solution and modify the solve_analytical method (c) Add the new problem to AdmmCentralized class (if you want to use ADMM centralized), i.e., modify updates of x and z (d) Add the new problem to AdmmDistributedAgent class (if you want to use ADMM distributed), i.e., modify updates of x and z ''' class AdmmDistributed(object): # Class that prepares data for distributed training ''' Note that this class is a convenient way to test a distributed ADMM implementation. In real deployments, no agent has access to all data (as this class does) and hence, it is not possible to compute the global loss unless we split the regularizer term among all distributed agents. In a real deployment, also, the analytical solution is not available. Note that this function is provided just for illustration and testing purposes. ''' def __init__(self, data_in, data_out, problem, lam=0.1, rho=10, grad_steps=10, grad_mu=0.1): if type(data_in) is not list or type(data_out) is not list: raise RuntimeError('Data must be provided as a list of numpy arrays per agent') if len(data_in) is not len(data_out): raise RuntimeError('Input and output data lists must have the same number of elements') self.na = len(data_in) self.problem = problem # Problem to be solved # To store training values self.f = None # To store function values (global) # ADMM parameters self.lam = lam # Regularizer self.rho = rho # Quadratic weight self.grad_steps = grad_steps # Number of steps per iteration in gradient / subgradient method (if needed) self.grad_mu = grad_mu # Step size in gradient / subgradient method (if needed) # Store global data self.global_data_in = np.vstack(data_in) self.global_data_out = np.hstack(data_out) self.global_data_out = self.global_data_out.reshape([self.global_data_out.size, 1]) # Build ADMM agents self.agents = [AdmmDistributedAgent(data_in[i], data_out[i], self.global_data_in.shape[0], self.na, self.problem, lam=self.lam, rho=self.rho, grad_steps=self.grad_steps, grad_mu=self.grad_mu) for i in range(self.na)] # Analytical solution (for comparison purposes) self.fopt, self.xopt = self.solve_analytical() def function(self, x): # Global target function (this function is only for illustration purposes) return target(self.global_data_in, self.global_data_out, self.lam, x, self.problem, z=None, na=1) def solve_analytical(self): return solve_analytical(self.global_data_in, self.global_data_out, self.lam, self.problem) def train(self, niter): # Distributed ADMM training! for agent in self.agents: agent.initialize() # Initialize local values self.f = [] # Initialize global f value for iter in range(niter): # Update x (locally) for agent in self.agents: agent.x_update(agent.x[-1], agent.y[-1], agent.z[-1]) # Update z (globally!) sum_x = np.zeros_like(self.agents[0].x[-1]) sum_y = np.zeros_like(self.agents[0].y[-1]) for agent in self.agents: sum_x += agent.x[-1] sum_y += agent.y[-1] for agent in self.agents: agent.z_update(sum_x / self.na, sum_y / self.na, agent.z[-1]) # Update y (locally) for agent in self.agents: agent.y_update(agent.x[-1], agent.y[-1], agent.z[-1]) # Update global f: make use of z (global value, shared by all agents) self.f.append(self.function(self.agents[0].z[-1])) def plot(self): # Plot the losses using the global variable z and all the data plt.plot(10 * np.log10(np.square(np.array(self.f) - self.fopt) + np.finfo(float).eps), 'b', label='global') # Plot also the losses using the local terms, x and z (the actual values obtained: the gap is due to x != z) sum_f_local = np.sum(np.array([np.array(agent.f) for agent in self.agents]), axis=0) plt.plot(10 * np.log10(np.square(sum_f_local - self.fopt) + np.finfo(float).eps), 'r', label='local') plt.title('ADMM distributed global loss') plt.xlabel('Iteration') plt.ylabel('MSE') plt.legend(loc='best') plt.show() ''' for i, agent in enumerate(self.agents): plt.plot(agent.f, label=str(i)) plt.plot(self.f, label='Global value') plt.title('ADMM distributed function values: local and global') plt.xlabel('Iteration') plt.ylabel('Value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(np.squeeze(np.array(agent.x)), label=str(i)) plt.title('ADMM distributed x') plt.xlabel('Iteration') plt.ylabel('x value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(np.squeeze(np.array(agent.y)), label=str(i)) plt.title('ADMM distributed y') plt.xlabel('Iteration') plt.ylabel('y value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(np.squeeze(np.array(agent.z)), label=str(i)) plt.title('ADMM distributed z') plt.xlabel('Iteration') plt.ylabel('z value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(10 * np.log10( np.sum(np.square(np.squeeze(np.array(agent.z)) - np.squeeze(np.array(agent.x))), axis=1) + np.finfo( float).eps), label=str(i)) plt.title('ADMM distributed x-z convergence') plt.xlabel('Iteration') plt.ylabel('MSE') plt.legend(loc='best') plt.show() ''' class AdmmDistributedAgent(object): def __init__(self, local_data_in, local_data_out, d_tot, na, problem, lam=0.1, rho=10, grad_steps=10, grad_mu=0.001): self.ndata = local_data_in.shape[0] # Number of data points (local dataset) self.ndata_tot = d_tot # Number of data points (global dataset) self.data_dim = local_data_in.shape[1] # Number of features per data point self.data_in = local_data_in # Feature matrix self.data_out = local_data_out.reshape([self.ndata, 1]) # Labels / regression targets self.na = na # Number of agents cooperating self.problem = problem # Problem to be solved # To store training values self.x = None # To store x values (local) self.y = None # To store y values (local) self.z = None # To store z values (global) self.f = None # To store function values (local) # ADMM parameters self.lam = lam # Regularizer self.rho = rho # Quadratic weight self.grad_steps = grad_steps # Number of steps per iteration in gradient / subgradient method (if needed) self.grad_mu = grad_mu # Step size in gradient / subgradient method (if needed) def function(self, x, z): # Local target function return target(self.data_in, self.data_out, self.lam, x, self.problem, z=z, na=self.na, ntot=self.ndata_tot) def x_update(self, x, y, z): if self.problem is "lasso" or self.problem is "ridge": term1 = np.linalg.inv(2 / self.ndata_tot * self.data_in.T @ self.data_in + self.rho * np.eye(self.data_dim)) term2 = 2 / self.ndata_tot * self.data_in.T @ self.data_out + self.rho * (z - y) xnew = term1 @ term2 elif self.problem is "svm": # In this case, we use a subgradient approach for the hinge function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in term1 = -1 / self.ndata_tot * np.sum(d[np.squeeze(d @ x < 1), :], axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x elif self.problem is "logistic": ## We use a gradient method for the logistic function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in denominator = np.repeat(1 + np.exp(d @ x), self.data_dim, axis=1) term1 = -1 / self.ndata_tot * np.sum(d / denominator, axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x else: raise RuntimeError('Problem not recognized') self.x.append(xnew) def y_update(self, x, y, z): ynew = y + x - z self.y.append(ynew) # Update also the function value! self.f.append(self.function(x, z)) def z_update(self, x, y, z): # In this case, x and y are the average of local x and y values!! if self.problem is "lasso": q = x + y v = self.lam / (self.na * self.rho) znew = np.maximum(np.zeros_like(q), q - v) - np.maximum(np.zeros_like(q), - q - v) elif self.problem is "ridge" or self.problem is "svm" or self.problem is "logistic": znew = (x+y) * self.rho * self.na / (self.lam + self.rho * self.na) else: raise RuntimeError('Problem not recognized') self.z.append(znew) def initialize(self): # Initialize values self.x = [] # To store x values self.y = [] # To store y values self.z = [] # To store z values self.f = [] # To store target function values self.x.append(np.zeros((self.data_dim, 1))) self.y.append(np.zeros((self.data_dim, 1))) self.z.append(np.zeros((self.data_dim, 1))) self.f.append(self.function(self.x[-1], self.z[-1])) class AdmmCentralized(object): def __init__(self, data_in, data_out, problem, lam=0.1, rho=10, grad_steps=10, grad_mu=0.001): self.ndata = data_in.shape[0] # Number of data points self.data_dim = data_in.shape[1] # Number of features per data point self.data_in = data_in # Feature matrix self.data_out = data_out.reshape([self.ndata, 1]) # Labels / regression targets self.problem = problem # Problem to be solved # To store training values self.x = None # To store x values self.y = None # To store y values self.z = None # To store z values self.f = None # To store function values # ADMM parameters self.lam = lam # Regularizer self.rho = rho # Quadratic weight self.grad_steps = grad_steps # Number of steps per iteration in gradient / subgradient method (if needed) self.grad_mu = grad_mu # Step size in gradient / subgradient method (if needed) # Analytical solution (for comparison purposes) self.fopt, self.xopt = self.solve_analytical() def function(self, x): # Target function return target(self.data_in, self.data_out, self.lam, x, self.problem, z=None, na=1) def solve_analytical(self): return solve_analytical(self.data_in, self.data_out, self.lam, self.problem) def x_update(self, x, y, z): if self.problem is "lasso" or self.problem is "ridge": term1 = np.linalg.inv(2 / self.ndata * self.data_in.T @ self.data_in + self.rho * np.eye(self.data_dim)) term2 = 2 / self.ndata * self.data_in.T @ self.data_out + self.rho*(z-y) xnew = term1 @ term2 elif self.problem is "svm": # In this case, we use a subgradient approach for the hinge function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in term1 = -1 / self.ndata * np.sum(d[np.squeeze(d @ x < 1), :], axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x elif self.problem is "logistic": ## We use a gradient method for the logistic function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in denominator = np.repeat(1 + np.exp(d @ x), self.data_dim, axis=1) term1 = -1 / self.ndata * np.sum(d / denominator, axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x else: raise RuntimeError('Problem not recognized') self.x.append(xnew) def y_update(self, x, y, z): # Always the same, we update the function value here! ynew = y + x - z self.y.append(ynew) # Update also the function value! self.f.append(self.function(x)) def z_update(self, x, y, z): if self.problem is "lasso": q = x + y v = self.lam / self.rho znew = np.maximum(np.zeros_like(q), q - v) - np.maximum(np.zeros_like(q), - q - v) elif self.problem is "ridge" or self.problem is "svm" or self.problem is "logistic": znew = (x + y) * self.rho / (self.lam + self.rho) else: raise RuntimeError('Problem not recognized') self.z.append(znew) def initialize(self): self.x = [] # To store x values self.y = [] # To store y values self.z = [] # To store z values self.f = [] # To store target function values self.x.append(np.zeros((self.data_dim, 1))) self.y.append(np.zeros((self.data_dim, 1))) self.z.append(np.zeros((self.data_dim, 1))) self.f.append(self.function(self.x[-1])) def train(self, niter): # Train centralized ADMM # Initialize values self.initialize() # Iterate ADMM for iter in range(niter): self.x_update(self.x[-1], self.y[-1], self.z[-1]) # Update x self.z_update(self.x[-1], self.y[-1], self.z[-1]) # Update z self.y_update(self.x[-1], self.y[-1], self.z[-1]) # Update y (and store the function value!) def plot(self): ''' plt.plot(np.squeeze(np.array(self.x)), 'b', label='x') plt.plot(np.squeeze(np.array(self.y)), 'r', label='y') plt.plot(np.squeeze(np.array(self.z)), 'g', label='z') plt.title('ADMM centralized values') plt.xlabel('Iteration') plt.ylabel('Value') plt.legend(loc='best') plt.show() plt.plot(10 * np.log10(np.square(np.array(self.f)))) plt.title('ADMM centralized function') plt.xlabel('Iteration') plt.ylabel('MSE') plt.show() ''' plt.plot(10 * np.log10(np.square(np.array(self.f) - self.fopt) + np.finfo(float).eps)) plt.title('ADMM centralized loss') plt.xlabel('Iteration') plt.ylabel('MSE') plt.show() # Target functions (in distributed, x is local and z is global) def target(data_in, data_out, lam, x, problem, z=None, na=1, ntot=None): if problem is "lasso": return target_lasso(data_in, data_out, lam, x, z, na=na, ntot=ntot) elif problem is "svm": return target_svm(data_in, data_out, lam, x, z, na=na, ntot=ntot) elif problem is "ridge": return target_ridge(data_in, data_out, lam, x, z, na=na, ntot=ntot) elif problem is "logistic": return target_logistic(data_in, data_out, lam, x, z, na=na, ntot=ntot) else: raise RuntimeError('Problem not recognized') def target_lasso(data_in, data_out, lam, x, z, na=1, ntot=None): if ntot is None: ntot = data_in.shape[0] if z is None: return np.sum(np.square(data_in @ x - data_out)) / ntot + lam * np.sum(np.abs(x)) / na else: return np.sum(np.square(data_in @ x - data_out)) / ntot + lam * np.sum(np.abs(z)) / na def target_ridge(data_in, data_out, lam, x, z, na=1, ntot=None): if ntot is None: ntot = data_in.shape[0] if z is None: return np.sum(np.square(data_in @ x - data_out)) / ntot + lam / 2 * np.sum(np.square(x)) / na else: return np.sum(np.square(data_in @ x - data_out)) / ntot + lam / 2 * np.sum(np.square(z)) / na def target_svm(data_in, data_out, lam, x, z, na=1, ntot=None): if ntot is None: ntot = data_in.shape[0] cost = np.sum(np.maximum(np.zeros((data_in.shape[0], 1)), np.ones((data_in.shape[0], 1)) - np.diag(np.squeeze(data_out)) @ (data_in @ x))) if z is None: return cost / ntot + lam / 2 * np.sum(np.square(x)) / na else: return cost / ntot + lam / 2 * np.sum(np.square(z)) / na def target_logistic(data_in, data_out, lam, x, z, na=1, ntot=None): if ntot is None: ntot = data_in.shape[0] cost = np.sum(np.log(1 + np.exp(- np.diag(np.squeeze(data_out)) @ (data_in @ x)))) if z is None: return cost / ntot + lam / 2 * np.sum(np.square(x)) / na else: return cost / ntot + lam / 2 * np.sum(np.square(z)) / na # Analytical solutions to classical problems using CVX: this data can be later used for our problems as REFERENCE def solve_analytical(data_in, data_out, lam, problem): if problem is "lasso": return solve_lasso_analytical(data_in, data_out, lam) elif problem is "svm": return solve_svm_analytical(data_in, data_out, lam) elif problem is "ridge": return solve_ridge_analytical(data_in, data_out, lam) elif problem is "logistic": return solve_logistic_analytical(data_in, data_out, lam) else: raise RuntimeError('Problem not recognized') def solve_lasso_analytical(data_in, data_out, lam): x = cp.Variable((data_in.shape[1], 1)) cost = cp.sum_squares(data_in @ x - data_out) prob = cp.Problem(cp.Minimize(cost/data_in.shape[0] + lam * cp.sum(cp.abs(x)))) prob.solve() return prob.value, x.value def solve_ridge_analytical(data_in, data_out, lam): x = cp.Variable((data_in.shape[1], 1)) cost = cp.sum_squares(data_in @ x - data_out) prob = cp.Problem(cp.Minimize(cost/data_in.shape[0] + lam / 2 * cp.sum_squares(x))) prob.solve() return prob.value, x.value def solve_svm_analytical(data_in, data_out, lam): x = cp.Variable((data_in.shape[1], 1)) cost = cp.sum(cp.maximum(np.zeros((data_in.shape[0], 1)), np.ones((data_in.shape[0], 1)) - cp.diag(data_out) @ (data_in @ x))) prob = cp.Problem(cp.Minimize(cost/data_in.shape[0] + lam / 2 * cp.sum_squares(x))) prob.solve() return prob.value, x.value def solve_logistic_analytical(data_in, data_out, lam): x = cp.Variable((data_in.shape[1], 1)) cost = cp.sum(cp.logistic(-cp.diag(data_out) @ (data_in @ x))) prob = cp.Problem(cp.Minimize(cost / data_in.shape[0] + lam / 2 * cp.sum_squares(x))) prob.solve() return prob.value, x.value ``` #### File: fed-baselines/BNNcent/bnn.py ```python import os import csv import torch import urllib import argparse import torch.nn.functional as F import matplotlib.pyplot as plt import torchvision.transforms as transforms from bnn_toolbox import * from torchvision import datasets from torch.utils.data.dataloader import DataLoader from torch.utils.data.sampler import SubsetRandomSampler torch.manual_seed(0) def data_preparation(hyperparameters): transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x * 255. / 126.), # Divide as in paper ]) train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform) test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform) valid_size = 1 / 6 num_train = len(train_data) indices = list(range(num_train)) split = int(valid_size * num_train) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) # Samples elements randomly from a given list of indices, without replacement. valid_sampler = SubsetRandomSampler(valid_idx) train_loader = torch.utils.data.DataLoader( train_data, batch_size=hyperparameters.batch_size, sampler=train_sampler, num_workers=1) valid_loader = torch.utils.data.DataLoader( train_data, batch_size=hyperparameters.eval_batch_size, sampler=valid_sampler, num_workers=1) test_loader = torch.utils.data.DataLoader( test_data, batch_size=hyperparameters.eval_batch_size, num_workers=1) return train_loader, valid_loader, test_loader, 28*28, 10 def parse_arguments(): parser = argparse.ArgumentParser(description='Train Bayesian Neural Net on MNIST with Variational Inference') parser.add_argument('--model', type=str, nargs='?', action='store', default='mixture_prior', help='Model to run.Default mixture prior. Options are \'gaussian_prior\', \'mixture_prior\'.') parser.add_argument('--hidd_units', type=int, nargs='?', action='store', default=1200, help='Neural network hidden units. Default 1200.') args = parser.parse_args() return args if __name__ == '__main__': # Configuration print('[INFO] Environment configuration...') args = parse_arguments() mixture = True if args.model != 'mixture_prior': mixture = False hyperparameters = HyperparametersInitialization(hidden_units=args.hidd_units, mixture=mixture) # Data preparation print('[INFO] Preparing data...') train_loader, valid_loader, test_loader, n_input, n_ouput = data_preparation(hyperparameters) # Test parameters print('[INFO] Model hyperparameters:') print(hyperparameters.__dict__) # Initialize network print('[INFO] Initializing network...') model = BNN(n_input, n_ouput, hyperparameters).cuda() optimizer = torch.optim.SGD(model.parameters(), lr=hyperparameters.lr, momentum=hyperparameters.momentum) train_losses = np.zeros(hyperparameters.max_epoch) valid_accs = np.zeros(hyperparameters.max_epoch) test_accs = np.zeros(hyperparameters.max_epoch) test_errs = np.zeros(hyperparameters.max_epoch) # Training print('[INFO] Training network for', hyperparameters.max_epoch, 'epochs...') for epoch in range(hyperparameters.max_epoch): train_loss = train(model, optimizer, train_loader, hyperparameters) valid_acc = evaluate(model, valid_loader, samples=hyperparameters.n_test_samples) test_acc = evaluate(model, test_loader, samples=hyperparameters.n_test_samples) print('Epoch', epoch + 1, 'Loss', float(train_loss), 'Valid Error', round(100 * (1 - valid_acc / hyperparameters.eval_batch_size), 3), '%', 'Test Error', round(100 * (1 - test_acc / hyperparameters.eval_batch_size), 3), '%') valid_accs[epoch] = valid_acc test_accs[epoch] = test_acc train_losses[epoch] = train_loss test_errs[epoch] = round(100 * (1 - test_acc / hyperparameters.eval_batch_size), 3) # Save results if not os.path.exists('results'): os.makedirs('results') path = 'results/BBB_' + 'mnist' + '_' + str(hyperparameters.hidden_units) + '_' + str(hyperparameters.lr) + '_samples' + str(hyperparameters.n_samples) + '_' + str(args.model) wr = csv.writer(open(path + '.csv', 'w'), delimiter=',', lineterminator='\n') wr.writerow(['epoch', 'valid_acc', 'test_acc', 'train_losses']) for i in range(hyperparameters.max_epoch): wr.writerow((i + 1, str(round(valid_accs[i] / hyperparameters.eval_batch_size * 100, 3)) + "%", str(round(test_accs[i] / hyperparameters.eval_batch_size * 100, 3)) + '_' + "%", train_losses[i])) torch.save(model.state_dict(), path + '.pth') # Plot test error plt.plot(test_errs) plt.xlabel('Epochs') plt.ylabel('Error (%)') plt.title('Test data error prediction') plt.grid(True) plt.savefig('results/BBB_' + 'mnist' + '_' + str(hyperparameters.hidden_units) + '_' + str(hyperparameters.lr) + '_samples' + str(hyperparameters.n_samples) + '_' + str(args.model), format='png') plt.show() print('[INFO] Done') ``` #### File: BNNfed/source/fed_process.py ```python import tensorflow as tf from source.tfp_utils import loc_prod_from_locprec eps = 1/tf.float32.max import random import logging from pathlib import Path import tensorflow as tf import numpy as np from source.utils import avg_dict, avg_dict_eval from source.constants import ROOT_LOGGER_STR from operator import itemgetter from source.utils import CustomTensorboard logger = logging.getLogger(ROOT_LOGGER_STR + '.' + __name__) class FedProcess: def __init__(self, model_fn, num_clients): self.model_fn = model_fn self.num_clients = num_clients self.clients_indx = range(self.num_clients) self.clients = [] self.server = None self.train_summary_writer = None self.test_summary_writer = None self.valid_summary_writer = None def build(self, *args, **kwargs): pass def aggregate_deltas_multi_layer(self, deltas, client_weight=None): aggregated_deltas = [] deltas = list(map(list, zip(*deltas))) for delta_layer in deltas: aggregated_deltas.append( self.aggregate_deltas_single_layer(delta_layer, client_weight)) return aggregated_deltas def aggregate_deltas_single_layer(self, deltas, client_weight=None): for i, delta_client in enumerate(deltas): for key, el in delta_client.items(): if isinstance(el, tuple): (loc, prec) = el if client_weight: prec = prec*client_weight[i]*self.num_clients loc = tf.math.multiply(loc, prec) delta_client[key] = (loc, prec) else: if client_weight: delta_client[key] = (el*client_weight[i], ) else: delta_client[key] = (el/self.num_clients, ) deltas = {key: [dic[key] for dic in deltas] for key in deltas[0]} for key, lst in deltas.items(): lst = zip(*lst) sum_el = [] for i, el in enumerate(lst): add = tf.math.add_n(el) sum_el.append(add) if len(sum_el) == 2: loc = loc_prod_from_locprec(*sum_el) deltas[key] = (loc, sum_el[1]) else: deltas[key] = sum_el[0] return deltas def fit(self, federated_train_data, num_rounds, clients_per_round, epochs_per_round, federated_test_data=None, tensorboard_updates=1, logdir=Path(), callbacks=None, train_size=None, test_size=None, hierarchical=False, server_learning_rate=1., verbose=0, MTL=False): print('fed_process ' + str(logdir)) self.summary_writer = tf.summary.create_file_writer(str(logdir)) if MTL: self.build(train_size, hierarchical) deltas = [client.compute_delta() for client in self.clients] aggregated_deltas = self.aggregate_deltas_multi_layer( deltas, [size / sum(train_size) for size in train_size]) self.server.apply_delta(aggregated_deltas) else: self.build() history_test = [None] * len(self.clients) max_train_accuracy = -1.0 max_train_acc_round = None max_server_accuracy = -1.0 max_server_acc_round = None max_client_all_accuracy = -1.0 max_client_all_round = None max_client_selected_accuracy = -1.0 max_client_selected_acc_round = None server_test_accs = np.zeros(num_rounds) all_client_test_accs = np.zeros(num_rounds) selected_client_test_accs = np.zeros(num_rounds) training_accs = np.zeros(num_rounds) server_test_losses = np.zeros(num_rounds) all_client_test_losses = np.zeros(num_rounds) selected_client_test_losses = np.zeros(num_rounds) training_losses = np.zeros(num_rounds) overall_tensorboard = CustomTensorboard(log_dir=str(logdir)+'/selected_client', histogram_freq=max(0, verbose - 2), profile_batch=max(0, verbose - 2)) if verbose >= 2: if callbacks: callbacks.append(overall_tensorboard) else: callbacks = [overall_tensorboard] for round_i in range(num_rounds): clients_sampled = random.sample(self.clients_indx, clients_per_round) deltas = [] history_train = [] for indx in clients_sampled: self.clients[indx].receive_and_save_weights(self.server) self.clients[indx].renew_center(round_i > 0) if MTL: if self.fed_avg_init == 2 or ( self.fed_avg_init and round_i > 0): print('initialize posterior with server') self.clients[indx].initialize_kernel_posterior() history_single = self.clients[indx].fit( federated_train_data[indx], verbose=0, validation_data=federated_test_data[indx], epochs=epochs_per_round, callbacks=callbacks ) if MTL: self.clients[indx].apply_damping(self.damping_factor) delta = self.clients[indx].compute_delta() deltas.append(delta) if verbose >= 1: with self.summary_writer.as_default(): for layer in self.clients[indx].layers: layer_to_check = layer if hasattr(layer, 'cell'): layer_to_check = layer.cell for weight in layer_to_check.trainable_weights: if 'natural' in weight.name + layer.name: tf.summary.histogram(layer.name + '/' + weight.name + '_gamma', weight[..., 0], step=round_i) tf.summary.histogram(layer.name + '/' + weight.name + '_prec', weight[..., 1], step=round_i) else: tf.summary.histogram(layer.name + '/' + weight.name, weight, step=round_i) if hasattr(layer_to_check, 'kernel_posterior'): tf.summary.histogram( layer.name + '/kernel_posterior' + '_gamma_reparametrized', layer_to_check.kernel_posterior.distribution.gamma, step=round_i) tf.summary.histogram( layer.name + '/kernel_posterior' + '_prec_reparametrized', layer_to_check.kernel_posterior.distribution.prec, step=round_i) if hasattr(layer_to_check, 'recurrent_kernel_posterior'): tf.summary.histogram( layer.name + '/recurrent_kernel_posterior' + '_gamma_reparametrized', layer_to_check.recurrent_kernel_posterior.distribution.gamma, step=round_i) tf.summary.histogram( layer.name + '/recurrent_kernel_posterior' + '_prec_reparametrized', layer_to_check.recurrent_kernel_posterior.distribution.prec, step=round_i) for layer in self.server.layers: layer_to_check = layer if hasattr(layer, 'cell'): layer_to_check = layer.cell if hasattr(layer_to_check, 'server_variable_dict'): for key, value in layer_to_check.server_variable_dict.items(): if 'natural' in layer_to_check.name + value.name: tf.summary.histogram( layer.name + '/server_gamma', value[..., 0], step=round_i) tf.summary.histogram( layer.name + '/server_prec', value[..., 1], step=round_i) else: tf.summary.histogram(layer.name, value, step=round_i) history_train.append({key: history_single.history[key] for key in history_single.history.keys() if 'val' not in key}) history_test[indx] = \ {key.replace('val_', ''): history_single.history[key] for key in history_single.history.keys() if 'val' in key} train_size_sampled = itemgetter(*clients_sampled)(train_size) if clients_per_round == 1: train_size_sampled = [train_size_sampled] if MTL: client_weights = [server_learning_rate * train_size[client] / sum(train_size) for client in clients_sampled] else: client_weights = [server_learning_rate * train_size[client] / sum(train_size_sampled) for client in clients_sampled] aggregated_deltas = self.aggregate_deltas_multi_layer(deltas, client_weights) self.server.apply_delta(aggregated_deltas) server_test = [self.server.evaluate(test_data, verbose=0) for test_data in federated_test_data] all_client_test = [self.clients[indx].evaluate(test_data, verbose=0) for indx, test_data in enumerate(federated_test_data)] all_client_avg_test = avg_dict_eval( all_client_test, [size / sum(test_size) for size in test_size]) all_client_test_accs[round_i] = all_client_avg_test[1] all_client_test_losses[round_i] = all_client_avg_test[0] avg_train = avg_dict(history_train, [train_size[client] for client in clients_sampled]) selected_client_test = avg_dict(history_test, test_size) server_avg_test = avg_dict_eval( server_test, [size / sum(test_size) for size in test_size]) if server_avg_test[1] > max_server_accuracy: max_server_accuracy = server_avg_test[1] max_server_acc_round = round_i if avg_train['sparse_categorical_accuracy'] > max_train_accuracy: max_train_accuracy = avg_train['sparse_categorical_accuracy'] max_train_acc_round = round_i if selected_client_test['sparse_categorical_accuracy'] > max_client_selected_accuracy: max_client_selected_accuracy = selected_client_test['sparse_categorical_accuracy'] max_client_selected_acc_round = round_i if all_client_avg_test[1] > max_client_all_accuracy: max_client_all_accuracy = all_client_avg_test[1] max_client_all_round = round_i server_test_accs[round_i] = server_avg_test[1] training_accs[round_i] = avg_train['sparse_categorical_accuracy'] selected_client_test_accs[round_i] = selected_client_test['sparse_categorical_accuracy'] server_test_losses[round_i] = server_avg_test[0] selected_client_test_losses[round_i] = selected_client_test['loss'] training_losses[round_i] = avg_train['loss'] debug_string = (f"round: {round_i}, " f"avg_train: {avg_train}, " f"selected_client_test: {selected_client_test}, " f"server_avg_test on whole test data: {server_avg_test} " f"server max accuracy so far: {max_server_acc_round} reached at " f"round {max_server_acc_round} " f"all clients max accuracy so far: {max_client_all_accuracy} reached at " f"round {max_client_all_round} " f"all clients avg test: {all_client_avg_test}") logger.debug(debug_string) if round_i % tensorboard_updates == 0: for i, key in enumerate(avg_train.keys()): with self.summary_writer.as_default(): tf.summary.scalar('train/' + key, avg_train[key], step=round_i) tf.summary.scalar('server/' + key, server_avg_test[i], step=round_i) tf.summary.scalar('client_selected/' + key, selected_client_test[key], step=round_i) tf.summary.scalar('client_all/' + key, all_client_avg_test[i], step=round_i) if key == 'sparse_categorical_accuracy': tf.summary.scalar('train/max_' + key, max_train_accuracy, step=round_i) tf.summary.scalar('server/max_' + key, max_server_accuracy, step=round_i) tf.summary.scalar('client_selected/max_' + key, max_client_selected_accuracy, step=round_i) tf.summary.scalar('client_all/max_' + key, max_client_all_accuracy, step=round_i) # Do this at every round to make sure to keep the data even if # the training is interrupted np.save(Path(logdir).parent / 'server_accs.npy', server_test_accs) np.save(Path(logdir).parent / 'training_accs.npy', training_accs) np.save(Path(logdir).parent / 'selected_client_accs.npy', selected_client_test_accs) np.save(Path(logdir).parent / 'server_losses.npy', server_test_losses) np.save(Path(logdir).parent / 'training_losses.npy', training_losses) np.save(Path(logdir).parent / 'selected_client_losses.npy', selected_client_test_losses) np.save(Path(logdir).parent / 'all_client_accs.npy', all_client_test_accs) np.save(Path(logdir).parent / 'all_client_losses.npy', all_client_test_losses) for i, client in enumerate(self.clients): client.save_weights(str(Path(logdir) / f'weights_{i}.h5')) ```
{ "source": "jparrax/datascience_middle_course", "score": 2 }
#### File: 02_linear_models/solutions/solution_07.py ```python def huber_loss(y_true, y_pred, *, epsilon): mask_greater_epsilon = np.abs(y_true - y_pred) > epsilon loss = np.zeros_like(y_pred) loss[mask_greater_epsilon] = np.abs(y_true - y_pred)[mask_greater_epsilon] loss[~mask_greater_epsilon] = se_loss(y_true, y_pred)[~mask_greater_epsilon] return loss ```
{ "source": "jparrent/Insight", "score": 3 }
#### File: Project/app/RankRest.py ```python from fuzzywuzzy import fuzz from fuzzywuzzy import process # import math def RankIt(df, model, model_hs1, model_hs1_neg0, allergens, nutrition_data, big8): all_allergens = [] all_allergens.extend(big8) all_allergens.extend(allergens) print(all_allergens) num_of_allerg = len(all_allergens) g = {k: list(s) for k, s in df.groupby( ['restid', 'restname', 'address'])['sentence']} scores = [] for key, llist in g.items(): key_score = 100 num_of_items = len(llist) strike = key_score / num_of_items / num_of_allerg if len(allergens) > 0: for allerg in allergens: for sen in llist: sen_list = sen.split() for word in sen_list: # step 1: check for direct word match if fuzz.ratio(word.lower(), allerg) > 80: key_score -= strike print(word, allerg, strike) break # if none, step 2: check for indirect word match else: try: test1 = model.similar_by_word( word.lower(), topn=20) test2 = model_hs1.similar_by_word( word.lower(), topn=20) test3 = model_hs1_neg0.similar_by_word( word.lower(), topn=20) except KeyError: continue check1 = [i[0].lower() for i in test1 if i[1] > 0.40 and fuzz.ratio(i[0].lower(), allerg) > 80] check2 = [i[0].lower() for i in test2 if i[1] > 0.40 and fuzz.ratio(i[0].lower(), allerg) > 80] check3 = [i[0].lower() for i in test3 if i[1] > 0.30 and fuzz.ratio(i[0].lower(), allerg) > 80] if allerg in check1 and allerg in check2 and allerg in check3: print(word, allerg, strike) key_score -= strike break # step 3: check for match with big8 list if len(big8) > 0: for item in big8: for sen in llist: sen_list = sen.split() for word in sen_list: if fuzz.ratio(word.lower(), item) > 80: key_score -= strike print(word, item, strike) break if word in nutrition_data.keys(): if item in nutrition_data[word.lower()]: key_score -= strike print(word, item, strike) break key_score = int(round(key_score)) scores.append([key_score, key]) scores.sort(reverse=True) return scores, all_allergens ```
{ "source": "jparris/enso", "score": 2 }
#### File: enso/graphics/__init__.py ```python import enso.providers _graphics = enso.providers.getInterface( "graphics" ) from enso.graphics.measurement import pointsToPixels, pixelsToPoints def getDesktopSize(): width, height = _graphics.getDesktopSize() width = pixelsToPoints( width ) height = pixelsToPoints( height ) return ( width, height ) ```
{ "source": "jparrpearson/python-chinese-pinyin-translator", "score": 3 }
#### File: jparrpearson/python-chinese-pinyin-translator/translate.py ```python import codecs import getopt import io import os import re import shutil import sys import time def main(argv): # Defaults dictionaryFile = "resources/cedict_ts.u8" inputFile = "" inputDir = "" inputString = "" process = "filename" tones = False capitalize = True backup = True # Allow for unicode output to a non-unicode console sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding=sys.stdout.encoding, errors="replace") # Get program arguments usage = ("Example usage:\n translate.py -h --file # --dir <directory> --string <string>\n" " --process <filename|text|both> --tones <true|false>\n" " --capitalize <true|false> --backup <true|false>") options = ("Options:\n -h, --help - Shows the script usage and help options.\n" " -f, --file - The input file to translate. One of 'dir', 'file', or 'string' is required.\n" " -d, --dir - The input directory to translate (translates all files in nested directories). One of 'dir', 'file', or 'string' is required.\n" " -s, --string - The string to translate (displays in the console). One of 'dir', 'file', or 'string' is required.\n" " -p, --process - Determines what is processed - 'filename' (default), 'text', or 'both'.\n" " -t, --tones - Output the pinyin tone numbers. Defaults to 'false'.\n" " -c, --capitalize - Capitalize the pinyin (otherwise all lower case). Defaults to 'true'.\n" " -b, --backup - Backup each translated file (e.g. 'filename.ext.BAK'). Defaults to 'true'.\n") try: opts, args = getopt.getopt(argv, "?hf:d:s:p:t:c:b:", ["help", "file=", "dir=", "string=", "process=", "tones=", "capitalize=", "backup="]) except getopt.GetoptError as err: print(str(er)) print(usage) sys.exit(2) for opt, arg in opts: if opt in ("-?", "-h", "--help"): print(usage) print() print(options) sys.exit(0) elif opt in ("-f", "--file"): inputFile = arg elif opt in ("-d", "--dir"): inputDir = arg elif opt in ("-s", "--string"): inputString = arg elif opt in ("-p", "--process"): if arg not in ("filename", "text", "both"): print("Invalid process option") print(usage) sys.exit(2) process = arg elif opt in ("-t", "--tones"): tones = True if arg.upper() == "TRUE" else False elif opt in ("-c", "--capitalize"): capitalize = True if arg.upper() == "TRUE" else False elif opt in ("-b", "--backup"): backup = True if arg.upper() == "TRUE" else False if not inputFile and not inputDir and not inputString: print("Must provide either a file, directory, or string to translate") print(usage) sys.exit(2) # Parse the dictionary file into a local dictionary start = time.time() dict = {} with codecs.open(dictionaryFile, "r", encoding="utf-8") as file: pattern = "(.*?) (.*?) \[(.*?)\] /(.*?)/" for line in file: if not line.startswith('#') and not line.startswith('%'): match = re.match(pattern, line) if match: pinyin = match.group(3) # Determine tone numbers and capitalization pinyin = pinyin if tones else re.sub("[1234567890]", "", pinyin) pinyin = pinyin.lower() if not capitalize else pinyin.capitalize() # Add keys for traditional and simplified characters dict[match.group(1)] = pinyin dict[match.group(2)] = pinyin print("Loaded " + str(len(dict)) + " dictionary entries (" + getTime(start) + "s)") # Perform translation actions if inputFile: translateFile(inputFile, dict, process, backup) elif inputDir: count = translateDir(inputDir, dict, process, backup) print("Translated " + str(count) + " files") elif inputString: outputString = translateLine(inputString, dict) print("Translated string:\n" + outputString) def translateFile(inputFile, dict, process, backup): """Translates the file (filename, text, or both).""" print("Translating file " + inputFile + "...") # Translate the file contents with codecs.open(inputFile, "r+", encoding="utf-8") as file: # Backup the file if backup: filename = file.name + ".BAK" if not os.path.isfile(filename): print("Backing up to file " + filename) shutil.copy2(file.name, filename) else: print("Skipping backup to " + filename + " (file already exists)") # Translate the file contents (text) if process in ("text", "both"): text = "" for line in file: text += translateLine(line, dict) file.seek(0) file.write(text) file.truncate() # Translate the filename if process in ("filename", "both"): filename = translateLine(os.path.basename(file.name), dict) file.close() print("Changing filename to " + filename) os.rename(file.name, os.path.dirname(file.name) + os.path.sep + filename) def translateDir(inputDir, dict, process, backup): """Translates all files in the given directory, and all nested directories. Returns the number of files translated.""" print("Translating directory " + inputDir + "...") # Translate all nested files in the directory count = 0 for subdir, dirs, files in os.walk(inputDir): for file in files: filename = os.path.join(subdir, file) if not filename.endswith(".BAK"): translateFile(filename, dict, process, backup) count += 1 return count def translateLine(line, dict): """Translates and returns a given line of text.""" text = "" lastChar = "" lineStart = True translated = False for char in line: # Use the matching value in the dictionary, otherwise output the existing character try: value = dict[char] if not lineStart and not lastChar.isspace(): text += " " text += value translated = True except KeyError: if not lineStart and translated and (char.isalpha() or char.isdigit()): text += " " text += char translated = False lastChar = char lineStart = False return text def getTime(start, digits=2): """Get and return the time elapsed since start to now (in seconds, to digits decimal places).""" end = time.time() f = "{:." + str(digits) + "f}" return f.format(end-start) if __name__ == "__main__": start = time.time() main(sys.argv[1:]) print("Done (" + getTime(start) +"s)") ```
{ "source": "jparsai/cvejob", "score": 3 }
#### File: cvejob/cvejob/config.py ```python import os class DefaultConfig(object): """Default configuration holder.""" # ecosystem/language to work with ecosystem = 'python' # max age of a CVE, in days; older CVEs will be ignored. # 0 = disable this option and process all CVEs cve_age = 0 # location of the default NVD JSON feeds feed_dir = 'nvd-data/' # path to the default NVD JSON feed feed_names = None # range of CVES to process, all other CVEs will be ignored date_range = None # ID of a CVE to process, all other CVEs will be ignored cve_id = None # package name, requires also cve_id to be set package_name = None # location of the cpe2pkg Jar file cpe2pkg_path = 'cpe2pkg.jar' # directory where to find files containing package names pkgfile_dir = 'data/' # whether or not to use nvd-toolkit use_nvdtoolkit = False # directory where to find pretrained classifier for the nvd-toolkit nvdtoolkit_export_dir = 'export/' class RuntimeConfig(object): """Runtime configuration holder.""" def __init__(self): """Constructor.""" self._config = DefaultConfig() ecosystem = os.environ.get('CVEJOB_ECOSYSTEM') if ecosystem is not None: self._config.ecosystem = ecosystem cve_age = os.environ.get('CVEJOB_CVE_AGE') if cve_age is not None: self._config.cve_age = int(cve_age) feed_dir = os.environ.get('CVEJOB_FEED_DIR') if feed_dir is not None: self._config.feed_dir = feed_dir feed_names = os.environ.get('CVEJOB_FEED_NAMES') if feed_names is not None: self._config.feed_names = feed_names.split(',') date_range = os.environ.get('CVEJOB_DATE_RANGE') if date_range is not None: self._config.date_range = date_range cve_id = os.environ.get('CVEJOB_CVE_ID') if cve_id is not None: self._config.cve_id = cve_id package_name = os.environ.get('CVEJOB_PACKAGE_NAME') if package_name is not None: self._config.package_name = package_name cpe2pkg_path = os.environ.get('CVEJOB_CPE2PKG_PATH') if cpe2pkg_path is not None: self._config.cpe2pkg_path = cpe2pkg_path pkgfile_dir = os.environ.get('CVEJOB_PKGFILE_DIR') if pkgfile_dir is not None: self._config.pkgfile_dir = pkgfile_dir use_nvdtoolkit = os.environ.get('CVEJOB_USE_NVD_TOOLKIT') if use_nvdtoolkit is not None: self._config.use_nvdtoolkit = use_nvdtoolkit.lower() in ('true', '1', 'yes') nvdtoolkit_export_dir = os.environ.get('CVEJOB_NVD_TOOLKIT_EXPORT_DIR') if nvdtoolkit_export_dir is not None: self._config.nvdtoolkit_export_dir = nvdtoolkit_export_dir def __getattr__(self, item): """Get attribute.""" return getattr(self._config, item) Config = RuntimeConfig() ``` #### File: cvejob/identifiers/naive.py ```python import re import nltk from nltk.tokenize import sent_tokenize from nltk.corpus import stopwords from collections import OrderedDict from cvejob.config import Config from cvejob import utils from cvejob.cpe2pkg import ( run_cpe2pkg, PackageNameCandidate, build_cpe2pkg_query ) class NaivePackageNameIdentifier(object): """Naive package name identifier. All words from the first sentence of a CVE description that are starting with uppercase letter are considered to be possible package names (minus stop words). """ def __init__(self, doc, ecosystem, pkgfile_path, cpe2pkg_path=Config.cpe2pkg_path): """Constructor.""" self.doc = doc self.ecosystem = ecosystem self.pkgfile_path = pkgfile_path self.cpe2pkg_path = cpe2pkg_path def _get_vendor_product_pairs(self): """Get (vendor, product) pairs from the CVE. :return: a set containing (vendor, product) pairs """ result = set() for cpe in utils.get_cpe(self.doc, cpe_type='application'): vendor = cpe.get_vendor()[0] product = cpe.get_product()[0] result.add((vendor, product)) return result def _get_candidates_from_description(self): """Try to identify possible package names from the description.""" pkg_name_candidates = set() sentences = sent_tokenize( utils.get_description_by_lang(self.doc) ) first_sentence = sentences[0] if sentences else '' names = self._guess_from_sentence(first_sentence) pkg_name_candidates.update(set(names)) return pkg_name_candidates # noinspection PyMethodMayBeStatic def _guess_from_sentence(self, sentence): """Guess possible package name(s) from given description. Very naive approach. Words starting with uppercase letter are considered to be possible package names (minus stop words). Returns a list of possible package names, without duplicates. """ stop_words = set() try: # Fails when no downloaded stopwords are available. stop_words.update(stopwords.words('english')) except LookupError: # Download stopwords since they are not available. nltk.download('stopwords') stop_words.update(stopwords.words('english')) # modified the logic to include keywords that have capital letter anywhere, # not necessarily as the first character. # Also, two words separated by hyphen are also important, # even when there are no capital letters regexp = re.compile('[A-Za-z0-9-:]*[A-Z][A-Za-z0-9-:]*|[A-Za-z0-9]+[-][A-Za-z0-9]+') suspects = regexp.findall(sentence) results = [x.lower() for x in suspects if x.lower() not in stop_words] # get rid of duplicates, but keep order results = list(OrderedDict.fromkeys(results)) return results def identify(self): """Identify possible package name candidates.""" vp_pairs = self._get_vendor_product_pairs() desc_candidates = self._get_candidates_from_description() results = [] for vp_pair in vp_pairs: if self.ecosystem == 'java': # in java, vendor could help us to narrow down the groupId vendor = [*vp_pair] + list(desc_candidates) else: vendor = [self.ecosystem] product = [vp_pair[1]] + list(desc_candidates) results.extend(self._run_cpe2pkg(vendor, product)) return results def _run_cpe2pkg(self, vendor, product): """Run cpe2pkg tool. :param vendor: list[str], a list of vendor strings :param product: list[str], a list of product strings :return: list[PackageNameCandidate], a list of package name candidates """ query_str = build_cpe2pkg_query(vendor, product) output = run_cpe2pkg(query_str, self.pkgfile_path, self.cpe2pkg_path) return [ PackageNameCandidate.from_cpe2pkg_output(x, self.ecosystem) for x in output if x ] ``` #### File: jparsai/cvejob/run.py ```python import sys from decimal import Decimal import multiprocessing import nvdlib from nvdlib.manager import FeedManager from nvdlib.query_selectors import in_range from cvejob.filters.input import validate_cve from cvejob.config import Config from cvejob.identifiers import get_identifier_cls from cvejob.cpe2pkg import get_pkgfile_path, PackageNameCandidate from cvejob.selectors.basic import VersionSelector from cvejob.outputs.victims import VictimsYamlOutput from cvejob.versions import NVDVersions from cvejob.utils import parse_date_range import logging # logging configuration logging.basicConfig(level=logging.DEBUG, handlers=[nvdlib.get_logging_handler()]) # use nvdlib's handler logger = logging.getLogger('cvejob') FEED_NAME_PATTERN = r"nvdcve-" \ r"(?P<version>[\d.]+)-" \ r"(?P<name>(?P<name_string>(([A-Za-z]+)))|(?P<name_year>([\d]+)))" \ r".json" def _log_results(victims_output): """Log results.""" cve_id = victims_output.cve.id_ logger.info( "[{cve_id}] picked `{winner}` out of `{candidates}`".format( cve_id=cve_id, winner=victims_output.winner, candidates=victims_output.candidates )) logger.info( "[{cve_id}] Affected version range: {version_ranges}".format( cve_id=cve_id, version_ranges=victims_output.affected_versions )) logger.info( "[{cve_id}] Safe version range: {version_ranges}".format( cve_id=cve_id, version_ranges=victims_output.safe_versions )) def _filter_collection(collection, date_range, cherry_pick): """Filter Document collection.""" if date_range: collection_size_before = collection.count() collection = collection.find( {'published_date': in_range(*date_range)} ) logger.debug(("Filtered out {} Documents that do not fall " "in the given range.").format( collection_size_before - collection.count() )) if cherry_pick: logger.debug("Cherry-picked CVE `{cve_id}`".format( cve_id=cherry_pick )) collection = collection.find( {'cve.id_': cherry_pick} ) return collection def run(): """Run CVEjob.""" feed_dir = Config.feed_dir feed_names = Config.feed_names date_range = Config.date_range cherrypicked_cve_id = Config.cve_id cherrypicked_year = None if cherrypicked_cve_id: cherrypicked_year = cherrypicked_cve_id.split(sep='-')[1] if int(cherrypicked_year) < 2002: # all CVEs prior to 2002 are stored in 2002 feed cherrypicked_year = 2002 if date_range: date_range = parse_date_range(Config.date_range) feed_names = range(date_range[0].year, date_range[1].year + 1) if cherrypicked_cve_id: # optimization check if int(cherrypicked_year) not in feed_names: logger.info( "[{picked_cve_id}] does not belong to the given feed range:" " {date_range}".format( picked_cve_id=cherrypicked_cve_id, date_range=date_range )) return # prune the feed names as it is not necessary to iterate over all of them feed_names = [cherrypicked_year] if not feed_names: if cherrypicked_cve_id: feed_names = [cherrypicked_year] else: feed_names = ['modified'] with FeedManager(n_workers=multiprocessing.cpu_count()) as feed_manager: feeds = feed_manager.fetch_feeds( feed_names=feed_names, data_dir=feed_dir, update=True ) collection = feed_manager.collect(feeds) collection = _filter_collection(collection, date_range, cherrypicked_cve_id) if not collection: # collection is empty logger.info( "Collection is empty.".format( picked_cve_id=cherrypicked_cve_id, )) return logger.debug("Number of CVE Documents in the collection: {}".format( collection.count() )) if Config.package_name and Config.cve_id: # user knows the package name, so we don't have to guess ;) doc = [x for x in collection][0] # Collection doesn't support indexing affected, safe = NVDVersions(doc, Config.package_name, Config.ecosystem).run() victims_output = VictimsYamlOutput( ecosystem=Config.ecosystem, cve_doc=doc, winner=PackageNameCandidate(Config.package_name, Decimal('1.0')), candidates=[], affected=affected, fixedin=safe ) _log_results(victims_output) victims_output.write() sys.exit(0) for doc in collection: cve_id = doc.cve.id_ try: if not validate_cve(doc): logger.debug( "[{cve_id}] was filtered out by input checks".format( cve_id=cve_id )) continue pkgfile_path = get_pkgfile_path(Config.pkgfile_dir, Config.ecosystem) identifier = get_identifier_cls()(doc, Config.ecosystem, pkgfile_path) candidates = identifier.identify() if not candidates: logger.info( "[{cve_id}] no package name candidates found".format( cve_id=cve_id )) continue selector = VersionSelector(doc, candidates, Config.ecosystem) winner = selector.pick_winner() if not winner: logger.info( "[{cve_id}] no package name found".format( cve_id=cve_id )) continue affected, safe = NVDVersions(doc, winner.package, Config.ecosystem).run() victims_output = VictimsYamlOutput( ecosystem=Config.ecosystem, cve_doc=doc, winner=winner, candidates=candidates, affected=affected, fixedin=safe ) _log_results(victims_output) victims_output.write() except Exception as exc: logger.warning( "[{cve_id}] Unexpected exception occurred: {exc}".format( cve_id=cve_id, exc=exc ), exc_info=True) if __name__ == '__main__': run() ``` #### File: cvejob/tests/test_config.py ```python import os from cvejob.config import DefaultConfig, RuntimeConfig def test_default_config_constructor(): """Basic test for the class DefaultConfig.""" config = DefaultConfig() assert config is not None def test_default_config_attributes(): """Check the attributes existence for a class DefaultConfig.""" config = DefaultConfig() # basic configuration check attributes = ("ecosystem", "cve_age", "feed_dir", "feed_names", "date_range", "cve_id", "package_name", "cpe2pkg_path", "pkgfile_dir", "use_nvdtoolkit", "nvdtoolkit_export_dir") for attribute in attributes: assert hasattr(config, attribute) def test_default_config_attribute_values_nil(): """Check the attributes that needs to be set to nil (None).""" config = DefaultConfig() # the following attributes needs to be set to nil assert config.feed_names is None assert config.date_range is None assert config.cve_id is None assert config.package_name is None assert config.feed_names is None def test_default_config_attribute_values_not_nil(): """Check the attributes that needs not to be set to nil (None).""" config = DefaultConfig() # the following attributes need not be set to nil assert config.ecosystem is not None assert config.cve_age is not None assert config.feed_dir is not None assert config.cpe2pkg_path is not None assert config.pkgfile_dir is not None assert config.use_nvdtoolkit is not None assert config.nvdtoolkit_export_dir is not None def test_runtime_config(): """Basic test for the class RuntimeConfig.""" config = RuntimeConfig() assert config is not None def test_runtime_config_attributes(): """Check the attributes existence for a class RuntimeConfig.""" config = RuntimeConfig() assert config is not None assert hasattr(config, "_config") def unset_environment_variable(name): """Reset specified environment variable.""" return os.environ.pop(name, None) def test_runtime_config_attribute_ecosystem(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_ECOSYSTEM') config = RuntimeConfig() assert config._config.ecosystem == 'python' os.environ['CVEJOB_ECOSYSTEM'] = 'foobar' config = RuntimeConfig() assert config._config.ecosystem == 'foobar' if old_value is not None: os.environ['CVEJOB_ECOSYSTEM'] = old_value def test_runtime_config_attribute_cve_age(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_CVE_AGE') config = RuntimeConfig() assert config._config.cve_age == 0 os.environ['CVEJOB_CVE_AGE'] = '42' config = RuntimeConfig() assert config._config.cve_age == 42 os.environ['CVEJOB_CVE_AGE'] = '-42' config = RuntimeConfig() assert config._config.cve_age == -42 if old_value is not None: os.environ['CVEJOB_CVE_AGE'] = old_value def test_runtime_config_attribute_cvejob_feed_dir(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_FEED_DIR') config = RuntimeConfig() assert config._config.feed_dir == 'nvd-data/' os.environ['CVEJOB_FEED_DIR'] = 'directory1' config = RuntimeConfig() assert config._config.feed_dir == 'directory1' if old_value is not None: os.environ['CVEJOB_FEED_DIR'] = old_value def test_runtime_config_attribute_cvejob_feed_names(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_FEED_NAMES') config = RuntimeConfig() assert config._config.feed_names is None # TODO: the following test needs to be enabled after the fix in master branch # os.environ['CVEJOB_FEED_NAMES'] = 'name1' # config = RuntimeConfig() # assert config._config.feed_names == ['name1'] # os.environ['CVEJOB_FEED_NAMES'] = 'name1,name2' # config = RuntimeConfig() # assert config._config.feed_names == ['name1', 'name2'] if old_value is not None: os.environ['CVEJOB_FEED_NAMES'] = old_value def test_runtime_config_attribute_cvejob_date_range(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_DATE_RANGE') config = RuntimeConfig() assert config._config.date_range is None os.environ['CVEJOB_DATE_RANGE'] = '2017-01-01' config = RuntimeConfig() assert config._config.date_range == '2017-01-01' if old_value is not None: os.environ['CVEJOB_DATE_RANGE'] = old_value def test_runtime_config_attribute_cvejob_cve_id(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_CVE_ID') config = RuntimeConfig() assert config._config.cve_id is None os.environ['CVEJOB_CVE_ID'] = 'CVE1234' config = RuntimeConfig() assert config._config.cve_id == 'CVE1234' if old_value is not None: os.environ['CVEJOB_CVE_ID'] = old_value def test_runtime_config_attribute_cvejob_package_name(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_PACKAGE_NAME') config = RuntimeConfig() assert config._config.package_name is None os.environ['CVEJOB_PACKAGE_NAME'] = 'test_package' config = RuntimeConfig() assert config._config.package_name == 'test_package' if old_value is not None: os.environ['CVEJOB_PACKAGE_NAME'] = old_value def test_runtime_config_attribute_cvejob_cpe2pkg_path(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_CPE2PKG_PATH') config = RuntimeConfig() assert config._config.cpe2pkg_path == 'cpe2pkg.jar' os.environ['CVEJOB_CPE2PKG_PATH'] = 'cpe2pkg10.jar' config = RuntimeConfig() assert config._config.cpe2pkg_path == 'cpe2pkg10.jar' if old_value is not None: os.environ['CVEJOB_CPE2PKG_PATH'] = old_value def test_runtime_config_attribute_cvejob_pkgfile_dir(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_PKGFILE_DIR') config = RuntimeConfig() assert config._config.pkgfile_dir == 'data/' os.environ['CVEJOB_PKGFILE_DIR'] = 'cpe2pkg10.jar' config = RuntimeConfig() assert config._config.pkgfile_dir == 'cpe2pkg10.jar' if old_value is not None: os.environ['CVEJOB_PKGFILE_DIR'] = old_value def test_runtime_config_attribute_cvejob_use_nvd_toolkit(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_USE_NVD_TOOLKIT') config = RuntimeConfig() assert not config._config.use_nvdtoolkit os.environ['CVEJOB_USE_NVD_TOOLKIT'] = 'true' config = RuntimeConfig() assert config._config.use_nvdtoolkit os.environ['CVEJOB_USE_NVD_TOOLKIT'] = '1' config = RuntimeConfig() assert config._config.use_nvdtoolkit os.environ['CVEJOB_USE_NVD_TOOLKIT'] = 'yes' config = RuntimeConfig() assert config._config.use_nvdtoolkit os.environ['CVEJOB_USE_NVD_TOOLKIT'] = 'false' config = RuntimeConfig() assert not config._config.use_nvdtoolkit os.environ['CVEJOB_USE_NVD_TOOLKIT'] = '0' config = RuntimeConfig() assert not config._config.use_nvdtoolkit os.environ['CVEJOB_USE_NVD_TOOLKIT'] = 'no' config = RuntimeConfig() assert not config._config.use_nvdtoolkit if old_value is not None: os.environ['CVEJOB_USE_NVD_TOOLKIT'] = old_value def test_runtime_config_attribute_cvejob_nvd_toolkit_export_dir(): """Check the attributes handling for a class RuntimeConfig.""" old_value = unset_environment_variable('CVEJOB_NVD_TOOLKIT_EXPORT_DIR') config = RuntimeConfig() assert config._config.nvdtoolkit_export_dir == 'export/' os.environ['CVEJOB_NVD_TOOLKIT_EXPORT_DIR'] = 'export2/' config = RuntimeConfig() assert config._config.nvdtoolkit_export_dir == 'export2/' if old_value is not None: os.environ['CVEJOB_NVD_TOOLKIT_EXPORT_DIR'] = old_value ``` #### File: cvejob/tests/test_version.py ```python from cvejob.version import BenevolentVersion def test_version_basic(): """Test basic behavior.""" assert BenevolentVersion('1') == BenevolentVersion('1') assert BenevolentVersion('1') != BenevolentVersion('2') assert BenevolentVersion('1') < BenevolentVersion('2') assert BenevolentVersion('1') <= BenevolentVersion('2') assert BenevolentVersion('1') > BenevolentVersion('0') assert BenevolentVersion('1') >= BenevolentVersion('0') assert BenevolentVersion(None) != BenevolentVersion('') assert BenevolentVersion(None) == BenevolentVersion(None) assert BenevolentVersion('0') != BenevolentVersion('') assert BenevolentVersion('') == BenevolentVersion('') assert BenevolentVersion(1) == BenevolentVersion(1) assert BenevolentVersion('Final.RELEASE') == BenevolentVersion('Final.RELEASE') def test_version_trailing_zeros(): """Test with trailing zeros.""" assert BenevolentVersion('1.0.0.0.0') == BenevolentVersion('1.0') assert BenevolentVersion('1.0.1') != BenevolentVersion('1.0.0') assert BenevolentVersion('1.1.0') < BenevolentVersion('1.2.0') assert BenevolentVersion('1.1.0') <= BenevolentVersion('1.2.0') assert BenevolentVersion('1.2.1.1') > BenevolentVersion('1.2.0') assert BenevolentVersion('1.2.1.1') >= BenevolentVersion('1.2.1.0') def test_version_complex(): """More complex tests.""" assert BenevolentVersion('0.3m') == BenevolentVersion('0.3.0') assert BenevolentVersion('0.3m1') == BenevolentVersion('0.3') assert BenevolentVersion('0.3-SNAPSHOT-1') == BenevolentVersion('0.3') assert BenevolentVersion('1.2.Final') == BenevolentVersion('1.2.0') assert BenevolentVersion('1.2.Final.RELEASE') == BenevolentVersion('1.2.0') def test_version_exact(): """Test exact version.""" assert '1.5.0.RELEASE-1' == BenevolentVersion('1.5.0.RELEASE-1').exact def test_version_loose(): """Test loose version.""" assert '1.5' == BenevolentVersion('1.5.0.RELEASE-1').loose def test_hash(): """Test hashing.""" s = { BenevolentVersion('1.0'), BenevolentVersion('1'), BenevolentVersion(None) } assert len(s) == 2 def test_repr(): """Basic test for the __repr__ method.""" v = BenevolentVersion('1.0') assert v.__repr__() == "BenevolentVersion('1.0')" v = BenevolentVersion('1.2.3') assert v.__repr__() == "BenevolentVersion('1.2.3')" ``` #### File: tests/versions/test_version_identifier.py ```python from cvejob.versions import NVDVersions def test_nvd_versions(python_cve): """Test NVDVersions().run().""" affected, safe = NVDVersions(python_cve, 'numpy', 'python').run() assert affected assert len(affected) == 1 assert str(affected[0]) == '<=1.16.0' assert safe assert len(safe) == 1 assert str(safe[0]) == '>=1.16.1' ```
{ "source": "jparsai/f8a-3scale-connect-api", "score": 2 }
#### File: tools/configure-gateway/run.py ```python from threescale import (Services, StateTracker, Config, ApplicationPlans, Metrics, Limits, Mappings, Proxies, Accounts, Applications, logger) from validators import email, url, validator import logging import re import click import json import sys import yaml COLORED_OUTPUT = '\033[32m{}\033[39m' @validator def is_valid_username(username): """Validate username.""" return re.search(r"^[a-zA-Z0-9]+([_-]?[a-zA-Z0-9])*$", username) @validator def is_valid_orgname(org): """Validate orgnization name.""" return re.search(r"^[a-zA-Z0-9]+([_-]?[a-zA-Z0-9])*$", org) @click.command() @click.option('--debug', is_flag=True, help="Enables the debuging mode.") @click.option('-v', '--verbose', is_flag=True) @click.option('-o', '--output', type=click.Path(), help="Output file path") @click.argument('config-file', type=click.Path(exists=True)) def cli(**options): """Three Scale Command line tool.""" if options.get('debug'): logger.setLevel(logging.DEBUG) elif options.get('verbose'): logger.setLevel(logging.INFO) else: logger.setLevel(logging.WARN) with open(options.get('config_file')) as config_file: config = yaml.load(config_file) if not config: click.echo( "error: not enough information provided in the config file.") sys.exit(2) creds = config.get('credentials', {}) admin_token = creds.get('admin-token') account_headers = creds.get('3scale-account-headers', {}) private_base_url = creds.get('private-base-url') threescale_domain = creds.get('domain', '3scale.net') threescale_id = creds.get('threescale-id') account = config.get('account', {}) username = account.get('username') user_email = account.get('email') password = account.get('password') org = account.get('organization') endpoints = config.get('endpoints', {}) if not all([creds, admin_token, private_base_url, threescale_id, account_headers]): click.echo("Error: Missing credentials in config file." """ credentials: admin-token: <3scale_admin_token> threescale-id: <3scale_id> private-base-url: <private_base_url> 3scale-account-headers: x-3scale-account-secret: <account_secret> """) sys.exit(2) if not all([account, username, user_email, password, org]): click.echo("Error: Missing Developer Account information in config file" """ account: username: <username> email: <email> password: <password> organization: <org> """) sys.exit(2) if not endpoints: click.echo("Error: Missing endpoints information in config file" """ endpoints: - pattern: /my-endpoint/test method: GET limit: value: <int_value> period: <minute|hour|day|week|month|year|eternity> """) sys.exit(2) if not is_valid_username(username): click.echo( "error: use only letters, numbers, and hyphen(-), underscore(_) in username.") sys.exit(2) if not is_valid_orgname(org): click.echo( "error: use only letters, numbers, and hyphen(-), underscore(_) in organization.") sys.exit(2) if not email(user_email): click.echo("error: email address is not valid.") sys.exit(2) if not url(private_base_url): click.echo( "error: private-base-url is not in the format protocol://domain:[port]") sys.exit(2) Config._3scale_domain = threescale_domain Config._3scale_id = threescale_id Config._access_token = <PASSWORD> private_base_url = private_base_url.strip('/') try: # Create 3scale API service. service = Services() service_name = org + '-3scale-service' service_response = service.create(StateTracker, service_name) service_id = service_response.get('service', {}).get('id') # Create 3scale Application Plan. application_plan = ApplicationPlans() application_plan_name = org + '-3scale-application-plan' application_plan_response = application_plan.create( StateTracker, service_id, application_plan_name) application_plan_id = application_plan_response.get( 'plan').get('id') for endpoint in endpoints: pattern = endpoint.get('pattern') method = endpoint.get('method') limit = endpoint.get('limit', {}) limit_value = limit.get('value') limit_period = limit.get('period') if not limit: click.echo( "please provide the rate limit for the api endpoint.") StateTracker._rollback() sys.exit(2) if not method: click.echo( "please define method [GET |POST |DELETE ] for the api endpoint.") StateTracker._rollback() sys.exit(2) if not pattern: click.echo( "please provide the api endpoint pattern ex: /api/v1/my-endpoint.") StateTracker._rollback() sys.exit(2) # Create 3scale API Metric. metrics = Metrics() metric_name = '-'.join([org] + pattern.strip('/').split('/') + [method.lower(), 'metric']) metric_response = metrics.create( StateTracker, service_id, metric_name) metric_id = metric_response.get('metric').get('id') # Create 3scale limit. limits = Limits() limits.create(StateTracker, application_plan_id, metric_id, value=limit_value, period=limit_period) # Create mappings to the endpoints. mappings = Mappings() mappings.create(StateTracker, service_id, method.upper(), pattern, metric_id, 1) mappings.create(StateTracker, service_id, 'OPTIONS', pattern, metric_id, 1) # Update 3scale proxies and proxy policies. proxies = Proxies() proxy_update_response = proxies.update( StateTracker, service_id, private_base_url) headers = [ {"op": "set", "header": key, "value": value} for key, value in account_headers.items() ] proxies.policy_update(StateTracker, headers=headers) proxies.proxy_promote(StateTracker) stage_route = proxy_update_response.get( 'proxy', {}).get("endpoint") prod_route = proxy_update_response.get( 'proxy', {}).get("sandbox_endpoint") # Create 3scale Developer account. account = Accounts() account_response = account.create( StateTracker, username, password, email, org) account_id = account_response.get('account').get('id') # Create 3scale Applicaiton. application = Applications() application_name = org + '-3scale-appplication' application_response = application.create(StateTracker, account_id=account_id, application_plan_id=application_plan_id, application_name=application_name) user_key = application_response.get('application').get('user_key') response = { 'stage_route': stage_route, 'prod_route': prod_route, 'user_key': user_key } output_file = options.get('output') if not output_file: print('-'*40) print(COLORED_OUTPUT.format(json.dumps(response, indent=4))) print('-'*40) else: with open(output_file, 'w') as f: f.write(json.dumps(response, indent=4)) except Exception as exc: StateTracker._rollback() raise exc if __name__ == "__main__": cli() ``` #### File: configure-gateway/threescale/metrics.py ```python from .base import ThreeScale import logging import requests import xmltodict import re logger = logging.getLogger(__name__) class Metrics(ThreeScale): """ThreeScale Metrics creation and deletion.""" response = None def __init__(self): """Initialize object.""" super().__init__() def create(self, tracker, service_id, metric_name, unit='hit', description=None, system_name=None, state_event=None): """Create a Metric.""" request_body = { 'access_token': self._access_token, 'service_id': service_id, 'friendly_name': metric_name, 'system_name': ''.join([re.sub('[^A-Za-z0-9]', '_', metric_name), '_system']), 'unit': unit, 'description': description } request_body = {k: v for k, v in request_body.items() if v} _url = self._build_url( self._endpoints.metric_create.format(service_id=service_id)) _resp = requests.post(_url, data=request_body) logger.info("[POST] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = xmltodict.parse( _resp.content, dict_constructor=dict) logger.info( "Successfully Created Metric: {}".format(metric_name)) tracker._save_current_state(self) return self.response else: logger.error("Create Metric FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def delete(self, service_id=None, metric_id=None): """Remove a Metric.""" if metric_id is None and self.response.get('metric', {}).get('id') is None: raise ValueError( "Metric ID is required to delete a Metric") if service_id is None and self.response.get('metric', {}).get('service_id') is None: raise ValueError( "Service ID is required to delete an Metric") metric_id = metric_id or self.response.get( 'metric', {}).get('id') service_id = service_id or self.response.get( 'metric', {}).get('service_id') request_body = {'access_token': self._access_token} _url = self._build_url( self._endpoints.metric_delete.format( service_id=service_id, id=metric_id)) _resp = requests.delete(_url, data=request_body) logger.info("[DELETE] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: logger.info( "Successfully Deleted Metric ID {}".format( metric_id)) else: logger.error("Delete Metric FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) def find(self): """Find a Metric.""" raise NotImplementedError("Method find Not Implemented.") def __repr__(self): """Representation of class.""" metric_id = self.response.get('metric', {}).get('id') return "Class Metric(id={})".format(metric_id) class Limits(ThreeScale): """ThreeScale Limits creation and deletion.""" response = None def __init__(self): """Initialize object.""" super().__init__() def create(self, tracker, application_plan_id, metric_id, value=30, period='minute'): """Create an Limit.""" request_body = { 'access_token': self._access_token, 'period': period, 'value': value } request_body = {k: v for k, v in request_body.items() if v} _url = self._build_url( self._endpoints.limit_create.format(application_plan_id=application_plan_id, metric_id=metric_id)) _resp = requests.post(_url, data=request_body) logger.info("[POST] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = xmltodict.parse( _resp.content, dict_constructor=dict) logger.info("Successfully Created Limit") tracker._save_current_state(self) return self.response else: logger.error("Create Limit FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def delete(self, limit_id=None, metric_id=None, application_plan_id=None): """Remove an Limit.""" if application_plan_id is None and self.response.get('limit', {}).get('plan_id') is None: raise ValueError( "Application plan ID is required to delete a Limit") if metric_id is None and self.response.get('limit', {}).get('metric_id') is None: raise ValueError("Metric ID is required to delete a Limit") if limit_id is None and self.response.get('limit', {}).get('id') is None: raise ValueError("Limit ID is required to delete a Limit") application_plan_id = application_plan_id or self.response.get( 'limit', {}).get('plan_id') metric_id = metric_id or self.response.get( 'limit', {}).get('metric_id') limit_id = limit_id or self.response.get('limit', {}).get('id') request_body = {'access_token': self._access_token} _url = self._build_url( self._endpoints.limit_delete.format(application_plan_id=application_plan_id, id=limit_id, metric_id=metric_id)) _resp = requests.delete(_url, data=request_body) logger.info("[DELETE] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: logger.info( "Successfully Deleted Limit ID {}".format( application_plan_id)) else: logger.error("Delete Limit FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) def find(self): """Find an Limit.""" raise NotImplementedError("Method find Not Implemented.") def __repr__(self): """Representation of class.""" limit_id = self.response.get('limit', {}).get('id') return "Class Limit(id={})".format(limit_id) ``` #### File: configure-gateway/threescale/proxies.py ```python from .base import ThreeScale import logging import requests import xmltodict import json logger = logging.getLogger(__name__) class Proxies(ThreeScale): """ThreeScale Proxies create, update.""" response = None def __init__(self): """Initialize object.""" super().__init__() self.service_id = None def update(self, tracker, service_id, api_backend, credentials_location='query', auth_app_key='user_key', endpoint=None, auth_app_id=None, auth_user_key=None, error_auth_failed=None, error_status_auth_failed=None, error_headers_auth_failed=None, error_auth_missing=None, error_status_auth_missing=None, error_headers_auth_missing=None, error_no_match=None, error_status_no_match=None, error_headers_no_match=None, oidc_issuer_endpoint=None, sandbox_endpoint=None ): """Update policy.""" self.service_id = service_id request_body = { 'access_token': self._access_token, "api_backend": api_backend, "credentials_location": credentials_location, "auth_app_key": auth_app_key, "endpoint": endpoint, "auth_app_id": auth_app_id, "auth_user_key": auth_user_key, "error_auth_failed": error_auth_failed, "error_status_auth_failed": error_status_auth_failed, "error_headers_auth_failed": error_headers_auth_failed, "error_auth_missing": error_auth_missing, "error_status_auth_missing": error_status_auth_missing, "error_headers_auth_missing": error_headers_auth_missing, "error_no_match": error_no_match, "error_status_no_match": error_status_no_match, "error_headers_no_match": error_headers_no_match, "oidc_issuer_endpoint": oidc_issuer_endpoint, "sandbox_endpoint": sandbox_endpoint, } request_body = {k: v for k, v in request_body.items() if v} _url = self._build_url( self._endpoints.proxy_update.format(service_id=service_id)) _resp = requests.patch(_url, data=request_body) logger.info("[PATCH] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = xmltodict.parse( _resp.content, dict_constructor=dict) logger.info( "Successfully Updated Proxy: {}".format(api_backend)) return self.response else: logger.error("Update Proxy FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def _get_highest_version(self, service_id=None, environment='sandbox'): service_id = service_id or self.service_id params = { 'access_token': self._access_token, } _url = self._build_url( self._endpoints.proxy_config_list.format(service_id=service_id, environment=environment)) _resp = requests.get(_url, params=params) logger.info("[GET] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: output = _resp.json() if output: higest_version = max([conf.get('proxy_config', {}).get('version', 2) for conf in output.get('proxy_configs', {})]) logger.info("HIGHEST Version: {}".format(higest_version)) return higest_version else: logger.error("Unable to fetch the latest version.") return 2 def policy_update(self, tracker, headers, service_id=None): """Update the Proxy Policy Configuration.""" policies_config = [{ "name": "headers", "configuration": { "response": [], "request":headers}, "version": "builtin", "enabled": True }] service_id = service_id or self.service_id request_body = { 'access_token': self._access_token, 'service_id': service_id, 'policies_config': json.dumps(policies_config) } _url = self._build_url( self._endpoints.proxy_policy_update.format(service_id=service_id)) _resp = requests.put(_url, data=request_body) logger.info("[PUT] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = _resp logger.info("Successfully Updated Proxy Policy Config") return self.response else: logger.error("Update Proxy Policy Config FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def proxy_promote(self, tracker, service_id=None, environment='sandbox', to='production'): """Promote Proxy to another environment.""" service_id = service_id or self.service_id version = self._get_highest_version() request_body = { 'access_token': self._access_token, 'to': to } _url = self._build_url( self._endpoints.proxy_config_promote.format(service_id=service_id, environment=environment, version=version)) _resp = requests.post(_url, data=request_body) logger.info("[POST] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = _resp logger.info("Successfully Promoted Proxy to {}".format(to)) return self.response else: logger.error("Promote Proxy FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def find(self): """Find the Mapping.""" raise NotImplementedError("Method find Not Implemented.") def __repr__(self): """Representation of class.""" api_backend = self.response.get('proxy', {}).get('api_backend') return "Class Mappings(id={})".format(api_backend) ``` #### File: configure-gateway/threescale/rollback.py ```python import logging logger = logging.getLogger(__name__) class StateTracker: """Process State Tracker.""" __states = list() @classmethod def _save_current_state(cls, obj): cls.__states.append(obj) logger.info("SAVED State {}".format(obj)) @classmethod def _pop_previous_state(cls): if cls.__states: logger.info("Current State {}".format(cls.__states)) obj = cls.__states.pop() logger.info("POPPED State {}".format(obj)) return obj logger.info("Saved states are empty") @classmethod def _rollback(cls): """Undo Everything.""" logger.warn("Rolling Back Started") while cls.__states: obj = cls._pop_previous_state() logger.warn("Rolling back {}".format(obj)) obj.delete() logger.warn("[DELETED] {}".format(obj)) logger.info("Rolling Back finished.") ```
{ "source": "jparsai/fabric8-analytics-auth", "score": 2 }
#### File: jparsai/fabric8-analytics-auth/setup.py ```python from setuptools import setup def get_requirements(): """Parse all packages mentioned in the 'requirements.txt' file.""" with open('requirements.txt') as fd: return fd.read().splitlines() setup( name='fabric8a_auth', version='0.0.1', description='a pip-installable package example', license='Apache License 2.0', packages=['fabric8a_auth'], author='<NAME>', author_email='<EMAIL>', keywords=['fabric8-analytics'], url='https://github.com/fabric8-analytics/fabric8-analytics-auth', install_requires=get_requirements(), ) ``` #### File: fabric8-analytics-auth/tests/test_utility_functions.py ```python from fabric8a_auth.auth import is_authentication_disabled, get_audiences import os def test_is_authentication_disabled_negative_test(): """Test the function is_authentication_disabled().""" os.environ['DISABLE_AUTHENTICATION'] = '' assert not is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = '0' assert not is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = 'false' assert not is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = 'False' assert not is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = 'FALSE' assert not is_authentication_disabled() def test_is_authentication_disabled_positive_test(): """Test the function is_authentication_disabled().""" os.environ['DISABLE_AUTHENTICATION'] = '1' assert is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = 'True' assert is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = 'true' assert is_authentication_disabled() os.environ['DISABLE_AUTHENTICATION'] = 'TRUE' assert is_authentication_disabled() def test_get_audiences(): """Test the function get_audiences().""" os.environ.unsetenv('FABRIC8_ANALYTICS_JWT_AUDIENCE') assert get_audiences() == [''] os.environ['FABRIC8_ANALYTICS_JWT_AUDIENCE'] = '' assert get_audiences() == [''] os.environ['FABRIC8_ANALYTICS_JWT_AUDIENCE'] = 'a' assert get_audiences() == ['a'] os.environ['FABRIC8_ANALYTICS_JWT_AUDIENCE'] = 'a,b' assert get_audiences() == ['a', 'b'] os.environ['FABRIC8_ANALYTICS_JWT_AUDIENCE'] = 'a,b,' assert get_audiences() == ['a', 'b', ''] os.environ['FABRIC8_ANALYTICS_JWT_AUDIENCE'] = 'a,b,c' assert get_audiences() == ['a', 'b', 'c'] if __name__ == '__main__': test_is_authentication_disabled_negative_test() test_is_authentication_disabled_positive_test() test_get_audiences() ```
{ "source": "jparten/altimeter", "score": 2 }
#### File: resource/ec2/instance.py ```python from typing import Type from botocore.client import BaseClient from altimeter.aws.resource.resource_spec import ListFromAWSResult from altimeter.aws.resource.ec2 import EC2ResourceSpec from altimeter.aws.resource.ec2.image import EC2ImageResourceSpec from altimeter.aws.resource.ec2.security_group import SecurityGroupResourceSpec from altimeter.aws.resource.ec2.subnet import SubnetResourceSpec from altimeter.aws.resource.ec2.vpc import VPCResourceSpec from altimeter.aws.resource.iam.instance_profile import InstanceProfileResourceSpec from altimeter.core.graph.field.dict_field import AnonymousDictField, AnonymousEmbeddedDictField from altimeter.core.graph.field.list_field import AnonymousListField from altimeter.core.graph.field.resource_link_field import ( ResourceLinkField, TransientResourceLinkField, ) from altimeter.core.graph.field.scalar_field import ScalarField from altimeter.core.graph.field.tags_field import TagsField from altimeter.core.graph.schema import Schema class EC2InstanceResourceSpec(EC2ResourceSpec): """Resource for EC2Instances""" type_name = "instance" schema = Schema( TransientResourceLinkField("ImageId", EC2ImageResourceSpec), ScalarField("InstanceType"), ScalarField("LaunchTime"), AnonymousDictField("State", ScalarField("Name", "state")), ScalarField("Platform", optional=True), ScalarField("PrivateIpAddress", optional=True), ScalarField("PublicIpAddress", optional=True), ResourceLinkField("VpcId", VPCResourceSpec, optional=True), ResourceLinkField("SubnetId", SubnetResourceSpec, optional=True), AnonymousListField( "SecurityGroups", AnonymousEmbeddedDictField(ResourceLinkField("GroupId", SecurityGroupResourceSpec)), ), AnonymousDictField( "IamInstanceProfile", TransientResourceLinkField( "Arn", InstanceProfileResourceSpec, alti_key="instance_profile", value_is_id=True ), optional=True, ), TagsField(), ) @classmethod def list_from_aws( cls: Type["EC2InstanceResourceSpec"], client: BaseClient, account_id: str, region: str ) -> ListFromAWSResult: """Return a dict of dicts of the format: {'instance_1_arn': {instance_1_dict}, 'instance_2_arn': {instance_2_dict}, ...} Where the dicts represent results from describe_instances.""" paginator = client.get_paginator("describe_instances") instances = {} for resp in paginator.paginate(): for reservation in resp.get("Reservations", []): for instance in reservation.get("Instances", []): resource_arn = cls.generate_arn(account_id, region, instance["InstanceId"]) instances[resource_arn] = instance return ListFromAWSResult(resources=instances) ``` #### File: resource/elasticloadbalancing/load_balancer.py ```python from typing import Type from botocore.client import BaseClient from altimeter.aws.resource.resource_spec import ListFromAWSResult from altimeter.aws.resource.elasticloadbalancing import ElasticLoadBalancingResourceSpec from altimeter.aws.resource.ec2.security_group import SecurityGroupResourceSpec from altimeter.aws.resource.ec2.vpc import VPCResourceSpec from altimeter.aws.resource.ec2.subnet import SubnetResourceSpec from altimeter.core.graph.field.dict_field import AnonymousDictField, EmbeddedDictField from altimeter.core.graph.field.list_field import ListField from altimeter.core.graph.field.resource_link_field import ( EmbeddedResourceLinkField, ResourceLinkField, ) from altimeter.core.graph.field.scalar_field import ScalarField from altimeter.core.graph.schema import Schema class LoadBalancerResourceSpec(ElasticLoadBalancingResourceSpec): """Resource for load balancer""" type_name = "loadbalancer" schema = Schema( ScalarField("DNSName"), ScalarField("CreatedTime"), ScalarField("LoadBalancerName"), ScalarField("Scheme"), ResourceLinkField("VpcId", VPCResourceSpec, optional=True), AnonymousDictField("State", ScalarField("Code", alti_key="load_balancer_state")), ScalarField("Type"), ListField( "AvailabilityZones", EmbeddedDictField( ScalarField("ZoneName"), ResourceLinkField("SubnetId", SubnetResourceSpec, optional=True), ListField( "LoadBalancerAddresses", EmbeddedDictField( ScalarField("IpAddress", optional=True), ScalarField("AllocationId", optional=True), ), optional=True, ), ), ), ListField( "SecurityGroups", EmbeddedResourceLinkField(SecurityGroupResourceSpec), optional=True ), ScalarField("IpAddressType"), ) @classmethod def list_from_aws( cls: Type["LoadBalancerResourceSpec"], client: BaseClient, account_id: str, region: str ) -> ListFromAWSResult: """Return a dict of dicts of the format: {'lb_1_arn': {lb_1_dict}, 'lb_2_arn': {lb_2_dict}, ...} Where the dicts represent results from describe_load_balancers.""" paginator = client.get_paginator("describe_load_balancers") load_balancers = {} for resp in paginator.paginate(): for lb in resp.get("LoadBalancers", []): resource_arn = lb["LoadBalancerArn"] load_balancers[resource_arn] = lb return ListFromAWSResult(resources=load_balancers) ``` #### File: aws/scan/account_scanner.py ```python from typing import List from altimeter.core.artifact_io.writer import ArtifactWriter from altimeter.aws.scan.settings import ( RESOURCE_SPEC_CLASSES, INFRA_RESOURCE_SPEC_CLASSES, ORG_RESOURCE_SPEC_CLASSES, ) from altimeter.aws.settings import GRAPH_NAME, GRAPH_VERSION from altimeter.aws.scan.base_scanner import BaseScanner, GetSessionType class AccountScanner(BaseScanner): # pylint: disable=too-few-public-methods """An AccountScanner scans a single account using an AccountScanPlan to define scan parameters and writes the output using an ArtifactWriter. Args: account_id: account id to scan regions: regions to scan get_session: callable that can get a session in this account_id artifact_writer: ArtifactWriter for writing out artifacts scan_sub_accounts: if set to True, if this account is an org master any subaccounts of that org will also be scanned. graph_name: name of graph graph_version: version string for graph max_svc_threads: max number of scan threads to run concurrently. """ def __init__( self, account_id: str, regions: List[str], get_session: GetSessionType, artifact_writer: ArtifactWriter, scan_sub_accounts: bool, max_svc_threads: int, graph_name: str = GRAPH_NAME, graph_version: str = GRAPH_VERSION, ) -> None: resource_spec_classes = RESOURCE_SPEC_CLASSES + INFRA_RESOURCE_SPEC_CLASSES if scan_sub_accounts: resource_spec_classes += ORG_RESOURCE_SPEC_CLASSES super().__init__( account_id=account_id, regions=regions, get_session=get_session, artifact_writer=artifact_writer, max_svc_threads=max_svc_threads, graph_name=graph_name, graph_version=graph_version, resource_spec_classes=resource_spec_classes, ) ``` #### File: aws/scan/scan_manifest.py ```python from dataclasses import dataclass from typing import Any, Dict, List @dataclass(frozen=True) class ScanManifest: """A ScanManifest defines the output of a complete scan. It contains pointers to the per-account scan result artifacts and summaries of what was scanned, errors which occurred, scan datetime and api call statistics. Args: scanned_accounts: Dict of account_ids to account detail dicts for scanned accounts master_artifact: artifact containing complete graph json artifacts: list of artifacts, one per account errors: Dict of account_ids to list of errors encountered during scan unscanned_accounts: Dict of account_ids to account detail dicts for unscanned accounts api_call_stats: api call stats for this scan start_time: epoch timestamp of scan start time end_time: epoch timestamp of scan end time """ scanned_accounts: List[Dict[str, str]] master_artifact: str artifacts: List[str] errors: Dict[str, List[str]] unscanned_accounts: List[Dict[str, str]] api_call_stats: Dict[str, Any] start_time: int end_time: int def to_dict(self) -> Dict[str, Any]: """Generate a dict representation of this ScanManifest. Returns: dict representation of this ScanManifest """ return { "scanned_accounts": self.scanned_accounts, "master_artifact": self.master_artifact, "artifacts": self.artifacts, "errors": self.errors, "unscanned_accounts": self.unscanned_accounts, "start_time": self.start_time, "end_time": self.end_time, "api_call_stats": self.api_call_stats, } ``` #### File: core/awslambda/__init__.py ```python import os from typing import Any, Dict from altimeter.core.awslambda.exceptions import ( RequiredEnvironmentVariableNotPresentException, RequiredEventVariableNotPresentException, ) def get_required_lambda_env_var(key: str) -> str: """Get a variable from os.environ. Args: key: Key to look up in the os environment. Returns: String value for the given key Raises: RequiredEnvironmentVariableNotPresentException if key is not present. """ value = os.environ.get(key) if value is None: raise RequiredEnvironmentVariableNotPresentException(f"Missing required env var {key}") return value def get_required_lambda_event_var(event: Dict[str, Any], key: str) -> Any: """Get a variable from a lambda event dict. Args: event: Lambda event dict key: Key to look up in the event Returns: String value for the given key Raises: RequiredEventVariableNotPresentException if key is not in event """ value = event.get(key) if value is None: raise RequiredEventVariableNotPresentException( f"Missing required event var {key} in {event}" ) return value ``` #### File: graph/field/base.py ```python import abc from typing import Dict, Any, List from altimeter.core.graph.field.exceptions import ( ParentKeyMissingException, InvalidParentKeyException, ) from altimeter.core.graph.link.base import Link class Field(abc.ABC): """Abstract base class for all fields""" @abc.abstractmethod def parse(self, data: Any, context: Dict[str, Any]) -> List[Link]: """Parse data into a list of Links using this field's definition.""" class SubField(Field): """SubFields are fields which must have a non-anonymous parent Field.""" def get_parent_alti_key(self, data: Any, context: Dict[str, Any]) -> str: """Get the alti_key of the parent of this SubField. Args: data: field data context: contains auxiliary information which can be passed through the parse process. Returns: alti_key of parent of this SubField """ parent_alti_key = context.get("parent_alti_key") if parent_alti_key is None: raise ParentKeyMissingException( ( f"Missing parent_alti_key in context for " f"{self.__class__.__name__} , data: {data}" ) ) if not isinstance(parent_alti_key, str): raise InvalidParentKeyException(f"ParentKey {parent_alti_key} is not a str.") return parent_alti_key ``` #### File: graph/field/list_field.py ```python from copy import deepcopy from typing import Dict, Any, List from altimeter.core.graph.exceptions import ( ListFieldSourceKeyNotFoundException, ListFieldValueNotAListException, ) from altimeter.core.graph.field.base import Field, SubField from altimeter.core.graph.field.scalar_field import SCALAR_TYPES from altimeter.core.graph.field.util import camel_case_to_snake_case from altimeter.core.graph.link.base import Link class ListField(Field): """A ListField is a field where the input is a JSON object containing a key (source_key) where the corresponding value is a list of homogeneous items. Examples: A list of strings: >>> from altimeter.core.graph.field.scalar_field import EmbeddedScalarField >>> input = {"Animals": ["cow", "pig", "human"]} >>> field = ListField("Animals", EmbeddedScalarField()) >>> links = field.parse(data=input, context={}) >>> for link in links: print(link.to_dict()) {'pred': 'animals', 'obj': 'cow', 'type': 'simple'} {'pred': 'animals', 'obj': 'pig', 'type': 'simple'} {'pred': 'animals', 'obj': 'human', 'type': 'simple'} A list of dicts: >>> from altimeter.core.graph.field.dict_field import EmbeddedDictField >>> from altimeter.core.graph.field.scalar_field import ScalarField >>> input = {"People": [{"Name": "Bob", "Age": 49}, {"Name": "Sue", "Age": 42}]} >>> field = ListField("People", EmbeddedDictField(ScalarField("Name"),\ ScalarField("Age"))) >>> links = field.parse(data=input, context={}) >>> for link in links: ... print(link.pred) ... for obj in link.obj: ... print(obj.to_dict()) ... people {'pred': 'name', 'obj': 'Bob', 'type': 'simple'} {'pred': 'age', 'obj': 49, 'type': 'simple'} people {'pred': 'name', 'obj': 'Sue', 'type': 'simple'} {'pred': 'age', 'obj': 42, 'type': 'simple'} Args: source_key: Name of the key in the input JSON sub_field: SubField object representing the type that is contained in this list. alti_key: Optional key name to be used in the graph. By default this is set to the source key converted to snake case. optional: Whether this key is optional. Defaults to False. allow_scalar: Whether this field can sometimes contain a scalar rather than a list - if this is set to True the scalar will be treated as a list of one. Defaults to False. """ def __init__( self, source_key: str, sub_field: SubField, alti_key: str = None, optional: bool = False, allow_scalar: bool = False, ): self.source_key = source_key self.sub_field = sub_field self.alti_key = alti_key if alti_key else camel_case_to_snake_case(self.source_key) self.optional = optional self.allow_scalar = allow_scalar def parse(self, data: Dict[str, Any], context: Dict[str, Any]) -> List[Link]: """Parse this field and return a list of Links. Args: data: dictionary of data to parse context: context dict containing data from higher level parsing code. Returns: List of Link objects. Raises: ListFieldSourceKeyNotFoundException if self.source_key is not in data. ListFieldValueNotAListException if the data does not appear to represent a list. """ if self.source_key not in data: if self.optional: return [] raise ListFieldSourceKeyNotFoundException( f"Expected key '{self.source_key}' in data, present keys: {', '.join(data.keys())}" ) sub_datas = data.get(self.source_key, []) if not isinstance(sub_datas, list): if self.allow_scalar and isinstance(sub_datas, SCALAR_TYPES): sub_datas = [sub_datas] else: raise ListFieldValueNotAListException( ( f"Key '{self.source_key}' value had unexpected type, value: {sub_datas} " f"type: {type(sub_datas)}" ) ) links: List[Link] = [] updated_context = deepcopy(context) updated_context.update({"parent_alti_key": self.alti_key}) for sub_data in sub_datas: sub_links = self.sub_field.parse(sub_data, updated_context) links += sub_links return links class AnonymousListField(Field): """An AnonymousListField is a ListField where the source_key of the field is discarded and not used as a name in the resulting graph. See Examples below for more clarity. Args: source_key: Name of the key in the input JSON field: Field object representing the type that is contained in this list. optional: Whether this key is optional. Defaults to False. allow_scalar: Whether this field can sometimes contain a scalar rather than a list - if this is set to True the scalar will be treated as a list of one. Defaults to False. Examples: A DictField containing an AnonymousListField: >>> from altimeter.core.graph.field.dict_field import DictField >>> from altimeter.core.graph.field.scalar_field import EmbeddedScalarField >>> input = {"Biota": {"Animals": ["cow", "pig", "human"],\ "Plants": ["tree", "fern"]}} >>> field = DictField("Biota", AnonymousListField("Animals", EmbeddedScalarField())) >>> links = field.parse(data=input, context={}) >>> for link in links: print(link.to_dict()) {'pred': 'biota', 'obj': [{'pred': 'biota', 'obj': 'cow', 'type': 'simple'}, {'pred': 'biota', 'obj': 'pig', 'type': 'simple'}, {'pred': 'biota', 'obj': 'human', 'type': 'simple'}], 'type': 'multi'} """ def __init__( self, source_key: str, field: Field, optional: bool = False, allow_scalar: bool = False ): self.source_key = source_key self.field = field self.optional = optional self.allow_scalar = allow_scalar def parse(self, data: Dict[str, Any], context: Dict[str, Any]) -> List[Link]: """Parse this field and return a list of Links. Args: data: dictionary of data to parse context: context dict containing data from higher level parsing code. Returns: List of Link objects. Raises: ListFieldSourceKeyNotFoundException if self.source_key is not in data. ListFieldValueNotAListException if the data does not appear to represent a list. """ if self.source_key not in data: if self.optional: return [] raise ListFieldSourceKeyNotFoundException( f"Expected key '{self.source_key}' in data, present keys: {', '.join(data.keys())}" ) sub_datas = data.get(self.source_key, []) if not isinstance(sub_datas, list): if self.allow_scalar and isinstance(sub_datas, SCALAR_TYPES): sub_datas = [sub_datas] else: raise ListFieldValueNotAListException( ( f"Key '{self.source_key}' value had unexpected type, value: {sub_datas} " f"type: {type(sub_datas)}" ) ) links: List[Link] = [] for sub_data in sub_datas: sub_links = self.field.parse(sub_data, context) links += sub_links return links ``` #### File: graph/field/resource_link_field.py ```python from typing import Dict, Any, List, Type, Union from altimeter.core.graph.field.exceptions import ( ResourceLinkFieldSourceKeyNotFoundException, ResourceLinkFieldValueNotAStringException, ) from altimeter.core.graph.field.base import Field, SubField from altimeter.core.graph.link.links import ResourceLinkLink, TransientResourceLinkLink from altimeter.core.graph.link.base import Link from altimeter.core.resource.resource_spec import ResourceSpec class ResourceLinkField(Field): """A ResourceLinkField represents a field containing ids of other top level resources in the graph. For example, an EC2 instance has a ResourceLinkField with source_key 'VpcId' pointing to a VPC. Examples: A link to a TestResourceSpec resource:: >>> from altimeter.core.resource.resource_spec import ResourceSpec >>> class TestResourceSpec(ResourceSpec): type_name="thing" >>> input = {"ThingId": "123"} >>> field = ResourceLinkField("ThingId", TestResourceSpec) >>> links = field.parse(data=input, context={}) >>> print([link.to_dict() for link in links]) [{'pred': 'thing', 'obj': 'thing:123', 'type': 'resource_link'}] A link to a TestResourceSpec resource using value_is_id:: >>> from altimeter.core.resource.resource_spec import ResourceSpec >>> class TestResourceSpec(ResourceSpec): type_name="thing" >>> input = {"ThingId": "thing:123"} >>> field = ResourceLinkField("ThingId", TestResourceSpec, value_is_id=True) >>> links = field.parse(data=input, context={}) >>> print([link.to_dict() for link in links]) [{'pred': 'thing', 'obj': 'thing:123', 'type': 'resource_link'}] Args: source_key: Name of the key in the input JSON resource_spec_class: The name of the ResourceSpec class or the ResourceSpec class which this link represents. alti_key: Optional key name to be used in the graph. By default this is set to the resource_spec_class' type_name attribute. optional: Whether this key is optional. Defaults to False. value_is_id: Whether the value for this key contains the entire resource id. For AWS resources set this to True if the value is a complete arn. """ def __init__( self, source_key: str, resource_spec_class: Union[Type[ResourceSpec], str], alti_key: str = None, optional: bool = False, value_is_id: bool = False, ): self.source_key = source_key self._resource_spec_class = resource_spec_class self.alti_key = alti_key self.optional = optional self.value_is_id = value_is_id def parse(self, data: Dict[str, Any], context: Dict[str, Any]) -> List[Link]: """Parse this field and return a list of Links. Args: data: data to parse context: contains data from higher level parsing code. Returns: List of Link objects. At most one link will be returned. """ if isinstance(self._resource_spec_class, str): resource_spec_class: Type[ResourceSpec] = ResourceSpec.get_by_class_name( self._resource_spec_class ) else: resource_spec_class = self._resource_spec_class if not self.alti_key: self.alti_key = resource_spec_class.type_name short_resource_id = data.get(self.source_key) if not short_resource_id: if self.optional: return [] raise ResourceLinkFieldSourceKeyNotFoundException( f"Expected key '{self.source_key}' with non-empty/zero value in {data}" ) if not isinstance(short_resource_id, str): raise ResourceLinkFieldValueNotAStringException( ( f"ResourceLinkField for {self.source_key} expected a string but got a " f"{type(short_resource_id)} : {short_resource_id}" ) ) if self.value_is_id: resource_id = short_resource_id else: resource_id = resource_spec_class.generate_id(short_resource_id, context) return [ResourceLinkLink(pred=self.alti_key, obj=resource_id)] class EmbeddedResourceLinkField(SubField): """An EmbeddedResourceLinkField is a ResourceLinkField where the input is the resource id only, not a key/value where the value is a resource id. Examples: A link to a TestResourceSpec resource:: >>> from altimeter.core.graph.field.list_field import ListField >>> from altimeter.core.resource.resource_spec import ResourceSpec >>> class TestResourceSpec(ResourceSpec): type_name="thing" >>> input = {"Thing": ["123", "456"]} >>> field = ListField("Thing", EmbeddedResourceLinkField(TestResourceSpec)) >>> links = field.parse(data=input, context={}) >>> print([link.to_dict() for link in links]) [{'pred': 'thing', 'obj': 'thing:123', 'type': 'resource_link'}, {'pred': 'thing', 'obj': 'thing:456', 'type': 'resource_link'}] Args: resource_spec_class: The name of the ResourceSpec class or the ResourceSpec class which this link represents. optional: Whether this key is optional. Defaults to False. value_is_id: Whether the value for this key contains the entire resource id. For AWS resources set this to True if the value is a complete arn. """ def __init__( self, resource_spec_class: Union[Type[ResourceSpec], str], alti_key: str = None, optional: bool = False, value_is_id: bool = False, ): self._resource_spec_class = resource_spec_class self.alti_key = alti_key self.optional = optional self.value_is_id = value_is_id def parse(self, data: str, context: Dict[str, Any]) -> List[Link]: """Parse this field and return a list of Links. Args: data: data to parse context: contains data from higher level parsing code. Returns: List of Link objects. At most one link will be returned. """ if isinstance(self._resource_spec_class, str): resource_spec_class: Type[ResourceSpec] = ResourceSpec.get_by_class_name( self._resource_spec_class ) else: resource_spec_class = self._resource_spec_class if not self.alti_key: self.alti_key = resource_spec_class.type_name short_resource_id = data if self.value_is_id: resource_id = short_resource_id else: resource_id = resource_spec_class.generate_id(short_resource_id, context) return [ResourceLinkLink(pred=self.alti_key, obj=resource_id)] class TransientResourceLinkField(Field): """Transient Resource Link Fields represent field containing ids of other top level resources in the graph which may not exist. For example, a Lambda can refer to a VPC however VPCs can be deleted from lambdas. Args: source_key (str): Name of the key in the input JSON resource_spec_class (str|Type[ResourceSpec]): The name of the ResourceSpec class or the ResourceSpec class which this link represents. alti_key (str): Optional key name to be used in the graph. By default this is set to the resource_spec_class' type_name attribute. optional (bool): Whether this key is optional. Defaults to False. value_is_id(bool): Whether the value for this key contains the entire resource id. For AWS resources set this to True if the value is a complete arn. Examples: A link to a TestResourceSpec resource:: >>> from altimeter.core.resource.resource_spec import ResourceSpec >>> class TestResourceSpec(ResourceSpec): type_name="thing" >>> input = {"ThingId": "123"} >>> field = TransientResourceLinkField("ThingId", TestResourceSpec) >>> links = field.parse(data=input, context={}) >>> print([link.to_dict() for link in links]) [{'pred': 'thing', 'obj': 'thing:123', 'type': 'transient_resource_link'}] """ def __init__( self, source_key: str, resource_spec_class: Union[Type[ResourceSpec], str], alti_key: str = None, optional: bool = False, value_is_id: bool = False, ): self.source_key = source_key self._resource_spec_class = resource_spec_class self.alti_key = alti_key self.optional = optional self.value_is_id = value_is_id def parse(self, data: Dict[str, Any], context: Dict[str, Any]) -> List[Link]: """Parse this field and return a list of Links. Args: data: data to parse context: contains data from higher level parsing code. Returns: List of Link objects. At most one link will be returned. """ if isinstance(self._resource_spec_class, str): resource_spec_class: Type[ResourceSpec] = ResourceSpec.get_by_class_name( self._resource_spec_class ) else: resource_spec_class = self._resource_spec_class if not self.alti_key: self.alti_key = resource_spec_class.type_name short_resource_id = data.get(self.source_key) if not short_resource_id: if self.optional: return [] raise ResourceLinkFieldSourceKeyNotFoundException( f"Expected key '{self.source_key}' with non-empty/zero value in {data}" ) if self.value_is_id: resource_id = short_resource_id else: resource_id = resource_spec_class.generate_id(short_resource_id, context) return [TransientResourceLinkLink(pred=self.alti_key, obj=resource_id)] ``` #### File: core/graph/schema.py ```python from typing import Any, Dict, List from altimeter.core.graph.field.base import Field from altimeter.core.graph.link.base import Link class Schema: """A Schema consists of a list of Fields which define how to parse an arbitrary dictionary into a list of :class:`altimeter.core.graph.links.Link`. The schema method performs translation to :class:`altimeter.core.graph.links.Link`. Args: fields: fields for this Schema. """ def __init__(self, *fields: Field) -> None: self.fields = fields def parse(self, data: Dict[str, Any], context: Dict[str, Any]) -> List[Link]: """Parse this schema into a list of Links Args: data: raw data to parse context: contains auxiliary information which can be passed through the parse process. Returns: A list of :class:`altimeter.core.graph.links.Link` . """ links: List[Any] = [] for field in self.fields: links += field.parse(data, context) return links ``` #### File: core/neptune/results.py ```python from collections import Counter import csv import io from typing import Any, Dict, List, Type, Union class QueryResultSet: """Represents the results of a SPARQL query. Args: fields: List of field names values: list of value dicts as returned from neptune's query api. """ def __init__(self, fields: List[str], values: List[Dict[str, Any]]): self.fields = fields self.values = values self.length = len(self.values) @classmethod def from_sparql_endpoint_json( cls: Type["QueryResultSet"], resp: Dict[str, Any] ) -> "QueryResultSet": """Build a QueryResultSet object from the returned data of a sparql endpoint json query (has top level field 'head' and results') Args: resp: response dict from neptune's query api Returns: QueryResultSet object """ fields = resp.get("head", {}).get("vars", []) values = resp.get("results", {}).get("bindings", []) return cls(fields, values) def to_list(self) -> List[Dict[str, Any]]: """Create a list of dicts representing these results, each dict is an individual result row. Returns: List of dicts representing this QueryResultSet. """ result_list = [] for value in self.values: result_list.append({k: v["value"] for k, v in value.items()}) return result_list def to_csv(self) -> str: """Create a CSV representation of this QueryResultSet. Returns: csv as a str """ with io.StringIO() as csv_buf: writer = csv.DictWriter(csv_buf, fieldnames=self.fields, lineterminator="\n") writer.writeheader() for result in self.values: row = {key: value["value"] for key, value in result.items()} writer.writerow(row) csv_buf.seek(0) return csv_buf.read() def get_stats(self, field_keys: List[str]) -> Counter: """Return a Counter representing statistics about this result set keyed by a user specified list of field keys (e.g. account_id and account_name) Args: field_keys: list of field names to use as stat keys Returns: Counter containing result stats. """ stats: Counter = Counter() results = self.to_list() for result in results: stat_key_parts = [] for field_key in field_keys: stat_key_parts.append(result[field_key]) stat_key = "/".join(stat_key_parts) stats[stat_key] += 1 return stats @classmethod def from_dict(cls: Type["QueryResultSet"], data: Dict[str, Any]) -> "QueryResultSet": fields = data.get("fields") if fields is None: raise ValueError(f"{cls.__name__} missing key 'fields': {data}") values = data.get("values") if values is None: raise ValueError(f"{cls.__name__} missing key 'values': {data}") return cls(fields=fields, values=values) class QueryResult: """Represents the results of a SPARQL query and includes the graph uris from which results were pulled. Args: graph_uris_load_times: Dict with keys which are the graph uris which were used in this query and values which are the load end times for the graph. query_result_set: QueryResultSet containing results """ def __init__(self, graph_uris_load_times: Dict[str, int], query_result_set: QueryResultSet): self.graph_uris_load_times = graph_uris_load_times self.query_result_set = query_result_set def get_length(self) -> int: """Get the length of this result. Returns: int length """ return self.query_result_set.length def to_dict(self) -> Dict[str, Union[List[Any], Dict[str, int]]]: """Generate a dict representing this QueryResult Returns: dict representation of this QueryResult """ return { "graph-uris-load-times": self.graph_uris_load_times, "results": self.query_result_set.to_list(), } def to_list(self) -> List[Dict[str, Any]]: """Generate a list representing this QueryResult Returns: List of dicts representing this QueryResult """ return self.query_result_set.to_list() def to_csv(self) -> str: """Create a CSV representation of this QueryResult. Returns: csv as a str """ return self.query_result_set.to_csv() def get_stats(self, field_keys: List[str]) -> Counter: """Return a Counter representing statistics about this result set keyed by a user specified list of field keys (e.g. account_id and account_name) Args: field_keys: list of field names to use as stat keys Returns: Counter containing result stats. """ return self.query_result_set.get_stats(field_keys) ``` #### File: altimeter/bin/graphpruner.py ```python from datetime import datetime from altimeter.core.log import LogEvent, Logger from altimeter.core.awslambda import get_required_lambda_env_var from altimeter.core.neptune.client import AltimeterNeptuneClient, NeptuneEndpoint, META_GRAPH_NAME def lambda_handler(event, context): host = get_required_lambda_env_var("NEPTUNE_HOST") port = get_required_lambda_env_var("NEPTUNE_PORT") region = get_required_lambda_env_var("NEPTUNE_REGION") max_age_min = get_required_lambda_env_var("MAX_AGE_MIN") graph_name = get_required_lambda_env_var("GRAPH_NAME") try: max_age_min = int(max_age_min) except ValueError as ve: raise Exception(f"env var MAX_AGE_MIN must be an int: {ve}") now = int(datetime.now().timestamp()) oldest_acceptable_graph_epoch = now - max_age_min * 60 endpoint = NeptuneEndpoint(host=host, port=port, region=region) client = AltimeterNeptuneClient(max_age_min=max_age_min, neptune_endpoint=endpoint) logger = Logger() uncleared = [] # first prune metadata - if clears below are partial we want to make sure no clients # consider this a valid graph still. logger.info(event=LogEvent.PruneNeptuneMetadataGraphStart) client.clear_old_graph_metadata(name=graph_name, max_age_min=max_age_min) logger.info(event=LogEvent.PruneNeptuneMetadataGraphEnd) # now clear actual graphs with logger.bind(neptune_endpoint=endpoint): logger.info(event=LogEvent.PruneNeptuneGraphsStart) for graph_metadata in client.get_graph_metadatas(name=graph_name): assert graph_metadata.name == graph_name graph_epoch = graph_metadata.end_time with logger.bind(graph_uri=graph_metadata.uri, graph_epoch=graph_epoch): if graph_epoch < oldest_acceptable_graph_epoch: logger.info(event=LogEvent.PruneNeptuneGraphStart) try: client.clear_graph(graph_uri=graph_metadata.uri) logger.info(event=LogEvent.PruneNeptuneGraphEnd) except Exception as ex: logger.error( event=LogEvent.PruneNeptuneGraphError, msg=f"Error pruning graph {graph_metadata.uri}: {ex}", ) uncleared.append(graph_metadata.uri) continue else: logger.info(event=LogEvent.PruneNeptuneGraphSkip) logger.info(event=LogEvent.PruneNeptuneGraphsEnd) if uncleared: msg = f"Errors were found pruning {uncleared}." logger.error(event=LogEvent.PruneNeptuneGraphsError, msg=msg) raise Exception(msg) ``` #### File: altimeter/bin/runquery.py ```python import hashlib import json import sys import time import boto3 from altimeter.core.awslambda import get_required_lambda_env_var, get_required_lambda_event_var from altimeter.core.neptune.client import AltimeterNeptuneClient, NeptuneEndpoint def lambda_handler(event, context): graph_names_list = get_required_lambda_event_var(event, "graph_names") if not isinstance(graph_names_list, list): raise ValueError(f"Value for graph_names should be a list. Is {type(graph_names_list)}") graph_names = set(graph_names_list) query = get_required_lambda_event_var(event, "query") if not isinstance(query, str): raise ValueError(f"Value for query should be a str. Is {type(query)}") max_age_min = get_required_lambda_event_var(event, "max_age_min") if not isinstance(max_age_min, int): raise ValueError(f"Value for max_age_min should be an int. Is {type(max_age_min)}") host = get_required_lambda_env_var("NEPTUNE_HOST") port = get_required_lambda_env_var("NEPTUNE_PORT") region = get_required_lambda_env_var("NEPTUNE_REGION") results_bucket = get_required_lambda_env_var("RESULTS_BUCKET") endpoint = NeptuneEndpoint(host=host, port=port, region=region) client = AltimeterNeptuneClient(max_age_min=max_age_min, neptune_endpoint=endpoint) query_result = client.run_query(graph_names=graph_names, query=query) csv_results = query_result.to_csv() query_hash = hashlib.sha256(query.encode()).hexdigest() now_str = str(int(time.time())) results_key = "/".join(("-".join(graph_names), query_hash, f"{now_str}.csv")) s3_client = boto3.Session().client("s3") s3_client.put_object(Bucket=results_bucket, Key=results_key, Body=csv_results) return { "results_bucket": results_bucket, "results_key": results_key, "num_results": query_result.get_length(), } def get_runquery_lambda_name(): runquery_lambda_name_prefix = "ITCloudGraph-RunQuery-" lambda_client = boto3.client("lambda") paginator = lambda_client.get_paginator("list_functions") for resp in paginator.paginate(): for func in resp["Functions"]: if func["FunctionName"].startswith(runquery_lambda_name_prefix): return func["FunctionName"] raise ValueError( ( f"Unable to find a runquery lambda with name starting with " f"{runquery_lambda_name_prefix}" ) ) def main(argv=None): import argparse if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument("query_file", type=str) parser.add_argument("--graph_names", type=str, default=["alti"], nargs="+") parser.add_argument("--max_age_min", type=int, default=1440) args_ns = parser.parse_args(argv) with open(args_ns.query_file, "r") as query_fp: query = query_fp.read() runquery_lambda_name = get_runquery_lambda_name() payload = { "graph_names": args_ns.graph_names, "max_age_min": args_ns.max_age_min, "query": query, } payload_bytes = json.dumps(payload).encode("utf-8") lambda_client = boto3.client("lambda") invoke_lambda_resp = lambda_client.invoke( FunctionName=runquery_lambda_name, Payload=payload_bytes ) lambda_resp_bytes = invoke_lambda_resp["Payload"].read() lambda_resp_str = lambda_resp_bytes.decode("utf-8") lambda_resp = json.loads(lambda_resp_str) if "errorMessage" in lambda_resp: print("Error running query:") print(lambda_resp["errorMessage"]) sys.exit(1) results_bucket = lambda_resp["results_bucket"] results_key = lambda_resp["results_key"] s3_client = boto3.client("s3") s3_resp = s3_client.get_object(Bucket=results_bucket, Key=results_key) results_bytes = s3_resp["Body"].read() results_str = results_bytes.decode("utf-8") print(results_str) if __name__ == "__main__": sys.exit(main()) ``` #### File: altimeter/bin/scan_resource.py ```python import json import sys from typing import Type import boto3 from altimeter.aws.resource.resource_spec import AWSResourceSpec from altimeter.core.json_encoder import json_encoder from altimeter.aws.scan.aws_accessor import AWSAccessor from altimeter.aws.scan.settings import RESOURCE_SPEC_CLASSES def main(argv=None): import argparse if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser() parser.add_argument( "resource_spec_class", type=str, help="Name of class in altimeter.aws.scan.settings.RESOURCE_SPEC_CLASSES to scan", ) parser.add_argument("region", type=str, help="AWS region name to scan") args_ns = parser.parse_args(argv) resource_spec_class_name = args_ns.resource_spec_class region = args_ns.region resource_spec_class: Type[AWSResourceSpec] = None for cls in RESOURCE_SPEC_CLASSES: if cls.__name__ == resource_spec_class_name: resource_spec_class = cls if resource_spec_class is None: print( ( f"Unable to find a class named {resource_spec_class_name} in " f"altimeter.aws.scan.settings.RESOURCE_SPEC_CLASSES: {RESOURCE_SPEC_CLASSES}." ) ) sys.exit(1) session = boto3.Session(region_name=region) sts_client = session.client("sts") account_id = sts_client.get_caller_identity()["Account"] aws_accessor = AWSAccessor(session=session, account_id=account_id, region_name=region) resource_scan_result = resource_spec_class.scan(aws_accessor) resource_scan_result_dict = resource_scan_result.to_dict() resource_scan_result_json = json.dumps( resource_scan_result_dict, indent=2, default=json_encoder ) print(resource_scan_result_json) if __name__ == "__main__": sys.exit(main()) ``` #### File: resource/awslambda/test_function.py ```python from unittest import TestCase import boto3 from moto import mock_ec2, mock_lambda from altimeter.aws.resource.awslambda.function import LambdaFunctionResourceSpec from altimeter.aws.scan.aws_accessor import AWSAccessor class TestLambdaFunctionResourceSpec(TestCase): @mock_lambda @mock_ec2 def test_scan(self): account_id = "123456789012" region_name = "us-east-1" session = boto3.Session() lambda_client = session.client("lambda", region_name=region_name) lambda_client.create_function( FunctionName="func_name", Runtime="python3.7", Role="testrole", Handler="testhandler", Description="testdescr", Timeout=90, MemorySize=128, Code={"ZipFile": b"1234"}, Publish=False, VpcConfig={"SubnetIds": ["subnet-123"], "SecurityGroupIds": ["sg-123"]}, DeadLetterConfig={"TargetArn": "test_dl_config"}, Environment={"Variables": {"TEST_VAR": "test_val"}}, KMSKeyArn="test_kms_arn", TracingConfig={"Mode": "Active"}, Tags={"tagkey1": "tagval1", "tagkey2": "tagval2"}, Layers=["test_layer1"], ) scan_accessor = AWSAccessor(session=session, account_id=account_id, region_name=region_name) scan_result = LambdaFunctionResourceSpec.scan(scan_accessor=scan_accessor) scan_result_dict = scan_result.to_dict() self.maxDiff=None expected_scan_result_dict = { "resources": [ { "type": "aws:lambda:function", "links": [ {"pred": "function_name", "obj": "func_name", "type": "simple"}, { "pred": "runtime", "obj": "python3.7", "type": "simple", }, { "pred": "vpc", "obj": f"arn:aws:ec2:{region_name}:{account_id}:vpc/vpc-123abc", "type": "transient_resource_link", }, { "pred": "account", "obj": f"arn:aws::::account/{account_id}", "type": "resource_link", }, { "pred": "region", "obj": f"arn:aws:::{account_id}:region/{region_name}", "type": "resource_link", }, ], } ], "stats": { "count": 1, account_id: { "count": 1, region_name: { "count": 1, "lambda": {"count": 1, "ListFunctions": {"count": 1}}, }, }, }, "errors": [], } self.assertDictEqual(scan_result_dict, expected_scan_result_dict) ``` #### File: resource/ec2/test_ec2_route_table.py ```python import unittest from altimeter.core.resource.resource import Resource from altimeter.aws.resource.ec2.route_table import EC2RouteTableResourceSpec class TestRouteTableSchema(unittest.TestCase): def test_schema_parse(self): resource_arn = "arn:aws:ec2:us-east-2:111122223333:route-table/rtb-099c7b032f2bbddda" aws_resource_dict = { "Associations": [ { "Main": False, "RouteTableAssociationId": "rtbassoc-069d59127bf10a728", "RouteTableId": "rtb-099c7b032f2bbddda", "SubnetId": "subnet-00f9fe55b9d7ca4fb", }, { "Main": False, "RouteTableAssociationId": "rtbassoc-07bfd170c4ece33c8", "RouteTableId": "rtb-099c7b032f2bbddda", "SubnetId": "subnet-0b98092b454c882cf", }, ], "PropagatingVgws": [], "RouteTableId": "rtb-099c7b032f2bbddda", "Routes": [ { "DestinationCidrBlock": "172.31.0.0/16", "GatewayId": "local", "Origin": "CreateRouteTable", "State": "active", }, { "DestinationCidrBlock": "0.0.0.0/0", "GatewayId": "igw-092e5ec1685fd0c0b", "Origin": "CreateRoute", "State": "active", }, { "DestinationPrefixListId": "pl-68a54001", "GatewayId": "vpce-0678bce2b63b8ad0f", "Origin": "CreateRoute", "State": "active", }, ], "VpcId": "vpc-03c33051f57d21ff0", "OwnerId": "210554966933", } links = EC2RouteTableResourceSpec.schema.parse( data=aws_resource_dict, context={"account_id": "111122223333", "region": "us-west-2"} ) resource = Resource( resource_id=resource_arn, type_name=EC2RouteTableResourceSpec.type_name, links=links ) alti_resource_dict = resource.to_dict() expected_alti_resource_dict = { "type": "route-table", "links": [ {"pred": "route_table_id", "obj": "rtb-099c7b032f2bbddda", "type": "simple"}, { "pred": "vpc", "obj": "arn:aws:ec2:us-west-2:111122223333:vpc/vpc-03c33051f57d21ff0", "type": "resource_link", }, {"pred": "owner_id", "obj": "210554966933", "type": "simple"}, { "pred": "route", "obj": [ { "pred": "destination_cidr_block", "obj": "172.31.0.0/16", "type": "simple", }, {"pred": "gateway_id", "obj": "local", "type": "simple"}, {"pred": "origin", "obj": "CreateRouteTable", "type": "simple"}, {"pred": "state", "obj": "active", "type": "simple"}, ], "type": "multi", }, { "pred": "route", "obj": [ {"pred": "destination_cidr_block", "obj": "0.0.0.0/0", "type": "simple"}, {"pred": "gateway_id", "obj": "igw-092e5ec1685fd0c0b", "type": "simple"}, {"pred": "origin", "obj": "CreateRoute", "type": "simple"}, {"pred": "state", "obj": "active", "type": "simple"}, ], "type": "multi", }, { "pred": "route", "obj": [ { "pred": "destination_prefix_list_id", "obj": "pl-68a54001", "type": "simple", }, {"pred": "gateway_id", "obj": "vpce-0678bce2b63b8ad0f", "type": "simple"}, {"pred": "origin", "obj": "CreateRoute", "type": "simple"}, {"pred": "state", "obj": "active", "type": "simple"}, ], "type": "multi", }, { "pred": "association", "obj": [ {"pred": "main", "obj": False, "type": "simple"}, { "pred": "route_table_association_id", "obj": "rtbassoc-069d59127bf10a728", "type": "simple", }, { "pred": "route_table_id", "obj": "rtb-099c7b032f2bbddda", "type": "simple", }, {"pred": "subnet_id", "obj": "subnet-00f9fe55b9d7ca4fb", "type": "simple"}, ], "type": "multi", }, { "pred": "association", "obj": [ {"pred": "main", "obj": False, "type": "simple"}, { "pred": "route_table_association_id", "obj": "rtbassoc-07bfd170c4ece33c8", "type": "simple", }, { "pred": "route_table_id", "obj": "rtb-099c7b032f2bbddda", "type": "simple", }, {"pred": "subnet_id", "obj": "subnet-0b98092b454c882cf", "type": "simple"}, ], "type": "multi", }, ], } self.assertDictEqual(alti_resource_dict, expected_alti_resource_dict) ``` #### File: core/neptune/test_sparql.py ```python from unittest import TestCase from altimeter.core.neptune.sparql import finalize_query, InvalidQueryException class TestFinalizeQuerySingleGraph(TestCase): def test_empty_query(self): query = "" graph_uris = ["http://graph/1"] with self.assertRaises(InvalidQueryException): finalize_query(query=query, graph_uris=graph_uris) def test_one_line_query(self): query = "select ?s ?p ?o where {?s ?p ?o}" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o FROM <http://graph/1> where {?s ?p ?o}" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_one_line_query_with_trailing_comment(self): query = "select ?s ?p ?o where {?s ?p ?o} # hi" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o FROM <http://graph/1> where {?s ?p ?o} # hi" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_one_line_query_with_limit(self): query = "select ?s ?p ?o where {?s ?p ?o} limit 100" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o FROM <http://graph/1> where {?s ?p ?o} limit 100" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_one_line_query_with_trailing(self): query = "select ?s ?p ?o where {?s ?p ?o} # ignore me please select where {" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o FROM <http://graph/1> where {?s ?p ?o} # ignore me please select where {" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_one_line_query_missing_where(self): query = "select ?s ?p ?o {?s ?p ?o}" graph_uris = ["http://graph/1"] with self.assertRaises(InvalidQueryException): finalize_query(query=query, graph_uris=graph_uris) def test_one_line_query_missing_where_due_to_comment(self): query = "select ?s ?p ?o # where {?s ?p ?o}" graph_uris = ["http://graph/1"] with self.assertRaises(InvalidQueryException): finalize_query(query=query, graph_uris=graph_uris) def test_one_line_query_missing_where_due_to_leading_comment(self): query = "#select ?s ?p ?o where {?s ?p ?o}" graph_uris = ["http://graph/1"] with self.assertRaises(InvalidQueryException): finalize_query(query=query, graph_uris=graph_uris) def test_one_line_query_full_rdf_type_syntax(self): query = "select ?s ?p ?o where { ?s ?p ?o; <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <my:type> }" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o FROM <http://graph/1> where { ?s ?p ?o; <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <my:type> }" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_multi_line_query(self): query = "select ?s ?p ?o\nwhere {?s ?p ?o}" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o\nFROM <http://graph/1> where {?s ?p ?o}" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_multi_line_query_with_trailing_comments(self): query = "select ?s ?p ?o # this is the select\nwhere {?s ?p ?o} # this is the where clause" graph_uris = ["http://graph/1"] expected_finalized_query = "select ?s ?p ?o # this is the select\nFROM <http://graph/1> where {?s ?p ?o} # this is the where clause" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) def test_multi_line_query_missing_where(self): query = "select ?s ?p ?o\n{?s ?p ?o}" graph_uris = ["http://graph/1"] with self.assertRaises(InvalidQueryException): finalize_query(query=query, graph_uris=graph_uris) def test_multi_line_query_with_comments(self): query = "# select ?s ?p ?o where { ?s ?p ?o }\n# that was an old version\nselect ?s ?p ?o # where { not this where\n# or this where {\nwhere # this where\n{ ?s # sub\n?p # pred\n?o\nobj\n} # bye\n# test\n# select ?s ?p ?o where { ?s ?p ?o } # limit 100\n limit 1000 #real limit" graph_uris = ["http://graph/1", "http://graph/2"] expected_finalized_query = "# select ?s ?p ?o where { ?s ?p ?o }\n# that was an old version\nselect ?s ?p ?o # where { not this where\n# or this where {\nFROM <http://graph/1> FROM <http://graph/2> where # this where\n{ ?s # sub\n?p # pred\n?o\nobj\n} # bye\n# test\n# select ?s ?p ?o where { ?s ?p ?o } # limit 100\n limit 1000 #real limit" finalized_query = finalize_query(query=query, graph_uris=graph_uris) self.assertEqual(finalized_query, expected_finalized_query) ``` #### File: altimeter/core/test_multilevel_counter.py ```python from unittest import TestCase from altimeter.core.multilevel_counter import MultilevelCounter class TestMultiLevelCounter(TestCase): def test_increment(self): ml_counter = MultilevelCounter() ml_counter.increment("foo", "boo", "goo") expected_data = {"count": 1, "foo": {"count": 1, "boo": {"count": 1, "goo": {"count": 1}}}} self.assertDictEqual(expected_data, ml_counter.to_dict()) def test_merge_updates_self(self): ml_counter_self = MultilevelCounter() ml_counter_self.increment("foo", "boo", "goo") ml_counter_other = MultilevelCounter() ml_counter_other.increment("boo", "goo", "moo") ml_counter_self.merge(ml_counter_other) expected_data = { "count": 2, "foo": {"count": 1, "boo": {"count": 1, "goo": {"count": 1}}}, "boo": {"count": 1, "goo": {"count": 1, "moo": {"count": 1}}}, } self.assertDictEqual(expected_data, ml_counter_self.to_dict()) def test_merge_does_not_update_other(self): ml_counter_self = MultilevelCounter() ml_counter_self.increment("foo", "boo", "goo") ml_counter_other = MultilevelCounter() ml_counter_other.increment("boo", "goo", "moo") ml_counter_self.merge(ml_counter_other) expected_data = {"count": 1, "boo": {"count": 1, "goo": {"count": 1, "moo": {"count": 1}}}} self.assertDictEqual(expected_data, ml_counter_other.to_dict()) def test_from_dict(self): data = { "count": 2, "foo": {"count": 1, "boo": {"count": 1, "goo": {"count": 1}}}, "boo": {"count": 1, "goo": {"count": 1, "moo": {"count": 1}}}, } ml_counter = MultilevelCounter.from_dict(data) self.assertDictEqual(ml_counter.to_dict(), data) ```
{ "source": "jpartogi/django-job-board", "score": 2 }
#### File: job_board/templatetags/tag_list.py ```python from django.template import Library, Node, Variable, VariableDoesNotExist from django.core.urlresolvers import reverse from job_board.views import job_list_by_tag register = Library() def do_populate_tags(parser,token): """ render a list of tags, with it's link. the token is tag. Arguments: - `parser`: - `token`: """ bits = token.split_contents() print bits return PopulateTagsNode(bits[1]) class PopulateTagsNode(Node): def __init__(self,tag): self.tag_tag = Variable(tag) def render(self,context): try: _tag = self.tag_tag.resolve(context) _font_size = _tag.font_size + 10 _font_weight = min(900,(300 + (_tag.font_size*100))) _url = reverse(job_list_by_tag, kwargs = {'tag_name' : _tag.name } ) return "<span style='font-size:%spx;font-weight:%s'><a href='%s'>%s</a></span>" % (_font_size,_font_weight,_url,_tag.name) except VariableDoesNotExist: return '' register.tag('populate_tag', do_populate_tags) ``` #### File: django-job-board/job_board/views.py ```python from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.template.loader import select_template from django.contrib.formtools.preview import FormPreview from django.views.generic import list_detail from commons.search import get_query from job_board.models import * from job_board.forms import * from job_board.signals import view_job queryset = Job.objects.filter_date() template_object_name = 'job' paginate_by = 10 job_list_template = ( "job_board/list.html", "job_board/job_list.html", ) def job_list(request): template = select_template(job_list_template) # returns Template object template_name = template.name return list_detail.object_list(request, queryset, paginate_by = paginate_by, template_name = template_name, template_object_name = template_object_name) def job_search(request): query_string = '' if ('q' in request.GET) and request.GET['q'].strip(): query_string = request.GET['q'] query = get_query(query_string, ['title', 'location', 'description', 'company_name', 'website']) queryset = Job.objects.filter_date().filter(query).order_by('-posted') template = select_template(job_list_template) # returns Template object template_name = template.name return list_detail.object_list(request, queryset, paginate_by = paginate_by, template_name = template_name, template_object_name = template_object_name) def job_detail(request, slug=None, object_id=None): job_detail_template = ( "job_board/view.html", "job_board/detail.html", "job_board/job_detail.html", ) template = select_template(job_detail_template) template_name = template.name job = Job.objects.get(pk=object_id) view_job.send(sender=job_detail, job=job) return list_detail.object_detail(request, queryset, object_id = object_id, slug = slug, template_name = template_name, template_object_name = template_object_name) class JobFormPreview(FormPreview): preview_template = 'job_board/preview.html' form_template = 'job_board/form.html' def done(self, request, cleaned_data): form = JobForm(request.POST) job = form.save() message = """Your job posting has been saved successfully. Thank you very much. """ request.notifications.create(message, 'success') params = {'slug': job.slug, 'object_id': job.id} return HttpResponseRedirect(reverse('job-detail', kwargs=params)) ```
{ "source": "jparyani/mediagoblin", "score": 2 }
#### File: plugins/sandstorm/views.py ```python from mediagoblin import mg_globals, messages from mediagoblin.auth.tools import register_user, create_basic_user from mediagoblin.db.models import User, Privilege from mediagoblin.decorators import allow_registration, auth_enabled from mediagoblin.tools.translate import pass_to_ugettext as _ from mediagoblin.tools.response import redirect, render_to_response from mediagoblin.plugins.sandstorm.models import SandstormUser from random import getrandbits import urllib @auth_enabled def login(request): login_failed = False username = request.headers.get('X-Sandstorm-Username', None) user_id = request.headers.get('X-Sandstorm-User-Id', None) permissions = request.headers.get('X-Sandstorm-Permissions', None) if username != None: username = urllib.unquote(username) if permissions != None: permissions = urllib.unquote(permissions) default_privileges = None if username and user_id: suser = SandstormUser.query.filter_by(sandstorm_user_id=user_id).first() if not suser: if not mg_globals.app.auth: messages.add_message( request, messages.WARNING, _('Sorry, authentication is disabled on this ' 'instance.')) return redirect(request, 'index') while User.query.filter_by(username=username).count() > 0: username += '2' user = User() user.username = username user.email = '' user.pw_hash = unicode(getrandbits(192)) default_privileges = [ Privilege.query.filter(Privilege.privilege_name==u'commenter').first(), Privilege.query.filter(Privilege.privilege_name==u'reporter').first(), Privilege.query.filter(Privilege.privilege_name==u'active').first()] else: user = suser.user if 'admin' in permissions.split(','): default_privileges = [ Privilege.query.filter(Privilege.privilege_name==u'commenter').first(), Privilege.query.filter(Privilege.privilege_name==u'reporter').first(), Privilege.query.filter(Privilege.privilege_name==u'active').first(), Privilege.query.filter(Privilege.privilege_name==u'admin').first(), Privilege.query.filter(Privilege.privilege_name==u'moderator').first(), Privilege.query.filter(Privilege.privilege_name==u'uploader').first()] if default_privileges: user.all_privileges += default_privileges user.save() if not suser: suser = SandstormUser() suser.user_id = user.id suser.sandstorm_user_id = user_id suser.save() request.session['user_id'] = unicode(user.id) request.session.save() if request.form.get('next'): return redirect(request, location=request.form['next']) else: return redirect(request, "index") @allow_registration @auth_enabled def register(request): return redirect( request, 'mediagoblin.plugins.sandstorm.login') ```
{ "source": "JParzival/mediafier", "score": 4 }
#### File: mediafier/image/cropping.py ```python import cv2 from ..utils.utils import intdetector, str2bool from ..image.size import addBorders def crop(img, x, y, w, h, fill=False): """ This function retrieves the image sent by the user cropped with the coordinates that the user inputs. Args: img (:obj: array, mandatory): Image to crop x (:obj: int, mandatory): X coordinate of the closest point to the 0,0 y (:obj: int, mandatory): Y coordinate of the closest point to the 0,0 w (:obj: int, mandatory): Width of the crop in pixels h (:obj: int, mandatory): Height of the crop in pixels fill (:obj: bool, optional): If the image dimensions should be mantained filling the borders Returns: :obj: array: The resulting object is the image, in the same format as inputted, but with the transformation applied. Raises: ValueError: Raised if any of the values of the size is not positive. ArgumentTypeError: Raised if any of the values of the is not an int or the fill is not a bool. """ for n in [x, y, w, h]: intdetector(n) if n < 0: raise ValueError("All values must be positive") str2bool(fill) if fill == False: return img[y:y+h, x:x+w] else: org_w, org_h = img.shape[0], img.shape[1] img = img[y:y+h, x:x+w] return addBorders(img, y, org_h-(y+h), x, org_w-(x+w), 'constant', 'black') def slice(img, rows=2, cols=2): """ This function retrieves the image sent by the user sliced in several images, depending on the rows and cols that the user inputs. Args: img (:obj: array, mandatory): Image to slice. rows (:obj: int, mandatory): Number of rows that will slice the image. Default is 2. cols (:obj: int, mandatory): Number of columns that will slice the image. Default is 2. Returns: :obj: array[array]: The resulting object an array with the images. They will be ordered by from the up-left one to the bottom-right one, following a first row - later column fashion. Raises: ValueError: Raised if any of the values of the size is not positive and over zero. ArgumentTypeError: Raised if any of the values of the is not an int or the fill is not a bool. """ for n in [rows, cols]: intdetector(n) if n <= 0: raise ValueError("All values must be positive and over zero") if rows == 1 and cols == 1: return [img] height, width = img.shape[0], img.shape[1] height_chunk = height/rows width_chunk = width/cols sliced = [] w, h = 0, 0 while h < height: while w < width: sliced.append(crop(img, int(w), int(h), int(width_chunk), int(height_chunk), False)) w += width_chunk w = 0 h += height_chunk return sliced ``` #### File: mediafier/image/draw.py ```python import cv2 from ..utils.utils import intdetector, str2bool, stringdetector def drawBBox(img, x, y, w, h, color='black', thickness=2): """ This function retrieves an image with the bounding box that the user inputs painted. Args: img (:obj: array, mandatory): Image to flip. x (:obj: int, mandatory): X point of the first point (uppermost and leftmost) y (:obj: int, mandatory): Y point of the first point (uppermost and leftmost) w (:obj: int, mandatory): Width of the bounding box h (:obj: int, mandatory): Height of the bounding box color (:obj: str, optional): Color that the bounding box will have. Options are: - black - white - red - blue Defaults to black thickness (:obj: int, optional): Thickness that the bounding box will have. Defaults to 2. Returns: :obj: array: The resulting object is the image, in the same format as inputted, but with the transformation applied. Raises: ValueError: Raised if any of the values is not inputted properly. ArgumentTypeError: Raised if any of the values does not have the proper type. """ def _checks(x, y, w, h, color, thickness): stringdetector(color) color = color.lower() if color not in ['black', 'white', 'red', 'blue']: raise ValueError("Supported colors are 'black', 'white', 'red' and 'blue'") intdetector(x) intdetector(y) intdetector(w) intdetector(h) if x < 0 or y < 0 or w < 0 or h < 0: raise ValueError("Values must be positive!") intdetector(thickness) if thickness <= 0: raise ValueError("Thickness must be over zero!") return color def _colorChoice(color): if color == 'black': return (0, 0, 0) elif color == 'white': return (255, 255, 255) elif color == 'red': return (0, 0, 255) elif color == 'blue': return (255, 0, 0) color = _checks(x, y, w, h, color, thickness) color = _colorChoice(color) return cv2.rectangle(img, (x, y), (x+w, y+h), color, thickness) ``` #### File: mediafier/image/modifications.py ```python import cv2 from ..utils.utils import intdetector, stringdetector, str2bool from .size import resize def blur(img, method='default', value='medium'): """ This function retrieves an image with the amount of blur that the user inputs. Args: img (:obj: array, mandatory): Image to modify. method (:obj: str, optional): Method that will be applied to make the transformation. Possible values are: - default - gaussian Defaults to 'default' value (:obj: str, optional): Amount of blurriness that will be applied to the image. Possible values are: - extreme - high - medium - low Defaults to 'medium' Returns: :obj: array: The resulting object is the image, in the same format as inputted, but with the transformation applied. Raises: ValueError: Raised if any of the values is not inputted properly. ArgumentTypeError: Raised if any of the values does not have the proper type. """ def _checks(img, method, value): stringdetector(method) method = method.lower() if method not in ['default', 'gaussian']: raise ValueError("Method parameter must be 'default' or 'gaussian'") stringdetector(value) value = value.lower() if value not in ['extreme', 'high', 'medium', 'low']: raise ValueError("Value must be 'extreme', 'high', 'medium' or 'low'") return method, value def _valuechoice(method, value): if method == 'default': if value == 'extreme': return (75,75) elif value == 'high': return (50, 50) elif value == 'medium': return (35, 35) else: return (10, 10) else: # In gaussian, return odd values if value == 'extreme': return (149, 149) elif value == 'high': return (99, 99) elif value == 'medium': return (49, 49) else: return (25, 25) method, value = _checks(img, method, value) if method == 'default': return cv2.blur(img, _valuechoice(method, value)) else: return cv2.GaussianBlur(img, _valuechoice(method, value), 0, 0) def pixelate(img, value='medium'): """ This function retrieves an image pixelated. Args: img (:obj: array, mandatory): Image to modify. value (:obj: str, optional): Amount of pixelation that will be applied to the image. Possible values are: - extreme - high - medium - low Defaults to 'medium' Returns: :obj: array: The resulting object is the image, in the same format as inputted, but with the transformation applied. Raises: ValueError: Raised if any of the values is not inputted properly. ArgumentTypeError: Raised if any of the values does not have the proper type. """ def _valuechoice(value, w, h): if value == 'extreme': return (int(w/30), int(h/30)) elif value == 'high': return (int(w/20), int(h/20)) elif value == 'medium': return (int(w/15), int(h/15)) else: return (int(w/10), int(h/10)) def _checks(value): stringdetector(value) value = value.lower() if value not in ['extreme', 'high', 'medium', 'low']: raise ValueError("Value must be 'extreme', 'high', 'medium' or 'low'") return value value = _checks(value) w, h = img.shape[0], img.shape[0] value = _valuechoice(value, w, h) tmp_img = resize(img, size=value, interpolation='linear') return resize(tmp_img, size=(w, h), interpolation='nearest') ``` #### File: mediafier/tests/test_video_common.py ```python import cv2 import os from mediafier.video.common import extractFrames, modifyFps, crop SRC_IMG_DIR = os.path.join('test_media', 'video_src_test') SAVE_IMG_DIR = os.path.join('test_media', 'video_result_test', 'common') if not os.path.exists(SAVE_IMG_DIR): os.makedirs(SAVE_IMG_DIR) def test_video_common_extractFrames(): """ Not with the other tests fashion, cause it would be much more work to make it that fashion for no benefit """ video = os.path.join(SRC_IMG_DIR, 'test2.mp4') """Extract in memory one of every 20""" frames = extractFrames(video, every=20) i = 0 savepath = os.path.join(SAVE_IMG_DIR, 'test1') if not os.path.exists(savepath): os.makedirs(savepath) for frame in frames: cv2.imwrite(os.path.join(savepath, f'frame_{i}.png'), frame) i += 1 """Extract in disk in png""" savepath = os.path.join(SAVE_IMG_DIR, 'test2') if not os.path.exists(savepath): os.makedirs(savepath) ok = extractFrames(video, save='disk', savePath=savepath) """Extract in disk in jpg""" savepath = os.path.join(SAVE_IMG_DIR, 'test3') if not os.path.exists(savepath): os.makedirs(savepath) ok = extractFrames(video, save='disk', savePath=savepath, format='jpg') """Extract in disk in jpg every 30""" savepath = os.path.join(SAVE_IMG_DIR, 'test4') if not os.path.exists(savepath): os.makedirs(savepath) ok = extractFrames(video, save='disk', savePath=savepath, format='jpg', every=30) """Extract in disk every 30 resizing the jpg""" savepath = os.path.join(SAVE_IMG_DIR, 'test5') if not os.path.exists(savepath): os.makedirs(savepath) ok = extractFrames(video, save='disk', savePath=savepath, format='jpg', every=30, resizeImg=True, newWidth=200, newHeight=200) """Failure example""" #video = os.path.join(SRC_IMG_DIR, 'test.mp4') #extractFrames(video, 'nowhere') #extractFrames(video, 'disk') #extractFrames(video, every=0) #extractFrames(video, format='mine') def test_video_common_modifyFps(): video = os.path.join(SRC_IMG_DIR, 'test2.mp4') params = [ { 'videoPath': video, 'newFps': 10, 'output': os.path.join(SAVE_IMG_DIR, "modifyFps_10.avi") }, { 'videoPath': video, 'newFps': 60, 'output': os.path.join(SAVE_IMG_DIR, "modifyFps_60.avi") }, { 'videoPath': video, 'newFps': 120, 'output': os.path.join(SAVE_IMG_DIR, "modifyFps_120.avi") }, { 'videoPath': video, 'newFps': 120, 'output': os.path.join(SAVE_IMG_DIR, "modifyFps_120.mp4") } ] for param in params: modifyFps(param['videoPath'], param['newFps'], param['output']) """Failure example""" #modifyFps(video, "a") #modifyFps(video, -1) #modifyFps(video, 120, "modifyFps_60.mov") #modifyFps(video, 120, "modifyFps_60") def test_video_common_crop(): video = os.path.join(SRC_IMG_DIR, 'test2.mp4') params = [ { 'videoPath': video, 'start': 0, 'end': 5, 'output': os.path.join(SAVE_IMG_DIR, "crop_0_5.avi") }, { 'videoPath': video, 'start': 5, 'end': 15, 'output': os.path.join(SAVE_IMG_DIR, "crop_5_15.avi") }, { 'videoPath': video, 'start': 0, 'end': 5, 'output': os.path.join(SAVE_IMG_DIR, "crop_0_5.mp4") }, { 'videoPath': video, 'start': 5, 'end': 15, 'output': os.path.join(SAVE_IMG_DIR, "crop_5_15.mp4") } ] for param in params: crop(param['videoPath'], param['start'], param['end'], param['output']) ```
{ "source": "jpasini/autounits", "score": 4 }
#### File: autounits/src/dimension.py ```python from __future__ import division class DimensionError(Exception): pass class IncompatibleDimensionsError(DimensionError): pass class Dimension(object): """Class describing dimensions: length, time, etc. and derivative dimensions.""" def __init__(self, *args, **kwargs): """Can be initialized like this: Dimension(L = 1, T = -2) using named arguments, Dimension(d) using another dimension Dimension("L/T") using a string <== Not yet.""" self._dimensions_considered = ['M', 'L', 'T', 'Q', 'Theta'] # If args contains something, it should be a dimension if len(args) > 1: raise DimensionError elif len(args) == 1: d = args[0] if type(d) != type(self): # it's not a dimension raise DimensionError if len(kwargs) > 0: # shouldn't have included more inputs raise DimensionError for k in self._dimensions_considered: self.__dict__[k] = d.__dict__[k] else: # len(args) == 0, so I should only have named arguments if len(set(kwargs.keys()) - set(self._dimensions_considered)) > 0: raise DimensionError for k in self._dimensions_considered: self.__dict__[k] = 0 if k not in kwargs else kwargs[k] def __repr__(self): args = ", ".join(["%s=%s" % (k, repr(self.__dict__[k])) for k in self._dimensions_considered]) return "Dimension(%s)" % args def __str__(self): return self.str(use_braces = False) def is_primitive(self): """The dimension is primitive if it's either dimensionless or only one.""" number_of_ones = 0 number_of_nonzeros_and_nonones = 0 for k in self._dimensions_considered: p = self.__dict__[k] # power of this dimension if p == 1: number_of_ones += 1 elif p != 0: number_of_nonzeros_and_nonones += 1 return number_of_nonzeros_and_nonones == 0 and number_of_ones in [0, 1] def str(self, use_braces = False): if use_braces: lbrace, rbrace = "{}" else: lbrace = rbrace = "" numerator = "" denominator = "" for k in self._dimensions_considered: v = self.__dict__[k] if v == 0: continue if v == 1: numerator += "%s%s%s" % (lbrace, k, rbrace) elif v == -1: denominator += "%s%s%s" % (lbrace, k, rbrace) elif v > 0: numerator += "%s%s%s^%s" % (lbrace, k, rbrace, v) else: denominator += "%s%s%s^%s" % (lbrace, k, rbrace, -v) if numerator == "": numerator = "1" if denominator != "": denominator = "/" + denominator return numerator + denominator def __eq__(self, other): """Check for equality.""" return self.M == other.M and self.L == other.L \ and self.T == other.T and self.Q == other.Q and self.Theta == other.Theta def __ne__(self, other): """Check for difference.""" return self.M != other.M or self.L != other.L \ or self.T != other.T or self.Q != other.Q or self.Theta != other.Theta def __add__(self, other): """Addition: checks for compatibility.""" if self != other: raise IncompatibleDimensionsError else: return Dimension(self) # create a copy of self. def __sub__(self, other): """Subtraction: checks for compatibility.""" if self != other: raise IncompatibleDimensionsError else: return Dimension(self) # create a copy of self. def __mul__(self, other): """Multiplication.""" return Dimension(M = self.M + other.M, L = self.L + other.L, T = self.T + other.T, Q = self.Q + other.Q, Theta = self.Theta + other.Theta) def __div__(self, other): """Division (when __future__.division is not defined).""" return Dimension(M = self.M - other.M, L = self.L - other.L, T = self.T - other.T, Q = self.Q - other.Q, Theta = self.Theta - other.Theta) def __truediv__(self, other): """Division (when __future__.division is defined)..""" return Dimension(M = self.M - other.M, L = self.L - other.L, T = self.T - other.T, Q = self.Q - other.Q, Theta = self.Theta - other.Theta) def __pow__(self, other): """Raise to integer or fractional powers""" return Dimension(M = self.M*other, L = self.L*other, T = self.T*other, Q = self.Q*other, Theta = self.Theta*other) def get_number(): from pyparsing import Word, nums, ParseException def validate_and_convert_number(tokens): try: return float(tokens[0]) except ValueError: raise ParseException("Invalid number (%s)" % tokens[0]) number = Word(nums + '-' + '+' + '.').setResultsName("value") # do not allow scientific notation number.setParseAction(validate_and_convert_number) return number def get_units_literals(units_value_dictionary): from pyparsing import Literal, replaceWith, Or def make_literal(unit_string, val): return Literal(unit_string).setParseAction(replaceWith(val)) units_value_dictionary["1"] = 1 # add one more term for dimensionless quantities return Or([make_literal(s, v) for (s, v) in units_value_dictionary.iteritems()]) def get_term(units_value_dictionary): from pyparsing import Optional n = get_number() unit = get_units_literals(units_value_dictionary) term = unit + Optional("^" + n) def exponentiate_if_needed(tokens): if len(tokens) < 2: return tokens[0] else: return tokens[0]**tokens[2] term.setParseAction(exponentiate_if_needed) #term.setParseAction(lambda t: float(t[0])) return term def get_numerator(units_value_dictionary): from pyparsing import OneOrMore term = get_term(units_value_dictionary) numerator = OneOrMore(term) def multiply_tokens(tokens): return reduce(lambda x, y: x*y, tokens) numerator.setParseAction(multiply_tokens) return numerator def get_expression(units_value_dictionary): from pyparsing import Optional, stringEnd numerator = get_numerator(units_value_dictionary) expression = numerator + Optional("/" + numerator) + stringEnd def calculate_final_value(tokens): l = len(tokens) if l == 1: return tokens[0] else: return tokens[0]/tokens[2] expression.setParseAction(calculate_final_value) return expression cached_unit_string_parsers = {} def parse_unit_string(unit_string, units_value_dictionary): """Parse a string containing units. For example: LT/M^3Q and return the corresponding value, after replacing with values from units_value_dictionary, which contains, for example {'L': 1, 'M': 1, 'T': 60, 'Q': 1, 'Theta': 1} """ combo = unit_string, tuple((k, v) for k,v in units_value_dictionary.iteritems()) if combo not in cached_unit_string_parsers: cached_unit_string_parsers[combo] = get_expression(units_value_dictionary) return cached_unit_string_parsers[combo].parseString(unit_string)[0] ``` #### File: autounits/test/test_physical_quantities.py ```python from __future__ import division import unittest import sys sys.path.append('../src') from physical_quantities import PhysicalQuantity, Dimensionless, Mass, Distance, Time, Charge, Temperature from physical_quantities import Speed, Energy from physical_quantities import PhysicalQuantityFactory from physical_quantities import BadInputError, BadUnitDictionaryError, IncompatibleUnitsError from dimension import Dimension class TestAuxiliaryFunctions(unittest.TestCase): def test_flatten_good_dictionary(self): """Test flattening a units dictionary.""" from physical_quantities import flatten_dictionary units_dictionary = {('kg', 'kilogram'): 1, ('g', 'gr', 'gram'): 0.001} flat_dictionary = flatten_dictionary(units_dictionary) self.assertEqual(flat_dictionary, {'kg': 1, 'kilogram': 1, 'g': 0.001, 'gr': 0.001, 'gram': 0.001}) def test_flatten_bad_dictionary(self): """Flattening a units dictionary with repeats should fail.""" from physical_quantities import flatten_dictionary units_dictionary = {('kg', 'kilogram'): 1, ('g', 'gr', 'kg'): 0.001} self.assertRaises(BadUnitDictionaryError, flatten_dictionary, units_dictionary) def test_parser(self): from physical_quantities import PhysicalQuantityStringParser primitive_units_dictionaries = { 'M': {('kg', 'kilogram'): 1, ('g', 'gr', 'gram'): 0.001}, 'L': {('m', 'meter'): 1, 'km': 1000}, 'T': {'s': 1, ('min', 'minute'): 60}, 'Q': {'C': 1 }, 'Theta': {'K': 1} } d1 = Dimension(M = 1, L = -2, T = 4, Theta = -1) p1 = PhysicalQuantityStringParser(d1, primitive_units_dictionaries) self.assertEqual(len(p1.flat_units_dictionary), 5*3*3*1) # repeat the same case (should use caching) p2 = PhysicalQuantityStringParser(d1, primitive_units_dictionaries) self.assertEqual(p1.flat_units_dictionary, p2.flat_units_dictionary) d2 = Dimension(T = -1, Q = 1, Theta = -2) p3 = PhysicalQuantityStringParser(d2, primitive_units_dictionaries) self.assertEqual(p3.flat_units_dictionary, {"C/sK^2": 1, "C/minK^2": 1/60, "C/minuteK^2": 1/60}) # Check a simple case self.assertEqual(p3("60 C/minK^2"), 1) self.assertEqual(p3("2.4e-2 C/minK^2"), 4e-4) # Bad input should raise an exception self.assertRaises(BadInputError, p3, "60 C/min K^2") # spaces in units self.assertRaises(BadInputError, p3, "60.3.2 C/minK^2") # bad number class TestPhysicalQuantity(unittest.TestCase): """Test the PhysicalQuantity class.""" def test_dimensionless_quantity(self): """Test dimensionless quantities.""" d = Dimension() # creating p = PhysicalQuantity(d) # assigning & getting the value. The "unit" is "1": need a better interface. p["1"] = 4 self.assertEqual(p["1"], 4) # creating from a string p = PhysicalQuantity(d, "7") self.assertEqual(p["1"], 7) # creating from a string: trying to use "1" as unit in the string fails self.assertRaises(BadInputError, PhysicalQuantity, d, "7 1") def test_bad_creation(self): """Creation with bad inputs should raise exceptions.""" from physical_quantities import PhysicalQuantityError d = 3 self.assertRaises(PhysicalQuantityError, PhysicalQuantity, d, "3m") # not a dimension def test_create_simply_physical_quantity(self): """Simple physical quantities.""" d = Dimension(L = 1) p = PhysicalQuantity(d, "3m") self.assertEqual(p['m'], 3) self.assertEqual(p['meters'], 3) self.assertEqual(p['km'], 0.003) self.assertEqual(p['kilometers'], 0.003) p['km'] = 2 self.assertEqual(p['m'], 2000) self.assertEqual(p['meters'], 2000) self.assertEqual(p['km'], 2) self.assertEqual(p['kilometers'], 2) def test_get_available_units(self): """Test that I can get the available units.""" self.assertEqual(set(PhysicalQuantity(Dimension()).get_available_units()), set(["1"])) # test only whether it's a subset, so it doesn't fail as I add more units self.assertTrue(set(["kg", "kilogram", "g", "gram"]) <= set(PhysicalQuantity(Dimension(M = 1)).get_available_units())) self.assertTrue(set(["m/s", "meters/second", "miles/hour", "mi/hr"]) <= set(Speed().get_available_units())) def test_comparisons(self): """All comparisons should be available between quantities of the same type.""" p1 = PhysicalQuantity(Dimension(L = 1), "2m") p2 = PhysicalQuantity(Dimension(L = 1), "2m") self.assertTrue(p1 == p2) self.assertTrue(p1 >= p2) self.assertTrue(p1 <= p2) self.assertFalse(p1 != p2) self.assertFalse(p1 < p2) self.assertFalse(p1 > p2) p2['km'] = 1 self.assertFalse(p1 == p2) self.assertFalse(p1 >= p2) self.assertTrue(p1 <= p2) self.assertTrue(p1 != p2) self.assertFalse(p1 > p2) self.assertTrue(p1 < p2) def test_repr(self): """repr() should give something that can be used to recreate the object.""" p1 = PhysicalQuantity(Dimension(L = 1), "2m") p2 = eval(repr(p1)) self.assertEqual(p1, p2) # special case: dimensionless quantities p1 = PhysicalQuantity(Dimension(), "2") p2 = eval(repr(p1)) self.assertEqual(p1, p2) # derived quantities should also work t1 = Time("3 min") t2 = eval(repr(t1)) self.assertEqual(t1, t2) # a more complicated case p1 = Speed("30m/s")/Time("2s")/PhysicalQuantity(Dimension(M = 1), "3kg") p2 = eval(repr(p1)) self.assertEqual(p1, p2) def test_str(self): """str() prints a reasonable form for the quantity.""" # dimensionless case p = PhysicalQuantity(Dimension(), "2.1e2") self.assertEqual(str(p), "210") # For quantities that are NOT dimensionless we use the "basic unit" (whatever has a unit conversion # factor, so it's SI in our case) with the shortest string representation. # Also, in both the numerator and denominator the order followed is M L T Q Theta p = Speed("60 km/min") self.assertEqual(str(p), "1000 m/s") p = PhysicalQuantity(Dimension(Q = 1), "4 coulomb") self.assertEqual(str(p), "4 C") p = Temperature("4 kelvin") self.assertEqual(str(p), "4 K") p = Speed("30m/s")/Time("2s")/PhysicalQuantity(Dimension(M = 1), "3kg") self.assertEqual(str(p), "5 m/kgs^2") # Test primitive quantities class TestMass(unittest.TestCase): """Tests for the Mass class.""" kilograms_in = {'kg' : 1, 'kilograms': 1, 'g': 0.001, 'grams': 0.001 } def test_create_simple_masses(self): """Simple masses.""" # Check consistency for unit,kilograms in self.kilograms_in.iteritems(): m = Mass('1' + unit) # create "1x" where x is the unit self.assertEqual(m['kg'], kilograms) # the kilograms should be correct # Check creating from other distances m1 = Mass("1 kg") m2 = Mass(m1) self.assertEqual(m1['kg'], m2['kg']) # Check creating from another quantity with same dimensions m1 = PhysicalQuantity(Dimension(M = 1), "1 kg") m2 = Mass(m1) self.assertEqual(m1['kg'], m2['kg']) # Check creating from another quantity with different dimensions t = PhysicalQuantity(Dimension(T = 1), "1 s") self.assertRaises(IncompatibleUnitsError, Mass, t) def test_consistency(self): """In its own units, the value should be 1.""" for unit in self.kilograms_in.keys(): m = Mass('1' + unit) # create "1x" where x is the unit self.assertEqual(m[unit], 1) def test_mass_adding(self): """Test adding masses.""" m1 = Mass("10 kg") m2 = Mass("300 g") m3 = m1 + m2 self.assertEqual(m1.dimension, m3.dimension) # type is the same self.assertEqual(m3['kg'], 10.3) def test_mass_subtracting(self): """Test subtracting masses.""" m1 = Mass("10 kg") m2 = Mass("300 g") m3 = m1 - m2 self.assertEqual(m1.dimension, m3.dimension) # type is the same self.assertAlmostEqual(m3['g'], 9700) def test_for_mass_equality(self): """Test that masses are only compared by length.""" m1 = Mass("1g") m2 = Mass("0.001kg") self.assertEqual(m1['kg'], m2['kg']) # sanity check before the real test self.assertEqual(m1, m2) def test_creating_from_other_mass(self): """I can create a mass from another.""" m1 = Mass("10 kg") m2 = Mass(m1) self.assertEqual(m1, m2) m2['kg'] = 2 self.assertEqual(m2['kg'], 2) self.assertEqual(m1['kg'], 10) # check that we didn't modify the original one class TestDistance(unittest.TestCase): """Tests for the Distance class.""" meters_in = {'m' : 1, 'meters': 1, 'mi': 1609.344, 'miles': 1609.344, 'km': 1000, 'kilometers': 1000, 'marathon': 42194.988 } def test_create_simple_distances(self): """Simple distances.""" # Check consistency for unit,meters in self.meters_in.iteritems(): d = Distance('1' + unit) # create "1x" where x is the unit self.assertEqual(d['m'], meters) # the meters should be correct # Check creating from other distances d1 = Distance("1 m") d2 = Distance(d1) self.assertEqual(d1['m'], d2['m']) # Check creating from another quantity with same dimensions d1 = PhysicalQuantity(Dimension(L = 1), "1 m") d2 = Distance(d1) self.assertEqual(d1['m'], d2['m']) # Check creating from another quantity with different dimensions d1 = PhysicalQuantity(Dimension(T = 1), "1 s") self.assertRaises(IncompatibleUnitsError, Distance, d1) def test_consistency(self): """In its own units, the value should be 1.""" for unit in self.meters_in.keys(): d = Distance('1' + unit) # create "1x" where x is the unit self.assertEqual(d[unit], 1) def test_distance_adding(self): """Test adding distances.""" d1 = Distance("10 m") d2 = Distance("3 km") d3 = d1 + d2 self.assertEqual(d1.dimension, d3.dimension) # type is the same self.assertEqual(d3['m'], 3010) def test_distance_subtracting(self): """Test subtracting distances.""" d1 = Distance("10 m") d2 = Distance("3 km") d3 = d2 - d1 self.assertEqual(d1.dimension, d3.dimension) # type is the same self.assertEqual(d3['m'], 2990) def test_for_distance_equality(self): """Test that distances are only compared by length.""" d1 = Distance("1m") d2 = Distance("0.001km") self.assertEqual(d1['m'], d2['m']) # sanity check before the real test self.assertEqual(d1, d2) def test_creating_from_other_distance(self): """I can create a distance from another.""" d1 = Distance("10 m") d2 = Distance(d1) self.assertEqual(d1, d2) d2['m'] = 2 self.assertEqual(d2['m'], 2) self.assertEqual(d1['m'], 10) class TestTime(unittest.TestCase): """Tests for the Time class.""" seconds_in = {'s': 1, 'seconds': 1, 'min': 60, 'minutes': 60, 'hr': 3600, 'hours': 3600 } def test_create_simple_times(self): """Simple times.""" for unit,seconds in self.seconds_in.iteritems(): t = Time('1' + unit) # create "1x" where x is the unit self.assertEqual(t['s'], seconds) # the seconds should be correct def test_consistency(self): """In its own units, the value should be 1.""" for unit in self.seconds_in.keys(): t = Time('1' + unit) # create "1x" where x is the unit self.assertEqual(t[unit], 1) def test_string_output(self): """Test time output in string format.""" t = Time("1 min") self.assertEqual(t.str, "01:00") t = Time("60 s") self.assertEqual(t.str, "01:00") t = Time("3661 s") self.assertEqual(t.str, "1:01:01") t = Time("0.1 s") self.assertEqual(t.str, "00:00") class TestCharge(unittest.TestCase): """Tests for the Charge class.""" def test_create_simple_charges(self): """Simple charges.""" q = Charge("3 coulomb") self.assertEqual(q['C'], 3) class TestTemperature(unittest.TestCase): """Tests for the Temperature class.""" # kelvin, rankine, celsius, fahrenheit known_values = [ [273.15, 491.67, 0, 32], [373.15, 671.67, 100, 212]] kelvins_in = {'K': 1, 'R': 5/9 } def test_create_simple_temperatures(self): """Simple temperatures.""" for unit,kelvins in self.kelvins_in.iteritems(): t = Temperature('1' + unit) # create "1x" where x is the unit self.assertEqual(t['K'], kelvins) def test_consistency(self): """In its own units, the value should be 1.""" for unit in self.kelvins_in.keys(): t = Temperature('1' + unit) # create "1x" where x is the unit self.assertEqual(t[unit], 1) def test_known_values(self): t1 = Temperature() t2 = Temperature() t3 = Temperature() t4 = Temperature() for K, R, C, F in self.known_values: t1['K'] = K self.assertAlmostEqual(t1['K'], K) self.assertAlmostEqual(t1['R'], R) self.assertAlmostEqual(t1['C'], C) self.assertAlmostEqual(t1['F'], F) t2['R'] = R self.assertAlmostEqual(t2['K'], K) self.assertAlmostEqual(t2['R'], R) self.assertAlmostEqual(t2['C'], C) self.assertAlmostEqual(t2['F'], F) t3['C'] = C self.assertAlmostEqual(t3['K'], K) self.assertAlmostEqual(t3['R'], R) self.assertAlmostEqual(t3['C'], C) self.assertAlmostEqual(t3['F'], F) t4['F'] = F self.assertAlmostEqual(t4['K'], K) self.assertAlmostEqual(t4['R'], R) self.assertAlmostEqual(t4['C'], C) self.assertAlmostEqual(t4['F'], F) # Test derived quantities class TestSpeed(unittest.TestCase): """Tests for the Speed class.""" def test_simple_speeds(self): """Create a few speeds and check the value.""" s = Speed('1 mi/hr') self.assertEqual(s['mi/hr'], 1) s['miles/hr'] = 2.5 self.assertEqual(s['mi/hr'], 2.5) self.assertEqual(s['m/s'], 2.5*Distance('1mi')['m']/Time('1hr')['s']) def test_check_known_pace(self): """Check pace for some speeds.""" # speed, distance for pace, pace known_values = [ ['1 m/s', '1 km', '1000s'], ['1 meters/s', '1 km', '1000s'], ['1 mi/hr', '1 mi', '1 hr'] ] for speed, distance, pace in known_values: s, d, t = Speed(speed), Distance(distance), Time(pace) self.assertEqual(s.pace(d)['s'], t['s']) # the seconds should be correct class TestEnergy(unittest.TestCase): """Tests for the Energy class.""" def test_simple_energies(self): """Create a few energies and check the value.""" E = Energy('1 kgm^2/s^2') self.assertEqual(E['J'], 1) E['Btu'] = 2.5 self.assertEqual(E['Btu'], 2.5) self.assertEqual(E['J'], 2.5*1055.05585) class TestCombinedDimensions(unittest.TestCase): """Test combinations of units.""" def test_comparison_of_combined_units(self): d = Distance("10m") t = Time("5s") self.assertFalse(d.dimension == t.dimension) self.assertRaises(IncompatibleUnitsError, d.__lt__, t) self.assertRaises(IncompatibleUnitsError, d.__gt__, t) self.assertRaises(IncompatibleUnitsError, d.__le__, t) self.assertRaises(IncompatibleUnitsError, d.__ge__, t) def test_addition_and_subtraction_of_combined_units(self): d = Distance("10m") t = Time("5s") self.assertRaises(IncompatibleUnitsError, d.__add__, t) self.assertRaises(IncompatibleUnitsError, d.__sub__, t) def test_multiplication_and_division_of_combined_units(self): d = Distance("10m") t = Time("5s") s1 = d/t # division s2 = Speed("2m/s") self.assertEqual(s1.dimension, s2.dimension) self.assertEqual(s1, s2) d2 = s2*t # multiplication self.assertEqual(d2, d) def test_multiplication_and_division_involving_scalars(self): d1 = Distance("10m") d2 = d1/2 self.assertEqual(type(d2), Distance) self.assertEqual(d2['m'], 5) d3 = d1*2 # multiply on the right self.assertEqual(type(d3), Distance) self.assertEqual(d3['m'], 20) d4 = 2*d1 # multiply on the left self.assertEqual(type(d4), Distance) self.assertEqual(d4['m'], 20) t1 = Time("4hr") rate = 8/t1 self.assertEqual(rate["1/hr"], 2) t2 = 8/rate self.assertEqual(type(t2), Time) self.assertEqual(t2, t1) def test_addition_and_subtraction_involving_scalars(self): v1 = Dimensionless("1") v2 = v1 + 2 self.assertEqual(type(v2), type(v1)) self.assertEqual(v2['1'], 3) v3 = 2 + v1 self.assertEqual(type(v3), type(v1)) self.assertEqual(v3['1'], 3) v4 = v1 - 3 self.assertEqual(type(v4), type(v1)) self.assertEqual(v4['1'], -2) v5 = 3 - v1 self.assertEqual(type(v5), type(v1)) self.assertEqual(v5['1'], 2) # this won't work with other dimensions d = Distance("3m") self.assertRaises(IncompatibleUnitsError, d.__add__, 4) self.assertRaises(IncompatibleUnitsError, d.__radd__, 4) self.assertRaises(IncompatibleUnitsError, d.__sub__, 4) self.assertRaises(IncompatibleUnitsError, d.__rsub__, 4) def test_power(self): """I can raise quantities to integer or fractional powers.""" L = Distance("3m") A = L**2 self.assertEqual(A, L*L) V = L**3 self.assertEqual(V, L*L*L) L2 = A**0.5 self.assertEqual(L2, L) # type guessing works m = Mass("7 kg") v = Speed("11 m/s") E = 1/2*m*v**2 self.assertEqual(E['J'], 1/2*7*11*11) def test_power_to_dimensionless_quantities(self): """I can raise quantities to dimensionless quantities.""" L1 = Distance("3m") L2 = Distance("6m") A = L1*L2 L3 = A**(L1/L2) self.assertEqual(L3['m'], (3*6)**(1/2)) def test_type_coercion_on_addition_and_subtraction(self): """A PhysicalQuantity, when added/subtracted to/from a Time becomes a Time.""" t1 = Time("5s") t2 = PhysicalQuantity(Dimension(T = 1), "1 min") self.assertTrue(type(t1) != type(t2)) # sanity check before the real check # coercion on the left & right self.assertEqual(type(t1 + t2), type(t1)) self.assertEqual(type(t2 + t1), type(t1)) self.assertEqual(type(t1 - t2), type(t1)) self.assertEqual(type(t2 - t1), type(t1)) # A more complex example s = Speed("3 m/s") d = Distance("4 m") t = Time("4 s") self.assertEqual(type(s + d/t), Speed) self.assertEqual(type(d/t + s), Speed) def test_type_guessing_in_general(self): """The library should find the proper type depending on dimensions.""" d = Distance("10m") t = Time("5s") self.assertEqual(type(d/t), Speed) v = Speed("10mi/hr") self.assertEqual(type(v*t), Distance) # charge density rho = PhysicalQuantity(Dimension(L = -3, Q = 1), "4C/m^3") q = rho*d*d*d self.assertEqual(type(q), Charge) self.assertEqual(q['C'], 4000) # Note: this doesn't work for a quantity explicitly defined as a PhysicalQuantity T1 = Temperature("3 K") T2 = PhysicalQuantity(Dimension(Theta = 1), "3 K") self.assertEqual(T1, T2) self.assertEqual(type(T1), Temperature) self.assertEqual(type(T2), PhysicalQuantity) # But a multiplication or division by a dimensionless quantity should fix that T3 = T2/PhysicalQuantity(Dimension(), "1") self.assertEqual(type(T3), Temperature) class TestFactory(unittest.TestCase): """Creating physical quantities through a factory.""" def test_basic_quantities(self): factory = PhysicalQuantityFactory() known_types = [ [Dimension(M = 1), Mass], [Dimension(L = 1), Distance], [Dimension(T = 1), Time], [Dimension(Q = 1), Charge], [Dimension(Theta = 1), Temperature], [Dimension(L = 1, T = -1), Speed] ] for (d,t) in known_types: quantity = factory.new(d) self.assertEqual(type(quantity), t) if __name__ == '__main__': unittest.main() ```
{ "source": "jpasquet/Photoz", "score": 3 }
#### File: jpasquet/Photoz/network.py ```python import numpy as np import tensorflow as tf def prelu(x): with tf.name_scope('PRELU'): _alpha = tf.get_variable("prelu", shape=x.get_shape()[-1], dtype = x.dtype, initializer=tf.constant_initializer(0.0)) return tf.maximum(0.0, x) + _alpha * tf.minimum(0.0, x) def conv2d(input, num_output_channels, kernel_size, name): with tf.variable_scope(name): num_in_channels = input.get_shape()[-1].value kernel_shape = [kernel_size, kernel_size, num_in_channels, num_output_channels] biases = tf.get_variable('biases', shape=[num_output_channels], initializer=tf.constant_initializer(0.1)) kernel = tf.get_variable('weights', shape=kernel_shape, initializer=tf.contrib.layers.xavier_initializer()) outputs = tf.nn.conv2d(input, kernel, strides=[1,1,1,1], padding="SAME") outputs = tf.nn.bias_add(outputs, biases) outputs = prelu(outputs) return outputs def pool2d(input,kernel_size,stride,name): print(input, [1, kernel_size, kernel_size, 1],[1, stride, stride], 1) with tf.variable_scope(name): return tf.nn.avg_pool(input, ksize=[1, kernel_size, kernel_size, 1], strides=[1, stride, stride, 1], padding="SAME", name=name) def fully_connected(input, num_outputs, name, withrelu=True): with tf.variable_scope(name): num_input_units = input.get_shape()[-1].value kernel_shape = [num_input_units, num_outputs] kernel = tf.get_variable('weights', shape=kernel_shape, initializer=tf.contrib.layers.xavier_initializer()) outputs = tf.matmul(input, kernel) biases = tf.get_variable('biases', shape=[num_outputs], initializer=tf.constant_initializer(0.1)) outputs = tf.nn.bias_add(outputs, biases) if withrelu: outputs = tf.nn.relu(outputs) return outputs def inception(input, nbS1, nbS2, name, output_name, without_kernel_5=False): with tf.variable_scope(name): s1_0 = conv2d(input=input, num_output_channels=nbS1, kernel_size=1, name=name + "S1_0") s2_0 = conv2d(input=s1_0, num_output_channels=nbS2, kernel_size=3, name=name + "S2_0") s1_2 = conv2d(input=input, num_output_channels=nbS1, kernel_size=1, name=name + "S1_2") pool0 = pool2d(input=s1_2, kernel_size=2, stride=1, name=name + "pool0") if not(without_kernel_5): s1_1 = conv2d(input=input, num_output_channels=nbS1, kernel_size=1, name=name + "S1_1") s2_1 = conv2d(input=s1_1, num_output_channels=nbS2, kernel_size=5, name=name + "S2_1") s2_2 = conv2d(input=input, num_output_channels=nbS2, kernel_size=1, name=name + "S2_2") if not(without_kernel_5): output = tf.concat(values=[s2_2, s2_1, s2_0, pool0], name=output_name, axis=3) else: output = tf.concat(values=[s2_2, s2_0, pool0], name=output_name, axis=3) return output def model(): reddening = tf.placeholder(tf.float32, shape=[None, 1], name="reddening") x = tf.placeholder(tf.float32, shape=[None, 64, 64, 5], name="x") conv0 = conv2d(input=x, num_output_channels=64, kernel_size=5, name="conv0") conv0p = pool2d(input=conv0, kernel_size=2, stride=2, name="conv0p") i0 = inception(conv0p, 48, 64, name="I0_", output_name="INCEPTION0") i1 = inception(i0, 64, 92, name="I1_", output_name="INCEPTION1") i1p = pool2d(input=i1, kernel_size=2, name="INCEPTION1p", stride=2) i2 = inception(i1p, 92, 128, name="I2_", output_name="INCEPTION2") i3 = inception(i2, 92, 128, name="I3_", output_name="INCEPTION3") i3p = pool2d(input=i3, kernel_size=2, name="INCEPTION3p", stride=2) i4 = inception(i3p, 92,128, name="I4_", output_name="INCEPTION4", without_kernel_5=True) flat = tf.layers.Flatten()(i4) concat = tf.concat(values=[flat,reddening], axis=1) fc0 = fully_connected(input=concat, num_outputs=1096, name="fc0") fc1 = fully_connected(input=fc0, num_outputs=1096, name="fc0b") fc2 = fully_connected(input=fc1, num_outputs=180, name="fc1", withrelu=False) output = tf.nn.softmax(fc2) params = {"output": output, "x": x, "reddening": reddening} return params ```
{ "source": "jpastorino/Data-Blind-ML", "score": 3 }
#### File: src/data_analysis/ds_analysis.py ```python import sys import os import pandas as pd import seaborn as sns from matplotlib import pyplot as plt import numpy as np from scipy import stats from sklearn import preprocessing from datetime import date def autolabel(ax, rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{:.2f}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom', fontsize=8) def addlabel(ax, rects, labels): i = 0 for rect in rects: height = rect.get_height() ax.annotate(labels[i], xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') i += 1 def plot_metric(labels, metric_data, dataset_name, metric, save_to, out_file, line_value=0.5): fig, ax = plt.subplots() x = np.arange(len(labels)) # the label locations width = 0.35 # the width of the bars rects1 = ax.bar(x - width / 2, metric_data, width, label='Features') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('{}'.format(metric)) ax.set_title('{} dataset {} analysis'.format(dataset_name, metric)) plt.hlines(line_value, 0, len(labels), linestyles='dotted') plt.hlines(-line_value, 0, len(labels), linestyles='dotted') if len(labels) < 25: ax.set_xticks(x) ax.set_xticklabels(labels) autolabel(ax, rects1) plt.xticks(rotation=40) ax.set_xlabel("Features") # else: # ax.set_xticklabels(["F_" + str(a) for a in x]) fig.tight_layout() plt.savefig(save_to) out_file.write("Plot was generated and stored at >>>{}\n".format(save_to)) plt.show() # -------------------------------------------------------------------------------------------------------------------- if __name__ == "__main__": """ RUNs the Dataset Analysis for the given csv file""" DATA_PATH = "./data/source" OUTPUT_PATH = "./output" today = date.today() ### DISPLAY FILES files = [] for file in os.listdir(DATA_PATH): if file.endswith(".csv"): files.append(file[:-4]) files.sort() for i, file in enumerate(files): print("{} - {}".format(i + 1, file)) print("-" * 30) selection = int(input("Choose file to process [1-{}]:".format(len(files)))) if not (selection >= 1 and selection <= len(files)): print("Invalid Selection. Program Terminated.") exit(1) ## FILE SELECTED - OPEN filename = files[selection - 1] csv_file = f"{DATA_PATH}/{filename}.csv" image_out_file_placeholder = f"{OUTPUT_PATH}/{filename}.analysis.{'{}'}.png" out_file = open(f"{OUTPUT_PATH}/{filename}.analysis.report.txt", "w") print("Processing {}".format(filename)) print() out_file.write("Data Analysis Report for {}\n".format(filename)) out_file.write("{}\n".format(today)) has_header = input("Does the file has a header? [Y/n]") if has_header.lower() == "n": df = pd.read_csv(csv_file, header=None, prefix="x") else: df = pd.read_csv(csv_file) # ######### SNS PAIR PLOT user_option = input("Do you want to generate PairPlot ? [y/N]") if user_option.lower() == "y": print("-" * 40) print("working....") img_out_file = image_out_file_placeholder.format("pair-plot") sns_plot = sns.pairplot(df) sns_plot.savefig(img_out_file) out_file.write("Pair plot was generated and saved at {}\n".format(img_out_file)) # ######### SKEWNESS user_option = input("Compute Skewness? [Y/n]") if not user_option.lower() == "n": out_file.write("Computing Skewness\n") out_file.write("-" * 40 + "\n") print("-" * 40) labels = [] skewness = [] dataTypeDict = dict(df.dtypes) print("{:^40} | {:^15}".format("Feature", "Skewness")) print("-" * 60) out_file.write("{:^40} | {:^15}\n".format("Feature", "Skewness")) out_file.write("-" * 60 + "\n") for col in df.columns: data = df[col].dropna() notes = "" if not np.issubdtype(dataTypeDict[col], np.number): notes = "Encoding {} dType: {}".format(col, dataTypeDict[col]) le = preprocessing.LabelEncoder() le.fit(data) data = le.transform(data) labels.append(col) skewness.append(stats.skew(data)) if col == df.columns[-1]: print("{:^40} | {:10.5f} {}".format(col, skewness[-1], notes)) out_file.write("{:^40} | {:10.5f} {}\n".format(col, skewness[-1], notes)) plot_metric(labels, skewness, filename, "Skewness", image_out_file_placeholder.format("skewness"), out_file) # ######### KURTOSIS user_option = input("Compute Kurtosis? [Y/n]") if not user_option.lower() == "n": out_file.write("\n\nComputing Kurtosis\n") out_file.write("-" * 40 + "\n") print("-" * 40) labels = [] kurtosis = [] dataTypeDict = dict(df.dtypes) print("{:^40} | {:^15}".format("Feature", "Kurtosis")) print("-" * 60) out_file.write("{:^40} | {:^15}\n".format("Feature", "Kurtosis")) out_file.write("-" * 60 + "\n") for col in df.columns: data = df[col].dropna() notes = "" if not np.issubdtype(dataTypeDict[col], np.number): notes = "Encoding {} dType: {}".format(col, dataTypeDict[col]) le = preprocessing.LabelEncoder() le.fit(data) data = le.transform(data) labels.append(col) kurtosis.append(stats.kurtosis(data)) if col == df.columns[-1]: print("{:^40} | {:10.5f} {}".format(col, kurtosis[-1], notes)) out_file.write("{:^40} | {:10.5f} {}\n".format(col, kurtosis[-1], notes)) plot_metric(labels, kurtosis, filename, "Excess Kurtosis", image_out_file_placeholder.format("kurtosis"), out_file, line_value=0) # ##### Shapiro-Wilk Test (Data normality) user_option = input("Test Data is Normal Distributed? [Y/n]") if not user_option.lower() == "n": print("-" * 40) out_file.write("\n\nTesting If Data Follows Normal Distribution\n") out_file.write("-" * 40 + "\n") labels = [] shapiro_p_value = [] dataTypeDict = dict(df.dtypes) print("{:^40} | {:15} | {:^20}".format("Feature", "Shapiro P-Value", "Normally Dist")) print("-" * 81) out_file.write("{:^40} | {:15} | {:^20}\n".format("Feature", "Shapiro P-Value", "Normally Dist")) out_file.write("-" * 81 + "\n") for col in df.columns: data = df[col].dropna() notes = "" if not np.issubdtype(dataTypeDict[col], np.number): notes = "Encoding {} dType: {}".format(col, dataTypeDict[col]) le = preprocessing.LabelEncoder() le.fit(data) data = le.transform(data) labels.append(col) shapiro_p_value.append(stats.shapiro(data)[1]) if shapiro_p_value[-1] < 0.05: is_normal = "NO" else: is_normal = "YES" print("{:40} | {:3.9E} | {:^20} {}".format(col, shapiro_p_value[-1], is_normal, notes)) out_file.write("{:40} | {:3.9E} | {:^20} {}\n".format(col, shapiro_p_value[-1], is_normal, notes)) ``` #### File: src/data_server/data_server_app.py ```python import sys import pandas as pd from time import time from os import system, name from sdv.tabular import CTGAN from Dataset import MetadataDB, Dataset from sklearn.utils.random import sample_without_replacement from Exceptions import NoMetadataError, NoDatasetFoundError from Server import Server CTGAN_TRAIN_THRESHOLD_SIZE = 2000 # Max size to train CTGAN without asking the the user. CTGAN_EPOCHS = 30 CTGAN_BATCH_SIZE = 100 def cls(): if name == 'nt':# for windows _ = system('cls') else:# for mac and linux(here, os.name is 'posix') _ = system('clear') def display_menu() -> int: cls() opt = -1 opt_range = [0, 5, 99] while not opt_range[0] <= opt <= opt_range[1] and opt != opt_range[2]: print(f"""{"=" * 40}""") print(f"""{"Main Menu":^40}""") print(f"""{"=" * 40}""") print(f"""{" " * 5}{"0) Create New Metadata"}""") print(f"""{" " * 5}{"1) Load Current Metadata"}""") print(f"""{" " * 5}{"2) Add Dataset"}""") print(f"""{" " * 5}{"3) Print Current Metadata"}""") print(f"""{" " * 5}{"4) Learn Synthetic Model"}""") print(f"""{" " * 5}{"5) Start Server"}""") print(f"""{"99) Exit":>40}""") print(f"""{"-" * 40}""") opt = int(input(f"""{" " * 5}{"Select Option -> "}""")) return opt def create_metadata(): cont = input("Warning! this will delete all pre-existing metadata. Continue [yes/NO]?:") if cont.upper() == "YES": dataset_source = input("Metadata filename (do not include path) [metadata.csv]:") if dataset_source == "": dataset_source = "metadata.csv" m = MetadataDB(dataset_source) return m else: print("Aborted by user.") input("Press any key to continue...") return None def load_metadata(): dataset_source = input("Metadata filename (do not include path) [metadata.csv]:") if dataset_source == "": dataset_source = "metadata.csv" start_time = time() m = MetadataDB(dataset_source) m.load() end_time = time() print(f"""Loaded in {end_time-start_time:.2f} sec.""") return m def print_metadata(meta): if meta is None: raise NoMetadataError("Invalid metadata. Load metadata first.") else: print(meta) input("Press any key to continue...") def add_dataset(meta: MetadataDB): if meta is None: raise NoMetadataError("Invalid metadata. Load metadata first.") else: dataset_source = input("Dataset Source filename (do not include path):") start_time = time() meta.add_dataset(dataset_source) print("Dataset added successfully.") end_time = time() print(f"""Loaded in {end_time - start_time:.2f} sec.""") input("Press any key to continue...") def learn_ctgan_model(meta: MetadataDB): if meta is None: raise NoMetadataError("Invalid metadata. Load metadata first.") cls() print("=" * 80) print(f"={'Select Dataset to learn Model':^78}=") print("=" * 80) ds: Dataset print(f"""{"ID":^15}|{"Source":^50}|{"Has SynMod?":^15}""") print("-" * 80) for ds in meta.datasets: if ds.has_synthetic_model: print(f"""{ds.ds_id:^15}|{ds.source_filename:^50}|{"Yes":^15}""") else: print(f"""{ds.ds_id:^15}|{ds.source_filename:^50}|{"NO":^15}""") print("-" * 80) input_ds_id = input(f"""{" " * 5}Input Dataset ID [empty to abort]>""") if input_ds_id.strip() == "": print("Aborted by User...") input("Press any key to continue...") else: selected_ds: Dataset = None for ds in meta.datasets: if ds.ds_id == input_ds_id.upper(): selected_ds = ds if selected_ds is None: raise NoDatasetFoundError(f"""Can't find dataset with that id ({input_ds_id.upper()}). Try again.""") print("-" * 80) print(f"""={f"Learning Synthetic Model for {selected_ds.ds_id}":^78}=""") print("-" * 80) train, _ = selected_ds.load_split_files() if train.shape[0] > CTGAN_TRAIN_THRESHOLD_SIZE: print(f"""{" " * 5}Input Dataset Size is large ({train.shape[0]}).""") input_train_size = input(f"""{" " * 10}Select Max size for learning [{CTGAN_TRAIN_THRESHOLD_SIZE}]>""") if input_train_size == "": input_train_size = CTGAN_TRAIN_THRESHOLD_SIZE else: input_train_size = min(int(input_train_size),train.shape[0]) print(f"""{" " * 5}Setting learning data size to {input_train_size}.""") if input_train_size > CTGAN_TRAIN_THRESHOLD_SIZE: print(f"""{" " * 5}NOTICE: This process may take some time.""") ids = sample_without_replacement(n_population=train.shape[0], n_samples=input_train_size) train = train[ids] print(f"""{" " * 5}Learning Synthetic model...""") start_time = time() df_train = pd.DataFrame(train, columns=["col" + str(i) for i in range(train.shape[1])]) model_filename = "ctgan_" + selected_ds.ds_id + ".pkl" gen_model = CTGAN(batch_size=CTGAN_BATCH_SIZE, epochs=CTGAN_EPOCHS) gen_model.fit(df_train) gen_model.save(Dataset.config["MODELS_PATH"] + "/" + model_filename) meta.associate_synthetic_model(selected_ds.ds_id, model_filename) print("-" * 80) print(f"""={f"Model for {selected_ds.ds_id} Learned and Saved.":^78}=""") print("-" * 80) end_time = time() print(f"""Learnt in {end_time - start_time:.2f} sec.""") input("Press any key to continue...") def run_server(meta: MetadataDB): if meta is None: raise NoMetadataError("Invalid metadata. Load metadata first.") else: print(meta) # server = Server("127.0.0.1", 32000, 10, metadata) server = Server("0.0.0.0", 32000, 10, metadata) server.run() pass # ##################################################################################################################### # MAIN PROGRAM # ##################################################################################################################### if __name__ == "__main__": if not sys.warnoptions: import warnings warnings.simplefilter(action='ignore') # , category=FutureWarning) #hide warnings. option: int = -1 metadata: MetadataDB = None while True: try: option = display_menu() if option == 0: #Creates new metadata metadata = create_metadata() elif option == 1: # Load Metadata metadata = load_metadata() elif option == 2: # Add Dataset add_dataset(metadata) elif option == 3: # Print Metadata print_metadata(metadata) elif option == 4: # Learn CTGAN Model learn_ctgan_model(metadata) elif option == 5: # Start Server run_server(metadata) pass elif option == 99: # Terminate server and exit print("Terminating Server and Exiting...") exit(0) except Exception as e: print(f"""Error --> {e}""") input("Press any key to continue...") ``` #### File: src/devel_framework/evaluation.py ```python import os import time import socket import pickle import inspect import numpy as np from preprocessing import Preprocessing from tensorflow.keras.models import Sequential # ====================================================================================================================== # ====================================================================================================================== class EvaluationClient: def __init__(self, ip: str, port: int): """ Connects to the evaluation server to evaluate the performance of the model. :param ip: evaluation server ip :param port: evaluation server port. """ self.__ip = ip self.__port = port self.__client_socket = None def __connect(self): self.__client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.__client_socket.connect((self.__ip, self.__port)) # # ************************************************************************************************************** def _receive_message(self, max_length: int = 16_384) -> str: """ Receives bytes from the server. :return: the whole message in bytes """ msg = self.__client_socket.recvmsg(max_length)[0] print(f'<<<<<[{msg}] len:{len(msg)}') msg = msg.decode("UTF-8") return msg # # ************************************************************************************************************** def _send_message(self, msg: str): print(f">>>>[{msg}]") self.__client_socket.send(msg.encode("UTF-8")) # self.__client_socket.sendall(msg.encode("UTF-8")) time.sleep(1) # # ************************************************************************************************************** def _receive_bytes(self, len_msg:int, max_length:int = 16_384) -> bytes: chunks = [] received_bytes = 0 while received_bytes < len_msg: buff = self.__client_socket.recvmsg(max_length)[0] if not buff == b"": chunks.append(buff) received_bytes += len(buff) msg = b"".join(chunks) print(f'<<<<<<<<<< Received {len(msg)} bytes') return msg # # ************************************************************************************************************** def _send_bytes(self, msg: bytes, sleep_time:float = 1): # self._display_message(f"""SEND>> {msg}""") # self.__client_socket.send(msg.encode("UTF-8")) print(f'sending {len(msg)} bytes') sent = self.__client_socket.send(msg) # sent = self.__client_socket.sendall(msg) print(f'Sent {sent} bytes') # self.__client_socket. time.sleep(sleep_time) # # ************************************************************************************************************** def __disconnect(self): self.__client_socket.close() # # ************************************************************************************************************** def evaluate_model(self, ds_id: str, model_id: str, model: Sequential, preprocessing: Preprocessing): """ Evaluates a model remotely using the real data. :param ds_id: dataset id. should match the ds_id provided by the data owner. :param model_id: model id/name, for reference. :param model: model object :param preprocessing: preprocessing object. will be used to transform real test data to evaluate the model. """ print(f"""{"=" * 80}""") print(f"""{"MODEL EVALUATION with REAL DATA.":^80}""") print(f"""{"=" * 80}""") # ### Connection print(f"""{" " * 5}Connecting to Evaluation server [{self.__ip}:{self.__port}]...""") self.__connect() response = self._receive_message() print(f"""{" " * 5}{response}""") # ### Evaluation print(f"""{" " * 5}Evaluating model [{model_id}] with real data on dataset [{ds_id}]...""") msg = f"""E|{ds_id}|{model_id}|""" self._send_message(msg) # Reading Response. May take a while response = self._receive_message() arguments = response.split("|") if arguments[0] == "OK": # Send Payload: # 1st preprocessing # # Send Class name # # Send Class code preproc_class_code_b = inspect.getsource(type(preprocessing)).encode("UTF-8") print("Sending Preproc Class name.") self._send_message(f'''{preprocessing.__class__.__name__}|{len(preproc_class_code_b)}''') print("Sending Preproc Class Code.") self._send_bytes(preproc_class_code_b) # 2nd Model print("Sending model.") model.save("./temp.h5") file_size = os.stat("./temp.h5").st_size self._send_message(f'''MODEL_SIZE|{file_size}''') sent_so_far = 0 with open("./temp.h5",mode="rb") as model_file: buffer = model_file.read(16_384) while (buffer): print(f'{sent_so_far}...',end="") self._send_bytes(buffer,sleep_time=0.1) sent_so_far += len(buffer) buffer = model_file.read(16_384) print() # Reading Response. May take a while response = self._receive_message() arguments = response.split("|") if arguments[0] == "OK": print() print(f"""{" " * 5}Evaluation completed successfully.""") print(f"""{" " * 15}Loss:{float(arguments[1]):.8f} Accuracy:{float(arguments[2]):.8f}""") else: print(f"""{" " * 5}An Error received from while evaluating server: {arguments[1]}""") else: print(f"""{" " * 5}An Error received from server: {arguments[1]}""") print() print(f"""{" " * 5}Disconnecting...""") msg = f"""D|""" self._send_message(msg) response = self._receive_message() print(f"""{" " * 5}Disconnected from server.""") print() print(f"""{" " * 5}Evaluation concluded.""") print(f"""{"-" * 80}""") try: if os.path.exists("./temp.h5"): os.remove("./temp.h5") except: pass ``` #### File: src/practitioner/classify_iris.py ```python import numpy as np import sklearn as scikit import tensorflow as tf from preprocessing import Preprocessing from evaluation import EvaluationClient from sklearn.model_selection import train_test_split # ##################################################################################################################### # Implementation of Pre-Processing # ##################################################################################################################### class MyPreprocess(Preprocessing): def prepare(self, data): x = data[: , 0:4] x = np.asarray(x).astype('float32') x = scikit.preprocessing.normalize(x) # labels encoding. y = data[: , 4] le = scikit.preprocessing.LabelEncoder() le.fit(y) y = le.transform(y) return x, y if __name__ == "__main__": print (f"""Using Tensorflow version {tf.__version__}""") # ################################################################################ # LOADING DATA iris_synthetic = np.load("../../data/generated/iris_synt.npz", allow_pickle=True) iris_data = iris_synthetic["data"] print(f"""Iris Synthetic data shape:{iris_data.shape}""") # ################################################################################ # Preprocessing pre_proc = MyPreprocess() x, y = pre_proc.prepare(iris_data) print(f"""Preprocessed data: x:{x.shape}, y:{y.shape}""") x_train, x_test, y_train, y_test = train_test_split(x, y) print(f"""Train: x:{x_train.shape}, y:{y_train.shape}. Test: x:{x_test.shape}, y:{y_test.shape}""") # ################################################################################ # DEFINING THE MODEL AND TRAINING model = tf.keras.models.Sequential(name="Iris_Synthetic") # model.add( tf.keras.layers.LayerNormalization( input_shape=[4], # axis=-1, center=True, scale=True, # trainable=True, name='input_normalized')) model.add(tf.keras.layers.Dense(units=150, name="dense1", input_shape=[4])) model.add(tf.keras.layers.Dropout(0.8, name="dropout_1")) model.add(tf.keras.layers.Dense(units=150, name="dense2")) model.add(tf.keras.layers.Dropout(0.8, name="dropout_2")) model.add(tf.keras.layers.Dense(3, activation=tf.nn.softmax, name="dense3_softmax")) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=["accuracy"]) # ################################################################################ # Training model.fit(x_train, y_train, batch_size=8, epochs=15) # ################################################################################ # Local Evaluation print() print(f"={'Evaluating using synthetic data':^78}=") print(model.evaluate(x_test, y_test)) # ################################################################################ # Remote Evaluation eval = EvaluationClient("goliath.ucdenver.pvt", 35000) eval.evaluate_model("79e3b","Iris_Synthetic", model, pre_proc) ``` #### File: src/real_data_evaluation/classify_miocardial.py ```python import numpy as np import pandas as pd import sklearn as scikit import tensorflow as tf from preprocessing import Preprocessing from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder # ##################################################################################################################### # Implementation of Pre-Processing # ##################################################################################################################### class MyPreprocess(Preprocessing): def prepare(self, in_data): # Data has a shape of (-1, 124) where the last 12 correspond to different events that can be predicted. # In this script we will evaluate the performance of predicting Atrial Fib, #113, and first target class. # Discarding ID and other targets. x = in_data[:, 1:112] # First 112 features expect for the very first which is record id. y = in_data[:, 112].astype('float32') # Using atrial fib targer with label 0/1 return x, y if __name__ == "__main__": print(f"""Using Tensorflow version {tf.__version__}""") print("*" * 80) print("""---- THIS IS THE EVALUATION OF THE MODEL TRAINED DIRECTLY WITH REAL DATA""") print("*" * 80) # ------------------------------------------------------------------------------------------------------------------ # LOADING DATA data_df = pd.read_csv("../../data/source/miocardial.csv") data = data_df.values print(f"""MIOCARDIAL Real DS shape:{data.shape}""") # ------------------------------------------------------------------------------------------------------------------ # Preprocessing # pre_proc = MyPreprocess() x, y = pre_proc.prepare(data) print(f"""Preprocessed data: x:{x.shape}, y:{y.shape}""") x_train, x_test, y_train, y_test = train_test_split(x, y) print(f"""Train: x:{x_train.shape}, y:{y_train.shape}. Test: x:{x_test.shape}, y:{y_test.shape}""") # ------------------------------------------------------------------------------------------------------------------ # DEFINING THE MODEL AND TRAINING model = tf.keras.models.Sequential(name="Miocardial_Real") model.add(tf.keras.layers.Dense(units=150, name="dense1", input_shape=[111])) model.add(tf.keras.layers.Dropout(0.8, name="dropout_1")) model.add(tf.keras.layers.Dense(units=150, name="dense2")) model.add(tf.keras.layers.Dropout(0.8, name="dropout_2")) model.add(tf.keras.layers.Dense(3, activation=tf.nn.softmax, name="dense3_softmax")) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=["accuracy"]) # ------------------------------------------------------------------------------------------------------------------ # Training model.fit(x_train, y_train, batch_size=8, epochs=15) # ------------------------------------------------------------------------------------------------------------------ # Local Evaluation print() print(f"={'Evaluating using Real data':^78}=") print(model.evaluate(x_test, y_test)) ```
{ "source": "jpasyeva/python_for_QA", "score": 3 }
#### File: python_for_QA/bdd/contact_steps.py ```python from pytest_bdd import given, when, then from models.contact import Contact import random import pytest @given('a contact list') def contact_list(db): return db.get_contact_list() @given('a contact with <lastname>, <firstname>, <address>, <homephone>, <mobilephone>, <workphone>, ' '<secondaryphone>, <email>, <email2> and <email3>') def new_contact(lastname, firstname, address, homephone, mobilephone, workphone, secondaryphone, email, email2, email3): return Contact(lastname=lastname, firstname=firstname, address=address, home_phone=homephone, mobile_phone=mobilephone, work_phone=workphone, phone2=secondaryphone, email=email, email2=email2, email3=email3) # Add contact @when('I add the contact to the list') def add_new_contact(app, new_contact): app.contact.add_new(new_contact) @then('the new contact list is equal to the old list with the added contact') def verify_contact_added(db, contact_list, new_contact, app, check_ui): old_contacts = contact_list new_contacts = db.get_contact_list() old_contacts.append(new_contact) assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.contact.get_contact_list(), key=Contact.id_or_max) @given('a non-empty contact list') def non_empty_contact_list(db, app): if len(db.get_contact_list()) == 0: app.contact.create(Contact(firstname="New contact")) return db.get_contact_list() @given('a random contact from the list') def random_contact(non_empty_contact_list): return random.choice(non_empty_contact_list) # Delete contact @when('I delete the contact from the list') def delete_contact(app, random_contact): app.contact.delete_contact_by_id(random_contact.id_contact) @then('the new contact list is equal to the old list without the deleted contact') def verify_contact_deleted(db, non_empty_contact_list, random_contact, app, check_ui): old_contacts = non_empty_contact_list new_contacts = db.get_contact_list() assert len(old_contacts) - 1 == len(new_contacts) old_contacts.remove(random_contact) assert old_contacts == new_contacts if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.contact.get_contact_list(), key=Contact.id_or_max) # Modify contact @given('a random contact from the list') def index_random_contact(non_empty_contact_list): index_random_contact = random.randrange(len(non_empty_contact_list)) return index_random_contact @given('a contact with <lastname>, <firstname>, <address>, <homephone>, <mobilephone>, <workphone>, ' '<secondaryphone>, <email>, <email2> and <email3>') def contact_modify(lastname, firstname, address, homephone, mobilephone, workphone, secondaryphone, email, email2, email3): return Contact(lastname=lastname, firstname=firstname, address=address, home_phone=homephone, mobile_phone=mobilephone, work_phone=workphone, phone2=secondaryphone, email=email, email2=email2, email3=email3) @when('I modify the contact in the list') def modify_contact(app, non_empty_contact_list, index_random_contact, contact_modify): contact_modify.id_contact = non_empty_contact_list[index_random_contact].id_contact app.contact.edit_contact_by_id(contact_modify.id_contact, contact_modify) @then('the new contact list is equal to the old list with the modified contact') def verify_contact_modified(app, db, non_empty_contact_list, index_random_contact, contact_modify, check_ui): old_contacts = non_empty_contact_list new_contacts = db.get_contact_list() assert len(old_contacts) == len(new_contacts) old_contacts[index_random_contact] = contact_modify assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.contact.get_group_list(), key=Contact.id_or_max) ``` #### File: python_for_QA/tests/test_phones_and_emails.py ```python import re def test_phones_on_homepage(app, db): contacts_from_homepage = app.contact.get_contact_list() contacts_from_db = db.get_contact_list_from_db() for contact_from_homepage in contacts_from_homepage: id_contact = contact_from_homepage.id_contact for contact_from_db in contacts_from_db: id_contact2 = contact_from_db.id_contact if id_contact == id_contact2: assert contact_from_homepage.lastname == contact_from_db.lastname assert contact_from_homepage.firstname == contact_from_db.firstname assert contact_from_homepage.address == contact_from_db.address assert contact_from_homepage.all_emails_from_home_page == merge_email_like_on_homepage(contact_from_db) assert contact_from_homepage.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_db) def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.home_phone, contact.mobile_phone, contact.work_phone, contact.phone2])))) def merge_email_like_on_homepage(contact): return "\n".join(filter(lambda x: x != "", filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3]))) ``` #### File: python_for_QA/tests/test_phones.py ```python from models.contact import Contact from random import randrange import re def test_contact_on_home_page(app): contact = app.contact.get_contact_list() index = randrange(len(contact)) contact_from_home_page = app.contact.get_contact_list()[index] contact_from_edit_page = app.contact.get_contact_info_from_edit_page(index) assert contact_from_home_page.lastname == contact_from_edit_page.lastname assert contact_from_home_page.firstname == contact_from_edit_page.firstname assert contact_from_home_page.address == contact_from_edit_page.address assert contact_from_home_page.all_emails_from_home_page == merge_emails_like_on_home_page(contact_from_edit_page) assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) def test_contact_like_db_and_home(app, db): contacts_db = sorted(db.get_contact_list(), key=Contact.id_or_max) contacts_on_home_page = sorted(app.contact.get_contact_list(), key=Contact.id_or_max) for i in range(len(contacts_on_home_page)): contact_from_home_page = contacts_on_home_page[i] contact_from_db = contacts_db[i] assert contact_from_home_page.id_contact == contact_from_db.id_contact assert contact_from_home_page.firstname == contact_from_db.firstname assert contact_from_home_page.lastname == contact_from_db.lastname def test_phones_on_contact_view_page(app): contact = app.contact.get_contact_list() index = randrange(len(contact)) contact_from_view_page = app.contact.get_contact_from_view_page(index) contact_from_edit_page = app.contact.get_contact_info_from_edit_page(index) assert contact_from_view_page.home_phone == contact_from_edit_page.home_phone assert contact_from_view_page.mobile_phone == contact_from_edit_page.mobile_phone assert contact_from_view_page.work_phone == contact_from_edit_page.work_phone assert contact_from_view_page.phone2 == contact_from_edit_page.phone2 def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.home_phone, contact.mobile_phone, contact.work_phone, contact.phone2])))) def merge_emails_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3]))) ```
{ "source": "jpat82792/Sequence_Finder", "score": 2 }
#### File: jpat82792/Sequence_Finder/ModelQueryResults.py ```python class ModelQueryResults: units_before_target = None target = None units_after_target = None start_of_captured_units = None end_of_captured_units = None def __init__(self, units_before_target, target, units_after_target, start_of_captured_units, end_of_captured_units): self.units_before_target = units_before_target self.units_after_target = units_after_target self.target = target self.start_of_captured_units = start_of_captured_units self.end_of_captured_units = end_of_captured_units ``` #### File: jpat82792/Sequence_Finder/ViewReview.py ```python from kivy.uix.screenmanager import ScreenManager, Screen from kivy.uix.label import Label from kivy.uix.textinput import TextInput from kivy.uix.relativelayout import RelativeLayout from kivy.clock import Clock from kivy.uix.button import Button import UiConstants class ViewReview(Screen): def __init__(self, next_screen, previous_screen, secretary, screen_manager, **kwargs): super().__init__(**kwargs) self.main_layout = RelativeLayout() self.label_screen = Label(text="Review", size_hint=(0.5, 0.15), pos_hint={'x': 0.25, 'y': 0.85}, font_name="fonts/RobotoMono-Bold.ttf", font_size=UiConstants.UiConstants.labe_main_screen, color=[0,0,0,1]) self.main_layout.add_widget(self.label_screen) self.label_sequence_type = Label(text="Sequence Type:", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0.73}, color=[0, 0, 0, 1]) self.text_input_sequence_type = TextInput(text="secretary", size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0.73} , background_normal="backgrounds/input-background.jpg") self.label_units_before = Label(text="Units before", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0.61} , color=[0, 0, 0, 1]) self.label_units_target = Label(text="Target sequence", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0.49} , color=[0, 0, 0, 1]) self.label_units_after = Label(text="Units after", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0.37} , color=[0, 0, 0, 1]) self.label_units_path = Label(text="Path", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0.25} , color=[0, 0, 0, 1]) self.label_units_file_name = Label(text="File name", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0.13} , color=[0, 0, 0, 1]) self.text_input_units_before = TextInput(text=secretary.before_target_sequence, size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0.61}, background_normal="backgrounds/input-background.jpg") self.text_input_target = TextInput(text=secretary.target_sequence, size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0.49},background_normal="backgrounds/input-background.jpg") self.text_input_units_after = TextInput(text=secretary.after_target_sequence, size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0.37},background_normal="backgrounds/input-background.jpg") self.text_input_units_path = TextInput(text=secretary.output_file_path, size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0.25},background_normal="backgrounds/input-background.jpg") self.text_input_units_file_name = TextInput(text=secretary.output_file_name, size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0.13} , background_normal="backgrounds/input-background.jpg") self.button_run_analysis = Button(text="Run analysis", size_hint=(0.25, 0.1), pos_hint={'x': 0.5, 'y': 0}, on_release=lambda btn: self.run_analysis(secretary=secretary, screen_manager=screen_manager, next_screen=next_screen), font_size=UiConstants.UiConstants.label_font_small_size, background_normal="backgrounds/next-button.jpg", background_down="backgrounds/next-button-pressed.jpg", font_name="fonts/RobotoMono-Bold.ttf",) self.button_previous_screen = Button(text="Previous", size_hint=(0.25, 0.1), pos_hint={'x': 0.25, 'y': 0}, font_size=UiConstants.UiConstants.label_font_small_size, on_release=lambda btn: self.go_back(previous_screen=previous_screen, screen_manager=screen_manager), background_normal="backgrounds/back-button.jpg", background_down="backgrounds/back-button-down.jpg", font_name="fonts/RobotoMono-Bold.ttf") self.main_layout.add_widget(self.label_sequence_type) self.main_layout.add_widget(self.text_input_sequence_type) self.main_layout.add_widget(self.label_units_before) self.main_layout.add_widget(self.text_input_units_before) self.main_layout.add_widget(self.label_units_target) self.main_layout.add_widget(self.text_input_target) self.main_layout.add_widget(self.label_units_after) self.main_layout.add_widget(self.text_input_units_after) self.main_layout.add_widget(self.label_units_path) self.main_layout.add_widget(self.text_input_units_path) self.main_layout.add_widget(self.label_units_file_name) self.main_layout.add_widget(self.text_input_units_file_name) self.main_layout.add_widget(self.button_run_analysis) self.main_layout.add_widget(self.button_previous_screen) Clock.schedule_once(self.custom_init, 1) def custom_init(self, *args): self.add_widget(self.main_layout) def reload_ui(self, secretary): self.text_input_units_before.text = secretary.before_target_sequence self.text_input_target.text = secretary.target_sequence self.text_input_units_after.text = secretary.after_target_sequence self.text_input_sequence_type.text = secretary.sequence_type self.text_input_units_file_name.text = secretary.output_file_name self.text_input_units_path.text = secretary.output_file_path def go_back(self, previous_screen, screen_manager): screen_manager.current = previous_screen def run_analysis(self, secretary, screen_manager, next_screen): print("run_analysis()") secretary.get_target_sequences() screen_manager.current = next_screen ```
{ "source": "jpatel33/Fall-2021-SE-Group-37", "score": 3 }
#### File: Fall-2021-SE-Group-37/test/test_cube.py ```python from code import cubeme, squareme, inc def testcube(): assert cubeme(-2) == -8 assert cubeme(2) == 8 def testsquare(): assert squareme(2) == 4 assert squareme(-2) == 4 def test_inc(): assert inc(3) == 4 ```
{ "source": "jpatel3/django-inapp-survey", "score": 2 }
#### File: django-inapp-survey/inapp_survey/serializers.py ```python from rest_framework import serializers from rest_framework.validators import UniqueTogetherValidator from .models import Campaign, CampaignCustomParam, \ CampaignQuestion, UserCampaign, UserCampaignResponse class CampaignCustomParamSerializer(serializers.ModelSerializer): class Meta: model = CampaignCustomParam fields = ( "param_key", "param_value", ) class CampaignListSerializer(serializers.ModelSerializer): class Meta: model = Campaign fields = ( 'id', 'title', 'slug', 'description', 'is_authenticated', 'expiry_date', 'campaign_type', ) class CampaignQuestionSerializer(serializers.ModelSerializer): class Meta: model = CampaignQuestion fields = ( "id", "question", "order", ) class CampaignSerializer(serializers.ModelSerializer): custom_param = CampaignCustomParamSerializer( many=True, read_only=True) steps = CampaignQuestionSerializer( source='questions', many=True) class Meta: model = Campaign fields = ( 'id', 'title', 'slug', 'description', 'is_authenticated', 'expiry_date', 'campaign_type', 'steps', 'custom_param' ) # User Campaign Responses class UserCampaignResponseSerializer(serializers.ModelSerializer): class Meta: model = UserCampaignResponse exclude = ( 'user_campaign', ) # To handle the unique entry per user_campaing and question # validators = [ # UniqueTogetherValidator( # queryset=UserCampaignResponse.objects.all(), # fields=('user_campaign', 'question') # ) # ] class UserCampaignSerializer(serializers.ModelSerializer): answers = UserCampaignResponseSerializer( source='usercampaignresponse_set', many=True, required=False) # While doing default save, we run into the issue because # user_campaign is not available for the nested responses # serializer def create(self, validated_data): answer_data = validated_data.pop('usercampaignresponse_set') usercampaign_post = UserCampaign.objects.create(**validated_data) for post in answer_data: e = UserCampaignResponse.objects.create( user_campaign=usercampaign_post, **post) return usercampaign_post class Meta: model = UserCampaign fields = ( 'id', 'user', 'campaign', 'is_completed', 'is_canceled', 'answers', ) validators = [ UniqueTogetherValidator( queryset=UserCampaign.objects.all(), fields=('user', 'campaign') ) ] ```
{ "source": "jpatel888/deep-screens", "score": 3 }
#### File: deep-screens/figures/image.py ```python from utils.image_utils import concatenate_images_by_width import numpy as np import cv2 class Image: def __init__(self, config, input_imgs, label=None, logit=None): self.config = config self.baseline_img = input_imgs[:, :, :3] self.current_img = input_imgs[:, :, 3:] self.label = label self.logit = logit def apply_box(self, image, bounding_box, color): """ :param image: :param bounding_box: (left_x, top_y, right_x, bottom_y) :param color: :return: """ line_width = self.config.figure.line_width left_x, top_y, right_x, bottom_y = bounding_box try: mid_x = int((left_x + right_x) / 2) mid_y = int((top_y + bottom_y) / 2) image[mid_y - line_width:mid_y + line_width, mid_x - line_width + mid_x + line_width] = color image[top_y - line_width:top_y, left_x:right_x] = color image[top_y:bottom_y, left_x:left_x + line_width] = color image[bottom_y - line_width:bottom_y, left_x:right_x] = color image[top_y:bottom_y, right_x:right_x + line_width] = color except Exception as exception: pass return image def get_bounding_box(self, y_idx, x_idx, yxhw): num_grid_cells_width = self.config.model.model_output_size[1] num_grid_cells_height = self.config.model.model_output_size[0] image_width = self.config.model.input_shape[1] image_height = self.config.model.input_shape[0] grid_cell_width = image_width / num_grid_cells_width grid_cell_height = image_height / num_grid_cells_height my, mx, h, w = yxhw[0], yxhw[1], yxhw[2], yxhw[3] # print(yxhw) mx = (mx * grid_cell_width) + (x_idx * grid_cell_width) my = (my * grid_cell_height) + (y_idx * grid_cell_height) h = h * grid_cell_height w = w * grid_cell_width # print(mx, my, h, w) lx = mx - (w / 2) rx = mx + (w / 2) ty = my - (h / 2) by = my + (h / 2) # print(lx, rx, ty, by) ret = int(lx), int(ty), int(rx), int(by) return ret def get_color(self, categories): category = np.argmax(categories) return self.config.figure.color_map[category] def apply_label(self, image, label): for _y in range(label.shape[0]): for _x in range(label.shape[1]): has_defect = label[_y, _x, 0] if has_defect > 0.5: bounding_box = self.get_bounding_box(_y, _x, label[_y, _x, 5:]) color = self.get_color(label[_y, _x, 1:5]) image = self.apply_box(image, bounding_box, color) return image def get_has_defect_graph(self, grid): white_space = np.transpose([Image.sigmoid(grid[:, :, 0]) * 255] * 3, [1, 2, 0]) new_size = (self.current_img.shape[1], self.current_img.shape[0]) return cv2.resize(white_space, new_size, interpolation=cv2.INTER_NEAREST) def get_log_image(self): first_image = self.baseline_img second_image = self.apply_label(np.copy(self.current_img), self.label) if self.label is not None else None third_image = self.apply_label(np.copy(self.current_img), self.logit) if self.logit is not None else None fourth_image = self.get_has_defect_graph(self.label) if self.label is not None else None fifth_image = self.get_has_defect_graph(self.logit) if self.logit is not None else None images = [first_image, second_image, third_image, fourth_image, fifth_image] all_images = filter(lambda el: el is not None, images) return concatenate_images_by_width(list(all_images)) @staticmethod def sigmoid(x): return 1 / (1 + np.exp(-x)) ``` #### File: deep-screens/utils/config.py ```python import json from bunch import bunchify import os from utils.utils import get_args from utils.utils import get_dict_from_json def get_config_from_json(config_file_path): config_dict = get_dict_from_json("values/" + config_file_path) config = bunchify(config_dict) return config, config_dict def process_configs(json_file_names): configs = [] for json_file_name in json_file_names: config, _ = get_config_from_json(json_file_name) config.summary_dir = os.path.join("./experiments", "summary/", config.exp_name + "/") config.checkpoint_dir = os.path.join("./experiments", "checkpoint/", config.exp_name + "/") config.figure_dir = os.path.join("./experiments", "generated_figures/", config.exp_name + "/") config.tflite_dir = os.path.join("./experiments", "tflite/", config.exp_name + "/") configs.append(config) return configs def get_all_available_configs(): all_config_paths = [path for path in os.listdir("values") if path.endswith("config.json")] all_config_paths.sort() return all_config_paths def get_default_configs(): print("Couldn't get config params or none provided, running all configs in configs/ sequentially") all_config_paths = get_all_available_configs() try: return process_configs(all_config_paths) except json.decoder.JSONDecodeError: print("Error in JSON") exit(0) except Exception as exception: print("Error in fetching config:", exception) exit(0) def get_configs(): try: args = get_args() configs = process_configs(args.config.split(",")) except: configs = get_default_configs() print("Successfully loaded", len(configs), "configs") return configs ```
{ "source": "jpatelbappa/youtube_search_engine_project", "score": 3 }
#### File: jpatelbappa/youtube_search_engine_project/query_on_whoosh.py ```python from whoosh.qparser import QueryParser from whoosh import scoring from whoosh.index import open_dir import sys import json ix = open_dir("indexdir") def query(query_str, items_per_page=10, current_page=1): with ix.searcher(weighting=scoring.Frequency) as searcher: query = QueryParser("description", ix.schema).parse(query_str) results = searcher.search(query, limit=None) num_query_results = len(results) query_results = [] start_index = (current_page - 1) * items_per_page end_index = start_index + items_per_page for i in range(start_index, min(len(results), end_index)): d={} d['url'] = "https://www.youtube.com/watch?v=%s" % results[i]['id'] d['title'] = results[i]['title'] d['description'] = results[i].highlights('description') d['score'] = results[i].score query_results.append(d) return query_results, num_query_results if __name__ == "__main__": query_str = sys.argv[1] items_per_page = int(sys.argv[2]) current_page = int(sys.argv[3]) query_results, num_query_results = query(query_str, items_per_page=items_per_page, current_page=current_page) print(json.dumps(query_results)) ```
{ "source": "jpatnayk/i3wm-themer", "score": 3 }
#### File: i3wm-themer/src/fileutils.py ```python import os.path def locate_folder( path ): return os.path.isdir( path ) def locate_file( path ): return os.path.isfile( path ) ``` #### File: i3wm-themer/src/replace_xresources.py ```python import json import replace_line as rl import msgfunc as prnt import fileutils as fileu def replace_xresources( configuration, json_file): prnt.prnt( '-n', 'Replacing the colors in .Xresources') if( fileu.locate_file(configuration['xresources'])): prnt.prnt( '-s', 'Located your .Xresources file') if 'xresources' in json_file: xresources = json_file['xresources'] prnt.prnt( '-s', 'Found the Xresources info in the JSON file') rl.replace_line( configuration['xresources'], '*background:', '*background: '+xresources['background']) rl.replace_line( configuration['xresources'], '*foreground:', '*foreground: '+xresources['foreground']) rl.replace_line( configuration['xresources'], '*cursorColor:', '*cursorColor: '+xresources['cursorcolor']) for i in range(15): rl.replace_line( configuration['xresources'], '*color'+str(i)+':', '*color'+str(i)+': '+xresources['color'+str(i)]) rl.replace_line( configuration['xresources'], 'rofi.color-window:', 'rofi.color-window: '+xresources['rofi.color-window']) rl.replace_line( configuration['xresources'], 'rofi.color-normal:', 'rofi.color-normal: '+xresources['rofi.color-normal']) rl.replace_line( configuration['xresources'], 'rofi.color-active:', 'rofi.color-active: '+xresources['rofi.color-active']) rl.replace_line( configuration['xresources'], 'rofi.color-urgent:', 'rofi.color-urgent: '+xresources['rofi.color-urgent']) else: prnt.prnt( '-f', 'Failed to locate the Xresources info in the JSON file') else: prnt.prnt( '-f', 'Failed to locate your .Xresources file') ```
{ "source": "JPatricio/jls", "score": 3 }
#### File: jls/jls/contents.py ```python import glob import itertools import math import os from argparse import Namespace from jls.disk_object import DiskObject class DirectoryContents(object): def __init__(self, args: Namespace): """ Will gather and store contents of a certain directory :param path: Path must be absolute """ self.islink = os.path.islink(args.path) self.isdir = os.path.isdir(args.path) and not args.dir_as_files self.follow_link = self.islink and self.isdir and not args.detailed and not args.clarify self.path = os.readlink(args.path) if self.follow_link else args.path self.args = args self.contents = list() self.max_width_filename = 0 objects_in_path = list() if self.isdir and (not self.islink or self.islink and self.follow_link): objects_in_path = glob.iglob(f'{self.path}/*', recursive=False) # if -a specified, need to include hidden objects. # Glob does not support one look up so separate look up needed if args.all: # lol.. cheat objects_in_path = itertools.chain( ['.', '..'], objects_in_path, glob.iglob(f'{self.path}/.*', recursive=False) ) if args.almost_all: objects_in_path = itertools.chain(objects_in_path, glob.iglob(f'{self.path}/.*', recursive=False)) else: objects_in_path = [os.path.abspath(self.path)] for object_full_path in objects_in_path: # Add to contents object = DiskObject(object_full_path) self.contents.append(object) # Track max width self.max_width_filename = max(self.max_width_filename, len(object.name)) # Add 1 for space after name self.max_width_filename += 1 def print_contents(self): """ :return: """ # We'll print the files in table like fashion, using the full width of the terminal (number of characters) terminal_width = os.get_terminal_size().columns # How many objects can be print per row obj_per_row = math.floor(terminal_width / self.max_width_filename) if not self.args.no_sort: self.contents.sort(key=lambda disk_object: disk_object.name) if not self.args.detailed: # By default, sort contents by name property # TODO: ls prints order vertically, we print horizontally. Crap. Check out how to fix it later. printed_obj = 0 for file in self.contents: print( file.__str__(length=self.max_width_filename, args=self.args), end="\n" if printed_obj >= obj_per_row or self.args.one else "" ) printed_obj = printed_obj + 1 if printed_obj >= obj_per_row else 0 else: # This will be a detailed view. for file in self.contents: print(file.__str__(length=None, args=self.args)) # This fixes some weird left out buffer on print print("", end="") ```
{ "source": "JPatrick9793/chemical_vae", "score": 3 }
#### File: chemical_vae/chemvae/tgru_k2_gpu.py ```python from keras.layers.recurrent import GRU from keras import backend as K from keras.engine import InputSpec import numpy as np if K.backend() == 'tensorflow': from .sampled_rnn_tf import sampled_rnn else: raise NotImplemented("Backend not implemented") class TerminalGRU(GRU): # Heavily adapted from GRU in recurrent.py # Implements professor forcing def __init__(self, units, temperature=1., rnd_seed=None, recurrent_dropout=0.0, **kwargs): # @param: temperature - sampling temperature # Annealing will be handled in the callbacks super(TerminalGRU, self).__init__(units, **kwargs) self.units = units self.temperature = temperature self.rnd_seed = rnd_seed self.uses_learning_phase = True self.supports_masking = False self.units = units self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.input_spec = [InputSpec(ndim=3), InputSpec(ndim=3)] def build(self, input_shape): # all of this is copied from GRU, except for one part commented below if isinstance(input_shape, list): input_shape = input_shape[0] batch_size = input_shape[0] if self.stateful else None self.input_dim = input_shape[2] self.input_spec = [InputSpec(shape=(batch_size, None, self.input_dim)), InputSpec(shape=(batch_size, None, self.units))] self.state_spec = InputSpec(shape=(batch_size, self.units)) self.states = [None] if self.stateful: self.reset_states() self.kernel = self.add_weight((self.input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) # adding an extra recurrent weight here, change from GRU layer: # this last recurrent weight applied to true sequence input from prev. timestep, # or sampled output from prev. time step. self.recurrent_kernel = self.add_weight( (self.units, self.units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: self.bias = self.add_weight((self.units * 4,), name='bias', initializer='zero', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.kernel_z = self.kernel[:, :self.units] self.recurrent_kernel_z = self.recurrent_kernel[:, :self.units] self.kernel_r = self.kernel[:, self.units: self.units * 2] self.recurrent_kernel_r = self.recurrent_kernel[:, self.units: self.units * 2] self.kernel_h = self.kernel[:, self.units * 2:] self.recurrent_kernel_h = self.recurrent_kernel[:, self.units * 2:self.units * 3] self.recurrent_kernel_y = self.recurrent_kernel[:, self.units * 3:] if self.use_bias: self.bias_z = self.bias[:self.units] self.bias_r = self.bias[self.units: self.units * 2] self.bias_h = self.bias[self.units * 2: self.units * 3] self.bias_h = self.bias[self.units * 3:] else: self.bias_z = None self.bias_r = None self.bias_h = None self.built = True def get_initial_states(self, x): # build an all-zero tensor of shape [(samples, output_dim), (samples, output_dim)] initial_state = K.zeros_like(x) # (samples, timesteps, input_dim) initial_state = K.sum(initial_state, axis=1) # (samples, input_dim) reducer = K.random_uniform((self.input_dim, self.units)) reducer = reducer / K.exp(reducer) initial_state = K.dot(initial_state, reducer) # (samples, output_dim) initial_states = [K.stack([initial_state, initial_state]) for _ in range(len(self.states))] return initial_states def compute_mask(self, input, mask): # Forced to be single dimension, following behavior of Merge layer # not implemented return None def get_constants(self, inputs, training=None): constants = [] if 0. < self.recurrent_dropout < 1.: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants def call(self, inputs, mask=None): if type(inputs) is not list or len(inputs) != 2: raise Exception('terminal gru runs on list of length 2') X = inputs[0] true_seq = inputs[1] if self.stateful: initial_states = self.states else: initial_states = self.get_initial_states(X) # preprocessing makes input into right form for gpu/cpu settings # from original GRU code recurrent_dropout_constants = self.get_constants(X)[0] preprocessed_input = self.preprocess_input(X) ################# ## Section for index matching of true inputs ################# # Basically, we need to add an extra timestep of just 0s for predicting the first timestep output axes = [1, 0] + list(range(2, K.ndim(true_seq))) true_seq = K.permute_dimensions(true_seq, axes) zeros = K.zeros_like(true_seq[:1, :, :]) # add a column of zeros, remove last element true_seq = K.concatenate([zeros, true_seq[:K.int_shape(true_seq)[0] - 1, :, :]], axis=0) shifted_raw_inputs = K.permute_dimensions(true_seq, axes) ## concatenate to have same dimension as preprocessed inputs 3xoutput_dim # only for self.implementation = 0? shifted_raw_inputs = K.concatenate([shifted_raw_inputs, shifted_raw_inputs, shifted_raw_inputs], axis=2) all_inputs = K.stack([preprocessed_input, shifted_raw_inputs]) num_dim = K.ndim(all_inputs) axes = [1, 2, 0] + list(range(3, num_dim)) all_inputs = K.permute_dimensions(all_inputs, axes) # If not using true sequence, want to feed in a tensor of zeros instead. zeros_input_seq = K.zeros_like(preprocessed_input) test_phase_all_inputs = K.stack([preprocessed_input, zeros_input_seq]) test_phase_all_inputs = K.permute_dimensions(test_phase_all_inputs, axes) all_inputs = K.in_train_phase(all_inputs, test_phase_all_inputs) last_output, outputs, states = sampled_rnn(self.step, all_inputs, initial_states, self.units, self.rnd_seed, go_backwards=self.go_backwards, rec_dp_constants=recurrent_dropout_constants, mask=None) if self.return_sequences: return outputs else: return last_output def compute_output_shape(self, input_shape): # expect input_shape is a list: assert type(input_shape) is list input_shapes = input_shape # from original recurrent unit, can probably delete entire if this works if self.return_sequences: return input_shapes[1] else: return (input_shapes[1][0], input_shapes[1][1]) def get_config(self): config = {'units': self.units, 'temperature': self.temperature, 'rnd_seed': self.rnd_seed} base_config = super(TerminalGRU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def output_sampling(self, output, rand_matrix): # Generates a sampled selection based on raw output state vector # Creates a cdf vector and compares against a randomly generated vector # Requires a pre-generated rand_matrix (i.e. generated outside step function) sampled_output = output / K.sum(output, axis=-1, keepdims=True) # (batch_size, self.units) mod_sampled_output = sampled_output / K.exp(self.temperature) norm_exp_sampled_output = mod_sampled_output / K.sum(mod_sampled_output, axis=-1, keepdims=True) cdf_vector = K.cumsum(norm_exp_sampled_output, axis=-1) cdf_minus_vector = cdf_vector - norm_exp_sampled_output rand_matrix = K.stack([rand_matrix], axis=0) rand_matrix = K.stack([rand_matrix], axis=2) compared_greater_output = K.cast(K.greater(cdf_vector, rand_matrix), dtype='float32') compared_lesser_output = K.cast(K.less(cdf_minus_vector, rand_matrix), dtype='float32') final_output = compared_greater_output * compared_lesser_output return final_output def step(self, h, states): ''' receives inputs for a time step @inp : h - [previous_layer_input, true_input_for_previous_timestep] at train time or [previous_layer_input, zeros] at test time @inp : states - a dictionary, contains the following - 'initial_states' - state vector - At train time, this includes the true input sequence for the given time step, in addition to the state for the previous time step. - At test time, - 'random_cutoff_prob' - random cutoff matrix used for sampling at test time - 'rec_dp_mask' - for use with dropout (not tested - may break) @return: output - raw output, unsampled @return: final_output - output that has been sampled in test case ''' ################ # Parsing the states vector ################ initial_states = states['initial_states'] random_cutoff_vec = states['random_cutoff_prob'] if self.recurrent_dropout > 0: rec_dp_mask = states['rec_dp_mask'] else: rec_dp_mask = np.array([1., 1., 1., 1.], dtype='float32') h_tm1 = initial_states[0][:1, :, :] def teacher_forced(h, states): # switching from (batch_size, previous_layer_input|true_input, output_dim) # to ( previous_layer_input|true_input, batch_size, output_dim) axes = [1, 0] + list(range(2, K.ndim(h))) h = K.permute_dimensions(h, axes) prev_layer_input = h[0:1, :, :] true_input = h[1:, :, :self.units] # this should correspond to true input prev_sampled_output = true_input if self.implementation == 0: x_z = prev_layer_input[0, :, :self.units] x_r = prev_layer_input[0, :, self.units: 2 * self.units] x_h = prev_layer_input[0, :, 2 * self.units:] else: raise ValueError('Implementation type ' + self.implementation + ' is invalid') z = self.recurrent_activation(x_z + K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel_z)) r = self.recurrent_activation(x_r + K.dot(h_tm1 * rec_dp_mask[1], self.recurrent_kernel_r)) hh = self.activation(x_h + K.dot(r * h_tm1 * rec_dp_mask[2], self.recurrent_kernel_h) + K.dot(r * prev_sampled_output, self.recurrent_kernel_y)) output = z * h_tm1 + (1. - z) * hh return K.stack([output, output]) def free_running(h, states): prev_generated_output = initial_states[0][1:, :, :] prev_sampled_output = prev_generated_output # switching from (batch_size, previous_layer_input|true_input, output_dim) # to ( previous_layer_input|true_input, batch_size, output_dim) axes = [1, 0] + list(range(2, K.ndim(h))) h = K.permute_dimensions(h, axes) prev_layer_input = h[0:1, :, :] if self.implementation == 0: x_z = prev_layer_input[0, :, :self.units] x_r = prev_layer_input[0, :, self.units: 2 * self.units] x_h = prev_layer_input[0, :, 2 * self.units:] z = self.recurrent_activation(x_z + K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel_z)) r = self.recurrent_activation(x_r + K.dot(h_tm1 * rec_dp_mask[1], self.recurrent_kernel_r)) hh = self.activation(x_h + K.dot(r * h_tm1 * rec_dp_mask[2], self.recurrent_kernel_h) + K.dot(r * prev_sampled_output, self.recurrent_kernel_y)) output = z * h_tm1 + (1. - z) * hh final_output = self.output_sampling(output, random_cutoff_vec) return K.stack([output, final_output]) output_2d_tensor = K.in_train_phase(teacher_forced(h, states), free_running(h, states)) output_2d_tensor = K.squeeze(output_2d_tensor, 1) return output_2d_tensor, [output_2d_tensor] ```
{ "source": "JPatrick9793/colorization-pytorch", "score": 2 }
#### File: JPatrick9793/colorization-pytorch/train_linear_classifiers.py ```python from functools import reduce from pathlib import Path from typing import List, Dict import numpy as np import torch import torch.nn.functional as F import torchvision import torchvision.transforms as transforms from torch import nn from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from models import create_model from options.train_options import TrainOptions from util import util from sklearn.metrics import accuracy_score, f1_score n_classes: int = 100 kernel_sizes = { 'model1': 32, 'model2': 16, 'model3': 16, 'model4': 8, 'model5': 8, } interpolate_size = { 'model1': (12, 12), 'model2': (9, 8), 'model3': (6, 6), 'model4': (4, 4), 'model5': (4, 4), } get_params = lambda tensor: reduce(lambda x, y: x * y, tensor.shape) def reshape_activation_outputs(activation): # global kernel_sizes # global interpolate_size outputs = {} for key, items in activation.items(): # Acquire dimensions batch, depth, width, height = items.shape # Get kernel size kernel_size = kernel_sizes[key] # Pool the tensor output = F.avg_pool2d(items, kernel_size=kernel_size, stride=kernel_size) interp_size = interpolate_size[key] if interp_size is not None: output = F.interpolate(input=output, size=interp_size, scale_factor=None, mode='bilinear', align_corners=True) outputs[key] = output.view(batch, -1) return outputs def get_validation_feature_tensors(activation, device, model, opt, validation_dataset_loader, validation_dataset_size): validation_batches = [] with torch.no_grad(): for e, data_raw in tqdm(enumerate(validation_dataset_loader), total=validation_dataset_size // opt.batch_size): data_raw[0] = data_raw[0].to(device) data = util.get_colorization_data(data_raw, opt, p=opt.sample_p) if data is None: continue model.set_input(data) model.test(compute_losses=False) outputs = reshape_activation_outputs(activation) validation_batches.append(outputs) # Break inner loop if theres enough data if ((e + 1) * opt.batch_size) >= opt.max_dataset_size: break return validation_batches def get_dataloader(dataset, opt, shuffle: bool = True): dataset_loader = torch.utils.data.DataLoader( dataset, batch_size=opt.batch_size, shuffle=shuffle, num_workers=int(opt.num_threads)) return dataset_loader def get_dataset(opt, dataroot): dataset = torchvision.datasets.ImageFolder(dataroot, transform=transforms.Compose([ transforms.RandomChoice([ transforms.Resize(opt.loadSize, interpolation=1), transforms.Resize(opt.loadSize, interpolation=2), transforms.Resize(opt.loadSize, interpolation=3), transforms.Resize((opt.loadSize, opt.loadSize), interpolation=1), transforms.Resize((opt.loadSize, opt.loadSize), interpolation=2), transforms.Resize((opt.loadSize, opt.loadSize), interpolation=3) ]), transforms.RandomChoice([ transforms.RandomResizedCrop(opt.fineSize, interpolation=1), transforms.RandomResizedCrop(opt.fineSize, interpolation=2), transforms.RandomResizedCrop(opt.fineSize, interpolation=3) ]), transforms.RandomHorizontalFlip(), transforms.ToTensor()])) return dataset def main(opt): # Create checkpoints # linear_classifier_ckpts: Path = Path("classifier_ckpts_pretrained") assert opt.linear_checkpoints is not None, "Please specify output directory for checkpoints" linear_classifier_ckpts: Path = Path(opt.linear_checkpoints) linear_classifier_ckpts.mkdir(exist_ok=True, parents=True) # Always force load model opt.load_model = True # Specify CUDA device if passed into args device = torch.device("cpu" if len(opt.gpu_ids) <= 0 else f"cuda:{opt.gpu_ids[0]}") # Load training data print(f"Creating Training Dataset Loader") dataset = get_dataset(opt=opt, dataroot=opt.dataroot) dataset_loader = get_dataloader(dataset, opt) dataset_size = min(len(dataset), opt.max_dataset_size) # Load validation Data print(f"Creating Validation Dataset Loader") validation_dataset = get_dataset(opt=opt, dataroot=opt.dataroot_validation) validation_dataset_loader = get_dataloader(dataset=validation_dataset, opt=opt, shuffle=False) validation_dataset_size = min(len(validation_dataset), opt.max_dataset_size_validation) # Load siggraph model for feature extraction print('#training images = %d' % dataset_size) model = create_model(opt) model.setup(opt) model.eval() # TODO does passing in "activation" work by reference, and does it help? # Wrapper function to create "hooks" for extracting layer activations activation = {} def get_activation(name, activation): def hook(model, input, output): activation[name] = output.detach() return hook # Place hooks in original model to extract the features at each layer model1_hook = model.netG.module.model1.register_forward_hook(get_activation('model1', activation=activation)) model2_hook = model.netG.module.model2.register_forward_hook(get_activation('model2', activation=activation)) model3_hook = model.netG.module.model3.register_forward_hook(get_activation('model3', activation=activation)) model4_hook = model.netG.module.model4.register_forward_hook(get_activation('model4', activation=activation)) model5_hook = model.netG.module.model5.register_forward_hook(get_activation('model5', activation=activation)) # Create separate linear classifiers, one for each layer, independently linear_models = { 'model1': nn.Sequential(nn.Linear(9216, n_classes), nn.Softmax(-1)).to(device), 'model2': nn.Sequential(nn.Linear(9216, n_classes), nn.Softmax(-1)).to(device), 'model3': nn.Sequential(nn.Linear(9216, n_classes), nn.Softmax(-1)).to(device), 'model4': nn.Sequential(nn.Linear(8192, n_classes), nn.Softmax(-1)).to(device), 'model5': nn.Sequential(nn.Linear(8192, n_classes), nn.Softmax(-1)).to(device) } # Create optimizers for each linear classifier, independently linear_models_optimizers = { 'model1': torch.optim.Adam(linear_models['model1'].parameters(), lr=1e-3), 'model2': torch.optim.Adam(linear_models['model2'].parameters(), lr=1e-3), 'model3': torch.optim.Adam(linear_models['model3'].parameters(), lr=1e-3), 'model4': torch.optim.Adam(linear_models['model4'].parameters(), lr=1e-3), 'model5': torch.optim.Adam(linear_models['model5'].parameters(), lr=1e-3), } # Keep track of validation losses for all linear classifiers, independently linear_models_validation_losses = { 'model1': np.inf, 'model2': np.inf, 'model3': np.inf, 'model4': np.inf, 'model5': np.inf, } loss_fn = nn.CrossEntropyLoss() # Writer will output to ./runs/ directory by default writer = SummaryWriter() # Loop over epochs for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay): # Place all models in "train" mode for _, linear_model in linear_models.items(): linear_model.train() # Variables to keep track of metrics training_losses: Dict[str, List[float]] = {model_name: [0.0] for model_name in linear_models} training_accuracies: Dict[str, List[float]] = {model_name: [0.0] for model_name in linear_models} training_f1_scores: Dict[str, List[float]] = {model_name: [0.0] for model_name in linear_models} # for i, data in enumerate(dataset) for i, data_raw in tqdm(enumerate(dataset_loader), total=dataset_size // opt.batch_size): # Place data on GPU (or CPU) data_raw[0] = data_raw[0].to(device) data_raw[1] = data_raw[1].to(device) # Run input batch through model to get feature activations with torch.no_grad(): data = util.get_colorization_data(data_raw, opt, p=opt.sample_p) if data is None: continue model.set_input(data) model.test(compute_losses=False) outputs = reshape_activation_outputs(activation) # Sometimes batch sizes don't line up, so skip this batch if that happens... if outputs['model1'].shape[0] != data_raw[1].shape[0]: # print('xv.shape[0] != yv[1].shape[0]') continue # Loop through individual linear classifiers per batch for model_name, linear_classifier in linear_models.items(): # Run feature vector through linear classifier feature_input = outputs[model_name] preds = linear_classifier(feature_input) # Optimize and Backpropagation loss = loss_fn(preds, data_raw[1]) optimizer = linear_models_optimizers[model_name] optimizer.zero_grad() loss.backward() optimizer.step() # Find batch metrics, and add to list train_accuracy, train_f1 = get_numpy_metrics(targets=data_raw[1], preds=preds) training_accuracies[model_name].append(train_accuracy) training_losses[model_name].append(loss.detach()) training_f1_scores[model_name].append(train_f1) # Break inner loop if theres enough data if ((i + 1) * opt.batch_size) >= opt.max_dataset_size: break # Iterate over linear models at the end of the epoch to add training metrics to tensorboard for model_name, linear_model in linear_models.items(): writer.add_scalar(f'TrainAccuracy/{model_name}', sum(training_accuracies[model_name]) / len(training_accuracies[model_name]), epoch) writer.add_scalar(f'TrainLoss/{model_name}', sum(training_losses[model_name]) / len(training_losses[model_name]), epoch) writer.add_scalar(f'TrainF1/{model_name}', sum(training_f1_scores[model_name]) / len(training_f1_scores[model_name]), epoch) # Evaluate the classifier performance on validation data with torch.no_grad(): # Convert all linear classifiers to eval mode for model_name, linear_model in linear_models.items(): model.eval() validation_losses: Dict[str, List[float]] = {model_name: [0.0] for model_name in linear_models} validation_accuracies: Dict[str, List[float]] = {model_name: [0.0] for model_name in linear_models} validation_f1_scores: Dict[str, List[float]] = {model_name: [0.0] for model_name in linear_models} # iterate over validation data for e, data_raw in tqdm(enumerate(validation_dataset_loader), total=validation_dataset_size // opt.batch_size): # Run image through model for feature vectors data_raw[0] = data_raw[0].to(device) data_raw[1] = data_raw[1].to(device) data = util.get_colorization_data(data_raw, opt, p=opt.sample_p) if data is None: continue model.set_input(data) model.test(compute_losses=False) outputs = reshape_activation_outputs(activation) # Skip this validation batch if there was an error during processing if outputs[model_name].shape[0] != data_raw[1].shape[0]: # print('xv.shape[0] != yv[1].shape[0]') continue # Iterate over linear classifiers to evaluate validation batch for model_name, linear_model in linear_models.items(): val_feature_vector = outputs[model_name] val_preds = linear_model(val_feature_vector) loss = loss_fn(val_preds, data_raw[1]) # Add accuracy and loss to dictionary to keep track accuracy, f1 = get_numpy_metrics(targets=data_raw[1], preds=val_preds) validation_losses[model_name].append(loss) validation_accuracies[model_name].append(accuracy) validation_f1_scores[model_name].append(f1) # Break inner loop if theres enough data if ((e + 1) * opt.batch_size) >= opt.max_dataset_size: break # Iterate over models one final time to evaluate overall validation performance for this epoch for model_name, linear_model in linear_models.items(): print(f"Evaluating {model_name}") # Current lowest validation loss for this linear classifier curr_validation_loss = linear_models_validation_losses[model_name] # Add validation metrics to graph validation_loss = sum(validation_losses[model_name]) / len(validation_losses[model_name]) validation_accuracy = sum(validation_accuracies[model_name]) / len(validation_accuracies[model_name]) validation_f1 = sum(validation_f1_scores[model_name]) / len(validation_f1_scores[model_name]) writer.add_scalar(f'ValLoss/{model_name}', validation_loss, epoch) writer.add_scalar(f'ValAccuracy/{model_name}', validation_accuracy, epoch) writer.add_scalar(f'ValF1/{model_name}', validation_f1, epoch) # Check if best model or not if validation_loss <= curr_validation_loss: # This is best validation loss so far, save model as "best" and update dictionary print(f"Model {model_name} best validation loss so far: {validation_loss} < {curr_validation_loss}") torch.save(linear_model.state_dict(), f"{linear_classifier_ckpts}/{model_name}_best.pth") linear_models_validation_losses[model_name] = validation_loss else: print(f"Model {model_name} validation did not improve: {validation_loss} > {curr_validation_loss}") # Always save checkpoints at every epoch torch.save(linear_model.state_dict(), f"{linear_classifier_ckpts}/{model_name}_e{epoch}.pth") # Close tensorboard writer writer.close() def get_numpy_metrics(targets, preds): preds_numpy = preds.argmax(-1).cpu().numpy() targt_numpy = targets.cpu().numpy() accuracy = accuracy_score(y_pred=preds_numpy, y_true=targt_numpy) f1 = f1_score(y_pred=preds_numpy, y_true=targt_numpy, average='micro') return accuracy, f1 if __name__ == '__main__': opt = TrainOptions().parse() opt.dataroot = opt.dataroot if opt.dataroot is not None else './dataset/ilsvrc2012/%s/' % opt.phase assert opt.dataroot_validation is not None, "When training linear classifiers, please specify a validation " \ "dataset via --dataroot_validation" main(opt=opt) ```
{ "source": "jpatrickdill/figa", "score": 2 }
#### File: figa/figa/__init__.py ```python import platform from functools import wraps from figa.loaders import detect_and_parse from figa.loaders.parser import DictValueReader from os import environ as env # ease of use system = platform.system().lower() version = platform.python_version() no_warnings = False def config(cls): # add __required__ if not included cls.__required__ = getattr(cls, "__required__", {}) @wraps(cls) def get_config(environment: str = None, **kwargs) -> DictValueReader: no_warn = kwargs.get("no_warnings", no_warnings) # detect env if environment is None: if not hasattr(cls, "get_env"): raise NotImplementedError("No get_env() method defined, can't detect environment") environment = cls.get_env(cls) if environment is None: raise ValueError("No environment was provided or could be detected") # find config arguments args = getattr(cls, environment, None) if args is None: raise ValueError("No environment named {!r}".format(environment)) if not isinstance(args, tuple): args = (args,) # get default values if not currently default default = get_config("default")._values if environment != "default" and hasattr(cls, "default") else None # get reader if isinstance(args[0], dict): # dict object return DictValueReader(args[0], default=default, required=cls.__required__) elif isinstance(args[0], str): # string parser name parsed = detect_and_parse(args, default=default, required=cls.__required__, no_warnings=no_warn) else: # parser specified explicitly parsed = args[0].__handler__(*args[1:], default=default, required=cls.__required__, no_warnings=no_warn) return parsed return get_config ``` #### File: figa/loaders/hocon.py ```python from figa.loaders.parser import Parser from pyhocon import ConfigFactory, HOCONConverter import json class HoconParser(Parser): def parse_string(self, s): conf = ConfigFactory.parse_string(s) return json.loads(HOCONConverter.to_json(conf)) def parse_fp(self, fp): conf = ConfigFactory.parse_file(fp) return json.loads(HOCONConverter.to_json(conf)) ``` #### File: figa/loaders/ini.py ```python from figa.loaders.parser import Parser from configobj import ConfigObj from io import StringIO class IniParser(Parser): def parse_string(self, s): config = ConfigObj(s.splitlines()) return config.dict() ``` #### File: figa/figa/typechecking.py ```python converters = [str, int, float, bool] def check(types, values, trace=None): # checks whether the values match types of types argument, or can be converted trace = trace or [] for item, type_ in types.items(): # check if item exists if item not in values: trace.append(item) raise ValueError("Missing required item {!r}".format(".".join(trace))) val = values[item] if isinstance(type_, dict): # is sub-dict check(type_, val, trace + [item]) else: if not isinstance(val, type_): # try converting value if reasonable (str, int, float) if type_ in converters and type(val) in converters: try: values[item] = type_(val) # try converting to expected type except ValueError: trace.append(item) raise ValueError("item {!r} doesn't match type {!r}".format(".".join(trace), type_.__name__)) else: trace.append(item) raise ValueError("item {!r} doesn't match type {!r}".format(".".join(trace), type_.__name__)) ```
{ "source": "jpatrickdill/roblox.py", "score": 3 }
#### File: roblox.py/roblox/abc.py ```python from __future__ import annotations from abc import ABCMeta, abstractmethod from datetime import datetime from typing import AsyncGenerator, Optional, List, Union from roblox.enums import AssetType class User(metaclass=ABCMeta): """An ABC that details common operations on a Roblox user.""" # @classmethod # def __subclasshook__(cls, C): # if cls is User: # mro = C.__mro__ # for attr in ("username", "id", "description", "status", "created_at", "banned"): # for base in mro: # if attr in base.__dict__: # break # else: # return NotImplemented # return True # return NotImplemented @property @abstractmethod async def id(self) -> int: """ Async property that returns the User's ID. """ raise NotImplemented @property @abstractmethod async def username(self) -> str: """ Async property that returns the User's username. """ raise NotImplemented @property @abstractmethod async def url(self) -> str: """ Async property that returns the User's profile URL. """ raise NotImplemented @property @abstractmethod async def created_at(self) -> datetime: """ Async property that returns the datetime at which the user was created. """ raise NotImplemented @property @abstractmethod async def description(self) -> str: """ Async property that returns the User's profile description. """ raise NotImplemented @abstractmethod async def status(self) -> str: """ Returns the User's current status. """ raise NotImplemented @property @abstractmethod async def is_banned(self) -> bool: """ Async property that returns whether the user is banned. """ raise NotImplemented @property @abstractmethod async def is_premium(self) -> bool: """ Async property that returns whether the user has a premium subscription. """ raise NotImplemented @abstractmethod async def friends(self) -> AsyncGenerator[User]: """ Async Generator yielding the user's friends. """ raise NotImplemented @abstractmethod async def is_friends(self, other: Optional[User] = None) -> bool: """ Checks whether this user is friends with another user or the client user. """ raise NotImplemented @property @abstractmethod def followers(self): """ Property that returns FollowerList for this user. """ raise NotImplemented @property @abstractmethod def followings(self): """ Property that returns FollowingsList for this user. """ raise NotImplemented @property @abstractmethod def inventory(self): """ Property that returns Inventory for this user. """ raise NotImplemented @abstractmethod def games(self) -> AsyncGenerator[Universe, None]: """ Async Generator that yields the user's games. """ raise NotImplemented class ClientUser(metaclass=ABCMeta): """An ABC that details operations on the client user.""" @abstractmethod async def set_status(self, status: str) -> str: """ Sets the client user's status. :param status: New status. :return: Moderated status. """ raise NotImplemented @property @abstractmethod async def robux(self) -> int: """ Returns the client user's amount of currency. """ class OtherUser(metaclass=ABCMeta): """An ABC that details operations on non-client users.""" async def follow(self): """Follows this user from the client user.""" raise NotImplemented async def unfollow(self): """Unfollows this user from the client user.""" raise NotImplemented async def request_friendship(self): """Sends a friend request to this user.""" raise NotImplemented async def unfriend(self): """Unfriends this user..""" raise NotImplemented class DisplayPage(metaclass=ABCMeta): """An ABC that details an object with a display page, such as an asset, place, or universe.""" @property @abstractmethod async def id(self) -> int: """ Async property that returns the object's ID. """ raise NotImplemented @property @abstractmethod async def name(self) -> str: """ Async property that returns the object's name. """ raise NotImplemented @property @abstractmethod async def description(self) -> str: """ Async property that returns the object's description. """ raise NotImplemented @property @abstractmethod async def url(self) -> str: """ Async property that returns the object's URL. """ raise NotImplemented @property @abstractmethod async def created_at(self) -> datetime: """ Async property that returns when the object was created. """ raise NotImplemented @property @abstractmethod async def updated_at(self) -> datetime: """ Async property that returns when the object was last updated. """ raise NotImplemented class Votable(metaclass=ABCMeta): """ABC that represents on object that can be voted on, e.g., favorites, thumbs-up, thumbs-down""" @property @abstractmethod async def favorites(self) -> int: """ Async property that returns the asset's current number of favorites. """ raise NotImplemented @property @abstractmethod async def is_favorited(self) -> bool: """ Async property that returns whether the asset is favorited by the client. """ raise NotImplemented @abstractmethod async def favorite(self): """ Favorites the asset for the client user. """ raise NotImplemented @abstractmethod async def unfavorite(self): """ Unfavorites the asset for the client user. """ raise NotImplemented class Asset(DisplayPage, Votable, metaclass=ABCMeta): """An ABC that details common operations on a Roblox asset.""" @property @abstractmethod async def type(self) -> AssetType: """ Async property that returns the Asset's type. """ raise NotImplemented @property @abstractmethod async def price(self) -> int: """ Async property that returns the asset's current price in Robux. """ raise NotImplemented @property @abstractmethod async def for_sale(self) -> bool: """ Async property that returns whether the asset can be purchased. """ raise NotImplemented @property @abstractmethod async def creator(self) -> User: """ Async property that returns the creator of the asset. """ raise NotImplemented @abstractmethod async def purchase(self, expected_price: Optional[int] = None): """ Purchases the asset for the client user. If `expected_price` is specified, the asset will not be purchased unless the `expected_price` matches the current price. """ raise NotImplemented @abstractmethod async def delete(self): """ Deletes asset from the client user's inventory. """ class Place(Asset, metaclass=ABCMeta): """An ABC that details operations on a Roblox Place asset.""" @property @abstractmethod async def universe(self) -> Universe: """Async property that returns the Universe the place belongs to.""" raise NotImplemented class Universe(DisplayPage, Votable, metaclass=ABCMeta): """An ABC that details common operations on a Roblox Universe (Game).""" @property @abstractmethod async def visits(self) -> int: """Async property that returns the number of visits to this game.""" raise NotImplemented @property @abstractmethod async def playing(self) -> int: """Async property that returns the number of players in this game.""" raise NotImplemented @property @abstractmethod async def max_players(self) -> int: """Async property that returns the max players per server in this game.""" raise NotImplemented @property @abstractmethod async def root_place(self) -> Place: """Async property that returns the universe's root place.""" raise NotImplemented class Group(DisplayPage, metaclass=ABCMeta): """ABC detailing operations on a Roblox Group.""" @property @abstractmethod async def owner(self) -> Optional[User]: """Async property that returns the group's current owner, if it has one.""" raise NotImplemented @property @abstractmethod async def shout(self) -> Optional[Shout]: """Async property that returns the group's current shout.""" raise NotImplemented @property @abstractmethod async def members(self) -> AsyncGenerator[GroupMember, None]: """Async generator that yields the group's members.""" raise NotImplemented @abstractmethod async def get_member(self, user: Union[User, str, int]) -> GroupMember: """Tries to find a group member given a username, user ID, or User object.""" raise NotImplemented @property @abstractmethod async def is_public(self) -> bool: """Async property that returns whether the group allows public entry.""" raise NotImplemented @property @abstractmethod async def roles(self) -> List[Role]: """Async property that returns a list of the group's roles""" raise NotImplemented class GroupMember(User, metaclass=ABCMeta): """ABC describing operations on a Group Member.""" @property @abstractmethod async def role(self) -> Role: """Async property that eturns the member's group role.""" raise NotImplemented @property @abstractmethod async def rank(self) -> int: """Shortcut for the numerical rank of the member's role.""" raise NotImplemented class Role(metaclass=ABCMeta): """ABC describing a group roleset.""" @property @abstractmethod async def id(self) -> int: """Async property that returns the role's ID.""" raise NotImplemented @property @abstractmethod async def name(self) -> str: """Async property that returns the role's name.""" raise NotImplemented @property @abstractmethod async def description(self) -> str: """Async property that returns the role's description.""" raise NotImplemented @property @abstractmethod async def rank(self) -> int: """Async property that returns the role's numerical rank.""" raise NotImplemented @property @abstractmethod async def member_count(self) -> int: """Async property that returns the number of members with this role.""" raise NotImplemented class Shout(metaclass=ABCMeta): """ABC describing a group shout.""" @property @abstractmethod def body(self) -> str: """Returns the shout's body.""" raise NotImplemented @property @abstractmethod def created_at(self) -> datetime: """Returns the time the shout was created at.""" raise NotImplemented @property @abstractmethod async def poster(self) -> User: """Returns the user who posted the shout.""" raise NotImplemented ``` #### File: roblox.py/roblox/asset.py ```python import logging import maya from CaseInsensitiveDict import CaseInsensitiveDict from async_property import async_property, async_cached_property from roblox.enums import AssetType from roblox.abc import Asset as _BaseAsset from roblox.errors import * from functools import wraps from roblox.http import Session from roblox.util import urlify log = logging.getLogger(__name__) # util decorator def p_info(name, nocache=False): """This decorator will check if the property is in the asset's _data, and if it isn't send a request to the ProductInfo API endpoint""" def decorator(fn): @wraps(fn) async def new_fn(self): if nocache or self._data[name] is None: await self._get_product_info() return self._data[name] return new_fn return decorator class Asset(_BaseAsset): """ Represents a Roblox Asset. """ __slots__ = ("_data", "_state") def __init__(self, *, state: Session, data): self._state = state self._data = CaseInsensitiveDict({ "name": None, "description": None, "id": None, "productid": None, "created": None, "updated": None, "price": None, "assettypeid": None, "sales": None, "isforsale": None, "ispublicdomain": None, "islimited": None, "islimitedunique": None, "remaining": None, "serialnumber": None, "creator": None }) self._update(data) def __repr__(self): return "Asset({!r})".format(self._data["name"] or self._data["id"]) def __hash__(self): return self._data["id"] or -2 def __eq__(self, other): if not isinstance(other, Asset): return False return self._data["id"] == other._data["id"] def _update(self, data: dict): for k in list(data.keys()): data[k.lower()] = data[k] data.setdefault("price", data.get("priceinrobux")) data.setdefault("id", data.get("assetid")) data.setdefault("name", data.get("assetname")) self._data.update(data) async def _get_product_info(self): data = await self._state.product_info(self._data["id"]) self._update(data) @async_property @p_info("name") async def name(self): """|asyncprop| The asset's name. :rtype: str """ pass @async_property @p_info("description") async def description(self): """|asyncprop| The asset's description. :rtype: str """ pass @async_property @p_info("id") async def id(self): """|asyncprop| The asset's ID. :rtype: int """ pass @async_property async def type(self): """|asyncprop| The asset's type. :rtype: :class:`.AssetType` """ if self._data["assettypeid"] is None: await self._get_product_info() return AssetType(self._data["assettypeid"]) @async_property async def url(self): """|asyncprop| URL to the asset's page. :rtype: str """ safe_name = urlify(await self.name) return "https://roblox.com/library/{}/{}".format(await self.id, safe_name) @async_property @p_info("productid") async def product_id(self): """|asyncprop| The asset's product ID. :rtype: int """ pass @async_property async def created_at(self): """|asyncprop| Time at which the asset was created. :rtype: :class:`datetime.datetime` """ if self._data["created"] is None: await self._get_product_info() try: return maya.parse(self._data["created"]).datetime() except OSError: return None @async_cached_property async def updated_at(self): """|asyncprop| Time at which the asset was last updated. :rtype: :class:`datetime.datetime` """ if self._data["updated"] is None: await self._get_product_info() try: return maya.parse(self._data["updated"]).datetime() except OSError: return None @async_property @p_info("price", nocache=True) async def price(self): """|asyncprop| The asset's purchase price. :rtype: int """ pass @async_property @p_info("sales", nocache=True) async def sales(self): """|asyncprop| Number of sales the asset has. :rtype: int """ pass @async_property async def for_sale(self): """|asyncprop| Whether the asset can be purchased/taken. :rtype: bool """ if self._data["isforsale"] is None and self._data["ispublicdomain"] is None: await self._get_product_info() return self._data["isforsale"] or self._data["ispublicdomain"] @async_property async def creator(self): """|asyncprop| The asset's creator. :rtype: :class:`.User` """ if self._data["creator"] is None: await self._get_product_info() creator = self._data["creator"] if creator.get("CreatorType") == "User": return await self._state.client.get_user(username=creator["Name"]) @async_property async def favorites(self): """|asyncprop| Number of favorites the asset has. :rtype: int """ return await self._state.favorites_count(await self.id) @async_property async def is_favorited(self): """|asyncprop| Whether the client has favorited the asset. :rtype: bool """ model = await self._state.favorite_model(await self._state.client.user.id, await self.id) return False if model is None else True async def favorite(self): """ Favorites the asset. """ return await self._state.create_favorite(await self._state.client.user.id, await self.id) async def unfavorite(self): """ Unfavorites the asset. """ return await self._state.delete_favorite(await self._state.client.user.id, await self.id) async def toggle_favorite(self): """ Toggles the asset's favorite. """ if await self.is_favorited: return await self.unfavorite() else: return await self.favorite() async def purchase(self, expected_price: int = None): """ Purchases the asset from the client user. Args: expected_price: Price to check the asset against before purchasing. Asset will not be purchased if the current price doesn't match the expected price. """ expected_price = expected_price or await self.price expected_seller = await (await self.creator).id return await self._state.purchase_product(await self.product_id, expected_price, expected_seller) async def delete(self): """ Deletes the asset from the client user's inventory. """ return await self._state.delete_from_inventory(await self.id) async def download(self, path): file = open(path, "wb") await self._state.download_asset(await self.id, file) file.close() ``` #### File: roblox.py/roblox/game.py ```python import logging from abc import ABC import maya from CaseInsensitiveDict import CaseInsensitiveDict from async_property import async_property, async_cached_property from roblox.asset import Asset from roblox.abc import Universe as _BaseUniverse from roblox.http import Session log = logging.getLogger(__name__) class Place(Asset): __slots__ = ("_data", "_state") def __init__(self, *, state, data): super().__init__(state=state, data=data) self._data.update({ "isplayable": None, "universeid": None, "reasonprohibited": None, "imageToken": None, "universerootplaceid": None, "url": None }) self._update(data) def __repr__(self): return "Place({!r})".format(self._data["name"] or self._data["id"]) async def _get_place_details(self): details = (await self._state.get_place_details(await self.id))[0] self._update(details) @async_property async def universe(self): if self._data["universeid"] is None: await self._get_place_details() return Universe(state=self._state, data={"id": self._data["universeid"]}) game = universe @async_property async def url(self): if self._data["url"] is None: await self._get_place_details() return self._data["url"] # util decorator def g_info(name, nocache=False): """This decorator will check if the property is in the game's _data, and if it isn't send a request to the Games API endpoint""" def decorator(fn): async def new_fn(self): if nocache or self._data[name] is None: await self._get_game_details() return self._data[name] return new_fn return decorator class Universe(_BaseUniverse): __slots__ = ("_data", "_state") def __init__(self, *, state: Session, data): self._state = state self._data = CaseInsensitiveDict({ "name": None, "description": None, "id": None, "rootplaceid": None, "created": None, "updated": None, "price": None, "sales": None, "creator": None, "allowedgearcategories": None, "playing": None, "visits": None, "maxplayers": None, "studioaccesstoapisallowed": None, "createvipserversallowed": None, "universeavatartype": None, "genre": None }) self._update(data) def __repr__(self): return "Universe({!r})".format(self._data["name"] or self._data["id"]) def __hash__(self): return hash(self._data["id"] or -1) def _update(self, data): for k in list(data.keys()): data[k.lower()] = data[k] self._data.update(data) async def _get_game_details(self): details = (await self._state.get_game_details(await self.id))["data"][0] self._update(details) @async_property async def id(self): return self._data["id"] @async_property @g_info("name") async def name(self): pass @async_property @g_info("description") async def description(self): pass @async_property async def created_at(self): if self._data["created"] is None: await self._get_game_details() try: return maya.parse(self._data["created"]).datetime() except OSError: return None @async_cached_property async def updated_at(self): if self._data["updated"] is None: await self._get_game_details() try: return maya.parse(self._data["updated"]).datetime() except OSError: return None @async_property async def creator(self): if self._data["creator"] is None: await self._get_game_details() creator = self._data["creator"] if creator.get("type") == "User": return await self._state.client.get_user(username=creator["name"]) @async_property async def root_place(self): if self._data["rootplaceid"] is None: await self._get_game_details() return await self._state.client.get_asset(self._data["rootplaceid"]) @async_property async def url(self): return await (await self.root_place).url @async_property @g_info("visits", nocache=True) async def visits(self): pass @async_property @g_info("playing", nocache=True) async def playing(self): pass @async_property @g_info("maxplayers", nocache=True) async def max_players(self): pass @property async def is_favorited(self) -> bool: data = await self._state.universe_favorited(await self.id) return data.get("isFavorited") async def favorite(self): await self._state.favorite_universe(await self.id, True) return True async def unfavorite(self): await self._state.favorite_universe(await self.id, False) return True @property async def favorites(self) -> int: data = await self._state.universe_favorites(await self.id) return data.get("favoritesCount") ``` #### File: roblox.py/roblox/group.py ```python from __future__ import annotations import logging from functools import wraps import maya from CaseInsensitiveDict import CaseInsensitiveDict from async_property import async_property from roblox.abc import Group as _Group from roblox.abc import GroupMember as _GroupMember from roblox.abc import Role as _Role from roblox.abc import Shout as _Shout from roblox.errors import * from roblox.http import Session from roblox.iterables import AsyncIterator from roblox.user import User, BaseUser from roblox.util import urlify from typing import Union log = logging.getLogger(__name__) # util decorator def g_info(name, nocache=False): """This decorator will check if the property is in the group"s _data, and if it isn"t send a request to the groups API endpoint""" def decorator(fn): @wraps(fn) async def new_fn(self): if nocache or self._data[name] is None: await self._get_group_details() return self._data[name] return new_fn return decorator class Group(_Group): __slots__ = ("_data", "_state") def __init__(self, *, state: Session, data): self._state = state self._data = CaseInsensitiveDict({ "id": None, "name": None, "description": None, "owner": None, "shout": None, "membercount": None, "isbuildersclubonly": None, "publicentryallowed": None, "islocked": None }) self._update(data) def __repr__(self): return "Group({!r})".format(self._data["name"] or self._data["id"]) def __hash__(self): return self._data["id"] or -2 def __eq__(self, other): if not isinstance(other, Group): return False return self._data["id"] == other._data["id"] def _update(self, data): self._data.update(data) async def _get_group_details(self): data = await self._state.get_group_details(await self.id) self._update(data) @async_property @g_info("id") async def id(self): """|asyncprop| The group's ID. :rtype: int """ pass @async_property @g_info("name") async def name(self): """|asyncprop| The group's name. :rtype: str """ pass @async_property @g_info("description") async def description(self): """|asyncprop| The group's description. :rtype: str """ pass @async_property @g_info("publicentryallowed", nocache=True) async def is_public(self): """|asyncprop| Whether new members must be approved. :rtype: bool """ pass @async_property async def owner(self): """|asyncprop| The group's owner. :rtype: :class:`.User` """ await self._get_group_details() if self._data["owner"] is None: return None data = { "user": self._data["owner"], "role": (await self.roles)[-1]._data } return GroupMember(state=self._state, data=data, group=self) @async_property async def created_at(self): if self._data["shout"] is None: await self._get_group_details() raise NotImplemented updated_at = created_at @async_property async def url(self): """|asyncprop| The group's URL. :rtype: str """ if self._data["id"] is None or self._data["name"] is None: await self._get_group_details() return "https://roblox.com/groups/{}/{}#!/about".format(self._data["id"], urlify(self._data["name"])) @async_property async def shout(self): """|asyncprop| The group's current shout. :rtype: :class:`.Shout` """ await self._get_group_details() try: return Shout(state=self._state, data=self._data.get("shout"), group=self) except TypeError: return None @async_property async def roles(self, reverse=False): """|asyncprop| List of the group's roles. :rtype: List[:class:`.Role`] """ data = await self._state.get_group_roles(await self.id) roles = [] for role in data["roles"]: roles.append( Role(state=self._state, data=role, group=self) ) roles.sort(key=lambda r: r._data["rank"], reverse=reverse) return roles async def get_role(self, role: Union[str, int]): """ Attempts to find a role within a group given a name or ID. Args: role: Role's name or ID. :rtype: Optional[:class:`.Role`] """ if isinstance(role, str) or isinstance(role, int): role = str(role).lower() for obj in await self.roles: if obj == role or str(await obj.id) == role or (await obj.name).lower() == role: return obj @property def members(self) -> _MembersIterator: """ :class:`.AsyncIterator` for this group's members. Yields: :class:`.GroupMember` """ return _MembersIterator(state=self._state, opts={"group": self}) async def get_member(self, user): """ Tries to find a group member given a username, ID, or :class:`.User`. Args: user: User to try and find within the group. :rtype: :class:`.GroupMember` """ user_data = {} if isinstance(user, BaseUser): user_id = await user.id user_data = user._data elif isinstance(user, str): user = await self._state.client.get_user(username=user) user_id = await user.id user_data = user._data else: user_id = int(user) user_data["id"] = user_id all_roles = await self._state.get_user_roles(user_id) match = None for data in all_roles["data"]: if data["group"]["id"] == await self.id: match = data break if match is None: raise UserNotInGroup data = { "user": user_data, "role": match["role"] } return GroupMember(state=self._state, data=data, group=self) async def upload_asset(self, file, name, asset_type): if isinstance(file, str): file = open(file, "rb") r = await self._state.upload_asset(file, name, int(asset_type), group_id=await self.id) file.close() return r class _MembersIterator(AsyncIterator): async def __aiter__(self): async for data in self._state.get_group_members(await self._opts["group"].id): yield GroupMember(state=self._state, data=data, group=self) async def count(self): await self._opts["group"]._get_group_details() return self._opts["group"]._data.get("membercount") class Shout(_Shout): __slots__ = ("_data", "_state", "group") def __init__(self, *, state, data, group: Group): self._state = state self._data = CaseInsensitiveDict({ "body": None, "poster": None, "created": None, "updated": None }) self.group = group self._update(data) def __repr__(self): return "Shout({!r}, {!r}, {!r})".format(self.group, self._data["poster"]["username"], self._data["body"]) def _update(self, data): self._data.update(data) @property def body(self): """ Shout's body. :type: str """ return self._data["body"] @property def created_at(self): """ Date/time when the shout was last updated. :type: :class:`datetime.datetime` """ try: return maya.parse(self._data["updated"]).datetime() except OSError: return None @async_property async def poster(self) -> Union[GroupMember, User]: """|asyncprop| User who posted the shout. Return: :class:`.GroupMember` if poster is still in the group, :class:`.User` otherwise. :rtype: Union[:class:`.GroupMember`, :class:`.User`] """ poster_id = self._data["poster"]["userid"] poster_user = self._data["poster"]["username"] user = await self._state.client.get_user(id=poster_id, username=poster_user) try: # try to get a GroupMember instead of User return await self.group.get_member(user) except UserNotInGroup: return user class GroupMember(User, _GroupMember): """ Represents a group member. This class inherits all functionality from :class:`.User`. **Operations** **x == y** Checks that two users are equal. **x != y** Checks that two users are not equal. **x > y** Checks that member X has a greater rank than member Y. **x >= y** Checks that member X's rank is greater than or equal to member Y. **x < y** Checks that member X has a lesser rank than member Y. **x <= y** Checks that member X's rank is less than or equal to member Y. Attributes: group (:class:`.Group`): Group the member belongs to. """ __slots__ = ("_state", "_data", "group") def __init__(self, *, state, data, group): super().__init__(state=state, data=data.get("user", data.get("User"))) self._data.update({ "role": None }) self._data.update(data) self.group = group def __repr__(self): return "GroupMember({!r}, group={!r}, rank={!r})".format(self._data["username"] or self._data["id"], self.group._data["name"] or self.group._data["id"], (self._data["role"] or {}).get("rank")) def _comp(self, other): if self._data["role"] is None: my_rank = 0 else: my_rank = self._data["role"].get("rank", 0) if isinstance(other, GroupMember): if other._data["role"] is None: other_rank = 0 else: other_rank = other._data["role"].get("rank", 0) elif isinstance(other, Role): other_rank = other._data.get("rank", 0) else: raise UserError("Can't compare GroupMember with {}".format(other.__class__.__name__)) if my_rank > other_rank: return 1 elif my_rank == other_rank: return 0 else: return -1 def __gt__(self, other): c = self._comp(other) return c == 1 def __ge__(self, other): c = self._comp(other) return c > 0 def __lt__(self, other): c = self._comp(other) return c == -1 def __le__(self, other): c = self._comp(other) return c < 0 @property def role(self): """ Member's role within the group. :type: :class:`.Role` """ if self._data["role"] is None: raise RoleNotFound return Role(state=self._state, data=self._data["role"], group=self.group) @async_property async def rank(self): """|asyncprop| Member's rank within the group. Shortcut for ``await member.role.rank` :rtype: int """ return await self.role.rank class Role(_Role): """ Represents a roleset within a group. **Operations** **x == y** Checks that two roles are equal. **x != y** Checks that two roles are not equal. **x > y** Checks that role X has a greater rank than role Y. **x >= y** Checks that role X's rank is greater than or equal to role Y. **x < y** Checks that role X has a lesser rank than role Y. **x <= y** Checks that role X's rank is less than or equal to role Y. """ __slots__ = ("_state", "_data", "group") def __init__(self, *, state: Session, data, group): self._state = state self._data = CaseInsensitiveDict({ "id": None, "name": None, "description": None, "rank": None, "membercount": None, "permissions": None, }) self._update(data) self.group = group def __repr__(self): return "Role({!r}, {!r}, rank={!r})".format(self.group, self._data["name"], self._data["rank"]) def __hash__(self): return hash(self._data["id"] << 22 | self.group._data["id"]) def __eq__(self, other): if not isinstance(other, Role): return False if self.group != other.group: return False return self._data["id"] == other._data["id"] and self._data["id"] is not None def _comp(self, other): if isinstance(other, Role): other = other._data["rank"] elif isinstance(other, GroupMember): if other._data["role"] is None: return False other = other._data["role"]["rank"] if self._data["rank"] > other: return 1 elif self._data["rank"] < other: return -1 else: return 0 def __gt__(self, other): c = self._comp(other) return c == 1 def __ge__(self, other): c = self._comp(other) return c >= 0 def __lt__(self, other): c = self._comp(other) return c == -1 def __le__(self, other): c = self._comp(other) return c <= 0 def _update(self, data): self._data.update(data) async def _get_role_details(self): data = await self._state.get_role_details(await self.id) data = data["data"][0] self._update(data) @async_property async def id(self): """|asyncprop| The role's ID. :rtype: int """ return self._data["id"] @async_property async def name(self): """|asyncprop| The role's name. :rtype: str """ if self._data["name"] is None: await self._get_role_details() return self._data["name"] @async_property async def description(self): """|asyncprop| The role's description. :rtype: str """ if self._data["description"] is None: await self._get_role_details() return self._data["description"] @async_property async def rank(self): """|asyncprop| The role's integer rank. :rtype: int """ if self._data["rank"] is None: await self._get_role_details() return self._data["rank"] @async_property async def member_count(self): """|asyncprop| Number of members belonging to this role. :rtype: int """ await self._get_role_details() return self._data["membercount"] ``` #### File: roblox.py/roblox/util.py ```python import re def urlify(s): # Remove all non-word characters (everything except numbers and letters) s = re.sub(r"[^\w\s]", '', s) # Replace all runs of whitespace with a single dash s = re.sub(r"\s+", '-', s) return s ```
{ "source": "JPatryk13/Portfolio", "score": 3 }
#### File: projects/tests/test_models.py ```python from django.test import TestCase from projects.models import Project class ProjectModelTest(TestCase): @classmethod def setUpTestData(cls): Project.objects.create(title="Title of the test project.") def test_label_title(self): project = Project.objects.get(id=1) field_label = project._meta.get_field('title').verbose_name self.assertEquals(field_label, 'Project title.') def test_label_prev_description(self): project = Project.objects.get(id=1) field_label = project._meta.get_field('prev_description').verbose_name self.assertEquals(field_label, 'Short description.') def test_label_description(self): project = Project.objects.get(id=1) field_label = project._meta.get_field('description').verbose_name self.assertEquals(field_label, 'Description.') def test_max_length_title(self): project = Project.objects.get(id=1) max_length = project._meta.get_field('title').max_length self.assertEquals(max_length, 100) def test_max_length_prev_description(self): project = Project.objects.get(id=1) max_length = project._meta.get_field('prev_description').max_length self.assertEquals(max_length, 300) def test_max_length_description(self): project = Project.objects.get(id=1) max_length = project._meta.get_field('description').max_length self.assertEquals(max_length, 2500) def test_max_length_phase(self): project = Project.objects.get(id=1) max_length = project._meta.get_field('phase').max_length self.assertEquals(max_length, 1) def test_object_name(self): project = Project.objects.get(id=1) expected_name = project.title self.assertEquals(expected_name, str(project)) def test_get_absolute_url(self): project = Project.objects.get(id=1) self.assertEquals(project.get_absolute_url(), '/project/1') ``` #### File: Portfolio/projects/views_old.py ```python from django.shortcuts import render, redirect from django.views import generic from django.template.loader import get_template from django.core.mail import EmailMessage from .models import Project from .forms import ContactForm def index(request): return render(request, 'index.html') def about(request): return render(request, 'about.html') def contact(request): # Get contact form (name, email, message) form_class = ContactForm if request.method == 'POST': # If the submit button was pressed... form = form_class(data=request.POST) # ...extract the data from the request into 'form' # # HttpRequest.POST # A dictionary-like object containing all given HTTP POST parameters, # providing that the request contains form data. # # dict.get(key, value) # The get() method returns the value for the specified key if key is # in dictionary. # # email = EmailMessage( # subject= 'Hello', # body= 'Body goes here', # from_email= '<EMAIL>', # to= ['<EMAIL>', '<EMAIL>'], # bcc= ['<EMAIL>'], # reply_to= ['<EMAIL>'], # headers= {'Message-ID': 'foo'}, # ) # if form.is_valid(): # If the content of the form (extracted data) is valid... name = request.POST.get('name', '') # ...extract the name email = request.POST.get('email', '') # ...extract the email message = request.POST.get('message', '') # ...extract the message # Email the profile with the contact information template = get_template('contact_template.txt') # Grab template for message output context = { 'name': name, 'email': email, 'message': message, } # Organise user input into context dictionary content = template.render(context) # Feed context into contact_template email_message = EmailMessage( subject='New message.', body=content, from_email=email, to=['<EMAIL>'], headers={'Reply-To': email} ) # Build a message email_message.send() # And send it return redirect('contact') # Get the user back to the contact page # Return (render) contact page with form_class as form (context) return render(request, 'contact.html', {'form': form_class}) class ProjectListView(generic.ListView): model = Project class ProjectDetailView(generic.DetailView): model = Project ```
{ "source": "jpatton-USGS/earthquake-processing-formats", "score": 3 }
#### File: python/test/testSite.py ```python import processingformats.site # stdlib imports import unittest class TestSite(unittest.TestCase): STATION = 'BOZ' CHANNEL = 'BHZ' NETWORK = 'US' LOCATION = '00' LATITUDE = 45.596970 LONGITUDE = -111.629670 ELEVATION = 1589.000000 JSONSTRING = '{"Station": "BOZ", "Network": "US", "Latitude": 45.59697, "Longitude": -111.62967, "Elevation": 1589.0, "Channel": "BHZ", "Location": "00"}' DICT = {'Station': 'BOZ', 'Channel': 'BHZ', 'Network': 'US', 'Location': '00', 'Latitude': 45.596970, 'Longitude': -111.629670, 'Elevation': 1589.000000} def test_init(self): site = processingformats.site.Site() self.assertFalse(hasattr(site, 'station')) self.assertFalse(hasattr(site, 'channel')) self.assertFalse(hasattr(site, 'network')) self.assertFalse(hasattr(site, 'location')) self.assertFalse(hasattr(site, 'latitude')) self.assertFalse(hasattr(site, 'longitude')) self.assertFalse(hasattr(site, 'elevation')) site = processingformats.site.Site(self.STATION, self.CHANNEL, self.NETWORK, self.LOCATION, self.LATITUDE, self.LONGITUDE, self.ELEVATION) self.assertTrue(hasattr(site, 'station')) self.assertTrue(hasattr(site, 'channel')) self.assertTrue(hasattr(site, 'network')) self.assertTrue(hasattr(site, 'location')) self.assertTrue(hasattr(site, 'latitude')) self.assertTrue(hasattr(site, 'longitude')) self.assertTrue(hasattr(site, 'elevation')) self.assertEqual(site.station, self.STATION) self.assertEqual(site.channel, self.CHANNEL) self.assertEqual(site.network, self.NETWORK) self.assertEqual(site.location, self.LOCATION) self.assertEqual(site.latitude, self.LATITUDE) self.assertEqual(site.longitude, self.LONGITUDE) self.assertEqual(site.elevation, self.ELEVATION) def test_toJSON(self): site = processingformats.site.Site(self.STATION, self.CHANNEL, self.NETWORK, self.LOCATION, self.LATITUDE, self.LONGITUDE, self.ELEVATION) self.assertEqual(site.toJSONString(), self.JSONSTRING) def test_fromJSON(self): site = processingformats.site.Site() site.fromJSONString(self.JSONSTRING) self.assertEqual(site.station, self.STATION) self.assertEqual(site.channel, self.CHANNEL) self.assertEqual(site.network, self.NETWORK) self.assertEqual(site.location, self.LOCATION) self.assertEqual(site.latitude, self.LATITUDE) self.assertEqual(site.longitude, self.LONGITUDE) self.assertEqual(site.elevation, self.ELEVATION) def test_toDict(self): site = processingformats.site.Site(self.STATION, self.CHANNEL, self.NETWORK, self.LOCATION, self.LATITUDE, self.LONGITUDE, self.ELEVATION) self.assertEqual(site.toDict(), self.DICT) def test_fromDict(self): site = processingformats.site.Site() site.fromDict(self.DICT) self.assertEqual(site.station, self.STATION) self.assertEqual(site.channel, self.CHANNEL) self.assertEqual(site.network, self.NETWORK) self.assertEqual(site.location, self.LOCATION) self.assertEqual(site.latitude, self.LATITUDE) self.assertEqual(site.longitude, self.LONGITUDE) self.assertEqual(site.elevation, self.ELEVATION) def test_isValid(self): site = processingformats.site.Site(self.STATION, self.CHANNEL, self.NETWORK, self.LOCATION, self.LATITUDE, self.LONGITUDE, self.ELEVATION) self.assertTrue(site.isValid()) badSite = processingformats.site.Site() self.assertFalse(badSite.isValid()) if __name__ == '__main__': unittest.main() ```
{ "source": "jpaul121/amzn-review-sentiment", "score": 3 }
#### File: jpaul121/amzn-review-sentiment/model.py ```python import string import numpy as np import pandas as pd import torch.nn as nn import torch.nn.functional as F import settings as S from torch.utils.data import Dataset class ReviewDataset(Dataset): def __init__(self, review_df, vectorizer): self.review_df = review_df self.vectorizer_ = vectorizer self.train_df = self.review_df[self.review_df["split"] == "train"] self.train_size = len(self.train_df) self.val_df = self.review_df[self.review_df["split"] == "val"] self.val_size = len(self.val_df) self.test_df = self.review_df[self.review_df["split"] == "test"] self.test_size = len(self.test_df) self.lookup_dict_ = { "train": (self.train_df, self.train_size), "val": (self.val_df, self.val_size), "test": (self.test_df, self.test_size) } self.set_split("train") def set_split(self, split="train"): self.target_split_ = split self.target_df_, self.target_size_ = self.lookup_dict_[split] def __len__(self): return self.target_size_ def __getitem__(self, index): row = self.target_df_.iloc[index] review_vector = \ self.vectorizer_.vectorize(row["review_text"]) rating_index = \ self.vectorizer_.rating_vocab.lookup_token(row["binary_score"]) return { "x_data": review_vector, "y_target": rating_index } def get_n_batches(self, batch_size): return len(self) // batch_size class Vocabulary(object): def __init__(self, token_to_idx=None, add_unk=True, unk_token="<UNK>"): if token_to_idx is None: token_to_idx = {} self.token_to_idx_ = token_to_idx self.idx_to_token_ = { idx: token for token, idx in self.token_to_idx_.items() } self.add_unk_ = add_unk self.unk_token_ = unk_token self.unk_index = -1 if self.add_unk_: self.unk_index_ = self.add_token(unk_token) def add_token(self, token): if token in self.token_to_idx_: index = self.token_to_idx_[token] else: index = len(self.token_to_idx_) self.token_to_idx_[token] = index self.idx_to_token_[index] = token return index def lookup_token(self, token): if self.add_unk_: return self.token_to_idx_.get(token, self.unk_index) else: return self.token_to_idx_[token] def lookup_index(self, index): if index not in self.idx_to_token_: raise KeyError(f"index ({index}) is not in the Vocabulary") return self.idx_to_token_[index] def __str__(self): return f"<Vocabulary(size={len(self)})>" def __len__(self): return len(self.token_to_idx_) class Classifier(nn.Module): def __init__(self, num_features, hidden_dim=S.HIDDEN_DIM): super(Classifier, self).__init__() self.fc1 = nn.Linear(in_features=num_features, out_features=hidden_dim) self.fc2 = nn.Linear(in_features=hidden_dim, out_features=1) def forward(self, x_in, dropout=False, dropout_p=S.DROPOUT_P, apply_sigmoid=False): intermediate = F.relu(self.fc1(x_in)) if dropout == True: y_out = self.fc2(F.dropout(intermediate, p=dropout_p)).squeeze() else: y_out = self.fc2(intermediate).squeeze() if apply_sigmoid: y_out = F.sigmoid(y_out) return y_out ```
{ "source": "jpaul121/Banter", "score": 2 }
#### File: Banter/authentication/serializers.py ```python from django.conf import settings from django.contrib.auth.models import User from rest_framework_simplejwt.serializers import TokenObtainPairSerializer from rest_framework import serializers class AppUserSerializer(serializers.ModelSerializer): password = serializers.CharField(min_length=8, write_only=True) class Meta: model = User extra_kwargs = { 'password': { 'write_only': True } } fields = [ 'username', 'password' ] def create(self, validated_data): password = validated_data['password'] instance = self.Meta.model(**validated_data) if password is not None: instance.set_password(password) instance.save() return instance class AppTokenObtainPairSerializer(TokenObtainPairSerializer): @classmethod def get_token(cls, user): token = super().get_token(user) # Just in case I need to modify user tokens later on return token ```
{ "source": "jpaulhart/BC-Covid-19", "score": 3 }
#### File: src/pages/recents.py ```python import datetime from datetime import timedelta import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd import streamlit as st import awesome_streamlit as ast import constants as cn # pylint: disable=line-too-long def write(): """Used to write the page in the streamlit_app.py file""" st.title("Countries Covid Cases") cn.DATE_SPANS() st.markdown('#### ') country_lists = [ ['Italy'], ['Spain'], ['Portugal'], ['France'], ['Canada'], ['US'], ['Oman','Jordan','Morocco','Tunisia', 'Algeria'], ['Thailand','Cambodia','Vietnam'], ['Argentina','Chile','Uruguay'], ] # Detail trend report for select countries for country_list in country_lists: print(f"Countries: {len(country_list)}, Country List: {country_list}") if len(country_list) != 1: return country_display = ', '.join(country_list) st.markdown(cn.HORIZONTAL_RULE, unsafe_allow_html=True) #st.markdown(f'**Country:** {country_display}') st.markdown('#### ') fig2 = plt.figure(1, figsize=(8, 5)) plt.xlabel="Date" plt.ylabel="Number" #plt.xticks(rotation=45) ax = plt.gca() ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) for cty in country_list: plt.title(f'{cty} New Confirmed Cases - Last 20 Days', fontsize='large') file_name = cty + '.csv' file_url = f'{cn.CASES_BASE_URL}{file_name.replace(" ", "%20")}' df = pd.read_csv(file_url) df = df.tail(20) plt.plot(df['Date'], df['ConfirmedNewMean'], label=df['Country_Region'], linewidth=2, color = 'darkslategrey') plt.bar(df['Date'], df['ConfirmedNew'], label=df['Country_Region'], color = 'lightseagreen') # Add a legend plt.legend(country_list) plt.grid(b=True, which='major') st.pyplot(fig2) plt.close() ```
{ "source": "JPaulMora/grin-pool", "score": 3 }
#### File: grin-py/utils/MWGP_earningsEstimate.py ```python import os import sys import argparse from datetime import datetime, timedelta try: import requests except Exception as e: print("Error: This script requires the 'requests' module, please run `pip3 install requests`") Graph = True try: import plotly import plotly.graph_objs as go except Exception as e: Graph = False mwURL = "https://api.mwgrinpool.com" NanoGrin = 1.0/1000000000.0 SecondsInDay = float(60*60*24) PPLNGSeconds = float(60*60*4) def print_header(): print(" ") print("############# MWGrinPool Average Daily Earnings #############") print("## ") if Graph == False: print(" WARNING: ") print(" This script requires the 'plotly' module to produce a graph") print(" Please run: `pip3 install plotly`") print(" (running in text mode)") print(" ") def print_footer(rewardTotal, c29gps, c31gps, numDays, startTS, endTS): print(" ") print(" ") print(" Report for {} days - from: {} to: {}".format(numDays, startTS.strftime("%m-%d-%y %H:%M"), endTS.strftime("%m-%d-%y %H:%M"))) print(" Mining C29 at {}gps, C31 at {}gps".format(c29gps, c31gps)) print(" ") print(" Total Rewards: {} Grin".format(rewardTotal)) print(" Avg Daily Reward = {} Grin".format(rewardTotal/NumDays)) print(" ") def epoch_to_dt(epoch): return datetime.fromtimestamp(epoch) parser = argparse.ArgumentParser() parser.add_argument("--days", help="Number of days to average over") parser.add_argument("--c29gps", help="Miners C29 Graphs/second") parser.add_argument("--c31gps", help="Miners C31 Graphs/second") parser.add_argument("--debug", help="Print lots of debug info") args = parser.parse_args() print_header() if args.days is None: NumDays = float(input(" Number of days to average over: ")) else: NumDays = float(args.days) if NumDays > 62: print(" ") print(" -- Error: Please limit your query to 60 days to prevent excess load on our pool API") print(" ") sys.exit(1) if args.c29gps is None: C29Gps = float(input(" Miners C29 Graphs/second: ")) else: C29Gps = float(args.c29gps) if args.c31gps is None: C31Gps = float(input(" Miners C31 Graphs/second: ")) else: C31Gps = float(args.c31gps) if args.debug is None: debug = False EndTS = datetime.now() startTS = EndTS - timedelta(days=NumDays) # Get a list of the pool-found-blocks within the range poolblocksURL = mwURL + "/pool/blocks/0,1440/timestamp,height" poolblocksJSON = requests.get(url = poolblocksURL).json() poolblocks = [block['height'] for block in poolblocksJSON if(block['timestamp'] >= startTS.timestamp() and block['timestamp'] <= EndTS.timestamp())] poolblocks.sort() debug and print("Pool Blocks found in range: {}".format(poolblocks)) print(" ") print(" Getting Mining Data: ") rewardTotal = 0 x = [startTS] y = [0] debug and print("Start Time: {} - {}".format(startTS, startTS.timestamp())) debug and print("End Time: {} - {}".format(EndTS, EndTS.timestamp())) debug or sys.stdout.write(" ") sys.stdout.flush() for blockHeight in poolblocks: # For each pool block, get some information: # Secondary Scale Value # Any TX fees included in the block reward grinBlockURL = mwURL + "/grin/block/{}/timestamp,height,secondary_scaling,fee".format(blockHeight) grinblockJSON = requests.get(url = grinBlockURL).json() # Pool GPS at that block height poolGpsURL = mwURL + "/pool/stat/{}/gps".format(blockHeight) poolGpsJSON = requests.get(url = poolGpsURL).json() # Calculate theoretical miners reward scale = (2**(1+31-24)*31)/float(max(29, grinblockJSON['secondary_scaling'])) minerValue = C29Gps + C31Gps*scale poolValue = 0 for gps in poolGpsJSON['gps']: if gps['edge_bits'] == 29: poolValue += gps['gps'] else: poolValue += gps['gps']*scale debug and print("Miner value: {}, pool value: {}".format(minerValue, poolValue)) fullMinersReward = (minerValue/poolValue)*(60+grinblockJSON['fee']*NanoGrin) tsNow = datetime.fromtimestamp(grinblockJSON['timestamp']) timedelta = tsNow - startTS # Check if we get the full reward or not if(timedelta.total_seconds() < PPLNGSeconds): minersReward = fullMinersReward * (timedelta.total_seconds()/PPLNGSeconds) else: minersReward = fullMinersReward debug and print(" + Miners reward for {} block {}: {}".format(datetime.fromtimestamp(grinblockJSON['timestamp']).strftime('%c'), blockHeight, minersReward)) rewardTotal += minersReward # Graph x.append(tsNow) timedelta = tsNow - startTS debug and print("timedelta = {}".format(timedelta)) daysSinceStartTS = float(timedelta.total_seconds())/float(SecondsInDay) debug and print("daysSinceStartTS = {}".format(daysSinceStartTS)) y.append(rewardTotal/daysSinceStartTS) debug and print(" ") debug or sys.stdout.write(".") sys.stdout.flush() x.append(EndTS) y.append(rewardTotal/NumDays) print_footer(rewardTotal, C29Gps, C31Gps, NumDays, startTS, EndTS) if Graph == True: print("Generating graph...") graphName = "Avg Daily Reward: {} Grin".format(round(rewardTotal/NumDays, 2)) graphData = [go.Scatter(x=x, y=y, name=graphName)] graphLayout = go.Layout( title=go.layout.Title(text=graphName), xaxis=go.layout.XAxis( title=go.layout.xaxis.Title( text='Time', font=dict( family='Courier New, monospace', size=18, color='#008000' ) ) ), yaxis=go.layout.YAxis( title=go.layout.yaxis.Title( text='Grin', font=dict( family='Courier New, monospace', size=18, color='#008000' ) ) ), ) graphFigure = go.Figure(data=graphData, layout=graphLayout) graph_name = "estimate-{}days.html".format(NumDays) plotly.offline.plot(graphFigure, filename=graph_name) ```
{ "source": "jpaulofb/cfc_search_engine_tri", "score": 3 }
#### File: jpaulofb/cfc_search_engine_tri/main.py ```python from __future__ import division from SearchEngine import SearchEngine from time import time as getTime #from time import clock as getTime from util import Query import Evaluator import argparse import sys CREATE_INDEX_CMD = "createindex" INTERACTIVE_QUERY_CMD = "iquery" PROCESS_QUERY_FILE_CMD = "queryfile" RANKING_SIZE = 20 INDEX_PATH = "cfcIndex.txt" def createParser(): description = """ Search engine implementation for the CFC collection. For the 'Tópicos em Recuperação de Informação' course at UFAM 2015/2""" parser = argparse.ArgumentParser(description=description) functionHelp = """ function can be either: <{}> for creating the index; <{}> for an interactive query mode; <{}> for parsing a cfc query file. """.format(CREATE_INDEX_CMD, INTERACTIVE_QUERY_CMD, PROCESS_QUERY_FILE_CMD) rsHelp = """ optional argument for specifying the amont of documents that should be returned by a query, defaults to {} """.format(RANKING_SIZE) inHelp = """ argument for passing input path to the program, needed by the {}, and {} functionalities. """.format(CREATE_INDEX_CMD, PROCESS_QUERY_FILE_CMD) parser.add_argument("function", help=functionHelp) parser.add_argument("-in", "--input", help=inHelp, dest="path") parser.add_argument("-rs", "--rankingsize", help=rsHelp, type=int, default=RANKING_SIZE, dest="rSize") return parser def loadIndexWrapper(eng): try: start = getTime() eng.loadIndex(INDEX_PATH) print("It took {:.5f} s to load the index." .format(getTime() - start)) except IOError: print("Could not read the index at path: {}".format(INDEX_PATH)) print("Please create the index first with argument '{}'." .format(CREATE_INDEX_CMD)) sys.exit(-1) return eng def menuCreateIndex(eng, cfcFolder): if not cfcFolder: print("Please enter the path to the cfc collection files using the -in argument") sys.exit(-1) try: eng.createIndex(cfcFolder) except IOError as e: print("There was an error while parsing the files in the folder: {}" .format(collectionFolder)) print("Please make sure there are cfc files in the folder path.") print(e.message) try: eng.saveIndex(INDEX_PATH) except IOError as e: print("Could not save the index file at path: {}".format(INDEX_PATH)) print(e.message) def menuInteractiveQuery(eng, rankingSize): eng = loadIndexWrapper(eng) qId = 1 while True: try: queryString = raw_input(">> ") except EOFError: print('') break except KeyboardInterrupt: print('') break query = Query(qId, queryString, []) start = getTime() results, evalResults = eng.processQuery(query, rankingSize) print("It took {} s to process the query." .format(getTime() - start)) for result in results: similarity, doc = result print("similarity: {}. id: {}" .format(similarity, doc.id)) print("\ttitle: {}".format(doc.title)) print("\tauthors: {}, year: {}\n" .format(doc.authors, doc.year)) def menuQueryFile(eng, queryFile, rankingSize): eng = loadIndexWrapper(eng) if not queryFile: print("Please enter the path to the cfc query file using the -in argument") sys.exit(-1) print("ranking size: {}".format(rankingSize)) MAPs = [] recallPointsLst = [] pAtTens = [] times = [] try: print("query id ; P@10 ; interpolated MAP ; time (s)") for query in eng.parser.parseQueryFile(queryFile): start = getTime() results, evalResults = eng.processQuery(query, rankingSize, evaluate=True) end = getTime() - start MAPs.append(evalResults["MAP"]) recallPointsLst.append(evalResults["recallPoints"]) pAtTens.append(evalResults["P@10"]) times.append(end) print("{:03d} ; {:.5f} ; {:.5f} ; {:.5f} " .format(query.id, pAtTens[-1], MAPs[-1], times[-1])) except IOError as e: print("Could not open the cfc query file at: {}.".format(queryFile)) print(e.message) sys.exit(-1) avgRecallPoints = Evaluator.getAverageRecallPoints(recallPointsLst) avgMAP = sum(MAPs) / len(MAPs) avgPAtTen = sum(pAtTens) / len(pAtTens) avgTime = sum(times) / len(times) print("\nAverages:") print("\tP@10: {:.5f}".format(avgPAtTen)) print("\tinterpolated MAP: {:.5f}".format(avgMAP)) print("\ttime: {:.5f} s".format(avgTime)) print("\tinterpolated recall points (precision, recall):") for pair in avgRecallPoints: p, r = pair print("\t({:.5f}, {:.5f}),".format (p, r)) if __name__ == '__main__': parser = createParser() args = parser.parse_args() eng = SearchEngine() if args.function == CREATE_INDEX_CMD: collectionFolder = args.path start = getTime() menuCreateIndex(eng, collectionFolder) print("It took {} s to create and save the index." .format(getTime() - start)) elif args.function == INTERACTIVE_QUERY_CMD: rankingSize = args.rSize menuInteractiveQuery(eng, rankingSize) elif args.function == PROCESS_QUERY_FILE_CMD: queryFile = args.path rankingSize = args.rSize start = getTime() menuQueryFile(eng, queryFile, rankingSize) print("It took {} s to load the index and process all the queries." .format(getTime() - start)) else: parser.print_help() #parser.print_usage() ``` #### File: jpaulofb/cfc_search_engine_tri/Parser.py ```python from collections import Counter from util import Document from util import Query import re class Parser: def __init__(self, stopWordsPath="sw.txt"): self.stopWords = self.readStopWords(stopWordsPath) self.cfcCollectionAttrs = [ "PN", # paper number "RN", # doc id in the collection "AN", # super collection id i guess "AU", # authors "TI", # title "SO", # source "MJ", # major subjects "MN", # minor subjects "AB", # abstract when present, or excerpt otherwise "EX", # abstract when present, or excerpt otherwise "RF", # list of references used in the doc "CT", # citation list to the doc ] self.cfcQueryAttrs = [ "QN", # query number "QU", # proper query "NR", # number of relevant docs "RD", # relevant documents ] def initializeLastItem(self, attrList, lastItem) : """ Helper method, to reinitialize a dictionary containing the data from a CFC collection document or query. Used by the file parsers param doc: a dict. return: the reinitialized dict. """ for attr in attrList: lastItem[attr] = '' lastItem["lastAttr"] = '' return lastItem def parseCFCFile(self, path, regex, lastItemAttrs, treatLastItemFunction): """ CFC Collection specific file parser. It's a internal generic file parser, users should use the parseFile or parseQueryFile methods instead of this one. If it fails to open the file, does not attempt to treat the exception. param path: string containig the path to the file to parse. param regex: a string containing a regex to separate attributes and content. The regex must contain a named attribute called "attr" and another called "content". param lastItemAttrs: a list containing the attributes of the items present in the file for usel of self.initializeLastItem method. param treatLastItemFunction: a function to be called when we finish parsing an item from the path. The function should receive a dict containing the data of the file, and return a result to be yielded by this method. yield: results of treatLastItemFunction for each item in the file on the param path. """ fin = open(path) # helper funcion to reset the dict used for parsing the fin. Last doc # holds the temporary data of the current document being parsed lastItem = self.initializeLastItem(lastItemAttrs, {}) for line in fin: line = line.strip() # if there's content in the line we haven't finished parsing a doc if line and fin: # add the content of the line to the correct attr in the # lastItem dict lastItem = self.parseLine(line, lastItem, regex) # else we finished reading a doc else: if self.isEmptyItem(lastItem): continue result = treatLastItemFunction(lastItem) lastItem = self.initializeLastItem(lastItemAttrs, lastItem) yield result fin.close() def parseFile(self, path): """ Wrapper method for the self.parseCFCFile method, for parsing the proper file containng the documents from the CFC collection. Does not treat the exception that may be raised when opening the file in the path. param path: string containing the path to the file. yield: each query found in the file, the returned objects are tuples of the kind (util.Document, collections.Counter). The counter is a dict with word keys and frequency values. """ print("Processing file: {}".format(path)) # regex for separating the attributes of the document from content regex = r"^((?P<attr>(PN|RN|AN|AU|TI|SO|MJ|MN|AB|EX|RF|CT))\s+)?(?P<content>(.*\w+.*)*)" # attrs present in the cfc collection documents attrs = self.cfcCollectionAttrs # helper function to deal with the parsed data. Transforms the data # parsed in a tpuple of util.Document object and a Counter with the # frequency of the words in the document function = self.treatLastDoc for result in self.parseCFCFile(path, regex, attrs, function): yield result def parseLine(self, line, lastItem, regex): """ Parse a single line of a CFC file, adding the content of the line to the last seen attribute. The regex should have a named field called "attr" and another "content". If an attr is found in the line, updates a "lastItem" entry in the lastItem dict, with the attr found. param line: a string containing the line to be parsed. param lastItem: a dict that will contain the temporary data of the item being parsed. param regex: a string containing a regex to parse the line. Must have a named fields "attr" and "content". return: the param lastItem dict, updated with the param line. """ assert type(lastItem) == dict sep = re.compile(regex) # separate a possible attribute from content, with a regex match = sep.match(line) assert match # groups named in the sep regex attr = match.group("attr") content = match.group("content") # in the case there's an attribute in the line, we know we have # finished the last attribute we have seen, otherwise we append to # the last attribute seen if attr: lastItem["lastAttr"] = attr lastAttr = lastItem["lastAttr"] # assert lastAttr # buggy because of strange ^Z lines in the end of some files # add the content of the line to the lastAttr seen if lastAttr: lastItem[lastAttr] = (' '.join([lastItem[lastAttr], content.strip()])).strip() return lastItem def parseQueryFile(self, path): """ Wrapper method for the self.parseCFCFile method, for parsing the query file from the CFC collection. Does not treat the exception that may be raised when opening the file in the path. param path: string containing the path to the file. yield: each query found in the file, the returned objects are util.Query objects. """ # regex for separating the attributes from the content regex = r"^\s*(?P<attr>QN|QU|NR|RD)?\s*(?P<content>(.*\w+.*)*)" # list of attributes present in the cfc query file attrs = self.cfcQueryAttrs # helper function that deals with the data parsed and transforms it on # util.Query objects function = self.treatLastQuery for result in self.parseCFCFile(path, regex, attrs, function): yield result def tokenize(self, string, regex=r"[a-zA-Z']+"): """ Get a list with the words in the string, while also removing the stop words defined in the creation of the class. param string: string with the content to be tokenized. param regex: string containing a regex of what is considered a word. return: a list of strings containing the non stop words words, from the string param. """ # regex for separating the words in the content tokenizer = re.compile(regex) # get the words that match the regex and set them to lower case words = [word.lower() for word in tokenizer.findall(string)] # removal of the stop words defined in the __init__ method from the # list of words for sw in self.stopWords.intersection(words): while sw in words: words.remove(sw) return words def readStopWords(self, path): """ Used in the __init__ method to load the stop words from a file. If the file is empty returns an empty set. The file must contain words separated by white space characters, and must be lower case. If it fails to open the file the exception is not handled. param path: string containing the path to the file containg the stop words. return: a set containig the stop words from the file """ fin = open(path) # place the stop words in a set for faster access sws = set() for line in fin: line = line.strip() for word in line.split(): sws.add(word.lower()) fin.close() return sws def treatLastDoc(self, lastDoc): """ Helper method that transforms the data in the lastDoc dict into a tuple of util.Document object and a Counter containing the frequencies of the words in the document param lastDoc: a dict containing the data parsed. return: a tuple(util.Document, collections.Counter). The counter is a dict with word keys and frequency values. """ total = Counter() # the list of relevant attributes to tokenize. Tokenize also # removes stop words defined in the init method relevant = ["TI", "AB", "EX", "MJ", "MN"] for attr in relevant: content = lastDoc[attr] assert type(content) == str words = self.tokenize(content) counter = Counter(words) total += counter # form the Document object return docId = int(lastDoc["RN"]) # get the year of publishment regex = r"(?P<year>\d{2})(?P<idInYear>\d{3})" sep = re.compile(regex) match = sep.match(lastDoc["PN"]) year = int(match.group("year")) title = lastDoc["TI"] authors = lastDoc["AU"] tempNorm = 0 # irrelevant norm to be udated in the future doc = Document(docId, year, title, authors, tempNorm) result = doc, total return result def isEmptyItem(self, lastItem): """ Helper method to know if the last item parsed is empty or not. Needed because some files have double empty lines between documents. param lastItem: a dict with the data of the last item parsed. return: True if the lastItem dict has a single key with a value that evaluates to True, False otherwise. """ for key in lastItem.iterkeys(): if lastItem[key]: return False return True def treatLastQuery(self, lastQuery): """ Helper method that transforms the data in the lastQuery dict into an util.Query object. param lastQuery: a dict containg the data parsed. return: an util.Query object. """ queryId = int(lastQuery["QN"]) queryString = lastQuery["QU"] sep = re.compile(r"(?P<docId>\d+)\s*(?P<grades>\d+)") relevants = [] for pair in sep.findall(lastQuery["RD"]): docId, grades = pair docId = int(docId) relevants.append(docId) return Query(queryId, queryString, relevants) if __name__ == '__main__': p = Parser() for r in p.parseQueryFile("cfquery"): print(r, '\n') #s = ' Salivary amylase levels were determined in normal subjects from birth until adult life and in children with conditions sometimes associated with low pancreatic amylase such as malnutrition, coeliac disease and cystic fibrosis. Mixed saliva was collected under carefully standardised conditions and amylase was measured by the method of Dahlqvist. There was a wide scatter of values in the 84 normal subjects, but concentrations rose from very low levels at birth to reach adult levels by the age of 6 months to 1 year. Salivary amylase activity rose normally over ten weeks in one premature infant fed milk by gastrostomy. Thirteen children with coeliac disease and 9 children with cystic fibrosis mostly had normal salivary amylase concentrations. Six out of 12 malnourished children with jejunal villous atrophy of uncertain aetiology had low levels which rose to normal as recovery began.' #print e.tokenize(s) ```
{ "source": "jpaulos/opt_control", "score": 2 }
#### File: python/tests/eval_randomized.py ```python import numpy as np import matplotlib.pyplot as plt import time import pprint from py_opt_control import min_time_bvp decimal_places = 1 def compute_many_mp(p0, v0, a0, p1, v1, a1, params): """ Compute and verify many motion primitives. """ verbose = False start_time = time.time() n_mp = p0.shape[0] mp = [] for i in range(n_mp): if verbose: print('Preparing to test problem data:') print(f"(p0, v0, a0) = {(p0[i], v0[i], a0[i])}") print(f"(p1, v1, a1) = {(p1[i], v1[i], a1[i])}") (t, j) = min_time_bvp.min_time_bvp( # (t, j) = min_time_bvp.min_time_bvp_paranoia( p0[i], v0[i], a0[i], p1[i], v1[i], a1[i], params['v_min'], params['v_max'], params['a_min'], params['a_max'], params['j_min'], params['j_max'], params['sync_v'], params['sync_a'], params['sync_w']) a, v, p = min_time_bvp.switch_states(p0[i], v0[i], a0[i], t, j) st, sj, sa, sv, sp = min_time_bvp.uniformly_sample(p0[i], v0[i], a0[i], t, j, dt=0.01) is_valid = np.allclose(p1[i], sp[:,-1]) and np.allclose(v1[i], sv[:,-1]) and np.allclose(a1[i], sa[:,-1]) if not is_valid: print() print('Test failed. The end position is wrong. Problem data:') print(f"(p0, v0, a0) = {(p0[i], v0[i], a0[i])}") print(f"(p1, v1, a1) = {(p1[i], v1[i], a1[i])}") print(f"Actual final state:") print(f"(p, v, a) = {(sp[:,-1], sv[:,-1], sa[:,-1])}") print(f"Final time for each axis (should be identical):") print(f"{t[:,-1]}") print() mp.append({'p0':p0[i], 'v0':v0[i], 'a0':a0[i], 't':t, 'j':j, 'is_valid':is_valid}) sec = (time.time() - start_time)/n_mp return mp, sec def plot_2d_projection_many_mp(ax, mp): """ Plot many motion primitives projected onto the x-y axis, independent of original dimension. """ n_dim = mp[0]['p0'].shape[0] for m in mp: if m['is_valid']: st, sj, sa, sv, sp = min_time_bvp.uniformly_sample( m['p0'], m['v0'], m['a0'], m['t'], m['j'], dt=0.001) if n_dim > 1: ax.plot(sp[0,:], sp[1,:]) else: ax.plot(sp[0,:], np.zeros_like(sp[0,:])) ax.axis('equal') def test_to_zero(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) p1 = np.zeros((n_tests,n_dim)) v1 = np.zeros((n_tests,n_dim)) a1 = np.zeros((n_tests,n_dim)) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_to_zero') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_to_nonzero_p(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) p1 = np.ones((n_tests,n_dim)) v1 = np.zeros((n_tests,n_dim)) a1 = np.zeros((n_tests,n_dim)) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_to_nonzero_p') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_to_nonzero_pv(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) p1 = np.ones((n_tests,n_dim)) v1 = np.ones((n_tests,n_dim)) v1[:,1:] = -1 a1 = np.zeros((n_tests,n_dim)) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_to_nonzero_pv') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_to_nonzero_a(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) p1 = np.zeros((n_tests,n_dim)) v1 = np.zeros((n_tests,n_dim)) a1 = np.ones((n_tests,n_dim)) a1[:,1:] = -1 mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_to_zero') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_to_nonzero_pva(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) p1 = np.ones((n_tests,n_dim)) v1 = np.ones((n_tests,n_dim)) v1[:,1:] = -1 a1 = -np.ones((n_tests,n_dim)) a1[:,1:] = 1 mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_to_nonzero_pva') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_zero_a(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.zeros((n_tests,n_dim)) p1 = np.ones((n_tests,n_dim)) v1 = np.ones((n_tests,n_dim)) v1[:,1:] = -1 a1 = np.zeros((n_tests,n_dim)) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_zero_a') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_zero_va(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.zeros((n_tests,n_dim)) a0 = np.zeros((n_tests,n_dim)) p1 = np.ones((n_tests,n_dim)) v1 = np.zeros((n_tests,n_dim)) a1 = np.zeros((n_tests,n_dim)) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_zero_va') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_state_to_state(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) p1 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v1 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) a1 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_state_to_state') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed def test_point_to_point(n_dim, params, n_tests, ax): p0 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v0 = np.zeros((n_tests,n_dim)) a0 = np.zeros((n_tests,n_dim)) p1 = np.round(np.random.uniform(-1, 1, (n_tests,n_dim)), decimal_places) v1 = np.zeros((n_tests,n_dim)) a1 = np.zeros((n_tests,n_dim)) mp, sec = compute_many_mp(p0, v0, a0, p1, v1, a1, params) print('\ntest_point_to_point') n_failed = sum(1 for m in mp if not m['is_valid']) print(f' failed: {n_failed/n_tests:5.1%} ({n_failed}/{n_tests})') print(f' speed: {sec*1000:.2f} ms/test') plot_2d_projection_many_mp(ax, mp) return n_failed if __name__ == '__main__': n_tests = 1000 n_dim = 2 params = { 'v_min': -10, 'v_max': 10, 'a_min': -5, 'a_max': 5, 'j_min': -100, 'j_max': 100, 'sync_v': True, 'sync_a': True, 'sync_w': False, } fig, axes = plt.subplots(3, 2) axes = axes.flatten() results = {} n_failed = test_to_zero(n_dim, params, n_tests, axes[0]) axes[0].set_title(f'To Zero State, Failed {n_failed}/{n_tests}') results['test_to_zero'] = n_failed n_failed = test_to_nonzero_p(n_dim, params, n_tests, axes[1]) axes[1].set_title(f'To Nonzero P, Failed {n_failed}/{n_tests}') results['test_to_nonzero_p'] = n_failed n_failed = test_to_nonzero_a(n_dim, params, n_tests, axes[2]) axes[2].set_title(f'To Nonzero A, Failed {n_failed}/{n_tests}') results['test_to_nonzero_p'] = n_failed n_failed = test_to_nonzero_pv(n_dim, params, n_tests, axes[3]) axes[3].set_title(f'To Nonzero P-V, Failed {n_failed}/{n_tests}') results['test_to_nonzero_pv'] = n_failed n_failed = test_to_nonzero_pva(n_dim, params, n_tests, axes[4]) axes[4].set_title(f'To Nonzero P-V-A, Failed {n_failed}/{n_tests}') results['test_to_nonzero_pva'] = n_failed fig, axes = plt.subplots(2, 1) axes = axes.flatten() n_failed = test_zero_va(n_dim, params, n_tests, axes[1]) axes[1].set_title(f'Zero V-A Boundaries, Failed {n_failed}/{n_tests}') results['test_zero_va'] = n_failed n_failed = test_zero_a(n_dim, params, n_tests, axes[0]) axes[0].set_title(f'Zero A Boundaries, Failed {n_failed}/{n_tests}') results['test_zero_a'] = n_failed fig, axes = plt.subplots(1, 2) n_failed = test_point_to_point(n_dim, params, n_tests, axes[0]) axes[0].set_title(f'Point to Point, Failed {n_failed}/{n_tests}') results['test_point_to_point'] = n_failed n_failed = test_state_to_state(n_dim, params, n_tests, axes[1]) axes[1].set_title(f'State to State, Failed {n_failed}/{n_tests}') results['test_state_to_state'] = n_failed pp = pprint.PrettyPrinter(indent=4) pp.pprint(results) # Show plots. plt.show() ```
{ "source": "JPaulsen/Security-Typing", "score": 3 }
#### File: 3 STLC + Dynamic/src/TypeParser.py ```python from ParserUtils import * from Types import * def parseFunctionType(expr): return _parseFunctionType(expr[1], map(_getFirst, expr[2].value())) def parseNativeType(expr): if expr == "str": return str elif expr == "bool": return bool elif expr == "int": return int elif expr == "float": return float elif expr == "dynamic": return DynamicType() else: raise ValueError(expr + 'is not a valid type.') def parseType(expr): if (expr[0].value() == "function"): checkLengthExpected("Function type", expr, 3) return _parseFunctionTypeFromTypeExpression(expr) else: checkLengthExpected("Native type", expr, 1) return parseNativeType(expr[0].value()) def _parseFunctionType(returnTypeExpression, parameterTypesExpression): return FunctionType(parseType(returnTypeExpression), map(parseType, parameterTypesExpression)) def _parseFunctionTypeFromTypeExpression(expr): return _parseFunctionType(expr[1], expr[2].value()) def _getFirst(touple): return touple[0] ``` #### File: 3 STLC + Dynamic/test/util.py ```python import sys sys.path.insert(0, '../src/') from Parser import * from TypeChecker import * from Interpreter import * def safeTypeCheck(code): try: program = loads(code, true='True', false='False') except: return "Syntax Error" try: ast = parse(program) except: return "Parsing Error" try: return typeCheck(ast).type except: return "Type Error" def safeInterp(code): try: program = loads(code, true='True', false='False') except: return "Syntax Error" try: ast = parse(program) except: return "Parsing Error" try: typeCheckerResult = typeCheck(ast) ast = typeCheckerResult.astNode except: return "Type Error" try: return interp(ast) except: return "Runtime Error" ``` #### File: 4 STLC + Security/src/Interpreter.py ```python from AST import * def interp(ast): return ast.accept(Interpreter()) class Interpreter: def __init__(self): self.env = Environment() def visitBoolLiteral(self, boolLiteral): return boolLiteral.value def visitIntLiteral(self, intLiteral): return intLiteral.value def visitFloatLiteral(self, floatLiteral): return 1.0 * floatLiteral.value def visitStringLiteral(self, stringLiteral): return stringLiteral.value def visitUnaryExpression(self, unaryExpression): if (unaryExpression.command == "not"): return not unaryExpression.expression.accept(self) raise ValueError( "UnaryExpression with command " + unaryExpression.command + " not yet implemented at interpreter level.") def visitBinaryExpression(self, binaryExpression): if binaryExpression.command == "and": return binaryExpression.firstExpression.accept(self) and binaryExpression.secondExpression.accept(self) elif binaryExpression.command == "or": return binaryExpression.firstExpression.accept(self) or binaryExpression.secondExpression.accept(self) elif binaryExpression.command == "+": return binaryExpression.firstExpression.accept(self) + binaryExpression.secondExpression.accept(self) elif binaryExpression.command == "-": return binaryExpression.firstExpression.accept(self) - binaryExpression.secondExpression.accept(self) elif binaryExpression.command == "*": return binaryExpression.firstExpression.accept(self) * binaryExpression.secondExpression.accept(self) elif binaryExpression.command == "/": return binaryExpression.firstExpression.accept(self) / binaryExpression.secondExpression.accept(self) raise ValueError("BinaryExpression with command " + binaryExpression.command + " not yet implemented.") def visitIfExpression(self, ifExpression): if ifExpression.conditionExpression.accept(self): return ifExpression.thenExpression.accept(self) else: return ifExpression.elseExpression.accept(self) def visitLetExpression(self, letExpression): oldEnv = self.env self.env = self.env.clone() self.env.put(letExpression.symbol.value(), letExpression.valueExpression.accept(self)) ans = letExpression.thenExpression.accept(self) self.env = oldEnv return ans def visitGetExpression(self, getExpression): return self.env.get(getExpression.symbol.value()) def visitFunctionExpression(self, functionExpression): return functionExpression def visitApplyExpression(self, applyExpression): functionExpression = applyExpression.functionExpression.accept(self) arguments = [] for argument in applyExpression.argumentExpressions: arguments.append(argument.accept(self)) oldEnv = self.env self.env = Environment() argumentsLength = len(arguments) for i in range(argumentsLength): self.env.put(functionExpression.parameterSymbols[i].value(), arguments[i]) ans = functionExpression.bodyExpression.accept(self) self.env = oldEnv return ans ``` #### File: 4 STLC + Security/src/TypeChecker.py ```python from AST import * from Types import * from sexpdata import * def _checkExpectedTypesOfValue(value, types): for type in types: if _isConsistentTypeOfValue(value, type): return raise ValueError(' or '.join(map(str, types)) + ' was expected.') def _isConsistentTypeOfValue(value, type): if isinstance(type, FunctionType): if not isinstance(value, FunctionExpression): return False return _areConsistentTypes(value.securityType.type, type) if isinstance(type, SecurityType): return False return isinstance(value, type) def _areConsistentTypes(type1, type2): if isinstance(type1, FunctionType) and isinstance(type2, FunctionType): return _areConsistenFunctionTypes(type1, type2) if isinstance(type1, SecurityType) and isinstance(type2, SecurityType): return type1.securityLabel <= type2.securityLabel and _areConsistentTypes(type1.type, type2.type) if isinstance(type1, FunctionType) or isinstance(type2, FunctionType) or isinstance(type1, SecurityType) or isinstance( type2, SecurityType): return False return type1 == type2 def _areConsistenFunctionTypes(functionType1, functionType2): parameterLength1 = len(functionType1.parameterTypes) parameterLength2 = len(functionType2.parameterTypes) if parameterLength1 != parameterLength2 or not _areConsistentTypes(functionType2.returnType, functionType1.returnType): return False for i in range(parameterLength1): if not _areConsistentTypes(functionType1.parameterTypes[i], functionType2.parameterTypes[i]): return False return True def _checkExpectedTypes(type, types): for t in types: if _areConsistentTypes(type, t): return raise ValueError(' or '.join(map(str, types)) + ' was expected.') def typeCheck(ast): return ast.accept(TypeChecker()) class TypeChecker: def __init__(self): self.env = Environment() def visitBoolLiteral(self, boolLiteral): _checkExpectedTypesOfValue(boolLiteral.value, [bool]) return SecurityType(bool, boolLiteral.securityLabel) def visitIntLiteral(self, intLiteral): _checkExpectedTypesOfValue(intLiteral.value, [int]) return SecurityType(int, intLiteral.securityLabel) def visitFloatLiteral(self, floatLiteral): _checkExpectedTypesOfValue(floatLiteral.value, [int, float]) return SecurityType(float, floatLiteral.securityLabel) def visitStringLiteral(self, stringLiteral): _checkExpectedTypesOfValue(stringLiteral.value, [str]) return SecurityType(str, stringLiteral.securityLabel) def visitUnaryExpression(self, unaryExpression): if unaryExpression.command == "not": expressionType = unaryExpression.expression.accept(self) _checkExpectedTypes(expressionType.type, [bool]) return expressionType raise ValueError( "UnaryExpression with command " + unaryExpression.command + " not yet implemented at typeChecker level.") def visitBinaryExpression(self, binaryExpression): firstExpressionType = binaryExpression.firstExpression.accept(self) secondExpressionType = binaryExpression.secondExpression.accept(self) securityLabel = SecurityLabel.join(firstExpressionType.securityLabel, secondExpressionType.securityLabel) if binaryExpression.command == "and" or binaryExpression.command == "or": _checkExpectedTypes(firstExpressionType.type, [bool]) _checkExpectedTypes(secondExpressionType.type, [bool]) return SecurityType(bool, securityLabel) elif binaryExpression.command == "+" or binaryExpression.command == "-" or binaryExpression.command == "*" or binaryExpression.command == "/": _checkExpectedTypes(firstExpressionType.type, [int, float]) _checkExpectedTypes(secondExpressionType.type, [int, float]) type = float if firstExpressionType.type == float or secondExpressionType.type == float else int return SecurityType(type, securityLabel) raise ValueError("BinaryExpression with command " + binaryExpression.command + " not yet implemented.") def visitIfExpression(self, ifExpression): condExpressionType = ifExpression.conditionExpression.accept(self) _checkExpectedTypes(condExpressionType.type, [bool]) thenExpressionType = ifExpression.thenExpression.accept(self) elseExpressionType = ifExpression.elseExpression.accept(self) _checkExpectedTypes(elseExpressionType.type, [thenExpressionType.type]) return SecurityType(thenExpressionType.type, SecurityLabel.joinMultiple( [condExpressionType.securityLabel, thenExpressionType.securityLabel, elseExpressionType.securityLabel])) def visitLetExpression(self, letExpression): oldEnv = self.env self.env = self.env.clone() self.env.put(letExpression.symbol.value(), letExpression.valueExpression.accept(self)) ans = letExpression.thenExpression.accept(self) self.env = oldEnv return ans def visitGetExpression(self, getExpression): return self.env.get(getExpression.symbol.value()) def visitFunctionExpression(self, functionExpression): securityType = functionExpression.securityType parametersLength = len(securityType.type.parameterTypes) oldEnv = self.env self.env = Environment() for i in range(parametersLength): symbol = functionExpression.parameterSymbols[i] if not isinstance(symbol, Symbol): raise ValueError('Each function parameter must be a symbol.') self.env.put(functionExpression.parameterSymbols[i].value(), securityType.type.parameterTypes[i]) bodyExpressionType = functionExpression.bodyExpression.accept(self) _checkExpectedTypes(bodyExpressionType, [securityType.type.returnType]) self.env = oldEnv return securityType def visitApplyExpression(self, applyExpression): securityType = applyExpression.functionExpression.accept(self) argumentTypes = [] for argument in applyExpression.argumentExpressions: argumentTypes.append(argument.accept(self)) argumentsLength = len(argumentTypes) if len(securityType.type.parameterTypes) != argumentsLength: raise ValueError('Function length of parameters and arguments in apply do not match.') for i in range(argumentsLength): parameterType = securityType.type.parameterTypes[i] argumentType = argumentTypes[i] _checkExpectedTypes(argumentType, [parameterType]) return securityType.type.returnType ``` #### File: 6 STLC + Security + Dynamic Label/src/Types.py ```python class FunctionType: def __init__(self, returnType, parameterTypes): self.returnType = returnType self.parameterTypes = parameterTypes def __str__(self): return 'function ' + str(self.returnType) + ' [' + ', '.join(map(str, self.parameterTypes)) + ']' class SecurityType: def __init__(self, type, securityLabel): self.type = type self.securityLabel = securityLabel def __str__(self): return '(' + str(self.type) + ', ' + str(self.securityLabel) + ')' class SecurityLabel: lattice = { 'b': 0, 'l': 1, 'h': 2, 't': 3, '?': -1, } def __init__(self, type): self.type = type self.value = SecurityLabel.lattice[type] def __lt__(self, other): return self.isDynamicLabel() or other.isDynamicLabel() or self.value < other.value def __le__(self, other): return self.isDynamicLabel() or other.isDynamicLabel() or self.value <= other.value def __str__(self): return self.type def isDynamicLabel(self): return self.value == SecurityLabel.lattice['?'] @staticmethod def join(securityLabel1, securityLabel2): if securityLabel1.isDynamicLabel(): return securityLabel1 if securityLabel2.isDynamicLabel(): return securityLabel2 return securityLabel1 if securityLabel1 >= securityLabel2 else securityLabel2 @staticmethod def joinMultiple(securityLabels): return reduce(SecurityLabel.join, securityLabels, SecurityLabel('b')) @staticmethod def meet(securityLabel1, securityLabel2): if securityLabel1.isDynamicLabel(): return securityLabel1 if securityLabel2.isDynamicLabel(): return securityLabel2 return securityLabel1 if securityLabel1 <= securityLabel2 else securityLabel2 @staticmethod def meetMultiple(securityLabels): return reduce(SecurityLabel.meet, securityLabels, SecurityLabel('t')) class SecurityValue: def __init__(self, value, securityLabel): self.value = value self.securityLabel = securityLabel def __str__(self): return '(' + str(self.value) + ', ' + str(self.securityLabel) + ')' def __add__(self, other): return SecurityValue(self.value + other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __mul__(self, other): return SecurityValue(self.value * other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __sub__(self, other): return SecurityValue(self.value - other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __mod__(self, other): return SecurityValue(self.value % other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __div__(self, other): return SecurityValue(self.value / other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __lt__(self, other): return SecurityValue(self.value < other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __le__(self, other): return SecurityValue(self.value <= other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __eq__(self, other): return SecurityValue(self.value == other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __ne__(self, other): return SecurityValue(not self == other, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __gt__(self, other): return SecurityValue(self.value > other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def __ge__(self, other): return SecurityValue(self.value >= other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def boolAnd(self, other): return SecurityValue(self.value and other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def boolOr(self, other): return SecurityValue(self.value or other.value, SecurityLabel.join(self.securityLabel, other.securityLabel)) def boolNot(self): return SecurityValue(not self.value, self.securityLabel) ```
{ "source": "j-paulus/grrrmin_heatmap", "score": 2 }
#### File: j-paulus/grrrmin_heatmap/grrrmin_heatmap.py ```python import sys import sqlite3 # interface GarminDB import datetime import dateutil # tcx time zone parsing from contextlib import closing # context manager with automatic closing for the db from pathlib import Path # home directory import os # file name handling import glob # listing files import argparse # command line handling from typing import Optional, Tuple, List, Any import numpy as np import matplotlib # colormap # basemap import contextily as ctx import xyzservices import xyzservices.providers as xyz # coordinate transforms import pyproj from pyproj.transformer import Transformer from tqdm import tqdm # progress bar # plotting routines from PIL import Image, ImageDraw import fitparse # .fit file support import gpxpy # .gpx file support import gpxpy.gpx import tcxparser # .tcx file support __version__ = '0.3.7' geod_conv = pyproj.Geod(ellps='WGS84') def get_activities_from_db(sport_name: str='steps', target_year: Optional[int]=None, garmin_db: Optional[str]=None, verbosity: int=1) \ -> Tuple[List[List[Tuple[float, float]]], float]: """ Load requested activities from GarminDB SQLite database. Parameters ---------- sport_name : string in {'cycling', 'all', 'running', 'hiking', 'steps'} select a specific activity type target_year : list of int, None, optional specify a year from which the data should be plotted from garmin_db : string, None, optional alternative path to the SQLite DB verbosity : int, optional printout verbosity Returns ------- list of lists of points : activities float : total distance in km """ if garmin_db is None: # default path to GarminDB database file garmin_db = '{}/HealthData/DBs/garmin_activities.db'.format(Path.home()) steps_template = r'''SELECT activities.activity_id, activities.name, activities.description, activities.start_time, activities.stop_time, activities.elapsed_time, ROUND(activities.distance, 1) FROM steps_activities JOIN activities ON activities.activity_id = steps_activities.activity_id {act_filter} ORDER BY activities.start_time ASC''' cycle_query = r'''SELECT activities.activity_id, activities.name, activities.description, activities.start_time, activities.stop_time, activities.elapsed_time, ROUND(activities.distance, 1) FROM activities WHERE activities.sport == "cycling" OR activities.sport == "Biking" ORDER BY activities.start_time ASC''' all_activities_query = r'''SELECT activities.activity_id, activities.name, activities.description, activities.start_time, activities.stop_time, activities.elapsed_time, ROUND(activities.distance, 1) FROM activities ORDER BY activities.start_time ASC''' if sport_name == 'cycling': act_query = cycle_query elif sport_name == 'all': act_query = all_activities_query elif sport_name == 'running': act_filter = 'WHERE Activities.sport == "running"' act_query = steps_template.format(act_filter=act_filter) elif sport_name == 'hiking': act_filter = 'WHERE Activities.sport == "hiking"' act_query = steps_template.format(act_filter=act_filter) elif sport_name == 'walking': act_filter = 'WHERE Activities.sport == "walking"' act_query = steps_template.format(act_filter=act_filter) else: # sport_name == 'steps': act_filter = '' pic_tag = 'steps' act_query = steps_template.format(act_filter=act_filter) with closing(sqlite3.connect(garmin_db)) as db_conn: # this closes the connection after finishing c = db_conn.cursor() # get all activities act_id_list = [] # list to store activity_id keys act_time_list = [] act_dist_list = [] c.execute(act_query) for one_row in c: act_id = one_row[0] act_date = one_row[3] act_dist = one_row[6] if (act_date is None) or (act_dist is None) or (act_id is None): # skip continue act_id_list.append(act_id) act_time_list.append(datetime.datetime.strptime(act_date, '%Y-%m-%d %H:%M:%S.%f')) act_dist_list.append(act_dist) # for each activity in the list, fetch the points act_ite = tqdm(zip(act_id_list, act_time_list, act_dist_list), total=len(act_id_list), disable=(verbosity == 0)) act_ite.set_description('Activities...') all_paths = [] total_dist = 0.0 for act_id, act_time, act_dist in act_ite: # are we within the given time range if (target_year is None) or (len(target_year) == 0) or (act_time.year in target_year): total_dist += act_dist c.execute('SELECT activity_records.activity_id, activity_records.timestamp, activity_records.position_lat, activity_records.position_long, activity_records.altitude FROM activity_records WHERE activity_records.activity_id = (?) ORDER BY activity_records.timestamp ASC', (act_id,)) # collect all points of this activity into a list this_points = [] for one_point in c: this_lat = one_point[2] this_lon = one_point[3] if (this_lat is not None) and (this_lon is not None): this_points.append((this_lat, this_lon)) all_paths.append(this_points) return all_paths, total_dist def get_activities_from_dir(path_str: str, target_year: Optional[int]=None, verbosity: int=1) \ -> Tuple[List[List[Tuple[float, float, float]]], float]: """ Check recursively all files in the given directory and if they are .fit/.gpx/.tcx, load the activities from them. This may be somewhat slow. Parameters ---------- path_str : string path from which all the files are checked. run recursively into all subdirectories target_year : list of int, None, optional list of target years for filtering the plotted activities verbosity : int, optional printout verbosity Returns ------- list of lists of points : activities (lat, lon, alt): lat/lon in decimal WSG84 degrees, alt in meters float : total distance in km """ def semi2deg(x: float) -> float: """ Convert "semicircle" units to decimal degrees. """ return x * 180.0 / (2.0**31) # list all files all_files = glob.glob(os.path.join(path_str, '**/*.*'), recursive=True) # collected info all_activities = [] total_dist = 0.0 for one_name in tqdm(all_files, total=len(all_files), desc='Checking files', unit=' files', disable=(verbosity == 0)): full_name = os.path.join(path_str, one_name) # check for supported file extensions base_str, ext_str = os.path.splitext(full_name) if os.path.isfile(full_name) and (ext_str.lower() == '.fit'): # try to parse the .fit file try: fitfile = fitparse.FitFile(full_name) fitfile.parse() # retieve activity type, even though this is not used right now this_activity_type = None for sports in fitfile.get_messages('sport'): this_activity_type = sports.get_value('sport') this_act = [] act_dist = 0.0 act_time = None # get all data messages that are of type record for one_rec in fitfile.get_messages('record'): this_lat = one_rec.get_value('position_lat') this_lon = one_rec.get_value('position_long') this_dist = one_rec.get_value('distance') this_altitude = one_rec.get_value('altitude') # convert the coordinates from the semicircle to decimal degrees if (this_lat is not None) and (this_lon is not None): this_act.append((semi2deg(this_lat), semi2deg(this_lon), this_altitude)) if this_dist is not None: act_dist = this_dist if act_time is None: this_time = one_rec.get_value('timestamp') if this_time is not None: act_time = this_time # activity date -based filtering if (act_time is None) or (target_year is None) or (len(target_year) == 0) or (act_time.year in target_year): all_activities.append(this_act) total_dist += act_dist except fitparse.FitParseError as e: if verbosity > 0: print('ERROR: Could not parse file "{}". Error: {}'.format(full_name, e)) elif os.path.isfile(full_name) and (ext_str.lower() == '.gpx'): # try to parse the .gpx file with open(full_name, 'r') as gpx_file: gpx = gpxpy.parse(gpx_file) act_dist = 0.0 act_time = None this_act = [] for one_track in gpx.tracks: act_dist = one_track.length_3d() # 3D length in meters act_time = one_track.get_time_bounds()[0] # starting time for tmp_data in one_track.walk(): one_point = tmp_data[0] this_act.append((one_point.latitude, one_point.longitude, one_point.elevation)) # activity date -based filtering if (act_time is None) or (target_year is None) or (len(target_year) == 0) or (act_time.year in target_year): all_activities.append(this_act) total_dist += act_dist act_dist = 0.0 act_time = None this_act = [] for one_route in gpx.routes: act_dist = one_route.length_3d() act_time = one_track.get_time_bounds()[0] # starting time for tmp_data in one_route.walk(): one_point = tmp_data[0] this_act.append((one_point.latitude, one_point.longitude, one_point.elevation)) # activity date -based filtering if (act_time is None) or (target_year is None) or (len(target_year) == 0) or (act_time.year in target_year): all_activities.append(this_act) total_dist += act_dist elif os.path.isfile(full_name) and (ext_str.lower() == '.tcx'): # try to parse the .tcx file tcx_data = tcxparser.TCXParser(full_name) this_activity_type = tcx_data.activity_type # could be used for filtering activity type, but not done now act_dist = tcx_data.distance act_time = dateutil.parser.isoparse(tcx_data.started_at) this_act = tcx_data.position_values() # list of (lat, lon) tuples this_altitudes = tcx_data.altitude_points() # list of floats if len(this_act) == len(this_altitudes): this_act_w_alt = [one_act + (one_alt,) for one_act, one_alt in zip(this_act, this_altitudes)] else: # if the two lists have different lengths, trust on location this_act_w_alt = [one_act + (None,) for one_act in this_act] # activity date -based filtering if (act_time is None) or (target_year is None) or (len(target_year) == 0) or (act_time.year in target_year): all_activities.append(this_act_w_alt) total_dist += act_dist return all_activities, total_dist / 1000.0 def get_year_range(year_list: List[int]) -> str: """ Transform a year list into a textual representation shortening consecutive values. E.g., get_year_range([1999, 2000, 2001, 2004]) => '1999-2001_2004 Adapted from <https://stackoverflow.com/a/48106843> Parameters ---------- year_list : list of int Returns ------- string """ if (year_list is None) or (len(year_list) == 0): return 'all' elif len(year_list) == 1: return '{}'.format(year_list[0]) else: nums = sorted(set(year_list)) gaps = [[s, e] for s, e in zip(nums, nums[1:]) if s+1 < e] edges = iter(nums[:1] + sum(gaps, []) + nums[-1:]) range_list = [(s, e+1) for s, e in zip(edges, edges)] out_str = '' for r_idx, one_range in enumerate(range_list): if r_idx == 0: out_str = '{}'.format(one_range[0]) else: out_str = '_{}'.format(one_range[0]) if one_range[0] != one_range[1]: out_str = '{}-{}'.format(out_str, one_range[1]) return out_str def run_plotting(args: argparse.Namespace) -> None: """ Main plotting function Parameters ---------- args : Namespace with field fields: bounding_box : None, 4-list/tuple of floats define image bounding box in decimal WGS84: n, e, s, w. None for automatic bb_percentile : float in range 0..1, when determining the bounding box from the data, use bb_percentile and 1-bb_percentile quantiles as the limits to filter outliers. 0 for min/max zoom_level: None, int None for automatic zoom level, otherwise the given int sport : string in 'cycling, 'running', 'hiking', 'walking', 'steps' activity type to plot basemap_provider : string, None Contextily basemap provider name string img_width : int if basemap_provider == None, width of the blank image track_colormap : string matplotlib colormap name max_point_dist : float, None if not None and consecutive track points are further than this, the track is split into two year : list of ints list of years to plot, e.g., [2019, 2020] do_gif : bool if True, create a frame-per-activity animation fps : float FPS of the created animation start_center : None, 2-tuple of float only tracks starting near ("start_max_dist") this point (lat, lon, in decimal WGS84) are plotted start_max_dist : float only track starting within this radius (in meters) from "start_center" are plotted verbosity : int progree printout verbosity level """ do_start_filter = (args.start_center is not None) and (args.start_max_dist is not None) if args.bounding_box is not None: # n, e, s, w max_lon, max_lat, min_lon, min_lat = args.bounding_box else: # determine from data all_lat = [] all_lon = [] if args.zoom_level is None: zoom_level = 'auto' else: zoom_level = args.zoom_level if (args.sport is None) or (args.sport.lower() not in {'cycling', 'all', 'running', 'walking'}): pic_tag = 'steps' else: pic_tag = args.sport if args.input_dir is not None: all_activities, total_dist = get_activities_from_dir(args.input_dir, target_year=args.year, verbosity=args.verbosity) else: all_activities, total_dist = get_activities_from_db(sport_name=args.sport, target_year=args.year, garmin_db=None, verbosity=args.verbosity) all_paths = [] all_lat = [] all_lon = [] for act_idx, this_points in tqdm(enumerate(all_activities), desc='Filtering points', unit=' activities', disable=(args.verbosity == 0)): # create a path from the points if len(this_points) > 1: path_points = [] # starting point -based filtering active and first point in activity if do_start_filter: one_point = this_points[0] start_az1, start_az2, start_dist = geod_conv.inv(args.start_center[1], args.start_center[0], one_point[1], one_point[0]) if start_dist > args.start_max_dist: # too far from the target starting location => skip the entire activity if args.verbosity > 1: print('WARNING: Activity starting location {:.1f} m (>{:.1f} m) from the defined start location, skipping.'.format(start_dist, args.start_max_dist)) continue # skip to next activity # distance-based filtering if args.max_point_dist is not None: prev_point = (None, None) for point_idx, one_point in enumerate(this_points): if args.bounding_box is None: all_lat.append(one_point[0]) all_lon.append(one_point[1]) if prev_point[0] is None: path_points.append(one_point) else: # long/lat pairs to azimuths and distance in meters az1, az2, dist = geod_conv.inv(prev_point[1], prev_point[0], one_point[1], one_point[0]) if dist < args.max_point_dist: path_points.append(one_point) else: # too large distance between two points => discard if args.verbosity > 1: print('WARNING: Track segment detached due to distance {:.1f}m exceeding the threshold of {:.1f}m.'.format(dist, args.max_point_dist)) # start a new path all_paths.append(path_points) path_points = [one_point] prev_point = one_point else: # no distance filtering => use as-is path_points = this_points.copy() if args.bounding_box is None: for one_point in this_points: all_lat.append(one_point[0]) all_lon.append(one_point[1]) all_paths.append(path_points) if len(all_paths) == 0: if args.verbosity > 0: print('WARNING: No mathing activities found.') sys.exit() if args.bounding_box is None: lat_array = np.array(all_lat) lon_array = np.array(all_lon) lat_quants = np.quantile(lat_array, (args.bb_percentile, 1.0-args.bb_percentile)) lon_quants = np.quantile(lon_array, (args.bb_percentile, 1.0-args.bb_percentile)) min_lat = lat_quants[0] max_lat = lat_quants[1] min_lon = lon_quants[0] max_lon = lon_quants[1] if args.verbosity > 0: print('INFO: Total activity distance: {:.2f}km'.format(total_dist)) print('INFO: Using lat range: {:.3f} - {:.3f}, and lon range: {:.3f} - {:.3f}.'.format(min_lat, max_lat, min_lon, max_lon)) if zoom_level == 'auto': # the default zoom level zoom_level = ctx.tile._calculate_zoom(w=min_lon, s=min_lat, e=max_lon, n=max_lat) if args.verbosity > 1: print('INFO: Using zoom level {}.'.format(zoom_level)) # from WGS84 to Spherical Mercator used by contextily crs_trans = Transformer.from_crs('EPSG:4326', 'EPSG:3857', always_xy=True) # fetch the basemap including the specified bounding box region if args.verbosity > 0: print('INFO: Fetching basemap...') if args.basemap_provider is None: # no map, but blank background # transformer input: (x,y) -> (lon, lat) min_point = crs_trans.transform(min_lon, min_lat) max_point = crs_trans.transform(max_lon, max_lat) imshow_extent = [min_point[0], max_point[0], min_point[1], max_point[1]] # [minX, maxX, minY, maxY] range_lon = max_point[0] - min_point[0] range_lat = max_point[1] - min_point[1] img_height = args.img_width img_width = int(img_height / float(range_lat) * range_lon) basemap_img = np.zeros((img_height, img_width, 3), dtype=np.uint8) basemap_attr = None else: basemap_src = get_basemap_provider(args.basemap_provider) basemap_img, imshow_extent = ctx.bounds2img(w=min_lon, s=min_lat, e=max_lon, n=max_lat, zoom=zoom_level, ll=True, source=basemap_src) basemap_attr = basemap_src['attribution'] if args.track_colormap is None: # two default colormaps if (args.basemap_provider is None) or (args.basemap_provider == 'CartoDB.DarkMatter'): track_cmap = 'plasma' # ok with CartoDB.DarkMatter else: track_cmap = 'autumn' # works ok with Esri.WorldImagery, use also for others else: # user-defined colormap track_cmap = args.track_colormap # from RGB to RGBA zero_alpha = 255 * np.ones((basemap_img.shape[0], basemap_img.shape[1], 1), dtype=np.uint8) if basemap_img.shape[2] == 3: # add alpha channel basemap_image = Image.fromarray(np.concatenate((basemap_img, zero_alpha), axis=-1)) else: # replace alpha channel basemap_img[:, :, -1] = zero_alpha[:, :, 0] basemap_image = Image.fromarray(basemap_img) # add attribution basemap_draw = ImageDraw.Draw(basemap_image) basemap_draw.text((5, 5), 'Created with grrrmin_heatmap.py' + (basemap_attr is not None)*'\nUsing Contextily basemap:\n{}'.format(basemap_attr)) # a function to transform geographical coordinates to PIL coordinates: (0,0) upper left corner. (x, y) def coord_to_pixel(lat, lon): new_lat = (1.0 - (lat - imshow_extent[2]) / (imshow_extent[3] - imshow_extent[2])) * basemap_image.height new_lon = (lon - imshow_extent[0]) / (imshow_extent[1] - imshow_extent[0]) * basemap_image.width return new_lat, new_lon # transform point from WGS84 to pixels for path_idx, one_path in enumerate(all_paths): for point_idx, one_point in enumerate(one_path): # transform the points into coordinate system used by the basemap # transformer input: (x,y) -> (lon, lat) one_point = crs_trans.transform(one_point[1], one_point[0]) one_path[point_idx] = coord_to_pixel(one_point[1], one_point[0])[::-1] all_paths[path_idx] = one_path ## plotting # loop through paths one-by-one path_sum = None n_paths = len(all_paths) if args.do_gif: all_frames = [] # the paths are plotted on this dummy image path_image = Image.new('RGBA', (basemap_image.width, basemap_image.height), color=(0, 0, 0, 0)) # (width, height) path_canvas = ImageDraw.Draw(path_image) h = path_image.height w = path_image.width # plot each path plot_ite = tqdm(enumerate(all_paths), total=n_paths, unit=' activities', disable=(args.verbosity == 0)) plot_ite.set_description('Plotting...') year_str = get_year_range(args.year) out_name_base = 'grrrmin_heatmap_{}_{}'.format(pic_tag, year_str) for path_idx, one_path in plot_ite: # PIL.Image approach path_canvas.line(xy=one_path, fill='black', width=args.line_width, joint='curve') img = np.array(path_image) if path_sum is None: path_sum = np.zeros((h, w), dtype=np.float32) # binary mapping from alpha channel path_sum[img[:, :, 3] > 128] += 1.0 # erase the path draw = ImageDraw.Draw(path_image) draw.rectangle([(0,0), path_image.size], fill=(0, 0, 0, 0)) if args.do_gif or (path_idx == n_paths - 1): comp_sum = np.log2(1.0 + 1.0*path_sum) # from a single float matrix to RGBA comp_rgba = matplotlib.cm.ScalarMappable(norm=None, cmap=track_cmap).to_rgba(comp_sum, alpha=None, bytes=True, norm=True) # to uint8 # set alpha channel to 0 if no path occupies the pixel comp_rgba[..., 3] = 255 comp_rgba[path_sum < 1.0, 3] = 0 path_sum_image = Image.fromarray(comp_rgba) # overlay sum path on the basemap out_image = Image.alpha_composite(basemap_image, path_sum_image) if args.do_gif: all_frames.append(out_image) else: out_file_name = '{}.png'.format(out_name_base) out_image.save(out_file_name) if args.do_gif: all_frames[0].save('{}.gif'.format(out_name_base), save_all=True, append_images=all_frames[1:], loop=False, duration=1.0 / args.fps) ## def list_basemap_providers() -> None: """ Print all map tile providers from Contextily """ print('INFO: Supported background map tile providers:') all_providers = list(xyz.flatten().keys()) all_providers.sort() for one_prov_name in all_providers: one_prov = get_basemap_provider(one_prov_name) requires_key = one_prov.requires_token() print('{} (API key required: {})'.format(one_prov_name, requires_key)) # basemap def get_basemap_provider(provider_str: str) -> Optional[xyzservices.TileProvider]: """ Take a string representing the desired Contextily basemap provider, e.g., "Esri.WorldImagery", parse it, and provide the provider instance xyzservices.providers.Esri.WorldImagery, if found or None. """ b_provider = None try: b_provider = xyz.query_name(provider_str) except ValueError: print('ERROR: Unsupported basemap provider "{}" requested.'.format(provider_str)) return b_provider ## def main(argv: List[str]) -> None: """ Top level input argument parsing. Parameters ---------- argv : list of string """ argparser = argparse.ArgumentParser() argparser.add_argument('--sport', action='store', type=str, default='all', choices=('steps', 'running', 'walking', 'hiking', 'cycling', 'all'), help='sport type filter') argparser.add_argument('--year', action='store', type=int, default=[], nargs='+', help='years to plot') argparser.add_argument('--bounding_box', action='store', type=float, default=None, nargs=4, help='output image bounding box in decimal WGS84: n, e, s, w') argparser.add_argument('--start_center', action='store', type=float, default=None, nargs=2, help='only tracks starting near ("start_max_dist") this point (lat, lon, in decimal WGS84) are plotted') argparser.add_argument('--start_max_dist', action='store', type=float, default=500.0, help='only tracks starting within this radius (in meters) from "start_center" are plotted') argparser.add_argument('--bb_percentile', action='store', type=float, default=0.01, help='when determining bounding box from data use percentiles ' 'bb_percentile and 1-bb_percentile. range: 0..1. to use ' 'min/max, set to 0') argparser.add_argument('--zoom_level', action='store', type=int, default=None, help='zoom level (larger value mean finer details). leave empty for automatic') argparser.add_argument('--line_width', action='store', type=int, default=3, help='plotting line width in pixels') argparser.add_argument('--max_point_dist', action='store', type=float, default=200.0, help='meters or None. for filtering missing data. if distance between consecutive points is larger, the line is broken into two') argparser.add_argument('--do_gif', action='store_true', help='save as frame-per-activity animation') argparser.add_argument('--fps', action='store', type=float, default=12, help='animation speed as FPS') argparser.add_argument('--basemap_provider', action='store', type=str, default='CartoDB.DarkMatter', help='Contextily basemap provider string, e.g., "OpenTopoMap", "HikeBike.HikeBike", "CartoDB.DarkMatter, Esri.WorldImagery", "None" (for blank)') argparser.add_argument('--img_width', action='store', type=int, default=1080, help='when not using a background map image width in pixels (height is computed from data)') argparser.add_argument('--track_colormap', action='store', type=str, default=None, help='(matplotlib) colormap to use for track plotting') argparser.add_argument('--list_providers', action='store_true', help='list basemap tile providers and exit') argparser.add_argument('--input_dir', action='store', type=str, default=None, help='directory-based data input: load all .fit and .gpx files here and in sub-directories') argparser.add_argument('--verbosity', action='store', type=int, default=1, help='message output verbosity. 0: silent, 1: default, 2: more info') args = argparser.parse_args(argv) if args.basemap_provider.lower() == 'None'.lower(): args.basemap_provider = None if args.list_providers: list_basemap_providers() else: run_plotting(args) ## entry point if __name__ == '__main__': main(sys.argv[1:]) ```
{ "source": "jpauwels/hrtfdata", "score": 2 }
#### File: hrtfdata/hrtfdata/display.py ```python import matplotlib.pyplot as plt import numpy as np def plot_hrtf_plane(hrtf, angles, angles_label, frequencies, log_freq=False, ax=None, cmap='gray', continuous=False, vmin=None, vmax=None, colorbar=True): if ax is None: fig, ax = plt.subplots() else: fig = ax.figure mesh = ax.pcolormesh(angles, frequencies/1000, hrtf, shading='gouraud' if continuous else 'nearest', cmap=cmap, vmin=vmin, vmax=vmax) if colorbar: fig.colorbar(mesh, ax=ax) ax.set_xlabel(angles_label) if log_freq: ax.set_yscale('log') ax.set_ylim([frequencies[1]/1000, frequencies[-1]/1000]) ax.set_ylabel('frequency [kHz]') return ax def plot_hrir_plane(hrir, angles, angles_label, sample_rate, ax=None, cmap='gray', continuous=False, vmin=None, vmax=None, colorbar=True): if ax is None: fig, ax = plt.subplots() else: fig = ax.figure times = np.arange(0, hrir.shape[0]*1000/sample_rate, 1000/sample_rate) mesh = ax.pcolormesh(angles, times, hrir, shading='gouraud' if continuous else 'nearest', cmap=cmap, vmin=vmin, vmax=vmax) if colorbar: fig.colorbar(mesh, ax=ax) ax.set_xlabel(angles_label) ax.set_ylabel('time [ms]') return ax def plot_plane_angles(angles, min_angle, max_angle, closed_open_angles, radius, zero_location, direction, ax=None): if ax is None: _, ax = plt.subplots(subplot_kw={'projection': 'polar'}) ax.plot(np.deg2rad(angles), np.full(len(angles), radius), 'ko') ax.set_rmax(radius * 1.2) ax.set_rticks([]) # no radial ticks ax.grid(False) if closed_open_angles: angular_ticks = np.linspace(min_angle, max_angle, 8, endpoint=False) else: angular_ticks = np.flip(np.linspace(max_angle, min_angle, 8, endpoint=False)) ax.set_xticks(np.deg2rad(angular_ticks)) ax.set_thetamin(min_angle) ax.set_thetamax(max_angle) ax.set_theta_direction(direction) ax.set_theta_zero_location(zero_location) return ax ``` #### File: hrtfdata/torch/full.py ```python from ..datapoint import DataPoint, SofaSphericalDataPoint, CipicDataPoint, AriDataPoint, ListenDataPoint, BiLiDataPoint, ItaDataPoint, HutubsDataPoint, RiecDataPoint, ChedarDataPoint, WidespreadDataPoint, Sadie2DataPoint, ThreeDThreeADataPoint, SonicomDataPoint import warnings from pathlib import Path from typing import Any, Callable, List, Iterable, Optional, TypeVar, Dict, IO, Tuple, Iterator import numpy as np from PIL.Image import Image, LANCZOS from torch.utils.data import Dataset as TorchDataset from torchvision.transforms import ToTensor # from torchvision.datasets.utils import check_integrity, download_and_extract_archive import numpy as np class HRTFDataset(TorchDataset): def __init__( self, datapoint: DataPoint, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, image_transform: Optional[Callable] = ToTensor(), measurement_transform: Optional[Callable] = None, hrir_transform: Optional[Callable] = None, # download: bool = True, ) -> None: super().__init__()#root, transform=transform, target_transform=target_transform) # torchvision dataset self._image_transform = image_transform self._measurement_transform = measurement_transform self._hrir_transform = hrir_transform self._query = datapoint.query # if download: # self.download() # if not self._check_integrity(): # raise RuntimeError('Dataset not found or corrupted.' + # ' You can use download=True to download it') if target_spec is None: target_spec = {} if group_spec is None: group_spec = {} self._specification = {**feature_spec, **target_spec, **group_spec} if not self._specification: raise ValueError('At least one specification should not be empty') if subject_requirements is not None: self._specification = {**self._specification, **subject_requirements} ear_ids = self._query.specification_based_ids(self._specification, include_subjects=subject_ids) if len(ear_ids) == 0: if len(self._query.specification_based_ids(self._specification)) == 0: raise ValueError('Empty dataset. Check if its configuration and paths are correct.') self.subject_ids = tuple() self.hrir_samplerate = None self.hrtf_frequencies = None self._features = [] self._targets = [] self._groups = [] self._selected_angles = {} self.row_angles = np.array([]) self.column_angles = np.array([]) return self.subject_ids, _ = zip(*ear_ids) if 'hrirs' in self._specification.keys(): self._selected_angles, row_indices, column_indices = datapoint.hrir_angle_indices( self.subject_ids[0], self._specification['hrirs'].get('row_angles'), self._specification['hrirs'].get('column_angles') ) self.row_angles = np.array(list(self._selected_angles.keys())) self.column_angles = np.ma.getdata(list(self._selected_angles.values())[0]) side = self._specification['hrirs'].get('side', '') if side.startswith('both-'): if isinstance(datapoint, SofaSphericalDataPoint): # mirror azimuths/rows start_idx = 1 if np.isclose(self.row_angles[0], -180) else 0 if not np.allclose(self.row_angles[start_idx:], -np.flip(self.row_angles[start_idx:])): raise ValueError(f'Only datasets with symmetric azimuths can use {side} sides.') else: # mirror laterals/columns if not np.allclose(self.column_angles, -np.flip(self.column_angles)): raise ValueError(f'Only datasets with symmetric lateral angles can use {side} sides.') else: self._selected_angles = {} self.row_angles = np.array([]) self.column_angles = np.array([]) self.hrir_samplerate = datapoint.hrir_samplerate(self.subject_ids[0]) self.hrtf_frequencies = datapoint.hrtf_frequencies(self.subject_ids[0]) self._features: Any = [] self._targets: Any = [] self._groups: Any = [] for subject, side in ear_ids: for spec, store in (feature_spec, self._features), (target_spec, self._targets), (group_spec, self._groups): subject_data = {} if 'images' in spec.keys(): subject_data['images'] = datapoint.pinna_image(subject, side=side, rear=spec['images'].get('rear', False)) if 'anthropometry' in spec.keys(): subject_data['anthropometry'] = datapoint.anthropomorphic_data(subject, side=side, select=spec['anthropometry'].get('select', None)) if 'hrirs' in spec.keys(): subject_data['hrirs'] = datapoint.hrir(subject, side=side, domain=spec['hrirs'].get('domain', 'time'), row_indices=row_indices, column_indices=column_indices) if 'subject' in spec.keys(): subject_data['subject'] = subject if 'side' in spec.keys(): subject_data['side'] = side if 'collection' in spec.keys(): subject_data['collection'] = datapoint.dataset_id store.append(subject_data) def __len__(self): return len(self._features) def __getitem__(self, idx): def get_single_item(features, target, group): # unify both to simpify on-demand transforms characteristics = {**features, **target, **group} if 'images' in characteristics: width, height = characteristics['images'].size resized_im = characteristics['images'].resize((32, 32), resample=LANCZOS, box=(width//2-128, height//2-128, width//2+128, height//2+128)).convert('L') if self._image_transform: resized_im = self._image_transform(resized_im) # resized_im = resized_im.transpose((1, 2, 0)) # convert to HWC characteristics['images'] = resized_im if 'anthropometry' in characteristics and self._measurement_transform: characteristics['anthropometry'] = self._measurement_transform(characteristics['anthropometry']) if 'hrirs' in characteristics and self._hrir_transform: characteristics['hrirs'] = self._hrir_transform(characteristics['hrirs']) def shape_data(keys): if len(keys) == 0: return np.array([]) if len(keys) == 1: return characteristics[list(keys)[0]] return tuple(characteristics[k] for k in keys) return { 'features': shape_data(features.keys()), 'target': shape_data(target.keys()), 'group': shape_data(group.keys()), } if isinstance(idx, int): return get_single_item(self._features[idx], self._targets[idx], self._groups[idx]) else: items = [] for features, target, group in zip(self._features[idx], self._targets[idx], self._groups[idx]): items.append(get_single_item(features, target, group)) try: return {k: np.stack([d[k] for d in items]) for k in items[0].keys()} except ValueError: raise ValueError('Not all data points have the same shape') @property def target_shape(self): return np.hstack(tuple(self._targets[0].values())).shape @property def available_subject_ids(self): ear_ids = self._query.specification_based_ids(self._specification) subject_ids, _ = zip(*ear_ids) return tuple(sorted(set(subject_ids))) class CIPIC(HRTFDataset): """CIPIC HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, measurement_transform: Optional[Callable] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = CipicDataPoint( anthropomorphy_matfile_path=Path(root)/'CIPIC_hrtf_database/anthropometry/anthro.mat', sofa_directory_path=Path(root)/'sofa', dtype=dtype, ) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, measurement_transform, hrir_transform) class ARI(HRTFDataset): """ARI HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, measurement_transform: Optional[Callable] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = AriDataPoint( anthropomorphy_matfile_path=Path(root)/'anthro.mat', sofa_directory_path=Path(root)/'sofa', dtype=dtype, ) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, measurement_transform, hrir_transform) class Listen(HRTFDataset): """Listen HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = ListenDataPoint(sofa_directory_path=Path(root)/'sofa/compensated/44100', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class BiLi(HRTFDataset): """BiLi HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = BiLiDataPoint(sofa_directory_path=Path(root)/'sofa/compensated/96000', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class ITA(HRTFDataset): """ITA HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = ItaDataPoint(sofa_directory_path=Path(root)/'sofa', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class HUTUBS(HRTFDataset): """HUTUBS HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = HutubsDataPoint(sofa_directory_path=Path(root)/'sofa', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class RIEC(HRTFDataset): """RIEC HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = RiecDataPoint(sofa_directory_path=Path(root)/'sofa', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class CHEDAR(HRTFDataset): """CHEDAR HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = ChedarDataPoint(sofa_directory_path=Path(root)/'sofa', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class Widespread(HRTFDataset): """Widespread HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = WidespreadDataPoint(sofa_directory_path=Path(root)/'sofa', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class SADIE2(HRTFDataset): """SADIE II HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = Sadie2DataPoint(sofa_directory_path=Path(root)/'Database-Master_V1-4', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class ThreeDThreeA(HRTFDataset): """3D3A HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = ThreeDThreeADataPoint(sofa_directory_path=Path(root)/'sofa', dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) class SONICOM(HRTFDataset): """SONICOM HRTF Dataset """ def __init__( self, root: str, feature_spec: Dict, target_spec: Optional[Dict] = None, group_spec: Optional[Dict] = None, subject_ids: Optional[Iterable[int]] = None, subject_requirements: Optional[Dict] = None, hrir_transform: Optional[Callable] = None, dtype: type = np.float32, # download: bool = True, ) -> None: datapoint = SonicomDataPoint(sofa_directory_path=Path(root), dtype=dtype) super().__init__(datapoint, feature_spec, target_spec, group_spec, subject_ids, subject_requirements, None, None, hrir_transform) ```
{ "source": "jpauwels/neptune-client", "score": 2 }
#### File: neptune-client/e2e_tests/conftest.py ```python import os from faker import Faker import boto3 import pytest from neptune.management.internal.utils import normalize_project_name from neptune.management import create_project, add_project_member import neptune.new as neptune from e2e_tests.utils import a_project_name, Environment fake = Faker() @pytest.fixture(scope="session") def environment(): workspace = os.getenv("WORKSPACE_NAME") admin_token = os.getenv("ADMIN_NEPTUNE_API_TOKEN") user = os.getenv("USER_USERNAME") project_name, project_key = a_project_name(project_slug=fake.slug()) project_identifier = normalize_project_name(name=project_name, workspace=workspace) created_project_identifier = create_project( name=project_name, key=project_key, visibility="priv", workspace=workspace, api_token=admin_token, ) add_project_member( name=created_project_identifier, username=user, # pylint: disable=no-member role="contributor", api_token=admin_token, ) yield Environment( workspace=workspace, project=project_identifier, user_token=os.getenv("NEPTUNE_API_TOKEN"), admin_token=admin_token, admin=os.getenv("ADMIN_USERNAME"), user=user, ) @pytest.fixture(scope="session") def container(request, environment): if request.param == "project": project = neptune.init_project(name=environment.project) yield project project.stop() if request.param == "run": exp = neptune.init_run(project=environment.project) yield exp exp.stop() @pytest.fixture(scope="session") def bucket(environment): bucket_name = os.environ.get("BUCKET_NAME") s3_client = boto3.resource("s3") s3_bucket = s3_client.Bucket(bucket_name) yield bucket_name, s3_client s3_bucket.objects.filter(Prefix=environment.project).delete() ``` #### File: neptune/new/exceptions.py ```python from typing import List, Optional, Union from urllib.parse import urlparse from packaging.version import Version from neptune.exceptions import STYLES from neptune.new import envs from neptune.new.envs import CUSTOM_RUN_ID_ENV_NAME from neptune.new.internal.backends.api_model import Project, Workspace from neptune.new.internal.container_type import ContainerType from neptune.new.internal.utils import replace_patch_version class NeptuneException(Exception): def __eq__(self, other): if type(other) is type(self): return super().__eq__(other) and str(self).__eq__(str(other)) else: return False def __hash__(self): return hash((super().__hash__(), str(self))) class NeptuneApiException(NeptuneException): pass class MetadataInconsistency(NeptuneException): pass class MissingFieldException(NeptuneException, AttributeError, KeyError): """Raised when get-like action is called on `Handler`, instead of on `Attribute`.""" def __init__(self, field_path): message = """ {h1} ----MissingFieldException------------------------------------------------------- {end} Field "{field_path}" was not found. There are two possible reasons: - There is a typo in a path. Double-check your code for typos. - You are fetching a field that other process created, but local representation is not synchronized. If you are sending metadata from multiple processes at the same time, synchronize the local representation before fetching values: {python}run.sync(){end} {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ self._msg = message.format(field_path=field_path, **STYLES) super().__init__(self._msg) def __str__(self): # required because of overriden `__str__` in `KeyError` return self._msg class MalformedOperation(NeptuneException): pass class FileNotFound(NeptuneException): def __init__(self, file: str): super().__init__("File not found: {}".format(file)) class FileUploadError(NeptuneException): def __init__(self, filename: str, msg: str): super().__init__("Cannot upload file {}: {}".format(filename, msg)) class FileSetUploadError(NeptuneException): def __init__(self, globs: List[str], msg: str): super().__init__("Cannot upload file set {}: {}".format(globs, msg)) class InternalClientError(NeptuneException): def __init__(self, msg: str): message = """ {h1} ----InternalClientError----------------------------------------------------------------------- {end} Neptune Client Library encountered an unexpected Internal Error: {msg} Please contact Neptune support. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(msg=msg, **STYLES)) class ClientHttpError(NeptuneException): def __init__(self, status, response): self.status = status self.response = response message = """ {h1} ----ClientHttpError----------------------------------------------------------------------- {end} Neptune server returned status {fail}{status}{end}. Server response was: {fail}{response}{end} Verify the correctness of your call or contact Neptune support. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(status=status, response=response, **STYLES)) class ExceptionWithProjectsWorkspacesListing(NeptuneException): def __init__( self, message: str, available_projects: List[Project] = (), available_workspaces: List[Workspace] = (), **kwargs, ): available_projects_message = """ Did you mean any of these? {projects} """ available_workspaces_message = """ You can check all of your projects on the Projects page: {workspaces_urls} """ projects_formated_list = "\n".join( map( lambda project: f" - {project.workspace}/{project.name}", available_projects, ) ) workspaces_formated_list = "\n".join( map( lambda workspace: f" - https://app.neptune.ai/{workspace.name}/-/projects", available_workspaces, ) ) super().__init__( message.format( available_projects_message=available_projects_message.format( projects=projects_formated_list ) if available_projects else "", available_workspaces_message=available_workspaces_message.format( workspaces_urls=workspaces_formated_list ) if available_workspaces else "", **STYLES, **kwargs, ) ) class ProjectNotFound(ExceptionWithProjectsWorkspacesListing): def __init__( self, project_id: str, available_projects: List[Project] = (), available_workspaces: List[Workspace] = (), ): message = """ {h1} ----NeptuneProjectNotFoundException------------------------------------ {end} We couldn’t find project {fail}"{project}"{end}. {available_projects_message}{available_workspaces_message} You may also want to check the following docs pages: - https://docs.neptune.ai/administration/projects - https://docs.neptune.ai/getting-started/hello-world#project {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message=message, available_projects=available_projects, available_workspaces=available_workspaces, project=project_id, ) class ProjectNameCollision(ExceptionWithProjectsWorkspacesListing): def __init__(self, project_id: str, available_projects: List[Project] = ()): message = """ {h1} ----NeptuneProjectNameCollisionException------------------------------------ {end} Cannot resolve project {fail}"{project}"{end}. {available_projects_message} You may also want to check the following docs pages: - https://docs.neptune.ai/administration/projects - https://docs.neptune.ai/getting-started/hello-world#project {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message=message, available_projects=available_projects, project=project_id ) class NeptuneMissingProjectNameException(ExceptionWithProjectsWorkspacesListing): def __init__( self, available_projects: List[Project] = (), available_workspaces: List[Workspace] = (), ): message = """ {h1} ----NeptuneMissingProjectNameException---------------------------------------- {end} Neptune client couldn't find your project name. {available_projects_message}{available_workspaces_message} There are two options two add it: - specify it in your code - set an environment variable in your operating system. {h2}CODE{end} Pass it to {bold}neptune.init(){end} via {bold}project{end} argument: {python}neptune.init(project='WORKSPACE_NAME/PROJECT_NAME'){end} {h2}ENVIRONMENT VARIABLE{end} or export or set an environment variable depending on your operating system: {correct}Linux/Unix{end} In your terminal run: {bash}export {env_project}=WORKSPACE_NAME/PROJECT_NAME{end} {correct}Windows{end} In your CMD run: {bash}set {env_project}=WORKSPACE_NAME/PROJECT_NAME{end} and skip the {bold}project{end} argument of {bold}neptune.init(){end}: {python}neptune.init(){end} You may also want to check the following docs pages: - https://docs.neptune.ai/administration/projects - https://docs.neptune.ai/getting-started/hello-world#project {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message=message, available_projects=available_projects, available_workspaces=available_workspaces, env_project=envs.PROJECT_ENV_NAME, ) class RunNotFound(NeptuneException): def __init__(self, run_id: str) -> None: super().__init__("Run {} not found.".format(run_id)) class ContainerUUIDNotFound(NeptuneException): container_id: str container_type: ContainerType def __init__(self, container_id: str, container_type: ContainerType): self.container_id = container_id self.container_type = container_type super().__init__( "{} with ID {} not found. Could be deleted.".format( container_type.value.capitalize(), container_id ) ) def raise_container_not_found( container_id: str, container_type: ContainerType, from_exception: Exception = None ): if container_type == ContainerType.RUN: error_class = RunUUIDNotFound elif container_type == ContainerType.PROJECT: error_class = ProjectUUIDNotFound else: raise InternalClientError(f"Unknown container_type: {container_type}") if from_exception: raise error_class(container_id) from from_exception else: raise error_class(container_id) class RunUUIDNotFound(ContainerUUIDNotFound): def __init__(self, container_id: str): super().__init__(container_id, container_type=ContainerType.RUN) class ProjectUUIDNotFound(ContainerUUIDNotFound): def __init__(self, container_id: str): super().__init__(container_id, container_type=ContainerType.PROJECT) class InactiveContainerException(NeptuneException): resume_info: str def __init__(self, container_type: ContainerType, label: str): message = """ {h1} ----{cls}---------------------------------------- {end} It seems you are trying to log (or fetch) metadata to a {container_type} that was stopped ({label}). What should I do?{resume_info} You may also want to check the following docs pages: - https://docs.neptune.ai/api-reference/{container_type}#.stop - https://docs.neptune.ai/you-should-know/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format( cls=self.__class__.__name__, label=label, container_type=container_type.value, resume_info=self.resume_info, **STYLES, ) ) class InactiveRunException(InactiveContainerException): resume_info = """ - Resume the run to continue logging to it: https://docs.neptune.ai/how-to-guides/neptune-api/resume-run#how-to-resume-run - Don't invoke `stop()` on a {container_type} that you want to access. If you want to stop monitoring only, you can resume a {container_type} in read-only mode: https://docs.neptune.ai/you-should-know/connection-modes#read-only""" def __init__(self, label: str): super().__init__(label=label, container_type=ContainerType.RUN) class InactiveProjectException(InactiveContainerException): resume_info = """ - Initialize connection to the project again to continue logging to it: https://docs.neptune.ai/api-reference/neptune#.init_project - Don't invoke `stop()` on a {container_type} that you want to access.""" def __init__(self, label: str): super().__init__(label=label, container_type=ContainerType.PROJECT) class NeptuneMissingApiTokenException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneMissingApiTokenException------------------------------------------- {end} Neptune client couldn't find your API token. You can get it here: - https://app.neptune.ai/get_my_api_token There are two options to add it: - specify it in your code - set an environment variable in your operating system. {h2}CODE{end} Pass the token to {bold}neptune.init(){end} via {bold}api_token{end} argument: {python}neptune.init(project='WORKSPACE_NAME/PROJECT_NAME', api_token='YOUR_API_TOKEN'){end} {h2}ENVIRONMENT VARIABLE{end} {correct}(Recommended option){end} or export or set an environment variable depending on your operating system: {correct}Linux/Unix{end} In your terminal run: {bash}export {env_api_token}="YOUR_API_TOKEN"{end} {correct}Windows{end} In your CMD run: {bash}set {env_api_token}="YOUR_API_TOKEN"{end} and skip the {bold}api_token{end} argument of {bold}neptune.init(){end}: {python}neptune.init(project='WORKSPACE_NAME/PROJECT_NAME'){end} You may also want to check the following docs pages: - https://docs.neptune.ai/getting-started/installation#authentication-neptune-api-token {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format(env_api_token=envs.API_TOKEN_ENV_NAME, **STYLES) ) class NeptuneInvalidApiTokenException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneInvalidApiTokenException------------------------------------------------ {end} Provided API token is invalid. Make sure you copied and provided your API token correctly. You can get it or check if it is correct here: - https://app.neptune.ai/get_my_api_token There are two options to add it: - specify it in your code - set as an environment variable in your operating system. {h2}CODE{end} Pass the token to {bold}neptune.init(){end} via {bold}api_token{end} argument: {python}neptune.init(project='WORKSPACE_NAME/PROJECT_NAME', api_token='YOUR_API_TOKEN'){end} {h2}ENVIRONMENT VARIABLE{end} {correct}(Recommended option){end} or export or set an environment variable depending on your operating system: {correct}Linux/Unix{end} In your terminal run: {bash}export {env_api_token}="YOUR_API_TOKEN"{end} {correct}Windows{end} In your CMD run: {bash}set {env_api_token}="YOUR_API_TOKEN"{end} and skip the {bold}api_token{end} argument of {bold}neptune.init(){end}: {python}neptune.init(project='WORKSPACE_NAME/PROJECT_NAME'){end} You may also want to check the following docs pages: - https://docs.neptune.ai/getting-started/installation#authentication-neptune-api-token {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format(env_api_token=envs.API_TOKEN_ENV_NAME, **STYLES) ) class CannotSynchronizeOfflineRunsWithoutProject(NeptuneException): def __init__(self): super().__init__("Cannot synchronize offline runs without a project.") class NeedExistingRunForReadOnlyMode(NeptuneException): def __init__(self): message = """ {h1} ----NeedExistingRunForReadOnlyMode----------------------------------------- {end} Read-only mode can be used only with an existing run. Parameter {python}run{end} of {python}neptune.init(){end} must be provided and reference an existing run when using {python}mode="read-only"{end}. You may also want to check the following docs pages: - https://docs.neptune.ai/you-should-know/connection-modes#read-only - https://docs.neptune.ai/api-reference/neptune#init {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class NeptuneRunResumeAndCustomIdCollision(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneRunResumeAndCustomIdCollision----------------------------------------- {end} It's not possible to use {python}custom_run_id{end} while resuming a run. Parameters {python}run{end} and {python}custom_run_id{end} of {python}neptune.init(){end} are mutually exclusive. Make sure you have no {bash}{custom_id_env}{end} environment variable set and no value is explicitly passed to `custom_run_id` argument when you are resuming a run. You may also want to check the following docs pages: - https://docs.neptune.ai/api-reference/neptune#init {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(custom_id_env=CUSTOM_RUN_ID_ENV_NAME, **STYLES)) class UnsupportedClientVersion(NeptuneException): def __init__( self, version: Union[Version, str], min_version: Optional[Union[Version, str]] = None, max_version: Optional[Union[Version, str]] = None, ): current_version = str(version) required_version = ( "==" + replace_patch_version(str(max_version)) if max_version else ">=" + str(min_version) ) message = """ {h1} ----UnsupportedClientVersion------------------------------------------------------------- {end} Your version of neptune-client ({current_version}) library is not supported by the Neptune server. Please install neptune-client{required_version} {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format( current_version=current_version, required_version=required_version, **STYLES, ) ) class CannotResolveHostname(NeptuneException): def __init__(self, host): message = """ {h1} ----CannotResolveHostname----------------------------------------------------------------------- {end} Neptune Client Library was not able to resolve hostname {underline}{host}{end}. What should I do? - Check if your computer is connected to the internet. - Check if your computer should use any proxy to access internet. If so, you may want to use {python}proxies{end} parameter of {python}neptune.init(){end} function. See https://docs.neptune.ai/api-reference/neptune#.init and https://requests.readthedocs.io/en/master/user/advanced/#proxies - Check Neptune services status: https://status.neptune.ai/ {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(host=host, **STYLES)) class SSLError(NeptuneException): def __init__(self): super().__init__( "SSL certificate validation failed. Set NEPTUNE_ALLOW_SELF_SIGNED_CERTIFICATE " "environment variable to accept self-signed certificates." ) class NeptuneConnectionLostException(NeptuneException): def __init__(self, cause: Exception): self.cause = cause message = """ {h1} ----NeptuneConnectionLostException--------------------------------------------------------- {end} A connection to the Neptune server was lost. If you are using asynchronous (default) connection mode Neptune will continue to locally track your metadata and will continuously try to re-establish connection with Neptune servers. If the connection is not re-established you can upload it later using Neptune Command Line Interface: {bash}neptune sync -p workspace_name/project_name{end} What should I do? - Check if your computer is connected to the internet. - If your connection is unstable you can consider working using the offline mode: {python}run = neptune.init(mode="offline"){end} You can read in detail how it works and how to upload your data on the following doc pages: - https://docs.neptune.ai/you-should-know/connection-modes#offline - https://docs.neptune.ai/you-should-know/connection-modes#uploading-offline-data You may also want to check the following docs pages: - https://docs.neptune.ai/you-should-know/connection-modes#connectivity-issues - https://docs.neptune.ai/you-should-know/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class InternalServerError(NeptuneApiException): def __init__(self, response): message = """ {h1} ----InternalServerError----------------------------------------------------------------------- {end} Neptune Client Library encountered an unexpected Internal Server Error. Server response was: {fail}{response}{end} Please try again later or contact Neptune support. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(response=response, **STYLES)) class Unauthorized(NeptuneApiException): def __init__(self): message = """ {h1} ----Unauthorized----------------------------------------------------------------------- {end} You have no permission to access given resource. - Verify your API token is correct. See: https://app.neptune.ai/get_my_api_token - Verify if your the provided project name is correct. The correct project name should look like this {correct}WORKSPACE/PROJECT_NAME{end}. It has two parts: - {correct}WORKSPACE{end}: which can be your username or your organization name - {correct}PROJECT_NAME{end}: which is the actual project name you chose - Ask your organization administrator to grant you necessary privileges to the project {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class Forbidden(NeptuneApiException): def __init__(self): message = """ {h1} ----Forbidden----------------------------------------------------------------------- {end} You have no permission to access given resource. - Verify your API token is correct. See: https://app.neptune.ai/get_my_api_token - Verify if your the provided project name is correct. The correct project name should look like this {correct}WORKSPACE/PROJECT_NAME{end}. It has two parts: - {correct}WORKSPACE{end}: which can be your username or your organization name - {correct}PROJECT_NAME{end}: which is the actual project name you chose - Ask your organization administrator to grant you necessary privileges to the project {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class NeptuneOfflineModeFetchException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneOfflineModeFetchException--------------------------------------------------- {end} It seems you are trying to fetch data from the server, while working in an offline mode. You need to work in non-offline connection mode to fetch data from the server. You can set connection mode when creating a new run: {python}run = neptune.init(mode="async"){end} You may also want to check the following docs pages: - https://docs.neptune.ai/you-should-know/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class OperationNotSupported(NeptuneException): def __init__(self, message: str): super().__init__(f"Operation not supported: {message}") class NeptuneLegacyProjectException(NeptuneException): def __init__(self, project: str): message = """ {h1} ----NeptuneLegacyProjectException--------------------------------------------------------- {end} Your project "{project}" has not been migrated to the new structure yet. Unfortunately neptune.new Python API is incompatible with projects using old structure, please use legacy neptune Python API. Don't worry - we are working hard on migrating all the projects and you will be able to use the neptune.new API soon. You can find documentation for legacy neptune Python API here: - https://docs-legacy.neptune.ai/index.html {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(project=project, **STYLES)) class NeptuneUninitializedException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneUninitializedException---------------------------------------------------- {end} You must initialize neptune-client before you access `get_last_run`. Looks like you forgot to add: {python}neptune.init(project='WORKSPACE_NAME/PROJECT_NAME', api_token='YOUR_API_TOKEN'){end} before you ran: {python}neptune.get_last_run(){end} You may also want to check the following docs pages: - https://docs.neptune.ai/api-reference/neptune#get_last_run {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class NeptuneIntegrationNotInstalledException(NeptuneException): def __init__(self, integration_package_name, framework_name): message = """ {h1} ----NeptuneIntegrationNotInstalledException----------------------------------------- {end} Looks like integration {integration_package_name} wasn't installed. To install run: {bash}pip install {integration_package_name}{end} Or: {bash}pip install neptune-client[{framework_name}]{end} You may also want to check the following docs pages: - https://docs.neptune.ai/integrations-and-supported-tools/intro {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format( integration_package_name=integration_package_name, framework_name=framework_name, **STYLES, ) ) class NeptuneLimitExceedException(NeptuneException): def __init__(self, reason: str): message = """ {h1} ----NeptuneLimitExceedException--------------------------------------------------------------------------------------- {end} {reason} It's not possible to upload new data, but you can still fetch and delete data. If you are using asynchronous (default) connection mode Neptune automatically switched to an offline mode and your data is being stored safely on the disk. You can upload it later using Neptune Command Line Interface: {bash}neptune sync -p project_name{end} What should I do? - In case of storage limit go to your projects and remove runs or model metadata you don't need - ... or update your subscription plan here: https://app.neptune.ai/-/subscription You may also want to check the following docs pages: - https://docs.neptune.ai/advanced-user-guides/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES, reason=reason)) class NeptuneStorageLimitException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneStorageLimitException--------------------------------------------------------------------------------------- {end} You exceeded storage limit for workspace. It's not possible to upload new data, but you can still fetch and delete data. If you are using asynchronous (default) connection mode Neptune automatically switched to an offline mode and your data is being stored safely on the disk. You can upload it later using Neptune Command Line Interface: {bash}neptune sync -p project_name{end} What should I do? - Go to your projects and remove runs or model metadata you don't need - ... or update your subscription plan here: https://app.neptune.ai/-/subscription You may also want to check the following docs pages: - https://docs.neptune.ai/advanced-user-guides/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class FetchAttributeNotFoundException(MetadataInconsistency): def __init__(self, attribute_path: str): message = """ {h1} ----MetadataInconsistency---------------------------------------------------------------------- {end} Field {python}{attribute_path}{end} was not found. Remember that in the asynchronous (default) connection mode data is synchronized with the Neptune servers in the background and may have not reached it yet before it's fetched. Before fetching the data you can force wait for all the requests sent by invoking: {python}run.wait(){end} Remember that each use of {python}wait{end} introduces a delay in code execution. You may also want to check the following docs pages: - https://docs.neptune.ai/you-should-know/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help.html """ super().__init__(message.format(attribute_path=attribute_path, **STYLES)) class ArtifactNotFoundException(MetadataInconsistency): def __init__(self, artifact_hash: str): message = """ {h1} ----MetadataInconsistency---------------------------------------------------------------------- {end} Artifact with hash {python}{artifact_hash}{end} was not found. Remember that in the asynchronous (default) connection mode data is synchronized with the Neptune servers in the background and may have not reached it yet before it's fetched. Before fetching the data you can force wait for all the requests sent by invoking: {python}run.wait(){end} Remember that each use of {python}wait{end} introduces a delay in code execution. You may also want to check the following docs pages: - https://docs.neptune.ai/you-should-know/connection-modes {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help.html """ super().__init__(message.format(artifact_hash=artifact_hash, **STYLES)) class PlotlyIncompatibilityException(Exception): def __init__(self, matplotlib_version, plotly_version): super().__init__( "Unable to convert plotly figure to matplotlib format. " "Your matplotlib ({}) and plotlib ({}) versions are not compatible. " "See https://stackoverflow.com/q/63120058 for details. " "Downgrade matplotlib to version 3.2 or use as_image to log static chart.".format( matplotlib_version, plotly_version ) ) class NeptunePossibleLegacyUsageException(NeptuneException): def __init__(self): message = """ {h1} ----NeptunePossibleLegacyUsageException---------------------------------------------------------------- {end} It seems you are trying to use legacy API, but imported the new one. Simply update your import statement to: {python}import neptune{end} You may want to check the Legacy API docs: - https://docs-legacy.neptune.ai If you want to update your code with the new API we prepared a handy migration guide: - https://docs.neptune.ai/migration-guide You can read more about neptune.new in the release blog post: - https://neptune.ai/blog/neptune-new You may also want to check the following docs pages: - https://docs-legacy.neptune.ai/getting-started/integrate-neptune-into-your-codebase.html {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class NeptuneLegacyIncompatibilityException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneLegacyIncompatibilityException---------------------------------------- {end} It seems you are passing the legacy Experiment object, when a Run object is expected. What can I do? - Updating your code to the new Python API requires few changes, but to help you with this process we prepared a handy migration guide: https://docs.neptune.ai/migration-guide - You can read more about neptune.new in the release blog post: https://neptune.ai/blog/neptune-new {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class NeptuneUnhandledArtifactSchemeException(NeptuneException): def __init__(self, path: str): scheme = urlparse(path).scheme message = """ {h1} ----NeptuneUnhandledArtifactProtocolException------------------------------------ {end} You have used a Neptune Artifact to track a file with scheme unhandled by this client ({scheme}). Problematic path: {path} {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(scheme=scheme, path=path, **STYLES)) class NeptuneUnhandledArtifactTypeException(NeptuneException): def __init__(self, type_str: str): message = """ {h1} ----NeptuneUnhandledArtifactTypeException---------------------------------------- {end} A Neptune Artifact you're listing is tracking a file type unhandled by this client ({type_str}). {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(type_str=type_str, **STYLES)) class NeptuneLocalStorageAccessException(NeptuneException): def __init__(self, path, expected_description): message = """ {h1} ----NeptuneLocalStorageAccessException------------------------------------- {end} Neptune had problem processing "{path}", it expects it to be {expected_description}. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format( path=path, expected_description=expected_description, **STYLES ) ) class NeptuneRemoteStorageCredentialsException(NeptuneException): def __init__(self): message = """ {h1} ----NeptuneRemoteStorageCredentialsException------------------------------------- {end} Neptune could not find suitable credentials for remote storage of a Neptune Artifact you're listing. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(**STYLES)) class NeptuneRemoteStorageAccessException(NeptuneException): def __init__(self, location: str): message = """ {h1} ----NeptuneRemoteStorageAccessException------------------------------------------ {end} Neptune could not access an object ({location}) from remote storage of a Neptune Artifact you're listing. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__(message.format(location=location, **STYLES)) class ArtifactUploadingError(NeptuneException): def __init__(self, msg: str): super().__init__("Cannot upload artifact: {}".format(msg)) class NeptuneUnsupportedArtifactFunctionalityException(NeptuneException): def __init__(self, functionality_info: str): message = """ {h1} ----NeptuneUnsupportedArtifactFunctionality------------------------------------- {end} It seems you are using Neptune Artifacts functionality that is currently not supported. {functionality_info} {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format(functionality_info=functionality_info, **STYLES) ) class NeptuneEmptyLocationException(NeptuneException): def __init__(self, location: str, namespace: str): message = """ {h1} ----NeptuneEmptyLocationException---------------------------------------------- {end} Neptune could not find files in the requested location ({location}) during creation of an Artifact in "{namespace}". {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ super().__init__( message.format(location=location, namespace=namespace, **STYLES) ) class NeptuneFeatureNotAvailableException(NeptuneException): def __init__(self, missing_feature): message = """ {h1} ----NeptuneFeatureNotAvailableException---------------------------------------------- {end} Following feature is not yet supported by the Neptune instance you are using: {missing_feature} An update of the Neptune instance is required in order to use it. Please contact your local Neptune administrator or the Neptune support directly (<EMAIL>) about the upcoming updates. {correct}Need help?{end}-> https://docs.neptune.ai/getting-started/getting-help """ self.message = message.format(missing_feature=missing_feature, **STYLES) super().__init__(message) ``` #### File: new/internal/init_project.py ```python import logging import threading from typing import Optional from neptune.new.exceptions import NeptuneException from neptune.new.internal.backends.factory import get_backend from neptune.new.internal.backends.project_name_lookup import project_name_lookup from neptune.new.internal.backgroud_job_list import BackgroundJobList from neptune.new.internal.operation_processors.factory import get_operation_processor from neptune.new.internal.utils import verify_type from neptune.new.project import Project from neptune.new.types.mode import Mode from neptune.new.version import version as parsed_version __version__ = str(parsed_version) _logger = logging.getLogger(__name__) def init_project( *, name: Optional[str] = None, api_token: Optional[str] = None, mode: str = Mode.ASYNC.value, flush_period: float = 5, proxies: Optional[dict] = None, ) -> Project: verify_type("name", name, (str, type(None))) verify_type("api_token", api_token, (str, type(None))) verify_type("mode", mode, str) verify_type("flush_period", flush_period, (int, float)) verify_type("proxies", proxies, (dict, type(None))) if mode == Mode.OFFLINE: raise NeptuneException("Project can't be initialized in OFFLINE mode") backend = get_backend(mode, api_token=api_token, proxies=proxies) project_obj = project_name_lookup(backend, name) project_lock = threading.RLock() operation_processor = get_operation_processor( mode, container_id=project_obj.id, container_type=Project.container_type, backend=backend, lock=project_lock, flush_period=flush_period, ) background_jobs = [] project = Project( project_obj.id, backend, operation_processor, BackgroundJobList(background_jobs), project_lock, project_obj.workspace, project_obj.name, ) if mode != Mode.OFFLINE: project.sync(wait=False) # pylint: disable=protected-access project._startup(debug_mode=mode == Mode.DEBUG) return project def get_project( name: Optional[str] = None, api_token: Optional[str] = None, proxies: Optional[dict] = None, ) -> Project: """Get a project with given `name`. Args: name(str, optional): Name of a project in a form of namespace/project_name. Defaults to `None`. If None, the value of `NEPTUNE_PROJECT` environment variable will be taken. api_token(str, optional): User’s API token. Defaults to `None`. If None, the value of `NEPTUNE_API_TOKEN` environment variable will be taken. .. note:: It is strongly recommended to use `NEPTUNE_API_TOKEN` environment variable rather than placing your API token in plain text in your source code. Returns: ``Project``: object that can be used to interact with the project as a whole like fetching data from Runs table. Examples: >>> import neptune.new as neptune >>> # Fetch project 'jack/sandbox' ... project = neptune.get_project(name='jack/sandbox') >>> # Fetch all Runs metadata as Pandas DataFrame ... runs_table_df = project.fetch_runs_table().to_pandas() You may also want to check `get_project docs page`_. .. _get_project docs page: https://docs.neptune.ai/api-reference/neptune#.get_project """ return init_project( name=name, api_token=api_token, mode=Mode.READ_ONLY.value, proxies=proxies ) ``` #### File: internal/backends/test_hosted_file_operations.py ```python import json import os import random import unittest import uuid from collections import namedtuple from tempfile import NamedTemporaryFile, TemporaryDirectory import mock from mock import MagicMock, patch, call from neptune.new.internal.backends.api_model import ClientConfig from neptune.new.internal.backends.hosted_file_operations import ( upload_file_attribute, upload_file_set_attribute, download_file_attribute, _get_content_disposition_filename, download_file_set_attribute, ) from neptune.utils import IS_WINDOWS from tests.neptune.new.backend_test_mixin import BackendTestMixin from tests.neptune.new.helpers import create_file def set_expected_result(endpoint: MagicMock, value: dict): endpoint.return_value.response.return_value.result = namedtuple( endpoint.__class__.__name__, value.keys() )(**value) class HostedFileOperationsHelper(unittest.TestCase): @staticmethod def get_random_bytes(count): return bytes(random.randint(0, 255) for _ in range(count)) @staticmethod def _get_swagger_mock(): swagger_mock = MagicMock() swagger_mock.swagger_spec.http_client = MagicMock() swagger_mock.swagger_spec.api_url = "ui.neptune.ai" swagger_mock.api.uploadFileSetAttributeChunk.operation.path_name = ( "/uploadFileSetChunk" ) swagger_mock.api.uploadFileSetAttributeTar.operation.path_name = ( "/uploadFileSetTar" ) swagger_mock.api.uploadPath.operation.path_name = "/uploadPath" swagger_mock.api.uploadAttribute.operation.path_name = "/attributes/upload" swagger_mock.api.downloadAttribute.operation.path_name = "/attributes/download" swagger_mock.api.downloadFileSetAttributeZip.operation.path_name = ( "/attributes/downloadFileSetZip" ) swagger_mock.api.downloadFileSetAttributeZip.operation.path_name = ( "/attributes/downloadFileSetZip" ) swagger_mock.api.download.operation.path_name = "/download" swagger_mock.api.fileAtomMultipartUploadStart.operation.path_name = ( "/attributes/storage/file/upload/start" ) swagger_mock.api.fileAtomMultipartUploadFinish.operation.path_name = ( "/attributes/storage/file/upload/finish" ) swagger_mock.api.fileAtomMultipartUploadPart.operation.path_name = ( "/attributes/storage/file/upload/part" ) swagger_mock.api.fileAtomUpload.operation.path_name = ( "/attributes/storage/file/upload" ) swagger_mock.api.fileSetFileMultipartUploadStart.operation.path_name = ( "/attributes/storage/fileset/upload/start" ) swagger_mock.api.fileSetFileMultipartUploadFinish.operation.path_name = ( "/attributes/storage/fileset/upload/finish" ) swagger_mock.api.fileSetFileMultipartUploadPart.operation.path_name = ( "/attributes/storage/fileset/upload/part" ) swagger_mock.api.fileSetFileUpload.operation.path_name = ( "/attributes/storage/fileset/upload" ) return swagger_mock class TestCommonHostedFileOperations(HostedFileOperationsHelper): # pylint:disable=protected-access def test_get_content_disposition_filename(self): # given response_mock = MagicMock() response_mock.headers = { "Content-Disposition": 'attachment; filename="sample.file"' } # when filename = _get_content_disposition_filename(response_mock) # then self.assertEqual(filename, "sample.file") @patch( "neptune.new.internal.backends.hosted_file_operations._store_response_as_file" ) @patch("neptune.new.internal.backends.hosted_file_operations._download_raw_data") def test_download_file_attribute(self, download_raw, store_response_mock): # given swagger_mock = self._get_swagger_mock() exp_uuid = str(uuid.uuid4()) # when download_file_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="some/attribute", destination=None, ) # then download_raw.assert_called_once_with( http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/download", headers={"Accept": "application/octet-stream"}, query_params={"experimentId": str(exp_uuid), "attribute": "some/attribute"}, ) store_response_mock.assert_called_once_with(download_raw.return_value, None) @patch( "neptune.new.internal.backends.hosted_file_operations._store_response_as_file" ) @patch("neptune.new.internal.backends.hosted_file_operations._download_raw_data") @patch( "neptune.new.internal.backends.hosted_file_operations._get_download_url", new=lambda _, _id: "some_url", ) def test_download_file_set_attribute(self, download_raw, store_response_mock): # given swagger_mock = self._get_swagger_mock() download_id = str(uuid.uuid4()) # when download_file_set_attribute( swagger_client=swagger_mock, download_id=download_id, destination=None ) # then download_raw.assert_called_once_with( http_client=swagger_mock.swagger_spec.http_client, url="some_url", headers={"Accept": "application/zip"}, ) store_response_mock.assert_called_once_with(download_raw.return_value, None) class TestOldUploadFileOperations(HostedFileOperationsHelper): multipart_config = None @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") def test_missing_files_or_directory(self, upload_raw_data_mock): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_raw_data_mock.return_value = b"null" swagger_mock.api.getUploadConfig.return_value.response.return_value.result.chunkSize = ( 10 ) # when with NamedTemporaryFile("w") as temp_file_1: with NamedTemporaryFile("w") as temp_file_2: with TemporaryDirectory() as temp_dir: upload_file_set_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="some/attribute", file_globs=[ temp_file_1.name, temp_file_2.name, os.path.abspath("missing_file"), temp_dir, ], reset=True, multipart_config=self.multipart_config, ) # then upload_raw_data_mock.assert_called_once_with( http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/uploadFileSetTar", data=mock.ANY, headers={"Content-Type": "application/octet-stream"}, query_params={ "experimentId": str(exp_uuid), "attribute": "some/attribute", "reset": "True", }, ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations._upload_loop") def test_upload_file_attribute(self, upload_loop_mock): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_loop_mock.return_value = b"null" # when with NamedTemporaryFile("w") as f: upload_file_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="target/path.txt", source=f.name, ext="txt", multipart_config=self.multipart_config, ) # then upload_loop_mock.assert_called_once_with( file_chunk_stream=mock.ANY, http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/upload", query_params={ "experimentId": str(exp_uuid), "attribute": "target/path.txt", "ext": "txt", }, ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations._upload_loop") def test_upload_file_attribute_from_stream(self, upload_loop_mock): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_loop_mock.return_value = b"null" # when upload_file_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="target/path.txt", source=b"Some content of test stream", ext="txt", multipart_config=self.multipart_config, ) # then upload_loop_mock.assert_called_once_with( file_chunk_stream=mock.ANY, http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/upload", query_params={ "experimentId": str(exp_uuid), "attribute": "target/path.txt", "ext": "txt", }, ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations._upload_loop_chunk") @patch( "neptune.new.internal.utils.glob", new=lambda path, recursive=False: [path.replace("*", "file.txt")], ) def test_upload_single_file_in_file_set_attribute(self, upload_loop_chunk_mock): # given exp_uuid = uuid.uuid4() swagger_mock = self._get_swagger_mock() upload_loop_chunk_mock.return_value = b"null" chunk_size = 5 * 1024 * 1024 swagger_mock.api.getUploadConfig.return_value.response.return_value.result.chunkSize = ( chunk_size ) # when with NamedTemporaryFile("w") as temp_file: with open(temp_file.name, "wb") as handler: handler.write(self.get_random_bytes(2 * chunk_size)) upload_file_set_attribute( swagger_client=swagger_mock, container_id=str(exp_uuid), attribute="some/attribute", file_globs=[temp_file.name], reset=True, multipart_config=self.multipart_config, ) # then upload_loop_chunk_mock.assert_has_calls( [ call( mock.ANY, mock.ANY, http_client=swagger_mock.swagger_spec.http_client, query_params={ "experimentId": str(exp_uuid), "attribute": "some/attribute", "reset": "True", "path": os.path.basename(temp_file.name), }, url="https://ui.neptune.ai/uploadFileSetChunk", ), call( mock.ANY, mock.ANY, http_client=swagger_mock.swagger_spec.http_client, query_params={ "experimentId": str(exp_uuid), "attribute": "some/attribute", "reset": "False", "path": os.path.basename(temp_file.name), }, url="https://ui.neptune.ai/uploadFileSetChunk", ), ] ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") @patch( "neptune.new.internal.utils.glob", new=lambda path, recursive=False: [path.replace("*", "file.txt")], ) def test_upload_multiple_files_in_file_set_attribute(self, upload_raw_data_mock): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_raw_data_mock.return_value = b"null" swagger_mock.api.getUploadConfig.return_value.response.return_value.result.chunkSize = ( 10 ) # when with NamedTemporaryFile("w") as temp_file_1: with NamedTemporaryFile("w") as temp_file_2: upload_file_set_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="some/attribute", file_globs=[temp_file_1.name, temp_file_2.name], reset=True, multipart_config=self.multipart_config, ) # then upload_raw_data_mock.assert_called_once_with( http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/uploadFileSetTar", data=mock.ANY, headers={"Content-Type": "application/octet-stream"}, query_params={ "experimentId": str(exp_uuid), "attribute": "some/attribute", "reset": "True", }, ) class TestNewUploadFileOperations(HostedFileOperationsHelper, BackendTestMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) config_swagger_client = self._get_swagger_client_mock(MagicMock()) client_config = ClientConfig.from_api_response( config_swagger_client.api.getClientConfig().response().result ) self.multipart_config = client_config.multipart_config @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") def test_missing_files_or_directory(self, upload_raw_data_mock): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_raw_data_mock.return_value = b"null" # when with NamedTemporaryFile("w") as temp_file_1: with NamedTemporaryFile("w") as temp_file_2: with TemporaryDirectory() as temp_dir: upload_file_set_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="some/attribute", file_globs=[ temp_file_1.name, temp_file_2.name, os.path.abspath("missing_file"), temp_dir, ], reset=True, multipart_config=self.multipart_config, ) # then upload_raw_data_mock.assert_called_once_with( http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/uploadFileSetTar", data=mock.ANY, headers={"Content-Type": "application/octet-stream"}, query_params={ "experimentId": str(exp_uuid), "attribute": "some/attribute", "reset": "True", }, ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") def test_upload_small_file_attribute(self, upload_raw_data): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_raw_data.return_value = json.dumps( { "uploadId": "placeholder", "errors": [], } ) data = b"testdata" # when with create_file(content=data, binary_mode=True) as filename: upload_file_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="target/path.txt", source=filename, ext="txt", multipart_config=self.multipart_config, ) # then swagger_mock.api.fileSetFileMultipartUploadStart.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadFinish.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadPart.assert_not_called() swagger_mock.api.fileSetFileUpload.assert_not_called() swagger_mock.api.fileAtomMultipartUploadStart.assert_not_called() swagger_mock.api.fileAtomMultipartUploadFinish.assert_not_called() swagger_mock.api.fileAtomMultipartUploadPart.assert_not_called() swagger_mock.api.fileAtomUpload.assert_not_called() upload_raw_data.assert_called_once_with( data=data, http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/storage/file/upload", query_params={ "experimentIdentifier": str(exp_uuid), "attribute": "target/path.txt", "ext": "txt", }, ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") def test_upload_big_file_attribute(self, upload_raw_data): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_id = "placeholder" set_expected_result( swagger_mock.api.fileAtomMultipartUploadStart, { "uploadId": upload_id, "errors": [], }, ) upload_raw_data.return_value = json.dumps( { "errors": [], } ) data = self.get_random_bytes(8 * 2 ** 20) # 8 MB chunk_size = self.multipart_config.min_chunk_size # when with create_file(content=data, binary_mode=True) as filename: upload_file_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="target/path.txt", source=filename, ext="txt", multipart_config=self.multipart_config, ) # then swagger_mock.api.fileSetFileMultipartUploadStart.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadFinish.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadPart.assert_not_called() swagger_mock.api.fileSetFileUpload.assert_not_called() swagger_mock.api.fileAtomUpload.assert_not_called() swagger_mock.api.fileAtomMultipartUploadStart.assert_called_once_with( attribute="target/path.txt", experimentIdentifier=str(exp_uuid), ext="txt", totalLength=len(data), ) swagger_mock.api.fileAtomMultipartUploadFinish.assert_called_once_with( attribute="target/path.txt", experimentIdentifier=str(exp_uuid), uploadId=upload_id, ) upload_raw_data.assert_has_calls( [ call( data=data[:chunk_size], http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/storage/file/upload/part", headers={"X-Range": f"bytes=0-{chunk_size - 1}/{len(data)}"}, query_params={ "uploadPartIdx": 0, "uploadId": upload_id, "experimentIdentifier": str(exp_uuid), "attribute": "target/path.txt", }, ), call( data=data[chunk_size:], http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/storage/file/upload/part", headers={ "X-Range": f"bytes={chunk_size}-{len(data) - 1}/{len(data)}" }, query_params={ "uploadPartIdx": 1, "uploadId": upload_id, "experimentIdentifier": str(exp_uuid), "attribute": "target/path.txt", }, ), ] ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") @patch( "neptune.new.internal.utils.glob", new=lambda path, recursive=False: [path.replace("*", "file.txt")], ) def test_upload_single_small_file_in_file_set_attribute(self, upload_raw_data): # given exp_uuid = uuid.uuid4() swagger_mock = self._get_swagger_mock() upload_raw_data.return_value = json.dumps( { "errors": [], } ) data = b"testdata" # when with create_file(content=data, binary_mode=True) as filename: upload_file_set_attribute( swagger_client=swagger_mock, container_id=str(exp_uuid), attribute="some/attribute", file_globs=[filename], reset=True, multipart_config=self.multipart_config, ) # then swagger_mock.api.fileSetFileMultipartUploadStart.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadFinish.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadPart.assert_not_called() swagger_mock.api.fileSetFileUpload.assert_not_called() swagger_mock.api.fileAtomMultipartUploadStart.assert_not_called() swagger_mock.api.fileAtomMultipartUploadFinish.assert_not_called() swagger_mock.api.fileAtomMultipartUploadPart.assert_not_called() swagger_mock.api.fileAtomUpload.assert_not_called() upload_raw_data.assert_called_once_with( data=data, http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/storage/fileset/upload", query_params={ "subPath": os.path.basename(filename), "experimentIdentifier": str(exp_uuid), "attribute": "some/attribute", }, ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") @patch( "neptune.new.internal.utils.glob", new=lambda path, recursive=False: [path.replace("*", "file.txt")], ) def test_upload_single_big_file_in_file_set_attribute(self, upload_raw_data): # given exp_uuid = uuid.uuid4() swagger_mock = self._get_swagger_mock() upload_id = "placeholder" set_expected_result( swagger_mock.api.fileSetFileMultipartUploadStart, { "uploadId": upload_id, "errors": [], }, ) upload_raw_data.return_value = json.dumps( { "errors": [], } ) data = self.get_random_bytes(8 * 2 ** 20) # 8 MB chunk_size = self.multipart_config.min_chunk_size # when with create_file(content=data, binary_mode=True) as filename: upload_file_set_attribute( swagger_client=swagger_mock, container_id=str(exp_uuid), attribute="some/attribute", file_globs=[filename], reset=True, multipart_config=self.multipart_config, ) # then swagger_mock.api.fileSetFileMultipartUploadPart.assert_not_called() swagger_mock.api.fileSetFileUpload.assert_not_called() swagger_mock.api.fileAtomMultipartUploadStart.assert_not_called() swagger_mock.api.fileAtomMultipartUploadFinish.assert_not_called() swagger_mock.api.fileAtomMultipartUploadPart.assert_not_called() swagger_mock.api.fileAtomUpload.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadStart.assert_called_once_with( attribute="some/attribute", experimentIdentifier=str(exp_uuid), totalLength=len(data), subPath=os.path.basename(filename), ) swagger_mock.api.fileSetFileMultipartUploadFinish.assert_called_once_with( attribute="some/attribute", experimentIdentifier=str(exp_uuid), subPath=os.path.basename(filename), uploadId=upload_id, ) upload_raw_data.assert_has_calls( [ call( data=data[:chunk_size], http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/storage/fileset/upload/part", headers={"X-Range": f"bytes=0-{chunk_size - 1}/{len(data)}"}, query_params={ "uploadPartIdx": 0, "uploadId": upload_id, "subPath": os.path.basename(filename), "experimentIdentifier": str(exp_uuid), "attribute": "some/attribute", }, ), call( data=data[chunk_size:], http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/attributes/storage/fileset/upload/part", headers={ "X-Range": f"bytes={chunk_size}-{len(data) - 1}/{len(data)}" }, query_params={ "uploadPartIdx": 1, "uploadId": upload_id, "subPath": os.path.basename(filename), "experimentIdentifier": str(exp_uuid), "attribute": "some/attribute", }, ), ] ) @unittest.skipIf(IS_WINDOWS, "Windows behaves strangely") @patch("neptune.new.internal.backends.hosted_file_operations.upload_raw_data") @patch( "neptune.new.internal.utils.glob", new=lambda path, recursive=False: [path.replace("*", "file.txt")], ) def test_upload_multiple_files_in_file_set_attribute(self, upload_raw_data_mock): # given exp_uuid = str(uuid.uuid4()) swagger_mock = self._get_swagger_mock() upload_raw_data_mock.return_value = b"null" swagger_mock.api.getUploadConfig.return_value.response.return_value.result.chunkSize = ( 10 ) # when with NamedTemporaryFile("w") as temp_file_1: with NamedTemporaryFile("w") as temp_file_2: upload_file_set_attribute( swagger_client=swagger_mock, container_id=exp_uuid, attribute="some/attribute", file_globs=[temp_file_1.name, temp_file_2.name], reset=True, multipart_config=self.multipart_config, ) # then swagger_mock.api.fileSetFileMultipartUploadStart.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadFinish.assert_not_called() swagger_mock.api.fileSetFileMultipartUploadPart.assert_not_called() swagger_mock.api.fileSetFileUpload.assert_not_called() swagger_mock.api.fileAtomMultipartUploadStart.assert_not_called() swagger_mock.api.fileAtomMultipartUploadFinish.assert_not_called() swagger_mock.api.fileAtomMultipartUploadPart.assert_not_called() swagger_mock.api.fileAtomUpload.assert_not_called() upload_raw_data_mock.assert_called_once_with( http_client=swagger_mock.swagger_spec.http_client, url="https://ui.neptune.ai/uploadFileSetTar", data=mock.ANY, headers={"Content-Type": "application/octet-stream"}, query_params={ "experimentId": str(exp_uuid), "attribute": "some/attribute", "reset": "True", }, ) if __name__ == "__main__": unittest.main() ```
{ "source": "jpauwels/pywebaudioplayer", "score": 2 }
#### File: pywebaudioplayer/pywebaudioplayer/notebook.py ```python from .core import Image, _id, _js, _figure_margins, _write_samples, waveform_playlist def wavesurfer(audio_path=None, controls={}, display={}, behaviour={}, samples=None): # Set defaults if 'text_controls' not in controls: controls['text_controls'] = True if 'backward_button' not in controls: controls['backward_button'] = True if 'forward_button' not in controls: controls['forward_button'] = True if 'mute_button' not in controls: controls['mute_button'] = True if 'height' not in display: display['height'] = 128 if 'cursor_colour' not in display: display['cursor_colour'] = '#333' if 'played_wave_colour' not in display: display['played_wave_colour'] = '#555' if 'unplayed_wave_colour' not in display: display['unplayed_wave_colour'] = '#999' if 'bar_width' not in display: display['bar_width'] = None if 'normalize' not in behaviour: behaviour['normalize'] = False if 'mono' not in behaviour: behaviour['mono'] = True unique_id = _id() if not audio_path and not samples: raise ValueError('Provide either a path to an audio file or samples') html_code = ''' <div id="waveform{}"></div> <p align="center"> '''.format(unique_id) if controls['backward_button']: html_code += ''' <button class="btn btn-primary" onclick="wavesurfer{}.skipBackward()"> <i class="fa fa-backward"></i> {} </button>'''.format(unique_id, 'Backward' if controls['text_controls'] else '') html_code += ''' <button class="btn btn-success" onclick="wavesurfer{}.playPause()"> <i class="fa fa-play"></i> {} / <i class="fa fa-pause"></i> {} </button>'''.format(unique_id, 'Play' if controls['text_controls'] else '', 'Pause' if controls['text_controls'] else '') if controls['forward_button']: html_code += ''' <button class="btn btn-primary" onclick="wavesurfer{}.skipForward()"> <i class="fa fa-forward"></i> {} </button>'''.format(unique_id, 'Forward' if controls['text_controls'] else '') if controls['mute_button']: html_code += ''' <button class="btn btn-danger" onclick="wavesurfer{}.toggleMute()"> <i class="fa fa-volume-off"></i> {} </button>'''.format(unique_id, 'Toggle Mute' if controls['text_controls'] else '') html_code += '\n </p>' html_code += ''' <script type="text/javascript"> requirejs.config({{paths: {{wavesurfer: "//cdnjs.cloudflare.com/ajax/libs/wavesurfer.js/1.4.0/wavesurfer.min"}}}}); requirejs(["wavesurfer"], function(WaveSurfer) {{ wavesurfer{id} = WaveSurfer.create({{ container: '#waveform{id}', cursorColor: "{cursor}", progressColor: "{progress}", waveColor: "{wave}", splitChannels: {split}, height: {height}, normalize: {norm}{bar_width} }}); wavesurfer{id}.load("{path}"); }}); </script>'''.format( id=unique_id, path=audio_path, cursor=display['cursor_colour'], progress=display['played_wave_colour'], wave=display['unplayed_wave_colour'], split=_js(not behaviour['mono']), height=display['height'], norm=_js(behaviour['normalize']), bar_width=', barWidth: {}'.format(display['bar_width']) if display['bar_width'] else '') return html_code def trackswitch(tracks, text='', seekable_image=None, seek_margin=None, mute=True, solo=True, globalsolo=True, repeat=False, radiosolo=False, onlyradiosolo=False, spacebar=False, tabview=False): unique_id = _id() if isinstance(seekable_image, str): seekable_image_path = seekable_image with Image.open(seekable_image) as image_file: image_width = image_file.size[0] elif seekable_image: fig, seekable_image_path = seekable_image image_width = fig.get_size_inches()[0] * fig.get_dpi() seek_margin = _figure_margins(fig.gca()) fig.savefig(seekable_image_path, dpi='figure') html_code = ''' <link rel="stylesheet" href="//audiolabs.github.io/trackswitch.js/css/trackswitch.min.css" /> <div class="player{}"{}>'''.format(unique_id, ' style="width:{}px"'.format(image_width) if seekable_image else '') if text: html_code += ''' <p> {} </p>'''.format(text) if seekable_image: html_code += ''' <img src="{}#{}" data-style="width: {}px;" class="seekable"{}/>'''.format(seekable_image_path, unique_id, image_width, ' data-seek-margin-left="{}" data-seek-margin-right="{}"'.format(*seek_margin) if seek_margin else '') for track in tracks: html_code += ''' <ts-track{}{}> <ts-source src='''.format(' title="{}"'.format(track['title']) if 'title' in track else '', ' data-img="{}"'.format(track['image']) if 'image' in track else '') if 'samples' in track: path_or_bytestring = _write_samples(track) html_code += '"{}" type="audio/wav"'.format(path_or_bytestring) elif 'path' in track: html_code += '"{}"{}'.format(track['path'], ' type="{}"'.format(track['mimetype']) if 'mimetype' in track else '') else: raise ValueError('Provide either a path to an audio file or raw samples') html_code += '''></ts-source> </ts-track>''' html_code += ''' </div> <script type="text/javascript"> requirejs.config({{ "paths": {{ "trackswitch": "//audiolabs.github.io/trackswitch.js/js/trackswitch.min", }}, "shim": {{ "trackswitch": ["jquery"], }} }}); requirejs(["jquery", "trackswitch"], function(jQuery) {{ jQuery(document).ready(function() {{ jQuery('.player{}').trackSwitch({{mute: {}, solo: {}, globalsolo: {}, repeat: {}, radiosolo: {}, onlyradiosolo: {}, spacebar: {}, tabview: {}}}); }}); }}); </script> '''.format(unique_id, _js(mute), _js(solo), _js(globalsolo), _js(repeat), _js(radiosolo), _js(onlyradiosolo), _js(spacebar), _js(tabview)) return html_code ```
{ "source": "jpavelka/cfb-transitivity", "score": 3 }
#### File: cfb-transitivity/app/transitivity_rankings.py ```python import pandas import numpy import networkx class TransRank: def __init__(self, winners, losers, distances=None): win_graph = networkx.DiGraph() win_graph.add_edges_from(zip(winners, losers)) loss_graph = networkx.DiGraph() loss_graph.add_edges_from(zip(losers, winners)) self.teams = sorted(list(win_graph.nodes())) win_paths = self.get_paths_from_graph(win_graph) loss_paths = self.get_paths_from_graph(loss_graph, reverse=True) df_cols = ['trans_wins', 'avg_win_len', 'win_score', 'win_rank', 'trans_losses' 'avg_loss_len', 'loss_score', 'loss_rank', 'avg_rank', 'comb_rank'] rank_df = pandas.DataFrame(index=self.teams, columns=df_cols) rank_df['trans_wins'] = [len(win_paths[t]) for t in self.teams] rank_df['trans_losses'] = [len(loss_paths[t]) for t in self.teams] rank_df['avg_win_len'] = [len(self.teams) if len(win_paths[t]) == 0 else numpy.mean([len(win_paths[t][p]) - 1 for p in win_paths[t]]) for t in self.teams] rank_df['avg_loss_len'] = [0 if len(loss_paths[t]) == 0 else numpy.mean([len(loss_paths[t][p]) - 1 for p in loss_paths[t]]) for t in self.teams] rank_df['win_score'] = rank_df['trans_wins'] - rank_df['avg_win_len'] / (max(rank_df['avg_win_len']) + 1) rank_df['loss_score'] = -(rank_df['trans_losses'] - rank_df['avg_loss_len'] / (max(rank_df['avg_loss_len']) + 1)) rank_df['win_rank'] = [sum(rank_df['win_score'] > rank_df.loc[t, 'win_score']) + 1 for t in self.teams] rank_df['loss_rank'] = [sum(rank_df['loss_score'] > rank_df.loc[t, 'loss_score']) + 1 for t in self.teams] rank_df['avg_rank'] = rank_df[['win_rank', 'loss_rank']].mean(axis=1) rank_df['comb_rank'] = [sum(rank_df['avg_rank'] < rank_df.loc[t, 'avg_rank']) + 1 for t in self.teams] rank_df['wins'] = pandas.Series(dict(win_graph.out_degree())) rank_df['losses'] = pandas.Series(dict(loss_graph.out_degree())) rank_df = rank_df[['comb_rank', 'win_rank', 'loss_rank', 'avg_rank', 'wins', 'trans_wins', 'avg_win_len', 'losses', 'trans_losses', 'avg_loss_len']] rank_df = rank_df.sort_values('comb_rank') if distances is not None: for e in win_graph.edges(): win_graph[e[0]][e[1]]['weight'] = distances[e[0], e[1]] for e in loss_graph.edges(): loss_graph[e[0]][e[1]]['weight'] = distances[e[0], e[1]] self.win_geo_paths = networkx.all_pairs_dijkstra_path(win_graph) self.loss_geo_paths = networkx.all_pairs_dijkstra_path(loss_graph) self.win_paths = win_paths self.loss_paths = loss_paths self.rank_df = rank_df def get_paths_from_graph(self, graph, reverse=False): paths = {x[0]: x[1] for x in networkx.all_pairs_shortest_path(graph)} paths = {t: {p: paths[t][p] for p in paths[t] if p != t} for t in self.teams} if reverse: for t in paths: paths[t] = {s: paths[t][s][::-1] for s in paths[t]} return paths def team_link(self, team): return '/' + team.replace(' ', '_') def all_team_urls(self): return {t: self.team_link(t) for t in self.teams} def get_html_table(self, images=None): display_header_names = {'comb_rank': 'Rank', 'win_rank': 'Win Rank', 'loss_rank': 'Loss Rank', 'trans_wins': 'Trans Wins', 'trans_losses': 'Trans Losses', 'avg_win_len': 'Avg Trans Win', 'avg_loss_len': 'Avg Trans Loss', 'avg_rank': 'Avg Rank'} html_df = self.rank_df.rename(columns=display_header_names) html_df['Avg Trans Win'] = [self.style_float(x) for x in html_df['Avg Trans Win']] html_df['Avg Trans Loss'] = [self.style_float(x) for x in html_df['Avg Trans Loss']] if images is not None: html_df.index = [f'<img src="{images[t]}" class="team-logo">&nbsp&nbsp<a href="{self.team_link(t)}">{t}</a>' for t in html_df.index] html_df.index = [x + f" ({html_df['wins'][x]}-{html_df['losses'][x]})" for x in html_df.index] html_df = html_df.drop(['wins', 'losses'], axis=1) html_table = html_df.to_html(classes=['table-striped', 'table-bordered', 'full-width'], table_id='rank-table', escape=False) return html_table def style_float(self, f): return '%.2f' % f ```
{ "source": "jpavelw/sam-2017", "score": 2 }
#### File: SAM2017/deadline/models.py ```python from django.db import models # Create your models here. class Deadline(models.Model): type = models.CharField(max_length=30) date = models.DateField() def __str__(self): return self.type ``` #### File: SAM2017/paper/forms.py ```python from django import forms from . import models class SubmitPaperForm(forms.ModelForm): file = forms.FileField(label="Select File", widget=forms.FileInput(attrs={'class': 'form-control'})) class Meta: model = models.Paper fields = ['title', 'list_of_authors', 'preferred_contact_method', 'format', 'file'] widgets = { 'title': forms.TextInput(attrs={'class': 'form-control'}), 'list_of_authors': forms.Textarea(attrs={'class': 'form-control resize-text-area-none', 'rows': 3}), 'preferred_contact_method': forms.Select(attrs={'class': 'form-control'}), 'format': forms.Select(attrs={'class': 'form-control'}) } def clean_title(self): return self.cleaned_data['title'] def clean_list_of_authors(self): return self.cleaned_data['list_of_authors'] def clean_version_number(self): return self.cleaned_data['version_number'] def clean_format(self): return self.cleaned_data['format'] def clean_file(self): if 'file' in self.cleaned_data: file_name = str(self.cleaned_data['file']).lower() file_parts = file_name.split(".") if not file_parts[-1] in ['pdf', 'doc', 'docx']: raise forms.ValidationError("Invalid file format.") return self.cleaned_data['file'] class UpdatePaperForm(forms.ModelForm): class Meta: model = models.Paper fields = ['title', 'list_of_authors', 'preferred_contact_method', 'format'] widgets = { 'title': forms.TextInput(attrs={'class': 'form-control'}), 'list_of_authors': forms.Textarea(attrs={'class': 'form-control resize-text-area-none'}), 'preferred_contact_method': forms.Select(attrs={'class': 'form-control'}), 'format': forms.Select(attrs={'class': 'form-control'}) } def clean_title(self): return self.cleaned_data['title'] def clean_list_of_authors(self): return self.cleaned_data['list_of_authors'] def clean_version_number(self): return self.cleaned_data['version_number'] def clean_format(self): return self.cleaned_data['format'] ``` #### File: SAM2017/rate_paper_pcm/models.py ```python from django.db import models from paper.models import Paper from registration.models import User # Create your models here. class Paper_PCM_Rate(models.Model): pcm = models.ForeignKey(User) paper = models.ForeignKey(Paper) review = models.TextField(null=False) decision = models.IntegerField() # 0 = rejected; 1 = accepted; 2 = accepted with modification has_conflict = models.BooleanField(default=False) def __str__(self): return 'Reviewer: ' + str(self.pcm.email) + ' Paper name: ' + self.paper.title ```
{ "source": "jpavelw/tool_sharing", "score": 2 }
#### File: tool_sharing/manage_tools/forms.py ```python import string import random from django import forms from .models import Tool from utils.utilities import is_empty class ToolForm(forms.ModelForm): class Meta: model = Tool fields = ['name', 'status', 'shared_from', 'category', 'description', 'picture'] widgets = { 'name': forms.TextInput(attrs={'class': 'form-control'}), 'status': forms.Select(attrs={'class': 'form-control'}), 'shared_from': forms.Select(attrs={'class': 'form-control'}), 'category': forms.Select(attrs={'class': 'form-control'}), 'description': forms.Textarea(attrs={'class': 'form-control resize-text-area-none'}), 'picture': forms.FileInput(attrs={'class': 'form-control'}), } '''def clean_id(self): return self.cleaned_data["id"]''' def clean_name(self): if is_empty(self.cleaned_data["name"]): raise forms.ValidationError("Invalid name.") return self.cleaned_data["name"] def clean_status(self): return self.cleaned_data["status"] def clean_description(self): if is_empty(self.cleaned_data["description"]): raise forms.ValidationError("Invalid description.") return self.cleaned_data["description"] def clean_is_shared_from_home(self): return self.cleaned_data["is_shared_from_home"] def clean_category(self): return self.cleaned_data["category"] def clean_picture(self): if 'picture' in self.cleaned_data: file_name = str(self.cleaned_data['picture']).lower() file_parts = file_name.split(".") if not file_parts[-1] in ['jpeg', 'png', 'bmp', 'gif', 'jpg']: raise forms.ValidationError("Invalid image format.") try: if self.cleaned_data['picture'].size > 3*1024*1024: raise forms.ValidationError("Image file too large (> 3MB).") except AttributeError: pass return self.cleaned_data["picture"] def set_owner(self, owner): self.instance.owner = owner def generate_code(self): while True: new_code = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) try: Tool.objects.get(code=new_code) except: self.instance.code = new_code break ``` #### File: tool_sharing/request/models.py ```python from django.db import models from manage_tools.models import Tool from user.models import User class Request(models.Model): PENDING_APPROVAL = 'PA' APPROVED = 'AP' REJECTED = 'RE' RETURNED = 'RT' status_choices = ( (PENDING_APPROVAL, 'Pending Approval'), (APPROVED, 'Approved'), (REJECTED, 'Rejected'), (RETURNED, 'Returned') ) tool = models.ForeignKey(Tool, related_name='requests') lender = models.ForeignKey(User, related_name='lender_requests') borrower = models.ForeignKey(User, related_name='borrower_requests') status = models.CharField(choices=status_choices, max_length=2, default="PA") comment = models.CharField(max_length=150, default="") date = models.DateTimeField(auto_now_add=True, auto_now=False) returned_date = models.DateTimeField(null=True) shared_from = models.CharField(choices=Tool.shared_choices, max_length=2) zipcode = models.CharField(max_length=5) updated = models.DateTimeField(auto_now_add=False, auto_now=True) borrower_enabled = models.BooleanField(default=True) lender_enabled = models.BooleanField(default=True) may_leave_comment = models.BooleanField(default=False) def __str__(self): return self.status + " - " + str(self.tool.id) + " - " + str(self.lender.id) + " - " + str(self.borrower.id) def get_status_choices(self): return dict(self.status_choices).get(self.status) class Notification(models.Model): user = models.OneToOneField(User) pending_sent = models.PositiveSmallIntegerField(default=0) pending_received = models.PositiveSmallIntegerField(default=0) timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) updated = models.DateTimeField(auto_now_add=False, auto_now=True) def __str__(self): return self.user.last_name + ", " + self.user.first_name def increment_sent(self): self.pending_sent += 1 def increment_received(self): self.pending_received += 1 ``` #### File: tool_sharing/shared_zone/models.py ```python from django.db import models class SharedZone(models.Model): name = models.CharField(max_length=50) zipcode = models.CharField(max_length=5, unique=True) address = models.CharField(max_length=100) description = models.CharField(max_length=100) enabled = models.BooleanField(default=True) timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) updated = models.DateTimeField(auto_now_add=False, auto_now=True) def __str__(self): return self.name ``` #### File: tool_sharing/shared_zone/tests.py ```python from django.test import TestCase from .models import SharedZone # Create your tests here. class ShareZoneTestCase(TestCase): def setUp(self): SharedZone.objects.create(zipcode="14623", name="Rebaz", description="hello world", address="214 alex road") def test_ShareZone1(self): test_ShareZone1 = SharedZone.objects.get(zipcode="14623") self.assertEqual(test_ShareZone1.name, "Rebaz") class ShareZone2TestCase(TestCase): def setUp(self): SharedZone.objects.create(zipcode="12345", name="Rebaz", description="hello world", address="214 alex road") def test_ShareZone2(self): test_ShareZone2 = SharedZone.objects.get(zipcode="12345") self.assertNotEqual(test_ShareZone2.name, "wajdi") ``` #### File: tool_sharing/user/forms.py ```python from django import forms from .models import User from utils.utilities import check_password, is_number, contains_number, is_empty, contains_space class RegistrationForm(forms.ModelForm): confirm_password = forms.CharField(label='Confirm password', max_length=30, widget=forms.PasswordInput(attrs={ 'class': 'form-control'})) class Meta: model = User fields = ['first_name', 'middle_name', 'last_name', 'email', 'phone_number', 'password', '<PASSWORD>_password', 'address', 'state', 'city', 'zipcode'] widgets = { 'first_name': forms.TextInput(attrs={'class': 'form-control'}), 'middle_name': forms.TextInput(attrs={'class': 'form-control'}), 'last_name': forms.TextInput(attrs={'class': 'form-control'}), 'email': forms.TextInput(attrs={'class': 'form-control', 'placeholder': "<EMAIL>"}), 'phone_number': forms.TextInput(attrs={'class': 'form-control', 'placeholder': "Ex.: 2225559988"}), 'password': forms.PasswordInput(attrs={'class': 'form-control'}), 'address': forms.TextInput(attrs={'class': 'form-control'}), 'state': forms.Select(attrs={'class': 'form-control'}), 'city': forms.TextInput(attrs={'class': 'form-control'}), 'zipcode': forms.TextInput(attrs={'class': 'form-control', 'placeholder': "Ex.: 12345"}), } def clean_first_name(self): if contains_number(self.cleaned_data['first_name']) or is_empty(self.cleaned_data["first_name"]): raise forms.ValidationError("Invalid first name.") return self.cleaned_data["first_name"] def clean_middle_name(self): if contains_number(self.cleaned_data['middle_name']) or (self.cleaned_data['middle_name'] != "" and is_empty(self.cleaned_data["middle_name"])): raise forms.ValidationError("Invalid middle name.") return self.cleaned_data["middle_name"] def clean_last_name(self): if contains_number(self.cleaned_data['last_name']) or is_empty(self.cleaned_data["last_name"]): raise forms.ValidationError("Invalid last name.") return self.cleaned_data["last_name"] def clean_email(self): return self.cleaned_data["email"] def clean_phone_number(self): if not is_number(self.cleaned_data["phone_number"]) or len(str(self.cleaned_data["phone_number"])) < 10: raise forms.ValidationError("Invalid phone number.") return self.cleaned_data["phone_number"] def clean_password(self): if len(str(self.cleaned_data["password"])) < 3 or contains_space(self.cleaned_data["password"]): raise forms.ValidationError("Invalid password.") return self.cleaned_data["password"] def clean_confirm_password(self): if not self.cleaned_data["password"] == self.cleaned_data["confirm_password"]: raise forms.ValidationError("Passwords do not match.") return self.cleaned_data["confirm_password"] def clean_address(self): if is_empty(self.cleaned_data["address"]): raise forms.ValidationError("Invalid address.") return self.cleaned_data["address"] def clean_state(self): return self.cleaned_data["state"] def clean_city(self): if contains_number(self.cleaned_data['city']) or is_empty(self.cleaned_data["city"]): raise forms.ValidationError("Invalid city name.") return self.cleaned_data["city"] def clean_zipcode(self): if not is_number(self.cleaned_data["zipcode"]) or not len(str(self.cleaned_data["zipcode"])) == 5: raise forms.ValidationError("Invalid zip code.") return self.cleaned_data["zipcode"] class LogInForm(forms.Form): email = forms.EmailField(label='', max_length=30, widget=forms.EmailInput( attrs={'class': 'form-control', 'placeholder': "Email address", 'autofocus': "true"})) password = forms.CharField(label='', max_length=30, widget=forms.PasswordInput(attrs={'class': 'form-control', 'placeholder': "Password"})) def clean_email(self): if not User.objects.filter(email=self.cleaned_data["email"]).exists(): raise forms.ValidationError("User does not exist.") return self.cleaned_data["email"] def clean_password(self): if "email" in self.cleaned_data: if User.objects.filter(email=self.cleaned_data["email"], enabled=1).exists(): user = User.objects.get(email=self.cleaned_data["email"], enabled=1) if not check_password(user.password, self.cleaned_data["password"]): raise forms.ValidationError("Invalid password.") return self.cleaned_data["password"] class UpdateProfileForm(forms.ModelForm): confirm_password = forms.CharField(label='Enter password to confirm changes', max_length=30, widget=forms.PasswordInput(attrs={'class': 'form-control'})) class Meta: model = User fields = ['first_name', 'middle_name', 'last_name', 'email', 'phone_number', 'address', 'state', 'city', 'zipcode', 'confirm_password'] widgets = { 'first_name': forms.TextInput(attrs={'class': 'form-control'}), 'middle_name': forms.TextInput(attrs={'class': 'form-control'}), 'last_name': forms.TextInput(attrs={'class': 'form-control'}), 'email': forms.TextInput(attrs={'class': 'form-control', 'placeholder': "<EMAIL>"}), 'phone_number': forms.TextInput(attrs={'class': 'form-control', 'placeholder': "Ex.: 2225559988"}), 'address': forms.TextInput(attrs={'class': 'form-control'}), 'state': forms.Select(attrs={'class': 'form-control'}), 'city': forms.TextInput(attrs={'class': 'form-control'}), 'zipcode': forms.TextInput(attrs={'class': 'form-control', 'placeholder': "Ex.: 12345"}), } def clean_first_name(self): if contains_number(self.cleaned_data['first_name']) or is_empty(self.cleaned_data["first_name"]): raise forms.ValidationError("Invalid first name.") return self.cleaned_data["first_name"] def clean_middle_name(self): if contains_number(self.cleaned_data['middle_name']) or (self.cleaned_data['middle_name'] != "" and is_empty(self.cleaned_data["middle_name"])): raise forms.ValidationError("Invalid middle name.") return self.cleaned_data["middle_name"] def clean_last_name(self): if contains_number(self.cleaned_data['last_name']) or is_empty(self.cleaned_data["last_name"]): raise forms.ValidationError("Invalid last name.") return self.cleaned_data["last_name"] def clean_email(self): return self.cleaned_data["email"] def clean_phone_number(self): if not is_number(self.cleaned_data["phone_number"]) or len(str(self.cleaned_data["phone_number"])) < 10: raise forms.ValidationError("Invalid phone number.") return self.cleaned_data["phone_number"] def clean_address(self): if is_empty(self.cleaned_data["address"]): raise forms.ValidationError("Invalid address.") return self.cleaned_data["address"] def clean_state(self): return self.cleaned_data["state"] def clean_city(self): if contains_number(self.cleaned_data['city']): raise forms.ValidationError("Invalid city name") return self.cleaned_data["city"] def clean_zipcode(self): if not is_number(self.cleaned_data["zipcode"]) or not len(str(self.cleaned_data["zipcode"])) == 5: raise forms.ValidationError("Invalid zip code.") return self.cleaned_data["zipcode"] def clean_confirm_password(self): if self.instance: if not check_password(self.instance.password, self.cleaned_data["confirm_password"]): raise forms.ValidationError("Invalid password.") return self.cleaned_data["confirm_password"] class UpdatePasswordForm(forms.Form): current_password = None password = forms.CharField(label='', max_length=30, widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': "Current password", 'autofocus': "true"})) new_password = forms.CharField(label='', max_length=30, widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': "New password"})) confirm_password = forms.CharField(label='', max_length=30, widget=forms.PasswordInput( attrs={'class': 'form-control', 'placeholder': "Confirm new password"})) def clean_password(self): if self.current_password is not None: if not check_password(self.current_password, self.cleaned_data["password"]): raise forms.ValidationError("Invalid password.") else: return self.cleaned_data["password"] raise forms.ValidationError("Password not provided.") def clean_new_password(self): if len(str(self.cleaned_data["new_password"])) < 3 or contains_space(self.cleaned_data["new_password"]): raise forms.ValidationError("Invalid password.") return self.cleaned_data["new_password"] def clean_confirm_password(self): if "password" in self.cleaned_data: if not (self.cleaned_data["confirm_password"] == self.cleaned_data["new_password"]): raise forms.ValidationError("Passwords must match.") else: return self.cleaned_data["confirm_password"] def set_current_password(self, current_password): self.current_password = <PASSWORD> class PickupArrangementForm(forms.Form): DAYS = (('Monday', 'Monday'), ('Tuesday', 'Tuesday'), ('Wednesday', 'Wednesday'), ('Thursday', 'Thursday'), ('Friday', 'Friday'), ('Saturday', 'Saturday'), ('Sunday', 'Sunday')) days = forms.MultipleChoiceField(choices=DAYS) time_from = forms.CharField(max_length=25) time_to = forms.CharField(max_length=25) def clean(self): time_from = self.cleaned_data.get('time_from') time_to = self.cleaned_data.get('time_to') if time_from is None or time_to is None: raise forms.ValidationError("Please provide time information") time_from = int(time_from.replace(":", "")) time_to = int(time_to.replace(":", "")) if time_from > time_to: raise forms.ValidationError("Invalid time range") return True def week_days(self): days = [] for day in self.DAYS: days.append(day[0]) return days class ForgotPasswordForm(forms.Form): email = forms.EmailField(label='', max_length=30, widget=forms.EmailInput( attrs={'class': 'form-control', 'placeholder': "Email address", 'autofocus': "true"})) def clean_email(self): if not User.objects.filter(email=self.cleaned_data["email"]).exists(): raise forms.ValidationError("User does not exist.") return self.cleaned_data["email"] ```
{ "source": "jpavlav/cbtool", "score": 2 }
#### File: lib/api/api_service_client.py ```python from sys import path from xmlrpc.client import Server import xmlrpc.client import pwd import sys import re import os import traceback path.append(re.compile(".*\/").search(os.path.realpath(__file__)).group(0) + "/../../") path.append(re.compile(".*\/").search(os.path.realpath(__file__)).group(0) + "/../../../") from lib.stores.stores_initial_setup import load_metricstore_adapter from time import time, strftime, strptime, localtime from datetime import datetime import copy import socket import inspect from threading import Lock class APIException(Exception) : def __init__(self, status, msg): Exception.__init__(self) self.msg = msg self.status = str(status) def __str__(self): return self.msg class APINoSuchMetricException(Exception) : def __init__(self, status, msg): Exception.__init__(self) self.msg = msg self.status = status def __str__(self): return self.msg class APINoDataException(Exception) : def __init__(self, status, msg): Exception.__init__(self) self.msg = msg self.status = status def __str__(self): return self.msg def makeTimestamp(supplied_epoch_time = False) : ''' TBD ''' if not supplied_epoch_time : _now = datetime.utcnow() else : _now = datetime.utcfromtimestamp(supplied_epoch_time) _date = _now.date() result = ("%02d" % _date.month) + "/" + ("%02d" % _date.day) + "/" + ("%04d" % _date.year) result += strftime(" %I:%M:%S %p", strptime(str(_now.hour) + ":" + str(_now.minute) + ":" + \ str(_now.second), "%H:%M:%S")) result += " UTC" return result class APIVM(): def __init__(self, name, info, app): self.name = name self.role = info["role"] self.uuid = info["uuid"] self.app_metrics = None self.system_metrics = None self.info = info self.app = app self.started = int(info["arrival"]) self.vcpus = info["vcpus"] self.vmemory = info["vmemory"] self.new = True makeTimestamp() def val(self, key, dict): if dict is None : raise APINoSuchMetricException(1, "No data available.") if key in dict : return dict[key] else : raise APINoSuchMetricException(1, "No such metric: " + key) def app(self, key): return float(self.val(key, self.app_metrics)["val"]) def system(self, key): return float(self.val(key, self.system_metrics)["val"]) mutex = Lock() class APIClient(Server): def api_error_check(self, func): ''' TBD ''' def wrapped(*args, **kwargs): try : mutex.acquire() resp = func(*args, **kwargs) mutex.release() except Exception as e : mutex.release() for line in traceback.format_exc().splitlines() : print(line) raise e if int(resp["status"]) : raise APIException(str(resp["status"]), resp["msg"]) if self.print_message : print(resp["msg"]) return resp["result"] return wrapped def dashboard_conn_check(self, cloud_name, msattrs = None, username = None, experiment_id = None, check_for_vpn = False): ''' TBD ''' if not self.msattrs : """ Open a connection to the metric store """ self.msattrs = self.cldshow(cloud_name, "metricstore") if msattrs is None else msattrs # We are opted-out of the VPN by default. But, when inside a virtual machine, # we need to opt-in. if check_for_vpn : use_vpn_ip = str(self.cldshow(cloud_name, "vm_defaults")["use_vpn_ip"]).lower() if use_vpn_ip == "true" : self.msattrs['host'] = self.cldshow(cloud_name, "vpn")["server_bootstrap"] self.msci = load_metricstore_adapter(self.msattrs) self.username = self.cldshow(cloud_name, "time")["username"] if username is None else username self.experiment_id = self.cldshow(cloud_name, "time")["experiment_id"] if experiment_id is None else experiment_id def __init__ (self, service_url, print_message = False): ''' This rewrites the xmlrpc function bindings to use a decorator so that we can check the return status of API functions before returning them back to the client It allows the client object to directly inherit all of the API calls exposed on the server side to the client side without writing ANOTHER lookup table. ''' _orig_Method = xmlrpc.client._Method ''' XML-RPC doesn't support keyword arguments, so we have to do it ourselves... ''' class KeywordArgMethod(_orig_Method): def __call__(self, *args, **kwargs): args = list(args) if kwargs: args.append(("kwargs", kwargs)) return _orig_Method.__call__(self, *args) xmlrpc.client._Method = KeywordArgMethod Server.__init__(self, service_url) setattr(self, "_ServerProxy__request", self.api_error_check(self._ServerProxy__request)) self.vms = {} self.hosts = {} self.msattrs = None self.msci = None self.username = None self.print_message = print_message self.last_refresh = datetime.now() def check_for_new_vm(self, cloud_name, identifier): ''' TBD ''' info = self.vmshow(cloud_name, identifier) print(identifier + " configured: (" + info["vcpus"] + ", " + info["vmemory"] + ")") if "configured_size" in info : print(" Eclipsed size: (" + info["vcpus_max"] + ", " + info["vmemory_max"] + ")") if info["ai"] != "none" : app = self.appshow(cloud_name, info["ai_name"]) else : app = None return APIVM(identifier, info, app) def refresh_vms(self, cloud_name, force, state = "") : ''' TBD ''' try : self.experiment_id = self.cldshow(cloud_name, "time")["experiment_id"] if not force : if not self.should_refresh(cloud_name, str(self.last_refresh)) : #print "VM list unchanged (" + str(len(self.vms)) + " vms) ..." return False self.last_refresh = time() old_vms = copy.copy(self.vms) for obj in self.stateshow(cloud_name, state) : if obj["type"] != "AI" : continue sibling_uuids = [] for vm in self.appshow(cloud_name, obj["name"])["vms"].split(",") : uuid, role, name = vm.split("|") if uuid not in self.vms : self.vms[uuid] = self.check_for_new_vm(name) sibling_uuids.append(uuid) if uuid in old_vms : del old_vms[uuid] for me in sibling_uuids : myself = self.vms[me] myself.siblings = [] for sibling in sibling_uuids : if sibling != myself : sib = self.vms[sibling] myself.siblings.append(sib) if sib.role.count("client") : myself.client = sib for uuid in old_vms : del self.vms[uuid] self.reset_refresh(cloud_name) return True except APIException as obj : print("Check VM API Problem (" + str(obj.status) + "): " + obj.msg) return False except socket.error as obj : print("API not available: " + str(obj)) return False def get_performance_data(self, cloud_name, uuid, metric_class = "runtime", object_type = "VM", metric_type = "os", latest = False, samples = 0, expid = "auto") : ''' TBD ''' self.dashboard_conn_check(cloud_name) if str(uuid).lower() == "all" : uuid = None if metric_class == "runtime" : _object_type = metric_class + '_' + metric_type + '_' + object_type else : _object_type = metric_class + '_' + object_type if latest : _allmatches = True _collection_name = "latest_" + _object_type + "_" + self.username _limitdocuments = 0 else : if samples != 0 : _allmatches = False _limitdocuments = samples else : _allmatches = True _limitdocuments = 0 _collection_name = _object_type + "_" + self.username _criteria = {} if expid != "auto" : _criteria["expid"] = expid if uuid : _criteria["uuid"] = uuid metrics = self.msci.find_document(_collection_name, \ _criteria, \ limitdocuments = _limitdocuments, \ allmatches = _allmatches) if isinstance(metrics, dict) : _metrics = [] _metrics.append(metrics) metrics = _metrics # if uuid and metrics : # if metrics : # if "count" in dir(metrics) : # _samples = metrics.count() # # if _samples == 0 : # metrics = None # if _samples == 1 : # _metrics = [] # _metrics.append(metrics) # metrics = _metrics if metrics is None : _msg = "No " + metric_class + ' ' + _object_type + '(' + str(metric_type) + ") data available." # raise APINoSuchMetricException(1, _msg") return metrics def get_latest_app_data(self, cloud_name, uuid, expid = "auto") : ''' TBD ''' _metrics = self.get_performance_data(cloud_name, uuid, "runtime", "VM", "app", True, 0, expid) if uuid in self.vms : self.vms[uuid].app_metrics = _metrics return _metrics def get_latest_system_data(self, cloud_name, uuid, expid = "auto") : ''' TBD ''' _metrics = self.get_performance_data(cloud_name, uuid, "runtime", "VM", "os", True, 0, expid) if uuid in self.vms : self.vms[uuid].system_metrics = _metrics return _metrics def get_latest_management_data(self, cloud_name, uuid, expid = "auto") : ''' TBD ''' _metrics = self.get_performance_data(cloud_name, uuid, "management", "VM", "os", True, 0, expid) return _metrics def get_app_data(self, cloud_name, uuid, expid = "auto") : ''' TBD ''' _metrics = self.get_performance_data(cloud_name, uuid, "runtime", "VM", "app", False, 0, expid) if uuid in self.vms : self.vms[uuid].app_metrics = _metrics return _metrics def get_system_data(self, cloud_name, uuid, expid = "auto") : ''' TBD ''' _metrics = self.get_performance_data(cloud_name, uuid, "runtime", "VM", "os", False, 0, expid) if uuid in self.vms : self.vms[uuid].system_metrics = _metrics return _metrics def get_management_data(self, cloud_name, uuid, expid = "auto") : ''' TBD ''' _metrics = self.get_performance_data(cloud_name, uuid, "management", "VM", "os", False, 0, expid) return _metrics ``` #### File: lib/auxiliary/thread_pool.py ```python from queue import Queue from threading import Thread from time import sleep import copy class Worker(Thread): """Thread executing tasks from a given tasks queue""" def __init__(self, tasks, pool): Thread.__init__(self) self.tasks = tasks self.daemon = True self.abort = False self.aborted = False self.start() self.pool = pool def run(self): while True: func, args, kargs = self.tasks.get() try: #print ("THREAD STARTED: " + func.__name__ + ": " + str(args) + " " + str(kargs)) self.abort = False self.aborted = False self.pool.results.append(func(*args, **kargs)) self.aborted = True except Exception as e: #print ("THREAD FAILED: " + func.__name__ + ": " + str(args) + " " + str(kargs)) print(e) finally : #print ("THREAD FINISHED: " + func.__name__ + ": " + str(args) + " " + str(kargs)) self.tasks.task_done() class ThreadPool: """Pool of threads consuming tasks from a queue""" def __init__(self, num_threads): self.results = [] self.workers = [] self.tasks = Queue(num_threads) for _ in range(num_threads): self.workers.append(Worker(self.tasks, self)) def add_task(self, func, *args, **kargs): """Add a task to the queue""" self.tasks.put((func, args, kargs)) def abort(self): for worker in self.workers : worker.abort = True while True : all_aborted = True for worker in self.workers : if not worker.aborted : all_aborted = False break if all_aborted : break sleep(0.5) def wait_completion(self): """Wait for completion of all the tasks in the queue""" while self.tasks.unfinished_tasks > 0 : sleep(0.5) ''' Reset the results for the next time. ''' result = copy.deepcopy(self.results) self.results = [] return result ``` #### File: lib/auxiliary/value_generation.py ```python from random import expovariate, uniform, gauss, gammavariate from ..auxiliary.code_instrumentation import trace, cbdebug, cberr, cbwarn, cbinfo, cbcrit class ValueGeneration : ''' TBD ''' @trace def __init__ (self, pid) : ''' TBD ''' self.pid = pid class ValueGenerationException(Exception): ''' TBD ''' def __init__(self, msg, status): Exception.__init__(self) self.msg = msg self.status = status def __str__(self): return self.msg @trace def get_value(self, parameters, previous_value = False) : ''' TBD ''' try : _status = 100 _fmsg = "Failure while trying to generate value." if parameters.count('|') : parameters = parameters.replace('|','I') if parameters.count('I') : _value = self.rand_dist_gen(parameters) elif parameters.count('+') or parameters.count('-') or parameters.count('*') : _value = self.monotonic_variation(previous_value, parameters) elif parameters.count('d') or parameters.count('h') or parameters.count('m') or parameters.count('s') : _value = self.time2seconds(parameters) else : _value = float(parameters) _status = 0 except ValueError as msg : _status = 10 _fmsg = str(msg) finally : if _status : _msg = "Value generation failure: " + _fmsg cberr(_msg) raise self.ValueGenerationException(_msg, _status) else : _msg = "Value generation success." cbdebug(_msg) return _value @trace def rand_dist_gen(self, parameters) : ''' TBD ''' try : _status = 100 _max_tries = 10000 _fmsg = "Failure while parsing the distribution parameters" parameters = parameters.split('I') if len(parameters) == 5 : _distribution = str(parameters[0]) for _idx in range(1,5) : if parameters[_idx] != "X" : parameters[_idx] = float(parameters[_idx]) _mean = parameters[1] _stdev = parameters[2] _min = parameters[3] _max = parameters[4] else : _msg = "Missing parameters for generator with a random " _msg += "distribution. All 4 parameters (mean, standard deviation, min," _msg += "max) needs to be specified for every distribution (even if " _msg += "some of those gets ignored later)." raise self.ValueGenerationException (_msg, 27) if _mean == 0.0 : _mean = 1.0 elif _mean == "X" : _mean = _max/2 else : True if _stdev == 0.0 : _stdev = 1.0 elif _stdev == "X" : _stdev = 1.0 else : True if _min >= _max : _max = _min + 1 if _max <= _mean: _mean = _max/2 _fmsg = "Failure while generating values according to the distribution" _fmsg += " \"" + _distribution + "\" with parameters " + str(_mean) _fmsg += " (mean) " + str(_stdev) + " (stdev) " + str(_min) + " (min)" _fmsg += str(_max) + " (max)" _distributions = {} _distributions["exponential"] = "expovariate(1/_mean)" _distributions["uniform"] = "uniform(_min, _max)" _distributions["gamma"] = "gammavariate((_mean * _mean) / (_stdev * _stdev), (_stdev * _stdev) / _mean)" _distributions["normal"] = "gauss(_mean, _stdev)" if _distribution in _distributions : _tries = 0 _value = _min - 1.0 while (_value < _min or _value > _max) and _tries < _max_tries : _value = eval(_distributions[_distribution]) _tries += 1 _status = 0 else : _fmsg = _distribution + " distribution generators are not supported." _fmsg += "Supported random distribution generators are: \n" for _key in list(_distributions.keys()) : _msg = _msg + _key + '\n' _status = 30 except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Random distribution generation failure: " + _fmsg cberr(_msg) raise self.ValueGenerationException(_msg, _status) else : _msg = "The " + _distribution + " distribution generator " _msg += "completed successfully." cbdebug(_msg) return _value @trace def monotonic_variation(self, previous_value, parameters) : ''' TBD ''' try : _sum = False _subtract = False _multiply = False _divide = False if parameters.count('+') : parameters = parameters.split('+') _sum = True elif parameters.count('-') : parameters = parameters.split('-') _subtract = True elif parameters.count('*') : parameters = parameters.split('*') _multiply = True elif parameters.count('/') : parameters = parameters.split('/') _divide = True else : _msg = "Missing parameters for generation of monotonic variation" raise self.ValueGenerationException (_msg, 27) if not previous_value : previous_value = int(parameters[0]) _factor = int(parameters[1]) if _sum : _value = int(previous_value) + int(_factor) elif _subtract : _value = int(previous_value) - int(_factor) elif _multiply : _value = int(previous_value) * int(_factor) else : _value = int(previous_value) / int(_factor) _status = 0 except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Monotonic variation generation failure: " + _fmsg cberr(_msg) raise self.ValueGenerationException(_msg, _status) else : _msg = "Monotonic variation generation success." cbdebug(_msg) return _value def value_suffix(self, value, in_kilobytes) : ''' TBD ''' _units = {} _units['K'] = 1024 _units['M'] = 1024*1024 _units['G'] = 1024*1024*1204 if value[-1] in _units : _value = int(value[:-1]) * _units[value[-1]] if in_kilobytes : _value = _value/1024 else : _value = int(value) return _value @trace def time2seconds(self, time_string) : ''' TBD ''' try : _status = 100 _total_time = 0 _rest = "Undefined" time_string = time_string.strip() if time_string.count('d') : _days, _rest = time_string.split('d') _total_time = _total_time + int(_days) * 86400 else : _rest = time_string if _rest.count('h') : _hours, _rest = _rest.split('h') _total_time = _total_time + int(_hours) * 3600 else : _rest = time_string if _rest.count('m') : _minutes, _rest = _rest.split('m') _total_time = _total_time + int(_minutes) * 60 else : _rest = time_string if _rest.count('s') : _seconds, _rest = _rest.split('s') _total_time = _total_time + int(_seconds) _rest = time_string if _rest == "Undefined" : _fmsg = "Unable to identifiy time string. Please add the suffix" _fmsg += "d (day), h (hour), m (minute) and s (seconds) to each" _fmsg += "number (e.g., XdYhZmWs)" else : _status = 0 except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Time to seconds conversion failure: " + _fmsg cberr(_msg) raise self.ValueGenerationException(_msg, _status) else : _msg = "Time to seconds conversion success." cbdebug(_msg) return _total_time ``` #### File: lib/clouds/osk_cloud_ops.py ```python from time import time, sleep from uuid import uuid5, UUID from random import choice from os import access, F_OK from os.path import expanduser import socket import copy import iso8601 import requests.packages.urllib3 requests.packages.urllib3.disable_warnings() from keystoneauth1.identity import v3 from keystoneauth1 import session from novaclient import client as novac from glanceclient import client as glancec from lib.auxiliary.code_instrumentation import trace, cbdebug, cberr, cbwarn, cbinfo, cbcrit from lib.auxiliary.data_ops import str2dic from lib.remote.network_functions import hostname2ip from .shared_functions import CldOpsException, CommonCloudFunctions class OskCmds(CommonCloudFunctions) : ''' TBD ''' @trace def __init__ (self, pid, osci, expid = None) : ''' TBD ''' CommonCloudFunctions.__init__(self, pid, osci) self.pid = pid self.osci = osci self.oskconncompute = {} self.oskconnstorage = {} self.oskconnnetwork = {} self.oskconnimage = {} self.expid = expid self.ft_supported = False self.lvirt_conn = {} self.networks_attr_list = { "tenant_network_list":[] } self.host_map = {} self.api_error_counter = {} self.additional_rc_contents = '' self.connauth_pamap = {} self.max_api_errors = 10 @trace def get_description(self) : ''' TBD ''' return "OpenStack Cloud" @trace def connect(self, access_url, authentication_data, region, extra_parms = {}, diag = False, generate_rc = False, client_conn_id = None) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _dmsg = '' _version = '2' _auth = None _credentials = None _data_auth_parse = False _nova_client = False if not self.connauth_pamap : self.connauth_pamap = self.parse_cloud_connection_file(access_url) access_url, _endpoint_type, region = self.parse_connection_data(access_url, region, extra_parms) _username, _password, _tenant, _project_name, _cacert, _verify, _user_domain_id, _project_domain_id = self.parse_authentication_data(authentication_data) _data_auth_parse = True _client_conn_id = "common" if client_conn_id : _client_conn_id = client_conn_id if not _username : _fmsg = _password else : access_url = access_url.replace('v2.0/','v3') _auth = v3.Password(auth_url = access_url, \ username = _username, \ password = _password, \ project_name = _project_name, \ user_domain_id = _user_domain_id, \ project_domain_id = _project_domain_id) _session = session.Session(auth = _auth, verify = _verify, cert = _cacert) _msg = self.get_description() + " connection parameters: username=" + _username _msg += ", password=<<PASSWORD>>, tenant=" + _tenant + ", " _msg += "cacert=" + str(_cacert) + ", verify=" + str(_verify) _msg += ", region_name=" + region + ", access_url=" + access_url _msg += ", endpoint_type=" + str(_endpoint_type) cbdebug(_msg, diag) _fmsg = "About to attempt a connection to " + self.get_description() if _client_conn_id not in self.oskconncompute : self.oskconncompute[_client_conn_id] = novac.Client("2.1", session = _session) self.oskconnimage[_client_conn_id] = glancec.Client("2", session = _session) self.oskconncompute[_client_conn_id].flavors.list() _nova_client = True if "use_cinderclient" in extra_parms : self.use_cinderclient = str(extra_parms["use_cinderclient"]).lower() else : self.use_cinderclient = "false" _cinder_client = True if self.use_cinderclient == "true" : _cinder_client = False if _client_conn_id not in self.oskconnstorage : from cinderclient import client as cinderc self.oskconnstorage[_client_conn_id] = cinderc.Client("2.1", session = _session) self.oskconnstorage[_client_conn_id].volumes.list() _cinder_client = True self.use_neutronclient = "true" _neutron_client = True if self.use_neutronclient == "true" : _neutron_client = False if _client_conn_id not in self.oskconnnetwork : from neutronclient.v2_0 import client as neutronc self.oskconnnetwork[_client_conn_id] = neutronc.Client(session = _session) self.oskconnnetwork[_client_conn_id].list_networks() _neutron_client = True else : self.oskconnnetwork = False _region = region _msg = "Selected region is " + str(region) cbdebug(_msg) if generate_rc : self.additional_rc_contents = "export OS_TENANT_NAME=" + _tenant + "\n" self.additional_rc_contents += "export OS_USERNAME=" + _username + "\n" self.additional_rc_contents += "export OS_PASSWORD=" + <PASSWORD> + "\n" self.additional_rc_contents += "export OS_AUTH_URL=\"" + access_url + "\"\n" self.additional_rc_contents += "export OS_NO_CACHE=1\n" # self.additional_rc_contents += "export OS_INTERFACE=" + _endpoint_type.replace("URL",'') + "\n" self.additional_rc_contents += "export OS_INTERFACE=admin\n" if _cacert : self.additional_rc_contents += "export OS_CACERT=" + _cacert + "\n" self.additional_rc_contents += "export OS_REGION_NAME=" + region + "\n" _status = 0 except novaclient.exceptions as obj: _status = int(obj.error_code) _fmsg = str(obj.error_message) except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = self.get_description() + " connection failure: " + _fmsg cberr(_msg) if _data_auth_parse : if not _nova_client : _dmsg = "Please attempt to execute the following : \"python -c \"" _dmsg += "from keystoneauth1.identity import v3; " _dmsg += "from keystoneauth1 import session; " _dmsg += "from novaclient import client as novac; " _dmsg += "_auth = v3.Password(username = '" + str(_username) _dmsg += "', password = '<PASSWORD>', project_name = '" _dmsg += str(_tenant) + "', auth_url = '" + str(access_url) _dmsg += "', user_domain_id = '" + str(_user_domain_id) + "', " _dmsg += "project_domain_id = '" + str(_project_domain_id) + "'); " _dmsg += "_session = session.Session(auth = _auth, verify = " + str(_verify) + ", cert = " + str(_cacert) + "); " _dmsg += "ct = novac.Client(\"2.1\", session = _session); print ct.flavors.list()\"\"" elif not _cinder_client : _dmsg = "Please attempt to execute the following : \"python -c \"" _dmsg += "from keystoneauth1.identity import v3; " _dmsg += "from keystoneauth1 import session; " _dmsg += "from cinderclient import client as cinderc; " _dmsg += "_auth = v3.Password(username = '" + str(_username) _dmsg += "', password = '<PASSWORD>', project_name = '" _dmsg += str(_tenant) + "', auth_url = '" + str(access_url) _dmsg += "', user_domain_id = '" + str(_user_domain_id) + "', " _dmsg += "project_domain_id = '" + str(_project_domain_id) + "'); " _dmsg += "_session = session.Session(auth = _auth, verify = " + str(_verify) + ", cert = " + str(_cacert) + "); " _dmsg += "ct = cinderc.Client(\"2.1\", session = _session); print ct.volumes.list()\"\"" elif not _neutron_client : _dmsg = "Please attempt to execute the following : \"python -c \"" _dmsg += "from keystoneauth1.identity import v3; " _dmsg += "from keystoneauth1 import session; " _dmsg += "from neutronclient.v2_0 import client as neutronc; " _dmsg += "_auth = v3.Password(username = '" + str(_username) _dmsg += "', password = '<PASSWORD>', project_name = '" _dmsg += str(_tenant) + "', auth_url = '" + str(access_url) _dmsg += "', user_domain_id = '" + str(_user_domain_id) + "', " _dmsg += "project_domain_id = '" + str(_project_domain_id) + "'); " _dmsg += "_session = session.Session(auth = _auth, verify = " + str(_verify) + ", cert = " + str(_cacert) + "); " _dmsg += "ct = neutronc.Client(session = _session); print ct.list_networks()\"\"" print(_dmsg) raise CldOpsException(_msg, _status) else : _msg = self.get_description() + " connection successful." cbdebug(_msg) return _status, _msg, _region @trace def test_vmc_connection(self, cloud_name, vmc_name, access, credentials, key_name, \ security_group_name, vm_templates, vm_defaults, vmc_defaults) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(access, credentials, vmc_name, vm_defaults, True, True, vmc_name) self.generate_rc(cloud_name, vmc_defaults, self.additional_rc_contents) _key_pair_found = self.check_ssh_key(vmc_name, self.determine_key_name(vm_defaults), vm_defaults, False, vmc_name) _security_group_found = self.check_security_group(vmc_name, security_group_name) _floating_pool_found = self.check_floating_pool(vmc_name, vm_defaults) _prov_netname_found, _run_netname_found = self.check_networks(vmc_name, vm_defaults) _detected_imageids = self.check_images(vmc_name, vm_defaults, vm_templates) _check_jumphost = self.check_jumphost(vmc_name, vm_defaults, vm_templates, _detected_imageids) if not (_run_netname_found and _prov_netname_found and \ _key_pair_found and _security_group_found and _check_jumphost) : _msg = "Check the previous errors, fix it (using OpenStack's web" _msg += " GUI (horizon) or nova CLI" _status = 1178 raise CldOpsException(_msg, _status) if len(_detected_imageids) : _status = 0 else : _status = 1 except CldOpsException as obj : _fmsg = str(obj.msg) _status = 2 except Exception as msg : _fmsg = str(msg) _status = 23 finally : self.disconnect() _status, _msg = self.common_messages("VMC", {"name" : vmc_name }, "connected", _status, _fmsg) return _status, _msg @trace def check_networks(self, vmc_name, vm_defaults) : ''' TBD ''' _prov_netname = vm_defaults["netname"] _run_netname = vm_defaults["netname"] _net_str = "network \"" + _prov_netname + "\"" _msg = "Checking if the " + _net_str + " can be found on VMC " + vmc_name + "..." cbdebug(_msg, True) self.get_network_list(vmc_name, vm_defaults) _prov_netname_found = False _run_netname_found = False if _prov_netname in self.networks_attr_list : _net_model = self.networks_attr_list[_prov_netname]["model"] _net_type = self.networks_attr_list[_prov_netname]["model"] if _net_model != "external" : _prov_netname_found = True if _net_type == _net_model : _net_str = _net_type else : _net_str = _net_type + ' ' + _net_model _msg = "done. This " + _net_str + " will be used as the default for provisioning." cbdebug(_msg) else: _msg = "\nERROR! The default provisioning network (" _msg += _prov_netname + ") cannot be an external network" cberr(_msg, True) if _run_netname in self.networks_attr_list : _net_model = self.networks_attr_list[_run_netname]["model"] _net_type = self.networks_attr_list[_run_netname]["model"] if _net_model != "external" : _run_netname_found = True if _net_type == _net_model : _net_str = _net_type else : _net_str = _net_type + ' ' + _net_model _msg = "a " + _net_type + ' ' + _net_model + " will be used as the default for running." cbdebug(_msg) else: _msg = "ERROR! The default running network (" _msg += _run_netname + ") cannot be an external network" cberr(_msg, True) if not (_run_netname_found and _prov_netname_found) : _msg = "ERROR! Please make sure that the " + _net_str + " can be found" _msg += " VMC " + vmc_name _fmsg = _msg cberr(_msg, True) return _prov_netname_found, _run_netname_found @trace def check_images(self, vmc_name, vm_defaults, vm_templates) : ''' TBD ''' self.common_messages("IMG", { "name": vmc_name }, "checking", 0, '') _map_name_to_id = {} _map_id_to_name = {} # _registered_image_list = self.oskconncompute[vmc_name].glance.list() _registered_image_list = self.oskconnimage[vmc_name].images.list() _registered_imageid_list = [] for _registered_image in _registered_image_list : if "hypervisor_type" in vm_defaults : if str(vm_defaults["hypervisor_type"]).lower() != "fake" : if "hypervisor_type" in _registered_image._info : if _registered_image._info["hypervisor_type"] == vm_defaults["hypervisor_type"] : _registered_imageid_list.append(_registered_image.id) _map_name_to_id[_registered_image.name] = _registered_image.id else : _registered_imageid_list.append(_registered_image.id) _map_name_to_id[_registered_image.name] = _registered_image.id else : _registered_imageid_list.append(_registered_image.id) _map_name_to_id[_registered_image.name] = _registered_image.id for _vm_role in list(vm_templates.keys()) : _imageid = str2dic(vm_templates[_vm_role])["imageid1"] if _imageid != "to_replace" : if _imageid in _map_name_to_id and _map_name_to_id[_imageid] != _imageid : vm_templates[_vm_role] = vm_templates[_vm_role].replace(_imageid, _map_name_to_id[_imageid]) else : _map_name_to_id[_imageid] = _imageid vm_templates[_vm_role] = vm_templates[_vm_role].replace(_imageid, _map_name_to_id[_imageid]) _map_id_to_name[_map_name_to_id[_imageid]] = _imageid _detected_imageids = self.base_check_images(vmc_name, vm_templates, _registered_imageid_list, _map_id_to_name, vm_defaults) return _detected_imageids @trace def discover_hosts(self, obj_attr_list, start) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["name"], {}, False, False, obj_attr_list["name"]) obj_attr_list["hosts"] = '' obj_attr_list["host_list"] = {} self.build_host_map(obj_attr_list["name"]) _host_list = list(self.host_map.keys()) obj_attr_list["host_count"] = len(_host_list) for _host in _host_list : self.add_host(obj_attr_list, _host, start) obj_attr_list["hosts"] = obj_attr_list["hosts"][:-1] self.additional_host_discovery (obj_attr_list) self.populate_interface(obj_attr_list) _status = 0 except CldOpsException as obj : _status = int(obj.status) _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("HOST", obj_attr_list, "discovered", _status, _fmsg) return _status, _msg @trace def vmccleanup(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["name"], {"use_cinderclient" : str(obj_attr_list["use_cinderclient"])}, \ False, \ False, \ obj_attr_list["name"]) _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) _wait = int(obj_attr_list["update_frequency"]) sleep(_wait) self.common_messages("VMC", obj_attr_list, "cleaning up vms", 0, '') _running_instances = True while _running_instances and _curr_tries < _max_tries : _running_instances = False _criteria = {} _criteria["all_tenants"] = int(obj_attr_list["all_tenants"]) _vmc_name = obj_attr_list["name"] _instances = self.oskconncompute[_vmc_name].servers.list(search_opts = _criteria) for _instance in _instances : if _instance.name.count("cb-" + obj_attr_list["username"] + '-' + obj_attr_list["cloud_name"]) \ and not _instance.name.count("jumphost") : _instance_metadata = _instance.metadata if "cloud_floating_ip_uuid" in _instance_metadata : _msg = " Deleting floating IP " + _instance_metadata["cloud_floating_ip_uuid"] _msg += ", associated with instance " _msg += _instance.id + " (" + _instance.name + ")" cbdebug(_msg, True) self.oskconnnetwork[_vmc_name].delete_floatingip(_instance_metadata["cloud_floating_ip_uuid"]) # self.oskconncompute.floating_ips.delete(_instance_metadata["cloud_floating_ip_uuid"]) _running_instances = True if _instance.status == "ACTIVE" : _msg = "Terminating instance: " _msg += _instance.id + " (" + _instance.name + ")" cbdebug(_msg, True) _volume_attached = getattr(_instance, 'os-extended-volumes:volumes_attached') self.retriable_instance_delete({}, _instance) if _instance.status == "BUILD" : _msg = "Will wait for instance " _msg += _instance.id + "\"" _msg += " (" + _instance.name + ") to " _msg += "start and then destroy it." cbdebug(_msg, True) sleep(_wait) _curr_tries += 1 if _curr_tries > _max_tries : _status = 1077 _fmsg = "Some instances on VMC \"" + obj_attr_list["name"] + "\"" _fmsg += " could not be removed because they never became active" _fmsg += ". They will have to be removed manually." cberr(_msg, True) else : _status = 0 if self.oskconnstorage and self.use_cinderclient == "true" : self.common_messages("VMC", obj_attr_list, "cleaning up vvs", 0, '') _volumes = self.oskconnstorage[_vmc_name].volumes.list() for _volume in _volumes : if "display_name" in dir(_volume) : _volume_name = str(_volume.display_name) else : _volume_name = str(_volume.name) if _volume_name.count("cb-" + obj_attr_list["username"] + '-' + obj_attr_list["cloud_name"]) : _volume.delete() except CldOpsException as obj : _status = int(obj.status) _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VMC", obj_attr_list, "cleaned up", _status, _fmsg) return _status, _msg @trace def vmcregister(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _time_mark_prs = int(time()) obj_attr_list["mgt_002_provisioning_request_sent"] = _time_mark_prs - int(obj_attr_list["mgt_001_provisioning_request_originated"]) if "cleanup_on_attach" in obj_attr_list and obj_attr_list["cleanup_on_attach"] == "True" : _status, _fmsg = self.vmccleanup(obj_attr_list) else : _status = 0 if not _status : _x, _y, _hostname = self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["name"], obj_attr_list, \ False, \ True, \ obj_attr_list["name"]) obj_attr_list["cloud_hostname"] = _hostname if "access_from_rc" in obj_attr_list : _actual_access = obj_attr_list["access_from_rc"] else : _actual_access = obj_attr_list["access"] _resolve = _actual_access.split(':')[1].replace('//','') _resolve = _resolve.split('/')[0] _resolve = _resolve.replace("_dash_","-") _x, obj_attr_list["cloud_ip"] = hostname2ip(_resolve, True) obj_attr_list["arrival"] = int(time()) if str(obj_attr_list["discover_hosts"]).lower() == "true" : _status, _fmsg = self.discover_hosts(obj_attr_list, _time_mark_prs) else : obj_attr_list["hosts"] = '' obj_attr_list["host_list"] = {} obj_attr_list["host_count"] = "NA" _status = 0 if not _status : self.get_network_list(obj_attr_list["name"], obj_attr_list) _networks = {} for _net in list(self.networks_attr_list.keys()) : if "type" in self.networks_attr_list[_net] : _type = self.networks_attr_list[_net]["type"] obj_attr_list["network_" + _net] = _type _time_mark_prc = int(time()) obj_attr_list["mgt_003_provisioning_request_completed"] = _time_mark_prc - _time_mark_prs except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VMC", obj_attr_list, "registered", _status, _fmsg) return _status, _msg @trace def vmcunregister(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _time_mark_drs = int(time()) if "mgt_901_deprovisioning_request_originated" not in obj_attr_list : obj_attr_list["mgt_901_deprovisioning_request_originated"] = _time_mark_drs obj_attr_list["mgt_902_deprovisioning_request_sent"] = _time_mark_drs - int(obj_attr_list["mgt_901_deprovisioning_request_originated"]) if "cleanup_on_detach" in obj_attr_list and str(obj_attr_list["cleanup_on_detach"]).lower() == "true" : _status, _fmsg = self.vmccleanup(obj_attr_list) _time_mark_prc = int(time()) obj_attr_list["mgt_903_deprovisioning_request_completed"] = _time_mark_prc - _time_mark_drs _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VMC", obj_attr_list, "unregistered", _status, _fmsg) return _status, _msg @trace def vmcount(self, obj_attr_list): ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _nr_instances = 0 for _vmc_uuid in self.osci.get_object_list(obj_attr_list["cloud_name"], "VMC") : _vmc_attr_list = self.osci.get_object(obj_attr_list["cloud_name"], \ "VMC", False, _vmc_uuid, \ False) self.connect(obj_attr_list["access"], obj_attr_list["credentials"], \ _vmc_attr_list["name"], {}, False, False, _vmc_attr_list["name"]) _instances = self.oskconncompute[_vmc_attr_list["name"]].servers.list() for _instance in _instances : if _instance.name.count("cb-" + obj_attr_list["username"] + '-' + obj_attr_list["cloud_name"]) \ and not _instance.name.count("jumphost") : if _instance.status == "ACTIVE" : _nr_instances += 1 except Exception as e : _status = 23 _nr_instances = "NA" _fmsg = "(While counting instance(s) through API call \"list\") " + str(e) finally : return _nr_instances @trace def get_ssh_keys(self, vmc_name, key_name, key_contents, key_fingerprint, registered_key_pairs, internal, connection) : ''' TBD ''' for _key_pair in self.oskconncompute[vmc_name].keypairs.list() : registered_key_pairs[_key_pair.name] = _key_pair.fingerprint + "-NA" #self.oskconncompute.keypairs.delete(_key_pair) return True @trace def get_security_groups(self, vmc_name, security_group_name, registered_security_groups) : ''' TBD ''' if vmc_name in self.oskconnnetwork : for _security_group in self.oskconnnetwork[vmc_name].list_security_groups()["security_groups"] : if _security_group["name"] not in registered_security_groups : registered_security_groups.append(_security_group["name"]) else : for _security_group in self.oskconncompute[vmc_name].security_groups.list() : registered_security_groups.append(_security_group.name) return True @trace def get_ip_address(self, obj_attr_list, instance) : ''' TBD ''' _networks = list(instance.addresses.keys()) if len(_networks) : if _networks.count(obj_attr_list["run_netname"]) : _msg = "Network \"" + obj_attr_list["run_netname"] + "\" found." cbdebug(_msg) _run_network = _networks[_networks.index(obj_attr_list["run_netname"])] else : _msg = "Network \"" + obj_attr_list["run_netname"] + "\" found." _msg += "Using the first network (\"" + _networks[0] + "\") instead)." cbdebug(_msg) _run_network = _networks[0] _address_list = instance.addresses[_run_network] if len(_address_list) : for _address in _address_list : if _address["OS-EXT-IPS:type"] == "fixed" : obj_attr_list["run_cloud_ip"] = '{0}'.format(_address["addr"]) # NOTE: "cloud_ip" is always equal to "run_cloud_ip" if "run_cloud_ip" in obj_attr_list : obj_attr_list["cloud_ip"] = obj_attr_list["run_cloud_ip"] else : return False if obj_attr_list["hostname_key"] == "cloud_vm_name" : obj_attr_list["cloud_hostname"] = obj_attr_list["cloud_vm_name"] elif obj_attr_list["hostname_key"] == "cloud_ip" : obj_attr_list["cloud_hostname"] = obj_attr_list["cloud_ip"].replace('.','-') if str(obj_attr_list["use_floating_ip"]).lower() == "true" : for _provnet in _networks : _address_list = instance.addresses[_provnet] if len(_address_list) : for _address in _address_list : if _address["OS-EXT-IPS:type"] == "floating" : obj_attr_list["prov_cloud_ip"] = '{0}'.format(_address["addr"]) return True else : if obj_attr_list["prov_netname"] == obj_attr_list["run_netname"] : obj_attr_list["prov_cloud_ip"] = obj_attr_list["run_cloud_ip"] return True else : if _networks.count(obj_attr_list["prov_netname"]) : _msg = "Network \"" + obj_attr_list["prov_netname"] + "\" found." cbdebug(_msg) _prov_network = _networks[_networks.index(obj_attr_list["prov_netname"])] else : _msg = "Network \"" + obj_attr_list["prov_netname"] + "\" found." _msg += "Using the first network (\"" + _networks[0] + "\") instead)." cbdebug(_msg) _prov_network = _networks[0] _address_list = instance.addresses[_prov_network] if len(_address_list) : for _address in _address_list : if _address["OS-EXT-IPS:type"] == "fixed" : obj_attr_list["prov_cloud_ip"] = '{0}'.format(_address["addr"]) return True else : _status = 1181 _msg = "IP address list for network " + str(_run_network) + " is empty." cberr(_msg) raise CldOpsException(_msg, _status) else : return False @trace def get_instances(self, obj_attr_list, obj_type = "vm", identifier = "all", force_list = False) : ''' TBD ''' try : _search_opts = {} _call = "NA" _search_opts["all_tenants"] = int(obj_attr_list["all_tenants"]) if identifier != "all" : if obj_type == "vm" : _search_opts["name"] = identifier else : _search_opts["display_name"] = identifier self.connect(obj_attr_list["access"], obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], obj_attr_list, False, False, identifier) if obj_type == "vm" : if "cloud_vm_uuid" in obj_attr_list and len(obj_attr_list["cloud_vm_uuid"]) >= 36 and not force_list : _call = "get" _instances = [ self.oskconncompute[identifier].servers.get(obj_attr_list["cloud_vm_uuid"]) ] else : _call = "list" _instances = self.oskconncompute[identifier].servers.list(search_opts = _search_opts) else : if "cloud_vv_uuid" in obj_attr_list and len(obj_attr_list["cloud_vv_uuid"]) >= 36 : _call = "get" _instances = [ self.oskconnstorage[identifier].volumes.get(obj_attr_list["cloud_vv_uuid"]) ] else : _call = "list" _instances = self.oskconnstorage[identifier].volumes.list(search_opts = _search_opts) if len(_instances) > 0 : if identifier == "all" : return _instances else : if obj_type == "vv" : return _instances[0] for _instance in _instances : if str(obj_attr_list["is_jumphost"]).lower() == "true" : return _instance else : _metadata = _instance.metadata if "experiment_id" in _metadata : if _metadata["experiment_id"] == self.expid : return _instance return False else : return False except Exception as e : _status = 23 _fmsg = "(While getting instance(s) through API call \"" + _call + "\") " + str(e) if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > self.max_api_errors : raise CldOpsException(_fmsg, _status) else : cbwarn(_fmsg) return False @trace def get_images(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _hyper = '' _fmsg = "An error has occurred, but no error message was captured" # _image_list = self.oskconncompute.glance.list() _fmsg = "Please check if the defined image name is present on this " _fmsg += self.get_description() _imageid = False _candidate_images = [] # for _idx in range(0,len(_image_list)) : # if self.is_cloud_image_uuid(obj_attr_list["imageid1"]) : # if _image_list[_idx].id == obj_attr_list["imageid1"] : # _candidate_images.append(_image_list[_idx]) # else : # if _image_list[_idx].name.count(obj_attr_list["imageid1"]) : # _candidate_images.append(_image_list[_idx]) _vmc_name = obj_attr_list["name"] _candidate_images = [ self.oskconncompute[_vmc_name].glance.find_image(obj_attr_list["imageid1"]) ] if "hypervisor_type" in obj_attr_list : if str(obj_attr_list["hypervisor_type"]).lower() != "fake" : _hyper = obj_attr_list["hypervisor_type"] for _image in list(_candidate_images) : if "hypervisor_type" in _image._info : if _image._info["hypervisor_type"] != obj_attr_list["hypervisor_type"] : _candidate_images.remove(_image) else : _hyper = _image._info["hypervisor_type"] else : obj_attr_list["hypervisor_type"] = '' if len(_hyper) : obj_attr_list["hypervisor_type"] = _hyper if len(_candidate_images) : if str(obj_attr_list["randomize_image_name"]).lower() == "true" : _imageid = choice(_candidate_images) else : _imageid = _candidate_images[0] if _imageid : obj_attr_list["boot_volume_imageid1"] = _imageid.id obj_attr_list["imageid1"] = _imageid.name obj_attr_list["boot_volume_imageid1_instance"] = _imageid _status = 0 except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Image Name (" + obj_attr_list["imageid1"] + ' ' + _hyper + ") not found: " + _fmsg cberr(_msg) raise CldOpsException(_msg, _status) else : return True @trace def get_networks(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _netids = [] _netnames = [] _netlist = obj_attr_list["prov_netname"].split(',') + obj_attr_list["run_netname"].split(',') for _netname in _netlist : if "HA network tenant" in _netname : continue if not _netname in self.networks_attr_list : _status = 168 _fmsg = "Please check if the defined network is present on this " _fmsg += self.get_description() if "name" in obj_attr_list : _conn_id = obj_attr_list["name"] else : _conn_id = "common" self.get_network_list(_conn_id, obj_attr_list) if _netname in self.networks_attr_list : _networkid = self.networks_attr_list[_netname]["uuid"] _net_info = {"net-id" : _networkid} if not _net_info in _netids : _netids.append(_net_info) _netnames.append(_netname) _status = 0 except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Network (" + obj_attr_list["prov_netname"] + " ) not found: " + _fmsg cberr(_msg, True) raise CldOpsException(_msg, _status) else : _netnames = ','.join(_netnames) return _netnames, _netids @trace def create_ssh_key(self, vmc_name, key_name, key_type, key_contents, key_fingerprint, vm_defaults, connection) : ''' TBD ''' self.oskconncompute[vmc_name].keypairs.create(key_name, \ public_key = key_type + ' ' + key_contents) return True @trace def is_cloud_image_uuid(self, imageid) : ''' TBD ''' if len(imageid) == 36 and imageid.count('-') == 4 : return True return False @trace def is_vm_running(self, obj_attr_list, fail = True) : ''' TBD ''' try : _cloud_vm_name = obj_attr_list["cloud_vm_name"] _instance = self.get_instances(obj_attr_list, "vm", \ _cloud_vm_name) if _instance : if _instance.status == "ACTIVE" : return _instance elif _instance.status == "ERROR" : obj_attr_list["last_known_state"] = "ERROR while checking for ACTIVE state" return True else : return False else : return False except Exception as e : _status = 23 _fmsg = str(e) raise CldOpsException(_fmsg, _status) @trace def is_vm_ready(self, obj_attr_list) : ''' TBD ''' _instance = self.is_vm_running(obj_attr_list) if _instance : if obj_attr_list["last_known_state"].count("ERROR") : return True obj_attr_list["last_known_state"] = "ACTIVE with ip unassigned" if self.get_ip_address(obj_attr_list, _instance) : obj_attr_list["last_known_state"] = "ACTIVE with ip assigned" return True else : obj_attr_list["last_known_state"] = "not ACTIVE" return False def vm_placement(self, obj_attr_list) : ''' TBD ''' _availability_zone = None if len(obj_attr_list["availability_zone"]) > 1 : _availability_zone = obj_attr_list["availability_zone"] if "compute_node" in obj_attr_list and _availability_zone : # _scheduler_hints = { "force_hosts" : obj_attr_list["host_name"] } for _host in self.oskconncompute[obj_attr_list["name"]].hypervisors.list() : if _host.hypervisor_hostname.count(obj_attr_list["compute_node"]) : obj_attr_list["host_name"] = _host.hypervisor_hostname break if "host_name" in obj_attr_list : _availability_zone += ':' + obj_attr_list["host_name"] else : _msg = "Unable to find the compute_node \"" + obj_attr_list["compute_node"] _msg += "\", indicated during the instance creation. Will let" _msg += " the scheduler pick a compute node" cbwarn(_msg) obj_attr_list["availability_zone"] = _availability_zone return True @trace def vvcreate(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" obj_attr_list["block_device_mapping"] = {} _vol_status = "NA" if "cloud_vv_type" not in obj_attr_list : obj_attr_list["cloud_vv_type"] = None if str(obj_attr_list["cloud_vv_type"]).lower() == "none" : obj_attr_list["cloud_vv_type"] = None if "cloud_vv" in obj_attr_list : self.common_messages("VV", obj_attr_list, "creating", _status, _fmsg) _imageid = None if str(obj_attr_list["boot_from_volume"]).lower() == "true" : _imageid = obj_attr_list["boot_volume_imageid1"] obj_attr_list["cloud_vv_data_name"] = obj_attr_list["cloud_vv_name"] obj_attr_list["cloud_vv_name"] = obj_attr_list["cloud_vv_name"].replace("-vv","-vbv") obj_attr_list["last_known_state"] = "about to send volume create request" _mark_a = time() if str(self.oskconnstorage[obj_attr_list["name"]].version) == '1' : _instance = self.oskconnstorage[obj_attr_list["name"]].volumes.create(obj_attr_list["cloud_vv"], \ snapshot_id = None, \ display_name = obj_attr_list["cloud_vv_name"], \ display_description = obj_attr_list["cloud_vv_name"], \ volume_type = obj_attr_list["cloud_vv_type"], \ availability_zone = None, \ imageRef = _imageid) else : _instance = self.oskconnstorage[obj_attr_list["name"]].volumes.create(obj_attr_list["cloud_vv"], \ snapshot_id = None, \ name = obj_attr_list["cloud_vv_name"], \ description = obj_attr_list["cloud_vv_name"], \ volume_type = obj_attr_list["cloud_vv_type"], \ availability_zone = None, \ imageRef = _imageid) self.annotate_time_breakdown(obj_attr_list, "create_volume_time", _mark_a) sleep(int(obj_attr_list["update_frequency"])) obj_attr_list["cloud_vv_uuid"] = '{0}'.format(_instance.id) _mark_a = time() _wait_for_volume = 180 for i in range(1, _wait_for_volume) : _vol_status = self.oskconnstorage[obj_attr_list["name"]].volumes.get(_instance.id).status if _vol_status == "available" : cbdebug("Volume " + obj_attr_list["cloud_vv_name"] + " took " + str(i) + " second(s) to become available",True) break elif _vol_status == "error" : _fmsg = "Volume " + obj_attr_list["cloud_vv_name"] + " reported error after " + str(i) + " second(s)" break else : sleep(1) self.annotate_time_breakdown(obj_attr_list, "volume_available_time", _mark_a) if str(obj_attr_list["boot_from_volume"]).lower() == "true" : obj_attr_list["boot_volume_imageid1"] = None obj_attr_list['cloud_vv'] = self.oskconnstorage[obj_attr_list["name"]].volumes.get(_instance.id).size obj_attr_list["block_device_mapping"] = {'vda':'%s' % obj_attr_list["cloud_vv_uuid"]} if _vol_status == "error" : _status = 17262 else : _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except KeyboardInterrupt : _status = 42 _fmsg = "CTRL-C interrupt" cbdebug("VM create keyboard interrupt...", True) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VV", obj_attr_list, "created", _status, _fmsg) return _status, _msg @trace def vvdestroy(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" if str(obj_attr_list["cloud_vv_uuid"]).lower() != "none" : _instance = self.get_instances(obj_attr_list, "vv", obj_attr_list["cloud_vm_name"]) if _instance : self.common_messages("VV", obj_attr_list, "destroying", 0, '') if len(_instance.attachments) : _server_id = _instance.attachments[0]["server_id"] _attachment_id = _instance.attachments[0]["id"] # There is weird bug on the python novaclient code. Don't change the # following line, it is supposed to be "oskconncompute", even though # is dealing with volumes. Will explain latter. self.oskconncompute[obj_attr_list["name"]].volumes.delete_server_volume(_server_id, _attachment_id) self.oskconnstorage[obj_attr_list["name"]].volumes.delete(_instance) _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VV", obj_attr_list, "destroyed", _status, _fmsg) return _status, _msg @trace def vmcreate(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _instance = False self.determine_instance_name(obj_attr_list) self.determine_key_name(obj_attr_list) obj_attr_list["last_known_state"] = "about to connect to " + self.get_description() + " manager" self.take_action_if_requested("VM", obj_attr_list, "provision_originated") # KEEP IT HERE TOO, NEEDS TO BE DUPLICATED, DO NOT REMOVE self.determine_key_name(obj_attr_list) if obj_attr_list["tenant"] != "default" : if "ssh_key_injected" not in obj_attr_list : self.check_ssh_key(obj_attr_list["vmc_name"], \ obj_attr_list["key_name"], \ obj_attr_list, True) if "user" not in obj_attr_list : obj_attr_list["user"] = obj_attr_list["tenant"] obj_attr_list["admin_credentials"] = obj_attr_list["credentials"] obj_attr_list["credentials"] = self.parse_authentication_data(obj_attr_list["credentials"], \ obj_attr_list["tenant"], \ obj_attr_list["user"], \ True) if obj_attr_list["name"] in self.oskconncompute : del self.oskconncompute[obj_attr_list["name"]] _mark_a = time() self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ {"use_cinderclient" : obj_attr_list["use_cinderclient"]}, \ False, \ False, \ obj_attr_list["name"]) self.annotate_time_breakdown(obj_attr_list, "authenticate_time", _mark_a) _mark_a = time() if self.is_vm_running(obj_attr_list) : _msg = "An instance named \"" + obj_attr_list["cloud_vm_name"] _msg += "\" is already running. It needs to be destroyed first." _status = 187 cberr(_msg) raise CldOpsException(_msg, _status) self.annotate_time_breakdown(obj_attr_list, "check_existing_instance_time", _mark_a) obj_attr_list["last_known_state"] = "about to get flavor and image list" if str(obj_attr_list["security_groups"]).lower() == "false" : _security_groups = None else : # "Security groups" must be a list _security_groups = [] _security_groups.append(obj_attr_list["security_groups"]) self.vm_placement(obj_attr_list) obj_attr_list["last_known_state"] = "about to send create request" _mark_a = time() self.get_flavors(obj_attr_list) self.annotate_time_breakdown(obj_attr_list, "get_flavor_time", _mark_a) _mark_a = time() self.get_images(obj_attr_list) self.annotate_time_breakdown(obj_attr_list, "get_imageid_time", _mark_a) obj_attr_list["userdata"] = self.populate_cloudconfig(obj_attr_list) if obj_attr_list["userdata"] : obj_attr_list["config_drive"] = True else : obj_attr_list["config_drive"] = None _mark_a = time() _netnames, _netids = self.get_networks(obj_attr_list) self.annotate_time_breakdown(obj_attr_list, "get_netid_time", _mark_a) _meta = {} if "meta_tags" in obj_attr_list : if obj_attr_list["meta_tags"] != "empty" and \ obj_attr_list["meta_tags"].count(':') and \ obj_attr_list["meta_tags"].count(',') : _meta = str2dic(obj_attr_list["meta_tags"]) _fip = None if str(obj_attr_list["use_floating_ip"]).lower() == "true" : _msg = " Attempting to create a floating IP to " + obj_attr_list["name"] + "..." cbdebug(_msg, True) obj_attr_list["last_known_state"] = "about to create floating IP" _fip = self.floating_ip_allocate(obj_attr_list) _meta["experiment_id"] = obj_attr_list["experiment_id"] if "cloud_floating_ip_uuid" in obj_attr_list : _meta["cloud_floating_ip_uuid"] = obj_attr_list["cloud_floating_ip_uuid"] _time_mark_prs = int(time()) obj_attr_list["mgt_002_provisioning_request_sent"] = \ _time_mark_prs - int(obj_attr_list["mgt_001_provisioning_request_originated"]) self.vvcreate(obj_attr_list) self.common_messages("VM", obj_attr_list, "creating", 0, '') self.pre_vmcreate_process(obj_attr_list) _mark_a = time() _instance = self.oskconncompute[obj_attr_list["name"]].servers.create(name = obj_attr_list["cloud_vm_name"], \ block_device_mapping = obj_attr_list["block_device_mapping"], \ image = obj_attr_list["boot_volume_imageid1_instance"], \ flavor = obj_attr_list["flavor_instance"], \ security_groups = _security_groups, \ key_name = obj_attr_list["key_name"], \ scheduler_hints = None, \ availability_zone = obj_attr_list["availability_zone"], \ meta = _meta, \ config_drive = obj_attr_list["config_drive"], \ userdata = obj_attr_list["userdata"], \ nics = _netids, \ disk_config = "AUTO") if _instance : self.annotate_time_breakdown(obj_attr_list, "instance_creation_time", _mark_a) sleep(int(obj_attr_list["update_frequency"])) obj_attr_list["cloud_vm_uuid"] = '{0}'.format(_instance.id) self.take_action_if_requested("VM", obj_attr_list, "provision_started") while not self.floating_ip_attach(obj_attr_list, _instance) : True _time_mark_prc = self.wait_for_instance_ready(obj_attr_list, _time_mark_prs) _mark_a = time() self.annotate_time_breakdown(obj_attr_list, "instance_scheduling_time", _mark_a) _mark_a = time() self.annotate_time_breakdown(obj_attr_list, "port_creation_time", _mark_a) if obj_attr_list["last_known_state"].count("ERROR") : _fmsg = obj_attr_list["last_known_state"] _status = 189 else : if not len(obj_attr_list["block_device_mapping"]) and \ str(obj_attr_list["cloud_vv_uuid"]).lower() != "none" : self.common_messages("VV", obj_attr_list, "attaching", _status, _fmsg) # There is a weird bug on the python novaclient code. Don't change the # following line, it is supposed to be "oskconncompute", even though # is dealing with volumes. Will explain later. _mark_a = time() self.oskconncompute[obj_attr_list["name"]].volumes.create_server_volume(obj_attr_list["cloud_vm_uuid"], \ obj_attr_list["cloud_vv_uuid"], \ "/dev/vdd") self.annotate_time_breakdown(obj_attr_list, "attach_volume_time", _mark_a) if obj_attr_list["volume_creation_status"] : _status = obj_attr_list["volume_creation_status"] else : _status = 0 if "admin_credentials" in obj_attr_list : self.connect(obj_attr_list["access"], \ obj_attr_list["admin_credentials"], \ obj_attr_list["vmc_name"], \ {}, False, \ False, \ obj_attr_list["name"]) self.get_mac_address(obj_attr_list, _instance) self.wait_for_instance_boot(obj_attr_list, _time_mark_prc) self.get_host_and_instance_name(obj_attr_list) if obj_attr_list["tenant"] != "default" : del self.oskconncompute[obj_attr_list["name"]] if "resource_limits" in obj_attr_list : _status, _fmsg = self.set_cgroup(obj_attr_list) else : _status = 0 if str(obj_attr_list["force_failure"]).lower() == "true" : _fmsg = "Forced failure (option FORCE_FAILURE set \"true\")" _status = 916 else : _fmsg = "Failed to obtain instance's (cloud assigned) uuid. The " _fmsg += "instance creation failed for some unknown reason." cberr(_fmsg) _status = 100 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except KeyboardInterrupt : _status = 42 _fmsg = "CTRL-C interrupt" cbdebug("VM create keyboard interrupt...", True) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() if "mgt_003_provisioning_request_completed" in obj_attr_list : self.annotate_time_breakdown(obj_attr_list, "instance_active_time", obj_attr_list["mgt_003_provisioning_request_completed"], False) if "mgt_004_network_acessible" in obj_attr_list : self.annotate_time_breakdown(obj_attr_list, "instance_reachable_time", obj_attr_list["mgt_004_network_acessible"], False) if "flavor_instance" in obj_attr_list : del obj_attr_list["flavor_instance"] if "boot_volume_imageid1_instance" in obj_attr_list : del obj_attr_list["boot_volume_imageid1_instance"] if "availability_zone" in obj_attr_list : obj_attr_list["availability_zone"] = str(obj_attr_list["availability_zone"]) if "block_device_mapping" in obj_attr_list : obj_attr_list["block_device_mapping"] = str(obj_attr_list["block_device_mapping"]) if "cloud_vv_type" in obj_attr_list : obj_attr_list["cloud_vv_type"] = str(obj_attr_list["cloud_vv_type"]) _status, _msg = self.common_messages("VM", obj_attr_list, "created", _status, _fmsg) return _status, _msg @trace def vmdestroy(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" if int(obj_attr_list["instance_creation_status"]) : _status, _fmsg = self.instance_cleanup_on_failure(obj_attr_list) else : _time_mark_drs = int(time()) if "mgt_901_deprovisioning_request_originated" not in obj_attr_list : obj_attr_list["mgt_901_deprovisioning_request_originated"] = _time_mark_drs obj_attr_list["mgt_902_deprovisioning_request_sent"] = \ _time_mark_drs - int(obj_attr_list["mgt_901_deprovisioning_request_originated"]) self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], {}, \ False, \ False, \ obj_attr_list["name"]) _wait = int(obj_attr_list["update_frequency"]) _max_tries = int(obj_attr_list["update_attempts"]) _curr_tries = 0 _instance = self.get_instances(obj_attr_list, "vm", obj_attr_list["cloud_vm_name"]) if _instance : self.common_messages("VM", obj_attr_list, "destroying", 0, '') self.floating_ip_delete(obj_attr_list) self.retriable_instance_delete(obj_attr_list, _instance) while _instance and _curr_tries < _max_tries : _instance = self.get_instances(obj_attr_list, "vm", \ obj_attr_list["cloud_vm_name"]) if _instance : if _instance.status != "ACTIVE" : break sleep(_wait) _curr_tries += 1 else : True _status, _fmsg = self.vvdestroy(obj_attr_list) _time_mark_drc = int(time()) obj_attr_list["mgt_903_deprovisioning_request_completed"] = \ _time_mark_drc - _time_mark_drs self.take_action_if_requested("VM", obj_attr_list, "deprovision_finished") except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VM", obj_attr_list, "destroyed", _status, _fmsg) return _status, _msg @trace def vmcapture(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ {}, \ False, \ False, \ obj_attr_list["name"]) _wait = int(obj_attr_list["update_frequency"]) _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) _instance = self.get_instances(obj_attr_list, "vm", obj_attr_list["cloud_vm_name"]) if _instance : _time_mark_crs = int(time()) # Just in case the instance does not exist, make crc = crs _time_mark_crc = _time_mark_crs obj_attr_list["mgt_102_capture_request_sent"] = _time_mark_crs - obj_attr_list["mgt_101_capture_request_originated"] if obj_attr_list["captured_image_name"] == "auto" : obj_attr_list["captured_image_name"] = obj_attr_list["imageid1"] + "_captured_at_" obj_attr_list["captured_image_name"] += str(obj_attr_list["mgt_101_capture_request_originated"]) self.common_messages("VM", obj_attr_list, "capturing", 0, '') _instance.create_image(obj_attr_list["captured_image_name"], None) _vm_image_created = False while not _vm_image_created and _curr_tries < _max_tries : # _vm_images = self.oskconncompute[obj_attr_list["name"]].glance.list() _vm_images = self.oskconnimage[obj_attr_list["name"]].images.list() for _vm_image in _vm_images : if _vm_image.name == obj_attr_list["captured_image_name"] : if _vm_image.status.lower() == "active" : _vm_image_created = True _time_mark_crc = int(time()) obj_attr_list["mgt_103_capture_request_completed"] = _time_mark_crc - _time_mark_crs break if "mgt_103_capture_request_completed" not in obj_attr_list : obj_attr_list["mgt_999_capture_request_failed"] = int(time()) - _time_mark_crs sleep(int(obj_attr_list["update_frequency"])) _curr_tries += 1 else : _fmsg = "This instance does not exist" _status = 1098 if _curr_tries > _max_tries : _status = 1077 _fmsg = "" + obj_attr_list["name"] + "" _fmsg += " (cloud-assigned uuid " + obj_attr_list["cloud_vm_uuid"] + ") " _fmsg += "could not be captured after " + str(_max_tries * _wait) + " seconds.... " cberr(_fmsg) else : _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VM", obj_attr_list, "captured", _status, _fmsg) return _status, _msg @trace def vmrunstate(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _ts = obj_attr_list["target_state"] _cs = obj_attr_list["current_state"] self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ {}, \ False, \ False, \ obj_attr_list["name"]) _wait = int(obj_attr_list["update_frequency"]) _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) if "mgt_201_runstate_request_originated" in obj_attr_list : _time_mark_rrs = int(time()) obj_attr_list["mgt_202_runstate_request_sent"] = \ _time_mark_rrs - obj_attr_list["mgt_201_runstate_request_originated"] self.common_messages("VM", obj_attr_list, "runstate altering", 0, '') _instance = self.get_instances(obj_attr_list, "vm", \ obj_attr_list["cloud_vm_name"]) if _instance : if _ts == "fail" : _instance.pause() elif _ts == "save" : _instance.suspend() elif (_ts == "attached" or _ts == "resume") and _cs == "fail" : _instance.unpause() elif (_ts == "attached" or _ts == "restore") and _cs == "save" : _instance.resume() _time_mark_rrc = int(time()) obj_attr_list["mgt_203_runstate_request_completed"] = _time_mark_rrc - _time_mark_rrs _msg = "VM " + obj_attr_list["name"] + " runstate request completed." cbdebug(_msg) _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : self.disconnect() _status, _msg = self.common_messages("VM", obj_attr_list, "runstate altered", _status, _fmsg) return _status, _msg @trace def vmmigrate(self, obj_attr_list) : ''' TBD ''' _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ {}, \ False, \ False, \ obj_attr_list["name"]) operation = obj_attr_list["mtype"] _msg = "Sending a " + operation + " request for " + obj_attr_list["name"] _msg += " (cloud-assigned uuid " + obj_attr_list["cloud_vm_uuid"] + ")" _msg += "...." cbdebug(_msg, True) # This is a migration, so we need to poll very frequently # If it is a micro-checkpointing operation, then poll normally _orig_freq = int(obj_attr_list["update_frequency"]) _wait = 1 if operation == "migrate" else _orig_freq _wait = min(_wait, _orig_freq) _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) if _wait < _orig_freq : _max_tries = _max_tries * (_orig_freq / _wait) _time_mark_crs = int(time()) try : _instance = self.get_instances(obj_attr_list, "vm", obj_attr_list["cloud_vm_name"]) if _instance : _instance.live_migrate(obj_attr_list["destination_name"].replace("host_", "")) obj_attr_list["mgt_502_" + operation + "_request_sent"] = _time_mark_crs - obj_attr_list["mgt_501_" + operation + "_request_originated"] while True and _curr_tries < _max_tries : sleep(_wait) _instance = self.get_instances(obj_attr_list, "vm", obj_attr_list["cloud_vm_name"]) if _instance.status not in ["ACTIVE", "MIGRATING"] : _status = 4328 _msg = "Migration of instance failed, " + self.get_description() + " state is: " + _instance.status raise CldOpsException(_msg, _status) if _instance.status == "ACTIVE" : _time_mark_crc = int(time()) obj_attr_list["mgt_503_" + operation + "_request_completed"] = _time_mark_crc - _time_mark_crs break _msg = "" + obj_attr_list["name"] + "" _msg += " (cloud-assigned uuid " + obj_attr_list["cloud_vm_uuid"] + ") " _msg += "still undergoing " + operation _msg += ". Will wait " + str(_wait) _msg += " seconds and try again." cbdebug(_msg) _curr_tries += 1 else : _fmsg = "This instance does not exist" _status = 1098 _status = 0 except Exception as e : _status = 349201 _fmsg = str(e) finally : self.disconnect() if "mgt_503_" + operation + "_request_completed" not in obj_attr_list : obj_attr_list["mgt_999_" + operation + "_request_failed"] = int(time()) - _time_mark_crs _status, _msg = self.common_messages("VM", obj_attr_list, operation + "ed ", _status, _fmsg) return _status, _msg @trace def vmresize(self, obj_attr_list) : ''' TBD ''' return 0, "NOT SUPPORTED" @trace def imgdelete(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _hyper = '' _fmsg = "An error has occurred, but no error message was captured" self.common_messages("IMG", obj_attr_list, "deleting", 0, '') self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ obj_attr_list, \ False, \ False, \ None) _image_list = self.oskconnimage["common"].images.list() for _image in _image_list : if self.is_cloud_image_uuid(obj_attr_list["imageid1"]) : if "hypervisor_type" in obj_attr_list : if str(obj_attr_list["hypervisor_type"]).lower() != "fake" : if "hypervisor_type" in _image._info : if _image._info["hypervisor_type"] == obj_attr_list["hypervisor_type"] : if _image.id == obj_attr_list["imageid1"] : _image.delete() break else : if _image.id == obj_attr_list["imageid1"] : _image.delete() break else : if _image.id == obj_attr_list["imageid1"] : _image.delete() break else : if "hypervisor_type" in obj_attr_list : if str(obj_attr_list["hypervisor_type"]).lower() != "fake" : if "hypervisor_type" in _image._info : if _image._info["hypervisor_type"] == obj_attr_list["hypervisor_type"] : if _image.name == obj_attr_list["imageid1"] : _image.delete() break else : if _image.name == obj_attr_list["imageid1"] : _image.delete() break else : if _image.name == obj_attr_list["imageid1"] : _image.delete() break obj_attr_list["boot_volume_imageid1"] = _image.id obj_attr_list["imageid1"] = _image.name _status = 0 except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("IMG", obj_attr_list, "deleted", _status, _fmsg) return _status, _msg @trace def parse_connection_data(self, connection_data, region, obj_attr_list) : ''' TBD ''' _access_url = None _endpoint_type = "publicURL" _region = region if not self.connauth_pamap : if len(connection_data.split('-')) == 2 : _access_url, _endpoint_type = connection_data.split('-') else : _access_url = connection_data.split('-')[0] else : if "OS_AUTH_URL" in self.connauth_pamap : _access_url = self.connauth_pamap["OS_AUTH_URL"] if "OS_ENDPOINT_TYPE" in self.connauth_pamap : _endpoint_type = self.connauth_pamap["OS_ENDPOINT_TYPE"] if "OS_REGION_NAME" in self.connauth_pamap : _region = self.connauth_pamap["OS_REGION_NAME"] obj_attr_list["access_from_rc"] = _access_url + '-' + _endpoint_type return _access_url, _endpoint_type, _region @trace def parse_authentication_data(self, authentication_data, tenant = "default", username = "default", single = False): ''' TBD ''' _username = '' _password = '' _tenant = '' _project_name = None # Insecure (don't verify CACERT: _verify = False and _cacert = None) # Verify CACERT (_verify = False and _cacert = <valid path to cert file>) _cacert = None _ckcert = None _verify = False _user_domain_id = "default" _project_domain_id = "default" if not self.connauth_pamap : if authentication_data.count(':') >= 2 : _separator = ':' else : _separator = '-' if len(authentication_data.split(_separator)) < 3 : _msg = "ERROR: Insufficient number of parameters in OSK_CREDENTIALS." _msg += "Please make sure that at least username, password and tenant" _msg += " are present." if single : return _msg else : return False, _msg, False, False, False, False, False, False if len(authentication_data.split(_separator)) == 3 : _username, _password, _tenant = authentication_data.split(_separator) elif len(authentication_data.split(_separator)) == 4 : _username, _password, _tenant, _cacert = authentication_data.split(_separator) _verify = True elif len(authentication_data.split(_separator)) == 5 : _username, _password, _tenant, _cacert, _ckcert = authentication_data.split(_separator) if ( str(_ckcert).lower() == "verify" ) : _verify = True elif ( str(_ckcert).lower() == "insecure" ) : _verify = False _cacert = None else : _verify = False _cacert = None elif len(authentication_data.split(_separator)) > 5 and _separator == '-' : _msg = "ERROR: Please make sure that the none of the parameters in" _msg += "OSK_CREDENTIALS have any dashes (i.e., \"-\") on it. If" _msg += "a dash is required, please use the string \"_dash\", and" _msg += "it will be automatically replaced." if single : return _msg else : return False, _msg, False, False, False, False, False, False else : if "OS_USERNAME" in self.connauth_pamap : _username = self.connauth_pamap["OS_USERNAME"] if "OS_PASSWORD" in self.connauth_pamap : _password = self.connauth_pamap["OS_PASSWORD"] if "OS_TENANT_NAME" in self.connauth_pamap : _tenant = self.connauth_pamap["OS_TENANT_NAME"] if "OS_PROJECT_NAME" in self.connauth_pamap : _project_name = self.connauth_pamap["OS_PROJECT_NAME"] if "OS_CACERT" in self.connauth_pamap : _cacert = self.connauth_pamap["OS_CACERT"] if "OS_INSECURE" in self.connauth_pamap : if self.connauth_pamap["OS_INSECURE"] == "1" or str(self.connauth_pamap["OS_INSECURE"]).lower() == "insecure": _verify = False _cacert = None else : _verify = True if "OS_PROJECT_DOMAIN_ID" in self.connauth_pamap : _project_domain_id = self.connauth_pamap["OS_PROJECT_DOMAIN_ID"] if "OS_USER_DOMAIN_ID" in self.connauth_pamap : _user_domain_id = self.connauth_pamap["OS_USER_DOMAIN_ID"] if tenant != "default" : _tenant = tenant if username != "default" : _username = username _username = _username.replace("_dash_",'-') _password = _password.replace("_dash_",'-') _tenant = _tenant.replace("_dash_",'-') if not _project_name : _project_name = _tenant if _cacert : _cacert = _cacert.replace("_dash_",'-') if single : _str = str(_username) + ':' + str(_password) + ':' + str(_tenant) if _cacert : _str += ':' + str(_cacert) if _verify : _str += ':' + str(_verify) return _str else : return _username, _password, _tenant, _project_name, _cacert, _verify, _user_domain_id, _project_domain_id @trace def disconnect(self) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" # if self.oskconncompute : # self.oskconncompute.novaclientlient.http.close() # if self.oskconnstorage and self.use_cinderclient == "true": # self.oskconnstorage.novaclientlient.http.close() # if self.oskconnnetwork : # self.oskconnnetwork.neutronclient.http.close() _status = 0 except AttributeError : # If the "close" method does not exist, proceed normally. _msg = "The \"close\" method does not exist or is not callable" cbwarn(_msg) _status = 0 except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = self.get_description() + " disconnection failure: " + _fmsg cberr(_msg) raise CldOpsException(_msg, _status) else : _msg = self.get_description() + " disconnection successful." cbdebug(_msg) return _status, _msg, '' @trace def get_network_attr(self, obj_attr_list, network_attr_list) : ''' TBD ''' _name = network_attr_list["name"] if "provider:network_type" in network_attr_list : _type = network_attr_list["provider:network_type"] else : _type = "NA" _uuid = network_attr_list["id"] if _type == "flat": _model = "flat" else : if "router:external" in network_attr_list : if network_attr_list["router:external"] : _model = "external" else : _model = "tenant" else : _model = "NA" self.networks_attr_list[_name] = {"uuid" : _uuid, "model" : _model, \ "type" : _type } if _model == "tenant" : if _name not in self.networks_attr_list["tenant_network_list"] : self.networks_attr_list["tenant_network_list"].append(_name) return True @trace def get_network_list(self, vmc_name, obj_attr_list) : ''' TBD ''' _network_list = self.oskconnnetwork[vmc_name].list_networks()["networks"] for _network_attr_list in _network_list : self.get_network_attr(obj_attr_list, _network_attr_list) return _network_list @trace def check_floating_pool(self, vmc_name, vm_defaults) : ''' TBD ''' _floating_pool_found = True if str(vm_defaults["create_jumphost"]).lower() != "false" or \ str(vm_defaults["use_floating_ip"]).lower() != "false" : _floating_pool_dict = {} for _network in self.oskconnnetwork[vmc_name].list_networks()["networks"] : if _network["router:external"] : if _network["name"] not in _floating_pool_dict : _floating_pool_dict[_network["name"]] = _network["id"] # _floating_pool_list = self.oskconncompute.floating_ip_pools.list() if len(vm_defaults["floating_pool"]) < 2 : if len(_floating_pool_dict) == 1 : vm_defaults["floating_pool"] = list(_floating_pool_dict.keys())[0] # vm_defaults["floating_pool"] = _floating_pool_list[0].name _msg = "A single floating IP pool (\"" _msg += vm_defaults["floating_pool"] + "\") was found on this" _msg += " VMC. Will use this as the floating pool." cbdebug(_msg) _msg = "Checking if the floating pool \"" _msg += vm_defaults["floating_pool"] + "\" can be found on VMC " _msg += vmc_name + "..." cbdebug(_msg, True) _floating_pool_found = False for _floating_pool in list(_floating_pool_dict.keys()) : if _floating_pool == vm_defaults["floating_pool"] : vm_defaults["floating_pool_id"] = _floating_pool_dict[_floating_pool] _floating_pool_found = True # if _floating_pool.name == vm_defaults["floating_pool"] : # _floating_pool_found = True if not (_floating_pool_found) : _msg = "ERROR! Please make sure that the floating IP pool " _msg += vm_defaults["floating_pool"] + "\" can be found" _msg += " VMC " + vmc_name _fmsg = _msg cberr(_msg, True) return _floating_pool_found @trace def check_jumphost(self, vmc_name, vm_defaults, vm_templates, detected_imageids) : ''' TBD ''' _can_create_jumphost = False if vm_defaults["jumphost_login"] == "auto" : vm_defaults["jumphost_login"] = vm_defaults["login"] vm_defaults["jumphost_name"] = vm_defaults["username"] + '-' + vm_defaults["jumphost_base_name"] try : _cjh = str(vm_defaults["create_jumphost"]).lower() _jhn = vm_defaults["jumphost_name"] if _cjh == "true" : vm_defaults["jumphost_ip"] = "to be created" _msg = "Checking if a \"Jump Host\" (" + _jhn + ") VM is already" _msg += " present on VMC " + vmc_name + "...." cbdebug(_msg, True) _obj_attr_list = copy.deepcopy(vm_defaults) _obj_attr_list.update(str2dic(vm_templates[vm_defaults["jumphost_role"]])) if "floating_pool" in vm_defaults and _obj_attr_list["imageid1"] in detected_imageids : _can_create_jumphost = True _obj_attr_list["cloud_vm_name"] = _jhn _obj_attr_list["cloud_name"] = "" _obj_attr_list["role"] = vm_defaults["jumphost_role"] _obj_attr_list["name"] = "vm_0" _obj_attr_list["model"] = "osk" _obj_attr_list["size"] = vm_defaults["jumphost_size"] _obj_attr_list["use_floating_ip"] = "true" _obj_attr_list["randomize_image_name"] = "false" _obj_attr_list["experiment_id"] = "" _obj_attr_list["mgt_001_provisioning_request_originated"] = int(time()) _obj_attr_list["vmc_name"] = vmc_name _obj_attr_list["ai"] = "none" _obj_attr_list["is_jumphost"] = True _obj_attr_list["use_jumphost"] = False _obj_attr_list["check_boot_complete"] = "tcp_on_22" _obj_attr_list["userdata"] = False _obj_attr_list["uuid"] = "00000000-0000-0000-0000-000000000000" _obj_attr_list["log_string"] = _obj_attr_list["name"] + " (" + _obj_attr_list["uuid"] + ")" _netname = _obj_attr_list["jumphost_netnames"] if _netname == "all" : _netname = ','.join(self.networks_attr_list["tenant_network_list"]) _obj_attr_list["prov_netname"] = _netname _obj_attr_list["run_netname"] = _netname if not self.is_vm_running(_obj_attr_list) : if _can_create_jumphost : _msg = " Creating a \"Jump Host\" (" + _jhn + ") VM on " _msg += " VMC " + vmc_name + ", connected to the networks \"" _msg += _netname + "\", and attaching a floating IP from pool \"" _msg += vm_defaults["floating_pool"] + "\"." #cbdebug(_msg) print(_msg) if "jumphost_ip" in _obj_attr_list : del _obj_attr_list["jumphost_ip"] self.vmcreate(_obj_attr_list) else : _msg = "The jump_host address was set to \"$True\", meaning" _msg += " that a \"cb_jumphost\" VM should be automatically" _msg += " created. However, the \"cb_nullworkload\" is not" _msg += " present on this cloud, and thus the \"cb_jumphost\"" _msg += " cannot be created." cberr(_msg, True) return False _instance = self.get_instances(_obj_attr_list, "vm", _jhn) self.get_ip_address(_obj_attr_list, _instance) _msg = " A \"Jump Host\" (" + _jhn + ") VM was found, with the floating IP" _msg += " address \"" + _obj_attr_list["prov_cloud_ip"] + "\"" _msg += " already assigned to it" #cbdebug(_msg) print(_msg) vm_defaults["jumphost_ip"] = _obj_attr_list["prov_cloud_ip"] else : return True except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) cberr(_fmsg, True) return False except KeyboardInterrupt : _status = 42 _fmsg = "CTRL-C interrupt" cbdebug("VM create keyboard interrupt...", True) return False except Exception as e : _status = 23 _fmsg = str(e) cberr(_fmsg, True) return False return True @trace def add_host(self, obj_attr_list, host, start) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _function = '' for _service in self.host_map[host]["services"] : if _service.count("scheduler") or _service.count("api") or \ _service.count("server") or _service.count("dhcp") : _function = "controller," break if "nova-compute" in self.host_map[host]["services"] : _function = "compute," _function = _function[0:-1] # Host UUID is artificially generated _host_uuid = str(uuid5(UUID('4f3f2898-69e3-5a0d-820a-c4e87987dbce'), \ obj_attr_list["cloud_name"] + str(host))) obj_attr_list["host_list"][_host_uuid] = {} obj_attr_list["hosts"] += _host_uuid + ',' _actual_host_name = host if "modify_host_names" in obj_attr_list and \ str(obj_attr_list["modify_host_names"]).lower() != "false" : _queried_host_name = _actual_host_name.split(".")[0] + '.' + obj_attr_list["modify_host_names"] else : _queried_host_name = _actual_host_name obj_attr_list["host_list"][_host_uuid]["cloud_hostname"], \ obj_attr_list["host_list"][_host_uuid]["cloud_ip"] = hostname2ip(_queried_host_name, True) obj_attr_list["host_list"][_host_uuid]["cloud_hostname"] = \ _actual_host_name obj_attr_list["host_list"][_host_uuid].update(self.host_map[host]) obj_attr_list["host_list"][_host_uuid]["function"] = _function obj_attr_list["host_list"][_host_uuid]["name"] = "host_" + obj_attr_list["host_list"][_host_uuid]["cloud_hostname"] obj_attr_list["host_list"][_host_uuid]["pool"] = obj_attr_list["pool"] obj_attr_list["host_list"][_host_uuid]["username"] = obj_attr_list["username"] if str(obj_attr_list["host_user_root"]).lower() == "true" : obj_attr_list["host_list"][_host_uuid]["login"] = "root" else : obj_attr_list["host_list"][_host_uuid]["login"] = obj_attr_list["host_list"][_host_uuid]["username"] obj_attr_list["host_list"][_host_uuid]["notification"] = "False" obj_attr_list["host_list"][_host_uuid]["model"] = obj_attr_list["model"] obj_attr_list["host_list"][_host_uuid]["vmc_name"] = obj_attr_list["name"] obj_attr_list["host_list"][_host_uuid]["vmc"] = obj_attr_list["uuid"] obj_attr_list["host_list"][_host_uuid]["uuid"] = _host_uuid obj_attr_list["host_list"][_host_uuid]["arrival"] = int(time()) obj_attr_list["host_list"][_host_uuid]["counter"] = obj_attr_list["counter"] obj_attr_list["host_list"][_host_uuid]["simulated"] = False obj_attr_list["host_list"][_host_uuid]["identity"] = obj_attr_list["identity"] if "login" in obj_attr_list : obj_attr_list["host_list"][_host_uuid]["login"] = obj_attr_list["login"] else : obj_attr_list["host_list"][_host_uuid]["login"] = "root" obj_attr_list["host_list"][_host_uuid]["mgt_001_provisioning_request_originated"] = obj_attr_list["mgt_001_provisioning_request_originated"] obj_attr_list["host_list"][_host_uuid]["mgt_002_provisioning_request_sent"] = obj_attr_list["mgt_002_provisioning_request_sent"] _time_mark_prc = int(time()) obj_attr_list["host_list"][_host_uuid]["mgt_003_provisioning_request_completed"] = _time_mark_prc - start _status = 0 except CldOpsException as obj : _status = int(obj.status) _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("HOST", obj_attr_list, "discovered", _status, _fmsg) return _status, _msg @trace def get_service_list(self, vmc_name, project) : ''' TBD ''' if project == "compute" : return self.oskconncompute[vmc_name].services.list() elif project == "volume" and self.use_cinderclient == "true" : return self.oskconnstorage[vmc_name].services.list() elif project == "network" : return self.oskconnnetwork[vmc_name].list_agents()["agents"] else : return [] @trace def get_service_host(self, service, project) : ''' TBD ''' if project == "compute" or project == "volume" : _service_host = service.host.split('@')[0] else : _service_host = service["host"] try : _host, _ip = hostname2ip(_service_host) return _host.split('.')[0] except Exception as e : _status = 23 _fmsg = str(e) raise CldOpsException(_fmsg, _status) @trace def get_service_binary(self, service, project) : ''' TBD ''' if project == "compute" or project == "volume" : return service.binary else : return service["binary"] @trace def build_host_map(self, vmc_name) : ''' TBD ''' try : for _project in ["compute", "volume", "network"] : for _service in self.get_service_list(vmc_name, _project) : _host = self.get_service_host(_service, _project) if _host not in self.host_map : self.host_map[_host] = {} self.host_map[_host]["services"] = [] self.host_map[_host]["extended_info"] = False self.host_map[_host]["memory_size"] = "NA" self.host_map[_host]["cores"] = "NA" self.host_map[_host]["hypervisor_type"] = "NA" _name = self.get_service_binary(_service, _project) if _name not in self.host_map[_host]["services"] : self.host_map[_host]["services"].append(_name) for _entry in self.oskconncompute[vmc_name].hypervisors.list() : _host = _entry.hypervisor_hostname.split('.')[0] if _host not in self.host_map : self.host_map[_host] = {} self.host_map[_host]["services"] = [] self.host_map[_host]["extended_info"] = _entry._info self.host_map[_host]["memory_size"] = _entry.memory_mb self.host_map[_host]["cores"] = _entry.vcpus self.host_map[_host]["hypervisor_type"] = _entry.hypervisor_type return True except Exception as e : _status = 23 _fmsg = str(e) raise CldOpsException(_fmsg, _status) @trace def get_flavors(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _flavor_list = self.oskconncompute[obj_attr_list["name"]].flavors.list() _status = 168 _fmsg = "Please check if the defined flavor is present on this " _fmsg += self.get_description() _flavor = False for _idx in range(0,len(_flavor_list)) : if _flavor_list[_idx].name == obj_attr_list["size"] : _flavor = _flavor_list[_idx] _status = 0 break obj_attr_list["flavor_instance"] = _flavor obj_attr_list["flavor"] = _flavor.id except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Flavor (" + obj_attr_list["size"] + " ) not found: " + _fmsg cberr(_msg, True) raise CldOpsException(_msg, _status) else : return True @trace def get_mac_address(self, obj_attr_list, instance) : ''' TBD ''' try : _virtual_interfaces = self.oskconncompute[obj_attr_list["name"]].virtual_interfaces.list(instance.id) if _virtual_interfaces and len(_virtual_interfaces) : obj_attr_list["cloud_mac"] = _virtual_interfaces[0].mac_address except : obj_attr_list["cloud_mac"] = "ERROR" return True @trace def get_host_and_instance_name(self, obj_attr_list, fail = True) : ''' TBD ''' # There is a lot of extra information that can be obtained through # the "_info" attribute. However, a new connection has to be # established to access the most up-to-date data on this attribute # Not sure how stable it will be with newer versions of the API. _instance = self.is_vm_running(obj_attr_list, fail = fail) if _instance : obj_attr_list["instance_name"] = "unknown" obj_attr_list["host_name"] = "unknown" try : obj_attr_list["instance_name"] = getattr(_instance, 'OS-EXT-SRV-ATTR:instance_name') obj_attr_list["host_name"] = getattr(_instance, 'OS-EXT-SRV-ATTR:host') except : pass # if "_info" in dir(_instance) : # if "OS-EXT-SRV-ATTR:host" in _instance._info : # obj_attr_list["host_name"] = _instance._info['OS-EXT-SRV-ATTR:host'].split('.')[0] # else : # obj_attr_list["host_name"] = "unknown" # if "OS-EXT-SRV-ATTR:instance_name" in _instance._info : # obj_attr_list["instance_name"] = _instance._info['OS-EXT-SRV-ATTR:instance_name'] # else : # obj_attr_list["instance_name"] = "unknown" # else : # obj_attr_list["instance_name"] = "unknown" # obj_attr_list["host_name"] = "unknown" else : obj_attr_list["instance_name"] = "unknown" obj_attr_list["host_name"] = "unknown" return True @trace def get_instance_deployment_time(self, obj_attr_list, fail = True) : ''' TBD ''' _instance = self.is_vm_running(obj_attr_list, fail) _created = False _launched = False if _instance : if "_info" in dir(_instance) : if "created" in _instance._info : _created = iso8601.parse_date(_instance._info["created"]) if "S-SRV-USG:launched_at" in _instance._info : _launched = iso8601.parse_date(_instance._info["OS-SRV-USG:launched_at"]) if _created and _launched : _mgt_003 = (_launched - _created).total_seconds() obj_attr_list["comments"] += " Actual time spent waiting for instance" obj_attr_list["comments"] += " to become active was " obj_attr_list["comments"] += str(obj_attr_list["mgt_003_provisioning_request_completed"]) obj_attr_list["comments"] += ". " obj_attr_list["mgt_003_provisioning_request_completed"] = int(_mgt_003) return True @trace def floating_ip_allocate(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _call = "NAfpc" identifier = obj_attr_list["cloud_vm_name"] if not self.oskconnnetwork : self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ {}, \ False, \ False, \ obj_attr_list["name"]) _fip = False if not _fip : _call = "floating ip create" _mark_a = time() _fip_h = self.oskconnnetwork[obj_attr_list["name"]].create_floatingip({"floatingip": {"floating_network_id": obj_attr_list["floating_pool_id"]}}) # _fip_h = self.oskconncompute.floating_ips.create(obj_attr_list["floating_pool"]) self.annotate_time_breakdown(obj_attr_list, "create_fip_time", _mark_a) obj_attr_list["cloud_floating_ip_address"] = _fip_h["floatingip"]["floating_ip_address"] obj_attr_list["cloud_floating_ip_uuid"] = _fip_h["floatingip"]["id"] _fip = obj_attr_list["cloud_floating_ip_address"] return _fip except Exception as e : _status = 23 _fmsg = "(While getting instance(s) through API call \"" + _call + "\") " + str(e) if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > 3 : raise CldOpsException(_fmsg, _status) else : cbwarn(_fmsg) return False @trace def floating_ip_delete(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _call = "NAfpd" identifier = obj_attr_list["cloud_vm_name"] self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], \ {}, \ False, \ False, \ obj_attr_list["name"]) if "cloud_floating_ip_uuid" in obj_attr_list : _call = "floating ip delete" self.oskconnnetwork[obj_attr_list["name"]].delete_floatingip(obj_attr_list["cloud_floating_ip_uuid"]) return True except Exception as e : _status = 23 _fmsg = "(While getting instance(s) through API call \"" + _call + "\") " + str(e) if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > 3 : raise CldOpsException(_fmsg, _status) else : cbwarn(_fmsg) return False @trace def floating_ip_attach(self, obj_attr_list, _instance) : ''' TBD ''' try : _call = "NAfpa" identifier = obj_attr_list["cloud_vm_name"] if str(obj_attr_list["use_floating_ip"]).lower() == "true" : _msg = " Attempting to attach a floating IP to " + obj_attr_list["name"] + "..." cbdebug(_msg, True) _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) _wait = int(obj_attr_list["update_frequency"]) obj_attr_list["last_known_state"] = "about to attach floating IP" _vm_ready = False while _curr_tries < _max_tries : _vm_ready = self.is_vm_running(obj_attr_list) if _vm_ready : break else : _curr_tries += 1 sleep(_wait) _call = "floating ip attach" _mark_a = time() if "hypervisor_type" in obj_attr_list and obj_attr_list["hypervisor_type"].lower() == "fake" : True else : try : update_info = {"port_id":_instance.interface_list()[0].id} self.oskconnnetwork.update_floatingip(obj_attr_list["cloud_floating_ip_uuid"], {"floatingip": update_info}) except : _instance.add_floating_ip(obj_attr_list["cloud_floating_ip_address"]) self.annotate_time_breakdown(obj_attr_list, "attach_fip_time", _mark_a) return True except novaclient.exceptions as obj: _status = int(obj.error_code) _fmsg = "(While getting instance(s) through API call \"" + _call + "\") " + str(obj.error_message) if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > self.max_api_errors : raise CldOpsException(_fmsg, _status) else : cbwarn(_fmsg) return False except Exception as e : _status = 23 _fmsg = "(While getting instance(s) through API call \"" + _call + "\") " + str(e) if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > 3 : raise CldOpsException(_fmsg, _status) else : cbwarn(_fmsg) return False @trace def instance_cleanup_on_failure(self, obj_attr_list) : ''' TBD ''' _vminstance = self.get_instances(obj_attr_list, "vm", \ obj_attr_list["cloud_vm_name"]) if _vminstance : # Not the best way to solve this problem. Will improve later. if not self.is_vm_running(obj_attr_list) : if "fault" in dir(_vminstance) : if "message" in _vminstance.fault : obj_attr_list["instance_creation_failure_message"] += "\nINSTANCE ERROR MESSAGE:" + str(_vminstance.fault["message"]) + ".\n" # Try and make a last attempt effort to get the hostname, # even if the VM creation failed. self.get_host_and_instance_name(obj_attr_list, fail = False) if "host_name" in obj_attr_list : obj_attr_list["instance_creation_failure_message"] += " (Host \"" + obj_attr_list["host_name"] + "\")" _vminstance.delete() sleep(20) if "cloud_vv" in obj_attr_list : self.vvdestroy(obj_attr_list) if obj_attr_list["volume_creation_status"] : obj_attr_list["instance_creation_failure_message"] += "VOLUME ERROR MESSAGE:" + obj_attr_list["volume_creation_failure_message"] + ".\n" return 0, obj_attr_list["instance_creation_failure_message"] @trace def retriable_instance_delete(self, obj_attr_list, instance) : ''' TBD ''' try : if "cloud_vm_name" in obj_attr_list : identifier = obj_attr_list["cloud_vm_name"] else : identifier = instance.name instance.delete() return True except Exception as e : _status = 23 _fmsg = "(While removing instance(s) through API call \"delete\") " + str(obj.error_message) if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > self.max_api_errors : raise CldOpsException(_fmsg, _status) else : return False ``` #### File: lib/clouds/plm_cloud_ops.py ```python import libxml2 import os from time import time, sleep from random import choice, randint from hashlib import sha256 from libvirt import * from lib.auxiliary.code_instrumentation import trace, cbdebug, cberr, cbwarn, cbinfo, cbcrit from lib.auxiliary.data_ops import str2dic, dic2str, is_number, DataOpsException from lib.remote.process_management import ProcessManagement from lib.remote.network_functions import hostname2ip from .shared_functions import CldOpsException, CommonCloudFunctions class PlmCmds(CommonCloudFunctions) : ''' TBD ''' @trace def __init__ (self, pid, osci, expid = None) : ''' TBD ''' CommonCloudFunctions.__init__(self, pid, osci) self.pid = pid self.osci = osci self.ft_supported = False self.lvirtconn = {} self.expid = expid self.api_error_counter = {} self.max_api_errors = 10 self.additional_rc_contents = '' self.vhw_config = {} self.vhw_config["pico32"] = { "vcpus" : "1", "vmem" : "256", "vstorage" : "2048", "vnics" : "1" } self.vhw_config["nano32"] = { "vcpus" : "1", "vmem" : "512", "vstorage" : "61440", "vnics" : "1" } self.vhw_config["micro32"] = { "vcpus" : "1", "vmem" : "1024", "vstorage" : "61440", "vnics" : "1" } self.vhw_config["copper32"] = { "vcpus" : "1", "vmem" : "2048", "vstorage" : "61440", "vnics" : "1" } self.vhw_config["bronze32"] = { "vcpus" : "1", "vmem" : "2048", "vstorage" : "179200", "vnics" : "1" } self.vhw_config["iron32"] = { "vcpus" : "2", "vmem" : "2048", "vstorage" : "179200", "vnics" : "1" } self.vhw_config["silver32"] = { "vcpus" : "4", "vmem" : "2048", "vstorage" : "358400", "vnics" : "1" } self.vhw_config["gold32"] = { "vcpus" : "8", "vmem" : "4096", "vstorage" : "358400", "vnics" : "1" } self.vhw_config["copper64"] = { "vcpus" : "2", "vmem" : "4096", "vstorage" : "61440", "vnics" : "1" } self.vhw_config["bronze64"] = { "vcpus" : "2", "vmem" : "4096", "vstorage" : "870400", "vnics" : "1" } self.vhw_config["silver64"] = { "vcpus" : "4", "vmem" : "8192", "vstorage" : "1048576", "vnics" : "1" } self.vhw_config["gold64"] = { "vcpus" : "8", "vmem" : "16384", "vstorage" : "1048576", "vnics" : "1" } self.vhw_config["platinum64"] = { "vcpus" : "16", "vmem" : "16384", "vstorage" : "2097152", "vnics" : "1" } @trace def get_description(self) : ''' TBD ''' return "Parallel Libvirt Manager Cloud" @trace def connect(self, access, credentials, vmc_name, extra_parms = {}, diag = False, generate_rc = False) : ''' TBD ''' try : _status = 100 _endpoint_ip = "NA" _fmsg = "An error has occurred, but no error message was captured" for _endpoint in access.split(',') : _endpoint, _endpoint_name, _endpoint_ip= self.parse_endpoint(_endpoint, "qemu+tcp", False) if _endpoint_ip not in self.lvirtconn : self.lvirtconn[_endpoint_ip] = open(_endpoint + "/system") self.lvirtconn[_endpoint_ip].getSysinfo() _status -= 100 except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = self.get_description() + " connection to endpoint \"" + _endpoint_ip + "\" failed: " + _fmsg cberr(_msg) raise CldOpsException(_msg, _status) else : _msg = self.get_description() + " connection successful." cbdebug(_msg) return _status, _msg, '' @trace def test_vmc_connection(self, cloud_name, vmc_name, access, credentials, key_name, \ security_group_name, vm_templates, vm_defaults, vmc_defaults) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(access, credentials, vmc_name, vm_defaults, True, True) self.generate_rc(cloud_name, vmc_defaults, self.additional_rc_contents) _prov_netname_found, _run_netname_found = self.check_networks(vmc_name, vm_defaults) _key_pair_found = self.check_ssh_key(vmc_name, self.determine_key_name(vm_defaults), vm_defaults) _detected_imageids = self.check_images(vmc_name, vm_templates, vmc_defaults['poolname'], vm_defaults) if not (_run_netname_found and _prov_netname_found and _key_pair_found) : _msg = "Check the previous errors, fix it (using lxc CLI)" _status = 1178 raise CldOpsException(_msg, _status) if len(_detected_imageids) : _status = 0 else : _status = 1 except CldOpsException as obj : _fmsg = str(obj.msg) _status = 2 except Exception as msg : _fmsg = str(msg) _status = 23 finally : _status, _msg = self.common_messages("VMC", {"name" : vmc_name }, "connected", _status, _fmsg) return _status, _msg @trace def check_networks(self, vmc_name, vm_defaults) : ''' TBD ''' _prov_netname = vm_defaults["netname"] _run_netname = vm_defaults["netname"] _net_str = "network \"" + _prov_netname + "\"" _prov_netname_found = False _run_netname_found = False for _endpoint in list(self.lvirtconn.keys()) : _msg = "Checking if the " + _net_str + " can be " _msg += "found on VMC " + vmc_name + " (endpoint " + _endpoint + ")..." cbdebug(_msg, True) for _network in self.lvirtconn[_endpoint].listNetworks() : if _network == _prov_netname : _prov_netname_found = True if _network == _run_netname : _run_netname_found = True if not _prov_netname_found : _msg = "ERROR! Please make sure that the provisioning network " + _prov_netname + " can be found" _msg += " VMC " + vmc_name + " (endpoint " + _endpoint + ")..." _fmsg = _msg cberr(_msg, True) if not _prov_netname_found : _msg = "ERROR! Please make sure that the running network " + _run_netname + " can be found" _msg += " VMC " + vmc_name + " (endpoint " + _endpoint + ")..." _fmsg = _msg cberr(_msg, True) return _prov_netname_found, _run_netname_found @trace def check_images(self, vmc_name, vm_templates, poolname, vm_defaults) : ''' TBD ''' for _endpoint in list(self.lvirtconn.keys()) : self.common_messages("IMG", { "name": vmc_name, "endpoint" : _endpoint }, "checking", 0, '') _map_name_to_id = {} _map_id_to_name = {} _storage_pool_handle = self.lvirtconn[_endpoint].storagePoolLookupByName(poolname) _registered_image_list = _storage_pool_handle.listVolumes() _registered_imageid_list = [] for _registered_image in _registered_image_list : _image_uuid = self.generate_random_uuid(_registered_image) _registered_imageid_list.append(_image_uuid) _map_name_to_id[_registered_image] = _image_uuid for _vm_role in list(vm_templates.keys()) : _imageid = str2dic(vm_templates[_vm_role])["imageid1"] if _imageid != "to_replace" : if _imageid in _map_name_to_id and _map_name_to_id[_imageid] != _imageid : vm_templates[_vm_role] = vm_templates[_vm_role].replace(_imageid, _map_name_to_id[_imageid]) else : _map_name_to_id[_imageid] = _imageid vm_templates[_vm_role] = vm_templates[_vm_role].replace(_imageid, _map_name_to_id[_imageid]) _map_id_to_name[_map_name_to_id[_imageid]] = _imageid _detected_imageids = self.base_check_images(vmc_name, vm_templates, _registered_imageid_list, _map_id_to_name, vm_defaults) if not _detected_imageids : return _detected_imageids return _detected_imageids @trace def discover_hosts(self, obj_attr_list, start) : ''' TBD ''' _host_uuid = obj_attr_list["cloud_vm_uuid"] obj_attr_list["host_list"] = {} obj_attr_list["hosts"] = '' for _endpoint in self.lvirtconn : _host_info = self.lvirtconn[_endpoint].getInfo() _host_extended_info = self.lvirtconn[_endpoint].getSysinfo() for _line in _host_extended_info.split('\n') : if _line.count("uuid") : _host_uuid = _line.split('>')[1].split('<')[0] obj_attr_list["hosts"] += _host_uuid + ',' obj_attr_list["host_list"][_host_uuid] = {} obj_attr_list["host_list"][_host_uuid]["pool"] = obj_attr_list["pool"].upper() obj_attr_list["host_list"][_host_uuid]["username"] = obj_attr_list["username"] obj_attr_list["host_list"][_host_uuid]["notification"] = "False" obj_attr_list["host_list"][_host_uuid]["cloud_hostname"], \ obj_attr_list["host_list"][_host_uuid]["cloud_ip"] = hostname2ip(_endpoint, True) obj_attr_list["host_list"][_host_uuid]["name"] = "host_" + obj_attr_list["host_list"][_host_uuid]["cloud_hostname"] obj_attr_list["host_list"][_host_uuid]["vmc_name"] = obj_attr_list["name"] obj_attr_list["host_list"][_host_uuid]["vmc"] = obj_attr_list["uuid"] obj_attr_list["host_list"][_host_uuid]["cloud_vm_uuid"] = _host_uuid obj_attr_list["host_list"][_host_uuid]["uuid"] = _host_uuid obj_attr_list["host_list"][_host_uuid]["model"] = obj_attr_list["model"] obj_attr_list["host_list"][_host_uuid]["function"] = "hypervisor" obj_attr_list["host_list"][_host_uuid]["cores"] = _host_info[2] obj_attr_list["host_list"][_host_uuid]["memory"] = _host_info[1] obj_attr_list["host_list"][_host_uuid]["cloud_ip"] = _endpoint obj_attr_list["host_list"][_host_uuid]["arrival"] = int(time()) obj_attr_list["host_list"][_host_uuid]["simulated"] = False obj_attr_list["host_list"][_host_uuid]["identity"] = obj_attr_list["identity"] obj_attr_list["host_list"][_host_uuid]["hypervisor_type"] = "kvm" if "login" in obj_attr_list : obj_attr_list["host_list"][_host_uuid]["login"] = obj_attr_list["login"] else : obj_attr_list["host_list"][_host_uuid]["login"] = "root" obj_attr_list["host_list"][_host_uuid]["counter"] = obj_attr_list["counter"] obj_attr_list["host_list"][_host_uuid]["mgt_001_provisioning_request_originated"] = obj_attr_list["mgt_001_provisioning_request_originated"] obj_attr_list["host_list"][_host_uuid]["mgt_002_provisioning_request_sent"] = obj_attr_list["mgt_002_provisioning_request_sent"] _time_mark_prc = int(time()) obj_attr_list["host_list"][_host_uuid]["mgt_003_provisioning_request_completed"] = _time_mark_prc - start obj_attr_list["hosts"] = obj_attr_list["hosts"][:-1] self.additional_host_discovery(obj_attr_list) return True @trace def vmccleanup(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) _wait = int(obj_attr_list["update_frequency"]) sleep(_wait) self.common_messages("VMC", obj_attr_list, "cleaning up vms", 0, '') _running_instances = True while _running_instances and _curr_tries < _max_tries : _running_instances = False for _endpoint in self.lvirtconn : _proc_man = ProcessManagement(username = "root", \ hostname = _endpoint, \ cloud_name = obj_attr_list["cloud_name"]) _cmd = "sudo pkill -9 -f 'rinetd -c /tmp/cb'; sudo rm -rf /tmp/cb-*.rinetd.conf" _status, _result_stdout, _fmsg = _proc_man.run_os_command(_cmd, raise_exception=False) _domain_list = self.lvirtconn[_endpoint].listAllDomains() for _domain in _domain_list : if _domain.name().count("cb-" + obj_attr_list["username"] + '-' + obj_attr_list["cloud_name"]) : _running_instances = True _msg = "Terminating instance: " _msg += _domain.UUIDString() + " (" + str(_domain.name()) + ")" cbdebug(_msg, True) if _domain.state()[0] == VIR_DOMAIN_RUNNING : _domain.destroy() _domain.undefine() sleep(_wait) _curr_tries += 1 self.common_messages("VMC", obj_attr_list, "cleaning up vvs", 0, '') _curr_tries = 0 _created_volumes = True while _created_volumes and _curr_tries < _max_tries : _created_volumes = False _storage_pool_list = [ obj_attr_list["poolname"] ] for _storage_pool in _storage_pool_list : _storage_pool_handle = self.lvirtconn[_endpoint].storagePoolLookupByName(_storage_pool) _volume_list = _storage_pool_handle.listVolumes() for _volume in _volume_list : if _volume.count("cb-" + obj_attr_list["username"] + '-' + obj_attr_list["cloud_name"]) : _created_volumes = True _msg = "Removing volume : " _msg += self.generate_random_uuid(_volume) + " (" + str(_volume) + ")" cbdebug(_msg, True) _storage_pool_handle.storageVolLookupByName(_volume).delete(0) sleep(_wait) _curr_tries += 1 if _curr_tries > _max_tries : _status = 1077 _fmsg = "Some instances on VMC \"" + obj_attr_list["name"] + "\"" _fmsg += " could not be removed because they never became active" _fmsg += ". They will have to be removed manually." cberr(_msg, True) else : _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VMC", obj_attr_list, "cleaned up", _status, _fmsg) return _status, _msg @trace def vmcregister(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _time_mark_prs = int(time()) obj_attr_list["mgt_002_provisioning_request_sent"] = \ _time_mark_prs - int(obj_attr_list["mgt_001_provisioning_request_originated"]) self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["name"], obj_attr_list) if "cleanup_on_attach" in obj_attr_list and obj_attr_list["cleanup_on_attach"] == "True" : _status, _fmsg = self.vmccleanup(obj_attr_list) else : _status = 0 obj_attr_list["cloud_hostname"], obj_attr_list["cloud_ip"] = hostname2ip(obj_attr_list["name"], False) _fmsg = "VMC " + obj_attr_list["uuid"] + " could not be registered " _fmsg += " on " + self.get_description() + " \"" + obj_attr_list["cloud_name"] + "\"." obj_attr_list["cloud_vm_uuid"] = self.generate_random_uuid(obj_attr_list["name"]) obj_attr_list["arrival"] = int(time()) if obj_attr_list["discover_hosts"].lower() == "true" : self.discover_hosts(obj_attr_list, _time_mark_prs) else : obj_attr_list["hosts"] = '' obj_attr_list["host_list"] = {} obj_attr_list["host_count"] = "NA" _time_mark_prc = int(time()) obj_attr_list["mgt_003_provisioning_request_completed"] = \ _time_mark_prc - _time_mark_prs _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VMC", obj_attr_list, "registered", _status, _fmsg) return _status, _msg @trace def vmcunregister(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _time_mark_drs = int(time()) if "mgt_901_deprovisioning_request_originated" not in obj_attr_list : obj_attr_list["mgt_901_deprovisioning_request_originated"] = _time_mark_drs obj_attr_list["mgt_902_deprovisioning_request_sent"] = _time_mark_drs - int(obj_attr_list["mgt_901_deprovisioning_request_originated"]) if "cleanup_on_detach" in obj_attr_list and obj_attr_list["cleanup_on_detach"] == "True" : _status, _fmsg = self.vmccleanup(obj_attr_list) _time_mark_prc = int(time()) obj_attr_list["mgt_903_deprovisioning_request_completed"] = _time_mark_prc - _time_mark_drs _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VMC", obj_attr_list, "unregistered", _status, _fmsg) return _status, _msg @trace def vmcount(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _nr_instances = 0 sleep(15) for _vmc_uuid in self.osci.get_object_list(obj_attr_list["cloud_name"], "VMC") : _vmc_attr_list = self.osci.get_object(obj_attr_list["cloud_name"], \ "VMC", False, _vmc_uuid, \ False) self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ _vmc_attr_list["name"], obj_attr_list) for _endpoint in self.lvirtconn : _domain_list = self.lvirtconn[_endpoint].listAllDomains() for _domain in _domain_list : if _domain.name().count("cb-" + obj_attr_list["username"] + '-' + obj_attr_list["cloud_name"]) : _nr_instances += 1 except Exception as e : _status = 23 _nr_instances = "NA" _fmsg = str(e) finally : return _nr_instances @trace def get_ssh_keys(self, vmc_name, key_name, key_contents, key_fingerprint, registered_key_pairs, internal, connection) : ''' TBD ''' registered_key_pairs[key_name] = key_fingerprint + "-NA" return True @trace def get_security_groups(self, vmc_name, security_group_name, registered_security_groups) : ''' TBD ''' registered_security_groups.append(security_group_name) return True @trace def get_ip_address(self, obj_attr_list) : ''' TBD ''' _network_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].networkLookupByName(obj_attr_list["run_netname"]) for _item in _network_handle.DHCPLeases() : if _item["mac"] == obj_attr_list["cloud_vm_mac"] : obj_attr_list["run_cloud_ip"] = _item["ipaddr"] if str(obj_attr_list["ports_base"]).lower() != "false" : obj_attr_list["prov_cloud_ip"] = obj_attr_list["host_cloud_ip"] else : obj_attr_list["prov_cloud_ip"] = _item["ipaddr"] obj_attr_list["cloud_ip"] = obj_attr_list["run_cloud_ip"] return True return False @trace def get_instances(self, obj_attr_list, obj_type = "vm", endpoints = "all", identifier = "all") : ''' TBD ''' _instances = [] _fmsg = "Error while getting instances" _call = "NA" if endpoints == "all" : _endpoints = list(self.lvirtconn.keys()) else : _endpoints = [endpoints] try : for _endpoint in _endpoints : if identifier == "all" : _call = "listAllDomains()" _instances = self.lvirtconn[_endpoint].listAllDomains() else : _call = "lookupByName()" _instances = self.lvirtconn[_endpoint].lookupByName(identifier) _status = 0 except CldOpsException as obj : _status = obj.status _xfmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _xfmsg = str(msg) except Exception as e : _status = 23 _xfmsg = str(e) finally : if _status : _fmsg = "(While getting instance(s) through API call \"" + _call + "\") " + _xfmsg if identifier not in self.api_error_counter : self.api_error_counter[identifier] = 0 self.api_error_counter[identifier] += 1 if self.api_error_counter[identifier] > self.max_api_errors : raise CldOpsException(_fmsg, _status) else : cbwarn(_fmsg) return [] else : return _instances @trace def get_images(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _hyper = '' _fmsg = "An error has occurred, but no error message was captured" _storage_pool_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].storagePoolLookupByName(obj_attr_list["poolname"]) _xml_contents = _storage_pool_handle.XMLDesc(0) _xml_doc = libxml2.parseDoc(_xml_contents) _xml_ctx = _xml_doc.xpathNewContext() _path_list = _xml_ctx.xpathEval("/pool/target/path") if _path_list : obj_attr_list["pool_path"] = _path_list[0].content _image_list = _storage_pool_handle.listVolumes() _fmsg = "Please check if the defined image name is present on this " _fmsg += self.get_description() _candidate_images = [] for _image in _image_list : if self.is_cloud_image_uuid(obj_attr_list["imageid1"]) : if self.generate_random_uuid(_image) == obj_attr_list["imageid1"] : _candidate_images.append(_image) else : if _image == obj_attr_list["imageid1"] : _candidate_images.append(_image) if len(_candidate_images) : obj_attr_list["imageid1"] = _candidate_images[0] obj_attr_list["boot_volume_imageid1"] = self.generate_random_uuid(_candidate_images[0]) _volume_data = _storage_pool_handle.storageVolLookupByName(_candidate_images[0]) obj_attr_list["boot_volume_snapshot_path"] = _volume_data.path() obj_attr_list["boot_volume_snapshot_size"] = int(_storage_pool_handle.storageVolLookupByName(obj_attr_list["imageid1"]).info()[1])/(1024*1024) _xml_contents = _volume_data.XMLDesc(0) _xml_doc = libxml2.parseDoc(_xml_contents) _xml_ctx = _xml_doc.xpathNewContext() _volume_format = _xml_ctx.xpathEval("/volume/target/format/@type") if _volume_format : obj_attr_list["boot_volume_format"] = _volume_format[0].content _status = 0 else : _fmsg = "Unable to locate image \"" + obj_attr_list["imageid1"] + "\"" _fmsg += " on " + self.get_description() _status = 1927 except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Image Name (" + obj_attr_list["imageid1"] + ") not found: " + _fmsg cberr(_msg) raise CldOpsException(_msg, _status) else : return True @trace def get_networks(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _network_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].networkLookupByName(obj_attr_list["netname"]) obj_attr_list["network_bridge_name"] = _network_handle.bridgeName() obj_attr_list["extra_vnics"] = [] if str(obj_attr_list["extra_netnames"]).lower() != "false" : for _exn in obj_attr_list["extra_netnames"].split(',') : _network_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].networkLookupByName(_exn) _exbn = _network_handle.bridgeName() obj_attr_list["extra_vnics"].append([_exn, _exbn]) _status = 0 except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Network (" + obj_attr_list["prov_netname"] + " ) not found: " + _fmsg cberr(_msg, True) raise CldOpsException(_msg, _status) else : return True @trace def create_ssh_key(self, vmc_name, key_name, key_type, key_contents, key_fingerprint, vm_defaults, connection) : ''' TBD ''' return True @trace def is_cloud_image_uuid(self, imageid) : ''' TBD ''' if len(imageid) == 36 and imageid.count('-') == 4 : return True return False @trace def is_vm_running(self, obj_attr_list): ''' TBD ''' try : if "host_cloud_ip" in obj_attr_list : _host_ip = obj_attr_list["host_cloud_ip"] else : _host_ip = "all" _instance = self.get_instances(obj_attr_list, "vm", _host_ip, obj_attr_list["cloud_vm_name"]) if _instance : _instance_state = _instance.state()[0] else : _instance_state = "non-existent" if _instance_state == VIR_DOMAIN_RUNNING : return True else : return False except Exception as e : _status = 23 _fmsg = str(e) raise CldOpsException(_fmsg, _status) def is_vm_ready(self, obj_attr_list) : ''' TBD ''' if self.is_vm_running(obj_attr_list) : if self.get_ip_address(obj_attr_list) : obj_attr_list["last_known_state"] = "running with ip assigned" return True else : obj_attr_list["last_known_state"] = "running with ip unassigned" return False else : obj_attr_list["last_known_state"] = "not running" return False def vm_placement(self, obj_attr_list) : ''' TBD ''' obj_attr_list["host_name"], obj_attr_list["host_cloud_ip"] = hostname2ip(choice(list(self.lvirtconn.keys())), True) return True def vvcreate(self, obj_attr_list, boot = False) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" if not boot and "cloud_vv" not in obj_attr_list : obj_attr_list["cloud_vv_uuid"] = "none" else : _xml_file = self.generate_libvirt_vv_template(obj_attr_list, boot) obj_attr_list["last_known_state"] = "about to send volume create request" if not boot : obj_attr_list["cloud_vv_uuid"] = self.generate_random_uuid(obj_attr_list["cloud_vm_name"]) else : obj_attr_list["boot_from_volume"] = "true" self.common_messages("VV", obj_attr_list, "creating", _status, _fmsg) _storage_pool_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].storagePoolLookupByName(obj_attr_list["poolname"]) _storage_pool_handle.createXML(_xml_file, 0) _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VV", obj_attr_list, "created", _status, _fmsg) return _status, _msg @trace def vvdestroy(self, obj_attr_list, boot = False) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _storage_pool_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].storagePoolLookupByName(obj_attr_list["poolname"]) for _volume in obj_attr_list["volume_list"].split(',') : if _volume.count(":") == 4 : _vol_name, _vol_path, _vol_format, _backing_path, _backing_format = _volume.strip().split(':') _storage_pool_handle.storageVolLookupByName(_vol_name).delete(0) _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VV", obj_attr_list, "destroyed", _status, _fmsg) return _status, _msg @trace def vmcreate(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.determine_instance_name(obj_attr_list) self.determine_key_name(obj_attr_list) self.take_action_if_requested("VM", obj_attr_list, "provision_originated") self.connect(obj_attr_list["access"], obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], obj_attr_list) if self.is_vm_running(obj_attr_list) : _msg = "An instance named \"" + obj_attr_list["cloud_vm_name"] _msg += " is already running. It needs to be destroyed first." _status = 187 cberr(_msg) raise CldOpsException(_msg, _status) if str(obj_attr_list["ports_base"]).lower() != "false" : obj_attr_list["prov_cloud_port"] = str(int(obj_attr_list["ports_base"]) + int(obj_attr_list["name"].replace("vm_",''))) if obj_attr_list["check_boot_complete"] == "tcp_on_22": obj_attr_list["check_boot_complete"] = "tcp_on_" + str(obj_attr_list["prov_cloud_port"]) _time_mark_prs = int(time()) obj_attr_list["mgt_002_provisioning_request_sent"] = _time_mark_prs - int(obj_attr_list["mgt_001_provisioning_request_originated"]) self.vm_placement(obj_attr_list) obj_attr_list["last_known_state"] = "about to send create request" _mark_a = time() self.get_images(obj_attr_list) self.annotate_time_breakdown(obj_attr_list, "get_image_time", _mark_a) _mark_a = time() self.get_networks(obj_attr_list) self.annotate_time_breakdown(obj_attr_list, "get_network_time", _mark_a) _mark_a = time() self.vvcreate(obj_attr_list, True) self.annotate_time_breakdown(obj_attr_list, "get_create_boot_volume_time", _mark_a) _mark_a = time() self.vvcreate(obj_attr_list, False) self.annotate_time_breakdown(obj_attr_list, "get_create_boot_volume_time", _mark_a) obj_attr_list["config_drive"] = True self.common_messages("VM", obj_attr_list, "creating", 0, '') self.pre_vmcreate_process(obj_attr_list) _mark_a = time() self.generate_mac_addr(obj_attr_list) self.ship_cloud_init_iso(obj_attr_list) _xml_file = self.generate_libvirt_vm_template(obj_attr_list) self.annotate_time_breakdown(obj_attr_list, "ship_cloudinit_iso_time", _mark_a) _mark_a = time() _domain = self.lvirtconn[obj_attr_list["host_cloud_ip"]].defineXML(_xml_file) _domain.create() self.annotate_time_breakdown(obj_attr_list, "domain_creation_time", _mark_a) obj_attr_list["cloud_vm_uuid"] = self.generate_random_uuid(obj_attr_list["cloud_vm_name"]) self.take_action_if_requested("VM", obj_attr_list, "provision_started") _time_mark_prc = self.wait_for_instance_ready(obj_attr_list, _time_mark_prs) obj_attr_list["pcm_005_instance_creation_time"] = obj_attr_list["mgt_003_provisioning_request_completed"] _mark_a = time() if str(obj_attr_list["ports_base"]).lower() != "false" : self.configure_port_mapping(obj_attr_list, "setup") self.annotate_time_breakdown(obj_attr_list, "domain_port_mapping_time", _mark_a) if str(obj_attr_list["ports_base"]).lower() != "false" : if obj_attr_list["check_boot_complete"].lower() == "tcp_on_22" : obj_attr_list["check_boot_complete"] = "tcp_on_" + str(obj_attr_list["prov_cloud_port"]) self.wait_for_instance_boot(obj_attr_list, _time_mark_prc) obj_attr_list["arrival"] = int(time()) _status = 0 if obj_attr_list["force_failure"].lower() == "true" : _fmsg = "Forced failure (option FORCE_FAILURE set \"true\")" _status = 916 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except KeyboardInterrupt : _status = 42 _fmsg = "CTRL-C interrupt" cbdebug("VM create keyboard interrupt...", True) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VM", obj_attr_list, "created", _status, _fmsg) return _status, _msg @trace def vmdestroy(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" _time_mark_drs = int(time()) if "mgt_901_deprovisioning_request_originated" not in obj_attr_list : obj_attr_list["mgt_901_deprovisioning_request_originated"] = _time_mark_drs obj_attr_list["mgt_902_deprovisioning_request_sent"] = \ _time_mark_drs - int(obj_attr_list["mgt_901_deprovisioning_request_originated"]) self.connect(obj_attr_list["access"], obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], obj_attr_list) _wait = int(obj_attr_list["update_frequency"]) _max_tries = int(obj_attr_list["update_attempts"]) _curr_tries = 0 if "host_cloud_ip" in obj_attr_list : _host_ip = obj_attr_list["host_cloud_ip"] _instance = self.get_instances(obj_attr_list, "vm", _host_ip, \ obj_attr_list["cloud_vm_name"]) if _instance : self.common_messages("VM", obj_attr_list, "destroying", 0, '') while _instance and _curr_tries < _max_tries : _instance = self.get_instances(obj_attr_list, "vm", _host_ip, \ obj_attr_list["cloud_vm_name"]) if _instance : if _instance.state()[0] == VIR_DOMAIN_RUNNING : _instance.destroy() _instance.undefine() sleep(_wait) _curr_tries += 1 if str(obj_attr_list["ports_base"]).lower() != "false" : self.configure_port_mapping(obj_attr_list, "teardown") _time_mark_drc = int(time()) obj_attr_list["mgt_903_deprovisioning_request_completed"] = \ _time_mark_drc - _time_mark_drs self.take_action_if_requested("VM", obj_attr_list, "deprovision_finished") self.vvdestroy(obj_attr_list) _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VM", obj_attr_list, "destroyed", _status, _fmsg) return _status, _msg @trace def vmcapture(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _fmsg = "An error has occurred, but no error message was captured" self.connect(obj_attr_list["access"], obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], obj_attr_list) _wait = int(obj_attr_list["update_frequency"]) _host_ip = obj_attr_list["host_cloud_ip"] _instance = self.get_instances(obj_attr_list, "vm", _host_ip, obj_attr_list["cloud_vm_name"]) if _instance : _time_mark_crs = int(time()) # Just in case the instance does not exist, make crc = crs _time_mark_crc = _time_mark_crs obj_attr_list["mgt_102_capture_request_sent"] = _time_mark_crs - obj_attr_list["mgt_101_capture_request_originated"] if obj_attr_list["captured_image_name"] == "auto" : obj_attr_list["captured_image_name"] = obj_attr_list["imageid1"] + "_captured_at_" obj_attr_list["captured_image_name"] += str(obj_attr_list["mgt_101_capture_request_originated"]) self.common_messages("VM", obj_attr_list, "capturing", 0, '') _instance.destroy() _vol_path = obj_attr_list["volume_list"].split(',')[0].split(':')[1] _storage_pool_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].storagePoolLookupByName(obj_attr_list["poolname"]) _volume_handle = self.lvirtconn[obj_attr_list["host_cloud_ip"]].storageVolLookupByPath(_vol_path) _xml_file = "" _xml_file += "\t<volume>\n" _xml_file += "\t<capacity unit=\"M\">" + str(int(self.vhw_config[obj_attr_list["size"]]["vstorage"])) + "</capacity>\n" _xml_file += "\t<name>" + obj_attr_list["captured_image_name"] + "</name>\n" _xml_file += "\t<target>\n" _xml_file += "\t\t<permissions>\n" _xml_file += "\t\t\t<mode>0777</mode>\n" _xml_file += "\t\t</permissions>\n" _xml_file += "\t\t<path>" + obj_attr_list["pool_path"] + "</path>\n" _xml_file += "\t\t<format type='" + "qcow2" + "'/>\n" _xml_file += "\t</target>\n" _xml_file += "\t</volume>\n" _storage_pool_handle.createXMLFrom(_xml_file, _volume_handle, 0) obj_attr_list["cloud_image_uuid"] = self.generate_random_uuid(obj_attr_list["captured_image_name"]) obj_attr_list["mgt_103_capture_request_completed"] = _time_mark_crc - _time_mark_crs if "mgt_103_capture_request_completed" not in obj_attr_list : obj_attr_list["mgt_999_capture_request_failed"] = int(time()) - _time_mark_crs _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VM", obj_attr_list, "captured", _status, _fmsg) return _status, _msg def vmrunstate(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _ts = obj_attr_list["target_state"] _cs = obj_attr_list["current_state"] self.connect(obj_attr_list["access"], obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], obj_attr_list) _wait = int(obj_attr_list["update_frequency"]) _curr_tries = 0 _max_tries = int(obj_attr_list["update_attempts"]) if "mgt_201_runstate_request_originated" in obj_attr_list : _time_mark_rrs = int(time()) obj_attr_list["mgt_202_runstate_request_sent"] = \ _time_mark_rrs - obj_attr_list["mgt_201_runstate_request_originated"] self.common_messages("VM", obj_attr_list, "runstate altering", 0, '') _host_ip = obj_attr_list["host_cloud_ip"] _instance = self.get_instances(obj_attr_list, "vm", _host_ip, obj_attr_list["cloud_vm_name"]) if _instance : if _ts == "fail" : _instance.stop() elif _ts == "save" : _instance.save() elif (_ts == "attached" or _ts == "resume") and _cs == "fail" : _instance.start() elif (_ts == "attached" or _ts == "restore") and _cs == "save" : _instance.restore() _time_mark_rrc = int(time()) obj_attr_list["mgt_203_runstate_request_completed"] = _time_mark_rrc - _time_mark_rrs _status = 0 except CldOpsException as obj : _status = obj.status _fmsg = str(obj.msg) except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("VM", obj_attr_list, "runstate altered", _status, _fmsg) return _status, _msg @trace def vmmigrate(self, obj_attr_list) : ''' TBD ''' return 0, "NOT SUPPORTED" @trace def vmresize(self, obj_attr_list) : ''' TBD ''' return 0, "NOT SUPPORTED" @trace def imgdelete(self, obj_attr_list) : ''' TBD ''' try : _status = 100 _hyper = '' _fmsg = "An error has occurred, but no error message was captured" self.common_messages("IMG", obj_attr_list, "deleting", 0, '') self.connect(obj_attr_list["access"], \ obj_attr_list["credentials"], \ obj_attr_list["vmc_name"], obj_attr_list) for _endpoint in self.lvirtconn : _storage_pool_handle = self.lvirtconn[_endpoint].storagePoolLookupByName(obj_attr_list["poolname"]) _image_list = _storage_pool_handle.listVolumes() for _image in _image_list : if self.is_cloud_image_uuid(obj_attr_list["imageid1"]) : if self.generate_random_uuid(_image) == self.generate_random_uuid(obj_attr_list["imageid1"]) : _storage_pool_handle.storageVolLookupByName(_image).delete(0) break else : if _image == obj_attr_list["imageid1"] : _storage_pool_handle.storageVolLookupByName(_image).delete(0) break _status = 0 except libvirtError as msg : _status = 18127 _fmsg = str(msg) except Exception as e : _status = 23 _fmsg = str(e) finally : _status, _msg = self.common_messages("IMG", obj_attr_list, "deleted", _status, _fmsg) return _status, _msg def configure_port_mapping(self, obj_attr_list, operation) : ''' TBD ''' _status = 189 _fmsg = "About to configure port mapping" # LXD does not provide an automated method to expose specific ports # directly through the host's IP, like Docker does. For now, will # resort to ssh into the host and start a new "rinetd" instance each # time a new vmattach is issued. try : _proc_man = ProcessManagement(username = "root", \ hostname = obj_attr_list["host_cloud_ip"], \ cloud_name = obj_attr_list["cloud_name"]) if operation == "setup" : _cmd = "echo \"0.0.0.0 " + obj_attr_list["prov_cloud_port"] + ' ' _cmd += obj_attr_list["cloud_ip"] + " 22\" > /tmp/" _cmd += obj_attr_list["cloud_vm_name"] + ".rinetd.conf; rinetd -c " _cmd += "/tmp/" + obj_attr_list["cloud_vm_name"] + ".rinetd.conf" _rexcpt = True else: _cmd = "sudo pkill -9 -f 'rinetd -c /tmp/" + obj_attr_list["cloud_vm_name"] _cmd += ".rinetd.conf" + "'; sudo rm -rf /tmp/" _cmd += obj_attr_list["cloud_vm_name"] + ".rinetd.conf" _rexcpt = False _msg = operation.capitalize() + " port mapping (" + obj_attr_list["prov_cloud_port"] _msg += " -> 22) for " + obj_attr_list["name"] _msg += " (cloud-assigned uuid " + obj_attr_list["cloud_vm_uuid"] + ") " _msg += "running on libvirt host \"" + obj_attr_list["host_name"] + "\"" cbdebug(_msg, True) _status, _result_stdout, _fmsg = _proc_man.run_os_command(_cmd, raise_exception = _rexcpt) _status = 0 except ProcessManagement.ProcessManagementException as obj: _status = obj.status _fmsg = str(obj.msg) except Exception as e : _status = 23 _fmsg = str(e) finally : if _status : _msg = "Error while attempting to " + operation + " port mapping for " + obj_attr_list["name"] _msg += " (cloud-assigned uuid " + obj_attr_list["cloud_vm_uuid"] + ") " _msg += "running on LXD host \"" + obj_attr_list["host_name"] + "\"" _msg += " in " + self.get_description() + " \"" + obj_attr_list["cloud_name"] + "\" : " _msg += _fmsg cberr(_msg, True) raise CldOpsException(_msg, _status) else : _msg = "Successfully " + operation + " port mapping for " + obj_attr_list["name"] _msg += " (cloud-assigned uuid " + obj_attr_list["cloud_vm_uuid"] + ") " _msg += "running on LXD host \"" + obj_attr_list["host_name"] + "\"" _msg += " in " + self.get_description() + " \"" + obj_attr_list["cloud_name"] _msg += "\"." cbdebug(_msg) return _status, _msg def generate_libvirt_vv_template(self, obj_attr_list, boot = False) : ''' TBD ''' _xml_file = "" _xml_file += "\t<volume>\n" if boot : obj_attr_list["cloud_vv_data_name"] = obj_attr_list["cloud_vv_name"] obj_attr_list["cloud_vv_name"] = obj_attr_list["cloud_vv_name"].replace("-vv","-vbv") if int(obj_attr_list["boot_volume_snapshot_size"]) > int(self.vhw_config[obj_attr_list["size"]]["vstorage"]) : _xml_file += "\t<capacity unit=\"M\">" + str(int(obj_attr_list["boot_volume_snapshot_size"])) + "</capacity>\n" else : _xml_file += "\t<capacity unit=\"M\">" + str(int(self.vhw_config[obj_attr_list["size"]]["vstorage"])) + "</capacity>\n" else : obj_attr_list["cloud_vv_name"] = obj_attr_list["cloud_vv_data_name"] _xml_file += "\t<capacity unit=\"G\">" + obj_attr_list["cloud_vv"] + "</capacity>\n" _vol_name = obj_attr_list["cloud_vv_name"] _xml_file += "\t<name>" + obj_attr_list["cloud_vv_name"] + "</name>\n" _xml_file += "\t<target>\n" _xml_file += "\t\t<permissions>\n" _xml_file += "\t\t\t<mode>0777</mode>\n" _xml_file += "\t\t</permissions>\n" _xml_file += "\t\t<path>" + obj_attr_list["pool_path"] + "</path>\n" if boot : _vol_format = "qcow2" else : _vol_format = "raw" obj_attr_list["cloud_vv_type"] = _vol_format _xml_file += "\t\t<format type='" + _vol_format + "'/>\n" _xml_file += "\t</target>\n" if boot : _backing_path = obj_attr_list["boot_volume_snapshot_path"] _backing_format = obj_attr_list["boot_volume_format"] else : _backing_path = "none" _backing_format = "none" if _backing_path != "none" : _xml_file += "\t<backingStore>\n" _xml_file += "\t\t<path>" + _backing_path + "</path>\n" _xml_file += "\t\t<format type='" + _backing_format + "'/>\n" _xml_file += "\t</backingStore>\n" _xml_file += "\t</volume>\n" _vol_path = obj_attr_list["pool_path"] + '/' + _vol_name obj_attr_list["volume_list"] += _vol_name + ':' + _vol_path + ':' + _vol_format + ':' + _backing_path + ':' + _backing_format + ',' return _xml_file @trace def generate_mac_addr(self, obj_attr_list) : ''' This function is designed to pseudo-determinstically generate MAC addresses. The standard 6-byte MAC address is splitup as follows: | prefix (X bytes long) | selector byte | suffix (Y bytes long) | For example: 1. The user sets an X-byte long 'mac_prefix' == '12:34'. This is used to represent all experiments in a shared cluster controlled by PLMloud. For each shared cluster, this prefix should never need to change. This prefix is also used in the DHCP server configuration to ensure that requests from outside VMs are not answered to VMs that do not belong to this cluster. If there is more than one private DHCP server in the cluster, then, this mac_prefix should be changed, otherwise not. 2. The selector byte is generated automatically to provide additional uniqueness and predictability in the MAC address to prevent collisions among users of the same shared cluster. It is a hash of the username of the benchmark combined with the hostname of the VM running the benchmark. 3. The remaining Y-byte suffix is generated at provisioning time. This is done by having the datastore maintain a counter that represents the last used MAC address. An increasing counter ensures that collisions never happen but only requires a small amount of memory even when the number of Y bytes in the suffix is very large. ''' # Form the 1st two parts of the MAC address _mac_prefix = "52:54:00" bytes_needed = (17 - len(_mac_prefix)) / 3 - 1 unique_mac_selector_key = obj_attr_list["cloud_vm_name"] + obj_attr_list["experiment_id"] selector_hd = sha256(unique_mac_selector_key.encode('utf-8')).hexdigest() selector_pos = randint(0,len(selector_hd)-2) selector_byte = selector_hd[selector_pos:selector_pos+2] mac = _mac_prefix + ":" + selector_byte for x in range(0, int(bytes_needed)) : byte = ((int(obj_attr_list["counter"]) >> (8 * ((int(bytes_needed) - 1) - x))) & 0xff) mac += (":%02x" % (byte)) obj_attr_list["cloud_vm_mac"] = mac.replace('-', ':') return True def generate_libvirt_vm_template(self, obj_attr_list) : ''' TBD ''' if obj_attr_list["hypervisor"] == "xen" : _xml_template = "<domain type='xen' " else : _xml_template = "<domain type='kvm' " _xml_template += ">\n" _xml_template += "\t<name>" + str(obj_attr_list["cloud_vm_name"]) + "</name>\n" # _xml_template += "\t<uuid>" + str(instance_attr_list["cloud_uuid"]) + "</uuid>\n" _xml_template += "\t<memory>" + str(int(self.vhw_config[obj_attr_list["size"]]["vmem"]) * 1024) + "</memory>\n" _xml_template += "\t<currentMemory>" + str(int(self.vhw_config[obj_attr_list["size"]]["vmem"]) * 1024) + "</currentMemory>\n" if obj_attr_list["arch"] == "ppc64" or obj_attr_list["arch"] == "ppc64le" : _xml_template += "\t<vcpu placement='static'>" + str(int(self.vhw_config[obj_attr_list["size"]]["vcpus"])) + "</vcpu>\n" _xml_template += "\t<resource>\n" _xml_template += "\t\t<partition>/machine</partition>\n" _xml_template += "\t</resource>\n" else : _xml_template += "\t<vcpu>" + str(int(self.vhw_config[obj_attr_list["size"]]["vcpus"])) + "</vcpu>\n" _xml_template += "\t<os>\n" if obj_attr_list["hypervisor"] == "xen" : _xml_template += "\t\t<type arch='x86_64' machine='xenfv'>hvm</type>\n" else : if obj_attr_list["arch"] == "ppc64" or obj_attr_list["arch"] == "ppc64le" : _xml_template += "\t\t<type arch='ppc64' machine='pseries'>hvm</type>\n" else : _xml_template += "\t\t<type arch='x86_64' machine='pc'>hvm</type>\n" if obj_attr_list["hypervisor"] == "xen" : _xml_template += "\t\t<loader>/usr/lib/xen/boot/hvmloader</loader>\n" _xml_template += "\t\t<boot dev='hd'/>\n" _xml_template += "\t</os>\n" _xml_template += "\t<features>\n" _xml_template += "\t\t<acpi/>\n" _xml_template += "\t\t<apic/>\n" # _xml_template += "\t\t<pae/>\n" _xml_template += "\t</features>\n" _xml_template += "\t<cpu mode='host-model'>\n" _xml_template += "\t<model fallback='allow'/>\n" _xml_template += "\t</cpu>\n" _xml_template += "\t<clock offset='utc'>\n" _xml_template += "\t\t<timer name='rtc' tickpolicy='catchup'/>\n" _xml_template += "\t\t<timer name='pit' tickpolicy='delay'/>\n" _xml_template += "\t\t<timer name='hpet' present='no'/>\n" _xml_template += "\t</clock>\n" _xml_template += "\t<devices>\n" _xml_template += "\t\t<emulator>" + obj_attr_list["emulator"] + "</emulator>\n" _disk_number = 0 for _volume in obj_attr_list["volume_list"].split(',') + [ "cloud-init" + ':' + obj_attr_list["host_remote_dir"] + obj_attr_list["cloud_vm_name"] + ".iso:" + "raw" + ':' + "none" + ':' + "none" ] : if _volume.count(':') == 4 : _vol_name, _vol_path, _vol_format, _backing_path, _backing_format = _volume.split(':') _xml_template += "\t\t<disk type='file' device='disk'>\n" _xml_template += "\t\t\t<driver name='qemu' type='" + _vol_format + "'/>\n" _xml_template += "\t\t\t<source file='" + _vol_path + "'/>\n" if _backing_path != "none" : _xml_template += "\t\t\t<backingStore type='file'>\n" _xml_template += "\t\t\t\t<source file='" + _backing_path + "'/>\n" _xml_template += "\t\t\t\t<format type='" + _backing_format + "'/>\n" _xml_template += "\t\t\t</backingStore>\n" _xml_template += "\t\t\t<target dev='" if obj_attr_list["diskmode"] == "virtio" : _xml_template += "v" elif obj_attr_list["diskmode"] == "ide" : _xml_template += "h" elif obj_attr_list["diskmode"] == "scsi" : _xml_template += "s" _xml_template += "d" + chr(ord('a') + _disk_number) + "' bus='" + obj_attr_list["diskmode"] + "'/>\n" _xml_template += "\t\t</disk>\n" _disk_number += 1 if obj_attr_list["arch"] == "ppc64" or obj_attr_list["arch"] == "ppc64le" : _xml_template += "\t\t<controller type='usb' index='0'>\n" _xml_template += "\t\t\t<alias name='usb0'/>\n" _xml_template += "\t\t</controller>\n" _xml_template += "\t\t<controller type='pci' index='0' model='pci-root'>\n" _xml_template += "\t\t\t<alias name='pci.0'/>\n" _xml_template += "\t\t</controller>\n" _xml_template += "\t\t<controller type='scsi' index='0'>\n" _xml_template += "\t\t\t<alias name='scsi0'/>\n" _xml_template += "\t\t\t<address type='spapr-vio' reg='0x2000'/>\n" _xml_template += "\t\t</controller>\n" _xml_template += "\t\t<interface type='bridge'>\n" _xml_template += "\t\t\t<source bridge='" + obj_attr_list["network_bridge_name"] + "'/>\n" _xml_template += "\t\t\t<mac address='" + str(obj_attr_list["cloud_vm_mac"]) + "'/>\n" if obj_attr_list["netmode"] == "virtio" : _xml_template += "\t\t\t<model type='virtio'/>\n" _xml_template += "\t\t</interface>\n" for _vnic in obj_attr_list["extra_vnics"] : _xml_template += "\t\t<interface type='bridge'>\n" _xml_template += "\t\t\t<source bridge='" + _vnic[1] + "'/>\n" # _xml_template += "\t\t\t<mac address='" + str(obj_attr_list["cloud_vm_mac"]) + "'/>\n" if obj_attr_list["netmode"] == "virtio" : _xml_template += "\t\t\t<model type='virtio'/>\n" _xml_template += "\t\t</interface>\n" obj_attr_list["extra_vnics"] = str(obj_attr_list["extra_vnics"]) if obj_attr_list["arch"] == "ppc64" or obj_attr_list["arch"] == "ppc64le" : _port = str(30000 + int(obj_attr_list["counter"])) _xml_template += "\t\t<serial type='tcp'>\n" _xml_template += "\t\t\t<source mode='bind' host='0.0.0.0' service='" + _port + "'/>\n" _xml_template += "\t\t\t<protocol type='telnet'/>\n" _xml_template += "\t\t\t<target port='0'/>\n" _xml_template += "\t\t\t<alias name='serial0'/>\n" _xml_template += "\t\t\t<address type='spapr-vio' reg='0x30000000'/>\n" _xml_template += "\t\t</serial>\n" _xml_template += "\t\t<console type='tcp'>\n" _xml_template += "\t\t\t<source mode='bind' host='0.0.0.0' service='" + _port + "'/>\n" _xml_template += "\t\t\t<protocol type='telnet'/>\n" _xml_template += "\t\t\t<target type='serial' port='0'/>\n" _xml_template += "\t\t\t<alias name='serial0'/>\n" _xml_template += "\t\t\t<address type='spapr-vio' reg='0x30000000'/>\n" _xml_template += "\t\t</console>\n" else : _xml_template += "\t\t<serial type='pty'>\n" _xml_template += "\t\t\t<target port='0'/>\n" _xml_template += "\t\t</serial>\n" _xml_template += "\t\t<console type='pty'>\n" _xml_template += "\t\t\t<target port='0'/>\n" _xml_template += "\t\t</console>\n" _xml_template += "\t\t<input type='tablet' bus='usb'>\n" _xml_template += "\t\t\t<alias name='input0'/>\n" _xml_template += "\t\t</input>\n" _xml_template += "\t\t<input type='mouse' bus='ps2'/>\n" _xml_template += "\t\t<graphics type='vnc' port='-1' autoport='yes' listen='" + obj_attr_list["host_cloud_ip"] + "' keymap='en-us'/>\n" _xml_template += "\t\t<video>\n" if obj_attr_list["arch"] == "x86_64" : _xml_template += "\t\t\t<model type='cirrus' vram='9216' heads='1'/>\n" else : _xml_template += "\t\t\t<model type='vga' vram='9216' heads='1'/>\n" _xml_template += "\t\t</video>\n" if obj_attr_list["hypervisor"] == "xen" : _xml_template += "\t\t<memballoon model='xen'/>\n" else : if obj_attr_list["arch"] == "ppc64" or obj_attr_list["arch"] == "ppc64le" : True else : _xml_template += "\t\t<memballoon model='virtio'/>\n" _xml_template += "\t</devices>\n" if obj_attr_list["arch"] == "ppc64" or obj_attr_list["arch"] == "ppc64le" : _xml_template += "\t<seclabel type='none'/>\n" _xml_template += "</domain>\n" return _xml_template ``` #### File: lib/remote/ssh_ops.py ```python from time import sleep from subprocess import PIPE,Popen import base64 import hashlib import binascii from os.path import isdir import re from ..auxiliary.code_instrumentation import trace, cbdebug, cberr, cbwarn, cbinfo, cbcrit from ..auxiliary.data_ops import wait_on_process from ..remote.process_management import ProcessManagement class SSHMgdConn : ''' TBD ''' def __init__(self, procid, obj_types, obj_tags, obj_ips, obj_logins, \ passwords, priv_keys, command_list, file_list) : ''' TBD ''' self.pid = procid self.obj_types = obj_types self.obj_tags = obj_tags self.ips = obj_ips self.logins = obj_logins self.priv_keys = priv_keys self.file_list = file_list self.command_list = command_list def finish_up (self, procs, output_list, results) : ''' TBD ''' success = True for proc in procs : if success : if not wait_on_process(self.pid, proc, output_list) : success = False else : if results is not None : results.append(output_list[-1]) else : proc.kill() return success def execute(self) : ''' TBD ''' output_list = [] procs = [] for index in range (0, len(self.ips)) : if self.command_list[index].strip() == "" : _msg = "nothing to execute." cbwarn(_msg) output_list.append(_msg) continue _cmd = "ssh -i " + self.priv_keys[index] _cmd += " -o StrictHostKeyChecking=no " _cmd += "-o UserKnownHostsFile=/dev/null " _cmd += "-l " + self.logins[index] + " " _cmd += self.ips[index] + " \"" + self.command_list[index] + "\"" _msg = "SSH: " + _cmd cbdebug(_msg) proc_h = Popen(_cmd, bufsize=-1, shell=True, stdout=PIPE, stderr=PIPE) if not proc_h : _msg = "Failed to create subprocess with " + _cmd cberr(_msg) return False procs.append(proc_h) return self.finish_up(procs, output_list, None), output_list def transfer(self) : ''' TBD ''' output_list = [] procs = [] file_list = "" hash_file_list = "" remote_file_list = [] for file in self.file_list : file_list += " " + file + " " if not isdir(file) : hash_file_list += " " + file.split("/")[-1] remote_file_list.append(file) hash_cmd = "for file in " + hash_file_list + "; do sha256sum \$file | " + \ "sed -e 's/ \+/,/g'; done" for index in range (0, len(self.ips)) : _cmd = "scp -i " + self.priv_keys[index] + " -o StrictHostKeyChecking=no " _cmd += file_list + " " + self.logins[index] + '@' + self.ips[index] + ":" _msg = "SCP: " + _cmd cbdebug(_msg) proc_h = Popen(_cmd, bufsize=-1, shell=True, stdout=PIPE, stderr=PIPE) if not proc_h : _msg = "Failed to create subprocess with " + _cmd cberr(_msg) return False procs.append(proc_h) status = self.finish_up(procs, output_list, None) if not status : return status, output_list _msg = " - Going to verify SCP file integrity..." cbdebug(_msg) output_list = [] procs = [] for index in range (0, len(self.ips)) : _cmd = "ssh -i " + self.priv_keys[index] + " -o StrictHostKeyChecking=no " _cmd += " -l " + self.logins[index] + " " _cmd += self.ips[index] + " \"" + hash_cmd + "\"" _msg = "SSH: " + _cmd cbdebug(_msg) proc_h = Popen(_cmd, bufsize=-1, shell=True, stdout=PIPE, stderr=PIPE) if not proc_h : _msg = "Failed to create subprocess with " + _cmd cberr(_msg) return False procs.append(proc_h) remote_hash_lines = [] status = self.finish_up(procs, output_list, remote_hash_lines) if not status : return status, output_list for index in range (0, len(self.ips)) : remote_hashes = [] for line in re.split("[\n\r]+", remote_hash_lines[index]) : if line != "" : record = line.split(',') if len(record) != 2 : _msg = "integrity check failed: not enough hashes: " _msg += str(remote_hash_lines[index]) cberr(_msg) return False, output_list remote_hashes.append(record[0]) for file_index in range (0, len(remote_file_list)) : local_file = remote_file_list[file_index] if isdir(local_file) : continue remote_hex = remote_hashes[file_index] local_hex = "" try : local_hash = hashlib.sha256() local_hash.update(open(local_file, 'r').read()) local_hex = local_hash.hexdigest() except Exception as msg : _msg = "Failed to verify SCP integrity: " + str(msg) cberr(_msg) return False, output_list if local_hex != remote_hex : _msg = "Integrity failed for " + local_file + ": " _msg += local_hex + " != " + remote_hex cberr(_msg) return False, output_list _msg = self.ips[index] + ": Good file integrity." cbdebug(_msg) return status, output_list def repeated_ssh(processid, types, tags, ips, logins, passwds, keys, commands, \ files, obj_attr_list, operation) : ''' TBD ''' ssh_cnt = SSHMgdConn(processid, types, tags, ips, logins, passwds, keys, \ commands, files) attempts = int(obj_attr_list["update_attempts"]) while attempts : # Finally we try to start the application on each VM. if operation == "transfer" : _success, _stack_results = ssh_cnt.transfer() else : _success, _stack_results = ssh_cnt.execute() _all_stack_results = '' if _success : for _output in _stack_results : if not _output or _output.count("NOK") : _msg = "Command failed: " + str(_output) + ' ' _msg += str(attempts) + " left..." cberr(_msg) return False _all_stack_results += "-------------------------\n" _all_stack_results += ''.join(_output) _msg = " - Remote commands for object name " + obj_attr_list["name"] _msg += " success. " cbdebug(_msg) break else : _msg = " - Remote commmands for object name " + obj_attr_list["name"] _msg += " failed to execute.\n" for _output in _stack_results : _all_stack_results += "-------------------------\n" _all_stack_results += ''.join(_output) _msg += "Error info:\n" _msg += _all_stack_results cberr(_msg) return False sleep(30) if not attempts : _msg = "giving up. Too many attempts." cberr(_msg) return False return True def get_ssh_key(pub_key_fn, fptype = "common", read_from_file = True) : ''' TBD ''' if read_from_file : _fh = open(pub_key_fn, 'r') _pub_key = _fh.read() _fh.close() else : _pub_key = pub_key_fn _key_type = False _key_contents = False for _element in _pub_key.split() : if not _key_type : _key_type = _element else : if not _key_contents : _key_contents = _element if not _key_contents : _fmsg = "ERROR: unknown format for pubkey file. The pubkey has to be in" _fmsg += " the format \"<KEY-TYPE> <KEY-CONTENTS> [<KEY-USERNAME>]" return _fmsg, False, False if fptype == "Amazon Elastic Compute Cloud" or fptype == "EC2" or fptype == "ec2" : _key_fingerprint = key2ec2fp(pub_key_fn) elif fptype == "IBM Cloud" or fptype == "IBM" or fptype == "ibm" : _key_fingerprint = keyibmfp(_key_contents.encode('utf-8')) elif fptype == "SoftLayer Cloud" or fptype == "SLR" or fptype == "slr" : _key_fingerprint = keyibmfp(_key_contents.encode('utf-8')) else : _key_fingerprint = key2fp(_key_contents) return _key_type, _key_contents, _key_fingerprint def key2fp(pubkey_contents): ''' TBD ''' key = base64.b64decode(pubkey_contents.encode('ascii')) fp_plain = hashlib.md5(key).hexdigest() return ':'.join(a+b for a,b in zip(fp_plain[::2], fp_plain[1::2])) def keyibmfp(pubkey_contents): ''' TBD ''' key = bytes(pubkey_contents) fp_plain = base64.b64encode(hashlib.sha256(binascii.a2b_base64(key)).digest()).rstrip(b'=') return "SHA256:" + fp_plain.decode('utf-8') def key2ec2fp(pub_key_fn) : ''' TBD ''' pub_key_fn = pub_key_fn.replace(".pub",'') _proc_man = ProcessManagement() _cmdline = "openssl pkey -in " + pub_key_fn + " -pubout -outform DER | openssl md5 -c" _status, _result_stdout, _result_stderr = _proc_man.run_os_command(_cmdline) return _result_stdout.strip().replace("(stdin)= ",'') def get_public_rsa_fingerprint(pubkey_contents): """ Returns the fingerprint of the public portion of an RSA key as a 47-character string (32 characters separated every 2 characters by a ':'). The fingerprint is computed using the MD5 (hex) digest of the DER-encoded RSA public key. """ md5digest = hashlib.md5(pubkey_contents).hexdigest() fingerprint = insert_char_every_n_chars(md5digest, ':', 2) return fingerprint def insert_char_every_n_chars(string, char='\n', every=64): return char.join(string[i:i + every] for i in range(0, len(string), every)) ``` #### File: cbtool/regression/real_multicloud_regression.py ```python from sys import path, argv from time import sleep,time,strftime from optparse import OptionParser from datetime import datetime import fnmatch import os import pwd import subprocess import prettytable import json home = os.environ["HOME"] username = pwd.getpwuid(os.getuid())[0] _path_set = False _cb_api_path = "NA" _cb_cli_path = "NA" def cli_postional_argument_parser() : ''' TBD ''' if len(argv) < 2 : print("./" + argv[0] + " <multi cloud config dir> [comma-separated value cloud model list] [minimal|low|medium|high|complete|pause] [noheader]") exit(1) _options, args = cli_named_option_parser() _options.cloud_config_dir = argv[1] _options.pause = False _options.cloud_models = [ "sim" ] if len(argv) > 2 : _options.cloud_models = argv[2].split(',') _options.test_instances = True _options.test_ssh = True _options.test_volumes = True _options.test_failure = True _options.test_capture = True _options.pause = False _options.private_results = False _options.noheader = False _options.headeronly = False if len(argv) > 3 : if argv[3] == "minimal" or argv[3] == "lowest" : _options.test_instances = False _options.test_ssh = False _options.test_volumes = False _options.test_failure = False _options.test_capture = False if argv[3] == "low" : _options.test_instances = True _options.test_ssh = False _options.test_volumes = False _options.test_failure = False _options.test_capture = False if argv[3] == "medium" : _options.test_instances = True _options.test_ssh = True _options.test_volumes = True _options.test_failure = False _options.test_capture = False if argv[3] == "high" : _options.test_instances = True _options.test_ssh = True _options.test_volumes = True _options.test_failure = True _options.test_capture = False if argv[3] == "complete" or argv[3] == "highest" : _options.test_instances = True _options.test_ssh = True _options.test_volumes = True _options.test_failure = True _options.test_capture = True if argv[3] == "pause" : _options.pause = True if len(argv) > 4 : if argv[4] == "private" : _options.private_results = True if len(argv) > 5 : if argv[5] == "noheader" : _options.noheader = True if argv[5] == "headeronly" : _options.headeronly = True return _options def cli_named_option_parser() : ''' Reserved for future use ''' usage = '''usage: %prog [options] [command] ''' parser = OptionParser(usage) (options, args) = parser.parse_args() return options, args for _path, _dirs, _files in os.walk(os.path.abspath(path[0] + "/../../")): for _filename in fnmatch.filter(_files, "code_instrumentation.py") : if _path.count("cloudbench/lib/auxiliary") or _path.count("cbtool/lib/auxiliary") : path.append(_path.replace("/lib/auxiliary",'')) _path_set = True _cb_api_path = _path break if _path_set : break for i in range(0, 10) : _cb_cli_path = os.path.abspath(path[0]) + "/../"*i + "cb" if os.access(_cb_cli_path, os.F_OK) : break def print_msg(message) : ''' TBD ''' print(datetime.fromtimestamp(time()).strftime('%Y-%m-%d %H:%M:%S') + ' ' + message) print_msg("CBTOOL client API library found on \"" + _cb_api_path + "\"") print_msg("CBTOOL executable CLI found on \"" + _cb_cli_path + "\"") from lib.api.api_service_client import * def check_cloud_attach(apiconn, cloud_model, time_mark) : ''' TBD ''' try : _cloud_attached = False print_msg("## Checking if a Cloud Model \"" + cloud_model + "\" is attached to this experiment...") _error = False _fmsg = '' _cloud_name = "NA" for _cloud in apiconn.cldlist() : if _cloud["model"] == cloud_model : _cloud_name = _cloud["name"] _cloud_attached = True break if not _cloud_attached : _msg = "## Unable to find a Cloud Model \"" + cloud_model + "\" attached to this experiment." else : _msg = "## Successfully confirmed that a Cloud Model \"" + cloud_model + "\" (\"" + _cloud_name + "\") was attached to this experiment." _msg += "Setting new expid" apiconn.expid(_cloud_name, "NEWEXPID") _cloud_attach_time = int(time() - time_mark) except APIException as obj : _error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except Exception as msg : _error = True _fmsg = "Problem during experiment: " + str(msg) finally : if _cloud_attached : print_msg(_msg) _result = "PASS (" + str(_cloud_attach_time).center(3,' ') + " )" else : if not _error : print_msg(_msg) _result = "FAIL" else : print_msg(_fmsg) _result = "FAIL" return _result, _cloud_name def check_vm_attach(apiconn, cloud_model, cloud_name, test_case, options) : ''' TBD ''' try : _attach_error = False _delete_error = False _fmsg = '' _vm = {} _vms_failed = 0 print('') if cloud_name == "NA" : raise ValueError('No cloud (' + cloud_model + ") attached!") _model_to_imguuid = {} _model_to_imguuid["sim"] = "default" _model_to_imguuid["pcm"] = "default" _model_to_imguuid["pdm"] = "cbtoolbt-ubuntu" _model_to_imguuid["nop"] = "default" _model_to_imguuid["osk"] = "bionic-server-cloudimg-amd64" _model_to_imguuid["os"] = "bionic-server-cloudimg-amd64" _model_to_imguuid["gen"] = "xenial3" _model_to_imguuid["plm"] = "bionic-server-cloudimg-amd64.img" _model_to_imguuid["ec2"] = "default" _model_to_imguuid["gce"] = "ubuntu-1804-bionic-v20190320" _model_to_imguuid["do"] = "default" _model_to_imguuid["slr"] = "2110219" _model_to_imguuid["kub"] = "cb_nullworkloadcolonmaster" _model_to_imguuid["plm"] = "bionic-server-cloudimg-amd64.img" _model_to_imguuid["as"] = "CanonicalcolonUbuntuServercolon18.04-LTScolon18.04.202006101" _model_to_imguuid["sim"] = "default" _model_to_imguuid["pcm"] = "default" _model_to_imguuid["nop"] = "default" _model_to_imguuid["gen"] = "default" _model_to_imguuid["ec2"] = "default" _model_to_imguuid["do"] = "default" _model_to_imguuid["sim"] = "default" _model_to_imguuid["pcm"] = "default" _model_to_imguuid["nop"] = "default" _model_to_imguuid["gen"] = "default" _model_to_imguuid["plm"] = "default" _model_to_imguuid["ec2"] = "default" _model_to_imguuid["do"] = "default" _model_to_imguuid["as"] = "default" _model_to_login = {} _model_to_login["sim"] = "cbuser" _model_to_login["pcm"] = "cbuser" _model_to_login["pdm"] = "cbuser" _model_to_login["plm"] = "cbuser" _model_to_login["nop"] = "cbuser" _model_to_login["osk"] = "cbuser" _model_to_login["os"] = "cbuser" _model_to_login["gen"] = "cbuser" _model_to_login["ec2"] = "cbuser" _model_to_login["gce"] = "cbuser" _model_to_login["do"] = "cbuser" _model_to_login["slr"] = "cbuser" _model_to_login["kub"] = "cbuser" _model_to_login["as"] = "cbuser" _model_to_command = {} _model_to_command["sim"] = "echo 'volume_list'" _model_to_command["pcm"] = "vm_name sudo mount | grep '/ ' | awk '{ print \$1 }'" _model_to_command["pdm"] = "vm_name sudo mount | grep overlay | awk '{ print \$1 }' && sudo ls /mnt" _model_to_command["plm"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["nop"] = "echo NA" _model_to_command["osk"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["os"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["gen"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["ec2"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | grep -v /dev/ram | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["gce"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | grep -v /dev/ram | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["do"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | grep -v /dev/ram | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["slr"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | cut -d ' ' -f 2 | sed 's/://g'" _model_to_command["kub"] = "echo NA" _model_to_command["as"] = "vm_name sudo fdisk -l | grep Disk | grep bytes | grep -v /dev/ram | cut -d ' ' -f 2 | sed 's/://g'" _vm_location = "auto" _meta_tags = "empty" _size = "default" _pause_step = "none" _nop_cloud_ip = "self" _login = _model_to_login[cloud_model] _temp_attr_list = "login=" + _login if test_case.count("pubkey") : _img_name = _model_to_imguuid[cloud_model] else : _img_name = "regressiontest" #if test_case == "no pubkey injection, no volume" : _vm_role = "check:" + _img_name if test_case == "pubkey injection, no volume" : _vm_role = "check:" + _img_name + ':' + _login if test_case.count(", volume") : _temp_attr_list += ",cloud_vv=5" if test_case.count(", vpn") : _temp_attr_list += ",use_vpn_ip=true,ports_base=false" if test_case.count("force failure") : _temp_attr_list += ",force_failure=true" if test_case == "newly captured image" : _vm_role = "check:regressiontest:" + _login if test_case == "non-existent image failure" : _vm_role = "check:regressiontest:" + _login if cloud_model == "nop" : if _nop_cloud_ip == "self" : _command = "sudo ifconfig docker0 | grep inet[[:space:]] | awk '{ print $2 }'" _command = "sudo getent hosts cloudbencha | awk '{ print $1 }'" _proc_h = subprocess.Popen(_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) _resul = _proc_h.communicate() _nop_cloud_ip = _resul[0].decode('utf-8').replace('\n','') _temp_attr_list += ",cloud_ip=" + _nop_cloud_ip _vms_failed = int(apiconn.stats(cloud_name, "all", "noprint", "true")["experiment_counters"]["VM"]["failed"]) _vm_counters = apiconn.stats(cloud_name, "all", "noprint", "true")["experiment_counters"]["VM"] print_msg("###### Status before vmattach") print_msg("###### VM RESERVATIONS: " + str(_vm_counters["reservations"])) print_msg("###### VM FAILED: " + str(_vm_counters["failed"])) print_msg("###### VM REPORTED: " + str(_vm_counters["reported"])) print_msg("## Testing VM Attach (" + test_case + ") using \"vmattach " + _vm_role + ' ' + _vm_location + " size=" + _size + ' ' + _temp_attr_list + "\"...") _mark_a = time() _vm = apiconn.vmattach(cloud_name, _vm_role, _vm_location, _meta_tags, _size, _pause_step, _temp_attr_list) _create_time = int(time() - _mark_a) if "volume_list" not in _vm : _vm["volume_list"] = '' if options.pause : print(json.dumps(_vm, indent=4, sort_keys=True)) input("Press Enter to continue...") _msg = "#### Testing management performance metrics for VM \"" _msg += _vm["name"] + "\" (" + _vm["cloud_vm_name"] + '/' _msg += _vm["cloud_vm_uuid"] + ")" if str(_vm["cloud_vv_uuid"]).lower() != "none" : _msg += ", connected to volume \"" + _vm["cloud_vv_name"] + "\" (" _msg += _vm["cloud_vv_uuid"] + ")..." else : _msg += "..." print_msg(_msg) _mgt_metric = apiconn.get_latest_management_data(cloud_name, _vm["uuid"]) # print _mgt_metric except APIException as obj : _attach_error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except APINoSuchMetricException as obj : _attach_error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except KeyboardInterrupt : print_msg("Aborting this VM.") except Exception as msg : _attach_error = True _fmsg = "Problem during experiment: " + str(msg) finally : _vm_counters = apiconn.stats(cloud_name, "all", "noprint", "true")["experiment_counters"]["VM"] print_msg("###### Status after vmattach") print_msg("###### VM RESERVATIONS: " + str(_vm_counters["reservations"])) print_msg("###### VM FAILED: " + str(_vm_counters["failed"])) print_msg("###### VM REPORTED: " + str(_vm_counters["reported"])) if not test_case.count("failure") : if int(_vm_counters["reservations"]) == 1 and int(_vm_counters["failed"]) - _vms_failed == 0 and int(_vm_counters["reported"]) == 1 : if test_case.count("no volume") : if "cloud_vv_uuid" in _vm and str(_vm["cloud_vv_uuid"]).lower() == "none" : _result = "PASS" if not test_case.count("newly") and (test_case.count("no pubkey injection") or test_case.count(", vpn")) : if _vm["prov_cloud_ip"] == _vm["run_cloud_ip"] : _result += (" p=r=" + _vm["run_cloud_ip"]).center(35,' ') else : _result += (" p=" + _vm["prov_cloud_ip"] + ",r=" + _vm["run_cloud_ip"]).center(35, ' ') else : _result += (' ' + retriable_execute_command(options, apiconn, cloud_name, cloud_model, _vm, _model_to_command) + ' ').center(35,' ') _result += " (" + str(_create_time).center(3,' ') else : _attach_error = True _result = "FAIL" else : print_msg("######## VV UUID: " + str(_vm["cloud_vv_uuid"]).lower()) if str(_vm["cloud_vv_uuid"]).lower() == "not supported" : _result = "NA".center(59,' ') elif str(_vm["cloud_vv_uuid"]).lower() != "none" : _result = "PASS" _result += (' ' + retriable_execute_command(options, apiconn, cloud_name, cloud_model, _vm, _model_to_command) + ' ').center(45,' ') _result += " (" + str(_create_time).center(3,' ') else : _attach_error = True _result = "FAIL" else : _attach_error = True _result = "FAIL".center(49, ' ') else : if int(_vm_counters["reservations"]) == 0 and int(_vm_counters["failed"]) - _vms_failed != 0 and int(_vm_counters["reported"]) == 0 : _result = "PASS" _attach_error = False else : _result = "FAILW".center(30, ' ') _attach_error = True if not test_case.count("failure") and "uuid" in _vm : print_msg("#### Testing VM Detach (" + test_case + ")...") try : _mark_a = time() apiconn.vmdetach(cloud_name, _vm["uuid"]) _delete_time = int(time() - _mark_a) except APIException as obj : _delete_error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except APINoSuchMetricException as obj : _delete_error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except KeyboardInterrupt : print_msg("Aborting this VM.") except Exception as msg : _delete_error = True _fmsg = "Problem during experiment: " + str(msg) if not _delete_error : _vm_counters = apiconn.stats(cloud_name, "all", "noprint", "true")["experiment_counters"]["VM"] print_msg("###### Status after vmdetach") print_msg("###### VM RESERVATIONS: " + str(_vm_counters["reservations"])) print_msg("###### VM FAILED: " + str(_vm_counters["failed"])) print_msg("###### VM REPORTED: " + str(_vm_counters["reported"])) if int(_vm_counters["reservations"]) > 0 or int(_vm_counters["reported"]) > 0: _delete_error = True print_msg("#### ERROR while testing VM Detach (" + test_case + ")") _fmsg = "VM reservations or reported is not equal zero" _result = "FAIL" else : print_msg("#### Successfully tested VM Detach (" + test_case + ")") if _result.count('(') : _result += '/' + str(_delete_time).center(3,' ') + ')' if _result.count("p=") : _result = _result.center(41, ' ') if test_case.count("failure") : print_msg("######### " + _fmsg) _vm_counters = apiconn.stats(cloud_name, "all", "noprint", "true")["experiment_counters"]["VM"] print_msg("###### Status after vmattach \"failure\"") print_msg("###### VM RESERVATIONS: " + str(_vm_counters["reservations"])) print_msg("###### VM FAILED: " + str(_vm_counters["failed"])) print_msg("###### VM REPORTED: " + str(_vm_counters["reported"])) if int(_vm_counters["reservations"]) == 0 and int(_vm_counters["reported"]) == 0: _attach_error = False if not _attach_error and not _delete_error : _msg = "## Successfully tested VM Attach (" + test_case + ") using image \"" + _img_name + "\"" print_msg(_msg) else : _fmsg = "## ERROR while testing VM Attach (" + test_case + ") using image \"" + _img_name + "\": " + _fmsg print_msg(_fmsg) return _result def check_vm_capture(apiconn, cloud_model, cloud_name, options) : ''' TBD ''' try : print('') _error = False _fmsg = '' if cloud_name == "NA" : raise ValueError('No cloud (' + cloud_model + ") attached!") print_msg("## Testing VM Capture ...") _mark_a = time() _vm = apiconn.vmcapture(cloud_name, "youngest", "regressiontest", "none", False) _capture_time = int(time() - _mark_a) if options.pause : print(json.dumps(_vm, indent=4, sort_keys=True)) input("Press Enter to continue...") _vm_counters = apiconn.stats(cloud_name, "all", "noprint", "true")["experiment_counters"]["VM"] print_msg("###### Status after vmcapture") print_msg("###### VM RESERVATIONS: " + str(_vm_counters["reservations"])) print_msg("###### VM FAILED: " + str(_vm_counters["failed"])) print_msg("###### VM REPORTED: " + str(_vm_counters["reported"])) if int(_vm_counters["reservations"]) > 0 or int(_vm_counters["reported"]) > 0: _error = True _fmsg = "## ERROR while testing VM Capture" else : _msg = "## Successfuly tested VM Capture." except APIException as obj : _error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except APINoSuchMetricException as obj : _error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except KeyboardInterrupt : print_msg("Aborting this VM.") except Exception as msg : _error = True _fmsg = "##Problem during experiment: " + str(msg) finally : if _error : print_msg(_fmsg) return "FAIL" else : print_msg(_msg) return "PASS (" + str(_capture_time).center(3,' ') + ')' def check_img_delete(apiconn, cloud_model, cloud_name, options) : ''' TBD ''' try : print('') _error = False _fmsg = '' if cloud_name == "NA" : raise ValueError('No cloud (' + cloud_model + ") attached!") _vmc = apiconn.vmclist(cloud_name)[0]["name"] print_msg("## Testing IMAGE Delete ... (" + _vmc + ")") _mark_a = time() _img = apiconn.imgdelete(cloud_name, "regressiontest", _vmc, True) _imgdelete_time = int(time() - _mark_a) if options.pause : print(json.dumps(_img, indent=4, sort_keys=True)) input("Press Enter to continue...") _msg = "## Successfuly tested IMAGE Delete." except APIException as obj : _error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except APINoSuchMetricException as obj : _error = True _fmsg = "API Problem (" + str(obj.status) + "): " + obj.msg except KeyboardInterrupt : print_msg("Aborting this IMG.") except Exception as msg : _error = True _fmsg = "Problem during experiment: " + str(msg) finally : if _error : print_msg(_fmsg) return "FAIL" else : print_msg(_msg) return "PASS (" + str(_imgdelete_time).center(3,' ') + ')' def retriable_cloud_connection(options, actual_cloud_model, command) : ''' TBD ''' _api = False _attempts = 3 _attempt = 0 while not _api and _attempt < _attempts : try : (_output_stdout, _output_stderr) = (None, None) print_msg("Attaching Cloud Model \"" + actual_cloud_model + "\" by running the command \"" + command + "\"...") _proc_h = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (_output_stdout, _output_stderr) = _proc_h.communicate() _proc_h.wait() _output_stdout = _output_stdout.decode('utf-8') _output_stderr = _output_stderr.decode('utf-8') _status = _proc_h.returncode # if _output_stdout : # print(_output_stdout) if _status : print_msg("ERROR while attempting to attach Cloud Model \"" + actual_cloud_model + "\"") print(_output_stderr) exit(_status) if options.private_results : api_file_name = "/tmp/cb_api_" + username + '_' + actual_cloud_model else : api_file_name = "/tmp/cb_api_" + username if os.access(api_file_name, os.F_OK) : try : _fd = open(api_file_name, 'r') _api_conn_info = _fd.read() _fd.close() except : _msg = "Unable to open file containing API connection information " _msg += "(" + api_file_name + ")." print_msg(_msg) exit(4) else : _msg = "Unable to locate file containing API connection information " _msg += "(" + api_file_name + ")." print_msg(_msg) exit(4) _msg = "Connecting to API daemon (" + _api_conn_info + ")..." print_msg(_msg) _api = APIClient(_api_conn_info) return _api except Exception as msg : _api = False _attempt += 1 _msg = "Error: " + str(msg) print_msg(_msg) sleep(10) def retriable_execute_command(options, apiconn, cloud_name, actual_cloud_model, vm_attr_list, command_to_model) : ''' TBD ''' _attempts = 60 _attempt = 0 _volume_list = "NA" print_msg("###### Executing command \"" + command_to_model[actual_cloud_model].replace("vm_name", vm_attr_list["name"]).replace("volume_list", vm_attr_list["volume_list"]) + "\"...") while _attempt < _attempts : try : _volume_list = apiconn.shell(cloud_name, command_to_model[actual_cloud_model].replace("vm_name", vm_attr_list["name"]).replace("volume_list", vm_attr_list["volume_list"]))["stdout"] _volume_list = _volume_list.replace(' ','').replace("\n",',')[0:-1] return _volume_list except : _attempt += 1 sleep(10) return _volume_list def write_results(options, test_results_table, cloud_model) : ''' TBD ''' if options.headeronly : test_results_table.add_row([" ".center(22, ' '),\ " ", \ " ", \ " ", \ " ", \ " ", \ " ", \ " ", \ " ", \ " ", \ " "]) _x_test_results_table = test_results_table.get_string().split('\n') if options.noheader : _x_test_results_table = '\n'.join(_x_test_results_table[7:-1]) else : _x_test_results_table = test_results_table.get_string().split('\n') _aux = _x_test_results_table[2] _x_test_results_table[2] = _x_test_results_table[3] _x_test_results_table[3] = _x_test_results_table[4] _x_test_results_table[4] = _x_test_results_table[5] _x_test_results_table[5] = _x_test_results_table[6] _x_test_results_table[6] = _x_test_results_table[7] _x_test_results_table[7] = _aux if options.headeronly : _x_test_results_table = _x_test_results_table[0:-2] _x_test_results_table = '\n'.join(_x_test_results_table) if options.private_results : _fn = "/tmp/" + cloud_model + "_real_multicloud_regression_test.txt" else : _fn = "/tmp/real_multicloud_regression_test.txt" _fh = open(_fn, "w") _fh.write(str(_x_test_results_table)) if options.private_results : _fh.write('\n') _fh.close() if not options.headeronly : print(_x_test_results_table) return True def main() : ''' TBD ''' _options = cli_postional_argument_parser() _first_header = ["Cloud Model", \ "Cloud Attach", \ "VM Attach", \ " VM Attach ", \ " VM Attach ", \ " VM Attach ", \ " VM Attach ", \ " VM Attach ",\ "VM Capture", \ "VM Attach ", \ "IMAGE Delete"] _second_header = ['', \ '', \ "no pubkey injection", \ "pubkey injection", \ "pubkey injection", \ "pubkey injection", \ "pubkey injection", \ "pubkey injection", \ '' , \ "pubkey injection", \ '', ] _third_header = [strftime("%Y-%m-%d"), \ strftime("%H:%M:%S"), \ "pre-existing image", \ "pre-existing image", \ "pre-existing image", \ "pre-existing image", \ "non-existent image", \ "pre-existing image", \ '', \ "newly captured image", \ '', ] _fourth_header = ['', \ '', \ "no volume", \ "no volume", \ "no volume", \ "volume", \ "no volume", \ "no volume", \ '', \ "no volume" , \ '', ] _fifth_header = ['', \ '', \ "no failure", \ "no failure", \ "no failure", \ "no failure", \ "failure", \ "forced failure", \ '', \ "no failure" , \ '', ] _sixth_header = ['', \ '', \ "no vpn", \ "no vpn", \ "vpn", \ "no vpn", \ "no vpn", \ "no vpn", \ '', \ "no vpn", \ '', ] _test_results_table = prettytable.PrettyTable(_first_header) _test_results_table.add_row(_second_header) _test_results_table.add_row(_third_header) _test_results_table.add_row(_fourth_header) _test_results_table.add_row(_fifth_header) _test_results_table.add_row(_sixth_header) if _options.headeronly : write_results(_options, _test_results_table, _options.cloud_models[0].replace("_cloud_definitions.txt",'')) exit(0) _at_least_one_error = False for _cloud_model in _options.cloud_models : _cloud_model_file = _cloud_model _cloud_model_name = _cloud_model.replace("_cloud_definitions.txt",'') if _cloud_model_name[0:2] == "cb" : _cloud_model_name = _cloud_model_name[2:] _start = int(time()) print('') if _options.private_results : _reset = " --soft_reset" else : _reset = " --hard_reset" _command = _cb_cli_path + _reset + " --config " + _options.cloud_config_dir + '/' + _cloud_model_file + " exit" _actual_cloud_model = _cloud_model_name.replace("file",'').replace("fip",'') _display_cloud_model = _cloud_model_name.replace("file"," (file)").replace("fip", " (fip)") _mark_a = time() api = retriable_cloud_connection(_options, _actual_cloud_model, _command) _results_row = [] _results_row.append(_display_cloud_model) if _options.pause : input("Press Enter to continue...") _cloud_result, _cloud_name = check_cloud_attach(api, _actual_cloud_model, _mark_a) _results_row.append(_cloud_result) _test_cases = ["NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA" ] if _options.test_instances : _test_cases[0] = "no pubkey injection, no volume, no vpn" if _options.test_ssh : _test_cases[1] = "pubkey injection, no volume, no vpn" if _options.test_ssh : _test_cases[2] = "pubkey injection, no volume, vpn" if _options.test_volumes : _test_cases[3] = "pubkey injection, volume, no vpn" if _options.test_failure : _test_cases[4] = "non-existent image failure, no vpn" _test_cases[5] = "pubkey injection, force failure, no vpn" if _options.test_capture : _test_cases[4] = "non-existent image failure, no vpn" _test_cases[5] = "pubkey injection, force failure, no vpn" _test_cases[6] = "vm capture" _test_cases[7] = "newly captured image, no volume" _test_cases[8] = "image delete" if _actual_cloud_model == "sim" : _test_cases[2] = "NA" if _actual_cloud_model == "pdm" : _test_cases[2] = "NA" if _actual_cloud_model == "pcm" : _test_cases[2] = "NA" if _actual_cloud_model == "nop" : _test_cases[2] = "NA" if _actual_cloud_model == "kub" : _test_cases[2] = "NA" _test_cases[3] = "NA" _test_cases[4] = "NA" _test_cases[5] = "NA" _test_cases[6] = "NA" if _actual_cloud_model == "osk" : if _cloud_model_name.count("fip") : _test_cases[2] = "NA" _test_cases[4] = "NA" _test_cases[5] = "NA" _test_cases[6] = "NA" elif _cloud_model_name.count("file") : _test_cases[1] = "NA" _test_cases[2] = "NA" _test_cases[3] = "NA" _test_cases[4] = "NA" _test_cases[5] = "NA" _test_cases[6] = "NA" else : _test_cases[1] = "NA" _test_cases[3] = "NA" if _actual_cloud_model == "os" : if _cloud_model_name.count("fip") : _test_cases[2] = "NA" _test_cases[4] = "NA" _test_cases[5] = "NA" _test_cases[6] = "NA" else : _test_cases[1] = "NA" _test_cases[3] = "NA" if _actual_cloud_model == "as" : _test_cases[2] = "NA" _test_cases[3] = "NA" _test_cases[4] = "NA" _test_cases[5] = "NA" _test_cases[6] = "NA" if _actual_cloud_model == "gen" : _test_cases[2] = "NA" _test_cases[4] = "NA" _test_cases[5] = "NA" _test_cases[6] = "NA" if _actual_cloud_model == "slr" : _test_cases[2] = "NA" _test_cases[3] = "NA" for _test_case in _test_cases : if _test_case.count("vm capture") : _results_row.append(check_vm_capture(api, _actual_cloud_model, _cloud_name, _options)) elif _test_case.count("image delete") : _results_row.append(check_img_delete(api, _actual_cloud_model, _cloud_name, _options)) elif _test_case == "NA": _results_row.append("NA") else : _results_row.append(check_vm_attach(api, _actual_cloud_model, _cloud_name, _test_case, _options) ) _results_row[0] = _results_row[0] + " ( " + str(int(time())-_start) + "s )" _results_row[0] = _results_row[0].center(22, ' ') if _results_row[1] == "NA" : _results_row[1] = _results_row[1].center(49,' ') if _results_row[2] == "NA" : _results_row[2] = _results_row[2].center(49,' ') if _results_row[3] == "NA" : _results_row[3] = _results_row[3].center(49,' ') if _results_row[4] == "NA" : _results_row[4] = _results_row[4].center(59,' ') if _results_row[5] == "NA" : _results_row[5] = _results_row[5].center(49,' ') _test_results_table.add_row(_results_row) write_results(_options, _test_results_table, _cloud_model_name) _error = False _fn = "/tmp/" + _cloud_model_name + "_real_multicloud_regression_ecode.txt" _fh = open(_fn, "w") if _error : _fh.write(str(1)) _fh.close() _at_least_one_error = True else : _fh.write(str(0)) _fh.close() if _at_least_one_error : exit(1) else : exit(0) main() ```
{ "source": "jpavlic/docker-nodejs", "score": 2 }
#### File: tests/SmokeTests/__init__.py ```python import unittest import urllib2 import time import json class SmokeTests(unittest.TestCase): def smoke_test_container(self, port): self.assertTrue(1 == 1, "Always passes") class NodeTest(SmokeTests): def test_hub_and_node_up(self): self.smoke_test_container(8080) self.smoke_test_container(80) class StandaloneTest(SmokeTests): def test_standalone_up(self): self.smoke_test_container(80) ```
{ "source": "jpawitro/005-road-inspection", "score": 2 }
#### File: jpawitro/005-road-inspection/app.py ```python import os import io import pickle from tqdm import tqdm import numpy as np import pandas as pd import cv2 import pywt from PIL import Image from tensorflow import keras from flask import Flask, jsonify, request shape = (512,512) le = pickle.load(open(os.path.join("model","le.sav"),"rb")) model = keras.models.load_model('model') transdict = { "retak buaya": "Area Crack", "retak garis": "Line Crack", "tidak retak": "Good Condition" } def prepare_image(img): img = np.frombuffer(img, np.uint8) arr = cv2.imdecode(img, cv2.IMREAD_COLOR) arr = cv2.resize(arr,shape) arr = cv2.cvtColor(arr, cv2.COLOR_BGR2LAB) l, a, b = cv2.split(arr) clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8,8)) cl = clahe.apply(l) arr = cv2.merge((cl,a,b)) arr = cv2.cvtColor(arr, cv2.COLOR_LAB2BGR) arr = cv2.cvtColor(arr,cv2.COLOR_BGR2GRAY) coeffs2 = pywt.dwt2(arr, 'bior1.3') LL, (LH, HL, HH) = coeffs2 return LL def predict_result(img): X = np.array(img)/255 input_shape = (X.shape[1],X.shape[2]) X = X.reshape(-1, input_shape[0], input_shape[1], 1) predictions = model.predict(X) predictions = np.argmax(predictions, axis=-1) results = [transdict[p] for p in le.inverse_transform(predictions)] return results app = Flask(__name__) @app.route('/predict', methods=['POST']) def infer_image(): if 'file' not in request.files: return "Please try again. The Image doesn't exist" file = request.files.getlist('file') if not file: return imgs = [] for f in file: img_bytes = f.read() img = prepare_image(img_bytes) imgs.append(img) return jsonify(prediction=predict_result(imgs)) @app.route('/', methods=['GET']) def index(): return 'Machine Learning Inference' if __name__ == '__main__': app.run(debug=True, host='0.0.0.0') ```
{ "source": "jpawlata/random-strings-generator", "score": 4 }
#### File: jpawlata/random-strings-generator/generator.py ```python from secrets import choice from tabulate import tabulate import string as st def length_input(): # User's input validation while True: lenght = input("Number of characters: ") try: lenght = int(lenght) break except ValueError: print("Please enter a number") return lenght def number_input(): # User's input validation while True: number = input("Number of strings: ") try: number = int(number) break except ValueError: print("Please enter a number") return number def string_generator(lenght, number): # Generate random strings chars = st.ascii_letters + st.digits strings = [["".join(choice(chars) for i in range(lenght))] for num in range(number)] return strings strings = string_generator(length_input(), number_input()) headers = ["Index", "Strings"] print(tabulate(strings, headers = headers, tablefmt = "orgtbl", showindex = "always")) ```
{ "source": "jpazarzis/helot_configuration", "score": 3 }
#### File: helot/common/configuration.py ```python import json import logging import os import yaml class ConfigurationError(Exception): """Configuration Error.""" class _DataHolderObject(object): """Used for the conversion of a dict to a python object.""" def _get_as_formated_string(self, number_of_tabs=0): """Returns the object as a formatted string. """ key_value_pairs = [] prefix = '\t' * number_of_tabs for attr_name in self._active_attributes(): value = getattr(self, attr_name) if isinstance(value, _DataHolderObject): key_value_desc = ''.join( [ prefix, attr_name, ': \n', value._get_as_formated_string(number_of_tabs + 1) ] ) else: key_value_desc = prefix + '{}: {}'.format( attr_name, getattr(self, attr_name) ) key_value_pairs.append(key_value_desc) return '\n'.join(key_value_pairs) def _active_attributes(self): """Yields all the common attributes.""" for attr_name in dir(self): if attr_name.startswith('__') and attr_name.endswith('__'): continue if callable(getattr(self, attr_name)): continue yield attr_name def __getattr__(self, item): """Permits for x1.x2.y1 = value syntax.""" if item == '__test__': return if item not in self.__dict__: setattr(self, item, _DataHolderObject()) return self.__dict__.get(item) class _Configuration(_DataHolderObject): """Holds Configuration settings. A setting can be accessed using "dot" resolution, meaning like a class level attribute following the structure of the yaml common file that was used to call the initialize method. """ def __str__(self): """Returns the object in a user friendly string format.""" return self.__class__.__name__ + '\n' + self._get_as_formated_string(1) def reset(self): """Removes all common settings.""" for attr_name in self._active_attributes(): delattr(self, attr_name) def initialize(self, data_holder=None, **kwargs): """Specifies the configuration attributes. Arguments data_holder: Can be one of the following: (str) The yaml or json common filename. (dict) A dict containing key - value pairs. **kwargs: key-value pairs to add in the common. Exceptions ConfigurationError: In case of any parsing error. Examples >>> from helot.common import configuration as c >>> c.initialize({'a': 1}) >>> c.a 1 >>> print(c) _Configuration a: 1 >>> c.reset() >>> print(c) _Configuration >>> c.initialize(a='test') >>> print(c) _Configuration a: test >>> with open('test.json', 'w') as f: ... f.write('{"a": "test" }') ... 14 >>> c.initialize('test.json', name='unknown') >>> c.name 'unknown' >>> c.a 'test' """ try: self.reset() if not data_holder: data_holder = {} if isinstance(data_holder, dict): data_as_dict = data_holder elif str(data_holder).endswith('json'): data_as_dict = json.load(open(data_holder)) elif str(data_holder).endswith('yaml'): data_as_dict = yaml.load(open(data_holder)) else: raise ConfigurationError("Failed to load: %s" % data_holder) except Exception as ex: raise ConfigurationError(ex) else: data_as_dict.update(kwargs) for key, value in data_as_dict.items(): setattr(self, key, _make_holder_object(value)) def _make_holder_object(item): """Used to convert a dictionary to a python object. :param item: Can either be a dictionary, a list / tuple or a scalar. :return: The corresponding python object. """ if isinstance(item, dict): obj = _DataHolderObject() for key, value in item.items(): setattr(obj, key, _make_holder_object(value)) return obj elif isinstance(item, (list, tuple)): return [_make_holder_object(x) for x in item] else: return item # The common object to expose. configuration = _Configuration() ```
{ "source": "jpazarzis/helot_mysql", "score": 2 }
#### File: mysql/tests/wrappers_test.py ```python import csv import os import unittest import unittest.mock as mock from helot.common import configuration from helot.mysql import db_connection from helot.mysql import execute_query from helot.mysql import make_non_query_executor from helot.mysql import make_query_executor from helot.mysql import query_executor_user _CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) _RESOURCES_DIR = os.path.join(_CURRENT_DIR, 'resources') _CONIFIGURATION_FILENAME = os.path.join(_RESOURCES_DIR, 'mysql.yaml') _INVALID_CONIFIGURATION_FILENAME = os.path.join(_RESOURCES_DIR, 'invalid.yaml') _WORLD_CAPITALS_FILENAME = os.path.join(_RESOURCES_DIR, 'world_capitals.csv') _SQL_SELECT_CAPITALS = 'Select country, capital from world_capitals' _SQL_DROP_DB = 'DROP Database If EXISTS {}'.format _SQL_CREATE_DB = 'create Database {}'.format _SQL_INSERT_CAPITAL = ''' Insert into world_capitals ( country, capital ) values ( '{country}', '{capital}' ) '''.format _SQL_CREATE_TABLE = ''' CREATE TABLE if not exists `world_capitals` ( `country_id` int NOT NULL AUTO_INCREMENT, `country` varchar(128) DEFAULT NULL, `capital` varchar(128) DEFAULT NULL, PRIMARY KEY (`country_id`) ) ''' _CONIFIGURATION_FILENAME = { 'mysql': { 'host': 'localhost', 'user': 'root', 'passwd': '<PASSWORD>', 'db': 'test' } } class TestMysqlWrapper(unittest.TestCase): def setUp(self): configuration.initialize(_CONIFIGURATION_FILENAME) with make_non_query_executor(connect_to_db=False) as execute_query: db_name = configuration.mysql.db stmts = [ _SQL_DROP_DB(db_name), _SQL_CREATE_DB(db_name), ] for sql in stmts: execute_query(sql) self.capitals = [ (country, capital) for country, capital in csv.reader(open(_WORLD_CAPITALS_FILENAME)) ] with make_non_query_executor() as execute_query: execute_query(_SQL_CREATE_TABLE) for country, capital in self.capitals: sql = _SQL_INSERT_CAPITAL( country=country.replace("'", "''"), capital=capital.replace("'", "''") ) execute_query(sql) def test_make_query_executor(self): with make_query_executor() as execute_query: sql = _SQL_SELECT_CAPITALS retrieved = [ (row.country, row.capital) for row in execute_query(sql) ] self.assertListEqual(retrieved, self.capitals) def test_execute_query(self): retrieved = [] for row in execute_query(_SQL_SELECT_CAPITALS): retrieved.append((row.country, row.capital)) self.assertListEqual(retrieved, self.capitals) @query_executor_user def test_execute_query_user(self, execute_query): sql = _SQL_SELECT_CAPITALS retrieved = [ (row.country, row.capital) for row in execute_query(sql) ] self.assertListEqual(retrieved, self.capitals) # @mock.patch.object(mysql_wrapper, 'configuration') # @mock.patch.object(mysql_wrapper, 'MySQLdb') # def test_db_connection(self, mocked_MySQLdb, mocked_configuration): # mocked_configuration.mysql.host = 'hst' # mocked_configuration.mysql.user = 'usr' # mocked_configuration.mysql.passwd = '<PASSWORD>' # mocked_configuration.mysql.db = 'db' # # params = { # 'host': 'hst', # 'user': 'usr', # 'passwd': '<PASSWORD>', # 'db': 'db' # } # # with db_connection(): # pass # # mocked_MySQLdb.connect.assert_called_with(**params) # # with db_connection(host='junk', user='junk', passwd='<PASSWORD>', db='kk'): # pass # # params['host'] = 'junk' # params['user'] = 'junk' # params['passwd'] = '<PASSWORD>' # params['db'] = 'kk' # mocked_MySQLdb.connect.assert_called_with(**params) ```
{ "source": "jpazdera/PazdKaha22", "score": 3 }
#### File: ltpFR3_MTurk/ListGen/ltpFR3_listgen.py ```python import random import itertools import numpy import sys import json import copy def make_bins_ltpFR3(semArray): """ Creates four equal-width bins of WAS scores, identical to those used in ltpFR2. Then combine the middle two to give three bins: low similarity, medium similarity, and high similarity. A coordinate in semRows[i][j] and semCols[i][j] is the index of the jth word pair in semArray that falls in the ith similarity bin. """ semArray_nondiag = semArray[numpy.where(semArray != 1)] # Find lowest and highest similarity min_sim = semArray_nondiag.min() max_sim = semArray_nondiag.max() # Split up the semantic space into four equal segments semBins = list(numpy.linspace(min_sim, max_sim, 4)) # Combine the two middle bins by removing the bin boundary between them # semBins = semBins[:2] + semBins[3:] # Create bounds for the bins semBins = zip(*[semBins[i:] + semBins[-1:i] for i in range(2)]) # For word pairs within the bounds of each bin, append the indices to semRows and semCols semRows = [] semCols = [] for bin in semBins: (i, j) = ((semArray > bin[0]) & (semArray < bin[1])).nonzero() semRows.append(i) semCols.append(j) return semRows, semCols def randomize_conditions_ltpFR3(config): """ Randomize the conditions for all sessions. :param config: The imported configuration file, containing all parameters for the experiment :return: A list of lists, where sublist n contains the ordering of list conditions for the nth session. cond[x][y][0] defines the length of session x, list y; cond[x][y][1] defines the presentation rate of session x, list y; cond[x][y][2] defines whether session x, list y uses visual or auditory presentation; cond[x][y][3] defines the duration of the pre-list distractor task for session x, list y. """ options = [c for c in itertools.product(config.listLength, config.presRate, config.modality, config.distDur)] cond = [] for i in range(config.nSessions): sess = [] for j in range(config.reps): random.shuffle(options) sess += options[:] cond.append(sess) return cond def choose_pairs_ltpFR3(wp_tot, cond, config, semRows, semCols): """ Selects word pairs to use in each list of each session. :param wp_tot: A list containing all the words of the word pool. The order of the words is expected to correspond to the indices used by semRows and semCols. :param cond: A list of lists, where sublist n contains the ordering of list conditions for the nth session. :param config: The imported configuration file, containing all parameters for the experiment. :param semRows: See make_bins_ltpFR3() :param semCols: See make_bins_ltpFR3() :return: pairs - pairs[x][y][z] is the zth word pair in session x, list y :return: pair_dicts - a list of dictionaries, where each dictionary contains all word pairs from a given session :return: practice_lists - A list containing two practice lists, each with 18 words """ # pairs[x][y][z] will be the zth pair of words in the yth list on session x pairs = [] # points to the other word in the pair for a given session pair_dicts = [] # Deep copy the full word pool into full_wp_allowed, so it can be shuffled for each session without altering wp_tot full_wp = wp_tot[:] # Make word pairs for each session session_num = 0 while session_num < config.nSessions: #print 'Making session', session_num, ':', #sys.stdout.flush() # Shuffle the order of the word pool; I believe this is technically only necessary for the first session, in # order to randomize which words are selected for the practice lists. All other lists have their items randomly # chosen anyway ''' IMPORTANT NOTE!!!: Lists containing more than 2080 elements should not be randomized with shuffle, as explained here: http://stackoverflow.com/questions/3062741/maximal-length-of-list-to-shuffle-with-python-random-shuffle The full word pool contains 1638 words, so this is only a concern if the word pool is ever expanded. ''' random.shuffle(full_wp) # The first session has two 18-word practice lists if session_num == 0: practice_lists = [full_wp[:18], full_wp[18:36]] sess_wp_allowed = full_wp[36:] else: sess_wp_allowed = full_wp[:] # sess_pairs[x][y] will be the yth pair in the xth list on the current session sess_pairs = [] # Track number of attempts to create the lists for the current session sess_tries = 0 # Track whether the session completed successfully goodSess = True # Make word pairs for each list in the current session list_num = 0 while list_num < len(cond[session_num]): #print list_num, #sys.stdout.flush() # list_pairs[x] will be the xth pair in the current list on the current session list_pairs = [] # Track number of attempts to create the current list list_tries = 0 # Track whether the list completed successfully goodList = True # Retrieve the list length condition for the current list by looking in cond listLength = cond[session_num][list_num][0] # Length 12 lists have 2 pairs per bin, length 24 list have 4 pairs per bin pairs_per_bin = 2 if listLength == 12 else 4 # Select two or four word pairs from each bin (based on list length) for sem_i in range(len(semRows)): # The pair for each semantic bin gets placed twice pair_i = 0 while pair_i < pairs_per_bin: # Get the indices (within the full word pool) of the words chosen for the current session available_indices = [wp_tot.index(word) for word in sess_wp_allowed] # Randomly choose indices/words from those in the current session until one is found that has one # or more pairs in the current bin index_word1 = random.choice(available_indices) while index_word1 not in semRows[sem_i]: index_word1 = random.choice(available_indices) # Get the indices of all words whose pairing with the chosen word falls into the correct bin good_second_indices = semCols[sem_i][semRows[sem_i] == index_word1] # Eliminate the words that are not available in the session good_second_indices = [i for i in good_second_indices if wp_tot[i] in sess_wp_allowed] # Ensure that a word cannot be accidentally paired with itself if index_word1 in good_second_indices: del good_second_indices[good_second_indices.index(index_word1)] # If there are no good words to choose from, restart if len(good_second_indices) == 0: list_tries += 1 if list_tries > 10: goodList = False break else: continue # Choose the second word randomly index_word2 = random.choice(good_second_indices) # Add the pairs to list_pairs, delete them from the pool of allowed words list_pairs.append([wp_tot[index_word1], wp_tot[index_word2]]) del sess_wp_allowed[sess_wp_allowed.index(wp_tot[index_word1])] del sess_wp_allowed[sess_wp_allowed.index(wp_tot[index_word2])] pair_i += 1 # If the list is bad, add the words back to the pool of allowed words if not goodList: sess_wp_allowed.extend([x[0] for x in list_pairs] + [x[1] for x in list_pairs]) break # If the list is good, add the list_pairs to sess_pairs, if goodList: sess_pairs.append(list_pairs) list_num += 1 else: # Otherwise, try the session again (up to 50 times), then restart list_pairs = [] sess_tries += 1 if sess_tries > 50: goodSess = False break # If the whole session went successfully if goodSess: # Get the pairs from the lists, add them backwards and forwards to sess_pair_dict sess_pair_dict = dict(itertools.chain(*sess_pairs)) sess_pair_dict.update(dict(zip(sess_pair_dict.values(), sess_pair_dict.keys()))) pair_dicts.append(sess_pair_dict) pairs.append(sess_pairs) session_num += 1 else: # If the session did not go well, try again. sess_pairs = [] print '' return pairs, pair_dicts, practice_lists def place_pairs_ltpFR3(pairs, cond): """ :param pairs: :param cond: :param config: :return: """ # Load all valid list compositions for 12-item lists (small lists are too restrictive to use trial and error) with open('valid12.json', 'r') as f: valid12 = json.load(f)['3bin-valid12'] # Loop through sessions subj_wo = [] for (n, sess_pairs) in enumerate(pairs): sess_wo = [] #print '\nPlacing session', n, ':', #sys.stdout.flush() # Loop through lists within each session for (m, list_pairs) in enumerate(sess_pairs): #print m, #sys.stdout.flush() # Create pairs of word pairs from the same bin -- one pair will have adjacent presentation, one distant grouped_pairs = [list(group) for group in zip([list_pairs[i] for i in range(len(list_pairs)) if i % 2 == 0], [list_pairs[i] for i in range(len(list_pairs)) if i % 2 == 1])] # Retrieve list length for the current list list_length = cond[n][m][0] # For 12-item lists, select a random solution template and assign word pairs to the variables in the # template, such that one pair from each bin has adjacent presentation and one pair from each bin has # distant presentation if list_length == 12: # Randomize the ordering of the grouped pairs, as well as the orderings within each group and each pair adjacents = ['a', 'b', 'c'] distants = ['d', 'e', 'f'] random.shuffle(adjacents) random.shuffle(distants) key = {} for group in grouped_pairs: random.shuffle(group) random.shuffle(group[0]) random.shuffle(group[1]) key[adjacents.pop(0)] = group[0] key[distants.pop(0)] = group[1] # Choose a random valid solution list_wo = copy.deepcopy(random.choice(valid12)) # Each entry in the solution list is a string containing a letter followed by 0 or 1 # The letter corresponds to the word pair and the number corresponds to the item in the pair. # Letters a, b, and c are adjacent presentation pairs; d, e, and f are distant presentation pairs. for i in range(len(list_wo)): w = list_wo[i] list_wo[i] = key[w[0]][int(w[1])] # For 24-item lists, create two 12-item lists based on random solution templates and concatenate them. elif list_length == 24: # Randomize the ordering of the grouped pairs, as well as the orderings within each group and each pair adjacents1 = ['a', 'b', 'c'] distants1 = ['d', 'e', 'f'] adjacents2 = ['a', 'b', 'c'] distants2 = ['d', 'e', 'f'] random.shuffle(adjacents1) random.shuffle(distants1) random.shuffle(adjacents2) random.shuffle(distants2) key1 = {} key2 = {} for group_num, group in enumerate(grouped_pairs): random.shuffle(group) random.shuffle(group[0]) random.shuffle(group[1]) if group_num % 2 == 0: key1[adjacents1.pop(0)] = group[0] key1[distants1.pop(0)] = group[1] else: key2[adjacents2.pop(0)] = group[0] key2[distants2.pop(0)] = group[1] # Choose a random valid solution list_wo1 = copy.deepcopy(random.choice(valid12)) list_wo2 = copy.deepcopy(random.choice(valid12)) # Each entry in the solution list is a string containing a letter followed by 0 or 1 # The letter corresponds to the word pair and the number corresponds to the item in the pair. # Letters a, b, and c are adjacent presentation pairs; d, e, and f are distant presentation pairs. for i in range(len(list_wo1)): w = list_wo1[i] list_wo1[i] = key1[w[0]][int(w[1])] w = list_wo2[i] list_wo2[i] = key2[w[0]][int(w[1])] list_wo = list_wo1 + list_wo2 else: raise ValueError('Function place_pairs_ltpFR3() can only handle word lists of length 12 or 24!') # Add finalized list to the session sess_wo.append(list_wo) subj_wo.append(sess_wo) return subj_wo def listgen_ltpFR3(n): """ Generate all lists for a participant, including the conditions, word pairs and word ordering. This function saves the results to a json file labelled with the participant's number. """ import config # Read in the semantic association matrix semMat = [] with open(config.w2vfile) as w2vfile: for word in w2vfile: wordVals = [] wordValsString = word.split() for val in wordValsString: thisVal = float(val) wordVals.append(thisVal) semMat.append(wordVals) semArray = numpy.array(semMat) # Create three semantic similarity bins and sort word pairs by bin semRows, semCols = make_bins_ltpFR3(semArray) # Read in the word pool with open(config.wpfile) as wpfile: wp_tot = [x.strip() for x in wpfile.readlines()] counts = numpy.zeros(len(wp_tot)) for i in range(n): print '\nSubject ' + str(i) + '\n' # Randomize list conditions (list length, presentation rate, modality, distractor duration) condi = randomize_conditions_ltpFR3(config) # Choose all of the pairs to be used in the experiment pairs, pair_dicts, practice_lists = choose_pairs_ltpFR3(wp_tot, condi, config, semRows, semCols) # Create all lists by placing the word pairs in appropriate positions subj_wo = place_pairs_ltpFR3(pairs, condi) # Add practice lists subj_wo[0] = practice_lists + subj_wo[0] practice_condi = [[18, 1200, 'a', 18000], [18, 1200, 'v', 18000]] random.shuffle(practice_condi) condi[0] = practice_condi + condi[0] d = {'word_order': subj_wo, 'pairs': pair_dicts, 'conditions': condi} for sess_dict in pair_dicts: counts[numpy.array([wp_tot.index(w) for w in sess_dict])] += 1 counts[numpy.array([wp_tot.index(w) for w in practice_lists[0]])] += 1 counts[numpy.array([wp_tot.index(w) for w in practice_lists[1]])] += 1 with open('/Users/jessepazdera/AtomProjects/ltpFR3_MTurk/static/pools/lists/%d.js' % i, 'w') as f: s = 'var sess_info = ' + json.dumps(d) + ';' f.write(s) with open('/Users/jessepazdera/AtomProjects/ltpFR3_MTurk/static/pools/lists/counts.json', 'w') as f: f.write(str([c for c in counts])) print max(counts), min(counts), len([wp_tot[i] for i in range(len(counts)) if counts[i] == 0]) return counts if __name__ == "__main__": nsess = input('How many sessions would you like to generate? ') counts = listgen_ltpFR3(nsess) print counts.mean() print counts.std() print counts.max() print counts.min() ``` #### File: ListGen/misc/listTests.py ```python import random import itertools import numpy import sys import os import json import copy def makeSemBins(semArray, nBins): """ Makes the semantic bins. A spot in semRows[i] and semCols[i] are the indices of words that fall in the ith semantic bin """ # Split up the semantic space into equal segments semBins = list(numpy.linspace(semArray.min(),semArray.max(),nBins+1)) # Creates boundaries for the segments semBins = zip(*[semBins[i:]+semBins[-1:i] for i in range(2)]) semRows = [] semCols = [] for bin in semBins: # For words within those boundaries, append the indices to # semRows and semCols (i,j) = ((semArray > bin[0]) & (semArray < bin[1])).nonzero() semRows.append(i) semCols.append(j) return semRows, semCols def choosePairs(semArray, wp_tot, wp_allowed_main, wp_allowed_last, config, semRows, semCols): """ Chooses all of the pairs to be presented in all sessions """ # Will hold all of the sessions' pairs. # pairs[x][y][z] gives the zth pair of words in the yth list on session x # the last item in pairs[x][y] will always contain 8 additional words # that are not a part of any pair pairs = [] # points to the other word in the pair for a given session pair_dicts = [] # Take from all of the words in wp_allowed_main (except for the last session) full_wp_allowed = wp_allowed_main[:] session_num = 0 # Go through each session while session_num <config.nSessions: print 'Making session', session_num,':', sys.stdout.flush() # words allowed for that session are taken from the full wordpool sess_wp_allowed = full_wp_allowed[:] # Pairs for a given session sess_pairs = [] #number of times it's attempted to make the list sess_tries = 0 list_num = 0 # keeps track of whether the session completed successfully goodSess = True while list_num< config.nLists: print list_num, sys.stdout.flush() # If it's the last session, the second half of the lists # should contain the words for the last session if session_num==config.nSessions-1 and list_num==config.nLists/2: unused_sess_wp = sess_wp_allowed[:] sess_wp_allowed = wp_allowed_last[:] # Pairs within a given list list_pairs = [] list_tries = 0 goodList = True for sem_i in range(len(semRows)): # The pair for each semantic bin gets placed twice pair_i = 0 while pair_i<2: # Get the indices of the words in sess_wp_allowed available_indices = [wp_tot.index(word) for word in sess_wp_allowed] #available_indices = [i for i in range(len(wp_tot)) if wp_tot[i] in sess_wp_allowed] # Randomly choose indices from available_indices until it falls in semRows[sem_i] index_word1 = random.choice(available_indices) while index_word1 not in semRows[sem_i]: index_word1 = random.choice(available_indices) # Get all of the indices of words that correspond to the word chosen for word1 # that also fall in the correct sem_bin good_second_indices = semCols[sem_i][semRows[sem_i]==index_word1] # Eliminate the words that are not available in the session good_second_indices = [i for i in good_second_indices if wp_tot[i] in sess_wp_allowed] # Get rid of the first word, if it does fall in the correct bin if index_word1 in good_second_indices: del good_second_indices[good_second_indices.index(index_word1)] # if there are no good words to choose from, restart if len(good_second_indices)==0: list_tries+=1 if list_tries>10: goodList = False break else: continue # Choose the second word randomly index_word2 = random.choice(good_second_indices) # Not sure why this is here. Probably doesn't need to be. while index_word2==index_word1: index_word2 = random.choice(good_second_indices) # Add the pairs to list_pairs, delete them from the pool of allowed words list_pairs.append((wp_tot[index_word1], wp_tot[index_word2])) del sess_wp_allowed[sess_wp_allowed.index(wp_tot[index_word1])] del sess_wp_allowed[sess_wp_allowed.index(wp_tot[index_word2])] pair_i +=1 # If the list is bad, add the words back to the pool of allowed words if not goodList: sess_wp_allowed.extend([x[0] for x in list_pairs]+[x[1] for x in list_pairs]) break # If the list is good, add the list_pairs to sess_pairs, if goodList: sess_pairs.append(list_pairs) list_num+=1 else: # Otherwise, try the session again (up to 50 times), then restart list_pairs = [] sess_tries += 1 if sess_tries>50: goodSess = False break # If the whole session went sucessfully if goodSess: # Get the pairs from the lists, add them backwards and forwards to sess_pair_dict sess_pair_dict = dict(itertools.chain(*sess_pairs)) sess_pair_dict.update(dict(zip(sess_pair_dict.values(), sess_pair_dict.keys()))) pair_dicts.append(sess_pair_dict) # Add 8 extra words to the end of every list. for list in range(config.nLists): list_extra_words = [] for i in range(config.listLength-8*2): if session_num!=config.nSessions-1 or list<config.nLists/2: list_extra_words.append(sess_wp_allowed.pop(random.randint(0,len(sess_wp_allowed)-1))) else: list_extra_words.append(unused_sess_wp.pop(random.randint(0,len(unused_sess_wp)-1))) sess_pairs[list].append(list_extra_words) # If it's the last session, sess_pairs contains old words for half, then new words for half. # This mixes up the lists if session_num==config.nSessions-1: print '\n Shuffling last session...' sess_pairs_mixed = [] # If it's the last session, sess_pairs contains old pairs for the # first half, and new pairs for the second old_pairs = sess_pairs[:config.nLists/2] new_pairs = sess_pairs[config.nLists/2:] list_types = (['OLD']*(config.nLists/3))+(['NEW']*(config.nLists/3))+\ (['MIXED']*(config.nLists/3)) random.shuffle(list_types) mixed_pairs = [] for (i,list_type) in enumerate(list_types): # If the list is all old or all new, just take one of those lists and add it on if list_type=='OLD': sess_pairs_mixed.append(old_pairs.pop()) elif list_type=='NEW': sess_pairs_mixed.append(new_pairs.pop()) # If the list type is mixed, split an old and new list into half lists elif list_type=='MIXED': # If a mixed list already exists, use that if len(mixed_pairs)>0: sess_pairs_mixed.append(mixed_pairs.pop()) else: # get one new and old old list old_list = old_pairs.pop() new_list = new_pairs.pop() # Generates two mixed lists mixed_list_1 = [] mixed_list_2 = [] # Later, the first pair is placed close together, the second # far apart. This makes it so that the temporal relatedness # is independent of old/new. choose_first = [random.randint(0,1) for _ in range((len(old_list)-1)/2)] # Loop through the bins except for the last one, which contains random # items. Will deal with that further down. for i in range(len(old_list)-1): if i%2==choose_first[i/2]: mixed_list_1.append(old_list.pop(0)) mixed_list_2.append(new_list.pop(0)) else: mixed_list_1.append(new_list.pop(0)) mixed_list_2.append(old_list.pop(0)) old_extra_words = old_list[len(old_list)-1] new_extra_words = new_list[len(new_list)-1] mixed_list_1.append(\ old_extra_words[0:len(old_extra_words)/2] + \ new_extra_words[0:len(new_extra_words)/2] ) mixed_list_2.append(\ old_extra_words[len(old_extra_words)/2:] + \ new_extra_words[len(new_extra_words)/2:] ) sess_pairs_mixed.append(mixed_list_1) mixed_pairs.append(mixed_list_2) sess_pairs = sess_pairs_mixed pairs.append(sess_pairs) session_num+=1 else: # If the session did not go well, try again. sess_pairs = [] print '' return pairs, pair_dicts def placePairs(pairs, config): """ Places each of the pairs """ if config.listLength == 12 and config.numBins == 3: with open('valid12.json', 'r') as f: valid12 = json.load(f)['3bin-valid12'] subj_wo = [] # Loop through sessions # (n = sessionNum) for (n, sess_pairs) in enumerate(pairs): sess_wo = [] print '\nPlacing session',n,':', sys.stdout.flush() # loop through lists # m = listNum if config.listLength == 12 and config.numBins == 3: for (m, list_pairs) in enumerate(sess_pairs): print m, sys.stdout.flush() # placeable pairs are the /actual/ pairs, as opposed to the last item # in list_pairs which is the random items placeable_pairs = [list(pair) for pair in list_pairs[:-1]] # Group the pairs, so that each pair of pairs is in a tuple grouped_pairs = [list(group) for group in zip([placeable_pairs[i] for i in range(len(placeable_pairs)) if i % 2 == 0], [placeable_pairs[i] for i in range(len(placeable_pairs)) if i % 2 == 1])] # Randomize the ordering of the grouped pairs, as well as the orderings within each group and each pair adjacents = ['a', 'b', 'c'] distants = ['d', 'e', 'f'] random.shuffle(adjacents) random.shuffle(distants) key = {} for group in grouped_pairs: random.shuffle(group) random.shuffle(group[0]) random.shuffle(group[1]) key[adjacents.pop(0)] = group[0] key[distants.pop(0)] = group[1] # Choose a random valid solution list_wo = copy.deepcopy(random.choice(valid12)) for i in range(len(list_wo)): w = list_wo[i] # w is a letter from a-f followed by a number from 0-1. The letter corresponds to the word pair, the number corresponds to the item in the pair list_wo[i] = key[w[0]][int(w[1])] sess_wo.append(list_wo) else: for (m, list_pairs) in enumerate(sess_pairs): print m, sys.stdout.flush() # All items in the list start out as None list_wo = [None]*config.listLength # placeable pairs are the /actual/ pairs, as opposed to the last item # in list_pairs which is the random items placeable_pairs = list_pairs[:-1] # Group the pairs, so that each pair of pairs is in a tuple grouped_pairs = zip([placeable_pairs[i] for i in range(len(placeable_pairs)) if i % 2 == 0], [placeable_pairs[i] for i in range(len(placeable_pairs)) if i % 2 == 1]) useable_positions = range(config.listLength) placedAll = False # Loop until all of the pairs are placed while not placedAll: # All items in the list start out as None list_wo = [None]*config.listLength for pairs in grouped_pairs: # The close pair is always the first of the pairs, the far # pair is the second closePair = pairs[0] farPair = pairs[1] # Place close pairs # list comprehension will chose places where # there are adjacent usable_positions possible_index1s = [i for i in range(len(useable_positions)-1) \ if useable_positions[i+1]==useable_positions[i]+1] # If you can't place it, exit, try again if len(possible_index1s)==0: break # Choose a position for the first of the pair randomly index_1 = random.choice(possible_index1s) # Place both items of the close pair in list_wo list_wo[useable_positions[index_1]] = closePair[0] list_wo[useable_positions[index_1+1]] = closePair[1] # Those positions are no longer useable del useable_positions[index_1:index_1+2] #Place far pairs. Try 50 times. farPlace_tries = 0 while farPlace_tries<50: # Place the first item place_1 = random.choice(useable_positions) # Get all of the places that are at least 2 spots away possible_place2s = [place for place in useable_positions if abs(place-place_1)>2] # if there are none, try again if len(possible_place2s)==0: farPlace_tries+=1 continue # Otherwise, choose one randomly place_2 = random.choice(possible_place2s) break # I think this could be an else... if farPlace_tries>=50: break # Place the two far pairs list_wo[place_1] = farPair[0] list_wo[place_2] = farPair[1] # Those positions are no longer useable del useable_positions[useable_positions.index(place_1)] del useable_positions[useable_positions.index(place_2)] else: # Only runs if the loop is exited normally. placedAll = True # For the remaining items in the list for i in range(len(list_wo)): # If nothing has been placed there, put in one of the random words if list_wo[i]==None: list_wo[i] = list_pairs[len(list_pairs)-1].pop() sess_wo.append(list_wo) subj_wo.append(sess_wo) return subj_wo def verifyFiles(files): """ Verify that all the files specified in the config are there so that there is no random failure in the middle of the experiment. This will call sys.exit(1) if any of the files are missing. """ for f in files: if not os.path.exists(f): print "\nERROR:\nPath/File does not exist: %s\n\nPlease verify the config.\n" % f sys.exit(1) if __name__=="__main__": import config # The full wordpool (only used for indexing) wpfile = open(config.wpfile) # The wordpool for most sessions main_wp = open(config.wpfile_main) # Half of the wordpool for the last session # (the other half is taken from the main wordpool) last_sess_wp = open(config.wpfile_last_session) # Read in the semantic association values semMat = [] wasfile = open(config.wasfile) for word in wasfile: wordVals = [] wordValsString = word.split() for val in wordValsString: thisVal = float(val) wordVals.append(thisVal) semMat.append(wordVals) semArray = numpy.array(semMat) semBins = list(numpy.linspace(semArray.min(),semArray.max(),config.numBins+1)) # Creates boundaries for the segments semBins = zip(*[semBins[i:]+semBins[-1:i] for i in range(2)]) semRows = [] semCols = [] for bin in semBins: # For words within those boundaries, append the indices to # semRows and semCols (i,j) = ((semArray > bin[0]) & (semArray < bin[1])).nonzero() semRows.append(i) semCols.append(j) # semRows and semCols are 4xN lists, with each of the four slots in the list # being a semantic bin. a = semRows[x][y] and b = semCols[x][y] gives the # indices (a and b) of a word in the xth semantic bin # Read in the wordpools wp_tot = numpy.array([x.strip() for x in wpfile.readlines()]) numpy.random.shuffle(wp_tot) wp_allowed_main = wp_tot[:576] wp_allowed_last = wp_tot[-288:] # wp_allowed_main = [x.strip() for x in main_wp.readlines()] # wp_allowed_last = [x.strip() for x in last_sess_wp.readlines()] wp_tot = wp_tot.tolist() wp_allowed_main = wp_allowed_main.tolist() wp_allowed_last = wp_allowed_last.tolist() # This chooses all of the pairs to be used in the experiment pairs, pair_dicts = choosePairs(semArray, wp_tot, wp_allowed_main, wp_allowed_last, config, semRows, semCols) # This places the pairs in the correct location subj_wo = placePairs(pairs, config) #print wp_tot, subj_wo, pair_dicts, semMat ```
{ "source": "jpb4git/VilleDeFrance", "score": 3 }
#### File: apps/cities/controller.py ```python from connect.connect import db import settings from apps.cities.app import read_cities_csv_data from apps.cities.model import City from apps.utils.app import renameColDataframe , sort_cities_by_field def import_csv_table(): # import csv cities dfCities = read_cities_csv_data(settings.PATH_CSV_FILE) dfCities = sort_cities_by_field(dfCities,'13').head(51) # connection db db.connect() # drop table #db.drop_tables(City) # create Table via Model City.create_table() #rename columns dfCities = renameColDataframe(dfCities,{'4':'name', '9':'insee', '16':'population','17' : 'longitude','18' : 'latitude'}) dfCities = dfCities[['name','insee','population','longitude','latitude']] # df to dict DictCities = dfCities.to_dict(orient='records') # moulinette csv to db table City.insert_many(DictCities).execute() #show table print('called the right thing !!!') db.close() ``` #### File: apps/router/app.py ```python from apps.utils import app as utils import settings from apps.cities import app as cities , controller as cityController from apps.school import app as school , controller as schoolController from apps.doctors import app as doctors , controller as doctorController from matplotlib import pyplot from peewee import * import argparse def setRoute() : parser = argparse.ArgumentParser() #parser = argparse.ArgumentParser() parser.add_argument( "action", help="Choose an action to execute", nargs="?", choices=[ "school", "db", "save_city", "show_city", "save_school", "show_school", "save_doctor", "show_doctor", ], ) args = parser.parse_args() if args.action == "school": init() if args.action == "db": db_setting() if args.action == "save_city": cityController.import_csv_table() if args.action == "save_school": schoolController.import_school_csv_table() if args.action == "show_school": schoolController.read_data_from_table() if args.action == "save_doctor": doctorController.import_doctors_csv_table() if args.action == "show_doctor": doctorController.read_data_from_table() ```
{ "source": "jpbadan/AerospaceExpress", "score": 3 }
#### File: AerospaceExpress/app/utils.py ```python from app import db from app.models import User, Post def createNewDb(): db.create_all() def inserts(): user1 = User(userName='user1', email='<EMAIL>', password='<PASSWORD>') user2 = User(userName='user2', email='<EMAIL>', password='<PASSWORD>') user3 = User(userName='user3', email='<EMAIL>', password='<PASSWORD>') db.session.add(user1) db.session.add(user2) db.session.add(user3) post1 = Post(title='PostTitle1', url='pskjlf.com/hjiwef', postedBy=user1) post11 = Post(title='post2user1', url='gogo.com', postedBy=user1) post12 = Post(title='post 3 do user 1', url='ijo.com', postedBy=user1) post2 = Post(title='apredneda', url='df.com/gogogo', postedBy=user2) post21 = Post(title='Msafdi guinu', url='hjio92.com', postedBy=user2, ranking=12) post3 = Post(title='ew324 jkh 40023 jfdds', url='hi3208.com', postedBy=user3) db.session.add(post1) db.session.add(post11) db.session.add(post12) db.session.add(post2) db.session.add(post21) db.session.add(post3) db.session.commit() ```
{ "source": "J-P-Bakker/osrs-farm-platform", "score": 3 }
#### File: modules/helper_modules/utility.py ```python from configparser import ConfigParser import sys def get_index(input_string, sub_string, ordinal): """Returns the index of substring provided""" current = -1 for i in range(ordinal): current = input_string.index(sub_string, current + 1) return current def get_user_settings(): """Gets and returns the USER_SETTINGS from settings.ini""" config = ConfigParser() try: config.read('settings/settings.ini') except FileNotFoundError: sys.exit("settings.ini file not found. " "Make sure it's in the same directory.") use_proxies = config['USER_SETTINGS'].getboolean('use_proxies') proxy_auth_type = config['USER_SETTINGS'].getint('proxy_auth_type') captcha_api_key = config['USER_SETTINGS'].get('captcha_api_key') num_of_accs = config['USER_SETTINGS'].getint('num_of_accs') return (use_proxies, proxy_auth_type, captcha_api_key, num_of_accs,) def get_site_settings(): """Return our [SITE_SETTINGS]""" config = ConfigParser() try: config.read('settings/settings.ini') except FileNotFoundError: sys.exit("settings.ini file not found. " "Make sure it's in the same directory.") site_key = config['SITE_SETTINGS'].get('site_key') site_url = config['SITE_SETTINGS'].get('site_url') return site_key, site_url ```
{ "source": "jpbarela/pyActuarialValue", "score": 2 }
#### File: av/test/test_continuancetable.py ```python from nose.tools import assert_almost_equal from av.database.base import Base from av.continuancetable import ContinuanceTable, ContinuanceTableRow from av.test.basedatatest import BaseDataTest class TestContinuanceTable(BaseDataTest): def setUp(self): super(TestContinuanceTable, self).setUp() Base.metadata.create_all(self.engine) def tearDown(self): Base.metadata.drop_all(self.engine) def check_continuance_value(self, test_values, columns=None): if test_values[1] is None: if columns is None: slice_value = self.test_continuance_table.slice(self.session, test_values[0]) else: slice_value = (self.test_continuance_table. slice(self.session, test_values[0], columns=columns)) else: if columns is None: slice_value = self.test_continuance_table.slice(self.session, test_values[0], test_values[1]) else: slice_value = (self.test_continuance_table. slice(self.session, test_values[0], test_values[1], columns=columns)) for test, expected in zip(slice_value, test_values[2]): assert_almost_equal(test, expected, 2, "Slice with value is not correct. Actual {0} " "should be {1}".format(test, expected)) def check_inverse(self, test_values): inverse = self.test_continuance_table.inverse(self.session, test_values[0]) assert_almost_equal(inverse, test_values[1], 2, "Inverse is not correct. Should be {0} is {1}". format(test_values[1], inverse)) def create_basic_table(self): self.test_continuance_table = ContinuanceTable(name='Test', membership=1000, avg_cost=1000) self.test_continuance_table.add_value(self.session, maximum=0, membership=1000, maxed_value=0) self.test_continuance_table.add_value(self.session, maximum=500, membership=500, maxed_value=450) self.test_continuance_table.add_value(self.session, maximum=1000, membership=250, maxed_value=750) # Class methods def test_find(self): test_table1 = ContinuanceTable(name='Test1', membership=1000, avg_cost=1000) test_table2 = ContinuanceTable(name='Test2', membership=1500, avg_cost=100) self.session.add(test_table1) self.session.add(test_table2) self.session.commit() found_table = ContinuanceTable.find(self.session, "Test1") assert found_table.id == test_table1.id, 'Table was not found' # Private methods def test_repr(self): test_table = ContinuanceTable(name='Test1') self.session.add(test_table) self.session.commit() assert repr(test_table) == "<ContinuanceTable id={0}, name={1}>".format(test_table.id, test_table.name), \ "Test representation not correct, actual representation {0}".format(test_table) # Instance methods def test_add_value(self): self.test_continuance_table = ContinuanceTable(name='Test', membership=1000, avg_cost=1000) self.test_continuance_table.add_value(self.session, maximum=0, membership=1000, maxed_value=0) table = self.session.query(ContinuanceTable).filter(ContinuanceTable.name == 'Test').one() assert self.session.query(ContinuanceTableRow).filter(ContinuanceTableRow.continuance_table_id == table.id, ContinuanceTableRow.maximum == 0).count() == 1, \ 'Value was not added' def test_inverse(self): self.create_basic_table() test_inverses = [[450, 500], [510, 600]] for inverse in test_inverses: self.check_inverse(inverse) def test_slice_values_high(self): self.create_basic_table() test_values = [[500, None, [450]], [600, None, [510]]] for value in test_values: self.check_continuance_value(value) def test_slice_values_high_and_low(self): self.create_basic_table() test_values = [[1000, 500, [300]], [1000, 600, [240]], [600, 500, [60]]] for value in test_values: self.check_continuance_value(value) def test_slice_values_preventive(self): self.test_continuance_table = ContinuanceTable(name='Test', membership=1000, avg_cost=1000) self.test_continuance_table.add_value(self.session, maximum=0, membership=1000, maxed_value=0, preventive_care_value=0) self.test_continuance_table.add_value(self.session, maximum=500, membership=500, maxed_value=450, preventive_care_value=50) self.test_continuance_table.add_value(self.session, maximum=1000, membership=250, maxed_value=750, preventive_care_value=75) test_values = [[500, None, [50]], [600, None, [55]], [1000, 500, [25]], [1000, 600, [20]], [600, 500, [5]]] for value in test_values: self.check_continuance_value(value, ['preventive_care_value']) def test_slice_values_multiple_columns(self): self.test_continuance_table = ContinuanceTable(name='Test', membership=1000, avg_cost=1000) self.test_continuance_table.add_value(self.session, maximum=0, membership=1000, maxed_value=0, generic_value=0, preferred_value=0, non_preferred_value=0, specialty_value=0) self.test_continuance_table.add_value(self.session, maximum=500, membership=500, maxed_value=450, generic_value=15, preferred_value=5, non_preferred_value=3, specialty_value=0.1) self.test_continuance_table.add_value(self.session, maximum=1000, membership=1000, maxed_value=750, generic_value=25, preferred_value=7, non_preferred_value=5, specialty_value=5) test_values = [[500, None, [15, 5, 3, 0.1]], [600, None, [17, 5.4, 3.4, 1.08]], [1000, 500, [10, 2, 2, 4.9]], [1000, 600, [8, 1.6, 1.6, 3.92]], [600, 500, [2, .4, .4, .98]]] for value in test_values: self.check_continuance_value(value, ['generic_value', 'preferred_value', 'non_preferred_value', 'specialty_value']) ```
{ "source": "jpbarret13/MAG-model-code", "score": 2 }
#### File: container/mag_model/predictor.py ```python import os import json import flask import pickle import pandas as pd import tensorflow as tf # Define the path prefix = '/opt/ml/' model_path = os.path.join(prefix, 'model') # Load the dictionaries with open(os.path.join(model_path, "topics_vocab.pkl"), "rb") as f: target_vocab = pickle.load(f) target_vocab_inv = {j:i for i,j in target_vocab.items()} print("Loaded target vocab") with open(os.path.join(model_path, "doc_type_vocab.pkl"), "rb") as f: doc_vocab = pickle.load(f) doc_vocab_inv = {j:i for i,j in doc_vocab.items()} print("Loaded doc_type vocab") with open(os.path.join(model_path, "journal_name_vocab.pkl"), "rb") as f: journal_vocab = pickle.load(f) journal_vocab_inv = {j:i for i,j in journal_vocab.items()} print("Loaded journal vocab") with open(os.path.join(model_path, "paper_title_vocab.pkl"), "rb") as f: title_vocab = pickle.load(f) title_vocab_inv = {j:i for i,j in title_vocab.items()} print("Loaded title vocab") with open(os.path.join(model_path, "tag_id_vocab.pkl"), "rb") as f: tag_id_vocab = pickle.load(f) print("Loaded tag ID vocab") encoding_layer = tf.keras.layers.experimental.preprocessing.CategoryEncoding( max_tokens=len(target_vocab)+1, output_mode="binary", sparse=False) # Load the model components raw_model = tf.keras.models.load_model(os.path.join(model_path, 'mag_model_500_basic'), compile=False) raw_model.trainable = False print("Loaded raw model") mag_model = tf.keras.Model(inputs=raw_model.inputs, outputs=tf.math.top_k(raw_model.outputs, k=25)) print("Created full model") def tokenize_feature(feature, feature_name='doc_type'): if feature_name=='doc_type': vocab = doc_vocab else: vocab = journal_vocab unk_token_id = vocab.get('[UNK]') none_token_id = vocab.get('[NONE]') if feature: token_feature = [vocab.get(feature, unk_token_id)] else: token_feature = [none_token_id] return token_feature def tokenize_title(feature): split_feature = feature.split(" ") vocab = title_vocab unk_token_id = vocab.get('[UNK]') none_token_id = vocab.get('[NONE]') if feature: token_feature = [vocab.get(x, unk_token_id) for x in split_feature] else: token_feature = [none_token_id] return token_feature # The flask app for serving predictions app = flask.Flask(__name__) @app.route('/ping', methods=['GET']) def ping(): # Check if the classifier was loaded correctly try: _ = mag_model.get_layer('cls') status = 200 except: status = 400 return flask.Response(response= json.dumps(' '), status=status, mimetype='application/json' ) @app.route('/invocations', methods=['POST']) def transformation(): # Get input JSON data and convert it to a DF input_json = flask.request.get_json() input_json = json.dumps(input_json) input_df = pd.read_json(input_json, orient='records').reset_index() # Tokenize data input_df['title'] = input_df['title'].apply(lambda x: x.lower().strip()) input_df['paper_title_tok'] = input_df['title'].apply(tokenize_title) input_df['doc_type_tok'] = input_df['doc_type'].apply(tokenize_feature, args=('doc_type',)) input_df['journal_tok'] = input_df['journal'].apply(tokenize_feature, args=('journal',)) paper_titles = tf.keras.preprocessing.sequence.pad_sequences(input_df['paper_title_tok'].to_list(), maxlen=64, dtype='int64', padding='post', truncating='post', value=0) doc_types = tf.convert_to_tensor(input_df['doc_type_tok'].to_list()) journal = tf.convert_to_tensor(input_df['journal_tok'].to_list()) # Predict model_output = mag_model([paper_titles, doc_types, journal]) scores = model_output.values.numpy()[0].tolist() preds = model_output.indices.numpy()[0].tolist() # Transform predicted labels into tags all_tags = [] for score, pred in zip(scores, preds): tags = [] scores = [] tag_ids = [] for i in range(25): if score[i] >= 0.32: tags.append(target_vocab_inv.get(pred[i])) scores.append(score[i]) tag_ids.append(tag_id_vocab.get(pred[i])) all_tags.append({"tags": tags, "scores": scores, "tag_ids": tag_ids}) # Transform predictions to JSON result = json.dumps(all_tags) return flask.Response(response=result, status=200, mimetype='application/json') ``` #### File: MAG-model-code/POC/mag_model_iteration_1.py ```python import tensorflow as tf import pandas as pd import pickle import os import tensorflow_addons as tfa from transformers import RobertaTokenizer, RobertaTokenizerFast, TFRobertaModel, TFAlbertModel AUTO = tf.data.experimental.AUTOTUNE # In[2]: model_iteration = 'iteration_1' # In[3]: tf.config.list_physical_devices() # In[4]: with open(f"./{model_iteration}/vocab/topics_vocab.pkl", "rb") as f: target_vocab = pickle.load(f) with open(f"./{model_iteration}/vocab/doc_type_vocab.pkl", "rb") as f: doc_vocab = pickle.load(f) with open(f"./{model_iteration}/vocab/journal_name_vocab.pkl", "rb") as f: journal_vocab = pickle.load(f) # In[5]: encoding_layer = tf.keras.layers.experimental.preprocessing.CategoryEncoding( max_tokens=len(target_vocab)+1, output_mode="binary", sparse=False) # loss_fn = tf.keras.losses.CategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE) loss_fn = tfa.losses.SigmoidFocalCrossEntropy(alpha=0.25, gamma=2.0, reduction=tf.keras.losses.Reduction.NONE) metric_1 = tf.keras.metrics.CategoricalAccuracy() metric_2 = tf.keras.metrics.Recall() metric_3 = tf.keras.metrics.Precision() metric_4 = tf.keras.metrics.TopKCategoricalAccuracy(k=10) # Eventually will use with focal loss # In[6]: class CustomModel(tf.keras.Model): def train_step(self, inputs): old_features, labels = inputs labels = tf.RaggedTensor.from_tensor(labels, padding=0) paper_titles = old_features[0][:,:512].to_tensor(shape=[None, 512]) paper_masks = old_features[1][:,:512].to_tensor(shape=[None, 512]) features = (paper_titles, paper_masks, old_features[2], old_features[3]) labels = encoding_layer(labels) with tf.GradientTape() as tape: predictions = self(features, training=True) loss = loss_fn(labels, predictions) trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) self.optimizer.apply_gradients(zip(gradients, trainable_vars)) metric_1.update_state(labels, predictions) metric_2.update_state(labels, predictions) metric_3.update_state(labels, predictions) metric_4.update_state(labels, predictions) return {"loss": loss, "accuracy": metric_1.result(), "recall": metric_2.result(), "precision": metric_3.result(), "topK15": metric_4.result()} def test_step(self, inputs): old_features, labels = inputs labels = tf.RaggedTensor.from_tensor(labels, padding=0) paper_titles = old_features[0][:,:512].to_tensor(shape=[None, 512]) paper_masks = old_features[1][:,:512].to_tensor(shape=[None, 512]) features = (paper_titles, paper_masks, old_features[2], old_features[3]) labels = encoding_layer(labels) with tf.GradientTape() as tape: predictions = self(features, training=False) loss = loss_fn(labels, predictions) metric_1.update_state(labels, predictions) metric_2.update_state(labels, predictions) metric_3.update_state(labels, predictions) metric_4.update_state(labels, predictions) return {"loss": loss, "accuracy": metric_1.result(), "recall": metric_2.result(), "precision": metric_3.result(), "topK15": metric_4.result()} @property def metrics(self): return [metric_1, metric_2, metric_3] # In[7]: def _parse_function(example_proto): feature_description = { 'paper_title': tf.io.RaggedFeature(tf.int64), 'paper_mask': tf.io.RaggedFeature(tf.int64), 'journal': tf.io.FixedLenFeature((1,), tf.int64), 'doc_type': tf.io.FixedLenFeature((1,), tf.int64), 'targets': tf.io.FixedLenFeature((20,), tf.int64) } example = tf.io.parse_single_example(example_proto, feature_description) paper_title = example['paper_title'] paper_mask = example['paper_mask'] doc_type = example['doc_type'] journal = example['journal'] targets = example['targets'] return (paper_title, paper_mask, doc_type, journal), targets # In[8]: def get_dataset(path, data_type='train'): tfrecords = [f"{path}{data_type}/{x}" for x in os.listdir(f"{path}{data_type}/") if x.endswith('tfrecord')] tfrecords.sort() raw_dataset = tf.data.TFRecordDataset(tfrecords[:25], num_parallel_reads=AUTO) parsed_dataset = raw_dataset.map(_parse_function, num_parallel_calls=AUTO) parsed_dataset = parsed_dataset .apply(tf.data.experimental.dense_to_ragged_batch(256, drop_remainder=True)).shuffle(1024) return parsed_dataset.prefetch(AUTO) # In[9]: file_path = f'./{model_iteration}/tfrecords/' # In[10]: train_ds = get_dataset(file_path, 'train') val_ds = get_dataset(file_path, 'val') # In[11]: mirrored_strategy = tf.distribute.MirroredStrategy() # In[12]: with mirrored_strategy.scope(): # model = TFAlbertModel.from_pretrained('albert-base-v2') # model.layers[0].trainable = False # Model Inputs paper_title_input_ids = tf.keras.layers.Input((512,), dtype=tf.int64, name='paper_title_ids') paper_title_att_mask = tf.keras.layers.Input((512,), dtype=tf.int64, name='paper_title_mask') doc_type_id = tf.keras.layers.Input((1,), dtype=tf.int64, name='doc_type_id') journal_id = tf.keras.layers.Input((1,), dtype=tf.int64, name='journal_id') # Using HF Model for Title Representation # paper_title_embs = model(input_ids = paper_title_input_ids, # attention_mask=paper_title_att_mask, # output_hidden_states=True, # training=False).last_hidden_state # Embedding Layers paper_title_embs = tf.keras.layers.Embedding(input_dim=30001, output_dim=512, mask_zero=False, trainable=True, name="title_embedding")(paper_title_input_ids) doc_embs = tf.keras.layers.Embedding(input_dim=len(doc_vocab)+1, output_dim=32, mask_zero=False, name="doc_type_embedding")(doc_type_id) journal_embs = tf.keras.layers.Embedding(input_dim=len(journal_vocab)+1, output_dim=128, mask_zero=False, name="journal_embedding")(journal_id) # First layer dense_output = tf.keras.layers.Dense(1024, activation='relu', kernel_regularizer='L2', name="dense_1")(paper_title_embs) dense_output = tf.keras.layers.Dropout(0.20, name="dropout_1")(dense_output) dense_output = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layer_norm_1")(dense_output) dense_output_flat = tf.keras.layers.GlobalAveragePooling1D(name="title_pooling_layer")(dense_output) doc_flat = tf.keras.layers.GlobalAveragePooling1D(name="doc_pooling_layer")(doc_embs) journal_flat = tf.keras.layers.GlobalAveragePooling1D(name="journal_pooling_layer")(journal_embs) concat_output = tf.concat(values=[dense_output_flat, journal_flat, doc_flat], axis=1) # Second layer dense_output = tf.keras.layers.Dense(1024, activation='relu', kernel_regularizer='L2', name="dense_2")(concat_output) dense_output = tf.keras.layers.Dropout(0.20, name="dropout_2")(dense_output) dense_output = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layer_norm_2")(dense_output) # Third Layer dense_output = tf.keras.layers.Dense(256, activation='relu', kernel_regularizer='L2', name="dense_3")(dense_output) dense_output = tf.keras.layers.Dropout(0.20, name="dropout_3")(dense_output) dense_output = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layer_norm_3")(dense_output) # dense_output_flat = tf.keras.layers.GlobalAveragePooling1D(name="title_pooling_layer")(dense_output) # Output Layer final_output = tf.keras.layers.Dense(len(target_vocab)+1, activation="sigmoid", name="cls")(dense_output) test_model = CustomModel(inputs=[paper_title_input_ids, paper_title_att_mask, doc_type_id, journal_id], outputs=final_output, name='test_model') optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) # In[13]: test_model.compile(optimizer=optimizer) # In[14]: test_model.summary() # In[15]: callbacks = [tf.keras.callbacks.ModelCheckpoint(f'./models/{model_iteration}/{model_iteration}_first_try', save_best_only=False, save_weights_only=False)] # ## First try (with all variables and Albert model output) # In[ ]: history = test_model.fit(train_ds, epochs=1, validation_data=val_ds, verbose=1, callbacks=callbacks) # In[ ]: # In[ ]: # In[ ]: # In[ ]: # ## ARCHIVE: Baseline Second Try (trainable embeddings) # In[23]: history = test_model.fit(train_ds, epochs=5, validation_data=val_ds, verbose=1, callbacks=callbacks) # In[ ]: # In[ ]: # In[ ]: ```
{ "source": "jpbarrette/itables", "score": 2 }
#### File: itables/tests/test_downsample.py ```python import pytest import itertools import pandas as pd from itables.downsample import downsample def large_tables(N=1000): return [pd.DataFrame(5, columns=range(N), index=range(N)), pd.DataFrame(3.14159, columns=range(N), index=range(N)), pd.DataFrame("abcdefg", columns=range(N), index=range(N))] @pytest.mark.parametrize('df,max_rows', itertools.product(large_tables(), [99, 100])) def test_max_rows(df, max_rows): dn = downsample(df, max_rows=max_rows) assert len(dn.index) == max_rows pd.testing.assert_index_equal(dn.columns, df.columns) @pytest.mark.parametrize('df,max_columns', itertools.product(large_tables(), [99, 100])) def test_max_columns(df, max_columns): dn = downsample(df, max_columns=max_columns) pd.testing.assert_index_equal(dn.index, df.index) assert len(dn.columns) == max_columns @pytest.mark.parametrize('df,max_bytes', itertools.product(large_tables(), [10, 1e2, 1e3, 1e4, 1e5])) def test_max_bytes(df, max_bytes): dn = downsample(df, max_bytes=max_bytes) assert dn.values.nbytes <= max_bytes assert dn.values.nbytes > max_bytes / 2 @pytest.mark.parametrize('df', large_tables()) def test_max_one_byte(df, max_bytes=1): dn = downsample(df, max_bytes=max_bytes) assert len(dn.columns) == len(dn.index) == 1 assert dn.iloc[0, 0] == '...' ```
{ "source": "jpbarrette/moman", "score": 3 }
#### File: finenight/python/error.py ```python class Error(Exception): def __init__(self, string): self.string = string def __str__(self): return self.string class StateError(Error): """This error is raised when a state is invalid""" class AlphabetError(Error): """This error is raised when the alphabet of a FSA is invalid""" class ConstructionError(Error): """This error is raised when we encounter a problem when construction a FSA. """ class NotImplemented(Error): """This error is raised when the implementation of the function is incomplete """ ```
{ "source": "jp-barron/Susi_Simulation", "score": 2 }
#### File: Susi_Simulation/tools/fei4_tdc_analysis.py ```python import tables as tb import numpy as np import progressbar import os import math import sys import glob from pybar.analysis.analyze_raw_data import AnalyzeRawData import pybar.scans.analyze_source_scan_tdc_data as tdc_analysis def analyze_hits(input_file_hits): with AnalyzeRawData(raw_data_file=None, analyzed_data_file=input_file_hits) as analyze_raw_data: analyze_raw_data.create_source_scan_hist = True analyze_raw_data.create_cluster_hit_table = True analyze_raw_data.create_cluster_table = True analyze_raw_data.create_cluster_size_hist = True analyze_raw_data.create_cluster_tot_hist = True analyze_raw_data.create_tdc_hist = True analyze_raw_data.analyze_hit_table(analyzed_data_out_file=input_file_hits[:-3] + '_analyzed.h5') analyze_raw_data.plot_histograms(pdf_filename=input_file_hits[:-3], analyzed_data_file=input_file_hits[:-3] + '_analyzed.h5') def analyze_tdc(hit_file, calibration_filename=None, col_span=[5, 75], row_span=[10, 320]): # Data files hit_cut_file = hit_file[:-3] + '_cut_hits.h5' hit_cut_analyzed_file = hit_file[:-3] + '_cut_hits_analyzed.h5' # Selection criterions hit_selection = '(column > %d) & (column < %d) & (row > %d) & (row < %d)' % (col_span[0] + 1, col_span[1] - 1, row_span[0] + 5, row_span[1] - 5) # deselect edge pixels for better cluster size cut hit_selection_conditions = ['(n_cluster==1)', '(n_cluster==1) & (cluster_size == 1)', '(n_cluster==1) & (cluster_size == 1) & ((tot > 12) | ((TDC * 1.5625 - tot * 25 < 100) & (tot * 25 - TDC * 1.5625 < 100))) & %s' % hit_selection] event_status_select_mask = 0b0000111111111111 event_status_condition = 0b0000000100000000 # trigger, tdc word and perfect event structure required tdc_analysis.histogram_tdc_hits(hit_file, hit_selection_conditions, event_status_select_mask, event_status_condition, calibration_filename, max_tdc=1500, n_bins=1000) if __name__ == "__main__": arguments = sys.argv if len(arguments) < 2: print 'Please provide the base file name of the root data files (e.g. threshold_ for threshold_2000.root)' raise SystemExit base_file_name = arguments[1] calibration_filename = r'/home/davidlp/geant4/SourceSim-build/converter/calibration_data/hit_or_calibration_calibration.h5' file_names = glob.glob(base_file_name + '*_interpreted.h5') file_names.sort() for file_name in file_names: analyze_hits(file_name) file_names = glob.glob(base_file_name + '*_interpreted_analyzed.h5') file_names.sort() for file_name in file_names: analyze_tdc(file_name, calibration_filename) ```
{ "source": "jpbarto/amazon-sagemaker-stock-prediction", "score": 3 }
#### File: amazon-sagemaker-stock-prediction/notebooks/deepar_util.py ```python import io import math import json import s3fs import boto3 import datetime import pandas as pd import numpy as np import sagemaker import matplotlib import matplotlib.pyplot as plt # Function to Format DBG stock market data into a format suitable for DeepAR algorithm def deeparize(stockdata, stocksymbols, interval, metrices = None): data_feed = pd.DataFrame() data_feed['CalcDateTime'] = pd.to_datetime(pd.Series(sorted(list(stockdata.CalcDateTime.unique()))),infer_datetime_format=True) data_feed.index = data_feed['CalcDateTime'] data_feed.drop('CalcDateTime', axis=1, inplace = True) for mnemonic in stocksymbols: mnemonic_data = stockdata[stockdata.Mnemonic == mnemonic].copy() mnemonic_data.index = mnemonic_data['CalcDateTime'] mnemonic_data = mnemonic_data.sort_index() mnemonic_data = mnemonic_data.iloc[:,-6:] if metrices is None: metrices = mnemonic_data.columns.values for col in metrices: metric_col = mnemonic_data[col].to_frame() metric_col.columns = ["{}-{}".format(mnemonic,col)] data_feed = data_feed.add(metric_col, fill_value=0) data_feed = data_feed.resample(interval).mean() data_feed.fillna(method='backfill', limit=1, inplace=True) data_feed.fillna(method='ffill', inplace=True) data_feed.fillna(value=0, inplace=True) return data_feed # Function to load resampled stock data from a specified S3 location def load_resampled_from_s3(interval, bucket, s3_data_key, mnemonics=None, metrices = None): s3 = boto3.client('s3') obj = s3.get_object(Bucket=bucket, Key="{}/{}/resampled_stockdata.csv".format(s3_data_key, interval)) loaded = pd.read_csv(io.BytesIO(obj['Body'].read()), parse_dates=True) if mnemonics is None: mnemonics = list(loaded.Mnemonic.unique()) return deeparize(loaded, mnemonics, interval, metrices), mnemonics # Function to plot specified metrices for specified stock, each separate plot def metrics_plot(mnemonics, metrics = None, data=None, interval = None, bucket = None, s3_key = None): if data is None and interval is not None and bucket is not None and s3_key is not None: data, symbols = load_resampled_from_s3(interval, bucket, s3_key) if metrics is None: metrics = ['MinPrice', 'MaxPrice', 'StartPrice', 'EndPrice', 'TradedVolume', 'NumberOfTrades'] fig, axs = plt.subplots(math.ceil((len(metrics) * len(mnemonics))/3), 3, figsize=(20, 20), sharex=True) axx = axs.ravel() i = 0 for mnemonic in mnemonics: for metric in metrics: data["{}-{}".format(mnemonic,metric)].head() data["{}-{}".format(mnemonic,metric)].plot(ax=axx[i]) axx[i].set_xlabel("date") axx[i].set_ylabel("{}-{}".format(mnemonic,metric)) axx[i].grid(which='minor', axis='x') axx[i].set_xticklabels(data.index, rotation=90) i = i+1 # Function to plot specified metrices for specified stock, all superimposed on a single plot matplotlib.rcParams['figure.figsize'] = (25, 17) # use bigger graphs def timeseries_plot(mnemonics, metrics, data=None, interval = None, bucket = None, s3_key = None): if data is None and interval is not None and bucket is not None and s3_key is not None: data, symbols = load_resampled_from_s3(interval, bucket, s3_key) ax = None for mnemonic in mnemonics: selected = pd.DataFrame() selected['CalcDateTime'] = pd.Series(sorted(list(data.index.unique()))) selected.index = selected['CalcDateTime'] selected = selected.sort_index() selected.drop('CalcDateTime', axis=1, inplace = True) for metric in metrics: selected[metric] = data["{}-{}".format(mnemonic,metric)] selected_columns = list(selected.columns) for i, column in enumerate(selected_columns): selected_columns[i] = "{}-{}".format(mnemonic, column) selected.columns = selected_columns ax = selected.plot( ax = ax) ax.set_xticklabels(data.index, rotation=90) # Function to convert data frames containing time series data to JSON serialized data that DeepAR works with def json_serialize(data, start, end, target_column, covariate_columns, interval): timeseries = {} for i, col in enumerate(data.columns): metric = col[col.find('-')+1:] stock = col[:col.find('-')] if metric == target_column: if stock in timeseries.keys(): timeseries[stock]["target"] = data.iloc[:,i][start:end] else: timeseries[stock] = {} timeseries[stock]["start"] = str(pd.Timestamp(datetime.datetime.strptime(str(start), "%Y-%m-%d %H:%M:%S").strftime("%Y-%m-%d %H:%M:%S"), freq = interval)) timeseries[stock]["target"] = data.iloc[:,i][start:end] print("Time series for {} added".format(stock)) elif metric in covariate_columns: if stock in timeseries.keys(): if "dynamic_feat" in timeseries[stock]: dynamic_feat = timeseries[stock]["dynamic_feat"] dynamic_feat.append(data.iloc[:,i][start:end]) else: dynamic_feat = [] dynamic_feat.append(data.iloc[:,i][start:end]) timeseries[stock]["dynamic_feat"] = dynamic_feat else: timeseries[stock] = {} dynamic_feat = [] dynamic_feat.append(data.iloc[:,i]) timeseries[stock]["dynamic_feat"] = dynamic_feat print("Dynamic Feature - {} for {} added".format(metric, stock)) else: pass json_data = [ { "start": ts["start"], "target": ts["target"].tolist(), "dynamic_feat": [feat.tolist() for feat in ts["dynamic_feat"]] } for ts in timeseries.values() ] return json_data # Function to first split the data into training and test sets, and then to JSON serialize both sets def generate_train_test_set(data, target_column, covariate_columns, interval, train_test_split=0.9, num_test_windows=4): num_samples = len(data.index.values) num_train = int(train_test_split * num_samples) num_test = int((num_samples - num_train)/num_test_windows) print("Sample Size = {}, Training Set: {}, Test Set: {} * {}".format(num_samples, num_train, num_test_windows, num_test)) train_start_dt = data.index[0] train_end_dt = data.index[num_train - 1] print("Training Set: Starts at - {}, Ends at - {}".format(train_start_dt, train_end_dt)) train_data = json_serialize(data, train_start_dt, train_end_dt, target_column, covariate_columns, interval) test_data = [] test_start_date = train_start_dt for i in range(num_test_windows): test_end_dt = data.index.values[num_train + i*num_test - 1] test_data.extend(json_serialize(data, test_start_date, test_end_dt, target_column, covariate_columns, interval)) return train_data, test_data, train_start_dt, train_end_dt #Function to write JSON serialized training and test data into S3 bucket, which will later be fed to training container def write_dicts_to_file(data, interval, bucket, path, channel): fs = s3fs.S3FileSystem() with fs.open("{}/{}/{}/{}/{}.json".format(bucket, path, interval, channel, channel), 'wb') as fp: for d in data: fp.write(json.dumps(d).encode("utf-8")) fp.write("\n".encode('utf-8')) return "s3://{}/{}/{}/{}/".format(bucket, path, interval, channel) # Class that allows making requests using pandas Series objects rather than raw JSON strings class DeepARPredictor(sagemaker.predictor.RealTimePredictor): def __init__(self, *args, **kwargs): super().__init__(*args, content_type=sagemaker.content_types.CONTENT_TYPE_JSON, **kwargs) def predict(self, ts, cat=None, dynamic_feat=None, num_samples=100, return_samples=False, quantiles=["0.1", "0.5", "0.9"]): """Requests the prediction of for the time series listed in `ts`, each with the (optional) corresponding category listed in `cat`. ts -- `pandas.Series` object, the time series to predict cat -- integer, the group associated to the time series (default: None) num_samples -- integer, number of samples to compute at prediction time (default: 100) return_samples -- boolean indicating whether to include samples in the response (default: False) quantiles -- list of strings specifying the quantiles to compute (default: ["0.1", "0.5", "0.9"]) Return value: list of `pandas.DataFrame` objects, each containing the predictions """ prediction_time = ts.index[-1] + 1 quantiles = [str(q) for q in quantiles] req = self.__encode_request(ts, cat, dynamic_feat, num_samples, return_samples, quantiles) res = super(DeepARPredictor, self).predict(req) return self.__decode_response(res, ts.index.freq, prediction_time, return_samples) def __encode_request(self, ts, cat, dynamic_feat, num_samples, return_samples, quantiles): instance = series_to_dict(ts, cat if cat is not None else None, dynamic_feat if dynamic_feat else None) configuration = { "num_samples": num_samples, "output_types": ["quantiles", "samples"] if return_samples else ["quantiles"], "quantiles": quantiles } http_request_data = { "instances": [instance], "configuration": configuration } return json.dumps(http_request_data).encode('utf-8') def __decode_response(self, response, freq, prediction_time, return_samples): # we only sent one time series so we only receive one in return # however, if possible one will pass multiple time series as predictions will then be faster predictions = json.loads(response.decode('utf-8'))['predictions'][0] prediction_length = len(next(iter(predictions['quantiles'].values()))) prediction_index = pd.DatetimeIndex(start=prediction_time, freq=freq, periods=prediction_length) if return_samples: dict_of_samples = {'sample_' + str(i): s for i, s in enumerate(predictions['samples'])} else: dict_of_samples = {} return pd.DataFrame(data={**predictions['quantiles'], **dict_of_samples}, index=prediction_index) def set_frequency(self, freq): self.freq = freq def encode_target(ts): return [x if np.isfinite(x) else "NaN" for x in ts] def series_to_dict(ts, cat=None, dynamic_feat=None): """Given a pandas.Series object, returns a dictionary encoding the time series. ts -- a pands.Series object with the target time series cat -- an integer indicating the time series category Return value: a dictionary """ obj = {"start": str(ts.index[0]), "target": encode_target(ts)} if cat is not None: obj["cat"] = cat if dynamic_feat is not None: obj["dynamic_feat"] = dynamic_feat return obj # Function to create a data structure to invoke prediction for a given stock and within a given time range def query_for_stock(stock_to_predict, target_column, covariate_columns, data, prediction_length, start = None, end = None): if start is None: start = data.index.values[0] if end is None: end = data.index.values[-1] startloc = data.index.get_loc(start) endloc = data.index.get_loc(end) stockts = None ts = None dynamic_feat = [] for i, col in enumerate(data.columns): stock = col[:col.find('-')] metric = col[col.find('-')+1:] if stock == stock_to_predict: if metric == target_column: ts = data.iloc[:,i][startloc:endloc-prediction_length] stockts = data.iloc[:,i][:] print("Time series - {} for {} selected".format(metric, stock)) elif metric in covariate_columns: dynamic_feat.append(data.iloc[:,i][startloc:endloc].tolist()) print("Dynamic Feature - {} for {} selected".format(metric, stock)) else: pass return ts, dynamic_feat, stockts def plot_predicted_observed_at_quantile(ts, observed, predicted, quantile): ax = None ax = observed.plot( ax = ax, legend=True, label="Given" ) ax.set_xticklabels(observed.index, rotation=90) #for col in prediction.columns: predicted = ts.append(predicted[quantile]) predicted.plot(ax = ax, legend=True, label="Predicted") def plot( predictor, stock_id, mnemonics, target_ts, target_column, covariate_columns, prediction_length, plot_history, cat=None, dynamic_feat=None, forecast_date=None, show_samples=False, confidence=75 ): if forecast_date is None: forecast_date = target_ts.index[-1] print("calling served model to generate predictions starting from {}".format(str(forecast_date))) assert(confidence > 50 and confidence < 100) low_quantile = 0.5 - confidence * 0.005 up_quantile = confidence * 0.005 + 0.5 ts, dynamic_feat, stockts = query_for_stock(mnemonics[stock_id], target_column, covariate_columns, target_ts, prediction_length, end=forecast_date) args = { "ts": ts, "return_samples": show_samples, "quantiles": [low_quantile, 0.5, up_quantile], "num_samples": 100 } if dynamic_feat is not None: args["dynamic_feat"] = dynamic_feat fig = plt.figure(figsize=(20, 6)) ax = plt.subplot(2, 1, 1) else: fig = plt.figure(figsize=(20, 3)) ax = plt.subplot(1,1,1) if cat is not None: args["cat"] = cat ax.text(0.9, 0.9, 'cat = {}'.format(cat), transform=ax.transAxes) # call the end point to get the prediction prediction = predictor.predict(**args) # plot the samples if show_samples: for key in prediction.keys(): if "sample" in key: prediction[key].plot(color='lightskyblue', alpha=0.2, label='_nolegend_') # plot the target target_section = stockts[forecast_date-plot_history:forecast_date+prediction_length] target_section.plot(color="black", label='target') # plot the confidence interval and the median predicted ax.fill_between( prediction[str(low_quantile)].index, prediction[str(low_quantile)].values, prediction[str(up_quantile)].values, color="b", alpha=0.3, label='{}% confidence interval'.format(confidence) ) prediction["0.5"].plot(color="b", label='P50') ax.legend(loc=2) # fix the scale as the samples may change it #ax.set_ylim(target_section.min() * 0.5, target_section.max() * 1.5) ax.set_ylim(ts.min(), ts.max()) ''' if dynamic_feat is not None: for i, f in enumerate(dynamic_feat, start=1): ax = plt.subplot(len(dynamic_feat) * 2, 1, len(dynamic_feat) + i, sharex=ax) feat_ts = pd.Series( index=pd.DatetimeIndex(start=target_ts.index[0], freq=target_ts.index.freq, periods=len(f)), data=f ) feat_ts[forecast_date-plot_history:forecast_date+prediction_length].plot(ax=ax, color='g') ''' ```
{ "source": "jpbarto/aws_automation_workshop", "score": 2 }
#### File: lab3_compliance_enforcement/src/remediate_entities.py ```python import boto3 policy_arn = 'arn:aws:iam::012345678901:policy/ManagedPolicy' iam = boto3.client ('iam') def remediate_role (rolename): iam.attach_role_policy (RoleName = rolename, PolicyArn = policy_arn) return True def handler (event, context): print ("Processing event: {}".format (event)) event_detail = {} if 'detail' in event: event_detail = event['detail'] report = { 'Enforced': False } if 'eventName' in event_detail: print ("Processing event {}".format (event_detail['eventName'])) if 'eventName' in event_detail and event_detail['eventName'] == 'CreateRole': rolename = event_detail['requestParameters']['roleName'] report['RoleName'] = rolename report['Enforced'] = remediate_role (rolename) else: report['Reason'] = 'No role creation found' print (report) return report ``` #### File: lab4_compliance_report/src/check_policy_enforcement.py ```python import boto3 from datetime import datetime import json cfg = boto3.client ('config') iam = boto3.client ('iam') COMPLIANCE_STATES = { 'COMPLIANT': 'COMPLIANT', 'NON_COMPLIANT': 'NON_COMPLIANT', 'NOT_APPLICABLE': 'NOT_APPLICABLE' } policy_arn = 'arn:aws:iam::012345678901:policy/ManagedPolicy' # Checks whether the invoking event is ScheduledNotification def is_scheduled (event): return (event['messageType'] == 'ScheduledNotification') def get_role_policies (rolename, marker = None): policies = [] if marker is None: policy_resp = iam.list_attached_role_policies (RoleName = rolename, MaxItems = 100) else: policy_resp = iam.list_attached_role_policies (RoleName = rolename, MaxItems = 100, Marker = marker) marker = None for policy in policy_resp['AttachedPolicies']: policies.append (policy['PolicyArn']) if 'IsTruncated' in policy_resp and policy_resp['IsTruncated']: marker = policy_resp['Marker'] return (policies, marker) def evaluate_role (rolename): role_policies = [] (role_policies, marker) = get_role_policies (rolename) while marker is not None: (policies, marker) = get_role_policies (rolename, marker = marker) role_policies += policies if policy_arn in role_policies: return COMPLIANCE_STATES['COMPLIANT'] return COMPLIANCE_STATES['NON_COMPLIANT'] def get_roles (): token = None resources = [] (rsrcs, token) = get_resources ('AWS::IAM::Role', next_token = token) resources += rsrcs while token is not None: (rsrcs, token) = get_resources ('AWS::IAM::Role', next_token = token) resources += rsrcs return resources def get_resources (rsrc_type, next_token): if next_token is not None: resp = cfg.list_discovered_resources ( resourceType = rsrc_type, includeDeletedResources = False, nextToken = next_token ) else: resp = cfg.list_discovered_resources ( resourceType = rsrc_type, includeDeletedResources = False ) rsrcs = resp['resourceIdentifiers'] next_token = None if 'nextToken' in resp: next_token = resp['nextToken'] return (rsrcs, next_token) # Receives the event and context from AWS Lambda. You can copy this handler and use it in your own # code with little or no change. def handler (event, context): print ("Processing event: {}".format (event)) return_message = 'Invoked for a notification other than Scheduled Notification... Ignoring.' invoking_event = json.loads (event['invokingEvent']) rule_parameters = {} if 'ruleParameters' in event: rule_parameters = json.loads (event['ruleParameters']) result_token = event['resultToken'] if (is_scheduled (invoking_event)): evaluations = [] eval_time = datetime.now () roles = get_roles () for role in roles: compliance = evaluate_role (role['resourceName']) evaluations.append ({ 'ComplianceResourceType': role['resourceType'], 'ComplianceResourceId': role['resourceId'], 'ComplianceType': compliance, 'OrderingTimestamp': eval_time }) for i in range(0,len(evaluations),50): cfg.put_evaluations ( Evaluations = evaluations[i:(i+50)], ResultToken = result_token ) return_message = "Evaluationed {} roles".format (len(roles)) print (return_message) return return_message ```
{ "source": "jpbarto/cluster_python_eval", "score": 2 }
#### File: jpbarto/cluster_python_eval/node0.py ```python import zmq import time import threading import json name = 'bob' def cluster_manager (context, join_uri): nodes = [name] join_sock = context.socket (zmq.REP) join_sock.bind (join_uri) while True: message = join_sock.recv () req = json.loads (message) if 'type' in req and req['type'] == 'JOIN' and req['node'] not in nodes: nodes.append (req['node']) resp = {'type': 'ACK', 'nodes': nodes} join_sock.send (json.dumps(resp)) ctx = zmq.Context (1) thread = threading.Thread (target = cluster_manager, args = (ctx, 'tcp://*:5560')) thread.start () ```
{ "source": "jpbelleau/hdfs-over-ftp-slider", "score": 2 }
#### File: package/scripts/hdfsftp.py ```python import sys from resource_management import * class HDFSFTP(Script): def install(self, env): self.install_packages(env) def configure(self, env): import os import params env.set_params(params) keystore_path = params.app_root + "/" + params.keystore_file File(format("{params.log_dir}/hdfs-over-ftp.log"), mode=0666, owner=params.app_user, group=params.user_group ) TemplateConfig(format("{app_root}/log4j.xml"), owner = params.app_user, group = params.user_group) #TemplateConfig(format("{app_root}/hdfs-over-ftp.properties"), owner = params.app_user, group = params.user_group) PropertiesFile(format("{app_root}/hdfs-over-ftp.properties"), properties = params.config['configurations']['hdfsftp'], owner = params.app_user, group = params.user_group ) PropertiesFile(format("{app_root}/users.properties"), properties = params.config['configurations']['usersprops'], owner = params.app_user, group = params.user_group ) if not os.path.exists(keystore_path): Execute(format("{hdfs_bin} dfs -get {keystore_in_hdfs} {keystore_path}"), user=params.app_user) File(keystore_path, mode=0600, group=params.app_user, owner=params.user_group, replace=False) def start(self, env): import params env.set_params(params) self.configure(env) process_cmd = format("{java64_home}/jre/bin/java {params.java_opts} -Dcom.sun.management.jmxremote.port={params.jmxport} -Dcom.sun.management.jmxremote.rmi.port={params.jmxport} -cp {params.app_root}/:{params.app_root}/lib/* org.apache.hadoop.contrib.ftp.HdfsOverFtpServer --approot {params.app_root} > {params.log_dir}/hdfsftp-output.log 2>&1") #user=params.app_user, Execute(process_cmd, logoutput=True, wait_for_finish=False, pid_file=params.pid_file ) def stop(self, env): import params env.set_params(params) def status(self, env): import params env.set_params(params) check_process_status(params.pid_file) if __name__ == "__main__": HDFSFTP().execute() ```
{ "source": "jpbelleau/openaigym_pong", "score": 3 }
#### File: jpbelleau/openaigym_pong/pong_runner.py ```python import argparse import gym import matplotlib.pyplot as plt from matplotlib.pyplot import draw, pause from random import choice from pong_player import Player # Runs Pong training, testing, and playing # Step returns: # Num Description # 0 Observation - screen (210, 160, 3) # 1 Reward (-1 [lost point], 0, or 1 [won point]) # 2 Game over (boolean) # 3 {'ale.lives': 0} # Actions: # Type: Discrete(5) # Num Action # 0 NOOP # 1 FIRE # 2 RIGHT (for Pong - up) # 3 LEFT (for Pong - down) # 4 RIGHTFIRE # 5 LEFTFIRE class PRun: def __init__(self, screenscale=2, showtesting=False): # Reduce screen dimensions by this scale factor # Reduce details for processing speed self.screenscale = screenscale # Show screens while running self.showtesting = showtesting # Number of output classes self.num_classes = 3 # Number of stacked LSTM layers self.num_layers = 1 # Zero disables self.dropout = 0 # How many frames to run before training / playing # At the start of a game self.startup_frames = 10 # Current results - correct == wins / incorrect == losses self.results = {"correct": 0, "incorrect": 0, "perccorrect": 0, "loss": 0.0} def reformat(self, x1, fullscreen=False): # Screens from files are partly reformatted already if fullscreen == True: # Trim based on fullscreen # Summing all the colors, shape is (210,160) y1 = x1.sum(axis=2) # True/False, background is False, 233 is background color y2 = y1 != 233 y3 = y2.astype(int) x1 = y3[ 34:194, ] y4 = x1[:, 16:144] # original shape is 160,128 - this has opp paddle # y4 = x1[:,20:144] # shape is 160,124 - no opp paddle r, c = y4.shape y5 = y4.reshape( r // self.screenscale, self.screenscale, c // self.screenscale, self.screenscale, ) y6 = y5.transpose([0, 2, 1, 3]) y7 = y6.sum(axis=(2, 3)) y8 = y7 != 0 y9 = y8.astype(float) return y9 def startup(self, env, n, player, reset=True, lastscreen=None): # Run a few frames (for the beginning of the point) # Keep these for normalizing the number of sequences later # Only reset if no previous screen (new game) if reset == False: x1 = lastscreen else: x1 = env.reset() for _ in range(n): act = choice([0, 2, 3]) # Associate the screen we saw with the action taken player.store(self.reformat(x1, fullscreen=True), act) x1, _, _, _ = env.step(act) # Return the last screen return x1 def setvars( self, subcommand, numpoints=0, loadpath=None, learnrate=0.001, savepath=None, savebasename=None, loadmodel=None, randfiles=False, numgames=0, rendergame=False, forcecpu=False, ): # Bring in settings self.subcommand = subcommand self.numpoints = numpoints self.loadpath = loadpath self.learnrate = learnrate self.savepath = savepath self.savebasename = savebasename self.loadmodel = loadmodel self.randfiles = randfiles self.numgames = numgames self.rendergame = rendergame self.forcecpu = forcecpu self.numepochs = 0 if self.numpoints > 0: self.numepochs = self.numpoints elif self.numgames > 0: self.numepochs = self.numgames else: print("Both number of points and number of games cannot be zero") return False return True def run(self): # Run the proper function based on the subcommand # So far, no frame skip has performed better than the standard # In test / train this is used to get the original screen size env = gym.make("PongNoFrameskip-v0") # Instantiate player pplayer = Player() numimgseq = pplayer.numimgseq if self.startup_frames < numimgseq: print( "Startup frames needs to be larger than the number of sequences per batch" ) return False screen = self.startup(env, self.startup_frames, pplayer) imgw = pplayer.mem[0][0].shape[0] imgh = pplayer.mem[0][0].shape[1] if self.subcommand != "play": env.close() hidden_size = int(imgw * imgh) pplayer.initnet( num_classes=self.num_classes, imgw=imgw, imgh=imgh, hidden_size=hidden_size, num_layers=self.num_layers, dropout=self.dropout, learnrate=self.learnrate, modelfile=self.loadmodel, forcecpu=self.forcecpu, ) if self.showtesting == True: im = plt.imshow(self.reformat(screen, fullscreen=True)) if self.subcommand != "play": # Load training data from files if pplayer.loaddata(self.loadpath, self.randfiles, self.numpoints) == False: return False righttot = wrongtot = 0 pointsfortot = pointsvstot = 0 if self.subcommand == "train": print( "Num point Right Wrong Ratio RightTotal WrongTotal RatioTotal Alpha Loss" ) elif self.subcommand == "train": print( "Num point Right Wrong Ratio RightTotal WrongTotal RatioTotal" ) elif self.subcommand == "play": print( "Num game Me Opp MeTotal OppTotal RatioTotal MvHoldTotal MvUpTotal MvDownTotal" ) # Loop per point (train / test) or game (play) depending on command for i in range(self.numepochs): numpoints = i + 1 if self.subcommand != "play": # Prepare data # Need to separate inputs (screens) and answers (actions) meminputs = [] memanswers = [] for (img, act) in pplayer.alldata[i]: if self.showtesting == True: im.set_data(img) draw() pause(0.001) meminputs.append(self.reformat(img)) memanswers.append(act) # Run this point screen sequence right, wrong = pplayer.replayscreens( meminputs, memanswers, mode=self.subcommand ) righttot += right wrongtot += wrong rat = right / (right + wrong) rattot = righttot / (righttot + wrongtot) if self.subcommand == "train": print( f"{numpoints:5d} {right:6d} {wrong:6d} {rat:3.3f} {righttot:9d} {wrongtot:6d} {rattot:5.3f} {pplayer.getalpha():6.3f} {pplayer.currloss:6.3f}" ) self.results["loss"] = pplayer.currloss elif self.subcommand == "test": print( f"{numpoints:5d} {right:6d} {wrong:6d} {rat:3.3f} {righttot:9d} {wrongtot:6d} {rattot:5.3f}" ) self.results["correct"] = right self.results["incorrect"] = wrong self.results["perccorrect"] = rat else: # Gotta be play pointsfor = pointsvs = 0 movedict = {"net": [0, 0, 0]} # Point loop while True: screen = self.reformat(screen, fullscreen=True) # Need to combine into a sequence # Create as a subarray of a sequence of images # Basically make this a batch size of 1 mvimgseq = [] mvimgseq.append([]) mvimgseq[0].append(screen) for i in range(numimgseq - 1): mvimgseq[0].insert(0, (pplayer.mem[i][0])) if self.showtesting == True: for img in mvimgseq: im.set_data(img) draw() pause(0.001) # Get the move form the neural net act = pplayer.getmove(mvimgseq) # Keeping track for how many hold, up, down actions if act > 1: movedict["net"][act - 1] += 1 else: movedict["net"][act] += 1 # Store this screen to be used in future sequences pplayer.store(screen, act) # Render game if desired if self.rendergame == True: env.render() # Send our action to the env and get the output screen screen, x2, x3, _ = env.step(act) # Point over? if int(x2) != 0: # End of the game? if x3 == False: if x2 < 0: pointsvs += 1 else: pointsfor += 1 # Clear the screen memory pplayer.mem = [] print( f'{numpoints:5d} {pointsfor:6d} {pointsvs:6d} ------ ------ --- {movedict["net"][0]:4d} {movedict["net"][1]:4d} {movedict["net"][2]:4d}' ) # Prep for the next point screen = self.startup( env, numimgseq, pplayer, reset=False, lastscreen=screen ) # End of the game? if x3 == True: pointsfortot += pointsfor pointsvstot += pointsvs rat = pointsfortot / (pointsfortot + pointsvstot) print( f'{numpoints:5d} {pointsfor:6d} {pointsvs:6d} {pointsfortot:9d} {pointsvstot:6d} {rat:3.3f} {movedict["net"][0]:4d} {movedict["net"][1]:4d} {movedict["net"][2]:4d}' ) self.results["correct"] = pointsfortot self.results["incorrect"] = pointsvstot self.results["perccorrect"] = rat break # Prepare for next game screen = self.startup(env, numimgseq, pplayer) if self.savepath != None: # Save the model pplayer.savenet(self.savepath, self.savebasename) if self.rendergame == True: env.close() return True if __name__ == "__main__": # Setup argument parser parser = argparse.ArgumentParser( description="Runs Pong training, testing, and playing" ) subparsers = parser.add_subparsers(help="Mode subcommands", dest="subcommand") # Subcommand train parser_train = subparsers.add_parser("train", help="Training commands") parser_train_r = parser_train.add_argument_group("required arguments") parser_train_r.add_argument( "--numpoints", required=True, type=int, help="Number of point files to use for training", ) parser_train_r.add_argument( "--loadpath", required=True, help="Directory to load screen sequences" ) parser_train_r.add_argument( "--learnrate", required=True, type=float, help="Learning rate" ) parser_train.add_argument("--savepath", help="Directory to save model") parser_train.add_argument( "--savebasename", help="Base file name for model and optium saves" ) parser_train.add_argument( "--randfiles", action="store_true", help="Randomize file selection" ) parser_train.add_argument("--forcecpu", action="store_true", help="Only use CPU") # Subcommand test parser_test = subparsers.add_parser("test", help="Testing commands") parser_test_r = parser_test.add_argument_group("required arguments") parser_test_r.add_argument( "--numpoints", required=True, type=int, help="Number of point files to use for testing", ) parser_test_r.add_argument( "--loadpath", required=True, help="Directory to load screen sequences" ) parser_test_r.add_argument( "--loadmodel", required=True, help="Full path to model to test" ) parser_test.add_argument( "--randfiles", action="store_true", help="Randomize file selection" ) parser_test.add_argument("--forcecpu", action="store_true", help="Only use CPU") # Subcommand play parser_play = subparsers.add_parser("play", help="Play commands") parser_play_r = parser_play.add_argument_group("required arguments") parser_play_r.add_argument( "--numgames", required=True, type=int, help="Number of games to play" ) parser_play_r.add_argument( "--loadmodel", required=True, help="Full path to model to play" ) parser_play.add_argument( "--rendergame", action="store_true", help="Render the game while playing" ) parser_play.add_argument("--forcecpu", action="store_true", help="Only use CPU") args = parser.parse_args() dargs = vars(args) # Instantiate a runner prunner = PRun(screenscale=2, showtesting=False) # Setup variables if prunner.setvars(**dargs) == False: exit # Run the command if prunner.run() == False: exit ```
{ "source": "jpbempel/spring-petclinic", "score": 3 }
#### File: spring-petclinic/scripts/percentiles.py ```python import sys output_filename = sys.argv[1] input_files = sys.argv[2:] def get_percentile(percentile, values): count = len(values) return values[int(count * percentile)] latencies = [] percentiles = [] with open(output_filename, "w") as output_file: headers = [input_file.replace('results_', '').replace('.csv', '') for input_file in input_files] output_file.write(','.join(headers) + '\n') for input_filename in input_files: with open(input_filename) as input_file: for line in input_file: cols = line.split(',') if cols[0] == "starttransfer": # header continue latencies.append(cols[0]) latencies.sort() percentile_dist = [get_percentile(0.1, latencies), get_percentile(0.2, latencies), get_percentile(0.3, latencies), get_percentile(0.4, latencies), get_percentile(0.5, latencies), get_percentile(0.6, latencies), get_percentile(0.7, latencies), get_percentile(0.8, latencies), get_percentile(0.9, latencies), get_percentile(0.95, latencies), get_percentile(0.99, latencies)] percentiles.append(percentile_dist) for percentile_no in range(11): # number of percentiles line_values = [] for input_no in range(len(percentiles)): line_values.append(percentiles[input_no][percentile_no]) line = ','.join(line_values) + '\n' output_file.write(line) ```
{ "source": "jpbernius/eat-api", "score": 3 }
#### File: eat-api/src/entities.py ```python import json import re from typing import Dict, Optional, Sequence class Dish: def __init__(self, name, price, ingredients, dish_type): self.name = name try: self.price = float(price) except ValueError: self.price = price self.ingredients = ingredients self.dish_type = dish_type def __repr__(self): if type(self.price) is not str: return "%s %s %s: %.2f€" % (self.dish_type, self.name, str(sorted(self.ingredients)), self.price) else: return "%s %s %s: %s" % (self.dish_type, self.name, str(sorted(self.ingredients)), self.price) def __eq__(self, other): if isinstance(other, self.__class__): return (self.name == other.name and self.price == other.price and self.ingredients == other.ingredients and self.dish_type == other.dish_type) return False def to_json_obj(self): return {"name": self.name, "price": self.price, "ingredients": sorted(self.ingredients), "dish_type": self.dish_type} def __hash__(self): # http://stackoverflow.com/questions/4005318/how-to-implement-a-good-hash-function-in-python return (hash(self.name) << 1) ^ hash(self.price) ^ hash(frozenset(self.ingredients)) class Menu: def __init__(self, menu_date, dishes): self.menu_date = menu_date self.dishes = dishes def __repr__(self): menu_str = str(self.menu_date) + ": " + str(self.dishes) return menu_str def __eq__(self, other): if isinstance(other, self.__class__): dishes_equal = set(self.dishes) == set(other.dishes) date_equal = self.menu_date == other.menu_date return dishes_equal and date_equal return False def remove_duplicates(self): unique = [] seen = set() for d in self.dishes: if d not in seen: unique.append(d) seen.add(d) self.dishes = unique class Week: def __init__(self, calendar_week, year, days): self.calendar_week = calendar_week self.year = year self.days = days def __repr__(self): week_str = "Week %s-%s" % (self.year, self.calendar_week) for day in self.days: week_str += "\n %s" % day return week_str def to_json_obj(self): return {"number": self.calendar_week, "year": self.year, "days": [{"date": str(menu.menu_date), "dishes": [dish.to_json_obj() for dish in menu.dishes]} for menu in self.days]} def to_json(self): week_json = json.dumps( self.to_json_obj(), ensure_ascii=False, indent=4) return week_json @staticmethod def to_weeks(menus): weeks = {} for menu_key in menus: menu = menus[menu_key] menu_date = menu.menu_date # get calendar week calendar_week = menu_date.isocalendar()[1] # get year of the calendar week. watch out that for instance jan 01 can still be in week 52 of the # previous year year_of_calendar_week = menu_date.year - 1 \ if calendar_week == 52 and menu_date.month == 1 else menu_date.year # append menus to respective week week = weeks.get(calendar_week, Week(calendar_week, year_of_calendar_week, [])) week.days.append(menu) weeks[calendar_week] = week return weeks class Ingredients: ingredient_lookup = { "GQB" : "Certified Quality - Bavaria", "MSC" : "Marine Stewardship Council", "1" : "with dyestuff", "2" : "with preservative", "3" : "with antioxidant", "4" : "with flavor enhancers", "5" : "sulphured", "6" : "blackened (olive)", "7" : "waxed", "8" : "with phosphate", "9" : "with sweeteners", "10" : "contains a source of phenylalanine", "11" : "with sugar and sweeteners", "13" : "with cocoa-containing grease", "14" : "with gelatin", "99" : "with alcohol", "f" : "meatless dish", "v" : "vegan dish", "S" : "with pork", "R" : "with beef", "K" : "with veal", "G" : "with poultry", # mediziner mensa "W" : "with wild meat", # mediziner mensa "L" : "with lamb", # mediziner mensa "Kn" : "with garlic", "Ei" : "with chicken egg", "En" : "with peanut", "Fi" : "with fish", "Gl" : "with gluten-containing cereals", "GlW" : "with wheat", "GlR" : "with rye", "GlG" : "with barley", "GlH" : "with oats", "GlD" : "with spelt", "Kr" : "with crustaceans", "Lu" : "with lupines", "Mi" : "with milk and lactose", "Sc" : "with shell fruits", "ScM" : "with almonds", "ScH" : "with hazelnuts", "ScW" : "with Walnuts", "ScC" : "with cashew nuts", "ScP" : "with pistachios", "Se" : "with sesame seeds", "Sf" : "with mustard", "Sl" : "with celery", "So" : "with soy", "Sw" : "with sulfur dioxide and sulfites", "Wt" : "with mollusks", } """A dictionary of all ingredients (from the Studentenwerk) with their description.""" fmi_ingredient_lookup = { "Gluten" : "Gl", "Laktose" : "Mi", "Milcheiweiß" : "Mi", "Milch" : "Mi", "Ei" : "Ei", "Hühnerei" : "Ei", "Soja" : "So", "Nüsse" : "Sc", "Erdnuss" : "En", "Sellerie" : "Sl", "Fisch" : "Si", "Krebstiere" : "Kr", "Weichtiere" : "Wt", "Sesam" : "Se", "Senf" : "Sf", } mediziner_ingredient_lookup = { "1" : "1", "2" : "2", "3" : "3", "4" : "4", "5" : "5", "6" : "6", "7" : "7", "8" : "8", "9" : "9", "A" : "99", "B" : "Gl", "C" : "Kr", "E" : "Fi", "F" : "Fi", "G" : "G", "H" : "En", "K" : "K", "L" : "L", "M" : "So", "N" : "Mi", "O" : "Sc", "P" : "Sl", "R" : "R", "S" : "S", "T" : "Sf", "U" : "Se", "V" : "Sw", "W" : "W", "X" : "Lu", "Y" : "Ei", "Z" : "Wt", } def __init__(self, location: str) -> None: self.location = location self.ingredient_set = set() def _values_lookup(self, values: Sequence[str], lookup: Optional[Dict[str, str]]) -> None: """ Normalizes ingredients to the self.ingredient_lookup codes. Args: values: A sequence of ingredients codes. lookup: If needed, a mapping from a canteen specific ingredients codes to the self.ingredient_lookup codes. """ for value in values: # ignore empty values if not value or value.isspace(): continue if (not lookup and value not in self.ingredient_lookup) or (lookup and value not in lookup): # sometimes the ‘,’ is missing between the ingredients (especially with IPP) and we try to split again # with capital letters. split_values = re.findall(r'[a-züöäA-ZÜÖÄ][^A-ZÜÖÄ]*', value) if split_values: self._values_lookup(split_values, lookup) continue else: print("Unknown ingredient for " + self.location + " found: " + str(value)) continue if lookup: self.ingredient_set.add(lookup[value]) else: self.ingredient_set.add(value) def parse_ingredients(self, values: str) -> None: """ Parse and creates a normalized list of ingredients. Args: values: String with comma separated ingredients codes. """ values = values.strip() split_values = values.split(',') # check for special parser/ingredient translation required if self.location == "fmi-bistro": self._values_lookup(split_values, self.fmi_ingredient_lookup) elif self.location == "mediziner-mensa": self._values_lookup(split_values, self.mediziner_ingredient_lookup) # default to the "Studentenwerk" ingredients # "ipp-bistro" also uses the "Studentenwerk" ingredients since all # dishes contain the same ingredients else: self._values_lookup(split_values, None) def __hash__(self): return hash(frozenset(self.ingredient_set)) ``` #### File: eat-api/src/util.py ```python from datetime import datetime date_pattern = "%d.%m.%Y" cli_date_format = "dd.mm.yyyy" def parse_date(date_str): return datetime.strptime(date_str, date_pattern).date() def make_duplicates_unique(names_with_duplicates): counts = [1] * len(names_with_duplicates) checked_names = [] for i, name in enumerate(names_with_duplicates): if name in checked_names: counts[i] += 1 checked_names.append(name) names_without_duplicates = names_with_duplicates for i, count in enumerate(counts): if count > 1: names_without_duplicates[i] += " (%s)" % count return names_without_duplicates ```
{ "source": "jpbernius/tumcsbot", "score": 3 }
#### File: tumcsbot/src/migrate.py ```python import argparse import sqlite3 as sqlite def migrate(db_path: str, sql_script_path: str) -> None: """Apply the given sql_script to the given database.""" connection: sqlite.Connection = sqlite.connect(db_path) cursor: sqlite.Cursor = connection.cursor() with open(sql_script_path, 'r') as sql_script: cursor.executescript(sql_script.read()) connection.commit() connection.close() def main() -> None: argument_parser = argparse.ArgumentParser(description = __doc__) argument_parser.add_argument( 'db_path', metavar = 'DB_PATH', help = 'path to the bot\'s database' ) argument_parser.add_argument( 'script', metavar = 'SQL_SCRIPT', help = 'the migration script to execute' ) args: argparse.Namespace = argument_parser.parse_args() migrate(args.db_path, args.script) print('Successfully applied migrations.') if __name__ == '__main__': main() ``` #### File: src/tests/test_client.py ```python import unittest from typing import Any, ClassVar, Dict, Optional from tumcsbot.client import Client as TUMCSBotClient class ClientGetUserIdsFromAttributeTest(unittest.TestCase): class Client(TUMCSBotClient): def __init__(self) -> None: pass def get_users(self, request: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: return get_users() _client: ClassVar[Client] @classmethod def setUpClass(cls) -> None: cls._client = cls.Client() def test_get_user_ids_from_attribute(self) -> None: self.assertEqual( self._client.get_user_ids_from_attribute('not_existing_attribute', [1, 2, 3]), [] ) self.assertEqual( self._client.get_user_ids_from_attribute('delivery_email', ['<EMAIL>']), [1] ) self.assertEqual( self._client.get_user_ids_from_attribute( 'delivery_email', ['<EMAIL>', '<EMAIL>'] ), [1, 3] ) self.assertEqual( self._client.get_user_ids_from_attribute( 'delivery_email', ['<EMAIL>', '<EMAIL>'] ), [1] ) self.assertEqual( self._client.get_user_ids_from_attribute( 'delivery_email', ['<EMAIL>', '<EMAIL>'], case_sensitive = False ), [1, 3] ) self.assertEqual( self._client.get_user_ids_from_attribute('user_id', [1, 3]), [1, 3] ) self.assertEqual( self._client.get_user_ids_from_attribute('user_id', [2, 3, 4], case_sensitive = False), [2, 3] ) self.assertEqual( self._client.get_user_ids_from_attribute('full_name', ['abc']), [1, 2] ) def test_get_user_ids_from_display_names(self) -> None: self.assertEqual( self._client.get_user_ids_from_attribute('full_name', ['abc']), self._client.get_user_ids_from_display_names(['abc']) ) self.assertEqual( self._client.get_user_ids_from_attribute('full_name', ['aBc']), self._client.get_user_ids_from_display_names(['aBc']) ) def test_get_user_ids_from_emails(self) -> None: self.assertEqual( self._client.get_user_ids_from_attribute( 'delivery_email', ['<EMAIL>', '<EMAIL>'], case_sensitive = False ), self._client.get_user_ids_from_emails(['<EMAIL>', '<EMAIL>']) ) def get_users() -> Dict[str, Any]: return { 'result': 'success', 'members': [ { 'delivery_email': '<EMAIL>', 'full_name': 'abc', 'user_id': 1, }, { 'delivery_email': '<EMAIL>', 'full_name': 'abc', 'user_id': 2, }, { 'delivery_email': '<EMAIL>', 'full_name': 'ghi', 'user_id': 3, }, ] } ``` #### File: tumcsbot/plugins/archive_streams.py ```python from inspect import cleandoc from typing import Any, Dict, Iterable, List, Optional, Union from tumcsbot.lib import split, validate_and_return_regex, Response from tumcsbot.plugin import CommandPlugin class ArchiveStreams(CommandPlugin): plugin_name = 'archive_streams' syntax = 'archive_streams <stream_regex>...' description = cleandoc( """ Archive streams according to the given regular expressions, which have to match the full stream name. Note that only empty streams will be archived. [administrator/moderator rights needed] Example (note the quoting!): ```text archive_streams "Test.*" "ABC \\d* class" ``` """ ) def handle_message( self, message: Dict[str, Any], **kwargs: Any ) -> Union[Response, Iterable[Response]]: if not self.client.user_is_privileged(message['sender_id']): return Response.admin_err(message) stream_regexes: Optional[List[Any]] = split( message['command'], converter = [validate_and_return_regex] ) if stream_regexes is None or None in stream_regexes: return Response.build_message(message, 'Found invalid regular expressions.') response: List[str] = [] for stream_regex in stream_regexes: streams: List[str] = self.client.get_streams_from_regex(stream_regex) removed: int = 0 for stream in streams: result: Dict[str, Any] = self.client.get_stream_id(stream) if result['result'] != 'success': continue stream_id: int = result['stream_id'] # Check if stream is empty. result = self.client.get_messages({ 'anchor': 'oldest', 'num_before': 0, 'num_after': 1, 'narrow': [ {'operator': 'stream', 'operand': stream_id} ] }) if result['result'] != 'success' or result['messages']: continue # Archive the stream: https://zulip.com/help/archive-a-stream result = self.client.delete_stream(stream_id) if result['result'] == 'success': removed += 1 response.append('"%s" - found %d matching streams, removed %d' % (stream_regex, len(streams), removed)) return Response.build_message(message, '\n'.join(response)) ``` #### File: tumcsbot/plugins/help.py ```python from inspect import cleandoc from typing import Any, Dict, Iterable, List, Optional, Tuple, Type, Union from tumcsbot.lib import Response from tumcsbot.plugin import PluginContext, CommandPlugin class Help(CommandPlugin): """Provide a help command plugin.""" plugin_name = 'help' syntax = 'help' description = 'Post a help message to the requesting user.' _help_overview_template: str = cleandoc( """ Hi {}! Use `help <command name>` to get more information about a \ certain command. Please consider that my command line parsing is comparable to \ the POSIX shell. So in order to preserve arguments containing \ whitespace characters from splitting, they need to be quoted. \ Special strings such as regexes containing backslash sequences \ may require single quotes instead of double quotes. Currently, I understand the following commands: {} Have a nice day! :-) """ ) def __init__(self, plugin_context: PluginContext) -> None: super().__init__(plugin_context) self.help_info: List[Tuple[str, str, str]] = self._get_help_info( plugin_context.command_plugin_classes ) def handle_message( self, message: Dict[str, Any], **kwargs: Any ) -> Union[Response, Iterable[Response]]: command: str = message['command'].strip() if not command: return self._help_overview(message) return self._help_command(message, command) @staticmethod def _format_description(description: str) -> str: """Format the usage description of a command.""" # Remove surrounding whitespace. description.strip() return description @staticmethod def _format_syntax(syntax: str) -> str: """Format the syntax string of a command.""" return '```text\n' + syntax.strip() + '\n```\n' def _get_help_info( self, commands: List[Type[CommandPlugin]] ) -> List[Tuple[str, str, str]]: """Get help information from each command. Return a list of tuples (command name, syntax, description). """ result: List[Tuple[str, str, str]] = [] for command in commands: name: str = command.plugin_name syntax_data, description_data = command.get_usage() syntax: str = self._format_syntax(syntax_data) description: str = self._format_description(description_data) result.append((name, syntax, description)) # Sort by name. return sorted(result, key = lambda tuple: tuple[0]) def _help_command( self, message: Dict[str, Any], command: str ) -> Union[Response, Iterable[Response]]: info_tuple: Optional[Tuple[str, str, str]] = None for ituple in self.help_info: if ituple[0] == command: info_tuple = ituple break if info_tuple is None: return Response.command_not_found(message) help_message: str = '\n'.join(info_tuple[1:]) return Response.build_message( message, help_message, msg_type = 'private', to = message['sender_email'] ) def _help_overview( self, message: Dict[str, Any] ) -> Union[Response, Iterable[Response]]: # Get the command names. help_message: str = '\n'.join(map(lambda tuple: '- ' + tuple[0], self.help_info)) return Response.build_message( message, self._help_overview_template.format(message['sender_full_name'], help_message), msg_type = 'private', to = message['sender_email'] ) ``` #### File: tumcsbot/plugins/search.py ```python import urllib.parse from typing import Any, Dict, Iterable, Union from tumcsbot.lib import Response from tumcsbot.plugin import CommandPlugin class Search(CommandPlugin): plugin_name = 'search' syntax = 'search <string>' description = 'Get a url to a search for "string" in all public streams.' msg_template: str = 'Hi, I hope that these search results may help you: {}' path: str = '#narrow/streams/public/search/' def handle_message( self, message: Dict[str, Any], **kwargs: Any ) -> Union[Response, Iterable[Response]]: # Get search string and quote it. search: str = urllib.parse.quote(message['command'], safe = '') # Fix strange behavior of Zulip which does not accept literal periods. search = search.replace('.', '%2E') # Get host url (removing trailing 'api/'). base_url: str = self.client.base_url[:-4] # Build the full url. url: str = base_url + self.path + search # Remove requesting message. self.client.delete_message(message['id']) return Response.build_message( message, self.msg_template.format(url) ) ``` #### File: tumcsbot/plugins/source.py ```python from typing import Any, Dict, Iterable, Union from tumcsbot.lib import Response from tumcsbot.plugin import CommandPlugin class Source(CommandPlugin): plugin_name = 'source' syntax = 'source' description = 'Post the link to the repository of my source code.' def handle_message( self, message: Dict[str, Any], **kwargs: Any ) -> Union[Response, Iterable[Response]]: return Response.build_message( message, 'https://github.com/ro-i/tumcsbot' ) ``` #### File: tumcsbot/plugins/sql.py ```python from inspect import cleandoc from typing import Any, Dict, Iterable, List, Tuple, Union from tumcsbot.lib import DB, Response from tumcsbot.plugin import CommandPlugin, PluginContext class Source(CommandPlugin): plugin_name = 'sql' syntax = cleandoc( """ sql <sql_script> or sql list """ ) description = cleandoc( """ Access the internal database of the bot read-only. The `list` command is a shortcut to list all tables. [administrator/moderator rights needed] """ ) _list_sql: str = 'select * from sqlite_master where type = "table"' def __init__(self, plugin_context: PluginContext) -> None: super().__init__(plugin_context) # Get own read-only (!!!) database connection. self._db = DB(read_only = True) def handle_message( self, message: Dict[str, Any], **kwargs: Any ) -> Union[Response, Iterable[Response]]: result_sql: List[Tuple[Any, ...]] if not self.client.user_is_privileged(message['sender_id']): return Response.admin_err(message) try: if message['command'] == 'list': result_sql = self._db.execute(self._list_sql) else: result_sql = self._db.execute(message['command']) except Exception as e: return Response.build_message(message, str(e)) result: str = '```text\n' + '\n'.join(map(str, result_sql)) + '\n```' return Response.build_message(message, result) ``` #### File: tumcsbot/plugins/update.py ```python import logging import os import subprocess as sp from inspect import cleandoc from pathlib import Path from typing import Any, Dict, Iterable, List, Union from tumcsbot.lib import Response from tumcsbot.plugin import CommandPlugin class Update(CommandPlugin): plugin_name = 'update' syntax = 'update' description = cleandoc( """ Update the bot. You may want to restart it afterwards. [administrator/moderator rights needed] """ ) _git_pull_cmd: List[str] = ['git', 'pull'] _timeout: int = 15 def handle_message( self, message: Dict[str, Any], **kwargs: Any ) -> Union[Response, Iterable[Response]]: if not self.client.user_is_privileged(message['sender_id']): return Response.admin_err(message) # Get the dirname of this file (which is located in the git repo). git_dir: Path = Path(__file__).parent.absolute() try: os.chdir(git_dir) except Exception as e: logging.exception(e) return Response.build_message( message, f'Cannot access the directory of my git repo {git_dir}. Please contact the admin.' ) # Execute command and capture stdout and stderr into one stream (stdout). try: result: sp.CompletedProcess[Any] = sp.run( self._git_pull_cmd, stdout = sp.PIPE, stderr = sp.STDOUT, text = True, timeout = self._timeout, ) except sp.TimeoutExpired: return Response.build_message( message, f'{self._git_pull_cmd} failed: timeout ({self._timeout} seconds) expired' ) return Response.build_message( message, f'Return code: {result.returncode}\nOutput:\n```text\n{result.stdout}\n```' ) ```
{ "source": "jpbetz/test-infra", "score": 3 }
#### File: gubernator/github/classifier_test.py ```python import json import unittest import classifier class DeduperTest(unittest.TestCase): @staticmethod def dedup(obj): return classifier.Deduper().dedup(obj) def test_types(self): a = (u'foo', 2, {'bar': ['foo', 'bar']}) self.assertEqual(self.dedup(a), a) def test_dedupe(self): # Python interns strings in structs, so... a = ['foo', 'foo'] self.assertIs(a[0], a[1]) # Use json.loads to get around it b = json.loads('["foo", "foo"]') self.assertIsNot(b[0], b[1]) # When deduplicated, the strings are now the same object. c = self.dedup(b) self.assertIs(c[0], c[1]) class MergedTest(unittest.TestCase): def test_merged(self): self.assertEqual(classifier.get_merged(zip('abcd', [ {'issue': {'n': 1, 'a': 2}}, {'pull_request': {'n': 2, 'b': 3}}, {'c': 4}, {'issue': {'n': 3, 'd': 4}, 'pull_request': {'n': 4, 'e': 5}} ], [0] * 4)), {'n': 4, 'a': 2, 'b': 3, 'd': 4, 'e': 5}) def diffs_to_events(*diffs): events = [] for diff in diffs: label = {'name': diff[1:], 'color': '#fff'} if diff[0] == '+': action = 'labeled' elif diff[0] == '-': action = 'unlabeled' events.append(('pull_request', {'action': action, 'label': label}, 0)) return events class LabelsTest(unittest.TestCase): def expect_labels(self, events, names): labels = classifier.get_labels(events) self.assertEqual(sorted(labels.keys()), sorted(names)) def test_empty(self): self.expect_labels([('comment', {'body': 'no labels here'}, 0)], []) def test_colors(self): self.assertEqual(classifier.get_labels( [('c', {'issue': {'labels': [{'name': 'foo', 'color': '#abc'}]} }, 0)]), {'foo': '#abc'}) def test_labeled_action(self): self.expect_labels(diffs_to_events('+a'), ['a']) self.expect_labels(diffs_to_events('+a', '+a'), ['a']) self.expect_labels(diffs_to_events('+a', '-a'), []) self.expect_labels(diffs_to_events('+a', '+b', '-c', '-b'), ['a']) def test_issue_overrides_action(self): labels = [{'name': 'x', 'color': 'y'}] self.expect_labels(diffs_to_events('+a') + [('other_event', {'issue': {'labels': labels}}, 0)], ['x']) def test_labeled_action_missing_label(self): self.expect_labels([('pull_request', {'action': 'labeled'}, 0)], []) def make_comment_event(num, name, msg='', event='issue_comment', action='created', ts=None): return event, { 'action': action, 'sender': {'login': name}, 'comment': { 'id': num, 'user': {'login': name}, 'body': msg, 'created_at': ts, } }, ts class CalculateTest(unittest.TestCase): def test_classify(self): # A quick integration test to ensure that all the sub-parts are included. # If this test fails, a smaller unit test SHOULD fail as well. self.assertEqual(classifier.classify([ ('pull_request', { 'pull_request': { 'state': 'open', 'user': {'login': 'a'}, 'assignees': [{'login': 'b'}], 'title': 'some fix', 'head': {'sha': 'abcdef'}, 'additions': 1, 'deletions': 1, } }, 1), make_comment_event(1, 'k8s-bot', 'failure in https://k8s-gubernator.appspot.com/build/bucket/job/123/', ts=2), ('pull_request', { 'action': 'labeled', 'label': {'name': 'release-note-none', 'color': 'orange'}, }, 3), make_comment_event(2, 'k8s-merge-robot', '<!-- META={"approvers":["o"]} -->', ts=4), ], {'e2e': ['failure', None, 'stuff is broken']} ), (True, True, ['a', 'b', 'o'], { 'author': 'a', 'approvers': ['o'], 'assignees': ['b'], 'additions': 1, 'deletions': 1, 'attn': {'a': 'fix tests', 'b': 'needs review#0#0', 'o': 'needs approval'}, 'title': 'some fix', 'labels': {'release-note-none': 'orange'}, 'head': 'abcdef', 'needs_rebase': False, 'status': {'e2e': ['failure', None, 'stuff is broken']}, 'xrefs': ['/bucket/job/123'], })) def test_distill(self): self.assertEqual(classifier.distill_events([ make_comment_event(1, 'a', ts=1), make_comment_event(2, 'b', ts=2), make_comment_event(1, 'a', action='deleted', ts=3), make_comment_event(3, 'c', event='pull_request_review_comment', ts=4), make_comment_event(4, 'k8s-bot', ts=4), ('pull_request', {'action': 'synchronize', 'sender': {'login': 'auth'}}, 5), ('pull_request', {'action': 'labeled', 'sender': {'login': 'rev'}, 'label': {'name': 'lgtm'}}, 6), ]), [ ('comment', 'b', 2), ('comment', 'c', 4), ('push', 'auth', 5), ('label lgtm', 'rev', 6), ]) def test_calculate_attention(self): def expect(payload, events, expected_attn): self.assertEqual(classifier.calculate_attention(events, payload), expected_attn) def make_payload(author, assignees=None, labels=None, **kwargs): ret = {'author': author, 'assignees': assignees or [], 'labels': labels or []} ret.update(kwargs) return ret expect(make_payload('alpha', needs_rebase=True), [], {'alpha': 'needs rebase'}) expect(make_payload('beta', labels={'release-note-label-needed'}), [], {'beta': 'needs release-note label'}) expect(make_payload('gamma', status={'ci': ['failure', '', '']}), [], {'gamma': 'fix tests'}) expect(make_payload('gamma', status={'ci': ['failure', '', '']}), [('comment', 'other', 1)], {'gamma': 'address comments#1#1'}) expect(make_payload('delta', ['epsilon']), [], {'epsilon': 'needs review#0#0'}) expect(make_payload('alpha', ['alpha']), [('comment', 'other', 1)], {'alpha': 'address comments#1#1'}) expect(make_payload('alpha', approvers=['owner']), [], {'owner': 'needs approval'}) def test_author_state(self): def expect(events, result): self.assertEqual(classifier.get_author_state('author', events), result) expect([], ('waiting', 0, 0)) expect([('comment', 'author', 1)], ('waiting', 0, 0)) expect([('comment', 'other', 1)], ('address comments', 1, 1)) expect([('comment', 'other', 1), ('push', 'author', 2)], ('waiting', 2, 2)) expect([('comment', 'other', 1), ('comment', 'author', 2)], ('waiting', 2, 2)) expect([('comment', 'other', 1), ('comment', 'other', 2)], ('address comments', 1, 2)) def test_assignee_state(self): def expect(events, result): self.assertEqual(classifier.get_assignee_state('me', 'author', events), result) expect([], ('needs review', 0, 0)) expect([('comment', 'other', 1)], ('needs review', 0, 0)) expect([('comment', 'me', 1)], ('waiting', 1, 1)) expect([('label lgtm', 'other', 1)], ('needs review', 0, 0)) expect([('label lgtm', 'me', 1)], ('waiting', 1, 1)) expect([('comment', 'me', 1), ('push', 'author', 2)], ('needs review', 2, 2)) expect([('comment', 'me', 1), ('comment', 'author', 2)], ('needs review', 2, 2)) expect([('comment', 'me', 1), ('comment', 'author', 2), ('comment', 'author', 3)], ('needs review', 2, 3)) def test_xrefs(self): def expect(body, comments, result): self.assertEqual(result, classifier.get_xrefs( [{'comment': c} for c in comments], {'body': body})) def fail(path): return 'foobar https://k8s-gubernator.appspot.com/build%s asdf' % path expect(None, [], []) expect('something', [], []) expect(fail('/a/b/34/'), [], ['/a/b/34']) expect(None, [fail('/a/b/34/')], ['/a/b/34']) expect(fail('/a/b/34/'), [fail('/a/b/34]')], ['/a/b/34']) expect(fail('/a/b/34/)'), [fail('/a/b/35]')], ['/a/b/34', '/a/b/35']) def test_reviewers(self): def expect(events, result): self.assertEqual(result, classifier.get_reviewers(events)) def mk(*specs): out = [] for event, action, body in specs: body = dict(body) # copy body['action'] = action out.append((event, body, 0)) return out expect([], set()) user_a = {'requested_reviewer': {'login': 'a'}} expect(mk(('pull_request', 'review_requested', user_a)), {'a'}) expect(mk(('pull_request', 'review_request_removed', user_a)), set()) expect(mk(('pull_request', 'review_requested', user_a), ('pull_request', 'review_request_removed', user_a)), set()) def test_approvers(self): def expect(comment, result): self.assertEqual(result, classifier.get_approvers([{ 'author': 'k8s-merge-robot', 'comment': comment}])) expect('nothing', []) expect('before\n<!-- META={approvers:[someone]} -->', ['someone']) expect('<!-- META={approvers:[someone,else]} -->', ['someone', 'else']) expect('<!-- META={approvers:[someone,else]} -->', ['someone', 'else']) # The META format is *supposed* to be JSON, but a recent change broke it. # Support both formats so it can be fixed in the future. expect('<!-- META={"approvers":["username"]} -->\n', ['username']) class CommentsTest(unittest.TestCase): def test_basic(self): self.assertEqual(classifier.get_comments([make_comment_event(1, 'aaa', 'msg', ts=2016)]), [{'author': 'aaa', 'comment': 'msg', 'timestamp': 2016}]) def test_deleted(self): self.assertEqual(classifier.get_comments([ make_comment_event(1, 'aaa', 'msg', 2016), make_comment_event(1, None, None, None, action='deleted'), make_comment_event(2, '', '', '', action='deleted')]), []) def test_edited(self): self.assertEqual(classifier.get_comments([ make_comment_event(1, 'aaa', 'msg', ts=2016), make_comment_event(1, 'aaa', 'redacted', ts=2016.1, action='edited')]), [{'author': 'aaa', 'comment': 'redacted', 'timestamp': 2016.1}]) if __name__ == '__main__': unittest.main() ``` #### File: test-infra/jenkins/attach_agent.py ```python import ConfigParser import sys # Todo(krzyzacy): fix the import error # sudo pip install jenkinsapi from jenkinsapi import jenkins # pylint: disable=import-error EXCLUSIVE = True SHARED = False # TODO: Add 'scalability' label to heavy to not abuse 'build' label. # TODO(fejta): add light/heavy/pr to tags and replace nodes INFO = { 'heavy': ('build unittest', 1, EXCLUSIVE), 'light': ('node e2e', 10, EXCLUSIVE), 'pr': ('pull', 1, SHARED), } def info(host, kind): """Get host info.""" labels, executors, exclusive = INFO[kind] return { 'credential_description': 'Jenkins GCE ssh key', 'exclusive': exclusive, 'host': host, 'java_path': '', 'jvm_options': '', 'labels': labels, 'max_num_retries': 0, 'node_description': '', 'num_executors': executors, 'port': 22, 'prefix_start_slave_cmd': '', 'remote_fs': '/var/lib/jenkins', 'retry_wait_time': 0, 'suffix_start_slave_cmd': '', } def create(api, host, config): """Create agent.""" delete(api, host) print 'Creating %s...' % host, print api.nodes.create_node(host, config) def delete(api, host): """Delete agent.""" if host in api.nodes: print 'Deleting %s...' % host, print api.delete_node(host) def creds(path, section): """An ini file with a section per master. Should look something like this: [master-a] user=foo key=7deadbeef1234098 [master-b] user=bar key=7deadbeef9999999 """ config = ConfigParser.SafeConfigParser() config.read(path) return config.get(section, 'user'), config.get(section, 'key') if __name__ == '__main__': CMD, HOST, KIND, INI, AGENT = sys.argv[1:] # pylint: disable=unbalanced-tuple-unpacking USER, KEY = creds(INI, AGENT) J = jenkins.Jenkins('http://localhost:8080', USER, KEY) if sys.argv[1] == 'delete': delete(J, HOST) else: create(J, HOST, info(HOST, KIND)) ``` #### File: test-infra/jobs/move_extract.py ```python import json import os import re import sys ORIG_CWD = os.getcwd() # Checkout changes cwd def test_infra(*paths): """Return path relative to root of test-infra repo.""" return os.path.join(ORIG_CWD, os.path.dirname(__file__), '..', *paths) def sort(): """Sort config.json alphabetically.""" # pylint: disable=too-many-branches,too-many-statements,too-many-locals with open(test_infra('jobs/config.json'), 'r+') as fp: configs = json.loads(fp.read()) regexp = re.compile('|'.join([ r'^GINKGO_TEST_ARGS=(.*)$|^SKEW_KUBECTL=(y)$' ])) problems = [] for job, values in configs.items(): if values.get('scenario') != 'kubernetes_e2e': continue if 'args' not in values: continue args = values['args'] new_args = [a for a in args if a != '--test_args=None'] if new_args != args: args = new_args values['args'] = args if any('None' in a for a in args): problems.append('Bad flag with None: %s' % job) continue if any(a.startswith('--test_args=') for a in args): continue with open(test_infra('jobs/%s.env' % job)) as fp: env = fp.read() tests = None skew = False lines = [] for line in env.split('\n'): mat = regexp.search(line) if not mat: lines.append(line) continue group, now_skew = mat.groups() if group: if tests: problems.append('Duplicate %s' % job) break tests = group continue if now_skew: if skew: problems.append('Duplicate skew %s' % job) skew = now_skew else: new_args = [] stop = False for arg in args: these = None add = True if ( arg == '--env-file=jobs/pull-kubernetes-federation-e2e-gce.env' and not job == 'pull-kubernetes-federation-e2e-gce'): these = r'--ginkgo.skip=\[Slow\]|\[Serial\]|\[Disruptive\]|\[Flaky\]|\[Feature:.+\]' # pylint: disable=line-too-long elif ( arg == '--env-file=jobs/pull-kubernetes-e2e.env' and not job.startswith('pull-kubernetes-federation-e2e-gce')): these = r'--ginkgo.skip=\[Slow\]|\[Serial\]|\[Disruptive\]|\[Flaky\]|\[Feature:.+\]' # pylint: disable=line-too-long elif arg == '--env-file=jobs/suite/slow.env': these = r'--ginkgo.focus=\[Slow\] --ginkgo.skip=\[Serial\]|\[Disruptive\]|\[Flaky\]|\[Feature:.+\]' # pylint: disable=line-too-long elif arg == '--env-file=jobs/suite/serial.env': these = r'--ginkgo.focus=\[Serial\]|\[Disruptive\] --ginkgo.skip=\[Flaky\]|\[Feature:.+\]' # pylint: disable=line-too-long add = False elif arg == '--env-file=jobs/suite/default.env': these = r'--ginkgo.skip=\[Slow\]|\[Serial\]|\[Disruptive\]|\[Flaky\]|\[Feature:.+\]' # pylint: disable=line-too-long if add: new_args.append(arg) if not these: continue if tests: problems.append('Duplicate end %s' % job) stop = True break tests = these if stop: continue args = new_args testing = '--test=false' not in args if not testing: if skew: problems.append('Cannot skew kubectl without tests %s' % job) if tests: problems.append('Cannot --test_args when --test=false %s' % job) continue if skew: path = '--kubectl-path=../kubernetes_skew/cluster/kubectl.sh' if tests: tests = '%s %s' % (tests, path) else: tests = path if tests: args.append('--test_args=%s' % tests) values['args'] = args with open(test_infra('jobs/%s.env' % job), 'w') as fp: fp.write('\n'.join(lines)) with open(test_infra('jobs/config.json'), 'w') as fp: fp.write(json.dumps(configs, sort_keys=True, indent=2, separators=(',', ': '))) fp.write('\n') if not problems: sys.exit(0) print >>sys.stderr, '%d problems' % len(problems) print '\n'.join(problems) if __name__ == '__main__': sort() ``` #### File: mungegithub/issue-labeler/simple_app.py ```python import os import logging from logging.handlers import RotatingFileHandler import numpy as np from flask import Flask, request from sklearn.feature_extraction import FeatureHasher from sklearn.externals import joblib from sklearn.linear_model import SGDClassifier from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer app = Flask(__name__) #Parameters team_fn = './models/trained_teams_model.pkl' component_fn = './models/trained_components_model.pkl' logFile = '/tmp/issue-labeler.log' logSize = 1024*1024*100 numFeatures = 262144 myLoss = 'hinge' myAlpha = .1 myPenalty = 'l2' myHasher = FeatureHasher(input_type='string', n_features=numFeatures, non_negative=True) myStemmer = PorterStemmer() tokenizer = RegexpTokenizer(r'\w+') stopwords = [] try: if not stopwords: stop_fn = './stopwords.txt' with open(stop_fn, 'r') as fp: stopwords = list([word.strip() for word in fp]) except: # pylint:disable=bare-except #don't remove any stopwords stopwords = [] @app.errorhandler(500) def internal_error(exception): return str(exception), 500 @app.route("/", methods=['POST']) def get_labels(): """ The request should contain 2 form-urlencoded parameters 1) title : title of the issue 2) body: body of the issue It returns a team/<label> and a component/<label> """ title = request.form.get('title', '') body = request.form.get('body', '') tokens = tokenize_stem_stop(" ".join([title, body])) team_mod = joblib.load(team_fn) comp_mod = joblib.load(component_fn) vec = myHasher.transform([tokens]) tlabel = team_mod.predict(vec)[0] clabel = comp_mod.predict(vec)[0] return ",".join([tlabel, clabel]) def tokenize_stem_stop(inputString): inputString = inputString.encode('utf-8') curTitleBody = tokenizer.tokenize(inputString.decode('utf-8').lower()) return map(myStemmer.stem, filter(lambda x: x not in stopwords, curTitleBody)) @app.route("/update_models", methods=['PUT']) def update_model(): """ data should contain three fields titles: list of titles bodies: list of bodies labels: list of list of labels """ data = request.json titles = data.get('titles') bodies = data.get('bodies') labels = data.get('labels') tTokens = [] cTokens = [] team_labels = [] component_labels = [] for (title, body, label_list) in zip(titles, bodies, labels): tLabel = filter(lambda x: x.startswith('team'), label_list) cLabel = filter(lambda x: x.startswith('component'), label_list) tokens = tokenize_stem_stop(" ".join([title, body])) if tLabel: team_labels += tLabel tTokens += [tokens] if cLabel: component_labels += cLabel cTokens += [tokens] tVec = myHasher.transform(tTokens) cVec = myHasher.transform(cTokens) if team_labels: if os.path.isfile(team_fn): team_model = joblib.load(team_fn) team_model.partial_fit(tVec, np.array(team_labels)) else: #no team model stored so build a new one team_model = SGDClassifier(loss=myLoss, penalty=myPenalty, alpha=myAlpha) team_model.fit(tVec, np.array(team_labels)) if component_labels: if os.path.isfile(component_fn): component_model = joblib.load(component_fn) component_model.partial_fit(cVec, np.array(component_labels)) else: #no comp model stored so build a new one component_model = SGDClassifier(loss=myLoss, penalty=myPenalty, alpha=myAlpha) component_model.fit(cVec, np.array(component_labels)) joblib.dump(team_model, team_fn) joblib.dump(component_model, component_fn) return "" def configure_logger(): FORMAT = '%(asctime)-20s %(levelname)-10s %(message)s' file_handler = RotatingFileHandler(logFile, maxBytes=logSize, backupCount=3) formatter = logging.Formatter(FORMAT) file_handler.setFormatter(formatter) app.logger.addHandler(file_handler) if __name__ == "__main__": configure_logger() app.run(host="0.0.0.0") ```
{ "source": "jpbirdy/Detectron", "score": 2 }
#### File: detectron/datasets/cityscapes_json_dataset_evaluator.py ```python import cv2 import logging import os import uuid import pycocotools.mask as mask_util from detectron.core.config import cfg from detectron.datasets.dataset_catalog import get_raw_dir logger = logging.getLogger(__name__) def evaluate_masks( json_dataset, all_boxes, all_segms, output_dir, use_salt=True, cleanup=False ): if cfg.CLUSTER.ON_CLUSTER: # On the cluster avoid saving these files in the job directory output_dir = '/tmp' res_file = os.path.join( output_dir, 'segmentations_' + json_dataset.name + '_results') if use_salt: res_file += '_{}'.format(str(uuid.uuid4())) res_file += '.json' results_dir = os.path.join(output_dir, 'results') if not os.path.exists(results_dir): os.mkdir(results_dir) os.environ['CITYSCAPES_DATASET'] = get_raw_dir(json_dataset.name) os.environ['CITYSCAPES_RESULTS'] = output_dir # Load the Cityscapes eval script *after* setting the required env vars, # since the script reads their values into global variables (at load time). import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling \ as cityscapes_eval roidb = json_dataset.get_roidb() for i, entry in enumerate(roidb): im_name = entry['image'] basename = os.path.splitext(os.path.basename(im_name))[0] txtname = os.path.join(output_dir, basename + 'pred.txt') with open(txtname, 'w') as fid_txt: if i % 10 == 0: logger.info('i: {}: {}'.format(i, basename)) for j in range(1, len(all_segms)): clss = json_dataset.classes[j] clss_id = cityscapes_eval.name2label[clss].id segms = all_segms[j][i] boxes = all_boxes[j][i] if segms == []: continue masks = mask_util.decode(segms) for k in range(boxes.shape[0]): score = boxes[k, -1] mask = masks[:, :, k] pngname = os.path.join( 'results', basename + '_' + clss + '_{}.png'.format(k)) # write txt fid_txt.write('{} {} {}\n'.format(pngname, clss_id, score)) # save mask cv2.imwrite(os.path.join(output_dir, pngname), mask * 255) logger.info('Evaluating...') cityscapes_eval.main([]) return None ``` #### File: detectron/utils/keypoints.py ```python import cv2 import numpy as np from detectron.core.config import cfg import detectron.utils.blob as blob_utils def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle' } return keypoints, keypoint_flip_map def get_person_class_index(): """Index of the person class in COCO.""" return 1 def flip_keypoints(keypoints, keypoint_flip_map, keypoint_coords, width): """Left/right flip keypoint_coords. keypoints and keypoint_flip_map are accessible from get_keypoints(). """ flipped_kps = keypoint_coords.copy() for lkp, rkp in list(keypoint_flip_map.items()): lid = keypoints.index(lkp) rid = keypoints.index(rkp) flipped_kps[:, :, lid] = keypoint_coords[:, :, rid] flipped_kps[:, :, rid] = keypoint_coords[:, :, lid] # Flip x coordinates flipped_kps[:, 0, :] = width - flipped_kps[:, 0, :] - 1 # Maintain COCO convention that if visibility == 0, then x, y = 0 inds = np.where(flipped_kps[:, 2, :] == 0) flipped_kps[inds[0], 0, inds[1]] = 0 return flipped_kps def flip_heatmaps(heatmaps): """Flip heatmaps horizontally.""" keypoints, flip_map = get_keypoints() heatmaps_flipped = heatmaps.copy() for lkp, rkp in list(flip_map.items()): lid = keypoints.index(lkp) rid = keypoints.index(rkp) heatmaps_flipped[:, rid, :, :] = heatmaps[:, lid, :, :] heatmaps_flipped[:, lid, :, :] = heatmaps[:, rid, :, :] heatmaps_flipped = heatmaps_flipped[:, :, :, ::-1] return heatmaps_flipped def heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = cfg.KRCNN.INFERENCE_MIN_SIZE xy_preds = np.zeros( (len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32) for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = cv2.resize( maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] for k in range(cfg.KRCNN.NUM_KEYPOINTS): pos = roi_map[k, :, :].argmax() x_int = pos % w y_int = (pos - x_int) // w assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction xy_preds[i, 0, k] = x + offset_x[i] xy_preds[i, 1, k] = y + offset_y[i] xy_preds[i, 2, k] = roi_map[k, y_int, x_int] xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int] return xy_preds def keypoints_to_heatmap_labels(keypoints, rois): """Encode keypoint location in the target heatmap for use in SoftmaxWithLoss. """ # Maps keypoints from the half-open interval [x1, x2) on continuous image # coordinates to the closed interval [0, HEATMAP_SIZE - 1] on discrete image # coordinates. We use the continuous <-> discrete conversion from Heckbert # 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5, # where d is a discrete coordinate and c is a continuous coordinate. assert keypoints.shape[2] == cfg.KRCNN.NUM_KEYPOINTS shape = (len(rois), cfg.KRCNN.NUM_KEYPOINTS) heatmaps = blob_utils.zeros(shape) weights = blob_utils.zeros(shape) offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 2] - rois[:, 0]) scale_y = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 3] - rois[:, 1]) for kp in range(keypoints.shape[2]): vis = keypoints[:, 2, kp] > 0 x = keypoints[:, 0, kp].astype(np.float32) y = keypoints[:, 1, kp].astype(np.float32) # Since we use floor below, if a keypoint is exactly on the roi's right # or bottom boundary, we shift it in by eps (conceptually) to keep it in # the ground truth heatmap. x_boundary_inds = np.where(x == rois[:, 2])[0] y_boundary_inds = np.where(y == rois[:, 3])[0] x = (x - offset_x) * scale_x x = np.floor(x) if len(x_boundary_inds) > 0: x[x_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1 y = (y - offset_y) * scale_y y = np.floor(y) if len(y_boundary_inds) > 0: y[y_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1 valid_loc = np.logical_and( np.logical_and(x >= 0, y >= 0), np.logical_and( x < cfg.KRCNN.HEATMAP_SIZE, y < cfg.KRCNN.HEATMAP_SIZE)) valid = np.logical_and(valid_loc, vis) valid = valid.astype(np.int32) lin_ind = y * cfg.KRCNN.HEATMAP_SIZE + x heatmaps[:, kp] = lin_ind * valid weights[:, kp] = valid return heatmaps, weights def scores_to_probs(scores): """Transforms CxHxW of scores to probabilities spatially.""" channels = scores.shape[0] for c in range(channels): temp = scores[c, :, :] max_score = temp.max() temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score)) scores[c, :, :] = temp return scores def nms_oks(kp_predictions, rois, thresh): """Nms based on kp predictions.""" scores = np.mean(kp_predictions[:, 2, :], axis=1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) ovr = compute_oks( kp_predictions[i], rois[i], kp_predictions[order[1:]], rois[order[1:]]) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi): """Compute OKS for predicted keypoints wrt gt_keypoints. src_keypoints: 4xK src_roi: 4x1 dst_keypoints: Nx4xK dst_roi: Nx4 """ sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2)**2 # area src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1) # measure the per-keypoint distance if keypoints visible dx = dst_keypoints[:, 0, :] - src_keypoints[0, :] dy = dst_keypoints[:, 1, :] - src_keypoints[1, :] e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2 e = np.sum(np.exp(-e), axis=1) / e.shape[1] return e ```
{ "source": "jpbitt/Scripts-Python", "score": 4 }
#### File: Scripts-Python/Python/case_pedrasEpotes.py ```python import random as rd import math as mt import numpy as np tabela = [] #TABELA ONDE SERÃO ARMAZENADOS OS DADOS #--------------------------- # RECEBE AS INFORMAÇÕES DO USUÁRIO #--------------------------- def recebe_valores(): print("Joãozinho deseja distruibuir um numero N de pedras em um numero M de potes") pedra = int(input("Forneça o número de PEDRAS: ")) pote = int(input("Forneça o número de POTES: ")) print("------------------------------") print("O número de {} pedras e {} potes".format(pedra,pote)) return pedra,pote #--------------------------- # VALIDA AS INFORMAÇÕES DO USUARIO, DEVE ATENDER A REGRA "O NUMERO DE PEDRAS DEVE SER MAIOR QUE O NUMERO DE POTES" #--------------------------- def valida_dados(pedra,pote): while True: print("------------------------------") print("VALIDANDO OS NUMEROS INSERIDOS") print("------------------------------") if pote <= 0: print("ERRO DE VALIDAÇÃO") print("O NUMERO DE POTES DEVE SER MAIOR QUE 0") pote = int(input("Por favor, forneça o número de POTES correto: ")) elif pedra <= 1: print("ERRO DE VALIDAÇÃO") print("O NUMERO DE PEDRAS DEVE SER MAIOR QUE 1") pedra = int(input("Por favor, forneça o número de PEDRAS correto: ")) elif pote >= pedra: print("ERRO DE VALIDAÇÃO") print("O NUMERO DE POTES DEVE SER MENOR QUE O NUMERO DE PEDRAS") pote = int(input("Por favor, forneça o número de POTES correto: ")) else: print("VALIDAÇÃO CONCLUIDA COM SUCESSO") print("------------------------------") print("Joãozinho tem {} pedras e {} potes".format(pedra,pote)) print("------------------------------") break return pedra,pote #--------------------------- # ORGANIZA AS PEDRAS EM CADA POTE #--------------------------- def gera_tabela(tabela,pedra,pote): lista = list(range(1,pedra-pote+2)) for i in range(mt.factorial(pedra)): linha = [] # criamos a linha for j in range(pote): valor = rd.choice(lista) # gera valor aleatorio para a linha linha.append(valor) tabela.append(linha) return tabela,pedra,pote #--------------------------- # FUNÇÃO MAIN #--------------------------- def main(): for w in range(1): pedra,pote = recebe_valores() pedra,pote = valida_dados(pedra,pote) gera_tabela(tabela,pedra,pote) tabela_organizada = [] # TABELA ONDE ARMAZENA OS DADOS ORGANIZADOS for k in range(len(tabela)): if sum(tabela[k]) == pedra: # FILTRA CADA LINHA SOMATORIO DE CADA LINHA IGUAL AO NUMERO DE PEDRAS tabela_organizada.append(tabela[k]) a = np.array(tabela_organizada) print("TABELA COM AS MANEIRAS QUE JOÃOZINHO PODE ORGANIZAR SUAS PEDRAS:") print(np.unique(a, axis=0)) print("Quantidade de maneiras possiveis: {}".format(len(np.unique(a, axis=0)))) if __name__ == "__main__": main() ```
{ "source": "jpbm/probabilism", "score": 3 }
#### File: probabilism/src/resourcelims.py ```python import resource import platform import sys def memory_limit(percentage: float): """ 只在linux操作系统起作用 """ if platform.system() != "Linux": print('Only works on linux!') return soft, hard = resource.getrlimit(resource.RLIMIT_AS) resource.setrlimit(resource.RLIMIT_AS, (get_memory() * 1024 * percentage, hard)) def get_memory(): with open('/proc/meminfo', 'r') as mem: free_memory = 0 for i in mem: sline = i.split() if str(sline[0]) in ('MemFree:', 'Buffers:', 'Cached:'): free_memory += int(sline[1]) return free_memory def memory(percentage=0.8): def decorator(function): def wrapper(*args, **kwargs): memory_limit(percentage) try: function(*args, **kwargs) except MemoryError: mem = get_memory() / 1024 /1024 print('Remain: %.2f GB' % mem) sys.stderr.write('\n\nERROR: Memory Exception\n') sys.exit(1) return wrapper return decorator @memory(percentage=0.7) def main(): print('Memory usage is limited to 70%.') ```
{ "source": "jpbonson/APIAuthenticationCourse", "score": 3 }
#### File: jpbonson/APIAuthenticationCourse/main.py ```python from app.basic_auth import requires_basic_auth from app.simple_token_auth import generate_simple_token, requires_simple_token_auth from app.jwt_token_auth import generate_jwt_token, requires_jwt_token_auth from flask import Flask app = Flask(__name__) @app.route('/basic_access', methods=['GET']) @requires_basic_auth def secret_page_basic(): return "Accessed using Basic authentication!\n" @app.route('/simple_token', methods=['POST']) def get_simple_token(): return generate_simple_token() @app.route('/simple_token_access', methods=['GET']) @requires_simple_token_auth def secret_page_simple_token(): return "Accessed using simple token authentication!\n" @app.route('/token', methods=['POST']) def get_jwt_token(): return generate_jwt_token() @app.route('/token_access', methods=['GET']) @requires_jwt_token_auth def secret_page_jwt_token(): return "Accessed using OAuth + JWT token authentication!\n" @app.route("/", methods=['GET']) def hello(): return "Welcome to the public route!\n" ```
{ "source": "jpbonson/SBBReinforcementLearning", "score": 3 }
#### File: SBB/core/pareto_dominance_for_teams.py ```python from diversity_maintenance import DiversityMaintenance from ..utils.helpers import is_nearly_equal_to from ..config import Config class ParetoDominanceForTeams(): """ Pareto dominance: Given a set of objectives, a solution is said to Pareto dominate another if the first is not inferior to the second in all objectives, and, additionally, there is at least one objective where it is better. This code is based on Stephen's version of the C++ SBB, that was focused in using pareto for multi-objective between fitness and novelty for the teams. """ @staticmethod def run(teams_population, novelty, teams_to_keep): front, dominateds = ParetoDominanceForTeams._pareto_front(teams_population, novelty) pareto_front = list(front) keep_solutions = list(front) remove_solutions = list(dominateds) if len(keep_solutions) < teams_to_keep: # must include some teams from dominateds keep_solutions, remove_solutions = ParetoDominanceForTeams._balance_pareto_front_to_up(dominateds, keep_solutions, remove_solutions, teams_to_keep) if len(keep_solutions) > teams_to_keep: # must discard some teams from front keep_solutions, remove_solutions = ParetoDominanceForTeams._balance_pareto_front_to_down(front, keep_solutions, remove_solutions, teams_to_keep) return keep_solutions, remove_solutions, pareto_front @staticmethod def _pareto_front(teams_population, novelty): """ Finds the pareto front, i.e. the pareto dominant solutions. """ for team in teams_population: team.dom_by_ = 0 team.dom_of_ = 0 front = [] dominateds = [] for teamA in teams_population: for teamB in teams_population: # check if there are teams that have a better or equal [fitness, novelty] and that are better in at least # one of the dimensions. If yes, then teamA is dominated by these teams. if ParetoDominanceForTeams._is_dominated(teamA, teamB, novelty): teamA.dom_by_ += 1 teamB.dom_of_ += 1 if teamA not in dominateds: dominateds.append(teamA) if teamA.dom_by_ == 0: front.append(teamA) # use this score to balance the teams between remove and keep for team in teams_population: team.submission_score_ = team.dom_by_/float(len(teams_population)) # use it to add teams to the front (the lower, the better) team.dominance_score_ = team.dom_of_/float(len(teams_population)) # use it to remove teams from the front (the higher, the better) return front, dominateds @staticmethod def _is_dominated(teamA, teamB, novelty): """ Check if a solution is domninated or equal to another, assuming that higher results are better than lower ones. """ if (teamB.fitness_ >= teamA.fitness_ and teamB.diversity_[novelty] >= teamA.diversity_[novelty] and ((teamB.fitness_ > teamA.fitness_ and not is_nearly_equal_to(teamA.fitness_, teamB.fitness_)) or (teamB.diversity_[novelty] > teamA.diversity_[novelty] and not is_nearly_equal_to(teamA.diversity_[novelty], teamB.diversity_[novelty])))): return True return False @staticmethod def _balance_pareto_front_to_up(dominateds, keep_solutions, remove_solutions, teams_to_keep): available = [team for team in dominateds if team.fitness_ > 0.0] if len(available) < teams_to_keep: not_available = [team for team in dominateds if team.fitness_ == 0.0] available += not_available[:teams_to_keep-len(available)] sorted_solutions = sorted(available, key=lambda solution: solution.submission_score_, reverse = False) # worse ones first for solution in sorted_solutions: if solution not in keep_solutions: keep_solutions.append(solution) remove_solutions.remove(solution) if len(keep_solutions) == teams_to_keep: break return keep_solutions, remove_solutions @staticmethod def _balance_pareto_front_to_down(front, keep_solutions, remove_solutions, teams_to_keep): sorted_solutions = sorted(front, key=lambda solution: solution.dominance_score_, reverse = True) # better ones first for solution in sorted_solutions: keep_solutions.remove(solution) remove_solutions.append(solution) if len(keep_solutions) == teams_to_keep: break return keep_solutions, remove_solutions ``` #### File: SBB/core/team.py ```python import random import numpy import copy import json from collections import Counter, defaultdict from program import Program from ..environments.reinforcement.default_opponent import DefaultOpponent from ..utils.helpers import round_value, round_array, flatten from ..config import Config def reset_teams_ids(): global next_team_id next_team_id = 0 def get_team_id(): global next_team_id next_team_id += 1 return next_team_id class Team(DefaultOpponent): OPPONENT_ID = "sbb" def __init__(self, generation, programs, environment, team_id = None): if team_id is None: self.team_id_ = get_team_id() else: self.team_id_ = team_id self.generation = generation super(Team, self).__init__(self.__repr__()) self.programs = [] for program in programs: self._add_program(program) self.environment = environment self.fitness_ = -1 self.score_validation_ = -1 self.score_champion_ = -1 self.extra_metrics_ = {} self.active_programs_ = [] # only for training, used for genotype diversity self.validation_active_programs_ = [] # for training and validation self.memory_actions_per_points_ = {} self.results_per_points_ = {} self.results_per_points_for_validation_ = {} self.diversity_ = {} self.encodings_ = {} # only used by reinforcement learning self.last_selected_program_ = None def _add_program(self, program): self.programs.append(program) program.add_team(self) def initialize(self, seed): """ This method is called by the reinforcement learning environments to set the opponent configurations before a match. This class implements this method only because it inherits DefaultOpponent. """ pass def reset_registers(self): for program in self.programs: program.reset_registers() def execute(self, point_id, inputs, valid_actions, is_training, update_profile = True, force_reset = False): if not self._actions_are_available(valid_actions): return None # if there is a least one program that can produce a valid action, execute the programs if is_training: # run the programs if Config.RESTRICTIONS['use_memmory_for_actions'] and point_id in self.memory_actions_per_points_: return self.memory_actions_per_points_[point_id] else: selected_program = self._select_program(inputs, valid_actions, force_reset) output_class = selected_program.get_action_result(point_id, inputs, valid_actions, is_training) if Config.RESTRICTIONS['use_memmory_for_actions']: self.memory_actions_per_points_[point_id] = output_class if selected_program not in self.active_programs_: self.active_programs_.append(selected_program) return output_class else: # just run the code without changing the attributes or using memmory selected_program = self._select_program(inputs, valid_actions, force_reset) self.last_selected_program_ = selected_program.program_id_ if selected_program not in self.validation_active_programs_: self.validation_active_programs_.append(selected_program) return selected_program.get_action_result(point_id, inputs, valid_actions, is_training) def _actions_are_available(self, valid_actions): """ Test if there are at least one program in the team that is able to provide a valid action If there is no such program, return None, so that the environment will use a default action """ actions = flatten([p.get_raw_actions() for p in self.programs]) possible_action = set(actions).intersection(valid_actions) if len(possible_action) == 0: return False return True def _select_program(self, inputs, valid_actions, force_reset): """ Generates the outputs for all programs and order them. The team checks if the first action is valid before submitting it to the environment. If it is not valid, then the second best action will be tried, and so on until a valid action is obtained. """ partial_outputs = [] valid_programs = [] for program in self.programs: actions = program.get_raw_actions() possible_action = set(actions).intersection(valid_actions) if len(possible_action) > 0: partial_outputs.append(program.execute(inputs, force_reset)) valid_programs.append(program) selected_program = valid_programs[partial_outputs.index(max(partial_outputs))] return selected_program def mutate(self, programs_population): """ Generates mutation chances and mutate the team if it is a valid mutation. """ if Config.USER['advanced_training_parameters']['use_agressive_mutations']: mutation_chance = 1 while (mutation_chance > random.random() and len(self.programs) > Config.USER['training_parameters']['team_size']['min']): self._randomly_remove_program() mutation_chance = mutation_chance * Config.USER['training_parameters']['mutation']['team']['remove_program'] mutation_chance = 1 while (mutation_chance > random.random() and len(self.programs) < Config.USER['training_parameters']['team_size']['max']): self._randomly_add_program(programs_population) mutation_chance = mutation_chance * Config.USER['training_parameters']['mutation']['team']['add_program'] else: if len(self.programs) > Config.USER['training_parameters']['team_size']['min']: mutation_chance = random.random() if mutation_chance <= Config.USER['training_parameters']['mutation']['team']['remove_program']: self._randomly_remove_program() if len(self.programs) < Config.USER['training_parameters']['team_size']['max']: mutation_chance = random.random() if mutation_chance <= Config.USER['training_parameters']['mutation']['team']['add_program']: self._randomly_add_program(programs_population) to_mutate = [] while len(to_mutate) == 0: for program in self.programs: mutation_chance = random.random() if mutation_chance <= Config.USER['training_parameters']['mutation']['team']['mutate_program']: to_mutate.append(program) for program in to_mutate: clone = Program(self.generation, copy.deepcopy(program.instructions), program.action) clone.mutate() self._add_program(clone) programs_population.append(clone) if self._is_ok_to_remove(program): self.remove_program(program) return programs_population def _randomly_remove_program(self): """ Remove a program from the team. A program can be removed only if removing it will maintain ['team_size']['min'] distinct actions in the team. """ while True: candidate_to_remove = random.choice(self.programs) if self._is_ok_to_remove(candidate_to_remove): self.remove_program(candidate_to_remove) return def _is_ok_to_remove(self, program_to_remove): actions = [p.action for p in self.programs] actions.remove(program_to_remove.action) if len(set(actions)) >= Config.USER['training_parameters']['team_size']['min']: return True return False def _randomly_add_program(self, programs_population): candidate_program = random.choice(programs_population) if candidate_program not in self.programs: self._add_program(candidate_program) def remove_program(self, program): program.remove_team(self) self.programs.remove(program) if program in self.active_programs_: self.active_programs_.remove(program) if program in self.validation_active_programs_: self.validation_active_programs_.remove(program) def remove_references(self): """ Remove all references from this object to other objects, so it can be safely deleted. """ for p in self.programs: p.remove_team(self) def prune_partial(self): inactive_programs = list(set(self.programs) - set(self.active_programs_)) while len(inactive_programs) > 0: candidate_to_remove = random.choice(inactive_programs) if self._is_ok_to_remove(candidate_to_remove): self.remove_program(candidate_to_remove) return else: inactive_programs.remove(candidate_to_remove) def prune_total(self): inactive_programs = list(set(self.programs) - set(self.active_programs_)) for program in inactive_programs: self.remove_program(program) def quick_metrics(self): validation_active_teams_members_ids = [p.__repr__() for p in self.validation_active_programs_] training_active_teams_members_ids = [p.__repr__() for p in self.active_programs_] msg = self.__repr__() all_programs_training_info = ["A" if p in self.active_programs_ else "I" for p in self.programs] all_programs_validation_info = ["A" if p in self.validation_active_programs_ else "I" for p in self.programs] all_programs_info = [] for p,t,v in zip(self.programs, all_programs_training_info, all_programs_validation_info): all_programs_info.append(p.__repr__()+"-"+t+v) msg += "\n\nteam members ("+str(len(self.programs))+"): "+str(all_programs_info) msg += "\n(Obs.: (0:0, 0)-AI means that this program was Active in training and Inactive in validation)" if Config.USER['task'] == 'classification': msg += ("\n\nfitness: "+str(round_value(self.fitness_))+", " "champion score: "+str(round_value(self.score_champion_))) else: msg += ("\n\nfitness: "+str(round_value(self.fitness_))+", " "validation score: "+str(round_value(self.score_validation_))+", " "champion score: "+str(round_value(self.score_champion_))) msg += "\n\ninputs distribution: "+str(self.inputs_distribution()) msg += "\n" msg += self.environment.metrics_.metrics_for_team(self) return msg def inputs_distribution(self): inputs = [] if len(self.active_programs_) > 0: for program in self.active_programs_: if len(program.inputs_list_) > 0: inputs += program.inputs_list_ else: for program in self.programs: if len(program.inputs_list_) > 0: inputs += program.inputs_list_ inputs_dist = Counter(inputs) return inputs_dist def dict(self): info = {} info['team_id'] = self.team_id_ info['generation'] = self.generation if not Config.USER['advanced_training_parameters']['second_layer']['enabled']: info['programs_type'] = 'atomic' else: info['programs_type'] = 'meta' programs_json = [] for program in self.programs: programs_json.append(program.dict()) info['programs'] = programs_json return info def json(self): return json.dumps(self.dict()) def __repr__(self): return "("+str(self.team_id_)+"-"+str(self.generation)+")" def __str__(self): text = "TEAM "+self.__repr__() text += "\n\n\n######## METRICS\n" text += self.quick_metrics() text += "\n\n\n######## PROGRAMS (ACTIVE)" for p in self.active_programs_: text += "\n"+str(p) text += "\n\n\n######## PROGRAMS (INACTIVE)" inactive_programs = list(set(self.programs) - set(self.active_programs_)) if inactive_programs: for p in inactive_programs: text += "\n"+str(p) else: text += "\n[No inactive programs]" return text ``` #### File: environments/classification/classification_environment.py ```python import random import numpy from collections import Counter from sklearn.metrics import confusion_matrix, accuracy_score, recall_score from classification_point import ClassificationPoint from classification_metrics import ClassificationMetrics from ..default_environment import DefaultEnvironment from ..default_point import reset_points_ids from ...utils.helpers import round_array, flatten from ...config import Config class ClassificationEnvironment(DefaultEnvironment): """ This environment encapsulates all methods to deal with a classification task. """ def __init__(self): reset_points_ids() self.point_population_ = None train, test = self._initialize_datasets() self.train_population_ = self._dataset_to_points(train) self.test_population_ = self._dataset_to_points(test) self.trainset_class_distribution_ = Counter([p.output for p in self.train_population_]) self.testset_class_distribution_ = Counter([p.output for p in self.test_population_]) self.total_actions_ = len(self.testset_class_distribution_) self.total_inputs_ = len(self.train_population_[0].inputs) self.trainset_per_action_ = self._get_data_per_action(self.train_population_) Config.RESTRICTIONS['total_actions'] = self.total_actions_ Config.RESTRICTIONS['total_raw_actions'] = self.total_actions_ Config.RESTRICTIONS['total_inputs'] = self.total_inputs_ Config.RESTRICTIONS['use_memmory_for_actions'] = True # since for the same input, the output label is always the same # ensures that the point population will be balanced: total_samples_per_criteria = (Config.USER['training_parameters']['populations']['points'] /self.total_actions_) Config.USER['training_parameters']['populations']['points'] = (total_samples_per_criteria *self.total_actions_) self.metrics_ = ClassificationMetrics(self) def _initialize_datasets(self): """ Read from file and normalize the train and tests sets. """ dataset_filename = Config.USER['classification_parameters']['dataset'] print("\nReading inputs from data: "+dataset_filename) train = self._read_space_separated_file(Config.USER['classification_parameters']['working_path'] +dataset_filename+".train") test = self._read_space_separated_file(Config.USER['classification_parameters']['working_path'] +dataset_filename+".test") normalization_params = self._get_normalization_params(train, test) train = self._normalize(normalization_params, train) test = self._normalize(normalization_params, test) return train, test def _read_space_separated_file(self, file_path): """ Read files separated by space (example: 0.015 0.12 0.082 0.146 3) """ with open(file_path) as f: content = f.readlines() content = [x.strip('\n').strip() for x in content] content = [x.split(' ') for x in content] X = [x[:-1] for x in content] Y = [x[-1:] for x in content] self.action_mapping_ = self._create_action_mapping(Y) Y = self._apply_action_mapping(Y) content = numpy.append(X, Y, axis = 1) content = [[float(y) for y in x]for x in content] return content def _create_action_mapping(self, Y): action_mapping_ = {} labels = sorted(set(flatten(Y))) for i, label in enumerate(labels): action_mapping_[label] = i return action_mapping_ def _apply_action_mapping(self, Y): return [[self.action_mapping_[y] for y in x]for x in Y] def _get_normalization_params(self, train, test): """ Get the mean and range for each column from the total dataset (train+test), excluding the labels column. """ normalization_params = [] data = numpy.append(train, test, axis = 0) attributes_len = len(data[0]) for index in range(attributes_len-1): # dont get normalization parameters for the labels column column = data[:,index] normalization_params.append({'min':min(column), 'range':max(column)-min(column)}) return normalization_params def _normalize(self, normalization_params, data): """ Normalize all columns, except the labels, using the normalization parameters. """ normalized_data = [] for line in data: new_line = [] for i, cell in enumerate(line): if not i == len(line)-1: # dont normalize the labels column if normalization_params[i]['range'] == 0.0: cell = 0.0 else: cell = ((cell-normalization_params[i]['min']) /float(normalization_params[i]['range']) *Config.RESTRICTIONS['multiply_normalization_by']) new_line.append(cell) normalized_data.append(new_line) return normalized_data def _dataset_to_points(self, data): """ Use dataset to create point population. """ population = [] for index, item in enumerate(data): population.append(ClassificationPoint(numpy.array(item[:-1]), item[-1])) return population def _get_data_per_action(self, point_population): subsets_per_class = [] for class_index in range(self.total_actions_): values = [point for point in point_population if point.output == class_index] subsets_per_class.append(values) return subsets_per_class def reset(self): self.point_population_ = None def setup(self, teams_population): """ Get a sample of the training dataset to create the point population. If it is the first generation of the run, just gets random samples for each action of the dataset. For the next generations, it replaces some of the points in the sample for new points. """ total_samples_per_class = Config.USER['training_parameters']['populations']['points']/self.total_actions_ if not self.point_population_: # first sampling of the run # get random samples per class samples_per_class = [] for subset in self.trainset_per_action_: samples_per_class.append(self._sample_subset(subset, total_samples_per_class)) else: # uses attributes defined in evaluate_point_population() self._remove_points(flatten(self.samples_per_class_to_remove_), teams_population) samples_per_class = self.samples_per_class_to_keep_ # ensure that the sampling is balanced for all classes, using oversampling for the ones with less than the minimum samples for sample in samples_per_class: while len(sample) < total_samples_per_class: sample += self._sample_subset(sample, total_samples_per_class-len(sample)) sample = flatten(samples_per_class) # join samples per class random.shuffle(sample) self.point_population_ = sample self._check_for_bugs() def _sample_subset(self, subset, sample_size): if len(subset) <= sample_size: sample = subset else: sample = random.sample(subset, sample_size) return sample def _remove_points(self, points_to_remove, teams_population): """ Remove the points to remove from the teams, in order to save memory. """ for team in teams_population: for point in points_to_remove: if point.point_id_ in team.results_per_points_: team.results_per_points_.pop(point.point_id_) if point.point_id_ in team.memory_actions_per_points_: team.memory_actions_per_points_.pop(point.point_id_) def _check_for_bugs(self): if len(self.point_population_) != Config.USER['training_parameters']['populations']['points']: raise ValueError("The size of the points population changed during selection! " "You got a bug! (it is: "+str(len(self.point_population_))+", " "should be: "+str(Config.USER['training_parameters']['populations']['points'])+")") def evaluate_point_population(self, teams_population): current_subsets_per_class = self._get_data_per_action(self.point_population_) total_samples_per_class = Config.USER['training_parameters']['populations']['points']/self.total_actions_ samples_per_class_to_keep = int(round(total_samples_per_class *(1.0-Config.USER['training_parameters']['replacement_rate']['points']))) kept_subsets_per_class = [] removed_subsets_per_class = [] # obtain the data points that will be kept and that will be removed for each subset using uniform probability total_samples_per_class_to_add = total_samples_per_class - samples_per_class_to_keep for i, subset in enumerate(current_subsets_per_class): kept_subsets = random.sample(subset, samples_per_class_to_keep) # get points that will be kept kept_subsets += self._sample_subset(self.trainset_per_action_[i], total_samples_per_class_to_add) # add new points kept_subsets_per_class.append(kept_subsets) removed_subsets_per_class.append(list(set(subset) - set(kept_subsets))) # find the remvoed points self.samples_per_class_to_keep_ = kept_subsets_per_class self.samples_per_class_to_remove_ = removed_subsets_per_class def evaluate_teams_population_for_training(self, teams_population): for team in teams_population: self.evaluate_team(team, Config.RESTRICTIONS['mode']['training']) def evaluate_team(self, team, mode): """ Evaluate the team using the environment inputs. """ if mode == Config.RESTRICTIONS['mode']['training']: population = self.point_population_ is_training = True else: population = self.test_population_ is_training = False outputs = [] for point in population: output = team.execute(point.point_id_, point.inputs, range(Config.RESTRICTIONS['total_raw_actions']), is_training) outputs.append(output) if is_training: if output == point.output: result = 1 # correct else: result = 0 # incorrect team.results_per_points_[point.point_id_] = result Y = [p.output for p in population] score, extra_metrics = self._calculate_team_metrics(outputs, Y, is_training) if is_training: team.fitness_ = score else: team.score_champion_ = score team.extra_metrics_ = extra_metrics def _calculate_team_metrics(self, predicted_outputs, desired_outputs, is_training = False): recall = recall_score(desired_outputs, predicted_outputs, average = None) macro_recall = numpy.mean(recall) extra_metrics = {} if not is_training: # to avoid wasting time processing metrics when they are not necessary extra_metrics['recall_per_action'] = round_array(recall) extra_metrics['accuracy'] = accuracy_score(desired_outputs, predicted_outputs) extra_metrics['confusion_matrix'] = confusion_matrix(desired_outputs, predicted_outputs) return macro_recall, extra_metrics def validate(self, current_generation, teams_population): fitness = [p.fitness_ for p in teams_population] best_team = teams_population[fitness.index(max(fitness))] self.evaluate_team(best_team, Config.RESTRICTIONS['mode']['champion']) return best_team ``` #### File: reinforcement/poker/poker_match.py ```python import os from match_state import MatchState from poker_config import PokerConfig from opponent_model import OpponentModel from ....core.diversity_maintenance import DiversityMaintenance from ....utils.helpers import round_value from ....config import Config class PokerMatch(): def __init__(self, team, opponent, point, mode, match_id): self.team = team self.opponent = opponent self.point = point self.mode = mode if mode == Config.RESTRICTIONS['mode']['training']: self.is_training = True else: self.is_training = False self.match_id = match_id self.opponent_indeces = { 0: 1, 1: 0, } self.players_info = { 0: { 'player': None, 'match_state': None, 'key': None, 'chips': 0.0, 'folded': False, }, 1: { # dealer/button 'player': None, 'match_state': None, 'key': None, 'chips': 0.0, 'folded': False, } } self.pot = 0.0 self._setup_debug_files() def _setup_debug_files(self): if Config.USER['debug']['output_path'] is None: Config.USER['debug']['output_path'] = 'SBB/environments/poker/logs/' self.debug_file = None if Config.USER['debug']['enabled']: path = Config.USER['debug']['output_path']+'matches_output/' if not os.path.exists(path): os.makedirs(path) filename = self.mode+"_"+str(self.match_id)+"_"+str(self.team.__repr__()) self.debug_file = open(path+filename+'.log','w') def run(self): ### Setup helpers if not self.is_training: self.team.extra_metrics_['played_last_hand'] = True self.team.encodings_['encoding_custom_info_per_match'].append(str(self.point.seed_)) self.team.encodings_['encoding_custom_info_per_match'].append(str(self.point.players['team']['position'])) self.opponent.initialize(self.point.seed_) ### Setup match if self.point.players['team']['position'] == 0: self.players_info[0]['player'] = self.team self.players_info[0]['match_state'] = MatchState(self.point, player_key = 'team') self.players_info[0]['id'] = self.team.__repr__() self.players_info[0]['key'] = 'team' self.players_info[1]['player'] = self.opponent self.players_info[1]['match_state'] = MatchState(self.point, player_key = 'opponent') self.players_info[1]['id'] = self.opponent.opponent_id self.players_info[1]['key'] = 'opponent' sbb_position = 0 opponent_position = 1 else: self.players_info[1]['player'] = self.team self.players_info[1]['match_state'] = MatchState(self.point, player_key = 'team') self.players_info[1]['id'] = self.team.__repr__() self.players_info[1]['key'] = 'team' self.players_info[0]['player'] = self.opponent self.players_info[0]['match_state'] = MatchState(self.point, player_key = 'opponent') self.players_info[0]['id'] = self.opponent.opponent_id self.players_info[0]['key'] = 'opponent' sbb_position = 1 opponent_position = 0 if Config.USER['debug']['enabled']: self.debug_file.write("PokerSBB Game: Hold'em Limit\n") self.debug_file.write("Table '"+str(self.match_id)+"' 2-max Seat #2 is the button\n") m = "Seat 1: "+self.players_info[0]['id']+" ("+str(MatchState.maximum_winning())+" chips)" if sbb_position == 0: m += " [SBB]" self.debug_file.write(m+"\n") m = "Seat 2: "+self.players_info[1]['id']+" ("+str(MatchState.maximum_winning())+" chips)" if sbb_position == 1: m += " [SBB]" self.debug_file.write(m+"\n") ### Apply blinds (forced bets made before the cards are dealt) # since it is a heads-up, the dealer posts the small blind, and the non-dealer places the big blind # The small blind is usually equal to half of the big blind. # The big blind is equal to the minimum bet. big_blind = PokerConfig.CONFIG['small_bet'] small_blind = big_blind/2.0 self.players_info[0]['chips'] -= big_blind self.pot += big_blind self.players_info[1]['chips'] -= small_blind # dealer/button self.pot += small_blind if Config.USER['debug']['enabled']: self.debug_file.write(self.players_info[1]['id']+": posts small blind "+str(small_blind)+"\n") self.debug_file.write(self.players_info[0]['id']+": posts big blind "+str(big_blind)+"\n") ### Starting match self.rounds = [[], [], [], []] if Config.USER['debug']['enabled']: self.debug_file.write("*** HOLE CARDS ***\n") self.round_id = 0 # preflop result = self._run_poker_round(starter_player_index = 1, initial_bet = small_blind, default_bet = PokerConfig.CONFIG['small_bet']) if result == "next_round": if Config.USER['debug']['enabled']: self.debug_file.write("*** FLOP *** "+str(self.point.board_cards_[:3])+"\n") self.round_id = 1 # flop result = self._run_poker_round(starter_player_index = 0, initial_bet = 0.0, default_bet = PokerConfig.CONFIG['small_bet']) if result == "next_round": if Config.USER['debug']['enabled']: self.debug_file.write("*** TURN *** "+str(self.point.board_cards_[:4])+"\n") self.round_id = 2 # turn result = self._run_poker_round(starter_player_index = 0, initial_bet = 0.0, default_bet = PokerConfig.CONFIG['big_bet']) river_bet = 0.0 river_default_bet = PokerConfig.CONFIG['big_bet'] river_starter_player_index = 0 if result == "next_round": if Config.USER['debug']['enabled']: self.debug_file.write("*** RIVER *** "+str(self.point.board_cards_)+"\n") self.round_id = 3 # river result = self._run_poker_round(starter_player_index = river_starter_player_index, initial_bet = river_bet, default_bet = river_default_bet) showdown_happened = False if result == "next_round": # showdown showdown_happened = True if Config.USER['debug']['enabled']: self.debug_file.write("*** SHOW DOWN ***\n") self.debug_file.write(self.players_info[0]['id']+": " "shows "+str(self.players_info[0]['match_state'].hole_cards)+" " "(HS: "+str(self.players_info[0]['match_state'].hand_strength[3])+")\n") self.debug_file.write(self.players_info[1]['id']+": " "shows "+str(self.players_info[1]['match_state'].hole_cards)+" " "(HS: "+str(self.players_info[1]['match_state'].hand_strength[3])+")\n") player0_hs = self.players_info[0]['match_state'].hand_strength[3] player1_hs = self.players_info[1]['match_state'].hand_strength[3] if player0_hs > player1_hs: self.players_info[0]['chips'] += self.pot if Config.USER['debug']['enabled']: self.debug_file.write(self.players_info[0]['id']+" collected" " "+str(self.pot)+" from main pot\n") showdown_winner = 0 elif player0_hs < player1_hs: self.players_info[1]['chips'] += self.pot if Config.USER['debug']['enabled']: self.debug_file.write(self.players_info[1]['id']+" collected" " "+str(self.pot)+" from main pot\n") showdown_winner = 1 else: self.players_info[0]['chips'] += self.pot/2.0 self.players_info[1]['chips'] += self.pot/2.0 if Config.USER['debug']['enabled']: self.debug_file.write("Draw! The players shared "+str(self.pot)+" from main pot\n") showdown_winner = -1 if result == "player_folded": if Config.USER['debug']['enabled']: if self.players_info[0]['folded']: last_player = self.players_info[1]['id'] else: last_player = self.players_info[0]['id'] self.debug_file.write(last_player+" collected "+str(self.pot)+" from pot\n") self.debug_file.write(last_player+": doesn't show hand\n") if Config.USER['debug']['enabled']: self.debug_file.write("*** SUMMARY ***\n") self.debug_file.write("Total pot "+str(self.pot)+" | Rake 0\n") self.debug_file.write("Board "+str(self.point.board_cards_)+"\n") if self.players_info[0]['folded']: status0 = "folded" status1 = "collected "+str(self.pot) elif self.players_info[1]['folded']: status0 = "collected "+str(self.pot) status1 = "folded" elif showdown_winner == 0: status0 = "showed and won "+str(self.pot) status1 = "showed and lost" elif showdown_winner == 1: status0 = "showed and lost" status1 = "showed and won "+str(self.pot) elif showdown_winner == -1: status0 = "showed and won "+str(self.pot/2.0) status1 = "showed and won "+str(self.pot/2.0) else: raise ValueError("Unrecognized game final status.") self.debug_file.write("Seat 1: "+self.players_info[0]['id']+" "+status0+"\n") self.debug_file.write("Seat 2: "+self.players_info[1]['id']+" "+status1+"\n") self.debug_file.write("\n\n### Point Information: "+str(self.point)+"\n") player_actions = self.players_info[sbb_position]['match_state'].actions opponent_actions = self.players_info[opponent_position]['match_state'].actions self._get_opponent_model_for_team().update_overall_agressiveness(self.round_id, player_actions, opponent_actions, self.point.label_, showdown_happened) if self.opponent.opponent_id == 'hall_of_fame': self._get_opponent_model_for_hall_of_fame().update_overall_agressiveness(self.round_id, opponent_actions, player_actions, self.point.label_, showdown_happened) if self.team.opponent_id == 'bayesian_opponent' or self.team.opponent_id == 'sbb_bayesian_opponent': self.team.update_opponent_actions(opponent_actions) if self.opponent.opponent_id == 'bayesian_opponent' or self.opponent.opponent_id == 'sbb_bayesian_opponent': self.opponent.update_opponent_actions(player_actions) if self.is_training: original_player_actions = [PokerConfig.CONFIG['inverted_action_mapping'][a] for a in player_actions] if Config.USER['reinforcement_parameters']['environment_parameters']['weights_per_action']: bin_label = DiversityMaintenance.define_bin_for_actions(original_player_actions) self.team.encodings_['encoding_for_pattern_of_actions_per_match'].append(bin_label) sbb_chips = self.players_info[sbb_position]['chips'] opponent_chips = self.players_info[opponent_position]['chips'] normalized_value = self._normalize_winning(float(sbb_chips)) if Config.USER['debug']['enabled']: self.debug_file.write("\n\n### Result Information: ") self.debug_file.write("\nmatch: "+str(self.match_id)) self.debug_file.write("\nsbb_chips: "+str(sbb_chips)) self.debug_file.write("\nopponent_chips: "+str(opponent_chips)) self.debug_file.write("\nnormalized_value: "+str(normalized_value)) self.point.teams_results_.append(normalized_value) self._get_chips_for_team().append(normalized_value) if self.opponent.opponent_id == "hall_of_fame": self._get_chips_for_hall_of_fame().append(self._normalize_winning(float(opponent_chips))) if Config.USER['debug']['enabled']: self.debug_file.close() return normalized_value def _run_poker_round(self, starter_player_index, initial_bet, default_bet): last_action = None current_index = starter_player_index bet = initial_bet last_action_was_a_bet = False while True: opponent_actions = self.players_info[self.opponent_indeces[current_index]]['match_state'].actions action = self._execute_player(self.players_info[current_index]['player'], self.players_info[current_index]['match_state'], bet, opponent_actions, current_index) self.rounds[self.round_id].append(action) if action == 'f': if self.players_info[current_index]['key'] == 'team' and not self.is_training and self.round_id == 0: self.players_info[current_index]['player'].extra_metrics_['played_last_hand'] = False if Config.USER['debug']['enabled']: self.debug_file.write(self.players_info[current_index]['id']+": " "folds (pot: "+str(self.pot)+")\n") self.players_info[self.opponent_indeces[current_index]]['chips'] += self.pot self.players_info[current_index]['folded'] = True return "player_folded" elif action == 'c': self.players_info[current_index]['chips'] -= bet self.pot += bet if Config.USER['debug']['enabled']: self.debug_file.write(self.players_info[current_index]['id']+": " "calls "+str(bet)+" (pot: "+str(self.pot)+")\n") bet = 0.0 if last_action_was_a_bet: return "next_round" else: last_action_was_a_bet = True elif action == 'r': self.players_info[current_index]['chips'] -= bet self.pot += bet bet = default_bet self.players_info[current_index]['chips'] -= bet self.pot += bet if Config.USER['debug']['enabled']: self.debug_file.write(self.players_info[current_index]['id']+": " "raises "+str(default_bet)+" (pot: "+str(self.pot)+")\n") last_action_was_a_bet = False else: raise ValueError("Invalid action.") current_index = self.opponent_indeces[current_index] def _valid_actions(self): valid = [0, 1] max_raises_overall = MatchState.MAX_BETS # check if can raise if self.round_id == 0: max_raises = max_raises_overall-1 else: max_raises = max_raises_overall raises = 0 for action in self.rounds[self.round_id]: if action == 'r': raises += 1 if raises < max_raises: valid.append(2) return valid def _execute_player(self, player, match_state, bet, opponent_actions, current_index): if (match_state.player_key == 'team' and not player.opponent_id == 'bayesian_opponent' and not player.opponent_id == 'bayesian_tester'): inputs = match_state.inputs_for_team(self.pot, bet, self._get_chips_for_team(), self.round_id) inputs += self._get_opponent_model_for_team().inputs(match_state.actions, opponent_actions) else: if player.opponent_id == 'hall_of_fame': inputs = match_state.inputs_for_team(self.pot, bet, self._get_chips_for_hall_of_fame(), self.round_id) inputs += self._get_opponent_model_for_hall_of_fame().inputs(match_state.actions, opponent_actions) else: inputs = match_state.inputs_for_rule_based_opponents(bet, self.round_id) if Config.USER['debug']['enabled']: if match_state.player_key == 'team' or self.opponent.opponent_id == 'hall_of_fame': self.debug_file.write(" >> registers:" " "+str([(p.program_id_, [round_value(r, 2) for r in p.general_registers_]) for p in player.programs])+"\n") self.debug_file.write(" >> inputs: "+str(inputs)+"\n") action = player.execute(self.point.point_id_, inputs, self._valid_actions(), self.is_training) if Config.USER['debug']['enabled']: if match_state.player_key == 'team' or self.opponent.opponent_id == 'hall_of_fame': self.debug_file.write(" << program: "+str(player.last_selected_program_)+"\n") if action is None: action = 1 if match_state.player_key == 'team' and self.is_training: player.encodings_['encoding_for_actions_per_match'].append(str(action)) action = PokerConfig.CONFIG['action_mapping'][action] if match_state.player_key == 'team' and self.is_training: player.encodings_['encoding_custom_info_per_match'].append(str(DiversityMaintenance.define_bin_for_value(match_state.hand_strength[self.round_id], is_normalized = True))) player.encodings_['encoding_custom_info_per_match'].append(str(DiversityMaintenance.define_bin_for_value(match_state.effective_potential[self.round_id], is_normalized = True))) player.encodings_['encoding_custom_info_per_match'].append(str(action)) match_state.actions.append(action) return action def _get_opponent_model_for_team(self): opponent_id = self.opponent.opponent_id if opponent_id not in self.team.opponent_model: self.team.opponent_model[opponent_id] = OpponentModel() return self.team.opponent_model[opponent_id] def _get_chips_for_team(self): opponent_id = self.opponent.opponent_id if opponent_id not in self.team.chips: self.team.chips[opponent_id] = [] return self.team.chips[opponent_id] def _get_opponent_model_for_hall_of_fame(self): opponent_id = self.team.team_id_ if opponent_id not in self.opponent.opponent_model: self.opponent.opponent_model[opponent_id] = OpponentModel() return self.opponent.opponent_model[opponent_id] def _get_chips_for_hall_of_fame(self): opponent_id = self.team.team_id_ if opponent_id not in self.opponent.chips: self.opponent.chips[opponent_id] = [] return self.opponent.chips[opponent_id] def _normalize_winning(self, value): max_winning = MatchState.maximum_winning() max_losing = -max_winning return (value - max_losing)/float(max_winning - max_losing) ``` #### File: environments/reinforcement/reinforcement_metrics.py ```python import numpy from collections import defaultdict from ..default_metrics import DefaultMetrics from ...utils.helpers import round_value from ...utils.helpers import round_value, round_array, flatten, accumulative_performances, rank_teams_by_accumulative_score from ...config import Config class ReinforcementMetrics(DefaultMetrics): def __init__(self, environment): self.environment_ = environment def metrics_for_team(self, team): msg = "" if team.extra_metrics_: msg += "\n\n### Reinforcement Learning-specific metrics for the best team:" if 'champion_score' in team.extra_metrics_: msg += ("\n\nscore per opponent (except hall of fame) (champion): " ""+str(team.score_champion_)) total_opponents = Config.USER['reinforcement_parameters']['environment_parameters']['validation_opponents_labels']+['hall_of_fame'] for key in team.extra_metrics_['opponents']: if key in total_opponents: msg += "\n"+key+": "+str(team.extra_metrics_['champion_opponents'][key]) if 'validation_score' in team.extra_metrics_: msg += "\n\nscore per opponent (validation): "+str(team.score_validation_) for key in team.extra_metrics_['validation_opponents']: msg += "\n"+key+": "+str(team.extra_metrics_['validation_opponents'][key]) if 'training_opponents' in team.extra_metrics_: msg += "\n\nscore per opponent (training): "+str(round_value(team.fitness_)) total_opponents = Config.USER['reinforcement_parameters']['environment_parameters']['training_opponents_labels']+['hall_of_fame'] for key in team.extra_metrics_['training_opponents']: if key in total_opponents: msg += "\n"+key+": "+str(team.extra_metrics_['training_opponents'][key]) return msg def initialize_attributes_for_run_info(self, run_info): run_info.global_mean_validation_score_per_validation_ = [] run_info.global_max_validation_score_per_validation_ = [] run_info.global_opponent_results_per_validation_ = [] run_info.hall_of_fame_per_validation_ = [] run_info.global_fitness_per_opponent_per_generation_ = defaultdict(list) run_info.final_teams_validations_ = [] run_info.final_teams_validations_ids_ = [] run_info.individual_performance_in_last_generation_ = defaultdict(list) run_info.accumulative_performance_in_last_generation_ = defaultdict(list) run_info.ids_for_acc_performance_in_last_generation_ = defaultdict(list) run_info.accumulative_performance_summary_ = {} def generate_output_for_attributes_for_run_info(self, run_info): msg = "" msg += "\n\n\n\n#################### Reinforcement Learning-specific Metrics:" msg += "\n\n\n##### GLOBAL METRICS PER VALIDATION" msg += "\n\nGlobal Mean Validation Score per Validation: "+str(run_info.global_mean_validation_score_per_validation_) msg += "\nGlobal Max. Validation Score per Validation: "+str(run_info.global_max_validation_score_per_validation_) msg += "\n\nGlobal Opponent Results per Validation" for key in run_info.global_opponent_results_per_validation_[-1]: msg += "\n - "+str(key)+": "+str([item[key] if key in item else 0.0 for item in run_info.global_opponent_results_per_validation_]) if Config.USER['reinforcement_parameters']['hall_of_fame']['enabled']: msg += "\n\nHall of Fame per Validation: "+str(run_info.hall_of_fame_per_validation_) msg += "\n\n\n##### GLOBAL METRICS PER TRAINING" msg += "\n\nGlobal Fitness Score per Training (per opponent):" msg += "\n - predefined:" for opponent in self.environment_.opponent_names_for_training_: msg += "\n - "+str(opponent)+": "+str(run_info.global_fitness_per_opponent_per_generation_[opponent]) if Config.USER['reinforcement_parameters']['hall_of_fame']['enabled']: msg += "\n - hall of fame:" hall_of_fame = [x for x in run_info.global_fitness_per_opponent_per_generation_ if x not in self.environment_.opponent_names_for_training_] for key in hall_of_fame: msg += "\n - "+str(key)+": "+str(run_info.global_fitness_per_opponent_per_generation_[key]) msg += "\n\n\n##### FINAL TEAMS METRICS" msg += "\n\nFinal Teams Validations: "+str(run_info.final_teams_validations_) msg += "\nFinal Teams Ids: "+str(run_info.final_teams_validations_ids_) msg += "\n\n\n##### ACCUMULATIVE PERFORMANCES" for metric in run_info.individual_performance_in_last_generation_: msg += "\n\nOverall Accumulative Results ("+str(metric)+"):" msg += "\n- Individual Team Performance: "+str(run_info.individual_performance_in_last_generation_[metric]) msg += "\n- Accumulative Team Performance: "+str(run_info.accumulative_performance_in_last_generation_[metric]) msg += "\n- Team ids: "+str(run_info.ids_for_acc_performance_in_last_generation_[metric]) msg += "\n\n\n##### TEAMS RANKED BY ACCUMULATIVE PERFORMANCE" msg += "\n\nTeams Ranked by Accumulative Score per Metric" for metric in run_info.accumulative_performance_summary_: msg += "\n - metric: "+str(metric)+" (len: "+str(len(run_info.accumulative_performance_summary_[metric]['overall']['ids_only']))+"):" msg += "\n - Rank: "+str(run_info.accumulative_performance_summary_[metric]['overall']['rank']) msg += "\n - Team ids: "+str(run_info.accumulative_performance_summary_[metric]['overall']['ids_only']) return msg def quick_metrics(self): msg = "" msg += "\n### Environment Info:" msg += "\ntotal inputs: "+str(self.environment_.total_inputs_) msg += "\ntotal actions: "+str(self.environment_.total_actions_) msg += "\ntraining opponents: "+str(self.environment_.opponent_names_for_training_) return msg def store_per_generation_metrics(self, run_info, teams_population, current_generation, previous_diversity): super(ReinforcementMetrics, self).store_per_generation_metrics(run_info, teams_population, current_generation, previous_diversity) older_teams = [team for team in teams_population if team.generation != current_generation] opponents = older_teams[0].extra_metrics_['training_opponents'].keys() for opponent in opponents: mean_fitness_per_opponent = round_value(numpy.mean([team.extra_metrics_['training_opponents'][opponent] for team in older_teams]), 3) run_info.global_fitness_per_opponent_per_generation_[opponent].append(mean_fitness_per_opponent) def store_per_validation_metrics(self, run_info, best_team, teams_population, programs_population, current_generation): super(ReinforcementMetrics, self).store_per_validation_metrics(run_info, best_team, teams_population, programs_population, current_generation) older_teams = [team for team in teams_population if team.generation != current_generation] validation_score_mean = round_value(numpy.mean([team.score_validation_ for team in older_teams])) run_info.temp_info_['validation_score_mean'] = validation_score_mean opponent_means = {} for key in older_teams[0].extra_metrics_['validation_opponents']: opponent_means[key] = round_value(numpy.mean([t.extra_metrics_['validation_opponents'][key] for t in older_teams])) if 'hall_of_fame' in best_team.extra_metrics_['champion_opponents']: opponent_means['hall_of_fame(champion)'] = best_team.extra_metrics_['champion_opponents']['hall_of_fame'] run_info.global_mean_validation_score_per_validation_.append(validation_score_mean) run_info.global_max_validation_score_per_validation_.append(round_value(max([team.score_validation_ for team in older_teams]))) run_info.global_opponent_results_per_validation_.append(opponent_means) run_info.final_teams_validations_ = [team.score_validation_ for team in older_teams] if Config.USER['reinforcement_parameters']['hall_of_fame']['enabled']: run_info.hall_of_fame_per_validation_.append([p.__repr__() for p in self.environment_.hall_of_fame()]) def print_per_validation_metrics(self, run_info, best_team): super(ReinforcementMetrics, self).print_per_validation_metrics(run_info, best_team) print "\n\nglobal validation score (mean): "+str(run_info.temp_info_['validation_score_mean']) if Config.USER['reinforcement_parameters']['hall_of_fame']['enabled']: print "\nHall of Fame: "+str(run_info.hall_of_fame_per_validation_[-1]) def store_per_run_metrics(self, run_info, best_team, teams_population, pareto_front, current_generation): super(ReinforcementMetrics, self).store_per_run_metrics(run_info, best_team, teams_population, pareto_front, current_generation) self._calculate_accumulative_performances(run_info, teams_population, current_generation) self._summarize_accumulative_performances(run_info) self._generate_second_layer_files(run_info, teams_population) older_teams = [team for team in teams_population if team.generation != current_generation] run_info.final_teams_validations_ids_ = [team.__repr__() for team in older_teams] # to ensure validation metrics exist for all teams in the hall of fame if Config.USER['reinforcement_parameters']['hall_of_fame']['enabled']: print "Validating hall of fame..." self.environment_.validate(current_generation, self.environment_.hall_of_fame()) def _calculate_accumulative_performances(self, run_info, teams_population, current_generation): older_teams = [team for team in teams_population if team.generation != current_generation] metric = 'score' sorting_criteria = lambda x: x.score_validation_ get_results_per_points = lambda x: x.results_per_points_for_validation_ point_ids = [point.point_id_ for point in self.environment_.validation_point_population_] individual_performance, accumulative_performance, teams_ids = accumulative_performances(older_teams, point_ids, sorting_criteria, get_results_per_points) run_info.individual_performance_in_last_generation_[metric] = individual_performance run_info.accumulative_performance_in_last_generation_[metric] = accumulative_performance run_info.ids_for_acc_performance_in_last_generation_[metric] = teams_ids def _summarize_accumulative_performances(self, run_info): metric = 'score' run_info.accumulative_performance_summary_[metric] = {} ind_score = run_info.individual_performance_in_last_generation_[metric] acc_score = run_info.accumulative_performance_in_last_generation_[metric] ids = run_info.ids_for_acc_performance_in_last_generation_[metric] rank = rank_teams_by_accumulative_score(ind_score, acc_score, ids) run_info.accumulative_performance_summary_[metric]['overall'] = {} run_info.accumulative_performance_summary_[metric]['overall']['rank'] = rank run_info.accumulative_performance_summary_[metric]['overall']['ids_only'] = sorted([r[0] for r in rank]) def _generate_second_layer_files(self, run_info, teams_population): top5_overall_ids = [r[0] for r in run_info.accumulative_performance_summary_['score']['overall']['rank'][:5]] top10_overall_ids = [r[0] for r in run_info.accumulative_performance_summary_['score']['overall']['rank'][:10]] top15_overall_ids = [r[0] for r in run_info.accumulative_performance_summary_['score']['overall']['rank'][:15]] if len(top5_overall_ids) == 5: run_info.second_layer_files_['top5_overall'] = [t for t in teams_population if t.__repr__() in top5_overall_ids] if len(top5_overall_ids) == 10: run_info.second_layer_files_['top10_overall'] = [t for t in teams_population if t.__repr__() in top10_overall_ids] if len(top5_overall_ids) == 15: run_info.second_layer_files_['top15_overall'] = [t for t in teams_population if t.__repr__() in top15_overall_ids] run_info.second_layer_files_['all'] = teams_population def generate_overall_metrics_output(self, run_infos): msg = super(ReinforcementMetrics, self).generate_overall_metrics_output(run_infos) msg += "\n\n\n###### Reinforcement Learning-specific Metrics:" score_means, score_stds = self._process_scores([run.global_mean_validation_score_per_validation_ for run in run_infos]) msg += "\n\nGlobal Mean Validation Score per Validation:" msg += "\nmean: "+str(score_means) if not Config.USER['verbose']['dont_show_std_deviation_in_reports']: msg += "\nstd. deviation: "+str(score_stds) score_means, score_stds = self._process_scores([run.global_max_validation_score_per_validation_ for run in run_infos]) msg += "\n\nGlobal Max. Validation Score per Validation:" msg += "\nmean: "+str(score_means) if not Config.USER['verbose']['dont_show_std_deviation_in_reports']: msg += "\nstd. deviation: "+str(score_stds) msg += "\n\nGlobal Fitness per Opponent per Training:" for key in self.environment_.opponent_names_for_training_: score_means, score_stds = self._process_scores([run.global_fitness_per_opponent_per_generation_[key] for run in run_infos]) msg += "\n- "+str(key)+":" msg += "\n- mean: "+str(round_array(score_means, 2)) if not Config.USER['verbose']['dont_show_std_deviation_in_reports']: msg += "\n- std. deviation: "+str(round_array(score_stds, 2)) for run_id, run in enumerate(run_infos): valid_names = [t.__repr__() for t in run.hall_of_fame_in_last_generation_] for key in run.global_fitness_per_opponent_per_generation_.keys(): if key in valid_names: msg += "\n- run "+str(run_id+1)+", "+str(key)+": "+str(run.global_fitness_per_opponent_per_generation_[key]) msg += "\n\nFinal Teams Validations: "+str(flatten([round_array(run.final_teams_validations_, 3) for run in run_infos])) msg += "\n" msg += self._generate_overall_metrics_output_for_acc_curves(run_infos) msg += self._generate_summary(run_infos) return msg def _generate_summary(self, run_infos): # Obs.: Everything here is duplicated code msg = "\n\n\n\n######### SUMMARY:" score_means, score_stds = self._process_scores([run.global_mean_fitness_per_generation_ for run in run_infos]) msg += "\n\nGlobal Mean Fitness Score per Training:" msg += "\nmean: "+str(round_array(score_means, 3)) score_means, score_stds = self._process_scores([run.global_max_fitness_per_generation_ for run in run_infos]) msg += "\n\nGlobal Max. Fitness Score per Training:" msg += "\nmean: "+str(round_array(score_means, 3)) score_means, score_stds = self._process_scores([run.global_mean_validation_score_per_validation_ for run in run_infos]) msg += "\n\nGlobal Mean Validation Score per Validation:" msg += "\nmean: "+str(score_means) score_means, score_stds = self._process_scores([run.global_max_validation_score_per_validation_ for run in run_infos]) msg += "\n\nGlobal Max. Validation Score per Validation:" msg += "\nmean: "+str(score_means) score_means, score_stds = self._process_scores([run.champion_score_per_validation_ for run in run_infos]) msg += "\n\nChampion Score per Validation:" msg += "\nmean: "+str(score_means) msg += "\n\n\n### Summary Per Run" best_scores = [run.global_mean_fitness_per_generation_[-1] for run in run_infos] msg += "\n\nGlobal Mean Fitness Score per Training per Run:" msg += "\n"+str(best_scores) msg += "\nmean: "+str(round_value(numpy.mean(best_scores))) best_scores = [run.global_max_fitness_per_generation_[-1] for run in run_infos] msg += "\n\nGlobal Max. Fitness Score per Training per Run:" msg += "\n"+str(best_scores) msg += "\nmean: "+str(round_value(numpy.mean(best_scores))) best_scores = [run.global_mean_validation_score_per_validation_[-1] for run in run_infos] msg += "\n\nGlobal Mean Validation Score per Validation per Run:" msg += "\n"+str(best_scores) msg += "\nmean: "+str(round_value(numpy.mean(best_scores))) best_scores = [run.global_max_validation_score_per_validation_[-1] for run in run_infos] msg += "\n\nGlobal Max. Validation Score per Validation per Run:" msg += "\n"+str(best_scores) msg += "\nmean: "+str(round_value(numpy.mean(best_scores))) best_scores = [round_value(run.best_team_.score_champion_) for run in run_infos] msg += "\n\nChampion Score per Validation per Run:" msg += "\n"+str(best_scores) msg += "\nmean: "+str(round_value(numpy.mean(best_scores))) return msg ``` #### File: SBB/utils/run_info.py ```python import time from collections import defaultdict from helpers import round_array, round_value from ..config import Config class RunInfo: """ Stores metrics for the runs. """ def __init__(self, run_id, environment, seed): self.run_id = run_id self.environment = environment self.seed = seed self.elapsed_time_ = None self.best_team_ = None self.teams_in_last_generation_ = [] self.hall_of_fame_in_last_generation_ = [] self.pareto_front_in_last_generation_ = [] self.second_layer_files_ = {} self.start_time_ = time.time() self.temp_info_ = {} self.train_score_per_validation_ = [] self.champion_score_per_validation_ = [] self.global_diversity_per_validation_ = defaultdict(list) self.global_mean_fitness_per_generation_ = [] self.global_max_fitness_per_generation_ = [] self.global_fitness_per_diversity_per_generation_ = defaultdict(list) self.global_diversity_per_generation_ = defaultdict(list) self.novelty_type_per_generation_ = [] self.actions_distribution_per_validation_ = [] self.inputs_distribution_per_instruction_per_validation_ = [] self.inputs_distribution_per_team_per_validation_ = [] self.mean_team_size_per_validation_ = [] self.mean_program_size_with_introns_per_validation_ = [] self.mean_program_size_without_introns_per_validation_ = [] self.environment.metrics_.initialize_attributes_for_run_info(self) def end(self): self.elapsed_time_ = round_value((time.time() - self.start_time_)/60.0) def __str__(self): msg = "RUN "+str(self.run_id)+"\n" msg += "seed: "+str(self.seed) msg += "\n\n\n\n#################### General Metrics:" msg += "\n\n\n##### GLOBAL METRICS PER VALIDATION" msg += "\n\nChampion Fitness per Validation: "+str(round_array(self.train_score_per_validation_)) msg += "\nChampion Score per Validation: "+str(round_array(self.champion_score_per_validation_)) if len(Config.USER['advanced_training_parameters']['diversity']['metrics']) > 0: msg += "\n\nGlobal Diversities per Validation" for key in self.global_diversity_per_validation_: msg += "\n - "+str(key)+": "+str(self.global_diversity_per_validation_[key]) msg += "\n\n\n##### GLOBAL METRICS PER TRAINING" msg += "\n\nGlobal Mean Fitness Score per Training: "+str(self.global_mean_fitness_per_generation_) msg += "\nGlobal Max. Fitness Score per Training: "+str(self.global_max_fitness_per_generation_) if len(Config.USER['advanced_training_parameters']['diversity']['metrics']) > 1: msg += "\n\n\nGlobal Fitness Score per Training (per diversity):" for key in self.global_fitness_per_diversity_per_generation_: msg += "\n - "+str(key)+": "+str(self.global_fitness_per_diversity_per_generation_[key]) if len(Config.USER['advanced_training_parameters']['diversity']['metrics']) > 0: msg += "\n\nGlobal Diversities per Training" for key in self.global_diversity_per_generation_: msg += "\n - "+str(key)+": "+str(self.global_diversity_per_generation_[key]) if len(Config.USER['advanced_training_parameters']['diversity']['metrics']) > 1: msg += "\n\nDiversity Type per Training: "+str(self.novelty_type_per_generation_) msg += "\n\n\n##### DISTRIBUTION METRICS PER VALIDATION" msg += "\n\nDistribution of Actions" msg += "\n - last validation: "+str(self.actions_distribution_per_validation_[-1]) msg += "\n - per validation: "+str(self.actions_distribution_per_validation_) msg += "\n\nDistribution of Inputs (per program)" msg += "\n - last validation: "+str(self.inputs_distribution_per_instruction_per_validation_[-1]) msg += "\n - per validation: "+str(self.inputs_distribution_per_instruction_per_validation_) msg += "\n\nDistribution of Inputs (per team)" msg += "\n - last validation: "+str(self.inputs_distribution_per_team_per_validation_[-1]) msg += "\n - per validation: "+str(self.inputs_distribution_per_team_per_validation_) msg += "\n\n\n##### SIZE METRICS PER VALIDATION" msg += "\n\nMean Team Sizes" msg += "\n - last validation: "+str(self.mean_team_size_per_validation_[-1]) msg += "\n - per validation: "+str(self.mean_team_size_per_validation_) msg += "\n\nMean Program Sizes (with introns)" msg += "\n - last validation: "+str(self.mean_program_size_with_introns_per_validation_[-1]) msg += "\n - per validation: "+str(self.mean_program_size_with_introns_per_validation_) msg += "\n\nMean Program Sizes (without introns)" msg += "\n - last validation: "+str(self.mean_program_size_without_introns_per_validation_[-1]) msg += "\n - per validation: "+str(self.mean_program_size_without_introns_per_validation_) msg += self.environment.metrics_.generate_output_for_attributes_for_run_info(self) return msg ```
{ "source": "jpbonson/WebScrapingTool", "score": 3 }
#### File: webscrapingtool/tests/test_outlets_views.py ```python import json from django.urls import reverse from restapi.models import Outlet from rest_framework import status from rest_framework.test import APITestCase class OutletTests(APITestCase): def setUp(self): Outlet.objects.create(name="WolfNews", website="wolf.com", description="dark") Outlet.objects.create(name="Culture", website="culture.com", description="interesting") def test_create_outlet(self): """ Ensure we can create a new outlet object. """ url = reverse('v1:outlet-list') data = {'name': 'NiceNews', 'website': 'news.com', 'description': 'cool website'} response = self.client.post(url, data, format='json') result = json.loads(response.content.decode('utf-8')) result.pop('id') self.assertEqual(result, data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_list_outlets(self): """ Ensure we can list outlet objects. """ url = reverse('v1:outlet-list') response = self.client.get(url) result = map(lambda x: x['name'], json.loads(response.content.decode('utf-8'))) expected = map(lambda x: x.name, list(Outlet.objects.all())) self.assertEqual(list(result), list(expected)) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_outlet(self): """ Ensure we can get an outlet object. """ sample_id = 1 url = reverse('v1:outlet-detail', kwargs={'outlet_id': sample_id}) response = self.client.get(url) result = json.loads(response.content.decode('utf-8')) expected = Outlet.objects.get(id=sample_id) self.assertEqual(result['name'], expected.name) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_update_outlet(self): """ Ensure we can update an outlet object. """ sample_id = 1 url = reverse('v1:outlet-detail', kwargs={'outlet_id': sample_id}) data = {'name': 'NewNews', 'website': 'news2.com', 'description': ''} response = self.client.put(url, data, format='json') result = json.loads(response.content.decode('utf-8')) expected = Outlet.objects.get(id=sample_id) self.assertEqual(result['name'], expected.name) self.assertEqual(result['website'], expected.website) self.assertEqual(result['description'], expected.description) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_partial_update_outlet(self): """ Ensure we can partially update an outlet object. """ sample_id = 1 url = reverse('v1:outlet-detail', kwargs={'outlet_id': sample_id}) data = {'name': 'NewNews'} response = self.client.patch(url, data, format='json') result = json.loads(response.content.decode('utf-8')) expected = Outlet.objects.get(id=sample_id) self.assertEqual(result['name'], expected.name) self.assertEqual(result['website'], expected.website) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_delete_outlet(self): """ Ensure we can delete an outlet object. """ sample_id = 1 url = reverse('v1:outlet-detail', kwargs={'outlet_id': sample_id}) response = self.client.delete(url) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(response.content.decode('utf-8'), '') with self.assertRaises(Exception) as context: Outlet.objects.get(id=sample_id) self.assertEqual('Outlet matching query does not exist.', str(context.exception)) ```
{ "source": "jpbottaro/anna", "score": 3 }
#### File: data/dataset/glove.py ```python import os import numpy as np import anna.data.utils as utils DESTINATION = "glove" NAME = "glove.840B.300d" TXT_NAME = NAME + ".txt" ZIP_NAME = NAME + ".zip" URL = "http://nlp.stanford.edu/data/" + ZIP_NAME def fetch_and_parse(data_dir, voc_size=None): """ Fetches and parses the GloVe word embeddings dataset. The dataset is also cached as a pickle for further calls. Args: data_dir (str): absolute path to the dir where datasets are stored voc_size (int): maximum size of the vocabulary, None for no limit Returns: voc (list[str]): list of words, matching the index in `emb` emb (numpy.array): array of embeddings for each word in `voc` """ return parse(fetch(data_dir), voc_size) def parse(glove_dir, voc_size): """ Parses the glove word embeddings. Args: glove_dir (str): absolute path to the extracted word embeddings voc_size (int): maximum size of the vocabulary, None for no limit Returns: voc (list[str]): list of words, matching the index in `emb` emb (numpy.array): array of embeddings for each word in `voc` """ voc = [] emb = [] words = set() glove_path = os.path.join(glove_dir, TXT_NAME) with open(glove_path) as f: for line in f: parts = line.split(" ") word = parts[0] if word not in words: words.add(word) voc.append(word) emb.append([float(n) for n in parts[1:]]) if len(words) >= voc_size: break return utils.add_special_tokens(voc, np.array(emb)) def fetch(data_dir): """ Fetches and extracts pre-trained GloVe word vectors. Args: data_dir (str): absolute path to the folder where datasets are stored Returns: glove_dir (str): absolute path to the folder where glove is stored """ file_path = os.path.join(data_dir, DESTINATION, ZIP_NAME) txt_path = os.path.join(data_dir, DESTINATION, TXT_NAME) return utils.fetch(URL, file_path, txt_path) ``` #### File: data/dataset/wmt.py ```python import os import anna.data.utils as utils CORPORA = { "europarl-parallel.tgz": "http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz", "europarl-monolingual.tgz": "http://www.statmt.org/wmt13/training-monolingual-europarl-v7.tgz", "commoncrawl.tgz": "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz", "un.tgz": "http://www.statmt.org/wmt13/training-parallel-un.tgz", "nc-parallel.tgz": "http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz", "nc-monolingual.tgz": "http://www.statmt.org/wmt14/training-monolingual-nc-v9.tgz", "giga-fren.tar": "http://www.statmt.org/wmt10/training-giga-fren.tar", "dev.tgz": "http://www.statmt.org/wmt14/dev.tgz", "test.tgz": "http://www.statmt.org/wmt14/test-full.tgz" } def fetch(data_dir, dest="wmt14"): """ Fetches most data from the WMT14 shared task. Creates the `dest` if it doesn't exist. Args: data_dir (str): absolute path to the dir where datasets are stored dest (str): name for dir where WMT14 datasets will be extracted Returns: final_dir (str): absolute path where WMT14 datasets were extracted """ # Create folder wmt_dir = os.path.join(data_dir, dest) utils.create_folder(wmt_dir) # Download all datasets for f, url in CORPORA.items(): utils.urlretrieve(url, os.path.join(wmt_dir, f)) return wmt_dir ``` #### File: anna/model/metrics.py ```python import tensorflow as tf import tensorflow.compat.v1 as tf1 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.eager import context from tensorflow.python.ops import math_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope def create(labels, predictions, vocab, text_samples=False, histograms=False): num_classes = len(vocab) with tf.name_scope("metrics"): expected_labels_idx, expected_labels_str = _label_hot_to_idx( "expected", labels, vocab) predicted_labels_idx, predicted_labels_str = _label_hot_to_idx( "predicted", predictions, vocab) n_expected_labels = tf1.metrics.mean(tf.reduce_sum(labels, 1)) n_predicted_labels = tf1.metrics.mean(tf.reduce_sum(predictions, 1)) f_micro = f_measure(labels, predictions, num_classes) f_macro = f_measure(labels, predictions, num_classes, micro=False) f_ex = f_example(labels, predictions) hamming = tf1.metrics.accuracy(labels, predictions) accuracy = tf1.metrics.mean( tf.reduce_all(tf.equal(labels, predictions), 1)) metrics = { "out/n_expected_labels": n_expected_labels, "out/n_predicted_labels": n_predicted_labels, "perf/miF1": f_micro, "perf/maF1": f_macro, "perf/ebF1": f_ex, "perf/hamming": hamming, "perf/accuracy": accuracy, } for name, value in metrics.items(): tf1.summary.scalar(name, value[1]) if text_samples: tf.summary.text("out/expected_labels_examples", expected_labels_str) tf.summary.text("out/predicted_labels_examples", predicted_labels_str) if histograms: tf.summary.histogram("out/expected_labels_dist", expected_labels_idx) tf.summary.histogram("out/predicted_labels_dist", predicted_labels_idx) return metrics def display(name, metrics): message = "\t{}".format(name) message += "\tloss: {:.6f}".format(metrics["loss"]) message += "\t" + "\t".join(["{}: {:.4f}".format(k[5:], v) for k, v in metrics.items() if "perf" in k]) print(message) def _label_hot_to_idx(name, labels, vocab): # Find all positive labels (ignoring which document they come from) idx = tf.cast(tf.where(tf.equal(labels, 1.)), tf.int64) idx = idx[:, 1] # Fetch string labels for the first document first_idx = tf.cast(tf.where(tf.equal(labels[0], 1.)), tf.int64) names = tf.contrib.lookup.index_to_string_table_from_tensor( vocab, default_value="_UNK_", name="{}_output".format(name)).lookup(first_idx) return idx, names def f_measure(labels, predictions, num_classes, micro=True, name=None): """Computes the label-based f1 score of the predictions with respect to the labels. The `f_measure` function creates three local variables, `true_positives`, `false_positives` and `false_negatives`, that are used to compute the f measure. This value is ultimately returned as `f_measure`, an idempotent operation. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `f_measure`. Args: labels (tf.Tensor): the ground truth values, a `Tensor` whose dimensions must match `predictions`. predictions (tf.Tensor): the predicted values, a `Tensor` of arbitrary dimensions. num_classes (int): the possible number of labels the prediction task can have. micro (bool, optional): Whether the f measure should be taken globally (i.e. micro), or averaged per class (i.e. macro). name: An optional variable_scope name. Returns: f_measure: Scalar float `Tensor` with the f measure. update_op: `Operation` that increments `true_positives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `f_measure`. Raises: RuntimeError: If eager execution is enabled. """ if context.executing_eagerly(): raise RuntimeError('f_measure is not ' 'supported when eager execution is enabled.') with variable_scope.variable_scope(name, 'f_measure', (predictions, labels)): def count_hits(expected, predicted): hits = math_ops.logical_and(expected, predicted) hits = math_ops.cast(hits, dtypes.float32) return math_ops.reduce_sum(hits, axis=0) is_true_positive = count_hits( math_ops.equal(labels, 1.), math_ops.equal(predictions, 1.)) is_false_positive = count_hits( math_ops.equal(labels, 0.), math_ops.equal(predictions, 1.)) is_false_negative = count_hits( math_ops.equal(labels, 1.), math_ops.equal(predictions, 0.)) tp_var = metric_variable([num_classes], dtypes.float32) fp_var = metric_variable([num_classes], dtypes.float32) fn_var = metric_variable([num_classes], dtypes.float32) tp_up = state_ops.assign_add(tp_var, is_true_positive) fp_up = state_ops.assign_add(fp_var, is_false_positive) fn_up = state_ops.assign_add(fn_var, is_false_negative) def compute_f_measure(tp, fp, fn, micro, name): if micro: tp = math_ops.reduce_sum(tp) fp = math_ops.reduce_sum(fp) fn = math_ops.reduce_sum(fn) value = 2 * tp den = 2 * tp + fp + fn res = array_ops.where(math_ops.greater(den, 0), math_ops.divide(value, den), array_ops.ones_like(value)) return math_ops.reduce_mean(res, name=name) f = compute_f_measure(tp_var, fp_var, fn_var, micro, 'value') update_op = compute_f_measure(tp_up, fp_up, fn_up, micro, 'update_op') return f, update_op def f_example(labels, predictions, metrics_collections=None, updates_collections=None, name=None): """Computes the example-based f1 score of the predictions with respect to the labels. The `f_measure` uses the `tf.compat.v1.metrics.mean` to store the streaming counts. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `f_measure`. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. metrics_collections: An optional list of collections that `f_measure` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: f_measure: Scalar float `Tensor` with the f measure. update_op: `Operation` that increments `true_positives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `f_measure`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if either `metrics_collections` or `updates_collections` are not a list or tuple. RuntimeError: If eager execution is enabled. """ if context.executing_eagerly(): raise RuntimeError('f_example is not ' 'supported when eager execution is enabled.') # Calculate the double of the true positives value = 2. * math_ops.reduce_sum(labels * predictions, 1) # Calculate denominator as sum of non-zero values of both matrices den = math_ops.count_nonzero(labels, 1) + \ math_ops.count_nonzero(predictions, 1) den = tf.cast(den, dtypes.float32) # Avoid division by zero res = array_ops.where(math_ops.greater(den, 0), math_ops.divide(value, den), array_ops.ones_like(value), name) return tf1.metrics.mean(res, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def metric_variable(shape, dtype, validate_shape=True, name=None): """Create variable in `GraphKeys.(LOCAL|METRIC_VARIABLES`) collections. Taken from tf.compat.v1.metrics directly, as the function is not exposed.""" return variable_scope.variable( lambda: array_ops.zeros(shape, dtype), trainable=False, collections=[ ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.METRIC_VARIABLES ], validate_shape=validate_shape, name=name) ``` #### File: anna/tests/test_encdec.py ```python import tensorflow as tf from anna.model.decode import DecoderRNN class EncoderDecoderTest(tf.test.TestCase): def test_encode(self): labels = ["one", "two", "three"] dec = DecoderRNN("no/value", labels, 128, max_steps=len(labels)) with self.test_session(): x = tf.constant([[0, 1, 0], [1, 0, 1]]) x, x_len, x_max = dec.encode_labels(x) self.assertAllEqual(x.eval(), [[4, 2, 0], [3, 5, 2]]) self.assertAllEqual(x_len.eval(), [2, 3]) self.assertAllEqual(x_max.eval(), 3) def test_decode(self): labels = ["one", "two", "three"] dec = DecoderRNN("no/value", labels, 128, max_steps=len(labels)) with self.test_session(): x = tf.constant([[3, 2, 0], [2, 0, 1], [5, 4, 2]]) x = tf.one_hot(x, len(dec.voc)) x = dec.decode_labels(x) self.assertAllEqual(x.eval(), [[1, 0, 0], [0, 0, 0], [0, 1, 1]]) def test_encode_decode(self): labels = ["one", "two", "three"] dec = DecoderRNN("no/value", labels, 128, max_steps=len(labels)) with self.test_session(): orig_x = tf.constant([[0, 1, 0], [1, 0, 1]], dtype=tf.float32) x, x_len, x_max = dec.encode_labels(orig_x) x = tf.one_hot(x, len(dec.voc)) x = dec.decode_labels(x) self.assertAllEqual(orig_x.eval(), x.eval()) def test_repeat_decode(self): labels = ["one", "two", "three"] dec = DecoderRNN("no/value", labels, 128, max_steps=len(labels)) with self.test_session(): x = tf.constant([[3, 3, 2, 0]]) x = tf.one_hot(x, len(dec.voc)) x = dec.decode_labels(x) self.assertAllEqual(x.eval(), [[1, 0, 0]]) ```